
HAL Id: tel-00564522
https://theses.hal.science/tel-00564522

Submitted on 9 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation flux de données et optimisation pour
architecture multi-cœurs de motifs répétitifs

Jonathan Piat

To cite this version:
Jonathan Piat. Modélisation flux de données et optimisation pour architecture multi-cœurs de motifs
répétitifs. Informatique [cs]. INSA de Rennes, 2010. Français. �NNT : �. �tel-00564522�

https://theses.hal.science/tel-00564522
https://hal.archives-ouvertes.fr

Modélisation flux de
données et

optimisation pour
architecture multi-cœurs

de motifs répétitifs

Thèse soutenue le 16.09.2010
devant le jury composé de :

Mohamed Akil
Professeur des universités, ESIEE Paris, France/ rapporteur
Pierre Boulet
Professeur des universités, LIFL Villeneuve d’Ascq, France / rapporteur
Shuvra S. Bhattacharyya
Professeur des universités, UMD College Park, USA / examinateur
Steven Derrien
Maître de conférence, IFSIC Rennes, France / examinateur
Olivier Deforges
Professeur des universités, INSA Rennes, France / directeur de thèse
Mickaël Raulet
Ingénieur de recherche, INSA Rennes, France / encadrant

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Traitement du signal et des images

présentée par

Jonathan Piat
 ECOLE DOCTORALE : MATISSE

LABORATOIRE : IETR

Acknowledgements

The work in the thesis is the result of a three-year work at the INSA of Rennes.

I really enjoyed spending time working at the lab, and I would like to thank the

people that made it possible.

First, I want to thank my supervisor, Pr. Olivier Deforges, for making this work

possible and for the time he spent correcting my mistakes in this thesis. I also would

like to thanks my co-advisors, Mickaël Raulet and Pr Jean-François Nezan, for giving

me support and freedom in my work. I address special thanks to Mickaël Raulet for

his contribution and Olivier Déforges' work with correcting my orthography. Thanks

to Shuvra S. Bhattacharyya who helped a lot on the research and publications. His

contributions during the last two years were valuable and helped me to overcome a

lot of di�culties in my work. Thanks to, Pr. Mohamed Akil and Pr. Pierre Boulet,

for being the reviewers of this thesis. Moreover, thanks to Steven Derrien and Pr.

Shuvra S. Bhattacharyya for their participation as member of the jury.

Spending three years on the same topic would have a�ected my mental health

without following colleagues help on both work and ambiance (not listed in any order

of importance): Maxime Pelcat, Mathieu Wipliez, Médéric Blestel, Jérôme Gorin,

Fabien Racapé, Emilie Bosc, Pierre Laurent Lagalaye, Mathieu Urvoy, Yohan Pitrey.

Being passionate by embedded systems, robotic, and general electronic I found great

geek-mates at the lab that helped me full �ling my geekyness needs: Sylvain Haese,

Eric Bazin, Clément Strauss, François Pasteau, Xavier Perraud. Thanks to Jocelyne

Trermier, Denis Simon, Frédéric Garesche and all the technical and administrative

sta� of the INSA of Rennes. Special thanks to Emilie Besse for enlightening our

workdays by presenting the news with her natural softness.

Those three years would not have been possible without a personal and social life.

Thanks to Emilie Malenfant for sharing my life the past seven years, bearing with

my meaningless technical conversation, standing by my mess and for her support

in good and bad times. Thanks to her family for being close and supportive. This

work would not have been possible without my family whose presence the last twenty

seven years helped constructing the person I am. Thanks to my missing dad, whose

positive in�uence has undoubtedly guided me to this point (and beyond).

1

2

Table des matières

I French Summary 1

1 Introduction 3

1.1 Contributions du travail de thèse . 4

1.1.1 Prototypage rapide . 4

1.1.2 Recon�gurable Video Coding 5

1.1.3 Bit-Stream Description Language 5

1.1.4 Organisation de la thèse . 5

2 Etat de l'art 7

2.1 Prototypage rapide . 7

2.1.1 Introduction . 7

2.1.2 Systèmes de calculs distribués 7

2.1.3 Modèle de calcul �ux de données 8

2.1.4 Ordonnancement multiprocesseurs 9

2.2 Transformation des nids de boucles 9

2.2.1 Boucles imbriquées et ordre séquentiel 9

2.2.2 Dépendance de données dans les nids de boucles 10

2.2.3 Transformation des nids de boucles 12

2.2.4 Partitionnement des répétitions 14

3 Contributions 17

3.1 Représentation hiérarchique dans le modèle SDF 17

3.2 Génération de code pour le prototypage rapide 18

3.3 Optimisation des nids de boucles dans le modèle SDF 20

4 Conclusion et propositions de travail 23

II Background 25

5 Introduction 27

i

ii TABLE DES MATIÈRES

5.1 Overview . 27

5.2 Contributions of this Thesis . 29

5.2.1 Rapid Prototyping Framework 29

5.2.2 Recon�gurable Video Coding 33

5.2.3 Bit-Stream Description Language 34

5.3 Outline of this Thesis . 36

6 Background and related work 37

6.1 Introduction . 37

6.2 Parallel computing systems . 37

6.3 Data Flow model of computation . 41

6.3.1 Introduction . 41

6.3.2 Data Flow paradigm introduction 42

6.3.3 Synchronous Data Flow (SDF) 44

6.3.4 Homogeneous Synchronous Data Flow (HSDF) 47

6.3.5 Boolean-controlled Data Flow (BDF) 47

6.3.6 Cyclo-Static Synchronous Data Flow (CSDF) 49

6.3.7 Parameterized Synchronous Data Flow (PSDF) 51

6.3.8 Conclusion . 53

6.4 Application modeling tools . 54

6.4.1 Introduction . 54

6.4.2 Data�ow Interchange Format 54

6.4.3 SDF3 . 55

6.4.4 Ptolemy II . 56

6.4.5 StreamIt . 56

6.4.6 PREESM . 57

6.4.7 SynDEx data-�ow model . 58

6.4.8 Canals . 58

6.4.9 CAL Actor Language . 59

6.4.10 MCSE speci�cation model . 59

6.4.11 Conclusion . 60

6.5 Multi-processor scheduling . 61

6.6 Conclusion . 62

7 Nested loops Partitioning 67

7.1 Introduction . 67

7.2 Nested Loops representation . 67

7.3 Nested Loops execution optimization 69

7.4 Nested Loops partitioning by iteration domain projection 71

TABLE DES MATIÈRES iii

7.5 Nested Loops partitioning by iteration domain tiling 73

7.6 Conclusion . 75

III Research Work 79

8 Hierarchy Representation in Synchronous Data Flow Graphs 81

8.1 Introduction . 81

8.2 Existing hierarchy representation in Synchronous Data Flow Graphs . 83

8.2.1 Repetition based hierarchy . 83

8.2.2 Parameter based hierarchy . 85

8.3 Interface based hierarchy . 86

8.3.1 Special nodes . 86

8.3.2 Hierarchy deadlock-freeness 87

8.3.3 Hierarchy scheduling . 89

8.3.4 Hierarchy behavior . 90

8.3.5 Hierarchy improvements . 91

8.4 Application case study . 91

8.4.1 IDCT2D description . 92

8.4.2 Structural analysis . 92

8.5 Conclusion . 93

9 Multi-core code generation of Interface based Synchronous Data-

�ow 95

9.1 Introduction . 95

9.2 Multi-threaded execution model . 97

9.3 C code generation procedure . 98

9.4 Graph optimization for code generation 100

9.5 Bu�er optimization and allocation . 102

9.6 Hierarchical actor port management 107

9.7 Actor prototypes instantiation . 108

9.8 In loop actors instantiation . 108

9.9 Special vertices instantiation . 109

9.10 Inter Processor Communication instantiation 110

9.11 xml to C transformation . 112

9.12 Code generation example . 114

9.13 Conclusion . 116

iv TABLE DES MATIÈRES

10 Loop partitioning techniques for Interface based Synchronous Da-

ta�ow 121

10.1 Introduction . 121

10.2 Iteration domain projection technique 122

10.2.1 Distance vector extraction from interface-based SDF 123

10.2.2 SDF network synthesis using analysis results 124

10.2.3 The matrix vector product example 124

10.3 Iteration domain tiling . 128

10.3.1 Limitations . 129

10.3.2 SDF network synthesis from partitioned iteration domain . . . 129

10.3.3 The matrix vector product example 132

10.4 Conclusion . 132

11 Conclusion, Current Status and Future Work 137

11.1 Conclusion . 137

11.2 Current Status . 138

11.3 Future Work . 138

Glossary 144

Première partie

French Summary

1

Chapitre 1

Introduction

Devant la demande croissante en puissance de calcul, des applications de traite-

ment du signal et notamment, des applications d'encodage/décodage d'images �xes

et vidéos, il est de plus en plus courant de faire appel à la puissance des architec-

tures multi-coeurs/multiprocesseurs. Ce type d'architecture présente une puissance

potentielle importante, mais la complexité d'implémentation d'une application est

élevée. En e�et, ce type d'architecture peut, selon le contexte, faire appel à des types

de processeurs di�érents tels que DSP ou GPU mais aussi à des coeurs généralistes

(x86, ARM ...). Ces coeurs de processeur sont interconnectés au travers de réseaux

de communication présentant des topologies adaptées.

A�n de parvenir rapidement à une implémentation �able et e�cace sur ce type

d'architecture, il est nécessaire de faire appel à des outils de prototypage rapide

tel que PREESM, PEaCe ou SynDEx qui proposent des méthodes automatiques

pour parvenir à une solution d'implantation d'un algorithme sur une architecture

parallèle rapidement. Ces outils s'appuient sur un modèle d'application de type �ux

de données, qui modélise l'application au travers des dépendances de données qui

existent entre les acteurs qui la compose. Un acteur est un élément opératoire qui

consomme des données, e�ectue un calcul et produit des données. Ces acteurs sont

connectés au sein d'un réseau au travers d'arcs qui symbolisent les dépendances de

données.

L'outil PREESM est l'un des fruits de cette thèse et s'appuie sur le modèle

Synchronous Data Flow, ou modèle Flux de Données Synchrone. Ce modèle spéci�e

pour chaque tâche le nombre de données produites et consommées par chaque acteur

pour une exécution de celui-ci. Ces informations permettent d'extraire un ordre total

d'exécution des acteurs qui composent le réseau ainsi que la mémoire requise pour la

communication entre les acteurs. Dans le modèle �ux de données, il existe une repré-

sentation hiérarchique du réseau qui permet de spéci�er le comportement de chaque

acteur au travers d'un réseau �ux de données. Dans le modèle SDF (Synchronous

3

4 Introduction

Data Flow), la technique du clustering permet d'extraire une représentation hiérar-

chique à partir d'une représentation à plat, mais il n'existe pas de modèle spéci�que

de hiérarchie qui permette la spéci�cation d'un réseau SDF ou chaque acteur peut

lui même être spéci�é par un réseau SDF.

La première contribution de cette thèse est de dé�nir un tel modèle de hiérarchie

en spéci�ant des règles qui assurent la composition (comme dé�nit précédemment).

De ce fait, il est possible d'extraire un ordonnancement du réseau de plus haut niveau

indépendamment de l'ordonnancement des réseaux qui spéci�ent le comportement

des acteurs. Ce modèle s'approche, par son interprétation, du découpage en fonctions

et blocks possible dans le code C.

Une autre contribution de cette thèse est la partie génération de code C de l'outil

PREESM. Cette génération de code a pour but de délivrer un code C dans un for-

mat compréhensible et structuré. De plus, la �exibilité de la méthode de génération

permet à l'utilisateur de con�gurer la technique d'allocation mémoire et de facile-

ment s'adapter à di�érents types de matériels et OS. Il est également envisageable

de générer du code dans un langage autre que le C avec peu de modi�cations.

En�n, une dernière contribution établit l'utilisation de méthodes d'extraction de

parallélisme dans les nids de boucles appliquées au domaine de la modélisation �ux

de données synchrone. Ce type de transformation permet d'extraire du parallélisme

d'une description factorisée de l'application tout en conservant un nombre réduit de

sommets à ordonnancer.

Durant cette thèse, j'ai également participé à des contributions dans le domaine

du codage vidéo. En e�et, l'équipe "<image"> de l'IETR est impliquée dans l'enco-

dage/décodage d'images �xes et de vidéos. L'équipe participe depuis peu au standard

MPEG-RVC, et j'ai été impliqué dans des travaux connexes. La première contribu-

tion concerne la validation de bit-stream dans RVC. J'ai participé au développement

de l'outil de validation, et j'ai apporté ma contribution à une publication sur la

procédure de validation d'un bit-stream. J'ai, également, participé au portage sur

plateforme ARM d'un décodeur vidéo recon�gurable. Ce décodeur utilise la techno-

logie LLVM pour implémenter un décodeur recon�gurable à partir d'une description

d'un réseau d'acteurs CAL. Une description plus complète de l'environnement des

contributions est décrite ci-après.

1.1 Contributions du travail de thèse

1.1.1 Prototypage rapide

Les travaux contenus dans cette thèse sont des contributions au logiciel de pro-

totypage rapide PREESM (Parallel Real-tile Embedded Executive Scheduling Me-

Contributions du travail de thèse 5

thod). Le prototypage rapide vise à établir rapidement un prototype d'une appli-

cation donnée pour une architecture donnée. Ce prototype est généré à partir de

descriptions haut niveau de l'architecture et l'application. A partir de ces spéci�ca-

tions haut niveau, le logiciel se charge d'établir un partitionnement de l'application

sur les coeurs de l'architecture cible. Il génère, ensuite, un ordonnancement pour

chaque coeur. L'objectif �nal est de générer, à partir de cet ordonnancement, du

code compilable et exécutable. Le logiciel prend donc en charge une majeure partie

de la complexité a�n de faciliter le travail du programmeur.

1.1.2 Recon�gurable Video Coding

Le standard RVC dé�nit par MPEG, s'attache à décrire les actions qui composent

un décodeur générique pour en dresser une bibliothèque et pouvoir con�gurer dyna-

miquement un décodeur. Les acteurs sont appelés "<Functionnal Units"> (Unités

fonctionnels ou FU) et sont instanciés dans un réseau qui dé�nit les échanges de

données entre FU. A partir de cette description, il est alors possible de créer dyna-

miquement une structure de décodage vidéo. Le langage de spéci�cation des acteurs

est RVC-CAL.

1.1.3 Bit-Stream Description Language

Dans le cadre du standard RVC, il est nécessaire d'être capable de décrire la

structure du �ux d'informations d'entrée du décodeur. En e�et, le seul élément non

standard dans l'ensemble des codecs, est la structure du �ux. A�n de valider la

structure du �ux, il est nécessaire d'avoir recours au standard BSDL qui fournit la

syntaxe de description du �ux et en décrire la structure dans un �chier de type xslt.

Il est également possible de générer dynamiquement un acteur capable d'interpréter

ce �ux et ainsi l'utiliser dans le cadre de RVC. J'ai travaillé, dans ce contexte, sur

les outils qui permettent d'obtenir la description BSDL d'un �ux à partir d'une

séquence, et la séquence à partir d'une description BSDL. J'ai également participé

à la rédaction d'un article sur la méthode de validation de la structure d'un �ux.

1.1.4 Organisation de la thèse

La suite de cette thèse s'organise comme suit :

� Cette première partie présente un résumé substantiel du travail e�ectué en

français

� Une deuxième partie dresse un état de l'art en anglais des éléments nécessaires

à la compréhension de la suite du document

� Une troisième partie en anglais présente les travaux de recherche e�ectués.

6 Introduction

Chapitre 2

Etat de l'art

2.1 Prototypage rapide

2.1.1 Introduction

Le prototypage rapide s'attache à fournir un ensemble d'étapes automatisées qui

permettent, à partir d'une description haut niveau de l'application et de l'architec-

ture, de générer une solution optimisée d'implantation. Les outils de prototypage

rapide répondent à la problématique d'implantation d'algorithmes complexes sur

des architectures parallèles. Ces architectures embarquent un nombre variable de

processeurs, ainsi que di�érents moyens de communication entre ces processeurs. Le

modèle d'application utilisé doit fournir su�samment d'informations pour extraire

du parallélisme sans dénaturer le comportement de l'application. Le modèle �ux

de données symbolise une application par les dépendances de données qui existe

entre ces constituants. A l'aide de ce modèle, il est ainsi aisé d'extraire le parallé-

lisme intrinsèque et di�érentes informations permettant l'optimisation mémoire et

l'ordonnancement.

2.1.2 Systèmes de calculs distribués

Un système de calcul distribué est caractérisé par plusieurs éléments :

� Application cible : un système de calcul distribué est avant tout caractérisé par

l'application cible. On distinguera deux grands types d'applications : dominés

par le contrôle ou dominés par les données. En e�et, une application dominée

par le contrôle devra, par exemple, présenter un temps de réaction faible, tandis

qu'une application dominée par les données devra être capable d'un important

débit et d'une puissance de calcul.

� Consommation/Performance : Les choix architecturaux sont, dans le cas des

7

8 Etat de l’art

applications mobiles, guidés par le choix du meilleur rapport consommation/-

performance. En e�et, une architecture parallèle o�re plus de possibilités pour

améliorer ce rapport. La multiplication des coeurs, permet (selon l'application)

de baisser la fréquence de ceux-ci et ainsi limiter les pertes joules.

� Elément de calcul : L'élément de calcul, est, dans le cas des architectures multi-

coeurs, un coeur du système. Un système multi-coeurs est donc généré par

l'interconnexion de multiples éléments de calculs homogènes ou hétérogènes.

Cet élément de calcul est caractérisé par le jeu d'instructions qu'il prend en

charge et sa microarchitecture. La microarchitecture dé�nit la manière dont

est implémenté le jeu d'instruction. L'e�cacité de l'élément de calcul dépend

grandement de sa microarchitecture.

� Système mémoire : Le système mémoire de l'architecture est caractérisé par :

le système de cache, l'interconnexion des éléments de calcul, et la gestion de

la cohérence.

� Accélérateurs, Périphériques : Les accélérateurs et périphériques sont des com-

posants non programmables (con�gurables) de l'architecture. Ces composants

e�ectuent des tâches dédiées avec une grande e�cacité et en parallèle des élé-

ments de calcul. Le DMA (Direct Memory Access) peut, par exemple, e�ectuer

des transferts de mémoire à mémoire sans intervention d'un élément de calcul.

Les éléments donnés ci-dessus permettent de caractériser de manière précise un

système de calcul distribué de type multi-coeurs. Pour un système de type multi-

processeurs, pour lequel la division des coeurs et à la fois logique et spatiale, il est

également nécessaire de caractériser le système de communication entre les proces-

seurs. En e�et, dans un système multi-coeurs, les éléments de calcul résident dans un

seul composant physique. Dans le cas d'un système multiprocesseurs, plusieurs élé-

ments physiques sont connectés par un medium. Ce type d'interconnexion présente

des caractéristiques di�érentes de l'interconnexion sur puce.

2.1.3 Modèle de calcul �ux de données

Les modèles de calcul �ux de données s'attachent à décrire le comportement d'une

application au travers des dépendances de données qui existent entre les tâches qui

la composent. La description �ux de données repose sur trois éléments :

� Acteur : Un acteur représente une entité de calcul de l'application.

� Jeton de données : Un jeton de données est l'élément d'une donnée atomique

que s'échangent les acteurs.

� Arc : Un arc connecte deux acteurs. Un acteur produit des données sur l'arc

que l'acteur/consommateur peut ensuite consommer.

Transformation des nids de boucles 9

Figure 2.1 � Réseau d'acteurs échangeant des jetons de données

L'interconnexion des acteurs au travers des arcs constitue un réseau. Le modèle

�ux de données le plus générique est appelé Kahn Process Network (KPN). Dans

ce modèle, les acteurs sont connectés par l'intermédiaire de FIFO (First In First

Out) unidirectionnels non limités. Le modèle Data �ow Process Network limite le

modèle KPN en associant aux acteurs des règles de déclenchement (Firing rules).

Ces règles spéci�ent les séquences de données d'entrée permettant l'exécution de

l'acteur. D'autres modèles tels que le SDF restreignent l'expressivité en associant

pour chaque arc trois nombres entiers représentant le nombre de jetons produits

(production rate), le nombre de jetons consommés (consumption rate) et le nombre

de jetons initialement présents sur l'arc. Ce modèle permet de déterminer un ordon-

nancement de l'application avant exécution et ainsi garantir son bon fonctionnement

à l'exécution et une consommation mémoire bornée.

2.1.4 Ordonnancement multiprocesseurs

Grâce à un modèle des caractéristiques de l'architecture multi-coeurs et un mo-

dèle �ux de données de l'application ; il est possible de déterminer la meilleure im-

plémentation de l'application sur l'architecture. Pour y parvenir il est, tout d'abord

nécessaire, de répartir les acteurs qui composent la description �ux de données sur

les di�érents opérateurs de l'architecture. Cette opération est appelée : allocation.

Ensuite, il faut, pour chaque processeur, décrire l'ordonnancement des acteurs et

organiser les communications entre opérateurs. Cette implémentation cherche à op-

timiser un ou plusieurs critères d'exécution tel que le temps d'exécution (cadence ou

latence), l'empreinte mémoire et/ou la consommation électrique.

2.2 Transformation des nids de boucles

2.2.1 Boucles imbriquées et ordre séquentiel

De�nition On désigne par � nid de boucles �une structure composée de plusieurs

boucles imbriquées.

10 Etat de l’art

Cette dé�nition peut être restreinte dans le cas des nids de boucles dit parfaits

ou parfaitement imbriqués.

De�nition On désigne par � nid de boucles parfait �un nid de boucles pour lequel

le code de chaque boucle ne contient qu'une autre boucle à l'exception de la boucle

la plus interne.

Exemple de nid de boucles imparfait :

for i1 := l1 to u1 do

for i2 := l2(i1) to u2(i1) do

. . .
for in := ln(i1, i2, ..., in−1) to un(i1, i2, ..., in−1) do

S : {Instruction1}
. . .
{Instructionk}

end

end

end

Figure 2.2 � Example de nid de boucles imparfait

Chaque boucle dé�nit un vecteur d'itération (ex : i = 0 to N) et l'imbrique-

ment des boucles dé�nit un domaine d'itération de dimension égale à la profondeur

du nid (le nombre de boucles imbriquées). Dans notre exemple, ce nid de boucles

dé�nit un domaine dans Zn inclus dans le polyèdre l1 ≤ i1 ≤ u1, l2(i1) ≤ i2 ≤
u2(i1)...ln(i1, i2, ..., in−1) ≤ in ≤ un(i1, i2, ..., in−1). Le programme exécute chaque

opération notée S entourée par une boucle pour toutes les valeurs I du vecteur

d'itération dans un ordre séquentiel noté <seq dé�nit par l'ordre lexicographique du

vecteur d'itération.

S(I) <seq S(J)← I <lex J

2.2.2 Dépendance de données dans les nids de boucles

Types de dépendances

Les catégories de dépendances identi�ées par Bernstein et résumées dans leur

livre par Alain Darte, Yves Robert et Frédéric Vivien [AYF00], sont de trois types :

Les dépendances de �ot, anti-dépendances et dépendances en sortie. Il y a une dépen-

dance de données entre S(I) et T (J) si les deux opérations accèdent au même empla-

cement mémoire et si au moins un accès est une écriture. La dépendance est dirigée

comme dans l'ordre séquentiel, c'est-à-dire qu'il y a dépendance de S(I) → T (J)

Transformation des nids de boucles 11

si dans l'ordre séquentiel on à S(I) <seq T (J). Les trois types de dépendances sont

ici :

� Dépendance de �ot : Si l'accès à l'emplacement mémoire commun est une

écriture pour S(I) et une lecture pour T (J) et qu'il n'y a aucun accès en

écriture sur l'emplacement entre S(I) et T (J) dans l'ordre séquentiel.

� Anti-dépendance : Si l'accès à l'emplacement mémoire commun est une

lecture pour S(I) et une écriture pour T (J) et qu'il n'y a aucun accès en

écriture sur l'emplacement entre S(I) et T (J) dans l'ordre séquentiel.

� Dépendance en sortie : Si S(I) et T (J) sont deux écritures consécutives au

même emplacement mémoire.

Représentation des dépendances

Les vecteurs de dépendances expriment dans le domaine D des itérations la

dépendance entre deux itérations. Le calcul de ces vecteurs se fait par analyse du

code des boucles du nid.

for i := 0 to N do

for j := 0 to N do

S1 : a(i, j) = b(i, j − 6) + d(i− 1, j + 3)
S2 : b(i+ 1, j − 1) = c(i+ 2, j + 5)
S3 : c(i+ 3, j − 1) = a(i, j − 2)
S4 : d(i, j − 1) = a(i, j − 1)
end

end

end

Figure 2.3 � Exemple de nid de boucles

Dans l'exemple de nid de boucles (�gure 2.3)décrit ici, on peut établir quatre

vecteurs de dépendances. Le premier décrit la dépendance existant entre l'instruction

S1 et l'instruction S3, ce vecteur décrira donc une dépendance de �ot.

S1 → S3 d1 =

(
0

2

)

Ce vecteur est obtenu par égalité sur les indices, pour cela on pose l'égalité sur

les indices d'itération entre l'instruction S1 et l'instruction S3, ce qui nous donne.

12 Etat de l’art

i3 = i1 − 2 et j3 = j1, la dépendance étant une dépendance de �ot le vecteur est

orienté de S3 vers S1 on a donc i1 = i3 + 2 et j3 = j1, ce qui nous donne le vecteur

de dépendance. Sur l'exemple, les autres vecteurs de dépendance sont :

S3 → S2 d2 =

(
1

−6

)

S2 → S1 d3 =

(
1

5

)

S1 → S4 d4 =

(
0

1

)

S4 → S1 d5 =

(
1

−4

)

Ces vecteurs sont largement utilisés dans les méthodes de transformation de nid

de boucles ou d'ordonnancement.

2.2.3 Transformation des nids de boucles

Types de transformation

A�n de maximiser le parallélisme exploitable dans un nid boucles, il est nécessaire

de passer par une étape de transformation, rendant explicite le parallélisme implicite.

Une transformation est dite légale si elle respecte les dépendances entres les itérations

d'un nid boucles et donc si le résultat de l'exécution de la boucle transformée est

conforme au résultat attendu. Les transformations peuvent prendre plusieurs formes.

Distribution : Ce type de transformation vise à distribuer un nid de boucles

mal structuré a�n de faire apparaitre au moins une boucle forall.

Fusion : Ce type de transformation a pour but de fusionner le corps de plusieurs

boucles en une seule. Cela a pour e�et d'augmenter la localité des données et de

minimiser les communications.

Déroulement de la boucle : Dans cette transformation on déroule les itéra-

tions de la boucle a�n de faire apparaitre un parallélisme maximum.

Partitionnement : On cherche ici à scinder les boucles a�n de faire apparaitre

des sous ensembles disjoints.

Transformation uni-modulaire : Dans une transformation uni-modulaire on

change l'ordre dans lequel les vecteurs d'itérations sont énumérés. Le nouveau vecteur

Transformation des nids de boucles 13

d'itération est déterminé par le produit du vecteur d'itération originel avec une

matrice uni-modulaire. I ′ = TI.

Méthode de l'hyperplan

Cette méthode de transformation de boucles dite méthode de l'hyperplan ou

méthode de Lamport [Lam74] consiste à chercher à transformer un nid de boucles

en un nid de boucles pour lequel un certain nombre de boucles internes peuvent être

exécutés en parallèle. Le cas optimal est le cas où toutes les boucles internes peuvent

être e�ectuées en parallèle.

for t := 0 to tN do

for i2 := l2(i1) to u2(i1) do

. . .
for p ∈ E(t) do in p a r a l l e l
P (p)

end

end

end

Figure 2.4 � Nid de boucles transformées pour permettre l'exécution en parallèle des
itérations de la boucle la plus interne

Dans ce nid la boucle externe correspond à une itération. E(t) est l'ensemble des

itérations calculées à l'itération t et P(p) représente l'ensemble des boucles exécutées

en parallèles correspondant au vecteur d'itération p. La complexité du partitionne-

ment repose sur la recherche d'une fonction de séquencement. Dans la recherche du

partitionnement, il faut faire attention à ce que les dépendances soient respectées a�n

de garantir l'intégrité du calcul. Lamport [Lam74] propose de se restreindre au cas

de fonctions de séquencement linéaire au point du domaine C'est-à-dire qu'il cherche

à déterminer une famille d'hyperplans a�nes parallèles,H(t) tel que l'ensemble des

points calculés à l'instant t soit E(t) = H(t) ∩D l'intersection de l'hyperplan et du

domaine. Le passage d'un hyperplan à un autre H(t)→ H(t + 1) se fait par trans-

lation de l'hyperplan d'un vecteur π appelé vecteur de temps. Dans le cas d'une

boucle uniforme, les vecteurs de dépendances sont positifs, il est aisé de construire

un vecteur de temps solution. Il su�t pour cela de déterminer un vecteur π tel que

pour tout vecteur de dépendance d on ait πd ≥ 1. Les points p calculés à l'instant t

forment l'hyperplan dé�nit par E(t) = {p;Ap ≤ b; [πp] = t} , et on peut calculer le

temps de calcul total d'exécution de la boucle ainsi contractée en calculant t pour

le dernier point du domaine texecution = πpmax

Lamport propose de faire de la façon suivante, : soit D = (d1, ..., dm) la matrice

14 Etat de l’art

des vecteurs de dépendances, de taille n × m ou n est la profondeur du nid et m

est le nombre de vecteurs de dépendances. On suppose D organisé selon l'ordre

lexicographique croissant (de la dépendance la plus courte à la dépendance la plus

longue). Soit k1 la première composante non nulle de d1 le premier vecteur de D.

Comme d1 est positif, d1,k1 ≥ 0. On pose πk1 et πk = 0 pour k1 6= k 6= n .Soit

maintenant k2 l'indice de la première composante non nulle de d2. Comme d1 est

lexico graphiquement plus petit que d2 , k2 ≤ k1. On pose πk = 0 pour k2 < k < k1,

et on prend pour πk2 le plus petit entier positif tel que πd2 > 0, en modi�ant

éventuellement πk1 si k2 = k1. En réitérant le processus on obtient le vecteur de

temps solution.

Pour des nids de boucles uniformes, plusieurs cas particuliers de la méthode de

l'hyperplan ont été proposés, chacun d'eux privilégie un certain type de vecteur de

temps.

2.2.4 Partitionnement des répétitions

Méthode de projection

Cette méthode propose de résoudre le problème du partitionnement des applica-

tions en utilisant l'algèbre linéaire. En e�et, le but de cette méthode est de produire

automatiquement un réseau systolique calculant un problème exprimé par un sys-

tème d'équations récurrentes uniformes. L'idée générale est de pro�ter de la cyclicité

et de l'uniformité des dépendances pour obtenir un réseau dans lequel la circulation

de données est synchrone et formée de cellules modulaires. Les calculs sont répartis

sur le réseau par une fonction d'allocation linéaire et séquencés par une fonction de

temps.

Principe : La construction du réseau se fait par projection du domaine de calcul

selon un vecteur s primitif choisi en fonction de la taille du réseau à générer et

la position des entrées-sorties. Le choix du vecteur s doit également respecter les

contraintes temporelles imposées par le vecteur temporel τ .

Le domaine de calcul de l'équation récurrente se fait dans le domaine D dé�nis-

sant le polyèdre D = {x|Ax ≤ b} dans Zn.

Les dépendances sont représentées par une matrice correspondant aux vecteurs

valuant les arrêtes du graphe réduit de l'équation récurrente : D = (di, ..., dn)

Transformation des nids de boucles 15

R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

v1

v2

v3

0 0 0

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

v1,1 v1,2

v2,1 v2,2

v3,1 v3,2

r1,1

r2,1

r1,2

r2,2

r1,3

r2,3

R1,N

R2,N

R3,N

v1

v2

v3

0

m1,N

m2,N

m3,N

r1,N

r1,N

v1,N

v2,N

v3,N

s1 = {1,0}

RN,1 RN,2 RN,3vN

0 0 0

mN,1 mN,2 mN,3

vN vN

rN,1 rN,2 rN,3

s2 = {0,1}

RN,N

RN+1,N−1

RN−2,N+2

RN−1,N+1

RN+2,N−2

v1

v2

v3

0

0

0

mN,N

mN−1,N+1

mN+1,N−1

mN+2,N−2

mN−2,N+2

rN,N

vN,N

vN+1,N−1

rN−1,N+1

rN+1,N−1
vN−2,N+2

vN−1,N+1
rN+2,N−2

s3 = {1,1}

Figure 2.5 � Exemple de domaine d'itération et plusieurs solutions de projection

Méthode de pavage

La méthode de pavage (ou tiling) cherche à grouper plusieurs points de calcul

du domaine d'itération a�n de les exécuter de manière atomique. Cette technique

s'assure que le calcul d'un block ne nécessite pas de communication a�n de minimiser

le coût des synchronisations entre blocs de calcul.

Principe : Cette méthode repose sur la construction d'une � tuile �dont la forme

englobe plusieurs points du domaine d'itération. Une fois la forme de la tuile dé-

terminée, celle-ci peut être mise à l'échelle a�n d'optimiser le volume de calcul de

chaque tuile et le volume de communication aux interfaces de la tuile. Cette tuile,

dite tuile canonique est ensuite translatée par un vecteur de temps valide a�n de

paver l'intégralité du domaine.

16 Etat de l’art

Figure 2.6 � Exemple de domaine d'itération et plusieurs solutions de pavage.

Chapitre 3

Contributions

3.1 Représentation hiérarchique dans le modèle SDF

Le modèle SDF dispose de plusieurs modes de représentation hiérarchique :

� Clustering : Ce mode de représentation hiérarchique s'attache à regrouper

plusieurs acteurs d'une représentation SDF a�n qu'ils puissent être exécutés

de manière atomique. Cet ensemble d'acteurs est appelé cluster, et peut être

représenté et traité comme un acteur unique. Ce regroupement s'appuie sur

un ensemble de règles qui garantissent l'exécution atomique du cluster sans

perturber le comportement de l'application. Cette hiérarchie part d'une repré-

sentation à plat pour en extraire des niveaux de hiérarchie.

� Parameterized SDF : Le modèle PSDF s'attache à décrire la structure d'ap-

plications dont le comportement de sous-systèmes varie à l'exécution. Dans ce

modèle, la topologie de ces sous-systèmes est décrite à l'aide de facteur de pro-

duction/consommation et d'acteurs paramétrés. Ces paramètres sont résolus

à l'exécution par l'intermédiaire de deux acteurs spéci�ques. L'acteur init est

exécuté pour chaque instanciation du sous-système et il peut a�ecter les para-

mètres qui conditionnent l'ordonnancement du réseau parent du sous-système.

L'acteur subinit peut a�ecter les paramètres qui n'a�ectent que la topologie

du sous-système et/ou le comportement des acteurs. Ce type de hiérarchie

s'appuie sur la sémantique du modèle SDF tout en ajoutant une couche de

paramétrage du modèle qui est résolu à l'exécution. Ce paramétrage augmente

l'expressivité du modèle tout en augmentant sa complexité et en diminuant sa

véri�cabilité.

Ces deux modèles permettent de spéci�er de manière hiérarchique une appli-

cation. Le clustering construit automatiquement la représentation hiérarchique en

partant d'une représentation à plat de l'application. Le modèle PSDF permet de

décrire des applications dont le comportement de certains sous-systèmes peut varier

17

18 Contributions

à l'exécution. Nous proposons un modèle qui respecte la sémantique SDF et son

caractère statique, tout en permettant la spéci�cation hiérarchique de l'application

(voir [PBR09]). Cette hiérarchie ne serait pas extraite d'une représentation à plat

comme dans le clustering, mais permettrait au concepteur de ra�ner une représen-

tation gros grain en spéci�ant le comportement de certains acteurs au travers d'une

représentation SDF. A�n de permettre cette spéci�cation, il est nécessaire de dé�-

nir les propriétés du modèle permettant la composition de spéci�cations SDF. Ce

modèle s'appuie sur l'ajout d'interfaces aux sous-systèmes SDF pour garantir la co-

hérence entre les niveaux de hiérarchie. Le comportement de ces interfaces s'appuie

sur un ensemble de règles qui garantissent l'atomicité du sous-système et qui assurent

l'indépendance en terme d'ordonnancement des di�érents niveaux de hiérarchie.

idct trans

trigger

block_i

8

8

1

2

64

64

64 64 block_o

64

clip64 64 64 64 block_o

64

64

1

1

block_i

signed

IDCT2D

IDCT2D_clip

6464

64

mux

Figure 3.1 � Exemple d'application d'IDCT2D utilisant le modèle hiérarchique

Cette hiérarchie permet d'impliquer le designer dans le processus de composition

de la hiérarchie et ainsi de structurer cette hiérarchie selon la hiérarchie existant

dans la sémantique des données et/ou des opérations. De plus, ce type de hiérarchie

autorise des optimisations mémoires et opératoires basées sur les choix du designer.

En�n, la hiérarchie spéci�ée par l'utilisateur peut être utilisée pour générer le code

de l'application dans une forme structurée et facilement interprétable par le designer.

3.2 Génération de code pour le prototypage rapide

Une des contribution de cette thèse consiste à générer du code multiprocesseur

à partir du modèle de hiérarchie décrit précédemment (voir [PBPR09]). Cette géné-

ration de code cible les architectures multi-coeur embarqués grâce à une allocation

mémoire statique et une empreinte de code réduite. Cette génération de code est

implémentée dans l'outil PREESM développée depuis 2007 à l'Institut d'Electro-

nique et de Télécommunication de Rennes dans l'équipe image et télédétection. Cet

Génération de code pour le prototypage rapide 19

outil s'appui sur l'environnement de développement Eclipse pour proposer un outil

de prototypage rapide couvrant les étapes de spéci�cation de l'application (plugin

Graphiti), spéci�cation de l'architecture, prototypage automatique et génération de

code. Le prototypage de l'application sur l'architecture spéci�é ce fait par une suite

de traitements séquentiels sur les informations d'entrée pour terminer par générer

du code multiprocesseur compilable pour les di�érents processeurs/coeurs de l'ar-

chitecture. Cette suite de traitement est dirigée par l'utilisateur, par l'intermédiaire

d'un work�ow qui spéci�e les traitements à appliquer, sélectionnés dans une biblio-

thèque, et les dépendances de données entre traitement. La génération de code est

la dernière phase de cette suite de traitement et vise à produire du code optimisé

pour l'architecture dans un format compréhensible par l'utilisateur. Cette généra-

tion de code implémente un modèle d'exécution dans lequel chaque processeur/coeur

exécute plusieurs processus légers synchronisés par un protocole basé sur l'utilisa-

tion de sémaphores. Un processus léger exécute l'ordonnancement des acteurs sur

le processeur. Pour chaque bus de communication utilisé, un processus léger gère

l'ordonnancement des communications. Le processus de calcul et synchronisé aux

di�érents processus de communication par des sémaphores indiquant pour un envoi

la disponibilité de la donnée et pour l'envoi, et la disponibilité de la donnée pour le

calcul, et pour une réception de données, la disponibilité de la donnée pour le calcul,

et la disponibilité de la donnée pour la réception (voir �gure 3.2).

Cette génération se découpe en plusieurs phases :

Ce découpage en phase permet la séparation des problématiques pour traiter

chacune d'elles de manière optimale. Pour une meilleure adaptabilité, la phase d'al-

location mémoire béné�cie d'une bibliothèque extensible de politiques d'allocation

permettant de s'adapter aux contraintes mémoire de l'application et d'évaluer di�é-

rents algorithmes d'optimisation mémoire.

La génération de code produit un code générique dans une syntaxe xml qu'il est

ensuite possible de transformer en une syntaxe spéci�que pour cibler l'architecture

en utilisant la technologie XSLT (Xml Syntax Language Transformation). Cette

transformation utilise trois types de ressources :

� Transformations spéci�ques au Système d'exploitation : transformations spé-

ci�ques aux appels systèmes et primitives de synchronisation.

� Transformations spéci�ques à l'architecture : transformations spéci�ques à

l'utilisation des ressources matérielles de l'architecture.

� Transformations spéci�ques au langage : transformations spéci�ques à la syn-

taxe du langage.

Le code ainsi généré cible un composant de l'architecture et cette génération

de code peut facilement être étendue pour supporter d'autres langages, systèmes

20 Contributions

Loop

EndLoop

EndLoop

Pre Empty
initialisation

Loop

W rite

Pre Full

Suc Empty

Pre Empty

Suc Full

Communication threadComputing thread

Loop

EndLoop

EndLoop

Pre Empty
initialisation

Loop

Pre Full

Suc Empty

data consumer

Read

Pre Empty

PreR Full

SucR Empty SucR

Full

PreR

Empty

PreR

Empty

Suc Full

data producer

Communication thread Computing thread

Figure 3.2 � Réseau de petri symbolisant la synchronisation des processus de calcul et
de communication

d'exploitation, architectures.

3.3 Optimisation des nids de boucles dans le modèle

SDF

La spéci�cation d'application en utilisant le modèle de hiérarchie basée sur les

interfaces décrit précédemment, permet une spéci�cation compacte et factorisée.

Cette compacité présente, facilite la saisie par l'utilisateur tout en permettant la

même compacité dans la génération de code. Le principal inconvénient de ce mo-

dèle réside dans le fait qu'une majorité du parallélisme existant dans l'application

reste enfoui dans les niveaux de hiérarchie et ne peut être exploité par l'allocation.

Pour pallier à ce défaut, il est possible d'e�ectuer une mise à plat de la hiérarchie

et ainsi remonter le parallélisme enfoui au plus haut niveau, le rendant ainsi exploi-

table par l'allocation. Cependant, dans le cadre de motifs répétés un grand nombre

de fois, cette mise à plat de la hiérarchie, s'accompagne d'une explosion du nombre

d'acteur à allouer/ordonnancer. La complexité de l'allocation/ordonnancement dé-

pendant principalement du nombre d'acteur, l'augmentation du nombre de sommet

Optimisation des nids de boucles dans le modèle SDF 21

SDF tagged
with schedule informations

graph transformation

buffer allocation

atomic vertexhierarchical vertex interface

instantiate communications

For all vertices

generate xml

transform xml

c.xslt

os.xslt

target.xslt

flat allocator

local allocator

flat with hierarchy based optimization

flat with lifetime based optimization

p1.c
p2.c

pn.c

idl files

p1.xm
l

p2.xm
l

pn.xm
l

Figure 3.3 � Etapes de la génération de code

s'accompagne d'une augmentation de la complexité et donc du temps nécessaire à

cette étape. Lors de cette thèse, ont été développées des techniques de partitionne-

ment des motifs répétitifs dans le modèle SDF en utilisant l'analogie existante avec

la structure des motifs de boucles imbriqués (voir [PBR10]).

Dans un premier temps, il a été nécessaire de déterminer comment extraire les

vecteurs de distance d'itération de la représentation hiérarchique. L'extraction de ces

vecteurs repose sur l'interprétation des jetons de données initialement présent sur les

arcs. Une fois ces vecteurs extraits, les techniques de projection et pavage peuvent

être utilisées. Lors de cette thèse, il a également été déterminé comment générer le

nouveau réseau d'acteurs à partir des données de pavage ou de projection. Ces deux

techniques permettent toutes deux d'extraire du parallélisme de la représentation

hiérarchique. Cependant la technique de pavage permet plus de �exibilité. En e�et,

pour la technique de projection, la taille du réseau d'acteur produit, dépend des

22 Contributions

dimensions du domaine d'itération. Dans le cas de la technique de pavage, la taille

du réseau produit, dépend uniquement de la taille de la tuile de pavage choisie.

X
mati

vecti

vecto

Nl

Nl

1
Nl

Nl

Nl
1

1

1 1

Nl

Nl

Dinit

M

V

0

Nc*Nl Nc*Nl Nc*Nl

Nl Nl

Nl Nl

VNl Nl

Figure 3.4 � Exemple de produit matrice vecteur en présentation SDF factorisée

X
1

1

1

N

N

2

2

11 1 2

2
2

2
1

2

2

2

2

44

2

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

2

2

2

2

44

2

8M

4
0

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

2

2

2

44

2

8

4

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

X
1

1

1

22

2

11 1 2

2
2

2
1

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

M

V

0
R

2

22
4

2

4

2

2

4

2

2

4 4 4

4

2

2

4

2

2

2

2

4
4

44

2

2

2

2

2

Cannonical Tile Cannonical tile repeated in dimension 1

Dimension 1 repeated in dimension 2

R

Figure 3.5 � Procédure de pavage du produit matrice vecteur

Chapitre 4

Conclusion et propositions de travail

Le travail e�ectué lors de cette thèse contribue majoritairement au logiciel PREESM.

Le modèle de hiérarchie présenté, permet la spéci�cation de motifs factorisés dans

une approche descendante. Cette approche autorise le concepteur à décrire le com-

portement de l'application à gros grain pour ensuite ra�ner cette description. Des

méthodes de transformation telles que celles présentées permettent d'extraire le pa-

rallélisme existant à grain �n. Ces techniques capitalisent sur les méthodes existantes

pour les transformations de boucles imbriquées a�n de générer une description expri-

mant du parallélisme de manière optimale. A�n de couvrir l'intégralité de la chaine

de prototypage, j'ai aussi développé la génération de code tirant partie du modèle

de description hiérarchique pour produire une description factorisée et tirant partie

de la hiérarchie pour optimiser l'allocation mémoire.

Les résultats de cette thèse peuvent être appliqués dans d'autres domaines �ux

de données et notamment au langage CAL. En e�et, il serait possible d'extraire des

comportements SDF au sein de la description CAL et ensuite leur faire béné�cier

des transformations proposées. Le modèle SDF étant purement statique, il pourrait

aussi être intéressant d'utiliser le modèle PSDF dans le cadre du prototypage rapide.

Ce modèle est en cours d'implémentation dans l'environnement PREESM et pour-

rait béné�cier des transformations proposées dans cette thèse et également d'une

génération de code optimisée.

Une autre perspective serait de supporter des modèles de work�ow itératifs dans

PREESM et ainsi proposer au concepteur d'automatiser la procédure de prototypage

rapide pour générer une implémentation de l'application sur l'architecture donnée

qui réponde à des critères quantitatifs donnés.

En dé�nitive le travail développé dans cette thèse s'inscrit dans une construction

logique pour l'implémentation d'une chaîne de prototypage rapide. De plus, ce travail

est supporté par une implémentation open-source. Ce logiciel est notamment utilisé

par l'entreprise Texas Instrument pour le prototypage d'applications multi-coeurs

23

24 Conclusion et propositions de travail

pour plateformes multi-dsp. Nous espérons, dans l'avenir, attirer d'autres utilisateurs

et contributeurs a�n d'améliorer cet outil.

Part II

Background

25

Chapter 5

Introduction

5.1 Overview

Since applications such as video coding/decoding or digital communications with

advanced features are becoming more complex, the need for computational power

is rapidly increasing. Telecom standards such as Long Term Evolution (LTE) bring

the computing requirement of the base station at a high level. Applications such

as Recon�gurable Video Coding aims at creating a video codec with multi-standard

capabilities, thus copping with multiple levels of complexity and time constraints.

In order to satisfy software requirements, the use of parallel architectures is a

common answer. Depending on the target application, those parallel architectures

can make use of a wide variety of processor cores and communication media. On

one hand, in mobile applications, the power requirement being tight, System On

Chip (SOC) designers prefer to make use of specialized cores that give the best

performance for a reduced set of instructions. On the other hand one might want

to use general purpose cores, that handle most of the applications with an average

power/performance ratio. Thus some architectures make use of heterogeneous core

types to best �t any application requirements. For example mobile applications

usually make use of general purpose cores to handle most user interfaces and basic

functions, and use DSP core or GPU for signal processing, video decoding or gaming.

Communication media are of great importance on multi-core architectures, as most

of the parallel performance rely on the ability cores have to exchange data at fast

rates. Multiple kind of interconnection topologies exist, each �tting a given purpose

at a given cost. The multiplicity of cores and interconnections greatly increases

the complexity and time necessary to port an application on a given architecture.

Moreover, once porting of the application has been realized, one cannot bene�t of

it to target a new architecture and has to start from scratch.

To reduce the software development e�orts for such architectures, it is neces-

27

28 Introduction

sary to provide the programmer with e�cient tools capable of automatically solving

communications and software partitioning/scheduling concerns. The complexity in-

troduced by the wide range of available architectures and the increasing number of

cores make the optimal implantation of an application hard to reach by hand. More-

over the stability of the application has to be early proved in the development stage

to ensure the reliability of the �nal product. Tools such as PeaCE [SOIH97], Syn-

DEx [GS03] or PREESM [PRP+08] aim at providing solutions to problems described

earlier, by assisting the designer through automated steps leading to a reliable �nal

prototype in a short time. This kind of tools is called rapid prototyping frameworks.

Most of these tools use as an entry point a model of the application associated

to a model of the architecture. Data �ow model is indeed a natural representation

for data-oriented applications since it represents data dependencies between the

operations allowing to extract parallelism. In this model the application is described

as a graph in which nodes represent computations and edges carry the stream of

data-tokens between operations. A well known data �ow model is the Synchronous

Data Flow (SDF) that enables to specify the number of tokens produced/consumed

on each outgoing/incoming edges for one �ring of a node. Edges can also carry

initialization tokens, called delay. That information allows to perform analysis on

the graph to determine whether or not there exist a schedule of the graph, and if so

to determine an execution order of the nodes and application's memory requirements

at compile-time. In basic SDF representation, hierarchy is used either as a way to

represent clusters of nodes in the SDF graph or as parameterized sub-systems. One

contribution of this thesis is to describe a hierarchy type allowing the designer to

describe sub-graph in a classical top down approach. Relevant information can also

be extracted from this representation in order to ease the graph scheduling and to

lead to a better implementation. The goal of tools such as PREESM is to provide

the programmer with a multi-core implementation of the application in a language,

a compiler or synthesizer can take. Another contribution of this thesis is to describe

the generation of the C code that implements the computed multi-processor schedule

in PREESM. The described C code generation method presents a high level of

�exibility for the users and generates optimized C code in a comprehensible format.

When dealing with multi-dimensional problems such as image video encoding/de-

coding, the use of nested loops is a relevant answer to the application modeling. This

kind of loop structure is used to hierarchically describe an algorithm, each nested

level of hierarchy representing the application in a lower dimension space. For ex-

ample, an image encoding application can be described at the picture level as a

loop over the lines of the image. The line level is itself described as a loop over the

blocks of the line, and the block level as a loop over the pixels of the blocks. This

Contributions of this Thesis 29

kind of representation can expose little parallelism from the hierarchy point of view,

but a lot at the lowest hierarchy. In order to �nd a trade-o� between too much

and not enough parallelism extraction from the application description, PREESM

integrates an SDF graphs transformation step that aims at extracting a given level

of parallelism in concordance with available parallelism on the target architecture.

This step also aims at decreasing the scheduling complexity by providing a factor-

ized representation of the application. This step can take advantage of nested loops

transformations algorithm inspired by methods such as iteration domain projection

and iteration domain tiling to extract a given level of parallelism.

This thesis also led to other contributions in the domain of video coding. The

image group inside the IETR lab, is highly involved into still image and video cod-

ing/decoding applications. Recently the team got involved into the MPEG-RVC

standard, and as a consequence I was involved into related work. The �rst contribu-

tion concerns bit-stream validation for RVC. I was involved into the programming of

the validation tool, and I contributed to two publications [LPM09, RPLM08] on the

bit-stream validation procedure. I also helped at porting a recon�gurable video de-

coder on an ARM architecture. This recon�gurable video decoder [GWP+10] makes

use of LLVM (Low Level Virtual Machine) to implement a decoder recon�gurable

using description of a CAL network. Those other contributions will not be described

in depth in this thesis but an overview of their context is given in the following.

5.2 Contributions of this Thesis

5.2.1 Rapid Prototyping Framework

The recent evolution of digital communication systems (voice, data and video)

has been become more and more complex. Over the last two decades, low data-

rate systems (such as dial-up modems, �rst and second generation cellular systems,

802.11 Wireless local area networks) have been replaced or augmented by systems

capable of data rates of several Mbps, supporting multimedia applications (such as

DSL, cable modems, 802.11b/a/g/n wireless local area networks, 3G, WiMax and

ultra-wideband personal area networks).

As communication systems have evolved, the resulting increase in data rates

has necessitated a higher system algorithmic complexity. A more complex system

requires greater �exibility in order to deal with di�erent protocols in di�erent envi-

ronments. Additionally, there is an increased need for the system to support multiple

interfaces and multi-component devices. Consequently, this requires the optimiza-

tion of device parameters over varying constraints such as performance, area and

power. Achieving this device optimization requires a good understanding of the ap-

30 Introduction

plication complexity and the choice of an appropriate architecture to support this

application.

An embedded system commonly contains several processor cores in addition to

hardware co-processors. The embedded system designer needs to distribute a set of

signal processing functions onto a given hardware with prede�ned features. The func-

tions are then executed as software code on target architectures ; this action will be

called a deployment in this paper. A common approach to implement a parallel algo-

rithm is the creation of a program containing several synchronized threads in which

execution is driven by the scheduler of an operating system. Such implementation

does not meet the hard timing constraints required by real-time applications and the

memory consumption constraints required by embedded systems [Lee06]. One-time

manual scheduling developed for single-processor applications is also not suitable for

multiprocessor architectures : manual data transfers and synchronizations quickly

become very complex, leading to a waste of time and potential deadlocks. Further-

more, the task of �nding an optimal deployment of an algorithm mapped onto a

multi-component architecture is not straightforward. When performed manually,

the result is generally a sub-optimal solution. These issues raise the need for new

methodologies, which allow the exploration of several solutions, to achieve a more

optimal result.

Several features must be provided by a fast prototyping process : description of

the system (hardware and software), automatic mapping/scheduling, simulation of

the execution and automatic code generation. Based on [PAN08][PBRP09][PMAN09]

a more complete rapid prototyping framework was created. This complete frame-

work is composed of three complementary tools based on Eclipse [ecl] that provide

a full environment for the rapid prototyping of real-time embedded systems : Par-

allel and Real-time Embedded Executives Scheduling Method (PREESM), Graphiti

and Synchronous Data Flow for Java (SDF4J). This framework implements the

methodology Algorithm-Architecture Matching (AAM) [GS03]. The focus of this

rapid prototyping activity is currently static code mapping/scheduling but dynamic

extensions are planned for future versions of the tool. Such tools rely on a design

�ow which takes an algorithm representation and an architecture representation to

then go through algorithm transformations, architecture analysis, allocation and

scheduling, to �nally generate code adapted to the target as depicted in 5.1.

From the graph descriptions of an algorithm and of an architecture, PREESM

can �nd the right deployment, can provide simulation information and can generate

a framework code for the processor cores [PAN08]. These rapid prototyping tasks

can be combined and parameterized in a work�ow. In PREESM, a work�ow is

de�ned as an oriented graph representing the list of rapid prototyping tasks to

Contributions of this Thesis 31

Algorithm specification
actor A (bool COMPUTE_Y) uint(size=24) PIX ==>
 uint(size=8) R, uint(size=8) G, uint(size=8) B,
 uint(size=8) Y:

 int RSHIFT = 16; int RMASK = 255;
 int GSHIFT = 8; int GMASK = 255;
 int BSHIFT = 0; int BMASK = 255;
 int COUNT = 8;

 action: PIX:[pix] repeat COUNT ==>
 R:[r] repeat COUNT,
 G:[g] repeat COUNT,
 B:[b] repeat COUNT,
 Y:[y] repeat COUNT
 var
 int i := 0
 do
 // imperative version to compute R, G, B
 while i < COUNT do
 r[i] := bitand(rshift(pix[i], RSHIFT), RMASK);
 g[i] := bitand(rshift(pix[i], GSHIFT), GMASK);
 b[i] := bitand(rshift(pix[i], BSHIFT), BMASK);

 i := i + 1;
 done

Architecture specification
<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4">
 <spirit:name>4C64</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>C64_1</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue
spirit:referenceId="componentType">operator</spirit:config
urableElementValue>
 <spirit:configurableElementValue
spirit:referenceId="refinement">VPU0</spirit:configurableEle
mentValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>C64_2</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>

ACC

PE

PE

Algorithm analysis
&

optimization
Architecture analysis

Allocation
&

scheduling

Targets
code generation

Figure 5.1: A Rapid Prototyping Frame (RPF) work design �ow.

execute on the input algorithm and architecture graphs in order to determine and

simulate a given deployment. A rapid prototyping process in PREESM consists of a

succession of transformations. These transformations are associated in a data-�ow

graph representing a work�ow that can be edited in a Graphiti generic graph editor.

The PREESM input graphs may also be edited using Graphiti. The PREESM

algorithm models are handled by the SDF4J library. The framework can be extended

by modifying the work�ows or by connecting new plug-ins (for compilation, graph

analyses, and so on).

There exist numerous solutions to partition algorithms onto multi-core architec-

tures. If the target architecture is homogeneous (all cores of the architectures share

the same properties), several solutions exist which generate multi-core code from

32 Introduction

C with additional information (OpenMP [opeb], CILK [BJK+95a]). In the case of

heterogeneous architectures, languages such as OpenCL [opea] and the Multicore

Association Application Programming Interface (MCAPI [mca]) de�ne ways to ex-

press parallel properties of a code. However, they are not currently linked to e�cient

compilers and runtime environments. Moreover, compilers for such languages would

have di�culty in extracting and solving the bottlenecks of the implementation that

appear inherently in graph descriptions of the architecture and the algorithm.

The Poly-Mapper tool from PolyCore Software [pol] o�ers similar functionali-

ties to PREESM but, in contrast to PREESM, its mapping/scheduling is manual.

Ptolemy II [Lee01] is a simulation tool that supports many models of computation.

However, it also has no automatic mapping and currently its code generation for

embedded systems focuses on single-core targets. Another family of frameworks

existing for data �ow based programming is based on CAL [EJ03b] language like

OpenDF [BBE+08]. OpenDF employs a more dynamic model than PREESM but

its related code generation does not currently support e�cient automatic mapping

on multi-core embedded systems.

Closer to PREESM are the Model Integrated Computing (MIC [KSLB03]), the

Open Tool Integration Environment (OTIE [Bel06]), the Synchronous Distributed

Executives (SynDEx [GLS99]), the Data�ow Interchange Format (DIF [HKK+04]),

and SDF for Free (SDF3 [SGB06]). Both MIC and OTIE can not be accessed online.

According to the literature, MIC focuses on the transformation between algorithm

domain-speci�c models and metamodels, while OTIE de�nes a single system de-

scription that can be used during the whole signal processing design cycle.

DIF is designed as an extensible repository of representation, analysis, transfor-

mation and scheduling of data-�ow language. DIF is a Java library which allows the

user to go from graph speci�cation using the DIF language to C code generation.

However, the hierarchical Synchronous Data Flow (SDF) model used in the SDF4J

library and PREESM is not available in DIF.

SDF3 is an open source tool implementing some data-�ow models and providing

analysis, transformation, visualization, and manual scheduling as a C++ library.

SDF3 implements the Scenario Aware Data Flow (SADF [TGS+08]), and provides

Multiprocessor System-on-Chip (MP-SoC) binding/scheduling algorithm to output

MP-SoC con�guration �les.

SynDEx and PREESM are both based on the AAM methodology [GS03] but

the tools do not provide the same features. SynDEx is not open source, has its own

model of computation that does not support schedulability analysis and target code

generation is possible but not provided with the tool. Moreover, the architecture

model of SynDEx is at a too high level to take into account bus contentions and DMA

Contributions of this Thesis 33

used in modern chips (multi-core processors of MP-SoC) in the mapping/scheduling.

The features that di�erentiate PREESM from the related works and similar tools

are :

� the tool is an open source and accessible online 1,

� the algorithm description is based on a single well-known and predictable

model of computation,

� the mapping and scheduling are totally automatic,

� the functional code for heterogeneous multi-core embedded systems can be

generated automatically,

� the algorithm model provides a helpful hierarchical encapsulation thus simpli-

fying the mapping/scheduling [PBPR09].

5.2.2 Recon�gurable Video Coding

MPEG has produced several video coding standards over the time (MPEG-1,

MPEG-2 , MPEG-4 ...). The speci�cation of the standards usually relies on a

monolithic implementation using C/C++ imperative language. This speci�cation

lacks �exibility, and does not allow to use the combination of coding algorithms from

di�erent standards enabling to achieve speci�c design or performance trade-o�s and

thus �ll, case by case, the requirements of speci�c applications.

RVC is an MPEG standard that aims at specifying coder/decoder by combining

together Functionnal Units (FUs) modeling video coding tools, from the MPEG

standard library written in CAL. Those FUs are extracted from existing MPEG

standards (MPEG-2, MPEG-4, MPEG-4 AVC, ...). The RVC framework includes :

� The standard Video Tool Library is a repository of video coding tools. Those

tools are described using RVC-Cal, that specify the algorithmic behavior and

the inputs/outputs of the unit.

� The Functional unit Network Language aims at describing the decoder con�g-

uration as a network of FUs from the VTL.

� The MPEG-21 Bitstream Description Language provides an xml syntax that

can be used in a schema to describe the bitsream structure that a RVC decoder

as to decode. A BSDL schema may be used to generate the parser to be used

in the decoder network as a RVC-CAL actor.

The RVC standard relies on the CAL Actor Language for actor speci�cation.

This data �ow language was developed as a sub-project of the ptolemy project

at the university of California at Berkeley. A subset of the CAL language called

RVC-CAL was adopted as a speci�cation language for the FUs of the MPEG RVC

library. This language allows low level actor behavior speci�cation as CAL actor

1. http://preesm.sf.net

34 Introduction

Figure 5.2: The recon�gurable Video Coding Framework.

that is a computational entity with input and output ports, states and parameters.

An actor behavior is described through multiple actions that de�ne the computation

performed. An action consumes sequences of input tokens, and produces sequences

of output tokens. Actor can communicate together by sending and receiving tokens

on a CAL actors network.

5.2.3 Bit-Stream Description Language

MPEG-B part 5 is an ISO/IEC international standard that speci�es BSDL [Int]

(Bitstream Syntax Description Language), a language based on XML Schema aim-

ing at describing the structure of a bitstream with an XML document named BS

Description. For instance, in the case of a MPEG-4 AVC video codec [iso04], a BS

Schema describes the structure common to all possible conformant MPEG-4 AVC

video bitstreams, whereas a BS description describes a single MPEG-4 AVC encoded

bitstream as an XML document. Figure 5.3 shows the BSDL Schema associated with

the BSDL description in Figure 5.4. BSDL uses XML to describe the structure of

video coded data. An encoded video bitstream can be described as a sequence of

binary symbols of arbitrary length � some symbols contain a single bit, while oth-

ers contain many bytes. For these binary symbols, the BSDL description indicates

values in a human � and machine � readable format for example, using hexadecimal

values (as for startCode in Figure 5.3), integers, or strings. It also organizes the

Contributions of this Thesis 35

symbols into a hierarchical structure that re�ects the data semantic interpretation.

In other words, the BSDL description level of granularity can be fully customized

to the application requirements [TKJM+07]. BSDL was originally conceived and de-

signed to enable adaptation of scalable multimedia content in a format-independent

manner [J. 07]. In the RVC framework, BSDL is used to fully describe the entire

bitstream � each elementary bit has its corresponding value in a Variable Length

Decoding (VLD) table. As a result, the corresponding BS schema must specify all

components of the syntax at a �ner granularity level than the ones developed and

used for adaptation of scalable content. In this context BSDL does not replace the

original data, but instead provides additional information (or metadata) to support

an application for parsing and processing the binary content. Finally, BSDL does not

mandate the names of the elements in the BSDL Description; the application assigns

names that provide meaningful semantics for the description at hand. Figure 5.3 is

an example of a BSDL description for video in MPEG-4 AVC format.

In the RVC framework, BSDL is preferred over Flavor [Ele97] because:

� it is stable and already de�ned by an international standard;

� the XML-based syntax well integrates the XML syntax used to describe the

con�guration of the RVC decoder; constituted by the instantiation of FUs from

the toolbox and by their connettivity

� the RVC bitstream parser may be easily derived by transforming the BSDL

schema using standard tools (e.g. XSLT).

The RVC framework aims at supporting the development of new MPEG standard

and new decoding solutions. The �exibility o�ered by the standard video coding li-

brary to explore rapidly the design space is primordial. De�ning coding tools and

their interconnections becomes a relatively easy task if compared to the SW rewrit-

ing e�orts need to modify (usually very large) monolithic speci�cations. However,

testing new decoding solutions, new algorithms for new coding tools, or new tools

con�gurations, the bitstream syntax may change from a solution to another. The

consequence is that a new parser need to be rewritten for each new bitstream syn-

tax. The parser FU is the most complex actor in the MPEG-4 SP decoder [iso04]

described in [LMTKJ07] and its behavior need to be validated versus all possible

conformant bistreams. This is equivalent to validate it using the BSDL schema for

the syntax at hand. Moreover, it is certainly not a good idea to have to write it

by hand when a systematic solution for deriving such parsing procedure from the

BSDL schema itself could be developed.

36 Introduction

<NALUnit >

<startCode >00000001 </ startCode >

<forbidden0bit >0</ forbidden0bit >

<nalReference >3</ nalReference >

<nalUnitType >20</ nalUnitType >

<payload >5 100</payload >

</NALUnit >

<NALUnit >

<startCode >00000001 </ startCode >

<!-- and so on... -->

</NALUnit >

Figure 5.3: BS description fragment of an MPEG-4 AVC bitstream.

<element name="NALUnit"

bs2: ifNext="00000001">

<xsd:sequence >

<xsd:element name="startCode" type="avc:hex4" fixed="00000001"/>

<xsd:element name="nalUnit" type="avc:NALUnitType"/>

<xsd:element ref="payload"/>

</xsd:sequence >

<!-- Type of NALUnitType -->

<xsd:complexType name="NALUnitType">

<xsd:sequence >

<xsd:element name="forbidden_zero_bit" type="bs1:b1" fixed="0"/>

<xsd:element name="nal_ref_idc" type="bs1:b2"/>

<xsd:element name="nal_unit_type" type="bs1:b5"/>

</xsd:sequence >

</xsd:complexType >

<xsd:element name="payload" type="bs1:byteRange"/>

<!-- and so on... -->

Figure 5.4: BS schema fragment of MPEG-4 AVC codec.

5.3 Outline of this Thesis

The organization of this thesis is as follows:

� Part II groups all the useful information for the comprehension of Part III. In

chapter 6 we give an overview of the parallel systems speci�cations, then we

present the data �ow model of computation and its child models. Finally we

give important notion of multi-processor scheduling, and present an overview

of the existing rapid prototyping tools. Chapter 7 is a state of the art on

nested loops representation and partitioning techniques.

� Part III presents the contributions starting with Chapter 8 in which we present

existing hierarchy model in the synchronous data �ow model and a new hier-

archy model. In chapter 9 this hierarchy model is used for clean and e�cient

code generation. The Chapter 10 shows how the nested loops partitioning tech-

niques described in Chapter 7 can be e�ciently used in the Synchronous data

�ow context. Chapter 11 concludes by giving current status of the research

work and directions for future work.

Chapter 6

Background and related work

6.1 Introduction

As applications such as video coding/decoding or digital communications with

advanced features (MIMO, Beamforming, Equalization, etc...) are becoming more

complex, the need for computational power is rapidly increasing. In order to sat-

isfy software requirements, the use of parallel architecture is a common answer.

To reduce the software development e�ort for such architectures, it is necessary to

provide the programmer with e�cient tools capable of automatically solving com-

munications and software partitioning/scheduling concerns. Such tools rely on an

application model that allows compile-time optimizations and ensures the applica-

tion to behave well at run-time.

In the following, we will give a brief overview of existing multi-processor ar-

chitectures. Then an extensive study of the data �ow model of computation will

introduce the reader to the existing models and particularly the Synchronous Data

Flow model. In a third section, we will explore the basics of multi-processor schedul-

ing techniques, �nally in a last section we will present existing tools for application

modeling.

6.2 Parallel computing systems

A parallel computing system is a computing system whose computing resources

are spatially and/or logically divided into subsystems. Such systems were designed

to overcome the frequency limits imposed by the building technology and power

consumption. A parallel architecture allows to increase the computing performance

with a ratio depending on the degree of potential parallelism of a given application.

Digital signal processing algorithms are usually good candidates for parallelization

due to the multi-dimensional aspect of the applications. The multi-core architecture

37

38 Background and related work

is today the most popular architecture but other architectures such as clusters and

systolic arrays also exist. Multi-cores tend to become more and more complex using

specialized communication networks, accelerators and heterogeneous cores. Such

architectures can be classi�ed based on di�erent criteria :

� Target application

Applications for multi-core architectures can be of two kinds : data processing

dominated or control dominated. The data processing dominated applications

are usually data-�ow applications that expose some parallelism and require

high throughput and performance to handle a large amount of data. Many of

those applications have relatively �exible time constraints (not time critical)

but hard power constraints when embedded into mobile target. The control

processing applications are mostly event driven application with hard time

constraints (time critical). The multi-core architecture in that case can provide

low response time.

� Power/Performance

Multi-core architecture provides the designer with scalability in both power

and performance domain with tight relations between the two. Growth of

cores inside a component usually allows to downscale the frequency of the

processing elements, thus lowering the power consumption.

� Processing Elements

Depending on the context of the application, the processing elements involved

may vary. Processing elements (see Figure 6.1) are characterized by their In-

struction Set Architecture (ISA) that de�nes the instructions supported, and

their micro-architecture that de�nes the way the ISA is implemented. The ISA

can usually be classi�ed into two categories, the Complex Instruction Set Com-

puter (CISC), and Reduced Instruction Set Computer (RISC). While the later

results in larger code size, both behave the same after instruction decoding.

For parallel architecture, the ISA is usually augmented with synchronization

primitives. The e�ciency of the PEs greatly resides in the micro-architecture.

The micro-architecture can range from a simple in-order processing element

to multiple pipelines with out-of-order execution to get the better trade-o�

between power consumption and computing performance. Simple Instruction

Multiple Data (SIMD) or Very Long Instruction Word (VLIW) architectures

can be used to increase performance but also lead to an increase of the pro-

Parallel computing systems 39

gramming complexity. In order to increase the performance the designer can

either use to choose an homogeneous architecture made of a single type of

PE, or use multiple heterogeneous PEs with an increase in the programming

complexity.

PE

ISA

µarch

cache

Figure 6.1: The processing element structure.

� Memory System

The throughput of a multi-core processor greatly depends on the memory

architecture. The memory architecture can be characterized by the cache

con�guration, the intra-chip interconnect and the consistency model. The

consistency model de�nes how memory consistency is ensured on the chip. A

strong consistency model means that the write and read orders are strictly

handheld by the communication system. A weak consistency model will let

the programmer manage the memory consistency by using synchronization

primitives. Cache memory has been introduced to tackle the issue of speed

access to external memory. This kind of memory can be accessed at high clock

speed and stores highly used chunk of memory. Processors usually have one

to three cache levels, the closer level having the fastest speed and the smallest

size, while the further has slowest speed with larger size. Cache coherence

can be both handheld by on-chip hardware at silicon cost (takes area) or by

the programmer. The architecture performances greatly depend on the intra-

chip interconnects. It de�nes the way the PEs are connected together and

can exchange information. The computation speed-up coe�cient on a parallel

architecture for a given application relies on the number of cores involved and

the time spent communicating between the PEs. On a multi-core system, the

40 Background and related work

intra-chip interconnect is the on-chip communication system that allows the

processing elements to exchange data. Di�erent intra-chip interconnect models

exist:

� Bus interconnect topology: Processing Elements share a bus with an arbi-

tration element (Fig.6.2).

� Crossbar topology: a crossbar is a model in which all components are con-

nected through a switches (Fig. 6.2).

� Ring topology: all PEs are connected to a ring (Fig. 6.2).

� Network On Chip topology: on a network on chip, all resources are connected

onto a communication network managing route selection to pass messages

between PEs (Fig. 6.2).

PE

P
E P

E

PE

M
EM ACC

ACC

PE

PE PE

M
EM

A
C

C

ACC

PE PEMEM ACC

PE

PE

PE

PE

M
EM

A
C

C

A
C

C X

a) b)

c) d)

Figure 6.2: Intra-chip interconnects: a) ring topology, b)NOC topology, c) Bus topology,
d) Crossbar topology.

� Accelerators/Integrated peripherals

In order to lower the power consumption and decrease the programming com-

plexity, multi-core architectures can be provided with hardware accelerators.

These accelerators can be targeted at communication or computation. Accel-

erators such as DMA allow to perform data-transfer with PEs involved only

Data Flow model of computation 41

for transfer con�guration. Accelerators that perform critical computation can

also be used to decrease the processor load on speci�c algorithm. Those ac-

celerators being specialized for a few computations, their power consumption

is even more optimized.

A Multi-processor system can be described with the same criteria as a multi-

core architecture with an additional element that is the inter-chip interconnects. On

such systems, the processing elements are logically and physically divided as they

do not run on the same die. Thus, they need communication medium to exchange

data. The inter-chip interconnect is the on-board interconnection that exists between

chips. Inter-chip interconnect working at lower speed than intra-chip interconnect,

it usually results in a loss of throughput but a gain of potential scalability as the PE

number can (in theory) in�nitely increase. The programming model also becomes

di�erent, as the parallelism has to be extracted at a coarser grain to tackle the issue

of low-speed communications.

6.3 Data Flow model of computation

6.3.1 Introduction

The data-�ow model of computation aims at representing applications in regards

to the data dependencies that exist between the di�erent parts of the applications.

The application is thus represented as a network of the several actions the appli-

cation is composed of. This kind of representation allows to get knowledge of the

application intrinsic parallelism and memory requirement. The original data �ow

paradigm was introduced by Kahn in [Kah74]. A Kahn process network is a network

of actors connected by unbounded FIFO that carries data token. A data token is an

atomic (can not be divided) chunk of data. Kahn also established a formal repre-

sentation for Kahn process network. An actor can thus be described as a functional

process that maps a set of token sequence into a set of token sequence. The Data �ow

process network inherits its formal underpinning from Kahn process networks, but

associates to each actor a set of �ring rules that gives the necessary tokens input for

an actor to trigger. This allows further analysis of the network using a set or proper-

ties as described in [LP95]. To allow further compile-time analysis, the Synchronous

Data Flow model (SDF) [LM87b] takes the Data-�ow process network semantic and

restricts its expressiveness by specifying the data production/consumption rate in

and integer form for each actor interconnection. Such information allows to ensure

the application to be deadlock free, to compute a statical schedule of the application

and to compute memory requirements. In order to allow expressiveness of the quite

42 Background and related work

restrictive SDF model, several models were issued. The Boolean Data Flow model

(BDF) [Buc93] aims at introducing switch and select statements in the SDF model.

This model proposes to include speci�c actor in the model, whose production/con-

sumption rates can be controlled by a conditional input taking boolean values. The

Cyclo-static Data Flow [BELP95] model (CSDF) allows to describe production/-

consumption rates as a sequence of integers, thus allowing the actor to behave in a

di�erent manner in a sequence of activations. The Parametrized Synchronous Data

Flow [BB01] (PSDF) populates the use of parameters that can a�ect production-

s/consumptions rates and functional behavior of an actor. Such models provide a

better expressiveness than SDF but decreases the analyzability of the network. The

Figure 6.3 shows a classi�cation of the data-�ow models. While it is easy to classify

some models, it is di�cult to establish a hierarchy between some of them. For ex-

ample PSDF, CSDF and BDF really show di�erent behavior and the classi�cation

established in Figure 6.3 is not relevant.

KPN

DPN

PSDF

PSDF

CSDF

BDF

SDF

HSDF

DAG

Expressiveness

KPN: Kahn Process Network

DPN: Dala-flow Process Network

PSDF: Parametrized Synchronous Data Flow

CSDF: Cyclo-static Synchronous Data Flow

BDF: Boolean-controlled Data Flow

SDF: Synchronous Data Flow

HSDF: Homogeneous Synchronous Data Flow

DAG: Directed Acyclic Graph

Analyzability

Figure 6.3: Data-�ow Models of computation taxonomy.

In the following we will give an introduction to the data-�ow paradigm starting

by the mother of all, the Kahn Process Network followed by the Data Flow Process

Network and provide an in-depth exploration of the previously cited models.

6.3.2 Data Flow paradigm introduction

Kahn Process Network (KPN)

A process network is a set of concurrent processes that are connected through

one-way unbounded FIFO channels. Each channel carries a possibly �nite sequence

(a stream) that we denote X = [x1, x2, ...]. Each xi is an atomic data object called

token belonging to a set. Token cannot be shared, thus tokens are written (pro-

duced) exactly once and read (consumed) exactly once. As FIFOs are considered

Data Flow model of computation 43

unbounded, the operation that writes to a channel is non-blocking while a read oper-

ation blocks until at least one token is made available. A process in the Kahn model

maps one or more input sequences to one or more output sequences. Consider a pre-

�x ordering of sequences, where the sequence X precedes the sequence Y (written

X ⊆ Y) if x is a pre�x of (or is equal to) Y . For example [x1, x2] ⊆ [x1, x2, x3]. It is

then common to say that X approximates Y as it gives partial information about

Y . An empty sequence is denoted ⊥, and is a pre�x to any other sequence. For

an increasing chain of sequences χ = {X0, X1, ...} where X0 ⊆ X1 ⊆ Such an

increasing chain has one or more upper bounds Y where Xi ⊆ Y, ∀Xi ∈ χ. The

least upper bound >χ is an upper bound such that for any other upper bound Y ,

>χ ⊆ Y . The least upper bound may be an in�nite sequence. Let S denote the set

of �nite and in�nite sequences. Let Sp denote the set of p− tuples of sequences as
in X = {X1, X2, ..., Xp} ∈ Sp. The set ⊥ ∈ Sp is understood to be the set of empty

sequences.

Such sets of sequences can be ordered as well; we write X ⊆ X ′ if Xi ⊆ X ′i for

each i, 1 ≤ i ≤ p. A set of p-tuples of sequences χ = {X0, X1, ...} always has a

greatest lower bound uχ (possibly ⊥), but it may not have a least upper bound tχ.
If it is an increasing chain, χ = {X0, X1, ...}, where X0 ⊆ X1 ⊆ ..., it has a least

upper bound, so Sp is a complete partial order for any integer p.

A functional process F : Sp → Sq maps a set of input sequences Sp to a set of

output sequences Sq. Thus, a network of processes is a set of simultaneous relations

between sequences.

Let X0 denote all the sequences in the network, including the output, and I the

set of input sequences. Then the network of functional processes can be represented

by a mapping F where X1 = F (X0, I). Any X for which X1 = X is called a �xed

point.

Data Flow Process Network

A data �ow actor when �ring processes input tokens and produces output tokens.

Actor �ring is conditioned by a set of rules specifying which tokens must be available

at the input for an actor to �re. Such sequence is a special Kahn process called a

data �ow process. Thus a network of actors is a special kind of Kahn network called

a data �ow process network.

An actor with p ≥ 1 input streams can have N �ring rules, R = {R1, R2, ..., RN}.
The actor can �re if and only if at least one of the �ring rules is satis�ed. Each �ring

rule constitutes a set of patterns for each of the p inputs.

Ri = {Ri,1, Ri,2, ..., Ri,p}
Each Ri,j is a �nite sequence. To satisfy a �ring rule i, each Ri,j must form a

44 Background and related work

pre�x of the sequence of the unconsumed tokens on input j. An actor with no input

stream is considered always enabled.

Some patterns in a �ring rule may be empty Ri,j = ⊥, this means that any

available sequence at input j is acceptable, because as seen previously, ⊥ is a pre�x

to any sequence. This does not mean that input j must be empty.

The following notation has been introduced in [LP95]. The symbol �*� will denote

a token wildcard. Thus a sequence [∗] is a pre�x to any sequence containing at least

one token. [∗] is a pre�x to any non empty sequence. [∗] can only be pre�xed by ⊥.
The statement [∗] ⊆ X denotes that X is a sequence of at least one token , but not

means that any-one token is a pre�x to X.

The actor behavior is de�ned as a map function. This map function is a higher

order function as it takes a function as an argument and returns a function. We

de�ne F = map(f) where f : Sp ⇒ Sq is a function, to return a function F : Sp ⇒ Sq

that applies f to each element of the stream when a set of �ring rules is enabled.

F = map(f) where F (R : X) = f(R) : F (X) and R is the �ring rule of f . The

colon �:� indicates a concatenation of sequences. This de�nition is recursive and

terminates when the argument to F has no longer �ring rule as a pre�x.

6.3.3 Synchronous Data Flow (SDF)

The Synchronous Data-Flow (SDF) [LM87b] is used to simplify the application

speci�cation, by allowing the representation of the application behavior at a coarse

grain. This data-�ow model represents operations of the application and speci�es

data dependencies between the operations.

A synchronous data �ow actor with p inputs is speci�ed by one �ring rule R =

{R1} that is a set of patterns R1 = {R1,1, R1,2, ..., R1,p} one for each p inputs. Each
pattern is speci�ed as a �nite sequence of wildcards R1,j = [∗]n with n > 0 .

A synchronous data �ow actor is a functional process that maps a set of �xed

size wildcard sequences into another set of �xed size wildcard sequences. The map

function F = map(f) is f(Ri,j) = Sq with Sq being a set sequence of sequences

X ∈ [∗]n. Thus a synchronous data �ow actor consumes a �xed amount of tokens

on all its input and produces a �xed amount of tokens on all its outputs.

This data �ow model can be represented as a �nite directed, weighted graph

G =< V,E, d, p, c > where :

� V is the set of nodes; each node represents a computation that operates on

one or more input data streams and outputs one or more output data streams.

� E ⊆ V × V is the edge set, representing channels carrying data streams.

� d : E → N ∪ {0} (N = 1, 2, . . .) is a function with d(e) the number of initial

tokens on an edge e.

Data Flow model of computation 45

� p : E → N is a function with p(e) representing the number of data tokens

produced at e's source to be carried by e.

� c : E → N is a function with c(e) representing the number of data tokens

consumed from e by e's sink node.

This graph only speci�es the topology of the network but does not give any

information about the actor internal behavior. The only behavioral information is

regarding the amount of tokens produced/consumed.

From this representation one can extract a valid schedule, as a �nite sequence of

actor invocation that �res at least once with no deadlock and does not change the

state of the graph. Such sequence exists if and only if the equivalent Kahn process

network admits a minimum �xed point X for which X = F (X, I) where X denotes

all the sequence in the network including the outputs and I the set of inputs.

Such networks can be characterized by a matrix similar to the incidence matrix

in the graph theory. The topology matrix Γ is the matrix of size |E| × |V |, in
which each row corresponds to an edge e in the graph, and each column corresponds

to a node v. Each coe�cient (i, j) of the matrix is positive and equal to N if N

tokens are produced by the jth node on the ith edge. (i, j) coe�cients are negative

and equal to N if N tokens are consumed by the jth node on the ith edge. It was

proved in [LM87b] that a static schedule for graph G can be computed only if its

topology matrix's rank is one less than the number of nodes in G. This necessary

condition means that there is a Basic Repetition Vector (BRV) q of size |V | in which

each coe�cient is the repetition factor for the jth vertex of the graph. This basic

repetition vector is the positive vector with the minimal modulus in the kernel of the

topology matrix such as q.Γ = {0}. Such vector gives the repetition factor of each

actor for a complete cycle of the network. In the Figure 6.4 the topology matrix

is constructed as explained previously. The rank of this topology matrix being 3,

it means that this network admits a schedule. The basic repetition vector of this

network is [4, 6, 6, 3] meaning that q(op1) = 4, q(op2) = 6, q(op3) = 6, q(op4) = 3.

op1
3

3

op2
2 2

op32 2

op4
4

4

3 −2 0 0
3 0 −2 0
0 2 0 −4
0 0 2 −4

Figure 6.4: An SDF graph and its corresponding topology matrix.

In a SDF network some actor are purely computation less, as their role is only

46 Background and related work

to organize their input(s) datas into their output(s). Those special vertices depicted

in Figure 6.5 can �owingly be termed :

� Fork: the fork vertex takes N tokens on its single input, and outputs N/nbo
tokens on its nbo output ports.

� Join: the join vertex takes N/nbi tokens on its nbi input and outputs N tokens

on its single output.

� Broadcast or Di�use: the broadcast or di�use vertex takes N tokens on its

single input, and output the same N tokens on each of its outputs.

� Ring : the ring vertex takes N tokens on each of its inputs, and outputs only

the last N tokens on its single ouptut.

fork bcast

join ring

Figure 6.5: Illustration of the computation less vertices.

SDF to DAG translation

One common way to schedule SDF graphs onto multiple processors is to �rst

convert the SDF graph into a precedence graph such that each vertex in the prece-

dence graph corresponds to a single execution of an actor from the SDF graph. Thus

each SDF graph actor A is �expanded into� qA separate precedence graph vertices,

where qA is the component of the BRV that corresponds to A. In general, the SDF

graph aims at exposing the potential parallelism of the algorithm; the precedence

graph may reveal more functional parallelism and moreover, it exposes the available

data-parallelism. A valid precedence graph contains no cycle and is called DAG

(Directed Acyclic Graph). Unfortunately, the graph expansion due to the repeti-

tion count of each SDF node can lead to an exponential growth of nodes in the

DAG. Thus, precedence-graph-based multiprocessor scheduling techniques, such as

those developed in [Pri91] [SL90], in general have complexity that is not polyno-

Data Flow model of computation 47

mially bounded in the size of the input SDF graph, and can result in prohibitively

long scheduling times for certain kinds of graphs (e.g., see [PBL95]). The Figure

6.6 shows the precedence graph of an SDF network, thus highlighting the network

expansion.

A
3

B
2

A1

A2

B1

B2

B3

Figure 6.6: An SDF graph and its precedence graph.

6.3.4 Homogeneous Synchronous Data Flow (HSDF)

The homogeneous synchronous data �ow model is a subset of the synchronous

data �ow. A homogeneous synchronous data �ow actor with p inputs is speci�ed by

one �ring rule R = {R1} that is a set of patterns R1 = {R1,1, R1,2, ..., R1,p} one for
each p inputs. Each pattern is speci�ed as a sequence of one wildcard R1,j = [∗].
The mapping function associated with each actor maps a set of input sequence Sp
into sets of unique wildcard sequences f : Sp → Sq with Sq = {X1, X2, ..., Xp} with
Xi = [∗]. The Figure 6.7 shows an HSDF graph with only unary production and

consumption rates. Production and consumption rates can higher than one, but

must be equal on one arc.

6.3.5 Boolean-controlled Data Flow (BDF)

The boolean control data �ow allows an SDF graph to have non-determinism

actor. Those special actors are boolean controlled. This boolean control the �ring

rules and the producing rules. A boolean controlled actor with p inputs and a

control port c is speci�ed by two �ring rules, R = {RT , RF}. The rule RT speci�es

the valid input sequences for the p input ports for a true value on the port c RT =

{RT,1, RT,2, ..., RT,p, [T]} and RF speci�es the valid input sequences for the p input

ports for a false value on the port c RF = {RF,1, RF,2, ..., RF,p, [F]}. A valid boolean

controlled data �ow actor must consume at least one token on any of its ports

48 Background and related work

A1

1

1

A2

1

1

B2

1

1

B11

B31

Figure 6.7: An HSDF graph.

(excluding the control port) for any control value. Typical BDF actors are the select

and switch actors as depicted in Figure 6.8. The set of rules ruling the select actor

are R = {[X,⊥, T], [⊥, X, F]} with X a sequence of �xed number of wildcards. The

switch actor only has one �ring rule R = {[∗, ∗]} but its mapping function behavior

is ruled by the control token f([X, [T]]) = [X,⊥] and f([X, [F]]) = [⊥, X] with X a

sequence of �xed number of wildcards. The switch actor takes one input and copies

it on one of its two outputs depending on the control token value. For a control

token equal to one, the input is copied on the T port, when a control token zero

leads to a copy on the output F . The select actor takes two inputs and copies the

value of one of them on its outputs depending on the control token value. For a

control token one, the input T is copied on the output, and a control token 0 leads

to a copy of the F input on the output port.

“true”
branch

“false”
branch

data
input

control
token

Switch
T

F

I

C

Select
T

F

O

C

data
output

Figure 6.8: BDF switch and select actors

Data Flow model of computation 49

Consistency analysis of the BDF model relies on an extension of the topology

matrix. Conditional ports are annotated with a symbolic expression p that rep-

resents the probability of token consumption/production on this port. If the port

produces/consumes a token for a TRUE token on its associated control port, the

annotation pi is the proportion of TRUE tokens on the control port for n control

tokens consumed. If the port produces/consumes a token for a FALSE token on

its associated control port, the annotation is the proportion of FALSE tokens on

the control port for n control tokens consumed, that is pi− 1. We could consider p1
as being the probability of appearance of a TRUE token on the control port, but

in that case the existence of a complete cycle would only be true for control token

stream stationary in the mean. The above formulation denotes as n the length of a

well-de�ned sequence of actor �ring called a complete sequence.

BDF consistency can be computed by �nding the null-space of a symbolic topol-

ogy matrix Γ for which the elements are the production/consumption rate for the

data �ow actors and the pi annotation for the BDF actors. Such vectors can have

non-trivial solution and are consequently callstrongly consistent. A system for which

non-trivial solution exists only for speci�c values of pi is called weakly consistent.

Thus additional information must be provided by the user to ensure that the system

can consistently run over time.

The solution vector of the system Gamma(~(p)r(~p) = ~0 is a function of ~p and k

with r(~p = k ~q(~)p. ~q(~)p is the minimal non-trivial solution of the system, and k is

the minimal integer for which all components of the vector k ~q(~)p are integer. The

de�nition of pi being the proportion of TRUE tokens on the control token port for

n invocations of the graph, leads to k = n as pi = ti
n
with ti being the number of

TRUE tokens.

The Boolean controlled data �ow can be extended to the Integer controlled

data�ow where the control token can be of any integer value. Thus, each actor

can be speci�ed by a �nite set of �ring rules, one for each possible value of the

control token. Such model can be analyzed as a composition of BDF actors forming

an integer solution.

6.3.6 Cyclo-Static Synchronous Data Flow (CSDF)

The Cyclo-static synchronous data �ow generalizes the SDF model by allowing

the number of tokens consumed/produced to vary from one �ring to the next in a

cyclic pattern. A Cyclo-static actor with p inputs is speci�ed by an ordered set of

sequential �ring rules R = {R1, R2, ..., RN} that gives for a �nite number of �ring

the sequence of �ring rules. Thus the actor is executed for the �rst time when the

�ring rule R1 is met. Then for the following invocation the �ring rule R2 has to be

50 Background and related work

met. Each following invocation require the next �ring rule to be met. When the end

of the ordered set is reached, the sequence start over at �ring rule R1. For a �ring

i of the actor, at least one interface must require a token. The Figure 6.9 shows

a CSDF network with producing and consuming sequence a the source and sink of

each arc.

[1 1 0 1] [1]

[1] [1 0]

A

B

C

D

Figure 6.9: A Cyclo-static Data Flow network.

For such model, constructing a �consistent� schedule exists if the following con-

dition is met. Given a connected cyclo-static data �ow graph G. A vector ~qG =

[q1, q2, ..., qNG] gives for actor qi its number of invocation. ~qG = P.~r with ~r being the

solution of Γ~r = 0. Γ is denoted as the topology of the data �ow graph, that can be

described as

Γi,j =

(Pj/P
i
j .X

i
j(P

i
j)) if task j produces on edge i

(Pj/Q
i
j.Y

i
j (Qi

j)) if task j consumes from edge i

0otherwise
where :

� P u
v period of the production sequence of task v on edge u

� Qu
v period of the consumption sequence of task v on edge u

� Pv is the least common multiple of {P u
v }

� Xu
v (P u

v) number of tokens produced by actor v on edge u for a full production

period of task v on edge u

� Y u
v (Qu

v) number of tokens consumed by actor v on edge u for a full consumption

period of task v on edge u

The solution vector qG is said to be consistent as this necessary condition ensures

bu�ers to be bounded, but does not ensure that deadlocks cannot occur. A cyclo-

static data �ow graph that will not deadlock is said to be �alive�. Checking a graph

to be alive is performed by checking the singular loops. A singular loop is a direct

path in a set of strongly connected element which starting and �nishing element are

the same for which each element appears only once.

De�nition A singular loop L in a cyclo-static data �ow graph is a direct path

v1
u1,2−−→ v2

u1,3−−→ ...
uNL−1,NL−−−−−−→ vNL

uNL,1−−−→ v1 where the starting node equal the ending

node. A singular loop is a loop where all the tasks appear only once.

Data Flow model of computation 51

De�nition The �rst producing invocation FPI(vj, nj, L) is the sj invocation of vj
with sj ≥ nj with non-zero production toward vj+1.

De�nition The �rst-dependent-successor-invocation FDSI(vj, nj, L) of vj(nj) in

L is the �rst invocation of vj+1 that requires data from vj to become executable.

De�nition The �rst data sequence FDS(vj, nj, L) of vj(nj) in L is the invocation

sequence vj(nj)...vj(sj)vj+1(nj+1)...vj+1(sj+1)...vNL
(sNL

)v1(n1)...vj−1(sj−1)vj(nj) where

sk = FPI(vk, nk, L)) and nk = FDSI(vk−1, sk−1, L).

Finding a FDS sequence is performed by iteratively �nding the iteration sj of vj
that produces data toward vj+1. Then this procedure is repeated among all actors of

the loop until we reach invocation nj of task vj to construct a valid FDS sequence.

The graph is then said to be alive if FDS(vj, s
k
j , L) = vj(s

k
j)vj+1(n

k+1
j+1)...vj(n

k
j+1)

ends on an instance nk+1
j ≥ skj of vj, for 0 ≤ k ≤ m. In this formula skj =

FPI(vj, n
k
j , L) , n0

j is the �rst invocation of vj that is not initially executable and m

corresponds to the �rst invocation of vj for which FDS(vj, s
m
j , L) passes by a task

invocation nm+1
i > qi of a task vi of L.

When one has determined a repetition vector and checked the graph aliveness,

the graph can be scheduled. Scheduling a CSDF can be performed in two di�erent

ways: by transforming the CSDF speci�cation into an HSDF representation, or

by forcing each instance of a task to be executed on the same processing device.

In the second way, the tasks are connected by FIFOs whose size can be statically

computed.

6.3.7 Parameterized Synchronous Data Flow (PSDF)

Parameter-based SDF hierarchy has been introduced in [BB01] where the authors

introduce a new SDF model called Parameterized SDF. This model aims at increas-

ing SDF expressiveness while maintaining its compile time predictability properties.

In this model a sub-system (sub-graph) behavior can be controlled by a set

of parameters that can be con�gured dynamically. These parameters can either

con�gure sub-system interface behavior by modifying production/consumption rate

on interfaces, or con�gure behavior by passing parameters (values) to the sub-system

actors. In this model each sub-system is composed by three graphs: the init graph

φi, the sub-init graph φs, the body graph φb.

The body graph φb is a synchronous data �ow network. The actors of this

data �ow network are speci�ed by one rule R = {R1} that is a set of patterns

R1 = {R1,1, R1,2, ..., R1,p} one for each input. Each R1,N is as sequence R1,i = [∗]t

52 Background and related work

with t being parameter resolved at run-time. The mapping function of each actor

can also be parameterized f(R1) = [∗]k.
The init graph φi does not consume any data �ow tokens but is only �red once

before an invocation of φb. This graph a�ect the parameters used in the �ring rules

and mapping function. Thus φb mapping function and �ring rules remain static

between two invocations of φi. In Figure 6.10 the parameter s that a�ect the actor

A consumption rate is set by the φi. This parameter s is the sub-sampling factor.

The sub-init graph consumes data �ow tokens and is �red before each �ring of the

network φb. This network can a�ect parameters that can parameterized φb actors

behavior in term of computation but can also set parameter used in production

consumption rate as long as it does not a�ect the upper hierarchy network. In

Figure 6.10 the parameter p that a�ect the actor A internal behavior is set by the

φs. The parameter p is the phase parameter of the sub-sampler.

φs

φi

s
A(p)

s

p

1

1

Figure 6.10: PSDF speci�cation of a sub-sampler actor.

Each activation of the sub-system, is composed by an invocation of φs followed

by an invocation of φb. The init graph is e�ectively decoupled from the data �ow

speci�cation of the parent graph and invoked once, at the beginning of each (minimal

periodic) invocation (see [BB01]). The sub-init graph performs recon�guration that

does not a�ect sub-system interface behavior and is activated more frequently than

the init-graph that can modify sub-system interface behavior. In order to maintain

predictability, actors of φb are assigned a con�guration which speci�es parameters

values. This value can either be a domain which speci�es the set of valid parameter

value combinations for the actor, or left unspeci�ed, meaning that this parameter

value will be determined at run-time.

Data Flow model of computation 53

A PSDF graph is considered to have SDF behavior for each invocation. This en-

sures that its schedule can be constructed as a dynamically con�gurable SDF sched-

ule. Such scheduling leads to a set of local synchrony constraints for PSDF graphs

and PSDF sub-systems that need to be satis�ed for consistent speci�cation. Those

constrains ensure the program to have a SDF behavior between two invocations. A

con�guration C is a complete set of parameters. Lets denote DOMAIN(G) the set

of valid complete con�gurations for a graph G. A con�guration C ∈ DOMAIN(G)

must meet the following conditions to ensure the local synchrony:

1. The graph instanceG(C) has a valid schedule, is sample rate consistent and

deadlock free.

2. The consumption/production (kv, ϕv) rate on any port Φ of any actor v for the

con�guration C must be less than the maximum consumption/production τv
rate speci�ed by the designer. kv(Φ, configv, C) ≤ τv and ϕv(Φ, configv, C) ≤
τv.

3. The maximum delay value bound µe is satis�ed for every edge. e ∈ Eδe(confige, C) ≤
µe.

4. Every child subsystem is synchronous.

If those conditions are satis�ed for every C ∈ DOMAIN(G), we say that g

is inherently locally synchronous. If only some C ∈ DOMAIN(G) satis�es the

conditions then G is partially locally synchronous. A partially locally synchronous

PSDF speci�cation will require con�guration checking at run-time to ensure a correct

behavior.

6.3.8 Conclusion

The data �ow model of computation is composed of several sub-models that

each provide di�erent information and/or limits the speci�cation behavior to meet

de�ned criteria. The synchronous data �ow model, despite its limited expressive-

ness, has proved to be adapted for signal processing applications speci�cations. The

main limitation of this model is the �xed production/consumption rates that are

used to compute the statical scheduled. The CSDF model overcome this limita-

tion by allowing to de�ne production/consumption as a sequence of integers. Such

representation can make the model painful to specify and the scheduling procedure

can either bring a lot of complexity (HSDF transformation) or limit the mapping

possibilities on multi-core architecture. The PSDF model seems to be a nice trade-

o�, but let the user with the responsibility to provide veri�ed informations on the

con�guration to ensure local synchrony. Other models such as BDF tackles the issue

of conditioning but does not ensure memory boundedness based only on the model

54 Background and related work

informations. One must remind that these model are before all, model of execution.

Thus a program can be thought as a composition of the di�erent models. A Data

Flow process network can be analyzed to extract those di�erent behaviors for opti-

mization or scheduling purpose. Unfortunately identifying those behaviors is hard

to performed automatically, and a precise knowledge of the application behavior is

necessary. In the following we will introduce the tools that implements these models

as application speci�cation models.

6.4 Application modeling tools

6.4.1 Introduction

As application complexity and available target architecture grow, application de-

signer needs to use abstraction models that allow to specify an application behavior

with minimum knowledge of the target architecture. Such model not only allows to

target a wide range of architectures but can also be use to co-design the software

and the hardware. Such model usually relies on a target independent language/rep-

resentation and is associated to an execution model to allow automatic analysis and

optimizations. Those speci�cations are adapted to the targeted application context.

In the following, we will give an overview of the existing models and associated

languages that target DSP applications.

6.4.2 Data�ow Interchange Format

DIF (Data�ow Interchange Format) [jHKyK+04] is a language for specifying

data�ow models for DSP systems developed at the University of Maryland. DIF aims

at providing an extensible repository of models, analysis, transformation, scheduling,

code generation for data�ow. The models currently supported are:

� Synchronous Data�ow.

� Homogeneous Synchronous Data�ow.

� Single Rate Data�ow.

� Cyclo-static Synchronous Data�ow.

� Parameterized Synchronous Data�ow.

� Multidimensional Synchronous Data�ow.

� Boolean Controlled Data�ow.

� Enable Invoke Data�ow.

� Core Functionnal Data�ow.

DIF-to-C [HKB05] allows to generate C code from an SDF speci�cation. To

achieve so, the DIF package (Fig. 6.11) provides an extensive repository of schedul-

Application modeling tools 55

The DIF Package
DIF Front-end

DIF Representations

DIF Specifications DIF Language

DSP Designs

Comm Sys

Image/Video

Signal Proc

Algorithms

AIF / Porting

DIF Spec DIF Spec

Dataflow Models
Static

SDF

CSDF

BCSDFHSDF

Dynamic
DIF

BDF

ILDF

Meta-
Modeling

BLDF
MDSDF PDF

Embedded
Processing
Platforms

Java Other
Embedded
PlatformsJava VM

Ada

VDM

C

DSPs

DSP
Libraries

TI
VSIPL

DIF-to-C

Other

DIF-Ptolemy Ex/Im DIF-AT Ex/Im Other Ex/Im

Dataflow-based
DSP Design
Tools

Autocoding
ToolsetPtolemy II Other

Tools

MOML SPGN

Figure 6.11: DSP system design with DIF.

ing (Flat, Flattening, Hierarchical, APGAN (Algorithm for Pairwise Grouping of

Adjacent Node)) and bu�ering techniques (Non shared, Circular, Bu�er Sharing,

Static, In-place Bu�er Merging). The generated C code targets mainly DSP proces-

sors.

6.4.3 SDF3

SDF3 [SGB06] is a tool for generating random Synchronous DataFlow Graphs

(SDFGs), if desirable with certain guaranteed properties like strongly connectedness.

It includes an extensive library of SDFG analysis and transformation algorithms as

well as functionality to visualize them. The tool can create SDFG benchmarks that

mimic DSP or multimedia applications. In addition, the tool support the Scenario

Aware Data�ow model [The07] that allows parameterized production/consumption

rates to be speci�ed, and for which the actor execution time depends on the ac-

tive scenario. In addition this model distinguish the data�ow and the control �ow

56 Background and related work

allowing further optimizations.

6.4.4 Ptolemy II

Ptolemy [LHJ+01] is a tool developed at Berkeley for application modeling and

simulation. An application can be described using a composition of actors called

networks directed by a given computation model called the director. It supports

a wide collection of computation models, from event-driven to most of the data-

�ow models and process network. Ptolemy II is the successor of Ptolemy classic

and has been under development since 1996. A speci�cation can then be executed

and debugged using underlying java code. The tool is supported by a graphical

environment called VIRGIL (Fig 6.12), that allows graph speci�cation and graphical

application debugging. The models are stored in a concrete XML syntax called

MoML.

Figure 6.12: Implementation of a Sine wave generator in ptolemy.

6.4.5 StreamIt

StreamIt [TKG+01] is a programming language and a compilation infrastructure

developed at the MIT, speci�cally engineered for modern streaming systems. It is

designed to facilitate the programming of large streaming applications, as well as

their e�cient and e�ective mapping to a wide variety of target architectures, includ-

ing commercial-o�-the-shelf uniprocessors, multi-core architectures, and clusters of

workstations. The speci�cation is made using a textual representation. Each actor

is declared as a �lter. A Filter is an actor with exactly one input and one output

Application modeling tools 57

port. It can declare an initialization (init), a pre-work and a work. The init is

executed at the instantiation and does not consume/produce tokens. The pre-work

is the very �rst execution of the �lter. The work function de�nes the behavior of the

�lter. Work and pre-work are characterized by push and pop properties that de�ne

the production and consumption of the �lter (see Fig. 6.13). Filters can support

dynamic rates.

The network of actors is de�ned as a pipeline in which �lters are added in a

sequential order. One can also use a split-join section that is de�ned as a section

of �lters in which the input data is split and the output is the result of the join of

several �lters.

The model is supported by a command-line compiler that can be setup with

di�erent optimization options.

6.4.6 PREESM

PREESM (Parallel Real-time Embedded Executive Scheduling Model) is a rapid

prototyping tool for easy application speci�cation to automatic target speci�c code

generation under development at the Institute of Electronic and Telecommunica-

tion of Rennes (IETR) since 2007 (see Figure 6.15). The proposed framework goes

from graph speci�cation using a graph Editor (Graphiti), to code generation using

PREESM and a library of plug-in. The Graphiti graph editor allows the user to

design application graph using a Synchronous Data Flow (SDF) semantic with spe-

ci�c interpretation of the hierarchy [PBR09]. The design can be hierarchical when a

vertex in the graph has a graph representation for its behavior, or atomic when the

vertex behavior is described using programming language as C. Graphiti can also

edit architectures described using IP-XACT language, an IEEE standard from the

SPIRIT consortium [SPI08].

Synchronous Data Flow graphs can then be processed using the PREESM Eclipse

plug-in which computes di�erent transformations on the graph and then can match

the graph with a given hardware architecture using di�erent mapping algorithms.

At the end of the process, the so mapped application is translated into C code, which

can be compiled and executed on the hardware target.

All the transformations (mapping, code generation) algorithms are designed as

PREESM plug-ins, allowing users to extend the transformation, mapping, code gen-

eration algorithms library. The process, going from graph transformation to code

generation, is driven by a Work�ow graph (also edited in Graphiti) that speci�es the

order in which the PREESM plug-ins are to be executed and all the data exchanges

between the plug-ins (Figure 6.14).

58 Background and related work

6.4.7 SynDEx data-�ow model

SynDEx is a rapid prototyping tool developed at the INRIA Rocquencourt

[GS03]. The tool allows graphical speci�cation of the application and architecture

and generates m4 code, that can be later transformed to c code, for each of the

architecture processing element. The application speci�cation relies on a data�ow

model close to SDF that does not support multi-rythm. Production speci�cation on

one arc must be an integer product of the consumption, meaning that a consumer

cannot consume more data than produced by one �ring of the producer. At least one

arc must satisfy these criteria for two connected actors, the other are considered as

broadcast arcs. Figure 6.16 shows an MPEG-4 decoder speci�ed with SynDEx tool.

Blocks with blue headers are the actors when blocks with green headers represent

the delays.

6.4.8 Canals

Canals [DEY+09] is a data �ow modeling language supported by a compiler

infrastructure. This language and its compiler are being developed at the university

of Turku in Finland by the Center for Reliable Software Technology. The language

is based on the concept of nodes (kernel and networks) and links which connect

nodes together. A node or kernel is a computational element that takes a �xed

amount of tokens on its input and output a �xed or arbitrary number of element on

its output. A kernel can also look at values on its input port without consuming it.

Special kernels scater and gather are used for data distribution and grouping with a

speci�ed behavior.

In the language, the scheduling is separated from the network, and speci�ed

by the user for the whole network. The scheduler is responsible for planning the

execution of kernels, in such a way that data available as input to the network is

routed correctly through the network and eventually becomes available as output

from the network. The scheduler can accomplish correct routing by inspecting data,

obviously at run-time, arriving to the network and make routing decisions based on

the contents of the data.

The Canals compiler is then able to provide a mapping of the top network onto

a given architecture and generate code for each programmable components. The

generated C, C++ is platform independent and the hardware speci�c resources and

communication links are handheld by an Hardware Abstraction Layer library for

each component.

Application modeling tools 59

6.4.9 CAL Actor Language

RVC-CAL [BEJ+09, ISO09] is a subset of the CAL Actor Language [EJ03a] used

for writing data�ow models, more precisely for de�ning the functionality of data�ow

components called actors.

The CAL Actor Language was �rst created as part of the Ptolemy project [EJL+03].

Actors were originally written in Java with a complex API, but ultimately this solu-

tion proved unnecessarily di�cult to use in practice, and the CAL Actor Language

was designed as a result. An actor de�nes input ports and output ports, a de�nition

of the variables containing its internal state, and a number of transition rules called

actions. Each actor executes by making discrete, atomic steps or transitions. In each

step, it picks exactly one action from its set of actions (according to the conditions

associated with that action), and then executes it, which consists of a combination

of the following things:

1. consumes input tokens,

2. produces output tokens,

3. modi�es the state of the actor.

The pro�led version of CAL Actor Language, called RVC-CAL, has been selected

by the ISO/IEC standardization organization in the new MPEG Recon�gurable

Video Coding (RVC) standard [ISO09]. RVC-CAL, compared with CAL, restricts

the data types, the operators, and the features that can be used in actors. One

reason for creating RVC-CAL is the di�culty of implementing a code generator that

outputs correct and e�cient code for CAL in its entirety. Another rationale for

RVC-CAL is to make sure both software code and hardware code can be e�ciently

generated from CAL. However, the original expressiveness of the language and the

strong encapsulation features o�ered by the actor programming model have been

preserved and provide a solid foundation for the compact and modular speci�cation

of actors.

Two tools support the CAL language. The OpenDF framework allows to simulate

network of CAL actors and generate HDL description, while ORCC (Open RVC CAL

Compiler) supports only the RVC-CAL subset but generates C, LLVM, HDL code.

6.4.10 MCSE speci�cation model

MCSE [CI94] (Methode de Conception de Système Electronique) is a french

acronyms that stands for Electronic System Design Methodology. It was developped

at the polytechnic school of Nantes (France) by Jean Paul Calvez. This methodology

aims at providing the system engineer with a work-�ow for systems design. This

work-�ow guides him/her from the customer requirement to a valid prototype. This

60 Background and related work

process goes through several design steps associated to a relevant model. The process

steps (Fig.) are:

1. Speci�cation

2. Functionnal Design

3. Implementation speci�cation

4. Implementation

The model associated with each step re�nes the design to lead to an execution

model that can be simulated and synthesized. The functional model is an application

model that mixes both data-�ow and event driven models (Fig.). The use of the

shared variables makes the model closer to the DDF model as a variable can be

accessed without consuming it. No formal veri�cation is made on the model behavior

but statistic such as operator load and memory footprint can be extracted.

The conception �ow allows to validate the designer choice at each step to lead

to a valid solution. Documenting each step also eases the communication inside the

team and with the customer.

6.4.11 Conclusion

This is an extensible presentation of the application modeling tools that can be

used in a rapid prototyping design �ow. All tools do at least model simulation or

code generation but a few of them perform both. The Figure 6.19 tries to clas-

sify the tools with other well know multi-core programming tools. OpenMP (Open

Multi-Processing) [DMI98] is an application programming interface (API) that sup-

ports multi-platform shared memory multiprocessing programming in C, C++ and

Fortran. It consists of a set of compiler directives, library routines, and environment

variables that in�uence run-time behavior. Cilk is a language for multithreaded

parallel programming based on ANSI C. Cilk [BJK+95b] is designed for general-

purpose parallel programming, but it is especially e�ective for exploiting dynamic,

highly asynchronous parallelism, which can be di�cult to write in data-parallel or

message-passing style. The PREESM software is classi�ed as a simulation tool

because it is used as a front-end for a Texas Instrument internal tool called NER-

IOS that performs cycle accurate DSP simulation for bus contention and processor

load analysis. In [PRP+08] we also show that RVC-CAL (CAL subset standardized

within MPEG) could be used as a front-end for PREESM. This �gure's goal is not

to rank the tools as there capabilities and target application are deeply di�erent.

Multi-processor scheduling 61

6.5 Multi-processor scheduling

On a multi-processor architecture, the scheduling aims at allocating a set of tasks

onto the processor of the architecture, and then determines the start-time of each

task on the given processor. Finding such schedule is a NP complete problem.

Scheduling of statical data �ow model relies on the analysis of the DAG equivalent

of the model. Two nodes of a DAG can only be connected by one arc associated to

a weight that represents the cost of the data transfer. Most scheduling algorithm

of DAGs are based on the list scheduling [ACD74]. In list scheduling, nodes are

assigned a priority and organized in a list with a descending order of priorities. Then

the nodes of the list are analyzed for scheduling following the list order. Assigning

priority can be performed using di�erent methods.

Two frequently used attributes commonly used to assign priorities are the t−level
and b− level. The t− level (also referred as As Late As Possible (ALAP)) of a node

ni is the length of a longest path from an entry node to ni. The length of a path is

the sum of all node and all weights along the path. The b − level of a node is the

length of a longest path from the node ni to an exit node. The time complexity for

assigning t− level is O(e+ v) and the same for b− level. The b− level is bounded
by the length of the critical path. The critical path is the longest path in the DAG.

The t− level attribute of a node may vary during the scheduling of a node while

the b− level remains constant. When scheduling a node the weight of its incoming

edge can be zeroed if the adjacent connected node is scheduled on the same processor.

Thus the length of the path reaching that node varies with consequences on the

t− level. The b− level may vary when the node has been assigned onto a processor.

Most algorithm schedules a node when all the parents have been scheduled, this

explains why the b− level remains constant during scheduling.

A List scheduling algorithm de�nes the priority assigning schemes for the nodes

and choice criterion for the processor. In �rst place the algorithm constructs the

ordered list of nodes based on the assigned priorities. In experiments, the relevance

of the node order for the schedule length was demonstrated [SS05].Still, most algo-

rithms apply orders based on node levels and the bottom level order exhibits good

average performance. Then it works by constructing partial schedules of the nodes

of the list. Each node of the list is successively allocated onto a processor of the

architecture (mapping), thus each node n is successively added to the partial sched-

ule Scur that consists in the node schedule before n. A node is only scheduled once,

and its scheduled can not be modi�ed at later time. The usual criterion for pro-

cessor assignment is the processor allowing the earliest start time (t− level) of the
node. The complexity of list scheduling algorithm greatly depends on the number

of vertices. A simple list scheduling algorithm like the one presented in [Sin07] has

62 Background and related work

a complexity of O(P (V + E)). Other well-known list-scheduling algorithm such as

the Highest Level First with Estimated Time [KA98] or the Modi�ed Critical Path

[WG90] show a complexity of O(pv2). Other scheduling algorithms using heuristic

technique such as genetic algorithm or simulated annealing exist but usually use a

list scheduling algorithm as a starting point.

6.6 Conclusion

A rapid prototyping framework takes advantage of informations contained into a

model of the application to perform a matching of the given algorithm onto a given

architecture. Depending on the architecture characteristics (PEs, memory system

...), this tool try to obtain the best performance. Considering the amount of ar-

chitecture available, and the complexity of the algorithms, it is easy to understand

that, in order to performs this operation, the tool must give some limitations. Most

limitation are imposed by the model expressiveness, and the programmer have to

deal with it to express its algorithm behavior. The more limited the model is, the

more informations you can get from it at compile time. Some rapid prototyping

tools choose to limit to one model (PREESM, SynDEx), and some other only de-

�nes a syntax from which multiple Data Flow behavior can be extracted. In the

case of the rvc-CAL language, actor are DPN actors but some SDF zone can be

determined [GJRB10], and one could take advantage of such zone to generate opti-

mized multi-core code. Other tools such as Ptolemy II describe the application as

a composition of models, but the model is only use for simulation, and there is no

need to extract information at compile time. The SDF model is very limited in term

of expressiveness, but you can get a lot scheduling information from it, which makes

it a good choice for rapid prototyping of e�cient multi-core code. Optimizing the

application before scheduling is also of great importance. This optimizations aims at

easing the scheduling step, but also extract more parallelism for better performance

on parallel architectures. In the next chapter we give an overview of optimization

of nested loops that could become of interest for data �ow optimizations.

Conclusion 63

int−>int loop matVectProd (int N){
j o i n roundrobin (1 , N) ;
add vectSca larProd () ;
loop propagate () ;
s p l i t dup l i c a t e ;
enqueue 0 . 0 ;

}

int−>int f i l t e r propagate (){
prework push N{

push (0 . 0) ;
}
work push 1 pop 1{

push (pop ()) ;
}

}

int−>int loop vectSca larProd (){
j o i n roundrobin ;
add mac () ;
loop propagate () ;
s p l i t dup l i c a t e ;
enqueue 0 . 0 ;

}

int−>int f i l t e r mac(void){
work push 1 pop 3{

a = pop () ;
b = pop () ;
c = pop () ;
push (c ∗ b + a) ;

}
}

propagate

propagate

mac

Figure 6.13: StreamIt model of the matrix vector product example.

64 Background and related work

code

S cenario ed ito r

G an tt chart

g raph transfo rm a tions

S D F D A G

S chedule r

C ode genera tion

A lgorithm ed ito rA rch itec tu re ed ito r

D A G + im p lem enta tion
in fo rm ation

IP -X A C T

code

S cenario ed ito r

G an tt chart

g raph transfo rm a tions

S D F D A G

S chedule r

C ode genera tion

A lgorithm ed ito rA rch itec tu re ed ito r

S D F

D A G

D A G + im p lem enta tion
in fo rm ation

S cenarioIP -X A C T

S D F

Figure 6.14: From SDF and IP-XACT descriptions to code generation.

Figure 6.15: Screen shot of the PREESM framework.

Conclusion 65

Figure 6.16: MPEG-4 decoder model speci�ed in SynDEx.

Level 1

Level 2

Level 3

Level 4

Abstract

Concrete

PRODUCT

Time

S PE C IF ICATION

FUNCTIONAL

DE S IGN

IMPLEMENTATION

SPE C IF ICATION

Specifications

Functional des cription

E xecutive des cription

S pecification

Functional

E xecutive

Technological specifications

Technological and implementation specifications

Functional &
operational
specifications

models

model

model

IMPLEMENTATION

R EQUIR EMENTS

DE F INITION

Figure 6.17: The MCSE design cycle.

66 Background and related work

Functionnal structure Execution structure

Shared variable

Event

Function

Message queue

Memory

Signal

Processor

Communication Node

Figure 6.18: The MCSE model components.

Code Generation

Si
m

u
la

ti
o

n

G
raphical U

ser Interface

Ptolemy II
Cofluent Studio

DIF

SDF3

SynDEx

PREESM

StreamIT

ORCC

OpenMP

CILK
Canals

Figure 6.19: Overview of the application modeling tools and their di�erent abilities

Chapter 7

Nested loops Partitioning

7.1 Introduction

Nested loops are widely used as logical structure in imperative programming

language such as C. This structure aims at factorizing computation on hierarchical

or multi-dimensional data. A nested loop is formed by nested repeating (loops)

statements. This kind of structure operates in a highly sequential way, as one outer

loop iteration triggers the iteration over its whole domain of the inner loops. Thus it

is important for compilers to be able to optimize this type of structure to execute it

in an e�cient way. Moreover this is vital for parallel architecture compilers to be able

to extract the parallelism nested into the hierarchy. This transformations are based

on information extracted from the nested loop speci�cation. Those information

characterize the reads and writes order on memory locations. It helps at ensuring

that even if the nested loop is not executed in a sequential way or in an out-of-

order manner, the resources accessed in inner-most loop statements will remain the

same. In the following we present the nested loops structure, and the dependency

representations. Then we introduce the transformation techniques that aims at

extracting parallelism from the nested loops representation.

7.2 Nested Loops representation

De�nition A nested loop of depth n is a structure composed of n nested loops for

which each loop, excluded the nth one, contains only a loop (Fig. 7.1).

The iteration domain of the outer loop remains constant while the iteration

domain of inner loops consists in maxima and minima of several a�ne functions.

Three types of dependencies exist:

67

68 Nested loops Partitioning

for i1 := l1 to u1 do

for i2 := l2(i1) to u2(i1) do

. . .
for in := ln(i1, i2, ..., in−1) to un(i1, i2, ..., in−1) do

{Instruction1}
. . .
{Instructionk}

end

end

end

Figure 7.1: Nested loop example.

� Flow dependence: a statement S2 is �ow dependent on S1 (written) if and

only if S1 modi�es a resource that S2 reads and S1 precedes S2 in execution.

� Anti-dependence: a statement S2 is anti-dependent on S1 (written) if and

only if S2 modi�es a resource that S1 reads and S1 precedes S2 in execution.

� Output dependence: a statement S2 is output dependent on S1 (written)

if and only if S1 and S2 modify the same resource and S1 precedes S2 in

execution.

Analyzing those dependencies can rely on a model that can be treated for opti-

mizations.

In the following we will be using the �distance vector� as a dependency represen-

tation. A distance vector represents the �ow dependency between two operations

along the iteration domain. In nested loops of depth N , given two accesses to the

same data in the �ow order by two instructions S1 and S2, with S1 ⇒ S2 with

respective index vector ~p and ~q. The distance vector ~δ is an N dimensional vector.

For a �ow dependency S1[~p] ⇒ S2[~q] the distance vector is ~δ = ~p− ~q. This speci�c
representation allows using linear algebra to perform analysis and optimizations.

for i := 0 to N do

for j := 0 to N do

S1 : a (i , j) = b(i , j − 6) + d(i − 1 , j + 3)
S2 : b(i + 1 , j − 1) = c (i + 2 , j + 5)
S3 : c (i + 3 , j − 1) = a (i , j − 2)
S4 : d(i , j−1) = a (i , j−1)

end

end

end

Figure 7.2: Nested loops example.

In the example Fig. 7.2, the iteration vector of S1 for a is pS1a = (i, j), and the

iteration vector of S3 for a is qS3a = (i, j − 2). Thus the resulting distance vector is:

Nested Loops execution optimization 69

S1 → S3 d1 =

(
0

2

)

The other dependency vectors for this example are:

S3 → S2 d2 =

(
1

−6

)

S2 → S1 d3 =

(
1

5

)

S1 → S4 d4 =

(
0

1

)

S4 → S1 d5 =

(
1

−4

)

These vector can be organized into a dependency matrix D.

7.3 Nested Loops execution optimization

Optimizing nested loops aim at extracting parallelism [DV95], by transforming

the loops structure. Those transformations can be any of the �ve types described

below.

� Loop distribution: this transformation aims at distributing the nested loop to

extract at least one forall loop [Lam74].

� Loop fusion: this transformation aims at fusionning several loops body into

one unique loop [Man97].

� Loop unrolling: this transformation aims at unrolling a loop to extract the

inter-iteration parallelism [KA01] [CDS96].

� Loop partitioning: this transformation aims at partitioning the loops to extract

disjoint iteration domain [KKBP91].

� Unimodular Transformation: this transformation aims at modifying the itera-

tion domain resulting in an out�of�order iteration [WL91].

Hyperplan Method

In 1974 Lamport [Lam74] developed a method consisting in transforming a nested

loop into a nested loop for which some or all the intern loops can be computed

in parallel. The optimal case being the one for which all the intern loop can be

computed in parallel.

In Figure 7.3, the outer loop is one iteration of the nest, while E(t) represents

the iterations computed at time t and P (p) all the iterations of vector p computed in

parallel. The main issue of this transformation is to �nd a sequencing function that

70 Nested loops Partitioning

for t := 0 to tN do

for i2 := l2(i1) to u2(i1) do

. . .
for p ∈ E(t) do in p a r a l l e l
P (p)

end

end

end

Figure 7.3: Transformed nested loops, with some inner loops being computed in parallel.

satis�es the dependencies between iterations to preserve the computation integrity.

In [Lam74], the author proposes to restrict the analysis to the case of a sequencing

function linear to the points of the iteration domain. This is achieved by �nding a

set of a�ne parallel hyperplane, such as the points computed at time t be E(t) =

H(t) ∩ D, D being the iteration domain. The translation from an hyperplane to

the next H(t)⇒ H(t+ 1) is performed by translating the hyperplane with a vector

π called the time vector. Thus in the case of a uniform nested loop it is made

easy to �nd a valid time vector. Such vector only needs to verify πd ≥ 1 for any

dependency vector d. The point computed at time t belongs to the hyperplane

solution of E(t) = {p;Ap ≤ b; [πp] = t}. The computing time of the transformed

loop is then T = πpmax.

Lamport proposes the following technique to �nd the optimal time vector. Let

us consider D = (d1, ..., dm) the matrix of dependency vectors of size n×m where n

is the size of the nested loop and m the number of dependency vectors. We suppose

D organized in the lexicographic increasing order (from the shorter dependency to

the largest). Be k1 the �rst non null element of d1 the �rst vector of D. As d1 is

positive d1,k1 ≥ 0. Let πk1 and πk = 0 for k1 6= k 6= n . Let k2 be the �rst non-null

element of d2. As d1 is lexicographically less than d2 we can assume that k2 ≤ k1.

Let πk = 0 for k2 ≤ k ≤ k1 and πk2 be the the smallest integer such as π.d2 ≥ 0. If

k2 = k1 we modify πk1 . By applying the same procedure iteratively we �nd a valid

time solution.

Other hyperplan method have been proposed such as selective shrinking [Pol88],

true dependence shrinking [PC89] or unimodular transformations [Wol90]. Those

methods aim at �nding a special kind of time vector.

When a time vector has been computed transformation methods can be used to

transform the nested loops by modifying the iteration domain, and the index in the

inner-most loop instructions [LHS90].

Nested Loops partitioning by iteration domain projection 71

7.4 Nested Loops partitioning by iteration domain

projection

This nested loop partitioning technique was developed as a method for systolic

array synthesis in [MF86]. A systolic array is massively parallel computing network.

This network is composed of a set of cells locally connected to their spatial neighbors.

All the cells are synchronous to a unique clock. For each clock cycle, a cell takes data

from its incoming edges, performs a computation and outputs data to its outgoing

cells. This partitioning technique aims at �nding a projection vector by analyzing

the distance vector of a nested loop of depth N . When this projection vector has

been determined, the iteration domain is projected along this vector resulting in an

N − 1 dimension systolic array.

To determine the projection vector we must �rst determine a time vector τ that

satis�es the data dependencies. Computing its time vector is performed as described

in section 7.3. For a given τ vector, the parallel execution time of the nested loop,

can be determined by tparallel = τ ∗ pmax, pmax being the coordinate of the last point
of the domain. In [MF86] Lamport proposes a solution to �nd one τ vector for which

the parallel execution time is minimal.

Given a valid time vector, a valid projection vector sn verify τsn 6= 0. Let us now

complete the sn vectors into a unimodular matrix Sn, sn being the �rst column of

the matrix. The matrix Sn is the space base, so we project the computation domain

along the �rst column of Sn onto the hyperplane generated by the n−1 other vectors

of the matrix. Coordinates of a point p of the computation domain into the space

base Sn are S−1p. Thus, the allocation function is the lower (n− 1)× n sub-matrix

of S−1, which corresponds to the n− 1 last coordinates in the space base.

Using this allocation matrix we can now determine how the domain points are

allocated onto the computing network. Further analysis using the time vector and

distance vectors also allows �guring out the communication activity over the network

and the computation activity of each cell in the network.

By completing the vector τ into a unimodular matrix T−1, T is the time base

of the computation domain. The last n − 1 column vectors of T forms the base

of the hyperplane of the point computed at time 0, while the �rst column, is the

translation vector that enables to go from the hyperplane of the point computed at

t to the hyperplane of the point computed at t+ 1. The activity translation vector

corresponds to the n− 1 elements of the �rst column vector of the product S−1.T ,

and the (n− 1)× (n− 1) sub-matrix is the activity base.

72 Nested loops Partitioning

Example

In this section we will apply the projection technique on the matrix vector prod-

uct example (Fig.). Given a vector V and matrix M , the product V xM = R can

be described using a set of recurrent equations.

Ri,k = 0 if k = 0

Ri,k = Ri,k−1 + vimi,k if 1 ≤ k ≤ N

ri = Ri,N 0

from this set we can extract the following system.

Initial state

Ri,k = 0 if k = 0

Vi,k = vk if i = 0

Mi,k = mi,k

Calculus equations

Ri,k = Ri,k−1 + Vi−1,kMi,k i 1 ≤ k ≤ N

Vi,k = Vi−1,k i 1 ≤ k ≤ N

Mi,k = mi,k

Output equation

Ri = Ri,N

From this representation we can extract two distance vectors: d1 =

(
1

0

)
d2 =

(
0

1

)

Using Lamport method we can determine the optimal time vector as being τ =

(1 1). Knowing the time vector we can now �nd a set of projection vectors.

s1 =

(
1

0

)
s2 =

(
0

1

)
s3 =

(
1

1

)

Using those three vectors we can now determine the execution domain (Fig-

ure 7.5). The three projection vectors result in three di�erent patterns of execution.

Vectors s1 and s2 result in pipelined execution, while s3 brings more parallelism, with

an unbalanced computation load. Going through this analysis allows �nding a trade

o� between parallelism and factorization by using nested loops intrinsic parallelism,

without unrolling the loop.

Nested Loops partitioning by iteration domain tiling 73

R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

v1

v2

v3

0 0 0

m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

v1,1 v1,2

v2,1 v2,2

v3,1 v3,2

r1,1

r2,1

r1,2

r2,2

r1,3

r2,3

Figure 7.4: The matrix vector iteration domain with dependencies for a 3× 3 matrix.

7.5 Nested Loops partitioning by iteration domain

tiling

Loop partition partitions the loop iteration domain into small chunks or blocks

that group several computation points. This technique is used to ensure that the

computation performed by a block does not need synchronization thus minimizing

communication overhead and increases granularity.

Constructing valid tiles can be performed by two equivalent ways.

� Cutting hyperplanes: Consider n linearly independent vector hi. A tile is the

translated copy of the canonical tile de�ned as follow: a node p belong to the

tile if and only if :

∀i ∈ [1, n] 0 ≤ hi.p ≤ βi

with βi being the thickness of the tile. The thickness of the tile can either be

chosen by setting βi to 1 and scaling hi or by choosing hi with euclidean norm

one and scaling βi.

� Change of basis: Consider n linearly independent vector pi to de�ne the edges

of the tile. The tile is then the set of nodes whose coordinates are positive

and strictly less than one in the basis de�ned by the pi's. If P denotes the

matrix whose column vector are the pi's, then this de�nition is equivalent to

74 Nested loops Partitioning

the previous one with P−1 = H.

Tiling is simply paving the domain with translation of the canonical tile de�ned

above. Classical constraints on tiles in the literature are the followings:

� Tiles are bounded: For scalability reason we want the number of point in a

tile to be bounded by a constant independent of the domain size.

� Tiles are identical by translation: This means that P is an integral matrix.

� Tiles are atomic: Each tile is a unit of computation. Computation between

tiles is made at the end of tiles. The order on tiles must correspond to the

order on nodes. It means that one must avoid that two di�erent tiles depend

on each other. This condition can be mathematically expressed by HD ≥ 0.

Tiling a domain results into two metrics that allow �nding the optimal tiling.

Vcalc is the number of nodes in a tile and thus represents both the computation

load, and the inverse of the parallelism loss. Vcom is the communication load on the

network for tile synchronization. An optimal tiling method will try to conjointly

optimize these two criteria for a given architecture.

� Vcalc the volume of computation in a tile is de�ned as follows: Vcalc(T) =

|detP | = 1
|detH|

� Vcom the volume of communication in a tile is approximated as follows: Vcom(T) =

1
|detH|

n∑

i=1

m∑

j=1

(hi.dj) =
1

|detH|
n∑

i=1

m∑

j=1

n∑

k=1

(hi,kdj,k)

The matrix vector product example:

Taking the equations of the matrix vector product described above. we can

extract the matrix D =

(
1 0

0 1

)
. Then every tile for which HD ≥ 0 is a valid tile.

In Figure 7.6 the matrix describing the tiles are : P1 =

(
2 0

0 2

)

P2 =

(
2 0

−2 2

)

P3 =

(
2 0

0 1

)

We must �rst ensure that the three matrix verify HD ≥ 0 with H = P−1:

H1D = 1
2

(
0 1

1 0

)

H2D = 1
2

(
1 1

0 1

)

H3D = 1
2

(
1 0

0 2

)

Those three tiles being valid, we can now compute the computation volume and

Conclusion 75

communication volume of each tile.

Vcalc(T1) = 4

Vcalc(T2) = 4

Vcalc(T3) = 2

Vcom(T1) = 4

Vcom(T2) = 6

Vcom(T2) = 3

This three di�erent tile shapes show the di�erent computation load with di�erent

communication volume. Finding an optimal tiling is a trade-o� between granular-

ity (volume of computation) and communication load (volume of communication).

Several optimization methods exist in the literature all adapted to speci�c target

machine.

In [BDRR94] the author proposes a new criterion to de�ne optimality. This

criterion being scalable it is e�cient to use with a wide class of machines. In this

paper the authors describe the �ideal� tiling procedure to be following:

� For any �xed value of Vcalc, �nd H which minimizes the value of Vcom.

� Set the value of Vcalc in accordance to local memory requirements.

Consider now the following expression:

V (H) =
∑n

i=1

∑m
j=1

∑n
k=1 hi,kdk,j

|det(H)|
1
n

Scaling H by a factor λ (λ ≥ 0) gives:

V (λH) = λ
∣∣∣ det(H)
det(λH)

∣∣∣
1
n

= V (H)

The authors prove that minimizing V (H) and scaling the solution to obtain a

�xed volume of computations minimizes also Vcom for the given volume of compu-

tation. Thus the tiling problem only relies on minimizing V (H) and scale H to �t

the available volume of computation. Finding H is described as a combinatorial

problem. In the paper authors prove that any matrix whose rows are n linearly

independent bi's is a minimum solution of V (H). The bi's are vectors that generate

the polyhedral cone C = {x|bT1 x ≥ 0, ..., bTt x ≥ 0} = {H|HD ≥ 0}. If D is a square

matrix the matrix H0 for which V (H0) = Vmin is H0 = D−1.

7.6 Conclusion

The nested loop transformation techniques presented show good parallelism ex-

traction performance with minor complexity. The domain projection technique is

the simplest of the two. It is �exible considering that you can choose any projec-

tion vector that respects the πD ≥ 0 condition, but the resulting network size still

76 Nested loops Partitioning

depends on the iteration domain size. Finding an optimal solution for the tiling

method is more complicated as the tile is a N dimension shape whereas the pro-

jection vector is a N − 1 dimension shape in the projection technique. Still the

tiling technique has more �exibility, as one can adapt the tile size to �t its available

computation volume, and communication volume. Moreover when using the tiling

technique, the resulting network size does not depend on the iteration domain size,

but only on the tile shape and size. Combining the two techniques might also be a

good solution. One could �rst tile the network, and then use the projection tech-

nique to schedule the tile network. The tile scheduling using the domain projection

technique could lead to execution pattern such as vectorized, or pipelined execution

that have proved to be e�cient on parallel architectures.

Conclusion 77

R1,N

R2,N

R3,N

v1

v2

v3

0

m1,N

m2,N

m3,N

r1,N

r1,N

v1,N

v2,N

v3,N

s1 = {1,0}

RN,1 RN,2 RN,3vN

0 0 0

mN,1 mN,2 mN,3

vN vN

rN,1 rN,2 rN,3

s2 = {0,1}

RN,N

RN+1,N−1

RN−2,N+2

RN−1,N+1

RN+2,N−2

v1

v2

v3

0

0

0

mN,N

mN−1,N+1

mN+1,N−1

mN+2,N−2

mN−2,N+2

rN,N

vN,N

vN+1,N−1

rN−1,N+1

rN+1,N−1
vN−2,N+2

vN−1,N+1
rN+2,N−2

s3 = {1,1}

Figure 7.5: Projections of the iteration domains along the three projection vectors.

78 Nested loops Partitioning

Figure 7.6: The matrix vector product iteration domain with di�erent tile .

Part III

Research Work

79

Chapter 8

Hierarchy Representation in

Synchronous Data Flow Graphs

8.1 Introduction

Application modeling requires to describe the application in respect to the model

rules at a given granularity. By granularity we refer to the level of abstraction of the

application structure/behavior. For example any signal processing algorithm could

be modeled at the �nest grain using only elementary operations such as additions and

multiplications. A coarser grain would model an algorithm using signal processing

operation such as FFT, DFT, Filters. In order to provide the designer with a way

to model an application as a composition of subsystems modeling the application

at di�erent grain levels, it is usual to make use of a hierarchical model. The top

most level represents the application at its coarser grain while the bottom most

level represents the �nest level of modeling. The �nest level models the application

with a higher complexity level and contains more information on the application

behavior that can be useful for later analysis. The top-most hierarchy level has

less complexity but does not give as much information. A hierarchical model o�ers

more �exibility for better analysis as a trade-o� between complexity and available

information is possible. This de�nition of the hierarchy matches the de�nition of the

nested hierarchy that can be illustrated by Russian matryoshka dolls. Each hierarchy

level contains and consists of sub-sets that can either contain themselves a hierarchy

level or be atomic. From the data �ow point of view, the hierarchy can be de�ned as

follow: a data �ow actor behavior can either consists in a Data Flow process network

or be atomic. Thus the mapping function of the actor f can itself be described as

a network of data �ow processes which input sequence is a �ring rule of the actor.

It means that map(f) = F (R : X) = f(R) : F (X) = Fsub(Xsub, I) : F (X), where

Fsub is the mapping function of the sub network and Xsub all the sequences in the

81

82 Hierarchy Representation in Synchronous Data Flow Graphs

sub network.

In the following we will consider a data �ow hierarchy representation has the

three following properties:

1. Data locality: The �ow of data in a hierarchy level is local and thus cannot be

modi�ed nor accessed by the upper hierarchy levels.

2. Schedule composition: The schedule of a network is the composition of the

schedule of the top most network and its inner networks.

3. Atomicity: A hierarchical actor remains atomic from its parent network point

of view. Thus the schedule of the inner network of the actor does not need to

be interrupted by the parent schedule.

Rapid prototyping framework (Fig. 8.1) can also take advantage of such model to

analyze the model at a relevant hierarchy level regarding to the kind of parallelism

available on the target architecture. This hierarchical representation also has a

signi�cant impact on the scheduling complexity that greatly depends on the number

of vertices to schedule at the top level (O(P (V + E)) or O(pv3)).

Algorithm specification
actor A (bool COMPUTE_Y) uint(size=24) PIX ==>
 uint(size=8) R, uint(size=8) G, uint(size=8) B,
 uint(size=8) Y:

 int RSHIFT = 16; int RMASK = 255;
 int GSHIFT = 8; int GMASK = 255;
 int BSHIFT = 0; int BMASK = 255;
 int COUNT = 8;

 action: PIX:[pix] repeat COUNT ==>
 R:[r] repeat COUNT,
 G:[g] repeat COUNT,
 B:[b] repeat COUNT,
 Y:[y] repeat COUNT
 var
 int i := 0
 do
 // imperative version to compute R, G, B
 while i < COUNT do
 r[i] := bitand(rshift(pix[i], RSHIFT), RMASK);
 g[i] := bitand(rshift(pix[i], GSHIFT), GMASK);
 b[i] := bitand(rshift(pix[i], BSHIFT), BMASK);

 i := i + 1;
 done

Architecture specification
<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4">
 <spirit:name>4C64</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>C64_1</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue
spirit:referenceId="componentType">operator</spirit:config
urableElementValue>
 <spirit:configurableElementValue
spirit:referenceId="refinement">VPU0</spirit:configurableEle
mentValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>C64_2</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>

ACC

PE

PE

Algorithm analysis
&

optimization
Architecture analysis

Allocation
&

scheduling

Targets
code generation

Figure 8.1: Application modeling in the Rapid Prototyping work�ow.

The Synchronous Data Flow Model de�nes the hierarchy as a group of actors in a

graph, that can be seen as a single actor from a higher point of view. This hierarchy

does not de�ne a speci�c behavior, nor speci�c scheduling rules. In contrary, the

Existing hierarchy representation in Synchronous Data Flow Graphs 83

Parameterized Synchronous Data Flow (PSDF) clearly de�nes the hierarchy behav-

ior, with the concept of local synchrony, but does increase a lot the complexity of

the speci�cation, and as a consequence, decreases the analyzability of the model. In

order to increase the expressiveness of the SDF model we have chosen to de�ne a new

kind of hierarchy that implies a speci�c behavior and speci�c scheduling rules. This

model stands as the Interface-based SDF and relies on the speci�cation of interfaces

for each level of hierarchy with a precisely de�ned behavior (Fig. 8.2).

Analyzability

KPN: Kahn Process Network

DPN: Dala-flow Process Network

PSDF: Parametrized Synchronous Data Flow

CSDF: Cyclo-static Synchronous Data Flow

BDF: Boolean-controlled Data Flow

SDF: Synchronous Data Flow

HSDF: Homogeneous Synchronous Data Flow

DAG: Directed Acyclic Graph

KPN

DPN

PSDF

PSDF

CSDF

BDF

SDF

HSDF

DAG

ISDF

ISDF: Interface -based Synchronous Data Flow

Expressiveness

Figure 8.2: The integration of the Interface-based SDF in the data �ow taxonomy.

8.2 Existing hierarchy representation in Synchronous

Data Flow Graphs

8.2.1 Repetition based hierarchy

Hierarchy has been described in [PBL95], as a mean of representing cluster of

actors in a SDF graph. In [PBL95] clustering is used as a pre-pass for the scheduling

described in [HPB08] that reduces the number of vertices in the DAG, minimizing

synchronization overhead for multi-threaded implementations and maximizing the

throughput by grouping bu�ers [HPB08]. Given a consistent SDF graph, this ap-

proach �rst clusters strongly connected components to generate an acyclic graph.

A set of clustering techniques is then applied based on topological and data �ow

properties, to maximize throughput and minimize synchronizations between clus-

ters. This approach is a bottom-up approach, meaning that the starting point is a

SDF graph with no hierarchy and it automatically outputs a hierarchical (clustered)

graph. In order to ensure that clustering an actor may not cause the application

to be deadlocked, the authors (in [PBL95]) describe �ve composition rules based on

84 Hierarchy Representation in Synchronous Data Flow Graphs

the data �ow properties (Figure 8.3).

Considering a consistent connected SDF Graph G, and (x, y) is an ordered pair

of distinct adjacent nodes in G. Then cluster({x, y}, G), the graph resulting from

clustering {x, y} into a single node Ω is consistent if the following four conditions

hold true. (Figure 8.3).

� Cycle introduction condition: [PBL95] there is no simple path from x to y that

contains more that one arc. A simple path is the one which does not visit any

node along the path more than once.

� Hidden delay condition: [PBL95] if x and y are in the same strongly connected

component then both a and b must hold true.

� a at least one arc from x to y has zero delay.

� b for some positive integer k, q(x) = kq(y) or q(y) = kq(x).

� First precedence shift condition: [PBL95] if x is in a non trivial strongly con-

nected component C, then either a or b must hold true.

� a : for each arc α ∈

α′‖

(snk(α′) = x)

and

(src(α′) ∈ C)

and

(src(α′) /∈ {x, y})

with snk(α′) and src(α′)

respectively being the sink and the source of the arc α′, there exist integers

k1 > 0 and k2 ≥ 0 such that ρα = k1Q(x, y)κα and δα = k2Q(x, y)κα

� b : for each arc α ∈

α′‖

(src(α′) = x)

and

(snk(α′) ∈ C)

and

(snk(α′) /∈ {x, y})

there exist integers

k1 > 0 and k2 ≥ 0 such that κα = k1Q(x, y)ρα and δα = k2Q(x, y)ρα

� Second precedence shift condition: [PBL95]

� a : for each arc α ∈

α′‖

(snk(α′) = y)

and

(src(α′) ∈ C)

and

(src(α′) /∈ {x, y})

there exist integers

k1 > 0 and k2 ≥ 0 such that ρα = k1Q(x, y)κα and δα = k2Q(x, y)κα

� b : for each α ∈

α′‖

(src(α′) = y)

and

(snk(α′) ∈ C)

and

(snk(α′) /∈ {x, y})

there exist integers k1 > 0

Existing hierarchy representation in Synchronous Data Flow Graphs 85

and k2 ≥ 0 such that κα = k1Q(x, y)ρα and δα = k2Q(x, y)ρα

y

3

x z

(a)

D

y1 x2

x1

x3

z1

z2

z3

y

x z

D

x

y

z

(b)

y

x z

(c)

Figure 8.3: Pino's clustering rules: (a) illustrates the violation of the �rst precedence shift
condition, (b) illustrates the violation of the hidden delay condition, and (c) illustrates the
violation of the cycle introduction condition.

All those conditions ensure that clustering nodes does not introduce delay in the

precedence graph. A cluster verifying all the given conditions can be declared valid

for an ordered pair of vertex {x, y}.

8.2.2 Parameter based hierarchy

Parameter-based SDF hierarchy has been introduced in [BB01] where the authors

introduce a new SDF model called Parameterized SDF. This model aims at increas-

ing SDF expressiveness while maintaining its compile time predictability properties.

The model behavior and rules are fully depicted in section 6.3.7. This model can

be considered as hierarchy model within the SDF model, as it allows to describe an

actor as a sub-network that is locally SDF. This is explained by the fact that for an

invocation of the actor it has an SDF behavior, but its behavior can vary between

invocations. From the upper hierarchy level point of view the network containing

this sub-network remains SDF for a full iteration of the schedule as the sub-network

interfaces can only be a�ected by the init graph at its instantiation. This means

that one iteration of the schedule can execute without considering the sub-network

behavior (Schedule composition). A PSDF speci�cation of an actor is in essence

atomic as its schedule is independent from its parent network schedule. The data

inside a PSDF speci�cation can be considered local as they are only shared between

86 Hierarchy Representation in Synchronous Data Flow Graphs

the actor of the network. Thus the PSDF model has the three properties de�ned in

the introduction and can be considered as a hierarchy representation in SDF.

8.3 Interface based hierarchy

While designing an application, user might want to use hierarchy in a way to

design independent graphs that can be instantiated in any design. From a program-

mer view it behaves as closures since it de�nes limits for a portion of an application.

This kind of hierarchy must ensure that while a graph is instantiated, its behavior

might not be modi�ed by its parent graph, and that its behavior might not introduce

deadlock in its parent graph. The rules de�ned in the composition rules ensure the

graph to be deadlock free when veri�ed, but are used to analyze a graph with no hi-

erarchy to create hierarchy levels in a bottom-up approach. Such graph speci�cation

is depicted in Figure 8.4. In order to allow the user to hierarchically design a graph

in a top-down approach, this hierarchy semantic must ensure that the composed

graph will have no deadlock if every level of hierarchy is independently deadlock

free. To ensure this rule we propose to integrate special nodes in the model that

restrict the hierarchy semantic. In the following a hierarchical vertex will refer to

a vertex which embeds a hierarchy level, and a sub-graph will refer to the graph

representing this hierarchy level.

8.3.1 Special nodes

Source node: a Source node is a bounded source of tokens which represents the

tokens available for an iteration of the sub-graph. This node behaves as an interface

to the outside world. A source port is de�ned by the four following rules:

A-1 Source production homogeneity: a source node Source produces the same

amount of tokens on all its outgoing connections p(e) = n ∀e ∈ {Source(e) =

Source}.
A-2 Interface Scope: the source node remains write-locked during an iteration of

the sub-graph. This means that the interface can not be �lled by the outside

world during the sub-graph execution.
A-3 Interface boundedness: a source node cannot be repeated, thus any node con-

suming more tokens than made available by the node will consume the same

token multiple times (ring bu�er). c(e)%p(e) = 0 ∀e ∈ {source(e) = source}.
A-4 SDF consistency: all the tokens made available by a source node must be

consumed during an iteration of the sub-graph.

Sink node: a sink node is a bounded sink of tokens that represents the tokens

to be produced by an iteration of the graph. This node behaves as an interface to

Interface based hierarchy 87

Source
1

A
1 1

1

B
1 1

C
1

1
1

Sink
2

Figure 8.4: Design of a sub-graph.

the outside world. A sink node is de�ned by the four following rules:

B-1 Sink producer uniqueness: a sink node Sink has only one incoming connection.
B-2 Interface Scope: the sink node remains read-locked during an iteration of the

sub-graph. This means that the interface cannot be read by the outside world

during the sub-graph execution.
B-3 Interface boundedness: A sink node cannot be repeated, thus any node produc-

ing more tokens than needed by the node will write the same token multiple

times (ring bu�er). p(e)%c(e) = 0 ∀e ∈ {target(e) = Sink}.
B-4 SDF consistency: all the token consumed by a sink node must be produced

during an iteration of the sub-graph.

Source

1

1

A11
1

1

B1
1 1

C1
1

1

1

A21
1

1

B2
1

1
C2

1
1 1

Sink

1

1

Figure 8.5: A sub-graph after HSDF transformation.

8.3.2 Hierarchy deadlock-freeness

Considering a consistent connected SDF graphG = {g, z}, g = {Source, x, y, Sink}
with Source being a source node and Sink being a sink node, and z being an ac-

tor. In the following we show how the hierarchy rules described above ensure the

hierarchical vertex g to not introduce deadlocks in the graph G.

� If it exists a simple path going from x to y containing more than one arc,

this path cannot introduce cycle since this path contains at least one interface,

meaning that the cycle gets broken. User must take this into account to add

delay to the top graph as this kind of path will create a cycle onto the actor g.

� Rules A2-B2 ensure that all the data needed for an iteration of the sub-

graph are available as soon as its execution starts, and that no external

88 Hierarchy Representation in Synchronous Data Flow Graphs

vertex can consume on the sink interface while the sub-graph is being ex-

ecuted. As a consequence no external vertex strongly connected with the

hierarchical vertex can be executed concurrently. The interface ensures the

sub-graph content to be independent to the outside world, as there is no edge

α ∈

α′‖

(src(α′) = x)

and

(snk(α′) ∈ C)

and

(snk(α′) /∈ {x, y})

considering that snk(α′) /∈ {x, y}) cannot

happen.

� The designing approach of the hierarchy cannot lead to an hidden delay since

even if a delay is in the sub-graph, an iteration of the sub-graph cannot start

if its input interfaces are not full.

Those rules also guarantee that the edges of the sub-graph have a local scope,

since the interfaces make the inner graph independent from the outside world. This

means that when an edge in the sub-graph creates a cycle (and contains a delay),

if the sub-graph needs to be repeated, this iterating edge will not link multiple

instances of the sub-graph.

The given rules are su�cient to ensure a sub-graph to not create deadlocks when

instantiated in a larger graph.

Transformations

A
2

Source
1 1

a
1 1

Sink
1 1

B
1

Figure 8.6: Local edge in sub-graph.

The main problem of this representation is its behavior during hierarchy �at-

tening. Rules de�ne earlier restrict the edges of a sub-graph to have a local scope.

This means that when removing the hierarchy we must ensure that no edges will

propagate data among multiple instances of the sub-graph. By removing the hier-

archy with the basic SDF semantic, local delays of the sub-graph may have totally

di�erent meaning while performing HSDF transformation on the graph (Figure 8.7).

With our hierarchy semantic, before �attening a level of hierarchy, an HSDF

transformation must be applied to preserve the edges scope of the sub-graphs.

The other concern is to preserve the interface behavior while removing the hi-

erarchy. Those interfaces can either behave as fork for Source port, when tokens

Interface based hierarchy 89

A

1
1

a1
1

1

1

B1
1

a1
1 1

1

B1
1

A

1
1

a1
1

1
B1

1

a1
1 1

B1
1

Figure 8.7: Edge scope preservation in Interface based hierarchy.

need to be broadcasted to multiple nodes, or join when multiple tokens must be

grouped. In order to not introduce deadlocks, during the hierarchy �attening pro-

cess, we must replace the interfaces by a special vertex in the �atten graph. Those

special interfaces can then be treated to maximize the potential parallelism.

8.3.3 Hierarchy scheduling

As explained in [LM87a] interfaces to the outside world must not be taken into

account to compute the schedule-ability of the graph. As in our hierarchy inter-

pretation, interfaces have a meaning for the sub-graph, they must be taken into

account to compute the schedule-ability, since we must ensure that all the tokens on

the interfaces will be consumed/produced in an iteration of the sub-graph (see rules

A4-B4).

Due to the interface nature, every connection coming/going from/to an inter-

face must be considered like a connection to an independent interface. Adding an

edge e to a graph G increases the rank of its topology matrix Γ if the row added

to Γ is linearly independent from the other row. Adding an interface to a graph

G composed of N vertices, and one edge e connecting this interface to G adds a

linearly independent row to the topology matrix. This increases the rank of the

topology matrix of one, but adding the interface's vertex will yield in a N +1 graph:

rank(Γ(GN)) = N − 1 ⇒ rank(Γ(GN+1)) = rank(Γ(GN)) + 1 = (N + 1) − 1.

The rank of the topology matrix remains equal to the number of vertices less one

meaning that this graph remains schedule-able. Since adding an edge between a

connected interface and any vertex of the graph results in (in meaning) adding an

edge between a newly created interface and the graph, it does not a�ect the schedule-

ability considering the proof above. This means that a sub-graph can be considered

schedule-able if its actor graph (excluding interfaces) is schedule-able.

Before scheduling a hierarchical graph, we must verify that every level of hier-

archy is deadlock free. Applying the balance equation to every level is su�cient to

prove the deadlock freeness of a level.

90 Hierarchy Representation in Synchronous Data Flow Graphs

8.3.4 Hierarchy behavior

Interfaces behavior can vary due to the graph schedule. This behavior �exibility

can ease the development process, but needs to be understood to avoid meaningless

applications.

- Source behavior

As said in the Source interface rules, a Source interface can have multiple outgo-

ing (independent) connection and reading more tokens than made available results

in reading modulo the number of tokens available (circular bu�er). This means that

the interface can behave like a broadcast. In Figure 8.8, vertices A and B have to

execute respectively 4 and 6 times to consume all the data made available by the

port. In this example, the Source interface will broadcast twice to vertex A and

three times to vertex B. This means that the designer must keep in mind that the

interfaces can have e�ect on the inner graph schedule.

Source
2

2
A

1

3

×4

B

2
1

×6

Figure 8.8: Source example and its execution pattern.

- Sink behavior

As said in the Sink interface rules, a Sink interface can only have one incoming

connection, and writing more tokens than needed on the interface results in writing

modulo the number of tokens needed (circular bu�er). In Figure 8.9, the vertex B

writes 3 tokens in a Sink that consumes only one token, due to the circular bu�er

behavior, only the last token written will be made available to the outside world.

This behavior allows to easily design iterative pattern without increasing the number

of edges. This behavior can also lead to mistakes (from the designer view) as if there

is no precedence between multiple occurrences of a vertex that writes to an output

port, a parallel execution of these occurrences leads to a concurrent access to the

Application case study 91

interface and as a consequence to indeterminate data in the Sink node. This also

leads to dead codes from the node occurrences that do not write to the Sink node.

A
3

B
1 1

Sink
1

A

B1

B2

B3

Sink

Figure 8.9: Sink example and its precedence graph.

8.3.5 Hierarchy improvements

As said earlier, this hierarchy type eases the designer work, since he/she can

design subsystems independently and may instantiate them in any application. Not

only easing the designer work, this kind of hierarchy also improves the application

with the same criteria than the clustering techniques (scheduling complexity reduc-

tion, bu�er requirements ...). Those improvements are based on the designer's choice

but it can be completed by automatic transformation allowing more performance to

be extracted from the graph.

8.4 Application case study

In this section we will show how the new hierarchy type (interface based hierar-

chy) can be used to design a IDCT2D_CLIP examples. The IDCT2D is a common

application in image decoding which operates over a 8 × 8 matrix of coe�cient to

decode 8× 8 pixel block. In the video decoding context the IDCT2D is followed by

a clip operation which adds or not a sign bit on samples depending on the kind of

prediction being used for the block (INTER or INTRA).

92 Hierarchy Representation in Synchronous Data Flow Graphs

idct trans

trigger

block_i

8

8

1

2

64

64

64 64 block_o

64

clip64 64 64 64 block_o

64

64

1

1

block_i

signed

IDCT2D

IDCT2D_clip

6464

64

mux

Figure 8.10: IDCT2D_CLIP SDF graph

8.4.1 IDCT2D description

The IDCT2D_CLIP used in this example (Figure 8.10) is a recursive pattern

using only 2 operations.

� mux: The mux actor takes data from the blocki port and the delay and output

the data from blocki ont its �rst invocation, and output the data from trans

on other invocations.
� idct: Performs an IDCT on a vector of 8 elements.
� trans: Transposes an 8× 8 matrix.
� clip: Apply an additional signed bit depending on the kind of the prediction

type.

In this representation the trigger port is used to force the loop to iterate twice.

A port that is connected on one of its side is taken into account for the repetition

vector computation, but does not carry data at execution time. The IDCT2D_CLIP

is de�ned using two levels of hierarchy. The �rst level performs a classic IDCT2D

by using IDCT1D and transposition of an 8 × 8 matrix. The additional level adds

the clip operation which is speci�c to the video decoding algorithm. This operation

computes on each sample a signed 9-bit integer for INTER prediction, while it does

an unsigned 8-bit integer for INTRA prediction.

8.4.2 Structural analysis

The IDCT2D graph takes into account some of the speci�c behavior of the new

hierarchy type. This graph is described as an entity consuming 64 tokens on its

input port and producing 64 tokens on its output port. The trigger port forces the

recursive pattern composed of mux, idct, trans to iterate twice in order to perform

the idct onto lines and columns of the 8× 8 block that is present in the delay. The

mux operation being computed twice, it consumes twice the same 64 tokens on the

Conclusion 93

input port blocki of the sub-network, making it behaves in a manner analogous to

a dynamic block of parameter values that is held �xed during an execution of the

subsystem. The trans operation being computed twice writes two times 64 tokens on

the output port of the graph. In this case the output port behaves as a ring bu�er

since only the last 64 tokens written will be made available to the upper hierarchy

level.

Describing the same application using repetition based SDF hierarchy would

require the programmer to describe the application at �ne grain and then use a

clustering algorithm to construct the hierarchical representation. Moreover, the

programmer would have to insert broadcast and ring actors explicitly into the graph

to emulate the exact same behavior.

8.5 Conclusion

The Interface-based SDF �lls a need of true hierarchy composition in a top down

approach in the SDF model. Moreover, this hierarchy semantic provides the pro-

grammer with a more natural approach. Indeed a hierarchy level can be interpreted

as a block of code in the C language semantic. Thus the programmer does not have

to take care of a hierarchical actor internal behavior, as it cannot a�ect the upper

hierarchy level. Furthermore, the speci�c behavior of the interface improves the

SDF expressiveness, and allows to specify more algorithm in a SDF manner. The

drawback of a factorized representation being the parallelism extraction, parallelism

extraction algorithm must be provided to allow performance to be extracted from a

hierarchical representation. Clustering does not have to deal with this problem, as

it starts with a �at representation it tries to factorized. Thus its main problem is to

minimize the parallelism starting from a parallel full prepresentation. In Chapter 10

we give hints and methods on how to extract performance from the interface-based

representation.

94 Hierarchy Representation in Synchronous Data Flow Graphs

Chapter 9

Multi-core code generation of

Interface based Synchronous

Data�ow

9.1 Introduction

As a rapid prototyping framework aims at providing the designer with meth-

ods/software that ease the application development process, the code generation is

the output of the whole procedure. This step takes the result of the scheduling and

must generate code executing the functionality speci�ed by the user. Thus it must

be able to re�ect the behavior de�ned by the underlying model of computation, to

interpret the tool speci�c attributes and to handle the complexity associated with

the target multi-component system. The generated code must also be human read-

able to ensure proper comprehension from the designer and to allow later human

driven optimizations.

The PREESM rapid prototyping framework aims at providing the designer with

automated methods to go from the application description to an e�cient multipro-

cessor C implementation. PREESM takes advantage of the Eclipse tool environ-

ment 1 that provides a clean free multi-platform graphical environment that can be

extended through plugins. The PREESM plugin (Fig. 9.1) is a core of data �ow

oriented functionalities that make the use of PREESM plugins to transform, sched-

ule graphs, and generate code. The transformations � kind of scheduling and code

generation to perform on a graph � are con�gured using a PREESM work�ow. A

PREESM work�ow is itself a graph of tasks to perform transformation on either

a data �ow graph or an architecture graph. It speci�es the data dependencies be-

1. http://www.eclipse.org/

95

96 Multi-core code generation of Interface based Synchronous Dataflow

tween those tasks, and the con�guration of these tasks. A work�ow starts with three

sources: the data �ow graph, the architecture graph and the scenario �le. The sce-

nario �le groups all target speci�c informations such as graph actor execution time,

data-type size and can force actor allocation on the architecture. Then the work�ow

decribes a chain of actions, typically in the order: data �ow graph transformation,

allocation/scheduling, code generation. Those tasks are implemented in plugins that

can provide more than one kind of algorithm. For example the graph transformation

plugin provides HSDF transformation, hierarchy �attening, loop transformation and

the sheduling plugin implements more than one scheduling heuristic. The allocation

and scheduling plugins implement the work developped in [M.P10]. Those transfor-

mations can be extended by other plugins that will then be able to be instantiated

in the work�ow. Architecture graph, data �ow graph and work�ow graph are edited

using the Eclipse Graphiti plugin 2 that is a generic con�gurable graph editor.

graph transformation
plugin

Allocation Scheduling
 plugin

Code generation
plugin

SDF

Graphiti

SDF

DAG

workflow graph

c files

xslt files

idl files

scenario file

SDF

Architecture graph

DAG

Figure 9.1: PREESM framework structure.

In the following I will describe how the code generation is performed in the

PRESSM C code generation plugin (Fig. 9.2). In [PBPR09] we show how the

Interface-based SDF is managed by the code generation in the case of multi-processor

code-generation.

In the PREESM framework, the scheduler produces a Single Appearance Sched-

ule (SAS).The top graph is thus an SDF graph in which vertices have additional

properties providing information on the core the vertex is mapped to and the ver-

tex's scheduling order. This graph also has additional vertices representing Inter

2. http://sourceforge.net/projects/graphiti-editor/

Multi-threaded execution model 97

Algorithm specification
actor A (bool COMPUTE_Y) uint(size=24) PIX ==>
 uint(size=8) R, uint(size=8) G, uint(size=8) B,
 uint(size=8) Y:

 int RSHIFT = 16; int RMASK = 255;
 int GSHIFT = 8; int GMASK = 255;
 int BSHIFT = 0; int BMASK = 255;
 int COUNT = 8;

 action: PIX:[pix] repeat COUNT ==>
 R:[r] repeat COUNT,
 G:[g] repeat COUNT,
 B:[b] repeat COUNT,
 Y:[y] repeat COUNT
 var
 int i := 0
 do
 // imperative version to compute R, G, B
 while i < COUNT do
 r[i] := bitand(rshift(pix[i], RSHIFT), RMASK);
 g[i] := bitand(rshift(pix[i], GSHIFT), GMASK);
 b[i] := bitand(rshift(pix[i], BSHIFT), BMASK);

 i := i + 1;
 done

Architecture specification
<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4">
 <spirit:name>4C64</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>C64_1</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue
spirit:referenceId="componentType">operator</spirit:config
urableElementValue>
 <spirit:configurableElementValue
spirit:referenceId="refinement">VPU0</spirit:configurableEle
mentValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>C64_2</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>

ACC

PE

PE

Algorithm analysis
&

optimization
Architecture analysis

Allocation
&

scheduling

Targets
code generation

Figure 9.2: Code generation phase in the rapid prototyping work�ow.

Processor Communications (IPCs) as a pair of a send vertex and a receive vertex

linked by a precedence arc and mapped onto the network. The goal of the code

generation is to synthesis code that executes the behavior of the given SDF graphs

using the resources of the architecture in respect to the information provided by the

scheduler.

9.2 Multi-threaded execution model

The code generation relies on an execution model in which the parallel computa-

tion is synchronized by the data. The generated program consists of multiple threads

for each target processor. A �rst thread handles the computation while the other

threads handle the inter processor communication on each used medium. Such exe-

cution model allows parallelism between computation and communication and can

take advantage of hardware accelerator (DMA). The threads are synchronized using

mutual exclusion semaphores as depicted in Figure 9.3. This approach also allows to

have bounded memories on heterogeneous architectures as communication can block

the computation when waiting for useful data. This also means that the scheduling

step must be aware of the heterogeneity of the operators and the performance of the

communication media.

98 Multi-core code generation of Interface based Synchronous Dataflow

Loop

EndLoop

EndLoop

Pre Empty
initialisation

Loop

W rite

Pre Full

Suc Empty

Pre Empty

Suc Full

Communication threadComputing thread

Loop

EndLoop

EndLoop

Pre Empty
initialisation

Loop

Pre Full

Suc Empty

data consumer

Read

Pre Empty

PreR Full

SucR Empty SucR

Full

PreR

Empty

PreR

Empty

Suc Full

data producer

Communication thread Computing thread

Figure 9.3: Petri network of the thread synchronizations

Such model requires an underlying operating system that handles multi-threading

and mutex primitives. Purely sequential code with embedded communication prim-

itive code could be generated with a signi�cant loss in performance, as communica-

tions would become blocking.

Each thread is de�ned as a sequence of three states. At �rst the init state

performs dynamic allocations, like initializations of semaphores and resources. The

loop state is a in�nite loop in which the SDF speci�cation or the communication

�ow is executed. The end state frees the resources allocated during the init state in

case the loop state ends.

9.3 C code generation procedure

The C code generation aims at producing code that execute the SDF graph be-

havior in a human readable format compilable for a given architecture. An SDF

graph only describes the data dependencies and actor behavior regarding data con-

sumption/production. In the PREESM framework the graph is thus annotated with

information like data-types and corresponding function calls. The generated C code

must then be completed with �les containing actor function calls implementations.

C code generation procedure 99

Moreover the code generation is performed using a scheduled SDF graph plus a set

of Interface Description Language �les (IDL) that gives for each actor the associ-

ated function prototype, and a scenario �le that groups all architecture dependent

informations related to the application and the target architecture. Those infor-

mations are mainly data-type sizes, actor execution time and data-rates on inter

processor communications. In addition, each edge of the network is annotated with

a data-type information. Those informations are used to generate a generic code

in an xml syntax that can then be transformed, using xslt style-sheet, to C code.

This structure allows to use di�erent xslt style-sheet to target di�erent processors

and/or di�erent Operating Systems by generating target dependent synchronization

and communication primitives. One �le is generated per processor/core, and all the

allocations are performed in respect to the processor the element is allocated to.

Figure 9.4 shows the steps of the code generation.

SDF tagged
with schedule informations

graph transformation

buffer allocation

atomic vertexhierarchical vertex interface

instantiate communications

For all vertices

generate xml

transform xml

c.xslt

os.xslt

target.xslt

flat allocator

local allocator

flat with hierarchy based optimization

flat with lifetime based optimization

p1.c
p2.c

pn.c

idl files

p1.xm
l

p2.xm
l

pn.xm
l

Figure 9.4: Code generation steps.

100 Multi-core code generation of Interface based Synchronous Dataflow

Thus the code generation is performed through several steps (see Figure 9.5). A

�rst step transforms the graph for better code generation. A second step allocates

all the bu�er involved in the computation. Then all the actors are synthesized into

function calls using the information provided in the IDL �les. In a fourth step the

communication thread is created. Finally the xml generic code is generated and

transformed into a c �le for each processor.

public void generateCode (Graph g , Scenar io s){
transformGraph (g) ;
for (Edge e : g . getAl lEdges ()) {

a l l o c a t eBu f f e r (e)
}
for (Vertex v : g . ge tAl lVertex ()) {

i f (v . i sSendVertex ()) {
al locateIPCSend (v , v . getIncomingEdge ()) ;

} else i f (v . i sRece iveVer tex ()) {
a l l ocate IPCRece ive (v , v . getOutgoingEdge ()) ;

} i f (v . i s InputPor t ()) {
getSubBuf ferFromInter face (v) ;

} else i f (v . isOutputPort ()) {
getSubBuf ferFromInter face (v) ;

} else i f (v . i sH i e r a r ch i c a lNode ()) {
codeGenerat ion (v . getSubGraph ())

} else {
in s t an t i a t ePro to type (v , s) ;

}
}
i f (! g . getParentGraph () == null){

createCommunicationThread (g , s) ;
}

}

Figure 9.5: Code generation procedure.

9.4 Graph optimization for code generation

The tagged SDF graph that is provided by the scheduler needs some modi�cation

for e�cient code generation (Fig. 9.6).

public void transformGraph (Graph g){
for (Set<Vertex> stronglyConnected : getStronglyConnectedComponents ()) {

i f (greatestCommonDividerOfRepetionFactor (stronglyConnected) > 1){
c l u s t e r i z e (stronglyConnected) ;

}
}
for (Vertex v : g . ge tAl lVertex ()) {

i f (v . i s InputPor t ()) {
t r e a t I npu t I n t e r f a c e (v) ;

} else i f (v . isOutputPort ()) {
t r ea tOutput In t e r f a c e (v) ;

}
}

}

Figure 9.6: Graph Transformation procedure.

Graph optimization for code generation 101

The �rst optimization concerns the strongly connected components or cycles. In

order to generate human readable code, a cycle that is repeated over time must be

embedded into a loop. To do so, we detect strongly connected components with

more than one vertex in the graph, and clusterize them. The edges of the cycle

that carry a delay are wrapped around the created cluster (see Figure 9.7). From

strongly connected components of size greater than one in the graph, we create a

hierarchical actor that embeds all its elements. All the arcs that connect actors not

belonging to the strongly connected set are connected through the created cluster

interface. The edges of the strongly connected set that carries a delay are connected

around the cluster.

Figure 9.7: A graph containing a cycle and its resulting transformation.

The second important transformation aims at ensuring a correct interface behav-

ior in the hierarchy (Fig. 9.10). As described in [PBR09], an input interface has an

intrinsic behavior of broadcast. Thus if multiple edges are connected to one input

interface, we must ensure for each edge that the broadcast behavior of the interface

will be respected. The broadcast adding procedure stands as in Figure 9.8:

public void t r e a t I npu t I n t e r f a c e (InputVertex v , Graph g){
for (Edge e : g . getOutgoingEdgesOf (v)){

i f (e . getCons ()\%e . getProd () != 0){
addBroadcastVertex (e , lcm (e . getProd () , e . getCons ()) ;

}
}

}

Figure 9.8: Procedure for adding broadcast on input interfaces.

As described in [PBR09], an output interface has an intrinsic behavior of ring

bu�er. Thus we must ensure that the edge connected to the input interface can

support this speci�c behavior. The ring bu�er adding procedure stands as follows

(Fig. 9.9):

102 Multi-core code generation of Interface based Synchronous Dataflow

public void t r ea tOutput In t e r f a c e (OutputVertex v , Graph g){
for (Edge e : g . getIncomingEdgesOf (v)){

i f (e . getProd ()\%e . getCons () != 0){
addRingBufferVertex (e , lcm (e . getProd () , e . getCons ()) ;

}
}

}

Figure 9.9: Procedure for adding ring bu�er on output interfaces.

In Figure 9.10, one can see that the actor connected to the input port has a

repetition factor of three and a compsumption rate of four. Thus it consumes twelve

tokens from a port that only produces three tokens. For proper operation we must

insert a broadcast vertex that will output four times the three tokens produced by

the port. In Figure 9.10 we can also see that the actor connected to the output port

has a repetition factor of four and produces three tokens. It means that it produces

twelve tokens in a port that requires three tokens to be produced. By adding a ring

vertex that consumes twelve tokens and outputs only the last three we ensure proper

operation.

x33 4

x33 4br
3 12

3 4x4

3 12 ringx4 4 4

Figure 9.10: Broadcast and ring bu�er adding rules.

9.5 Bu�er optimization and allocation

The bu�er allocation step aims at allocating the memory resources used by the

application. In the SDF graphs, data dependencies between actors are symbolized

using arcs with an integer production on the producer side and an integer consump-

tion on the consumer side. Thus each edge represents a memory bu�er in which the

Buffer optimization and allocation 103

producer writes, and the consumer reads. The size of such bu�er can easily be com-

puted by p(e)∗ q(src(e))∗sizeof(datatype). Allocating the bu�er of the application

can be performed in di�erent ways, with di�erent levels of optimization. In order

to have �exibility on the bu�er allocation, the code generation delegates the bu�er

allocation task to a given bu�er allocator de�ned in the scenario that just returns

the allocated bu�er. Thus changing the bu�er allocation strategy is just a question

of de�ning a new bu�er allocator.

public void a l l o c a t eBu f f e r (Edge e , Scenar io s){
g e tBu f f e rA l l o c a t o r () . a l l o c a t eBu f f e r (e) ;

}

Figure 9.11: Bu�er allocation procedure.

� Flat bu�er allocation:

This allocation technique (Fig.) is based on the non-shared memory model.

Each bu�er is allocated individually and lives throughout the schedule. In the

�at bu�er allocation, all the bu�ers of the top network, and all the bu�ers of

the sub-networks (hierarchy) are globally allocated. Thus each edge can be

compiled as �xed size array that has only one producer and one consumer,

which data life-time is a full iteration of the schedule (see Figure 9.12). The

static scheduling step ensures that there will not be any bu�er over�ow. This

means that memory requirement of the application corresponds to the sum of

the sizes of the bu�er of the network. The bu�er size for an edge of the network

is equal to p(e) ∗ q(src(e)) ∗ sizeof(datatype). Thus the total memory require-

ment of the network is equal to
n∑

i=0

p(ei) ∗ q(src(ei)) ∗ sizeof(datatype(ei))

with n being the number of edges in the network. This memory allocation

takes advantage of any memory optimization done at the scheduling step. For

such allocation strategy, the code generation is made pretty simple. Each

edge of the graph is allocated as a global array of the given data-type which

size equals p(e) ∗ q(src(e)). This allocation strategy provides an easy to read

memory allocation as each edge can be associated to its corresponding bu�er

with ease. The main drawback of this allocation step, is that it does not take

advantage of bu�er life-time to optimize application memory requirement.

� Hierarchical bu�er allocation:

The Interface base hierarchy as described in [PBR09] allows further optimiza-

tion based on its properties. This kind of hierarchy sets a sub-network to

behave like a block of code. This means that all the arcs of the sub-network

can be allocated at the beginning of the execution of the sub-network and freed

at its end. The hierarchical bu�er allocation takes advantage of this speci�c

104 Multi-core code generation of Interface based Synchronous Dataflow

3 2 32

1

1 1
1 1

1

1 11 12 2A

B C

DE F

2xA 2xE 2xF3x 2xB 2xC 2xD

AA_to_BB

AA_to_3x{EEFF}

BB_to_CC

EE_to_FF

CC_to_DD

3x{EEFF}_to_DD

time

Figure 9.12: A graph and its bu�er life-time using a �at allocation.

behavior to limit bu�er life-time (see Figure 9.13). As the generated code takes

advantage of sub-network by describing as block of code, bu�ers are allocated

at the beginning of the block of code. Only bu�ers of the top graph remain as

global variables as they are shared between the computation and communica-

tion threads. The c compiler can then take advantage of this structured code

to optimize the memory footprint of the code. The main drawback is that the

sub-network bu�ers are allocated in the stack at run-time. It means that the

stack must be dimensioned accordingly.

3 2 32

1

1 1
1 1

1

1 11 12 2A

B C

DE F

2xA 2xE 2xF3x 2xB 2xC 2xD

AA_to_BB

AA_to_3x{EEFF}

BB_to_CC

EE_to_FF

CC_to_DD

3x{EEFF}_to_DD

time

Figure 9.13: A graph and its bu�er life-time using a hierarchical allocation.

Buffer optimization and allocation 105

� Flat bu�er allocation with hierarchy based optimization: In the pre-

vious bu�er allocation strategy, it appears that the memory allocated for a

sub-network, has its life-time limited regarding to the schedule length. Thus it

is possible to take advantage of this information to globally allocate the bu�ers

embedded in sub-networks at the top level, with multiple sub-network sharing

the same memory space. This is performed by allocating all the edges of the

top graph at disjoint index ranges in a global array. Then when a hierarchical

vertex starts its bu�ers are allocated at disjoint index range in the same global

array (see Figure 9.14). All the memory allocated for the hierarchical vertex is

considered freed when its end and the next hierarchical level can use the same

index space to allocate its own bu�ers.

In order to have a more fragmented allocation, it is also possible to de�ne the

maximum size of this global array, to then allocate in another memory space

when the allocation over�ows the bu�er size.

3 2 32

1 1

1 11 12 2A BF G

2xA 2xF 2xG3x 2xD

2x{CDE}_to_BB

AA_to_3x{FFGG}

EE_to_FF

3x{EEFF}_to_BB

time

1 1

1 1

1

11

1

1

1

1

1C

D

E

2x C D E

C_to_E
D_to_E

AA_to_2x{CDE}

Figure 9.14: A graph and its bu�er life-time using a �at bu�er allocation with hierarchical
optimization.

� Flat bu�er allocation with bu�er life-time based optimization:

As to optimize memory footprint of an application it is possible to allocate

the bu�er based on a shared memory model. It is based on the fact multiple

bu�ers can be allocated in the same memory space as long as their life-time

does not overlap (see Figure 9.16). A bu�er life-time starts when its producer

actor is triggered and ends when its consumer actor ends (Fig. 9.15).

Di�erent techniques such as graph coloring [GR96] or in the case of data and

code optimization [MBL97] exist. The last technique shows good improve-

ments and is coupled with a graph transformation that aims at factorizing

106 Multi-core code generation of Interface based Synchronous Dataflow

public computeLifet ime (Edge e){
e . setStartTime (e . getSource () . getStartTime ()) ;
e . setStopTime (e . getTarget () . getStopTime () . e . getTarget () . getDurat ion ()) ;

}

Figure 9.15: Procedure to compute a bu�er life-time.

the code by clustering vertices which can be embedded into a loop. In ad-

dition it provides a technique for memory allocation of the di�erent bu�ers

based on their respective life-time. This problem is called Dynamic Storage

Allocation and is proved [GJ79] to be an NP complete problem. The First

Fit algorithm [Kie91] tackles this problem by assigning the smallest feasible

location to each interval in the order they appear in the enumerated instance.

In [MB01] the authors say that ordering the bu�ers based on their life-times

give the best result, compared to a start-time based organization. Another

technique described in [Rau06] was especially developed for bu�er optimiza-

tion in the context of the rapid prototyping tool SynDEx. In the case of

multi-processor with Inter Processor Communications, one must also take into

account that the bu�er life-time for bu�er involved in a communication cannot

be computed at compile time as the computation thread and the commnica-

tion threads are asynchronous. Thus any bu�er involved in an IPC must not

be allocated in the shared memory space.

3 2 32

1 1

1 11 12 2A BF G

2xA 2xF 2xG3x 2xB

2x{CDE}_to_BBAA_to_3x{FFGG}

EE_to_FF

3x{EEFF}_to_BB

time

1 1

1 1

1

11

1

1

1

1

1C

D

E

2x C D E

C_to_E
D_to_E

AA_to_2x{CDE}

Figure 9.16: A graph and its bu�er life-time using a �at bu�er allocation with life-time
based optimization.

Above all the allocation techniques described, the bu�er allocation with life-time

based optimization gives the best results in term of memory footprint of the appli-

Hierarchical actor port management 107

cation. The �at allocation gives the worst results, but can be useful for debugging

purpose. The hierarchical allocation can show good result, but in the case of large

graph, the stack must be large enough to allocate all the bu�er of a hierarchical

level. The �at allocation with hierarchical optimization provides a solution to the

stack dimensioning problem and is good solution for debugging purpose compared

to the allocation with life-time optimization as bu�ers of the top graph do not reside

in a shared memory space. The choice of the bu�er allocation strategy is guided by

the user in the PREESM software to satisfy his/her needs at a given development

step.

9.6 Hierarchical actor port management

A hierarchical actor is connected to its parent network through ports. Thus data

tokens produced by the input port vertices are related to data tokens consumed

on the corresponding actor interface in its parent network. Moreover data tokens

consumed by an output port are equivalent of the data tokens produced on the

corresponding actor interface in its parent network. Thus there is no need to allocate

the bu�ers corresponding to the arcs connected to an interface as they will carry

the same data tokens. All edges connected to an input port are to be synthesized

as pointers into the bu�er allocated for the equivalent edge in the upper hierarchy

level (see Figure 9.17). For the single edge connected to an output port (Sink

producer uniqueness rule), its equivalent bu�er is allocated as a pointer into the

bu�er allocated for the arc connected to this output port in the upper hierarchy

level.

3 3

int buffer [3]

int *sub_buffer = &buffer

int *sub_buffer2 = &buffer

Figure 9.17: An input port and its equivalent bu�er allocation.

108 Multi-core code generation of Interface based Synchronous Dataflow

9.7 Actor prototypes instantiation

The actor prototype instantiation aims at instantiating the prototype of each

actor and passing it the right bu�ers as arguments. Our code generation takes IDL

(Interface Description Language) for each actor as the prototype de�nition (Fig.

9.18). The IDL �le provides the description of three interfaces. The �rst interface

is the prototype to be instantiated into the init phase, the second prototype is to

be instantiated in the loop phase, and the third prototype in the end phase. The

type parameter is used as a keyword to identify SDF speci�cation parameters, that

can be resolved at compile-time. The init and end prototypes do not expose any

argument, but parameters as they do not belong to the data�ow speci�cation. The

loop interface's prototype exposes arguments corresponding to the data�ow actor

ports and static parameters. The IDL keywords in and out provide the direction of

the port, and the data-type gives the type of the data tokens streaming in/out that

port.

module mux {
typede f long parameter ;
i n t e r f a c e i n i t {

void init_mux () ;
} ;
i n t e r f a c e loop {

void mux(in char i n i t I n , in char i t e r a t e I n ,
in char t r i g , out char data1Out , out char data2Out ,
out char weights , in parameter s i z e) ;

} ;
i n t e r f a c e end{

void end_mux() ;
} ;

} ;

Figure 9.18: IDL de�nition of an actor

The code generation is thus in charge of instantiating the given prototype, with

the arguments corresponding to the bu�er allocated for the edges connected to the

input and output ports.

9.8 In loop actors instantiation

In an SAS schedule, some actors A are associated to a repetition factor q(A)

greater than one. Those speci�c actors can either be �attened, meaning that they

will be instantiated q(A) times, or be unique and be repeated q(A) times. For the

last statement, it has been chosen to embed those actors into for loop, with an

iteration vector of size q(A). As a consequence, the inputs and outputs of this actor

depend on the iteration step, and are subsets of the bu�er corresponding to the

Special vertices instantiation 109

connected edges (Fig. 9.19). Thus the sub-bu�er sb for the iteration i of an actor B

that consumes n token at each iteration from a bu�er e of total size s, is allocated

as sb = e[(i× n)%s].

4 1
A B

int buffer [4] ;
int i ;
A(buffer);
for(i = 0 ; i < 4 ; i++){
 int * sub_buffer = buffer[(i*1)%4] ;
 B(sub_buffer);
}

x4

Figure 9.19: A two actor SDF graph and its corresponding code generation.

9.9 Special vertices instantiation

As mentioned earlier, some vertices with special behavior can be added to the

graph. Those vertices are broadcast, fork, join and ring bu�er.

Depending on the case those vertices can either be synthesized as memory copies

or pointer into input/output bu�er.

� The Fork vertex: the fork vertex cuts a �nite sequence of input tokens into

multiple sub-sets of this input bu�er Fork = {N} ⇒ N ×{1}. Thus, the fork
vertex can be synthesized as pointers into the input bu�er. If this fork vertex

belongs to the top graph, it is synthesized as memory copies of the input bu�er

into the output bu�ers if one the output edge is connect to an IPC vertex (Fig.

9.20).

� The Join vertex: the join vertex takes multiple input tokens and groups them

on its single output Join = N × {1} ⇒ {N}. The join vertex can either

be synthesized as a memory copy, or as pointers into the output bu�er. If it

belongs to the top graph it is synthesized as memory copies of the input bu�ers

into the output bu�er if its outgoing edge is connected to an IPC vertex (Fig.

9.21).

110 Multi-core code generation of Interface based Synchronous Dataflow

fork
6

2

2

2int buffer [6]

int * sub_buffer_1 = &buffer[0]

int * sub_buffer_2 = &buffer[2]

int * sub_buffer_3 = &buffer[4]

memcpy(sub_buffer_1, &buffer[0], 2)

memcpy(sub_buffer_2, &buffer[2], 2)

memcpy(sub_buffer_3, &buffer[4], 2)

or

or

or

Figure 9.20: A fork vertex and its two possible code generations.

join
6

2

2

2int buffer [6]

int * sub_buffer_1 = &buffer[0]

int * sub_buffer_2 = &buffer[2]

int * sub_buffer_3 = &buffer[4]

memcpy(&buffer[0], sub_buffer_1, 2)

memcpy(&buffer[2], sub_buffer_2, 2)

memcpy(&buffer[4], sub_buffer_3, 2)

or

or

or

Figure 9.21: A join vertex and its two possible code generations

� The Broadcast vertex: the broadcast vertex copies its input tokens as many

times as needed on its output edges Broadcast = {N} ⇒ b×{N} (Fig. 9.22).

bro6

6

6

6
int buffer [6]

int * sub_buffer_1 = &buffer[0]

int * sub_buffer_2 = &buffer[0]

int * sub_buffer_3 = &buffer[0]

memcpy(sub_buffer_1, &buffer[0], 6)

memcpy(sub_buffer_2, &buffer[0], 6)

memcpy(sub_buffer_3, &buffer[0], 6)

or

or

or

Figure 9.22: A broadcast vertex and its two possible code generations

� The Ring vertex: the ring vertex copies the last N tokens consumed into its

output Ring = r × {N} ⇒ {N} (Fig. 9.23).

9.10 Inter Processor Communication instantiation

The graph computed by the scheduling steps contains send and receive vertices

that are allocated onto processors. The send vertex is allocated onto the data pro-

ducer processor, and the receive vertex is allocated onto the receiving processor. This

pattern is handheld both in the computation thread and in the communication one.

Inter Processor Communication instantiation 111

ring6

6

6

6
int buffer [6]

int * sub_buffer_1 = &buffer[0]

int * sub_buffer_2 = &buffer[0]

int * sub_buffer_3 = &buffer[0]

memcpy(&buffer[0], sub_buffer_1, 6)

memcpy(&buffer[0], sub_buffer_2, 6)

memcpy(&buffer[0], sub_buffer_3, 6)

or

or

or

Figure 9.23: A ring vertex and its two possible code generations

As the bu�er containing the data to be transferred is shared between the computa-

tion and communication threads, it has to be protected using concurrent processing

data protection primitives. This primitives being OS dependent, their prototype

instantiation is done by the xslt transformation. Two concurrent access cases can

occur for both send and receive. For a data to be transferred, we must ensure that

the bu�er in which the producer vertex writes is not currently being transferred, and

that the communication thread will not try to send a bu�er in which no data has

been written. For a data to be received we must ensure that the consuming vertex

does not read into a bu�er in which no data has been received, and that the com-

munication thread will not receive data into a bu�er that is currently accessed by

the consumer vertex. Thus we need two bu�ers to ensure data coherence. The data

protection is managed using mutual exclusion semaphores. The �rst semaphore is

managed by the communication threads and indicates �data transferred� (either sent

or received), and its state is initialized to 0 (lock) in the receive case and 1 (unlock)

in the send case. The second semaphore is managed by the computation thread and

indicates �data produced/consumed� and its state is initialized to 0 (lock) in the

send case and 1 (unlock) in the receive case. A communication sequence operates

as follows on the computation side:

1. A semaphore wait is reached into the computation thread and blocks until the

semaphore that indicates � data transferred� is freed.

2. The data producing/consuming function is triggered.

3. The semaphore that indicates � data produced/consumed� is freed.

4. The code keep running until the same sequence is activated.

And as follow on the communication side:

1. A semaphore wait is reached into the communication thread and blocks until

the semaphore that indicates � data produced/consumed� is freed

2. The transfer function is called and blocks until the transfer completes.

3. The semaphore that indicates � data transferred� is freed.

112 Multi-core code generation of Interface based Synchronous Dataflow

4. The communication thread keeps running until the same sequence is activated.

In the code generation procedure when a send vertex is encountered, a new

Semaphore s1 is allocated. Then a semwait(sem1) call is instantiated before the

connected vertex in the computation thread. A second semaphore s2 is then al-

located and a sempost(s2) is instantiated after the producing vertex. In the com-

munication thread the sequence semwait(s2), send(data), sempost(s1) is instantiated

(see Figure 9.24). The same procedure is executed for the receive vertices (see Fig-

ure 9.25), the main di�erence is that the semaphore sem2 is initialized at 0 (V) and

the sem1 at 1 (P) whereas for a send sequence the semaphores are initialized at 1 for

sem1 and 0 for sem2. Figure 9.26 shows a network with an IPC, and the resulting

schedule.

public al locateIPCSend (SendVertex v , Edge e){
Semaphore sem1 = al locateSemaphore () ;
Semaphore sem2 = al locateSemaphore () ;
computationThread . addInitSemaphore (sem2 , 0) ;
computationThread . addSemWaitAt (sem1 , e . getSource ()−1) ;
computationThread . addSemPostAt (sem2 , e . getSource ()+1) ;
communicationThread . addSemWait (sem2) ;
communicationThread . addSendFunction (e) ;
communicationThread . addSemPost (sem1) ;
communicationThread . addInitSemaphore (sem1 , 1) ;
}

Figure 9.24: Procedure to allocate an IPC send.

public a l l ocate IPCRece ive (ReceiveVertex v , Edge e){
Semaphore sem1 = al locateSemaphore () ;
Semaphore sem2 = al locateSemaphore () ;
computationThread . addInitSemaphore (sem2 , 1) ;
computationThread . addSemWaitAt (sem1 , e . getTarget ()−1) ;
computationThread . addSemPostAt (sem2 , e . getTarget ()+1) ;
communicationThread . addSemWait (sem2) ;
communicationThread . addReceiveFunction (e) ;
communicationThread . addSemPost (sem1) ;
communicationThread . addInitSemaphore (sem1 , 0) ;

}

Figure 9.25: Procedure to allocate an IPC receive.

9.11 xml to C transformation

The steps described above generate an xml �le for each processor. This xml �le

contains generic code that can be transformed to C code using an xslt style-sheet.

Xslt that stands for Extensible Stylesheet Language Transformations, is a W3C

standard that aims at providing a syntax to de�ne transformations for an XML

xml to C transformation 113

A B D

C

S1 R2

R1 S2

A

S12p

S11v

B

D

send

S11p

S12v

C

R12p

R11v

rec

R11p

R12v

P1 P2
communcation
thread

computation
thread

communcation
thread

computation
thread

send

S21p

S22v

S21v

S22p

rec

S21p

S22vS22p

S21v

Figure 9.26: A scheduled graph and the resulting execution.

114 Multi-core code generation of Interface based Synchronous Dataflow

dialect to another or into any text based dialect. In PREESM this transformation

is managed through three classes of xslt style-sheets.

� C code style-sheet: de�nes the xml to C translation for ansi C components

(types, calls ...)

� Target style-sheet: de�nes the transformation for target speci�c calls (transfer)

� OS style-sheet: de�nes the transformation for OS speci�c calls (semaphores,

threads)

Thus for a new hardware architecture, the user has to de�ne (or use) a style-sheet

that speci�es the transformations for target speci�c calls. The user can also have to

de�ne a new OS style-sheet if required. The C style-sheet remain the same for all

C code generations. The targeted architecture could also be extended by de�ning

VHDL transformations style-sheets to generated code for programmable hardware,

like FPGA.

This code production �ow was inspired by the SynDEx tool that produces m4

code that can then be transformed using transformations de�ned in m4x �les. As

m4 is an out-dated tool it was chosen to rely on a widely adopted standard that is

xml. Moreover xml is well supported in JAVA which is PREESM main programming

language. Tool such as DIFtoC in DIF also adopt a code generation through libraries,

but those libraries are C libraries which limit the tool to C code generation. The

xslt approach used in PREESM o�ers good �exibility and could allow the PREESM

software to not be limited to C code generation.

9.12 Code generation example

As to demonstrate the power of the code generation in PREESM, we will use an

FFT example. The FFT is inserted in a testbed that generates 2048 time sample

on each run of the schedule and gather the 2048 frequency samples (Fig. 9.27).

The FFT hierarchical actor operates on 1024 samples, and is repeated twice in each

schedule run. This actor is composed of two atomic actors and a hierarchical one.

The �rst atomic actor mux acts as a multiplexer, it takes the �rst 1024 time samples

on its �rst call and passes it to the butter�y step. On the other call, it passes the

data from the looping edge. It also provides the relevant twiddle factor for each

call of the butter�y. This actor is forced to be repeated log2(1024) = 10 times by

the trig port. A port with no connection to the outside is simply ignored by the

code generation step. The sort actor takes the output of the butter�ies calls and

sorts it for the next run. Its output data is broadcasted to both the output interface

and the looping edge. The ring − buffer nature of the port allows such graph to

be speci�ed, and means that only the last 1024 output samples produced will be

Code generation example 115

carried out to the hierarchy. The butter�y hierarchical actor takes two samples, and

a twiddle factor and provides the output with s1 + (s2 × w) and s1 − (s2 × w).

This graph is processed trough an HSDF transformation of the top level, that

splits the FFT in two distinct calls, and is then scheduled onto a two cores architec-

ture connected by a TCP link. The scheduler computes the multi-processor schedule

(Fig. 9.28). The �rst core manages the time sample source, performs a fork on the

data, and sends an half to second core. It then computes on of the FFTs, and sends

its result to the second core. The second core receives the data and processes the

second half of the FFT, then receives the frequency samples from the �rst core and

puts it into the sink.

x

+

-w

S1

S2

S1

S2

mux sorttime freqsource sink1024*2 1024 1024 2*10245121024 1024

1024

trig
10

Figure 9.27: The hierarchical representation of the FFT.

source fo
rk

se
n

d

FFT-0

se
n

d

core 0

FFT-1 jo
in sinkcore 1

tr
an

sf
er

tr
an

sf
er

TCP

time

Figure 9.28: The two-processor schedule of the FFT.

For the reader convenience the code generation is split into multiple chunks. The

true code generation outputs a source �le for each processor with only two thread

declarations, and no function prototype. In the following the code generation of

the FFT hierarchical actor is declared outside the thread when it is normally an

inlined code. The code generation showed here uses the local bu�er allocation. The

code generation of the FFT hierarchical actor shows that the strongly connected

elements have been clusterized and the looping edge wrapped around (Fig. 9.29).

The broadcast at the end of the FFT actor is generated as a memory copy of the

116 Multi-core code generation of Interface based Synchronous Dataflow

sort actor output in both the looping edge and the output. The code generation for

core 0 (Fig. 9.30) shows how the data generated by the source is exploded using

both a memory copy for the data to transfer and a pointer for the local data. The

code generation for core 1 (Fig. 9.31) shows how the data from the two FFTs are

joined into the sink input.

void f f t (char ∗ time_samples , char ∗ f req_samples){
char loop_edge [1 0 2 4] ;
for (i = 0 ; i <10 ; i ++)
{// c l u s t e r o f s t r on g l y connected components

char samples_in_1 [5 1 2] ;
char samples_in_2 [5 1 2] ;
char samples_out_1 [5 1 2] ;
char samples_out_2 [5 1 2] ;
char weights [5 1 2] ;
char data_ouput [1 0 2 4] ;
char ∗ i n i t_datas = &time_samples [((i ∗ (1024))%0)] ;
mux(in i t_datas , loop_edge , samples_in_1 , samples_in_2 , weights , 1024) ;
for (j = 0 ; j <512 ; j ++)
{// b u t t e r f l y S t e p

char broadcast [1] ;
char ∗sub_samples_in_1 = &samples_in_1 [((j ∗ (1))%512)] ;
char ∗sub_samples_in_2 = &samples_in_2 [((j ∗ (1))%512)] ;
char ∗sub_samples_out_1 = &samples_out_1 [((j ∗ (1))%512)] ;
char ∗sub_samples_out_1 = &samples_out_2 [((j ∗ (1))%512)] ;
char ∗ sub_weights = &sub_weights [((j ∗ (1))%512)] ;
char ∗op1 = &broadcast [((0 ∗ 1)%1)] ;
char ∗op2 = &broadcast [((0 ∗ 1)%1)] ;
mult (sub_samples_in_2 , sub_weights , res_in) ;
add (sub_samples_in_1 , op1 , sub_samples_out_1) ;
sub (sub_samples_in_1 , op2 , sub_samples_out_2) ;

}
s o r t (samples_out_1 , samples_out_2 , data_ouput , 1024) ;
{// broadcas t

memcpy(freq_samples , data_ouput , 1024∗ s izeof (char)) ;
memcpy(loop_edge , data_ouput , 1024∗ s izeof (char)) ;

}
}

}

Figure 9.29: Generated code from the hierarchical FFT actor.

9.13 Conclusion

The PREESM project was started in 2007 and the code generation is one of

the latest contribution of this thesis in cooperation with the work developed in

[M.P10]. This plugin was designed based on the work developed for the tool SynDEx

and exploits some of its principles. The main di�erence is that PREESM deals

with a truly SDF model with a special interpretation of the hierarchy. Another

PREESM di�erence is the structural choice that allows the user to customize the

code generation in particular the available algorithm for memory optimization, and

the xslt style-sheets. The execution model is a direct inheritance of SynDEx and is

well suited for the generation of multi-core, multi-processor C code. The PREESM

Conclusion 117

code generation provides the user with a human-readable code that can (with a user

choice) be memory optimized. The code generation step is also highly customizable

thanks to its structure. Indeed the choice of a generic xml code generation with

xslt transformation for proper c code, allows to target a wide range of architectures

and OSes. Moreover this code generation plugin is theoretically not limited to

C code generation and could allow to target hardware programmable components

such as FPGA. In addition one could also decide to provide its own bu�er allocator

implementation for di�erent optimizations of the memory footprint. The open source

status of the PREESM project makes it attractive for any professionals that have to

deal with multi-core code generation. One can also want to contribute to the source

code to implement its own code generation needs.

118 Multi-core code generation of Interface based Synchronous Dataflow

#include " . . / . . / Lib_com/ inc lude /x86 . h"

// Buf fer d e c l a r a t i on s
char f ft_freq_samples_1 [1 0 2 4] ;
char f ft_time_samples [2 0 4 8] ;
char ∗ fft_time_samples_1 ;
char fft_time_samples_0 [1 0 2 4] ;
semaphore sem_0 [4] ;

DWORD WINAPI computationThread_Core0 (LPVOID lpParam) ;
DWORD WINAPI communicationThread_Core0 (LPVOID lpParam) ;

DWORD WINAPI computationThread_Core0 (LPVOID lpParam){
// Buf fer d e c l a r a t i on s
long i ;
long j ;

{ // i n i t
semaphoreIn it (sem_0 , 4/∗semNumber∗/ , Core1) ;
CreateThread (NULL,8000 , communicationThread_Core1 ,NULL, 0 ,NULL) ;
ReleaseSemaphore (sem_0 [0] , 1 ,NULL) ; //empty
ReleaseSemaphore (sem_0 [2] , 1 ,NULL) ; //empty

}

for (; ;) { // loop
source (fft_time_samples) ;
WaitForSingleObject (sem_0 [0] , INFINITE) ; //sem wait
{ // fo rk

fft_time_samples_1 = &fft_time_samples [1 0 2 4] ;
memcpy(fft_time_sample_0 , &fft_time_samples [0] , 1024∗ s izeof (char)) ;

}
ReleaseSemaphore (sem_0 [1] , 1 ,NULL) ; //sem pos t
WaitForSingleObject (sem_0 [2] , INFINITE) ; //sem wait
f f t (fft_time_samples_1 , f ft_freq_samples_1) ;
ReleaseSemaphore (sem_0 [3] , 1 ,NULL) ; //sem pos t

}

return 0 ;
}//computationThread

DWORD WINAPI communicationThread_Core0 (LPVOID lpParam){
// Buf fer d e c l a r a t i on s

{ // i n i t
Com_Init (MEDIUM_SEND,TCP_1, Core1 , Core0) ;

}

for (; ;) { // loop
WaitForSingleObject (sem_0 [1] , INFINITE) ; //sem wait
sendData (TCP_1, Core1 , Core0 , fft_time_sample_1 ,1024∗ s izeof (char)) ;
ReleaseSemaphore (sem_0 [0] , 1 ,NULL) ; //sem pos t
WaitForSingleObject (sem_0 [3] , INFINITE) ; //sem wait
sendData (TCP_1, Core1 , Core0 , fft_freq_samples_1 ,1024∗ s izeof (char)) ;
ReleaseSemaphore (sem_0 [2] , 1 ,NULL) ; //sem pos t

}

return 0 ;
}//communicationThread

Figure 9.30: Code generation for core 0.

Conclusion 119

#include " . . / . . / Lib_com/ inc lude /x86 . h"

// Buf fer d e c l a r a t i on s
char sink_data [2 0 4 8] ;
char time_samples_0 [1 0 2 4] ;
char f ft_freq_samples_1 [1 0 2 4] ;
char f ft_freq_samples_0 [1 0 2 4] ;
semaphore sem [4] ;

DWORD WINAPI computationThread_Core1 (LPVOID lpParam) ;
DWORD WINAPI communicationThread_Core1 (LPVOID lpParam) ;

DWORD WINAPI computationThread_Core0 (LPVOID lpParam){
// Buf fer d e c l a r a t i on s
long i ;
long j ;

{ // i n i t
semaphoreIn it (sem , 4/∗semNumber∗/ , Core0) ;
CreateThread (NULL,8000 , communicationThread_Core0 ,NULL, 0 ,NULL) ;

}

for (; ;) { // loop
WaitForSingleObject (sem [0] , INFINITE) ; // f u l l
f f t (time_samples_0 , f ft_freq_samples_0) ;
ReleaseSemaphore (sem [1] , 1 ,NULL) ; //empty
WaitForSingleObject (sem [2] , INFINITE) ; // f u l l
{// jo in

memcpy(&sink_data [0] , f ft_freq_samples_0 , 1024∗ s izeof (char)) ;
memcpy(&sink_data [1 0 2 4] , f ft_freq_samples_1 , 1024∗ s izeof (char)) ;

}
ReleaseSemaphore (sem [3] , 1 ,NULL) ; //empty
s ink (sink_data) ;

}

return 0 ;
}//computationThread

DWORD WINAPI communicationThread_Core1 (LPVOID lpParam){
// Buf fer d e c l a r a t i on s

{ // i n i t
Com_Init (MEDIUM_RCV,TCP_1, Core1 , Core0) ;
ReleaseSemaphore (sem [1] , 1 ,NULL) ; //empty
ReleaseSemaphore (sem [3] , 1 ,NULL) ; //empty

}

for (; ;) { // loop
WaitForSingleObject (sem [1] , INFINITE) ; //empty
rece iveData (TCP_1, Core1 , Core0 , time_samples_0 ,1024∗ s izeof (char)) ;
ReleaseSemaphore (sem [0] , 1 ,NULL) ; // f u l l
WaitForSingleObject (sem [3] , INFINITE) ; //empty
rece iveData (TCP_1, Core1 , Core0 , fft_freq_samples_1 ,1024∗ s izeof (char)) ;
ReleaseSemaphore (sem [2] , 1 ,NULL) ; // f u l l

}

return 0 ;
}//communicationThread

Figure 9.31: Code generation for core 1.

120 Multi-core code generation of Interface based Synchronous Dataflow

Chapter 10

Loop partitioning techniques for

Interface based Synchronous

Data�ow

10.1 Introduction

The synchronous data �ow model allows to specify a network exposing most of

the parallelism of the application. The network behavior is deduced from the data-

dependencies between the actors, and extracting a valid schedule is then relatively

simple. In a rapid prototyping framework, the application speci�cation is optimized

before scheduling as depicted in Figure 10.1. When trying to optimize such net-

work for a parallel architecture, one must consider the parallelism existing between

multiple invocations of the actors. The homogeneous synchronous data �ow model

that can be extracted from the SDF representation exposes all the parallelism of

the application but leads to an explosion of the number of vertices to schedule. As

no architecture has an in�nite degree of parallelism, one could choose to extract an

amount of parallelism adapted to the target architecture. When using a hierarchi-

cal speci�cation of the application, all the parallelism embedded into the hierarchy

levels remains unavailable for the scheduler. To extract all the parallelism, the best

approach would be to �atten all the hierarchy levels to expose the �ne grain paral-

lelism. Once again all this available parallelism might not be adapted to the level

of parallelism available on the target architecture.

Those two issues can be independently tackled but are tightly coupled and must

be treated jointly to provide the best solution. In the following we will introduce

two methods inherited from researches on systolic arrays.

In the �rst part we will show how the iteration domain projection technique

described in Section 7.4 can be applied onto Interface based SDF graphs [PBR10].

121

122 Loop partitioning techniques for Interface based Synchronous Dataflow

Algorithm specification
actor A (bool COMPUTE_Y) uint(size=24) PIX ==>
 uint(size=8) R, uint(size=8) G, uint(size=8) B,
 uint(size=8) Y:

 int RSHIFT = 16; int RMASK = 255;
 int GSHIFT = 8; int GMASK = 255;
 int BSHIFT = 0; int BMASK = 255;
 int COUNT = 8;

 action: PIX:[pix] repeat COUNT ==>
 R:[r] repeat COUNT,
 G:[g] repeat COUNT,
 B:[b] repeat COUNT,
 Y:[y] repeat COUNT
 var
 int i := 0
 do
 // imperative version to compute R, G, B
 while i < COUNT do
 r[i] := bitand(rshift(pix[i], RSHIFT), RMASK);
 g[i] := bitand(rshift(pix[i], GSHIFT), GMASK);
 b[i] := bitand(rshift(pix[i], BSHIFT), BMASK);

 i := i + 1;
 done

Architecture specification
<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4">
 <spirit:name>4C64</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>C64_1</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue
spirit:referenceId="componentType">operator</spirit:config
urableElementValue>
 <spirit:configurableElementValue
spirit:referenceId="refinement">VPU0</spirit:configurableEle
mentValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>C64_2</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>

ACC

PE

PE

Algorithm analysis
&

optimization
Architecture analysis

Allocation
&

scheduling

Targets
code generation

Figure 10.1: Speci�cation optimization phase in the rapid prototyping work�ow.

The second part shows that tiling technique can also be applied with the same

requirements.

10.2 Iteration domain projection technique

Loop partitioning technique described in previous section reveals the parallelism

nested into the loops by using basic linear algebra and gives a set of results. As

seen previously, interface-based hierarchy su�ers from a lack of parallelism. All the

embedded parallelism remains unavailable for the scheduler, making an application

hard to optimize on a parallel architecture. Interface-based hierarchy being close to

code nesting, it seems appropriate to tap into nested loops partitioning techniques

to extract parallelism. The nested loops code structure could be de�ned as follow

in the Interface-based Synchronous Data-Flow model:

De�nition A nested loop of depth n is a structure composed of n nested hierarchical

actors with a repetition factor greater than one, for which each actor, excluded the

nth one, contains only one actor.

In order to exploit this optimization technique we must be able to extract the

distance vector from the hierarchical description, thus allowing to have a relevant

Iteration domain projection technique 123

representation for the partitioning. Then having the di�erent projection vectors

and their respective resulting execution domains, we must be able to map back this

representation into a SDF graph.

10.2.1 Distance vector extraction from interface-based SDF

The Synchronous Data-�ow paradigm brings some limitations to the representa-

tion.

� In the data-�ow paradigm, actors produce tokens that can then be consumed.

A data-�ow representation cannot contain other dependencies than the �ow

dependency.

� In the SDF paradigm all the data are represented by edges. Thus all the data

of a network are considered disjoint.

� In the SDF model, data are uni-dimensional and atomic (token). It means

that you cannot have multi-dimensional access to a data.

The third limitation shows that, the basic SDF representation does not allow

to extract distance vector. The hierarchical SDF allows factorized representation

and therefore allows to represent edges as multi-dimensional data over the iteration

domain. As data are being disjoint, only recursive edge (source(e) = sink(e)) can

carry an inter iteration dependency. It means that the analyze only has to be carried

out on this speci�c kind of edge. For our purpose, we will consider a recursive edge

as an array of size (q(source(e)) ∗ c(e)) + d(e).

Given a vertex a with q(a) > 1 and a recursive edge e0 with source(e0) =

target(e0) = a and d(e0)%c(e0) = 0. The index vector for the read accesses to the

data carried by e0 is ~r = [i0 − (d(e0)/c(e0))], and the index vector for the write

accesses to the data carried by e0 is ~w = [i0]. Thus the distance vector between the

iteration of a is ~τ = ~w − ~r = [d(e0)/c(e0)].

Let us now consider that a is a hierarchical actor that contains one actor b with

q(b) > 1 and a recursive edge e1 with source(e1) = target(e1) = b and d(e1)%c(e1) =

0. Given that edge e1 has a local scope in a hierarchical representation, the data

carried by e1 can be represented as an array of size (q(source(e1)) ∗ c(e1)) + d(e1)

itself contained in an array of size q(a). Then the index vector for the read accesses

to the data carried by e1 is ~r = [i0, i1 − (d(e1)/c(e1))], and the index vector for the

write accesses to the data carried by e1 is ~w = [i0, i1]. Thus the distance vector

between iteration of b is ~τ = ~w − ~r = [0, (d(e1)/c(e1))].

By extension the distance vector for a recursive edge at the N th loop of a nested

loops structure is a vector of size N with the (N −1)th element being d(eN−1). Thus

the dependency matrix of an SDF nested loops is a triangular matrix.

124 Loop partitioning techniques for Interface based Synchronous Dataflow

Using the distance vector of the application we can now directly perform the

analysis described in the method above and reveal the parallelism nested into the

hierarchy. Using the analysis results, it is then possible to synthesize a new SDF

network performing the same computation.

10.2.2 SDF network synthesis using analysis results

The network of computing element resulting from the projection is itself an

SDF graph. Using information given by the allocation vector we can determine the

points of the execution domains computed by each cell and consequently distribute

the input data among the cells using explode and broadcast vertices. The output

data can also be sorted out using implode vertices and circular bu�ers.

The SDF graph then needs to be timed using delay to ensure a proper execution

of strongly connected components. In a systolic array all the cell are active syn-

chronously. Thus in order to synchronize the computation on the cell network, the

communication channel must consist of a register whose size allows to synchronize

the computation. In the SDF paradigm, computations are synchronized by data,

and actors are not triggered synchronously but sequentially if they share data. Thus

if the resulting network contains strongly connected components, delays have to be

added in order to time the graph. A proper execution guarantees that the last data

available on a communication link is the valid one for the execution of the sub-graph.

For a set of strongly connected components C and for each computing element

En ∈ C we can determine the hyperplane in the iteration domain containing the

last computation performed by En. The element with the hyperplane that has the

shortest distance to the hyperplane of points computed at t = 0, is the element that

must be scheduled �rst. This means that its incoming edges of belonging to the

strongly connected set must carry a delay.

The synthesized network can then be used with ring_bu�er vertex, to ensure the

output data to be the last. The computation performed by the network is strictly the

same, with some vertices performing computation outside of the iteration domain

(which should be considered null time).

10.2.3 The matrix vector product example

In this section we will use the matrix vector product as a test case for the method

described above.

Given a vector V and matrixM , the product V ×M = R can be described using

a set of recurrent equations.

Iteration domain projection technique 125

Ri,k = 0 if k = 0

Ri,k = Ri,k−1 + vimi,k if 1 ≤ k ≤ N

ri = Ri,N 0

from this set we can extract a the following system.

Initial state

Ri,k = 0 if k = 0

Vi,k = vk if i = 0

Mi,k = mi,k

Calculus equations

Ri,k = Ri,k−1 + Vi−1,kMi,k i 1 ≤ k ≤ N

Vi,k = Vi−1,k i 1 ≤ k ≤ N

Mi,k = mi,k

Output equation

Ri = Ri,N

The SDF representation extracted from those recurrent equations exposes two

levels of hierarchy (see Figure 10.2). The �rst hierarchy level contains a vector ×
scalar product, and the second hierarchy level represents a scalar× scalar product.

X
mati

vecti

vecto

N

N

N*N

1
N

N

N
1

1

1 1

N

N

Dinit

Figure 10.2: Matrix vector product.

Network description

The matrix vector product networks, takes a N × N matrix and a N vector

as inputs, and outputs the result as a N vector. The Mi port is the matrix input

and the Vi is the vector input. The Vo port is the vector output. The vectscal

vertex takes two inputs, Vi being a line of the matrix, and Dinit being an element

of the vector. The element in Dinit initializes the delay token on the recursive edge

around the mac operation. The Acci port takes the vector in which the result is

accumulated. The mac operation takes two scalars, one from the the matrix line,

one from the delay (being an element of the input vector), multiply them and adds

126 Loop partitioning techniques for Interface based Synchronous Dataflow

the result with the input accumulating vector. The valid schedule for the graph is

then:

N × {N ×mac}
The schedule takes advantage of the special behavior of the port Vo, which be-

haves as a ring bu�er of size N . Thus the data contained in Vo at the end of the

schedule, is the result of the last N th iteration of the mac operation, that is the valid

result.

Distance vector extraction

The index vector for the read operation on the top recursive edge is ~ro = [i0−1, i1],

and the index vector for the write operation on the top recursive edge is ~wo = [i0, i1].

Thus the distance vector is ~τ0 = ~wo − ~ro = [1, 0]. The index vector for the read

operation on the inner recursive edge is ~r1 = [i0, i1− 1], and the index vector for the

write operation on the inner recursive edge is ~w1 = [i0, i1]. Thus the distance vector

is ~τ1 = ~w1 − ~r1 = [0, 1].

Using Lamport's method [Lam74] we can determine that the time vector mini-

mizing parallel execution time for this application is τ = [1, 1]. Based on this time

vector, a set of projection vector can be determined :

s1 =

(
1

0

)
s2 =

(
0

1

)
s3 =

(
1

1

)

The following analysis will be carried out using the projection vector s3. The

uni-modular matrix S3 is

S3 =

(
1 0

1 1

)

S−13 =

(
1 0

−1 1

)

The allocation function is then A3 = [−1, 1]. Using this allocation function we

can now determine how the points of the computation domain are allocated onto the

execution domain. The extremes of the allocation function in the iteration domain

are −N and N meaning that the execution domain is of size (2×N)− 1. The end

of the analysis will be performed with N = 3.

Network synthesis

N being three, the resulting network is composed of 5 vertices. Using the al-

location function we can determine the point of the iteration domain that will be

computed by each vertex.

Iteration domain projection technique 127

� Vertex 0: compute the point [1, 3]

� Vertex 1: compute the points [1, 2] and [2, 3]

� Vertex 2: compute the points [1, 1], [2, 2] [3, 3]

� Vertex 3: compute the points [2, 1] and [3, 2]

� Vertex 4: compute the point [3, 1]

Computing the topology matrix of the network shows that the repetition factor

for each of the actor is 3, as the computation load must be balanced in an SDF. Thus

vertices 0, 1, 3, 4, will compute points outside of the iteration domain. This means

that we must consequently time the graph to get sure that the valid data will be

the last produced data. For the �rst strongly connected set {V0, V1}, the hyperplane
containing the point [1, 3] as a shorter distance to the hyplerplane containing [0, 0],

than the hyperplane containing [2, 3]. This means that V0 must be scheduled before

V1. To consequently time the network we must add a delay on the arc going from

V1 to V0 (see Figure 10.3). Timing all the strongly connected sets that way leads to

a translation of the iteration domain for the vertices 0, 1, 3, 4 (see Figure 10.4).

mac0

mac1

mac2

mac3

mac4

Figure 10.3: Valid timed network.

The resulting timed network needs to be connected to input and output ports.

Knowing which point of the iteration each vertex implements, we must instantiate a

computation less actor that creates for each vertex a valid sequence of input tokens.

A second computation less actor gather the output of the actors and outputs the

relevant data. For some kind of execution (vector s1 and s2) the input distributing

actor behaves as a fork, and the output gathering actor behaves as a join. For vector

s3 the actor behavior is more complicated and must output dummy (or zeroed) data

for the out of execution domain actors iterations. The information available are

su�cient to generate these actors, but adds some complexity to the process.

128 Loop partitioning techniques for Interface based Synchronous Dataflow

i

j

Figure 10.4: Iteration domain after graph timing.

The original hierarchical representation had no degree of parallelism, but the

resulting representation after transformation reveals �ve degrees out of nine available

for the �at representation. The other available projection vectors would give less

parallelism, with more regularity in the computation as the activity rate of cells

would be homogeneous over the network.

This technique advantage is that it generates execution pattern like pipeline (vec-

tor s3 in example), vectorization (vectors s1 and s2 in example). Its main drawback

is that the resulting network size depends on the iteration domain size, and the

minimum reachable size is equal to the smallest dimension of the iteration domain.

10.3 Iteration domain tiling

The technique presented in Section 7.5 proposes to partition an iteration do-

main into small blocks thus reducing communication load and increasing computa-

tion granularity. Hierarchical representation in SDF graphs have to face the issue

of �nding a trade-o� between parallelism and computation granularity for better

multi-processor implementations. All the available parallelism can be revealed by

�attening the hierarchical representation but dramatically increases the number of

vertices to schedule and the amount of communications. The technique described

previously proposes to partition the iteration domain by �nding the best projection

of the iteration domain onto an execution domain. This technique increases the

Iteration domain tiling 129

parallelism available compared to the hierarchical representation while maintaining

the number of vertices to schedule at an average level. While this technique provides

the scheduler with a clustered representation, it does not tackle the problem of actor

synchronizations. The nested loop partitioning technique described in section 7.5

proposes to partition the iteration domain using �tiles�. Those tiles can be shaped

and scaled to �t memory properties of the target architecture and minimize synchro-

nizations between processing elements. This technique appears to be well suited to

SDF graph hierarchy partitioning as it deals with the sames issues.

In the following we will demonstrate the use of this technique in the SDF context

using results from the previous section and the same matrix vector product example.

This technique being based on distance vector extraction from an application, the

distance vector extraction from an interface based hierarchical SDF representation

is the same than the previously described. Computing the tile shape and size is then

the same as described in Section 10.2. The next section will explain the network

synthesis from a tiled iteration domain.

10.3.1 Limitations

As to not increase the complexity of the transformed graph, it was chosen to limit

this transformation to the use of canonical tiles that can be de�ned as a scaling of

the tile whose edges are the N linearly independent vector of H, with N being the

depth of the nested loops. If multiple vectors of D are linearly dependent, one must

choose the greatest vector. This allows to have homogeneous tiles over the network,

when other tile shape can lead to constructing di�erent tiles on the borders of the

iteration domain. In addition di�erent tile shape gives harder to synthesize tile

interconnections with CSDF behavior in some cases. Limiting the problem of such

tiles also decreases the complexity of the transformation as �nding the optimal tile

shape is reduced to �nding the optimal scaling factor.

10.3.2 SDF network synthesis from partitioned iteration do-

main

For a tile shape as described in the limitation, synthesizing the network is made

simple. In fact such tile shape leads to a canonical tile being a scale-down of the

whole iteration domain. The only requirement of this tile compared to the factorized

representation is to output data produced by its inner loops. Thus the construction

of the canonical tile is performed by taking the SDF nested loop representation and

parameterized its iteration domain in respect to the tile bounds. Then arcs corre-

sponding to dependencies in the inner loop are connected through the hierarchical

130 Loop partitioning techniques for Interface based Synchronous Dataflow

levels by ports. As mentioned in the limitations, the canonical tile is just a scaling of

the tile whose edges are the dependency vectors N linearly independent vectors from

the greatest vectors of D. Thus the scaling of the tile is performed by a multiplica-

tion of the canonical tile by the scaling vector s. As the shape of the tile is limited to

the one described above, the communication and computation volume ratio remain

the same when scaling. Thus one must determine the best scaling factor based on

the available parallelism of the target architecture.

Bringing inner loops iteration values to the outside of the tile must be performed

in the following way. For each level of hierarchy of the nested loop starting from the

inner loop, for all edges carrying a delay greater than zero:

1. The data carried by the edge must be broadcasted and outputs on a sink

interface if not already with a consumption equal to the delay value as depicted

in Figure 10.5 and 10.7.

mati

vecti

vecto

2

N

N*N

1
2

2

N

Dinit

X
1

1

1 2

2

2
1 1

Figure 10.5: Connecting inner loop 0 iteration data to the outside.

2. All unconnected output ports po (created by the previous step in a previous

hierarchy level) of the single actor Ai (except for the inner most hierarchy

level) must get connected to a new sink interface with a consumption value

equal to q(Ai) ∗ prod(po) as depicted in Figure 10.6.

When the canonical tile has been de�ned, one must create the tile interconnec-

tions to form the �nal tiled network. To do so, one has to take the canonical tile,

and duplicate it as many time as needed in the �nal network. Then, we can create

the interconnections with its neighbors. As we limit the study to canonical tiles gen-

erated by the dependency matrix (see 10.3.1), the tile has just to be connected to its

direct neighbors, which eases the connection step. We �rst connect the canonical tile

to the actors that do not produce tokens involved in the iteration dependency. Then

we connect the canonical tile to the actors that produce the token that initializes

the data on the outer most delay (dimension 0). The canonical tile is then repeated

along the dimension corresponding to the data mentioned above. Then the output

Iteration domain tiling 131

mati

vecti

vecto

2

2

2*2

1
2

2

2

Dinit

X
1

1

1 1

2

2
1 1 1 2 loop0

Figure 10.6: Connecting unconnected output port of the inner actor.

mati

vecti

vecto

2

2

2*2

1
2

2

2

Dinit

X
1

1

1 1

2

2
1 1 1 2 loop0

2 2 loop1

Figure 10.7: Connecting inner loop 1 iteration data to the oustide.

data are connected to the relevant actor. In a second step, the created dimension

(dimension 0) is connected to the input data that initializes the delay on the di-

mension 1 (one level of hierarchy deeper), and the dimension 0 is repeated along

dimension 1. The output data of dimension 1 are connected to the relevant actor.

The procedure iterates as many times as needed by the network. This procedure is

depicted in Figure 10.10 and the equivalent java object code is described in Figure

10.8.

public void connec tT i l e s (Vertex cannon i ca lT i l e , int ∗ dims , int nbDims){
cannon i ca lT i l e . connectToInputData (0) ;
Dimension<Vertex> dim = new Dimension (cannon i ca lT i l e , dims [0]) ;
dim . connectToOutputData (0) ;
for (int i = 1 ; i < nbDims ; i ++){

dim . connectToInputData (i) ;
Dimension<Vertex> dim = new Dimension (dim , dims [i]) ;
dim . connectToOutputData (i) ;

}
}

Figure 10.8: Procedure for connecting tiles into the network.

132 Loop partitioning techniques for Interface based Synchronous Dataflow

10.3.3 The matrix vector product example

The application used for this example is the same factorized representation of the

matrix vector product used in Section 7.4. In the following the number of column

Nc and the number of row Nl equal to four Nc = Nl = 4. The dependency matrix

for this matrix vector product is:

D =

(
1 0

0 1

)

X
mati

vecti

vecto

Nl

Nl

1
Nl

Nl

Nl
1

1

1 1

Nl

Nl

Dinit

M

V

0

Nc*Nl Nc*Nl Nc*Nl

Nl Nl

Nl Nl

VNl Nl

Figure 10.9: Network before tiling.

Based on this shape one must then determine the scaling vector for this tile

that �ts best the target architecture. In the following we will use the scaling vector

S = [22] that gives the canonical tile:

P =

(
2 0

0 2

)

Figures 10.5, 10.6 and 10.7 show the transformation of the nested actors to

become the canonical tile based on the steps described previously. Figure 10.10

shows the network synthesis steps.

The resulting network (see Figure 10.11)exposes most of the parallelism for a

given architecture with 4 degrees of parallelism, in a factorized network that mini-

mizes the number of vertices to schedule by a factor 4 compared to a �at network.

The scaling vector can easily be adapted to �t another kind of architecture, and

does not have to be homogeneous, meaning that the tile can be scaled in a preferred

dimension to �t communication volume reduction purpose.

10.4 Conclusion

We proved that the domain projection method and the domain tiling method

can be used in the context of Synchronous Data Flow to extract parallelism from a

hierarchical representation using the interface based model. Limitations inherent to

synchronous data �ow limit the level of optimization that could be performed, but

still brings improvements regarding the parallelism extraction. The matrix vector

Conclusion 133

X
1

1

1

N

N

2

2

11 1 2

2
2

2
1

2

2

2

2

44

2

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

2

2

2

2

44

2

8M

4
0

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

2

2

2

44

2

8

4

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

X
1

1

1

22

2

11 1 2

2
2

2
1

X
1

1

1

2

2

2

2

11 1 2

2
2

2
1

M

V

0
R

2

22
4

2

4

2

2

4

2

2

4 4 4

4

2

2

4

2

2

2

2

4
4

44

2

2

2

2

2

Cannonical Tile Cannonical tile repeated in dimension 1

Dimension 1 repeated in dimension 2

R

Figure 10.10: Steps of network synthesis.

example used shows the kind of structural optimization that can be extracted from

the hierarchical representation.

Those methods can �nd application in other multi-dimensional problems such

as video or image coding/decoding. We have identify critical zones in the MPEG-4

encoder that could bene�t from these transformations. In the DC intra prediction

mode of the MPEG-4 AVC/H.264 encoder (mode 2 of intra prediction), blocks of a

macro-block are constructed using data from the upper and left blocks (see Figure

10.12). It means for macro-block encoding the blocks that reside on a macro-block

top and left edges, the encoder needs data from the upper and left macro-block.

Thus it is possible to see this problem as a nested loop, which outer loop iterates

on the lines, and inner loop iterates on the macro-blocks of a line with dependencies

between lines (from top to bottom) and dependencies between macro-blocks (from

left to right). The two described techniques allow to extract parallelism from the

factorized description of the MPEG-4 AVC/H.264 encoder at macro-block level. For

a full HD picture (1080 lines of 1920 pixels) the number of luminance macro-blocks is

8100 thus, the �at representation exposes too much parallelism for most multi-core

architectures. Using the tiling technique, the available parallelism could be greatly

improved to �t onto today's multi dsp-cores architecture (up to 6 DSP cores on

Texas Instrument TMS320C6472). Moreover using the tiling technique followed by

a domain projection of the tiled network, one could construct a pipelined execution

of the decoder. Unfortunately due to a lack of time, we did not manage to implement

the MPEG-4 AVC/H.264 encoder in PREESM to test the described features.

134 Loop partitioning techniques for Interface based Synchronous Dataflow

X
11

1

2 2

2

2

1
1

1
22

2
2

1

X
11

1

2 2

2

2

1
1

1
22

2
2

1

X
11

1

2
2

2

1
1

1
22

2
2

1

X
11

1

2 2

2

2

1
1

1
22

2
2

1

MV

0
R

2

2
2

4

2 4

2 2 4 2 2 4
4

4

4

2 2 4

2

2

22

44

4
4

2

22

22

F
ig
u
r
e
1
0
.1
1
:

N
etw

o
rk

a
fter

tilin
g.

Conclusion 135

Figure 10.12: Picture of 16×16 macro-blocks, and zoom in on macro-block encoding/de-
coding dependencies in DC mode (mode 2).

136 Loop partitioning techniques for Interface based Synchronous Dataflow

Chapter 11

Conclusion, Current Status and

Future Work

11.1 Conclusion

In this thesis we have presented the context of rapid prototyping and associated

computation models. The contribution of this thesis targets implementation in the

PREESM software but other tools such as DIF or Ptolemy could take advantage of

this work. Chapter 8 shows how a new hierarchy model can ease the designer work

and provide the designer with a new interpretation enabling new SDF behavior.

Moreover the top-down design approach is closer to a design �ow in which the

application is described in several steps starting from coarse grain to lead to �ne

grain description.

Chapter 9 describes how the code generation can take advantage of the hierar-

chy semantic to generate C code in a comprehensible format. This code generation

method also gives more �exibility for the designer in term of memory allocation and

regarding the wide range of architecture it can target through the use of xslt trans-

formation �les. This code generation method could also be extended to language

like VHDL, by de�ning new transformations �les.

Chapter 10 gives methods to exploit parallelism embedded into hierarchy with

strong connectivity. The �rst method proves the validity of distance vector ex-

traction from a nested hierarchy in a synchronous data �ow graph. The domain

projection transformation leads to a valid solution, but the network synthesis is not

simple and involves using data organization vertices for proper execution. The sec-

ond method uses results from the �rst method, and gives a clustered representation

that best �ts the purpose of parallelism extraction. Moreover the second method

is much more �exible, as the choice of the scaling vector allows to create tiles with

computation volumes adapted to the target interface.

137

138 Conclusion, Current Status and Future Work

The works produced in this thesis converge onto improving the rapid prototyping

framework PREESM. Other tools such as DIF, could also take advantage of the

hierarchy model, and the transformations proposed in 10.

11.2 Current Status

The work presented in this thesis has been partially implemented in the tool

PREESM. The hierarchical model is now the base speci�cation model that PREESM

takes as an input. This model is implemented in the graph library SDF4J (SDF

for Java) 1. The library provides basic transformation such as hierarchy �atten-

ing, that extracts the hierarchy information to provide a �at representation and

HSDF transformation, transforming the SDF graph into an HSDF graph. The DAG

transformation is also implemented to provide an input to the scheduling step of

PREESM. The code generation is fully implemented as a PREESM plugin and is

used to generate code for applications such as LTE, or MPEG4-SP decoder. Some

allocation strategies such as bu�er lifetime optimizations are still a work in progress,

but should soon be fully implemented. The loop transformations are currently under

work for implementation in SDF4J. The tiling transformation is a priority in order

to improve our MPEG4-SP decoder description for multi-core code generation.

11.3 Future Work

The work developed on loop partitioning could be of interest for other Data

Flow models. For example the CAL language rely on the Data Flow Process Net-

work model, and is used in the Orcc 2 tool to generate single-processor code. To

e�ciently target multi-cores, one of the work in progress is to identify data �ow

models such as SDF or PSDF in the description in order to apply optimization tech-

niques. SDF zone in a CAL description could bene�t of the loop transformation

work for optimized multi-processor implementation. Another contribution could be

to extend the loop transformation to PSDF description in order to optimize appli-

cations with dynamically controlled parameters.The PSDF model is currently under

implementation in the SDF4J library, but still lacks some �attening or transforma-

tions technique that would allow to extract parallelism from a PSDF description. A

drawback of the SDF model is that it needs to be globally synchronous, while the

PSDF introduces the concept of local synchrony. One may like to use the concept of

local synchrony to specify conditional exclusive data-path in the graph. This would

1. http://sdf4j.sf.net
2. http://orcc.sf.net/

Future Work 139

allow to describe conditional actors whose behavior could be speci�ed by a �nite

set of disconnected networks. In an MPEG decoder for example, the macro-block

decoding structure is conditioned by the kind of coding used. Thus to specify the

macro-block decoding actor, one could want to specify one network for each behav-

ior. This representation would lead to exclusive data-paths in the graph. This kind

of speci�cation can be made using PSDF but introduces a lot of complexity for the

designer. It could be decided to describe a sub-set of PSDF that takes advantage

of the �xed interface of Interface-based SDF to ensure local synchrony in all cases.

Then each exclusive data-path could be independently treated and data routed at

run-time. Thus the designer would not have to know much about the PSDF seman-

tic, and would just have to specify the network description for each condition value.

A conditioning port would carry the token that condition the network description

to execute and would be interpreted as the sub-init stage of a PSDF graph.

Considering the rapid prototyping work�ow, a future work would be to perform

the graph transformations, and scheduling in a an iterative way (see Figure 11.1).

Thus, in a �rst iteration of the work�ow, the graph could get no transformation,

then be scheduled and the solution evaluated. Then by analyzing the solution, the

tool could decide if more or less parallelism has to be extracted to improve the

solution, and pass parameters to the graph transformation step, and scheduling step

for another run of the work�ow. The work�ow could keep running this way, until

the solution found reaches a minimum. This kind of work�ow would take much

longer to perform, than a single pass work�ow, but could provide better result. A

lot of work would have to be done on the analyzing step, that must decide whether

or not the solution as reached a minimum, and de�ne parameters that would lead

transformation and scheduling for the another work�ow pass.

As a �nal conclusion, the introduced model of hierarchy coupled with the pro-

posed transformation, seems to be of great interest for a rapid prototyping frame-

work. A lot of e�ort has been put into the implementation of the tool PREESM

to attract industrial partners to collaborate. Up to this point, Texas Instrument

has shown a lot of interest in using the tool, and we hope to attract other users or

contributors in the near future.

140 Conclusion, Current Status and Future Work

Algorithm specification
actor A (bool COMPUTE_Y) uint(size=24) PIX ==>
 uint(size=8) R, uint(size=8) G, uint(size=8) B,
 uint(size=8) Y:

 int RSHIFT = 16; int RMASK = 255;
 int GSHIFT = 8; int GMASK = 255;
 int BSHIFT = 0; int BMASK = 255;
 int COUNT = 8;

 action: PIX:[pix] repeat COUNT ==>
 R:[r] repeat COUNT,
 G:[g] repeat COUNT,
 B:[b] repeat COUNT,
 Y:[y] repeat COUNT
 var
 int i := 0
 do
 // imperative version to compute R, G, B
 while i < COUNT do
 r[i] := bitand(rshift(pix[i], RSHIFT), RMASK);
 g[i] := bitand(rshift(pix[i], GSHIFT), GMASK);
 b[i] := bitand(rshift(pix[i], BSHIFT), BMASK);

 i := i + 1;
 done

Architecture specification
<?xml version="1.0" encoding="UTF-8"?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.4">
 <spirit:name>4C64</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>C64_1</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue
spirit:referenceId="componentType">operator</spirit:config
urableElementValue>
 <spirit:configurableElementValue
spirit:referenceId="refinement">VPU0</spirit:configurableEle
mentValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>C64_2</spirit:instanceName>
 <spirit:componentRef spirit:library=""
spirit:name="C64x"
 spirit:vendor="" spirit:version=""/>

ACC

PE

PE

Algorithm analysis
&

optimization
Architecture analysis

Allocation
&

scheduling

Targets
code generation

Evaluateparameters

Figure 11.1: The rapid prototyping work�ow used in an iterative way

List of Figures

2.1 Réseau d'acteurs échangeant des jetons de données 9

2.2 Example de nid de boucles imparfait 10

2.3 Exemple de nid de boucles . 11

2.4 Nid de boucles transformées pour permettre l'exécution en parallèle

des itérations de la boucle la plus interne 13

2.5 Exemple de domaine d'itération et plusieurs solutions de projection . 15

2.6 Exemple de domaine d'itération et plusieurs solutions de pavage. . . . 16

3.1 Exemple d'application d'IDCT2D utilisant le modèle hiérarchique . . 18

3.2 Réseau de petri symbolisant la synchronisation des processus de calcul

et de communication . 20

3.3 Etapes de la génération de code . 21

3.4 Exemple de produit matrice vecteur en présentation SDF factorisée . 22

3.5 Procédure de pavage du produit matrice vecteur 22

5.1 A Rapid Prototyping Frame (RPF) work design �ow. 31

5.2 The recon�gurable Video Coding Framework. 34

5.3 BS description fragment of an MPEG-4 AVC bitstream. 36

5.4 BS schema fragment of MPEG-4 AVC codec. 36

6.1 The processing element structure. 39

6.2 Intra-chip interconnects: a) ring topology, b)NOC topology, c) Bus

topology, d) Crossbar topology. 40

6.3 Data-�ow Models of computation taxonomy. 42

6.4 An SDF graph and its corresponding topology matrix. 45

6.5 Illustration of the computation less vertices. 46

6.6 An SDF graph and its precedence graph. 47

6.7 An HSDF graph. 48

6.8 BDF switch and select actors . 48

6.9 A Cyclo-static Data Flow network. 50

6.10 PSDF speci�cation of a sub-sampler actor. 52

141

142 List of Figures

6.11 DSP system design with DIF. 55

6.12 Implementation of a Sine wave generator in ptolemy. 56

6.13 StreamIt model of the matrix vector product example. 63

6.14 From SDF and IP-XACT descriptions to code generation. 64

6.15 Screen shot of the PREESM framework. 64

6.16 MPEG-4 decoder model speci�ed in SynDEx. 65

6.17 The MCSE design cycle. 65

6.18 The MCSE model components. 66

6.19 Overview of the application modeling tools and their di�erent abilities 66

7.1 Nested loop example. 68

7.2 Nested loops example. 68

7.3 Transformed nested loops, with some inner loops being computed in

parallel. 70

7.4 The matrix vector iteration domain with dependencies for a 3 × 3

matrix. 73

7.5 Projections of the iteration domains along the three projection vectors. 77

7.6 The matrix vector product iteration domain with di�erent tile 78

8.1 Application modeling in the Rapid Prototyping work�ow. 82

8.2 The integration of the Interface-based SDF in the data �ow taxonomy. 83

8.3 Pino's clustering rules: (a) illustrates the violation of the �rst prece-

dence shift condition, (b) illustrates the violation of the hidden delay

condition, and (c) illustrates the violation of the cycle introduction

condition. 85

8.4 Design of a sub-graph. 87

8.5 A sub-graph after HSDF transformation. 87

8.6 Local edge in sub-graph. 88

8.7 Edge scope preservation in Interface based hierarchy. 89

8.8 Source example and its execution pattern. 90

8.9 Sink example and its precedence graph. 91

8.10 IDCT2D_CLIP SDF graph . 92

9.1 PREESM framework structure. 96

9.2 Code generation phase in the rapid prototyping work�ow. 97

9.3 Petri network of the thread synchronizations 98

9.4 Code generation steps. 99

9.5 Code generation procedure. 100

9.6 Graph Transformation procedure. 100

9.7 A graph containing a cycle and its resulting transformation. 101

List of Figures 143

9.8 Procedure for adding broadcast on input interfaces. 101

9.9 Procedure for adding ring bu�er on output interfaces. 102

9.10 Broadcast and ring bu�er adding rules. 102

9.11 Bu�er allocation procedure. 103

9.12 A graph and its bu�er life-time using a �at allocation. 104

9.13 A graph and its bu�er life-time using a hierarchical allocation. 104

9.14 A graph and its bu�er life-time using a �at bu�er allocation with

hierarchical optimization. 105

9.15 Procedure to compute a bu�er life-time. 106

9.16 A graph and its bu�er life-time using a �at bu�er allocation with

life-time based optimization. 106

9.17 An input port and its equivalent bu�er allocation. 107

9.18 IDL de�nition of an actor . 108

9.19 A two actor SDF graph and its corresponding code generation. 109

9.20 A fork vertex and its two possible code generations. 110

9.21 A join vertex and its two possible code generations 110

9.22 A broadcast vertex and its two possible code generations 110

9.23 A ring vertex and its two possible code generations 111

9.24 Procedure to allocate an IPC send. 112

9.25 Procedure to allocate an IPC receive. 112

9.26 A scheduled graph and the resulting execution. 113

9.27 The hierarchical representation of the FFT. 115

9.28 The two-processor schedule of the FFT. 115

9.29 Generated code from the hierarchical FFT actor. 116

9.30 Code generation for core 0. 118

9.31 Code generation for core 1. 119

10.1 Speci�cation optimization phase in the rapid prototyping work�ow. . 122

10.2 Matrix vector product. 125

10.3 Valid timed network. 127

10.4 Iteration domain after graph timing. 128

10.5 Connecting inner loop 0 iteration data to the outside. 130

10.6 Connecting unconnected output port of the inner actor. 131

10.7 Connecting inner loop 1 iteration data to the oustide. 131

10.8 Procedure for connecting tiles into the network. 131

10.9 Network before tiling. 132

10.10Steps of network synthesis. 133

10.11Network after tiling. 134

144 List of Figures

10.12Picture of 16× 16 macro-blocks, and zoom in on macro-block encod-

ing/decoding dependencies in DC mode (mode 2). 135

11.1 The rapid prototyping work�ow used in an iterative way 140

Bibliography

[ACD74] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A compari-

son of list schedules for parallel processing systems. Commun. ACM,

17(12):685�690, 1974. 61

[AYF00] A.Darte, Y.Robert, and F.Vivien. Scheduling and automatic paral-

lelization. Birkhauser, 2000. ISBN 0-8176-4149-1. 10

[BB01] B. Bhattacharya and S. S. Bhattacharyya. Parameterized data�ow

modeling for DSP systems. IEEE Transactions on Signal Processing,

49(10):2408�2421, October 2001. 42, 51, 52, 85

[BBE+08] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli,

C. von Platen, and M. Raulet. OpenDF - a data�ow toolset for recon-

�gurable hardware and multicore systems. SIGARCH Comput. Archit.

News, 2008. 32

[BDRR94] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (pen)-

ultimate tiling? Integr. VLSI J., 17(1):33�51, 1994. 75

[BEJ+09] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,

and M. Raulet. Overview of the MPEG Recon�gurable Video Coding

Framework. Springer journal of Signal Processing Systems. Special

Issue on Recon�gurable Video Coding, 2009. 59

[Bel06] P. Belanovic. An Open Tool Integration Environment for E�cient De-

sign of Embedded Systems in Wireless Communications. PhD thesis,

Technischen Universitat Wien, 2006. 32

[BELP95] G. Bilsen, M. Engels, R. Lauwereins, and JA Peperstraete. Cyclo-

static data �ow. In Acoustics, Speech, and Signal Processing, 1995.

ICASSP-95., 1995 International Conference on, volume 5, 1995. 42

[BJK+95a] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.

Randall, and Y. Zhou. Cilk: An e�cient multithreaded runtime sys-

tem. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUT-

ING, 37:207�216, 1995. 32

147

[BJK+95b] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Ran-

dall, and Y. Zhou. Cilk: An e�cient multithreaded runtime system.

ACM SigPlan Notices, 30(8):216, 1995. 60

[Buc93] Joseph T. Buck. Scheduling Dynamic Data�ow Graphs with Bounded

Memory Using the Token Flow Model. PhD thesis, EECS Department,

University of California, Berkeley, 1993. 42

[CDS96] S. Carr, C. Ding, and P. Sweany. Improving software pipelining with

unroll-and-jam. In PROCEEDINGS OF THE HAWAII INTERNA-

TIONAL CONFERENCE ON SYSTEM SCIENCES, volume 29, pages

183�192. Citeseer, 1996. 69

[CI94] J. P. Calvez and D. Isidoro. A codesign experience with the mcse

methodology. In CODES '94: Proceedings of the 3rd international

workshop on Hardware/software co-design, pages 140�147, Los Alami-

tos, CA, USA, 1994. IEEE Computer Society Press. 59

[DEY+09] Andreas Dahlin, Johan Ersfolk, Guyfu Yang, Haitham Habli, and Jo-

han Lilius. The canals language and its compiler. In SCOPES '09:

Proceedings of th 12th International Workshop on Software and Com-

pilers for Embedded Systems, pages 43�52, New York, NY, USA, 2009.

ACM. 58

[DMI98] L. Dagum, R. Menon, and S.G. Inc. OpenMP: an industry standard

API for shared-memory programming. IEEE Computational Science

& Engineering, 5(1):46�55, 1998. 60

[DV95] A. Darte and F. Vivien. A classi�cation of nested loops parallelization

algorithms. In Emerging Technologies and Factory Automation, 1995.

ETFA '95, Proceedings., 1995 INRIA/IEEE Symposium on, volume 1,

pages 217 �234 vol.1, 10-13 1995. 69

[ecl] Eclipse Open Source IDE : Available Online.

http://www.eclipse.org/downloads/. 30

[EJ03a] J. Eker and J. Janneck. CAL Language Report. Technical Report

ERL Technical Memo UCB/ERL M03/48, University of California at

Berkeley, December 2003. 59

[EJ03b] J. Eker and J. W. Janneck. CAL Language Report. Technical report,

ERL Technical Memo UCB/ERL M03/48, University of California at

Berkeley, December 2003. 32

[EJL+03] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendor,

e Sonia, and S. Yuhong. Taming heterogeneity�the Ptolemy approach.

In Proceedings of the IEEE, volume 91, January 2003. 59

[Ele97] A. Eleftheriadis. Flavor: A Language for Media Representation. ACM

Int'l Conf. on Multimedia, pages 1�9, 1997. 35

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability. Freeman

San Francisco, 1979. 106

[GJRB10] R. Gu, J.W. Janneck, M. Raulet, and S.S. Bhattacharyya. Exploiting

statically schedulable regions in data�ow programs. Journal of Signal

Processing Systems, pages 1�14, 2010. 62

[GLS99] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyp-

ing for real-time embedded heterogeneous multiprocessors. In Proceed-

ings of 7th International Workshop on Hardware/Software Co-Design,

CODES'99, Rome, Italy, May 1999. 32

[GR96] R. Govindarajan and S. Rengarajan. Bu�er allocation in regular

data�ow networks: An approach based on coloring circular-arc graphs.

In HIPC '96: Proceedings of the Third International Conference on

High-Performance Computing (HiPC '96), page 419, Washington, DC,

USA, 1996. IEEE Computer Society. 105

[GS03] T. Grandpierre and Y. Sorel. From algorithm and architecture speci-

�cation to automatic generation of distributed real-time executives: a

seamless �ow of graphs transformations. In Proceedings of First ACM

and IEEE International Conference on Formal Methods and Models for

Codesign, MEMOCODE'03, Mont Saint-Michel, France, June 2003. 28,

30, 32, 58

[GWP+10] J Gorin, M Wipliez, J Piat, F Prêteux, and M Raulet. An LLVM-

based decoder for MPEG Recon�gurable Video Coding. In To appear

in Signal Processing Systems (SiPS) 2010, 2010. 29

[HKB05] Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya. Software

synthesis from the data�ow interchange format. In SCOPES '05: Pro-

ceedings of the 2005 workshop on Software and compilers for embedded

systems, pages 37�49, New York, NY, USA, 2005. ACM. 54

[HKK+04] C.-J. Hsu, F. Keceli, M.-Y. Ko, S. Shahparnia, and S. S. Bhat-

tacharyya. Dif: An interchange format for data�ow-based design tools.

In Proceedings of the International Workshop on Systems, Architec-

tures, Modeling, and Simulation, Samos 2004, 2004. 32

[HPB08] C. Hsu, J. L. Pino, and S. S. Bhattacharyya. Multithreaded simulation

for synchronous data�ow graphs. In Proceedings of the Design Automa-

tion Conference, pages 331�336, Anaheim, California, June 2008. 83

[Int] International Standard ISO/IEC FDIS 23001-5. MPEG systems tech-

nologies - Part 5: Bitstream Syntax Description Language (BSDL).

34

[iso04] ISO/IEC14496 Coding of audio-visual objects. 2004. 34, 35

[ISO09] ISO/IEC FDIS 23001-4. MPEG systems technologies � Part 4: Codec

Con�guration Representation, 2009. 59

[J. 07] J. Thomas-Kerr and I. Burnett and C. Ritz and S. Devillers and D. De

Schijver and R. Van de Walle. Is That a Fish in Your Ear? A Universal

Metalanguage for Multimedia. IEEE Multimedia, 14(2):72�77, 2007.

35

[jHKyK+04] Chia jui Hsu, Fuat Keceli, Ming yung Ko, Shahrooz Shahparnia, and

Shuvra S. Bhattacharyya. Dif: An interchange format for data�ow-

based design tools. In in Proceedings of the International Workshop

on Systems, Architectures, Modeling, and Simulation, Samos, pages

423�432, 2004. 54

[KA98] Y.K. Kwok and I. Ahmad. Benchmarking the task graph schedul-

ing algorithms. In Parallel Processing Symposium, 1998. IPPS/SPDP

1998. Proceedings of the First Merged International... and Symposium

on Parallel and Distributed Processing 1998, pages 531�537, 1998. 62

[KA01] K. Kennedy and J.R. Allen. Optimizing compilers for modern archi-

tectures: a dependence-based approach. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA, 2001. 69

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.

In J. L. Rosenfeld, editor, Information Processing '74: Proceedings

of the IFIP Congress, pages 471�475. North-Holland, New York, NY,

1974. 41

[Kie91] HA Kierstead. A polynomial time approximation algorithm for dy-

namic storage allocation. Discrete Mathematics, 88(2-3):231�237, 1991.

106

[KKBP91] D. Kulkarni, K. G. Kumar, A. Basu, and A. Paulraj. Loop partition-

ing for distributed memory multiprocessors as unimodular transforma-

tions. In ICS '91: Proceedings of the 5th international conference on

Supercomputing, pages 206�215, New York, NY, USA, 1991. ACM. 69

[KSLB03] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-

integrated development of embedded software. Proceedings of the

IEEE, 91(1):145�164, 2003. 32

[Lam74] L. Lamport. The parallel execution of DO loops. Communications of

the ACM, 17(2):83�93, February 1974. 13, 69, 70, 126

[Lee01] E.A. Lee. Overview of the ptolemy project. Technical memorandum

UCB/ERL M01/11, University of California at Berkeley, 2001. 32

[Lee06] E.A. Lee. The problem with threads. EECS in IEEE Computer,

39(5):33�42, 2006. 30

[LHJ+01] Edward A. Lee, C. Hylands, J. Janneck, J. Davis II, J. Liu, X. Liu,

S. Neuendor�er, S. Sachs M. Stewart, K. Vissers, and P. Whitaker.

Overview of the ptolemy project. Technical Report UCB/ERLM01/11,

EECS Department, University of California, Berkeley, 2001. 56

[LHS90] L.S. Liu, C.W. Ho, and J.P. Sheu. On the parallelism of nested for-

loops using index shift method. In Proceedings of the 1990 International

Conference on Parallel Processing, volume 2, pages 119�123, 1990. 70

[LM87a] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous

data �ow programs for digital signal processing. IEEE Trans. Comput.,

36(1):24�35, 1987. 89

[LM87b] E.A Lee and D.G Messerschmitt. Synchronous data �ow. Proceedings

of the IEEE, 75(9):1235�1245, sept 1987. 41, 44, 45

[LMTKJ07] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-Kerr, and Jörn

Janneck. Recon�gurable Media Coding: A New Speci�cation Model for

Multimedia Coders. In IEEE Workshop on Signal Processing Systems,

pages 481�486, 2007. 35

[LP95] Edward A. Lee and Thomas M. Parks. Data�ow Process Networks.

Proceedings of the IEEE, 83(5):773�801, May 1995. 41, 44

[LPM09] Christophe Lucarz, Jonathan Piat, and Marco Mattavelli. Automatic

Synthesis of Parsers and Validation of Bitstreams Within the MPEG

Recon�gurable Video Coding Framework. Journal of Signal Processing

Systems, page online, 07 2009. 29

[Man97] Naraig Manjikian. Combining loop fusion with prefetching on shared-

memory multiprocessors. In ICPP, pages 78�, 1997. 69

[MB01] P.K. Murthy and S.S. Bhattacharyya. Shared bu�er implementations

of signal processing systems usinglifetime analysis techniques. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 20(2):177�198, 2001. 106

[MBL97] P.K. Murthy, S.S. Bhattacharyya, and E.A. Lee. Joint minimization

of code and data for synchronous data�ow programs. Formal Methods

in System Design, 11(1):41�70, 1997. 105

[mca] The Multicore Association. http://www.multicore-

association.org/home.php. 32

[MF86] D.I. Moldovan and J.A.B. Fortes. Partitioning and mapping algorithms

into �xed size systolic arrays. Computers, IEEE Transactions on, C-

35(1):1�12, Jan. 1986. 71

[M.P10] M.Pelcat. Rapid Prototyping and Data�ow-Based Code Generation for

the 3GPP LTE eNodeB Physical Layer mapped onto Multi-Core DSPs.

PhD thesis, Institut National des Sciences Appliqués de Rennes, sept

2010. 96, 116

[opea] OpenCL. http://www.khronos.org/opencl/. 32

[opeb] OpenMP. http://openmp.org/wp/. 32

[PAN08] M. Pelcat, S. Aridhi, and J. F. Nezan. Optimization of automat-

ically generated multi-core code for the LTE RACH-PD algorithm.

0811.0582, November 2008. DASIP 2008, Bruxelles : Belgium. 30

[PBL95] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A hierarchical mul-

tiprocessor scheduling system for DSP applications. In Proceedings of

the IEEE Asilomar Conference on Signals, Systems, and Computers,

pages 122�126 vol.1, Paci�c Grove, California, November 1995. 47, 83,

84

[PBPR09] Jonathan Piat, Shuvra S. Bhattacharyya, Maxime Pelcat, and Mickaël

Raulet. Multi-Core Code Generation From Interface Based Hierar-

chy. In Conference on Design and Architectures for Signal and Image

Processing (DASIP) 2009 Conference on Design and Architectures for

Signal and Image Processing (DASIP) 2009, page online, Sophia An-

tipolis France, 12 2009. 18, 33, 96

[PBR09] J. Piat, S. S. Bhattacharyya, and M. Raulet. Interface-based hierar-

chy for Synchronous Data-Flow Graphs. in Signal Processing Systems

(SiPS), 2009. 18, 57, 101, 103

[PBR10] J Piat, S.S Bhattacharyya, and M Raulet. Loop transformations for

interface-based hierarchies in sdf graphs. In ASAP 2010, 21st IEEE In-

ternational Conference on Application-speci�c Systems, Architectures

and Processors, july 2010. 21, 121

[PBRP09] J. Piat, S. S. Bhattacharyya, M. Raulet, and M. Pelcat. Multi-core

code generation from Interface based hierarchy. in DASIP (DASIP),

2009. 30

[PC89] J. K. Peir and R. Cytron. Minimum distance: a method for partitioning

recurrences for multiprocessors. IEEE Transactions on Computers,

38(8):1203�1211, August 1989. 70

[PMAN09] M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan. Scalable compile-

time scheduler for multi-core architectures. DATE 2009, 2009. 30

[pol] PolyCore Software Poly-Mapper tool.

http://www.polycoresoftware.com/products3.php. 32

[Pol88] C. D. Polychronopoulos. Compiler Optimization for enhancing Paral-

lelism and their Impact on Architecture Design. IEEE Transactions

on Computers, 37(8):991�1004, August 1988. 70

[Pri91] H. W. Printz. Automatic mapping of large signal processing systems

to a parallel machine. PhD thesis, Carnegie Mellon University, Pitts-

burgh, PA, USA, 1991. 46

[PRP+08] J. Piat, M. Raulet, M. Pelcat, P. Mu, and O. Déforges. An extensible

framework for fast prototyping of multiprocessor data�ow applications.

In IDT08: Proceedings of the 3rd International Design and Test Work-

shop, Monastir, Tunisia, december 2008. 28, 60

[Rau06] M. Raulet. Optimisations Mémoire dans la méthodologie �Adéquation

Algorithme Architecture� pour Code Embarqué sur Architectures Paral-

lèles. PhD thesis, Institut National des Sciences Appliqués de Rennes,

2006. 106

[RPLM08] Mickaël Raulet, Jonathan Piat, Christophe Lucarz, and Marco Mat-

tavelli. Validation of bitstream syntax and synthesis of parsers in the

MPEG Recon�gurable Video Coding framework. In Signal Process-

ing Systems, 2008. SiPS 2008. IEEE Workshop on Signal Processing

Systems, 2008. SiPS 2008. IEEE Workshop on, pages 293 � 298, Wash-

inghton États-Unis, 2008. 29

[SGB06] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In

Application of Concurrency to System Design, 6th International Con-

ference, ACSD 2006, Proceedings, pages 276�278. IEEE Computer So-

ciety Press, Los Alamitos, CA, USA, June 2006. 32, 55

[Sin07] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on

Parallel and Distributed Computing). Wiley-Interscience, 2007. 61

[SL90] G.C. Sih and E.A. Lee. Dynamic-level scheduling for heterogeneous

processor networks. In Proceedings of the Second IEEE Symposium on

Parallel and Distributed Processing, pages 42�49, October 1990. 46

154 List of Figures

[SOIH97] W. Sung, M. Oh, C. Im, and S. Ha. Demonstration Of Codesign

Work�ow In PeaCE. In in Proc. of International Conference of VLSI

Circuit, Seoul, Korea, 1997. 28

[SPI08] SPIRIT Schema Working Group. IP-XACT v1.4: A speci�cation for

XML meta-data and tool interfaces. Technical report, The SPIRIT

Consortium, March 2008. 57

[SS05] Oliver Sinnen and Leonel A. Sousa. Communication contention in task

scheduling. IEEE Trans. Parallel Distrib. Syst., 16(6):503�515, 2005.

61

[TGS+08] BD Theelen, MCW Geilen, S. Stuijk, SV Gheorghita, T. Basten, JPM

Voeten, and AH Ghamarian. Scenario-aware data�ow. 2008. 32

[The07] B.D. Theelen. A performance analysis tool for scenario-aware stream-

ing applications. Quantitative Evaluation of Systems, International

Conference on, 0:269�270, 2007. 55

[TKG+01] William Thies, Michal Karczmarek, Michael Gordon, David Z. Maze,

Jeremy Wong, Henry Ho�man, Matthew Brown, and Saman Amaras-

inghe. Streamit: A compiler for streaming applications. Technical

Report MIT/LCS Technical Memo LCS-TM-622, Massachusetts Insti-

tute of Technology, Cambridge, MA, Dec 2001. 56

[TKJM+07] Joseph Thomas-Kerr, Jorn Janneck, Marco Mattavelli, Ian Burnett,

and Christian Ritz. Recon�gurable Media Coding: Self-Describing

Multimedia Bitstreams. In SIPS 2007. IEEE, 2007. 35

[WG90] M.Y. Wu and D.D. Gajski. Hypertool: A programming aid for

message-passing systems. IEEE Transactions on Parallel and Dis-

tributed Systems, 1(3):330�343, 1990. 62

[WL91] M.E. Wolf and M.S. Lam. A loop transformation theory and an al-

gorithm to maximize parallelism. IEEE Transactions on Parallel and

Distributed Systems, pages 452�471, 1991. 69

[Wol90] M.J. Wolfe. Optimizing supercompilers for supercomputers. MIT Press

Cambridge, MA, USA, 1990. 70

Résumé

Face au défi que représente la programmation des architectures
multi-cœurs/processeurs, il est devenu nécessaire de proposer aux
développeurs des outils adaptés permettant d’abstraire les notions
inhérentes au parallélisme et facilitant le portage d’une application
sur différentes architectures. La méthodologie AAA (Adéquation
Algorithme Architecture) propose au développeur d’automatiser les
étapes de partitionnement, ordonnancement à partir d’une
description haut niveau de l’application et de l’architecture. Cette
méthodologie permet donc le prototypage rapide d’une application
sur différentes architectures avec un minimum d’effort et un résultat
approchant l’optimal. Les apports de cette thèse se situent à la fois
au niveau du modèle de spécification et de ses optimisations
relatives au contexte des architectures parallèles.

Le modèle flux de données répond aux problèmes de modélisation
des applications fortement synchronisées par les données. Le
sous-ensemble SDF (Synchronous Data Flow), limite l’expressivité
du modèle mais apporte un complément d’information permettant
une optimisation efficace et garantissant l’intégrité du calcul dans
tous les contextes. Les travaux développés dans ce mémoire
introduisent un nouveau modèle de hiérarchie dans SDF afin
d’améliorer l’expressivité tout en préservant les propriétés du
modèle initial. Ce modèle basé sur des interfaces, permet une
approche plus naturelle pour le développeur accoutumé au langage
C.

Ce nouveau modèle apportant un complément d’information, nous
proposons également un ensemble de traitement améliorant la
prise en charge des motifs de répétition imbriqués. En effet le
modèle de hiérarchie introduit en première partie permet la
spécification de motifs dit de « nids de boucles » pouvant masquer
le parallélisme potentiel. Il est donc nécessaire d’associer au
modèle des traitements permettant de révéler ce parallélisme tout
en préservant l’aspect factorisé du calcul. Les méthodes
présentées sont adaptées du contexte des compilateurs pour
supercalculateurs et de l’univers des réseaux systoliques.

N° d’ordre : D10-13

Abstract

Since applications such as video coding/decoding or digital
communications with advanced features are becoming more
complex, the need for computational power is rapidly increasing. In
order to satisfy software requirements, the use of parallel
architecture is a common answer. To reduce the software
development effort for such architectures, it is necessary to provide
the programmer with efficient tools capable of automatically solving
communications and software partitioning/scheduling concerns.
The Algorithm Architecture Matching methodology helps the
programmer by providing automatic transformation, partitioning and
scheduling of an application for a given architecture This
methodology relies on an application model that allows to extract
the available parallelism. The contributions of this thesis tackle both
the problem of the model and the associated optimization for
parallelism extraction.

The Data flow model is indeed a natural representation for data-
oriented applications since it represents data dependencies
between the operations allowing to extract parallelism. In this
model, the application is described as a graph in which nodes
represent computations and edges carry the stream of data-tokens
between operations. A restricted version of data-flow, termed
synchronous data-flow (SDF), offers strong compile-time
predictability properties, but has limited expressive power. In this
thesis we propose a new type of hierarchy based on interfaces
(Interface-based SDF) allowing more expressiveness while
maintaining its predictability. This interface-based hierarchy gives
the application designer more flexibility to apply iterative design
approaches, and to make optimizing choices at the design level.
This type of hierarchy is also closer to the host language semantics
such as C because hierarchy levels can be interpreted as code
closures (i.e., semantic boundaries), and allow one to design
iterative patterns.

One of the main problems with this hierarchical SDF model is the
lack of trade-off between parallelism and network clustering. In this
thesis we present a systematic method for applying an important
class of loop transformation techniques in the context of interface-
based SDF semantics. The resulting approach provides novel
capabilities for integrating parallelism extraction properties of the
targeted loop transformations with the useful modeling, analysis,
and code reuse properties provided by SDF.

	I French Summary
	Introduction
	Contributions du travail de thèse
	Prototypage rapide
	Reconfigurable Video Coding
	Bit-Stream Description Language
	Organisation de la thèse

	Etat de l'art
	Prototypage rapide
	Introduction
	Systèmes de calculs distribués
	Modèle de calcul flux de données
	Ordonnancement multiprocesseurs

	Transformation des nids de boucles
	Boucles imbriquées et ordre séquentiel
	Dépendance de données dans les nids de boucles
	Transformation des nids de boucles
	Partitionnement des répétitions

	Contributions
	Représentation hiérarchique dans le modèle SDF
	Génération de code pour le prototypage rapide
	Optimisation des nids de boucles dans le modèle SDF

	Conclusion et propositions de travail

	II Background
	Introduction
	Overview
	Contributions of this Thesis
	Rapid Prototyping Framework
	Reconfigurable Video Coding
	Bit-Stream Description Language

	Outline of this Thesis

	Background and related work
	Introduction
	Parallel computing systems
	Data Flow model of computation
	Introduction
	Data Flow paradigm introduction
	Synchronous Data Flow (SDF)
	Homogeneous Synchronous Data Flow (HSDF)
	Boolean-controlled Data Flow (BDF)
	Cyclo-Static Synchronous Data Flow (CSDF)
	Parameterized Synchronous Data Flow (PSDF)
	Conclusion

	Application modeling tools
	Introduction
	Dataflow Interchange Format
	SDF3
	Ptolemy II
	StreamIt
	PREESM
	SynDEx data-flow model
	Canals
	CAL Actor Language
	MCSE specification model
	Conclusion

	Multi-processor scheduling
	Conclusion

	Nested loops Partitioning
	Introduction
	Nested Loops representation
	Nested Loops execution optimization
	Nested Loops partitioning by iteration domain projection
	Nested Loops partitioning by iteration domain tiling
	Conclusion

	III Research Work
	Hierarchy Representation in Synchronous Data Flow Graphs
	Introduction
	Existing hierarchy representation in Synchronous Data Flow Graphs
	Repetition based hierarchy
	Parameter based hierarchy

	Interface based hierarchy
	Special nodes
	Hierarchy deadlock-freeness
	Hierarchy scheduling
	Hierarchy behavior
	Hierarchy improvements

	Application case study
	IDCT2D description
	Structural analysis

	Conclusion

	Multi-core code generation of Interface based Synchronous Dataflow
	Introduction
	Multi-threaded execution model
	C code generation procedure
	Graph optimization for code generation
	Buffer optimization and allocation
	Hierarchical actor port management
	Actor prototypes instantiation
	In loop actors instantiation
	Special vertices instantiation
	Inter Processor Communication instantiation
	xml to C transformation
	Code generation example
	Conclusion

	Loop partitioning techniques for Interface based Synchronous Dataflow
	Introduction
	Iteration domain projection technique
	Distance vector extraction from interface-based SDF
	SDF network synthesis using analysis results
	The matrix vector product example

	Iteration domain tiling
	Limitations
	SDF network synthesis from partitioned iteration domain
	The matrix vector product example

	Conclusion

	Conclusion, Current Status and Future Work
	Conclusion
	Current Status
	Future Work

	Glossary

