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English abstract 
 

Cerebral blood volume fraction (CBVf) mapping by magnetic resonance imaging (MRI) can 

provide information about the progression of tumor angiogenesis without harmful side-effects. In 

this work, a novel MRI method for in vivo CBVf mapping is developed: the Rapid Steady State T1 

(RSST1) method.  

 

The method is based on a two-compartment model, intra- and extravascular, without water 

exchange, and on the longitudinal relaxivity of intravascular MRI contrast agents (CAs). This 

method has been validated on healthy Wistar rats at 2.35 T (CBVf: 2 to 3%) and its sensitivity 

has been evaluated in a hypercapnia experiment (CBVf increase of 1%/mmHg CO2). 

 

In order to apply this method for monitoring disease evolution or treatment efficacy, CAs are 

evaluated that do not leak across the blood brain barrier during the measuring time. Two 

experimental CA, Gd-ACX and SINEREM were used on two rat glioma models C6 and RG2. 

The CBVf measures in tumor tissue obtained with Gd-ACX are confirmed by a histologic 

vascular morphometric analysis. CBVf mapping with SINEREM necessitates acquisitions with 

short echo time. The measures were compared with those obtained by a ΔR2
*-based steady 

state method using the same SINEREM injection.  

 

In case of CA extravasation, such as occurs in tumor tissue with CAs approved for clinical use, 

the CBVf along with the transfer coefficient κ (a measure related to the endothelial permeability) 

were obtained by pharmacokinetic two-compartment analysis of dynamic RSST1 acquisitions. 

 

In conclusion, the RSST1 method in conjunction with appropriate CAs can be used for 

longitudinal angiogenesis studies to quantify the CBVf and the vascular permeability. 

 

Keywords 
Angiogenesis 

Cerebral blood volume 

Magnetic resonance imaging 

Paramagnetic contrast agent 
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Résumé français 
 

La mesure du volume sanguin cérébral (VSC) par Imagerie par Résonance Magnétique (IRM) 

permet d’étudier l’angiogénèse tumorale. Dans cette thèse, une méthode IRM, dite méthode T1 

stationnaire rapide (RSST1) pour quantifier le VSC est proposée.  

 

Le principe repose sur les propriétés de la relaxation longitudinale avec des agents de contraste 

(AC) paramagnétiques intravasculaires et sur un modèle du cerveau bi-compartimental 

extra/intravasculaire sans échange d'eau. La méthode a été validée sur des rats sains à 2.35T 

(VSC: 2 à 3%) et la sensibilité évaluée sous hypercapnie (augmentation du VSC de 1%/mmHg 

CO2).  

 

Pour évaluer l’efficacité d’un traitement antitumoral, des AC ne s’extravasant pas durant la 

mesure à travers une barrière hématoencéphalique (BHE) lésée sont nécessaires. Deux AC 

expérimentaux, le Gd-ACX et le SINEREM, ont été étudiés sur deux modèles de rat gliome C6 

et RG2. Avec le Gd-ACX, les mesures ont été confrontées à une analyse morphométrique de la 

microvascularisation sur des coupes immuno-histologiques. Les mesures avec le SINEREM ont 

nécessité le développement d’acquisitions à temps d’écho court et ont été comparées à ceux 

obtenus par la méthode ΔR2
* utilisant le même AC.  

 

Pour des AC qui s’extravasent (Gd-DOTA admis en clinique), utilisant une analyse  

pharmacocinétique à deux compartiments, les acquisitions de la méthode RSST1 conduisent à  

la mesure du VSC et au  coefficient de transfert κ lié à la perméabilité  

de la BHE.  

 

En conclusion, la méthode RSST1, méthode quantitative de mesure de VSC, permet  avec des 

AC appropriés, de réaliser des études longitudinales de l’angiogénèse tumorale et d’accéder à 

la perméabilité vasculaire.  

 

Mots-clés 
Angiogenèse 

Volume sanguine cérébral 

Imagerie par resonance magnétique 

Agent de contraste paramagnétique 
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Cl CA concentration in the leakage compartment 
Cp plasma concentration (of the CA) 
Ctissue tissue concentration (of the CA) 
Cv venous concentration (of the CA) 
D water diffusion coefficient 
đ mean vessel diameter 
d  mean diffusion length 
E extraction fraction 
E(t) signal enhancement 
F blood flow 
fD transverse relaxation decay term 
Fpl trans endothelial CA flow between plasma and leakage compartment 
G Gx,Gy,Gz  magnetic field gradient 
ħ reduced Planck's constant 
Hct hematocrit 
inv inversion factor 
K exchange regime 
k kx,ky,kz  spatial frequencies 
kB Boltzmann's constant   
kei extracellular-intracellular exchange rate  
kep extravascular-plasma exchange rate constant 
kev-iv extravascular-intravascular exchange rate 
kie intracellular-extracellular exchange rate  
kiv-ev intravascular-extravascular exchange rate 
Ktrans endothelial permeability coefficient 
LV vascular length density 

m 
characteristic time of the compartments participating in the water exchange,  
inverse of the shutter speed 

M magnetization 
M0 longitudinal magnetization at thermal equilibrium 
M0ev extravascular longitudinal magnetization at thermal equilibrium 
M0iv intravascular longitudinal magnetization at thermal equilibrium 
Mxy transverse magnetization  
Mz longitudinal magnetization  
Mzev longitudinal magnetization of the extravascular compartment 
Mziv longitudinal magnetization of the intravascular compartment 
N number of acquisitions 
nev number of extravascular water protons or spins 
nEx number of experiments 
niv number of intravascular water protons or spins 
Nk number of α-pulses 
nPh number of phase encode steps 
nps number of water protons or spins in the system 
nS number of samples 
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ntotal total number of water protons or spins niv + nev 
Nv vascular density 
P endothelial diffusional permeability coefficient 
Pm mole fraction of bound water protons 
R vessel radius 
r x,y,z  position 
r  distance 
R1 longitudinal relaxation rate 
r1 longitudinal relaxivity 
R10 intrinsic longitudinal relaxation rate 
R2 transverse relaxation rate 
r2 transverse relaxivity 
R2* apparent transverse relaxation rate 
R2* effective transverse relaxation rate 
R20 intrinsic transverse relaxation rate 
S signal intensity  
S(k) spatial frequency spectrum 
S*(k) complex conjugate to the spatial frequency spectrum 
S0 signal intensity corresponding to magnetization at  thermal equilibrium 
S0ev signal intensity corresponding to extravascular magnetization at thermal equilibrium 
S0iv signal intensity corresponding to intravascular magnetization at thermal equilibrium 
Sev extravascular signal intensity  
Siv intravascular signal intensity 
Snorm, Spost

norm normalized signal intensity 
Spost signal acquired after contrast agent injection 
Spre signal acquired prior to contrast agent injection 
SV vascular surface 
T absolute temperature 
t time 
T1 longitudinal relaxation time constant 
T1

app apparent longitudinal relaxation time 
T1e, T2e longitudinal and transverse electronic relaxation rates 
T1ev extravascular longitudinal relaxation time constant 
T1iv intravascular longitudinal relaxation time constant 
T2 transverse relaxation time constant 

T2* 
effective transverse relaxation time, 
 experimentally observed decay time constant of an FID signal 

T2ev extravascular transverse relaxation time constant 
T2iv intravascular transverse relaxation time constant 
τa water residence or life time in compartment a 
Tacq total acquisiton time of a MR scan 
τC correlation time 
τep time constant for transendothelial contrast agent flow kep

-1 
τev extravascular water residence or life time 
τexch exchange time  
τexch

-1 exchange rate 
τiv intravascular water residence or life time 
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τm residence time of coordinated water molecule 
τR rotational correlation time 
V volume 
v volume fraction 
vd distribution volume fraction 
Ve extravascular volume accessible to the contrast agent 
ve fractional volume of the extravascular compartment accessible to the contrast agent 
Vev extravascular volume 
Veve extravascular extracellular volume inaccessible to the CA 
Vevi extravascular intracellular volume 
Viv intravascular volume 
viv intravascular volume fraction 
Vivi intravascular intracellular volume 
Vl volume of the leakage compartment 
vl volume fraction of the leakage compartment 
vp fractional volume of the plasma compartment  
Vp plasma volume 
Vtotal total tissue volume Viv + Vev 
VV vascular volume density 
wblood blood water content 
wtissue tissue water content 
α flip angle 
γ proton gyromagnetic ratio: 42.58 MHz/T 
Θ polar angle 
κ signal enhancement rate 
κev enhancement rate of the extravascular compartment 
κiv enhancement rate of the intravascular compartment 
λ brain - blood partition coefficient for water 
π 180° pulse 
ρ(r) proton/spin density function 
ρblood blood water density 
ρtissue tissue water density 
σS standard deviation of the averaged signal 
Φ azimuthal angle 
Χ susceptibility 
ω Larmor pecession frequency 
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General introduction 
 
Research environment 
 

This work was carried out in the laboratory for Functional and Metabolic Neuroimaging, affiliated 

to the French National Institute for Health and Medical Research (INSERM), the Joseph Fourier 

University of Grenoble and the Federal Institute of Research “NMR: from cell to man”. It is an 

officially recognized research laboratory of the Atomic Energy Commission (CEA) and has 

recently become part of the Grenoble Institute of Neuroscience. This interdisciplinary laboratory 

develops in vivo magnetic resonance imaging (MRI) techniques that are tested on glioma, 

trauma and ischemia models in rodent brains, before they are transferred to the clinical 

applications. During the research project that is subject of this dissertation, the laboratory was 

equipped with two horizontal animal MR scanners (7T and 2.35T), a 4.7T vertical MR scanner, 

and two human full body MR scanners (1.5T and a 3T). It has fluorescent and confocal 

microscopes, and access to a two photon microscope for in vivo imaging. 

 

Objectives 
 

Although the human brain makes up only about 2% of the total body weight, it receives up to 

20% of the heart's output. A constant and efficient blood supply of the brain is vital. The 

vasculature of brain tissue is a complex entity having multiple functions and regulatory 

mechanisms. Most adjustments occur at the microscopic level. Tissues with a high metabolic 

turnover are generally equipped with a more extensive network of microvessels. Cerebral blood 

volume (CBV) is defined as the volume occupied by blood per tissue mass (ml/g) or alternatively 

per volume of brain tissue (%), in which case we call it the cerebral blood volume fraction 

(CBVf). It can be used to quantify the extent of tissue vasculature. Highly vascularised areas of 

the brain such as the basal ganglia or the cortical gray matter have a higher CBVf than the less 

vascularised cerebral white matter. As a functional parameter, the CBVf is altered in the context 

of vascular auto-regulation. Some diseases affect morphological parameters, such as the vessel 

density and their size, or hemodynamic parameters, such as the perfusion, which in turn can be 

detected by an alteration of the CBV. A major research area in which absolute CBV 

measurements play an important role, are the study of the formation of new microvessels 

(angiogenesis) for example for the growth and metastasis of malignant brain tumors.  
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As MRI is a noninvasive technique that does not use ionizing radiation, it is excellent for in vivo 

experiments especially when repeated studies are required such as in a clinical context. In 

addition to anatomical and structural information, MRI can also provide quantitative information 

of physiologic parameters (e.g. membrane permeability, blood oxygenation) and dynamic events 

(e.g. diffusion and convection of water, concentration time course of magnetic tracers).  

 

The aim of this work is to establish a new MRI method for CBVf quantification and mapping in 

healthy and diseased brain tissue. It is called the Rapid Steady State T1 (RSST1) method 

because it exploits T1 relaxation effects and a dynamic steady state of the magnetization created 

by fast MRI. It is based on a two compartment model of the brain tissue and requires the 

injection of exogenous paramagnetic contrast agents (CAs) that modify the longitudinal 

relaxation of the intravascular water to distinguish it from the water of the extravascular 

compartment.   

 

Given the recent developments of antiangiogenic drugs in the treatment of cancer, the proposed 

RSST1 method is aimed at CBVf-quantification in malignant brain lesions. Several commercial 

and experimental CAs are therefore studied for their blood pool properties in malignant brain 

tumor models in rats. 

 

The following introductory chapter is a literature review of MRI methods providing functional 

vascular parameters for the evaluation of cancer. Owing to the interdisciplinary character of this 

work, it is composed of three major parts. The first part provides an overview of the 

morphological and functional parameters of the microvasculature, describes the process of 

angiogenesis and the factors involved and reviews the clinical classification of brain tumors and 

the available animal models of malignant brain tumor. The second part deals with the relaxation 

properties of CAs and in particular their compartmentalization in the tissue. Finally, the 

methodological background of medical imaging techniques and in particular of MRI techniques 

used for CBV quantification is introduced in the last part. 

 

The experimental part of the manuscript is organized into six chapters, corresponding to six 

studies having different purposes. The first two chapters deal with the methodological 

development of the RSST1 method and its application to healthy rat brain. The remaining 

chapters investigate the utility of different CAs for CBVf quantification in two malignant brain 

tumor models, RG2 and C6. The CBVf measures are validated using another steady state MRI 
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method for CBVf mapping based on the transverse relaxation (T2*) effect and using histological 

vascular morphometric analysis.  

 

In chapter I, the theoretical background is exposed and the assumptions and experimental 

conditions are verified by signal modeling and in vitro experiments. Gd-DOTA, a clinically 

approved small molecular CA, and P760, an experimental intermediate size CA characterized by 

a higher longitudinal relaxivity, both from Guerbet Laboratories, are used. The sensitivity of the 

RSST1 method to physiologically occurring CBVf changes is studied. Factors that influence the 

accuracy of the CBVf measure are evaluated and the advantages and limits of the method are 

investigated. 

 

Chapter II concerns further methodological developments necessary for the use of SINEREM, a 

clinically approved superparamagnetic CA from Guerbet laboratories characterized by a high 

transverse relaxivity. These developments consist in the implementation of a three dimensional 

projection reconstruction acquisition mode to image the entire brain volume and to allow a short 

echo time. In this context the studied method is compared to the T2* based steady state method 

for CBVf mapping using the same CA.  

 

The study in chapter III is designed to evaluate SINEREM for its intravascular confinement in an 

RG2 brain tumor model using the RSST1 method and the T2* based steady state method. 

 

Chapter IV deals with the physicochemical characterization, biocompatibility and biodistribution 

of Gd-ACX, an experimental CA from the CEA. Its potential for CBVf mapping in a C6 tumor 

model is evaluated and compared with Gd-DOTA.   

 

In chapter V, a study is described, in which the CBVf measure obtained with Gd-ACX is 

validated using histological vascular morphometric analysis combined with a stereological 

technique for CBVf estimation.  

 

Finally, chapter VI deals with the ability to estimate the CBVf in case of CA leakage out of the 

vasculature. The proposed RSST1 method is investigated for its potential to dynamically monitor 

the leakage profile of Gd-DOTA and P760 in a RG2 tumor model. A pharmacokinetic model is 

applied to the leakage profile allowing the simultaneous estimation of the CBVf, the transfer 



General introduction 

 

22 

constant (related to the permeability of the endothelium to the CA) and the distribution volume of 

the CA.   
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Introduction générale 
 
Environnement de recherche 
 

Ce travail a été réalisé dans le laboratoire de Neuroimagerie Fonctionnelle et Métabolique dirigé 

par Christoph Segebarth. Ce laboratoire est affilié à l’Institut National de Santé et de Recherche 

Médicale (INSERM), à  l’Université Joseph Fourier (UJF) et l’Institut Fédéral de Recherche (IFR) 

« RMN : de la cellule à l’Homme ». Il est  également associé au Commissariat d’Energie 

Atomique (CEA). Récemment et depuis janvier 2007, ce laboratoire est intégré dans l’Institut de 

Neuroscience de Grenoble dirigé par Claude Feuerstein. Les travaux de recherche sont centrés 

autour de développements de méthodes en IRM et leur utilisation pour  l’exploration in vivo du 

système nerveux central. Le laboratoire dispose de deux plate-formes, une plate-forme petit 

animal et une plate-forme pour la recherche clinique chez l’Homme. L’expérimentation animale 

est menée sur plusieurs modèles chez le rat ou la souris (tumeur, ischémie, traumatisme 

crânien, modèle d’épilepsie). Ce volet préclinique concerne le développement méthodologique 

et leur validation dans un modèle animal, l’évaluation de méthodes IRM pour l’étude et la 

caractérisation du modèle ou encore l’évaluation de l’effet de nouvelles drogues. Très souvent, 

les résultas IRM sont confrontés aux résultats obtenus par analyse histologique par microscopie 

optique.  Pendant la durée de mon travail de thèse, le laboratoire était équipé de deux aimants 

horizontaux 7T (20 cm) et 2.35T (40 cm), et d’un aimant vertical de 4.7T (11 cm). La plate-forme 

pour la recherche  chez l’Homme est composée de deux aimants (1.5T et 3T). Par ailleurs, le 

laboratoire est également équipée de microscopes à fluorescence et confocaux et d’ un 

microscope biphoton pour l’imagerie in vivo.  

 

Objectifs 
 

Le cerveau humain ne pèse que 2% du poids total et malgré cela, il reçoit jusqu’à 20% du sang 

distribué par le cœur. Pour le cerveau, il est vitale et essentiel que la quantité de sang soit 

constante. La vascularisation cérébrale est complexe avec des fonctions et des mécanismes 

régulateurs multiples, qui sont contrôlés au niveau microscopique. Les tissus avec un 

métabolisme élevé sont généralement dotés d’un réseau de microvaisseaux plus important. Le 

volume sanguin cérébral (VSC) est défini comme le volume occupé par le sang par masse 

tissulaire (ml/g) ou alternativement par volume cérébral (%), dans quel cas on parle de la 

fraction volumique sanguine cérébrale (fVSC). Le VSC est un paramètre qui permet de 
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quantifier la vascularisation. Les régions du cerveau hautement vascularisées, comme les 

ganglions de la base ou le cortex cérébral ont un VSC plus élevé que la matière blanche moins 

vascularisée. Puisque c’est un paramètre fonctionnel, le VSC est altéré/modifié dans l’auto-

régulation vasculaire cérébrale. Dans le cas de pathologies, des paramètres morphologiques 

tels que la densité vasculaire, la taille des vaisseaux, ou encore les paramètres 

hémodynamiques (VSC, débit..) peuvent être affectés.  Dans le cas de tumeurs cérébrales, une 

altération du VSC peut être observée. Un des sujets de recherche dans lequel la mesure du 

VSC absolu joue un rôle important, est l’étude de la formation des nouveaux microvaisseaux 

(angiogenèse) qui accompagne par exemple la croissance des tumeurs cérébrales malignes.  

 

En Neurosciences, l’IRM est une technique incontournable et permet d’avoir des informations 

très précieuses aussi bien pour détecter des pathologies ou encore pour étudier les fonctions 

cérébrales. L’IRM est une technique non invasive qui n’utilise pas de rayonnement ionisant, elle 

est excellente pour les expériences in vivo, particulièrement quand des études répétées sont 

nécessaires, comme en clinique. Hormis l’information anatomique des structures cérébrales qui 

est l’origine du succès de l’IRM, l’IRM fournit également des informations quantitatives sur des 

paramètres physiologiques (p. ex. la perméabilité membranaire, l’oxygénation sanguine) ou 

encore des paramètres  dynamiques (p. ex. la diffusion et la convection de l’eau, la 

concentration des traceurs magnétiques au cours du temps).  

 

Le but de ce travail est de développer une nouvelle méthode IRM pour la quantification et la 

cartographie de la  fVSC dans le tissu cérébral sain et pathologique. La méthode proposée - 

Rapid Steady State T1 (RSST1), méthode T1 stationnaire rapide, est une méthode IRM rapide 

qui exploite les effets de relaxation longitudinale T1 en présence d’un agent de contraste (AC) 

paramagnétique et conduit à créer un état stationnaire dynamique rapide du signal. La méthode 

RSST1 est basée sur un modèle à deux compartiments du tissu cérébral (extra- et 

intravasculaire). Le compartiment extravasculaire est caractérisé par des temps de relaxation T1 

longs et le milieu intravasculaire est caractérisé par des temps de relaxation T1 courts car, dans 

ce compartiment les molécules d’eau sont en contact avec l’AC supposé purement vasculaire.  

 

Avec les développements récents dans le traitement du cancer par des médicaments 

antiangiogéniques, il est fort utile de pouvoir quantifier l’effet de ces médicaments en mesurant 

le VSC qui est directement lié à la densité vasculaire. Pour que la méthode RSST1 proposée 

puisse être adaptée pour la quantification du VSC dans des tumeurs cérébrales malignes, 
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souvent accompagnées par des lésions de la BHE, il est important que le modèle à deux 

compartiments puisse être valable. Les AC autorisés en clinique sont connus pour s’extravaser 

dans la plupart des tumeurs et quittent le système vasculaire. Des mesures de la  fVSC 

réalisées dans ce cas seront erronées. Une partie de ce travail de thèse a été orientée pour 

évaluer les conditions de leur utilisation pour des mesures précises  du VSC dans des modèles 

de tumeur maligne chez le rat. 

 

Le chapitre suivant est un chapitre de revue bibliographique des méthodes IRM qui permettent 

de mesurer des paramètres vasculaires fonctionnelles pour l’évaluation du cancer. Comme ce 

travail est interdisciplinaire, il  est composé de  trois grandes parties.  

La première partie est une vue d’ensemble sur les paramètres morphologiques et fonctionnels 

de la microvascularisation et décrit l’angiogenèse et les facteurs impliqués dans ce processus. 

On définit également la classification des tumeurs cérébrales et on présente les différents 

modèles animaux des tumeurs cérébrales malignes.  

La deuxième partie concerne les propriétés de relaxation des AC et en particulier leur 

compartimentation dans le tissu. Finalement, dans la dernière partie, les bases 

méthodologiques des techniques d’imagerie médicale sont introduites et en particulier des 

techniques IRM utilisés pour quantifier le VSC.  

 

La partie expérimentale de ce manuscrit est divisée en six chapitres correspondant à six études 

avec des buts différents. Les deux premiers chapitres concernent le développement 

méthodologique de la méthode RSST1 et ses applications au  cerveau de rat sain. Les autres 

chapitres étudient les conditions d’utilisation de différent AC expérimentaux pour la 

quantification de la fraction volumique sanguine cérébrale (fVSC) dans deux modèles de tumeur 

chez le rat RG2 et C6. Les mesures de la fVSC sont comparées puis validées en utilisant des 

méthodes alternatives. Dans un cas on utilise la méthode IRM stationnaire  basée sur les effets 

de la relaxation transverse T2* et dans un autre cas on utilise une analyse histologique de la 

morphologie vasculaire.  

 

Dans le chapitre I, la théorie de la méthode est détaillée et les hypothèses et les conditions 

expérimentales sont vérifiées par des modélisations du signal et par des expériences in vitro. Le 

Gd-DOTA, un AC de petite taille moléculaire admis en clinique, et le P760, un AC expérimental 

de taille moléculaire intermédiaire caractérisé par une relaxivité longitudinale plus élevée, tous 

les deux des Laboratoires Guerbet, sont utilisés. La sensibilité de la méthode RSST1 aux 
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changements physiologiques du VSC est étudiée. Les facteurs qui influencent la précision de la 

mesure de la fVSC sont évalués et les avantages et les limites de la méthode sont étudiés. 

 

Le chapitre II concerne d’autres développements nécessaires pour l’utilisation de la méthode 

RSST1 avec le SINEREM, un AC superparamagnétique admis en clinique des Laboratoires 

Guerbet, et caractérisé par une relaxivité transversale élevée. Les développements consistent 

en l’implémentation d’une méthode d’acquisition de projection rétroprojection en trois 

dimensions, pour cartographier la fVSC du cerveau entier et pour permettre un temps d’écho 

court. La fVSC est comparée à celle obtenue par la méthode stationnaire basée sur les effets 

T2* en utilisant le même AC.  

 

L’étude décrite dans le chapitre III a été menée pour évaluer en utilisant la méthode RSST1 et la 

méthode stationnaire basée sur les effets T2* si le SINEREM reste intravasculaire dans un 

modèle de tumeur RG2. 

 

Le chapitre IV concerne la caractérisation physicochimique, la biocompatibilité et la 

biodistribution de Gd-ACX, un AC expérimental du CEA. Son potentiel pour la cartographie de la 

fVSC dans un modèle de tumeur C6 est évalué et comparé avec le Gd-DOTA. 

 

Dans le chaptire V, une étude est décrite, qui valide la mesure de la fVSC dans les tumeurs C6 

obtenu par IRM avec le Gd-ACX comme AC, en utilisant une analyse histologique de la 

morphométrie vasculaire combinée avec une méthode stéréologique pour l’estimation de la 

fVSC.  

 

Finalement, le chapitre VI concerne la possibilité d’estimer la fVSC quand l’AC s’extravase. Le 

potentiel de la méthode RSST1 proposée pour suivre dynamiquement le profil d’extravasation de 

Gd-DOTA et P760 dans un modèle de tumeur RG2 est étudié. Un modèle pharmacocinétique 

est appliqué au profil d’extravasation permettant simultanément l’estimation de la fVSC, d’un 

paramètre lié à la perméabilité de l’endothelium pour l’AC et du volume de distribution 

extravasculaire de l’AC. 
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Literature review 
 

 

1. Purpose of the literature review 
 
The purpose of this work is to validate a fast T1-based MRI method for CBV quantification in 

malignant tumor tissue.  

 

Before describing the theoretical framework of this method and the validation studies in chapter I 

to VI, this introductory chapter presents a literature review of existing MRI methods for CBVf 

mapping. Furthermore, the purpose of this chapter is: 

 

to define the physiological parameter called CBV or CBVf, 

to show how it is altered in the case of brain pathologies, 

to demonstrate its importance in the clinical assessment of brain tumors, 

to explain why a quantitative measurement, i.e. absolute CBV, is preferred, 

to explain why an imaging technique is necessary, 

to show the benefit of MRI techniques with respect to other medical imaging techniques, 

to describe fast MRI techniques, 

to compare T1- T2- and T2*-based MRI methods for CBVf mapping, and to explain why a T1-

based technique has been chosen,  

to review the classes of CA that are used to assign different relaxation properties to the vascular 

compartment. 

 

To begin with, the morphology and physiology of microvasculature is first described in order to 

correctly define the CBVf and to determine the accuracy with which this parameter is measured 

with different techniques. Then the relevance of CBVf quantification in cancer research and in 

the management of cancer patients is pointed out. Medical imaging and in particular MRI 

techniques used in oncology are reviewed.  
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2. Brain microvasculature 
 
In the direction of blood flow, the brain vasculature is composed of large arteries (e. g. anterior 

cerebral artery, pial arteries) branching into smaller arteries followed by arterioles (diameters ≈ 

100 µm). With decreasing radii, the total amount of vessels and vascular surface Sv (cm2/cm3 or 

cm2/g) increases considerably (Fig. 0-2a), facilitating the homogeneous irrigation of the tissue 

and the transport of molecules to or from the interstitium, respectively. This exchange takes 

place in the capillary network. The blood pressure and velocity decrease to facilitate the 

exchange. The blood flow into the capillary network is regulated by nerve-controlled sphincters 

that exist at the arteriolar level. The blood is then drained from the tissue by small venules and 

veins increasing in size into high-volume, low-pressure venous systems known as venous or 

dural sinuses. 

 

Moving in an outward direction across the blood vessel wall, arterial vessels are formed by 

layers called intima (made up of endothelial cells), the basal lamina (also called basement 

membrane, a 40 nm thick membrane composed of type IV collagen and other substances), the 

elastic lamina, media (comprised of smooth muscle cells) and adventitia (comprised of 

fibroblasts producing collagen fibers). The veins have thinner walls, and most lack the smooth 

muscle cell layer.  

 

2.1. The blood brain barrier 
 

The radii of capillaries average 4 µm (Guyton and Hall 1997; Ross 1991). They are composed of 

a unique layer of endothelial cells, the endothelium, which is of continuous type in the brain (Fig. 

0-2b). The adjacent endothelial cell membranes at the luminal end fuse and are connected by 

structures called the tight junctions, composed of transmembrane proteins called occludin and 

claudin. Other transmembrane proteins such as zonula occludens proteins and cadherins 

provide additional adhesion towards the abluminal (brain) side. A molecular model of this cellular 

adhesions is proposed by Huber et al (Huber et al. 2001). In addition, pericytes and foot like 

processes of astrocytes surround the basal lamina. This forms an entity called the blood brain 

barrier (BBB), which is a regulatory interface between the blood and the cerebral parenchyma. It 

is permeable to oxygen, carbon dioxide, hormones, carbohydrates, amino acids, fat, ammonia, 

lactate etc, but impermeable to many water soluble macromolecules, such as drugs (penicillin) 

and albumin. Since the paracellular transport of molecules is greatly reduced by the 
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interendothelial tight junctions, they have to cross the endothelial cells (transendothelial 

transport), with the consequence that intra-/extravascular exchange is controlled by the cell. The 

paucity of cytoplasmatic vesicles shows that substances are rarely carried across the endothelial 

cell by vesicular transport as it happens in most extracerebral tissues (Coomber and Stewart 

1985). Differences in the activity of various hydrolytic enzymes at the luminal and abluminal cell 

membrane indicate the polarity of endothelial function in the control of the blood brain interface 

(Betz and Goldstein 1978; Brownson et al. 1994; Farrell and Pardridge 1991; Minn et al. 1991). 

The passage of a substance across the BBB may depend upon its lipid solubility, electrical 

charge, molecular size, dissociation constant, affinity for a carrier molecule or the capacity of the 

BBB for active transport of this substance.  

 

 
Fig 0-2: the vascular system in vertebrates 
a: Changes in blood pressure, velocity, and the surface area of the arteries, capillaries, and veins 
of the circulatory system. Image source (Purves et al. 1995) 
b: Continuous capillary endothelium in brain (left) and discontinuous capillary endothelium in liver 
(right) with distinct intercellular gaps and broken basal lamina. 1. capillary lumen, 2. endothelial 
cell, 3. basal lamina, 4 Astrocyte process. Image source (Kahle 1991) 

 

 
a 
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b 

 

 

2.2. The morphology of vasculature 
 
The morphology and quantity of the vasculature is organ specific (Chang et al. 1982). Both can 

change considerably during a disease process (Seitz et al. 1988) either because of adaptation to 

new metabolic demands of the affected tissue or because the cells forming the vessels are 

affected themselves by the pathology. In adaptation to temporally varying metabolic demands, 

the vasculature undergoes dynamic changes even under physiologic conditions. For example, 

the vessels are known to dilate or to open vascular shunts (alternative circulatory pathways) 

when the partial arterial carbon dioxide tension (PaCO2), the arterial pH or the core temperature 

increases or the partial arterial oxygen tension (PaO2) decreases. In some pathologies, such as 

in malignant tumors, the ability of the microvasculature to respond to such physiologic stimuli 

can be reduced, and can be used to characterize the disease (Julien et al. 2004; Mazurchuk et 

al. 1999).  

 

Several parameters are used to describe and quantify the vascular network at a microscopic 

level. Microvascular density, Nv (cm-2), simply reports the number of vessels regardless of their 

shape, orientation or size. The microvascular surface Sv is important for the exchange 

processes. The total surface area of the brain microvasculature, available for exchange 

processes between blood and interstitium is approximately 100 cm2g-1 tissue (Pardridge et al. 

1990).  Another such parameter is the length density Lv (cm/cm3), which is the total length of 

microvessels existing per unit volume or tissue mass. The vessel radii are important for 

rheological considerations because they define the cross sectional area that in turn is one of the 
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parameters that determines the blood flow rate. The mean intervascular distance is an index of 

the access of an interstitial cell to the exchange processes at the vascular boundary, since in the 

interstitium transport is mainly governed by diffusion. The mean intercapillary distance in the 

human brain is about 40 µm (Duvernoy et al. 1983). Other morphological parameters that 

change under physiologic and pathologic conditions exist, e. g. the tortuosity.  

 

2.3. Hemodynamic parameters  
 
From this point of view, medical imaging techniques, such as computed tomography (CT), 

positron emission tomography (PET) and MRI are rather macroscopic techniques. Vascular 

parameters accessible by these imaging techniques are the regional blood volume, which is the 

quantity of blood that participates in the supply of oxygen and nutrients and in the discharge of 

toxic metabolites. In addition, techniques exist, that allow the measurement of the amount of 

blood arriving and leaving the tissue of interest in a time interval. This is called the regional 

perfusion or blood flow. The average cerebral blood flow (CBF) in humans is approximately 50 

ml/min per 100g of brain tissue, but may be higher (above 150 ml/min per 100g) in small animals 

(Calamante et al. 1999; Ginsberg et al. 1985; Rudin and Sauter 1991). Another often reported 

quantity related to the regional blood volume and flow is the mean transit time (MTT), the 

average time required for blood to pass through the tissue volume of interest. The permeability 

of the microvasculature to a substance is often reported as the product of the diffusional 

permeability coefficient P (cm min-1) and the surface area Sv. PSv has the unit of a volume flow 

per tissue mass (ml min-1 g-1). Only values averaged over the volume of the voxel can be 

obtained and information about the morphology of the vasculature is lost. However, one MRI 

technique is sensitive to vessel radii, and the parameter obtained is called the vessel size index 

(VSI). It will be briefly described in a different paragraph.  

 

Just like and in addition to morphologic analysis of the vasculature, the quantification of such 

hemodynamic parameters can be useful to study the tissue function and viability in the case of 

pathologic transformation (Aksoy and Lev 2000). Although the macrovasculature can be 

involved (Bullitt et al. 2005), most cerebrovascular diseases begin at the microvascular or 

capillary level. Detection of pathology at the microvascular level is consequently favorable 

because treatment could be started at an earlier stage of the disease, possibly even before 

irreversible clinical symptoms develop. The CBV and perfusion are tightly related since only 

perfused vessels will contribute to the signal change when CAs are used for the measurement. 
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Therefore, even in brain pathologies that mostly affect tissue perfusion, such as acute cerebral 

ischemia, the CBVf measure can be of use. Brain pathologies that are accompanied by vascular 

changes reflected by altered CBV, CBF, BBB permeability or combinations thereof, are brain 

infarction (ischemia) (Maeda et al. 1997; Rosen 1992; Rother et al. 1996), multiple sclerosis 

(Broom et al. 2005; Sibson et al. 2002), some forms of dementia such as Alzheimer's disease 

(Harris et al. 1996; Harris et al. 1998; Maas et al. 1997), Aquired Immune Deficiency Syndrome 

associated brain diseases (Ernst et al. 1998; Tracey et al. 1998), and traumatic brain injury 

(Garnett et al. 2001). The main objects of this work are the vascular changes occurring in the 

development of brain tumors, which require particular methodologic developments, because the 

BBB becomes permeable to most CAs.  

 

 

 

3. Brain tumors 
 
3.1. Epidemiology 
 
In many countries, cancer is one of the three leading causes of death, only outnumbered by 

cardiovascular diseases (heart diseases, stroke etc). Despite some medical advances reflected 

in prolonged survival times, no curative treatment has been developed for the majority of tumors. 

In a report from the American Cancer Society in 2007 (American-Cancer-Society 2007), the 

annual incidence and mortality of brain and other central nervous system (CNS) tumors in the 

United States are 20 500 (1.4% of all new cancer cases) and 12 740 (2.3% of all cancer related 

deaths), respectively. Worldwide, approximately 176,000 new cases of brain and other CNS 

tumors were diagnosed in the year 2000, with an estimated mortality of 128,000 (Parkin et al. 

2001).  

 

3.2. Primary brain tumors 
 

Brain tumors account for over 4/5 of all primary central nervous system tumors (Levin et al. 

2001). Primary brain tumors (Fig. 0-3) arise from brain cells, rather than metastasizing to the 

brain from elsewhere in the body. Meningiomas and other mesenchymal tumors account for 

approximately 27% of primary brain tumors (Levin et al. 2001). Gliomas are the most common 

(about 50%) primary neoplasms of the brain (Russell and Rubinstein 1989). There are three 
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main types of glioma: astrocytoma, ependymoma and oligodendroglioma. About 5% of brain 

tumors are ependymomas.  These develop from so-called ependymal cells, which line the 

ventricles and spinal cord. Oligodendrogliomas develop from cells called oligodendrocytes that 

produce the myelin. This glioma type can contain calcium and bleeds easily. Astrocytoma is the 

commonest type of glioma. Therefore, the terms "astrocytoma” and “glioma” are often employed 

interchangeably. They vary histologically and are graded into four categories by the World 

Health Organization (Kleihues et al. 1993).  

 

3.3. Grading 
 

Criteria for grading are the mitotic index (growth rate), vascularity, presence of necrotic areas, 

invasive potential and the cell differentiation. Grade I gliomas are pilocytic astrocytomas. They 

grow slowly and rarely spread into adjacent tissue. Grade II gliomas are diffuse astrocytomas, 

which can invade adjacent tissues and progress to a higher grade. Grade III anaplastic 

astrocytomas are classified as malignant. The most aggressive grade IV astrocytoma is also 

called glioblastoma multiforme. Anaplastic astrocytoma and glioblastoma account for 

approximately 38% of primary brain tumors (Levin et al. 2001).  

 

Mixed gliomas or anaplastic oligodendrogliomas (e.g. oligoastrocytoma = grade II and anaplastic 

oligoastrocytoma = grade III) contain more than one type of glial cell, usually astrocytes and 

other glial cell types like oligodendrocytes. The gliosarcoma variant of glioblastoma contains 

both neuro-ectodermal and mesenchymal elements (fibrous, muscle, bone, cartilage tissue). The 

prognosis is affected by the cell type with the highest grade present in the tumor. Treatment also 

focuses on the most malignant cell type found within the tumor.  

 

Other less common primary brain tumors include for example pituitary tumors, schwannomas, 

CNS lymphomas, and medulloblastomas, the latter mainly occurring in children. The frequency 

of brain metastases is at least 10 fold higher than primary neoplasms. Brain metastasis occurs in 

20% to 40% of cancer patients (Patchell 2003). The exact incidence is unknown, because no 

national cancer registry documents brain metastases, but it has been estimated that 98,000 to 

170,000 new cases are diagnosed in the United States each year (Hutter et al. 2003; Levin et al. 

2001). This number may be increasing because of the capacity and increasing sensitivity of 

imaging modalities such as MRI to detect small metastases and because of prolonged survival 

resulting from improved systemic therapy (Levin et al. 2001; Patchell 2003). The most common 
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primary cancers metastasizing to the brain are lung cancer (50%), breast cancer (15%–20%), 

melanoma (10%), and colon cancer (5%) (Patchell 2003). 

 

 
Fig. 0-3: Primary CNS tumors, major histopathologic types and their distribution. Source Central 
Brain Tumor Registry of the United States 1998 - 2002 (http://www.cbtrus.org/2005-
2006/tables/2006.table8.pdf) 

 
 

 

3.4. Orthotopic rat brain tumor models 
 

Fundamental research necessitating invasive procedures is carried out on animal models of 

diseases. Although no animal brain tumor model exactly simulates human high grade brain 

tumors, many of their biological and biochemical properties, including invasive growth pattern, 

neovascularization and alteration of the BBB, are similar enough to clinically encountered 

neoplasms. They provide a means to study many issues, from fundamental aspects of 
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oncogenesis, angiogenesis and invasion to the in vivo response to anticancer therapies. 

Orthotopic brain tumor models grow in their natural environment, the brain, and additionally 

provide information about their effect on the adjacent nervous tissue. Syngeneic tumor models 

can be used in immunocompetent animals without induction of alloimmunogenic responses. 

Table 0-1 sums up the main orthotopic rat glioma models used in preclinical research and is 

focused on those obtained by stereotactical intracerebral implantation as concentrated cell 

suspensions, exhibiting the highest reproducibility. Except the U87 MG cell line, which is a 

human glioma xenograft, all tumor types have originally been induced in rat brain by a 

carcinogenic procedure (chemical substance, avian sarcoma virus or radiation) (Barth 1998).  

 

 
Table 0-1: main orthotopic rat glioma models 
 

tumor 
model 

reference histopathologic 
classification 

grade rat strain 

9L, TL gliosarcoma IV Fischer 
C6 

(Benda et al. 1971; 
Schmidek et al. 1971) astrocytoma III Wistar 

F98 (Ko et al. 1980) anaplastic glioma III - IV Fischer 
RG2, D74 (Aas et al. 1995) anaplastic glioma IV Fischer 
RT 2 (Copeland et al. 1975) anaplastic astrocytoma III Fischer  
U87 MG (Tamargo et al. 1988) human glioblastoma IV nude athymic rats 

or other species 
 

 

3.5. Angiogenesis 
 
The more aggressive tumor types grow rapidly and have a high metabolism. Growth of solid 

tumors beyond a diameter of 1 – 2 mm requires the proliferation and formation of new blood 

vessels by sprouting from existent vessels for the supply of nutriments and oxygen (Folkman 

1996; Zama et al. 1991). This process is called neo-angiogenesis. Metastasis occurs via the 

new tumor microvasculature, too. Failure to induce appropriate angiogenesis leads to necrosis 

and apoptosis of the cells in the central parts of the tumor that suffer for example of hypoxia.  

 

Blood vessel proliferation is a dynamic balance of stimulators and inhibitors. Tumor 

angiogenesis results from the secretion of angiogenic factors by the tumor cells (Folkman 1992) 

and by loss of physiological inhibition of endothelial cell proliferation. Angiogenic factors include 

growth factors such as fibroblast growth factors (FGF), platelet derived growth factor (PDGF),  
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vascular permeability or vascular endothelial growth factor (VPF/VEGF), tumor necrosis factor-

alpha (TNF-alpha), a number of cytokines etc (Cockerill et al. 1995; Hormigo et al. 2007). There 

are more than twenty known endogenous angiogenesis stimulating factors. The angiogenic 

growth factors bind to specific receptors located on the endothelial cells of existing vessels, 

activating a cellular signalling cascade. The activated endothelial cells begin to proliferate and to 

produce enzymes that dissolve the basal lamina. Transmembrane adhesion proteins (integrins) 

and enzymes (matrix metalloproteases) further facilitate the migration of endothelial cells 

towards the tumor and the formation of new blood vessel tubes, which are then stabilized by 

pericytes (Cuenod et al. 2006).  

 

The morphology of blood vessels in many solid tumors deviate markedly from the vessels in 

healthy tissue (Cuenod et al. 2006; Dewhirst et al. 1989), which leads to altered blood flow that 

is spatially more heterogeneous (Carmeliet and Jain 2000; Tozer et al. 1990). There is also an 

alteration in relative volumes of major tissue compartments, such as the vascular and 

extravascular extracellular compartments (Jain 1987). In addition, tumor capillaries often differ 

from those of the surrounding brain in their permeability (Cuenod et al. 2006). 

 
3.6. Treatment modalities 
 
Brain tumors are treated with surgery, radiation therapy and chemotherapy. Depending on the 

type, location, and size of the tumor, as well as the patient's age and general health status, a 

multimodal approach may be used. If surgery can not be performed or the resection is 

incomplete radiotherapy and chemotherapy are generally used as secondary or adjuvant 

treatments. Different radiotherapy techniques are available including external fractionated 

radiotherapy, implant radiotherapy, and stereotactic radiosurgery. Chemotherapy drugs 

prescribed for brain tumors include temozolomide, procarbazine, lomustine, vincristine, cisplatin, 

carmustine, and carboplatin. Carmustine is also given by polymer wafer implant during surgery 

(Ewend et al. 2007), and methotrexate may be administered intrathecally (injected directly into 

spinal fluid). Treating brain tumors with chemotherapy can be difficult because the blood brain 

barrier can prevent some chemotherapy drugs from entering the brain. 

The identification of molecular markers associated with tumor but not with normal tissue has 

allowed the development of highly specific, targeted therapies for the treatment of cancer. 

Molecularly targeted therapy is designed to inhibit a molecule produced by cancer cells to 

promote their survival, proliferation or spread. This therapy is called "smart" because these 
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medications are specific to cancer cells and have fewer side effects than traditional 

chemotherapy drugs. For example, nanoparticles coated with gold and specifically targeted to 

cancer cells can absorb specific wavelength of light. Activated by a laser, the photothermal 

agent produces intense heat that kills the cancer cells (El-Sayed et al. 2006). Single dendrimers, 

a few nanometer in size, can carry a molecule that recognizes cancer cells, a therapeutic agent 

to kill those cells, and a molecule that can be detected by a medical imaging technique or that 

recognizes the signals of cell death. They are designed to release their contents only in the 

presence of certain trigger molecules associated with cancer, making the targeted therapy far 

more effective and less toxic than conventional chemotherapy. Successful treatment with such a 

vehicle loaded with the anticancer drug methotrexate, folic acid, and a fluorescent imaging agent 

has been reported in mice (Kukowska-Latallo et al. 2005). Cancer cells possess much more 

folate receptors on their surface than normal cells, and capture the whole complex, including the 

drug and the imaging agent. However, these works are still at a very early stage and problems 

like how to make these drugs cross the BBB have not been solved yet. 

 

3.7. Antiangiogenic treatment 
 
The amount of vascularization of brain tumors has been correlated to their prognosis (Abdulrauf 

et al. 1998; Assimakopoulou et al. 1997; Brem et al. 1972; Leon et al. 1996). In 1971 Judah 

Folkman has postulated that inhibition of tumor angiogenesis could cure cancer (Folkman 1971). 

In 1975 Judah Folkman  and Henry Brem discovered the first natural angiogenesis inhibitor 

(Brem and Folkman 1975), and it was also Judah Folkman who managed to demonstrate 

suppressed tumor growth caused by a plasminogen fragment called angiostatin (O'Reilly et al. 

1994). Today, there is a long list of known endogeneous angiogenesis inhibitors, and also a 

number of synthetic molecules that have shown a therapeutic potential in experimental studies 

or are tested in clinical studies.  

 

One class of angiogenesis inhibitors being tested in cancer patients are molecules that directly 

inhibit the growth of endothelial cells, such as the endogeneous angiostatin and endostatin 

(collagen XVIII fragment) (Kirsch et al. 2001). Combretastatin A4, causes apoptosis of growing 

endothelial cells. Other drugs interact with the membrane protein integrin such as Vitaxin®, a 

monoclonal antibody directed against the alpha-v/beta-3 endothelial integrin. A second class are 

molecules that block or interfere with steps in the angiogenesis signalling cascade. Included in 

this category are epidermal growth factor receptor antibodies and anti-VEGF antibodies. 
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Bevacizumab (Avastin®), a monoclonal antibody, is the first anti-VEGF antibody to be FDA-

approved. Interferon-alpha, is a naturally occurring protein that inhibits the production of FGF 

and VEGF, preventing these growth factors from starting the signalling cascade. Another type of 

approved treatment in this class are small molecules that inhibit enzymes called tyrosine kinases  

for receptors of multiple proangiogenic growth factors. A third class of inhibitors block the ability 

of endothelial cells to break down the extracellular matrix. Finally, other drugs with indirect 

antiangiogenic actions exist, although the exact mechanism is unclear. Thalomid® that has been 

used for its anti-inflammatory effect is one of them. 

 

In contrast to antiangiogenic therapies (Folkman and Ingber 1992) which inhibit vascular 

proliferation, antivascular therapies aim to destroy mature vascular cells. Drugs of these two 

categories bring with them a need for an accurate means of assessing tumor angiogenesis and 

monitoring response to treatment. 

 

3.8. Angiogenesis assessment 
 
For planning the optimal treatment strategy and assessing prognosis, accurate histologic 

grading is essential, and for this, the evaluation of tumor vascularity is valuable (Aronen et al. 

1994). Another motivation for assessment of tumor microvasculature is to evaluate the response 

to cancer therapies targeted at tumor microvasculature or that indirectly affect tumor 

microvasculature.  

 

In clinical routine, two methods for angiogenesis assessment are used. One is the detection of 

proangiogenic factors or angiogenesis inhibitors by biochemical analysis of blood and urine. The 

second consists in taking a stereotactic needle biopsy for the evaluation of the microvascular 

density (Weidner et al. 1991). The regional heterogeneity of malignant tumors makes 

histopathological diagnosis a serious challenge when it is based solely on biopsies. A single 

tumor mass can be histologically heterogeneous, and at biopsy their grade might be 

underestimated if the tumor part of highest malignancy is not attained by the needle. In addition, 

owing to their invasive character, biopsies are not suited for follow-up studies.  

 

Imaging modalities that cover the whole tumor mass are therefore necessary for correct 

evaluation of the patients. The ideal assessment method should be repeatable, reproducible 

across centers, robust and acceptable to patients (minimally invasive, without involvement of 
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ionizing radiation, not too long). It should produce meaningful parameters that have known 

statistical variations. Qualitative parameters are difficult to compare between patients. Semi-

quantitative or relative parameters can be used for comparison between patients and across 

centers, but the reference value (often in healthy appearing tissue) has to be carefully chosen, 

documented and accurate (e.g. in MRI the nonuniformity of the RF field must be taken in 

account). Quantitative parameters with values being compared to normal ranges are therefore 

preferred and increase the sensitivity to changes associated with disease. The most stringent 

requirements are usually encountered in the assessment of therapeutic response to novel 

antiangiogenic or antivascular therapies.  

 

Except for the need of CA injection for particular applications, MRI is a non invasive imaging 

technique combining high soft tissue contrast with an acceptable spatial resolution. MRI is now 

routinely available in many countries and has become the method of choice in particular in brain 

imaging. 

 

3.9. Quantitative MRI 
 

In contrast to other imaging techniques such as PET, the signal intensity from most MR pulse 

sequences does not relate directly to any physiological parameter. MRI is generally used by 

qualitatively interpreting the available soft tissue contrast. Although the image data is in 

numerical form, quantification is still difficult. Magnetic field strength, scanner parameters, 

sequence timing parameters, flip angle as well as image scaling, make the signal scanner 

dependent and serial or multi-center studies difficult.  

 

Procedures for data collection have to be found which are insensitive to scanner, sequence and 

operator influence, and which are reliable and reproducible over time and between patients. The 

measured parameters have to be examined for their biological meaning and related to clinically 

relevant quantities. In this way, changes at the microscopic level such as in cellular or 

microvascular structures can be detected as changes in MR parameters, such as relaxation 

times or magnetization transfer ratio, or as changes in diffusion and perfusion parameters at 

typical MR image resolutions of about 1 mm. 

 

As mentioned in the previous paragraph, heterogeneity is a hallmark of cancer and definition of 

regions or tumor boundaries can be problematic. Averaging values over an entire volume of 
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interest may result in insensitive parameters. Histogram analysis and parametric maps improve 

sensitivity. 

 

The next paragraphs will review some MR techniques which provide valuable information about 

the pathophysiology of neoplasms.  

 
 
 
4. MRI of cancer 
 

For diagnosis and follow up of cancer, as well as for the study of fundamental biological 

processes that lead to the development of cancer, MRI offers several techniques, which provide 

various parameters that are related to the pathophysiology of cancer.  

 

In 1971, Damadian suggested that T1 and T2 differences could be used to distinguish malignant 

from benign tumors (Damadian 1971). Unfortunately, these differences are too variable to be an 

effective indicator of cancerous tissue. However, Damadian’s merit is the discovery of the 

difference between MR signals from different soft tissue types (normal tissue and cancer tissue), 

which is much larger than the contrast in CT.  

 

T1 and T2 weighted MRI is used to firstly localize and delineate the tumor extent and to detect 

associated areas of hemorrhage and edema. T1 weighted images of the brain are typically made 

for anatomic information, providing also high sensitivity for paramagnetic CA, fat, fluids with high 

protein content and subacute haemorrhage. T1 weighted pre-contrast images are carried out to 

avoid confusion of bright signal on T1 weighted images after CA administration. Gadolinium-

enhanced T1 weighted images are used for the diagnosis of all types of intracranial tumors 

(Edelman and Warach 1993a; Edelman and Warach 1993b). Post-contrast, lesions are 

classified as homogenous or heterogeneous, and necrotic or cystic components are seen more 

clearly. T2 weighted images offer high sensitivity to most pathologic processes but is not specific, 

since a prolongation of tissue T2 is seen with edema, infarction, demyelination, infection, 

inflammation, neoplasm and most fluid collections (Edelman and Warach 1993a; Edelman and 

Warach 1993b). The margin enhancement provides a gross measure of tumor extension, but the 

area of enhancement does not represent the outer tumor border because infiltrating cells can 
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often be identified beyond this margin. To detect this infiltration and to characterize the tumor 

and its subparts, functional physiologic parameters have to be measured. 

 

Magnetic resonance spectroscopy (MRS) is much more disease specific than changes in T1 and 

T2 relaxation times. It provides a means for evaluating cancer metabolism along with its 

inhibition and regulation pathways. Particularly, the study of choline and its metabolites by 1H 

MRS is a biomarker for tumor diagnosis and therapy assessment (Negendank et al. 1996; Preul 

et al. 1996; Wald et al. 1997). 1H MRS demonstrates tumor specific changes in the choline, 

creatine, lactate and the N-acetylaspartate concentrations. MRS and MRI methods are also 

suited for the non-invasive assessment of the extent and distribution of hypoxia in tumor tissues 

(Robinson 2005), which is a cause of genetic instability, angiogenesis and resistance to radio- 

and chimiotherapy (Tatum et al. 2006).  

 

In a pulsed gradient spin echo NMR experiment (PGSE-NMR), the incoherent movement of 

water in the brain is characterized by its apparent diffusion coefficient, giving insight into the 

existence of biological barriers impeding the free diffusion of water. Diffusion weighted and 

diffusion tensor imaging is sensitive to the tissue microarchitecture, because it determines the 

cellular density, the anisotropy of the tissue and the size of compartments. Diffusion weighted 

imaging can therefore detect edema, cellular density, or necrotic areas by way of quantification 

of water molecular mobility which is affected by these cellular features. The apparent diffusion 

coefficient increases in many disease processes that destroy the biological barriers for water 

diffusion, such as occurs in neoplasm but also in other brain pathologies. On the other hand, 

neoplasms can also decrease the water diffusion due to an increase in tissue cellularity. The 

response to anti cancer therapy is also measurable, because treatment results in tumor lysis, 

loss of cell membrane integrity, increased extracellular space and therefore in an increase in 

water diffusion.  

 

A measure of the diffusion tensor is independent of the orientation of the tissue in the scanner. 

Quantitative analysis then derives the mean diffusivity, which is the apparent diffusion coefficient 

averaged over all directions, and the fractional anisotropy which decreases with barrier 

destruction in disease. However to be comparable between experiments, such parameters have 

to be acquired using the same diffusion time and magnetic field gradients intensities. The 

directional information contained in the diffusion tensor can lead to tractography identifying the 

path of larger nerve bundles. The nerve tracts can be altered by a space occupying lesion.  
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In conjunction with appropriate biomarkers, MRI can be used to visualize in vivo molecular 

alterations in tumor tissues, such as up- or downregulation of certain molecular targets 

(Weissleder and Mahmood 2001). Biomarkers are composed of a functional moiety and a 

magnetic label. For example, the early detection of apoptosis following therapy predicts long-

term treatment outcome and allows timely optimization of the treatment protocol. Targeted 

probes are under development for revelation with MRI techniques (Hakumaki and Brindle 2003).  

 

Since tumors are commonly associated with abnormal vascular density, angiogenesis and 

compromised vascular wall integrity, the ability to focus an imaging sequence on vascular 

characteristics provides a physiologically-specific approach to tumor delineation, offering utility in 

surgical (Sunaert 2006) and radiation therapy planning. Beyond this, the quantitative 

assessment of tumor vascularity and endothelial hyperpermeability is of utility in diagnosis and 

prognosis, as surrogates of histologically-assessed tumor grade (Aronen et al. 1994). It is also of 

value in distinguishing residual or recurrent tumor from treatment effects such as radiation 

induced necrosis (Sugahara et al. 2000). Furthermore, by quantitatively assessing tumor 

vascular characteristics, these approaches allow the assessment of novel anti-angiogenic 

therapies, guiding drug development through preclinical stages (Padhani 2003), and facilitate 

the inter- and intra-subject comparisons. They also offer early assessments of the biological 

activity of various treatments in the clinical setting (to distinguish potential responders from non-

responders), before more traditional criteria, such as tumor size change, become apparent.  

 
MRI techniques for the quantification of hemodynamic parameters are reviewed in detail in 

paragraph 9. Most of these techniques require the administration of a CA and rely on a particular 

CA kinetics and distribution in the tissue.  

 
 
 

5. Compartment models of the brain tissue 
 

In an MR image of a biological system the signal originates from all compartments containing 

water molecules. The MRI signal depends on numerous compartment specific intrinsic 

parameters such as the T1 and T2 relaxation times, magnetic susceptibility, proton density, 
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velocity or diffusion of water molecules, and it is mediated by water exchange between 

compartments.  

 

The tissue water is modeled as being compartmentalized by physiological boundaries. In order 

to be an acceptable model, the compartments should be homogeneous for the properties, to 

which particular MR acquisition techniques are sensitive.  

 

5.1. The intravascular and the extravascular compartment  
 

In a first approach we distinguish the blood or intravascular (iv) and the extravascular (ev) 

compartment, separated by the structures that make up the BBB. This is a two-compartment 

model of the brain tissue which is generally used in perfusion MRI (Zhou et al. 2001), especially 

if CA are used.  

 

5.2. The intracellular and extracellular compartments  
 

The blood in the intravascular compartment is composed of plasma and a cellular component. 

Plasma contains a protein fraction of about 7% mainly consisting of albumin (~70 kD) and 

solutes (electrolytes, nutrients, gases). The cellular fraction of blood is mainly composed of 

erythrocytes, and to a negligible extent of leukocytes and thrombocytes. The erythrocytes carry 

the hemoglobin which can be dia- or paramagnetic in function of its oxygenation status. In 

strongly deoxygenated blood or in the presence of a CA compartmentalized in the plasma, 

susceptibility differences exist between erythrocytes and plasma (Gillis et al. 1995) affecting the 

transverse relaxation time of blood. However, the longitudinal relaxation times of plasma and of 

the cell fraction of blood are not very different (Kim and Kim 2005).  

 

Similarly, the extravascular compartment is made up of neural and glial cells and interstitial fluid. 

The intracellular and the extracellular water contain different amounts of solutes and proteins, 

and are separated by the cell membranes. Interstitial fluid allows metabolites to be diffused 

between the capillaries and cells in the tissue. In the absence of CAs it is difficult to distinguish 

the intra- and extracellular compartments by MRI although diffusion weighted imaging has this 

potential. 
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Each of the four compartments is described by its volume, water density and MRI parameters 

such as the relaxation times. The intravascular compartment volume Viv is only about 3 to 5 

ml/100g brain tissue. The intravascular intracellular volume is called the hematocrit and makes 

up about 45% of the blood in humans. The volume of the extravascular intracellular 

compartment in the brain is in the order of 70 to 80 ml/100g (Quirk et al. 2003), leaving the 

remaining 15 to 25 ml/100g to the extravascular extracellular volume.  

 

The water density differs slightly between intra- and extravascular compartment, expressed by 

the brain-blood partition coefficient for water λ. This is the ratio of the tissue water content to the 

blood water content 
blood

tissue

w
wλ =  . Its average is probably slightly smaller than unity (Herscovitch 

and Raichle 1985), but it depends on the hematocrit and on tissue factors and varies spatially 

within the brain (Roberts et al. 1996). Formation of an edema within a brain lesion can increase 

λ above unity. 

 

 

 

6. Water exchange 
 

6.1. Intracellular - extracellular exchange 
 

The boundary between intra- and extracellular compartments is constituted by cell membranes 

or cytolamma, which are lipid bilayers with a variable amount of membrane proteins. Water can 

move through the membrane driven by the transcapillary hydrostatic and osmotic pressure 

gradients. For some cell types, such as erythrocytes, this exchange is facilitated by aquaporins 

which are transmembrane water channels (Mathai et al. 1996). The average residence time (τ) 

of water in human erythrocytes is in the order of 10 to 20 ms (Andrasko 1976; Herbst and 

Goldstein 1989) depending on the temperature. The exchange rate across the cell membrane 

(τexch
-1) is given by  

1
b

1
a

1
exch

−−− += τττ   

in terms of the water residence times in erythrocytes (τa) and plasma (τb). The exchange time 

τexch is therefore about 8 ms.  
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The plasma is regarded as a homogeneous compartment with respect to water relaxation rates, 

because the motion of water is free with a diffusion coefficient close to that in pure water (Gillis 

et al. 1995; Tanner 1983).  

 

The transcytolemmal water exchange rate between the interstitial fluid and the extravascular 

intracellular compartment is in the order of 2 s-1 for brain tissue (Quirk et al. 2003) but may be 

different for other tissues (Donahue et al. 1994; Sobol et al. 1991). 

 

6.2. Intravascular - extravascular exchange 
 

The capillary wall is composed of two lipid bilayers each about 5 nm thick, separated by a 1 µm 

thick layer of cytoplasm. The BBB constitutes a mechanical and metabolic (enzymes) barrier 

impeding or slowing down the transport of various substances. This is also the case for water 

molecules, because the paracellular bulk flow along the osmotic gradient is reduced. In the 

brain, the junction size is only 7 Å, which is too small to allow crossing by sodium. The 

determinant factor of water exchange in the brain is mediated through the osmolality and not the 

oncotic pressure (Favre et al. 1996).  

 

The exchange rate of water across the BBB has been estimated in the order of 0.6 to 2 s-1 

(Donahue et al. 1997; Labadie et al. 1994; Orrison et al. 1995; Schwarzbauer et al. 1997). 

Recently, Shin et al (Shin et al. 2006) reported an exchange rate of 0.93 s-1 for white matter and 

1.70 s-1 for gray matter. The endothelial permeability of intact brain capillaries to water is in the 

range of 2 to 60×10-6 m/s (Eichling et al. 1974; Herscovitch et al. 1987; Paulson et al. 1977). The 

permeability surface product PSv of the brain microvasculature to water has been reported in the 

order of 2 to 4 ml min-1g-1 (Barbier et al. 2002; Ginsberg et al. 1985; Reid et al. 1983; 

Schwarzbauer et al. 1997) and being greater for gray matter than for white matter 

(Schwarzbauer et al. 1997).  

 

6.3. Intravascular and extravascular residence times 
 

The PSv product and the intravascular compartment volume Viv (= CBV) determine the average 

intravascular residence time of a water proton (τiv): 

iv

v1
iv V

PS
=−τ .  
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The inverse of the average intravascular residence time τiv
-1 is the water exchange rate from the 

intravascular to the extravascular compartment, often given the symbol kiv-ev or kiv (cf. Fig. 0-4).  

Since the same equations relate the extravascular compartment volume Vev and the average 

extravascular residence time (τev), the following relation holds true:  

ev

iv

ev

iv

V
V

=
τ
τ

. 

 

A pathologic breakdown of the BBB probably first increases the permeability to water before 

increasing the permeability to CAs. The short intercapillary distance allows for near 

instantaneous solute equilibration throughout the brain interstitial space for small molecules, 

once the BBB has been overcome. Therefore, in MRI, the interstitial or extravascular 

extracellular compartment can be regarded as homogeneous.  

 

6.4. The exchange regime 
 

The effect of the water exchange between compartments is the attenuation of the difference 

between the respective relaxation rates of the compartments (Donahue et al. 1997). The 

exchange between compartments a and b is slow, when  
1

ib
1

ia
1

exch TT −−− −<<τ  for i = 1,2.  

The exchange is considered as fast when  
1

ib
1

ia
1

exch TT −−− −>>τ  for i = 1,2.  

The shutter speed, which is the relaxation rate difference between both compartments,  
1

ib
1

iai TTΔR −− −=  for i = 1,2 

increases when a CA is administered and can change the water exchange regime between the 

intra- and the extravascular or between the extravascular intra- and extracellular compartments 

from the fast exchange limit ( iexch ΔR>>−1τ ) to the intermediate exchange ( iexch ΔR≈−1τ ) or 

slow exchange ( iexch ΔR<<−1τ ).  

 

If iexch ΔR<<−1τ , the observed signal is the sum of the signal from both compartments, weighted 

with the corresponding water fractions. Each compartment is relaxing with an apparent 

relaxation rate:  
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1
j

1
ij

1app
ij TT −−−

+= τ  for i = 1,2 and j = a,b.  

 

If iexch ΔR>>−1τ , the signal relaxes monoexponentially with a weighted time constant 

1
ibb

1
iaa

1
i TpTpT −−− += , i = 1,2  

where pa and pb are the water fractions of the compartments a and b.  

 

Given the rather small average residence time τ for erythrocytes (10 to 20 ms) the fast exchange 

regime applies for the subcompartments of blood (Landis et al. 1999). Even for the usual plasma 

concentrations of typical extracellular CA, the relaxation of the whole intravascular compartment 

remains monoexponential (Donahue et al. 1997; Landis et al. 1999). This implies that blood can 

be considered as a homogeneous substance with respect to its relaxation behavior before and 

after injection of CA. Although the CA remains in the plasma compartment, most methods do not 

measure the cerebral plasma volume, but the CBV, unless very high plasma concentrations of 

CAs are achieved resulting in a slow exchange regime. 

 

 
Fig 0-4: The BBB is the interface between the intra- (iv) and the extravascular (ev) compartment. 
The intravascular compartment can be subdivided into intracellular (erythrocytes, red) and 
extracellular compartment (plasma, pink). The extravascular compartment is made up of the 
intracellular (different brain cells) and extracellular (interstitium, blue) compartments. The 
exchange across the BBB is governed by the exchange rates kiv-ev and kev-iv, and across the 
cytolemma by kie and kei. 
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7. Contrast agents 
 
Despite the multiparameter dependence of MRI contrast, the usefulness of CAs relies in their 

ability to increase both the inherent low signal to noise ratio (SNR) and the contrast between 

tissues. Unlike the situation in CT imaging, MRI CA are not imaged directly. Instead, the water 

proton spins that encounter the CA are imaged, via the catalytic effect the CA has on the 

relaxation of their MR signal. Neglecting the effect of intercompartmental water exchange, these 

are mainly the water molecules in the same physiological compartment as the CA.  

 

7.1. CA relaxivity 
 

It is usually assumed that the relaxation rates increase linearly with the CA concentration [CA] 

via 

[ ]CArR-RR ii0ii ==Δ ,  1,2    i =  

where ΔRi is the relaxation enhancement and  

i0
i0 T

1R = ,  1,2    i =  

is the intrinsic relaxation rate of the compartment in the absence of any CA. The term [ ]CAri  is 

the paramagnetic relaxation rate enhancement caused by the paramagnetic CA, where [CA] 

symbolizes the CA concentration. The efficacy of a CA is expressed by the longitudinal and 

transversal relaxivities r1 and r2, which are the proton relaxation rate enhancements induced by a 

1 mM concentration of the CA.  

 

The relaxivities measured in solutions are generally dependent on magnetic field and on 

temperature. In biological tissues, both the T1 and the T2 relaxation can additionally be 

influenced by CA compartmentalization and local field gradients, but the two relaxation 

mechanisms are affected in different ways as discussed further below. They can also be 

affected by the water exchange between compartments. The linearity may not hold for all ranges 

of CA concentrations and tissues (Kiselev 2001).  
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7.2. Paramagnetism 
 

The relaxation rates of water can be increased by endogenous molecules or by administration of 

para- or superparamagnetic particles. Paramagnetism and superparamagnetism are 

characterized by a large electronic magnetic moment in the presence of an external magnetic 

field when microscopic permanent magnetic moments (dipoles) resulting from unpaired 

electrons in the atomic orbitals are magnetically ordered. Contrary to ferromagnetic substances 

which have remnant magnetic moment at zero field once magnetized, para- and 

superparamagnetic substances have no remnant magnetic moment.  Gd3+ is the most widely 

used paramagnetic ion because it has seven unpaired electrons, a very high magnetic moment 

(S = 7/2), a relatively long electronic relaxation time and a symmetric electronic ground state 
8S7/2. Other ions with large electronic magnetic moments are Mn2+ and Fe3+ with five unpaired 

electrons and a spin S = 5/2. The hemoglobin protein is diamagnetic in oxygenated state and 

paramagnetic in deoxygenated state (Pauling and Coryell 1936), and is used as endogenous 

CA. 

 

7.3. Chelating compounds  
 

The metal ions in solution are relatively toxic (reported LD50 values for the metal chloride salts in 

aqueous solution are 1.4, 1.5 and 1.6 mmol/kg for gadolinium, manganese and iron, 

respectively, when administered to mice i.p. (Lauffer 1987)), and nothing controls the 

biodistribution of these ions.  

 

A chelate is an organic chemical compound, which binds a metal ion in its central part, eg 

hemoglobin. Acyclic and macrocyclic polyaminocarboxylates ligands have been synthesized 

forming thermodynamically and kinetically stable complexes with Gd3+. Their function is 

threefold: 

they reduce the toxicity of the metal ion  

they determine the CA distribution in the tissue and the pharmacokinetics of the compound 

they modify the relaxivity of the metal ion 
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7.4. Proton relaxation in the presence of magnetic agents 
 

Paramagnetic metal ions with one or more unpaired electrons, such as the lanthanides Gd3+, 

Mn2+ and Dy3+ and metal ions, decrease the T1 and T2 relaxation times of nearby water protons 

through interactions between the unpaired electrons on the metal and metal-bonded (inner 

sphere), hydrogen-bonded (second sphere) and unbound (outer sphere) water molecules that 

are in fast exchange. The inner sphere and outer sphere contributions add linearly to the total 

relaxation rate change. 
sphere outer

i
sphere inner

ii R  R  R +=Δ   , i = 1,2. 

The relaxation enhancement  ΔRi is governed by dipolar interactions between the electronic 

moment of the ion and the nuclear moment of the water protons in the fluctuating local magnetic 

field around the paramagnetic center arising from the dipolar interactions. The relaxation 

enhancement strongly depends on the distance between the nuclear and the electron spin and 

on the residence time of the water molecule in the inner (first hydration) sphere of the metal 

complex. It further depends on factors such as the number of water molecules in the first 

coordination sphere, the rotational correlation time and the electronic spin relaxation time.  

 

In the inner sphere, the longitudinal relaxation is governed by 

mm 1
m

1 T
1qP

T
1

τ+
=  

and the transverse relaxation by 
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where  

q is the hydration number (bound water protons per metal),  

Pm is the mole fraction of the bound water protons, 

τm is the residence time of the coordinated water molecule in the first hydration sphere of the 

metal and 

Δωm is the chemical shift difference between the bound water and the diamagnetic water in the 

absence of a paramagnetic metal. 

The longitudinal and transverse proton relaxation rates of the bound water are the result of two 

relaxation mechanisms: 
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S
i

D
im i T

1
T
1

T
1

+= , i = 1, 2 

where the superscript D refers to the dipole - dipole relaxation mechanism and the superscript S 

refers to the scalar contact mechanism. 

It is the dipole - dipole relaxation mechanism that strongly depends on the distance between the 

electron and the nuclear spin: 

6D
i r

1
T
1

∝ , 

where r is the distance between electron and nuclear spin. 

The relaxivity decay with increasing magnetic field strength is governed by factors such as  

221
1

cτω+
 

where  

ω symbolizes the Larmor precession frequency and  

τc is the correlation time.  

The scalar mechanism depends on the electron Larmor frequency only, whereas the dipole - 

dipole mechanisms depends on both, the electron and the nuclear Larmor frequency.  

The correlation times are given by: 

Rme i
D
c

11
T
11

τττ
++= , i = 1, 2 

for the dipole - dipole relaxation mechanism,  

and 

me i
S
c

1
T
11

ττ
+= , i = 1, 2 

for the scalar relaxation mechanism,  

where 

τR is the rotational correlation time and 

e iT
1  are the electronic relaxation rates which also decrease with increasing magnetic field. 

 

At magnetic field strengths above 1 T, the relaxation of water protons are mainly governed by 

the rotational correlation time τR. The relaxation rates can therefore be described by simplified 

equations: 
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The outer sphere mechanisms that are due to translational diffusion of the water molecules with 

respect to the chalate contribute much less to the total relaxation enhancement. They are mainly 

determined by the electronic relaxation rate 
e 1T

1
, the minimum distance of approach between 

the outer sphere water molecules and the metal complex and the sum of the diffusion  constants 

of the outer sphere water molecules and the complex.  

 

At the usual clinical imaging fields of 0.5 to 1.5 T, the commonly marketed CAs reach only about 

1/20th of the relaxivity predicted by the Solomon-Bloembergen-Morgan theory (Aime et al. 2005; 

Caravan et al. 1999; Livramento et al. 2006a; Livramento et al. 2006b; Vander Elst et al. 2003), 

if the electronic relaxation of the spin is slow and the rotational diffusion speed of the complex as 

well as the rate of water exchange between the inner sphere and the bulk have their optimal 

values. Novel applications in MRI require CA with higher efficacy.  

 

7.5. NMRD profiles 
 

Proton spin relaxivity measured as a function of magnetic field strength is called nuclear 

magnetic relaxation dispersion (NMRD). Proton T1 NMRD profiles are informative tools to 

explore the dynamics of molecules, especially those complexes containing paramagnetic ions 

which drastically change the proton relaxation time at a certain range of magnetic field strength. 

The r1 usually decreases with increasing field strength in a compound specific manner, while the 

r2 can increase (Vander Elst et al. 2005). These profiles can be fitted to models (Caravan et al. 

1999) to disentangle the inner sphere and outer sphere contributions to the relaxivity. 
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7.6. Types of CAs 
 

The use of paramagnetic ions to enhance contrast was first introduced in 1982 (Brady et al. 

1982; Goldman et al. 1982),
 
and in 1984 the gadolinium chelate diethylenetriamine pentaacetic 

acid (Gd-DTPA), Magnevist®, was used for imaging human cerebral tumors (Carr et al. 1984).  

 

When CAs are used for MRI perfusion imaging, from the methodological point of view three 

properties are important: 

the compartmentalization in the blood pool, which strongly depends on the tissue type 

the CA relaxivities and  

the biologic elimination rate from the blood pool. 

The last two properties determine the dose to be administered. For routine preclinical and 

clinical use other aspects become important such as adverse effects, cost, approval for clinical 

use. 

 

For animal studies a large variety of CA types are available.  

 

Small molecular CAs 
 

Currently, all paramagnetic CA approved for clinical use in MRI are derivatives of the open chain 

DTPA or the macrocyclic chelate tetraazocyclododecane tetraacetic acid (DOTA) (Oudkerk et al. 

1995) (Fig. 0-5). These clinically approved non-specific CAs are freely diffusible in the intra- and 

extravascular extracellular compartement with the exception of the brain where only BBB lesions 

enable the CA to pass. They do not enter the cells (Koenig et al. 1986). Gd-DTPA and Gd-DOTA 

are conventional small molecular CA with molecular weights of 560 and 547 Da, respectively, a 

diameter of 0.9 nm (Corot et al. 2000a) and a distribution volume of 0.266 l/kg, approximating 

the extracellular fluid volume (Brasch et al. 1984; Weinmann et al. 1984).  

 

Blood pool CAs 
 

In the field of brain tumor perfusion imaging, there is a need for CAs that do not leak across an 

interrupted BBB and can serve as blood-pool CA. Beyond diagnosis of tumor extension and 

vascular permeability, blood pool CA help in the classification and follow-up of tumors by MRI by 

virtue of quantifying microvascular parameters, such as CBV and CBF (Fig 0-6).  



Literature review 

 

54 

 

By selecting polymers of higher molecular-weight, extended blood pool retention during the 

postbolus phase can be achieved (Ladd et al. 1999), due to lower extravasation and/or a slower 

renal clearance (Corot et al. 2000b; Corot et al. 2002; Port et al. 1999).   

 

Intermediate sized CAs 
 
Intermediate sized CAs, such as P792, Vistarem®, 6.47 kDa (Weidensteiner et al. 2006), or 

P760, 5.29 kDa (Corot et al. 2000a)(Fig. 0-5), have improved contrast-enhanced magnetic 

resonance angiography (MRA) through prolonged imaging during the longer intravascular 

steady state concentration. Both CA are based on a Gd-DOTA core, which is substituted by rigid 

hydrophilic arms. P760 has a mean diameter of 2.8 nm (Corot et al. 2000a). Its relaxivities are 

five to seven times higher than those of Gd-DOTA (Table 0-2).  

 

 
Fig. 0-5: size comparison of Gd-DOTA and P760 
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Fig. 0-6: indications for the use of extracellular Gd3+-based and blood-pool CAs in oncology 

 
 

 

Macromolecular CAs 
 

Macromolecular CAs typically range from 5 kDa to 90 kDA in molecular weight. MS-325, 

Vasovist® (international non-proprietary name: gadofosveset), binds human serum albumin 

reversibly in vivo coupling the blood pool retention of a macromolecule with the renal excretion 

properties of small molecules (Caravan et al. 2002; Grist et al. 1998; Lauffer et al. 1998; 

Turetschek et al. 2001).  

Albumin-Gd-DTPA is a prototype macromolecular CA with a molecular weight of 92 kDa, a 

plasma half life of approximately 3h and an initial distribution volume of 0.05 l/kg, which closely 

approximates the blood volume (Schmiedl et al. 1987). It consists of human serum albumin, 

paramagnetically labeled with 19 Gd-DTPA groups. 

Polymeric agents, e. g. dextran, have molecular weights above 15 kDa, but exhibit a high 

degree of polydispersity.  

Dendrimers, such as polyamidoamine and diaminobutane core polypropylimine, are another 

class of macromolecular CA. These branched polymers, can be synthetically produced at 

different sizes, with different pharmacokinetic properties (Kobayashi and Brechbiel 2003). Viral 

particles and liposomes that incorporate either Gd3+ or iron particles are potential 

macromolecular CA that could also serve to vehicle therapeutic agents (Mulder et al. 2006). 

 

Superparamagnetic CA 
 

Another type of macromolecular CA are superparamagnetic iron oxide (Fe2O3 or Fe3O4) 

nanoparticles coated with dextran. Because of their crystalline structure and the large number of 
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non-paired spins, the nanoparticles have a high net magnetic moment exceeding that of typical 

paramagnetic ions, and preferentially shorten the T2* in vivo. They exist in various sizes, which 

alter their pharmacokinetics. Superparamagnetic iron oxide (SPIO) particles have diameters of 

50 – 150 nm, ultrasmall SPIO (USPIO) of 10 – 50 nm, and very small SPIO particles (VSOP) of 

2 – 10 nm. Compared to SPIO, the USPIO are taken up more slowly by the reticuloendothelial 

and lymphatic systems, because they escape rapid recognition by the monocyte macrophage 

phagocytic system mainly of liver and spleen (Weissleder R, Guillermo E, Wittenberg J 

Radiology 1990). This results in a blood half life in the order of 1 h, 4 h and 24 h in mice, rats 

and humans, respectively. The distribution volume approximates the blood volume in rats (0.05 

l/kg), but is also very species specific. 

 

Molecular CAs 
 

Molecular CAs are designed to target specific biologic molecules (e.g. genes and proteins) that 

are linked to disease processes (Weissleder et al. 2000), and to quantify physiologic molecular 

events. Molecular imaging has many applications in biology and medicine. Tumor angiogenesis 

could be evaluated by imaging with vascular targeting CAs (Guccione et al. 2004; Ocak et al. 

2007; Winter et al. 2006). 

 

Table 0-2 gives an overview focused on MRI CA that can be used as blood pool agents. The 

relaxivities in water at room temperature are given. Comparing these values with relaxivities 

measured in plasma or blood, it can be observed that they are often lower in water. For 

example, at 0.47 T, the r1 relaxivity of P760 is about 28.7 mM-1s-1 and 29.2 mM-1s-1 in plasma 

and blood (Corot et al. 2000a), respectively. This is due to reversible binding to plasma proteins 

which slow down the rotational correlation time of the CA molecules resulting in increased 

relaxivity.  
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Table 0-2: Blood pool contrast agents. The relaxivities r1 and r2 (mM-1s-1) are given in water at room 
temperature.  
f = free, b = bound form. The magnetic field strength is given in Tesla. 
 

compound ion r1  r2  B0  distribution trademark® 
Gd-DTPA Gd3+ 3.4 3.8 1 intravascular 

(neuro), 
extracellular 

Magnevist 

Gd-DOTA Gd3+ 3.4 
2.9 

4.8 
3.4 

1 
2.35 

intravascular 
(neuro), 
extracellular 

Dotarem 

Albumin-Gd-DTPA Gd3+ 14.9  2 intravascular  
Gadodiamide  
Gd-DTPA-BMA 

Gd3+ 3.9 4.3 1 intravascular, 
extracellular 

Omniscan 

Gadoteridol  
Gd-HP-DO3A 

Gd3+ 3.7 4.8 1 intravascular, 
extracellular 

ProHance 

Gadobenate 
dimeglumine  
Gd-BOPTA 

Gd3+ 4.6 6.2 1 intravascular, 
extracellular, 
hepatobiliary 

MultiHance  
(phase III) 

Gd-DTPA-17(and 24) 
cascade polymer 

Gd3+ 11.9 16.5  intravascular Gadomer-17 
Gadomer-24 
(preclinic) 

Gadomelitol  
P792 

Gd3+ 39 
25 

 0.47 
1.5 

intravascular 
(neuro), 
extracellular 

Vistarem 

P760 Gd3+ 24.7 
17.2 

 
27.1 

0.47 
2.35 

intravascular 
(neuro), 
extracellular 

(preclinic) 

MS-325 Gd3+ 6 (f) 
33 (b) 

 0.47 intravascular Vasovist 

dextran coated 
Ferrumoxid, SPIO 
AMI-25 

Fe2+ 

Fe3+ 
40 160 0.47 Reticulo 

Endothelial 
System 

Endorem, Feridex 

Ferrumoxtran-10 
USPIO, AMI-227 

Fe2+ 

Fe3+ 
25 
10 
6 

160 
88 
90 

0.47 
1.5 
3 

intravascular,  
lymphatic system 

Sinerem, Combidex 
(phase III) 

MION Fe2+ 

Fe3+ 
3.7 6.5 0.47 intravascular,  

lymphatic system 
(preclinic) 
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8. Fast MRI techniques 
 

Owing to the developments that resulted in shorter acquisition times, MRI is a modality that can 

be used to monitor dynamic physiological processes (such as cardiac contraction, tracking the 

passage of a CA bolus, functional brain activation).  

 

The technical developments that lead to fast MRI, include improvement of the speed of the 

gradient system and of the sensitivity of RF coils but it is essentially the result of improved 

sequence design. 

 

The duration TAcq of a two dimensional scan is determined by the repetition time TR, the number 

of phase encode steps nPh, which determines the spatial resolution, and the number of 

experiments nEx used to accumulate the signal to increase the SNR: 

ExPhAcq n  n  TR T ××=                        Eq. 0-1 

 

The various techniques that have been developed to speed up acquisition, aim at reducing one 

of these factors: 

reduce the repetition time 

reduce the number of phase encoding steps 

reduce the data that has to be acquired 

reduce the number of experiments 

increase data points per unit time 

 

8.1. K-space 
 

The K-space or Fourier-space is the reciprocal space of the real or Euclidean space (R-space). 

It is a two or three dimensional matrix of spatial frequencies k. In a MRI experiment the signal is 

spatially encoded with three orthogonal magnetic field gradients, which define the spatial 

frequencies:  

∫=
t

0

''
ii )dt(tG

2π
γ(t)k , i = x, y, z 

where γ is the gyromagnetic ratio of the proton, and G(t) is the intensity of the magnetic field 

gradient.  
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R-space and K-space are related by the Fourier Transform: 

rrkrk )di2πexp()ρ()S(
V

⋅−= ∫                      Eq. 0-2 

where S(k) is the frequency spectrum which is a complex value, r is the spatial position and ρ(r) 
is the spin density function. The two vectors r = (x, y, z) and k = (kx, ky, kz) are the two 

conjugated variables. To go from K-space data to the desired image function ρ(r) requires using 

an inverse Fourier Transform. The center contains the spatial frequencies that determine the 

image contrast. The outer k-space defines the image resolution and therefore the details in the 

image. 

 

Images can be created from the matrix using the discrete Fourier transform (DFT). The Fast 

Fourier Transform can be used if the K-space data is sampled on a Cartesian grid. 

 

8.2. Conventional K-space sampling 
 

To image 3D objects, tomographic imaging requires either 2D imaging with a suitable technique 

for defining a narrow slice within the object, or a 3D spatial encoding procedure. To reduce 

spatial encoding to two dimensions (K-plane), slice selection is accomplished by selectively 

exciting the magnetization of a slice with the aid of an oscillating B1(t) field perpendicular to the 

B0 field and an RF pulse, characterized by a pulse envelope function, which defines its 

frequency bandwidth, and an appropriate excitation frequency, without perturbing the 

magnetization in the rest of the object. The subsequent signal originates only form this slice.  

 

Common RF pulse envelopes are the rectangular, gaussian and the sinc function. A short (hard) 

rectangular pulse in the order of a microsecond excites spins over a wide frequency bandwidth. 

The RF pulse is therefore nonselective. A long (soft) rectangular pulse of a few milliseconds 

duration excites spins resonating over a narrow frequency bandwidth, and is therefore selective. 

In practical use, sinc pulses with truncated side-lobes and reduced side-lobe amplitudes yield 

better slice-selection profiles. 

 

True 3D encoding necessitates a number of phase encode scans in the third direction in K-

space before applying the 3D inverse Fourier transform. Equation 0-1 then has an additional 

factor nPh equal to the number of phase encoding steps in the third direction. The third 
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dimension can also be encoded by applying a gradient during the free induction decay (FID) or 

echo acquisition. If equilibrium has to be awaited after acquisition of each profile, total scan 

times increase by a factor equal to the number of encoding steps in the third direction. The 

larger number of independent measures for one single pixel during a 3D scan increases the 

SNR by the square root of the number of planes, compared to single or multiple slice imaging. 

Consequently, in 3D imaging, smaller pixels can be measured with similar SNR. 

 

Figure 0-7 illustrates a K-space sampling scheme in a 2DFT or spin warp imaging experiment. In 

this and all following figures the frequency encoding is performed in the kx-direction and the 

phase encoding in the ky-direction. The total transverse magnetization of the excited slice is 

sampled nS times during one echo, and these sample values provide a profile in the K-plane 

(horizontal line with constant ky-value) per TR. The number of profiles in the K-plane equals the 

number of phase encode steps nPh. A conventional spin echo or gradient echo sequence 

acquires only one K-space line per TR. This is called a multiple shot technique. Total acquisition 

time for the spin echo sequence is given by Eq. 0-1.  

 

 
Fig. 0-7: conventional K-space sampling pattern. The white dots on each profile represent the 
discrete sampling points. The time required to sample the whole K-plane is the repetition time TR 
times the number of phase encode steps. 
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8.3. Strategies that reduce the repetition time 
 

When TR << 5T1, the signal becomes T1 weighted because the longitudinal magnetization has 

no time to recover before the next excitation pulse. With gradient echo imaging, it is possible to 

use smaller (< 90°) flip angles, and consequently the longitudinal magnetization requires less 

time to recover to thermal equilibrium. However, a low flip angle decreases the amount of 

magnetization tipped into the transverse plane, and the consequence is a lower SNR. The flip 

angle α for optimum SNR at a given TR depends on the T1 of the tissue, and is given by the 

Ernst equation: 

)TR/Texp()cos( 1−=α .  

 

The image contrast relies on the three extrinsic parameters TR, TE and α. In opposite to spin 

echo images, gradient echo images are T2* weighted as the transverse magnetization decay 

due to B0 inhomogeneities is not inverted, and they are therefore more sensitive to susceptibility 

artefacts. 

 

When TR < T2*, the spins on the slice plane do not have enough time to dephase:  the MR 

signal never decays completely. These sequences are called steady-state. The steady-state 

technique produces T2*-weighted images very fast (in less than 1 second with TR < 10 ms) with 

a good SNR. Additional gradients or RF pulses can spoil or refocus any remaining transversal 

magnetization before the next readout pulse.  

 

A typical spoiled gradient echo is the fast low angle shot (FLASH) sequence introduced in 1986 

(Frahm et al. 1986). With fast (turbo) gradient echo sequences, such as snapshot FLASH 

(Frahm et al. 1990; Haase 1990), images can be acquired in less than one second.  

 

As a result of the short TR, the longitudinal magnetization can not fully recover and after a few 

initial excitation pulses there is a dynamic equilibrium established between longitudinal 

magnetization recovery and reduction due to the excitation pulses. The signal intensity S of a 

spoiled gradient echo sequence is given by  

[ ] ( )
( ) ρ
α)cosTR/Texp(1

αsinTR/Texp(1*)TE/Texp(M S
1

120

−−
−−−

 ∝                                                                    Eq. 0-3 
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where ρ is the proton density and M0 is the longitudinal magnetization at thermal equilibrium. 

This is a multiple-shot technique since each image is acquired by applying a train of low flip 

angle pulses, each of which gives one phase encode line. 

 

Technical improvements, such as stronger and faster switching gradients, further facilitate the 

task of reducing the TR. 

 

8.4. Strategies that reduce the number of phase encode steps and speed up K-space 
sampling 

 

A larger portion of the K-space data can be acquired after a single excitation during the decay of 

the transverse magnetization. Additional data profiles in K-space are acquired using multiple 

gradient echoes or spin echos. Other more efficient K-space sampling trajectories exist such as 

spirals and echo planar imaging (EPI). If the entire K-space is acquired after one excitation pulse 

and a long train of echoes then such a technique is called single-shot.  

 

8.4.1. Fast Spin Echo 
 

A multi spin echo sequence uses a 90° RF pulse followed by more than one refocusing pulse to 

create separate echoes at increasingly longer echo times. Fast spin echo (e.g. RARE) is 

accomplished by acquiring multiple echoes with successive 180-degree pulses, and uniquely 

phase encode each echo during a given TR.  The number of echoes phase-encoded in a given 

TR is the factor by which the sequence is speeded up compared to a conventional spin echo 

sequence and is known as the turbo factor (or echo train length).   

 

Fast spin echo images demonstrate more T2-weighting making it difficult to obtain true proton 

density weighted images. Since all echoes have different TE, an effective TE is defined by the 

position of the echo belonging to the zero K-space line. 

8.4.2. Echo planar imaging 
 
In EPI (Pykett and Rzedzian 1987), multiple phase encoding lines are acquired from a single RF 

excitation instead of one single line. In single-shot EPI, all of k-space is sampled after a single 

set of RF pulses. A strong and rapidly switching/reversing readout gradient is used in 

combination with a weak phase encoding gradient (blip) at the end of the acquisition of each 
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line. Each traversal of K-space is achieved via one positive or negative readout gradient pulse, 

resulting in a meander trajectory (cf. Fig. 0-8). Instead of the blips in the phase encoding 

gradient, a small but constant phase encoding gradient can be used, such that oblique lines are 

described through the K-space, resulting in a zig-zag trajectory. 

 

Since alternate lines of K-space are scanned in opposite directions, this must be taken into 

account in the reconstruction. The total trajectory through the K-space must be covered within 

T2* (comprising T2 decay and off-resonance effects), otherwise not enough signal is left at 

acquisition. The TE value for the center of K-space determines the contrast in the image. If T2* is 

too short to allow acquisition of the entire K-space at once, segmentation is usually applied, 

meaning that the K-space is acquired using more than one excitation pulse (multiple-shot EPI).  

 

 
Fig. 0-8: a single shot blipped EPI trajectory 

 

 
 

 

EPI is more sensitive to ghosting (variations in the phase encoding gradient cause alternating K-

space shifts) than conventional imaging. In particular, it suffers from T2* decay during the 

acquisition causing blurring, and from main magnetic field inhomogeneities causing resonance 

offset and distortions in the phase encoding direction. High gradient system performance is 

required, and instrumental imperfections can generate additional artifacts.   
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8.4.3. Spiral imaging 
 

Non Cartesian K-space sampling trajectories are also possible. One such technique is spiral 

acquisition. A rotating magnetic field gradient is applied by a pair of increasing sinusoidal 

gradients, causing the trajectory in K-space to trace a spiral out from the center to the edge (Kim 

et al. 2003) (cf. Fig. 0-9) .  

 

 
Fig. 0-9: spiral acquisition trajectory. The trajectory is smooth but the sampling points do not lie 
on a Cartesian grid. 

 
 

 

In spiral imaging the TE can be very short, because the trajectories start at the center of K-

space. The signal is greatest at the start of the acquisition, while high spatial frequencies are 

acquired when the signal is attenuated due to T2 and T2 * decay. Hence acquiring the center of 

K-space first improves contrast to noise ratio (CNR) when compared to conventional 

acquisitions, especially in the presence of rapid movement. Effects such as flow, susceptibility 
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and T2* decay, have no time to develop serious errors before essential information from large 

structures (low k values) is acquired.  

 

A further difference from other fast methods is that the trajectory through the K-space is smooth 

and less demanding for the gradient system.  T2* decay and resonance offset occur mainly in 

the radial direction of K-space. Eddy currents, main magnetic field inhomogeneities and 

imperfections of the gradient field also distort the exact position of the sampling points in K-

space. 

 

For all non Cartesian sampling patterns, in order to use the efficient inverse fast Fourier 

transform for discrete data (Cooley and Tukey 1965) the sampled points in K-space must first be 

interpolated onto a Cartesian rectilinear grid. This method is called gridding (Noll et al. 1992). 

 

8.5. Strategies that reduce the acquired data  
 

8.5.1. Variable density sampling 
 

Techniques that reduce the data that has to be acquired include those that undersample the 

high-frequency regions of the K-space. This often leads to acceptable image degradations, 

because, roughly speaking, the main contrast is determined by the magnetization acquired at 

the low spatial frequencies. K-space filling trajectories such as variable density Cartesian 

sampling, radials, or spirals, exploit this principle. 

 

Projection reconstruction acquisitions 
 

The earliest imaging technique used in MRI is projection reconstruction (PR) (Lauterbur 1973). 

Each acquisition starts at the origin of K-space and goes out on a radius at a polar angle 0 ≤ Θ < 

2π (cf. Fig. 0-10) determined by the gradients in the x and y directions (Gx and Gy):  

( )xy
1 GGtanΘ −= .  

The TE can be short since no phase encoding is necessary.  

To encode the third dimension a gradient can be applied during signal acquisition in order to 

increment the azimuthal angle in the range 0 ≤ Φ < π. This samples a sphere in K-space with 

radial profiles given by: 
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( )( ) ( )( )
( )( ) ( )( )
( )( )tΦcos kk

tΦsintΘsin kk
tΦsintΘcos kk

z

y

x

=

=
=

 

Here  

t G
2π
γk Δ= ,  

with Δt being the time the gradient is applied. 

 

 
Fig. 0-10: Projection reconstruction sampling pattern. The center of K-space is oversampled and 
the sampling points have a decreasing density from the center out to the periphery of K-space. 
The sampling points do not lie on a Cartesian grid. 

 
 

 

Acquisitions of radial profiles through the origin of the K-space have the advantage of 

oversampling the central region. This results in good sensitivity but relatively modest spatial 

resolution. Averaging of the low spatial frequencies also results in a reduction of motion and flow 

induced artifacts. Whereas with conventional Cartesian sampling techniques motion between 

the acquisitions of two lines in K-space causes ghosting artifacts in the phase encode direction, 
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more tolerable local blurring and streaking perpendicular to the direction of motion occurs at the 

periphery of the field of view (FOV) with radial sampling techniques (Glover and Pauly 1992).  

 

Radial profiles can be acquired one by one after excitation from the equilibrium magnetization 

(long TR), or a T1 weighting is introduced when TR < T1. If a number of radial profiles (turbo 

factor) spanning an angular range is acquired after one excitation, eventually in an interleaving 

pattern, resonance offset and susceptibility artifacts as with spiral imaging or EPI are generated.  

 

As with other non Cartesian sampling patterns a gridding procedure followed by the inverse fast 

Fourier transform can be used for image reconstruction. With radial sampling, filtered back 

projection can also be used for reconstruction similar to CT: each radial line can be inverse 

Fourier transformed and the obtained images (position dependent projections) superimposed 

(back-projected) to obtain the projection-reconstruction image. The 1/r blur has to be corrected 

by weighting the acquired K-space data before applying back projection. 

 

Keyhole acquisitions 
 

Keyhole imaging (van Vaals et al. 1993) is used for monitoring the passage of a CA in the 

vasculature (dynamic imaging) for which a very high temporal resolution is required.  

 

The principle consists in acquiring a reference image before injection of the CA by sampling the 

K-space up to high spatial frequencies. However, during CA bolus passage, the low spatial 

frequencies are sampled at a higher rate than the peripheral regions of K-space because the 

details in the image are temporally invariant while the contrast is determined by the central K-

space region which needs to be updated. Images are reconstructed at each sampling of the 

central K-space region using the temporally nearest samples from the peripheral K-space 

regions. Therefore the keyhole technique increases temporal resolution without loss of spatial 

resolution. 

 

8.5.2. Half Fourier reconstruction 
 

The NMR signals are detected using two phase detectors with orthogonal RF reference signals. 

The two channels, provide two time-dependent output signals u(t) and v(t) which behave as 

Cartesian components of a complex signal S(t) = u(t)+iv(t). According to equation Eq. 0-2, S(-k) 
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= S*(k), with the star denoting the complex conjugate. This means that there is a symmetry in K-

space. One therefore needs to acquire S(k) only in slightly more than a suitably selected half of 

the K-space, resulting in equal spatial resolution. This technique is called Half-Fourier 

reconstruction. Drawbacks of this technique are a reduced SNR by a factor 2 . In addition any 

artifacts during sampling of the first half of K-space are propagated to the second half.  

 

8.5.3. Reduced FOV 
 

Spatial resolution is an inverse function of the FOV. The smaller the FOV, the fewer data points 

are needed to sample it. A smaller image volume can be achieved by using local RF coils which 

pick up only signals arising from a limited area of a larger body, by using a non square shaped 

FOV and by outer volume suppression. 

 

8.6. Strategies that increase the sampled data points per unit time 
 

Strategies to acquire more data points per unit time include parallel imaging and pulse 

sequences that improve the duty cycle such that most of the time is spent acquiring data.  

 

8.6.1. Parallel imaging 
 

With parallel imaging or sensitivity encoding (SENSE), data are acquired simultaneously by 

individual receiver coils increasing the acquisition rate by a factor equal to the number of coils. 

The receiver coil elements have different sensitivity patterns in space, and these differences can 

be used to differentiate the spatial locations of signal sources for reconstruction.  

 

8.6.2. Multiple slice acquisitions 
 

A strategy that utilizes the time necessary to wait for longitudinal magnetization to recover 

(between the end of echo collection and the next 90° excitation pulse referred to as dead time) is 

the acquisition of multiple slices. Cross excitation between adjacent slices due to imperfect slice 

profiles is accounted for by interleaving slices, so that even slices are excited first followed by 

the odd ones. 
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8.7. Strategies to decrease the number of experiments 
 

Signal has to be averaged over a large number of experiments, when the SNR is low. The SNR 

is always reduced when using low flip angles. It is also reduced when sampling as much data 

points of the K-space as possible after a single excitation pulse. The latter acquisition 

techniques are limited by the decay term  

*)exp(t/Tf 2D =                         Eq. 0-4 

where T2* is the apparent transverse relaxation time, which in addition to the intrinsic transverse 

relaxation time comprises diffusion and the dephasing effect due to local field inhomogeneity.  

 

8.7.1. Increasing the SNR 
 

The use of high-field magnets with field strength greater than 1.5T provides higher SNR, due to 

the increase in the nuclear polarization fraction.  However, the disadvantages of high-field MRI 

are increased T1, decreased T2 and increased susceptibility based field inhomogeneity.  

 

With the use of CAs, the recovery of the longitudinal magnetization can be accelerated and 

therefore the SNR improved.  

 

8.7.2. Slowing down the transverse signal decay 
 

Technological advances allow the construction of more homogeneous magnets. However, the 

object to be imaged is generally heterogeneous and induces local field inhomogeneities which 

accelerate the transverse decay of the signal. Local dedicated RF coils can be used to image a 

small volume of interest with improved SNR, thereby excluding irrelevant parts of the body that 

can be characterized by a greater field inhomogeneity.  

 

8.7.3. Numeric correction for the decay term 
 

The T2* can be considered spatially invariant if the magnetic field is homogeneous, since this is 

the dominating process for T2*. If the desired K-space data collection can not be accomplished 

while the decay factor (Eq. 0-4) is still close to one, a correction is theoretically possible before 
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reconstructing the image if for each data sampling point in K-space the delay TE at acquisition is 

known: 

(TE))S(f(0))S( 1
D kk ⋅= −  

This correction implies that the decay rate 1/T2* is known and spatially invariant, and that this 

correction is not carried out for TE for which the SNR is already low, since this would amplify the 

noise component.  

 

 

 

9. CBV measurements by MRI 
 
The CBV can be measured using exogenous CAs, which remain confined to the vascular 

compartment in brain tissue. Two approaches for CBV quantification exist.  

 

The so called steady state approaches for CBV measurement rely on the signal or relaxation 

rate change induced by a homogeneous distribution and stable concentration of the CA in the 

intravascular compartment.  

 

The dynamic approaches either model the signal change during the first pass of the CA bolus 

through the tissue of interest (so called first pass or bolus tracking techniques) leading to the 

CBV, the CBF and the mean transit time (MTT), or afterwards including the CA distribution within 

different compartments and its elimination from blood, leading to the CBV, the extravascular 

leakage volume and a physiologic parameter related to the permeability of the BBB to the CA.  

 

All MR relaxation mechanisms have been exploited for the measurement of CBV, and all 

approaches are based on a linear relation between CA concentration and relaxation rate change 

of blood (Boxerman et al. 1995; Rosen et al. 1990). Therefore the CBV can be derived from the 

relaxation rate change or from appropriately T1 or T2 weighted acquisitions. Any non-linearity 

between relaxation rate or signal change and CA concentration in tissue and blood will therefore 

introduce errors (Kiselev 2001).  

 

Two MRI techniques exist, the Blood Oxygen Level Dependent (BOLD) technique and the 

Arterial Spin Labeling (ASL) technique, that do not rely on the injection of an exogenous CA and 

that measure a signal which is related to the CBV.  Originally, they have not been conceived for 
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CBV measurement, but for the quantification of the CBF in the case of ASL techniques and for 

the detection of activated brain areas in functional MRI in the case of the BOLD technique.  

Although they do not lead to the quantification of the total CBV, the origin of the CBV component 

to the signal acquired with these techniques will be briefly described in the last paragraph of this 

chapter.  

 

9.1. Steady state methods  
 

The compartmentalized presence of an intravenously injected CA reduces the longitudinal and 

transverse relaxation time of the vascular compartment and induces microscopic field gradients 

and susceptibility effects at the vessel wall, which shorten the T2* relaxation time constant. With 

steady state approaches, the relaxation rate or signal change of the brain tissue induced by the 

CA is considered proportional to the intravascular CA concentration (Boxerman et al. 1995; 

Rosen et al. 1990) and is therefore related to its distribution volume in the tissue of interest: the 

CBV. A comparatively high CA dose is needed to assure a high and stable vascular 

concentration throughout the duration of the post-contrast acquisition. CAs with a long blood half 

life and high relaxivity are therefore preferred.  

 

MRI acquisitions are performed before and after injection of the CA, and a difference image of 

the brain tissue is created from two T1, T2 or T2* weighted acquisitions, or from the change in 

tissue relaxation rates ΔR1, ΔR2 or ΔR2* before and after injection of a CA.   

 

To quantify the CBV with all steady state techniques, information about the CA induced 

relaxation rate or signal change in the blood compartment is needed. The ΔR2*-method under 

steady state conditions requires the knowledge of the blood susceptibility. Blood sampling 

becomes necessary, which is also the case using other acquisition techniques to determine the 

signal or relaxation rate difference of blood. If the spatial resolution of the images is sufficiently 

good to distinguish large vascular structures, this information can also be obtained from a 

vascular ROI. In this case blood sampling can be avoided but this method is limited by the partial 

volume effect.  
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9.1.1. CBV measurement in the slow water exchange regime 
 

In the no-water exchange or slow water exchange limit, quantitative CBV is calculated as the 

ratio of the signal changes induced by the CA in tissue and blood (Kuppusamy et al. 1996; Lin et 

al. 1997):  

iv
post

iv
pre

total
post

total
press

SS
SS

CBV
−

−
=  

where Spre and Spost are the signal intensity before and after CA injection, the superscript total 

refers to the signal in a tissue voxel (intravascular and extravascular), the superscript iv refers to 

the blood signal (intravascular) and the superscript SS refers to steady state methods.  

 

T1 weighted acquisitions are more adapted for this method because it is assumed that the 

longitudinal relaxation enhancement is dominant. However, with long TE times the CBV can be 

contaminated by T2-effects. T2 weighted acquisitions have also been used (Le Duc et al. 1999). 

 

9.1.2. CBV measurement in the fast water exchange regime 
 

In the fast water exchange limit, the T1 values of all tissue compartments are shortened, 

although the CA remains intravascular, and the CBV can be obtained by calculating the ratio of 

R1 change in the tissue to R1 change in blood (Schwarzbauer et al. 1993).  
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9.1.3. CBV measurement by the steady state ΔR2* method 
 
Other studies (Payen et al. 2000; Tropres et al. 2004) have exploited the changes in R2* 

(Villringer et al. 1988). The CBV quantification by the steady state ΔR2* method is based on a 

simplified geometric model of the brain microvasculature and the approximation of static water 

protons. The compartmentalization of high magnetic susceptibility CAs, such as USPIO, within 

the randomly oriented capillary network of the brain results in localized microscopic field 

inhomogeneities in the tissue in which water protons diffuse, inducing a loss of transverse phase 

coherence with T2* signal loss in the perivascular space. As illustrated in Fig. 0-11, the 
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component of the magnetic field B(r) which is parallel to B0 is inversely proportional to the 

square of the distance r form the vessel: 

 ( ) ( ) ( )Θsinr
RΔMrB 22

∝  

and it is a function of  

ΔM: the magnetization difference between the intra- and extravascular compartment induced by 

the compartmentalized CA, 

R: the radius of the vessel, 

Θ: the angle between the direction of the main magnetic field B0 and the axis of the vessel.   

A static or quasi static water proton diffusion regime means that the diffusion coefficient D of the 

extravascular water protons is D ≈ 0, or equivalently that their mean diffusion length  

TEDd ⋅=  

is short with respect to the vessel radius R. In this case, the water protons situated at different 

distances r from the vessel experience different magnetic field strengths B(r) and therefore 

diphase at different rates. Consequently the R2* of the tissue signal is high after CA injection. 

The difference ΔR2* between the relaxation rate before and after CA injection is shown to be 

proportional to the vascular volume fraction. Monte Carlo simulations show good agreement with 

in vivo results (Boxerman et al. 1995; Tropres et al. 2001).  
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Fig. 0-11: The ΔR2* method for CBV measurement models the capillary as an infinitely long and 
homogeneous cylinder containing the CA. The magnetic field gradient around the cylinder is a 
function of the cylinder radius R, of the magnetization difference between the intra- and 
extravascular compartment, of the cylinder orientation in the main homogeneous magnetic field B0 
and of the distance from the cylinder. The diffusion regime is said to be static or quasi static when 
the mean water proton diffusion length d is short with respect to R, in such a way that the water 
protons in the vicinity of the cylinder dephase at a faster rate than those situated further away. 

 

 
 

 

The proportionality factor between the vascular volume fraction and ΔR2* depends on the intra-

extravascular susceptibility difference Δχ, which has to be measured from peripheral blood 

samples, although Δχ is dependent on the hematocrit level, which is not the same in a large vein 

and the microvasculature (Bereczki et al. 1993a; Cremer and Seville 1983). Large CA doses are 

needed for an increased Δχ.  

 

The CBVf expressed in % is obtained in the following way (Yablonskiy and Haacke 1994): 

 

*
2

0

ΔR
γΔΧB

1
4π
3CBVf =                                                                                                     Eq. 0-5 

where γ is the gyromagnetic ratio and B0 is the static magnetic field strength.  
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The ratio 
2

*
2

ΔR
ΔR

 is dependent on the vessel size (Boxerman et al. 1995; Dennie et al. 1998). 

ΔR2 is sensitive primarily to small vessels, while ΔR2* is influenced by a broader range of vessel 

sizes.  

 

By measuring 
2

*
2

ΔR
ΔR

 using gradient echo and spin echo sequences, and the water diffusion 

coefficient D, it is possible to estimate a vessel size index (VSI) which can be interpreted as the 

weighted mean of the volume fraction of vessels with a particular radius r (Tropres et al. 2001):  
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9.1.4. Vascular space occupancy (VASO) 
 

Relative CBV 
 
The vascular space occupancy (VASO) technique (Lu et al. 2003) uses an inversion recovery 

sequence with timing parameters optimized to suppress the blood signal, while the extravascular 

tissue gives rise to a signal, which is not at its equilibrium value.  

 

For functional MRI, images are acquired during task performance (regional CBV increase) and 

under rest conditions. It is assumed that the sum of intravascular and extravascular 

magnetization in a voxel is equal in the rest and in the activated condition.  

 

In the rest condition,  

TE),Tf(TR,)M(MS invblood 0total 0
rest ⋅−=  

the extravascular signal is proportional to the extravascular magnetization at equilibrium rest
ev 0M : 

blood 0total 0
rest

ev 0 MMM −=  

where  

total 0M  is the equilibrium magnetization of the voxel, 

blood 0M  is the equilibrium magnetization of the blood compartment under the rest condition and 
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the factor 

TE),Tf(TR, inv   

is a function of the sequence parameters used, where the inversion time Tinv is the delay 

between inversion pulse and excitation pulse that nulls the blood signal. 

Since the CBV increases in an activated voxel, the extravascular tissue signal is given by  

( ) TE),Tf(TR,)ΔM(MMS invblood 0blood 0total 0
activation ⋅+−=  

where blood 0ΔM  is the magnetization difference due to the blood volume increase. 

The signal difference between the rest and the activated condition is proportional to the CBV 

change: 

TE),Tf(TR,ΔMSS invblood 0
restactivation ⋅=− . 

Under the experimental conditions (Lu et al. 2003) a signal decrease of about 0.7% has been 

detected. A signal decrease has also been observed for hypercapnia, while for hypocapnia the 

tissue signal increases, consistent with a vasoconstriction (Lu et al. 2003).  

 

Absolute CBV 
 

In a second version of this approach (Lu et al. 2005), the absolute CBV can be determined using 

the T1 shortening effect of Gd-DTPA. 

 

The signal before CA injection Spre is only of extravascular origin since the blood signal is 

suppressed by the inversion recovery sequence using an appropriate Tinv: 

evpre SS =   

where Sev is the extravascular signal. 

 

After CA injection the Tinv is sufficiently long to allow full relaxation of the blood water 

magnetization to thermal equilibrium, and the post-contrast signal Spost is given by: 

iv 0evpost SSS +=  

where S0iv is the blood signal corresponding to the equilibrium magnetization of the blood 

compartment. 

The signals in the difference image are proportional to the blood volume since the extravascular 

tissue cancels out. 

iv 0
prepost SSS =−  
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This method is similar to the steady state T1 weighted approach, but the signal enhancement is 

maximized by blood nulling before CA injection, and it is not necessary to measure the signal 

enhancement in blood because it corresponds to the blood magnetization at thermal equilibrium. 

However, for CBV quantification, the resulting blood signal in the difference image has to be 

normalized by the signal corresponding to the thermal equilibrium magnetization of the total 

tissue (intra- + extravascular compartment) of the voxel. The normalization factor is obtained 

from a ROI containing CSF on a reference image with sufficiently long acquisition times or from 

a small ROI containing mainly blood on the postcontrast image.  

 

In humans, mean CBV from 1.4 to 5.5 ml/100 g have been measured with this technique for 

white matter and cortical gray matter, respectively (Lu et al. 2005).  

 

Drawbacks of the VASO method 
 

The difficulties encountered with this technique are the following: 

The repetition time (TR = 6 s) used is relatively long and therefore the blood T1 has to be known 

precisely in order to determine the blood nulling inversion time (Tinv ≈ 1s, depending on the field 

strength). A slightly inappropriate Tinv, reduced inversion efficiency or a change in blood T1 (e.g. 

with hematocrit or oxygenation), does not only result in a non negligible blood signal, but this 

signal might also be negative before and positive after CA injection, resulting in an 

underestimation of the CBV if the difference image is calculated from absolute signal values.  

 

Due to a relatively long Tinv, the water exchange between intra- and extravascular compartment 

will have a large effect. This will be quantified and discussed in detail in chapter I.  

 

Finally, if the RF coil used for detection has an inhomogeneous sensitivity profile as can be the 

case with surface coils, the normalizing factor obtained from a small CSF containing ROI is not 

representative for a ROI in another location. If the normalization factor is obtained from a 

vascular ROI affected by the partial volume effect, the CBV might be underestimated.  
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9.2. Dymamic methods  
 
Dynamic methods involve the rapid serial acquisition (< 1.5 s) of MR images before, during and 

after an intravenous injection of a CA. As the CA enters into the tissue under investigation, the 

T1 and T2 values of tissue water decrease to an extent that is determined by the concentration of 

the CA and the signal displays a characteristic intensity time course, which is related to the CA 

concentration. Such a characteristic signal intensity time course is illustrated in Fig. 0-12 as an 

example of a positive (T1 weighted) signal change. Studies that exploit changes in T1 are termed 

dynamic contrast enhanced (DCE) MRI, while those relying on T2* changes are termed dynamic 

susceptibility contrast (DSC) enhanced MRI.  

 

 
Fig. 0-12: Characteristic signal intensity time course during CA bolus passage. After the first high 
peak, the second peak corresponds to the second bolus passage after recirculation. 

 
 

 

EPI sequences are typically used, because they allow a good temporal resolution. DCE MRI can 

be performed with a rapid FLASH sequence (Adam et al. 1994; Hacklander et al. 1996) 

 

Tracer kinetic analysis (Meier and Zierler 1954) of the first bolus passage mainly provides 

estimates of blood flow, blood volume and mean transit time of the CA. This so-called bolus 

tracking method is described in paragraph 9.2.1. 
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If the CA diffuses into the extravascular compartment, the DCE MRI data that monitors the 

tissue signal change (referred to as CA uptake curve) over a longer time scale, can be fitted to 

an appropriate pharmacokinetic model. In this case other physiological parameters can be 

extracted that relate to, for example, microvascular vessel wall permeability and extracellular 

volume fraction, but also to the tissue perfusion. The main pharmacokinetic models are reviewed 

in paragraph 9.2.4. 

 

9.2.1. Bolus tracking method 
 

Characteristic descriptive parameters measured form the observed signal changes during bolus 

passage include for example “peak enhancement”, “time to peak” and "full width at half 

maximum" (cf. Fig. 0-12). In general, these have the advantage of being robustly estimated, but 

may depend on combinations of physiologic parameters, such as blood flow, fractional blood 

volume, and CA extravasation. However, the peak signal amplitude was shown to correlate with 

the CBV (Cha et al. 2000b).  

 

For CBV quantification, the signal intensity during bolus passage is converted into a change in 

R1 (Dean et al. 1992), R2 or R2* (Villringer et al. 1988) versus time reflecting the CA 

concentration. The proportionality constant between tissue relaxation rate change and CA 

concentration has to be known. This constant depends on CA properties, magnetic field strength 

and MR sequence parameters. It is generally assumed to be the same as the relaxivity of the CA 

in blood.  

 

Relative CBV 
 

In clinical routine, the CBV in the tissue of interest is given relative to a reference tissue. Maps of 

relative CBV are calculated by integrating the area under the curve over time. Since the CBV is 

calculated on the basis of signal recovery to the precontrast baseline, an adequate estimation of 

the baseline signal by signal averaging is essential. The accuracy of the CBV measure depends 

on the ability to fit a gamma variate function to the concentration versus time curve (cf. Fig. 0-12) 

to correct for CA recirculation (Thompson et al. 1964). When relative CBV values are reported, 

the assumption of identical arterial concentration profiles and of identical CA relaxivity in all 

compared tissue ROIs is made.   
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Absolute CBV 
 

The absolute CBV can be determined from the ratio of the areas under the tissue Ctissue(t) and 

arterial Ca(t) concentration versus time curves: 

∫
∫

∞

∞−

∞

∞−=
(t)dtC

(t)dtC
CBV

a

tissue
 

The tissue concentration versus time curve is the convolution of the so-called tissue residue 

function ( )tℜ  and the shape of the arterial concentration time curve Ca(t) times the CBF: 

( ) τττ )d(t)(CCBFtC
t

atissue −ℜ= ∫ ∞−
 

( )0ℜ  is equal to one at t = 0 when the CA enters the volume of interest. To calculate the CBF 

the impulse response CBF × ( )tℜ  has to be determined by deconvolution, and then CBF is 

obtained as the initial (t = 0) height of the impulse response function.  

 

The time dependent arterial CA concentration Ca(t) is called arterial input function (AIF). It has to 

be specified from voxels within or next to the major feeding artery. The imaging of the time 

course of the vascular CA concentration requires that the acquisition mode is insensitive to flow, 

that it has an adequate spatial resolution to identify a vessel and a high temporal resolution to 

sample the shape of the initial bolus passage. In addition, signal saturation for the very high 

vascular concentrations during the bolus peak has to be avoided, otherwise the signal does not 

reflect the CA concentration correctly. 

 

For accurate CBV and CBF calculation, the CA should be administered as a very short bolus. A 

slow injection (wide bolus) might also prevent accurate determination of the arrival time. The 

MTT is obtained by the central volume theorem:  

CBF
CBVMTT =  
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9.2.2. Steady state versus bolus tracking MRI techniques  
 

Drawbacks of the bolus tracking techniques 
 

Bolus tracking techniques rely on very rapid acquisitions to accurately sample the first pass of 

the CA. The image acquisition time should be preferably < 1.5 s especially for the high heart rate 

of small laboratory animals or children. The spatial image resolution is therefore lower than for 

steady state techniques. Due to short TR for rapid sampling a T1 weighting can appear with T2* 

weighted acquisitions.   

 

The main disadvantage of the bolus tracking method is the need of an AIF measurement, which 

is difficult to obtain in a reliable way, and which is the major source of error.  The AIF can be 

influenced by variations in injection conditions and by physiologic or morphologic parameters of 

the vasculature. Delay and dispersion occurs from the site of the AIF measurement to the tissue 

ROI. Dispersion occurring in the larger vessels can be misinterpreted as a low tissue flow, 

although it is normal (Calamante et al. 2000; Ostergaard et al. 1996). The AIF measure is often 

affected by partial volume effects or suffers from saturation effects. Deconvolution methods 

(Calamante et al. 2002; Perthen et al. 2002) have been proposed to provide more reliable 

absolute quantifications. However, most studies using bolus tracking techniques report 

relative/semiquantitative results, because the determination of the AIF is considered too complex 

or inaccurate. 

 

Drawbacks of the steady state techniques 
 

One of the difficulties with the steady state techniques is the necessity of determining the signal 

change in the blood compartment, which either requires blood withdrawal and an additional 

acquisition, or a ROI reflecting exclusively the blood signal and therefore a good spatial 

resolution of the MRI acquisitions. 

 

Another drawback of steady state techniques is the need of higher CA doses than for the bolus 

tracking techniques. 

 

Since steady state CBV measurements can require long imaging times, they are subject to 

patient motion. For the same reason, water exchange and CA extravasation taking place during 
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the acquisition result in an overestimation of CBV when T1 weighted imaging is used and in an 

underestimation when T2 or T2* weighted imaging is used. 

 

9.2.3. T1 weighted versus T2 weighted MRI for CBV mapping 
 

T1 weighted acquisitions have a rather low SNR, because the relaxation enhancement is limited 

to the relatively small intravascular space. A higher SNR is achieved with T2* weighted methods. 

Since the effects of the CA extend to the water protons of the extravascular compartment, the 

signal is derived from a larger fraction of protons than that contained in the vascular space. This 

indirectly renders the small capillary volume of about 3% significant on the signal intensity.  

 

As mentioned in paragraph 9.1.4., spin echo T2 weighted acquisitions provide a higher sensitivity 

for the microvascular perfusion than gradient echo T2* weighted acquisitions (Boxerman et al. 

1995) but have consequently a smaller SNR and necessitate higher CA doses. Similar to T2* 

weighted acquisitions T1 weighted acquisitions exhibit sensitivity to the total vascular pool, 

including large vessels. Therefore they correlate more closely with PET studies. 

 

T1 weighted dynamic MRI requires a smaller fraction of CA than the T2* weighted and T2 

weighted methods do. In addition to the economic benefit, a smaller CA dose has the practical 

advantage of facilitating the injection as a narrow bolus.  

 

If the CA leaks out of the vessels, such as occurs in extracerebral and in tumor tissue, the 

decrease of the compartmentalization reduces the local field inhomogeneities and the 

extravascular accumulation of CA causes a T1 shortening. In DSC MRI, a small dose of CA 

injected a few minutes before the main bolus injection can compensate for the T1 shortening 

effects of the leaking CA but cannot overcome the decrease in compartmentalization. CBV maps 

computed from T2* weighted and T2 weighted dynamic MRI tend to underestimate the CBV 

values in the presence of CA leakage, and may show false negative findings in the event of an 

active tumor recurrence (Aronen et al. 1994). Where T1 weighted sequences are used, the 

presence of transendothelial CA leakage will act synergistically on signal intensity, causing 

artefactual CBV increases (Hacklander et al. 1996).  

Attempts to separate the effect of CA leakage from the CBV measurement were made 

(Ostergaard et al. 1999), resulting in models that allow simultaneous estimation of CBV and 

permeability. 
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9.2.4. Pharmacokinetic models for BBB permeability and CBV estimation 

 

Small molecular hydrophilic CAs diffuse readily across vascular membranes except in some 

organs such as the brain. Thus, imaging of the blood pool, such as with MR angiography or 

bolus tracking methods, must be accomplished within 20-30 s post injection, after which the CA 

has diffused into the extravascular extracellular compartment. Imaging the extravascular 

compartment by monitoring the CA uptake can take place over several minutes to hours until the 

CA is filtered and eliminated.  

 

Kinetic analyses of such time-dependent MRI data, based on principles of solute diffusion 

across endothelial barriers, can derive quantitative parameters describing the microvascular 

permeability, the perfusion of the tissue and the compartment volumes accessible to the CA 

(among these the CBVf). The main recognized pharmacokinetic models will be reviewed (Tofts 

1997). 

 

Clinical studies using MR methods for measuring the uptake of CA in tumors have demonstrated 

the utility of these parameters for assessing malignancy and response to therapy in various 

tumors (Taylor and Reddick 2000). Measures derived from DCE MRI data correlate with 

surrogates of tumor angiogenesis.  

 

Permeability to macromolecular CAs 
 

Endothelial permeability depends upon both vascular morphology and the physicochemical 

characteristics of the CA molecule. Selective hyperpermeability to small molecular CA induced 

by a pathology can be exclusively studied in the microvessels of malignant brain tumors (since 

all other tissues in the body are also permeable under physiologic conditions). Kinetic modeling 

and interpretation is simplified by the assumption of a low extravasation rate compared to 

vascular flow rate (permeability limited model). When the CA extravasation rate is in the same 

order or higher than the blood flow rate in the vessel, the permeability limited model is no longer 

accurate. CAs of greater molecular weight allow this limitation to be overcome, because their 

extravasation rate is lower. By virtue of their blood pool properties macromolecular CAs also 

permit the study of extracerebral neoplasms analogous to MRI studies performed in brain 

tumors. 
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Semiquantitative parameters 
 

A simple qualitative or semiquantitative analysis of the signal enhancement curve with time after 

CA injection (Parker et al. 1997) use descriptors, such as arrival time of the CA, maximum signal 

intensity or maximum intensity time ratio (Flickinger et al. 1993), initial gradient or washout 

gradient. These parameters have a link to the underlying tissue physiology and CA 

pharmacokinetics, but the link is complex and often undefined. Unless the CA concentration 

versus time curves are used for semiquantitative analysis, they also depend on MR scaling 

factors. Intra- and interpatient comparisons are therefore difficult.  

 

Quantitative parameters 
 

For quantification, the time-varying signal has to be translated into tissue CA concentration. This 

procedure is not without the risk of ignoring nonlinearities between signal and high CA 

concentrations, such as they occur in the vessels during the first passages.  

 

Pharmacokinetic modeling sets up a simplified description of tissue as a multi-compartment 

system. CA transport between the compartments may then be modeled in terms of rate 

constants. Simplest approaches model unidirectional CA flux (from intravascular to extravascular 

(or interstitial) compartments). More detailed approaches recognize CA reflux in a bidirectional 

flux model. This enables the estimation of at least two parameters: the coefficient of endothelial 

permeability called KPS or Ktrans by different authors, and the fractional volume of the 

extravascular compartment into which the CA distributes (extravascular extracellular) called ve 

(without unit): 

total

e
e V

Vv =  

where Ve is the volume of the extravascular compartment (ml) accessible to the CA and 

Vtotal is the total tissue volume (ml). 

 

Permeability limited CA leakage 
 

In general, the CA arrival in a voxel is by blood supply or by diffusion from nearby voxels, but the 

diffusion component is typically ignored in dynamic MRI. 



Literature review 
 

 

85

 

The permeability limited model (Tofts and Kermode 1991) assumes that the flow is high enough 

and the vascular permeability low enough to prevent a decrease of the intravascular CA 

concentration. Arterial Ca and venous Cv concentrations remain equal, and the extraction 

fraction E, defined as  

( ) ava CCCE −=   

is practically null.  

 

The change in extravascular CA concentration dCe/dt is proportional to the vascular permeability 

P (cm/min), the vascular surface area Sv (cm2/g) and to the difference between the blood plasma 

concentration Cp(t) (mM) and the extravascular concentration Ce(t) and inversely proportional to 

the fractional volume of the extravascular compartment. If the backflux of the CA from the 

extravascular into the intravascular compartment is assumed to be the same, the extravascular 

CA concentration change is described by: 

( )(t)C(t)C
v
ρPS

dt
dC

ep
e

ve −=                                Eq. 0-6 

where ρ is the tissue density and approximately 1 g/ml.  

 

The CA concentration in the tissue is composed of the concentrations in the plasma and in the 

extravascular compartment: 

(t)Cv(t)Cv(t)C eepptissue +=                  Eq. 0-7 

where vp is the fractional volume of the plasma compartment, and (t)Ctissue  the CA 

concentration in the tissue. The fractional plasma volume is related to the fractional blood 

volume (= CBVf) by: 

CBVf Hct)(1vp −=   

 

However, most models consider the plasma compartment negligibly small (vp << ve). With this 

assumption, the tissue concentration is:  

(t)Cv(t)C eetissue = .  

Therefore Eq. 0-6 becomes:  

( )etissuepv
tissue (t)/vC(t)CρPS
dt

dC
−= . 
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Flow and permeability limited CA leakage 
 

When the initial extraction fraction (before backflux into the vessel plays a role) is not negligibly 

small, the extravasation rate is also governed by the flow.  

 

In this mixed flow + permeability limited case (Larsson et al. 1990) the extravasation rate is 

determined by 

( )etissuep
tissue (t)/vC(t)CFEρ
dt

dC
−= , 

where the extraction fraction is expressed as  

( )PS/Fexp1E −−= ,  

and F is the plasma flow. 

 

Flow limited CA leakage 
 

In the flow limited case, for which  

PSv >> F,  

E = 1  

the extravasation rate is  

( )etissuep
tissue (t)/vC(t)CFρ
dt

dC
−= ,  

which is the model initially proposed by Kety for absorption of an inert gas (Kety 1951). 

 

General form 
 

In all three cases the factor of proportionality is the Ktrans coefficient, which is  

Ktrans = PSvρ in the permeability limited case,  

Ktrans = FEρ in the flow and permeability limited case 

and  

Ktrans = Fρ in the flow limited case.  

 

In a generalized form, the extravasation rate can be expressed as  
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( )etissuep
transtissue (t)/vC(t)CK

dt
dC

−=   

or   

(t)Ck(t)CK
dt

dC
tissueepp

transtissue −= .         Eq. 0-8 

 

The rate constant  

e
trans

ep vKk =  

governs the backflux of CA into the vessel. Ktrans and kep have the same unit, usually min-1, 

because ve is a volume fraction without unit. A time constant for CA transendothelial flow can 

also be defined (Gowland et al. 1992): 
1

epk −=epτ . 

 

Estimation of the CBV 
 

The fractional plasma compartment volume vp can be estimated by respecting  Eq. 0-7 (Daldrup 

et al. 1998). Inserting Eq. 0-7 into Eq. 0-6 results in the following differential equation describing 

the CA flux across the endothelium: 

( )⎥
⎦

⎤
⎢
⎣

⎡
−−=− (t)Cv(t)C

v
1(t)CρPS

dt
dC

v
dt

dC
pptissue

e
pv

p
p

tissue .  

If different permeabilities for the outflux Pout and the backflux Pback are used, the equation 

becomes: 

( )(t)Cv(t)C
v

ρSP(t)ρCSP
dt

dC
v

dt
dC

pptissue
e

vback
pvout

p
p

tissue −−=− .   

 

A solution to Eq. 0-8 is 

[ ]  d)-(tkexp )(CK(t)C ep

t

0
p

trans
tissue τττ −= ∫ . 

with the initial condition Ctissue(0) = veCe(0) = 0, since  the plasma CA concentration has been 

neglected.  

The tissue concentration corrected for the plasma concentration is therefore given by: 
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[ ] (t)Cv  d)-(tkexp )(CK(t)C ppep

t

0
p

trans
tissue +−= ∫ τττ .        Eq. 0-9 

The parameters in this expression (including the fractional plasma volume) can be fitted to the 

corresponding DCE-MRI data (Daldrup et al. 1998). 

 

The plasma concentration of the CA versus time 
 

In all described cases, the CA uptake by the tissue is not only determined by the coefficient of 

endothelial permeability but by plasma concentration curves Cp(t) as well. Therefore, to derive 

the physiological parameters Ktrans, ve and vp, the plasma concentration versus time has to be 

measured or modeled. 

 

Three main groups, Tofts and Kermode (Tofts and Kermode 1991), Larsson et al (Larsson et al. 

1990) and Brix et al (Brix et al. 1991), used methods that differed mainly in the way they got 

access to Cp:  

 

Tofts and Kermode assumed a typical biexponential decay of Cp, due to rapid leakage into the 

extravascular extracellular compartment anywhere in the body and to the slower filtration by the 

kidneys. Larsson et al measured it from blood samples, while Brix et al included the plasma 

clearance rate as a free parameter in the fit.  

 

Tofts and Kermode assumed the CA relaxivity r1 in tissue equal to that in water, while Larsson 

obtained r1 by fitting the initial slope of the tissue relaxation rate to the model. Brix et al used a 

CA infusion at a constant rate instead of a bolus and assumed a linear relation between signal 

and tissue CA concentration.  

 

Main assumptions of the pharmacokinetic models 
 

A major assumption in the study of Tofts and Kermode (Tofts and Kermode 1991) is the 

description of the blood or plasma concentration of the CA. 

 

Assumptions common to all models described here are the homogeneity of the compartments 

with respect to the CA distribution, a CA flux that is proportional to the concentration gradient 

between compartments, a negligible contribution from diffusion of CA from other voxels and a 
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time invariance of the compartment volumes and permeability coefficients. Further 

compartmentalization of the CA within the extravascular extracellular space is ignored. Finally 

the water exchange between compartments is assumed to be fast so that a single relaxation 

time constant T1 can be measured for the tissue, although the CA is compartmentalized.  

 

Each model makes assumptions that may not be valid for every tissue or tumor type in such a 

way that experimental data may not fit the model chosen. The analysis methods must monitor fit 

failures. For example, the Tofts and Kermode model (Tofts and Kermode 1991) fails in areas 

where contrast extraction from the vasculature is extensive (flow limited case) or negligible, such 

as in normal brain tissue.  

 

Patlak method 
 

The Patlak method (Patlak and Blasberg 1985; Patlak et al. 1983) is a graphical analysis 

technique of the CA uptake versus time. It is assumed that there is at least one irreversible 

tissue compartment in which the CA is trapped and any number of reversible tissue 

compartments in equilibrium with the plasma compartment. The tissue concentration Ctissue 

divided by the plasma concentration Cp of the CA is plotted on the y-axis against the time 

integrated plasma concentration divided by the instantaneous plasma concentration of the CA 

on the x-axis. The unit on the x-axis is sometimes called stretched or normalized time.  

p
p

t

0
p

i
p

tissue v
(t)C

)d(C
K

(t)C
(t)C

+=
∫ ττ

 

This equation results from equation Eq. 0-9 assuming the exponential term is unity (i.e. kep = 0) 

and after dividing by Cp(t). For tissues with irreversible compartments (unidirectional CA uptake) 

this plot becomes linear when all reversible compartments are in equilibrium with the plasma 

compartment, i.e. when the ratios of the CA concentration in plasma and in the reversible tissue 

compartments are stable. This happens when the plasma concentration decreases slowly 

enough for the reversible compartments to follow. The slope of the straight line fitted to the 

plotted data yields the so-called influx constant Ki (min-1), which is the uptake rate and related to 

the endothelial permeability, and the intercept vp with the y-axis yields the fractional plasma 

volume plus, if existing, the volume of the reversible compartments.  
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The method was originally developed to model the blood-brain exchange, assuming that the CA 

backflux from the tumor extravascular extracellular compartment into the vessel is negligible 

(Patlak et al. 1983). The model can be applied for the analysis of PET data such as with 

radiolabeled fluoro-deoxy-glucose, or for the analysis of CT (Leggett et al. 1999) or MRI (Ewing 

et al. 2003) data. In a later version, a correction for backflow from the former "irreversible" tissue 

compartment was implemented (Patlak and Blasberg 1985) yielding the transfer rates in both 

directions as in the generalized pharmacokinetic model (Tofts et al. 1999). 

 

9.3. CBV estimations by ASL and BOLD MRI techniques 
 

The aim of the following two paragraphs is to describe how the CBVf contributes to the signal 

acquired with the ASL (aimed at CBF measurement) and the BOLD technique (aimed at 

detecting the vascular response to brain activation). Attempts to disentangle the CBVf 

component of the signal have been reported.  

 

Arterial Spin Labeling 
 

ASL is a technique that focuses on measuring the CBF without the use of exogenous CA. It 

detects the inflow of magnetically labeled spins into the imaging slice. The labeling is performed 

upstream by inverting or saturating the blood water proton spins in a feeding artery, usually in 

the internal carotid arteries in the neck.  

 

In the imaged voxel, the labeled blood spins flow through an arterial, a capillary and a venous 

segment of the microvessel. Only the capillary blood is assumed to freely exchange with the 

tissue, and therefore determines the microvascular blood flow. The venous blood magnetization 

is in equilibrium with the tissue and does not contribute to the signal. This is also assured by a 

sufficiently long TE, with respect to the short T2 of venous blood.  

 

The arterial blood in the imaged voxel does not always contribute to the perfusion of the same 

voxel. The signal component arising from arterial flowing spins is therefore considered to 

contaminate the measurement of the CBF and it is eliminated. It is usually dephased by the 

application of weak bipolar diffusion gradients. 
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In a couple of studies based on ASL techniques (Brookes et al. 2007; Kim and Kim 2005; Kim 

and Kim 2006; Thomas et al. 2001) attempts have been made to separate the arterial signal 

from the tissue signal instead of eliminating it. Dynamic ASL also gives access to the arterial 

CBVf by measuring CBF and arterial transit time (Barbier et al. 2001) related to the arterial CBVf 

by the central volume theorem (cf. paragraph 9.2.1) 

 

Some of these approaches have lead to the measurement of the arterial CBVf, but not the total 

CBVf. The arterial CBVf in normocapnic rat gray matter is in the range of 0.7 to 1ml/100 g tissue 

(Barbier et al. 2001; Kim and Kim 2005; Kim and Kim 2006) and the arterial CBVf in human gray 

matter was reported to be about 2% (Brookes et al. 2007). Measurement of the total CBVf has 

been reported by Thomas et al (Thomas et al. 2001). CBVf values between 2 and 4% have been 

obtained in the gerbil brain under normothermic conditions.  

 

BOLD 
 

The BOLD technique (Ogawa et al. 1993) was developed for functional MRI studies but can also 

be used to assess the vascular reactivity in tumors following challenges with an inhaled gas 

(Ogawa et al. 1993). It is based on the process of neuronal vascular coupling and relies on the 

differences in magnetic susceptibility between oxyhemoglobin (diamagnetic) and 

deoxyhemoglobin (paramagnetic with respect to the surrounding tissue water), which can be 

regarded as an endogenous CA.  

 

The mechanism of signal change is summarized in Fig. 0-13. As regional CBF and regional CBV 

are increased in an active brain region, a small signal increase is seen in the voxel of interest, 

caused simply by the increase in blood protons. Local oxyhemoglobin levels also rise because 

the increased blood flow more than compensates for any increase in oxygen extraction and 

consumption. As oxyhemoglobin displaces deoxyhemoglobin in an activated voxel, the local 

magnetic field in the voxel becomes more uniform, resulting in a greater signal in the vicinity of 

activated neural tissue. The resulting signal change is largely dependent on small blood vessels. 

The magnitude of the effects is relatively small and requires statistical analysis.  
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Fig. 0-13: The relationship between increased neural activity, tissue oxygen consumption, changes 
in regional CBF and the BOLD signal. 

 
 

 

To distinguish and quantify the different mechanisms other imaging techniques such as DSC-

MRI or Doppler ultrasound are used simultaneously with BOLD (Robinson 2006; Scheffler et al. 

1999). As another example, the extravascular ΔR2* contributions to the BOLD effect have been 

quantified using the VASO technique (Lu and van Zijl 2005). 

 

 

 

10. Other imaging techniques for CBV measurement 
 

10.1. PET, SPECT and CT 
 

Other imaging techniques that provide haemodynamic parameters include PET, single photon 

emission computed tomography (SPECT) and dynamic Xenon enhanced CT (Gur et al. 1989; 

Johnson et al. 1991).  

 

For CBV and/or CBF measurement the 15O isotop is used as a PET tracer. After intravenous 

administration of H2
15O or inhalation of C15O2 and 15O2, and in combination with an arterial blood 

sampling measurement serving as AIF, the indicator-dilution model (Kety 1951) can be applied 
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for CBF quantification (Herscovitch et al. 1983; Raichle et al. 1983) similar to dynamic MRI. The 

CBV can be determined from the ratio of the radioactivity in brain to that in peripheral whole 

blood.  

 

Dynamic perfusion CT is a technique that traces the first pass of an intravenous bolus of 

iodinated CA (Axel 1980; Kamena et al. 2007). The same analytic techniques as for dynamic 

MRI are used, including the need for signal deconvolution. Perfusion CT has the advantage of 

being widely available even in emergency departments.  

 

Synchrotron radiation has also been used to quantify the CBV (Adam et al. 2003). The 

monochromatic radiation as well as the improved shape, homogeneity and flux of the radiation 

beam allow more accurate quantification of the attenuation induced by the iodinated CA 

compared to conventional radiation sources. Synchrotron radiation is only available in 

specialized facilities and mainly used for research. 

 

The inherent radiation risk of these techniques prevents many repeated measures in sensitive 

subjects, such as children. PET and SPECT have lower spatial resolution and are less available 

than MRI and CT. 

 
10.2. Optical techniques 
 

Two photon laser microscopy 
 

In two photon excitation fluorescence microscopy, two excitation photons from a pulsed laser 

combine to excite a fluorescent molecule. The resulting fluorescence emission is a photon of 

higher energy (typically visible light). The probability of simultaneous absorption of two photons 

being extremely low, the excitation will only occur at the focal point where the photon density is 

sufficiently high (0.1 - 10 MW/cm2) and thereby provides a 3D resolution without out of focus 

blur. This optical section can be varied in depth, building up a stack of images. Radial and axial 

resolutions below 1 μm (depending on the wave length) are achieved. The advantage of two 

photon microscopy over confocal microscopy is the larger penetration depth in thick tissue such 

as the brain (Svoboda and Yasuda 2006) because of the use of longer wavelength excitation 

radiation, which at the same time reduces image deterioration.  
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Two photon laser scanning microscopy has been used to quantify in vivo the CBVf in the mouse 

cortex up to a depth of 600 µm (Verant et al. 2007). After injection of a fluorescent dye 

(Rhodamine B-Dextran) confined and uniformly distributed inside the blood pool, the CBVf was 

measured by integrating over the local intensity of the two photon fluorescence and normalizing 

at each depth by the maximum intensity in the image. With this technique the cortical CBVf in 

healthy mice was between 2% ± 0.3% and 2.4% ± 0.4% excluding larger vessels in the ROI. 

Figure 0-14 shows an image of the cortical microvasculature in mice obtained by this technique 

(Verant et al. 2007). 

 

 
Fig. 0-14: 3D reconstruction of 121 images acquired in vivo from 0 to 600 µm in the parietal cortex 
of a nude mice. The scalebar has a length of 200 µm. Source (Verant et al. 2007)  

 
 

 

Histology 
 

A more invasive technique for CBV estimation is histological analysis. It can be carried out on 

biopsies or post mortem. The advantage of histological images of tissues is that the vessel 

sections can be visualized individually, providing morphological parameters such as the 

microvascular density, the vessel radii and the intravascular distance. These parameters are 
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related to the blood volume, but none of these parameters can accurately represent it. To 

assess a 3D parameter such as the CBV or the blood volume of other tissues from histological 

sections, the vascular cross section area density, which is a 2D parameter, is often used as a 

first approximation (Weibel 1980). The technique for extracting a quantitative morphologic 

description of a 3D structure such as the vasculature from measurements made on 2D planar 

sections is called stereology. 
 

Stereology 
 

Microscopy is inherently a 2D technique because an unavoidable reduction in dimensionality is 

introduced by the sectioning process: the parameter of interest such as the vascular volume Vv 

(= CBV) or vessel surface Sv is only observable as a surface (vessel cross section) or a 

perimeter (vessel boundary), respectively, on the section. Stereology applies mathematics and 

probability theory to relate the observable parameters to the higher dimensional morphologic 

parameters of interest.  

 

In order to extrapolate from a few plane sections to the three-dimensional object, the sections 

must be representative. Either the object is assumed to be completely homogeneous in such a 

way that any plane section is representative, or the plane sections are selected according to a 

specified random sampling protocol. Many stereological techniques, in addition to assuming 

homogeneity, also involve mathematical modeling of the geometry of the structures under 

investigation. The target quantities are relative densities: volume fraction, surface area per unit 

volume, or length per unit volume. If the reference volume is representative, total quantities such 

as the total capillary exchange surface area, or the total length of capillaries in an organ can be 

given.  

 

In the study of the vasculature, stereology has been employed to access its three dimensional 

spatial framework (Dockery and Fraher 2007; Shortt et al. 2004). For example, the length 

density of capillaries can be calculated by modeling the capillaries as randomly oriented and 

curved cylinders, counting the number of profiles and determining their individual orientation 

(Adair et al. 1994). Pathak and coworkers (Pathak et al. 2001) showed that the vascular cross 

section area density correlated better with CBV measurements obtained by MRI after a 

stereological correction for the slice thickness.  
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11. Literature review: CBV in rats 
 
The experimental CBV and CBVf values reported in Table 0-3 are obtained with different 

techniques and depend on the origin of the measured signals and on the available SNR. What is 

measured as "blood volume" by MRI techniques is in fact the blood water volume, where the 

NMR signal arises from, without the solid components of the blood which do not contribute to the 

signal. The signals used to quantify the blood volume with other techniques (PET, CT, 

autoradiography) do not arise from the blood water but from tracers injected into the blood pool. 

Histologic techniques measure the vascular surface fractions, sometimes extrapolated to 

"volume fractions".  

 

Although comparison is not trivial, all average CBV or CBVf values for the whole brain reported 

in the literature are in the range of 1 to 5 ml/100 g or %. Often the CBV is reported relative to the 

CBV in white matter. This and some other CBV ratios are reviewed in Table 0-4.  

 

Since volatile anesthetic drugs are known to be vasoactive (Archer et al. 1987; Artru 1984; 

Cenic et al. 2000; Cenic et al. 2002; Lorenz et al. 2001), the type of anesthesia is specified 

where appropriate. 
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Table 0-3: 
Literature review: regional CBV (healthy regions) in normocapnic, normothermic, anesthetized 
rats. Decimal places and standard deviations are given as reported in the original work. 

ROI CBV value unit technique reference 
whole braina 2.51 ml/100g autoradiographyi (Todd et al. 1992) 
whole braina 2.96 ± 0.57 ml/100g autoradiographyi (Todd et al. 1993) 
whole brainb 2.77 ± 0.24 ml/100g autoradiographyi (Todd and Weeks 1996) 
whole brain 1.3 ± 0.1 ml/100g autoradiographyj (Bereczki et al. 1992) 
cortex 3.4 ml/100g optical bolus 

tracking method 
(Shockley and LaManna 
1988) 

whole brainc 2.40 ± 0.34 % 3D SS T1 MRI  (Lin et al. 1997) 
whole brainc 2.96 ± 0.82 % 3D SS T1 MRI  (Lin et al. 1999) 
whole brainb 3.14 ± 0.32 % SS T2 MRI (Dunn et al. 2004) 
cortexb 
corpus callosumb 
thalamusb 

1.63 ± 0.18 
1.22 ± 0.25 
3.03 ± 0.36 

ml/100g SS T1 MRI (Schwarzbauer et al. 
1997) 

whole brainb 3.14 ± 0.32 % SS ΔR2*-MRI (Dunn et al. 2004) 
cortexd 4.3 ± 0.7 % SS ΔR2*-MRI (Tropres et al. 2004) 
striatume 3.1 ± 0.7 ml/100g SS ΔR2*-MRI (Julien-Dolbec et al. 

2002) 
striatumf 2.2 ± 0.6 ml/100g SS ΔR2*-MRI (Julien et al. 2004) 
cortexa 

striatuma 
3.01 ± 0.43 
2.94 ± 0.49 

% SS ΔR2*-MRI (Payen et al. 2000) 

cortexa 

striatuma 
4.07 
2.87 

% SS ΔR2*-MRI (Tropres et al. 2001) 

whole brain 1.89 ± 0.39 % morphometryk (Pathak et al. 2001) 
whole brain without MV g 

whole brain with MV g 

cortexg 

striatumg 

1.92 ± 0.32 
4.18 ± 1.06 
2.27  
2.01 

ml/100g SRQCT (Adam et al. 2003) 

striatumh 5.6  ml/100g SRQCT (Adam et al. 2005) 
arats anesthetized with halothane 
brats anesthetized with isoflurane 
crats anesthetized with intraperitoneal pentobarbital 
dcontralateral to C6 glioma, under moderate hypoxia, rats anesthetized with halothane 
erats anesthetized with intraperitoneal thiopental  
fcontralateral to C6 glioma, rats anesthetized with intraperitoneal thiopental 
ganesthetized by intraperitoneal infusion of chloral hydrate, MV = macroscopic vessels 
hcontralateral to F98 glioma (n = 1) 
i 14C-dextran labeled plasma and 99mTc labeled red blood cells 
j 125I- labeled serum albumin and 55Fe labeled red blood cells 
kwith stereo correction for slice thickness, contralateral to 9L tumor 

SS = steady state method 

SRQCT = synchrotron radiation quantitative computed tomography 
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Table 0-4: 
Literature review: regional CBV ratios in normocapnic, normothermic rats 

ROI CBV ratio technique reference 
cortex/striatuma 
 

1.43 SS susceptibility contrast MRI (Payen et al. 1998) 

cortex/striatuma 1.02 SS susceptibility contrast MRI (Payen et al. 2000) 
cortex/striatuma 1.42 SS susceptibility contrast MRI (Tropres et al. 2001) 
cortex/corpus 
callosumb 

1.34 SS T1 MRI (Schwarzbauer et al. 
1997) 

GM/WM 1.52 ± 0.42 morphometryd (Pathak et al. 2001) 
parietal cortex/corpus 
callosum  

1.47 morphometryd (Pathak et al. 2003) 

parietal cortex/corpus 
callosum 

1.75 
2.24 

morphometry (Schlageter et al. 
1999) 

cortex/striatumc 1.13 synchrotron radiation quantitative 
computed tomography 

(Adam et al. 2003) 

arats anesthetized with halothane 
brats anesthetized with isoflurane 
canesthetized by  intraperitoneal infusion of chloral hydrate 
dwith stereo correction for slice thickness, contralateral to 9L tumor 

SS, steady state method; GM, gray matter; WM, white matter 
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Experimental studies 
 
 
1. Chapter I: The Rapid Steady State T1 method by IR-FLASH 
 

 

 

1.1. Introduction 
 

In this chapter, the theoretical background of the RSST1 method is exposed and signal modeling 

is used to investigate the signal behavior during the proposed fast inversion recovery sequence. 

In vitro experiments on whole blood verify the conditions required by the RSST1 method and 

demonstrate its feasibility for blood volume measurement. To determine the optimal CA dose, 

the signal from brain tissue is studied in an in vivo experiment on healthy rats. Two CA from 

Guerbet Laboratories are used: Gd-DOTA being a clinically approved small molecular size CA, 

and P760 an experimental intermediate size CA with a higher longitudinal relaxivity. Both CAs 

remain confined in healthy microvasculature. The CBVf is mapped in healthy rats under 

normocapnia and induced hypercapnia, and the measured regional CBVf is compared with 

reported values. Finally, factors that limit the accuracy of the CBVf measurement are evaluated, 

and the relative error is estimated.  

 

French Introduction  
 

Chapitre I : La méthode stationnaire Rapide par effet T1 utilisant IR-FLASH 

 

Dans ce chapitre, la théorie de la méthode stationnaire par effet T1 "Rapid-Staedy state 

T1 (RSST1) est présentée. C’est une méthode rapide proposée pour mesurer le Volume Sanguin 

Cérébral (VSC) absolu c'est-à-dire la fraction volumique du sang dans un voxel, noté fVSC. 

Après une modélisation du signal dans le cas d’un système de spin soumis à une séquence 

Inversion Récupération rapide et une simulation du signal pour différents paramètres de la 

séquence, des expériences de faisabilité in vitro sont réalisées sur des échantillons de sang 

prélevé avant ou après injection d’un AC paramagnétique. Les premières expériences in vivo 

ont été réalisées chez le rat sain pour définir la dose à injecter nécessaire pour mesurer la fVSC. 

Deux AC paramagnétiques des Laboratoires Guerbet ont été utilisés, le Gd-DOTA, AC 
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largement utilisé en clinique et le P760, AC expérimental ayant une forte relaxivité r1, 5 fois 

supérieure à celle du Gd-DOTA à 2.35T. Dans le cerveau sain ces deux AC sont intra-

vasculaires. Les mesures du VSCf sont réalisées chez le rat sain en normocapnie et en 

hypercapnie. Dans ce dernier cas, des variations du VSC ont été détectées et ont permis 

d’évaluer la sensibilité de la méthode. Dans ce chapitre sont également décrits, les effets de 

certains paramètres sur la précision de la mesure comme les effets de relaxation transversale, 

de susceptibilité magnétique ou encore les effets de l’échange de l’eau entre les deux milieux 

intra et extravasculaires. Pour chacun de ces effets, l’erreur sur la mesure est donné. 

 

 

 

1.2. Theory 
 

1.2.1. The two compartment model 
 

In this work, a two compartment model of the brain tissue without water exchange is used:  

evivtotal VVV +=  

where Vtotal denotes the total volume of the voxel, and Viv and Vev, denote the volume of the 

intra- and extravascular compartment, respectively.  

The CBVf is the relative volume fraction of the intravascular compartment and corresponds 

approximately to the relative fraction of the intravascular water protons with respect to the total 

number of water protons of the intra- and extravascular compartment:  

eviv

iv

eviv

iv

nn
n

VV
VCBVf

+
≈

+
= ,  

where niv and nev denote the number of water protons of the intra- and extravascular 

compartment, respectively. 

 

In order to distinguish between the water protons of the two compartments, one must 

discriminate between MR signals arising from water in the intra- and extravascular 

compartments. To do so, different relaxation times in the two compartments are necessary. The 

RSST1 method exploits the longitudinal relaxation differences between the intra- and 

extravascular compartments after homogeneous distribution of an intravenously injected blood 

pool CA. It reduces exclusively the relaxation times of the intravascular compartment, while the 

extravascular compartment remains characterized by long relaxation times. 
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The net magnetization at thermal equilibrium M0 results from the relative alignment of magnetic 

dipole moments in an external magnetic field B0 and is proportional to the difference of the 

relative numbers of spins in the two possible energy states: 

 n
T4k
BγM ps

B

0
22

0
h

= ,  

where γ is the gyromagnetic ratio of hydrogen, ħ is the reduced Planck constant, B0 is the 

external magnetic field strength, kB is the Boltzmann constant, T is the absolute temperature of 

the system and nps is the total number of spins of the system. In tissue and in particular in blood, 

these spins are mainly water protons. So the thermal equilibrium magnetization of a 

compartment is proportional to the concentration of water protons in this compartment, and the 

following ratio defines the CBVf: 

0ev0iv

0iv

eviv

iv

MM
M

nn
nCBVf

+
=

+
≈ . 

M0iv and M0ev are the equilibrium magnetizations of the intra- and extravascular compartments, 

respectively. 

 

A heavily T1 weighted fast inversion recovery (IR) gradient echo sequence is used to acquire a 

signal corresponding to the thermal equilibrium magnetization of the blood compartment M0iv 

relaxing with a short T1: 

0iviv SS = , 

while suppressing the signal from the extravascular compartment characterized by a long T1: 

0Sev ≈ . 

Siv and Sev symbolize the signals originating from the intra- and the extravascular compartment, 

respectively. In this work, the subscript "0" is always used to denote a signal acquired when the 

magnetization is at thermal equilibrium, i. e. using a long TR and a TE ≈ 0.  

 

The resulting arbitrary signal intensity S0iv originating from the blood compartment is normalized 

by the total signal S0 of the voxel being the sum of the signals at thermal equilibrium originating 

from the intra- (S0iv) and the extravascular (S0ev) compartment 

0ev0iv0 SSS += .   

This S0 signal is acquired by an IR or saturation recovery gradient echo sequence with 

sufficiently long TR to allow full relaxation of both compartments prior to acquisition. 
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The ratio of these signals corresponds to the CBVf: 

CBVf
MM

M
SS

S
S
SS

0ev0iv

0iv

0ev0iv

0iv

0

0ivnorm ≈
+

=
+

== ,                                                     

where Snorm is called the normalized signal. 

 

The major assumptions of the RSST1 method are: 

1. complete suppression of the signal of the extravascular magnetization relaxing with a 

long T1  

2. acquisition of an intravascular signal corresponding to the magnetization at thermal 

equilibrium after injection of a CA reducing the T1 of this compartment 

3. no T2 weighting 

4. no water exchange between compartments 

 

In this study, the validity and the limits of these assumptions in conjunction with Gd-DOTA and 

P760 are evaluated, and corrections for incomplete extravascular signal suppression, R2-

attenuation and water exchange between compartments are given.  

 

1.2.2. Spin fraction or volume fraction? 
 

In this work the normalized signal Snorm is said to correspond to the vascular volume fraction  

eviv

iv

total

ivnorm

VV
V

V
VCBVfS

+
==≈ .  

Strictly speaking, Snorm corresponds to the vascular spin fraction 
eviv

iv

total

ivnorm

nn
n

n
nS

+
== ,  

where ntotal is symbolizing the total number of spins in the voxel. To convert from spin fraction to 

physical volume 

total

iv

V
VCBVf = ,  

the slight differences in spin density and water content between tissue and blood must be 

considered.  

λ
ρ
ρ

n
n

w
w

ρ
ρ

n
n

V
V

blood

tissue

total

iv

blood

tissue

blood

tissue

total

iv

total

iv ==  , 
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where ρtissue and ρblood are the densities and wtissue and wblood are the water contents of tissue and 

blood, respectively, and λ is the brain-blood partition coefficient. In this work, "tissue" refers to 

the sum of the intra- and extravascular compartments. 

 

With the values for density and water content cited by Herscovitch and Raichle (Herscovitch and 

Raichle 1985) (wtissue is assumed to be 80 g/100g, a value within the reported ranges of white 

and gray matter tissue), the factor λ
ρ
ρ

blood

tissue  is about 0.98. The relative error introduced by 

declaring the vascular spin fraction as vascular volume fraction is: 

1
λ
1

ρ
ρ

tissue

blood −  = 0.016.  

As we will show later in this chapter, this underestimation of 1.6% is negligible compared with 

the under- and overestimations induced by the R2 - and water exchange effects. Moreover, the 

water contents of blood and tissue used in the calculation of λ are mean values over the whole 

cerebral tissue, and are subject to change with hematocrit, vascular permeability, edema 

formation etc (Herscovitch and Raichle 1985). The uncertainty about the exact value of λ is 

much greater than the error induced by approximating the factor to unity. It is therefore 

acceptable to use the normalized signal value Snorm as vascular volume fraction. From now on 

we define: 

CBVfSnorm = . 

 

To convert the normalized signal corresponding to the vascular volume fraction into a CBV in 

units of ml blood/100g tissue the vascular signal has to be multiplied by the factor: 

100
ρ
λ

blood

 ≈ 93.75. 

 

A numeric example:  

a Snorm of 0.03 corresponds to a CBVf of 0.0295 ml/ml and to a CBV of 2.81 ml/100g tissue. 

 

1.2.3. Principle of the RSST1 method 
 

After an inversion pulse (π), the tissue magnetization is inverted and relaxes back to its 

equilibrium value. At a particular time Tinv after the inversion pulse, the longitudinal tissue 

magnetization Mz is null. In brain tissue, the intra- and the extravascular compartment have 
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similar longitudinal relaxation times in the order of 1 to 2 seconds. When using a rapid IR 

sequence with a short TR with respect to the T1 of brain tissue, a dynamic equilibrium installs 

after a couple of inversions, and suppression of the tissue signal can be achieved for a broad 

range of T1 values. This will be shown by signal modeling and has also been confirmed 

experimentally.  

 

For the same sequence, signals from compartments with shorter T1 relaxation times in the order 

of TR will persist. The aim is not only to create a large T1 difference between the intravascular 

(blood) and the extravascular compartment, in order to discriminate between the signals of these 

two compartments, but also to obtain a signal from the intravascular compartment which is 

proportional to its proton density and consequently to its volume. The signal intensity of the 

intravascular compartment is proportional to the number of intravascular water protons when 

they have a relaxation time < Tinv /5 and consequently are at thermal equilibrium at acquisition.  

 

If the extravascular signal is completely nulled, the total tissue signal S is proportional to the 

intravascular water protons:   

0SSSS 0iveviv +=+=  

When 0iviv SS =  and 0Sev = , S is called the RSST1 signal. The term RSST1 conditions refers to 

an intravascular T1 < Tinv/5 and an extravascular T1 >> TR.  

 

Our approach to measuring CBVf was to increase the intravascular concentration of a blood 

pool CA until the tissue signal amplitude becomes independent of concentration, which can be 

regarded as signal saturation. In a first approach, the relaxation of the extravascular 

compartment is considered to remain unchanged after CA injection.   

 

1.2.4. A steady state MRI method? 
 

Conventional steady state MRI methods for CBV mapping are based on a constant CA 

concentration in blood resulting in a constant signal, which is referred to as steady state signal, 

as opposed to the signal variation induced by the first passage of a CA bolus through the 

imaged voxel. With these methods, the steady state signal does not necessarily correspond to a 

tissue magnetization at thermal equilibrium.  
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The term "steady state" (= SS) in the acronym RSST1 refers to a constant vascular signal 

corresponding to the blood magnetization at thermal equilibrium and is independent of the 

longitudinal relaxation of blood. Although the CBVf measurement in this study is carried out after 

CA injection when the CA concentration is homogeneous in the vascular compartment and 

approximately constant in time, instead of during the first bolus passage, the RSST1 method is 

not based on a constant CA concentration. As will be shown in chapter VI, the RSST1 method 

can also be used for dynamic imaging, with a tissue signal that changes due to CA accumulation 

in the extravascular compartment. However, the RSST1 method requires a constant 

intravascular signal corresponding to the thermal equilibrium magnetization of the blood, even 

when used for dynamic imaging, and can therefore be regarded as a variant of the conventional 

steady state MRI methods. 

 

 

 

1.3. Signal modeling 
 

1.3.1. Longitudinal magnetization as a function of TR, Tinv and T1 
 

A sequence with a single inversion RF pulse followed by a train of short-TR FLASH segments 

acquiring the entire K-space to form one image was published as single point or snapshot IR-

FLASH (Haase 1990; Larsson et al. 1994). 

 

This sequence is illustrated in Fig. I-1 and has been used for the experiments described in this 

chapter. The FLASH module consists of a series of low angle readout pulses (α) and a gradient 

echo acquisition scheme enabling a short repetition time TRFLASH between the α-pulses. The 

whole K-space is acquired after the π-pulse, starting with the ky = 0 line at a particular Tinv and 

alternating positive and negative K-space lines from low to high ky values (center out).   
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Fig. I-1: the inversion-recovery-Fast Low Angle SHot (IR-FLASH) sequence 
a: the imaging module FLASH is started at a particular time Tinv after the inversion pulse, 
beginning with the acquisition of the central K-space line (center out). TR is the overall repetition 
time between two inversion pulses. 
b: the pulse sequence timing diagram shows that the inversion pulse is nonselective. The FLASH 
module is a gradient echo sequence having a repetition time TRFLASH = 10.5 ms. It is repeated Nk 
times defining the spatial resolution of the resulting image. 

 

t

π π 

α2 α1 ………… αN 

ky = 0 

Tinv 

 
a 

 
α Nk ×π 

RF 

signal 

Gslice 

Greadout 

Gphase 

TRFLASH
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b 
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The signal evolution during this pulse sequence can be modeled (Jivan et al. 1997). The 

following equation for the longitudinal magnetization Mz is an approximation for low α flip angles, 

when dynamic equilibrium has installed.  

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

1

1

inv

0

1invz

T
TRexp1

T
T2exp

1
M

TTR,,TM
                                                                                    Eq. I-1 

Suppression of the longitudinal tissue magnetization can be achieved for 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

1
111inv T

TRexp1lnTln2TTTR,T .                                                                          Eq. I-2 

 

Using Eq. I-1, the diagram in Fig. I-2a shows Mz in function of T1 plotted for different Tinv and a 

fixed TR of 750 ms.  For T1 > TR, Mz approaches zero, most rapidly for a Tinv of about 325 ms. 

All tissues with T1 > 1 s can therefore be effectively suppressed with a couple TR/Tinv such as 

750 ms/325 ms.  

The exponential function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1T
TRexp  can be expanded into a Taylor series and approximated 

to 
1T

TR1−  for T1 >> TR. Eq. I-2 then becomes: 

( ) ⎥
⎦

⎤
⎢
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⎡
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1
111inv T

TR2lnTln2TTTR,T . 

This implies: 
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Substituting 
12T

TR1−  by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

12T
TRexp  results in: 
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( )
2

TRTRTinv =  

In the limit of T1 >> TR, the signal is suppressed at
2

TRTinv = . However, for TR = 750 ms and 

realistic tissue T1, the best suppression is obtained at Tinv = 325 ms as shown in Fig. I-2a. 

 

By plotting Tinv as a function of T1 for different TR using Eq. I-2 such as in Fig. I-3, it can be seen 

that Tinv approaches 
2

TR
 more rapidly for shorter TR. Therefore, the shorter the TR is with 

respect to T1, the wider the range of T1 that can be suppressed.  

 

Figure I-2b is a zoomed part of Fig. I-2a for small T1. For tissues having a T1 <Tinv/5 a signal that 

corresponds to the equilibrium magnetization M0 can be acquired at t = Tinv. The sequence acts 

like a low-pass filter for T1. In this plot, TR was set to 750 ms. Using a Tinv of 325 ms to suppress 

the extravascular signal (1 s < T1 < 2 s) requires a blood T1 < 65 ms in order to acquire a blood 

signal corresponding to thermal equilibrium. For an IR-FLASH sequence with an analogue 

couple of parameters TR/Tinv = 500 ms/225 ms, a T1 < 45 ms has to be achieved for the blood 

compartment.  
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Fig. I-2: Longitudinal magnetization Mz for an IR-FLASH sequence with TR = 750 ms in function of 
Tinv and of T1. For Tinv = 325 ms, signal suppression occurs for tissues with long T1 (a) and an 
equilibrium signal can be measured from tissues with T1 < Tinv/5 (b). The sequence acts like a low-
pass filter for T1. 

 
a 

 
b 
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Fig. I-3: The Tinv for which the signal is nulled is plotted as a function of T1 and TR. The shorter the 
TR is with respect to T1, the wider the range of T1 that can be suppressed.  

 
 

 

1.3.2. Longitudinal magnetization versus time during the IR-FLASH sequence 
 

In Fig. I-4 the evolution of the longitudinal magnetization Mz/M0 during the sequence is plotted 

for T1iv = 50 ms, representative for the blood pool after CA injection, and for T1ev = 1200 ms, 

representative for the extravascular compartment, when dynamic equilibrium has installed after 

a couple of repetitions. Here the exact equations (Jivan et al. 1997) are used with Nk = 16 α-

pulses, α = 10° and TRFLASH = 10 ms to show how the signal is perturbed by the successive α-

pulses of the FLASH module used to acquire the k-space lines. Although this is of benefit for the 

suppression of the extravascular magnetization, the blood magnetization is at thermal 

equilibrium only when the ky = 0 line is acquired. After Nk = 16 successive α-pulses with the 

FLASH timing parameters above, Mz of the blood compartment is reduced to 0.938 M0 and after 

Nk = 32 α-pulses the Mz is 0.936 M0. These values are the results of Eq. [4] in the paper by 

Jivan at al (Jivan et al. 1997), where )(Nkα
zM +  is the longitudinal magnetization after Nk α-pulses 

and )(α
zM −  is the magnetization at t = Tinv before the first α-pulse is applied. This equation is: 



Experimental studies - Chapter I 

 

111

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−+

1cosα
T

TRexp

1cosα
T

TRexp

T
TRexp1cosα

T
TRexp

M
M

M
M

1

FLASH

Nk

1

FLASH

1

FLASH

Nk

1

FLASH

0

)(α
z

0

)(Nkα
z

 

The difference between Mz for Nk = 16 and Mz for Nk = 32 is small because a dynamic 

equilibrium installs between the 16th and the 32 α-pulse. However, the Mz at the acquisition of 

the central k-space line contributes most to the signal intensity seen in the final image.  

 

 
Fig. I-4: Longitudinal magnetization Mz in function of time during an IR-FLASH sequence with TR = 
750 ms plotted for two representative T1: T1 = 1200 ms for the extravascular compartment and T1 = 
50 ms for the blood after CA injection. The symbol π denotes the inversion pulse at t = 0. α1 to α16 
are the successive low flip angle readout pulses (here α = 10°). The central k-space line is acquired 
at t = Tinv = 325 ms when the extravascular signal is nulled and the blood signal is at thermal 
equilibrium.   
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1.3.3. Blood signal as a function of the administered CA dose 
 

T1 based acquisitions require positive CAs with strong r1 relaxation enhancement and minor 

accompanying r2 relaxation effects, even at high magnetic fields where r2/r1 is generally higher. 

Since the r2 relaxivity of all CAs is always higher than the r1 relaxivity, the R2-attenuation has to 

be minimized. Fast MRI acquisition techniques that acquire the entire k-space in a single-shot 

during the R2* decay after a single excitation pulse, such as EPI, are always T2 weighted. 

Therefore a multiple-shot gradient echo sequence was preferred and the R2-attenuation was 

minimized by a short TE. In this work, a TE of 3.2 ms was used unless another value is 

specified.  

 

Both CAs used in this study are Gd3+ chelates. Gd-DOTA has a r1 relaxivity of 3.37 s-1mM-1 and 

a r2 relaxivity of 4.33 s-1mM-1 in plasma at 2.35T and 37°C. For P760 r1 = 19.7 s-1mM-1 and r2 = 

33.9 s-1mM-1 under the same conditions (Fonchy et al. 2001). The Gd3+ concentration in the 

blood pool just after injection decreases at a slower rate for P760 than for Gd-DOTA. This is 

because, after intravenous injection, the pharmacokinetics of P760 is characterized by a lower 

diffusion into extracerebral tissues, but by a similarly rapid renal clearance from the blood pool 

compared to Gd-DOTA (Corot et al. 2002; Port et al. 1999). In normal brain with an intact BBB, 

the capillaries are not permeable for CA such as Gd-DOTA and P760, except for the choroids 

plexus which exhibits elevated permeability as a result of its involvement in cerebrospinal fluid 

production.  

 

When a CA is administered intravenously at a particular dose (measured in mmol/kg), its blood 

concentration (mmol/L = mM) and its r1 and r2 relaxivities determine the relaxation rates R1 and 

R2 of the blood compartment via  

[ ]CArRR ii0i ⋅+= ,  

where i = 1, 2 and [CA] is the blood concentration of the CA. The total blood volume of rats 

ranges from 50 to 70 ml per kilogram body weight (Lee and Blaufox 1985). The blood relaxation 

rates R1 and R2 were computed as a function of the administered dose for total blood volumes of 

50 and 70 ml/kg with the relaxivities mentioned above for plasma at 2.35T. The T1 and T2 of 

blood without CA, was set to 1350 ms and 200 ms. 

 

The blood signal Siv/S0iv that can be acquired by the IR-FLASH sequence with TR/Tinv/TE = 750 

ms/325 ms/3.2 ms in function of the injected dose of Gd-DOTA and P760 is plotted in Fig. I-5 for 
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blood concentrations obtained just after injection. Siv/S0iv was computed using Eq. I-1 for the 

longitudinal magnetization multiplied by TE)Rexp( 2 ⋅−  to account for the R2-attenuation. The 

signal corresponding to thermal equilibrium was set to S0iv = 1. The factor sin(α) was omitted.  

 

A magnetization at equilibrium M0iv can theoretically be attained for CA doses that decrease the 

blood T1 below Tinv/5, which is the case for Gd-DOTA doses above 0.2 mmol/kg and for P760 

doses above 0.04 mmol/kg. However, the R2-attenuation is already about 10 % at these doses 

and increases with increasing doses. The only way to decrease the R2-effect is to use shorter 

TE times.  

 

In practice, higher doses can be injected to obtain a steady state regime. This is to compensate 

for the loss of CA from the blood pool due to diffusion into extracerebral tissue, which starts 

immediately after CA injection, especially for Gd-DOTA, and due to renal clearance. 

 

 
Fig. I-5: Modeling of the blood signal in an IR-FLASH experiment with TR/Tinv/TE = 750 ms/325 
ms/3.2 ms at 2.35T for different doses of Gd-DOTA and P760. In rats, the CA distribute in 50 to 70 
ml blood per kg body weight. 

 
 

 



Experimental studies - Chapter I 

 

114 

 

1.4. In vivo experimental setup (general) 
 

1.4.1. Animals 
 

All procedures related to animal care strictly conformed to the Guidelines of the French 

Government (decree 87-848, October 19, 1987, licenses 38 07 19 and A 38 516 10004). 

 

Two rat strains, Fischer and Wistar, were used for CBVf mapping, because later experiments 

are carried out using two different tumor models, which only develop in the syngeneic host in 

which it had been originally induced.  All rats were initially anesthetized with 5% isoflurane in a 

2:1 mixture of air:O2 gases. Once the animals were fully anesthetized, the isoflurane level was 

reduced to 2.5% for surgical preparation consisting of femoral vessel catheterization. The 

femoral artery was catheterized for blood pressure monitoring and blood gas sampling and the 

femoral vein was catheterized for fluid and CA administration. The arterial blood pressure and 

rectal temperature were recorded with a LabVIEW graphical interface (Laboratory Virtual 

Instrumentation Engineering Workbench, National Instruments).  

 

In the magnet, the animal was positioned prone in a special plastic frame with its head secured 

by means of a bite bar and ear pieces. The animal's rectal temperature was maintained at 

37.5°C with a warm circulating water pad, a rectal thermo-coupled probe and a feed-back unit. 

During MR experiments the isoflurane levels were reduced to 1.5 to 2%. Femoral arterial blood 

gas levels, hemoglobin, pH, and oxygen saturation were measured and corrected for rectal 

temperature before each CA injection with the use of a pH/blood gas analyzer (Radiometer 

Copenhagen ABLTM 510) to confirm full oxygenation and a normocapnic arterial carbon dioxide 

tension (PaCO2) (40 ± 5 mm Hg) as well as  normal hematocrit ( > 35%). At the end of the 

experiment, the rats were sacrificed by an intravenous overdose of chloral hydrate. 

 

1.4.2. MRI equipment 
 

Unless specified otherwise, all studies in this work were performed at B0 = 2.35 T on a 

superconducting horizontal bore magnet of 40 cm diameter (Bruker Spectrospin, Wissenbourg, 

France), equipped with actively shielded gradient coils (Magnex Scientific Ltd, Adingdon, UK) 
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and interfaced with a SMIS console (Guildford, UK). The gradient system has a maximum 

gradient strength of 1500 Hz/mm and a rise time of 500 µs.  

 

Earlier studies were carried out using a 30 mm diameter circular surface coil placed horizontally 

above the rats head for emission and detection. With this setup transverse planes were studied 

at a depth at which the sensitivity of the surface coil is still homogeneous. The full width at half 

maximum (FWHM) of the magnitude RF spectrum, which is proportional to (πT2*)-1 and 

characterizes the inhomogeneity of the B0 field, was in the order of 65 Hz after a global 

shimming procedure covering the entire brain, and of about 25 Hz after a shim performed on a 2 

mm thick plane.  

 

Later studies were carried out using a homogeneous birdcage coil of 12 cm inner diameter for 

emission and a separate decoupled double loop circular surface coil of approximately 3 cm 

diameter positioned above the rat's head for detection. With this setup a FWHM of about 50 Hz 

could be achieved for a volume covering the whole rat head (80 mm in the longitudinal (z) 

direction). For a 2 mm thick coronal slice the FWHM was in the order of 20 Hz. 

 

1.4.3. Imaging protocol 
 

Spin echo pilot images were first obtained to localize a coronal or transversal slice at the level of 

the basal ganglia. Magnetic field homogeneity was than adjusted on this slice. One image with 

anatomical contrast was obtained with a T2 weighted spin echo sequence (TR/TE = 2000 ms/80 

ms) and an acquisition matrix of 128 × 64. The FOV varied between 28 and 32 mm2. The IR-

FLASH sequence was used with the same FOV, a matrix size of 128 × 64, a slice thickness of 2 

mm, a TE of 3.2 ms, a flip angle α = 10°, a TR/Tinv = 3500 ms/325 ms, a TRFLASH = 10.5 ms and 

a number of averages = 8. With these parameters a mixed T1 and T2 weighted tissue contrast is 

achieved allowing to distinguish anatomical details. This acquisition is referred to as high 

resolution image. 

After acquisition of the T2 weighted spin echo and the high resolution IR-FLASH image, the 

transmitter frequency and gain as well as receiver gain were kept constant for all acquisitions 

related to the CBVf measurement for each rat. The sequence parameters common to all single 

slice IR-FLASH acquisitions used for CBVf measurement are: TE = 3.2 ms, α = 10°, slice 

thickness = 2 mm, matrix size 32× 32 and a FOV identical to that of the T2 weighted spin echo 

and high resolution image IR-FLASH image. For spin inversion a nonselective adiabatic 
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sech/tanh RF pulse of 4 ms duration was used. The homogeneous range of the RF coil covered 

the upper part of the animals body including major cervical arteries, thus avoiding the inflow of 

noninverted blood proton spins. The acquisition starts with the central line of k-space, so the 

magnetization at the low k values is acquired at the nulling Tinv. 

 

 

 

 

1.5. Preliminary experiments 
 

1.5.1. T1 determination of brain tissue  
 

To verify the conditions necessary for signal suppression of the extravascular compartment 

before CA injection, the T1 of water protons in the cerebral parenchyma of rats was measured in 

vivo with the use of the snapshot IR-FLASH sequence with an adiabatic hyperbolic secant π-

pulse of 4 ms duration and slice selective α-pulses of 10°. The timing parameters for the Wistar 

rats were TR = 10 s with 13 different Tinv (range 50 ms to 9 s), number of averages = 4, and for 

the Fischer rats TR = 20 s with 15 different Tinv (range 15 ms to 15 s), number of averages = 2. 

The FOV was 32 × 32 mm2 and the acquisition matrix 32 × 32, giving an in plane spatial 

resolution of 1 × 1 mm2 at acquisition. The duration of the acquisitions were 9 to 10 min. 

Transversal planes with a slice thickness of 2 mm were imaged for the Wistar strain, and coronal 

planes of 1 mm for the Fischer strain. ROIs were drawn manually on the corpus callosum for 

white matter, and on the temporal (transverse planes) and parietal (coronal planes) cortex for 

gray matter. A ROI covering the whole brain slice was used for a global value. The signals from 

all pixels within the ROIs were averaged prior to fitting Eq. I-1 to the peak amplitudes using a 

least squares fit under Excel, leaving the inversion factor (= 2 in Eq. I-1) as an adjustable 

parameter to account for imperfect inversions in addition to the fitted parameters M0 and T1. 

 

1.5.2. T1 determination of blood 

 

To ensure signal suppression from native (without exogenous CAs) blood, and a T1 < 325 ms/5 

= 65 ms after P760 injection, in vitro T1 measurements of rat blood were performed at ambient 

temperature 21 ± 1°C. In vitro rather than in vivo measurements were preferred to avoid partial 

volume effects, and to use a standard spectroscopic IR sequence. The blood was sampled from 
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the femoral artery into heparinized syringes before and one minute after CA injection. The 

circular surface RF coil was used for transmission and reception and the syringes were 

positioned horizontally parallel to B0. The spectroscopic IR sequence consisted of an adiabatic 

inversion and a 90° square hard readout pulse of 300 μs leading to a higher precision. In this 

case, the adiabatic RF pulse was not used for homogeneous excitation, but to avoid the 

systematic recalibration of the pulse for each new sample.  

For comparison, the native blood T1 was also measured with the snapshot IR-FLASH sequence 

on a 2 mm thick transverse slice through the syringe, using α = 10°.  

 

A TR of 20 s was used for both sequences and the eleven Tinv used to measure the T1 of native 

blood ranged from 20 ms to 6 s. The T1 of tap water was measured with the same timing 

parameters. The Tinv used for blood sampled after CA injection ranged from 2 ms to 1 s, and the 

TR was 2 s, being greater than 5·T1. Eq. 0-2 was fitted to the area under the peak of the signals 

acquired with the spectroscopic IR-sequence and Eq. I-1 was fitted to the peak signal amplitude 

acquired with the snapshot IR-FLASH sequence using a three parameter least squares fit. The 

three adjusted parameters were the inversion factor, M0 and T1.  

 

1.5.3. In vitro blood volume experiment 
 

An in vitro "blood volume" measure was carried out using the same syringes containing blood 

sampled prior (native blood) and one minute after injection of  0.1 mmol/kg P760. By acquiring 

the blood signal Siv using the RSST1 method, and normalizing it by a proton weighted acquisition 

S0iv, the ratio Siv/S0iv should reflect the "blood volume" in the syringe, i. e. 100%.  

 

The syringes were placed horizontally and parallel to each other and to B0 at the same distance 

from the circular surface coil used for transmission and reception (Fig. I-6). To image the blood 

samples obtained from one rat simultaneously, the IR-FLASH sequence was used with a spatial 

resolution of 1 × 1 × 2 mm3 with two couples of TR/Tinv and a TE = 3.2 ms. The FWHM was in 

the order of 60 Hz (magnitude) after global shimming. 

 

A TR/Tinv of 750 ms/325 ms was used to verify the efficiency of suppression of native blood and 

whether a signal corresponding to fully relaxed magnetization can be obtained from blood 

sampled after CA injection.  

The signals acquired with these imaging parameters are referred to as:  
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Spre when they originate from blood without CA, and as  

Spost when they originate from blood drawn after CA administration.  

In this experiment, 120 acquisitions corresponding to 90 s were performed, from which the first 

20 were discarded before averaging.  

Spre is expected to be ≈ 0, and Spost is expected to be the signal S0iv corresponding to the blood 

magnetization at thermal equilibrium. 

 

A TR/Tinv of 10 s/8 s was used for a proton density weighted acquisition of native blood and of 

blood sampled after CA injection.  

The signals acquired with these imaging parameters are referred to as:  

S0pre when they originate from blood without CA, and as  

S0post when they originate from blood drawn after CA administration.  

Using these timing parameters, 10 acquisitions were performed and averaged.  

S0pre and S0post are also expected to correspond to S0iv. A "blood volume fraction" Spost/S0post = 1 

is expected. The ratio S0post/S0pre = ( )TEΔR-exp *
2 ⋅  will be used to quantify the R2-attenuation 

occurring at a TE of 3.2 ms.  

 

The signal to noise ratio is calculated as follows: 

S

N

1i
i 

σ

S
N
1

SNR
∑

==                                                                           Eq. I-3 

where S is the signal amplitude in blood, N the number of signals averaged and σS the standard 

deviation for N acquisitions. σS is not the standard deviation of the background noise but results 

from averaging the blood signal over N acquisitions. The SNR was calculated this way, to be 

compared to the SNR of later in vivo acquisitions used for CBVf measurement, on which almost 

no background was available.  
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Fig. I-6: In vitro setup. The syringes containing blood sampled before (pre) and after (post) 
injection of  0.1 mmol/kg P760 were imaged simultaneously using an IR-FLASH sequence. Red 
blood cells (RBC) accumulate in the lower part of the tube during shimming and RF calibration. 
 

 
 

 

 

1.5.4. In vivo dose studies 
 

To define the suitable CA dose that has to be injected to create the blood T1 necessary for the 

RSST1 regime and for in vivo CBV measurements, a series of IR-FLASH images (FOV 32 × 32 

mm2) with TR/Tinv = 750 ms/325 ms were acquired in three rats for 90 s before, during and after 

six incremental doses of Gd-DOTA ranging from 0.01 to 0.2 mmol/kg, and in other three rats for 

210 s after 0.1 and 0.2 mmol/kg P760. The CA was injected manually as a short (< 1 s) bolus at 

t = 0 s. The concentration of the injected CA was identical, therefore the amounts varied. After 

each Gd-DOTA dose a 30 minutes washout interval was allowed prior to injection of the 

following dose. For P760, the washout interval between the two injections was one hour. The 

core temperature of the rats was controlled and prior to each CA administration the PaCO2 of 

sampled arterial blood was measured. An identical experiment has been carried out for five Gd-

DOTA doses from 0.01 to 0.15 mmol/kg and for five P760 doses from 0.002 to 0.035 mmol/kg 

but for less than 50 s after the bolus injection (c.f. Appendix II (Perles-Barbacaru and Lahrech 

2007).  

 

The signal obtained after homogeneous distribution of the CA in the blood pool is named Spost 

and is a function of time and of dose.  

 

 



Experimental studies - Chapter I 

 

120 

Data analysis 
 

A custom-made IDL (Interactive Data Language, Research Systems Incorporated) program 

operating on a Sparc 20® work station (Sun Microsystems Inc., Mountain View, CA) was used 

for image processing and signal analysis. All images were reconstructed after zero filling to 256 

× 256.  

 

ROIs were drawn manually on the T2 weighted or the high resolution IR-FLASH image. The 

duration of the steady state was determined at each dose from signals in a mainly vascular ROI 

(sagittal or cavernous sinus) plotted as a function of time.  

Signals were also averaged over the whole cerebral tissue of the slice (referred to as "global 

brain ROI") and plotted against time. The steady state duration and the maximum signal 

amplitude for each dose were compared. For the dose experiment carried out with P760 as CA, 

the signal ratio 
mmol/kg)S

mmol/kg)S

post

post

1.0(

2.0(
 averaged over a global brain ROI and over the first 50 s of 

the RSST1 interval was computed.  

 

1.5.5. Results of the preliminary experiments 
 

T1 of brain tissue at 2.35T 
 

In rats of the Fischer strain (n = 6) the T1 of white matter ranged from 1096 to 1203 ms with a 

mean of 1143 ± 35 ms, while the T1 of the cortex ranged from 1210 to 1301 ms with a mean of 

1264 ± 31 ms. The mean global T1 was 1218  ± 29 ms for the Fischer strain and 1206  ± 214 ms 

for the Wistar strain (n = 7). 

 

T1 of blood at 2.35T 
 

Native blood was found to have a T1 of 1449,6 ± 34.0 ms (n = 5) using the spectroscopic IR-

sequence and a T1 of 1421.5 ± 44.5 ms (n = 5) using IR-FLASH, in accordance with literature 

(Thomas et al. 2001).  
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After injection of 0.1 mmol/kg P760 the blood T1 was 49.43 ± 7.6 ms (n = 5). A single measure 

was carried out after injection of 0.2 mmol/kg P760 leading to a blood T1 of 20.5 ms.  

 

For tap water T1 values ranging from 2.63 to 2.92 s were measured (n = 3). 

 

In vitro signal ratios 
 

The in vitro "blood volume measurement" yielded a mean Spost/S0post value very close to unity: 

0.997 ± 0.090 (n = 5). The ratio Spost/S0pre is affected by the R2 effect and resulted in lower 

values: mean 0.823 ± 0.103. The mean ratio of S0post/S0pre was 0.831 ± 0.111. The same signal 

intensities were obtained from ROIs in the bottom and in the top half of the syringes although a 

hematocrit gradient had installed during the time necessary for shimming and RF calibrations.  

 

The average SNR were 15 ± 8, 202 ± 62 and 210 ± 56 for the Spre, Spost and the S0pre 

acquisitions, respectively. 

 

In vivo dose studies 
 

In Fig. I-7, the signals averaged over a global brain ROI are plotted against time.  

 

The diagram in Fig. I-7a shows the signal evolution for selected Gd-DOTA doses. The response 

appeared to plateau at the top end of the concentration range used in this study. The signal 

intensities had not returned to baseline levels in each animal prior to administration of the 

second CA because of incomplete CA elimination. The first pass signal enhancement varies 

considerably because of different injected volumes and varying injection speed. The following 

steady state signal is completely independent of the injection mode (speed, volume, location) as 

long as the resulting CA concentration in blood is sufficiently high.  

 

A steady state duration of almost 30 s can be obtained with 0.15 mmol/kg Gd-DOTA (Perles-

Barbacaru and Lahrech 2007) and of more than one minute with 0.2 mmol/kg (Fig. I-7a). A dose 

of 0.1 mmol/kg yields a signal evolution that passes through the same maximum amplitude but 

for only a couple of seconds (Fig. I-7a and Appendix (Perles-Barbacaru and Lahrech 2007)) 

reflecting the rapid clearance of the CA from the blood.  
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Following a dose of 0.1 mmol/kg P760, a steady state duration of at least 2 minutes can be 

obtained, in some cases up to 5 minutes. The maximum signal amplitude following 0.1 and 0.2 

mmol/kg P760 is the same although it is not reached at exactly the same time after injection. 

The higher the dose, the later the maximum amplitude is reached, and the longer it lasts (Fig. I-

7b).  

 

The mean ratio 
mmol/kg)S

mmol/kg)S

post

post

1.0(

2.0(
  was 1.002 ± 0.063 (n = 3) with a minimum of 0.946 and a 

maximum of 1.070. 

 

 
Fig. I-7: Signal versus time in an IR-FLASH experiment for different doses of Gd-DOTA and P760 
(other signal versus time plots as a function of CA dose can be found in the Appendix (Perles-
Barbacaru and Lahrech 2007) as Figure 2).  
a: A RSST1-regime can be achieved for more than 30 s with a Gd-DOTA dose of 0.2 mmol/kg, while 
a dose of 0.1 mmol/kg reaches the equilibrium signal and decays immediately.  
b: Doses of 0.1 and 0.2 mmol P760 result in the same signal amplitude. The higher the dose, the 
later the maximum amplitude is attained. 

 
a 
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b 

 

 

1.5.6. Discussion of the preliminary experiments 
 

Blood and tissue signal suppression 
 

The inversion time Tinv was chosen to null the signal from brain tissues for a T1 range as large as 

possible. The T1 measurements of brain parenchyma and of blood prior to CA injection show 

that the Tinv that nulls the brain tissue, simultaneously nulls the blood signal. This provides 

maximum contrast in magnitude to changes in signal intensity caused by a T1 reduction following 

CA administration.  

 

For TR = 750 ms, the optimal Tinv for suppression of blood with a T1 of 1450 ms would be 327 

ms (Eq. I-2). The blood T1 in vivo at 37°C might be slightly higher, in which case it can be 

suppressed more easily. For a brain tissue characterized by a T1 of 1206 ms, Eq. I-1 predicts a 

residual longitudinal magnetization of 0.006 M0 at Tinv = 325 ms. The T1 of the extravascular 

water can be approximated as the T1 of the tissue since the blood contribution is small. 

 

R2-effect and intra-/extracellular water exchange 
 

The in vitro Spost/S0post ratio close to unity confirms full relaxation of the blood magnetization after 

0.1 mmol/kg P760 at Tinv = 325 ms. The Spost/S0pre ratio is lower due to the R2 effect induced by 

the presence of the CA. 



Experimental studies - Chapter I 

 

124 

 

In an in vivo experiment where the vascular and the extravascular compartment contribute to the 

S0post and S0pre signals, the ratio S0post/S0pre corresponds to the factor ( )TEΔR-exp *
2 ⋅ . The 

transverse relaxation enhancement ΔR2* has two origins:  

First, it is the result of the transverse relaxivity of the CA and depends on the CA concentration 

in blood. In the in vitro studies this effect plays the major role and S0post/S0pre = ( )TEΔR-exp 2 ⋅ .  

Second, for the in vivo S0post acquisitions where the signal arises from the intra- and the 

extravascular compartment, the susceptibility gradient at the vessel wall due to the presence of 

a compartmentalized CA, could have an additional accelerating effect on the dephasing of the 

transverse magnetization. 

After an intravenous injection of P760 at a dose of 0.1 mmol/kg the blood concentration ranges 

between 1.4 and 2 mM. The factor ( )TER-exp 2 ⋅Δ  therefore theoretically ranges between 0.80 

and 0.86 in close agreement with the experimental value of 0.83. Under the experimental 

conditions of the in vitro study we therefore have to account for an average R2 attenuation of 

17%, which cancels out if we use the ratio Spost/S0post instead of Spost/S0pre.  

 

For each syringe, the signals were identical for ROIs drawn on accumulated erythrocytes or on 

the plasma above. This is a confirmation of the fact that the water exchange rate between the 

erythrocyte and the plasma is fast enough to consider the blood as a homogeneous 

compartment with respect to the relaxation times.  

 

The RSST1 signal and the minimum CA dose 
 

The T1 of blood after injection of 0.1 mmol/kg P760 confirms that with TR/Tinv = 750 ms/325 ms 

the conditions of the RSST1 regime are fulfilled for the blood compartment for at least the first 

minute after injection. The in vivo dose studies show that a steady state signal of about one 

minute can be achieved with a dose of 0.2 mmol/kg Gd-DOTA or 0.035 mmol/kg P760, which 

are approximately isoefficient ( 8.5
1

1 ≈
DOTA)-(Gdr

(P760)r
). This closely agrees with the optimum 

theoretical CA doses (Fig. I-5). The blood signal Siv is independent of the definite T1iv value of 

the blood compartment obtained after CA administration, as long as it is smaller than Tinv/5. 

During a couple of repetitions, although the blood T1 slowly increases with time due to CA 
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pharmacokinetics, the signal acquired at Tinv = 325 ms remains constant masking the T1 

increase in blood. This condition is referred to as a RSST1.  

 

Signal intensity in vessels continued to increase with increasing dose up to 0.15 mmol/kg Gd-

DOTA. The increase is non-linear, reflecting both the non-linearity in the gradient echo signal 

intensity versus R1 relationship and the increasing influence of CA-induced R2* effects, which 

can mitigate the positive enhancement. As expected, CA doses exceeding 0.2 mmol/kg Gd-

DOTA or 0.035 mmol/kg P760 lengthen the duration of the steady state without increasing the 

signal amplitude. However increasing R2-attenuation becomes evident at higher doses, reflected 

by the fact that the signal reaches the maximum amplitude at a later time point, when the CA 

concentration in blood decreases to the optimal value.  

 

A ratio 
mmol/kg)S

mmol/kg)S

post

post

1.0(

2.0(
 close to unity was found by averaging over three experiments, 

indicating that a possible underestimation due to the R2 attenuation in the early part of the 

steady state when R2 effects are high is masked by the variability between subjects and 

between successive measures with an one hour interval. In fact, since the signal amplitude is 

linearly related to the blood water content under these experimental conditions, CBVf variations 

between measures would also have an influence on the signal amplitude and therefore on the 

ratio 
mmol/kg)S

mmol/kg)S

post

post

1.0(

2.0(
.  

 

The comparison of two measures carried out at different time points is not without difficulty, 

since the CBVf depends on a number of parameters. The time invariance of only a few 

physiologic parameters can be controlled during the experiment. One of the most important 

parameters in this context is the PaCO2 of blood. Although all three rats injected with 0.1 and 0.2 

mmol/kg P760 had a PaCO2 in the normocapnic range [35 - 45 mmHg] prior to administration of 

both doses, the PaCO2 was closer to the upper limit (range 42 to 45 mmHg) prior to the 0.2 

mmol/kg dose. This might have had an increasing effect on the CBVf attenuating the signal loss 

due to the higher R2-effect expected for the double CA dose. 
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1.6. CBVf measurement under normo- and hypercapnia 
 

The minimal CA dose for the establishment of the RSST1 conditions had been determined in 

vivo by maintaining a RSST1 signal for a time interval of at least 30 s. The in vitro experiments 

confirmed that the RSST1 conditions were fulfilled in blood. Subsequent experiments were 

carried out either with P760 at a dose of 0.1 mmol/kg or Gd-DOTA doses above 0.2 mmol 

because of a convenient duration of the SS, and because it has been shown that the R2 effects 

are not yet pronounced. P760 was mainly used because of its high relaxivity, while Gd-DOTA 

was used to demonstrate that a CBVf measurement with the RSST1 method is possible with a 

CA approved for clinical studies.    

 

The RSST1 method was now applied for CBVf mapping in healthy rats. In order to confirm that 

the expected physiological parameter is measured, the known physiological variation of the 

CBVf with the PaCO2 level was monitored.  

 

1.6.1. Imaging protocol 
 

Normocapnic CBVf 
 

The in vivo CBVf measurements were carried out on Wistar rats using the same surgical 

procedures, positioning and physiological monitoring as described in the general setup for in 

vivo experiments (paragraph 1.4.), including arterial blood gas analysis prior to CA injection. 

After shimming and RF calibrations, high resolution single slice transversal and coronal images 

were acquired with the spin echo and the IR-FLASH sequence with a FOV of 32 × 32 mm2 and 

the imaging parameters described in paragraph 1.4.3.   

 

Prior to CA injection 40 acquisitions were recorded with TR/Tinv = 10 s/8 s and 160 acquisitions 

with TR/Tinv = 750 ms/325 ms. These acquisitions are referred to as S0pre and Spre, respectively. 

Using the latter rapid timing parameters, continuous imaging was commenced 10 to 30 s prior to 

the intravenous bolus injection of CA, which was carried out manually in approximately 1 to 2 s. 

For 0.2 mmol/kg Gd-DOTA injections, a total of 160 images (corresponding to 120 s) were 

acquired to monitor the RSST1 signal of about one minute duration. For P760 injected at a dose 

of 0.1 mmol/kg, 400 images (300 s) were acquired because the RSST1 interval exceeds two 

minutes. These acquisitions are referred to as Spost. In two rats, five minutes after injection, 
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another series of 40 images was acquired using TR/Tinv = 8/10 s, and this acquisition is named 

S0post.  

 

Continuous CA infusion 
 

To further lengthen the post injection RSST1 interval, the initial P760 bolus was followed by a 

continuous CA infusion at a rate calculated to compensate for the loss of CA from the blood 

pool.  An electric power injector was used for the continuous infusion. Owing to ferromagnetic 

components it had to be positioned far from the magnet outside the Farady cage. The 

intravenous line was approximately 3 m long and connected to the usual line of 40 cm length 

accessible from the open end of the magnet.  Bolus doses of 0.3 mmol/kg for Gd-DOTA and of 

0.1 mmol/kg for P760 were administered manually as usual through the 40 cm long line and the 

infusion was connected immediately after completed bolus injection. These CA doses ensured a 

RSST1 of at least 3 minutes, the time necessary for the arrival of the continuous infusion.  

 

The infusion rates were 63 µmol kg-1 min-1 for Gd-DOTA and 7.8 µmol kg-1 min-1 for P760. The 

plasma clearances for these CA reported in Corot et al (Corot et al. 2000b) were used to 

calculate the elimination rate. The infusion rate of P760 was chosen so as to maintain a plasma 

concentration of 1.3 mM theoretically leading to a blood T1 of approximately 40 ms. The infusion 

rate of Gd-DOTA that would maintain a plasma concentration of 8 mM, such as achieved 

immediately after bolus injection of 0.2 mmol/kg is 53.6 µmol kg-1 min-1. However, in practice this 

is not sufficient to obtain a RSST1 signal. The infusion rate of 63 µmol kg-1 min-1 was finally 

established experimentally.  

 

Prior to CA administration and during the 40 to 60 minutes of CA infusion, series of images with 

TR/Tinv = 750 ms/325 ms and 500 ms/225 ms were acquired for up to 20 minutes, and series of 

images with TR/Tinv = 10 s/8 s for up to 5 minutes. In between the acquisition series, 0.5 ml 

arterial blood was withdrawn and preserved for T1 measurement. Spectroscopic T1 

measurements were carried out at the end of the infusion experiment as described for the 

preliminary experiments in paragraph 1.5.2. 
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CBVf measures under induced hypercapnia 
 

To verify whether the MRI method is sensitive to CBVf variations as they occur physiologically in 

order to adapt to transitory metabolic changes, in vivo CBVf measures were performed in rat 

brain under increasing PaCO2 levels. The described technique of continuous CA infusion would 

have been appropriate for this experiment. However, to economize CA, in particular P760, 

successive injections of 0.3 mmol/kg Gd-DOTA (n = 3) or 0.1 mmol/kg P760 (n = 5) at each 

hypercapnia level were used in this experiment. 

 

In addition to the surgical procedure described above, for this experiment, the rats were 

tracheotomized and intubated for mechanical ventilation (respiratory frequency 60 min-1, 

inspiration time 0.4 s, pressure < 12 mmHg) with a mixture of 70% air and 30% oxygen. The 

pulmonary pressure was monitored in addition to the arterial pressure.  

 

Once the scanner calibrations and the S0pre (N = 40) and Spre (N = 400) image acquisitions were 

performed, the animals were paralyzed with an intravenous injection of 2 ml pancuronium 

bromide (0.1 mg/ml) to prevent hyperventilation. This amount was usually sufficient for about 

one hour. Increasing amounts (up to 7%) of CO2 were added to the air/oxygen mixture. The 

PaCO2 was measured 15 min after increasing the CO2 fraction and a CBVf measure was 

performed if the PaCO2 had risen. Spost (N = 400) acquisitions were performed under three to 

four of the following conditions: normocapnic (35 < PaCO2 < 45 mmHg), slight hypercapnic (45 < 

PaCO2 < 65 mmHg), severe hypercapnic (PaCO2 > 65 mmHg), and after recovery to a PaCO2 

level within or close to the normal range (30 to 45 min after CO2 removal). The imaging protocol 

is illustrated in Fig. I-8. 
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Fig. I-8: Imaging protocol for the CBVf monitoring under normocapnia and various hypercapnia 
levels induced by increasing the inspired CO2 fraction (blue plot). 

 
 

 

1.6.2. Image analysis 
 

Under IDL, a vascular signal versus time plot was used to determine the beginning and the end 

of the RSST1 interval which is defined by a signal having a constant and maximum amplitude. 

For all CBVf calculations signals were averaged over at least one minute. The CBVf maps are 

given in a linear gray scale (0 - 255). White (255) corresponds to the maximum CBVf 

encountered which is specified for each map. For convenience, CBVf is often given in % ± 

standard deviation.  

 

Only coronal brain slices were used to investigate regional CBVf variations by averaging the 

CBVf over large visible brain structures. White matter values were obtained from the corpus 

callosum. Gray matter values are given for the cortex (mainly parietal) and subcortical 

structures. Subcortical gray matter is composed of all deep gray matter structures such as 

striatum and thalamus (basal ganglia). The cortical ROIs were delineated at a reasonable 

distance from the brain surface to avoid inclusion of the pial vasculature.  

 

Statistical significance of CBVf differences between cerebral structures were tested using one-

way analysis of variance for repeated measures, followed by a Bonferroni multiple comparison 

test.  
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When CBVf results are reported for one animal, the standard deviation reflects the temporal 

fluctuation of the signal, unless a mean CBVf value from the CBVf map for a particular ROI is 

reported, in which case the standard deviation reflects the spatial heterogeneity within the ROI. 

When mean CBVf values over a group of animals are reported, the standard deviation reflects 

the interindividual variability. Cerebral blood volume fraction ratios are calculated for each 

individual rat, before averaging over all rats.  

 

The SNR of the signal averaged over the brain tissue and over 90 acquisitions before CA 

injection (Spre) and during the RSST1 interval following CA administration (Spost), and over 40 

S0pre acquisitions was computed according to Eq. I-3. The σS is not the standard deviation of the 

background noise but of the temporal variation of the brain signal, because with few exceptions, 

the FOV was entirely filled by tissue. The SNR of the Spre acquisition was measured to quantify 

the efficiency of suppression of brain tissue signals. Where possible (n = 6), the background 

signal was also averaged over 90 Spre acquisitions and compared to the Spre from brain tissue.  

 

The CBVf changes under hypercapnia are given relative to the normocapnic CBVf, calculated 

for each rat from the experimental data for a PaCO2 value of 40 mm Hg.  

[ ] 100
mmHg)  CBVf(40

mmHg)  CBVf(40)CBVf(PaCO%ΔCBVf 2 ⋅
−

=  

A linear relationship between the global CBVf and the PaCO2 was assumed and the 

experimental data was fitted separately for the three experiments carried out with Gd-DOTA and 

the five experiments carried out with P760. For regional CBVf changes, the rats injected with 

both CAs were pooled.  

 

1.6.3. Results of the in vivo CBVf measurements 
 

Determination of the RSST1 interval 
 
Theoretically, the RSST1 interval has to be determined from the signal evolution in a vascular 

ROI, either the sagittal or cavernous sinus or another similar vein draining blood from the brain. 

In practice, all signals from ROIs on cerebral tissue yielded an equivalent RSST1 interval, since 

Gd-DOTA and P760 are confined to the blood pool in healthy brain tissue. With the temporal 

resolution available, the signal enhancement in the brain tissue occurred simultaneously with the 

enhancement in the venous structure. The signal peaked rapidly, but in many cases the initial 
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signal showed a transitional drop, demonstrating the effect of a first pass of the bolus, until the 

CA concentration reached a homogeneous distribution. The first pass is accompanied by a 

signal loss due to a high T2 and T2* effect of a transitory high CA concentration. The RSST1 

installs after several recirculations, as soon as the CA is homogeneously distributed. 

 

R2* effect in tissue 
 

From acquisitions performed after bolus injections and under CA infusion, the mean ratio 

S0post/S0pre equalled 1.020 ± 0.025 for signals averaged over the whole brain slice.  

 

The blood T1 during continuous CA infusion  
 

The infusion rates were chosen as to maintain a blood T1 in the order of 40 ms throughout the 

infusion duration. However, about 5 to 10 minutes after the initial bolus injection, the blood T1 

was rather around 65 ms with P760 and 100 to 200 ms with Gd-DOTA. Forty minutes to one 

hour after the initial bolus, the blood T1 was decreased to about 20 ms by both CA. 

 

In vivo SNR 
 

The SNR for signals from global ROIs averaged over 15 rats was 27 ± 11, 40 ± 18 and 276 ± 96 

for the Spre, the Spost and the S0pre acquisitions, respectively. In the images acquired prior to CA 

injection, in which the signal from cerebral tissue including native blood is suppressed (Spre), the 

SNR was analyzed to quantify the quality of suppression. The residual cerebral signal on Spre 

images was also compared to the background noise: the ratio was 2.1 ± 0.8 (n = 6).  

 

The SNR of the Spre acquisitions being almost twice as high as in the in vitro experiment (i.e. in 

the absence of any extravascular water), it was concluded that the extravascular compartment is 

the origin of the residual signal. Therefore, the regional variations of the Spre signal amplitude 

were investigated in detail. The signal Spre was found to account for 2 to 3% of the 

corresponding S0pre value (instead of the theoretical 0.6%), with a value systematically higher in 

white matter (characterized by a lower T1) than in the cortex. Studies performed under CA 

infusion demonstrated that with TR/Tinv = 500 ms/225 ms, the suppression of the extravascular 

signal is more efficient (2.4 ± 0.4% instead of 2.9 ± 0.4% of S0pre, n = 3), although theoretically it 

should account for only 0.07% of S0pre for a mean tissue T1 of 1200 ms.  
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Although even white matter T1 was never measured to be below about 1100 ms, the RSST1 

method is unable to suppress the extravascular tissue as theoretically expected. Only one half of 

the Spre signal can be contributed to the statistical background noise. Another contribution to the 

Spre signal might arise from the fact that only the central k-space line is acquired at Tinv = 325 ms, 

while the ky ≠ 0 lines are acquired later, when the extravascular magnetization is  ≠ 0 (cf. Fig. I-

4).  

 

Correction for incomplete tissue signal suppression 
 

To correct for this residual signal which arises from insufficiently suppressed extravascular 

water, the mean signal acquired before CA injection preS was subtracted from the Spost signal. 

For each acquisition, the normalized signal Snorm was calculated according to the following 

equation: 

0pre

prepostnorm

S

SS
S

−
=                                 Eq. I-4 

The mean signals preS  and 0preS are obtained by averaging over all available acquisitions, 

typically a number of 160 for Spre and 40 for S0pre. 

 

Since in vivo the S0post and S0pre signals do not differ greatly, the S0pre signal was used for 

normalization because it is acquired while the tissue T2 is constant. As indicated by the blood T1 

reached several minutes after Gd-DOTA and even after P760 bolus injection, the blood 

concentration of the CA is changing rapidly. Relatively constant blood relaxation times after CA 

administration can only be guaranteed for CAs having a long blood half life or during continuous 

CA infusion. Different errors will be introduced by trying to measure S0 when the CA 

concentration is changing. 

 

During the RSST1 interval defined as a constant vascular signal amplitude, the Snorm amplitude 

corresponds to the CBVf. The CBVf maps were calculated by averaging each voxel over N 

images acquired during the RSST1 interval, which has the effect of reducing the background 

noise and enhancing the SNR: 
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∑
=

=
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ivoxel S

N
1CBVf                         Eq. I-5 

For CBVf mapping following bolus injections, N was 90 (about 70 s). In the experiments carried 

out under continuous CA infusion, up to 1600 images were averaged corresponding to 20 

minutes. 

 

CBVf under normocapnia 
 

For experiments carried out with 0.1 mmol/kg P760 a mean global CBVf of 3.29 ± 0.69% was 

measured (n = 15). For experiments carried out with 0.2 mmol/kg Gd-DOTA the average global 

CBVf was 3.37 ± 0.41% (n = 4). As reviewed in the Introduction chapter (Table 0-3), this value is 

within the range of published values for normocapnic rat CBVf. 

 

A typical coronal CBVf map from a single representative rat is shown in Fig. I-9 together with an 

anatomical section at the same level. Extracerebral vascular structures are excluded from the 

map for better contrast within the low CBVf range of brain tissue. The border of the map has 

strong intensities, possibly due to the presence of large vessels at the surface of the cortex, 

therefore the cortical ROIs were delineated at an acceptable distance from the brain surface. In 

the CBVf maps, the highest volume is observed at the location of the anterior cerebral artery in 

the interhemispheric fissure. At the base of the brain the two spots with elevated CBVf 

correspond to the middle cerebral arteries. In the center of the brain slice, the symmetric spot 

with high blood volume in the region of the lateral and third ventricles is likely to correspond to 

the choroids plexus. Since it is involved in the production of cerebrospinal fluid, this structure is 

composed of a large quantity of microvessels and is in addition more permeable than typical 

brain capillaries.  
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Fig. I-9: coronal section through a rat brain depicting anatomical details and a CBVf map obtained 
with the RSST1 method after injection of 0.1 mmol/kg P760. 

 
 

 

Large CBVf differences between brain structures such as white matter and cortex result in a 

distinguishable contrast. The histogram in Fig. I-10 shows the regional CBVf values averaged 

over six rats. Since the CBVf is in the order of 2 to 3 % it is susceptible to noise resulting in a 

large scattering of data, especially in small ROIs. In addition, these measures are subject to 

partial volume effects. However, regional CBVf values appear consistent. White matter has a 

significantly (P < 0.05) lower CBVf than the gray matter structures. The striatum is a mixture of 

gray and white matter as it is traversed by thalamocortical projection fibers. This might explain its 

slightly lower CBVf compared to the cortex and is in accordance with Adam et al (Adam et al. 

2003).  

 

The ratios of regional CBVf between cortex and striatum 
striatum

cortex

CBVf
CBVf

 as well as between gray 

matter and white matter 
matter white

mattergray 

CBVf
CBVf

were 1.11± 0.18 and 1.59 ± 0.51, respectively. Similar 

ratios were reported and are reviewed in Table 0-4.  
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Fig. I-10: mean CBVf in different brain structures 

 
 

 

Deep gray matter structures have a similar mean CBVf as the cortex but with a larger spatial 

variability. The CBVf histograms in Fig. I-11 illustrate the heterogeneity of the CBVf in the cortex 

(Fig. I-11a) and the striatum (Fig. I-11b). In general, a larger range of CBVf values including 

values below 2% is encountered in the subcortical gray matter with respect to the cortical gray 

matter. Figure I-11c shows the CBVf map with the corresponding ROIs.  

 

 
Fig. I-11: Histograms of the CBVf in the cortex (a) and in the striatum (b) and the delineation of the 
corresponding ROIs on a coronal CBVf map (c).  

 
a 
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b 

 
c 

 

 

For this particular rat in Fig. I-11, the global CBVf was 3.28 ± 0.24%. The average cortical and 

striatal CBVf for the depicted ROIs were 3.12 ± 0.88% and 2.77 ± 1.51%, respectively. Here the 

standard deviations reflect the CBVf heterogeneity within the ROI.  

 

Depending on the degree of partial volume effect, the mean blood volume measured in vascular 

structures ranged from 50 to 80%. A value of 100% was never obtained. 

 

Under normocapnic conditions, CBVf measurements at different time points during the steady 

state created by a continuous CA infusion revealed fluctuations within 9% of the mean CBVf 

value. This can be due to physiologic variations or to a temporally varying T2 effect. As revealed 
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by the T1 measurements at different time points during the infusion, we were not able to maintain 

the CA concentration in blood perfectly stable. 

 

CBVf increase under hypercapnia 
 

The results of the CBVf measurements as a function of the PaCO2 level are shown in Fig. I-12a. 

The linear regression for experiments with Gd-DOTA (dashed line) and P760 (solid line) bolus 

injections yield practically identical slopes (Gd-DOTA: 0.99%/mm Hg, R2 = 0.67; P760: 

0.98%/mm Hg, R2 = 0.85). Regional analysis reveals that CBVf increases under hypercapnia are 

steepest for the cortex, i.e. 1.30% per mmHg (n = 8, Gd-DOTA and P760 experiments 

combined).  

 

The CBVf increase under hypercapnia is in the range of those reported in the literature (Payen 

et al. 1998; Shockley and LaManna 1988). The hypercapnia induced CBVf response of 

microvessels was lower in studies in which the CBVf was determined post mortem by 

autoradiography (Bereczki et al. 1993b; Keyeux et al. 1995). In contrast to these studies, the 

RSST1 technique is not only sensitive to microvessels but includes vessels of various radii. The 

use of volatile isoflurane anesthesia might have an effect on the vascular response, too (Archer 

et al. 1987).  

 

Figure I-12b shows the result of an experiment in which recovery has been allowed after three 

increasing levels of hypercapnia, showing the reversibility of the CBVf change. While the PaCO2 

measured during recovery is still higher than the normocapnic one, the CBVf decreases to a 

lower value than under normocapnia. A similar undershoot of CBVf has been observed in rats by 

Payen et al (Payen et al. 1998) predominantly for the striatum during recovery after inhalation of 

CO2, and in cats by Hamberg et al (Hamberg et al. 1996) after transient ischemia. 
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Fig. I-12: Global CBVf (expressed in percent of the normocapnic CBVf) as a function of PaCO2 (a). 
CBVf during hypercapnia and recovery (b)  

 
a 

 
b 

 

 

 

 

1.7. Discussion 
 
The RSST1 method is based on a number of assumptions that will be discussed.  

 

Using IR-FLASH with TR << T1 progressively suppresses the longitudinal magnetization of 

tissue and native blood. After CA injection, only the blood T1 will be reduced below Tinv/5 for a 
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particular time interval, allowing the acquisition of a signal corresponding to the equilibrium 

magnetization of blood. This signal amplitude divided by the signal corresponding to the 

equilibrium magnetization of all water protons in the ROI or voxel represents the vascular 

volume fraction. To simplify the calculation, a tissue density of 1 g/ml was assumed for both 

compartments. This is an acceptable approximation as shown in the beginning of this chapter. 

 

1.7.1. R2 attenuation 
 

This MR technique is based on T1 effects, but changes in T2 will also influence the measured 

signal. Estimates of the blood concentration of CAs and of their relaxivity in blood show that the 

T2 reduction will cause a signal attenuation, while T2* effects caused by susceptibility differences 

at the vascular wall can be neglected due to suppression of the signal from the extravascular 

tissue compartment.  

 

The subtraction of the Spre signal has the disadvantage that the factor ( )TER-exp 2 ⋅Δ  can no 

longer be eliminated, whether the equilibrium signal used for normalization is measured before 

(S0pre) or after (S0post) CA injection. The attenuation factor due to transverse relaxation given by 
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is 0.78 to 0.83 for 0.1 mmol/kg P760 and 0.92 to 0.93 for 0.2 mmol/kg Gd-DOTA, for a total 

blood volume range of 50 to 70 ml/kg (Lee and Blaufox 1985). For this estimation, an average 

T2pre of 100 ms has been used since venous and arterial T2 were reported to be 70 and 150 ms, 

respectively (Thomas et al. 2001).  

 

The signal from large blood structures did not allow measuring a blood volume of 100%. In 

addition to the partial volume, the transverse relaxation effect could play a role. In blood, 

transverse relaxation is predominantly due to the diffusion of water through the field gradient 

arising from the susceptibility difference Δχery/plasma between erythrocytes and plasma. The 

Δχery/plasma depends on the oxygenation, on the hematocrit and on the susceptibility of the plasma 

modified by the CA injection. Although the attenuation was shown to be negligible in the 

microvasculature, the transverse relaxation effect is probably more pronounced in large veins or 

in the blood samples, because the blood oxygenation is lower and the hematocrit is higher than 

in the microvasculature (Cremer and Seville 1983; Iannotti et al. 1987).  
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1.7.2. Advantages of acquiring the normalizing factor before CA injection  
 

As mentioned in the previous paragraph, the difference signal ΔS in the numerator of Eq. I-4   

prepost SSΔS −=   

contains a factor related to the transverse relaxation in the vascular compartment: 

)TE/Texp(SΔS 2iv0iv −≈  

where S0iv is the signal corresponding to the thermal equilibrium magnetization of the blood 

water protons and T2iv is the transverse relaxation time of the blood after CA injection. 

 

The measured difference signal is normalized by a signal S0 which is proportional to 

)exp(-TE/T 
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M0iv and M0ev are the fully relaxed magnetizations of the intra- and the extravascular 

compartments, and T1iv ,T2iv, T2ev and T1ev are the longitudinal and transverse relaxation time 

constants of the intra- and the extravascular compartments, respectively.  

 

Before CA injection, T2 is about 63 ms, 70 ms and 150 ms for brain tissue, venous and arterial 

blood, respectively (Thomas et al. 2001). T1 of tissue and blood is in the range of 1000 to 1300 

ms. For these values and a TR/Tinv = 10 s/8 s, both expressions in square brackets 

(
)exp(-TR/T1

)/T2exp(-T-1
1iv

1ivinv

+
 and 

)exp(-TR/T1
)/T2exp(-T-1

1ev

1evinv

+
) as well as the factors )exp(-TE/T2iv  and 

)exp(-TE/T2ev  equal one.  

 

If S0 is acquired after CA injection, the extravascular parameters are not changed and the blood 

T1 surely is sufficiently low to render the term 
)exp(-TR/T1

)/T2exp(-T-1
1iv

1ivinv

+
 equal to one. However, the 

blood T2 value is reduced, unknown and changing during the acquisition.  

 

Since in vivo the Spost and the S0 acquisition can not be performed simultaneously as it was done 

in vitro, the factor )exp(-TE/T2  can not cancel out. Therefore, normalizing by the S0post signal 

acquired after CA injection is of no benefit. On the other hand, normalizing by the S0pre signal 
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acquired prior to CA injection allows estimating and correcting for the R2-attenuation occurring in 

blood.  

 

Under our in vivo experimental conditions, with a TE = 3.2 ms and a P760 blood concentration of 

about 2 mM, the signal ratio S0post/S0pre was still about unity. Obviously, this is due to the small 

volume fraction of the blood compartment which experiences the transverse relaxation effect 

resulting in a signal attenuation small enough to be masked by the noise. A 15% signal 

reduction in the vascular compartment, with a CBVf of 3%, results in a total signal reduction of 

only 0.45%, thus theoretically in a S0post/S0pre ratio of 0.995. The hypothesis is supported by the 

fact that the signal amplitude during the early part of the steady state was equal for a P760 dose 

of 0.1 and 0.2 mmol/kg. Another hypothesis is that at the time the S0post signal was acquired 

(from 5 to 10 minutes after bolus injection), the CA concentration in blood was already low. A 

third possibility is that another effect compensates for the CBVf underestimation. Such an effect 

could arise from exchanging water protons between the intra- and the extravascular 

compartments. A method to estimate the water exchange effect will be described in paragraph 

1.7.5.  

 

If for any reason the TE of the sequence is rather long, or the CA employed has a very high 

transverse relaxivity, the blood R2 can be measured from withdrawn arterial blood and used to 

correct the CBVf measure for the R2 attenuation. 

 

1.7.3. The normalization factor S0 
 

The signal acquired during the RSST1 interval arises from the intravascular water protons. The 

intensity varies between voxels because the blood volume fraction varies. However, a second 

mechanism is responsible for this inter-voxel variability. This is the inhomogeneous sensitivity 

profile of the RF coils, in our study in particular the sensitivity profile of the surface RF coil used 

for signal reception. Therefore, the S0 signal, measuring the thermal equilibrium magnetization of 

the intra- and extravascular compartment, has been acquired with the same RF coils and 

identical RF pulse calibrations and receiver gains. The Spost signal from each voxel can therefore 

be normalized with the S0 signal from the same voxel, canceling out any non uniform sensitivity 

of the RF coils.  
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However, even for voxels for which an equal RF coil sensitivity can be assumed, it has been 

observed that the S0 signal is not the same. In fact, it depends on the proton density within the 

voxel. Although the intravascular compartment can be considered to have a water density of 1 

g/ml, it appears that the proton density of the brain varies between different structures, due to 

variable amount of lipids and proteins. This variability is likely to be even more pronounced in 

diseased tissues, which can be characterized by areas of high cellular density, hemorrhage, 

edema or necrosis. For this reason we chose to normalize the vascular signal of each voxel by 

the S0 signal from the respective voxel.  

 

This choice has not been made by all investigators. One can also normalize with respect to the 

equilibrium signal from a region for which a density of 1 g/ml can be assumed. For example, Lu 

et al (Lu et al. 2005) who developed the VASO method for CBVf mapping used the signal from a 

region containing mainly cerebrospinal fluid for normalization. However, in this case the 

heterogeneous sensitivity of the RF coils has to be accounted for.  

 

1.7.4. Blood flow effects 
 

The effects of the blood velocity on the signal in a turbo-FLASH sequence have been studied by 

Dean et al and Ludemann et al (Dean et al. 1992; Ludemann et al. 2000). Flow related effects 

can appear for velocities above 1 cm/s and low CA concentrations.  

 

At the capillary level, the blood flow velocity is too low (≈ 0.3 mm/s) to have any effect. Flow 

effects in the brain sinus appear to be negligible in our experimental conditions, since the CA 

doses are high (>2 mM) during the RSST1 interval used for the CBVf measure. The advantage 

of the RSST1 method is that it does not require acquisition of the AIF which might be influenced 

by the described flow effect, because of the high blood flow in arteries and rapidly varying CA 

concentrations during the first pass of the CA bolus. 

 

In addition, the RSST1 technique was made insensitive to the inflow of noninverted spins by 

inverting magnetization in a spatially nonselective manner.  
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1.7.5. Water exchange 
 

1.7.5.1. Intra-/extravascular water exchange 
 

The permeability surface area product (PSv) of the capillary wall and therefore the water 

exchange rate τexch
-1 between the blood and the extravascular compartment, are physiologic 

parameters and time invariant for a given tissue (Li et al. 2005). In general, ASL methods, are 

based on a single compartment model, which makes the assumption that the capillary wall has 

an infinite permeability to water. However, in some studies a two compartment model was 

considered (Parkes and Tofts 2002; Zhou et al. 2001) even when no exogenous CA was 

administered. The assumption of rapid water exchange does not hold for techniques that 

necessitate the injection of CA, since the exchange regime (slow or fast) depends on the 

difference between the longitudinal relaxation rates of the intravascular T1iv
-1 and extravascular 

T1ev
-1 compartment (the shutter speed), in addition to τexch

-1 (Li et al. 2005; Moran and Prato 

2004).  

 

In our study, a two-compartment model of the cerebral tissue was used, the water exchange was 

considered low, and the CA dose was chosen to create a large difference between the two 

compartments.  

 

Slow water exchange regime 
 

Assuming an approximate microvascular blood volume of CBVf = 3%, and an intracapillary 

residence time τiv of 500 (Orrison et al. 1995) to 650 ms (Labadie et al. 1994), the extravascular 

residence time  

iv
iv

ev
ev V

V ττ ⋅=    

is in the order of 16 to 21 s, respectively. The water exchange rate  

τexch
-1 = τiv

-1 + τev
-1 

is thus in the range of 1.6 to 2.1 s-1. After CA administration, the difference of the longitudinal 

relaxation rates between the two compartments is in the order of 20 s-1 (T1ev
-1 ≈ 1200 ms and 

T1iv
-1 ≈ 50 ms from the experimental data), fulfilling the condition for the slow exchange regime  

τexch
-1 << T1iv

-1 – T1ev
-1.  

Therefore, the two-compartment model without exchange is an acceptable approximation.  
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Measurement error due to inter-compartmental water exchange 
 

The exchange effect on the CBVf measure can be evaluated using the model described in 

(Moran and Prato 2004). This model defines an exchange regime as  
1
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m
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is the characteristic time of the two relaxing compartments. The impact of the exchange regime 

(K = 0 no exchange, K = 1 fast exchange) modifies the intrinsic T1 of either compartment 

resulting in apparent relaxation times T1
app. These are calculated according to  
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                     Eq. I-6 

where a and b denote the compartments and v(a) or v(b) are the corresponding compartment 

volume fractions.  

 

In Fig. I-13a, the ratios Mz/M0 of the intra- and extravascular compartments are compared in the 

absence (K = 0) and in the presence of exchange (K = 0.0765, reflecting experimental 

conditions). The plots are derived from Eq. I-1 as a function of Tinv with TR = 750 ms, and using 

the corresponding apparent relaxation times T1
app instead of T1 in the presence of exchange. 

The different T1
app are computed according to Eq. I-6 for T1 values comparable to those obtained 

experimentally for each compartment before and after CA injection (T1ev = 1200 ms, T1iv = 1450 

ms before and T1iv = 50 ms after CA administration). The K value used in this simulation results 

form τexch = 630 ms. For K = 0.0765, the apparent extra- and intravascular T1 values are T1ev
app = 

1140 ms and T1iv
app = 54 ms. The simulations were performed for an intravascular volume 

fraction of 3%.  

 

The plot in Fig. I-13a demonstrates that the intravascular magnetization is not affected by the 

water exchange, while the extravascular magnetization is less suppressed when exchange 

takes place. The intravascular magnetization at Tinv = 325 ms increases from Mziv/M0(325ms) = 

4.2 10-5 before CA administration to Mziv/M0(325ms) = 0.0299 after CA administration. 
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In order to show directly to which extent the CBVf is overestimated for K = 0.0765, the sum of 

the intra- and extravascular longitudinal magnetization  

Mz = Mziv + Mzev  

is plotted in Fig. I-13b. The magnetization values resulting for the apparent longitudinal 

relaxation times of the intra- and extravascular compartment at Tinv = 325 ms  in the presence of 

exchange were computed according to Eq. I-1, and yield a total tissue magnetization of 

Mz/M0(325ms) = 0.0388. Without exchange, the total tissue magnetization is Mz/M0(325ms) = 

0.0361. Before injection, the exchange regime is characterized by K = 0.9170, but the 

longitudinal magnetization Mz/M0(325ms) = 0.0062 (measured as a residual signal in the Spre 

acquisition) is practically identical with or without exchange.  

 

According to Eq. I-4 the CBVf is given by the difference of the tissue magnetization before and 

after CA administration. For an exchange time of τexch = 630 ms this yields an apparent CBVf of 

3.27%, which corresponds to an overestimation of less than 10%. For an exchange time of τexch 

= 500 ms the overestimation is less than 12%. 
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Fig. I-13:  
a: A model of the fractional longitudinal magnetization of the intra- and the extravascular 
compartment as a function of time in the absence (K = 0.0) and in the presence of exchange (K = 
0.0765). The exchange affects only the signal of the extravascular compartment.  
b: Total fractional longitudinal magnetization calculated in the case of exchange and without 
exchange before and after CA injection. According to Eq. I-1, the computed CBVf value in the 
presence of exchange (K = 0.0765) is overestimated by approximately 10%. 

 
a 

 
b 
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For the VASO method (Lu et al. 2005), a rough estimation of the water exchange impact using 

the reported intrinsic and extrinsic MRI parameters for 1.5 T indicates that for τexch = 630 ms (K = 

0.2841 after CA administration) the CBVf is overestimated by almost 75% (5.2% instead of 3% 

for T1ev = 1000 s).  

 

Since the permeability of the BBB to water increases for several brain pathologies, it is important 

to minimize the sensitivity of the RSST1 method to transepithelial water exchange. The water 

exchange effect can be reduced by shortening Tinv, allowing the system less time to exchange 

water across the vascular boundary (Donahue et al. 1996; Larsson et al. 2001). For example, 

with the couple of parameters TR/Tinv = 500 ms/225 ms, the overestimation would be reduced to 

less than 4% for T1iv = Tinv/5 = 45 ms and τexch = 630 ms. 

 

1.7.5.2. Intra-/extracellular water exchange in blood 
 

The blood itself forms a two compartment system. The volume fraction occupied by erythrocytes, 

the hematocrit, varies between individuals (between 0.38 and 0.50 in healthy subjects) as well 

as within the same subject. In the normal cerebral microvasculature, the hematocrit drops to 85 

% of the macrovascular hematocrit (Cremer and Seville 1983; Iannotti et al. 1987) but in 

pathological tissue, such as in tumors, the microvascular hematocrit varies greatly. At the CA 

doses and relaxivities used in this study, the shutter speed was still one order of magnitude 

lower than the water exchange rate between erythrocytes and plasma (τexch
-1 ≈ 125 s-1). In this 

fast exchange limit, the water of the whole blood compartment is affected by the presence of the 

CA, and it is the CBV that is measured and not the plasma volume. It is therefore not necessary 

to know the regional hematocrit. 

 

1.7.6. SNR 
 

The CBVf in rats being very small, only about 3% of the total tissue water contributes to the 

signal with the RSST1 technique. The SNR is therefore rather low, compared to techniques that 

do not suppress the extravascular tissue. Noise decreases with the square root of the total 

integration time. Signal accumulation over at least 40 s is necessary to obtain a correct contrast 

of the CBVf map. Signal accumulation over up to 20 min during continuous CA infusion did not 
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improve the image quality significantly. Averaging over one to two minutes appears to be a good 

compromise. 

 

In the in vivo MRI experiments using the RSST1 method in combination with the IR-FLASH 

sequence that are subject of the following chapters, the same experimental setup as described 

in paragraph 1.6.1 was used, and the SNR was the same as reported in paragraph 1.6.3 (about 

40). 

 

Strategies for increasing the RSST1 duration were demonstrated in this study. A long RSST1 

duration does not only allow CBVf mapping with increased SNR but can also be utilized for 

increasing the spatial resolution or the volume coverage. 

 

1.7.7. Dynamic imaging using the RSST1 method 
 

The data are obtained in an imaging mode that not only permits detection of regional but also of 

temporal variations of the CBVf, which can be the result of changes in the animal's physiological 

condition, pharmacological stimuli or functional activation studies. However, these changes are 

superimposed upon signal changes that include a drift of the signal intensity back to its pre-

contrast value, as the CA is gradually eliminated from the vascular system, or a signal increase 

due to CA extravasation in case of a BBB lesion.  

 

The Spre and the S0pre signals acquired before CA injection are temporally invariant (Eq. I-4). The 

Snorm signal in Eq. I-4 is a function of time and can be used to monitor the temporal evolution of 

the CBVf during the RSST1 interval observable as a constant signal from a ROI located in a 

large vessel and under the condition of vascular confinement of the CA:  

 

( ) ( )tCBVftSnorm =                                              Eq. I-7 

 

A long RSST1 duration would therefore also be of benefit for functional MRI to compare regional 

CBVf variations induced by cerebral activation. The study of the CBV response to hypercapnia 

confirms the sensitivity of the method to physiologic CBVf variations. Its advantage in 

comparison to the BOLD technique is to provide absolute CBVf values, but its drawback is the 

need of exogenous CA injection.  
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If the vascular signal is in the RSST1 regime and the CA leaks out of the microvasculature into 

the brain tissue, Snorm(t) is a measure of the distribution volume of the CA. 

 

1.7.8. Sensitivity to motion 
 

The acquisition time for one slice with the FLASH technique is 750 ms, which leaves little time 

for head motion artifacts. Movement can easily be detected as a shift between two images 

(within the limits of the spatial resolution of the image). If movement occurs, the shifted images 

can be discarded, before averaging over the remaining ones to compute the CBVf map. In case 

of in plane motion, image registration methods are applicable to avoid discarding, taking 

advantage of extracerebral tissue inside the FOV that provides a sufficient SNR on the images 

acquired after CA injection.  

 

1.7.9. Multiple-slice acquisitions 
 

Depending on the CA relaxivity, its blood concentration and the injection mode a steady state of 

one to 60 min was achieved. During this steady state, instead of acquiring the same slice every 

TR to improve the SNR, acquisitions with higher spatial resolution, multi-slice or 3D acquisitions 

could be performed. Knowing the duration of the RSST1 interval available after injection of a CA, 

acquisition of multiple slices can be achieved by acquiring a series of images of one slice, then 

by changing the frequency of the RF excitation pulse in order to acquire the same number of 

images of a different slice and so on. The slices could also be acquired in an alternating way 

(slice 1 - slice 2 - slice 3 - slice 1 - slice 2 - slice 3 …).  

 

The signal has been modeled for alternating acquisitions of two and three slices using the exact 

equations without approximation for low α flip angles as in paragraph 1.3.2. Although the non 

slice selective inversion pulse inverts the magnetization of all slices every TR, were they 

acquired or not, allowing to globally maintain the dynamic equilibrium of the magnetization of all 

slices during the rapid MRI sequence, the slice selective α-pulses do not perturb the 

magnetization of the other slices, resulting in the following consequences:  

1. while the blood magnetization is immediately (after the first inversion) in a dynamic 

equilibrium, the dynamic equilibrium of the tissue magnetization  takes more inversions to install. 

Consequently more dummy scans are needed at the beginning of the acquisition. 
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2. at t = Tinv, the blood magnetizations of all slices have fully relaxed to their thermal 

equilibrium M0iv, whether the slice is being acquired or not. However, the suppression of the 

tissue magnetization is less good (Mev(325 ms) = 0.015 M0ev) when the slice is being acquired 

compared to the suppression obtained with single slice acquisitions (Mev(325 ms) = 0.006 M0ev).  

 

During a typical time window of five minutes after injection of 0.1 mmol/kg P760, up to 5 slices 

can be acquired, allocating one minute for each slice, corresponding to 80 images. From 50 

images upwards (≈ 40 s) CBVf maps with a reasonable SNR can be obtained.  

 

The RSST1 technique uses a short TR. Fig. I-14a shows that almost half of the TR = 750 ms is 

exploited by the FLASH module when 32 phase encoding steps are acquired. As illustrated in 

Fig. I-14b, the acquisition of multiple slices during the TR of 750 ms would only be feasible for a 

lower spatial resolution. In addition slice selective inversion pulses are needed in this case. After 

CA injection, slice selective inversion is compatible with the RSST1 technique without inflow-

outflow effect, because the blood of the entire body has a T1 < 1/5 Tinv. The blood magnetization 

is completely relaxed to M0iv prior to the FLASH acquisition, whether the blood water protons 

have experienced the inversion pulse or not. However, before CA injection, optimal suppression 

of the blood compartment could not be achieved because of the inflow of noninverted spins. 
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Fig. I-14:  
a: Timing diagram of the IR-FLASH sequence with TR = 750 ms (time interval between two 
successive π pulses) , Tinv = 325 ms, TRFLASH = 10.5 ms (time interval between two successive α-
pulses) and α = 10°. Nk = 32 k-space lines are acquired. RF = radio frequency transmission, GS = 
slice selection gradient, GP = phase encoding gradient, GR = readout gradient.  
b: Two or more slices can only be acquired within one TR interval, if the spatial resolution is 
reduced and the inversion pulses are slice selective.  

 
a 

 
b 
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2. Chapter II: CBVf mapping in healthy rat brain using the RSST1 method with SINEREM  
 

 

 

2.1. Introduction 
 

In this chapter it will be shown that the RSST1 method can be used in combination with 

superparamagnetic iron oxide particles having a high transverse relaxivity. Since the RSST1 

method for CBVf quantification is based on the longitudinal relaxation of blood water protons, the 

sensitivity of the method to transverse relaxation effects has to be minimized. This can be 

achieved by shortening the echo time using nonselective hard RF pulses. Here, the blood signal 

is acquired in a three dimensional projection reconstruction mode. This development is aimed at 

the use of the CA SINEREM® from Guerbet Laboratories, which has interesting pharmacokinetic 

properties and is approved for clinical use.  

 

French Introduction  
 

Chapitre II : Mesure de la fVSC par la méthode RSST1 sur des cerveaux de rat sain utilisant le 

SINEREM 

 
Dans ce chapitre, on montre dans quelles conditions, le SINEREM est utilisé comme AC 

superparamagnétique dans la méthode RSST1. La motivation de ce travail vient du fait que cet 

AC est déjà utilisé pour des applications chez l’Homme et que des études sur des modèles de 

tumeurs C6 ont montré que son extravasation est limitée dans la tumeur caractérisée par une 

rupture de la barrière hématoencéphallique (BHE). Comme cet AC a une très forte relaxivité 

transversale, une séquence Projection Rétroprojection à 3 dimensions ayant un temps d’écho 

extrêmement court a été développée. Dans ce chapitre, l’ensemble de ces développements, 

incluant des expériences de validation et des mesures de comparaison avec la méthode ΔR2
* 

stationnaire sont présentées. 
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2.2. Characteristics of SINEREM 
 

SINEREM (AMI-227) from Guerbet, Aulnay-sous-Bois, France, an USPIO, is a nanoparticle with 

a hydrodynamic diameter of 20–50 nm, mean 30 nm, (≈ 1 nm for Gd-DOTA), which consists of 

an iron oxide crystalline core of 4 to 6 nm, containing > 3000 Fe3+ ions,  and a hydrophilic 

dextran coating. It is not initially recognized by the macrophage monocyte phagocytic system. 

Consequently, SINEREM is a blood pool CA with a long blood half life of 2 to 4 hours in the rat 

(Chambon et al. 1993) and in the order of 24 to 30 hours in man (Kooi et al. 2003). The half life 

is dose dependent. The distribution volume of SINEREM in rats is 52 to 55 ml/kg.  

 

The use of SINEREM for CBV measurements is motivated by the following reasons: 

1. owing to its long blood half life the blood concentration rapidly becomes independent 

from the injection pattern and may be considered to be constant throughout the imaging 

procedure  

2. it is already available for human use, although angiogenesis assessment is not currently 

an approved clinical indication (macrophage imaging in atheroma, metastatic lymph node 

detection, multiple sclerosis, blood pool angiography) 

3. a couple of studies (Julien et al. 2004; Le Duc et al. 1999; Tropres et al. 2004; Valable et 

al. 2006) suggest that SINEREM remains confined to the blood pool in some tumor types  

 

 

 

2.3. The RSST1 method in conjunction with SINEREM 
 

SINEREM reduces both T1 and T2 relaxation times with a high r2/r1 ratio of 8.8 at 1.5 T and of 15 

at 3 T, respectively. In addition, as described in Villringer et al (Villringer et al. 1988), the 

presence of a compartmentalized (super)paramagnetic CA creates magnetic field gradients 

within a voxel, causing accelerated loss of coherence of the MR signal and thus a signal 

intensity decrease. This T2* effect is very pronounced with SINEREM and can be exploited for 

T2* weighted first pass (Belliveau et al. 1990; Simonsen et al. 1999) or steady state CBV 

measurements (Payen et al. 2000) (cf. paragraph 9 in the literature review). 

However, in T1 weighted acquisitions, in order to produce a positive enhancement, a SINEREM 

injection has to be combined with a MR sequence optimized for low sensitivity to T2 and T2* 

effects.  
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In an in vivo imaging experiment at 2.35T using the IR-FLASH sequence for CBVf measurement 

such as described in chapter I, the signal arising from the brain microvasculature after injection 

of 200 µmol/kg SINEREM to a rat was not sufficient, even with a TE reduced to 1.6 ms, which is 

the minimum value.  

 

To make use of the longitudinal relaxation effect of SINEREM for the CBVf quantification by the 

RSST1 method we sought to implement an acquisition mode with reduced TE compared to the 

2D IR-FLASH acquisition mode. Three dimensional acquisition modes do not require slice 

selective RF pulses and consequently the TE can be shorter. The projection reconstruction (PR) 

technique samples spatial frequencies on radial trajectories. By acquiring the center of K-space 

first, the effective TE can be kept short. A three dimensional projection reconstruction acquisition 

mode (PR3D) has therefore been implemented for image acquisition, to allow the use of 

SINEREM for CBVf mapping with the RSST1 method. The PR3D sequence employed acquires 

one radial k-space line for each TR interval after a 90° readout RF pulse. 

 

 

 

2.4. Preliminary experiments 
 

2.4.1. Relaxivity of SINEREM at 2.35T in normal saline solution  
 

The relaxivities of SINEREM at 2.35T in normal saline solution were measured to estimate the 

dose necessary for sufficient reduction of the blood T1 to allow full relaxation to thermal 

equilibrium of the blood water during the RSST1 acquisitions.  

 

Relaxometry 
 

After reconstitution in normal saline (NaCl 0.9%), the mother solution of SINEREM has a Fe3+ 

concentration of 357 mM ≈ 20 mg Fe3+/ml. The T1 and T2 relaxation times were measured for 

seven SINEREM concentrations (0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0 mM ± 0.5%) and for normal 

saline (0.0 mM SINEREM) in NMR tubes filled with 0.2 ml solution. In this and all following 

experiments the homogeneous RF coil was used for emission and the double loop circular 

surface RF coil for detection. A custom-built holder for NMR tubes and 1 ml syringes was used. 
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After global shimming a FWHM of 5 Hz was obtained in normal saline solution. For the 

SINEREM containing solutions the FWHM (magnitude) was 20 Hz (0.5 mM) to 187 Hz (6.0 mM). 

 

The longitudinal relaxation times T1 of the samples were measured with a spectroscopic 

inversion recovery sequence. The TR was 20 s and the 15 Tinv were ranging from 100 ms to 19 s 

for 0.0 mM SINEREM. For all other concentrations the TR was set to 2 s and the 15 Tinv were in 

the range 12 ms to 1.8 s.  

 

Single echo T2 measurements were performed with a conventional spectroscopic single spin 

echo sequence using hard pulses. For the 0.0 mM concentration the TR was 20 s and 15 TEs 

ranged from 100 ms to 18 s. For all other concentrations the TR was set to 2 s and the 15 TEs 

ranged from 2 to 30 ms.  

 

All measures were repeated three times. The temperature in the magnet was 19.2 ± 0.4 °C. 

 

Using Microsoft Excel, a least squares procedure was used to fit the integrated spectral signal to 

a relaxation model.  For the T1 measure the equation was  

)TTexp(inv1S)S(T 1inv0inv −⋅−=   (cf. Eq. 0-2)  

with S0, inv and T1 as free parameters. S0 is the signal corresponding to the magnetization at 

thermal equilibrium and inv is the inversion factor, which is close to inv ≈ 2. For the T2 measure 

the data was fitted to  
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with S0 and T2 as free parameters.  

 

The r1 and r2 relaxivities were obtained by fitting a linear equation to the relaxation rate 

differences  

0 iii R - R  R =Δ ,  i = 1,2,  

where Ri are the relaxation rates obtained at the seven different SINEREM concentrations and 

Ri0 is the relaxation rate of normal saline solution. 
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Results 
 

For normal saline solution, T1 = 2.879 ± 0.016 s and T2 = 1.265 ± 0.006 s. A linear dependence 

of the relaxation times with SINEREM concentration was observed. The result of the relaxivity 

measurements of SINEREM in normal saline solution is shown in Fig II-1. The ratio r2/r1 is 17.7. 

 

 
Fig. II-1: Relaxation rates versus SINEREM concentration in normal saline solution at room 
temperature. The slopes of the linear regressions correspond to the relaxivities of SINEREM. 

 
 

 

Assuming similar relaxivities of SINEREM in blood, it can be calculated that a blood 

concentration of 3.6 mM SINEREM is necessary to reduce the blood T1 to about 50 ms. This 

blood concentration reduces the blood T2 to less than 3 ms. A 3.6 mM blood concentration 

necessitates the injection of a SINEREM dose in the range of 0.18 to 0.25 mmol/kg, since rats 

have total blood volumes between 50 and 70 ml per kilogram body weight. 
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2.4.2. In vitro doses studies 
 

Determination of blood T1 and T2  
 

Accurate knowledge of the relationship between CA concentration and blood relaxation is a 

critical requirement for quantitative CBV assessment using classical contrast-enhanced MRI. For 

CBVf measurements using the RSST1 technique it is sufficient to assure a blood T1 < Tinv/5 if the 

attenuation due to transverse relaxation effects is negligible. However, since the r2 relaxivity of 

SINEREM is high, the transverse relaxation effects (R2 and R2*) will play a role, and it is 

important to know the blood T2 to estimate these effects.  

 

A blood T1 < 65 ms is necessary for CBVf mapping using the RSST1 method with the sequence 

parameters TR/Tinv = 750 ms/325 ms, and a blood T1 < 45 ms for the couple TR/Tinv = 500 

ms/225 ms. A rough estimation using the relaxivities in normal saline solution, shows that 

SINEREM doses of about 200 µmol/kg and 300 µmol/kg have to be injected for sufficient 

reduction of the blood T1. We wanted to know the transverse relaxation of blood resulting after 

injection of these doses, and for how long after injection the longitudinal relaxation of blood 

remained sufficiently low to satisfy the RSST1 conditions. Instead of conceiving an in vivo 

experiment to investigate the pharmacokinetics of SINEREM in rats, blood was sampled at 

various time points after SINEREM injection to measure the relaxation times of blood in vitro.  

 

0.5 ml of arterial rat blood was drawn into heparinized syringes before and 5, 15, 30, 60 and 120 

minutes after intravenous injection of 200 and 300 µmol Fe3+/kg. After each blood sampling, the 

cannula was flushed with a small amount (0.1 to 0.2 ml) of heparinized normal saline to avoid 

blood clotting, without replacing the sampled blood or rehydrating the rat. Relaxometry using 

whole blood is difficult, since it depends on the hematocrit, the oxygenation and the 

accumulation of the erythrocytes in the lower part of the syringe during the measure. To verify 

the measures on whole blood with measures on plasma, one additional milliliter blood was 

drawn with the first (before SINEREM injection) and the last (120 min post injection) blood 

sample, and centrifuged at 4000 rpm at 4°C for 10 minutes to obtain 0.5 ml plasma. Three rats 

were used for each dose.  
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The T1 and T2 measures were carried out as described for the relaxivity measurements of 

SINEREM in normal saline. Since the presence of SINEREM in the blood results in a large width 

of the water signal (the FWHM was several hundreds Hertz), the shimming procedure was only 

performed on blood without SINEREM with a resulting FWHM of 13 to15 Hz (magnitude). Using 

the custom-made holder, the syringe containing native blood could be replaced by the other 

syringes containing SINEREM in exactly the same position and without removing the setup from 

the magnet. For blood without SINEREM a TR of 10 s, 15 Tinv in the range of 4 ms to 9 s and 15 

TE in the range 2 ms to 1 s were used. For blood and plasma sampled after the SINEREM 

injection the TR was 500 ms. Fifteen Tinv in the range of 4 to 450 ms and 15 TE in the range of 2 

to 100 ms were used.  

 

In vitro blood volume experiment  
 

During the same experiment, the RF sequence used for the PR3D acquisition mode was used 

without projection gradients and with the typical timing parameters of the RSST1 method for 

CBVf measurement. The purpose of this measure was to evaluate the transverse relaxation 

effect of blood at the TE used for later in vivo CBVf measurements.  

 

The first acquisition was performed with TR/Tinv = 750 ms/325 ms using an adiabatic inversion 

pulse followed by a 90° read out pulse. This acquisition was supposed to suppress the signal 

from blood sampled before injection and this signal is referred to as Spre. Performed for blood 

sampled after SINEREM injection, the signal (named Spost) was supposed to be proportional to 

the thermal equilibrium magnetization of blood. 

 

The second acquisition was performed with a TR = 8 s and a 90° readout pulse without 

inversion. The signals acquired are referred to as S0pre and S0post for signals from blood sampled 

before and after SINEREM injection, respectively. Twenty repetitions were averaged for both 

acquisitions. 

 

The signal from the first acquisition was divided by the signal from the second acquisition for 

each syringe, 
0pre

pre

S
S

 and 
0post

post

S
S

 for the blood sampled before and after SINEREM injection, 

respectively. Since the ⎟
⎠
⎞⎜

⎝
⎛−

2T
TEexp  factor cancels out, the 

0post

post

S
S

 ratio should be about one 
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for all blood samples having a T1 < 65 ms corresponding to the "blood volume fraction" of the 

syringe. The ratio  
0pre

pre

S
S

 should show the efficiency of the blood signal suppression with the RF 

sequence.  

 

These measurements were performed on whole blood. To verify whether the precipitation of red 

blood cells during the measurements had an effect, in one experiment, both spectroscopic 

acquisitions were repeated on the same syringe at approximately 1, 5, 15, 25 and 35 min after 

rotating it 180° around its axis.  

 

Results 
 

In this study, the relaxation times of blood sampled before CA injection of (n = 6) are T1 = 1323 ± 

45 ms (range 1249 to 1380 ms) and T2 = 174 ± 27 ms (range 133 to 206 ms) consistent with 

those reported previously (Thomas et al. 2001). The difference with the mean T1 of whole blood 

measured in Chapter I, may be the result of different hematocrit or oxygenation (which was not 

measured in this experiment).  

 

The blood T1 after injection of 200 µmol Fe3+/kg SINEREM was about 60 ms for the first four 

samples (up to one hour). The T2 ranged from 2.51 ms at 5 min to 3.62 ms at 120 min post 

injection. After 300 µmol Fe3+/kg SINEREM the T1 was about 40 ms for all five blood samples 

(up to two hours). The blood T2 ranged from 1.97 ms at 5 min to 2.58 ms at 120 min post 

injection.  

 

The T1 of plasma and whole blood is similar before CA injection. For the sampling point at 120 

min post injection, the mean plasma R1 was a factor of 1.5 times higher than the R1 of blood, 

consistent with a hematocrit of about 33%. 

 

The signal ratios 
0pre

pre

S
S

  and 
0post

post

S
S

 (given in %) are presented in Fig. II-2a for the 200 µmol 

Fe3+/kg dose and in Fig. II-2b for the 300 µmol Fe3+/kg dose, together with the respective results 
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of the T1 measurements. The signal ratios 
0post

post

S
S

 for the measurements on plasma were equal 

to one within 1%.  

 

The precipitating blood cells had indeed an effect on the signal. The signals from both 

acquisitions (TR/Tinv = 750 ms/325 ms and TR = 8 s) were lower after agitation of the blood 

sample. The signal increased with time and became constant for the acquisitions performed 

more than 15 min after the agitation.  

 

 

Fig. II-2: Signal ratios 
0pre

pre

S
S

 and 
0post

post

S
S

 (left axis) and mean T1 of blood (right axis) before and up 

to two hours after injection of 200 µmol/kg SINEREM (n = 3) (a) and after 300 µmol/kg SINEREM (n 

= 3) (b). The ratio  
0pre

pre

S
S

 quantifies the efficiency of the blood signal suppression with the 

sequence parameters TR/Tinv = 750 ms/325 ms. The ratio 
0post

post

S
S

 is ideally equal to one and 

corresponds to the "blood volume fraction" in the syringe. 

 
a 
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b 

 

 

2.4.3. Discussion 
 

Accuracy of blood relaxation time measurements 
 

The purpose of this in vitro experiment was to determine for how long the RSST1 conditions are 

satisfied after injection of SINEREM at two different doses. Only the first blood sample correctly 

reflects the relaxation times expected in vivo after SINEREM injection, since the following blood 

samples were affected by progressive dilution due to successive blood sampling within 

approximately two hours (5 ml in total) and to dehydration of the rat. From the second blood 

sample onwards, the T1 and T2 are overestimated with respect to the blood T1 and T2 in the rats 

if no blood had been sampled. For this reason, sampling for the measurements on plasma was 

avoided for the first time points after injection.  

 

A T1 < 65 ms was measured for the blood drawn up to 60 min post injection of 200 µmol/kg 

SINEREM. However, even the blood drawn two hours after injection has a T1 only slightly higher 

than 65 ms, despite progressive dilution of the SINEREM concentration. With an injection of 300 

µmol/kg SINEREM the RSST1 method could also be applied with a TR of 500 ms and a Tinv of 

225 ms, since the blood T1 is lower than 225 ms/5 = 45 ms for all time points. However, the 
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blood T2 is less than 2 ms after injection and necessitates an acquisition with very short TE. 

From these results it can also be concluded that the blood half life of SINEREM at both doses is 

at least two hours.  

 

In vitro signal ratios 
 

With the timing parameters TR/Tinv = 750 ms/325 ms, the signal of blood sampled before 

SINEREM injection could be suppressed to less than 0.015 M0.  

 

After injection of 300 µmol/kg SINEREM the 
0post

post

S
S

 ratio was unity within 1% error. Although the 

0post

post

S
S

signal ratios are slightly lower than expected for the blood sampled after 200 µmol/kg 

SINEREM injection, the error of the "blood volume" measure was within 3 to 4% for the blood 

samples having a T1< 65 ms. The signal attenuating factor is related to precipitating or unevenly 

distributed erythrocytes in whole blood, as demonstrated by the fact that the  
0post

post

S
S

ratio 

obtained from plasma (in which this factor is removed) was unity. This signal attenuating factor is 

without importance in an in vivo experiment since the blood flow maintains a homogeneous 

distribution of erythrocytes. 

 

 

 

2.5. Theory 
 

2.5.1. The three dimensional projection reconstruction acquistion 
 

As can be seen in Fig. II-2a, an injection of 200 µmol Fe3+/kg SINEREM decreases the blood T1 

to < 65 ms for at least one hour. This time interval can be exploited for CBVf measurements with 

the RSST1 technique.  

 

The signal during the PR3D sequence can be modeled. To verify whether the tissue signal at 

the time of acquisition t = Tinv is effectively nulled and whether the blood signal is at thermal 
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equilibrium, the longitudinal magnetization Mz was calculated for four time points during the 

sequence (Jivan et al. 1997):  

 

1. just before the π pulse (π-) (Eq. [5] in (Jivan et al. 1997)): 
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2. just after the π pulse (π+):   
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3. just before the π/2 pulse (π/2-) (Eq. [3] in (Jivan et al. 1997)):   
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4. just after the π/2 pulse (π/2+):   
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The longitudinal relaxation time of the intra- and extravascular compartments after CA injection 

was set to T1 = 50 ms and T1 = 1200 ms, respectively, and the longitudinal magnetization at 

dynamic equilibrium was calculated for the couple TR/Tinv = 750 ms/325 ms. At t = Tinv, the 

extravascular magnetization has 0.98% of its thermal equilibrium value and the intravascular 

magnetization has 99.7% of its thermal equilibrium value. Theoretically, a signal relaxing with 

1323 ms < T1 < 1450 ms, such as the intravascular magnetization before CA injection would be 

suppressed to less than 0.29% of its thermal equilibrium value. 

 

2.5.2. Acquisition of the thermal equilibrium signal of the cerebral tissue 
 

Since with the PR3D imaging mode one K-space line (projection) is acquired during each TR 

interval, the acquisition is rather slow. In particular, this is a problem for the acquisition of the 

thermal equilibrium signal of the cerebral tissue, used for signal normalization (S0pre, Eq. I-4).  
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The sensitivity of the RF coils covers a large volume. To avoid aliasing, a large FOV, in 

particular in the axial direction of the animal, has to be chosen, and the acquisition of an image 

with acceptable spatial resolution in all three dimensions requires a large number of projections. 

A 3D acquisition with a similar spatial in-plane resolution as obtained using the FLASH mode in 

TR = 750 ms (1 × 1 × 2 mm3) takes 24 minutes. This is compatible with the duration of the 

RSST1 interval obtained after 200 µmol Fe3+/kg. The acquisition of the thermal equilibrium signal 

of the cerebral tissue (S0pre) performed with a TR of 10 s as before would take several hours 

even if the π-pulse is omitted.  

 

If the TR is shortened, the resulting T1 weighting has to be accounted for. The equilibrium signal 

can be determined from a T1 weighted acquisition if the T1 of the tissue voxels generating this 

signal is known. Global T1 values for the brain tissue were measured in Chapter I. Single slice 

T1-maps could be easily calculated from the IR-FLASH acquisitions performed in about 10 

minutes. The acquisition of multiple slices or a 3D T1 map would again take a lot of time.  

 

Another possibility to shorten this acquisition time is to reduce the flip angle of the read out 

pulse, because the longitudinal magnetization takes less time to approach the thermal 

equilibrium value M0.  

 

Computing the longitudinal magnetization for TR = 1.2 s, α = 10° and a tissue T1 in the range of 

1 to 2 s using  
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for the longitudinal magnetization  just before the α-pulse, yields the following results: 
( )−α

zM =0.9935 M0 for T1 = 1 s, and  

( )−α
zM = 0.9818 M0 for a T1 = 2 s.  

The difference is only one percent. This shows that for very low α-pulses, the tissue 

magnetization is almost independent of the tissue T1. For a large range of possible tissue T1, the 

acquired signal corresponds to S0 with less than 2% error.  

 

The transverse magnetization after the α pulse is:  

sinαMM 0xy = . 

Therefore, the acquired signal has to be divided by sin 10° = 0.174. 
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2.5.3. CBVf calculation 
 

Denoting S0iv and S0ev the signals that could be measured for the thermal equilibrium 

magnetization of the intra- and extravascular compartments, respectively, S0 = S0iv + S0ev the 

signal that could be measured for the thermal equilibrium magnetization of the cerebral tissue, 

the equations describing the signals that can be acquired in an IR experiment with a TR/Tinv = 

750 ms/325 ms, α = 90° before (Spre) and after (Spost) CA injection and in a simple (without 

preparatory π-pulse) gradient echo experiment with a TR = 1.2 s and α = 10° before CA injection 

(S0pre) are: 
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Neglecting the term to be subtracted in the numerator (< 0.3% of the blood signal), and 

approximating the remaining numeric factors to 1, results in: 
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Where α = 10°. 

 

Using the PR3D with the timing parameters employed for signal modeling results in a normalized 

signal Snorm, which is equal to the CBVf after correction for the factor sin(α) if a signal attenuation 
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due to the transverse relaxation can be neglected for very short TE. However, due to the very 

short blood T2 after injection, a R2-attenuation of the Spost signal can not be avoided and has to 

be accounted for. 

 

 

 

2.6. In vivo CBVf measurements 
 

2.6.1. The steady state ΔR2* MRI technique for comparison 
 

To validate the RSST1 method, the CBVf measurements it provides should be compared to a 

standard technique for measurement of CBVf in the same animals. The "standard" techniques 

available in the laboratory are limited to other MRI techniques for CBVf measurement. 

Alternatively histological validation could be used.  

 

In this study SINEREM is used for the CBVf measurement by the RSST1 method. This opens 

the possibility of using a R2*-based MRI method for CBVf mapping immediately afterwards on 

the same animal without repeated CA injection, taking advantage of the long blood half life of 

SINEREM. The steady state susceptibility contrast (steady state ΔR2*) MRI method developed in 

the laboratory (Payen et al. 2000) is well established and frequently implemented in the research 

projects of the laboratory (Julien-Dolbec et al. 2002; Julien et al. 2004; Tropres et al. 2004). The 

steady state ΔR2*-method does not rely on a particular blood concentration or blood relaxation 

times. Instead, the CBVf measure with this technique necessitates additional measurements on 

sampled blood to determine the susceptibility difference ΔΧ induced in blood by the SINEREM 

injection.  

 

The physiologic conditions (temperature, arterial blood pressure and blood gases) of the animal 

have to be maintained as constant as possible between the two measures, otherwise the CBVf 

might be altered for “biological” reasons. In the previous study using P760 for the CBVf measure 

by the RSST1-method, the steady state ΔR2*-technique has not been used for comparison 

because the time interval necessary for at least partial elimination of the first CA, to avoid 

interference between the two different CAs, is no less than 2 hours. Intraindividual CBVf 

variations risk being as large as interindividual ones.  
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2.6.2. Animals 
 

Eight healthy rats, four rats of the Fischer strain (weighting 222 to 276 g) and four of the Wistar 

strain (weighting 265 to 444 g) were imaged in this study using the PR3D RSST1 method 

followed by the steady state ΔR2* method. CBVf measurements by the steady state ΔR2* 

method alone are available for four additional Wistar rats (277 to 388 g). All rats were obtained 

from Charles River. 

 

The rats were anesthetised, prepared and positioned as described in chapter I. This and all 

following experiments were carried out under spontaneous breathing. The rectal temperature 

and the mean arterial blood pressure were monitored throughout the experiment, and blood 

gases were analyzed just before the CBVf measure by the RSST1-method. A single SINEREM 

injection was used for the CBVf measure by both MRI methods.  

 

2.6.3. CBVf by the RSST1 method 
 

The PR3D acquisition was performed in a gradient echo mode with hard excitation pulses, the 

duration of which was approximately 50 µs. To minimize the duration of the excitation pulses 

they were calibrated for the maximum pulse amplitude available. The K-space is sampled 

radially in m × n projections beginning with the center of K-space as illustrated in Fig. II-3, first in 

one plane by incrementing the θ-angle in m steps (projections) up to 360°.  After completion of 

one plane, the Φ-angle is incremented in n steps (cf Fig. II-3 c), up to 180° in order to acquire 

planes in the 3rd dimension of K-space. 
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Fig. II-3:  
a: sequence timing diagram of the inversion recovery projection reconstruction acquisition for the 
first five radial lines in the central kx-ky plane of K-space. Green arrow = TR = 750 ms, blue arrow = 
Tinv = 325 ms, violet arrow = TE = 0.7 ms. 
b: representation of the acquired radial trajectories in the kx-ky plane of K-space 
c: a sphere in  K-space is acquired by varying the gradient in the third dimension  

(t))cos( GGz Φ=  

 
a 

 

 
b 

  
c 
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An adiabatic inversion pulse was used for the Spre and Spost acquisitions. Transmitter and 

receiver gains were kept constant for all PR3D acquisitions. The FOV was 108 × 108 × 216 mm3 

(factor 2 along z-axis), the number of samples 2048 and the TE = 0.7 ms. The other sequence 

parameters were as follows: 

 

- For the proton density weighted acquisition (S0pre): 31 × 61 projections, no inversion, TR = 

1.2 s, α = 10°, 15 dummy scans, duration ≈ 38 min 

 

- For the IR-PR3D (Spre, Spost): 31 × 61 projections, TR = 750 ms, Tinv = 325 ms, α = 90°, 15 

dummy scans, duration ≈ 24 min 

 

- For a high resolution PR3D acquisition with soft tissue contrast: 63 × 123 projections, no 

inversion, TR = 100 ms, α = 23° (Ernst angle), 30 dummy scans, duration ≈ 13 min 

 

2.6.4. CBVf by the steady state ΔR2* method 
 

The multi-slice multi gradient echo spin echo (MGESE) sequence is a hybrid gradient echo spin 

echo sequence which acquires a series of gradient echo images at different TE to estimate T2* 

values and a spin echo image to estimate T2 values simultaneously. For each phase encode 

gradient, multiple refocusing of the readout gradient after a 90° RF pulse generate the echos. A 

spin echo is then generated by a 180° refocusing RF pulse.  

Five adjacent coronal slices of 2 mm thickness were acquired using the MGESE sequence with 

the following parameters: FOV 32 × 32 mm2, matrix 128 × 66, TR = 6 s, 7 gradient switches, TE 

= 6, 12, 18, 24, 30, 36, 42 ms for the gradient echo and 102 ms for the spin echo, 1370 samples, 

2 averages, duration ≈ 13 min.  

 

2.6.5. Imaging protocol 
 

The timing diagram in Fig. II-4 summarizes the imaging protocol. Global field inhomogeneity was 

reduced to a FWHM of 45 to 50 Hz (magnitude) by shimming on the signal from a volume of 

interest 80 × 80 × 30 mm3. The MGESE acquisition was performed followed by a first blood 

sample for the  susceptibility measurement. The blood was immediately centrifuged as 

described before in paragraph 2.4.2 and the plasma was frozen. The PR3D sequence was then 
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used to acquire the proton weighted image (S0pre), and the IR-acquisition with TR/Tinv = 750 

ms/325 ms before SINEREM injection (Spre). A 0.1 ml arterial blood sample was taken for blood 

gas analysis to verify whether the rat was under normocapnia.  

 

SINEREM was manually injected as a bolus at a dose of 200 µmol Fe3+/kg. The IR-acquisition 

with TR/Tinv = 750 ms/325 ms (Spost) was started 4 minutes after injection in order to allow 

equilibrium distribution of the CA throughout the blood pool. The post-injection MGESE 

acquisition was started as soon as the PR3D image was terminated (28 min post injection). A 

last blood sample was taken, centrifuged and the plasma frozen.  

 

Finally, the high resolution PR3D image was acquired to help delineation of ROIs. Rats were 

then euthanized as described in chapter I.  

 

 
Fig. II-4: Timing diagram showing the acquisitions performed with PR3D and MGESE 

 
 

 

2.6.6. SINEREM induced blood susceptibility difference 
 

The plasma samples were analyzed to determine the ΔΧ induced by the presence of iron 

particles in the blood pool. The iron concentration was deduced by measuring the R2 difference 

of the plasma before and after SINEREM injection. 

 

The pre-contrast and the post-contrast plasma samples were diluted in normal saline solution by 

a factor 8 and 20, respectively. The Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo pulse 

sequence consisting of a hard 90° RF pulse of 100 µs duration followed by an echo train 

induced by a series of hard 180° pulses was used for measuring T2. For the diluted pre-contrast 

arterial 
blood 
gases 

wait 
4 min

MGESE 
post 

13 min 

PR3D 31×61 
S0pre 

38 min 

PR3D 31×61 
Spre 

24 min 

PR3D 31×61 
Spost 

24 min 

PR3D 
63×123 
13 min 

blood 
sample 

blood 
sample 

SINEREM 
injection 

t 

MGESE 
pre 

13 min 



Experimental studies - Chapter II 

 

172 

samples, 600 echos were acquired with a first TE of 8 ms, for the diluted post-contrast samples, 

400 echos with a first TE = 1 ms. Three acquisitions were performed on each sample for 

averaging. The signal arising from the plastic of empty Eppendorf microcentrifuge tubes was 

subtracted prior to fitting the echo amplitudes to  

)T
TEexp(SS(TE)

2
0 −= ,  

using a custom-made Matlab (version 7.0.1) code.  

 

The measured R2
pre and R2

post values were converted to the blood iron concentration [Fe3+] using 

the linear relation between R2 and [Fe3+]  previously established by inductively coupled plasma 

atomic emission spectrophotometry, and corrected for the respective dilution factor:  

[ ] factor dilution
ml

µmol0.00024 Rs 
ml

µmol 0.01055Fe3 ⋅⎟
⎠
⎞

⎜
⎝
⎛ −⋅=+

2  

 

The magnetization induced by a 1 mM Fe3+ concentration in rat blood at 2.35T is 0.396 µT 

(Vaeth 1998). To convert this magnetization into a susceptibility difference ΔΧ in CGS units it 

has to be multiplied by the factor 0.4254:  

[ ] 0.4254 mM FeΔmM µT 0.396ΔΧ 3-1 ⋅⋅= +  

 

2.6.7. Image processing 
 

PR3D data 
 

The PR3D samples K-space data on a sphere. The image reconstruction of the PR3D 

acquisitions is achieved by a gridding interpolation of the K-space data onto a 36 × 36 × 72 grid, 

a zero filling by a factor 4 in the x, y, and z direction, followed by a 3D discrete Fourier transform.  

 

Two gridding algorithms were used:  

The nearest neighbor (NN) algorithm, simply assigns the intensity value of the NN to the 3D 

Cartesian grid point.  

The "averaged nearest neighbor" (ANN) algorithm uses the average intensity of the 16 nearest 

neighbors.  

 

The reconstruction requires less than two minutes on a workstation (Xserve G5, Apple Inc).  
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The normalized signal 
0pre

prepostnorm

S
SS

S
−

=  was calculated voxel by voxel from the three PR3D 

acquisitions.  

 

According to Eq. II-1, the S0pre acquisition has to be corrected for the factor sin(10°) = 0.174. 

Before CA administration, the T2 of blood and tissue is > 80 ms. Consequently, the term 
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tissue 2T
TEexp  in Eq. II-1 is > 0.99 for a TE of 0.7 ms. 

 

However, as shown in Eq. II-1, the intravascular signal component in the Spost acquisition has to 

be corrected for the R2-attenuation. The mean T2 of blood in the time interval from 5 to 30 min 

after 200 µmol Fe3+/kg SINEREM injection was 2.83 ± 0.06 ms. Therefore, in this experiment, 

the factor ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

post iv 2T
TEexp  = 0.78.   

 

Thus, CBVf maps were calculated from the Snorm map by: 

0.78
)sin(10SCBVf norm °

= .                                                                                                       Eq. II-2 

 

Using ImageJ software (http://rsb.info.nih.gov/ij), the 3D data can be viewed in three orthogonal 

planes. Extracerebral tissue and background noise were masked and the CBVf values occurring 

in cerebral tissue were represented on a greyscale from 0 to 255. In the third dimension the 

planes had a thickness of only one voxel. Therefore ROI analysis was carried out on three 

transversal and three coronal planes on which the corpus callosum could be distinguished.  

 

The SNR was evaluated on the Spost and on the Spre acquisitions according to 

S

post

σ
S

SNR =  

where Spost is the signal from a ROI in the brain, and σS is the standard deviation from a ROI of 

identical size outside the rat. Here, σS is the standard deviation resulting from the spatial 

variation of the noise while in chapter I (Eq. I-3) the SNR calculation was carried out using the 

temporal standard deviation over N acquisitions.  
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Steady state ΔR2* data  
 

The gradient echo and spin echo images were reconstructed after zero-filling to a 256 × 256 

matrix. A R2
* map was calculated by fitting the data from each TE, on a pixel by pixel basis, to an 

exponential decay curve of the form )RTEexp(SS(TE) *
20 ⋅−= ,  

using Matlab. The S0 values obtained by this fit were used to calculate the R2 map from the 

single spin echo image. The ΔR2 difference map could be calculated directly from the pre-

contrast MGESE
preS  and the post-contrast MGESE

postS image by 

⎟
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S

ln
TE
1ΔR .  

A CBVf map can then be obtained from the ΔR2* difference map by using Eq. 0-2 with the 

corresponding ΔΧ.  

 

ROI analysis was carried out with Matlab on one of the three central slices which approximately 

corresponded to the coronal slices used for the CBVf analysis of the PR3D data. 

 

Since different image processing software was used for CBVf analysis of MGESE and PR3D 

acquisitions, the ROIs were not identical. The position and the thickness of the coronal slices 

were not identical, neither. Therefore regional CBVf values are only expressed as an average 

over all available rats of one strain, without correlating the CBVf values obtained by each 

technique rat by rat.  Statistical analysis was carried out with GraphPad Prism (version 5.00, San 

Diego California USA, http://www.graphpad.com). 

 

2.6.8. Results 
 

Due to technical problems related to instabilities in the RF pulse transmission three experiments 

had to be excluded (one on a Fischer rat and two on Wistar rats).  
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Steady state ΔR2* data 
 

The susceptibility difference ΔΧ in plasma before and after injection of 200 µmol Fe3+/kg was 

obtained for each animal individually. The mean Δ[Fe3+] was 4.7 ± 0.9 µmol kg-1 and the mean 

ΔΧ was 7.9 ± 1.5·10-7 in CGS units (n = 9). 

 

Coronal images of one representative rat obtained with the MGESE and the PR3D sequences 

are shown in Fig. II-5. The gradient echo images acquired with the MGESE sequence at TE = 6 

ms before and after SINEREM injection are shown in Fig. II-5a and b, respectively. The image in 

Fig. II-5c is the ΔR2*-map obtained from the MGESE acquisition. The intensities on this map are 

proportional to the CBVf. The mean global CBVf obtained with the ΔR2*-method are 1.68 ± 

0.16% for the Fischer strain (n = 3) and 2.25 ± 0.55% for the Wistar strain (n = 6). Regional 

CBVf are given in the histogram in Fig. II-6.  

 

PR3D data 

 

A CBVf map obtained by the PR3D-RSST1 method is shown in Fig. II-5d. It is a CBVf map from 

the same animal as shown in Fig. II-5a, b and c, in approximately the same coronal slice. It was 

generated by calculating the normalized signal intensity according to Eq. II-2.  

 

The SNR in the PR3D acquisitions was 79 ± 21 for the Spost acquisitions and 8 ± 5 for the Spre 

acquisitions. The global CBVf is 2.07 ± 0.43% (n = 3) for the Fischer strain and 2.12 ± 0.55% (n 

= 2) for the Wistar strain, using the NN algorithm, and 2.20 ± 0.45%  for the Fischer strain and 

2.13 ± 0.62%  for the Wistar strain, using the ANN algorithm. The global CBVf and the regional 

CBVf obtained with the two gridding algorithms are not significantly different (Wilcoxon matched 

pairs test). Therefore, in the histogram in Fig. II-6, only the regional CBVf obtained with the NN 

algorithm are summarized.  

 

The mean CBVf obtained from a ROI in the cavernous sinus is 46 ± 2% (after correction for the 

R2-attenuation). This value is lower than the blood volume measured in large blood structures 

such as the sagittal sinus in CBVf maps obtained by the IR-FLASH acquisitions. Values up to 

80% had been found. Given the low spatial resolution of the CBVf maps obtained by PR3D 

acquisitions, it is not surprising that a blood volume of 100% could not be obtained from the 

cavernous sinus.  
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Fig. II-5: T2-weighted images before (a) and after (b) SINEREM injection from one representative rat 
(TE = 6 ms). The gray levels in the ΔR2*-map (c) are proportional to the CBVf as obtained by the 
steady state ΔR2*-method. The CBVf map in (d) was obtained by the RSST1 method according to 
Eq. II-2. 

 
a                                       b                                      c                                      d  

 

 
Fig. II-6: regional CBVf obtained with the steady state ΔR2* and PR3D-RSST1 methods using 
SINEREM as CA. GM = gray matter, WM = white matter, subc. = subcortical  

 
 

 

Statistical analysis 

 

No significant different means were found for the global and regional CBVf when comparing the 

CBVf measurement methods and the rat strains, neither using the nonparametric Kruskall-Wallis 
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test, nor the one-way analysis of variance (ANOVA). Neither was there a significant difference 

between mean CBVf obtained with the two methods when both rat strains were grouped 

together (Mann-Whitney test). The number of experiments is small, so a difference might not be 

noticeable because of the few samples, but this is already an encouraging result, meaning that 

both methods result in comparative measures.  

 

When comparing the mean regional CBVf, using the repeated measures ANOVA the white 

matter CBVf is significantly lower than the CBVf in both gray matter ROIs in the measures 

carried out with the ΔR2* method (n = 9) as well as with the RSST1 (n = 5) method, with 

exception of the white matter versus cortical gray matter difference in the data obtained with the 

RSST1 method. When using the nonparametric Friedman test for repeated measures, a 

significant difference was only found between the white matter CBVf and the cortical CBVf when 

using the ΔR2* method (P = 0.006), but the power of nonparametric tests is known to be very low 

for such small samples.  

 

Although the mean global CBVf for the Fischer strain was lower than for the Wistar strain, 1.82 ± 

0.51% (n = 6) and 2.22 ± 0.40% (n = 8), respectively, when the measurement methods were 

pooled, the difference was not significant (P = 0.08, Mann-Whitney test).  

 

The global CBVf values are lower than those obtained with Gd-DOTA and P760 in Chapter I, but 

they are still in the range of CBVf values reported in the literature obtained by different 

techniques: autoradiography (Todd et al. 1992), MRI (Lin et al. 1997), synchrotron radiation 

quantitative computed tompgraphy (Adam et al. 2003), and histology (Pathak et al. 2001).  

 

2.6.9. Discussion 
 

Advantages and disadvantages of SINEREM for the RSST1-method 
 

Using SINEREM as blood pool CA the blood concentration may be considered constant 

throughout the imaging procedure which lasts 24 minutes for the post-contrast PR3D acquisition 

since this time scale is short in comparison to the plasmatic half life of SINEREM. The 

disadvantage of SINEREM when used with an MRI acquisition mode exploiting the positive 

contrast mechanism, i.e. the T1 effect, is its high r2-relaxivity. The TE of 0.7 ms still induced an 

attenuation grater than 20%.  
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The RSST1-technique does not acquire the extravascular tissue water signal and is therefore 

insensitive to the susceptibility gradient at the vascular wall created by the compartmentalized 

CA. Only the transverse relaxation in blood plays a role. 

 

Possible improvements 
 

There are many ways to improve the PR3D acquisitions, especially their spatial resolution and 

the total acquisition time for a 3D volume.  

 

To reduce acquisition time, a small surface RF coil could be used. Alternatively, the technique of 

outer volume suppression could be applied to suppress the signal from extracerebral tissue. 

However, care has to be taken, not to induce an inflow effect, by suppressing the signal from 

inflowing blood. The RSST1 technique is based on a global inversion of the magnetization, in 

order to ensure that even blood flowing into the volume or slice of interest is suppressed before 

CA injection and relaxed to thermal equilibrium after CA injection.  

 

The TE could certainly be shortened using a harder (shorter) excitation pulse. This would be a 

great advantage, because if the R2-attenuation is negligible, such as with the IR-FLASH 

technique in conjunction with Gd-DOTA or even P760, knowledge of the blood T2 would not be 

necessary, thus blood sampling or estimating blood T2 could be avoided. 

 

More accurate reconstruction techniques, which make use of the oversampling of the central K-

space are in development, and are expected to lead to more reliable CBVf maps.  

 

The use of SINEREM at a clinically approved dose 
 

SINEREM is approved for clinical applications in humans up to a dose of 45 µmol Fe3+/kg. At 

2.35 T, an intravenous injection of this dose to a rat reduces the blood T1 to about 180 to 240 ms 

and the blood T2 to 10 to 14 ms. A Tinv of at least 900 ms would be necessary to measure the 

thermal equilibrium of the blood compartment. On the other hand, to suppress extravascular 

tissue having a T1 of 1.2 s with an IR sequence a Tinv ≤ 830 ms is necessary. At this Tinv the 

blood T1 should not exceed 166 ms. This requires a SINEREM blood concentration of > 1 mM, 

which can be achieved with an injection of 50 to 70 µmol Fe3+/kg to a rat and with a dose of 
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about 70 µmol Fe3+/kg in men (Cameron 1999). The RSST1-technique could therefore be used 

with adapted timing parameters of the IR sequence, but not for doses lower than 70 µmol 

Fe3+/kg at 2.35T.  

 

At lower magnetic field strength, the relaxivities of SINEREM are higher and the r2/r1 ratio lower 

and therefore more convenient for T1 weighted acquisitions. Knowing the tissue T1 at the desired 

field strength, the sequence can be adapted for the use of lower CA doses. For example, at 

1.5T, the range of brain tissue T1 is 780 ms (white matter) to 920 ms (gray matter). Using Eq. I-1 

and Eq. I-2 it can be calculated that an IR sequence with TR/Tinv = 1680 ms/500 ms would 

suppress gray matter quite well, while white matter would keep a residual signal which had to be 

subtracted. In general, the larger the TR interval is, the smaller the range of T1 that can be 

suppressed.   

 

However, the use of SINEREM is still very interesting in animal models because of its increased 

intravascular retention compared to clinically approved Gd3+-based CA, even in a number of 

pathologies. It has been successfully employed to assess hemodynamic and vascular 

morphologic parameters in a C6 brain tumor model using the steady state ΔR2*-technique 

(Julien et al. 2004; Tropres et al. 2004). Other USPIO of smaller size (MION, hydrodynamic 

diameter ≈ 17 nm) have also been used for CBVf measures in brain tumor, without significant 

extravasation (Dennie et al. 1998; Packard et al. 2003; Pathak et al. 2003; Pathak et al. 2001; 

Zimmer et al. 1995).   

 

In general malignant tumors are distinguished from healthy brain tissue by the accumulation of 

CA in the extravascular compartment. So far, clinical tumor imaging is usually performed before 

and about 24 hours after SINEREM infusion (Enochs et al. 1999), because of its slow leakage 

from the blood pool and because of its long plasma half life of 21 to 30 hours. For other medical 

indications MRI is even performed up to 72 hours post injection (Kooi et al. 2003). It might be 

worthwhile to add an imaging protocol directly after injection giving rather information on blood 

volume instead of tissue infiltration.   
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3. Chapter III: CBVf mapping using RSST1 with SINEREM as blood pool agent in tumor 
tissue 
 

 

 

3.1. Introduction 
 

In neuroimaging by magnetic resonance, lesions are detected with the use of diffusible CAs 

such as Gd-DTPA and Gd-DOTA because they do not remain intravascular in regions where the 

BBB is broken down. On the contrary, to assess brain perfusion by measuring blood flow or 

blood volume parameters, the CAs need to be confined to the intravascular compartment during 

the measure. 

 

In the following experiment, it was tested whether SINEREM could be used to accurately 

measure the CBVf in tumor tissue. From literature (Le Duc et al. 1999) and experiments in our 

laboratory (Julien et al. 2004; Tropres et al. 2004; Valable et al. 2006) it is known that SINEREM 

does not extravasate in C6 tumors, and an accurate measure can be expected. In addition to the 

C6 tumor model a second malignant brain tumor model, RG2, was used. The vascular 

confinement of SINEREM in an RG2 tumor model had not been studied yet.   

 

French Introduction  
 

Chapitre III : Mesure de la fVSC avec le SINEREM dans des modèles de tumeur cérébrale  

 

En neuroimagerie, avec les techniques de résonance magnétique, il est possible de détecter les 

lésions cérébrales en utilisant des AC comme le Gd-DOTA ou le Gd-DTPA qui diffusent en 

présence de rupture de la BHE. En revanche, pour des mesures de la perfusion cérébrale 

utilisant des AC de contraste, mesure du débit sanguin ou du volume sanguin, les méthodes 

utilisées sont basées généralement sur le confinement de l’AC dans le système vasculaire 

durant la mesure. 

 

Comme il a été montré que l’extravasation du SINEREM est limitée dans les tumeurs (Julien et 

al. 2004; Tropres et al. 2004; Valable et al. 2006), les travaux de ce chapitre sont menés pour 

évaluer la faisabilité de cet AC pour mesurer la fVSC dans la tumeur en comparant les deux 
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méthodes RSST1 et ΔR2* chez le même animal. Deux modèles de rat ont été expérimentés : le 

modèle C6 et le modèle RG2. La biodistribution du SINEREM dans le modèle RG2, n’avait 

encore jamais été étudiée. 

 

 

 

3.2. Tumor cell culture  
 

The C6 glioma cell line was established by Benda et al (Benda et al. 1971; Schmidek et al. 

1971) by repeated intravenous injection of N-methylnitrosourea to adult Wistar rats, followed by 

cloning of the developing tumors (Benda et al. 1968; Pfeiffer et al. 1969). It is a tumor model of 

astrocytoma.  

 

The RG2 glioma cell line was induced in the progeny by a single intravenous injection of N-ethyl-

N-nitrosourea to pregnant CD Fischer rats (Ko et al. 1980; Swenberg et al. 1972) and 

established following cloning by Wechsler et al. Histologically it has been classified as a grade III 

to IV astrocytoma.  

 

The C6 and RG2 cells (purchased from American Type Culture Collection) were cultured at 

37°C in Dulbeco's modified Eagle's medium (DMEM, GilboBRL, Lifes technologies, Scotland) 

supplemented with 10% foetal calf serum (GilboBRL, Lifes technologies, Scotland), 2% L-

glutamin, 1% penicillin and streptomycin. The day of implantation the cells were trypsinized 

(trypsin/EDTA), centrifuged (1500 rpm for 5 minutes) and 2 ·107 C6 cells ml-1 or 106 RG2 cells 

ml-1 were suspended in the culture medium and stored in a refrigerator until implantation.  

 

 

 

3.3. Tumor cell implantation 
 

With the help of stereotactic coordinates, the cells were implanted in the right caudate nucleus of 

rats according to a method derived from Kobayashi et al (Kobayashi et al. 1980). These cell 

lines grow in their syngeneic host, therefore C6 cells were implanted in rats of the Wistar strain  

and the RG2 cells in rats of the Fischer strain.  
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Rats weighting 160 to 180 g were fully anesthetized with 5% isoflurane in air. Isoflurane was 

then reduced to 2.5 % and the rats were mounted on a stereotaxic head frame. After disinfection 

with Betadine, a middle scalp incision was made and the skin was removed until the bregma 

could be identified. A burr hole was drilled 3.5 mm to the right from the midsagittal line at the 

level of the bregma using either a 26G needle or an electric drill bit of 1 mm diameter (cf. Fig. III-

1). Five microliter of the cell suspension (105 C6 tumor cells or 5·103 RG2 cells) were slowly 

injected into the right caudate nucleus at 5.5 mm depth under the skull bone using a 5 µl-

Hamilton syringe with a 26G needle. The needle was slowly raised one minute after cell injection 

to allow for complete diffusion and to minimize suction of the injected solution back into the 

needle or along the created channel in the brain tissue. The burr hole was sealed with Horsley 

wax, and the scalp was sutured. After removing the rat from the stereotaxic device it was placed 

slightly inclined (with head up) within its cage at ambient temperature for recovery.  

 

All rats implanted with the described amounts of C6 and RG2 cell suspensions developed 

rapidly growing tumors. The survival time ranged from three to four weeks for the C6 tumor 

bearing rats and from two to three weeks for the RG2 tumor bearing rats.  

 

 
Fig. III-1: a rat's skull with the major interosseous sutures as landmarks. The bregma is the midline 
point where the coronal and sagittal sutures intersect. The glioma cells were implanted through a 
burr hole located 3.5 mm right to the bregma (red cross) in the caudate nucleus at 5.5 mm depth 
from the skull bone. 
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3.4. Imaging protocol 
 

The imaging experiments were carried out 14 to 15 days after implantation of C6 tumor cells and 

16 to 19 days after implantation of RG2 tumor cells, on five Wistar rats and five Fischer rats. The 

Wistar rats weighted 240 to 279 g and the Fischer rats weighted 263 to 283 g, the day of 

imaging. The femoral artery and vein were cannulated as described in Chapter I. 

 

The imaging protocol and the sequence parameters were identical to the ones described in 

chapter II (paragraph 2.6.5) for healthy rats. The RSST1 method and the steady state ΔR2* 

method were used with a single SINEREM injection at a dose of 200 µmol Fe3+/kg. Blood was 

sampled for later in vitro ΔΧ measurement, necessary for the CBVf quantification with the steady 

state ΔR2* method. 

 

 

 

3.5. Data analysis 
 

Due to technical problems, only four experiments performed on RG2 tumor bearing rats were 

exploitable, and it was not possible to repeat the experiments on C6 tumor bearing rats, yet. 

 

Image reconstruction of the PR3D and the MGESE acquisitions was performed as described in 

paragraph 2.6.7. Image analysis was performed under ImageJ for the PR3D data and with 

Matlab for the MGESE data. Statistical analysis was carried out using GraphPad Prism. 

 

3.5.1. PR3D acquisitions 
 

The ROIs were drawn on three transverse and three coronal planes of the PR3D acquisitions. 

The tumors were easily visible on the high resolution PR3D image (TR = 100 ms, α = 23°, matrix 

63 × 123) and on the IR-PR3D acquisition performed during the RSST1 interval after injection 

(Spost). One ROI comprised the whole tumor as visible on both images (cf. Fig. III-2). This ROI 

was subdivided in a smaller ROI drawn in the central part of the tumor, and in a peripheral ROI 

which was obtained by subtraction of the central ROI from the ROI comprising the whole tumor. 

The central ROI was drawn on the Spost image, which exhibited a different degree of contrast 

enhancement than the ring-like periphery of the RG2 tumor. In some cases the median line was 
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deviated and a ROI of the same size and shape as the whole tumor ROI could not be drawn on 

the contralateral side at the location corresponding to the tumor. Therefore, a large ROI was 

drawn comprising the contralateral hemisphere.  

 

Only the CBVf values obtained from the reconstruction performed using the nearest neighbor 

algorithm will be presented in the Results section, because - as for the healthy rats imaged in 

chapter II - the difference with the averaged nearest neighbor algorithm was not significant 

(Wilcoxon matched pairs test). The standard deviations for regional CBVf given for individual 

rats result from averaging over the CBVf values in six ROIs (on three transverse and three 

coronal planes). 

 

3.5.2. MGESE acquisitions 
 

For regional analysis of the ΔR2* map obtained from the MGESE acquisitions the central slice 

was used, because it contained the largest tumor extension. The tumor extension was best 

visible in the T2* weighted pre-contrast image as a heterogeneous structure. After SINEREM 

injection, the RG2 tumors were hypointense compared to the surrounding normal brain tissue on 

the T2* weighted images. In general, the contrast between the tumor center and the ring like 

peripheral part was less pronounced than on the PR3D acquisitions. However, two ROIs were 

drawn in each tumor, a peripheral and a central one (cf. Fig. III-4) similar as for the PR3D 

acquisitions. For this data only one plane had been analyzed for each rat, therefore the standard 

deviations of the regional CBVf given for each rat individually result from averaging over all 

pixels within a ROI. 

 

 

 

3.6. Results 
 

3.6.1. CBVf obtained by the RSST1 method 
 

The mean CBVf obtained from the ROIs comprising the whole tumor varied between 4 and 21%. 

In the contralateral hemisphere CBVf ranging from 0.85 to 2.03 % were found with a mean of 

1.49 ± 0.49% for the four rats. This is lower than the CBVf in healthy Fischer rats (cf. Chapter II), 
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but not significantly (neither with the nonparametric Mann-Whitney test, nor with the unpaired T 

test). 

 

Fig. III-2 shows a representative example of the PR3D acquisitions obtained in a RG2 tumor 

bearing rat brain 19 days after implantation. Fig. III-2a is a transverse image acquired with high 

resolution about 45 min after SINEREM injection, and in this case reveals a ring shaped 

hyperintensity in the tumor periphery. Fig. III-2b and c are a transverse and a coronal plane of 

the CBVf map, respectively, clearly showing the typical enhancement pattern in this tumor type.  

The mean CBVf of the whole tumor was 21.19 ± 5.86% for this rat. 

 

 
Fig. III-2: Representative example of a RG2 tumor bearing rat brain. The transverse high resolution 
PR3D image (a), as well as the transverse (b) and coronal (c) CBVf maps depict a hyperintense 
ring-like contrast due to SINEREM extravasation in the tumor periphery. The transverse plane is 
displayed from the top, the coronal plane from caudal. 

 
a 

 

 
b 
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c 

 

 

Since the CBVf in the tumors vary much between the rats, it makes little sense to present a 

mean value, especially for a small number of rats. Therefore, the histogram in Fig. III-3 gives the 

regional CBVf as measured by the RSST1 method individually for each rat. The time interval 

between tumor cell implantation and CBVf mapping is given in days for each rat.  

 

In three out of four rats, the CBVf measured in the tumor ROIs using SINEREM is by a factor of 

nine to fourteen higher than in the contralateral brain tissue. Ferrier et al reported a CBVf of less 

than 5% in an RG2 tumor model nine to eleven days after implantation (Ferrier et al. 2007). 

Even in one week older RG2 tumors such high degrees of vascularisation are unlikely. These 

findings suggest extravasation of SINEREM in this tumor model. The degree of extravasation 

varies between tumors, since little or no extravasation was observed in one rat for which the 

CBVf in the tumor was only about twice as high as the contralateral CBVf. The degree of 

extravasation also varies within a tumor as could be observed on the CBVf-maps. For example 

on the coronal CBVf map in Figure III-2c, the ventral (lower) half of the tumor has a higher CBVf 

than the dorsal part and the tumor center. The heterogeneity within tumors can also be deduced 

from the error bars in Fig. III-3. The extravasation was found larger in the tumor periphery than in 

the center for two rats and vice versa for the other two rats. Such heterogeneous distributions in 

intratumor permeability have been reported for various tumor types (Cuenod et al. 2006; 

Peterson et al. 1984; Yankeelov et al. 2003).   

 

The CBVf for the tumor ROIs (whole tumor, center, periphery) were tested for correlation with 

the day post implantation using the nonparametric Spearman test, but no significant correlation 
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was found. However, for the central tumor CBVf the Spearman coefficient was rS = 1, and 

almost significant (P = 0.083). 

 

 
Fig. III-3: regional CBVf obtained by the RSST1 method using SINEREM and PR3D acquisitions. 
The four rats where imaged on day (d) 16 to 19 after RG2 cell implantation  

 
 

 

3.6.2. CBVf obtained by the steady state ΔR2* method 
 

The mean Δ[Fe3+] in rat blood after an injection of 200 µmol Fe3+/kg was 4.9 ± 1.3 µmol kg-1. The 

mean ΔΧ was 8.2 ± 1.9·10-7 (n = 4). 

 

The mean CBVf in the contralateral tissue is 1.76 ± 0.28% (n = 4), and not significantly different 

from the CBVf in healthy Fischer rats.  Neither is it different from the CBVf contralateral to the 

tumor obtained with the RSST1 technique.   

 

Figure III-4a shows a coronal T2 weighted pre-contrast image (spin echo, TE = 102 ms) of an 

RG2 tumor bearing rat brain with typical tumor and contralateral ROIs. The image in Fig. III-4b is 

a T2* weighted acquisition (gradient echo, TE = 18 ms) of the same slice performed about 30 

minutes after SINEREM injection. For this particular rat, the tumor appears hypointense in the 

center and slightly hyperintense in the periphery with respect to the surrounding brain tissue on 
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the post-contrast gradient echo and spin echo images. The image in Fig. III-4c is the ΔR2*-map 

for the corresponding slice, on which the gray levels are proportional to the blood volume 

fraction in tissues in which the CA is confined to the intravascular compartment. The ΔR2* is 

highest in the tumor center despite CA extravasation. The measured CBVf values are 1.73 ± 

0.70% for the contralateral hemisphere, 3.30 ± 1.66% for the central tumor region and 2.67 ± 

1.39% for the peripheral tumor region. The standard deviation given here results from spatial 

averaging, and reflects the heterogeneity of the CBVf in the respective ROI.  

 

 
Fig. III-4: coronal images of a RG2 tumor bearing rat brain 
a: T2 weighted (TE = 102 ms) image obtained before CA injection  
b: T2* weighted (TE = 18 ms) image obtained after intravenous injection of 200 µmol/kg SINEREM  
c: ΔR2*-map. Despite probable CA leakage, the tumor center has the highest ΔR2*-values in the 
image 

 
a 
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b 

 
c 

 

 

The histogram in Fig. III-5 illustrates the CBVf values obtained by the steady state ΔR2* method. 

The CBVf values measured in tumor ROIs with the steady state ΔR2* method are much lower 

than those measured by the RSST1 method and only slightly higher than in the contralateral 

brain tissue.  
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Fig. III-5: regional CBVf obtained by the steady state ΔR2* method using SINEREM and MGESE 
acquisitions for four RG2 tumor bearing rats imaged 16 to 19 days after tumor cell implantation.  

 
 

 

The MGESE acquisitions were performed immediately after the PR3D acquisitions. It is 

therefore unlikely that the different CBVf in tumor tissue obtained by the RSST1 and the steady 

state ΔR2* method result from a significantly modified distribution of SINEREM between the 

PR3D and the MGESE acquisitions. If the CA leaked out of the tumor microvasculature as 

suggested by the findings of the RSST1 measure, the CBVf obtained by the steady state ΔR2* 

method is underestimated. The ΔR2* methods are based on susceptibility differences in tissue 

created by compartmentalization of the CA such as in the network of healthy microvasculature. If 

SINEREM leaks out of the vascular compartment, half an hour after injection a significant 

quantity might be present in the extravascular compartment of the tumor tissue. Owing to the 

more homogeneous distribution of SINEREM in the tumor tissue, the susceptibility differences 

will be greatly reduced and the assumptions of the model, on which the ΔR2* methods are 

based, are not valid any more.   
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3.7. Discussion 
 

3.7.1. CBVf overestimation in case of CA leakage 
 

Direct confirmation for CA leakage can not be obtained neither with the RSST1 acquisition nor 

with the steady state ΔR2* acquisition because, with such slow acquisition modes (13 min for 

steady state ΔR2* and about 25 min for the RSST1 method in this study), it is not possible to 

monitor the CA leakage. The RSST1 method just provides evidence for a several fold increased 

CBVf, while the steady state ΔR2* method provides evidence for low to normal CBVf within the 

tumor. It is rather the contradictory result obtained with both methods that evoke the possibility of 

CA leakage. 

Neither the steady state ΔR2*, nor the RSST1 method can measure the CBVf in case of CA 

extravasation, when slow acquisitions are used. Faster acquisitions can provide information 

about the leakage rate which can be used to correct the measured CBVf for the CA leakage (cf 

chapter VI).  

 

If the BBB maintains its barrier function to a certain extend and the extravasation rate is small 

with respect to the blood flow rate, the CA extravasation is said to be diffusion limited. In this 

case, first pass techniques are better suited to estimate the microvascular CBVf, since the CA 

has little time to extravasate. However, T1-based first pass techniques will still overestimate the 

CBVf because the presence of the CA in the extravascular compartment lowers its T1, while T2*-

based techniques are known to underestimate the CBVf due to the loss of CA 

compartmentalization.  

 

In case of CA extravasation, the Snorm signal (Eq. II-1) rather represents the distribution volume 

of the CA provided there is an equilibrium between CA outflow from and backflow into the 

vasculature during the entire acquisition time. Using the PR3D acquisition mode, the signal is 

averaged over an acquisition time of about 25 min and it is impossible to tell at which rate the 

extravasation occurs and whether the equilibrium between CA extravasation into the interstitium 

and backflow into the vasculature installs during the acquisition. Such a long acquisition can only 

reflect the distribution volume of the CA correctly under the condition that the extravasation 

occurs rapidly, that the equilibrium installs before the acquisition is started and that the CA 

washout from the leakage compartment is negligible during the acquisition time. Given the long 

half life of SINEREM in the body, rapid elimination from brain tissue is unlikely, since 
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extravascular Fe3+ can also be phagocytised (Weissleder et al. 1990a; Weissleder et al. 1990b) 

slowing down its backflow into the intravascular compartment.  

 

As discussed above, the RSST1 method using a slow acquisition mode such as the PR3D mode 

in this study is a true steady state technique, because the first pass of the CA bolus can not be 

monitored, and the signal is acquired when the CA has more or less completely occupied its 

distribution volume. However, serial acquisitions using faster acquisition modes such as the 

FLASH mode, can either be used to monitor the first pass of a CA in the tissue of interest, or 

they can be used with a high r1-relaxivity CA at a sufficient dose to create the conditions for the 

RSST1 method. Fulfilling the RSST1 conditions has the consequence that the Snorm signals 

represent the distribution volume of the CA. Therefore, dynamic monitoring of the Snorm signal as 

a function of time, such as defined in Eq. 0-5, might allow to study the behavior of the CA 

diffusion in tissues and calculate the extravasation rate. Such an attempt will be shown in the 

last chapter. 

 

3.7.2. Water exchange in tumor tissue 
 

Yet another mechanism that can aggravate the overestimation of the CBVf in tumor tissue with 

T1 based techniques is the water exchange across the BBB. The water exchange rate has been 

estimated by different methods (Donahue et al. 1997; Labadie et al. 1994; Orrison et al. 1995; 

Schwarzbauer et al. 1997) and the reported rates are within a relatively limited range in healthy 

brain tissue (cf. paragraph 6.2). As illustrated in chapter I (paragraph 1.7.5), the impact on the 

CBVf measure can be estimated using an appropriate exchange model, when the exchange rate 

is known.  

 

In many brain pathologies, and particularly in neoplasms, the presence of mediators of 

inflammation and angiogenic factors (i.e. VEGF) cause the BBB to become generally more 

permeable to solutes, metabolites and even CA. This also facilitates the transport of water 

across the BBB. The exchange rate is given by: 
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where P is the endothelial permeability to water, Sv is the vascular surface and Viv and Vev are 

the volumes of the vascular and extravascular compartment, respectively. 
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The water exchange rate depends on the permeability itself, but also on the vascular surface 

participating in the exchange, and on the vascular and extravascular volume, all of which are 

altered in diseased tissue with respect to healthy tissue (Dewhirst et al. 1989). In addition, all 

these parameters and with them the exchange rate vary spatially within a lesion (Kim et al. 

2002). It is therefore very difficult to quantify the CBVf overestimation caused by the water 

exchange in brain pathologies.  

 

When CA leakage from the vascular compartment is large, the difference between the relaxation 

times of the intra- and extravascular compartments is attenuated, i.e. the shutter speed 

decreases. In this case, the contribution of the water exchange effect does not play the principal 

role in the CBVf overestimation.  

 

On the other hand, since the BBB first becomes permeable to solutes and small molecules 

before it is permeable to larger CA such as dextran coated Fe3+, the effect of an increased water 

exchange in diseased tissue may be particularly large, when the CA is still confined in the 

vasculature. The water exchange than extends the relaxation enhancing effect of the 

intravascular CA to the extravascular tissue, decreasing the relaxation rate difference between 

compartments. This can also lead to over- or underestimations of the CBVf, with T1 based and 

T2* based MRI techniques, respectively.  
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4. Chapter IV: CBVf mapping using the RSST1 method with Gd-ACX in a C6 tumor model 
 

 

 

4.1. Introduction  
 

Still in the search for CAs that can be used to assess brain hemodynamics and function in Gd-

DOTA permeable tumor microvasculature, a new prototype CA, composed of an α-cyclodextrin 

derivative (ACX) complexed to Gd3+ was investigated for the use in combination with the RSST1-

method. Following biocompatibility studies the relaxation properties and the biodistribution of the 

complex were investigated. In a C6 tumor model, no generalized diffusion of Gd-ACX could be 

detected on T1 weighted images, contrary to Gd-DOTA. The vascular retention was confirmed 

using the RSST1-technique. Accurate CBVf measurements could be performed using Gd-ACX in 

this tumor model. The CBVf-maps were compared to the microscopic vessel distribution and 

density.  

 

French Introduction  
 

Chapitre IV : Mesure de la fVSC dans le modèle tumoral C6 utilisant le Gd-ACX 

 
Dans ce chapitre, il est montré dans quelles conditions la complexation du gadolinium avec une 

nouvelle molécule α-cyclodextrine modifiée (ACX) conduit au Gd-ACX, un nouvel AC 

paramagnétique. Des mesures de relaxométrie (relaxivités longitudinales et transversales, 

profils NMRD) à différents champs magnétiques sont réalisées. Une grande partie de ce travail 

a concerné d’une part la biocompatibilité de cette nouvelle molécule et d’autre part sa bio-

distribution dans un modèle de tumeur cérébral C6 en le comparant au Gd-DOTA où il est 

montré que cet AC est purement vasculaire même en présence d’une lésion de la BHE. Ce 

résulat a permis de réaliser avec succès des mesures quantitatives de la fVSC dans la tumeur, 

résultats confrontés aux données histologiques par microscopie optique. 
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4.2. Gadolinium complexed to an α-cyclodextrin derivative: Gd-ACX  
 

The hexakis(2-O-carboxymethyl-3,6-anhydro)-α-cyclodextrin, a hexaacid ACXH6 cyclodextrin 

derivative named ACX (Fig. IV-1), was synthesized by chemical modification of the natural α-

cyclodextrin (ACD, Wacker, Société de Chimie, France) by the team of Andrée Gadelle (French 

Atomic Energy Commission: CEA, Laboratoire de Reconnaissance Ionique, Service de Chimie 

Inorganique et Biologique) (Gadelle and Defaye 1991). Acidic derivatives of modified 

cyclodextrins form a hydrophilic cavity carrying oxygen atoms capable of coordinating several 

kinds of metal cations (Fauvelle et al. 2002) and particularly Gd3+, resulting in a potential MRI 

CA. The ACX molecule has a disc shape and a molecular weight of 1212 Dalton. The hydrated 

compound of formula ACX.nH2O (n ≈ 14) has a molar mass of 1464 Dalton. The biochemical 

and physical properties of ACX and the Gd-ACX complex were investigated at the French 

Atomic Energy Commission. The first batches of Gd-ACX were examined by microanalysis 

(Service Central de Microanalyse du CNRS, Solaize, France) to check the basic chemical 

formula of ACX, assess the number of hydration water molecules attached to it, and control the 

absence of iodine which might have been introduced with the starting compound as a residual 

synthesis impurity. 1H-NMR and 13C-NMR were also employed to assess the purity of the 

product (AVANCE 200 Bruker spectrometer).  

 

 

 

4.3. First studies with ACX and Gd-ACX 
 

Biocompatibility studies were carried out at the French Research Center of the Army Health 

Services (CRSSA, Laboratoire de Biophysique Cellulaire et Moléculaire) under the direction of 

Jean-Claude Debouzy. They consisted in the measurement of the hemolytic activity in human 

blood, and the determination of the median lethal dose (LD50) in mice, the LD50 being the dose 

that is lethal for 50% of the animals. These experiments are briefly summarized in this chapter. 

In vivo MRI after intravenous injection of Gd-ACX had been carried out in our laboratory and 

revealed a strong signal enhancement in the vascular structures and a negligible enhancement 

in C6 tumor tissue. Since the C6 tumor model is known to have microvasculature which is highly 

permeable to Gd-DOTA, this observation suggested a vascular retention of Gd-ACX. Before Gd-

ACX was used for CBVf measurement in rats, the longitudinal and transverse relaxivities were 

measured and the biodistribution study by MRI was repeated.  
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Fig. IV-1: hexakis(2-O-carboxymethyl-3,6-anhydro)-α-cyclodextrin composed of six glucose units 
forms a hydrophilic cavity capable of coordinating Gd3+ 

 
 

 

 

4.4. The Gd-ACX solution 
 

4.4.1. Gd-ACX complexation 
 

The lyophilized ACX received from Andrée Gadelle was washed twice in ethyl ether in order to 

remove iodine residues, and dried under vacuum. To prepare 1:1 Gd-ACX complexes 

appropriate amounts of gadolinium chloride (GdCl3.6H2O from Sigma, La Verpillere, France ) 

and ACX.nH2O  were dissolved in normal saline solution at room temperature. The resulting 

solution is transparent with a slight yellow color. An excess of ACX (1.5 to 2 times Gd3+) was 

used in order to minimize the presence of free Gd3+ in the solution. The ACX aqueous solubility 

was found to be limited to 45 mM, therefore the Gd3+ concentrations of the mother Gd-ACX 

solutions do not exceed 27 mM.  

 

4.4.2. Gd-ACX concentration in solution 
 

Particular attention was paid to the preparation of the Gd-ACX solutions assigned to the 

relaxivity studies, so as to obtain Gd-ACX concentrations accurate to within 1%. For that 

purpose, the exact volumes of the volumetric flasks were determined by weighing the 
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corresponding quantities of pure water and dividing the obtained masses by the water density. 

The volumes of the solutions to be mixed were also carefully checked by dividing their masses 

by their densities. The masses of the compounds and solutions were measured with a Mettler 

Toledo precision balance operating with an accuracy of 0.01 mg.  

 

For all the biological investigations, the solutions were systematically filtered (Swinnex Millipore 

isopore membrane filters, type 0.8 µm ATTP) to remove any macroscopic impurities. Finally, the 

pH of the solution was measured using an InLab®423 Combination pH Micro Electrode (Mettler 

Toledo) and adjusted to 6.9 to 7.4 by adding a few drops of 10 M NaOH solution. The absence 

of free Gd3+ was confirmed by standard complexometric titration using xylenol orange as 

indicator (Lyle and Rahman 1963), which forms a distinctively colored red-violet complex with 

Gd3+.  

 

 

 

4.5. Biocompatibility studies 
 

4.5.1. Hemolytic effect 
 
Hemolysis is a classical side effect of natural cyclodextrins (Djedaïni and Perly 1991). Therefore, 

hemolysis in the presence of ACX alone and of the complex Gd-ACX was evaluated and 

compared to the hemolytic activity of ACD.  

 

Isotonic NaCl solution (100 µl) containing human erythrocytes at a hematocrit of 10%  was 

added to solutions (4 ml) containing concentrations of 0 to 50 mM ACD, and 0 to 41 mM ACX or 

Gd-ACX (in terms of ACX concentration). The samples were kept at 37°C for one hour before 

centrifugation. Absorption measurements were performed at 540 nm on a Shimazu MCS - 2000 

absorption spectrometer (Debouzy et al. 1998). To calibrate the absorption, absence of 

hemolysis (0%) was evaluated by addition of isotonic NaCl solution, while total hemolysis 

(100%) was induced by addition of triton X-100 or sonication of the samples.  

 

As in former studies carried out at the French Research Center of the Army Health Services 

(Debouzy et al. 2002), it was found that a 12 mM ACD concentration induces 50 % hemolysis. At 

this and lower concentrations (typical CA concentrations in blood after intravenous injection are 
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< 2 mM) no hemolysis could be detected, neither with ACX nor with Gd-ACX. The hemolysis 

occurring with ACX never exceeds 5% even at an ACX concentration of 41 mM, and is even 

lower for Gd-ACX than for ACX alone.  

 

4.5.2. Median lethal dose of Gd-ACX 
 
As a primary evaluation of ACX and Gd-ACX, toxicity experiments were carried out on CD1 mice 

from Charles River, France, weighting 20 to 30 g. Besides assessing mortality, a general survey 

was performed daily for one week, including weighting, observation for behavioural anomalies 

with special attention for prostration, spontaneous locomotor activity and tegumental alterations 

(yellow colored mice skin suggests significant stress (Harkness and Wagner 1989)). All 

substances were administered as intraperitoneal injections of the same volume per weight: 20 

μl/g.  

 

In a preliminary experiment to determine whether toxicity occurs if an ACX solution at a 45 mM 

ACX concentration (corresponding to the maximum solubility of ACX) is injected, five animals 

received ACX, five animals received a Gd-ACX solution having a stoichiometry 1:1.66 (27 mM 

GdCl3, 45 mM ACX) and five control animals received normal saline solution. In view of the 

volumes of the administered injections, these concentrations corresponded to doses of 0.54 

mmol Gd3+/kg and 0.9 mmol ACX/kg.  

No adverse effect could be observed after intraperitoneal injection of ACX alone. However, an 

intraperitoneal injection of a Gd-ACX solution at the maximum ACX concentration, lead to the 

death of three out of five mice within one day and one of the surviving mice of this group showed 

a 20% weight loss along with major behavioral anomalies such as prostration.  

 

The second set of experiments was a quantitative determination of the LD50% for Gd-ACX, 

carried out on eight groups of five animals each using the economic statistical floating mean 

method (Weil 1952). All concentrations and injected doses of the complex Gd-ACX are 

expressed in terms of Gd3+. For the first group of mice the Gd-ACX solution was administered at 

a concentration of 21 mM corresponding to a Gd-ACX dose of 0.42 mmol/kg. Starting with this 

concentration, six successive dilutions by a factor of three were made, and administered to the 

other mice groups. The last group was used as a control and received the same volume of 

normal saline solution. 



Experimental studies - Chapter IV 

 

200 

No death occurred in this experiment. During the first two days, transient weight loss 

accompanied by prostration and porphyrin-wet pillosity, indicative of a general health status 

alteration, could be observed within the two mice groups subjected to the two highest doses 

0.42 and 0.14 mmol/kg, corresponding to injected concentrations of 21 and 7 mM of Gd-ACX, 

respectively. This weight loss was followed by recovery and normal growth. Neither abnormal 

locomotor activity nor trembling was observed. 

 

Since the first two sets of experiments did not allow obtaining the LD50% precisely, a final 

experiment was performed on ten mice by administering an intraperitoneal injection of a 25 mM 

Gd-ACX solution, which corresponds to a Gd-ACX dose of 0.50 mmol/kg. Normal saline solution 

was injected to ten other mice for control.  

Transient weight loss, but no mortality occurred in the rats subjected to Gd-ACX at a dose of 

0.50 mmol/kg. After the 7-day observation period, all mice had the same percentage of weight 

gain. From these three experiments, it was concluded that the LD50% of Gd-ACX is higher than 

0.50 but lower than 0.54 mmol/kg which correspond to Gd-ACX concentrations of 25 and 27 

mM, respectively.  

 

As heavy metals and lanthanides in particular are known to be nephrotoxic (Galle 1997; 

Johanson 1994), all animals of the first and last sets of experiments underwent histological 

examination of both kidneys seven days after injection. Histology was performed with a 

hematein-phloxin-safran staining on six frontal slices of 10 µm for each kidney. The glomerular 

and tubular system of the kidneys did not reveal any evidence for nephrotoxicity, neither for the 

surviving animals, nor for the three mice that died after injection of the 27 mM Gd-ACX solution 

at a dose of 0.54 mmol/kg. 

 

 

 

4.6. In vitro relaxometry 
 

Before deciding at which dose Gd-ACX can be used in vivo its relaxivity has to be known. 

Nuclear magnetic relaxation dispersion (NMRD) profiles are proton relaxivities plotted against 

the field strength and help understand the dynamics of CA relaxivity.   

 

4.6.1. Materials and methods 
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For relaxometry, sealable NMR Young tubes of 5 mm diameter were filled with 0, 0.126, 0.233, 

0.286, 0.414, 0.643, 0.965, 1.910, 2.840 and 3.830 mM concentrations of Gd-ACX in normal 

saline solution. The solutions were degased from their paramagnetic oxygen by gently bubbling 

argon for at least 20 minutes. NMR tubes with Gd-ACX concentrations of 0, 0.284, 0.421 0.636, 

0.964 and 1.445 mM were also prepared in human plasma.  

 

Relaxometry at low magnetic field 
 

The low-field NMRD profiles were recorded at the CEA using a Stelar FFC - 2000 relaxometer 

operating between 10 kHz and 35 MHz. The profiles were obtained at 25 ± 1°C for the four Gd-

ACX concentrations 0.965, 1.91, 2.84, and 3.83 mM in normal saline solution. The temperature 

dependence of the r1 relaxivity was studied for the 0.965 mM sample by recording a profile at 37 

± 1°C. The temperature regulation was provided by a current of dry nitrogen heated by a 

resistor.  

 

 

Relaxometry at 9.4 T 
 

The T1 were also measured at 9.4 T (400 MHz) in a high resolution small bore magnet of a 

Varian-U400 spectrometer. This system was equipped with a dedicated probe for which the 

temperature was regulated at 25 and 37°C by an air flow controlled by a Varian VT (variable 

temperature) unit. The T1 values were measured with a saturation recovery pulse sequence 

using 12 to 15 different delay times between the two RF pulses ranging from 10 ms to 10 s and 

TR ranging from 1 to 12 s depending on the concentration of Gd-ACX.  

 

Relaxometry at 2.35 T 
 

The relaxivity experiments at 2.35 T (100 MHz) were performed at room temperature (20-21°C) 

on the Bruker spectrometer of the Department of Functional and Metabolic Neuroimaging using 

the homogeneous RF coil for emission and the surface coil for signal reception. As for former 

spectroscopic T1 measures described in chapter I and II, an inversion recovery sequence with a 

nonselective adiabatic π pulse and a square hard readout pulse was used. The 15 Tinv ranged 

from 5 ms to 10 s and the TR from 1 s to 20 s depending on the Gd-ACX concentration of the 
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sample. Each experiment was repeated three times and the T1 values were averaged. The T1 

relaxation measurements were repeated eleven weeks later for the Gd-ACX samples in normal 

saline solution. In order to evaluate the transverse relaxation effect on the signal in the in vivo 

studies, the r2 relaxivity was measured as described before with a spin echo sequence, on the 

samples prepared in normal saline solution. The T2 values were measured using 15 TE ranging 

from 2 ms to 10 s and TR as for the T1 measure. Each measurement was repeated twice.  

 

Data analysis 
 

The T1 value was taken to be the characteristic relaxation time of the function 
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Texpinv1M ,  

obtained by a least-squares fit of the three parameters M0, inv and T1 to the evolution of the 

measured peak area vs. the relaxation delay Tinv. The T2 value was fitted as described in chapter 

2.4.1. Piecewise linear fitting was used to obtain adequate estimations of the longitudinal and 

transverse relaxivity and the separating concentration of Gd-ACX in normal saline solution, since 

the corresponding relaxation rates were not well described by one rectilinear regression. The 

equations in the low and high concentration ranges were of the form  

ACX]-[Gd · r  R-R i(low)i0i =   and                   Eq. IV-1a 

C) - ACX]-([Gd · r  C · r  R - R i(high)i(low)i0i += ,                     Eq. IV-1b 

respectively, where i = 1, 2 and ri(low) and ri(high)  are the slopes or relaxivities in the low and high 

concentration range, respectively, separated by the concentration C. Relaxivities were also 

computed individually for each available data point to illustrate the dependence on the 

concentration. In the case of the low-field 1H NMRD curves, the T1 value at each field was 

determined by a three-parameter least-squares fit of the measured first points of the FID vs. the 

relaxation delay. 

 

4.6.2. Results: Relaxivities of Gd-ACX 
 

1H NMRD profiles 
 

The NMRD profiles (the magnetic field dependence of R1) measured at 25°C for four different 

Gd-ACX concentrations in normal saline solution are shown in Fig. IV-2a. The NMRD profiles of 
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Gd-ACX differ greatly from those of standard clinical Gd3+-based CAs, which either decrease 

rapidly beyond 1 MHz or exhibit prominent peaks around 20 MHz (Caravan et al. 1999). The 

NMRD profiles of Gd-ACX are surprisingly flat up to frequencies of 100 MHz. Almost no 

temperature dependence can be observed at the available Larmor frequencies. 

 

r1 and r2 relaxivities at 2.35 T 
 

The longitudinal relaxation enhancement 1011 RRΔR −=  in normal saline solution at 2.35 T and 

at 21°C  is displayed in Fig. IV-2b versus the Gd-ACX concentration. This relaxation 

enhancement can not be approximated by a straight line passing through the origin, but it can be 

roughly approximated by low- and high-concentration linear regimes of notably different slopes 

11.3 and 8.3 s-1mM-1, respectively. The partitioning concentration giving the best piecewise-

linear fit is C = 0.414 mM. In Fig. IV-2c, this difference in slope is further investigated by plotting 

the r1 relaxivity of Gd-ACX versus each studied Gd-ACX concentration. This relaxivity has a 

smooth behavior, which is an indication of the accuracy of the concentration and relaxation 

measurements. It shows a significant continuous decrease from 13.3 to 8.6 s-1mM-1 as [Gd-ACX] 

increases from 0.126 to 3.83 mM. At 2.35T and for concentrations above 3 mM, it is still 8.6 s-

1mM-1, about twice as high as the r1 of Gd-DOTA at the same temperature (Powell et al. 1996). 

The Gd-ACX complexes in solution were found stable for several months by repeating the 

relaxivity measurements. In human plasma at 20°C, the r1 relaxivity was measured in the 

concentration range 0.3 to 1.5 mM, where it shows a slight overall decrease from about 11.6 to 

10.7 s-1mM-1 as the Gd-ACX concentration increases.  

 

The transverse relaxation enhancement 2022 RRΔR −=  in normal saline solution at 2.35T and 

20°C is plotted versus the Gd-ACX concentration in Fig. IV-2d. The overall transverse relaxivity, 

which is 12.4 s-1mM-1 in the low-concentration regime below 0.414 mM, decreases to 10.4 s-

1mM-1 in the high-concentration regime above 0.414 mM. In both concentration ranges, it is also 

more than twice as high as the transverse Gd-DOTA relaxivity of 4.3 s-1mM-1 at 2.35 T (Fonchy 

et al. 2001). The r2 dependence on the Gd-ACX concentration is shown in Fig. IV-2e. The r2 

decrease with concentration is less pronounced than that of r1.  
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Fig. IV-2: Relaxivities of Gd-ACX in normal saline solution at 2.35T: NMRD profiles for four different 
Gd-ACX concentrations and temperature dependence (a). Piecewise-linear fit for the longitudinal 
relaxation giving r1 = 11.3 s-1mM-1 for lower concentrations and r1 = 8.3 s-1mM-1 for higher 
concentrations (b). Dilution dependent longitudinal relaxivity of Gd-ACX computed individually for 
each data point (c). Piecewise-linear fit for the transverse relaxation giving r2 = 12.4 s-1mM-1 for 
lower concentrations and r2 = 10.4 s-1mM-1 for higher concentrations (d). Dilution dependent 
transverse relaxivity of Gd-ACX computed individually for each data point (e). 

 
a 

 
b 



Experimental studies - Chapter IV 

 

205

 
c 

 
d 

 
e 



Experimental studies - Chapter IV 

 

206 

 

 

The concentration dependence of the r1 and r2 relaxivities was confirmed by multiple 

experiments in which particular care was taken to obtain solutions with highly accurate Gd-ACX 

concentrations. A precise interpretation of this unusual relaxation property in terms of structural 

and dynamic molecular factors necessitates a much deeper physico-chemical characterization. 

For the purpose of this study, the experimental characterization of the relaxivity was sufficient to 

assess the contrast efficacy of Gd-ACX. At the standard dose of MRI blood pool CAs, resulting 

in a vascular CA concentration of 1.4 to 2 mM just after injection, the average r1 relaxivity of Gd-

ACX is 9.1 s-1mM-1 in normal saline solution and 10.7 s-1mM-1 in human plasma, i.e. 2.5 to 3 

times larger than that of Gd-DOTA (Fonchy et al. 2001; Powell et al. 1996).  

 

 

 

4.7. In vivo MR imaging 
 
The biodistribution of Gd-ACX and the CBVf were studied by MRI at 2.35T in nine male C6 

tumor bearing Wistar rats 20 and 21 days after implantation. The C6 cell implantation was 

carried out as described in the previous chapter, with the exception that the rats (weighting 200 

to 250 g) were anesthetized with an intraperitoneal injection of 400 mg/kg chloral hydrate 

obtained from Aldrich Chemical Company, instead of isoflurane inhalation.   

 

The CBVf was also measured in five healthy Wistar rats. 

 

4.7.1. Imaging protocol on C6 tumor bearing rats 
 

For the imaging experiment, the rats, weighing 310 to 400 g, were anesthetized with isoflurane, 

equipped with a venous and an arterial cannula and placed in the plastic head frame as 

described in Chapter I. The homogeneous RF coil was used for emission, and the surface coil 

for reception. All images were obtained in the coronal plane with a FOV of 24 x 24 mm2. A timing 

diagram of the imaging protocol is shown in Fig. IV-3. 
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Fig. IV-3: timing diagram of the in vivo imaging experiment for the simultaneous measurement of 
the biodistribution of Gd-ACX and of the CBVf in a C6 tumor model. 

 
 

 

 

 

 

Biodistribution imaging protocol in C6 tumor bearing rats 
 

The acquisition of high resolution T2 weighted images for delineation of the spatial extent of the 

tumor was performed with a multi-slice spin echo sequence with TR/TE = 2000 ms/80 ms. 

Seven contiguous coronal and transverse slices of 1 mm thickness were acquired with a 128 x 

66 matrix size. With two averages, the total acquisition time was 4 min and 48 s. To monitor the 

regional signal enhancement induced by the Gd-ACX injection in the seven coronal slices, T1 

weighted images with TR/TE = 500 ms/20 ms and the same acquisition matrix were acquired 

before injection and 5, 15, 30, and 60 min after Gd-ACX injection. With four averages the total 

acquisition time was 2 min and 15 s.  
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CBVf-mapping protocol in C6 tumor bearing rats 
 

For the CBVf map, the single slice IR-FLASH sequence was used. The image plane 

corresponded to the central (fourth) slice acquired with the spin echo sequence but the slice 

thickness was 2 mm.  Before CA injection, 40 proton weighted acquisitions with TR/Tinv/TE = 10 

s/8 s/3.2 ms (S0pre) and 400 pre-contrast RSST1 acquisitions with TR/Tinv/TE = 750 ms/325 

ms/3.2 ms (Spre) were performed. Arterial blood gases were analysed. The Gd-ACX solution (25 

mM in terms of Gd3+) was slowly manually injected at a rate of about 1 ml/min and at a dose of 

0.05 mmol/kg (2 ml/kg) body weight and was immediately followed by 400 post-contrast RSST1 

acquisitions (Spost (Gd-ACX)). The signal enhancement on T1 weighted images was then monitored 

at the time points mentioned above for one hour. A 50 mM Gd-DOTA solution was then injected 

at a dose of 0.1 mmol/kg (2 ml/kg) followed by a second post-contrast RSST1 acquisition (Spost 

(Gd-DOTA)) and a last T1 weighted acquisition. The dose studies in Chapter I showed that after this 

Gd-DOTA dose the thermal equilibrium signal is reached but not maintained. However, one hour 

after a previous CA agent injection, the signal after 0.1 mmol/kg Gd-DOTA injection remains in a 

steady state for more than one minute.  

 

Histological sections 
 

After the last acquisition, four tumor bearing rats were intravenously injected with 0.2 ml Hoechst 

33342 (6 mg in normal saline solution, Sigma, St. Louis, MO, USA), a vital DNA specific bis-

benzimidazole fluorescent dye, a marker for perfused microvessels, followed by decapitation 

one minute later. The brains were immediately excised, frozen in liquid nitrogen and stored at -

90°C, to stop the diffusion of the Hoechst dye into the perivascular tissue. Eight to twenty 

coronal sections of 10 µm thickness located within the 2 mm thick MRI slice for CBVf mapping 

were cut on a cryotome (Microm HM 560, Germany). To locate this coronal plane, the distance 

of the center of the MRI section from the base of the olfactory bulb, which is the most rostral part 

of the rat brain, was measured on transversal T2 weighted images. Using the cryotome, this 

plane can be found with less than 0.5 mm inaccuracy. The cutting procedure has to be 

performed as fast as possible, because exposure to white light degrades the Hoechst 

fluorescent intensity. In addition, the cut brain sections have to be kept in the cryo chamber of 

the cryotome (about -18°C) to avoid thawing. The sections were stored at - 90°C until further 
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processing. One additional section was cut for standard histologic analysis of the tumor regions 

with nonspecific Hematoxylin-Erythosine (HE) staining. 

 

The Hoechst immunofluorescent sections were scanned with an Olympus DP50 Microscope 

Digital Camera System (ColorView CCD color camera) mounted on a Nikon Microscope Eclipse 

E600 equipped with a 340 – 380 nm exciter filter and a 335 – 485 nm barrier filter.  A composite 

image was reconstructed from the individual processed fields to cover the tumor extension 

(AnalySIS 5.0, Soft Imaging System GmbH).  

 

4.7.2. CBVf-mapping protocol on healthy Wistar rats 
 

Additionally, five healthy control Wistar rats (380 to 450 g) underwent the MRI CBVf 

measurement. Two of them were imaged using Gd-ACX only, and three of them were imaged 

with Gd-ACX and one hour later with Gd-DOTA. The imaging protocol for these rats was 

identical to the one described, with the exception that no T1 weighted imaging was performed, 

no Hoechst was administrated and that a dose of 0.3 mmol/kg Gd-DOTA was used. The Gd-

ACX solution had to be prepared several times, and different batches were used.  

 

4.7.3. Data analysis 
 

MR image processing was performed using IDL. The signal enhancement E(t) following CA 

injection was calculated as:  

pre

prepost

S
S - (t)S

100 E(t) =                                                                    Eq. IV-2 

where Spre and Spost (t) correspond to the signal obtained before and at time t after CA 

administration, respectively. The kinetic signal enhancement was calculated on three ROIs 

located in the lumen of the cavernous sinus (≈ 10 pixels), covering the whole tumor area (≈ 200 

pixels), and in the periphery of the tumor (≈ 50 pixels).  

 

The CBVf map was calculated using Eq. I-4. In this experiment N = 200 images were averaged 

corresponding to 2.5 minutes during which the Spost signal amplitude is in a steady state. 
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4.7.4. Results 
 

CBVf in healthy rats 
 

The images in Fig. IV-4 show a coronal CBVf map and the corresponding T2 weighted image of 

a healthy rat. The average CBVf of the whole slice was 2.7 ± 0.2% for this rat. The standard 

deviation of 0.2% reflects the temporal instability of the signal during 2.5 minutes. The white 

matter of the corpus callosum has a blood volume fraction of 1.6 ± 0.9% and the cortical gray 

matter 2.8 ± 0.7%. The value obtained from a small ROI in the sagittal sinus is 78 ± 7%. 

Averaged over five healthy rats, the global CBVf obtained with Gd-ACX is 2.2 ± 0.4%.  

 

 
Fig. IV-4:  
a: CBVf map of a healthy rat obtained with Gd-ACX and  
b: the corresponding T2 weighted image of the brain slice.  
Medially, the anterior cerebral artery (red arrow) and the choroids plexus (yellow arrow) can be 
distinguished.  

a     b  
 

 

In this study the signal was averaged over 2.5 min. However, the signal obtained by the RSST1 

method after 0.05 mmol/kg Gd-ACX bolus injection remains constant for at least 5 min (duration 

of the entire MRI experiment), while following a bolus injection of 0.1 mmol/kg Gd-DOTA without 

previous CA injection it is known to drop immediately (cf. chapter I). Since 0.05 mmol Gd-ACX 

and 0.1 mmol Gd-DOTA are isoeffective just after injection, the duration of the steady state 

suggests a longer blood half life of Gd-ACX and thus a slower extravasation of Gd-ACX in 

extracerebral tissues compared to Gd-DOTA. 
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Histological examination of C6 tumors 
 

Histological examination of the HE stained C6 tumor bearing sections revealed large areas of 

necrosis, predominantly in the central part of the tumor, containing very few but enlarged and 

deformed vessels, cystic formations (liquid filled cavities without any vessels) and a relatively 

narrow band of viable pleomorphic proliferating cells in the tumor periphery. In some cases, the 

tumor size and outline exceeded the one of the corresponding T1 and T2 weighted images. A 

substantial shift of the median line was observed in all brains, but was particularly pronounced 

for two brains (called J2 and J5). The PaCO2 in most tumor bearing rats measured before both 

CA administrations was slightly higher than in the series of healthy rats. Values up to about 50 

mmHg were measured with a mean of 47.0 ± 6.8 mmHg. One rat with a particularly large tumor 

was excluded due to a PaCO2 of 70 mmHg, a low blood pressure and a low body temperature 

throughout the imaging experiment.  

 

Biodistribution of Gd-ACX in C6 tumors 
 

Figure IV-5a shows T1 weighted coronal images of a C6 glioma bearing rat before and at 

different time points after intravenous injection of 0.05 mmol/kg Gd-ACX and also after injection 

of 0.1 mmol/kg Gd-DOTA. After Gd-ACX injection, the signal enhancement appears immediately 

in large vessels, but not in the tumor, while injection of Gd-DOTA reveals disruption of the BBB 

since an extensive signal enhancement is observed inside the tumor area. A quantitative 

analysis of the biodistribution of both CAs is given in Fig. IV-5b, in which the temporal evolution 

of the relative signal enhancement with Gd-ACX is plotted for three different ROIs. A sudden 

signal enhancement appears in the vascular ROI after injection of Gd-ACX and is similarly high 

with Gd-DOTA. In the tumor as a whole, no enhancement is observed during the first hour after 

Gd-ACX injection. The C6 tumor model is known to be vascularized in the tumor periphery. In 

such an ROI, the mean signal enhancement after Gd-ACX injection is about 20%. The 

enhancement appears as rapidly as that in the vascular ROI, indicating a vascular origin. The 

enhancement is much greater with Gd-DOTA. From the T1 weighted acquisitions, Gd-ACX 

extravasation can not be ruled out but it is clearly limited and negligible with respect to Gd-DOTA 

extravasation. 
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Fig. IV-5:  
a: T1 weighted acquisitions at different time points after intravenous Gd-ACX and Gd-DOTA 
administration and  
b: corresponding percentage signal enhancement in a vessel (left axis) and in tumor tissue (right 
axis). 

 
a 

 
b 
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CBVf in C6 tumor bearing rats 
 

The signal versus time plots obtained by the RSST1 method in Fig. IV-6a and b are from one 

representative rat. Figure IV-6a shows the signal from a tumor ROI. After Gd-ACX injection, it 

remains perfectly constant for about 5 min, while after Gd-DOTA injection the signal increases 

continuously, reflecting CA accumulation in the tissue due to a BBB leakage for this CA. Figure 

IV-6b shows the identical signal behavior in cerebral tissue contralateral to the tumor after 

injection of Gd-ACX and Gd-DOTA. The constant signal enhancement obtained with the RSST1 

technique during the first five minutes confirms the absence of immediate Gd-ACX 

extravasation. In this case, the tumor signal enhancement must reflect the tumor blood volume 

even in the presence of a compromised BBB. Therefore, all CBVf measures in tumor tissue were 

obtained from measurements following Gd-ACX injection. 

 

Figure IV-6c illustrates the CBVf values obtained in various ROIs, averaged over the eight rats. 

A mean CBVf value of 0.98 ± 0.34% was obtained in the tumor ROIs, which in average covered 

46 ± 11% of the whole brain section. In the contralateral hemisphere similar CBVf values were 

obtained with both CA: 0.94 ± 0.16% with Gd-ACX and 1.03 ± 0.23% with Gd-DOTA. The ROIs 

placed in vascular structures revealed similar maximal values (70%) as obtained with P760 

(chapter I). A value of 100% is never attained due to partial volume and transversal relaxation 

effects. 

In all eight cases the CBVf in the tumor center was low corresponding to a necrotic region as 

confirmed by microscopy analysis with HE staining. The CBVf in the tumor periphery was 1.32 ± 

0.40%, which is significantly different (p < 0.05, Wilcoxon signed rank test and Student T test for 

paired comparisons) from the mean CBVf values in all other ROIs including the contralateral 

tissue.  
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Fig. IV-6:  
Normalized signal versus time curve for tumor tissue (a) and contralateral tissue (b) from one 
representative rat.  
c: Mean (n = 8) regional tumor CBVf obtained with Gd-ACX and contralateral CBVf obtained with 
Gd-ACX and Gd-DOTA. 

 
a 

 
b 
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c 

 

 

In Fig. IV-7 images of a tumor bearing rat are shown. The area enhanced by Gd-DOTA on the T1 

weighted image (Fig. IV-7a) is outlined.  The corresponding CBVf map is given in Fig. IV-7b 

together with a corresponding microscopic Hoechst stained image covering a large part of the 

tumor (Fig. IV-7c). This advanced stage C6 tumor model is characterized by a large CBVf 

heterogeneity. The CBVf map exhibits low blood volume in the center of the tumor ROI and 

some areas characterized by a higher blood volume in the periphery. The HE stained section of 

this tumor revealed large necrotic areas in the tumor center. The Hoechst staining confirms a 

low vessel density in this ROI. Only few but enlarged vessels that are highly permeable to the 

Hoechst dye are visible. Interestingly, this typical vascular pattern for high grade tumors extends 

well beyond the region enhanced by Gd-DOTA, showing that the tumor extend can be easily 

misinterpreted using contrast enhanced MRI only. At the spatial resolution used to display the 

microscopy image, normal Hoechst stained microvasculature which is small and dense, gives a 

cloudy aspect such as encountered on the left border of the image. 
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Fig. IV-7: Coronal images from a C6 glioma bearing rat.  
a: T1 weighted image,  
b: CBVf map and  
c: the corresponding Hoechst fluorescent image.  
The ROI corresponds to the tumor extension as revealed by the signal enhancement on a T1 
weighted image after Gd-DOTA injection. The Hoechst staining reveals rather sparse enlarged and 
leaky vessels within this ROI but also beyond.  
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4.8. Discussion 
 

4.8.1. Advantages of Gd-ACX 
 

The relaxivity due to Gd-ACX was found to be particularly high, without notable decrease at 

imaging fields above 1.5 T, contrary to the Gd3+ complexes of high molecular weights (Aime et 

al. 2005; Caravan et al. 1999; Livramento et al. 2006a; Livramento et al. 2006b; Vander Elst et 

al. 2003). These observations were a strong encouragement to undertake detailed in vitro and in 

vivo studies of this potential CA, particularly suited for high field MRI. Gd-ACX presents two 

major advantages with respect to unspecific small molecular CA: it has a twofold longitudinal 

relaxivity at 2.35T and there is reasonable evidence that, despite its low molecular weight, Gd-

ACX does not extravasate, even in a C6 brain tumor model for which the BBB is known to be 

permeable to Gd-DOTA and P760 (Fonchy et al. 2001). The experiments show, that Gd-ACX 

remains confined to the intravascular space during at least one hour. Therefore Gd- ACX has 

properties of blood pool CA such as macromolecular complexes. An MR paramagnetic contrast 

agent that does not extravasate throughout the period of an MRI examination, even in very leaky 

vascular beds, can lead to more accurate measurements of hemodynamic parameters in 

pathologic microvasculature.  

 

4.8.2. Reason of Gd-ACX confinement to the blood pool 
 

The origin of the vascular confinement of Gd-ACX is not yet understood and only speculations 

can be made. It is certainly not the size of the complex alone that impedes its leakage through 

an impaired BBB. The disk-shape, charge, and hydrophilicity are other properties that can limit 

its diffusion. The polarity of the Gd-ACX complex is currently under investigation since it is 

probable to play a role in the vascular confinement. Moreover it is not excluded that it binds to a 

serum protein. This hypothesis has not been investigated in detail, yet, but the slight relaxivity 

increase of Gd-ACX in plasma is a first finding in this context since the binding to a blood 

compound can affect rotational motion, and overall relaxivity. However, the longitudinal 

relaxation rate increase at 2.35T and 1 mM Gd-ACX concentration is only about 15% 

( 0.81 
s 10.7
s 9.3 

R
R

1-

-1

(plasma) 1

solution) 1(saline == ). If there is an interaction between Gd-ACX and blood proteins, 

the rotational correlation time of the paramagnetic center is not significantly modified by the 

binding.  
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4.8.3. CBVf in tumor, contralateral and normal brain tissue 
 

The global CBVf values in healthy rats obtained with Gd-ACX are in the same order as those 

found with SINEREM (cf. Chapter II and III). However, the contralateral brain tissue in the tumor 

bearing rats exhibits a significantly lower CBVf. Since the three week old tumors are of 

considerable size, the low contralateral CBVf is probably the result of compression and 

consequently of increased interstitial pressure. An impaired metabolism, as well as decreased 

blood flow and blood volume in the hemisphere contralateral to high grade gliomas have also 

been observed by other authors proving that contralateral and peritumoral tissue is affected by 

the tumor presence. Different explanations were given such as a generalized immune response, 

edema, redistribution of blood flow, mass effect, or microscopic tumor infiltration (Beaney et al. 

1985; Ito et al. 1982). Recently, Julien et al (Julien et al. 2004), using the steady state ΔR2* 

technique for CBVf mapping, also found a decreased blood volume contralateral to a C6 glioma 

in rats.  

 

Even in the absence of CA extravasation, the CBVf in tumor tissue might be overestimated due 

to non negligible intra-/extravascular water exchange. Even for the intact blood brain barrier, the 

range of water exchange rates given in the literature is large: 1 to 2 s-1 (Labadie et al. 1994). In 

case of malignant glioma, which is a very heterogeneous tumor, the water exchange rate surely 

varies across the tumor extension. It is therefore impossible to estimate the error included in the 

cerebral blood volume measure. For CBVf measurements in tumor tissues it is even more 

important to minimize the water exchange effect by using short sequence time parameters. 

 

4.8.4. Problems encountered with Gd-ACX 
 

Although biocompatibility in mice and absence of hemolysis was shown, the use of a prototype 

CA like Gd-ACX is not always without experimental problems. The synthesis of ACX is a very 

time consuming process and at each synthesis only small amounts of ACX were dedicated to in 

vivo MRI experiments. Many different batches of ACX have therefore been used to carry out all 

the experiments described and microanalysis and 1H-NMR spectroscopy could not be repeated 

on all batches to exclude impurities. Despite the intravenous use of 1/10th of the LD50 (0.05 

mmol/kg Gd-ACX), no effects on vital parameters and the arterial blood gases were observed in 
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any of the rats. Moreover, before the CBVf study, a couple of preliminary experiments have been 

performed using a dose of 0.1 mmol/kg without observable adverse effects.  

 

Once, after synthesis and complexation of a new batch of ACX, a drop of the arterial blood 

pressure was observed when Gd-ACX was administered as fast intravenous injection at 0.1 

mmol/kg. The blood pressure returned to normal values within a couple of seconds as soon as 

the injection was interrupted. By injecting the CA at a slower rate, the blood pressure drop could 

be prevented. Such an effect on the blood pressure had not been observed with other ACX 

batches, where the injection had been carried out at a rate usually used when administering 

P760, SINEREM or Gd-DOTA. Although the synthesis, complexation and filtration had been 

carried out exactly as before, and the products were purchased from the same companies, this 

effect on the blood pressure was reproducible with a variable degree in different rats.  

Finally it was decided to use the remaining amount of ACX from this batch to test the tolerance 

of intravenous Gd-ACX injections at a dose of 0.1 mmol/kg in more detail. This experiment 

included cardiac monitoring and laboratory analysis of blood withdrawn five minutes after 

injection.   

 

4.8.5. Intravenous tolerance of Gd-ACX 
 

Protocol 
 

Gd-ACX solutions with a Gd/ACX concentration of 25/50 mM were prepared and filtered as 

described above. Six male healthy Wistar rats (240 to 300 g) under isoflurane anesthsia were 

used. Cannulas were inserted into the femoral artery and vein. The intravenous injections were 

carried out manually at a dose of 0.1 mmol/kg Gd-ACX. The electrocardiogram and blood 

pressure was monitored on the LabVIEW interface during and for 15 minutes after completed 

injection. A recently custum-built electrocardiogram device was used. The electrocardiogram 

electrodes were attached to the forepaws and to the left hindpaw. Only one derivation was 

recordable.   

The injections were interrupted if the blood pressure fell below 60 mmHg, until it became 

constant or rose again. The total duration of the injections (volume 0.92 to 1.1 ml) was about 4 

min.  

A volume of 2.75 ml arterial blood was withdrawn five minutes after injection for blood gases and 

biochemical parameters. Since reliable laboratory values for Wistar rats are sparse in the 
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literature and interindividual differences might be large, the same amount of arterial blood was 

also sampled before Gd-ACX injection to monitor the changes individually. Blood films were also 

performed with blood sampled before and after injection to examine the erythrocyte fragility and 

morphology. 

 

Results 
 

The electrocardiogram recordings were difficult to analyze due to 50 Hz and breathing artifacts. 

No changes of the QRS complex could be identified after injection.  

 

Nevertheless in all cases a reversible blood pressure decrease during injection could be 

observed. The blood pressure continuously rises after completed injection and reaches normal 

values within two minutes. The blood pressure amplitude decreased in three out of five rats. The 

normal range of systolic and diastolic blood pressure is 88 – 184 mmHg and 58 – 145 mmHg, 

respectively. 

 

No systematic modification of the heart rate could be observed before and after injection.  In 

three rats it decreased and became irregular but remained within the normal range (123 – 480 

min-1, mean 205 min-1). In the other two rats it remained unchanged. The respiratory frequency 

clearly accelerated during injection. However, no effects on the arterial blood gases were 

observed in any of the rats. 

 

The Prothrombin Time (PT) and the Thrombin Time (TT) were slightly longer after injection but 

still within the range of reference values from literature. However, the Activated Partial 

Thromboplastin Time (APTT) became three to six times longer after Gd-ACX injection, 

suggesting a defect in the intrinsic pathway of the hemostasis (deficiencies in prekallikrein, 

factors XII, XI, IX or VIII, or combinations thereof).  

 

Inspection of the blood films after routine May-Grunwald-Giemsa staining revealed no 

morphologic changes of the erythrocytes. The lactic dehydrogenase (LDH) did not change 

significantly after injection but both values (before and after injection) were higher than the 

literature reference values found.  This is probably the result of iatrogenic hemolysis during 

sampling. The alkaline phosphatase was slightly lower after injection. Reference values for rats 

were not available. Total serum calcium levels rose by more than 40 %. Elevated serum calcium 
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can be a sign of renal failure or muscle damage. Serum chloride rose by about 4 %, urea by 12 

% and serum phosphate was more than two-fold higher after injection. This can also be a sign of 

renal failure and muscle damage. Creatinin levels rose by more than 70 %, indicative of impaired 

renal function, congestive heart failure or shock. Other blood parameters were not significantly 

different before and after injection. 

 

Conclusion 
 

From these findings it can be concluded that the immediate effect of an intravenous injection of 

Gd-ACX is a decrease of the arterial blood pressure due to depression of both diastolic and 

systolic myocardial function, sometimes accompanied by a decreasing cardiac frequency. These 

are clinical signs indicative of a systemic shock syndrome. If the injection is carried out rapidly as 

a bolus, the cardiovascular collapse might lead to ischemic organ dysfunction, but an intermittent 

or slow injection allows the peripheral vasomotor tone to recover and the acute shock signs are 

reversible. Such acute adverse effects during CA injection at high speed have been observed in 

other studies and are attributed to osmotic expansion of the plasma volume and failure of the 

cardiovascular circulation (de Haen et al. 1994). There is no strong evidence for primary cardiac 

dysfunction. The biochemical analysis of the blood after injection indicates an acute renal failure. 

The high serum Ca2+ level is responsible for the cardiac arrhythmia observed in some cases.  

The outcome of this experiment neither confirms nor excludes dissociation of the Gd-ACX 

complex with liberation of toxic Gd3+ ions. 

 

Contrary to what one might expect, not many papers studying the effects of a unique 

intravenous administration of GdCl3 to rats have been published. Spencer et al (Spencer et al. 

1997) described mineral emboli and depositions composed of gadolinium, calcium and 

phosphate in the capillary bed of, predominantly, lung and kidneys, and hepatocellular and 

splenic necrosis. In addition, this study also revealed decreased platelet numbers and increased 

prothrombin time and activated partial thromboplastin time.  

 

4.8.6. Dissociation of Gd3+  
 

The stability constant of a lanthanide Ln3+-ACX inclusion complex was obtained with the lutetium 

ion Lu3+ (Bonnet et al. 2005) and is log KLu-ACX = 7.5 (≈ log KGd-ACX), which is much smaller than 

for Gd-DTPA or Gd-DOTA (log K ≥ 20) (Caravan et al. 1999).  
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The NMRD profiles of Gd-ACX exhibit only a modest dispersion with frequency. This is 

consistent with the absence of free Gd3+ ions in the solution, since the profiles are very different 

from that of the free aquo Gd3+ ion (Powell et al. 1996). The Gd-ACX complex in solution stored 

in sealed tubes at 4°C are chemically stable for a few months as shown by the fact that strictly 

the same r1-relaxivity values were obtained just after complexation and two months later. In 

particular, this result indicates that no substantial concentration of free gadolinium ions has 

appeared in normal saline solution during this period. Although this is an encouraging finding, it 

might not be a sufficient proof for the in vivo stability of Gd-ACX. The xylenol orange test could 

be used on blood sampled after Gd-ACX injection to detect whether free Gd3+ ions appear in 

blood. 

 

4.8.7. Transmetallation 

 

The selectivity of ACX for some endogeneous ions Cu2+, Ca2+, Na+, K+ was evaluated in vitro 

(Fauvelle 1999). The association constants for K+ or Cs+ with ACX were in the order of log K ≈ 2, 

low compared to that of Lu-ACX and even lower for  Cu2+, Ca2+ and Na+ such that no complex 

formation with ACX was detectable with NMR spectroscopy. The transmetallation by 

endogeneous Zn2+ ions has not been investigated yet. In vitro proton relaxometry could be used 

to determine whether plasma anions compete with ACX for the Gd3+ ion. If transmetallation 

occurs, the released Gd3+ ions form complexes with the plasma anions and the relaxation rate of 

plasma would decrease.  

 

4.8.8. In vivo use of Gd-ACX 
 

Despite the moderate formation constant of ACX and Gd3+, the Gd-ACX complex can be 

administered to animals at the dose of 0.05 mmol Gd3+ kg-1 body weight, which is R1 and R2 

isoefficient to the standard doses ( 0.1 mmol/kg) of small molecular CA such as Gd-DOTA. 

Knowing that the safety factor (ratio of LD50 to effective dose) is between 50 and 100 for Gd-

DOTA (ref: Brochure DOTAREM, Le macrocycle de l’IRM, Guerbet), Gd-DTPA and other CAs 

that recently entered clinical trials (e.g. MS-325), the use of Gd-ACX at 1/10th of the median 

lethal dose can only be envisaged in animal studies. Applications of the RSST1 method in 

combination with Gd-ACX are the preclinical evaluation of the therapeutic effect of new 

antivascular or antiangiogenic drugs. 
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4.8.9. β-cyclodextrin derivative 
 

The recently synthesized β-cyclodextrin derivative (BCX) is analog to ACX with seven instead of 

six glucose units and is characterized by a greater solubility. The longitudinal relaxivity of its 

complex with Gd3+ in water is 28.0 ± 1.0 s-1mM-1 at 2.35T and 18.5 ± 0.5 s-1mM-1 at 7T. The 

transverse relaxivity is 32.0 ± 1.0 s-1mM-1 at 2.35T (Chieze 2005).  If its biocompatibility can be 

confirmed, Gd-BCX could be an even more promising CA than Gd-ACX. 
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5. Chapter V: Histological vascular morphometric analysis 
 
 
 
5.1. Introduction 
 

Histological methods are the "gold standard" for measuring many vascular parameters. A 

correlation should exist between data obtained by other imaging techniques and histological 

data. In the clinical setting, histological validation is required especially in the presence of 

tumors, in which the CA distribution is relatively unspecific. The standard histological parameter 

for angiogenesis assessment is the microvessel density, but several investigators point out that 

the microvessel density is not a direct correlate of the blood volume (Hawighorst et al. 1998). It 

does not contain information about vessel diameter and length and the perfusion status. 

Particularly in tumors the vessel architecture is chaotic. The vessels are characterized by a large 

diameter distribution, tortuosity and incomplete perfusion (Bernsen et al. 1995). Some tumors 

even develop a microcirculation without typical endothelial cells (Folberg et al. 2000), and 

staining of endothelial cells only would miss these areas of vasculogenic mimicry.  

 

This chapter presents an evaluation of a stereological technique for the CBVf assessment from 

histological sections through brain tumors imaged by MRI for CBVf quantification. The findings 

from histology and MRI are compared.  

 

French Introduction  
 

Chapitre V : Analyses histologiques de la morphologie vasculaire 

 

Les analyses histologiques sont considérées comme ″méthodes standards″ pour de nombreux 

paramètres vasculaires. Les données vasculaires obtenues par IRM doivent en toute rigueur 

être corrélées aux données histologiques, et cette validation est très souvent nécessaire car la 

distribution de l’AC dans la tumeur n’est pas seulement liée à une vascularisation. Le paramètre 

standard mesuré par histologie et qui est corrélé au VSC est la densité de micro-vaisseaux. Ce 

paramètre est en revanche controversé par certains des auteurs (Hawighorst et al. 1998) car il 

ne contient aucune information relative au diamètre, tortuosité, distribution ou encore l’état de 

perfusion. Dans les tumeurs, l’architecture des microvaisseaux est justement chaotique 
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(Bernsen et al. 1995). De plus, il existe des tumeurs qui développent une microcirculation sans 

la présence de cellules endothéliales (Folberg et al. 2000) et par conséquent une méthode 

basée sur la coloration des cellules endothéliales conduit dans ce cas à des mesures erronées. 

 

Dans ce chapitre, une technique de ″stéréologie″ est utilisée pour mesurer le VSC à partir de 

coupes histologiques obtenues au niveau de la tumeur. Cette technique est confrontée aux 

mesures réalisées chez le même animal utilisant la méthode RSST1 avec le Gd-ACX comme 

AC. 

 

 

 

5.2. CBVf by epifluorescent microscopy 
 

Although the CBVf is a three-dimensional parameter and not directly quantifiable from a 

histological section, the goal of this study was to develop an approach by which CBVf 

measurements by MRI and histology can be directly correlated. For this purpose morphometric 

analysis of immunohistochemically stained brain vessels was carried out. Stereological methods 

help estimating parameters defining the three-dimensional form of vessels from two-dimensional 

sections.  

 

 

 

5.3. The CBVf as vascular volume density Vv 
 

The vascular structures confined in a reference volume Vref enclose the vascular volume V, 

given as a volume ratio  

ref
v V

V  V = .  

Assuming vessels to be some kind of flexible cylinders, their volume can be obtained from the 

total vessel length L (the sum of the lengths of each vessel independent of vessel size and 

number) and the average vessel diameter d  as follows:  

Ld
4
πV

2
= .  

The length density Lv is defined as  
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ref
v V

L  L =  

and used to derive Vv, named the vascular volume density:  

v
2

v Ld
4
πV =  

 

In order to estimate Lv from a certain number of parallel sections within Vref with random 

distances between each other, some information about the shape, the orientation and the 

tortuosity of these vessels needs to obtained from the available vessel cross-sections.   

 

In a model, in which vessels are perfect cylinders arranged parallel to each other (total 

anisotropy) appearing as circular cross-sections on a plane perpendicular to their axis, Lv is 

simply the number of cross-sections in the section surface multiplied by the length of the side of 

Vref which is parallel to the vessel axis and divided by Vref. The resulting dimension is therefore 

mm/mm3 = mm-2. In this case, the numerical value of Lv is equal to the vessel density N2D [mm-2], 

which is expressed as the number of vessel cross-sections per section surface. As soon as the 

section is not perpendicular to all vessel axes, this equality does not hold any more. This is the 

case when the section is not perpendicular to the vessel bundle, when the vessels are no longer 

parallel, or when the vessels are no longer straight but winding. 

 

 

 

5.4. Adair's stereological method for the estimation of the vascular length density 
 
Adair et al (Adair et al. 1994) presented the following stereological method: 

 

The intersection of a cylindrical vessel with a plane is an ellipse whose major axis a and minor 

axis b define the angle α of intersection of the vessel with the plane: 

a
bsinα = .  

The greater the angle of intersection, the greater the probability that a random section intersects 

the vessel segment (cf. Fig. V-1).  

sinα
1

 is therefore used as a weighting factor in the count of vessel cross-sections.  



Experimental studies - Chapter V 

 

228 

For α = 90°, 
sinα

1
 equals 1.0,  

for α close to 0°, 
sinα

1
 approaches infinity.  

Lv is therefore a weighted sum of vessel cross-sections in the test area At (or ROI) within one 

plane. In practice, several parallel sections within Vref at regular or irregular distances are used 

and the Lv is the weighted sum of all vessel cross-sections within all test areas: 

∑
∑

−=

areas test
t

sectionscross vessel
v A

b
a

L .                      Eq. V-1 

 

The vascular area density AV, which represents the fraction of the total tissue area occupied by 

the vessel wall and lumen, depends on the overall number, length, and size of vessels. 

According to the Delesse principle, stating that the profile area of a random section through a 

number of objects is proportional to the expected value of the objects' volume (Delesse 1848), 

AV is often used to estimate the blood volume although it contains only two-dimensional 

information.  

 

 
Fig. V-1: The vessel sections are ellipses. The ratio of major and minor axis (a and b respectively) 

depends on the angle of intersection with the vessel: a
bsinα = . In Adair's stereological algorithm 

the inverse of this ratio is used as a weighting factor. Circular vessel sections are weighted with 
the factor 1, elliptical sections with a factor > 1. 
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5.5. Material and methods 
 

In this study, we compare the tumor CBVf obtained by the RSST1 method with Gd-ACX as CA 

with the vascular volume density that can be measured by histological vascular morphometric 

analysis. Therefore, the rat brains used in this study are those of the C6 tumor bearing rats used 

for the CBVf measurement described in chapter IV. The microvasculature of seven rats enrolled 

in the MRI experiment was analyzed by epifluorescent microscopy. Four of these rats had 

received an injection of the fluorescent Hoechst dye. Their brains were removed, frozen and cut 

as described in Chapter IV (paragraph 4.7.1). The aim was to obtain 20 approximately equally 

spaced sections of 10 µm thickness from the same location as the MR image (2 mm thickness) 

for quantitative analysis of the microvasculature. Due to technical problems during the cutting 

process and due to inappropriate storage of some histological slides, not all sections were fully 

exploitable for the correlation of MRI results with histology.  

 

5.5.1. Anti-collagen IV and Hoechst staining 
 

All sections were stained with goat anti-collagen IV (Southern Biotechnology Associates, Inc., ref 

1340-01, USA) and a second anti-goat antibody labeled with Alexa Fluor 546 (Molecular Probes, 

Inc., ref A11056, USA). The staining procedure with the anti-collagen IV antibody (diluted 1/100 

in phosphate-buffered saline (PBS)) takes 12 h in a humid chamber at 4°C. Then slides are 

rinsed in PBS and exposed for 1 h at room temperature and in the dark to the secondary 

antibody conjugated to Alexa 546 (diluted 1/100). After a last rinse with PBS the slides were 

refrozen at -90°C.  

 

This fluorescent marker stains the endothelium of all microvessels since collagen IV is the major 

constituent of the basal lamina. The DNA-intercalating Hoechst dye stains the nuclei of 

endothelial cells in blood vessels which are perfused at the moment of injection. In tumors, 

adjacent cells are also stained because the dye diffuses across a ruptured BBB into the tissue, 

similar to Gd-DOTA. 
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5.5.2. Image acquisition 
 

The tissue sections were scanned with a Nikon Eclipse E600 microscope equipped with a 

Olympus DP50 microscope digital camera system and interfaced with a digital image processing 

software (AnalySIS). The Hoechst dye is ideally excited with UV light at approximately 350 nm. 

A filter was used which is optimized for the DAPI dye. Fluorescence emission can be detected at 

about 450 nm (blue channel) and with very low intensity at about 675 nm (red channel). A TRITC 

filter was used for the excitation and detection of the Alexa Fluor 546 fluorescence. The 

absorption maximum of Alexa Fluor 546 is 556 nm and the emission wavelength about 573 nm. 

 

Each slice was scanned twice, during the same session, at a 10× magnification using the DAPI 

filter first, followed by the TRITC filter. The slides were moved by a high precision motorized 

scanning stage controlled by the image processing software. This procedure avoids the 

necessity of image registration when the images have to be matched (Rijken et al. 1995). 

 

For all acquisitions the gamma factor had a value of 1, the saturation factor a value of 0 and the 

red, green and blue color channels had their maximum sensitivity value of 20. Only the exposure 

time varied between 50 and 100 ms for acquisitions with the DAPI filter and between 0.5 and 2.5 

s with the TRITC filter in function of the fluorescent staining intensity. The pixel size of the 

resulting digital image was 0.767 µm. 

 

Due to computer limitations only a maximum array of 6 x 6 or 5 x 7 images could be scanned, 

representing a total area of 9146 x 6865 µm2 or 10664 x 5727 / 7628 x 8002 µm2. In most cases 

this hardly covered the massively enlarged right hemisphere on the coronal slices, almost 

entirely occupied by the tumor. Little healthy appearing surrounding tissue is included on these 

images.  

 

The composite image was computed from the individual images by the AnalySIS software. The 

acquisition and image processing time for one composite image was 20 minutes with each filter, 

i.e. 14 hours for one brain. For this reason only the ipsilateral tumor bearing hemisphere has 

been processed. In addition, the individual images were not always perfectly aligned. This 

process is based on image registration for overlapping image borders. In these cases, either the 

whole acquisition was repeated using a larger overlapping border, resulting in a smaller image 

with slightly lower SNR but with satisfactory alignment at visual inspection, or the section was 
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not used for quantitative analysis. This is another reason why less than 20 sections were 

analyzed for some rats.  

 

5.5.3. Data analysis 
 

The intensities of fluorescent images were analyzed with ImageJ software. A custom-made 

semiautomatic macro (included in the Appendix) was used for image segmentation and feature 

extraction. A flow chart of the macro is given in Fig. V-2. The anti-collagen IV stained images 

were processed first.  

 

 
Fig. V-2: Flowchart of macro structure for semiautomated quantitative analysis of vascular 
structures from histological images 
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RGB images were converted to 8-bit gray scale images. ROIs were defined in the periphery of 

the tumor and in its central part. As much tumor tissue as possible was included in the ROIs, as 

had been done when analyzing the MRI data, but when the tumor size exceeded the borders of 

the composite image, the ROIs were smaller than those on the MRI-based CBVf-maps. Where 

available, ROIs were also defined in the ipsilateral (mainly parietal) cortex and the ipsilateral 

corpus callosum (appearing normal on HE images). Care was taken to exclude large vessels, 

which surely belong to the "macrovasculature" such as the anterior and middle cerebral artery.  

 

A plugin for background correction was systematically used. This plugin corrects an uneven 

image illumination and contrast enhances the resulting image. Optionally, the "rolling ball 

background subtraction", an algorithm provided by ImageJ, could be used. One concern with 

setting a threshold manually is the potential to introduce user-bias. Among the automatic 

thresholding algorithms available with ImageJ, only Otsu's thresholding algorithm (Otsu 1979) 

and the maximum entropy method performed well on most ROIs. Where possible, the binary 

masks of the vessels were obtained by thresholding according to the nonparametric approach 

described by Otsu (Otsu 1979), but a manual thresholding was sometimes necessary in the 

tumor ROIs because of the low contrast, variable background intensity and noise. After 

thresholding, the profiles were closed by dilatation followed by erosion and the vessel lumina 

were filled in. The binarized image and the original image were combined for verification of the 

binarization process, and the matched image was saved.  

 

Particle Analysis was carried out using the "Analyse Particles" and the "Particles 8 Plus" plugins 

(cf. Appendix I: Plugin "Morphology"). These plugins derive a number of morphologic parameters 

such as surface, perimeter, center of mass, the Feret and the Breadth for each profile. The Feret 

diameter is defined as the longest distance between any two points along the structure 

boundary. The Breadth is the largest axis perpendicular to the Feret. Additionally, ellipses are 

fitted to each vessel profile, by equalizing the second order central moments of the ellipse to 

those of the pixel distribution. The resulting ellipse has also the same area as the irregular 

profile. The bounding box is the smallest rectangle that encloses the profile. The following 

parameters for each profile were saved to an Excel spreadsheet for further analysis: the surface, 

the diameter of the inscribed circle, the major and minor axes of the fitted ellipses, the height 

and width of the bounding box, the Feret and the Breadth. Additional parameters of interest 
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extracted from this analysis were the area of the ROI, the vessel density, the vascular area 

density, the sum of the ratios of the ellipse axes 

 ∑
−sectionscross vessel

b
a   

and the length density Lv calculated according to. Eq. V-1.  

 

The mean edge to edge vascular diameter including the lumen and the endothelial wall were 

approximated in four different ways, illustrated in Fig. V-3: 

1. radius of the inscribed circle (IC) 

2. minor axis of the ellipses (MAE) 

3. small side of the bounding box (BB) 

4. Breadth. 

 

 
Fig. V-3: Scheme of an irregular vessel section (red) and the diameters measured. See text for 
abbreviations.  

 
 

 

The diameters of all vessels in the ROI were averaged (without cut-off value to eliminate larger 

vessels), since the aim of this study was to compare the Vv with the CBVf obtained by the 

RSST1 method, which is sensitive to all vessels sizes.  

Such an Excel file was created for each brain section and for each ROI. Mean values were 

computed by averaging over all vessels in one ROI and over the corresponding ROIs on all 

available slices. The vascular volume was calculated according using the four different mean 

vessel diameters. 
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After image analysis of the anti-collagen IV stained images, the Hoechst fluorescence image 

carrying information about the functionality and the permeability of tumor vasculature was 

overlaid on the anti-collagen IV stained image in order to select the outline of the functional 

vessels by a Boolean AND operation. This assumes that the vessels in the two images are 

perfectly superimposed. Fortunately, the Hoechst dye diffuses around most tumor microvessels, 

such that the stained area is enlarged. Therefore, for the tumor tissue, the perfused vessels are 

correctly selected, even if a slight shift exists between the images. The analysis was then 

repeated for the selected vessels.   

 

 

 

5.6. Results 
 

5.6.1. Pilot study on a cylinder model 
 

Before interpreting the results from brain vasculature, a pilot study was carried out to test the 

robustness of the algorithm. A three-dimensional numerical geometric model (Verant et al. 2007) 

composed of a number of straight cylinders with randomly varying diameters and orientations 

was created using a Turbo Pascal code written by J.C. Vial (Spectro Physics Laboratory, 

CNRS). The 512 × 512 × 512 cube was then decomposed into a stack of 512 images using 

ImageJ. The analysis was run on 18 images sampled at regular distances without defining a 

ROI. The obtained total cylinder volume was compared with the known total cylinder volume, to 

estimate the accuracy of the stereological algorithm. In addition, it was studied in which way the 

accuracy diminishes with a decreasing number of examined slices. The four methods for 

obtaining the diameter were also compared.  

 

Four different numerical geometric models were generated by varying the number of cylinders 

and the cylinder diameters (Table V-1). The diameter range was created by 

randomBA :R ⋅+= , where R is the radius, A and B are scalars and “random” is a variable in 

the range of 0 to 1 with uniform probability density function. 
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Table V-1: geometrical parameters of the numerical cylinder models 

stack true volume 
fraction 

cylinder 
diameter 

number of 
cylinders 

 (%) (pixel)  
a 3.4 14 - 22 40 
b 2.5 14 - 22 30 
c 2.9 4 - 16 60 
d 2 4 - 10 110 

 

 

Diameter estimation 
 

Table V-2 shows that the mean diameters computed in all four ways are within the range of true 

diameters. However the minor axis of the ellipse and the Breadth perform best, with respect to 

the true mean diameter, except for stacks c and d in which the mean cylinder diameter were 

systematically over- and underestimated, respecively. This might be caused by the small size of 

the structures in models c and d with respect to the pixel size. The mean capillary diameter is in 

the order of 7 µm which is 10 times larger than the pixel size in the images obtained from 

immunohistochemically stained sections. A misestimation due to this effect is therefore less 

likely when analyzing the histologic images.  

 
 
Table V-2: comparison of mean diameters obtained from the numerical cylinder models by four 
different methods: diameter of inscribed circle (IC), minor axis of ellipse (MAE), small side of 
bounding box (BB) and Breadth 

stack mean cylinder diameter 
 true IC MAE BB Breadth 
a 18 15.63 18.21 20.88 18.88 
b 18 15.46 17.50 19.28 17.65 
c 10 10.74 12.88 14.30 13.33 
d 7 4.44 5.95 6.60 5.82 

 

 

Volume estimation 
 

For stack a, b and c, the total cylinder volume is slightly better estimated using the Breadth 

instead of the minor axis of the ellipse (cf Table V-3). For large diameters the precision is 

excellent when using the Breadth. For the range of diameters used in stack c the 
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underestimation is less than 10%. The mean diameter with respect to the image resolution (10 × 

pixel size) in stack c corresponds to the one in the histological images. The vascular area 

density also reflects the cylinder volume very well. All methods underestimate the total cylinder 

volume in stack d. 

 

 
Table V-3: comparison of area and volume densities in the numerical cylinder model 

stack cylinder area density AV 
[%] 

cylinder volume density Vv = pi/4 đ2 Lv *100 
[%] 

  IC MAE BB Breadth 
a 3.39 2.32 3.14 4.13 3.38 
b 2.44 1.94 2.48 3.01 2.52 
c 2.74 1.70 2.45 3.02 2.62 
d 1.63 0.72 1.29 1.59 1.24 

 

 

Figure V-4 shows that from eight to ten sections upwards the length density and the mean 

diameters and therefore the volume density stabilize. For very few sections the error related to 

the sampling of non representative sections plays a role. 
 
 
Fig. V-4: dependence of vessel diameter, vascular volume density (Vv) and length density (Lv) on 
the number of sampled sections in stack b 
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5.6.2. Vascular volume density and vessel diameters in healthy Wistar rats 
 

It is interesting to compare the vascular parameters obtained from tumor tissue with those from 

healthy tissue. Unfortunately, the control rats from the MRI experiment were not enrolled in this 

histological study. To test whether the MRI results for normal brain tissue can be reproduced 

using the stereological technique, the analysis was carried out on images of 

immunohistochemically stained sections of three Wistar rat brains, which had undergone 

unilateral vessel occlusion in a previous cerebral ischemia experiment. Therefore, only 

structures in the normal appearing contralateral hemisphere were analyzed. Eight slices were 

available for each rat. The section thickness was 5 µm and the digitized image had a pixelsize of 

1.379 µm. Cortical and subcortical gray matter (GM) ROIs and a white matter ROI (WM) in the 

corpus callosum were analyzed.  

 

 
Table V-4: vascular parameters in three brain regions contralateral to the ischemic lesion 
VV = vascular volume density, AV = vascular area density 

ROI MAE 
[µm2] 

Breadth  
[µm2] 

Lv 
[mm-2] 

Vv (MAE) 
[%] 

Vv (Breadth) 
[%] 

AV  
[%] 

vessel density 
[mm-²] 

cortical 
GM 4.9 ± 0.1 7.8 ± 0.1 12340 ± 72 2.38 ± 0.25 6.06 ± 0.46 4.60 ± 0.66 437.0 ± 34.2 

WM 4.8 ± 0.2 7.3 ± 0.3 578 ± 111 1.00 ± 0.16 2.35 ± 0.41 1.93 ± 0.27 197.3 ± 23.6 
subc. 
GM 4.9 ± 0.0 7.7 ± 0.2 898 ± 155 1.68 ± 0.27 4.07 ± 0.57 3.32 ± 0.47 319.5 ± 50.4 

 

 
Vessel diameters 

 

While the approximation of the vessel diameter by the minor axis of a fitted ellipse and by the 

Breadth yielded similar results for the elliptical profiles of cylinders (Table V-3), they differed by a 

factor of 1.6 for irregular shaped vessel profiles (Table V-4). However, both estimations yield 

diameters in the range of those reported in the literature, from 3 to 5 µm (Farrell et al. 1991; 

Schlageter et al. 1999) to 7 to 8 µm (Deane and Lantos 1981; Pathak et al. 2001). No significant 

regional differences in this parameter was found (nonparametric Wilcoxon signed rank test for 

paired comparisons) in accordance with literature (Schlageter et al. 1999; Weiss et al. 1982). 
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Vascular volume density 
 

The Vv values resulting from the MAE and the Breadth differed by a factor > 2 (Table V-4). The 

Vv calculated using the average Breadth however is closer to the vascular area density, which 

has the advantage of being independent of any vessel diameter estimations. Schlageter et al 

found vascular area densities from 1.9 to 3.0 % for cortical gray matter (2.9% for the parietal 

cortex), 1.3% for white matter of the corpus callosum and 0.8 to 1.7% for subcortical gray matter 

(Schlageter et al. 1999). For the in vivo studies, the results obtained with the inscribed circle and 

the bounding box are omitted because these methods yield unphysiologically small and large 

vessel diameters, respectively.  

 

The Vv ratios (Breadth) for cortical gray matter to white matter and for cortical gray matter to 

subcortical gray matter were 2.63 ± 0.51 and 1.51 ± 0.25, respectively. Calculating the same 

ratios for Vv obtained using the MAE yield 2.41 ± 0.45 for cortical gray matter to white matter and 

1.44 ± 0.27 for cortical gray matter to subcortical gray matter. The corresponding vascular area 

density ratios were similar to the Vv ratios. The cortical to subcortical gray matter ratio is 

comparable to the CBVf ratios obtained by MRI (Table 0-4). The cortical gray matter to white 

matter ratio obtained with the stereological algorithm is greater than the one obtained by MRI 

(Schwarzbauer et al. 1997) and CT (Adam et al. 2003), but is not much higher than the vascular 

area density ratio found by Schlageter et al in normal rat brain (Schlageter et al. 1999).  

 

5.6.3. Vascular volume density and vessel diameters in C6 tumor tissue 
 

Vascular volume density  
 
Figure V-5 shows two typical microscopic images of a tumor, on which the anti-collagen IV 

staining and the Hoechst staining were merged (Fig. V-5 a and b), reflecting the heterogeneous 

nature of the tumor. Figure V-5a is a ROI located in the periphery of the tumor in which 

deformed enlarged and permeable vessels coexist with vessels having a rather normal 

appearance. The ROI in Fig. V-5b covers a necrotic avascular part (left), an area with sparse 

massively enlarged vessels (middle), and an area with a slightly higher density of microvessels 

with irregular shape (right). It can be observed that only few of the vessels in this last area are 

perfused. The last two images show the anti-collagen IV stained microvasculature in the 

contralateral cortex (c) and in the contralateral corpus callosum (d) for comparison. The 
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microvessels are small and of regular shape and are better delineated, because the background 

noise (staining of the extravascular extracellular matrix) is reduced. The vessel density is 

homogeneous, and clearly higher in the gray matter than in the white matter. 

 

For the tumor bearing rat brains only the Vv obtained from the Breadth is given in the figures and 

tables because it correlated better with the vascular area density. The histogram in Fig. V-6 

shows the Vv in the tumor ROIs for each individual rat. Results are also reported for rats for 

which fewer than 20 histological sections were evaluated (I7 = 16, J0 = 8, J1 = 14 sections), 

since the stereological algorithm is supposed to work for any number of sampled sections and 

was shown to give reproducible results for eight and more sections. Averaged over all available 

rats the Vv in the tumor periphery and in the tumor center were 2.24 ± 0.96% and 1.10 ± 0.96%, 

respectively (n = 7), counting all vessels, and 1.26 ± 0.19% and 0.43 ± 0.29%, respectively (n = 

4), counting the perfused vessels only. The Vv of perfused vessels was therefore by a factor of 

0.6 and 0.4 smaller than the total Vv for the tumor periphery and the tumor center, respectively. 

The average vascular area densities in these two tumor ROIs were 1.97 ± 0.73% and 0.99 ± 

0.76%, respectively, counting all vessels, and 1.04 ± 0.14% and 0.33 ± 0.21%, respectively, 

counting the perfused vessels only.  

 

Normal appearing cortical regions were measured in six rats and white matter regions were 

measured in four rats, as the cortex and/or the corpus callosum could not be reliably 

differentiated from the tumor on the histological images of the other rats. The mean Vv in these 

ROIs were 4.98 ± 0.34% and 1.86 ± 0.36%, respectively. The mean vascular area densities 

were 4.53 ± 0.32% and 1.69 ± 0.36%, respectively. Only the anti-collagen IV stained images 

were analysed because it was supposed that all vessels were perfused in healthy brain tissue. 
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Fig. V-5:  
a and b: Images showing the microvasculature in the periphery (a) and in the center of a C6 tumor 
(b). The anti-collagen IV and Hoechst staining are overlaid.  
c and d: Anti-collagen IV staining of ROIs in the contralateral gray matter of the cortex (c) and in 
the white matter of the corpus callosum (d). Image size 1556 µm × 1176 µm. 

 
a               b 
 
 

c                 d 
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Fig. V-6: Vascular volume densities VV of the total vascular bed (anti-collagen IV stain) and the 
perfused vascular bed (Hoechst stain) in the central and the peripheral part of C6 tumors. I7 to J5 
are the designations of the rats involved in the MRI experiments and in the vascular morphometric 
analysis 

 
 

 

Using the Vv for perfused microvasculature derived from the Breadth, no correlation with the 

CBVf data obtained by MRI could be found using the Spearman nonparametric correlation 

(GraphPad Prism 5) for the four rats for which the perfused vascular bed was evaluated (Figure 

V-7). Using the Vv for perfused microvasculature derived from the MAE, the correlation 

coefficient rS was 0.32, without being significant. Figure V-7 shows the blood volumes obtained 

by MRI and from histological data for the tumor peripheries. Either the Vv in one of these rat 

brains was overestimated, or the CBVf by MRI underestimated. 

 

 
Fig. V-7: Correlation of the tumor blood volume fractions obtained by histology (perfused vessels 
only) and by MRI peripheral ROIs of the tumors 
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Vessel diameters 
 
Although the mean diameters of perfused vessels were smaller in both tumor ROIs (Table V-5), 

the difference was not significant (nonparametric Wilcoxon signed rank test for paired 

comparisons) neither in the tumor periphery nor in the tumor center. Vessel collapse or 

compression is therefore unlikely as explanation for the reduced perfusion. Unperfused vessels 

are more likely to be occluded without major alteration of their sizes. There was no significant 

difference between the diameters of tumor vessels and of vessels in peritumoral gray matter and 

white matter, neither. The mean diameter obtained from the Breath of the vessel profiles were in 

accordance with published values for the healthy brain (Dennie et al. 1998; Pathak et al. 2001) 

and for the C6 tumor model (Farrell et al. 1991; Tropres et al. 2004). However, in the study 

published by Tropres et al (Tropres et al. 2004), the tumor vessels were enlarged (mean 

diameter in the tumor periphery 4.1 ± 2.1 µm and in the tumor center 5.8 ± 4.1 µm) with respect 

to the cortical microvessels in the contralateral hemisphere (mean diameter 3.1 ± 1.3 µm). 

Larger microvessels in a C6 tumor model (mean diameter 12.5 ± 6.8 µm) with respect to gray 

matter microvasculature (mean diameter 6.6 ± 2.1 µm) were also observed in the study carried 

out by Dennie et al (Dennie et al. 1998). 

 

 
Table V-5: Mean vessel diameter (Breadth) for different cerebral ROIs 

all vessels 7.97 ± 1.31 µm tumor 
periphery perfused vessels 6.78 ± 0.77 µm 

all vessels 7.50 ± 1.46 µm tumor center 
perfused vessels 6.62 ± 0.31 µm 

cortical GM all vessels 8.67 ± 0.70 µm 
WM all vessels 8.95 ± 1.16 µm 
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5.7. Discussion 
 

5.7.1. Vessel diameters 
 

The large discrepancy between the calculations of the mean diameter, especially for the 

irregularly shaped vascular profiles is not surprising. What is the best way to define the diameter 

of a profile? For almost elliptical profiles, passing from the centre of mass, the centroid, rotating 

particle, inscribed circles, (max+min)/2, etc. will not considerably change the obtained diameter. 

However, the diameter of a convex object like the letter "O" must be quite different from a 

concave object, like the letter "C".  In the cylinder model and in both histological experiments, 

the Breadth-based Vv-calculation was very similar to the vascular area density. Although the 

MAE-based estimation yielded smaller diameters and consequently smaller Vv, they were in 

accordance with published values. The true Vv probably lies between these estimations. 

 

It is also rather difficult to compare vessel diameters measured by different investigators, since 

the method employed is rarely the same. In addition, some authors average the vessel 

diameters only over a particular range, defining for example microvasculature as vessels with 

diameters < 12 µm (Weiss et al. 1982). The stereological calculation of the Vv derived from the 

mean vessel diameter (factor đ2 !) is very sensitive to variations in this parameter. In this study, 

the Vv is always compared with the vascular area density, which, although more sensitive to the 

Holmes effect (projected size of the object ≥ real size (Hennig 1969)), is insensitive to 

miscalculation of the vascular diameter.  

 

Since anti-collagen IV stains the basal lamina, the thickness of the vessel wall is included in the 

calculation of the vascular area and vascular volume fraction. Although with the studied MRI 

technique only the intravascular water should contribute to the signal, the water exchange 

probably extends the origin of the acquired signal to the vessel wall or beyond. 

 

5.7.2. Method dependence 
 

Apart from the fact that morphologic and quantitative functional parameters (e.g. the CBVf) 

describing the microvasculature in the gray matter and in particular in the cortex are very region 

specific (Bereczki et al. 1992; Cremer and Seville 1983; Schlageter et al. 1999), regional 

quantitative parameters vary even more between different techniques. For example, Cremer et 
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al and Bereczki et al (using radiolabeled erythrocytes and plasma) report CBVf values below 

1.5% for most brain regions, while morphometric methods generally report CBVf or vascular 

area densities between 1 and 2% (Bar 1980; Dunn et al. 2004; Pathak et al. 2003; Pathak et al. 

2001), although some authors found values up to 3% (Schlageter et al. 1999) or 5% (Weiss et 

al. 1982), depending on the stereological technique used. There also is evidence that not all 

vessels are perfused in healthy brain tissue (Shockley and LaManna 1988; Weiss et al. 1982).  

 

However, the major methodological impact on CBVf measurement seems to originate from 

whether the CBVf is measured in vivo or post mortem. From Table 0-4 it can be seen that with 

few exceptions in vivo CBVf measurements yield values in the range from 2 to 4%. A 

comparison of in vivo CBVf measurements by a non invasive technique with post mortem CBVf 

evaluations has to be interpreted with caution. 

 

5.7.3. Comparison between CBVf obtained by histology and MRI  
 

Comparing in vivo MRI with an invasive method is technically challenging because the data (the 

brain sections) are not in the same format and have very different spatial resolutions. The main 

difficulty was to define similar ROIs on the MRI and histological slices. Each technique has 

additional limitations. 

 

The blood water detected by the RSST1-MRI technique for CBVf measurement, is the one 

contained in perfused vessels. The Vv of the two tumor regions obtained from Hoechst staining 

are very close to the corresponding CBVf obtained by MRI. However, only for four rats co-

staining with Hoechst and anti-collagen IV was available for correlation analysis and as 

illustrated in Fig. V-5 no correlation could be found for tumor ROIs because of one rat for which 

the CBVf obtained by MRI was heavily underestimated or the Vv overestimated. If this rat was 

excluded, the Spearman correlation coefficient would be rS = 0.5. This outsider had a tumor, 

which was too large to be included in one image. It is therefore possible that the ROI outlined on 

the histological image was less representative than the one on the MRI image. 

 

It is generally easier to show correlation between two techniques when data from healthy brain 

is used, rather than data from heterogeneous tumor tissue (Pathak et al. 2001). Unfortunately, 

contralateral Vv for correlation with MRI data was not available in this experiment. While Pathak 

et al found a significant correlation between morphologic estimates and MRI-based CBVf in 
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healthy tissue, the correlation was as poor as in our study for the tumor microvasculature. 

Recent studies carried out in the laboratory (Valable et al. submitted 2007) compare the CBVf 

obtained in a C6 rat brain tumor model by the steady state ΔR2* method using SINEREM as CA 

with the vascular volume fraction computed by Pathak's stereological method for slice thickness 

correction. Six to nine microscopic fields (about 500 µm × 600 µm, slice thickness 20 µm) were 

scanned and analyzed. Although only anti-collagen IV staining was used for microvessel 

delineation in this study, the histological vascular volume fraction was only about one third of the 

CBVf measured by MRI but a significant correlation was observed between the histological and 

the MRI data. 

 

Immunohistochemistry confirmed that tumor vascularity was not uniform, with blood volume 

highest in the tumor border and lowest in the tumor core. As for the CBVf obtained by MRI using 

the RSST1 technique, in areas of necrosis, the CBVf was practically null.  

 

The ratio of perfused Vv to total Vv was about 0.4 to 0.6 in this late stage glioma model. This is in 

accordance with observations by Bernsen et al who found that the perfused fraction of tumor 

vessels ranged from 0.20 to 0.85 in human glioma xenografts in mice (Bernsen et al. 1995). The 

authors have not found any morphological differences between the perfused and unperfused 

vascular bed, neither, so their values are likely to reflect the Vv ratio, too.  

 

5.7.4. Technical considerations 
 

A spatial shift between the anti-collagen IV stained and the Hoechst stained images was not 

observable, but can not be excluded. The precision of the motorized stage was reported to be as 

good as ± 1 µm, but apart visual inspection no criterion was available to test the correctness of 

the image alignment. A way to evaluate errors induced by misregistration, is to compare for 

example the vascular area density on non-tumor ROIs on anti-collagen IV and Hoechst stained 

images and on the combined image, since in healthy tissue Hoechst remains intravascular. 

Given the sharp outline of healthy vessels stained with anti-collagen IV and with Hoechst, the 

two images could be combined using appropriate image processing software, and visually 

inspected for a shift. 
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The impact of variations in threshold setting on the derived vascular parameters was studied by 

Rijken et al  (Rijken et al. 1995). This, together with the way to calculate the vessel diameter, is 

probably the factor with the highest incertitude in this analysis.  

 
 
 
5.8. Conclusion 
 
There is no real gold-standard for quantifying the CBVf by histological vascular analysis. Here a 

technique for vascular volume density measurement is proposed, which requires the 

measurement of the vascular diameters. There is no gold standard for measuring the vascular 

diameters neither. We therefore calculate the vascular diameters in four different ways and we 

suggest the Breadth and the MAE as being an appropriate measure based on the criteria that 

the vascular volume density calculated with the mean diameter corresponding to the Breadth 

and the MAE correleate best with the vascular area density, which is a generally accepted 

histological surrogate for the CBVf measurement. 

 

The vascular volume density evaluated in this study is only an estimation. Due to the multiple 

sources of inaccuracy detailed above, the impact of which is almost impossible to quantify, no 

incertitude interval can be given for the values.  
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6. Chapter VI: CBVf and CA leakage profiles in tumor tissue 
 
 
 
6.1. Introduction 
 

The signal behavior versus time in the RSST1 condition provides only a static impression of 

signal enhancement, whereas it contains dynamic information as soon as the vasculature is 

permeable to the CA. The aim of this chapter is to demonstrate that, in the case of CA 

extravasation, apart of estimating the vascular volume fraction (CBVf in brain tissue), the RSST1 

method has an additional potential for the assessment of dynamic parameters associated with 

the microvascular permeability. CA and tissue specific enhancement rates, a parameter related 

to the vessel permeability, and leakage volume fractions can be derived as for other DCE-MRI 

methods without the measurement of the vascular CA concentration versus time (input function) 

during the RSST1 interval. In this chapter, the leakage profiles of Gd-DOTA and P760 in muscle 

and in an RG2 tumor model in Fischer rats were analyzed.  

 

French Introduction  
 

Chapitre VI : VSC et profils d’extravasation des AC dans les tumeurs  

 

L’évolution du signal acquis avec la méthode RSST1 au cours du temps donne une information 

dynamique dans une région perméable à l’AC. 

Le but de ce chapitre est de démontrer, que dans le cas de l’extravasation de l’AC, la méthode 

RSST1 pourrait conduire à mesurer les paramètres dynamiques en relation avec la perméabilité 

du système vasculaire. La vitesse du rehaussement du signal et la fraction du volume de 

distribution extravasculaire peuvent être également obtenus comme dans le cas des méthodes 

dites "DCE –MRI", sans mesurer l’évolution du signal dans une région vasculaire (la fonction 

artérielle d’entrée). 

Dans ce chapitre, les profils d’extravasation du Gd-DOTA et du P760 ont été analysés dans le 

muscle et dans le modèle de tumeur RG2 chez des rats Fischer pour estimer la fraction 

volumique sanguine, la perméabilité pour les AC et aussi le volume de distribution 

extravasculaire des AC.  
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6.1.1. The RSST1 interval with blood pool CA 
 

As described in the first chapter, the RSST1 method using MR CA confined to the vascular 

compartment is designed to measure the vascular volume, during the time interval for which the 

conditions for a rapid steady state of the signal from the vascular compartment are fulfilled. This 

steady state signal amplitude is reached and maintained with an intravascular CA concentration 

Civ above a critical value or, equivalently, a blood T1 relaxation time below the critical value (T1 < 

1/5 Tinv of the sequence used). Under this condition the input function does not need to be 

known, although neither the blood CA concentration nor the T1 relaxation time need to be 

constant during that interval. When the CA is confined to the vascular compartment, only the 

blood compartment has a short T1 relaxation time allowing the acquisition of a tissue signal, 

which has a constant amplitude and corresponds to the equilibrium magnetization of the 

vascular compartment. In this case, the signal amplitude reflects the vascular volume fraction 

and the main advantage of a prolonged RSST1 interval is to accumulate the signal for the 

improvement of the SNR.  

 

6.1.2. The RSST1 interval and CA leakage 
 

If the CA is not confined to the vascular compartment, the tissue signal amplitude increases 

continuously because a signal contribution also arises from the extravascular space. Although 

the tissue signal amplitude is not constant, the RSST1 conditions are fulfilled for the vascular 

signal! This can be verified by monitoring the signal amplitude in any large vessel, which is not 

permeable to the CA.  

 

For typical small and intermediate molecular size Gd3+ based CA, which do not enter the 

intracellular space, the distribution volume beyond the vascular compartment is a particular part 

of the extravascular extracellular compartment, the size of which has to be determined. Here we 

call this particular space in which the CA diffuses the leakage compartment. Since typical signal 

versus time curves can be observed for various tissues and CAs, they are named tissue leakage 

profiles, and an attempt is made to derive parameters that describe these tissue and CA specific 

profiles, by estimating the leakage volume fraction and the enhancement rate, similar to DCE-

MRI methods. It has previously been observed that CA uptake and washout curves could be 

used to determine some properties of tumor tissue (Gowland et al. 1992). Several studies using 

mathematical models adapted to measurements by CT (Yeung et al. 1992), PET (Iannotti et al. 
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1987; Ott et al. 1991) and MRI (Kenney et al. 1992; Krueck et al. 1994; Schmiedl et al. 1992) to 

characterize brain tumors have been published. The correlation between DCE-MRI derived 

parameters and WHO grade were studied in human brain tumors. Good correlation was found 

for both, CBV (Ludemann et al. 2000) and microvascular permeability (Roberts et al. 2000). 

 

 

 

6.2. Theory  
 

In the following analysis we propose to decompose the tissue signal into two components: a 

signal component originating from the intravascular compartment (iv) and a signal component 

originating from the extravascular compartment (ev).  

eviv SSS += ,  

S, Siv and Sev symbolizing the signal intensities of the ROI, the intravascular and the 

extravascular compartment, respectively, because 

evivtotal VVV += , 

Vtotal, Viv and Vev symbolizing the volumes of the ROI, the intravascular and the extravascular 

compartment, respectively.  

In contrast to the model of Kety (Kety 1951) and Tofts (Tofts 1997; Tofts et al. 1999; Tofts and 

Kermode 1991), we do take into account the contribution of the CA in the intravascular 

compartment.  

 

Both compartments are composed of subcompartments, not all being accessible to the CA. The 

intravascular intracellular and the plasma compartment (p) compose the intravascular 

compartment. The CA does not attain the intracellular compartments, but the intravascular 

intracellular compartment (erythrocytes, ivi) contributes to the MR signal because its T1 

relaxation time is shortened by rapid transcytolemmal water exchange. Only a fraction of the 

extravascular compartment will be occupied by the CA, which is called leakage compartment (l). 

The leakage, the extravascular intracellular (evi) and the remaining extravascular extracellular 

(eve) compartment compose the extravascular compartment:  

ivipiv VVV +=  , 

eveevilev VVVV ++=  
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Vp, Vivi , Vl, Vevi and Veve symbolizing the volumes of the plasma, intravascular intracellular, 

leakage, extravascular intracellular and the remaining extravascular extracellular compartment 

that is inaccessible to the CA, respectively.  

 

6.2.1. Pharmacokinetic model 
 

The CA is not regarded as freely diffusible across the BBB. The passive diffusive endothelial 

permeability to the CA is assumed to be small enough to dominate the leakage process. In the 

following we do consider only the plasma and leakage compartments accessible to the CA 

molecules, using a bidirectional two compartment kinetic model to describe the leakage process.  

 

The transendothelial CA flow Fpl [mmol/s] between plasma and the leakage compartment is 

governed by the CA concentration gradient in plasma Cp and in the leakage compartment Cl 

(Tofts 1997; Tofts et al. 1999; Tofts and Kermode 1991): 

( )lp
trans

pl CCKF −= .  

Here the plasma CA concentration is defined as: 

Hct1
CC iv

p −
= . 

The proportionality constant Ktrans (cm3/s) is called the permeability coefficient and is the product 

of the diffusive permeability P (cm/s) of the endothelium for the CA and the total exchange 

surface Sv: 

v
trans SPK ⋅= .  

 

We have assumed that the endothelial permeability is the same for the backflow of the CA from 

the leakage to the plasma compartment (Tofts and Kermode 1989; Tofts and Kermode 1991). If 

the blood flow F through the microvasculature is much larger than PSv, than Ktrans is also equal 

to the product of the blood flow F and the extraction fraction E: 

EFKtrans ⋅=   

where E is defined as (Crone 1963) 

⎟
⎠
⎞⎜

⎝
⎛−= F
PSexp1E V .  
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The change of the CA concentration in the leakage compartment dCl/dt is proportional to the CA 

flow Fpl and inversely proportional to the leakage volume fraction vl: 

( ) ( )
l

lp

l

lpvl

v
CCEF

v
CCPS

dt
dC −

=
−

=                                Eq. VI-1 

Eq. VI-1 is a first order linear differential equation in which Cp is regarded as constant during a 

short time interval after homogeneous distribution of the CA in the blood pool since the flowing 

blood replaces the small loss of CA from the plasma compartment due to the transendothelial 

leakage flow Fpl. With this approximation, the general solution to this differential equation is 

( ) ( )( )tbexp1atCl −±= .  

The initial condition is Cl(t=0) = 0, resulting in the following function for the CA concentration in 

the leakage compartment:  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

l

v
pl v

PStexp1CtC .                     Eq. VI-2 

 

The CA is injected as a bolus of variable duration, but as described before in chapter I, the blood 

concentration of the CA after bolus passage and repeated recirculation reaches a value that 

remains above the critical concentration defining the conditions of the RSST1. This results in a 

constant vascular signal for a certain time interval although the blood concentration of the CA 

might not be constant.  

 

6.2.2. The phases of CA uptake in tissue 
 

The signal enhancement is characterized by five phases. The diagram in Fig. VI-1 shows an 

idealized plot of the signal enhancement. The normalized signal norm
postS  defined by  

0

prepostnorm
post S

S(t)S
(t)S

−
=                      Eq. VI-3  

(equivalent to Eq. I-4 for a time varying signal) is plotted as a function of time. Unsuppressed 

signal components arising from tissue such as muscle tissue or white matter characterized by 

low T1 are eliminated when using the norm
postS  signal. Therefore, before CA arrival in the vascular 

compartment of the tissue of interest (phase 0), the norm
postS signal is null. Moreover, for the time 

interval for which the RSST1 conditions are fulfilled, the norm
postS signal amplitude corresponds to 
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the fractional distribution volume of the CA, which is viv if the CA is confined to the vasculature 

and vd if it is not.  

 

 
Fig. VI-1:  
A model of the signal evolution during CA arrival and distribution in the tissue for two ROIs. The 
red plot represents the signal from a ROI, in which the CA is confined to the blood pool. The blue 
plot displays the idealized shape of a leakage profile. The five phases of CA uptake are explained 
in the main text. viv = intravascular volume fraction, vl = volume fraction of the leakage 
compartment, vd = distribution volume fraction  

 
 

 

Bolus phase of the CA in the blood pool 
 

The variable first part (phase 1) of the signal to time curve corresponding to the bolus passage is 

not analysed because of confounding T2 and T2* effects. Reliable analysis of this first part would 

require a standardized narrow bolus injection, a high temporal resolution and an accurate 

measurement of the local AIF. If the transverse relaxation effect at the high CA concentration 

during the bolus were negligible, the peak norm
postS  signal amplitude would reflect the CBVf.  
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Mixing phase of the CA in the blood pool 
 

During the second part (phase 2, t1 <t < t2) of the signal to time curve, corresponding to the 

arrival and distribution of the CA in the intravascular compartment (mixing phase), the vascular 

signal increases due to stabilizing T1 relaxation effects of the CA and decreasing T2 relaxation 

effects. This part of the curve is dominated by a rapid signal enhancement of the vascular 

compartment approaching the maximum amplitude corresponding to the thermal equilibrium 

magnetization of the blood, which is attained at t = t2 when the CA is homogeneously distributed 

in the blood pool resulting in a blood T1 < Tinv/5.  

 

CA leakage can become noticeable during this phase already. Therefore, a two compartment 

model is assumed for this phase and the tissue signal enhancement curves Spost
norm(t) are 

described by a biexponential function of time:  

( )[ ] ( )[ ]eveviviv
norm
post tκexp1Stκexp1S(t)S −−+−−= ,  for t1 <t < t2  

κiv and κev being the enhancement rates of the intravascular and the extravascular 

compartments, respectively. Siv and Sev symbolize the maximal intravascular and extravascular 

signal intensities, respectively, and correspond to the respective magnetization at thermal 

equilibrium. 

 

Leakage phase of the CA into the extravascular compartment 
 

During the following RSST1 time interval (phase 3, t > t2), the tissue signal is composed of a 

constant vascular signal component and a time dependent component which reflects the 

progressive leakage of CA into the leakage compartment. Owing to the constant vascular signal 

the tissue signal enhancement curve (t)Snorm
post is described as follows: 

( )[ ]eveviv
norm
post tκexp1SS(t)S −−+= ,  for t > t2                                   Eq. VI-4 

 

CA exchange equilibrium during the RSST1 interval 
 

If the RSST1 interval is sufficiently long, the CA uptake curve can reach a constant value (phase 

4) reflecting an equilibrium between CA leakage from the microvasculature into the 

extravascular leakage volume and backflow of CA from the leakage volume into the 

microvasculature. During this phase, the signal amplitude corresponds to the sum of the 
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fractional volumes of the intravascular and the extravascular leakage compartment, if the CA 

concentration in the leakage compartment is sufficiently high to result in a longitudinal relaxation 

time T1 < Tinv/5 for this compartment.  

 

Beyond this phase, the norm
postS signal is not representing fractional distribution volumes any more 

(phase 5). This is the case when the CA concentration in the intravascular compartment 

decreases due to CA elimination from the blood pool. The CA concentration in the leakage 

compartment will decrease shortly afterwards due to backflow (washout) from the leakage 

compartment into the vascular compartment.  

 

 

 

6.3. Material and Methods 
 

6.3.1. Imaging protocol 
 

The leakage profiles for P760 and Gd-DOTA of muscle and tumor ROIs were analysed in six 

male Fischer rats, three of them bearing unilateral intracerebral RG2 tumors 15 days after 

implantation. In the contralateral brain hemisphere and in three healthy Fischer rats, the CBVf 

was measured from the RSST1 interval of the Spost
norm signal as described in chapter I.  

 

MR imaging using IR-FLASH acquisitions under the RSST1 conditions was performed. The 

sequence timing and image acquisition parameters were as usual: TR = 750 ms and Tinv = 325 

ms for the Spre and Spost acquisitions, TR = 10 s and Tinv = 8 s for the S0 acquisition, TE = 3.2 ms, 

a single slice of 2 mm thickness, FOV 32 × 32, matrix 32 × 32, interpolated to 256 × 256. The 

equilibrium signal S0 and the residual signal Spre were acquired before CA administration. P760 

at a dose of 0.05 mmol/kg was injected first, followed by an injection of 0.3 mmol/kg Gd-DOTA 

after a wash out time of at least one hour. All signals were acquired for 5 minutes.  
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6.3.2. Data analysis 
 

The mean signal intensities preS  and 0S  were computed from the acquisitions before CA 

administration (400 acquisitions for Spre and 30 for S0). Only the Spost signal is time dependent 

during and after CA administration.  

The Spost(t) signal was normalized according to Eq. VI-3 and plotted for ROIs in different tissues: 

temporal muscle and sinus cavernosus for all six rats, whole tumor, tumor border, tumor center 

and brain hemisphere contralateral to the tumor for the three tumor bearing rat brains, left 

hemisphere for the healthy rat brains. To demonstrate the different behavior of the signal in 

tissue ROIs with permeable and non permeable vasculature, a diagram showing the signal to 

time curves for ROIs in a tumor bearing brain is given in Fig. VI-2. 

 

 

Fig. VI-2: (t)Snorm
post was calculated using Eq. VI-3 for different ROIs in a RG2 tumor bearing rat brain 

obtained after injection of P760 and Gd-DOTA. In this rat, for both CAs, the RSST1 condition is 
satisfied for 20 s < t < 90 s post injection, identified by a steady state signal from a ROI containing 
a major vessel. The red ordinate on the right is associated to the signal plot for the vascular ROI, 
the black ordinate on the left to all other signal plots. Since the normalized signal is plotted, the 
amplitude of a steady signal (sinus cavernosus, contralateral hemisphere) represents the vascular 
volume fraction. The signal obtained from the tumor ROI after Gd-DOTA injection shows a typical 
CA leakage profile.  
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An ROI drawn on the sinus cavernosus was chosen because this was the largest vascular 

structure visible on the imaged slice, although not without partial volume effect. The vascular 

volume fraction in these ROIs was about 50 to 60%. No continuous signal increase indicative for 

a leakage profile was ever observed in a large vessel. The first signal enhancement in these 

vascular ROIs was interpreted as the arrival of CA, and defined as t = 0. The RSST1 time 

interval for which the vascular signal is constant defines the signals from the CA leakage profiles 

that are fitted to Eq. VI-4. The fit is performed under Excel by adjusting the values of the 

variables in the model Siv, Sev and κev to minimize the sum of the squares of the ordinate 

differences between the nonlinear model function and the experimental data points. In the 

nonlinear fit to the signal obtained by Gd-DOTA injection, the Siv parameter had to be fixed to 

the value obtained by the fit from the P760 signal data, since the signal was not at its baseline 

value at the time of Gd-DOTA injection, due to incomplete washout of P760 (cf Fig. VI-2). The fit 

is performed for the following leakage profiles: muscle tissue (n = 6), tumor center (n = 3) and 

tumor border (n = 3). For all signal to time curves from ROIs displaying a constant signal 

amplitude during the RSST1 interval, the average value over this time interval representing the 

vascular volume fraction is computed.  

 

Figure VI-3 shows the tumor leakage profiles from the central part of a RG2 tumor of another rat 

after injection of P760 and Gd-DOTA along with the model functions obtained by nonlinear 

regression for the time interval shown by the continuous plots. 
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Fig. VI-3: Typical tumor leakage profiles (t)Snorm
post from a RG2 tumor center (rat M5 in Table VI-2) 

after P760 and Gd-DOTA injection. The continuous colored lines represent the best fit to the 
exponential model and the time interval for which the RSST1 condition was satisfied.  

 
 

 

 

 

6.4. Results 
 

6.4.1. The CBVf 
 

Figure VI-4 summarizes the CBVf for brain ROIs that do not exhibit CA leakage. The CBVf 

contralateral to the tumor ranged from 1.22 to 1.68%, mean 1.52 ± 0.23%, while in healthy brain 

tissue the CBVf ranged from 2.18 to 2.80%, mean 2.39 ± 0.36% for PaCO2 values in the range of 

36.7 to 43.4 mmHg. The signal amplitude from one out of three ROIs in the brain hemisphere 

contralateral to the tumor was not constant during the RSST1 interval and was therefore 

excluded from this CBVf measurement.  
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Fig. VI-4: Histogram comparing CBVf (%) from healthy Fisher rat brain and brain tissue 
contralateral to RG2 tumors 

 
 

 

6.4.2. Leakage profiles in muscle and tumor ROIs 
 

From leakage profiles such as shown in Fig. VI-1 and Fig. VI-2, it was observed that, for a given 

tissue ROI, the signal rise in function of time is always slower with P760 than with Gd-DOTA. 

When the RSST1 interval is long enough, the signals after both CAs approach a constant value, 

which for all ROIs analyzed is higher after Gd-DOTA than after P760. These observations are 

the reason why we consider tissue and CA specific leakage profiles.  

 

Table VI-1 shows the average (n = 6) adjusted parameters Siv, Sev and κev for P760 and Gd-

DOTA in muscle tissue.  

 

 
Table VI-1: Mean vascular volume and leakage parameters for muscle tissue.  

  mean  sd 
P760 Siv 0.028 0.013 
P760 Sev 0.044 0.024 
P760 κev 0.019 0.017 
    
Gd-DOTA Siv 0.028 0.013 
Gd-DOTA Sev 0.111 0.023 
Gd-DOTA κev 0.080 0.034 
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Because of very variable leakage profile patterns for each tumor region, Table VI-2 shows the 

adjusted parameters for tumor ROIs for each rat individually and for both CA. The heterogeneity 

of tumor tissue and the small number of animals (n = 3) did not allow us to extract "typical" mean 

tumor parameters. The values marked with a cross correspond to data obtained from ROIs 

without typical leakage profile, and consequently the exponential model function does not fit the 

experimental data correctly. 

 

 
Table VI-2: Individual vascular volume and leakage parameters for different RG2 tumors and tumor 
regions.  

 
rat 
 

M4 tumor 
center 

M5 tumor 
center 

M6 tumor 
center 

M4 tumor 
border 

M5 tumor 
border 

M6 tumor 
border 

        
P760 Siv 0.016 × 0.032 0.013 0.019 × 0.015 × 0.013 
P760 Sev 0.408 × 0.038 0.014 0.066 × 0.055 × 0.017 
P760 κev 0.000 × 0.014 0.043 0.000 × 0.000 × 0.027 
        
Gd-DOTA Siv 0.016 0.032 0.013 0.019 × 0.015 × 0.013 
Gd-DOTA Sev 0.035 0.086 0.048 0.010 × 0.002 × 0.034 
Gd-DOTA κev 0.030 0.034 0.020 0.027 × 0.237 × 0.019 
 

 

 

 

6.5. Discussion 
 

6.5.1. The CBVf 
 

As shown in Fig. VI-4 brain tissue contralateral to tumor appears to have lower CBVf values, 

probably due to a compression effect from the tumor mass and associated edema. The 

difference is almost significant. Unfortunately, the low number of animals examined in this study, 

makes statistical analysis difficult (P = 0.059 using the Student t test) and does not justify 

definitive conclusions. But a similar result has been obtained for the contralateral hemisphere in 

a former experiment (cf. Chapter IV) using Gd-ACX in a C6 tumor model.  
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Only the CBVf contralateral to the RG2 tumor of two rats are summarized in the histogram 

because in the third rat the signal from this ROI after injection of Gd-DOTA exhibits an unusual 

behavior: the signal increases in a manner typical for a leakage profile. This is not observed with 

P760, where the signal remains perfectly constant during the RSST1 time interval such as shown 

in Fig. VI-2.  

 

The lower CBVf and the occasional pathologic signal enhancement pattern in brain tissue 

contralateral to a tumor indicate that this tissue should not be considered as healthy (Beaney et 

al. 1985; Ito et al. 1982). It is not without danger to use the contralateral CBVf for comparison 

with the tumor CBVf as is often done when reporting relative CBVf values (Cha et al. 2000a). It 

also shows the importance of studying truly healthy animals to derive "normal" CBVf values.  

 

The global normocapnic CBVf obtained in this study using the IR-FLASH acquisition mode is in 

accordance with the CBVf = 2.07% found for the Fisher strain using the PR3D acquisition mode 

(chapter II) and not significantly different from the global CBVf for Wistar rats (chapter II and 

chapter IV). 

 

6.5.2. Leakage profiles in muscle ROIs 
 

The analysis of muscle ROIs shows that the microvasculature is permeable to both CA studied.  

 

The vascular volume fraction 
 

Depending on the speed of the intravenous CA injection, the equilibrium signal from the ROIs 

drawn in the sinus cavernosus is attained within 10 to 30 s after the first CA arrival marked by a 

signal enhancement. If we assume that during this time little CA has leaked out of the muscular 

microvasculature (Gowland et al. 1992), the value of the Siv parameter is theoretically close to 

the vascular volume fraction (Roberts et al. 2000). For muscle we found a mean value of 2.8%, 

which is within the range of published values: 1.5 to 8% (Donahue et al. 1996), 11% (Kuwatsuru 

et al. 1993).  
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The leakage volume fraction 
 

The signal from muscle tissue often approaches a constant value during the RSST1 interval for 

large vessels, as if the intravascular-extravascular CA exchange has reached its equilibrium. 

The signal amplitude Spost
norm during this exchange equilibrium is only a few times larger than the 

vascular fraction, it could therefore be assumed that the extravascular CA concentration in the 

leakage compartment is sufficiently high (or equivalently the T1 is sufficiently low) to satisfy the 

RSST1 condition. In this case, the value of the Sev parameter would be an estimate for the 

leakage volume fraction. Table VI-1 shows that the leakage volume for P760 in muscle tissue is 

only about twice the vascular volume fraction, while for Gd-DOTA it is in the order of 11%. This 

is in accordance with the leakage volume fraction of 10.4 ± 0.4% in muscle after Gd-DTPA 

injection reported by Parker et al (Parker et al. 1997).  

 

The enhancement rate  
 

Before the CA exchange equilibrium is attained, the IR-FLASH signal acquisitions monitor the 

speed of the CA leakage into the interstitium. The enhancement rate κev could therefore be an 

estimate for the CA specific leakage rate. In muscle tissue, this enhancement rate is about 4 

times higher for Gd-DOTA than for P760.  

 

If, before attaining the CA exchange equilibrium, there is a linear relationship between the signal 

from the leakage compartment and the CA concentration Cl (Rosen et al. 1989) and if the 

plasmatic CA concentration were truly constant, then κev would be equivalent to PSv/vl  or EF/vl 

(cf. Eq. VI-2) which is called rate constant l
trans

ep /vKk =  (Tofts 1997; Tofts et al. 1999). This is a 

quantitative parameter that characterizes the microvascular leakage for a particular CA. If the 

extraction fraction E for a particular tissue and CA is known, the flow F can be deduced from this 

parameter (Larsson et al. 1994), and vice versa (Daldrup et al. 1998). 

 

6.5.3. Leakage profiles in tumor ROIs 
 

Although for all examined rats the leakage volume fraction and the enhancement rate were 

systematically smaller for P760 than for Gd-DOTA in muscle tissue, this observation could not 

be confirmed in the tumor ROIs. In two tumor ROIs the enhancement rate was greater for P760 

than for Gd-DOTA. However, it was found that the leakage volume fraction for P760 is two to 
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three times smaller than the leakage volume fraction for Gd-DOTA, and for both CA smaller in 

the tumor ROIs than in the ROIs drawn in muscle tissue. The results listed in Table VI-2 show 

the large variability between the animals and the tumor regions.  

 

Many studies have reported large intratumor heterogeneity in microvascular parameters such as 

CBVf and permeability for malignant tumors (Aronen et al. 1994; Donahue et al. 2000; Knopp et 

al. 1999; Sugahara et al. 1998). Since within a tumor the measured values can vary several fold 

(Cao et al. 2006), comparisons between studies and tumor types are even more difficult.   

 

However the range of values obtained for the vascular volume fraction (1.3 to 3.2%) is in 

accordance with values reported by Ferrier (Ferrier et al. 2007) for a RG2 tumor model. In their 

study, the vascular volume fraction ranged from 1 to 5%, with a mean of 2.8 ± 1.3%. The 

leakage volume fraction ranged from 10 to 20% for Gd-DTPA, while in our study it ranges from 

3.4 to 8.6% except for those ROIs for which the model could not be fitted to the experimental 

data. The enhancement rate κev for Gd-DOTA in our study (0.019 to 0.034 s-1) is by a factor of 

two to ten higher than the rate constants reported by them (0.003 to 0.011 s-1) for Gd-DTPA. 

Although κev derived from our model does not directly correspond to the rate constant kep, it is 

theoretically possible to derive quantitative parameters describing the leakage profiles, which 

have physiological meanings such as the vessel permeability surface product (PSv) by 

monitoring the plasma concentration of the CA Cp. 

 

Delay of CA arrival  
 

The discrepancy of results is also due to uncertainties in estimations of t = 0. The arrival of the 

CA in the vascular ROI was already difficult to detect due to variable bolus transit duration along 

with large T2 and T2* effects. Since a draining vessel was chosen for the definition of t = 0, the 

arrival of the CA in brain tissue even happens slightly before t = 0. In addition, in different tumor 

parts, the CA arrival could have variable delay times (Gowland et al. 1992). The model chosen 

does not take this time parameter into account. By simple observation of the tumor leakage 

profiles, it can be noted that, in all regions, the signal Spost
norm after Gd-DOTA injection is larger 

for all t > 0 and therefore the κev parameter for Gd-DOTA should have been constantly larger 

than for P760. However, the leakage volume fraction for Gd-DOTA in tumor and muscle tissue is 

systematically greater than the leakage volume fraction for P760. Such a behavior has also 

been demonstrated with Gd-DOTA and the intermediate molecular weight CA P792 in a rat 
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breast tumor model (Weidensteiner et al. 2006). There is evidence for a significantly enlarged 

extravascular leakage compartment in tissue lesions (Tofts and Kermode 1991) and particularly 

in tumors (Jain 1987) with respect to normal tissue.  

 

Flow limited CA delivery 
 

In two tumor ROIs a constant signal or even a slight signal decrease could be observed for both 

CAs during the RSST1 interval. Such a case is shown in Fig. VI-2 for the ROI covering the whole 

tumor. For the same rat (M5), the signal increases in the ROI in the tumor center and decreases 

slightly in the tumor border. A possible explanation might be a flow limited CA delivery in this 

tumor region, such as occurs in beginning necrosis (Ludemann et al. 2000; Pivawer et al. 2007). 

In such cases, the model is not appropriate and can not correctly describe the leakage profile. In 

Table VI-2 the low κev (P760 injection) or Sev parameters (Gd-DOTA injection) for rat M4 and M5 

in the tumor border are therefore not representative. A constant Spost
norm signal was also 

observed in a ROI in the tumor center of rat M4 after P760 injection, while a typical leakage 

profile was observed after Gd-DOTA injection one hour later. 

 

6.5.4. Possible improvements  
 

The derived enhancement rate κev is linked to the microvascular volume via the surface area Sv 

and is in addition an intractable combination of microvascular permeability P, leakage volume, 

and in the flow limited case, also of blood flow. In addition, a truly constant plasma concentration 

of the CA is needed to derive physiologic parameters related to the microvascular permeability.  

 

The complexity of tumor tissues and microvasculature might require a more sophisticated tissue 

model. In order to obtain more reliable results, improvements are possible at both levels: signal 

acquisition and mathematical model.  

 

Without modifying any sequence timing parameters, efforts that can be made during signal 

acquisition include a more standardized and faster injection at a precise time point after the start 

of the acquisition, preferably using a mechanical power injector. CAs with pharmacokinetic 

profiles that allow a longer RSST1 interval would be of advantage for the goodness of fit.  
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A model that takes in account the delay of CA arrival in tissue (Gowland et al. 1992), the 

existence of two or more extravascular leakage compartments with different enhancement rates 

and volumes (Ludemann et al. 2000), different bidirectional exchange rates of CA between 

compartments (Brix et al. 1991), flow limited CA delivery (Kety 1951) or even the water 

exchange effects at the vascular boundary might improve the fit to the experimental data. In 

order to link the derived parameters such as the enhancement rate κev to physiological 

parameters other assumptions about the tissue compartments can be introduced such as the 

tissue homogeneity model (Johnson and Wilson 1966; Sawada et al. 1989), which assumes an 

instantaneous mixing of the CA within the entire compartment. We limited our study to a small 

number of parameters and assumptions because the experimental data was not sufficient to 

support a more complex model, and fitting a larger number of parameters would have reduced 

the reliability of the results. Although it might be a useful parameter to characterize tumor 

vasculature and blood flow, we have not attempted to derive κiv describing the rapid signal 

enhancement rate in the vascular compartment, because the time resolution in this study (750 

ms) is rather modest for the rapid heart rate in rats (250 - 450/min). Theoretically it is also 

possible to study the washout phase of the CA from the leakage space using a similar model, if 

the signal evolution is monitored over a much longer time. In this case however, the plasma 

concentration of the CA needs to be measured for the whole washout phase (Gowland et al. 

1992).  

 

6.5.5. Conclusion 
 

The advantages of the RSST1-method in combination with the proposed compartment model is 

that the vascular signal can be considered as being constant during the RSST1 interval and can 

thus be taken into account in the model. The second advantage is that, in contrast to other DCE 

MRI methods, it is not necessary to know the exact intravascular CA concentration Civ during 

that time interval and whether or not there is a linearity between the intravascular CA 

concentration Civ(t) and the intravascular relaxation rates. Further advantages are not only the 

maximization of the signal change due to blood and tissue nulling before CA administration, but 

also a RSST1 signal amplitude representing the thermal equilibrium magnetization in the 

compartment occupied by the CA, from which the compartment volume can be derived.  
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The purpose of this study was to show that the acquisition of leakage profiles by the IR-FLASH 

sequence with a time resolution of 750 ms allows distinguishing different CA and tissue 

properties by their leakage speed and pattern.  

 

It has been shown how the RSST1 method allows the estimation of the vascular volume in the 

presence of diffusion limited CA leakage. This method might therefore be of use for the 

characterization of different tumors not only by the vascular volume fraction, but also by the 

leakage volume fraction. Quantification of these parameters are a means of staging tumors and 

assessing early response to antiangiogenic therapy in clinical trials (Choyke et al. 2003; Jordan 

et al. 2005; Knopp et al. 2001). 
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General discussion 
 

In this work, the emphasis lies on the methodological development of a MRI method for CBVf 

quantification. The aim is to establish a method that allows direct and reliable quantitative 

assessment of the angiogenesis occurring in malignant brain tumors, without a-priori 

assumptions regarding the microvascular architecture, without the need for blood sampling, and 

without complex post processing steps.  

 

The RSST1 method requires the injection of a blood pool CA. It was validated on the healthy rat 

brain and its sensitivity was evaluated by increasing the CBVf in a hypercapnia experiment. 

 

Since the fragile vasculature in malignant tumor tissues is permeable to the CAs habitually 

employed in clinical routine, experimental CAs were evaluated for their vascular confinement. 

Such CAs could be used in biological research to study the fundamental mechanisms of tumor 

growth and spread related to the microvasculature, and in preclinical studies for the evaluation 

of therapeutic approaches, in particular antiangiogenic and antivascular approaches. However, 

the microvasculature in severely diseased tissue can become permeable to these CAs, too. For 

this reason, but also to allow of human studies with approved CAs such as Gd-DOTA, a method 

that allows CBVf quantification in the presence of CA leakage was evaluated in the last chapter 

of this work. This method is based on pharmacokinetic modelling similar to the one employed in 

dynamic contrast enhanced MRI, but makes use of the principle and conditions of the RSST1 

method. As a result, monitoring of the arterial CA concentration along with its technical 

difficulties can be avoided.  

 

The number of animals involved in the final evaluation of the CBVf under different experimental 

conditions is small (mean of four to five animals), limiting the power of statistical analysis. The 

global and regional CBVf in healthy rats measured with the RSST1 technique with four different 

CAs (2 to 3%) is in the range of CBVf reported in the literature (1.2 to 5.6%, cf. Table 0-3), and 

of CBVf obtained during the same experiments on the same rats using a steady state ΔR2* MRI 

technique (1.5 to 2.5%) as well as in healthy rat brain using histological analysis combined with 

stereological correction (1 to 6%). For C6 tumor tissue, the CBVf obtained with Gd-ACX (range 

0.8 to 1.8%) was confirmed by histology (range 1 to 1.5%). Despite the small number of animals, 

the standard deviations reflecting the CBVf variations between the measurements and between 

the individual rats (typically less than 0.7%) are also in the same range as those reported for 
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different techniques reviewed in Table 0-3. This is complicated by the fact that the CBVf is 

dependent on the chosen ROI and whether macrovascular structures are included or not. In 

addition, the CBVf is a physiologic parameter known to have a large distribution especially in 

malignant tumors (Aronen et al. 1994; Donahue et al. 2000). However, the aim of this work was 

not to study the CBVf itself, but rather to establish a method that can be used for angiogenesis 

assessment in larger studies.  

 

Therefore, particular effort has been made to evaluate the reliability and precision of the CBVf 

measure. In addition to the possibility of CA leakage during the measurement, an error is 

inevitably induced by the T2 weighting and by water exchange between compartments. We tried 

to estimate the measurement errors caused by these effects and we showed how the sequence 

parameters can be optimized to reduce them. However, the water exchange effect can not be 

completely avoided and has to be quantified with a different technique. The transverse 

relaxation effects can be reduced by using RF sequences with a short echo time.  

 

 

 

1. Possible improvements of the RSST1 method 
 
1.1. R2 weighting 
 
For CBVf measurements with the RSST1 method, any non-diffusible blood pool CA can be used, 

but CA with long plasma half lives, high r1 relaxivity and low r2 relaxivity are preferred. Owing to 

the independence of the MR signal from the intravascular T1 once T1 < Tinv/5, the method is not 

based on a linear relation between CA concentration  and the blood relaxation, especially as this 

relation is not established for "high" doses of certain CA. The use of P760 and SINEREM, which 

both have r2 relaxivities superior to the r2 of Gd-DOTA, showed that the R2-attenuation can be 

estimated and corrected for. If the R2 decay is dominant, signal acquisitions with ultra-short TE 

have to be used.  

 

The RSST1 method is insensitive to transverse relaxation effects induced by a susceptibility 

difference between the intra- and the extravascular compartment, because the extravascular 

compartment does not contribute to the signal. 
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1.2. Water exchange effect  
 

We have shown that by using the water exchange model of Moran and Prato (Moran and Prato 

2004), there is an explicit accounting for the equilibrium exchange of water molecules between 

the intra and extravascular compartments and that the effect of water exchange on CBVf 

quantification can be estimated. The water exchange effect can be reduced by using shorter Tinv 

and TR, if the blood T1 can be reduced to less than Tinv/5 by CAs with appropriate r1 relaxivities. 

Owing to the water exchange across a healthy blood brain barrier, the CBVf is overestimated by 

less than 10% with the couple of Tinv/TR = 750ms/325 ms mainly employed in this work.  

 

1.3. Inflow - outflow effects 
 
In our study we have used a homogeneous RF coil for emission whose spatial sensitivity 

extends to the upper thorax of the rat. The inversion pulse used is spatially non selective 

inverting blood protons far away from the imaged slice. The inversion time Tinv = 325 ms was in 

the order of the mean arterial transit time in rats (0.3 s) (Thomas et al. 2006) therefore 

noninverted blood spins do not flow into the imaged brain slice before acquisition. Moreover, 

after excitation the signal is acquired with a TE of 3.2 ms which is short with respect to the blood 

velocity in capillaries. The method is therefore insensitive to blood inflow or outflow. If selective 

inversion pulses or RF coils with a smaller spatial sensitivity profile are used, inflow effects could 

occur.  

 

In such a case, only the pre-contrast acquisition is affected by the blood flow, since noninverted 

water spins could enter the imaging slice resulting in an unsuppressed blood signal. After CA 

injection the magnetization of inflowing blood water is fully relaxed whether it has experienced 

the inversion pulse or not. Subtraction of the pre-contrast acquisition from the post-contrast 

acquisition might then result in a CBVf underestimation.  

 

1.4. SNR 
 

The main drawback of the technique is the low SNR, since only the water protons in the blood 

compartment (about 3%) contribute to the signal. By lengthening the steady state, the signal can 

be accumulated. It has been shown that a sufficient SNR (about 40) can be achieved with a 

steady state of about one minute.  
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The SNR could also be increased by improving the sensitivity of the RF coils, by parallel imaging 

with an array of local RF coils or by using higher field strengths. However, this requires blood 

pool CAs with a high r1 relaxivity at high magnetic field strengths.  

 

 

 

2. Possible applications of the RSST1 method 
 

2.1. Serial studies 
 
The RSST1 method allows quantification of the CBVf, is noninvasive and can be used 

repetitively. CBVf quantification with the RSST1 method can also be performed at other field 

strengths by using appropriate timing parameters for signal suppression and by taking account 

of the CA relaxivity, Therefore, the measured parameter can be compared in a longitudinal 

study, or between subjects and centers. This is of particular interest for studying the progression 

of a pathologic process involving CBVf alterations, or for evaluating therapeutic effects. 

However, in order to apply the RSST1 method to the intravital measurement of tumor 

angiogenesis and of the efficacy of antiangiogenic drugs, appropriate CAs that do not leak out of 

the tumor vasculature are needed.  

 
2.2. Sensitivity to CBVf alterations 
 

The sensitivity of the RSST1 method was evaluated in a hypercapnia experiment. Per mmHg of 

PaCO2, an increase of 1% of the CBVf (relative to its value at normocapnia) was observed, in 

accordance with reported values. The sensitivity of the RSST1 method is therefore sufficient to 

be exploitable for example in functional MRI studies, in which CBVf (and CBF) increases by a 

factor of up to 1.5 are observed in activated brain areas (Belliveau et al. 1991).   

 

Moreover, the method can be used for angiogenesis quantification to characterize the tumor 

stage. In certain cerebral tumors three- to eightfold CBVf increases with respect to the 

contralateral side have been reported (Aronen et al. 1994; Knopp et al. 1999). The RSST1 

method is expected to be applicable to other brain pathologies accompanied by vascular 

changes that among other hemodynamic parameters affect the CBVf. Such a disease is brain 
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infarction, for which CBVf decreases to one third with respect to normal perfused brain tissue are 

observed in severe cases (Hatazawa et al. 1999). 

 

2.3. CBVf monitoring in dynamic studies 
 

If desired, the RSST1 interval can be lengthened by maintaining a sufficient CA concentration in 

blood via a continuous infusion or by using CAs with a long blood half life. Following an unique 

CA injection, a long vascular steady state signal, can not only be used for further signal 

averaging for increasing the SNR, for multiple slice acquisitions or for acquiring higher resolution 

images. If the evolution of the CBVf in a tissue of interest (cf. Eq. I-5) is monitored with rapid 

serial acquisitions such as with the IR-FLASH sequence (TR = 750 ms), the RSST1 method can 

be used for various studies in which the CBVf is modulated, such as by varying the PaCO2 or 

the core temperature, or during pharmacological tests. 

 

2.4. Utility in fMRI 
 

Moreover, given the good sensitivity of the method, a long RSST1 interval could be easily 

exploited in functional MRI, when using fast RSST1 acquisitions for real time monitoring of the 

CBVf during the steady state (cf. Eq. I-5). For the duration of cerebral activation, a CBVf 

increase would be detected in the corresponding brain area during continuous imaging. This is 

an advantage when opposed to first pass methods that necessitate two CA injections for CBVf 

measurement, one at baseline and a second in the activated state (Belliveau et al. 1991; 

Villringer et al. 1988). In functional MRI, measurement of the absolute CBVf and the BOLD 

signal under the same conditions could help separate and quantify the contributions of the 

different mechanisms to the complex BOLD signal.  

 

 

 

3. Advantages of the RSST1 method 

 

The technique has a number of advantages over conventional MRI methods for CBVf mapping.  
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3.1. Few assumptions 
 

The RSST1-method is based on the longitudinal relaxation of tissue water and provides a direct 

measure of the blood water. The signal from each voxel is proportional to the number of water 

protons in the blood compartment, within which the CA is distributed. In contrast to the T2* based 

methods for CBVf mapping, which are based on the signal of extravascular water protons, it 

does not rely on complex assumptions regarding the architecture of the microvasculature. For 

this reason, loss of intravascular CA compartmentalization will act synergistically on the RSST1 

signal intensity, which remains proportional to the distribution volume of the CA, as long as the 

RSST1 conditions are satisfied.  

 

Compared to other steady state methods, the RSST1 method has the advantage of being 

independent of a linear relation between CA dose and blood relaxation rate. Blood sampling or 

high resolution imaging is not necessary to measure the signal or the T1 of blood as long as the 

CA is known to reduce the blood T1 to less than Tinv/5.  

 

3.2. No AIF measure 
 

The RSST1 method does not suffer from any of the difficulties often encountered with first pass 

techniques such as necessity of high temporal resolution for accurate monitoring of the AIF, 

recirculation of the tracer, dependence on the deconvolution method or dependence on the 

injection mode. It is independent of the way the injection is carried out as long as a steady state 

signal can be observed.  
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Conclusion 
 

In this work, an original method for CBVf quantification has been established. It is based on the 

nulling of the signals from blood and extravascular water in white and gray matter, which are 

characterized by a range of relatively long T1 relaxation times. The tissue suppression is 

achieved with a fast inversion recovery sequence (TR << T1). After intravenous injection of a 

blood pool CA, which shortens the blood relaxation times, the resulting signal is of intravascular 

origin. By using an appropriate CA dose, decreasing the blood T1 to less than Tinv/5, this signal 

originates from fully relaxed water protons and is therefore proportional to the CBVf. For 

normalization, an acquisition of the proton density weighted signal of the intra- and extravascular 

compartment is used. 

 

The experimental CAs P760, SINEREM and Gd-ACX as well as Gd-DOTA used in clinical 

practice have been studied, and the optimal dose for CBVf measurement has been determined.  

 

The method has been validated using P760 and Gd-DOTA in healthy rat brain by inducing a 

CBVf increase in a hypercapnia experiment. The method correctly monitored the CBVf increase 

and the decrease after recovery to normocapnia. The sensitivity to CBVf changes is sufficient to 

be used in functional MRI studies. 

 

The RSST1 method has been applied to the CBVf measurement in C6 and RG2 rat brain tumor 

models to study CAs that preserve blood pool properties in tumor tissues. Such blood pool CAs 

result in a steady intravascular signal and allow direct CBVf measurements. The experimental 

paramagnetic CA Gd-ACX remains confined to the vasculature in the C6 glioma model. Identical 

CBVf values have been obtained with Gd-ACX and Gd-DOTA in the brain tissue contralateral to 

the tumor, and histological vascular morphometric analysis has been used on the same rats as 

studied by MRI to validate the CBVf measurements in tumor tissue.  

 

SINEREM has been approved for clinical applications. In order to use this CA, which has a high 

transverse relaxivity, for the CBVf measurement with the RSST1 method, a 3D projection 

reconstruction acquisition mode allowing short echo time has been implemented. The use of this 

CA for CBVf measurement was also motivated by the fact that its intravascular confinement in 

C6 tumor models has been reported. CBVf measurements in healthy rats using SINEREM with 
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the RSST1 method have been validated with the steady state ΔR2* method for CBVf 

measurement following the same SINEREM injection. 

 

Using SINEREM CBVf values up to 20% were measured in an advanced stage RG2 tumor 

model, suggesting that SINEREM is not a blood pool agent in this tumor. However, the RSST1 

method with a low temporal resolution, such as in this study (25 minutes for the 3D projection 

reconstruction acquisition), can not be used to reliably distinguish between high CBVf and 

overestimation due to extravasation. A CBVf measure independent of CA leakage is needed to 

verify this result.  

 

Using the RSST1 method with a fast acquisition mode, the CA extravasation can be monitored. 

We have shown how, using a pharmacokinetic two compartment model, the CBVf together with 

the extravascular distribution volume of the CA can be estimated from the leakage profile. In 

muscle tissue, the values derived from the leakage profiles for Gd-DOTA and P760 were in 

accordance with literature.  In the RG2 tumor, in addition to a spatially heterogeneous CBVf 

distribution, this analysis revealed a spatially non uniform permeability of the microvasculature 

for these two CAs. The CBVf in this tumor was below 5%, proving that the CBVf measurement 

carried out with SINEREM in the same tumor model was overestimated due to leakage during 

the acquisition. Since the CBVf and the permeability of the blood brain barrier is spatially 

heterogeneous in a RG2 tumor model, the derived values have to be confirmed on a larger 

number of animals. 

 

CBVf quantification using the RSST1 method can be performed in a few minutes and does 

require neither blood sampling, nor monitoring of the AIF. The MRI signal is directly related to 

the CBVf, and the method does not rely on a linear relationship between signal change and CA 

concentration. Neither does it rely on complex assumptions and a geometrical model of the 

microvasculature. The CA can be administrated either as a bolus or as a continuous infusion. 

The imaging sequence can be applied on clinical MRI scanners. However, high gradient 

performance allowing ultra short echo times are of benefit to avoid CBVf underestimation due to 

transverse relaxation effects, when CAs with high transverse relaxivity are employed.  

 

The method can be used repetitively in long-term time course studies due to its noninvasive and 

quantitative nature. In combination with blood pool CAs that do not leak through the BBB, the 
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method can now be used to evaluate the response to vascular targeted therapies. Gd-ACX 

could be a potential CA for the preclinical evaluation of antivascular or antiangiogenic drugs. 
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Appendix I:  ImageJ (version 1.38a) macro for vascular 
morphometric analysis 
 

To use this macro for vascular morphometric analysis you need to download: 

 

1°) ImageJ : 

http://rsb.info.nih.gov/ij/download.html 

 

2) To update to a newer version of ImageJ : 

http://rsb.info.nih.gov/ij/upgrade/ij.jar 

 

3) Plugin "otsu thresholding": 

http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html 

 

4) Plugin "Morphology" 

http://www.dentistry.bham.ac.uk/landinig/software/software.html 

Download the full set as a single zip file from here 
 
 
// Goal: calculate vascular morphologic parameters from anti-Collagen IV 
immunofluorescence images using stereological methods: 
// -  number of blood vessels in a ROI  
// -  the blood vessel density (nb/mm) 
// -  the "2D-blood volume" = the vascular surface fraction (%) 
// -  the vessel diameters (by 4 different methods) 
// -  the length density of the vessels Lv (mm/mm3) = Sum[a/b]/At for each 
slice/image 
// -  the sum of Lv for each slice is needed to compute the blood volume 
per unit volume  
//    Vv (mm3/mm3) = pi/4 d² Sum[Lv] assuming blood vessels are perfect 
cylindical tubes 
 
// some procedures are taken from the macro analyse_vaisseaux - Marion 
Gandit (06/09/2005) 
// modifications by Adriana T. Perles-Barbacaru - October 12, 2006 
// modifications by BvdS, October 23, 2006 
// modifications by Adriana T. Perles-Barbacaru - April 3, 2007  
// with magnification factor 10, the size of one pixel is 1.533 µm for 
acquired gray scale acquisitions and 0.767 µm for color acquisitions 
// or gray scale images converted from color acquisitions 
// 1.518 µm in Marion's macro!!! 1.379 µm for the brain acquisitions from 
BvdS (Uetrecht) 
 
// Declaration of global variables: 
var title  = "a title"; 
var title2 = "a title"; 
var title3 = "a title"; 
var title4 = "a title"; 
var overestimation = "a title" 
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var underestimation = "a title" 
//var pixelsize = 1.379; 
var pixelsize = 0.76667; 
var slice = "a slice or image number" 
var ImageDirectory = "the directory of the image"; 
var flagROI = 0; 
var ROIareamillim = 0; 
var ROIarea = 0; 
var imagebin = 0; 
 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°° 
macro "Define an ROI [F4]"  
{ 
// asks to open the image, if not a grayscale image the color channel is 
extracted 
{ 
{open();}}  
title=getTitle; 
slice=substring(title,2,4); 
ImageDirectory=getDirectory("image"); 
bit=bitDepth(); 
if (bit==8){ 
    pixelsize = 0.76667; 
    } 
// if not a grayscale image, selection of the red color channel 
if (bit!=8){ 
    pixelsize = 0.76667; 
    //showMessage("pixelsize in µm", pixelsize); 
    run("RGB Split"); 
    selectWindow(title+" (blue)"); 
    close(); 
    selectWindow(title+" (green)"); 
    close(); 
    selectWindow(title+" (red)"); 
    rename(title);     
    } 
// Define the ROI 
flagROI = 0; 
ROI=getBoolean("Do you want to open a saved ROI? Cancel selects the whole 
image but you need to press F5 to continue."); 
if (ROI==1){ 
    showMessage("ROI","Open the ROI, then press F5 to continue"); 
    open(); 
    flagROI=1; 
    selectWindow(title); 
    } 
else if (ROI==0){ 
    showMessage("ROI","Draw the ROI, then press F5 to continue"); 
    flagROI=2; 
    selectWindow(title); 
    setTool(3); 
    }   
exit; 
} 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°° 
macro "image processing [F5]"  
// { 
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// saves the ROI, measures the ROI parameters 
{ 
if (flagROI!=0){ 
    if (flagROI==2){ 
        saveAs("Selection");}     
    run("Crop"); 
    run("Select None"); 
    run("Duplicate...", "title="+title+"_roi"); 
    run("Duplicate...", "title="+title+"_copyroi"); 
    run("Restore Selection");  
    run("Set Measurements...", "area limit redirect=None decimal=6"); 
    run("Measure"); 
    setForegroundColor(0, 0, 0); 
    run("Fill"); 
    ROIarea=getResult("Area", 0); 
    // conversion to µm² and mm² 
    ROIareamicrom=ROIarea*pixelsize*pixelsize; 
    ROIareamillim=ROIarea*pixelsize*pixelsize/1000000; 
    print(ImageDirectory); 
    print("slice: "+title); 
    print("ROI surface(mm²) : "+ROIareamillim);  
    run("Image Calculator...", "image1="+title+"_copyroi operation=XOR 
image2="+title+"_roi create"); 
    rename("OriginalSelection"+title); 
    } 
else if (flagROI==0){ 
    run("Duplicate...", "title="+title+"_roi"); 
    H=getHeight(); 
    W=getWidth(); 
    ROIarea = W*H; 
    ROIareamillim = W*H*pixelsize*pixelsize/1000000; 
    print("slice: "+ImageDirectory +title); 
    print("ROI surface (mm²) : "+ROIareamillim); 
    run("Duplicate...", "title="+title+"_roi"); 
    run("Duplicate...", "title="+title+"_copyroi"); 
    makeRectangle(3, 3, W, H); 
    setForegroundColor(0, 0, 0); 
    run("Fill"); 
    run("Image Calculator...", "image1="+title+"_copyroi operation=XOR 
image2="+title+"_roi create"); 
    rename("OriginalSelection"+title); 
    } 
title2=getTitle; 
run("Duplicate...", "title=BeforeImageProcessing"); 
selectWindow(title+"_roi"); 
close(); 
selectWindow(title+"_copyroi"); 
close(); 
selectWindow(title); 
close(); 
selectWindow("BeforeImageProcessing"); 
run("Background Correction ", "number=2 radius=4 auto-contrast"); 
title3=getTitle; 
decision=getBoolean("Do you want to apply the Rolling Ball Background 
Subtraction?"); 
if (decision==1){ 
    rayon=getNumber("radius",15); 
    run("Subtract Background...","rolling="+rayon); 
    } 
run("Despeckle"); 
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showMessage("press F2 for Otsu thresholding or F3 for manual 
thresholding"); 
exit; 
} 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°°° 
macro "manual Thresholding [F3]" 
{ 
showMessage("adjust the Threshold manually and press the apply button"); 
selectWindow(title3); 
run("Duplicate..."); 
rename("Threshold"); 
setAutoThreshold(); 
updateDisplay(); 
run("Threshold..."); 
showMessage("when finished, close threshold interface and press F7 to 
continue segmentation"); 
exit; 
} 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°° 
macro "Otsu Thresholding [F2]"  
{ 
selectWindow(title3); 
run("Otsu Thresholding"); 
run("Invert"); 
run("Make Binary"); 
selectWindow(title2); 
close(); 
selectWindow("Threshold"); 
//erosions=getNumber("Erosions", 0); 
//run("BinaryFilterReconstruct ", "erosion="+erosions+" ");  
run("Options...", "iterations=5 count=8"); 
run("Close-"); 
// The function "Binary Fill" does not seem to work correctly, replaced by 
the function "Fill Holes".  
// But "Fill Holes" does not fill the holes located on the border of ROI. 
run("Fill Holes"); 
selectWindow(title3); 
run("Magenta Hot"); 
run("Image Calculator...", "image1="+title3+" operation=XOR 
image2=Threshold create"); 
//this image shows the over- and underestimation in color 
rename("OverUnder"); 
title4=getTitle; 
run("Image Calculator...", "image1="+title3+" operation=OR image2=Threshold 
create"); 
//this image shows the overestimation in color 
rename("Overestimation"); 
overestimation=getTitle; 
run("Image Calculator...", "image1="+title4+" operation=Difference 
image2="+overestimation+" create"); 
//this image shows the underestimation in color 
rename("Underestimation"); 
underestimation=getTitle; 
run("Tile"); 
selectWindow("Threshold"); 
run("Duplicate...", "title=Binary"+title2+""); 
imagebin=getTitle; 
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selectWindow("Threshold"); 
close(); 
selectWindow(title4); 
close(); 
selectWindow(overestimation); 
saveAs("Jpeg"); 
close(); 
selectWindow(underestimation); 
saveAs("Jpeg"); 
close(); 
// select vessel parameters 
selectWindow(imagebin); 
run("Set Measurements...", "area centroid perimeter bounding fit 
circularity feret's limit redirect=None decimal=6"); 
run("Analyze Particles...", "size=25-Infinity circularity=0.00-1.00 
show=Ellipses display clear record"); 
rename("Ellipses.tif"); 
run("Image Calculator...", "image1="+title3+" operation=Difference 
image2=Ellipses.tif create"); 
rename("MergedEllipses"); 
for (i=0; i<nResults; i++) 
    {Major = newArray(nResults); 
    Minor = newArray(nResults); 
    MajorDivMinor = newArray(nResults); 
    Major[i]=getResult('Major',i); 
    Minor[i]=getResult('Minor',i); 
    MajorDivMinor[i] = Major[i]/Minor[i]; 
    setResult("a/b",i,MajorDivMinor[i]); 
    HeightBounding = newArray(nResults); 
    WidthBounding = newArray(nResults); 
    MinDistBounding = newArray(nResults); 
    MinDistBounding2 = newArray(nResults); 
    HeightBounding[i]=getResult('Height',i); 
    WidthBounding[i]=getResult('Width',i); 
    MinDistBounding[i]=minOf(HeightBounding[i],WidthBounding[i]); 
    MinDistBounding2[i]=MinDistBounding[i]*pixelsize; 
    setResult("MinDistBoundingBox(µm)",i,MinDistBounding2[i]); 
    } 
updateResults(); 
//compute vessel parameters 
area=0; 
SumMajorDivMinor=0; 
for (i=0; i<nResults; i++) 
    {area+=getResult("Area", i); 
    SumMajorDivMinor+=getResult("a/b",i); 
    SumMinor+=getResult("Minor",i); 
    SumMinDistBoundingBox+=getResult("MinDistBoundingBox(µm)",i); 
    } 
// compute other mean vessel diameters     
selectWindow(imagebin); 
run("Particles8 Plus", " exclude label show=Particles filter minimum=25 
maximum=999999 display overwrite"); 
feretmin = newArray(nResults); 
feretmin1 = newArray(nResults); 
feretminmm = newArray(nResults);  
for (i=0; i<nResults; i++) { 
    feretmin1[i] = getResult('MinR',i); 
    feretmin[i]  =  2*feretmin1[i] * pixelsize; 
    feretminmm[i] = 2*feretmin1[i] * pixelsize/1000; 
    Breadth = newArray(nResults); 
    Breadthmm = newArray(nResults); 
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    Breadth[i] = getResult('Breadth',i); 
    Breadthmm[i] = Breadth[i]*pixelsize/1000; 
    setResult("diameterBreadth(mm)", i, Breadthmm[i]); 
    } 
run("Select None"); 
for (i=0; i<nResults; i++) { 
    setResult("diameterFeretMin(µm)", i, feretmin[i]);  
    setResult("diameterFeretMin(mm)", i, feretminmm[i]); 
    } 
updateResults(); 
feret=0; 
for (i=0; i<nResults; i++){ 
    feret+=getResult("diameterFeretMin(µm)",i); 
    breadth+=getResult("diameterBreadth(mm)",i); 
    }   
vesselarea=area*pixelsize*pixelsize; 
Lv = SumMajorDivMinor/ROIareamillim 
// print results to a text file 
print ("number of detected vessels: "+nResults); 
print ("total vessel surface (µm²): "+vesselarea); 
print ("mean vessel surface (µm²): "+vesselarea/nResults); 
print ("vascular volume 2D-method (en %): "+area*100/ROIarea); 
print ("vessel density (nb /mm²): "+nResults/ROIareamillim); 
print ("mean vessel diameter from minor ellipse diameter (mm): 
"+SumMinor/nResults/1000); 
print ("mean vessel diameter from inscribed circle (mm): 
"+feret/nResults/1000); 
print ("mean vessel diameter from bounding box (mm): 
"+SumMinDistBoundingBox/nResults/1000); 
print ("mean vessel diameter from breadth perpendicular to feret (mm): 
"+breadth/nResults); 
print ("sum of a/b over all detected vessels: "+SumMajorDivMinor); 
print ("mean vascular length density Lv for this slice in mm-² is: "+Lv); 
print ("slice number "+slice); 
// enter additional results into the excel file 
setResult("MeanVesselDiameterIC",0,feret/nResults/1000); 
setResult("MeanVesselDiameterMAE",0,SumMinor/nResults/1000); 
setResult("MeanVesselDiameterBB",0,SumMinDistBoundingBox/nResults/1000); 
setResult("MeanVesselDiameterBreadth",0,breadth/nResults); 
setResult("LengthDensity(Lv,mm-²)",0,Lv); 
setResult ("ROIarea(mm²)",0,ROIareamillim); 
setResult ("VascVol(2D)",0,area*100/ROIarea);  
setResult ("Sum_a/b",0,SumMajorDivMinor); 
setResult ("VesselDensity(nb/mm²)",0,nResults/ROIareamillim);  
updateResults(); 
// Save binary image and measures 
selectWindow("MergedEllipses"); 
rename("MergedEllipses"+title); 
saveAs("Jpeg"); 
close(); 
selectWindow("BeforeImageProcessing"); 
close(); 
selectWindow(imagebin); 
rename("Binary"+title); 
saveAs("Jpeg"); 
close(); 
selectWindow("Results"); 
saveAs("text"); 
selectWindow("Log"); 
saveAs("text"); 
selectWindow(title3); 
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close(); 
selectWindow("Ellipses.tif"); 
close(); 
exit; 
} 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°° 
macro "Segmentation [F7]"  
{ 
run("Make Binary"); 
selectWindow(title2); 
close(); 
selectWindow("Threshold"); 
//erosions=getNumber("Erosions", 0); 
//run("BinaryFilterReconstruct ", "erosion="+erosions+" ");  
run("Options...", "iterations=5 count=8"); 
run("Close-"); 
run("Fill Holes"); 
selectWindow(title3); 
run("Magenta Hot"); 
run("Image Calculator...", "image1="+title3+" operation=XOR 
image2=Threshold create"); 
rename("OverUnder"); 
title4=getTitle; 
run("Image Calculator...", "image1="+title3+" operation=OR image2=Threshold 
create"); 
rename("Overestimation"); 
overestimation=getTitle; 
run("Image Calculator...", "image1="+title4+" operation=Difference 
image2="+overestimation+" create"); 
rename("Underestimation"); 
underestimation=getTitle; 
run("Tile"); 
selectWindow("Threshold"); 
run("Otsu Thresholding"); 
run("Invert"); 
imagebin=getTitle; 
selectWindow("Threshold"); 
close(); 
selectWindow(title4); 
close(); 
selectWindow(overestimation); 
saveAs("Jpeg"); 
close(); 
selectWindow(underestimation); 
saveAs("Jpeg"); 
close(); 
showMessage("press F6 for the measurement of the segmented structures"); 
exit; 
} 
// 
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
°°°°°°°° 
macro "measurements [F6]" 
{ 
// select vessel parameters 
selectWindow(imagebin); 
run("Set Measurements...", "area centroid perimeter bounding fit 
circularity feret's limit redirect=None decimal=6"); 
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run("Analyze Particles...", "size=25-Infinity circularity=0.00-1.00 
show=Ellipses display clear record"); 
rename("Ellipses.tif"); 
run("Image Calculator...", "image1="+title3+" operation=Difference 
image2=Ellipses.tif create"); 
rename("MergedEllipses"); 
for (i=0; i<nResults; i++) 
    {Major = newArray(nResults); 
    Minor = newArray(nResults); 
    MajorDivMinor = newArray(nResults); 
    Major[i]=getResult('Major',i); 
    Minor[i]=getResult('Minor',i); 
    MajorDivMinor[i] = Major[i]/Minor[i]; 
    setResult("a/b",i,MajorDivMinor[i]); 
    HeightBounding = newArray(nResults); 
    WidthBounding = newArray(nResults); 
    MinDistBounding = newArray(nResults); 
    MinDistBounding2 = newArray(nResults); 
    HeightBounding[i]=getResult('Height',i); 
    WidthBounding[i]=getResult('Width',i); 
    MinDistBounding[i]=minOf(HeightBounding[i],WidthBounding[i]); 
    MinDistBounding2[i]=MinDistBounding[i]*pixelsize; 
    setResult("MinDistBoundingBox(µm)",i,MinDistBounding2[i]); 
    } 
updateResults(); 
//compute vessel parameters 
area=0; 
SumMajorDivMinor=0; 
for (i=0; i<nResults; i++) 
    {area+=getResult("Area", i); 
    SumMajorDivMinor+=getResult("a/b",i); 
    SumMinor+=getResult("Minor",i); 
    SumMinDistBoundingBox+=getResult("MinDistBoundingBox(µm)",i); 
    } 
// compute other mean vessel diameters     
selectWindow(imagebin); 
run("Particles8 Plus", " exclude label show=Particles filter minimum=25 
maximum=999999 display overwrite"); 
feretmin = newArray(nResults); 
feretmin1 = newArray(nResults); 
feretminmm = newArray(nResults);  
for (i=0; i<nResults; i++) { 
    feretmin1[i] = getResult('MinR',i); 
    feretmin[i]  =  2*feretmin1[i] * pixelsize; 
    feretminmm[i] = 2*feretmin1[i] * pixelsize/1000; 
    Breadth = newArray(nResults); 
    Breadthmm = newArray(nResults); 
    Breadth[i] = getResult('Breadth',i); 
    Breadthmm[i] = Breadth[i]*pixelsize/1000; 
    setResult("diameterBreadth(mm)", i, Breadthmm[i]); 
    } 
run("Select None"); 
for (i=0; i<nResults; i++) { 
    setResult("diameterFeretMin(µm)", i, feretmin[i]);  
    setResult("diameterFeretMin(mm)", i, feretminmm[i]); 
    } 
updateResults(); 
feret=0; 
for (i=0; i<nResults; i++){ 
    feret+=getResult("diameterFeretMin(µm)",i); 
    breadth+=getResult("diameterBreadth(mm)",i); 
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    }   
vesselarea=area*pixelsize*pixelsize; 
Lv = SumMajorDivMinor/ROIareamillim 
// print results to a text file 
print ("number of detected vessels: "+nResults); 
print ("total vessel surface (µm²): "+vesselarea); 
print ("mean vessel surface (µm²): "+vesselarea/nResults); 
print ("vascular volume 2D-method (en %): "+area*100/ROIarea); 
print ("vessel density (nb /mm²): "+nResults/ROIareamillim); 
print ("mean vessel diameter from minor ellipse diameter (mm): 
"+SumMinor/nResults/1000); 
print ("mean vessel diameter from inscribed circle (mm): 
"+feret/nResults/1000); 
print ("mean vessel diameter from bounding box (mm): 
"+SumMinDistBoundingBox/nResults/1000); 
print ("mean vessel diameter from breadth perpendicular to feret (mm): 
"+breadth/nResults); 
print ("sum of a/b over all detected vessels: "+SumMajorDivMinor); 
print ("mean vascular length density Lv for this slice in mm-² is: "+Lv); 
print ("slice number "+slice); 
// enter additional results into the excel file 
setResult("MeanVesselDiameterIC",0,feret/nResults/1000); 
setResult("MeanVesselDiameterMAE",0,SumMinor/nResults/1000); 
setResult("MeanVesselDiameterBB",0,SumMinDistBoundingBox/nResults/1000); 
setResult("MeanVesselDiameterBreadth",0,breadth/nResults); 
setResult("LengthDensity(Lv,mm-²)",0,Lv); 
setResult ("ROIarea(mm²)",0,ROIareamillim); 
setResult ("VascVol(2D)",0,area*100/ROIarea);  
setResult ("Sum_a/b",0,SumMajorDivMinor); 
setResult ("VesselDensity(nb/mm²)",0,nResults/ROIareamillim);  
updateResults(); 
// Save binary image and measures 
selectWindow("MergedEllipses"); 
rename("MergedEllipses"+title); 
saveAs("Jpeg"); 
close(); 
selectWindow("BeforeImageProcessing"); 
close(); 
selectWindow(imagebin); 
rename("Binary"+title); 
saveAs("Jpeg"); 
close(); 
selectWindow("Results"); 
saveAs("text"); 
selectWindow("Log"); 
saveAs("text"); 
// Close images 
selectWindow(title3); 
close(); 
selectWindow("Ellipses.tif"); 
close(); 
} 
}} 
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Appendix II:  A new Magnetic Resonance Imaging method for 
mapping the cerebral blood volume fraction: the rapid steady-state 
T1 method 
 
Perles-Barbacaru AT, Lahrech H  

Mar 2007 

J Cereb Blood Flow Metab 27(3):618-631 
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Appendix III:  Cerebral blood volume quantification in a C6 tumor 
model using Gadolinium Per (3,6) Anhydro Alpha Cyclodextrin as a 
new MRI preclinical contrast agent 
 
Lahrech H, Perles-Barbacaru AT, Gadelle A, Aous S, Farion R, Le Bas JF, Debouzy JC, 

Fries HP 

in press  

J Cereb Blood Flow Metab 
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Appendix IV:  Imagerie du volume sanguin cérébral 
 

Perles-Barbacaru AT  

Jan 2007 

Le Gluon, journal of scientific vulgarization of the Joseph Fourier University,  

http://www.ujf-grenoble.fr/76056968/0 
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