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Considered system 4

SISO uncertain non linear system under canonical controllability form

ẋ1 = x2

ẋ2 = x3

...

ẋn ∈ ψ(x, t) + [−C (x, t),C (x, t)] + [Γm(x, t), ΓM(x, t)]u

y = x1

[−C (x, t),C (x, t)] is a matched perturbation,
[Γm(x, t), ΓM(x, t)] an uncertainty on the gain.

0 < Γm(x, t) 6 ΓM(x, t) <∞
C (x, t) < Γm(x, t)uM
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Classical sliding mode control
[Utkin, 1992, Utkin et al., 1999] 5

Design a sliding hyperplane de�ned by

{x so that σ(x) = xn + a∗n−1xn−1 + . . .+ a∗1x1 = 0}

and a control law u = −uM sign(σ(x))
which forces the system to the sliding surface in �nite time

t

u

0

uM

−uM
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Equivalent and nominal control 6

The actual control is discontinuous, but 2 useful continuous controls :

Nominal control : If perturbations are not taken into account, unom can be
computed in advance :

ẋn = ψ(x, t) + Γunom = −
n−1∑
i=1

aixi+1

unom(x) =

∑n−1
i=1

aixi − ψ(x, t)

Γ(x, t)

Use : add nominal control to reduce amplitude of discontinous control :

u = unom − uM sign(σ)

Equivalent control : If perturbations are taken into account, ueq can be
known afterwards, by �ltering.
Use : observer, suppress discontinuity, dimension amplitude of control
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Chattering 7

De�nition : Unwanted high frequency oscillation of the control and the output
Causes :

time delay, neglected (fast) dynamics

measurement/observation noise

Some ways to reduce it :

use saturation function instead of sign (boundary layer)

use knowledge of the plant (nominal control)

use asymptotic convergence observer

add dynamics in the control

Adding a dynamic can be done, for example :

extending the sytem : u is a new state variable, u̇ is the new control

using the super twisting algorithm

adapting the amplitude
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Conclusion 8

2 design steps = 2 questions :

Sliding surface : It sets the dynamics of the system in sliding mode.
Which one to choose ?

Reaching law : Discontinuous = robust, but chattering.
How to reduce the chattering while keeping (most of) the robustness ?
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Other adaptive approches 10

Fuzzy logic : do not garantee precision
[Munoz and Sbarbaro, 2000, Tao et al., 2003]
or overestimate the amplitude [Huang et al., 2008]

increase amplitude, then use equivalent control : [Lee and Utkin, 2007]

This approach : boundary layer [Plestan et al., 2010, Plestan et al., ture]
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Adaptive control law [Plestan et al., 2010] 11

Theorem

The control law u = −K (t) sign(σ) is stable
when amplitude K (t) varies as

K̇ =

{
K̄ |σ| sign(|σ| − δ(t)) if K > 0 or sign(|σ| − δ(t)) > 0

0 if K = 0 and sign(|σ| − δ(t)) 6 0

K (t) ↘ if σ ∈ [−δ(t); δ(t)] and
K (t) ↗ outside.

δ(t) must be

as small as possible, for precision

bigger than amplitude of chattering
(depending on K (t))

If θ majorant of delay

δ(t) > 2ΓMθK (t)

co
n
tr
ol

t

ou
tp
u
t

tt1 t2

σ

δ

C

K
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Worst case and enhancement 12

Consider the system as LTI, because sign(σ) constant.{
σ̇ = −ΓmK + C

K̇ = K̄σ
⇔ ẋ = Ax +

[
C
0

]

Majorant : σM =
C√
K̄Γm

Add a linear term : u = −K (t) sign(σ)− Klσ

The majorant of σ become : σM =
C√
K̄Γm

e
−

K
l
π√

4K̄Γm−K2
l

co
n
tr
ol

t

ou
tp
u
t

tδ

σ

C

K
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Electropneumatic benchmark 13
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Electropneumatic benchmark 13

System :

ṗP =
krT

VP(y)
[φP(pP) + ψP(pP , sign(uP))uP −

S

rT
pPv ]

ṗN =
krT

VN(y)
[φN(pN) + ψN(pN , sign(uN))uN +

S

rT
pNv ]

v̇ =
1

M
[S(pP − pN)− Ff − F ]

ẏ = v

Outputs :

position : y (relative degree 3)

mean of pressures :
pP + pN

2
(relative degree 1)
(control sti�ness or consumption of air)
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Test of the adaptive control [Brégeault et al., 2010] 14
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De�nitions [Levant, 1993] 16

De�nition (Ideal n-order sliding mode)

The sliding variable σ and its n-1 successive derivatives are continuous and reach
0, in the absence of chattering.

De�nition (Real n-order sliding mode)

Precision in O(τn), in the presence of a source of chattering of amplitude
majored by τ . Usually time delay, measurement error τ = n

√
ε.

Theorem

If there is a real nth order sliding mode, then σ = O(τn), σ̇ = O(τn−1), . . . ,
σ(n−1) = O(τ)
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Error due to time delay 17

Theorem ([Levant, 1993])

If

σ(n) is continuous and bounded on an interval τ

σ remains in a viciny of 0

then σ = O(τn)

Example

A classical sliding mode is

�rst order with respect to the sliding variable σ

nth order with respect to x1 for chattering due to pure time delay
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Error due to measurement and observation noise 18

If the state is known with the precision

ε = [O(ε) O(ε
1
2 ) . . . O(ε

1
n−1 ) O(ε

1
n )]T

for example, if it comes from a di�erentiator
such as [Levant, 2003].

For a classical sliding mode, the error is

σ(∆x) = λ1∆x1 + . . .+ λn−1∆xn−1 + ∆xn

= λ1O(ε) + λ2O(ε
1
2 ) + . . .

+ λn−1O(ε
1

n−1 ) +O(ε
1
n )

= O(ε
1
n ) = O(τ)

x2

x1
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Homogeneity [Bacciotti and Rosier, 2001, Levant, 2005] 19

De�nition

A vector �eld f ∈ Rn is homogeneous of degree q by the dilation
dκ(x1, . . . , xn)→ (κm1x1, . . . , κ

mnxn), with mi > 0 and κ > 0 if

f (dκx) = κqdκf (x)

De�nition (Equivalent de�nition)

The di�erential equation
ẋ = f (x)

is invariant with respect to the transformation (t, x)→ (κ−qt, dκx).

Example

Linear system : homogeneous with degree 0 : f (κx) = κf (x)

Pure chain of integrators : homogeneous with degree −1
and weights n,n − 1,. . . ,1.
Homogeneity kept with a suitable homogeneous control
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Properties of homogeneity
[Bacciotti and Rosier, 2001, Levant, 2005] 20

De�nition (Contractivity)

[Levant, 2005] A di�erential inclusion is contractive
i� there exist 2 compacts D1 and D2 and a time
T > 0 so that

dκD1 ∈ D1 for κ < 1,

D2 belong to the interior of D1 and contain the
origin,

all the trajectories starting in D1 reach D2 at
the time T .

x1

x2

D1D2

Theorem

[Levant, 2005] For a homogeneous system with a negative degree, the following
properties are equivalent :

Asymptotic stability ⇔ �nite time stability ⇔ Contractivity.
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Examples of second order algorithms 21

Twisting algorithm

u =

{
−αm sign(σ1) si σ1σ2 < 0

−αM sign(σ1) si σ1σ2 > 0

with αm and αM so that

αM > 4
Γm
σmax

αm >
C

Γm
γmαM − C > ΓMαm + C

σ2

σ1

u = −αM

u = −αmu = αM

u = αm
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Examples of second order algorithms 22

Suboptimal algorithm

u =

{
−αm sign(σ1) si σ1σ2 < 0

−αM sign(σ1) si σ1σ2 > 0

u(t) = λ(t)uM sign(σ1(t)− σ1(tM)

2
)

with λ(t) =

{
1 if |σ1(t)| > σ1(tM)

λ∗ if |σ1(t)| < σ1(tM)

and tM , the last moment the state reaches the σ1 axis
(σ2 = 0).

λ∗ ∈]0; 1]∩]0,
3Γm
ΓM

[

uM > max(
C

λ∗Γm
,

4C

3Γm − λ∗ΓM )

σ2

σ1

σ1(tM)

σ1(tM)

2
σ2

σ1

σ1(tM)

σ1(tM)

2
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Examples of second order algorithms 23

Super twisting algorithm

u(t) = uI (t) + λ1
√
L
√
|σ1| sign(σ1)

u̇I (t) = λ2L sign(σ1)
(1)

with L =
C

Γm
and

λ2 > 1

λ1 >
√
−2λ2 + 2

√
λ2
2

+ 2λ2 + 2

Common values : λ2 = 1.1 et λ1 = 2.

σ̇1

σ1
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A new proof of convergence of the super twisting 24

Available proofs

Original proof [Levant, 1998] : numerical, gives the smallest coe�cients, but
tied to super twisting

Majorant based proof [Davila et al., 2005] : quite small coe�cients, more
easily extendable to similar control laws

Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable
to other control laws, but large coe�cients

Steps of the proof

Homogeneity : only need to study the trajectory in one half plane : stable i�
‖σf ‖ < ‖σ0‖
study only the worst case

simplify the di�erential equation to obtain analytical results
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Open loop time optimal control 26

Perfectly known observable and controllable SISO LTI system with input
v ∈ [−vM ; vM ]: ẋ = Ax + bv

Theorem (Pontryagin's theorem for SISO LTI systems)

The time optimal control: [Athans and Falb, 1966, Boltjanski, 1969]

is a bang bang control with �nite number of switchings

this control sequence is unique

t

u

0

τ1τ2τ3

Theorem (Feldbaum's theorem)

[Athans and Falb, 1966, Boltyanski and Gorelikova, 1997]

Order n system with n real poles ⇒ at most n phases (n − 1 switchings)
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Theorem (Pontryagin's theorem for SISO LTI systems)

The time optimal control: [Athans and Falb, 1966, Boltjanski, 1969]

is a bang bang control with �nite number of switchings

this control sequence is unique

t

u

0

τ1τ2τ3

Theorem (Feldbaum's theorem)

[Athans and Falb, 1966, Boltyanski and Gorelikova, 1997]

Order n system with n real poles ⇒ at most n phases (n − 1 switchings)



Intro SMC Adaptive SMC Intro HOSMC Intro TOC VSS+TOC Conclusion

Closed loop time optimal control for SISO LTI systems 27

Theorem

The time optimal closed loop control has the form

v = −vM sign(fvM (x))

fvM (x) = 0 is the equation of a switching surface computed for an amplitude of
control vM .

In general, switching surface 6= sliding surface ⇔ set of trajectories of the system

x2

x1

x2

x1

1
ω

Lemma ([Brégeault and Plestan, 2009])

For systems with real poles only,
switching surface ⇔ trajectories of the system driven by a time optimal control
with at most n − 1 phases
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Computing the implicit equation for real poles systems 28

Function [x1, . . . xk ]T = f k(s, τ1, . . . , τk)

Theorem ([Brégeault and Plestan, 2009])

∀k 6 n, f k , is a bijection between {−1; +1} ×R+k

and Rk .

⇒ Equation of the switching surface : xn − xnS (x1, . . . , xn−1, vM) = 0 for systems
in canonical controllability form

⇒ Algorithm to compute the switching surface step by step, one dimension at a
time

For pure chains of integrators :
The time optimal switching surface is homogeneous of degree −1.
So, fvM (x) = ‖x‖H fvM (

x

‖x‖H )

⇒ reduces the dimension of the set of points by 1, and increases precision near
the origin.
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Parametrization of the system 30

Reference system : totally known LTI system. . .

ẋ = Ax + bv ⇔



ẋ1 = x2

ẋ2 = x3

...

ẋn ∈
n∑

i=1

ai xi + v

. . . because all the uncertainties are in the new virtual control

v ∈ [−C ′;C ′] + [Γm; ΓM ]u

so that −C ′ + ΓmuM > 0.

0

ΓmuM − C

−ΓmuM + C

ΓMuM + C

−ΓMuM − C

If u = ±uM , |v | > ΓmuM − C ′ > 0
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Parametrization of the system 30

0

ΓmuM − C

−ΓmuM + C

ΓMuM + C

−ΓMuM − C

We can theoretically generate any control within [−(ΓmuM−C ′); ΓmuM−C ′]
thanks to high frequency switching (equivalent control).
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Control law 31

Theorem

The control
u = −uM sign(fvN (x))

with vN the amplitude of the reference control chosen so
that:

0 < vN 6 ΓmuM − C ′

is a nth order sliding mode control, provided the
reference system has only real poles

0

ΓmuM − C

−ΓmuM + C

ΓMuM + C

−ΓMuM − C
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Ideal sliding mode 32

Prove the stability of the switching surface :
Time optimal switching surface ⇔ τn(x) = 0

Lyapunov function: τn(x)

t

u

0

τ1τ2τ3

Nominal case (pure time optimal) :
τn(x(t)) = τn(t = 0)− t
⇒ τ̇n = −1

Real case (with uncertainties) :
The direction of the control bvN sign(fvN (x)) is so that τn decreases as fast as
possible.
As ΓmuM − C ′ > vN , τn decreases at least as fast : τ̇n 6 −1

⇒ attractive surface ⇒ sliding mode
⇒ the system behaves like a LTI system subject to a time optimal control
⇒ stable nth order ideal sliding mode.
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Real sliding mode 33

Delays : nth order sliding

Measurement/observation error : state reaches S + E ,
with E = [O(ε) O(ε

1
2 ) . . . O(ε

1
n−1 ) O(ε

1
n )]T

Shape of the surface :
parametric equation of the surface :
(s, k1τ, k2τ, . . . , kn−1τ, 0) with small τ > 0
Integrating the system with this control yields

xi = αi (s, vN , k2, . . . , kn−1)τn+1−i +O(τn+2−i )

ẋn =
n∑

i=1

aixi + |v | sign(fvN (x)) = O(τ) + |v | sign(fvN (x))

x2

x1

⇒ xS = [O(τn)O(τn−1) . . .O(τ)]T
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Example : double integrator 34

x2

x1

System:

σ̇1 = σ2

σ̇2 ∈ [−C ;C ] + [Γm; ΓM ]u

Control:
u = −uM sign

(
σ2 +

√
2vN

√
|σ1| sign(σ1)

)
with vN 6 ΓmuM − C

2nd order sliding mode control with prescribed convergence law:

u = −uM sign
(
σ2 + β

√
|σ1| sign(σ1)

)
with

β2

2
6 ΓmuM − C [Levant, 2007]
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Example : triple integrator 35

ẋ1 = x2

ẋ2 = x3

ẋ3 ∈ [−ψM ;ψM ] + u

Equation from
[Pao and Franklin, 1993]
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Figure: Control u and equivalent
control of v : veq
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Figure: x1 (�), x2 (r), x3 (. . . )
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General LTI systems and VSS control 36

Theorem

The control
u = −uM sign(fvN (x))

with vN the amplitude of the reference control chosen so that:

0 < vN 6 ΓmuM − C ′

is a variable structure control which stabilizes the system in �nite time.
The convergence time is no greater than the corresponding time optimal control
law with amplitude vN .

x2

x1

1
ω

|v|
vN

t

V(t)

0
δt



Intro SMC Adaptive SMC Intro HOSMC Intro TOC VSS+TOC Conclusion

General LTI systems and VSS control 36

Theorem

The control
u = −uM sign(fvN (x))

with vN the amplitude of the reference control chosen so that:

0 < vN 6 ΓmuM − C ′

is a variable structure control which stabilizes the system in �nite time.
The convergence time is no greater than the corresponding time optimal control
law with amplitude vN .

x2

x1

1
ω

|v|
vN

t

V(t)

0
δt



Intro SMC Adaptive SMC Intro HOSMC Intro TOC VSS+TOC Conclusion

Reduction of the chattering 37

Problem : The nominal control is neither continuous in time nor in space.
⇒ use of saturation or nominal control do not work

Solution : Add a dynamic : compute the time optimal switching surface for an
LTI system of order n + 1, and the corresponding nominal dynamics of u and xn.

Theorem

The control law using

the nominal value of u (triangular)

a super twisting of sliding variable xn − xnnom (x1, . . . , xn−1),

coe�cients L =
C + LγvN

Γm
, λ1 = 1, λ2 = 1.1

stabilizes the system in �nite time
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stabilizes the system in �nite time
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Example : double integrator 38

Neglected �rst order dynamic (time constant: 10ms), and sinusoidal matched
perturbation.
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Conclusion:

Adaptive sliding mode

Intermediate proof of convergence of the super twisting algorithm

Algorithm to compute the time optimal control switching surface

New control law : VSS+TOC (HOSMC for real poles, VSS for complex
poles, reduction of chattering for real poles)

Perspectives:

Adaptive control for higher order sliding mode

Improve algorithms to compute the switching surfaces

Take saturation into account in VSS+TOC smooth control laws

Extend VSS+TOC algorithms to MIMO or nonlinear cases
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