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Considered system

SISO uncertain non linear system under canonical controllability form

).(1 = X2

).(2 = X3

Xp € Y(x, 1) + [ C(x, t), C(x, t)] 4+ [[m(x, t), Tpm(x, t)]u
y=x
[-C(x,t), C(x,t)] is a matched perturbation,
[Fm(x, t), Tam(x, t)] an uncertainty on the gain.
0 0 < Mp(x,t) <Tp(x,t) < oo
o C(x,t) < Ip(x, t)um
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[Utkin, 1992, Utkin et al., 1999]
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Classical sliding mode control

[Utkin, 1992, Utkin et al., 1999]

@ Design a sliding hyperplane defined by

{x so that o(x) = x, + a;_1Xp—1 + ...+ ajx3 =0}

e and a control law  u = —up sign(o(x))
which forces the system to the sliding surface in finite time
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Equivalent and nominal control

The actual control is discontinuous, but 2 useful continuous controls :

@ Nominal control : If perturbations are not taken into account, u,em can be
computed in advance :
n—1
Xp = ’Q/J(X, t) + Ntpom = — Z ajXjt1

i=1
S0 aixi — (. t)
r(x,t)

Use : add nominal control to reduce amplitude of discontinous control :

Unom(X) =

U = Upom — Up sign(o)
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Equivalent and nominal control

The actual control is discontinuous, but 2 useful continuous controls :

@ Nominal control : If perturbations are not taken into account, u,em can be
computed in advance :

n—1
Xp = "/}(Xa t) + Tpom = — Z ajXi+1

i=1
S0 aixi — (. t)
r(x,t)

Use : add nominal control to reduce amplitude of discontinous control :

Unom(X) =

U = Upom — Up sign(o)

@ Equivalent control : If perturbations are taken into account, ueq can be
known afterwards, by filtering.
Use : observer, suppress discontinuity, dimension amplitude of control
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Chattering

Definition : Unwanted high frequency oscillation of the control and the output
Causes :

@ time delay, neglected (fast) dynamics
@ measurement/observation noise
Some ways to reduce it :
@ use saturation function instead of sign (boundary layer)
@ use knowledge of the plant (nominal control)
@ use asymptotic convergence observer
@ add dynamics in the control
Adding a dynamic can be done, for example :
o extending the sytem : v is a new state variable, i is the new control
@ using the super twisting algorithm
@ adapting the amplitude
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2 design steps = 2 questions :

o Sliding surface : It sets the dynamics of the system in sliding mode.
Which one to choose 7
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Conclusion

2 design steps = 2 questions :

o Sliding surface : It sets the dynamics of the system in sliding mode.
Which one to choose 7

@ Reaching law : Discontinuous = robust, but chattering.
How to reduce the chattering while keeping (most of) the robustness 7
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© Adaptive sliding mode control
o Control law
@ Worst case and enhancement
o Electropneumatic benchmark
@ Test of the adaptive control
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@ Fuzzy logic : do not garantee precision
[Munoz and Sbarbaro, 2000, Tao et al., 2003]
or overestimate the amplitude [Huang et al., 2008]
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Other adaptive approches

@ Fuzzy logic : do not garantee precision
[Munoz and Sbarbaro, 2000, Tao et al., 2003]
or overestimate the amplitude [Huang et al., 2008]

@ increase amplitude, then use equivalent control : [Lee and Utkin, 2007]
o This approach : boundary layer [Plestan et al., 2010, Plestan et al., ture]
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Adaptive control law [Plestan et al., 2010]

The control law  u = —K(t)sign(c) s stable
when amplitude K(t) varies as

K — Klo|sign(|lo| — 6(t)) if K > 0 or sign(|o| — 6(t)) >
0 t)

K(t) \ if o € [-d(t); (t)] and
K(t) /" outside.




Adaptive SMC
o] ]

Adaptive control law [Plestan et al., 2010]

The control law  u = —K(t)sign(c) s stable
when amplitude K(t) varies as
K — Klo|sign(|lo| — 6(t)) if K > 0 or sign(|o| — 6(t)) >
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Adaptive control law [Plestan et al., 2010]

The control law  u = —K(t)sign(c) s stable
when amplitude K(t) varies as
K — Klo|sign(|lo| — 6(t)) if K > 0 or sign(|o| — 6(t)) >
~ o if K =0 and sign(|o| — 6(t))

K(t) \ if o € [-d(t); (t)] and
K(t) /" outside.
4(t) must be

@ as small as possible, for precision
@ bigger than amplitude of chattering | |
(depending on K(t)) ol
If & majorant of delay 10

5(t) = 2r b K(t)
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Worst case and enhancement

Consider the system as LTI, because sign(o) constant.

c=—-T,K+C C
. _ & >'<_Ax+[}
K =Ko 0

output
a

control
o
v

Q

=
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Worst case and enhancement

Consider the system as LTI, because sign(o) constant.

c=—-"TpwK+C C
. _ & X—Ax+[}
K =Ko 0

output
—
a

o
v

C
KT

Q

control

Majorant : op =

=

3

Add a linear term : u = —K(t)sign(o) — Kjo

K’ﬂ'

T JaRkrm_K2
e \/4KTm—K]

The majorant of o become : oy = —=
KT

3
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Electropneumatic benchmark

Datagate

Control Control
Servodistributor

Schneider
Position sensor

Pressures,

Force sensor

Main actuator Perturbation actuator
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Electropneumatic benchmark

System :
pp = Vkr(T) [¢p(pp) + ¥p(pp,sign(up))up — %PPV]
b = s lon(pw) + U (pw. sgn(un)uy + -]

v= H[S(PP —pn) — Fr — F]
y=v
Outputs :
@ position : y (relative degree 3)

pp + PN
@ mean of pressures : —————

(relative degree 1)
(control stiffness or consumption of air)
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Test of the adaptive control [Brégeault et al., 2010]

L L o

aaaaaaaaaaaaaaaaaaaaaa

Position (m) and mean of pressures " 7
(bar) up (V), un (V), perturbation (N)
p P L S AMNLA
Errors of position (m) and pressures amplitude K
(bar)

K, = 8000, e1(t) = 2.5 K, (t)T ; K, = 8000 and ¢,(t) = 10 Kx(t)T

14
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© Introduction to higher order sliding mode control
@ Definitions

Errors

Homogeneity

Examples of second order algorithms

Proof of convergence of the super twisting

® 6 6 ¢
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Definitions [Levant, 1993]

Definition (ldeal n-order sliding mode)

The sliding variable o and its n-1 successive derivatives are continuous and reach
0, in the absence of chattering.
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Definitions [Levant, 1993]

Definition (ldeal n-order sliding mode)

The sliding variable o and its n-1 successive derivatives are continuous and reach
0, in the absence of chattering.

Definition (Real n-order sliding mode)

Precision in O(7"), in the presence of a source of chattering of amplitude
majored by 7. Usually time delay, measurement error 7 = {/e.

Theorem

| \

If there is a real nt' order sliding mode, then o = O(1"), 6 = O(7"71), ...,
(=1 = O(7)

A
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Error due to time delay

Theorem ([Levant, 1993])
If
e o™ s continuous and bounded on an interval T

@ o remains in a viciny of O

then o = O(7")

Example

| A\

A classical sliding mode is
o first order with respect to the sliding variable o

o n®" order with respect to x; for chattering due to pure time delay

A
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Error due to measurement and observation noise

If the state is known with the precision

e =[0(e) O(e%) O(Eﬁ) O(E%)]T

T2

for example, if it comes from a differentiator
such as [Levant, 2003].

For a classical sliding mode, the error is >
o(Ax) = MAxs + ...+ A1 Dxp—1 + Ax,
= MO(e) + A20(e2) + ...
+ Ap_10(e75) + O(e)
= 0(er) = O(7)
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Homogeneity [Bacciotti and Rosier, 2001, Levant, 2005] 19

@ Linear system : homogeneous with degree 0 :  f(kx) = xf(x)
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Definition
A vector field £ € R" is homogeneous of degree g by the dilation
di(x1, ..y Xn) = (K™X1,...,K™xy), with m; >0 and x > 0 if

f(d.x) = k9d.f(x)

@ Linear system : homogeneous with degree 0 :  f(kx) = kf(x)
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Homogeneity [Bacciotti and Rosier, 2001, Levant, 2005] 19

Definition

A vector field £ € R" is homogeneous of degree g by the dilation
di(x1, ..y Xn) = (K™X1,...,K™xy), with m; >0 and x > 0 if

f(d.x) = k9d.f(x)

Definition (Equivalent definition)

The differential equation
x = f(x)

is invariant with respect to the transformation (t,x) — (k™ 9t, diX).

| \

Example

@ Linear system : homogeneous with degree 0 :  f(kx) = kf(x)
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Homogeneity [Bacciotti and Rosier, 2001, Levant, 2005] 19

Definition

A vector field £ € R" is homogeneous of degree g by the dilation
di(x1, ..y Xn) = (K™X1,...,K™xy), with m; >0 and x > 0 if

f(d.x) = k9d.f(x)

Definition (Equivalent definition)

The differential equation
x = f(x)

is invariant with respect to the transformation (t,x) — (k™ 9t, diX).

| \

Example
@ Linear system : homogeneous with degree 0 :  f(kx) = kf(x)

@ Pure chain of integrators : homogeneous with degree —1
and weights n.n —1,. .., 1.
Homogeneity kept with a suitable homogeneous control
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Properties of homogeneity
[Bacciotti and Rosier, 2001, Levant, 2005]

Definition (Contractivity)

[Levant, 2005] A differential inclusion is contractive
iff there exist 2 compacts D; and D, and a time
T > 0 so that
@ d.D; € D; for k < 1,
@ D, belong to the interior of Dy and contain the
origin,

-

@ all the trajectories starting in Dy reach D, at
the time T.
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Properties of homogeneity
[Bacciotti and Rosier, 2001, Levant, 2005]

Definition (Contractivity)

[Levant, 2005] A differential inclusion is contractive
iff there exist 2 compacts D; and D, and a time
T > 0 so that
@ d.D; € D; for k < 1,
@ D, belong to the interior of Dy and contain the
origin,

-

@ all the trajectories starting in Dy reach D, at
the time T.

[Levant, 2005] For a homogeneous system with a negative degree, the following
properties are equivalent :

Asymptotic stability < finite time stability < Contractivity.
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Examples of second order algorithms

Twisting algorithm
—amsign(oy)  si o102 <0 o=t
u =
—apsign(oy)  si o102 20

with a,, and ap so that = oupy w=—cr,

Ymanm — C > Tyam+ C
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Examples of second order algorithms

Suboptimal algorithm

—Qm sign(al) si o102 < 0
u =
—Qpm sign(ol) si g102 > 0

Ul(t/w)
5 )

u(t) = M(t)up sign(or(t) —

[ >
with (t) = 4 1 loa(®)] > oa(tm)
A if o1 (t)] < o1(tm)
and ty, the last moment the state reaches the o, axis
(02 =0).

r
A\* €]0; 1]n]o, 3—’"[
M

4cC

> M S = AT
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Examples of second order algorithms

Super twisting algorithm

u(t) = us(t) + M VLy/|ou|sign(o1)

iy (t) = Ao Lsign(o1) g

with L = £ and

&

M o
e\ >1
o 1>/ -2+ 2/ F 2 +2

Common values : Ay =1.1et \; = 2.
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A new proof of convergence of the super twisting

Available proofs

@ Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but
tied to super twisting
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A new proof of convergence of the super twisting

Available proofs

@ Original proof [Levant, 1998] : numerical, gives the smallest coefficients, but
tied to super twisting

e Majorant based proof [Davila et al., 2005] : quite small coefficients, more
easily extendable to similar control laws

@ Lyapunov based proofs [Moreno and Osorio, 2008] : more easily extendable
to other control laws, but large coefficients

Steps of the proof

o Homogeneity : only need to study the trajectory in one half plane : stable iff
loell < llool

@ study only the worst case
o simplify the differential equation to obtain analytical results
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A new proof of convergence of the super twisting
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@ Introduction to time optimal control
@ Open loop control
@ Closed loop control
o Compute the implicit equation
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Open loop time optimal control

Perfectly known observable and controllable SISO LTI system with input
v € [—vum; vum]: % = Ax + bv

Theorem (Pontryagin's theorem for SISO LTI systems)

The time optimal control: [Athans and Falb, 1966, Boltjanski, 1969]
@ is a bang bang control with finite number of switchings

T3 T2 T1 Au
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Open loop time optimal control

Perfectly known observable and controllable SISO LTI system with input
v € [—vum; vum]: % = Ax + bv

Theorem (Pontryagin's theorem for SISO LTI systems)

The time optimal control: [Athans and Falb, 1966, Boltjanski, 1969]
@ is a bang bang control with finite number of switchings
@ this control sequence is unique

73 To 1 Au

Theorem (Feldbaum's theorem)

[Athans and Falb, 1966, Boltyanski and Gorelikova, 1997]

@ Order n system with n real poles = at most n phases (n — 1 switchings)
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Closed loop time optimal control for SISO LTI systems 27

The time optimal closed loop control has the form

v = —vp sign(f,,, (x))
fu (X) = 0 is the equation of a switching surface computed for an amplitude of
control vy.
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Closed loop time optimal control for SISO LTI systems 27

The time optimal closed loop control has the form

v = —vyp sign(f,,, (x))
fu (X) = 0 is the equation of a switching surface computed for an amplitude of
control vy.

In general, switching surface # sliding surface < set of trajectories of the system

Ty x5

Lemma ([Brégeault and Plestan, 2009])

For systems with real poles only,
switching surface < trajectories of the system driven by a time optimal control
with at most n — 1 phases
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Computing the implicit equation for real poles systems 28

Function [x1,...xc]Y = Fi(s,71,...,7k)

Theorem ([Brégeault and Plestan, 2009])

Vk < n, fy, is a bijection between {—1;+1} x R+ and Re.

= Equation of the switching surface : x, — xns(x1,...,Xa—1, Vas) = 0 for systems
in canonical controllability form
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Computing the implicit equation for real poles systems 28

Function [x1,...xc]Y = Fi(s,71,...,7k)

Theorem ([Brégeault and Plestan, 2009])

Vk < n, fy, is a bijection between {—1;+1} x R+ and Re.

= Equation of the switching surface : x, — xns(x1,...,Xa—1, Vas) = 0 for systems
in canonical controllability form

= Algorithm to compute the switching surface step by step, one dimension at a
time

For pure chains of integrators :
The time optimal switching surface is homogeneous of degree —1.

X
So, fuy(x) = ||XHHfVM(m)

= reduces the dimension of the set of points by 1, and increases precision near
the origin.
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@ Variable structure and time optimal control
@ Parametrization of the system
o Control law
@ Proof of stability
@ Asymptotic precision
@ Examples
@ General case : VSS
@ Reduction of the chattering
o Example
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Parametrization of the system

Reference system : totally known LTI system. ..

x=Ax+bv &

)'(1=X2

).(2:X3

n
Xp € E aiXi+v
i=1
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Parametrization of the system

Reference system : totally known LTI system. ..
)'(1 = X2

).(2:X3

x=Ax+bv &

n
Xp € Z aiXi+v
i=1
... because all the uncertainties are in the new virtual control
vel[-C;CN+[TmTmlu
so that —C' + T ,uy > 0.
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Parametrization of the system

Reference system : totally known LTI system. ..

X1 = Xo Tyuy +C
).(2 = X3
Tuy — C
x=Ax+bv &
n
Xp € Z aiXi+v
i=1
.. . . Thuy +C
... because all the uncertainties are in the new virtual control o
ve[-CCN+[Tm Thmlu
[ ] [ m M] F,\,{U;\,] - C

so that —C' + T ,uy > 0.

If u==up, |v|ZThumw —C' >0
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Parametrization of the system

FMUM + C

Touy — C

quM + C

FAI'ILAJ - C

We can theoretically generate any control within [—(Tjup—C'); T mup — C']
thanks to high frequency switching (equivalent control).



VS§S+TOC
o

Control law

FMUA] +C
Theorem

The control Dty — C
u = —uyp sign(f,, (x))

with vy the amplitude of the reference control chosen so
that:

0< vy <Tuy —C’
NS mEM leLM+0

is a nth order sliding mode control, provided the
reference system has only real poles

o' FM Upn — C
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|deal sliding mode

Prove the stability of the switching surface : 73 T I U
Time optimal switching surface < 7,(x) =0
Lyapunov function: 7,(x) iligd

Nominal case (pure time optimal) :
Tn(x(t)) = Ta(t =0) — t
=T, =—1
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|deal sliding mode

Prove the stability of the switching surface : 73 T I U
Time optimal switching surface < 7,(x) =0
Lyapunov function: 7,(x) 0

=y

Nominal case (pure time optimal) :
Tn(x(t)) = Ta(t =0) — t
=T, =—1

Real case (with uncertainties) :

The direction of the control bvy sign(f,, (x)) is so that 7, decreases as fast as
possible.

As I pup — C' > vy, 7, decreases at least as fast : 7, < —1
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|deal sliding mode

Prove the stability of the switching surface : 73 T I U
Time optimal switching surface < 7,(x) =0
Lyapunov function: 7,(x) 0

Nominal case (pure time optimal) :
Tn(x(t)) = Ta(t =0) — t
=T, =—1

Real case (with uncertainties) :

The direction of the control bvy sign(f,, (x)) is so that 7, decreases as fast as
possible.

As I pup — C' > vy, 7, decreases at least as fast : 7, < —1

= attractive surface = sliding mode
= the system behaves like a LTI system subject to a time optimal control
= stable n'™" order ideal sliding mode.
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Real sliding mode

o Delays : nt" order sliding

o Measurement/observation error : state reaches S + &,
with & = [O(e) O(e?) ... O(ex1) O(en)]T
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Real sliding mode

o Delays : nt" order sliding

o Measurement/observation error : state reaches S + £,
with € = [O(e) O(3) ... O(em1) O(ex)]"

@ Shape of the surface :
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Real sliding mode

o Delays : nt" order sliding

o Measurement/observation error : state reaches S + £,
with € = [O(e) O(3) ... O(em1) O(ex)]"

@ Shape of the surface :
parametric equation of the surface :
(s, ka7, ko7, ..., kn—17,0) with small 7 >0
Integrating the system with this control yields

xi = ai(s, v, ko, . . . kn_1)T" T 4 O(7 12

o=y aixi+ |v|sign(fyy(x)) = O(r) + |v| sign(fiy (x))

i=1

= x5 =[0(r")O(r")...0(r)]"
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System:
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o2 € [=C; Cl + [T m; Tim]u

Control:
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Example : double integrator

System: I’QT
02 € [—C; Cl + [T Tm]u

u = —up sign (02 +V2vn+/|o1] sign(al))

with vy < Tpup — C

Control:

279 order sliding mode control with prescribed convergence law:

u = —up sign (az + B/ |o1] sign(al))

2
with % <Tpuy—C [Levant, 2007]



Example : triple integrator

X1 = X2 Equation from
X2 = X3 [Pao and Franklin, 1993]

x3 € [—Um;Ym] +u

Figure: Control u MM and equivalent

control of v: ve, HE Figure: x1 (—), x2 (), x3 (-..)
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The control

u = —up sign(fyy (x))
with vy the amplitude of the reference control chosen so that:
0<vN<quM—C’

is a variable structure control which stabilizes the system in finite time.
The convergence time is no greater than the corresponding time optimal control
law with amplitude vy .
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The control
u = —up sign(fy, (x))

with vy the amplitude of the reference control chosen so that:
0<vN<quM—C’

is a variable structure control which stabilizes the system in finite time.
The convergence time is no greater than the corresponding time optimal control
law with amplitude vy .
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Reduction of the chattering

Problem : The nominal control is neither continuous in time nor in space.

= use of saturation or nominal control do not work

Solution : Add a dynamic : compute the time optimal switching surface for an
LTI system of order n+ 1, and the corresponding nominal dynamics of u and x,.

The control law using
o the nominal value of u (triangular)
@ a super twisting of sliding variable x, — xp,.,. (X1, - - - Xn—1),

. L
coefficients L = M AM=1 =11

m
stabilizes the system in finite time
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Example : double integrator

Neglected first order dynamic (time constant: 10ms), and sinusoidal matched
perturbation.

25 15
2 1
15 05
) 0
-05
05
-1
0
-15 u
-05
2 -
-1 -25 q
— -V
-15 y 3 eq
—dy —— —perturbation
- -35

0 5 10 15 0 5 10 15
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Conclusion:
o Adaptive sliding mode
o Intermediate proof of convergence of the super twisting algorithm
@ Algorithm to compute the time optimal control switching surface

@ New control law : VSS+TOC (HOSMC for real poles, VSS for complex
poles, reduction of chattering for real poles)

Perspectives:
o Adaptive control for higher order sliding mode
@ Improve algorithms to compute the switching surfaces
@ Take saturation into account in VSS+TOC smooth control laws
@ Extend VSS+TOC algorithms to MIMO or nonlinear cases
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