oduction	Optique quantique	Étude théorique	Résultats	Perspectives
000				

Génération d'états non-classiques de la lumière par mélange à 4 ondes dans une vapeur atomique

Quentin Glorieux

Laboratoire Matériaux et Phénomènes Quantiques Université Paris Diderot

19 novembre 2010

Introduction •••••	Optique quantique	Étude théorique	Résultats	Perspectives
Queles estimat				

Qu'est ce que le bruit ?

Rapport signal sur bruit : RSB. Exemple : RSB=100, RSB=10, RSB = 1

Introduction ○●○○○	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives	
Qualquas notions					

Le bruit quantique de la lumière

Expériences de détection de la lumière

- Etude du signal
- Etude du bruit

On doit s'affranchir de :

Déterministe :

• signal parasite

Non déterministe :

- indépendant du système de mesure
- lié aux contraintes techniques

Introduction ○●○○○	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives
Quelques petiens				

Le bruit quantique de la lumière

Expériences de détection de la lumière

- Etude du signal
- Etude du bruit

On doit s'affranchir de :

Déterministe :

signal parasite

Non déterministe :

- indépendant du système de mesure
- lié aux contraintes techniques

Bruit quantique de la lumière :

lié à la nature corpusculaire de la lumière (photons)

Introduction 00000	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives
Quelques notions				

Frontière classique pour le bruit

Du sable qui tombe sur une plaque de métal

- Son du choc des grains sur la plaque
- "Musique" classique

Les photons d'un laser atténué qui arrivent sur un détecteur

- "Clic" à l'arrivée d'un photon sur le détecteur
- "Musique" quasi-classique

Le bruit de grenaille (ou shot-noise)

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives
Quelques petiens				

Frontière classique pour le bruit

Du sable qui tombe sur une plaque de métal

- Son du choc des grains sur la plaque
- "Musique" classique
- Statistique poissonienne

Les photons d'un laser atténué qui arrivent sur un détecteur

- "Clic" à l'arrivée d'un photon sur le détecteur
- "Musique" quasi-classique
- Statistique poissonienne

6

Introduction 00000	Optique quantique	Étude théorique	Résultats	Perspectives
Quelques notions				
Davidana	برجل جال جيان اجاك	and the state of the	• >	

Peut on réduire le bruit de la lumière sous cette frontière ?

Etats non-classiques de la lumière

Etats non-classiques

- Etats non accessibles pour des objets classiques
- Frontière = limite quantique standard

- "Clic" à l'arrivée d'un photon sur le détecteur
- Statistique sub-poissonienne
- Musique "quantique"

Introduction ○○○○●	Optique quantique	Étude théorique	Résultats	Perspectives	
Plan					
Plan					

- L'optique quantique en régime de variables continues
- Étude théorique du mélange à 4 ondes
- Résultats
 - Dispositif expérimental
 - Comparaison théorie/expérience
 - Lame séparatrice quantique
- Perspectives

ntroduction	Optique quantique	Étude théorique	Résultats	Perspectives
00000	00000			

Variables continues

Variables continues en optique quantique

Champ électrique oscillant classique monochromatique

$$E = E_0 e^{i(\omega t + \theta)}$$

 $= X_0 \cos \omega t + Y_0 \sin \omega t$

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
	00000			

Variables continues

Variables continues en optique quantique

En optique quantique : un mode du champ électrique assimilé à un oscillateur harmonique

Hamiltonien de l'oscillateur harmonique

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

Relation de commutation

 $[\hat{x},\hat{p}] \neq 0$

Inégalité d'Heisenberg

$$\Delta_{\hat{X}}^2 \Delta_{\hat{P}}^2 \ge 1$$

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
	00000			

Variables continues

Variables continues en optique quantique

Hamiltonien de l'oscillateur harmonique

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

En optique quantique : un mode du champ électrique assimilé à un oscillateur harmonique

$$[\hat{x},\hat{p}] \neq 0$$

Limite quantique standard

$$\Delta_{\hat{X}}^2 = \Delta_{\hat{P}}^2 = 1$$

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
00000	00000	000000000	00000000000	0000000
Variables continues				

Représentation d'un mode du champ électrique quantifié

 $\hat{E} = E_0(\hat{X}\cos\omega t + \hat{Y}\sin\omega t)$

Inégalité d'Heisenberg

$$\Delta_{\hat{X}}^2 \Delta_{\hat{Y}}^2 \geq$$

$$\Delta_{\hat{X}}^2 = \Delta_{\hat{Y}}^2 = 1$$

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives			
Etats non-classiq	Etats non-classiques de la lumière						
État co	mprimé à un	mode					

Représentation de l'état comprimé :

- une quadrature sous la limite quantique standard
- Compression : $S = \frac{\Delta \hat{X}_{\theta}^2}{\Delta \hat{X}_{SQL}^2}$, $S_{dB} = 10 \log \frac{\Delta \hat{X}_{\theta}^2}{\Delta \hat{X}_{SQL}^2}$

Représentation de l'état comprimé :

- une quadrature sous la limite quantique standard
- Compression : $S = \frac{\Delta \hat{X}_{\theta}^2}{\Delta \hat{X}_{SQL}^2}$, $S_{dB} = 10 \log \frac{\Delta \hat{X}_{\theta}^2}{\Delta \hat{X}_{SQL}^2}$

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives
Etats non-classiques de	e la lumière			

État comprimé à deux modes:

Corrélations quantiques

- 2 modes d'un seul objet quantique
- On détecte les fluctuations de la différence des photo-courants

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
	000000			

Etats non-classiques de la lumière

Produire des états non-classiques ?

Génération d'états non-classiques

• Composants de l'optique linéaire (cube, lentille, miroir...)

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
Etate non-classiques	e de la lumière			

Produire des états non-classiques ?

Génération d'états non-classiques

- Composants de l'optique linéaire (cube, lentille, miroir...)
- Effets non linéaires : $\chi^{(2)}$, $\chi^{(3)}$

Etats non-classiques de la lumière

Une brève histoire des états comprimés

VOLUME 55, NUMBER 22

PHYSICAL REVIEW LETTERS

25 NOVEMBER 1985

Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity

R. E. Slusher AT&T Bell Laboratories, Murray Hill, New Jersey 07974

L. W. Hollberg AT&T Bell Laboratories, Holmdel, New Jersey 07733

and

B. Yurke, J. C. Mertz, and J. F. Valley^(a) AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Etats non-classiques de la lumière

Une brève histoire des états comprimés

REPORTS

Entangled Images from Four-Wave Mixing

Vincent Boyer,* Alberto M. Marino, Raphael C. Pooser, Paul D. Lett*

Science Vol. 321. no. 5888, 544 - 547 (2008)

Résultats

Perspectives

Etude théorique du mélange à 4 ondes

- Optique non linéaire
- Modèle microscopique

Effet paramétrique : milieu de susceptibilité non-linéaire $\chi^{(3)}$

Équations de propagation :

$$\frac{\partial \mathcal{E}_{a}}{\partial z} = \kappa \mathcal{E}_{a} + \eta \mathcal{E}_{b}^{*}$$
$$\frac{\partial \mathcal{E}_{b}}{\partial z} = \kappa \mathcal{E}_{b} + \eta \mathcal{E}_{a}^{*}$$

Solutions pour
$$\mathscr{E}_a = \mathscr{E}_{in}$$
 et $\mathscr{E}_b = 0$
 $|\mathscr{E}_a| = \sqrt{G} \mathscr{E}_{in}$
 $|\mathscr{E}_b| = \sqrt{G-1} \mathscr{E}_{in}$

Optique quantique

Étude théorique

Résultats

Perspectives

Le mélange à 4 onde en optique non linéaire

Modèle de l'amplificateur linéaire idéal

Amplificateur linéaire idéal

$$\hat{a}_{out} = \sqrt{G} \ \hat{a}_{in} + \sqrt{G-1} \ \hat{b}_{in}^{\dagger}$$
$$\hat{b}_{out}^{\dagger} = \sqrt{G} \ \hat{b}_{in}^{\dagger} + \sqrt{G-1} \ \hat{a}_{in}$$

Opérateur nombre : $\hat{N}_a = \hat{a}^{\dagger} \hat{a}$ Différence d'intensité : $\hat{N}_- = \hat{N}_a - \hat{N}_b$

Valeurs moyennes pour $\langle N_a, in \rangle = |\alpha|^2 \propto |\mathcal{E}_{in}|^2$

Compression
$$S_{N_{-}} = \frac{1}{2G - 1}$$

Introduction Optique quantique

Étude théorique

Résultats

Perspectives

Modèle microscopique du mélange à 4 ondes

Etude théorique du mélange à 4 ondes

Modèle microscopique

Modèle microscon	ique du mélange à 4 ondes			
		000000000		
Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Modèle microscopique pour le milieu non-linéaire

Modèle en double-A

7 paramètres : Δ , δ , ω_0 , Ω , γ , Γ , αL

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
		000000000		

Modèle microscopique du mélange à 4 ondes

Approche de Heisenberg Langevin

- Energie liée aux populations
- couplage atomes-pompe
- couplage atomes-sonde
- couplage atomes-conjugué

Hamiltonien d'interaction

$$\hat{V} = -\hbar [\Delta_0 \ \hat{\sigma}_{44} + \Delta \ \hat{\sigma}_{33} + \delta \hat{\sigma}_{22} + (\frac{\Omega}{2} (\hat{\sigma}_{31} + \hat{\sigma}_{42}) + g_a \hat{a} \ \hat{\sigma}_{32} + g_b \hat{b} \ \hat{\sigma}_{41} + H.c.)]$$

Q. Glorieux et al. Phys. Rev. A 82, 033819 (2010)

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
		0000000000		

Modèle microscopique du mélange à 4 ondes

Approche de Heisenberg Langevin

- Evolution Hamiltonienne
- Dissipation (décohérence et émission spontanée)
- Fluctuation

Evolution $\left(\frac{\partial}{\partial t} + \gamma' uv\right)\hat{\sigma}_{uv} = \frac{i}{\hbar}[\hat{V}, \hat{\sigma}_{uv}] + \hat{r}_{uv} + \hat{F}_{uv}$

Q. Glorieux et al. Phys. Rev. A 82, 033819 (2010)

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
		0000000000		

Modèle microscopique du mélange à 4 ondes

Propagation : relations entrée-sortie

Hypothèses pour des atomes immobiles

- Etat stationnaire piloté par la pompe
- Etat cohérent en entrée sur â
- Vide en entrée sur b

Valeurs moyennes

- Gain individuel sur \hat{a} et \hat{b}
- Différence d'intensité
- Phase

Fluctuations

- Spectres de bruit (\hat{a} et \hat{b})
- Spectres de bruit de la différence d'intensité
- Anti-corrélations de phase

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives	
Modèle microscopique du mélange à 4 ondes					
Résultats					

Pour des atomes immobiles

- En accord avec le modèle d'amplificateur linéaire idéal
- Corrélations quantiques en intensité à l'aide d'un milieu d'atomes froids
- Intrication en variables continues
- Exploration de l'espace des paramètres

Optique quantique

Étude théorique

Résultats

Perspectives

Modèle microscopique du mélange à 4 ondes

Extension du modèle à une vapeur atomique chaude

Pour des atomes non immobiles

- Quel désaccord est vu par les atomes ?
- Qu'est ce qui fixe le taux de décohérence ?
- L'hypothèse de l'état stationnaire est elle valide ?

Optique quantique

Étude théorique

Résultats

Perspectives

Modèle microscopique du mélange à 4 ondes

Extension du modèle à une vapeur atomique chaude

Pour des atomes non immobiles

- Quel désaccord est vu par les atomes ?
- Qu'est ce qui fixe le taux de décohérence ?
- L'hypothèse de l'état stationnaire est elle valide ?

Distribution de vitesse des atomes: élargissement inhomogène

 Désaccord à 1 photon (intégration du profil de vitesse)

Optique quantique

Étude théorique

Résultats

Perspectives

Modèle microscopique du mélange à 4 ondes

Extension du modèle à une vapeur atomique chaude

Pour des atomes non immobiles

- Quel désaccord est vu par les atomes ?
- Qu'est ce qui fixe le taux de décohérence ?
- L'hypothèse de l'état stationnaire est elle valide ?

Temps de passage fini des atomes dans le faisceau

•
$$v = \sqrt{\frac{2k_BT}{m}} \simeq 300 \text{ m.s}^{-1}$$

- *R_s*=300 μm
- $\gamma \simeq 1 \text{ MHz}$

Optique quantique

Étude théorique

Résultats

Perspectives

Modèle microscopique du mélange à 4 ondes

Extension du modèle à une vapeur atomique chaude

Pour des atomes non immobiles

- Quel désaccord est vu par les atomes ?
- Qu'est ce qui fixe le taux de décohérence ?
- L'hypothèse de l'état stationnaire est elle valide ?

Modèle microscop	ique du mélange à 4 ondes			
Introduction	Optique quantique	Étude théorique ○○○○○○○○●	Résultats 00000000000	Perspectives

Prise en compte de la préparation des atomes

Part d'atomes dans l'état stationnaire ($\Delta/2\pi = 0.8$ GHz) :

Comment les prendre en compte ?

Absorption linéaire

Optique quantique

Introduction

Étude théorique

Résultats

Perspectives

Résultats

- Dispositif expérimental
- Comparaison avec le modèle théorique
- Un nouveau régime : lame séparatrice quantique

Introduction	Optique quantique	Étude théorique	Résultats ●oooooooooo	Perspectives
Dispositif expérimental				

Schéma du dispositif

Introduction	Optique quantique	Étude théorique	Résultats o●oooooooo	Perspectives
Dispositif expérimenta	al			
Elements	s utilisés			

- Laser Ti:Saph stabilisé sur la raie D1 du 85 Rb : $P \le 1.5$ W
- Cellule de ⁸⁵Rb chauffée : $90^{\circ}C \le T \le 140^{\circ}C$
- Photodetection balancée : $\eta \simeq 0.95 \pm 0.02$

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives
			000000000000000000000000000000000000000	

Dispositif expérimental

Modulateur acousto-optique

Génération du faisceau sonde

- Modulateur acousto-optique (1.5 GHz)
- Source radio fréquence
 - VCO et amplificateur non saturé
 - Synthétiseur et amplificateur saturé

Introduction 00000	Optique quantique	Étude théorique	Résultats 000●0000000	Perspectives
Dispositif expérimental				

Résultats

Comparaisons avec le modèle théorique

10 paramètres : Δ , δ , ω_0 , Ω , γ , Γ , αL , ω , T, R_s et R_p

Corrélations quan	itiques à 795 nm			
			00000000000	
Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Transmission du faisceau sonde

Données mesurées (NIST) Atomes immobiles Vapeur atomique

Introduction	Optique quantique	Étude théorique	Résultats ○○○○●●○○○○○	Perspectives		
Corrélations quantiques à 795 nm						

Comparaison théorie - expérience

Puissance du champ pompe.

Données mesurées Vapeur atomique

00000	000000	0000000000	000000000000	0000000
Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Correlations quantiques a 795 mm

Comparaison théorie - expérience

Effet du désaccord à 1 photon

Données mesurées Atomes immobiles Vapeur atomique

ntroduction
00000

Optique quantique

Étude théorique

Résultats

Perspectives

Corrélations quantiques à 795 nm

Corrélations quantiques en intensité

Données

- $\Delta = 0.8 \text{ GHz}, \delta = 6 \text{ MHz}, T = 118^{\circ}\text{C}, P_p = 1\text{W}$
- Gain : $G \approx 12$
- Corrélations mesurées : -8.4 dB.
- Valeur corrigée du bruit électronique: -9.2 dB

Q. Glorieux, et al. in Quantum Optics, edited by V. N. Zadkov and T. Durt, Vol. 7727 (SPIE, 2010), 772703.

Optique quantique

Étude théorique

Résultats

Perspectives

Corrélations quantiques à 795 nm

Corrélations quantiques en intensité

Données

- $\Delta = 0.8 \text{ GHz}, \delta = 6 \text{ MHz}, T = 118^{\circ}\text{C}, P_{p} = 1\text{W}$
- Gain : G \approx 12
- Corrélations mesurées : -8.4 dB.
- Valeur corrigée du bruit électronique: -9.2 dB

Q. Glorieux, et al. in Quantum Optics, edited by V. N. Zadkov and T. Durt, Vol. 7727 (SPIE, 2010), 772703.

Lamo cónaratrico	quantiquo			
			000000000000	
Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Résultats

• Lame séparatrice quantique

Introduction	Optique quantique	Étude théorique	Résultats ○○○○○○○○●○	Perspectives
Lame séparatrice quan	tique			

Observation d'un nouveau régime de corrélations

G < 1 Une lame séparatrice "quantique" ?

00000	000000	0000000000	00000000000	0000000
Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Démonstration experimentale

Données

- $\Delta = 1$ GHz, $\delta = -52$ MHz, $T = 90^{\circ}$ C, $P_{p} = 0.4$ W
- Gain total : $G_a + G_b \approx 1$
- Corrélations mesurées : -0.8 dB.

Introduction 00000	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives ●000000

Conclusion

Une source de lumière non-classique

- -9.2 dB de corrélations d'intensité à 795 nm
- Compatible avec des mémoires quantiques atomiques
- Potentiellement multimode spatial

Comparaison théorie/expérience

- Excellent accord avec l'expérience sans aucun paramètre ajustable
- Prédiction et vérification expérimentale d'un nouveau régime (G < 1)

Introduction 00000	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives o●ooooo

Perspectives

troduction	Optique quantique	Étude théorique	Résultats	Perspectives
				000000

Mélange à 4 ondes dans le régime impulsionnel

Expériences réalisées à l'Institut d'Optique

Observation de -1.3 dB de corrélations dans une vapeur de ⁸⁷Rb pour des impulsions (sonde) de 50 ns.

Etude théorique

Utilisation de notre modèle moyenné sur la largeur spectrale des impulsions

oduction	Optique quantique	Étude théorique	Résultats
000			

Perspectives

Démonstration experimentale avec des atomes froids

Configuration experimentale

Piège magnéto-optique (épaisseur optique $\alpha L \simeq 150$)

Etude du role de la décohérence

Possibilité d'atteindre des valeurs plus faibles

Etude de la transition avec le régime de comptage

DDI 07	112602	(2006)	
I KL 27.	115002	(2000	

PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2006

Generation of Narrow-Bandwidth Paired Photons: Use of a Single Driving Laser

Pavel Kolchin,^{*} Shengwang Du, Chinmay Belthangady, G. Y. Yin, and S. E. Harris Edward L. Ginzton Laboratory, Stanford University, Stanford, California 04305, USA (Received 9 June 2006; published 12 September 2006)

ntroduction	Optique quantique	Étude théorique	Résultats	Perspectives
00000				0000000

Amplification sensible à la phase

Etat comprimé à 1 mode

Optique quantique

Étude théorique

Résultats

Perspectives

Merci pour votre attention

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives oooooo●	
Merci					

- Les membres du jury
- L'équipe IPIQ
- Les membres du labo MPQ/P7
- Les thésards et les stagiaires de MPQ et d'ailleurs
- Elise
- Mes amis
- Ma famille

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives oooooo●	
Merci					

- Les membres du jury
- L'équipe IPIQ
- Les membres du labo MPQ/P7
- Les thésards et les stagiaires de MPQ et d'ailleurs
- Elise
- Mes amis
- Ma famille
- Mozart

• ...

troduction	Optique quantique	Étude théorique	Résultats	Perspectives

Expériences à 422 nm

Mémoire quantique dans un nuage d'ions ⁸⁸Sr⁺

Quasi coïncidence (440 MHz) entre:

- $5S_{1/2} \rightarrow 6P_{1/2} \text{ du } {}^{85}\text{Rb}$
- $5S_{1/2} \rightarrow 5P_{1/2} \text{ du } {}^{88}\text{Sr}^+$

Mélange à 4 ondes à 422 nm

- Prédiction théorique défavorable ($\Gamma_{422} = \frac{1}{20}\Gamma_{795}$)
- Pas d'observation expérimentale de gain
- Observation de la transparence électromagnétiquement induite sur la ligne 5S_{1/2} → 6P_{1/2} du ⁸⁵Rb

ntroduction	Optique quantique	Étude théorique	Résultats	Perspectives

Limitations - Prediction

- $\Gamma_{blue} \simeq \frac{\Gamma red}{20}$
- Increasing optical depth αL 20 times
- Increasing temperature to 170 C

Introduction 00000	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives	
Atoms p	preparation				

- atoms prepared in a coherent superposition by the pump
- pump size limited... (by available power)

Introduction	Optique quantique	Étude théorique	Résultats 00000000000	Perspectives

EIT observation

58

Introduction	Optique quantique	Étude théorique	Résultats	Perspectives

Modèle de l'amplificateur linéaire idéal

Amplificateur linéaire idéal :

$$\hat{a}_{out}=\sqrt{G}\;e^{i\phi_1}\hat{a}_{in}+\sqrt{G-1}\;e^{i\phi_2}\;\hat{a}^{\dagger}_{in}$$

Etat comprimé à 1 mode :

Optique quantique

Étude théorique

Résultats

Perspectives

Amplification sensible à la phase

Expériences en cours au NIST à Gaithersburg

- Deux pompes verrouillées en phase
- Oscillateur local

