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Abstract:

Let us denote by Σg,b the orientable connected compact surface of genus g with b boundary
components. In this paper, we study the morphisms from the braid group with n > 6 strands
Bn in the mapping class group PMod(Σg,b) (preserving each boundary component) with the
conditions g 6 n/2 and b > 0.

We prove that under these conditions, the morphisms are either cyclic morphisms, that is to
say, their images are cyclic groups, or transvections of monodromy morphisms, that is to say, up
to multiplication by an element in the centralizer of the image, the image of a standard generator
of Bn is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists
along two curves intersecting in one point.

As a corollary, we get different results for three families of groups: the braid groups Bn for
all integers n greater than or equal to 6, the mapping class groups PMod(Σg, b) (preserving
each boundary component) and the mapping class groups Mod(Σg, b, ∂Σg, b) (preserving point-
wise the boundary), for all g > 2 and all b > 0. For each statement involving the mapping
class group, we shall study both cases: when the boundary is fixed pointwise, and when each
boundary component is fixed setwise.

Thus for each of these three families, we will describe precisely the structure (always remark-
able) of the endomorphisms, we will determine the injective endomorphisms, the automorphisms
and the outer automorphism group. We will also describe the set of morphisms between braid
groups Bn → Bm with m 6 n + 1 and the set of all morphisms between mapping class groups
of surfaces (possibly with boundary) whose genus (greater than or equal to 2) differ by at most
one.
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1 Introduction

1.1 Presentation of the main notions

Mapping class groups

The mapping class group Mod(Σ) of an orientable surface Σ, is defined as the group of
isotopy classes of orientation-preserving diffeomorphisms of Σ, so that we can write:

Mod(Σ) = π0(Diff+(Σ)).
If Σ has several connected components, then they may be permuted by elements of Mod(Σ).
Several closely related groups can be derived from this first definition:

• The extended mapping class group of Σ, denoted by Mod¦(Σ), is the group of isotopy
classes of all diffeomorphisms of Σ (they may inverse Σ’s orientation). The groupMod(Σ)
is an index two normal subgroup of Mod¦(Σ).

• The mapping class group of Σ that preserves each boundary component, denoted by
PMod(Σ), is defined as the group of isotopy classes of all orientation-preserving diffeomor-
phisms preserving each boundary component of Σ setwise and preserving each connected
component of Σ setwise.

• The mapping class group of Σ relatively to the boundary, denoted by Mod(Σ, ∂Σ), is
defined as the group of isotopy classes of all orientation-preserving diffeomorphisms pre-
serving pointwise each boundary component of Σ. In this definition, isotopies are required
to preserve pointwise each boundary component, too.

• Some other groups close to these ones will be introduced in the text.

Throughout this paper, Σ = Σg,b will be an orientable connected surface of genus g with b
boundary components. We will be mainly interested by the mapping class group PMod(Σ). A
lifting lemma (namely Proposition 5.12) in Section 5 will allow us to adapt these results to the
mapping class groups Mod(Σ, ∂Σ).

Historical context

The study of the mapping class groups was initiated in the 1920s by M. Dehn [D], [D1], [D2]
and J. Nielsen [Ni1], [Ni2], [Ni3]. Although their work had some common themes, in general
their approaches were fairly different. M. Dehn was interested in the properties of the mapping
class group as a whole, addressing, for example, such questions as the existence of a finite set
of generators. He developed and exploited an important tool for this purpose: the action of
the mapping class group on the set of isotopy classes of all circles on the surface. J. Nielsen,
in the other hand, was mainly interested in understanding the fine structure of the individual
elements of the mapping class group. His methods draw heavily on hyperbolic geometry (a tool
also favored by M. Dehn). For quite a while, the work of both M. Dehn and J. Nielsen was
apparently forgotten. The ideas of M. Dehn related to the arithmetic field of a surface found
a natural continuation in the ideas of W. Harvey [Ha1], [Ha2] about the complex of curves of
a surface, which is nothing else but the arithmetic field turned into a simplicial complex in a
natural way. A closely related object was considered in an influential article of A. Hatcher and
W. Thurston [HatT]. The ideas of J. Nielsen were partially rediscovered, extended and brought
to an essentially complete form by W. Thurston in his theory of surface diffeomorphisms [T],
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[BlCa], [FLP]. Later on, his theory was applied also to the structure of the mapping class group
and not only to its individual elements.

J. Birman, A. Lubotski and J. McCathy (cf. [BiLuMc]) as well as N.V. Ivanov (cf. [Iv]) have
given to Thurston’s theory its final form thanks to a new helpful definition: the canonical reduc-
tion system for every abelian subgroup of the mapping class group. For instance the canonical
reduction system allowed them to determine the maximal rank of the abelian subgroups of the
mapping class group of a connected surface, which is equal to 3g − 3 + b where g is the genus of
the surface and b is the number of boundary components.

The braid group
A way to go forward in this field is to look for other classic groups that would be included in

the mapping class group. Let us consider the braid group on n strands, which we define through
its classic presentation as follows:

〈
τ1, τ2, . . . , τn−1 |

{
τiτj = τjτi if |i− j| 6= 1
τiτjτi = τjτiτj if |i− j| = 1 .

〉

The generators of this presentation are called the standard generators of the group Bn. Because
of this, we say that two elements a and b of any group satisfy a braid relation if the equality
aba = bab holds.

Geometric representations

A geometric representation of a group G (in this paper, G will always be a braid group) is
a morphism from G to the mapping class group of some surface Σg, b. The aim of this paper
is to describe all geometric representations of the braid group. The only hypothesis is that the
number n of strands of the braid group Bn and the genus g of a surface Σg, b must satisfy:

g 6 n
2

whereas b is any positive integer, possibly zero, as long as the surface Σg, b is of negative Euler
characteristic.
One family of mapping classes plays a crucial role in the description of the representations of Bn

in PMod(Σg, b): the Dehn twists.

Dehn twists

Given a non-homotopically trivial curve a in Σr ∂Σ, let V be a compact tubular neighbour-
hood of a in Σ and φ be a positive homeomorphism from V to the annulus A = [0, 1]× S1 with
the product orientation. Let us define the homeomorphism

D :
A = [0, 1]× S1 −→ A = [0, 1]× S1

(t, eiθ) 7−→ (t, ei(θ+2πt))
.

The Dehn twist along the curve a, denoted by Ta, is the isotopy class of the homeomorphism
equal to the identity outside from V and equal to φ−1Dφ on V. As φ is unique up to isotopy, Ta

is well defined (cf. Figure 1). Moreover, the definition of Ta depends only on the isotopy class of
a. By abuse of language, when d is a boundary component of Σ, we speak about the Dehn twist
along d although we mean actually a Dehn twist along a curve homotopic to d and included in
Σr ∂Σ.

Dehn twists verify the well-known following property (cf. for example [FaMa], section 2.3):
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Figure 1: Definition of the (left) Dehn twist.

Lemma 1.1. Let a and b be two non-homotopically trivial and non-homotopic curves. Then (i)
the Dehn twists Ta and Tb commute if and only if there exist two disjoint curves a′ and b′ isotopic
to a and b respectively; (ii) the Dehn twists Ta and Tb verify a braid relation if and only if there
exist two curves a′ and b′, isotopic to a and b respectively, that intersect transversally in exactly
one point. ¤

We will show that all the geometric representations of Bn whose images are noncyclic can be
expressed using the monodromy representations.

1.2 Statements of the theorems

Cyclic representations and monodromy representations of Bn

Definition 1.2 (Cyclic representations of Bn).
A representation of Bn (or a morphism from Bn) in a group is said to be cyclic if its image is
cyclic.

It is easy to see that a representation of Bn is cyclic if and only if all the standard generators
of Bn have the same image.

Definition 1.3 (Monodromy representations of Bn).
A monodromy representation of Bn (or a monodromy morphism from Bn in the mapping class
group of a surface) will be a geometric representation of Bn which sends the different standard
generators of Bn on distinct Dehn twists.

In accordance with Lemma 1.1, a monodromy representation of Bn can be characterized by the
data of an ordered (n−1)-tuple of curves (a1, a2, . . . , an−1) such that for all i, j ∈ {1, . . . , n−1},
the curves ai and aj are disjoint when |i−j| 6= 1, and intersect in exactly one point when |i−j| = 1.

We would like to answer to the following questions, where we take PMod(Σ) orMod(Σ, ∂Σ)
as definitions for the mapping class group: Which are the braid groups that can be embedded
in the mapping class of a given surface ? How are these braid groups embedded ? What about
non-injective morphisms from braid groups to mapping class groups ? We completely answer to
these questions when the genus g of the surface Σ and the number n of strands of the considered
braid group satisfy g 6 n

2 . Section 14 deals with situations that escape from these conditions.
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We first answer to the third question by Theorems 1 and 2 (see below), whose statements
employs the concept of transvection.

Definition 1.4 (Transvection of a representation of Bn).
Let n be an integer greater than or equal to 3. Let G be any group, ρ a morphism from Bn to G
and w an element lying in the centralizer of ρ(Bn) in G. The transvection of ρ with direction w is
the morphism denoted by Lw(ρ) and defined on the standard generators τi, i ∈ {1, 2, . . . , n−1}
of the braid group by setting:

Lw(ρ)(τi) = ρ(τi) w.

Theorem 1 (Morphisms from Bn to PMod(Σ) with n > 6).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Any morphism ρ
from Bn to PMod(Σ) is either cyclic, or is a transvection of monodromy morphism. In addition,
such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

This result still holds when we consider Mod(Σ, ∂Σ) instead of PMod(Σ):

Theorem 2 (Morphisms from Bn to Mod(Σ, ∂Σ) with n > 6).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Then any
morphism ρ̃ from Bn to Mod(Σ, ∂Σ) is cyclic, or it is a transvection of monodromy morphism.
Moreover, such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

Remark. This way to systematically look for all the morphisms from Bn to another family of
groups has already been undertaken by E. Artin (cf. [At3]) and V. Lin (cf. [Ln2]), where the
target group was the symmetric group Sm with m 6 n (Artin, 1947) and then with m 6 2n
(Lin, 1970-2004).

1.3 Outline

This paper contains three parts:

Part 1: Sections 2-4.

In this preliminary part, we present the objects and the main tools that we will need. We
have gathered here some general results about isotopy classes of curves and of subsurfaces
(Section 2), on the mapping class groups (Section 3) and on braid groups (Section 4).
Many results that are presented in this part are known by experts but do not exist in the
literature; some have been adapted or completed; some are new. The reader familiar with
mapping class groups for example can skip the concerned section and come back punctually
to it later when necessary.

Part 2: Sections 5-6.

These two sections are devoted to the corollaries of the main theorem (Theorem 1). In
Section 5, we introduce different types of geometric morphisms from the braid groups, and
we establish some links between them, in order to prepare the ground for Section 6. In
Section 6, corollaries of Theorem 1 will be stated and proved.
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Part 3: Sections 7-14.

This is the main part of this paper. It is devoted to the demonstration of Theorem 1. We
prove it first when the number n of strands of Bn is even. Then, the case when n is odd can
be deduced easily. Our main tools are the canonical reduction system (see Definitions 3.37
and 3.39) of the images of the standard generators of Bn in the mapping class group, and
the simultaneous action of Bn on itself and on these curve systems. We end this part with
a discussion on the hypotheses of Theorem 1 and provide some counter-examples when we
modify them.

1.4 Corollaries

After having stated Theorems 1 and 2, let us present their corollaries:

• description of injective morphisms from Bn to Mod(Σ, ∂Σ) or to PMod(Σ);

• description of morphisms from Bn to Bm with m 6 n + 1 ;

• description of morphisms between mapping class groups of two possibly different surfaces;

• endomorphisms and automorphisms of the mapping class group of a surface.

All these results are new. However, they have similarities with already existing theorems
due to Ivanov and McCarthy (injective morphisms between mapping class groups), Dyer and
Grossman (automorphisms of the braid groups), Bell and Margalit (injective endomorphisms of
the braid groups). We will carefully detail the differences between existing theorems and our
results. One of the interests of this paper is to gather these results as consequences of one single
main result. The major improvement of our results is that we deal with morphisms instead of
injective morphisms.

1.4.1 Injectivity of the morphisms from Bn in the mapping class group

The first natural question coming after having stated Theorems 1 and 2 consists in asking
which morphisms are injective.

Definition 1.5 (The surface Σ(ρ) included in Σ).
Let ρ be a transvection of monodromy morphism from Bn in the mapping class group of a surface
Σ. Then, there exists a (n − 1)-chain of curves (ai, 1 6 i 6 n − 1) in Σ, an integer ε ∈ {±1}
and a mapping class W of Σ fixing each curve ai so that for all i, W commutes with Tai and we
have ρ(τi) = T ε

ai
W . We denote the tubular neighbourhood of the union ∪

i6n−1
ai by Σ(ρ).

The surface Σ(ρ) allow us to characterize the injectivity of the transvections of monodromy
morphisms.

9



Theorem 3 (Injectivity of the morphisms from braid groups in the mapping class
group).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Let ρ be a
morphism from Bn in Mod(Σ, ∂Σ) or in PMod(Σ).

(i) Case of Mod(Σ, ∂Σ). The morphism ρ is injective if and only if it is a transvection of
monodromy morphism such that the boundary components of Σ(ρ) do not bound any disk in Σ.

(ii) Case of PMod(Σ). The morphism ρ is injective if and only if it is a transvection of
monodromy morphism such that boundary components of Σ(ρ) do not bound any disk in Σ and
at least one boundary component of Σ(ρ) is not isotopic to any boundary component of Σ.

1.4.2 Morphisms between braid groups

One of the corollaries of Theorem 1 consists in describing all morphisms from Bn to itself or
to Bn+1. This is a new result. Historically, the first result in this direction was found in 1981:
Dyer and Grossman computed the outer automorphisms group of Bn. We show again this result
for n > 6.

Theorem 1.6 (Dyer & Grossman, [DyGr], 1981).
Let n be an integer greater than or equal to 6. We have: Out(Bn) = Z/2Z.

In 2000, R. Bell and D. Margalit (cf. [BeMa]) have shown better: they described not only the
automorphisms of Bn but all injective endomorphisms of Bn as well as the injective morphisms
from Bn to Bn+1. The description of these morphisms requires the definition of some special
involution that we denote by Inv:

Notation 1.7 (The involution Inv). Given a group Bn together with its standard presentation,
the involutive automorphism that sends each standard generator on its inverse will be denoted
by Inv.

Theorem 1.8 (R. Bell, D. Margalit, [BeMa], 2000). Let n be an integer greater than or
equal to 4 and ρ an injective endomorphism of Bn. Then, either ρ or Inv ◦ ρ is a transvection of
some inner automorphism of Bn. If ρ is now an injective endomorphism from Bn to Bn+1, then
either ρ or Inv ◦ ρ is a transvection of the following morphism: an inner automorphism of Bn+1

precomposed by the canonical injection Bn → Bn+1.

Their proof uses an algebraic characterization of the Dehn twists. The maximal rank of the
abelian subgroups of Bn plays a central role. That is why the considered morphisms have to be
injective.

In this paper, we show that the noncyclic morphisms from Bn to Bm where m ∈ {n, n + 1},
are the injective morphisms from Bn to Bm that R. Bell and D. Margalit have described. We
also prove a theorem due to Lin in 1982, cf. [Ln1] page 765: if m is smaller than n, then the
morphisms from Bn to Bm are cyclic.

These results are summed up in Theorem 4. Its statement mentions a specific element ∆ of
Bn: it is defined by ∆ = τ1(τ2τ1) . . . (τn−1 . . . τ2τ1) and it is well-known that its square spans the
center of Bn (see Definition 4.6 and Theorem 4.7).

10



Theorem 4 (Morphisms between braid groups).
Let n and m be two integers such that n > 6 and 3 6 m 6 n + 1.

(i) ([Ln1], 1982) Case where m < n: any morphism ϕ from Bn in Bm is cyclic.

(ii) Case where m = n: any noncyclic morphism ϕ from Bn in Bn is a transvection of inner
automorphism possibly precomposed by the involution Inv: there exist γ, v ∈ Bn and ε = ±1
such that for all i 6 n− 1, we have:

ϕ(τi) = γ τ ε
i γ−1v.

Moreover, v is a multiple of ∆2.

(iii) Case where m = n + 1: let us consider the group Bn as the subgroup of Bn+1 spanned by
the n−1 first standard generators of Bn+1. Then, any morphism ϕ from Bn in Bn+1 is the
restriction to Bn of a morphism from Bn+1 in itself, up to transvection. According to item
(ii), if ϕ is not cyclic, then there exist γ, v ∈ Bn+1 and ε = ±1 such that for all i 6 n− 1,
we have:

ϕ(τi) = γ τ ε
i γ−1v.

Moreover, v belongs to the centralizer of {γξγ−1, ξ ∈ Bn} in Bn+1.

(iv) All the above noncyclic morphisms are injective.

1.4.3 Morphisms between mapping class groups

From Theorems 1 and 2, we can also deduce some results about morphisms between mapping
class groups. So far, the main result in this topic was given by N.V. Ivanov and J. McCarthy in
1999:

Theorem 1.9 (Ivanov, McCarthy, [IvMc], 1999).
Let Σ be a surface Σg, b and Σ′ be a surface Σg′, b′ with g > 2 and (g′, b′) 6= (2, 0), and such that
the inequality

|(3g − 3 + b)− (3g′ − 3 + b′)| 6 1
holds. If there exists an injective morphism ρ from Mod(Σ) in Mod(Σ′), then Σ′ is homeomor-
phic to Σ and ρ is an automorphism induced by a possibly not orientation-preserving diffeomor-
phism from Σ in Σ′.

They have also completed this theorem by dealing with some cases when (g′, b′) = (2, 0)
or when g = 1. When Σ′ = Σ, this theorem tells us that the mapping class group is co-
Hopfian, that is, any injective endomorphism ofMod(Σ) is an automorphism. The computation
of Out(Mod(Σ)) also follows from this theorem.

The proof of this theorem is based on an algebraic characterization of the Dehn twists, which
is possible only if the maxima of the ranks of the abelian subgroups of Mod(Σ) and Mod(Σ′)
differ from at most one. The proof then also requires that the considered morphisms are rank-
preserving, hence the considered morphisms have to be injective.

In this paper, instead of using the rank of abelian sub-groups embedded in the mapping class
group, we have used braid groups embedded in the mapping class group. Since braid groups
and mapping class groups are very similar (in a mysterious and still not well understood way),
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we get strong results: morphisms do not need anymore to be injective and the hypotheses are
reasonably weak. Let us compare the results of Ivanov and McCarthy with ours.

Results of Ivanov and McCarthy (1999) that are not covered in this paper:

• For any nonnegative integer m and for any ε in {0, 1}, there does not exist any injective
morphism fromMod(Σg, b+3m) inMod(Σg+m, b+ε), where g > 2 and b > 0. It is noticeable
that the hypotheses allow the genus of the surface at the target to be arbitrary large with
respect to the genus of the surface at the source!

• The elements of the considered mapping class groups can permute the boundary compo-
nents.

Our results (2010) that are not covered by Ivanov and McCarthy:

• Full description of the morphisms from Mod(Σg, b, ∂Σg, b) in Mod(Σg′, b′ , ∂Σg′, b′) where
g′ < g and g > 2, whatever b and b′ are. Precisely, all these morphisms are trivial or cyclic.

• Full description of the morphisms from Mod(Σg, b, ∂Σg, b) in Mod(Σg′, b′ , ∂Σg′, b′) where
g′ = g or g′ = g + 1, and g > 2, whatever b and b′ are. In these cases, there exist noncyclic
morphisms, and only some of them are injective.

• We also prove these results in a slightly different frame: when the elements of mapping
class group preserve each boundary component setwise instead of pointwise.

More precisely, in this paper, we focus on morphisms between two mapping class groups
associated to the surfaces Σ and Σ′ with genera g and g′ such that g > 2 and g′ 6 g + 1, and
whatever their numbers of boundary components are. We shall thus describe the following sets:

• all the morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) (cf. Theorems 5 and 6),

• all the morphisms from PMod(Σ) in PMod(Σ′) (cf. Theorems 7 and 8),

• all the injective morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) (cf. Theorem 9),

• all the injective morphisms from PMod(Σ) in PMod(Σ′) (cf. Theorem 10).

Like Ivanov and McCarthy, we will mainly show that the non-trivial morphisms between mapping
class groups are induced by some embeddings (the result is however slightly different when the
genus of the surface Σ equals 2). Let us make our point clear:

Definition 1.10 (Morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) induced by an embed-
ding, and outer conjugations).
Let Σ and Σ′ be two connected oriented surfaces. Let F be the isotopy class of a possibly
non-orientation-preserving embedding from Σ in Σ′. Let Σ′′ be the subsurface F (Σ) of Σ′. We
denote by F̄ a representative of F ; F̄ is a diffeomorphism of Σ in Σ′′. For any A ∈Mod(Σ, ∂Σ)
and any representative Ā ∈ Diff+(Σ, ∂Σ) of A, the product F̄ ĀF̄−1 preserves the orientation
of Σ′′ and induces the identity on ∂Σ′′ (which is equal to F̄ ĀF̄−1(∂Σ) ), so F̄ ĀF̄−1 belongs
to Diff+(Σ′′, ∂Σ′′). The isotopy class of F̄ ĀF̄−1 in Mod(Σ′′, ∂Σ′′) depends only on F and A.
However, there exists a canonical extension of Mod(Σ′′, ∂Σ′′) in Mod(Σ′, ∂Σ′). Let us denote
by ÃdF (A) the image of the isotopy class of F̄ ĀF̄−1 by this extension. The map ÃdF defined
by:
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ÃdF :
Mod(Σ, ∂Σ) −→ Mod(Σ′, ∂Σ′)

A 7−→ ÃdF (A)
is a group morphism. Such a morphism will be called the morphism from Mod(Σ, ∂Σ) in
Mod(Σ′, ∂Σ′) induced by the embedding F .

Let us insist on the fact that nothing is assumed on the embedding F : the image by F of
a boundary component of Σ may bound a disk in Σ′, and the images by F of two boundary
components of Σ may be isotopic in Σ′. Moreover, this embedding is allowed not to respect the
orientations of Σ and Σ′.

When Σ′′ = Σ′, we can identify Σ′ and Σ so that the embedding F becomes an element of
Mod¦(Σ). The morphism ÃdF that we get is then an automorphism of Mod(Σ, ∂Σ). In this
case, ÃdF will be called an outer conjugation by F .

Before stating the theorems on morphisms between mapping class groups, we need to set
some additional definitions. When necessary, we shall justify in Section 6 that they are valid
definitions.

Definition 1.11 (Hyper-elliptic Involution).
In Σ2, 0, let H̄ be the angle π rotation over the axis δ in Figure 2. We denote by H the isotopy
class of H̄. This mapping class is called the hyper-elliptic involution of Mod(Σ2, 0).

Figure 2: The mapping class H of Mod(Σ2, 0).

Definition 1.12 (Cyclic morphisms from Mod(Σ2, b) in any given group).
A morphism from Mod(Σ2, b) in any given group, with b > 0, is said to be cyclic if its image is
cyclic.

Definition 1.13 (Transvection of a morphism from the mapping class group in any
group).
Let Σ be a genus-2 surface, M one of the mapping class groups PMod(Σ) or Mod(Σ, ∂Σ),
and G any group. For any morphism Ψ from M in G and for any element g belonging to the
centralizer of Ψ(M) in G such that g10 = 1G, we will call transvection of Ψ with direction g the
morphism Ψ′ that associates Ψ(Ta) g to any Dehn twist Ta along a non-separating curve a.

This definition is coherent, as we will see it in Section 6. Notice that a transvection with
direction 1G of a morphism is equal to this morphism.

We now turn to the statements of the theorems. We first deal with the mapping class group
relatively to the boundary. Theorem 5 is an existence theorem about non-trivial morphisms
between mapping class groups. It is completed by a Theorem 6 which provides a description of
these morphisms.
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Theorem 5 (Existence of non-trivial morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1.

• When g = 2, there exist some cyclic non-trivial morphisms from Mod(Σ2, b, ∂Σ2, b) in any
mapping class group admitting a subgroup isomorphic to Z/2Z, Z/5Z or Z/10Z. When
g > 3, there does not exist any cyclic non trivial morphism.

• When g > 2, there exist some noncyclic morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) if
and only if one of the two following conditions is satisfied: b 6= 0 and g′ > g, or b = 0 and
Σ′ is homeomorphic to Σ.

Theorem 6 (Morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ ∈ {g, g + 1}, and such that
Σ′ = Σ if b = 0. Any noncyclic morphism from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) is a morphism
induced by the isotopy class of an embedding from Σ in Σ′, or possibly a transvection with direction
H (the hyper-elliptic involution of Mod(Σ2, 0)) of such a morphism if g = 2 and (g′, b′) = (2, 0).
Moreover, if b = 0, the morphism induced by the isotopy class of an embedding from Σ in Σ′ (up
to transvection when Σ = Σ′ = Σ2, 0) is an outer conjugation.

Let us now focus on the morphisms from PMod(Σ) in PMod(Σ′). In most of the cases,
they also can simply be expressed from morphisms induced by an embedding. We have first to
define this term in the case of the morphisms from PMod(Σ) in PMod(Σ′).

Definition 1.14 (Morphisms from PMod(Σ) in PMod(Σ′) induced by an embedding,
and outer conjugations).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g = g′ and b > b′. Let F be the isotopy
class of an embedding from Σ in Σ′ such that F sends the boundary components of Σ on some
boundary components of Σ′ or on some trivial curves of Σ′ (trivial means here isotopic to a
point). We refer to these conditions on F by the symbol (∗). Let us emphasize on the fact
that F may not respect the orientations of Σ and Σ′. Let Σ′′ = F (Σ). Let us denote by F̄ a
representative of F which is then a diffeomorphism from Σ in Σ′′. For all A ∈ PMod(Σ) and
all representative Ā ∈ Diff+(Σ) of A, the product F̄ ĀF̄−1 preserves the orientation of Σ′′, so
F̄ ĀF̄−1 belongs to Diff+(Σ′′). Since g = g′ and b > b′ and according to (∗), the complement of
Σ′′ in Σ′ is a disjoint union of disks. Hence according to Alexander’s Lemma, F̄ ĀF̄−1 induces
canonically, and up to isotopy, a diffeomorphism of Σ′. Let us denote by AdF (A) the isotopy
class of this diffeomorphism. Since Ā preserves the boundary components of Σ, F̄ ĀF̄−1 preserves
the boundary components of Σ′′. But according to (∗), the set of boundary components of Σ′

is included in the set of boundary components of Σ′′, so the boundary components of Σ′ are
preserved by AdF (A). Finally, AdF (A) belongs to PMod(Σ′). The map AdF defined by

AdF :
PMod(Σ) −→ PMod(Σ′)

A 7−→ AdF (A)
is a group morphism. Such a morphism will be called the morphism from PMod(Σ) in PMod(Σ′)
induced by the embedding F .

When Σ′ = Σ, according to (∗), we get Σ′′ = Σ′, so the isotopy class F is inversible. Hence in
this case, F is an element of Mod¦(Σ). The obtained morphism AdF is then an automorphism
of PMod(Σ) that we will call the outer conjugation by F .
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When each boundary component is not fixed pointwise but only setwise, Theorems 5 and 6
become Theorems 7 and 8.

Theorem 7 (Existence of noncyclic morphisms from PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1.

• When g = 2 and only in this case, there exist some cyclic non-trivial morphisms from
PMod(Σ2, b) in any mapping class group that admits a subgroup isomorphic to Z/2Z,
Z/5Z or Z/10Z.

• When g > 2, there exist some noncyclic morphisms from PMod(Σ) in PMod(Σ′) if and
only if g′ = g and b′ 6 b.

According to this statement, studying all noncyclic morphisms from PMod(Σ) in PMod(Σ′)
when g′ 6 g + 1 can be reduced to studying them when g′ = g and b′ 6 b. This is the aim of
Theorem 8 below.

Theorem 8 (Morphisms from PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2, g′ = g and b′ 6 b. Let Ψ be a
noncyclic morphism from PMod(Σ) in PMod(Σ′). Then there exists an embedding F from Σ
in Σ′ such that F sends the boundary components of Σ on some boundary components of Σ′ or
on some trivial curves of Σ′, and such that Ψ is the morphism AdF induced by the embedding
F , or possibly the transvection by H (see Definition 1.11) of the morphism AdF if g = 2 and
(g′, b′) = (2, 0).

Among the morphisms between mapping class groups provided by Theorems 6 and 8, let us
determine the injective ones.

Theorem 9 (Injections from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1. Then, a morphism
from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) is injective if and only if:

• when b 6= 0: if it is induced, up to transvection when g = 2, by an embedding F of Σ in Σ′

such that F sends the boundary components of Σ on pairwise distinct curves in Σ′;

• when b = 0 and Σ′ = Σ: if it is not cyclic (it is then an outer conjugation, or possibly a
transvection of an outer conjugation when g = 2).

Theorem 10 (Injections of PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1. Then, a morphism
from PMod(Σ) in PMod(Σ′) is injective if and only if the two following conditions hold:

• the surfaces Σ and Σ′ are homeomorphic,

• the morphism is an outer conjugation (i.e. an automorphism of the form AdF with F ∈
Mod¦(Σ) cf. Definition 6.5), or possibly the transvection with direction H of an outer
conjugation when Σ′ and Σ are homeomorphic to Σ2, 0.
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1.4.4 Endomorphisms of the mapping class group

We complete the previous subsection by focusing on the injective morphisms fromMod(Σ, ∂Σ)
in Mod(Σ′, ∂Σ′) when Σ′ = Σ. In particular, we prove Ivanov and McCarthy’s theorem stating
that PMod(Σ) is co-Hopfian (cf. [IvMc]). In addition, we give a complete proof ofMod(Σ, ∂Σ)
being co-Hopfian (cf. Theorem 11). We will see that when b = 0, the groupMod(Σ, ∂Σ) satisfies
a much stronger property (cf. item (i) of Theorems 11 and 12). As in the previous subsection,
and since the center of Mod(Σ2, 0) is non-trivial, the case of the surface Σ2, 0 is special, and an
independent theorem (cf. Theorem 12) is devoted to it.

Theorem 11 (Co-Hopfian property of Mod(Σ, ∂Σ) and structure of Aut(Mod(Σ, ∂Σ)),
where Σ 6= Σ2, 0).
Let Σ be a surface Σg, b where g > 2 and (g, b) 6= (2, 0).

i) The mapping class group Mod(Σ, ∂Σ) is co-Hopfian, that is, the injections are automor-
phisms. Moreover, when b = 0, all the nontrivial morphisms from Mod(Σ) are automor-
phisms.

(ii) The map Ad : Mod¦(Σ) → Aut(Mod(Σ, ∂Σ)) is an isomorphism.

(iii) The outer automorphism group Out(Mod(Σ, ∂Σ)) of Mod(Σ, ∂Σ) is isomorphic to the
direct product Z/2Z×Sb, where Sb is the symmetric group on b elements.

We turn now to the case of the surface Σ2, 0. The result is very different because of the
exceptional non-trivial center of Mod(Σ2, 0). Indeed, the morphism Ad : Mod¦(Σ) →
Aut(Mod(Σ2, 0)) is not injective anymore, nor surjective.

Theorem 12 (Co-Hopfian property of Mod(Σ) and structure of Aut(Mod(Σ), where
Σ = Σ2, 0, McCarthy1 [Mc1]).
Let Σ be the surface Σ2, 0. Let us recall that we denote by H the hyper-elliptic involution of
Mod(Σ) (cf. Definition 1.11). Let us denote by `H the transvection (cf. Definition 1.13) of the
identity of Aut(Mod(Σ)) with direction H. Then:

(i) The mapping class group Mod(Σ) is co-Hopfian. We have even better: all the noncyclic
endomorphisms are automorphisms.

(ii) The morphism `H ofMod(Σ) is an involution, and any transvection with direction H of an
outer conjugation coincides with the (commutative) composition of this outer conjugation
with `H .

(iii) There exists an orientation reversing involution K ofMod¦(Σ). The group spanned by AdK

and `H is isomorphic to Z/2Z× Z/2Z and contains only outer automorphisms (except the
identity of course).

(iv) The restriction of the canonical morphism Aut(Mod(Σ)) → Out(Mod(Σ)) to 〈AdK , `H〉
is an isomorphism. In particular, Out(Mod(Σ)) = Z/2Z× Z/2Z.

1In [Mc1], McCarthy shows items (ii) - (v) of this theorem. Item (i) however handles with endomorphisms of
Mod(Σ2, 0). This approach is new.
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(v) The map Ad : Mod¦(Σ) → Aut(Mod(Σ)) has the following kernel and cokernel, given
in the following exact sequence:

1 → 〈H〉 →Mod¦(Σ) Ad−−→ Aut(Mod(Σ)) → 〈`H〉 → 1,

where `H is the image of `H in the quotient of Aut(Mod(Σ)) by Ad(Mod¦(Σ)).
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I. Preliminaries

We present in this part the main notions that we will use through out this paper:

• curves, surfaces and subsurfaces in Section 2,

• the mapping class group in Section 3,

• the braid group in Section 4.

2 Surfaces, curves and subsurfaces

Let us begin by specifying what we mean with surface.

Definition 2.1 (Surfaces).
In this paper, a surface is a compact, orientable and oriented manifold of dimension 2 whose
each connected component is of negative Euler characteristic. It may have or not boundary
components. We define by ∂Σ the topological boundary of Σ, that is to say Σ minus its interior.
We define by Σg, b the connected surface of genus g with b boundary components. Implicitly, g
and b satisfy 2− 2g − b 6 −1.

Outline:
This section aim to present the main topological ingredients associated with surfaces: curves

and subsurfaces. We will be mostly interested by isotopy classes of curves and subsurfaces instead
of curves and subsurfaces themselves.

• In Subsection 2.1, we show that some objects associated with curves and subsurfaces actually
depend only on their isotopy classes. Propositions 2.12 and 2.14 go in this sens. Using definitions
of Subsection 2.2, we can sum them up by the following proposition (accessible to the reader
familiar with definitions of Subsection 2.2):

Proposition 2.2. Let Σ be a surface. Given a set A of (isotopy classes of) curves, there exists
a set of representatives of the curves of A which are in tight position. Moreover, if A is without
triple intersection, such a set of representatives is unique up to strong isotopy.

• In Subsection 2.2, we give new definitions of curves, subsurfaces, isotopies which will be used
through out this paper.
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2.1 Isotopy classes of sets of curves

Let us begin by defining what curve means for us (cf. Definition 2.3). Actually, this first
definition is temporary: from Subsection 2.2 on, it will be replaced by Definition 2.15 which will
be used in the next sections.

Definition 2.3 (Temporary definitions). Let Σ be a surface.

• A curve will be in this subsection a compact, connected smooth 1-manifold in Σ that is
not the boundary of any disk in Σ.

• Two curves a and b are said to be isotopic if there exists a continuous path of curves from
a to b. When a and b are included in Σr ∂Σ, this is equivalent to say that there exists a
path of diffeomorphisms of Σ, which we denote by

(
Ht

)
06t61

and that satisfies H0 = Id
and H1(a) = b. Being isotopic for curves is an equivalence relation.

• The geometric intersection number of two curves a and b, denoted by I(a, b), is the min-
imum number of intersection points between a and a curve b′ that is transversal to a and
isotopic to b:

I(a, b) = min{|a ∩ b′|, b′ ' b}.

• Let A be a finite set of curves in Σ. We will say that the curves of A are in tight position
if, for any pair (a, b) of distinct curves in A, the number of intersection points between a
and b verify |a ∩ b| = I(a, b).

Two different notions of isotopy class of set of curves can be derived from the definition of
isotopy class of curve:

Definition 2.4 (Strong and weak isotopy between sets of curves).
Let Σ be a surface, r an integer greater than or equal to 1, and A = {a1, a2, . . . , ar} a set of
pairwise non-isotopic, disjoint curves. Let B = {b1, b2, . . . , br} be another set of curves having
the same properties. Then A and B are said to be:

• weakly isotopic if, up to permutation, for each i 6 r, the curves ai and bi are isotopic. The
weak isotopy class of A will be denoted by [A], so we have [A] = {[a1], [a2], . . . , [ar]}.

• strongly isotopic if there exists a path of diffeomorphisms of Σ which we denote by
(
Ht

)
06t61

such that H0 = Id and such that, up to permutation, for each integer i smaller than or
equal to r, we have H1(ai) = bi. The strong isotopy class of A will be denoted by [[A]] or
[[a1, a2, . . . , ar]].

Case of simplexes.

Definition 2.5 (Temporary definition: curve simplex).
Let Σ be a surface. A set of pairwise non-homotopic, disjoint curves in Σ will be called a curve
simplex (with reference to the curve complex defined later).
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Given a surface Σ, an integer r greater than or equal to 1 and a set A = {a1, a2, . . . , ar}
such that each pair {ai, aj} of curves in A satisfies I(ai, aj) = 0, we show easily by induction on
r that for all integers i smaller than or equal to r, there exists a curve a′i isotopic to ai such that
the curves a′1, a′2, . . . , a′r are pairwise disjoint. In other words, we have the following lemma:

Lemma 2.6. Let Σ be a surface. Let A be a set of pairwise non-isotopic curves in Σ such that
each pair of curves a and b in A satisfy I(a, b) = 0. Then the weak isotopy class of A contains
a simplex.

We do not prove Lemma 2.6 now because we’ll prove later in this section a more general
result (see Proposition 2.12). We can complete Lemma 2.6 by a uniqueness result which will also
be proved later in a more general frame in Proposition 2.14:

Lemma 2.7. Let Σ be a surface. Let A be a set of pairwise non-isotopic curves in Σ, such that
each pair of curves a and b in A satisfy I(a, b) = 0. Then all simplexes included in the weak
isotopy class of A are strongly isotopic.

In order to generalize both preceding lemmas to more general sets of curves than simplexes,
we recall the definition of bigon, introduced by Epstein in [E].

Bigons.

Definition 2.8 (Bigon, Epstein [E] ).
Let Σ be a surface and a and b two curves in Σ. A bigon cobounded by a and b is a disk included
in Σ whose boundary is the union of an arc included in a denoted by â and an arc included in b
denoted by b̂ (cf. Figure 3).

Figure 3: Bigon cobounded by a and b

Proposition 2.9 (Paris, Rolfsen [PaRo] ). Let Σ be a surface and a and b two transversely
intersecting curves in Σ. Then a and b are in tight position if and only if a and b do not cobound
any bigon. ¤

Let us set up the vocabulary related to bigons.

Definition 2.10 (Edges of a bigon, enter in and exiting a bigon).
Let Σ be a surface, a and b two curves in Σ, and D a cobounded bigon by a and b. We denote by
â and b̂ the two arcs included in a and b whose union is the boundary of the bigon. We call edge
of the bigon each of these two arcs. We shall say that an oriented path p : [0, 1] → Σ enters in
the bigon D at time t0 if p(t0) belongs to the boundary of D and if there exists ε > 0 such that:

p(]t0 − ε, t0[) ∩D = ∅ and p(]t0, t0 + ε[) ⊂ D.
In the same way, we shall say that an oriented path p : [0, 1] → Σ goes out of D at time t0 if
p(t0) belongs to the boundary of D and if there exists ε > 0 such that:

p(]t0 − ε, t0[) ⊂ D and p(]t0, t0 + ε[) ∩D = ∅.
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Generalization of the case of simplexes.

Definition 2.11 (Intersection number of two sets of curves).
Let Σ be a surface. Let A (respectively B) be a set of pairwise non-isotopic curves in Σ. The
intersection number I(A, B) is by definition:

I(A, B) =
∑

(a,b)∈A×B
I(a, b).

Let us notice that in this definition, there may exist a and a′ in A such that I(a, a′) 6= 0
(same thing in B), but these intersections do not come into account in I(A, B).

The next proposition generalize Lemma 2.6.

Proposition 2.12. Let Σ be a surface, r an integer greater than or equal to 1, and A =
{a1, a2, . . . , ar} a set of r pairwise non-isotopic curves in Σ. Then there exists in Σ a set
B = {b1, b2, . . . , br} of r curves that are pairwise in tight position and such that, for all i 6 r,
the curves bi and ai are isotopic.

Proof. By induction on r. The case r = 2 is true by definition of the intersection number.
Let r be an integer greater than or equal to 3 and let us assume that the proposition is true
for r − 1: there exist some curves {b1, b2, . . . , br−1}, lying in tight position, such that for all
i 6 r−1, the curves ai and bi are isotopic. One can also assume that the curves {b1, b2, . . . , br−1}
and ar intersect transversely only in double points. Then, from Proposition 2.9, in the set
{b1, b2, . . . , br−1, ar}, all the bigons are cobounded by a curve bi, i 6 r − 1, and by ar. Let us
call Di such a bigon and b̂i and âr its two edges. Let us show that one can kill one after the
other the bigons Di, i 6 r − 1, just by using an isotopy on ar, without creating other bigons
elsewhere. This will prove Proposition 2.12.

Let us consider an innermost bigon Di. No curve bk (k 6 r−1, k 6= i) entering in Di through
the arc âr can exit again through âr because we would have a bigon Dk strictly included in Di.
The same matter holds with the edge b̂i, for there does not exist any bigon cobounded by bk and
bi. So any bk entering in Di exits by intersecting the opposite edge. So, if we push ar through
the bigon Di, the bigon Di disappears (cf. Figure 4). During this isotopy, ar and bk remain
transversal and no bigon cobounded by ar and bk has occurred. However, |ar ∩ bi| has decreased
by two. Let us repeat this process until |ar ∩ bi| = I(ar, bi) for all i 6 r − 1. At the end, the
last bigon disappears and the curve br is defined as the resulting curve coming from ar after all
these isotopies. ¤

In Proposition 2.12, we have given an existence result. In order to get a uniqueness result,
we have to consider sets of curves having a property that we call the without triple intersection
property (see Definition 2.13 below). This property appears in Proposition 2.14), which is a
generalization of Lemma 2.7.

Definition 2.13 (Set of curves without triple intersection).
Let Σ be a surface. We shall say that a set of curves A is without triple intersection if for any
triple of curves {ai, aj , ak} in A, one of the following intersections ai ∩ aj , ai ∩ ak or aj ∩ ak is
empty.
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Figure 4: Pushing an through the bigon Di (proof of Proposition 2.12).

Proposition 2.14. Let Σ be a surface, r an integer greater than or equal to 1, and B =
{b1, b2, . . . , br} a set of pairwise non-isotopic curves, in tight position and without triple in-
tersection. Let B′ = {b′1, b′2, . . . , b′r} another set of curves having the same properties and such
that bi and b′i are isotopic for all i 6 r. Then there exists a path of diffeomorphisms of Σ denoted
by

(
Ht

)
06t61

such that H0 = Id and such that for all i 6 r, we have H1(bi) = b′i.

Proof. By induction on r. The case r = 1 is classic. Let r > 2 and let us assume that the
result holds for r − 1: there exists an isotopy H sending {b1, b2, . . . , br−1} on {b′1, b′2, . . . , b′r−1}
and sending br on a curve x isotopic to b′r and in tight position with the curves b′i, i 6 r− 1. We
look for an isotopy G that leaves the b′i invariant, i 6 r − 1, and that sends x on b′r.

If x and b′r do not intersect, then x and b′r cobound an annulus. So the isotopy G consists
only to make x slide through this annulus in order to bring it on b′r, and G coincides with the
identity outside of a neighbourhood of this annulus (cf. Figure 5). Let us examine this isotopy
G. Let us fix an integer i 6 r − 1. Recall that the curve b′i is in tight position with x and
with b′r, so it does not bound any bigon with x nor with b′r. Hence, if b′i meets this annulus by
intersecting one of the two curves x or b′r, it can only exit this annulus by intersecting the other
curve among x and b′r. If we now consider another different integer k 6 r − 1 such that b′i and
b′k meet the annulus, we have just shown they must both intersect b′r. But B′ is without triple
intersection, so I(b′i, b′k) = 0. As the curves in B′ are in tight position, this implies that they are
disjoint. In particular, they do not intersect in the annulus. Hence, for i 6 r − 1, the curves b′i
are all pairwise isotopic in the annulus and the isotopy G fixes each curve b′i while it maintains
x transversal to these curves b′i.

Figure 5: Making x slide through an annulus (proof of Proposition 2.14).

If x and b′r intersect, they bound a bigon. Let us consider an innermost bigon, and let us
show that, by an isotopy, we can move x outside of this bigon while preserving the other curves b′i
for all i 6 r−1. Actually, it is enough to see that, as in the previous case, all the curves b′i which
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enter in the bigon can only exit it by intersecting the opposite edge and so are pairwise isotopic
in the bigon. Thus, the isotopy consists only, as in the previous case, to push x outside of the
bigon. We can repeat this argument until the image of x by these isotopies does not intersect
b′r, and then conclude as in the previous case. ¤

2.2 Definitions

Definitions concerning curves:

Definition 2.15 (Curves).
Let Σ be a surface.

• Two closed, smooth, connected, compact 1-submanifolds ā and b̄ of Σ are said to be isotopic
if there exists a continuous path of 1-submanifolds with extremities ā and b̄. When ā and b̄
are included in Σr∂Σ, this is equivalent to say that there exists a path of diffeomorphisms
of Σ, denoted by

(
Ht

)
06t61

, such that H0 = Id and H1(ā) = b̄. In the set of closed,
smooth, connected, compact 1-submanifold of Σ, being isotopic is an equivalence relation.

• A curve will be an isotopy class of a closed, smooth, connected, compact 1-submanifold of
Σ that does not bound any disk in Σ.

• We denote by Bndy(Σ) the set of isotopy classes of the connected components of ∂Σ.

• We denote by Curv(Σ, ∂Σ) the set of all the curves in Σ and by Curv(Σ) the set Curv(Σ, ∂Σ)
minus Bndy(Σ).

• A representative of a curve a ∈ Curv(Σ) is a smooth 1-submanifold of Σ that belongs to a.

• The geometric intersection between two curves a and b is the minimum number I(a, b) of
intersection points between two transversal representatives ā and b̄ of a and b. We shall
say that two curves a and b intersect or meet each other if they satisfy I(a, b) 6= 0.

• A set of curves, by definition of set, contains each element once. Moreover, they will always
be finite.

• The geometric intersection of two sets of curves A and B is the integer I(A, B) defined by:

I(A, B) =
∑

(a,b)∈A×B
I(a, b).

• A representative of a set A of curves is a set of representatives of the curves of A (one
representative per curve).

• A representative in tight position of a set A of curves is a representative of the set A such
that for each pair (a, b) of curves in A, their representatives ā and b̄ are in tight position.
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• Harvey introduced in [Ha] the curve complex 2 where the vertices are the curves of Curv(Σ, ∂Σ)
and for each integer k > 0, the k-simplexes are the sets A of k + 1 distinct curves, such
that I(A, A) = 0. We will widely use the curve simplex concept.

• A set of curves without triple intersection will be a set of curves such that for any three
curves a, b and c in it, the product I(a, b)I(b, c)I(c, a) is zero.

The following two propositions will be often used in this paper. The first one is well known
and comes from cutting the surface in pairs of pants.

Proposition 2.16. Let Σ be a surface and c, g, b the number of connected components, the genus
and the number of boundary components of Σ respectively. Then, any curve simplex included in
Curv(Σ) contains at most 3g − 3c + b curves. Moreover, any curve simplex containing less than
3g − 3c + b curves can be completed in a simplex of exactly 3g − 3c + b curves. ¤

Propositions 2.12 and 2.14 can be restated as follows:
Proposition 2.2. Let Σ be a surface. Given a set of curves A, there exists a set of representatives
of the curves of A that are in tight position. Moreover, if A is without triple intersection, such
a set of representatives is unique up to strong isotopy. ¤

Definitions concerning subsurfaces:
Let Σ be a surface.

Definition 2.17 (Isotopy between 2-submanifolds).
Two nonempty, smooth, compact 2-submanifolds V and W in Σ are said to be isotopic if there
exists a continuous path of smooth, compact 2-submanifolds with extremities V and W . If V
and W are included in Σ r ∂Σ, this is equivalent to say that there exists a continuous path of
diffeomorphisms of Σ, which we denote by

(
Ht

)
06t61

, such that H0 = Id and H1(V ) = W .

The term subsurface is devoted to a specific class of 2-submanifolds. In order to state clearly
the definitions, we first distinguish two types of subsurfaces: the non-marked subsurfaces whose
boundary curves are pairwise non-isotopic in Σ, and the marked subsurfaces that generalize the
definition.

Definition 2.18 (Non-marked subsurfaces).

• A non-marked subsurface S in Σ will be an isotopy class of a nonempty, connected 2-
submanifold V in Σ whose boundary consists in representatives of pairwise non-isotopic
curves of Curv(Σ, ∂Σ).

• Let S be a non-marked subsurface in Σ, a representative of S is a 2-submanifold in Σ
isotopic to V , and ∂S is the isotopy class of the 1-submanifold ∂V .

• Let S be a non-marked subsurface in Σ and V a representative of S. We denote by Bndy(S)
the set of isotopy classes in Curv(Σ, ∂Σ) of the different connected components of ∂V .

2the dimension of the complex C(Curv(Σ, ∂Σ)) is 3g−3c+2b−1, after Proposition 2.16 see below. The curve
complex automorphisms group has been studied by Ivanov [Iv2], Korkmaz [Ko1], and Luo [Lu].
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When a 2-submanifold contains pairs of isotopic boundary components, we use the definition
of marked subsurface described below:

Definition 2.19 (Marked subsurfaces).

• When V is a nonempty connected 2-submanifold, different from a disk or a cylinder, and
whose each boundary component either is equal to a boundary component of Σ, or is
a representative of a curve of Curv(Σ), we associate to V the marked subsurface (T, A)
where T is the non-marked subsurface (as described above) associated to the 2-manifold
W obtained from V by gluing together each pair of isotopic boundary components, and
where A is a curve simplex in Curv(Σ) called the mark and containing for each pair of
isotopic boundary components of V their isotopy class. Thus, V and W have the same
Euler characteristic, but the genus of W is equal to the sum of the genus of V and the
cardinality of A (cf. Figure 6).

Figure 6: Example of a marked subsurface (S, A) associated to the 2-submanifold V , where S
is the isotopy class of W and where A = {a1, a2}.

• Let (T, A) be a marked surface denoted by S, let W be a representative of T , let N be
an open tubular neighbourhood of a 1-submanifold representing A. Thus N is included in
W . A representative of S is a 2-submanifold of Σ isotopic to W rN , and ∂S is the union
of the isotopy class of the 1-submanifold ∂W and the curves of A.

• Let (T, A) be a marked surface denoted by S. The curve simplex Bndy(S) is by definition
the union Bndy(T ) ∪ A.

• Let (T, A) be a marked surface denoted by S. The curves in Bndy(S) that are in Bndy(Σ)
are called the natural boundary components and their set is denoted by Bndynat(S), while
the other curves of ∂(S) are called the inner boundary components of S and their set is
denoted by Bndyint(S). Thus, by definition,

Bndynat(S) = Bndy(S) ∩ Bndy(Σ),
Bndyint(S) = Bndy(S) ∩ Curv(Σ) and A ⊂ Bndyint(S).

For instance, in Figure 6, Bndynat(S) = {d1} and Bndyint(S) = {a1, a2, y1, y2, y3, y3, y4, y5}.
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• Let (T, A) be a marked surface denoted by S. We denote by Curv(S) the set of curves c
in Curv(T ) r A such that I(c, A) = 0 (if A is empty, we forget this last definition). We
denote by Curv(S, ∂S) the union Curv(S) ∪ Bndy(S).

• We denote by Sub(Σ) the set of marked (nonempty) subsurfaces in Σ. The elements
of Sub(Σ) will be called either marked subsurfaces of simply subsurfaces. Notice that a
non-marked subsurface is a marked subsurface with an empty mark.

Remark. This definition of subsurface allows us to establish a canonical bijection between
the curve simplexes in Curv(Σ) and the partitions of Σ in subsurfaces (cf. Definition 2.23 of
SubA(Σ)).

The following lemma will often be used implicitly. Its proof comes straight from the definition
of subsurface, it is left to the reader.

Lemma 2.20 (Sum of Euler characteristic of disjoint subsurfaces).
Given a surface Σ, the sum of the Euler characteristics of some disjoint subsurfaces of Σ is
greater than or equal to the Euler characteristic of Σ. ¤

Definition 2.21 (Subsurface complex).
The subsurface complex3 is the simplicial complex whose vertices are the subsurfaces of Sub(Σ)
and whose k-simplexes (for any integer k > 0) are the sets of k + 1 distinct subsurfaces A =
{S0 , S1 , . . . , Sk} such that any pair of subsurfaces (Si, Sj) in A satisfies Si ∩ Sj = ∅. The
subsurface complex in this paper differ from the domain complex defined by McCarthy and
Papadopoulos [McPp], since we consider isotopy classes instead of real embedded subsurfaces,
and do not authorize annuli.

Definition 2.22 (Inclusion between curves and subsurfaces or between subsurfaces).

Let Σ be a surface.

(i) Given a curve a ∈ Curv(Σ) and a subsurface S ∈ Sub(Σ), we shall say that a is included in
S if there exist a representative ā of a and a representative S̄ of S such that ā is included
in S̄.

(ii) Let S and T be two subsurfaces in Σ. We shall say that S is included in T if there exist
two representatives S̄ and T̄ of S and of T such that S̄ is included in T̄ .

Remark. The intersection between subsurfaces is well-defined, for the union of the sets of the
boundary components of each surface is a set of curves without triple intersection. However, the
connected components of the intersection may be homeomorphic to disks or cylinders, so the
intersection of subsurfaces is not in general a subsurface as defined in Definition 2.19.

Surface and curve simplex:
3Because of the additivity of the Euler characteristic and the fact that subsurfaces in Sub(Σ) have a negative

Euler Characteristic, the cardinality of any set of disjoint subsurfaces is bounded by −χ(Σ). As this number is
reached by any pants-decomposition of Σ, the dimension of the subsurface complex equals −χ(Σ)− 1.
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Definition 2.23. Let Σ be a surface and let A be a curve simplex included in Curv(Σ). We
introduce some definitions and notation:

• SubA(Σ) is the set of subsurfaces S in Σ such that Bndy(S) is included in A ∪ Bndy(Σ)
and such that Curv(S) ∩ A is empty. We exclude ∅ (the empty set) from SubA(Σ).

• Γ(Σ, A) is the graph having one vertex for each subsurface in SubA(Σ), and having one
edge for each curve in A, so that extremities of an edge associated to a curve x are the two
vertices associated to the two subsurfaces whose boundaries contain x, cf. Figure 7.

Figure 7: Let A be the simplex {a1, a2, y1, y2, y3, y4, y5} as illustrated in Figure 6. We repre-
sent the associated graph Γ(Σ, A) by giving to vertices and edges the names of the associated
subsurfaces and curves.

• ΣA is the surface Σ blown up along the curves of A.

• recA : ΣA → Σ is the canonical gluing map from ΣA to Σ.

27



3 Mapping class group

We begin this section by a subsection dedicated to different definitions of the mapping class
group and links between them (Subsection 3.1). Then during the next three subsections, we
present three fundamental types of mapping classes: Dehn twists (Subsection 3.2), periodic
mapping classes (Subsection 3.3), and pseudo-Anosov mapping classes (Subsection 3.4). These
three types of mapping classes are central in the diffeomorphisms classification after Nielsen-
Thurston, which we present at the end of this section in Subsection 3.6 and which will be our
main tool while studying morphisms from the braid group in the mapping class group.

3.1 Some different definitions of the mapping class group

We already gave in the introduction various possible definitions of the mapping class group
and the corresponding notation. We give them again below, and in addition all the definitions
that will occur later in this paper. Then, we shall explain the links between them.

Definition 3.1. Let Σ be an orientable compact surface, possibly not connected, and with a
possibly empty boundary.

• The mapping class group of Σ, denoted by Mod(Σ), is the group of isotopy classes of
orientation-preserving diffeomorphisms of Σ. If Σ has several connected components, then
they may be permuted by elements of Mod(Σ).

• The extended mapping class group of Σ, denoted byMod¦(Σ), is the group of isotopy classes
of all diffeomorphisms of Σ (they may inverse Σ’s orientation). When Σ is connected, the
group Mod(Σ) is an index two normal subgroup of Mod¦(Σ).

• The mapping class group of Σ that preserves each boundary component, denoted by
PMod(Σ), is defined as the group of isotopy classes of all orientation-preserving diffeomor-
phisms preserving each boundary component of Σ setwise and preserving each connected
components of Σ setwise.

• Let X be the disjoint union in Σ of a possibly not connected subsurface and a possibly
not connected 1-submanifold. The mapping class group of Σ relatively to X, denoted by
Mod(Σ, X), is the group of isotopy classes of the orientation-preserving diffeomorphisms
of Σ that fix X pointwise. The isotopies are required to fix X point-wise at any time.
We denote by forX : Mod(Σ, X) → Mod(Σ) the canonical morphism. The name “for”
stands for “forget”. As an example, the mapping class group of Σ relatively to the boundary,
denoted by Mod(Σ, ∂Σ), is defined as the group of isotopy classes of all orientation-
preserving diffeomorphisms preserving pointwise all boundary components of Σ, and we
have a natural morphism for∂Σ : Mod(Σ, ∂Σ) → PMod(Σ).

• Let A be a curve simplex in Curv(Σ). We denote byModA(Σ) the group of isotopy classes
of diffeomorphisms of Σ preserving A setwise. If we require in addition that each boundary
component is preserved, we will denote this group by PModA(Σ). We have a canonical
morphism cutA : ModA(Σ) →Mod(ΣA).
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• With the same definition of A, we denote by PAMod(Σ) the subgroup of ModA(Σ) that
is equal to cut−1

A (PMod(ΣA)). Thus, PAMod(Σ) is the group of isotopy classes of dif-
feomorphisms of Σ preserving each curve of A setwise, preserving ∂Σ componentwise, and
preserving each subsurface in SubA(Σ).

The various statements in the following proposition establish links between the mapping
class groups defined above. Proofs are left to the reader. This proposition will be completed by
Proposition 3.9 where Dehn twists, defined in the next subsection, come into play.

Proposition 3.2.

(i) Let Σ′ be a subsurface of Σ and let Σ′′ be the closure of the complement of Σ′ in Σ. We
have then the isomorphism:

Mod(Σ, Σ′ ∪ ∂Σ) ∼= Mod(Σ′′, ∂Σ′′).

(ii) For all curve simplex A, the following two mapping class groups are isomorphic:

Mod(Σ, ∂Σ ∪ ( ∪
a∈A

a) ) ∼= Mod(ΣA, ∂(ΣA)).

(iii) Let Σ′ and Σ′′ in Sub(Σ) such that Σ′′ is the closure of the complement of Σ′ in Σ. Then
Mod(Σ, Σ′) and Mod(Σ, Σ′′) are two subgroups of Mod(Σ) such that each of them is
included in the centralizer of the other. ¤

3.2 Dehn twists

Dehn twists form a major family of mapping classes, for Dehn twists are elementary mapping
classes which generate Mod(Σ, ∂Σ) (cf. Theorem 3.8). Besides, Dehn twists can satisfy braid
relations in the mapping class group (cf. Proposition 3.4). Such relations allow the existence of
interesting morphisms from braid groups to mapping class groups, which we will study in this
paper.

Definition 3.3 (Dehn twists along curves of Curv(Σ, ∂Σ)).
Let Σ be an oriented surface. We give the product-orientation to the annulus A = [0, 1] × S1.
Given a curve a belonging to Curv(Σ), let ā be a smooth 1-submanifold of Σr ∂Σ representing
a. Let V be a tubular compact neighbourhood of ā and let φ be a positive homeomorphism of V
in A. Let us define the homeomorphism

D :
A = [0, 1]× S1 −→ A = [0, 1]× S1

(t, eiθ) 7−→ (t, ei(θ+2πt))
.

Let us consider the homeomorphism ta that equals the identity outside of the tubular neighbour-
hood V and equals φ−1 ◦ D ◦ φ on V. By a classic result in differential topology in dimension
two, the isotopy class of any homeomorphism contains a unique isotopy class of diffeomorphisms.
Thus ta defines a unique isotopy class of diffeomorphisms, in other words a unique mapping class
ofMod(Σ, ∂Σ). We denote it by Ta and we call it the Dehn twist along the curve a. Notice that
a priori, Ta depends on the isotopy class of the positive homeomorphism φ, but there exists only
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Figure 8: Definition of a Dehn twist.

one such isotopy class since the mapping class group of the cylinder is trivial. In the same way,
the choices of the representative ā and the neighbourhood V are indifferent, and the Dehn twist
Ta depends only on the curve a. In other words, Ta is well-defined. The mapping class induced
by Ta in Mod(Σ) is still denoted by Ta and is still called the Dehn twist along the curve a.

We define also in a similar way the Dehn twist along a curve of Bndy(Σ): given a curve
a ∈ Bndy(Σ), we choose a representative ā in Σ r ∂Σ of a. We define then Ta as before. The
Dehn twist Ta in the group Mod(Σ, ∂Σ) is not trivial, whereas it is trivial in Mod(Σ).

When Σ is embedded in the 3-sphere S3 and when we look at is from outside (inside and
outside depends on the orientation of Σ), a Dehn twist along the curve a changes a curve b
intersecting a into a curve following b and turning once to the left round a each time b crosses a.

First Dehn twists’ properties.
The following proposition is classic. It plays a great role in this paper.

Proposition 3.4 (Dehn twists’ properties, N.V. Ivanov, J.D. McCarthy [Mc1]).
Dehn twists satisfy the following properties:

• For all F in Mod(Σ), we have F Ta = Ta F if and only if F (a) = a.

• Let Ta and Tb be two Dehn twists, and i and j two nonzero integers. The relation Ta
i Tb

j =
Tb

j Ta
i holds if and only if I(a, b) = 0.

• Let Ta and Tb be two Dehn twists, and i and j two nonzero integers. The braid relation
Ta

i Tb
j Ta

i = Tb
j Ta

i Tb
j holds if and only if I(a, b) = 1 and i = j = ±1. ¤

The proof of this proposition is classic (cf. [FLP]). Let us just recall that it comes from the
intersection formula given in Lemma 3.5. We won’t prove this lemma either, but we will use it
again in this paper.

Lemma 3.5 (Fathi, Laudenbach, Poénaru, cf. [FLP]).
If a, b, c are three curves such that I(b, c) = 0, then for all integers k,

I(T k
a (b), c) = |k|I(a, b)I(a, c).

In the general case, when we do not assume that I(b, c) = 0, we have the following inequality:∣∣ I(T k
a (b), c)− |k|I(a, b)I(a, c)

∣∣ 6 I(b, c).
¤
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Chain of curves.
There exist other relations of great importance in this paper that are satisfied by Dehn twists:

the relations involving chains of curves.

Definition 3.6 (Chain of curves).
Given a surface Σ, for all integers k > 2, a k-chain of curves is an ordered sequence of pairwise
distinct curves (a1, a2, . . . , ak) such that for all i, j 6 k, we have I(ai, aj) = 0 if |i− j| 6= 1 and
I(ai, aj) = 1 if |i− j| = 1 (cf. Figure 9).

Figure 9: Example of a chain of curves.

The relations between Dehn twists along curves included in a chain of curves are given in
Lemma 3.7 below. It is classic, we will not prove it, but we come back to it in Section 4 when
we present the braid group in Proposition 4.16.

Lemma 3.7 (C. Labruère, L. Paris, cf. [LaPa]).
Let (c1, c2, . . . , ck) be a k-chain of curves where k is an integer greater than or equal to 2. Then,

• if k is even, the tubular neighbourhood of c1 ∪ c2 ∪ · · · ∪ ck is a surface S of genus k
2 with

one boundary component which we call d, and the product
(
Tc1(Tc2Tc1) . . . (Tck

. . . Tc2Tc1)
)2

is the mapping class α that preserves each curve ci, 1 6 i 6 k, whose restriction outside
of S coincides with the identity, and such that α2 = Td (cf. Figure 10). Notice that after
having given orientations to the curves ci, 1 6 i 6 k, the mapping class α inverse them.

Figure 10: The product
(
Tc1(Tc2Tc1) . . . (Tck

. . . Tc2Tc1)
)2 when k is even.

• if k is odd, the tubular neighbourhood of c1∪c2∪· · ·∪ck is a surface S of genus k−1
2 with two

boundary components d1 and d2, and the product
(
Tc1(Tc2Tc1) . . . (Tck

. . . Tc2Tc1)
)2 equals

the product Td1 Td2 (cf. Figure 11). ¤
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Figure 11: The product Tc1(Tc2Tc1) . . . (Tck
. . . Tc2Tc1) when k is odd.

Dehn twists as generators of the mapping class group.
Let us recall the following Theorem due to M. Dehn [D] and rediscovered by W.B.R. Lickorish

[Lk]. For the proof of Part 1, the reader can refer to [Bi], Theorem 4.1. Part 2 is a consequence
of Part 1, using lantern relations (cf. [FaMa] section 5.1) in order to obtain the Dehn twists
along the boundary curves.

Theorem 3.8 (The mapping class group is spanned by Dehn twists).
1. Let Σg,b be a surface whose genus satisfies g > 1. The group PMod(Σg,b) is spanned by

the Dehn twists along the non-separating curves of Σg,b. Actually, one can for instance consider
only the curves drawn in Figure 12.

2. The same Dehn twists can be seen as lying in Mod(Σg,b, ∂Σg,b); in this case they span
Mod(Σg,b, ∂Σg,b). ¤

Figure 12: Curves in Σg,b span PMod(Σg,b).

Links between mapping class groups and Dehn twists.
We give first three classic results and a Theorem of Paris and Rolfsen where Dehn twists

emerge when we compare some specific mapping class groups.

Proposition 3.9 (Central exact sequences between mapping class groups).
The three sequences below are central exact sequences.
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(i) For any connected surface Σ, the below sequence is exact:

1 → 〈Td , d ∈ Bndy(Σ)〉 →Mod(Σ, ∂Σ) for∂Σ−−−→ PMod(Σ) → 1.

(ii) For any curve simplex A ⊂ Curv(Σ), the below sequence is exact:

1 → 〈Ta, a ∈ A〉 → PAMod(Σ) cutA−−−→ PMod(ΣA) → 1.

(iii) Let A be a curve simplex not isotopic to any boundary component of Σ. For all curve a ∈ A,
let us denote by a+ and a− the two boundary components in ΣA coming from a (no matter
how the signs are shared out). When we glue in ΣA each boundary component a+ (a ∈ A)
with its associated boundary component a−, we get the surface Σ back. Such a gluing
operation induces a canonical morphism recA : Mod(ΣA, ∂ΣA) → PAMod(Σ, ∂Σ)
which satisfies the following exact sequence:

1 → 〈Ta+T−1
a− , a ∈ A〉 →Mod(ΣA, ∂ΣA) recA−−−→ PAMod(Σ, ∂Σ) → 1.

¤

The concept of parabolic subgroup of the mapping class group has been introduced by L. Paris
and D. Rolfsen in [PaRo]: given a surface Σ, the parabolic subgroups of the mapping class group
of Σ are the subgroups induced by the inclusion of subsurfaces in Σ. The next Theorem, due to
Paris and Rolfsen, deals with some kernels associated with parabolic subgroups of the mapping
class group.

Theorem 3.10 (Paris and Rolfsen, [PaRo]).
Let Σ be a surface and Σ′ a subsurface in Σ such that ∂Σ′ and ∂Σ are disjoint. We denote by
a1, a2, . . . , ar the boundary components of Σ′ that bound a disk in Σ; we denote by bj , b′j for
1 6 j 6 s the pairs of boundary components of Σ′ that cobound an annulus in Σ. Then the
inclusion ι : Σ′ → Σ induces a morphism ι∗ : Mod(Σ′, ∂Σ′) →Mod(Σ, ∂Σ) whose kernel is
the abelian group T of rank r + s spanned by Tai, 1 6 i 6 r and by T−1

bj
Tb′j , 1 6 j 6 s.

Some special products of Dehn twists: the multitwists.
To end this subsection on the Dehn twists, we present the multitwists. They are special

products of Dehn twists which often emerge in the kernel of morphisms between different mapping
class groups, as they do in Proposition 3.9.(ii).

Definition 3.11 (Multitwists).
A multitwist along the curves of A where A is a curve simplex is the product of nonzero powers
of Dehn twists along the curves of A.

A multitwist can only be written in a single way as a product of nonzero powers of Dehn
twists (up to reordering the factors):

Lemma 3.12 (Uniqueness of the factorisation of a multitwist in product of Dehn
twists).
Let A and B be two curve simplexes4 and let (ka)a∈A and (`b)b∈B two families of nonzero integers
indexed by A and B. If

4Let us recall that a curve simplex is a set of pairwise disjoint curves: no curve can appear twice.

33



∏
a∈A T ka

a =
∏

b∈B T `b
b ,

Then A = B and for any pair of curves (a, b) in A × B, the equality a = b implies the equality
ka = `b.

The right frame to prove this lemma is Thurston’s theory and the introduction of the canonical
reduction system σ, see Subsection 3.6 in this section. For this reason, Lemma 3.12 will be proved
in Subsection 3.6.

3.3 The periodic mapping classes

Definition 3.13 (Periodic mapping classes, order and period).

(i) A mapping class F ∈Mod(Σ) is said to be periodic if there exists a nonzero integer k such
that F k = Id (where Id is the isotopy class of the identity of Σ). The smallest integer k
such that F k = Id is called the order of F .

(ii) A mapping class F ∈ Mod(Σ, ∂Σ) is said to be periodic if its projection F̄ in Mod(Σ) is
a periodic mapping class in the previous sens. The smallest integer k such that F̄ k = Id
will be called the period of F instead of the order of F for F k is not the identity. However,
the period of F is equal to the order of F̄ .

As an example, here is a classic lemma:

Lemma 3.14. Dehn twists are not periodic.

Proof. Let Σ be a connected surface such that Curv(Σ) is nonempty (hence Σ is not a pair of
pants), and let a be a curve in Curv(Σ). If a is non-separating, it is easy to construct a curve
b that belongs to Curv(Σ) and that intersects a in one point, indeed it is enough to consider a
path in Σa joining two boundary components coming from the curve a. In the same way, we
can construct a curve b that belongs to Curv(Σ) and that intersects a in two points, when a is
separating. Then, for all nonzero integer k, T k

a is not trivial, for according to Lemma 3.5,
I(T k

a (b), b) = |k|I(a, b)2 6= 0,
whereas I(Id (b), b) = 0. ¤

The following theorem states that every periodic mapping class is the isotopy class of an
isometry of the surface with a specific metric depending on the mapping class. Given a connected
surface Σ together with a hyperbolic metric g, let us denote by Isom+(Σ, g) the group of positive
isometries of (Σ, g), which is a subgroup of Diff+(Σ). According to the Nielsen realization
theorem, if ∂Σ = ∅, for every periodic mapping class F ∈ Mod(Σ) of order m, there exists a
hyperbolic metric g on Σ and an isometry f ∈ Isom+(Σ, g) such that F is the isotopy class of f
and f satisfies fm = Id . This Theorem has been generalized by Kerckhoff to finite subgroups of
Mod(Σ) where ∂Σ is possibly nonempty (cf.[Ke1] and [Ke2]):

Theorem 3.15 (“Nielsen realisation problem”, Kerckhoff, cf. [Ke2]).
Let Σ be a surface with a possibly nonempty boundary. Let Γ be a finite subgroup of Mod(Σ).
Then, there exists a finite group Γ̄ of Diff+(Σ) such that the natural morphism Diff+(Σ) →
Mod(Σ) sends isomorphically Γ̄ on Γ. Moreover, we can choose Γ̄ as a subgroup of the isometry
group of Σ equipped with a metric of constant curvature, where the boundary components are
geodesics.
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As soon as ∂Σ is nonempty, there is no equivalent to Kerckhoff’s Theorem on Mod(Σ, ∂Σ),
since the groupMod(Σ, ∂Σ) is torsion-free. Indeed, if F ∈Mod(Σ, ∂Σ) is periodic of period m,
Fm is a non-trivial multitwist along the boundary curves. Lemma 3.17 clarifies this situation.

3.3.1 The periodic mapping classes on surfaces with nonempty boundary

In this subsubsection, we consider a surface Σ with a nonempty boundary, we choose a
boundary component d, and look only at the mapping class group of Σ preserving globally d. All
the results that are coming are based on a classic result coming from the theory of Riemannian
manifolds (we won’t prove it):

Lemma 3.16. Let M a Riemannian manifold and f an isometry on M . If f fixes a point x and
if the differential of f in x is the identity, then f is the identity. We have the same conclusion
when f fixes a boundary curve of M point-wise. ¤

Corollaries of Lemma 3.16. Lemma 3.16 is fundamental to the comprehension of the periodic
mapping classes and induces many essential corollaries in this paper:

• Lemma 3.17: “If ∂Σ is nonempty, then Mod(Σ, ∂Σ) is torsion-free.”

• Corollary 3.18 of Lemma 3.17, which allows us to deduce the existence of some peri-
odic mapping classes from the existence of some other periodic mapping classes lying in
“smaller ” subsurface (i.e. of smaller genus or of greater Euler characteristic).

• Lemma 3.19: “If ∂Σ is nonempty and if d belongs to Bndy(Σ), then any finite subgroup of
Modd(Σ) is cyclic.”

Lemma 3.17 (Behaviour of periodic mapping classes in the neighbourhood of ∂Σ).
Let Σ be a connected surface such that ∂Σ 6= ∅. Let d be a boundary curve of Σ and letMod(Σ, d)
be the group of the mapping classes of Σ that fix d point-wise. Then the group Mod(Σ, d) is
torsion-free. Moreover, let F be a periodic mapping class of period m > 2 and belonging to
Mod(Σ, d). Then there exists an integer ` coprime to m such that Fm = T `

d (in particular, ` is
nonzero).

Proof. Remember that a mapping class inMod(Σ, d) is said to be periodic if one of its nonzero
power induces the trivial mapping class inMod(Σ). So any mapping class that would belong to
the torsion ofMod(Σ, d) is by definition a periodic mapping class. However if we show that any
nonzero power of any periodic mapping class is non-trivial in Mod(Σ, d), we will have shown
that Mod(Σ, d) is torsion-free. So the second part of Lemma 3.17 implies the first part. Hence,
by showing the second part, we will be done.

Let F̄ be a diffeomorphism in Diff+(Σ, d) which represents F and fixes d pointwise. Let d′

be a curve isotopic to d in Σ that lies outside of ∂Σ. Let us call V the compact cylinder included
in Σ whose both boundary components are d and d′. Let Σ′ be the closure of the complement
of V in Σ (cf. Figure 13).

Let us apply the Nielsen - Kerckhoff realization theorem: there exist a hyperbolic metric g
on Σ′ and an isometry F̄1 of (Σ′, g) representing the restriction of F to Σ′. Let us denote by
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Figure 13: The situation described in proof of Lemma 3.17.

f the restriction of F̄1 to d′. Since F̄1 is a periodic isometry of order m, there exists an integer
k such that f is a rotation of angle 2kπ

m on d′ equipped with the induced metric. But for all
p ∈ {1, 2, . . . , m−1}, the mapping class (ford(F ))p (where ford(F ) is the mapping class induced
by F inMod(Σ)) is different from the identity, so according to Lemma 3.16, fp is different from
the identity. Hence k is coprime to m.

Let A be the annulus [0, 1] × S1 and φ a positive diffeomorphism of V in A such that
φ(d) = {0}×S1 and φ(d′) = {1}×S1 (cf. Figure 13). Moreover, we can construct φ so that the
map φ ◦ f ◦ φ−1 from {1} × S1 to {1} × S1 coincides with the function (1, eiθ) 7→ (1, ei(θ+ 2kπ

m
)),

for f is an angle 2kπ
m rotation on d′. We extend f on V (cf. Figure 14) by setting for all t ∈ [0, 1]

and θ ∈ [0, 2π[:

f
(
φ−1

(
(t, eiθ)

) )
= φ−1

(
(t, ei(θ+ 2kπ

m
t))

)
.

Figure 14: Image of the segment [0, 1]× {1} by f and f m.

In this way, f fixes d point-wise and coincides with F̄1 on d′. Let F̄2 be the homeomorphism of
Σ fixing d point-wise and coinciding with f on V and with F̄1 on Σ′. By definition of a Dehn
twist, the isotopy class of the homeomorphism F̄ m

2 is equal to T k
d ∈ Mod(Σ, d). Let G be the

mapping class of Mod(Σ, d) containing the homeomorphism F̄ F̄−1
2 . By construction, we have

ford(F̄ ) = ford(F̄2), so, according to the following central exact sequence:

1 → 〈Td〉 →Mod(Σ, d) ford−−→Modd(Σ) → 1,
the isotopy classes of F̄ and F̄−1

2 in Mod(Σ, d) commute, so the homeomorphisms (F̄ F̄−1
2 )m

and F̄m F̄−m
2 are isotopic, hence Gm = FmT−k

d . But ford(F̄ ) = ford(F̄2), so, according to the
same exact sequence, there exists an integer j such that G = T j

d . These two last equalities imply
that Fm = GmT k

d = T jm+k
d , and jm + k is coprime to m. ¤

Let us give a corollary of Lemma 3.17 that will allow us to show the existence of some

36



periodic mapping classes from periodic mapping classes defined on “smaller ” surfaces (i.e. of
smaller genus or of greater Euler characteristic).

Corollary 3.18 (Rebuilding a periodic mapping class).
Let Σ be a connected surface. Let I be a finite set and let AI = {ai, i ∈ I} be a curve simplex
in Σ. For all i ∈ I, we denote by a+

i and a−i the boundary components of ΣAI
coming from the

cut of AI along the curve ai. Let
∼
F be a periodic mapping class of Mod(ΣAI

) of order two that
preserves {a+

i , a−i } for all i ∈ I. Then there exists a unique periodic mapping class F ∈Mod(Σ)
of order two such that F induces

∼
F in Mod(ΣAI

).

Proof.
1. Notation

Let J and K be two subsets of I such that J tK forms a partition of I and such that for all
j ∈ J , the boundary components a+

j and a−j of ΣAI
are swapped by

∼
F , whereas for all k ∈ K, the

boundary components a+
k and a−k of ΣAI

are not. Let AJ = {aj , j ∈ J} and AK = {ak, k ∈ K}.

2. Existence of F

Let F̄1 be a diffeomorphism of Diff+(ΣAI
) of order 2 representing

∼
F . We construct a diffeomor-

phism F̄2 of Diff+(ΣAK
) by identifying in ΣAI

a+
j and a−j thanks to the following relation in

ΣAI
: for all pairs of points (x, y) ∈ ΣAI

,

x ∼ y if and only if





x = y,
or

x, y ∈ a+
j ∪ a−j and y = F̄1(x).

The differential structure of ΣAK
induced by the one of ΣAI

is well-defined up to conjugation by
a diffeomorphism (cf. [Hi] page 184: Gluing Manifolds Together); and by construction, F̄ 2 is a
diffeomorphism of ΣAK

. Let F2 be the mapping class ofMod(ΣAK
) containing F̄2. It is clear that

F2 is periodic of order two. Notice that F2 preserves each boundary aε
k, k ∈ K, ε ∈ {+, −}. One

can then define F3 as being a representative of F2 in Mod(ΣAK
, {a+

k , a−k , k ∈ K}). According
to Lemma 3.17, for all k ∈ K, there exist two odd integers m+

k and m−
k such that:

F 2
3 =

∏
k∈K T

m+
k

a+
k

T
m−

k

a−k
.

Let F4 be the mapping class of Mod(Σ) obtained by identifying the boundary components a+
k

and a−k for all k ∈ K. Thus F4 satisfies the equality:

F 2
4 =

∏
k∈K T

(m+
k +m−

k )
ak .

Let us set F5 = F4

( ∏
k∈K T `k

ak

)−1, where, for all k ∈ K, the rational `k defined by `k = m+
k +m−

k
2 is

an integer since m+
k and m−

k are both odd. Since this product is commutative, we have F 2
5 = Id .

By construction, the mapping class F5 fixes the curves of AI and induces in Mod(ΣAI
) the

mapping class
∼
F . So the mapping class F5 plays the role of F in the statement of Corollary 3.18.

3. Uniqueness of F

Let us assume that there exist two mapping classes F and F ′ in ModAI
(Σ) such that F 2 =

F ′2 = Id and such that F and F ′ induce
∼
F in Mod(ΣAI

). According to the following exact
sequence:

1 → 〈Tai , i ∈ I〉 →ModAI
(Σ) →Mod(ΣAI

) → 1,
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there exist some integers pi, i ∈ I and a mapping class W =
∏

i∈I T pi
ai such that F ′ = FW .

But F and F ′ fix the curves of AI , so these two mapping classes commute with W and we have
(FF ′−1)2 = W 2. However, FF ′−1 is periodic of order two as a commutative product of two
periodic mapping classes of order two, so the mapping class W 2 =

∏
i∈I T 2pi

ai is trivial. Then
for all i ∈ I, we have 2pi = 0, so W is trivial. Eventually, after Lemma 3.12, we get F = F ′.

¤

Lemma 3.16 allows us to study the periodic mapping classes when Σ has a nonempty boundary
and when these mapping classes preserve at least one boundary component, say d. This lemma
leads to two results:

• one about Mod(Σ, d), where d is fixed point-wise, cf. Lemma 3.17 above: “Mod(Σ, d) is
torsion-free.”;

• and another about Modd(Σ), where d is preserved set-wise, cf. Lemma 3.19 below: “Any
finite subgroup of Modd(Σ) is cyclic.”.

Lemma 3.19. Let Σ be a connected surface with a nonempty boundary and let d be a boundary
component. Any finite subgroup of Modd(Σ) is cyclic.

Proof. Let Γ be a finite group included in Modd(Σ). According to Kerckhoff’s Theorem (cf.
Theorem 3.15) there exist a hyperbolic metric g on Σ and a finite group Γ̄ of Isom+(Σ, g) that
is sent isomorphically on Γ by the natural morphism Diff+(Σ) → Mod(Σ). Let us give an
orientation to d and define the map

θ : Γ̄ → R/2πZ
that sends an isometry K̄ to the angle of the induced rotation by K̄ on d. It is clear that θ is a
morphism. According to Lemma 3.16, any isometry that fixes d point-wise is the identity, so θ
is an injective morphism. Thus Γ is isomorphic to a finite subgroup of R/2πZ, hence Γ is cyclic.

¤

3.3.2 Maximal order of periodic mapping classes and of finite groups according to
the surface.

Given a surface Σ, looking for the maximal order obtained by the periodic mapping classes of
PMod(Σ) , or looking for the order of the greatest finite subgroup in PMod(Σ) amounts to the
same thing when ∂Σ is nonempty, after Lemma 3.19. When ∂Σ is empty, things are a bit more
complicated. We will be interested by both cases. We recall Riemann-Hurewicz Formula (Lemma
3.20), which is a computation of Euler characteristic. We will deduce from it the maximal order

• of a periodic mapping class in a genus-0 surface (cf. Corollary 3.23),

• of a periodic mapping class in a surface with a non-trivial boundary (cf. Corollaries 3.24
and 3.25),

• of the finite subgroups in a surface without boundary (cf. Corollary 3.26).

The following Lemma, due to Hurwitz, is classic and its proof is left to the reader.
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Lemma 3.20 (Riemann-Hurwitz Formula).
Let Σ be a surface with a possibly trivial boundary and let Γ be a finite subgroup of order m of
Diff+(Σ), such that m > 1. Then Σ/Γ is a surface and the quotient map π : Σ → Σ/Γ is a
ramified covering. Let Q1, . . . , Q` the ramification points of π, and, for 1 6 i 6 `, let o(Qi) be
the number of preimages of Qi by π. Then the Euler characteristics of Σ and Σ/Γ (as a surface)
are linked by the formula:

χ(Σ) +
∑̀

i=1

(m− o(Qi)) = m.χ(Σ/Γ).

¤

Definition 3.21 (Ramification points and singular points).
The points of Σ/Γ whose number of preimages by π is smaller than |Γ| are called ramification
points. Their preimages in Σ are called singular points.

Remark.

• For all i, the group Γ acts transitively on π−1({Qi}). For this reason, the cardinality of
π−1({Qi}), denoted by o(Qi), divides m.

• When Γ is spanned by a unique element f , for all i 6 `, the action of f on π−1({Qi})
is cyclic, so π−1({Qi}) belongs to Fix(fo(Qi)), the set of fixed points of fo(Qi). However,
according to Lefschetz Theorem, the number of fixed points of f and of its powers depends
only on the isotopy class of f (let us make clear that in Lefschetz Theorem, the number of
fixed points takes into account the multiplicity of each fixed point, but in the case of non-
trivial isometries, this integer always equals 1). Hence the data of ` and {o(Qi) , 1 6 i 6 `}
is an invariant of the isotopy class of f . Since χ(Σ/〈f〉) and the number of boundary
components of Σ/〈f〉 are also invariant by isotopy on f , the surface Σ/〈f〉 itself is an
invariant of the isotopy class of f .

• This lemma together with Kerckhoff’s Theorem have a lot of corollaries and here are some
of them that we will use in this paper.

The maximal order of periodic mapping classes on a surface and the sum of the number
of fixed boundary components and the number of fixed points in this surface vary in opposite
direction. More precisely:

Corollary 3.22 (Fixed points and boundary components preserved by a periodic
mapping class).
Let Σ be a surface Σg, b and let F be a periodic mapping class of Mod(Σ) of order m. Then, the
sum of the number of boundary components preserved by F and the number of fixed points of F
is bounded by 2 + 2g

m−1 .

Proof. Let F̄ be a diffeomorphism of order m representing F . Let b′ be the number of boundary
components preserved by F̄ and let `′ be the number of fixed points of F̄ . Let D be the set of
boundary components of Σ that are not fixed by F̄ . Let Σ′ be the surface obtained from Σ where
each boundary components of D have been filled. Let F̄ ′ the diffeomorphism induced by F̄ on
Σ′. Let us apply Lemma 3.20 to F̄ ′, and let us adopt the notation of the statement. The order
m of F̄ ′ (equal to the order of F̄ ) coincides with the order of the group Γ = 〈F̄ ′〉. In addition,
notice that:
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• χ(Σ′) = 2− 2g − b′;

• for all fixed point Q, we have o(Q) = 1;

• ∑`
i=1(m− o(Qi)) > `′(m− 1);

• χ(Σ′/Γ) 6 2− b′ .

Finally, we get:
(2− 2g − b′) + `′(m− 1) 6 m.(2− b′),

whence:
(m− 1)b′ + `′(m− 1) 6 2(m− 1) + 2g,

whence the formula: b′ + `′ 6 2 + 2g
m−1 . ¤

The following corollary is the special case g = 0.

Corollary 3.23 (Periodic mapping classes on a sphere).
Let S be a holed sphere and F a periodic mapping class of Mod(S). If there exist at least three
boundary components in S preserved by F , then F is the identity of Mod(S). ¤

Corollary 3.24 (Order of a periodic mapping class in a surface with boundary).
The order of a periodic mapping class in PMod(Σg, b) with g > 1 and b > 1 is:

• smaller than or equal to 6|χ(Σ)| when b = 1,

• smaller than or equal to 2|χ(Σ)| when b = 2,

• smaller than or equal to |χ(Σ)| when b > 3.

Proof. Let us apply Riemann-Hurewicz formula (Lemma 3.20) to a periodic mapping class F
of order m in PMod(Σg, b):

χ(Σ) +
∑̀

i=1

(
m− m

qi

)
= m.χ(Σ′) (1)

where qi = m
o(Qi)

and where Σ′ = Σ/〈F 〉. Notice that since F belongs to PMod(Σ), the surface
Σ′ has got as many boundary components as Σ. If χ(Σ′) < 0, then we deduce from (1) that
m 6 |χ(Σ)|. When b > 3, the surface Σ′ has got at least three boundary components, so
χ(Σ′) < 0, so m 6 |χ(Σ)| and we are done.

When b = 1 or b = 2, if χ(Σ′) < 0, the result is proved in the same way. Let us assume that
b = 1 or b = 2 and that χ(Σ′) > 0. Since F is an orientation-preserving mapping class and since
we have χ(Σ′) > 0, then Σ′ is a disk if b = 1 or an annulus if b = 2. Let us distinguish the cases
b = 1 and b = 2.

• Case b = 1. Let us divide equality (1) by −m, and let us replace χ(Σ′) by 1. We get:

|χ(Σ)|
m

+
∑̀

i=1

1
qi

= `− 1. (2)

We can then deduce:
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– if ` ∈ {0, 1}, then (2) cannot be satisfied;

– if ` = 2, then |χ(Σ)|
m + 1

q1
+ 1

q2
= 1 implies that |χ(Σ)|

m > 1
6 , for 1

q1
+ 1

q2
> 1 or

1
q1

+ 1
q2

6 1
2 + 1

3 = 5
6 for all integers q1 and q2. Hence m 6 6|χ(Σ)|;

– if ` > 3, we have |χ(Σ)|
m + `

2 > |χ(Σ)|
m +

∑`
i=1

1
qi

= `− 1, whence |χ(Σ)|
m > 1

2 (the extreme

case happens when ` = 3 and q1 = q2 = q3 = 2). Hence m 6 2|χ(Σ)|.
Finally, when b = 1, the inequality m 6 6|χ(Σ)| always holds.

• Case b = 2. Equality (1) becomes:
|χ(Σ)|

m +
∑`

i=1
1
qi

= `. (3)

Hence:

– if ` = 0, then the equation (3) cannot be satisfied;

– if ` > 1, we have |χ(Σ)|
m + `

2 > |χ(Σ)|
m +

∑`
i=1

1
qi

= `, whence |χ(Σ)|
m > 1

2 (the extreme
case happens when ` = 1 and q1 = 2). Hence m 6 2|χ(Σ)|.

Finally, when b = 2, the inequality m 6 2|χ(Σ)| always holds. ¤

When the genus of Σ is 1 instead of zero, we get:

Lemma 3.25 (Order of periodic mapping classes in PMod(Σ1, b), b > 1).
The maximal order of periodic mapping classes of PMod(Σ1, b) when b > 1 is 6.

Proof. Let us denote by m the order of a mapping class lying in PMod(Σ1, b). When b = 1, we
have m 6 6|χ(Σ1, 1)| according to Corollary 3.24, so m 6 6. When b = 2, we have m 6 2|χ(Σ1, 2)|
according to Corollary 3.24, so m 6 4. Hence, when b > 3, the equation b 6 2 + 2g

m−1 coming
from Lemma 3.22 implies that m 6 3 (recall that g = 1). Finally, for all b greater than or equal
to 1, we have m 6 6.

The case m = 6 is achieved by the following example. Recall that if Σ is the torus with
one hole, matrices of SL2(Z) preserve Z2 and so induce diffeomorphisms of the torus, which
preserve the point (0, 0). Recall that the induced map from SL2(Z) to Mod(Σ) is one-to-one.

Then, the matrix
(

1 1
−1 0

)
of order 6 in SL2(Z) induces a mapping class of order 6 inMod(Σ).

¤

Finally the following result is a technical corollary of Lemma 3.20 which gives a bound to the
cardinality of a finite subgroup of the mapping class group of a surface Σ of genus g. It is due
to Hurwitz. For a proof, see [FaMa], section 6.2.

Corollary 3.26 (“84(g − 1)” Theorem).
Let Σ be a connected surface of genus at least 2 without boundary . The order of a finite subgroup
of the mapping class group is bounded by 42|χ(Σ)| (which is equal to 84(g − 1)). ¤
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3.4 Pseudo-Anosov mapping classes

In the next sections, the only things about pseudo-Anosov mapping classes that we are going
to use are Definition 3.27 and the two following results (Proposition 3.30 and Theorem 3.32).
However, the proof of Proposition 3.30 involves the theory of pseudo-Anosov diffeomorphisms
which we present below in Subsection 3.5. If the reader accepts Proposition 3.30, he can skip
Subsection 3.5 and continue the reading at Subsection 3.6.

The following definition of pseudo-Anosov mapping classes is equivalent to the historical
definition of pseudo-Anosov mapping classes; it has the advantage of proposing a very simple
statement. It can be seen as a consequence of Thurston’s theory.

Definition 3.27 (Pseudo-Anosov mapping classes).
For any connected surface Σ non-homeomorphic to a pair of pants, a mapping class F ∈Mod(Σ)
that verifies F k(a) 6= a for any curve a in Curv(Σ) and any nonzero integer k is said to be pseudo-
Anosov.

Remark. In accordance with this definition, there exists no pseudo-Anosov mapping class on a
pair of pants. We can prove directly that the mapping classes on a pair of pants are all periodic if
the boundary components may be permuted, or are trivial if they may not. For a mapping class,
being periodic and being pseudo-Anosov correspond to two opposite situations and a mapping
class cannot be both.

Next proposition involves the following definition:

Definition 3.28 (Cẽntr(F )).
Given a surface Σ, for any pseudo-Anosov mapping class F belonging to Mod(Σ), we denote
by Cẽntr(F ) the subgroup of Mod(Σ) of all the mapping classes G that commute with some
nonzero power of F .

The following properties are immediate.

Lemma 3.29. For all integers k 6= 0, k′ 6= 0 and all pseudo-Anosov mapping classes F, F ′ ∈
Mod(Σ), the following statements hold:

(i) Cẽntr(F k) = Cẽntr(F );

(ii) if F k = (F ′)k′, then Cẽntr(F ) = Cẽntr(F ′). ¤

Subsection 3.5 is devoted to the proof of the following proposition.

Proposition 3.30 (Structure of Cẽntr(F )).
Let Σ be a connected surface without boundary and let F be a pseudo-Anosov mapping class
in Mod(Σ). There exists a surjective morphism `F : Cẽntr(F ) → Z satisfying the following
properties:

(i) The kernel Ker(`F ) coincides with the set of all the finite order mapping classes of Cẽntr(F ).

(ii) The kernel Ker (`F ) is a group of order smaller than or equal to 6|χ(Σ)|.
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(iii) The morphism `F does not depend on F , but only on Cẽntr(F ) up to the sign. If for two
pseudo-Anosov F and F ′ there exist two positive integers p and q such that F p = F ′q, then
Cẽntr(F ) = Cẽntr(F ′) and `F = `F ′.

As a corollary comes the following result, historically due to McCarthy: “the centralizer of a
pseudo-Anosov in Mod(Σ) is virtually infinitely cyclic”. This is not only true for the centralizer,
but for Cẽntr(F ) too, where F is a pseudo-Anosov mapping class. We recall the definition of a
virtually cyclic group, then we give a formal statement of this corollary.

Definition 3.31 (Virtually infinitely cyclic group).
A group is said to be virtually infinitely cyclic if it is finite or if it contains an infinite cyclic
subgroup of finite index.

Theorem 3.32 (J.D. McCarthy [Mc2]). Let Σ be a connected surface and F a pseudo-Anosov
mapping class of Mod(Σ). Then Cẽntr(F ) is virtually infinitely cyclic.

Proof. Let M be a mapping class of Cẽntr(F ) such that `(M) = 1. Then the quotient set
Cẽntr(F )/〈M〉 is in bijection with Ker (`), so we have [Cẽntr(F ) : 〈M〉] = |Ker (`)|. Thus 〈M〉
is an infinite cyclic subgroup of finite index of Cẽntr(F ). ¤

The aim of the next subsection is to (superficially) develop the pseudo-Anosov theory, in
order to prove Proposition 3.30.

3.5 The theory of Pseudo-Anosov diffeomorphisms.

We will now recall the fundamental results of the theory of the pseudo-Anosov diffeomor-
phisms on surfaces without boundary, in order to prove Proposition 3.30. There exists a very
rich literature concerning this theory. In this subsection, we will lean mainly on the article of C.
Bonatti and L. Paris [BoPa], section 2. The classic references are [FLP], [Th], [BlCa], [Iv1]. Let
us begin by a remark on the terminology concerning the “pseudo-Anosov diffeomorphisms”. In
this subsection, Σ is a surface without boundary.

Pseudo-Anosov diffeomorphisms and homeomorphisms. Let us recall that the “pseudo-
Anosov diffeomorphisms” on a surface Σ are actually both homeomorphisms on Σ, and diffeomor-
phisms on the surface Σ minus a finite number of points. In the neighbourhood of these points,
called singular points, the homeomorphisms are not differentiable although they are perfectly
known, cf. [BoPa]. For this reason C. Bonatti and L. Paris [BoPa] speak about “pseudo-Anosov
homeomorphisms” when we speak about “pseudo-Anosov diffeomorphisms”, but we deal with
the same objets. Let us recall that there exist true diffeomorphisms in the isotopy class of a
“pseudo-Anosov diffeomorphism” (isotopic means here linked by a path of homeomorphisms)
and a “pseudo-Anosov diffeomorphism” defines always a unique isotopy class of true diffeomor-
phisms, so it defines a unique mapping class.

Properties of pseudo-Anosov diffeomorphisms. The fundamental theorem of the pseudo-
Anosov theory, due to Thurston (cf. [BlCa], [Th]), is the following:

A mapping class F ∈ M(Σ) is pseudo-Anosov in the sens of Definition 3.27, if
and only if there exists a “pseudo-Anosov diffeomorphism” (cf. below) F̄ ∈ Diff(Σ)
representing F .
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Instead of a definition of “pseudo-Anosov diffeomorphism”, we describe some of their properties.
This will be enough for our purpose. Let F̄ be any “pseudo-Anosov diffeomorphism” in Diff(Σ).
By definition, F̄ satisfies the following properties:

The foliations Fs, Fu, Singular points, separatrices and indexes. There exist a finite set
S of points in Σ preserved by F̄ and a pair of transverse measured regular foliations on Σr S.
We say we have a unique pair of transverse measured singular foliations Fs and Fu invariant by
F̄ on Σ that are preserved by Σ. These foliations are called the stable and unstable foliations
(cf. [BoPa]). An integer k > 3 is associated to each singular point P ∈ S and corresponds to
the number of leaves of Fs that end in P (taking Fu instead of Fs would have lead to the same
number). These leaves ending in a singular point will be called separatrices (cf. [BoPa]). The
integer k associated to a singular point P will be denoted by Ind(Fs, Fu : P ) and called the
index of (Fs, Fu) at the singular point P . Let us put the emphasis on the fact that for any
P ∈ S, we have Ind(Fs, Fu : P ) > 3. Furthermore, each separatrix contains a unique singular
point (cf. [BoPa] proposition 2.1, assertion (3)). The indices and the Euler characteristic of Σ
satisfy the following (see [FLP], Exposé 5):

Proposition 3.33.

χ(Σ) =
∑

P∈S

(
1− Ind(Fs, Fu : P )

2

)
.

The group Norm(Fs, Fu) and the morphism L. Let us denote by Norm(Fs, Fu) the set of
diffeomorphisms of Diff(Σ) that preserve Fs and Fu. The elements of Norm(Fs, Fu) send the
singular points on singular points of same index. They are either pseudo-Anosov or periodic.
Proposition 3.34 gives the main properties of the dilatation coefficient λu(.) (cf. [BoPa]) of the
diffeomorphisms of Norm(Fs, Fu), using the morphism

L :
Norm(Fs, Fu) −→ R

Ḡ 7−→ log
(
λu(Ḡ)

) .

We won’t use the definition of the dilatation coefficient, but only the existence of the morphism
L and Proposition 3.34 below.

Proposition 3.34 (Properties of L).
The morphism L : Norm(Fs, Fu) → R (depending on the pseudo-Anosov diffeomorphism F̄ )
satisfies the five following properties:

(i) the real number L(F̄ ) satisfies L(F̄ ) > 0,

(ii) the image of L is isomorphic to Z,

(iii) the kernel Ker (L) acts freely on the set of separatrices of Fu,

(iv) the kernel Ker (L) is a finite group.

Proof.

(i) By definition of the dilatation coefficient, L(F ) = log(λu(F )) satisfies L(F ) > 0 for
λu(F ) > 1 (cf. [FLP], Exposé 9).
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(ii) We refer to [ArYo] for this result.

(iii) Since Ker (L) is included in Norm(Fs, Fu), the elements of Ker (L) preserve Fu and
permute the separatrices. According to Lemma 2.11 of [BoPa], the induced action by
Ker(L) on the set of separatrices of Fu is free (the group Ker(L) is denoted by Sym(Fs, Fu)
in [BoPa]).

(iv) Since S is finite and since only a finite number of separatrices end in each singular point,
the set of separatrices is finite. But Ker(L) acts freely on it, hence Ker(L) is a finite group.

¤

Let us recall that for all pseudo-Anosov mapping classes F ∈ Mod(Σ), we have defined
Cẽntr(F ) as being the set of mapping classes G ∈ Mod(Σ) such that for some nonzero integer
m, the mapping classes G and Fm commute (cf. Definition 3.28).

Let us make clear that the group Cẽntr(F ) contains the centralizer of F , but is not equal to
it in general. The aim of this definition is to prepare the following proposition which establishes
an isomorphism between Cẽntr(F ) and Norm(Fs, Fu).

Proposition 3.35 (Realisation of Cẽntr(F ) in Norm(Fs, Fu)).
Let F be a pseudo-Anosov mapping class of Mod(Σ) and let Fs and Fu be the stable and
unstable foliations of a pseudo-Anosov diffeomorphism F̄ representing F . Then there exists a
unique isomorphism

ψ : Cẽntr(F ) −→ Norm(Fs, Fu)
G 7−→ Ḡ

where for all G ∈ Cẽntr(F ), Ḡ is a representative of G in Norm(Fs, Fu).

Proof. We show actually the existence of the inverse isomorphism of ψ that we denote by φ in
this proof:

φ : Norm(Fs, Fu) −→ Cẽntr(F )
Ḡ 7−→ G

,

where G is the isotopy class of Ḡ. There exists a nonzero integer k such that F̄ k fixes all the
separatrices.

Let us first show that φ is well-defined. For any diffeomorphism Ḡ belonging to Norm(Fs, Fu),
ḠF̄ kḠ−1F̄−k belongs to Norm(Fs, Fu) and fixes all the separatrices. But since L is a morphism
in R, L(ḠF̄ kḠ−1F̄−k) = 0, so ḠF̄ kḠ−1F̄−k = Id Hence Ḡ commutes with F̄ k, hence G belongs
to Cẽntr(F ).

Let us show that the morphism φ is injective. For any diffeomorphism Ā ∈ Ker (φ), Ā is
isotopic to the identity. Then Ā preserves the isotopy class of curves, hence Ā cannot be pseudo-
Anosov, hence Ā is a diffeomorphism of finite order, isotopic to the identity. According to [FLP],
Exposé 12, this implies that Ā is the identity.

At last, let us show that the morphism φ is surjective. Let G be an element of Cẽntr(F ):
there exists a nonzero integer ` such that G and F ` commute. Let Ḡ′ be a representative of
G in Diff(Σ′, P); then Ḡ′F̄ `Ḡ′−1 is isotopic to F̄ `, so according to Theorem III, Exposé 12 in
[FLP] (see also Theorem 2.14 in [BoPa]), there exists a diffeomorphism H̄ isotopic to the identity
such that H̄Ḡ′F̄ `(H̄Ḡ′)−1 = F̄ `. Let us set Ḡ = H̄Ḡ′. We get then ḠF̄ `Ḡ−1 = F̄ `. Hence Ḡ
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preserves the stable and unstable foliations of F̄ `, hence Ḡ belongs to Norm(Fs, Fu). Thus any
G of Cẽntr(F ) has an preimage in Norm(Fs, Fu). ¤

We are now ready to prove Proposition 3.30.

Proposition 3.30 (Structure of Cẽntr(F )).
Let Σ be a connected surface without boundary and let F be a pseudo-Anosov mapping class
in Mod(Σ). There exists a surjective morphism `F : Cẽntr(F ) → Z satisfying the following
properties:

(i) The kernel Ker(`F ) coincides with the set of all the finite order mapping classes of Cẽntr(F ).

(ii) The kernel Ker (`F ) is a group of order smaller than or equal to 6|χ(Σ)|.
(iii) The morphism `F does not depend on F , but only on Cẽntr(F ) up to the sign. If for two

pseudo-Anosov F and F ′ there exist two positive integers p and q such that F p = F ′q, then
Cẽntr(F ) = Cẽntr(F ′) and `F = `F ′.

Proof. Let Σ be a surface without boundary. According to Proposition 3.35, there exists an
isomorphism ψ : Cẽntr(F ) → Norm(Fs, Fu), G 7→ Ḡ, such that Ḡ is a representative of G.
Let `F be the morphism L ◦ ψ, that we normalize, so that Im (`F ) = Z. Let us prove items (i),
(ii) and (iii).

(i) It is clear that for all G ∈ Cẽntr(F ), if `F (G) 6= 0, then for all integers m different from 1,
`F (Gm) 6= `F (G), so G is not of finite order. In the contrary, Ker (`F ) is equal to ψ−1(Ker (L))
which is finite, so the elements of Ker (`F ) are of finite order.

(ii) According to Proposition 3.35, the morphism ψ is an isomorphism, so Ker (`), which
is equal to Ker (L ◦ ψ), is isomorphic to Ker (L). Let us compute the cardinality of Ker (L).
According to Proposition 3.34.(iv), we know it is finite.

Let us recall that all the indices of the singular points are greater than or equal to 3. We
lean on Proposition 3.33:

χ(Σ) =
∑

P∈S

(
1− Ind(Fs, Fu : P )

2

)
.

The surface Σ is of negative Euler characteristic, so the set of singular points is nonempty. Let
X be the set of all the separatrices of Fu. Let P be a singular point and let k be the index
Ind(Fs, Fu : P ). The k separatrices ending at P bring together a

(
1− k

2

)
-contribution to

the Euler characteristic of Σ, so each of them bring a contribution of 1
k − 1

2 . Since k > 3,
the contribution per separatrix ending at P to the Euler characteristic of Σ is smaller than or
equal to −1

6 . This is also true for all the separatrices of Fu, so the cardinality of X, the set of
separatrices of Fu, must equal at most 6|χ(Σ)|. Now the action of Ker(L) on X is free according
to Proposition 3.34.(iii), so the cardinality of Ker (L) is smaller than or equal to the cardinality
of X, whence:

|Ker (L)| 6 6|χ(Σ)|.
But Ker (L) is isomorphic to Ker (`F ) via ψ, so:

|Ker (`F )| 6 6|χ(Σ)|.

(iii) Let G be a pseudo-Anosov mapping class such that Cẽntr(G) = Cẽntr(F ) and let `G

and `F be the two morphisms associated to G and F . The periodic elements of Cẽntr(G) and
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Cẽntr(F ) are the same, so Ker (`G) = Ker (`F ). Hence we have the following commutative
diagram where the lines are exact and the vertical full arrows are equalities. It follows that the
dotted arrow is an isomorphism.

1 Ker (`G) Cẽntr(G) Z 1

1 Ker (`F ) Cẽntr(F ) Z 1

// //

²²

=

//
`G

²²

=

//

²²
// // //

`F //

But `F (respectively `G) is the quotient map Cẽntr(G) → Cẽntr(G)/Ker (`G) ∼= Z (resp.
Cẽntr(F ) → Cẽntr(F )/Ker (`F ) ∼= Z). Hence `G and `F coincide up to an isomorphism of
Z, so `F and `G are equal up to multiplication by −1.

Let F and F ′ be two pseudo-Anosov mapping classes such that there exist two positive
integers p and q such that F p = F ′q, let `F and `F ′ be the two morphisms associated to F and F ′.
Since F p = F ′q, we have Cẽntr(F ) = Cẽntr(F ′), so according to what precedes, ` = `′ or ` = −`′.
Let u and v be two positive integers such that `F (F ) = u and `F ′(F ′) = v. Then `F (F p) = pu
and `F ′(F p) = `F ′(F ′q) = qv, so `F (F p) and `F ′(F p) have the same sign, hence `F = `F ′ .

¤

Remark. In the general case, Cẽntr(F ) is a semi-direct product PeroZ where Per is the finite
subgroup of Cẽntr(F ) consisting of finite order elements of Cẽntr(F ). Indeed, the exact sequence

1 → Per incl.−−−−→ Cẽntr(F ) `F−−−→ Z→ 1
is split since the last but one term of the sequence is Z. This is a direct product if and only if there
exists a pseudo-Anosov mapping class belonging to `−1

F ({1}), whose action on the separatrices
is trivial.

3.6 The reducible mapping classes: Thurston’s theory and the essential re-
duction system

Birman, Lubotsky and McCarthy, and Ivanov independently, have classified the mapping
classes by means of sets of characteristic curves called essential reduction curves, see Definition
3.37. Given a mapping class F , the set of essential reduction curves of F is called the canonical
reduction system, see Definition 3.39.

Definition 3.36 (Reduction curves).
Given a surface Σ and a mapping class F in Mod(Σ), a curve a in Curv(Σ) is called a reduction
curve of F if the set {F i(a), i ∈ N} is a curve simplex (hence a finite set) of Curv(Σ).

From the definition of reduction curves, given a reduction curve a of a mapping class F , there
exists a nonzero integer m such that Fm(a) = a. If A is a simplex of reduction curves of F that
is F -stable, then the mapping class F induces a mapping class F̂ in Mod(ΣA). Recall that for
any curve simplex A, we denote by ModA(Σ) the group of the mapping classes F preserving A.
We then have the following canonical morphism:

∧ :
ModA(Σ) −→ Mod(ΣA)

F 7−→ F̂
.
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The following definition was given in [BiLuMc] and [Iv]:

Definition 3.37 (Essential reduction curves).
A reduction curve of a mapping class F is said to be essential if no other reduction curve of F
intersects it.

In the light of Definition 3.37, the following lemma is obvious.

Lemma 3.38. The set of all the essential reduction curves of a mapping class F is an F -stable
simplex. ¤

Definition 3.39 (The canonical reduction system σ).
The set of essential reduction curves of a mapping class F is denoted by σ(F ) and is called the
canonical reduction system of F .

The canonical reduction system owns the following properties, which we will use troughout
this artcile. Proofs can be found in [BiLuMc] and in [Iv] and come from Nielsen and Thurston’s
theory, see [BlCa].

Proposition 3.40 (Properties of σ).
Let F and G be two mapping classes. Then, the following holds:

(i) G(σ(F )) = σ(GFG−1);

(ii) for any nonzero integer m, then σ(Fm) = σ(F );

(iii) if F and G commute, then the curves of σ(F ) are reduction curves of G. Consequently,
I(σ(F ), σ(G)) = 0;

(iv) σ(F ) is empty if and only if F is periodic or pseudo-Anosov. ¤

Definition 3.41 (Reducible and irreducible mapping classes).
A mapping class F is said to be reducible if σ(F ) is empty. In the opposite case, F is said to be
irreducible.

Thus, the irreducible mapping classes are exactly the pseudo-Anosov mapping classes and
the periodic mapping classes. The reducible mapping classes are all the others.

As a first example, the following lemma decides whether a reduction curve is essential or not,
just by the behavior of the restriction of the mapping class to a subsurface containing this curve.
As a corollary, we shall prove Lemma 3.12 stated above, as well as a proposition giving relations
between the canonical reduction systems of two mapping classes and their product when they
commute (see Proposition 3.45).

Lemma 3.42 (Canonical reduction system on subsurfaces).
Let Σ be a surface and Σ′ be a subsurface of Σ non-homeomorphic to a pair of pants. Let F be a
mapping class of Mod(Σ) that preserves Σ′ and let F ′ in Mod(Σ′) be the restriction of F to Σ′.
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(i) If there exists a reduction curve of F in Curv(Σ) that is not included in ΣrΣ′, then there
exists a reduction curve of a nonzero power of F ′ in Curv(Σ′).

(ii) Let x be a curve belonging to Curv(Σ′). If there exists a reduction curve of F in Curv(Σ)
that intersects x, then there exists a reduction curve of a nonzero power of F ′ in Curv(Σ′)
that intersects x.

(iii) Any curve of σ(F ) non-isotopic to a boundary component of Σ′ is included either in Σ′ or
in Σr Σ′.

(iv) Moreover, σ(F ′) = σ(F ) ∩ Curv(Σ′).

Proof. Item (ii) implies item (i): it is indeed enough to choose a curve x in Σ′ that intersects a
reduction curve of F . Then, according to item (ii), there exists a reduction curve of F ′ included
in Σ′.

Let us show item (ii). Let x be a reduction curve of Curv(Σ′), let c be a reduction curve
of F that intersects x. We are going to show that there exists a reduction curve c′ of F ′ that
intersects x.

If c is included in Σ′, there is nothing to be shown. Let us now assume that c is not included
Σ′. As the curve c intersects the curve x, which is included in Σ′, then c must intersect ∂Σ′.
Consequently, the intersection c∩Σ′ consists in a finite nonzero number of paths with extremities
in ∂Σ′. Then there exists a nonzero integer m such that Fm preserves each boundary of Σ′ and
preserves each connected component of c ∩ Σ′. Since I(c, x) 6= 0, at least one of these paths
cuts the curve x. Let us choose one such path which we call d. The extremities of d lie in one
or two boundary components of Σ′. In both cases, let P be the pair of pants corresponding
to the intersection of Σ′ with the tubular neighbourhood of the union of d and the boundary
components of Σ′ containing the extremities of d (darkened in Figures 15 and 16). Then F 2m

preserves each boundary component of P . Notice that no boundary component of P can bound
any disk:

• if P has only one boundary component a in ∂Σ′, then both of the other boundary compo-
nents are isotopic to the union of a path included in a and a path included in d, but a and
d do not cobound any bigon, so both boundary components of P different from a cannot
bound any disk;

Figure 15: The pair of pants P in Σ′, when both extremities of d belong to the same boundary
a of Σ′.
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Figure 16: The pair of pants P in Σ′ when both extremities of d belong to two distinct boundary
components a1 and a2 of Σ′.

• and if P has two boundary components in ∂Σ′, both of these boundary components do
not bound any disk. Moreover, as they are not isotopic in Σ, they do not cobound any
cylinder. So the third boundary component of P cannot bound any disk.

Notice also that the curve x cannot be one of the boundary components of P , for x and d
intersect. The curve x cannot be included in P for any curve that is included in a pair of pants is
isotopic to one of its boundary components. Consequently, there exists a boundary of P , say c′,
that intersects x. This boundary c′ cannot be a boundary component of Σ′ because the boundary
components of Σ′ do not intersect x. Hence c′ belongs to Curv(Σ′), is stable by F 2m, so is stable
by (F ′)2m, and intersects the curve x. We have proved item (ii).

Let us show item (iii). The mapping class F preserves Σ′, so F (Bndy(Σ′)) = Bndy(Σ′), so
the curves of Bndy(Σ′) are reduction curves of F . But no curve of σ(F ) intersects any reduction
curve of F , hence any curve of σ(F ) that is not isotopic to a boundary component of Σ′ is
included either in Σ′ or in Σr Σ′.

Let us show item (iv). Let x be a reduction curve of F ′. If x is not an essential reduction curve
of F , then there exists a reduction curve c of F in Curv(Σ) that intersects x. Then according
to item (ii), there exists a nonzero integer m and a reduction curve c′ of (F ′)m in Curv(Σ′) that
intersects x. Hence x is not an essential reduction curve of (F ′)m. But σ(F ′) = σ((F ′)m), so
x is not an essential reduction curve of F ′. In other words, we have σ(F ′) ⊂ σ(F ) ∩ Curv(Σ′).
The converse inclusion is obvious: if a curve belongs to σ(F ), it belongs a fortiori to σ(F ′).

¤

Lemma 3.43 (Characterization of the essential reduction curves).
Let Σ be a surface and let F be a mapping class in Mod(Σ). Let a be an oriented curve such
that F preserves a and its orientation. Then, there exist two connected subsurfaces S1 and S2

(they may be equal) in Σ such that:

• the curve a bounds S1 (respectively S2) on the left (rep. on the right),

• both surfaces S1 and S2 are stable by F ,

• for all i ∈ {1, 2}, the mapping class induced by F in Mod(Si), denoted by F
Si
, is either

periodic or pseudo-Anosov.
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Let us denote by S12 the union of S1 and S2 along a. Let us denote by F
S12

the mapping class
induced by F in Mod(S12). Then a belongs to σ(F ) if and only if we are in one of the three
following cases:

a) F
S1

or F
S2

is pseudo-Anosov;

b) F
S1

and F
S2

are both periodic of the same order m > 1, and Fm
S12

is a non-trivial
power of a Dehn twist along the curve a;

c) F
S1

and F
S2

are periodic with orders m1 and m2 respectively such that m1 6= m2.

Proof. Let Γ be the set of curves σ(F ) ∪ {a}. Let us give to a an orientation and let us denote
by S1 (respectively S2) the connected component of ΣΓ bounding a on the left (resp. on the
right). For all i ∈ {1, 2}, notice that σ(F

Si
) = ∅, so F

Si
is either pseudo-Anosov, or periodic.

Moreover, the surface S12 cannot be a pair of pants, so there exist some curves in Curv(S12) that
intersect a.

Let us show first that if a belongs to σ(F ), then one of the cases a), b) or c) is satisfied.
The cases a), b), c) describe all the possibles cases except the one where F

S1
and F

S2
are

both periodic of order m > 1 and where Fm
S12

coincides with the identity. Let c be a curve of
Curv(S12) which intersects a. But this curve c is preserved by Fm, so c is a reduction curve of
Fm. Therefore a cannot belong to σ(Fm). So a does not belong to σ(F ).

Conversely, let us show now that each case a), b), or c) implies that a ∈ σ(F ) (or that there
exists a nonzero integer p such that a ∈ σ(F p), which is equivalent).

In the case a), let us denote by Σ′ the subsurface S1 or S2 on which F induces a pseudo-
Anosov mapping class. Then Σ′ is not a pair of pants. If there existed a reduction curve c of
F that intersected a, it would not be included in Σ r Σ′, so we could apply item (i) of Lemma
3.42: there would exist a reduction curve c′ of a nonzero power of F that would be included in
Σ′ (cf. Figure 17). This is absurd for the restriction of F (and of its nonzero powers) to Σ′ is
pseudo-Anosov. Hence any curve c of Curv(Σ) such that I(a, c) 6= 0 is not a reduction curve of
F , so the reduction curve a of F is an essential reduction curve of F .

Figure 17: Description of the case a) in the proof of Lemma 3.43.

In the case b), there exists a nonzero integer ` such that (F
S12

)m = T `
a . But then for any

integer p and any curve c in Curv(S12) intersecting a, we have:

I((F
S12

)mp(c), c) = I
(
T `p

a (c), c
)

= |`p| I(a, c)2 6= 0
according to Lemma 3.5. Hence no curve c that intersect a can be preserved by some power of
(F

S12
)m, hence a belongs to σ((F

S12
)m). Hence a belongs to σ(Fm) according to item (iv) of

Lemma 3.42.
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In the case c), S1 and S2 cannot be equal. For all i ∈ {1, 2}, let Mod(Si, a) be the set of
isotopy classes of diffeomorphisms of Si fixing (a representative of) the curve a pointwise, and let
Fi be a mapping class in Mod(Si, a) such that Fi induces the mapping class F

Si
in Mod(Si).

Let us introduce some notation:

• For two integers k and `, let us denote their greatest common divisor by k ∧ ` and their
least common multiple by k ∨ `.

• For all i ∈ {1, 2}, let di be an integer such that Fmi
i = T di

a with di ∧mi = 1 according to
Lemma 3.17.

• Let us set m′
1 = m1

m1∧m2
= m1∨m2

m2
.

• Let us set m′
2 = m2

m1∧m2
= m1∨m2

m1
; thus, m′

1 and m′
2 are coprime.

Then for all i ∈ {1, 2}, we have

F
(m1∨m2)
i = T

(
m1∨m2

mi
di)

a = T
m′

(3−i)
di

a .

Hence there exists an integer q such that:

(F
S12

)(m1∨m2) = T
(m′

2d1+m′
1d2)

a T
q(m1∨m2)

a .

Since m1 and m2 are different, one of them, by instance m2, is not equal to m1 ∨ m2, so
m′

1 is different from 1. But d1 and m′
2 are both coprime with m′

1, so m′
2d1 is coprime with

m′
1. Now m′

1 divides m′
1d2 + q(m1 ∨m2), so m′

1 is coprime with m′
2d1 + m′

1d2 + q(m1 ∨m2), so
m′

2d1+m′
1d2+q(m1∨m2) is nonzero. Hence (F

S12
)(m1∨m2) is a nonzero power of Ta. Thus, if we

set p = (m1∨m2) and if we consider F p instead of F , then we are back to the case b) with m = 1.
¤

As a corollary, we establish the link between a multitwist and its canonical reduction system.

Corollary 3.44 (Canonical reduction system of a multitwist).
Let A be a curve simplex. Let

∏
a∈A T ka

a be a multitwist denoted by A along the curves of A.
Then σ(A) = {a ∈ A | ka 6= 0}. In particular, if A is a multitwist such that σ(A) = ∅, then
A = Id .

Proof. This is a direct corollary of Lemma 3.43 where we apply the case b) to the neighbourhood
of each curve of A. ¤

We are now ready to prove Lemma 3.12. Let us recall the statement.

Lemma 3.12 (Uniqueness of the factorisation of a multitwist in a product of Dehn twists). Let
A and B two curve simplexes and let (ka)a∈A and (`b)b∈B be two families of nonzero integers
indexed by A and B. If ∏

a∈A T ka
a =

∏
b∈B T `b

b ,
then A = B and for any pair of curves (a, b) in A × B, the equality a = b implies the equality
ka = `b.

Proof. Let us set A =
∏

a∈A T ka
a and B =

∏
b∈B T `b

b . Since A = B, we have σ(A) = σ(B).
Now, according to Lemma 3.44, we have σ(A) = A and σ(B) = B (recall that by hypothesis,
the powers ka, a ∈ A, and `b, b ∈ B, are nonzero), so A = B. Let us consider the sequence of
integers (ja)a∈A defined by ja = ka − `a. We have:
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∏
a∈A T ja

a = Id .

Hence σ
( ∏

a∈A T ja
a

)
= σ(Id ) = ∅, so according to Corollary 3.44, for all a ∈ A, we have ja = 0.

¤

Here is a last corollary of Lemma 3.43, which establish a link between the canonical reduction
systems of F , of G, and of FG, assuming that F and G are two commuting mapping classes.

Proposition 3.45. Let F and G be two commuting mapping classes. Then,
σ(FG) ⊂ σ(F ) ∪ σ(G).

Proof. Let a be a curve belonging to σ(FG). Since FG commutes with F and with G, we have
I(a, σ(F ) ∪ σ(G)) = 0. Let us set A = σ(F ) ∪ σ(G). Let us assume that a does not belong to
A and let us show that this is absurd.

Let m be a nonzero integer such that F and G preserve each subsurface in SubA(Σ). Ac-
cording to Lemma 3.42.(iv), the restrictions of the mapping classes induced by F and G on
each subsurface in SubA(Σ) have empty canonical reduction systems, so they are either pseudo-
Anosov or periodic. We can even assume that they are either pseudo-Anosov or the identity
mapping class, provided that the integer m is large enough.

Since a does not belong to A although I(a, A) = 0, there exists a subsurface S belonging
to SubA(Σ) such that a is included in S. Since F and G commute with FG, they preserve
σ(FG), so we can assume that Fm and Gm preserve a, even if it means multiplying m by some
positive integer. Therefore a is a reduction curve of Fm and Gm. So the restrictions of Fm

and Gm to S cannot be pseudo-Anosov, so they are the identity mapping class. Hence the
restriction of (FG)m to S is equal to the identity mapping class, hence according to Lemma
3.43, the reduction curve a of FG cannot be essential. This is the expected contradiction.

¤
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4 Braid groups

The braid group Bn emerges in various domains in mathematics and consequently can be
defined in many ways. Here are some possibilities:

• in a purely geometric way (as did Artin in 1925, cf. [Bi]);

• as the fundamental group of a configuration space, (after Fadell and Neuwirth cf. [FaNe]);

• as an Artin group by generators and relations, cf. below;

• as the mapping class group of a punctured disk, (discovered by Artin, cf. [At2], [Bi] and
[BiBd]);

• as the symmetric mapping class group of a surface of positive genus having one or two
boundary components, (this theorem is due to Birman, and has been generalized later by
Perron and Vannier, cf. [BiHi] or [PeV]);

• as a subgroup of the automorphism group of the free group with n generators (cf. [At1]);

Outline: In Subsection 4.1, we quickly state our conventions to draw braids, but we truly define
the braid group only in Subsection 4.2. We will see it as the Artin group of type An−1. In
Subsection 4.3, we give an equivalent definition of Bn, seen as the mapping class group of a
punctured disk. This will help us in Subsection 4.4 to interpret Birman and Hilden’s Theorem,
making the link between Bn and the symmetric mapping class group of a surface of nonzero
genus. This theorem allows us to consider Bn as a subgroup of a mapping class group of a
surface of nonzero genus relatively to its boundary and has inspired the main theorem of this
paper.

4.1 The braid group seen in a geometric way

We won’t develop this point of view. However we assume that the reader is already familiar
with it and we simply fix the conventions (we have chosen the ones of Kassel and Turaev in
[KaTu]) to draw braids of Bn where n is an integer greater than or equal to 2.

• The strands are drawn from top to bottom;

• the strands are implicitly numbered from 1 to n from left to right;

• a positive crossing between the stands i and i + 1 is a croissing where the strand i + 1 goes
in front of the strand i; in the opposite case, the crossing is said to be negative;

• for all integers i such that 1 6 i 6 n − 1, we denote by τi (respectively τ−1
i ) the braid

consisting in a positive (resp. negative) crossing of the strands i and i + 1 (cf. Figure 18);

• Given α and β two braids, the product αβ is the braid that begins with α and then that
follows the braid β (cf. Figure 18).
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Figure 18: Examples of some braids in B5.

4.2 The braid group as an Artin group

Artin showed in 1925 that any geometric braid of Bn, where n is an integer greater than
or equal to 2, can be expressed by a product on the geometric braids τi defined in the previous
subsection and on their inverses. He even proved that the group Bn has the presentation described
in Definition 4.1). In this paper, we will think of the braid group Bn with n strands as the group
having this presentation.

Definition 4.1 (The braid group Bn).
The braid group with n strands Bn is the group having the following presentation, which we will
call the classic presentation of the braid group:

• generators: τi, 1 6 i 6 n− 1,

• relations: for all i, j 6 n− 1:
{

τiτj = τjτi when |i− j| 6= 1
τiτjτi = τjτiτj when |i− j| = 1 .

Notation 4.2 (The set of standard generators).
The set {τ1, τ2, . . . , τn−1} will be called the set of standard generators and will be denoted by
Gencl

Bn
. The set of relations will be denoted by Rcl. We define:

δ = τ1τ2 . . . τn−1 .

In this presentation, τ1 and τn−1 have special roles. In order to make symmetric the roles of the
standard generators, we add an nth generator τ0 (cf. Figure 19):

τ0 = δτn−1δ
−1 .

Figure 19: The braids δ and τ0 in B5.
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Notation 4.3 (The augmented set of standard generators).
The set {τ0, τ1, . . . , τn−1} will be called the augmented set of standard generators and will be
denoted by Genaug

Bn
, where τ0 = δτn−1δ

−1. We adopt the following convention: for all integers
k, τk is the standard generator τ` where ` is the remainder of the euclidian division of k by n.
Moreover, for all pairs of integers (i, j), we denote by |i−j|n the integer min({|i−j+kn|, k ∈ Z}).

When we add the element τ0 to the set Gencl
Bn

in the presentation 〈Gencl
Bn
|Rcl〉, we have to

add the following relation r0:
τ0τ1 . . . τn−2 = τ1τ2 . . . τn−1 (r0)

to have a new presentation of the same group. We will then show that the following relations
are satisfied in Bn and may therefore be added in the presentation

〈
Genaug

Bn
|Rcl ∪ {r0}

〉
of Bn.

Lemma 4.4.

(i) For all integers i such that 0 6 i 6 n− 1, we have δ τi δ
−1 = τi+1 .

(ii) For all integers i such that 0 6 i 6 n − 1, the braids τi and τj satisfy a braid relation if
and only if |i− j|n = 1. Otherwise they commute.

(iii) For all integers i such that 0 6 i 6 n−1, let us set δi = τi+1τi+2 . . . τi+n−1 (cf. Figure 20).
We then have δ = δ0 = δ1 = · · · = δn−1.

Figure 20: The braids δi (here in B5) all represent the braid δ.

We can now deduce the following:

Corollary 4.5. The braid group with n strands Bn admits the following presentation that we
will call the cyclic presentation of the braid group:

• generators: τi, i ∈ {0, 1, . . . , n− 1},

• relations: for all i, j ∈ {0, 1, . . . , n− 1}:




τi+1τi+2 . . . τi+n−1 = τj+1τj+2 . . . τj+n−1

τiτj = τjτi when |i− j|n 6= 1
τiτjτi = τjτiτj when |i− j|n = 1 .
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Proof of Lemma 4.4.
Let us show item (i). When 1 6 i 6 n− 2, we have:

δ τi = (τ1 . . . τi−1) τi τi+1 (τi+2 . . . τn−1) τi

= (τ1 . . . τi−1) τi τi+1 τi (τi+2 . . . τn−1)
= (τ1 . . . τi−1) τi+1 τi τi+1 (τi+2 . . . τn−1)
= τi+1 (τ1 . . . τi−1) τi τi+1 (τi+2 . . . τn−1)
= τi+1 δ.

When i = n−1, we have δ τn−1 δ−1 = τ0 by definition of τ0. When i = 0, the equality δτ0δ
−1 = τ1

comes from this other equality δ2 τn−1 = τ1 δ2, which holds in the braid group since:
δ2 τn−1 = τ1τ2 . . . τn−2 τn−1 δ τn−1

= τ1τ2 . . . τn−2 δ τn−2 τn−1

= τ1 δ τ1τ2 . . . τn−2 τn−1

= τ1 δ2.

Let us show item (ii). Notice that for all i ∈ {1, 2, . . . , n− 2}, the pair (τ0, τi) is conjugate
by the element δ to the pair (τ1, τi+1). Besides, the pair (τ0, τn−1) is conjugate by the element
δ−1 to the pair (τn−1, τn−2). So for all i, j ∈ {0, 1, . . . , n − 1}, the relations between τi and τj

depend only on |i− j|n.
Let us show item (iii). For all i ∈ {1, 2, . . . , n− 1}, according to (i), we have:

δi = τi+1τi+2 . . . τi+n−1

= (δiτ1δ
−i)(δiτ2δ

−i) . . . (δiτn−1δ
−i)

= δi δ δ−i

= δ. ¤
Remark . If we arrange the strands of Bn in R3 along a cylinder, the generator τ0 is the
crossing between the first and the nth strand. This kind of presentation of the braid group has
been studied in a more general frame by V. Sergiescu (cf. [S]). The conventions of V. Sergiescu
represent each strand by a point whereas the chosen generators (single crossings between two
strands) are represented by an edge linking the two corresponding points, cf. Figure 21.

Figure 21: Graphs of V. Sergiescu associated to the group Bn: on the left hand, the graph
associated to the classic presentation; on the right hand, the graph associated to the cyclic
presentation.

There exists in Bn a noticeable element, called the Garside-element and denoted by ∆, such
that one of its powers spans the center of Bn:

Definition 4.6 (The Garside-element of the braid group).
The Garside-element ∆ of the braid group Bn is:

57



∆ = τ1(τ2τ1)(τ3τ2τ1) . . . (τn−1τn−2 . . . τ1)

This element satisfies the following properties.

Theorem 4.7 (Properties of ∆).

• For all integers i ∈ {1, dir, . . . , n− 1}, we have ∆ τi = τn−i ∆;

• ∆ 2 = (τ1τ2 . . . τn−1)n = (τn−1τn−2 . . . τ1)n;

• the center of Bn is an infinite cyclic group spanned by ∆ 2. ¤

4.3 The braid group as the mapping class group of the punctured disk; the
braid twists

Definition 4.8. Let Dn be a disk in C containing the points {1, 2, . . . , n}. Let us consider the
group Diff+

Pn
(Dn, ∂Dn) of the orientation-preserving diffeomorphisms of Dn that stabilize the

set Pn = {1, 2, . . . , n} and fix the boundary ∂Dn. We can quotient this group by the following
isotopy relation: two diffeomorphisms are said to be isotopic if they are the extremities of a
continuous path of diffeomorphisms of Diff+

Pn
(Dn, ∂Dn). The quotient group is isomorphic to

the braid group with n strands (Artin, 1925, cf. Theorem 4.13, below). One may therefore define
the braid group in this way:

Bn = π0(Diff+
Pn

(Dn, ∂Dn)).

There exists a set of n−1 generators satisfying the same relations as the family τi, i 6 n−1,
does. These generators are the braid twists defined as follows.

Definition 4.9 (Braid twists).
Let p and q be two points belonging to Pn and let a be an arc of extremities p and q, whose
interior avoids Pn and ∂D. Let V be a compact tubular neighbourhood of a and let φ be a
positive homeomorphism from V to D, the disk in C with radius 1 and centered in 0 such that
φ(p) = −1

2 φ(q) = 1
2 and φ(a) = [−1

2 , 1
2 ]. Let us define the homeomorphism:

h :
D −→ D
z 7−→ ze2iπ|z| .

Let ha be the homeomorphism that equals the identity map outside of V and that equals
φ−1hφ on V. A braid twist along the arc a, denoted by Ha is the unique isotopy class of dif-
feomorphisms contained in the isotopy class of homeomorphisms of ha. Since φ is unique up to
isotopy, Ha is well-defined.

Definition 4.10. We will denote by Tn the set of all braid twists.

Remark. The set Tn coincides with the conjugacy classes of the standard generators of Bn.
Two elements of Tn can satisfy braid relations or commutation relations. These two cases can be
geometrically characterized; this motivates the next definition. In the other cases, two elements
of Tn span a group free, according to a theorem of Crisp and Paris (cf. [CrPa]).
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Figure 22: Definition of the braid twist.

Definition 4.11 (Adjacency and independence).
Given two arcs a1 and a2 of Dn r

(Pn ∪ ∂Dn

)
with extremities in Pn, the braid twists Ha1 and

Ha2 will be said to be adjacent (respectively independent) if the intersection of these two arcs a1

and a2 is reduced to one single extremity, (resp. if the two arcs a1 and a2 are disjoint) cf. Figure
23.

Figure 23: On the left hand, two adjacent arcs; on the right hand, two independent arcs.

The two following results are due to Artin and motivate these definitions.

Proposition 4.12 (Relations between braid twists).
Two braid twists commute if and only if they are independent. Two braid twists satisfy a braid
relation if and only if they are adjacent. ¤

The following Theorem was first stated by Artin in 1925. A proof can be found in [Bi],
Theorem 1.8 page 18.

Theorem 4.13 (Bn is isomorphic to the group Mod(Dn, ∂Dn), Artin, 1925).
Let a1, . . . , an−1 be n−1 arcs in Dnr

(Pn∪∂Dn

)
with extremities in Pn such that for all integers i

and j smaller than or equal to n−1, the arcs ai and aj are adjacent if i−j = ±1, and are disjoint
if |i− j| > 2 (cf. Figure 24). Then the family {Hai , i 6 n− 1} span Mod(Dn, ∂Dn). Moreover,
the presentation ofMod(Dn, ∂Dn) with the family {Hai , i 6 n−1} as set of generators coincides
with the standard presentation:

• generators: Hai, 1 6 i 6 n− 1,

• relations: for all i, j 6 n− 1:
{

HaiHaj = HajHai if |i− j| 6= 1
HaiHajHai = HajHaiHaj if |i− j| = 1

.
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Figure 24: The Hai with i 6 n− 1 span Mod(Dn, ∂Dn).

4.4 The braid group as the symmetric mapping class group; an embedding
from Bn in Mod(Σ, ∂Σ)

This aspect of the braid group will be fundamental in this paper. A special morphism from
the braid group to the mapping class group, which we will denote by ρref , comes with this aspect.
We will prove later (cf. Theorems 1 and 2) that all the non-trivial morphisms from the braid
group are derived from ρref , provided that the genus of the surface is not too large.

Definition 4.14 (Reference surfaces Σ(Bn) and reference representations ρref and ρ̃ref).

For any integer n smaller than or equal to 3, let us denote by Σ(Bn) the surface Σn−1
2

,1 if n is
odd, or Σn−2

2
,2 if n is even. Let us denote by (ci)16i6n−1 the (n− 1)-chain of curves represented

in Figures 25 and 26, and let ρ̃ref be the following morphism:

ρ̃ref :
Bn −→ Mod(Σ(Bn) , ∂Σ(Bn))
τi 7−→ Tci

for all integers i ∈ {1, 2, . . . , n − 1}. We denote by ρref the projection of ρ̃ref in Mod(Σ(Bn)).
These morphisms (or representations) ρref and ρ̃ref will be called reference morphisms (or repre-
sentations). They are unique up to conjugation.

In order to better describe ρref , we define the symmetric mapping class group SMod(Σ(Bn)).
Theorem 4.17 below justifies this definition.

Definition 4.15 (The symmetric mapping class group SMod(Σ(Bn)) associated to ρref).

Let n be an integer greater than or equal to 3. Let ρref be a reference morphism. We set the
following definitions:

• let s̄ be the periodic diffeomorphism of order 2 of Diff+(Σ(Bn)) that coincides with the
symmetry with respect to the axis δ represented in Figures 25 and 26;

• let SDiff+(Σ(Bn), ∂Σ(Bn)) be the set of the diffeomorphisms of Diff+(Σ(Bn), ∂Σ(Bn)) that
commute with s̄;

• let SMod(Σ(Bn), ∂Σ(Bn)) be the group of the isotopy classes of diffeomorphisms of SDiff+(Σ(Bn), ∂Σ(Bn)),
this is a subgroup of Mod(Σ(Bn), ∂Σ(Bn));

• let SMod(Σ(Bn)) be the subgroup of PMod(Σ(Bn)) induced by SMod(Σ(Bn), ∂Σ(Bn));
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Figure 25: The reference morphism ρref : Bn →Mod(Σ(Bn)) when n is odd.

Figure 26: The reference morphism ρref : Bn →Mod(Σ(Bn)) when n is even.

• when n is odd, let s be the mapping class ρref(∆2) inMod(Σ(Bn); when n is even, s is not
defined;

• when n is odd, let s̃ be the lift of s in Mod(Σ(Bn), ∂Σ(Bn)), such that s̃2 = Td where d is
the unique boundary component of Σ(Bn); when n is even, s̃ is not defined.

In the light of these new definitions, Lemma 3.7 becomes:

Proposition 4.16 (C.Labruère, L.Paris, [LaPa]).
For all integers n greater than or equal to 3, in Mod(Σ(Bn), ∂Σ(Bn)),
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• when n is odd, ρ̃ref(∆2) = s̃ (cf. Figure 25 and Definition 4.15);

• when n is even, ρ̃ref(∆2) = Td1Td2 (cf. Figure 26). ¤

According to Theorem 4.17 below, the group Bn is isomorphic to a subgroup of the mapping
class group.

Theorem 4.17 (Bn as subgroup of Mod(Σ(Bn), ∂Σ(Bn)), Birman-Hilden, [BiHi]).
Let n be an integer greater than or equal to 3. The image of ρ̃ref in Mod(Σ(Bn), ∂Σ(Bn)) is
exactly the symmetric mapping class group SMod(Σ(Bn), ∂Σ(Bn)) associated to ρ̃ref . ¤

Let us make clear the links between Bn and SMod(Σ, ∂Σ) where Σ = Σ(Bn). The isomor-
phism ρ̃ref sends the conjugacy class of the braid twists on the conjugacy class of the Dehn twists
of SMod(Σ, ∂Σ) along non-separating curves, and transforms Proposition 3.4 which deals with
some relations between Dehn twists, in Proposition 4.12 about relations between braid twists.
These results are summed up in Proposition 4.18.

Proposition 4.18 (Links between Dehn twists and braid twists).
Let n be an integer greater than or equal to 3 and let Σ be the surface Σ(Bn). Let Tn be the
conjugacy class of the braid twists of Bn.

(i) The images of the braid twists of Bn by ρref are exactly the Dehn twists of SMod(Σ) along
non-separating curves.

(ii) The set of Dehn twists in SMod(Σ) along non-separating curves is a conjugacy class in
SMod(Σ) which coincides with the image of Tn by ρref .

(iii) The morphism ρref sends two independent braid twists on two Dehn twists Ta and Tb along
two non-intersecting curves a and b; and ρref sends two adjacent braid twists on two Dehn
twists Ta and Tb along two curves a and b intersecting in one point.

Proof.
Let us show item (i). The inclusion ρref(Tn) ⊂ {Twists of Dehn} is easy: a conjugate of Ha1

is sent on a conjugate of Ta1 , hence a Dehn twist along a non-separating curve, which must
belong to SMod(Σ) according to Theorem 4.17. Conversely, let us show that the Dehn twists
belonging to SMod(Σ) along non-separating curves belong to ρref(Tn).

Let us recall that SMod(Σ) is the set of mapping classes that commute with α (cf. Definition
4.15). Let π be the covering morphism from Σ in Dn where the n punctures are the singular
points of the ramified covering (cf. for example [PeVa]). It is a classic result to show that ρref

coincides with the lift in SMod(Σ) of the mapping classes of Mod(Dn, ∂Dn) representing the
elements of Bn. We also know the following: let ᾱ be a representative of α and ē a representative
of a curve e of Curv(Σ) that is invariant by ᾱ and that has two fixed points by ᾱ; then Te is sent
via π on a braid twist in Mod(Dn, ∂Dn). Then, in order to show item (i), it is enough to show
that all the non-separating curves of Σ that are stable by α own a representative preserved by a
representative ᾱ and have two fixed points by ᾱ.

Let us check this. Let c be a non-separating curve of Σ stable by α. According to Kerckhoff’s
Theorem (cf. Theorem 3.15), there exists a hyperbolic metric on Σ such that α is represented
by an isometry ᾱ. Let c̄ be the geodesic (well-defined and unique, according to a classic result
of hyperbolic geometry) in the isotopy class of c. The restriction of ᾱ to c̄ is an isometry of the
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circle, hence a symmetry or a rotation. In the first case, c̄ contains exactly two fixed points by
ᾱ, just as desired. In the second case, c̄ contains no fixed point by ᾱ, and we are going to show
that this is absurd. Let us assume that c̄ has no fixed point by ᾱ and that in the neighbourhood
of c̄, the isometry ᾱ is a rotation. Then the restriction of ᾱ to an ᾱ-stable compact tubular
neighbourhood of c̄ preserves each boundary component of this cylinder. Hence, if we consider
the surface Σ minus an ᾱ-stable open tubular neighbourhood of c̄, we get a surface Σ′ that has
two new boundary components preserved by ᾱ. But ᾱ had already 2g + 2 fixed points and
preserved boundary components (2g + 1 fixed point and one boundary preserved when n is odd,
and 2g + 2 fixed points when n is even). Now, ᾱ induces on Σ′ a mapping class of order 2 such
that the number of fixed points plus the number of the preserved boundary components equal
2g +4. This is too much if Σ′ was connected, according to Corollary 3.22, so Σ′ is not connected
and c was a separating curve. This is in contradiction with our hypotheses. Hence item (i) is
proved.

Let us show Step (ii). We already know that Tn is the conjugacy class of the braid twists of
Mod(Dn, ∂Dn). Since the morphism ρref from Mod(Dn, ∂Dn) to SMod(Σ) is surjective, the
set ρref(Tn) is a conjugacy class in SMod(Σ). But ρref(Tn) is exactly the set of Dehn twists
of SMod(Σ) along non-separating curves. Therefore the set of Dehn twists in SMod(Σ) along
non-separating curves is a conjugacy class in SMod(Σ) which coincides with the image of Tn by
ρref .

Let us show item (iii). This result comes from Propositions 3.4 concerning the Dehn twists
and 4.12 concerning the braid twists. ¤

Centralizers and normalizers associated to the image of ρref , respectively ρ̃ref .
We now compute the centralizer of the image of Bn by special morphisms derived from ρref ,

going from Bn into different mapping class groups. Then we shall compute the normalizer of
ρref(Bn) in Mod(Σ(Bn)).

Proposition 4.19 (Centralizer of the image of Bn when n is odd by some special
morphisms). Let n be an odd integer greater than or equal to 5. Let Σ be a surface Σg, b where
g > n−1

2 and b > 0. Let (a1, a2, . . . , an−1) be a (n − 1)-chain of curves5. Let M be one of the
groups Mod(Σ), PMod(Σ) or Mod(Σ, ∂Σ). Let ρ be the morphism from Bn in M defined by

ρ(τi) = Tai

for all i ∈ {1, . . . , n− 1}. Let us denote by Σ(ρ) the compact tubular neighbourhood of the union
of the curves ai, 1 6 i 6 n − 1. Let MΣ(ρ) be the subgroup of M consisting of the mapping
classes that preserve Σ(ρ) and induce the identity mapping class in Mod

(
Σ(ρ)

)
. Finally, let Z

be the mapping class ρ(∆2). Then:

(i) the centralizer of ρ(Bn) in M is the group spanned by Z and by MΣ(ρ);

(ii) for any mapping class V belonging to the centralizer of ρ(Bn) in M, V 2 belongs to MΣ(ρ).

Proof . Let us show item (i). It is clear that the group MΣ(ρ) defined in the statement of
Proposition 4.19 is in the centralizer of ρ(Bn), and that according to the properties of ∆2 in
Bn, Z is also in the centralizer of ρ(Bn). Hence the group spanned by MΣ(ρ) and Z is in the
centralizer of ρ(Bn). Conversely, let us show that any element in the centralizer of ρ(Bn) coincides

5Notice that the assumption g > n−1
2

implies that (n− 1)-chains of curves exist in Σ.
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with an element ofMΣ(ρ) possibly composed by Z. In this purpose, let us start from a mapping
class F lying in the centralizer of ρ(Bn). We will first set some definitions in Σ, then we will
study F .

a) Definitions of some curves in Σ.
For all integers i ∈ {2, 3, . . . , n− 1}, let us set:

∆i = τ1(τ2τ1) . . . (τiτi−1 . . . τ1).
For any even i in {4, . . . , n− 1}, let e+

i and e−i be the two curves such that ρ(∆2
i−1) = Te+

i
Te−i

.
By induction on the odd integer i in {3, . . . , n− 2}, we define the pairs of pants P+

i and P−
i (cf.

Figure 27) in such a way that:

• when i = 3, let us denote by P+
3 and P−

3 respectively the pairs of pants included in Σ
whose boundaries are {a1, a3, e

+
4 } and {a1, a3, e

−
4 } respectively,

• when i is an odd integer in {5, . . . , n−2} and when P+
i−2 and P−

i−2 have been defined, even if
it means swapping e+

i+1 and e−i+1, we can assume that {e+
i−1, ai, e

+
i+1} and {e−i−1, ai, e

−
i+1} are

the boundary components of two pairs of pants that we denote by P+
i and P−

i respectively.

Let d be the curve such that ρ(∆4
n−1) = Td. We denote by P∂ the pair of pants whose boundary

is {e+
n−2, e−n−2, d} (cf. Figure 27). We denote by A0 the union of the curves ai where i is even in

{2, . . . , n−1}, and we denote by A1 the union of the curves ai where i is odd in {1, 2, . . . , n−2}
and of the curves e+

j and e−j where j is even in {4, . . . , n− 1}.

Figure 27: Cutting Σ(ρ) in pairs of pants; the curve d and the simplex A1 (case where n is odd).

b) A mapping class F in the centralizer of ρ(Bn).
The mapping class F commutes with Tai for any odd i in {1, . . . , n − 2}, so F (ai) = ai. The
mapping class F commutes also with Te+

j
Te−j

for any even j in {4, . . . , n− 1}, so F ({e+
j , e−j }) =

{e+
j , e−j }. Hence F preserves the set of subsurfaces {P+

i , P−
i } for any odd i in {3, . . . , n − 2}.

Finally, F commutes with Td for Td belongs to ρ(Bn), so F preserves the curve d, preserves the
pair of pants P∂ and preserves the surface Σ(ρ) included in Σ with d as boundary, and containing
the curve a1. Notice that for any odd i in {3, . . . , n− 4}, the pairs of pants P+

i and P+
i+2 have

e+
i+1 as common boundary component, so the pairs of pants F (P+

i ) and F (P+
i+2) have F (e+

i+1) as
common boundary component. Then two situations can happen concerning F (P+

i ) and F (P+
i ):

• either F (e+
i+1) = e+

i+1, and then F (P+
i ) = P+

i and F (P+
i+2) = P+

i+2,
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• or F (e+
i+1) = e−i+1, and then F (P+

i ) = P−
i and F (P+

i+2) = P−
i+2.

Finally, by induction, only two situations can happen concerning F :

• First alternative: for all odd integers i ∈ {3, . . . , n − 2}, F (P+
i ) = P+

i . Then F fixes e+
j

and e−j for all even integers j ∈ {4, . . . , n − 1}. We define F ′ ∈ Mod(Σ(ρ)) as being the
restriction of F to Σ(ρ).

• Second alternative: for any odd i in {3, . . . , n − 2}, we have F (P+
i ) = P−

i . Then for
any even j in {4, . . . , n− 1}, the mapping class F swaps e+

j and e−j . But for any odd i in
{1, . . . , n−1}, the mapping class Z fixes the curves ai, and for any even j in {4, . . . , n−1},
the mapping class Z swaps the curves e+

j and e−j . Hence FZ fixes all the curves of A1.
Since F and Z preserve the surface Σ(ρ) included in Σ, we can define F ′ ∈Mod(Σ(ρ)) as
being the restriction of FZ to Σ(ρ).

Let us examine F ′. The mapping class F ′ fixes all the curves of A1, hence preserves each
subsurface of SubA1(Σ(ρ)), which are pairs of pants, and preserves each of their boundary
components. So F ′ induces in PMod(

(
Σ(ρ)

)
A1 ) a trivial mapping class, where

(
Σ(ρ)

)
A1 is

the surface we get after having cut Σ(ρ) along the curves of A1. Then, according to the following
exact sequence:

1 → 〈Ta, a ∈ A1 〉 → PA1Mod(Σ(ρ)) → PMod(
(
Σ(ρ)

)
A1 ) → 1 ,

the mapping class F ′ is a multitwist along the curves of A1. However, F ′ commutes with Ta,
a ∈ A0, so according to Proposition 3.4, the curves A0 are reduction curves of F ′. But each
curve of A1 intersects one of the curves of A0, so no curve in A1 can be an essential reduction
curve of F ′. So, according to Corollary 3.44, the mapping class F ′ is the identity.

Let us come back to the mapping class F . The restriction of F to Σ(ρ), or the restriction of
FZ to Σ(ρ), equals Id inMod(Σ(ρ)). Hence the centralizer of ρ(Bn) inM is the group spanned
by Z and by MΣ(ρ), the subgroup of M of the mapping classes inducing the identity mapping
class on Σ(ρ).

Let us now show item (ii). According to item (i), for all V belonging to the centralizer of
ρ(Bn), there exist ε ∈ {0, 1} and V ′ ∈ MΣ(ρ) such that V = Zε V ′. Let us compute V 2. The
mapping class Z can be seen as an element of M that induces the identity outside of Σ(ρ), so Z
commutes with any element of MΣ(ρ), so V 2 = Z2(V ′)2. On the other hand, Z2 = Td where d
is the boundary of Σ(ρ), so Z2 can be seen as an element of MΣ(ρ). Since V ′ belongs to MΣ(ρ),
we can conclude that V 2 belongs to MΣ(ρ). ¤

Proposition 4.20 (Centralizer of the image of Bn when n is even by some special
morphisms). Let n be an even integer greater than or equal to 6. Let Σ be a surface Σg, b where
g > n

2 − 1 and b > 0. Let M be one of the groups Mod(Σ), PMod(Σ), or Mod(Σ, ∂Σ). Let
(a1, a2, . . . , an−1) be a (n − 1)-chain of curves. Let ρ be the morphism from Bn in M defined
by:

ρ(τi) = Tai

for all integers i in {1, 2, . . . , n − 1}. We call Σ(ρ) the compact tubular neighbourhood of the
union of the curves ai where i ∈ {1, 2, . . . , n − 1}. Let MΣ(ρ) be the subgroup of M of the
mapping classes that preserve Σ(ρ) and induce the identity mapping class in Mod

(
Σ(ρ)

)
. Then:
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(i) the centralizer of ρ(Bn) in M is reduced to the group MΣ(ρ), except in the following cases
(a) and (b) below where it is equal to the group spanned by MΣ(ρ) and by Z, where Z is
any extension in Σ of the mapping class s ∈Mod(Σ(ρ)) defined in Definition 4.15 (where
Σ(Bn) is homeomorphic to Σ(ρ)).

(a) The set of curves {a1, a3, . . . , an−1} is non-separating,

(b) the cut surface Σ{a1, a3, ..., an−1} consists in two homeomorphic connected components
and M = Mod(Σ).

(ii) for any mapping class V belonging to the centralizer of ρ(Bn) in M, the mapping class V 2

belongs to MΣ(ρ).

Proof. The proof of Proposition 4.20 is almost the same as the proof of Proposition 4.19. We
only explain what has to be changed.

We begin with the proof of item (i). It is clear that the centralizer of ρ(Bn) in M contains
the groups given in item (i) of the statement of Proposition 4.20. Let us show the converse
inclusion. Similarly to the proof of Proposition 4.19, we define the following topological objets
in Σ(ρ), drawn in Figure 28:

• a (n− 1)-chain of curves
(
ai

)
16i6n−1

,

• some curves e+
j and e−j for any even integer j ∈ {4, . . . , n− 2},

• some curves d+ and d−,

• some pairs of pants P+
i and P−

i for any odd integer i ∈ {3, . . . , n− 1},
• a set A of the curves ai where i is odd in {1, . . . , n− 1},
• a set A1 of the curves of A and of the curves e+

j and e−j for any even j in {4, . . . , n− 2}.

Figure 28: Cutting Σ(ρ) in pairs of pants; the curves d+, d− and the simplex A1 (case where n
is even).

Let us start from a mapping class F belonging to the centralizer of ρ(Bn). Notice that Σ(ρ) =
Σ(Bn) and let us define s as we did in Definition 4.15 (remember that s belongs toMod(Σ(ρ))).
The action of s on the curves of A1 consists in fixing the curves ai for any odd i in {1, . . . , n−1},
in swapping the curves e+

j and e−j for any even j in {4, . . . , n− 2}, and in swapping the curves

66



d+ and d−. As in the proof of Proposition 4.19, by considering the action of F on the set of
pairs of pants of SubA1(Σ(ρ)), we see that the restriction of F to Σ(ρ) coincides either with s or
with the identity of Σ(ρ), depending on whether F fixes or swaps the boundary components d+

and d−.
Assume that we are in case (a) or (b). Then the mapping class s ∈ Mod(Σ(ρ)) can be

extended on Σ. We denote by Z this extension, which is a mapping class of M. In all the other
cases (different from (a) and (b)), the curves d+ and d− do not belong to the same orbit under
the action of PMod(Σ) on Curv(Σ, ∂Σ), so in these case, F cannot swap d+ and d− and cannot
coincide with s on Σ(ρ), so F induces in Mod(Σ(ρ)) the identity mapping class. To conclude,

• when one of the conditions (a) or (b) is satisfied, the centralizer of ρ(Bn) inM is the group
spanned by Z and MΣ(ρ),

• if none of the conditions (a) or (b) is satisfied, the centralizer of ρ(Bn) inM is the subgroup
MΣ(ρ).

This shows item (i).

Let us show item (ii). When (a) and (b) are not satisfied, there is nothing left to prove.
In the case (a) or (b), according to item (i), for all V lying in the centralizer of ρ(Bn), there
exist ε ∈ {0, 1} and V ′ ∈ MΣ(ρ) such that V = Zε V ′. If ε = 0, there is nothing left to prove.
Otherwise, notice that the mapping class Z preserves the set of curves {d+, d−}, and preserves
ΣrΣ(ρ), so Z−1V ′Z belongs toMΣ(ρ). Now, V 2 = Z V ′ Z V ′ = Z2 (Z−1V ′Z) V ′ and Z2 belongs
to MΣ(ρ), hence V 2 belongs to MΣ(ρ), too. ¤

In the next proposition, we compute the normalizer of ρref(Bn) and of ρ̃ref(Bn) inMod(Σ(Bn))
and Mod(Σ(Bn), ∂Σ(Bn)) respectively. We need the following lemma:

Lemma 4.21. Any automorphism of Bn that preserves the braid twists is inner.

Proof. Let ϕ be an automorphism of Bn preserving the braid twists. Let (ai)16i6n−1 be a
sequence of arcs in D2

n such that we have the equalities τi = Hai in the identification Bn =
Mod(D2

n). Let us denote by (bi)16i6n−1 the sequence of arcs in D2
n such that ϕ(τi) = Hbi . Since

the family of the Hbi , 1 6 i 6 n − 1, and the family of the Hai , 1 6 i 6 n − 1, satisfy the
same relations, it comes from Proposition 4.12 that the family of the bi is the underlying set of
a chain of arcs. Hence, there exists a homeomorphism of D2

n that sends the chain (ai)16i6n−1 on
the chain (bi)16i6n−1 and that preserves P. The isotopy class of such a homeomorphism is an
element γ of Bn that acts by conjugation on the standard generators of Bn, as ϕ does. Therefore,
the automorphism ϕ is the conjugation by γ in Bn. ¤

Proposition 4.22 (Normalizer of ρref(Bn) and of ρ̃ref(Bn)).
The normalizer of ρref(Bn) inMod(Σ(Bn)) is the group spanned by ρref(Bn) and by the centralizer
of ρref(Bn) (i.e. the group of order 2 spanned by s according to Propositions 4.19 and 4.20 in the
case where Σ = Σ(ρ) = Σ(Bn)).

The normalizer of ρ̃ref(Bn) in Mod(Σ(Bn), ∂Σ(Bn)) is the group ρ̃ref(Bn) when n is odd, and
is the group spanned by ρ̃ref(Bn) and by the Dehn twist Td+ when n is even, where d+ is one of
the two boundary components of Σ(Bn).
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Proof . Let us start by computing the normalizer of ρref(Bn) in Mod(Σ(Bn)). For all F ∈
Mod(Σ(Bn)), the inner automorphism AdF that sends any element G on FGF−1 preserves the
Dehn twists along non-separating curves. Hence for all F ∈ NormMod(Σ(Bn))(ρref(Bn)), the inner
automorphism AdF preserves the Dehn twists of SMod(Σ(Bn)) along non-separating curves,
so according to Proposition 4.18, AdF induces in Bn an automorphism that preserves the braid
twists. Now, according to Lemma 4.21, such automorphisms are inner. In other words, there
exists ξ ∈ Bn such that Adρref(ξ) and AdF coincides on ρref(Bn), so Adρref(ξ)−1F fixes the elements
of ρref(Bn). Hence ρref(ξ)−1F is in the centralizer of ρref(Bn), and the result follows.

We now turn to the normalizer of ρ̃ref(Bn) in Mod(Σ(Bn), ∂Σ(Bn)). We have the following
central exact sequence:

1 → 〈Td, d ∈ Bndy(Σ(Bn))〉 →Mod(Σ(Bn), ∂Σ(Bn)) → PMod(Σ(Bn)) → 1.
Hence, the normalizer of ρ̃ref(Bn) in Mod(Σ(Bn), ∂Σ(Bn)) is included in the set of lifts in
PMod(Σ(Bn)) of the elements of the normalizer of ρref(Bn).

• When n is odd, the lifts of s are already in ρ̃ref(Bn), and the Dehn twist Td where d is
the unique boundary component of Σ(Bn) is also already in ρ̃ref(Bn), so the normalizer
of ρ̃ref(Bn) in Mod(Σ(Bn), ∂Σ(Bn)) is ρ̃ref(Bn), which coincides with the set of lifts in
PMod(Σ(Bn)) of the elements of the normalizer of ρref(Bn).

• When n is even, the normalizer of ρref(Bn) in PMod(Σ(Bn)) is reduced to ρref(Bn), for
the mapping class s does not belong to PMod(Σ(Bn)). Hence the normalizer of ρ̃ref(Bn)
in Mod(Σ(Bn), ∂Σ(Bn)) is the group spanned by ρ̃ref(Bn), Td+ and Td− where d+ and d−
are the two boundary components of Σ(Bn). But the product Td+ Td− belongs already to
ρ̃ref(Bn), hence the normalizer of ρ̃ref(Bn) in Mod(Σ(Bn), ∂Σ(Bn)) is the group spanned
by ρ̃ref(Bn) and Td+ . ¤
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II. Geometric morphisms from the braid
group and corollaries

In this part, we prove the corollaries of Theorem 1. It is divided into two sections. The
first one describes the frame whereas we state and prove the corollaries in the second one. More
precisely:

Section 5:
This section aim to present different types of geometric morphisms from the braid group and to
set some definitions in order to state the main theorem (Theorem 1) in an adequate context.
We will also give some results linking different types of geometric morphisms between them.
These results will help us notably in the second section of this part, when we prove the corollaries
of Theorem 1, but they will also help us later in the demonstration of Theorem 1.

Section 6:
In this section, we prove all the corollaries of Theorem 1 presented in this paper. Some of them
are very closed to theorems of Ivanov and McCarthy, Bell and Margalit, Dyer and Grossman:

• we study the injectivity of the morphisms from Bn in both families of mapping class groups:
Mod(Σ, ∂Σ) and PMod(Σ);

• we study the morphisms from Bn in Bn and Bn+1, the injectivity of such morphisms and
the automorphisms of Bn;

• at last we study the morphisms from the mapping class group of a surface of genus g > 2
in the one of a surface of genus g′ 6 g + 1, the injectivity of such morphisms and the
automorphisms of the mapping class group.
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5 The morphisms between braid groups and mapping class groups,
Theorem 1

In this section, we pursue the following goals:

1. setting the main definitions concerning the morphisms from the braid group in some map-
ping class groups (cyclic morphisms, monodromy morphisms, transvections), and giving
some basic facts;

2. stating the main theorem of this paper concerning morphisms from Bn in PMod(Σ) and
in Mod(Σ, ∂Σ);

3. showing the relations between Hom(Bn, PMod(Σ)) and Hom(Bn, Mod(Σ, ∂Σ));

4. presenting some results on transvections of monodromy morphisms and computing the
centralizer of the image of a monodromy morphism.

The four subsections of this section will follow this outline.

5.1 Cyclic morphisms, monodromy morphisms and transvections

We give in this subsection the main definitions related to the morphisms from the braid group
in the mapping class group: the cyclic morphisms, the monodromy morphisms, the transvections
of monodromy morphisms.

Cyclic morphisms.

Definition 5.1 (Cyclic morphisms).
Let n be an integer greater than or equal to 3, G any group and ϕ a morphism from Bn in G.
The morphism ϕ is said to be cyclic if:

ϕ(τ1) = ϕ(τ2) = · · · = ϕ(τn−1).

Lemma 5.2. Let n be an integer greater than or equal to 5, G any group and ϕ a morphism from
Bn in G. If there exist two distinct integers i and j in {0, 1, . . . , n− 1} such that ϕ(τi) = ϕ(τj),
then ϕ is a cyclic morphism.

Proof. Let us recall that by convention, for any integer `, τ` is the standard generator τk where
k is the remainder of the euclidian division of ` by n. Furthermore, for all integers i and j, we
denote by |i− j|n the integer min({|i− j + kn|, k ∈ Z}).

Let i and j be two distinct integers in {0, 1, . . . , n− 1} such that ϕ(τi) = ϕ(τj).
a) If |i − j|n = 1, for example if j = i + 1, the equality ϕ(τi) = ϕ(τi+1) implies that

ϕ(δτiδ
−1) = ϕ(δτi+1δ

−1), in other words ϕ(τi+1) = ϕ(τi+2). By induction, we get:
ϕ(τ1) = ϕ(τ2) = · · · = ϕ(τn−1).
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b) If |i− j|n > 1 and |(i + 1)− j|n > 1, let us set βi = τiτi+1τi. The equality ϕ(τi) = ϕ(τj)
implies that ϕ(βiτiβ

−1
i ) = ϕ(βiτjβ

−1
i ), whence ϕ(τi+1) = ϕ(τj), and finally ϕ(τi) = ϕ(τi+1). We

are back to a).
c) If |i− j|n > 1 and |(i + 1)− j|n = 1, then we have either j = i + 2 or j = i + 2− n, hence

|i− j|n > 1 and |i− (j + 1)|n > 1. Let us swap i and j: we are back to b). ¤

Since the abelianization of Bn is infinite cyclic, we have the following lemma:

Lemma 5.3. Let n be an integer greater than or equal to 3. Any morphism from Bn in an
abelian group is cyclic. ¤

Monodromy morphisms.

Definition 5.4 (Monodromy morphisms).
For any integer n greater than or equal to 3 and any surface Σ, a morphism from Bn in a subgroup
M of Mod(Σ) or of Mod(Σ, ∂Σ) is called a monodromy morphism if the standard generators
of the braid group are sent on Dehn twists, or on their inverses, along pairwise distinct curves.

This definition was inspired by Proposition 3.4 (properties of Dehn twists) and Definition 3.6
(chain of curves), so that we now can state the following:

Lemma 5.5. Let n be an integer greater than or equal to 3, Σ a surface and ρ a monodromy mor-
phism from Bn inMod(Σ) orMod(Σ, ∂Σ), there exists a (n−1)-chain of curves (a1, a2, . . . , an−1)
and an integer ε ∈ {±1} such that for all integers i in {1, . . . , n− 1}, we have:

ρ(τi) = T ε
ai
.

¤

As a corollary, we get a necessary and sufficient condition on the existence of monodromy
morphisms.

Lemma 5.6 (Criterion regarding the existence of monodromy morphisms).
Let n be an integer greater than or equal to 3 and Σ a surface Σg, b. There exist monodromy
morphisms from Bn in PMod(Σ) if and only if g > n

2 − 1.

Proof. Sufficient condition: it is enough to consider an embedding from Σ(Bn) in Σ. Then the
reference morphism ρ̃ref : Bn → PMod(Σ(Bn)) induces a monodromy morphism in PMod(Σ).

Necessary condition: notice that the existence of monodromy morphisms only depends on
the existence of (n − 1)-chains of curves. Now, if there exists a (n − 1)-chain in Σ, according
to Proposition 2.2, there exists a representative in tight position of such a (n − 1)-chain. The
compact tubular neighbourhood compact of such a representative (they are all homeomorphic,
so it is enough to check it on an example) is a surface embedded in Σ whose genus equals the
integral part of n

2 − 1. Hence g > n
2 − 1. ¤
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Transvections.

Definition 5.7 (Transvections).
Let n be an integer greater than or equal to 3, let G be any group and let ρ and ρ′ be two
morphisms from Bn in G. We shall say that ρ′ is a transvection of ρ if there exists an element g
in the centralizer of ρ(Bn) in G such that for all integers i in {1, . . . , n− 1}, we have:

ρ′(τi) = ρ(τi)g.

The following lemma shows how transvections arise naturally from central exact sequences of
groups. Such sequences are frequent between mapping class groups. See for instance Proposition
3.9.

Lemma 5.8. Let 1 → N → G
ψ−→ Ĝ → 1 be a central exact sequence of groups, let n be an

integer greater than or equal to 3 and let ρ and ρ′ be two morphisms from Bn in G such that
ψ ◦ ρ = ψ ◦ ρ′. Then

(i) ρ′ is a transvection of ρ,

(ii) ρ is cyclic if and only if ψ ◦ ρ is cyclic.

Proof. Let us prove item (i). For all integers i in {1, . . . , n− 1}, there exists gi ∈ N such that
ρ′(τi) = ρ(τi)gi. We have then the following equalities, true for all integers i in {1, . . . , n− 1}:

ρ′(τi) ρ′(τi+1) ρ′(τi) = ρ(τi) ρ(τi+1) ρ(τi) gi gi+1 gi,
ρ′(τi+1) ρ′(τi) ρ′(τi+1) = ρ(τi+1) ρ(τi) ρ(τi+1) gi+1 gi gi+1.

The braid relations in Bn imply that the four members in these two equalities must be all equal.
Therefore for any integer i in {1, 2, . . . , n− 1}, we have:

gi gi+1 gi = gi+1 gi gi+1.
But for all i and j in {1, 2, . . . , n − 1}, the elements gi and gj commute, so they all are equal.
Hence ρ′ is a transvection of ρ.

Let us prove now item (ii). If ρ is cyclic, then ψ ◦ ρ is cyclic. Conversely, if ψ ◦ ρ is cyclic,
then it is clear that there exists a cyclic morphism ρ′ such that ψ ◦ ρ′ = ψ ◦ ρ. According to item
(i), this implies that ρ is a transvection of ρ′. Hence ρ is cyclic. ¤

The most frequently, the transvections that we will meet will be transvections of monodromy
morphisms. To make things clear, we give below the definition of a transvection of monodromy
morphism although it is unnecessary since the words transvection and monodromy morphism
have already been defined. We will prove that under some conditions, all the morphisms from
Bn in PMod(Σ) where Σ is a connected surface are transvections of monodromy morphisms.

Definition 5.9 (Transvection of monodromy morphism).
Let n be an integer greater than or equal to 3, Σ a surface, M a subgroup of Mod(Σ) or of
Mod(Σ, ∂Σ). A transvection of monodromy morphism is a morphism ρ such that there exist:

• a (n− 1)-chain of curves (ai)16i6n−1 in Curv(Σ),

• an integer ε ∈ {±1},
• a mapping class V ∈M that commutes with Tai for all i 6 n− 1,

and that satisfies for all integers i in {1, 2, . . . , n− 1}:
ρ(τi) = T ε

ai
V .
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Finally, we adopt the following definition:

Definition 5.10 (Morphisms of the same nature).
Let n be an integer greater than or equal to 3, Σ a surface, and ρ1 and ρ2 two morphisms from
Bn in a subgroup ofMod(Σ) orMod(Σ, ∂Σ). We will say that ρ1 and ρ2 are of the same nature
if they both are cyclic morphisms, or if they both are transvections of monodromy morphisms.
Otherwise, we will say that they are of different natures.

5.2 Statement of the main theorem

Let us recall the statement of Theorem 1 (proved during Section 13):
Theorem 1 (Morphisms from Bn in PMod(Σ), n > 6).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Let ρ be a
morphism from Bn in PMod(Σ). If ρ is not cyclic, ρ is a transvection of monodromy morphism.
Moreover, such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

Actually, we will first prove Theorem 1 in the case where n is an even integer, cf. Sections 7
to 12. We will prove the general case with n even or odd in Section 13.

As we will see it later in this section in Subsection 5.3, from Theorem 1 we can deduce
Theorem 2 in which we consider morphisms from Bn in Mod(Σ, ∂Σ) instead of PMod(Σ).
Theorem 2 (Morphisms from Bn in Mod(Σ, ∂Σ), n > 6).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Let ρ̃ be
a morphism from Bn in Mod(Σ, ∂Σ). Then ρ̃ is cyclic or is a transvection of monodromy
morphism. Moreover such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

5.3 From Hom(Bn, PMod(Σ)) to Hom(Bn, Mod(Σ, ∂Σ))

In this subsection, we show the links that exist between the sets Hom(Bn, PMod(Σ)) and
Hom(Bn, Mod(Σ, ∂Σ)). In particular, we show two results:

• Proposition 5.12: Let n be an integer greater than or equal to 3 and let Σ be a surface.
Any morphism from Bn in PMod(Σ) can be lifted in exactly one way, up to transvections,
in a morphism from Bn in Mod(Σ, ∂Σ).

• Theorem 2: Let n be an integer greater than or equal to 6 and let Σ be a surface of genus
g 6 n

2 . Any morphism from Bn in Mod(Σ, ∂Σ) is eihter cyclic, or is a transvection of
monodromy morphism (this theorem is similar to Theorem 1, but the codomain of the
considered morphisms is now Mod(Σ, ∂Σ)).

Lemma 5.11. Let Σ be a surface with a nonempty boundary. Let F and G be mapping classes in
PMod(Σ) such that F and G commute. Let F̃ and G̃ be the lifts in Mod(Σ, ∂Σ) of respectively
F and G. Then F̃ and G̃ commute.
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Remark. This lemma is not obvious. If a and b are commuting elements of a group G and if
H is a central extension of G, it can happen that two lifts of a and b do not commute.
Proof. Let us start from the following central exact sequence linkingMod(Σ, ∂Σ) and PMod(Σ):

1 → 〈Td , d ∈ Bndy(Σ)〉 →Mod(Σ, ∂Σ) → PMod(Σ) → 1. (∗)
Then two lifts in Mod(Σ, ∂Σ) of a same element of PMod(Σ) differ from a central element.
Therefore, in order to show the lemma, it is enough to show that, given two elements F and
G in PMod(Σ) that commute, there exist two lifts F̃ and G̃ of F and G in Mod(Σ, ∂Σ) that
commute. So we start from two mapping classes F and G in PMod(Σ) that commute.

1. If F and G are periodic, since Σ has a nonempty boundary, according to Lemma 3.19
there exists H ∈ Mod(Σ) such that F and G are both some powers of H. Let p and q be two
integers such that F = Hp and G = Hq. Let H̃ be a lift of H in Mod(Σ, ∂Σ). Then H̃p and
H̃q are some lifts of F and G that commute.

2. We now turn to the case where F is pseudo-Anosov and G is periodic. Let us denote by
F̃ and G̃ some lifts in Mod(Σ, ∂Σ) of F and G respectively. Since FGF−1 = G, there exists a
central mapping class V ∈ Mod(Σ, ∂Σ) such that F̃ G̃F̃−1 = G̃V . Let p be the order of G and
let W be the central mapping class of Mod(Σ, ∂Σ) such that G̃p = W . Then, we have on one
hand:

(F̃ G̃F̃−1)p = F̃ G̃pF̃−1 = F̃WF̃−1 = W , (1)
and we have on the other hand:

(F̃ G̃F̃−1)p = (G̃V )p = WV p. (2)
When we compare (1) and (2), it comes out that V is trivial for Mod(Σ, ∂Σ) is torsion-free. So
F̃ and G̃ commute.

3. If F and G are pseudo-Anosov, according to Theorem 3.32 there exist two nonzero integers
p and q such that F p = Gq. Let ` and k be two integers such that `p + kq = p ∧ q = d. Let us
set

• H = F kG` (so H satisfies Hp = Gd and Hq = F d; hence H is pseudo-Anosov),

• P = F (H−1)(q/d) (so P d = 1 and F ∈ 〈P, H〉),
• Q = G(H−1)(p/d) (so Qd = 1 and G ∈ 〈Q, H〉).

According to Lemma 3.19, since P and Q are two periodic mapping classes that commute, there
exists a mapping class R ∈ 〈P, Q〉 such that 〈P, Q〉 = 〈R〉. Thus F and G belong to the abelian
group spanned by H and R. Then according to step 2., two lifts H̃ and R̃ of H and R in
Mod(Σ, ∂Σ) span an abelian group, too. Moreover, the latter contains two lifts F̃ and G̃ of F
and G in Mod(Σ, ∂Σ). In particular, F and G admit two lifts F̃ and G̃ that commute.

4. Let F and G be any two mapping classes of PMod(Σ) that commute. Let A be the set
of curves σ(F ) ∪ σ(G). Notice that A is a simplex according to Proposition 3.40.

4.a) Let us assume that F and G belong to PAMod(Σ) (i.e. F and G preserve each curve
of the set A = σ(F ) ∪ σ(G)). We are going to describe for any H ∈ PAMod(Σ) a construction
of a lift of H in PAMod(Σ, ∂Σ), then we will apply it to F and G. First, let us consider the
following commutative diagram where all the arrows are canonical (recA comes from Proposition
3.9, the three other morphisms have been introduced in Subsection 3.1 Definition 3.1):
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H3 ∈ PAMod(Σ, ∂Σ) Mod(ΣA, ∂ΣA) 3 H2

H4, H ∈ PAMod(Σ) PMod(ΣA) 3 H1, H5

²²
ÂÂ
Â Â
Â Â
ÂÂ

for∂Σ

oo
recA

²²
Â Â
Â Â
ÂÂ
Â Â

for∂ΣA

//
cutA

For any H ∈ PAMod(Σ), let us denote by Hi, 1 6 i 6 5, the following mapping classes, derived
from H when following the diagram above:

• H1 = cutA(H), so H1 ∈ PMod(ΣA),
• H2 a lift of H1 in Mod(ΣA, ∂ΣA), so H2 ∈Mod(ΣA, ∂ΣA),
• H3 = recA(H2), so H3 ∈Mod(ΣA, ∂ΣA),
• H4 = for∂Σ(H3), so H4 ∈ PAMod(Σ, ∂Σ),
• H5 = cutA(H4), so H5 ∈ PMod(ΣA).

The diagram is commutative: for∂ΣA = (cutA)(for∂Σ)(recA), so H1 = H5. But we have the
following central exact sequence:

1 → T → PAMod(Σ) cutA−−−→ PMod(ΣA) → 1 , (∗∗)
where T = 〈Td , d ∈ A〉. Hence H and H4, the preimages of H1 and H5 by cutA, differ from a
multitwist along some curves of A. Hence, up to elements in T , the mapping class H3 is a lift of
H.

Let us apply this to F and G. As F and G commute, F1 and G1 commute. But on each
connected component of ΣA, the restrictions of F1 and G1 are periodic or pseudo-Anosov, so
we can apply what was shown above in steps 1., 2. and 3., and deduce from it that F2 and G2

commute. Hence F3 and G3 commute as well. Now, as we just saw it with H, there exist T and
T ′ belonging to T such that F̃ = F3T and G̃ = G3T

′ are some lifts of F and G. Moreover T and
T ′ are central in PAMod(Σ, ∂Σ) and in addition, F3 and G3 commute, so F̃ and G̃ commute.

4.b) In the general case, if F and G are any two mapping classes that commute, let us denote
by F̃ and G̃ some lifts of F and G in Mod(Σ, ∂Σ). a priori, there exists a multitwist W along
the boundary components such that F̃ G̃F̃−1 = G̃W . Once again, let us set A = σ(F ) ∪ σ(G).
Since F and G commute, they preserve globally A, so there exists a nonzero integer m such that
Fm and Gm preserve A curve-wise. In other words, Fm and Gm belong to PAMod(Σ). So,
according to 4.a),

F̃mG̃mF̃−m = G̃m.
Now, the equality F̃ G̃F̃−1 = G̃W implies that F̃ G̃mF̃−1 = G̃mWm, then

F̃mG̃mF̃−m = G̃mWm2 .
So Wm2 is trivial. But Mod(Σ, ∂Σ) is torsion-free, hence W is trivial and G̃ and F̃ commute.

¤

Proposition 5.12 (Lifting from Hom
(Bn, PMod(Σ)

)
in Hom

(Bn, Mod(Σ, ∂Σ)
)
).

Let n be an integer greater than or equal to 3, let Σ be a surface and ρ : Bn → PMod(Σ)
a morphism. Let us recall that we denote by for∂Σ, or for, the canonical epimorphism from
Mod(Σ, ∂Σ) in PMod(Σ). Then:

1. There exists a morphism ρ̃ : Bn →Mod(Σ, ∂Σ) such that for ◦ ρ̃ = ρ.
2. Such a morphism ρ̃ is unique up to transvection, that is, if ρ̃1 and ρ̃2 satisfy for( ρ̃1) =

for( ρ̃2) = ρ, then there exists V ∈ Mod(Σ, ∂Σ) such that V is in the centralizer of ρ̃1(Bn) and
of ρ̃2(Bn) and satisfies for all i ∈ {1, . . . , n− 1}:
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ρ̃2(τi) = ρ̃1(τi) V .
3. Such a morphism ρ̃ is cyclic if and only if ρ is cyclic.
4. Such a morphism ρ̃ is a transvection of monodromy morphism if and only if ρ is a transvec-

tion of monodromy morphism.

Proof.
1. Let us start from the following central exact sequence:

1 → 〈Td, d ∈ Bndy(Σ) 〉 →Mod(Σ, ∂Σ) for−→ PMod(Σ) → 1. (∗)
For all i ∈ {1, . . . , n− 1}, let Ai be a mapping class of Mod(Σ, ∂Σ) such that for(Ai) = ρ(τi).
Then for all i ∈ {1, . . . , n− 2}, we have:

for(AiAi+1Ai) = for(Ai+1AiAi+1),
hence, according to the exact sequence (∗), for all i ∈ {1, . . . , n − 2}, there exists a multitwist
denoted by Wi along some boundary components of Σ such that

AiAi+1Ai = Ai+1AiAi+1Wi.
Let us set: {

A′1 := A1 ,
A′i := AiW1W2 · · ·Wi−1 when 2 6 i 6 n− 1.

Let us recall that the Wi are central. Hence for all i ∈ {1, . . . , n− 2}, we have:
A′iA

′
i+1A

′
i = A′i+1A

′
iA
′
i+1.

Besides, for all integers i and j smaller than or equal to n− 1 such that |i− j| > 2, the mapping
classes Ai and Aj commute, so according to Lemma 5.11, the mapping classes A′i and A′j commute
as well. Finally the map ρ̃ defined by

ρ̃(τi) = A′i
is a morphism from Bn in Mod(Σ, ∂Σ). Moreover, by construction, we have for(ρ̃) = ρ.

2. Let ρ̃1 and ρ̃2 be two morphisms from Bn in Mod(Σ, ∂Σ) that satisfy for(ρ̃1) = for(ρ̃2).
According to the central exact sequence (∗), we can apply Lemma 5.8: ρ̃2 is a transvection of
ρ̃1.

3. According to Lemma 5.8, ρ̃ is cyclic if and only if ρ is cyclic.
4. If ρ̃ is a transvection of monodromy morphism, it is clear that for ◦ ρ̃ is still a transvection

of monodromy morphism. Conversely, if ρ is a transvection of monodromy morphism, there exist:

• a (n− 1)-chain of curves (ai)16i6n−1,

• an integer ε ∈ {±1},
• a mapping class V commutant with Tai for all i 6 n− 1,

such that for all integers i in {1, 2, . . . , n− 1}, we have:
ρ(τi) = T ε

ai
V .

Let Ṽ be a lift of V in Mod(Σ, ∂Σ). For all i ∈ {1, . . . , n− 1}, the mapping class V commutes
with Tai , so V fixes ai and Ṽ fixes ai. Hence Ṽ commutes with Tai in Mod(Σ, ∂Σ). Then the
morphism ρ̃, satisfying for all integers i in {1, 2, . . . , n− 1} the equality

ρ̃(τi) = T ε
ai

Ṽ ,
is a transvection of monodromy morphism. ¤
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Next proposition will help us proving Theorem 2, which was announced in Subsection 5.2:

Theorem 2 (Morphisms from Bn in Mod(Σ, ∂Σ)).
Let n be any integer greater than or equal to 6. Let Σ be a surface Σg, b where g 6 n/2. Let
ρ̃ a morphism from Bn in Mod(Σ, ∂Σ). Then ρ̃ is cyclic or is a transvection of monodromy
morphism. Moreover such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

Proof. The second part of Theorem 2 is clear: the existence of such morphisms is equivalent to
the existence of a (n− 1)-chain of curves in Σ, and so is equivalent to g > n

2 − 1.
It remains to be shown that all the morphisms from Bn in Mod(Σ, ∂Σ) are either cyclic, or

transvections of monodromy morphisms. Let ρ̃ be a noncyclic morphism from Bn inMod(Σ, ∂Σ).
If we compose ρ̃ with the projection Mod(Σ, ∂Σ) for−−−→ PMod(Σ), we get a morphism ρ from
Bn in PMod(Σ). According to Proposition 5.12.3., ρ is not cyclic, so according to Theorem 1,
ρ is a transvection of monodromy morphism, so according to Proposition 5.12 item 3., ρ̃ is a
transvection of monodromy morphism. ¤

5.4 Transvections of monodromy morphisms

In this paper, we will handle transvections of monodromy morphisms. This is the reason why
we start this part with some lemmas that will help us to “compare” such transvections.

Let Σ be a surface and let M be a subgroup of Mod(Σ) or of Mod(Σ, ∂Σ). Any transvec-
tion of monodromy morphism from Bn in M can be described by the data of a (n − 1)-chain
(a1, . . . , an−1) of curves in Σ, of an integer ε ∈ {±1}, and of a mapping class V that commutes
with Tai for all i ∈ {1, . . . , n−1}. We are going to show that such a triple

(
(a1, . . . , an−1), ε, V

)
is unique. In the next chapter, we will use this result for n = 4 (see Theorem 6). That is why
we are going to prove it for any integer n greater than or equal to 4 instead of 5, which makes
the proof a bit more complicated.

Lemma 5.13. (Uniqueness of the triple representing a transvection)
Let n be an integer greater than or equal to 4, let Σ be a surface, and let M be a subgroup of
Mod(Σ) or of Mod(Σ, ∂Σ). Let ρ be a transvection of monodromy morphism from Bn in M
such that there exist two triples

(
(a1, . . . , an−1), ε, V

)
and

(
(c1, . . . , cn−1), η, W

)
satisfying the

following for all i ∈ {1, . . . , n− 1}:
ρ(τi) = T ε

ai
V = T η

ci W.

Then, these two triples are equal.

Proof. Given the properties of V and W , the computation of ρ(τ1τ
−1
3 ) leads to:

(
Ta1 T −1

a3

)ε =
(
Tc1 T −1

c3

)η
. (1)

This is an equality between multitwists (for I(a1, a3) = I(c1, c3) = 0), so one of the following
cases holds:

• either ε = η, a1 = c1 and a3 = c3 (2)

• or ε = −η, a1 = c3 and a3 = c1 . (3)
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Let us focus on case (3) in order to prove it cannot occur. Case (3) implies that:

ρ(τ1) = T η
c1 W = T −ε

a3
W. (4)

Now, we also have ρ(τ1) = T ε
a1

V , whence:

W = (Ta3 Ta1)
ε V. (5)

In a similar way, the equalities {
ρ(τ2) = T ε

a2
V,

ρ(τ2) = T η
c2 W = T −ε

c2 W,
(6)

imply that

W = (Tc2 Ta2)
ε V. (7)

By comparing (5) and (7), we get:

Tc2 Ta2 = Ta3 Ta1 . (8)

Given (8), we have reached the expected contradiction, provided that we show that

I(a2, c2) = 0. (9)

Indeed, (8) becomes an equality between multitwists, which, according to Lemma 3.12, leads to:

{c2, a2} = {a3, a1}, (10)
then we have a2 = a1 or a2 = a3!

Let us show equality (9). Since V commutes with Ta3 and Ta1 , it also commutes with
(Ta3Ta1)

εV , and so with W as well according to (5). Hence V commutes with W , V and Ta2 ,
therefore according to (7), V also commutes with Tc2 . Finally, Tc2 commutes with W , V and
Tc2 , so according to (7), it commutes with Ta2 . In other words, equality (9) holds.

Finally, between case (2) and case (3), the case to be retained is case (2). So a1 = c1,
ε = η, and V = W . Since for all i ∈ {1, . . . , n − 1}, we have T ε

ai
V = T η

ci W , we then deduce
the equality Tai = Tci , and eventually the equality (a1, a2, . . . , an−1) = (c1, c2, . . . , cn−1).

¤

We deduce from Lemma 5.13 the following definitions:

Definition 5.14 (Characteristic elements of a transvection of monodromy morphism).
Let n be an integer greater than or equal to 4, Σ a surface, M a subgroup of Mod(Σ) or of
Mod(Σ, ∂Σ). Let ρ be a transvection of monodromy morphism from Bn to M.

• The triple characteristic of ρ is the unique (according to Lemma 5.13) triple
(
(a1, . . . , an−1), ε, V

)
such that for all i 6 n− 1, we have:

ρ(τi) = T ε
ai

V .

• We define:

– the characteristic (n − 1)-chain of the transvection ρ, as being the (n − 1)-chain
(a1, . . . , an−1),

– the characteristic sign of the transvection ρ, as being the integer ε,

– the direction of the transvection ρ, as being the mapping class V .
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• We denote by Σ(ρ) the tubular neighbourhood of ∪
i6n−1

ai where (ai)i6n−1 is the charac-

teristic (n− 1)-chain of ρ. Take care: Σ(ρ) does not necessarily belong to Sub(Σ), for the
boundary components of Σ(ρ) can bound some disks in Σ.

• The transvection ρ determines a unique pair (ρ∗, ϕ) of morphisms such that for all ξ ∈ Bn,
we have:

ρ(ξ) = ρ∗(ξ)ϕ(ξ),

where, for all i 6 n− 1, we have: {
ρ∗(τi) = T ε

ai
,

ϕ(τi) = V.

The monodromy morphism ρ∗ and the cyclic morphism ϕ will be called respectively the
monodromy morphism and the cyclic morphism associated to the transvection ρ.

Thus, the decomposition of a transvection of monodromy morphism gives rise to two mor-
phisms: a monodromy morphism ρ∗ determined by a (n−1)-chain of curves and a cyclic morphism
determined by the direction of the transvection, which is a mapping class V belonging to the
centralizer of ρ∗(Bn) in M. Therefore the computation of this centralizer is essential in the
remainder of this section, and the surface Σ(ρ) plays a crucial role.

Let us reformulate Propositions 4.19 and 4.20:

Proposition 5.15 (Centralizer of the image of a monodromy morphism).
Let n be an integer greater than or equal to 5. Let Σ be a surface Σg, b where g > n

2 − 1 and
b > 0. LetM be one of the groupsMod(Σ), PMod(Σ), orMod(Σ, ∂Σ). Let ρ be a monodromy
morphism from Bn in M. Let MΣ(ρ) be the groupe of the mapping classes in M that preserve
the subsurface Σ(ρ) and induce the identity in Mod

(
Σ(ρ)

)
. Then:

(i) the centralizer of ρ(Bn) in M is reduced to the group MΣ(ρ), except in the below cases (a),
(b) or (c) below where it is equal to the group spanned by MΣ(ρ) and by Z, where Z is
any extension in Mod(Σ) of the mapping class s ∈ Mod(Σ(ρ)) defined in Definition 4.15
(where Σ(Bn) is homeomorphic to Σ(ρ));

Cases (a), (b) and (c) are the following:

(a) the integer n is odd,

(b) the curve simplex {a1, a3, . . . , an−1} is non-separating,

(c) Σ{a1, a3, ..., an−1} consists in two homeomorphic connected components andM = Mod(Σ).

(ii) for any mapping class V belonging to the centralizer of ρ(Bn) in M, the mapping class V 2

belongs to MΣ(ρ).

¤
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6 Corollaries of Theorem 1

In this section, we prove the corollaries of Theorem 1 announced in the introduction. Let us
recall Theorem 1 (Section 13 is devoted to its proof):
Theorem 1 (Morphisms from Bn in PMod(Σ), n > 6).
Let n be any integer greater than or equal to 6. Let Σ be a surface Σg, b with g 6 n

2 and b > 0. Let
ρ be a morphism from Bn in PMod(Σ). If ρ is not cyclic, then ρ is a transvection of monodromy
morphism. Moreover, such transvections of monodromy morphisms exist if and only if g > n

2 −1.

Outline of this section:

• In Subsection 6.1, we focus on the injectivity of the morphisms from Bn in both mapping
class groups Mod(Σ, ∂Σ) and PMod(Σ);

• in Subsection 6.2, we focus on the morphisms from Bn in itself and in Bn+1;

• in Subsection 6.3, we focus on the morphisms between the mapping class groups of two
possibly different surfaces;

• in Subsection 6.4, we focus on the endomorphisms of the mapping class group.

6.1 Injectivity of the morphisms from Bn in the mapping class group

According to Theorems 1 and 2, when the genus of Σ is bounded by n
2 , the morphisms from Bn

in the mapping class group associated to the surface Σ are either cyclic, or are some transvections
of monodromy morphisms. Consequently, the issue of the injectivity of the morphisms from Bn

in the mapping class group is reduced to the issue of the injectivity of the monodromy morphisms
(cf. Proposition 6.1) and of the transvections of the monodromy morphisms (cf. Proposition
6.2), for the cyclic morphisms obviously cannot be injective. These different results are gathered
in Theorem 3.

Given ρ, a transvection of monodromy morphism from Bn in the mapping class group of
a surface Σ, the surface Σ(ρ) (described in Definition 5.14) will help us in characterizing the
injectivity of the transvections of monodromy morphisms.

Proposition 6.1 (Injectivity of the monodromy morphisms).
(i) Case of Mod(Σ, ∂Σ). For any integer n greater than or equal to 6 and any surface Σ,

a monodromy morphism ρ̃ from Bn in Mod(Σ, ∂Σ) is injective if and only if Bndy(Σ(ρ̃)) ⊂
Curv(Σ, ∂Σ) (in other words, the boundary components of Σ(ρ̃) do not bound any disk in Σ).

(ii) Case of PMod(Σ). For any integer n greater than or equal to 6 and any surface Σ, a mon-
odromy morphism ρ from Bn in PMod(Σ) is injective if and only if Bndy(Σ(ρ)) ⊂ Curv(Σ, ∂Σ)
and Bndy(Σ(ρ)) 6⊂ Bndy(Σ) (in other words, the boundary components of Σ(ρ) do not bound
any disk in Σ and at least one of them is not isotopic to a boundary component of Σ).
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Proof.
Let us show item (i).
Let θ be the morphism induced by ρ̃ in Mod(Σ(ρ̃), ∂Σ(ρ̃)). According to Theorem 4.17,

θ is injective. Let ι be the inclusion of Σ(ρ̃) in Σ and ι∗ the morphism induced, going from
Mod(Σ(ρ̃), ∂Σ(ρ̃)) into Mod(Σ, ∂Σ), so that ρ̃ = ι∗ ◦ θ.

• Necessary condition. If ρ̃ is injective, then ρ̃(∆4) is not trivial. However when n is odd,
ρ̃(∆4) coincides with T±1

d where d is the unique boundary component of Σ(ρ̃), hence Td

must be non-trivial. In other words, d ∈ Curv(Σ, ∂Σ). When n is even, ρ̃(∆4) coincides
with (Td1Td2)

±2 where d1 and d2 are the two boundary components of Σ(ρ̃), so at least one
of the curves d1 or d2 has to be non-trivial. Moreover, if one of them is trivial in Σ, say d1

for example (cf. Figure 29), then ι∗ ◦ θ(
(
τa1 . . . τan−2

)2(n−1)) = ι∗ ◦ θ(
(
τa1 . . . τan−1

)n), since(
Ta1 . . . Tan−2

)2(n−1) =
(
Ta1 . . . Tan−1

)n = Td2 . But this contradicts the injectivity of ρ̃, for
in Bn, a product of n(n−1) standard generators can be equal to a product of 2(n−1)(n−2)
standard generators only if n(n−1) = 2(n−1)(n−2), hence only if n ∈ {1, 4}. Therefore,
{d1, d2} ⊂ Curv(Σ, ∂Σ).

Figure 29: Example with n = 8.

• Sufficient condition. We assume that Bndy(Σ(ρ̃)) ⊂ Curv(Σ, ∂Σ). Then according to
Theorem 3.10, in the case where n is odd, or in the one where n is even and where the
two boundary components of Σ(ρ̃) are not isotopic in Σ, ι∗ is injective. In the case where
n is even and where the two boundary components d1 and d2 of Σ(ρ̃) are isotopic in
Σ, according to Theorem 3.10 again, we have Ker (ι∗) = 〈Td1T

−1
d2
〉. Now, according to

Theorem 4.17, θ(Bn) coincides with SMod(Σ(ρ̃), ∂Σ(ρ̃)) whereas Td1T
−1
d2

does not belong
to SMod(Σ(ρ̃), ∂Σ(ρ̃)). Hence Ker (ι∗) ∩ Im (θ) = {1}, so ι∗(θ) is injective. Finally, in all
the cases, ι∗ ◦ θ is injective, and hence ρ̃, too.

Let us show item (ii).
Again, let θ be the morphism induced by ρ in Mod(Σ(ρ), ∂Σ(ρ)). According to Theorem

4.17, θ is injective. Let ι be the inclusion of Σ(ρ) in Σ and ι∗ the induced morphism from
Mod(Σ(ρ), ∂Σ(ρ)) in PMod(Σ), so that ρ = ι∗◦θ. The morphism ι∗ is not necessarily injective.

• Necessary condition. As in the case of item (i) with ρ̃, it is necessary that Bndy(Σ(ρ)) ⊂
Curv(Σ, ∂Σ), but since the Dehn twists along boundary components are trivial in PMod(Σ),
it is necessary that Bndy(Σ(ρ)) 6⊂ Bndy(Σ).
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• Sufficient condition. Let us assume that Bndy(Σ(ρ)) ⊂ Curv(Σ, ∂Σ) and that Bndy(Σ(ρ)) 6⊂
Bndy(Σ), and let us check that ρ is injective. Let us denote by Σ′ the complement of Σ(ρ)
in Σ; we assume that if a boundary component of Σ(ρ) is isotopic to a boundary component
of Σ, these two boundary components coincide. With this assumption, all the connected
components of Σ′ are of negative Euler characteristic. Now, since Bndy(Σ(ρ)) 6⊂ Bndy(Σ),
the surface Σ′ is nonempty and ∂innΣ(ρ) 6= ∅. The image of ρ lies in PMod(Σ, Σ′),
which is isomorphic to Mod

(
Σ(ρ), ∂inn

(
Σ(ρ)

) )
. If ∂inn

(
Σ(ρ)

)
= ∂

(
Σ(ρ)

)
, Theorem 4.17

can be applied and ρ is then injective. This is always what happens in the case when
n is odd, but when n is even, it can happen that ∂inn

(
Σ(ρ)

)
= {d} 6= ∂

(
Σ(ρ)

)
, where

d is one of the two boundary components of Σ(ρ). In this case, PMod(Σ, Σ′) is iso-
morphic to Mod(Σ(ρ), d), and ρ induces a morphism ς from Bn in Mod(Σ(ρ), d), which
is injective if and only if ρ is injective itself. Let us denote by pr the canonical pro-
jection of Mod(Σ(ρ), ∂Σ(ρ)) in Mod(Σ(ρ), d). Then ς = pr ◦ θ. Moreover, we have
Ker(ς) = Ker(pr)∩θ(Bn) = {1}, for Ker(pr) = 〈Td′〉 where d′ is the boundary component of
Σ(ρ) different from d, but Td′ does not belong to θ(Bn). Hence ς is injective, so ρ is injective.

¤

Proposition 6.2 (Injectivity of the transvections).
(i) Let n be an integer greater than or equal to 3, G any group, ρ a morphism from Bn in G

and ρ1 a transvection of ρ. If G is torsion-free (for example, if G = Mod(Σ, ∂Σ) with ∂Σ 6= ∅),
then ρ is injective if and only if ρ1 is injective.

(ii) Let n be an integer greater than or equal to 6 and Σ a surface of genus g 6 n
2 . Then for

any monodromy morphism ρ from Bn in PMod(Σ), any transvection of ρ is injective if and only
if ρ is injective.

Proof.
Let us show item (i).
Let ρ be an injective morphism from Bn in G and let ρ1 be a transvection of ρ. We show

by contradiction that ρ1 is injective, then we will have shown item (i) of Proposition 6.2, for ρ
can also be seen as a transvection of ρ1. Let us then assume that there exists ξ, a non-trivial
element of Bn such that ρ1(ξ) = 1. By definition of transvection, there exists a cyclic morphism
ϕ : Bn → G such that for all ζ ∈ Bn, we have ρ1(ζ) = ρ(ζ)ϕ(ζ). So, we have ρ(ξ) = ϕ(ξ)−1, but
by definition of transvection, ϕ(ξ) lies in the centralizer of ρ(Bn) in G, hence so does ρ(ξ). Since ρ
is injective, ξ belongs to the center of Bn, so ξ is a power of ∆2. Therefore, there exists a nonzero
integer k such that

(
ρ(∆)ϕ(∆)

)2k = 1. As G is torsion-free, we have ρ(∆)ϕ(∆) = ρ1(∆) = 1.
Then, as above, ϕ(∆) lies in the centralizer of ρ(Bn) in G, hence so does ρ(∆). Now, since ρ is
injective, ∆ must belong to the center of Bn, hence must be a power of ∆2, which is absurd.

Let us show item (ii).
1. Let us show that if the morphism ρ is injective, then the transvection ρ1 is injective.
Let n > 6. Let ρ be an injective monodromy morphism from Bn in PMod(Σ) and ρ1 a

transvection of ρ. We show by contradiction that ρ1 is injective. Let us assume that there exists
a non-trivial element ξ of Bn such that ρ1(ξ) = 1. As in item (i), we deduce the existence of
a nonzero integer k such that ρ(∆−2k) = ϕ(∆2k). Now, ∆ is a product of n(n−1)

2 generators,
so ϕ(∆2) is the n(n − 1)-th power of a mapping class V belonging to the centralizer of ρ(Bn)
in PMod(Σ). Let us denote by W the mapping class V 2 which lies in MΣ(ρ), according to

82



Proposition 5.15, where MΣ(ρ) is the group of the mapping classes in PMod(Σ) that preserve
Σ(ρ) and induce the identity in PMod

(
Σ(ρ)

)
. Let us sum up: on one hand, we have ϕ(∆2) =

W
n(n−1)

2 , on the other hand, we have ϕ(∆2k) = ρ(∆−2k). We have also the following: if n is odd,
then ρ(∆4) = T ±1

d where d is the unique boundary component of Σ(ρ) , whereas if n is even,
then ρ(∆2) =

(
Td1Td2

)±1 where d1 and d2 are the two boundary components of Σ(ρ). Then the
mapping class W lying in MΣ(ρ) satisfies:

a) W kn(n−1) = T∓k
d if n is odd, where {d} = Bndy(Σ(ρ));

b) W
kn(n−1)

2 =
(
Td1Td2

)∓k, if n is even, where {d1, d2} = Bndy(Σ(ρ)).

Let us recall that since ρ is injective by assumption, then according to Proposition 6.1, at least
one of the the boundary components of Σ(ρ) is not trivial in Σ, hence the mapping classes Td in
case a) and Td1Td2 in case b) are not trivial.

Let us show that case a) leads to a contradiction. The curve d is a separating curve of Σ.
Let us call Σ′ the connected component of Σd different from Σ(ρ). According to Proposition
3.2.(i), PMod

(
Σ, Σ(ρ)

)
is isomorphic to PMod(Σ′, d). The mapping class W can thus be seen

as a periodic mapping class in PMod(Σ′, d). Let us call m its order. According to Lemma 3.17,
there exists an integer p coprime with m such that Wm = T p

d , so the equality W kn(n−1) = T∓k
d

implies Wn(n−1) = T∓1
d . Therefore the period of W is n(n− 1), so it is greater than or equal to

42 since n > 7. But Σ(ρ) is of genus n
2 − 1 and Σ is of genus at most n

2 hence Σ′ is of genus at
most 1. But there does not exist any nontrivial periodic mapping class in a genus-0 surface whose
boundary components are fixed, according to Corollary 3.23, and the order of periodic mapping
classes on a genus-1 surface with a nonempty boundary and whose boundary components are
fixed is bounded by 6, according to Corollary 3.25. This is a contradiction.

Let us show that case b) leads also to a contradiction. If Σ is the gluing of Σ(ρ) on itself by
identifying both of its boundary components d1 and d2 and if we call d the image of d1 in Σ,
then MΣ(ρ) is the cyclic group spanned by Td, so there exists an integer m such that W = T m

d .
But on the other hand, W

kn(n−1)
2 =

(
Td1Td2

)∓k = T∓2k
d , whence (Tm

d )
kn(n−1)

2 = T∓2k
d . This is

absurd, for Td is not a torsion element. Now, if we assume that d1 and d2 are two distinct curves
in Curv(Σ, ∂Σ), we know that at least one is not a boundary component of Σ. Notice that V
used to preserve {d1, d2}, so W (which is equal to V 2) preserves d1 and d2. Finally, as previously
in case a), W can be seen as a periodic mapping class of period at least 15 (for n(n−1)

2 equals at
least 15 when n > 6), on a surface of genus zero or one. As explained above, this is absurd.

2. Let us show that if the morphism ρ is not injective, then the transvection ρ1 is not injective
either.

Let ρ be a non-injective monodromy morphism from Bn in PMod(Σ) and let ρ1 be a transvec-
tion of ρ. Let us show that ρ1 is not injective. According to Proposition 6.1.(ii), it can exist
several reasons for ρ not being injective. We distinguish two cases, whether Bndy(Σ(ρ))∩Curv(Σ)
is empty or not.

• If Bndy(Σ(ρ)) ∩ Curv(Σ) is empty, then MΣ(ρ) is trivial. Hence according to Proposition
5.15, when n is odd, the centralizer of ρ(Bn) is spanned by ρ(∆2) which is of order 2, and
when n is even, this centralizer is trivial. So, in both cases, we have ρ1(∆4) = 1, and ρ1 is
not injective.
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• If Bndy(Σ(ρ))∩Curv(Σ) is not empty, whereas ρ is not injective, then necessarily, n is even
and the boundary component of Bndy(Σ(ρ)) that is not in Curv(Σ) bounds a disk. In this
case, we are going to exhibit two elements of Bn that do not commute although their images
do. This will show that ρ1 is not injective. Let us set ∆n−2 = τ1(τ2τ1) . . . (τn−2τn−3 . . . τ1).
We have seen in the proof of Proposition 6.1 that in our situation, we have ρ(∆2) =
ρ(∆ 4

n−2) (cf. Figure 29). Hence in particular ρ(∆ 4
n−2) commutes with ρ(τn−1), so ρ1(∆ 4

n−2)
commutes with ρ1(τn−1). But ∆ 4

n−2 do not commute with τn−1. Therefore, ρ1 is not
injective. ¤

We can deduce Theorem 3 from Theorems 1 and 2, and from Propositions 6.1 and 6.2.

Theorem 3 (Injectivity of the morphisms from the braid group in the mapping class group).
Let n be an integer greater than or equal to 6 and let Σ be a surface Σg, b such that g 6 n

2 . Let ρ
be a morphism from Bn in Mod(Σ, ∂Σ) or in PMod(Σ).

(i) Case of Mod(Σ, ∂Σ). The morphism ρ is injective if and only if it is a transvection
of monodromy morphism such that Bndy(Σ(ρ)) ⊂ Curv(Σ, ∂Σ) (in other words, the boundary
components of Σ(ρ) do not bound any disk in Σ).

(ii) Case of PMod(Σ). The morphism ρ is injective if and only if it is a transvection of
monodromy morphism such that Bndy(Σ(ρ)) ⊂ Curv(Σ, ∂Σ) and Bndy(Σ(ρ)) 6⊂ Bndy(Σ) (in
other words, the boundary components of Σ(ρ) do not bound any disk in Σ and at least one
boundary component of Σ(ρ) is not isotopic to any boundary component of Σ.). ¤

6.2 Morphisms between braid groups.

In 2000, R.Bell and D.Margalit have shown (cf. [BeMa]) that all the injective morphisms
from Bn in itself were transvections with direction ∆2k, k ∈ Z, of inner automorphisms, possibly
composed by Inv (cf. Definition 6.3 below). They have shown in a similar way that the injective
morphisms from Bn in Bn+1 were transvections of restrictions to Bn of inner automorphisms of
Bn+1, possibly composed by Inv.

We are going to prove that all the noncyclic morphisms have the shape indicated by R.Bell
and D.Margalit. In the meantime, we show the following theorem, due to Lin in 1982, cf. [Ln1]:
if m is smaller than n, the morphisms from Bn in Bm are cyclic.

To simplify the notation, we consider that we have the following inclusions:
B2 ⊂ B3 ⊂ B4 ⊂ . . .

so that for any k > 2 and any i ∈ {1, 2, . . . , k− 1}, the element τi belonging to Bk is sent by the
inclusion Bk → Bk+1 on the element τi belonging to Bk+1. Thus, given any two different braid
groups, the smaller one is seen as a subgroup of the bigger one.

Let us introduce a specific automorphism of Bn:

Definition 6.3 (The involution Inv of Bn).
Let Inv be the involutive automorphism of Bn that sends τi on τ−1

i for all i 6 n− 1.

Theorem 4 (Morphisms between braid groups).
Let n and m be two integers such that n > 6 and 3 6 m 6 n + 1.
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(i) Case where m < n: any morphism ϕ from Bn in Bm is cyclic.

(ii) Case where m = n: any noncyclic morphism ϕ from Bn in Bn is a transvection of inner
automorphism possibly precomposed by the involution Inv: there exist γ, v ∈ Bn and ε = ±1
such that for all i 6 n− 1, we have:

ϕ(τi) = γ τ ε
i γ−1v.

Moreover, v is a multiple of ∆2.

(iii) Case where m = n + 1: let us consider the group Bn as the subgroup of Bn+1 spanned by
the n−1 first standard generators of Bn+1. Then, any morphism ϕ from Bn in Bn+1 is the
restriction to Bn of a morphism from Bn+1 in itself, up to transvection. According to item
(ii), if ϕ is not cyclic, then there exists γ, v ∈ Bn+1 and ε = ±1 such that for all i 6 n− 1,
we have:

ϕ(τi) = γ τ ε
i γ−1v.

Moreover, v belongs to the centralizer of {γξγ−1, ξ ∈ Bn} in Bn+1.

(iv) All the noncyclic morphisms above are injective.

Proof. Let us first set some definitions:

• Let n and m be two integers such that n > 6 and m > n− 1,

• ϕ a morphism from Bn in Bm,

• Σ the surface Σ(Bm), of genus g where g is the integral part of m−1
2 ,

• ρ̃ref the reference morphism from Bm in Mod(Σ, ∂Σ),

• s the mapping class of Mod(Σ) introduced in Definition 4.15, relatively to ρ̃ref ,

• Ãds the automorphism of Mod(Σ, ∂Σ) that associates to a mapping class F the isotopy
class in Mod(Σ, ∂Σ) of s̄F̄ s̄−1 where s̄ and F̄ are some diffeomorphisms representing s
and F ,

• SMod(Σ, ∂Σ) the set of fixed points of Ãds (according to Definition 4.15),

• ci the curve such that ρ̃ref(τi) = Tci , for all i ∈ {1, . . . , m− 1}.
Furthermore, if ρ̃ref ◦ ϕ is a transvection of monodromy morphism, we set the following:

• let
(
(a1, . . . , an−1), ε, V

)
be the characteristic triple of ρ̃ref ◦ ϕ, so that for all i ∈

{1, 2, . . . , n− 1}, we have:

ρ̃ref ◦ ϕ(τi) = T ε
ai

V . (1)

Let us start by showing a fact that we will use several times in this proof.
When ρ̃ref ◦ ϕ is a transvection of monodromy morphism, let us show that the curves ai,

1 6 i 6 n− 1, are s-stable. For all i, j 6 n− 1, we have ρ̃ref ◦ ϕ(τiτ
−1
j ) = (TaiT

−1
aj

)ε. But, when
|i− j| > 2, TaiT

−1
aj

is a multitwist belonging to ρ̃ref ◦ϕ(Bn), included in ρ̃ref(Bm), which is equal
to SMod(Σ, ∂Σ). Hence TaiT

−1
aj

is a fixed point of Ãds. Now, Ãds(TaiT
−1
aj

) = Ts(ai)T
−1
s(aj)

, then
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TaiT
−1
aj

= Ts(ai)T
−1
s(aj)

, hence according to Lemma 3.12, we get s(ai) = ai and s(aj) = aj . Finally,
for all i 6 n− 1, we have s(ai) = ai.

Now, we can start the proof of the several parts of Theorem 4.
Let us show item (i).
We distinguish the cases according to the parity of n. If n is odd, the genus g of Σ is equal to

the integral part of m−1
2 , then is smaller than n−1

2 (remember that m < n and n is odd). Hence,
according to Theorem 1, any morphism from Bn in Mod(Σ, ∂Σ) is cyclic. In particular, ρ̃ref ◦ϕ
is cyclic. Since ρ̃ref is injective, ϕ must be cyclic, too.

In the case where n is an even integer greater than or equal to 6 and where m 6 n− 2, the
previous reasoning works. On the other hand, when m = n − 1, the genus g, which is equal by
assumption to the integral part of m−1

2 , which is equal to m−1
2 for m is odd, and hence to n

2 − 1.
Then according to Theorem 1, it can exist some noncyclic morphisms from Bn in Mod(Σ, ∂Σ).
Let us assume that ρ̃ref ◦ϕ is not cyclic. We sum up the situation by the following commutative
diagram, where r = n

2 .

B2r Mod(Σr−1, 1, ∂Σr−1, 1)

B2r−1

//
ρ̃ref◦ϕ

))RRRRRRRRRRRRRR
ϕ 55lllllllllll ρ̃ref

We want to obtain a contradiction. Let Σ′ be the surface equal to the tubular neighbourhood
of the curves ai for 1 6 i 6 m − 2. This surface is of genus g − 1 and owns two boundary
components which we denote by e+ and e− (cf. Figure 30). Since s preserves the curves ai, s

Figure 30: Proof of Theorem 4: The marked surface Σ and its two subsurfaces Σ′ and Σ′′, case
where n = 8, r = 4.

preserves the surface Σ′, and also preserves the cut of Σ′ along the curves ai, i ∈ Imp(m − 2).
This cut of Σ′ is the disjoint union of two genus-0 subsurfaces: the subsurfaces Σ′1 and Σ′2 in
Figure 30. If s preserved each of them, s would fix each of their boundary components and hence
would be the identity mapping class on Σ′. This is absurd, so s swap Σ′1 and Σ′2, whence:

s(e+) = e− and s(e−) = e+.
Let us denote by Σ′′ the complement of Σ′ in Σ. Thus Σ′′ is a pair of pants whose boundary
components are d, e+ and e−. Now, the curve am intersects am−1 but not the curves ai with
indices i 6 m− 2, so am is included in Σ′′, hence am is one of the curve e+, e−, or d. However,
am cannot be equal to d since d does not intersect am−1 whereas am does. Furthermore am

cannot either be equal to e+ or e− since these two curves are not s-stable, whereas am is. This
is a contradiction.
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Let us show items (ii) and (iii).
The morphism ϕ from Bn in Bm is assumed to be noncyclic, so the morphism ρ̃ref ◦ ϕ from

Bn in Mod(Σ, ∂Σ) is not cyclic since ρ̃ref is injective according to Theorem 4.17, so according
to Theorem 1, the morphism ρ̃ref ◦ ϕ is a transvection of monodromy morphism. Let us recall
equality (1): for all i ∈ {1, 2, . . . , n− 1}, we have:

ρ̃ref ◦ ϕ(τi) = T ε
ai

V . (1)
First, we are going to show that in (1), we can replace Tai by ρ̃ref(γτiγ

−1) where γ is an element
of Bm independent of i, then we will show that V belongs to ρ̃ref(Bm). We distinguish two cases:

• If m = n, we have two (m − 1)-chains of curves:
(
ci

)
16i6m−1

and
(
ai

)
16i6m−1

. By
assumption, Σ = Σ(Bm). But Σ(Bm) is by definition the tubular neighbourhood of the
union of the curves of

(
ci

)
16i6m−1

. In the same way, Σ is the tubular neighbourhood of the
union of the curves of

(
ai

)
16i6m−1

. Indeed, when m is odd, this is true for any (m−1)-chain
of curves. When m is even, there exists an embedding of (m−1)-chains of curves in Σ whose
tubular neighbourhood does not coincide with Σ, see Figure 31. This case cannot happen.

Figure 31: Case of a (m− 1)-chain of curves (m even) in a surface Σ(Bm), which is by definition
homeomorphic to Σm−2

2
, 2.

Indeed, if it happened, we would show, as we did in item (i) about the curves e+ and e−,
that the so-defined curve am−1 would not be s-stable, which is absurd. So Σ is a tubular
neighbourhood of both (m−1)-chains of curves

(
ci

)
16i6m−1

and
(
ai

)
16i6m−1

. Then, these
(m−1)-chains of curves are topologically equivalent inMod(Σ, ∂Σ), namely, there exists a
mapping class F in Mod(Σ, ∂Σ) that satisfies F (ci) = ai for all i ∈ {1, . . . , m− 1}. Hence
for all i ∈ {1, . . . , m − 1}, we have FTciF

−1 = Tai . Besides, the Dehn twists along the
curves ci, 1 6 i 6 m− 1, span ρ̃ref(Bm), but the curves ai, 1 6 i 6 m− 1, are s-stable, so
Tai belongs to ρ̃ref(Bm). Therefore F belongs to the normalizer of ρ̃ref(Bm) inMod(Σ, ∂Σ).
Then according to Proposition 4.22, even if it means composing F by a power of a (central)
Dehn twist along a boundary component of Σ, we can assume that F belongs to ρ̃ref(Bm).
Let then γ be an element of Bm such that F = ρ̃ref(γ). For all i ∈ {1, . . . , m − 1}, we
have Tai = TF (ci) = F Tci F−1 = ρ̃ref(γ) ρ̃ref(τi) ρ̃ref(γ)−1 = ρ̃ref(γτiγ

−1). In other words,
we have shown that:

for all i ∈ {1, . . . , m− 1}, Tai = ρ̃ref(γτiγ
−1). (2)

• If m = n + 1, Σ is not any more a tubular neighbourhood of the union of the curves of(
ai

)
16i6m−2

. We can always find, as we previously did, a mapping class F sending the
curves of

(
ci

)
16i6m−2

on the curves of
(
ai

)
16i6m−2

, but a priori, this mapping class F
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does not belong to ρ̃ref(Bm) and we cannot conclude as we previously did. To surmount
this difficulty, we are going to construct an s-stable curve am−1, such that

(
ai

)
16i6m−1

is a
(m− 1)-chain of curves, and we will be in the previous case where m = n and equality (2)
will be satisfied. So, let us construct this curve am−1. Let Σ′ be the tubular neighbourhood
of the union of the curves ai, 1 6 i 6 m − 2. Since all the curves ai, 1 6 i 6 m − 2 are
s-stable, the surface Σ′ is s-stable. We are going to construct the curve am−1 in four steps
as described below. We will refer to Figures 32 and 33. Let x be a path in Σ′ whose one

Figure 32: Construction of the curve am−1 when m is odd (here, n = 6 and m = 7).

Figure 33: Construction of the curve am−1 when m is even (here, n = 7 and m = 8).

of its extremities belongs to am−2 and the other belongs to the boundary of Σ′, and such
that the interior of x does not intersect any curve ai, 1 6 i 6 m−2. Let x′ be the image of
x by s. The union x ∪ x′ is a s-stable path with extremities in ∂Σ′, which intersects am−2

once and does not intersect the curves ai, 1 6 i 6 m− 3. It is easy to close the path x∪x′

on the side of the complement of Σ′ in Σ, in such a way that the obtained curve am−1 is
s-stable, intersects am−2 once, and does not intersect the curves ai, 1 6 i 6 m− 3. Then
the (m− 1)-chain of curves

(
ai

)
16i6m−1

so-defined is s-stable.

We have shown that it exists γ ∈ Bm such that (2) holds. Let us show now that in (1), the
mapping class V belongs to ρ̃ref(Bm). For all i 6 n − 1, we have T ε

ai
V = ρ̃ref ◦ ϕ(τi) so T ε

ai
V

belongs to ρ̃ref(Bm). But Tai belongs to ρ̃ref(Bm) as we saw it at the beginning of this proof, so
V itself belongs to ρ̃ref(Bm), hence there exists v ∈ Bm such that V = ρ̃ref(v). Finally, for all
i ∈ {1, . . . , n− 1}, we get:

ρ̃ref ◦ ϕ(τi) = ρ̃ref

(
γτ ε

i γ−1
)
ρ̃ref

(
v

)
= ρ̃ref

(
γτ ε

i γ−1 v
)
. (3)

Since ρ̃ref is injective, the following holds for all i ∈ {1, . . . , n− 1}:
ϕ(τi) = γτ ε

i γ−1 v. (4)

Moreover, V commutes with Tai for all i 6 n − 1, hence belongs to the centralizer of〈
ρ̃ref(γτiγ

−1), i 6 n− 1
〉
, hence belongs to the centralizer of {ρ̃ref(γξγ−1), ξ ∈ Bn} in ρ̃ref(Bm).
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Since ρ̃ref is injective, v belongs to the centralizer of {γξγ−1, ξ ∈ Bn} in Bm. When m = n, we
have γ ∈ Bn, so {γξγ−1, ξ ∈ Bn} = Bn and v belongs to the center of Bn, hence is a multiple of
∆2, according to Theorem 4.7.

Let us show item (iv).
Since the relations are homogeneous in the standard presentation of Bn, the group Bn is

torsion free. So according to Proposition 6.1, transvections of inner automorphisms of Bn are
injective. Composing by Inv preserves the injectivity. Therefore, the noncyclic morphisms are
injective. ¤

Theorem 6.4 (Dyer & Grossman, [DyGr], 1981).
Let n be an integer greater than or equal to 6. We have: Out(Bn) = Z/2Z.

Proof. Let ϕ be an automorphism of Bn. According to Theorem 4, there exists Φ, an inner
automorphism possibly composed by Inv, and an even integer k, such that for all i 6 n− 1,

ϕ(τi) = Φ(τi)∆k. (1)
As ϕ and Φ are automorphisms, they preserve the center of Bn, which is spanned by ∆±2. Hence
ϕ(∆2) = ∆±2 and Φ(∆2) = ∆±2. We have then two possibilities:

ϕ(∆2) = Φ(∆2), (2)
or ϕ(∆2) = Φ(∆2)∆±4. (3)

But ∆2 is a product of n(n− 1) standard generators, so equality (1) implies:
ϕ(∆2) = Φ(∆2)∆kn(n−1). (4)

The equalities (3) and (4) are incompatible, so (2) takes place, k = 0, ϕ = Φ and, all the
automorphisms of Bn are inner, up to precomposition by Inv. ¤

6.3 Morphisms between mapping class groups

In this section, we focus on the morphisms between two mapping class groups associated to
two surfaces Σ = Σg, b and Σ′g′, b′ such that g > 2 and g′ 6 g + 1. We do not assume anything on
their numbers of boundary components b and b′. We will also consider:

• the morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) (cf. Theorems 5 and 6),

• the morphisms from PMod(Σ) in PMod(Σ′) (cf. Theorems 7 and 8),

• the injective morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) (cf. Theorem 9),

• the injective morphisms from PMod(Σ) in PMod(Σ′) (cf. Theorem 10).

We will mainly show that, up to one exception (when Σ is of genus 2 and Σ′ is homeomorphic
to Σ2, 0), the non-trivial morphisms between mapping class groups are induced by embeddings (see
Theorems 5 and 6). Let us make clear what we mean by “induced by embeddings”:
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Definition 6.5 (Morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) induced by an embed-
ding, and outer conjugations).
Let Σ and Σ′ be two connected oriented surfaces. Let F be the isotopy class of a possibly non-
orientation-preserving embedding from Σ in Σ′. Let Σ′′ be the subsurface F (Σ) of Σ′. We denote
by F̄ a representative of F ; F̄ is a diffeomorphism of Σ in Σ′′. For any A ∈ Mod(Σ, ∂Σ) and
any representative Ā ∈ Diff+(Σ, ∂Σ) of A, the product F̄ ĀF̄−1 preserves the orientation of Σ′′

and induces the identity on ∂Σ′′ ( = F̄ ĀF̄−1(∂Σ) ), so F̄ ĀF̄−1 belongs to Diff+(Σ′′, ∂Σ′′). The
isotopy class of F̄ ĀF̄−1 in Mod(Σ′′, ∂Σ′′) depends only on F and A. However, there exists a
canonical extension of Mod(Σ′′, ∂Σ′′) in Mod(Σ′, ∂Σ′). Let us denote by ÃdF (A) the image of
the isotopy class of F̄ ĀF̄−1 by this extension. The map ÃdF defined by:

ÃdF :
Mod(Σ, ∂Σ) −→ Mod(Σ′, ∂Σ′)

A 7−→ ÃdF (A)
is a groupe morphism. Such a morphism will be called the morphism from Mod(Σ, ∂Σ) in
Mod(Σ′, ∂Σ′) induced by the embedding F .

Let us insist on the fact that nothing is assumed on the embedding F : the image by F of
a boundary component of Σ may bound a disk in Σ′, and the images by F of two boundary
components of Σ may be isotopic in Σ′. Moreover, this embedding is allowed not to respect the
orientations of Σ and Σ′.

When Σ′′ = Σ′, we can identify Σ′ and Σ so that the embedding F becomes an element of
Mod¦(Σ). The morphism ÃdF that we get is then an automorphism of Mod(Σ, ∂Σ). In this
case, ÃdF will be called an outer conjugation by F .

Before stating the theorems of this section, let us first give two basic facts.:

• the existence of a non-trivial center in Mod(Σ2, 0),

• the computation of the abelianizations of the mapping class groups of the surfaces of genus
g > 2 with b > 0 boundary components (these abelianized groups are trivial if and only if
g > 3).

We give also some definitions that will allow us to present some specific morphisms that will
occur in the theorems:

• the cyclic morphisms in the frame of the mapping class groups,

• the transvections of morphisms.

Definition 6.6 (Hyper-elliptic Involution).
In Σ2, 0, let H̄ be the angle π rotation over the axis δ in Figure 34. We denote by H the isotopy
class of H̄. This mapping class is called the hyper-elliptic involution of Mod(Σ2, 0).

Proposition 6.7 (Center of Mod(Σ2, 0), Dehn, [De2]).
In Σ2, 0, the hyper-elliptic involution H is the only mapping class distinct from the identity that
preserves the orientation and preserves all the curves of Curv(Σ2, 0). It is periodic of order 2 and
span the center of Mod(Σ2, 0). ¤

90



Figure 34: The mapping class H of Mod(Σ2, 0).

Theorem 6.8 (Abelianization of the mapping class group, Korkmaz, [Ko2]).
For any surface Σg, b with g > 3 and b > 0, the abelianization of the mapping class groups
PMod(Σ) and Mod(Σ, ∂Σ) is trivial. When g = 2 and b > 0, the abelianization of the mapping
class group PMod(Σ) and Mod(Σ, ∂Σ) is isomorphic to Z/10Z and by this isomorphism, the
conjugacy class of the Dehn twists along the non-separating curves is sent on the class of 1.

Proof. The computation of the abelianization of the different mapping class groups (including
the mapping class groups with and without boundaryMod(Σ), PMod(Σ) andMod(Σ, ∂Σ)) has
been driven by Korkmaz, cf. [Ko2], page 109 Theorem 5.1. We prove below that the conjugacy
class of the Dehn twists span the abelianization of the mapping class group when g = 2. First,
let us examine the case when Σ = Σ2, 0. We start from the presentation of Mod(Σ). We choose
as generators the Dehn twists along the five curves a1, a2, a3, a4 and a5 in Σ of Figure 34. Let
us denote by x1, x2, x3, x4 and x5 the generators of the non-commutative free group F5. The
morphism F5 → Mod(Σ) defined by xi 7→ Tai for all i ∈ {1, 2, . . . , 5} leads to the following
presentation of Mod(Σ) given by Waynrib (cf. [Bi] page 184):

〈
x1, x2, x3, x4, x5 | R ,





(x5x4x3x2x1x1x2x3x4x5)2 = 1
(x1x2x3x4x5)6 = 1
[x5x4x3x2x1x1x2x3x4x5 , x5 ] = 1

〉

whereR is the set of commutation relations [xi, xj ] = 1 when |j−i| > 2 for all i, j ∈ {1, 2, . . . , 5}
and of the braid relations xixi+1xi = xi+1xixi+1 for all i ∈ {1, 2, 3, 4}. If we add the relations
[xi, xi+1] = 1 for all i ∈ {1, 2, 3, 4}, we can deduce the following relations x1 = x2 = · · · = x5.
The other relations becomes then x20

1 = 1, x30
1 = 1 and x0

1 = 1. Finally, the abelianization of
Mod(Σ) has the presentation 〈x1 |x10

1 = 1〉, so the abelianization of Mod(Σ) is isomorphic to
Z/10Z and by this isomorphism, the conjugacy class of the Dehn twists along the non-separating
curves is sent on the class of 1. In the case of the surfaces of genus 2 with b > 0, we have a
canonical surjective morphism Mod(Σ2, b) →Mod(Σ2, 0) by which the Dehn twists along non-
separating curves are sent on some Dehn twists along non-separating curves. So here again, by
the abelianization morphism, the conjugacy class of the Dehn twists along non-separating curves
is sent on the class of 1. ¤

Definition 6.9 (Cyclic morphisms from Mod(Σ2, b) in any group).
A morphism from Mod(Σ2, b) in any group, with b > 0, is said to be cyclic if its image is cyclic.

Remark. This definition concerns only the genus-2 surfaces. Indeed, for any surface of genus
greater than or equal to 3, according to Theorem 6.8 due to Korkmaz, the abelianization of the
mapping class group is trivial, so any morphism from the mapping class group of these surfaces
in a cyclic group is trivial. Hence the definition of cyclic morphism is empty as soon as the group
at the source is the mapping class group of a surface of genus greater than or equal to 3.
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Lemma 6.10. Let b be a nonnegative integer and let M be one of the two mapping class groups
PMod(Σ2, b) or Mod(Σ2, b, ∂Σ2, b). Given a morphism Ψ of M in Mod(Σ2, 0), there exists a
morphism Ψ′ of M in Mod(Σ2, 0) defined by Ψ′(Ta) = Ψ(Ta)H for any non-separating curve a
of Curv(Σ2, b), where H is the hyper-elliptic involution of Mod(Σ2, 0).

Proof . The abelianization of M is isomorphic to Z/10Z according to Theorem 6.8 due to
Korkmaz, and is spanned by the conjugacy class of the Dehn twists along the non-separating
curves. Hence since H10 = Id , the morphism ϕ of M in Mod(Σ2, 0) sending each Dehn twist
along a non-separating curve on the mapping class H is well-defined. Moreover, H is central, so
for all F ∈ M, the mapping classes Ψ(F ) and ϕ(F ) commute. Hence for all F1, F2 ∈ Mod(Σ),
we have: (

Ψ(F1)ϕ(F1)
)(

Ψ(F2)ϕ(F2)
)

= Ψ(F1F2)ϕ(F1F2).
In other words, the map M→Mod(Σ2, 0), F 7→ Ψ(F )ϕ(F ) is a morphism. ¤

Definition 6.11 (Transvection of a morphism from the mapping class group in any
group).
Let Σ be a genus-2 surface, M one of the mapping class groups PMod(Σ) or Mod(Σ, ∂Σ),
and G any group. For any morphism Ψ from M in G and for any element g belonging to the
centralizer of Ψ(M) in G such that g10 = 1G, we will call transvection of Ψ with direction g
the morphism Ψ′ that sends any Dehn twist Ta along a non-separating curve a on the element
Ψ(Ta) g of G. A transvection with direction 1G of a morphism is equal to this morphism.

Remark. Lemma 6.10 shows an example of such transvections. Notice that the proof of this
lemma uses a cyclic morphism and thus shows that the abelianization of M needs to be non-
trivial. That is why when the genus of the involved surface Σ is greater than or equal to 3, there
does not exist any transvection of morphism from M in G, whatever G is.

Both following theorems determine the morphisms between mapping class groups. We prove
them together. The first one gives a necessary and sufficient condition of the existence of some
non-trivial or noncyclic morphisms between two mapping class groups. The second one deter-
mines these morphisms.

Theorem 5 (Existence of non-trivial morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1.

• When g = 2, there exist some cyclic non-trivial morphisms from Mod(Σ2, b, ∂Σ2, b) in any
mapping class group admitting a subgroup isomorphic to Z/2Z, Z/5Z or Z/10Z. When
g > 3, there does not exist any cyclic non trivial morphisms.

• When g > 2, there exist some noncyclic morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) if
and only if one of the two following conditions is satisfied: b 6= 0 and g′ > g, or b = 0 and
Σ′ is homeomorphic to Σ.

With Theorem 5, we determine in which cases noncyclic morphisms from Mod(Σ, ∂Σ) in
Mod(Σ′, ∂Σ′) do exist. In Theorem 6, we assume that cyclic morphisms do exist and we describe
them.
Theorem 6 (Morphisms from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2, with g′ ∈ {g, g + 1}, and such that
Σ′ = Σ if b = 0. Any noncyclic morphism from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) is a morphism
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induced by the isotopy class of an embedding from Σ in Σ′, or possibly a transvection with direction
H (the hyper-elliptic involution of Mod(Σ2, 0)) of such a morphism if g = 2 and (g′, b′) = (2, 0).
Moreover, if b = 0, the morphism induced by the isotopy class of an embedding from Σ in Σ′ (up
to transvection when Σ = Σ′ = Σ2, 0) is an outer conjugation.

Proof of Theorems 5 and 6. Notice that in Theorem 5 we state some existence and non-
existence results. The existence results are easy to check. Indeed, it is enough to consider one of
the morphisms which we are talking about in Theorem 6. The difficult part of Theorem 5 is the
non-existence result, which will be shown in step 4. of what follows. Theorem 6 will be shown
in step 11..

1. Definitions.

Let us begin with associating to the surface Σ an Artin group G and a morphism ρ0 : G →
Mod(Σ, ∂Σ). First, let us associate to the surface Σ = Σg, b the graph Γg, b described in Figure
35. We denote by G the Artin group of type Γg, b, and S the system of generators described on

Figure 35: Step 1.: The graph Γg, b associated to the surface Σg, b.

the same figure. This set S contains 4g + b− 2 elements:

• αi, 1 6 i 6 2g, and ζ

• ε2i and ϕ2i, 2 6 i 6 g − 1,

• δi, 1 6 i 6 b + 1.

Let us call A the collection of the following curves :

• the curves αi, 1 6 i 6 2g, drawn in Figure 36,

• the curves ε2i and ϕ2i, 2 6 i 6 g − 1, drawn in Figure 36,

• the curves δi, 1 6 i 6 b + 1, drawn in Figure 36.

Let us denote by z the curve described in Figure 36, let us denote by ρ0 the (non-injective)
morphism from the Artin group (G, S) in Mod(Σ, ∂Σ) defined by:

• ρ0(αi) = Tai , 1 6 i 6 2g, and ρ0(ζ) = Tz

• ρ0(ε2i) = Te2i and ρ0(ϕ2i) = Tf2i , 2 6 i 6 g − 1,

• ρ0(δi) = Tdi , 1 6 i 6 b + 1.
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Figure 36: Step 1.: The curves of A and the curve z.

Let Ψ be a morphism from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) and let Φ be the morphism from
G in Mod(Σ′, ∂Σ′) equal to Ψ ◦ ρ0. We are going to study Ψ by means of Φ.

2. Let us focus on the special case, when Φ(α1) = Φ(α2).

by conjugation, the equality Φ(α1) = Φ(α2) implies that all the elements of S have the same
image by Φ. Hence the image of G by Φ is a cyclic group. Hence the image of ρ0(G) by Ψ
is a cyclic group. But according to Theorem 3.8, the Dehn twists along the curves of A span
Mod(Σ, ∂Σ), so ρ0(G) = Mod(Σ, ∂Σ) and the image of Ψ is a cyclic group. In other words,
Ψ is a morphism from Mod(Σ, ∂Σ) in an abelian group. But, according to Theorem 6.8 due
to Korkmaz, the abelianization of the mapping class group Mod(Σ, ∂Σ) is trivial as soon as
the genus of Σ is greater than or equal to 3. Hence under the assumption Φ(α1) = Φ(α2), we
conclude that Ψ is trivial as soon as g > 3. When g = 2, according to the same theorem, for
all b > 0, the abelianization of Mod(Σ2, b, ∂Σ2, b) equals Z/10Z. Then under the assumption
Φ(α1) = Φ(α2), when g = 2, the image of Ψ is a subgroup of Z/10Z. In other words, under
the assumption Φ(α1) = Φ(α2), there exist some non-trivial morphisms from Mod(Σ2, b, ∂Σ2, b)
in Mod(Σ′, ∂Σ′) if and only if there exists a subgroup isomorphic to Z/2Z, Z/5Z or Z/10Z in
Mod(Σ′, ∂Σ′). These non-trivial morphisms are cyclic morphisms.

In what follows, we assume that Φ(α1) 6= Φ(α2).

3. Let us show that Φ is a transvection of monodromy morphism.

Let us generalize the notion of monodromy morphism to the Artin group G (i.e. the images
of the elements of S are Dehn twists or inverses of Dehn twists), we are going to show that Φ is
a transvection of monodromy morphism.

Any pair (ξ, ξ′) ∈ S × S satisfying a braid relation is conjugate to the pair (α1, α2). Since
we have assumed that Φ(α1) 6= Φ(α2), by conjugation, any pair (ξ, ξ′) ∈ S×S satisfying a braid
relation satisfies Φ(ξ) 6= Φ(ξ′). Let us begin with introducing the following distinct subsets of S
(cf. Figure 37):

• S(α1) = {αi, 1 6 i 6 2g} ∪ {δ1},
• S(α2) = {αi, 2 6 i 6 2g} ∪ {δ1, ζ},
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Figure 37: Step 3.: For all ξ ∈ S, the set S(ξ) is the set of generators associated to the vertices
in bold on the corresponding graph.

• S(αj) = {αi, j 6 i 6 2g} ∪ {δ1, ζ} ∪ {αi, 1 6 i 6 j − 2}, j ∈ {3, . . . , 2g},
• S(ε2j) = {αi, 2 6 i 6 2j} ∪ {ε2j , ζ, δ1} ∪ {αi, 2g > i > 2j + 2}, j ∈ {2, . . . , g − 1},
• S(ϕ2j) = {αi, 2 6 i 6 2j} ∪ {ϕ2j , ζ, δ1} ∪ {αi, 2g > i > 2j + 2}, j ∈ {2, . . . , g − 1},
• S(δj) = {δj , ζ} ∪ {αi, 1 6 i 6 2g − 2}, j ∈ {1, . . . , b + 1},
• S(ζ) = {ζ} ∪ {αi, 1 6 i 6 2g − 1}.

For all ξ ∈ S, let us denote by G(ξ) the subgroup of G spanned by the elements of S(ξ). Any
subgroup G′ of G spanned by the elements of a subset S′ of S (called parabolic subgroup of G in
the literature) is itself an Artin group, according to a theorem of Van der Leck (cf. [The, Chap
II, Theorem 4.13]). Hence for all ξ ∈ S, the group G(ξ) is isomorphic to B2g+2. For all ξ ∈ S,
let us denote by Φξ the restriction of Φ to G(ξ). By hypothesis, g′ 6 g + 1, so g′ 6 2g+2

2 and
Theorem 2 can be applied: for all ξ ∈ S, either Φξ is cyclic, or Φξ is a transvection of monodromy
morphism. But we have seen that if Φ(α1) 6= Φ(α2), then for any ξ ∈ S, the morphism Φξ is not
cyclic.
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Let us consider the set of morphisms Φξ for all ξ ∈ S. Since for all ξ ∈ S, the morphism Φξ is
a transvection of monodromy morphism, we can speak about the characteristic sign and about
the direction of Φξ, seen as a transvection (cf. Definition 5.14). We shall say that two morphisms
Φξ and Φξ′ , ξ and ξ′ belonging to S, are compatible if they have same characteristic signs and
same directions. It is clear that being compatible is an equivalence relation. Now, according to
Lemma 5.13, for all ξ and ξ′ belonging to S, if S(ξ) and S(ξ′) contain at least three adjacent
elements in common, the morphisms Φξ and Φξ′ are compatible. Therefore, we have:

• Φαi and Φαi+1 are compatible for all i ∈ {1, . . . , 2g},
• Φε2i and Φα1 are compatible for all i ∈ {2, . . . , g − 1}, as are Φϕ2i and Φα1 ,

• Φδi
and Φα1 are compatible for all i ∈ {1, . . . , b + 1},

• Φζ and Φα1 are compatible.

So, there exists only one equivalence class: all the morphisms Φξ are compatible when ξ takes
all possible values in S. Therefore, there exist in Σ′ some curves

• a′i for all i ∈ {1, . . . , 2g},
• e′2i and f ′2i for all i ∈ {2, . . . , g − 1},
• d′i for all i ∈ {1, . . . , b + 1},

whose set will be denoted by A′, an integer η ∈ {±1} and a mapping class W ∈ Mod(Σ′, ∂Σ′)
such that:

• Φ(αi) = T η
a′i

W for all i ∈ {1, . . . , 2g},

• Φ(ε2i) = T η
e′2i

W and Φ(ϕ2i) = T η
f ′2i

W for all i ∈ {2, . . . , g − 1},

• Φ(δi) = T η
d′i

W for all i ∈ {1, . . . , b + 1},

where W commutes with the Dehn twists along the curves of A′.
Let us consider the reflection in R3 with respect to a hyperplane containing the curves a2j ,

1 6 j 6 g and intersecting the other curves of A in two points. This reflection preserves all the
curves of A, preserves Σ, and reverses the orientation of Σ. We denote by K the isotopy class in
Mod¦(Σ) of this reflection. Let V be the mapping class equal to Id if η = 1 or to K if η = −1,
and let ÃdV be the outer conjugation of Mod(Σ, ∂Σ) by V (cf. Definition 6.5). Let us set

Ψ̇ = Ψ ◦ ÃdV .
After having replaced W by W η, we get:

• Ψ̇(Tai) = Ta′i W for all i ∈ {1, . . . , 2g},

• Ψ̇(Te2i) = Te′2i
W and Ψ̇(Tf2i) = Tf ′2i

W for all i ∈ {2, . . . , g − 1},

• Ψ̇(Tdi) = Td′i W for all i ∈ {1, . . . , b + 1}.
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We still have to determine W and the curves of A′ in order to determine the morphism Ψ̇,
and hence the morphism Ψ, when Ψ is not cyclic.

4. We assume that Ψ is not cyclic. Let us show that the curves of A′ r {d′j , 2 6 j 6 b} are
arranged in Σ′ as illustrated in Figure 38. In particular:

• the genera of Σ′ and Σ satisfy g′ > g;

• for all i ∈ {2, . . . , g− 1}, the two curves e′2i and f ′2i are distinct, they cobound a surface of
genus i− 1 containing the curves a′j, 1 6 j 6 2i− 1, and they do not meet the curves a′j,
j > 2i + 1;

• if Σ′ 6= Σg, 0, then the curves d′1 and d′b+1 cobound a surface of genus g−1, and if Σ′ = Σg, 0,
then we have d′1 = d′2 = · · · = d′b−1;

• if ∂Σ is empty, then Σ′ = Σg, 0 (and we will have shown Theorem 5);

• for all i ∈ {2, . . . , g − 2}, we know that e′2i and a′2i+1 cobound a pair of pants with e′2i+2

or with f ′2i+2, but we do not know precisely with which of the two. Same thing with e′2g−2,
a′2g−1, d′1 and d′b+1.

Figure 38: Step 4.: the curves a′i, 1 6 i 6 2g, e′2j and f ′2j , 2 6 j 6 g − 1, d′1 and d′b+1.

4.a) The pairs of curves of A′ without any intersection point.
Since Ψ is a morphism, if two preimages commute, their images commute. Let x and y be

two curves belonging to A such that I(x, y) = 0, and let x′ and y′ be some curves in Σ′ such
that Ψ̇(Tx) = Tx′ W and Ψ̇(Ty) = Ty′ W . Since I(x, y) = 0, then Tx and Ty commute, so Tx′ W
and Ty′ W commute. Since W centralizes the image of Ψ̇, Tx′ and Ty′ commute, so x′ and y′

satisfy I(x′, y′) = 0.

4.b) The pairs of curves of A′ intersecting in one point; the genus g′ of Σ′.
Since Ψ is a morphism, if two preimages satisfy a braid relation, their images do as well. Let

x and y be two curves belonging to A such that I(x, y) = 1, and let x′ and y′ be some curves
in Σ′ such that Ψ̇(Tx) = Tx′ W and Ψ̇(Ty) = Ty′ W . If x′ = y′, then, according to the step
2., the morphism Ψ would be cyclic, which contradicts our assumption. So x′ 6= y′. Since W
centralizes the image of Ψ̇, it comes that Tx′ and Tx′ satisfy a braid relation without being equal,
so I(x′, y′) = 1.
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We deduce from what precedes and from step 4.a) that, starting from the (2g)-chain of curves(
ai

)
i62g

in A, the curves
(
a′i

)
i62g

in A′ form also a (2g)-chain of curves, so Σ′ is of genus g′ > g.
Since g′ 6 g + 1 by hypothesis, we have then g′ ∈ {g, g + 1}.

4.c) The pairs of curves of A′ possibly equal.
Since we have assumed that Ψ is not cyclic and according to the step 2., we have the following:

for all pairs of adjacent standard generators ξ and ξ′ in S, the mapping classes Φ(ξ) and Φ(ξ′)
are pairwise distinct. Hence the curves a′i, 1 6 i 6 2g are pairwise distinct. Therefore, as soon
as two elements of S do not satisfy exactly the same relations with each αi, 1 6 i 6 2g, their
images by Φ are distinct. Hence the only pairs of curves of Σ′ that are possibly equal are the
pairs of the following type:

{e′2i, f ′2i} with i ∈ {2, 3, . . . , g − 1},
and {d′j , d′k} with j, k ∈ {1, 2, . . . , b + 1}.

4.d) Let us show that for all i ∈ {2, 3, . . . , g − 1}, the curves e′2i and f ′2i are distinct and
cobound in Σ′ a surface homeomorphic to Σi−1, 2 which contains the curves a′j, 1 6 j 6 2i − 1,
but which does not contain the curves a′j, j > 2i + 1.

Let i be an integer in {2, . . . , g− 1} which is fixed once and for all during all step 4.d). The
curves a′k, 1 6 k 6 2i− 1 form a (2i− 1)-chain, so there exist two disjoint curves e′′2i and f ′′2i that
cobound a surface homeomorphic to Σi−1, 2 in Σ′ and such that:

( ∏2i−1
k=1 Ta′k

)2i = Te′′2i
Tf ′′2i

. (1)
We have the same type of relation in Mod(Σ, ∂Σ):( ∏2i−1

k=1 Tak

)2i = Te2iTf2i . (2)

By composing (2) by Ψ̇, we get:( ∏2i−1
k=1 Ta′k

W
)2i = Te′2i

Tf ′2i
W 2, (3)

and since W is in the centralizer of Ψ̇(ρ0(G)), we get:
Te′′2i

Tf ′′2i
= Te′2i

Tf ′2i
W (2−2i(2i−1)). (4)

Now, I(e′′2i, f ′′2i) = 0, hence σ(Te′′2i
Tf ′′2i

) = {e′′2i, f ′′2i}. Then, according to equality (4) and since
Te′2i

, Tf ′2i
and W commute, Proposition 3.45 implies that:

{e′′2i, f ′′2i} ⊂ σ(Te′2i
) ∪ σ(Tf ′2i

) ∪ σ(W ). (5)

For all i ∈ {2, 3, . . . , g − 1}, the curves a′1, a′3,. . . , a′2i−1 and e′′2i cobound a sphere with i + 1
holes. Similarly, the curves a′1, a′3,. . . , a′2i−1 and f ′′2i cobound a sphere with i+1 holes (cf. Figure
39). Since the curve a′2i intersects a′2i−1 in only one point, and does not intersect the curves a′1,
a′3,. . . , a′2i−3, then by a connectedness argument (cf. Figure 39), a′2i must intersect the curves
e′′2i and f ′′2i.
On the contrary, the curve a′2i does not intersect the curves of σ(W ) since W is in the centralizer
of Ψ̇(ρ0(G)). Therefore

{e′′2i, f ′′2i} ∩ σ(W ) = ∅. (6)
Hence, according to (5),

{e′′2i, f ′′2i} ⊂ {e′2i, f ′2i}. (7)
But since e′′2i and f ′′2i are distinct, we deduce that e′2i and f ′2i are distinct. Finally,

{e′′2i, f ′′2i} = {e′2i, f ′2i}. (8)
and e′2i and f ′2i cobound in Σ′ a surface homeomorphic to Σi−1, 2 that contains the curves a′j ,
1 6 j 6 2i− 1. Moreover, the curves a′j , j > 2i + 1, do not intersect the surface Σi−1, 2. Indeed,
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Figure 39: Step 4.d): let us show that I(e′′2i, a′2i) and I(f ′′2i, a′2i) are nonzero.

they are distinct from the curves a′j , j 6 2i − 1, do not intersect them, and there is no room
for such curves in Σi−1, 2 since Σi−1, 2 is a tubular neighbourhood of the union of the curves a′j ,
j 6 2i− 1.

4.e) When ∂Σ is nonempty, let us show that:

• if Σ′ = Σg, 0, then d′1 = d′2 = · · · = d′b+1,

• if Σ′ 6= Σg, 0, then the curves d′1 and d′b+1 are distinct and cobound in Σ′ a surface homeo-
morphic to Σg−1, 2 that contains the curves a′j, 1 6 j 6 2g − 1.

Let us denote by u′ and v′ the two curves of Σ′ such that( ∏2g−1
k=1 Ta′k

)2g = Tu′Tv′ . (9)
As in line (7) in step 4.d), where (e′′i , f ′′i , e′i, f ′i) is replaced now by (u′, v′, d′1, d′b+1), we can
show that:

{u′, v′} ⊂ {d′1, d′b+1}.
We separate the cases, whether Σ′ = Σg, 0 or not.

If Σ′ = Σg, 0, then u′ = v′. The set of curves
{a′2j−1, 1 6 j 6 g} ∪ {e′2i, f ′2i} ∪ {2 6 j 6 g − 1} ∪ {u′}

form a simplex of 3g−3 curves, hence a maximal simplex in Σ′. But the curves d′k, 1 6 k 6 b+1,
do not intersect the curves of this simplex. They are therefore included in this simplex. Now, on
one hand, I(d′k, a′2g) = 1 for all k ∈ {1, 2, . . . , b + 1}, and on the other hand, u′ and a′2g−1 are
the only curves of this simplex that intersect a′2g. So d′k ∈ {u′, a′2g−1}. But d′k does not intersect
a′2g−2, so d′k = u′.

If Σ′ 6= Σg, 0, then u′ 6= v′, so we can conclude as we did in step 4.d): the curves d′1 and
d′b+1 are distinct and cobound in Σ′ a surface homeomorphic to Σg−1, 2 containing the curves a′j ,
1 6 j 6 2g − 1.

4.f) When ∂Σ is empty, let us show that Σ′ is homeomorphic to Σ, and we will have shown
Theorem 5.

When ∂Σ is empty, we have d1 = db+1 and d′1 = d′b+1. Let us consider again equality (9):
there exist two curves u′ and v′ in Σ′′ that cobound a surface of genus g − 1 such that:( ∏2g−1

k=1 Ta′k

)2g = Tu′Tv′ .
We deduce as above that {u′, v′} ⊂ {d′1}, and so u′ = v′. But u′ and v′ cobounded a surface
homeomorphic to Σg−1, 2. Since the two boundary components of this surface are isotopic in Σ′,
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there exists in Σ′ a genus-g surface without boundary. Hence Σ′ is this genus-g surface without
boundary.

5. Let us determine the mapping class W introduced in step 3..
5.a) Let us show that when g > 3, W is the identity.
Let Σ be a surface of genus at least 3. Let Q be a subsurface of Σ of genus 3 defined as follows:

if g = 3 and b 6 1, we set Q = Σ. Otherwise Q is the subsurface of Σ containing the curve a1

and bounded by the separating curve x defined by
(
Ta1(Ta2Ta1) . . . (Ta6 . . . Ta1)

)4 = Tx. Let E
be the set of curves {a1, a2, a3, a4, a5, a6} ∪ {e4, e6, f4, f6}, where the curves e6 and f6 are the
curves d1 and db+1 when g = 3 and are possibly equal (cf. Figure 40). The Dehn twists along the
curves of E belong to a unique conjugacy class in Mod(Q, x) and span Mod(Q, x) according
to Theorem 3.8. Hence, a priori, the abelianization of Mod(Q, x) is a cyclic group, spanned by
the conjugacy class of the Dehn twists along the non-separating curves. However, according to
Theorem 6.8 due to Korkmaz, it is trivial. Hence there exists a product P of Dehn twists along
some curves of E such that the sum of the powers of each term in P equals 1, and such that
this product P is equal to the identity in Mod(Q, x). The image by Ψ̇ of P has the form P ′W
where P ′ looks like the product P except that the Dehn twists along the curves of E have been
replaced by the Dehn twists along the curves a′1, a′2, a′3, a′4, a′5, a′6, e′4, f ′4, e′6, f ′6. Let us denote
by x′ the curve of Σ′ defined by

(
Ta′1(Ta′2Ta′1) . . . (Ta′6 . . . Ta′1)

)4 = T ′x and Q′ the subsurface of
Σ′ containing a′1 and bounded by x′ (if x′ is trivial, we set Q′ = Σ′). We saw that P equals the
identity inMod(Q, x). The same relation takes place inMod(Q′, x′) and the product P ′ equals
the identity in Mod(Q′, x′). But Mod(Q′, x′) is a subgroup of Mod(Σ′, ∂Σ′), so P ′ equals the
identity in Mod(Σ′, ∂Σ′). Then we conclude from the equality Ψ̇(P ) = P ′W that W is the
identity mapping class.

Figure 40: Step 5.a): The surface Σ and the subsurface Q.

5.b) Let us show that when g = 2, W satisfies W 10 = Id and that W can be different from
Id only if b′ = 0.

We follow the same line of argument as we previously used, except that we set Q = Σ if b 6 1,
whereas if b > 2, Q is the genus-2 surface bounded by x and containing a1, where x is the curve
defined by

(
Ta1(Ta2Ta1) . . . (Ta4 . . . Ta1)

)4 = Tx. We define Q′ in Σ′ in an equivalent way. Since
the abelianization of Mod(Q, x) is isomorphic to Z/10Z, there exists in Mod(Q, x) a product
P of Dehn twists along the curves of E = {a1, a2, a3, a4} ∪ {d1, db+1} such that the sum of the
powers of each term of the product equals 10, and such that this product is equal to the identity
in Mod(Q, x). The same argument as we previously used shows that Ψ̇(P ) = P ′W 10 where P ′

is a trivial product in Mod(Σ′, ∂Σ′). Hence W 10 = Id . Since Mod(Σ′, ∂Σ′) is torsion-free as
soon as b′ > 0, W can be non-trivial only if b′ = 0.
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5.c) Let us show that when g = 2, W is trivial except if (g′, b′) = (2, 0). If (g′, b′) = (2, 0),
then W ∈ {Id , H}, where H is the hyper-elliptic involution H (cf. Definition 6.6).

Let us recall that W commutes with the Dehn twists along the curves of A′, so W fixes each
of these curves. According to step 5.b), and since g = 2 and g′ ∈ {2, 3}, two cases have to be
treated, whether Σ′ = Σ2, 0 or Σ′ = Σ3, 0. When Σ′ = Σ2, 0, we have A′ = {a′i, 1 6 i 6 4} ∪ {d′1},
cf. Figure 41, left hand side. Since the Dehn twists along the curves of A′ span Mod(Σ′), W
is in the center of Mod(Σ′), so W ∈ {Id , H} where H is the hyper-elliptic involution. When
Σ′ = Σ3, 0, we have b 6= 0 according to step 4.f), so A′ contains the curves a′i, 1 6 i 6 4, and
the two distinct curves d′1 and d′b+1 (distinct, for b + 1 6= 1), cf. Figure 41, right hand side. Let
us recall that according to step 4.e), the curves d′1 and d′b+1 are distinct and cobound in Σ′ a
surface of genus g − 1 = 1 that contains the curve a′1. Let R be this subsurface. Let us recall
that W is periodic, fixes the curves of A′ and hence preserves R and induces a mapping class
W ′ in Mod(R). The mapping class W ′ belongs even to PMod(R) for W ′ must fix the curves
d′1 and d′b+1. Notice that the Dehn twists along the curves a′1, a′2 and a′3 span PMod(R). Since
W ′ fixes these curves, W ′ commutes with the Dehn twists along these curves, so W ′ is central in
PMod(R). But the center of PMod(R) is trivial (cf. [De2]), hence W ′ is the identity mapping
class of PMod(R). At last, it is easy to see that a periodic mapping class that coincides with
the identity on a subsurface is the identity mapping class (see for instance Lemma 3.43). Hence
W is the identity mapping class of Mod(Σ′).

Figure 41: Step 5.c): The surface Σ′ and the curves of A′ that W must fix: the case g′ = 2 on
the left, the case g′ = 3 on the right.

Definition: If W = Id , we define Ψ̈ as been equal to the morphism Ψ̇, and if W = H (cf. 6.11),
we define Ψ̈ as been equal to the transvection of Ψ̇ with direction H. Notice that W can be equal
to H precisely only if g = 2 and (g′, b′) = (2, 0) and under these conditions and since H is
central, such a transvection is well-defined.

6. We show that Ψ̈ sends the Dehn twists along non-separating curves on Dehn twists along
non-separating curves. Then we show that if c1 and c2 are two non-separating curves of Σ such
that I(c1, c2) = 0, then I(c′1, c′2) = 0 where c′1 and c′2 are the curves of Σ′ such that Ψ̈(Tc1) = Tc′1
and Ψ̈(Tc2) = Tc′2.

Let us recall that two Dehn twists along two non-separating curves are conjugate, and that
the conjugacy class of a Dehn twist along a non-separating curve contains only such Dehn twists.
Hence, having shown that the image of Ta1 by Ψ̈ was a Dehn twist along a non-separating curve,
we have shown that the image of every Dehn twist along a non-separating curve is a Dehn twist
along a non-separating curve.

Let c1, c2, c′1 and c′2 be some curves defined as in the statement of step 6.. Since I(c1, c2) = 0,
the Dehn twists Tc1 and Tc2 commute, so their images by Ψ̈, which are equal to Tc′1 and Tc′2 ,
have to commute. Hence I(c′1, c′2) = 0.
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7. Let us show that when g > 4, the curves e′2i, i ∈ {2, . . . , g − 2}, are located on the same
connected component of the surface Σ′ cut along the curves a′2j−1, j ∈ {1, . . . , g}, d′1 and d′b+1,
(in Figure 38, the curves e′2i are in the shadowed part and the curves f ′2i are in the unshadowed
part).

Let us introduce the curve w on Σ defined as in Figure 42: the curve w is non-separating,
intersects the curves a2 and a2g in one point, the curves of {e2i, 2 6 i 6 g − 1} in two points,
and does not intersect the other curves of A. The curve w is non-separating, so, according to
step 6., there exists a curve w′ in Σ′ such that Ψ̈(Tw) = Tw′ .

Figure 42: Step 7.: the curve of w in the surface Σ.

Since we have I(w, a2) = 1, then Tw and Ta2 satisfy a braid relation. Since Ψ̈ is a morphism,
Tw′ and Ta′2 satisfy a braid relation as well, which implies that either w′ = a′2 or I(w′, a′2) = 1
holds. Since we have I(w, a2g) = 1, we also have that either w′ = a′2g or I(w′, a′2g) = 1 holds.
However the curves w′ and a′2 are distinct, for Ta′2g

does not satisfy the same relations with Tw′

and with Ta′2 (we know that Ta′2g
6= Ta′2 and I(a′2g, a′2) = 0). In the same way, Tw′ and Ta′2g

are
distinct. Hence the braid relations that Tw′ satisfies with Ta′2 and Ta′2g

are not trivial, and we
have:

I(w′, a′2) = I(w′, a′2g) = 1.
But for all i ∈ {2, . . . , g − 1}, we have I(w, f2i) = 0, so according to step 6., since all the
involved curves are non-separating, we have I(w′, f ′2i) = 0 for all i ∈ {2, . . . , g − 1}. By the
same argument, we have I(w′, a′2j−1) = 0 for all j ∈ {1, . . . , g}, and also I(w′, d′1) = 0 and
I(w′, d′b+1) = 0.

Let us recall that according to step 4.d), for all i ∈ {2, . . . , g − 1}, the two curves e′2i and
f ′2i are distinct and cobound a surface of genus i− 1 containing the curve a′2, but not the curve
a′2g. Then, by a connectedness argument in Σ′, the fact that I(w′, a′2) = I(w′, a′2g) = 1 implies
that for any i ∈ {2, . . . , g − 1}, w′ intersects at least one of the curves e′2i and f ′2i. But we have
seen that for all i ∈ {2, . . . , g − 1}, we have I(w′, f ′2i) = 0, so I(w′, e′2i) 6= 0 . Hence the curves
e′2i, i ∈ {2, . . . , g − 1}, are all located on the same side with respect to the curve w′, that is to
say they all are located on the same connected component of the surface Σ cut along the curves
a′2j−1, j ∈ {1, . . . , g}, d′1 and d′b+1.

Definition: The curves w and w′, defined in step 7. when g > 4, will still be useful in step 8..
Furthermore, we will need to extend their definition when g = 3, which is easy: w is the curve
drawn in Figure 43, and w′ is the only curve of Curv(Σ′) such that Ψ̈(Tw) = Tw′ . From this
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definition, we can describe the curve w′ as we did in step 7.: Indeed, w′ satisfies the following
(cf. Figure 43):

• I(w′, a′2) = I(w′, a′2g) = 1,

• I(w′, a′k) = 0 for all k ∈ {1} ∪ {3, 4, . . . , 2g − 1},
• I(w′, d′j) = 0 for all i ∈ {1, 2, . . . , b + 1},
• I(w′, f ′2i) = 0 for all i ∈ {2, 3, . . . , g − 1},
• I(w′, e′2i) 6= 0.

Figure 43: The curve w in the case g = 3, and the curve w′ such that Ψ̈(Tw) = Tw′ .

Figure 44: Step 8.: let us show that the curves of A′ (notably the curves d′j , 1 6 j 6 b + 1) in
the surface Σ′ are arranged in this way.

8. Let us show that, when ∂Σ 6= ∅ and g > 3, the curves of A′ ∪ {w′} are arranged in Σ′ as
in Figure 44. In particular, the curves d′i, i ∈ {1, . . . , b + 1}, are ordered in Σ′ in the following
way. For all i, j ∈ {1, . . . , b + 1}, we will say that:

d′j 6 d′i
if the curves d′i and d′j are isotopic, or if there exists a representation of the involved curves in
tight position such that when we follow the curve a′2g in one of the two possible directions, we
meet the curves a′2g−1, w′, d′j, d′i in this order. Then, with this definition, we will prove that:

d′1 6 d′2 6 · · · 6 d′b+1.
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Notice first that the case where Σ′ is homeomorphic to Σg, 0 is trivial for the curves d′j ,
1 6 j 6 b + 1, would then be equal. In what follows, we assume that:

Σ′ 6= Σg, 0. (H)

8.a) Let us begin by setting some notation.
We refer to Figure 45 for the following definitions. Let i be any integer in {1, 2, . . . , b + 1}

that we fix once and for all during all step 8.. We will show that for all j ∈ {1, . . . , i}, we have
d′j 6 d′i. The following definitions depend on i but to reduce clutterness for the reader, the index
i will be omitted.

We define the following curves, lying in Σ and Σ′:

• let V (respectively V ′) be the compact tubular neighbourhood of the (2g−1)-chain (a3, a4, . . . , a2g, di)
(resp. (a′3, a′4, . . . , a′2g, d′i)), cf. Figure 45;

Figure 45: Step 8.a): the subsurface V ′ of Σ′.

• let VT and VB be the two subsurfaces of V bounded by the curves (a3, a5, . . . , a2g−1, di)
such that VT contains w and VB does not meet w; the letters T and B stand for “top” and
“bottom” by refereing to Figure 46;

• let V ′T and V ′B be the two subsurfaces of V ′ bounded by the curves (a′3, a′5, . . . , a′2g−1, d′i)
such that V ′T contains w′ and V ′B does not meet w′, cf. Figure 46;

• let xT and xB be the two boundary components of V, so that xT ⊂ ∂VT and xB ⊂ ∂VB;

• x′T and x′B be the two boundary components of V ′, so that x′T ⊂ ∂V ′T and x′B ⊂ ∂V ′B, cf.
Figure 46.

8.b) Let us show that Ψ̈(TxT ) = Tx′T and that Ψ̈(TxB ) = Tx′B .
First, the sets of curves {xT , xB} and {x′T , x′B} satisfy:




TxT TxB =
(
(

∏
36k62g

Tak
)di

)2g

Tx′T
Tx′B

=
(
(

∏
36k62g

Ta′k
)d′i

)2g ,
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Figure 46: Step 8.a): the subsurface V ′T and V ′B of Σ′, and the boundary components x′T and x′B
of V ′.

however for all j ∈ {1, . . . , 2g}, we have Ψ̈(Taj ) = Ta′j , and Ψ̈(Tdi) = Td′i , so Ψ̈(TxT TxB ) =

Tx′T Tx′B . The involved curves are non-separating. Since Ψ̈ sends the Dehn twists along non-
separating curves on Dehn twists along non-separating curves, according to step 6., it then
follows that:

{Ψ̈(TxT ), Ψ̈(TxB )} = {Tx′T , Tx′B}. (10)
To continue the proof of step 8.b), we first have to define some curves. Let yT and yB be the
curves in Σ corresponding to the boundary of the tubular neighbourhood of the curves a2g−1,
a2g and di, such that yT lies in VT and yB lies in VB. Analogously, we define the curves y′T and
y′B in Σ′, cf. Figure 47.

Figure 47: Step 8.b): the curves y′T and y′B in Σ′.

As we showed equality (10), we can show that:
{Ψ̈(TyT ), Ψ̈(TyB )} = {Ty′T , Ty′B}. (11)

Let us show now that Ψ̈(TyT ) = Ty′T and Ψ̈(TyB ) = Ty′B . The curve w′ intersects a′2g, so w′ has
to intersect the torus T ′ with two holes, bounded by y′T and y′B and containing a′2g, cf. Figure
47. But w′ intersects a′2, too, hence w′ cannot be included in T ′, so w′ has to intersect y′B or y′T .
Since w′ does not meet V ′B by definition of V ′B, and since y′B is included in V ′B by definition of
y′B, it follows that w′ does not intersect y′B. Hence w′ has to intersect y′T , so Tw′ and Ty′T do not
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commute. Since we have I(w, yB) = 0, the Dehn twist Tw commutes with TyB . Then Ψ̈(Tw),
which is equal to Tw′ as we saw it in step 7., has to commute with Ψ̈(TyB ). Hence Ψ̈(TyB ) is
different from Ty′T . And thanks to (11), we get:

Ψ̈(TyT ) = Ty′T
and Ψ̈(TyB ) = Ty′B

. (12)

Let us show that Ψ̈(TxT ) = Tx′T and that Ψ̈(TxB ) = Tx′B . Let us consider the curve e′2g−2.
It intersects a′2g−2 in one point, but intersects neither d′i nor any curve a′k with k 6= 2g − 2.
Therefore, if e′2g−2 was included in V ′T , according to Figure 48, equality (13) would hold:

e′2g−2 = y′T . (13)

Figure 48: Step 8.b): in Σ′, the curves y′T and y′B cannot both coincide with the curves e′2g−2

and f ′2g−2.

Similarly, if f ′2g−2 was included in V ′B, we would have:
f ′2g−2 = y′B. (14)

However, it is impossible that (13) or (14) happen simultaneously, for (according to Figure 47) the
sets {e′2g−2, f ′2g−2} and {y′T , y′B} are the boundary components of two distinct subsurfaces of Σ′:
one is isomorphic to Σg−2, 2 and the other is isomorphic to Σ1, 2. It would follow from the equality
{e′2g−2, f ′2g−2} = {y′T , y′B} that there would exist a subsurface without boundary included in Σ′

and isomorphic to Σg, 0. However such a surface without boundary can be included in another
connected surface only if they are equal. But here, Σ′ is not equal to Σg, 0 since according to
our hypotheses (cf. (H )), we have Σ′ 6= Σg, 0. It follows that either (13) or (14) is wrong and
consequently, either e′2g−2 is not included in V ′T , or f ′2g−2 is not included in V ′B. Hence, either
I(e′2g−2, x′T ) 6= 0 or I(f ′2g−2, x′B) 6= 0. Hence, either Te′2g−2

does not commute with Tx′T , or Tf ′2g−2

does not commute with Tx′B
. But Te2g−2 commutes with TxB and Tf2g−2 commutes with TxT so

Te′2g−2
commutes with Ψ̈(TxB ) and Tf ′2g−2

commutes with Ψ̈(TxT ). Hence, it would be absurd
that Ψ̈(TxT ) = Tx′B and Ψ̈(TxB ) = Tx′T . Hence

Ψ̈(TxT ) = Tx′T and Ψ̈(TxB ) = Tx′B .

8.c) Let us show that for any given integer j ∈ {1 . . . , b + 1}, one and only one of the three
following situations can occur:

I(d′j , x′T ) 6= 0, or I(d′j , x′B) 6= 0, or d′j = d′i.
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• First, it is clear that if d′j = d′i, then I(d′j , x′T ) = 0, or I(d′j , x′B) = 0.
• Let us show now that the inequalities I(d′j , x′T ) 6= 0 and I(d′j , x′B) 6= 0 cannot hold simultane-
ously. Let us fix an integer j ∈ {1 . . . , b+1} different from i. Then, in Σ, we have I(dj , xT ) = 0
or I(dj , xB) = 0, so according to step 6., since these three curves are non-separating, we have
either I(d′j , x′T ) = 0, or I(d′j , x′B) = 0. Thus, we have shown that the each assertion in the
statement excludes the two others.
• We still have to show that at least one of them holds. Let us fix again an integer j ∈
{1 . . . , b + 1} different from i. We assume that I(d′j , x′T ) = 0 and I(d′j , x′B) = 0, and we want
to show that d′j = d′i. Since I(d′j , x′T ) = 0 and I(d′j , x′B) = 0, the curve d′j is included in V ′, is
of intersection 1 with a′2g, but does not intersect any other curve a′k for k ∈ {2, . . . , 2g− 1}, and
does not intersect the curve d′i either. However, as we can see it in Figure 49, the surface V ′ cut
along the curves {a′k, 3 6 k 6 2g− 1} ∪ {d′i} and along the path a′2 ∩V ′ is homeomorphic to the
disjoint union of two annuli in which the curve d′i induces a boundary component. Concerning
the curve d′j , it does not bound any disk in Σ′, so its image in this cut is isotopic to the boundary
components of one of these two annuli. Hence in Σ′, the isotopy classes of d′j and d′i are equal.

Figure 49: Step 8.c): the surface V ′ cut along the curves {a′k, 3 6 k 6 2g − 1} ∪ {d′i} and along
the path a′2∩V ′ is homeomorphic to the disjoint union of two annuli in which the curve d′i induces
a boundary component.

8.d) Let us show that for all j ∈ {1, . . . , b + 1}, if j 6 i then d′j 6 d′i, in the sense defined in
the above statement of step 8.. Since the roles of i and j are symmetric, we will have shown the
equivalence.

Let j be an integer in {1, . . . , i− 1}. Then in Σ we have I(dj , xB) = 0, so according to step
6., since all the involved curves are non-separating, we have I(d′j , x′B) = 0. Then according to
step 8.c), we deduce that either d′j = d′i or I(d′j , x′T ) 6= 0. If d′j = d′i, the result is shown: by
definition d′j 6 d′i. Let us then assume that I(d′j , x′T ) 6= 0 and let us show that this also implies
that d′j 6 d′i. First, we have I(d′j , x′B) = 0 and I(d′j , a′2k−1) = 0 for all k ∈ {2, 3, . . . , g}, so
I
(
d′j , Bndy(V ′B)

)
= 0. Now, d′j intersects the curve x′T located outside of V ′B, so d′j does not

meet V ′B. Let us recall that I(d′j , a′2g) = 1 and that the curve a′2g is included in V ′ = V ′T ∪ V ′B.
Therefore:

d′j intersects a′2g in V ′T . (15)
We have almost shown that d′j 6 d′i. To terminate the proof, let us consider the subsurface
V ′T , cf. Figure 50. The curve w′ is included in V ′T that is of genus 0, so w′ separates V ′T in
two connected components, one is homeomorphic to a pair of pants which we call P and which
contains a boundary isotopic to d′i in Σ′, the other containing the boundary components isotopic
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Figure 50: Step 8.d): the subsurface V ′T of V ′.

to a′3, a′5, . . . , a′2g−1 in Σ′. The curve d′j does not intersect any of the boundary components of
V ′T r P (let us recall that we had seen in step 7. that I(w′, d′j) = 0), but it intersects x′T that is
a boundary of P . Hence by connectedness, d′j does not intersect V ′T r P , so (15) becomes:

d′j intersects a′2g in P . (16)
Consequently, the curve a′2g intersects, in this order,

• the curve a′2g−1 (one of the boundary components of V ′T r P ),

• the curve w′ (that separates P and V ′T r P in V ′T ),
• the curve d′j (partially included in P ),

• and at last the curve d′i (one of the boundary of P ).

Hence by definition, d′j 6 d′i.

9. Let us show the result of step 8. in the case where g = 2. More precisely, when ∂Σ 6= ∅
and g = 2, the curves of A′ are arranged in Σ′ as in Figure 44 (except the curve w′ that is not
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defined in the case where g = 2). In particular, the curves d′i, i ∈ {1, . . . , b + 1}, are ordered in
Σ′ in the following way. For all i, j ∈ {1, . . . , b + 1}, we will say that:

d′j 6 d′i
if the curves d′i and d′j are isotopic, or if in a representation in tight position of the involved
curves, when we follow the curve a′4 in one of the two possible directions, we meet the curves a′3,
d′1, d′j, d′i in this order. Then with this definition, we prove that:

d′1 6 d′2 6 · · · 6 d′b+1.

First, notice that the case where Σ′ is homeomorphic to Σ2, 0 is trivial for the curves d′j ,
1 6 j 6 b + 1, would then be equal. Moreover, if b = 1, it follows automatically with this
definition that d′1 6 d′2 and the result is shown. In what follows, we then assume that:

b > 2 and Σ′ 6= Σ2, 0. (H2)

To show step 9., we proceed as we did in step 8., with the following adaptations. Let us recall
that d′1 and d′b+1 cobound a genus-1 surface containing the curves a′1, a′2 and a′3 according to
step 4.. Let i be an integer belonging to {1, . . . , b + 1}. Let us set the following definitions (we
refer to Figure 51).

Figure 51: Step 9.: the case g = 2.

Let:

• V (respectively V ′) be the compact tubular neighbourhood of the 3-chain (a3, a4, di) (resp.
(a′3, a′4, d′i));

• VT and VB be the two subsurfaces of V bounded by the curves a3 and di such that VT does
not meet db+1 and that VB does not meet d1;

• V ′T and V ′B be the two subsurfaces of V ′ bounded by the curves a′3 and d′i such that V ′T
does not meet d′b+1 and V ′B does not meet d′1;
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• xT and xB be the two boundary components of V, such that xT ⊂ ∂VT and xB ⊂ ∂VB;

• x′T and x′B be the two boundary components of V ′, such that x′T ⊂ ∂V ′T and x′B ⊂ ∂V ′B.

The subsurfaces V ′T and V ′B are well-defined, for it is impossible that neither V ′T , nor V ′B meets
at least one of the curves d′1 and d′b+1. Indeed, if it happened, the curves d′1 and d′b+1 would be
equal to the curve d′i and the surface Σ′ would not have any boundary, which would contradict
the hypotheses (H2).

As in 8.b), let us show first that Ψ̈(TxT ) = Tx′T
and Ψ̈(TxB ) = Tx′B

. According to the
definitions of V ′T and V ′B and the remark that we have just made, it follows that one of the two
intersections I(x′T , d′1) or I(x′B, d′b+1) is nonzero. Hence

Tx′T and Td′1 do not commute, or Tx′B and Td′b+1
do not commute. (17)

Now, by definition of x′T and x′B, we have:
Tx′BTx′T = (Ta′3Ta′3Td′i)

4

= (Ψ̈(Ta3)Ψ̈(Ta3)Ψ̈(Tdi))
4

= Ψ̈((Ta3Ta3Tdi)
4)

= Ψ̈(TxT TxB)
= Ψ̈(TxT )Ψ̈(TxB ),

but xT and xB are non-separating curves, so Ψ̈(TxT ) and Ψ̈(TxB ) are some Dehn twists according
to step 6., hence the obtained equality above is an equality between multitwists, so according to
Lemma 3.12,

{Tx′B , Tx′T } = {Ψ̈(TxB), Ψ̈(TxT )}. (18)

Now, by definition of xB, we have I(xB, d1) = 0, so TxB and Td1 commute, so Ψ̈(TxB ) and Td′1
commute. Similarly, Ψ̈(TxT ) and Td′b+1

commute. Then, according to (17) and (18), we have:

Ψ̈(TxT ) = Tx′T and Ψ̈(TxB ) = Tx′B . (19)
We can then continue the proof of the step 9. as we did in step 8.. Thus, we show that:

• for all j ∈ {1, . . . , b+1}, the curve d′j satisfies exactly one of the three following conditions:
I(d′j , x′T ) 6= 0, I(d′j , x′B) 6= 0, or d′j = d′i (cf. 8.c));

• and finally, for all integers j ∈ {1, 2, . . . , i− 1}, we have d′j 6 d′i (cf. 8.d)).

This concludes step 9..

10. Let us show that Ψ̈ (recall we have supposed it was noncyclic) is induced by an embedding
from Σ in Σ′.

Let N (A) (respectively N (A′)) be the tubular neighbourhood of the union of the curves of
A (resp. A′) in Σ (resp. Σ′). If the curves d′j , 1 6 j 6 b + 1, are pairwise distinct, N (A′) is
well-defined. If there exists j ∈ {1, 2, . . . , b} such that d′j = d′j+1, we can all the same choose a
set of representatives of the curves of A′ in tight position, so that when we follow the curve a′2g,
we meet the curves d′j , 1 6 j 6 b + 1, in the order of their indices. Using this and the results
of steps 4., 7. and 8., we conclude that there exists a positive diffeomorphism F̄ from N (A) to
N (A′). We denote by F its isotopy class. This mapping class satisfies the following:

• F (ai) = a′i, 1 6 i 6 2g,
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• F (e2i) = e′2i and F (f2i) = f ′2i, 2 6 i 6 g − 1,

• F (di) = d′i, 1 6 i 6 b + 1.

Figure 52: Step 10.: example of the construction of F and of the surface Σ′′ = F (Σ), included
in Σ′. We have represented in this example different possibilities:

d′1 ∪ d′2 bounds an annulus,
d′2 ∪ d′3 bounds a genus-1 surface,
d′3 ∪ d′4 bounds a genus-0 surface with 4 boundary components.

Let us call Σ′′ the compact tubular neighbourhood of the union of the representatives of the
curves a′i, i ∈ {1, 2, . . . , 2g} and d′j , j ∈ {2, 3, . . . , b}. The surface Σ′′ is homeomorphic to Σ and
is included in Σ′ (cf. Figure 52). Still according to steps 4., 7., 8. and 9., we can extend F on
all the open disks of Σr V(A), so that we obtain a diffeomorphism of Σ in Σ′′ that we still call
F . Let us compare Ψ̈ and the morphism ÃdF : Mod(Σ, ∂Σ) →Mod(Σ′, ∂Σ′) (cf. Definition
6.5 for the definition of ÃdF ). Since F is the isotopy class of a positive diffeomorphism, and
consequently to what precedes, for any curve a ∈ A, we have:

Ψ̈(Ta) = Ta′ = TF (a) = FTaF
−1 = ÃdF (Ta).

Thus Ψ̈ and ÃdF coincide on {Ta, a ∈ A}. According to Theorem 3.8, such a set span
Mod(Σ, ∂Σ), so we have the equality:

Ψ̈ = ÃdF . (20)

11. End of the proof.
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Let us recall that when Ψ is not cyclic, we had defined Ψ̇ = Ψ ◦ ÃdV at the end of the step
3., where V ∈ {Id ,, K}. Then just before step 6., except if W = H we had set Ψ̈ = Ψ̇. Hence,
according to (20), except if W = H, we have:

Ψ = ÃdF ◦ ÃdV −1 = ÃdFV −1 .
In other words, except if W = H, the morphism Ψ is induced by an embedding from Σ in
Σ′. When W = H, the morphism Ψ is a transvection with direction H of a morphism induced
by an embedding from Σ in Σ′ (cf. Definition 6.11 for the definition of transvection). This
terminates the proof of Theorem 6. The proof of Theorem 5 has been terminated at step 4.f).

¤

Let us now focus on the morphisms from PMod(Σ) in PMod(Σ′). In most of the cases,
they also can simply be expressed from morphisms induced by an embedding. We have first to
define this term in the case of the morphisms from PMod(Σ) in PMod(Σ′).

Definition 6.12 (Morphisms from PMod(Σ) in PMod(Σ′) induced by an embedding,
and outer conjugations).

Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g = g′ and b > b′. Let F be the isotopy
class of an embedding from Σ in Σ′ such that F sends the boundary components of Σ on some
boundary components of Σ′ or on some trivial curves of Σ′ (isotopic to a point). We sum up
these conditions by:

F (Bndy(Σ)) ∩ Curv(Σ′) = ∅. (∗)
Let us emphasize on the fact that F may not respect the orientations of Σ and Σ′. Let Σ′′ =
F (Σ). Let us denote by F̄ a representative of F which is then a diffeomorphism from Σ in
Σ′′. For all A ∈ PMod(Σ) and all representative Ā ∈ Diff+(Σ) of A, the product F̄ ĀF̄−1

preserves the orientation of Σ′′, so F̄ ĀF̄−1 belongs to Diff+(Σ′′). Since g = g′, b > b′ and
according to (∗), the complement of Σ′′ in Σ′ is a disjoint union of disks. Hence according to
Alexander’s Lemma, F̄ ĀF̄−1 induces canonically, and up to isotopy, a diffeomorphism of Σ′.
Let us denote by AdF (A) the isotopy class of this diffeomorphism. And since Ā preserves the
boundary components of Σ, F̄ ĀF̄−1 preserves the boundary components of Σ′′. But according
to (∗), the set of boundary components of Σ′ is included in the set of boundary components of
Σ′′, so the boundary components of Σ′ are preserved by AdF (A). Finally, AdF (A) belongs to
PMod(Σ′). The map AdF defined by

AdF :
PMod(Σ) −→ PMod(Σ′)

A 7−→ AdF (A)
is a group morphism. Such a morphism will be called the morphism from PMod(Σ) in PMod(Σ′)
induced by the embedding F .

When Σ′ = Σ, according to (∗), we get Σ′′ = Σ′, so the isotopy class F is inversible. Hence in
this case, F is an element of Mod¦(Σ). The obtained morphism AdF is then an automorphism
of PMod(Σ) that we will call the outer conjugation by F .

The proof of Theorems 5 and 6 can almost be entirely adapted to the case of the morphisms
from PMod(Σ) in PMod(Σ′) where Σ and Σ′ satisfy the same hypotheses as in Theorem 6.
However, the statements are slightly different. Instead of a complete proof, we only justify these
differences.
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Theorem 7 (Existence of noncyclic morphisms from PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1.

• When g = 2 and only in this case, there exist some cyclic non-trivial morphisms from
PMod(Σ2, b) in any mapping class group that admits a subgroup isomorphic to Z/2Z,
Z/5Z or Z/10Z.

• When g > 2, there exist some noncyclic morphisms from PMod(Σ) in PMod(Σ′) if and
only if g′ = g and b′ 6 b.

According to this statement, studying all noncyclic morphisms from PMod(Σ) in PMod(Σ′)
when g′ 6 g + 1, can be reduced to studying them when g′ = g when g′ = g and b′ 6 b. This is
the objet of Theorem 8 below.

Theorem 8 (Morphisms from PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2, g′ = g and b′ 6 b. Let Ψ be a
noncyclic morphism from PMod(Σ) in PMod(Σ′). Then there exists an embedding F of Σ in
Σ′ such that

F (Bndy(Σ)) ∩ Curv(Σ′) = ∅
and such that Ψ is the morphism AdF induced by the embedding F , or possibly the transvection
by H of the morphism AdF if g = 2 and (g′, b′) = (2, 0).

Proof of Theorems 7 and 8. Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2
and g′ 6 g + 1, and such that there exists a morphism Ψ : PMod(Σ) → PMod(Σ′). We
follow the proof of Theorems 5 and 6. We define the same set of non-separating curves A that
spans PMod(Σ) (or Mod(Σ, ∂Σ) according to the mapping class group that we consider). We
distinguish the case where Ψ sends Ta1 and Ta2 on the same image, from the one where Ψ
differentiates them.

• If Ψ(Ta1) = Ψ(Ta2), then the image of Ψ is necessarily cyclic. According to Theorem 6.8, as
soon as g > 3, the abelianization of PMod(Σ) is trivial. So no quotient of PMod(Σ) can
be cyclic except the trivial group, and Ψ has to be trivial. Again according to Theorem 6.8,
if g = 2, the abelianization of PMod(Σ) equals Z/10Z, hence the morphism Ψ is trivial or
possibly cyclic. In this case, its image is isomorphic to Z/2Z, Z/5Z or Z/10Z, depending
on the group PMod(Σ′).

• If Ψ(Ta1) 6= Ψ(Ta2), according to the proofs of Theorems 5 and 6, there exists an embedding
from Σ in Σ′ (hence g′ > g), that may or may not respect the orientation. Let us denote
by F its isotopy class. There exists a mapping class W ∈ PMod(Σ′) that preserves each
curve F (a), a ∈ A, and such that for all a ∈ A, we have:

Ψ(Ta) = TF (a) W . (1)

Let us make clear that even if W is trivial, we cannot argue that Ψ coincides with AdF on
a set that span Mod(Σ) and thus conclude that Ψ = AdF , for AdF is not a well-defined
morphism. We first have to show that:

F (Bndy(Σ)) ∩ Curv(Σ′) = ∅. (∗)
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From now on, we assume to be in the case where Ψ(Ta1) 6= Ψ(Ta2) and hence where (1) holds.
We distinguish the cases b = 0 and b 6= 0.

1. Case where b = 0. Let us show that Σ′ must be isomorphic to Σ.
We repeat the proof that we followed in the proof of Theorems 5 and 6, step 4.. We describe

the situation in Figure 53. When b = 0, we have:

Figure 53: Proof of Theorems 7 and 8, step 1.: case where b = 0 and g = 3.

(
Ta1Ta2 . . . Ta2g−1

)2g = Td1Tdb+1
= T 2

d1
.

If we compose it by Ψ, we get(
TF (a1)TF (a2) . . . TF (a2g−1)

)2g
W (2g−1)2g = TF (d1)

2 W 2.
Since there exist two curves u′ and v′ in Σ′ such that:(

TF (a1)TF (a2) . . . TF (a2g−1)

)2g = Tu′Tv′ ,
we then have:

Tu′Tv′ = TF (d1)
2 W 2−2g(2g−1).

Hence according to Lemma 3.45, by considering the canonical reduction systems in this last
equality, we have:

{u′, v′} ⊂ {F (d1)} ∪ σ(W ).
Let us show that u′ = v′ = F (d1). Since (F (a1), . . . , F (a2g)) is a (2g)-chain of curves, the
definition of u′ and v′ implies that I

(
u′, F (a2g)

) 6= 0 and I
(
v′, F (a2g)

) 6= 0 (cf. Figure 53). On the
other hand, I

(
σ(W ), F (a2g)

)
= 0, for W commutes with TF (a2g). Therefore {u′, v′}∩σ(W ) = ∅

and finally u′ = v′ = F (d1). Hence Σ′ is homeomorphic to Σg, 0, and hence to Σ.

Thus, when b = 0, Theorem 7 is shown. Moreover, since b′ = b = 0, we have Mod(Σ, ∂Σ) =
Mod(Σ) = PMod(Σ), and the same equalities hold with Σ′, so we can apply Theorem 6.
Therefore, when b = 0, Theorem 8 is shown.

2. Case where b 6= 0. Let us show that in (1), W is trivial, except if the following holds.
g = 2 and (g′, b′) = (2, 0)

If the above assertion holds, then W ∈ {Id , H}.
We distinguish the case depending on the pair (g, b):

• When g > 3, the abelianization of PMod(Σ) is trivial, according to Theorem 6.8. We have
seen in step 5.a) of the proof of Theorems 5 and 6 that in this case, W is trivial.

• When g = 2 and b 6= 0, the abelianization of PMod(Σ) equals Z/10Z and we have seen in
step 5.b) of the proof of Theorems 5 and 6 that in this case, W 10 is trivial. We know also
that W fixes the curves F (a) for any curve a in A. According to step 5.c) of the proof of
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Theorems 5 and 6 there does not exist any periodic mapping class in Σ′ distinct from the
identity that fixes the curves F (a1), F (a2), F (a3), F (a4), F (d1), F (db+1) when g′ = 3 and
b′ = 0. In this proof, everything came from the fact that the curves F (d1) and F (db+1)
were distinct and cobounded a genus-1 surface containing the curves F (a1), F (a2) and
F (a3). This fact subsists for all pair (g′, b′) as long as g′ > 2 and (g′, b′) 6= (2, 0). Thus,
no mapping class, except the identity, can satisfy the conditions fulfilled by W when g = 2,
b 6= 0 and (g′, b′) 6= (2, 0). On the other hand, when (g′, b′) = (2, 0), we have seen in step
5.b) of the proof of Theorem 6 that W belongs to {Id , H}, where H is the hyper-elliptic
involution.

Definition: if W = Id , then we define Ψ̈ as being the morphism Ψ , and if W = H, we define
Ψ̈ as being the transvection (cf. Definition 6.11) of Ψ with direction H. Notice that W can be
equal to H precisely only if g = 2 and (g′, b′) = (2, 0). Under these conditions and since H is
central, such a transvection is well-defined.

Notice that according to (1), for any curve a ∈ A, we get:
Ψ̈(Ta) = TF (a). (2)

3. Case where b 6= 0. Let us show that g′ = g, b′ 6 b and that the condition (∗) takes place.
Let us set some definitions:

• For any curve x in Curv(Σ) (resp. in Curv(Σ′)), let us denote by Tx the Dehn twist
in PMod(Σ) (resp. in PMod(Σ′)) and T̃x the Dehn twist in Mod(Σ, ∂Σ) (resp. in
Mod(Σ′, ∂Σ′)).

• Let Ψ̃ be the morphism from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ) induced by the isotopy class
of the embedding F .

• Let for∂Σ be the canonical morphism fromMod(Σ, ∂Σ) in PMod(Σ) and for∂Σ′ the canon-
ical morphism from Mod(Σ′, ∂Σ′) in PMod(Σ′).

Since the Dehn twists T̃a along the curves a ∈ A span Mod(Σ, ∂Σ) and since for all a ∈ A, we
have for∂Σ′ ◦ Ψ̃(T̃a) = Ψ̈ ◦ for∂Σ(T̃a), then the following commutative diagram holds:

Mod(Σ, ∂Σ) PMod(Σ)

Mod(Σ′, ∂Σ′) PMod(Σ′)

//
for∂Σ

²²

Ψ̃

²²

Ψ̈

//
for∂Σ′

We are going to use the commutativity of this diagram. Let d be a boundary of Σ. On one hand,
we have:

Ψ̈ ◦ for∂Σ(T̃d) = Ψ̈(Id ) = Id . (3)
On the other hand, we have:

for∂Σ′ ◦ Ψ̃(T̃d) = for∂Σ′
(
T̃F (d)

)
= TF (d). (4)

By commutativity of the diagram, the lines (3) and (4) must be equal, so TF (d) = Id . Hence
F (d) is either a trivial curve of Σ′, or a boundary component of Σ′. This is to be true for all
boundary components d of Σ, therefore, we have shown that the condition (∗) holds. Hence, a
fortiori, we have: g′ 6 g and b′ 6 b. But the fact that F exists shows that g′ > g (cf. step 4.b)
of the proof of Theorem 6). So g′ = g and b′ 6 b, and step 3. is shown.
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Finally, since g′ = g and b′ 6 b, then for any embedding F ′ satisfying the condition (∗),
the morphism AdF ′ : PMod(Σ) → PMod(Σ′) is well-defined. This terminates the proof
of Theorem 7. Furthermore, the assertion (2) shows that all the noncyclic morphisms from
PMod(Σ) in PMod(Σ′) are either morphisms induced by an embedding from Σ in Σ′, or
transvections of such morphisms when g = 2 and (g′, b′) = (2, 0). Hence Theorem 8 is shown,
as well. ¤

Injective morphisms between mapping class groups

Among all the morphisms between mapping class groups relatively or not to the boundary,
we want to know which are injective. We answer this question in Theorems 9 and 10.

Theorem 9 (Injections from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1. Then, a morphism
from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) is injective if and only if:

• when b 6= 0: if it is induced, up to transvection when g = 2, by an embedding F from
Σ in Σ′ such that F sends the curves of Bndy(Σ) on some pairwise distinct curves of
Curv(Σ′, ∂Σ′);

• when b = 0 and Σ′ = Σ: if it is not cyclic (it is then an outer conjugation, or possibly a
transvection of an outer conjugation when g = 2).

Proof. Since the cyclic morphisms are not injective, according to Theorem 6, the only mor-
phisms which may be injective are the morphisms induced by an embedding, and perhaps their
transvections when they are defined. First of all, we will consider the morphisms induced by
an embedding (including the outer conjugations). Then, we consider the transvections of these
morphisms with a non-trivial direction. Let us recall that such transvections exist only if g = 2
and (g′, b′) = (2, 0) and that their direction is H.

1. Morphisms induced by an embedding.
When b 6= 0, any morphism induced by an embedding F is injective if and only if F sends

the curves of Bndy(Σ) on pairwise distinct curves of Curv(Σ′, ∂Σ′) according to Theorem 3.10.
When b = 0, the outer conjugations are automorphisms, hence are injective.

2. Transvections of morphisms induced by an embedding
We consider noncyclic morphisms from Mod(Σ, ∂Σ) in Mod(Σ2, 0), where Σ is of genus 2

with b boundary components, b > 0. We are going to show that, if Ψ̇ is a transvection with
direction H of an injective morphism Ψ, then Ψ̇ is also injective. Since Ψ can be itself viewed as
a transvection with direction H of Ψ̇, we will have actually shown that Ψ̇ is injective if and only
if Ψ is injective. Thus, the injectivity property remains unchanged when we go from a morphism
to the transvection with direction H of this morphism. So, according to the first point, Theorem
9 will be then shown.

So, let us show that, in the frame that we have fixed, if Ψ̇ is a transvection with direction
H of an injective morphism Ψ, then Ψ̇ is injective. Since the abelianization of Mod(Σ, ∂Σ) is
isomorphic to Z/10Z, and since the conjugacy class of a Dehn twist along a separating curve is
sent on 1 according to Theorem 6.8, there exists a morphism v : Mod(Σ, ∂Σ) → Z/2Z that
sends any Dehn twist along a non-separating curve on 1, and that sends any product of an even
number of such Dehn twists on 0. Let us compute Ker (Ψ̇). Let A be a non-trivial mapping
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class of Mod(Σ, ∂Σ) such that Ψ̇(A) = Id . Since Ψ̇ is a transvection of Ψ with direction H,
we have Ψ̇(A) = Ψ(A) Hv(A), where Hv(A) denote either H if v(A) = 1 or Id if v(A) = 0. But
Ψ̇(A) = Id , so Ψ(A) = Hv(A). Since A 6= Id and since Ψ is injective, it follows that Ψ(A) 6= Id .
So Ψ(A) = H and v(A) = 1. We are going to show that such a mapping class A cannot exist.
Recall the notation defined in the proofs of Theorems 6 and 8 about the curves a1, a2, a3, a4,
d1, in Σ = Σ2, b, and a′1, a′2, a′3, a′4, d′1 in Σ′ = Σ2, 0. We set:

A0 = Td1Ta4Ta3Ta2T
2
a1

Ta2Ta3Ta4Td1 .
Then there exists an integer ε ∈ {0, 1} such that:

Ψ(A0) =
(
Td′1Ta′4Ta′3Ta′2T

2
a′1

Ta′2Ta′3Ta′4Td′1

) (
Hε

)10.

The first part of this product equals H, whereas the second equals Id , for H0 = H10 = Id . So
Ψ(A0) = H. But then for all A1 such that Ψ(A1) = H, we have Ψ(A0A1) = Id . Since Ψ is
injective, we have A0A1 = Id inMod(Σ, ∂Σ), so v(A0A1) = 0, hence v(A1) = v(A0), and hence
v(A1) = 0. Thus, there does not exist any mapping class A ∈ Mod(Σ, ∂Σ) such that v(A) = 1
and Ψ(A) = H. Hence Ker (Ψ̇) = {Id } and Ψ̇ is injective. ¤

Theorem 10 (Injections from PMod(Σ) in PMod(Σ′)).
Let Σ be a surface Σg, b and Σ′ a surface Σg′, b′ with g > 2 and g′ 6 g + 1. Then, a morphism
from PMod(Σ) in PMod(Σ′) is injective if and only if the two following conditions hold:

• the surfaces Σ and Σ′ are homeomorphic,

• the morphism is an outer conjugation (i.e. an automorphism of the form AdF with F ∈
Mod¦(Σ) cf. Definition 6.5), or possibly the transvection with direction H of an outer
conjugation when Σ′ and Σ are homeomorphic to Σ2, 0.

Proof . When Σ is a surface without boundary, the result is contained in the statement of
Theorem 9. When Σ is a surface with a nonempty boundary, the non-trivial morphisms from
PMod(Σ) in PMod(Σ′) are induced by some (isotopy classes of) embeddings F satisfying

F (Bndy(Σ)) ∩ Curv(Σ′) = ∅, (∗)
according to Theorem 8. Let Ψ be an injective morphism from PMod(Σ) in PMod(Σ′) induced
by an embedding F . If F sends a curve d of Bndy(Σ) on a contractible curve in Σ′, this would
contradict the injectivity of Ψ. Indeed, let us consider a non-separating path in Σ with extremities
in d. The tubular neighbourhood in Σ of the union of this path and d is a pair of pants, and
d is a boundary component of it. Let us call x and y the two other boundary components,
cf. Figure 54. This pair of pants is sent by F on a pair of pants with boundary components

Figure 54: Situation described in the proof of Theorem 10

{F (d), F (x), F (y)}, but since F (d) is a contractible curve, F (x) and F (y) are the same curve.
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Hence TF (x) = TF (y). Thus Ψ(Tx) = Ψ(Ty), although Tx 6= Ty. Hence (∗) has to be replaced by
F (Bndy(Σ)) ⊂ Bndy(Σ′). But b′ 6 b. Therefore, finally, (∗) has to be replaced by:

F (Bndy(Σ)) = Bndy(Σ′). (∗∗)
This implies that Σ′ = Σ and that F belongs to Mod¦(Σ). ¤

6.4 Endomorphisms of the mapping class group

We complete the previous subsection by focusing on the injective endomorphisms ofMod(Σ, ∂Σ).
In particular, we prove Ivanov and McCarthy’s theorem stating that PMod(Σ) is co-Hopfian (cf.
[IvMc]). In addition, we give a complete proof of Mod(Σ, ∂Σ) being co-Hopfian (cf. Theorem
11). We will see that when b = 0, the group Mod(Σ, ∂Σ) satisfies a much stronger property
(cf. item (i) of Theorems 11 and 12). As in the previous subsection, and since the center of
Mod(Σ2, 0) is non-trivial, the case of the surface Σ2, 0 is special, and an independent theorem
(cf. Theorem 12) is devoted to it.

Remark. Given two surfaces Σ and Σ′, we have defined in Subsection 6.3 the concept of a
morphism from Mod(Σ, ∂Σ) in Mod(Σ′, ∂Σ′) induced by the isotopy class F of an embedding
from Σ in Σ′, cf. Definition 6.5. When Σ and Σ′ are equal, F is not necessarily an isotopic class
of a diffeomorphism. However, if this is the case, F belongs to the group Mod¦(Σ).

Theorem 11 (Co-Hopfian property ofMod(Σ, ∂Σ) and structure of Aut(Mod(Σ, ∂Σ)), where
Σ 6= Σ2, 0).
Let Σ be a surface Σg, b where g > 2 and (g, b) 6= (2, 0).

(i) The mapping class group Mod(Σ, ∂Σ) is co-Hopfian, that is, the injective endomorphisms
are automorphisms. Moreover, when b = 0, all the non-trivial morphisms from Mod(Σ)
are automorphisms.

(ii) The map Ad : Mod¦(Σ) → Aut(Mod(Σ, ∂Σ)) is an isomorphism.

(iii) The outer automorphism group Out(Mod(Σ, ∂Σ)) of Mod(Σ, ∂Σ) is isomorphic to the
direct product Z/2Z×Sb, where Sb is the symmetric group on b elements.

Proof.
Let us show item (i).
When b = 0 and g > 3, according to Theorem 9, any non-trivial endomorphism of Mod(Σ)

is an outer conjugation, and hence an automorphism.
When b > 0 and g > 2, according to Theorem 9, any injective endomorphism ofMod(Σ, ∂Σ)

is induced by the isotopy class F of an embedding from Σ in itself and the curves of Bndy(Σ) are
sent by F on some pairwise distinct curves of Curv(Σ, ∂Σ). The definition of the complement(
F (Σ)

)c of F (Σ) in Σ requires a choice from us: in this proof, for any boundary component of
F (Σ) that is isotopic to some boundary component of Σ, we will assume that these two boundary
components coincide. Thanks to this assumption,

(
F (Σ)

)c contains no connected component
homeomorphic to a disk or an annulus. Thus,

(
F (Σ)

)c is a (possibly empty) union of connected
components of negative Euler characteristic. Now, if a curve of Bndy(F (Σ)) belongs to Curv(Σ),
then

(
F (Σ)

)c is nonempty, hence χ(F (Σ)) < χ(Σ). This would be absurd. Hence Bndy(F (Σ)) =
Bndy(Σ), F (Σ) = Σ and F ∈ Mod¦(Σ). Therefore, any non-trivial endomorphism of Mod(Σ)
is an outer conjugation, hence is an automorphism. This prove item (i).
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Let us show item (ii)
We have just shown that any injective endomorphism of Mod(Σ, ∂Σ) comes from an outer

conjugation by an element of Mod¦(Σ), so is an automorphism. Hence the arrow Ad :
Mod¦(Σ) → Aut(Mod(Σ, ∂Σ)) is surjective. Let us now show that the morphism Ad is in-
jective. Let F be in Mod¦(Σ) such that AdF is the identity of Aut

(Mod(Σ, ∂Σ)
)
. Let us

consider the curves of Figure 55 and set A = {a1, a2, . . . , a3g−3+b}. Since AdF is the identity of

Figure 55: The set of curves A = {a1, a2, . . . , a3g−3+b} provides a pants decomposition of Σ.

Aut
(Mod(Σ, ∂Σ)

)
, AdF fixes the Dehn twists along the curves of A, hence F fixes the curves

of A. Moreover, AdF sends the Dehn twists along the curves of A on themselves instead of their
inverses, so F preserves the orientation of Σ. In particular F belongs toMod(Σ). Moreover, the
pants decomposition of Σ by the curves of A has the following property: if F fixes each curve
of A, then F cannot permute the pairs of pants (notice that the property does not hold in Σ2, 0

but by assumption, Σ is not homeomorphic to Σ2, 0). Hence F induces in Mod(ΣA) a mapping
class F̂ that belongs actually to PMod(ΣA). Since the mapping class group of a pair of pants
whose boundary components are not permuted is trivial, the mapping class F̂ is trivial. Hence
F is a multitwist along some curves of A and σ(F ) is included in A. However, AdF fixes the
Dehn twists along the curves x1, . . . , xg, so F fixes these curves. Hence the curves x1, . . . , xg are
some reduction curves of F , so the essential reduction curves of F cannot intersect these curves.
Since each curve of A intersects one of the curves x1, . . . , xg, we conclude that σ(F ) is empty.
Since F is a multitwist, then F has to be trivial. This prove the injectivity of Ad and conclude
the proof of item (ii).

Let us show item (iii).
Let us consider the following diagram whereM is the groupMod(Σ, ∂Σ), and ε and Act are

the following morphisms: for any G ∈Mod¦(Σ), ε(G) = ±1 depending on whether G respects or
not the orientation, and Act(G) is the permutation induced by G on the boundary components
of Σ (the group of these permutations is isomorphic to Sb, the symmetric group on b elements).

1 PMod(Σ) Mod¦(Σ) Z/2Z×Sb 1

1 Inn(M) Aut(M) Out(M) 1

//

²²

∼=

//

²²

∼=

//
(ε, Act)

²²

//

// // // //
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The first line is exact by definition ofMod¦(Σ). The second line is exact by definition of Out(M).
The first vertical arrow is an isomorphism for Inn(M) is isomorphic to the quotient of M by
its center, and this quotient is isomorphic to PMod(Σ). The second arrow is an isomorphism
according to item (ii) of this theorem. Finally, all the arrows are canonical, so the diagram is
commutative. Therefore the third vertical arrow is an isomorphism, too. This prove item (iii)
and terminates the proof of this theorem. ¤

We turn now to the case of the surface Σ2, 0. The result is very different because of the
exceptional non-trivial center of Mod(Σ2, 0). Indeed, the morphism Ad : Mod¦(Σ) →
Aut(Mod(Σ2, 0)) is not injective anymore, nor surjective.

Theorem 12 (Co-Hopfian property ofMod(Σ) and structure of Aut(Mod(Σ), where Σ = Σ2, 0,
McCarthy6 [Mc1]).
Let Σ be the surface Σ2, 0. Let us recall that we denote by H the hyper-elliptic involution of
Mod(Σ) (cf. Definition 6.6). Let us denote by `H the transvection (cf. Definition 6.11) of the
identity of Aut(Mod(Σ)) with direction H. Then:

(i) The mapping class group Mod(Σ) is co-Hopfian. We have even better: all the noncyclic
endomorphisms are automorphisms.

(ii) The morphism `H ofMod(Σ) is an involution, and any transvection with direction H of an
outer conjugation coincides with the (commutative) composition of this outer conjugation
with `H .

(iii) There exists an orientation reversing involution K ofMod¦(Σ). The group spanned by AdK

and `H is isomorphic to Z/2Z× Z/2Z and contains only outer automorphisms (except the
identity of course).

(iv) The restriction of the canonical morphism Aut(Mod(Σ)) → Out(Mod(Σ)) to 〈AdK , `H〉
is an isomorphism. In particular, Out(Mod(Σ)) = Z/2Z× Z/2Z.

(v) The map Ad : Mod¦(Σ) → Aut(Mod(Σ)) has the following kernel and cokernel, given
in the following exact sequence:

1 → 〈H〉 →Mod¦(Σ) Ad−−→ Aut(Mod(Σ)) → 〈`H〉 → 1,

where `H is the image of `H in the quotient of Aut(Mod(Σ)) by Ad(Mod¦(Σ)).

Proof. Item (i) is an immediate corollary of Theorem 9.

Let us show item (ii).
As in the proof of Theorem 9, let us Define the morphism v : Mod(Σ) → Z/2Z that sends

any Dehn twist along a non-separating curve on 1, and any product of an even number of such
Dehn twists on 0. For all F ∈ Mod(Σ), we have the following (by convention, H0 = Id and
H1 = H, where 0 and 1 being elements of Z/2Z):

`H(F ) = F Hv(F ).
Let us compute v(H). Since (a1, x1, a2, x2) is the 4-chain of curves (namely, the one drawn
in Figure 56), it follows that (Ta1Tx1Ta2Tx2)

5 is conjugate to H, hence is equal to H, for H is
6In [Mc1], McCarthy shows items (ii) - (v) of this theorem. Item (i) however handles with endomorphisms of

Mod(Σ2, 0). This approach is new.
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central. Thus H is equal to a product of 20 Dehn twists along non-separating curves inMod(Σ),
so v(H) = 0. Therefore, for all F ∈Mod(Σ), we have:

`H ◦ `H(F ) = `H(F Hv(F )) = (F Hv(F )) Hv(F Hv(F )) = F Hv(F ) Hv(F ) = F .
Hence `H is an involution. Moreover, for all F ∈Mod¦(Σ) and for all G ∈Mod(Σ), FGF−1H =
FGHF−1, hence `H ◦ AdF = AdF ◦ `H . Finally, AdF ◦ `H coincides on the Dehn twists along
non-separating curves (a set which spans Mod(Σ)) with the transvection with direction H of
the outer conjugation by F , so this transvection is equal to AdF ◦ `H . This shows item (ii).

Let us show item (iii).
Let a1, a2, a3, x1, x2 be again the five curves in Σ, cf. Figure 56. Let us see the surface Σ as if

it was embedded in R3 and let us consider the reflection of R3 with respect to a plane containing
the curves x1 and x2, and intersecting the curves a1, a2, a3 in two points. This reflection reverses
the orientation of Σ. Let us denote by K the isotopy class of the restriction of this reflection to Σ:
K belongs to Mod¦(Σ). The automorphism AdK is an outer automorphism of Mod(Σ), for no
inner automorphism can send a Dehn twist on the inverse of a Dehn twist. As for the involution
`H , this is also an outer automorphism for it does not send Dehn twists on Dehn twists. Notice
that the automorphisms AdK and `H commute for H belongs to the center of Mod¦(Σ); notice
also that the product AdK ◦ `H is an outer automorphism by the same argument.

Figure 56: The surface Σ, the curves a1, a2, a3, x1, x2, and the plane containing the curves x1

and x2.

Let us show item (iv).
According to Theorems 6 and 8, the automorphisms ofMod(Σ) are transvections of an outer

conjugation with direction Id or H. Hence for any automorphism of Mod(Σ), even if it means
composing it adequately with AdK and/or with `H , we get a inner automorphism. Hence the
classes of AdK and `H in Out(Mod(Σ)) span Out(Mod(Σ)). Since AdK and `H are outer and
cannot be obtained one from the other by any composition by some inner automorphisms, then
Out(Mod(Σ)) is not cyclic. Finally, they are involutions that commute, so Out(Mod(Σ)) is
isomorphic to Z/2Z× Z/2Z.

Let us show the part (v).
First, the outer conjugations are automorphisms, hence Ad is a morphism from Mod¦(Σ) to

Aut(Mod(Σ)). Let us compute the kernel of Ad. Let us come back to the proof of Theorem
11. If an element F ∈ Mod¦(Σ) satisfies AdF = Id in Aut(Mod(Σ)), then F fixes the curves
a1, a2, a3, and so preserves the pants decomposition of Σ along the curves a1, a2, a3, even if
it means permuting the two pairs of pants in this decomposition, cf. Figure 56. Using the fact
that F has to fix the curves x1 and x2, we deduce from it by the same type of argument as in
the proof of Theorem 11 that the kernel of Ad is included in {Id , H}. Conversely, AdId and
AdT coincide with the identity of Aut(Mod(Σ)). Hence Ker (Ad) = {Id , H}. Let us compute
now the cokernel of Ad. We have seen that any automorphism of Mod(Σ) is the product of an
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outer conjugation with Id or with `H . Since `H is not an outer conjugation, the cokernel of Ad
is isomorphic to Z/2Z and is spanned by the image of `H . ¤

Remark. (Comparison between Aut(Bn) and Aut(Mod(Σ2, 0))).
In the case of the group Mod(Σ2, 0), the noncyclic endomorphisms are automorphisms. This
does not hold with noncyclic endomorphism of Bn. This comes from the fact that in the case
of Mod(Σ2, 0), the center is contained in the torsion, so the transvections of automorphisms are
still automorphisms. On the other hand, in Bn where the center is infinite, the transvections
with non-trivial direction of automorphisms in Bn are not surjective.
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III. Proof of the main theorem 1

In this third part, we prove Theorem 1. The proof ends in Section 13. Actually, Theorem 1
will be a corollary of Theorem 12.2, which seems to be weaker, as it handles only the geometric
representations of Bn when n is even:

Theorem 12.2 (Morphisms from Bn in PMod(Σ), n > 6, n even).
Let n be an even integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Then any
morphism ρ from Bn in PMod(Σ) is either cyclic, or a transvection of monodromy morphism.
In this case, there exist:

• a (n− 1)-chain of curves (ai)16i6n−1,

• an integer ε ∈ {±1},
• a mapping class V commuting with Tai for any i 6 n− 1,

such that for any integer i ∈ {1, . . . , n− 1}, we have:
ρ(τi) = T ε

ai
V .

All our efforts in the upcoming sections until Section 12 will aim to prove Theorem 12.2.

Notation:
Throughout Part III, we adopt the following notation. The two first will be recalled at the

beginning of each section:

• n is an even integer greater than or equal to 6,

g and b are nonnegative integers such that 2− 2g − b 6 −1 and 2g 6 n,

• ρ is a given morphism from Bn in PMod(Σg, b),

from Section 9 on, we will assume that ρ is in addition noncyclic,

• τi where i ∈ {0, 1, . . . , n−1} is the ith standard generator of Bn; when the indice i satisfies
i < 0 or i > n − 1, τi is the jth standard generator of Bn where j is the remainder of the
euclidian division of i by n;

we denote by GenBn the set {τ0, τ1, . . . , τn−1};
for all integers i and j, we denote by |i− j|n the integer min({|i− j + kn|, k ∈ Z}),

• for all integers i, ρ(τi) will be denoted by Ai;

we denote by G the set {A0, A1, . . . , An−1};
we denote by Imp(n) the n

2 first odd integers {1, 3, . . . , n − 1} and we denote by X the
following set of mapping classes: {Ai, i ∈ Imp(n)}.

• σ(G) is by definition the union ∪
i6n−1

σ(Ai) and σ(X ) is by definition the union ∪
i∈Imp(n−1)

σ(Ai).
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Outline of the proof of Theorems 12.2 and 1:

Section 7:
A curve a of σ(G) is a peripheral curve if a is a separating curve with the following property:
one of the connected components of Σa is of genus 0. Let σp(G) be the set of peripheral curves.
We show that up to transvection, we can assume that σp(G) is empty, which is a first way to
simplify the study of σ(G). From Section 8 on, we will assume that σp(G) is empty. We also show
in Section 7 that in many cases, we can assume without loss of generality that Σ is a surface
without boundary.

Section 8:
We show that, although σp(G) is assumed to be empty, if ρ is not cyclic, then σ(G) is nonempty.
From Section 9 on, we will assume that ρ is not cyclic, so that σ(G) is nonempty.

Section 9:
We prove that there exists a partition of σ(G) in two sets of curves: σs(G) and σn(G), both of
them satisfying each interesting properties. For instance, for any curve a of σs(G), there exists a
unique i ∈ {0, 1, . . . , n− 1} such that a ∈ σ(Ai). As for the set of curves σn(G), it is stable by
the action of Bn induced by ρ on Curv(Σ).

Section 10:
We show that σ(G) contains only non-separating curves.

Section 11:
We describe the set of curves σ(X ) in the surface Σ, where X = {Ai, i ∈ {1, 3, 5, . . . , n− 1}}.

Section 12:
We gather the results of the previous sections and we show that ρ is a transvection of monodromy
morphism: Theorem 12.2 is shown.

Section 13:
We extend Theorem 12.2 to the case where n is an odd integer greater than or equal to 7. Thus,
we prove Theorem 1.

Section 14:
We discuss about the hypotheses of Theorem 1. We state some conjectures and we present some
surprising examples when the hypotheses are not satisfied.
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7 Morphisms from Bn in the mapping class group of a holed
sphere; peripheral curves

This section is divided into two subsections:

• In Subsection 7.1, we are interested by morphisms from the braid group in the mapping
class group of genus-0 surfaces. We will show the following:

Theorem 7.1 (Morphisms from Bn in Mod(Σ0, b, ∂Σ0, b) and in PMod(Σ0, b)).
Let Σ be a genus-0 surface. For all integers n greater than or equal to 3, any morphism
from Bn in Mod(Σ, ∂Σ), respectively in PMod(Σ), is cyclic.

• In Subsection 7.2, we are interested by morphisms from the braid group to the mapping
class group of a surface of genus g > 1 with b > 2 boundary components. Given such a
morphism ρ, we focus on some curves related to ρ which will be called peripheral curves.

Definition 7.2 (Peripheral curves, σp(G)).
A curve of σ(G) is said to be peripheral if it separates Σ in two connected components and
one of them is of genus zero. The set of peripheral curves is denoted by σp(G). For all
A ∈ G, we denote by σp(A) the set σp(G) ∩ σ(A).

As a corollary of Theorem 7.1, we will show that peripheral curves are fixed by the action
of Bn on Curv(Σ) via ρ:

Proposition 7.3 (Stability of peripheral curves).

(i) We have the equalities: σp(A0) = σp(A1) = · · · = σp(An−1) = σp(G).

(ii) The group ρ(Bn) is included in Pσp(G)Mod(Σ) (the subgroup of PMod(Σ) that fixes
each curve of σp(G) and that preserves each subsurface of Subσp(G)(Σ)).

This will help to simplify the study of ρ, for we can cut the surface along the peripheral
cuves and the morphism ρ respect this cut (see Proposition 7.4):

Proposition 7.4 (Killing the peripheral curves).
Let Σ′ be the connected component of nonzero genus of Σσp(G). Then:

(i) For all ξ ∈ Bn, ρ(ξ) induced a mapping class in PMod(Σ′) that we denote by ρ′(ξ).
The obtained map ρ′ : Bn → PMod(Σ′) is a morphism.

(ii) The morphisms ρ and ρ′ are of the same nature: one is cyclic (respectively is a
transvection of monodromy morphism) if and only if the other is.

As a corollary, we show that in some case, everything happens as if Σ was a surface without
boundary (see Proposition 7.5).
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Proposition 7.5. Let A be a curve simplex and K a subgroup of PMod(Σ) such that A is
K-stable and such that the cardinality of any curve orbit in A under the action of K is at
least 3. Then the canonical surjective continuous map sq : Σ → Σg, 0 (see Definition 7.10)
induces an isomorphism between the graphs Γ(Σ, A) and Γ(Σg, 0, sq(A)). In particular,
the cardinality of SubA(Σ) is smaller than or equal to 2g − 2, and the cardinality of A is
smaller than or equal to 3g−3. Moreover, if we denote by sq∗ : PMod(Σ) →Mod(Σg, 0)
the epimorphism induced by sq, we have the following: for any mapping class F ∈ K, for
any curve a ∈ A and for any subsurface S ∈ SubA(Σ), we have:

sq(F (a)) = sq∗(F )(sq(a)),

sq(F (S)) = sq∗(F )(sq(S)).

7.1 Morphisms from Bn in the mapping class group of a genus-0 surface

We will show that the morphisms from Bn (n > 3) in the mapping class group of a genus-0
surface (whose boundary components are not permuted) are cyclic. For this purpose, we are
going to use the fact that some mapping class groups are bi-orderable.

Definition 7.6 (Bi-orderable group). A group G is bi-orderable if there exists a linear ordering
6 on G invariant by left and right multiplications (namely, if f 6 g, then h1fh2 6 h1gh2 for
all f, g, h1, h2 ∈ G). In what follows, we will denote by 6 the ordering of all the bi-orderable
groups that we are going to meet, and by < the strict order associated to 6.

Proposition 7.7. Any morphism from Bn in a bi-orderable group is cyclic.

Proof. Let G be an orderable group and let ϕ be a morphism from Bn in G. Let us assume that
ϕ(τ1) < ϕ(τ2). Let γ be the element τ1τ2τ1. Then ϕ(γτ1γ

−1) < ϕ(γτ2γ
−1). Since γτ1γ

−1 = τ2

and γτ2γ
−1 = τ1 we have ϕ(τ2) < ϕ(τ1), which is absurd. In the same way, assuming that

ϕ(τ2) < ϕ(τ1) leads to a contradiction. Hence ϕ(τ1) = ϕ(τ2), so ϕ is cyclic. ¤

Thanks to Proposition 7.8 below, we will be able to apply Proposition 7.7 to the mapping
class groups and so prove Theorem 7.1.

Proposition 7.8 (Bonatti, Paris). For any genus-0 surface Σ, the mapping class groupMod(Σ, ∂Σ)
is bi-orderable. ¤

As a corollary, we get:
Theorem 7.1 (Morphisms from Bn in Mod(Σ0, b, ∂Σ0, b) and in PMod(Σ0, b).)
Let Σ be a genus-0 surface. For all integers n greater than or equal to 3, any morphism from Bn

in Mod(Σ, ∂Σ), respectively in PMod(Σ), is cyclic.
Proof . Any morphism from Bn in Mod(Σ, ∂Σ) is cyclic, for according to Proposition 7.8,
Mod(Σ, ∂Σ) is bi-orderable. As for the morphisms from Bn in PMod(Σ), according to Propo-
sition 5.12, they can be lifted in morphisms from Bn in Mod(Σ, ∂Σ), which are cyclic. Hence
again, according to Proposition 5.12, the morphisms from Bn in PMod(Σ) are cyclic. ¤
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7.2 Peripheral curves

In this subsection, we are going to prove the propositions 7.3, 7.4 and 7.5. The two last propo-
sitions will be some consequences of the first one. Moreover, Proposition 7.5 utilizes Theorem
7.1.

Let n be an integer greater than or equal to 6, let Σ be a surface Σg, b where g > 1 and b > 2.
Let ρ be a morphism from Bn in PMod(Σ). Recall Definition 7.2:
Definition 7.2 (Peripheral curves, σp(G)).
A curve a of σ(G) is said to be peripheral if it separates Σ in two connected components and if
the genus of one of them is zero (cf. Figure 57). The set of peripheral curves will be denoted by
σp(G). We will denote by σp(A) the set of curves σp(G) ∩ σ(A).

Figure 57: Example of peripheral curve.

Proposition 7.3 (Stability of the peripheral curves).

(i) We have the equalities: σp(A0) = σp(A1) = · · · = σp(An−1) = σp(G).

(ii) The group ρ(Bn) is included in Pσp(G)Mod(Σ) (the subgroup of PMod(Σ) that fixes each
curve of σp(G) and that preserves each subsurface of Subσp(G)(Σ)).

Lemma 7.9. For any peripheral curve x and any mapping class F such that I
(
F (x), x

)
= 0, F

fixes the curve x and does not swap its two side-neighbourhoods.

Proof of Lemma 7.9. Let S be the holed sphere bounded by x. Since I
(
F (x), x

)
= 0, if

F (x) is distinct from x, then either F (x) is in S and F (S) is included in S, or F (x) is outside of
S and S is included in F (S) (recall that Bndy(F (S)) ∩ Bndy(Σ) = Bndy(S) ∩ Bndy(Σ) for F
belongs to PMod(Σ)). Since S and F (S) are homeomorphic, these two hypotheses are absurd.
Finally, F (x) = x. Moreover, S and F (S) are located on the same side of x, so F does not swap
the two side-neighbourhoods of x. ¤
Proof of Proposition 7.3.

(i) Let A and C be two mapping classes of G that commute, x a curve of σp(A) and Z a
mapping class such that ZAZ−1 = C. Then Z(x) ∈ σp(C), and since AC = CA, we have
I(σ(A), σ(C)) = 0, so I(x, Z(x)) = 0. Now, according to Lemma 7.9 which we apply to the
curve x and the mapping class Z, we get Z(x) = x, and hence x ∈ σ(C). This shows that for
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all i, j ∈ {0, 1, . . . , n− 1} such that |i− j|n > 1, we have σp(Ai) = σp(Aj). We then easily can
deduce that

σp(A0) = σp(A1) = · · · = σp(An−1) = σp(G).
(ii) For all x ∈ σp(G), all A ∈ G, we have just seen that x ∈ σ(A), so I(x, A(x)) = 0, hence

according to Lemma 7.9, A(x) = x and A does not swap the two connected components of Σx.
Hence A belongs to PxMod(Σ). Since G span ρ(Bn), this proves the second part of Proposition
7.3. ¤

Proposition 7.4 (Killing the peripheral curves).
Let Σ′ be the connected component of nonzero genus of Σσp(G). Then:

(i) For any ξ ∈ Bn, the mapping class ρ(ξ) of PMod(Σ) induces a mapping class in PMod(Σ′)
that we denote by ρ′(ξ). The obtained map ρ′ : Bn → PMod(Σ′) is a morphism.

(ii) The morphisms ρ and ρ′ are of the same nature: one is cyclic (respectively is a transvection
of monodromy morphism) if and only if the other is.

Proof.
(i) Let Σ′ be the connected component of nonzero genus of Σσp(G) and let U be the subset

of curves of σp(G) that bound the subsurface of Σ isomorphic to Σ′. According to Proposition
7.3 on the stability of the peripheral curves, ρ(Bn) is included in PUMod(Σ). Let us denote
by π′ the morphism from PMod(ΣU ) in PMod(Σ′). Then ρ′ = π′ ◦ cutU ◦ ρ, so ρ′ is indeed a
morphism.

(ii) According to Proposition 5.12, there exists a lift ρ̃′ of ρ′ in Hom(Bn, Mod(Σ′, ∂Σ′)), which
is of the same nature as ρ′. For all ξ ∈ Bn, if we extend the mapping class ρ̃′(ξ) by the identity
on Σ, and if we then postcompose it by the morphism sq∂Σ : Mod(Σ, ∂Σ) → PMod(Σ), we
get a morphism ρ1 from Bn in PMod(Σ) such that π′ ◦ cutU ◦ ρ1 = ρ′. By construction, ρ1 is of
the same nature as ρ′.

Let Σ′′ be the union of the subsurfaces of SubU (Σ) distinct from Σ′. Let us denote by
π′′ the morphism from PMod(ΣU ) in PMod(Σ′′). According to Theorem 7.1, π′′ ◦ cutU ◦ ρ

is a cyclic morphism. Let W the mapping class π′′ ◦ cutU ◦ ρ(τ1) of PMod(Σ′′) and W̃ the
mapping class ρ(τ1)

(
ρ1(τ1)

)−1 of PMod(Σ, Σ′). Notice that W̃ induces W on PMod(Σ′′). Let
ρ2 the transvection of ρ1 with direction W̃ (i.e. for all integers i in {1, 2, . . . , n − 1}, we have
ρ2(τi) = ρ1(τi)W̃ ). Notice that ρ2 and ρ1 are of the same nature, so ρ2 and ρ′ are of the same
nature.

On the other hand, we have the following central exact sequence:

1 → 〈Tu, u ∈ U〉 → PUMod(Σ) cutU−−−→ PMod(ΣU ) → 1.
Since cutU ◦ ρ2 = cutU ◦ ρ, it comes that, according to Lemma 5.8, ρ2 is a transvection of ρ,
hence ρ2 and ρ are of the same nature.

Finally, ρ′ and ρ are of the same nature. ¤

Definition 7.10 (The “squeeze map” of a surface with a nonempty boundary).
Starting from the surface Σg, b with b > 0, let Σg, 0 be the surface without boundary obtained from
Σg, b by squeezing each boundary component to a point. We get a surface which exceptionally
can be a sphere or a torus. There is a canonical surjective continuous map from Σg, b to Σg, 0
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that we will denote by sq : Σg, b → Σg, 0. The map sq induces a canonical morphism between
mapping class groups that we denote by:

sq∗ : PMod(Σg, b) →Mod(Σg, 0).

Proposition 7.5. Let A be a curve simplex and K a subgroup of PMod(Σ) such that A is
K-stable and such that the cardinality of any curve orbit in A under the action of K is at least
3. Then the map sq : Σ → Σg, 0 induces a graph isomorphism from the graph Γ(Σ, A) (cf.
Definition 2.23) to the graph Γ(Σg, 0, sq(A)). In particular, the cardinality of SubA(Σ) is smaller
than or equal to 2g − 2, and the cardinality of A is smaller than or equal to 3g − 3. Moreover,
for any mapping class F ∈ K, for any curve a ∈ A and any subsurface S ∈ SubA(Σ), we have:

sq(F (a)) = sq∗(F )(sq(a)),
sq(F (S)) = sq∗(F )(sq(S)).

(see Definition 7.10 for a description of sq and sq∗).
Proof.

1. Let us show that no subsurface of SubA(Σ) can be sent by sq on a sphere minus one or
two disks. Hence no curve of A is sent on a contractible curve by sq, and for any two curves
of A, they cannot be sent on the same isotopy class in Σ′. Once we have shown this, we have
shown that the sets A and sq(A) of curves have the same cardinality.

a) By assumption, the set A does not contain any fixed point under the action of K. Hence A
does not contain any peripheral curve, according to Lemma 7.9. Hence no subsurface of SubA(Σ)
can be sent by sq on a sphere minus a disk. Hence no curve of A is sent on a contractible curve.

b) Let us show that no subsurface of SubA(Σ) can be sent by sq on a sphere minus two disks,
which is equivalent to say that for any two curves of A, they cannot be sent on the same isotopy
class in Σ′. If there did exist two distinct curves a and a′ of A such that sq(a) = sq(a′), then it
would exist in SubA(Σ) a genus-0 subsurface S whose boundary would consists in some natural
boundary components and exactly two inner boundary components: a and a′, (see Definition 2.19
for the definition of inner boundary components). But any mapping class of PMod(Σ) which
globally preserves A should preserve the surface S, since S contains some natural boundary
components, and hence should preserve the pair {a, a′}. This is in contradiction with our
hypotheses, since the cardinality of the orbit of a under the action of K must be greater than or
equal to 3.

According to a) and b), the cardinalities of the sets A and sq(A) are equal.
2. Since A and sq(A) have the same cardinality, the map sq induces a graph isomorphism Ψ

from the graph Γ(Σ, A) to the graph Γ(Σg, 0, sq(A)). Moreover, as the map sq and the morphism
sq∗ are canonical, the action of K on Γ(Σ, A) induces an action of sq∗(K) on Γ(Σg, 0, sq(A)) and
the expected commutation properties hold. ¤
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8 Irreducible morphisms from Bn in PMod(Σ) with n > 6

In this section and the followings, n is an even integer greater than or equal to 6, Σ is a
surface Σg, b where g 6 n

2 and b > 0 and ρ is a morphism from Bn in PMod(Σ) such that
σp(G) = ∅.

To prove Theorem 12.2, the idea is to prove first that up to an element in the centralizer of
G, the elements of G are Dehn Twists. In this purpose, focusing on σ(G) will be efficient, but we
first need to prove that σ(G) is not empty! This is precisely the aim of this section. We argue by
contradiction. We assume that σ(G) is empty (we say that ρ is irreducible) and we prove that ρ
is then cyclic (cf. Theorem 8.2). Let us recall some basic facts on cyclic morphisms.

Recall on cyclic morphisms. (cf. Definition 5.1 and Lemmas 5.2 and 5.3)
Let n be an integer greater than or equal to 5 and ϕ a morphism from Bn in any group.

(i) The morphism ϕ is said to be cyclic if we have: ϕ(τ1) = ϕ(τ2) = · · · = ϕ(τn−1) = ϕ(τ0).

(ii) If there exist two distinct integers i and j in {0, 1, . . . , n−1} such that ϕ(τi) = ϕ(τj), then
the morphism ϕ is cyclic.

(iii) If the image of ϕ is an abelian group, the morphism ϕ is cyclic.

Definition 8.1 (Irreducible morphisms, periodic morphisms, pseudo-Anosov mor-
phisms).
We will say that ρ is an irreducible morphism from Bn if ρ(τ1) is an irreducible mapping class
(equivalently, if σ

(
ρ(τ1)

)
= ∅). If ρ(τ1) is periodic (respectively pseudo-Anosov), we will say

that ρ is periodic (respectively pseudo-Anosov).

Let us recall that in Bn, the standard generators are conjugate, so they are all reducible,
all periodic or all pseudo-Anosov. Moreover, the assertions σ

(
ρ(τ1)

)
= ∅ and σ

(G)
= ∅ are

equivalent. According to Definition 8.1, the key theorem of this section is Theorem 8.2:

Theorem 8.2. Any irreducible morphism from Bn in PMod(Σ) is cyclic.

We will distinguish the case of the periodic morphisms (cf. propositions 8.8 and 8.9) from the
one of the pseudo-Anosov morphisms (cf. Proposition 8.11). The proof of this theorem is short
when Σ has a nonempty boundary but the involved methods are inefficient when the boundary
of Σ is empty. When ∂Σ = ∅, we argue by contradiction: we assume that ρ is not cyclic,
we exhibit a finite subgroup of ρ(Bn) and we show that its cardinality exceeds the theoretical
maximal cardinality of a finite subgroup of Mod(Σ).

In the first subsection, we present some results on the relations in ρ(Bn), which will be useful
to fix a lower bound to the cardinality of some subgroups of ρ(Bn). The second and third
subsections (8.2 and 8.3) are devoted to the proof of Theorem 8.2 in the case of the periodic
morphisms and of the pseudo-Anosov morphisms, respectively.
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8.1 Cardinalities of some abelian subgroups of ρ(Bn)

Notation 8.3.

• Let ϕ be a morphism from Bn in some group. For any element ξ in Bn, we write ξ̄ instead
of ϕ(ξ).

• For all even positive integers positif N , let us denote by Imp(N) = {1, 3, . . . , N − 1} the
set of odd positive integers smaller than N . Let r be the integer n

2 . Thus Imp(n) contains
the r first odd positive integers.

• Let Ln be the free abelian subgroup
〈
τi , i ∈ Imp(n)

〉
Bn

of Bn.

The group Ln is isomorphic to Zr. The aim of this subsection is to study the algebraic
structure of the abelian group ϕ(Ln), that is to say to study the structure of the quotients of
Ln, cf. Lemma 8.5, and then to compute the cardinality of ϕ(Ln), cf. Lemma 8.7. Let us begin
by stating an elementary case.

Lemma 8.4. If there exist two distinct integers i and j smaller than or equal to n − 1 and a
nonzero integer ` such that τ̄ `

i = τ̄ `
j , then we have:

τ̄ `
1 = τ̄ `

2 = · · · = τ̄ `
n−1.

Proof. Let us distinguish the cases whether |i− j|n is equal to 1 or greater than 1.
1. Let us assume that |i− j|n = 1, for example j = i + 1. Then, by conjugating the equality

τ̄ `
i = τ̄ `

i+1 by the kth power of δ̄, where k ∈ {0, 1, . . . , n − 1}, we get: τ̄ `
k = τ̄ `

k+1. Whence the
conclusion.

2. Let us assume that |i−j|n > 2. Since n > 6, there exists ε ∈ {±1} such that |i−(j+ε)|n >
2. Hence:

(τ̄j τ̄j+ετ̄j)τ̄i(τ̄j τ̄j+ετ̄j)−1 = τ̄i and (τ̄j τ̄j+ετ̄j)τ̄j(τ̄j τ̄j+ετ̄j)−1 = τ̄j+ε.
Then τ̄ `

i = τ̄ `
j implies τ̄ `

i = τ̄ `
j+ε, whence τ̄ `

j = τ̄ `
j+ε, and we are back to the preceding case.

¤

Lemma 8.5. There exist four nonnegative integers M , m, d, s such that the group ϕ(Ln) is
isomorphic to the quotient of Ln by the three following relations:

τM
1 = τM

3 = · · · = τM
n−1 = 1, R1(M)

τm
1 = τm

3 = · · · = τm
n−1, R2(m)

(τ1τ3 . . . τ2r−1)d = τ s
1 . R3(d, s)

When M is nonzero, m and d are also nonzero and the integers M , m, d, s satisfy the following
divisibility relations:

• m divides M ;

• d divides m and m divides s;

• M divides (r − s
d)m;

Finally, d = 1 if and only if ϕ is cyclic (that is to say if m = 1).
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Remark. In the following subsection, we will apply this lemma to the image of ρ where ρ will
be a morphism from Bn in a mapping class group. The integer M will be then the order of ρ(τ1)
and the integer m will be the order of ρ(τ1τ

−1
3 ).

Proof.
0. Before starting, notice that if we choose M = m = d = s = 0, the quotient of Ln by(
R1(0), R2(0),R3(0, 0)

)
is equal to Ln.

1. Let us show that any relation that holds in ϕ(Ln) is equivalent to a set of relations of type R1,
R2 and R3.

Since Ln is abelian, any relation in ϕ(Ln) can be written as follows:

τ̄k1
1 τ̄k3

3 . . . τ̄
kn−1

n−1 = 1, (1)
where the ki, i ∈ Imp(n), are r not all zero. We are going to show that relation (1) is equivalent
to a set of relations of type R1(M), R2(m), R3(d, s) where M , m, d, s are some integers. We
distinguish three cases: a), b) and c) below.

a) If the ki are all equal, (1) is exactly the relation R3(k1, 0).
b) Suppose now that the ki are not all equal. Let us consider the differences |ki − kj |,

i, j ∈ Imp(n). They are not all zero. Let us assume for example that k1 − k3 6= 0. Then after
having conjugated (1) by τ̄1τ̄2τ̄1τ̄3τ̄2τ̄1, we get:

τ̄k1
3 τ̄k3

1

(
τ̄k5
5 . . . τ̄

kn−1

n−1

)
= 1. (2)

Now, if we compare (1) and (2), we have:
τ̄k1
1 τ̄k3

3 = τ̄k1
3 τ̄k3

1 , (3)
whence τ̄k1−k3

1 = τ̄k1−k3
3 , and hence, according to Lemma 8.4:

τ̄
|k1−k3|
1 = τ̄

|k1−k3|
2 = · · · = τ̄

|k1−k3|
n−1 . (4)

We repeat this argument for all the pairs (i, j) ∈ Imp(n)2, i 6= j. Let p be the greatest common
divisor of {|ki − kj | , i, j ∈ Imp(n)}. We get relation (5), which is equal to R2(p):

τ̄p
1 = τ̄p

2 = · · · = τ̄p
n−1. (5)

For all i ∈ Imp(n), the euclidian division of ki by p provides two integers qi and k′i such that
ki = qip + k′i where 0 6 k′i < p.

Since the ki, i ∈ Imp(n), differ one from the other by a multiple of p, the k′i, i ∈ Imp(n), are all
equal. Let us call k′ this integer. Thanks to relation (5), relation (1) implies:

τ̄k′
1 τ̄k′

3 . . . τ̄k′
n−1 = τ̄

(
−p

∑
qi

)
1 . (6)

In ϕ(Ln), relation (6) is equivalent to R1(−p
∑

qi) if k′ = 0, and is equivalent to R3(k′, −p
∑

qi)
if k′ 6= 0. Hence if the ki are not all equal, then relation (1) implies R2(p) and R1(−p

∑
qi),

or R2(p) and R3(k′, −p
∑

qi). And conversely, the set of the relations R2(p) and R1(−p
∑

qi)
implies relation (1), as does the set of the relations R2(p) and R3(k′, −p

∑
qi).

Finally, any relation in ϕ(Ln) is equivalent to a set of relations of type R1, R2 and R3. This
terminates the proof of step 1..

2. Let us now show that there exist four integers M , m, d, s such that ϕ(Ln) is isomorphic to
the quotient of Ln by the three relations R1(M), R2(m) and R3(d,s).

Let us define M , m, d, s as follows:

E1 =
{

k ∈ N∗ | τ̄k
1 = 1

}
and M =

{
min(E1) if E1 6= ∅
0 if E1 = ∅,
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E2 =
{

k ∈ N∗ | τ̄k
1 = τ̄k

3

}
and m =

{
min(E2) if E2 6= ∅
0 if E2 = ∅,

E3 =
{

k ∈ N∗ | (τ̄1τ̄3 . . . τ̄n−1)k ∈ 〈τ̄1〉
}
and d =

{
min(E3) if E3 6= ∅
0 if E3 = ∅,

s is chosen arbitrarily in
{

k ∈ N∗ | (τ̄1τ̄3 . . . τ̄n−1)d = τ̄k
1

}
.

Then by definition of M , m, d and s, the three relations R1(M), R2(m) and R3(d,s) hold in
ϕ(Ln). According to step 1., any relation like (1) comes from some relations of type R1(M),
M ∈ Z, R2(m), m ∈ Z and R3(d, s), d, s ∈ Z, that take place in ϕ(Ln). Let us then show that
any relation R of type R1, R2 or R3 that holds in ϕ(Ln) comes from the three relations R1(M),
R2(m) and R3(d,s).

• If R is of type R1: Let M ′ be a nonzero integer such that the relation R1(M ′) is satisfied
in ϕ(Ln). Then E1 is nonempty, hence M is nonzero. Notice that the union of both
relations R1(M) and R1(M ′) is equivalent to the relation R1(M ∧M ′), where a ∧ b is the
greatest common divisor of a and b. However, by definition of M , we have M 6 M ∧M ′,
so M = M ∧M ′, hence M divides M ′. Consequently, R1(M) implies R1(M ′).

• If R is of type R2: Similarly, any relation of type R2(m′) where m′ is a nonzero integer is
induced by R2(m).

• If R is of type R3: If there exist two nonzero integers d′ and s′ with d′ 6= 0 such that
R3(d′, s′) takes place in ϕ(Ln), then E3 is nonempty. So d is nonzero and the conjonction
of R3(d′, s′) and R3(d, s) induces R3(kd′ + `d, ks′ + `s), for all integers k and `. Let us
choose k and ` such that kd′ + `d = d′ ∧ d. By definition of d, we have d 6 (d′ ∧ d), so
d = (d′ ∧ d) and d divides d′. Let p be the integer d′/d. We have:

{
R3(d, s)
R3(d′, s′) ⇐⇒





R3(d, s)
R3(pd, ps)
R3(pd, s′)

⇐⇒




R3(d, s)
R3(pd, ps)
R1(|ps− s′|)

⇐⇒
{

R3(d, s)
R1(|ps− s′|)

Again, the definition of M implies that |ps−s′| is a multiple of M . Hence R3(d′, s′) comes
from the three relations R1(M), R2(m) and R3(d,s).

3. Let M , m, d and s be the integers defined in step 2.. According to step 2., ϕ(Ln) is
isomorphic to the group Ln quotiented by the three relations R1(M), R2(m), and R3(d,s). Let
us show that if M is nonzero, then m and d are also nonzero. Then let us determine the divisibility
relations that link these four integers.

• If M is nonzero, then R1(M) implies R2(M) and R3(M ,0), so by definition of m and d,
we have that m and d are nonzero.

• Since R1(M) implies R2(M), the relations R2(M) and R2(m) coexist in ϕ(Ln), so R2(M ∧
m) is satisfied, too. Then, by definition of m, m is smaller than or equal to M ∧m, so we
have m = M ∧m. Hence m divides M .

• Similarly, the relation R2(m) implies R3(m,rm). Now, R3(m,rm) and R3(d, s) imply a
third relation R3(u, v) where u = m ∧ d, and v is an integer determined by r, m, d and s.
But by definition of d, d is smaller than or equal to u. Hence d divides m.

133



• As for the integer s in R3(d, s), we have seen in step 1. that R3(d, s) implies R2(s), so m
divides s.

• We still have to show that M divides (r − s
d)m. Let us start from the relation R3(d,s) in

which we remplace τ̄ s
1 by τ̄kd

1 where k = s
d . We get:

[(
τ̄1τ̄3τ̄5 . . . τ̄n−1)τ̄−k

1

]d = 1, (7)

then: [
(τ̄3τ̄

−1
1 )(τ̄5τ̄

−1
1 ) . . . (τ̄n−1τ̄

−1
1 ) τ̄

(r−k)
1

]d = 1. (8)

Since m is a multiple of d, we get:
[
(τ̄3τ̄

−1
1 )(τ̄5τ̄

−1
1 ) . . . (τ̄n−1τ̄

−1
1 ) τ̄

(r−k)
1

]m = 1. (9)

Now, according to R2(m), for all i ∈ Imp(n) r {1}, we have (τ̄iτ̄
−1
1 )m = 1. Hence (9)

implies:

τ̄
(r−k)m
1 = 1.

In other words, R1
(
(r − k)m

)
takes place in ϕ(Ln). Then, as before, we deduce from

definition of M that M divides (r − k)m.

4. Let us show that ϕ is cyclic if and only if d = 1.
If ϕ is cyclic, then R2(1) holds, and so does R3(1, r). Conversely, if d = 1, let us show that

m = 1. Let ξ be the element τ s
1 . If d = 1, we have:

τ̄1τ̄3τ̄5 . . . τ̄n−1 = ξ̄, (10)
whence:

τ̄−1
1 τ̄−1

3 = τ̄5 . . . τ̄n−1ξ̄
−1. (11)

Since ξ̄ = τ̄ s
1 and m divides s, then ξ̄ is a multiple of τ̄m

1 . But according to the relation R2(m)
and Lemma 8.4, we have τ̄m

1 = τ̄m
2 = · · · = τ̄m

n−1, so τ̄m
1 is central in ϕ(Bn), so ξ̄ is central in

ϕ(Bn). According to equality (11), it follows that τ̄2 commutes with the right hand side, hence
τ̄2 commutes with the left hand side. So we get:

τ̄2τ̄
−1
1 τ̄−1

3 = τ̄−1
1 τ̄−1

3 τ̄2,
whence

τ̄1τ̄2τ̄
−1
1 = τ̄−1

3 τ̄2τ̄3,
but

τ̄−1
3 τ̄2τ̄3 = τ̄2τ̄3τ̄

−1
2 ,

so
τ̄1τ̄2τ̄

−1
1 = τ̄2τ̄3τ̄

−1
2 ,

and by conjugating by δ̄:
τ̄2τ̄3τ̄

−1
2 = τ̄3τ̄4τ̄

−1
3 ,

whence
τ̄1τ̄2τ̄

−1
1 = τ̄3τ̄4τ̄

−1
3 ,

then
τ̄2 =

(
τ̄1τ̄2τ̄

−1
1 )τ̄1(τ̄1τ̄2τ̄

−1
1

)−1 =
(
τ̄3τ̄4τ̄

−1
3 )τ̄1(τ̄3τ̄4τ̄

−1
3

)−1 = τ̄1,
so τ̄2 = τ̄1. Hence ϕ is cyclic. ¤
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Definition 8.6 (Ln(M, m, d, s)).
For all quadruples of integers (M , m, d, s), as soon as this definition makes sens (i.e. when m is a
multiple of d and M is a multiple of m, according to Lemma 8.5), let us denote by Ln(M,m, d, s)
the group 〈τi, i ∈ Imp(n)〉 quotiented by the relations (R1(M)), (R2(m)), (R3(d, s)). For
example, Ln(0, 0, 0, 0) ∼= Zr and Ln(M,M,M, rM) ∼= (Z/MZ)r.

Lemma 8.7 (Cardinality of Ln(M,m, d, s)).
For all M > 0, m > 2, d and s, the cardinality of Ln(M, m, d, s) is equal to qdmr−1 where q = M

m
and r = n

2 .

Proof. The group Ln(0, 0, 0, 0) is spanned by:
τ1,, τ3, τ5, . . . , τn−3, τn−1. (1)

Let us set ui = τiτ
−1
1 for all i ∈ Imp(n) r {1}. We set k = s

d (k is an integer for, according to
Lemma 8.5, d divides m which divides s). Then we set w =

(
u3u5 . . . un−3un−1

)
τ

(r−k)
1 . Thanks

to a change of variables, we go from the set (1) spanning Ln(0, 0, 0, 0) to the below set (2) still
spanning Ln(0, 0, 0, 0):

τ1, u3, u5, . . . , un−3, w. (2)
With this change of variables, the relation R1(M) is now equivalent to:

τM
1 = 1, uM

3 = 1, uM
5 = 1, . . . , uM

n−3 = 1, wM = 1. (3)
Let us denote by ξ 7→ ξ̄ the canonical morphism from Ln(0, 0, 0, 0) in Ln(M,M,M, rM), which
is the quotient of Ln(0, 0, 0, 0) by R1(M). According to Lemma 8.5, M divides (r − k)m, so in
Ln(M,M, M, rM), we have:

w̄m =
(
ū3ū5 . . . ūn−3ūn−1

)m
τ̄

(r−k)m
1 =

(
ū3ū5 . . . ūn−3ūn−1

)m.
Hence the relation R2(m) in Ln(M,M,M, rM) is equivalent to:

ūm
3 = 1, ūm

5 = 1, . . . , ūm
n−3 = 1, w̄m = 1. (4)

Finally, in Ln(M,M, M, rM), the relation R3(d,s) is: (τ̄1τ̄3 . . . τ̄n−1)d = τ̄ s
1 . Let us replace τ s

1 by
τkd
1 , the relation R3(d, s) is equivalent to

[(
τ1τ̄3τ̄5 . . . τ̄n−1)τ̄−k

1

]d = 1, and then to
[
(τ̄3τ̄

−1
1 )(τ̄5τ̄

−1
1 ) . . . (τ̄n−1τ̄

−1
1 ) τ̄

(r−k)
1

]d = 1,
so the relation R3(d, s) in Ln(M,M, M, rM) is equivalent to:

w̄d = 1. (5)
Finally, since m divides M and since d divides m, the set of relations R1(M), R3(m) and R3(d,s)
is equivalent in Ln(0, 0, 0, 0) to:

τM
1 = 1, um

3 = 1, um
5 = 1, . . . , um

n−3 = 1, wd = 1. (6)
Therefore a presentation by generators and relations of the group Ln(M, m, d, s) can be obtained
from the lines (2) and (6). Therefore Ln(M,m, d, s) is isomorphic to Z/MZ×(

Z/mZ
)r−2×Z/dZ.

So its cardinality is Mmr−2d = qdmr−1 where q = M
m . ¤

8.2 Periodic morphisms from Bn in PMod(Σg, b), b > 0

In the first proposition, we deal with the case where the boundary of Σ is non-trivial (Σ = Σg, b

with b > 0). The remainder of this subsection is devoted to the case without boundary (b = 0),
which is harder. For all morphisms ρ from Bn in PMod(Σ) and for all i 6 n− 1, we denote by
Ai the mapping class ρ(τi).
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Proposition 8.8 (The periodic morphisms from Bn in PMod(Σg, b), b > 0, are cyclic).
Any periodic morphism ρ from Bn in PMod(Σg, b) where g 6 n

2 and b > 0 is cyclic.

Proof. Let ρ be a periodic morphism from Bn in PMod(Σ). Notice that the mapping classes
Ai for all i 6 n− 1 are conjugate. So they are periodic and have the same order. Let us call m
this order.

Since the boundary of Σ is nonempty, according to Lemma 3.19, A1 and A4 span a cyclic
group that we denote by Γ. Any generator of Γ is a product of powers of A1 and A4, so Γ is a cyclic
group of order m. Now, the subgroups of Γ spanned on one hand by A1 and on the other hand
by A4 have the same order m, so each of A1 and A4 spans independently Γ. Thus, in G, any two
standard generators that commute span the same cyclic group. Hence A2 span the same cyclic
group as A4, that is, the same cyclic group as A1. In particular A2 and A1 commute. But A2 and
A1 satisfy a braid relation, so they have to be equal. Then, according to Lemma 5.2, ρ is cyclic.

¤

Proposition 8.9 (The periodic morphisms from Bn in Mod(Σg, 0) are cyclic).
Let n be an integer greater than or equal to 6 and Σ the surface Σg, 0 such that g 6 n

2 . Any
periodic morphism ρ from Bn in Mod(Σ) is cyclic.

Let us recall a classic lemma in the finite group theory:

Lemma 8.10. For all integers n greater than or equal to 5, the only quotients of Sn are {1},
Z/2Z and Sn.

Proof. Let Q be a quotient group of Sn by a normal subgroup N . Since N is normal in Sn,
N ∩ An is normal in the alternating group on n letters An. But An is simple, so N ∩ An is
one of the two groups {1} or An. Then if N ∩ An = An, we have N ∈ {

An, Sn

}
, and then

Q ∈ {
Z/2Z, {1}}

. And if N ∩ An = {1}, then N = {1} as we will see it, so Q = Sn.
Assume that N∩An = {1}. The kernel of the restriction to N of the signature ε : Sn → {±1}

is N ∩ An, hence the restriction to N of the signature is injective, so N = {1} or N is a group
with two elements: {1, a}. Since N is normal in Sn, the conjugate elements of a in Sn are equal
to a, hence a is central. But the center of Sn is trivial, so N is not a group with two elements.
So N = {1}. ¤

We can now attack the proof of Proposition 8.9.

Proof of Proposition 8.9. We argue by contradiction. Let ρ be a periodic morphism. We
assume that ρ is not cyclic. We separate the cases according to the orders of A1 and A3A

−1
1 (the

order of A3A
−1
1 is different from 1 since ρ is not cyclic).

1. When A1 is of order 2.
If for all i 6 n − 1, the mapping class Ai is of order 2, then ρ(Bn) is isomorphic to a quotient
of the symmetric group Sn. But, according to Lemma 8.10, the only non-trivial quotient of Sn

with n > 6 is Z/2Z, however we assume that ρ is not cyclic, so ρ(Bn) has to be isomorphic to
the group Sn. In particular, ρ(Bn) is finite, and its cardinality is:

n! = (n− 1)!× n > 5!× n = 120n > 240g.
Now, according to Corollary 3.26, the cardinality of a finite subgroup ofMod(Σ) is bounded by
42|χ(Σ)| = 84g − 84, whence a contradiction.
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2. When A1 is not of order 2, but A3A
−1
1 is of order 2.

If (A3A
−1
1 )2 = 1, then A2

3 = A2
1, so according to Lemma 8.4, we have A2

1 = A2
2 = · · · = A2

n−1. Let
Z be the centralizer ZMod(Σ)(A2

1) of A2
1 in Mod(Σ) and let p be the canonical morphism from

Z in Z/〈A2
1〉. Notice that ρ(Bn) is included in Z, so we can consider the morphism p ◦ ρ from

Bn in Z/〈A2
1〉. It is not cyclic, for A3A

−1
1 is not a power of A2

1: indeed, if it existed an integer k

such that A3 = A
(1+2k)
1 , by conjugation, we would have A5 = A

(1+2k)
1 , and so A3 = A5. But this

is absurd for ρ is not cyclic. Thus, the morphism p ◦ ρ is not cyclic, but p ◦ ρ(τ2
1 ) = p(A2

1) = 1.
Then, as we have seen it in step 1., p ◦ ρ(Bn) is isomorphic to the group Sn and hence contains
at least 240g elements. But ρ(Bn) is a (central) extension of p ◦ ρ(Bn) by the finite group 〈A2

1〉,
in other words, the following sequence is exact:

1 → 〈A2
1〉 → ρ(Bn)

p−→ p ◦ ρ(Bn) → 1.
Hence ρ(Bn) is a finite group that contains at least 480g elements. As in step 1., this is absurd.

3. Where A1 is of order M > 3 and A3A
−1
1 is of order m with 3 6 m 6 M .

According to Kerckhoff’s Theorem (cf. 3.15), the abelian group 〈Ai, i ∈ Imp(n) 〉 being finite,
there exist a hyperbolic metric g on Σ and an injective morphism from 〈Ai, i ∈ Imp(n) 〉 in
Isom(Σ ; g). Let us denote by F its image and Āi the image of Ai for all i ∈ Imp(n). Let us
recall that we assume that ρ is not cyclic, so Ā1 6= Ā3. We will show that the action of F on the
points of Σ is free, for if an element of F had a fixed point in Σ, it would automatically have
many, actually too much compared with Corollary 3.22. We will conclude by showing that if the
elements of F do not have any fixed point, the inequality linking χ(Σ) and χ(Σ/〈F〉) given by
Lemma 3.20 cannot be satisfied, whence the contradiction.

a) Let us show that the action of F on Σ is free.
Let x be a point of Σ and let Stab(x) be the subgroup of F that fixes the point x. Let us

assume that Stab(x) is not reduced to {1}. Let us recall that two isometries that fixes a same
point and that have the same differential in this point are equal (cf. Lemma 3.16). But the
differential of an isometry in a fixed point is a rotation. Therefore Stab(x) is a cyclic group. Let
G be an isometry spanning Stab(x), let M ′ be its order, with 2 6 M ′ 6 M , for on one hand G
is not the identity, on the other hand G belongs to the abelian group F spanned by elements of
order M . We are going to count the number ` of fixed points of G. On one hand, according to
Corollary 3.22, we have:

` 6 2 +
2g

M ′ − 1
. (1)

On the other hand, if G commutes with another isometry G′, then the images by G′ of all fixed
points of G are again fixed points of G. Since the group F is abelian, the set of fixed points of
G contains the orbit of x by the group F , so:

|Orb(x)| 6 `, (2)
where Orb(x) is the orbit of x. By definition of F and according to Lemma 8.5, there exist four
integers M ′, m′, d and s such that F is isomorphic to Ln(M ′,m′, d, s). Now, since M is the
order of A1 and m is the order of A3A

−1
1 , we have M ′ = M and m′ = m. Hence F is isomorphic

to Ln(M, m, d, s) and according to Lemma 8.7, the cardinality of F is qd(m)r−1 where q = M
m

and r = n
2 . We can then compute the cardinality of the orbit of x:

|Orb(x)| = |F|
|Stab(x)| =

qd(m)r−1

M ′ . (3)

From (1), (2) and (3), we get:
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qd(m)r−1

M ′ = |Orb(x)| 6 ` 6 2 +
2g

M ′ − 1
. (4)

By multiplying all by M ′
q , we get:

d(m)r−1 6 2
M ′

q
+ 2g

1
q

M ′

M ′ − 1
. (5)

Since M ′
q 6 M

q = m, we can bound M ′
q by m. We bound g by r, 1

q by 1, and M ′
M ′−1 by 2. Then

(5) becomes:

d(m)r−1 6 2m + 4r, with





r = n
2 > 3,

d > 2 and d divides m, according to Lemma 8.5,
m > 3 by hypothesis.

(6)

When m = 3, we have d = 3, so (6) becomes:
3r 6 6 + 4r, (7)

but this equation is never satisfied for r > 3 (for r = 3, we get 27 6 6 + 12 which is absurd, and
for r > 3, this is even more flagrant). When m > 4, let us consider equation (6), we bound 4r
by mr in the right hand side, we divide the left hand side and the right hand side by m, then in
the left hand side, we replace m by its lower bound: 4, and d by its lower bound: 2. We get:

2× 4(r−2) 6 2 + r, (8)
that is not satisfied for r = 3 and certainly not for r > 3. Thus, it was absurd to assume that
Stab(x) 6= {1}. Hence the action of F on Σ is free.

b) Let us apply the Riemann-Hurwitz’ formula (cf. Lemma 3.20) to the finite group F :
χ(Σ) +

∑
(|F| − o(Qi)) = |F|.χ(Σ/F). (9)

The surface Σ satisfies χ(Σ) = 2− 2g. Besides, as the action of F on Σ is free, there is no point
of ramification Qi in the surface Σ/F hence

∑
(|F| − o(Qi)) = 0. So the two terms of equality

(9) are negative. Since the elements of F preserve the orientation, Σ/F is an orientable closed
surface with χ(Σ/F) 6 −2. But the order of F is qd(m)r−1 with q > 1, d > 2, m > 2 and r > g,
so |F| > 2g, so the equality (9) implies 2− 2g 6 2g(−2), i.e.:

g > 1 + 2g, with g > 0, (10)
which is absurd. ¤

8.3 Pseudo-Anosov morphisms from Bn in PMod(Σg, b), b > 0

Proposition 8.11 (The pseudo-Anosov morphisms from Bn in PMod(Σ) are cyclic).
Let n be an integer greater than or equal to 6 and let Σ be a surface Σg, b where g 6 n

2 . Any
pseudo-Anosov morphism from Bn in PMod(Σ) is cyclic.

Proof. Let ρ : Bn → PMod(Σ) be a pseudo-Anosov morphism. For all i 6 n− 1, we set again
Ai = ρ(τi).

1. The mapping class A1 is pseudo-Anosov, so according to Theorem 3.32, its centralizer is
virtually infinite cyclic. Since the mapping class A3 commutes with A1, there exist two nonzero
integers p and p′ such that Ap′

1 = Ap
3. By conjugating this equality by A3A4A3, we get Ap′

1 = Ap
4.

Hence Ap
3 = Ap

4, so according to Lemma 8.4:
Ap

1 = Ap
2 = Ap

3 · · · = Ap
n−1. (1)
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Let us exploit this. We separate the cases whether b > 0 (cf. 2.) or b = 0 (cf. 3. - 5.).
2. When b > 0, we produce a direct proof. According to Proposition 5.12, there exists ρ̃,

a lift of ρ ∈ Hom(Bn, PMod(Σ)) in Hom(Bn, Mod(Σ, ∂Σ)). For all i 6 n − 1, let us denote
by

∼
Ai the mapping class ρ̃(τi), so that

∼
Ai is a lift of Ai. Let us set then W =

∼
A3

∼
A−1

1 . Since
Ap

1 = Ap
3, the mapping class W p is a multitwist along the boundary components. Let Z be the

mapping class (
∼
A1

∼
A2

∼
A3)2. Then Z

∼
A1Z

−1 =
∼
A3 and Z

∼
A3Z

−1 =
∼
A1, so ZW pZ−1 = W−p. Since

W is central in Mod(Σ, ∂Σ), Z and W p commute, so we have W 2p = Id . But Mod(Σ, ∂Σ) is
torsion-free according to Lemma 3.17, so W = Id . Hence

∼
A1 =

∼
A3 and ρ̃ is cyclic, hence ρ is

cyclic.

3. When b = 0, we argue by contradiction and we assume that ρ is not cyclic. Then,
according to Lemma 8.4, the Ai, 1 6 i 6 n− 1, are pairwise distinct. Let us consider the group
Cẽntr(Ap

1) (cf. Definition 3.28 of Subsection 3.4). According to (1), ρ(Bn) ⊂ Cẽntr(Ap
1). Let `

be the morphism associated to Ap
1 defined by Proposition 3.30. According to this proposition,

the cardinality of Ker (`) satisfies:
|Ker (`)| 6 6|χ(Σ)|. (2)

Since all the Ai, i 6 n− 1, are conjugate in Cẽntr(Ap
1), `(Ai) is independent of the index i when

i ranges from 1 to n − 1. Hence the group spanned by AjA
−1
k where j, k 6 n − 1 is included

in Ker (`). Yet, we are going to show that its cardinality is greater than 6|χ(Σ)|, whence the
contradiction.

4. Let us assume that (A1A
−1
3 ) is of order p = 2. Recall that ρ is not cyclic, so A1 and A3

are different. Then the subgroup F of Ker (`) defined by:
F :=

〈
AiA

−1
n−1 ; 1 6 i 6 n− 3

〉

is isomorphic to a quotient Sn−2 by the morphism: (12) 7→ A1A
−1
n−1, (23) 7→ A2A

−1
n−1, . . . ,

(n− 3, n− 2) 7→ An−3A
−1
n−1. However, A1 6= A3, so this quotient is neither {1} nor Z/2Z. Then,

when n > 8, according to Lemma 8.10, this quotient is Sn−2. When n = 6, the only quotient of
S4 different from {1}, Z/2Z and S4 is the quotient of S4 by the normal closure of the element
(12)(34). The image of (12)(34) in F is (A1A

−1
5 )(A3A

−1
5 ), which is equal to A1A3A

−2
5 , hence

equal to A1A
−1
3 , for A−2

3 = A−2
5 according to (1). Since A1 6= A3, A1A

−1
3 is not trivial. Hence

F is not isomorphic to the above quotient of S4. Then, even when n = 6, F is isomorphic to
Sn−2. Hence Ker (`) contains F that owns (n− 2)! elements. When n > 8, we get:

|Ker (`)| > |F| = (n− 2)! > 5!(n− 2) > 6(n− 2) > 6(2g − 2) = 6|χ(Σ)|. (3)

But (2) and (3) lead to a contradiction, this is the expected contradiction.
The case n = 6 implies |F| = |S4| = 4! = 24 > 6|χ(Σ)|, since n = 6 implies that g 6 n

2 = 3,
and then |χ(Σ)| 6 4. However Ker (`) contains the element An−2A

−1
n−1, too, which is different

from any element of F , for F is in the centralizer of An−1, whereas An−2A
−1
n−1 is not. Indeed,

if An−2A
−1
n−1 was in the centralizer of An−1, then An−2 and An−1 would commute. However

they satisfy a braid relation, so they would be equal and ρ would be cyclic: this is absurd. Thus
Ker(`) contains F and the element An−2A

−1
n−1, which does not belong to F . Since the cardinality

of F satisfies |F| > 6|χ(Σ)|, then the cardinality of Ker (`) satisfies |Ker (`)| > 6|χ(Σ)|, which
contradicts (2). This is the expected contradiction.

5. Let us assume that (A1A
−1
3 ) is of order p > 3 and let us consider the abelian groups H

and H′ defined by:
H :=

〈
Ai , i ∈ Imp(n)

〉
Mod(Σ)

and H′ := 〈
AiA

−1
n−1 , i ∈ Imp(n− 2)

〉
Mod(Σ)

.
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Let us apply Lemma 8.5 to these two groups:

• Concerning the group H. It is clear that there exist two integers d and s such that H
is isomorphic to Ln(0, p, d, s), where d 6= 1, d divides p, and p divides s, according to
Lemma 8.5. Moreover, since `(A1) = · · · = `(An−1) > 0, all these relations have to be
homogeneous, so by considering the relation R3(d, s), it follows s = rd. The relation
R3(d, s) then becomes:

( ∏
i∈Imp(n)

Ai

)d = Ard
1 , (4)

and it implies:
( ∏
i∈Imp(n−3)

AiA
−1
n−1

)d = (A1A
−1
n−1)

rd, (5)

• Concerning the group H′. It is clear that H′ is isomorphic to Ln−2(p, p, d′, s′) where d′ and
s′ are to be determine. The relation (R3(d′, s′)) is equivalent to:

( ∏
i∈Imp(n−3)

AiA
−1
n−1

)d′ = (A1A
−1
n−1)

s′ , (6)

and implies:
( ∏
i∈Imp(n)

Ai

)d′ = As′
1 A

(rd′−s′)
n−1 . (7)

Since p divides s′, according to Lemma 8.5, we have As′
1 = As′

n−1 and (7) becomes:
( ∏
i∈Imp(n)

Ai

)d′ = A rd′
n−1. (8)

In (8), by conjugation, we can replace A rd′
n−1 by A rd′

1 . Let us compare the equalities (4) and (8).
By definition of d, it follows from that comparison that d divides d′. Moreover, by comparing
(5) and (6), it follows by definition of d′ that d′ divides d. Thus d′ = d, so H′ is isomorphic to
Ln−2(p, p, d, s′), and according to Lemma 8.5, the following holds:

d > 2, d divides p. (9)
Then according to Lemma 8.7, |H′| = dpr−2. The only pairs (p, d) that respect (9) and such
that p < 6 are (3,3), (4,2), (4,4) and (5,5). However, if (p, d) = (4, 2), then r is even. Indeed, as
we saw it in the lines preceding (4), p divides s and s is equal to rd. We check in the following
table all the possible values of dpr−2 for the pairs (p, d) where p < 6, as a function of r, and we
give a lower bound to the values dpr−2 for the pairs (p, d) with p > 6, as a function of r.

r\
(p, d) (3, 3) (4, 2) (4, 4) (5, 5) (p, d)) with p > 6

r = 3 9 − 16 25 dpr−2 > 2× 6 = 12
r = 4 27 32 64 125 dpr−2 > 2× 62 = 72
r > 5 27× 3r−4 32× 4r−4 64× 4r−4 125× 5r−4 dpr−2 > 2pr−2 = 72× 6r−4

Table 1 – Computation of dpr−2 as a function of d, p and r.

According to Table 1, for all r > 3, the expression dpr−2 achieves its lower bound when p = d = 3,
hence:

|H′| > 3r−1. (11)
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However, Ker (`) contains also the element A2A
−1
n−1, which is of order p, too. And A2A

−1
n−1 does

not commute with A1 (otherwise, A2 would commute with A1, we would have A1 = A2 and ρ
would be cyclic). Since H′ is in the centralizer of A1, the mapping class A2A

−1
n−1 cannot belong

to H′. Similarly (A2A
−1
n−1)

−1 cannot belong to H′. But A2A
−1
n−1 and its inverse are distinct, for

p > 3. Then the group
〈H′ ∪A2A

−1
n−1

〉
contains the following set:{

H(A2A
−1
n−1)

k, H ∈ H′, k ∈ {−1, 0, 1}}
.

Its cardinality is 3|H′|. Hence |Ker (`)| > 3r. But for all integers of r > 3, the number 3r is
greater than 6(2r − 2), which is greater than or equal to 6|χ(Σ)|. Thus:

|Ker (`)| > 6|χ(Σ)|. (12)

This contradicts assertion (2). This is the expected contradiction and the end of the proof.
¤
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9 Properties of the curves of σ(G); the special curves σs(G)

Let us recall that n is an even integer greater than or equal to 6, Σ is a surface Σg, b where
g 6 n

2 and b > 0, and ρ is a morphism from Bn in PMod(Σ) such that σp(G) = ∅. It will be
practical to adopt the following convention:

Notation 9.1. For all integers k and all nonzero integer d, let us denote by [k]d the remainder
of the euclidian division of k by d. Moreover, recall that to simplify the notation, we write Ak

instead of A[k]n , and τk instead of τ[k]n .

Moreover, we assume that ρ is not cyclic, so according to Theorem 8.2, σ(G) is nonempty. We
will use the canonical reduction systems σ(A0), σ(A1), . . . ,σ(An−1) to study A0, A1, . . . , An−1,
and deduce some information on ρ.

However, we have to face several difficulties. For example a curve of σ(G) can belong to the
canonical reduction systems of several elements of G. In the extreme case, the elements of G
might all have the same canonical reduction system, without ρ being cyclic. Another difficulty
would be that, a priori, σ(G) is not preserved by the action of Bn via ρ.

We will show in this section that the set σ(G) admits a partition in two subsets denoted by
σn(G) and σs(G). They answer to the above raised difficulties: the curves of σn(G) are stable
by the action of Bn on Curv(Σ) and are included in the canonical reduction system of all the
mapping classes of G, whereas each curve of σs(G) belongs to the canonical reduction system of
a unique mapping class of G.

9.1 Outline of the section and proved results

The two first subsections present technical results which are essential to this section and will
be used again in the next sections:
• In Subsection 9.2, we study the Bn-stable curve simplex and show Proposition 9.2 (where the
term of cyclic action, recurrent in the sequence of this paper, is made precise by Definition 9.11)
:

Proposition 9.2 (Any action of Bn on a Bn-stable curve simplex is cyclic).
Let A be a curve simplex in Curv(Σ) stable by the action of Bn via ρ on Curv(Σ). Then the
actions of Bn induced by ρ on A, on SubA(Σ) and on Bndy(ΣA) are cyclic, i.e. the elements of
τi, i ∈ {0, 1, . . . , n− 1} have the same actions.

• In Subsection 9.3, we present the action of the cyclic subgroup J of Bn spanned by δ on σ(G)
where δ is the element τ1τ2 . . . τn−1 of Bn, and we show Proposition 9.3:

Proposition 9.3. Let a be a curve of σ(G). Then J .a contains at most n curves. The limit
case |J .a| = n can be achieved only when J .a is not a simplex.

• During the subsections 9.4 - 9.5, we will be interested by properties that some curves of σ(G)
satisfy, see Proposition 9.4. These properties are related to the spectrum of a curve a, which we
denote by sp(a) and wich we define by:

sp(a) = {A ∈ G | a ∈ σ(A)}.
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One of the goals of this section is to completely describe the map sp : Curv(Σ) → P(G) (the
power set of G) that we will call the spectrum of a, (cf. Subsection 9.3). In Subsection 9.4, we
aim to show the following proposition.

Proposition 9.4. Any curve a belonging to σ(G) satisfies either all the left hand side properties
(1g) - (6g), or all the right hand side properties (1d) - (6d).

(1g) I(a, δ.a) = 0 ; I(a, δ.a) 6= 0 (1d)

(2g) |sp(a)| > 2 ; |sp(a)| = 1 (2d)

(3g) I(a, σ(G)) = 0 ; I(a, σ(G)) 6= 0 (3d)

(4g) ∀k, sp(a) 6⊂ {Ak, Ak+2} ; ∃k | sp(a) ⊂ {Ak, Ak+2} (4d)

(5g) |J .a| < n ; |J .a| = n (5d)

(6g) J .a is a simplex ; J .a is not a simplex (6d)

This proposition prompts us to set the following definitions:

Definition 9.5 (Normal curves, special curves).
– A curve a belonging to σ(G) will be said to be special if it satisfies I(a, σ(G)) 6= 0, in other

words if it satisfies the right-and side assertions of Proposition 9.4. We denote by σs(G) the set
of special curves and we set σs(A) = σs(G) ∩ σ(A).

– A curve a belonging to σ(G) will be said to be normal if it satisfies I(a, σ(G)) = 0, in other
words if it satisfies the left hand side assertions of Proposition 9.4. We denote by σn(G) the set
of normal curves and we set σn(A) = σn(G) ∩ σ(A).

Example. Let Σ be the surface Σ4,2 and ρ the morphism from B8 in PMod(Σ) such that for
all integers i ∈ {1, . . . , n− 1}, we have:

ρ(τi) = Tai V ,
where V is a mapping class that commutes with the Tai and such that σ(V ) = {x1, x2, x3, x4},
where the curves ai and the curves xk are the ones drawn in Figure 58. In this example, for all
i, we have:

σ(Ai) = σs(Ai)︸ ︷︷ ︸
{ai}

∪ σn(Ai)︸ ︷︷ ︸
{xk, 16k64}

.

Figure 58: Example of special curves and normal curves.

• Then in Subsection 9.5, we will show the following stability and existence results:

Proposition 9.6 (Stability of the special curves).
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(i) The set σs(G) is J -stable.

(ii) For all i, σs(Ai) is stable by any element of G r {Ai−1, Ai+1}.

Proposition 9.7 (Stability of the normal curves).
The set σn(G) is Bn-stable and the actions of Bn via ρ on σn(G), on Subσn(G)(Σ) and on
Bndy(Σσn(G)) are cyclic.

The spectrum in G of the special curves is reduced to one single mapping class, according
Proposition 9.4. The following proposition is a consequence of the preceding one and states the
situation concerning the normal curves.

Proposition 9.8 (Spectrum of the normal curves).
The spectrum of a normal curve is always equal to G.

Proposition 9.9 (Existence of the special curves).
The set σs(G) is not empty.

We can bring some precisions:

Proposition 9.10 (Cardinality of σs(G)). The set σs(G) contains n or 2n curves.

• Finally in Subsection 9.6, we gather the results of the preceding subsections concerning the
normal and special curves in Proposition 9.23.

9.2 Action of Bn on the simplexes of curves

In this subsection, we show the following proposition. It involves the concept of cyclic action
defined below.
Proposition 9.2 (All action of Bn on a Bn-stable curve simplex is cyclic).
Let A be a curve simplex in Curv(Σ) stable by the action of Bn via ρ on Curv(Σ). Then the
actions of Bn induced by ρ on A, on SubA(Σ) and on Bndy(ΣA) are cyclic.

Definition 9.11 (Cyclic action).

• An action of a group G on a set E will be said to be cyclic if the morphism ϕ of G in S(E)
associated to this action is such that the quotient G/Ker (ϕ) is a cyclic group.

• A cyclic action on a set E will be an action of a cyclic group (Z or one of its quotients) on
E .

• A cyclic action on a graph Γ will be the data of a morphism from Z or one of its quotients
in Aut(Γ). Let us make clear that an automorphism of Γ is a pair of bijections, one is
acting on the vertices, the other on the edges, such that the images of the extremities of
an edge are the extremities of the image of this edge.

This definition is compatible with the one of cyclic action of Bn in the mapping class group.
The existence of cyclic actions of Bn encourages us to define the following subgroups of Bn:
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Definition 9.12. There exists a morphism from Bn in Z called the degree, traditionally denoted
by λ and defined by λ(τi) = 1 for all i ∈ {1, 2, . . . , n− 1}. We define the following subgroups of
Bn:

Fn :=
〈〈 τiτ

−1
1 , 3 6 i 6 n− 1 〉〉Bn

,

F∗n :=
〈
τiτ

−1
1 , 3 6 i 6 n− 1

〉
Bn

.

where
〈〈 〉〉Bn

refers to the normal closure in Bn, so that Fn = Ker (λ).

The definition of Fn is justified by the following lemma. The one of F∗n is justified by the
fact that F∗n is isomorphic to the group Bn−2 while it is included in Fn.

Lemma 9.13. Given a set E on which Bn acts, the action of Bn is cyclic if and only if the action
restricted to Fn is trivial, if and only if the action restricted to F∗n is trivial

Proof. Let E be a set on which Bn acts and let Φ be the morphism Bn → Aut(E) associated to
this action. According to the definition of λ, any morphism from Bn is cyclic if and only if its
kernel contains Ker (λ). Since Fn coincides with Ker (λ), the action of Bn in E is cyclic if and
only if the kernel of Φ contains Fn, in other words if and only if the action restricted to Fn on
E is trivial.

Moreover, if the action of F∗n on E is trivial, then τ1 and τ3 have the same action on E . Then
the action of Bn on E is given by a morphism from Bn in Bij(E) that sends τ1 and τ3 on the
same image, where Bij(E) is the group of the bijections of E . Hence according to Lemma 5.2,
this morphism is cyclic, so the action of Bn on E is cyclic. The converse is obvious. ¤

The main result that we will use, allowing us to declare that an action is cyclic, is the
following, due to Artin.

Proposition 9.14 (Artin, cf. [At3]). For all integers n greater than or equal to 5, any action
of Bn on a given set E having strictly less than n elements is cyclic, and the action restricted to
Fn is trivial. ¤

Thanks to Lemma 9.13 and of Proposition 9.14, we can show Proposition 9.2.

Proof of Proposition 9.2. Let us recall the statement. Let n be an even integer greater than
or equal to 6, Σ a surface Σg, b where g 6 n

2 and ρ a morphism from Bn in PMod(Σ). Let A be
a curve simplex in Curv(Σ) stable by the action of Bn via ρ on Curv(Σ). We want to show that
the actions induced by Bn on A, on SubA(Σ) and on Bndy(ΣA) are cyclic.

1. Let us show that the action of Bn on SubA(Σ) is cyclic.
Since the action of Bn on Curv(Σ) preserves A, the action of Bn on Sub(Σ) preserves SubA(Σ).
Let us then consider the action of Bn on SubA(Σ).

The subsurfaces whose natural boundary is nonempty are fixed points of the action of Bn.
Let C be the set of the subsurfaces of SubA(Σ) that have no natural boundary. For all S ∈ C,
we have χ(S) = χ(for∂Σ(S)). Now, the sum

∑
S∈C χ(for∂Σ(S)) is greater than or equal to

χ(Σg, 0) = 2− 2g. Moreover, for all S ∈ C, χ(for∂Σ(S)) 6 −1, hence the cardinality of C satisfies
|C| 6 2g − 2, and finally |C| 6 n − 2. Hence according to Proposition 9.14, Bn acts cyclicly on
the surfaces of C. Finally, Bn acts cyclicly on SubA(Σ).

2. Let us show that the action of Fn on A is trivial. Then, according to Lemma 9.13, the
action of Bn on A is cyclic.
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Let a be a curve of A. We are going to study the action of Fn on Bn.a. We distinguish two
cases, whether |Fn.a| < n− 2 or not. In both cases, we will show that the action of Fn on Bn.a
is trivial. This will be enough for A is a union of orbits of curves under the action of Bn.

2.a) Case where the curve a satisfies |Fn.a| < n− 2.
Let c be a curve in Bn.a and let γ be an element of Bn such that c = γ.a. Since Fn is normal in
Bn, it follows that Fn = {γϕγ−1, ϕ ∈ Fn}. Then we have:

|Fn.c| = ∣∣{γϕγ−1.c , ϕ ∈ Fn}
∣∣ =

∣∣{γϕ.a , ϕ ∈ Fn}
∣∣ =

∣∣{ϕ.a , ϕ ∈ Fn}
∣∣ = |Fn.a| < n− 2. (∗)

Let us distinguish two sub-cases, whether n > 8 or n = 6:

• When n > 8, we can apply Proposition 9.14 to the action of F∗n on Fn.c. In particular,
ρ(τ3τ

−1
1 ) and ρ(τ5τ

−1
1 ) have the same action on the curves of Fn.c.

• When n = 6, we cannot apply Proposition 9.14 to F∗n for F∗n is isomorphic to a braid group
of rank 4 only. We have seen that the orbit of c under Fn contained at most three elements
according to (∗). Hence the action of F∗n on Fn.c is described by a morphism from B4 in
S3. Since such a morphism sends the standard generators τ1, τ2 and τ3 of B4 on three
conjugate elements in S3, they must be three transpositions, three 3-cycles, or three times
the identity.

– If τ1, τ2 and τ3 are sent on three transpositions, since τ1 and τ3 commute, then they
are sent on the same element;

– If τ1, τ2 and τ3 are sent on three 3-cycles, then the morphism is cyclic for the set of
3-cycles span in S3 a subgroup isomorphic to Z/3Z;

– If τ1, τ2 and τ3 are sent on three times the identity, then the morphism is trivial.

So whatever this morphism from B4 to S3 is, the elements τ1 and τ3 have the same image.
This means that in the group F∗n, the mapping classes ρ(τ3τ

−1
1 ) and ρ(τ5τ

−1
1 ) have the

same action on Fn.c.

Finally, for any c ∈ Bn.a and for any even integer n greater than or equal to 6, the mapping
classes ρ(τ3τ

−1
1 ) and ρ(τ5τ

−1
1 ) have the same action on Fn.c, so their difference ρ(τ5τ

−1
3 ) (equal

to ρ(τ5τ
−1
1 )ρ(τ3τ

−1
1 )−1) fixes each curve of Fn.c. Since this is true for all c ∈ Bn.a, we conclude

that ρ(τ5τ
−1
3 ) fixes each curve of Bn.a. Then for all ξ ∈ Bn, the mapping class ρ(ξτ5τ

−1
3 ξ−1)

fixes each curve of {ξ.(β.a), β ∈ Bn}. Now, on one hand, the normal closure of τ5τ
−1
3 in Bn is

Fn, on the other hand, the set {ξ.(β.a), β ∈ Bn} coincides with Bn.a. Therefore, we have just
shown that Fn acts trivially on Bn.a via ρ.

2.b) Case where the curve a satisfies |Fn.a| = m > n− 2.
Let S and S′ be the two subsurfaces (possibly equal) of SubA(Σ) containing the curve a in their
boundary. Since the action of Fn is trivial on SubA(Σ), the set of curves Fn.a is included in
Bndy(S) ∩ Bndy(S′), so:

• if S 6= S′, S and S′ are two subsurfaces glued together along at least m curves in Σ, so the
surface resulting from the gluing is a subsurface of Σ of genus at least m− 1, so g > m− 1,

• and if S = S′, then S is a marked surface and its mark contains m curves, so the surface
resulting from the gluing is a subsurface of Σ of genus at last m, so g > m.
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Hence in both cases, g > m − 1. However on one hand g 6 n
2 , on the other hand, m > n − 2.

So we get n
2 > n − 3. The only possible integer n > 6 that satisfies this condition is n = 6.

Then g = 3, m = n − 2 = 4, S 6= S′, and Bndy(S) ∩ Bndy(S′) is reduced to Fn.a. Moreover,
the whole genus of Σ comes from the gluing of S and S′ along the curves of Fn.a, so it cannot
exist in SubA(Σ) another pair of subsurfaces (T, T ′) such that Bndy(T )∩Bndy(T ′) contains m
curves of A. Hence Bn.a = Fn.a. We can then apply Proposition 9.14 to the action of Bn (a
braid group of order 6) on Bn.a (a simplex of 4 curves) and deduce that the action of Fn on Bn.a
is trivial. This is what we wanted to show.

3. Let us show that the action of Fn on Bndy(ΣA) is trivial. Then, according to Lemma
9.13, the action of Bn on Bndy(ΣA) is cyclic.
Let a be a curve of A and let a+ and a− be the two boundary components of ΣA coming from the
cut along of the curve a. According to step 2., the action of Fn on A is trivial, so the action of F∗n
on Curv(Σ) via ρ fixes the curve a, so the action of F∗n on Bndy(ΣA) via ρ preserves {a+, a−}.
But F∗n is isomorphic to Bn−2 and n− 2 > 2, so according to Proposition 9.14, the action of F∗n
on {a+, a−} is cyclic. Then τ3τ

−1
1 and τ5τ

−1
1 have the same action on {a+, a−}, so the action

of τ5τ
−1
3 on {a+, a−} is trivial. Since this is true for all curve a of the set A, τ5τ

−1
3 acts trivially

on Bndy(ΣA). Since the set of curves A is Bn-stable, the action of the normal closure of τ5τ
−1
3

in Bn (equal to Fn) on Bndy(ΣA) is trivial. ¤

9.3 Specificities of the action of J on G

Let us recall that n is an even integer greater than or equal to 6, Σ is a surface Σg, b where
g 6 n

2 and b > 0, and ρ is a noncyclic morphism from Bn in PMod(Σ).

Definition 9.15 (The group J and its action on G).
Let δ be the element τ1τ2 . . . τn−1 of Bn and let J be the subgroup of Bn spanned by δ. For all
integers i ∈ {0, . . . , n− 1}, we have:

δτiδ
−1 = τi+1.

We deduce from it an action of J on G defined as follows: for all integers i ∈ {0, . . . , n− 1}, we
set:

δ.Ai = ρ(δ)Ai ρ(δ)−1 = Ai+1.
We define also an action of J on P(G), the power set of G, by setting for all subsets K of G:

δ.K = {δ.A, A ∈ K} = {ρ(δ)Aρ(δ)−1, A ∈ K}.

The J -coloration σ and the associated spectrum sp.

Definition 9.16 (J -coloration and associated spectrum).
A J -coloration on a J -set E (i.e. a set E together with an action of J on E) is a map col of G
in P(E) (the power set of E) compatible with the actions of J on G and on E , i.e. such that for
any A ∈ G, we have:

col(δ.A) = δ.col(A).
Given a J -coloration col, we call spectrum associated to col the map of E in P(G) that associates
to any element e ∈ E the following set {A ∈ G, | e ∈ col(A)}.
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Proposition 9.17. The restriction of the map σ from G in Curv(Σ), which associates to any
mapping class A ∈ G its canonical reduction system σ(A) ⊂ Curv(Σ), is a J -coloration.

Proof. The map σ is a J -coloration, since, for all A ∈ G, we have:
δ.σ(A) = {δ.a, a ∈ σ(A)}

= {ρ(δ)(a), a ∈ σ(A)}
= {a′, a′ ∈ σ(ρ(δ)Aρ(δ)−1)}
= σ(δ.A).

¤

Notation 9.18. In this section, we will denote by sp the spectrum associated to the J -coloration
σ. Thus by definition, for all a ∈ Curv(Σ),

sp(a) = {A ∈ G | a ∈ σ(A)}.
By considering the action of J on G, on σ(G) and on Subσ(G)(Σ), we will show the following

result.

Proposition 9.3. Let a be a curve of σ(G). Then J .a contains at most n curves. The limit
case |J .a| = n can be achieved only when J .a is not a simplex.

Proof. The proof of this proposition calls for:

• a lemma on the graphs together with a cyclic action (cf. Lemma 9.19),

• a lemma proposing a first version of Proposition 9.3 (cf. Lemma 9.20),

• a lemma treating a special case (cf. Lemma 9.21),

• a corollary proposing a second version of Proposition 9.3 (cf. Corollary 9.22).

The proof of Proposition 9.3 is on page 160.

Lemma 9.19. Let Γ be a connected non-oriented graph whose number of edges is m. We assume
that there exists an action of Z on Γ, which is compatible with its structure of graph, and which
is transitive on the set of edges. Then the pair graph-action (Γ, .) is one of the following pairs:

(a) The graph Γ consists in k vertices and m edges where k is equal to 2 or to a divisor of m
(cf. Figure 59):




vertices: S = {Pi ; 0 6 i 6 k − 1} ,
edges: A = {a0, . . . , am−1} and there exists an integer p coprime with k

(p = 1 if k = 1) such that for all integers i ∈ {0, . . . , m − 1},
the edge ai joins the vertices P[i]k and Q[i+p]k . Thus, for all integers
i ∈ {0, . . . , k − 1}, the vertices Pi and P[i+p]k are joined by the d edges
a[i]m , a[i+k]m , . . . , a[i+(d−1)k]m, where d = m if k = 2 and d = m

k other-
wise.

The action associated to this graph Γ is given by 1.Pi = P[i+1]k and 1.ai = a[i+1]m for all
integers i i ∈ {0, . . . , k − 1}.
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(b) The graph Γ consists in k + ` vertices and m edges where k and ` are two integers greater
than or equal to 1 and coprime and m is a multiple of k` (cf. Figure 59):




vertices: S = S1 t S2 where S1 = {P0, . . . , Pk−1} and S2 = {Q0, . . . , Q`−1},
edges: A = {a0, . . . , am−1} such that for all integers i ∈ {0, . . . , m−1}, the edge

ai joins the vertices P[i]k and Q[i]`. Thus, for all integers i ∈ {0, . . . , k−
1} and j ∈ {0, . . . , m − 1}, the vertices Pi and Qj are joint by d edges
where d = m

k` .

The action associated to this graph Γ is given by 1.Pi = P[i+1]k , by 1.Qi = Q[i+1]` and by
1.ai = a[i+1]m for all integers i ∈ {0, . . . , k − 1} and j ∈ {0, . . . , m− 1}.

Figure 59: Four examples of graphs with 12 edges, together with a transitive Z-action on the
edges.

Proof. We check easily that the proposed graphs together with the Z-actions described in the
statement exist (cf. Figure 59) and that the actions are transitives on the edges. Conversely, let
us show that under these assumptions, Γ is necessarily one of the announced graphs. We begin
by the graphs with just one or two vertices:
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• if Γ has only one vertex and consists in a bouquet of m circles, then this is a special of case
(a) with k = 1;

• if Γ has exactly two vertices and if they are swapped by the Z-action, then we are in case
(a) with k = 2;

• if Γ has exactly two vertices and if they are fixed by the Z-action, then we are in case (b)
with with (k, `) = (1, 1).

Let us focus on the graphs together with a transitive Z-action on the vertices, having at least
3 vertices. Let m be the number of edges. Since the action is cyclic, mZ acts trivially on the
edges. Notice that any vertex P can be identified by the set of edges ending in P . Indeed, if
two distinct vertices were the extremities of the same edges, then by connectedness, the set of
vertices of the graph would be reduced to these two vertices, which contradicts our hypotheses.
Hence any trivial action on the edges induces a trivial action on the vertices. Thus mZ acts
trivially on the set of vertices. Hence, We can quotient the action of Z by mZ and thus get an
action of Z/mZ on Γ that acts freely and transitively on the edges. The action of Z/mZ on the
non-ordered pairs of vertices {p, q} where p and q are the extremities of a same edge is hence
transitive as well. We deduce that there exist one or two orbits of vertices under the action of
Z/mZ, whether the extremities of a same edge belong to a same orbit or not.
Case (a): one single orbit of vertices. Let k be the number of vertices with k > 3. Since the
vertices form a single orbit under the action of Z/mZ, k must divide m, so the kZ/mZ-action
on Γ must fix the vertices; and for each pair of vertices (S1, S2) linked by some edge, kZ/mZ
acts freely and transitively on the d = m/k edges whose extremities are S1 and S2. Let Γ̃ be
the graph obtained from the graph Γ when we identify the edges having the same extremities.
The quotient of Z/mZ by kZ/mZ, isomorphic to Z/kZ, acts on Γ̃ and acts transitively on the k
edges and the k vertices of the graph Γ̃. Let us call P0, P1,. . . , Pk−1 the k vertices of Γ̃ so that
for all ` ∈ Z/kZ, we have `.P0 = P`. Let p be an integer in {1, . . . , k− 1} such that the vertices
P0 and Pp are joined by an edge. We obtain the left hand side graph in Figure 60. Notice that k

and p are coprime, because the graph Γ̃ (and consequently the graph Γ) would not be connected.
Let us come back to the graph Γ, we denote its vertices in the same way: we denote by a0 one
of the d edges ending in P0 and Pp, and for all ` ∈ {1, 2, . . . , m− 1}, we denote by a` the edge
`.a0 of extremities P[`]k and P[`+p]k . We get the right hand side graph in Figure 60.

Figure 60: Example of a graph of type (a) where k = 5, ` = 3, d = 2, m = 10.

Case (b): two orbits of vertices.
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Let A be the set of edges. We assume now that, for all edges a ∈ A:
the extremities of a belong to two different orbits. (1)

Let a0 be an edge, P0 and Q0 the extremities of a0. Let S1 be the orbit of P0 and let k be the
cardinality of S1. Similarly, let S2 be the orbit of Q0 and let ` be the cardinality of S2. We name
the vertices of S1 and of S2 so that for all i ∈ {0, . . . , k − 1}, j ∈ {0, . . . , `− 1}, and p ∈ Z,

p.Pi = P[i+p]k , p.Qi = Q[i+p]` , and p.ai = a[i+p]m . (2)
We have then S1 = {P0, . . . , Pk−1} and S2 = {Q0, . . . , Q`−1}. The integers k and ` must divide
m, for the action of the integer m on the vertices is trivial. Since the cardinality of the orbit of
P0 is k, the stabilizer of P0 is kZ/mZ. Similarly the stabilizer of Q0 is `Z/mZ. We deduce the
following equalities between sets:{ {a ∈ A | P0 is an extremity of a} = (kZ/mZ).a0,

{a ∈ A | Q0 is an extremity of a} = (`Z/mZ).a0,
(3)

We will say that two edges are adjacent if they share at least one extremity in commun. Then:
{a ∈ A | a is adjacent to a0} =

(
kZ/mZ ∪ `Z/mZ

)
.a0. (4)

Since the action of Z/mZ is transitive on the edges, equality (4) holds not only for a0, but for all
the edges in Γ. Then, given a path of edges starting with the edge a0, namely a finite sequence
of edges (a′0 = a0, a′1, . . . , a′r), r > 1, such that a′i ∩ a′i+1 6= ∅ for all i 6 r − 1, the last edge a′r
must satisfy:

a′r ∈
(
kZ/mZ+ `Z/mZ

)
.a′0.

But Γ is connected, hence any edge of Γ can be seen as the last edge of some path of edges
starting with a, hence kZ/mZ+ `Z/mZ = Z/mZ. Since k < m and ` < m , it follows that:

k and ` are coprime. (5)
Let us determine d, the number of edges having the same extremities as a0 (cf. Figure 61).
According to (3), the set of edges is (kZ/mZ).a ∩ (`Z/mZ).a, so, using (5) we get:

{edges of extremities P0 and Q0} =
(
(k`)Z/mZ

)
.a0, (6)

Hence we count exactly d = m
k` edges (including a0) having the same extremities as a0.

Figure 61: Action of Z on a. The points Q1, Q2, . . . ,Q` form the orbit of Q1.

From m, k, `, we can now describe completely Γ and the action of Z/mZ on Γ. For all i ∈
{0, . . . , k−1} and all j ∈ {0, . . . , `−1}, according to the Chinese theorem, there exists a unique
integer u ∈ {0, . . . , k` − 1} such that u is congruent to i modulo k and to j modulo `. Then
according to (6):
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{edges of extremities Pi and Qj} = {(u + pk`).a0, 0 6 p 6 d− 1}
= {au, au+k`, . . . , au+(d−1)k`}. (7)

Thus we get the m = dk` edges of Γ. Such a graph is characterized by the triple (m, k, `) or
equivalently by the triple (d, k, `). ¤

Figure 62: A simplex of 12 curves {ai, i ∈ Z/12Z} in Σ6, 0, and a Z-action in Mod(Σ6, 0) such
that for all k ∈ Z and all i ∈ {0, . . . , 11} :

k.ai = a[i+k]12 ,
k.Pi = P[i+k]4 ,
k.Qi = Q[i+k]3 .

Lemma 9.20. Let Σ be a surface Σg, b. Let A be a simplex of at least three curves in Σ. We
assume that there exists a morphism Z→ PMod(Σ) whose image preserves A and that induces a
transitive action on the curves of A. Then the cardinality of A is smaller than or equal to 2g. The
equality |A| = 2g can happen only if g = 6 and b = 0. In this case, the position of the curves of
A and the action of Z on these curves are unique, up to homeomorphism; this case is represented
in Figure 62, where the action of Z is given as follows: let us denote by {ai, 0 6 i 6 11} the set
of curves A, and by {P0, P1, P2, P3} and {Q0, Q1, Q2} the seven subsurfaces of SubA(Σ), then
for all k ∈ Z and all i ∈ {0, . . . , 11}, we have k.ai = a[i+k]12, k.Pi = P[i+k]4, k.Qi = Q[i+k]3.

Proof.
1. Let us show Lemma 9.20 in the case where b = 0.
Let Γ be the graph Γ(Σ ; A). The action of Z on Σ induces an action of Z on Γ that is

transitive on the edges. Then Γ is one of the graphs described by Lemma 9.19. We are going
to bound the cardinality |A| as a function of g, the genus of Σ. To do so, according to Lemma
9.19, we denote by:

• m = |A| the number of curves of A, also equal to the number of edges of Γ,

• S the set of vertices of Γ,

• c the number of independent cycles of Γ, we have: c = 1 + |A| − |S|,
• h the number of vertices in Γ of degree 1 or 2.

Let us recall that b = 0, hence the vertices of degree 1 or 2 correspond in Σ to connected com-
ponents having only one or two boundary components. Therefore, these connected components
must be of nonzero genus, whence g > c + h. Moreover, by hypothesis, m > 3.
In the case (a) of Lemma 9.19, we set k = |S|. Then:
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• if k = 1, then c = m, but g > c, so m 6 g. Therefore, m < 2g;

• if k = 2, then c = 1 + m− 2 = m− 1, whence g > c = m− 1 > m
2 , so m < 2g;

• if k > 3, we then set d = m
k . We have c = 1 + m− k = 1 + (d−1)m

d . Hence:

– if d = 1, all the vertices are of degree 2, hence h = k = m and we have: g > c + k =
1 + m, so m < 2g;

– if d > 2, then: g > c > 1 + m
2 , so m < 2g.

In the case (b) of Lemma 9.19, let k and ` be the cardinalities of the two orbits S1 and S2 of
vertices and d = m

k` . Even if it means swapping S1 and S2, we can assume that k 6 `. Let us
recall that k and ` are coprime. For each triple (d, k, `) that respects these two conditions, let
us compare m and 2g.

• if (d, k, `) = (1, 1,m), then the ` vertices of S2 are of degree 1, so h = ` = m, so g > h =
` = m , so m < 2g;

• if (d, k, `) = (1, 2, m
2 ), then c = 1 + m − (2 + m

2 ) = m
2 − 1. Now, the ` = m

2 vertices of S2

are of degree 2, so h = m
2 and g > c + h = m− 1, so m < 2g;

• if (d, k, `) = (1, 3, 4), then c = 6 and m = 12, so g > m
2 , so m 6 2g;

• if (d, k, `) = (1, 3, 5), then c = 8 and m = 15, so g > m+1
2 , so m < 2g;

• if (d, k, `) = (1, k, `) with k = 3 and ` > 7, or k > 4 and ` > 5 (recall that k and ` are
coprime), then c = 1 + m(1− 1

` − 1
k ). Then 1

` + 1
k 6 1

2 , so g > c > 1 + m
2 , so m < 2g;

• if (d, k, `) = (2, 1, m
2 ), then a vertex is of degree m and m

2 vertices are of degree 2, so h = m
2

and c = 1 + m− (1 + m
2 ), so g > h + c = m, so m < 2g;

• if (d, k, `) = (d, 1, m
d ) with d > 3, then we have d + 1 vertices and dm edges. So c =

1− (1 + m
d ) + (dm) = d−1

d m. But d−1
d > 1

2 , so g > c > m
2 and finally, m < 2g;

• if (d, k, `) = (m, 1, 1), then g > c = 1 + m− 2 = m− 1. But m > 3, so m < 2g;

• if (d, k, `) satisfies d > 2, k > 2 and ` > 2, we have c = 1 + m− (k + `). But k` = m
d 6 m

2 ,
so k + ` 6 m

2 (indeed, a sum of integers is always smaller than or equal to a product of
these two integers as soon as they are greater than or equal to 2), so g > c > 1 + m

2 , so
m < 2g.

Finally, in all the cases, m 6 2g. The equality case comes only in the case (b), when the triple
(d, k, `) equals (1, 3, 4), cf. Figure 59, top-right hand graph. The corresponding surface together
with the curves of A, indexed in a self-understanding way with respect to the action of Z, is the
surface Σ6, 0 depicted in Figure 62.

2. Let us show Lemma 9.20 in the case where b > 0.
Let us assume that we have a surface Σ together with a simplex A of at least three curves,

and a morphism ϕ of Z in PMod(Σ) whose image preserves A and induces on its curves a
transitive action. Then, after having applied the map sq to Σ and A, and after having replaced
ϕ by sq∗ ◦ ϕ, we have boiled down to the case without boundary. Since the simplex A contains
at least three curves and since the action of Z induced by ϕ is transitive on A, we can apply
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Proposition 7.5: A and sq(A) consist in the same number of curves. Hence |A| 6 2g, and if
|A| = 2g, then |sq(A)| = 2g, so according to what we just saw in the case without boundary,
the only pair

(
sq(Σ), sq(A)

)
satisfying |sq(A)| = 2g is the one of Figure 62. Now, according to

Proposition 7.5, for all subsurface S ∈ SubA(Σ), we have:
sq(ϕ(1)(S) ) = sq∗(ϕ(1)) (sq(S)).

In the case without boundary, no subsurface is preserved by sq∗(ϕ(1)), so no subsurface is
preserved by ϕ(1) in the case with boundary. This is absurd for a subsurface of SubA(Σ) whose
natural boundary is nonempty is preserved by any mapping class of PModA(Σ). Hence in a
surface of genus 6 with boundary, the curves of A cannot be arranged as in Figure 62. Therefore,
when the boundary is not empty, we have |A| < 2g. ¤

In order to better understand the situation depicted in Figure 62, when the role of A is
played by the set of curves σ(G), coming from a morphism ρ from B12 in Mod(Σ6, 0), we prove
the following lemma:

Lemma 9.21. Let Σ be the surface Σ6, 0 and let ρ be a morphism from B12 in Mod(Σ). We as-
sume that there exists a simplex A of 12 curves in σ(G) such that a subgroup of J acts transitively
on A. Then ρ is cyclic.

Proof. Let A be a simplex of 12 curves in σ(G) such that a subgroup K of J = 〈δ〉B12 acts
transitively on it. We want to show that ρ is then cyclic. To do so, we assume that ρ is not
cyclic and we look for a contradiction (actually, we will use the fact that ρ is not cyclic to show
that ρ is cyclic! This is the expected contradiction).

Let γ be a generator of K and let k be an integer such that γ = δk. Even if it means replacing
A by δ`.A where ` is an integer, we can assume that A ∩ σ(A0) is not empty. Let a0 be one of
the curves of A ∩ σ(A0). For all i ∈ {1, . . . , 11}, let us denote by ai the curve γi.a0. It belongs
to σ(Aki). Then A is the set {aj , 0 6 j 6 11}, and the surface Σ together with the curves of A
and with the action of K on Σ and on A is (up to homeomorphism) the surface together with
the 12 curves and with the Z-action depicted in Figure 62.

1. Let us show that k is coprime with 3.
Let us argue by contradiction. Let us assume that k is a multiple of 3 and let us set k′ = k

3 .
Let us then set L = 〈δ2k′〉. We are going to show that L.a0 contains 18 curves, then to show
that this is absurd. First, we check that:

• a6 = γ6.a0 6= a0, so δ6k.a0 6= a0, so (δ2k′)9.a0 6= a0;

• a8 = γ8.a0 6= a0, so δ8k.a0 6= a0, so (δ2k′)12.a0 6= a0;

• γ12.a0 = a0, so δ12k.a0 = a0, so (δ2k′)18.a0 = a0.

Consequently, L.a0 contains 18 curves. Furthermore, L.a0 is included in σ(A0) ∪ σ(A2) ∪ · · · ∪
σ(An−2), which is a simplex, for the group 〈A0, A2, . . . , An−2 〉 is abelian. Finally, L.a0 is
a simplex of 18 curves in Σ, but this is absurd because the greatest simplex in Σ contains
3g − 3 + b = 15 curves. Hence k is coprime with 3.

2. Let us show that I
(A, σ(G)

)
= 0.

Let us argue by contradiction. We assume that there exists a curve c of σ(G) that intersects
a curve of A. Since σ(G) is stable by K, we can assume without loss of generality that c belongs
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to σ(A±1) and intersects a0. According to Figure 62, there exists a pair of pants P in Σ whose
boundary components are a0, a4 = γ4.a0 and a8 = γ8.a0. But the curves a4 and a8 belong to
σ(γ4.A0)∪σ(γ8k.A0), hence belong to σ(δ4k.A0)∪σ(δ8k.A0). Now, k is coprime with 3 according
to step 1., so 4k and 8k belong to 4Z r 12Z. Hence σ(δ4k.A0) ∪ σ(δ8k.A0) ⊂ σ(A4) ∪ σ(A8).
Moreover A±1 commutes with A4 and A8, so the only boundary component of P that c intersects
is a0, and neither a4 nor a8. Let us consider now the image of this situation by γ4. The pair
of pants P is stable by γ4, but c is sent on a curve γ4.c that intersects only a4, cf. Figure 63.
Because of a lack of room in the pair of pants P , these two curves c and γ4.c must intersect. Yet
c and γ4.c belong respectively to σ(A±1) and σ(A4k±1) ∪ σ(A8k±1). Since A±1 commutes with
A4k±1 and A8k±1, the curves c and γ4.c cannot intersect: this is a contradiction.

Figure 63: The curves c and γ4.c must intersect in P .

3. Let us show that A = J .a0; in other words, everything happens as if K = J .
Let us denote by δK the set {δξ, ξ ∈ K} and by δ.A the set {δ.x, x ∈ A}. Let us assume that

K 6= J . Then it is clear that K and δK do not share any element in common. Since A and δ.A
are the orbits of curves under the action of K, we have A = δ.A or A∩ δ.A = ∅. If A∩ δ.A = ∅,
then A ∪ δ.A contains 24 curves. In addition, according to step 2., we have I(σ(G), A) = 0, so
δ.A ⊂ σ(G), so I(δ.A, A) = 0, so A∪ δ.A is a simplex. Finally, A∪ δ.A is a simplex of 24 curves.
But this is absurd for in Σ, the largest simplex contains 3g− 3 + b = 15 curves. Hence A = δ.A.
Then A is stable by J , so A (namely K.a0) is equal to J .a0. So K.a0 = J .a0. So everything
happens as if K = J (actually we have proven that k is coprime with 12).

Notation.

• Let D be the mapping class ρ(δ).

• For all integers i ∈ {1, . . . , 11}, let ai be the curve Di(a0) so that ai ∈ σ(Ai). According
to step 3., we have the equality A = {ai, 0 6 i 6 11}.

• Let Q0 (respectively Q1, resp. Q2) be the subsurface of SubA(Σ) that is bounded by the
curves a0, a3, a6 and a9 (resp. a1, a4, a7 and a10, resp. a2, a5, a8 and a11), cf. Figure 62.

4.a) Let us show that σ(G) ⊂ A ∪ Curv(Q0 ∪ Q1 ∪ Q2) and for all x ∈ σ(G) r A, we have
D3(x) = x.

If there exists a curve x belonging to σ(G) rA, the curve x does not intersect any curve of
A according to step 2.. Now, all the subsurfaces of SubA(Σ), except Q0, Q1 and Q2, are some
pairs of pants, so x belongs to Curv(Q0), Curv(Q1), or Curv(Q2). Even if it means considering
D(x) or D2(x) instead of x, we can assume that x belongs to Curv(Q0). Then D3(x) belongs to
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Curv(Q0) as well. Let i be an integer of {0, . . . , 11} such that x ∈ σ(Ai). Then D3(x) belongs
to σ(Ai+3). Since Ai and Ai+3 commute, x and D3(x) cannot intersect. But Curv(Q0) does not
contain any simplex of two curves, so D3(x) = x.

4.b) Let us show that σ(D) ⊂ A ∪ Curv(Q0 ∪ Q1 ∪ Q2) and for all x ∈ σ(D) r A, we have
D3(x) = x.

According to step 3., A = J .a0, so A is stable by the mapping class D, so the curves of A
are reduction curves of D. Hence the curves of σ(D) do not intersect the curves of A. Since all
the subsurfaces of SubA(Σ) except Q0, Q1 and Q2 are pairs of pants, the curves of σ(D) belong
to A∪ Curv(Q0)∪ Curv(Q1)∪ Curv(Q2). Moreover, for all i ∈ {0, 1, 2}, the surface Qi does not
contain any simplex of more than one curve, since in the case of Qi, we have 3g − 3 + b = 1.
Hence σ(D)∩Curv(Qi) is empty or is reduced to one curve. Now, D3 preserves σ(D)∩Curv(Qi),
so D3 must preserves this curve.

5. Let us show that σ(G)rA ⊂ σ(D)rA, and let us describe σ(D)rA: if σ(D)rA is not
empty, then σ(D)rA contains three curves, one included in Q0 which we denote by c0, and two
other curves c1 = D(c0) and c2 = D2(c0) included respectively in Q1 and Q2.

According to the action of D on A, D permutes Q0, Q1 and Q2, whereas D3 preserves each
of them. Let us denote by D̂3 the restriction of D3 on Q0: D̂3 belongs to Mod(Q0). Let us
focus on σ(D)rA, depending on the nature of D̂3, and let us show that σ(G)rA ⊂ σ(D)rA.

• If D̂3 is pseudo-Anosov, then so is (D̂3)4. But D12 is in the center of ρ(B12), so all the
curves of σ(ρ(B12)) are some reduction curves of D12. Therefore Q0 do not contain any
curve of σ(ρ(B12)). Thus,

σ(G)rA ⊂ σ(D)rA = ∅.

• If D̂3 is periodic, then D̂3 would be the isotopy class of a positive diffeomorphism of finite
order according to Kerckhoff’s Theorem. Now, according to Kerékjàrtò’s Theorem (cf.
[Kj]), such a diffeomorphism is conjugate to a rotation of the sphere. But if such a rotation,
of order 4 here, preserves a curve c, it preserves also each of both hemispheres bounded by
this curve. Hence one of these two hemispheres contains the orbit of a0, that is to say the
four boundary components a0, a3, a6, a9, so the other hemisphere is homeomorphic to a
disk. Hence the curve c bounds a disk. Hence D̂3 does not preserve any curve of Curv(Q0).
Hence according to step 4.a) step 4.b),

σ(G)rA ⊂ σ(D)rA = ∅.

• If D̂3 is reducible, let us denote by c0 an essential reduction curve of D̂3. Then σ(D̂3) = {c0}
according to step 4.b). Hence J .c0 is a set of three curves, one in Q0, one in Q1 and one in
Q2. Now, any curve of Curv(Q0) different from c0 intersects c0, so by definition of σ(D̂3),
this curve is not a reduction curve of D̂3, hence it cannot be preserved by D̂3. So according
to step 4., σ(G) ∩ Curv(Q0) ⊂ {c0}. Hence if D̂3 is reducible, we have:

σ(G)rA ⊂ σ(D)rA = J .c0 = {c0, c1, c2},
where c1 = D(c0) and c2 = D2(c0).

In order to discuss later (in steps 7. and 8.) about the stability of A under the action of B12,
we are going to study in step 6. the stability of J .c0 under the action of B12. Of course the set
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J .c0 has some meaning if the curve c0 is defined, that is to say when σ(D)rA 6= ∅ according
to step 5..

6. Let us show that if σ(D)rA 6= ∅, then the action of B12 via ρ on Curv(Σ) preserves J .c0.

By definition of c0 according to step 5., c0 belongs to σ(D). Since σ(D) is stable by D,
σ(D) contains J .c0, and if a0 belongs to σ(D), then σ(D) contains J .a0 that is equal to A,
whereas if a0 does not belong to σ(D), then σ(D) ∩ A = ∅. Now, according to step 5., σ(D)
is included in J .c0 ∪ A. Hence σ(D) = J .c0 or σ(D) = J .c0 ∪ A. But, for all ξ ∈ B12, the
mapping class ρ(ξ) commutes with D12, so ρ(ξ)(σ(D12)) = σ(D12), and so ρ(ξ)(σ(D)) = σ(D),
since σ(D12) = σ(D). Hence the action of B12 via ρ on Curv(Σ) preserves the curves of σ(D).
Then if σ(D) = J .c0, we have shown that the action of B12 via ρ on Curv(Σ) preserves J .c0.
We still have to study the case where σ(D) = J .c0 ∪ A. We are going to show that:

Any mapping class that preserves J .c0 ∪ A preserves J .c0 and preserves A. (1)
Since the action of B12 via ρ on Curv(Σ) preserves σ(D) = J .c0 ∪ A, it preserves J .c0. So,
proving (1) is enough to show step 6..

Let us show assertion (1). The curve c0 lies in Q0, is separating in Q0 and so induces a
partition of Bndy(Q0) in two subsets: the boundary components located on an edge of c0 and the
boundary components located on the other one. Since the curve c0 is stable by D3, this partition
must be stable by D3. The boundary components of Q0 are the curves a0, a3, a6, a9, and their
images by D3 are respectively a3, a6, a9, a0, so this partition can only be {a0, a6} t {a3, a9}.
Indeed, it is clear that the two other partitions {a0, a3} t {a6, a9} and {a0, a9} t {a3, a6} are
not stable by D3. Let us consider the graph Γ(Σ, σ(D)), cf. Figure 64 on the right hand side.
We see that the smallest injective cycle of edges containing a0 contains four edges, for example

Figure 64: The graph Γ(Σ, A) on the left hand side, the graph Γ(Σ, J .c0∪A) on the right hand
side.

the cycle a0, a4, a10, a6, whereas the smallest injective cycles of edges containing c0 contains six
edges, for example the cycle a0, c0, a3, a11, c2, a8. Then, any mapping class preserving J .c0 ∪A
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induces an action on the graph Γ(Σ, J .c0 ∪ A), but cannot swap in this graph two edges such
that a0 and c0, since they have different combinatoric properties, as we have just seen it. Hence
any mapping class that preserves J .c0 ∪A preserves J .c0 and preserves A: the statement (1) is
proved.

7. Let us show that if the action of B12 on Curv(Σ) preserves A, then ρ is cyclic.
Since we assume that the action of B12 on Curv(Σ) preserves the curve simplex A, we can

apply Proposition 9.2 and conclude that B12 acts cyclicly on A, and so F12 acts trivially on
A. Let us consider the subgroup F∗12 of F12 which is isomorphic to B10. Then for any surface
S ∈ SubA(Σ), the morphism ρ restricted to F∗12 induces a morphism in PMod(S). Since S is
of genus zero and F∗12 is isomorphic to B10, we can apply Theorem 7.1 and conclude that the
restriction of ρ to F∗12 induces in PMod(S) a cyclic morphism. Hence the restriction of ρ to
F∗12 induces in PMod(ΣA) a cyclic morphism. Thus the group ρ(F∗12) included in PAMod(Σ)
is sent in PMod(ΣA) on an abelian subgroup Ĝ. Let us consider the below diagram.

ρ(F∗12) ⊂ PAMod(Σ) PMod(ΣA) ⊃ Ĝ

G ⊂ PAMod(Σ) Mod(ΣA, ∂ΣA) ⊃ G̃ = for −1
∂ΣA(Ĝ)

//
cutA

77ooooooooooooooo

cutA

oo
recA

OOÂÂ Â ÂÂ Â Â
for∂ΣA

Starting from Ĝ, we successively define the groups:

• G̃ = for −1
∂ΣA(Ĝ) where for∂ΣA : Mod(ΣA, ∂ΣA) → PMod(ΣA) is the canonical “forget”

morphism. According to Lemma 5.11, G̃ is abelian,

• G = recA(G̃) where recA : Mod(ΣA, ∂Σ) → PAMod(Σ) is the gluing morphism along
the curves of A. The group G is abelian since G̃ is.

By construction, ρ(F∗12) is included in G, an abelian group, so ρ(F∗12) is abelian. Since F∗12 is
isomorphic to B10 and since the abelianization of B10 is cyclic, if follows that ρ(F∗12) is cyclic. So
the mapping class ρ(τ3τ

−1
4 ) = ρ(τ3τ

−1
1 )

(
ρ(τ4τ

−1
1 )

)−1 coincides with the identity. Hence ρ(τ3) =
ρ(τ4), so according to Lemma 5.2, the morphism ρ is cyclic.

8. Let us show that if ρ(B12) does not preserve A, then, again, ρ is cyclic.
If ρ(B12) does not preserve A, it is clear that there exists a curve a′ ∈ A and a mapping

class F ∈ G such that F (a′) does not belong to A. Even if it means conjugating F by a power
of D, we can assume without loss of generality that a′ = a0. For all i ∈ {0} ∪ {2, 3, . . . , 10},
the mapping class Ai commutes with A0, hence preserves σ(A0), hence sends a0 in σ(G). But,
according to step 5., σ(G) is included in A ∪ σ(D), that is to say that σ(G) is included in A if
σ(D)rA = ∅, or in A∪J .c0 if σ(D)rA 6= ∅. If σ(D)rA 6= ∅, then J .c0 is stable by ρ(B12)
according to step 6., so Ai cannot send a0 in J .c0. Hence in all the cases, Ai sends a0 in A. But
we have seen that F (a0) did not belong to A, so F must belong to {A1, A11}. Even if it means
conjugating F by A11(A0A11)(A1A0A11), we can assume without loss of generality that F = A1.
Let us sum up: we have shown that

if ρ(B12) does not preserve A, then A1(a0) does not belong to A. (2)
This implies that

sp(a0) ⊂ {A0, A2}, (3)
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for otherwise, it would exist j ∈ {3, 4, . . . , 11} such that a0 ∈ σ(Aj) and as we have just seen it,
we would deduce that A1(a0) would belong to A, which would contradict (2). Remember that
by definition of a0, A0 belongs to sp(a0). Hence (3) implies that sp(a0) ∈

{{A0}, {A0, A2}
}
,

whence by conjugation,

or
for all i ∈ {0, 1, . . . , n− 1}, we have sp(ai) = {Ai}
for all i ∈ {0, 1, . . . , n− 1}, we have sp(ai) = {Ai, Ai+2}.

}
(4)

For all ` ∈ {4, 5, . . . , 11} and all ε ∈ {1, 2}, Aε and A` commute, so Aε(a`) belongs to σ(A`),
which is itself included in σ(G). According to step 5., σ(G) is included in A ∪ σ(D), so Aε(a`)
belongs to A or possibly to J .c0 if σ(D) rA 6= ∅. But we have seen that J .c0 (if it exists) is
stable by the action of B12 according to step 6., hence Aε(a`) belongs to A. Let us show that
Aε(a`) = a`. We argue differently, depending on the two cases mentioned by (4).

• If sp(a`) = {A`}, then the spectrum of each curve of A is reduced to a singleton, and the
canonical reduction system of each mapping class of G contains only one element of A.
Since Aε(a`) ∈ A ∩ σ(A`), it follows that Aε(a`) = a`.

• If sp(a`) = {A`, A`+2}, then a` and a`−2 are the only curves of A in σ(A`). Hence
Aε(a`) = a` or Aε(a`) = a`−2. If Aε(a`) = a`−2, we would have sp(Aε(a`)) = {A`−2, A`}.
But Aε commutes with at least one of the two mapping classes A`−2 or A`+2. If Aε

commutes with A`−2, the fact that A`−2 6∈ sp(a`) implies that A`−2 6∈ sp(Aε(a`)); whereas
if Aε commutes with A`+2, the fact that A`+2 ∈ sp(a`) implies that A`+2 ∈ sp(Aε(a`)). In
the two cases, the fact that sp(Aε(a`)) = {A`−2, A`} is contradicted, so Aε(a`) 6= a`−2, so
Aε(a`) = a`.

Hence Aε preserves each curve a`, 4 6 ` 6 11. Let us set
A′ = { a`, 4 6 ` 6 11 }.

Let us consider the surface ΣA′ Figure 65. Since Aε preserves each curve of A′, Aε cannot
permute the connected components of ΣA′ . Hence Aε (recall that ε ranges over {1, 2}) induces
a mapping class

∼
Aε in PMod(ΣA′). But we have the following canonical isomorphism:

PMod(ΣA′) =
∏

S∈Comp(ΣA′ )
PMod(S),

where Comp(Σσ(G)) denotes the set of all connected components of Σσ(G). In other words,
PMod(ΣA′) is a direct product of mapping class groups of surfaces of genus zero (cf. Figure
65). For any connected component S of ΣA′ , the images of

∼
A1 and

∼
A2 induced in PMod(S)

satisfy a braid relation. But S is of genus zero, so we can apply Theorem 7.1. Hence
∼
A1 =

∼
A2.

Finally, A1 and A2 induce the same mapping class in PMod(ΣA′), so according to the following
central exact sequence:

1 → 〈Tai , 0 6 i 6 n− 1〉 → PModA′(Σ) → PMod(ΣA′) → 1,
the mapping classes A1 and A2 differ from a multitwist that is central in PModA′(Σ), so A1

and A2 commute in Σ. But A1 and A2 satisfy also a braid relation, so A1 and A2 have to be
equal. In other words, ρ is cyclic. ¤

Corollary 9.22. Let n be an integer greater than or equal to 6, Σ a surface Σg, b where g 6 n
2 and

ρ a noncyclic morphism from Bn in PMod(Σ). Then, any curve simplex on which a subgroup
of J acts transitively contains strictly less than 2g curves.
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Figure 65: The surface ΣA′ is a disjoint union of genus-0 surfaces.

Proof. According to Lemma 9.20, such a simplex A contains strictly less than 2g curves, except
if g = 6 and b = 0 where A can contain 12 curves. But according to Lemma 9.21, the fact that
ρ is not cyclic forbids that A contains 12 curves. This proves the corollary. ¤

We can now prove Proposition 9.3. Let us recall that n > 6, Σ = Σg, b where g and b are
some integers such that g 6 n/2, and ρ is a noncyclic morphism from Bn in PMod(Σ).

Proposition 9.3. Let a be a curve of σ(G). Then J .a contains at most n curves. The limit
case |J .a| = n takes place if and only if J .a is not a simplex.

Proof. Let a be a curve of σ(G). If the orbit J .a is a curve simplex, Corollary 9.22 can be
applied: J .a contains strictly less than 2g curves, hence strictly less than n curves.

If J .a is not a simplex, let us show that |J .a| 6 n. We can assume without loss of generality
that a ∈ σ(A0), in other words, sp(a) ⊃ {A0}. For all k ∈ {0}∪{2, . . . , n−2}, the mapping classes
A0 and Ak commute, so according to Proposition 3.40, I(σ(A0), σ(Ak)) = 0, so I(a, δk.a) = 0.
But J .a is not a simplex. Hence a intersects one of the curves of J .a that belongs necessarily
to σ(An−1) or to σ(A1). These two cases are symmetric and we can assume without loss of
generality that I(a, σ(A1)) 6= 0. Then, since A0 and A2 are the only mapping classes that do
not commute with A1, and since I(a, σ(A1)) 6= 0, we deduce that sp(a) ⊂ {A0, A2}. Let k be
the least positive integer such that δk.a = a. The integer k satisfies δk.sp(a) = sp(a), but since
sp(a) ⊂ {A0, A2}, then k must be a multiple of n. Let p be the integer k

n , so that |J .a| = pn.
Let us denote by K = 〈δ2〉. Since |J .a| = pn, we have |K.a| = pn

2 > pg. But the set
K.A0 = {Ai, i ∈ Pair(n)} consists on elements that commute, so σ(K.A0) is a simplex. Hence
K.a, that is included in σ(K.A0), is a simplex, too. In other words, K.a is a curve simplex on
which K, a subgroup of J , acts transitively. Hence according to Corollary 9.22, |K.a| < 2g 6 n.
Hence p = 1 and |J .a| = n. ¤

9.4 Partition of σ(G): Proposition 9.4

We are going to show Proposition 9.4. Let us recall its statement.

160



Proposition 9.4 (Partition of σ(G)).
Any curve a belonging to σ(G) satisfies either all the left hand side properties (1g) - (6g), or all
the right hand side properties (1d) - (6d).

(1g) I(a, δ.a) = 0 ; I(a, δ.a) 6= 0 (1d)

(2g) |sp(a)| > 2 ; |sp(a)| = 1 (2d)

(3g) I(a, σ(G)) = 0 ; I(a, σ(G)) 6= 0 (3d)

(4g) ∀k, sp(a) 6⊂ {Ak, Ak+2} ; ∃k | sp(a) ⊂ {Ak, Ak+2} (4d)

(5g) |J .a| < n ; |J .a| = n (5d)

(6g) J .a is a simplex ; J .a is not a simplex (6d)

Notice that each of the six lines of this table contains two opposite assertions (knowing that
|J .a| 6 n, as seen in Proposition 9.3), so that any curve a satisfies exactly one assertion per line.
We are going to show that all the right hand side assertions are equivalent. Let us first show the
cycle of implications (1d) ⇒ (3d) ⇒ (4d) ⇒ (5d) ⇒ (6d) ⇒ (1d).

The first implication is trivial.
Step 1: (1d) ⇒ (3d). Any curve a ∈ σ(G) such that I(a, δ.a) 6= 0 satisfies a fortiori
I(a, σ(G)) 6= 0. ¤
Step 2: (3d) ⇒ (4d). For any curve a ∈ σ(G), let us show that if I(a, σ(G)) 6= 0, then there
exists an integer k such that sp(a) ⊂ {Ak, Ak+2}.
Proof. Since I(a, σ(G)) 6= 0, there exists an integer k such that I(a, σ(Ak+1)) 6= 0. But for
all i ∈ {0, . . . , n− 1}r {k, k + 2}, the mapping classes Ak+1 and Ai commute, so according to
Proposition 3.40, I(σ(A1), σ(Ai)) = 0. Hence a 6∈ σ(Ai). Thus sp(a) ⊂ {Ak, Ak+2}. ¤

Step 3: (4d) ⇒ (5d). For any curve a ∈ σ(G), let us show that if there exists an integer k
such that sp(a) ⊂ {Ak, Ak+2}, then |J .a| = n.

Proof. Let us assume for example that there exists an integer k such that sp(δk.a) = {A0, A2}
(the situation is even more simple if sp(δk.a) is a singleton). Then for all integers i, we have
sp(δk+i.a) = {Ai, Ai+2}. But δi.a = a only if sp(δk+i.a) = sp(δk.a), hence only if i is a multiple
of n. Hence |J .a| > n. Hence, according to Proposition 9.3, |J .a| = n. ¤

Step 4 comes from Proposition 9.3.

Step 4: (5d) ⇒ (6d). For any curve a ∈ σ(G), if |J .a| = n, then J .a is not a simplex.
¤

Step 5: (6d)⇒ (1d). Any curve a ∈ σ(G) such that J .a is not a simplex satisfies I(a, δ.a) 6= 0.

Proof. Let us start from a curve a ∈ σ(G), and let us denote by A its orbit J .a. We have:

161



I(A, A) =
∑

06i,j6n−1

I(δi.a , δj .a) by definition of I(A, A),

=
∑

06i,k6n−1

I(δi.a , δi+k.a) by change of variables,

=
∑

06i,k6n−1

I(a , δk.a) since for all i, k, we have I(δi.a , δi+k.a) = I(a , δk.a),

= n
∑

06k6n−1

I(a , δk.a)

= n
(
I(a , δ.a) + I(a , δ−1.a)

)
since all the other terms are zero in the above sum.
Indeed, if k 6= ±1, the curves a and δk.a belong to the
canonical reduction systems of two mapping classes
that commute, so they cannot intersect,

= 2n I(a , δ.a) for I(a , δ.a) = I(a , δ−1.a).

Hence if A is not a simplex, in other words if I(A , A) 6= 0, then I(a , δ.a) 6= 0. ¤

We terminate the proof of Proposition 9.4 by showing the implications
(1d) ⇒ (2d) ⇒ (4d).

Step 6: (1d) ⇒ (2d). Any curve a ∈ σ(G) such that I(a, δ.a) 6= 0 satisfies |sp(a)| = 1.

Proof. If I(a, δ.a) 6= 0, then the action of δ−1 on the pair (a, δ.a) implies that I(δ−1.a, a) 6= 0.
Let i be an integer in {0, . . . , n − 1} such that a ∈ σ(Ai). Then we have δ.a ∈ σ(Ai+1) and
δ−1.a ∈ σ(Ai−1). Hence according to Proposition 3.40, the inequality I(a, δ.a) 6= 0 implies the
inclusion sp(a) ⊂ {Ai, Ai+2} and similarly, the inequality I(δ−1.a, a) 6= 0 implies the inclusion
sp(a) ⊂ {Ai−2, Ai}. Finally, we have sp(a) = {Ai}. ¤

The last implication is trivial.
Step 7: (2d) ⇒ (4d). For any curve a ∈ σ(G) such that |sp(a)| = 1, there exists an integer k
such that we have sp(a) ⊂ {Ak, Ak+2}. ¤

We recall Definition 9.5, which is central for the following sections.

Definition 9.5 (Normal curves, special curves).
– A curve a belonging to σ(G) will be said to be special if it satisfies I(a, σ(G)) 6= 0, in other

words if it satisfies the right-and side assertions of Proposition 9.4. We denote by σs(G) the set
of special curves and we set σs(A) = σs(G) ∩ σ(A).

– A curve a belonging to σ(G) will be said to be normal if it satisfies I(a, σ(G)) = 0, in other
words if it satisfies the left hand side assertions of Proposition 9.4. We denote by σn(G) the set
of normal curves and we set σn(A) = σn(G) ∩ σ(A).

9.5 Stability and existence results

This subsection is devoted to Propositions 9.6, and 9.7 concerning the stability of the normal
and the special curves , and to Propositions 9.9 and 9.10 concerning the existence of special
curves.

Proposition 9.6 (Stability of the special curves).
(i) The set σs(G) is J -stable.
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(ii) For all integers i ∈ {0, . . . , n − 1}, the set σs(Ai) is stable by any element of G r
{Ai−1, Ai+1}.

Proof.
Let us show item (i).

For all a ∈ σs(G), we have I(a, δ.a) 6= 0. From the point of view of the curve δ.a, we have
I
(
δ.a, σ(G)

) 6= 0. As G is stable by the action of δ via ρ by conjugation on PMod(Σ), the curve
δ.a belongs to σ(G). Finally, δ.a belongs to σs(G). Hence σs(G) is J -stable.

Let us show item (ii).
To simplify the proof, we set i = 0. Let a be a special curve of σs(A0). Let j be an integer in

{3, . . . , n− 2} so that Aj commutes with A0 and A1. Then Aj(a) ∈ σ(A0) and Aj(δ.a) ∈ σ(A1).
By hypothesis, a is special, so I(a, δ.a) 6= 0. Then, when we apply Aj to the pair (a, δ.a), we
get I(Aj(a), σ(A1)) 6= 0, so Aj(a) ∈ σs(A0).

Symmetrically, when j = 2, if we replace δ.a by δ−1.a, we show that I(A2(a), σ(An−1)) 6= 0,
so A2(a) ∈ σs(A0).

We have one more case to deal with, when j = 0. Let us start again from a ∈ σs(A0). Then
A0(a) ∈ σ(A0). We want to show that A0(a) is a special curve. We are going to show that∣∣J .(A0(a))

∣∣ = n, which is enough according to Proposition 9.4. Since a is special, we have
sp(a) = {A0}. Now, for all ` ∈ {2, . . . , n − 2}, the mapping class A` commutes with A0 and
a 6∈ σ(A`), so A0(a) 6∈ σ(A`). Hence we have:

{A0} ⊂ sp(A0(a)) ⊂ {An−1, A0, A1}.
So for all integers k, δk.sp(A0(a)) = sp(A0(a)) if and only if k is a multiple of n. So, if δk.A0(a) =
A0(a) then k is a multiple of n, so |J .(A0(a))| > n. Hence according to Proposition 9.3, we have
|J .(A0(a))| = n. So A0(a) is a special curve. ¤

Proposition 9.7 (Stability of the normal curves).
The set σn(G) is Bn-stable and the actions of Bn via ρ on σn(G), on Subσn(G)(Σ) and on
Bndy(Σσn(G)) are cyclic.

Proof. Let us recall that according to Proposition 9.4, σn(G) is a simplex. Then if we show
that σn(G) is Bn-stable, we can apply Proposition 9.2 (according to which any action of Bn on a
curve simplex Bn-stable is cyclic) and deduce from it Proposition 9.7. Let a be a normal curve.
We proceed as follows:

1. We show that A1(a) belongs to σ(G).

2. We show that A1(a) is not special, hence is normal.

3. Therefore σ(G) is Bn-stable.

1. Let a be a normal curve. According to assertion (2g) of Proposition 9.4, sp(a) contains at
least two elements Ai and Aj with 0 6 i < j 6 n−1, and according to assertion (4g) of the same
proposition, we can assume that j 6∈ {i + 2, i + n− 2}. In particular {i, j} 6= {0, 2}. Therefore
A1 commutes with at least one of the two mapping classes Ai and Aj , so A1(a) ∈ σ(G).

2. Let us assume that A1(a) is special. If A1(a) did not belong to σs(A0) or to σs(A2), then
according to Proposition 9.6.(ii), A−1

1

(
A1(a)

)
would still be a special curve. But A−1

1 (A1(a)) =
a, which is a normal curve. Therefore A1(a) belongs to σs(A0) or σs(A2). The situation being
symmetric, we can assume tha:t
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A1(a) ∈ σs(A0). (1)
Having assumed that A1(a) was special, we have I(A1(a), δ.A1(a)) 6= 0, so

I
(
a, A−1

1 (δ.A1(a))
) 6= 0. (2)

Now, according to (1), A1(a) ∈ σ(A0), so δ.A1(a) ∈ σ(A1) and A−1
1 (δ.A1(a)) ∈ σ(A1). Then (2)

implies:
I
(
a, σ(G)

) 6= 0,
which is absurd since a is a normal curve.

3. Let us conclude: we have just shown that A1(σn(G)) = σn(G). But σn(G) = σ(G)r σs(G)
and the two sets σ(G) and σs(G) are J -stable (for σs(G), this comes from Proposition 9.6), so
σn(G) is J -stable. Hence for all integers i ∈ {1, . . . , n− 1}, we have (ρ(δi)A1ρ(δi)−1)(σn(G)) =
σn(G), in other words, Ai(σn(G)) = σn(G). Since G spans ρ(Bn), is follows that σn(G) is stable
by ρ(Bn). ¤

Proposition 9.8 (Spectrum of the normal curves).
The spectrum of a normal curve is always equal to G.
Proof. Let a be a normal curve. There exists an integer k such that the curve a′ = ρ(δk)(a) be-
longs to σ(A0). Then the curve (A0A1A0A

−3
3 )(a′) belongs to σ(A1) for (A0A1A0A

−3
3 )A0(A0A1A0A

−3
3 )−1 =

A1. But since the action of Bn is cyclic on the normal curves according to Proposition 9.7,
the action of (A0A1A0A

−3
3 ) is trivial and (A0A1A0A

−3
3 )(a′) = a′, so the curve a′ belongs to

σ(A1). For all i ∈ {0, 1, . . . , n − 1}, the same argument can be repeated, so a′ belongs to
σ(Ai) for all i ∈ {0, 1, . . . , n − 1}. By conjugating this by ρ(δ−k), it follows that the curve
a = ρ(δ−k)(a′) belongs to σ(Ai) for all i ∈ {0, 1, . . . , n − 1}. The proposition is proved.

¤

Proposition 9.9 (Existence of the special curves). The set σs(G) is not empty.

Proof. Let us recall that the morphism ρ is assumed to be noncyclic. We argue by contradiction:
we assume that all the curves of σ(G) are normal.

First, since ρ is not cyclic and according to Theorem 8.2, σ(G) is not empty. Then the
set σ(G) of curves (being all normal by assumption) is a simplex, according to Proposition 9.4.
Moreover, this simplex is Bn-stable according to Proposition 9.7. The Proposition 9.2 can be
applied to the simplex σ(G), so the action of Bn on Bndy(Σσ(G)) is cyclic and the one of Fn on
Bndy(Σσ(G)) is trivial. Hence the morphism ρ induces a morphism ρ̄ from Fn in PMod(Σσ(G)).
Recall that we have the following canonical isomorphism:

PMod(Σσ(G)) =
∏

S∈Comp(Σσ(G))

PMod(S),

where Comp(Σσ(G)) denotes the set of all connected components of Σσ(G). Let S be one of
these components and let ρ̄S be the morphism induced by ρ on PMod(S). The morphism ρ̄S is
irreducible, that is, for all i ∈ {3, . . . , n− 1}, the element τiτ

−1
1 is sent on a irreducible mapping

class. Indeed, according to Proposition 3.45, σ(ρ(τiτ
−1
1 )) ⊂ σ(ρ(τi)) ∪ σ(ρ(τ−1

1 )), but these two
sets σ(ρ(τi)) and σ(ρ(τ−1

1 )) do not contain any curve in S, so σ(ρ̄S(τiτ
−1
1 )) = ∅. We will say

that ρ̄S is periodic or pseudo-Anosov whether ρ̄S(τ3τ
−1
1 ) is periodic or pseudo-Anosov. Let us

denote by A = ρ̄S(τ3τ
−1
1 ), B = ρ̄S(τ4τ

−1
1 ), C = ρ̄S(τ5τ

−1
1 ), and Z = ABACBA.
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Case where ρ̄S is pseudo-Anosov7: According to Theorem 3.32, the centralizer of a
pseudo-Anosov mapping class is virtually infinite cyclic. Then, since C is in the centralizer of
A, there exist two nonzero integers p and q such that Ap = Cq. By conjugating this equality by
Z, we get Cp = Aq. Hence Ap2

= Cqp = Aq2 . We deduce that p = q or p = −q. We are going to
show that both of these two equalities are absurd. For this purpose, we set γ13 = τ1τ2τ1τ3τ2τ1

and γ35 = τ3τ4τ3τ5τ4τ3. Notice that:
γ13 τ1 γ13

−1 = τ3 and γ35 τ1 γ35
−1 = τ1,

γ13 τ3 γ13
−1 = τ1 and γ35 τ3 γ35

−1 = τ5,
γ13 τ5 γ13

−1 = τ5 and γ35 τ5 γ35
−1 = τ3.

Hence, if we set υ = γ13γ35
−1, then the element υ belongs to Fn and satisfies:

υ τ1 υ−1 = τ3, υ τ3 υ−1 = τ5, υ τ5 υ−1 = τ1,

υ (τ3τ
−1
1 ) υ−1 = τ5τ

−1
3 , υ (τ5τ

−1
3 ) υ−1 = τ1τ

−1
5 , υ (τ1τ

−1
5 ) υ−1 = τ3τ

−1
1 .

Then if we set U = ρS(υ), then:
we have: UAU−1 = CA−1, U(CA−1)U−1 = C−1, UC−1U−1 = A,
so if Cp = Ap: UApU−1 = Id , U(Id )U−1 = A−p, UA−pU−1 = Ap,
and if Cp = A−p: UApU−1 = A−2p, U(A−2p)U−1 = Ap, UApU−1 = Ap.

So if Cp = Ap, then Ap is equal to Id , which is absurd for A is pseudo-Anosov; whereas if
Cp = A−p, then we have UApU−1 = Ap and UApU−1 = A−2p whence Ap = A−2p and so
A3p = Id , which is also absurd. Hence ρS is not pseudo-Anosov.

Case where ρ̄S is periodic. Notice that the mapping classes A, B, C are conjugate.
There are then periodic of same order. Let us call m this order. We restrict the domain of the
morphism ρ̄S to F∗n, which is isomorphic to Bn−2. According to Proposition 5.12, we can lift
this new morphism from F∗n in PMod(S) into a morphism ρ̃S from F∗n in Mod(S, ∂S). Let us
denote by

∼
A,

∼
B,

∼
C, the images by ρ̃S of τ3τ

−1
1 , τ4τ

−1
1 , τ5τ

−1
1 . Then

∼
Am and

∼
Cm are multitwists

along some curves of Bndy(S). Since these multitwists are in the center of Mod(S, ∂S) and
since

∼
Z
∼
Am

∼
Z−1 =

∼
Cm (where

∼
Z = (

∼
A
∼
B
∼
C)2), we have

∼
Am =

∼
Cm. Therefore,

∼
A
∼
C−1 satisfies

(
∼
A
∼
C−1)m = 1 in Mod(S, ∂S). But Mod(S, ∂S) is torsion-free, so

∼
A
∼
C−1 is trivial and

∼
A =

∼
C.

This implies that in PMod(S), we have ρ̄S(τ3τ
−1
1 ) = ρ̄S(τ5τ

−1
1 ).

This last equality holds for any connected components S of Σσ(G). Hence, by considering the
morphism ρ̄ : Fn → PMod(Σσ(G)), we have shown that ρ̄(τ3τ

−1
1 ) = ρ(τ5τ

−1
1 ). Then ρ̄(τ5τ

−1
3 )

coincides with the identity of PMod(Σσ(G)). Let us recall that Bn stabilizes Σσ(G). Then by
conjugation in Bn, we deduce that the morphism ρ̄ : Fn → PMod(Σσ(G)) is trivial. Hence
the image of the restriction of the morphism ρ to F∗n in PMod(Σ) is included in the abelian
group spanned by the Dehn twists along the curves of σ(G). Hence, according to Lemma 5.3, the
restriction of ρ to F∗n is a cyclic morphism. Therefore ρ(τ5τ

−1
3 ) is the identity, so ρ(τ3) = ρ(τ5).

Hence, according to Lemma 5.2, ρ is a cyclic morphism . This is contradicts our hypotheses, so
the proposition is proved. ¤

Proposition 9.10 (Cardinality of σs(G)).
The set σs(G) contains n or 2n curves, depending on whether |σs(A1)| = 1 or |σs(A1)| = 2.

Proof. First, according to Proposition 9.6, we have δ.σs(Ai) = σs(Ai+1), so the cardinality of
σs(G) is equal to n times the one of σs(A1). But σs(A1) contains one or two curves for on one

7We cannot apply the results of Section 8 for F∗n can be isomorphic to B4 and this case is not treated in Section
8. On the other hand, the techniques involved here would have appeared quite complicated in Section 8 when the
boundary of Σ is nonempty, and simply do not work when the boundary is empty.
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hand, it cannot be empty since σs(G) is not empty, and on the other hand, it cannot contain
three curves or more as we are going to show it. This prove the proposition.

Let us then show that |σs(A1)| < 3. Notice that the elements A1, A3, A5, . . . , An−1 pairwise
commute, so the set of curves σs(A1)∪σs(A3)∪· · ·∪σs(An−1) is a simplex. If σs(A1) contained at
least three curves, the set of curves σs(A1)∪σs(A3)∪· · ·∪σs(An−1) would be a simplexA of at least
3n
2 curves that would be stable by the action of 〈δ2〉 on Curv(Σ). However, the orbits included
in A under the action of 〈δ2〉 contain at least n

2 curves, which is greater than or equal to 3, so we
can apply Proposition 7.5: after having squeezed the boundary components of Σ, the simplex A
still contains at least 3n

2 distinct curves. But 3n
2 > 3g whereas the cardinality of all simplex in a

surface without boundary of genus g is bounded by 3g − 3. This is the expected contradiction.
¤

9.6 Summary of the present section

Definition 9.5 (Normal curves, special curves).
We say that a curve a belonging to σ(G) is special if it satisfies I(a, σ(G)) 6= 0, and that it is
normal if it satisfies I(a, σ(G)) = 0. We denote by σs(G) the set of special curves, and by σn(G)
the set of normal curves. Moreover, for all A ∈ G, we set

σn(A) = σn(G) ∩ σ(A),
σs(A) = σs(G) ∩ σ(A).

Proposition 9.23 (Characterizations and properties of the normal curves and the
special curves). Let a be a curve of σ(G). Then:

(i) The following statements are equivalent:

• a is special,

• |sp(a)| = 1 (in particular, we have the partition σs(G) =
⊔n−1

i=0 σs(Ai)),

• I(a, δ.a) = I(a, δ−1.a) 6= 0,

• |J .a| = n.

(ii) The following statements are equivalent:

• a is normal,

• sp(a) = G (in particular, for all i ∈ {0, 1, . . . , n− 1}, we have σn(Ai) = σn(G)),

• I(a, σ(G)) = 0,

• |J .a| < n.

(iii) The curves of σ(G) split as follows:

• σ(G) admits the partition: σ(G) = σs(G) t σn(G),

• σs(G) is nonempty and contains n or 2n curves, depending on whether |σs(A1)| = 1
or |σs(A1)| = 2.

(iv) The curves of σ(G) satisfy the following properties of stability:
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• σn(G) is stable by the action of Bn on Curv(Σ) and the restriction of this action on
σn(G) is cyclic: for all a ∈ σn(G) and all integers i, j ∈ {0, . . . , n − 1}, we have
Ai(a) = Aj(a).

• σs(G) is stable by the action of J on Curv(Σ).
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10 The special curves are not separating

Let us recall that n is an even integer greater than or equal to 6, Σ is a surface Σg, b where
g 6 n

2 and b > 0, and ρ is a noncyclic morphism from Bn in PMod(Σ) such that σp(G) is empty.
According to Proposition 9.9, the set σs(G) is not empty.

10.1 Outline of the section

In this section, we are going to show the following proposition:

Proposition 10.1. The curves of σs(G) are not separating.

• In Subsection 10.2, we present a subset X of G, stable under the action of H via ρ, where
H is a subgroup of Bn. The set X is smaller than G, but the action of H on X is r times
transitive, where r is the cardinality of X . Moreover, X will consists in elements of G which
pairwise commute, so the union of their canonical reduction systems will be a simplex. These
aspects will be very useful.

• Subsection 10.3 is devoted to the proof of Proposition 10.1. The proof will be topological and
the bound of n

2 on the genus of Σ is essential here. If we wanted to replace the bound n
2 by n

2 +1,
our method would fail. However, the bound n

2 is maybe not the best one.

10.2 The subgroup H of Bn and its action on the subset X of G

Definition 10.2 (The subset Imp(n) of {0, 1, . . . , n− 1} and the subset X of G).
For all positive integers m, let Imp(m) be the set of the first odd integers smaller than or equal
to m. Let X = {Ai, i ∈ Imp(n)} be the subset of G. We set σ(X ) = ∪i∈Imp(n)σ(Ai).

Remark. The elements of X commute pairwise, so the curves in σ(X ) cannot intersect each
other. Thus σ(X ) is a curve simplex.

Definition 10.3 (The subgroup H of Bn).
For all integers i belonging to Imp(n), we set

γi = τiτi+1τiτi+2τi+1τi,
where for all integers k, we denote by τk the standard generator τ` where ` is the remainder of
the euclidian division of k by n. The group H is the subgroup of Bn defined by

H := 〈 γi , i ∈ Imp(n) 〉.

Proposition 10.4 (Properties of the group H).
(i) The action of H by conjugation via ρ on PMod(Σ) preserves X .

(ii) The morphism H → S(X ) of the action of H on X , where S(X ) is the symmetric group
on the elements of X , is surjective. Consequently, this action is n

2 times transitive.

168



(iii) The action of H on Curv(Σ) preserves σs(X ).

Proof. Let us first remark that for all i ∈ Imp(n), the element γi acts by conjugation on the
subset {τj , j ∈ Imp(n)} of Bn in the following way:

γiτjγ
−1
i =





τj if j 6∈ {i, i + 2}
τj−2 if j = i + 2
τj+2 if j = i .

We deduce the following:

(i) The group H acts by conjugation on Bn and preserves the set {τj , j ∈ Imp(n)}, so the
group H acts via ρ on PMod(Σ) and preserves X .

(ii) For all i ∈ Imp(n), the morphism φ : H → S(X ), where S(X ) is the symmetric group on
the elements of X , sends γi on the transposition that swaps Ai and Ai+2. Then φ(H) is a
subgroup of S(X ) containing n

2 −1 transpositions with disjoint supports, so φ is surjective.

(iii) The action of H on Curv(Σ) preserves σ(X ), since the action of H on PMod(Σ) preserves
X . Now, according to Proposition 9.7, the action of Bn on Curv(Σ) preserves σn(G), so the
action of H on Curv(Σ) preserves σn(G). So the action of H on Curv(Σ) also preserves the
complement of σn(G) in σ(X ), which is σs(X ). ¤

10.3 Proof of Proposition 10.1

We are going to show the proposition:
Proposition 10.1. The curves of σs(G) are not separating.

We will need the definition of special boundary of a subsurface. We will also recall what is
the natural boundary of a subsurface:

Definition 10.5 (Natural boundary and special boundary).
Let n be an even integer greater than or equal to 6, let Σ be a surface and ρ a morphism from Bn

in PMod(Σ). Let A be a curve simplex included in Curv(Σ). For any subsurface S of SubA(Σ),
a boundary component d of S will be said to be natural if it belongs to Bndy(Σ), and will be
said to be special if it belongs to σs(G). The union of the natural boundary components will be
called the natural boundary, and the union of the special boundary components will be called
the special boundary.

We are going to proceed in five steps.

Step 1. If there exists in σs(G) a separating curve, then for all i ∈ {0, 1, . . . , n− 1}, the set of
curves σs(Ai) contains exactly a separating curve that bounds a torus with one hole (cf. Figure
66). Thus, Σ is a surface of genus g = n

2 .

Proof of step 1. If there exists a separating curve in σs(G), then there exists at least one
separating curve in σs(A1). Let us call it a1. Let A be the set of curves H.a1. Since we have
a1 ∈ σ(X ) and since X is H-stable, the set A is included in σ(X ), hence is a simplex. Let us
consider the graph Γ(Σ, A). Since the curves of A are separating, if we remove from Γ(Σ, A) one
of its edges, we get a disconnected graph. Hence the graph Γ(Σ, A) contains no cycle: this graph
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is a finite tree. So it contains leaves (vertices of degree 1). Let T be a subsurface of SubA(Σ)
corresponding to a leaf in Γ(Σ, A). Since exactly one curve of A bounds T , T is not stable by
the action of H, so T contains no natural boundary component. Hence T has only one boundary
component, so T is of nonzero genus. Each subsurface in the orbit H.T can be identified by the
curve a ∈ A that bounds it. Since the number of curves in A is at least equal to the cardinality
of X , there exists at least n

2 disjoint subsurfaces homeomorphic to T in SubA(Σ). But Σ is of
genus g 6 n

2 , so:

• there exist exactly n
2 such subsurfaces,

• these subsurfaces are tori with one hole,

• and Σ is of genus g = n
2 .

So, there exist exactly n
2 curves in A, hence one separating curve in each set σs(Ai), i ∈ Imp(n).

Moreover, the complement of these n
2 tori is a genus-0 surface having n

2 special boundary com-
ponents and b natural boundary components (cf. Figure 66). ¤

Figure 66: The surface Σ and the separating curves ai, i ∈ Imp(n) of σ(X ).

From now on, we are in the situation described by step 1 and we adopt the following notation.

Notation 10.6 (Situation described by step 1).
For all i ∈ {0, 1, . . . , n − 1}, let us denote by ai the unique separating curve of σs(Ai) and by
Ti the torus with one hole, included in Σ and bounded by ai. Let us denote by S the genus-0
surface obtained from Σ minus the tori Ti where i ranges over Imp(n) (cf. Figure 66). Finally,
we set Pair(n) = {0, 1, . . . , n− 1}r Imp(n).

Notation 10.7 (Representatives of the isotopy classes).
Let us choose some representatives āi, i ∈ {0, 1, . . . , n − 1} in tight position, of the curves ai,
i ∈ {0, 1, . . . , n − 1} (such a system of representatives is unique up to isotopy, according to
Proposition 2.2). From these representatives of curves, we deduce the representatives S̄ and T̄i

for all i ∈ {0, 1, . . . , n− 1}, of the subsurfaces S and Ti for all i ∈ {0, 1, . . . , n− 1}.

Step 2. There exists an orientation preserving diffeomorphism F̄ of Σ that preserves the bound-
ary components of Σ such that

• for all i ∈ {1, 2, 3}, we have F̄ (āi) = ā4−i,

• and for all i ∈ {5, 6, . . . , n− 1}, we have F̄ (āi) = āi.
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Proof of step 1. Let Ḡ be a diffeomorphism representing the mapping class ρ(γ1) where γ1 is
defined by:

γ1 := τ1τ2τ1τ3τ2τ1.
Let us denote by Ā the set of representatives of curves {ā2} ∪ {āi, i ∈ Imp(n)} and Ā′ the set
{Ḡ(ā2)} ∪ {Ḡ(āi), i ∈ Imp(n)}. According to Proposition 10.4,

• for any i ∈ {1, 2, 3}, we have ρ(γ1)Aiρ(γ1)−1 = A4−i,

• and for any i ∈ {5, 6, . . . , n− 1}, we have ρ(γ1)Aiρ(γ1)−1 = Ai.

Besides, for any i ∈ {0, 1, . . . , n − 1}, the curve ai is the unique separating curve belonging to
σs(Ai), so:

• for any i ∈ {1, 2, 3}, the curve Ḡ(āi) is isotopic to ā4−i,

• and for any i ∈ {5, 6, . . . , n− 1}, the curve Ḡ(āi) is isotopic to āi.

Then, the sets of curves Ā and Ā′ are both weakly isotopic. Let us recall that Ā is a set of
representatives of curves in tight position. Hence the representatives of curves of Ā do not
bound any bigon. But Ā′ is the image of Ā by Ḡ. So the representatives of curves of Ā′ do not
bound any bigon either. Hence Ā′ is a set of representatives of curves in tight position. Moreover
Ā is without triple intersection, hence so is Ā′. Then, according to Proposition 2.14, Ā and Ā′
are in the same strong isotopy class. In other words, there exists a diffeomorphism isotopic to the
identity H̄ such that H̄(Ā) = Ā′. Then the diffeomorphism F̄ defined by F̄ := H̄−1Ḡ satisfies
the assertions of the statement. ¤

Definition 10.8 (Arcs).
For all i, j, k in {1, 2, 3}, let us denote by Arck

j (i) the set of closures of the connected components
of āir

(
āj ∪ āk

)
. We will say that an element of Arck

j (i) is an arc included in āi with extremities
in āj and āk.

Step 3. The arcs of Arc1
1(2) and Arc3

3(2) are included respectively in T̄1 and T̄3. In other words,
the only arcs included in ā2 ∩ S̄ belong to Arc3

1(2).
Proof of step 3. Let us argue by contradiction. Let us consider an arc ¯̀ belonging to
Arc1

1(2) and included in S̄. Since S̄ is of genus zero, ¯̀ separates S̄ in two connected components.
One of them contains the boundary ā3. Since the curves ā1 and ā2 do not cobound any bigon,
the other component is not a disk, so it contains a special boundary component or a natural
boundary component. In both cases, let us call d this boundary component. Finally, we have
a path ¯̀ which separates S̄ in two components, one containing ā3, the other containing d.
Similarly F̄ (¯̀) belongs to Arc3

3(2) (for ¯̀ belongs to Arc1
1(2)), is included in S̄ and separates

S̄ in two components, one containing F̄ (ā3) that is equal to ā1, the other containing F̄ (d)
that is equal to d. We deduce from it Figure 67 where it is clear that ¯̀ and F̄ (¯̀) intersect,
which is absurd: F̄ (¯̀) and ¯̀ cannot intersect, for they are both included in the same curve.

¤
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Figure 67: The existence of an arc ¯̀ in Arc1
1(2) induces the existence of an arc F̄ (¯̀) in Arc3

3(2)
intersecting ¯̀.

Definition 10.9 (Arc paths, rectangles, hexagons, octogons).
We call arc path a union of arcs such that this union is homeomorphic to a segment or to a circle.
In the first case, the arc path will be said to be open, in the second it will be said to be closed.

If a connected component D of T̄2 ∩ T̄1, of T̄2 ∩ S̄, or of T̄2 ∩ T̄3 is homeomorphic to a disk
whose boundary is a closed arc path, each of the arcs of this arc path will be called edge of D.
Such a connected component with four edges will be called a rectangle, with six edges a hexagon,
and with eight edges an octogon.

Step 4. The connected components of T̄2∩S̄ are rectangles. The connected components of T̄2∩T̄1

(respectively T̄2 ∩ T̄3) consist in exactly one hexagon and some rectangles.

Proof of step 4.
1. connected components of T̄2 ∩ S̄.
We can see S̄ as an annulus whose boundary components are ā1 and ā3, minus n

2 − 2 + b
open disks, corresponding to the curves ai, i ∈ Imp(n)r{1, 3} and to the boundary components
of Σ (cf. Figure 68). The torus T̄2 contains none of these curves and none of these boundary
components so the connected components of T̄2 ∩ S̄ are simply connected and of genus zero,
hence are homeomorphic to disks. All the boundary components of a component C̄ of T̄2 ∩ S̄
are some arc paths leaning on the curves ā1, ā2 and ā3. But we have seen that the arcs included
in ā2 ∩ S̄ belong to Arc3

1(2). It is easy to see that in such an annulus, the only injective arc
paths that contain some arcs of Arc3

1(2) and that bound disks are rectangles: two edges belong
to Arc3

1(2), one edge to Arc2
2(1) and one edge to Arc2

2(3).

2. Connected components of T̄2 ∩ (T̄1 ∪ T̄3).
We can see T̄2 as the gluing along arcs included in ā1 and ā3 of the connected components of

T̄2∩T̄1, T̄2∩S̄ and T̄2∩T̄3. In this proof, we call domains these connected components. A domain
of T̄2 ∩ T̄1 is bounded by some arcs belonging to Arc2

2(1) and to Arc1
1(2). Notice that in T̄1 (as

in any such torus with one hole), there exist at most three pairwise disjoint, non-isotopic arcs,
whose extremities belong to ∂T̄1. So the set of arcs in Arc1

1(2) contains at most three isotopy
classes (cf. Figure 69).

But the arcs of Arc1
1(2) and of Arc2

2(1) constitute the boundary components of the domains
of T̄1 ∩ T̄2. We deduce that there exist only four possible types of domains in T̄1: rectangles,
hexagons, octogons and cylinders with bigonal boundary components, that is to say spheres with
two boundary components, such that each is a path of two arcs (cf. Figure 70).

The connected components of T̄3 ∩ T̄2 satisfy the same properties, since they are the images
by the diffeomorphism F̄ of step 2 of the connected components of T̄1 ∩ T̄2.
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Figure 68: The surface S̄ is seen as an annulus, the dark grey parties are the connected compo-
nents of T̄2 ∩ S̄.

Figure 69: An example of three disjoint, non-isotopic arcs belonging to Arc1
1(2), in T̄1.

Figure 70: The four types of domains: from left to right: the rectangle, the hexagon, the octogon,
the cylinder with bigonal boundary components.

3. Euler characteristic computation.
We are going to determine the contribution of each domain to the Euler characteristic of T̄2

(equal to −1 since T̄2 is a torus with one hole). Let us recall that T̄2 is the gluing of the domains
along the arcs of Arc2

2(1) ∪ Arc2
2(3) included in T̄2. Hence if a domain D has exactly k edges

belonging to Arc2
2(1) ∪ Arc2

2(3), then its contribution to χ(T̄2) amounts to χ(D) − k
2 . Indeed,

when we add up the Euler characteristics of all the domains, each of the gluing arcs has been
counted twice. To compute the contribution of a domain to the Euler characteristic of T̄2, we
hence need to add to its own Euler characteristic −1

2 as a corrective term for each gluing arc
included in the boundary of D. Thus,

• the rectangles have a 0-contribution;

• the hexagons have a (−1
2)-contribution;
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• the cylinders with bigonal boundary components have a (−1)-contribution;

• the octogons have a (−1)-contribution.

But according to step 2, the domains of T̄2∩ T̄3 are diffeomorphic to the ones of T̄2∩ T̄1. Besides,
the contribution of the domains of T̄2 ∩ S̄ is zero, since all the domains of T̄2 ∩ S̄ are rectangles
(as we have seen it in step 1.). Hence the global contribution of the domains of T̄2 ∩ T̄1 and the
global contribution of the domains of T̄2 ∩ T̄3 must both equal −1

2 . Therefore T̄2 ∩ T̄1 contains
exactly one hexagon and some rectangles. Same thing for T̄2 ∩ T̄3. ¤

Example 10.10. An example of the torus T̄2 built up from two hexagons and some rectangles,
according to the conclusion of step 4, is given Figure 71.

Figure 71: The torus T̄2, built up from two hexagons and some rectangles.

Step 5. We end in a contradiction.
Proof of step 5 and end of the proof of Proposition 10.1. The torus T̄3 contains the
connected components of T̄2 ∩ T̄3 and of T̄4 ∩ T̄3, which are pairwise disjoint since T̄2 ∩ T̄4 = ∅.
There are two hexagons among them, one included in T̄2 ∩ T̄3, the other included in T̄4 ∩ T̄3.
Each of them contains three edges included in ā3 (cf. Figure 72).

Figure 72: Two disjoint hexagons, one included in T̄2 ∩ T̄3, the other included in T̄4 ∩ T̄3.

Let us recall that it is possible to include in a torus with one hole only three pairwise disjoint
and non-isotopic arcs with extremities in the boundary. Therefore our two hexagons are arranged
as in Figure 72. In particular, let us remember that:
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the six edges included in the boundary of the torus T̄3 belong
alternatively to one and to the other of the two tori T̄2 and T̄4.

(1)

Let us describe how the tori T̄2 and T̄4 are embedded in Σ. The following description is
depicted in Figure 73.

1. Since T̄2 ∩ T̄3 contains a hexagon, T̄2 ∩ ā3 contains at least three connected components.
2. These at least three connected components extend in T̄2 ∩ S̄ in at least three rectangles.

Indeed, let us recall that the rectangles of T̄2 ∩ S̄ have only one edge in ā3, so two distinct
connected components of T̄2 ∩ ā3 are the edges of two distinct rectangles of T̄2 ∩ S̄. Now, there
are at least three such rectangles in T̄2 ∩ S̄. Each of them has an edge in ā1 and an edge in ā3.
Since S̄ is of genus zero, we deduce that S̄ r T̄2 contains at least three connected components.
We will name by region each of these connected components.

3. For instance, consider the regions R1, R2, R3, in Figure 73. Since the two tori T̄2 and T̄4

are disjoint, the rectangles of T̄4∩ S̄ are inside some of these regions. However, all the rectangles
of T̄4 ∩ S̄ have an edge included in ā5, so they should all be located in the region containing the
curve ā5.

4. But this is impossible, for according to statement (1), there exist rectangles of T̄4 ∩ S̄ in
at least three distinct regions (cf. Figure 73). ¤

Figure 73: In this configuration where the hexagons T̄2 ∩ T̄3 and T̄4 ∩ T̄3 are “nested” in T̄3, the
tori T̄2 and T̄4 intersect, which should not happen yet.
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11 Description of σ(X ) in Σ

Let us recall that n is an even integer greater than or equal to 6, Σ is a surface Σg, b where
g 6 n

2 and b > 0, and ρ is a noncyclic morphism from Bn in PMod(Σ) such that:
the set σp(G) is empty.

According to Proposition 9.9, the set σs(G) is not empty. We even know that |σs(A1)| ∈ {1, 2}
according to 9.10. Recall that X = {A1, A3, A5, . . . , An−1}.

In this section, we will determine the arrangement of the curves of σ(X ) in Σ while distin-
guishing the special curves and the normal curves. In other words, we will be able to describe
the graphs Γ(Σ ; σs(X )) (cf. Definition 2.23) and Γ(Σ ; σ(X )). Our main tool will be the action
of the subgroup H of Bn on the subset X of G.

11.1 Outline of the section

• In Subsection 11.2, we state a result concerning the action of H on X . We define notably the
H-colorations. They are H-equivariant functions which will help us to express the constraints
coming from the structure of Bn on the characteristic elements of the mapping classes of G.

• In Subsection 11.3 we determine the graph Γ(Σ, σs(X )). Especially, we will prove the propo-
sition:

Proposition 11.1 (Arrangement of the curves of σs(X ) in Σ).

(i) The set σs(G) contains n curves (hence for all A ∈ G, we have |σs(A)| = 1).

(ii) The set σs(X ) is non-separating in Σ, or it is separating but for any a ∈ σs(X ), the set
of curves σs(X )r {a} is non-separating. In other words, the graph Γ(Σ, σs(X )) is one of
those depicted in Figure 74.

Figure 74: The two possible embeddings of σs(X ) in Σ (here n = 10).

• After having described σs(X ), we turn in Subsection 11.4 to the description of the set σ(X ) =
σs(X ) ∪ σn(X ) with Propositions 11.2 and 11.4.

Proposition 11.2 (Existence of the surface Σ̂).

(i) There exists a unique subsurface Σ̂ in Subσn(G)(Σ) that contains the curves of σs(G).

(ii) The boundary of each subsurface belonging to Subσs(X )(Σ̂) contains σs(X ).
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(iii) The surface Σ̂ is of genus ĝ ∈ {n
2 − 1, n

2 }.
(iv) The surface Σ is of genus g ∈ {n

2 − 1, n
2 }.

(v) The set Subσs(X )(Σ̂) is reduced to a connected component of genus zero, or to two connected
components, one of them is of genus zero and the other is of genus zero or one.

Example. Here are three situations described in Figure 75 and illustrating Proposition 11.2.(v).
On each of these three cases, we have represented the special curves of σ(X ), the possible normal
curves of σ(G), and the surface Σ̂, associated to three morphisms from B6 in PMod(Σ3, 2):

• on the left hand side, Subσs(X )(Σ̂) is reduced to a connected component of genus zero,

• in the center, Subσs(X )(Σ̂) consists in two subsurfaces of genus zero,

• on the right hand side, Subσs(X )(Σ̂) consists in two subsurfaces, one of genus zero, the
other of genus one.

Figure 75:

Proposition 11.2 allow us to set the following definitions that will still be useful in the following
section.

Definition 11.3 (Σ̂, Σ̌ and U).
• Let Σ̂ be the subsurface of Subσn(G)(Σ) that contains the special curves.

• Let us set U = Bndy(Σ̂) ∩ σn(G).

• Let Σ̌ be the union of the subsurfaces of SubU (Σ) different from Σ̂. If Σ̂ is the only
subsurface of SubU (Σ), we will say that Σ̌ is empty.

Example. Let us consider the morphism ρ from B8 in PMod(Σ4, 2) such that for all i ∈
{1, . . . , n− 1}, we have ρ(τi) = Tai V , where the curves ai are the ones drawn in Figure 76, and
where V is a mapping class that commutes with the Tai and such that σ(V ) = {x1, x2, x3}, where
the curves xk are the ones drawn in Figure 76. Then we have the equalities: σn(G) = {x1, x2, x3}
and U = {x1, x2}. Moreover, Σ̂ is the subsurface of ΣU that contains the curves ai (drawn in
light grey in Figure 76), and Σ̌ is the subsurface of ΣU that does not contains the curves ai

(drawn in dark grey in Figure 76).
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Figure 76:

For the following proposition, recall that we have assumed in this section that σp(G) was
empty. In other words, the separating curves belonging to σn(G) separate Σ in two surfaces,
each of them being of nonzero genus.

Proposition 11.4 (Description of SubU (Σ)).
We have |U| 6 2, and SubU (Σ) satisfies the following properties:

• if U is empty, then Σ = Σ̂; if Σ̂ is of genus n
2 , then U is empty,

• if U is reduced to a non-separating curve u, then Σ̌ is empty and {u} is the mark of Σ̂,

• if U is reduced to a separating curve u, then Σ̌ is a connected subsurface of genus 1,

• if U contains two curves, then they are non-separating and Σ̌ is connected, of genus zero.

These assertions can be summed up as follows: the graph Γ(Σ, U) is one of the four graphs
depicted in Figure 77 where:

• the circled vertices represent the subsurfaces of nonzero genus of SubU (Σ),

• the integer placed beside the circled vertices indicates the genus,

• the edges are drawn as dotted so as to be coherent with Remark 11.9 at the end of the
present section.

Figure 77: The four possible graphs for Γ(Σ, U) (cf. Proposition 11.4).
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We then could easily deduce from it the different possible graphs corresponding to Γ(Σ ; σ(X )).
We do it only as a remark (cf. Remark 11.9 in end of section), because such a detailed description
will be useless in the following of the proof of Proposition 12.1. Indeed, Propositions 11.1, 11.2
and 11.4 are enough for this purpose.

11.2 Action of H on X and H-colorations

Recalls. Let us recall the definitions of the group H and of the subset X of G (cf. Subsection
10.2, Definitions 10.2 and 10.3). For any nonzero integer m, let Imp(m) be the set of the first
odd integers smaller than or equal to m. Let X be the subset {Ai, i ∈ Imp(n)} of G consisting
in n

2 elements which pairwise commute. We denote by σ(X ) the curve simplex ∪i∈Imp(n)σ(Ai).
We set σs(X ) = σ(X ) ∩ σs(G). The group H is the subgroup 〈 γi , i ∈ Imp(n) 〉 of Bn where for
all i ∈ Imp(n), the element γi is the product τiτi+1τiτi+2τi+1τi.

Let us also recall the main properties of H (see Proposition 10.4):

i) The action of H on PMod(Σ) via ρ preserves X . Indeed, for all i, j ∈ Imp(n), we have:

γi.Aj = ρ(γi)Ajρ(γi)−1 =





Aj if i 6∈ {j, j − 2}
Aj−2 if i = j − 2
Aj+2 if i = j.

(ii) The morphism H → S(X ) describing the action of H on X , where S(X ) is the symmetric
group on the elements of X , is surjective. In particular, this action is n

2 times transitive.

(iii) The action of H on Curv(Σ) preserves σs(X ).

We have already given the definition of J -coloration (cf. Definition 9.16). We define what is
a H-coloration in the same way.

Definition 11.5 (H-colorations on X ).
Let E be an H-set (i.e. a set together with an action of H) and P(E) the power set of E . An
H-coloration is a function colX : X −→ P(E) that is H-equivariant, which means that for all
ξ ∈ H and all A ∈ X , we have:

ξ.colX (A) = colX (ξ.A).
The integers of Imp(n), in bijection with X , are called colors. We will say that an element e ∈ E
is of color i if e ∈ colX (Ai). An element e ∈ E can be of several colors in the meantime or
possibly of none color.

Conversely, starting from a H-coloration colX : X −→ P(E), let us define the map called
H-spectrum:

spX :
E −→ P(X )
e 7−→ {A ∈ X | e ∈ colX (A)} .

The map spX is H-equivariant: for all ξ ∈ H and all e ∈ E , we have:
ξ.spX (e) = spX (ξ.e).

Proposition 11.6. The map σs : X → Curv(Σ) is an H-coloration.
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Proof. According to Proposition 3.40.(i), we have σ(γ.A) = γ.σ(A) for any γ ∈ Bn and any
A ∈ PMod(Σ), so the function Σ is an H-coloration on σ(X ). Moreover, σs(X ) is H-stable,
according to Proposition 10.4). Then for all i, j ∈ Imp(n), we have:

σs(γi.Aj) = σ(γi.Aj) ∩ σs(X )
= γi.σ(Aj) ∩ σs(X )
= γi.σ(Aj) ∩ γi.σs(X )
= γi.

(
σ(Aj) ∩ σs(X )

)
= γi.σs(Aj).

So the restriction of the function σ on X is an H-coloration. ¤

Lemma 11.7. Let E be an H-set. Let colX : X → P(E) be an H-coloration and spX : E →
P(X ) the associated H-spectrum. Let e be an element of E such that the H-spectrum of e contains
k mapping classes (0 6 k 6 n

2 ). Then there exists an integer ` > 1 such that |H.e| = `Ck
r where

r = n
2 .

Proof . This is an easy application of general principles about group actions. In a general
way, if F is a finite set on which H acts, if we choose an element f0 ∈ F and if we denote by
S = StabH(f0) the subgroup of H that fixes f0, and by Z a transversal of H/S , then,

• we have the disjoint union H =
⊔

γ∈Z
γ.S

• if the action of H on F is transitive, we have |Z| = ∣∣H/S
∣∣ = |F|.

Given an element e of E such that spX (e) is a set of k mapping classes of X with 0 6 k 6 r
where r = n

2 , let us consider the set Pk(X ) of the subsets of X containing k elements. We replace
F by Pk(X ) the and f0 by spX (e). Notice that the action of H on Pk(X ) is transitive for the
action of H on X is k times transitive. We get then:

H =
⊔

γ∈Z
γ.StabH(spX (e)), (1)

and |Z| = ∣∣H/StabH(spX (e))
∣∣ = |Pk(X )| =

(
r
k

)
. (2)

Now for all distinct γ′ and γ′′ belonging to Z, the elements γ′.spX (e) and γ′′.spX (e) are different,
so the elements of γ′.

(
StabH(spX (e)).e

)
, that all have the same spectrum, which is different from

the spectrum of the elements of γ′′.
(
StabH(spX (e)).e

)
. Hence the two sets γ′.

(
StabH(spX (e)).e

)
and γ′′.

(
StabH(spX (e)).e

)
are disjoint. Therefore, the assertion (1) implies:

H.e =
⊔

γ∈Z
γ.

(
StabH(spX (e)).e

)
, (3)

We set ` = |( StabH(spX (e))
)
.e|. Then, we deduce from (2) and (3) the following equality:

|H.e| = `

(
r
k

)
. (4)

¤
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11.3 Description of the embedding of σs(X ) in Σ

In this subsection, we are going to show the following proposition:

Proposition 11.1 (Arrangement of the curves of σs(X ) in Σ).

(i) The set σs(G) contains n curves (hence for all A ∈ G, we have |σs(A)| = 1).

(ii) The set σs(X ) is non-separating in Σ, or it is separating but for any a ∈ σs(X ), the set
of curves σs(X )r {a} is non-separating. In other words, the graph Γ(Σ, σs(X )) is one of
those depicted in Figure 78.

Figure 78: The two possible embeddings of σs(X ) in Σ (here n = 10).

Proof. According to Proposition 9.10, σs(G) contains n or 2n curves, depending on whether
σs(A1) contains one or two curves. Since X contains only the mapping classes with odd indices,
σs(X ) contains n

2 or n curves. While showing item (ii) we will show that σs(X ) contains n
2

curves, which will prove item (i).
Let us show that if we prove this proposition in the case where ∂Σ is empty, then the

proposition in the case where ∂Σ is not empty can be deduced easily. So, we assume that ∂Σ is
not empty. Let us consider the graph Γ(Σ, σs(X )) and the subgroup H preserving the simplex
σs(X ). Since the cardinality of each orbit of curves of σs(X ) under H is greater than or equal to
n
2 > 3, we can apply Proposition 7.5. In other words, Γ(Σ, σs(X )) is canonically isomorphic to
Γ
(
sq(Σ), sq(σs(X ))

)
that is the graph associated to the morphism sq∗ ◦ρ : Bn →Mod

(
sq(Σ)

)
,

in the same way as the graph Γ(Σ, σs(X )) is associated to the morphism ρ : Bn → PMod(Σ).
Thanks to this isomorphism, in order to prove Proposition 11.1, it is enough to show the parts
(i) and (ii) when ∂Σ is empty.

From now on, we assume that ∂Σ is empty. We are going to use the action of H on the
graph Γ(Σ, σs(X )). In order to make the action of H on the graph Γ(Σ, σs(X )) more obvious,
we “color in” the different edges and the different vertices as follows:

The graph Γ = Γ(Σ, σs(X )).
We denote by Γ the graph Γ(Σ, σs(X )). Its vertices are in bijection with Subσs(X )(Σ) and its
edges are in bijection with σs(X ). The action of H on Subσs(X )(Σ) induces an action of H on
the set of vertices of Γ and the action of H on σs(X ) induces an action of H on the set of edges
of Γ. Moreover, these two actions are compatible with the graph structure of Γ. In addition, we
also have two H-colorations:

• the H-coloration σs : X → σs(X ), that can be seen as an H-coloration on the edges of Γ.
In this way, the H-spectrum of each edge of Γ contains a unique color i ∈ Imp(n);
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• the H-coloration ωX : X −→ Subσs(X )(Σ)

A 7−→ {S ∈ Subσs(X )(Σ) | Bndy(S) ∩ σs(A) 6= ∅}
, that can

be seen as an H-coloration on the vertices of Γ. Thus the H-spectrum of each vertex
contains exactly the colors of the edges incident to this vertex.

Since σs and ωX are H-colorations, the action of H on the vertices and on the edges of Γ is
compatible with the action of H on their colors. Finally, the group H acts on the graph Γ
together with its colors.

The cycles and the degrees in Γ.
Let us denote by c the number of independent cycles which exist in Γ. Then, we have of course:
Fact 1: c 6 g.

The vertices of degree 1 correspond to the subsurfaces bounded by some separating curves.
However, according to Proposition 10.1, there does not exist in σs(X ) any separating curve in
Σ, so:
Fact 2: The degree of each vertex is at least 2.

Hence the graph Γ contains some cycles:
Fact 3: c > 1.

Notice that the vertices of degree 2 correspond to the connected components having only two
boundary components. Remember that ∂Σ is empty, so such connected components must be of
nonzero genus. We deduce:
Fact 4: The number of vertices of degree 2 is bounded by g − c.

Moreover, if there exists a vertex p of degree 2, such that i and j in Imp(n) are the colors
of the two edges having an extremity in p, the orbit of p under the action of H is of cardinality

at least n
2 if i = j, and of cardinality at least

(
n
2
2

)
> n

2 if i 6= j, according to Lemma 11.7. But

according to Facts 3 and 4, this number should be bounded by g − 1. However, g − 1 < n
2 , so

finally:
Fact 5: There does not exist any vertex of degree 2.

We are going to treat separately the graphs containing some edges whose both extremities
are equal, from the graphs where both extremities of each edges are distinct.

Definition 11.8 (Petals). Let us call petal an edge whose both extremities are equal.

Graphs with petals. If there exist some petal in Γ, then there exist some in each color, so
there exist at least n

2 petals. But each petal produces an independent cycle of Γ, and the number
of independent cycles is bounded by g, and so by n

2 . So we have c = g = n
2 . Therefore, if there

exist some petals in Γ, then there exist exactly n
2 petals and g = n

2 . Moreover, since the maximal
number of independent cycles is achieved just because of the petals, it follows that if we remove
these n

2 petals from Γ, we get a tree. Since each edge is separating in a tree (we say that an edge
is separating in a connected graph if removing this edge from the graph makes it disconnected),
then all the edges in Γ that are not a petal are separating. But according to Proposition 10.1,
σs(X ) does not contain any separating curves, so Γ contains no other edge but the n

2 petals.
Therefore, the graph Γ is a rose, that is, a graph with only one vertex (cf. graph of gauche
Figure 78).
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Graphs without petals. Let us assume now that Γ is a graph without petals.
According to Proposition 9.10, for each A ∈ G, the cardinality |σs(A)| equals 1 or 2. In other

words, for each i ∈ {0, 1, . . . , n−1}, there are only one or two curves in σs(G) that are in σs(Ai).
In the graph Γ, this implies that:

Fact 6: There exist at most two edges of a same color.

If there is only one edge per color:
According to Facts 2 and 5, all the vertices are at least of degree 3. Since there is no petal,

at least three distinct edges are incident to each vertex.

• When n = 6, since there is only one edge per color, Γ contains only three edges. Hence in
the case n = 6, there exists exactly 2 vertices of degree 3 and the graph is drawn in Figure
78, left hand side.

• Suppose now that n > 8. We take j = n − 1 and we set Hn−2 = 〈γi, i ∈ Imp(n − 2)〉 so
that Hn−2 is a subgroup of H that fixes the color n− 1 and acts n

2 − 1 times transitively
on the set of the n

2 − 1 other colors of Imp(n). Given a vertex q of degree v and an edge of

color n− 1 incident to q, according to Lemma 11.7, there should exist at least
(

(n
2 − 1)
v − 1

)

distinct vertices in the orbit of q under the action of Hn−2. But there is only one edge of
color n − 1 in Γ, so there should be at most two vertices in the orbit of q under Hn−2,

including q. So
(

(n
2 − 1)
v − 1

)
must be equal to 1 or 2. Since n

2 − 1 > 3 and v− 1 > 2, v must

be equal to n
2 . So the graph Γ is fully determined: there are exactly two vertices and n

2
edges incident to these two vertices: the graph is drawn in Figure 78, right hand side.

If there are exactly two edges per color:
We suppose from now on that there exist two curves in each color.

We want to show that this case is absurd.
Notice that we have the follwing:

Fact 7: Two edges of the same color cannot have the same extremities.
Proof. Assume that two edges of a same color have the same extremities. Then they would
form a cycle, and we can associate their color to this cycle. We would obtain n

2 independent
cycles of distinct colors, hence the equalities c = g = n

2 would hold and it would not exist other
independent cycles in Γ, according to Fact 1. It would not exist either other edges than the n
edges constituting these n

2 cycles, according to Fact 6. Let us identify in Γ two edges if they
have the same color and let us call Γ′ this new graph (cf. Figure 79). The graph Γ′ is a tree,
so it contains leaves (vertices of degree 1). These leaves correspond in Γ to vertices of degree 2.
But this is forbidden, according to Fact 5. Hence Fact 7 is shown. ¤

Let us go further:
Fact 8: Two edges of the same color cannot share an extremity in common.
Proof. We argue again by contradiction. We suppose that two edges of the same color share an
extremity in common (if this is true for one color, this must be true for each color). Let us recall
that there exist only two edges of the same color, according to Fact 6. Let us also recall that two
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Figure 79: Case g > 4, when two edges of a same color have the same extremities.

such edges cannot have the same extremities, according to Fact 7. So for all i ∈ Imp(n), there
exists only one vertex that is a common extremity the two edges of color i. We will call it pi.
By symmetry of the action of H on X , the pi are all distinct or all equal.

a) The vertices pi, i ∈ Imp(n), coincide. We keep in mind Figure 80. Let us call p the
vertex p1 = p3 = · · · = pn−1. The vertex p is at least of degree n. It cannot be of a greater
degree, for there is no petal in Γ, by assumption. Thus, each on the n edges in Γ has an
extremity in p. The number of the other extremities is n, and they are incident to vertices
distinct from p. But since these vertices are of degree greater than or equal to 3 according
to Facts 2 and 5, their number is at most n

3 . So, Γ contains n edges and at most 1 + n
3

vertices, so its number of independent cycles is at least of 1 + n− (n
3 + 1) = 2n

3 . But this
is absurd for 2n

3 > n
2 > g.

Figure 80: Example of graph where all the pi coincide.

b) The vertices pi, i ∈ Imp(n), are pairwise distinct. We keep in mind Figure 81. As
the pi are not of degree 2, according to Fact 5, each pi is the extremity of the two edges of
color i and of at least an edge of color j 6= i. But the subgroup of H that fixes the color i
acts transitively on the other colors, so pi is also the extremity of an edge of color k for all
k ∈ Imp(n) r {i}. Thus pi is of degree at least n

2 + 1 (actually, this must be an equality
with our assumptions). As we know that there is at least n

2 vertices in Γ (think of the pi,
i ∈ Imp(n)), we deduce that the degrees of all the vertices in Γ sum to at least n

2 (n
2 + 1).

Now, this sum should be equal to two times the number of edges. Since there are exactly
n edges in Γ, we have the equality:

n
2 (n

2 + 1) 6 2n. (*)

We get then n2 + 2n 6 8n, hence n 6 6. By hypothesis, n > 6, so n = 6 and (∗) is a
equality and becomes: n

2 (n
2 + 1) = 12. That means that the vertices in Γ is reduced to the

set {p1, p3, p5}. The graph now is perfectly determined, and drawn in Figure 81. But this
graph contains c = 1 + 6− 3 = 4 independent cycles, which is absurd for c 6 g 6 n

2 = 3.

Thus, Fact 8 is shown. ¤

Now, with these eight facts, we can terminate the proof of Proposition 11.1. Remember that
we assume that |σs(X )| = n. We prove separately the cases n = 6 and n > 8. We start by the
case n > 8 which is the easiest one.
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Figure 81: Example of a graph where the pi are distinct.

Let us show that the conditions |σs(X )| = n and n > 8 lead to a contradiction.
Let us denote by S the number of vertices. Since Γ has n edges, the number of independent
cycles must satisfy c = 1 + n− S 6 n

2 . Hence:
S > n

2 + 1.
Let v be the minimum degree among the vertices of Γ. We have seen, according to Facts 2 and
5 that v > 3. But the sum of the degrees of all the vertices of Γ is at least equal to vS. On the
other hand, it must be equal to two times the number of vertices. Hence we have 2n > vS, so:

S 6 2n
v .

It is then absurd that v > 4 for we would have n
2 +1 6 S 6 n

2 . Now, suppose that v = 3. Thanks
to Fact 8, we know that all the edges incident to a vertex are of pairwise distinct colors, so when
v = 3, to each vertex corresponds a choice of three colors among n

2 . According to Lemma 11.7,

we have then at least
(

(n
2 )
3

)
vertices in Γ . When n > 10, we check that

(
(n

2 )
3

)
> n, so this

leads to the following contradiction:

n 6
(

(n
2 )
3

)
6 S 6 2n

3 .

When n = 8, since v = 3, there exists an orbit of vertices of degree 3. The cardinality of this
orbit is a multiple of 4 vertices, according to Lemma 11.7. But as there exists 8 edges in Γ and
consequently 16 half-edges, there must exist in Γ exactly 4 vertices of degree 3 and one vertex
of degree 4 (replace the vertex of degree 4 by two vertices of degree 2 is forbidden by Fact 5) to
satisfy the equality: 16 = 3× 4 + 1× 4. We thus get a graph similar to those depicted in Figure
82. Let us call P1, P3, P5 and P7 the four vertices of degree 3 and Q the vertex of degree 4, as in
Figure 82. The subgroup of H that fixes the color 1 does not preserve such a graph, for it fixes
the vertices P1 and Q but modifies the color of the unique edge that joint the vertices P1 and Q:
this edge can be of color 3, 5 or 7, and gives rise to different graphs (in Figure 82, we give two
examples with 7 and 5). Hence this case n = 8 is absurd. Finally, the conditions |σs(X )| = n
and n > 8 lead only to contradictions.

Let us show that the conditions |σs(X )| = n and n = 6 lead to a contradiction.
According to Facts 2, 5 and 8, all the vertices are of degree 3, each being the extremity of three
edges of colors 1, 3 and 5. We get the graph represented on Figure 83. Let us recall that according
to Proposition 9.4 (5d) describing the equivalent properties of the special curves, each orbit of
edges of σs(X ) under the action of J = 〈δ〉 is of cardinality n = 6, and each orbit of edges of
σs(X ) under the action of 〈δ2〉 is of cardinality n

2 = 3. So we distinguish two orbits among the 6
curves of σs(X ), and the action of δ2 on the graph Γ is periodic of order three. Then one of the
vertices is preserved whereas the three others are cyclicly permuted. Let us call P the preserved
vertex. Its boundary components form an orbit under the action of δ2, we will call them a′1, a′3,
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Figure 82: Two examples of a priori possible graphs with n = 8 and |σs(X )| = 8. (They are
different, for Q and P1 are joined by an edge of color 7 in one case, and 5 in the other. But,
none of them is H-stable since the action of γ5 swap them.)

a′5, where the indices respect the color of each curve. Let us call the other curves a1, a3, a5,
where the indices respect the color of each curve. For all i ∈ {1, 3, 5}, let us denote by Pi the
subsurface different from P that contains the curve a′i in its boundary, see Figure 83.

Figure 83: Case n = 6: the surface Σ3, 0 together with the curves of σs(X ) when |σs(X )| = 6.

We are going to show, by means of the special curves of Y = GrX = {A0, A2, A4}, that such
a configuration cannot happen. Notice that σs(G) is a set of curves without triple intersection, so
according to Proposition 2.2, there exists a unique system of representatives of the curves of σs(G)
in tight position, up to isotopy. Moreover, any representative of the mapping class ρ(δ) sends
such a system of representatives on itself, up to isotopy. Moreover, we have, σs(Y) = δ.σs(X ),
and we denote by a0, a2, a4, a′0, a′2, a′4 the curves of σs(Y), so as to be coherent with their colors,
as we did with the curves of σs(X ). Let us consider the subsurface P1. Then:

• a′2 = δ.a′1 and a′0 = δ−1.a′1, so according to Proposition 9.23, I(a′1, a′2) = I(a′1, a′0) 6= 0,
hence a′0 ∩ P1 and a′2 ∩ P1 are not empty.

• Similarly if we consider the curves a3 and a5, it follows that I(a3, a4) = I(a3, a2) 6= 0 and
I(a5, a0) = I(a5, a4) 6= 0, so a0 ∩ P1, a2 ∩ P1 and a4 ∩ P1 are not empty.

• Let x be a curve of σs(Y) whose restriction to P1 is a path with extremities in a same
boundary component, and y another curve of σs(Y) whose restriction to P1 is a path with
extremities in the two other boundary components of P1. Then x and y must intersect,

186



as illustrated in Figure 84 (two cases are to be considered, depending on whether the
extremities of y belong to the same boundary of P1 or not). But σs(Y) is a curve simplex,
so this situation cannot happen.

Figure 84: Case n = 6: the curve x and the curve y have to intersect.

• Let us apply the last point to the curves x = a′0 and y = a4. Suppose that the extremities
of one of the connected components of a′0 ∩ P1 lie in a′1. Notice that a4 cannot intersect
a′1, so the extremities of any connected component of a4 ∩ P1 lie in a3 ∪ a5. This leads to
a contradiction as we just have seen it above. Therefore a′0 ∩ P1 cannot contain any path
with extremities in a′1. Hence a′0 ∩ P1 consists in paths joining the boundary components
a′1 and a5. Similarly, a′2 ∩ P1 consists in paths joining the boundary components a′1 and
a3.

• Let us now apply the last-but-one point to the curves x = a2 and y = a0. We conclude just
as before that a2 ∩P1 cannot contain any path with extremities in a3. Similarly, if we take
the curves x = a4 and y = a0, we see that a4∩P1 cannot contain any path with extremities
in a3. The reader can check that in fact, no curve of σs(Y ) can contain some path in P1

with extremities in a same boundary of P1. The situation is summed up in Figure 85.

Figure 85: Case n = 6: the intersection of the curves of σs(Y) and P1.

• Then, there exists in Σσs(G) a connected component homeomorphic to a disk whose bound-
ary consists in four arcs of curves, each arc being included in a′1, a2, a′2 and a3 respectively.
We then deduce that there exists in Subσs(Y)(Σ) a subsurface bounded altogether by a2

and a′2. Then, taking the image of this situation by ρ(δ−1), we deduce that there should
exist in Subσs(X )(Σ) a subsurface bounded altogether by a1 and a′1. However, this is not
the case. This is the expected contradiction.

Finally, the conditions |σs(X )| = n and n = 6 lead to a contradiction. This concludes the proof
of Proposition 11.1. ¤
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11.4 Description of σn(G) and of σ(X ) in Σ

According to Proposition 11.1, for all integers i ∈ {0, . . . , n − 1}, the set of curves σs(Ai)
is reduced to a unique curve. We denote it by ai. Since we know that the set σs(X ) is equal
to {a1, a3, . . . , an−1} and since we know how these curves are arranged in Σ (cf. Proposition
11.1), we turn now to the simplex σ(X ). Let us recall that according to Proposition 9.23, we
have σn(A1) = σn(G), whence the equality

σ(X ) = σs(X ) ∪ σn(G).
Recall that σ(X ) is a simplex since X span an abelian group. Consequently, σs(X ) and σn(G)
are also simplexes. Moreover, I(σs(X ), σn(G)) = 0. Actually, we have the following, which is
stronger, and which comes from the properties of the normal curves (see Proposition 9.23.(ii)):

I(σs(G), σn(G)) = 0.

Proposition 11.2 (Existence and description of the surface Σ̂).

(i) There exists a unique subsurface Σ̂ in Subσn(G)(Σ) containing the curves of σs(G).

(ii) The boundary of each subsurface belonging to Subσs(X )(Σ̂) contains σs(X ).

(iii) The surface Σ̂ is of genus ĝ ∈ {n
2 − 1, n

2 }.
(iv) The surface Σ is of genus g ∈ {n

2 − 1, n
2 }.

(v) The set Subσs(X )(Σ̂) is reduced to one genus-0 connected component , or to two connected
components, one being of genus 0 and the other being of genus 0 or 1.

Proof.

Let us show item (i).
Let us recall that the normal curves do not intersect any curve of σ(G) and hence any special

curve. For all i ∈ {0, 1, . . . , n − 1}, let Σ̂i be the subsurface of Subσn(G)(Σ) that contains the
curve ai. Let us recall that for all i ∈ {0, 1, . . . , n − 1}, the curve δ.ai is a special curve of
σs(Ai+1), so δ.ai = ai+1. But I(ai, δ.ai) 6= 0 according to Proposition 9.23 for ai is special, so
I(ai, ai+1) 6= 0, hence Σ̂i = Σ̂i+1. Thus all the special curves are included in a unique subsurface
Σ̂ of Subσn(G)(Σ).

Let us show item (ii).
Let S be a subsurface belonging to Subσs(X )(Σ̂). If none of the boundary components of S is

a normal curve, then S belongs to Subσs(X )(Σ) and according to Proposition 11.1, the boundary
of S contains σs(X ) and item (ii) is proved in this case.

Let us then assume that σn(G) is nonempty and let us focus on the surfaces of Subσs(X )(Σ̂)
such that at least one of the boundary components is a normal curve. We define a subgroup H∗
of H (H was defined in Definition 10.3) by:

H∗ := 〈 γiγ
−1
j , i, j ∈ Imp(n) 〉

It acts via ρ on Curv(Σ) and notably on σ(X ) so that:

188



• Action of H∗ via ρ on σs(X ). We have seen that the action of H via ρ on Curv(Σ) preserves
σs(X ), hence so does the action of H∗ on Curv(Σ), since H∗ is included in H. Moreover,
the morphism H → S(X ) sends H∗ on A(X ), the alternating group on the elements of X .
Indeed, for all i ∈ Imp(n), this morphism sends γiγ

−1
i+2 on the circular permutation on the

three elements Ai, Ai+2, Ai+4. But A(X ) acts transitively on X (recall that X contains at
least three elements). Hence the action of H∗ on PMod(Σ) preserves X and is transitive
on X . Therefore H∗ acts transitively on σs(X ).

• Action of H∗ via ρ on σn(G). Let us recall that according to Proposition 9.7, the action of
Bn on σn(G) and on Bndy(Σσn(G)) is cyclic. Then the action of Fn (cf. Definition 9.12) on
σn(G) and on Bndy(Σσn(G)) is trivial according to Lemma 9.13. Since H∗ is a subgroup of
Fn, the action of H∗ on Curv(Σ) fixes each curve of σn(G) and each boundary component
of Σσn(G).

• Action of H∗ via ρ on Subσn(G)(Σ̂). According to the action of H∗ on σn(G), the action of
H∗ via ρ on Sub(Σ) preserves Σ̂ and preserves the set Subσs(X )(Σ̂) of subsurfaces. Let S

be a surface belonging to Subσs(X )(Σ̂) such that at least one of the boundary components
is a normal curve. According to the action of H∗ via ρ on σn(G), the action of H∗ via ρ on
Sub(Σ) preserves the surface S.

Let us exploit this. For any subsurface S belonging to Subσs(X )(Σ̂) such that Bndy(S) contains a
normal curve, S must be stable by H∗. Hence Bndy(S) is H∗-stable, and so is Bndy(S)∩σs(X ).
So Bndy(S) must contain all σs(X ) since H∗ acts transitively on σs(X ).

Let us show items (iii) and (iv).
According to item (ii), each subsurface belonging to Subσs(X )(Σ̂) contains at least n

2 spe-
cial curves in its boundary. Since σs(X ) contains n

2 curves, Subσs(X )(Σ̂) contains one only
connected component having n special boundary components, or Subσs(X )(Σ̂) contains two con-
nected components having each n

2 special boundary components. In the first case Σ̂ contains
a non-separating set of n

2 curves, so Σ̂ is of genus ĝ > n
2 . In the second case Σ̂ contains a

non-separating set of n
2 − 1 curves, so Σ̂ is of genus ĝ > n

2 − 1. Let us recall that by hypothesis,
g 6 n

2 . Since Σ contains Σ̂, we have ĝ 6 g. So finally, we have:
n
2 − 1 6 ĝ 6 g 6 n

2

Let us show item (v).
We have just seen in items (iii) and (iv) that Subσs(X )(Σ̂) is a set of exactly one or two

subsurfaces.

• If Subσs(X )(Σ̂) contains only one subsurface, let us denote it by S. The surface Σ̂ is the
gluing of S on itself by making coincide the n boundary components between them. The
difference between the genera of Σ̂ and S is then n

2 , but Σ̂ is already of maximal genus n
2 ,

so S is a genus-0 surface.

• If Subσs(X )(Σ̂) contains two subsurfaces, let us denote them by S1 and S2. The gluing of
S1 on S2 along the n special boundary components brings a contribution of n

2 − 1 to the
genus of Σ̂. Since the genus of Σ̂ is at most n

2 , the sum of the genera of S1 and of S2 is at
most 1.
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We turn now to describe precisely the set σn(G). Let us first recall Definition 11.3 of Σ̂, Σ̌
and U given in the introduction.

Definition 11.3 (Σ̂, Σ̌ and U).
• Let Σ̂ be the subsurface of Subσn(G)(Σ) containing the special curves.

• Let us set U = Bndy(Σ̂) ∩ σn(G).

• Let Σ̌ be the union of the subsurfaces of SubU (Σ) different from Σ̂. If Σ̂ is the only
subsurface of SubU (Σ), we will say that Σ̌ is empty.

Attention: Let us recall that we have supposed in this section that σp(G) was empty, in other
words, the separating curves belonging to σn(G) separate Σ in two surfaces of nonzero genus.
Without this hypothesis, Proposition 11.4 would be false.

Remark. If Σ̌ is nonempty, we have Bndy(Σ̂) ∩ Bndy(Σ̌) = U . In the following section, the
only information about σn(G) that will help us concerns U . That is why we focus only on U .
According to this remark, the next proposition deals only with U instead of σn(G). All the same,
we terminates this section by giving all the possible graphs of Γ(Σ, σ(X )).

Proposition 11.4 (Description of SubU (Σ)).
We have |U| 6 2, and SubU (Σ) satisfies the following properties:

• if U is empty, then Σ = Σ̂; if Σ̂ is of genus n
2 , then U is empty,

• if U is reduced to a non-separating curve u, then Σ̌ is empty and {u} is the mark of Σ̂,

• if U is reduced to a separating curve u, then Σ̌ is a connected subsurface of genus 1,

• if U contains two curves, then they are non-separating and Σ̌ is connected, of genus zero.

These assertions can be summed up as follows: the graph Γ(Σ, U) is one of the four graphs
depicted in Figure 86 where:

• the circled vertices represent the subsurfaces of nonzero genus of SubU (Σ),

• the integer placed beside the circled vertices indicates the genus,

• the edges are drawn as dotted so as to be coherent with Remark 11.9 at the end of the
present section.

Proof. The proof comes from a genus computation. Let us recall that g is the genus of Σ. Let
us denote by ĝ the genus of Σ̂ and by ǧ the genus of Σ̌ (which is zero by convention when Σ̌ is
empty). According to Proposition 11.2, we have:

g ∈ {n
2 − 1, n

2 }, ĝ ∈ {n
2 − 1, n

2 }, ǧ ∈ {0, 1}.
Notice that each (nonempty) connected component of Σ̌, that is separated from Σ̂ by a separating
curve of U , is of nonzero genus, for we have assumed that there exists no peripheral curve in
σ(G). Hence it can exist only one nonempty connected component of Σ̌ separated from Σ̂ by
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Figure 86: The four possible graphs for Γ(Σ, U) (cf. Proposition 11.4).

a separating curve. Besides, if a (nonempty) connected component of Σ̌ is of genus zero, it is
separated from Σ̂ by at least two curves of U (again because the curves of U are not peripheral
curves). So the gluing of Σ̂ and of a genus-0 connected component of Σ̌ brings also a nonzero
contribution to the genus of Σ. Hence Σ̌ contains only one connected component. In other words,
Σ̌ is connected. Hence the following formula holds as soon as Σ̌ is nonempty:

g − ĝ − ǧ = |U| − 1.
This number must be equal to zero or one. Hence |U| ∈ {1, 2} (still under the hypothesis:
Σ̌ is nonempty). If |U| = 2, then ǧ = 0. We have seen that conversely, if ǧ = 0 whereas
Σ̌ is nonempty, we have |U| > 2, so |U| = 2. Similarly, if Σ̌ is nonempty, |U| = 1 if and
only if ǧ = 1. These two last cases correspond to the two graphs drawn in Figure 86, right
hand side. When Σ̌ is empty, we get obviously the two graphs in Figure 86, left hand side.

¤

Remark 11.9. To conclude this section, we draw in Figure 87 the different graphs of Γ(Σ, σ(X ))
compatible with the propositions 11.1, 11.2 and 11.4. We do not prove that these graphs are the
only possible ones, but this can be easily deduced from the previously quoted propositions. The
legend of this Figure is the following:

• the full edges represent the special curves,

• the dotted edges represent the normal curves,

• the circled vertices represent the subsurfaces of nonzero genus of SubU (Σ),

• the integer placed beside the circled vertices indicates the genus,

• the non-circled vertices of degree 2 correspond to genus-0 subsurfaces whose boundaries
contain some boundary components of Σ.
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12 Expression of the mapping classes of G

Let us recall our hypotheses:

• n is an even integer greater than or equal to 6,

• Σ is a surface Σg, b where g 6 n
2 and b > 0,

• ρ is a noncyclic morphism from Bn in PMod(Σ) such that σp(G) is empty.

According to Proposition 11.1, for all i ∈ {0, 1, . . . , n − 1}, the canonical reduction system
of each mapping class Ai is reduced to a special curve that we denote by ai, up to the normal
curves. We want to show that ρ is a transvection of monodromy morphism.

12.1 Outline of the section

In this section, we show the proposition:

Proposition 12.1. Under the hypotheses of this section (stated above), the morphism ρ is a
transvection of monodromy morphism.

We have then proved the following theorem:

Theorem 12.2 (Theorem 1 when n is even).
Let n be an even integer greater than or equal to 6, and Σ a surface Σg, b where g 6 n

2 . Then any
morphism ζ from Bn in PMod(Σ) is either cyclic, or is a transvection of monodromy morphism.

Proof of Theorem 12.2. If ζ is cyclic, then there is nothing left to be proved. Let us then
assume that ζ is not cyclic. Let Σ′ be the connected component of Σσp(G) of genus g (recall that
σp(G) is the set of peripheral curves which where introduced in Section 7). According to Propo-
sition 7.4.(i) and (ii), the morphism ζ induces a noncyclic morphism ζ ′ : Bn → PMod(Σ′).
Then according to Proposition 12.1, ζ ′ is a transvection of monodromy morphism. Then, ac-
cording to Proposition 7.4.(ii), the morphism ζ was a transvection of monodromy morphism.

¤

Outline of the section: To determine the morphism ρ and prove Proposition 12.1, we consider
its restriction to the surface Σ̂ that was defined in Section 11, Definition 11.3 (recall that Σ̂ is a
subsurface of Subσn(G)(Σ), stable under the action of Bn and containing the special curves, but
not the normal curves). We then define the morphism

∧ :
PModσn(G)(Σ) −→ Mod(Σ̂)

A 7−→ Â
.

We denote by ρ̂ the composition ∧ ◦ ρ : Bn → Mod(Σ̂). This morphism is well-defined for
ρ(Bn) preserves σn(G) according to Proposition 9.7. Then we will use what we know about the
special curves to identify the mapping classes Âi, i ∈ {0, 1, . . . , n − 1}. This is possible since,
according to Lemma 3.42, for all i ∈ {0, 1, . . . , n− 1}, we have:

σ(Âi) = σ(Ai) ∩ Curv(Σ̂) = {ai}.
Thus, Subsection 12.2 is devoted to the study of the morphism ρ̂ via the mapping classes Âi,
i ∈ {0, 1, . . . , n − 1}. We will show that ρ̂ is a transvection of monodromy morphism, cf.
Proposition 12.4. Then, in Subsection 12.3, we will use these results to determine the morphism
ρ and thus prove Proposition 12.1.

193



12.2 The morphism ρ̂ is a transvection of monodromy morphism

In this subsection, we are going to show that the morphism ρ̂ is a transvection of monodromy
morphism. We denote by Ĝ and X̂ the images of G and X by ∧, where X = {Ai, i ∈ Imp(n)} =
{A1, A3, . . . , An−1}. In order to study the morphism ρ̂, we focus on the mapping classes induced
by those belonging to X̂ , in Mod(

∼
Σ), where

∼
Σ is the surface Σ̂

σs(X̂ )
. Notice that, according to

Lemma 3.42, we have:{
σs(X̂ ) = σs(X ) ∩ Curv(Σ̂) = {ai, i ∈ Imp(n)},
σn(X̂ ) = σn(X ) ∩ Curv(Σ̂) = ∅.

Cutting Σ̂ along the curves of σs(X̂ )

• Let Σ̃ be the surface Σ̂
σs(X̂ )

. According to Proposition 11.2.(v), Σ̃ is a connected genus-0
surface, or contains two connected components such that one is of genus zero and the other
is of genus at most one.

• Let∼ be the canonical morphism∼ :
Mod

σs(X̂ )
(Σ̂) −→ Mod(

∼
Σ)

Â 7−→ ∼
A

, whereMod
σs(X̂ )

(Σ̂)

is the group of the mapping classes of Mod(Σ̂) preserving σs(X̂ ). We will denote by
∼X

the image of X̂ .

• For all i ∈ Imp(n), let us denote by a+
i and a−i the two boundary components coming

from cutting Σ̂ along ai. We set Bndy+(
∼
Σ) = {a+

i , i ∈ Imp(n)} and Bndy−(
∼
Σ) = {a−i , i ∈

Imp(n)}. When
∼
Σ is not connected, the boundary components a+

i and a−i are such that
Bndy+(

∼
Σ) is included in the boundary of one connected components of

∼
Σ and Bndy−(

∼
Σ)

is included in the boundary of the other connected components of
∼
Σ. For these definitions,

see Figure 88 that represents the case where
∼
Σ is connected.

Figure 88: The surface Σ̃ (case where Σ̃ is connected).
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• Recall that the subgroup H of Bn (see Subsection 10.2, Definition 10.3) is the subgroup
〈 γi , i ∈ Imp(n) 〉 of Bn where for all i ∈ Imp(n), the element γi is the product τiτi+1τiτi+2τi+1τi.

• Let us also recall the main properties of H (see Proposition 10.4):

(i) The action of H on PMod(Σ) via ρ preserves X . Indeed, for all i, j ∈ Imp(n), we
have:

γi.Aj = ρ(γi)Ajρ(γi)−1 =





Aj if i 6∈ {j, j − 2}
Aj−2 if i = j − 2
Aj+2 if i = j.

(ii) The morphism H → S(X ) describing the action of H on X , where S(X ) is the
symmetric group on the elements of X , is surjective. In particular, this action is n

2
times transitive.

(iii) The action of H on Curv(Σ) preserves σs(X ).

• For all ξ ∈ H, the mapping class ρ(ξ) preserves σs(X ), so the element ∼ ◦ ∧ (ρ(ξ)) is
well-defined. Thus, we can define an action of H on

∼X as follows. For all ξ ∈ H and all
A ∈ X , we set:

ξ.
∼
A =∼ ◦ ∧ (

ρ(ξ) Aρ(ξ)−1
)
.

Notice that the action of H on
∼X can be deduced from the action of H on X . Then, for

all i, j ∈ Imp(n), we have:

γi.
∼
Aj =





∼
Aj if i 6∈ {j, j − 2}
∼
Aj−2 if i = j − 2
∼
Aj+2 if i = j.

Lemma 12.3 (The mapping classes
∼
Ai, i ∈ Imp(n)).

All the mapping classes
∼
Ai, i ∈ Imp(n), coincide. Either they are trivial, or there are periodic of

order 2 and swap a+
j and a−j for all j ∈ Imp(n).

Proof.
Action of H on Bndy+(

∼
Σ) t Bndy−(

∼
Σ):

Notice that each mapping class of X̂ preserves σs(Âi) for all i ∈ Imp(n), so each mapping class of∼X preserves {a+
i , a−i } for all i ∈ Imp(n). If

∼
A1 fixes both boundary components a+

3 and a−3 , then∼
A1 fixes both boundary components a+

i and a−i for all i ∈ Imp(n)r {1}, as we are going to show
it right now. Let us recall that according to Proposition 10.4, H acts n

2 times transitively on X ,
hence on

∼X . So, for all i ∈ Imp(n)r{1}, there exists ξ ∈ H such that ξ.
∼
A1 =

∼
A1 and ξ.

∼
A3 =

∼
Ai.

Then if
∼
A1 fixes the boundary components a+

3 and a−3 , ξ.
∼
A1 fixes the boundary components ξ.a+

3

and ξ.a−3 (H acts canonically via ρ on Bndy(Σ̃)), so
∼
A1 fixes both boundary components a+

i and
a−i . So there exist a priori four possible actions of

∼X on Bndy+(
∼
Σ) t Bndy−(

∼
Σ):

a) the mapping classes of
∼X fixes the curves of Bndy+(

∼
Σ) t Bndy−(

∼
Σ);
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b) the mapping classes of
∼X swap a+

i and a−i for all i ∈ Imp(n);

c) for all i ∈ Imp(n),
∼
Ai swaps a+

i and a−i , and fixes a+
j and a−j for all j ∈ Imp(n)r {i};

d) for all i ∈ Imp(n),
∼
Ai fixes a+

i and a−i , and swaps a+
j and a−j for all j ∈ Imp(n)r {i}.

Both cases a) and b) correspond to the situations described in the statement of Lemma 12.3. In
the remainder of this proof, we assume to be in the case c) or d) and we expect to find some
contradiction. Let us show first the below assertion (1), stating that

∼
Σ must be connected. Notice

that in the cases c) and d),
∼
A1 sends some boundary components of Bndy+(

∼
Σ) in Bndy+(

∼
Σ) and

some other boundary components of Bndy+(
∼
Σ) in Bndy−(

∼
Σ). Yet, on one hand the boundary

components of Bndy+(
∼
Σ) belong to a same connected component of

∼
Σ and so do the boundary

components of Bndy−(
∼
Σ). On the other hand,

∼
A1 sends the connected components of

∼
Σ on the

connected components of
∼
Σ. Hence there exists a connected component in

∼
Σ that contains some

boundary components of Bndy+(
∼
Σ) and some other boundary components of Bndy−(

∼
Σ). By

a transitivity argument, the boundary components of Bndy+(
∼
Σ) and of Bndy−(

∼
Σ) belong to a

same connected component, hence:
the surface

∼
Σ is connected. (1)

We pursue the proof of Lemma 12.3 by studying the nature of the mapping classes of
∼X , (re-

ducible, periodic or pseudo-Anosov). We will show that they are periodic and we will determine
their order.

The nature of the mapping classes of
∼X :

The mapping class
∼
A1 is pseudo-Anosov or periodic, for σ(

∼
A1) = ∅. Remember that

∼
Σ is the

cut of Σ̂ along the curves σs(X̂). So, if
∼
A1 was pseudo-Anosov in Mod(

∼
Σ), the mapping class

Â1 in Mod(Σ̂) would satisfy σ(Â1) = σs(X̂), according to Lemma 3.43. However σs(Â1) =
{a1}, whence a contradiction. So

∼
A1 is periodic. Now, notice that

∼
A 2

1 fixes each curve of
Bndy+(

∼
Σ) t Bndy−(

∼
Σ), so

∼
A 2

1 is a periodic mapping class that fixes more than three boundary
components in a genus-0 surface. Hence, according to Corollary 3.23,

∼
A 2

1 is the identity. Hence
∼
A1 is the identity or is periodic of order two. The same argument can be held for

∼
Ai for all

i ∈ Imp(n). Hence:

either the mapping classes of
∼X all are the identity,

or they all are periodic of order two.
(2)

We are now ready to focus on the case c) and then on the case d), in order to find some
contradiction.

Refutation of the case c):

In the case c),
∼
A1 fixes at least n − 2 boundary components of

∼
Σ. But as we saw it in (1),

∼
Σ

is a connected genus-0 surface. Furthermore,
∼
A1 is periodic according to (2), so we can apply

Corollary 3.23 and conclude that
∼
A1 is the identity. But then

∼
A1 must fix a+

1 and a−1 , which
contradicts the hypotheses of the case c).

Study and refutation of the case d):
A following simple argument allows us to reject the case d) when n > 8. Let us consider
the mapping class

∼
A1

∼
A3. It is periodic of order 2, for

∼
A1 and

∼
A3 commute. According to

Corollary 3.23, a periodic mapping class that fixes three or more boundary components of a
genus-0 surface is the identity. Here,

∼
A1

∼
A3 fixes all the special boundary components except
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the boundary components a+
1 , a−1 , a+

3 and a−3 . So, when n > 8, the mapping class
∼
A1

∼
A3 fixes

at least four boundary components. Then
∼
A1

∼
A3 must be the identity. But this is absurd, for∼

A1
∼
A3 does not fix the boundary components a+

1 , a−1 , a+
3 and a−3 . Hence the case d) can a priori

happen only if n = 6.
Let us consider the case n = 6 and let us describe the situation. Recall that according

to (1),
∼
Σ is connected. Let Bndy0(

∼
Σ) be the set of boundary components of

∼
Σ that do not

belong to Bndy+(
∼
Σ) t Bndy−(

∼
Σ). Again, the mapping class

∼
A1

∼
A3 is periodic and fixes the

boundary components a+
5 , a−5 , whereas it permutes the boundary components a+

1 , a−1 , a+
3 and

a−3 non-trivially. According to Corollary 3.23, such a mapping class fixes at most two bound-
ary components. Hence

∼
A1

∼
A3 fixes no boundary component of Bndy0(

∼
Σ). Yet, on one hand,

Bndy0(
∼
Σ) is included in Bndy(Σ) ∪ U , and on the other hand the mapping classes of

∼X fixes
the curves of Bndy(Σ)∩Bndy0(

∼
Σ) and have all the same action on the curves of U ∩Bndy0(

∼
Σ).

So Bndy(Σ) ∩ Bndy0(
∼
Σ) must be empty. Concerning U , notice that in each of the three cases

|U| ∈ {0, 1, 2} which are authorized by Proposition 11.4, the mapping class
∼
A1

∼
A3 fixes the curves

of U . Thus U ∩ Bndy0(
∼
Σ) and Bndy(Σ) ∩ Bndy0(

∼
Σ) are finally empty sets. Hence U , Bndy(Σ)

and Bndy0(
∼
Σ) are all empty sets. Hence:

Σ̂ = Σ = Σ3, 0, and
∼
Σ = Σ0, 6.

We have represented the surface
∼
Σ in Figure 89 and we have described in it an example of an a

priori possible set of the three periodic mapping classes Ã1, Ã3, and Ã5, such that their action
on Bndy(

∼
Σ) is coherent with the case d).

Figure 89: The case n = 6 where Ã1 fixes a+
1 and a−1 , and permute a+

3 with a−3 , and a+
5 with a−5 .

We see Σ̃ in R3 and the mapping classes Ã1, Ã3 and Ã5 are isotopy classes of rotations.

Now, since U is empty (and hence since σn(G) is empty), the morphism ∧ is trivial so we can
forget it. The contradiction we aim will comes from a study on the mapping class Z = (A3A4A5)2:
we will see that it induces on a subsurface of Σ a periodic mapping class of order 4 and that the
square of Z coincides with A1 modulo a power of Dehn twist along the curve a1. But as we will
see it, such a mapping class has no square root. This is absurd since Z is a square itself.

1. First attempt to describe σ(Z).
Let us recall that σ(Z) = σ(Z2). Since A1 commutes with A1, A3, A4 and A5, the mapping

classes Z and A1 commute. Hence Z fixes the curve a1. Moreover, ZA3Z
−1 = A5 and ZA5Z

−1 =
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A3, so Z swaps the curves a3 and a5. Hence Z induces a mapping class
∼
Z inMod(

∼
Σ). Moreover,

let us justify that Z2 commutes with A3, A4 and A5. In B4, the element δ = τ1τ2τ3 acts cyclically
on the set {τ1, τ2, τ3, τ0} by conjugation, so (τ1τ2τ3)4 acts trivially on this set by conjugation.
Now, the fact that Z2 commutes with A3, A4 and A5 comes from an obvious morphism from B4

to 〈A3, A4, A5〉 that sends τ1, τ2 and τ3 respectively on A3, A4 and A5, and that sends (τ1τ2τ3)4

on Z2. Hence:
Z2 commutes with A1, A3, A4, A5. (3)

So,
Z2 fixes the curves a1, a3, a4 and a5. (4)

Hence the curves a1, a3, a4, a5 are some reduction curves of Z2, so we have I
(
σ(Z2) , {a1, a3, a4, a5}

)
=

0. Hence, if we see
∼
Σ as a subsurface of Σ, we have:

σ(Z2) ⊂ Curv(
∼
Σ) ∪ {a1, a3, a5}. (5)

But a4, which is a reduction curve of Z2, intersects a3 and a5, so neither a3 nor a5 can belong
to σ(Z2). So (5) can be replaced by (6):

σ(Z2) ⊂ Curv(
∼
Σ) ∪ {a1}. (6)

We are interested in σ(Z) which is equal to σ(Z2). According to (6), we should investigate the
set σ(Z) ∩ Curv(

∼
Σ). To do so, we focus on

∼
Z, which we define as being ∼ (Z), the induced

mapping class by Z in Mod(
∼
Σ). Notice that ∼ (Z) is well-defined, since Z preserves the set

{a1, a3, a5}. According to Lemma 3.42, we have:

σ(
∼
Z) = σ(Z) ∩ Curv(

∼
Σ). (7)

Let us then describe the surface
∼
Σσ(

∼
Z). In the remainder of step 1., we refer to Figure 90.

(i) Since a4 intersects a3 and a5 but does not intersect the curves of σ(Z), there exists in∼
Σσ(

∼
Z) a path ω included in a4 such that ω has one of its extremities in a+

3 ∪ a−3 and the
other extremity in a+

5 ∪a−5 . Even if it means renaming the curves, we can assume that this
path is with extremities in a+

3 and a+
5 . So we can assume without loss of generality that

a+
3 and a+

5 belong to a same connected component of
∼
Σσ(

∼
Z). Let us denote this connected

component by C+.

(ii) Since A1 commutes with Z2 according to (3), it preserves the curves of σ(Z) and induces
an action on the boundary components of

∼
Σσ(

∼
Z). According to the hypotheses of the case

d),
∼
A1 sends a+

3 and a+
5 respectively on a−3 and a−5 . So

∼
A1 sends ω on a path joining a−3

and a−5 . Therefore a−3 and a−5 belong to a same connected component of
∼
Σσ(

∼
Z). Let us

denote this connected component by C−.

(iii) Since A3 commutes with Z2 according to (3), it preserves the curves of σ(Z) and induces
an action on the boundary components of

∼
Σσ(

∼
Z). According to the hypotheses of the case

d),
∼
A3 sends a+

3 and a+
5 respectively on a+

3 and a−5 . So
∼
A3 sends ω on a path joining a+

3 and
a−5 . Therefore a+

3 and a−5 belong to a same connected component of
∼
Σσ(

∼
Z). So C+ = C−.

Let us denote by C this connected component.

2. We show that the set σ(Z) is included in {a1}.
We argue by contradiction. Let us assume that there exists a curve x in σ(Z) different from

a1. According to (6), the curve x lies in σ(
∼
Z). It is a separating curve of

∼
Σ for

∼
Σ is a genus-0
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Figure 90: Following the argument of step 1. of the proof of Lemma 12.3.

surface. Let x+ and x− be the two boundary components of
∼
Σσ(

∼
Z) coming from the cut along x.

We can assume that x− is a boundary component of C whereas x+ belongs to another connected
component of

∼
Σσ(

∼
Z) that we call P . Notice that χ(

∼
Σσ(

∼
Z)) = χ(

∼
Σ) = −4, whereas χ(C) 6 −3

since it has at least five boundary components: a+
3 , a−3 , a+

5 , a−5 and x−, and χ(P ) 6 −1. Since
−4 = −3 − 1, the connected component C is a sphere with five holes, P is a sphere with three
holes, and C and P are the only connected components of

∼
Σσ(

∼
Z). So

x is the only curve in σ(
∼
Z). (8)

Notice that Bndy(P ) is equal to {x+, a+
1 , a−1 }. This situation is summed up in Figure 91.

Figure 91: The curve x such that σ(Z̃) = {x}.

Now,
∼
A3 commutes with

∼
Z2, so

∼
A3 fixes the curve x. Then

∼
A3 induces a mapping class in

Mod(
∼
Σx). But

∼
Σx contains two non-homeomorphic connected components , so

∼
A3 induces a

mapping class on each connected component. Let F be the so induced mapping class by
∼
A3

on C. It is periodic of order two on the surface C (for
∼
A3 was periodic of order two, according
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to (2)). However, F fixes x−, a+
3 and a−3 . This is in contradiction with Corollary 3.23, since

C is a genus-0 surface, and any periodic mapping class on a genus-0 surface that fixes three
boundary components is the identity. This is the expected contradiction. We have then shown
that σ(Z) ⊂ {a1}.
3. Let us show that Z2 and A1 coincide, up to a power of a Dehn twist along the curve a1.

Let us recall that, according to (2),
∼
A1 is periodic of order two. The mapping class

∼
Z satisfies

σ(
∼
Z) = ∅, so it is either pseudo-Anosov, or periodic. If it was pseudo-Anosov, the curves a1,

a3 and a5 would be essential reduction curves of Z, but we saw in step 1. that a3 and a5 were
not. Hence

∼
Z is periodic. Then the mapping classes

∼
Z and

∼
A1 are periodic and commute, so

they span a finite group. Notice that according to the hypotheses of the case d),
∼
A1 fixes the

curves a+
1 and a−1 . Concerning

∼
Z, remember that A3, A4 and A5 fix the curve a1, hence so does

the mapping class A3A4A5. So the mapping class Z = (A3A4A5)2 fixes the curve a1 and does
not permute the two connected components of V r a1 where V is a tubular neighbourhood of
a1, so

∼
Z fixes the curves a+

1 and a−1 . Hence
∼
Z and

∼
A1 are periodic mapping classes and both fix

the curves a+
1 and a−1 , so according to Lemma 3.19,

∼
Z and

∼
A1 span a cyclic group. Since the

order of
∼
Z is even (for

∼
Z swaps {a+

3 , a−3 } with {a+
5 , a−5 }) and since the order of

∼
A1 is two, then

there exists an integer k > 1 such that
∼
A1 =

∼
Zk. But

∼
Z4 has a trivial action on the boundary

components of
∼
Σ, so it is the identity, hence k ∈ {1, 2, 3}. But

∼
Z and

∼
Z3 swap {a+

3 , a−3 } and
{a+

5 , a−5 } whereas
∼
A1 preserves each of these sets, so k 6∈ {1, 3}. Finally,

∼
A1 =

∼
Z2.

Let us consider the product Z2A−1
1 . We just have seen that ∼(Z2A−1

1 ) is trivial in Mod(
∼
Σ), so

according to the following exact sequence:
1 → 〈Ta1 , Ta3 , Ta5〉 →Modσs(X )(Σ) ∼−→Mod(

∼
Σ) → 1,

the mapping class Z2A−1
1 is a multitwist along the curves a1, a3 and a5. But σ(A1) is equal

to {a1} and according to step 2., σ(Z2) is included in {a1}, so according to Proposition 3.45,
σ(Z2A−1

1 ) is included in {a1}.
3. We get a contradiction when we examine on the mapping class Y = A3A4A5.
We can see

∼
Σ as a punctured sphere where each boundary component has been replaced by

a puncture. The mapping class
∼
Z of Mod(

∼
Σ) is periodic so according to Kerckhoff’s Theorem,∼

Z can be represented by a periodic diffeomorphism of
∼
Σ. According to Kerékjàrtò’s Theorem,

this periodic diffeomorphism is conjugate to a rotation on the sphere
∼
Σ by a diffeomorphism

isotopic to the identity. Since
∼
Z is of order 4,

∼
Σ is the isotopy class of an angle ±π/2 rotation

over an axis containing two punctures that correspond to the boundary components a+
1 and a−1 .

The square of this rotation is in the isotopy class of
∼
A1. This justifies Figure 92 in which we

have represented the genus-2 surface Σa1 with two boundary components a+
1 and a−1 , and the

periodic mapping classes A′1 and Z ′ induced by A1 and Z in PMod(Σa1). We can see that A′1
has exactly four fixed points, namely P1, P2, P3 and P4, in Figure 92. Therefore:

(1) Z ′ has no fixed points,

(2) Z ′2 = A′1 has four fixed points.

Let us set Y := A3A4A5. According to Proposition 9.6, A3, A4 and A5 fix σs(A1), hence fix a1.
So Y induces a mapping class in Mod(Σa1), which we will call Y ′. Since Z ′ is periodic of order
4, the mapping class Y ′ is periodic of order 8. Assertions (1) and (2) imply assertions (3)-(5)
below. Only assertion (5) needs to be proved.
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Figure 92: The periodic mapping class Ã1 induced by A1 in Σa1 (the arrows along the curves a3

and a5 stand for a gluing along these curves, so that Σa1 is indeed a genus-2 surface with two
boundary components: a+

1 and a−1 ).

(3) Y ′ is periodic of order 8 without fixed points,

(4) Y ′2 = Z ′ is periodic of order 4 without fixed points,

(5) Y ′4 has four fixed points belonging to a same orbit under Y ′.

Let us justify assertion (5). If Y ′ preserved {P1, P3}, then Y ′2 would fix P1 and P3. But it does
not, so the cardinality of the orbit of P1 under Y ′ is at least 4. But Y ′2 preserves {P1, P3}, so
the cardinality of the orbit of P1 under Y ′ is at most 4. Hence the orbit of P1 and P3 and the
orbit of P2 and of P4 contain exactly 4 points. Since Y ′4 contains 4 fixed points instead of 8, the
orbit of P1 and the orbit of P2 coincide. Thus assertion (5) is proved. We are then ready to apply
Lemma 3.20, linking the Euler characteristics of Σa1 and of the quotient surface Σa1/〈Y ′〉. To do
this, let us compute χ(Σa1/〈Y ′〉 ). The mapping classes A′3, A′4 and A′5 induced by A3, A4 and
A5 in Mod(Σa1) swap a+

1 and a−1 (we knew it already for A3 and A5 by hypothesis, we deduce
it easily for A4). So Y ′ swaps a+

1 and a−1 , so the surface Σa1/〈Y ′〉 must have a unique boundary
component. Since Y ′ preserves the orientation, Σa1/〈Y ′〉 is a disk, a torus with one hole, or a
genus-2 surface with one hole. So χ(Σa1/〈Y ′〉 ) ∈ {1, −1, −3}. The ramification points of the
covering Σa1 → Σa1/〈Y ′〉 come also into account. According to (5), there is only one ramification
point Q that has 4 preimages P1, P2, P3 and P4 in Σa1 . So, with the notation of Lemma 3.20,
we have o(Q) = 4. Let us recall that in Lemma 3.20, the cardinality of 〈Y ′〉 is denoted by m,
then here, m = 8. We get:

χ(Σa1)︸ ︷︷ ︸
−4

+ (m− o(Q))︸ ︷︷ ︸
8−4

= m︸︷︷︸
8

.χ(Σa1/〈Y ′〉 )︸ ︷︷ ︸
1,−1 or −3

.

This equality cannot be satisfied, since the left hand side is zero whereas the right hand side is
nonzero. This is the expected contradiction and terminates the proof of Lemma 12.3. ¤

We now can prove the following proposition:

Proposition 12.4 (Description of ρ̂).
There exist an integer ε ∈ {±1} and a mapping class α of Mod(Σ̂) that is either the identity or
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the periodic mapping class of order two that fixes the curves ai, i ∈ {1, 2, . . . , n− 1} such that,
for all i ∈ {0, 1, . . . , n− 1}, the morphism ρ̂ satisfies:

ρ̂(τi) = T ε
ai

α.

Proof.
1. Let us begin to deal with the case where

∼
A1 is trivial. In this case, Â1 is a multitwist

along the curves of σ(X̂ ). But σ(Â1) = σs(A1) ∩ Curv(Σ̂) = {a1}, so there exists a nonzero
integer ε such that Â1 = T ε

a1
. Then, by applying the conjugation by the elements of ρ̂(J ), for

all i ∈ {0, 1, . . . , n− 1}, we get:
ρ̂(τi) = Âi = T ε

ai
. (1)

Now, for all i ∈ {0, 1, . . . , n−1}, Âi and Âi+1 satisfy a braid relation, so according to Proposition
3.4, ε belongs to {±1}. Thus, in the case where

∼
A1 is trivial, the proof is over.

2. When
∼
A1 is not the identity, we have

∼
A1 =

∼
A3 = · · · =

∼
An−1 according to Lemma 12.3.

According to Corollary 3.18, these periodic mapping classes of order 2 all induce a unique mapping
class α of order 2 on Mod(Σ̂). According to Proposition 3.45, for all i ∈ Imp(n), we have the
inclusions σ(Âi α) ⊂ σ(Âi)∪σ(α) and σ(Âi) ⊂ σ(Âi α)∪σ(α−1), but σ(α) = σ(α−1) = ∅, so we
get the equality σ(Âi α) = σ(Âi) = {ai}. By definition of α, the mapping class Âi α induces a
trivial mapping class in Mod(

∼
Σ). Hence, for all i ∈ Imp(n), there exists an integer ki such that:

Âi α = T ki
ai

. (2)
Notice that for all ξ ∈ H, the mapping class ρ̂(ξ)α ρ̂(ξ)−1 is periodic of order 2 and induces in
Mod(

∼
Σ) a mapping class that coincides with ξ.

∼
A1. But ξ.

∼
A1 =

∼
A1 according to Lemma 12.3, so

by uniqueness of the construction of α (cf. Corollary 3.18), we have the equality ρ̂(ξ) α ρ̂(ξ)−1 =
α. Then, by conjugation by the elements of ρ̂(H), the ki are all equal to an integer which we
denote by ε. Hence for all i ∈ Imp(n), we have:

Âi α = T ε
ai
. (3)

Since Â3Â4Â3(σs(Â3)) = σs(Â4), then Â3Â4Â3(a3) = a4. Hence the product Â3Â4Â3 sends
by conjugation Ta3 on Ta4 . Moreover, Â3Â4Â3 sends also by conjugation Â3 on Â4. Hence,
by conjugating the equality Â1T

−ε
a1

= Â3T
−ε
a3

by Â3Â4Â3, we get Â1T
−ε
a1

= Â4T
−ε
a4

. Hence
Â4T

−ε
a4

= Â3T
−ε
a3

. Now, let us make δ act on this last equality. We get (4):

Â1T
−ε
a1

= Â2T
−ε
a2

= · · · = Ân−1T
−ε
an−1

= Â0T
−ε
a0

. (4)

Therefore α (equal to Â1T
−ε
a1

) is stable by the action of δ. In other words, α commutes with
ρ̂(δ). Then, since α(a1) = a1, it follows that for all i ∈ {0, 1, . . . , n − 1}, we have α(ai) = ai.
Hence, for all i ∈ {0, 1, . . . , n − 1}, the mapping class α commutes with Tai , hence with T ε

ai
α.

That is, α commutes with Âi. Therefore, the transvection of ρ̂ with direction α is well-defined.
Let us denote it by Lα(ρ̂). Thus, for all i ∈ {0, 1, . . . , n− 1}, we have:

Lα(ρ̂)(τi) = Âi α = T ε
ai
. (5)

This kind of equality (5) is very similar to (1). We can then prove, exactly as in the case where∼
A1 is trivial, that ε ∈ {±1}. ¤
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12.3 The morphism ρ is a transvection of monodromy morphism

At last, we prove in this subsection Proposition 12.1: we know that the morphism ρ̂ induced
by ρ is a transvection of monodromy morphism. We have now to check that the morphism ρ
itself is a transvection of monodromy morphism.

Let us gather the main informations on Σ̂, Σ̌ and U contained in Definition 11.3 and Propo-
sition 11.4.

Recalls (The Definition 11.3 and the propositions 11.2 and 11.4).

• Let Σ̂ be the subsurface of Subσn(G)(Σ) containing the special curves. The surface Σ̂ is of
genus n

2 − 1 or n
2 .

• We set U := Bndy(Σ̂) ∩ σn(G). The set of curves U can be empty and contains at most
two curves.

• Let Σ̌ be the subsurface of SubU (Σ) different from Σ̂ (well-defined according to Proposition
11.4). If Σ̂ is the only subsurface of SubU (Σ), we will say that Σ̌ is empty.

The links between Σ̂, Σ̌ and U are the following:

• if U is empty, Σ = Σ̂; if Σ̂ is of genus n
2 , then U is empty,

• if U is reduced to a non-separating curve u, then Σ̌ is empty and {u} is the mark of Σ̂,

• if U is reduced to a separating curve u, then Σ̌ is of genus 1,

• if U contains two curves, then they are non-separating and Σ̌ is a nonempty genus-0 surface.

Proposition 12.5. There exists a mapping class W ∈ PMod(Σ) such that for all i ∈ {1, 2, . . . , n−
1}, the following holds:

• in Mod(Σ̂), ∧(W ) commutes with ∧(Tai) and ∧(Ai),
• in Mod(Σ̂), ∧(Ai W

−1) = ∧(T ε
ai

),
• in Mod(Σ̂), ∨(W ) commutes with ∨(Ai),
• in Mod(Σ̌), ∨(Ai W

−1) = ∨(T ε
ai

).

Proof. Let us distinguish the case according to U .
a) If U is empty, then Σ̂ = Σ, so A1T

−1
a1

coincides with α, the mapping class defined in
Proposition 12.4. According to this last proposition, α satisfies the four assertions that W must
satisfy. Then in this case, Proposition 12.5 is proved.

b) If U is reduced to a non-separating curve u, then, if α is the identity, we set W = Id in
the group PMod(Σ). And if α is not the identity, according to Corollary 3.18, there exists a
unique mapping class W of PMod(Σ), periodic of order two, fixing the curve u and such that
cutu(W ) = α. Then, again according to Proposition 12.4, this definition of W suits.

c) If U is separating in Σ, which gathers all the cases not treated by a) and b) above, then
we are going to show that the mapping class W = A1T

−1
a1

belonging to PMod(Σ) suits. Let us
start by showing that the morphism ∨ ◦ ρ is cyclic.

The set of curves U is stable by the mapping classes of G, for the curves of U are topologically
different from the other curves of σn(G): they are the only ones that separate Σ̂ from Σ̌. Let us
distinguish two cases, depending on whether Σ̌ is of genus 1, or of genus 0.
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• If Σ̌ is of genus 1, according to Proposition 11.4, U is reduced to one only curve, that is
hence stable by the action of ρ(Bn). Hence the image of the morphism ∨ ◦ ρ is included in
PMod(Σ̌) (the boundary components are not permuted). Then we can apply Proposition
11.2: since Σ̌ is of genus 1, hence smaller than n

2 − 1, then the morphism ∨ ◦ ρ is cyclic.

• If Σ̌ is of genus zero, then U can contain two curves. They can be swapped by the elements
of G, but according to the proposition 9.7, the action of Bn on U is cyclic. Then, according
to the definition 9.12, we set

Fn :=
〈〈, τiτ

−1
1 , 2 6 i 6 n− 1 〉〉Bn

,

F∗n :=
〈
τiτ

−1
1 , 3 6 i 6 n− 1

〉
Bn

,

where
〈〈 〉〉Bn

is the normal closure in Bn. According to Lemma 9.13, Fn acts trivially on
U . Then F∗n is a group isomorphic to Bn−2 According to Theorem 7.1, the action of Bn−2

on PMod(Σ̌) via ∨ ◦ ρ is cyclic. Hence ∨(A3A
−1
1 ) = ∨(A4A

−1
1 ), whence ∨(A3) = ∨(A4)

and by conjugation by some powers of ∨ ◦ ρ(δ), we get:

∨(A1) = ∨(A2) = · · · = ∨(An−1).

Hence again, the morphism ∨ ◦ ρ is cyclic.

Then, according to Proposition 12.4, the mapping class W = A1T
−ε
a1

belonging to PMod(Σ)
satisfies for all i ∈ {1, 2, . . . , n−1} the following facts (where α is the mapping class ofMod(Σ̂)
introduced in Proposition 12.4):

• in Mod(Σ̂), ∧(W ) is equal to α and then commutes with Tai ,
• in Mod(Σ̂), ∧(T ε

ai
W ) = Âi,

• in Mod(Σ̌), ∨(AiT
−ε

ai
) = ∨(Ai) = ∨(W ).

This terminates the proof of Proposition 12.5. ¤

Proposition 12.1. The morphism ρ : Bn → PMod(Σ) is a transvection of monodromy
morphism.

Proof. Let W be the mapping class of PMod(Σ) defined in Proposition 12.5. Notice that
according to this same proposition, ∧(Ai W

−1) belongs to PMod(Σ̂) for all i ∈ {1, . . . , n− 1},
since ∧(Ai W

−1) = ∧(T ε
ai

). Similarly, when Σ̌ is nonempty, ∨(Ai W
−1) belongs to PMod(Σ̌)

since ∨(Ai W
−1) = ∨(T ε

ai
). Hence AiW

−1 and T ε
ai

belong to PUMod(Σ). Let us consider then
the following central exact sequence:

1 → 〈Tu, u ∈ U〉 → PUMod(Σ) cutu−−−→ PMod(ΣU ) → 1 (1)
where cutU is the canonical morphism. For any i ∈ {1, . . . , n − 1}, both mapping classes
AiW

−1 and T ε
ai

induce the same mapping classes in PMod(ΣU ). So AiW
−1 and T ε

ai
differ

by a central element. Consequently, W commutes with Ai. We can then define a morphism
ρ′ : Bn → PMod(Σ) by setting:

ρ′(τi) = Ai W
−1 = ρ(τi) W−1

for all integers i ∈ {1, . . . , n − 1}. Let ρ′′ : Bn → PMod(Σ) be the monodromy morphism
defined by

ρ′(τi) = T ε
ai

for all i ∈ {1, . . . , n − 1}. The morphisms ρ′ and ρ′′ satisfy cutU (ρ′) = cutU (ρ′′) according to
Proposition 12.5. Let us apply Lemma 5.8 to the central exact sequence (1). It follows that
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ρ′ and ρ′′ are of the same nature, hence ρ′ is a transvection of monodromy morphism. So by
construction, ρ is also a transvection of monodromy morphism. ¤
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13 Proof of Theorem 1

In this section, we use Theorem 12.2 that was proved in the previous section, in order to
deduce Theorem 1.

Theorem 1 (Morphisms from Bn in PMod(Σ), n > 6).
Let n be an integer greater than or equal to 6 and Σ a surface Σg, b with g 6 n

2 . Any morphism ρ
from Bn to PMod(Σ) is either cyclic, or is a transvection of monodromy morphism. In addition,
such transvections of monodromy morphisms exist if and only if g > n

2 − 1.

Proof. Let n be an integer greater than or equal to 6. Let Σ be a surface Σg, b where g 6 n
2

and b > 0. Let ρ be a noncyclic morphism from Bn in PMod(Σ). We start by showing that ρ
is a transvection of monodromy morphism.

When n is even, this is exactly Theorem 12.2.
Let us then assume that n is odd. Notice that in this case, the condition g 6 n

2 is equivalent
to g 6 n−1

2 . If ρ is cyclic, there is noting to be shown. Let us then assume that ρ is not cyclic.
We adopt the following notation:

B(1)
n−1 =

〈
τ1, τ2, . . . , τn−2

〉
Bn

,

B(2)
n−1 =

〈
τ2, τ3, . . . , τn−1

〉
Bn

.

The morphism ρ from Bn in PMod(Σ) induces by restriction to B(1)
n−1 and B(2)

n−1 the mor-
phisms ρ(1) : B(1)

n−1 → PMod(Σ) and ρ(2) : B(2)
n−1 → PMod(Σ). The morphism ρ is not cyclic,

so the mapping classes ρ(τ2) and ρ(τ3) are distinct according to Lemma 5.2. So the morphisms
ρ(1) and ρ(2) are not cyclic either. Then, according to Theorem 12.2, ρ(1) and ρ(2) are transvec-
tions of monodromy morphisms. According to Theorem 12.2, there exist two (n − 2)-chains:
(ai, 1 6 i 6 n− 2) and (ci, 2 6 i 6 n− 1); two mapping classes: V belonging to the centralizer
of

〈
Tai , 1 6 i 6 n− 2

〉
in PMod(Σ) and W belonging to the centralizer of

〈
Tci , 2 6 i 6 n− 1

〉
in PMod(Σ); and two integers ε and η belonging to {±1}, such that for all i ∈ {1 . . . , n− 2}:{

ρ(1)(τi) = T ε
ai

V,

ρ(2)(τi+1) = T η
ci+1 W.

The morphisms ρ(1) and ρ(2) coincide on the standard generators τi with 2 6 i 6 n− 2, so they
coincide on at least four consecutive standard generators (four when n = 7). Then according to
Lemma 5.13, we have V = W , ε = η, and ai = ci for all i ∈ {2, 3, . . . , n− 2}. Let us denote by
an−1 the curve cn−1. Then, we have for all i ∈ {1, . . . , n− 1}:

ρ(τi) = T ε
ai

V.

We just have to check that this is a transvection of monodromy morphism.

• On one hand, the mapping class V is in the centralizer of
〈
Tai , 1 6 i 6 n − 1

〉
, since the

equality V = W implies that V commutes with Tan−1 as well;

• On the other hand, the ordered list of curves (ai, 1 6 i 6 n − 1), is an (n − 1)-chain,
since the curve an−1 intersects an−2 in one point, does not intersect the curves ai for
i ∈ {2, . . . , n−3}, and does not intersect either a1. Let us justify this last point: τ1 and τn−1

commute, so ρ(τ1) and ρ(τn−1) commute, so Ta1V and Tan−1V commute. But V commutes
with Ta1 and Tan−1 , so finally, Ta1 and Tan−1 commute, so we have I(a1, an−1) = 0.
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Thus, ρ is a transvection of monodromy morphism.

It remains to show that such transvections of monodromy morphisms exist if and only if
g > n

2 − 1. But there exist some if and only if there exist monodromy morphisms, and according
to Lemma 5.6, monodromy morphisms exist if and only if g > n

2 − 1. ¤
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14 Discussion on the hypotheses of Theorem 1

With Theorem 1, we aim to describe morphisms from the braid group Bn into the mapping
class group PMod(Σg, b) where b is any nonnegative integer whereas the integers n and g satisfy
the hypotheses:

• n > 6,

• g 6 n
2 .

Obviously, the smallest n is and the largest g is, the more difficult it becomes to “control” the
morphisms from Bn in PMod(Σg, b). Another difficulty appears when n is small: when n is equal
to 3, 4 or 5, we have very few grips on Bn: the actions of subgroups of Bn on itself are less rich,
the commutation relations are rarer, etc. The aim of this section is essentially to present some
counter-examples to the main result when we overstep the hypotheses on n and g.

We will also describe the morphisms from Bn in PMod(Σg, b) with g 6 n
2 when n is small,

but without proof. We reject the proofs of these results to upcoming publications, because
the techniques are specific and need several additional preliminaries (notably on the periodic
mapping classes, pseudo-Anosov and even on multitwists, on the symmetric groups S4 and S6

and on some properties of the morphisms between braid groups and symmetric groups). In this
paper, we leave these results as conjectures

Concerning the case where the genus of the surface Σ is greater than n
2 , we have not yet any

proof. We will only ask some questions and expose some counter-examples.

14.1 Case where n = 3 and Σ = Σ1, 1

Let us recall that any morphism from B3 in PMod(S) where S is a sphere minus at least
three open disks is cyclic (cf. Theorem 7.1). So, we will investigate surfaces of genus g > 1.

Proposition 14.1. Let Σ be the surface Σ1, 1 and let ` and m be two curves in Σ such that
I(`, m) = 1. The morphism ρ from B3 in Mod(Σ) given by ρ(τ1) = T−1

` T 2
m and ρ(τ2) = T−1

m T 2
`

is well-defined. Yet, it is neither cyclic nor a transvection of monodromy morphism. Indeed,
ρ(τ1) is pseudo-Anosov.

Proof.
1. Let us show that the morphism ρ is well-defined. To do so, it is enough to see that ρ(τ1)

and ρ(τ2) satisfy a braid relation. And indeed:
(T−1

` T 2
m)(T−1

m T 2
` )(T−1

` T 2
m) = T−1

` TmT`T
2
m = T−1

` T`TmT`Tm = TmT`Tm,
and symmetrically,

(T−1
m T 2

` )(T−1
` T 2

m)(T−1
` T 2

m) = T`TmT` = TmT`Tm.

2. Let us show that the mapping class ρ(τ1), equal to T−1
` T 2

m, is pseudo-Anosov. To do
so, we use the classic isomorphism between Mod(Σ) and SL2(Z). We won’t prove that this
is indeed an isomorphism, but we will define it carefully. We give to the curves ` and m an
orientation in such a way that at the unique intersection point, the product orientation of the
pair (`,m) coincides with the orientation of Σ (cf. Figure 93). Let us denote by [`] and [m] the
homology classes (with integral coefficients) of the curves ` and m. The first homology group
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H1(Σ ; Z) is then isomorphic to Z[`]⊕Z[m]. Moreover, we have an isomorphism Φ fromMod(Σ)
in the group Aut(H1(T2 ; Z)) identified with SL2(Z), the group of matrices of determinant 1
with integral entries. The image of T` by Φ is the automorphism (T`)∗ of H1(Σ ; Z) that sends
[`] on [`], and [m] on [m] − [`] (cf. Figure 93), and such that its matrix in the base ([`], [m]) is(

1 −1
0 1

)
. Similarly, the image of Tm by Φ is the automorphism (Tm)∗ of H1(Σ ; Z) that sends

[`] on [`] + [m], and [m] on [m], and such that its matrix in the base ([`], [m]) is
(

1 0
1 1

)
.

Figure 93: The curves `, m and T`(m) and Tm(`) in Σ.

Now, thanks to a second classic result concerning the isomorphism Φ, for any M ∈ SL2(Z) such
that |tr(M)| > 2, the mapping classes Φ−1(M) is pseudo-Anosov8, where tr(M) is the trace of
M . But, with our conventions, the matrix Φ(T−1

` T 2
m) is equal to the product ( 1 1

0 1 ) ( 1 0
2 1 ), hence

is equal to ( 3 1
2 1 ) that is of trace 4. So T−1

` T 2
m is a pseudo-Anosov mapping class. ¤

This example of morphism is one of the first of an infinite family of morphisms sharing the
same properties. More precisely, we make the following conjecture:

Conjecture 14.2. There exists an infinite family of conjugacy classes of pairwise distinct injec-
tive but not surjective morphisms (we say that two morphisms φ1 and φ2 are conjugate if there
exists an inner automorphism ψ such that φ1 = ψ ◦ φ2) from B3 in Mod(Σ1, 1), such that the
braid twists in B3 are sent on pseudo-Anosov mapping classes in Mod(Σ1, 1). Any morphism
from B3 in Mod(Σ1, 1) is cyclic, or is a transvection of monodromy morphism, or is conjugate
to a morphism of this infinite family.

14.2 Case where n = 3 and Σ = Σ1, b with b > 2

Under the hypotheses of this subsection, the situation gets more complicated. Here is a
example.

Proposition 14.3. Let Σ be the surface Σ1, 2 and let a1, a2 and a3 be the curves in Σ drawn
in Figure 94. The morphism ρ from B3 in Mod(Σ) given by the formulae ρ(τ1) = Ta2Ta3 and
ρ(τ2) = Ta2Ta1 is well-defined. Yet, it is neither a cyclic morphism and nor a transvection of

8Here is a sketch of the proof of this result. The matrices M of SL2(Z) such that |tr(M)| > 2 have two
irrational real eigenvalues. These eigenvalues are associated to eigenvectors whose coordinates have an irrational
ratio. Since the closed curves of Σ are associated in R2 to lines with a rational slope, the mapping classes associated
via Φ to matrices M satisfying |tr(M)| > 2 do not preserve any curve of Σ. Neither do their iterates, since any
iterate N of such a matrice M satisfies also |tr(N)| > 2. That is why such matrices M are pseudo-Anosov).
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monodromy morphism. Indeed, σ(ρ(τ1)) contains a unique separating curve x. The surface Σx

consists in a pair of pants P and a torus T with one hole. The restriction of ρ(τ1) to P is the
identity, and its restriction to T is periodic of order 3. Let y be the unique curve of ρ(τ2). We
have I(x, y) = 4.

Figure 94: The curves a1, a2, a3 in Σ.

Proof.
1. Let us check that ρ is well-defined. Let us set S := Ta1Ta2Ta3Ta1 and T := (Ta2Ta3Ta1)

2.
It is easy to check with a drawing of braids in B4 that S is periodic of order 3 and T is periodic
of order 2 in PMod(Σ). Let us set then A = S−1T = Ta2Ta3 and B = T−1S2 = Ta2Ta1 . We
have ABA = S−1T T−1S2 S−1T = T and BAB = T−1S2 S−1T T−1S2 = T−1S3 = T . Hence
the morphism ρ is well-defined.

2. In PMod(Σ1, 2), the mapping classes A and B are reducible: each of the sets σ(A) and
σ(B) contains exactly one separating curve. Let us set {x} = σ(A) and {y} = σ(B). The curve
x (respectively y) separates Σ1, 2 in a holed torus, and the restriction of A (resp. B) to this
holed torus is a periodic mapping class of order six, whereas the restriction of A (resp. B) to
the complement of this holed torus is the identity mapping class. Moreover, the curves x and y
satisfy I(x, y) = 4 (cf. Figure 95).

Figure 95: An unusual braid relation: A = Ta2Ta3 and B = Ta2Ta1 . The shadowed parts are the
“supports” of A and B. Defined as they are, A and B satisfy a braid relation.

14.3 Case where n = 4

Definition 14.4 (Degenerate morphisms).
We shall say that a morphism ρ from B4 in any group is degenerate if it satisfies ρ(τ1) = ρ(τ3).

Let us begin by a conjecture on the morphisms from B4 in Mod(Σ1, b) with b > 1.
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Conjecture 14.5 (Morphisms from B4 in Mod(Σ1, b) with b > 1).
Let b be a positive integer and Σ the surface Σ1, b. Any morphism ρ from B4 in PMod(Σ) is
degenerate.

Let us focus now on the morphisms from B4 in genus-2 surfaces.

Definition 14.6 (Exceptional morphisms).
Let Σ be the surface Σ2, 0. A morphism ρ from B4 in Mod(Σ) is said to be exceptional if there
exists a 5-chain of curves (ai, i 6 5) such that ρ is one of the two following morphisms ρexp

1 or
ρexp
2 :

ρexp
1 (τ1) = T 2

a1
Ta2Ta3Ta4 , ρexp

2 (τ1) = T 2
a1

Ta2Ta3Ta4α,
ρexp
1 (τ2) = Ta5Ta4T

−1
a2

Ta1Ta2Ta3Ta4 , ρexp
2 (τ2) = Ta5Ta4T

−1
a2

Ta1Ta2Ta3Ta4α,
ρexp
1 (τ3) = (T 2

a1
Ta2Ta3Ta4)

−1α. ρexp
2 (τ3) = (T 2

a1
Ta2Ta3Ta4)

−1,

where α is the (central, hence independent from the chosen 5-chain of curves) mapping class
represented in Figure 96.

Figure 96: The non-trivial central mapping class α of Mod(Σ2, 0).

In the following proposition, we make clear some specificities of the exceptional morphisms.
The proof is a simple check.

Proposition 14.7. The image of any exceptional morphism from B4 in Mod(Σ), where Σ is
the surface Σ2, 0, is a central index-2 extension of the group S4, precisely the second extension
of Schur, denoted by S∗∗4 and having the number 29 in the classification of the finite groups of
low cardinality by the software GAP 4. This is a finite group of order 48 that can be presented
as follows:

∼
S4 :=

〈
u, v

∣∣ u8 = 1 , u4 = v4 , uvu = vuv , (uvu)2 = 1 ,
〉
.

where the roles u, v, u3 are played here by the images of the generators τ1, τ2, τ3. ¤

Remark. We can prove, by some raffinement of Theorem 84(g − 1) (cf. Corollary 3.26) and by
showing that there does not exist periodic mapping class of order 7 inMod(Σ2, 0) that 48 is the
maximal order of any finite subgroup of Mod(Σ2, 0).

We make then the following conjectures:

Conjecture 14.8 (Morphisms from B4 in Mod(Σ2, 0)).
Any non-degenerate morphism from B4 into PMod(Σ2, 0) is either a transvection of monodromy
morphism, or an exceptional morphism. Moreover, there exist exactly two conjugacy classes of
exceptional morphisms from B4 in PMod(Σ2, 0). We go from one to the other by applying the
transvection with direction α.
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Conjecture 14.9 (Morphisms from B4 in Mod(Σ2, b) with b > 0).
Any non-degenerate morphism from B4 in PMod(Σ2, b) with b > 0 is a transvection of mon-
odromy morphism.

14.4 Case where n = 5

Remember that we have deduced Theorem 1 from Theorem 12.2 where the number of strands
n of Bn is even. Similarly, the case n = 5 can be deduced from the case n = 4. So we expect the
following conjecture to be true.

Conjecture 14.10. Let Σ be a surface Σg, b where g 6 2 and b > 0. If g = 2, any morphism
from B5 in PMod(Σ) is either cyclic, or is a transvection of monodromy morphism. If g = 1,
all the morphisms from B5 in PMod(Σ) are cyclic.

The result for the case n = 5 is similar to the cases n > 6, and is different from the case
n ∈ {3, 4}. However, the involved techniques of the preceding sections cannot be adapted to the
group B5 and some specific arguments are needed. We reject hence the writing of the case n = 5
in upcoming publications, as a corollary of the case n = 4.

14.5 When the integer g is greater than n
2

All over the third part, we have used the inequality g 6 n
2 . Here are some key points where

we used it:

• We have used it in order to bound the order of some finite subgroups of the mapping class
group. This allowed us to prove that the morphisms such that the images of the standard
generators are periodic or pseudo-Anosov elements are actually cyclic.

• We have also used several times the inequality g 6 n
2 to prove the existence of curves in

σ(A1) that would intersect some curves in σ(A2), namely, the special curves. We have
even used it to show that these special curves should intersect their own image by ρ(δ).
This becomes wrong when g = n− 1. We have in mind two constructions illustrating this,
one of them is a transvection of the morphism from the example developed below in the
subsection called “Situation when g > n − 1” with direction the involution hyper-elliptic
“obvious” when n is even.

• We have used the inequality g 6 n
2 to show that these special curves have to be non-

separating. We have counterexamples as soon as g = n: it is enough to consider the stan-
dard isomorphism from Bn in the mapping class group of a n-punctured diskMod(Dn, ∂Dn),
then we omit little disks centered in each puncture and we glue along the new boundary
curves holed tori. Then, the common braid twists that swap the punctures become map-
ping classes that swap holed tori. The curves that bounded the support of the braid twists
are now separating curves that play the role of special curves.
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• At last, we have used the inequality g 6 n
2 to show that the images of the standard

generators, about which we know only their canonical reduction system, were actually
Dehn twists, (up to transvection).

However, this bound g 6 n
2 is arbitrary! The result still is interesting and easier to show

if we had tried the inequality g < n
2 instead. We could have thus avoided some complications

like dealing with some “exceptions”. We could have also deduce the description of the endomor-
phisms of the braid groups from such weakened main result. But we could not have deduced the
description of the endomorphisms of the mapping class groups. The bound g 6 n

2 is finally a
compromise between the strength of the corollaries and the complexity of the proof. For instance,
if we had chosen the bound g 6 n

2 +1, Section 10 would have been much more complicated, since
our topological argument would have failed, and we should have looked for a deeper proof.

It seems to us that the larger bound allowing an reasonable generalization of our main theorem
is g 6 n− 2. In other words, we ask the following question:

Question: Let n be an integer greater than or equal to 5 and Σ a surface Σg, b where g 6 n− 2
and b > 0. Is it still true that the morphisms from Bn in PMod(Σg, b) are either cyclic, or are
transvections of monodromy morphisms ?

Situation when g > n − 1. The answer is no when g > n − 1. Indeed, let us consider the
following example. Let S be an n-punctured sphere. Let us remove n little disks centered in the
punctures. Let us double the surface S. We obtain a closed (n − 1)-genus surface DS. When
doubling the surface S, a braid twist on the punctured sphere S becomes a reducible mapping
class A in DS whose support T , which is homeomorphic to a torus with two holes, is bounded by
two non-separating curves x and y. We have σ(A) = {x, y} and the restriction of A in Mod(T )
is periodic of order 2 (cf. the example depicted in Figure 97 where T2 plays the role of T and
x2 and y2 play the roles of x and y). Consequently, the classic, noncyclic morphism from Bn

in Mod(S) that sends the standard generators on braid twists permuting punctures induces a
morphism from Bn in DS such that the images of the standard generators are some mapping
classes conjugate to A.

For example, with n = 5, let Σ be the surface Σ4, 0. According to the above process, we get
a morphism from B5 in Mod(Σ) such that σρ(τi) = {xi, yi} for all i 6 4, where the curves xi

and the curves yi are drawn in Figure 97.

Figure 97: A noncyclic morphism, different from the transvections of monodromy morphisms,
from B5 in Mod(Σ4, 0).
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