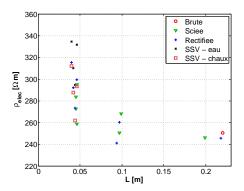
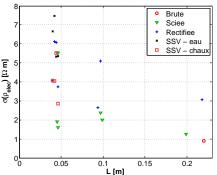
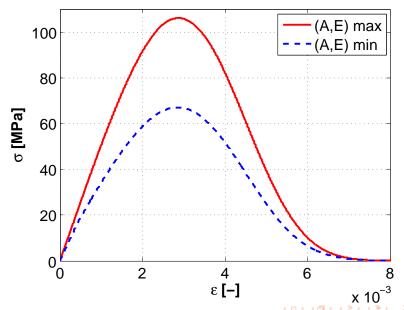
Mesure de la résistivité électrique





Évolution de l'endommagement

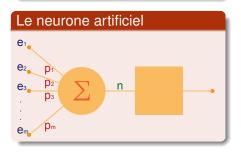


[Hertz et al. 1991, Haykin 1998]

Objectif

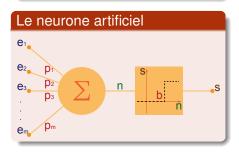
[Hertz et al. 1991, Haykin 1998]

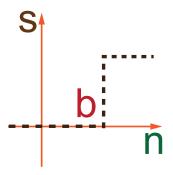
Objectif



[Hertz et al. 1991, Haykin 1998]

Objectif



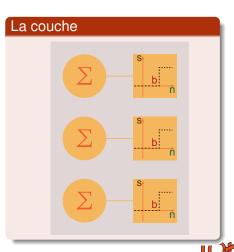


[Hertz et al. 1991, Haykin 1998]

Objectif

Identification d'une fonction inconnue : détermination du coefficient de tortuosité

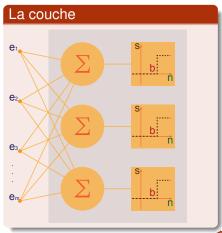
Le neurone artificiel e1 e2 p1 n s pm s pm



[Hertz et al. 1991, Haykin 1998]

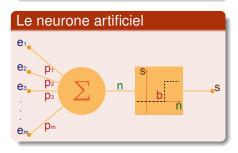
Objectif

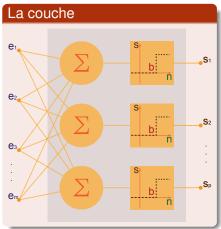




[Hertz et al. 1991, Haykin 1998]

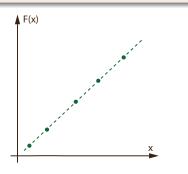
Objectif





Validation

Vérifier que le réseau est capable de généraliser l'identification



- À l'aide du modèle déterministe
- Paramètres d'entrée :

•
$$0,11 \le \phi \le 0,18$$

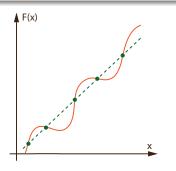
•
$$0, 13 \le \tau \le 0, 25$$

•
$$0^{\circ}C \leq T \leq 30^{\circ}C$$

- Données de sortie :
 - épaisseurs dégradées

Validation

Vérifier que le réseau est capable de généraliser l'identification



- À l'aide du modèle déterministe
- Paramètres d'entrée :

•
$$0,11 \le \phi \le 0,18$$

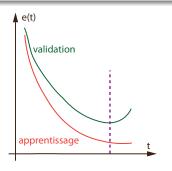
•
$$0, 13 \le \tau \le 0, 25$$

•
$$0^{\circ}C \leq T \leq 30^{\circ}C$$

- Données de sortie :
 - épaisseurs dégradées

Validation

Vérifier que le réseau est capable de généraliser l'identification



- À l'aide du modèle déterministe
- Paramètres d'entrée :

•
$$0,11 \le \phi \le 0,18$$

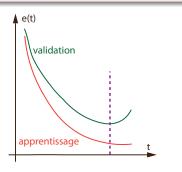
•
$$0, 13 \le \tau \le 0, 25$$

•
$$0^{\circ}C \leq T \leq 30^{\circ}C$$

- Données de sortie :
 - épaisseurs dégradées

Validation

Vérifier que le réseau est capable de généraliser l'identification



- À l'aide du modèle déterministe
- Paramètres d'entrée :

•
$$0,11 \le \phi \le 0,18$$

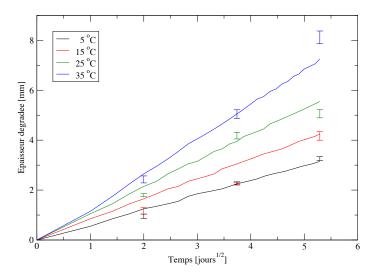
•
$$0, 13 \le \tau \le 0, 25$$

•
$$0^{o}C \leq T \leq 30^{o}C$$

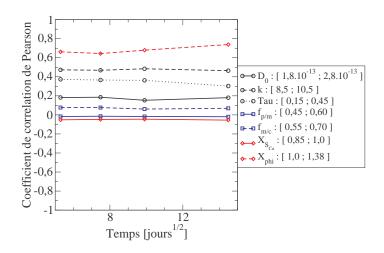
- Données de sortie :
 - épaisseurs dégradées

Simulations VF vs. mesures expérimentales

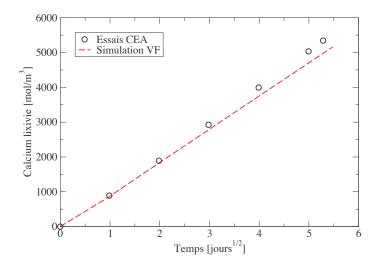
Dégradation à différentes températures (constantes) – Essais CEA [Pierre et al. 2009]



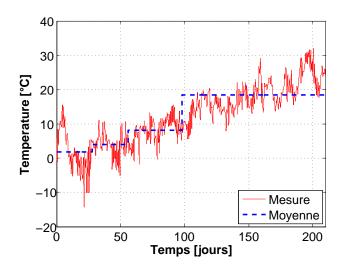
Étude paramétrique Influence des paramètres de diffusion sur la cinétique de lixiviation



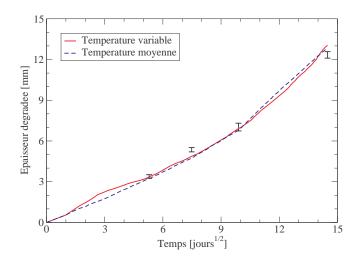
Étude paramétrique Influence des paramètres de diffusion sur la cinétique de lixiviation



Température variable au cours de l'essai

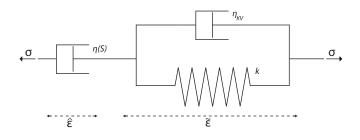


Température variable au cours de l'essai



Modélisation du fluage à long terme

Basée sur la théorie de la microprécontrainte [Bazant et al. 1997] Calée sur les résultats expérimentaux de [Brooks 2005]

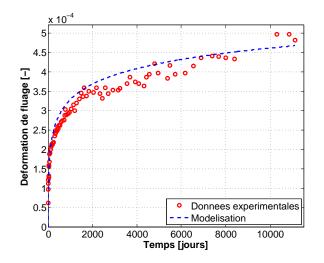


$$\widehat{\varepsilon}_{n+1} = \widehat{\varepsilon}_n + \widehat{\sigma}_{n+1} \alpha \ln \left(\frac{t_{n+1}}{t_n} \right)$$

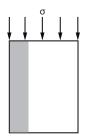
$$\widetilde{\varepsilon}_{n+1} = \widetilde{\varepsilon}_n e^{-\Delta t / \tau_{KV}} + \frac{\widehat{\sigma}_{n+1}}{k} \left(1 - e^{-\Delta t / \tau_{KV}} \right)$$

Modélisation du fluage à long terme

Basée sur la théorie de la microprécontrainte [Bazant et al. 1997] Calée sur les résultats expérimentaux de [Brooks 2005]



Endommagements chimiques et mecaniques



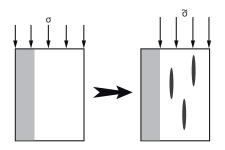
Endommagement chimique

$$\widetilde{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})}$$

Endommagement mécanique

$$\widehat{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})(1 - D_{n+1}^{c})}$$

Endommagements chimiques et mecaniques



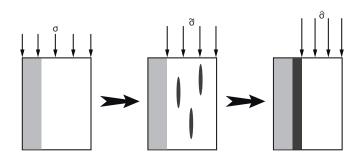
Endommagement chimique

$$\widetilde{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})}$$

Endommagement mécanique

$$\widehat{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})(1 - D_{n+1}^{c})}$$

Endommagements chimiques et mecaniques



Endommagement chimique

$$\widetilde{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})}$$

Endommagement mécanique

$$\widehat{\sigma}_{n+1} = \frac{\sigma}{(1 - D_{n+1}^{\chi})(1 - D_{n+1}^{c})}$$

Loi d'évolution de l'endommagement

• Endommagement mécanique [Mazars 1986] :

$$D^c = 1 - rac{arepsilon_D (1 - A)}{arepsilon^{eq}} - rac{A}{e^{B(arepsilon^{eq} - arepsilon_D)}} \qquad ext{if} \quad arepsilon^{eq} \geq arepsilon_D$$

Couplage endommagement/fluage [Mazzotti et al. 2003] :

$$\varepsilon_{n+1}^{eq} = \sqrt{2 \nu_{n+1}^2 \left(\varepsilon_{n+1}^e + \beta(\widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})\right)^2}$$

 Évolution du coefficient de Poisson apparent [Mazzotti et al. 2003]:

$$\nu_{n+1} = \nu_0 \left(1 + \widetilde{\nu} (\varepsilon_{n+1}^e + \widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})^{\gamma} \right)$$

Loi d'évolution de l'endommagement

• Endommagement mécanique [Mazars 1986] :

$$D^c = 1 - \frac{\varepsilon_D(1-A)}{\varepsilon^{eq}} - \frac{A}{e^{B(\varepsilon^{eq} - \varepsilon_D)}} \qquad \text{if} \quad \varepsilon^{eq} \ge \varepsilon_D$$

• Couplage endommagement/fluage [Mazzotti et al. 2003] :

$$\varepsilon_{n+1}^{eq} = \sqrt{2 \nu_{n+1}^2 \left(\varepsilon_{n+1}^e + \beta(\widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})\right)^2}$$

 Évolution du coefficient de Poisson apparent [Mazzotti et al. 2003]:

$$\nu_{n+1} = \nu_0 \left(1 + \widetilde{\nu} (\varepsilon_{n+1}^e + \widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})^{\gamma} \right)$$

Loi d'évolution de l'endommagement

• Endommagement mécanique [Mazars 1986] :

$$D^c = 1 - rac{arepsilon_D (1-A)}{arepsilon^{eq}} - rac{A}{e^{B(arepsilon^{eq}-arepsilon_D)}} \qquad ext{if} \quad arepsilon^{eq} \geq arepsilon_D$$

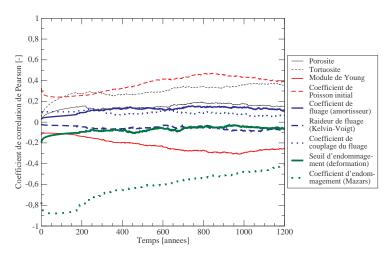
Couplage endommagement/fluage [Mazzotti et al. 2003] :

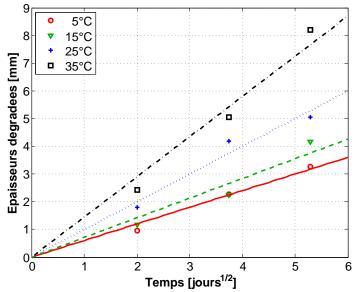
$$\varepsilon_{n+1}^{eq} = \sqrt{2 \nu_{n+1}^2 \left(\varepsilon_{n+1}^e + \beta(\widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})\right)^2}$$

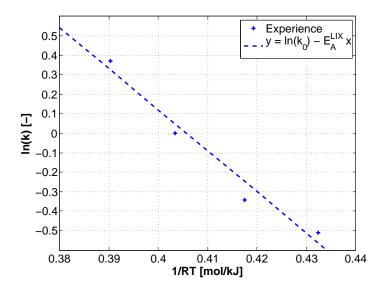
 Évolution du coefficient de Poisson apparent [Mazzotti et al. 2003]:

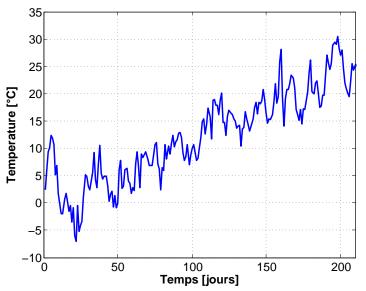
$$\nu_{n+1} = \nu_0 \left(1 + \widetilde{\nu} (\varepsilon_{n+1}^e + \widehat{\varepsilon}_{n+1} + \widetilde{\varepsilon}_{n+1})^{\gamma} \right)$$

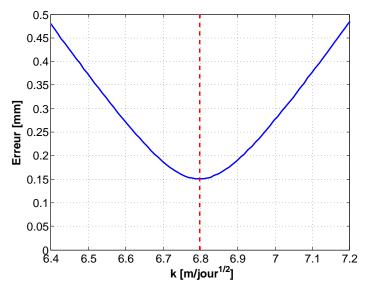
Détermination des paramètres influents

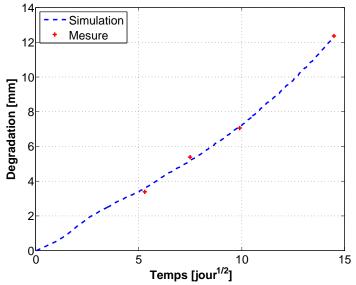


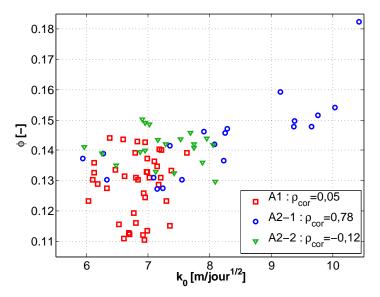


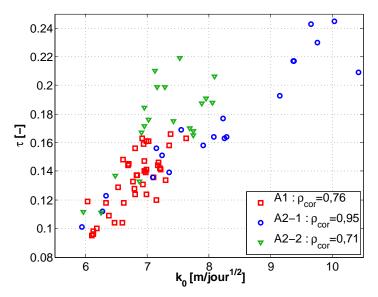












Décomposition modale

- Réalisations indépendantes mais corrélées spatialement
- Séparation des variables spatiales et stochastiques

$$f(\vec{x},\omega) = \bar{f}(\vec{x}) + \sum_{i=0}^{+\infty} \sqrt{\lambda_i} \phi_i(\vec{x}) \xi_i(\omega)$$

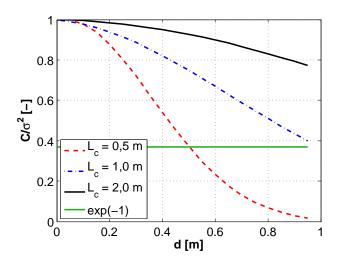
Problème aux valeurs propres généralisées

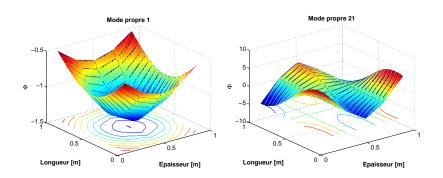
 Discrétisation EF pour la détermination des modes

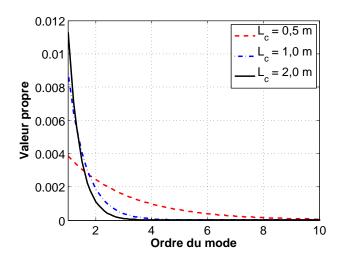
$$\mathbb{MCM}\vec{\phi} = \lambda \mathbb{M}\vec{\phi}$$

Fonction de covariance

$$C_{ij} = V exp\left(-rac{||\vec{X}_i - \vec{X}_j||^2}{L_c^2}
ight)$$







Utilisation d'un middleware

[Matthies et al 2006]

