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Why Domain Decomposition Method ?

e The term Domain Decomposition has slightly different meaning to
specialist within the discipline of PDEs.
e process of distributing data among the processors
e process of subdividing the solution of large linear system into smaller
problem
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Why Domain Decomposition Method ?

e The term Domain Decomposition has slightly different meaning to
specialist within the discipline of PDEs.

e process of distributing data among the processors
e process of subdividing the solution of large linear system into smaller
problem

e Ease of parallelization

o parallel processing is one way to have a faster codes
® new generation processors are parallel (multi cores)

e In some situation, the domain decomposition is natural

e strong heterogeneous media
o different physics in different subdomains
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DDM vs. other methods

use a lot

but are robust
of memory

and work as
black-box

difficult to

parallelize
solver

Direct Solvers

lack of
black-box
routines

can be no
efficient

easy to
parallelize

flexible
compromise

need good
preconditioner
to be robust
also work as
black-box
solver

low memory
usage

Krylov Methods

naturally
parallel
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Original Method

I 2 —Auw) = f in Q
o r, u = g on JN
o
Alternating Schwarz Method
AW = f in & Ay = f in O
u’f“ = g on IN\I ugﬂ = on 9N\I'y
u?“ = wuy on I4. ug”rl = u?*l on I's.

“ n n n n j
' Asn — 00, (ut', uy) = (Ugoyq, s Ugor, ), Where uso is a solu-
tion of continuous problem [Schwarz, 1870]."
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Parallel Schwarz Method

Ty Q2
Iy
1

Parallel Schwarz Method

“A@Wt) = f in
u'™ = g  on

n+1 . n
Uq = Uy On

—A(u) = f in Q
u = g on JN

0

Q “AWd™) = f in Q
891 \Pl ug"'l = g on 6QQ\P2
I;. up™ = wu! on Ty
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Drawbacks of original methods

Original algorithms: Improvements:

e are parallel but converges slowly e Schwarz methods as a

o need overlap in order to precondition for Krylov methods

converge e more general interface

e convergence speed depend on conditions

size of overlap All of them can be apply at the

algebraic level !

Example: The condition number k of operator A, preconditioned by P,
i.e., ASM with the coarse grid correction, satisfies

H
H(PQSA) S C (]. aF ?) s
where the constant C' is independent of, H and 4.
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Algebraic Formulation (Jacobi and Schwarz)

Lets consider a discretized problem which yields a linear system.

u = g on 0N

For the set of indices €2 partitioned into two sets €2; and 22 we have:

Dq, Dq,
A A |Us _ F —W
Ag Agz| |Us F % _—>'|<_ Qy —=]
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Algebraic Formulation (Jacobi and Schwarz)

Lets consider a discretized problem which yields a linear system.

u = g on 0N
For the set of indices €2 partitioned into two sets €2; and 22 we have:
Dq, Dq,
Ay A Uy _ Fy —m
Ag Agz| |Us F % _—>'|<_ Qy —=]

The block-Jacobi algorithm reads:

urt _ o n A0 Fi|  [An A |U?
Uyt T |\uy 0 Ay | \|F Aoy Ago| |UR
It corresponding to solving a Dirichlet boundary value problem in each

subdomain with Dirichlet data taken from the other one at the previous
step = Schwarz method with minimal overlap.
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Preconditioned Krylov space

urt _ oy N A0 F|  [An A [U7
Uyt Uy 0 Ay \|F Ay Agg| |UY

uppi1=u,+M- 1 (f—Au,)

Let ro := M~ (f — Aug), we have (fixed point method):

n .
u, :Z(]I—MflA)lrg—l—uo
i=0

A preconditioned Krylov solve will generate an optimal solution uf in:

ICm (MilA, I'()) :=ug + SPAN {I'(), MilAI‘(), ceey (MilA)milro}
where u, € K. but with “frozen" coefficients = u,, is less optimal
then u’.
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Modified Schwarz Method

Another improvement arise from usage of more general interface conditions for
a non-overlapping ( <= « > 0) decomposition [Lions, 1990]:

—A(uw) = f in Q
u = g on 0N (1)
Modified Schwarz Method
—A@it) = f in O
uftt = g on O\l

8 +1 8 +1 0.

_— n = — L 0 N

(8n1+a>(u1 ) <8n2+a>(un ) on 00NN
—A(ug‘H) = f in Qo

u;H’l = g on 0Ny NAT

0 n 0 " —

<aT2 ’ a) (™) = <37 - a) (i) on 90,00
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Optimal Choice

J. L. Lions:

“First of all, it is possible to replace the constants in the
Robin condition by two proportional function on the interface, or
even by local or nonlocal operators [Lions, 1990]."
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Optimal Choice

J. L. Lions:

“First of all, it is possible to replace the constants in the
Robin condition by two proportional function on the interface, or
even by local or nonlocal operators [Lions, 1990]."

F. Nataf, F. Rogier and E. de Sturler:

“The rate of convergence of Schwarz and Schur type algo-
rithms is very sensitive to the choice of interface condition. The
original Schwarz method is based on the use of Dirichlet bound-
ary conditions. In order to increase the efficiency of the algo-
rithm, it has been proposed to replace the Dirichlet boundary
condition with more general boundary conditions. ... It has been
remarked that absorbing (or artificial) boundary conditions are a
good choice. In this report, we try to clarify the question of the
interface condition [Nataf et al., 1994].”

13/71
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Optimal Choice

The authors proved that use of non-local DtN (Dirichlet to Neumann)
map (a.k.a. Steklov-Poincaré) as interface condition in problem (1) leads
to (exact) convergence in two iterations.

Definition (DtN map)

Let
ug: 't = R

DtNQ(UO) :=Vu- n2|391ﬁ52,

where ns is the outward normal to €25 \ﬁl, and v satisfies the following
boundary value problem:

L) = n Q \ O
v on 00 N 909N
v = wy on 9 N Q.

Il
oo
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Optimal Interface Condition at the matrix level

An Air O Uy F
Ari Arr Are| |Ur| = |Fr
0 Aor Al |Us g

In order to write a “modified” Schwarz method we need to introduce two
square matrixes S7 and Sy which acts on vector of the type Ur:

A Air Uttt Fy
Ar; Arr+ S, Uttt )\ Fr+ SoUpy — ArgUs
Aso Aor Uyttt Fy
Aro Arr + 51 UR;I B Fr + SlUﬁl - ArlU?

Lemma

If Arr + S1 + So is invertible and problem (1) is well-posed. Then above
algorithm converges to the solution of (1) = U = U; and
URy = Ury = Ur.
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Optimal Interface Condition at the matrix level

An Air Uptty F
Ar1 Arr+Ss Ulﬁjl o Fr + SQURQ — A[‘zUzn
Az Aor Uttty Py
Aro Arr +S: U;L)-gl - Fr + SlUIT{l — AplUln

Optimal choice

Taking S; = —AplAl’llAlp and Sy = —AplAQ;Agp yields a convergence in
two steps — Arr — ApiAi_ilAip is a Schur complement.
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Optimal Interface Condition at the matrix level

A Air Uptty F
Ar1 Arr+Ss Ulﬁjl o Fr + SQUF’Q — A[‘QUzn

Az Aor Uytt . Fy
Aro Arr +S: Uf})-gl - Fr + SlUIT{l — AplUln

Optimal choice

Taking S; = —AplAl’llAlp and Sy = —AHA;;AQF yields a convergence in
two steps — Arr — ApiAi_ilAip is a Schur complement.

The matrices S7 and S5 are full, therefore
e they are costly to build o the subdomain matrix is partially full

However it is possible to approximate them by sparse matrices e.g., via
local Schur complement on successive reduced “outer” domain, which we
call patches [Magoulés et al., 2006].

16/71



State of the Arts
e0

Schwarz method vs. Many subdomains

It is well known that performance may deteriorate with large number of
subdomains i.e., plateaus appear in the convergence of the Krylov methods.

They are due to the lack of a global exchange of information in the precon-
ditioner.

u = g on 08

The mean value of the solution in domain §2; depends on the value of f on
all subdomains.
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e0

Schwarz method vs. Many subdomains

It is well known that performance may deteriorate with large number of
subdomains i.e., plateaus appear in the convergence of the Krylov methods.

They are due to the lack of a global exchange of information in the precon-
ditioner.

u = g on 08

The mean value of the solution in domain §2; depends on the value of f on
all subdomains.

A classical remedy: = coarse grid problem that couples all subdomains.

e can be incorporate as additional preconditioner = "“two-level
preconditioning” .

17/71
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Two-level preconditioner

From an abstract point of view, all two-level preconditioners of the method
consists of an arbitrary preconditioner M, combined with one or more
matrices P and ().

P:=1-AQ, Q:=2ZE'ZT7 E.=7TAZ

Some properties:

° PA:APT A’M7P7Q€Rn><n
e el
e QA=1-PT QAZ =7, QAQ=Q EeR™™, m<n
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Two-level preconditioner

From an abstract point of view, all two-level preconditioners of the method
consists of an arbitrary preconditioner M, combined with one or more
matrices P and ().

P:=1-AQ, Q:=2ZE'ZT7 E.=7TAZ

Some properties:

° PA:APT A,M,P,QGR”X"
e PT7Z =0, PTQ Z e R™X™

’ mxm i
e QA=1-PT QAZ =17, QAQ =Q EeR™™, m<n
The matrix Z consists of so-called projection vectors, whose columns span

the projection space (More detail in [Tang et al., 2009]).

Example: Pap := M~ '+ Q, Penn :=PTM 1P+ Q, Pa_ppr:=PTM 1 +Q

18/71
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What we know so far?

Schwarz methods:
e are very suitable for parallel computing
e are easy to use at the algebraic level
e and its iterative process can by accelerated by Krylov methods
e they also “work” with general interface conditions
o for which we know “optimal” choice
e we can modify interface conditions at the algebraic level

e in case of many subdomains, we can incorporate Schwarz
preconditioner with the coarse grid correction

e in order to construct two-level preconditioner
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ADDMIib - parallel library

ADDMIib - Algebraic Domain Decomposition Methods (library)

o carefully design object oriented library
e written in modern C++ (Boost 4+ STL)
e provides (via MPI) many of the mechanism needed within parallel
application code
o parallel vectors and sparse matrices in several sparse formats
e we put stress on:
e easiness of implementing preconditioners of DDM type
e Krylov subspace methods (GMRES,FGMRES,BiCGstab)

e it provides convenient interface for chosen functionality from other
libraries like METIS, SCOTCH or PETSc
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ADDMIib - parallel library

Process P
Vo, data

Part Set

Figure: DDMVector structure and its division into Partial Vectors according
to decomposition of domain €.
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ADDMIib - parallel library

Figure: Decomposition of global linear system into Partial Vectors and
Operators (very similar idea introduced independently in [Bulug et al., 2009]).
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ADDMIib - parallel library

Figure: Decomposition of global linear system into Partial Vectors and
Operators (very similar idea introduced independently in [Bulug et al., 2009]).
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ADDMIib - parallel library

Diagonal Partial Operator -~

p >
/’/// ~ ,’//
RS °~
s
- Off-diagonal Partial Operator

Figure: Decomposition of global linear system into Partial Vectors and

Operators (very similar idea introduced independently in [Bulug et al., 2009]).
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Partitioning

But how to subdivide and map data into processors ?
e in arbitrary fashion

24/71



New Methods and Techniques
®0000000

Partitioning

But how to subdivide and map data into processors ?
e in arbitrary fashion
e or we can use adjacency graph partitioners (SCOTCH, METIS)

i PR
P AV
I - . /\\/m \\I ai/“
4 Tk Vi g
:'I'--:.'I z\\\?// \/ /m /
ik a0

. --'::!'.;M N7
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Partitioning

But how to subdivide and map data into processors ?

e in arbitrary fashion
e or we can use adjacency graph partitioners (SCOTCH, METIS)

Definition (Graph Partitioning)

For a general sparse linear system whose adjacency graph is G = (V, E),
the k-way graph partitioning problem is defined as follows: given a graph
G = (V, E) with |V| = n, partition V into k subsets, Vi, V5, ..., V4 such
that V; NV, =0 for i # j, |Vi| = n/k, and U;V; =V, and the number of
edges of E whose incident vertices belong to different subset is
minimized.
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Partitioning

But how to subdivide and map data into processors ?
e in arbitrary fashion
e or we can use adjacency graph partitioners (SCOTCH, METIS)

Definition (Graph Partitioning)

For a general sparse linear system whose adjacency graph is G = (V, E),
the k-way graph partitioning problem is defined as follows: given a graph
G = (V, E) with |V| = n, partition V into k subsets, V1, V5, ...,V such
that V; NV, =0 for i # j, |Vi| = n/k, and U;V; =V, and the number of
edges of E whose incident vertices belong to different subset is
minimized.

During our experiments we have noticed that the way how the adjacency
graph is partitioned has strong influence on overall performance of algebraic
DDM.
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Partitioning with weights

There is a certain number of problems for which “smart” partitioning can
increase robustness (e.g., anisotropic problems)

Is it possible to extract algebraically some information about
physical properties of the problem to solve, and use them to
obtain better partition ?
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Partitioning with weights

There is a certain number of problems for which “smart” partitioning can
increase robustness (e.g., anisotropic problems)

Is it possible to extract algebraically some information about
physical properties of the problem to solve, and use them to
obtain better partition ?

... yes we can define weights for edges of adjacency graph using values of
the underlaying matrix using following formula adapted from AMG meth-
ods (see for example [Stiiben, 2001])

Automatic weight labelling

Cc = X Yconst
lazi| + |ag;]

|z] is the floor function rounds the element = to the nearest integer toward minus

infinity and ~const is an arbitrary constant.
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Partitioning with weights - Numerical Experiment 1

Let us consider following, anisotropic problem: —xA(u) = f, discretized
(FreeFem++) on 2D unit square in size N, x N, where N, = N, = 128

I L 1x107% 0
L0 Ryl 0 1

f s
s
Figure: a Figure: b Figure: c Figure: d
Paritioner n-iter
(a) Manual 12 1
(b) Manual 44 1
(e) SCOTCH 106
(d) SCOTCH + W 2 0
0 55 110

26 /71
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Partitioning with weights - Numerical Experiment 2

Paritioner n-iter

(%) SCOTCH 26 7

(b) SCOTCH + W 26 1

(%) SCOTCH 45 \

(d) SCOTCH + W 34 \

(x) SCOTCH 42 \

(f) SCOTCH + W 32 1

0 25 50
27/71
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Partitioning with weights - real test case

Matrix lvaskMULTI_p_only.mtx

nparts ‘ nrows ‘ nnz

32 | 49572 | 480,612

nz = 480612 4

28/71
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Partitioning with weights - real test case

IvaskMULT! (32p) +1 (0) ——
IvaskMULTI (32pW) +l (0) -~

log10(residual norm)

number of iterations

29/71



New Methods and Techniques

[e]e]e]e]e]e] Jo)

Partitioning with weights - real test case (ALL)

-
£ H
-4 g
£ 2

Cost of one iteration and time of partitioning is about the same in both
cases !!
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Partitioning with weights - real test case (ALL)

[

Cost of one iteration and time of partitioning is about the same in both
cases !!
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Enlarge overlap = algebraically inflate operator

Bigger overlap = faster convergence !!

Dq,

e—Li—= T I k2> I3 T 3 —
o= After inflation ------eree e .
. o, +O-0-0-0-0-@® X
. Do, 000000@ B

Do, 000000~
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Enlarge overlap = algebraically inflate operator

. . Do, + @000 @ 1
Before inflation Pot— SO OOO—
Do, 00000~
[ Avi, Ay | 0 0 0 0 o 1T0U, 1 [ A, ]
2, Aperz | 0 Apepp 0 0 0 Urz Frs
0 0 AQLZ,L AQzFé AQLF.S 0 0 UzL F2,,
0 Apirz | Apgo,  Arirg 0 0 0 Ury | = | fry
0 0 |Arg, 0 Amgrg| 0 Aprs Urz Frs
0 0 0 0 0 [Ass  Agrs U5, P,
Lo 0 0 0 Apry | Arzs, Az | | Ups | | Fre |
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Enlarge overlap = algebraically inflate operator

After inflation

Do, ‘2 2 2 2 2 ol
[ Al Al,l"'{ 0 0 0 0 0 0 0 0 0 1
Al‘fL Al‘fl"{ Al‘flg 0 0 0 0 0 0 0 0
0 Al‘él‘f Al‘él‘l_; A1~127 0 0 0 0 0 0 0
0 0 0 As.o, Aglr‘é Aglr‘g 0 0 0 0 0
0 0 0 AF§2 Ar‘ir‘é 0 Ar‘ir‘f 0 0 0 0
0 0 0 Al"éz 0 AF;pg 0 Apgpg 0 0 0
‘41"f1, 0 0 0 Al"fl"é 0 Al"fl"‘f 0 0 0 0
0 0 0 0 0 Apgpg 0 Apgpg AF§3’ 0 0
0 0 0 0 0 0 0 0 As,s, Agng 0
0 0 0 0 0 0 0 0 AF‘:;31 Ar‘gr‘% Apgpg
L O 0 0 Arpsy 0 0 0 0 0 r3r2 Aygrg ]
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Inflation vs Computational Time

LaplaceaD 4x4x16 (10) +1 (0) ——
0 LaplacedD 4xdx16 (10) + (1) |
)
)

LaplaceD 4xdx16 (10) +1 (2) -----
LaplacedD 4x4x16 (10) + (3) &

Matrix L3D4x4x16n10.mtx 4L

nparts | nrows |  nnz i
256 | 270,641 | 3,941,521 £
3
¢

)

00=1.0
sl
@ i L T R R
number of iterations
n-iter inf[s] 4+ LU[s] + sol[s]  >_[s]
10y 139 I 0.00+0.22+12.69 o T
(1) 82  —— 0.3440.314+9.27 990
I2) 61 | E—— 0.79+0.59+7.85 923 ]
I(3) 50 E— 1.53+1.69+6.56 o7y [
0 35 70 105 140 0 35 7 10.5 14
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Modified Schwarz Method

New interface condition == additional augmented matrixes defined on
the interface between sub-domains.

[An1, Apps 0 0 0 0 0 0 0 0 0
Apay, Apsps Aper 0 0 0 0 0 0 0 0

0 Appe Appi+83|Aps, =S5 0 0 0 0 0 0

0 0 0 Ao, /12'[‘; AQ,]'% 0 0 0 0 0

0 0 0 Apts, Apgry O Apirs 0 0 0 0

0 0 0 Apga, 0 Apgryg 0 Argrs 0 0 0
Az, =57 0 0 Apry 0 Apepa+S7 0 0 0 0

0 0 0 0 0 Aprg 0 Ararz+53 | Arzs, —S3 0

0 0 0 0 0 0 0 0 Ass, Agrs 0

0 0 0 0 0 0 0 0 Apzs, Apzrz Aparg
L 0 0 0 Apgs, 0 =53 0 0 0 Argrz Argrs+S5 |
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Modified Schwarz Method - Optimal Interface Conditions

/1111, 1’11111 0 0 0 0 [/‘(11 f“ly
Aq rl; Aq rlr Aq r2r 0 0 0 Uy r F -
0 AQl.ll. A211211+Sl A21121 —S1 0 UQI- - FQF
0 0 0 Assz,  Aspop 0 Us, | | P
0 0 0 Aspo, Ao Agparp Uar Fy,.
‘411"1, —So 0 0 Aerr AlrlrJrSg Ui, Fi.

Optimal choice for two domain case

The choice of S; and S5 can be “adjusted” in such a way that Schur
complements appears in inflated operator A i.e.

opt
Sl

—1
—Aor2,A55, A2,2r

opt __ =1
Sy = —Air1, A1, Anir

is optimal, and the ASM in form of preconditioner in an iterative Krylov
solver, converges in two steps.
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Optimal Interface Conditions Approximation

For a sake of simplicity we consider only two subdomains and we focus on
domain €2; which we simply denote by 1 and its inflated counterpart by 1.

Avag Alifl 0 Ui, Fy,
Ar 1 Arr, Ara| |Ur, | = | FF
0 7.5 Arid LU B,
D
Iy Dq, 1L Qs 1

p. ~0-0-0-0-0- 00000~
e—1Li— IT T} l—2—

- After inflation - -.oooo ool .
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Optimal Interface Conditions Approximation - General Case

What about general case (2 < N - subdomains) ?

L ba—— P P
Do, ~@-0- 0000000000000~
fe—Li—> T} T} k2> I} =—3—
- After inflation = ----eeeemmmmm el .
: M e —T—
Do, @000 005
: Q1 AP NP P N NP NP P A

: D AW ANVANTAN AR ANTAN
Q2 AN AN AN AN
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Diagonal Approximation

GOAL: approximate optimal interface conditions by a sparse matrix keep-
ing some filtering properties.

opt . A -1
Sflfl T AFlchl 1 A 1.
More precisely we seek an approximation to Sfpf in form:
111
The optimal interface conditions approximation
555, = ~ARLALLALE,
such that, the optimality condition is verified on the vector Vfl

— = B A~ V= ot
AFllcﬁlcchlcrlvrl SF1F1 Iy

where V' is a harmonic vector i.e.,
A V +A1 Flvfl =0
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Sparse matrix [ 1

If V is a harmonic vector in 1., we take f1 1, to be a diagonal matrix
defined by

7 1, operator

B, = e (Ve /A i)

and f7 7. = 0 otherwise.

“./" - element wise division

V1 w1 oy o

Un, W, ®2 o,

41/71
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Harmonic Vector - Facts

e Due to the block preconditioner M ! (the Schwarz method) the

vectors in the Krylov space IC,,,,(]\?*I;L ro) are sub-domain wise
harmonic.
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Harmonic Vector - Facts

e Due to the block preconditioner M ! (the Schwarz method) the
vectors in the Krylov space /C,,,(M ' A, 7o) are sub-domain wise
harmonic.

o Many iterative methods use Krylov space for computation (selected)
eigenvalues.
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Harmonic Vector - Facts

e Due to the block preconditioner M ! (the Schwarz method) the
vectors in the Krylov space /C,,,(M ' A, 7o) are sub-domain wise
harmonic.

o Many iterative methods use Krylov space for computation (selected)
eigenvalues.

e Our choice of harmonic vector is an approximated eigenvector
of M/ ' A assosiated with the smallest eigenvalue )\ (we use
Krylov subspaces created via GMRES).

42/71
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Approximate eigenvector from GMRES solver

@ The computational kernel of GMRES is the Arnoldi process which
computes the orthonormal basis 11/, for the Krylov subspace
]Cm,(]\'fil/l: TO)'
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Approximate eigenvector from GMRES solver

@ The computational kernel of GMRES is the Arnoldi process which
computes the orthonormal basis 11/, for the Krylov subspace
]Cm,(]\'fil/l: TO)'

® Since the Arnoldi basis is orthonormal, W,, = (wy ws ... w,,) is an
orthogonal matrix (W, € R™*™).
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Approximate eigenvector from GMRES solver

@ The computational kernel of GMRES is the Arnoldi process which
computes the orthonormal basis 11/, for the Krylov subspace
]Cm,(]\'fil/l: TO)'

® Since the Arnoldi basis is orthonormal, W,, = (wy ws ... w,,) is an
orthogonal matrix (W, € R™*™).

©® In the orthogonalisation process the scalars h;; are computed so that
the square upper Hessenberg matrix I1,, € R"*"" satisfies the
fundamental relation:

H,, = WHM~'AW,,
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Approximate eigenvector from GMRES solver

O The eigenvalues of H,, are called Ritz values and they approximate
the eigenvalues of M~ 4.

if z, is an chosen eigenvector of H,,, then V, = W,, 2, is almost an
eigenvector of M A, for the same eigenvalue \ i.e.,

M7'AV, ~ WoHoWEW,z,
= W H 2 =
= Wm)\z* S )\V*
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Approximate eigenvector from GMRES solver

O The eigenvalues of H,, are called Ritz values and they approximate
the eigenvalues of M~ 4.

if z, is an chosen eigenvector of H,,, then V, = W,, 2, is almost an
eigenvector of M A, for the same eigenvalue \ i.e.,

M7'AV, ~ WoHoWEW,z,
= W H 2 =
= Wm)\z* S )\V*

@ In practice a specific Lapack procedure can be used to compute the
eigenelements of H,,.

44 /71



New Methods and Techniques
0000000008000

Numerical Experiments with EDOIC

Two sub-domain (complex) case:

=0 on 0Np
u — on ANy

{(n(x,y)—div(n(:c,yﬁ))u(m,y) = flay m Q

. Kk =1l.ed

: EK:LEO
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Numerical Experiments with EDOIC

I ---- Schwarz
1x102 | —eo—- EDOIC
I -@-- Patch
110! —a— Patch + EDOIC
1F
1x107 |
= E
s L
S0
1 [
1x10° s
I \5*0—0%—%%%&—0\
4 \
1x10™* F Ak Ak dek & A}
E AL
[ L S N
1x10°8 | \\ “aeaa-a A
i . "
1x106 |
il I | MR R R
0 10 20 30 40
iterations
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Numerical Experiments with EDOIC

[ --@-- Schwarz
1x102 | --4-- ZOIC (1S)
F —ea— EDOIC (1S)
1x10' |
1F
1x107
5 F
3 1102 E
202
8 F
I Cl
1x10° %.B
i °
1x104 | a'«
E o
L o
1x10°% | °
F @
L o,
1x10° °
[ R R SR SR
40 50 60

iterations
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Numerical Experiment (fixed size problem)

Fixed size problem n, = n, = 50

i
(a) M, = M, =2 (b) M, = M, =3 (€) My =M, =4
Method n-iter
(a) ASM 17 1
(a) MSM+EDOIC(3) 13 I—
(b) ASM 26 ]
(b) MSM+EDOIC(3) 23 1
(c) ASM 34 \ \
(c) MSM+EDOIC(3) 36 \ ‘

L I ,
0 18 36
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PROBLEM: Convergence of the
Schwarz method deteriorates with
increasing number of subdomains.
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Two-level preconditioner

PROBLEM: Convergence of the SOLUTION: “Remove” smallest
Schwarz method deteriorates with eigenvalues that slow down the
increasing number of subdomains. Schwarz method.

It leads us to construction of two-level preconditioner using
P:=1-A(ZE'Z") E:=2TAZ

which are common ingredients of the coarse grid, deflation and AMG pre-
conditioners (see [Tang et al., 2009]).

An effective two-level preconditioner is highly dependent on the choice of
coarse grid subspace Z € R" ™™,

How to choose 7 7
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Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides proposed [Nicolaides, 1987]:

0

X i Poisson 2D (32 parts) Additive Schwarz Method —+—

Poisson 2D (32 parts) 2-Level Preconditioner (Z - Nicolides) -

ST
ih 1
%
lg, 0 0
2L 1
1 0 X
7 - Q0 .

o
=}
—
)
&
log10(residual norm)
IS &
T T
X
x
N
f L

1 e Qj sl X, 1

0 10 20 30 40 50 60
number of iterations
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Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides proposed [Nicolaides, 1987]:

1
0

lEQj
L ¢Q,

log10(residual norm)

0%

i Poisson 2D (32 parts) Additive Schwarz Method —+—

Poisson 2D (32 parts) 2-Level Preconditioner (Z - Nicolides) -~
B Poisson 2D (32 parts) 2-Level Preconditioner (Z - New way) --%---

10 20 30 40 50 60
number of iterations
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V, = W,,,z,)

Milp,, Db, VovlBg,

M1l Vol Vvl
Z5 = Ve Vol Poa D v
Mlp,, Db, Vol
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V, = WW,,,z,)

Coarse grid subspace Z € R™*(vxN)
[V]]f)“] [Vz]ﬁnl [an]ﬁn‘ 0 0 0 0 0 0
S| 0 0 e 0 B, Wp, o Ddp, e 0 0 0
0 0 0 0 0 0 Wilp,, Dip,, o Dl

We can apply a part wise spliting to Z* in order to construct a coarse
subspace similar in structure to one proposed by Nicolaides.
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V, = W, z,)

Coarse grid subspace Z € R7™*(2x3)

Mils,, Mals,, Mils,, Mals,,
z*:= |Mlp,, Delp,, | = Mlp,, Dals,, =7
Milp,, D2ls,, Milp,, Dals,,

We can apply a part wise spliting to Z* in order to construct a coarse
subspace similar in structure to one proposed by Nicolaides.
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Our choice of two-level preconditioner

Our choice = The two-level hybrid Schwarz preconditioner [Smith et al., 1996].

Two-level preconditioner Prg g

Pr = [I-(ZE;'ZT)M A+ (ZE;'Z7)]

Pr = [I-(ZER'ZT) AM™' + (ZEZz'ZT)]

Apl 00 E, = Z'M'AZ
M= {g A*g; 011 Egp = ZTAM™'Z

. Right preconditioner
Left preconditioner
AM_lpRﬁ = b
PLM'Au = P,M 'b u M~ '"Pru
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Academic Problem - 3D Laplace

Matrix L3D4x4x8n15.mtx Matrix L3D4x4x16n15.mtx Matrix L3D8x8x8n15.mtx Matrix L3D8x8x16n15.mtx
nparts | nrows | nnz nparts | nrows |  nnz nparts | nrows | nnz nparts | nrows |  nnz
128 ‘ 450,241 ‘ 6,606,721 256 ‘ 896,761 ‘ 13,187,881 512 | 1,771,561 | 26,223,481 1024 | 3,528,481 | 52,345,441

oeio ﬂ anLn/‘ aQ:]no/w - /w
— 3 —153
' Qs = 15 @ o '[Qn]m: 153' '[ﬂn]sIZE:K’

o all experiments performed on IFP cluster
e 114 nodes equipped with 4 processes AMD Barcelona 2.3 Ghz
(quad-core socket)
e interconnected by Infiniband switched fabric (type of network
topology)
e max number of available process 256
e thus only in two first variants we dedicated one part per one process
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What we have measured 7

ng and
tribution

data.

Inflation

LU Factorization
of suboperators

FIRST SOLVE
GMRES + Schwarz
Method

Extracting
Approximated Eigen
Vectors

Building
Coarse Space

LU Facto of
Coarse Space
Operator

SECOND SOLVE

GMRES + Two-level
Preconditionel

nV
[7sotl|

CS[s]
Inf(s]
LU(s]

]

sol[s

number of iterations

roughly estimated condition number given as ki~ = Az /Amin Where )\{mm_mm}
are the approximated, extreme eigenvalues of (H‘IX)

number of approximated eigenvectors used in construction of coarse space
standard norm of final residual i.e., ||rsoi|| = ||Ausor — b]|2/]|b]|2

time of “construction” coarse space operator

time of inflation process for each level

time of LU factorisation of endomorphic Partial Operators in DDMOperator
time of iterative process (in case of varian with two-level preconditioner sol consist
also LU factorisation time of coarse operator)
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Academic Problem - 3D Laplace (SCALABILITY)

' ' ' ' LLaplace3D 4x4x8 (15) +1 (1) ——
0 4 Laplace3D 4x4x16 (15) +I (1) <
Laplace3D 8x8x8 (15) +l (1) ------
Laplace3D 8x8x16 (15) +l (1) &
-1+ -
2+ o
E
o
c
g 3| 1
b}
7]
e
S
o 4T b
ke]
_5 - -
‘!
-6 D .
_7 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

number of iterations
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Academic Problem - 3D Laplace (SCALABILITY)

)
04 Laplace3D 4x4x16 (15) + (1) > -
Laplace3D 8x8x8 (15) +l (1) ------
Laplace3D 8x8x16 (15) +l (1) &
(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)
1k L (DEFLATE)(12V) Laplace3D 4x4x16 (15) +l (1) i
2l _e-
e
2+ o
_3 - -
-4 o
_5 - -
| n
-6 |- i D i
'y
_7 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

number of iterations

160
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Academic Problem - 3D Laplace (TIME COST)

L (18) 41 (0) —— LaplaceaD 4xéx16 (15) +1 (§) ——
o L (1) +1 (1) . Laplace3D axéx16 (15) +1 (1) =
(DEFLATE)(8V) (15) +1 (1) - LATE)(12V) Laplace3D 4x4x16 (15) + (1) ---%-
L 18)41(2) o Laplace3D 4xéx16 (18) +1 (2) o
(DEFLATE)(5V) 1)+ (2) )(10V) LaplacedD 4xix16 (15) +1 (2)
4 L (15) +1 (3) Laplace3D 4x4x16 (15) +1 (3) 1
(DEFLATE)(5V) L (15) +1(3) ~ -»- ) Laplace3D 4x4x16 (15) +I (3) - -e-
2 1
£ 3
39 ] 1
g+ H ]
5 iy 1
o
o
© L Y 1
7
0 20 % ) 80 100 120 20 w0 60 1 120 10 160 180
number of terations number of terations
expvar | niter re | V| el || €S LU[s] | sol[s] expvar | niter re |V |l CS|s] infls] | LU[s] | solls]
+10) | 115 | 3694.10 | 206 | 884 +1(0) | 169 | 15158.70 | 9.78¢ — 07 | 204 | 17.44
41 69 | 1174.49 118 | 439 835 +I(1) | 101 | 4818.07 1.68¢ — 09 129 356 | 10.30
D..+I(1) | 15 361 | 10| | 118 | 336 D..+I(1) 14 582 | 13 | 218¢—06 | 212 | 5.17
+I2) 53| 66234 116+1.73 | 635 637 +12) | 77| 271589 2.12¢ - 09 129+1.89  7.40 | 12.63
D..+1(2) | 15 278 | 5| 107c-09 || 0.76 | 441 D..+I(2) 12 230 | 10 | 943e—07 | 220 | 5.81
+13) 44| 44415 9 11941764260 | 1459 803 +I(3) | 64| 182048 2.64e — 09 12741874274 1381 | 1457
D..+I1(3®) | 13 237 | 5| 546e-09 | 166 | 401 D..+I(3) | 13 218 | 7| 109e—o0s | 2.00 | 6.79
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Academic Problem - 3D Laplace (TIME COST)

) ' ' Lap/msn 4B (19) +1 (0) —— ) ' ' ' ' Lol 12co3D 4xéx1 (15) +1
o 003D 4xdx (15) 41 (1) 03 ace3D 4xdx16 (15) +1 1
(DEFLATEBY) LENacedD axdnd (15) o1 1) - ¥ LT 121) LoBiacesd rants (15) 1
p X
) :
4 % ]
i 5
2 2 & X& 4
2 E X
5 § * %
R E b % k*
2 Z " X
X X
5 sfo ¥
X X
H *
. d o *
X *
7 . . . . . 7 . . . . . . . .
0 20 2 50 80 100 120 o 20 w0 60 50 10 120 10 160 180
number of terations number of trations
n-iter n-iter
10) us ] 1(0) 0 [
I(1) 69 —— I(1) 0
I(1)+D 15 — I(1)+D 14 O
o 60 120 o 85 170
CS[s] + inf[s] + LU[s] +sol[s]  >[s] CSs] + infls] + LU[s] + sol[s] 3 [s]
1(0) 0.00+0.00+2.06-+8.84 1000 C——————— 1(0) 0.00+0.00+2.04+17.84 e
1(1) 0.00+1.18+4.39+8.35 ) 2 I — | (1) 0.00+1.29+3.56+10.30 1515
1(1)+D 1.18+1.18+4.39+3.36 o I(1)+D  2.12+1.29+3.56+5.17 JLR 7 S S—
0 7 14 o 10 2
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Real Test Case - SPE10 Benchmark

[from SPE10 description] .. the aim of the SPEIO is to
simulate porous media flow in a highly heterogeneous black oil
reservoir that is described by a fine-scale 1 million cell geological
model.

Matrix spel0_p_only.mtx

nparts | nrows | nnz

256 | 1,004,421 | 7,515,591

nz = 7515591 ‘105
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IFP Matrices Collection (spel0)

00000000000 e00000

log10(residual norm)

0_p_only (256p) +I (1)

(DEFLATED)(10VF) spe10 p only (256p) + (1)
10_p_only (256p) +I (2)

(DEFLATED)(10FV) speuu) only (256p) + (2)
spe10_p_only (256p) + (3)

(DEFLATED)(10FV) spe10_p_only (256p) +! (3) - - -

spe10 p_only (256p) 41 (0) —— 1

% L L L . . .
0 100 200 300 400 500 600
number of iterations
expvar | niter ~ | oV | el | €SI | inf(s] | LUs] | sol[s]
+1(0) | 700 | 83147.80 | 6.40¢ — 05 | 136 | 9334
+I(1) | 386 | 15169.30 3.32¢ — 08 109 | 224 4214
D..+I(1) | 80| 18510 | 10F | 1.83¢—09 | 1.30 || | 22.43
+1(2) | 264 | 782555 3.84c — 08 1.09+1.54 | 3.38 2276
D..+I(2) 62 97.08 | 10F | 1.13¢—08 || 1.48 || | 1439
+1(3) | 211 | 5055.91 5.02¢ — 09 1.09+154+220 | 506 17.32
D..+I(3) 47 50.12 | 10F | 2.22¢-09 || 161 || | 14.22

700
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IFP Matrices Collection (spel0)

0000000000000 000

log10(residual norm)

(DEFLATED)(10VF) $610_p_only (256p) +1 (1) —%—-

spe10 _p_only (256p) 1 (0) —+— 1
e10_p_only (256p) +I (1) -

n-iter

200

L
300

400 500 600 700
number of iterations

CS[s] + infls] + LU[s] + solls]  X[s]

100)
1(1)
1(1)+D

700 ]
KT (R —
80 .

1(0)
I(1)
I(1)+D

0.00+0.00+1.36+9334 9470 ]
0.00+1.90+224+42.14 4628 [ 1
13041.90+2.244+22.43 2787 1

50 100
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IFP Matrices Collection (ALL)

o ‘mout (BWW) +1 (0) —— o (32000 21 (0) —— o 28] 1 (0) ——
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Black Oil Simulation

— Matrix BO_60x60x32_matX.mtx
LU Factorization
of suboperators
(mat1) mat_name | nparts | nrows nnz
SOLVE (mat1) B0_60x60x32_matl.mtx 80 115,200 | 791,520
GMRES + Modified BO_60x60x32_mat2.mtx | 80 | 115,200 | 791,572
BO_60x60x32_mat3.mtx 80 115,200 | 791,598
Extracting B0_60x60x32_mat4.mtx 80 115,200 | 791,500
Approximated Eigen
Vectors B0O_60x60x32_mat5.mtx 80 115,200 | 791,512
Coarse Space
- Matrix BO_120x120x64_matX.mtx
mat_name ‘ nparts ‘ nrows ‘ nnz
LU Factorization B0O_120x120x64_matl.mtx 160 921,600 | 6,391,680
of SUb'OFSI’atDI'S B0_120x120x64_mat2.mtx 160 921,600 | 6,391,680
(na2) BO_120x120x64_mat3.mtx | 160 | 921,600 | 6,391,680
———— B0_120x120x64_mat4.mtx 160 921,600 | 6,390,986
GMRES + Two-Level B0_120x120x64_mat5.mtx 160 921,600 | 6,387,222
preconditioner
Vils]
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' ' ' BO 60x60x32 mat 1 (80p) + (1) —+— BO 120x120x64 mat 1 (160p) +I ﬂ) ——
0 0 1
f
BO 60X60X32 mat 5 (80p) + 50 tzouzones mat 1600 1 (1)
4 (DEFLATEDN7Y) BO 60x6032 mat 2 (80p) +1 u) 4 1DEFLATED;15\/7 BO 120x120x64 mat 2 (160p) +1 ¢ 4
bt i
: 1)
2 2 ]
£ £
3 E —
g N 1
s ]
B s ]
E . . . . . ,7 . . . . . . .
0 10 20 30 W0 50 0 o 10 20 s 4 s e 70 8 % 10
number of teraions number of terations
solls) solls]
ASM-+I(1) X — ASM-+1(1) 758 [
ASM+I(1)+D 063 [ 1 ASM+1(1)+D 367 1
0 05 1 0 0 8
pai] bl
ASM-+I(1) 5x0.98 X | ASM-+1(1) 5x7.58 2K T —
ASM+I(1)+D  1x0.98 + 012 + 4x0.63 362 L[ 1 ASM+1(1)+D  1x7.58 + 127 + 4x367 2353 [ 1
0 g 3



Black Oil Simulation

log10(residual norm)

Red

New Methods and Techniques

uced Formula

B0 60x50x32 mat 1 (80p) + (1) ——
BO 60x60x32 mat 2 (80p) +1 (1) -
BO 60x60x32 mat 3 (80p) +1 (1) — -
B0 0(GOG2 mat 4 (80p)+1 (1) 5
0x60x32 mat 5 (80p) +1 (1)
(DEFLATED)(7V) BO 6on60x33 mat 5 (808} +1 (1]
(DEFLATED)(7V) BO 60x60x32 mat 3 (80p) +I (1)
at

0000000000000 000e

log10iesidual norm)

10 20 30 ) 50
number of terations
solls
P Y R —
AsmMi(1)+D 063 [
ASMI(1)+CD 058
g o 1
Xl
ASMAI(1)  5x098 P —
ASMAI(1)+D  1x0.98 + 0.12 + 4x0.63 362 1
ASMAI(1)+CD  1x088 +0.12 + 4x058 342 [
TR

BO 120x120x6% mat 1 (160p) =1
BO 120¢120x64 mat 2 (160p) +1
BO 120¢120x64 mal 3 (160p) +1

0 1201120164 ma 4 (1600) +

£) 10 2 % 4 s e 7 80 % 10
number of terations
sols)
I
AsMe)iD 36
ASM4I(1)+CcD 321 =1
0 O g
poil
ASME(1)  5x7s8 B ——]
ASMHI(1)+D  1x7.58 + 127 + 4x367 2353 1
ASMHI(1)+DC  1x7.58 + 127 + 4x321 2160 1
L T R
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Conclusion and Prospects

@ We have considered the extended and the original linear system
arising from the domain decomposition method with overlapping.

® We applied the two-level preconditioner using Schwarz algorithm and
the coarse grid correction

©® The coarse grid space is based on the approximated (sub-domain
wise split) eigenvectors

e its size can be adapted to the difficulty of the problem

O All presented methods are as algebraic as possible which paves the
way to extension to systems of equations e.g. multiphase flows

@ Proposed two-level preconditioner is scalable and can be very robust
in respect to number of iteration

® Both methods are adaptive and can be used during first solve that is
even the first solve is not completed

@ All methods work for arbitrary decomposition

e which quality we can improve using weighted graph partitioning
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Additional Numerical Experiments

IFP Matrices Collection (spel0 - system of equations)

spe18 sys gSSp% +: 50} —
. I spe10_sys (256p) +l (1)
Matrix spel0_sys.mtx sgew ; (2563) +(2) -k
spel10_sys (256p) +I (3) &

nnz

256 | 2,188,842 | 21,554,641

nparts | nrows

log10(residual norm)

6 L L L L L L
0 100 200 300 400 500 600 700

number of iterations

inf[s] | LU[s] | sol[s

expvar | niter | [y

+I(0) | 663 1.43e — 06 ~ 4 | 343.13
+I(1) | 361 | 2.12¢e—09 4.36 ~6 | 7076
+I(2) | 252 | 3.81e—08 437 +723 | ~13| 7088

+I(3) | 183 2.03¢ —08 || 452 +7.42 +11.00 | ~24 | 78.14
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Additional Numerical Experiments

Adaptive Solver

uy=0 usToP ug = ugrop € A M
ASM * ASM 2lvl
K L7 € K s1op K
HASM(AM™L,rg) := ug+SPAN{rg, (AM™1)" g}

HEVH(AM T g, 1) up + SPAN {ro, (AM~122R) " Iro}
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Additional Numerical Experiments

Adaptive Solver - Stop after XX

Laplace3D 4x4x16 (15) +l (1) —+—
[() T e .

log10(residual norm)

-7 1 1 1 1 1
0 20 40 60 80 100 120

number of iterations
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Additional Numerical Experiments

Adaptive Solver - Stop after 10

Laplace3D 4x4x16 (15) +l (1) —+—
0 frein (STOP 10)(DEFLATE)(2V) - 4

log10(residual norm)

-7 1 1 1 1 1
0 20 40 60 80 100 120

number of iterations
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Additional Numerical Experiments

Adaptive Solver - Stop after 20

Laplace3D 4x4x16 (15) +l (1) —+—
(o) — (STOP 10)(DEFLATE)(2V) - 4
(STOP 20)(DEFLATE)(3V) -
_1 - -
_2 - -
€
o
e
T ]
3
=
8
5
S 1
8
5l 4
6 - % |
*
_7 1 1 1 1 1
0 20 40 60 80 100 120

number of iterations
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Additional Numerical Experiments

Adaptive Solver - Stop after (40 and 50)

Laplace3D 4x4x16 (15) +| (1) ——
o (STOP 10)(DEFLATE)(2V) - i
(STOP 20)(DEFLATE)(3V) -+
(STOP 40)(DEFLATE)(6V) &
(STOP 50)(DEFLATE)(8V)
-1 F |
2+ |
E
e
ERR |
be]
¢
53
o 4T |
s)
s |
or luf * -
-7 | | | ) ‘

0 20 40 60 80 100 120
number of iterations
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Additional Numerical Experiments

Adaptive Solver vs Time of Computation

Laplace3D 4x4x16 (15) +1 (1) —+—
(STOP 10)(DEFLATE)(2V)
(STOP 20)(DEFLATE)(3V) -
(STOP 40)(DEFLATE)(6Y) - &
(STOP 50)(DEFLATE)(8V)

log10(residual norm)

0 20 40 60 80 100 120
number of iterations

expvar | niter | wx | nV | [rell || €S[s| || infls] | LU[s] | solls]

+1(1) | 101 4818.07 | 1.68¢ — 09 1.29 | 3.56 | 10.30

510 10 485 | 2427.901 2 | 234e—09 || 025 || 138 421|343 +1215
S20 20456 | 64832 | 3 | 122¢-09 | 037 || 131 | 417 | 352 4 1177
540 40423 768 6 | 953 —10 || 115| 132 547 | 3.73 +7.70

s50 | 50 + 18 412 8 | 269 -10| 101| 129 | 376 | 3.91 + 3.82
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Additional Numerical Experiments

Adaptive Solver vs Time of Computation

log10(residual norm)

Laplace3D 4x4x16 (1) +1 (1) ——
(STOP 50)(DEFLATE)(8V) -~ -

n-iter

40

60 80 100 120
number of iterations

CS[s] + infls] + LU[s] + sol[s]  3s]

[ D —
O R S—]

0 51 102

I(1) 0.00+1.29+3.56+10.30 13T O — |
Al(1) 1.01+1.29+3.76+7.73 1379 ]
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Improved Diagonal Approximation (EDOIC)

Improved Diagonal Approximation (EDOIC)

Let BTCTC be a symmetric sparse operator which satisfies
BTCLATCTCV%C = V:l'c, or equivalently —ﬁTCLALfl Vfl = VTC'

The optimal interface conditions operator Slff’% is approximated by
111

opt __ gedoic . _ A_ _ . - A~ ~ -
Sflflw Sl—‘lrl T Arllc (251515 IBTcchlclc 1010) Alcrl

The idea of this improvement originates from the following calculations:
I[(BA—TI)|| < €< 1 leads to ||(BA—1I)?|| < ¢* < €. Then, remarking that
(BA—1)*> = BABA—2BA+1 =1—(2B—BAB)A, one concludes that
C = 2B — BAB is better approximation of A~' than B since ||C — I|| <

62<6.
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Sparse Patch Method



o
2
=
7]
=
8
1
a
@
@
]
o
0

Sparse Patch Method
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., 2006] for more informations.

See [Magoules et al
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