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Why Domain Decomposition Method ?

• The term Domain Decomposition has slightly different meaning to
specialist within the discipline of PDEs.
• process of distributing data among the processors
• process of subdividing the solution of large linear system into smaller

problem

• Ease of parallelization
• parallel processing is one way to have a faster codes
• new generation processors are parallel (multi cores)

• In some situation, the domain decomposition is natural
• strong heterogeneous media
• different physics in different subdomains
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DDM vs. other methods

Direct Solvers

difficult to
parallelize

use a lot
of memory

but are robust

and work as
black-box

solver

Krylov Methods

easy to
parallelize

low memory
usage

need good
preconditioner
to be robust

also work as
black-box

solver

DDM

naturally
parallel

flexible
compromise

can be no
efficient

lack of
black-box
routines

5 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

DDM vs. other methods

Direct Solvers

difficult to
parallelize

use a lot
of memory

but are robust

and work as
black-box

solver

Krylov Methods

easy to
parallelize

low memory
usage

need good
preconditioner
to be robust

also work as
black-box

solver

DDM

naturally
parallel

flexible
compromise

can be no
efficient

lack of
black-box
routines

5 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

DDM vs. other methods

Direct Solvers

difficult to
parallelize

use a lot
of memory

but are robust

and work as
black-box

solver

Krylov Methods

easy to
parallelize

low memory
usage

need good
preconditioner
to be robust

also work as
black-box

solver

DDM

naturally
parallel

flexible
compromise

can be no
efficient

lack of
black-box
routines

5 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

State of the Arts

6 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

Original Method

−∆(u) = f in Ω
u = g on ∂Ω

−∆(un+1
1 ) = f in Ω1

un+1
1 = g on ∂Ω1\Γ1

un+1
1 = un2 on Γ1.

−∆(un+1
2 ) = f in Ω2

un+1
2 = g on ∂Ω2\Γ2

un+1
2 = un+1

1 on Γ2.

Alternating Schwarz Method

“As n→∞, (un1 , u
n
2 )→ (unsol|Ω1

, unsol|Ω2
), where usol is a solu-

tion of continuous problem [Schwarz, 1870].”

7 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

Parallel Schwarz Method

−∆(u) = f in Ω
u = g on ∂Ω

−∆(un+1
1 ) = f in Ω1

un+1
1 = g on ∂Ω1\Γ1

un+1
1 = un2 on Γ1.

−∆(un+1
2 ) = f in Ω2

un+1
2 = g on ∂Ω2\Γ2

un+1
2 = un1 on Γ2.

Parallel Schwarz Method
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Drawbacks of original methods

Original algorithms:

• are parallel but converges slowly

• need overlap in order to
converge

• convergence speed depend on
size of overlap

Improvements:

• Schwarz methods as a
precondition for Krylov methods

• more general interface
conditions

All of them can be apply at the
algebraic level !

Example: The condition number κ of operator A, preconditioned by Pas

i.e., ASM with the coarse grid correction, satisfies

κ(PasA) ≤ C
(

1 +
H

δ

)
,

where the constant C is independent of, H and δ.
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Algebraic Formulation (Jacobi and Schwarz)

Lets consider a discretized problem which yields a linear system.

−∆(u) = f in Ω
u = g on ∂Ω

AU = F

For the set of indices Ω partitioned into two sets Ω1 and Ω2 we have:[
A11 A12

A21 A22

] [
U1

U2

]
=

[
F1

F2

]
The block-Jacobi algorithm reads:[

Un+1
1

Un+1
2

]
=

[
Un

1

Un
2

]
+

[
A−1

11 0
0 A−1

22

]([
F1

F2

]
−
[
A11 A12

A21 A22

] [
Un

1

Un
2

])
It corresponding to solving a Dirichlet boundary value problem in each
subdomain with Dirichlet data taken from the other one at the previous
step =⇒ Schwarz method with minimal overlap.
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Preconditioned Krylov space

[
Un+1

1

Un+1
2

]
=

[
Un

1

Un
2

]
+

[
A−1

11 0
0 A−1

22

]([
F1

F2

]
−
[
A11 A12

A21 A22

] [
Un

1

Un
2

])
︸ ︷︷ ︸

un+1=un+M−1(f−Aun)

Let r0 := M−1 (f −Au0), we have (fixed point method):

un =

n∑
i=0

(
I−M−1A

)i
r0 + u0

A preconditioned Krylov solve will generate an optimal solution uKn in:

Km

(
M−1A, r0

)
:= u0 + SPAN

{
r0,M

−1Ar0, . . . , (M
−1A)m−1r0

}
where un ∈ Km but with “frozen” coefficients =⇒ un is less optimal
then uKn .
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Modified Schwarz Method

Another improvement arise from usage of more general interface conditions for
a non-overlapping (⇐⇒ α > 0) decomposition [Lions, 1990]:

−∆(u) = f in Ω
u = g on ∂Ω

(1)

−∆(un+1
1 ) = f in Ω1

un+1
1 = g on ∂Ω1\Γ(

∂

∂n1
+ α

)(
un+1

1

)
=

(
∂

∂n2
+ α

)(
un+1
n

)
on ∂Ω1 ∩ Ω2

−∆(un+1
2 ) = f in Ω2

un+1
2 = g on ∂Ω2 ∩ ∂Γ(

∂

∂n2
+ α

)(
un+1

2

)
=

(
∂

∂n1
+ α

)(
un+1
n

)
on ∂Ω2 ∩ Ω1

Modified Schwarz Method
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Optimal Choice

J. L. Lions:

“First of all, it is possible to replace the constants in the
Robin condition by two proportional function on the interface, or
even by local or nonlocal operators [Lions, 1990].”

F. Nataf, F. Rogier and E. de Sturler:

“The rate of convergence of Schwarz and Schur type algo-
rithms is very sensitive to the choice of interface condition. The
original Schwarz method is based on the use of Dirichlet bound-
ary conditions. In order to increase the efficiency of the algo-
rithm, it has been proposed to replace the Dirichlet boundary
condition with more general boundary conditions. . . . It has been
remarked that absorbing (or artificial) boundary conditions are a
good choice. In this report, we try to clarify the question of the
interface condition [Nataf et al., 1994].”
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Optimal Choice

The authors proved that use of non-local DtN (Dirichlet to Neumann)
map (a.k.a. Steklov-Poincaré) as interface condition in problem (1) leads
to (exact) convergence in two iterations.

Definition (DtN map)

Let
u0 : Γ1 → R

DtN2(u0) := ∇v · n2|∂Ω1∩Ω2
,

where n2 is the outward normal to Ω2 \ Ω1, and v satisfies the following
boundary value problem:

L(v) = 0 in Ω2 \ Ω1

v = 0 on ∂Ω2 ∩ ∂Ω
v = u0 on ∂Ω1 ∩ Ω2.
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Optimal Interface Condition at the matrix level

A11 A1Γ 0
AΓ1 AΓΓ AΓ2

0 A2Γ A22

U1

UΓ

U2

 =

F1

FΓ

F2


In order to write a “modified” Schwarz method we need to introduce two
square matrixes S1 and S2 which acts on vector of the type UΓ:(

A11 A1Γ

AΓ1 AΓΓ + S2

)(
Un+1

1

Un+1
Γ,1

)
=

(
F1

FΓ + S2U
n
Γ,2 −AΓ2U

n
2

)
(
A22 A2Γ

AΓ2 AΓΓ + S1

)(
Un+1

2

Un+1
Γ,2

)
=

(
F2

FΓ + S1U
n
Γ,1 −AΓ1U

n
1

)

Lemma

If AΓΓ + S1 + S2 is invertible and problem (1) is well-posed. Then above
algorithm converges to the solution of (1) =⇒ U∞i = Ui and
U∞Γ,1 = U∞Γ,2 = UΓ.
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Optimal Interface Condition at the matrix level

(
A11 A1Γ

AΓ1 AΓΓ + S2

)(
Un+1

1

Un+1
Γ,1

)
=

(
F1

FΓ + S2U
n
Γ,2 −AΓ2U

n
2

)
(
A22 A2Γ

AΓ2 AΓΓ + S1

)(
Un+1

2

Un+1
Γ,2

)
=

(
F2

FΓ + S1U
n
Γ,1 −AΓ1U

n
1

)

Optimal choice

Taking S1 = −AΓ1A
−1
11 A1Γ and S2 = −AΓ1A

−1
22 A2Γ yields a convergence in

two steps =⇒ AΓΓ −AΓiA
−1
ii AiΓ is a Schur complement.

The matrices S1 and S2 are full, therefore

• they are costly to build • the subdomain matrix is partially full

However it is possible to approximate them by sparse matrices e.g., via
local Schur complement on successive reduced “outer” domain, which we
call patches [Magoulès et al., 2006].
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Schwarz method vs. Many subdomains

It is well known that performance may deteriorate with large number of
subdomains i.e., plateaus appear in the convergence of the Krylov methods.

They are due to the lack of a global exchange of information in the precon-
ditioner.

−∆(u) = f in Ω
u = g on ∂Ω

The mean value of the solution in domain Ωi depends on the value of f on
all subdomains.

A classical remedy: =⇒ coarse grid problem that couples all subdomains.

• can be incorporate as additional preconditioner =⇒ “two-level
preconditioning”.
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Two-level preconditioner

From an abstract point of view, all two-level preconditioners of the method
consists of an arbitrary preconditioner M , combined with one or more
matrices P and Q.

P := I−AQ, Q := ZE−1ZT , E := ZTAZ

Some properties:

• PA = APT

• PTZ = 0, PTQ

• QA = I− PT , QAZ = Z, QAQ = Q

A,M,P,Q ∈ Rn×n

Z ∈ Rn×m

E ∈ Rm×m, m� n

The matrix Z consists of so-called projection vectors, whose columns span
the projection space (More detail in [Tang et al., 2009]).

Example: PAD :=M−1 +Q, PBNN := PTM−1P +Q, PA−DEF := PTM−1 +Q

18 / 71
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What we know so far?

Schwarz methods:

• are very suitable for parallel computing

• are easy to use at the algebraic level
• and its iterative process can by accelerated by Krylov methods

• they also “work” with general interface conditions
• for which we know “optimal” choice

• we can modify interface conditions at the algebraic level

• in case of many subdomains, we can incorporate Schwarz
preconditioner with the coarse grid correction
• in order to construct two-level preconditioner
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New Methods and Techniques
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ADDMlib - parallel library

ADDMlib - Algebraic Domain Decomposition Methods (library)

• carefully design object oriented library

• written in modern C++ (Boost + STL)
• provides (via MPI) many of the mechanism needed within parallel

application code
• parallel vectors and sparse matrices in several sparse formats

• we put stress on:
• easiness of implementing preconditioners of DDM type
• Krylov subspace methods (GMRES,FGMRES,BiCGstab)

• it provides convenient interface for chosen functionality from other
libraries like METIS, SCOTCH or PETSc
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ADDMlib - parallel library

VΩ1

P 0

Ω 1

Ω 2

Ω 3

Ω

VΩ2

P 1

VΩ3 P 2

Process P2

VΩ3 data

Part Set

Figure: DDMVector structure and its division into Partial Vectors according
to decomposition of domain Ω.
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ADDMlib - parallel library

VΩ1

A 11
A 12

P 0

VΩ2

A 22
A 23

A 21

P 1

VΩ3

A 33

A 32

1

2

3

1

2

3

↓in

P 2

Diagonal Partial Operator

Off-diagonal Partial Operator

Figure: Decomposition of global linear system into Partial Vectors and
Operators (very similar idea introduced independently in [Buluç et al., 2009]).
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Partitioning

But how to subdivide and map data into processors ?

• in arbitrary fashion

• or we can use adjacency graph partitioners (SCOTCH, METIS)

Definition (Graph Partitioning)

For a general sparse linear system whose adjacency graph is G = (V,E),
the k-way graph partitioning problem is defined as follows: given a graph
G = (V,E) with |V | = n, partition V into k subsets, V1, V2, . . . , Vk such
that Vi ∩ Vj = ∅ for i 6= j, |Vi| = n/k, and ∪iVi = V , and the number of
edges of E whose incident vertices belong to different subset is
minimized.

During our experiments we have noticed that the way how the adjacency
graph is partitioned has strong influence on overall performance of algebraic
DDM.
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Partitioning with weights

There is a certain number of problems for which “smart” partitioning can
increase robustness (e.g., anisotropic problems)

Is it possible to extract algebraically some information about
physical properties of the problem to solve, and use them to
obtain better partition ?

. . . yes we can define weights for edges of adjacency graph using values of
the underlaying matrix using following formula adapted from AMG meth-
ods (see for example [Stüben, 2001])

c =

⌊(
|aij |

|aii|+ |ajj |
× γconst

)⌋Automatic weight labelling

bxc is the floor function rounds the element x to the nearest integer toward minus

infinity and γconst is an arbitrary constant.
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Partitioning with weights - Numerical Experiment 1

Let us consider following, anisotropic problem: −κ∆(u) = f , discretized
(FreeFem++) on 2D unit square in size Nx ×Ny, where Nx = Ny = 128

κ =

[
κxx 0
0 κyy

]
=

[
1× 10−6 0

0 1

]

Figure: a Figure: b Figure: c Figure: d

Paritioner n-iter

(a) Manual 12

(b) Manual 44

(e) SCOTCH 106

(d) SCOTCH + W 2

0 55 110
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Partitioning with weights - Numerical Experiment 2

(?) (b) (d) (f)

Paritioner n-iter

(?) SCOTCH 26

(b) SCOTCH + W 26

(?) SCOTCH 45

(d) SCOTCH + W 34

(?) SCOTCH 42

(f) SCOTCH + W 32

0 25 50
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Partitioning with weights - real test case

Matrix IvaskMULTI p only.mtx

nparts nrows nnz

32 49,572 480,612
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Partitioning with weights - real test case
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Partitioning with weights - real test case (ALL)
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Cost of one iteration and time of partitioning is about the same in both
cases !!
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Partitioning with weights - real test case (ALL)

Cost of one iteration and time of partitioning is about the same in both
cases !!
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Enlarge overlap = algebraically inflate operator

Bigger overlap =⇒ faster convergence !!
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Enlarge overlap = algebraically inflate operator

Before inflation



A1i1i A1iΓ2
1

0 0 0 0 0

AΓ2
11i

AΓ2
1Γ2

1
0 AΓ2

1Γ1
2

0 0 0

0 0 A2i2i A2iΓ1
2

A2iΓ3
2

0 0

0 AΓ1
2Γ2

1
AΓ1

22i
AΓ1

2Γ1
2

0 0 0

0 0 AΓ3
22i

0 AΓ3
2Γ3

2
0 AΓ3

2Γ2
3
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3Γ3
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33i
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3Γ2
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



U1i

UΓ2
1

U2i

UΓ1
2

UΓ3
2

U3i

UΓ2
3


=



F1i

FΓ2
1

F2i

FΓ1
2

FΓ3
2

F3i

FΓ2
3


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Enlarge overlap = algebraically inflate operator

After inflation
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Inflation vs Computational Time

Matrix L3D4x4x16n10.mtx

nparts nrows nnz

256 270,641 3,941,521
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Modified Schwarz Method

New interface condition =⇒ additional augmented matrixes defined on
the interface between sub-domains.
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Modified Schwarz Method - Optimal Interface Conditions


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
Optimal choice for two domain case

The choice of S1 and S2 can be “adjusted” in such a way that Schur
complements appears in inflated operator Ã i.e.

Sopt
1 = −A2Γ2i

A−1
2i2i

A2i2Γ

Sopt
2 = −A1Γ1i

A−1
1i1i

A1i1Γ

is optimal, and the ASM in form of preconditioner in an iterative Krylov
solver, converges in two steps.
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Optimal Interface Conditions Approximation

For a sake of simplicity we consider only two subdomains and we focus on
domain Ω1 which we simply denote by 1 and its inflated counterpart by 1̃.

A1i1i A1iΓ̃1
0

AΓ̃11i
AΓ̃1Γ̃1

AΓ̃11̃c

0 A1̃cΓ̃1
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U1i

UΓ̃1

U1̃c

 =

F1i

FΓ̃1

F1̃c


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Optimal Interface Conditions Approximation - General Case

What about general case (2 < N - subdomains) ?
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Diagonal Approximation

GOAL: approximate optimal interface conditions by a sparse matrix keep-
ing some filtering properties.

Sopt

Γ̃1Γ̃1
:= −AΓ̃11̃c

A−1

1̃c1̃c
A1̃cΓ̃1

More precisely we seek an approximation to Sopt

Γ̃1Γ̃1
in form:

S≈
Γ̃1Γ̃1

:= −AΓ̃11̃c
β1̃c1̃c

A1̃cΓ̃1

The optimal interface conditions approximation

such that, the optimality condition is verified on the vector VΓ̃1

−AΓ̃11̃c
β1̃c1̃c

A1̃cΓ̃1
VΓ̃1

= Sopt

Γ̃1Γ̃1
VΓ̃1

where V is a harmonic vector i.e.,

A1̃c1̃c
V1̃c

+A1̃cΓ̃1
VΓ̃1

= 0
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Sparse matrix β1̃c1̃c

If V is a harmonic vector in 1̃c, we take β1̃c1̃c
to be a diagonal matrix

defined by

β1̃c1̃c
:= diag

(
−V1̃c

./A1̃cΓ̃1
VΓ̃1

)β1̃c1̃c
operator

and β1̃c1̃c
= 0 otherwise.

“./” - element wise divisionv1

...
vn

 ./
w1

...
wn

 =


v1/w1

...
vn/wn



41 / 71



Motivation State of the Arts New Methods and Techniques Conclusion and Prospects

Harmonic Vector - Facts

• Due to the block preconditioner M−1 (the Schwarz method) the

vectors in the Krylov space Km(M̃−1Ã, r0) are sub-domain wise
harmonic.

• Many iterative methods use Krylov space for computation (selected)
eigenvalues.

• Our choice of harmonic vector is an approximated eigenvector
of M̃−1Ã assosiated with the smallest eigenvalue λ (we use
Krylov subspaces created via GMRES).
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Approximate eigenvector from GMRES solver

1 The computational kernel of GMRES is the Arnoldi process which
computes the orthonormal basis Wm for the Krylov subspace
Km(M̃−1Ã, r0).

2 Since the Arnoldi basis is orthonormal, Wm = (w1 w2 . . . wm) is an
orthogonal matrix (Wm ∈ Rn×m).

3 In the orthogonalisation process the scalars hij are computed so that
the square upper Hessenberg matrix Hm ∈ Rm×m satisfies the
fundamental relation:

Hm = WH
m M̃

−1ÃWm
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Approximate eigenvector from GMRES solver

4 The eigenvalues of Hm are called Ritz values and they approximate
the eigenvalues of M̃−1Ã.

if z? is an chosen eigenvector of Hm, then V? = Wmz? is almost an
eigenvector of M̃−1Ã, for the same eigenvalue λ i.e.,

M̃−1ÃV? ' WmHmW
H
mWmz? =

= WmHmz? =
= Wmλz? = λV?

5 In practice a specific Lapack procedure can be used to compute the
eigenelements of Hm.
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Numerical Experiments with EDOIC

Two sub-domain (complex) case:
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Numerical Experiments with EDOIC
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Numerical Experiments with EDOIC
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Numerical Experiment (fixed size problem)

Fixed size problem nx = ny = 50

(a) Mx = My = 2 (b) Mx = My = 3 (c) Mx = My = 4

Method n-iter

(a) ASM 17

(a) MSM+EDOIC(3) 13

(b) ASM 26

(b) MSM+EDOIC(3) 23

(c) ASM 34

(c) MSM+EDOIC(3) 36

0 18 36
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Two-level preconditioner

PROBLEM: Convergence of the
Schwarz method deteriorates with
increasing number of subdomains.

SOLUTION: “Remove” smallest
eigenvalues that slow down the
Schwarz method.

It leads us to construction of two-level preconditioner using

P := I−A
(
ZE−1ZT

)
E := ZTAZ

which are common ingredients of the coarse grid, deflation and AMG pre-
conditioners (see [Tang et al., 2009]).

An effective two-level preconditioner is highly dependent on the choice of
coarse grid subspace Z ∈ Rn×m.

How to choose Z ?
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Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides proposed [Nicolaides, 1987]:

Z =


1Ω1 0 · · · 0

... 1Ω2
· · · 0

...
...

...
0 0 · · · 1ΩJ



(zk)l =

{
1 l ∈ Ωj

0 l /∈ Ωj
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V? = Wmz?)

Z? := [V1 V2 · · · VnV ] =


[V1]D̃Ω1

[V2]D̃Ω1
· · · [VnV ]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

· · · [VnV ]D̃Ω2

...
...

...
[V1]D̃ΩN

[V2]D̃ΩN
· · · [VnV ]D̃ΩN



We can apply a part wise spliting to Z? in order to construct a coarse
subspace similar in structure to one proposed by Nicolaides.
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V? = Wmz?)

Z :=


[V1]D̃Ω1

[V2]D̃Ω1
· · · [VnV ]D̃Ω1

0 0 · · · 0 · · · 0 0 · · · 0

0 0 · · · 0 [V1]D̃Ω2
[V2]D̃Ω2

· · · [VnV ]D̃Ω2
· · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0 · · · [V1]D̃ΩN

[V2]D̃ΩN
· · · [VnV ]D̃ΩN



Coarse grid subspace Z ∈ Rn×(nv×N)

We can apply a part wise spliting to Z? in order to construct a coarse
subspace similar in structure to one proposed by Nicolaides.
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Our choice of Z

In deflation techniques Z consists of eigenvectors or approximations of
eigenvectors (which we know how to find: V? = Wmz?)

Z? :=

[V1]D̃Ω1
[V2]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

[V1]D̃Ω3
[V2]D̃Ω3

→
[V1]D̃Ω1

[V2]D̃Ω1

[V1]D̃Ω2
[V2]D̃Ω2

[V1]D̃Ω3
[V2]D̃Ω3

 = Z

Coarse grid subspace Z ∈ Rn×(2×3)

We can apply a part wise spliting to Z? in order to construct a coarse
subspace similar in structure to one proposed by Nicolaides.
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Our choice of two-level preconditioner

Our choice = The two-level hybrid Schwarz preconditioner [Smith et al., 1996].

PL :=
[
I−

(
ZE−1

L ZT
)
M−1A+

(
ZE−1

L ZT
)]

PR :=
[
I−

(
ZE−1

R ZT
)
AM−1 +

(
ZE−1

R ZT
)]

Two-level preconditioner PL&R

M−1 :=

A
−1
DΩ1

0 0

0 A−1
DΩ2

0

0 0 A−1
DΩ3

 EL := ZTM−1AZ

ER := ZTAM−1Z

Left preconditioner

PLM
−1Au = PLM

−1b

Right preconditioner

AM−1PRu = b
u = M−1PRu
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Academic Problem - 3D Laplace

Matrix L3D4x4x8n15.mtx

nparts nrows nnz

128 450,241 6,606,721

Matrix L3D4x4x16n15.mtx

nparts nrows nnz

256 896,761 13,187,881

Matrix L3D8x8x8n15.mtx

nparts nrows nnz

512 1,771,561 26,223,481

Matrix L3D8x8x16n15.mtx

nparts nrows nnz

1024 3,528,481 52,345,441

• all experiments performed on IFP cluster
• 114 nodes equipped with 4 processes AMD Barcelona 2.3 Ghz

(quad-core socket)
• interconnected by Infiniband switched fabric (type of network

topology)

• max number of available process 256
• thus only in two first variants we dedicated one part per one process
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What we have measured ?

FIRST SOLVE
GMRES + Schwarz 

Method

LU Factorization 
of suboperators

Inflation

Partitioning and 
data dystribution

Building
 Coarse Space

Extracting 
Approximated Eigen 

Vectors

LU Factorisation of 
Coarse Space 

Operator

SECOND SOLVE
GMRES + Two-level 

Preconditioner

niter number of iterations
κ≈ roughly estimated condition number given as κ≈ = λmax/λmin where λ{min,max}

are the approximated, extreme eigenvalues of (M̃−1Ã)
nV number of approximated eigenvectors used in construction of coarse space

||rsol|| standard norm of final residual i.e., ||rsol|| = ||Ausol − b||2/||b||2

CS[s] time of “construction” coarse space operator
Inf[s] time of inflation process for each level
LU[s] time of LU factorisation of endomorphic Partial Operators in DDMOperator

sol[s] time of iterative process (in case of varian with two-level preconditioner sol consist
also LU factorisation time of coarse operator)
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Academic Problem - 3D Laplace (SCALABILITY)

-7

-6

-5

-4

-3

-2

-1

 0

 0  20  40  60  80  100  120  140  160

lo
g1

0(
re

si
du

al
 n

or
m

)

number of iterations

Laplace3D 4x4x8 (15) +I (1)
Laplace3D 4x4x16 (15) +I (1)

Laplace3D 8x8x8 (15) +I (1)
Laplace3D 8x8x16 (15) +I (1)
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Academic Problem - 3D Laplace (SCALABILITY)
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lo
g1

0(
re

si
du
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 n
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)

number of iterations

Laplace3D 4x4x8 (15) +I (1)
Laplace3D 4x4x16 (15) +I (1)

Laplace3D 8x8x8 (15) +I (1)
Laplace3D 8x8x16 (15) +I (1)

(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)
(DEFLATE)(12V) Laplace3D 4x4x16 (15) +I (1)

(DEFLATE)(13V) Laplace3D 8x8x8 (15) +I (1)
(DEFLATE)(10FV) Laplace3D 8x8x16 (15) +I (1)
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Academic Problem - 3D Laplace (TIME COST)
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)

number of iterations

Laplace3D 4x4x8 (15) +I (0)
Laplace3D 4x4x8 (15) +I (1)

(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)
Laplace3D 4x4x8 (15) +I (2)

(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (2)
Laplace3D 4x4x8 (15) +I (3)

(DEFLATE)(5V) Laplace3D 4x4x8 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 115 3694.10 8.31e− 07 2.06 8.84
+I(1) 69 1174.49 1.92e− 10 1.18 4.39 8.35

D..+I(1) 15 3.61 10 2.55e− 09 1.18 3.36
+I(2) 53 662.34 3.09e− 09 1.16+1.73 6.35 6.37

D..+I(2) 15 2.78 5 1.07e− 09 0.76 4.41
+I(3) 44 444.15 2.59e− 09 1.19+1.76+2.60 14.59 8.03

D..+I(3) 13 2.37 5 5.46e− 09 1.66 4.91
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)

number of iterations

Laplace3D 4x4x16 (15) +I (0)
Laplace3D 4x4x16 (15) +I (1)

(DEFLATE)(12V) Laplace3D 4x4x16 (15) +I (1)
Laplace3D 4x4x16 (15) +I (2)

(DEFLATE)(10V) Laplace3D 4x4x16 (15) +I (2)
Laplace3D 4x4x16 (15) +I (3)

(DEFLATE)(7V) Laplace3D 4x4x16 (15) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 169 15158.70 9.78e− 07 2.04 17.44
+I(1) 101 4818.07 1.68e− 09 1.29 3.56 10.30

D..+I(1) 14 5.82 13 2.18e− 06 2.12 5.17
+I(2) 77 2715.89 2.12e− 09 1.29+1.89 7.40 12.63

D..+I(2) 12 2.30 10 9.43e− 07 2.20 5.81
+I(3) 64 1820.48 2.64e− 09 1.27+1.87+2.74 13.81 14.57

D..+I(3) 13 2.18 7 1.09e− 08 2.00 6.79
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Academic Problem - 3D Laplace (TIME COST)
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number of iterations

Laplace3D 4x4x8 (15) +I (0)
Laplace3D 4x4x8 (15) +I (1)

(DEFLATE)(8V) Laplace3D 4x4x8 (15) +I (1)

n-iter

I(0) 115

I(1) 69

I(1)+D 15

0 60 120

CS[s] + inf[s] + LU[s] + sol[s]
∑

[s]

I(0) 0.00+0.00+2.06+8.84 10.90

I(1) 0.00+1.18+4.39+8.35 13.92

I(1)+D 1.18+1.18+4.39+3.36 10.11

0 7 14
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number of iterations

Laplace3D 4x4x16 (15) +I (0)
Laplace3D 4x4x16 (15) +I (1)

(DEFLATE)(12V) Laplace3D 4x4x16 (15) +I (1)

n-iter

I(0) 169

I(1) 101

I(1)+D 14

0 85 170

CS[s] + inf[s] + LU[s] + sol[s]
∑

[s]

I(0) 0.00+0.00+2.04+17.84 19.88

I(1) 0.00+1.29+3.56+10.30 15.15

I(1)+D 2.12+1.29+3.56+5.17 12.14

0 10 20
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Real Test Case - SPE10 Benchmark

[from SPE10 description] .. the aim of the SPE10 is to
simulate porous media flow in a highly heterogeneous black oil
reservoir that is described by a fine-scale 1 million cell geological
model.

Matrix spe10 p only.mtx

nparts nrows nnz

256 1,094,421 7,515,591
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IFP Matrices Collection (spe10)
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or
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number of iterations

spe10_p_only (256p) +I (0)
spe10_p_only (256p) +I (1)

(DEFLATED)(10VF) spe10_p_only (256p) +I (1)
spe10_p_only (256p) +I (2)

(DEFLATED)(10FV) spe10_p_only (256p) +I (2)
spe10_p_only (256p) +I (3)

(DEFLATED)(10FV) spe10_p_only (256p) +I (3)

expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(0) 700 83147.80 6.40e− 05 1.36 93.34
+I(1) 386 15169.30 3.32e− 08 1.09 2.24 42.14

D..+I(1) 80 185.10 10F 1.83e− 09 1.30 22.43
+I(2) 264 7825.55 3.84e− 08 1.09+1.54 3.38 22.76

D..+I(2) 62 97.08 10F 1.13e− 08 1.48 14.39
+I(3) 211 5055.91 5.02e− 09 1.09+1.54+2.20 5.06 17.32

D..+I(3) 47 50.12 10F 2.22e− 09 1.61 14.22
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IFP Matrices Collection (spe10)
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number of iterations

spe10_p_only (256p) +I (0)
spe10_p_only (256p) +I (1)

(DEFLATED)(10VF) spe10_p_only (256p) +I (1)

n-iter

I(0) 700

I(1) 386

I(1)+D 80

0 350 700

CS[s] + inf[s] + LU[s] + sol[s]
∑

[s]

I(0) 0.00+0.00+1.36+93.34 94.70

I(1) 0.00+1.90+2.24+42.14 46.28

I(1)+D 1.30+1.90+2.24+22.43 27.87

0 50 100
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IFP Matrices Collection (ALL)
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mou1 (8pWW) +I (0)
mou1 (8pWW) +I (1)

(DEFLATE)(1VF) mou1 (8pWW) +I (1)
mou1 (8pWW) +I (2)

(DEFLATE)(1VF) mou1 (8pWW) +I (2)
mou1 (8pWW) +I (3)

(DEFLATE)(1VF) mou1 (8pWW) +I (3)
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(DEFLATE)(1VF) GCS (128pWW) +I (1)
GCS (128pWW) +I (2)

(DEFLATE)(1VF) GCS (128pWW) +I (2)
GCS (128pWW) +I (3)

(DEFLATE)(1VF) GCS (128pWW) +I (3)
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(DEFLATED)(10VF) spe10_p_only (256p) +I (1)
spe10_p_only (256p) +I (2)

(DEFLATED)(10FV) spe10_p_only (256p) +I (2)
spe10_p_only (256p) +I (3)

(DEFLATED)(10FV) spe10_p_only (256p) +I (3)
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Black Oil Simulation

SOLVE (mat1)
GMRES + Modified  
Schwarz Method 

LU Factorization 
of suboperators 

(mat1)

Partitioning and 
data dystribution 

(mat1)

Building
 Coarse Space

Extracting 
Approximated Eigen 

Vectors

LU Factorization 
of sub-operators 

(mat2)

SOLVE (mat2)
GMRES + Two-Level 

preconditioner

Partitioning and 
data dystribution 

(mat2)

Matrix BO 60x60x32 matX.mtx

mat name nparts nrows nnz

BO_60x60x32_mat1.mtx 80 115,200 791,520
BO_60x60x32_mat2.mtx 80 115,200 791,572
BO_60x60x32_mat3.mtx 80 115,200 791,598
BO_60x60x32_mat4.mtx 80 115,200 791,500
BO_60x60x32_mat5.mtx 80 115,200 791,512

Matrix BO 120x120x64 matX.mtx

mat name nparts nrows nnz

BO_120x120x64_mat1.mtx 160 921,600 6,391,680
BO_120x120x64_mat2.mtx 160 921,600 6,391,680
BO_120x120x64_mat3.mtx 160 921,600 6,391,680
BO_120x120x64_mat4.mtx 160 921,600 6,390,986
BO_120x120x64_mat5.mtx 160 921,600 6,387,222
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Black Oil Simulation
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BO 60x60x32 mat 1 (80p) +I (1)
BO 60x60x32 mat 2 (80p) +I (1)
BO 60x60x32 mat 3 (80p) +I (1)
BO 60x60x32 mat 4 (80p) +I (1)
BO 60x60x32 mat 5 (80p) +I (1)

(DEFLATED)(7V) BO 60x60x32 mat 2 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 3 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 4 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 5 (80p) +I (1)

sol[s]

ASM+I(1) 0.98

ASM+I(1)+D 0.63

0 0.5 1

∑
[s]

ASM+I(1) 5×0.98 4.90

ASM+I(1)+D 1×0.98 + 0.12 + 4×0.63 3.62

0 2.5 5
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BO 120x120x64 mat 1 (160p) +I (1)
BO 120x120x64 mat 2 (160p) +I (1)
BO 120x120x64 mat 3 (160p) +I (1)
BO 120x120x64 mat 4 (160p) +I (1)
BO 120x120x64 mat 5 (160p) +I (1)

(DEFLATED)(5V) BO 120x120x64 mat 2 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 3 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 4 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 5 (160p) +I (1)

sol[s]

ASM+I(1) 7.58

ASM+I(1)+D 3.67

0 4 8

∑
[s]

ASM+I(1) 5×7.58 37.90

ASM+I(1)+D 1×7.58 + 1.27 + 4×3.67 23.53

0 19 38
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Black Oil Simulation - Reduced Formula

P̃R :=
[
I((((((((((
−
(
ZE−1

R ZT
)
AM−1 +

(
ZE−1

R ZT
)]
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number of iterations

BO 60x60x32 mat 1 (80p) +I (1)
BO 60x60x32 mat 2 (80p) +I (1)
BO 60x60x32 mat 3 (80p) +I (1)
BO 60x60x32 mat 4 (80p) +I (1)
BO 60x60x32 mat 5 (80p) +I (1)

(DEFLATED)(7V) BO 60x60x32 mat 2 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 3 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 4 (80p) +I (1)
(DEFLATED)(7V) BO 60x60x32 mat 5 (80p) +I (1)

(DEFLATED-C)(7V) BO 60x60x32 mat 2 (80p) +I (1)
(DEFLATED-C)(7V) BO 60x60x32 mat 3 (80p) +I (1)
(DEFLATED-C)(7V) BO 60x60x32 mat 4 (80p) +I (1)
(DEFLATED-C)(7V) BO 60x60x32 mat 5 (80p) +I (1)

sol[s]

ASM+I(1) 0.98

ASM+I(1)+D 0.63

ASM+I(1)+CD 0.58

0 0.5 1

∑
[s]

ASM+I(1) 5×0.98 4.90

ASM+I(1)+D 1×0.98 + 0.12 + 4×0.63 3.62

ASM+I(1)+CD 1×0.98 + 0.12 + 4×0.58 3.42

0 2.5 5
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number of iterations

BO 120x120x64 mat 1 (160p) +I (1)
BO 120x120x64 mat 2 (160p) +I (1)
BO 120x120x64 mat 3 (160p) +I (1)
BO 120x120x64 mat 4 (160p) +I (1)
BO 120x120x64 mat 5 (160p) +I (1)

(DEFLATED)(5V) BO 120x120x64 mat 2 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 3 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 4 (160p) +I (1)
(DEFLATED)(5V) BO 120x120x64 mat 5 (160p) +I (1)

(DEFLATED-C)(5V) BO 120x120x64 mat 2 (160p) +I (1)
(DEFLATED-C)(5V) BO 120x120x64 mat 3 (160p) +I (1)
(DEFLATED-C)(5V) BO 120x120x64 mat 4 (160p) +I (1)
(DEFLATED-C)(5V) BO 120x120x64 mat 5 (160p) +I (1)

sol[s]

ASM+I(1) 7.58

ASM+I(1)+D 3.67

ASM+I(1)+CD 3.21

0 4 8

∑
[s]

ASM+I(1) 5×7.58 37.90

ASM+I(1)+D 1×7.58 + 1.27 + 4×3.67 23.53

ASM+I(1)+DC 1×7.58 + 1.27 + 4×3.21 21.69

0 19 38
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Conclusion and Prospects

1 We have considered the extended and the original linear system
arising from the domain decomposition method with overlapping.

2 We applied the two-level preconditioner using Schwarz algorithm and
the coarse grid correction

3 The coarse grid space is based on the approximated (sub-domain
wise split) eigenvectors
• its size can be adapted to the difficulty of the problem

4 All presented methods are as algebraic as possible which paves the
way to extension to systems of equations e.g. multiphase flows

5 Proposed two-level preconditioner is scalable and can be very robust
in respect to number of iteration

6 Both methods are adaptive and can be used during first solve that is
even the first solve is not completed

7 All methods work for arbitrary decomposition
• which quality we can improve using weighted graph partitioning
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IFP Matrices Collection (spe10 - system of equations)

Matrix spe10 sys.mtx

nparts nrows nnz

256 2,188,842 21,554,641
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m

)

number of iterations

spe10_sys (256p) +I (0)
spe10_sys (256p) +I (1)
spe10_sys (256p) +I (2)
spe10_sys (256p) +I (3)

expvar niter ‖rsol‖ inf[s] LU[s] sol[s]

+I(0) 663 1.43e− 06 ≈ 4 343.13
+I(1) 361 2.12e− 09 4.36 ≈ 6 70.76
+I(2) 252 3.81e− 08 4.37 + 7.23 ≈ 13 70.88
+I(3) 183 2.03e− 08 4.52 + 7.42 + 11.00 ≈ 24 78.14
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Adaptive Solver

1 2 3 4
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Adaptive Solver - Stop after XX
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Adaptive Solver - Stop after 10
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Adaptive Solver - Stop after 20
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Adaptive Solver - Stop after (40 and 50)
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Adaptive Solver vs Time of Computation
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expvar niter κ≈ nV ‖rsol‖ CS[s] inf[s] LU[s] sol[s]

+I(1) 101 4818.07 1.68e− 09 1.29 3.56 10.30
S10 10 + 85 2427.91 2 2.34e− 09 0.25 1.38 4.21 3.43 + 12.15
S20 20 + 56 648.32 3 1.22e− 09 0.37 1.31 4.17 3.52 + 11.77
S40 40 + 23 7.68 6 9.53e− 10 1.15 1.32 5.47 3.73 + 7.70
S50 50 + 18 4.12 8 2.69e− 10 1.01 1.29 3.76 3.91 + 3.82
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Adaptive Solver vs Time of Computation
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CS[s] + inf[s] + LU[s] + sol[s]
∑

[s]

I(1) 0.00+1.29+3.56+10.30 15.15

AI(1) 1.01+1.29+3.76+7.73 13.79
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Improved Diagonal
Approximation (EDOIC)
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Improved Diagonal Approximation (EDOIC)

Let β1̃c1̃c
be a symmetric sparse operator which satisfies

β1̃c1̃c
A1̃c1̃c

V1̃c
= V1̃c

, or equivalently −β1̃c1̃c
A1̃cΓ̃1

VΓ̃1
= V1̃c

.

The optimal interface conditions operator Sopt

Γ̃1Γ̃1
is approximated by

Sopt

Γ̃1Γ̃1
≈ Sedoic

Γ̃1Γ̃1
:= −AΓ̃11̃c

(
2β1̃c1̃c

− β1̃c1̃c
A1̃c1̃c

β1̃c1̃c

)
A1̃cΓ̃1

The idea of this improvement originates from the following calculations:
‖(BA−I)‖ ≤ ε < 1 leads to ‖(BA−I)2‖ ≤ ε2 < ε. Then, remarking that
(BA− I)2 = BABA− 2BA+ I = I − (2B−BAB)A, one concludes that
C = 2B − BAB is better approximation of A−1 than B since ‖C − I‖ ≤
ε2 < ε.
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Sparse Patch Method
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Sparse Patch Method

Ω

Ω1

Γ

Ω2

P1P2

Aj
P =

(
Ajj AjΓ

AΓj A
j

ΓΓ

)

ΓΩ1 Ω2 ΓΩ1 Ω2

See [Magoulès et al., 2006] for more informations.
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