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and l’Université de Strasbourg

specialty MATHEMATICS

Matthias Herold

Tropical orbit spaces and moduli spaces of
tropical curves

Defended on January 25, 2011
in front of the jury

Mr. A. Gathmann, supervisor
Mr. I. Itenberg, supervisor

Mr. J-J. Risler, reviewer
Mr. E. Shustin, reviewer

Mr. A. Oancea, scientific member
Mr. G. Pfister, scientific member



Abstract
A main result of this thesis is a conceptual proof of the fact that the weighted number of tropical
curves of given degree and genus, which pass through the right number of general points in the
plane (resp., which pass through general points in Rr and represent a given point in the moduli
space of genus g curves) is independent of the choices of points. Another main result is a new
correspondence theorem between plane tropical cycles and plane elliptic algebraic curves.

Résumé
Un principal résultat de la thèse est une preuve conceptionnelle du fait que le nombre pondéré de
courbes tropicales de degré et genre donnés qui passent par le bon nombre de points en position
générale dans R2 (resp., qui passent par le bon nombre de points en position générale dans Rr

et représentent un point fixé dans l’espace de modules de courbes tropicales abstraites de genre
g) ne dépend pas du choix de points. Un autre principal résultat est un nouveau théorème de
correspondance entre les cycles tropicaux plans et les courbes algébriques elliptiques planes.
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Preface

Tropical geometry

Tropical geometry is a relatively new mathematical domain. The roots of tropical geometry
go back to the seventies (see [Be] and [BG]), but only ten years ago it became a subject on
its own. Tropical geometry has applications in several branches of mathematics such as enu-
merative geometry (e.g. [IKS], [M1]), symplectic geometry (e.g. [A]), number theory (e.g.
[G]) and combinatorics (e.g. [J]). A powerful tool in enumerative geometry are the so-called
correspondence theorems. These theorems establish an important correspondence between
complex algebraic curves satisfying certain constraints and tropical analogs of these curves.
One of the first results concerning correspondence theorems was achieved by G. Mikhalkin
(see [M1]). This theorem was proved again in slightly different form in [N], [NS], [Sh], [ST],
[T]. These results initiated the study of enumerative problems in tropical geometry (see for
example [GM1], [GM2], [GM3]). Dealing with counting problems, it is naturally to work
with moduli spaces. The first step in this direction was the construction of the moduli spaces
of rational curves given in [M2] and [GKM]. In [GKM] the authors developed some tools
to deal with enumerative problems for rational curves, using the notion of tropical fan. They
introduced morphisms between tropical fans and showed that, under certain conditions, the
weighted number of preimages of a point in the target of such a morphism does not depend
on the chosen point. After showing that the moduli spaces of rational tropical curves have
the structure of a tropical fan, they used this result to count rational curves passing through
given points.

Results

In the first part of this thesis we follow the approach of [GKM] and introduce similar tools for
enumerative problems concerning curves of positive genus. In the second part we establish a
new correspondence theorem. The main results of this thesis are as follows.

• We develop the definitions of (tropical) orbit spaces and (tropical) local orbit spaces
which are counterparts of a stack in algebraic geometry.

• We introduce morphisms between (tropical) orbit spaces and (tropical) local orbit
spaces.
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Preface

• For tropical (local) orbit spaces we show that the weighted number of preimages of a
point in the target of such a morphism does not depend on the chosen point.

• We equip the moduli spaces of tropical curves with the structure of a tropical local
orbit space.

• For the special case of moduli spaces of elliptic tropical curves we equip the moduli
spaces as well with the structure of a tropical orbit space.

• Using our results on tropical local orbit spaces, we give a more conceptual proof than
the authors of [KM] of the fact that the weighted number of plane tropical curves of
a given degree and genus which pass through the right number of points in general
position in R2 is independent of the choice of a configuration of points.

• In the same way we prove that the weighted number of tropical curves of given degree
and genus in Rr which pass through the right number of points in Rr and which repre-
sent a fixed point in the moduli space of abstract genus g tropical curves is independent
of the choice of a configuration of points in general position.

• In the case of plane elliptic tropical curves of degree d we prove the independence of
the choice of a configuration of points and the choice of a type (which is the j-invariant
in this case) as well by using our results on tropical orbit spaces.

• We prove a correspondence between plane tropical cycles (of elliptic curves with big
j-invariant satisfying point constraints) and elliptic plane algebraic curves (satisfying
corresponding constraints).

The chapters 1 and 2 recall definitions and do not contain new results. The chapters 3, 4, 5, 6
and 7 are based on [H]. New results in chapter 8 are proposition 8.34, theorem 8.45 and the
conjecture 8.50.

Motivation

A relationship between tropical geometry and complex geometry was conjectured in 2000
by M. Kontsevich and was made precise by the so-called correspondence theorem by G.
Mikhalkin in [M1]. In the cases where such a connection is established, it suffices to count
tropical curves to get the number of corresponding algebraic objects. Therefore tropical
geometry became a powerful tool for enumerative geometry. In algebraic geometry one uses
moduli spaces in enumerative problems. Because of the mentioned relation, it would be
reasonable to construct moduli spaces in tropical geometry as well. For the construction of
moduli spaces in algebraic geometry one needs, in many cases, the notion of a stack. Put
simply, a stack is the quotient of a scheme by a group action. In this thesis we want to
make an attempt for the definition of a “tropical stack”. Since it is a first approach, we call
these objects tropical (local) orbit spaces (instead of calling them stacks). The definition of a
tropical orbit space avoids many technical problems. Therefore it is a useful definition to get
a first impression on the problems one wants to handle with a “tropical stack”. Nevertheless
it seems to be not general enough for the problems we want to deal with. Furthermore the
price we have to pay for the simplicity is loosing finiteness. Because of this, we give the
definition of a tropical local orbit space which is more technical but more appropriate for our
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Preface

purposes. To show the usefulness of our definition, we equip the moduli spaces of tropical
curves with the structure of a tropical local orbit space and use this structure to show that the
weighted number of tropical curves through given points does not depend on the position of
points.

As mentioned above, one motivation for tropical geometry are the correspondence theorems.
Therefore, it is of great interest to enlarge the number of cases where a correspondence is
established. The hope is to understand better the algebraic objects and to get a more efficient
way to count them (see for example Mikhalkin’s lattice path algorithm in [M1]). Our goal is
to enlarge the correspondence theorem to the case of elliptic non-Archimedean curves with
a j-invariant of sufficiently big valuation.

Chapter synopsis

This thesis contains eight chapters, which can be divided into four parts. Chapters 1 and 2 are
essential for the first seven chapters. Chapters 3, 4 and 5 belong together as well as chapters
6 and 7. Chapter 8 can be read separately.

• Chapter 1: Polyhedral complexes
We start the chapter by defining general cones, which are non-empty subsets of a finite-
dimensional R-vector space and are described by finitely many linear integral equal-
ities, inequalities and strict inequalities. A union of these cones, which satisfy some
properties, is a general fan. We equip each top-dimensional cone in the fan with a
number in Q called weight. If these weights together with the cones fulfill a certain
condition (the balancing condition) we call the fan a general tropical fan. These ob-
jects are the local building blocks of tropical varieties (in particular each tropical curve
is locally a one-dimensional fan). After this, we define a general polyhedron, which is
a non-empty subset of a finite-dimensional R-vector space and is described by finitely
many affine linear integral equalities, inequalities and strict inequalities. Polyhedral
complexes are certain unions of general polyhedra (locally a polyhedral complex looks
like a fan thus, we can define weights for the top-dimensional cones and consider the
balancing condition). We end the chapter by defining morphisms between polyhedral
complexes.

• Chapter 2: Moduli spaces
In this chapter we define moduli spaces of tropical curves. For this we give a defini-
tion of n-marked abstract tropical curves and parameterized labeled n-marked tropical
curves. As in algebraic geometry we can define the genus of a curve. An n-marked
abstract tropical curve of genus g is a connected graph with first Betti number equal
to g and n labeled edges connected to exactly one one-valent vertex (we consider the
curves up to isomorphism) such that the graph without one-valent vertices has a com-
plete metric. Each edge connecting two vertices of valence greater than one has a
length defined by the metric. Thus an n-marked abstract tropical curve can be en-
coded by these lengths, which give as well a polyhedral structure to the moduli spaces
of n-marked abstract tropical curves. After doing this we consider the special case
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of genus one. The underlying graph of an n-marked abstract tropical curve of genus
one contains exactly one simple cycle and we call its length tropical j-invariant. Pa-
rameterized labeled n-marked tropical curves are n-marked abstract tropical curves
together with a map from the graph without one-valent vertices to some Rr fulfilling
some conditions.

• Chapter 3: Local orbit spaces
In the first section we introduce tropical local orbit spaces. Local orbit spaces are
finite polyhedral complexes in which we identify certain polyhedra with each other.
These identifications are done with the help of isomorphisms between subsets of the
polyhedral complexes. For technical reasons the set of isomorphisms has to fulfill
some properties. If the polyhedral complex was equipped with weights which are the
same for identified polyhedra, we can equip the local orbit space with weights as well.
The word tropical refers again to a balancing condition which the local orbit space
with weights has to fulfill. After showing that the balancing condition of the local orbit
space and of the underlying polyhedral complex are equivalent we start the second
section by defining morphisms between tropical orbit spaces. These morphisms are
defined to be morphisms of the underlying polyhedral complexes which respect the
properties of the set of isomorphisms (the properties which we have because of the
technical reasons). The morphisms allow us to define the image of a tropical local
orbit space. Under some conditions on the image we can prove that the number of
preimages of a general point in the target space (counted with certain multiplicities)
is independent of the chosen point (corollary 3.41). Afterwards, we define rational
functions on tropical local orbit spaces and the corresponding divisors.

• Chapter 4: One-dimensional local orbit spaces
For a better understanding of the local orbit spaces defined in chapter 3 we study the
one-dimensional case more explicitly. The main result of this chapter is a theorem
concerning the local structure of a local orbit space. In this chapter we treat as well
non-Hausdorff local orbit spaces in the one-dimensional case which we avoid in the
other chapters (the non-Hausdorffness).

• Chapter 5: Moduli spaces for curves of arbitrary genus
In the first section we equip the moduli spaces of n-marked abstract tropical curves
of genus g and exactly n one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. As mentioned above we can
equip the moduli spaces with a polyhedral structure. The underlying graph (forgetting
the metric) of two n-marked abstract tropical curves might be different. The encod-
ing of the curve by the lengths of the bounded edges does not give a useful global
description, since the cones encoding all curves with the same underlying graph are
spanned by unit vectors (one vector for each edge). Therefore, we do not get a tropical
structure with this description. Thus, instead of the lengths of the bounded edges we
take the distances between the n markings. To get a global description of a moduli
space it seems reasonable to take these distances. This idea was used for n-marked
abstract rational tropical curves in [GKM]. Unfortunately, the distance between two
markings for curves of higher genus is not well-defined; because of the cycles, there
is no unique path from one point to the other. To get rid of this problem, we cut each
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cycle at one point such that the curve stays connected and insert a new marked edge
at each endpoint of the cut. Now, all distances between markings are well-defined (we
are in a case similar to the case of rational curves). Since we made non-canonical
choices, we take all possibilities for such a cut and we get rid of the choices by an
identification of cones. Thus, we end up with a tropical local orbit space which turns
out to be homeomorphic to the moduli space. In section 2 we construct moduli spaces
of parameterized labeled n-marked tropical curves of genus g in Rr. A parameterized
tropical curve is an abstract tropical curve with a map to Rr where the map satisfies
certain properties (in particular it is affine on each edge). Using moduli spaces of ab-
stract curves we only need to encode the map. We consider only curves with fixed
directions of the marked edges and therefore it is enough to encode the position of one
fixed point to have all information needed for a map (the directions of the edges are
fixed and the distances of two points are already encoded, thus the map is fixed by the
position of one point). In our construction of the moduli spaces of abstract curves we
made a cut on each cycle and inserted two new edges. To make sure that the images of
the cut cycles are cycles again we use rational functions for the definition of the moduli
spaces we are interested in. In the last section we introduce the condition that a curve
passes through given points and the condition that a curve represent a fixed point in the
moduli space of 0-marked abstract tropical curves of genus g. Using the structure of a
local orbit space we show that the number of parameterized labeled n-marked tropical
curves of given genus and given direction of marked ends counted with the multiplic-
ity defined by corollary 3.41 fulfilling the mentioned conditions does not depend on a
general choice of a configuration of points.

• Chapter 6: Orbit spaces
This chapter is relatively similar to chapter 3. In the first section we define tropical
orbit spaces and in the second section we define morphisms between these objects. As
for tropical local orbit spaces we define tropical orbit spaces to be polyhedral com-
plexes in which we identify polyhedra by using isomorphisms. The difference in this
construction is that we weaken the conditions on the polyhedral complex and tighten
the condition on the set of isomorphisms. This time we allow the polyhedral complex
to be infinite but we ask the set of isomorphisms to be a group. Since the conditions
of the set of isomorphisms in chapter 3 are technical but satisfied if the set is a group,
we can simplify some problems. Unfortunately, the price we have to pay for this is an
infinite polyhedral complex. This is due to the fact that it would be too restrictive for
our problems to consider only finite groups. Because of the similarities we can develop
the same theory for orbit spaces as for local orbit spaces.

• Chapter 7: Moduli spaces of elliptic tropical curves
In the first section we equip the moduli spaces of n-marked abstract tropical curves
of genus 1 and exactly n one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. As in chapter 5 we cut the
cycle of the genus-one curve. Since this case is a special case of chapter 5 most of the
calculations are similar to those in that chapter but easier. In the second section we
build moduli spaces of parameterized labeled n-marked elliptic tropical curves in Rr

using rational functions. We end the section with a calculation of weights in the case
r = 2. In this case M. Kerber and H. Markwig have already constructed the moduli
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spaces as weighted polyhedral complex [KM]. It turns out that the weights defined by
our construction are the same except for the case when the image of the cycle of the
curve is zero-dimensional. If the cycle is zero-dimensional our weights differ from the
weights of M. Kerber and H. Markwig by 1

2
. In particular, it follows that the moduli

spaces we constructed are reducible. In the third section of this chapter we show that
the number of plane elliptic tropical curves of degree d with fixed j-invariant which
pass through a given configuration of points does not depend on a general choice of
the configuration.

• Chapter 8: Correspondence theorems
Since we want to prove a correspondence theorem we recall some correspondence the-
orems in the first section. Especially theorem 8.30 by I. Tyomkin, which is the first
one stating a correspondence for elliptic curves with given j-invariant, is related to our
work. For a correspondence theorem, the multiplicity of a tropical curve is the number
of algebraic curves corresponding to it. By recalling some correspondence theorems,
we observe that the multiplicity of a curve depends in particular on the problem. We
end the section by proving a statement which expresses the multiplicities of theorem
8.30 in a tropical way. These multiplicities agree with those defined by M. Kerber and
H. Markwig (resp., calculated in the thesis). In the second section we prove a corre-
spondence between elliptic non-Archimedean curves which have a given j-invariant
with big valuation and tropical cycles which are the images of parameterized elliptic
tropical curves with big tropical j-invariant. The multiplicities we are using for this
are those defined by M. Kerber and H. Markwig. Since I. Tyomkin uses the same mul-
tiplicities we conjecture that the multiplicities of M. Kerber and H. Markwig are the
right ones in each case.
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Introduction en français

Géométrie tropicale

La géométrie tropicale est un domaine relativement nouveau des mathématiques. Ses débuts
remontent aux années soixante-dix (voir [Be] et [BG]), mais il y a seulement dix ans qu’elle
est devenue un sujet à part entière. La géométrie tropicale a des applications dans plusieurs
branches des mathématiques comme la géométrie énumérative (cf. [IKS], [M1]), la géomé-
trie symplectique (voir, par exemple [A]), la théorie des nombres (voir, par exemple [G]) et la
combinatoire (cf. [J]). Les théorèmes de correspondance sont un outil puissant en géométrie
énumérative. Ces théorèmes établissent une correspondance importante entre les courbes
algébriques complexes qui satisfont certaines contraintes et leurs analogues tropicaux. Un
des premiers résultats concernant les théorèmes de correspondance est du à G. Mikhalkin
(voir [M1]). Ce théorème a été redémontré dans une forme légèrement différente dans [N]
[NS], [Sh], [ST], [T]). Ces résultats sont à l’origine de l’étude de problèmes en géométrie
tropicale énumérative (voir par exemple [GM1], [GM2], [GM3]). Face à des problèmes
de dénombrement, il est naturel de travailler avec des espaces de modules. La première
étape dans cette direction a été la construction des espaces de modules de courbes tropicales
rationnelles proposée dans [M2] et [GKM]. Dans [GKM], les auteurs utilisent la notion
d’un éventail tropical pour développer des outils qui permettent d’étudier des problèmes
énumératifs concernant des courbes rationnelles. Ils introduisent des morphismes entre
éventails tropicaux et montrent le fait suivant : sous certaines conditions, le nombre pondéré
d’antécédents d’un point, pour un tel morphisme, ne dépend pas du point choisi à l’arrivée.
Après avoir montré que les espaces de modules de courbes tropicales rationnelles ont la
structure d’un éventail tropical, les auteurs de [GKM] utilisent ce résultat pour dénombrer
les courbes rationnelles passant par des points donnés.

Résultats

Dans la première partie de cette thèse, nous suivons l’approche de [GKM] et introduisons
des outils similaires pour aborder des problèmes énumératifs concernant les courbes de genre
strictement positif. Dans la deuxième partie, nous établissons un nouveau théorème de cor-
respondance. Les principaux résultats de la thèse sont les suivants.
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• Nous proposons des définitions d’espaces d’orbites (tropicaux) et d’espaces d’orbites
locaux (tropicaux) (une tentative de définition d’un ≪champ tropical≫).

• Nous introduisons des morphismes entre espaces d’orbites (tropicaux) et espaces d’or-
bites locaux (tropicaux).

• Pour un morphisme d’espaces d’orbites (locaux) tropicaux, nous montrons que le nom-
bre d’antécédents d’un point dans l’image, comptés avec leurs poids, ne dépend pas du
point choisi.

• Nous équipons les espaces de modules de courbes tropicales d’une structure d’espace
d’orbites local tropical.

• Dans le cas particulier des espaces de modules de courbes tropicales elliptiques, nous
équipons aussi les espaces de modules d’une structure d’espace d’orbites tropical.

• En utilisant nos résultats sur les espaces d’orbites locaux tropicaux, nous donnons une
preuve plus conceptuelle que les auteurs de [KM] du fait suivant. Le nombre pondéré
de courbes tropicales planes de degré et genre donnés qui passent par le bon nombre
de points en position générale dans R2 est indépendant du choix de la configuration de
ces points.

• De la même manière, nous montrons que le nombre pondéré de courbes tropicales de
degré et genre donnés dans Rr qui passent par le bon nombre de points en position
générale dans Rr et ayant un type général fixé dans l’espace de modules de courbes
tropicales abstraites de genre g est indépendant du choix de la configuration de ces
points ainsi que du type.

• Dans le cas de courbes tropicales elliptiques planes de degré d, nous prouvons que le
nombre pondéré de ces courbes qui passent par le bon nombre de points en position
générale et ayant un j-invariant fixé est indépendant du choix d’une configuration des
points et du choix du j-invariant, et ce, à nouveau, à l’aide de nos résultats sur les
espaces d’orbites tropicaux.

• Nous montrons une correspondance entre les courbes tropicales elliptiques planes de
degré d ayant un gros j-invariant j (qui satisfont des contraintes données par des points)
et les courbes non archimédiennes elliptiques planes de degré d ayant un j-invariant
fixé de valuation j (satisfaisant les contraintes correspondantes).

Les chapitres 1 et 2 sont un rappel des définitions et ne contiennent pas de nouveaux résultats.
Les chapitres 3, 4, 5, 6 et 7 sont basés sur [H]. Les nouveaux résultats dans le chapitre 8 sont
la proposition 8.34, le théorème 8.45 et la conjecture 8.50.

Motivation

Les connexions avec la géométrie algébrique énumérative fournissent une motivation impor-
tante pour le développement de la géométrie tropicale. Une relation entre la géométrie tropi-
cale et la géométrie complexe, conjecturée en 2000 par M. Kontsevich, a été précisée grâce au
théorème de correspondance de G. Mikhalkin dans [M1]. Ainsi, dans chaque cas où une telle
connexion est établie, il suffit de dénombrer les courbes tropicales pour connaı̂tre le nombre
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d’objets algébriques correspondants. Par conséquent, la géométrie tropicale devient un puis-
sant outil pour la géométrie énumérative. En géométrie algébrique, on utilise les espaces de
modules pour effectuer un dénombrement. Étant donné la relation conjecturée par M. Kont-
sevich, il serait raisonnable de construire des espaces de modules en géométrie tropicale. En
géométrie algébrique, on a besoin, dans de nombreux cas, de la notion de champ pour con-
struire des espaces de modules. Dit simplement, un champ est le quotient d’un schéma par
une action de groupe. Dans cette thèse, nous voulons faire une tentative de définition d’un
≪champ tropical≫. Puisque cette définition n’est qu’une première approche, nous appellerons
ces objets des espaces d’orbites (locaux) tropicaux (au lieu de les appeler des champs tropi-
caux). La définition d’un espace d’orbites tropical évite de nombreux problèmes techniques.
Elle est donc utile pour se donner une première idée des problèmes que l’on voudrait traiter
avec un ≪champ tropical≫. Néanmoins, il semble que cette définition ne soit pas suffisam-
ment générale pour les problèmes que nous aimerions aborder. En outre, le prix à payer pour
la simplicité est la perte de la finitude. Par conséquent, nous donnons la définition d’espace
d’orbites local tropical qui est plus technique mais plus appropriée dans notre cas. Pour il-
lustrer l’utilité de la définition, nous équipons les espaces de modules de courbes tropicales
de la structure d’espace d’orbites local tropical. Nous utilisons celle-ci pour montrer que le
nombre de courbes tropicales qui passent par des points fixés ne dépend pas de leurs posi-
tions.

Comme mentionné ci-dessus, une des motivations pour la géométrie tropicale provient de
théorèmes de correspondances. C’est pourquoi on a un grand intérêt à étendre les cas où
une correspondance est établie. On a ainsi l’espoir d’obtenir une meilleure compréhension
d’objets algébriques et un moyen plus efficace pour les dénombrer (voir par exemple l’algo-
rithme de Mikhalkin dans [M1]). Notre objectif est d’élargir le théorème de correspondance
au cas des courbes non archimédiennes elliptiques dont la valuation du j-invariant est suff-
isamment grande.

Résumé des chapitres

Cette thèse contient huit chapitres qui peuvent être divisés en quatre parties. Les chapitres 1
et 2 sont essentiels pour les sept premiers chapitres. Les chapitres 3, 4 et 5 forment un tout,
ainsi que les chapitres 6 et 7. Le chapitre 8 peut être lu séparément.

• Chapitre 1: Polyhedral complexes (complexes polyédraux). Nous commençons
ce chapitre par la définition générale de cônes qui sont des sous-ensembles non vides
d’un R-espace vectoriel de dimension finie décrits par un nombre fini d’égalités et
d’inégalités larges ou strictes, linéaires à coefficients entiers. Une union de ces cônes
qui satisfait certaines propriétés est un éventail général. Nous équipons chaque cône
de dimension maximal dans l’éventail d’un nombre rationnel baptisé poids. Si ces
poids conjointement avec les cônes remplissent une certaine condition (la condition
d’équilibre) nous appelons cet éventail, un éventail tropical général. Une variété trop-
icale est localement décrite par de tels objets (en particulier chaque courbe tropicale
est localement un éventail de dimension 1). Ensuite, nous définissons les polyèdres
généraux qui sont des sous-ensembles non vides d’un R-espace vectoriel de dimen-
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sion finie décrits par un nombre fini d’égalités et d’inégalités larges ou strictes, affines
et a coefficients entiers. Les complexes polyédraux sont des réunions certaines de
polyèdres (localement un complexe polyédral ressemble à un éventail. C’est pourquoi,
sous de bonnes conditions, nous pouvons lui associer des poids). Nous terminons le
chapitre par la définition de morphismes entre complexes polyédraux.

• Chapitre 2: Moduli spaces (espaces de modules). Dans ce chapitre, nous définissons
les espaces de modules de courbes tropicales. Pour cela, nous introduisons la définition
de courbes tropicales abstraites n-marquées et de courbes tropicales paramétrées n-
marquées étiquetées. Comme en géométrie algébrique, une courbe tropicale possède
un genre. Une courbe tropicale abstraite n-marquée de genre g est un couple (Γ, δ)
où Γ est un graphe connexe dont le premier nombre de Betti est égal à g et ayant n
arêtes marquées chacune de ces arêtes étant reliée à exactement un sommet de valence
1 (nous considérons les courbes à isomorphisme près) tel que le graphe privé des ses
sommets de valence 1 soit muni de la métrique de longueur δ soit complet. Chaque
arête reliant deux sommets de valence strictement supérieure à 1 a une longueur définie
par la métrique. Ainsi, une courbe tropicale abstraite n-marquée peut être codée par ces
longueurs, conférant ainsi une structure polyédrale à l’espace de modules de courbes
tropicales abstraites n-marquées. Ensuite, nous considérons le cas particulier des
courbes de genre 1. Le graphe sous-jacent d’une courbe tropicale abstraite n-marquées
de genre 1 contient exactement un cycle simple nous appelons sa longueur j-invariant
tropical. Une courbe tropicale paramétrée n-marquée étiquetée est une courbe tropi-
cale abstraite n-marquée équipée d’une application du graphe privé de ses sommets de
valence 1 dans Rr satisfaisant de bonnes conditions.

• Chapitre 3: Local orbit spaces (espaces d’orbites locaux). Dans la première partie,
nous introduisons les espaces d’orbites locaux tropicaux. Les espaces d’orbites locaux
sont des complexes polyédraux finis dans lesquels nous identifions certains polyèdres.
Ces identifications sont données par des isomorphismes entre des sous-ensembles des
complexes polyédraux. Pour des raisons techniques, l’ensemble des isomorphismes
doit satisfaire certaines propriétés. Si le complexe polyédral est équipé de poids qui
coı̈ncident sur les polyèdres identifiés, l’espace d’orbites local hérite de la structure
de poids. Le mot tropical se réfère de nouveau à une condition d’équilibre que les
espaces d’orbites locaux conjointement avec les poids doivent remplir. Après avoir
montré que la condition d’équilibre pour l’espace d’orbites locaux et celle pour les
complexes polyédraux sont équivalentes, nous commençons la deuxième partie par la
définition de morphisme entre espaces d’orbites locaux tropicaux. Ces morphismes
sont définis comme des morphismes entre les complexes polyédraux sous-jacents qui
respectent les propriétés de l’ensemble des isomorphismes (les propriétés nous avons
à cause des raisons techniques). Ils nous permettent de définir l’image d’un espace
d’orbites local tropical. Sous certaines conditions sur l’image, on peut prouver que
le nombre d’antécédents d’un point général dans l’espace image (comptés avec mul-
tiplicités donnent par poids) est indépendant du point (corollaire 3.41). Enfin, nous
définissons les fonctions rationnelles sur les espaces d’orbites locaux tropicaux et les
diviseurs correspondants.
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• Chapitre 4: One-dimensional local orbit spaces (espaces d’orbites locaux de di-
mension 1). Pour une meilleure compréhension de l’espace d’orbites locaux défini au
chapitre 3, nous étudions plus précisément le cas de la dimension 1. Le résultat princi-
pal de ce chapitre est un théorème concernant la structure locale d’un espace d’orbites
local. Dans ce chapitre, nous traitons aussi les espaces d’orbites locaux non-Hausdorff
dans le cas unidimensionnel, cas que nous laisserons de coté dans les autres chapitres
(d’être non-Hausdorff).

• Chapitre 5: Moduli spaces for curves of arbitrary genus (espace de modules de
courbes de genre quelconque). Dans la première partie, nous équipons de la struc-
ture d’espaces d’orbites locaux l’espace de modules de courbes tropicales abstraites n-
marquées de genre g ayant exactement n sommets de valence 1, telles que les graphes
sous-jacents à ces courbes n’aient pas de sommet bivalent. Comme mentionné ci-
dessus, nous pouvons munir celui-ci d’une structure polyédrale. Si l’on oublie la
métrique, les graphes sous-jacents de deux courbes tropicales abstraites n-marquées
pouvant être différents, l’encodage par les longueurs des arêtes n’en donne pas une
description globale. Ainsi, au lieu considérer des longueurs d’arêtes bornées, nous
prenons les distances entre les n arêtes marquées. Puisque chaque courbe est munie de
ces arêtes, ce choix semble raisonnable. Cette idée a été utilisée pour les courbes trop-
icales abstraites n-marquées dans [GKM]. Malheureusement, la distance entre deux
arêtes marquées n’est pas bien définie pour les courbes de genre strictement positif.
Du fait de la présence de cycles, il n’y a pas unicité du chemin entre deux points. Pour
s’acquitter de ce problème, nous coupons chaque cycle en un point tel, que la courbe
reste connexe et nous insérons une nouvelle arête marquée à chacune des deux nou-
velles extrémités introduites. Ainsi, toutes les distances entre des arêtes marquées sont
bien définies. Étant donné que nous avons fait des choix non-canoniques, nous devons
nous en débarrasser, se qui revient à identifier des cônes. Ainsi, nous nous retrou-
vons avec un espace d’orbites local tropical homéomorphe à l’espace de modules.
Dans la deuxième partie, nous construisons un espace de modules de courbes tropi-
cales paramétrées, n-marquées et étiquetées de genre g. Puisque nous voulons utiliser
l’espace de modules de courbes abstraites, nous avons besoin d’encoder une applica-
tion dans Rr. Nous nous restreignons au seul cas où la direction des arêtes marquées
est fixée. Il suffit donc de préciser la position d’un point fixe pour avoir toutes les
informations nécessaires pour définir une application (les directions des arêtes sont
fixées et les distances entre des arêtes marquées sont déjà définies, donc l’application
est entièrement déterminée par la position d’un point). Dans notre construction des es-
paces de modules de courbes abstraites, nous avons fait une coupe dans chaque cycle
et inséré deux nouvelles arêtes. Pour être sûr que les images des cycles coupés soient
de nouveau des cycles, nous utilisons des fonctions rationnelles dans la définition des
espaces de modules. Dans la dernière partie, nous demandons que la courbe passe
par des points donnés et qu’elle répresente un point fixé de l’espace de modules de
courbes tropicales abstraites 0-marquées de genre g. Grâce à la structure d’espace
d’orbites local, nous montrons que le nombre (compté avec la multiplicité définie dans
le corollaire 3.41) de courbes tropicales paramétrées n-marquées et étiquetés de genre
donné, dont la direction des extrémités marquées est donnée, remplissant en outre les
conditions mentionnées, ne dépendent pas du choix d’une configuration de points si
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celles-ci restent générales.

• Chapitre 6: Orbit spaces (espaces d’orbites). Ce chapitre est relativement similaire
au chapitre 3. Dans la première partie, nous définissons les espaces d’orbites tropicaux
et dans la deuxième partie, les morphismes entre ces objets. Comme dans le chapitre
3, les espaces d’orbites tropicaux sont des complexes polyédraux dont nous identifions
certains polyèdres à l’aide d’isomorphismes. Toutefois, nous relâchons ici les condi-
tions sur le complexe polyédral et nous renforçons la condition sur l’ensemble des iso-
morphismes. Plus précisément, nous autorisons le complexe polyédral être infini, mais
demandons à l’ensemble des isomorphismes d’avoir une structure de groupe. Étant
donné que les conditions techniques sur l’ensemble des isomorphismes introduites au
chapitre 3 sont satisfaites pour un groupe, nous pouvons simplifier certains problèmes.
Malheureusement, le prix à payer est d’avoir un complexe polyédral infini. Cela est dû
au fait qu’il serait trop restrictif dans notre contexte de ne considérer que des groupes
finis. En raison des similitudes, nous pouvons développer pour les espaces d’orbites la
même théorie que pour les espaces d’orbites locaux.

• Chapitre 7: Moduli spaces of elliptic tropical curves (espaces de modules de cour-
bes tropicales elliptiques). Dans la première partie nous équipons d’une structure
d’espace d’orbites local l’espace de modules de courbes tropicales abstraites n-mar-
quées de genre 1 ayant exactement n sommets de valence 1 et telles que les graphes
sous-jacents n’aient pas de sommet bivalent. Comme dans le chapitre 5 nous coupons
les cycles de chaque courbe. Puisque nous sommes dans un cas particulier du chapitre
5, la plupart des calculs sont similaires, mais plus faciles. Dans la deuxième partie,
nous construisons un espace de modules de courbes tropicales paramétrées n-marquées
et étiquetées dans Rr à l’aide de fonctions rationnelles. Nous terminons cette partie par
un calcul de poids dans le cas r = 2. Dans ce cas, M. Kerber et H. Markwig ont déjà
construit les espaces de modules comme des complexes polyédraux avec des poids
[KM]. Nous montrons que les poids définis dans notre construction sont les mêmes,
excepté dans le cas où l’image du cycle de la courbe est de dimension nulle. Dans ce
cas, nos poids diffèrent de ceux de M. Kerber et H. Markwig de 1

2
. En particulier, les

espaces de modules que nous avons construit sont réductibles. Dans la troisième partie
de ce chapitre, nous montrons que le nombre de courbes tropicales elliptiques planes
de degré d dont le j-invariant est fixé et qui passent par une configuration donnée de
points ne dépend pas du choix d’une configuration générale.

• Chapitre 8: Correspondence theorems (théorèmes de correspondance). Puisque
nous voulons démontrer un théorème de correspondance, nous rappelons dans la pre-
mière partie quelques-uns d’entre eux. Le théorème 8.30 démontré par I. Tyomkin,
premier théorème de correspondance pour les courbes elliptiques dont le j-invariant est
donné, est particulièrement lié à notre travail. Dans un théorème de correspondance,
la multiplicité d’une courbe tropicale est le nombre de courbes algébriques qui lui
correspondent. En rappelant quelques théorèmes, nous observons que ces multiplicités
varient d’un problème à l’autre. Nous terminons cette partie en montrant que l’on
peut exprimer les multiplicités du théorème 8.30 de manière tropicale. Ces poids sont
les mêmes que ceux utilisés par M. Kerber et H. Markwig (resp., que ceux que nous
avons calculés). Dans la deuxième partie nous montrons une correspondance entre les
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courbes non archimédiennes elliptiques dont la valeur du j-invariant est très grande et
dont les cycles tropicaux sont les images d’une courbe tropicale elliptique paramétrée
ayant un grand j-invariant tropical. Pour cela, nous utilisons les multiplicités de M.
Kerber et H. Markwig. Étant donné que I. Tyomkin utilise les mêmes multiplicités
nous conjecturons que l’on peut utiliser ces multiplicités dans chaque cas (par exemple
pas seulement pour un j-invariant très grande).
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1 Polyhedral complexes

In this chapter we give the definitions of polyhedral complexes and morphisms between them.
These objects are the building blocks for orbit spaces and local orbit spaces. In contrast to the
definitions given in tropical geometry so far, we take a more general definition of polyhedra
and allow them to be open. The purpose of the definition is to parameterize tropical curves
with genus greater than zero. Since we are interested in genus g curves we consider curves
with positive cycle lengths. Therefore some of the polyhedra of the parameterizing space of
those curves need to be open. In this part we denote a finitely generated free abelian group
by Λ and the corresponding real vector space Λ⊗Z R by V . So we can consider Λ as a lattice
in V . The dual lattice in the vector space V ∨ is denoted by Λ∨.

Definition 1.1 (General and closed cone). A general cone in V is a non-empty subset σ ⊆
V that can be described by finitely many linear integral equalities, inequalities and strict
inequalities, i.e. a set of the form

σ = {x ∈ V |f1(x) = 0, . . . , fr(x) = 0, fr+1(x) ≥ 0, . . . , fr+s(x) ≥ 0,

fr+s+1(x) > 0, . . . , fN(x) > 0} (∗)

for some linear forms f1, . . . , fN ∈ Λ∨. We denote by Vσ the smallest linear subspace of V
containing σ and by Λσ the lattice Vσ∩Λ. We define the dimension of σ to be the dimension
of Vσ. We call σ a closed cone if it has a presentation (∗) with no strict inequalities (i.e. if
N = r + s).

Definition 1.2 (Face). A face (or subcone) of σ is a general cone τ ⊂ σ which can be
obtained from σ by changing some of the non-strict inequalities in (∗) to equalities.

Definition 1.3 (Fan and general fan). A fan in V is a finite set X of closed cones in V such
that

(a) each face of a cone in X is also a cone in X;

(b) the intersection of any two cones in X is a face of each of them.

A general fan in V is a finite set X̃ of general cones in V satisfying the following prop-
erty: there exists a fan X and a subset R ⊂ X such that X̃ = {τ \ U | τ ∈ X}, where
U =

⋃
σ∈R σ. We put |X̃| =

⋃
σ̃∈X̃ σ̃. A (general) fan is called pure-dimensional if all

its inclusion-maximal cones are of the same dimension. In this case we call the highest di-
mensional cones facets. The set of n-dimensional cones of a (general) fan X is denoted by
X(n).

1



Chapter 1: Polyhedral complexes

Construction 1.4 (Normal vector). If ∅ 6= τ, σ are cones in V and τ is a face of σ such
that dim τ = dimσ − 1, then there is a non-zero linear form g ∈ Λ∨, which is zero on τ
and positive on σ\τ . Then g induces an isomorphism Vσ/Vτ

∼= R. There exists a unique
generator uσ/τ ∈ Λσ/Λτ , lying in the same half-line as σ/Vτ and we call it the primitive
normal vector of σ relative to τ . In the following we write τ ≤ σ if τ is a face of σ and
τ < σ if τ is a proper face of σ.

Definition 1.5 (General weighted and general tropical fan). A general weighted fan (X,ωX)
in V is a pure-dimensional general fan X of dimension n with a map ωX : X(n) → Q. The
numbers ωX (σ) are called weights of the general cones σ ∈ X(n). By abuse of notation we
also write ω for the map and X for the weighted fan.
A general tropical fan in V is a weighted fan (X,ωX) fulfilling the balancing condition

∑

σ>τ

ωX (σ) · uσ/τ = 0 ∈ V/Vτ

for any τ ∈ X(dimX−1).

Definition 1.6 (Open fan). Let F̃ be a general fan in Rn and 0 ∈ U ⊆ Rn an open subset.
The set F = F̃ ∩ U = {σ ∩ U |σ ∈ F̃} is called an open fan in Rn. As in the case of fans,
put |F | =

⋃
σ′∈F σ

′.

If F̃ is a general weighted fan, we call F a weighted open fan.

Remark 1.7. Since 0 ∈ U and U is open, F̃ is determined by F .

Definition 1.8 (General polyhedron). A general polyhedron is a non-empty set σ ⊂ Rn such
that there exists a rational polyhedron σ̃ and a union u of faces of σ̃ such that σ = σ̃\u.
(This definition is equivalent to saying that a general polyhedron has the following form
{x ∈ Rn|f1(x) = p1, . . . , fr(x) = pr, fr+1(x) ≥ pr+1, . . . , fr+s(x) ≥ pr+s, fr+s+1(x) >
pr+s+1, . . . , fN (x) > pN} for some linear forms f1, . . . , fN ∈ Zn and numbers p1, . . . , pN ∈
R.)

Definition 1.9 (General polyhedral precomplex). A (general) polyhedral precomplex is a
topological space |X| and a setX of subsets of |X| equipped with embeddings ϕσ : σ → Rnσ

for all σ ∈ X such that

(a) every image ϕσ(σ), σ ∈ X is a general polyhedron, not contained in a proper affine
subspace of Rnσ ,

(b) X is closed under taking intersections, i.e. σ ∩ σ′ ∈ X is a face of σ and of σ′ for any
σ, σ′ ∈ X such that σ ∩ σ′ 6= ∅,

(c) for every pair σ, σ′ ∈ X the compositionϕσ◦ϕ
−1
σ′ is integer affine-linear on ϕσ′(σ∩σ

′),

(d) |X| =
.⋃

σ∈X

ϕ−1σ (ϕσ(σ)
◦), where ϕσ(σ)

◦ denotes the interior of ϕσ(σ) in Rnσ .

We call the open set ϕ−1σ (ϕσ(σ)
◦) the relative interior of σ and denote it by σri.

Definition 1.10 (General polyhedral complex). A (general) polyhedral complex is a (general)
polyhedral precomplex (X, |X|, {ϕσ|σ ∈ X}) such that for every σ ∈ X we are given an
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open fan Fσ (denoted as well by FX
σ to underline that it belongs to the complex X ) in some

RNσ and a homeomorphism

Φσ : Sσ =
⋃

σ′∈X,σ′⊇σ

(σ′)ri ∼
−→ |Fσ|

satisfying:

(a) for all σ′ ∈ X, σ′ ⊇ σ one hasΦσ(σ
′∩Sσ) ∈ Fσ and Φσ is compatible with the Z-linear

structure on σ′, i.e. Φσ ◦ ϕ
−1
σ′ and ϕσ′ ◦ Φ

−1
σ are integer affine linear on ϕσ′(σ

′ ∩ Sσ),
resp. Φσ(σ

′ ∩ Sσ),

(b) for every pair σ, τ ∈ X, there is an integer affine linear mapAσ,τ such that the following
diagram commutes:

Sσ ∩ Sτ

∼Φσ

��

∼
Φτ

// Φτ (Sσ ∩ Sτ )

Φσ(Sσ ∩ Sτ )

Aσ,τ

66
n

n
n

n
n

n
n

n
n

n
n

n

.

For simplicity we usually drop the embeddings ϕσ or the maps Φσ in the notation and denote
the polyhedral complex (X, |X|, {ϕσ|σ ∈ X}, {Φτ |τ ∈ X}) by (X, |X|, {ϕσ|σ ∈ X}) or
by (X, |X|, {ϕ}, {Φτ |τ ∈ X}) or by (X, |X|) or just by X if no confusion can occur. The
subsets σ ∈ X are called the general polyhedra or faces of (X, |X|). The dimension of
(X, |X|) is the maximum of the dimensions of its general polyhedra. We call (X, |X|) pure-
dimensional if all its inclusion-maximal general polyhedra are of the same dimension. We
denote by X(n) the set of polyhedra in (X, |X|) of dimension n. Let τ, σ ∈ X . As in the case
of fans we write τ ≤ σ (or τ < σ) if τ ⊆ σ (or τ ( σ, respectively). By abuse of notation
we identify σ with ϕσ(σ).

A (general) polyhedral complex (X, |X|) of pure dimension n together with a map ωX :
X(n) → Q is called weighted polyhedral complex of dimension n, and ωX(σ) is called the
weight of the polyhedron σ ∈ X(n), if all Fσ are weighted open fans and

• ωX(σ
′) = ωFσ(Φσ(σ

′ ∩ Sσ)) for every σ′ ∈ (X)(n) with σ′ ⊇ σ,

The empty complex ∅ is a weighted polyhedral complex of every dimension. If ((X, |X|),
ωX) is a weighted polyhedral complex of dimension n, then put

X∗ = {τ ∈ X|τ ⊆ σ for some σ ∈ X(n) with ωX(σ) 6= 0}, |X∗| =
⋃

τ∈X∗

τ ⊆ |X|.

Note that
(
(X∗, |X∗|), ωX |(X∗)(n)

)
is again a weighted polyhedral complex of dimension n.

This complex is called the non-zero part of ((X, |X|), ωX). We call a weighted polyhedral
complex ((X, |X|), ωX) reduced if ((X, |X|), ωX) = ((X∗, |X∗|), ωX∗). Since all polyhedral
complexes considered are general we skip the word general from now on.

Example 1.11. Figure 1.1 represents a weighted polyhedral complex together with the maps
ϕσ, and figure 1.2 represents the same complex together with the maps Φσ and its weights
(we only label weights non-equal to one).
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Figure 1.1: A weighted polyhedral complex together with the maps ϕσ.

2

2

2

Figure 1.2: A weighted polyhedral complex together with the maps Φσ .

Definition 1.12 (Subcomplex and refinement). Let (X, |X|, {ϕσ|σ ∈ X}) and (Y, |Y |,
{ψτ |τ ∈ Y }) be two polyhedral complexes. We call X a subcomplex of Y if

(a) |X| ⊆ |Y |,

(b) for every σ in X there exists a τ ∈ Y with σ ⊆ τ ,

(c) for a pair σ and τ from (b) the maps ϕσ ◦ ψ
−1
τ and ψτ ◦ϕ

−1
σ are integer affine linear on

ψτ (σ), resp. ϕσ(σ).

We write (X, |X|) < (Y, |Y |) in this case, and define a map CX,Y : X → Y that maps a cone
in X to the inclusion-minimal cone in Y containing it.
We call a polyhedral complex (X, |X|) a refinement of (Y, |Y |), if

(a) (X, |X|) < (Y, |Y |)

(b) |X| = |Y |

We call a weighted polyhedral complex (X, |X|) a refinement of a weighted polyhedral com-
plex (Y, |Y |) if in addition the following condition holds:

• ωX(σ) = ωY (CX∗,Y ∗(σ)) for all σ ∈ (X∗)(dim(X)).

Definition 1.13 (Morphism of (general) polyhedral complexes). Let X and Y be two (gen-
eral) polyhedral complexes. A morphism of (general) polyhedral complexes f : X → Y
is a continuous map f : |X| → |Y | with the following properties: there exist refinements
(X ′, |X ′|, {ϕ}, {Φσ|σ ∈ X ′}) and (Y ′, |Y ′|, {ψ}, {Ψτ |τ ∈ Y ′) of X and Y , respectively,
such that

(a) for every general polyhedron σ ∈ X ′ there exists a general polyhedron σ̃ ∈ Y ′ with
f(σ) ⊆ σ̃,
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(b) for every pair σ, σ̃ from (a) the map Ψeσ ◦ f ◦Φ
−1
σ : |FX′

σ | → |F Y ′

eσ | induces a morphism
of fans F̃X′

σ → F̃ Y ′

eσ , where F̃X′

σ and F̃ Y ′

eσ are the general fans given in definition 1.6 (a
morphism of fans is a Z-linear map, see [GKM] definition 2.22).

A morphism of weighted polyhedral complexes is a morphism of polyhedral complexes (i.e.
there are no conditions on the weights). IfX = Y and if there exists a morphism g : X → X
such that g ◦ f = f ◦ g = idX we call f an automorphism of X .
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2 Moduli spaces

In this chapter we give the definition of the moduli spaces we will equip later on with a
structure of a (local) orbit space.

2.1 Moduli space of n-marked tropical curves

Definition 2.1 (n-marked abstract tropical curves). An abstract tropical curve is a pair (Γ,
δ) such that Γ is a connected graph, and Γ = Γ\ {1-valent vertices} has a complete inner
metric δ (i.e. the edges adjacent to two vertices of Γ are isometric to a segment, the edges
adjacent to one vertex of Γ are isometric to a ray or a loop and the edges adjacent to no
vertex of Γ are isometric to a line). The edges adjacent to at least one 1-valent vertex of Γ
are called unbounded, the other edges are called bounded. The unbounded edges have length
infinity. The bounded edges have a finite positive length. For simplicity we denote an abstract
tropical curve by Γ. An n-marked abstract tropical curve is a tuple (Γ, x1, ..., xn) formed by
an abstract tropical curve Γ and distinct rays x1, ..., xn of Γ. Two such marked tropical curves
(Γ, x1, ..., xn) and (Γ̃, x̃1, ..., x̃n) are called isomorphic (and will from now on be identified)
if there exists an isometry from Γ to Γ̃, mapping xi to x̃i, i = 1, ..., n (i.e. after choosing
orientations on the edges of Γ and Γ̃, there exists a homeomorphism Γ → Γ̃ identifying xi

and x̃i and such that the edges of Γ are mapped to edges of Γ̃ by an affine map of slope±1.).

The unbounded edges are called leaves as well.

Remark 2.2. We can parameterize each edge E of a curve Γ by an interval [0, l(E)] for
bounded edges and by [0,∞) or (−∞,∞) for unbounded edges, where l(E) is the length of
the edge (for the choice of the direction in the bounded case we choose which vertex of E
is parameterized by 0). Such a parameterization is called canonical. We do not distinguish
between the unbounded edge xi and the vertex of valence strictly greater than 1 adjacent to it
and call the vertex also xi. Since different edges can be adjacent to the same vertex, a vertex
can have several labels.

Definition 2.3 (Genus). We define the genus g of an abstract tropical curve (Γ, δ) to be the
first Betti number b1(Γ) of Γ.

Definition 2.4 (Combinatorial type). The combinatorial type of an abstract tropical curve (Γ,
δ) is the (combinatorial) graph Γ.

Definition 2.5 (Contraction). Let Γ be a connected graph. The procedure of removing an
edge e ∈ Γ and identifying the endpoints of e is called contraction.

7



Chapter 2: Moduli spaces

Definition 2.6. It is not difficult to see that for a combinatorial type Γ the set of all curves
given by definition 2.1 with the combinatorial type Γ or the combinatorial types one gets
by contracting bounded edges of Γ can be embedded in a suitable Rm by the lengths of the
bounded edges and therefore this set of curves has a topological structure (this subset of Rm

is called combinatorial cone). Note, that for combinatorial types with symmetries we take as
set of curves (in the beginning of this definition), n-marked abstract tropical curves with an
ordering of the bounded edges. Afterwards we take a connected subspace of this set which
contains exactly one representative of each n-marked abstract tropical curve. Thus, the set
of all n-marked abstract tropical curves of genus g with this induced topological structure
on each combinatorial cone (the cones are glued together along faces representing the same
curves) is a topological space.

Example 2.7. We consider a 5-marked tropical curve (Γ, δ) with edge lengths a and b (see on
the left hand side of figure 2.1). The combinatorial cone parameterizing all curves with the
combinatorial type Γ or with the combinatorial type one gets by contractions of Γ is drawn
on the right hand side of figure 2.1.

x1

x2

a b

x3

x4

x5 a

b

Figure 2.1: A 5-marked abstract tropical curve and its combinatorial cone.

Definition 2.8 (abstract Mg,n). The space Mg,n is defined to be the topological space of all
n-marked abstract tropical curves (modulo isomorphism) with the following properties:

(a) each curve has exactly n leaves,

(b) the curves have no vertices of valence 2, and

(c) the genus of each curve is g.

The topology of this space is the one defined by its combinatorial cones. We call the space
Mg,n a moduli space.

Example 2.9. The moduli space of 2-marked abstract tropical curves of genus 1 and the
curves corresponding to the faces are given in the following picture:

x2

x1

x1

x2

x2

x2

x1

x1

8



Chapter 2: Moduli spaces

The left cone parameterizes the curves where the two edges of the cycle have the same length.
The appearance of this cone is due to the fact that the curves corresponding to the curve on
the lower left side are the same if we swap the lengths of the two bounded edges. Thus, the
left cone is in the boundary of the second cone from left.

Let (Γ, δ) be a curve of genus 1. As a tropical counterpart of the j-invariant, we take the
length of the cycle as it was suggested in [M3], [V] and [KM]. Motivations for this choice
can be found, for example, in [KMM1], [KMM2] and [Sp2].

Definition 2.10 (j-invariant). For an n-marked curve Γ of genus 1, the sum of the lengths of
all edges forming the simple cycle is called the j-invariant of Γ.

2.2 Moduli space of parameterized labeled n-marked
tropical curves

Definition 2.11 (Tropical M̃lab
g,n(R

r,∆)). A parameterized labeled n-marked tropical curve
of genus g in Rr is a tuple (Γ, x1, . . . , xN , h), where N ≥ n is an integer, (Γ, x1, . . . , xN )
is an abstract N-marked tropical curve of genus g, and h : Γ → Rr is a continuous map
satisfying the following conditions.

(a) On each edge E of Γ the map h is of the form h(t) = a + t · v for some a ∈ Rr and
v ∈ Zr. The integral vector v occurring in this equation if we pick for E the canonical
parameterization starting at V ∈ ∂E is denoted v(E, V ) and is called the direction of
E (at V ). If E is an unbounded edge and V is its only boundary point we write v(E)
instead of v(E, V ) for simplicity.

(b) For every vertex V of Γ we have the balancing condition
∑

E|V ∈∂E

v(E, V ) = 0.

(c) v(xi) = 0 for i = 1, . . . , n (i.e. each of the first n leaves is contracted by h), whereas
v(xi) 6= 0 for i > n (i.e. the remaining N − n ends are “non-contracted ends”).

Two parameterized labeled n-marked tropical curves (Γ, x1, . . . , xN , h) and (Γ̃, x̃1, . . . , x̃N ,
h̃) in Rr are called isomorphic (and will from now on be identified) if there is an isomorphism
ϕ : (Γ, x1, . . . , xN)→ (Γ̃, x̃1, . . . , x̃N ) of the underlying abstract curves such that h̃ ◦ϕ = h.

Let m = N − n. The degree of a parameterized labeled n-marked tropical curve Γ of
genus g as above is defined to be the m-tuple ∆ = (v(xn+1), . . . , v(xN)) ∈ (Zr\{0})m of
directions of its non-contracted ends. The combinatorial type of Γ is given by the data of the
combinatorial type of the underlying abstract marked tropical curve (Γ, x1, . . . , xN ) together
with the directions of all its (bounded and unbounded) edges. From now on, the number N
will always be related to n and ∆ by N = n +#∆ and thus will denote the total number of
(contracted or non-contracted) ends of an n-marked curve of genus g in Rr of degree ∆.

Fix a combinatorial type T of a parameterized labeled n-marked tropical curve with n > 0.
The set of curves with combinatorial type T or with the combinatorial type one gets by

9
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x1
x2

x3
x4

h
f3

f4

f1

f2

Figure 2.2: A parameterized tropical curve.

contractions of T can be embedded in a suitable Rb by the lengths of all bounded edges
together with the point h(x1). As in the case of abstract tropical curves this gives a topology
on the set of parameterized labeled n-marked tropical curves of genus g in Rr.

The space (of the isomorphism classes) of all parameterized labeled n-marked tropical curves
of genus g and of a given degree ∆ in Rr, such that all vertices have valence at least 3 will
be denoted M̃lab

g,n(R
r,∆) and will be called moduli space. Let (e1, . . . , er) be the canonical

basis of Rr. For the special choice

∆ = (−e0, . . . ,−e0 , . . . , −er, . . . ,−er)

with e0 = −e1 − · · · − er and where each ei occurs exactly d times, we will also denote this
space by M̃lab

g,n(R
r, d) and say that these curves have degree d.

We now consider an example of a parameterized labeled 4-marked tropical curve and use the
notation of the previous definition.

Example 2.12. Let X be the polyhedral complex given by four bounded edges (f1, f2, f3, f4)
forming a cycle and four rays (x1, x2, x3, x4) attached to the four meeting points of two of
them, such that fi−1, fi and xi meet at one point for i ∈ {2, . . . , 4} (and therefore f1, f4 and
x1 meet at one point) which we call pi for i ∈ {1, . . . , 4}. Say the vectors v(x1) =

(
−1
−1

)
,

v(x2) =
(
1
−1

)
, v(x3) =

(
1
1

)
, v(x4) =

(
−1
1

)
, l(f1) = l(f3) = 2 and l(f2) = l(f4) = 1. We

put h(p1) =
(
0
0

)
, h(p2) =

(
2
0

)
, h(p3) =

(
2
1

)
and h(p4) =

(
0
1

)
and get a parameterized tropical

curve (X, x1, . . . , x4, h) ∈ M̃lab
1,0(R

2, (
(
−1
−1

)
,
(
1
−1

)
,
(
1
1

)
,
(
−1
1

)
)). A picture of (X, x1, . . . , x4, h)

is given in figure 2.2.
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3 Local orbit spaces

The purpose of this chapter is to define local orbit spaces and to establish some properties
for them. In the first part we define local orbit spaces and in the second part we introduce
morphisms between them. After this we prove our main result for tropical local orbit spaces
(see corollary 3.41).

3.1 Tropical local orbit space

Definition 3.1 (Local orbit space). Let X be a finite polyhedral complex and G a finite set
of isomorphisms g : Ug → Vg between open polyhedral subcomplexes Ug and Vg of X (open
in X), such that the following conditions hold:

(a) the identity morphism of X is in G,

(b) g−1 ∈ G for all g ∈ G,

(c) for all F = {f1, . . . , fn} ⊂ G, g ∈ G with g−1(|Ufi
|) 6= ∅, for all 1 ≤ i ≤ n

there exists H = {h1, . . . , hn} ⊂ G with |F | = |H| such that Uhi
⊃ g−1(|Ufi

|) and
hi|g−1(|Ufi

|) = fi ◦ g|g−1(|Ufi
|) for 1 ≤ i ≤ n,

(d) for all g ∈ G the maximal subset U ⊂ Ug with g|U = id |U is closed in X .

We denote the induced maps on the topological space |Ug| by g as well. We identify points
of |X| which are identified by elements of G and denote the topological space one gets by
these identifications by |X/G|. The conditions (a) to (c) define an equivalence relation of
polyhedra. For a polyhedron σ ∈ Ug with g ∈ G let us denote by σX/G the image of |σ| in

|X/G|. By S
|X/G|

we denote the closure of S ⊂ |X/G| in |X/G|. We put [σ] = σ
|X/G|
X/G ⊂

|X/G| and call it a class. After refinement we can assume that for all g ∈ G and for all
σ ∈ Ug we have that σX ∈ X is a polyhedron. Let g ∈ G and σ ∈ Ug. We call the set
{τ ∈ X, [τ ] = [σ]} orbit of X . The set of orbits of X together with G is called a local orbit
space and is denoted by X/G. Sometimes we denote the maps g by gX to show that g is an
isomorphism between two polyhedral subcomplexes of X .

Remark 3.2. The conditions on the set G are fulfilled if G is a group.

Example 3.3. Figure 3.1 shows the polyhedral complex X = {R≤0 × R>0, 0× R>0,R≥0 ×
R>0} and the topological space of the local orbit space X/G = ({{R≤0 × R>0,R≥0 ×
R>0}, {0 × R>0}}, G). The set of isomorphisms G consists of the identity, the map g :
R<0 × R>0 → R2

>0,
(

x
y

)
7→

(
y
−x

)
and g−1.

11
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x

X X/G
y

Figure 3.1: A polyhedral complex and a local orbit space.

Lemma 3.4. Let X/G be a local orbit space and let Y be a subcomplex ofX . For any g ∈ G
the topological space |Ug| ∩ |Y | has a canonical structure of an open polyhedral complex,
such that g̃ : |Ug| ∩ |Y | → |Vg|, x 7→ g(x) defines a morphism of polyhedral complexes.

Proof. By definition there exist refinements R and S of Ug and of Vg, respectively, such that
conditions (a) and (b) of definition 1.13 hold. Since Y is a subcomplex of X one gets that
R∩ Y (the set of polyhedra given by the intersection of a polyhedron of R and a polyhedron
of Y which is non-empty) is a subcomplex of R and of Y . For each σ ∈ R ∩ Y we have a
σ′ ∈ Ug with σ ⊂ σ′. Thus, g̃(σ) = g(σ) ⊆ g(σ′) ⊆ σ̃ ∈ S and condition (a) of definition
1.13 holds for g̃. Since |FR∩Y

σ | ⊆ |FR
σ′ |, condition (b) of a morphism holds as well.

Definition 3.5 (Stabilizer, Gτ−orbit of σ). For X and G as above and τ, σ ∈ X we call
Gτ = {g ∈ G|τ ⊂ Ug with g(x) = x for any x ∈ τ} the stabilizer of τ . We define
Xσ/τ = {g(σ◦)|g ∈ Gτ} to be the Gτ−orbit of σ.

Lemma 3.6. Let X/G be a local orbit space and take σ, σ′ ∈ X with [σ] = [σ′]. One has
|Gσ| = |Gσ′ |.

Proof. By symmetry it suffices to show that |Gσ′ | ≤ |Gσ|. Let {f1, . . . , fn} = Gσ′ . By
assumption we have [σ] = [σ′]. Thus, there exists a g ∈ G with g(σ◦) = σ′. By condition
(c) of definition 3.1 there exist h1, . . . , hn ∈ G with hi|σ◦ = fi ◦ g|σ◦ for 1 ≤ i ≤ n. By
(b) of definition 3.1 there exists h−1i for 1 ≤ i ≤ n. Again by condition (c) of definition 3.1
there are k1, . . . , kn ∈ G such that ki|σ◦ = h−1i ◦ g|σ◦ for 1 ≤ i ≤ n. Since h−1i ◦ g|σ◦ =
g−1 ◦ f−1i ◦ g|σ◦ = id |σ◦ and since the maximal subset of X where ki is the identity is closed
we have |Gσ′ | ≤ |Gσ| by (c) of definition 3.1.

Definition 3.7 (Weighted local orbit space). Let (X,ωX) be a weighted polyhedral complex
of pure dimension n, and X/G a local orbit space. If

• for any g ∈ G and for any σ ∈ X(n) with σ◦ ⊆ |Ug|, one has ωX (σ) = ωX

(
g(σ◦)

)
,

we call X/G a weighted local orbit space. The classes [σ] ⊂ |X/G| are called weighted
classes.

The weight function on the weighted classes of X/G is denoted by [ω] and defined by
[ω]([σ]) = ω(σ)/|Gσ|, for all [σ] ∈ X/G.

Lemma 3.8. For a weighted local orbit spaceX/G of dimensionm and σ, τ ∈ X with τ < σ
and dim(τ) + 1 = dim(σ) = m, one has |Xσ/τ | · |Gσ| = |Gτ |.

12
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Proof. For each σ′ ∈ Xσ/τ there exists a g ∈ Gτ with σ = g(σ′◦). Put {f1, . . . fn} = Gσ

with |Gσ| = n. By (c) of definition 3.1 we have n different elements of G mapping σ to σ′.
By injectivity of the morphisms of G those elements have to be different for each element
of Xσ/τ and therefore |Xσ/τ | · |Gσ| ≤ |Gτ |. For each g in Gτ there exists a σ′ ∈ Xσ/τ with
g(σ′◦) = σ. Let T ⊂ Gτ be the set of all elements g ∈ Gτ with g(σ′◦) = σ. Since for each
g in Gτ there exists a σ̃ ∈ Xσ/τ with g(σ̃◦) = σ it suffices to show that |T | ≤ n. But for
an arbitrary g ∈ T it follows that f ◦ g−1|σ◦ = id |σ◦ . Thus, by (c) of definition 3.1 one has
|T | ≤ n.

Definition 3.9. Let X/G be a local orbit space and Y be a subcomplex of X . We denote
the set {g||Y |∩|Ug|∩g−1(|Vg |∩|Y |), such that g ∈ G} by G|Y and consider them as isomorphisms
between open polyhedral subcomplexes of Y . For an element g ∈ Gwe denote the restriction
to |Y |∩|Ug|∩g

−1(|Vg|∩|Y |) by gY . (Remark: for g 6= h ∈ Gwe distinguish as well between
gY and hY even if g||Y |∩|Ug|∩g−1(|Vg |∩|Y |) = h||Y |∩|Uh|∩h−1(|Vh|∩|Y |).)

Corollary 3.10 (of lemma 3.4). Take the same notation as in the previous definition. The
topological spaces |Y | ∩ |Ug| ∩ g

−1(|Vg| ∩ |Y |) and gY (|Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |)) have

a canonical polyhedral structure such that the map gY from |Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |) to

gY (|Y | ∩ |Ug| ∩ g
−1(|Vg| ∩ |Y |)) is an isomorphism of polyhedral complexes.

Proof. By lemma 3.4, |Ug| ∩ |Y | and |Vg| ∩ |Y | are canonically polyhedral complexes. Thus,
|Y | ∩ |Ug| ∩ g

−1(|Vg| ∩ |Y |) is an intersection of two polyhedral complexes and therefore a
polyhedral complex as well. Since g is an isomorphism, the restriction of g to a subset and
the restriction of the image of g to the image of this subset gives an isomorphism.

Remark 3.11. By corollary 3.10 the set G|Y is a set of isomorphisms.

Lemma 3.12. Let X/G be a local orbit space and let Y be a subcomplex of X , then G|Y
fulfills all conditions from definition 3.1.

Proof. The restriction of the identity is the identity as well, thus (a) holds. Since the topology
of Y is the subspace topology, condition (d) holds as well. Furthermore, (b) holds since
UgY

= (g−1)Y (VgY
) for every g ∈ G. Condition (c) holds by the definition of G|Y .

Definition 3.13 (Local suborbit space). Let X/G be a local orbit space. A local orbit space
Y/H is called a local suborbit space of X/G (notation: Y/H ⊂ X/G) if Y < X and
H = G|Y (as sets). In this case we denote by CY,X : Y → X the map which sends a general
polyhedron σ ∈ Y to the (unique) inclusion-minimal general polyhedron of X that contains
σ. Note that for a local suborbit space Y/H ⊂ X/G we obviously have |Y | ⊂ |X| and
dimCY,X(σ) ≥ dim σ for all σ ∈ Y . Let X/G be a weighted local orbit space of dimension
n and let Y/H ⊂ X/G be a local suborbit space. If ωY (σ) = ωX(CY,X(σ)) for all σ ∈ Y (n),
we write as well ωX(σ) for ωY (σ).

Example 3.14. The upper part of figure 3.2 presents an example of the local orbit space
(−1, 1) as local suborbit space of R. The lower part of the figure presents the same polyhedral
complexes as local orbit spaces, but we take as set of isomorphisms G the map g : x 7→ −x
and the identity (g is defined on (−1, 1) and on R).
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(−1; 1) R
⊂

⊂
(−1; 1)/G R/G

Figure 3.2: Two local suborbit spaces.

Definition 3.15 (Refinement). Let ((Y, |Y |), ωY )/H and ((X, |X|), ωX) /G be two weighted
local orbit spaces. We call ((Y, |Y |), ωY )/H a refinement of ((X, |X|), ωX)/G, if

(a) ((Y, |Y |), ωY )/H ⊂ ((X, |X|), ωX)/G,

(b) |Y ∗| = |X∗|,

(c) ωY (σ) = ωX(CY,X(σ)) for all σ ∈ (Y ∗)(dim(Y )),

(d) each σ ∈ Y is closed in |X|.

We say that two weighted local orbit spaces ((X, |X|), ωX)/G and ((Y, |Y |), ωY )/H are
equivalent (notation: ((X, |X|), ωX)/G ∼= ((Y, |Y |), ωY )/H) if they have a common refine-
ment.

Remark 3.16. Let X/G and Y/H be two local orbit spaces. If Y/H is a refinement of X/G
then for all g ∈ G the complex U(gY ) is a refinement of Ug and H = G.

Definition 3.17 (Tropical local orbit space). Let (X,ωX) /G be a weighted local orbit space.
If for any τ ∈ X(n−1), one has

∑
σ>τ

1
|Xσ/τ |

[ωX ]([σ])(uσ/τ ) ∈ Vτ , then X/G is called a
tropical local orbit space.

Proposition 3.18. The balancing condition for weighted local orbit spaces (X/G, ωX) holds
if and only if the balancing condition of the underlying weighted complex (X,ωX) holds.

Proof. Let (X/G, ωX) be a weighted local orbit space.
” ⇒ ”: By assumption the balancing condition of the weighted local orbit space holds.
Thus, for every τ ∈ X of codimension one we have

∑
σ>τ

1
|Xσ/τ |

[ωX ]([σ]) · uσ/τ = t ∈ Vτ .

To verify the balancing condition we have to check it for the fans Fσ (see definition 1.10) of
X . We denote the cones of this fan by the same letters as for the complex. By condition (b)
of definition 1.13 the elements of G are linear on these fans. Thus, we get

|Gτ | · t =
∑

g∈Gτ

g(t)

=
∑

g∈Gτ

g(
∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · uσ/τ )

=
∑

g∈Gτ

∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · g(uσ/τ)

=
∑

σ>τ

|Gσ| · [ωX ]([σ]) · uσ/τ

=
∑

σ>τ

ωX(σ) · uσ/τ .
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” ⇐ ” Put n = dim(X). For any τ ∈ X(n−1) one has
∑

σ>τ
1
|Gτ |

ωX(σ) · vσ/τ = t ∈ Vτ ,

because the balancing condition holds for (X,ωX). Thus, we have

∑

σ>τ

1

|Xσ/τ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

|Gσ|

|Gτ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ

Definition 3.19 (Reduced weighted local orbit spaces). Let (X/G, ω) be a weighted local
orbit space. Since the weight of a polyhedron σ plays the role of the multiplicity of points
in σri, the weight zero stands for multiplicity zero. Since these polyhedra do not contribute
to the balancing condition we can delete them without changing the balancing condition.
Therefore, if we use weighted local orbit spaces we directly consider the non-zero part of
them (see definition 1.10). Weighted local orbit spaces without weight-zero facets are called
reduced.

Observation 3.20. Let X ′/G′ and X ′′/G′′ be local orbit spaces, then X/G = (X ′ × X ′′)/
(G′ ×G′′), given by the product of the sets, is a local orbit space as well.
If X ′/G′ and X ′′/G′′ are weighted local orbit spaces of dimension n and m, then we make
X/G into a weighted local orbit space by ωX(σ

′ × σ′′) = ωX′(σ
′) · ωX′′(σ

′′) for σ′ ∈ X ′(n)

and σ′′ ∈ X ′′(m).
IfX ′/G′ andX ′′/G′′ are tropical local orbit spaces, thenX/G is a tropical local orbit space as
well, since a codimension 1 face of X is the product of a codimension 0 and a codimension 1
face. Thus, the balancing condition around a codimension 1 face is the same as the balancing
condition around the corresponding codimension 1 face in X ′/G′ (resp. X ′′/G′′).

3.2 Morphisms of local orbit spaces

Now we have a first understanding of local orbit spaces and we can give the definition of
morphisms between them. For a detailed investigation on one dimensional local orbit spaces
see chapter 4.

The definition of morphisms should respect the structure of the set of isomorphisms (con-
ditions (a)-(d) of definition 3.1) and the local fan structure of the local orbit spaces (propo-
sition 3.18). The necessary conditions for this are (a) to (f) in the following definition.
Furthermore, we want to define images of pure-dimensional local orbit spaces. Only the
codimension-one and codimension-zero strata are important for the balancing condition.
Thus, we add a further condition which ensures that the morphism is ”well-behaved” in
codimension smaller than 2. Since this condition (g) is not as easy to understand as the
others we will consider an example regarding this property after the definition.
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Definition 3.21 (Morphism of local orbit spaces). Let (X, |X|, {ϕ}, {Φσ|σ ∈ X})/G and
(Y, |Y |, {ψ}, {Ψτ |τ ∈ Y )/H be two local orbit spaces and put n = dim(X). A morphism
of local orbit spaces e : X/G 7→ Y/H is a pair (e1, e2) consisting of a continuous map
e1 : |X| → |Y | and a map e2 : G→ H with the following properties:

(a) e2(idG) = idH

(b) e2(g−1) = e2(g)
−1

(c) if h fulfills condition (c) of definition 3.1 for elements f, g ∈ G (here we have |F | = 1),
then

e2(h)|e1(g−1(|Uf |)) = e2(f) ◦ e2(g)|e1(g−1(|Uf |))

(d) there exists a refinement X ′ of X such that for every general polyhedron σ ∈ X ′ there
exists a general polyhedron σ̃ ∈ Y with e1(σ) ⊆ σ̃,

(e) for every pair σ, σ̃ from (d) there exist F̃X
σ and F̃ Y

eσ such that the map Ψeσ ◦ e1 ◦ Φ
−1
σ :

|FX
σ | → |F Y

eσ | induces a morphism of fans F̃X
σ → F̃ Y

eσ (a morphism of fans is a Z-linear
map, see [GKM] definition 2.22), where F̃X

σ and F̃ Y
eσ are suitable weighted general fans

associated to FX
σ and F Y

eσ , respectively (cf. definition 1.6),

(f) e1(g(x)) = e2(g)(e1(x)) for all g ∈ G and x ∈ Ug.

If X is pure-dimensional we ask a morphism to fulfill the following condition as well:

(g) Let ẽ1 be the induced map from |X/G| to |Y/H|. After a refinement of X ′ from
condition (d) one has that for any σ, σ̃ ∈ X, with dim(ẽ1([σ]) ∩ ẽ1([σ̃])) = n one has
dim(ẽ1([σ])\ẽ1([σ̃])) ≤ dim(ẽ1([σ]))−2 and dim(ẽ1([σ̃])\ẽ1([σ])) ≤ dim(ẽ1([σ̃]))−2.

A morphism of weighted local orbit spaces is a morphism of local orbit spaces (i.e. there are
no conditions on the weights).

We consider an example to understand condition (g) in the previous definition. Since (g) is
a condition only on the polyhedra we take trivial isomorphism sets (i.e. G = H = {id}).

Example 3.22. Let X (= X/{id}) be the disjoint union of the cone X1 = {(x, y) ∈ R2|y >
0} and the cone X2 = R2 (we label the directions by w and z) and let Y (= Y/{id}) be R2

(labeled by x′ and y′). The map e : X → Y is given by the identity map of the cone X1 and
R2 to R2 such that e(x) = e(w) = x′, and e(y) = e(z) = y′ (see figure 3.3). It is easy to
see that the conditions (a) to (f) are fulfilled. Let X2 be any refinement of R2 and let C be a
2-dimensional subcone of X1 such that the border of C contains a segment I of the x−axis.
Since dim(e−1(e(C)) ∩X2) = 2, but e−1(e(I))∩X2 = ∅, there exists a 2-dimensional cone
in X2 contradicting (g) together with C (there must be a cone containing a part of I and
elements with y′ > 0). Thus the map e is not a morphism.

Remark 3.23. The problem we are handling in case (g) is, that we would like to have the
image to be a local suborbit space. In particular condition (b) of definition 1.9 should hold.

The next two propositions provide a better understanding of condition (g). In particular, the
second proposition gives a criterion for the failure of (g).

Proposition 3.24. Let X/G and Y/H be local orbit spaces and X/G be of pure dimension
n. Let e be a morphism from X/G to Y/H and X ′ a refinement from (g) in definition 3.21.
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Figure 3.3: A map, but not a morphism between two local orbit spaces.

For every refinement X ′′ of X ′ there exists a refinement W of X ′′ such that (g) holds for W
as well.

Proof. By refining X ′′ we can assume that for all σ, σ̃ ∈ X ′′ with dim(ẽ1([σ])∩ ẽ1([σ̃])) = n
one has dim(ẽ1([σ])\ẽ1([σ̃])) ≤ n − 1 and dim(ẽ1([σ̃])\ẽ1([σ])) ≤ n − 1. We put τ =
ẽ1([σ])\ẽ1([σ̃]). Let σ′ (resp. σ̃′) be the polyhedron from X ′ which contains σ (resp. σ̃).
Since e1 is a linear map on the interior of the polyhedra (see definition 3.21 (e)) and it is
continuous everywhere, τ cannot be in ẽ1([σ̃′]). Since σ′ ⊃ σ we have that ẽ1([σ′]) contains
τ and therefore dim τ ≤ n − 2. Thus, g holds for the above mentioned refinement of X ′′ as
well.

Proposition 3.25. Let X/G be a pure n-dimensional local orbit space and Y/H be a local
orbit space of arbitrary dimension. Let e be a map from X/G to Y/H fulfilling conditions
(a) to (f) of definition 3.21. Then e is a morphism iff for every refinement of X ′ (X ′ as in
condition (d)) and any σ, σ̃ ∈ X ′(n) the following holds: dim(ẽ1([σ̃])\ẽ1([σ])) ≤ n − 2 or
dim(ẽ1([σ̃])\ẽ1([σ])) = n.

Proof. ” ⇐ ”: After refinement we can assume that dim(ẽ1([σ̃])\ẽ1([σ])) = n does not
occur and thus (g) is fulfilled.

” ⇒ ”: Let Z be the refinement of (g). Assume, that there exist σ, σ̃ ∈ X ′(n) such that
dim(ẽ1([σ̃])\ẽ1([σ])) = n − 1. In this case the intersection has to be n-dimensional. Take
a common refinement X ′′ of X ′ and Z. Then by proposition 3.24 one has a refinement
W of X ′′ fulfilling g. Let σ̃′ be a polyhedron of W (n) such that [σ̃′] contains an (n − 1)-
dimensional part of ẽ1([σ̃])\ẽ1([σ]). Since W is a refinement of X ′ as well, there exists at
least one polyhedron σ′ ⊂ σ with dim(ẽ1([σ̃′]) ∩ ẽ1([σ′])) = n. We have ẽ1([σ′]) ⊂ ẽ1([σ])
and dim(ẽ1([σ̃′])\ẽ1([σ])) = n− 1. Thus, we get a contradiction and our assumption has to
be false.
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Example 3.26. Let us reconsider example 3.22. If we subdivide X2 along the w−axis, the
resulting subdivision of X does not fulfill the condition of the previous proposition and (g)
does not hold.

Lemma 3.27. Let X/G, Y ′/H ′ and Y ′′/H ′′ be local orbit spaces and e′ : X/G → Y ′/H ′

and e′′ : X/G→ Y ′′/H ′′ be morphisms. Then e : X/G→ (Y ′ × Y ′′)/(H ′ ×H ′′), given by
e1 : |X| → |Y ′×Y ′′|, e1(x) = (e′1(x), e

′′
1(x)) and e2 : G→ H ′×H ′′, e2(f) = (e′2(f), e

′′
2(f),

is a map fulfilling conditions (a) till (f) of definition 3.21.

Proof. Since the operations e1 and e2 are defined coordinate-wise the lemma follows from
the definition of e′ and e′′.

Our next goal is to define an image local orbit space. In particular it should be a local orbit
space. To make sure that the conditions of a polyhedral complex are fulfilled we need a
technical construction.

Definition 3.28. Let X/G and Y/H be two local orbit spaces, let X/G be pure by n-
dimensional, and let e be a morphism of X/G to Y/H . Put

u(e) = { lim
n→∞

ẽ1(xn)|(xn)n∈N ⊂ [σ] is a Cauchy sequence with lim
n→∞

(xn) /∈ |X/G|

but lim
n→∞

ẽ1(xn) ∈ |Y/H| , σ ∈ X
(n) and e is injective on σ}.

We denote the natural map from |X| to |X/G| by ModG and put ue = Mod−1H (u(e)).

Remark 3.29. LocallyX/G is a general fan. To make it into a fan we have to add some lower
dimensional faces τ of some polyhedra σ. Since a morphism e from X/G to Y/H is linear
on polyhedra one could define the image of τ on the level of fans. If the image of τ has a
meaning in Y/H , then it is a polyhedron τ ′. The set u(e) is the union of the images of all
those τ ’s.

The following proposition gives a useful characterization of u(e).

Proposition 3.30. Take the notation of the previous definition and assume that X is already
refined to fulfill condition (d) of definition 3.21. Let XI be the union of all polyhedra σ in
X(n) such that e1 is injective on σ. Then

u(e) =
⋃

σ∈XI

ẽ1([σ])
Y/H
\ẽ1([σ]).

Proof. For each x ∈ u(e) we find a sequence in [σ] such that the images converge to x but
the sequence does not converge in X/G and hence not in [σ]. By condition (d) we have
that ẽ1 is an injective linear map on [σ] and thus x /∈ ẽ1([σ]). Therefore, the point x is in⋃

σ∈XI
ẽ1([σ])\ẽ1([σ]).

Now let x ∈
⋃

σ∈XI
ẽ1([σ])\ẽ1([σ]). Since x is in the closure of the image of a closed set T

there exists a sequence (yn)n∈N ⊂ ẽ1(T ) converging to x. Consider a sequence (xn)n∈N with
xi a preimage of yi. Since X contains only finitely many polyhedra, one has a polyhedron
σ′ ∈ X(n) such that infinitely many xi are in ModG(σ

′). By changing to this subsequence we
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can assume that (xn)n∈N ⊂ ModG(σ
′) ⊂ [σ′]. Each polyhedral complex consists of finitely

many polyhedra, thus, condition (d) of definition 1.9 ensures that infinitely many elements
of (xn)n∈N lie in the interior of the same polyhedron ModG(τ), τ ∈ X . By condition (e) of
definition 3.21 morphisms are linear maps in the interior of polyhedra. Thus, e1 is injective
and (xn)n∈N converges. Since T ∩ [σ′] is closed, (xn)n∈N does not converge in X/G and thus
x ∈ u(e).

Construction 3.31. From now on we consider only Hausdorff local orbit spaces if not stated
otherwise. As in the case of orbit spaces (construction 6.26) we can define the image local
orbit space. Let X/G be a purely n-dimensional local orbit space, and let Y/H be any local
orbit space. For any morphism e : X/G → Y/H we make the following construction: Take
a refinement of X such that condition (d) of definition 3.21 holds and define

Z̃ = {Mod−1H (ẽ1([σ])) , σ is contained in a polyhedron σ̃ of X(n) and e is injective on σ̃}

By intersections of the polyhedra in Z̃ with the polyhedra in Y we get a set of polyhedra Z ′.
Now we have to modify Z ′ to make it into a polyhedral complex. Therefore, the non-empty
intersection of two polyhedra has to be a face of each of them. For this we modify the set
and take

Z = {σ\ue| σ ∈ Z
′, σ\ue 6= ∅}.

We will see that the set Z is (after refinement) a polyhedral complex, and therefore Z/(H|Z)
is a local orbit space. If moreover X/G is a weighted local orbit space, we turn e(X/G) into

a weighted local orbit space. After choosing a refinement for X and Y such that e1(σ)
Y

is a
polyhedron in Y for each σ ∈ X , we set

ωe(X/G)(σ
′) =

∑

[σ]∈|X/G(n)|:[e1(σ)]=[σ′]

ωX(σ) · |Λ
′
[σ′]/ẽ1(Λ[σ])|

for any σ′ ∈ (Z)(n) (for Λ[σ] see definition 1.1 and remark that [σ] is a polyhedron as well).
Since the weights are defined by their classes, the condition on the weights is fulfilled. We
call Z/H the image of e.

Lemma 3.32. Let us use the notation of the previous construction. Then, after refinement,
the set Z is a polyhedral complex.

Proof. By conditions (d) and (e) of definition 3.21 the images of polyhedra are polyhedra.
Since Z is a subset of Y , the conditions on the embeddings and the homomorphisms (see
definition 1.9 and definition 1.10) are fulfilled. Thus, we only have to prove (a) of definition
1.9. Let σ, σ′ ∈ Z such that ∅ 6= τ = σ ∩ σ′ and put k = dim τ . After a refinement,
the polyhedra σ and σ′ have a k−dimensional face containing τ . Assume that σ and σ′ are
these faces and thus, they are in Z(k) already. We can take a refinement to get dim((σ\σ′) ∪
(σ′\σ)) < k. Assume that (σ\σ′) ∪ (σ′\σ) 6= ∅. Without loss of generality we can take

y ∈ σ\σ′. (∗)

By the definition of Z̃, there exist σ̃ and σ̃′ in X(n) such that e is injective on σ̃ and σ̃′,
ẽ1([σ̃]) ⊇ ModH(σ), ẽ1([σ̃′]) ⊇ ModH(σ

′) and ModH(y) /∈ ẽ1([σ̃
′]) (since Y/H is defined
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Figure 3.4: A morphism between two local orbit spaces.

by gluing, the subsets can be strict). Let (yn)n∈N ⊂ ModH(σ
′)\ModH(y) be a sequence

which converges to ModH(y). Since k > 0 and ModH(σ
′) is connected such a sequence

exists. By condition (e) of definition 3.21 (morphism of fans are linear) there exists a conver-
gent sequence (xn)n∈N ⊂ [σ̃′] such that ẽ1(xi) = yi for all i ∈ N. Since ModH(y) /∈ ẽ1([σ̃

′])
the sequence (xn)n∈N does not converge in X/G. This is due to the facts that [σ̃′] is closed in
X/G and ẽ1 is continuous. Thus ModH(y) ∈ u(e), y ∈ ue and y /∈ Z in contradiction to (∗).
Therefore (σ\σ′) ∪ (σ′\σ) = ∅ and the non-empty intersection of two polyhedra is a face of
both.

Example 3.33. Let X (= X/{id}) be the disjoint union of the cone X1 = {(x, y) ∈ R2|y >
0} and of X2 = R2 (we label the axes by w and z) and let Y (= Y/{id}) be R3 (labeled by
x′, y′ and w′). The map e : X → Y is defined by the projection of X1 and X2 to R3 such,
that x is mapped to x′, y and z to y′ and w to w′ (see figure 3.4). It is easy to see that the
conditions (a) to (f) are fulfilled. Since X1 and X2 are the only cones and the intersection of
the image is one-dimensional condition (g) is fulfilled. The origin is not part ofX1, and there
exists a sequence converging to the origin. Since the image of this sequence converges to the
origin in Y the set ue contains the origin. With proposition 3.30 we obtain ue = x′−axis and
thus the origin is the only point of the image under ẽ1 which lies in ue.

Proposition 3.34. Let X/G be an n-dimensional tropical local orbit space, Y/H a local
orbit space, and e : X/G → Y/H a morphism. Then e(X/G) is an n-dimensional tropical
local orbit space (provided that e(X/G) is not empty).

Proof. Due to the construction of Z̃ in construction 3.31 the image local orbit space is a pure-
dimensional local orbit space. By proposition 3.18 the balancing condition can be checked
by proving the balancing condition for the polyhedral complex. Condition (e) of definition
3.21 tells us that for the open fans defined by the homeomorphismsΦσ of definition 1.10, the
morphism is a morphism of fans. Let τ ′ ∈ e(X/G)(n−1) be a face around which we have to
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Figure 3.5: Problems which motivate the definition of morphisms.

check the balancing condition. First we need that for each summand ωX(σ) · |Λ
′
[σ′]/ẽ1(Λ[σ])|

in the weight of a face σ′ > τ ′, σ′ ∈ e(X/G) there exist a τ ∈ X(n−1) with τ < σ and
ẽ1([τ ]) ⊂ [τ ′]. If such a face τ does not exist, τ ′ /∈ e(X/G) by the construction of ue which
is a contradiction and thus τ exists. From this we can conclude that the weighted facets
around τ ′ are the union of images of fan morphisms, where all image fans contain τ ′. Since
X/G is Hausdorff the fans are disjoint after identification with G or equal. Since the image
polyhedral complex is built out of these fans it suffices to prove the proposition for fans. The
balancing condition has to be checked around each codimension 1 face (equivalent to this is
verifying the balancing condition on the star around this face). Since this (the star fan) is a
closed fan (or a fan in the sense of [GKM]) we can apply proposition 2.25 of [GKM] and we
are done.

Remark 3.35. The two problems we handle with in the previous proof (and which therefore
motivate the definition) are shown in figure 3.5. The map in each case is given by a projection
to R and all weights on the source are 1. On the left hand side of the picture we take for X
the union of a tropical curve with an open ray and for G the trivial set {idX}. This is not a
morphism since (g) is not fulfilled.
On the right hand side X is a union of two copies of R and the set G is the set given by
the identification of the strict positive part of these copies. Therefore X/G is not Hausdorff
and applying the construction 3.31 word by word for non-Hausdorff spaces would lead to a
non-balanced image of a tropical local orbit space.

Definition 3.36 (Irreducible tropical local orbit space). Let X/G be a non-empty tropical
local orbit space of pure dimension n. We callX/G irreducible if for any non-empty tropical
local orbit space Y/H ⊂ X/G with dim(Y/H) = n the following holds: if there exists a
refinement X̃/G of X/G such that

for all σ ∈ Y (n) one has a σ′ ∈ X̃(n) with dim(σ′\σ) ≤ n− 2 (*)

then dim(|X̃|\|Y |) ≤ n − 2. We call X/G strongly irreducible if X/G is irreducible and
each weighted open fan Fσ ofX/G (see definition 1.10) is irreducible as a tropical local orbit
space (the set of isomorphisms is trivial and the balancing condition holds by proposition
3.18).

Proposition 3.37. A tropical local orbit spaceX/G of dimension n is irreducible if and only
if for any tropical local orbit space Y/H ⊂ X/G, Y 6= ∅ such that dim(Y/H) = n and Y is
closed in X , one has |Y | = |X|.
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Proof. We start with an irreducible local orbit space and take a tropical local suborbit space
Y/H ⊂ X/G with the given properties. The polyhedral complex Y is closed in X and thus
σ′\σ = ∅ in the definition above. Therefore we have dim(|X̃|\|Y |) ≤ n − 2 and since Y
is closed in X , one has |X| = |Y | (here we need the assumption that Y is pure-dimensional
and thus every point lies in an n-dimensional polyhedron).
Assume, that X/G has the properties as stated in the if part of the proposition. Let Y/H ⊂
X/G be a tropical local suborbit space of dimension n such that for every σ ∈ Y (n) one has a
σ′ ∈ X̃(n) with dim(σ′\σ) ≤ n−2. Since the closure of each σ in Y (n) is σ′ (and σ′ is closed
in the topology of X) the polyhedral complex Y is the union of the σ′ in X . The local orbit
space Y/H is weighted and therefore we can make Y /G|Y to a weighted local orbit space
by taking the same weights. Since we only added faces of dimension n − 2 or smaller, the
balancing condition holds for Y /G|Y as well. By the proposition, we get |Y | = |X|. Thus
we have dim(|X̃|\|Y |) ≤ n− 2.

Remark 3.38. In the case of closed fans (fans considered in [GKM]) our definition of irre-
ducibility is equivalent to definition 2.16 in [GKM].

Proposition 3.39. Let us take X/G and Y/H as in the definition of irreducibility in 3.36.
Then, there exists a λ ∈ Q\{0} such that ωY (σ) = λ · ωX(σ) for all σ ∈ Y .

Proof. As in the proof of proposition 3.37 we can take the closure of Y/H and make it
into a tropical local orbit space with ωY (σ) = ωY (σ) for all σ ∈ Y . Thus, assume right
away that Y is closed in X . By proposition 3.37, one has |Y | = |X|. Take σ ∈ Y (n) such
that |ωY (σ)/ωX(σ)| is minimal and put λ = ωY (σ)/ωX(σ). Since the balancing condition
is linear in the weights, we get that the weighted local orbit space (Y/H, ωY − λ · ωX) is a
tropical local orbit space as well. Since the polyhedron σ is removed from the new local orbit
space (see construction 3.19), Y must be empty due to proposition 3.37 and ωY = λ·ωX .

Proposition 3.40. Let X/G be a tropical local orbit space of dimension n, Y/H a strongly
irreducible tropical local orbit space of dimension n as well, and e a morphism from X/G to
Y/H . In the notation of construction 3.31 the polyhedral complex Z ′\Z has dimension less
than or equal to n− 2.

Proof. Take the notation of construction 3.31 and proposition 3.30. Assume that dim (Z ′\Z)
= n − 1. Since Z ′\Z ⊂ ue, there exists (by proposition 3.30) σ ∈ XI with dim((ẽ1([σ])
\ẽ1([σ]))∩(Z

′\Z)) = n−1. Let τ be an (n−1)-dimensional polyhedron of Mod−1H ((ẽ1([σ])
\ẽ1([σ])) ∩ (Z ′\Z)). Since Y/H is strongly irreducible, the open fan around τ is irre-
ducible as well. Furthermore Z ′\Z contains τ . Thus, after a refinement, there exist an
(n− 1)-dimensional subpolyhedron τ ′ ⊂ τ and σ′ ∈ X(n) such that e1 is injective on σ′ and
ModH(τ

′) ⊂ ẽ1(ModG(σ
′)). By (e) of definition 3.21, the morphism e induces a morphism

of fans. By the balancing condition and since the open fan around τ is irreducible, there
exists a polyhedron σ̃ ∈ X with ẽ1([σ̃]) ⊃ ModH(τ

′) and dim(ẽ1([σ̃]) ∩ ẽ1([σ])) = n. This
is a contradiction to (g) in definition 3.21 and we are done.

Corollary 3.41. Let X/G and Y/H be tropical local orbit spaces of the same dimension n
in V = Λ ⊗ R and V ′ = Λ′ ⊗ R, respectively, and let e : X/G → Y/H be a morphism.
Assume that Y/H is strongly irreducible and dim(|Y/H|\ẽ1(|X/G|)) ≤ n − 2. Then there
is a local orbit space Y0/H|Y0 in V ′ of dimension smaller than n with |Y0| ⊂ |Y | such that
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(a) each point Q ∈ |Y |\|Y0| lies in the interior of a polyhedron σ′Q ∈ Y of dimension n;

(b) each point P ∈ e−11 (|Y |\|Y0|) lies in the interior of a polyhedron σP ∈ X of dimension
n;

(c) for Q ∈ |Y |\|Y0| the sum

∑

[P ],P∈|X|:ẽ1([P ])=[Q]

mult[P ] e

does not depend on Q, where the multiplicity mult[P ] e of e at [P ] is defined to be

mult[P ] e =
ωX(σP )

ωY (σ′Q)
· |Λ′[σ′Q]/ẽ1(Λ[σP ])|.

Proof. Consider the tropical local orbit space e(X/G). Since dim(|Y/H|\ẽ1(|X/G|)) ≤
n−2 by assumption we can take a refinement of (Mod−1H (ẽ1(|X/G|))/H|Mod−1

H ẽ1(|X/G|), wY )

fulfilling condition (∗) of definition 3.36. Thus (∗) holds also for the polyhedra in Z ′ (see
construction 3.31). By proposition 3.40 the condition (∗) holds for e(X/G) as well. This
means that we can refine e(X/G) and Y/H such that e(X/G) fulfills condition (∗) (note
that the roles of X and Y are changed in the definition). From now on we work with these
refinements. Since Y/H is irreducible we can apply proposition 3.39 and e(X/G) = λ ·Y/H
for some λ ∈ Q\{0}. Let Y0 be the polyhedral complex defined by the union of polyhedra
of Y of dimension less than n. Then (a) and (b) hold because of the way we constructed Y0.
Each Q ∈ |Y |\|Y0| lies in the interior of a unique n-dimensional polyhedron σ′. By the 1:1
correspondence between points [P ] ∈ ẽ−11 ([Q]) and n-dimensional classes [σ] with σ in X
which fulfill [e1(|σ|)] = [σ′] we can conclude that

∑

[P ],P∈|X|:e1([P ])=[Q]

mult[P ] e =
∑

[σ]∈|X/G(n)|:[e1(σ)]=[σ′]

ωX(σ)

ωY (σ′)
· |Λ′[σ′]/ẽ1(Λ[σ])|

=
ωe(X/G)(σ

′)

ωY (σ′)
= λ

does not depend on Q.

To see why we need the assumption that Y/H is strongly irreducible in the preceding corol-
lary (and not just irreducible), we consider an example.

Example 3.42. Let us take as sets G and H the sets consisting only of the identity element.
Let X be the disjoint union of two polyhedral complexes X1 and X2, where X1 is an open
interval and X2 is a tropical curve in R3 (see figure 3.6). The edge E2 (resp., E3) is an edge
with direction vector (0, 1, 1) (resp., (−1,−1,−1)). The other edges of X2 lie in the plane
as drawn in the figure. The complex Y is a tropical curve in R2 as in the figure. The map
e between X and Y is given as projection to R2 with e(Ei) = Fi. If we choose the weights
ωX1 = 2, ωX2 = 1 and ωY = 1 we have a morphism between tropical local orbit spaces, but
the sum of preimages is different for points x ∈ F1 and y ∈ Y \F1.
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Figure 3.6: A morphism between two local orbit spaces, where all the assumptions of corol-
lary 3.41 are fulfilled except for Y being strongly irreducible.

Definition 3.43 (Rational function). Let Y/G be a tropical local orbit space. We define
a rational function ϕ on Y/G to be a continuous function ϕ : |Y | → R such that there
exists a refinement (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of Y which fulfills the following
conditions: for each face σ ∈ X the map ϕ◦m−1

σ is locally integer affine-linear and ϕ◦g|Ug =
ϕ|Ug , for all g ∈ G. (Remark: by refinements we can directly assume that ϕ is affine linear
on each polyhedron.)

Definition 3.44 (Local orbit space divisor). LetX/G be a tropical local orbit space of dimen-
sion k, and φ a rational function on X/G. We define a divisor of φ to be div(φ) = φ ·X/G
= [(

⋃k−1
i=−1X

(i), ωφ)] /G, where ωφ is as follows:

ωφ : X
(k−1) → Q,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(
1

|Xσ/τ |
ω(σ)vσ/τ )− φτ

( ∑

σ∈X(k)

τ<σ

1

|Xσ/τ |
ω(σ)vσ/τ

)

Proposition 3.45. The divisor φ ·X/G is a tropical local orbit space.

Proof. By definition, the map φ is a rational function on the tropical local orbit spaceX/{id}.
In particular it fulfills the definition of rational functions given in definition 6.1 of [AR]
except for X being a closed polyhedral complex. Nevertheless, the balancing condition
around a codimension-1 face of X is the same as the condition around the closure of the
involving polyhedra. Therefore we can apply construction 6.4 of [AR] and φ ·X is balanced.
We only need to show that the weights for identified facets are the same. This is clear since
the elements of G are defined on open sets and therefore the weights are the same for σ, σ′ ∈
φ ·X/G with [σ] = [σ′].

Proposition 3.46. Let φ1 and φ2 be two rational functions on the tropical local orbit space
X/G. Then φ1 · (φ2 ·X/G) = φ2 · (φ1 ·X/G).

Proof. As in the previous proof, the statement follows from the polyhedral case. The corre-
sponding result is proposition 6.7 in [AR].
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4 One-dimensional local orbit
spaces

To get a better understanding of the definition of a local orbit space given in chapter 3, we
study the one-dimensional case.

Let X/G be a pure by one-dimensional local orbit space. After a refinement we can assume
that all polyhedra in X are of one of the following two forms. Either a polyhedron in X
is a closed interval or a half open (and half closed) interval. The half open interval can be
bounded or unbounded. Around a zero-dimensional face (the codimension one faces) the
polyhedral structure is given by fans.
Each element g of G gives a morphism of a union of intervals in |X| to another union of
intervals such that the fan structure of X is respected.

Example 4.1. Let X be the disjoint union of

X1 = {(x, y) ∈ R2|max{0, x, y} is attained at least twice and |x| < 1, |y| < 1}

and
X2 = {(x, y) ∈ R2|max{0,−x, y} is attained at least twice and |x| < 2}.

The isomorphisms of polyhedral complexes for the set G in definition 3.1 are

g1 : {(x, y) ∈ X1||x| < 0} → {(x, y) ∈ X2||x| > 1} : (x, y) 7→ (2 + x, y),

g2 : {(x, y) ∈ X2||x| < 0} → {(x, y) ∈ X2||x| < 0} : (x, y) 7→ (−2− x, 2− y)

together with g−11 and idX (note that g−12 = g2). A picture of X and |X/G| is shown in figure
4.1.

Since we glue along open sets, the space |X/G| may be non-Hausdorff.

Example 4.2. Let X be the disjoint union of X1 = R and X2 = R. We put

G = {idX , g : {x > 0|x ∈ X1} → {x > 0|x ∈ X2} : x 7→ x, g−1}.

The resulting local orbit space is non-Hausdorff (see figure 4.2).

Proposition 4.3. A one-dimensional local orbit space X is a T1 space such that there exists
a collection P ⊂ |X/G| of finitely many points with |X/G|\P Hausdorff.
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X

ModG

X/G

X2 X1

Figure 4.1: The polyhedral complex and the topological space of a one-dimensional local
orbit space.

X1

X2

X

X/G

ModG

Figure 4.2: A local orbit space which is not Hausdorff.

Proof. Local orbit spaces are topological spaces defined by gluing subspaces of Rn. Thus,
each finite set of points is closed and therefore T1 holds. Put P = {p ∈ |X/G||p ∈
Modg(Ug\Ug) for g ∈ G}. The number of elements of G is finite and Ug is a finite union of
intervals, thus the number of elements of P is finite. Let x′, y′ ∈ |X/G|\P be two distinct
points, and let x, y ∈ X be two arbitrary preimages of them under ModG. By definition of
P , the points x and y lie either in the open sets Ug or in the interior of X\Ug for all g ∈ G.
Let Wx (resp. Wy) be the intersection of all sets Ug and (X\Uf )

◦, f, g ∈ G with x ∈ Ug and
x ∈ (X\Uf)

◦ (resp. y ∈ Ug and y ∈ (X\Uf)
◦). For each g ∈ G withWx ⊂ Ug andWy ⊂ Vg

there exist open sets W g
x ⊂ Wx and W g

y ⊂ Vg with x ∈ W g
x , y ∈ W g

y and W g
x ∩W

g
y = ∅

becauseX is Hausdorff. The set G is finite and thus the intersection of allW g
x and allW g

y are
open. Furthermore ModG(

⋂
W g

x )∩ModG(
⋂
W g

y ) = ∅ and thus |X/G|\P is Hausdorff.

Definition 4.4 (Non-Hausdorff pair, Non-Hausdorff point). Let X/G be a local orbit space.
We call a pair {x, y} with x, y ∈ |X/G| non-Hausdorff if for all open sets Wx,Wy ⊂ |X/G|
with x ∈ Wx and y ∈ Wy one has Wx ∩Wy 6= ∅. We call a point x ∈ |X/G| non-Hausdorff
if there exists a point y ∈ |X/G| such that {x, y} is a non-Hausdorff pair.

Definition 4.5 (Non-Hausdorff fan). Let X be a finite set of half open intervals of finite
length. Take k ∈ N with k > 1 and let Y1, . . . , Yk be (not necessarily different) subsets of
X such that identifying the elements of Yi for all i ∈ {1, . . . , k} gives a single element (this
condition assures connectedness of the resulting space). For each i ∈ {1, . . . , k} we take
a point Pi and insert it at the open end of all intervals in Yi. The resulting space is called
Non-Hausdorff fan (see figure 4.3).

Remark 4.6. A Non-Hausdorff fan is a topological space we get by taking a one-dimensional
fan X , intersect X with a closed neighborhood at the origin, remove the origin and glue back
at least two points connecting some of the edges, such that the result is connected.
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Y1

Y2

P1

P2

Figure 4.3: A non-Hausdorff fan.

Proposition 4.7. Let X/G be a one-dimensional local orbit space. Let P ⊂ |X/G| be an
inclusion maximal set with at least 2 elements, such that for all x, y ∈ P there exists a chain
x = x1, . . . , xn = y with {xi, xi+1} non-Hausdorff for all i ∈ {1, . . . n}, and let VP be a
sufficiently small closed neighborhood of P . Then, the space VP\P is Hausdorff and VP is
homeomorphic to a non-Hausdorff fan.

Proof. Since the interior of the Ug is Hausdorff only the boundary points of the images of
Ug can be non-Hausdorff. Since G is finite and P is inclusion maximal, we can take VP

sufficiently small such that all points which are elements of a non-Hausdorff pair lie in P .
Thus VP\P is Hausdorff. By taking possibly a smaller set we can assume that the border of
the images of all sets Ug for g ∈ G intersected with VP are in ModG(P ). Since we glue the
set X along Ug one has that VP is a non-Hausdorff fan.

By the previous proposition we know how the one dimensional local orbit spaces look like
in the neighborhood of non-Hausdorff pairs. Thus, we now consider the neighborhoods of
points which do not belong to non-Hausdorff pairs.

Proposition 4.8. Let X/G be a one-dimensional local orbit space and x ∈ |X/G| such that
x does not belong to a pair {x, y} ⊂ |X/G| which is non-Hausdorff. Then, there exists a
closed neighborhood Ux ⊂ |X/G| of x with Ux homeomorphic to the closure of an open fan
in R2 with xmapped to the origin under this homeomorphism (in particularUx is Hausdorff).

Proof. For the proof of the proposition we take a preimage of x in X and see howG changes
this preimage. Let x′ ∈ X be a preimage of x under ModG. By the definition of a polyhedral
complex (see definition 1.10) there exists an open fan x′ ∈ Ũx′ ⊂ X . Since G is finite, we
can assume that Ug ∩ Ũx′ is a union of interiors of faces of Ũx′ . Let g ∈ G be an isomorphism
with x′ ∈ Ug. Since Ug and Vg are open the fans Ũx′ and g(Ũx′) are isomorphic to each other
by the isomorphism g|Ũx′

. Therefore, by identifying via g, we keep a closure of an open fan.
Thus, we now consider elements g ∈ G such that x′ /∈ Ug. Since x does not belong to a
non-Hausdorff pair, either Ũx′ stays the same after gluing along g or g identifies faces of Ũx′ .
In the latter case, the space one gets by identification along g is still homeomorphic to a fan.
Thus we can take the closure Ux of a subset of ModG(Ũx′) which fulfills the conditions.

Remark 4.9. The space X is a metric space. Thus, by gluing along G we get a pseudometric
on |X/G| induced by the metric on X . Therefore we can speak about balls in |X/G|.

Lemma 4.10. Let X/G be a one-dimensional local orbit space and x ∈ P from proposition
4.7. Then we can take for VP a set of the form Bǫ(x) ⊂ |X/G|, where Bǫ(x) is the ball
around x of radius ǫ.
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Chapter 4: One-dimensional local orbit spaces

Proof. All non-Hausdorff pairs have pseudo-distance zero. Thus, we can take a small ball
Bǫ(x) for VP .

Lemma 4.11. Let X/G be a one-dimensional local orbit space and x ∈ |X/G| be as in
proposition 4.8. Then, one can take for Ux a set of the form Bǫ(x) ⊂ |X/G|.

Proof. For Ux as in the proposition 4.8 we can intersect this set with a small ball Bǫ(x). The
resulting set fulfills the lemma.

Theorem 4.12. Let X/G be a one-dimensional local orbit space, x a vertex of |X/G| and
ǫ ∈ R>0 sufficiently small. The neighborhood Bǫ(x) is of one of the following two forms:

(a) a non-Hausdorff fan and Bǫ(x) contains exactly |P | different points which belong to a
non-Hausdorff set, where P as in proposition 4.7.

(b) an open fan.

Proof. Follows from the previous lemmata.

To understand the Hausdorff restriction in chapter 3 we consider a proposition regarding
Hausdorffness.

Proposition 4.13. Let X/G be a one-dimensional local orbit space. The local orbit space
|X/G| is Hausdorff if the quotient map e : X → X/G is a morphism.

Proof. Assume that |X/G| is not Hausdorff. By theorem 4.12 there exist an element x ∈
|X/G| and a real number ǫ > 0 such that Bǫ(x) is a non-Hausdorff fan. Thus, there exist
a half open interval in definition 4.5 at which we insert at least two points. This interval is
constructed by identifying two closed intervals σ, σ̃ in X except for one endpoint. Therefore
one has dim(ẽ1(σ) ∩ ẽ1(σ̃)) = 1 and |ẽ1(σ)\ẽ1(σ̃)| = 1. By proposition 3.25, e is not a
morphism.
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5 Moduli spaces for curves of
arbitrary genus

In this chapter we show that the moduli spaces of tropical curves of genus g have a structure
of tropical local orbit space. We use this structure to prove two facts. First we show, that the
weighted number of tropical curves of degree ∆ and genus g in Rr, which pass through the
right number of points and which are mapped to a given point in the moduli space of genus g
curves with no unbounded ends, is independent of the choices of points. Secondly we show
that the number of curves of degree ∆ and genus g in R2 passing through the right number
of points is independent of the position of the points. The chapter is divided in three parts. In
the first (resp., the second) section we equip the moduli space of abstract tropical curves of
fixed genus (resp., the parameterized tropical curves of fixed genus and degree in Rr) with a
structure of tropical local orbit space. In the last part we prove the two statements mentioned
above.

5.1 Moduli spaces of abstract tropical curves

Construction 5.1. We construct a map from Mg,n to a tropical local orbit space in the fol-
lowing way. For each curve C ∈ Mg,n let Pg = {a1, . . . , ag} be an arbitrary collection of g
points of C such that C\Pg is a tree. We define a new curve C̃ which we get by cutting C
along Pg and inserting two leaves Ai = xn+2i−1 and Bi = xn+2i at the resulting endpoints of
each cut ai. This curve is an (n + 2g) marked curve (of genus 0) with up to 2g two-valent
vertices (at the ends Ai and Bi for i ∈ {1, · · · g}). In the case we choose a marking ai to
be at a 3-valent or higher valent vertex, either the vertex adjacent to Ai or to Bi has valence
greater than two.
In order to embedMg,n into a tropical local orbit space such that the underlying polyhedral

complex lies in R(
n+2g

2 ) we need a map. Since the target of this map will be a tropical local
orbit space, let us construct a polyhedral complex Xg,n and the set of isomorphisms Gg,n we
need for it.

Notation 5.2. For b ∈ Rt we denote by bi, 0 < i ≤ t, the ith entry of b.

Let T be the set of all subsets S ⊂ {1, . . . , n + 2g} with |S| = 2. For the construction

we need the vector space Vg,n which is isomorphic to R(
n+2g

2 )−n−g and which is given by

Vg,n = R(
n+2g

2 )/(Φg
n(R

n)+ < z1, . . . , zg >), where
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A1

B1

A2B2 A3

B3

Figure 5.1: Construction of a 6-marked curve of genus 0 from a 0-marked genus-3 curve.

Φg
n : Rn −→ Rn+2g −→ R(

n+2g
2 )

b 7−→ (b, 0) = b̃ 7−→ (b̃i + b̃j){i,j}∈T ,

and zl ∈ R(
n+2g

2 ), l ∈ {1, · · · , g} is a vector such that

(zl)i,j =





1 if (i = n+ 2l − 1 or j = n+ 2l − 1) and i 6= n+ 2l 6= j,
−1 if (i = n+ 2l or j = n + 2l) and i 6= n+ 2l − 1 6= j,
0 otherwise.

Let us now recall the definition of the tropical Grassmanian G2,n+2g from [SS]. Put Z[p] =
Z[pi1,...,id], (1 ≤ i1 < i2 < . . . < id ≤ n) and let Id,n be the homogeneous ideal in Z[p]
which consists of the algebraic relations among the d × d-minors of any n × n matrix. The
tropicalization of the ideal I2,n+2g (see the first pages of [SS]), is the tropical Grassmanian
G2,n+2g. By theorem 2.5.1 of [Sp1] this is a tropical fan. We define the following subset of
Vg,n. Put

Φn,g : Rn+2g −→ R(
n+2g

2 )

b 7−→ (bi + bj){i,j}∈T .

It is known that G2,n+2g contains the linear space Φn,g(Rn+2g) (see [SS]). We denote by
e1, . . . , en+2g the canonical basis of Rn+2g and we subdivide the cones of G2,n+2g along the
hyperplane < Φn,g(ei), x >= 0, 1 ≤ 1 ≤ n + 2g. The fan G2,n+2g/Φn,g(Rn+2g) is simplicial
by theorem 4.2 [SS]. Since Φn,g(Rn+2g) is the lineality space of G2,n+2g we have that G2,n+2g
is a simplicial fan as well. Thus, each point x of a cone σ has a unique representation

∑
xi ·vi

as linear combination of the minimal Z−vectors vi contained in the one-dimensional faces
of σ. Since Φn,g(Rn+2g) is the lineality space of G2,n+2g there exists a cone σ′ with σ ⊂ σ′

such that one of those vectors vi of σ′ is Φn,g(ek) or −Φn,g(ek) and k ≤ n + 2g (for σ it
might be that for some k ≤ n + 2g neither Φn,g(ek) nor −Φn,g(ek) is in σ. In the definition
which follows we need σ′ to have a well-defined Pk(x)). Without loss of generality assume
that we ordered the vectors vi such that i = k for i ≤ n + 2g. We define Pk(x) to be the
projection of x to the line Φn,g(R · ek) given by Pk(x) = xk (resp., −xk) for vk = Φn,g(ek)

30



Chapter 5: Moduli spaces for curves of arbitrary genus

(resp., vk = −Φn,g(ek)). Then we put

Xg,n = {x ∈ G2,n+2g|Pn+2i−1(x) + Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}}/

(Φg
n(R

n)+ < z1, . . . , zg >). (5.1)

To describe a polyhedral structure on Xg,n, we take the cones in G2,n+2g, intersect them with
{x ∈ G2,n+2g|Pn+2i−1(x)+Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}} and project them to Vg,n. The set
(Φg

n(R
n)+ < z1, . . . , zg >) is the remaining lineality space of G2,n+2g.

Example 5.3. We consider the space X1,1. The Grassmanian G2,3 is the space R3. The set
{x ∈ G2,3|P2(x)+P3(x) > 0} is equal to the set {Φ1,1({(x1, xA, xB) ∈ R3|xA+xB > 0})}.
After dividing out the lineality space (Φ11(R)+ < (1,−1, 0)t >) we get a ray without the
initial point.

Definition 5.4. Let (C, x1, . . . , xn) ∈ Mg,n and let (C̃, x1, . . . , xn, xn+1, . . . , xn+2g) be a
curve obtained by cutting C. We define

distΓ(C̃) = (distΓ(xi, xj)){i,j}∈T ∈ R(
n+2g

2 ),

where distΓ(xi, xj) is the distance between xi and xj (that is the sum of the lengths of all
edges in the unique path from xi to xj) in C̃. Set xn+2i−1 = Ai and xn+2i = Bi, for all
i ∈ {1, . . . g}. The symbol Γ indicates that we consider the distances of (n-marked abstract
or parameterized labeled n-marked) tropical curves.

Lemma 5.5. Let C̃ be a curve which we obtain by cutting a curve C ∈ Mg,n. Then
distΓ(C̃) ∈ {x ∈ G2,n+2g|Pn+2i−1(x) + Pn+2i(x) > 0, ∀i ∈ {1, . . . , g}}.

Proof. Put y = distΓ(C̃). Since each cycle has a positive length the point y lies in the
interior of a cone spanned either by Φn,g(en+2i−1) or by Φn,g(en+2i) for all i ∈ {1, . . . , g}.
Furthermore all edges have a positive length and thus, y does not lie in a cone spanned
by −Φn,g(en+2i−1) or by −Φn,g(en+2i), and the condition Pn+2i−1(y) + Pn+2i(y) > 0, ∀i ∈
{1, . . . , g} is fulfilled. We only have to show that y ∈ G2,n+2g. Theorem 3.4 of [SS] states that
the fan G2,n+2g/Φn,g(Rn+2g) is equal to the space M0,n+2g. The curve C̃ does correspond
to a point in M0,n+2g since the only two-valent vertices are at the ends xn+1, . . . , xn+2g.

These lengths are encoded in Φn,g(Rn+2g) and therefore [y] ∈ R(
n+2g

2 )/Φn,g(Rn+2g) lies in
M0,n+2g. Thus y ∈ G2,n+2g.

The set Gg,n is a set of morphisms induced by the following
(

n+2g
2

)
square matrices.

For all s ∈ {1, . . . , g}, put

(Is)(i,j),(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 2s− 1}, {m,n+ 2s}),
or ({i, j}, {k, l}) = ({m,n+ 2s}, {m,n+ 2s− 1}),
or {i, j} = {k, l} and i, j /∈ {n+ 2s− 1, n+ 2s},
or if {i, j} = {n+ 2s− 1, n+ 2s} = {k, l},

0 otherwise.
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For all s ∈ {2, . . . , g}, put

(Ts)(i,j)(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 2s− 1}, {m,n+ 1}),
n+ 2 6= m 6= n+ 2s,

or ({i, j}, {k, l}) = ({m,n+ 1}, {m,n+ 2s− 1}),
n+ 2 6= m 6= n+ 2s,

or ({i, j}, {k, l}) = ({m,n+ 2}, {m,n+ 2s}),
n+ 1 6= m 6= n+ 2s− 1,

or ({i, j}, {k, l}) = ({m,n+ 2s}, {m,n+ 2}),
n+ 1 6= m 6= n+ 2s− 1,

or {i, j} = {k, l} and i, j /∈ {n+ 1, n+ 2, n+ 2s− 1, n+ 2s},
or ({i, j}, {k, l}) = ({n+ 2s− 1, n+ 2s}, {n+ 1, n+ 2}),
or if ({i, j}, {k, l}) = ({n+ 1, n+ 2}, {n+ 2s− 1, n+ 2s})

0 otherwise.

For all s ∈ {1, · · · , g} and p ∈ {1, · · · , n+ 2g}\{n+ 2s− 1, n+ 2s}, put

(Ms
p )(i,j),(k,l)

=





1 if {i, j} = {k, l},
or ({i, j}, {k, l}) = ({p, n+ 2s}, {n+ 2s− 1, n+ 2s}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2s− 1}), j 6= n + 2s,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2s}), j 6= n + 2s,
or ({i, j}, {k, l}) = ({p, j}, {n+ 2s− 1, n+ 2s}),
n + 2s− 1 6= j 6= n + 2s,

−1 if ({i, j}, {k, l}) = ({p, n+ 2s− 1}, {n+ 2s− 1, n+ 2s}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2s}), j 6= n+ 2s− 1,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2s− 1}), j 6= n+ 2s− 1,

0 otherwise.

Before going on with our construction, let us understand the defined matrices by the follow-
ing observation and propositions.

Observation 5.6. The main idea in our definition comes from the rational case (see [GKM]).
After cutting the curve we get a new curve without cycles. Thus, the distance between any
two points in the new curve is well-defined. Then, as in the rational case we have to mod
out the image of Φg

n. In addition, we have to get rid of all the choices we made during the
construction of theAi andBi for 1 ≤ i ≤ g. These choices can be expressed by the following
four operations.

(a) The shift of the point ai on one edge of the cycle (which corresponds to the addition of
an element of < zi >).

(b) Interchanging Ai and Bi, which corresponds to the matrix Ii.

(c) Interchanging ai and a1, which corresponds to Ti (interchanging ai and aj can be done
by a product of matrices Tl, l ∈ {1, . . . g}).

(d) The point ai jumps over the vertex adjacent to an unbounded edge p. The matrix
corresponding to this operation is either M i

p or (M i
p)
−1 depending on the position of

Ai and Bi. If the point ai jumps over a bounded edge E, the matrix corresponding
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to this operation is the product of all matrices (M i
p)
±1 where p is connected with E

by edges not intersecting the cycle. (If we want to change the cut a3 of the curve in
figure 5.1 from the upper edge to the right edge we have to apply M3

1 · M
3
4 to the

corresponding point in the parameter space).

Proposition 5.7. Let us fix n, g and s in N, with s ≤ g. The group < Ms
p |p ∈ {1, · · · , n +

2g}\{n+ 2s− 1, n+ 2s} > is commutative.

Proof. To prove the commutativity, it is enough to show that any two generators of the group
commute. Denote by p, p′ two different elements of {1, · · · , n+ 2g}\{n+ 2s− 1, n+ 2s},
by A (resp., B) the element n+ 2s− 1 (resp., n+ 2s), and by o and o′ arbitrary elements of

{1, · · · , n+ 2g}\{n+2s− 1, n+2s, p, p′}. Denote by xl,m the coordinates in R(
n+2g

2 ). The
matrices Ms

p and Ms
p′ are defined in the following way.

The matrix Ms
p is given by

xp,p′ xp,o xp,A xp,B xp′,o xp′,A xp′,B xo,o′ xo,A xo,B xA,B



1 0 −1 1 0 1 −1 0 0 0 1



xp,p′

0 1 −1 1 0 0 0 0 1 −1 1 xp,o

0 0 1 0 0 0 0 0 0 0 −1 xp,A

0 0 0 1 0 0 0 0 0 0 1 xp,B

0 0 0 0 1 0 0 0 0 0 0 xp′,o

0 0 0 0 0 1 0 0 0 0 0 xp′,A

0 0 0 0 0 0 1 0 0 0 0 xp′,B

0 0 0 0 0 0 0 1 0 0 0 xo,o′

0 0 0 0 0 0 0 0 1 0 0 xo,A

0 0 0 0 0 0 0 0 0 1 0 xo,B

0 0 0 0 0 0 0 0 0 0 1 xA,B

and the matrix Ms
p′ by

xp,p′ xp,o xp,A xp,B xp′,o xp′,A xp′,B xo,o′ xo,A xo,B xA,B



1 0 1 −1 0 −1 1 0 0 0 1



xp,p′

0 1 0 0 0 0 0 0 0 0 0 xp,o

0 0 1 0 0 0 0 0 0 0 0 xp,A

0 0 0 1 0 0 0 0 0 0 0 xp,B

0 0 0 0 1 −1 1 0 1 −1 1 xp′,o

0 0 0 0 0 1 0 0 0 0 −1 xp′,A

0 0 0 0 0 0 1 0 0 0 1 xp′,B

0 0 0 0 0 0 0 1 0 0 0 xo,o′

0 0 0 0 0 0 0 0 1 0 0 xo,A

0 0 0 0 0 0 0 0 0 1 0 xo,B

0 0 0 0 0 0 0 0 0 0 1 xA,B

Since Ms
p ·M

s
p′ =Ms

p′ ·M
s
p , the group under consideration is commutative.
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Proposition 5.8. With the above notation,Ms
p acts as identity on the elements of (Φg

n(R
n)+ <

z1, . . . , zg >). The matrix Ts interchanges z1 and zs and is the identity on (Φg
n(R

n)+ <

z2, . . . ,
∧
zs, . . . , zg >). The matrix Is acts as identity on (Φg

n(R
n)+ < z1, . . . ,

∧
zs, . . . , zg >),

and one has Is(zs) = −zs.

Proof. The statement for Ms
p can be proved using the presentation of Ms

p given in the previ-
ous proof. Since Is and Ts only interchange entries of the vectors, one can conclude that the
proposition holds.

The set H =< Ts, Is,M
s
p > is a linear group and since Is ·Ms

p · Is ·M
s
p = T 2

s = I2s = Id the

elements of H are Z-invertible. Thus, they define isomorphisms on R(
n+2g

2 ). By proposition
5.8 they define morphisms on Vg,n as well. Now we take the subset of matrices h ∈ H
for which there exists a non-empty open polyhedral subcomplex Ũ of Xg,n such that for all
x ∈ Ũ , the vectors x and h(x) are the distance vectors of curves resulting from cuts of the
same curve, and we denote this set by G. We label the set of induced morphisms (for h ∈ G
and Ũ from above we have a morphism from Ũ to h(Ũ)) by G̃. (Remark: for each h there
are many different choices of |Ũ |.) This set has the following (partial) order: h1 ≤ h2 if
|Uh1| ⊂ |Uh2 | and h2||Uh1

| = h1 (Uh is defined in 3.1). Let G̃g,n be the set of maximal

elements of G̃ with respect to this order. The elements we need are the morphisms induced
by {Ts, Is,M

s
p} together with the elements of G̃g,n such that conditions (a), (b), (c) and (d)

of definition 3.1 hold. Note, that the morphisms are induced by matrices and therefore the
conditions for the set of isomorphisms in definition 3.1 can be fulfilled by elements of G̃g,n.
We denote this set by Gg,n and want to use it as set of isomorphisms for the construction
of a local orbit space. Therefore, we have to show that Gg,n is finite. Take Xg,n with the
polyhedral structure mentioned above. First we need to show, that only finitely many points
in Xg,n represent the same curve C. Each of the g cuts has to be at a different edge of C.
Thus, the number of possibilities we have for the choice on which edges we cut is finite.
The position of a cut ai on an edge E is divided out by the vector si. Thus we have at most
two possibilities to insert Ai and Bi on E to get a different representative of the same curve.
Therefore, the number of points representing C is finite and bounded by the number

(
|E|
g

)
·2g,

with |E| the number of edges in C. If h ∈ Gg,n is defined on x ∈ σ, σ ∈ Xg,n, then Uh ⊃ σ◦,
because h is linear and Uh is open. Since the number of cones is finite and the number of
represents is bounded we get, that Gg,n is finite.

Lemma 5.9. Let C̃ and C̃ ′ be two curves resulting from two different cuts of a curve C. The
images of C̃ and C̃ ′ in Xg,n are identified by elements of Gg,n.

Proof. During the proof we will denote by C̃ (resp. C̃ ′) the curve and the corresponding
point in Xg,n given by the distances. Since C̃ and C̃ ′ are results of cuts of the same curve C,
there exist i, j ∈ {1, . . . , g} such that the path from Ai to Bi in C̃ and the path A′j to B′j in
C̃ ′ contain an edge S (resp., S ′) coming from the same edge E in C. First of all we can use
the matrices Ti and Tj for the curve C̃ ′ to assume i = j. Let K be the set of marked points
adjacent to the (unique) path from Bi to the middle of S. The curve

∏
p∈K M i

p · (C̃
′) comes

from a cut with a′i on E (for this we need proposition 5.7). Without loss of generality we can
directly assume that a′i ∈ E. Similarly, we can also assume that ai ∈ E. By applying Ii if
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necessary we can further assume ai = a′i. Denote by W the curve we get by cutting C at ai

and inserting new edges Ai and Bi at the new ends. Since the curves C̃ and C̃ ′ are results of
cuts of the same genus-(g− 1) curve, we can repeat our arguments and show that the images
are the same under elements of Gg,n.

Remark 5.10. Let σ be a facet of Xg,n where a point in the interior corresponds to a curve
which has exactly r loops (a loop is an edge forming a cycle). The set Gg,n contains at least
2r elements which are the identity on σ. (IfAi and Bi be on one of those loops for 1 ≤ i ≤ r,
then we get that Ii is the identity on σ. Since the group generated by {I1, . . . , Ir} has 2r

elements the statement follows.)

Remark 5.11. For a better understanding, we describe the morphisms from Gg,n. Let C be
a curve of genus g with n marked ends, and let us orient each edge of C. Let a and a′ be
two cuts of C as stated above (cutting g cycles). By contracting all edges from C except for
those cut by either a or a′ (and not by both) we get a new curve C̃. Each such C̃, together
with the position of a and a′ on C̃, the information which Ai and A′j lie on the same edge and
whether their orientation agrees, describes and is described uniquely by an element of Gg,n

if n or g are greater than one. We begin by defining a morphism g corresponding to this data.
Let Ai and A′j be cuts on the same edge. Using Ts and Is first define a matrix which swaps
Ai and Aj such that Aj lies on the same edge as A′j and such that Aj and A′j have the same
orientation on the edge. Following the idea from lemma 5.9 we then multiply this matrix
by the matrix which identifies the curve C cut by the changed a with the curve C cut by a′.
As source Ug of the corresponding morphism we take all points which correspond to curves
containing the edges of C̃ and the unchanged cut a (where the cuts of a are on edges of C̃ as
well; for this remember that we probably removed edges where a′ has cuts at the same edge).
The target Vg (see definition 3.1) are all points which correspond to a curve containing the
edges of C̃ and the cut a′. By commutativity (see proposition 5.7) g is well defined for all
those points (the products

∏
p∈K M i

p in the proof of lemma 5.9 are defined if the elements
of K are all marked ends of one component of the curve cut at a and A′i or equivalently if
the curve contains the edges of C̃). Furthermore Ug is open since we take all points where
the edges of C̃ are positive. Finally the set of points where g is the identity is closed since
being the identity is a closed condition and since g changes positions of cuts and therefore
can not be the identity for elements where one of the edges of C̃ becomes 0. We take the set
of morphisms such that definition 3.1 is fulfilled and the morphisms we constructed fulfill
this definition. Thus, it remains to show that the above construction is one-to-one. Since the
elements of Uf and Vf correspond to cut curves we can construct C, a and a′ for an element
f ∈ Gg,n. For n or g greater than one there exist curves with at least two bounded edges
for each cycle (for g = 1 and n ≤ 1 we have I1 = id and id = M1

1 if n = 1)). Thus the
construction is unique. If a cycle contains only one edge the orientation makes no difference.
In particular, if Ai lies on this cycle one gets Is = id for this point.

To illustrate the construction of the previous remark we consider the matrix M1
1 .

Example 5.12. Each point corresponding to a cut curve which contain the edges shown on
the left hand side of figure 5.2 are mapped underM1

1 to a point corresponding to a curve with
the edges shown on the right hand side of figure 5.2.

Lemma 5.13. The set Gg,n described above fulfills all conditions of definition 3.1.
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B1

A1

x1
A1 B1

x1

Figure 5.2: A curve cut two times at neighboring edges.

Proof. The elements of Gg,n are restrictions of group elements such that the source and
the image are in Xg,n. Thus, conditions (a) and (b) are satisfied. Let g ∈ Gg,n and let
F = {f1, . . . , fn} ⊂ Gg,n, g ∈ Gg,n with g−1(|Ufi

|) 6= ∅, for all 1 ≤ i ≤ n. We have to
show that there exists aH = {h1, . . . , hn} ⊂ Gg,n with |F | = |H| such that Uhi

⊃ g−1(|Ufi
|)

and hi|g−1(|Ufi
|) = fi ◦ g|g−1(|Ufi

|) for 1 ≤ i ≤ n. Since by construction of Gg,n there exists
always an element hi with hi|g−1(|Ufi

|) = fi ◦ g|g−1(|Ufi
|) it suffices to prove the case where

Vg ∩ Uf1 = Vg ∩ Ufi
and f1 ◦ g|g−1(|Uf1

|) = fi ◦ g|g−1(|Ufi
|) for 1 ≤ i ≤ n (we have to show

that different fi lead to different hi; if one of those equations does not hold, then either the
domain or the image of hi differs from the domain or image of h1). The setGg,n is induced by
matrices, thus g and fi correspond to matrices G and Fi. We define hi to be the isomorphism
defined by the matrix Hi = Fi ◦ G. Since all matrices are elements of a group all Hi are
different for different 1 ≤ i ≤ n. Thus, by definition all hi are different and therefore (c)
holds. Condition (d) holds since we take Ug as big as possible.

Let us make Xg,n/Gg,n into a weighted local orbit space by setting all weights in Xg,n to be
1.

Definition 5.14. With the notations as before we put

S :Mg,n −→ Xg,n/Gg,n

(C, x1, . . . , xn) 7−→ [(distΓ(C̃)]

where C̃ is a curve we get by cutting C.

Remark 5.15. By lemmata 5.5 and 5.9 the map S is well defined.

Proposition 5.16. Let Xg,n, Gg,n andMg,n be as above. Then S : Mg,n −→ Xg,n/Gg,n,
(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj))]{i,j}∈T is a homeomorphism.

Proof. The map S is defined by taking the distances of marked points, thus it is a continuous
map. Since the metric on Mg,n is given by the lengths of edges, the map S is open and
closed. Thus it remains to show that S is bijective.
Let us first prove the injectivity of S. For this we take C and C̃ inMg,n with S(C) = S(C̃).
By definition the curves inMg,n are uniquely defined by the lengths of their bounded edges.
Therefore, the curves are uniquely defined if we fix the lengths of the edges of the cut curve
(but not the other way round). Thus, the curve is uniquely defined by fixing its image in
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G2,n+2g. SinceGg,n only identifies elements which come from the same curve we can take cut
curves C ′ of C (resp. C̃ ′ of C̃) such that distΓ(C ′) = distΓ(C̃

′) in Xg,n. Thus the difference
of the two elements has to be in Φg

n(R
n)+ < z1, . . . , zg >. All curves which differ by

elements of < z1, . . . , zg > come from the same curve by moving the g points {a1, . . . , ag}.
The elements of Φg

n(R
n) only insert a new length at the marked ends {x1, . . . , xn}. Thus,

one has C = C̃.
To prove the surjectivity note that M0,n+2g is homeomorphic to G2,n+2g/Φn,g(Rn+2g). Let
x ∈ Xg,n/Gg,n. We take a representative x̃ of x in Xg,n and denote its image in Xg,n/
Φn,g(Rn+2g) by [x]. By the mentioned homeomorphism we can construct a unique curve
C̃ ∈ M0,n+2g which is identified with [x]. Now we connect the points [x]n+2i−1 and [x]n+2i
for i ∈ {1, . . . , g} with an edge ei of length xn+2i−1,n+2i−1 − [x]n+2i−1,n+2i and remove the
edges [x]n+2i−1 and [x]n+2i. The resulting curve belongs to Mg,n and is mapped to x under
S. Thus S is surjective.

Proposition 5.17. The weighted local orbit space Xg,n/Gg,n is a tropical local orbit space.

Proof. By proposition 3.18 the balancing condition is clear, since G2,n+2g is a balanced fan.

Example 5.18. We consider the moduli space M1,2. To compare it with the construction of
an orbit space see remark 7.6. The polyhedral complex underlying the moduli space consists
of the following cones (the entries of the vectors are d(x1, x2), d(x1, A), d(x1, B), d(x2, A),
d(x2, B), d(A,B)).

C1 = {a ·




1
1
1
2
0
2



+ b ·




1
0
1
1
0
1



|a, b ∈ R≥0, a > 0}, C2 = {a ·




1
1
1
2
0
2



|a > 0},

C3 = {a ·




1
1
1
2
0
2



+ b ·




0
1
0
1
0
1



|a, b ∈ R≥0, a+ b > 0}, C4 = {b ·




0
1
0
1
0
1



|b > 0},

C5 = {a ·




0
1
1
1
1
0



+ b ·




0
1
0
1
0
1



|a, b ∈ R≥0, b > 0}, C6 = {a ·




1
2
0
1
1
2



|a > 0},
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x2

x1

x1

x2

x2

x2

x1

x1

C4

C5

C8

C1 C3

C7

C2

C6

X1,2/G1,2

X1,2

Figure 5.3: The polyhedral complex and the topological space ofM1,2.

C7 = {a ·




1
2
0
1
1
2



+ b ·




1
1
0
0
1
1



|a, b ∈ R≥0, a > 0},

C8 = {a ·




1
2
0
1
1
2



+ b ·




0
1
0
1
0
1



|a, b ∈ R≥0, a+ b > 0},

Since the space Φ12(R
2)+ < z1 > which we mod out is three-dimensional the actual picture

is three-dimensional. A picture of the polyhedral complex is given in figure 5.3. The set of
morphisms in the tropical local orbit space identifies the cones C2 and C6 as well as the cones
C1, C3, C7 and C8. Thus the topological space underlying the tropical local orbit space is the
same as the union of the cones C2, C3, C4 and C5 (in figure 5.3 one can see the topological
space of the quotient).
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5.2 Moduli spaces of parameterized tropical curves

Put X̃ lab
g,n,∆,r = Xg,N×Rr×Zr

1×. . .×Zr
g, where Zr

i , i ∈ {1, . . . , g} denotes a copy of Zr (for
the connection between n and N see chapter 2, Xg,N is defined in equation 5.1). We define
Glab

g,N to be as set in bijection with Gg,N . For each f ∈ Glab
g,N , we denote the corresponding

element in Gg,N by f ∗, and we put Uf = Uf∗ ×Rr × Zr
1 × . . .× Zr

g. Now we want to define
a map for each f ∈ Glab

g,N . Since f is induced by a matrix, it suffices to define operations on
the generators of H , mentioned above (H is defined after the proof of proposition 5.8). We
then take the operation defined by the product. We denote the operation on the component
Zr
1 × . . .× Zr

g by tf and define it for (v1, . . . , vg) ∈ Zr
1 × . . .× Zr

g as follows:

Ii(v
1, . . . , vi−1, vi, vi+1, . . . , vg) = (v1, . . . , vi−1,−vi, vi+1, . . . , vg)

Ti(v
1, v2, . . . , vi−1, vi, vi+1, . . . , vg) = (vi, v2 . . . , vi−1, v1, vi+1, . . . , vg)

M i
p(v

1, . . . , vi−1, vi, vi+1, . . . , vg) = (v1, . . . , vi−1, vi − v(xp), v
i+1, . . . , vg)

(v(xp) is the direction of xp, see chapter 2)Let (x, b, v1, . . . , vg) ∈ X̃ lab
g,n,∆,r, then we put

f(x, b, v1, . . . , vg) = (f ∗(x), b, tf (v
1, . . . , vg)). As topology on X̃ lab

g,n,∆,r, we take the product
topology of Xg,N , of the Zr

i and of Rr, where we consider Zr
i with the discrete topology and

Rr with the standard Euclidean topology. Since we need a finite set of polyhedra we refine
X̃ lab

g,n,∆,r to be the subset of XN × Rr × Zr
1 × . . . × Zr

g given by |(vi)s| ≤
∑

v∈∆ |vs| for
1 ≤ i ≤ g, 1 ≤ s ≤ r.

Remark 5.19. The point b is the image of x1 under h in Rr, i.e. b = h(x1) (see definition
2.11).

In the case of rational curves it was possible to define the moduli space of stable maps to be
the product of Rr and the moduli space of abstract curves (see [GKM]). In the case of higher
genus this is not any longer possible. The cycles cause the problem (see chapter 7). Take a
curve C and cut it at g points as above. We want to map the abstract tropical curve under
h in Rr. Therefore, we have to fix a direction vector in Zr for each cut (the directions of
the vectors at Ai and Bi are opposite each other). Now we can define the image under h of
the cut curve. Unfortunately the image of the cut cycle do not need to be a cycle, since we
allowed arbitrary lengths for the edges. To ensure the closing of the cycles we take rational
functions. These functions are given in the following proposition.

Proposition 5.20. For all 0 < i ≤ r, 1 < d ≤ g, we have a function

φd
i : X̃

lab
g,n,∆,r → R

(a, b, v1, . . . , vg) 7−→
1

2
·max{±

1

2
(

N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i))}

which is rational (a = [a{1,2}, . . . , a{N+2g−1,N+2g}] and we put am,m = 0 and vk = v(xk)).
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Proof. The only thing we have to do is to show that φd
i is well defined. Thus, we have to

show that φd
i ([x, b, v]) = φd

i ([x + s + t, b, v]), for all [x, b, v] ∈ X̃ lab
g,n,∆,r, s ∈< s1, . . . , sg >

and t ∈ Φg
n(R

n). Note, that φd
i ([x, b, v]) = φd

i ([x+ s, b, v]), because
∑N

k=2 vk(i) = 0 and

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1} −a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
= 0

for each vector a in < s1, . . . , sg >. Furthermore we have

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i) = a{N+2k−1,N+2d} = a{N+2k−1,N+2d−1} =

= a{N+2k,N+2d} = a{N+2k,N+2d−1} = 0

for all a ∈ Φg
n(R

n). Thus, φd
i ([x, b, v]) = φd

i ([x + s + t, b, v]) for all [x, b, v] ∈ X̃ lab
g,n,∆,r,

s ∈< s1, . . . , sg > and t ∈ Φg
n(R

n).

Remark 5.21. Let x ∈ X̃ lab
g,n,∆,r. The value φd

i (x) is equal tomax{±((evAd
)i(x)−(evBd

)i(x))}
where evAd

(x) (resp. evBd
(x)) are the positions of Ad and Bd in Rr (see proposition 5.23).

Now we want to show that
∏g

d=1

∏r
i=1 φ

d
i · (X̃

lab
g,n,∆,r/G

lab
g,N) is well defined. For this we have

to show that
∏g

d=1 φ
d
i · (Uh) =

∏g
d=1 φ

d
i · (h(Uh)).

Proposition 5.22. For all i ∈ {1 . . . r}, x ∈ X̃ lab
g,n,∆,r and h ∈ Glab

g,N one has
∏g

d=1 φ
d
i ·(Uh) =∏g

d=1 φ
d
i · (h(Uh)).

Proof. Since the elements of Glab
g,N act as matrices on the component XN we can, instead of

proving the proposition, show that for all f ∈ H and x ∈ V = Vg,n × Rr × Zr
1 × · · ·Z

r
g one

has
∏g

d=1 φ
d
i · (V ) =

∏g
d=1 φ

d
i · (f(V )) (f and φd

i are defined canonically on V , because f
is a matrix on Vg,n and the φd

i are as well rational maps on V ). Since the matrices Is, Ts,M
s
p

generate H , it suffices to prove it for these matrices.
Thus, let us see how these matrices change the result. Put ([a{1,2}, . . . , a{N+2g−1,N+2g}], b,
v1, . . . , vg) = x. First, we consider the matrix Is and d 6= s:

φd
i (Is([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))
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=
1

2
·max

{
±
1

2

(
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1,k 6=s

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

+
(
a{N+2s−1,N+2d−1} − a{N+2s−1,N+2d}

−a{N+2s,N+2d−1} + a{N+2s,N+2d}

)
· (−vs(i))

)}

=
1

2
·max

{
±
1

2

(
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i)

+

g∑

k=1

(
a{N+2k−1,N+2d} − a{N+2k−1,N+2d−1}

−a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

)}

= φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg).

For d = s it is the same as the genus 1 case, considered in chapter 7.

Now we consider the matrix Ts. For 1 6= d 6= s only the order in the second big sum of φd
i

changes which does not effect the result. Further φ1i and φs
i are interchanged by Ts. Since the

intersection of a product of rational functions does not depend on the order (see proposition
3.46), one gets

∏g
d=1 φ

d
i · (V ) =

∏g
d=1 φ

d
i · (Ts(V )).

At last consider the matrix Ms
p . The calculations for N +2d− 1 6= p 6= N +2d are the same

as for genus 1. Thus, as in chapter 7 we get the equality

φd
i (M

s
p ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))

− φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg) = 0.

It remains to show the cases N + 2d − 1 = p or N + 2d = p. Since the product is invariant
under Id we only consider N + 2d− 1 = p. We put

d∑

i

=
N∑

k=2

(
a{k,N+2d} − a{k,N+2d−1}

)
vk(i) +

g∑

k=1

(
a{N+2k−1,N+2d}

−a{N+2k−1,N+2d−1} − a{N+2k,N+2d} + a{N+2k,N+2d−1}

)
· vk(i)

and get

φd
i (M

s
p ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg))

− φd
i ([a{1,2}, . . . , a{N+2g−1,N+2g}], b, v

1, . . . , vg)
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=
1

2
·max

{
±
1

2

(
d∑

i

+
N∑

k=2

−(a{k,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{k,N+2s} − a{N+2d−1,N+2s−1}

)
· vk(i)

+

g∑

k=1,d6=k 6=s

(
−(a{N+2k−1,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{N+2k−1,N+2s} − a{N+2d−1,N+2s−1}) + a{N+2k,N+2s−1} + a{N+2d−1,N+2s}

+a{N+2s−1,N+2s} − a{N+2k,N+2s} − a{N+2d−1,N+2s−1}

)
· vk(i))

+2
(
a{N+2d,N+2s−1} + a{N+2d−1,N+2s} + a{N+2s−1,N+2s}

−a{N+2d,N+2s} − a{N+2d−1,N+2s−1}

)
· (vd(i))(

a{N+2s−1,N+2d} − a{N+2s−1,N+2d−1}

−a{N+2s,N+2d} + a{N+2s,N+2d−1}

)
· (−vd(i))

+2a{N+2s−1,N+2s} ·
(
vs(i)− vd(i)

)
)}

−
1

2
·max

{
±
1

2

d∑

i

}

=
1

2
·max

{
±
1

2

(
s∑

i

+

d∑

i

)}
−
1

2
·max

{
±
1

2

d∑

i

}
.

The last expression is equal to 0 for
∏g

d=1 φ
d
i for the following reason. Since the intersection

of a product does not depend on the order (see proposition 3.46) we can first intersect with
φs. For points in this intersection the sum

∑s
i is equal to 0 and we are done.

Now we can define the tropical local orbit space we are interested in by constructing the
tropical local orbit space cut out by the rational functions φi:

Mlab
g,n,trop(R

r,∆) =

g∏

d=1

r∏

i=1

φd
i · (X̃

lab
g,n,∆,r/G

lab
g,N).

The set of cones of Mlab
g,n,trop(R

r,∆) is denoted by X lab
g,n,∆,r. The rational functions assure

that Ai and Bi are mapped to the same point for all i ∈ {1, . . . g}.

5.3 The number of curves is independent of the
position of points

In this section we use corollary 3.41 to prove that the number of certain tropical curves
passing through given points is independent of the position of points. Therefore we have to
define a map fulfilling the requirement of corollary 3.41.

Proposition 5.23. For j = 1, . . . , n the map

evj : X
lab
g,n,∆,r → Rr

(Γ, x1, . . . xN , h) 7−→ h(xj)

42



Chapter 5: Moduli spaces for curves of arbitrary genus

is invariant under the set Gg,N .

Proof. The map evj is given by

evj(x) = b+
1

2

(
N∑

k=2

(
a{1,k} − a{k,j}

)
vk+

g∑

k=1

(
a{1,N+2k−1}

−a{N+2k−1,j} − a{1,N+2k} + a{j,N+2k}

)
· (vk)

)
. (5.2)

Since Is and Ts only change the order of the sum, we only have to prove invariance for
Ms

p . The maps are defined for the curves cut along a1, . . . ag. Thus, let us take a point
C ∈ X lab

g,n,∆,r which represents a curve with cuts at each cycle and prove that the evaluation
maps are invariant for those (i.e. evj(C) = evj(M

s
p (C))). We can treat such a curve as a

genus 1 curve cut at as. For this case the equation is the same as the equation for genus 1
curves in chapter 7 with N + 2(g − 1) ends and thus the proposition follows.

Definition 5.24 (Evaluation map). For j = 1, . . . , n the map

evj :M
lab
g,n,trop(R

r,∆) → Rr

(Γ, x1, . . . xN , h) 7−→ h(xj)

is called the j-th evaluation map (note that this is well-defined for the contracted ends since
for them h(xj) is a point in Rr).

Proposition 5.25. With the tropical local orbit space structure given above, the evaluation
maps evj :M

lab
g,n,trop(R

r,∆)→ Rr are morphisms of local orbit spaces (Rr is equipped with
the trivial local orbit space structure).

Proof. We have to show that for e = evj the conditions in definition 3.21 are fulfilled (e1 = e
and e2 the constant map). The conditions (a) - (c) are clear, since e2 is a constant map. The
map e1 is continuous and conditions (d) and (g) follows, because the image of each cone is
the whole Rr. Furthermore, (e) is the same as in the case of fans treated in [GKM]. Finally,
proposition 5.23 proves (f) and we are done.

Definition 5.26 (Forgetful map). Let n ≥ 1 and g > 0. We define the forgetful map
ftn : Mg,n → Mg,0 to be the projection given by Vg,n → Vg,0 (projection to the last

(
2g
2

)

coordinates). The induced forgetful map of Mlab
g,n,trop(R

r,∆) to Mg,0 is denoted by ftN as
well.

Proposition 5.27. The map ftn :Mlab
g,n,trop(R

r,∆)→Mg,0 is a morphism of tropical local
orbit spaces.

Proof. It follows from the fact that ftn is a projection, respecting the polyhedral structure.

Proposition 5.28. The map e = ev1× · · · × evn×ftN :Mlab
g,n,trop(R

r,∆)→ Rrn×Mg,0 is
a morphism of local orbit spaces.
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Proof. By propositions 5.25 and 5.27 the evaluation maps and the forgetful maps are mor-
phisms. By lemma 3.27 the conditions a till f of definition 3.21 are fulfilled. We only have
to show that condition g is fulfilled as well. By definition, ẽ1([σ̃])\ẽ1([σ]) ⊂ u(e). Thus,
the points in ẽ1([σ̃])\ẽ1([σ]) are only in the boundary of non-closed faces (see proposition
3.30). The points in the boundary of non-closed faces are the points for which cycle-lengths
are zero. Since these points do not lie inMg,0 one has that ẽ1([σ̃])\ẽ1([σ]) is empty and thus
condition g holds.

If we fix a degree ∆ and a genus g > 0 and count tropical curves in Rr we want to count a
finite (non-zero) number of curves (i.e. the space of the considered curves passing through
given points should be 0-dimensional). Thus, we have to take the right number n of markings
such that Mlab

g,n,trop(R
r,∆) and Rrn ×Mg,0 have the same dimension. The dimension of

Mlab
g,n,trop(R

r,∆) is given by the number of inner edges (each inner edge has a length) plus
r (position of h(x1)) minus rg (because of the rg rational functions). The dimension of
Rrn ×Mg,0 is rn+ 3g − 3 (resp. rn+ 1) for g > 1 (resp. g = 1). Thus, n has to satisfy the
following equality:

#∆+ n+ 3g − 3 + r − rg = rn+ 3g − 3 ⇔ r + n+#∆− rg = rn

(#∆ + n+ r − r = rn+ 1 ⇔ #∆− 1 = (r − 1)n, for g = 1.)

Theorem 5.29. Let r ≥ 2, let ∆ be the degree of a genus g > 0 tropical curve in Rr,
and let n ∈ Z>0 with g + n ≥ 2 be such that r + n + #∆ − rg = rn for g > 1 (resp.,
#∆ − 1 = (r − 1)n for g = 1). The number of parameterized labeled n-marked tropical
curves of genus g with fixed type T ∈ Mg,0 which pass through n points in general position
in Rr, counted with the multiplicities of corollary 3.41, is independent of the choice of the
configuration of points and the choice of T .

Proof. The map ev1× . . .×evn×ftN is by proposition 5.28 a morphism between local orbit
spaces. By definition the domain and the target space are of the same dimension. The space
Rrn ×Mg,0 is strongly irreducible since all codimension-1 faces of Mg,0 are attached to
three codimension-0 faces and Mg,0 is irreducible. The morphism is surjective because of
the balancing condition. Thus we can apply corollary 3.41 to get the statement.

Let us fix the notation as above. To have a finite count of certain curves passing through n
points, n has to fulfill the following equality:

#∆+ n+ 3g − 3 + r − rg = rn ⇔ #∆+ (1− g)(r− 3) = (r − 1)n.

Theorem 5.30 (Theorem 1 in [M1], Theorem 4.8 in [GM1]). Let ∆ be the degree of a genus
g > 0 tropical curve in R2 and let n ∈ Z>0 be such that #∆+ g−1 = n. The number of pa-
rameterized labeled n-marked tropical curves of genus g (counted with multiplicities) which
pass through n points in general position in R2 is independent of the choice of the configu-
ration of points (the multiplicity of a curve is defined to be the weight of the corresponding
cone inMlab

g,n,trop(R
2,∆)).
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Chapter 5: Moduli spaces for curves of arbitrary genus

Proof. By proposition 5.25 the evaluation maps are morphisms and lemma 3.27 implies
that conditions a till f of definition 3.21 are fulfilled for the map e = ev1× · · · × evn :
Mlab

g,n,trop(R
2,∆) → R2n. By dimensional reasons the image is 2n-dimensional. Thus, to

apply corollary 3.41 we have to show that condition g of definition 3.21 holds for e and that
dim(R2n\ẽ1(|M

lab
g,n,trop(R

2,∆)|)) ≤ 2n − 2. The tropical local orbit space R2n (we put all
weights to be one) is irreducible and thus it suffices to show that for σ ∈ X lab

g,n,∆,2 one has

dim(ẽ1([σ])\ẽ1([σ])) ≤ 2n−2 (the image is a tropical fan. If dim(ẽ1([σ])\ẽ1([σ])) ≤ 2n−2,
then by irreducibility dim(R2n\ẽ1(|M

lab
g,n,trop(R

2,∆)|)) ≤ 2n − 2 holds as well. Further-

more ẽ1([σ])\ẽ1([σ]) contains the sets in (g) of definition 3.21 which must have dimension
less than or equal to 2n − 2). The map is linear on each cone. Therefore, a point x can
only be in ẽ1([σ])\ẽ1([σ]) if there exists a Cauchy sequence (xi)i∈N ⊂ Mlab

g,n,trop(R
2,∆)

with limi→∞ xi /∈ Mlab
g,n,trop(R

2,∆) and limi→∞ ẽ1(xi) = x. Thus, we have to study the
case where we diminish the cycle length to zero. Thus let us consider a sequence (Ci)i∈N

of curves through arbitrary points where we move the points to shrink the cycle to a point
p. These curves are represented by points in the moduli space Mlab

g,n,trop(R
2,∆). Since

Mlab
g,n,trop(R

2,∆) consists of finitely many cones, (Ci)i∈N contains a subsequence which lies

in the interior of one cone σ. Either dim(σ) = 2n or dim(ẽ1([σ])\ẽ1([σ])) ≤ 2n − 2 is
fulfilled. Assume that the cone σ is of dimension 2n. Thus, the cycle of each such curve
(C, h, x1, . . . , xn) has to be seen in the image h(C). For the sake of contradiction, assume
that dim(ẽ1([σ])\ ẽ1([σ])) = 2n − 1. Then no marked point can be on the cycle we are
shrinking, because this would lead to a codimension 2 face. The edges adjacent to p have the
same direction as the edges which have been adjacent to the shrinking cycle before. Thus,
the dual polytope of p in the limit curve has an interior lattice point and we can insert again
a cycle at p. All curves we get by inserting a small cycle at p are mapped to the same point
under e1. Hence, the map is not injective on the face with the shrinking cycle (which is a
contradiction to dim(ẽ1([σ])\ẽ1([σ])) = 2n− 1) and we are done.

Remark 5.31. In the previous proof we need the assumption r = 2 since we use the dual
polytope in our argumentation. For r > 2 the tropical curve is not a hypersurface and thus
the proof does not work in this case.

Example 5.32. Let us consider two examples to see why we need the assumption r = 2 in
the proof of theorem 5.30. Figure 5.4 shows a curve in R2 and shrinking of the cycle of

Figure 5.4: A curve in R2 where we shrink the cycle length to 0.

this curve. The right hand side represents the limit curve and a possibility to insert again a
cycle. All curves with a cycle congruent to the dashed one have the same image under the
evaluation map.

Figure 5.5 shows a curve in R3 where we shrink again the cycle to a point P . The directions
of the curve are x1 = (−4, 1,−1), x2 = (1,−2, 0), x3 = (2, 1,−1), x4 = (1, 0, 2). Fixing
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Chapter 5: Moduli spaces for curves of arbitrary genus

one more direction determines all directions (because of the balancing condition). Thus, let
us choose the direction of E to be (−2, 1, 0). The continuous lines lie in the xy-plane and the
others do not. It is impossible to insert a cycle at P similar to the case in figure 5.4 (without
moving x1 up to x4 in R3).

x1

x2

x3

x4

x1

x2

x4

x3
P

E

Figure 5.5: A curve in R3 where we shrink the cycle length to 0.
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6 Orbit spaces

In chapter 3 we gave the definition of a tropical local orbit space X/G. The main disadvan-
tage of this definition is that G is not a group. Because of this we had to solve many technical
problems. In this chapter we will change the definition of a local orbit space into a definition
of an orbit space by requiring that G is a group. The great disadvantage of doing this is,
that we no longer can assume that X or G are finite. This is due to the fact that we want to
give moduli spaces of elliptic curves the structure of orbit space. In our construction (which
seems to be natural, see chapter 7), the complexX and the group G are infinite. Nevertheless
in the cases where we can deal with infinity the calculations are easier than for local orbit
spaces because of the group structure.

In the first part of this chapter we introduce the notion of tropical orbit space. Orbit spaces are
polyhedral complexes with a group acting on them. The word tropical refers as usual to the
appearance of a balancing condition which a priori depends on the group. Nevertheless, we
will see that the balancing condition of the tropical orbit space can be checked by considering
only the polyhedral complex. After this we introduce morphisms of orbit spaces in the second
part, and prove a fact concerning those morphisms (see corollary 6.29). One can use this
corollary as a tool for proving tropical enumerative statements.

6.1 Tropical orbit space

Definition 6.1 (Orbit space). Let X be a polyhedral complex and G a group acting on |X|
such that each g ∈ G induces an automorphism on X . We denote the induced map of an
element g ∈ G on X by g(.) and the induced homeomorphism on |X| by g{.}. We denote
by X/G the set of G−orbits of X and call X/G an orbit space.

Remark 6.2. The topological space |X/G| = |X|/G of an orbit space X/G is Hausdorff
since G is a group.
Example 6.3. The following example shows the schematic picture of the topological space
of an orbit space with trivial group G and the open fans Fσ for all σ. The group G is trivial
and thus the orbit space is the same as the polyhedral complex (i.e. X = X/G).
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Chapter 6: Orbit spaces

Take for G the group with two elements, consisting of the identity and the map which maps
the upper half circle to the lower half circle and vice versa and which let the ray fixed. The
picture of |X|/G is as follows:

Definition 6.4 (Weighted orbit space). Let (X,ωX) be a weighted polyhedral complex of
dimension n, and G a group acting on X . If X/G is an orbit space such that

• for any g ∈ G and for any σ ∈ X(n), one has ωX (σ) = ωX (g(σ)),

we call X/G a weighted orbit space. The classes [σ] ∈ X/G, for σ ∈ X(n), are called
weighted classes.

Definition 6.5 (Stabilizer, Gτ−orbit of σ). Let X and G be as above and τ, σ ∈ X . We call
Gτ = {g ∈ G|g{x} = x for any x ∈ τ} the stabilizer of τ . We define Xσ/τ = {g(σ)|g ∈
Gτ} to be the Gτ−orbit of σ. By |Gτ | (resp., |Xσ/τ |) we denote the number of elements in
Gτ (resp., Xσ/τ ).

The weight function on the weighted classes of X/G is denoted by [ω] and defined by
[ω]([σ]) = ω(σ)/|Gσ|, for all σ ∈ X(n).

Remark 6.6. We could define a weighted orbit space as well by giving an orbit space and a
weight for each class instead of defining the weights of the orbit space by the weights of the
complex and the group action.

Definition 6.7 (Suborbit space). Let X/G be an orbit space. An orbit space Y/H is called
a suborbit space of X/G (notation: Y/H ⊂ X/G) if each general polyhedron of Y is con-
tained in a general polyhedron of X , G = H and each element of G acts on the faces of Y in
the same way as for X (i.e. for all g ∈ G, σ ∈ Y we have g|Y |{x} = g|X|{x} for x ∈ σ). In
this case we denote by CY,X : Y → X the map which sends a general polyhedron σ ∈ Y to
the (unique) inclusion-minimal general polyhedron ofX that contains σ. Note that for a sub-
orbit space Y/H = Y/G ⊂ X/G we obviously have |Y | ⊂ |X| and dimCY,X(σ) ≥ dim σ
for all σ ∈ Y .

Definition 6.8 (Refinement). Let ((Y, |Y |), ωY )/G and ((X, |X|), ωX) /G be two weighted
orbit spaces. We call ((Y, |Y |), ωY )/G a refinement of ((X, |X|), ωX)/G, if

(a) ((Y, |Y |), ωY )/G ⊂ ((X, |X|), ωX)/G,

(b) |Y ∗| = |X∗|,

(c) ωY (σ) = ωX(CY,X(σ)) for all σ ∈ (Y ∗)(dim(Y )),

(d) each σ ∈ Y is closed in |X|.

We say that two weighted orbit spaces ((X, |X|), ωX)/G and ((Y, |Y |), ωY )/G are equivalent
(notation: ((X, |X|), ωX)/G ∼= ((Y, |Y |), ωY )/G) if they have a common refinement.
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Definition 6.9 (Tropical orbit space). Let (X,ωX) /G be a weighted orbit space of dimension
n with finitely many different classes and |Gσ| <∞ for any σ ∈ X(n). If for any τ ∈ X(n−1)

there exists λσ/τ ≥ 0 for any σ > τ such that
∑

σ̃>τ,σ̃∈Xσ/τ
λσ̃/τ = 1 and

∑
σ>τ λσ/τ

[ωX ]([σ])uσ/τ ∈ Vτ , then X/G is called a tropical orbit space. (Remark: one has #{σ > τ}
<∞ since Sτ in definition 1.10 is homeomorphic to an open fan.)

Remark 6.10. For a finite group G the definitions of tropical orbit space and tropical local
orbit space do agree.

Proposition 6.11. Let (X,ωX) be a general weighted fan in V and G ⊂ Gl(V ) such that
X/G is a weighted orbit space (G is finite since (X,ωX) is finite). Then (X,ωX) is a general
tropical fan if and only if X/G is a tropical orbit space.

Proof. ” ⇒ ”: Put n = dim(X) and let τ ∈ X(n−1) and σ > τ . Then we define λσ/τ

= |{g∈Gτ , such that g(σ)=σ}|
|Gτ |

= |Gσ|
|Gτ |

= 1
|Xσ/τ |

. The sets X/G and G are finite thus X is finite. In

particular, for any τ ∈ X(n−1) one has #{σ > τ} < ∞. For any σ > τ one has λσ/τ ≥ 0
and

∑
σ̃>τ,σ̃∈Xσ/τ

λσ̃/τ = 1. Furthermore,

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ ,

because (X,ωX) is a tropical fan. Thus, we have

∑

σ>τ

|Gσ|

|Gτ |
[ωX ]([σ]) · vσ/τ =

∑

σ>τ

1

|Gτ |
ωX(σ) · vσ/τ = t ∈ Vτ .

”⇐ ”: LetX/G be a tropical orbit space. Thus, there exists λσ/τ with σ > τ and τ ∈ X(n−1)

such that ∑

σ>τ

λσ/τ [ωX ]([σ]) · uσ/τ = t ∈ Vτ .

Therefore, because of the linearity of g ∈ Gτ , we get:

|Gτ | · t =
∑

g∈Gτ

g(t)

=
∑

g∈Gτ

g(
∑

σ>τ

λσ/τ [ωX ]([σ]) · uσ/τ )

=
∑

g∈Gτ

∑

σ>τ

λσ/τ [ωX ]([σ]) · g(uσ/τ )

=
∑

σ>τ

|Gσ| · [ωX ]([σ]) · uσ/τ

=
∑

σ>τ

ωX(σ) · uσ/τ .
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Example 6.12. The following picture is an example of a tropical fan X and a tropical orbit
space X/G with this fan as underlying polyhedral complex. Let X be the standard tropical

line with its vertex at the origin, the directions

(
−1
0

)
,

(
0
−1

)
and

(
1
1

)
, and all the

weights are equal to one. The group G consists of two elements and is generated by the

matrix

(
0 1
1 0

)
.

X X/G

The balancing condition for the fan is

(
−1
0

)
+

(
0
−1

)
+

(
1
1

)
=

(
0
0

)

and for the orbit space

1

2
·

(
−1
0

)
+
1

2
·

(
0
−1

)
+
1

2
·

(
1
1

)
=

(
0
0

)
,

where the first two (1/2)’s come from the splitting of 1 (see definition 6.9), and the third 1/2
comes from the invariance of the last vector under G.

Corollary 6.13 (of proposition 6.11). The balancing condition for tropical orbit spaces holds
if and only if the balancing condition of the underlying weighted complex holds.

Proof. For tropical orbit spaces with infinite group G there are only finitely many facets
around a codim-1 face. Thus, as in the proof of proposition 6.11 the balancing condition can
be checked on the polyhedral complex as well (without group action).

Example 6.14. To show that there are tropical orbit spaces which do not come from a tropical
fan we consider the following orbit space. Let |X| be the topological space {(x, y) ∈ R2|y >
0}, and let X be the set of cones spanned by the vectors

(
x
1

)
and

(
x+1
1

)
for x ∈ Z. If we

define all weights to be one and G =<

(
1 1
0 1

)
>, we get the following tropical orbit

space X/G:

X X/G

It can easily be seen, that X/G is a tropical orbit space (see definition 6.9), while X has
infinitely many cones and thus it can not be a tropical fan.
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Definition 6.15 (Global orbit space). Let F be a finite set of orbit spaces and let E be a set
of isomorphisms of polyhedral complexes fulfilling the following properties. Each element
gX/G,Y/H ∈ E is labeled by a pair X/G, Y/H ∈ F such that gX/G,Y/H : X ′ → Y ′ with X ′ ⊂
X , Y ′ ⊂ Y subcomplexes, is an isomorphism. Furthermore, for each g ∈ G and σ ⊂ |X ′|
such that g(σ) ⊂ |X ′| there exists a h ∈ H such that gX/G,Y/H(g(σ)) = h(gX/G,Y/H(σ)). We
call the pair (F,E) a global orbit space.

Remark 6.16. The global orbit space is a topological space which locally is an orbit space.
In the same way one could define a weighted global and later on a tropical global orbit space.
For weighted global orbit spaces one would need the condition that the weights of the glued
cones coincide.

6.2 Morphisms of orbit spaces

After becoming more familiar with the notion of orbit spaces we now introduce morphisms
between them.

Definition 6.17 (Morphism of orbit spaces). Let (X, |X|, {ϕ}, {Φσ|σ ∈ X})/ G and (Y, |Y |,
{ψ}, {Ψτ |τ ∈ Y ) /H be two orbit spaces. A morphism of orbit spaces f : X/G → Y/H
is a pair (f1, f2) consisting of a continuous map f1 : |X| → |Y | and a group morphism
f2 : G→ H with the following properties:

(a) for every general polyhedron σ ∈ X there exists a general polyhedron σ̃ ∈ Y with
f1(σ) ⊆ σ̃,

(b) for every pair σ, σ̃ from (a) the map Ψeσ ◦ f1 ◦Φ
−1
σ : |FX

σ | → |F Y
eσ | induces a morphism

of fans F̃X
σ → F̃ Y

eσ , where F̃X
σ and F̃ Y

eσ are the weighted general fans associated to FX
σ

and F Y
eσ , respectively (cf. definition 1.6),

(c) there exists a refinement of X such that for any σ, σ̃ ∈ X with dim(f1(σ) ∩f1(σ̃))
= dim(f1(σ)) = dim(f1(σ̃)), one has f1(σ) = f1(σ̃),

(d) f1(g(σ)) = f2(g)(f1(σ)) for all g ∈ G and σ ∈ X .

A morphism of weighted orbit spaces is a morphism of orbit spaces (i.e. there are no condi-
tions on the weights).

Remark 6.18. The conditions (a) and (b) of definition 6.17 are equivalent to f1 being a
morphism of general polyhedral complexes.

Remark 6.19. For G being a finite group the concepts of tropical local orbit spaces and
tropical orbit spaces are the same. Nevertheless the definitions of morphisms of those objects
do not agree. This is due to the fact that we use orbit spaces to treat easier problems than the
problems we deal with by using local orbit spaces. In particular we do not need morphisms
from open cones to closed cones as in the case of local orbit spaces (cf. theorem 5.30). Thus,
we can ask for condition (c) instead of condition (g) in definition 3.21.

Explanation 6.20. The motivation for asking a morphism to fulfill conditions (a), (b) and (d)
is clear, but to ask for condition (c) is not. Thus, we consider an example where condition
(c) is not fulfilled.
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Let us consider the map f , given by the projection of two intervals on a third one (see the
following picture). We take G and H to be trivial, thus X/G = X and Y/H = Y , where X
is the disjoint union of two open intervals of different length and Y is one open interval with
the same length as the longest interval of X .

f

Y

X

After any possible refinement, the facet σ, which is the most left in the upper interval of X ,
is open on the left side, but will be mapped on a left closed facet τ . We call σ̃ the intersection
of the preimage of τ with the longest interval of X . Then f1(σ) ∩ f1(σ̃) is a line segment as
well as f1(σ) and f1(σ̃), but the images are not the same which contradicts (c). The reason
is that σ is a half open interval but σ̃ is a closed interval. Thus f is not a morphism.

Example 6.21. If we take the tropical orbit spaceX/G from example 6.12, then the canonical
map to the diagonal line in R2 is a morphism of orbit spaces. But the homeomorphism which
goes in the opposite direction is not a morphism, because locally at the origin it cannot be
expressed by a linear map.

Remark 6.22. The reason we ask condition (c) to be fulfilled is to define images of the poly-
hedra later on. Thus, after refinement, each polyhedron should map to one polyhedron and
the image of the polyhedral complex should be a polyhedral complex as well. In particu-
lar condition (b) of definition 1.9 has to be fulfilled. Therefore, images of polyhedra of the
same dimension should intersect in lower dimension or should be equal. In other words, (c)
ensures (b) in definition 1.9.

To get more familiar with the definition of a morphism we prove the following proposition.

Proposition 6.23. Let X/G and Y 1/H1, Y 2/H2 be orbit spaces and f 1, f 2 be two mor-
phisms, f 1 : X/G → Y 1/H1 and f 2 : X/G → Y 2/H2. Assume that for each refinement
X1 of X there exists a refinement X2 of X1 such that condition (c) of definition 6.17 is ful-
filled for f 1 and f 2. Then f : X/G → Y 1/H1 × Y 2/H2, f([x]) 7→ (f 1([x]), f 2([x])) is a
morphism.

Proof. Conditions (a), (b) and (d) of definition 6.17 hold since they follow from the condi-
tions of f 1 and f 2. Thus it remains to prove condition (c). Assume that (c) does not hold.
In this case there exist σ, σ̃ ∈ X with dim(f1(σ) ∩f1(σ̃)) = dim(f1(σ)) = dim(f1(σ̃))
such that f1(σ) 6= f1(σ̃). After refinement of X1 we can assume that σ, σ̃ ∈ X(1) with
|f1(σ)\f1(σ̃)| = 1 and f is injective on σ and σ̃. Therefore either f 1 or f 2 is injective
on σ and σ̃ (if not, then dim(f1(σ) ∩ f1(σ̃)) = 0). Without loss of generality we can as-
sume that f 1 is injective. One has dim(f 11 (σ) ∩f

1
1 (σ̃)) = dim(f 11 (σ)) = dim(f 11 (σ̃)), but

|f 11 (σ)\f
1
1 (σ̃)| = 1. Since f 1 is continuous, every refinement X2 of X1 contains σ and σ̃

with dim(f 11 (σ) ∩f
1
1 (σ̃)) = dim(f 11 (σ)) = dim(f 11 (σ̃)), but |f 11 (σ)\f

1
1 (σ̃)| = 1. This is a

contradiction to our assumption, and (c) holds.
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To see, why the assumption of the existence of a refinement X2 for each refinement X1 of
X is necessary we consider the following example.

Example 6.24. Let X be the disjoint union of a copy of R2 (which will be denoted by X1)
and a copy of R2 where we remove the diagonal {(x, y) ∈ R2|x = y} (we denote by X2 the
space R2\{(x, y) ∈ R2|x = y}). For the image complexes we take Y 1 = R and Y 2 = R.
The groups are defined to be the groups which contain only the trivial element. We define
the map f 1 : X → Y 1 to be the orthogonal projection of X1 and X2 onto the x-axes, and
we define f 2 : X → Y 2 to be the projection onto the y-axes. Each of the three cones of X1,
{(x, y) ∈ X2|x < y} and {(x, y) ∈ X2|x > y} are mapped surjectively to Y 1 and Y 2, thus
(c) holds for this refinement. The product f 1×f 2 is the identity on X1 and X2 and condition
(c) can not hold since the diagonal is missing in X2.

Remark 6.25. This example shows that a product of morphisms is not necessarily a morphism
again.

Construction 6.26. As in the case of fans (construction 2.24 [GKM]) we can define the image
orbit space. Let X/G be a purely n-dimensional orbit space, and let Y/H be any orbit space.
For any morphism f : X/G→ Y/H consider the following set:

Z = {f(σ), σ is contained in a cone σ̃ of X(n) with f injective on σ̃}

Note, that Z is in general not a polyhedral complex. Since Y is a polyhedral complex, it
satisfies all conditions of definition 1.9 and definition 1.10 except possibly (b) and (d) of
definition 1.9 (since there might be overlaps of some regions). Condition (b) is fulfilled by
condition (c) of definition 6.17. Furthermore, we can choose a proper refinement (which
satisfies (d) of definition 1.9) to turn Z into a polyhedral complex. We denote the weighted
polyhedral complex defined by all representatives of all classes [σ] with σ ∈ Z by H(Z). By
condition (a) in definition 6.17 the group action of H on H(Z) is well defined. Thus, we get
an orbit space H(Z)/H , which will be the image orbit space f(X/G).

If moreover X/G is a weighted orbit space, we turn f(X/G) into a weighted orbit space.
After choosing a refinement for X and Y such that f(σ) is a cone in Y for each σ ∈ X , we
set

ωf(X/G)(σ
′) =

∑

[σ]∈X/G(n):[f(σ)]=[σ′]

ωX(σ) · |Λ
′
[σ′]/f(Λ[σ])|

for any σ′ ∈ (H(Z))(n).

Proposition 6.27. Let X/G be an n-dimensional tropical orbit space, Y/H an orbit space,
and f : X/G → Y/H a morphism. Then f(X/G) is an n-dimensional tropical orbit space
(provided that f(X/G) is not empty).

Proof. By construction, f(X/G) is an n-dimensional weighted orbit space. It remains to
show the balancing condition. The proof works in the same way as for fans in [GKM] (notice
that by corollary 6.13 the balancing condition can be checked without taking into account the
group operation).

Definition 6.28 (Irreducible tropical orbit space). Let X/G be a tropical orbit space of di-
mension n. We call X/G irreducible if for any refinement X̃/G of X/G and any Y/G ⊂

53



Chapter 6: Orbit spaces

X/G, Y 6= ∅ with dim(Y/G) = n the following holds: if for all σ ∈ Y (n) one has σ ∈ X̃(n),
then Y and X̃ are equal. (The equality holds on the level of orbit spaces, the weights can be
different. In the case of different weights one has ωX = λ · ωY for λ ∈ Q 6= 0.) Equivalent
to this definition is to say that X/G is irreducible, if for any Y/G ⊂ X/G, Y 6= ∅ with
dim(Y/G) = n and |Y | is closed in |X| one has Y = X .

Corollary 6.29 (of proposition 6.27). LetX/G and Y/H be tropical orbit spaces of the same
dimension n in V = Λ ⊗ R and V ′ = Λ′ ⊗ R, respectively, and let f : X/G → Y/H be a
morphism. Assume that Y/H is irreducible and f(|X/G|) = |Y/H| (as topological spaces).
Then there is an orbit space Y0/H ⊂ Y/H of dimension smaller than n with |Y0| ⊂ |Y | such
that

(a) each point Q ∈ |Y |\|Y0| lies in the interior of a cone σ′Q ∈ Y of dimension n;

(b) each point P ∈ f−1(|Y |\|Y0|) lies in the interior of a cone σP ∈ X of dimension n;

(c) for Q ∈ |Y |\|Y0| the sum
∑

[P ],P∈|X|:f([P ])=[Q]

mult[P ] f

does not depend on Q, where the multiplicity mult[P ] f of f at [P ] is defined to be

mult[P ] f :=
ωX/G(σP )

ωY/H(σ′Q)
· |Λ′[σ′Q]/f(Λ[σP ])|.

Proof. If we can show that f(X/G) = λ(Y/H) (i.e. the image of X/G is Y/G and the
weights differ by the multiplication of λ ∈ Q) the proof works as in [GKM] for fans.
By assumption we have, that f(|X/G|) = |Y/H|, as topological spaces. Further, by propo-
sition 6.27, f(X/G) is a tropical orbit space. Because of irreducibility we have f(X/G) =
λY/H as tropical orbit spaces.

In contrast to the case of fans we need in corollary 6.29 the assumption f(|X/G|) = |Y/H|.
This is due to the fact, that we use non-closed polyhedra. Let us see what happens if we do
not assume the above equality.

Example 6.30. Let G be the trivial group and X ⊂ R and Y ⊂ R be open intervals of weight
one with X $ Y . Let f : X →֒ Y be the inclusion.

f

Y

X

Then, all conditions of corollary 6.29 but the equality f(|X/G|) = |Y/H| are fulfilled and
the statement of the corollary does not hold.

Remark 6.31. Instead of assuming f(|X/G|) = |Y/H| in corollary 6.29, it suffices to assume
that f(|X/G|) is closed in |Y/H|.
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Definition 6.32 (Rational function). Let Y/G be a tropical orbit space. We define a rational
function ϕ on Y/G to be a continuous function ϕ : |Y | → R such that there exists a refine-
ment (((X, |X|, {mσ}σ∈X), ωX), {Mσ}σ∈X) of Y fulfilling that for each face σ ∈ X the map
ϕ ◦m−1

σ is locally integer affine-linear (i.e. by refinements we can assume that ϕ ◦ m−1
σ is

affine linear on each general cone of Y ). Furthermore, we demand that ϕ ◦ g = ϕ, for all
g ∈ G.

Definition 6.33 (Orbit space divisor). Let X/G be a tropical orbit space, and φ a rational
function on X/G. We define a divisor of φ to be div(φ) = φ ·X/G= [(

⋃k−1
i=−1X

(i), ωφ)] /G,
where ωφ is given as follows:

ωφ : X
(k−1) → Q,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(λσ/τω(σ)vσ/τ )− φτ

( ∑

σ∈X(k)

τ<σ

λσ/τω(σ)vσ/τ

)

(the λσ/τ are described in definition 6.9).

Remark 6.34. The following two statements can be proved analogously to the proof of propo-
sition 6.11.

1 The definition above is independent of the chosen λσ/τ (i.e. if we have different sets
of λ’s fulfilling the definition of a tropical orbit space, the divisor will be the same for
both sets of λ’s).

2 Since |Xσ/τ | · |Gσ| = |Gτ | we have that |Gτ | <∞ and thus φ ·X/G is a tropical orbit
space.
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7 Moduli spaces of elliptic tropical
curves

In this chapter we show that the moduli spaces of tropical curves of genus 1 with j-invariant
greater than 0 have a structure of tropical (non-local) orbit space. We use this structure to
prove the known fact that the weighted number of plane elliptic tropical curves of degree d
with fixed j-invariant which pass through 3d− 1 points in general position in R2 is indepen-
dent of the choice of a configuration of points. The chapter consists of three parts. In the
first part we equip the moduli space of abstract tropical curves of genus 1 with a structure of
tropical orbit space. In the second part we do the same for the moduli space of parameterized
tropical curves of genus 1. In the last section we use corollary 6.29 to show the mentioned
independence of the point configuration.

As mentioned before, a difference between local orbit spaces and orbit spaces lies in the set
of isomorphisms (see chapter 3 and chapter 6). In chapter 5 the sets of isomorphisms we
used for the construction of the moduli spaces are induced by matrices. This time we take as
sets of isomorphisms the groups generated by these matrices. Unfortunately, this groups are
infinite and thus it is much more difficult to handle the sets of isomorphisms and we have to
restrict ourselves to the case of elliptic curves.

7.1 Moduli spaces of abstract tropical curves of
genus 1

We construct a map fromM1,n to a tropical orbit space in the following way. For each curve
C ∈ M1,n let a be an arbitrary point of the cycle of C. We define a new curve C̃ which we
get by cutting C along a and inserting two leaves A = xn+1 and B = xn+2 at the resulting
endpoints (if we cut along a vertex we have to decide if the edges adjacent to the vertex which
are not in the cycle are adjacent to A or to B). This curve is an n+2 marked curve (of genus
0) with up to 2 two-valent vertices (at the ends A and B).

By T we denote the set of all subsets S ⊂ {1, . . . , n + 2} with |S| = 2. In order to embed

M1,n into a quotient of R(
n+2

2 ) we consider the following map:

distn :M1,n −→ Vn/Gn

(C, x1, . . . , xn) 7−→ [(distΓ(xi, xj)){i,j}∈T ]
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x2 x2

x1 x1

A

B

Figure 7.1: Construction of an n+ 2-marked curve from an n-marked genus-1 curve.

where Vn, Gn, and distΓ(xi, xj) are defined as follows. We denote by distΓ(xi, xj) the
distance between xi and xj (that is the sum of the lengths of all edges in the unique path from
xi to xj) in C̃, where xn+1 = A and xn+2 = B.

The vector space Vn is isomorphic to R(
n+2

2 )−n−1 and is given by Vn = R(
n+2

2 )/(Φ1n(R
n)+ <

s >) (Recall Φ1n from construction 5.1) where

s ∈ R(
n+2

2 ) is a vector such that

si,j =





1 if i = n+ 1 or j = n+ 1 and i 6= n + 2 6= j,
−1 if i = n+ 2 or j = n+ 2 and i 6= n + 1 6= j,
0 otherwise.

The group Gn is generated by the matrix I and the matrices Mp, p ∈ {1, ..., n}, where

I(i,j),(k,l) =





1 if ({i, j}, {k, l}) = ({m,n+ 1}, {m,n+ 2}), m ≤ n,
or ({i, j}, {k, l}) = ({m,n+ 2}, {m,n+ 1}), m ≤ n,
or {i, j} = {k, l} and i, j /∈ {n+ 1, n+ 2},
or if {i, j} = {n+ 1, n+ 2} = {k, l},

0 otherwise.

(In particular I(i,j),(k,l) = id for i, j, k, l ≤ n and I(i,n+1),(i,n+2) =

(
0 1
1 0

)
)

Mp,(i,j),(k,l) =





1 if {i, j} = {k, l}
or ({i, j}, {k, l}) = ({p, n+ 2}, {n+ 1, n+ 2}),
or ({i, j}, {k, l}) = ({p, j}, {j, n+ 1}), j 6= n + 2,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 2}), j 6= n+ 2,
or ({i, j}, {k, l}) = ({p, j}, {n+ 1, n+ 2}),

n+ 1 6= j 6= n+ 2,
−1 if ({i, j}, {k, l}) = ({p, n+ 1}, {n+ 1, n+ 2}),

or ({i, j}, {k, l}) = ({p, j}, {j, n+ 2}), j 6= n + 1,
or ({i, j}, {k, l}) = ({p, j}, {p, n+ 1}), j 6= n+ 1,

0 otherwise.

(Mp written as a matrix can be found in the proof of proposition 5.7 for s = 1.)

The orbits of all elements of < Φ1n(R
n) > under Gn are trivial, Mp(s) = s and I(s) = −s.

Thus Vn/Gn is well defined. By the following lemma, the map distn is also well defined.
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Lemma 7.1. Let C̃ and C̃∗ be two curves resulting from two different cuts of a curve C.
Then, the images of C̃ and C̃∗ are the same in Vn/Gn.

Proof. Let us fix an orientation o of the simple cycle in C and let dist(C̃) and dist(C̃∗)
be the images under distΓ of C̃ and C̃∗. The orientation o induces an orientation of the
edges connecting A and B of C̃ and C̃∗. By applying the map I to dist(C̃) and dist(C̃∗) if
necessary we can assume that the induced orientation goes from A to B. Denote by ã, Ã, B̃
(resp. ã∗, Ã∗, B̃∗) the cut and the inserted edges corresponding to curve C̃ (resp. C̃∗). We
denote by d the distance of B̃ to Ã∗ in the curve cut at ã and ã∗. Let L be the subset of

marked points of the component containing B̃Ã∗. Then the following equality holds:

dist(C̃∗) =
∏

p∈L

Mp · dist(C̃) + d · s.

Remark 7.2. The main idea in our definition comes from the rational case (see [GKM]). After
cutting the curve we get a new curve without cycles. Thus, the distance of two points in the
new curve is well defined. Then, as in the rational case we have to mod out the image of Φ1n.
In addition we have to get rid of all the choices we made during the construction of a rational
curve. These choices can be expressed by the following three operations.

(a) The shift of the point a on one edge of the cycle (which corresponds to the addition of
an element of < s >).

(b) Interchanging A and B, which corresponds to the matrix I .

(c) The point a jumps over the vertex adjacent to an unbounded edge p. The matrix cor-
responding to this operation is Mp. If the point a jumps over a bounded edge E, the
matrix corresponding to this operation is the product of all matrices Mi with i con-
nected with E by edges not intersecting the cycle.

To get a polyhedral complex we put

Ψn : Vn −→ Vn/Gn

x 7−→ [x]

and
Xn = Ψ−1n (distn(M1,n)).

Remark 7.3. Let X1,n be as in construction 5.1. Then Xn = Ψ−1n (Ψn(X1,n)).

As general polyhedrons we take the cones induced by the combinatorial cones in M1,n,
defined in Remark and definition 2.6. Thus, Gn is a group acting on Xn and we can consider
the quotient topology on the orbit space Xn/Gn (see definition 6.1). To have a weighted
orbit space we choose all weights to be equal to one. To show that the spaces M1,n have a
structure of tropical orbit space, we have to show that M1,n and Xn/Gn are homeomorphic
and that Xn/Gn fulfills the balancing condition.

Proposition 7.4. Let Xn, Gn andM1,n be as above. Then S : M1,n −→ Xn/Gn, (C, x1,
. . . , xn) 7−→ [(distΓ(xi, xj))]{i,j}∈T is a homeomorphism.
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Proof. Surjectivity is clear from the definition, and S is a continuous closed map. Thus, it re-
mains to show that S is injective. To show this, we prove that out of each representative of an
element [x] in the target we can construct some numbers which are the same for all represen-
tatives of [x]. If these numbers determine a unique preimage, the injectivity follows. For this
we take the following number j and the set di,k which are independent of the representative:

j = xn+1,n+2 = length of the cycle,

di = (xi,n+1 + xi,n+2 − j)/2 = distance from i to the cycle (not well-defined mod Φ1n(R
n)),

di,k = {|(xi,n+1 + xk,n+2)− di − dk − j|, j − |(xi,n+1 + xk,n+2)− di − dk − j|} = distances
of i and k on the cycle.

If there are marked edges i1, ...ir with dis,it equals {0, j} for all 1 ≤ s, t ≤ r, then we have
to determine the distances these edges have one to each other. But, since these distances
do not depend on the cycle, the edges in Xn encoding these distances are invariant under
Gn. Thus, we can reconstruct these distances, by considering the projection (not necessarily
orthogonal) of [x] to the fixed part of the cone (and thus the fixed part of each representative)
in which [x] lies. The same can be done for two edges i1, i2 which have distance zero from
each other to determine their distance to the cycle. Thus, all distances are given, injectivity
follows and we are done.

Proposition 7.5. The weighted orbit space Xn/Gn is a tropical orbit space.

Proof. To show the balancing condition we have to consider the codim-1 cones and the facets
adjacent to them. If there is more than one vertex on the cycle of a curve corresponding to a
point on a codimension 1 face F , then either the stabilizers of the adjacent facets are trivial
and we are in the same case as for theM0,n, or the cycle of each curve in the face F consists
of two edges of the same length. In the second case there are exactly two facets adjacent to
F which are opposite to each other. Since the stabilizers are trivial the balancing condition
holds. If there is only one vertex on the cycle of a curve corresponding to a point in F , then
the stabilizer of F is {I, 1}, the identity and I (see above). The curves corresponding to the
points in the interior of the codim-1 face have exactly one 4-valent vertex. This vertex can be
adjacent to the cycle or not. Let us consider these two cases separately. The second case is
trivial (the stabilizers are the same for all three facets and the balancing condition is the same
as for M0,n), thus assume, that the 4-valent vertex is at the cycle. Qualitatively, the codim-1
face, which we call τ , corresponds to a curve as in the following picture:

A

B x2

x1

Figure 7.2: A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We only consider the case with two
ends x1 and x2, because if we have a tree instead of xi the calculation is the same for each
leaf of the tree. To verify the balancing condition for tropical orbit spaces given in definition
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6.9, we have to consider the three facets around the face τ . Let σ1 (resp. σ2) belong to the
insertion of the edge with A and x1 (resp. A and x2) on the same side. Then, σ1 and σ2 lie in
the same Gτ -orbit. Thus, if we use the same notation as in the picture we get the following
condition:
there exists λσ1/τ , λσ2/τ ≥ 0, λσ1/τ + λσ2/τ = 1 such that

d(x1, x2)
d(x1, A)
d(x1, B)
d(x2, A)
d(x2, B)
d(A,B)

, λσ1/τ ·




1
0
1
1
0
1



+ λσ2/τ ·




1
1
0
0
1
1



+
1

2
·




0
1
1
1
1
0



∈ Vτ .

This condition is fulfilled for λσ1/τ = λσ2/τ = 1
2
. Thus we have indeed a tropical orbit

space.

Remark 7.6. In example 2.9 we have seen the topological picture of the moduli space M1,2.
Unfortunately it is difficult to give a picture of the corresponding polyhedral complex since
X2 has infinitely many cones. Here is a description of it. Let the vector entries be labeled as
in the previous proof, and let C1, C2, C3, C4 be the cones corresponding to the four different
combinatorial cones in the picture of example 2.9, where C1 is the left, C2 the second left,
C3 the third left and C4 the right combinatorial type. The group and representatives of the
cones C1, C2, C3, C4 (labeled by the same name) are the following:

G =

〈




1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1



,




1 1 −1 −1 1 1
0 1 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




〉
,

C1 = {a ·




1
1
1
2
0
2



|b > 0}, C2 = {a ·




1
1
1
2
0
2



+ b ·




0
1
0
1
0
1



|a, b ∈ R≥0, a+ b > 0},

C3 = {b ·




0
1
0
1
0
1



|b > 0}, C4 = {a ·




0
1
1
1
1
0



+ b ·




0
1
0
1
0
1



|a, b ∈ R≥0, b > 0}.

All other cones of the underlying polyhedral complex are given by g{Ci} for g ∈ G and
i ∈ {1, 2, 3, 4}.
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Chapter 7: Moduli spaces of elliptic tropical curves

7.2 Moduli spaces of parameterized tropical curves
of genus 1

Now we define a tropical orbit space corresponding to the parameterized genus 1 tropical
curves in Rr.

In the case of rational tropical curves we can simply take M̃lab
0,n(R

r,∆) =Mlab
0,N×Rr because

to build the moduli spaces of rational tropical curves in Rr it suffices to fix the coordinate of
one of the marked ends (for example x1). For the case of genus 1 curves the situation is more
complicated. If we fix the combinatorial type of the curve, the cycle imposes some conditions
on the lengths. In order to get a closed cycle in the image, the direction vectors of the cycle
edges multiplied by their lengths have to sum up to zero. Furthermore, we have to get rid of
cells which are of higher dimension than expected. We will see that these operations (closing
of the cycle and getting rid of higher dimensional cells) can be expressed by some rational
functions.

Let V lab
n,∆,r = VN ×Rr×Zr. We define Glab

N to be GN , acting on VN as GN before, on b ∈ Rr

(that is the image of x1) as identity and on v ∈ Zr (the direction of the edge A) as follows:

I(v) = −v,Mp(v) = v − v(p).

As topology on V lab
n,∆,r, we take the product topology of VN , Zr and Rr, where we consider

Zr with the discrete topology and Rr with the standard Euclidean topology. We define Zr
∆ to

be the subset of Zr given by |vs| ≤
∑

w∈∆ |ws|, and put

Ψn,∆,r : V
lab
n,∆,r −→ V lab

n,∆,r/GN

x 7−→ [x]

and
X̃ lab

n,∆,r = Ψ−1n,∆,r([XN × Rr × Zr
∆]).

The purpose of the rational functions φi in the next proposition is to make sure that the ith
coordinate of A is mapped to the ith coordinate of B.

Proposition 7.7. For all 0 < i ≤ r, we have a function

φi : X̃
lab
n,∆,r → R

(a{1,2}, . . . , a{N+1,N+2}, b, v) 7−→
1

2
·max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i))

+(a{1,N+1})v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
· vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i)

+(a{1,N+2}) · (−v(i))))}

which is rational and invariant under Glab
N (v(i) = i-th coordinate of v, vk = v(xk), see

definition 2.11).

62



Chapter 7: Moduli spaces of elliptic tropical curves

Remark 7.8. The maps φi defined in proposition 7.7 are given by 1
2
max {ev(A)i − ev(B)i,

ev(B)i − ev(A)i} (see proposition 7.13).

Proof of proposition 7.7. We have to show, that φi is invariant under the addition of c·(s, 0, 0)
(we identify (s, 0, 0) with s) for c ∈ R and the actions of I and Mp. Let x ∈ X̃ lab

n,∆,r and
d = φi(x).

For c ∈ R, the value of c · s + x under φi is d ±
∑N

k=2 (−c) · vk(i). The second part
(
∑N

k=2 (−c) · vk(i)) is 0 due to the balancing condition, thus the value of x and c · s + x is
the same as before.

For I we get the same, because

φi(I(a{1,2}, . . . , a{N+1,N+2}, b, v))

=
1

2
·max{±(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
(−(−v(i))) + (a{1,N+2}) · −v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · (−(−v(i)))))}

=
1

2
·max{±(−(

1

2
(

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i)

+
(
a{1,N+2} − a{N+1,N+2}

)
(−v(i)) + (a{1,N+1}) · v(i))

−
1

2
(

N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk(i)

+
(
a{1,N+1} − a{N+1,N+2}

)
v(i) + (a{1,N+2}) · (−v(i)))))}

= φi(a{1,2}, . . . , a{N+1,N+2}, b, v).

It remains to show the invariance with respect to Mp. Let us consider first the case p 6= 1.
We get:

d±
1

4

((
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})

+(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+2} − a{N+1,N+2}

)
(vp(i)) + (a{1,N+1})

·(−vp(i))−
(
(a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1})

−(a{N+1,N+2})
)
· vp(i) +

(
a{1,N+1} − a{N+1,N+2}

)
(vp(i))− (a{1,N+2}) · (vp(i))

)

= d.

In the case p = 1, we have:

d±
1

4
(

N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)+
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Chapter 7: Moduli spaces of elliptic tropical curves

(aN+1,N+2) · (−v(i)) + (aN+1,N+2) · (−v(i))

−
N∑

k=2

(ak,N+1 + a1,N+2 + a{N+1,N+2} − a{k,N+2} − a{1,N+1}) · vk(i)−

(−aN+1,N+2) · (v(i))− (aN+1,N+2) · (−v(i))) = d.

Thus, φi is invariant.

Remark 7.9. We multiply the function by 1
2
, because locally the condition that the cycle closes

leads to the function max {(1
2

∑N
k=2

(
a{1,k} −a{k,N+1}

)
vk(i) +

(
a{1,N+2} −a{N+1,N+2}

)

(−v(i)) +(a{1,N+1}) ·v(i), 0}. We changed the function slightly because of the symmetry
we need for the orbit space structure.

Now we can define the tropical orbit space we are interested in by constructing the tropical
orbit space cut out by the rational functions φi:

Mlab
1,n,trop(R

r,∆) = φ1 · · ·φr(X̃
lab
n,∆,r/G

lab
N ), see definition 6.33.

The set of cones ofMlab
1,n,trop(R

r,∆) is denoted by X lab
n,∆,r. The rational functions assure that

A and B are mapped to the same point.

Example 7.10. We consider the following map:

x1
x2

x3 x4

x1

x3

h

a

b

c

d d

c

a

x2

x4

b

To ensure that h, defined by h(x3) =
(
0
0

)
, h(x1) = d ·

(
0
1

)
, h(x2) = d ·

(
0
1

)
+ a ·

(
1
0

)
and

h(x4) = c ·
(
1
0

)
, is the map of a tropical curve (Γ, x1, . . . , x4, h) we need a = c and b = d,

which is the case for elements of Mlab
1,n,trop(R

r,∆) due to the fact that the direction vectors
multiplied by the lengths sum up to zero.

The rational functions φi define weights on the resulting facets on the divisor. Since the
stabilizers are finite, the divisor is a tropical orbit space as well. Consider the case r = 2.
The weights we get from the definition of the rational function are the following (afterwards
we consider one of the three cases more explicitly).

(a) The image of the cycle is two-dimensional.
The condition, that the cycle closes up in R2 is given by two independent linear equa-
tions a1 and a2 on the lengths of the edges of the cycle (which is a subset of the bounded
edges which we denote by Γ10); thus, the weight is given by the index of the map:

(
a1
a2

)
: Z2+#Γ1

0 7→ Z2.
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(b) The image of the cycle is one-dimensional.
Because of the chosen rational function, there has to be one four-valent vertex on the
cycle. Otherwise, the weight would be zero on the corresponding face. Let m · u and
n · u with u ∈ Z2, m, n ∈ Z, and gcd(n,m) = 1 be the direction vectors of the cycle.
If we denote by v ∈ Z2 the direction of another edge adjacent to the 4-valent vertex,
the weight is | det(u, v)|. If n = m = 1 and no point lies on the cycle, the stabilizer of
the corresponding face consists of two elements. Thus, the weight of the facet has to
be divided by 2 in this case.

(c) The image of the cycle is 0-dimensional. Due to the rational function we get the weight
1
2
· | det(u, v)| if there is a 5−valent vertex adjacent to the cycle, u, v are two of the

three non-cycle directions outgoing from the vertex. If there is no 5−valent vertex the
weight would be zero by the definition of the rational function.

Example 7.11. Let us consider (b) more explicitly. First we show that if there is no four-
valent vertex on the cycle, the weight is 0. The curve corresponds to a face F in X̃ lab

n,∆,2

which is contained in some facets. The points in those facets correspond to curves. Since the
vertices are three-valent, all edges of the cycles in this curves are in a one-dimensional affine
linear subspace of R2. Since we intersect by two rational functions the weight we get is 0
(let X be the star build by the faces containing F in X̃ lab

n,∆,2. The map Φ1 (resp., Φ2) assures
that for all points of Φ1(X) (resp., Φ2(X)) h(A) = h(B). Since rational functions commute,
we have that Φ1 is constant on Φ2(X)). Thus, we consider the case where one of the vertices
has valence four (see upper figure in figure 7.3) and denote the corresponding face F . The

A

B

A

A A

A

B

B B

B

Figure 7.3: The weight of a curve with one-dimensional cycle.

lower pictures in this figure are the curves corresponding to the four facets in X̃ lab
n,∆,2 which

contain F . Let d be the direction vector of the left edge of the cycle and let u be as in (b). For
simplicity assume that u =

(
u1

0

)
. Applying Φ1 on the left two facets in figure 7.3 leads to a

face of weight | gcd(u1, d1)| where Φ1 ensures that A1 = B1 on this face. One can calculate
that applying Φ2 leads to F with weight | u1

gcd(u1,d1)
· d2| times the weight | gcd(u1, d1)|. By

the balancing condition, one has | det(u, v)| = | det(u, d)| and we get the stated weight for
(b) (in particular the length of the left cycle edge becomes 0).

Remark 7.12. The numbers calculated with the help of rational functions differ from those
stated in [KM]. The difference lies in (c). The weights proposed in [KM] are 1

2
·(| det(u, v)|−

1). Since both weights lead to a balanced complex, the union of the facets where the image
of the cycle is 0-dimensional (together with its faces) is a tropical orbit space if we define all
weights to be 1

2
.
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7.3 Counting elliptic tropical curves with fixed
j-invariant

To achieve our goal of proving independency of the position of the points, when one counts
certain elliptic tropical curves with fixed j-invariant, we want to use corollary 6.29. Thus,
we first give the definition of evaluation maps which are used to impose the point conditions.

Proposition 7.13. For i = 1, . . . , n the map

evi : X
lab
n,∆,r → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is invariant under the group Glab
N .

Proof. The map evi is given by

evi(x) = b+
1

2

(
N∑

k=2

(
a{1,k} − a{k,i}

)
vk +

(
a{1,N+1} − a{N+1,i}

)
(v)

+(a{1,N+2} − a{i,N+2}) · (−v)

)
. (7.1)

Recall that b = h(x1). It is invariant under s, because the value added by s to the differences
a{1,N+1} −a{N+1,i} and a{1,N+2} − a{i,N+2} is 0.

The map I changes only the order of the two last summands.

Thus, it remains to consider the map Mp. We have three cases: p = 1, p = i, 1 6= p 6= i. The
sum we get differs from (7.1) by the following expressions. Case 1 6= p 6= i:

1

2

(
a{1,N+1} + a{p,N+2} + a{N+1,N+2} − a{1,N+2} − a{p,N+1}−

(a{i,N+1} + a{p,N+2} + a{N+1,N+2} − a{i,N+2} − a{p,N+1})
)
· vp

+
1

2

(
a{1,N+1} − a{N+1,i}

)
(−vp) +

1

2
(a{1,N+2} − a{i,N+2}) · (vp) = 0.

Case p = 1:

N∑

k=2

1

2

(
a{k,N+1} + a{1,N+2} + a{N+1,N+2} − a{k,N+2} − a{1,N+1}

)
· vk+

1

2

(
−a{N+1,N+2}

)
· (v − v1) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−v1)

+
1

2

(
a{N+1,N+2}

)
· (−v + v1) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (v1) = 0.

The last equation is true, because

N∑

k=2

(a1,N+2 + aN+1,N+2 − a1,N+1)vk = 0, v1 = 0
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and the rest of the sum
(

N∑

k=2

1

2

(
a{k,N+1} − a{k,N+2}

)
· vk +

1

2

(
−a{N+1,N+2}

)
· (v)

+
1

2

(
a{N+1,N+2}

)
· (−v)

)

is equal to

−
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk +

(
a{1,N+2} −a{N+1,N+2}

)
(−v)

+(a{1,N+1}) · v

)
+

(
1

2

(
N∑

k=2

(
a{1,k} − a{k,N+2}

)
vk

+
(
a{1,N+1} − a{N+1,N+2}

)
v + (a{1,N+2}) · (−v)

))

which is 0 because of the rational function which we have used to construct X lab
n,∆,r (see

proposition 7.7).

Case p = i:

1

2

N∑

k=2

−
(
a{k,N+1} + a{i,N+2} + a{N+1,N+2} − a{k,N+2} − a{i,N+1}

)
· vk+

1

2

(
a{N+1,N+2}

)
· (v − vi) +

1

2

(
a{1,N+1} − a{N+1,i}

)
(−vi)

+
1

2

(
−a{N+1,N+2}

)
· (−v + vi) +

1

2

(
a{1,N+2} − a{i,N+2}

)
· (vi) = 0.

(Same reason as above.)

Definition 7.14 (Evaluation map). For i = 1, . . . , n the map

evi :M
lab
1,n,trop(R

r,∆) → Rr

(Γ, x1, . . . xN , h) 7−→ h(xi)

is called the i-th evaluation map.

Proposition 7.15. With the tropical orbit space structure given above the evaluation maps
evi : M

lab
1,n,trop(R

r,∆) → Rr are morphisms of orbit spaces (in the sense of definition 6.17
and Rr equipped with the trivial orbit space structure).

Proof. Continuity is clear, thus we have to check conditions a− d in definition 6.17. Condi-
tion a is clear since Rr is the unique cone of the target space. Condition b is the same as the
case of fans treated in [GKM]. Condition c is clear since each cone is mapped to the whole
Rr and the last condition follows from proposition 7.13.
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Proposition 7.16. The map f = ev1× · · · × evn × j : Mlab
1,n,trop(R

r,∆) → R(rn+1) is a
morphism of orbit spaces.

Proof. For each cone in Mlab
1,n,trop(R

r,∆) one has that the strict inequalities given in defini-
tion 1.1 are coming from the limit of the j-invariant to 0. Therefore, condition c of definition
6.17 is fulfilled. Thus, the statement follows from proposition 7.15 and the fact that j is the
projection on the coordinate R{A,B}.

Theorem 7.17 (Theorem 5.1, [KM]). Let d ≥ 1 and n = 3d − 1. Then the number of
parameterized labeled n-marked tropical curves of genus 1 and of degree d with fixed j-
invariant which pass through n points in general position in R2 is independent of the choice
of the configuration of points (the multiplicity of a curve is defined to be the weight of the
corresponding cone inMlab

1,n,trop(R
2, d)).

Proof. For n = 3d − 1 points Mlab
1,n,trop(R

2, d) has the same dimension as R(rn) × R>0.
Since all open ends are mapped to j-invariant equal 0, surjectivity follows by the balancing
condition in R(rn) ×R>0. Thus, proposition 7.16 and corollary 6.29 imply the theorem.

When we construct the orbit space structure of the moduli space of parameterized curves we
need the component Zr for technical reasons. But, in fact, the direction v of the edge A is
unique for given lengths of the edges.

Proposition 7.18. Let (a1,2, . . . , aN+1,N+2, b, v) be inMlab
1,n,trop(R

r,∆). One has that (a1,2,
. . . , aN+1,N+2, b, v∗) inMlab

1,n,trop(R
r,∆) if and only if v = v∗.

Proof. Assume that (a1,2, . . . , aN+1,N+2, b, v∗) ∈ M
lab
1,n,trop(R

r,∆). The closing up of the
cycle is given by the equalities (compare with proposition 7.7)

N∑

k=2

(
a{1,k} − a{k,N+1}

)
vk(i) +

(
a{1,N+2} − a{N+1,N+2}

)
(−v ∗ (i)) + (a{1,N+1})v ∗ (i))

=

N∑

k=2

(
a{1,k} − a{k,N+2}

)
·vk(i)+

(
a{1,N+1} − a{N+1,N+2}

)
v∗(i)+(a{1,N+2}) ·(−v∗(i))

Put w = v − v∗. Since the equality holds for v as well, we get

(
a{1,N+2} − a{N+1,N+2}

)
(−w(i)) + (a{1,N+1})w(i))

=
(
a{1,N+1} − a{N+1,N+2}

)
w(i) + (a{1,N+2}) · (−w(i))

which is equivalent to
2a{N+1,N+2}w(i) = 0.

Since the cycle length is positive one has w(i) = 0 and therefore v = v∗.
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8 Correspondence theorems

In the previous parts of the thesis we introduced a theory of (local) orbit spaces and used this
theory to build moduli spaces of tropical curves. The aim in constructing moduli spaces is
to get a better understanding of the parameterized objects. Besides studying a mathematical
domain for its own, it is always interesting to find connections between different domains.
This chapter gives a hint on a connection between certain algebraic and tropical objects. In
particular, we are interested in the connection between elliptic algebraic curves and elliptic
tropical curves.
We start the chapter by stating some known facts. For our purpose, the correspondence
theorems are of great interest. These theorems provide bijections between algebraic curves
which satisfy certain properties and tropical curves which satisfy corresponding properties
and are counted with multiplicities. (Corresponding properties mean for example that the
genus of the algebraic and the tropical curves are the same.) Since G. Mikhalkin was the
first who discovered a correspondence theorem, we state his result first and then give as well
some other results which we need for our work. In the second section we prove a new corre-
spondence theorem for elliptic curves with given big j-invariant. In contrast to Mikhalkin’s
correspondence theorem, it is a correspondence between embedded tropical curves and al-
gebraic curves instead of parameterized tropical curves and algebraic curves. The first cor-
respondence theorem for elliptic curves with fixed j-invariant was obtained by I. Tyomkin
[T].

8.1 Mikhalkin’s correspondence theorem

In correspondence theorems we associate to each tropical curve a multiplicity. This multi-
plicity is the number of algebraic curves which correspond to a given tropical curve. In par-
ticular, the multiplicities depend on the problem. Therefore, we start this section by defining
a multiplicity we need.

In this chapter all parameterized tropical curves are in R2.

Definition 8.1 (multiplicity of a vertex). Let (Γ, x1, . . . , xN , h) be a parameterized tropical
curve and let C = h(Γ). For a 3-valent vertex V of C with |h−1(V )| = 1, denote by e1
and e2 two different edges adjacent to h−1(V ). The multiplicity of C at V is defined to be
|v(e1, V ) ∧ v(e2, V )| (the area of the parallelogram spanned by the two vectors v(e1, V ) and
v(e2, V )).

Remark 8.2. By the balancing condition the multiplicity of a vertex V in definition 8.1 is
independent of the choices of e1 and e2.
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Definition 8.3 (multiplicity of a curve). Let (Γ, x1, . . . , xN , h) be a parameterized tropical
curve and let C = h(Γ). We define mult(Γ) to be the product over the multiplicities of all
3-valent vertices of C from definition 8.1.

Example 8.4 (multiplicity). Let C be the image shown in figure 8.1 of a parameterized trop-
ical curve (Γ, x1, . . . , x4). The multiplicity of vertex V1 is 1 and the multiplicity of V2 is 3.
Thus, mult(Γ) = 3.

V2

V1

v(e3, V2) =
(
−1
2

)
e3

e4
v(e1, V1) =

(
−1
0

)

e1
e2

v(e2, V1) =
(
0
−1

)

v(e4, V2) =
(
2
−1

)

Figure 8.1: The image of a parameterized tropical curve.

A correspondence theorem provides a bijection between curves which satisfy given proper-
ties. In particular the number of tropical curves and the number of corresponding algebraic
curves do agree. In the following we define those numbers.

Definition 8.5. Let g ∈ N≥0, and let ∆ = (v1, . . . , vs) ∈ (Z2\{0})s be the degree of a
parameterized tropical curve. For a configuration P = {p1, . . . , ps+g−1} ⊂ R2 of general
points we define the numbers N irr

trop(g,∆, P ) to be the number of parameterized tropical
curves of degree ∆ and genus g passing through P and counted with the multiplicity of
definition 8.3. (Remark: Each parameterized tropical curve in N irr

trop(g,∆, P ) has only 3-
valent vertices.)

Remark 8.6. A purely tropical proof of the fact that the numbers N irr
trop(0, ∆, P ) do not

depend on P is given in the proof of theorem 5.1 in [GKM]. For arbitrary genus the inde-
pendence of P follows from theorem 8.19.

To define the algebraic numbers we first give the definition of the degree of an algebraic
curve.

Definition 8.7 (complex degree). A complex algebraic curve Z ⊂ (C∗)2 is defined by a
Laurent polynomial f : (C∗)2 → C, f(x) =

∑
i∈A aix

i, with A ⊂ Z2 finite and ai ∈ C∗ for
i ∈ A. The Newton polygon of f is called the degree of Z. If the Newton polygon is the
convex hull of (0, 0), (d, 0) and (0, d) we say that f has degree d.

Remark 8.8. Our definition of degree is not standard, but it is chosen to have a correspon-
dence to the tropical degree.

Example 8.9. Figure 8.2 represents the Newton polygon of the complex algebraic curve given
by the polynomial f = 2x3 − 4x2y + 3x2 + xy2 − 2xy − x+ 4y3 + 1 in (C∗)2.
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x1,0

x0,1

1

1

Figure 8.2: The Newton polygon of f = 2x3 − 4x2y + 3x2 + xy2 − 2xy − x+ 4y3 + 1.

Definition 8.10 (Dual vectors). Let ∆ = (v1, . . . , vn) be a multiset of vectors in Z2, where
Z2 ⊂ R2 is oriented. By the dual vectors of ∆ we mean the multiset (v′1, . . . , v

′
n) of vectors

in Z2 where the angle between vi and v′i is −π/2 (not π/2) and the lattice lengths of vi and
v′i are the same for 1 ≤ i ≤ n.

Lemma and Definition 8.11. Let ∆ be the degree of a parameterized tropical curve. The
dual vectors to ∆ form a unique (up to translation) oriented cycle which describe a convex
polygon D with vertices in Z2; we call D the Newton polygon dual to ∆.

Proof. By the balancing condition the dual vectors sum up to zero and therefore we can
construct a polygon out of them. Since we require the polygon to be convex, it is unique up
to translation.

Example 8.12. Let (Γ, x1, . . . , x9, h) be a parameterized tropical curve and let h(Γ) be the
figure shown in 8.3 (all weights are 1). The Newton polygon dual to the degree of Γ is the
same as shown in figure 8.2.

Figure 8.3: A tropical curve of degree 3.

Notation 8.13. For the degree∆ of a parameterized tropical curve we denote the dual Newton
polygon by ∆∨.

The goal is to have a correspondence between curves which satisfy some properties. Besides
the genus and the degree the property the curves have to fulfill is to pass through given points.
In definition 8.5 we defined the numbers of tropical curves satisfying given properties. Thus,
we now define their algebraic counterparts.
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From now on assume that the tropical degree consists only of primitive vectors.

Definition 8.14. Let ∆∨ be a convex polygon with vertices in Z2. We define #∆∨ = ∂∆∨ ∩
Z2.

Remark 8.15. If the degree of a tropical curve consists only of primitive vectors then #∆
(see chapter 2) is the same as #∆∨ for ∆ being the degree of a tropical curve and for ∆∨

being its dual Newton polygon.

Definition 8.16. LetQ = (q1, . . . , q#∆∨+g−1) ⊂ (C∗)2 be a configuration of points in general
position. We define N irr(g,∆∨, Q) to be the number of irreducible complex curves of genus
g and degree ∆∨ passing through Q.

Those numbers a priori depend on Q. The following proposition is a useful fact and can be
found for example in [CH].

Proposition 8.17. Take the notation of definition 8.16. For generic Q the numbers N irr(g,
∆∨, Q) are finite and independent of Q. Therefore we get invariants N irr(g,∆∨).

By now we defined the objects in algebraic and in tropical geometry we want to connect by
a correspondence. To state the correspondence it lacks only a connection between the point
conditions in algebraic geometry and those in tropical geometry. For this we use the function
given in the following definition.

Definition 8.18 (Log). Let Log be the map from (C∗)2 to R2 given by Log(x) = (log |x1|,
log |x2|) for all x ∈ (C∗)2.

Theorem 8.19 (Mikhalkin, [M1], theorem 1). For a generic configuration P of n = #∆ +
g−1 points we haveN irr

trop(g,∆, P ) = N irr(g,∆∨). Furthermore, there exists a configuration
Q ⊂ (C∗)2 of #∆ + g − 1 points in general position such that Log(Q) = P and for a
parameterized tropical curve (Γ, x1, . . . , xN , h) of genus g and degree ∆ passing through P
we have mult(Γ) distinct complex curves of genus g and degree ∆∨ passing through Q. The
curves are distinct for different h(Γ) and irreducible. (Recall: We assume that the degree of
the tropical curve consists of primitive vectors and thus #∆ and #∆∨ are equal.)

The notable fact stated in theorem 8.19 can be used for counting algebraic curves. After
translating the algebraic problem into tropical geometry one can use for example lattice paths
(see [M1]) or floor diagrams (see [BM]) to count tropical curves. By the correspondence the
algebraic problem is solved as well.

Example 8.20. There is one parameterized tropical curve of degree 2 and genus 0, passing
through 5 general points. This curve correspond to one algebraic curve, which is the only
curve of degree 2 passing through given 5 points (see figure 8.4).

Remark 8.21. In fact, the proof by G. Mikhalkin of theorem 8.19 contains as well the infor-
mation how to assign a tropical curve to an algebraic one. He calculated certain Hausdorff
limits of curves. For this one defines for t > 1 the following map from (C∗)2 to (C∗)2

Ht : (x, y) 7→ (|x|
1

log(t)
x

|x|
, |y|

1
log(t)

y

|y|
).
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p1 p2

p4
p5

p3

Figure 8.4: The degree 2 and genus 0 parameterized tropical curve passing through the points
P = {p1, . . . , p5}.

Take the assumptions and notations from theorem 8.19 and let ǫ > 0 be sufficiently small.
For sufficiently big t there are mult(Γ) algebraic curves mapped to the ǫ-neighborhood of
h(Γ) under Log ◦Ht.

Besides the correspondence theorem found by G. Mikhalkin there are some other correspon-
dence theorems. To state one of them we change our base field to the field given in the next
definition.

Definition 8.22 (valuation). The field of locally convergent Puiseux series is by definition
the field K of locally convergent power series which is a subfield of

⋃∞
n=1 C((t1/n)) (i.e.

for
∑

r∈R crt
r ∈ K with cr ∈ C one has

∑
r∈R |cr|t

r < ∞ for sufficiently small t). We
define val : (K∗)n → Rn to be the Cartesian product of the valuations val : (K∗) → R,∑∞

k=k0
ckt

k/n 7→ −k0/n, where ck ∈ C and ck0 6= 0. If Z is an algebraic curve in K2 we
define val(Z) to be the closure of the valuation of Z ∩ (K∗)2.

Theorem 8.23 (Mikhalkin, Shustin). Let K be the field of locally convergent Puiseux series,
and ∆ be the degree of a plane tropical curve. Let P be a set of #∆ + g − 1 = n generic
points in R2 and let Q ⊂ (K∗)2 be a set of n different points in general position such that
val(Q) = P . For each plane parameterized tropical curve (Γ, x1, . . . , xn, h) of genus g and
degree ∆ passing through P , there exist mult(Γ) distinct plane algebraic curves in K2 of
genus g and degree ∆∨, which pass through Q and are mapped to h(Γ) under val.

A proof can be found in [Sh] (Theorem 3).

Particularly related to our work is a work done by I. Tyomkin. Since we need again some
preparations to quote the result we state the necessary definitions.

Definition 8.24 (special curves). Let (Γ, x1, . . . , xN , h) be a parameterized tropical curve. If
Γ has only vertices of valence three and if the lengths of all bounded edges and the position of
all vertices are rational we call the parameterized tropical curve special. By multiplying these
rational numbers by the least common multiple of the divisors of all fractions we assume that
all vertices of h(Γ) (resp., lengths of edges of Γ) are in Z2 (resp., in Z).

The aim of definition 8.24 is on one side to use the affine structure of the edges for the
definition of a multiplicity. On the other side, if an elliptic tropical curve is special, we have
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a correspondence between its j-invariant and the j-invariant of the corresponding algebraic
curves.

Definition 8.25. Let (Γ, x1, . . . , xN , h) be a special curve, let e be an edge of Γ, and let V be
a vertex of e. The lattice of the tangent space of h(e) is denoted by Ne. The lattice length of
v(e, V ) in Ne is denoted by l(e).

Definition 8.26. Let (Γ, x1, . . . , xN , h) be a special parameterized n-marked tropical curve
of genus 1 and fix an arbitrary orientation for each bounded edge such that the cycle in
Γ with this directions gives an oriented cycle. We denote by W the set of vertices of Γ,
by W n the set of vertices adjacent to x1, . . . xn, by Eb the set of bounded edges and we
put W f = W\W n. Define ǫ(e, V ) to be −1 (resp., 1, resp., 0) if V ∈ W, e ∈ Eb and
V is the initial point of e (resp., V is the end point of e, resp., V is not a vertex of e).
Let β be the group morphism ⊕V ∈W (K∗)2 ⊕ ⊕e∈Eb(Ne) ⊗ K∗ → ⊕e∈Eb(K∗)2 given by

β(yV ) = ⊕e∈Eb

(yV
ǫ(e,V )
1

yV
ǫ(e,V )
2

)
and β(ye) =

(ye
−l(e)
1

ye
−l(e)
2

)
(the labels V and e denote the entry in the

direct sum for V ∈ W and e ∈ Eb). Let {e1, . . . em} be the set of edges forming the
cycle. We put δ : ⊕V ∈W (K∗)2 ⊕ ⊕e∈Eb(Ne) ⊗ K∗ → K∗ with δ(yV ) = 1, δ(ye) = ye

(Ne ⊗K∗ ∼= K∗) if e ∈ {e1, . . . em} and δ(ye) = 1 otherwise. Furthermore, we define a map
idn : ⊕V ∈W (K∗)2 ⊕⊕e∈Eb(Ne)⊗K∗ → ⊕V ∈W n(K∗)2, given by idn(yV ) = yV for V ∈W n

and idn(yV ) = idn(ye) = 1(K∗)2 ∈ (K∗)2 for V ∈ W f , e ∈ Eb. Put

E = β×δ× idn : ⊕V ∈W (K∗)2⊕⊕e∈Eb(Γ)(Ne)⊗K∗ → ⊕e∈Eb(Γ)(K
∗)2×K∗×⊕V ∈W n(K∗)2

and denote by K(Γ, P, j) the kernel of E. We denote by β, δ and idn as well the Z-linear
maps of the underlying lattices (Z ⊂ Z⊗K∗ = K∗).

The multiplicity of the tropical curves is the number of algebraic curves corresponding to it.
To see how the multiplicity |K(Γ, P, j)| is related to point conditions consider the following
remark.

Remark 8.27. Let us use the notations of definition 8.26 and let {q1, . . . qn} = Q ⊂ (K∗)2

be a set of n points in general position such that val(Q) = P , for P = {h(x1), . . . h(xn)}.
Since E is a group morphism, the number |K(Γ, P, j)| equals the number of preimages of
an element of the image. Thus, |K(Γ, P, j)| equals for example the number of preimages of
((1(K∗)2 , . . . , 1(K∗)2), 1, (q1, . . . , qn)).

Before stating the theorem of Tyomkin we consider an example.

Example 8.28. Let (Γ, x1, . . . , x5, h) be the parameterized tropical curve with h(Γ) shown in
figure 8.5 and equipped with the orientation such that e1 is directed from x1 to V1 and e2 . . . e5
form a clockwise oriented cycle; let P = {(−2,−1); (1, 1)}, let Q = {(t2, t); (1/t, 1/t)}
and let the degree ∆ be (

(
−2
−1

)
,
(
1
2

)
,
(
1
−1

)
). The map E from definition 8.26 is a map from

a 15-dimensional space to a 15-dimensional space. By abuse of notation we use the same
notation as in the previous definition for slightly different objects (yV is the value (K∗)2V as
before, but ye is the value in K∗

e
∼= Ne ⊗ K∗ instead of the value in Ne ⊗ K∗). To count the

elements of the kernel of E we can solve the following equations:

(yV1)1
t2 · y2e1

= 1,
(yV1)2
t · ye1

= 1,
1

t · (yV1)1 · ye2

= 1,
1

t · (yV1)2 · ye2

= 1,

74



Chapter 8: Correspondence theorems

x3
x4

V2

V3

x1

x5

V1

x2

e2

e3

e4

e5
e1

Figure 8.5: An elliptic curve with 5 marked ends.

(yV2)1 · t

ye3

= 1,
(yV2)2 · t

ye3

= 1,
(yV3)1
(yV2)1

= 1,
(yV3)2

(yV2)2 · ye4

= 1,

(yV1)1
(yV3)1 · ye5

= 1,
(yV1)2
(yV3)2

= 1, ye2 · ye3 · ye4 · ye5 = 1.

Since it can be calculated, that these equations have a unique solution, the kernel contains
exactly one element.

Notation 8.29. Let Z be an algebraic curve of genus one. We denote by J the j-invariant of
Z.

Theorem 8.30 (Tyomkin, [T], theorem 6.3). Let (Γ, x1, . . . , xn, h) be a parameterized tropi-
cal curve of genus one and degree d. Let P be a set of 3d−1 generic points and letQ ⊂ (K∗)2

be a set of 3d − 1 points in general position such that val(Q) = P . Let further j ∈ R>0 be
the j-invariant of Γ. (Recall: The j-invariant is the sum of all lengths forming the cycle of
Γ.) If Γ is special, P = {h(x1), . . . , h(xn)}, j(Γ) = j and J ∈ K with val(J) = j then there
exist |K(Γ, P, j)| elliptic algebraic curves of degree d and j-invariant J in (K∗)2 which pass
through Q and are mapped to h(Γ) by val.

The next proposition gives a tropical interpretation of |K(Γ, P, j)|.

Definition 8.31. Take the assumptions and notations of theorem 8.30. For each xi, i ∈
{1, . . . , n} we can write

h(xi) = h(x1) +
∑

e∈R

l(e)ve

for a subset R ⊂ Eb(Γ) and ve a generator of Ne (see example 8.33). For a fixed subset R
and a fixed vector ve, these equalities define the linear map

ẽvi : R2 ⊕ R#Eb

→ R2, (x,⊕e∈Ebye) 7→ x+
∑

e∈R

yeve.

We denote the product ẽv1 × . . .× ẽvn by ẽv.
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Remark 8.32. The parameterized tropical curve Γ has a cycle and thus the maps ˜evi from
definition 8.31 do depend on R. Nevertheless we only need those maps to calculate the
absolute value of a determinant (proposition 8.34) which will be independent of the choice
of R and ve. This is the reason why we denote the map by ẽvi instead of (ẽvi)R,ve .

Example 8.33. The evaluation h(xi) of the vertex xi of the parameterized tropical curve in
figure 8.6 can be written as

h(xi) = h(x1) + l(e1)

(
1

0

)
+ l(e2)

(
1

1

)
+ l(e3)

(
0

1

)
+ l(e4)

(
−1

1

)
+ l(e5)

(
0

1

)
+ l(e6)

(
1

1

)
.

h(xi)

e3

h(x1)

e2e1

e4

e6
e5

Figure 8.6: Evaluation of x2.

Proposition 8.34. Take the same assumptions and notations as in theorem 8.30. The number
|K(Γ, P, j)| coincides with the absolute value of the determinant of the linear map

D = ẽv × j × a1 × a2 : R2+#Eb

→ R6d−2 × R×R2.

Recall: j is the j-invariant and a1, a2 are the equations for the closing cycle at the end of
section 7.2. The space R2+#Eb

encodes the position of the vertex V1 = h(x1) and the lengths
of the bounded edges of the curve. (In particular the absolute value of the determinant is
independent of the choice of R in definition 8.31.)

Proof. The map D is a linear map. Thus, the absolute value of the determinant of D is the
same as the numbers of elements of the cokernel of the map

D′ = ẽv × j × a1 × a2 : Z2+#Eb

→ Z6d−2 × Z× Z2.

The idea of the proof is to replace the matrix D′ with a matrix

(
D′ 0
⋆ f |V1=0

)
, where

(
⋆ f |V1=0

)
= f̃ (see below) and then to use row operations to get E|Z. After this we use

the tensor product to prove the statement.

Let e1 be an edge of the cycle. This cokernel is isomorphic to the cokernel of the map

D′ × f : Z2+#Eb

⊕⊕V ∈W\{V1}Z
2 → Z6d−2 × Z× Z2 ×⊕e∈Eb\{e1}Z

2
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where for each e ∈ Eb\{e1} the image of f in the coordinate Z2
e is the sum

∑
V ∈W ǫ(e, V )yV

with yV ∈ Z2
V . The cokernel ofD′ is isomorphic to the cokernel ofD′×f due to the fact, that

after fixing V1 the map f is a bijective map from the group ⊕V ∈W\{V1}Z
2 to ⊕e∈Eb\{e1}Z

2.
(The inverse f−1 is defined recursively starting with vertices connected with V1 by an edge
from Γ\{e1}. For e an edge connecting V and V ′ we define yV ′ = yV + ǫ(e, V )ye. Since
Γ\{e1} is connected and V1 is fixed we can do this to define f−1.) For each e ∈ Eb\{e1} we
now change the Z2

e-component of f . Let the Z2
e-component of f be yVi

− yVk
. We change the

image by adding the product of the integer corresponding to e in Z2+#Eb
and the direction

v(e, Vi) of e pointing from Vi to Vk. Since f was bijective, the number of elements of the
cokernel stays the same after changing the map f to this new map f̃ .

The map D′ × f̃ is a linear map and therefore it can be written as a matrix M . The maps
a1 and a2 refer to the closing of the cycle and are given as a sum of v(e, Vi)ve with ve ∈ Ze

and e is an edge of the cycle. By adding the rows of Z2
e, in the matrix corresponding to the

map D′× f̃ , to the rows (a1, a2) we can change the maps a1, a2 to get the map β to⊕e∈EbZ2

instead of a map a1 × a2 × f̃ to Z2 ⊕e∈Eb\{e1} Z2. Since these are linear row operations, the
determinant and the number of elements in the cokernel stays the same. So far we got the
map

ẽv × j × β : Z2+#Eb

⊕V ∈W\{V1} Z2 → Z6d−2 × Z×⊕e∈EbZ2.

The image of a point in Z2+#Eb
⊕V ∈W\{V1} Z2 under ẽvl be xV1 +

∑
e∈R yeve (see definition

8.31). Let ẽ ∈ R and let the map β at coordinate Zẽ be xV ẽ
i
− xV ẽ

k
± yẽvẽ. By adding the

rows corresponding to ẽ with a suitable sign we can change the row of ẽvi to get the image

xV1 +
∑

e∈R\{ẽ}

yeve ± (xV ẽ
i
− xV ẽ

k
).

After doing this for all e ∈ R we get the sum

xV1 +
∑

e∈R

±(xV e
i
− xV e

k
).

Since the edges of R build a path from xV1 to xVl
this sum is equal to xVl

. Thus we can
change the evaluation maps to identity maps of Z2

Vl
to Z2

Vl
by row operations which do not

change the determinant and thus get a (6d−2)-identity matrix. Therefore the cokernel of the
map D has the same number of elements as the cokernel of the map

E|Z = β × δ × idn : ⊕V ∈W Z2 ⊕⊕e∈Eb(Γ)Z → ⊕e∈Eb(Γ)Z
2 × Z×⊕V ∈W nZ2.

Thus, it remains to show that the cokernel C of E|Z has the same number of elements as the
kernel K of E. The map E|Z is injective, thus we have the following exact sequence

0→ Zm E|Z
−−→ Zm → C → 0,

for suitable m ∈ N. The map E is E|Z ⊗K∗. Thus, by tensorizing with K∗ we get the exact
sequence

0→ K → Zm ⊗K∗ E
−→ Zm ⊗K∗ → C ⊗K∗ → 0,
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where

Zm ⊗K∗ ∼= ⊕V ∈W (K∗)2 ⊕⊕e∈Eb(Γ)Ne ⊗K∗ ∼= ⊕e∈Eb(Γ)(K
∗)2 ×K∗ ×⊕V ∈W n(K∗)2.

Since C is finite C ⊗K∗ is 0. Furthermore K = Tor(K∗, C). It is known that Tor commutes
with direct sums. Since C is an abelian group the problem reduces to the case where C = Zs

and m = 1. Thus, it remains to show that Zs and K = Tor(K∗, C) from the exact sequences

0→ Z ·s
−→ Z → Zs → 0,

and
0→ K → K∗ (.)s

−−→ K∗ → 0

with s ∈ N>0 have the same number of elements. But K and Zs are isomorphic and thus the
proposition holds.

Remark 8.35. By remark 4.7 in [KM] the numbers in proposition 8.34 are the same as the
multiplicities we calculated for those tropical curves in chapter 7 with the help of corollary
6.29.

8.2 Correspondence theorem for elliptic curves with
given j-invariant

After stating some known correspondence theorems, we now want to treat the case of elliptic
curves with fixed j-invariant. Therefore, let us do some preparation before we are able to
prove our results. For this, we start with a fact about algebraic curves.

Theorem 8.36 (Pandharipande,[P]). Let K be an algebraically closed field of characteristic
0. The numberE(d, J) of irreducible nodal degree d K-plane elliptic curves with j-invariant
J which pass through fixed 3d − 1 points in general position is independent of the choice of
the points. Furthermore, E(d, J) is independent of the choice of J for J 6= 0, 1728,∞. In
this case E(d, J) =

(
d−1
2

)
N irr(0, d).

In the theorems we stated in the first section of this chapter, we considered curves satisfying
some point conditions. To establish a correspondence it was necessary to have a corre-
spondence of the conditions as well. Since we consider elliptic tropical curves with fixed
j-invariant we want to start with a fact about this invariant.

Theorem 8.37 (Tyomkin, [T], (Theorem 2.32)). Let (Γ, x1, . . . , xn, h) be the special tropical
curve corresponding to an algebraic curveZ (i.e. val(Z) = h(Γ), for further details see [T]).
If g(Z) = g(Γ) = 1, if h is injective on the cycle and if J is the algebraic j-invariant of Z
then the tropical j-invariant of Γ is equal to val(J).

Corollary 8.38. Let (Γ, x1, . . . , xn, h) be the special tropical curve corresponding to an al-
gebraic elliptic curve Z of degree d passing through given 3d − 1 = n points in general
position. If val(J) >> 0 (for J being the j-invariant of Z), then h(Γ) allows rational pa-
rameterizations of degree d.
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Proof. Since Z is of degree d, we can find a parameterization of h(Γ) of degree d as well.
Therefore it remains to show that h(Γ) allows a rational parameterization. In a parameteriza-
tion each point which is locally an intersection of two lines can be resolved (see figure 8.7).
Take a parameterization (Γ, h) which has resolved all crossings of two lines (and therefore

P

P

P
h

Figure 8.7: Resolving a crossing of two lines.

all vertices of Γ are three-valent). Assume that Γ has genus 1. By theorem 8.37 the cycle
length has to be val(J) if Γ has no contracted bounded edge. Let us first assume that Γ has
a contracted bounded edge e (i.e. h(e) is a point). By the balancing condition h(Γ) has a
crossing at h(e) which is a contradiction since we resolved all crossings. Thus, (Γ, h) has no
contracted bounded edge. Therefore the cycle length has to be val(J). But this is a contra-
diction to proposition 5.1 in [GM3] (every elliptic tropical curve of degree d with a very big
j-invariant and passing through the 3d− 1 fixed points has a contracted bounded edge).

Definition 8.39 (tropical cycle). Let (Γ, x1, . . . , xN , h) be a parameterized tropical curve. We
call the image h(Γ) of a tropical curve a tropical cycle. If the tropical cycle of a parameterized
tropical elliptic curve can not be parameterized by a rational curve we call the tropical cycle
an elliptic cycle (for example figure 8.8) and a rational cycle otherwise (for example figure
8.9).

Example 8.40. The image of a special parameterized tropical curve of genus one, degree 3,
and passing through given 8 points looks for example as is figure 8.8. But, if we fix a big

Figure 8.8: Elliptic curve passing through 8 points.

j-invariant, the curve having this j-invariant has to look like in figure 8.9.

Remark 8.41. D. Speyer gives in proposition 9.2 [Sp2] some conditions, when the tropical-
ization of the j-invariant of an algebraic curve is the cycle length of the tropical curve. In
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Figure 8.9: The tropical cycle of an elliptic curve passing through 8 points and with given
big j-invariant (therefore the curve has a contracted edge).

particular he needs an injectivity condition to show that the tropicalization is the same as the
length of the loop. In example 8.40 this injectivity condition is violated for figure 8.9. Thus,
the elliptic curve (Γ, x1, . . . , x9, h) with h(Γ) being the tropical cycle from figure 8.9 has a
contracted edge at the 4-valent vertex.

Definition 8.42 (Multiplicity of an elliptic tropical curve). Let CΓ = (Γ, x1, . . . , xn, h) be
an elliptic tropical curve in R2, let PC be the corresponding point inMlab

1,n,trop(R
2, d) and let

f = ev1× · · ·×evn×j. Furthermore, put f̃ = f as continuous map, but redefine the weights
of Mlab

1,n,trop(R
2, d) to be 1

2
(resp., 0) for curves with contracted cycle (resp., with the cycle

which is not contracted). We define multj(CΓ) to be mult[PC ] f −mult[PC ] f̃ (see corollary
6.29, end of section 7.2 and theorem 7.17).

Remark 8.43. The multiplicity defined in the previous definition agrees with the multiplicity
of [KM] (see definition 3.5 and chapter 4 in [KM]).

Definition 8.44. Let Etrop(d, j, P ) be the number of irreducible nodal degree d plane elliptic
tropical curves with fixed j-invariant and passing through 3d− 1 points P counted with the
multiplicity from definition 8.42.

Now we can state a main result of this chapter, a correspondence theorem for elliptic curves
with given j-invariant. Note, that it is a correspondence between tropical cycles and param-
eterized algebraic curves.

Theorem 8.45. Let d > 2 and let us fix as a ground field the field K. For a generic configu-
ration P of 3d − 1 points, sufficiently big tropical j-invariant j and J ∈ K with val(J) = j
we have Etrop(d, j, P ) = E(d, J). Furthermore, let Q ⊂ (K∗)2 be a configuration of 3d− 1
points in general position with val(Q) = P , and C be the tropical cycle h(Γ) of a parame-
terized tropical curve (Γ, x1, . . . , x3d−1, h) of genus 1, degree d and j-invariant j such that
P = {h(x1), . . . , h(x3d−1)}. Then, there exist

(
d−1
2

)
mult(C) (remember that C is rational

since j is sufficiently big, thus the parameterization of C as a rational parameterized tropical
curve of degree d is unique and by abuse of notation we write mult(C) for the multiplicity
of this curve) distinct algebraic curves Z of genus 1, with j-invariant J and degree d such
that Z passes through Q. These curves are irreducible and the image of each of these curves
under val is C.
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Before proving the theorem we quote some facts for Berkovich spaces. For an introduction
to the theory of Berkovich spaces we recommend [Ba], [Be3] or [D]. For a general study of
this theory we recommend [Be1] and [Be2].

Fact 8.46. Let k be a non-Archimedean field. There exists a functor F such that for each
k-algebraic variety X one can associate a k-analytic space Xan to it. This space is called
the Berkovich k-analytic space associated to X .

See for example section 1.4 in [D] (or §3.4.1 in [Be1] and §2.6 in [Be2]).

To get a first idea of analytic spaces let us consider a remark.

Remark 8.47. Let An be the space of multiplicative seminorms of K[T1, . . . , Tn] (in particular
each x ∈ Kn defines a seminorm by |f |x = |f(x)|, where |.| is the norm induced by the
valuation). The topology of An is defined to be the weakest topology such that the map
An → R≥0 : |.|x 7→ |f |x is continuous for all f ∈ K[T1, . . . , Tn]. An analytic function is a
local limit of rational functions. Denote byO the sheaf of analytic functions on open subsets
U ⊂ An.

A local model for a k-analytic space is a locally ringed space (X,OX) given by an open
set U ⊂ An and a finite set of analytic functions f1, . . . , fn ∈ O(U) such that X = {x ∈
U |fi(x) = 0 ∀1 ≤ i ≤ n} and OX = (OU/ < f1, . . . , fn >)|X .

Let E = E(a, r) be a closed disk in K with center a ∈ K and radius r > 0. The function
defined by f =

∑n
i=1 αi(T − a)i is mapped to max1≤i≤n |αi|r

i is a multiplicative norm |.|E
on k[T ]. It is a fact, that the set of seminorms on K is given by f 7→ infE∈E |f |E, where E is
a family of nested closed disks. Each point of A1 corresponds to E = E(a, 0) = a (called
points of type (1)) or a closed disk with r ∈ |K∗| (type (2)) or a closed disk with r /∈ |K∗|
(type (3)) or to a E with

⋂
E∈E E = ∅ (type (4)). The analytification functor from fact 8.46

maps K to A1.

Fact 8.48 (Fact 4.1.3 in [Be3], proposition 3.4.6 und 3.4.7 in [Be1]). Let ϕ : X → Y be a
morphism of schemes of finite type over k, and let ϕan : Xan → Y an be the corresponding
morphism of k-analytic spaces. The morphism ϕ is étale, smooth, separated, an open im-
mersion and an isomorphism if and only if ϕan possesses the same property. Suppose that ϕ
is of finite type. Then ϕ is a closed immersion, finite, and proper if and only if ϕan possesses
the same property.

Fact 8.49 (Fact 4.1.4 in [Be3], theorem 3.4.8 in [Be1]). One has X is proper ⇔ |Xan| is
compact.

Proof of theorem 8.45. R. Pandharipande has shown that E(d, J) =
(

d−1
2

)
N irr(0, d) (see

[P]). By theorem 8.23 we know that the numbers N irr
trop(0, d, P ) and N irr(0, d) agree. Thus,

the first part of the theorem (Etrop(d, j, P ) = E(d, J)) follows from the second part if we can
show that the set of tropical cycles of tropical curves of genus 1, with j-invariant j and degree
d passing through P is the same as the set of tropical cycles of rational curves of degree d
passing through P . Each tropical cycle of a rational curve has at least one node or a vertex of
multiplicity greater than 1 because d > 2. For a node we can make the parameterized tropical
curve elliptic by inserting a contracted edge. Since j is very big we can choose the length of
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the contracted edge of this parameterized elliptic tropical curve such that the j-invariant of
this curve is j. At a vertex of valence greater than one we can insert a cycle of length j and
thus we get a curve which fulfill the requirement. Therefore it remains to show the second
part.

Let Vd,1 be the Severi variety which is the closure (in the variety of all curves of degree d) of
the reduced and irreducible plane elliptic nodal algebraic degree d curves. It is known that
Vd,1 has dimension 3d (see for example [HM]). Let V be the intersection of Vd,1 with the
codimension 3d−1 subspace formed by the curves passing throughQ. By [P] the curve V is
a branched cover of P1 by the j-invariant. The ramification points are 0, 1728, and∞. Since
V is a closed subset of PN for some N , one gets that V is proper.

Since V is an algebraic variety fact 8.46 applies and we can associate the analytic space V an

to V . Since the points of V can be identified with points of V an (those points are the rigid
points of V an) we can speak of V being a subset of V an (see for example proposition 2.1.15
[Be1]). Let r ∈ V be a point parameterizing a rational curve and let U be a neighborhood
of ∞ in (P1)an. By J we denote as well the map V → P1 given by the j-invariant. Since
Jan is continuous, there exists a neighborhood W of r such that Jan(W ) ⊂ U (the topology
of (P1)an is induced by the valuation, see for example section 1.3 in [Ba]). Assume now
that W is a closed subset of V an such that Jan(W )∩P1 contains elements with arbitrary big
valuation (remark: By 2.1.15 of [Be1] P1 is dense in (P1)an). Since V is proper and therefore
V an is compact by fact 8.49 we get that U contains a preimage of ∞. By definition, this
preimage is a point of V ⊂ V an (Jan is finite and thus, the preimage of a K point is the
spectrum of a K-algebra of finite dimension. Since K is algebraically closed it follows that
the preimage lies in V . For example see section 3.3 in [Be1] or for an idea of this fact
see remark 2.1.4 [Ba]) and thus it corresponds to a rational curve. Thus, all curves which
have a sufficiently big j-invariant are in a neighborhood of a rational curve. By [DH] the
normalization Π : V no → V near a rational curve r is the union of (d − 1)(d − 2)/2
separated smooth sheets (in particular V no → V → P1 is unramified at infinity). Thus, by
fact 8.48 (V no)an admits local isomorphisms (in the neighborhood of Π−1(r)) from each of
the (d − 1)(d − 2)/2 sheets to P1. Let ǫ be greater 0. By the local isomorphisms, for each
j-invariant J with sufficiently big valuation, there are exactly (d− 1)(d− 2)/2 curves which
have distance ǫ (P1 has a distance and each sheet is isomorphic to it) or smaller from r and
which have j-invariant J .

Let C be the tropical cycle h(Γ) of a parameterized tropical curve (Γ, x1, . . . , x3d−1, h) of
genus 1, degree d and j-invariant j such that P = {h(x1), . . . , h(x3d−1)}. The tropical cycle
C is a rational cycle by corollary 8.38 (if C contains a cycle it has a contracted edge since
j >> 0 or see proposition 5.1 in [GM3]). By theorem 8.23 there are mult(C) plane rational
algebraic curves of degree d, passing throughQ and which have valuation C. Let r be one of
those rational curves. A local chart U at r is Spec(K[x1, . . . , xN ]/I) for some ideal I . Since
U → R≥0 : |.|x 7→ |f |x is continuous for all f ∈ K[x0, . . . , xN ] we can define distances to r
using f (d(r, s) = |f(x− r)|s). In particular we can define ǫ-neighborhoods of r. (Remark:
For different choices of f we get different neighborhoods.) In the following, a point is in the
ǫ-neighborhood of r if it is in the ǫ-neighborhood for f = xi for each 0 ≤ i ≤ N (notice that
this is a neighborhood of r). For j sufficiently big, we find (d−1)(d−2)/2 elliptic algebraic
curves passing through Q and with j-invariant J such that each of these curves is in an ǫ-
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neighborhood of r. Let e be one of those elliptic curves. The distance of the coefficients of
the polynomials parameterized by r and e is less than ǫ. Thus we get that the valuation of
the difference of the coefficients (val(r − e)i, 0 ≤ i ≤ N) is much less than 0 and therefore
the tropicalizations of the curves r and e do agree. For each tropical cycle C of a curve of
genus 1, with j-invariant j and degree d passing through P we have

(
d−1
2

)
mult(C) distinct

algebraic curves of genus g, with j-invariant J and degree d passing through Q and which
are mapped to C under val.

Conjecture 8.50. Let us fix as a ground field the field K. For a generic configuration P
of 3d − 1 points, sufficiently big tropical j-invariant j and J ∈ K with val(J) = j we
have Etrop(d, j, P ) = E(d, J). Let S be the set of parameterized tropical curves which pass
through P , are of degree d, genus 1 and which have j-invariant j. For each configuration
Q ⊂ (K∗)2 of 3d−1 points in general position with val(Q) = P one has that for C being the
tropical cycle h(Γ) of a parameterized tropical curve (Γ, x1, . . . , x3d−1, h) of genus 1, degree
d and j-invariant j such that P = {h(x1), . . . , h(x3d−1)} we have

∑

(Γ,x1,...,xn,h)∈S,h(Γ)=C

multK,M((Γ, x1, . . . , xn, h))

distinct algebraic curves of genus g, with j-invariant J and degree d passing throughQ. The
multiplicity multK,M is the same as in [KM]. The curves are irreducible and the image of
these curves under val is C.

Remark 8.51. By proposition 8.34 the numbers stated in the conjecture 8.50 for tropical
cycles of special parameterized tropical curves are the same as in theorem 8.30.

The numbers stated in conjecture 8.50 for tropical cycles of elliptic curves with big j-
invariant agree with those in theorem 8.45 by lemma 6.2 from [KM].

These two remarks give a hint why the conjecture might be true. In the proof of theorem 8.45
we used the Berkovich space to make small deformations and used the understanding of the
rational case. Our last remark gives a hint why a deformation in other cases might be helpful
as well.

Remark 8.52. To see why a deformation could help to prove a correspondence we examine
the deformation of tropical curves. Since we are interested in the deformation of the j-
invariant we take a plane elliptic parameterized tropical curve C of degree d and passing
through 3d − 1 points in general position. Thus, the image of the curve in R2 has to be
a rational tropical curve or an elliptic tropical curve. Fix a j-invariant j and consider the
case, in which the curve is rational. If we can deform the tropical curves continuously we
can deform it by making the j-invariant bigger and bigger. As long as the image of the
curve stays rational it cannot change since the 3d − 1 points are in general position. Let us
consider the case where the image of the curve changes by deforming the j-invariant. In
this case the parameterization of the curve has a 4-valent vertex. Therefore the two other
parameterizations have to be elliptic or the same rational curve. Since we know the number
of algebraic curves mapped to the tropical cycle of an elliptic tropical curve with sufficiently
big j-invariant or where the cycle is elliptic we can deduce the number of algebraic curves
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which are mapped to the cycle of C by the balancing condition in the moduli space of elliptic
tropical curves of genus 1 and degree d.

We consider an example of a deformation of tropical curves.

Example 8.53. Assume that a parameterized tropical curve (Γ, x1, . . . , xn, h) has the tropical
cycle shown in figure 8.10. If we change the j-invariant continuously, the tropical cycle either

Figure 8.10: Rational cycle

stays the same or transforms to a tropical cycle similar to the one shown in figure 8.11. Let j0

Figure 8.11: Elliptic cycle with changed j-invariant.

be the value of the j-invariant where the tropical cycle changes, and assume that the tropical
cycle shown in figure 8.10 does not change for bigger j-invariants. Thus, the multiplicity of
the tropical cycle in figure 8.10 with j-invariant smaller than j0 has the same multiplicity as
the sum of the multiplicity of the tropical cycle in figure 8.10 with big j-invariant and of the
multiplicity of the tropical cycle in figure 8.11.
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