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Abstract

A main result of this thesis is a conceptual proof of the fact that the weighted number of tropical
curves of given degree and genus, which pass through the right number of general points in the
plane (resp., which pass through general points in R" and represent a given point in the moduli
space of genus g curves) is independent of the choices of points. Another main result is a new
correspondence theorem between plane tropical cycles and plane elliptic algebraic curves.

Résumeé

Un principal résultat de la these est une preuve conceptionnelle du fait que le nombre pondéré de
courbes tropicales de degré et genre donnés qui passent par le bon nombre de points en position
générale dans R? (resp., qui passent par le bon nombre de points en position générale dans R”
et représentent un point fixé dans I’espace de modules de courbes tropicales abstraites de genre
g) ne dépend pas du choix de points. Un autre principal résultat est un nouveau théoreme de
correspondance entre les cycles tropicaux plans et les courbes algébriques elliptiques planes.
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Preface

Tropical geometry

Tropical geometry is arelatively new mathematical domain. The roots of tropical geometry
go back to the seventies (see [Be] and [BG]), but only ten years ago it became a subject on
itsown. Tropical geometry has applicationsin several branches of mathematics such as enu-
merative geometry (e.g. [IKS], [M1]), symplectic geometry (e.g. [A]), number theory (e.g.
[G]) and combinatorics (e.g. [J]). A powerful tool in enumerative geometry are the so-called
correspondence theorems. These theorems establish an important correspondence between
complex algebraic curves satisfying certain constraints and tropical analogs of these curves.
One of the first results concerning correspondence theorems was achieved by G. Mikhalkin
(see[M1]). Thistheorem was proved againin slightly different formin [N], [NS], [Sh], [ST],
[T]. These results initiated the study of enumerative problems in tropical geometry (see for
example [GM1], [GMZ2], [GM3]). Dealing with counting problems, it is naturally to work
with moduli spaces. Thefirst step in this direction was the construction of the moduli spaces
of rational curves given in [M2] and [GKM]. In [GKM] the authors developed some tools
to deal with enumerative problemsfor rational curves, using the notion of tropical fan. They
introduced morphisms between tropical fans and showed that, under certain conditions, the
weighted number of preimages of a point in the target of such a morphism does not depend
on the chosen point. After showing that the moduli spaces of rationa tropical curves have
the structure of atropical fan, they used this result to count rational curves passing through
given points.

Results

In thefirst part of thisthesiswe follow the approach of [GKM] and introduce similar toolsfor
enumerative problems concerning curves of positive genus. In the second part we establish a
new correspondence theorem. The main results of thisthesis are as follows.

e We develop the definitions of (tropical) orbit spaces and (tropical) local orbit spaces
which are counterparts of a stack in algebraic geometry.

e We introduce morphisms between (tropical) orbit spaces and (tropical) local orbit
spaces.
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e For tropical (local) orbit spaces we show that the weighted number of preimages of a
point in the target of such a morphism does not depend on the chosen point.

e We equip the moduli spaces of tropical curves with the structure of a tropical local
orbit space.

e For the specia case of moduli spaces of elliptic tropical curves we equip the moduli
spaces as well with the structure of atropical orbit space.

e Using our results on tropical local orbit spaces, we give a more conceptual proof than
the authors of [KM] of the fact that the weighted number of plane tropical curves of
a given degree and genus which pass through the right number of points in generd
positionin R? isindependent of the choice of a configuration of points.

¢ Inthe same way we prove that the weighted number of tropical curves of given degree
and genusin R" which pass through the right number of pointsin R” and which repre-
sent afixed point in the moduli space of abstract genus g tropical curvesisindependent
of the choice of a configuration of pointsin general position.

¢ Inthe case of plane eliptic tropical curves of degree d we prove the independence of
the choice of a configuration of pointsand the choice of atype (which isthe j-invariant
in this case) aswell by using our results on tropical orbit spaces.

e \We prove a correspondence between plane tropical cycles (of elliptic curves with big
j-invariant satisfying point constraints) and elliptic plane algebraic curves (satisfying
corresponding constraints).

The chapters 1 and 2 recall definitionsand do not contain new results. The chapters 3, 4, 5, 6
and 7 are based on [H]. New resultsin chapter 8 are proposition 8.34, theorem 8.45 and the
conjecture 8.50.

Motivation

A relationship between tropical geometry and complex geometry was conjectured in 2000
by M. Kontsevich and was made precise by the so-called correspondence theorem by G.
Mikhakinin [M1]. In the cases where such a connection is established, it suffices to count
tropical curves to get the number of corresponding algebraic objects. Therefore tropical
geometry became a powerful tool for enumerative geometry. In algebraic geometry one uses
moduli spaces in enumerative problems. Because of the mentioned relation, it would be
reasonable to construct moduli spaces in tropical geometry as well. For the construction of
moduli spaces in algebraic geometry one needs, in many cases, the notion of a stack. Put
simply, a stack is the quotient of a scheme by a group action. In this thesis we want to
make an attempt for the definition of a “tropical stack”. Sinceit is afirst approach, we call
these objectstropical (local) orbit spaces (instead of calling them stacks). The definition of a
tropical orbit space avoids many technical problems. Thereforeit isauseful definition to get
afirst impression on the problems one wants to handle with a“tropical stack”. Nevertheless
it seems to be not general enough for the problems we want to deal with. Furthermore the
price we have to pay for the simplicity is loosing finiteness. Because of this, we give the
definition of atropical local orbit space which is more technical but more appropriate for our

Vi
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purposes. To show the usefulness of our definition, we equip the moduli spaces of tropical
curves with the structure of atropical local orbit space and use this structure to show that the
weighted number of tropical curves through given points does not depend on the position of
points.

As mentioned above, one motivation for tropical geometry are the correspondence theorems.
Therefore, it is of great interest to enlarge the number of cases where a correspondence is
established. The hopeisto understand better the algebraic objects and to get a more efficient
way to count them (see for example Mikhalkin’s|lattice path algorithm in [M1]). Our god is
to enlarge the correspondence theorem to the case of €lliptic non-Archimedean curves with
a j-invariant of sufficiently big valuation.

Chapter synopsis

Thisthesis contains eight chapters, which can be divided into four parts. Chapters 1 and 2 are
essential for the first seven chapters. Chapters 3, 4 and 5 belong together as well as chapters
6 and 7. Chapter 8 can be read separately.

e Chapter 1: Polyhedral complexes

We start the chapter by defining general cones, which are non-empty subsets of afinite-
dimensional R-vector space and are described by finitely many linear integral equal-
ities, inequalities and strict inequalities. A union of these cones, which satisfy some
properties, is a general fan. We equip each top-dimensiona cone in the fan with a
number in Q called weight. If these weights together with the cones fulfill a certain
condition (the balancing condition) we call the fan a general tropical fan. These ob-
jectsare thelocal building blocks of tropical varieties (in particular each tropical curve
islocally aone-dimensional fan). After this, we define ageneral polyhedron, which is
anon-empty subset of a finite-dimensional R-vector space and is described by finitely
many affine linear integral equalities, inequalities and strict inequalities. Polyhedral
complexes are certain unions of general polyhedra (locally a polyhedral complex looks
like a fan thus, we can define weights for the top-dimensional cones and consider the
balancing condition). We end the chapter by defining morphisms between polyhedral
complexes.

e Chapter 2: Moduli spaces
In this chapter we define moduli spaces of tropical curves. For this we give a defini-
tion of n-marked abstract tropical curves and parameterized |abeled n-marked tropical
curves. Asin algebraic geometry we can define the genus of a curve. An n-marked
abstract tropical curve of genus g is a connected graph with first Betti number equal
to g and n labeled edges connected to exactly one one-valent vertex (we consider the
curves up to isomorphism) such that the graph without one-valent vertices has a com-
plete metric. Each edge connecting two vertices of valence greater than one has a
length defined by the metric. Thus an n-marked abstract tropical curve can be en-
coded by these lengths, which give as well apolyhedral structure to the moduli spaces
of n-marked abstract tropical curves. After doing this we consider the special case

Vii
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of genus one. The underlying graph of an n-marked abstract tropical curve of genus
one contains exactly one simple cycle and we call its length tropical j-invariant. Pa-
rameterized labeled n-marked tropical curves are n-marked abstract tropical curves
together with a map from the graph without one-valent vertices to some R” fulfilling
some conditions.

Chapter 3: Local orbit spaces

In the first section we introduce tropical local orbit spaces. Local orbit spaces are
finite polyhedral complexes in which we identify certain polyhedra with each other.
These identifications are done with the help of isomorphisms between subsets of the
polyhedral complexes. For technical reasons the set of isomorphisms has to fulfill
some properties. If the polyhedral complex was equipped with weights which are the
same for identified polyhedra, we can equip the local orbit space with weights as well.
The word tropical refers again to a balancing condition which the local orbit space
withweights hasto fulfill. After showing that the balancing condition of the local orbit
gpace and of the underlying polyhedral complex are equivalent we start the second
section by defining morphisms between tropical orbit spaces. These morphisms are
defined to be morphisms of the underlying polyhedral complexes which respect the
properties of the set of isomorphisms (the properties which we have because of the
technical reasons). The morphisms alow us to define the image of a tropical local
orbit space. Under some conditions on the image we can prove that the number of
preimages of a general point in the target space (counted with certain multiplicities)
is independent of the chosen point (corollary 3.41). Afterwards, we define rational
functions on tropical local orbit spaces and the corresponding divisors.

Chapter 4: One-dimensional local orbit spaces

For a better understanding of the local orbit spaces defined in chapter 3 we study the
one-dimensional case more explicitly. The main result of this chapter is a theorem
concerning the local structure of alocal orbit space. In this chapter we treat as well
non-Hausdorff local orbit spaces in the one-dimensional case which we avoid in the
other chapters (the non-Hausdorffness).

Chapter 5: Moduli spacesfor curves of arbitrary genus

In the first section we equip the moduli spaces of n-marked abstract tropical curves
of genus g and exactly n one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. As mentioned above we can
equip the moduli spaces with a polyhedral structure. The underlying graph (forgetting
the metric) of two n-marked abstract tropical curves might be different. The encod-
ing of the curve by the lengths of the bounded edges does not give a useful global
description, since the cones encoding all curves with the same underlying graph are
spanned by unit vectors (one vector for each edge). Therefore, we do not get atropical
structure with this description. Thus, instead of the lengths of the bounded edges we
take the distances between the n markings. To get a global description of a moduli
space it seems reasonable to take these distances. This idea was used for n-marked
abstract rational tropical curvesin [GKM]. Unfortunately, the distance between two
markings for curves of higher genus is not well-defined; because of the cycles, there
is no unique path from one point to the other. To get rid of this problem, we cut each
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cycle a one point such that the curve stays connected and insert a new marked edge
at each endpoint of the cut. Now, all distances between markings are well-defined (we
are in a case similar to the case of rationa curves). Since we made non-canonical
choices, we take al possibilities for such a cut and we get rid of the choices by an
identification of cones. Thus, we end up with atropical local orbit space which turns
out to be homeomorphic to the moduli space. In section 2 we construct moduli spaces
of parameterized |abeled n-marked tropical curves of genus g in R". A parameterized
tropical curve is an abstract tropical curve with a map to R” where the map satisfies
certain properties (in particular it is affine on each edge). Using moduli spaces of ab-
stract curves we only need to encode the map. We consider only curves with fixed
directions of the marked edges and therefore it is enough to encode the position of one
fixed point to have al information needed for a map (the directions of the edges are
fixed and the distances of two points are already encoded, thus the map is fixed by the
position of one point). In our construction of the moduli spaces of abstract curves we
made a cut on each cycle and inserted two new edges. To make sure that the images of
the cut cycles are cycles again we userational functionsfor the definition of the moduli
spaces we are interested in. In the last section we introduce the condition that a curve
passes through given points and the condition that a curve represent afixed point in the
moduli space of 0-marked abstract tropical curves of genus g. Using the structure of a
local orbit space we show that the number of parameterized |abeled n-marked tropical
curves of given genus and given direction of marked ends counted with the multiplic-
ity defined by corollary 3.41 fulfilling the mentioned conditions does not depend on a
general choice of aconfiguration of points.

Chapter 6: Orbit spaces

This chapter is relatively similar to chapter 3. In the first section we define tropical
orbit spaces and in the second section we define morphisms between these objects. As
for tropical local orbit spaces we define tropical orbit spaces to be polyhedral com-
plexes in which we identify polyhedra by using isomorphisms. The difference in this
construction is that we weaken the conditions on the polyhedral complex and tighten
the condition on the set of isomorphisms. Thistime we allow the polyhedral complex
to be infinite but we ask the set of isomorphisms to be a group. Since the conditions
of the set of isomorphismsin chapter 3 are technical but satisfied if the set is a group,
we can simplify some problems. Unfortunately, the price we have to pay for thisisan
infinite polyhedral complex. Thisis due to the fact that it would be too restrictive for
our problemsto consider only finite groups. Because of the similaritieswe can develop
the same theory for orbit spaces as for local orbit spaces.

Chapter 7: Moduli spaces of eliptic tropical curves

In the first section we equip the moduli spaces of n-marked abstract tropical curves
of genus 1 and exactly n one-valent vertices such that the underlying graph has no
two-valent vertices with the structure of local orbit space. Asin chapter 5 we cut the
cycle of the genus-one curve. Since this case isaspecia case of chapter 5 most of the
calculations are similar to those in that chapter but easier. In the second section we
build moduli spaces of parameterized labeled n-marked elliptic tropical curvesin R”
using rational functions. We end the section with a calculation of weights in the case
r = 2. Inthis case M. Kerber and H. Markwig have already constructed the moduli
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gpaces as weighted polyhedral complex [KM]. It turns out that the weights defined by
our construction are the same except for the case when the image of the cycle of the
curve iszero-dimensiond. If the cycle is zero-dimensional our weights differ from the
weights of M. Kerber and H. Markwig by £. In particular, it follows that the moduli
spaces we constructed are reducible. In the third section of this chapter we show that
the number of plane élliptic tropical curves of degree d with fixed j-invariant which
pass through a given configuration of points does not depend on a general choice of
the configuration.

e Chapter 8: Correspondence theorems

Since we want to prove a correspondence theorem we recall some correspondence the-
orems in the first section. Especially theorem 8.30 by I. Tyomkin, which is the first
one stating a correspondence for elliptic curves with given j-invariant, is related to our
work. For a correspondence theorem, the multiplicity of atropical curveisthe number
of algebraic curves corresponding to it. By recalling some correspondence theorems,
we observe that the multiplicity of a curve depends in particular on the problem. We
end the section by proving a statement which expresses the multiplicities of theorem
8.30in atropical way. These multiplicities agree with those defined by M. Kerber and
H. Markwig (resp., calculated in the thesis). In the second section we prove a corre-
spondence between elliptic non-Archimedean curves which have a given j-invariant
with big valuation and tropical cycles which are the images of parameterized elliptic
tropical curves with big tropical j-invariant. The multiplicities we are using for this
are those defined by M. Kerber and H. Markwig. Since I. Tyomkin uses the same mul-
tiplicities we conjecture that the multiplicities of M. Kerber and H. Markwig are the
right onesin each case.
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Introduction en francais

Géomeétrie tropicale

La géométrie tropicale est un domaine relativement nouveau des mathématiques. Ses débuts
remontent aux années soixante-dix (voir [Be] et [BG]), maisil y aseulement dix ansqu’elle
est devenue un sujet a part entiere. La géométrie tropicale a des applications dans plusieurs
branches des mathématiques comme la géométrie énumérative (cf. [IKS], [M1]), la géomé-
trie symplectique (voir, par exemple[A]), lathéorie des nombres (voir, par exemple[G]) et la
combinatoire (cf. [J]). Les theoremes de correspondance sont un outil puissant en géométrie
enumeérative. Ces théoremes établissent une correspondance importante entre les courbes
algébriques complexes qui satisfont certaines contraintes et leurs analogues tropicaux. Un
des premiers résultats concernant les théoremes de correspondance est du a G. Mikhalkin
(voir [M1]). Ce théoreme a été redémontré dans une forme légerement différente dans [N]
[NS], [Sh], [ST], [T]). Ces résultats sont a |’ origine de I’ é&ude de problemes en géométrie
tropicae énumérative (voir par exemple [GM1], [GM2], [GM3]). Face a des problemes
de dénombrement, il est naturel de travailler avec des espaces de modules. La premiéere
étape dans cette direction a été la construction des espaces de modules de courbes tropicales
rationnelles proposée dans [M2] et [GKM]. Dans [GKM], les auteurs utilisent la notion
d’un éventail tropical pour développer des outils qui permettent d’ étudier des problemes
enumeératifs concernant des courbes rationnelles. 1ls introduisent des morphismes entre
éventails tropicaux et montrent le fait suivant : sous certaines conditions, le nombre pondéré
d’ antécédents d'un point, pour un tel morphisme, ne dépend pas du point choisi al’arrivée.
Apres avoir montré que les espaces de modules de courbes tropicales rationnelles ont la
structure d'un éventail tropical, les auteurs de [GKM] utilisent ce résultat pour dénombrer
les courbes rationnelles passant par des points donnés.

Résultats

Dans la premiére partie de cette these, nous suivons I’ approche de [GKM] et introduisons
desoutilssimilaires pour aborder des problemes énumeératifs concernant les courbes de genre
strictement positif. Dans la deuxieéme partie, nous établissons un nouveau théoreme de cor-
respondance. Les principaux résultats de la these sont les suivants.
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e Nous proposons des définitions d’ espaces d’ orbites (tropicaux) et d' espaces d orbites
locaux (tropicaux) (une tentative de définition d’ un <champ tropical).

e Nous introduisons des morphismes entre espaces d’ orbites (tropicaux) et espaces d’ or-
bites locaux (tropicaux).

e Pour un morphismed’ espaces d orbites (locaux) tropicaux, nous montrons que le nom-
bre d’ antécédents d’ un point dans I’ image, comptés avec leurs poids, ne dépend pas du
point choisi.

e Nous équipons les espaces de modul es de courbes tropicales d’ une structure d’ espace
d orbiteslocal tropical.

e Dansle cas particulier des espaces de modules de courbes tropical es elliptiques, nous
équipons aussi |es espaces de modules d' une structure d’ espace d’ orbites tropical.

e En utilisant nos résultats sur les espaces d’ orbites locaux tropicaux, nous donnons une
preuve plus conceptuelle que les auteurs de [KM] du fait suivant. Le nombre pondéré
de courbes tropicales planes de degré et genre donnés qui passent par |e bon nombre
de points en position générale dans R? est indépendant du choix de la configuration de
ces points.

e Delaméme maniére, nous montrons que le nombre pondéré de courbes tropicales de
degré et genre donnés dans R” qui passent par le bon nombre de points en position
générale dans R” et ayant un type général fixé dans I’ espace de modules de courbes
tropicales abstraites de genre g est indépendant du choix de la configuration de ces
pointsainsi que du type.

e Dans le cas de courbes tropicales elliptiques planes de degré d, nous prouvons que le
nombre pondéré de ces courbes qui passent par le bon nombre de points en position
générale et ayant un j-invariant fixé est indépendant du choix d’ une configuration des
points et du choix du j-invariant, et ce, a nouveau, a |’aide de nos résultats sur les
espaces d’ orbites tropicaux.

e Nous montrons une correspondance entre les courbes tropicales elliptiques planes de
degréd ayant un gros j-invariant j (qui satisfont des contraintes données par des points)
et les courbes non archimédiennes €lliptiques planes de degré d ayant un j-invariant
fixé de valuation ; (satisfaisant les contraintes correspondantes).

Leschapitres 1 et 2 sont un rappel des définitions et ne contiennent pas de nouveaux résultats.
Leschapitres 3, 4, 5, 6 et 7 sont basés sur [H]. Les nouveaux résultats dans le chapitre 8 sont
la proposition 8.34, le theoreme 8.45 et 1a conjecture 8.50.

Motivation

L es connexions avec |la géomeétrie al gébrique énumérative fournissent une motivation impor-
tante pour le dével oppement de la géométrie tropicale. Une relation entre la géométrie tropi-
cale et lagéométrie complexe, conjecturée en 2000 par M. Kontsevich, a été précisée grace au
théoreme de correspondance de G. Mikhalkin dans[M1]. Ainsi, dans chague cas ou unetelle
connexion est établie, il suffit de denombrer les courbes tropicales pour connaitre le nombre
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d’ objets al gébriques correspondants. Par conséguent, la géométrie tropicale devient un puis-
sant outil pour la géométrie énumérative. En géométrie algébrique, on utilise les espaces de
modules pour effectuer un dénombrement. Etant donné la relation conjecturée par M. Kont-
sevich, il serait raisonnable de construire des espaces de modules en géométrie tropicale. En
géométrie algébrique, on a besoin, dans de nombreux cas, de la notion de champ pour con-
struire des espaces de modules. Dit simplement, un champ est le quotient d’un schéma par
une action de groupe. Dans cette these, nous voulons faire une tentative de définition d’un
<champtropical . Puisgue cette définition n’ est qu’ une premiere approche, nous appellerons
ces objets des espaces d’ orbites (locaux) tropicaux (au lieu de les appeler des champs tropi-
caux). Ladéfinition d'un espace d orbites tropical évite de nombreux problemes techniques.
Elle est donc utile pour se donner une premiere idée des problemes que I’ on voudrait traiter
avec un <champ tropical>. Néanmoins, il semble que cette définition ne soit pas suffisam-
ment général e pour les problémes que nous aimerions aborder. En outre, le prix a payer pour
lasimplicité est la perte de la finitude. Par conséquent, nous donnons la définition d’ espace
d’ orbites local tropical qui est plus technique mais plus appropriée dans notre cas. Pour il-
lustrer I’ utilité de la définition, nous équipons les espaces de modules de courbes tropicales
de la structure d’' espace d’ orbites local tropical. Nous utilisons celle-ci pour montrer que le
nombre de courbes tropicales qui passent par des points fixés ne dépend pas de leurs posi-
tions.

Comme mentionné ci-dessus, une des motivations pour la géométrie tropicale provient de
théoreémes de correspondances. C’est pourquoi on a un grand intérét a éendre les cas ou
une correspondance est éablie. On a ainsi I’ espoir d’ obtenir une meilleure compréhension
d’ objets algébriques et un moyen plus efficace pour les dénombrer (voir par exemplel’ ago-
rithme de Mikhalkin dans[M1]). Notre objectif est d’ éargir e théoréme de correspondance
au cas des courbes non archimédiennes elliptiques dont la valuation du j-invariant est suff-
isamment grande.

Résumé des chapitres

Cette these contient huit chapitres qui peuvent étre divisés en quatre parties. Les chapitres 1
et 2 sont essentiels pour les sept premiers chapitres. Les chapitres 3, 4 et 5 forment un tout,
ainsi que les chapitres 6 et 7. Le chapitre 8 peut étre lu séparément.

e Chapitre 1: Polyhedral complexes (complexes polyédraux). Nous commengons
ce chapitre par la définition générale de cones qui sont des sous-ensembles non vides
d’'un R-espace vectoriel de dimension finie décrits par un nombre fini d égalités et
d'inégalités larges ou strictes, linéaires a coefficients entiers. Une union de ces cones
qui satisfait certaines propriétés est un éventail genéral. Nous équipons chague cone
de dimension maximal dans I’ éventail d’'un nombre rationnel baptisé poids. Si ces
poids conjointement avec les cones remplissent une certaine condition (la condition
d’ équilibre) nous appelons cet éventail, un éventail tropical général. Une variété trop-
icale est localement décrite par de tels objets (en particulier chague courbe tropicale
est localement un éventail de dimension 1). Ensuite, nous définissons les polyedres
généraux qui sont des sous-ensembles non vides d’un R-espace vectoriel de dimen-
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sion finie décrits par un nombre fini d’ égalités et d’'inégalités larges ou strictes, affines
et a coefficients entiers. Les complexes polyédraux sont des réunions certaines de
polyedres (localement un complexe polyédral ressemble aun éventail. C est pourquoi,
sous de bonnes conditions, nous pouvons lui associer des poids). Nous terminons le
chapitre par la définition de morphismes entre complexes polyédraux.

Chapitre2: Moduli spaces (espacesde modules). Dans ce chapitre, nous définissons
les espaces de modul es de courbes tropicales. Pour cela, nousintroduisons|a définition
de courbes tropicales abstraites n-marquées et de courbes tropicales paramétrées n-
marquées €&tiquetées. Comme en géomeétrie algébrique, une courbe tropicale possede
un genre. Une courbe tropicale abstraite n-marquée de genre g est un couple (T, §)
ou T est un graphe connexe dont le premier nombre de Betti est égal & ¢ et ayant n
arétes marquées chacune de ces arétes étant reliée a exactement un sommet de valence
1 (nous considérons les courbes aisomorphisme pres) tel que le graphe prive des ses
sommets de valence 1 soit muni de la métrique de longueur ¢ soit complet. Chague
arétereliant deux sommets de valence strictement supérieure a 1 aunelongueur définie
par lamétrique. Ainsi, une courbe tropical e abstraite n-marquée peut étre codée par ces
longueurs, conférant ainsi une structure polyédrale a I’ espace de modules de courbes
tropicales abstraites n-marquées. Ensuite, nous considérons le cas particulier des
courbesde genre 1. Le graphe sous-jacent d’ une courbe tropical e abstraite n-marquées
de genre 1 contient exactement un cycle simple nous appelons sa longueur j-invariant
tropical. Une courbe tropicale paramétrée n-marquée étiquetée est une courbe tropi-
cale abstraite n-marquée équipée d une application du graphe privé de ses sommets de
valence 1 dansR" satisfaisant de bonnes conditions.

Chapitre 3: Local orbit spaces (espaces d orbiteslocaux). Dans la premiére partie,
nous introduisons les espaces d’ orbites locaux tropicaux. Lesespacesd’ orbites|ocaux
sont des complexes polyédraux finis dans lesquel s nous identifions certains polyedres.
Ces identifications sont données par des isomorphismes entre des sous-ensembles des
complexes polyédraux. Pour des raisons techniques, I’ ensemble des isomorphismes
doit satisfaire certaines propriétés. Si le complexe polyédral est équipé de poids qui
coincident sur les polyedres identifiés, I’ espace d’ orbites local hérite de la structure
de poids. Le mot tropical se référe de nouveau a une condition d’équilibre que les
espaces d’ orbites locaux conjointement avec les poids doivent remplir. Apres avoir
montré que la condition d’équilibre pour I’ espace d orbites locaux et celle pour les
complexes polyédraux sont équival entes, nous commencons la deuxieme partie par la
définition de morphisme entre espaces d orbites locaux tropicaux. Ces morphismes
sont définis comme des morphismes entre les complexes polyédraux sous-jacents qui
respectent les propriétés de I’ ensemble des isomorphismes (les propriétés nous avons
a cause des raisons techniques). Ils nous permettent de définir I’image d’ un espace
d’ orbites local tropical. Sous certaines conditions sur I’image, on peut prouver que
le nombre d’ antécédents d’'un point général dans I’ espace image (comptés avec mul-
tiplicités donnent par poids) est indépendant du point (corollaire 3.41). Enfin, nous
définissons les fonctions rationnelles sur les espaces d’ orbites locaux tropicaux et les
diviseurs correspondants.
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e Chapitre 4: One-dimensional local orbit spaces (espaces d orbites locaux de di-
mension 1). Pour une meilleure compréhension de I’ espace d’ orbites locaux défini au
chapitre 3, nous étudions plus précisément le cas de ladimension 1. Le résultat princi-
pa de ce chapitre est un théoreme concernant la structure locale d' un espace d orbites
local. Dans ce chapitre, noustraitons aussi les espaces d orbites |locaux non-Hausdorff
dans le cas unidimensionnel, cas que nous laisserons de coté dans les autres chapitres
(d’ &tre non-Hausdorff).

e Chapitre 5: Moduli spacesfor curvesof arbitrary genus (espace de modules de
courbes de genre quelconque). Dans la premiéere partie, hous équipons de la struc-
ture d’ espaces d’ orbites locaux |’ espace de modul es de courbes tropical es abstraites n-
marquées de genre g ayant exactement n sommets de valence 1, telles que les graphes
sous-jacents a ces courbes n'aient pas de sommet bivalent. Comme mentionné ci-
dessus, nous pouvons munir celui-ci d' une structure polyédrale. Si I’on oublie la
meétrique, les graphes sous-jacents de deux courbes tropicales abstraites n-marquées
pouvant étre différents, I’encodage par les longueurs des arétes n’en donne pas une
description globale. Ainsi, au lieu considérer des longueurs d’ arétes bornées, nous
prenons les distances entre les n arétes marquées. Puisque chaque courbe est munie de
ces arétes, ce choix semble raisonnable. Cette idée a été utilisée pour les courbes trop-
icales abstraites n-marquées dans [GKM]. Malheureusement, la distance entre deux
arétes marquées n’est pas bien définie pour les courbes de genre strictement positif.
Du fait de la présence de cycles, il n'y apas unicité du chemin entre deux points. Pour
S acquitter de ce probleme, nous coupons chague cycle en un point tel, que la courbe
reste connexe et nous insérons une nouvelle aréte marquée a chacune des deux nou-
velles extremitésintroduites. Ainsi, toutes |es distances entre des arétes marquées sont
bien définies. Etant donné gue nous avons fait des choix non-canoniques, nous devons
nous en débarrasser, se qui revient a identifier des cones. Ainsi, nous nous retrou-
vons avec un espace d orbites local tropical homéomorphe a I’ espace de modules.
Dans la deuxieme partie, nous construisons un espace de modules de courbes tropi-
cales paramétrées, n-marqueées et étiquetées de genre g. Puisque nous voulons utiliser
I’ espace de modules de courbes abstraites, nous avons besoin d’ encoder une applica
tion dans R". Nous nous restreignons au seul cas ou la direction des arétes marquées
est fixée. 1l suffit donc de préciser la position d’ un point fixe pour avoir toutes les
informations nécessaires pour définir une application (les directions des arétes sont
fixées et les distances entre des arétes marquées sont dégja définies, donc I’ application
est entierement déterminée par la position d' un point). Dans notre construction des es-
paces de modules de courbes abstraites, nous avons fait une coupe dans chagque cycle
et inséré deux nouvelles arétes. Pour étre slir que les images des cycles coupés soient
de nouveau des cycles, nous utilisons des fonctions rationnelles dans la définition des
espaces de modules. Dans la derniere partie, nous demandons que la courbe passe
par des points donnés et gu’ elle répresente un point fixé de I’ espace de modules de
courbes tropicales abstraites 0-marquées de genre g. Grace a la structure d espace
d’ orbiteslocal, nous montrons que le nombre (compté avec la multiplicité définie dans
le corollaire 3.41) de courbes tropical es paramétrées n-marquées et étiquetés de genre
donng, dont la direction des extrémités marquées est donnée, remplissant en outre les
conditions mentionnées, ne dépendent pas du choix d une configuration de points si
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celles-ci restent générales.

e Chapitre 6: Orbit spaces (espaces d orbites). Ce chapitre est relativement similaire

Xviii

au chapitre 3. Danslapremiére partie, nous définissons |les espaces d orbites tropi caux
et dans la deuxieme partie, les morphismes entre ces objets. Comme dans le chapitre
3, les espaces d orbites tropicaux sont des complexes polyédraux dont nous identifions
certains polyedres al’aide d'isomorphismes. Toutefois, nous relachons ici les condi-
tions sur le complexe polyédral et nous renforgons la condition sur I’ ensemble des iso-
morphismes. Plus précisement, nous autorisons le complexe polyédral étreinfini, mais
demandons a I’ ensemble des isomorphismes d’ avoir une structure de groupe. Etant
donné que les conditions techniques sur I’ ensembl e des isomorphismes introduites au
chapitre 3 sont satisfaites pour un groupe, nous pouvons simplifier certains problemes.
Malheureusement, le prix a payer est d’ avoir un complexe polyédral infini. Celaest di
au fait qu'il serait trop restrictif dans notre contexte de ne considérer que des groupes
finis. En raison des similitudes, nous pouvons dével opper pour les espaces d’ orbites la
méme théorie que pour les espaces d’ orbites |ocaux.

Chapitre7: Moduli spaces of eliptictropical curves (espacesde modulesde cour-
bes tropicales dliptiques). Dans la premiere partie nous équipons d’'une structure
d’ espace d orbites local |’ espace de modules de courbes tropicales abstraites n-mar-
guées de genre 1 ayant exactement n sommets de valence 1 et telles que les graphes
sous-jacents n’ aient pas de sommet bivalent. Comme dans le chapitre 5 nous coupons
les cycles de chague courbe. Puisgue nous sommes dans un cas particulier du chapitre
5, la plupart des calculs sont similaires, mais plus faciles. Dans la deuxiéme partie,
nous construisons un espace de modul es de courbes tropi cal es paramétrées n-marquées
et étiquetéesdansR” al’ aide de fonctionsrationnelles. Nous terminons cette partie par
un calcul de poids dansle casr = 2. Dans ce cas, M. Kerber et H. Markwig ont dga
construit les espaces de modules comme des complexes polyédraux avec des poids
[KM]. Nous montrons que les poids définis dans notre construction sont les mémes,
excepté dans le cas ou I'image du cycle de la courbe est de dimension nulle. Dans ce
cas, nos poids different de ceux de M. Kerber et H. Markwig de % En particulier, les
espaces de modul es que nous avons construit sont réductibles. Dans latroisiéme partie
de ce chapitre, nous montrons que le nombre de courbes tropicales elliptiques planes
de degré d dont le j-invariant est fixé et qui passent par une configuration donnée de
points ne dépend pas du choix d’ une configuration générale.

Chapitre 8: Correspondencetheorems (théoremes de correspondance). Puisque
nous voulons demontrer un théoréme de correspondance, nous rappelons dans la pre-
miere partie quelques-uns d entre eux. Le théoreme 8.30 démontré par |. Tyomkin,
premier théoreme de correspondance pour les courbes elliptiquesdont le j-invariant est
donné, est particuliérement lié a notre travail. Dans un théoréme de correspondance,
la multiplicité d’une courbe tropicale est le nombre de courbes algébriques qui lui
correspondent. En rappel ant quel ques théoremes, nous observons que ces multiplicités
varient d’un probleme a I’autre. Nous terminons cette partie en montrant que |I’on
peut exprimer les multiplicités du théoreme 8.30 de maniere tropicale. Ces poids sont
les mémes que ceux utilises par M. Kerber et H. Markwig (resp., que ceux gue nous
avons calculés). Dans la deuxieme partie nous montrons une correspondance entre les
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courbes non archimédiennes elliptiques dont la valeur du j-invariant est trés grande et
dont les cycles tropicaux sont les images d’ une courbe tropical e elliptique paramétrée
ayant un grand j-invariant tropical. Pour cela, nous utilisons les multiplicités de M.
Kerber et H. Markwig. Etant donné que I. Tyomkin utilise les mémes multiplicités
nous conjecturons que |’ on peut utiliser ces multiplicités dans chaque cas (par exemple
pas seulement pour un j-invariant tres grande).
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1 Polyhedral complexes

In this chapter we give the definitions of polyhedral complexesand morphismsbetween them.
These objects are the building blocks for orbit spaces and local orbit spaces. In contrast to the
definitions given in tropical geometry so far, we take a more general definition of polyhedra
and allow them to be open. The purpose of the definition is to parameterize tropical curves
with genus greater than zero. Since we are interested in genus g curves we consider curves
with positive cycle lengths. Therefore some of the polyhedra of the parameterizing space of
those curves need to be open. In this part we denote a finitely generated free abelian group
by A and the corresponding real vector space A @z R by V. So we can consider A asalattice
in V. Thedual latticein the vector space V'V isdenoted by AY.

Definition 1.1 (General and closed cone). A general cone in' V' isanon-empty subset o C
V' that can be described by finitely many linear integral equalities, inequalities and strict
inequalities, i.e. aset of the form

0= {37 S V|f1(£C) =0,.. '7f7“(x> =0, fTJrl(x) >0,.. '7fr+s(x> > 0,

fr+s+1('r)>07"'7fN(x>>0} (*)

for somelinear forms fi, ..., fxv € AY. We denote by V,, the smallest linear subspace of V'
containing o and by A, thelattice V, N A. We define the dimension of o to be the dimension
of V,. Wecdll o aclosed coneif it has a presentation () with no strict inequalities (i.e. if
N =r+5s).

Definition 1.2 (Face). A face (or subcone) of o is a general cone 7 C ¢ which can be
obtained from o by changing some of the non-strict inequalitiesin () to equalities.

Definition 1.3 (Fan and general fan). A fan inV isafinite set X of closed conesin V' such
that

(&) eachface of aconein X isalsoaconein X;
(b) theintersection of any two conesin X isaface of each of them.

A general fan in V is afinite set X of general conesin V' satisfying the following prop-
erty: there existsafan X and asubset R ¢ X suchthat X = {7\ U| 7 € X}, where
U= U,cro. Weput 1X| = Usex 0. A (general) fan is called pure-dimensional if all
its inclusion-maximal cones are of the same dimension. In this case we call the highest di-
mensional cones facets. The set of n-dimensional cones of a (general) fan X is denoted by
X,
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Construction 1.4 (Normal vector). If ) # 7, o are conesin V and 7 is a face of o such
that dim7 = dimo — 1, then there is a non-zero linear form g € AY, which is zero on 7
and positive on o\7. Then g induces an isomorphism V,/V, = R. There exists a unique
generator u,;» € A,/A;, lying in the same half-line as o /V; and we call it the primitive
normal vector of o relative to 7. In the following we write 7 < o if 7 is aface of ¢ and
T < o if Tisaproper face of .

Definition 1.5 (General weighted and general tropical fan). A general weighted fan (X, wx)
in V isapure-dimensional general fan X of dimension n withamap wy : X — Q. The
numbers wx (o) are called weights of the general cones o € X (™. By abuse of notation we
also write w for the map and X for the weighted fan.

A general tropical fanin V' isaweighted fan (X, wx ) fulfilling the balancing condition

D wx(0) Uy =0 €V/V;

o>T
for any 7 € X (dimX=1),

Definition 1.6 (Open fan). Let F be agenera faninR™ and 0 € U C R™ an open subset.
Theset F = FNU = {oNU|o € F} iscaled an open fanin R". Asin the case of fans,
pUUF‘ =Uyrero’

If F'isagenera weighted fan, we call F' aweighted open fan.

Remark 1.7. Since0 € U and U isopen, F' isdetermined by F.

Definition 1.8 (General polyhedron). A general polyhedronisanon-empty set o C R™ such
that there exists a rational polyhedron & and a union u of faces of 6 such that 0 = &\w.
(This definition is equivalent to saying that a general polyhedron has the following form
{$ S Rn|f1(1‘) =Py fr($) = DPr; fr+1(x) > Prity - fr+8(x) > Pr+s; fr—i—s—i—l(x) >
Dristi,-- -, [n(x) > py} for somelinear forms fi, ..., fy € Z" and numberspy, ..., py €
R.)

Definition 1.9 (General polyhedral precomplex). A (general) polyhedral precomplex is a

topological space | X | and aset X of subsetsof | X | equipped with embeddings ¢, : ¢ — R™
for dl o € X such that

(8) every image ¢, (o), 0 € X isageneral polyhedron, not contained in a proper affine
subspace of R",

(b) X isclosed under taking intersections, i.e. 0 N o’ € X isaface of o and of ¢’ for any
0,0 € X suchthat o N o’ # 0,

(c) for every pair 0,0’ € X the composition ¢, o, isinteger affine-linear on - (cNa’),

@) [X] = U 7' (0. (0)°), where o, (o)° denotes the interior of o, (o) in R7.
ogeX

We call the open set (¢, (0)°) therelativeinterior of o and denote it by o™,

Definition 1.10 (General polyhedral complex). A (general) polyhedral complexisa(general)
polyhedral precomplex (X, |X|,{¢,|c € X}) such that for every o € X we are given an
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open fan F,, (denoted aswell by FX to underline that it belongs to the complex X ) in some
R¥e and a homeomorphism

O, : S, = U (U,)N — |Fa|
o'eX,0' Do
satisfying:

(@ forall o’ € X,0' O oonehas®d,(c'NS,) € F, and @, iscompatiblewith the Z-linear
structureon o', i.e. ®, o gp;/l and ¢, o ;! are integer affine linear on o,/ (o’ N S,),
resp. ®,(c’' NS,),

(b) foreverypair o, 7 € X, thereisaninteger affinelinear map A, , such that thefollowing
diagram commutes:

Sy NS, —2s® (S, NS,).

~

[0} ~
"l Agr

®,(S,NS,)

For simplicity we usually drop the embeddings ., or the maps @, in the notation and denote
the polyhedral complex (X, | X|, {¢,|c € X},{®. |7 € X}) by (X, |X]|,{ps|lc € X}) or
by (X, |X|,{¢}, {®,|7 € X}) or by (X, |X]) or just by X if no confusion can occur. The
subsets 0 € X are called the general polyhedra or faces of (X, |X]). The dimension of
(X, | X]) isthe maximum of the dimensions of its general polyhedra. Wecdll (X, | X|) pure-
dimensional if all its inclusion-maximal genera polyhedra are of the same dimension. We
denote by X (™ the set of polyhedrain (X, | X|) of dimensionn. Let 7,0 € X. Asinthe case
of fanswewriter < o (or 7 < o) if 7 C o (or 7 C o, respectively). By abuse of notation
weidentify o with ¢, (o).

A (genera) polyhedral complex (X, |X|) of pure dimension n together with a map wy :
X™ — Q is called weighted polyhedral complex of dimension n, and wx (o) is caled the
weight of the polyhedron o € X ™, if al F, are weighted open fans and

o wx(0") =wp, (P,(c' N S,)) for every o’ € (X)™ witho' D o,

The empty complex () is a weighted polyhedral complex of every dimension. If ((X, |X]),
wy ) isaweighted polyhedral complex of dimension n, then put

X*={r e X|r Coforsomes € X" withwy(o) #0},|X* = | ] 7 C|X].

TEX*

Note that ((X™, |X*|),wx|x-m ) isagain aweighted polyhedral complex of dimension n.
This complex is called the non-zero part of ((X, |X|),wx). We call aweighted polyhedral
complex ((X, |X|),wx) reduced if ((X, | X|),wx) = (X*,|X*|),wx+). Sinceal polyhedral
complexes considered are general we skip the word general from now on.

Example 1.11. Figure 1.1 represents aweighted polyhedral complex together with the maps
s, and figure 1.2 represents the same complex together with the maps @, and its weights
(we only label weights non-equal to one).
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o e o,/ o
--——e YA -~ -

Figure 1.1: A weighted polyhedral complex together with the maps ...
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Figure 1.2: A weighted polyhedral complex together with the maps @, .

Definition 1.12 (Subcomplex and refinement). Let (X, |X|, {¢,]c € X}) and (Y, |Y],
{¢-|T € Y'}) betwo polyhedral complexes. We call X asubcomplex of Y if

@ [X]|c Y],
(b) for every o in X thereexistsar € Y witho C 7,

(c) for apair o and 7 from (b) the maps , o ¢! and 1, o ¢! areinteger affine linear on
¥r(0), resp. o (o).

Wewrite (X, | X|) < (Y, |Y]) inthiscase, and defineamap Cx y : X — Y that mapsacone
in X to theinclusion-minimal coneinY containing it.
We call apolyhedral complex (X, | X|) arefinement of (Y, |V

@ (X, [X]) < (¥, [Y])
(b) [X]=]Y]

), if

We call aweighted polyhedral complex (X, | X|) arefinement of aweighted polyhedral com-
plex (Y, |Y]) if in addition the following condition holds:

) Q)X(O') = wY(CX*7y*(g)) foral o (X*)(dlrn(X))

Definition 1.13 (Morphism of (general) polyhedral complexes). Let X and Y be two (gen-
eral) polyhedral complexes. A morphism of (general) polyhedral complexes f : X — Y
isacontinuous map f : | X| — |Y| with the following properties: there exist refinements
(X" | X {p}, {P,lc € X'}) and (Y, |Y'],{v},{V,|T € Y') of X and Y, respectively,
such that

(@) for every genera polyhedron o € X’ there exists a general polyhedron o € Y’ with
flo) Ca,
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(b) for every pair o, 5 from (a) themap U5 o fod ! : |[FX'| — |FY'| inducesamorphism
of fans X' — FY" , where FX" and FY" are the genera fans givenin definition 1.6 (a
morphism of fansisaZ-linear map, see [GKM] definition 2.22).

A morphism of weighted polyhedral complexesis amorphism of polyhedral complexes (i.e.

there are no conditions on theweights). If X = Y andif thereexistsamorphismg : X — X
suchthat go f = f o g =idyxy wecal f an automorphismof X.



Chapter 1. Polyhedral complexes




2 Moduli spaces

In this chapter we give the definition of the moduli spaces we will equip later on with a
structure of a (local) orbit space.

2.1 Moduli space of n-marked tropical curves

Definition 2.1 (n-marked abstract tropical curves). An abstract tropical curveis a pair (I,
§) such that T is a connected graph, and I' = T'\ {1-valent vertices} has a complete inner
metric § (i.e. the edges adjacent to two vertices of I" are isometric to a segment, the edges
adjacent to one vertex of I" are isometric to a ray or a loop and the edges adjacent to no
vertex of T are isometric to aline). The edges adjacent to at least one 1-valent vertex of T
are called unbounded, the other edges are called bounded. The unbounded edges have length
infinity. The bounded edges have afinite positivelength. For simplicity we denote an abstract
tropical curveby I'. An n-marked abstract tropical curveisatuple (I, x4, ..., z,,) formed by
an abstract tropica curve I’ and distinct rays zy, ..., x,, of I'. Two such marked tropical curves
(L', 21, ..., z,) and (T', Z4, ..., 7,) are caled isomorphic (and will from now on be identified)
if there exists an isometry from I' to I', mapping z; to 73, = 1,...,n (i.e._after choosing
orientations on the edges of I and I', there exists a homeomorphism I' — I" identifying x;
and z; and such that the edges of I" are mapped to edges of I" by an affine map of slope +1.).

The unbounded edges are called leaves as well.

Remark 2.2. We can parameterize each edge E of a curve I' by an interval [0,((E)] for
bounded edges and by [0, co) or (—oo, o) for unbounded edges, where [( E) is the length of
the edge (for the choice of the direction in the bounded case we choose which vertex of £
is parameterized by 0). Such a parameterization is called canonical. We do not distinguish
between the unbounded edge x; and the vertex of valence strictly greater than 1 adjacent to it
and call the vertex also z;. Since different edges can be adjacent to the same vertex, a vertex
can have several labels.

Definition 2.3 (Genus). We define the genus g of an abstract tropical curve (T, §) to be the
first Betti number b, (I") of I'.

Definition 2.4 (Combinatorial type). The combinatorial type of an abstract tropical curve (T,
§) isthe (combinatorial) graph T.

Definition 2.5 (Contraction). Let T be a connected graph. The procedure of removing an
edge e € I" and identifying the endpoints of e iscalled contraction.
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Definition 2.6. It is not difficult to see that for a combinatorial type T the set of all curves
given by definition 2.1 with the combinatorial type T’ or the combinatorial types one gets
by contracting bounded edges of T' can be embedded in a suitable R™ by the lengths of the
bounded edges and therefore this set of curves has atopological structure (this subset of R™
iscalled combinatorial cone). Note, that for combinatorial typeswith symmetries we take as
set of curves (in the beginning of this definition), n-marked abstract tropical curves with an
ordering of the bounded edges. Afterwards we take a connected subspace of this set which
contains exactly one representative of each n-marked abstract tropical curve. Thus, the set
of al n-marked abstract tropical curves of genus g with this induced topological structure
on each combinatorial cone (the cones are glued together aong faces representing the same
curves) is atopologica space.

Example 2.7. We consider a 5-marked tropical curve (T', §) with edge lengthsa and b (see on
the left hand side of figure 2.1). The combinatorial cone parameterizing all curves with the
combinatorial type I’ or with the combinatorial type one gets by contractions of T is drawn
on the right hand side of figure 2.1.

T3

X

Ty
T2 Ts a

Figure 2.1: A 5-marked abstract tropical curve and its combinatorial cone.

Definition 2.8 (abstract M, ,,). The space M, ,, is defined to be the topological space of all
n-marked abstract tropical curves (modulo isomorphism) with the following properties:

(@) each curve has exactly n leaves,
(b) the curves have no vertices of valence 2, and
(c) the genusof each curveisg.

The topology of this space is the one defined by its combinatorial cones. We call the space
M,., amoduli space.

Example 2.9. The moduli space of 2-marked abstract tropical curves of genus 1 and the
curves corresponding to the faces are given in the following picture:
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Theleft cone parameterizes the curveswhere the two edges of the cycle have the same length.
The appearance of this cone is due to the fact that the curves corresponding to the curve on
the lower |eft side are the same if we swap the lengths of the two bounded edges. Thus, the
left cone isin the boundary of the second cone from |eft.

Let (T, §) be a curve of genus 1. As atropical counterpart of the j-invariant, we take the
length of the cycle as it was suggested in [M 3], [V] and [KM]. Motivations for this choice
can be found, for example, in [KMM1], [KMM?2] and [Sp2].

Definition 2.10 (j-invariant). For an n-marked curveI" of genus 1, the sum of the lengths of
all edgesforming the smple cycleiscaled thej-invariant of T'.

2.2 Moduli space of parameterized labeled n-marked
tropical curves

Definition 2.11 (Tropical M;*>(R", A)). A parameterized labeled n-marked tropical curve
of genusg in R" isatuple (', xq,...,zn,h), where N > nisaninteger, (I', z1,...,zxn)
is an abstract V-marked tropical curve of genus g, and h : I' — R" is a continuous map
satisfying the following conditions.

(8 On each edge F of I themap h isof theform h(t) = a + t - v for somea € R" and
v € Z". Theintegral vector v occurring in thisequation if we pick for £ the canonical
parameterization starting at V' € 0F isdenoted v(E, V') and is called the direction of
E (a V). If E'isan unbounded edge and V' isits only boundary point we write v(E)
instead of v(F, V') for simplicity.

(b) For every vertex V' of I" we have the balancing condition

> w(EV)=0
E|VEdE
(€) v(z;) =0fori=1,...,n (i.e. each of thefirst n leavesis contracted by &), whereas

v(z;) # 0fori > n (i.e. theremaining N — n ends are “non-contracted ends”).
Two parameterized labeled n-marked tropical curves (I', 21, ..., zy, h) and (T, &, ..., &y,

h) inR" are called isomorphic (and will from now on beidentified) if thereis anisomorphism
o:(Dyzy,...,xn) — (I, 21, ..., 2Zy) Of theunderlying abstract curves such that h o p = h.

Let m = N — n. The degree of a parameterized labeled n-marked tropical curve I' of
genus g as above is defined to be the m-tuple A = (v(z,11),...,v(zN)) € (Z"\{0})™ of
directions of its non-contracted ends. The combinatorial type of I' is given by the data of the
combinatorial type of the underlying abstract marked tropical curve (I, z1, . .., zx ) together
with the directions of all its (bounded and unbounded) edges. From now on, the number N
will alwaysberelated ton and A by N = n + #A and thus will denote the total number of
(contracted or non-contracted) ends of an n-marked curve of genus g in R™ of degree A.

Fix a combinatorial type T" of a parameterized labeled n-marked tropical curve with n > 0.
The set of curves with combinatoria type 7' or with the combinatorial type one gets by
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Ty
\

f3 -~ T3

fa Jo -

X
X2

Figure 2.2: A parameterized tropical curve.

contractions of 7' can be embedded in a suitable R® by the lengths of all bounded edges
together with the point i (z;). Asin the case of abstract tropical curvesthis gives atopology
on the set of parameterized |abeled n-marked tropical curves of genus g in R”.

The space (of theisomorphism classes) of al parameterized |abeled n-marked tropical curves
of genus g and of a given degree A in R”, such that all vertices have valence at least 3 will

be denoted M;%Q(RT,A) and will be called moduli space. Lét (e, ...,e,) be the canonica
basis of R". For the specia choice

A=(—€g,.cc,—€0 youuy —Cpyen,—Cp)

with eq =—€e— - —¢ and where each e; occurs exactly d times, we will also denote this
space by M;%EL(]R{T, d) and say that these curves have degree d.

We now consider an example of aparameterized labeled 4-marked tropical curve and use the
notation of the previous definition.

Example 2.12. Let X bethe polyhedral complex given by four bounded edges (f1, f, f3, f1)
forming a cycle and four rays (x4, 2, x3, r4) atached to the four meeting points of two of
them, such that f; i, f; and =; meet at one point for i € {2,...,4} (and therefore f;, f, and
z; meet at one point) which we call p; for i € {1,...,4}. Say the vectors v(z1) = (1),
v(zz) = (1), v(as) = (), vlza) = (7). W) = ( 3) = 2andi(f2) = I(fs) = 1. We
put h(p1) = (7). h(p2) = ( ) h(ps) = (3) and h(ps) = (0) and get a parameterized tropical
curve (X, z1, ..., aq, h) € MER(R, ((Z1), (1), (D), (51)). A pictureof (X, a1, ..., 24, h)
isgiveninfigure 2.2.
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3 Local orbit spaces

The purpose of this chapter is to define local orbit spaces and to establish some properties
for them. In the first part we define local orbit spaces and in the second part we introduce
morphisms between them. After this we prove our main result for tropical local orbit spaces
(see corollary 3.41).

3.1 Tropical local orbit space

Definition 3.1 (Local orbit space). Let X be afinite polyhedral complex and G afinite set
of isomorphismsg : U, — V, between open polyhedral subcomplexes U, and V;, of X (open
in X), such that the following conditions hold:

(@ theidentity morphismof X isin G,
(b) gt eGfordl g e G,

(¢ fordl F = {fi,...,fa} C G, g € Gwithg '(|Us]) # 0, fordl 1 < i <n
thereexists H = {hy,...,h,} C G with |F| = |H| such that U, > ¢ *(|U;,|) and
hilg=1qug,h = fio glg=rquy,p fort <i<mn,

(d) forall g € G themaximal subset U C U, with g|y = id |y isclosed in X .

We denote the induced maps on the topological space |U,| by g as well. We identify points
of | X'| which are identified by elements of G and denote the topological space one gets by
these identifications by | X/G|. The conditions (a) to (¢) define an equivalence relation of

polyhedra. For apolyhedron o € U, with g € G let us denote by o/ theimage of |0 in

| X/G|. By 5% \we denote the closure of S | X/G|in|X/G|. Weput [0] = a';j/g‘ C

|X/G| and call it a class. After refinement we can assume that for al ¢ € G and for al
o € U, we have that * € X isapolyhedron. Let g € G and o € U,. We call the set
{r € X, [r] = [o]} orbit of X. The set of orbits of X together with G is called alocal orbit
space and is denoted by X/G. Sometimes we denote the maps g by ¢y to show that ¢ isan
isomorphism between two polyhedral subcomplexesof X.

Remark 3.2. The conditionson the set GG are fulfilled if G isagroup.

Example 3.3. Figure 3.1 shows the polyhedral complex X = {R<y x R5¢,0 x Rsg, R>¢ X
R-} and the topological space of the local orbit space X/G = ({{R<p x R5p,R>g X
R-o},{0 x Ryo}},G). The set of isomorphisms GG consists of the identity, the map ¢ :
Rog x Rag — R2, (";) — (¥)and g™t

11
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X X/G

Figure 3.1: A polyhedral complex and alocal orbit space.

Lemma3.4. Let X/G bealocal orbit spaceand let Y bea subcomplex of X. Forany g € G
the topological space |U,| N |Y'| has a canonical structure of an open polyhedral complex,
suchthat g : |U,| N Y| — |V,|,  — g(z) defines a morphism of polyhedral complexes.

Proof. By definition there exist refinements i and .S of U, and of V,, respectively, such that
conditions (a) and (b) of definition 1.13 hold. Since Y is a subcomplex of X one gets that
RNY (the set of polyhedragiven by the intersection of a polyhedron of R and a polyhedron
of Y which is non-empty) is a subcomplex of R and of Y. Foreacho € RNY we have a
o € Uywitheo C o'. Thus, g(o) = g(o) C g(o’) C 6 € S and condition (a) of definition
1.13 holdsfor g. Since | FE"Y| C | F%|, condition (b) of amorphism holds as well. O

Definition 3.5 (Stabilizer, G,—orbit of ). For X and G as above and 7,0 € X we cal
G, = {9 € G|t C U,withg(x) = =z foranyz € 7} the stabilizer of 7. We define

Xo/r ={g(0°)|g € G-} tobethe G, —orbit of o.

Lemma 3.6. Let X/G be alocal orbit space and take o, ¢’ € X with [o] = [¢']. One has
|Gol = Gorl.

Proof. By symmetry it suffices to show that |G| < |G,|. Let {f1,...,f.} = Go. By
assumption we have [o] = [¢']. Thus, there existsag € G with g(6°) = ¢’. By condition
(c) of definition 3.1 there exist hy, ..., h, € G With hi|,e = f; 0 gl for 1 < i < n. By
(b) of definition 3.1 there exists h; ! for 1 < i < n. Again by condition (c) of definition 3.1
thereare ki, ..., k, € G suchthat k|, = h; ' 0 gl,o for 1 <i < n. Sinceh; ' o gl,e =
g toftogle =id |, and sincethe maximal subset of X where k; istheidentity is closed
we have |G,/| < |G,| by (c) of definition 3.1. O

Definition 3.7 (Weighted local orbit space). Let (X, wx) be aweighted polyhedral complex
of puredimension n, and X /G alocal orbit space. If

e forany g € Gandforany o € X™ witho° C |U,], onehaswy (o) = wx (g(a°)>,

we cal X/G aweighted local orbit space. The classes [0] C |X/G| are called weighted
classes.

The weight function on the weighted classes of X/G is denoted by [w] and defined by
w]([o]) = w(0)/|G,|, foral [o] € X/G.

Lemma 3.8. For aweighted local orbit space X /G of dimensionm and o, 7 € X with7 < o
and dim(7) + 1 = dim(¢) = m, onehas | X,/-| - |G,| = |G-|.

12
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Proof. For each o’ € X,/ thereexistsag € G, witho = g(o”). Put {f1,... f»} = G,
with |G,| = n. By (c) of definition 3.1 we have n different elements of G mapping o to o'.
By injectivity of the morphisms of GG those elements have to be different for each element
of X,,, and therefore | X, /| - |G| < |G|. For each g in G, there existsa o’ € X,/ with

g(o”) =o. Let T C G, betheset of al elementsg € G, with g(o°) = o. Since for each
ginG; theeexistsas € X,/ with g(5°) = o it suffices to show that |T'| < n. But for
an arbitrary g € T it followsthat f o g7!|,c = id|,-. Thus, by (c) of definition 3.1 one has

|T| < n. O

Definition 3.9. Let X/G be alocal orbit space and Y be a subcomplex of X. We denote
the set {g|v|nju,Ing—1 (v, Inv), Suchthat g € G} by G|y and consider them as isomorphisms
between open polyhedral subcomplexesof Y. For an element g € G we denotetherestriction
to |Y|N|U,|Ng (|V,|N]Y]) by gy. (Remark: for g # h € G wedistinguish aswell between
gy and hy evenif gljyinju,ng—1 v, invl) = Alivias a1 qviinr-)

Corollary 3.10 (of lemma 3.4). Take the same notation as in the previous definition. The
topological spaces |Y'| N |Uy| N g~ ([Vy| N [Y']) and gy (IY'| N U ng™H([Vy] N [Y])) have
a canonical polyhedral structure such that the map gy from |Y'| N |U,| N g~ (|V,| N [Y]) to
gy (YN U, ng(|V,] N [Y])) isan isomorphism of polyhedral complexes.

Proof. By lemma3.4, |U,|N|Y|and |V,|N|Y| are canonically polyhedral complexes. Thus,
Y| N U, N g~ (|V,| N|Y]) isan intersection of two polyhedral complexes and therefore a
polyhedral complex as well. Since g is an isomorphism, the restriction of ¢ to a subset and
the restriction of the image of ¢ to the image of this subset gives an isomorphism. O

Remark 3.11. By corollary 3.10 the set G|y isaset of isomorphisms.

Lemma 3.12. Let X /G be alocal orbit space and let Y be a subcomplex of X, then G|y
fulfillsall conditions from definition 3.1.

Proof. Therestriction of theidentity istheidentity aswell, thus (a) holds. Since the topology
of Y is the subspace topology, condition (d) holds as well. Furthermore, (b) holds since
Uy = (971 y (V) for every g € G. Condition (¢) holds by the definition of G|y O

gy

Definition 3.13 (Local suborbit space). Let X/G be alocal orbit space. A local orbit space
Y/H is called a local suborbit space of X/G (notation: Y/H C X/G)if Y < X and
H = G|y (assets). In this case we denote by Cy. x : Y — X the map which sends a general
polyhedron o € Y to the (unique) inclusion-minimal general polyhedron of X that contains
o. Note that for alocal suborbit space Y/H C X/G we obviously have |Y| C |X| and
dim Cy x(0) > dimo foral o € Y. Let X/G be aweighted local orbit space of dimension
nandletY/H C X/G bealoca suborbit space. If wy (o) = wx(Cy x (o)) foral o € Y,
wewrite aswell wx (o) for wy (o).

Example 3.14. The upper part of figure 3.2 presents an example of the local orbit space
(—1,1) aslocal suborbit space of R. Thelower part of thefigure presentsthe same polyhedral
complexes as local orbit spaces, but we take as set of isomorphisms G themap g : v — —=x
and theidentity (¢ isdefined on (—1, 1) and on R).

13
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(—1;1)/G R/G

Figure 3.2: Two local suborbit spaces.

Definition 3.15 (Refinement). Let (Y, |Y]),wy)/H and ((X, | X|), wx) /G betwo weighted
local orbit spaces. We call ((Y,|Y|),wy)/H arefinement of ((X,|X|),wx)/G, if

@ (Y, [Y]),wy)/H < (X, |X]),0x)/G,

(b) Y] = | X,

(©) wy(0) =wx(Cyx(0)) foral o € (Y*)dmd),
(d) eacho € Yisclosedin | X]|.

We say that two weighted local orbit spaces ((X, |X|),wx)/G and ((Y,|Y|),wy)/H are
equivaent (notation: ((X, | X|),wx)/G = (Y, |Y|),wy)/H) if they have acommon refine-
ment.

Remark 3.16. Let X/G and Y/ H betwo local orbit spaces. If Y/H isarefinement of X/G
thenfor all g € G the complex Uy, isarefinement of U, and H = G.

Definition 3.17 (Tropical local orbit space). Let (X, wx) /G beaweighted local orbit space.
If for any 7 € XY, one has > J([0))(uo/r) € Vi, then X/G is called a

tropical local orbit space.

1
™~ T |W
o>T \X(,/T\[ X

Proposition 3.18. The balancing condition for weighted local orbit spaces (X /G, wx) holds
if and only if the balancing condition of the underlying weighted complex (X, wx) holds.

Proof. Let (X/G,wx) beaweighted local orbit space.

7 = 7. By assumption the balancing condition of the weighted local orbit space holds.
Thus, for every 7 € X of codimension onewe have ) _ m[wx]([a]) “Ugsr =t € V.
To verify the balancing condition we have to check it for the fans F, (see definition 1.10) of
X. We denote the cones of this fan by the same letters as for the complex. By condition (b)
of definition 1.13 the elements of G are linear on these fans. Thus, we get

Gt o= )

geGr
- Z Z|XU/T )'UU/T)
geGr  o>T

= 22w

geG, O'>T‘ U/T

= Z |Gl - [wx]([o]) - Ug/r

o>T

= wa(a) “Ug/r

o>T

[o]) - g(uo/r)
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7 <7 Putn = dim(X). Forany 7 € X" Y onehas) . - aqwx(0) vy =t € V7,
because the balancing condition holds for (X, wx ). Thus, we have

Z|X )'UG/T =

o>T O/T

G,
> o) e

o>T

Z| 'J/T :te‘zr

o>T

O

Definition 3.19 (Reduced weighted local orbit spaces). Let (X/G,w) be aweighted local
orbit space. Since the weight of a polyhedron o plays the role of the multiplicity of points
in o™, the weight zero stands for multiplicity zero. Since these polyhedra do not contribute
to the balancing condition we can delete them without changing the balancing condition.
Therefore, if we use weighted local orbit spaces we directly consider the non-zero part of
them (see definition 1.10). Weighted local orbit spaces without weight-zero facets are called
reduced.

Observation 3.20. Let X'/G’ and X" /G" beloca orbit spaces, then X/G = (X' x X")/
(G" x G"), given by the product of the sets, isalocal orbit space aswell.

If X'/G" and X" /G" are weighted local orbit spaces of dimension n and m, then we make
X /G into aweighted local orbit space by wx (0’ x ¢") = wx:(0') - wx»(c") for o' € X'™)
and o” € X"(m),

If X'/G"and X" /G" aretropical local orbit spaces, then X' /G isatropical local orbit space as
well, since acodimension 1 face of X isthe product of acodimension 0 and acodimension 1
face. Thus, the balancing condition around a codimension 1 face is the same as the balancing
condition around the corresponding codimension 1 facein X'/G’ (resp. X" /G").

3.2 Morphisms of local orbit spaces

Now we have a first understanding of local orbit spaces and we can give the definition of
morphisms between them. For a detailed investigation on one dimensional local orbit spaces
see chapter 4.

The definition of morphisms should respect the structure of the set of isomorphisms (con-
ditions (a)-(d) of definition 3.1) and the local fan structure of the local orbit spaces (propo-
sition 3.18). The necessary conditions for this are (a) to (f) in the following definition.
Furthermore, we want to define images of pure-dimensiona local orbit spaces. Only the
codimension-one and codimension-zero strata are important for the balancing condition.
Thus, we add a further condition which ensures that the morphism is "well-behaved” in
codimension smaller than 2. Since this condition (g) is not as easy to understand as the
otherswe will consider an example regarding this property after the definition.
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Definition 3.21 (Morphism of local orbit spaces). Let (X, |X]|,{¢}, {®,|c € X})/G and
(Y |Y|,{v}, {¥.|r € Y)/H betwo local orbit spaces and put n = dim(X). A morphism
of local orbit spacese : X/G — Y/H isapair (e, ey) consisting of a continuous map
e;: | X| — [Y|andamape, : G — H with thefollowing properties:

@ ex(ide) = idg
(b) ex(g™") = ea(g)”!
(c) if hfulfillscondition (c) of definition 3.1 for elements f, g € G (herewehave |F| = 1),
then
ea(h)le(g-1quy1y) = €2(f) 0 €2(9)lesg—1(uy))

(d) there existsarefinement X’ of X such that for every general polyhedron o € X'’ there
existsagenera polyhedrons € Y withe; (o) C 7,

(e) for every pair o, o from (d) there exist ﬁX and ﬁ such that themap Uz oe; o @1 :
|FX| — | FY| induces amorphism of fans X — FY (amorphism of fansisaZ- Ilnear

map, see [GKM] definition 2.22), where FX and F~ are suitable weighted general fans
associated to F;* and FY', respectively (cf definition 1. 6),

(f) e1(g(x)) = ea(g)(e1(z)) foral g e Gand x € U,.
If X ispure-dimensional we ask a morphism to fulfill the following condition as well:

(9) Let é; be the induced map from | X /G| to |Y/H|. After a refinement of X’ from
condition (d) one hasthat for any o, ¢ € X, with dim(é,([o]) N é;([7])) = n one has
dim(é ([o])\e1([0])) < dim(é:([0])) -2 and dim(és([0])\é1([0])) < dim(é ([a]))—2.

A morphism of weighted local orbit spaces isamorphism of local orbit spaces (i.e. there are
no conditions on the weights).

We consider an example to understand condition (¢g) in the previous definition. Since (g) is
acondition only on the polyhedrawe take trivial isomorphism sets (i.e. G = H = {id}).

Example 3.22. Let X (= X/{id}) bethedigjoint union of the cone X; = {(z,y) € R?*|y >
0} and the cone X, = R? (we label the directionsby w and z) and let Y (= Y/{id}) be R?
(labeled by " and ¢/'). Themap e : X — Y isgiven by the identity map of the cone X; and
R? to R? such that e(z) = e(w) = 2/, and e(y) = e(z) = ¢ (seefigure 3.3). Itiseasy to
see that the conditions (a) to (f) arefulfilled. Let X, be any refinement of R? and let C bea
2-dimensional subcone of X, such that the border of C' contains a segment / of the z—axis.
Sincedim(e ! (e(C)) N X5) = 2, but e~ (e(1)) N X, = (), there exists a 2-dimensional cone
in X, contradicting (g) together with C' (there must be a cone containing a part of / and
elementswith ¢ > 0). Thusthe map e is not a morphism.

Remark 3.23. The problem we are handling in case (g) is, that we would like to have the
image to be alocal suborbit space. In particular condition (b) of definition 1.9 should hold.

The next two propositions provide a better understanding of condition (g). In particular, the
second proposition gives a criterion for the failure of (g).

Proposition 3.24. Let X/G and Y/ H belocal orbit spaces and X /G be of pure dimension
n. Let e be a morphismfrom X/G to Y/H and X’ a refinement from (g¢) in definition 3.21.
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Yy
X, i
1 Y y/
R SO L, |
x ]
X z E
"""""""""""""""" e e
e
X!
1 w ...............................

Figure 3.3: A map, but not a morphism between two local orbit spaces.

For every refinement X" of X’ there exists a refinement 11 of X" such that (¢) holds for W
aswell.

Proof. By refining X” we can assumethat for all 0,6 € X” withdim(é;([o])Néi([a])) =n
one has dim(é,([¢])\é1([5])) < n — 1 and dim(&,([5])\é1([¢])) < n — 1. Weput 7 =
é1([o])\éi1([a]). Let o’ (resp. &’) be the polyhedron from X’ which contains o (resp. &).
Since e; is alinear map on the interior of the polyhedra (see definition 3.21 (¢)) and it is
continuous everywhere, 7 cannot bein é;([¢']). Since ¢’ O o we havethat é;([o’]) contains
7 and therefore dim 7 < n — 2. Thus, ¢ holds for the above mentioned refinement of X" as
well. O

Proposition 3.25. Let X/G be a pure n-dimensional local orbit space and Y/ H be a local
orbit space of arbitrary dimension. Let e be a map from X/G to Y/H fulfilling conditions
(a) to (f) of definition 3.21. Then e is a morphism iff for every refinement of X’ (X’ asin
condition (d)) and any 0,5 € X'™ the following holds: dim(é;([5])\é([¢])) < n — 2 or

dim(é ([o])\e1([o])) = n.

Proof. 7 < 7: After refinement we can assume that dim(é; ([o])\é:([o])) = n does not
occur and thus (g) isfulfilled.

” = 7. Let Z be the refinement of (g). Assume, that there exist 0,6 € X'™ such that
dim(é;([g])\é1([e])) = n — 1. In this case the intersection has to be n-dimensional. Take
a common refinement X” of X’ and Z. Then by proposition 3.24 one has a refinement
W of X" fulfilling g. Let 5’ be a polyhedron of W) such that [5'] contains an (n — 1)-
dimensional part of é;([7])\é1([o]). Since W is arefinement of X’ as well, there exists at
least one polyhedron o' C o with dim(é;([6']) N é1([o"])) = n. Wehave é;([0]) C é1([o])
and dim(é; ([0'])\é1([o])) = n — 1. Thus, we get a contradiction and our assumption has to
be false. O
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Example 3.26. Let us reconsider example 3.22. If we subdivide X, along the w—axis, the
resulting subdivision of X does not fulfill the condition of the previous proposition and (g)
does not hold.

Lemma 3.27. Let X/G,Y’/H" and Y”/H" be local orbit spacesand ¢’ : X/G — Y'/H'
ande” : X/G — Y"/H" bemorphisms. Thene : X/G — (Y xY")/(H' x H"), given by
e | X[ = [Y'x V7], ei(x) = (e1(x), ef(x)) and ey : G — H'x H", e5(f) = (e5(f), e5(f),
isa map fulfilling conditions () till (f) of definition 3.21.

Proof. Since the operations e; and e, are defined coordinate-wise the lemma follows from
the definition of ¢’ and e”. O

Our next goal is to define an image local orbit space. In particular it should be alocal orbit
gpace. To make sure that the conditions of a polyhedral complex are fulfilled we need a
technical construction.

Definition 3.28. Let X/G and Y/H be two local orbit spaces, let X/G be pure by n-
dimensional, and let e be amorphismof X/G toY/H. Put

u(e) = {lm & (z,)|(zs)nen C [o] isaCauchy sequencewith lim (z,,) ¢ |X/G]|

n—oo

but lim &(z,) € [Y/H|,0 € X and e isinjectiveonc}.

We denote the natural map from | X| to | X/G| by Mod and put u, = Mod ;' (u(e)).

Remark 3.29. Localy X/G isagenerd fan. To makeit into afan we have to add some lower
dimensional faces r of some polyhedra o. Since a morphism e from X/G to Y/ H islinear
on polyhedra one could define the image of 7 on the level of fans. If the image of 7 has a
meaning in Y/H, then it is a polyhedron /. The set u(e) is the union of the images of all
those 7's.

The following proposition gives a useful characterization of u(e).

Proposition 3.30. Take the notation of the previous definition and assume that X is already
refined to fulfill condition (d) of definition 3.21. Let X; be the union of all polyhedra o in
X ™ such that e; isinjectiveon o. Then

ue) = | &) "\ (o).

oeXt

Proof. For each = € u(e) we find a sequence in [o] such that the images converge to x but
the sequence does not converge in X/G and hence not in [¢]. By condition (d) we have
that ¢, is an injective linear map on [o] and thus = ¢ é,([o]). Therefore, the point z isin

Usex, e1([e)\éx(lo]).

Now let z € J,cx, €1([c])\é1([o]). Since x isin the closure of the image of a closed set T
there exists a sequence (y,, ).en C €1(T") converging to x. Consider a sequence (z,,)en With
x; apreimage of y;. Since X contains only finitely many polyhedra, one has a polyhedron

o' € X™ suchthat infinitely many z; arein Mod(c”). By changing to this subsequence we
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can assume that (x,,),en € Modg(o”) C [0’]. Each polyhedral complex consists of finitely
many polyhedra, thus, condition (d) of definition 1.9 ensures that infinitely many elements
of (x,)nen liein theinterior of the same polyhedron Modg(7), 7 € X. By condition (e) of
definition 3.21 morphisms are linear maps in the interior of polyhedra. Thus, e; isinjective
and (z,,)en converges. Since 7' N [o'] isclosed, (z,),en does not convergein X/G and thus
x € ule). O

Construction 3.31. From now on we consider only Hausdorff local orbit spacesif not stated
otherwise. Asin the case of orbit spaces (construction 6.26) we can define the image local
orbit space. Let X /G be apurely n-dimensional local orbit space, and let Y/ H be any local
orbit space. For any morphisme : X/G — Y/H we make the following construction: Take
arefinement of X such that condition (d) of definition 3.21 holds and define

Z = {Mody (¢,([0])), o iscontained in apolyhedron & of X™ and e isinjectiveon 5}

By intersections of the polyhedrain Z with the polyhedrain Y we get a set of polyhedra Z'.
Now we have to modify Z’ to make it into a polyhedral complex. Therefore, the non-empty
intersection of two polyhedra has to be a face of each of them. For this we modify the set
and take

Z ={o\ue| o € Z',0\u. # 0}.

We will seethat the set 7 is (after refinement) a polyhedral complex, and therefore 7 /(H| 7)
isalocal orbit space. If moreover X /G isaweighted local orbit space, weturn e(X/G) into

aweighted local orbit space. After choosing arefinement for X and Y such that el(a)y isa
polyhedroninY for each o € X, we set

we(x/c)(0") = > wx () - [Afr/E1(Ag))]
(01elX/G " er (o) =lo’]

for any o’ € (2)™ (for A, see definition 1.1 and remark that [o] is a polyhedron as well).
Since the weights are defined by their classes, the condition on the weightsis fulfilled. We
cal Z/H theimage of e.

Lemma 3.32. Let us use the notation of the previous construction. Then, after refinement,
the set 7 isa polyhedral complex.

Proof. By conditions (d) and (e) of definition 3.21 the images of polyhedra are polyhedra
Since Z is a subset of Y, the conditions on the embeddings and the homomorphisms (see
definition 1.9 and definition 1.10) are fulfilled. Thus, we only have to prove (a) of definition
19. Leto,0’ € Zsuchthat ) # 7 = o No’ and put & = dim7. After a refinement,
the polyhedra o and ¢’ have a k—dimensional face containing 7. Assume that o and ¢’ are
these faces and thus, they arein Z(¥) already. We can take a refinement to get dim((o\o”) U
(0'\0)) < k. Assumethat (o\o’) U (¢'\o) # 0. Without loss of generality we can take

yeo\o ()

By the definition of Z, there exist & and ¢’ in X such that e is injective on & and &/,
&.(3]) 2 Mody (o), & ([5]) 2 Mody (o) and Mody(y) ¢ & (]3] (since Y/ H is defined
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Figure 3.4: A morphism between two local orbit spaces.

by gluing, the subsets can be strict). Léet (y,)nen € Mody(o')\ Modg(y) be a sequence
which converges to Mody(y). Since k& > 0 and Mody(¢’) is connected such a sequence
exists. By condition (e) of definition 3.21 (morphism of fans are linear) there exists a conver-
gent sequence (x,,),en C [07] suchthat &, (z;) = y; for dl i € N. Since Mody(y) ¢ é.([6'])
the sequence (x,,),,en does not convergein X /G. Thisisdueto the factsthat [67] isclosed in
X/G and ¢, iscontinuous. Thus Mody (y) € u(e),y € u. andy ¢ Z in contradictionto ().
Therefore (o\o’) U (¢’\ o) = () and the non-empty intersection of two polyhedrais aface of
both. O

Example 3.33. Let X (= X/{id}) be the digoint union of the cone X, = {(z,y) € R?|y >
0} and of X, = R? (welabel theaxesby w and z) and let Y (= Y/{id}) be R? (labeled by
2,y and w’). Themape : X — Y isdefined by the projection of X, and X, to R? such,
that = is mapped to 2/, y and z to v’ and w to w’ (see figure 3.4). It is easy to see that the
conditions (a) to ( f) arefulfilled. Since X; and X, are the only cones and the intersection of
theimageis one-dimensional condition (g¢) isfulfilled. Theoriginisnot part of X, and there
exists a sequence converging to the origin. Since the image of this sequence convergesto the
origininY the set u, containsthe origin. With proposition 3.30 we obtain u. = =’ —axisand
thus the origin is the only point of the image under €; which liesin ..

Proposition 3.34. Let X/G be an n-dimensional tropical local orbit space, Y/H a local
orbit space, and e : X/G — Y/H a morphism. Then e(X/G) isan n-dimensional tropical
local orbit space (provided that e(X/G) is not empty).

Proof. Dueto the construction of Z in construction 3.31 theimagelocal orbit spaceisapure-
dimensional local orbit space. By proposition 3.18 the balancing condition can be checked
by proving the balancing condition for the polyhedral complex. Condition (e) of definition
3.21 tellsusthat for the open fans defined by the homeomorphisms ®,, of definition 1.10, the
morphism is a morphism of fans. Let 7/ € ¢(X/G)™~Y be aface around which we have to
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Figure 3.5: Problems which motivate the definition of morphisms.

check the balancing condition. First we need that for each summand wx (o) - [Af,/€1(Ap)]|

in the weight of aface o’ > 7,0’ € e(X/G) thereexistatT € XY witht < ¢ and
é([r]) C [r']. If such aface T doesnot exist, 7’ ¢ e(X/G) by the construction of «,. which
is a contradiction and thus 7 exists. From this we can conclude that the weighted facets
around 7’ are the union of images of fan morphisms, where al image fans contain 7. Since
X /G is Hausdorff the fans are digjoint after identification with G or equal. Since the image
polyhedral complex is built out of these fans it suffices to prove the proposition for fans. The
balancing condition has to be checked around each codimension 1 face (equivalent to thisis
verifying the balancing condition on the star around this face). Since this (the star fan) isa
closed fan (or afan in the sense of [GKM]) we can apply proposition 2.25 of [GKM] and we
are done. O

Remark 3.35. The two problems we handle with in the previous proof (and which therefore
motivate the definition) are shown infigure 3.5. The map in each caseisgiven by aprojection
to R and al weights on the source are 1. On the left hand side of the picture we take for X
the union of atropical curve with an open ray and for G the trivial set {idx}. Thisisnot a
morphism since (¢g) is not fulfilled.

On the right hand side X is a union of two copies of R and the set GG is the set given by
the identification of the strict positive part of these copies. Therefore X /G is not Hausdorff
and applying the construction 3.31 word by word for non-Hausdorff spaces would lead to a
non-balanced image of atropical local orbit space.

Definition 3.36 (Irreducible tropical local orbit space). Let X/G be a non-empty tropical
local orbit space of puredimensionn. Wecall X /G irreducibleif for any non-empty tropical
local orbit space Y/H C X/G with dim(Y/H) = n the following holds: if there exists a
refinement X /G of X/G such that

foral o € Y™ onehasac’ € X™ with dim(c’\o) <n — 2 *)

then dim (| X|\|Y]) < n — 2. We call X/G strongly irreducible if X /G isirreducible and
each weighted open fan F, of X /G (see definition 1.10) isirreducible asatropical local orbit
space (the set of isomorphismsis trivia and the balancing condition holds by proposition
3.18).

Proposition 3.37. Atropical local orbit space X /G of dimension n isirreducibleif and only
if for any tropical local orbit spaceY/H C X/G,Y # () suchthat dim(Y/H) =nandY is
closedin X, onehas |Y| = | X|.
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Proof. We start with an irreducible local orbit space and take atropical local suborbit space
Y/H C X/G with the given properties. The polyhedral complex Y isclosed in X and thus
o’\o = () in the definition above. Therefore we have dim(| X |\|Y|) < n — 2 and since Y’
isclosedin X, onehas | X| = |Y'| (here we need the assumption that Y is pure-dimensional
and thus every point liesin an n-dimensional polyhedron).

Assume, that X /G has the properties as stated in the if part of the proposition. Let Y/H C
X/G beatropical local suborbit space of dimension n such that for every o € Y™ onehasa
o' € X withdim(o’\o) < n—2. Sincethe closureof each o in Y™ is¢’ (and ¢’ isclosed
in the topology of X) the polyhedral complex Y isthe union of the o’ in X. Thelocal orbit
space Y/ H is weighted and therefore we can make Y /G5~ to a weighted local orbit space
by taking the same weights. Since we only added faces of dimension n — 2 or smaller, the
balancing condition holds for Y /G/|3- as well. By the proposition, we get |Y| = |X|. Thus
we have dim (| X|\|Y]) < n — 2. O

Remark 3.38. In the case of closed fans (fans considered in [GKM]) our definition of irre-
ducibility is equivalent to definition 2.16 in [GKM].

Proposition 3.39. Let us take X/G and Y/ H as in the definition of irreducibility in 3.36.
Then, thereexistsa A € Q\{0} suchthat wy (o) = A -wx(7) forall o € Y.

Proof. As in the proof of proposition 3.37 we can take the closure of Y/H and make it
into a tropical local orbit space with wy-(G) = wy(o) for dl ¢ € Y. Thus, assume right
away that Y isclosed in X. By proposition 3.37, one has |Y| = | X|. Takeo € Y™ such
that |wy (o) /wx(o)| isminima and put A = wy (o) /wx (o). Since the balancing condition
is linear in the weights, we get that the weighted local orbit space (Y/H,wy — A - wy) isa
tropical local orbit space aswell. Since the polyhedron o isremoved from the new local orbit
space (see construction 3.19), Y must be empty dueto proposition3.37 andwy = A\-wy. O

Proposition 3.40. Let X/G be atropical local orbit space of dimensionn, Y/ H a strongly
irreducible tropical local orbit space of dimension n aswell, and e a morphismfrom X/G to
Y/ H. In the notation of construction 3.31 the polyhedral complex Z’\ Z has dimension less
than or equal ton — 2.

Proof. Take the notation of construction 3.31 and proposition 3.30. Assumethat dim (Z'\ Z)
=n — 1. Since Z'\Z C u,, there exists (by proposition 3.30) o € X; with dim((é;([o])
\é1([e]))N(Z'\Z)) = n—1. Let 7 bean (n—1)-dimensional polyhedron of Mod ;' ((¢,([o])
\é1([o])) N (Z'\Z)). Since Y/H is strongly irreducible, the open fan around 7 is irre-
ducible as well. Furthermore Z’\ Z contains 7. Thus, after a refinement, there exist an
(n — 1)-dimensiona subpolyhedron 7/ C 7 and o’ € X™ suchthat e, isinjective on o’ and
Mody (") C é;(Modg(o’)). By (e) of definition 3.21, the morphism e induces a morphism
of fans. By the balancing condition and since the open fan around 7 is irreducible, there
existsapolyhedron 6 € X with é;([6]) D Modg(7') and dim(é; ([¢]) N é1([o])) = n. This
isacontradictionto (g) in definition 3.21 and we are done. O

Corollary 3.41. Let X/G and Y/ H be tropical local orbit spaces of the same dimension n
inV =A®@Rand V' = AN’ ® R, respectively, and let e : X/G — Y/H be a morphism.
Assumethat Y/ H is strongly irreducible and dim(|Y/H|\é (| X/G|)) < n — 2. Then there
isalocal orbit space Y,/ H|y, in V' of dimension smaller than n with |Yy| C |Y'| such that
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(@) eachpoint @ € [Y]\|Yo] liesintheinterior of a polyhedron o, € Y of dimension n;

(b) eachpoint P € e; ' (|Y|\|Yo]) liesintheinterior of a polyhedron op € X of dimension
n,

(c) for @Q € |Y|\|Yo| thesum

Z mult(p) e

[P],Pe|X|:é1([P])=[Q]
does not depend on @, where the multiplicity multp) e of e at [P] is defined to be

QJX(O'p)

wy(aé)

mult(p) e =

. |A/[0’Q}/él (A[JP} ) |

Proof. Consider the tropical local orbit space e¢(X/G). Since dim(|Y/H|\é (| X/G])) <
n — 2 by assumption we can take arefinement of (Mod,}l(él(\X/G|))/H|M0d; & (x/G)) Wy)
fulfilling condition () of definition 3.36. Thus (x) holds aso for the polyhedrain Z’ (see
construction 3.31). By proposition 3.40 the condition () holds for ¢(X/G) as well. This
means that we can refine e(X/G) and Y/ H such that e(X/G) fulfills condition (x) (note
that the roles of X and Y are changed in the definition). From now on we work with these
refinements. Since Y/ H isirreducible we can apply proposition3.39and e(X/G) = \-Y/H
for some A € Q\{0}. Let Y, be the polyhedral complex defined by the union of polyhedra
of Y of dimension lessthan n. Then (a) and (b) hold because of the way we constructed Y.
Each @ € |Y|\|Yy| liesin the interior of a unique n-dimensional polyhedron ¢’. By the 1:1
correspondence between points [P] € &;'([Q]) and n-dimensiona classes [¢] with o in X
which fulfill [e;(|o|)] = [¢'] we can conclude that

wx (0) -
Z mult[p] e = Z — N |A/[o’]/61(AM)|
— i wy (o)
[P],PE|X -er([P])=[Q] [o]€|X/G™]:[e1(0)]=[0"]
wex/a)(0)
wy(O'l)
does not depend on Q. O

To see why we need the assumption that Y/ H is strongly irreducible in the preceding corol -
lary (and not just irreducible), we consider an example.

Example 3.42. Let ustake as sets G and H the sets consisting only of the identity element.
Let X be the digoint union of two polyhedral complexes X; and X5, where X, is an open
interval and X, isatropica curvein R? (seefigure 3.6). The edge E, (resp., F3) isan edge
with direction vector (0, 1,1) (resp., (—1,—1, —1)). The other edges of X, liein the plane
as drawn in the figure. The complex Y is atropical curve in R? asin the figure. The map
e between X and Y is given as projection to R* with e(E;) = F;. If we choose the weights
wx, = 2,wx, = 1 and wy = 1 we have a morphism between tropical local orbit spaces, but
the sum of preimagesisdifferent for pointsz € F; andy € Y\ F}.
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E1 I Y o
/A

Xy

Figure 3.6: A morphism between two local orbit spaces, where all the assumptions of corol-
lary 3.41 arefulfilled except for Y being strongly irreducible.

Definition 3.43 (Rational function). Let Y/G be a tropical loca orbit space. We define
a rational function ¢ on Y/G to be a continuous function ¢ : |Y| — R such that there
exists arefinement (((X, | X|, {ms}oex),wx), {Ms}sex) Of Y which fulfills the following
conditions: for each faceo € X themap pom ' islocally integer affine-linear and og|y, =
¢lu,, foral g € G. (Remark: by refinements we can directly assume that ¢ is affine linear
on each polyhedron.)

Definition 3.44 (Local orbit spacedivisor). Let X/G beatropical local orbit space of dimen-
sion k, and ¢ arational function on X /G. We define a divisor of ¢ to be div(¢) = ¢ - X/G

= (U2, XD wy)] /G, wherew, isasfollows:

P Y bl —or( X eo)

pex ) o/t
T<0 T<0

Proposition 3.45. Thedivisor ¢ - X/G isatropical local orbit space.

Proof. By definition, themap ¢ isarational function on thetropical local orbit space X /{id}.
In particular it fulfills the definition of rationa functions given in definition 6.1 of [AR]
except for X being a closed polyhedral complex. Nevertheless, the balancing condition
around a codimension-1 face of X is the same as the condition around the closure of the
involving polyhedra. Therefore we can apply construction 6.4 of [AR] and ¢ - X is balanced.
We only need to show that the weights for identified facets are the same. Thisis clear since
the elements of G are defined on open sets and therefore the weights are the same for o, o’ €
¢ - X/G with [o] = [0']. ]

Proposition 3.46. Let ¢; and ¢, be two rational functions on the tropical local orbit space
X/G.Then ¢y - (¢2 - X/G) = ¢a - (¢1 - X/G).

Proof. Asin the previous proof, the statement follows from the polyhedral case. The corre-
sponding result is proposition 6.7 in [AR]. O
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4 One-dimensional local orbit
spaces

To get a better understanding of the definition of alocal orbit space given in chapter 3, we
study the one-dimensional case.

Let X/G be apure by one-dimensional local orbit space. After arefinement we can assume
that al polyhedrain X are of one of the following two forms. Either a polyhedron in X
isaclosed interval or a half open (and half closed) interval. The half open interval can be
bounded or unbounded. Around a zero-dimensional face (the codimension one faces) the
polyhedral structureisgiven by fans.

Each element g of G gives a morphism of a union of intervals in | X| to another union of
intervals such that the fan structure of X is respected.

Example 4.1. Let X bethe digoint union of
X, = {(z,y) € R?*| max{0, z,y} isattained at least twiceand |z| < 1, |y| < 1}

and
X, = {(z,y) € R*| max{0, —z, y} isatained at least twice and |z| < 2}.

The isomorphisms of polyhedral complexesfor the set G in definition 3.1 are

g1 Alzy) € Xillz] <0} = {(z,y) € Xoflz| > 1} : (z,y) — 2+ 2,y),
g2 = {lz,y) € Xollx| <0} = {(z,y) € Xalz| <0} : (2,y) = (=2 - 2,2 —y)

together with g;* and idx (notethat g, ' = g,). A pictureof X and | X /G| isshownin figure
4.1.

Since we glue along open sets, the space | X/ G| may be non-Hausdorff.
Example 4.2. Let X bethedigoint union of X; = R and X, = R. We put

G={idx,g: {x >0z X} = {r>00r€ Xz} v 2,9 '}
The resulting local orbit space is non-Hausdorff (see figure 4.2).

Proposition 4.3. A one-dimensional local orbit space X isa 77 space such that there exists
acollection P C |X/G| of finitely many pointswith | X /G|\ P Hausdorff.
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X
X/G
—
X Xy Modg

Figure 4.1: The polyhedral complex and the topological space of a one-dimensional local

orbit space.
X1
. e — o X /G
X - o

X

Figure 4.2: A local orbit space which is not Hausdorff.

Proof. Local orbit spaces are topological spaces defined by gluing subspaces of R™. Thus,
each finite set of points is closed and therefore 77 holds. Put P = {p € |X/G|lp €
Mod, (U,\U,) for g € G}. The number of elements of G isfinite and U, is afinite union of
intervals, thus the number of elements of P isfinite. Let 2/, ¢ € | X/G|\P be two distinct
points, and let x,y € X be two arbitrary preimages of them under Mod. By definition of
P, the points z and y lie either in the open sets U, or in the interior of X\U, for al g € G.
Let W, (resp. W,) be the intersection of al setsU, and (X\Uy)°, f,g9 € G withz € U, and
x e (X\Uy)° (resp.y € Uy andy € (X\Uy)°). Foreachg € GwithW, C U, and W, C V
there exist open sets W9 € W, and W7 C Vy withz € W2,y € WS and Wi N WY = ()
because X isHausdorff. Theset G isfinite and thustheintersection of all W¢ and all W¢ are
open. Furthermore Mod¢ () W¢) NModq (W) = 0 and thus | X/G|\ P isHausdorff. [

Definition 4.4 (Non-Hausdorff pair, Non-Hausdorff point). Let X /G be aloca orbit space.
We cdll apair {z,y} with z, y € | X/G| non-Hausdorff if for al open setsW,,, W, C | X/G|
withz € W, andy € W, onehas W, N W, # (). Wecall apoint z € | X/G| non-Hausdor ff
if thereexistsapoint y € | X/G| suchthat {z,y} isanon-Hausdorff pair.

Definition 4.5 (Non-Hausdorff fan). Let X be a finite set of haf open intervals of finite
length. Take k € Nwith &k > 1 and let Y7,...,Y; be (not necessarily different) subsets of
X such that identifying the elements of Y; for all i € {1,..., k} givesasingle element (this
condition assures connectedness of the resulting space). For eachi € {1,...,k} we take
apoint P; and insert it at the open end of al intervalsin Y;. The resulting space is called
Non-Hausdorff fan (see figure 4.3).

Remark 4.6. A Non-Hausdorff fanisatopological space we get by taking a one-dimensional
fan X, intersect X with aclosed neighborhood at the origin, remove the origin and glue back
at least two points connecting some of the edges, such that the result is connected.
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Figure 4.3: A non-Hausdorff fan.

Proposition 4.7. Let X/G be a one-dimensional local orbit space. Let P C | X/G| be an
inclusion maximal set with at least 2 elements, such that for all =,y € P there existsa chain
x = x1,...,2, =y With {z;, ;41 } non-Hausdorff for all i € {1,...n}, and let Vp be a
sufficiently small closed neighborhood of P. Then, the space Vp\ P is Hausdorff and Vp is
homeomor phic to a non-Hausdor ff fan.

Proof. Since the interior of the U, is Hausdorff only the boundary points of the images of
U, can be non-Hausdorff. Since G is finite and P is inclusion maximal, we can take Vp
sufficiently small such that all points which are elements of a non-Hausdorff pair liein P.
Thus Vp\ P is Hausdorff. By taking possibly a smaller set we can assume that the border of
the images of al sets U, for g € G intersected with Vp arein Modq(P). Since we glue the
set X along U, one hasthat Vp is anon-Hausdorff fan. O

By the previous proposition we know how the one dimensional local orbit spaces ook like
in the neighborhood of non-Hausdorff pairs. Thus, we now consider the neighborhoods of
points which do not belong to non-Hausdorff pairs.

Proposition 4.8. Let X/G be a one-dimensional local orbit spaceand = € |X/G| such that
x does not belong to a pair {z,y} C |X/G| which is non-Hausdorff. Then, there exists a
closed neighborhood U, C | X/G| of z with U, homeomor phic to the closure of an open fan
in R2 with 2 mapped to the origin under this homeomor phism (in particular U, is Hausdorff).

Proof. For the proof of the proposition we take apreimage of x in X and see how G changes
thispreimage. Let 2/ € X be apreimage of = under Mod. By the definition of a polyhedral
complex (see definition 1.10) there exists an open fan ' € U,» C X. Since G isfinite, we
can assumethat U, N U, isaunion of interiors of facesof U,.. Let g € G be an isomorphism
with 2’ € U,. Since U, and V,, are open the fans U, and ¢(U,) are isomorphic to each other
by the isomorphism g| 0., Therefore, by identifying via g, we keep a closure of an open fan.
Thus, we now consider elements g € G such that «' ¢ U,. Since = does not belong to a
non-Hausdorff pair, either U, stays the same after gluing along ¢ or ¢ identifiesfaces of U,.
In the latter case, the space one gets by identification along g is still homeomorphic to afan.

Thus we can take the closure U, of asubset of Mod¢ (U,) which fulfillsthe conditions. [

Remark 4.9. The space X isametric space. Thus, by gluing aong G we get a pseudometric
on | X/G| induced by the metric on X. Therefore we can speak about ballsin | X/G].

Lemma4.10. Let X /G be a one-dimensional local orbit space and = € P from proposition
4.7. Then we can take for Vp a set of the form B.(x) C |X/G|, where B.(x) is the ball
around z of radiuse.
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Proof. All non-Hausdorff pairs have pseudo-distance zero. Thus, we can take a small ball
B(z) for Vp. O

Lemma 4.11. Let X/G be a one-dimensional local orbit space and x € |X/G| be asin

proposition 4.8. Then, one can take for U, a set of theform B.(z) C | X/G]|.

Proof. For U, asin the proposition 4.8 we can intersect this set with asmall ball B.(z). The
resulting set fulfillsthe lemma. O

Theorem 4.12. Let X/G be a one-dimensional local orbit space, = a vertex of | X/G| and
e € R sufficiently small. The neighborhood B, () is of one of the following two forms:

(a) anon-Hausdorff fan and B, (z) contains exactly | P| different points which belong to a
non-Hausdor ff set, where P asin proposition 4.7.

(b) an open fan.
Proof. Followsfrom the previous lemmata. 0

To understand the Hausdorff restriction in chapter 3 we consider a proposition regarding
Hausdorffness.

Proposition 4.13. Let X/G be a one-dimensional local orbit space. The local orbit space
| X /G| is Hausdorff if the quotient map e : X — X/G isa morphism.

Proof. Assume that | X /G| is not Hausdorff. By theorem 4.12 there exist an element = €
| X/G| and areal number ¢ > 0 such that B.(x) is a non-Hausdorff fan. Thus, there exist
a half open interval in definition 4.5 at which we insert at least two points. Thisinterval is
constructed by identifying two closed intervals o, & in X except for one endpoint. Therefore
one has dim(é; (o) N é; (o)) = 1 and |é;(0)\é1(d)] = 1. By proposition 3.25, e is not a
morphism. O
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5 Moduli spaces for curves of
arbitrary genus

In this chapter we show that the moduli spaces of tropical curves of genus g have a structure
of tropical local orbit space. We use this structure to prove two facts. First we show, that the
weighted number of tropical curves of degree A and genus g in R”, which pass through the
right number of points and which are mapped to a given point in the moduli space of genus g
curves with no unbounded ends, is independent of the choices of points. Secondly we show
that the number of curves of degree A and genus g in R? passing through the right number
of pointsisindependent of the position of the points. The chapter isdivided in three parts. In
the first (resp., the second) section we equip the moduli space of abstract tropical curves of
fixed genus (resp., the parameterized tropical curves of fixed genus and degreein R") with a
structure of tropical local orbit space. In the last part we prove the two statements mentioned
above.

5.1 Moduli spaces of abstract tropical curves

Construction 5.1. We construct a map from M, ,, to atropical local orbit space in the fol-
lowing way. For each curve C' € M, let P, = {a4,...,a,} bean arbitrary collection of g
points of C' such that C'\ P, is atree. We define a new curve C' which we get by cutting C
along P, and inserting two leaves A; = x,,.9,1 and B; = x,,,; & the resulting endpoints of
each cut a;. Thiscurveisan (n + 2g) marked curve (of genus 0) with up to 2¢ two-valent
vertices (at the ends A; and B; fori € {1,---¢}). In the case we choose a marking a; to
be at a 3-valent or higher valent vertex, either the vertex adjacent to A; or to B; has valence
greater than two.

In order to embed M, ,, into atropical local orbit space such that the underlying polyhedral

complex liesin R("2) we need a map. Since the target of this map will be atropical local
orbit space, et us construct a polyhedral complex X, ,, and the set of isomorphisms G, ,, we
need for it.

Notation 5.2. For b € R* we denote by b;, 0 < ¢ < t, the ith entry of b.

Let 7 be the set of all subsets S C {1,...,n + 2¢} with |S| = 2. For the construction
we need the vector space V,,, which is isomorphic to R(">)="~¢ and which is given by
Vyw = RUYY) /(@9 (R + < 24, ..., 2, >), where
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BQ Ag
Bs

=4

A7
Bi

Figure 5.1: Construction of a 6-marked curve of genus 0 from a 0-marked genus-3 curve.

P9 . R" — R — Rr("E)
b — (b, 0) = b L (bl + bj){i,j}ETa

and z ¢ R('2") 1€ {1, , g} isavector such that

1 ifi=n+2l—1lorj=n+2l—1)andi#n+ 2l # j,
(z1);;, =4 —1 if(i=n+2lorj=n+20)andi#n+2l—1#j
0  otherwise.

Let us now recall the definition of the tropical Grassmanian G, .12, from [SS]. Put Z[p| =
Zpiy..ag), (1 < < iy < ... < ig < n)andlet I, bethe homogeneous ideal in Zp]
which consists of the algebraic relations among the d x d-minors of any n x n matrix. The
tropicalization of the ideal 15,2, (see the first pages of [SS]), is the tropical Grassmanian
Gant2g- By theorem 2.5.1 of [Sp1] thisis atropical fan. We define the following subset of
V, .. PUL

D, 4 Rr+29 R(Mfg)
b — (b +bj)igrer

It is known that G, 12, contains the linear space @,, ,(R""%) (see [SS]). We denote by
€1, ..., ent2y the canonical basis of R"*29 and we subdivide the cones of Ga.n124 AONg the
hyperplane < @, ,(¢;),z >=0,1 < 1 < n + 2g. Thefan Gy 19,/ P, (R**?9) issimplicial
by theorem 4.2 [SS]. Since @,, ,(R""29) isthelineality space of G, .2, We havethat G, ,, o,
isasimplicia fan aswell. Thus, each point = of acone o hasaunique representation » _ z; - v;
as linear combination of the minimal Z—vectors v; contained in the one-dimensiona faces
of o. Since @, ,(R""9) is the lineality space of G .2, there exists a cone o’ with o C o’
such that one of those vectors v; of ¢’ is @, 4(e;) or —®,, ,(ex) and & < n + 2g (for o it
might be that for some k < n + 2¢ neither ®,, ,(e;) nor —®,, ,(ex) isin o. In the definition
which follows we need ¢’ to have awell-defined P, (z)). Without loss of generality assume
that we ordered the vectors v; such that ¢ = k for i < n + 29. We define P (x) to be the
projection of = to theline ®,, ,(R - ;) given by Py(x) = zy, (resp., —zy) for v, = &, 4(ex)
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Chapter 5: Moduli spaces for curves of arbitrary genus

(resp., v, = —@,, 4(ex)). Then we put

Xgn = {zre g2,n+29|Pn+2i71<x) + Ppioi(z) > 0,Vie {1,...,9}}/
(PI(R™")+ < 2z1,...,24>). (6.1)

To describe apolyhedral structure on X ,,, we take the conesin Gs ;. 24, intersect them with
{x € GantoglPotaim1(x) + Poyoi(x) > 0,Vi € {1,...,g}} and project themto V, ,,. The set
(P9(R™)+ < 2, ..., 2, >) istheremaining lineality space of G ,, 2.

Example 5.3. We consider the space X; ;. The Grassmanian G, 3 is the space R®. The set
{x € Go3|P2(x) + Ps(x) > 0} isequal totheset {®; 1 ({(z1, 24, 25) € R¥|zsa+25 > 0})}.
After dividing out the linedlity space (®}(R)+ < (1,—1,0)" >) we get aray without the
initial point.

Definition 5.4. Let (C,xy,...,2,) € M,, andlet (C,x1, ..., Tp, Tpi1s -, Tniz,) bE QA
curve obtained by cutting C. We define

distp(C) = (distr (2, ;)i yer € RU?),

where distr(xz;, z;) is the distance between z; and z; (that is the sum of the lengths of all
edges in the unique path from z; to 2;) in C. Set .9, 1 = A; and x,,,9; = B;, for al
i €{1,...9}. Thesymbol I" indicates that we consider the distances of (n-marked abstract
or parameterized labeled n-marked) tropical curves.

Lemma 5.5. Let C' be a curve which we obtain by cutting a curve C € M,,. Then
dlStI‘(C) € {.CC € gg7n+2g‘Pn+2i,1($C) + PnJrQZ'(.r) > O,VZ € {1, Ce ,g}}

Proof. Put y = distp(C'). Since each cycle has a positive length the point y lies in the
interior of a cone spanned either by @, ;(e,,42;—1) Or by @, ;(e,,42;) foral i € {1,...,¢}.
Furthermore all edges have a positive length and thus, y does not lie in a cone spanned
by —(I>n7g(en+2i_1) or by _én,g(en—i—%)a and the condition Pn+22‘_1(y) + PTH_QZ(y) > 0, Vi €
{1,..., g} isfulfilled. We only haveto show that y € Gs ,,12,. Theorem 3.4 of [SS] statesthat
the fan Gy 12,/ P, ,(R™+29) is equal to the space M, o,. The curve C' does correspond

to a point in M, 42, since the only two-valent vertices are at the ends .1, . . ., Ty424-
These lengths are encoded in @,, ,(R"*%) and therefore [y] € R("%”) /@, ,(R™2) liesin
M pi2g- ThUS Y € Go iy O

Theset G,,,, isaset of morphismsinduced by the following (") square matrices.

Foral s e {1,...,g}, put

1 if({i,5},{k,1}) = {m,n+2s — 1}, {m,n + 2s}),
or ({i,j},{k,1}) = {m,n+2s},{m,n+2s — 1}),

(£s) iy ey = or {i,j} ={k,l}andi,j ¢ {n+2s—1,n+ 2s},
orif {i,j} ={n+2s—1,n+2s} ={k, 1},
0 otherwise.
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Forall s € {2,...,¢g}, put

(1 if ({i,j}, {k,1}) = ({m,n+ 25 — 1}, {m,n + 1}),
n+2#m+#n+2s,

or ({17]}7 {kal}) = ({m,n + 1}7 {m,n +2s — 1})7
n+2#m+#n+2s,

or ({i,j},{k,1}) = ({m,n + 2}, {m,n + 2s}),
n+1l#m+#n+2s—1,

(TS)(iyj)(kJ) - or ({Zvj}v {kv l}) = ({m7 n+ 23}7 {m7 n+ 2})7

n+1#m#n+2s—1,

or{i,j} ={k,l}andi,j ¢ {n+1,n+2,n+2s—1n+2s},
or ({i,7},{k,1}) =({n+2s—1,n+2s},{n+1,n+2}),
orif ({i,7},{k,1}) =({n+1,n+2},{n+2s—1,n+ 2s})

| 0 otherwise.

Foralse{l,---,gtandp e {1,--- ,n+29}\{n+2s — 1,n + 2s}, put

(1

(Mp)(i,j),(k,l)

0

\

Before going on with our construction, let us understand the defined matrices by the follow-

if{i, 7} = {k 1},

or ({7,7},{k,1}) = ({p,n+2s},{n+2s — 1,n + 2s}),

or ({i,j}.{k,1}) = ({p, g} {in+ 25 = 1}), j # n + 2s,

or ({i, 7}, {k,1}) = ({p. 7}, {p,n 4 2s}), j # n+2s,

or ({i, 7}, {k,1}) = ({p, j}. {n + 2s — 1,n + 2s}),
n+2s—1%#j#n+2s,

if ({é,7},{k,1})={p,n+2s—1},{n+2s—1,n+ 2s}),
or ({i, jh Ak 1) = ({pr g}, Uom +253), j £ +25— 1,

or ({i,j}.{k,1}) = ({p. i} Apn+25s = 1}), j#n+2s - 1,
otherwise.

ing observation and propositions.

Observation 5.6. The main ideain our definition comes from the rational case (see [GKM]).
After cutting the curve we get a new curve without cycles. Thus, the distance between any
two points in the new curve is well-defined. Then, as in the rational case we have to mod
out the image of ®¢. In addition, we have to get rid of all the choices we made during the
construction of the A; and B; for 1 < i < g. These choices can be expressed by thefollowing

four operations.

(a8 The shift of the point a; on one edge of the cycle (which corresponds to the addition of

an element of < z; >).

(b) Interchanging A; and B;, which corresponds to the matrix I;.

(c) Interchanging a; and a;, which corresponds to 7; (interchanging a; and a; can be done

by aproduct of matrices7;,1 € {1, ... g}).

(d) The point a; jJumps over the vertex adjacent to an unbounded edge p. The matrix

corresponding to this operation is either M or (M)~" depending on the position of

A; and B;. If the point a; jumps over a bounded edge F, the matrix corresponding
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to this operation is the product of all matrices (M]i)il where p is connected with £
by edges not intersecting the cycle. (If we want to change the cut a3 of the curve in
figure 5.1 from the upper edge to the right edge we have to apply M3 - M to the
corresponding point in the parameter space).

Proposition 5.7. Let usfixn, g and s in N, with s < g. Thegroup < My|p € {1,--- ,n +
2g3\{n + 2s — 1,n + 2s} > is commutative.

Proof. To provethe commutativity, it is enough to show that any two generators of the group
commute. Denote by p, p’ two different elementsof {1,--- ,n + 2¢g}\{n + 2s — 1,n + 2s},
by A (resp., B) theelement n + 2s — 1 (resp., n + 2s), and by o and o arbitrary elements of

{1, ,n+2g\{n+2s—1,n+2s,p,p'}. Denoteby z,,, the coordinatesin R(">"). The
matrices M, and M, are defined in the following way.

The matrix M is given by

T

~

Tpo LpA TpB Tp,o Lp,A Lp B Loo TLoA LoB TAB

—1

iS]

o
—_
o
—_
|
—_
o
o

0 1 .T}p,p/

I
—_

I
—_
—

Tp,o
Tp,A
Tp,B
Ty 0
Ty A
Ty B
Lo,o

I
—_

Lo, A
To,B
TAB

s N en M es M s M s B en M an i an B an W e N = SN
DO OO0 OO
DO OO OO0 O O
DO OO0+~ O
DO DD OO R OOO
OO R OO OO
OO0 OO R OO0 O OO
OO OO OOO
OO OO0 OO~
O OO0 OO OO
_— o OO o O o

and the matrix M, by

T

/

Tpo LpA TpB Tp,o Lp,A Lp B Loo LoA LoB TAB

b,p

1 0o 1 -1 0 -1 1 0 0 0 1 Tp
0 1 0 0 0 0 0 0 0 0 0 Tpo
0 0 1 0 0 0 0 0 0 0 0 Tp A
0 0 0 1 0 0 0 0 0 0 0 Tp.B
0 0 0 0 1 -1 1 0 1 -1 1 Tyl o
0 0 0 0 0 1 0 0 0 0 -1 Ty A
0 0 0 0 0 0 1 0 0 0 1 Ty B
0 0 0 0 0 0 0 1 0 0 0 Toof
0 0 0 0 0 0 0 0 1 0 0 To,A
0 0 0 0 0 0 0 0 0 1 0 To.B
0 0 0 0 0 0 0 0 0 0 1 TAB

Since M, - M, = M, - M, the group under consideration is commutative. O
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Proposition 5.8. With the above notation, 1/, acts asidentity on the elementsof (9 (R" )+ <
21,...,24 >). The matrix T interchanges z; and z, and is the identity on (®4(R")+ <
oy By >). The matrix I, acts asidentity on (®9(R")+ < z1,. ..,zAS,...,zg >),
and one has] (zs) = —2,.

Proof. The statement for 1/ can be proved using the presentation of A/, given in the previ-
ous proof. Since I, and T, only interchange entries of the vectors, one can conclude that the
proposition holds. O

Theset H =< T, I,, M} > isalinear groupand since I, - M - I, - M = T? = I? = Id the

elements of H are Z-invertible. Thus, they define isomorphismson R("2"). By proposition
5.8 they define morphisms on V,,, as well. Now we take the subset of matrices h € H
for which there exists a non-empty open polyhedral subcomplex U of X g SUch that for all
z € U, the vectors = and h(z) are the distance vectors of curves resulting from cuts of the
same curve, and we denote this set by GG. We label the set of induced morphisms (for h € G
and U from above we have a morphism from U to h(U7)) by G. (Remark: for each h there
are many different choices of |U/|.) This set has the following (partial) order: hy < h, if
|Up,| C |Up,| and h2||Uh1| — hy (U, is defined in 3.1). Let G, be the set of maximal

elements of G with respect to this order. The elements we need are the morphisms induced
by {Ts, I,, M, } together with the elements of G, such that conditions (a), (b), (c¢) and (d)
of definition 3.1 hold. Note, that the morphisms are induced by matrices and therefore the
conditions for the set of isomorphismsin definition 3.1 can be fulfilled by elements of G ..
We denote this set by G/, ,, and want to use it as set of isomorphisms for the construction
of alocal orbit space. Therefore, we have to show that G ,, isfinite. Take X, with the
polyhedral structure mentioned above. First we need to show, that only finitely many points
in X, ,, represent the same curve C. Each of the g cuts has to be at a different edge of C'.
Thus, the number of possibilities we have for the choice on which edges we cut is finite.
The position of a cut a; on an edge £ is divided out by the vector s;. Thus we have at most
two possibilitiesto insert A; and B; on £ to get a different representative of the same curve.
Therefore, the number of pointsrepresenting C' isfinite and bounded by the number ('f ') -29,
with | E| the number of edgesinC. If h € G, isdefinedonz € 0, 0 € X, thenUj, D o°,
because . is linear and U, is open. Since the number of cones is finite and the number of
represents is bounded we get, that G, ,, isfinite.

Lemma 5.9. Let Q and C’ be two curves resulting from two different cuts of a curve C.. The
images of C'and C" in X, ,, are identified by elements of G ,,.

Proof. During the proof we will denote by C (resp. C") the curve and the corresponding
pointin X, ,, given by the distances. Since C and C” areresults of cuts of the same curve C,
there eX|st i,j € {1,..., g} such that the path from A; to B; in C' and the path A% to Bjin

C’ contain an edge S (resp., S’) coming from the same edge E in C. First of al we can use
the matrices 7; and T; for the curve C’to assumei = j. Let K be the set of marked points
adjacent to the (unique) path from B; to the middle of S. The curve [ ] M, - (C") comes
from acut with «; on £ (for thiswe need proposition 5.7). Without loss of generality we can
directly assume that a; € E. Similarly, we can also assumethat a; € E. By applying I; if
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necessary we can further assume a; = a;. Denote by W' the curve we get by cutting C' at a;
and inserting new edges A; and B; a the new ends. Since the curves C' and C” are results of
cuts of the same genus-(¢ — 1) curve, we can repeat our arguments and show that the images
are the same under elements of G, ,,. O

Remark 5.10. Let o be afacet of X, ,, where a point in the interior corresponds to a curve
which has exactly r loops (aloop is an edge forming acycle). The set G, ,, contains at least
2" elementswhich aretheidentity on o. (If A; and B; be on one of thoseloopsfor1 <i <,
then we get that I; is the identity on o. Since the group generated by {/;,..., .} has 2"
elements the statement follows.)

Remark 5.11. For a better understanding, we describe the morphisms from G ,,. Let C' be
a curve of genus g with n marked ends, and let us orient each edge of C. Let a and o’ be
two cuts of C' as stated above (cutting g cycles). By contracting all edges from C' except for
those cut by either « or «’ (and not by both) we get a new curve C'. Each such C, together
with the position of ¢ and a’ on C, theinformation which A4, and A;. lie on the same edge and
whether their orientation agrees, describes and is described uniquely by an element of G, ,,
if n or g are greater than one. We begin by defining a morphism ¢ corresponding to this data.
Let A; and A’ be cuts on the same edge. Using T, and I, first define a matrix which swaps
A; and A; such that A; lies on the same edge as A’ and such that A; and A’ have the same
orientation on the edge. Following the idea from lemma 5.9 we then multiply this matrix
by the matrix which identifies the curve C' cut by the changed a with the curve C' cut by «'.
As source U,, of the corresponding morphism we take all points which correspond to curves
containing the edges of C' and the unchanged cut a (where the cuts of « are on edges of C' as
well; for thisremember that we probably removed edges where ¢’ has cuts at the same edge).
The target V, (see definition 3.1) are al points which correspond to a curve containing the
edges of C' and the cut «’. By commutativity (see proposition 5.7) ¢ is well defined for all
those points (the products Hpe K M;‘ in the proof of lemma 5.9 are defined if the elements
of K are al marked ends of one component of the curve cut at o and A or equivalently if
the curve contains the edges of ). Furthermore U, is open since we take all points where
the edges of C' are positive. Finally the set of points where g is the identity is closed since
being the identity is a closed condition and since g changes positions of cuts and therefore
can not be the identity for elements where one of the edges of C' becomes 0. We take the set
of morphisms such that definition 3.1 is fulfilled and the morphisms we constructed fulfil
this definition. Thus, it remains to show that the above construction is one-to-one. Since the
elements of U; and V; correspond to cut curves we can construct C, a and o’ for an element
[ € G,,. Forn or g greater than one there exist curves with at least two bounded edges
for each cycle (for g = 1 andn < 1 wehave I, = id and id = M} if n = 1)). Thusthe
construction isunique. If acycle contains only one edge the orientation makes no difference.
In particular, if A; lieson this cycle one gets I, = id for this point.

To illustrate the construction of the previous remark we consider the matrix M.

Example 5.12. Each point corresponding to a cut curve which contain the edges shown on
the left hand side of figure 5.2 are mapped under A/ to apoint corresponding to acurve with
the edges shown on the right hand side of figure 5.2.

Lemma 5.13. The set G ,, described above fulfills all conditions of definition 3.1.
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A By
X X

B
Aj

Figure 5.2: A curve cut two times at neighboring edges.

Proof. The elements of G, are restrictions of group elements such that the source and
the image are in X, ,,. Thus, conditions (a) and (b) are satisfied. Let ¢ € G,,, and let
F={fi,....fu} C Gyn, g € Gy withg ' (|U;,]) # 0, foral 1 < i < n. We haveto
show that thereexistsa H = {hy,...,h,} C Gy, with|F| = |H| suchthat U,, > g~ '(|Uy,|)
and hilg-1qu,. ) = fi © glg-1(uy,) for 1 <4 < n. Since by construction of G, there exists
aways an element h; with hi|gfl(|Ufi|) = f;o g|gfl(‘UfiD it suffices to prove the case where
‘/g N Ufl = ‘/g N Ufz and fl o g|g—1(‘Uf1D = fz o g|g—1(|UfiD for1 <i<mn (We have to show
that different f; lead to different h;; if one of those equations does not hold, then either the
domain or theimage of i, differsfrom the domain or imageof £,). Theset GG ,, isinduced by
matrices, thus g and f; correspond to matrices G and F;. We define h; to be the isomorphism
defined by the matrix H; = F; o G. Since al matrices are elements of a group all H; are
different for different 1 < i < n. Thus, by definition all h; are different and therefore (c)
holds. Condition (d) holds since we take U,, as big as possible. O

Let usmake X, ,,/G, ,, into aweighted local orbit space by setting all weightsin X, ,, to be
1.

Definition 5.14. With the notations as before we put

S: My, — Xgn/Ggn

(Cyxq, ... xy) — [(distp(C)]
where C'isacurve we get by cutting C.
Remark 5.15. By lemmata 5.5 and 5.9 the map S iswell defined.

Proposition 5.16. Let X, ,,G,, and M, ,, be asabove. Then S : M,,, — X,,,/Gyn,
(C, @1, ..., 2,) — [(distp(z;, 2;))]f,j3e7 1S @homeomorphism.

Proof. Themap S isdefined by taking the distances of marked points, thusit is a continuous
map. Since the metric on M, ,, is given by the lengths of edges, the map .S is open and
closed. Thusit remainsto show that S is bijective.

Let usfirst prove the injectivity of S. For thiswetake C' and C' in M,,, with S(C') = S(C).
By definition the curvesin M, ,, are uniquely defined by the lengths of their bounded edges.
Therefore, the curves are uniquely defined if we fix the lengths of the edges of the cut curve
(but not the other way round). Thus, the curve is uniquely defined by fixing its image in
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Gant2g- SiNCE G, 5, ONly identifies el ements which come from the same curve we can take cut
curves C' of C' (resp. C’ of C) such that distp(C") = distp(C’) in X,,,. Thusthe difference
of the two elements has to be in ®9(R")+ < z,...,z, >. All curves which differ by
elementsof < z,. .., z, > come from the same curve by moving the g points {a,, ..., a,}.
The elements of ®¢(R™) only insert a new length at the marked ends {z,...,z,}. Thus,
onehasC = C.

To prove the surjectivity note that M, 2, iS homeomorphic to Gs .10,/ P, o (R"729). Let
r € X,,/Gyn. We take a representative z of x in X, and denote its image in X, ,,/
®,, ,(R"*29) by [z]. By the mentioned homeomorphism we can construct a unique curve
C' € My, Which isidentified with [z]. Now we connect the points [z],,, ;-1 and [], ;o

fori € {1,...,g} withan edgee; of length =, 1 2; 1 ny2i-1 — [T]nt2i—1.n+2; @d remove the
edges [z],,42;—1 and [z],4-;. Theresulting curve belongsto M, ,, and is mapped to x under
S. Thus S is surjective. O

Proposition 5.17. The weighted local orbit space X, ,,/G, ,, isatropical local orbit space.

Proof. By proposition 3.18 the balancing condition is clear, since G, ,,. 2, is a balanced fan.
]

Example 5.18. We consider the moduli space M, ». To compare it with the construction of
an orbit space see remark 7.6. The polyhedral complex underlying the moduli space consists
of the following cones (the entries of the vectors are d(z1, x2), d(z1, A), d(x1, B), d(z2, A),
d(xq, B), d(A, B)).

1 1 1
1 0 1
1 1 1
Cy={a- 5 +5b- ] la,b € Rsg,a > 0},Cy ={a- 5 la > 0},
0 0 0
2 1 2
1 0 0
1 1 1
1 0 0
Cg—{a 9 +b- 1 |a,b€R20,a+b>0},C4:{b- 1 |b>0},
0 0 0
2 1 1
0 0 1
1 1 2
1 0 0
C5Z{Cl 1 +b- 1 ‘CL,Z)EREQ,()>O},C6:{CL' 1 |CL>O},
1 0 1
0 1 2
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X1’2 C Cl\‘€3/ """""""""" 1

\ Cs

Figure 5.3: The polyhedral complex and the topological space of M 5.

C7Z{CL' +b- |a,b€R20,a>0},

N = = O N =
—_—_ 0 O~

Cs =A{a- +5b- la,b € Rsg,a+b> 0},

N = = O N =
_ O = O = O

Since the space ®}(R?)+ < z; > which we mod out is three-dimensional the actual picture
isthree-dimensional. A picture of the polyhedral complex is given in figure 5.3. The set of
morphismsin thetropical local orbit spaceidentifiesthe cones C, and C; aswell asthe cones
C1, Cs, C7 and Cg. Thusthetopological space underlying the tropical local orbit spaceisthe
same as the union of the cones C, C3, C, and C5 (in figure 5.3 one can see the topological
space of the quotient).
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Chapter 5: Moduli spaces for curves of arbitrary genus

5.2 Moduli spaces of parameterized tropical curves

Put X0 | = X, v xR"xZ] x...xZ}, whereZ!, i € {1,..., g} denotesacopy of Z" (for
the connection between n and IV see chapter 2, X, x is defined in equation 5.1). We define
G} to be as set in bijection with G . For each f € G, we denote the corresponding
element in Gy v by f*, and we put Uf = Up x R" x Z] x ... x Z;. Now we want to define
amap for each f € ijb Since f isinduced by a matrix, |t suffices to define operations on
the generators of H, mentioned above (H is defined after the proof of proposition 5.8). We

then take the operation defined by the product. We denote the operation on the component

Z7 x ... x 7 by ty and defineit for (v', ..., v9) € Zi x ... x Z asfollows:
Lt .. oot ot w9 = (oL ot =t ot L )
Ti(vh, o2, oot ot L) = (0h 0% ot ot ot L 9)
M;(vl, Tt T ) = (0 e — (), vt L 09
(v(x,) is the direction of z,, see chapter 2)Let (x,b,0',...,v9) € X2\  then we put
[z, bty v9) = (f*(x),b, s (v, ..., 09)). Astopology on Xﬁjm, we take the product

topology of X, x, of the Z and of R", where we consider Z with the discrete topology and
R" with the standard Euclidean topology. Since we need afinite set of polyhedra we refine
Xlab | to be the subset of Xy x R" x Z] x ... x Z] given by |(v)),| < 3=, 4 |vs| for
1<1<g,1<s<r.

Remark 5.19. The point b is the image of =; under h inR", i.e. b = h(x;) (see definition
2.11).

In the case of rational curvesit was possible to define the moduli space of stable maps to be
the product of R” and the moduli space of abstract curves (see[GKM]). In the case of higher
genus thisis not any longer possible. The cycles cause the problem (see chapter 7). Take a
curve C' and cut it a ¢ points as above. We want to map the abstract tropical curve under
h in R". Therefore, we have to fix a direction vector in Z" for each cut (the directions of
the vectors at A; and B; are opposite each other). Now we can define the image under h of
the cut curve. Unfortunately the image of the cut cycle do not need to be a cycle, since we
allowed arbitrary lengths for the edges. To ensure the closing of the cycles we take rational
functions. These functions are given in the following proposition.

Proposition 5.20. Forall 0 < <r, 1 < d < g, we have a function

¢d Xlab N R

g,n,Ar
LN
(a,b,0',...,09) +— = max{j: Z Ak, N+2d} — a{k,N+2d—1}) v (1)
k=2
g
+ Z (a{N+2k71,N+2d} — Q{N4+2k—1,N+2d—1}
k=1
—{N+2kN+2d) + ANk N2d-13) - 0 (1))}
which isrational (CI, = [a{LQ}’ e CL{N+29_1’N+29}] and we pUt Apyym = 0 and Vi = U(.Tk))
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Chapter 5: Moduli spaces for curves of arbitrary genus

Proof. The only thing we have to do is to show that ¢¢ is well defined. Thus, we have to
show that ¢ ([z, b, v]) = ¢f([z + s +1,b,]), for @l [z,b,0] € X;akm, § €< 51,00, 89 >
and t € ®9(R"). Note, that ¢¢([z, b, v]) = ¢([z + s, b, v]), because S~ v (i) = 0 and

(a{N+2k—1,N+2d} — Q{N4+2k—1,N+2d—1} —Q{N+2k,N+2d} T a{N+2k,N+2d—1}) =0

for each vector a in < sy, ..., s, >. Furthermore we have

(&{k,N+2d} - a{k,N+2d71}) Uk(l) = Q{N+2k—1,N+2d} = Q{N4+2k—1,N+2d—1} =

= Q{N+2k,N+2d} = Q{N+2k,N+2d—1} = 0

for all a € ®9(R"). Thus, ¢¢([x,b,v]) = ¢([x + s + t,b,v]) for dAl [x,b,0] € X;aEAT,
s €< S1,...,5, >andt € I(R"). O

Remark5.21. Letz € X'2P \  Thevaue¢?(z) isequal tomax{+((ev4,)i(z)—(evp,)i(z))}

g,n,Ar"
whereevy, () (resp. ev Bd( )) are the positions of A; and B, inR" (see proposition 5.23).

Now we want to show that [T9_, [Ti_, ¢f - (X120 5 ,/G!%)) iswell defined. For thiswe have

g,n,Ar

to show that [T%_, ¢¢ - (U,) = Hg L 07 (h(U)).

Proposition 5.22. Foralli € {1...r},z € X" | ‘andh € G} onehas[[)_, ¢¢- (Uy) =
[T5=, of - (n(Uw)).

Proof. Since the elements of G} act as matrices on the component Xy we can, instead of
proving the proposition, show that foral fe Handz € V =V, , x R" x Zj x - --Z; one
has [T9_, ¢¢ - (V) = T2, &% - (f(V)) (f and ¢¢ are defined canonically on V/, becausef
isamatrix on V,,, and the ¢¢ are aswell rational maps on V). Since the matrices I, 7, M;
generate H, it sufficesto proveit for these matrices.

Thus, let us see how these matrices change the result. Put ([ag12), .. ., a{n129—1,N+2g})s O,
vl ..., v9) = z. First, we consider the matrix I, and d # s:
¢gl(ls([a{1,2}7 e 7a{N+29_1,N+29}], bvt,. .., v9))
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N
1 ,
= - max {:I:§ < E (a{k,N+2d} - a{k,N+2d71}) vr (i)

k=2
g
+ Z (a{N+2k71,N+2d} — Q{N+2k—1,N+2d—1}
k=1,k#s
k .
—Q{N+2k,N+2d} T a{N+2k,N+2d—1}) 0" (1)

+ (a{N+2371,N+2d71} — Q{N+2s—1,N+2d}

—Q{N+2s,N+2d—1} T CL{N+2s,N+2d}) : (—Us(i))> }

N

1 1 )
= 5 -max {i§ <Z (ae,N+2ay — agent2d-13) Vk(2)

k=2

g
+ E (a{N+2k71,N+2d} — Q{N+2k—1,N+2d—1}
k=1

—Q{N+2k,N+2d} + a{N+2k,N+2d—1}) Uk(l)) }

= (25?([&{1,2}7 ey AYN429—1,N+2g}]» D; Ul, co ).

For d = s itisthe same asthe genus 1 case, considered in chapter 7.

Now we consider the matrix 7T;. For 1 # d # s only the order in the second big sum of ¢¢
changes which does not effect the result. Further ¢} and ¢; areinterchanged by 7. Sincethe
intersection of a product of rational functions does not depend on the order (see proposition
3.46), onegets [19_, o7 - (V) = T1%, &% - (Ts(V)).

At last consider the matrix M. The caculationsfor N +2d — 1 # p # N + 2d arethe same
asfor genus 1. Thus, asin chapter 7 we get the equality

(b?(M;([a{l,Q}’ ces ,CL{N+29—17N+29}], b, Ul, o v)
— (bf([a{m}, e ,CL{N+29_17N+29}], b, Ul, . 7’Ug) = O

It remainsto show thecases N + 2d — 1 = p or N + 2d = p. Since the product is invariant
under I, we only consider N + 2d — 1 = p. We put

d g
Z = Z (a{k,NJr?d} - a{k,N+2d—1}) Uk(l) + Z (a{N+2k71,N+2d}

N
i k=2 k=1

k; .
—Q{N+2k—1,N+2d—1} — Q{N+2k N+2d} T a{N+2k,N+2d71}) 0" (i)

and get

Qb?(M;([a{l,z}’ cee CL{N+29—17N+29}], b, Ul, oo v)

- ¢?([a{1,2}7 ooy A{Nt2g—1,N+2g} ), D, vl 09)
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Chapter 5: Moduli spaces for curves of arbitrary genus

N
=2

1 1
3 max {ié <XZ: + kz: —(@gk,N425—1} T ON+2d—1,N+25}) T O{N25—1,N+25}

—Q (s, N+25} — Q{N4+2d—1,N+25—1}) * Uk (d)

+ Z (_(a{N+2k—1,N+25—1} + Q{N+2d—1,N+2s} T Q{N+25—1,N+2s}
k=1,d#k+s

—O{N42k—1,N+25} — Q{N+2d—1,N+2s—1}) T Q{N42k,N+25—1} T A{N42d—1,N+2s}
+CL{N+25—1,N+25} — Q{N42k,N4+2s} — CL{N+2d—1,N+25—1}) : Uk(i))

+2 (AN424,N 1251} + Q{N+2d—1,N+25} T QN+25—1,N+25}

—Q{Nt2d,N+25} — O{N+2d—1,N+25—1}) - (V(7))

(CL{N+25—1 N+2d} — O{N+2s5—1 N+2d 1}

—Q{N+2s,N+2d} T Q{N+2s,N+2d— 1}

(=v(0)
+2a(N25-1,N+2s} * )} % { %Z}

i)l

The last expressionisequal to 0 for [T4_, ¢¢ for the following reason. Since theintersection
of a product does not depend on the order (see proposition 3.46) we can first intersect with
¢. For pointsin thisintersection the sum >’ is equal to 0 and we are done. 0

Now we can define the tropical local orbit space we are interested in by constructing the
tropical local orbit space cut out by the rational functions ¢;:

lab r d lab lab
Mgntrop HHgb XgnAr Gg,N)'

d=1 1=1

The set of cones of M'® . (R" A) is denoted by X" , . The rationa functions assure

g,n,trop g,n,Art

that A® and B’ are mapped to the same point for al i € {1,...g}.

5.3 The number of curves is independent of the
position of points
In this section we use corollary 3.41 to prove that the number of certain tropical curves

passing through given points is independent of the position of points. Therefore we have to
define a map fulfilling the requirement of corollary 3.41.

Proposition 5.23. For j = 1,...,n themap

Xlab -~ R

g,n,Ar

(F, r1,...oN,h) — h(z;)
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Chapter 5: Moduli spaces for curves of arbitrary genus

isinvariant under the set G, v.

Proof. The map ev; isgiven by

N g
1
evj(r) = b+ B <Z (ary — agry) vet Z (e, N2ty
k=2 k=1
—Q(Nt2k-1,} — Q{1 N+2k} T+ A N+2k}) ¢ (Uk)> : (5.2

Since I, and T, only change the order of the sum, we only have to prove invariance for
M. The maps are defined for the curves cut aong ay, ...a,. Thus, let us take a point
C e X';g A, Which represents a curve with cuts at each cycle and prove that the evaluation
maps are invariant for those (i.e. ev;(C) = ev;(M;(C))). We can treat such a curve as a
genus 1 curve cut at a,. For this case the equation is the same as the equation for genus 1

curvesin chapter 7 with N + 2(¢g — 1) ends and thus the proposition follows. O

Definition 5.24 (Evaluation map). For j = 1,...,n themap

ev, : M2 (R",A) — R"

g,n,trop

(Cyzq,...2n,h) — h(x;)

is called the j-th evaluation map (note that thisis well-defined for the contracted ends since
for them h(z;) isapointinR").

Proposition 5.25. With the tropical local orbit space structure given above, the evaluation
mapsev; : M@ (R", A) — R" aremorphisms of local orbit spaces (R" is equipped with
thetrivial local orbit space structure).

Proof. We haveto show that for e = ev; the conditionsin definition 3.21 arefulfilled (e; = e
and e, the constant map). The conditions (a) - (¢) are clear, since e, is aconstant map. The
map e; is continuous and conditions (d) and (¢) follows, because the image of each coneis
the whole R”. Furthermore, (e) isthe same asin the case of fans treated in [GKM]. Findly,
proposition 5.23 proves () and we are done. O

Definition 5.26 (Forgetful map). Let » > 1 and ¢ > 0. We define the forgetful map
ftn + Mgn — M, to be the projection given by V,,, — Vo (projection to the last (%)
coe(I)Irdi nates). The induced forgetful map of M2> (R, A)to M, isdenoted by fty as
well.

Proposition 5.27. Themap ft, : M@ (R",A) — M, isamorphismof tropical local
orbit spaces.

Proof. It follows from the fact that f¢, is a projection, respecting the polyhedral structure.
]

Proposition 5.28. Themap e = evy X - X evy, X fty : M (R7, A) — R™ x My is
a mor phism of local orbit spaces.
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Proof. By propositions 5.25 and 5.27 the evaluation maps and the forgetful maps are mor-
phisms. By lemma 3.27 the conditions « till f of definition 3.21 are fulfilled. We only have
to show that condition g is fulfilled as well. By definition, é,([c])\é1([o]) C u(e). Thus,
the pointsin é;([c])\é:([o]) are only in the boundary of non-closed faces (see proposition
3.30). The pointsin the boundary of non-closed faces are the points for which cycle-lengths
are zero. Since these pointsdo not liein M, , one hasthat é,([5])\é:([o]) is empty and thus
condition g holds. O

If we fix adegree A and agenus g > 0 and count tropical curvesin R” we want to count a
finite (non-zero) number of curves (i.e. the space of the considered curves passing through
given points should be 0-dimensional). Thus, we have to take the right number n of markings
such that Mp>  (R", A) and R™ x M, , have the same dimension. The dimension of
ij‘fl,tmp(Rr, A) is given by the number of inner edges (each inner edge has alength) plus
r (position of h(z;)) minus rg (because of the rg rationa functions). The dimension of
R™ x My oisrn+3g — 3 (resp. rn + 1) for g > 1 (resp. g = 1). Thus, n has to satisfy the

following equality:

#A+n+3g—3+r—rg=rn+39-3 & r+n+H#A-rg=rn
#A+n+tr—r=m+1 & #A-1=(r—1)n,forg=1)

Theorem 5.29. Let r > 2, let A be the degree of a genus ¢ > 0 tropical curve in R",
andletn € Z.gwithg+n > 2besuchthat r + n + #A —rg = rnfor g > 1 (resp.,
#A —1 = (r— 1)nfor g = 1). The number of parameterized labeled n-marked tropical
curves of genus g with fixed type " € M, , which pass through » pointsin general position
in R", counted with the multiplicities of corollary 3.41, is independent of the choice of the
configuration of points and the choice of 7.

Proof. Themapev; x ...xev, X fty isby proposition 5.28 amorphism between |ocal orbit
spaces. By definition the domain and the target space are of the same dimension. The space
R™ x M, is strongly irreducible since al codimension-1 faces of M, are attached to
three codimension-0 faces and M, is irreducible. The morphism is surjective because of
the balancing condition. Thus we can apply corollary 3.41 to get the statement. O

Let us fix the notation as above. To have a finite count of certain curves passing through n
points, n hasto fulfill the following equality:

#A+n+3g—3+r—rg=mm & #A+(1—-g)(r—3)=—1)n.

Theorem 5.30 (Theorem 1in[M1], Theorem 4.8in[GM1]). Let A be the degree of a genus
g > Otropical curveinR? and let n € Z-, be suchthat #A + g — 1 = n. The number of pa-
rameterized labeled n-marked tropical curves of genus g (counted with multiplicities) which
pass through » pointsin general position in R? is independent of the choice of the configu-
ration of points (the multiplicity of a curve is defined to be the weight of the corresponding
conein M?> " (R?, A)).

g,n,trop
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Proof. By proposition 5.25 the evaluation maps are morphisms and lemma 3.27 implies
that conditions « till f of definition 3.21 are fulfilled for themap e = evy x--- x ev,, :
MED op(R%,A) — R, By dimensional reasons the image is 2n-dimensional. Thus, to
apply corollary 3.41 we have to show that condition ¢ of definition 3.21 holds for e and that
dim (R*™*\é&; (M) 10p(R?, A)])) < 2n — 2. The tropical local orbit space R*" (we put all

weights to be one) is irreducible and thus it suffices to show that for o € X , , one has

dim(é([o])\é1([o])) < 2n—2 (theimageisatropical fan. If dim(é,([0])\é1([o])) < 2n—2,
then by irreducibility dim(R?*™\é;(|M!2> . (R? A)|)) < 2n — 2 holds as well. Further-

g,n,trop
more &, ([o])\é; ([o]) contains the setsin (g) of definition 3.21 which must have dimension
less than or equal to 2n — 2). The map is linear on each cone. Therefore, a point x can
only be in & ([o])\é1([o]) if there exists a Cauchy sequence (z;)ien C MPh ., (R% A)
with lim, oo z; ¢ M (R? A) and lim; o & (z;) = 2. Thus, we have to study the
case where we diminish the cycle length to zero. Thus let us consider a sequence (C});en
of curves through arbitrary points where we move the points to shrink the cycle to a point
p. These curves are represented by points in the moduli space M) (R* A). Since

MED 1 op(R?, A) consists of finitely many cones, (C;);en contains a subsequence which lies

in the interior of one cone o. Either dim(o) = 2n or dim(é,([o])\é1([0])) < 2n — 2 s
fulfilled. Assume that the cone o is of dimension 2n. Thus, the cycle of each such curve
(C,h,z1,...,x,) has to be seen in the image h(C'). For the sake of contradiction, assume
that dim(é;([o])\ é1([¢])) = 2n — 1. Then no marked point can be on the cycle we are
shrinking, because thiswould lead to a codimension 2 face. The edges adjacent to p have the
same direction as the edges which have been adjacent to the shrinking cycle before. Thus,
the dual polytope of p in the limit curve has an interior lattice point and we can insert again
acycleat p. All curves we get by inserting asmall cycle at p are mapped to the same point
under e;. Hence, the map is not injective on the face with the shrinking cycle (which is a
contradiction to dim (&, ([o])\é1([¢])) = 2n — 1) and we are done. O

Remark 5.31. In the previous proof we need the assumption » = 2 since we use the dua
polytope in our argumentation. For » > 2 the tropical curve is not a hypersurface and thus
the proof does not work in this case.

Example 5.32. Let us consider two examples to see why we need the assumption » = 2 in
the proof of theorem 5.30. Figure 5.4 shows a curve in R? and shrinking of the cycle of

Figure 5.4: A curve in R? where we shrink the cycle length to 0.

this curve. The right hand side represents the limit curve and a possibility to insert again a
cycle. All curves with a cycle congruent to the dashed one have the same image under the
evaluation map.

Figure 5.5 shows a curve in R? where we shrink again the cycle to apoint P. The directions
of thecurveare x; = (—4,1,—-1),29 = (1,-2,0),23 = (2,1,—-1),24 = (1,0,2). Fixing
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one more direction determines all directions (because of the balancing condition). Thus, let
us choose the direction of F tobe (—2, 1, 0). The continuouslinesliein the zy-plane and the
others do not. It isimpossibleto insert acycleat P similar to the case in figure 5.4 (without
moving z; upto x4 in R3).

X2

Figure 5.5: A curve in R? where we shrink the cycle length to 0.
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6 Orbit spaces

In chapter 3 we gave the definition of atropical local orbit space X /G. The main disadvan-
tage of thisdefinitionisthat G isnot agroup. Because of thiswe had to solve many technical
problems. In this chapter we will change the definition of alocal orbit space into a definition
of an orbit space by requiring that GG is a group. The great disadvantage of doing thisis,
that we no longer can assume that X or GG are finite. Thisis due to the fact that we want to
give moduli spaces of eliptic curves the structure of orbit space. In our construction (which
seemsto be natural, see chapter 7), the complex X and the group G are infinite. Nevertheless
in the cases where we can deal with infinity the calculations are easier than for local orbit
spaces because of the group structure.

In thefirst part of this chapter weintroduce the notion of tropical orbit space. Orbit spacesare
polyhedral complexes with a group acting on them. The word tropical refers as usual to the
appearance of a balancing condition which a priori depends on the group. Nevertheless, we
will seethat the balancing condition of the tropical orbit space can be checked by considering
only the polyhedral complex. After thiswe introduce morphismsof orbit spacesin the second
part, and prove a fact concerning those morphisms (see corollary 6.29). One can use this
corollary asatool for proving tropical enumerative statements.

6.1 Tropical orbit space

Definition 6.1 (Orbit space). Let X be a polyhedral complex and G a group acting on | X |
such that each ¢ € G induces an automorphism on X. We denote the induced map of an
element ¢ € G on X by g(.) and the induced homeomorphism on | X| by ¢{.}. We denote
by X /G the set of G—orbitsof X and call X/G an orbit space.

Remark 6.2. The topological space | X/G| = |X|/G of an orbit space X /G is Hausdorff
since G isagroup.
Example 6.3. The following example shows the schematic picture of the topological space

of an orbit space with trivial group G and the open fans F, for al o. The group G istrivid
and thus the orbit space is the same as the polyhedral complex (i.e. X = X/G).
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Take for G the group with two elements, consisting of the identity and the map which maps
the upper half circle to the lower half circle and vice versa and which let the ray fixed. The
picture of | X|/G isasfollows:

Definition 6.4 (Weighted orbit space). Let (X,wx) be a weighted polyhedral complex of
dimension n, and G agroup acting on X. If X/G isan orbit space such that

e forany g € G andforany o € X™, onehaswx () = wyx (g(0)),

we call X/G aweighted orbit space. The classes [0] € X/G, for 0 € X™, are called
weighted classes.

Definition 6.5 (Stabilizer, G, —orbit of 7). Let X and G beasaboveand 7,0 € X. We cal
G, = {9 € Glg{z} = x forany x € 7} the stabilizer of 7. We define X,,;- = {g(0)|g €
G-} to bethe G.—orbit of 0. By |G| (resp., | X,/-|) we denote the number of elements in
GT (resp" XO'/T)'

The weight function on the weighted classes of X/G is denoted by [w] and defined by
[w]([o]) = w(0)/|G,l, fordl o € X,

Remark 6.6. We could define a weighted orbit space as well by giving an orbit space and a
weight for each class instead of defining the weights of the orbit space by the weights of the
complex and the group action.

Definition 6.7 (Suborbit space). Let X/G be an orbit space. An orbit space Y/ H is called
a suborbit space of X /G (notation: Y/H C X/G) if each genera polyhedron of Y is con-
tained in ageneral polyhedron of X, G = H and each element of GG actson thefacesof Y in
the ssmeway asfor X (i.e. foral g € G, € Y wehave gjy|{z} = gx/{z} for z € 0). In
this case we denote by Cy. x : Y — X the map which sends a general polyhedrono € Y to
the (unique) inclusion-minimal genera polyhedron of X that contains o. Note that for a sub-
orbit space Y/H = Y/G C X/G we obviously have |Y'| C |X| and dim Cy x(0) > dim o
fordloeY.

Definition 6.8 (Refinement). Let ((Y, |Y]), wy)/G and ((X, | X]), wx) /G betwo weighted
orbit spaces. Wecall ((Y,|Y]),wy)/G arefinement of ((X, |X|),wx)/G, if

@ (Y, [Y]),wy)/G C (X, |X]),wx)/G,

(0) [Y*[ = [X*],

(©) wy (o) = wx(Cyx (o)) foral o € (Y*)dim®),

(d) eacho € Yisclosedin | X].

We say that two weighted orbit spaces ((X, | X|),wx)/Gand (Y, |Y|),wy)/G areequivalent
(notation: ((X,|X|),wx)/G = ((Y,|Y]),wy)/G) if they have acommon refinement.
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Definition 6.9 (Tropical orbit space). Let (X, wx) /G beaweighted orbit space of dimension
n with finitely many different classesand |G| < oo forany o € X ™. If forany 7 € X(»=1)
there exists A,/; > 0 forany o > 7suchthat 35, scx As/r = land . Agr
lwx]([o])us,r € V5, then X/G iscalled atropical orbit space. (Remark: one has #{c > 7}
< oo since S, in definition 1.10 is homeomorphic to an open fan.)

Remark 6.10. For afinite group G the definitions of tropical orbit space and tropical local
orbit space do agree.

Proposition 6.11. Let (X, wx) be a general weighted fanin V" and G C GI(V') such that
X/G isaweighted orbit space (G isfinitesince (X, wx) isfinite). Then (X, wx ) isa general
tropical fanif and only if X/G isatropical orbit space.

Proof. 7 = 7: Put n = dim(X) and let 7 € XY and ¢ > 7. Then we define \,,,

— HocCh.aialololl _ Gl — <o+ Thesets X/G and G arefinite thus X isfinite. In

particular, for any 7 € X1 one has #{oc > 7} < co. Forany o > T onehas \,/, > 0
and ) .. ..y As/r = 1. Furthermore,
c>T,66X,)r

Z‘ UO'/T_tE‘/;'7

o>T

because (X, wy) isatropical fan. Thus, we have

(<
Y el -t = 3 pon(c) s =t V-

o>T o>T

” < 7: Let X/G beatropical orbit space. Thus, thereexists A, /, witho > 7and 7 € X~V
such that

Z)\J/T u)X CUg/r = teV,.

o>T

Therefore, because of the linearity of g € G, we get:

Gt = 3 glt)

geGr

= 3 o Aosrlion(fo]) o)

geGr o>T

= 33 Aapelwxl(io]) - gluos)

ge€Gr o>T

= Z |Gyl - [wx]([o]) - uo/r

o>T

= wa(a) “Ug/r

o>T
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Example 6.12. The following picture is an example of atropical fan X and atropical orbit
space X /G with this fan as underlying polyhedral complex. Let X be the standard tropical
line with its vertex at the origin, the directions ( _01 ) : < _01 ) and ( i , and al the
weights are equal to one. The group G consists of two elements and is generated by the

matrix((l] é)
X / y

The balancing condition for the fan is

GG 6)
L) () (D)= (8),

where the first two (1/2)’s come from the splitting of 1 (see definition 6.9), and the third 1/2
comes from the invariance of the last vector under G.

Corollary 6.13 (of proposition 6.11). The balancing condition for tropical orbit spaces holds
if and only if the balancing condition of the underlying weighted complex holds.

Proof. For tropical orbit spaces with infinite group G there are only finitely many facets
around acodim-1 face. Thus, asin the proof of proposition 6.11 the balancing condition can
be checked on the polyhedral complex as well (without group action). O

Example 6.14. To show that there are tropical orbit spaces which do not come from atropical
fan we consider the following orbit space. Let | X | be thetopological space {(z,y) € R?|y >
0}, and let X be the set of cones spanned by the vectors (1) and (*1') for 2 € Z. If we
define al weights to be one and G =< ( L

space X /G:

! ) >, we get the following tropical orbit

0 1

XiG

It can easily be seen, that X/G is atropical orbit space (see definition 6.9), while X has
infinitely many cones and thusit can not be atropical fan.
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Definition 6.15 (Global orbit space). Let F' be afinite set of orbit spaces and let £ be a set
of isomorphisms of polyhedral complexes fulfilling the following properties. Each element
gx/c,y/u € Eislabeled by apair X/G,Y/H € F suchthat gx/cy/m : X' — Y/ with X' C
X, Y’ C Y subcomplexes, is an isomorphism. Furthermore, for each g € G and o C | X’|
suchthat g(o) C |X'| thereexistsah € H suchthat gx/qy/u(9(0)) = h(9x/cy/a(0)). We
cal the pair (F, ') aglobal orbit space.

Remark 6.16. The global orbit space is atopological space which locally is an orbit space.
In the same way one could define aweighted global and later on atropical global orbit space.
For weighted global orbit spaces one would need the condition that the weights of the glued
cones coincide.

6.2 Morphisms of orbit spaces

After becoming more familiar with the notion of orbit spaces we now introduce morphisms
between them.

Definition 6.17 (Morphism of orbit spaces). Let (X, | X|, {¢}, {®,|c € X})/ Gand (Y, |Y],
{v}, {V,|T € Y) /H betwo orbit spaces. A morphism of orbit spaces [ : X/G — Y/H
isapair (fi, f) consisting of a continuous map f; : |X| — |Y| and a group morphism
f2 : G — H with the following properties:
(a) for every genera polyhedron o € X there exists a genera polyhedron ¢ € Y with
filo) C o,
(b) for every pair o, o from (a) themap ¥z o f, o @ : |FX| — | FY| induces amorphism
of fans F;* — FY , where FX and F are the weighted general fans associated to £-X
and FY', respectively (cf. definition 1.6),
(c) there exists a refinement of X such that for any o, & € X with dim(f;(o) Nf1(5))
= dim(f1(0)) = dim(f1(7)), onehas f1(o) = f1(5),
(d) fi(g(o)) = f2(9)(fi(o)) forall g € Gando € X.

A morphism of weighted orbit spaces is a morphism of orbit spaces (i.e. there are no condi-
tions on the weights).

Remark 6.18. The conditions (a) and (b) of definition 6.17 are equivalent to f; being a
morphism of general polyhedral complexes.

Remark 6.19. For GG being a finite group the concepts of tropical local orbit spaces and
tropical orbit spaces are the same. Neverthel ess the definitions of morphisms of those objects
do not agree. Thisis dueto the fact that we use orbit spaces to treat easier problems than the
problems we deal with by using local orbit spaces. In particular we do not need morphisms
from open conesto closed cones asin the case of local orbit spaces (cf. theorem 5.30). Thus,
we can ask for condition (c) instead of condition (¢) in definition 3.21.

Explanation 6.20. The motivation for asking amorphism to fulfill conditions (a), (b) and (d)
is clear, but to ask for condition (¢) is not. Thus, we consider an example where condition
(¢) isnot fulfilled.
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Let us consider the map f, given by the projection of two intervals on a third one (see the
following picture). We take G and H to betrivial, thus X/G = X andY/H =Y, where X
isthe digoint union of two open intervals of different length and Y is one open interval with
the same length as the longest interval of X.

N
J

m

X
L1
Y

After any possible refinement, the facet o, which is the most left in the upper interval of X,
isopen on the left side, but will be mapped on aleft closed facet 7. We call & the intersection
of the preimage of 7 with the longest interval of X . Then f;(o) N f1(&) isaline segment as
well as f (o) and f(&), but the images are not the same which contradicts (¢). The reason
isthat o isahalf openinterval but  isaclosed interval. Thus f isnot a morphism.

Example 6.21. If wetakethetropical orbit space X /G from example 6.12, then the canonical
map to the diagonal linein R? isamorphism of orbit spaces. But the homeomorphism which
goes in the opposite direction is not a morphism, because locally at the origin it cannot be
expressed by alinear map.

Remark 6.22. The reason we ask condition (¢) to be fulfilled is to define images of the poly-
hedra later on. Thus, after refinement, each polyhedron should map to one polyhedron and
the image of the polyhedral complex should be a polyhedral complex as well. In particu-
lar condition (b) of definition 1.9 has to be fulfilled. Therefore, images of polyhedra of the
same dimension should intersect in lower dimension or should be equal. In other words, (¢)
ensures (b) in definition 1.9.

To get more familiar with the definition of a morphism we prove the following proposition.

Proposition 6.23. Let X/G and Y!/H' Y?/H? be orbit spaces and f!, /2 be two mor-
phisms, f1 : X/G — Y!'/H'and f? : X/G — Y?/H?. Assume that for each refinement
X! of X there exists a refinement X2 of X! such that condition (c) of definition 6.17 is ful-
filled for f! and f2. Then f : X/G — Y'/H' x Y?/H?, f([z]) — (f*([z]), f*([z])) isa
mor phism.

Proof. Conditions (a), (b) and (d) of definition 6.17 hold since they follow from the condi-
tions of f! and f2. Thus it remains to prove condition (c). Assume that (c) does not hold.
In this case there exist 0, & € X with dim(f1(0) Nf1(6)) = dim(fi(0)) = dim(f1(5))
such that fi(0) # fi(5). After refinement of X' we can assume that 0,6 € X1 with
|fi(e)\f1()] = 1 and f isinjective on o and 5. Therefore either f! or f? is injective
on o and & (if not, then dim(f,(c) N f1(¢)) = 0). Without loss of generality we can as-
sume that f! isinjective. One has dim(f! (o) Nf{(5)) = dim(f{ (o)) = dim(f}(5)), but
|fL(e)\fi(5)] = 1. Since f! is continuous, every refinement X2 of X! contains o and &
with dim(fi (o) Nf(5)) = dim(fi(0)) = dim(f{(5)), but [f{(o)\[1(5)| = L. Thisisa
contradiction to our assumption, and (¢) holds. O
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To see, why the assumption of the existence of a refinement X? for each refinement X of
X isnecessary we consider the following example.

Example 6.24. Let X be the digoint union of a copy of R? (which will be denoted by X;)
and a copy of R? where we remove the diagond {(z,y) € R?|x = y} (we denote by X, the
space R?\{(x,y) € R?|x = y}). For the image complexeswetake Y! = R and Y? = R.
The groups are defined to be the groups which contain only the trivial element. We define
themap ! : X — Y to be the orthogonal projection of X; and X, onto the z-axes, and
we define f2 : X — Y2 to be the projection onto the y-axes. Each of the three cones of X,
{(z,y) € Xy|lz < y} and {(z,y) € Xo|z > y} are mapped surjectively to Y'! and Y2, thus
(¢) holdsfor thisrefinement. The product f! x f? istheidentity on X; and X, and condition
(¢) can not hold since the diagonal ismissingin X,.

Remark 6.25. Thisexample showsthat a product of morphismsisnot necessarily amorphism
again.
Construction 6.26. Asinthe case of fans (construction 2.24 [GKM]) we can define theimage

orbit space. Let X/G beapurely n-dimensiona orbit space, and let Y/ H be any orbit space.
For any morphism f : X/G — Y/ H consider the following set:

7Z = {f(0),oiscontainedinacone& of X™ with f injectiveon &}

Note, that Z isin general not a polyhedral complex. Since Y is a polyhedral complex, it
satisfies all conditions of definition 1.9 and definition 1.10 except possibly (b) and (d) of
definition 1.9 (since there might be overlaps of some regions). Condition (b) is fulfilled by
condition (c) of definition 6.17. Furthermore, we can choose a proper refinement (which
satisfies (d) of definition 1.9) to turn Z into a polyhedral complex. We denote the weighted
polyhedral complex defined by all representatives of al classes [o] witho € Z by H(Z). By
condition () in definition 6.17 the group action of H on H(Z) iswell defined. Thus, we get
an orbit space H(Z)/H, which will be theimage orbit space f(X/G).

If moreover X /G is aweighted orbit space, we turn f(X/G) into a weighted orbit space.
After choosing arefinement for X and Y such that f(o) isaconeinY foreacho € X, we

set
Wr(x/Q) (o) = Z wx (o) - |A/cr/]/f(A[U})‘
[o]€X/GM):[f(0)]=]0"]

forany o’ € (H(Z))™.

Proposition 6.27. Let X /G be an n-dimensional tropical orbit space, Y/ H an orbit space,
and f : X/G — Y/H amorphism. Then f(X/G) isan n-dimensional tropical orbit space
(provided that f(X/G) isnot empty).

Proof. By construction, f(X/G) is an n-dimensional weighted orbit space. It remains to
show the balancing condition. The proof worksin the sameway asfor fansin [GKM] (notice
that by corollary 6.13 the balancing condition can be checked without taking into account the
group operation). O

Definition 6.28 (Irreducible tropical orbit space). Let X/G be atropical orbit space of di-
mension n. We call X/G irreducible if for any refinement X /G of X/G and any Y/G C
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X/G,Y # @ withdim(Y/G) = n thefollowing holds: if foral o € Y™ onehaso € X,
then Y and X are equal. (The equality holds on the level of orbit spaces, the weights can be
different. In the case of different weightsonehaswy = A - wy for A € Q # 0.) Equivaent
to this definition is to say that X/G isirreducible, if for any Y/G C X/G,Y # 0 with
dim(Y/G) =nand |Y|isclosedin |X|onehasY = X.

Corollary 6.29 (of proposition 6.27). Let X/G and Y/ H betropical orbit spaces of the same
dimensonninV = A®@Rand V' = A’ ® R, respectively, and let f : X/G — Y/H bea
morphism. Assumethat Y/ H isirreducibleand f (| X/G|) = |Y/H| (astopological spaces).
Then thereisan orbit space Y, /H C Y/ H of dimension smaller than n with |Y,| C |Y| such
that

(@) eachpoint @ € [Y]\|Yy| liesintheinterior of acone oy, € Y of dimension n;
(b) eachpoint P € f~!(|Y|\|Yy|) liesintheinterior of aconeopr € X of dimension n;
(c) for @ € |Y|\|Yo| thesum

Z mult(p) f

[Pl,Pe|X[:f([PD)=[Q]

does not depend on @, where the multiplicity mult p) f of f at [P] is defined to be

WX/G(UP)

e f = (an)

: ‘A,[ob}/f(A[oP})"

Proof. If we can show that f(X/G) = A(Y/H) (i.e. theimage of X/G isY/G and the
weights differ by the multiplication of A € Q) the proof works asin [GKM] for fans.

By assumption we have, that f(|X/G|) = |Y/H|, astopologica spaces. Further, by propo-
sition 6.27, f(X/G) isatropical orbit space. Because of irreducibility we have f(X/G) =
A\Y/H astropical orbit spaces. O

In contrast to the case of fans we need in corollary 6.29 the assumption f (| X/G|) = |Y/H]|.
Thisis due to the fact, that we use non-closed polyhedra. Let us see what happens if we do
not assume the above equality.

Example 6.30. Let G bethetrivial groupand X € RandY C R be open intervals of weight
onewith X G V. Let f : X — Y betheinclusion.

X

Y
/

m

Y if

Y e
7 N

Then, all conditions of corollary 6.29 but the equality f(|X/G|) = |Y/H]| are fulfilled and
the statement of the corollary does not hold.

Remark 6.31. Instead of assuming f(|.X/G|) = |Y/H|incorollary 6.29, it sufficesto assume
that f(|.X/G|) isclosedin |Y/H|.
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Definition 6.32 (Rational function). Let Y/G be atropical orbit space. We define arational
function ¢ on Y/G to be a continuous function ¢ : |Y'| — R such that there exists arefine-
ment (((X, | X, {mos}oex), wx), {M,}sex) Of Y fulfilling that for each face o € X themap
© om_!islocaly integer affine-linear (i.e. by refinements we can assume that ¢ o m ;! is
affine linear on each genera cone of Y). Furthermore, we demand that ¢ o g = ¢, for al
g €G.

Definition 6.33 (Orbit space divisor). Let X/G be atropica orbit space, and ¢ a rational
function on X /G. We define adivisor of ¢ to be div(¢) = ¢- X/G = [(UIZ', X, wy)] /G,
where w, is given as follows:

W¢ZX(k_1) — Q’
T = Z ¢O’()\0/TW(U)U0/T)_¢T( Z )‘U/TW(U)UU/T>

ocex (k) oceXx (k)
T<Oo T<Oo

(the A,/ are described in definition 6.9).
Remark 6.34. Thefollowing two statements can be proved analogously to the proof of propo-
sition 6.11.

1 The definition above is independent of the chosen A, /. (i.e. if we have different sets
of \'sfulfilling the definition of atropical orbit space, the divisor will be the same for
both sets of \’s).

2 Since | X,/ | - |G,| = |G| wehavethat |G| < oo and thus ¢ - X/G isatropical orbit
space.
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/ Moduli spaces of elliptic tropical
curves

In this chapter we show that the moduli spaces of tropical curves of genus 1 with j-invariant
greater than 0 have a structure of tropical (non-local) orbit space. We use this structure to
prove the known fact that the weighted number of plane elliptic tropical curves of degree d
with fixed j-invariant which pass through 3d — 1 pointsin general positioninR? isindepen-
dent of the choice of a configuration of points. The chapter consists of three parts. In the
first part we equip the moduli space of abstract tropical curves of genus 1 with a structure of
tropical orbit space. In the second part we do the same for the moduli space of parameterized
tropical curves of genus 1. In the last section we use corollary 6.29 to show the mentioned
independence of the point configuration.

As mentioned before, a difference between local orbit spaces and orbit spaces liesin the set
of isomorphisms (see chapter 3 and chapter 6). In chapter 5 the sets of isomorphisms we
used for the construction of the moduli spaces are induced by matrices. Thistime we take as
sets of isomorphisms the groups generated by these matrices. Unfortunately, this groups are
infinite and thus it is much more difficult to handle the sets of isomorphisms and we have to
restrict ourselvesto the case of dliptic curves.

7.1 Moduli spaces of abstract tropical curves of
genus 1

We construct amap from M, ,, to atropical orbit space in the following way. For each curve
C € My, let a bean arbitrary point of the cycle of C'. We define a new curve C' which we
get by cutting C' along a and inserting two leaves A = z,,,; and B = x,,,- at the resulting
endpoints (if we cut along avertex we haveto decideif the edges adjacent to the vertex which
are not in the cycle are adjacent to A or to B). Thiscurveisan n + 2 marked curve (of genus
0) with up to 2 two-valent vertices (at the ends A and B).

By 7 we denote the set of all subsets S C {1,...,n + 2} with |S| = 2. In order to embed

M, ,, into aquotient of R("2") we consider the followi ng map:

diStn : Ml,n — Vn/Gn

(C, L1y ... ,SL’n) — [(distr(ﬂfi, .Tj)){@j}g]’]
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) )
>
B

X xq

Figure 7.1: Construction of an n + 2-marked curve from an n-marked genus-1 curve.

where V,,, G,, and distr(z;,z;) are defined as follows. We denote by distp(xz;, x;) the
distance between z; and z; (that isthe sum of the lengths of all edgesin the unique path from
z;tox;)inC,wherex,; = Aand z,» = B.

The vector space V,, isisomorphic to R("Z)=" and isgivenby V,, = R(ngz)/(CI)}l(R"H <
s >) (Recal ®! from construction 5.1) where

s € R("*") isavector such that

—1 ifi=n+4+20orj=n+2andi#n+1#j,

1 ifi=n+4+lorj=n+landi#n+2#j,
Sij =
0  otherwise.

The group G,, is generated by the matrix / and the matrices M,,, p € {1, ..., n}, where

Loif ({6, 5}, {k,1}) = {m,n+ 1}, {m,n+2}), m <n,
or ({7,757}, {k,1}) = {m,n+2},{m,n+1}), m <n,

I gy, k) = or{i,j} = {k,l} andi,j & {n+1,n+ 2},
orif {i,j} ={n+1,n+2} = {k,1},
0 otherwise.

(Inparticular 1(; j w0y = id for i, j,k, 1 < nand I(; ,11),6n42) = < (1J (1) ))

(1 it {ij) = {k 1}

or ({t,j}, {k, 1}) = ({p,n + 2}, {n + 1,n +2}),
or ({t, 1, {k; 1}) = ({p, s}, {d,n +1}), 5 # n + 2,
or ({i, 7}, {k,1}) = ({p, j} {psn +2}), T #n+2,
Moo or ({i; 7}, {k,1}) = ({p, j}, {n + Lin +2}),
pi{&g), (kd) n+l#j#n+2

-1 it ({s,5},{k,1}) = {p,n+1},{n+1,n+2}),
or ({i,7}, {k,1}) = ({p, 3}, {d,n+2}), 5 #n+1,
or ({4, 7}, {k,1}) = ({p, i} {p,n + 1}), j #n+ 1,
0 otherwise.

\

(M, written as amatrix can be found in the proof of proposition 5.7 for s = 1.)

The orbits of al elementsof < ®! (R") > under G,, aretrivial, M, (s) = sand I(s) = —s.
ThusV, /G, iswell defined. By the following lemma, the map dist,, is also well defined.
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Lemma 7.1. Let C and C‘*~ be two curves resulting from two different cuts of a curve C'.
Then, the images of C' and C* arethesamein V,,/G,,.

Proof. Let us fix an orientation o of the simple cycle in C' and let dist(C)) and dist(C*)
be the images under dist of C and C*. The orientation o induces an orientation of the
edges connecting A and B of C' and C*. By applying the map I to dist(C) and dist(C*) if
necessary we can assume that the induced orientation goes from A to B. Denote by a, A, B
(resp. a*, A*, B*) the cut and the inserted edges corresponding to curve C' (resp. C*). We
denote by d the distance of B to A* in the curve cut a a and a*. Let L be the subset of

marked points of the component containing BA*. Then thefoII0W| ng equality holds:

dist C* H M, - dist(C) +d - s.

peL
L]

Remark 7.2. Themainideain our definition comesfrom therational case (see[GKM]). After
cutting the curve we get a new curve without cycles. Thus, the distance of two pointsin the
new curveiswell defined. Then, asin the rational case we have to mod out the image of @} .
In addition we haveto get rid of al the choices we made during the construction of arational
curve. These choices can be expressed by the following three operations.

(@) The shift of the point ¢ on one edge of the cycle (which corresponds to the addition of
an element of < s >).

(b) Interchanging A and B, which corresponds to the matrix 1.

(c) The point a jJumps over the vertex adjacent to an unbounded edge p. The matrix cor-
responding to this operation is M,. If the point a jumps over a bounded edge E, the
matrix corresponding to this operation is the product of all matrices M; with i con-
nected with £ by edges not intersecting the cycle.

To get apolyhedral complex we put
v,:V, — V,/G,

and
X, = U, Ydist,(My,)).

Remark 7.3. Let X, ,, beasin construction 5.1. Then X,, = ¥, *(\0,,(X1,)).

As general polyhedrons we take the cones induced by the combinatorial cones in M ,,,
defined in Remark and definition 2.6. Thus, Gz, isagroup acting on .X,, and we can consider
the quotient topology on the orbit space X,,/G,, (see definition 6.1). To have a weighted
orbit space we choose al weights to be equal to one. To show that the spaces M, ,, have a
structure of tropical orbit space, we have to show that M, ,, and X,,/G,, are homeomorphic
and that X, /G, fulfills the balancing condition.

Proposition 7.4. Let X,,, G, and M, ,, beasabove. Then S : M,,, — X,,/G,, (C, z1,
-y T) = [(distr(z4, ;)] i, j3e7 1S @ homeomor phism.
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Proof. Surjectivity isclear from the definition, and S is acontinuous closed map. Thus, it re-
mainsto show that S isinjective. To show this, we prove that out of each representative of an
element [z] in the target we can construct some numbers which are the samefor al represen-
tatives of [z]. If these numbers determine a unique preimage, the injectivity follows. For this
we take the following number j and the set d; ;, which are independent of the representative:

J = Tnt1.n+2 = length of the cycle,
di = (Tipy1+ Ting2 — j)/2 = distance from i to the cycle (not well-defined mod ®! (R™)),

dik = {(@int1 + Trny2) — di — di. = jI, 7 — [(Tin1 + Trni2) — di — dy — j|} = distances
of 7 and k on the cycle.

If there are marked edges iy, ...i, with d,, ;, equals {0, j} foral 1 < s,t < r, then we have
to determine the distances these edges have one to each other. But, since these distances
do not depend on the cycle, the edges in X,, encoding these distances are invariant under
G,,. Thus, we can reconstruct these distances, by considering the projection (not necessarily
orthogonal) of [x] to the fixed part of the cone (and thus the fixed part of each representative)
in which [z] lies. The same can be done for two edges i;, i» which have distance zero from
each other to determine their distance to the cycle. Thus, all distances are given, injectivity
follows and we are done. O

Proposition 7.5. The weighted orbit space X,,/G,, isatropical orbit space.

Proof. To show the balancing condition we haveto consider the codim-1 cones and the facets
adjacent to them. If there is more than one vertex on the cycle of a curve corresponding to a
point on a codimension 1 face F', then either the stabilizers of the adjacent facets are trivial
and we are in the same case as for the M, ,,, or the cycle of each curvein the face F' consists
of two edges of the same length. In the second case there are exactly two facets adjacent to
F which are opposite to each other. Since the stabilizers are trivial the balancing condition
holds. If there is only one vertex on the cycle of a curve corresponding to apoint in F', then
the stabilizer of F'is{I, 1}, theidentity and I (see above). The curves corresponding to the
pointsin theinterior of the codim-1 face have exactly one 4-valent vertex. This vertex can be
adjacent to the cycle or not. Let us consider these two cases separately. The second caseis
trivia (the stabilizers are the samefor all three facets and the balancing condition is the same
asfor M, ,), thus assume, that the 4-valent vertex is at the cycle. Qualitatively, the codim-1
face, which we call 7, corresponds to a curve asin the following picture:

A 1
B )

Figure 7.2: A tropical curve with 4-valent vertex.

By assumption, there is only one vertex on the cycle. We only consider the case with two
ends z; and x5, because if we have atree instead of x; the calculation is the same for each
leaf of thetree. To verify the balancing condition for tropical orbit spaces given in definition
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6.9, we have to consider the three facets around the face 7. Let o (resp. o») belong to the
insertion of the edge with A and x; (resp. A and ;) on the same side. Then, o; and o5 liein
the same G .-orbit. Thus, if we use the same notation as in the picture we get the following
condition:

there exists Ay, /7, Aou/r > 0, Mgy /r + Asy/r = 1 sUCh that

d(.Tl,.TQ) 1 1 0
d(zy, A) 0 1 1
d(z1, B) 1 0 1
d(zq, A) ' Ao | g [T | g [ F3 | €V
d(z2, B) 0 1 1
d(A, B) 1 1 0

This condition is fulfilled for A\, ;; = A,,/r = % Thus we have indeed a tropical orbit
space. ]

Remark 7.6. In example 2.9 we have seen the topological picture of the moduli space M 5.
Unfortunately it is difficult to give a picture of the corresponding polyhedral complex since
X, hasinfinitely many cones. Here is a description of it. Let the vector entries be labeled as
in the previous proof, and let C, Cs, C's, C,y be the cones corresponding to the four different
combinatoria cones in the picture of example 2.9, where (' is the left, C5 the second left,
(5 the third left and C'; the right combinatorial type. The group and representatives of the
cones (4, Cy, C5, Cy (Iabeled by the same name) are the following:

100000 11 -1 -1 1 1
001000 01 0 0 0 1
G_<010000 00100—1>
0ooo0010f oo o 10 0 |/)
000100 00 0 0 1 0
00000 1 00 0 0 0 1
1 1 0
1 1 1
1 1 0
Cr={a- 5 |b> 0}, Cy={a- 5 +5b- 1 la,b € Rsg,a+b > 0},
0 0 0
2 2 1
0 0 0
1 1 1
0 1 0
C3:{b 1 |b>0}, C4:{Cl' 1 +b- 1 ‘CL,bERzo,b>O}.
0 1 0
1 0 1

All other cones of the underlying polyhedral complex are given by ¢{C;} for ¢ € G and
ie{1,2,3,4}.
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Chapter 7: Moduli spaces of eliptic tropical curves

7.2 Moduli spaces of parameterized tropical curves
of genus 1

Now we define a tropical orbit space corresponding to the parameterized genus 1 tropical
curvesinR".

Inthe case of rational tropical curveswe can simply take MVE%E(RT, A) = M§R xR" because
to build the moduli spaces of rational tropical curvesin R" it suffices to fix the coordinate of
one of the marked ends (for example ;). For the case of genus 1 curvesthe situationis more
complicated. If wefix the combinatorial type of the curve, the cycleimposes some conditions
on the lengths. In order to get a closed cycle in the image, the direction vectors of the cycle
edges multiplied by their lengths have to sum up to zero. Furthermore, we have to get rid of
cellswhich are of higher dimension than expected. We will see that these operations (closing
of the cycle and getting rid of higher dimensional cells) can be expressed by some rational
functions.

Let V,°R . = Vv x R” x Z". We define G tobe G, acting on Vi as Gy before, onb € R”
(that |sthe image of x;) asidentity and onv € Z" (the direction of the edge A) asfollows:

I(v) = —v, M, (v) = v —v(p).

As topology on v;?gm, we take the product topology of Vi, Z" and R", where we consider
7" with the discrete topology and R” with the standard Euclidean topology. We define Z to

be the subset of Z" given by |v,| < 3", - Jws|, and put

\I]n,A ro. Vrlag ,r - Viag T‘/GN
and .
Xaar = Voa ([Xn x R™ x ZR)).
The purpose of the rational functions ¢; in the next proposition is to make sure that the ith
coordinate of A ismapped to the ith coordinate of B.
Proposition 7.7. For all 0 < 7 < r, we have a function

(bi : Xijz,r - R
N
1 1 )
(agi2y,- - agn1,N42), 0, 0) — = max{j: 5 Z a{Lk} — a{k,NH}) v (1)
k=

+ ((1{1,N+2} — QN +1,N+2}) (—v(i))
+(ag,ni1y)v(i))

1 N

—50Q_ (apm — agnz) - u(i)

k=2
+ (aqnt1y — vt vtay) ()
+(ag,n+2y) - (—0(9))))}

which is rational and invariant under G'" (v(i) = i-th coordinate of v, v, = v(z}), See
definition 2.11).
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Remark 7.8. The maps ¢, defined in proposition 7.7 are given by % max {ev(A); — ev(B),,
ev(B); —ev(A);} (see proposition 7.13).

Proof of proposition 7.7. We haveto show, that ¢; isinvariant under the addition of c-(s, 0, 0)
(we identify (s,0,0) with s) for ¢ € R and the actions of 7 and M,,. Letz € X} . and

For ¢ € R, the value of ¢ - s + z under ¢; isd + 31, (—c) - v(i). The second part

(Eff:z (—c) - vg(7)) is 0 due to the balancing condition, thus the value of z and ¢ - s + x is
the same as before.

For I we get the same, because

¢i(1(a{1,2}7 <+ oy O{N41,N+2}, b,v))

1 1 &

— 2 max{:l:(2(; (a{l,k} — a{k7N+2}) Uk(l)

+ ( 1 N+1} — Q{N+1, N+2}) (—=(=v(2))) + (aq,n+2y) - —v(7))

1
——(Z (@) — agen+1y) vi(d)

(a{1 N+2} — Q{N+41, N+2}) (—v(i)) + (a{l,NJrl}) (=(=v(@)))))}

1 N

= —- max{:l:(—(§( (a{l,k} - a{k,N+1}) Uk(l)
k=2

(\V]

+

DN | =

+ (agnr2y — agverngoy) (—0(i) + (ap,nay) - v(0))
—%(Z (@) — agen+2y) vi(d)

+ (a{l N1} — aqna1n+2y) 0(0) 4 (agny) - (—0())))}
= ¢z(a{1,2}, <oy AINF1,N 42} b, U)-

It remains to show the invariance with respect to M/,. Let us consider first the case p # 1.
We get:
1
d+ 4 (((a{l,NJrl} + agp N42} + A{NF1,N+2} — O{1,N42} — A{p,N+1})
+(agnt1,n+23)) - 0p(2) + (apnroy — apver,nr2y) (0p(2) + (aguns1y)
(=vp(4)) — ((a{l,N+1} + agp,Ny2) F AN1,Nt2) — A{1N12} — Q{pN+1})
_(a{N+1,N+2})) ‘Up(i) + (a{1,N+1} - a{N+1,N+2}) (Up(i)) - (a{l,N+2}) : (Up(i)))
=d.

Inthe casep = 1, we have:

N
1 .
d=+ Z( E (ak,N+1 + a1, N+2 + Q{N+1,N+2} — Afk N+2} — a{l,N+1}) : Uk(l)+
k=2
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(ant1n+2) - (=0(i) + (any1n42) - (—v(9))

N
— Z(%,NH + a1, N42 + QN1 N2} — O N+2) — QN1 )) - Ok(1)—
k=2

(—ani1v42) - (0(7) = (avi1v42) - (—0(0))) = d.

Thus, ¢, isinvariant. O

Remark 7.9. We multiply thefunction by % becauselocally the condition that the cycle closes

leads to the function max {(% Z]kVZQ (a{Lk} —a{k,NH}) Uk(l) + ((1,{1’]\[_,_2} —a{N+17N+2})
(—v(7)) +(aq,n4+13) -v(i),0}. We changed the function slightly because of the symmetry
we need for the orbit space structure.

Now we can define the tropical orbit space we are interested in by constructing the tropical
orbit space cut out by the rational functions ¢;:

MP (R A) = ¢y, (X /GRP), see definition 6.33.

1,n,trop

The set of conesof M@ . (R", A) isdenoted by X)*} ... Therational functions assure that

1,n,trop

A and B are mapped to the same point.
Example 7.10. We consider the following map:

X2

Ty

To ensure that &, defined by h(z3) = (), h(z1) = d- (3), h(z2) = d- () + a- (}) and
h(zy) = c- (é) isthe map of atropical curve (I, z1,...,z4,h) weneed a = cand b = d,
which is the case for elements of M® . (R", A) due to the fact that the direction vectors

multiplied by the lengths sum up to zero.

The rationa functions ¢, define weights on the resulting facets on the divisor. Since the
stabilizers are finite, the divisor is a tropical orbit space as well. Consider the case r = 2.
The weights we get from the definition of the rational function are the following (afterwards
we consider one of the three cases more explicitly).

(@ Theimage of the cycleistwo-dimensional.
The condition, that the cycle closes up in R? is given by two independent linear equa-
tionsa; and a; onthelengths of the edges of the cycle (whichisasubset of the bounded
edges which we denote by I'}); thus, the weight is given by the index of the map:

(2)zwonz

a2
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(b) Theimage of the cycleis one-dimensional.

Because of the chosen rational function, there has to be one four-vaent vertex on the
cycle. Otherwise, the weight would be zero on the corresponding face. Let m - « and
n-uWwithu € Z?,m,n € Z, and ged(n, m) = 1 be the direction vectors of the cycle.
If we denote by v € Z? the direction of another edge adjacent to the 4-valent vertex,
theweight is | det(u, v)|. If n = m = 1 and no point lies on the cycle, the stabilizer of
the corresponding face consists of two elements. Thus, the weight of the facet has to
be divided by 2 in this case.

(c) Theimageof the cycleis0-dimensional. Dueto the rational function we get the weight
1 - |det(u,v)]| if there is a 5—valent vertex adjacent to the cycle, u, v are two of the
three non-cycle directions outgoing from the vertex. If thereis no 5—valent vertex the
weight would be zero by the definition of the rational function.
Example 7.11. Let us consider (b) more explicitly. First we show that if there is no four-
valent vertex on the cycle, the weight is 0. The curve corresponds to a face F' in Xifj'gg
which is contained in some facets. The pointsin those facets correspond to curves. Since the
vertices are three-valent, all edges of the cyclesin this curves are in a one-dimensional affine
linear subspace of R2. Since we intersect by two rational functions the weight we get is 0
(let X bethe star build by the faces containing F in )N(ifj‘gg. The map ®, (resp., ®,) assures
that for al pointsof &, (X) (resp., ®(X)) h(A) = h(B). Sincerational functions commute,
we have that ¢, isconstant on ®,(X)). Thus, we consider the case where one of the vertices
has valence four (see upper figure in figure 7.3) and denote the corresponding face F'. The

A B

A A B / B
B B A A
Figure 7.3: The weight of a curve with one-dimensional cycle.

lower pictures in this figure are the curves corresponding to the four facets in f(}fzz which
contain F'. Let d bethe direction vector of the left edge of the cycleand let « be asin (b). For
simplicity assume that u = (“1) Applying ¢, on the left two facetsin figure 7.3 leads to a
face of weight | ged(uy, d1)| where @, ensuresthat A; = B; on thisface. One can calculate
that applying @, leads to F' with weight |ng o - dy| times the weight | gcd(uq, dy)|. By
the balancing condition, one has | det(u, v)| = | det(u d)| and we get the stated weight for
(b) (in particular the length of the left cycle edge becomes 0).

Remark 7.12. The numbers calculated with the help of rational functions differ from those
stated in[KM]. Thedifferenceliesin (c). Theweightsproposedin [KM] are%-(| det(u, v)|—
1). Since both weights lead to a balanced complex, the union of the facets where the image
of the cycleis0-dimensional (together with itsfaces) isatropical orbit spaceif we define al
weightsto be 1.
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7.3 Counting elliptic tropical curves with fixed
j-invariant
To achieve our goal of proving independency of the position of the points, when one counts

certain eliptic tropical curves with fixed j-invariant, we want to use corollary 6.29. Thus,
wefirst give the definition of evaluation maps which are used to impose the point conditions.

Proposition 7.13. Fori=1,...,n themap

evi:XL"’}bA’r — R
(T, z1,...xn,h) — h(x;)

isinvariant under the group G'2b.

Proof. The map ev; isgiven by

N
1
evi(r) = b+ 5 (Z (agi ey — aqriy) vk + (e N1y — agvgry) (0)
k=2
+(aq,N+2y — agiN+23) - (—U)> : (7.1)

Recall that b = h(z,). Itisinvariant under s, because the value added by s to the differences
A{1,N+1} —Q{N+1,i} and a{1,N+2} — Q{i N+2} is0.
The map I changes only the order of the two last summands.

Thus, it remains to consider the map M,,. We havethreecases. p = 1,p =4,1 # p # i. The
sum we get differsfrom (7.1) by the following expressions. Case 1 # p # i:

1

B} ( {(1,N+1} T Q{p N+2} T QN+1,N+2} — A1, N+2} — Q{p,N+1} —

(a{i,N—i—l} + a{p N+2} T A{N+1,N+2} — Ofi N+2} — CL{p,N+1}))  Up

1 1
+§ ((1{1,N+1} — a{N+1,i}) (—vp) + 5((1{1,N+2} — a{i,N—i—Q}) - (v,) = 0.

Casep =1:
N
Z (a{k,NJrl} + aq N+2) + GN+1,N+2} — Ak, N+2} — a{1,N+1}) - Ut
k=

2

N | —

1 1
5 (—CL{N+1,N+2}) (v =)+ 5 (Cb{l,N+1} - a{N+1,i}) (—v1)

1 1
+§ (agnii,n42}) - (v 4v1) + 5 (aqin+2p — agnt2y) - (v1) = 0.
The last equation is true, because
N
Z(al,N+2 +antin+2 — arn+1)U = 0,03 =0
k=2
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and the rest of the sum

>

k=2

1
(a{k,N+1} - a{k,N+2}) “ U+ 5 (_a{N+1,N+2}) - (v)

DO | —

DO | =

+5 (agvinagy) - (—U))

isequal to
WA
5 <Z (@{1,k} - a{k,NJrl}) v + (CL{LN+2} —CL{N+1,N+2}) (—v)

k=2
1 N
+(agniny) - “) T (5 (Z (a1 — agrN+23) Uk

k=2

+ (a{1,N+1} - a{N+1,N+2}) v+ (a{l,N+2}) . (—U)> )

which is 0 because of the rational function which we have used to construct X)) . (see
proposition 7.7).

Casep = i:
| N
5 Z - (a{k,NH} + agiN+y2} T O{N11,N+2} — Ok, N+2} — a{z’,NJrl}) - Ut
k=2
1 1
5 (a{N+1,N+2}) (v—uv) + 5 (a{1,N+1} — a{N-l—l,i}) (—v;i)
1 1
+§ (—agvs1vey) - (0 +v) + B (agun423 — aginay) - (vi) = 0.
(Same reason as above.) O

Definition 7.14 (Evaluation map). Fori =1, ...,n the map

evi : ME . (R",A) — R"

1,n,trop

(F, T1,...TN, h) — h(ZL‘Z)
is called the i-th evaluation map.

Proposition 7.15. With the tropical orbit space structure given above the evaluation maps
evi - MPh oo (R7, A) — R” are morphisms of orbit spaces (in the sense of definition 6.17

and R” equipped with thetrivial orbit space structure).

Proof. Continuity isclear, thuswe have to check conditionsa — d in definition 6.17. Condi-
tion a is clear since R” is the unique cone of the target space. Condition b is the same as the
case of fans treated in [GKM]. Condition c is clear since each cone is mapped to the whole
R" and the last condition follows from proposition 7.13. O
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Proposition 7.16. Themap f = evy X -+ X ev,, X j : ML (R" A) — R jsa
mor phism of orbit spaces.

Proof. For each conein MY . (R", A) one has that the strict inequalities given in defini-
tion 1.1 are coming from the limit of the j-invariant to 0. Therefore, condition ¢ of definition
6.17 isfulfilled. Thus, the statement follows from proposition 7.15 and the fact that j is the

projection on the coordinate Ry 4 p;. O

Theorem 7.17 (Theorem 5.1, [KM]). Let d > 1 and n = 3d — 1. Then the number of
parameterized labeled n-marked tropical curves of genus 1 and of degree d with fixed j-
invariant which pass through n pointsin general position in R? isindependent of the choice
of the configuration of points (the multiplicity of a curve is defined to be the weight of the
corresponding conein M . (R2 d)).

1,n,trop

Proof. For n = 3d — 1 points M} (R? d) has the same dimension as R x R.,.
Since all open ends are mapped to j-invariant equal 0, surjectivity follows by the balancing

conditionin RU™ x R.,. Thus, proposition 7.16 and corollary 6.29 imply the theorem. [J

When we construct the orbit space structure of the moduli space of parameterized curves we
need the component Z" for technical reasons. But, in fact, the direction v of the edge A is
unigue for given lengths of the edges.

Proposition 7.18. Let (a19, - .., ant1.n+2, b, v) bein M2~ (R™ A). One hasthat (a; o,

1,n,trop

Co ang1 N2, boox) InMED L (RTA) ifand only if v = v

Proof. Assume that (a1, ...,ayn1n12,b,0%) € ML~ (R" A). The closing up of the

1,n,trop

cycleisgiven by the equalities (compare with proposition 7.7)

NE

(a{l,k} - a{k,NH}) vg (i) + (a{l,N+2} - a{N+1,N+2}) (—v* (i) + (a{l,NH})U * (1))

=

=2
N
= (agry — ageveay) (D) + (apvry — apvenvray) v () + (g ney) - (—vx (i)
k=2

Put w = v — v*. Since the equality holds for v as well, we get
(CL{l,N+2} - CL{N+1,N+2}) (—w(i)) + (agq,ng1y)w(i))
= (aqn41} — avarn42y) () + (ap N42y) - (—w(i))

which is equivaent to
2a{N+17N+2}w(i) =0.

Since the cycle length is positive one has w(i) = 0 and therefore v = v, O
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8 Correspondence theorems

In the previous parts of the thesis we introduced a theory of (local) orbit spaces and used this
theory to build moduli spaces of tropical curves. The am in constructing moduli spaces is
to get a better understanding of the parameterized objects. Besides studying a mathematical
domain for its own, it is aways interesting to find connections between different domains.
This chapter gives a hint on a connection between certain algebraic and tropical objects. In
particular, we are interested in the connection between elliptic algebraic curves and elliptic
tropical curves.

We start the chapter by stating some known facts. For our purpose, the correspondence
theorems are of great interest. These theorems provide bijections between algebraic curves
which satisfy certain properties and tropical curves which satisfy corresponding properties
and are counted with multiplicities. (Corresponding properties mean for example that the
genus of the algebraic and the tropical curves are the same.) Since G. Mikhalkin was the
first who discovered a correspondence theorem, we state his result first and then give as well
some other results which we need for our work. In the second section we prove a new corre-
spondence theorem for elliptic curves with given big j-invariant. In contrast to Mikhalkin's
correspondence theorem, it is a correspondence between embedded tropical curves and al-
gebraic curves instead of parameterized tropical curves and algebraic curves. The first cor-
respondence theorem for éliptic curves with fixed j-invariant was obtained by |. Tyomkin
[T].

8.1 Mikhalkin’s correspondence theorem

In correspondence theorems we associate to each tropical curve a multiplicity. This multi-
plicity isthe number of algebraic curves which correspond to a given tropical curve. In par-
ticular, the multiplicities depend on the problem. Therefore, we start this section by defining
amultiplicity we need.

In this chapter all parameterized tropical curves arein R?.

Definition 8.1 (multiplicity of avertex). Let (I, xy,...,xy, h) be a parameterized tropical
curve and let C' = 1(T). For a 3-vaent vertex V' of C' with |A~1(V')| = 1, denote by e,
and e, two different edges adjacent to (V). The multiplicity of C at V' is defined to be
lv(e1, V') Av(eq, V)| (the area of the parallelogram spanned by the two vectors v(e;, V') and
v(eg, V).

Remark 8.2. By the balancing condition the multiplicity of a vertex V' in definition 8.1 is
independent of the choices of e; and e».
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Definition 8.3 (multiplicity of acurve). Let (I',xy,...,zy,h) be a parameterized tropical
curve and let C' = h(T"). We define mult(I") to be the product over the multiplicities of all
3-valent vertices of C' from definition 8.1.

Example 8.4 (multiplicity). Let C' be the image shown in figure 8.1 of a parameterized trop-
ical curve (I, xq,...,z4). The multiplicity of vertex V; is 1 and the multiplicity of V5 is 3.
Thus, mult(I") = 3.

Figure 8.1: The image of a parameterized tropical curve.

A correspondence theorem provides a bijection between curves which satisfy given proper-
ties. In particular the number of tropical curves and the number of corresponding algebraic
curves do agree. In the following we define those numbers.

Definition 85. Let g € Ny, and let A = (vy,...,v,) € (Z*\{0})* be the degree of a
parameterized tropical curve. For a configuration P = {p1,...,ps+4-1} C R? of genera
points we define the numbers N7 (g, A, P) to be the number of parameterized tropical
curves of degree A and genus g passing through P and counted with the multiplicity of
definition 8.3. (Remark: Each parameterized tropical curve in Ngﬁgp(g, A, P) has only 3-
valent vertices.)

Remark 8.6. A purely tropical proof of the fact that the numbers Nggp(o, A, P) do not

depend on P is given in the proof of theorem 5.1 in [GKM]. For arbitrary genus the inde-
pendence of P follows from theorem 8.19.

To define the algebraic numbers we first give the definition of the degree of an agebraic
curve.

Definition 8.7 (complex degree). A complex algebraic curve Z C (C*)? is defined by a
Laurent polynomia f : (C*)* — C, f(z) = 3,4 ax’, with A C Z? finiteand a; € C* for
1 € A. The Newton polygon of f is caled the degree of Z. If the Newton polygon is the
convex hull of (0,0), (d,0) and (0, d) we say that f has degree d.

Remark 8.8. Our definition of degree is not standard, but it is chosen to have a correspon-
dence to the tropical degree.

Example 8.9. Figure 8.2 represents the Newton polygon of the complex algebraic curve given
by the polynomial f = 223 — 422y + 32° + xy? — 2y — x + 4y® + 1in (C*)2.
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Zo,1

Z1,0
1

Figure 8.2: The Newton polygon of f = 22 — 422y + 322 + xy?® — 22y — o + 41° + 1.

Definition 8.10 (Dual vectors). Let A = (vy,...,v,) be amultiset of vectorsin Z?, where
Z* C R*isoriented. By the dual vectors of A we mean the multiset (vf,...,v!,) of vectors
in Z? where the angle between v; and v} is —7 /2 (not 7/2) and the lattice lengths of v; and
v, arethesamefor 1 <i < n.

Lemma and Definition 8.11. Let A be the degree of a parameterized tropical curve. The
dual vectorsto A form a unigue (up to translation) oriented cycle which describe a convex
polygon D with verticesin Z?; we call D the Newton polygon dual to A.

Proof. By the balancing condition the dual vectors sum up to zero and therefore we can
construct a polygon out of them. Since we require the polygon to be convex, it is unique up
to tranglation. O

Example 8.12. Let (I', z4,..., 29, h) be a parameterized tropical curve and let h(I") be the
figure shown in 8.3 (all weights are 1). The Newton polygon dual to the degree of I is the
same as shown in figure 8.2.

Figure 8.3: A tropical curve of degree 3.

Notation 8.13. For thedegree A of a parameterized tropical curve we denote the dual Newton
polygon by AVY.

The goal isto have a correspondence between curves which satisfy some properties. Besides
the genus and the degree the property the curves haveto fulfill isto passthrough given points.
In definition 8.5 we defined the numbers of tropical curves satisfying given properties. Thus,
we now define their algebraic counterparts.
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From now on assume that the tropical degree consists only of primitive vectors.

Definition 8.14. Let AV be aconvex polygon with verticesin Z2. We define #AY = 0AY N
72,

Remark 8.15. If the degree of atropical curve consists only of primitive vectors then #A
(see chapter 2) is the same as #A"Y for A being the degree of atropical curve and for AY
being its dual Newton polygon.

Definition 8.16. Let Q = (q1, - - -, gxav+4-1) C (C*)? beaconfiguration of pointsin general
position. We define N (g, AV, @) to be the number of irreducible complex curves of genus
g and degree A" passing through Q.

Those numbers a priori depend on ). The following proposition is a useful fact and can be
found for examplein [CH].

Proposition 8.17. Take the notation of definition 8.16. For generic @ the numbers N (g,
AV, Q) arefinite and independent of ). Therefore we get invariants N (g, AY).

By now we defined the objects in algebraic and in tropical geometry we want to connect by
a correspondence. To state the correspondence it lacks only a connection between the point
conditionsin algebraic geometry and thosein tropical geometry. For thiswe use the function
given in the following definition.

Definition 8.18 (Log). Let Log be the map from (C*)? to R? given by Log(z) = (log |1/,
log |z5|) for adl z € (C*)2.

Theorem 8.19 (Mikhalkin, [M1], theorem 1). For a generic configuration P of n = #A +
g—1pointswehave NIt (g, A, P) = N™ (g, A). Furthermore, there exists a configuration
Q C (C*)? of #A + g — 1 points in general position such that Log(Q) = P and for a
parameterized tropical curve (', 24, ..., xy, h) of genus g and degree A passing through P
we have mult(T") distinct complex curves of genus g and degree AY passing through @. The
curves are distinct for different 4(I") and irreducible. (Recall: We assume that the degree of

the tropical curve consists of primitive vectors and thus #A and #A" are equal.)

The notable fact stated in theorem 8.19 can be used for counting algebraic curves. After
tranglating the algebraic problem into tropical geometry one can use for examplelattice paths
(see[M1]) or floor diagrams (see [BM]) to count tropical curves. By the correspondence the
algebraic problem is solved as well.

Example 8.20. There is one parameterized tropical curve of degree 2 and genus 0, passing
through 5 general points. This curve correspond to one algebraic curve, which is the only
curve of degree 2 passing through given 5 points (see figure 8.4).

Remark 8.21. In fact, the proof by G. Mikhalkin of theorem 8.19 contains as well the infor-
mation how to assign a tropical curve to an algebraic one. He calculated certain Hausdorff
limits of curves. For this one defines for ¢ > 1 the following map from (C*)? to (C*)?

_1 X 1y
Ht . (l‘,y) — (|x’|10£§(t)—’ |y|log(t)_).
|| ||
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2

Ps3

b1 p2

Figure 8.4: The degree 2 and genus 0 parameterized tropical curve passing through the points
P = {p17 cee 7p5}'

Take the assumptions and notations from theorem 8.19 and let ¢ > 0 be sufficiently small.
For sufficiently big ¢ there are mult(I") algebraic curves mapped to the e-neighborhood of
h(I") under Log o H,.

Besides the correspondence theorem found by G. Mikhalkin there are some other correspon-
dence theorems. To state one of them we change our base field to the field given in the next
definition.

Definition 8.22 (valuation). The field of locally convergent Puiseux series is by definition
the field K of locally convergent power series which is a subfield of |J>2, C((t'/™)) (i.e.
for Y cpet” € Kwithe, € Conehas ) . lc.[t" < oo for sufficiently small ¢). We
define val : (K*)” — R”" to be the Cartesian product of the valuations val : (K*) — R,
D reho cith/™ v —ko/n, where ¢, € C and ¢, # 0. If Z is an algebraic curve in K? we
define val(Z) to be the closure of the valuation of Z N (K*).

Theorem 8.23 (Mikhalkin, Shustin). Let K be the field of locally convergent Puiseux series,
and A be the degree of a plane tropical curve. Let P bea set of #A + g — 1 = n generic
pointsin R? and let Q C (K*)? be a set of n different points in general position such that
val(Q)) = P. For each plane parameterized tropical curve (I, z4, . .., z,, h) of genus g and
degree A passing through P, there exist mult(T") distinct plane algebraic curves in K? of
genus g and degree AV, which pass through @) and are mapped to i (I") under val.

A proof can be found in [Sh] (Theorem 3).

Particularly related to our work is a work done by I. Tyomkin. Since we need again some
preparations to quote the result we state the necessary definitions.

Definition 8.24 (special curves). Let (I, x4, ..., xy, h) be aparameterized tropical curve. If
" hasonly vertices of valencethree and if the lengths of all bounded edges and the position of
al verticesarerationa we call the parameterized tropical curve special. By multiplying these
rational numbers by the least common multiple of the divisorsof al fractions we assume that
all verticesof h(T") (resp., lengths of edges of T') arein Z? (resp., in Z).

The aim of definition 8.24 is on one side to use the affine structure of the edges for the
definition of amultiplicity. On the other side, if an elliptic tropical curveis specia, we have
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a correspondence between its j-invariant and the j-invariant of the corresponding algebraic
Curves.

Definition 8.25. Let (I, x1,...,xzn, h) beaspecial curve, let e bean edgeof I', and let V' be
avertex of e. The lattice of the tangent space of i (e) is denoted by N.. The lattice length of
v(e, V') in N, isdenoted by I(e).

Definition 8.26. Let (I', z1,...,xy,h) be aspecia parameterized n-marked tropical curve
of genus 1 and fix an arbitrary orientation for each bounded edge such that the cycle in
I" with this directions gives an oriented cycle. We denote by W the set of vertices of T,
by W" the set of vertices adjacent to z1,...z,, by E° the set of bounded edges and we
put W/ = W\W". Define (e, V) to be —1 (resp., 1, resp., 0) if V. € W, e € E° and
V is the initial point of e (resp., V is the end point of ¢, resp., V' is not a vertex of e).
Let 3 be the group morphism ©yepw (K*)? @ @ecpe(Ne) @ K* — @ocpe(K*)? given by
Byv) = Peep (zzlivz) and B(y.) = (% ( )) (the labels VV and e denote the entry in the

yes '@
direct sum for V. € W and e € EY). L2et {e1,...en} be the set of edges forming the
cycle. We put § : @yew (K*)? @ @eepp(N,) @ K* — K* with 6(yy) = 1, 6(y.) = e
(Ne @ K* =K*)ife € {ey,...e,} andd(y.) = 1 otherwise. Furthermore, we define a map
id,, : @Vew(K*)Q D Becpp (Ne) ® K" — Dvewn (K*)Q, glven by ldn(y\/) =Yy forV e Wn
and id,, (yv) = id,(ye) = Lgey2 € (K*)? for V e W/ e € E'. Put

E = ﬁ X 4§ X ldn : @Vew(K*)z@@eeEb(F) (Ne) ®K* — @eeEb(F) (K*)z x K* x @VGW" (K*)2

and denote by K (I, P, j) the kernel of E. We denote by /3, 6 and id,, as well the Z-linear
maps of the underlying lattices (Z C Z @ K* = K*).

The multiplicity of the tropical curvesisthe number of algebraic curves corresponding to it.
To see how the multiplicity | K (T, P, 7)| isrelated to point conditions consider the following
remark.

Remark 8.27. Let us use the notations of definition 8.26 and let {q1,...¢,} = Q C (K*)?
be a set of n pointsin general position such that val(Q)) = P, for P = {h(z1),...h(x,)}.
Since E is a group morphism, the number |K (T, P, j)| equals the number of preimages of
an element of theimage. Thus, |K (T, P, j)| equals for example the number of preimages of

((1(K*)27 ey ]_(K*)z), ]_, (ql, ey qn))
Before stating the theorem of Tyomkin we consider an example.

Example8.28. Let (I', x4, . . ., x5, h) be the parameterized tropical curvewith A(I") shownin
figure 8.5 and equipped with the orientation such that e; isdirected fromz; toV; andes . . . e;
form a clockwise oriented cycle; let P = {(—2,—1); (1, 1)}, let Q = {(t*,t); (1/t,1/t)}
and let the degree A be ((Z3), (1), (})). The map E from definition 8.26 is a map from
a 15-dimensional space to a 15-dimensional space. By abuse of notation we use the same
notation as in the previous definition for dightly different objects (yy isthe value (K*)% as
before, but y. isthevaluein K? = N, ® K* instead of the valuein N, @ K*). To count the

elements of the kernel of £ we can solve the following equations:

1 1
(i1 —1, (Yvi)2 —1 —1 -1
£ y2,

t- Yeq Tt (yV1>1 *Yes Tt (yV1)2 *Yes

)
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L5

x3

Figure 8.5: An dliptic curve with 5 marked ends.

W -t w2t 0 (w2
Yes ’ Yes ’ (yVQ)l ’ (yV2>2 * Yey ’
(yvl)l (yv1)2
7:17 :Lye'ye'ye'ye =1
(yVS)l *Yes (yv3)2 ’ ’ ! ’

Since it can be calculated, that these equations have a unique solution, the kernel contains
exactly one element.

Notation 8.29. Let Z be an algebraic curve of genus one. We denote by J the j-invariant of
Z.

Theorem 8.30 (Tyomkin, [T], theorem 6.3). Let (I", 24, . .., z,,, h) bea parameterized tropi-
cal curve of genusoneand degreed. Let P beaset of 3d—1 genericpointsand let Q C (K*)?
be a set of 3d — 1 pointsin general position such that val(Q)) = P. Let further j € R, be
the j-invariant of I'. (Recall: The j-invariant is the sum of all lengths forming the cycle of
') If Tisspecial, P = {h(z1),...,h(z,)}, j([') = jand J € K withval(J) = j then there
exist |K (T, P, 5)| eliptic algebraic curves of degree d and j-invariant .J in (K*)? which pass
through @ and are mapped to /(T") by val.

The next proposition gives atropical interpretation of | K (T, P, j)|.

Definition 8.31. Take the assumptions and notations of theorem 8.30. For each x;, i €
{1,...,n} wecanwrite

h(w:) = h(z1) + > le)ve

e€ER

for asubset R c E°(T") and v, a generator of N, (see example 8.33). For afixed subset R
and afixed vector v,, these equalities define the linear map

e~Vz‘ : R2 D R#Eb - RQ) (l‘, @eeEbye) =T+ Z YeVe-
ecR

We denote the product v, x ... x ev,, by ev.
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Remark 8.32. The parameterized tropical curve I' has a cycle and thus the maps ev; from
definition 8.31 do depend on R. Nevertheless we only need those maps to calculate the
absolute value of a determinant (proposition 8.34) which will be independent of the choice
of R and v.. Thisisthe reason why we denote the map by €v; instead of (¢v;) gy, -

Example 8.33. The evaluation h(x;) of the vertex x; of the parameterized tropical curvein
figure 8.6 can be written as

h(z:) = hz1) + U(er) @ +1(es) G) +1(es) @ +1(es) <‘11) 4 1(es) @ +1(eo) G)

/eg h(z;)

€5

|

€4

€3

Figure 8.6: Evaluation of xs.

Proposition 8.34. Take the same assumptions and notations asin theorem 8.30. The number
|K (T, P, j)| coincides with the absol ute value of the determinant of the linear map

D=6vXjXxa Xay: RFF#E  RO-2 y R x R,

Recall: j isthe j-invariant and a1, a, are the equations for the closing cycle at the end of
section 7.2. The space R2#E" encodes the position of the vertex V; = h(z,) and the lengths
of the bounded edges of the curve. (In particular the absolute value of the determinant is
independent of the choice of R in definition 8.31.)

Proof. The map D isalinear map. Thus, the absolute value of the determinant of D isthe
same as the numbers of elements of the cokernel of the map

- . b _
D':eVXJxalxa2:Z2+#E — 7572 7, x 72.

D’ 0

) Flvizo
( * fl=o ) = f (see below) and then to use row operationsto get £|;. After thiswe use
the tensor product to prove the statement.

The idea of the proof is to replace the matrix D’ with a matrix ( ) where

Let e; be an edge of the cycle. This cokernel isisomorphic to the cokernel of the map

D' x f:Z7*E @ Gyep oy 22 — 2572 X L X TP X Beepm for) L2
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wherefor each e € E*\{e;} theimageof f inthecoordinate Z2 isthesum ", e(e, V)yv
withyy, € Z2.. The cokernel of D’ isisomorphicto the cokernel of D’ x f dueto thefact, that
after fixing V4 the map [ is a bijective map from the group ®vepn (1112 t0 Beepin (¢} Z°.
(Theinverse £~ is defined recursively starting with vertices connected with V; by an edge
from I"\{e, }. For e an edge connecting V' and V' we define y,» = yyv + €(e, V)y.. Since
I'\{e,} isconnected and V; isfixed we can do thisto define f~!.) For eache € E°\{e;} we
now change the Z?2-component of f. Let the Z2-component of f be yy, — yy, . We change the
image by adding the product of the integer corresponding to e in Z2+#£" and the direction
v(e, V;) of e pointing from V; to V.. Since f was bijective, the number of elements of the
cokernel stays the same after changing the map f to this new map f.

Themap D’ x f isalinear map and therefore it can be written as a matrix 1/. The maps
a; and a, refer to the closing of the cycle and are given as a sum of v(e, V;)v, with v, € Z,
and e is an edge of the cycle. By adding the rows of Z2, in the matrix corresponding to the
map D’ x f, tothe rows (ay, az) we can change the maps a; , a, to get the map 3 t0 @, ¢ v Z>
instead of amap a; x as x f to Z2 BecEo\{e1} Z?2. Since these are linear row operations, the
determinant and the number of elements in the cokernel stays the same. So far we got the
map
€0 X § X B: T @yepn iy 22 — 2572 X L X ®oepn 22,

Theimage of apoint in Z2+#E£° Bven(v} Z° under ev; bexy, + Y, Yev. (see definition
8.31). Lete € R and let the map [ at coordinate Z; be xy: — wye + yzv;. By adding the
rows corresponding to ¢ with a suitable sign we can change the row of ev; to get theimage

Ty, + Z Yeve £ (Tye — Tye).
ecR\{é}

After doing thisfor al e € R we get the sum

Ty, + Z :i:(x\/f — :CVke).
ecER

Since the edges of R build a path from zy, to xy,; this sum is equal to zy;. Thus we can
change the evaluation maps to identity maps of Z%,l to Z%,l by row operations which do not
change the determinant and thus get a (6d — 2)-identity matrix. Therefore the cokernel of the
map D has the same number of elements as the cokernel of the map

E|Z = ﬁ X 0 X ldn : @Vewz2 D @eeEb(F)Z — @eeEb(F)ZQ X 7 X @VeWnZQ.

Thus, it remains to show that the cokernel C' of E|; has the same number of elements asthe
kernel K of E. Themap E|z isinjective, thus we have the following exact sequence

E|z

0—-7Z"—7"—C —0,

for suitablem € N. Themap E' is E|z ® K*. Thus, by tensorizing with K* we get the exact
sequence

0K —-7Z"oK L 72"eK - CoK* — 0,

77



Chapter 8: Correspondence theorems

where
m * AU *\ 2 * AU *\2 * *\ 2
7 X K* = @VEW(K ) &P @eeEb(F)Ne X K* = @eeEb(F) (K ) x K* x @Vewn(K ) .

Since C'isfinite C' ® K* is0. Furthermore K = Tor(K*, C'). It isknown that Tor commutes
with direct sums. Since C' is an abelian group the problem reduces to the case where C' = Z,
and m = 1. Thus, it remainsto show that Z, and K = Tor(K*, C') from the exact sequences

0—-7Z37—7Z,—0,

and

0— K —K* LOIN K*— 0
with s € N have the same number of elements. But K and Z, are isomorphic and thus the
proposition holds. O

Remark 8.35. By remark 4.7 in [KM] the numbers in proposition 8.34 are the same as the
multiplicities we calculated for those tropical curves in chapter 7 with the help of corollary
6.29.

8.2 Correspondence theorem for elliptic curves with
given j-invariant

After stating some known correspondence theorems, we now want to treat the case of elliptic
curves with fixed j-invariant. Therefore, let us do some preparation before we are able to
prove our results. For this, we start with afact about algebraic curves.

Theorem 8.36 (Pandharipande,[P]). Let K be an algebraically closed field of characteristic
0. The number E(d, J) of irreducible nodal degree d K-planeelliptic curveswith j-invariant
J which pass through fixed 3d — 1 pointsin general position is independent of the choice of
the points. Furthermore, E(d, J) is independent of the choice of .J for J # 0,1728, cc. In
thiscase £(d, J) = (') N (0, d).

In the theorems we stated in the first section of this chapter, we considered curves satisfying
some point conditions. To establish a correspondence it was necessary to have a corre-
spondence of the conditions as well. Since we consider eliptic tropical curves with fixed
j-invariant we want to start with a fact about thisinvariant.

Theorem 8.37 (Tyomkin, [T], (Theorem 2.32)). Let (T', x4, . .., x,, h) bethe special tropical
curve corresponding to an algebraic curve Z (i.e. val(Z) = h(I'), for further detailssee[T]).
If g(Z) = g(I") = 1, if hisinjective on the cycle and if .J is the algebraic j-invariant of Z
then the tropical j-invariant of I" isequal to val(.J).

Corollary 8.38. Let (I', x4, .. ., x,, h) be the special tropical curve corresponding to an al-
gebraic elliptic curve Z of degree d passing through given 3d — 1 = n points in general
position. If val(J) >> 0 (for J being the j-invariant of Z), then h(I") allows rational pa-
rameterizations of degree d.
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Proof. Since Z is of degree d, we can find a parameterization of A(I") of degree d as well.
Therefore it remainsto show that 4(I") allowsarational parameterization. In a parameteriza-
tion each point which is locally an intersection of two lines can be resolved (see figure 8.7).
Take a parameterization (I", 2) which has resolved all crossings of two lines (and therefore

Figure 8.7: Resolving a crossing of two lines.

all vertices of I" are three-valent). Assume that I" has genus 1. By theorem 8.37 the cycle
length has to be val(.J) if T has no contracted bounded edge. Let us first assume that " has
a contracted bounded edge e (i.e. h(e) is apoint). By the balancing condition A(I") has a
crossing at h(e) which isacontradiction since we resolved all crossings. Thus, (I', ) hasno
contracted bounded edge. Therefore the cycle length has to be val(J). But thisis a contra-
diction to proposition 5.1 in [GM3] (every dlliptic tropical curve of degree d with avery big
j-invariant and passing through the 3d — 1 fixed points has a contracted bounded edge). [

Definition 8.39 (tropical cycle). Let (T', 24, ..., xy, h) beaparameterized tropical curve. We
call theimage h(I") of atropical curveatropical cycle. If thetropical cycle of aparameterized
tropical eliptic curve can not be parameterized by arational curve we call the tropical cycle
an dlliptic cycle (for example figure 8.8) and a rational cycle otherwise (for example figure
8.9).

Example 8.40. The image of a special parameterized tropical curve of genus one, degree 3,
and passing through given 8 points looks for example as is figure 8.8. But, if we fix abig

e
Figure 8.8: Elliptic curve passing through 8 points.

j-invariant, the curve having this j-invariant hasto look likein figure 8.9.

Remark 8.41. D. Speyer givesin proposition 9.2 [Sp2] some conditions, when the tropical -
ization of the j-invariant of an algebraic curve is the cycle length of the tropical curve. In
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R
_|_

s
ﬂ

Figure 8.9: The tropical cycle of an dliptic curve passing through 8 points and with given
big j-invariant (therefore the curve has a contracted edge).

particular he needs an injectivity condition to show that the tropicalization is the same as the
length of the loop. In example 8.40 this injectivity condition isviolated for figure 8.9. Thus,
the elliptic curve (T', z1, . . ., x9, h) with h(T") being the tropical cycle from figure 8.9 has a
contracted edge at the 4-valent vertex.

Definition 8.42 (Multiplicity of an elliptic tropical curve). Let Cr = (I, xq,...,z,,h) be
an elliptic tropical curvein R?, let P be the corresponding point in Mh (R?, d) and let
f=evy x---xev, xj. Furthermore, put f = f ascontinuous map, but redefine the weights
of MpP ..(R? d) tobe L (resp., 0) for curves with contracted cycle (resp., with the cycle
which is not contracted). We define mult;(Cr) to be mult(p | f — mult(p; f (See corollary

6.29, end of section 7.2 and theorem 7.17).

Remark 8.43. The multiplicity defined in the previous definition agrees with the multiplicity
of [KM] (see definition 3.5 and chapter 4 in [KM]).

Definition 8.44. Let E\,,(d, 7, P) be the number of irreducible nodal degree d plane elliptic
tropical curves with fixed j-invariant and passing through 3d — 1 points P counted with the
multiplicity from definition 8.42.

Now we can state a main result of this chapter, a correspondence theorem for eliptic curves
with given j-invariant. Note, that it is a correspondence between tropical cycles and param-
eterized algebraic curves.

Theorem 8.45. Let d > 2 and let usfix as a ground field the field K. For a generic configu-
ration P of 3d — 1 points, sufficiently big tropical j-invariant j and J € K with val(J) = j
we have E,,(d, j, P) = E(d, J). Furthermore, let @ C (K*)? be a configuration of 3d — 1
points in general position with val(Q) = P, and C' be the tropical cycle h(T") of a parame-
terized tropical curve (T, x1, ..., 2341, h) Of genus 1, degree d and j-invariant j such that
P = {h(x1),...,h(x34-1)}. Then, there exist (dgl) mult(C') (remember that C' is rational
since j issufficiently big, thusthe parameterization of C' asarational parameterized tropical
curve of degree d is unique and by abuse of notation we write mult(C') for the multiplicity
of this curve) distinct algebraic curves Z of genus 1, with j-invariant J and degree d such
that 7 passesthrough (). These curves are irreducible and the image of each of these curves
under val isC.
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Before proving the theorem we quote some facts for Berkovich spaces. For an introduction
to the theory of Berkovich spaces we recommend [Ba], [Be3] or [D]. For ageneral study of
this theory we recommend [Bel] and [Be2].

Fact 8.46. Let £ be a non-Archimedean field. There exists a functor F such that for each
k-algebraic variety X one can associate a k-analytic space X" toit. This spaceis called
the Berkovich k-analytic space associated to X .

See for example section 1.4 in [D] (or §3.4.1in [Bel] and §2.6 in [Be2)).
To get afirst idea of analytic spaces let us consider aremark.

Remark 8.47. Let A" bethe space of multiplicativeseminormsof K[71, ..., T,] (in particular
each x € K" defines a seminorm by |f|, = |f(z)|, where |.| is the norm induced by the
valuation). The topology of A" is defined to be the weakest topology such that the map

A" — Rsq @ ||z — |f|z iscontinuousfor al f € K[Ty,...,T,]. Ananalytic function isa
local limit of rational functions. Denote by O the sheaf of analytic functions on open subsets
U cC A"

A local model for a k-analytic space is a locally ringed space (X, Ox) given by an open
set U ¢ A" and afinite set of andytic functions fi,..., f, € O(U) suchthat X = {z €

Let £ = E(a,r) beaclosed disk in K with center € K and radius» > 0. The function
defined by f = >"" | a;(T — a)" is mapped to max;<;<, |o;|r* isamultiplicative norm |.|
on k[T]. It isafact, that the set of seminormson K isgivenby f — infpce | f|z, where £ is
a family of nested closed disks. Each point of A! correspondsto £ = E(a,0) = a (caled
points of type (1)) or aclosed disk with » € |K*| (type (2)) or aclosed disk with r ¢ |K*|
(type (3)) or to a& with (.. £ = 0 (type (4)). The analytification functor from fact 8.46
maps K to A!.

Fact 8.48 (Fact 4.1.3 in [Be3], proposition 3.4.6 und 3.4.7in [Bel]). Let o : X — Y bea
mor phism of schemes of finite type over k&, and let ©*" : X" — Y " be the corresponding
mor phism of k-analytic spaces. The morphism ¢ is étale, smooth, separated, an open im-
mersion and an isomorphismif and only if *" possesses the same property. Suppose that
is of finite type. Then ¢ isa closed immersion, finite, and proper if and only if " possesses
the same property.

Fact 8.49 (Fact 4.1.4 in [Be3], theorem 3.4.8 in [Bel]). One has X is proper < | X"| is
compact.

Proof of theorem 8.45. R. Pandharipande has shown that E(d,J) = (%) N"(0,d) (see
[P]). By theorem 8.23 we know that the numbers N7 (0, d, P) and N (0, d) agree. Thus,
thefirst part of the theorem (E\,.,(d, j, P) = E(d, J)) followsfrom the second part if we can
show that the set of tropical cycles of tropical curvesof genus 1, with j-invariant j and degree
d passing through P is the same as the set of tropical cycles of rational curves of degree d
passing through P. Each tropical cycle of arational curve has at |east one node or a vertex of
multiplicity greater than 1 because d > 2. For anode we can make the parameterized tropical

curve eliptic by inserting a contracted edge. Since j is very big we can choose the length of
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the contracted edge of this parameterized elliptic tropical curve such that the j-invariant of
thiscurveis j. At avertex of valence greater than one we can insert a cycle of length ; and
thus we get a curve which fulfill the requirement. Therefore it remains to show the second
part.

Let V;, bethe Severi variety which isthe closure (in the variety of all curves of degree d) of
the reduced and irreducible plane elliptic nodal algebraic degree d curves. It is known that
Vi1 has dimension 3d (see for example [HM]). Let V' be the intersection of V,; with the
codimension 3d — 1 subspace formed by the curves passing through Q. By [P] thecurve V' is
abranched cover of P! by the j-invariant. The ramification pointsare 0, 1728, and co. Since
V isaclosed subset of PV for some N, one getsthat V' is proper.

Since V isan algebraic variety fact 8.46 applies and we can associate the analytic space V"
to V. Since the points of V' can be identified with points of VV*" (those points are the rigid
points of 17*") we can speak of V' being a subset of 17" (see for example proposition 2.1.15
[Bel]). Let r € V be apoint parameterizing a rational curve and let U be a neighborhood
of co in (P1)e". By J we denote as well the map V' — P! given by the j-invariant. Since
J* is continuous, there exists a neighborhood 17 of r such that J**(1W') C U (the topology
of (P*)*" isinduced by the valuation, see for example section 1.3 in [Ba]). Assume now
that W isaclosed subset of V7" such that J** (W) N P! contains elements with arbitrary big
valuation (remark: By 2.1.15 of [Bel] P! isdensein (P!)*"). Since V' is proper and therefore
Ven is compact by fact 8.49 we get that U contains a preimage of co. By definition, this
preimage is a point of V' C Ve (J* is finite and thus, the preimage of a K point is the
spectrum of a K-algebra of finite dimension. Since K is algebraically closed it follows that
the preimage lies in V. For example see section 3.3 in [Bel] or for an idea of this fact
see remark 2.1.4 [Ba]) and thus it corresponds to a rational curve. Thus, al curves which
have a sufficiently big j-invariant are in a neighborhood of a rational curve. By [DH] the
normalization IT : V" — V near arationa curve r is the union of (d — 1)(d — 2)/2
separated smooth sheets (in particular V™ — V — P! isunramified at infinity). Thus, by
fact 8.48 (V™°)a admits local isomorphisms (in the neighborhood of IT1-(r)) from each of
the (d — 1)(d — 2)/2 sheetsto P. Let € be greater 0. By the local isomorphisms, for each
j-invariant .J with sufficiently big valuation, there are exactly (d — 1)(d — 2)/2 curveswhich
have distance e (P! has a distance and each sheet isisomorphic to it) or smaller from » and
which have j-invariant J.

Let C' be the tropical cycle h(I") of a parameterized tropical curve (T, 21, ..., 2341, h) Of
genus 1, degree d and j-invariant j suchthat P = {h(z1),...,h(x34_1)}. Thetropical cycle
C'isarationa cycle by corollary 8.38 (if C' contains a cycle it has a contracted edge since
j >> 0 or see proposition 5.1 in [GM3]). By theorem 8.23 there are mult(C') plane rational
algebraic curves of degree d, passing through ¢ and which have valuation C'. Let » be one of
those rational curves. A local chart U at r is Spec(K[z1, ..., zy]/I) for someidea I. Since
U — Rxg: ||z — |f]z iscontinuousfor al f € K[z, ..., zy] we can define distancesto r
using f (d(r,s) = | f(x — r)|s). In particular we can define e-neighborhoods of r. (Remark:
For different choices of f we get different neighborhoods.) In the following, apointisin the
e-neighborhood of r if it isin the e-neighborhood for f = x; for each 0 < ¢ < N (notice that
thisisaneighborhood of r). For j sufficiently big, wefind (d —1)(d —2)/2 elliptic algebraic
curves passing through @ and with j-invariant J such that each of these curvesisin an e-
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neighborhood of r. Let e be one of those elliptic curves. The distance of the coefficients of
the polynomials parameterized by r and e isless than e. Thus we get that the valuation of
the difference of the coefficients (val(r — e);, 0 < ¢ < N) ismuch lessthan 0 and therefore
the tropicalizations of the curves r and e do agree. For each tropical cycle C' of a curve of
genus 1, with j-invariant j and degree d passing through P we have (*,") mult(C) distinct
algebraic curves of genus g, with j-invariant J and degree d passing through ) and which
are mapped to C' under val.

O

Conjecture 8.50. Let us fix as a ground field the field K. For a generic configuration P
of 3d — 1 points, sufficiently big tropical j-invariant j and J € K with val(J) = j we
have Eiop(d, j, P) = E(d, J). Let S be the set of parameterized tropical curves which pass
through P, are of degree d, genus 1 and which have j-invariant j. For each configuration
Q C (K*)? of 3d — 1 pointsin general position with val(Q) = P one hasthat for C' being the
tropical cycle h(I") of a parameterized tropical curve (I, x1, . .., z34_1, h) Of genus 1, degree
d and j-invariant j suchthat P = {h(z1), ..., h(z34_1)} We have

Z mUItK,M((vala"'axnah))
(0,215, h)ES,A(I)=C

distinct algebraic curves of genus g, with j-invariant J and degree d passing through ). The
multiplicity multx », is the same asin [KM]. The curves are irreducible and the image of
these curves under val isC'.

Remark 8.51. By proposition 8.34 the numbers stated in the conjecture 8.50 for tropical
cycles of special parameterized tropical curves are the same as in theorem 8.30.

The numbers stated in conjecture 8.50 for tropical cycles of dliptic curves with big j-
invariant agree with those in theorem 8.45 by lemma 6.2 from [KM].

These two remarks give a hint why the conjecture might be true. In the proof of theorem 8.45
we used the Berkovich space to make small deformations and used the understanding of the
rational case. Our last remark gives a hint why a deformation in other cases might be helpful
aswell.

Remark 8.52. To see why a deformation could help to prove a correspondence we examine
the deformation of tropical curves. Since we are interested in the deformation of the j-
invariant we take a plane élliptic parameterized tropical curve C' of degree d and passing
through 3d — 1 points in general position. Thus, the image of the curve in R? has to be
arational tropical curve or an eliptic tropica curve. Fix a j-invariant j and consider the
case, in which the curve isrational. If we can deform the tropical curves continuously we
can deform it by making the j-invariant bigger and bigger. As long as the image of the
curve stays rational it cannot change since the 3d — 1 points are in general position. Let us
consider the case where the image of the curve changes by deforming the j-invariant. In
this case the parameterization of the curve has a 4-valent vertex. Therefore the two other
parameterizations have to be elliptic or the same rational curve. Since we know the number
of algebraic curves mapped to the tropical cycle of an elliptic tropical curve with sufficiently
big j-invariant or where the cycle is elliptic we can deduce the number of algebraic curves
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which are mapped to the cycle of C' by the balancing condition in the moduli space of elliptic
tropical curves of genus 1 and degree d.

We consider an example of a deformation of tropical curves.

Example 8.53. Assume that aparameterized tropical curve (T, x4, . .., z,,, h) hasthetropica
cycleshowninfigure8.10. If we changethe j-invariant continuously, thetropical cycle either

Figure 8.10: Rational cycle

staysthe same or transformsto atropical cycle similar to the one showninfigure 8.11. Let j,

Figure 8.11: Elliptic cycle with changed j-invariant.

be the value of the j-invariant where the tropical cycle changes, and assume that the tropical
cycle shown in figure 8.10 does not change for bigger j-invariants. Thus, the multiplicity of
the tropical cyclein figure 8.10 with j-invariant smaller than j, has the same multiplicity as
the sum of the multiplicity of thetropical cycle in figure 8.10 with big j-invariant and of the
multiplicity of the tropical cyclein figure 8.11.
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