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Introduction Relational Kernels Feature Selection Conclusion +

Supervised Machine Learning

Background
Unknown distribution IP(x , y) on X × Y

Objective
Find h∗ minimizing generalization error

Err (h) = IEIP(x,y) [` (h(x), y)]

Where ` (h(x), y) is the cost of error on
example x

Given
Training examples

L = {(x1, y1), . . . , (xn, yn)}

Where (xi , yi ) ∼ IP(x , y), i ∈ 1, . . . , n

h∗(x) = 0

h∗(x) > 0

h∗(x) < 0
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Supervised Machine Learning 2
(Vapnik-Chervonenkis; Bottou & Bousquet, 08)

Approximation error (a.k.a. bias)
Learned hypothesis belong to H

h∗H = argmin
h∈H

Err (h)

Estimation error (a.k.a. variance)
Err estimated by empirical error
Errn (h) = 1

n

P
`(h(xi ), yi )

hn = argmin
h∈H

Errn (h)

Optimization error
Learned hypothesis returned by an
optimization algorithm A

ĥn = A(L)
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Focus of the thesis
Combinatorial optimization problems hidden in Machine Learning

Relational representation
=⇒ Combinatorial optimization problem

Example: Mutagenesis database

+

-

Feature Selection
=⇒ Combinatorial optimization problem

Example: Microarray data

+

−
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Outline

1 Relational Kernels

2 Feature Selection
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Relational Learning / Inductive Logic Programming

Position
Relational database

X : keys in the database
Background knowledge

H: set of logical formulas
Expressive language
Actual covering test: Constraint Satisfaction Problem (CSP)
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CSP consequences within Inductive Logic
Programming

Consequences of the Phase Transition
Complexity

Worst case: NP-hard
Average case: “easy” except in Phase Transistion (Cheeseman et al. 91)

Phase Transition in Inductive Logic Programming

Existence (Giordana & Saitta, 00)

Impact: fails to learn in Phase Transition
region (Botta et al., 03)
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Multiple Instance Problems
The missing link between Relational and Propositional Learning

Multiple Instance Problems (MIP) (Dietterich et al., 89)
An example: set of instances
An instance: vector of features
Target-concept: there exists an instance satisfying a predicate P

pos(x) ⇐⇒ ∃I ∈ x , P(I)

Example of MIP
A locked door
A positive key-ring contains a key
which can unlock the door
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Support Vector Machine

A Convex optimization problem

argmin
α∈IRn

nX
i=1

αi −
1
2

nX
i=1

αiαj yi yj 〈xi , xj 〉

s.t.

(Pn
i=1 αi yi = 0

0 6 αi 6 C, i = 1, . . . , n

Kernel trick

〈xi , xj 〉 K (xi , xj )
ĥn(x) = 1

ĥn(x) = −1
ĥn(x) = 0

ĥn(x) > 0

ĥn(x) < 0

0 < ξi < 1

ξi > 1

ξi = 0

Kernel-based propositionalization (differs from RKHS framework)(
L = {(x1, y1), . . . , (xn, yn)}
K

 Φ : x → (K (x1, x), . . . ,K (xn, x))
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SVM and MIP

Averaging-kernel for MIP (Gärtner et al., 02)
Given a kernel k on instances

K (x , x ′) =

P
xi∈x

P
xj∈x′ k(xi , xj )

norm (x) norm (x ′)

Question
MIP Target-concept: existential properties
Averaging-Kernel: average properties

Do averaging-kernels sidestep limitations of
Relational Learning?
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Methodology
Inspired from Phase Transition studies

Usual Phase Transition framework
Generate data after control parameters
Observe results
Draw phase diagram: results w.r.t. order parameters

This study
Generalized Multiple Instance Problem
Experimental results of averaging-kernel-based propositionalization
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Outline

1 Relational Kernels
Theoretical failure region
Lower bound on the generalization error
Empirical failure region

2 Feature Selection
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Generalized Multiple Instance Problems

Generalized MIP (Weidmann et al., 03)
An example: set of instances
An instance: vector of features
Target-concept: conjunction of predicates P1, . . . ,Pm

pos(x) ⇐⇒ ∃I1, . . . , Im ∈ x ,
m̂

i=1

Pi (Ii )

Example of Generalized MIP
A molecule: set of sub-graphs
Bioactivity: implies several sub-graphs
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Control Parameters

Category Param. Definition

Instances
I = (a, z)

|Σ| Size of alphabet Σ, a ∈ Σ
d number of numerical features,

z ∈ [0, 1]d

Examples

M+ Number of instances per posi-
tive example

M− Number of instances per nega-
tive example

m+ Number of instances in a predi-
cate, for positive example

m− Number of instances in a predi-
cate, for negative example

Pm Number of predicates “missed”
by each negative example

Concept P Number of predicate
ε Radius of each predicate (ε-

ball)

+ ε

- ε
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Limitation of averaging-kernels

Theoretical analysis

Failure for m+

M+ = m−
M−

IEx∼D+ [K (xi , x)] = IEx∼D− [K (xi , x)]
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

K
(x

−
,x

)

K(x+,x)

exemples positifs
exemples négatifs

Empirical approach
Generate, test and average empirical results
Establish a lower bound on generalization error
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Efficiency of kernel-based propositionalization

Kernel-based propositionalization H′ (differs from RKHS framework){
L = {(x1, y1), . . . , (xn, yn)}
K

 Φ : x → (K (x1, x), . . . ,K (xn, x))

Question (Q): separability of test examples T in H′

∃? αi ,
∑n

i=1 αiyi = 0 SVM constraint
0 6 αi 6 C i = 1, . . . ,n SVM constraint(∑n

i=1 αiyiK (xi , x ′) + b
)

y ′ > 1 (x ′, y ′) ∈ T test constraint

An optimistic criterion
Test examples used to define αi
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Lower bound on the generalization error

Theorem
For each setting

Generate T training (respectively test) datasets L (resp. T )
Record τ : proportion of couples (L, T ) s.t. (Q) is satisfiable

Let ErrL be the generalization error when learning from L
Then,

∀η > 0, with probability at least 1− exp(−2η2T )

IE|L|=n[ErrL] > 1− (τ + η)
1
|T |

Remark
(Q) solved using Linear Programming

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 18 / 52



Introduction Relational Kernels Feature Selection Conclusion + Position Theory Lower bound Experiments Discussion

Empirical failure region

 0
 0.2
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 1
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r-
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(Q) satisfiability
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 1

SVM test error

Control parameters
Instance space: Σ× [0, 1]30

100 instances per example
30 predicates
40 couples (L, T ) per setting

The averaging kernel fails when
Small training dataset (|L| 6 100)
m+

M+ ≈ m−
M−

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 19 / 52



Introduction Relational Kernels Feature Selection Conclusion + Position Theory Lower bound Experiments Discussion

Partial conclusion on Relational Kernel

Contributions
Theoretical and empirical identification of limitations for
averaging-kernels
A lower bound on generalization error

Perspectives
Failure region for other kernels

Claim: any kernel computable in a polynomial time leads to a failure
region
When is the failure region small enough?
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Outline

1 Relational Kernels

2 Feature Selection
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Feature Selection

Optimization problem

argmin
F⊆F

Err (A (F ,L))

F : Set of features

F : Feature subset

L: Training data set

A: Machine Learning algorithm

Err: Generalization error

Feature Selection (FS)
Minimize the Generalization Error
Decrease the learning/use cost of models
Lead to more understandable models

Bottlenecks
Combinatorial optimization problem: find F ⊆ F
Unknown objective function: generalization error
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Filter approaches for Feature Selection

Score features
Select the best ones

Pro
Cheap

Cons
Cannot handle all inter-dependencies between features

Filter approaches
ANOVA (Analysis of Variance)
RELIEFF (Kira & Rendell, 92)
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Embedded approaches for Feature Selection

Exploit the learned hypothesis
And/Or modify the learning criterion to induce sparsity

Pro
Based on relevance of features in the learned model

Cons
Limited to linear models or a linear combination of kernels
Possibly misled by feature interdependencies

Embedded approaches
Lasso (Tibshirani, 94)
Multiple Kernel Learning (Bach, 08)
Gini score on Random Forest (Rogers & Gunn, 05)

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 24 / 52



Introduction Relational Kernels Feature Selection Conclusion + Position FS-RL MCTS FUSE Experiments Discussion

Wrapper approaches for Feature Selection

Test feature subsets
Actually address the combinatorial problem

Pro
Look for (approximate) best solution

Cons
Computationally expensive

Wrapper approaches
Look ahead (Margaritis, 09)
Mix forward/backward search (Zhang, 08)
Mix global/local search (Boullé, 07)

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 25 / 52



Introduction Relational Kernels Feature Selection Conclusion + Position FS-RL MCTS FUSE Experiments Discussion

Proposed Feature Selection framework

Goal: optimal
Find argmin

F⊆F
Err (A (F ,L))

Virtually explore the whole lattice

Goal: tractable
Frugal, unbiased assessment of F

Cannot compute Err (A (F ,L))

Gradually focus search on most promising subtrees
Exploration vs Exploitation trade-off
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Outline

1 Relational Kernels

2 Feature Selection
Feature Selection trough Reinforcement Learning
A one-player game with Monte-Carlo Tree Search
The FUSE algorithm
Experimental validation
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Feature Selection as a Markov Decision Process

From the lattice of subsets . . .
Set of features: F
Set of candidates: 2F

. . . to a Markov Decision Process
Set of states: S = 2F

Initial state: ∅
Set of actions: A = {add f , f ∈ F}
Reward function: V : S → [0, 1]

Ideally : V (F ) = Err (A (F ,L))
In practice: Fast unbiased estimate
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Optimal Policy

Policy: π : S → A
Final state following a policy: Fπ

Optimal policy: π∗ = argmin
π

Err Fπ

Bellman’s optimality principle

π∗(F ) = argmin
f∈F

V ∗(F ∪ {f})

with

V ∗(F ) =

{
Err (Err (A (F ,L))) if final(F )
min
f∈F

V ∗(F ∪ {f}) otherwise

π∗ intractable⇒ approximation using a one-player game approach
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The UCT Monte-Carlo Tree Search
(Kocsis & Szepesvári, 06)

Gradually grow a search tree
Building Blocks

Select next action (bandit-based phase)
Add a node (leaf of the search tree)
Monte-Carlo exploration (random phase)
Compute instant reward
Update visited nodes

Returned solution
Path visited most often Explored Tree

Search Tree
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Gradually grow a search tree
Building Blocks

Select next action (bandit-based phase)
Add a node (leaf of the search tree)
Monte-Carlo exploration (random phase)
Compute instant reward
Update visited nodes

Returned solution
Path visited most often Explored Tree

Search Tree
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Multi-Arm Bandit-based phase
Upper Confidence Bound (UCB1-tuned) (Auer et al., 02)

Exploration vs Exploitation trade-off

Select argmax
a∈A

µ̂a +

√
ce log(T )

ta
min

(
1
4 , σ̂

2
a +

√
ce log(T )

ta

)
µ̂a: Empirical average reward for action a
σ̂2

a : Empirical variance of reward for action a
T : Total number of trials in current node
ta: Number of trials for action a
ce: Parameter
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Multi-Arm Bandit-based phase
External information

Mixing UCB with
Priors on actions (Rolet et al., 09)
Information learned during iterations

(Gelly & Silver, 07 ; Auer, 02 ; Filippi et al., 10)
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Outline

1 Relational Kernels

2 Feature Selection
Feature Selection trough Reinforcement Learning
A one-player game with Monte-Carlo Tree Search
The FUSE algorithm
Experimental validation
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FUSE: bandit-based phase
A many-armed bandit problem

Bottleneck
UCT degenerates to pure exploration as the number of arms
increases (several hundred features)

⇒ Control the number of arms
Select the arms

How to control the number of arms?
Continuous heuristics (Gelly & Silver, 07)

Use a small exploration constant ce (10−2, 10−4)
Discrete heuristics (Coulom, 06; Rolet et al., 09)

Progressive Widening
Select a new action whenever bT bc increases (b = 1

2 in experiments)

Number of iterations
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FUSE: bandit-based phase
Sharing information among nodes

How to share information among nodes?
Rapid Action Value Estimation (RAVE)

(Gelly & Silver, 07)

RAVE(f ) = average reward when f ∈ F F
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FUSE: bandit-based phase
Sharing information among nodes

Guiding search with RAVE
Continuous heuristics

Generalizing the empirical reward

(1− α) · µ̂F ,f + α ((1− β) · `-RAVE(F , f ) + β · g-RAVE(f )) + exploration term

with
α =

c
c + tF ,f

β =
c′

c′ + t ′F ,f

tF ,f = Number of trials for feature f from state F

t ′F ,f = Number of trials for feature f after visiting state F

c, c′: Parameters

Discrete heuristics
New arm = argmax

f∈F
(1− β) · `-RAVE(F , f ) + β · g-RAVE(f )
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FUSE: random phase
Dealing with an unknown horizon

Bottleneck
Finite unknown horizon (= number of relevant features)

Random phase policy
� With probability 1− q|F | stop
| Else • add a uniformly selected feature
|

Else

• |F | = |F |+ 1
b Iterate
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FUSE: reward(F )
Generalization error estimate

Requisite
fast (to be computed 104 times)
unbiased

Proposed reward
k -NN: strong consistency results
(Cover & Hart, 67)
+ AUC criterion *

Complexity: Õ(mnd)

d Number of selected features
n Size of the training set

m Size of sub-sample (m� n)

* Mann Whitney Wilcoxon test: V (F ) =
|{((x,y),(x′,y′))∈V2, NF,k (x)<NF,k (x′), y<y′}|

|{((x,y),(x′,y′))∈V2, y<y′}|
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d Number of selected features
n Size of the training set

m Size of sub-sample (m� n)

* Mann Whitney Wilcoxon test: V (F ) =
|{((x,y),(x′,y′))∈V2, NF,k (x)<NF,k (x′), y<y′}|

|{((x,y),(x′,y′))∈V2, y<y′}|

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 39 / 52

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random



Introduction Relational Kernels Feature Selection Conclusion + Position FS-RL MCTS FUSE Experiments Discussion

FUSE: reward(F )
Generalization error estimate

Requisite
fast (to be computed 104 times)
unbiased

Proposed reward
k -NN: strong consistency results
(Cover & Hart, 67)
+ AUC criterion *

Complexity: Õ(mnd)
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FUSE: update

Explore a graph
⇒ Several paths to the same node

Update followed path only
New Node

Search Tree

Bandit−Based
Phase

Random
Phase
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From UCT to Feature Selection to Learning

Algorithm

N iterations: each iteration

(
1. Follows a path
2. Evaluates a final node

Output
Search tree ←→ RAVE score

⇓ ⇓
FUSE FUSER

Wrapper approach Filter approach
Most visited path Using RAVE as score

End learner
Any Machine Learning algorithm
Support Vector Machine with Gaussian kernel in experiments
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Outline

1 Relational Kernels

2 Feature Selection
Feature Selection trough Reinforcement Learning
A one-player game with Monte-Carlo Tree Search
The FUSE algorithm
Experimental validation
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Experimental setting

Questions
FUSE vs FUSER

Continuous vs discrete exploration heuristics
FS performance w.r.t. complexity of the target concept
Convergence speed

Datasets from NIPS’03 Feature Selection challenge

DATA SET SAMPLES FEATURES PROPERTIES
MADELON 2,600 500 XOR-LIKE
ARCENE 200 10, 000 REDUNDANT FEATURES
COLON 62 2, 000 “EASY”
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Experimental setting

Baselines
CFS (Constraint-based Feature Selection) (Hall, 00)
Random Forest (Rogers & Gunn, 05)
Lasso (Tibshirani, 94)
RANDR : RAVE obtained by selecting 20 random features at each
iteration

Results averaged on 50 splits (10 × 5 fold cross-validation)

Gaussian SVM
Hyper-parameters optimized by 5 fold cross-validation

R. Gaudel (LRI) Model Characterization and Feature Selection PhD, December 14, 2010 44 / 52



Introduction Relational Kernels Feature Selection Conclusion + Position FS-RL MCTS FUSE Experiments Discussion

Results on Madelon after 200,000 iterations
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Comment: FUSER = best of both worlds
Removes redundancy (like CFS)
Keeps conditionally relevant features (like Random Forest)
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Results on Arcene after 200,000 iterations
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Comment: FUSER = best of both worlds
Removes redundancy (like CFS)
Keeps conditionally relevant features (like Random Forest)

T-test “CFS vs. FUSER ” with 100 features: p-value=0.036
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Results on Colon after 200,000 iterations
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NIPS 2003 Feature Selection challenge

Test error on the NIPS 2003 Feature Selection challenge
On an disjoint test set

DATABASE ALGORITHM CHALLENGE SUBMITTED IRRELEVANT
ERROR FEATURES FEATURES

MADELON FSPP2 [1] 6.22% (1st ) 12 0
D-FUSER 6.50% (24th) 18 0

BAYES-NN-RED [2] 7.20% (1st ) 100 0
ARCENE D-FUSER (ON ALL) 8.42% (3rd ) 500 34

D-FUSER 9.42% 500 (8th) 500 0

Comment
Accurate w.r.t Feature Selection

[1] K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Feature selection via sensitivity analysis of SVM probabilistic outputs. Mach.
Learn. 2008

[2] R. M. Neal, and J. Zhang Chap. High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees.
Feature extraction, foundations and applications, Springer 2006
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Partial conclusion on Feature Selection

Contributions
Formalization of Feature Selection as a Markov Decision Process
Efficient approximation of the optimal policy (based on UCT)
⇒ Any-time algorithm

Experimental results
State of the art
High computational cost (45 minutes on Madelon)

Perspectives
Proof of convergence (including heuristics) (Berthier et al., 10)
Include other improvements from Reinforcement Learning
community

Function approximation of the Q-value (Melo et al., 08; Auer, 02)
Biased random phase (Rimmel & Teytaud, 10)
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Conclusion

Focus on combinatorial optimization problems hidden in Machine
Learning
Relational Learning

Theoretical and empirical limitations of averaging-kernels

Feature Selection
Exploration of the feature lattice using a Monte-Carlo tree search
approach

=⇒ refining wrapper approaches using a frugal assessment of
candidate subsets
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Perspective 1: Constructive Induction

Context
Relational Learning / Inductive Logic
Programming

Goal
Find a relevant set of primitives / queries

=⇒ combinatorial optimization problem

Proposed approach
Extending FUSE to grammar structured
search spaces (de Mesmay et al., 09)

Motivating applications
Customer Relationship Management
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Perspective 2: Feature/Example Selection

Context
FUSE: Feature Selection based on UCT
BAAL: Active Learning based on UCT

(Rolet et al. 09)
=⇒ Can we mix both approaches?

Goal
Local Feature Selection
Local Distance Metric Learning

(Weinberger & Saul, 09)
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L. Kocsis, and C. Szepesvári Bandit based Monte-Carlo planning. ECML’06
D. Margaritis Toward provably correct Feature Selection in arbitrary domains. NIPS’09
F. Melo, S. Meyn, and I. Ribeiro An Analysis of Reinforcement Learning with Function
Approximation. ICML’08
F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel Bandit-based optimization on
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Relational Kernels
Position

Relational data
X : keys in a database

Bottlenecks
H: set of logical formula
h: logical formula

Support Vector Machine: the solution ?
A propositionalization

Use only relations between examples

=⇒ argmin easy to solve

Contribution
On Multiple-Instance datasets, averaging-kernels miss some
concepts

Theoretical/empirical identification of failure region + lower bound
on generalization error
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Feature Selection

Position
Thousands of features (& Only estimation of Err (A (h,L)))

=⇒ Overfitting: small error on training data / large generalization error

Solution: Feature Selection

argmin
F⊆F

Err (A (F ,L))

F : Set of features
F : Feature subset
L: Training data set
A: ML algorithm

Bottlenecks
Combinatorial optimization problem: find F ⊆ F
Unknown objective function: generalization error

Contribution
Actually handle combinatorial optimization

Use a Monte-Carlo Tree Search algorithm: UCT (Kocsis & Szepesvári, 06)
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Relational Kernels

Position
Relational data

X : keys in a database

H: set of logical formula
=⇒ Expressive language

Value of a hypothesis on an example: NP-hard
Number of hypothesis to test: exponential

Support Vector Machine (SVM)
Only based on relations between examples

=⇒ Value of a hypothesis on one example: linear in # examples
Best hypothesis search ≡ convex problem

Question
Does SVM have the same expressiveness as logical formula?
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Relational Kernels

Position
Relational data Multiple Instance data

X : keys in a database

H: set of logical formula
=⇒ Expressive language

Value of a hypothesis on an example: NP-hard
Number of hypothesis to test: exponential

Support Vector Machine (SVM)
Only based on relations between examples Averaging kernel

=⇒ Value of a hypothesis on one example: linear in # examples
Best hypothesis search ≡ convex problem

Question
Does SVM have the same expressiveness as logical formula?
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Relational Kernels failure

A Phase Transition-based study
Identify order parameters
Generate artificial problems
Identify difficult region

Contribution
On Multiple-Instance data, averaging-kernels miss some concepts

Theoretical demonstration of relational kernels failure region
New criterion leading to a lower bound on generalization error
Empirical visualization of failure region

Discussion
What about other kernels?
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Stopping feature
Dealing with an unknown horizon

Any state can be final or not
Final(F ) = “fs ∈ F ”
fs: A virtual stopping feature

RAVE(fs)
g-RAVE(f (d)

s ) = average {V (Ft ), |Ft | =
d + 1}

V (Ft ): Reward of Feature Subset Ft
selected at iteration t
d : When RAVE(fs) is used, d is set to
the number of features in current state
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Sensitivity of FUSE to the Computational Effort
Madelon
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Comments
FUSE: not enough features
FUSER : 10 times faster than RANDR
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FUSE hyperparameters

HOW TO RESTRICT EXPLORATION
DISC. CONTINUOUS
HEUR. HEURISTICS

PARAM. k -NN q b ce c, c′

VALUE 5-NN 1− 10i 1/2 10i 10i

i {−1,−3,−5} {−4,−2, 0, 2} {−∞, 2, 4}
BEST VALUE

5-NN 1− 10−1 1/2
ARCENE 5-NN 1− 10−1 10−2 ANY

5-NN 1− 10−3 10−4 ALMOST ANY

MADELON
5-NN 1− 10−3 1/2
5-NN 1− 10−1 10−2 {(102, 0), (104, 0)}

COLON
5-NN 1− 10−5 1/2
5-NN 1− 10−5 ANY ALMOST ANY
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