Géométrie algorithmique non linéaire et courbes algébriques planaires

Luis Peñaranda
INRIA Nancy-Grand Est

3 décembre 2010

Presentation outline

introduction
research field
the problem
previous work
algorithmic issues
overview
details
complexity
implementation issues
isotop
cgal algebraic kernel
conclusion

Where are we standing?

- exact geometric computing
\square computational geometry
\square computer algebra tools

Where are we standing?

- exact geometric computing
\square computational geometry
\square computer algebra tools
- a long history
\square robot motion planning
\square CAGD

Where are we standing?

- exact geometric computing
\square computational geometry
\square computer algebra tools
- a long history
\square robot motion planning
\square CAGD
- recent advances in real solving

Exact geometric computing

- the general problem
\square algorithms often assume that numbers are real
\square computers do not like real numbers
\square inconsistencies

Exact geometric computing

- the general problem
\square algorithms often assume that numbers are real
\square computers do not like real numbers
\square inconsistencies
- in computational geometry
\square numerical errors often lead to crash
- exact arithmetic
- filtered arithmetic

Topology and some geometry of real algebraic plane curves

 input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$
Topology and some geometry of real algebraic plane curves

input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- identify and localize
\square singular points,

Topology and some geometry of real algebraic plane curves

input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- identify and localize
\square singular points,
\square x-extreme points,

Topology and some geometry of real algebraic plane curves

input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- identify and localize
\square singular points,
\square x-extreme points,
\square vertical asymptotes.

Topology and some geometry of real algebraic plane curves

input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- identify and localize
\square singular points,
\square x-extreme points,
\square vertical asymptotes.
- isotopic approximation of the curve by an arrangement of polylines

Topology and some geometry of real algebraic plane curves

input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- identify and localize
\square singular points,
\square x-extreme points,
\square vertical asymptotes.
- isotopic approximation of the curve by an arrangement of polylines
- results in the original coordinate system of the plane

Applications

- curve plotting
- computing arrangements of algebraic curves

Applications

- curve plotting
- computing arrangements of algebraic curves
the x-extreme points of each curve have to be computed in the same coordinate system

Previous work: subdivision techniques

- fast
- localizable (computation in a given box)
- not certified, unless they
- reach the separation bound
[Lorensen \& Cline, 1987]
[Alberti, Mourrain \& Wintz, 2008] [Burr, Choi, Galehouse \& Yap, 2008] [Lin \& Yap, 2009]

Cylindrical algebraic decomposition methods

Cylindrical algebraic decomposition methods

1. projection

Cylindrical algebraic decomposition methods

1. projection
2. lifting

Cylindrical algebraic decomposition methods

1. projection
2. lifting

Cylindrical algebraic decomposition methods

1. projection
2. lifting
3. adjacencies

Cylindrical algebraic decomposition methods

1. projection
2. lifting
3. adjacencies

- assume generic position, or detect it, shear and shear back

Cylindrical algebraic decomposition methods

1. projection
2. lifting
3. adjacencies

- assume generic position, or detect it, shear and shear back
- Collins, 1984
- Cad2d [Brown \& al.] Top [Gonzalez Vega \& Necula, 2002] Insulate [Seidel \& Wolpert, 2005] CA [Eigenwillig, Kerber \&
 Wolpert, 2007]

Our algorithm

- it's not a CAD
\square decomposition of the plane into rectangles: the rectangle containing each critical point may overlap in x
\square non-genericity of x-overlapping boxes is not an issue

generic

non-generic

Our algorithm

- it's not a CAD
\square decomposition of the plane into rectangles: the rectangle containing each critical point may overlap in x
\square non-genericity of x-overlapping boxes is not an issue
- replaces sub-resultant sequences and computations with algebraic coefficient polynomials by
\square Gröbner bases
\square Rational Univariate Representations

Algorithm outline

1. compute isolating boxes for critical points:

Algorithm outline

1. compute isolating boxes for critical points:
\square extreme points,

Algorithm outline

1. compute isolating boxes for critical points:
\square extreme points,
\square singular points and

Algorithm outline

1. compute isolating boxes for critical points:
\square extreme points,
\square singular points and
\square asymptotes;
and refine them until they are disjoint

Algorithm outline

1. compute isolating boxes for critical points:
\square extreme points,
\square singular points and
\square asymptotes;
and refine them until they are disjoint
2. determine the topology in the rectangles of critical points

Algorithm outline

1. compute isolating boxes for critical points:
\square extreme points,
\square singular points and
\square asymptotes;
and refine them until they are disjoint
2. determine the topology in the rectangles of critical points
3. compute the topology in the rest of the rectangles

Notation

curve: square free polynomial $f \in \mathbb{Q}[x, y]$

Notation

curve: square free polynomial $f \in \mathbb{Q}[x, y]$
a point $\mathbf{p}=(\alpha, \beta) \in \mathbb{C}^{2}$ is x-critical if $f(\mathbf{p})=f_{y}(\mathbf{p})=0$,

Notation

 curve: square free polynomial $f \in \mathbb{Q}[x, y]$a point $\mathbf{p}=(\alpha, \beta) \in \mathbb{C}^{2}$ is x-critical if $f(\mathbf{p})=f_{y}(\mathbf{p})=0$,

- singular if $f_{x}(\mathbf{p})=0$, and

Notation

 curve: square free polynomial $f \in \mathbb{Q}[x, y]$a point $\mathbf{p}=(\alpha, \beta) \in \mathbb{C}^{2}$ is x-critical if $f(\mathbf{p})=f_{y}(\mathbf{p})=0$,

- singular if $f_{x}(\mathbf{p})=0$, and
- x-extreme if $f_{x}(\mathbf{p}) \neq 0$ (i.e. x-critical and non-singular)

The Rational Univariate Representation

S is a bivariate system, RUR \rightsquigarrow univariate polynomial f, such that

$$
\begin{aligned}
t \text { root of } f \Longleftrightarrow & \left(\frac{g_{x}(t)}{h(t)}, \frac{g_{y}(t)}{h(t)}\right) \text { root of } S \\
& g_{x}, g_{y}, h \in \mathbb{Q}(t)
\end{aligned}
$$

The Rational Univariate Representation

S is a bivariate system, RUR \rightsquigarrow univariate polynomial f, such that

$$
\begin{aligned}
t \text { root of } f \Longleftrightarrow & \left(\frac{g_{x}(t)}{h(t)}, \frac{g_{y}(t)}{h(t)}\right) \text { root of } S \\
& g_{x}, g_{y}, h \in \mathbb{Q}(t)
\end{aligned}
$$

- the RUR preserves multiplicities
- we obtain the RUR from the Gröbner basis of S
- the roots of f are isolated with Descartes' method
- interval arithmetic for computing the separating boxes of the roots of the system S

Topology at extreme points

1. isolate the extreme system $S_{e}=\left\{\begin{array}{l}f(x, y)=0 \\ \frac{\partial f}{\partial y}=0 \\ \frac{\partial f}{\partial x} \neq 0\end{array}\right.$
2. refine boxes to get only two crossings on the border

3. store the multiplicities in the system S_{e} for the connection step (see later)

Topology at singularities

1. isolate singular points in boxes

Topology at singularities

1. isolate singular points in boxes
2. compute multiplicities k in fibers

Topology at singularities

1. isolate singular points in boxes
2. compute multiplicities k in fibers
3. refine the box to avoid the curve $f_{y^{k}}=\frac{\partial^{k} f}{\partial y^{k}}$ [Seidel \& Wolpert, 2005]

Topology at singularities

1. isolate singular points in boxes
2. compute multiplicities k in fibers
3. refine the box to avoid the curve $f_{y^{k}}=\frac{\partial^{k} f}{\partial y^{k}}$ [Seidel \& Wolpert, 2005]
4. refine the box to avoid top/bottom crossings

Rectangle decomposition of the plane

- the topology is known inside critical boxes

Rectangle decomposition of the plane

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes

Rectangle decomposition of the plane

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes
- compute intersections of the curve with the decomposition

Rectangle decomposition of the plane

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes
- compute intersections of the curve with the decomposition

Greedy connection algorithm using multiplicities

Greedy connection algorithm using multiplicities

16 of 42

Greedy connection algorithm using multiplicities

16 of 42

Greedy connection algorithm using multiplicities

Greedy connection algorithm using multiplicities

Greedy connection algorithm using multiplicities

16 of 42

Greedy connection algorithm using multiplicities

16 of 42

Complexity analysis

- the algorithm runs in $\widetilde{\mathcal{O}}_{B}\left(R d^{22} \tau^{2}\right)$, where
$\square R$: number of real critical points,
$\square d$ degree of the polynomial f,
\square : maximum coefficient bitsize of f.

Complexity analysis

- the algorithm runs in $\widetilde{\mathcal{O}}_{B}\left(R d^{22} \tau^{2}\right)$, where
$\square R$: number of real critical points,
$\square d$ degree of the polynomial f,
\square : maximum coefficient bitsize of f.
- if $N=\max \{d, \tau\}$ and R is $\mathcal{O}\left(d^{2}\right)$, we have $\widetilde{\mathcal{O}}_{B}\left(N^{26}\right)$

Complexity analysis

- the algorithm runs in $\widetilde{\mathcal{O}}_{B}\left(R d^{22} \tau^{2}\right)$, where
$\square R$: number of real critical points,
$\square d$ degree of the polynomial f,
\square : maximum coefficient bitsize of f.
- if $N=\max \{d, \tau\}$ and R is $\mathcal{O}\left(d^{2}\right)$, we have $\widetilde{\mathcal{O}}_{B}\left(N^{26}\right)$
- does not reflect practical performance

Implementation in Maple

Isotop: +7000 lines of Maple code, using

- FGb for Gröbner basis (Faugère)
- RS for RUR and isolation (Rouillier)
- complete: handles vertical asymptotes and vertical components
- certified
- http://vegas.loria.fr/isotop

Isotop interface

ISOTOP:-topology_real_curve ($y^{\wedge} 4-6^{*} y^{\wedge} 2^{*} x+x^{\wedge} 2-4^{*} y^{\wedge} 2^{*} x^{\wedge} 2+24^{*} x^{\wedge} 3$, verbosity=0,
precision=10,
plot_graph=true, nb_splits=10);

Isotop experiments

we ran large-scale tests, testing around 600 curves

- random curves
- ACS curves
- O. Labs' tough curves
- resultants of degree-3 random surfaces
- n translations $\prod_{j=0}^{n} f(x, y+j)$
- symmetric polynomials $f^{2}(x, y)+f^{2}(x,-y)$

Isotop experiments: input curves

degrees

number of critical points

Experiments: results, $r=\frac{\text { time }}{\text { time }{ }_{\text {sotop }}}$ CA

Cad2d [Brown, 2002]

$$
1<r \leq 3
$$

aborted
$3<r$
$0<r \leq 1 / 3$
$1<r \leq 3 \quad 1 / 3<r \leq 1$

Top
[GV\&N, 2002]
timeout

22 of 42

Experiments: conclusions

- faster for
\square non-generic curves
\square high degree curves

Experiments: conclusions

- faster for
\square non-generic curves
\square high degree curves
- slower for
\square random curves
\square curves with high-tangency points

Experiments: conclusions

- faster for
\square non-generic curves
\square high degree curves
- slower for
\square random curves
\square curves with high-tangency points
- why?

Algebraic algorithms in CGAL

- Isotop is in Maple, but
\square it is not a standard in the CG community
\square Maple programs cannot be used as libraries

Algebraic algorithms in CGAL

- Isotop is in Maple, but
\square it is not a standard in the CG community
\square Maple programs cannot be used as libraries
- in general
\square lack of algebro-geometric tools in C or C++

Algebraic algorithms in CGAL

- Isotop is in Maple, but
\square it is not a standard in the CG community
\square Maple programs cannot be used as libraries
- in general
\square lack of algebro-geometric tools in C or C++
- CGAL
\square C++ library
\square standard in the community
\square generic programming

Algebraic algorithms in CGAL

- Isotop is in Maple, but
\square it is not a standard in the CG community
\square Maple programs cannot be used as libraries
- in general
\square lack of algebro-geometric tools in C or C++
- CGAL
- C++ library
\square standard in the community
\square generic programming
- equip CGAL with algebraic tools
\square also useful for future algorithms

Algebraic tools in CGAL

- specific non-linear objects, particular algorithms
\square arrangements of conics

Algebraic tools in CGAL

- specific non-linear objects, particular algorithms
\square arrangements of conics
- specific non-linear objects, kernels
\square circles
\square spheres

Algebraic tools in CGAL

- specific non-linear objects, particular algorithms
\square arrangements of conics
- specific non-linear objects, kernels
\square circles
\square spheres
- curves of arbitrary degree, algebraic kernels
\square univariate and bivariate
\square many variables

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

- features
\square root finding
\square algebraic number comparison
\square all related polynomial operations

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

- features
\square root finding
\square algebraic number comparison
\square all related polynomial operations
- concepts and models

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

- features
\square root finding
\square algebraic number comparison
\square all related polynomial operations
- concepts and models
- model of univariate algebraic kernel

Tools we use

- GMP
\square GNU multiple-precision number library

Tools we use

- GMP
\square GNU multiple-precision number library
- RS
\square univariate polynomials with integer coefficients
\square interval Descartes algorithm
\square coded in C
\square memory managementmultiple platforms (Unix, Mac OS, Win)

Tools we use

- GMP
\square GNU multiple-precision number library
- RS
\square univariate polynomials with integer coefficientsinterval Descartes algorithm
\square coded in C
\square memory management
\square multiple platforms (Unix, Mac OS, Win)
- MPFR
\square arbitrary multiple-precision floating-point numbers

Tools we use

- GMP
\square GNU multiple-precision number library
- RS
\square univariate polynomials with integer coefficients
\square interval Descartes algorithm
\square coded in C
\square memory management
\square multiple platforms (Unix, Mac OS, Win)
- MPFR
\square arbitrary multiple-precision floating-point numbers
- MPFI
\square arbitrary multiple-precision floating-point intervals

Our algebraic kernel

- 8000 lines of code

Our algebraic kernel

- 8000 lines of code
- root isolation
\square uses RS
\square gives as result algebraic numbers
- isolating interval: MPFI
- pointer to a polynomial

Our algebraic kernel

- 8000 lines of code
- root isolation
\square uses RS
\square gives as result algebraic numbers
- isolating interval: MPFI
- pointer to a polynomial
- comparison of algebraic numbers
\square easy when intervals do not overlap
\square otherwise, test for equality
- greatest common divisor (gcd)
- algebraic number refinement

Auxiliar operations

- gcd
\square bottleneck of the implementation (used for comparisons and square free factorizations)
\square two modular implementations
\square fast detection of coprime polynomials

Auxiliar operations

- gcd
\square bottleneck of the implementation (used for comparisons and square free factorizations)
\square two modular implementations
\square fast detection of coprime polynomials
- refinement
\square bisection
\square quadratic refinement

Benchmarks

- software
\square MPII's algebraic kernel (using CORE NT)
\square Synaps/Mathemagix code (using NCF2 and GMP NT)
\square our algebraic kernel

Benchmarks

- software
\square MPII's algebraic kernel (using CORE NT)
\square Synaps/Mathemagix code (using NCF2 and GMP NT)
\square our algebraic kernel
- functionalities
\square root isolationalgebraic number comparison
\square application: arrangement construction

Benchmark data

- first time such a big amount of data for polynomials is tested
- 60,000 polynomials (3.8 Gb)
- several weeks in total

Root isolation: varying bitsize

degree-12 random polynomials

Root isolation: varying bitsize II

 degree-100 random polynomials

Root isolation: Mignotte polynomials

$$
f=x^{d}-2(k x-1)^{2}
$$

Root isolation: varying degree

bitsize-1000 random polynomials

Algebraic number comparison

almost-identical polynomials of degree 20

Arrangement benchmarks

test programs

- CGAL’s arrangement package (Tel-Aviv University)
- parameterised with
\square a traits class that uses CORE
\square a new traits class for our kernel

Arrangement benchmarks

test programs

- CGAL's arrangement package (Tel-Aviv University)
- parameterised with
\square a traits class that uses CORE
\square a new traits class for our kernel
test data
- generate n random polynomials
- shift them vertically m times
- $n(m+1)$ polynomials of bitsize τ and degree d
- we fix $n=5$ and $m=4$ here

Arrangements: varying bitsize

$d=20$

Arrangements: varying degree

$\tau=32$

Experimentation highlights

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete

Experimentation highlights

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
\square our kernel is faster for high degrees and bitsizes
\square Synaps isolation performs much better in Mignotte's polynomials

Experimentation highlights

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
\square our kernel is faster for high degrees and bitsizes
\square Synaps isolation performs much better in Mignotte's polynomials
- algebraic number refinement
\square MPII quadratic refinement is really fast

Experimentation highlights

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
\square our kernel is faster for high degrees and bitsizes
\square Synaps isolation performs much better in Mignotte's polynomials
- algebraic number refinement
\square MPII quadratic refinement is really fast
- arrangement experiments
\square validate the algebraic kernel approach

Conclusions

- algorithm development
\square curve topology analysis
\square no special treatment of non-generic cases,
\square results in the original coordinate system
\square uses Rational Univariate Representations, to avoid sub-resultant sequences

Conclusions

- algorithm development
\square curve topology analysis
\square no special treatment of non-generic cases,
\square results in the original coordinate system
\square uses Rational Univariate Representations, to avoid sub-resultant sequences
- implementation
\square Maple implementation of the topology algorithm
\square CGAL univariate algebraic kernel
\square thorough benchmarking

Conclusions

- algorithm development
\square curve topology analysis
\square no special treatment of non-generic cases,
\square results in the original coordinate system
\square uses Rational Univariate Representations, to avoid sub-resultant sequences
- implementation
\square Maple implementation of the topology algorithm
\square CGAL univariate algebraic kernel
\square thorough benchmarking
- analysis of algorithms
\square output-sensitive complexity analysis

Perspectives

- improve handling of some curves
\square algebraic approach that is always efficient
\square arrangements of curves
- topology of surfaces, meshing
- include Isotop in Maple
- bivariate and multivariate algebraic kernel
- tighter complexity bounds

