Géométrie algorithmique non linéaire et courbes algébriques planaires

Luis Peñaranda

INRIA Nancy-Grand Est

3 décembre 2010

Presentation outline

introduction research field the problem previous work

algorithmic issues

overview details complexity

implementation issues

isotop cgal algebraic kernel

conclusion

2 of 42

Where are we standing?

- exact geometric computing
 - □ computational geometry
 - $\hfill\square$ computer algebra tools

Where are we standing?

- exact geometric computing
 - □ computational geometry
 - $\hfill\square$ computer algebra tools
- a long history
 - $\hfill\square$ robot motion planning
 - □ CAGD

Where are we standing?

- exact geometric computing
 - □ computational geometry
 - $\hfill\square$ computer algebra tools
- a long history
 - $\hfill\square$ robot motion planning
 - □ CAGD
- recent advances in real solving

Exact geometric computing

the general problem

- $\hfill\square$ algorithms often assume that numbers are real
- $\hfill\square$ computers do not like real numbers
- □ inconsistencies

Exact geometric computing

the general problem

- □ algorithms often assume that numbers are real
- $\hfill\square$ computers do not like real numbers
- □ inconsistencies
- in computational geometry
 - $\hfill\square$ numerical errors often lead to crash
 - exact arithmetic
 - filtered arithmetic

- identify and localize
 - □ singular points,

- identify and localize
 - □ singular points,
 - x-extreme points,

- identify and localize
 - □ singular points,
 - x-extreme points,
 - □ vertical asymptotes.

- identify and localize
 - □ singular points,
 - x-extreme points,
 - vertical asymptotes.
- isotopic approximation of the curve by an arrangement of polylines

- identify and localize
 - □ singular points,
 - x-extreme points,
 - vertical asymptotes.
- isotopic approximation of the curve by an arrangement of polylines
- results in the original coordinate system of the plane

Applications

curve plotting

computing arrangements of algebraic curves

Applications

- curve plotting
- computing arrangements of algebraic curves

the *x*-extreme points of each curve have to be computed in the same coordinate system

Previous work: subdivision techniques

fast

- localizable (computation in a given box)
- not certified, unless they
- reach the separation bound

[Lorensen & Cline, 1987] [Alberti, Mourrain & Wintz, 2008] [Burr, Choi, Galehouse & Yap, 2008] [Lin & Yap, 2009]

1. projection

- 1. projection
- 2. lifting

- 1. projection
- 2. lifting

- 1. projection
- 2. lifting
- 3. adjacencies

- 1. projection
- 2. lifting
- 3. adjacencies
- assume generic position, or detect it, shear and shear back

- 1. projection
- 2. lifting
- 3. adjacencies
- assume generic position, or detect it, shear and shear back
- Collins, 1984
- Cad2d [Brown & al.] Top [Gonzalez Vega & Necula, 2002] Insulate [Seidel & Wolpert, 2005] CA [Eigenwillig, Kerber & Wolpert, 2007]

8 of 42

Our algorithm

- it's not a CAD
 - □ decomposition of the plane into rectangles: the rectangle containing each critical point may overlap in *x*
 - □ non-genericity of *x*-overlapping boxes is not an issue

Our algorithm

- it's not a CAD
 - □ decomposition of the plane into rectangles: the rectangle containing each critical point may overlap in *x*
 - □ non-genericity of *x*-overlapping boxes is not an issue
- replaces sub-resultant sequences and computations with algebraic coefficient polynomials by
 - Gröbner bases
 - Rational Univariate Representations

1. compute isolating boxes for critical points:

- 1. compute isolating boxes for critical points:
 - □ extreme points,

- 1. compute isolating boxes for critical points:
 - □ extreme points,
 - $\hfill\square$ singular points and

- 1. compute isolating boxes for critical points:
 - extreme points,
 - singular points and
 - □ asymptotes;

and refine them until they are disjoint

- 1. compute isolating boxes for critical points:
 - extreme points,
 - singular points and
 - □ asymptotes;

and refine them until they are disjoint

2. determine the topology in the rectangles of critical points

- 1. compute isolating boxes for critical points:
 - extreme points,
 - singular points and
 - asymptotes;

and refine them until they are disjoint

- 2. determine the topology in the rectangles of critical points
- 3. compute the topology in the rest of the rectangles

curve: square free polynomial $f \in \mathbb{Q}[x, y]$

curve: square free polynomial $f \in \mathbb{Q}[x, y]$

a point $\mathbf{p} = (\alpha, \beta) \in \mathbb{C}^2$ is x-critical if $f(\mathbf{p}) = f_{y}(\mathbf{p}) = 0$,

curve: square free polynomial $f \in \mathbb{Q}[x, y]$

a point $\mathbf{p} = (\alpha, \beta) \in \mathbb{C}^2$ is *x*-critical if $f(\mathbf{p}) = f_y(\mathbf{p}) = 0$, • singular if $f_x(\mathbf{p}) = 0$, and

curve: square free polynomial $f \in \mathbb{Q}[x, y]$

a point $\mathbf{p} = (\alpha, \beta) \in \mathbb{C}^2$ is x-critical if $f(\mathbf{p}) = f_y(\mathbf{p}) = 0$,

- *singular* if $f_x(\mathbf{p}) = 0$, and
- *x*-extreme if $f_x(\mathbf{p}) \neq 0$ (i.e. x-critical and non-singular)

The Rational Univariate Representation

S is a bivariate system, RUR \rightsquigarrow univariate polynomial *f*, such that

$$t \operatorname{root} \operatorname{of} f \iff \left(\frac{g_x(t)}{h(t)}, \frac{g_y(t)}{h(t)}\right) \operatorname{root} \operatorname{of} S$$
$$g_x, g_y, h \in \mathbb{Q}(t)$$
The Rational Univariate Representation

S is a bivariate system, RUR \rightsquigarrow univariate polynomial *f*, such that

$$t \operatorname{root} \operatorname{of} f \iff \left(\frac{g_x(t)}{h(t)}, \frac{g_y(t)}{h(t)}\right) \operatorname{root} \operatorname{of} S$$
$$g_x, g_y, h \in \mathbb{Q}(t)$$

- the RUR preserves multiplicities
- we obtain the RUR from the Gröbner basis of *S*
- the roots of *f* are isolated with Descartes' method
- interval arithmetic for computing the separating boxes of the roots of the system S

Topology at extreme points

1. isolate the extreme system
$$S_e = \begin{cases} f(x, y) = 0\\ \frac{\partial f}{\partial y} = 0\\ \frac{\partial f}{\partial x} \neq 0 \end{cases}$$

2. refine boxes to get only two crossings on the border

3. store the multiplicities in the system S_e for the connection step (see later)

1. isolate singular points in boxes

- 1. isolate singular points in boxes
- 2. compute multiplicities k in fibers

- 1. isolate singular points in boxes
- 2. compute multiplicities k in fibers
- 3. refine the box to avoid the curve $f_{y^k} = \frac{\partial^k f}{\partial y^k}$ [Seidel & Wolpert, 2005]

- 1. isolate singular points in boxes
- 2. compute multiplicities k in fibers
- 3. refine the box to avoid the curve $f_{y^k} = \frac{\partial^k f}{\partial y^k}$ [Seidel & Wolpert, 2005]
- 4. refine the box to avoid top/bottom crossings

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes
- compute intersections of the curve with the decomposition

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane with respect to these boxes
- compute intersections of the curve with the decomposition

Complexity analysis

- \blacksquare the algorithm runs in $\widetilde{\mathcal{O}}_B(R\,d^{22}\,\tau^{\,2})$, where
 - \Box *R*: number of real critical points,
 - $\Box \quad d: \text{ degree of the polynomial } f,$
 - $\Box \tau$: maximum coefficient bitsize of *f*.

Complexity analysis

- the algorithm runs in $\widetilde{\mathcal{O}}_B(R\,d^{22}\,\tau^2)$, where
 - \Box *R*: number of real critical points,
 - \Box *d*: degree of the polynomial *f*,
 - $\Box \tau$: maximum coefficient bitsize of *f*.

• if
$$N = \max\{d, \tau\}$$
 and R is $\mathcal{O}(d^2)$, we have $\widetilde{\mathcal{O}}_B(N^{26})$

Complexity analysis

- the algorithm runs in $\widetilde{\mathcal{O}}_B(R\,d^{22}\,\tau^2)$, where
 - \Box *R*: number of real critical points,
 - \Box *d*: degree of the polynomial *f*,
 - $\Box \tau$: maximum coefficient bitsize of *f*.
- if $N = \max\{d, \tau\}$ and R is $\mathcal{O}(d^2)$, we have $\widetilde{\mathcal{O}}_B(N^{26})$
- does not reflect practical performance

Implementation in Maple

Isotop: +7000 lines of Maple code, using

- FGB for Gröbner basis (Faugère)
- RS for RUR and isolation (Rouillier)
- complete: handles vertical asymptotes and vertical components
- certified

http://vegas.loria.fr/isotop

Isotop interface

Isotop experiments

we ran large-scale tests, testing around 600 curves

- random curves
- ACS curves
- O. Labs' tough curves
- resultants of degree-3 random surfaces
- *n* translations $\prod_{j=0}^{n} f(x, y+j)$
- symmetric polynomials $f^2(x, y) + f^2(x, -y)$

Isotop experiments: input curves

degrees

number of critical points

Experiments: conclusions

- faster for
 - □ non-generic curves
 - □ high degree curves

Experiments: conclusions

- faster for
 - non-generic curves
 - $\hfill\square$ high degree curves
- slower for
 - $\hfill\square$ random curves
 - □ curves with high-tangency points

Experiments: conclusions

- faster for
 - non-generic curves
 - $\hfill\square$ high degree curves
- slower for
 - $\hfill\square$ random curves
 - □ curves with high-tangency points
- why?

- Isotop is in Maple, but
 - □ it is not a standard in the CG community
 - $\hfill\square$ Maple programs cannot be used as libraries

- Isotop is in Maple, but
 - □ it is not a standard in the CG community
 - Maple programs cannot be used as libraries
- in general
 - $\hfill\square$ lack of algebro-geometric tools in C or C++

- Isotop is in Maple, but
 - □ it is not a standard in the CG community
 - Maple programs cannot be used as libraries
- in general
 - □ lack of algebro-geometric tools in C or C++

CGAL

- \Box C++ library
- $\hfill\square$ standard in the community
- generic programming

- Isotop is in Maple, but
 - $\hfill\square$ it is not a standard in the CG community
 - Maple programs cannot be used as libraries
- in general
 - $\hfill\square$ lack of algebro-geometric tools in C or C++

CGAL

- \Box C++ library
- standard in the community
- generic programming
- equip CGAL with algebraic tools
 - $\hfill\square$ also useful for future algorithms

Algebraic tools in CGAL

specific non-linear objects, particular algorithms

 $\hfill\square$ arrangements of conics

Algebraic tools in CGAL

specific non-linear objects, particular algorithms

 $\hfill\square$ arrangements of conics

specific non-linear objects, kernels

 \Box circles

□ spheres

Algebraic tools in CGAL

specific non-linear objects, particular algorithms

 $\hfill\square$ arrangements of conics

specific non-linear objects, kernels

 \Box circles

□ spheres

- curves of arbitrary degree, algebraic kernels
 - □ univariate and bivariate
 - many variables

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects
Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

features

- \Box root finding
- □ algebraic number comparison
- $\hfill\square$ all related polynomial operations

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

features

- \Box root finding
- $\hfill\square$ algebraic number comparison
- all related polynomial operations
- concepts and models

Algebraic Kernel

combines algebra and geometry for manipulating non-linear objects

features

- \Box root finding
- $\hfill\square$ algebraic number comparison
- all related polynomial operations
- concepts and models
- model of univariate algebraic kernel

■ GMP

□ GNU multiple-precision number library

GMP

GNU multiple-precision number library

RS

- $\hfill\square$ univariate polynomials with integer coefficients
- interval Descartes algorithm
- \Box coded in C
- memory management
- multiple platforms (Unix, Mac OS, Win)

GMP

GNU multiple-precision number library

RS

- $\hfill\square$ univariate polynomials with integer coefficients
- interval Descartes algorithm
- \Box coded in C
- memory management
- multiple platforms (Unix, Mac OS, Win)

MPFR

arbitrary multiple-precision floating-point numbers

GMP

□ GNU multiple-precision number library

RS

- $\hfill\square$ univariate polynomials with integer coefficients
- interval Descartes algorithm
- \Box coded in C
- memory management
- multiple platforms (Unix, Mac OS, Win)

MPFR

arbitrary multiple-precision floating-point numbers

MPFI

 $\hfill\square$ arbitrary multiple-precision floating-point intervals

Our algebraic kernel

8000 lines of code

Our algebraic kernel

8000 lines of code

root isolation

- \Box uses RS
- $\hfill\square$ gives as result algebraic numbers
 - isolating interval: MPFI
 - pointer to a polynomial

Our algebraic kernel

8000 lines of code

root isolation

- \Box uses RS
- $\hfill\square$ gives as result algebraic numbers
 - isolating interval: MPFI
 - pointer to a polynomial
- comparison of algebraic numbers
 - $\hfill\square$ easy when intervals do not overlap
 - $\hfill\square$ otherwise, test for equality
 - greatest common divisor (gcd)
 - algebraic number refinement

Auxiliar operations

gcd

- □ bottleneck of the implementation (used for comparisons and square free factorizations)
- $\hfill\square$ two modular implementations
- $\hfill\square$ fast detection of coprime polynomials

Auxiliar operations

gcd

- □ bottleneck of the implementation (used for comparisons and square free factorizations)
- two modular implementations
- $\hfill\square$ fast detection of coprime polynomials

refinement

- bisection
- quadratic refinement

Benchmarks

software

- □ MPII's algebraic kernel (using CORE NT)
- □ Synaps/Mathemagix code (using NCF2 and GMP NT)
- our algebraic kernel

Benchmarks

software

- □ MPII's algebraic kernel (using CORE NT)
- Synaps/Mathemagix code (using NCF2 and GMP NT)
- $\hfill\square$ our algebraic kernel

functionalities

- $\hfill\square$ root isolation
- algebraic number comparison
- □ application: arrangement construction

Benchmark data

- first time such a big amount of data for polynomials is tested
- 60,000 polynomials (3.8 Gb)
- several weeks in total

Root isolation: varying bitsize

degree-12 random polynomials

32 of 42

Root isolation: varying bitsize II

degree-100 random polynomials

33 of 42

Root isolation: Mignotte polynomials

Root isolation: varying degree

bitsize-1000 random polynomials

35 of 42

Algebraic number comparison

almost-identical polynomials of degree 20

Arrangement benchmarks

test programs

- CGAL's arrangement package (Tel-Aviv University)
- parameterised with
 - a traits class that uses CORE
 - $\hfill\square$ a new traits class for our kernel

Arrangement benchmarks

test programs

- CGAL's arrangement package (Tel-Aviv University)
- parameterised with
 - a traits class that uses CORE
 - $\hfill\square$ a new traits class for our kernel

test data

- generate *n* random polynomials
- shift them vertically *m* times
- n(m + 1) polynomials of bitsize τ and degree d
- we fix n = 5 and m = 4 here

Arrangements: varying bitsize

d = 20

38 of 42

Arrangements: varying degree

 $\tau = 32$

39 of 42

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
 - $\hfill\square$ our kernel is faster for high degrees and bit sizes
 - □ Synaps isolation performs much better in Mignotte's polynomials

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
 - $\hfill\square$ our kernel is faster for high degrees and bitsizes
 - $\hfill\square$ Synaps isolation performs much better in Mignotte's polynomials
- algebraic number refinement
 - MPII quadratic refinement is really fast

- our algebraic kernel is included in CGAL 3.6
- MPII kernel is unstable due to external library issues
- Synaps kernel is not complete
- root isolation
 - $\hfill\square$ our kernel is faster for high degrees and bitsizes
 - $\hfill\square$ Synaps isolation performs much better in Mignotte's polynomials
- algebraic number refinement
 - MPII quadratic refinement is really fast
- arrangement experiments
 - $\hfill\square$ validate the algebraic kernel approach

Conclusions

- algorithm development
 - $\hfill\square$ curve topology analysis
 - □ no special treatment of non-generic cases,
 - □ results in the original coordinate system
 - uses Rational Univariate Representations, to avoid sub-resultant sequences

Conclusions

- algorithm development
 - $\hfill\square$ curve topology analysis
 - □ no special treatment of non-generic cases,
 - $\hfill\square$ results in the original coordinate system
 - uses Rational Univariate Representations, to avoid sub-resultant sequences

implementation

- Maple implementation of the topology algorithm
- □ CGAL univariate algebraic kernel
- thorough benchmarking

Conclusions

- algorithm development
 - $\hfill\square$ curve topology analysis
 - $\hfill\square$ no special treatment of non-generic cases,
 - $\hfill\square$ results in the original coordinate system
 - uses Rational Univariate Representations, to avoid sub-resultant sequences

implementation

- Maple implementation of the topology algorithm
- CGAL univariate algebraic kernel
- thorough benchmarking

analysis of algorithms

output-sensitive complexity analysis

Perspectives

- improve handling of some curves
 - □ algebraic approach that is *always* efficient
 - □ arrangements of curves
- topology of surfaces, meshing
- include Isotop in Maple
- bivariate and multivariate algebraic kernel
- tighter complexity bounds