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par

Martine OLIVI

Parametrization of rational lossless matrices

with applications to linear systems theory

soutenue le 25 Octobre 2010 devant le jury composé de
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Introduction

The works presented in this habilitation thesis were initially motivated by the rational
approximation issue in system theory.
Rational matrix-valued functions arise with the transfer function description of a fi-
nite dimensional, linear, time-invariant system. Rational approximation seems to me
the main issue in the fundamental modelization problem: given some data about a
system, find the best model in the popular class of LTI systems. This problem can
be understood in many different ways and resulted in many approaches depending
on the nature of the data (time series, frequency data), on the purpose of the model
(prediction, control), etc. . The current approaches mainly fall in two sub-classes, the
projection methods (subspace method, balanced truncation) easy to implement but
not always efficient, and optimization methods (Hankel, H2) which result in difficult
non-linear problems. Model reduction and identification are still very active fields in
system theory as numerous recent publications show [3, 24, 58].

Our contribution was dedicated to rational approximation in the Hardy space H2.
This space is interesting both for its underlying stochastic interpretation and the Hilber-
tian framework it provides. It corresponds for the transfer function to a L2 7→ L∞ sta-
bility requirement (a finite energy input produces a bounded energy output). Given
a transfer function in H2, the rational approximation problem is thus to minimize the
distance in L2-norm to the set of rational stable transfer functions of order at most n.
This problem features some serious difficulties : it is a non-linear optimization prob-
lem, the set of approximants has a complicated structure and the L2-error may possess
a great number of local minima in which a descent algorithm can get stuck. To cope
with these problems, we have developed an original approach [BCO91, FO98] based
on

• a compactification of the optimization set which makes use of the Douglas-Shapi-
ro-Shields factorization and the projection theorem in Hilbert space. Lossless
matrix valued functions play in the matrix case the role of the denominator in
the scalar case. The ”denominator” is thus optimized while the ”numerator” is
computed by projection: the optimization runs over the set of lossless functions
which thus enter the picture and bring their rich structure. Surprisingly enough,
this method is seldom used in approximation; it is known, in the context of least-
square approximation, under the name ”separable least-squares”.

• the use of an atlas of charts to describe the optimization set: the space of lossless
functions of fixed McMillan degree. This type of representation is recommended
if one wants to use differential calculus tools for solving an optimization prob-
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lem. The first atlas of charts for lossless matrix valued functions were obtained
in [1] from a tangential Schur algorithm. An important part of this document is
devoted to the description of such atlases.

Rational approximation was our first motivation to study lossless functions and their
parametrizations. However, these functions play an important role in system theory
anyway because of the Douglas-Shapiro-Shields factorization. They also are of inde-
pendent interest, being the transfer functions of conservative systems: the scattering
matrix of a frequency filter, the polyphase matrix of an orthogonal filter bank are loss-
less. Overall, they lie at the heart of Schur analysis, a rich theory studying interpolation
problems for functions satisfying a metric constraint, namely Schur functions (see e.g.
[18, 4, 20]). This gives rise to multiple interactions with system theory [35, 40] and has
widely inspired this work.

Concerning the parametrization of lossless (matrix-valued) functions, we aimed at
connecting two types of representations

• atlases of charts derived from interpolation problems. The parameters are thus
interpolation values. This is a very efficient way to take into account the Schur
metric constraint and subsequently the stability requirement.

• state-space representations and balanced canonical forms. State-space represen-
tations involve basically linear algebra techniques and their efficiency for numer-
ical computations has been demonstrated.

In [31], such a connection was established between the Hessenberg canonical form for
discrete-time scalar systems and the Schur algorithm. The Hessenberg canonical form
is balanced and such that, in addition, the associated controlability matrix is upper-
triangular. The state-space realization can be written as a product of Givens rotations
whose parameters are precisely the sequence Schur parameters. In chapter 2, the re-
sults of [31] are generalized to the matrix case following the approach developed in
[HOP06, PHO07, HOP09]. Overlapping balanced canonical forms are associated with
a suitable tangential Schur algorithm. Realization matrices are obtained as a product of
unitary matrices that can be parametrized by a sequence of vectorial Schur parameters.
Moreover, for a canonical choice of interpolation values and interpolation directions in
the Schur algorithm, the realization matrix possesses a sub-diagonal pivot structure.
It generalizes the Hessenberg form of the SISO (single input-single output) case and
should be a useful tool for model reduction.

Chapter 3 is dedicated to H2 rational approximation and its practical implemen-
tation in the software RARL2. Another atlas of charts is used here, which has been
constructed from more general interpolation data [MO07]. In this atlas, a chart is in-
dexed by a lossless transfer function whose parameters are all zero, which explains the
denomination ”lossless mutual encoding” for this parametrization. It exhibits several
nice features, in particular computational simplicity and the fact that it better suits the
representation of real or conjugate symmetric lossless functions. This is an important
point, since real-world systems and their transfer functions are usually real. The soft-
ware RARL2 [MO04] is mainly used for two dedicated applications, for which it is
combined with other tools into specific softwares: PRESTO-HF for the identification
of microwave filters from frequency data [60] and FINDSOURCE3D for the localiza-
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tion of dipolar sources in electroencephalography [8]. Potential applications abound,
among which wavelet approximation and aircraft flutter modal parameter identifica-
tion are already under investigation.

More recently, motivated by microwave filter design applications, we worked on a
completion problem for matrix valued lossless systems. Frequency filters are usually
described by scattering matrices which are not only lossless but also symmetric, due
to the reciprocity law attached to wave propagation. Since the design problem bears
on a submatrix (the transmission), it would be interesting to characterize the subma-
trices of a lossless symmmetric matrix. This problem can be stated as follows: under
which conditions can a symmetric Schur matrix be extended into a lossless one? We
recast the celebrated Darlington synthesis problem [15] with an additional symme-
try requirement which refines the completion problem. In Chapter 4 we summarize
the contribution of [BEGO07] which significantly improves previous results [2] and
provides both a minimal degree extension of double dimension and a minimal dimen-
sion extension of the same degree. These results brings a new understanding of the
structure of 3 × 3 reciprocal matrices and the derivation of efficient algorithm for the
synthesis of 3-ports devices is being studied.
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Chapter 1

Lossless functions in system theory

Lossless systems and their transfer functions are involved in many areas of system
theory, from electrical network theory and related synthesis problems [2] to modern
digital signal processing [63]. A lossless system is a device which conserves energy,
as electrical networks with no resistive elements. The usefulness of lossless transfer
functions is also and mainly due to the Douglas-Shapiro-Shields factorization. They
indeed appear as generalized denominators of rational matrix-valued functions.

In an engineering context, linear systems have been studied since the 1930s. An in-
put/output and frequency domain viewpoint prevailed and SISO systems were mod-
eled by their transfer functions. In the sixties, the move to state space models open
the way to new mathematical fields. The input/state/output systems had much more
modeling power, were far richer mathematically and took into consideration initial
conditions, something that transfer functions fail to do. Mathematical system theory
was rapidly growing. The algebraic setting and the concept of module turned out to
be essential to deal with multivariable or MIMO (multi-input, multi-output) systems
[37, 36]. The works of Fuhrmann, that we mainly follow, aimed at synthesizing the
algebraic approach of Kalman, the state-space approach as well as the polynomial ap-
proach of Rosenbrock [56]. Functional analysis methods and geometry, relying on a
stability assumption, happened to be relevant in many purposes and nowadays clas-
sical [23]. From a mathematical viewpoint, lossless functions arise with this geometric
framework, namely associated with the invariant subspaces of the Hardy space H2.
The reader interested by the history of mathematical systems theory should have a
look at Willems’s essay [64].

In this chapter, we go over the now classical representations of finite-dimensional
LTI systems from transfer functions to state-space descriptions [23], and then glide
to interpolation theory for rational systems as developed in [4]. The state and the
pole-zero structure of the transfer function are the key concepts and lossless functions
the heroes of this chapter. We focus on discrete-time systems that is, from a complex
analysis viewpoint, to the framework of the unit disk which is in some sense sim-
pler. Our studies mostly bear on discrete-time lossless matrices, except in Chapter 4.
The discrete-time and continuous-time settings are connected through a bilinear (or
Möbius) transformation of the variable (see e.g. [27] and section 3.4).
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1.1 Transfer functions and their factorizations

From an input/output viewpoint, a discrete-time system is modeled by a map :

σ : (uk)k∈Z 7→ (yk)k∈Z, uk ∈ F
m, yk ∈ F

p, F = R or C.

Linearity together with time-invariance of the system induces a discrete convolution
operator. Putting more structure on the input and output signals spaces, allows to
rephrase systems properties (causality, stability) in mathematical terms. The two ap-
proaches described in this section follow two parallel lines, splitting the time axis in
two parts, modeling the state and translating shift-invariance into commutation prop-
erties.

1.1.1 The algebraic framework

Assuming the system initially at rest, algebra enters the picture representing input and
output by truncated Laurent series and the system as a map

σ : F((1/z))m −→ F((1/z))p

u(z) = ∑ ukz−k 7→ y(z) = ∑ ykz−k .

The set of truncated Laurent series F((1/z)) is the quotient field of the set of formal
series F[[1/z]]. Linearity and time-invariance of the system imply that σ is a linear
transformation of vector spaces. The input/output behavior of the system is then com-
pletely described by the multiplication by a matrix-valued function called the transfer
function of the system

y(z) = T(z)u(z).

Causality of the system implies that T(z) is proper, T(z) ∈ F[[1/z]]p×m.

With the concept of state, the module structure appears as the basic structure in this
context. The state is the memory of the system: at t = k, the state xk is the information
that together with uk determines uniquely the output y(t) for all t > k. To address this
concept, the time axis is divided in two parts, writing F((1/z)) as a direct sum

F((1/z) = F[z] ⊕ 1/zF[1/z],

in which F[z] denotes the ring of polynomials over F. This decomposition is obtained
from the exact sequence of F[z]-modules:

0 → F[z]
injection−−−−→ F((1/z))

projection−−−−−→ F((1/z))/F[z]︸ ︷︷ ︸
1/zF[[1/z]]

−→ 0

The past-input to future-output map σ̄ is then defined by the following commutative
diagram

F((1/z))m σ−→ F((1/z))p

π+ ↓ ↓ π−

F[z]m
σ̄−→ 1/zF[[1/z]]p
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The kernel of σ̄, ker σ̄, is a sub-module of the free module F[z]m over the PID (prin-
cipal ideal domain) F[z].

ker σ̄ = {u(z) ∈ F[z]m; T(z)u(z) ∈ F[z]p} . (1.1)

The structure of such sub-modules is well-known and described by the following
theorem ([34, II, Ch. 3], [23]).

Theorem 1.1.1 (Adapted basis) Every sub-module E of a finitely generated free module
M over a PID R, is free. There exists a basis (e1, e2, . . . , em) of M and a set of elements
d1, d2, ...ds, s ≤ m of R such that di/di+1 and (d1e1, d2e2, . . . , dses) is a basis of E .

In our case, any basis of F[z]m consists in the columns of a unimodular matrix, a matrix
which is invertible in F(z)m×m (its determinant is a constant). Theorem 1.1.1 asserts
that ker σ̄ is spanned by the columns of a m × m polynomial matrix D(z), ker σ̄ =
D(z)F[z]m and D(z) is of the form

D(z) = U(z)diag(d1(z), d2(z), . . . , ds(z), 0, . . . , 0)V(z) (1.2)

• U(z) is a unimodular matrix,

• d1(z), d2(z), . . . , ds(z), are uniquely defined polynomials, with unit leading coef-
ficients, satisfying the divisibility conditions di/di+1 for i = 1, . . . , s − 1, called
the invariant factors,

• V(z) is a unimodular matrix that can be chosen arbitrarily.

Formula (1.2) is known as the Smith form of a polynomial matrix. The product d1...dk

of the invariant factors is the g.c.d. of the k × k minors of D(z) [34, II, Chap. 3, Sec. 9].
The Smith form also exists for a rectangular matrix.

Clearly, the state-space concept can be modeled by the quotient module

X = F[z]m/ker σ̄,

that is the set of equivalence classes for the relation induced by ker σ̄ in F[z]m: f ∼ g
if σ̄ f = σ̄g. We get the following commutative diagram, where π is a projection and ι
an injection. The state-space can be viewed either as the quotient module X or as the

F[z]m
σ̄−→ 1/z F[[1/z]]p

πց րι

F[z]m/ ker σ̄︸ ︷︷ ︸
X

Figure 1.1: The state space.

range of the injection ι and thus as a sub-module of 1/z F[[1/z]]p or else as a vector
space over F. This triple nature is at the heart of realization theory (see section 1.2).

A LTI system is called finite order if X is a finite dimensional vector space over F.
Finite-dimensional LTI systems are characterized by rational transfer functions which
is a consequence of
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Theorem 1.1.2 The following assertions are equivalent:

• ker σ̄ is a full sub-module (m generators)

• D(z) is non-singular

• X is a torsion module. It is a direct sum of cyclic sub-modules: X =
⊕ F[z]

diF[z]
, the di’s

being the invariant factors of D(z).

In this case, X is a finite dimensional vector space over F. The order of the system is defined as
dimF X = ∑i deg di = deg(det D(z)).

From now on, we restrict ourselves to the study of finite dimensional LTI systems. A
number of important representation results follow from the structure of ker σ̄, as the
matrix fraction description [16] or the Smith-McMillan form [50].

The columns of D(z) belong to ker σ̄ and thus T(z)D(z) must be a polynomial matrix
N(z); D(z) being invertible, we get the matrix fraction description (MFD)

T(z) = N(z)D(z)−1 (1.3)

This factorization is called a right MFD, it has been obtained working with the columns
of the matrix, which is quite natural in this input/output context. However, working
with the rows yields a dual representation, the left MFD, T(z) = D̃(z)−1Ñ(z).

The Smith-McMillan form is a simple extension of the Smith form (1.2) in the rectan-
gular case. It is obtained from T(z) = P(z)/q(z), where q(z) is a common denomina-
tor of the rational entries of T(z) and P(z) a polynomial matrix, writing P(z) in Smith
form.

Theorem 1.1.3 (Smith-McMillan form) Any rational function matrix T(z) can be written
in the form

T(z) = U(z)diag {n1(z)/d1(z), ..., nr(z)/dr(z), 0, ..., 0}V(z) (1.4)

with

• U(z) and V(z) unimodular matrices

• ni and di are coprime polynomials, with unit leading coefficients, satisfying the divisibil-
ity properties

n1|n2|...|nr and dr|dr−1|...|d1.

The matrix Λ(z) = {n1(z)/d1(z), ..., nr(z)/dr(z), 0, ...} is called the Smith-McMillan form
of T(z) and is uniquely defined: it is canonic.

The non-negative integer r is the normal rank of T(z): there exists at least one minor
of order r which does not vanish identically, and all minors of order greater than r
vanish identically.

From a naive point of view, a pole of a rational matrix function is a pole of any of
its entry, but this definition neglects the problem of assigning multiplicities. The Smith
McMillan form is the simplest way to define poles and zeros for a rational matrix
function:
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• the pole polynomial is defined as d(z) = d1(z)d2(z) . . . dr(z) and its roots are the
poles of the transfer matrix T(z).

• the zero polynomial is defined as n(z) = n1(z)n2(z) . . . nr(z) and its roots are the
zeros or transmission zeros of the transfer matrix T(z).

A zero is a point where the local rank of N(z) in (1.3) drops below the normal rank
[16]. It is important to notice that n(z) and d(z) are not necessarily relatively prime. A
rational matrix can have a pole and a zero at the same location z = ω which do not
cancel. The McMillan degree of a rational matrix is defined to be sup{deg n, deg d}. In
the case of a proper (analytic at ∞) transfer function, the McMillan degree is the total
number of poles (with multiplicity). It is given by deg[d(z)] and coincides with the
order of the system.

The location and multiplicity of poles and zeros are essential to fully understand the
characteristics of a multivariable system. If we write, for some ω ∈ C,

ni

di
(z) = (z − ω)σi(ω)li(z), σi(ω) ∈ Z, (1.5)

where li(z) has neither poles nor zeros at ω, we get from the divisibility properties

σ1(ω) ≤ σ2(ω) ≤ · · · ≤ σr(ω).

These numbers are called the structural indices or partial multiplicities of T(z) at ω, and
ω is a pole if and only if some index is negative and a zero if and only if some index is
positive.

Note that, the relevant algebraic object in the study of the pole structure of T(z) is
the torsion module X , that is the state-space of the system. For a module theoretic
approach to pole-zero theory we refer the reader to [65, 66]. In a broad sense, system
zeros have been widely studied in the literature and many different definitions can be
found, corresponding to intuitive physical interpretations: system zeros, invariant ze-
ros, blocking zeros, decoupling zeros (see [49] and the recent book [62] for an overview
on this topic).

1.1.2 The geometric framework

In this section, a system is modeled by an operator in Hilbert spaces. This framework is
suitable for an extension to infinite dimensional systems [23]. However, it brings some
insights even in the finite dimensional case. Adding structure on signal and system
spaces, we get a sharpened description. There is a great similarity in the development
of the geometric and the algebraic approach.

We now assume the input and output signals to have finite energy, that is to belong
to the Hilbert spaces of square summable series l2. Using Parseval theorem, the input
and the output can be represented by vectors with elements in L2(T), the space of
functions defined on the unit circle T and square integrable. We get similar expressions
for the input and the output signals, but in which the variable z now belongs to the unit
circle. Note that the assumption is in fact about the stability of the system which, in this
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case, produces a finite energy output for a finite energy input. This notion of stability is
called L2 − L2 stability and it implies that the transfer function T is a bounded operator

‖T‖∞ = sup
θ

||T(eiθ)||, (1.6)

where || . || denotes the operator norm Cm → Cp.

The relevant spaces of functions are thus the Hardy spaces of the disk, H2 and H∞.
This plead for the discrete-time setting, since the Hardy spaces of the disk are simpler
than their half-plane analogs. They are spaces of analytic functions in D satisfying
some metric constraint, but they can be viewed alternatively as subspaces of the space
L2(T). The Hardy space H2 (resp. H∞) consists of functions in L2(T) (resp L∞(T))
whose Fourier coefficients (an) satisfy an = 0 for n < 0. Symmetrically, the conjugate
Hardy space H̄2 (resp. H̄∞) consists of functions in L2(T) (resp L∞(T)) whose Fourier
coefficients satisfy an = 0 for n > 0. The transfer function of a L2 − L2 stable and

causal systems thus belong to H̄
p×m
∞ . The Hardy space H2 is an Hilbert space and as

such, it provides a very interesting setting for approximation problems, as we shall see
in Chapter 3.

In this context, dividing the time-axis in two parts gives rise, in terms of signals, to
the orthogonal decomposition

L2(T) = H2 ⊕ H⊥
2 ,

where H⊥
2 (the subspace of H̄2 of functions vanishing at ∞) is the orthogonal comple-

ment of H2 in L2(T). The past-input to future-output map H, or Hankel operator, can
then be defined by the following commutative diagram

L2(T)m σ−→ L2(T)p

π+ ↓ ↓ π−

Hm
2

H−→ (H
p
2 )

⊥

and the kernel of H is now a subspace of Hm
2 ,

ker H =
{

u(z) ∈ Hm
2 ; T(z)u(z) ∈ H

p
2

}
. (1.7)

This subspace possesses the fundamental property to be shift-invariant, that is an in-
variant subspace of the shift operator S : u(z) → zu(z). The Beurling-Lax theorem
[23, Th. 12.22] characterizes shift-invariant subspaces of Hm

2 by means of inner matrix-
valued functions. A matrix Q(z) in Hm×m

∞ is called inner if it takes unitary values a.e.
on the unit circle.

Theorem 1.1.4 (Beurling-Lax) Each closed shift-invariant subspace M of full range of Hm
2

is of the form
M = QHm

2 ,

for some m × m inner matrix Q(z). Moreover Q(z) is unique up to right multiplication by
some constant unitary matrix.
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The theorem is stated here in the simple (finite dimension) vectorial case and for full
ranges subspaces ({u(z), u ∈ M, z ∈ T} spans Cm). It mainly relies on the Wold
decomposition [23, Th. 8.2.]

M = ⊕nSnL, L = M⊖ SM.

A more general version can be found in [32]. Note that this result can be adapted
to the real Hardy space, the subspace of H2 consisting of functions with real Fourier
coefficients, which is relevant for real systems [BO91].

As a consequence of Beurling-Lax theorem, ker H is of the form QHm
2 for some in-

ner matrix Q(z), unique, up to a right unitary constant multiplier. The state-space is
isomorphic to the orthogonal complement H(Q) of QHm

2 in Hm
2 .

Hm
2 = QHm

2 ⊕ H(Q).

It is finite dimensional over F if and only if Q(z) is rational.

Recall that an inner function is invertible a.e. and its inverse, given by

Q(z)−1 = Q (1/z̄)∗ . (1.8)

This formula is obtained by analytic continuation from the identity Q(z)Q(z)∗ = I for
|z| = 1. Throughout this document, we shall use the isometric transformation

G(z) 7→ G♯(z) = G (1/z̄)∗ . (1.9)

so that Q(z)−1 = Q♯(z). The matrix Q♯(z) is analytic in the complement of the closed
unit disk and takes unitary values on the circle. Such matrix functions are called co-
inner or stable allpass or lossless since they are the transfer functions of lossless systems.
We shall use this terminology for both discrete time and continuous time transfer func-
tions: for us, a lossless function is analytic in the stability domain and takes unitary
values on its boundary.

Another immediate consequence is the Douglas-Shapiro-Shields factorization [17]
of the transfer function T(z), which is obtained by observing that the columns of Q(z)

clearly belongs to ker H, so that T(z)Q(z) = C(z) is in H
p×m
2 .

Theorem 1.1.5 (Douglas-Shapiro-Shields) Any p × m rational matrix function T(z) an-
alytic in the complement of the unit disk, can be represented as

T(z) = C(z)Q♯(z), (1.10)

where Q(z) is a m × m inner function, C(z) ∈ H
p×m
2 and Q♯(z) as same degree as T(z). The

lossless matrix-valued function Q♯(z) is called the right lossless factor of T(z).

This factorization must be compared with the matrix fraction description (1.3). We
have less freedom in the choice of the inner matrix function Q(z), which is unique up
to a left unitary factor, than in the choice of a polynomial denominator D(z), which
is unique up to a left unimodular factor. The Douglas-Shapiro-Shields factorization of
rational matrix achieves the closest analogy with irreducible fractions in the scalar
case.
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1.1.3 Inner matrix-valued functions

The algebra of inner matrix-valued functions is relatively simple and close to polyno-
mial algebra except for commutativity.

The determinant of a rational inner function Q(z) is inner that is a finite Blaschke
product :

det Q(z) =
q(z)

q̃(z)
, q̃(z) = znq(1/z̄)

where q(z) is a Schur or stable polynomial (roots in D) of degree n and q̃(z) its recip-
rocal polynomial. The zeros of Q(z) belong to the open unit disk and its poles to the
complement of the closed unit disk, so that no pole-zero cancellation can occur when
multiplying rational inner matrices. For any two inner matrices Q1 and Q2, we thus
have the following relation on the McMillan degree :

deg(Q1Q2) = deg Q1 + deg Q2.

The following factorization will be used in several occasions. It results from the work
of Potapov on the multiplicative structure of J-contractive matrix-valued functions
([55]). It is obtained by induction on the zeros (see [21]). Let w be a zero of the inner
matrix function Q(z) of McMillan degree n. Let u be some unit vector in the kernel of
Q(w). Then one can extract from Q a left inner factor of the form

Bw,u(z) = I + (bw(z) − 1) uu∗, bw(z) =
z − w

1 − w̄z
, (1.11)

and Q = Bw,uQ1 for some Q1, still inner and of degree n − 1. Note that any inner
factor of McMillan degree 1 is of the form (1.11), up to a right unitary matrix [18]. We
call these inner factors elementary inner factors or Potapov factors.

Proposition 1.1.1 (Potapov factorization) Any inner matrix-valued function Q(z) can be
written as the product of elementary inner factors of the form (1.11)

Q(z) = Bwn,un(z)Bwn−1,un−1
. . . Bw1,u1

(z)Q0 (1.12)

where w1, w2, . . . , wn belong to the open unit disk and u1, u2, . . . , un are unit vectors.

Using the transformation (1.9), analog results can be stated for rational lossless ma-
trices.

1.2 Realization theory and balanced canonical forms

The state-space description of a system has an important modeling potential and is
nowadays the most used in the engineer community. A finite order linear time invari-
ant system in discrete time is then described by a pair of dynamical equations

{
xk+1 = A xk + B uk,

yk = C xk + D uk,
(1.13)
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with k ∈ Z, xk ∈ Fn for some non negative integer n (the state space dimension), uk ∈
Fm, the input space, and yk ∈ Fp, the output space. This state space representation of
a system is explicit and is referred to as an internal description.

The transfer matrix associated with the linear system (1.13) is easily computed to be

T(z) = D +
∞

∑
k=0

CAkB z−(k+1) = D + C(zI − A)−1B (1.14)

Conversely, any rational matrix function which is proper (analytic at infinity) can be
written in this form [4]. The quadruple (A, B, C, D) is called a realization of T(z). If the
system is assumed to be strictly causal, the transfer function is strictly proper T(∞) =
0 and D = 0. Note that any change of basis in the state-space, associated with a change-
of-basis matrix T, provides a similar realization (T−1AT, T−1B, CT, D). A realization
is far from being unique and the choice of a canonical realization is a central issue in
system theory.

Transfer functions and state-space representations are complementary descriptions
of finite-dimensional LTI systems. The functional framework is rather used for theoret-
ical developments, while the state-space description is very important for numerical
computations, since it involves basic linear algebra techniques. We hope this work is a
convincing demonstration of the interest of combining the two approaches.

1.2.1 Realization theory

A state space representation can be obtained from the input/output description of the
previous section in many ways. We briefly recall the unifying point of view developed
in [22, 23] and, in the stable case, connect it to the reproducing kernel Hilbert spaces
approach developed in [19] for example.

Past inputs State Future outputs
zn+1 zn . . . z 1 z−1 z−2 z−3 . . .

u0 . . . un−1 un xn yn+1 yn+2 yn+3 . . .
u0 u1 . . . un 0 Axn yn+2 yn+3 . . . . . .

Figure 1.2: Time invariance

Time-invariance, which is illustrated in Figure 1.2, can be expressed in terms of com-
mutation properties with the shift operator [23]:

F[z]m
π−−−→ X σ̄−−−→ 1/z F[[1/z]]p

S

y SD

y
yS∗

F[z]m
π−−−→ X σ̄−−−→ 1/z F[[1/z]]p

where S is the shift operator in Hm
2 :

S(u+(z)) = zu+(z),
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S∗ is the backward shift operator in (H
p
2 )

⊥
,

S∗(y−(z)) = zy−(z) − zy−(z)|∞

and SD the restricted shift operator

SD(π(u+(z)) = π(zu+(z)).

The restricted shift operator is thus a linear map on a finite dimensional vector space.
A basis of X being chosen, SD can be represented by a n × n matrix A, the restriction
of the projection π to Fm by a n × m matrix B, and the map x ∈ cX → zσ̄(x)(z)|∞ ∈ Fp

by a p × n matrix C. The input/output behavior characterized by the transfer matrix
T(z) can be alternatively described by the linear system (1.13) in which D = 0. The
D-matrix of a realization does not affect the dynamical behavior of the system.

The realization obtained in this way is said to be a minimal realization. The dimension
of the state space in any other realization is greater than the dimension of X (the order
of the system or McMillan degree). The minimality of the realization relies on some
important properties of the matrices A, B and C [35]:

• the set of vectors of the form ∑ AiBui, ui ∈ Fp spans the state space, so that

∑ Im AiB = F
p, (1.15)

we would say that the pair (A, B) is controllable or reachable.

• the map σ̄ is injective, so that

n−1⋂

j=0

ker CAj = 0, (1.16)

we would say that the pair (C, A) is observable.

Attached to any realization, the observability matrix O and the controllability matrix
K are defined by

O =




C
CA

...
CAn−1


 , K = [B, AB, . . . , An−1B] (1.17)

The pair (A, B) is reachable if and only if the controllability matrix K has full row rank
n, while the pair (C, A) is observable if and only if the observability O has full column
rank n. Minimality holds if and only if both controllability and observability hold.

Two minimal realizations (A, B, C, D) and (Ã, B̃, C̃, D̃) associated with a given trans-
fer function are always similar: there exists a unique T invertible such that

(Ã, B̃, C̃, D̃) = (TAT−1, TB, CT−1, D). (1.18)
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The map :

ΦT : (A, B, C, D) 7→ (TAT−1, TB, CT−1, D), (1.19)

is called a state isomorphism and a state isometry if in addition T is unitary.

If the eigenvalues of A all belong to the open unit disk, then the matrix A is called
(discrete-time) asymptotically stable, and (A, B, C, D) an asymptotically stable realiza-
tion. In this case, the controllability Gramian Wc and the observability Gramian Wo are
well defined as the convergent series

Wc =
∞

∑
k=0

AkBB∗(A∗)k, Wo =
∞

∑
k=0

(A∗)kC∗CAk. (1.20)

The Gramians are characterized as the unique (and positive semi-definite) solutions of
the respective Lyapunov-Stein equations

Wc − AWc A∗ = BB∗, (1.21)

Wo − A∗Wo A = C∗C. (1.22)

Moreover, under asymptotic stability of A it holds that Wc is positive definite if and
only if the pair (A, B) is reachable, and Wo is positive definite if and only if the pair
(C, A) is observable.

In [19], the connections between a reproducing kernel Hilbert spaces (RKHS) ap-
proach to interpolation, and methods based on realization theory as in [4], are clari-
fied. The central role played by finite dimensional Rα invariant subspaces in realiza-
tion theory is emphasized. The generalized backward shift operator Rα is defined on
matrix valued functions F(z) by

Rα =

{
F(z)−F(α)

z−α if z 6= α
F′(α) if z = α

We now stress some connections with the RKHS approach in the geometric setting of
section 1.1.2, in which the matrix A is asymptotically stable. As previously mentioned,
the state space can be viewed either as a the quotient subspace H(Q) of Hm

2 or as a

subspace of (H
p
2 )

⊥
, the range space M of H̄. The space H(Q) is a finite dimensional

RKHS R0 invariant, while M is a finite dimensional RKHS R∞ invariant.

The range space M of H̄ is spanned by the columns of some p × n matrix-valued
function F(z). Since M is backward shift invariant, we have

S∗(F(z)) = zF(z) − zF(z)|∞ = F(z)A.

But zF(z)|∞ = C so that F(z) = C(zI − A)−1 and M is spanned by the columns of
C(zI − A)−1 (see [19, Th. 3.1.]). It must be noticed that the n columns of a p × n matrix
valued function are linearly independent if and only if the pair (C, A) is observable,
that is a null kernel pair in the terminology of [4].

Rather than H(Q), we now consider H(Q)♯ = {v(z); v♯(z) ∈ H(Q)} which also
satisfies

(H1×m
2 )

⊥
= (H1×m

2 )
⊥

Q♯ ⊕ H(Q)♯.
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As previously, the n-dimensional space H(Q)♯ is spanned by the rows of some n ×
m matrix F(z) and by shift invariance, we now get F(z) = (zI − A)−1B. The space
H(Q) is spanned by the column of B∗(I − zA∗)−1 which is the general form for a finite
dimensional shift invariant subspace of Hm

2 (see [19]).

It follows from the Douglas-Shapiro-Shields factorization that the columns of T(z)
belong to H(Q)♯, as well as the columns of Q♯(z) − Q♯(∞). We thus get the following
realizations

T(z) = C(zI − A)−1B, Q♯(z) = Ď + Č(zI − A)−1B.

Thus T(z) and Q♯(z) share the same pair (A, B).

1.2.2 Null-pole triples and pole-zero structure

The notions of reachable and observable pairs is also essential in studying the pole-
zero structure of a rational matrix. We introduce the concept of pole triple and null
triple [4, Chap. 3.3] the right generalization of poles and zeros to the matrix case. They
serve to address the fundamental interpolation problem: find a rational matrix with a
given null pole structure in some domain.

In this section, we only consider square matrices. Given a square rational matrix-
valued function T(z) which is regular (det T(z) does not vanish identically), a triple
(C, A, B) is a pole triple of T(z) at some pole z0 of T(z) if and only if

• the pair (A, B) is reachable (full range pair) (1.15)

• the pair (C, A) is observable (null kernel pair) (1.16)

• T(z) − C(zI − A)−1B is analytic at z0.

More generally, (C, A, B) is called a pole triple of T(z) relative to a compact set K, if
the spectrum σ(A) of A lies within K and T(z) − C(zI − A)−1B admits an analytic
continuation to the whole K. The pair (C, A) is then called a right pole pair and the pair
(A, B) a left pole pair relative to K. The existence of a pole triple can be shown using
the local Smith-McMillan form [4, Th. 3.3.1] which clarifies the relation with the pole
structure of T(z). Note that any triple (CT, T−1AT, T−1B) similar to (C, B, A) is also a
pole triple of T(z) relative to K. The triple (C, A, B) of a minimal realization (1.14) of
T(z) is clearly a global pole triple of T(z), i.e. a pole triple relative to the whole complex
plane.

The definition of null triple is analogous. A triple (C̃, Ã, B̃) is a null triple of T(z) at
some zero z0 of T(z) iff it is a pole triple of T(z)−1. If the matrix D in (1.14) is invertible,
then a minimal realization of T(z)−1 can be computed as

T(z)−1 = D−1 − D−1C(zI − (A − BD−1C))−1BD−1, (1.23)

and clearly (−D−1C, A − BD−1C, BD−1) is a global null triple of T(z). If (C̃, Ã, B̃) is a
null triple of T(z) relative to some compact set K, the pair (Ã, B̃) is then called a left null
pair and the pair (C̃, Ã) a right null pair relative to K.

Poles and zeros at infinity can be handled using a Möbius transformation [4, Chap.
3.5].
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A scalar function is uniquely determined up to a constant complex number by its
poles and zeros. In the matrix case, we may ask the following question: does a right
pole pair (C, A) and a left null pair (Ã, B̃) determine, up to a constant factor, a rational
matrix T(z) (analytic and invertible at infinity)? The answer is no. An extra condition
is required which is that the Sylvester equation

SA − ÃS = B̃C (1.24)

must have an invertible solution, which is called the null-pole coupling matrix [4, Th.
4.3.1]. In this case the unique matrix T(z) such that T(∞) = I, (C, A) is a right pole
pair and (Ã, B̃) is a left null pair is given by

T(z) = I + C(zI − A)−1S−1B̃, while T(z)−1 = I − CS−1(zI − Ã)−1B̃.

A null-pole triple contains left-side information about T(z) in the sense that it deter-
mines T(z) uniquely, up to a right invertible constant matrix factor.

Given a subset K ⊂ C and a rational matrix function T(z), analytic and invertible at
infinity, we refer to a set (C, A; Ã, B̃; S) as a null-pole triple for over K, if

• (C, A) is a right pole pair for T(z) with respect to K

• (Ã, B̃) is a left null pair for T(z) with respect to K

• S is the associated null pole coupling matrix, i.e. the invertible matrix satisfying
(1.24).

1.2.3 Balanced realizations and canonical forms

A transfer function possesses many minimal realizations.

A canonical form on a set endowed with an equivalence relation consists in the choice
of a unique element within every class. In our case, it is the choice of a unique repre-
sentative among all the similar realizations associated with a transfer function in some
class. Many canonical forms are known, as the Jordan form, the companion form, ob-
server and controller forms, Popov and echelon form [35]. In the SISO case, a same
canonical form can be used for the whole class of stable systems, but not in the MIMO
case. In engineering, systems are usually modeled by a realization with some struc-
ture, whose entries are related to the physical parameters. The concept of canonical
form serves to clarify the connection between such structured realizations and a math-
ematical model and to address the identifiability issue. Depending on the underlying
application, one or the other canonical form would better suit.

A minimal and asymptotically stable realization (A, B, C, D) of a transfer function is
called balanced if Wo and Wc, its observability and controllability Gramians (1.20), are
both diagonal and equal. Any minimal and asymptotically stable realization is similar
to a balanced realization. The concept of balanced realizations was first introduced in
[51] in the continuous time case. In [53] the same was done for the discrete time case.
Balanced realizations are now a well-established tool for model reduction which often
exhibit good numerical properties. Two distinct balanced realizations associated with
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the same function are related by a state isometry. With balancedness we have made
some progress towards a canonical form.

A system is called input-normal if Wc = I and it is called output-normal if Wo = I.
Balanced realizations are directly related to input-normal and output-normal realiza-
tions, respectively, by diagonal state isomorphism. The property of input-normality
(resp. output-normality) is preserved under state isometry.

For a lossless function, balanced realizations present a particular interest. To a real-
ization of the form (1.14), we associate the block-partitioned matrix

R =

[
D C
B A

]
(1.25)

which we call the realization matrix1. The following proposition characterizes the bal-
anced realizations of rational lossless functions in discrete time.

Proposition 1.2.1 [HOP06] (i) For any minimal balanced realization of a m × m rational
lossless function the observability and controllability Gramians are both equal to the identity
matrix and the associated realization matrix (1.25) is unitary.
(ii) Conversely, if the realization matrix associated with a realization (A, B, C, D) of order n of
some m × m rational function G is unitary, then G is lossless of McMillan degree ≤ n. The
realization is minimal if and only if A is asymptotically stable and then it is balanced.

The first point is classical (see e.g. [25]). The second point asserts that unitary real-
izations matrices correspond to possibly non-minimal realizations of lossless functions
and give an interpretation of limit points in a balanced canonical form.

1.3 Interpolation and parametrization

Analytic interpolation originates in the work of I. Schur [59] and his famous algorithm.
The Schur algorithm is a nice recursive test for checking the boundedness of an ana-
lytic function f (z) in the disk: define a sequence of functions by f0 = f and

fk+1(z) =
fk(z) − γk

z(1 − γ∗
k fk(z))

, γk = fk(0). (1.26)

This algorithm establishes a one-to-one correspondence between the Schur class

S = { f (z); | f (z)| ≤ 1 for |z| ≤ 1}

and the sequences of complex numbers (γk) which satisfy:

• |γk| ≤ 1 for all k ≥ 0

• when |γn| = 1 for a certain n, then for all k > n, γk = 0.

1This positioning of the block matrices is rather unusual but it is very convenient for exhibiting a
triangular structure in the sub-matrix

[
B A

]
.
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This last situation appears exactly when the function f (z) is a finite Blaschke product
of degree n, that is a scalar inner function. In this case, both a pole and a zero cancel-
lation arises in the Schur recursion so that fk+1 has one degree less than that of fk. The
set of inner functions of McMillan degree n can thus be parametrized by the sequence
of Schur numbers (γ0, γ1, . . . , γn).

An important part of this work is concerned with the parametrization of inner (or
lossless) matrix-valued functions derived from analytic interpolation theory. In the
matrix case, the same two ingredients are involved :

• under some conditions, all the solutions to the interpolation problem can be rep-
resented by means of a linear fractional transformation (LFT) which generalizes
(1.26).

• for rational inner functions, the LFT induces a decrease of degree which corre-
sponds to the ”size” of the interpolation condition.

In this section we present the background concerning interpolation problems and
their use for parametrization issues. A matrix function is Schur if it belongs to the unit
ball of the Banach space (L∞(T))p×m endowed with the norm

‖F‖∞ = sup
θ

||F(eiθ)||,

where || . || denotes the operator norm Cm → Cp. For a pair of matrices P and Q,
the notation P ≤ Q (resp P < Q) means Q − P positive semi-definite (resp. positive
definite). With this convention, a p × m rational function S(z) is Schur iff it is analytic
and contractive in the open unit disk S(z)∗S(z) ≤ I for z ∈ D, that is to say ‖S‖∞ ≤ 1.

Interpolation theory deals with functions analytic in the disk while system theory
deals with functions analytic outside the unit disk. To relate these two situations, we
use the isometric transformation (1.9).

Linear fractional transformations play a crucial role in this story. We begin with some
results on these maps and we specify which linear fractional transformations preserve
the metric constraint.

1.3.1 J-inner functions and linear fractional transformations.

We now introduce the concept of J-inner function, where J is generally a signature ma-
trix. A matrix-valued functionΘ(z) is a J-inner function if at every point of analyticity
z of Θ(z) it satisfies

Θ(z)∗ JΘ(z) ≤ J, |z| < 1, (1.27)

Θ(z)∗ JΘ(z) = J, |z| = 1, (1.28)

Θ(z)∗ JΘ(z) ≥ J, |z| > 1. (1.29)

A J-lossless function is a function which is (−J)-inner. Note that J-inner and J-lossless
functions in general may have poles everywhere in the complex plane. Condition
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(1.29) which is both satisfied by J-inner and J-lossless functions implies that at any
points where Θ(z) is analytic and invertible

Θ(z)−1 = JΘ♯(z)J. (1.30)

For a further background on lossless systems and their realizations, see e.g. [25].

When J = Ip ⊕ −Iq, an interesting physical link can be stressed between lossless
and J-lossless functions. Assume that G(z) is the lossless transfer function of a passive
system with (p + q)-inputs and (p + q)-outputs described by a quadripole (see Figure
1.3).

a1

b1

a2

b2

Figure 1.3: Quadripole

We thus have
[

a2

b1

]
= G

[
a1

b2

]
, or equivalently

[
a2

b2

]
= Θ

[
a1

b1

]
.

where Θ(z) is a J-lossless function easily computed from G(z) (Ginzburg transform).
In system theory, G(z) is usually referred as the scattering matrix of the system, while
Θ(z) is the chain matrix. In terms of chain matrices, the cascade of two such devices is
just a product, which makes the interest of the latest compared to scattering matrices
[40].

From now on, we assume that J = Im ⊕−Im. Our interest in J-inner functions relies
on the following result.

Proposition 1.3.1 Let Θ(z) be J-inner of size 2m × 2m and of McMillan degree k

Θ(z) =

[
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
.

Then, the linear fractional transformation

TΘ(F) = (Θ11F + Θ12)(Θ21F + Θ22)
−1, (1.31)

is defined for every rational m × m Schur function F(z) and preserves the metric constraint:

‖F‖∞ ≤ 1 =⇒ ‖TΘ(F)‖∞ ≤ 1.

If Q(z) is m × m inner of McMillan degree n, then TΘ(Q) is also inner of McMillan degree
≤ n + k.
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In the literature, this result is usually stated for J-inner functions analytic in the disk
[4], but this condition is not necessary [20].

The linear fractional transformation TH associated with a constant J-unitary matrix
H

H∗ JH = J (1.32)

is a bijection from the set of inner functions [55] to itself which preserves the McMillan
degree [HOP06]. It will be called a generalized Möbius transform.

Every constant J-unitary matrix can be represented in a unique way (see [18, Th. 1.2])
as follows:

M = H(E)

[
P 0
0 Q

]
, (1.33)

where P and Q are m × m unitary matrices and H(E) denotes the Halmos extension of
a strictly contractive m × m matrix E (i.e., such that I − E∗E > 0)

H(E) =

[
I E

E∗ I

] [
(I − EE∗)−1/2 0

0 (I − E∗E)−1/2

]
(1.34)

=

[
(I − EE∗)−1/2 0

0 (I − E∗E)−1/2

] [
I E

E∗ I

]
(1.35)

1.3.2 J-lossless and lossless embedding

The J-unitary property (1.28) implies some relations between poles and zeros of a ra-
tional function, which can be stated as follows: the set (C, A; Ã, B̃; S) is a null pole triple
for Θ(z) over D if and only if (−JB̃∗, Ã∗; A∗, C∗; S∗) is a null pole triple for Θ(z) over
C \D

⋃{∞} [4, Lemma 7.4.1]. A J-lossless function is thus completely determined, up
to a constant J-unitary factor, from a null pole triple over D [4, Th. 7.4.2]. If in addi-
tion the J-lossless is assumed to be analytic outside the unit disk, a null pole triple
over D consists just in a right pole pair, which happens to be global, and we have the
following result that can also be found in [43].

Proposition 1.3.2 (J-lossless embedding) Given a reachable pair (A, B) with A asympto-
tically stable, there exits a unique Hermitian matrix P that satisfies the Stein equation

P − APA∗ = BJB∗.

If P > 0, then the matrix-valued functions Θ(z) = Ď + Č(zI − A)−1B, with

Č = −JB∗(I − νA∗)−1P−1(A − νI)

Ď = I − JB∗(I − νA∗)−1P−1B

is J-lossless for every ν such that |ν| = 1.
The J-lossless function Θ(z) satisfies Θ(ν) = I and it is the only J-lossless function with
global left pole pair (A, B) that satisfies this property.
All other J-lossless functions with the same left pole pair is given by HΘ(z) where H is a
constant J-unitary function: H∗ JH = J.



22 Lossless functions in system theory

The matrix Θ(z) in Proposition 1.3.2 can be written in the form

Θ(z) = I − (z − ν)JB∗(I − νA∗)−1P−1(zI − A)−1B. (1.36)

In the case J = I, the lossless embedding provides a one-to-one correspondence
between the set of reachable pair (A, B), A asymptotically stable, up to similarity, and
the set of lossless functions up to a left unitary matrix, defined by

(A, B) 7→ I − (z − ν)B∗(I − νA∗)−1P−1(zI − A)−1B.

This correspondence is a diffeomorphism (see [1, Cor.2.1]). If in addition the matrix[
B A

]
is assumed to have orthonormal rows (AA∗ + BB∗ = I), the lossless embed-

ding consists in completing it into a unitary realization matrix

[
B A

]
7→

[
D C
B A

]
,

{
C = −B∗(I − νA∗)−1P−1(A − νI),
D = I − B∗(I − νA∗)−1P−1B.

There are many ways to perform such a completion. In Chapter 3 we propose an in-
teresting method based on a Cholesky factorization.

1.3.3 The Nudelman interpolation problem.

The most general form of a one-sided (left) interpolation condition for a matrix-valued
Schur function F(z) is in term of a contour integral [4]

1

2iπ

∫

T

(zI − W∗)−1U∗F(z) dz = V∗, (1.37)

where (U, W) is an observable pair and W is asymptotically stable (U is m × k and W
is k × k). Note that if W is a diagonal matrix

W = diag(w1, w2, . . . , wk), wi 6= wj,

U =
[
u1 u2 . . . uk

]
,

V =
[
v1 v2 . . . vk

]
,

this problem reduces to a Nevanlinna-Pick problem :

u∗
i F(wi) = v∗i , i = 1, . . . , k. (1.38)

Theorem 1.3.1 Let (U, W) be an observable pair.

(i) the left interpolation problem (1.37) admits a solution F(z) if and only if the solution P
of the symmetric Stein equation

P − W∗PW = U∗U − V∗V (1.39)

is positive semi-definite.
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(ii) If P > 0, the set of all solutions F(z) of the Nudelman interpolation problem (1.37) is
given by

{F = TΘ[G] : G Schur }
where TΘ is the LFT (1.31) associated with the J-inner function

Θ(z) = I + (z − ν)

[
U
V

]
(I − Wz)−1P−1(νI − W∗)−1

[
U
V

]∗
J, (1.40)

uniquely determined up to an arbitrary unit complex number ν and an arbitrary constant
right J-unitary factor.

This result can be found in many works, following different approaches. In [4, Ch.18],
only strictly Schur solutions are considered and it is shown that a strictly Schur solu-
tion of (1.37) does exit if and only if P > 0. In this book, only concerned with ra-
tional matrix-valued functions, an approach based on realization theory is chosen. A
parametrization by means of an LFT is searched a priori and it is shown that the inter-
polation problem (1.37) is to find a J-inner function Θ(z) with a prescribed global left
null pair (W∗, [U∗ V∗]J). Equivalently, (W∗, [U∗ V∗]J) must be a global left pole pair of
the J-lossless function Θ(z)−1. By the Lossless Embedding (Proposition 1.3.2), Θ(z)−1

is uniquely determined up to a left unitary factor H by the formula (1.36), which yields
(1.40) using the relation Θ(z)−1 = JΘ♯(z)J.

In a RKHS approach (see e.g. [18] or [19]), the k-dimensional subspace M of Hk
2 built

from the interpolation data

M = span

{[
U
V

]
(I − W z)−1

}
,

plays a central role. Endowed with the metric induced by P > 0 (J-inner product), the
space M is a RKHS with a reproducing kernel of the form

KM(z, w) =
J − Θ(z)JΘ(w)∗

1 − w̄z
.

If F(z) is a solution of (1.37), then the map of multiplication by [I − F] is an isometry
form M into H(F). This isometry forces an LFT between F(z) and Θ(z).

1.3.4 The tangential Schur algorithm vs Potapov factorization

The tangential Schur algorithm recursively handles interpolation constraints of the
form

Q(w)∗u = v, (1.41)

for an inner matrix-valued function Q(z), and a triple (w, u, v), w ∈ D, u and v m-
vectors, ‖u‖ = 1 and ‖v‖ < 1.

In this case, the solution of (1.39) is the strictly positive matrix

P =
1 − ‖v‖2

1 − |w|2 .



24 Lossless functions in system theory

The J-inner function (1.40) is given by

Θ(z) = I + (z − ν)

[
u
v

]
(1 − zw̄)−1P−1(ν − w)−1

[
u
v

]∗
J. (1.42)

In this section, we propose a specific treatment for this particular case which brings
some insights and will be useful in Chapter 2.

For any constant J-unitary matrix H, Q(z) satisfies the interpolation condition (1.41)
if and only if TH(Q)(z) satisfies

TH(Q)(w)∗x = y, with

[
x
y

]
= H

[
u
v

]
.

Choosing H = H(uv∗), the Halmos extension (1.34) of the contractive matrix uv∗, it is
easily checked that

H(uv∗)J

[
u
v

]
=

√
1 − ‖v‖2

[
u
0

]
,

so that the interpolation condition (1.41) becomes Q̂(w)∗u = 0. Finally, Q(z) is a so-
lution of (1.41) if and only if w is a zero of Q̂(z) associated to the left kernel vector
u∗.

This condition can be handled by the Potapov method. An elementary inner factor
of the form (1.11) can be extracted from Q̂(z), so that Q̂ = Bw,uQ1, where Q1(z) is
inner. This operation can be written in an LFT form, Q̂ = TSw,u

(Q1), where Sw,u(z) is
the block diagonal matrix Sw,u = Bw,u ⊕ I. We thus get the following linear fractional
representation for the solutions of (1.41)

Q = TΘw,u,v,H
(Q1), Θw,u,v,H(z) = H(uv∗)Sw,u(z)H, (1.43)

for some inner function Q1. The matrix function Θw,u,v,H includes an arbitrary constant
J-unitary factor on the right which produces a generalized Möbius transform TH and
provides equivalent representations of the solutions (see section 1.3.1).

Formula (1.42) with ν = 1 can be written in the following form [18, Th. 1.4.]

Θw,u,v(z) = I +

(
bw(z)

bw(1)
− 1

)
[

u
v

] [
u
v

]∗
J

1 − ‖v‖2
, (1.44)

which possesses nice multiplicative properties [18, Th. 1.3.]. This form was used in
[1] and [FO98]. It corresponds to Θw,u,v,H(z) in (1.43) with H = H(uv∗)−1 and satis-
fies Θw,u,v,H(1) = I, so that the associated LFT preserves the value at 1 of the inner
function.

In [HOP06], the freedom in the choice of the matrix H has been used to associate
with the Schur algorithm a nice recursive construction of balanced realizations. The
J-inner matrix is

Θ̂w,u,v(z) = H(uv∗)Sw,u(z)H(w̄uv∗)
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These results will be presented in Chapter 2.

The tangential Schur algorithm with interpolation points anywhere in the disk has
been scarcely used in system theory literature. In [39], a similar Schur algorithm is pre-
sented which gives rise to a circuit theoretical interpretation. It is described in the case
of continuous-time transfer functions and it corresponds in our discrete-time setting
to the choice of the J-inner functions Θ̂0,u,v(z).

1.3.5 Parametrizations from the tangential Schur algorithm.

If the Schur algorithm (1.26) was devised to characterize and parametrize scalar Schur
functions, interpolation theory is scarcely used for parametrization issues in the ma-
trix case. The first attempt in this direction was to our knowledge [1], in which the
tangential Schur algorithm is used to construct an atlas of charts for the set of matrix-
valued lossless functions of fixed McMillan degree. More recently, interpolation theory
has been used for a more constrained problem: the parametrization of Schur functions
with a degree constraint and satisfying some interpolation conditions (see e.g. [13] and
the bibliography therein).

We now provide an overview of [1], which emphasizes on the advantages of an
interpolation theory approach to parametrization issues:

• atlases of charts are obtained, which are the nice parametrizations in view of
optimization

• the Schur constraint is easily handled.

A (smooth) manifold M is a mathematical space in which every point has a neigh-
borhood which is homeomorphic to the Euclidean space Rd, where d is the dimension
of the manifold. The structure of a manifold is encoded by a collection of charts that
form an atlas2, that is a collection of coordinate maps

φi : Vi → R
d, Vi ⊂ M open (1.45)

such that the Vi’s cover the manifold and the transition maps or change of coordinates
φi ◦ φ−1

j are smooth [61]. Differential calculus can be extended to a manifold structure.

The set of m × m inner matrix functions of McMillan degree n has a manifold struc-
ture and the tangential Schur algorithm provides an atlas of charts for this manifold
[1]. Given an inner function Q(z) of McMillan degree n, a sequence of interpola-
tion points w = (wn, wn−1, . . . , w1) and a sequence of interpolation direction vectors
u = (un, un−1, . . . , u1), the tangential Schur algorithm (section 1.3.4) yields a sequence
of functions defined by Qn = Q and for k = n, n − 1, . . . let

vk = Qk(wk)
∗uk.

• if ‖vk‖ < 1, let
Qk−1 = T−1

Θwk ,uk ,vk
Qk, (1.46)

in which Θwk,uk,vk
(z) is defined by (1.44).

2in analogy with an atlas consisting of charts of the surface of the Earth
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• if vk has norm 1, then stop.

The algorithm stops if vk fails to have norm strictly less than 1. As in the scalar case,
the degree of Qk−1(z) is one less than that of Qk(z), so that the algorithm stops after at
most n steps. In the matrix case, an inner function may fail to be strictly contractive in
some direction. If the algorithm meets such a situation then it stops. This is an impor-
tant difference with the Schur algorithm for scalar inner functions (1.26) which always
performs n steps. The manifold structure of the set of matrix inner functions of fixed
McMillan degree is not trivial and several coordinate maps are necessary to describe
the whole set.

A chart is attached to a sequence of interpolation points w = (w1, w2, . . . , wn) and
a sequence of interpolation directions u = (u1, u2, . . . , un). An inner function Q(z)
belongs to the domain Vu,v of this chart if and only if the tangential Schur algorithm
(1.46) stops after n steps

Q = Qn
wn,un−→ · · · Qk

wk,uk−→ · · · Q1
w1,u1−→ · · · Q0,

where Q0 is a constant unitary matrix, and thus provides a complete sequence of in-
terpolation vectors vk, k = n, . . . , 1 such that ‖vk‖ < 1, the Schur parameter vectors. The
coordinate map is

φw,u : Q ∈ Vw,u → (Q0, v1, v2, . . . vn).

The dimension of the manifold is 2nm + m2.

This atlas is very rich and flexible since it possesses an infinite number of charts.
Given an inner function Q(z), it is possible to zoom on it by choosing what we call an
adapted chart, a chart centered at Q(z), in which all the Schur vectors are 0. It is easily
obtained from a Potapov factorization (1.11)

Q(z) = Bwn,un(z)Bwn−1,un−1
. . . Bw1,u1

(z)Q0

which can be viewed as a particular case of the tangential Schur algorithm in which
all the interpolation vectors are zero, Qk(wk)

∗uk = 0, for k = n, n − 1, . . . , 1 (see
section 1.3.4). In practice, a realization in Schur form yields the interpolation points
w1, w2, . . . , wn and the interpolation directions u1, u2, . . . , un [MOHP02, MO07]. It can
be very conveniently used for optimization purposes, moving from one chart to an-
other when the conditioning becomes to bad. On the other way, a chart contains ”al-
most” all the inner functions so that changes of charts should not happen very often.

In many applications, the Douglas-Shapiro-Shield factorization of a proper trans-
fer function brings into play quotient spaces of inner functions up to a right (or left)
constant unitary matrix. Atlases of charts for these quotient spaces are easily deduced
from the following formula: for any Q(z) matrix-valued inner function, Λ and Π con-
stant unitary matrices

TΘw,Λu,Πv
(ΛQΠ∗) = ΛTΘw,u,v

(Q)Π∗. (1.47)

Indeed, if Q = φ−1
w,u(vn, vn−1, . . . , v1, Q0), then for any unitary matrix Π we have that

QΠ∗ = φw,u(Π∗Q0, Πv1, Πv2, . . . , Πvn), so that we can choose a representative of Q(z)
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by fixing the final unitary matrix Q0 in the Schur algorithm. A chart of the right quo-
tient is thus attached to a triple (w, u, Q0) and the associated homeomorphism is

φw,u,Q0
(Q) = (v1, v2, . . . , vn).

Formula (1.47) also holds true for Θ̂w,u,v(z).
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Chapter 2

Schur vectors and balanced canonical
forms for lossless systems

In this chapter, the outcome of a longstanding collaboration with B. Hanzon and R.
Peeters is reported. This collaboration started during the MTNS 1996 where our re-
spective results on the parametrization of lossless functions were presented. My work
was on the use of the Schur atlas (section 1.3.5) for matrix rational approximation
[FO98], while their contribution established a connection between the Hessenberg
canonical form and the Schur algorithm in the scalar case [31]. We agreed on the
interest of looking for such a connection in the matrix case: a representation which
combines the properties of balanced canonical forms (section 1.2.3) and that of the
Schur algorithm (section 1.3.4) should bring some new insights and prove useful tool
in many applications.

The Hessenberg canonical form for a lossless scalar function of McMillan degree n
is a balanced realization (A, b, c, d) such that the sub-matrix

[
b A

]
is positive upper

triangular. Such a realization is uniquely defined and the triangular structure in
[
b A

]

induces a triangular structure in the reachability matrix K = [b, Ab, A2b, . . . , An−1b].

The realization matrix R =

[
d c
b A

]
is then unitary (Proposition 1.2.1) and a fac-

torization is obtained by means of Givens rotations in a recursive way: let γn = d,

|γn| < 1, and put κn =
√

1 − |γn|2, then




γ̄n κn 0
κn −γn 0
0 0 In−1







d c
∗
0

A




︸ ︷︷ ︸
R

=

[
1 0
0 Rn−1

]
, (2.1)

where Rn−1 is in Hessenberg form of order n − 1.
Repeating this process, we get a sequence of realization matrices (Rk)k=n,...,0, Rk of
order k still in Hessenberg form and a sequence of parameters (γk)k=n,...,0, with |γk| <
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1 for k > 0 and |γ0|=1, which parametrize R:

R =




γn κnγn−1 κnκn−1γn−2 . . . κnκn−1 . . . κ1γ0

κn −γ̄nγn−1 −γ̄nκn−1γn−2 . . . −γ̄nκn−1 . . . κ1γ0

0 κn−1 −γ̄n−1γn−2 . . . −γ̄n−1κn−2 . . . κ1γ0

0 0 κn−2 −γ̄n−2κn−3 . . . κ1γ0
...

...
. . .

...

0 0
. . . κ2 −γ̄2γ1 −γ̄2κ1γ0

0 0 . . . 0 κ1 −γ̄1γ0




(2.2)

The interesting point established in [31] is that the sequence of lossless functions

gk(z) = γk + ck(zIk − Ak)
−1bk, k = n, . . . , 0

associated with the sequence of realization matrices (Rk)k=n,...,0 is obtained by a Schur
algorithm from g(z) = d + c(zI − A)−1b . This algoritm is an analog of (1.26) but for
functions contractive outside the unit disk, so that the interpolation condition is at ∞:

{
gk(∞) = γk

gk−1(z) = (gk(z)−γk)z
1−γ̄k gk(z)

.
(2.3)

The parameters γn, γn−1, . . . , γ1, γ0 in the Hessenberg form are thus Schur parame-
ters.

The generalization of this result to the matrix case is far from being straightforward
and a complete description of structured realizations in terms of a Schur algorithm is
obtained in three steps

• a recursive construction of balanced realization is obtained from an adapted tan-
gential Schur algorithm [HOP06].

• specifying canonical interpolation points and directions in the Schur algorithm, a
sub-diagonal pivot structure is obtained for the realization matrix. It generalizes
the triangular structure of the Hessenberg from [HOP09].

• a condition on the sequence of interpolation directions is derived, which ensures
that a pivot structure in the realization matrix induces a similar structure in the
reachability matrix [PHO07].

2.1 Balanced canonical forms from the tangential Schur

algorithm.

This section presents the results of [HOP06]. A connection is established between a
tangential Schur algorithm and a recursive construction of balanced realizations which
generalizes (2.1). The interpolation points can be chosen anywhere in the complement
of the disk (in (2.1) interpolation points are at ∞). We get more flexibility in the choice
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of a chart which is interesting from an optimization point of view (see Chapter 3), but
the triangular structure is lost.

To deal with balanced canonical forms we must move from the framework of inner
functions to that of lossless functions using the transformation (1.9): Q 7→ Q♯. Since
we have

Q̃ = TΘ(Q) ⇔ Q̃♯ = TΘ(Q♯),

where TΘ is the linear fractional transformation

TΘ(G) = (Θ22G + Θ21)(Θ12G + Θ11)
−1, (2.4)

the results of section 1.3 can be immediately translated in terms of lossless functions.

If G(z) is (m × m) lossless of McMillan degree n and Θ(z) (2m × 2m) J-inner of
McMillan degree k, then TΘ(G) exists and the matrix function G̃ = TΘ(G) is also
lossless and of McMillan degree ≤ n + k (Proposition 1.3.1). The left interpolation
condition (1.41) changes into a right interpolation condition for G̃(z)

G̃ (1/w̄) u = v. (2.5)

The solutions can be represented by the following LFT (compare with (1.43))

G̃ = TΘw,u,v,H
(G), Θw,u,v,H(z) = H(uv∗)Sw,u(z)H (2.6)

In [PHO01], a unified framework is presented in which linear fractional transforma-
tions on transfer functions are represented by corresponding linear fractional transfor-
mations on state-space realization matrices. However, these formulas are rather com-
plicated and involve matrix inversions. The question is thus: can we attach to (2.6) a
simpler computation of balanced realizations which generalizes (2.1)?

In the particular case where the Schur vector v in (2.5) is the null vector, the LFT is
just a matrix product (see section 1.3.4)

G̃(z) = G(z)B♯
w,u(z),

and the cascade realization (Ã, B̃, C̃, D̃) of G̃(z) can be computed from a realization
(A, B, C, D) of G(z) by [25, 43]

[
D̃ C̃
B̃ Ã

]
=




D 0 C
0 1 0
B 0 A







Ip − (1 + w̄)uu∗ √
1 − |w|2 u 0√

1 − |w|2 u∗ w 0
0 0 In−1


 (2.7)

A cascade decomposition can be easily obtained from a realization in Schur form that
is a realization for which the matrix A is upper triangular. This representation could
be used for parametrization purposes. Then, the parameters would be the zeros and
corresponding directions, and it is well known that zeros does not behave nicely as
optimization parameters.

Comparing (2.1) and (2.7), a generalized recursion for balanced realization matrices
can be conjectured in the form:

[
D̃ C̃

B̃ Ã

]
=

[
V 0
0 In−1

] 


1 0 0
0 D C
0 B A




[
U∗ 0
0 In−1

]
, (2.8)
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where U and V are (m + 1) × (m + 1) unitary matrices. This state-space recursion
actually defines a mapping on lossless systems,

FU ,V : G(z) = D + C(zI − A)−1B −→ G̃(z) = D̃ + C̃(zI − Ã)−1B̃,

which coincides with a linear fractional transformation .

Proposition 2.1.1 [HOP06, Th. 6.1] Let U and V be partitioned as

U =

[
αu Mu

Ku β∗
u

]
, V =

[
αv Mv

Kv β∗
v

]
, (2.9)

where Ku and Kv are scalar, αu, αv, βu and βv are m-vectors and Mu and Mv are m × m.
Assume that Kv − Kuz is invertible.
Then, the mapping FU ,V coincides with the linear fractional transformation G̃ = TΦU ,V (G),
associated with the 2m × 2m J-inner function

ΦU ,V (z) =

[
Mu 0
0 Mv

]
+

[
αu

αv

]
(Kv − Ku z)−1

[
βu

βv

]∗
J

[
z Im 0

0 Im

]
. (2.10)

Moreover ΦU ,V (z) has McMillan degree 1, except if |Ku| = |Kv| = 1.

In fact, this result is still valid and can be proved similarly [MO07, Prop. 1] when the
mapping FU ,V is associated with a more general recursion

[
D̃ C̃

B̃ Ã

]
=

[
V 0
0 In−k

] 


Ik 0 0
0 D C
0 B A




[
U∗ 0
0 In−k

]
. (2.11)

This version can be used in the setting of Nudelman interpolation.

We then have to determine H in (2.6) and U , V in Proposition (2.1.1) so that Θw,u,v,H

coincides with ΦU ,V given by (2.10).

First observe that there are many possibilities to do this. Since a left pole pair over D

uniquely determines a stable J-inner function (Proposition 1.3.2) up to a right J-unitary
constant factor, the left pole pairs (u, v) and (αuK−1

v , αvK−1
v ) associated with the pole

w = KuK−1
v must be similar. In particular Kv must be invertible and the orthonormality

of the columns
[
αu Ku

]T
and

[
αv Kv

]T
completely fix them. Any unitary completion

of these columns provides an admissible pair (U ,V), the matrix H being determined
by evaluating Θw,u,v,H and ΦU ,V at some point of the circle.

In [HOP06, Th. 6.4] a method specific to the tangential case is used. The left constant
J-unitary factor H in (2.6) is searched a priori in the general form (1.33), H(E)(P ⊕ Q),
where E is a contractive matrix and P and Q unitary. It is shown that E must be equal
to w̄uv∗ and choosing P = Q = Im the J-inner function Θw,u,v,H attains the form

Θ̂w,u,v = H(uv∗)Sw,u(z)H(w̄uv∗). (2.12)
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The corresponding matrices U and V are given, in terms of the interpolation data
w, u, v, by

U =




√
1−|w|2√

1−|w|2‖v‖2
u Im − (1 +

w
√

1−‖v‖2√
1−|w|2‖v‖2

)uu∗

w
√

1−‖v‖2√
1−|w|2‖v‖2

√
1−|w|2√

1−|w|2‖v‖2
u∗


 , (2.13)

V =




√
1−|w|2√

1−|w|2‖v‖2
v Im − (1 −

√
1−‖v‖2√

1−|w|2‖v‖2
) vv∗
‖v‖2√

1−‖v‖2√
1−|w|2‖v‖2

−
√

1−|w|2√
1−|w|2‖v‖2

v∗


 . (2.14)

Note that if v is the null vector, then (2.8) is precisely the cascade decomposition (2.7).

A family of overlapping balanced canonical forms can thus be attached to a tangen-
tial Schur algorithm. The algorithm is that of section 1.3.4 for the lossless case and in
which the LFT’s J-inner symbols are chosen in the form (2.12): let Gn = G and for
k = n, n − 1, . . . , 1, let

vk = Gk(1/w̄k)uk.

• if ‖vk‖ < 1, let
Gk−1 = T−1

Θ̂wk ,uk ,vk

(Gk),

• if vk has norm 1, then stop.

An atlas of charts for the manifold Lm
n of lossless m×m functions of McMillan degree

n can be constructed as in section (1.3.5). A canonical form Cw,u is attached to each
chart of this atlas, i.e. to a sequence of interpolation points w = (w1, w2, . . . , wn) and a
sequence of interpolation directions u = (u1, u2, . . . , un), as described below

Cw,u : (v1, v2, . . . , vn, D0) 7→ R,

where the unitary realization matrix R, computed using (2.8), is a product of unitary
matrices of size (m + n) × (m + n):

R = ΓnΓn−1 · · · Γ1Γ0∆T
1 ∆T

2 · · ·∆T
n , (2.15)

where for k = 1, . . . , n:

Γk =




In−k 0 0
0 Vk 0
0 0 Ik−1


 , (2.16)

∆k =




In−k 0 0
0 Uk 0
0 0 Ik−1


 . (2.17)

The unitary matrix blocks Uk and Vk are given by (2.13) and (2.14) respectively, in
which the triple (w, u, v) must be replaced by (wk, uk, vk), and furthermore

Γ0 =

[
In 0
0 D0

]
.
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This computation of a realization matrix only involves products of unitary matri-
ces and thus behaves nicely from a numerical point of view. These canonical forms
have been used to represent lossless matrices for rational approximation purposes (see
Chapter 3).

Given a balanced realization of a lossless function, it is not easy to decide whether it
is or not in canonical form with respect to a chart. However, a realization (D, C, B, A)
in Schur form, that is with a triangular dynamic matrix, happens to be canonical in
a particular chart. This chart is easily determined, the interpolation points being the
eigenvalues of A and the interpolation directions deduced from B. It is an adapted
chart, in the sense that the parameters of (D, C, B, A) are null interpolation vectors.
From a Schur algorithm point of view, it corresponds to the Potapov factorization
(1.12)[MOHP02, MO07]. The Schur form provides a nice way to find an adapted chart
for a given lossless functions which is clearly allowed by the freedom we have in
choosing the interpolation points anywhere. However, in general, the realizations we
obtain in this way have no structure. To get some structure, we must restrict the atlas.
This will be the object of the next section.

2.2 Canonical forms with a pivot structure

In this section we report the results obtained in [PHO07] and [HOP09]. Choosing the
interpolation point at ∞ (w = 0) and the interpolation directions as standard basis
vectors yields a particular pivot structure for the sub-matrix [B A]. This structure, we
call sub-diagonal, presents a lot of interests in itself and has been studied in [HOP09].
Contrary to the scalar case, the associated controllability matrix K may not have a par-
ticular pivot structure. Such a pivot structure is guaranteed if the matrix A has a stair-
case form [PHO07] which is obtained for some particular sequences of interpolation
directions.

2.2.1 Subdiagonal canonical forms from the Schur algorithm

We consider the case wk = 0, k = 1, . . . , n. Hence, each balanced canonical form is
determined by the choice of direction vectors. Each such balanced canonical form is
given by (2.15) in which the blocks Uk and Vk attain a simpler form

Uk =

[
uk Im − ukuT

k
0 uT

k

]
, Vk =

[
vk Im − (1 −

√
1 − ‖vk‖2 vkvT

k

‖vk‖2√
1 − ‖vk‖2 −vT

k

]
.

It is important to note and not too difficult to see that the unitary matrix product

Γ = ΓnΓn−1 · · · Γ1Γ0 (2.18)

in fact forms a positive m-upper Hessenberg matrix. An (m + n) × (m + n) matrix is
called positive m-upper Hessenberg if the m-th subdiagonal only has positive entries and
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the last n − 1 subdiagonals are all zero. It also follows almost directly that if the direc-
tion vectors u1, . . . , un are taken to be standard basis vectors, then the matrix product

∆T = ∆T
1 ∆T

2 · · ·∆T
n (2.19)

yields a permutation matrix. Hence, in that case, the balanced realization matrix R is
obtained as a column permutation of an unitary positive m-upper Hessenberg matrix.
This structure is more precisely described using the concepts of pivot vectors and full
pivot structure.

Following the original papers, we present the results for real systems. However, they
can easily be transposed to the complex case. We denote by ek the k-th standard basis
vector in Rn, whose entries are all zero except for the k-th entry which is 1.

Consider a vector x = (x1, x2, . . . , xn)T ∈ Rn. The vector x is called a pivot vector
with pivot at position k, 1 ≤ k ≤ n, or pivot-k vector for short, if xk > 0 and if the xj’s
with j > k are all zero. An n × r matrix M, r ≥ n is said to have a full pivot structure
J = {j1, j2, . . . , jn} if for each k ∈ {1, 2, . . . , n} it holds that column jk of M is a pivot-k
vector.

For example, the following matrix has a full pivot structure J = {7, 1, 5, 3, 6}.

M =




∗ ∗ ∗ ∗ ∗ ∗ + ∗
+ ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ + ∗ 0 ∗
0 ∗ + ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 + 0 ∗




where ∗ denotes an arbitrary number and + denotes a positive number.

Consider the partitioned matrix [B|A] in R n×(m+n). We say this has a subdiagonal
pivot structure if

(i) [B|A] has a full pivot structure

(ii) the prescribed pivot columns of A have the property that a column with pivot at
position k has column number pk < k in A (hence column number jk = m + pk <
m + k in [B|A]), for each k ∈ {1, 2, . . . , n}.

The matrix

[B|A] =




+ ∗ | ∗ ∗ ∗ ∗
0 ∗ | + ∗ ∗ ∗
0 + | 0 ∗ ∗ ∗
0 0 | 0 ∗ + ∗




has a subdiagonal pivot structure, while this one

[B|A] =




+ ∗ | ∗ ∗ ∗ ∗
0 ∗ | ∗ ∗ + ∗
0 + | ∗ ∗ 0 ∗
0 0 | ∗ ∗ 0 +




does not have a subdiagonal pivot structure.
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Following the action of each permutation matrix ∆k on each pivot in Γ, we get the
following result.

Theorem 2.2.1 [HOP09, Th. 4] Let R be given by (2.15) and let the direction vectors be
standard basis vectors:

un−k+1 = ei(k), i(k) ∈ {1, . . . , m}, k = 1, . . . , n.

Then, the sub-matrix [B|A] has a subdiagonal pivot structure completely determined by the
sequence i(1), i(2), . . . , i(n) as follows: for k = 1, 2, . . . , n,

(i) if for all j < k, i(j) 6= i(k), then jk = i(k) and pivot-k is in B;

(ii) otherwise let l = sup{j| j < k, i(j) = i(k)}, then jk = l + m and pivot-k is in one of
the first k − 1 columns of A.

Conversely, to any specified subdiagonal pivot structure for the matrix [B A] corre-
sponds a sequence of direction vectors, more precisely

Theorem 2.2.2 [HOP09, Th. 5] Let J = (j1, j2, . . . , jn) be a given subdiagonal pivot structure
for n × (m + n) matrices. For each k = 1, 2, . . . , n, choose the direction vector un+1−k = ei(k)

in the Schur algorithm by induction: i(1) := j1, and for k = 2, . . . , n

(i) if jk ≤ m, then i(k) := jk,

(ii) if m < jk ≤ m + n define pk := jk −m < k (subdiagonal structure); then i(k) := i(pk).

For any choice of the Schur parameter vectors v1, v2, . . . , vn (all of norm < 1) and for any
choice of the unitary matrix D0, consider the (m + n) × (m + n) unitary realization matrix
R given by (2.15). Then, the sub-matrix [B|A] possesses the subdiagonal pivot structure J.

We have got a one-to-one correspondance between the set of subdiagonal pivot
structure for n × (m + n) matrices and the set of sequences of n standard m-vectors.
If we restrict the infinite atlas of section 2.1 to the charts associated with sequences
of null interpolation points and standard interpolation direction, it is not difficult to
see that we get a finite sub-atlas. In this atlas, a local canonical form is attached to a
subdiagonal pivot structure. This atlas possesses mn charts (see 2.2.1).

2.2.2 Subdiagonal canonical forms under state isometry

The interest of subdiagonal pivot structure goes beyond the parametrization of loss-
less functions in connection with the Schur algorithm. In many examples, a normal-
ization of the system by a state isomorphism (1.19) leaves the freedom of applying an
orthogonal transformation. The system can be normalized in the sense that its finite
controllability (resp. observability) matrix has orthonormal rows, or to be input (resp.
output) normal, balanced, LQG-balanced, etc. (see [HOP09],[30]). In all these cases it
makes sense to look for canonical forms under state isometry, a state isomorphism in
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which the change-of-basis matrix is orthogonal. The subdiagonal pivot structures cor-
respond to local canonical forms under state isometry, and these local canonical forms
are covering all cases. These results hold true both for discrete-time and continuous
systems.

Theorem 2.2.3 [HOP09, Th. 3] Suppose that [B|A] and [QB|QAQ∗] have the same subdi-
agonal pivot structure J = {j1, j2, ..., jn} and that Q is orthogonal. Then Q = I.

To show that every controllable pair (A, B) can be mapped to a subdiagonal pivot
structure by an appropriate state isometry, a recursive algorithm ”which cannot get
stuck, if controllability holds” has been presented in [HOP09]. It was largely inspired
by the discrete-time lossless case.
First step: choose a non-zero column j1 in B (existence is ensured by controllability).
Find a unitary matrix Q1 which maps it into a pivot-1 vector and perform the corre-
sponding state isometry. We get a matrix [B1|A1] with a pivot-1 vector in column j1.
Recursion step: suppose that a state-isometry Qi has been determined, so that

[Bi|Ai] = [QiBi−1, Qi Ai−1Q∗
i ]

has a pivot-k in column jk with the subdiagonal property jk < m + k, for k = 1, 2, . . . , i.
Then, consider the sub-matrix formed by the n − i last rows of [Bi|Ai]. Choose a non-
zero column ji+1 (existence is again ensured by controllability). Find a unitary matrix
Q̃i+1 which maps it into a pivot-1 vector, then Qi+1 = Ii ⊕ Q̃i+1 maps column ji+1 of
[Bi|Ai] into a pivot-(i + 1) vector. Then [Qi+1Bi|Qi+1AiQ

∗
i+1] possesses a pivot-k in col-

umn jk for k = 1, 2, . . . , i + 1. Because of the subdiagonal structure, right multiplication
by Q∗

i+1 cannot destroy the pivot structure.
Applying the recursion step for each k = 1, 2, . . . , n, we can construct a state isometry
that brings [B|A] into a subdiagonal pivot structure.

This algorithm provides an effective method to find a chart for a given lossless sys-
tem in the atlas of section 2.2.1. This also gives a controllability test. An interesting
practical question is: how to chose the non-zero column at each step? Take the one
with the largest norm? For numerical reasons, small pivots (the positive kth entry of
a pivot-k) must be avoided, since they correspond to a form which is poorly control-
lable. However, we have no selection strategy which controls the size of the pivots.
Note that this algorithm is rather insensitive to small perturbations.

We have got a set of overlapping local canonical forms for input normal pairs which
works both in discrete-time and in continuous-time. In discrete-time, the tangential
Schur algortihm with interpolation condition suitably chosen provides parameters for
these forms. In continuous-time, subdiagonal pivot structures can be parametrized fol-
lowing the ideas developed in [30] for the more constrained straircase pivot structure,
which ensures that also the controllability matrix presents a pivot structure.

2.2.3 Staircase canonical forms

We come back to the setting of discrete-time lossless functions (section 2.2.1). We are
now looking for balanced canonical forms which ensure a full pivot structure in the
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reachability matrix. It is not difficult to see that if the realization matrix R itself happens
to be positive m-upper Hessenberg, then the first n columns of the corresponding con-
trollability matrix K = [B|AB|A2B| . . .] also form a positive upper triangular matrix.
In the SISO case, you get in this way a global canonical form. In the MIMO case, you
only get a local canonical form, associated with the full pivot structure J = {1, 2, . . . , n}
for [B|A]. The object of this section is to complete it into a family of overlapping local
canonical forms, each of these forms being associated with a pivot structure for the
controllability matrix K.

The question is thus: which subdiagonal pivot structures for the n × (m + n) matrix
[B|A] imply that the associated controllability matrix contains a column with a pivot at
position k for each k = 1, 2, . . . , n? The answer is that the subdiagonal pivot structure
must be of the following particular form: if the columns of B contain pB pivots then
the remaining pA = n − pB pivots have to be located in the first pA columns of A
with increasing pivot positions. We shall say that A has a staircase structure. A pivot
structure of this form will be called an admissible pivot structure. Clearly, an admissible
pivot structure J for [B, A] is totally determined by the induced pivot structure for B.

For several purposes, the induced pivot structures for A and B are more conve-
niently described in terms of the column-oriented description Q = {q1, . . . , qm+n} for
[B, A]. Note that each column ℓ is a pivot-qℓ vector, where ‘a pivot-0 vector’ is syn-
onymous to ‘not a pivot vector’. For the matrix A it holds that the associated column-
oriented pivot structure S = {s1, . . . , sn} satisfies sk = qm+k for all k = 1, . . . , n.

Consider the full pivot structure J = {3, 1, 5, 6, 4, 7} for the 6 × (4 + 6) partitioned
matrix

[B, A] =




∗ ∗ + ∗ ∗ ∗ ∗ ∗ ∗ ∗
+ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ + ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ 0 + ∗ ∗ ∗ ∗
0 ∗ 0 + 0 0 ∗ ∗ ∗ ∗
0 ∗ 0 0 0 0 + ∗ ∗ ∗




. (2.20)

The column-oriented description is given by Q = {2, 0, 1, 5, 3, 4, 6, 0, 0, 0} and S =
{3, 4, 6, 0, 0, 0} for A.

If v is a pivot-k vector, then the staircase structure of A implies that w = Av is a pivot-
sk vector. For this reason, the map S : k 7→ s(k) = sk, k = 1, . . . , n is called the successor
function (for convenience we also define S(0) = 0). If v is a pivot-k vector, then the
sequence of pivot positions in v, Av, A2v, A3v, . . . is given by k, S(k), S2(k), S3(k), . . .
In this way, an admissible pivot structure J for [B, A] generates a uniquely specified

full pivot structure J̃ for the controllability matrix K. To visualize this, it is helpful to
introduce an m × n array Y = (yi,j), defined as follows: entry yi,j denotes the pivot

position of vector i in the j-th block Aj−1B of K. This array will be called an admissible
Young diagram.
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The reachability matrix K = [B, AB, A2B, . . .] associated with (2.20) is of the form:

K =




∗ ∗ + ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . . . .
+ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . . . .
0 ∗ 0 ∗ ∗ ∗ + ∗ ∗ ∗ ∗ ∗ . . . . . .
0 ∗ 0 ∗ + ∗ 0 ∗ ∗ ∗ ∗ ∗ . . . . . .
0 ∗ 0 + 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ . . . . . .
0 ∗ 0 0 0 ∗ 0 ∗ ∗ ∗ + ∗ . . . . . .




The corresponding 4 × 6 array Y is:

Y =

2 4 0 0 0 0
0 0 0 0 0 0
1 3 6 0 0 0
5 0 0 0 0 0

The first column of Y specifies the pivot structure of B. The other entries of Y satisfy
the rule yi,j+1 = S(yi,j). The admissible Young diagram displays the pivot structure of
[B, A] as well as that of K.

Theorem 2.2.4 [PHO07, Th. 4.1] Let J be an admissible full pivot structure for the block-
partitioned matrix [B, A], with a column-oriented description Q = {q1, . . . , qm+n} and the
successor function S given by S = {s1, . . . , sn} = {qm+1, . . . , qm+n} and S(0) = 0. Then J

induces a full pivot structure J̃ for the (finite) controllability matrix

K = [B, AB, . . . , An−1B]

which is specified in terms of the m × n array Y associated with Q as follows:
(i) yi,1 = qi for i = 1, . . . , m;
(ii) yi,j+1 = S(yi,j) for i = 1, . . . , m and j = 1, . . . , n − 1.

Conversely, for every non-admissible full pivot structure J there exists an n× (m + n)
matrix [B, A] having the full pivot structure J, for which K = [B, AB, A2B, . . .] does not
have a full pivot structure [PHO07, Th.3.4].

This study is strongly connected to the concepts of nice selection and dynamical
indices.
The set D(m, n) is defined as the set of all multi-indices

D(m, n) = {(d1, d2, . . . , dm) ∈ N
m such that d1 + d2 + . . . + dm = n}.

A selection of n columns from an n× nm controllability matrix K = [B, AB, . . . , An−1B]
is called a nice selection if there exists a multi-index d ∈ D(m, n) for which the selected
set of columns is given by

{Aj−1Bei | j ∈ {1, 2, . . . , di} for i = 1, 2, . . . , m}.

The full pivot structure J̃ for K, obtained from an admissible pivot structure for [B|A],
constitutes a nice selection of columns.
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The concept of Young diagram, a left-aligned m × n binary array corresponding to a
nice selection with an associated vector of dynamical indices d = (d1, . . . , dm) is used
in [26] for example. We define a numbered Young diagram as a Young diagram in which
the unit entries are replaced by the numbers 1, 2, . . . , n in some arbitrary order, so that
they all occur exactly once. The admissible Young diagrams associated with a full pivot
structure J̃ for K obtained from an admissible pivot structure for [B|A] is a numbered
Young diagram. The number of nonzero entries di of the i-th row of the admissible
Young diagram are the dynamical indices corresponding to the nice selection J̃.

Among all the numbered Young diagrams that can be obtained from a given vector
of dynamical indices, we may characterized the admissible Young diagrams. This char-
acterization is in terms of the right-aligned version Yr = (yr

i,j) of the numbered Young

diagram Y obtained by shifting the nonzero entries of each row n − di positions to the
right, yr

i,j := yi,j+di−n.

Proposition 2.2.1 [PHO07, Prop. 4.5.] An m × n numbered Young diagram corresponding
to a nice selection with a vector of dynamical indices d = (d1, . . . , dm) is admissible if and only
if there exists an m × m permutation matrix Π for the associated right-aligned array Yr such

that the nm-vector vec(ΠYr) =
(
(ΠYre1)

T, (ΠYre2)
T, . . . , (ΠYren)T

)T ∈ Rnm obtained by
stacking the n columns of the array ΠYr, has the property that if the zero entries are deleted
then the n-vector (1, 2, 3, . . . , n)T is obtained.

For the previous example, we get

Y =

2 4 0 0 0 0
0 0 0 0 0 0
1 3 6 0 0 0
5 0 0 0 0 0

Yr =

0 0 0 0 2 4
0 0 0 0 0 0
0 0 0 1 3 6
0 0 0 0 0 5

Π =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




The permutation Π makes that each column of the right-aligned matrix has the prop-
erty that the nonzero entries in the column form an increasing sequence.

Conversely, starting from a given vector of dynamical indices d and an arbitrary
choice of Π permuting the nonzero rows of the associated Young diagram, completely
determines an unique admissible Young diagram.

Restricting the atlas of subdiagonal forms of section 2.2.1 to the chart corresponding
to admissible pivot structures, we get a sub-atlas. Indeed, this set of charts is covering
Lm

n in the sense that for each input-normal [B, A] with A asymptotically stable, there
exists an admissible numbered Young diagram Y and an orthogonal matrix Q such
that [QB, QAQT] has the admissible pivot structure associated with Y. Each staircase
canonical form can thus be associated with a recursive Schur algorithm with interpo-
lation points at 0 and interpolation direction selected among standard basis vectors
following the rule : for each k = 1, 2, . . . , n, un+k−1 = ei(k), where (i(k), j(k)) denotes
the unique pair of indices such that yi(k),j(k) = k in the admissible Young diagram Y.

This atlas is not minimal, in the sense that no further local canonical form can be left
out without losing the property of covering the family. To obtain a minimal sub-atlas,
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one has to choose one of the local canonical forms for each d ∈ D(m, n). One possible
choice is the unique permutation for which the permuted dynamical indices form a
non-increasing sequence, while the order of the rows which have the same dynamical
index is kept the same. With hindsight, one can say that this particular choice to obtain
a minimal atlas for continuous-time lossless systems was used in [30].

The number of charts in the various atlases are

subdiagonal forms straicase forms minimal atlas

mn ∑
min{m,n}
ℓ=1 ℓ!

(
m
ℓ

) (
n − 1
ℓ − 1

) (
m + n − 1

m − 1

)

To demonstrate the structure of the charts that constitute the various atlases, a simple
example (m = 2, n = 3) is presented in Figure 2.1. The charts marked with a ∗ form
a minimal atlas. A Young diagram representation is also used for subdiagonal but
non-staircase forms. In this case, the numbering in the Young diagram specifies the
pivot structure of [B A] according to Theorem 2.2.4 but gives no information on the
controllability matrix.

2.3 Perspectives

In this chapter, we have described (structured) canonical forms which can be para-
metrized using Schur vectors. This approach combines the practical advantages of
state-space representations with the efficiency and simplicity of Schur analysis. It has
a wide range of applications, most of which have not yet been explored.

In [31] the structure of the canonical form was used to show that the set of lossless
functions of order ≤ n with the topology induced by H2 has the structure of an 2n + 1
hypersphere S2n+1. The subspace of lossless systems of order ≤ k < n appears as an
embedded hypersphere. Looking at the Hessenberg form (2.2) parametrized by the
sequence of Schur parameters, the situation can be analyzed as follows: if the norm
of some Schur parameter, say γj, goes to 1, the corresponding pivot κj goes to 0 and
the dynamic matrix A then presents a diagonal block-structure with a unitary lower
block. The realization is no more minimal, but represents a n − j order (still lossless)
system. The lossless systems of order < n appear as boundary points in L1

n and the
Hessenberg structure can be used for model reduction purposes.

In the MIMO case, because of the non-trivial manifold structure of Lm
n , a pivot in

a local subdiagonal form can be zero for two completely different reasons: either the
local chart is not adapted or the underlying system fails to be controllable which is the
boundary case. To say it differently, the boundary of a chart (local subdiagonal chart)
is mostly composed by systems of order n, for which another chart should be used,
and some of order < n, which are boundary points of the manifold. It would be very
helpful, both for identification and model reduction purposes, to better understand the
topological structure of the set of m × m lossless systems of order ≤ n. Subdiagonal
forms could bring some insights in this study. They could also provide simple methods
for model order reduction for lossless systems as well as other classes of systems,
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Chart [B|A] Pivot structure Young Diagram Canonical form

(e1, e1, e1)




+ ∗ ∗ ∗ ∗
0 ∗ + ∗ ∗
0 ∗ 0 + ∗


 {1, 3, 4} 1 2 3

staircase∗

(e1, e1, e2)




∗ + ∗ ∗ ∗
+ 0 ∗ ∗ ∗
0 0 ∗ + ∗


 {2, 1, 4} 2 3

1
subdiagonal

(e1, e2, e1)




+ ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 + ∗ ∗


 {1, 2, 3} 1 3

2
staircase

(e2, e1, e1)




+ ∗ ∗ ∗ ∗
0 ∗ + ∗ ∗
0 + 0 ∗ ∗


 {1, 3, 2} 1 2

3
staircase∗

(e2, e2, e1)




+ ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 ∗ + ∗


 {1, 2, 4} 1

2 3
subdiagonal

(e1, e2, e2)




∗ + ∗ ∗ ∗
∗ 0 + ∗ ∗
+ 0 0 ∗ ∗


 {2, 3, 1} 3

1 2
staircase∗

(e2, e1, e2)




∗ + ∗ ∗ ∗
+ 0 ∗ ∗ ∗
0 0 + ∗ ∗


 {2, 1, 3} 2

1 3
staircase

(e2, e2, e2)




∗ + ∗ ∗ ∗
∗ 0 + ∗ ∗
∗ 0 0 + ∗


 {2, 3, 4}

1 2 3
staircase∗

Figure 2.1: Subdiagonal canonical forms for m = 2, n = 3.
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based on this observation: if [B|A] is in subdiagonal pivot form and we truncate the
last n − i rows and columns, we again have a controllable pair in subdiagonal pivot
form.

One of the main practical reasons for studying atlases of charts was that of iterative
optimization algorithms using differential tools in the MIMO case. Even if our pref-
erence bears on infinite and flexible atlases (see Chapter 3), a finite atlas of structured
canonical forms could present some interest. The issue of selecting a better chart when
switching becomes necessary and of monitoring the conditioning of a chart are funda-
mental in this connection. For the atlas of subdiagonal canonical forms, the algorithm
of section 2.2.2 provides a chart for a given system. However, we don’t know what
could be a good choice of the non-zero vector (the pivot column) at each step of the
algorithm. This essential question may have different answers from a model reduction
or an optimization perspective. A chart selection algorithm is missing for the atlas of
staircase forms and will be highly desirable.

Subdiagonal pivot structures could be even more interesting in the continuous-time
setting. Real world systems are often described by means of realization with a par-
ticular structure in which the physical parameters are displayed (see section 3.4). In
some applications, subdiagonal forms could offer an easy connection between op-
timization parameters and physical parameters. In the SISO case, the single subdi-
agonal canonical form is the well-known Schwarz-Ober form in which the dynamic
matrix A is tridiagonal. It can be parametrized by the n positive pivots [52]. It is pos-
sible to interpret these parameters as interpolation values in a recursive Schur algo-
rithm, but the interpolations values must be taken at ∞ which belongs to the analyt-
icity boundary in continuous-time [OHP08]. Multivariable lossless systems can anal-
ogously be parametrized using interpolation data on the imaginary line [4, Chap. 21].
However, the overlapping subdiagonal canonical forms are not easily recovered from
these parametrizations. It must be noticed that vanishing moments, diagonal Markov
parameters, can be interpreted in term of boundary interpolation conditions. Bound-
ary interpolation sounds a promising tool and its use in the representation of both
continuous-time and discrete-time systems is under investigation.
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Chapter 3

Rational H2 approximation and lossless
mutual encoding

Rational approximation was the first topic I studied some twenty years ago. It is at the
origin of my interest for lossless functions and their parametrizations.

Since finite order LTI systems and their rational transfer functions are the most used
models in system theory, rational approximation is at the heart of modeling problems.
The challenge is to select a model that is close enough to a physical system and yet
simple enough to be studied analytically. Modeling is thus at the origin of a fertile in-
teraction between rational approximation methods and system theory. A great num-
ber of methods have been proposed in the literature, that divide into two main groups:
projection methods and optimization methods (see [12] for a nice oriented historical
survey).

Among these methods, rational approximation in the Hardy space H̄2 presents a
number of interesting features. Assuming a transfer function belongs to H̄2 corre-
sponds to a stability condition for the underlying physical system: a bounded energy
input produces a bounded output. The Hardy space H̄2 possesses a very rich structure
which combines analyticity properties and an Hilbert space framework. However, H̄2

rational approximation is a difficult non-linear problem due to the complexity of the
set approximants (rational matrices of fixed order) and the existence of many local
minima.

A specific approach has been developed at INRIA to cope with this problem, which
is based on the following points

• the optimization range is reduced to the set of lossless functions,

• an atlas of chart is used to parametrize the set of lossless functions.

The exposition here is definitely application oriented, so that the emphasis will be put
on the effective implementation of the method. It is based on state-space formulas and
a suitable atlas of chart which was presented in [MO07].
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3.1 The rational approximation problem

The L2-norm of a matrix-valued function F(z) whose entries belong to L2(T) is given
by

‖F‖2
2 =

1

2π
Tr

∫ 2π

0
F(eit)F(eit)

∗
dt.

The rational approximation problem we consider is, given a matrix-valued function

F(z) ∈ H̄
p×m
2 , to minimize the L2 distance to the set of rational functions in H̄

p×m
2 of

McMillan degree less than or equal to n.

First remark that any solution H must satisfy H(∞) = F(∞). Thus, we may restrict

our study to the case of strictly proper transfer functions, that is to the space (H
p×m
2 )

⊥
.

A number of qualitative results are available which assert that the problem is well-
posed and pave the way to convergent algorithms. It was proved in [5] that the global
minimum of the L2 criterion does exist, as well as the normality property: if F(z) is not of
McMillan degree strictly less than n, then the best approximant H(z) at order less than
or equal to n has effective order n, so that the problem can now be stated as:

Rational approximation problem. Given F(z) ∈ (H
p×m
2 )

⊥
, find Ĥ(z) such that

Ĥ = argminH∈ Ξn
‖F − H‖2

2 (3.1)

where

Ξn = {H ∈ (H
p×m
2 )

⊥
, deg H = n}

is the set of rational strictly proper stable transfer functions of exact degree n.

The following consistency result should also be mentioned: if F(z) has McMillan de-
gree n, then the only local minima (and even the only critical point) of the L2 criterion
is F(z) itself [BO98].

The present approach was first proposed in the SISO case [BCO91] and then in the
MIMO case [FO98]. The first step is the elimination of the linear variable by means of
the Douglas-Shapiro-Shields factorization (Theorem 1.1.5). Any rational matrix func-

tion H(z) ∈ (H
p×m
2 )

⊥
can be written in the form

H(z) = C(z)G(z),

where G(z) is lossless of McMillan degree n and C(z) ∈ H
p×m
2 . Any approximant H(z)

of F(z) thus minimizes the distance from F(z) to the vector space

Vec(G) = {H ∈ (H
p×m
2 )

⊥
; H = C G, C ∈ H

p×m
2 }.

The Projection theorem in a Hilbert space asserts that H(z) is completely determined
by G(z) as the orthogonal projection of F(z) onto Vec(G). Equivalently, C(z) is the

orthogonal projection of F(z)G♯(z) onto H
p×m
2 , C(z) = π+(FG♯). In least-square op-

timization and using a state-space formulation, this elimination step is classical and
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known under the name of Separable Least Square. It presents some important advan-
tages: the dimension of the parameters space is reduced and mostly, lossless functions
enter the picture. The rational approximation problem is then to minimize the criterion

ψn : G 7→ ‖F − π+(FG♯)G‖2 (3.2)

over the set Lm
n \Um the right quotient of the set of m × m lossless functions of McMil-

lan degree n by unitary constant matrices.

The second step is to find a clever parametrization of the set Lm
n and its right quo-

tient Lm
n \ Um. In order to use differential tools (as a gradient algorithm) to solve this

optimization problem, an atlas of charts happens to be the desirable representation.
Over the years, different atlases of charts have been experimented and implemented.
The first one was the atlas derived form the tangential Schur algorithm constructed in
[1]. A polynomial representation of lossless matrices were used as described in [FO98]
and implemented in the software Hyperion [29]. However, a state-space representa-
tion is often preferred for computations and the balanced canonical forms of section
2.1 were used in the software RARL2 [MO04]. However, the natural framework for
this atlas is that of complex valued functions. In particular, an adapted chart, that is
a chart centered at a given lossless function requires complex interpolation points, its
(possibly complex) poles (see section 2.1).

However, physical systems are often real-valued and their transfer functions T(z)

are real, that is, they satisfy the relation T(z) = T(z̄). It must be mentioned that the best
complex approximation of a real function may fail to be real. For example the function
f (z) = 1/z3 − 1/z admits three minima: a real one and two complex, which achieve
the best relative error. In the next section, we propose an atlas which better suits the
representation of real lossless functions. It is based on the more general Nudelman
interpolation problem (see section 1.3.3).

3.2 Nudelman interpolation and lossless mutual encod-

ing

We first built an atlas of chart for the set L
p
n. To this end, we consider the interpolation

problem (see section 1.3.3) now stated for lossless functions: given an observable pair
(U, W), where W is n × n stable, find all the lossless function G(z) ∈ Lm

n satisfying the
interpolation condition

1

2iπ

∫

T

(zI − W∗)−1U∗G♯(z) dz = V∗. (3.3)

Note that two equivalent triples (W, U, V) and (TWT−1, UT−1, VT−1) yield the same
interpolation condition (3.3). Thus, we may assume the observable pair (U, W), W is
stable, to be output normal :

U∗U + W∗W = I. (3.4)
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By Theorem 1.3.1, if the solution P to the Stein equation (1.39) is positive definite,
then the set of all lossless solutions G(z) of McMillan degree n of (3.3) is given by

{G(z) ∈ L
m
n ; G = TΘW,U,V H(G0), G0 constant unitary matrix}

where ΘW,U,V is the J-inner matrix (1.40) with ν = 1 and H is a right constant J-unitary
multiplier, that can be freely chosen.

A chart of Lm
n is thus attached to an output normal pair (U, W), and a lossless func-

tion G(z) belongs to the domain VU,W of this chart if and only if the solution P to the
Stein equation (1.39) is positive definite. The coordinate map is

φU,W : G ∈ VU,W → (G0, V).

The matrix H may depend on the interpolation triple (W, U, V). In this case we shall
require H(W, U, V) to be differentiable with respect to V and to satisfy the relation

[
Λ 0
0 Π

]
H(W, U, V)

[
Λ∗ 0
0 Π∗

]
= H(W, ΛU, ΠV) (3.5)

for any unitary matrices Λ and Π. This equality ensures that the quotient Lm
n \Um can

be perform within each chart by fixing G0.
The matrix H and unitary matrices U and V can be constructed following the approach
of section 2.1 so that a balanced canonical form is computed by the multiplicative
formula (2.11) in which d = n. However, in the present case the balanced canonical
form can be obtained directly and nicely interpreted. The interpolation value V in (3.3)
as a very simple state-space formulation. An analog formula has also been derived in
continuous-time in [28].

Proposition 3.2.1 [MO07, Prop. 4] Let (U, W) be an output normal pair, W stable, and let
G(z) = D + C(zIn − A)−1B be a balanced realization of G(z) ∈ Lm

n . Let Q be the unique
solution to the Stein equation

Q − AQW = BU (3.6)

Then, the interpolation value V in (3.3) and the associated solution P to the Stein equation
(1.39) are given by

V = DU + CQW (3.7)

P = Q∗Q. (3.8)

Formula (3.7) is easily established and can be rewritten with (3.6) in a matrix form

[
D C
B A

] [
U

QW

]
=

[
V
Q

]
. (3.9)

The realization of G(z) being balanced by assumption, we get

U∗U + W∗QQ∗W = V∗V + Q∗Q,

so that Q∗Q = P, the unique solution of (1.39).
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Under the assumption P > 0 and thus K = V∗V + P positive definite, we would like
to reverse the process and specify a unique way to compute a balanced realization of
G(z) from the interpolation matrix V and a constant unitary matrix (the analog of G0

in the LFT representation).

We first fix the square root Q of P to be the (uniquely defined) Hermitian square root,
Q = P1/2, and we use it to normalize the interpolation data

(W, U, V) 7→ (W̃, Ũ, Ṽ) = (QWQ−1, UQ−1, VQ−1) (3.10)

Then, equation (3.9) yields

[
Ṽ
I

]∗ [
D C
B A

] [
Ũ
W̃

]
= Ṽ∗Ṽ + I.

Using the Hermitian square root K1/2 of K = Ṽ∗Ṽ + I, we get

[
ṼK−1/2

K−1/2

]∗ [
D C
B A

] [
ŨK−1/2

W̃K−1/2

]
= I.

For any unitary completions U , V of these orthonormal columns,

U =

[
ŨK−1/2 ∗
W̃K−1/2 ∗

]
, V =

[
ṼK−1/2 ∗
K−1/2 ∗

]

we have that

V∗
[

D C
B A

]
U =

[
I 0
0 D0

]
(3.11)

for some unitary matrix D0.

Now, the unitary completions U and V have to be specified. In [MO07] the matrix V
is chosen accordingly to Proposition 1.3.2 in which J = I and ν = −1 :

V =

[
Ṽ(I + Ṽ∗Ṽ)−1/2 (I + ṼṼ∗)−1/2

(I + Ṽ∗Ṽ)−1/2 −Ṽ∗(I + ṼṼ∗)−1/2

]
. (3.12)

For the matrix U , another method is used which makes use of a Cholesky factoriza-
tion, and has been implemented in the software RARL2.
First remark that when D0 = I and V = 0 we get

[
D C
B A

]
=

[
∗ ∗

U∗ W∗

]
,

whence the idea to attach a chart to a unitary balanced realization

Ω = (W∗, U∗, Y∗, X∗) (3.13)

rather than just an output normal pair (W, U).

The matrix U is then computed from Ω as follows:
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• perform a state isomorphism with matrix Q = P1/2:

(W, Y, U, X) −→ (W̃, Ỹ, Ũ, X) = (QWQ−1, QY, UQ−1, X).

• compute a Cholesky factorization of the matrix

[
K L
L∗ N

]
=

[
Ũ X
W̃ Ỹ

]∗ [
Ũ X
W̃ Ỹ

]
. (3.14)

using the well-known formula [18, Sec. 0.2], we get

[
K L
L∗ N

]
=

[
I 0

L∗K−1 I

] [
K 0
0 Z−1

] [
I K−1L
0 I

]

=

[
K1/2 K−1/2L

0 Z−1/2

]∗ [
K1/2 K−1/2L

0 Z−1/2

]

where Z−1 = N − L∗K−1L can be computed by inverting the matrix (3.14) [18,
Formula (0.8)].

The matrix

U =

[
Ũ X
W̃ Ỹ

] [
K−1/2 −K−1LZ1/2

0 Z1/2

]
(3.15)

is then a unitary completion of the orthonormal columns of
[
ŨK−1/2 W̃K−1/2

]T
.

The matrices K, L and Z are given by

L = Ũ∗X + W̃∗Ỹ (3.16)

K = Ũ∗Ũ + W̃∗W̃ = I + Ṽ∗Ṽ (3.17)

Z = X∗X + Ỹ∗Ỹ. (3.18)

and it is easily checked that K and Z are positive definite.

Proposition 3.2.2 [MO07, Prop. 5] A lossless function G(z), given by a balanced realization
(A, B, C, D), is in the domain DΩ of the chart associated with Ω = (W∗, U∗, Y∗, X∗) if and
only if the solution Q to the Stein equation (3.6) is positive definite. A realization R̃ is in
canonical form with respect to this chart if and only if the solution Q to (3.6) is P1/2, P being
a solution of (1.39).

The coordinate map is

φΩ : G(z) ∈ DΩ → (D0, V),

in which V and D0 are computed as follows :

• first compute V and Q by (3.7) and (3.6)

• then compute P = Q∗Q and U and V as in (3.15) and (3.12)
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• finally compute T = QP−1/2 and (Ã, B̃, C̃, D) = (T−1AT, T−1B, CT, D) a bal-
anced realization for G(z) in canonical form. Then D0 is given by

V∗
[

D̃ C̃
B̃ A

]
U =

[
I 0
0 D0

]
. (3.19)

The balanced realization Ω = (W∗, U∗, Y∗, X∗) defines a lossless function

GΩ(z) = X∗ + U∗(zIn − W∗)−1Y∗ ∈ L
m
n . (3.20)

Since two similar balanced realizations provide the same chart up to a rotation in the
parameters space, the chart is in fact attached to an element of Lm

n which explains the
denomination lossless mutual encoding.

The solution Q of (3.6) has the following integral representation ([4, Th. A.2.2.])

Q =
1

2iπ

∫

T

(z I − A)−1BU(I − z W)−1dz.

This formula can be interpreted as a matrix-valued inner product

Q =
〈
(zI − A)−1B, (zI − W∗)−1U∗

〉

defined on the left Hilbert module of n × m square integrable matrix-valued functions
on the unit circle [10]. Since the pairs (W∗, U∗) and (A, B) are input normal, their
distance in the norm associated with the matrix-valued inner product is

‖|(zI − A)−1B − (zI − W∗)−1U∗‖| = 2I − Q − Q∗.

Hence, the quality of a chart can be estimated by computing m(P) ∈]0, 1]:

m(P) = inf{|λ|, λ eigenvalue of P)}.

The closer m(P) is to 1, the better is the chart, the best choice being P = I. This choice
provides us with an adapted chart.

Proposition 3.2.3 (Adapted chart) [MO07] The chart associated with a balanced realiza-
tion Ω = (A, B, C, D) of G(z) is an adapted chart for G(z), i.e. the interpolation matrix V in
(3.7) is the zero matrix and D0 = I.

If φΩ(G) = (D0, V) and Σ is a constant unitary matrix, then φΩ(ΣG) = (ΣD0, ΣV).
An atlas for the (left) quotient space Lm

n \Um is thus obtained by fixing D0 within each
chart.

3.3 RARL2 : a rational approximation software

The Matlab based software RARL21 solves the minimization problem (3.1) for a func-
tion F(z) given in one of the following forms

1The software RARL2 is described in [MOHP02] and available on the web page
http:www-sop.inria.fr/apics/RARL2/rarl2-eng.html.
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(1) a realization F(z) = D + C(zIN −A)−1B

(2) Fourier coefficients F(z) = ∑
N
j=0 Fjz

−j.

It is mostly a model reduction tool. Pointwise values on the circle

F(eiθj), j = 1, . . . , N

can also be handled, but in this case the L2-norm is replaced by a least-square criterion.
Then, the result is not guaranteed and very dependent on the data. When the data is
band-limited a first completion step is highly desirable (see section 3.4). In this connec-
tion, other representations of functions, using alternative basis of L2(T) as orthogonal
rational functions [12], could better suit the completion issue.

The implementation is based on a state space representation (A, B, C, D) of LTI stable
systems approximants. The concentrated criterion (3.2) is thus defined on the set of
lossless functions or equivalently input normal pairs (A, B). It is computed, as well as
the gradient, using state-space formulas.

Let H(z) = D + Γ(zI − A)−1B with (A, B) input normal. The error F − H has real-
ization

Ã =

[
A 0
0 A

]
, B̃ =

[
B
B

]
, C̃ =

[
C −Γ

]
, D̃ = 0,

and L2 norm
‖F − H‖2

2 = Tr
(
C̃WcC̃∗) ,

where Wc is the reachability gramian of the error. Fixing A and B, the L2 error is mini-
mal for Γ = CW12, where W12 is the submatrix of Wc solution to

AW12A∗ + BB∗ = W12,

and the concentrated criterion is

J(A, B) = ‖F‖2
2 − Tr (CW12W∗

12C∗) . (3.21)

Let W21 be the solution of the Lyapunov equation

A∗W21A− Γ∗C = W21, Γ = CW12

The gradient of the concentrated criterion can then be computed as

∆J(A, B).(∂A, ∂B) = 2 Re (Tr (W21A W12 ∂A∗)) + 2 Re (Tr (W21B ∂B∗)) (3.22)

The software divides into two libraries

• arl2lib contains all the computations concerning the L2 criterion.
The functions arl2SS and arl2COEFF compute the criterion and the gradient
when the function is given by a realization and Fourier coefficients respectively.

• boplib is concerned with the parametrization of lossless functions (balanced out-
put pairs) by means of the lossless mutual encoding method described in section
3.2. It also provides a minimization process which could handle any criterion
defined over the manifold Lm

n \ Um.
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G0

G

0
G0

V
G

0

Figure 3.1: Optimization over a manifold

The minimization process makes use of the Matlab solver fmincon. It starts at some
initial point G0 which is encoded in its adapted chart Ω = (A, B, C, D) (see Proposi-
tion 3.2.3). Then fmincon performs the optimization of the criterion submitted to the
nonlinear constraint P > 0, where P is the solution to

P − APA∗ = BB∗ − V∗V

and V the parameter of the current point in the chart. This constraint ensures we
remain within the domain of the chart. When a constraint violation occurs, a new
adapted chart is computed for the current point and the optimization pursues within
this new chart (see Figure 3.1), until a minimum is reached. A scheme of the whole
minimization process is provided in Figure (3.2).

The convergence of the algorithm has been proved under mild assumptions in the
SISO case [BCO91] but never in the MIMO case. The main obstruction to the conver-
gence is if the boundary of the manifold is reached, that is to say if the constraint
violation (P singular) corresponds to the non-minimality of the canonical realization,
that is to a drop of degree for the lossless functions. This would results in changing
chart indefinitely.

Since the criterion may possess many local minima, the choice of an initial point
in the optimization process is essential. The approximant provided by another model
reduction method, mainly the balanced truncation method of [41], is often used as a
starting point. An interesting recursive method on the order of the approximant can
also be used (see [BCO91] in the scalar case and [FO98, PHO02] in the matrix case).
This strategy has been implemented (function RARL2) on the bases of the following
observation.

If Ĝ(z) is factor as Ĝ = Bw,u G, where G(z) is lossless of degree k, and Bw,u(z) is the
Potapov factor (1.11), we get an interesting formula for the criterion (3.2)

ψk+1(Ĝ) = ψk(G) − (1 − |w|2)‖R(w)∗u‖2,

where R(w) is the smooth function of w

R(w) =
1

2iπ

∫ 2π

0

π−(FG♯)(z)

1 − w̄z
dz.
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Figure 3.2: Minimization process in RARL2
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If w converges to the unit circle, Bw,u(z) converges to a unitary matrix X and the func-
tion Ĝ(z) of degree k + 1, to XG(z) which has degree k. We thus reach the bound-
ary of the manifold Lm

n . Conversely, if G(z) is a minimum of the criterion of order k,
then we may choose any Ĝ = Bw,u G, with w close enough to the unit circle so that
ψk+1(Ĝ) < ψk(G), as starting point for a minimization at order k + 1. Starting at de-
gree 0 and choosing several starting points at each iteration allows to compute a great
number of local minima and to improve the chances to reach the global one.

3.4 Identification of microwave filters.

RARL2 is a generalist software which efficiently performs model reduction. It is in-
tended to be associated with other tools in order to solve more specific inverse prob-
lems. We discuss in this section a dedicated application which is now mainly devel-
oped by F. Seyfert. It illustrates the possibilities of the software.

The problem is to recover the transfer function of a filter from frequency data. These
data are estimate values of the transfer function at pure imaginary points, obtained
from the steady-state outputs of the filter to harmonic inputs. Frequency data are an
interesting starting point in the identification process. The LTI assumption is already
integrated in some sense and the quality of the measurements can be estimated [54].

A two stage approach has been carried out to deal with this problem: in a first step,
a stable transfer function of high degree approximating the data is searched. Then, a
model reduction step is performed (see Figure 3.3).

frequency data

completion

stable model

reduction + +

+
+

rational model

Figure 3.3: Identification vs model reduction

To carry over this problem into our discrete-time setting, we use an isometry from
the Hardy space H2 of the right half-plane to the Hardy space H⊥

2 . Note that a function
F̃(s) ∈ Hm×m

2 is square integrable on the imaginary axis and thus strictly proper (it

vanishes at infinity). The function F(z) of (Hm×m
2 )

⊥
which is associated with F̃(s) is

F(z) =

√
2

z − 1
F̃

(
z + 1

z − 1

)
. (3.23)

It satisfies ‖F‖L2(T) = ‖F̃‖L2(I) and if F̃(s) is rational, deg F = deg F̃. The formulas

which allow to derive a realization (A, B, C, 0) of F(z) from a realization (Ã, B̃, C̃, 0) of
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F̃(s) and reciprocally are completely symmetric:





C = C̃
A = −(I − Ã)−1(I + Ã)
B = (I − Ã)−1B̃





C̃ = C
Ã = −(I − A)−1(I + A)
B̃ = (I − A)−1B

(3.24)

The data on the imaginary axis can be sent on the unit circle via the Möbius transfor-

mation iwk 7→ iwk+1
iwk−1 and we get an equivalent problem in the framework of the disk

(see Figure 3.4). However, if the original system fails to be strictly proper, then the
direct feedthrough (value at infinity of the transfer function) must be evaluated.

frequency data

completion

stable model

reduction +
+
++

rational model

Figure 3.4: Two steps identification in discrete-time

Since the data are usually band-limited, this problem is not well-posed and a met-
ric constraint must be imposed outside the bandwidth. This completion problem is a
difficult task, for which a lot of methods have been proposed, whose efficiency mostly
depend on the quality of the data and require some engineering ability. The methods
divide in two classes, interpolation methods among which boundary Nevanlinna-Pick
interpolation algorithms sounds interesting [14], and approximation methods more in-
clined to take into account the quality of the data.

For the identification of microwave filters, we chose the approximation approach
and solved a bounded extremal problem. The whole process is described in [BGL+98].
The model reduction step is then performed by the software RARL2 as explained in
section 3.3. The microwave filters that we consider are used in telecommunication
satellites for channel multiplexing. A longstanding cooperation with the space agency
CNES resulted in a dedicated software PRESTO-HF [60] that wraps RARL2 into a
package which is now fully integrated in the design and tuning process. In Figure
3.5, a 8th order model of a MIMO 2 × 2 microwave filter is shown, obtained from 800
pointwise data.

3.5 More applications

The rational approximation method and the software described in this chapter have
been used in several different situations which demonstrates the adaptability of this
approach.
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Figure 3.5: Bode diagram of the data and the approximant at order 8.

3.5.1 Localization of dipolar sources in electroencephalography.

This research is conducted by J. Leblond and L. Baratchart from the APICS-INRIA
team. From measurements by electrodes of the electric potential u(z) on the scalp, the
problem is to recover a distribution of m pointwise dipolar current sources Ck ∈ R3

with moments pk ∈ R3 located in the brain (modeling the presence of epileptic foci).
The head is modeled as a set of three spherical nested regions (brain, skull, scalp) and
in each region constant conductivities are assumed. A macroscopic model and quasi-
static approximation of Maxwell-equations are used to describe the spacial behavior
of u(z). In the brain, the electric potential u(z) assumes the form

u(z) = h(z) +
m

∑
k=1

< pk, x − Ck >

4π‖x − Ck‖3
,

where h(z) is harmonic, while the other component (anti-harmonic part ua(z)) bears
the information on the sources.

The inverse problem can be approach in two steps: get first ua(z) from the data and
then recover the localizations and the moments of the sources from ua(z). Rational
approximation is involved in this second step [6] and performs on planar sections (see
Figure 3.6).

Note that ua(z) is not rational and only has singularities. However, the restrictions
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Figure 3.6: Rational approximation on planar sections

fp(z) of ua(z)2 to planar sections Γp of the brain possesses triple poles and singularities
at the same location. These singularities are strongly and explicitly linked with the
sources, and the poles of the best L2 rational approximations to fp on Γp accumulate
to these singularities [7] (see Figure 3.7).

Figure 3.7: Localization of sources: the singularities (green) are aligned and the sources
(black) correspond to the maximum modulus. The rational approximations (red) ac-
cumulate to these singularities.

One of the advantages of this method is that it does not require the a priori knowl-
edge of the exact number of sources. If the order of the approximation is larger than
the number of sources, the extra poles accumulate to the boundary of the domain Γp.
For this application, the software RARL2 has been modified to impose triple poles for
the approximant. This was an easy trick thanks to the flexibility of the parametrization
of section 3.2.
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3.5.2 Multi-objective control.

In [57], revisited in a chain-scattering perspective in [DMO05], it is shown that if the
pair (C, A) of the Youla parameter Y(z) = D + C(zI − A)−1B is fixed, then the search
over the parameters (B, D) can be reduced to an efficiently solvable LMI problem.
Limiting the search of the parameter Y(z) to the FIR form

Y(z) = Y0 + Y1
1

z
+ . . . + Yp

1

zp

provides solutions to the multi-objective control problem. However, this is also the
main limitation of the approach as high order expansions might be necessary, due no-
tably to the fact that the poles structure is fixed through the pair (C, A). Such a draw-
back can be avoided if the search is performed over all the parameters Y(z) of fixed
McMillan degree. This can be done using the atlas of section 3.2 to parametrize the cor-
responding pairs (C, A). The modularity of RARL2 allows to use this parametrization
(library boplib) to optimize a different criterion. This algorithm for multi-objective
control has been implemented by M. Bordier and J.P. Marmorat.

3.5.3 Wavelets approximation

Figure 3.8: Daubechies wavelet db7 (blue) and its degree 8 rational approximation
(green).

This application of our rational approximation methods to orthogonal wavelets was
proposed by R. Peeters. The problem is to implement wavelets in analog circuits in
view of medical signal processing applications. A dedicated method has been devel-
oped [38] based on an L2-approximation of the wavelet by the impulse response of a
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stable, causal, low order filter. However, this method fails to find an accurate and suf-
ficiently small order approximation in some difficult cases (Daubechies wavelets db7
and db3).

The idea was to use the software RARL2 to perform a model reduction on an ac-
curate high order (100-200) approximation. However, an admissibility condition for
wavelets is that the integral of a wavelet equals zero, which means that it has a van-
ishing moment of order 0. The low order approximation is still required to have an
integral zero, otherwise undesired bias will show up when the wavelet is used in an
application. We thus had to adapt a version of the RARL2 software to address this
constraint. Since we are dealing with a quadratic optimization problem under a linear
constraint, this can be solved analytically. We could thus reformulate the problem of
L2-approximation subject to this constraint into an optimization problem over the class
of lossless systems. This could be handled by the software with only minor changes
and we were able to perform an accurate approximation of order 8 for db7 (Figure 3.8).

3.6 Perspectives.

The examples presented in section 3.5 show the wide range of applicability of the
method and suggest a number of improvements as well as new lines of research. In
the applications to multi-objective control and wavelet approximation, the criterion
has been modified to address a different linear constraint.

In the inverse problem of source recovery, the function to be approximated is not
rational but non integer rational (it involves fractional powers). A interesting topic for
future research would be the approximation by non integer rational functions. Frac-
tional (or non integer) systems and fractional orthonormal basis are active domain of
research which could be connected in some way to our works. However, I have no
knowledge in this domain, and this is presently a very prospective subject.

At contrary, enforcing passivity in rational approximation tools is already under
investigation. Passive devices play an important role in a lot of application areas:
telecommunication, chemical process control, economy, biomedical processes. Net-
work simulation software packages (as ADS or SPICE) require passive models for their
components. However, enforcing passivity while identifying a model from (band lim-
ited) frequency data is still an open and challenging problem. The current approaches
are mostly ”ad hoc” methods. The possibility to handle this problem using the approx-
imation techniques developed in the APICS team seems promising. Up to now, if the
data comes from a passive system, the passivity of the model is not guaranteed by our
approach.

The passivity constraint brings new difficulties and rises a number of interesting
theoretical and practical questions, both in the interpolation and in the approximation
step. A passive system has, in case of a scattering representation, a transfer function
which is Schur (contractive in the stability domain, see section 1.3). The research could
be carried out in many directions. The Schur approximation problem should be stud-
ied from a theoretical viewpoint: existence of an approximant, behavior of the criterion
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at the boundary of the domain, etc. in order to design a specific algorithm. It must be
noticed that approximation from band-limited data becomes a well-posed problem
with the Schur constraint.

The parametrization issue for Schur functions should also be addressed. In V. Lunot
PHD thesis [48], a parametrization of all strictly Schur rational functions of degree n is
constructed from a multipoint Schur algorithm (the recursive algorithm (1.26) in which
the interpolation points can be chosen anywhere in the open unit disk), the parameters
being both the interpolation values and interpolation points. Examples are computed
by an L2 norm optimization process and the results are validated by comparison with
the unconstrained L2 rational approximation. Choosing the interpolation points with
respect to the approximated Schur function so as to yield the best convergence pos-
sible remains a major open issue. An alternative approach relies on the observation
that a Schur function can be viewed as a sub-block of a lossless function of higher di-
mension (see Chapter 4). A parametrization of Schur functions could be deduced from
that of lossless functions. This approach must be connected to some works on degree-
constrained analytic interpolation (see e.g [44, 45]). The use of boundary interpolation
could be proved necessary in this approach to handle functions which are not strictly
Schur.
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Chapter 4

Symmetric lossless matrix-valued
extensions of rational contractions

In this chapter, the application we have in mind is the synthesis of resonant filters,
mainly microwave or SAW filters used in telecommunication devices. These filters are
usually represented by a scattering matrix which is a lossless matrix-valued function.
The lossless property is the expression of the conservation law. The reciprocity law
attached to the wave propagation phenomenon makes this matrix symmetric. We are
thus interested in an useful description of symmetric lossless matrices in view of filters
design applications.

Since the synthesis often concerns the transmission, a submatrix of the scattering ma-
trix, we aim at characterizing the sub-matrices of a scattering matrix. Any sub-matrix
of a lossless matrix is contractive in the analyticity domain, that is a Schur function
(see Section 1.3). Conversely, on which conditions a symmetric Schur matrix S(s) can
be extended into a symmetric lossless one? Without the symmetry requirement, such
an extension is known under the name of Darlington synthesis. This problem has been
widely studied in the sixties for a circuit synthesis purpose. Darlington proved the ex-
istence of such an extension.

The symmetric Darlington synthesis problem has been little studied and the existing
solutions require an important increase of the size of the extension [2]. In [BEGO07],
we proved that a Schur matrix S(s) do possess a symmetric lossless extension if and
only if its zeros have even multiplicity. If this condition is not satisfied, given a m × m
symmetric Schur matrix S(s) of McMillan degree n, two dual extension problems can
be formulated:

• either we fix the size of the extension to 2m × 2m and we look for a minimal
degree extension,

• or we fix the degree n of the extension and we look for a minimum size extension.

The solutions obtained in [BEGO07, BEGO10] for each of these problems improve sig-
nificantly the results in the literature.

In this chapter, we stick to the continuous-time case, which is relevant in filter design
applications, so that our lossless functions are analytic in the right half-plane. The
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relevant spaces of functions are the Hardy spaces of the right half-plane H2 and H∞.
A Schur matrix function belongs to the unit ball of Hm×m

∞ . We set

W∗(s) = W(−s̄)∗,

the pseudo-Hermitian conjugate of W(s).

4.1 The scalar case

The case where S(s) is a scalar function is easily handled and gives a first illustration

of these problems. If S(s) = p(s)
q(s)

is a Schur rational function, then any 2 × 2 rational

lossless extension can be written in the form [9]

Ŝ =
1

q

[
ξ 0
0 1

] [
p∗ −r∗

r p

]
(4.1)

where ξ ∈ T and r(s) is a polynomial solution to the spectral factorization problem:

rr∗ = qq∗ − pp∗. (4.2)

The Schur property ensures that (4.2) has a solution. Any solution consists in sharing
the conjugate zeros (α,−ᾱ) of qq∗− pp∗ between the two factors (the zeros of qq∗− pp∗

on the imaginary axis have even multiplicity). Then, a symmetric extension do exist
if and only if the zeros of qq∗ − pp∗ have even multiplicities. In this case, it will be
essentially unique.

The scattering matrix of a 2-port is of this form. A nice description of these matrices
is in term of the polynomial numerators p(s) and r(s). For the matrix (4.1) to be sym-
metric, the polynomial r(s) must satisfy r∗ = −ξ̄r. The scattering matrix of a two-port
satisfies in addition S(∞) = I, so that ξ = (−1)n and it can thus be parametrized in
the form

1

q

[
(−1)n p∗ r

r p

]
(4.3)

where p(s) ranges over the monic polynomials of degree n and r(s) over the n − 1
degree polynomials satisfying the condition r∗ = (−1)n−1r. This form is particularly
interesting for synthesis purposes [11, 46, 47], since the modulus of the transmission

S12(s) = r(s)
q(s)

can only be expressed in terms of p(s) and r(s)

|S12|2 =
1

1 + |p|2
|r|2

.

From this application viewpoint, completion is closely related to a parametrization
issue: given a part (a block, a column, an element, two numerators) of a lossless matrix,
is it possible to rebuilt the whole matrix? In an unique way?
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If the zeros of qq∗ − pp∗ fail to have even multiplicities, an extension either of higher
degree or of higher dimension must be searched.

We may choose for r(s) the spectral factor whose roots are in the closed left half-
plane, unique up to a unit complex number. The extension (4.1) can thus be made
symmetric multiplying it by an appropriate lossless factor (to simplify the writing we
set ξ = 1):

S̃ =


−

p∗r∗
qr

r∗
q

r∗
q

p
q


 =


−

p∗
q

r∗
q

r
q

p
q




[
r∗
r 0
0 1

]
. (4.4)

This extension has degree 2n − n0 where n0 is the number of roots of r(s) on the imag-
inary axis, counted with multiplicity.

But we can be cleverer and write qq∗ − pp∗ = r2
1r2r∗2 , where r1(s) is auto-reciprocal

r∗1 = r1, and r2(s) stable with only simple roots. Then, the following extension is sym-
metric:

Σ =



− p∗

q
r∗2
r2

r1r∗2
q

r1r∗2
q

p
q


 =


−

p∗
q

r1r∗2
q

r1r2
q

p
q




[
r∗2
r2

0

0 1

]
.

and in fact it has minimal possible degree.

4.2 From Darlington synthesis to symmetric extensions

Since the notion of a zero is more complicated in the matrix case, the solution of the
extension problem will be more involved. The basic extension problem is, given a m ×
m Schur matrix S(s) of McMillan degree n, to find a 2m × 2m lossless extensions of the
same degree

Ŝ =

[
S11 S12

S21 S

]
.

The Darlington synthesis can still be obtained in two steps: first compute S21(s) such
that S21S∗

21 = I − SS∗ is a spectral factorization, which makes
[
S21 S

]
isometric, and

next, compute a lossless extension of it.

Concerning the spectral factorization in the matrix case, we have the following result
[67]:

Theorem 4.2.1 (Youla) Let Φ(s) be a rational m × m paraconjugate Hermitian matrix, i.e.

Φ∗(s) = Φ(s),

of normal rank k which is non-negative on the imaginary axis. Then, there exists a m × k
matrix W̃(s) such that
(1) Φ(s) = W̃(s)W̃∗(s)

(2) W̃(s) and its left inverse W̃(s)−1 are both analytic in Re s > 0.

(3) W̃(s) is unique up to a constant, unitary k × k matrix multiplier on the right.
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(4) Any factorization of the form Φ(s) = W(s)W∗(s) in which W(s) is m × k, rational and
analytic in Re s > 0, is given by W(s) = W̃(s)Q(s) where Q(s) is inner.

W̃(s) is called the minimum phase spectral factor and W(s) a spectral factor.

Since S(s) is contractive, the matrix Φ(s) = I − S(s)S∗(s) has all the required prop-
erties. We assume that the normal rank of Φ(s) is m, which amounts to say that the
S(s) is strictly contractive at some point of the imaginary axis. The spectral factors are
square m × m matrices whose determinants does not vanish identically. They are thus
invertible as rational matrices. We will be mainly interested with those spectral factors
for which the extension

[
S21 S

]
has same degree n than S(s) and which are called

minimal spectral factors.

In [42], a state-space construction of all the lossless extensions preserving the McMil-
lan degree is presented. It involves the solutions to a Riccati equation which is closely
connected to the spectral factorization through the Bounded Real Lemma. This lemma
[2] asserts that a function given by a minimal realization, S(s) = D + C(sI − A)−1B,
is a Schur function strictly contractive at ∞ if and only if there exist P, B̂, and D21 such
that

AP + PA∗ + BB∗ + B̂B̂∗ = 0

PC∗ + BD∗ + B̂D∗
21 = 0

DD∗ + D21D∗
21 = I

and P is positive definite. Then

S21(s) = D21 + C(sI − A)−1B̂

is a left spectral factor of I − SS∗.

Let D21 = (I − DD∗)1/2, then B̂ = −(PC∗ + BD∗)D−1
21 and P is solution to the Riccati

equation
R(P) = PγP + αP + Pα∗ + β = 0 (4.5)

where 



α = A + BD∗(I − DD∗)−1C,
β = B(I − D∗D)−1B∗,
γ = C∗(I − DD∗)−1C.

Theorem 4.2.2 [42] The following statements are equivalent

(i) S(s) is a Schur function which is strictly contractive at infinity.

(ii) the Riccati equation (4.5) has an Hermitian solution

(iii) All pure imaginary eigenvalues of A have even multiplicity

In this case, there is a one to one correspondence between the Hermitian solutions of (4.5) and
the lossless extensions of S(s) of degree n, whose value at infinity is prescribed by

D21 = (I − DD∗)1/2, D12 = (I − D∗D)1/2, D11 = −D∗



4.2 From Darlington synthesis to symmetric extensions 67

The extension is given by

ŜP(s) =

[
D11 D12

D21 D

]
+

[
Ĉ
C

]
(sI − A)−1

[
B̂ B

]
.

Associated with the Riccati equation (4.5), the matrix

A =

[
−α∗ −γ

β α

]

is in fact a (possibly non-minimal) dynamic matrix of (I − SS∗)−1. It is Hamiltonian
and its eigenvalues are thus symmetric with respect to the imaginary axis, counting
multiplicities. It satisfies the important similarity relation

[
I 0

−P I

]
A

[
I 0
P I

]
=

[
−(α + Pγ)∗ −γ

0 α + Pγ

]
.

The spectrum of A splits as σ(A) = σ(α + Pγ)∪ σ(−(α + Pγ)∗). It can be verified that

S−1
21 has dynamic matrix α + Pγ while S−1

12 has dynamic matrix −P(α + Pγ)∗P−1. The
block diagonal form shows us that the matrix P induces a distribution of the zeros of
I − SS∗ (eigenvalues of A) between S12 and S21, in such a way that S12 and S21 have
conjugate zeros with respect to the imaginary axis. This also follows from the next
equality which generalizes in some sense (4.1) to the matrix case [BEGO10]

det Ŝ = −det S12 det(S∗
21)

−1. (4.6)

However, the state-space construction of Theorem 4.2.2 requires the condition S(∞)
strictly contractive and symmetric realizations to address the symmetric extension
problem. However, the scattering matrix of a m-port usually satisfies S(∞) = I, while
a real minimal realization of a symmetric function may fail to be symmetric, which
complicates the study of the extension problem for matrices with real coefficients.

We give a more general frequency domain formulation which can be transposed
to the discrete-time setting (functions analytic in the unit disk). Since S(s) is strictly
contractive at some point of the imaginary axis, for almost every ν ∈ T, the matrix
νI − S(s) is invertible in the closed right half-plane, so that (νI − S(s))−1 is stable.
Then, every inner extension of

[
S21 S

]
is obtained as follows.

Theorem 4.2.3 [BEGO10] Let S(s) be a m × m Schur function such that νI − S(s) is in-
vertible in Hm×m

∞ . Let S21(s) be a spectral factor of I − SS∗. Every lossless extension Σ(s) of
[S21 S] can be written as:

Ŝ =

[
M − MS∗

21(I − νS∗)−1S21 MS∗
21(I − νS∗)−1(νI − S)

S21 S

]
(4.7)

where M(s) is a right Douglas-Shapiro-Shields inner factor of β = (νI − S)−1S21, i.e.

β = α∗M, (4.8)

with α(s) (as β(s)) in Hm×m
2 , i.e. stable (see Theorem 1.1.5). The extension Σ(s) has same

degree as [S21 S] if and only if M(s) has minimal degree, i.e. M(s) and α(s) are left coprime.
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Formula (4.7) offers a frequency domain expression that seems to be lacking. It is
closely related to the mixed matrix representation of a m-port. In such a representation,
the input/output couples are of two types, voltages and currents on one hand, incom-
ing and outgoing waves on the other hand. It naturally arises in the description of a
surface acoustic wave filter in which two distinct types of energy are involved. How-
ever, using a well-known transformation, any scattering matrix can be put into this
form. It also calls to mind the lossless embedding formula (see Proposition 1.3.2).

We also have the following description of all the lossless extensions of a Schur func-
tion in terms of minimal degree extensions:

Proposition 4.2.1 [BEGO07, Prop.2] All rational lossless extensions of a Schur function S,
contractive at ∞, can be written on the form

[
L 0
0 I

]
Ŝ

[
R 0
0 I

]
(4.9)

where L, R are lossless, and Ŝ(s) is a lossless extension of S(s) at the same McMillan degree.

4.3 Minimal degree vs minimal size symmetric extensions

An analog of the extension (4.4) in the scalar case can be obtained in the matrix case as
follows:

Proposition 4.3.1 [BEGO07, Prop.4] Let

S̃ =

[
S̃11 S̃12

S̃21 S

]
(4.10)

be a minimal degree extension (Theorem 4.2.3) associated with the minimum phase spectral
factor S̃21(s) of I − SS∗. Let n0 denote the number of zeros on the imaginary axis of S̃21(s).
The extension

Σ̃ =

[
S̃11 S̃12

S̃21 S

] [
Q̃ 0
0 I

]
, Q̃ = S̃−1

21 S̃T
12, (4.11)

is symmetric, lossless and has degree 2n − n0.

It is easily seen that Q̃(s) is unitary and analytic in the right half-plane, since S̃21(s)
is minimum phase. The assertion on the degree follows from (4.6). This extension is
the starting point for the construction of minimal degree and minimal size extensions.
It possesses a very particular property among all the lossless extensions of S(s) that
will help us to understand the algorithm of the next section.

Let Ŝ(s) be any minimal degree extension of S(s), then

Ŝ =

[
S11 S12

S21 S

]
=

[
L∗ 0
0 I

] [
S̃11 S̃12

S̃21 S

] [
R 0
0 I

]
(4.12)



4.3 Minimal degree vs minimal size symmetric extensions 69

in which R(s) and L(s) are lossless. Indeed, R = S̃−1
21 S21 is analytic in the right half-

plane as S̃−1
21 , while L∗ = S12S̃−1

12 is analytic in the left half-plane as S̃−1
12 . Moreover,

since Ŝ(s) and S̃(s) have the same determinant, we must have

det L(s) = det R(s).

Let Σ(s) be the symmetric unitary extension associated with Ŝ(s) by

Σ =

[
S11 S12

S21 S

] [
Q 0
0 I

]
, Q = S−1

21 ST
12. (4.13)

It is easily verified that we have R∗Q̃(L∗)T = Q, and thus

det Q = det Q̃(det R∗)2.

Since only zeros of det Q̃(s) with even multiplicity can be canceled, if κ denote the
number of distinct zeros of det Q̃(s) with odd multiplicity, then det Q(s) has McMillan
degree greater than or equal to κ. Using Proposition 4.2.1, the following result is easily
deduced.

Lemma 4.3.1 Let S̃(s) be the lossless extension (4.11). Let κ denote the number of distinct
zeros of det Q̃(s) with odd multiplicity. Then, any symmetric lossless extension of S(s) has
degree greater than or equal to n + κ.

Note that the extension (4.13) is not always lossless. In [BEGO07, Prop. 3] , it is
proved that the matrix Q(s) is lossless if and only if P−T − P is positive definite, P
being the solution to the Riccati equation (4.5) associated with Ŝ(s). As a consequence,
we recover the fact that Q̃(s) is lossless, since the solution P̃ of the Riccati equation
(4.5) associated with S̃(s) is minimal, P − P̃ > 0, for any other solution.

As in the scalar case, the extension (4.13), Σ̃(s), is the worse that one can do, con-
cerning the degree of the extension. In order to reduce the degree while keeping the
extension symmetric, it is possible to factor out symmetrically Potapov factors (1.12)
associated with double zeros. In the right half-plane setting that we consider in this
chapter, the Potapov factors are of the form

Bw,u(s) = I + (bw(s) − 1) uu∗, bw(s) =
s − w

s + w
. (4.14)

Lemma 4.3.2 (Symmetric Potapov factorization) Let T(s) be a m × m symmetric inner
function of McMillan degree N. The following assertions are equivalent:

1. T(s) has a zero ω of multiplicity strictly greater than 1

2. there exists a unit vector which satisfies the conditions

T(ω)u = 0

uTT′(ω)u = 0
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3. the matrix T(s) can be factored as

T(s) = Bω,u(s)T R(s) Bω,u(s)

for some rational inner matrix R(s) of degree N − 2

The assertion 1. ⇒ 2. makes use of the Takagi factorization [33, Cor. 4.4.4] which is
a special singular value decomposition for symmetric matrices: a symmetric matrix Λ

can be written in the form
Λ = UT∆U, (4.15)

in which ∆ is a positive diagonal matrix and U is unitary. Two different situations may
occur which are illustrated on the following simple examples:

• some partial multiplicity (see section 1.1.1) is even:
[

bω(s)2 0
0 1

]
=

[
bω(s) 0

0 1

] [
1 0
0 1

] [
bω(s) 0

0 1

]

• all the partial multiplicities are 1:
[

0 bω(s)
bω(s) 0

]
=

[
bω(s) 0

0 1

] [
0 1
1 0

] [
bω(s) 0

0 1

]
(4.16)

[
bω(s) 0

0 bω(s)

]
= Bw,u(s)TBw,u(s), u =

[
1
2

− i
2

]
(4.17)

[
bω(s) 0

0 −bω(s)

]
= Bw,u(s)T

[
1 0
0 −1

]
Bw,u(s), u =

[
1
2
1
2

]
(4.18)

If some partial multiplicity is greater than 1, say σi(ω), and V(s) is the left unimodu-
lar matrix in the Smith-McMillan factorization of T(s), then we may choose for u the
ith column vector of V(ω). Otherwise, the Takagi factorization of T′(ω) provides the
vector u.

The assertion 2. ⇒ 3. can be viewed as a particular case of the Schur algorithm for
symmetric lossless (or inner) functions described in [OHP05].

Theorem 4.3.1 (Minimal degree symmetric extension) Let S(s) be a symmetric Schur

function, strictly contractive at infinity and let Σ̃(s) be its minimal extension (4.11) with
S̃21(s) minimum phase ; define Q := S̃−1

21 S̃T
12, and let κ be the number of distinct zeros of

det Q(s) with odd algebraic multiplicity. Then S(s) has a symmetric inner completion of de-
gree n + κ. This extension of S(s) has minimal degree among all the symmetric extensions of
S(s).

This result is proved by a recursive application of the symmetric Potapov factoriza-
tion (Lemma 4.3.2). Since Q(s) has n − n0 = κ + 2l zeros, we can perform l iterations.
The zeros of Q(s) lying within the m first columns of Σ̃(s), the Potapov factors are all
of the form Bw,u(s) ⊕ I. We finally get

Σ̃ =

[
BT 0
0 I

]
Σ̌

[
B 0
0 I

]
,
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where B(s), the product of the Potapov factors, has degree l and Σ̌(s) is a symmetric
lossless extension of S(s) of degree n + κ.

In [2] it was shown that it is possible to construct a symmetric extension of exact de-
gree n by increasing the size of the extension to 2m + n. This result can be significantly
improve. Indeed, we may extend the inner matrix (4.11) into a (2m + 1) × (2m + 1)
matrix of degree n + 2(n − n0)

Σ̂ :=




S̃11Q 0 S̃12

0 det Q 0
S̃T

12 0 S


 .

The matrix Q ⊕ det Q has exactly n − n0 double zeros. But then, in view of Lemma
4.3.2, we can obtain a reduction of degree by 2(n − n0).

Theorem 4.3.2 (Minimal dimension symmetric extension) Let S(s) be a strictly con-
tractive symmetric m × m Schur function of McMillan degree n. Then S(s) has a symmetric
inner extension of dimension (2m + 1) × (2m + 1) and McMillan degree n.

4.4 Perspectives

It should be stressed that the above results rely on the fact that we work over the
complex field. The situation for real coefficients functions is more complicated. Ex-
ample (4.17 with w real) shows that the symmetric Potapov factorization may require
complex Potapov factors even if the starting function is real. In the real case, an extra
increase of the extension degree (or size) is necessary which depends on some indices
attached to the real zeros of S(s) [BEGO10].

From the applications viewpoint, the derivation of efficient algorithms for the syn-
thesis of microwave multiplexers calls for a nice polynomial description of a m ×
m scattering matrix which generalizes (4.3). Theorem 4.3.2 provides an interesting
method to built a 3 × 3 lossless matrix from a Schur scalar function p/q, where p(s)
and q(s) are polynomials. It can be proved that any 3 × 3 lossless extension can be
obtained in this way. This approach provides a polynomial description in which some
divisibility properties are involved. This result answers a long standing question in the
filter community: under some assumptions, the scattering 3 × 3 matrix is completely
determined from one of its diagonal entries (a reflection). However, since the symmet-
ric Potapov factorization can be performed in many ways, several extensions can be
built from the same pair (p, q). Their numbers and their inter-connections depends on
the number of double zeros of the stable polynomial r(s) in the spectral factorization
(4.2). These issues are currently under investigation.

From a practical synthesis point of view the extension process that starts with the nu-
merator polynomials p1 and p2 of the non-diagonal entries (transmissions) of a row,
is more relevant. However, this approach remains technically problematic: some is-
sues concerning the stability of the derived polynomial q(s) are still unsolved for the
moment. Such a description is available for some particular form of the polynomial
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model in connection with some special circuit topologies currently used for the imple-
mentation of the diplexers. This form corresponds to a scattering matrix S(s) for which
the matrix M(s) in (4.7) is diagonal. The polynomial model is then closely related to
the internal structure of the filter and provides an efficient description in view of fre-
quency design and identification purposes. Promising algorithms are being developed
and implemented along this line.
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