

UNIVERSITÉ DE CAEN/BASSE-NORMANDIE

U.F.R. SCIENCES

ÉCOLE DOCTORALE S.I.M.E.M.

THÈSE

présentée par

Mr Julien LESAGE

et soutenue publiquement le 4 décembre 2006

en vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE CAEN

Spécialité Chimie des Matériaux

(Arrêté du 7 août 2006)

NOUVEAUX PHOSPHATES D'ÉLÉMENT TRIVALENT

SYNTHÈSES, DÉTERMINATIONS STRUCTURALES ET CARACTÉRISATIONS PHYSICO-CHIMIQUES

ANNEXES

Membres du Jury :

Mr Daniel AVIGNANT, Professeur à l'Université Blaise Pascal, Clermont-Ferrand (Rapporteur) Mr Christian MASQUELIER, Professeur à l'Université de Picardie Jules Vernes, Amiens (Rapporteur) Mr Gérard FÉREY, Membre de l'Académie des Sciences, Professeur à l'Université de Versailles Saint-Quentin-en-Yvelines, Versailles (Examinateur) Mr Bernard RAVEAU, Membre de l'Académie des Sciences, Professeur à l'UCBN, Caen (*Examinateur*) Mme Maryvonne HERVIEU, Professeur à l'ENSICAEN, Caen (Examinateur) Melle Anne GUESDON, Maître de Conférences HDR à l'UCBN, Caen (Directrice de thèse)

Table des Matières

<u>A –</u>	<u>List</u>	e des précurseurs utilisés	
<u>B –</u>	<u>Val</u>	eurs utilisées pour les calculs de valence électrostatique	
C –	Dor	nnées supplémentaires	
$\frac{1}{C-1}$	C	$sGa_2(OH)(OH_2)(PO_4)_2 H_2O$	
C – 1	1 (i)	Conditions d'obtention du cristal étudié par DRX	198
C – 1	1. (ii)	Caractéristiques du cristal étudié	
C – 1	1. (iii)	Conditions d'enregistrement du monocristal	
C – 1	1. (iv)	Résolution et affinement structural	
C – 1	1. (v)	Paramètres atomiques	
C – 1	1. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 1	l. (vii)	Distances et angles (Å, °)	
C – 1	l. (viii)	Calculs de valence électrostatique	
C – 1	l. (ix)	Simulation du diffractogramme RX sur poudre	
C – 2.	С	s _{0.222} (H ₃ O) _{0.888} Ga ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O	203
C – 2	2. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 2	2. (ii)	Caractéristiques du cristal étudié	
C – 2	2. (iii)	Conditions d'enregistrement du monocristal	
C – 2	2. (iv)	Résolution et affinement structural	
C – 2	2. (v)	Paramètres atomiques	
C – 2	2. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 2	2. (vii)	Distances et angles (Å, °)	
C – 2	2. (viii)	Calculs de valence électrostatique	
C – 2	2. (ix)	Simulation du diffractogramme RX sur poudre	
C – 3.	R	bAl ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O	209
C – 3	3. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 3	3. (ii)	Caractéristiques du cristal étudié	
C – 3	3. (iii)	Conditions d'enregistrement du monocristal	
C – 3	3. (iv)	Résolution et affinement structural	
C – 3	3. (v)	Paramètres atomiques	
C – 3	3. (vi)	Paramètres de déplacements atomiques anisotropes	
C-3	3. (V11)	Distances et angles (A, °)	
C-3	3. (V111)	Calculs de valence electrostatique	
	3. (1X)	Simulation du diffractogramme KX sur poudre	
C – 4.	C	$sGa_2(OH)_2[(PO_4)H(PO_4)]$	
C – 4	4. (i)	Conditions d'obtention du cristal étudié par DRX	
C = 4	4. (11)	Conditions d'obtention de l'échantillon quasi-monophasé	
C - 4	4. (111)	Caracteristiques du cristal etudie	
C = 4	+. (1V) 4 ()	Conditions d'enregistrement du monocristal	
C = 4	±. (V) 1. (vi)	Resolution et annienent structural.	
C = 4	+. (v1) 4 (vii)	Paramètres de déplacements atomiques anisotropes	
C = 4	$\frac{1}{1}$ (vii)	Distances et angles (Å °)	
C - 4	4 (ix)	Calculs de valence électrostatique	
C – 4	$4_{1}(x)$	Simulation du diffractogramme RX sur poudre	219
C = 5		JH.)In(OH)PO.	220
C = 5	5 (i)	Conditions d'abtention du cristal étudié par DRY	
C - 5	5 (ii)	Caractéristiques du cristal étudié	
C – 5	5. (iii)	Conditions d'enregistrement du monocristal	
C – 5	5. (iv)	Résolution et affinement structural	
C – 5	5. (v)	Paramètres atomiques	
C – 5	5. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 5	5. (vii)	Distances et angles (Å, °)	
C – 5	5. (viii)	Calculs de valence électrostatique	
C – 5	5. (ix)	Simulation du diffractogramme RX sur poudre	

C – 6. Csl	n(PO ₃ (OH)) ₂	225
C – 6. (i)	Conditions d'obtention du cristal étudié par DRX	225
C – 6. (ii)	Caractéristiques du cristal étudié	225
C – 6. (iii)	Conditions d'enregistrement du monocristal	226
C – 6. (iv)	Résolution et affinement structural	226
C – 6. (v)	Paramètres atomiques	227
C – 6. (vi)	Paramètres de déplacements atomiques anisotropes	228
C – 6. (vii)	Distances et angles (Å, °)	228
C – 6. (viii)	Calculs de valence électrostatique	230
C – 6. (ix)	Simulation du diffractogramme RX sur poudre	
C – 7. Rb	$Ga(PO_3(OH))_2$	232
C – 7. (i)	Conditions d'obtention du cristal étudié par DRX	232
C – 7. (ii)	Caractéristiques du cristal étudié	
C – 7. (iii)	Conditions d'enregistrement du monocristal	233
C – 7. (iv)	Résolution et affinement structural	
C – 7. (v)	Paramètres atomiques	
C – 7. (vi)	Paramètres de déplacements atomiques anisotropes	
C - 7. (vii)	Distances et angles (A, °)	
C = 7. (viii)	Calculs de valence électrostatique	
C = 7. (1x)	Simulation du diffractogramme RX sur poudre	
C – 8. Rb.	$AI(PO_3(OH))_2$	239
C – 8. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 8. (ii)	Caractéristiques du cristal étudié	
C – 8. (iii)	Conditions d'enregistrement du monocristal	
C – 8. (iv)	Résolution et affinement structural	
C - 8. (v)	Paramètres atomiques	
C - 8. (vi)	Paramètres de déplacements atomiques anisotropes	
C = 8. (vii)	Distances et angles (A, °)	
C = 8. (viii)	Calculs de valence électrostatique	
C = 8. (1X)	Simulation du diffractogramme RX sur poudre	
C-9. (NI	$H_{4}_{2,46}Cs_{0,54}Ga_{2}(PO_{4})_{3}$	245
C – 9. (i)	Conditions d'obtention du cristal étudié par DRX	
C - 9. (ii)	Conditions d'obtention de l'échantillon quasi-monophasé	
C - 9. (iii)	Caractéristiques du cristal étudié	
C = 9. (iv)	Conditions d'enregistrement du monocristal	
C = 9. (v)	Resolution et affinement structural	
$C = 9. (v_1)$	Parametres atomiques	
C = 9. (VII)	Parametres de deplacements atomiques anisotropes	240 240
C = 9. (VIII)	Calcula de valence électroctatique	
C = 9. (IX) C = 9. (x)	Simulation du diffractogramme BX sur poudre	230
C = 10 (NI	J Dh C_{2} (DO)	יבב 150
C = 10. (101	$\frac{14}{2,77} K U_{0,23} G d_2 (\Gamma O_4) 3 \dots G h h h h h h h h h h h h h h h h h h$	ZJZ
C = 10. (1)	Conditions d'obtention de l'échantilles quesi mononhesé	
C = 10. (II)	Conditions d'obtention de l'échantmon quasi-monophase	
C = 10. (III)	Caracteristiques du cristal etudie	
C = 10. (IV)	Résolution et affinement structural	234
C = 10. (v)	Paramètres atomiques	255
C = 10. (vi) C = 10. (vii)	Paramètres de déplacements atomiques anisotropes	255
C = 10. (vii) C = 10. (viii)	Distances et angles (\mathring{A}°)	255
C = 10. (ix)	Calculs de valence électrostatique	257
C = 10. (m) C = 10. (x)	Simulation du diffractogramme RX sur poudre	
C = 11 (NI	H_4) $G_{23}(PO_4)_2$	250
C = 11 (i)	Condition d'abtention du cristal étudié par DRY	····· ∠JJ 250
C = 11. (1) C = 11. (ii)	Conditions d'obtention d'un échantillon quesi monophesé de (NH.)Co.(PO.).	
C = 11 (iii)	Conditions d'obtention d'un échantillon quasi monophasé de $(NH_4)/(Co(H_2\Omega)_2)/(Co(H_2\Omega)_2)$	
C = 11 (iv)	Conditions d'obtention d'un échantillon quasi monophase de $(NH_4)[Ob(H_2O)_2]Ga2(PO_4)3$	261
C = 11. (v)	Caractéristiques du cristal étudié.	
C - 11. (vi)	Conditions d'enregistrement du monocristal	
C – 11. (vii)	Résolution et affinement structural	
× /		-

		264
C – 11. (viii)	Paramétres atomiques	
C - 11. (ix)	Paramètres de déplacements atomiques anisotropes	
C – 11. (x)	Distances et angles (A, °)	
C – 11. (xi)	Calculs de valence électrostatique	
C – 11. (xii)	Simulation du diffractogramme RX sur poudre	
C – 12. Cs ₂	$Ga_6(OH)_2(PO_4)_6 \cdot 1,55H_2O$	
C – 12. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 12. (ii)	Conditions d'obtention de l'échantillon quasi-monophasé	
C – 12. (iii)	Caractéristiques du cristal étudié	
C = 12 (iv)	Conditions d'enregistrement du monocristal	270
C = 12 (v)	Résolution et affinement structural	270
C = 12. (v)	Paramètres atomiques	270
C = 12. (vi)	Paramètros de déplacements atomiques anisetrones	
C = 12. (VII)	Γ anisotropes	
C = 12. (VIII)	Coloule de veloces électrostatique	
C = 12. (1x)		
C = 12. (x)	Simulation du diffractogramme KX sur poudre	
$C - 13.$ Cs_2	$Ga_6(OH)_2(PO_4)_6$	
C – 13. (i)	Affinements structuraux par DRX sur poudre	
C – 13. (ii)	Caractéristiques du cristal étudié	
C – 13. (iii)	Conditions d'enregistrement du monocristal	
C – 13. (iv)	Résolution et affinement structural	
C – 13. (v)	Paramètres atomiques	
C – 13. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 13. (vii)	Distances et angles (Å, °)	
C – 13. (viii)	Calculs de valence électrostatique	
C - 13 (ix)	Simulation du diffractogramme RX sur poudre	284
C = 14 Bal	In.(P.O.).	285
C = 14. Dal	$C \mathbf{y}_{1} = \mathbf{y}_{1} y$	
C = 14.(1)	Conditions d'obtention du cristal étudie par DRX	
C = 14.(11)	Caracteristiques du cristal etudie	
C - 14. (iii)	Conditions d'enregistrement du monocristal	
C – 14. (iv)	Résolution et affinement structural	
C – 14. (v)	Paramètres atomiques	
C – 14. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 14. (vii)	Distances et angles (Å, °)	
C – 14. (viii)	Simulation du diffractogramme RX sur poudre	
C – 15. Rb	Ga ₃ (P ₃ O ₁₀) ₂	
C – 15. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 15. (ii)	Caractéristiques du cristal étudié	
C – 15. (iii)	Conditions d'enregistrement du monocristal	
C = 15. (iv)	Résolution et affinement structural	291
C = 15. (r)	Paramètres atomiques	
C = 15. (v)	Paramètres de déplacements atomiques anisotropes	
C = 15. (vi)	Distances at angles (\mathring{A}°)	
C = 15. (vii)	Simulation du diffractogramme RY sur poudre	
C = 15. (VIII)		
C-10. KD	$A_{13}(\Gamma_{3}\cup_{10})_{2}$	
C – 16. (i)	Conditions d'obtention du cristal étudié par DRX	
C – 16. (ii)	Caractéristiques du cristal étudié	
C – 16. (iii)	Conditions d'enregistrement du monocristal	
C – 16. (iv)	Résolution et affinement structural	
C – 16. (v)	Paramètres atomiques	
C – 16. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 16. (vii)	Distances et angles (Å, °)	
C – 16. (viii)	Études par DRX sur poudre	
C – 16. (ix)	Simulation du diffractogramme RX sur poudre	
C – 17. Cs.	$Al_3(P_3O_{10})_2$	
C - 17 (i)	Conditions d'obtention du cristal étudié nar DRX	302
C = 17. (ii)	Caractéristiques du cristal étudié	
C = 17.(11)	Conditions d'enregistrement du monocristal	202 202
C = 17. (iii)	Résolution et affinement structural	202
C = 17. (1V)	Deremètres atomiques	כטט גמני
C = 17.(V)	ו מומוווכווכא מנטוווועעכא	

C – 17. (vi)	Paramètres de déplacements atomiques anisotropes	
C – 17. (vii)	Distances et angles	305
C – 17. (viii)	Études par DRX sur poudre	
C – 17. (ix)	Simulation du diffractogramme RX sur poudre	307
C – 18. Rb	Ga ₂ P ₅ O ₁₆	308
C – 18. (i)	Conditions d'obtention du cristal étudié par DRX,	308
C – 18. (ii)	Conditions d'obtention de l'échantillon quasi-monophasé	308
C – 18. (iii)	Caractéristiques du cristal étudié	
C – 18. (iv)	Conditions d'enregistrement du monocristal	
C – 18. (v)	Résolution et affinement structural	
C – 18. (vi)	Paramètres atomiques	
C – 18. (vii)	Paramètres de déplacements atomiques anisotropes	
C – 18. (viii)	Distances et angles (Å, °)	
C – 18. (ix)	Études par DRX sur poudre	
C – 18. (x)	Simulation du diffractogramme RX sur poudre	
C – 19. Cs	Ga ₂ P ₅ O ₁₆	
C – 19. (i)	Conditions d'obtention du cristal étudié par DRX,	
C – 19. (ii)	Conditions d'obtention de l'échantillon quasi-monophasé	
C – 19. (iii)	Caractéristiques du cristal étudié	
C – 19. (iv)	Conditions d'enregistrement du monocristal	
C – 19. (v)	Résolution et affinement structural	
C – 19. (vi)	Paramètres atomiques	
C – 19. (vii)	Paramètres de déplacements atomiques anisotropes	
C – 19. (viii)	Distances et angles (Å, °)	
C – 19. (ix)	Études par DRX sur poudre	320
C – 19. (x)	Simulation du diffractogramme RX sur poudre	321

A – Liste des précurseurs utilisés

Précurseur	Fabricant		Solubilité g·L ⁻¹	Densité
RbNO ₃	Chempur	99,8%	4,43 ¹⁶	3,11
RbOH (50% w/w)	Alfa Aesar	99,6%	1,80 ¹⁵	3,203 1,74 (50%)
Rb ₂ CO ₃	Cerac	99,9%	4,50 ²⁰	/
RbCl	Alfa Aesar	99%	7,70 ⁰	2,80
CsNO3	Chempur	99,9%	0,916 ⁰	3,685
CsOH (50% w/w)	Alfa Aesar Stem Chemicals	99,6%	39,55 ¹⁵	3,675 1 ,72 (50%)
CsCl	Alfa Aesar	99%	10,22 ⁰	3,998
Cs ₂ CO ₃	Alfa Aesar	99,9%	26,05 ¹⁵	/
Sr(OH) ₂ ·8H ₂ O	Prolabo	99%	0,09 ⁰	1,90
Sr(NO ₃) ₂	Prolabo	99%	17,09 ¹⁸	2,99
SrCl ₂ ·6H ₂ O	Merck	99%	10,62 ⁰	1,93
SrCO ₃	Alfa Aesar	99%	0 ¹⁰⁰	3,70
Ba(OH) ₂ ·8H ₂ O	Prolabo	99%	0,56 ¹⁵	2,18
Ba(NO ₃) ₂	Prolabo	99,5%	0,87 ²⁰	3,24
Ga ₂ O ₃	Chempur Alfa Aesar	99,99%	i	5,88
In ₂ O ₃ Chempur		99,99%	i	7,18
Al ₂ O ₃	Al ₂ O ₃ /		i	3,97
H ₃ PO ₄ (75% ou 85% w/w) Prolabo RectaPur		75%	S	1,579 (75%) 1,689 (85%)
(NH ₄) ₂ HPO ₄	Prolabo RectaPur	99%	5,75 ¹⁰	1,619

<u>Légende :</u> i : insoluble ; s : soluble ; les chiffes en exposant dans la colonne solubilité indique la température à laquelle a été effectuée la mesure ; pour les liquides, les chiffres en gras dans la dernière colonne indiquent la densité de la solution pour le pourcentage en poids considéré

Source : D. R. Lide, Handbook of Chemistry and Physics, 72nd Edition (1991-1992), Ed. CRC Press, Inc, Boston

B – Valeurs utilisées pour les calculs de valence électrostatique

Élément	r _{ij}	В
Cs^+	2,42	0,37
Ba ²⁺	2,285	0,37
Rb^{+}	2,26	0,37
$\mathrm{NH_4}^+$	2,226	0,37
In ³⁺	1,902	0,37
Ga ³⁺	1,73	0,37
Al ³⁺	1,62	0,37
P ⁵⁺	1,604	0,37

Source : I. D. Brown, http://www.ccp14.ac.uk/ccp/web-mirrors/i_d_brown (2006)

<u>Légende</u>: Le schéma de gauche montre la corrélation entre la longueur d'une liaison H…X et sa valence (par exemple une liaison H…N de 2,5 Å a une valence de 0,08). Le schéma de droite montre la valence d'une liaison H…O en fonction de la distance O…O, en supposant que l'angle O-H…O est normal. <u>Source :</u> I.D. Brown, D. Altermatt, Acta Cryst., B41 (1985) 244-247

C – Données supplémentaires

Les tableaux suivants détaillent, pour les phases décrites dans le cadre de cette thèse, les informations sur leurs synthèses, leurs études structurales par DRX sur monocristaux, et sur poudre le cas échéant, ainsi que leurs paramètres atomiques et de déplacements atomiques (ADP), avec les erreurs calculées. Les tableaux des distances et des angles associés se lisent de la manière suivante : les distances *M*-O ou P-O sont indiquées sur la diagonale du tableau et les angles O(i)-M-O(j) ou O(i)-P-O(j) sont indiquées au dessous d'elle. Les distances correspondant aux liaisons O(i)--O(j) sont indiquées au dessus de cette diagonale.

Les tableaux des calculs de valence électrostatique sont présentés en tenant compte des taux d'occupation des différentes entités de la structure, le cas échéant.

Les simulations des diffractogrammes RX sur poudre ont été réalisées à partir du modèle structural établi lors de l'étude par DRX sur monocristal à l'aide du logiciel FullProf, et mis à l'échelle des clichés Guinier.

Pour plus de détails sur les différentes procédures, se reporter au protocole expérimental décrit dans la *Partie I*.

$C-1.CsGa_2(OH)(OH_2)(PO_4)_2 \cdot H_2O$

C – 1. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal CsGa ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O		
Mode de synthèse	Hydrothermale		
Volume de l'enceinte	21 ml		
Précurseur métal alcalin A	CsOH (50%)		
Précurseur métal trivalent M	Ga ₂ O ₃		
Précurseur phosphate P	H ₃ PO ₄ (75%)		
Masse totale des précurseurs	0,8 g		
Composition $A: M: P$	1:2:2		
Ajout eau distillée	1 ml		
Cycle thermique	200°C 3 h 25 h 18 h		
pH initial	2		
pH final	/		
Observation			
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D		
Poudre	Blanche		

C – 1. (ii) Caractéristiques du cristal étudié

Formule	CsGa ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O		
Analyse EDS (MEB)	18 : 42 : 40 pour Cs : Ga : P		
Masse molaire (g·mol ⁻¹)	515,3		
Densité calculée ρ (g·cm ⁻³)	3,756		
Coefficient d'absorption μ (mm ⁻¹)	10,30		
Dimension (mm ³)	$0,05\times0,05\times0,025$		
Paramètres de maille			
Volume	910,96(14) Å ³		
Ζ	4		
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h+k = 2n+1 0k0 : k = 2n+1		
Groupe d'espace	P2 ₁ /n (n°14)		

Diffractomètre	Kappa CCD de BRUKER-NONIUS		
Température	Ambiante (293 K)		
λ(ΜοΚα)	0,71069 Å		
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations		
Domaine angulaire θ	$5,97^{\circ} \le \theta \le 35^{\circ}$		
Indices limitants	$-10 \le h \le 15$ $-15 \le k \le 15$ $-15 \le l \le 12$		
Nombre de réflexions mesurées	11342		
Nombre de réflexions avec I > 3σ	3995		
Nombre de réflexions indépendantes (Ι>3σ)	1916		
R_{sym}, R_{mes}, χ^2	0,094 ; 0,114 ; 1,616		
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Aucune		
Correction de l'extinction secondaire	Aucune		
Coefficient d'extinction g	/		

C – 1. (iii) Conditions d'enregistrement du monocristal

C – 1. (iv) Résolution et affinement structural

Logiciel	JANA2000		
Méthode de résolution	Patterson et Fourier Différence		
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)		
Localisation des atomes d'hydrogène	/		
Nombre de paramètres affinés	145		
Facteurs d'accord	$\begin{split} R &= 0,0343 \text{ et } Rw = 0,0298 \\ R_{\text{all}} &= 0,1121 \text{ et } Rw_{\text{all}} = 0,0355 \end{split}$		
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$		
Gof ; Gof _{all}	1,12;0,91		
$\Delta \sigma$ max ; moyen	$6 \cdot 10^{-4}$; $1 \cdot 10^{-4}$		
Résidus Fourier différence (max ; min)	1,47 ; - 1,57		

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	OCC.
Cs(1)	0,48434(3)	-0,18640(3)	0,10481(4)	0,01380(10)	1
Ga(1)	0,11344(5)	0,03714(5)	0,12901(6)	0,00532(15)	1
Ga(2)	0,39933(5)	-0,22949(5)	-0,31877(6)	0,00537(15)	1
P(1)	0,20834(12)	-0,19157(11)	0,36272(13)	0,0050(3)	1
P(2)	0,19888(12)	-0,02650(11)	-0,15477(13)	0,0048(3)	1
O(1)	0,2596(3)	-0,1754(3)	-0,4806(3)	0,0072(10)	1
O(2)	0,5542(3)	-0,2648(3)	-0,1658(3)	0,0094(10)	1
O(3)	0,2024(3)	0,2056(3)	0,1978(3)	0,0092(10)	1
O(4)	0,2234(3)	-0,0509(3)	0,2934(3)	0,0076(10)	1
O(5)	0,3089(3)	-0,1192(3)	-0,1950(3)	0,0072(10)	1
O(6)	-0,0491(3)	0,0840(3)	0,2021(3)	0,0067(10)	1
O(7)	0,2943(3)	-0,3849(3)	-0,2777(3)	0,0069(10)	1
O(8)	0,2353(3)	-0,0103(3)	0,0058(3)	0,0070(10)	1
O(9)	0,0024(3)	-0,1431(3)	0,0552(3)	0,0062(10)	1
O(10)	0,5052(3)	-0,0595(3)	-0,3575(4)	0,0114(11)	1
O(11)	0,3114(4)	0,1396(3)	-0,4599(4)	0,0189(13)	1

C – 1. (v) Paramètres atomiques

Les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $1 \frac{3}{3} \frac{3}{3}$

$$U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{5} \sum_{j=1}^{5} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \vec{\mathbf{a}}_{i} \vec{\mathbf{a}}_{j}.$$

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,01167(16)	0,01783(15)	0,01135(17)	0,00217(13)	0,00123(12)	0,00322(14)
Ga(1)	0,0048(2)	0,0063(2)	0,0045(3)	-0,00036(18)	0,0003(2)	-0,0001(2)
Ga(2)	0,0053(3)	0,0054(2)	0,0048(3)	0,00037(18)	-0,0002(2)	-0,0003(2)
P(1)	0,0053(5)	0,0050(5)	0,0037(6)	0,0002(4)	-0,0012(5)	0,0000(5)
P(2)	0,0053(6)	0,0049(5)	0,0047(6)	0,0007(4)	0,0018(5)	0,0002(5)
O(1)	0,0083(16)	0,0094(15)	0,0033(17)	0,0018(12)	-0,0005(13)	-0,0012(14)
O(2)	0,0064(17)	0,0171(16)	0,0035(17)	0,0042(13)	-0,0021(14)	-0,0003(14)
O(3)	0,0184(19)	0,0042(15)	0,0061(18)	-0,0064(12)	0,0056(15)	-0,0031(13)
O(4)	0,0077(17)	0,0049(14)	0,0081(18)	0,0007(12)	-0,0034(14)	0,0016(13)
O(5)	0,0081(17)	0,0078(14)	0,0063(18)	0,0044(12)	0,0022(14)	-0,0004(13)
O(6)	0,0036(16)	0,0109(15)	0,0060(18)	0,0005(12)	0,0015(14)	-0,0002(14)
O(7)	0,0098(17)	0,0034(14)	0,0088(19)	-0,0015(12)	0,0055(15)	-0,0018(13)
O(8)	0,0069(16)	0,0097(15)	0,0038(17)	0,0009(12)	-0,0008(14)	-0,0011(13)
O(9)	0,0056(16)	0,0077(14)	0,0054(18)	-0,0028(12)	0,0006(14)	0,0008(13)
O(10)	0,0110(18)	0,0094(15)	0,013(2)	-0,0025(13)	0,0001(15)	0,0047(14)
O(11)	0,026(2)	0,0145(17)	0,017(2)	0,0006(15)	0,0064(19)	-0,0008(16)

C – 1. (vi) Paramètres de déplacements atomiques anisotropes

Ga(1)	O(3)	O(4)	O(6)	O(8)	O(9)	O(9 ⁱ)
O(3)	1,912(3)	2,663(4)	2,731(5)	2,888(5)	4,027(4)	2,899(4)
O(4)	87,55(12)	1,936(3)	2,927(4)	2,878(5)	2,959(4)	4,103(4)
O(6)	90,67(14)	98,43(14)	1,928(3)	3,812(5)	2,747(4)	2,723(5)
O(8)	97,71(14)	96,41(14)	163,25(13)	1,924(4)	2,744(5)	2,713(4)
O(9)	176,16(14)	93,93(12)	85,62(13)	85,65(13)	2,108(3)	2,990(4)
$O(9^i)$	90,11(12)	177,33(12)	82,88(13)	82,62(13)	88,48(11)	2,177(3)

C – 1. (vii)	Distances et angles	(Å,	°)
--------------	---------------------	-----	----

Ga(2)	O(1)	O(2)	O(5)	O(7)	O(9 ⁱⁱ)	O(10)
O(1)	1,931(3)	3,841(4)	2,796(5)	2,822(4)	2,896(4)	2,688(4)
O(2)	172,21(14)	1,919(3)	2,741(4)	2,792(4)	2,824(5)	2,718(5)
O(5)	91,70(13)	89,73(14)	1,967(4)	2,709(4)	4,100(4)	2,801(5)
O(7)	94,31(13)	93,39(13)	88,41(14)	1,918(3)	2,881(5)	3,948(4)
O(9 ⁱⁱ)	91,04(13)	87,74(13)	176,96(12)	90,06(13)	2,148(3)	3,021(4)
O(10)	85,38(13)	86,99(13)	88,99(13)	177,36(14)	92,57(13)	2,030(3)

P(1)	O(1 [™])	O(2 ^{iv})	O(3 ^v)	O(4)
O(1 ⁱⁱⁱ)	1,521(3)	2,468(4)	2,524(5)	2,487(5)
O(2 ^{iv})	108,1(2)	1,527(3)	2,524(5)	2,528(5)
$O(3^{\vee})$	111,79(18)	111,36(18)	1,528(4)	2,477(4)
O(4)	108,11(17)	110,33(17)	107,07(19)	1,552(3)

P(2)	O(5)	O(6 ⁱ)	O(7 ^{vi})	O(8)
O(5)	1,518(4)	2,540(5)	2,487(4)	2,477(5)
O(6 ⁱ)	112,46(17)	1,539(3)	2,503(4)	2,528(4)
O(7 ^{vi})	108,89(19)	108,77(17)	1,540(3)	2,514(5)
O(8)	107,76(18)	109,90(19)	109,00(17)	1,549(4)

$Cs(1)-O(1^{vii})$	3,267(3)
Cs(1)-O(2)	2,981(4)
$Cs(1)-O(3^{v})$	3,113(4)
Cs(1)-O(5)	3,141(3)
$Cs(1)-O(5^{viii})$	3,599(3)
$Cs(1)-O(6^{\vee})$	2,913(3)
$Cs(1)-O(7^{vii})$	3,073(3)
Cs(1)-O(8)	2,961(3)
$Cs(1)-O(10^{viii})$	3,436(3)
$Cs(1)-O(11^{ix})$	3,384(4)

S _{ij}	Cs(1)	Ga(1)	Ga(2)	P(1)	P(2)	Vanion
O(1)	0,101		0,581	1,251		1,933
O(2)	0,220		0,600	1,231		2,051
O(3)	0,154	0,611		1,228		1,994
O(4)		0,573		1,151		1,724
O(5)	0,144 0,041	0,298	0,53		1,262	1,973
O(6)	0,263	0,586			1,192	2,041
O(7)	0,170		0,602		1,189	1,960
O(8)	0,232	0,592			1,160	1,985
O(9)		0,360 0,299	0,323			0,982
O(10)	0,064		0,444			0,508
O(11)	0,075					0,075
V_{cation}	1,460	3,021	3,077	4,862	4,803	

C – 1. (viii) Calculs de valence électrostatique

$C-2.\,Cs_{0,222}(H_{3}O)_{0,888}Ga_{2}(OH)(OH_{2})(PO_{4})_{2}\cdot H_{2}O$

C – 2. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal $Cs_x(H_3O)_{1-x}Ga_2(OH)(OH_2)(PO_4)_2 \cdot H_2O$
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse (creuset Pt)	$CsNO_3 : Ga_2O_3 : (NH_4)_2HPO_4 (1 : 1 :6) ; ~12 h ; 400^{\circ}C$
Masse totale des précurseurs	0,63 g
Composition A : M: P	1:2:6
Ajout eau distillée	2 ml
Cycle thermique	180°C 4 h 48 h 20 h
pH initial	5
pH final	/
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	$Ga_2O_3, GaPO_4, Cs_x(H_3O)_{1-x}Ga_2(OH)(OH_2)(PO_4)_2 \cdot H_2O$

C – 2. (ii) Caractéristiques du cristal étudié

Formule	$Cs_{0,222}(H_3O)_{0,888}Ga_2(OH)(OH_2)(PO_4)_2 \cdot H_2O$
Analyse EDS (MEB)	12 : 41 : 44 pour Cs : Ga : P (autre individu)
Masse molaire (g·mol ⁻¹)	428,8
Densité calculée ρ (g·cm⁻³)	3,175
Coefficient d'absorption μ (mm ⁻¹)	7,317
Dimension (mm ³)	$0,075 \times 0,05 \times 0,05$
Paramètres de maille	a = 9,7107(6) Å b = 9,6796(6) Å c = 9,7822(4) Å β = 102,769(5) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	986,74(9) Å ³
Ζ	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h+k = 2n+1 0k0 : k = 2n+1
Groupe d'espace	P2 ₁ /n (n°14)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 2°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	$6,00^\circ \le \theta \le 39,99^\circ$
Indices limitants	$-17 \le h \le 17$ $-17 \le k \le 15$ $-17 \le l \le 17$
Nombre de réflexions mesurées	16058
Nombre de réflexions avec I > 3σ	5530
Nombre de réflexions indépendantes (I>30)	3406
R_{sym}, R_{mes}, χ^2	0,053 ; 0,064 ; 2,282
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	SADABS (0,610 ; 0,694 ; 0,0375)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

C – 2. (iii) Conditions d'enregistrement du monocristal

C – 2. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	A partir du modèle de CsGa2(OH)(OH2)(PO4)2·H2O
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Contrainte	occ[Cs(1)] + occ[O(12)] = 1
Localisation des atomes d'hydrogène	/
Nombre de paramètres affinés	146
Facteurs d'accord	$\begin{split} R &= 0,0418 \text{ et } Rw = 0,0524 \\ R_{\text{all}} &= 0,0873 \text{ et } Rw_{\text{all}} = 0,0563 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	2,06 ; 1,72
Δ/σ max ; moyen	$5 \cdot 10^{-4}$; $1 \cdot 10^{-4}$
Résidus Fourier différence (max ; min)	1,27 - 1,27

Atome	x	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ
Cs(1)	0,48584(9)	-0,18546(10)	0,10556(8)	0,0168(3)	0,2215(14)
O(12)	0,485837	-0,185461	0,105557	0,0168(3)	0,7785(14)
Ga(1)	0,11332(4)	0,04096(4)	0,12915(4)	0,00683(10)	1
Ga(2)	0,39855(4)	-0,23118(4)	-0,31650(4)	0,00674(10)	1
P(1)	0,20745(9)	-0,18701(10)	0,36570(8)	0,0062(2)	1
P(2)	0,20158(9)	-0,03163(10)	-0,15099(8)	0,0067(2)	1
O(1)	0,2597(3)	-0,1712(3)	-0,4758(2)	0,0092(6)	1
O(2)	0,5519(3)	-0,2691(3)	-0,1621(2)	0,0118(7)	1
O(3)	0,2050(3)	0,2097(3)	0,1961(2)	0,0104(7)	1
O(4)	0,2209(3)	-0,0454(3)	0,2977(2)	0,0095(6)	1
O(5)	0,3121(3)	-0,1247(3)	-0,1889(2)	0,0111(7)	1
O(6)	-0,0507(2)	0,0892(3)	0,2011(2)	0,0089(6)	1
O(7)	0,2884(3)	-0,3883(3)	-0,2819(2)	0,0101(7)	1
O(8)	0,2383(3)	-0,0145(3)	0,0102(2)	0,0105(7)	1
O(9)	0,0007(2)	-0,1426(3)	0,0570(2)	0,0085(6)	1
O(10)	0,5039(3)	-0,0571(3)	-0,3505(3)	0,0187(8)	1
O(11)	0,3154(3)	0,1441(3)	-0,4630(3)	0,0209(9)	1

C – 2. (v	7) P	aramètres	atomiq	ues
-----------	------	-----------	--------	-----

La somme des occupations des des deux entités Cs(1) et O(12) ont été contraintes à 1. Les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}.$

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,0142(4)	0,0221(5)	0,0143(4)	0,0022(3)	0,0035(3)	0,0039(3)
O(12)	0,0142(4)	0,0221(5)	0,0143(4)	0,0022(3)	0,0035(3)	0,0039(3)
Ga(1)	0,00624(15)	0,00831(18)	0,00601(14)	-0,00045(14)	0,00152(11)	-0,00079(13)
Ga(2)	0,00667(16)	0,00725(17)	0,00616(14)	0,00054(14)	0,00110(11)	-0,00023(13)
P(1)	0,0062(3)	0,0067(4)	0,0055(3)	-0,0003(3)	0,0005(2)	0,0005(3)
P(2)	0,0061(3)	0,0069(4)	0,0076(3)	0,0003(3)	0,0024(3)	-0,0008(3)
O(1)	0,0097(11)	0,0104(12)	0,0067(9)	0,0029(9)	0,000(8)	0,0001(9)
O(2)	0,0059(10)	0,0168(13)	0,0110(10)	0,0037(10)	-0,0016(8)	-0,0004(10)
O(3)	0,0145(12)	0,0064(12)	0,0102(10)	-0,0053(9)	0,0028(8)	-0,0009(9)
O(4)	0,0102(11)	0,0064(11)	0,0107(10)	-0,0009(9)	-0,0006(8)	0,0026(9)
O(5)	0,0118(11)	0,0122(13)	0,0103(10)	0,0029(10)	0,0046(8)	-0,0012(9)
O(6)	0,0062(10)	0,0127(12)	0,0082(9)	-0,0019(9)	0,0020(8)	-0,0021(9)
O(7)	0,0112(11)	0,0068(11)	0,0137(10)	-0,0006(9)	0,0058(9)	0,0000(9)
O(8)	0,0089(11)	0,0152(14)	0,0076(9)	0,0021(9)	0,0023(8)	-0,0026(9)
O(9)	0,0076(10)	0,0112(12)	0,0066(9)	-0,0001(9)	0,0014(8)	-0,0005(8)
O(10)	0,0114(12)	0,0184(16)	0,0252(14)	-0,0027(11)	0,0021(10)	0,0037(12)
O(11)	0,0243(15)	0,0191(16)	0,0219(13)	-0,0005(13)	0,0104(11)	-0,0041(12)

C-2. (vi) Paramètres de déplacements atomiques anisotropes

C – 2. (vii) Distances et angles (Å, °)

Ga(1)	O(3)	O(4)	O(6)	O(8)	O(9)	O(9 ⁱ)
O(3)	1,906(3)	2,654(4)	2,753(4)	2,895(4)	4,031(4)	2,891(3)
O(4)	87,38(10)	1,936(3)	2,906(3)	2,869(3)	2,962(3)	4,082(3)
O(6)	91,57(11)	97,32(10)	1,935(3)	3,832(4)	2,753(4)	2,724(3)
O(8)	97,90(12)	95,73(10)	164,21(9)	1,934(3)	2,745(4)	2,731(4)
O(9)	176,82(11)	93,61(10)	85,31(10)	85,02(11)	2,124(3)	2,976(4)
O(9 ⁱ)	90,74(10)	177,98(10)	83,47(10)	83,79(10)	88,31(9)	2,149(2)

Ga(2)	O(1)	O(2)	O(5)	O(7)	O(9 ⁱⁱ)	O(10)
O(1)	1,912(2)	3,810(3)	2,777(3)	2,804(4)	2,915(4)	2,657(4)
O(2)	171,99(12)	1,908(2)	2,678(4)	2,816(3)	2,815(3)	2,728(4)
O(5)	92,05(10)	88,04(11)	1,946(3)	2,702(4)	4,073(4)	2,774(4)
O(7)	93,67(10)	94,34(11)	88,32(12)	1,932(3)	2,874(4)	3,945(4)
O(9 ⁱⁱ)	92,05(10)	88,12(10)	175,61(9)	89,84(11)	2,133(3)	3,043(4)
O(10)	84,54(11)	87,46(11)	88,26(12)	176,08(12)	93,70(11)	2,036(3)

P(1)	O(1 [™])	O(2 ^{iv})	O(3 ^v)	O(4)
O(1 ⁱⁱⁱ)	1,528(2)	2,470(3)	2,533(4)	2,483(3)
O(2 ^{iv})	107,51(14)	1,534(3)	2,522(4)	2,522(4)
O(3 ^v)	112,31(14)	111,23(15)	1,522(3)	2,474(4)
O(4)	107,93(14)	110,12(14)	107,70(15)	1,542(3)

P(2)	O(5)	O(6 ⁱ)	O(7 ^{vi})	O(8)
O(5)	1,509(3)	2,539(4)	2,479(4)	2,462(4)
O(6 ⁱ)	112,55(15)	1,543(3)	2,523(4)	2,540(3)
O(7 ^{vi})	108,42(16)	109,50(14)	1,547(3)	2,509(3)
O(8)	107,34(14)	110,56(14)	108,35(15)	1,547(2)

Cs(1)/O(12)-O(1 ^{vii})	3,251(3)
Cs(1)/O(12)-O(2)	2,944(3)
Cs(1)/O(12)-O(3 ^v)	3,133(3)
Cs(1)/O(12)-O(5)	3,056(2)
Cs(1)/O(12)-O(5 ^{viii})	3,580(3)
Cs(1)/O(12)-O(6 ^v)	2,864(3)
Cs(1)/O(12)-O(7 ^{vii})	2,987(3)
Cs(1)/O(12)-O(8)	2,897(3)
$Cs(1)/O(12)-O(10^{Viii})$	3,340(3)
$Cs(1)/O(12)-O(11^{ix})$	3,380(3)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) -x, -y, -z; & (ii) \frac{1}{2} + x, -\frac{1}{2} - y, z - \frac{1}{2}; & (iii) \frac{1}{2} x - \frac{1}{2} - y, \frac{1}{2} + z; & (iv) \frac{1}{2} x, y, 1 + z; \\ (v) \frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z; & (vi) \frac{1}{2} - z, \frac{1}{2} - z; & (vii) \frac{1}{2} + x, -\frac{1}{2} - y, z + \frac{1}{2}; & (viii) \frac{1}{2} - x, -y, -z; & (ix) \frac{1}{2} - x, -\frac{1}{2} + y, -\frac{1}{2} - z. \end{array}$

C – 2. (viii)	Calculs de valence électrostatique

S _{ij}	Cs(1)	Ga(1)	Ga(2)	P(1)	P(2)	Vanion
O(1)	0,023		0,611	1,228		1,863
O(2)	0,054		0,618	1,208		1,880
O(3)	0,032	0,621		1,248		1,902
O(4)		0,573		1,182		1,755
O(5)	0,040 0,010		0,558		1,293	1,900
O(6)	0,067	0,575			1,179	1,821
O(7)	0,048		0,579		1,167	1,794
O(8)	0,004	0,576			1,167	1,747
O(9)		0,345 0,322	0,336			1,004
O(10)	0,018		0,437			0,456
O(11)	0,017					0,017
V _{cation}	0,312	3,012	3,140	4,867	4,805	

C – 2. (ix) Simulation du diffractogramme RX sur poudre

$C-3.RbAl_2(OH)(OH_2)(PO_4)_2{\cdot}H_2O$

C – 3. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal RbAl ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	RbOH (50%)
Précurseur métal trivalent M	Al ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (85%)
Masse totale des précurseurs	0,8 g
Composition A : M: P	1:2:2
Ajout eau distillée	2 ml
Cycle thermique	200°C 3 h 24 h 18 h
pH initial	2
pH final	5
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 1D, 3D
Poudre	Blanche

C – 3. (ii) Caractéristiques du cristal étudié

Formule	RbAl ₂ (OH)(OH ₂)(PO ₄) ₂ ·H ₂ O
Analyse EDS (MEB)	21 : 37 : 42 pour Rb : Al : P
Masse molaire (g·mol⁻¹)	382,4
Densité calculée ρ (g·cm ⁻³)	3,000
Coefficient d'absorption μ (mm ⁻¹)	6,49
Dimension (mm ³)	0,11 × 0,11 × 0,09
Paramètres de maille	a = 9,5273(6) Å b = 9,413(6) Å c = 9,682(5) Å β = 103,271(5) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	846,5(9) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h+k = 2n+1 0k0 : k = 2n+1
Groupe d'espace	P2 ₁ /n (n°14)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 iterations
Domaine angulaire θ	5,85°≤ θ ≤ 40,00
Indices limitants	$-11 \le h \le 17$ $-13 \le k \le 17$ $-17 \le l \le 16$
Nombre de réflexions mesurées	15646
Nombre de réflexions avec I > 3σ	5204
Nombre de réflexions indépendantes (I>3σ)	3897
R_{sym}, R_{mes}, χ^2	0,094 ; / ; 1,5
Correction de l'absorption $(T_{min}, T_{max}, R_{sym})$	SADABS (0,410 ; 0,558 ; 0,0333)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

C – 3. (iii) Conditions d'enregistrement du monocristal

C – 3. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	A partir du modèle CsGa2(OH)(OH2)(PO4)2·H2O
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Localisation des atomes d'hydrogène	/
Nombre de paramètres affinés	145
Facteurs d'accord	$\begin{split} R &= 0,0272 \text{ et } Rw = 0,0303 \\ R_{\text{all}} &= 0,0459 \text{ et } Rw_{\text{all}} = 0,0326 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^{-4} F^2)$
Gof ; Gof _{all}	1,42 ; 1,31
Δ/σ max ; moyen	8·10 ⁻⁴ ; 1·10 ⁻⁴
Résidus Fourier différence (max ; min)	0,82 ; - 0,64

Atome	X	у	Z	$\overline{U_{\text{iso(eq)}}(\text{\AA}^2)}$	occ.
Rb(1)	0,482938(17)	-0,191106(19)	0,104599(17)	0,01519(4)	1
Al(1)	0,11066(5)	0,04122(5)	0,12793(4)	0,00507(9)	1
Al(2)	0,39645(5)	-0,22431(5)	-0,31291(5)	0,00551(9)	1
P(1)	0,20799(4)	-0,18924(4)	0,36405(4)	0,00430(7)	1
P(2)	0,20117(4)	-0,02492(4)	-0,15070(4)	0,00461(7)	1
O(1)	0,26256(12)	-0,17185(11)	-0,47447(11)	0,0081(2)	1
O(2)	0,55129(11)	-0,26422(12)	-0,16601(11)	0,0085(2)	1
O(3)	0,19883(12)	0,20714(11)	0,19598(11)	0,0079(2)	1
O(4)	0,21890(11)	-0,04552(11)	0,29199(11)	0,0071(2)	1
O(5)	0,31502(11)	-0,11742(11)	-0,19106(11)	0,0081(2)	1
O(6)	-0,04899(11)	0,08494(11)	0,20293(11)	0,0070(2)	1
O(7)	0,29195(11)	-0,37903(11)	-0,28191(11)	0,0070(2)	1
O(8)	0,23804(11)	-0,00990(11)	0,01426(11)	0,0073(2)	1
O(9)	0,00095(11)	-0,13631(11)	0,05484(11)	0,0076(2)	1
O(10)	0,50448(12)	-0,06263(13)	-0,35406(14)	0,0131(3)	1
O(11)	0,30977(17)	0,14481(14)	-0,46267(15)	0,0184(3)	1

C – 3. (v) Paramètres atomiques

Les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $1 \frac{3}{2} \frac{3}{2}$

$$U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{\ddot{a}}_{i} \mathbf{\ddot{a}}_{j}.$$

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,01278(6)	0,01924(7)	0,01309(6)	0,00266(5)	0,00205(4)	0,00474(5)
Al(1)	0,00449(15)	0,00611(16)	0,00440(15)	-0,00031(12)	0,00060(11)	-0,00031(12)
Al(2)	0,00490(15)	0,00605(16)	0,00502(15)	0,00000(12)	0,00000(12)	0,00053(12)
P(1)	0,00412(11)	0,00421(12)	0,00402(11)	-0,00010(10)	-0,00020(8)	0,00025(9)
P(2)	0,00423(11)	0,00484(12)	0,00487(12)	0,00028(10)	0,00122(9)	-0,00043(10)
O(1)	0,0096(4)	0,0096(4)	0,0037(3)	0,0017(3)	-0,0013(3)	-0,0003(3)
O(2)	0,0047(3)	0,0115(4)	0,0082(4)	0,0029(3)	-0,0008(3)	-0,0010(3)
O(3)	0,0105(4)	0,0063(4)	0,0071(4)	-0,0040(3)	0,0027(3)	-0,0003(3)
O(4)	0,0075(4)	0,0056(4)	0,0071(4)	-0,0003(3)	-0,0009(3)	0,0024(3)
O(5)	0,0077(4)	0,0083(4)	0,0089(4)	0,0038(3)	0,0030(3)	-0,0015(3)
O(6)	0,0049(3)	0,0084(4)	0,0075(4)	-0,0012(3)	0,0012(3)	-0,0018(3)
O(7)	0,0084(4)	0,0048(4)	0,0087(4)	-0,0011(3)	0,0038(3)	-0,0015(3)
O(8)	0,0071(3)	0,0099(4)	0,0047(3)	0,0010(3)	0,0012(3)	-0,0012(3)
O(9)	0,0071(3)	0,0084(4)	0,0070(4)	0,0015(3)	0,0009(3)	-0,0014(3)
O(10)	0,0080(4)	0,0127(5)	0,0182(5)	-0,0026(4)	0,0018(3)	0,0052(4)
O(11)	0,0271(6)	0,0147(5)	0,0159(5)	-0,0013(5)	0,0100(5)	-0,0029(4)

C – 3. (vi) Paramètres de déplacements atomiques anisotropes

Al(1)	O(3)	O(4)	O(6)	O(8)	O(9)	O(9 ⁱ)
O(3)	1,8398(11)	2,5712(15)	2,6477(15)	2,7839(15)	3,8699(15)	2,7824(13)
O(4)	87,97(5)	1,8626(10)	2,7912(14)	2,7263(15)	2,8368(13)	3,8980(14)
O(6)	91,02(5)	96,74(5)	1,8717(12)	3,7178(16)	2,6457(15)	2,6554(16)
O(8)	97,22(5)	93,82(5)	166,83(5)	1,8708(12)	2,6666(16)	2,6223(15)
O(9)	176,19(5)	93,51(5)	85,33(5)	86,19(5)	2,0286(11)	2,8034(15)
O(9 ⁱ)	91,52(5)	177,80(6)	85,41(5)	84,12(5)	87,13(4)	2,0392(10)

C-3. (vii) Distances et angles (Å, °)

Al(2)	O(1)	O(2)	O(5)	O(7)	O(9 ⁱⁱ)	O(10)
O(1)	1,8336(10)	3,6506(13)	2,6928(15)	2,6729(15)	2,8801(15)	2,5508(15)
O(2)	170,78(6)	1,8289(10)	2,6151(15)	2,6975(14)	2,7707(15)	2,6015(17)
O(5)	94,00(5)	90,65(5)	1,8484(12)	2,6356(15)	4,0627(16)	2,6938(18)
O(7)	93,29(5)	94,58(5)	91,14(5)	1,8423(12)	2,8026(16)	3,7629(17)
O(9 ⁱⁱ)	89,95(5)	85,71(5)	175,58(5)	86,65(5)	2,2229(15)	2,9998(16)
O(10)	84,88(5)	87,12(5)	90,48(6)	177,64(6)	91,85(5)	1,9443(14)

P(1)	O(1 ⁱⁱⁱ)	O(2 ^{iv})	O(3 ^v)	O(4)
O(1 ⁱⁱⁱ)	1,5219(10)	2,4675(13)	2,5136(15)	2,4885(14)
O(2 ^{iv})	108,40(6)	1,5204(11)	2,5220(16)	2,5103(16)
$O(3^{\vee})$	111,10(6)	111,74(6)	1,5263(12)	2,4811(15)
O(4)	108,25(6)	109,73(6)	107,56(6)	1,5491(11)

P(2)	O(5)	O(6 ⁱ)	O(7 ^{vi})	O(8)
O(5)	1,5155(12)	2,5300(15)	2,4816(15)	2,4720(16)
O(6 ⁱ)	112,23(6)	1,5320(10)	2,5056(15)	2,5213(13)
O(7 ^{vi})	108,51(6)	109,20(6)	1,5418(11)	2,5083(15)
O(8)	107,85(6)	110,16(6)	108,81(6)	1,5429(10)

Rb(1)-O(1 ^{vii})	3,2101(12)
Rb(1)-O(2)	2,8964(11)
$Rb(1)-O(3^{v})$	3,0165(12)
Rb(1)-O(5)	2,9964(10)
Rb(1)-O(5 ^{viii})	3,5106(11)
$Rb(1)-O(6^{\vee})$	2,7967(10)
Rb(1)-O(7 ^{vii})	2,9710(10)
Rb(1)-O(8)	2,8730(10)
$Rb(1)-O(10^{viii})$	3,3825(13)
$Rb(1)-O(11^{ix})$	3,2145(15)

S _{ij}	Rb(1)	Al(1)	Al(2)	P(1)	P(2)	V_{anion}
O(1)	0,077		0,561	1,248		1,887
O(2)	0,179		0,569	1,254		2,001
O(3)	0,129	0,552		1,234		1,915
O(4)		0,519		1,160		1,679
O(5)	0,137 0,034		0,539		1,270	1,980
O(6)	0,016	0,506			1,215	1,737
O(7)	0,146		0,548		1,183	1,878
O(8)	0,191	0,508			1,180	1,878
O(9)		0,331 0,322	0,196			0,850
O(10)	0,048		0,416			0,464
O(11)	0,076					0,076
V _{cation}	1,033	2,739	2,830	4,896	4,848	

C – 3. (viii) Calculs de valence électrostatique

$C-4.\,CsGa_2(OH)_2[(PO_4)H(PO_4)]$

C – 4. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal CsGa ₂ (OH) ₂ [(PO ₄)H(PO ₄)]
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsOH (50%)
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (85%)
Masse totale des précurseurs	0,8 g
Composition $A: M: P$	1:2:2
Ajout eau distillée	1 ml
Cycle thermique	200°C 3 h 75 h 18 h
pH initial	1
pH final	3
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D
Poudre	Blanche

Synthèse	Échantillon monophasé CsGa2(OH)2[(PO4)H(PO4)]
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsOH (50%)
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (75%)
Masse totale des précurseurs	0,67 g
Composition A : M: P	1:2:1
Ajout eau distillée	0,65 ml
Cycle thermique	200°C 3 h 25 h 18 h
pH initial	6
pH final	Non mesuré
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	Ga_2O_3 , $CsGa_2(OH)_2[(PO_4)H(PO_4)]$

C – 4. (ii) Conditions d'obtention de l'échantillon quasi-monophasé

C – 4. (iii) Caractéristiques du cristal étudié

Formule	$CsGa_2(OH)_2[(PO_4)H(PO_4)]$
Analyse EDS (MEB)	21 : 37 : 42 pour Cs :Ga : P
Masse molaire (g·mol ⁻¹)	497,3
Densité calculée ρ (g·cm ⁻³)	3,815
Coefficient d'absorption μ (mm ⁻¹)	10,78
Dimension (mm ³)	$0,150 \times 0,036 \times 0,015$
Paramètres de maille	a = 16,079(6) Å b = 5,9873(12) Å c = 4,5033(15) Å β = 93,36(4) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	432,8(2) Å ³
Ζ	2
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h = 2n+1 0k0 : k = 2n+1
Groupe d'espace	P2 ₁ /a (n°14)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 36 mm Scans en φ et ω 0,5°/image ; 150 s/° ; 2 itérations
Domaine angulaire θ	$5,87^{\circ} \le \theta \le 40^{\circ}$
Indices limitants	$-28 \le h \le 28$ $-10 \le k \le 10$ $-8 \le l \le 2$
Nombre de réflexions mesurées	5792
Nombre de réflexions avec I > 3σ	2677
Nombre de réflexions indépendantes (Ι>3σ)	1362
R_{sym}, R_{mes}, χ^2	0,072 ; 0,092 ; 4,543
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Gaussienne (0,551 ; 0,878 ; 0,0687)
Correction de l'extinction secondaire	B-C Type I, Gaussienne, isotrope
Coefficient d'extinction g	0,09(2)·10 ⁻⁴

C-4. (iv) Conditions d'enregistrement du monocristal

C-4.(v) Résolution et affinement structural

Logiciel	JANA2000			
Méthode de résolution	Patterson et Fourier Différence			
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)			
Contraintes	Somme de l'occupation de $Cs(1) + Cs(2) = 1$			
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à $\sin\theta/\lambda < 0,5$			
Traitement des atomes d'hydrogène	Positions affinées, U_{iso} fixés à ${\sim}1,\!3{\times}U_{\text{iso}}(O_{\text{lié}})$			
Nombre de paramètres affinés	84			
Facteurs d'accord				
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$			
Gof ; Gof _{all}	1,41 ; 1,10			
Δ/σ max ; moyen	$6 \cdot 10^{-4}$; $1 \cdot 10^{-4}$			
Résidus Fourier différence (max ; min)	1,13 ; - 1,13			

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	OCC.
Cs(1)	0,5	0,5	0	0,02415(11)	0,9252(18)
Cs(2)	0,5016(5)	0,2634(15)	1,003(2)	0,047(3)	0,0374(9)
Ga(1)	0,25277(2)	0,13426(6)	-0,00206(8)	0,00738(9)	1
P(1)	0,35625(5)	-0,11959(13)	0,54469(17)	0,00776(19)	1
O(1)	0,30054(14)	-0,1164(3)	0,2467(5)	0,0106(6)	1
O(2)	0,33996(13)	0,0968(3)	0,7116(5)	0,0103(6)	1
O(3)	0,44718(14)	-0,1403(4)	0,4689(6)	0,0189(7)	1
O(4)	0,31286(13)	0,3882(3)	0,1732(5)	0,0092(6)	1
O(5)	0,33359(13)	-0,3299(3)	0,7147(5)	0,0117(6)	1
H(3)	0,5	0	0,5	0,024	1
H(4)	0,322(2)	0,360(6)	0,382(9)	0,012	1

Les occupations des deux sites Cs(1) et Cs(2) ont été contraintes pour obtenir un césium par unité asymétrique de la maille. Les atomes (sauf les atomes d'hydrogène) ont été affinés avec des ADP anisotropes

exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}.$

α			• .
(4 (V11))	Parametres de deplacements	atominies	anisofrones
0 1. (11)	i diumetres de deplacements	ucomques	unibotroped

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,01873(16)	0,0354(2)	0,01838(18)	0,01323(15)	0,00152(12)	0,00324(16)
Cs(2)	0,039(4)	0,054(6)	0,046(5)	-0,021(4)	-0,006(4)	0,004(4)
Ga(1)	0,01039(16)	0,00533(15)	0,00649(14)	0,00002(12)	0,00115(10)	-0,00029(12)
P(1)	0,0086(3)	0,0068(3)	0,0080(3)	0,0000(3)	0,0016(3)	-0,0009(3)
O(1)	0,0174(10)	0,0049(9)	0,0091(10)	-0,0007(8)	-0,0032(8)	0,0019(8)
O(2)	0,0121(10)	0,0107(10)	0,0086(10)	-0,0014(8)	0,0042(8)	-0,0007(8)
O(3)	0,0103(10)	0,0184(12)	0,0285(14)	-0,0009(9)	0,0057(9)	-0,0041(10)
O(4)	0,0097(9)	0,0093(10)	0,0084(10)	0,0007(8)	-0,0016(7)	-0,0005(8)
O(5)	0,0138(10)	0,0115(11)	0,0100(11)	0,0009(8)	0,0014(8)	0,0022(8)

C-4. (viii) Distances et angles (Å, °)

Ga(1)	O(1)	O(1 ⁱ)	O(2 ⁱⁱ)	O(4)	O(4 ⁱⁱⁱ)	O(5 ^{iv})
O(1)	1,999(2)	4,015(3)	2,831(3)	3,047(3)	2,549(3)	2,769(3)
$O(1^{i})$	177,41(9)	2,016(2)	2,853(3)	2,549(3)	2,992(3)	2,794(3)
O(2 ⁱⁱ)	90,94(9)	91,30(9)	1,972(2)	2,768(3)	2,831(3)	3,937(3)
O(4)	101,19(9)	80,10(9)	89,94(9)	1,944(2)	3,887(3)	2,765(3)
$O(4^{iii})$	80,50(9)	98,10(9)	92,56(9)	176,96(9)	1 ,94 5(2)	2,702(3)
$O(5^{iv})$	88,63(9)	89,13(9)	179,56(9)	90,05(9)	87,46(9)	1,964(2)

P(1)	O(1)	O(2)	O(3)	O(5)
O(1)	1,569(2)	2,502(3)	2,511(3)	2,495(3)
O(2)	107,74(12)	1,528(2)	2,530(3)	2,557(3)
O(3)	108,43(14)	111,91(13)	1,526(2)	2,467(3)
O(5)	107,30(12)	113,52(13)	107,74(13)	1,529(2)

$Cs(1)-O(3^{\vee})$	3,293(2)
$Cs(1)-O(3^{vi})$	3,167(3)
$Cs(1)-O(3^{vii})$	3,167(3)
Cs(1)-O(3 ^{viii})	3,293(2)
Cs(1)-O(4)	3,223(2)
$Cs(1)-O(4^{ix})$	3,223(2)
$Cs(1)-O(5^{v})$	3,073(2)
$Cs(1)-O(5^{viii})$	3,073(2)

$Cs(2)-O(1^{vii})$	3,547(9)
$Cs(2)-O(2^{ii})$	3,012(9)
$Cs(2)-O(2^{viii})$	3,522(9)
$Cs(2)-O(3^{ii})$	3,486(9)
Cs(2)-O(3)	3,349(10)
$Cs(2)-O(3^{vii})$	2,439(10)
$Cs(2)-O(3^{viii})$	2,577(10)
Cs(2)-O(4)	3,259(9)
$Cs(2)-O(5^{viii})$	2,898(9)

			O-H	О-Н…О	Н…О	00
O(4)	H(4)	O(2)	0,96(4)	144(3)	2,17(4)	2,998(3)
O(3)	H(3)	$O(3^{\text{viii}})$	1,197(2)	180	1,197(2)	2,394(3)

<u>Codes de symétrie : (i)</u> $\frac{1}{2}x$, $\frac{1}{2}+y$, -z; <u>(ii)</u> x, y, -1+z; <u>(iii)</u> $\frac{1}{2}-x$, $-\frac{1}{2}+y$, -z; <u>(iv)</u> $\frac{1}{2}-x$, $\frac{1}{2}+y$, 1-z; <u>(v)</u> x, 1+y, -1+z; <u>(vi)</u> x, 1+y, z; <u>(vii)</u> 1-x, -y, -z; <u>(viii)</u> 1-x, -z; <u>(viii)</u> 1-x; (viii) 1-x; <u>(viii)</u> 1-x; (viii) 1-x; (v

S _{ij}	Cs(1)	Cs(2)	Ga(1)	P(1)	Vanion
O(1)		0,00	0,48 0,46	1,10	2,05
O(2)		0,02 0,00	0,52	1,23	1,76
O(3)	0,09 0,12	0,00 0,01		1,23	1,58
- (-)	0,12 0,07 0,09 0,05		, -	,	
O(4)	0,11 0,11	0,01	0,56 0,56		1,23
O(5)	0,16 0,16	0,02	0,53	1,22	1,93
V _{cation}	0,95	0,18	3,12	4,79	

C – 4. (ix) Calculs de valence électrostatique

Pour les atomes de césium, la valeur de l'occupation des sites a été introduite dans le calcul.

C – 4. (x)	Simulation	du diffractogramm	e RX sur poudre
------------	------------	-------------------	-----------------

$C-5.\,(\mathrm{NH_4})\mathrm{In}(\mathrm{OH})\mathrm{PO_4}$

C – 5. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal (NH ₄)In(OH)PO ₄
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	/
Précurseur métal trivalent M	In ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄ : H ₃ PO ₄ (85%) 2 : 1
Masse totale des précurseurs	0,8 g
Composition $A: M: P$	0:1:1
Ajout eau distillée	2 ml
Cycle thermique	180°C 3 h 120 h 20 h
pH initial	7
pH final	10,5
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D et 1D
Poudre	Jaune pâle

C – 5. (ii) Caractéristiques du cristal étudié

Formule	(NH ₄)In(OH)PO ₄
Analyse EDS (MEB)	48 : 52 pour In : P
Masse molaire (g·mol ⁻¹)	244,8
Densité calculée ρ (g·cm ⁻³)	3,173
Coefficient d'absorption μ (mm ⁻¹)	4,86
Dimension (mm ³)	0,10 imes 0,10 imes 0,03
Paramètres de maille	a = 8,5371(5) Å b = 6,5810(4) Å c = 4,648(8) Å β = 101,203(9) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	256,2(3) Å ³
Ζ	2
Extinctions systématiques visibles sur les clichés de précession reconstitués	0k0 : k = 2n+1
Groupe d'espace	P2 ₁ /m (n°11)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	$5,94^{\circ} \le \theta \le 41,91^{\circ}$
Indices limitants	$-8 \le h \le 7$ -12 $\le k \le 7$ -16 $\le l \le 15$
Nombre de réflexions mesurées	5656
Nombre de réflexions avec I > 3σ	1871
Nombre de réflexions indépendantes (Ι>3σ)	1360
R_{sym}, R_{mes}, χ^2	0,055 ; 0,062 ; 7,617
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Gaussienne (0,683 ; 0,888 ; 0,0482)
Correction de l'extinction secondaire	B-C Type I, Lorentzienne, isotrope
Coefficient d'extinction g	0,07(2)·10 ⁻⁴

C – 5. (iii) Conditions d'enregistrement du monocristal

C-5. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier Différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à $sin\theta/\lambda < 0{,}5$
Traitement des atomes d'hydrogène	Positions affinées ; U_{iso} fixés à ~1,3 \times $U_{iso}(O_{ii\acute{e}})$
Nombre de paramètres affinés	56
Facteurs d'accord	$\begin{split} R &= 0,0241 \text{ et } Rw = 0,0270 \\ R_{\text{all}} &= 0,0397 \text{ et } Rw_{\text{all}} = 0,0288 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,41 ; 1,28
Δ/σ max ; moyen	$5 \cdot 10^{-4}$; < 10^{-4}
Résidus Fourier différence (max ; min)	0,82 ; - 1,21

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
In(1)	0	0	0	0,00926(4)	1
P(1)	0,21594(9)	-0,25	0,58914(14)	0,00840(13)	1
O(1)	0,0973(3)	-0,25	0,2863(4)	0,0123(4)	1
O(2)	0,17887(19)	-0,0562(2)	0,7500(3)	0,0133(3)	1
O(3)	0,3873(3)	-0,25	0,5561(5)	0,0175(5)	1
O(4)	0,1374(3)	0,25	0,2009(5)	0,0127(4)	1
N(1)	0,4257(4)	0,25	0,8685(7)	0,0185(6)	1
H(O4)	0,167(6)	0,25	0,366(11)	0,0165	1
H(N1a)	0,493(7)	0,25	0,765(12)	0,024	1
H(N1b)	0,374(5)	0,162(4)	0,834(9)	0,024	1
H(N1c)	0,478(7)	0,25	1,053(12)	0,024	1

G J. (v) I arametres atomique	u – 5. (V)	Parametres atomiques
-------------------------------	------------	----------------------

Les atomes (sauf les atomes d'hydrogène) ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

C – 5. (vi) Paramètres de déplacements atomiques anisotropes

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
In(1)	0,01206(7)	0,00643(6)	0,00982(6)	0,00006(6)	0,00347(4)	0,00014(5)
P(1)	0,0087(2)	0,0097(2)	0,0073(2)	0	0,00251(18)	0
O(1)	0,0169(9)	0,0087(6)	0,0089(7)	0	-0,0035(6)	0
O(2)	0,0159(6)	0,0117(4)	0,0140(5)	-0,0020(4)	0,0071(5)	-0,0048(4)
O(3)	0,0096(8)	0,0248(9)	0,0193(9)	0	0,0058(7)	0
O(4)	0,0154(8)	0,0093(6)	0,0128(7)	0	0,0014(6)	0
N(1)	0,0152(10)	0,0196(10)	0,0206(11)	0	0,0037(9)	0

C – 5. (vii) Distances et angles (Å, °)

In(1)	O(1)	O(1 ⁱ)	O(2 ⁱⁱ)	O(2 ⁱⁱⁱ)	O(4)	O(4 ⁱ)
O(1)	2,1768(12)	4,3537(17)	3,000(2)	3,081(2)	3,3399(6)	2,716(3)
O(1 ⁱ)	180	2,1768(12)	3,081(2)	3,000(2)	2,716(3)	3,3399(6)
$O(2^{ii})$	88,48(7)	91,52(7)	2,1234(17)	4,247(2)	2,978(2)	3,034(3)
O(2 ⁱⁱⁱ)	91,52(7)	88,48(7)	180	2,1234(17)	3,034(3)	2,978(2)
O(4)	101,76(6)	78,24(6)	88,92(7)	91,08(7)	2,1280(13)	4,2560(18)
$O(4^{i})$	78,24(6)	101,76(6)	91,08(7)	88,92(7)	180	2,1280(13)

P(1)	O(1)	O(2)	O(2 ^{iv})	O(3)
O(1)	1,5661(19)	2,484(2)	2,484(2)	2,548(3)
O(2)	106,13(7)	1,5419(15)	2,5507(19)	2,496(3)
O(2 ^{iv})	106,13(7)	111,61(9)	1,5419(15)	2,496(3)
O(3)	112,40(13)	110,23(8)	110,23(8)	1,500(3)

			O-H	О-Н…Х	Н…Х	0X
O(4)	H(O4)	O(2)	0,76(5)	129,4(12)	2,68(3)	3,217(2)
O(4)	H(O4)	N(1)	0,76(5)	150(5)	2,89(5)	3,150(4)

N(1)	H(N1a)	H(N1b)	H(N1b ^v)	H(N1c)
H(N1a)	0,82(7)	1,27(7)	1,27(7)	1,37(8)
H(N1b)	110(4)	0,73(3)	1,16(4)	1,34(6)
H(N1b ^v)	110(4)	106(4)	0,73(3)	1,34(6)
H(N1c)	107(5)	113(4)	113(4)	0,89(5)

			N-H	N-H…O	Н…О	NO
N(1)	H(N1a)	$O(3^{\text{vi}})$	0,82(7)	167(5)	1,96(6)	2,769(4)
N(1)	H(N1b)	O(2)	0,73(3)	167(4)	2,18(3)	2,890(3)
N(1)	H(N1b ^v)	O(2 ^v)	0,73(3)	167(4)	2,18(3)	2,890(3)
N(1)	H(N1c)	$O(3^{\text{vii}})$	0,89(5)	174(6)	1,95(5)	2,836(4)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ -x, \ -y, \ -z; & (ii) \ x, \ y, \ -1+z; & (iii) \ -x, \ -y, \ 1-z; & (iv) \ x, \ -\frac{1}{2}-y, \ z; & (v) \ x, \ \frac{1}{2}-y, \ z; \\ (vi) \ 1-x, \ -y, \ 1-z; & (vi) \ 1-x, \ -y, \ 2-z. \end{array}$

C – 5. (viii) Calculs	s de valence électrost	atique
-----------------------	------------------------	--------

s _{ij}	N(1)	In(2)	P(1)	Vanion	
O(1)		0,476 0,476	1,108	2,060	
O(2)	0,166	0,550	1,183	1,899	
0(2)	0,166	0,550	1,183		
O(3)	0,230 0,192		1,325	1,747	
O(4)		0,543		1 086	
0(1)		0,543		1,000	
V _{cation}	0,755	3,137	4,798		

C – 5. (ix) Simulation du diffractogramme RX sur poudre
$C - 6. CsIn(PO_3(OH))_2$

C – 6. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal CsIn(PO ₃ (OH)) ₂		
Mode de synthèse	Hydrothermale		
Volume de l'enceinte	21 ml		
Précurseur métal alcalin A	CsOH (50%)		
Précurseur métal trivalent M	In ₂ O ₃		
Précurseur phosphate P	H ₃ PO ₄ (85%)		
Masse totale des précurseurs	0,8 g		
Composition A : M: P	1:2:2		
Ajout eau distillée	2 ml		
Ordre du mélange	CsOH + H_3PO_4 (85%), puis H_2O puis Ga_2O_3		
Cycle thermique	200°C 3 h 24 h 18 h		
pH initial	1,5		
pH final	/		
Observation			
Couleur, Opacité, Morphologie	Incolore, Translucide, 1D et 3D		
Poudre	Jaune		

C – 6. (ii) Caractéristiques du cristal étudié

Formule	CsIn(PO ₃ (OH)) ₂
Analyse EDS (MEB)	23 : 24 : 53 pour Cs :In : P
Masse molaire (g·mol⁻¹)	439,7
Densité calculée ρ (g·cm ⁻³)	3,997
Coefficient d'absorption μ (mm ⁻¹)	8,594
Dimension (mm ³)	$0,059 \times 0,033 \times 0,015$
Paramètres de maille	a = 7,4146(3) Å b = 9,0915(3) Å c = 9,7849(3) Å α = 65,525(3) ° β = 70,201(3) ° γ = 69,556(3) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	547,77(4) Å ³
Z	3
Extinctions systématiques visibles sur les clichés de précession reconstitués	/
Groupe d'espace	P1 (n°2)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	$5,94^{\circ} \le \theta \le 39,99^{\circ}$
Indices limitants	$-13 \le h \le 13$ $-16 \le k \le 16$ $-17 \le l \le 16$
Nombre de réflexions mesurées	17510
Nombre de réflexions avec I > 3σ	6766
Nombre de réflexions indépendantes (I>30)	4471
R_{sym}, R_{mes}, χ^2	0,058 ; 0,067 ; 6,068
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Gaussienne (0,490 ; 0,793 ; 0,0553)
Correction de l'extinction secondaire	B-C Type I, Lorentzienne, isotrope
Coefficient d'extinction g	0,067(12).10-4

C – 6. (iii) Conditions d'enregistrement du monocristal

C – 6. (iv) Résolution et affinement structural

Logiciel	JANA2000				
Méthode de résolution	Patterson et Fourier Différence				
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)				
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à $\sin\theta/\lambda < 0.5$				
Traitement des atomes d'hydrogène	Positions et U _{iso} affinés				
Nombre de paramètres affinés	179				
Facteurs d'accord	$\begin{array}{l} R = 0,0309 \text{ et } Rw = 0,0335 \\ R_{\text{all}} = 0,0609 \text{ et } Rw_{\text{all}} = 0,0385 \end{array}$				
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$				
Gof ; Gof _{all}	0,98 ; 0,91				
Δ/σ max ; moyen	11.10 ⁻⁴ ; 1.10 ⁻⁴				
Résidus Fourier différence (max ; min)	0,95 ; - 1,08				

C-6. (v) Paramètres atom	niques
--------------------------	--------

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	OCC.
Cs(1)	1	1	0	0,02513(13)	1
Cs(2)	0,86458(4)	0,83452(3)	0,47178(2)	0,02386(9)	1
In(1)	0,5	0,5	0,5	0,00740(8)	1
In(2)	0,70231(3)	0,71589(2)	-0,049760(19)	0,00754(6)	1
P(1)	0,59077(11)	0,34474(9)	0,21648(8)	0,0079(2)	1
P(2)	0,40787(11)	0,87928(9)	0,23393(8)	0,0078(2)	1
P(3)	0,95329(11)	0,55245(9)	0,22480(7)	0,0075(2)	1
O(1)	0,4488(3)	0,4174(3)	0,3414(2)	0,0132(8)	1
O(2)	0,3446(3)	0,7479(3)	0,3856(2)	0,0136(7)	1
O(3)	0,7793(4)	0,5412(3)	0,3619(2)	0,0174(8)	1
O(4)	0,6636(4)	0,4734(3)	0,0699(2)	0,0144(8)	1
O(5)	0,4625(3)	0,8202(3)	0,0982(2)	0,0136(8)	1
O(6)	0,9028(3)	0,6806(3)	0,0751(2)	0,0123(7)	1
O(7)	0,5088(3)	0,7615(3)	-0,1924(2)	0,0122(7)	1
O(8)	0,7550(3)	0,9577(3)	-0,2107(2)	0,0102(7)	1
O(9)	0,9439(3)	0,6224(3)	-0,2147(2)	0,0107(7)	1
O(10)	0,7771(4)	0,2125(3)	0,2790(3)	0,0152(8)	1
O(11)	0,5927(4)	0,9201(3)	0,2453(3)	0,0171(9)	1
O(12)	1,0992(4)	0,6200(3)	0,2574(3)	0,0173(9)	1
H(10)	0,856(7)	0,259(6)	0,267(5)	0,016(11) (*)	1
H(11)	0,565(7)	1,018(6)	0,236(5)	0,019(11) (*)	1
H(12)	1,203(7)	0,570(6)	0,272(5)	0,026(13) (*)	1

Les atomes suivis par ⁽⁾ ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,03471(19)	0,02226(14)	0,02204(13)	-0,01791(13)	-0,00495(12)	-0,00308(11)
Cs(2)	0,02787(12)	0,02356(11)	0,01525(8)	-0,00270(9)	-0,00740(8)	-0,00286(7)
In(1)	0,00801(11)	0,00765(10)	0,00618(9)	-0,00148(8)	-0,00125(8)	-0,00263(8)
In(2)	0,00794(8)	0,00743(7)	0,00687(7)	-0,00132(6)	-0,00152(6)	-0,00263(5)
P(1)	0,0084(3)	0,0074(3)	0,0087(2)	-0,0021(2)	-0,0024(2)	-0,0031(2)
P(2)	0,0082(3)	0,0060(3)	0,0078(2)	-0,0007(2)	-0,0018(2)	-0,0019(2)
P(3)	0,0063(3)	0,0081(3)	0,0073(2)	-0,0013(2)	-0,0010(2)	-0,0027(2)
O(1)	0,0122(10)	0,0182(10)	0,0135(8)	-0,0020(8)	-0,0023(7)	-0,0114(8)
O(2)	0,0148(10)	0,0086(8)	0,0111(8)	-0,0015(7)	-0,0018(7)	0,0008(7)
O(3)	0,0141(11)	0,0155(10)	0,0161(9)	-0,0050(8)	0,0065(8)	-0,0059(8)
O(4)	0,0155(11)	0,0112(9)	0,0132(8)	-0,0043(8)	-0,0029(7)	-0,0002(7)
O(5)	0,0117(10)	0,0166(10)	0,0136(8)	-0,0012(8)	0,0003(7)	-0,0103(8)
O(6)	0,0142(10)	0,0112(9)	0,0130(8)	-0,0027(7)	-0,0079(7)	-0,0022(7)
O(7)	0,0158(10)	0,0090(8)	0,0154(8)	-0,0029(7)	-0,0084(7)	-0,0039(7)
O(8)	0,0091(9)	0,0072(8)	0,0119(8)	0,0002(6)	-0,0025(7)	-0,0027(6)
O(9)	0,0112(9)	0,0085(8)	0,0104(7)	-0,0002(7)	-0,0008(7)	-0,0044(6)
O(10)	0,0105(10)	0,0129(9)	0,0204(10)	-0,0021(8)	-0,0074(8)	-0,0014(8)
O(11)	0,0143(11)	0,0104(9)	0,0292(11)	-0,0016(8)	-0,0106(9)	-0,0058(9)
O(12)	0,0149(11)	0,0173(10)	0,0275(11)	-0,0015(9)	-0,0130(9)	-0,0103(9)

0 (()	D 1 1 1	1/1	•	•
$C = 6 (v_1)$	Paramétres de d	leplacements	atomiques	anisofropes
	i uluineeres de d	epiacemento	acomiques	unibotropeo

C-6. (vii) Distances et angles (Å, °)

In(1)	O(1)	O(1 ⁱ)	O(2)	O(2 ⁱ)	O(3)	O(3 ⁱ)
O(1)	2,163(3)	4,326(4)	3,006(4)	3,095(3)	3,124(4)	2,926(3)
O(1 ⁱ)	180	2,163(3)	3,095(3)	3,006(4)	2,926(3)	3,124(4)
O(2)	88,33(10)	91,67(10)	2,1517(19)	4,303(3)	3,098(3)	2,937(3)
O(2 ⁱ)	91,67(10)	88,33(10)	180	2,1517(19)	2,937(3)	3,098(3)
O(3)	93,75(10)	86,25(10)	93,06(8)	86,94(8)	2,117(2)	4,234(4)
$O(3^{i})$	86,25(10)	93,75(10)	86,94(8)	93,06(8)	180	2,117(2)

In(2)	O(4)	O(5)	O(6)	O(7)	O(8)	O(9)
O(4)	2,095(2)	3,066(3)	3,028(4)	3,015(3)	4,265(3)	2,971(3)
O(5)	94,18(9)	2,091(2)	3,027(3)	2,993(4)	3,118(3)	4,246(3)
O(6)	92,65(10)	92,70(10)	2,092(3)	4,244(4)	3,110(3)	2,993(4)
O(7)	90,39(10)	89,65(10)	176,02(8)	2,155(3)	2,887(4)	2,993(3)
O(8)	170,01(10)	93,58(8)	93,26(9)	83,38(9)	2,186(2)	2,887(3)
O(9)	88,67(8)	176,28(7)	89,56(9)	87,94(9)	83,33(7)	2,1567(19)

P(1)	O(1)	O(4)	O(7 ⁱⁱ)	O(10)
O(1)	1,533(2)	2,537(3)	2,483(4)	2,557(3)
O(4)	113,61(13)	1,498(2)	2,526(4)	2,504(3)
O(7 ⁱⁱ)	108,40(14)	113,13(15)	1,529(3)	2,443(4)
O(10)	109,80(14)	108,29(13)	103,06(15)	1,591(2)

P(2)	O(2)	O(5)	O(8 ⁱⁱⁱ)	O(11)
O(2)	1,5166(19)	2,511(3)	2,514(3)	2,498(4)
O(5)	111,95(15)	1,514(3)	2,501(3)	2,543(5)
O(8 ⁱⁱⁱ)	110,80(11)	110,11(13)	1,537(2)	2,505(4)
O(11)	107,15(15)	110,11(15)	106,54(15)	1,588(4)

P(3)	O(3)	O(6)	O(9 ^{iv})	O(12)
O(3)	1,510(2)	2,539(3)	2,478(3)	2,474(4)
O(6)	114,08(12)	1,516(2)	2,548(3)	2,448(4)
O(9 ^{iv})	109,01(13)	113,41(13)	1,533(2)	2,545(5)
O(12)	106,15(16)	104,31(15)	109,46(14)	1,584(4)

$Cs(1)-O(5^{v})$	3,517(2)
$Cs(1)-O(5^{iii})$	3,517(2)
Cs(1)-O(6)	2,971(3)
Cs(1)-O(6 ^{vi})	2,971(3)
Cs(1)-O(8)	3,374(3)
Cs(1)-O(8 ^{vi})	3,374(3)
Cs(1)-O(10 ^{iv})	3,606(3)
$Cs(1)$ - $O(10^{vii})$	3,606(3)
Cs(1)-O(11)	3,254(2)
Cs(1)-O(11 ^{vi})	3,254(2)
Cs(1)-O(12)	3,330(2)
$Cs(1)-O(12^{vi})$	3,330(2)

$Cs(2)-O(1^{i})$	3,370(3)
$Cs(2)-O(2^{v})$	3,249(2)
Cs(2)-O(3)	3,561(3)
$Cs(2)-O(7^{viii})$	3,4261(19)
$Cs(2)-O(8^{viii})$	3,479(3)
$Cs(2)-O(8^{vi})$	3,591(2)
$Cs(2)-O(9^{viii})$	3,0006(19)
$Cs(2)-O(10^{ix})$	3,113(2)
Cs(2)-O(11)	3,175(3)
Cs(2)-O(12)	3,127(3)

		O-H	О-Н…О	Н…О	00	
O(10)	H(10)	O(9 ^{iv})	0,79(6)	174(5)	1,94(6)	2,726(4)
O(11)	H(11)	$O(7^{iii})$	0,81(5)	172(6)	1,79(5)	2,591(3)
O(12)	H(12)	O(1 ^v)	0,77(5)	170(4)	2,00(5)	2,764(3)

<u>Codes de symétrie :</u> (i) 1-x, 1-y, 1-z; (ii) 1-x, 1-y, -z; (iii) 1-x, 2-y, -z; (iv) 2-x, 1-y, -z; (v) 1-x, -y, -z; (vi) 2-x, 2-y, -z; (vii) -x, 1-y, -z; (vii) -x, -y, -z; (viii) -x, -z; (vii) -x, -z; (vii) -x; (vii) -x, -z; (vii) -x; (vi) -x; (vii) -x; (vi) -x; (vii) -x; (vi) -x; (vi)

s _{ij}	Cs(1)	Cs(2)	In(1)	In(2)	P(1)	P(2)	P(3)	Vanion
O(1)		0,08	0,49 0,49		1,21			1,79
O(2)		0,11	0,51 0,51			1,27		1,89
O(3)		0,04 0,04	0,56 0,56				1,29	1,93
O(4)				0,60	1,33			1,92
O(5)	0,05 0,05			0,60		1,28		1,93
O(6)	0,22 0,22			0,60			1,27	2,10
O(7)		0,07		0,50	1,23			1,80
O(8)	0,08 0,08	0,06 0,04		0,46		1,20		1,84
O(9)		0,21		0,50			1,21	1,92
O(10)	0,04 0,04	0,15			1,03			1,23
O(11)	0,11 0,11	0,13				1,04		1,27
O(12)	0,09 0,09	0,15					1,05	1,28
V _{cation}	1,17	1,07	3,13	3,27	4,80	4,79	4,82	

C – 6. (viii) Calculs de valence électrostatique

$C-7.RbGa(PO_3(OH))_2$

C – 7. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal RbGa(PO ₃ (OH)) ₂
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	RbOH (50%)
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (85%)
Masse totale des précurseurs	0,8 g
Composition A : M: P	5:6:9
Ajout eau distillée	2 ml
Ordre du mélange	RbOH + H_3PO_4 (85%), puis H_2O puis Ga_2O_3
Cycle thermique	200°C 3 h 24 h 18 h
pH initial	1
pH final	/
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D et 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	Rb[Ga ₂ (OH)(OH ₂)(PO ₄) ₂]·H ₂ O, phase inconnue

Formule	RbGa(PO ₃ (OH)) ₂
Analyse EDS (MEB)	25 : 21 : 54 pour Rb :Ga : P
Masse molaire (g·mol⁻¹)	347,1
Densité calculée ρ (g·cm ⁻³)	3,498
Coefficient d'absorption μ (mm ⁻¹)	12,008
Dimension (mm ³)	$0,097\times0,087\times0,071$
Paramètres de maille	a = 8,1188(15) Å c = 51,943(4) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	2965,1(8) Å ³
Z	18
Extinctions systématiques visibles sur les clichés de précession reconstitués	(h,k,l) : h-k-l=3n (h,-h,l) : l=2n (h,-h,l) : 2h-l=6n (h,0,l) : 2h+l=6n (h,0,l) : l=2n (0,k,l) : l=2n (0,k,l) : 2k-l=6n (0,0,l) : l=3n
Groupe d'espace	R3c (n°167)

C – 7. (ii) Caractéristiques du cristal étudié

C – 7. (iii) Conditions d'enregistrement du monocristal

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 240 s/° ; 2 itérations
Domaine angulaire θ	$5,85^\circ \le \theta \le 39,99^\circ$
Indices limitants	$-14 \le h \le 9$ $-9 \le k \le 14$ $-77 \le I \le 93$
Nombre de réflexions mesurées	8333
Nombre de réflexions avec I > 3σ	2053
Nombre de réflexions indépendantes (I>30)	1246
R_{sym}, R_{mes}, χ^2	0,071 ; 0,085 ; 1,627
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	SADABS (0,301 ; 0,426 ; 0,0221)
Correction de l'extinction secondaire	B-C Type I, Lorentzienne, isotrope
Coefficient d'extinction g	0,00105(14)·10 ⁻⁴

Logiciel	JANA2000			
Méthode de résolution	Patterson et Fourier Différence			
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)			
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à sin $\theta/\lambda < 0.5$			
Traitement des atomes d'hydrogène	Positions et U _{iso} affinés			
Nombre de paramètres affinés	61			
Facteurs d'accord	$\begin{split} R &= 0,0280 \text{ et } Rw = 0,0294 \\ R_{\text{all}} &= 0,0676 \text{ et } Rw_{\text{all}} = 0,0336 \end{split}$			
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$			
Gof ; Gof _{all}	1,32 ; 1,17			
Δ/σ max ; moyen	6,7·10 ⁻³ ; 6·10 ⁻⁴			
Résidus Fourier différence (max ; min)	0,87 ; - 0,79			

C – 7. (iv) Résolution et affinement structural

C – 7. (v)	Paramètres atomiques
------------	----------------------

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	OCC.
Rb(1)	0	0	0,75	0,02134(13)	1
Rb(2)	0	0	0,666412(6)	0,02518(11)	1
Ga(1)	0,3333	0,6667	0,6667	0,00791(10)	1
Ga(2)	0,3333	0,6667	0,752785(5)	0,00715(7)	1
P(1)	0,02978(7)	0,41520(7)	0,712715(7)	0,00734(15)	1
O(1)	0,1044(2)	0,5147(2)	0,68730(2)	0,0140(5)	1
O(2)	0,18101(19)	0,44065(19)	0,73214(2)	0,0100(5)	1
O(3)	-0,11373(19)	0,46841(19)	0,72335(2)	0,0091(4)	1
O(4)	-0,0868(2)	0,1936(2)	0,70675(3)	0,0139(5)	1
H(4)	-0,190(4)	0,157(4)	0,7110(5)	0,030(8) (*)	1

Les atomes suivis par ^{(]} ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,02465(17)	0,02465(17)	0,01472(17)	0,01233(9)	0	0
Rb(2)	0,03037(15)	0,03037(15)	0,01479(13)	0,01519(7)	0	0
Ga(1)	0,00895(13)	0,00895(13)	0,00582(14)	0,00447(7)	0	0
Ga(2)	0,00768(9)	0,00768(9)	0,00608(11)	0,00384(5)	0	0
P(1)	0,00637(19)	0,0089(2)	0,00623(14)	0,00344(16)	0,00035(13)	-0,00044(14)
O(1)	0,0101(6)	0,0199(7)	0,0082(4)	0,0047(6)	0,0034(4)	0,0039(4)
O(2)	0,0097(6)	0,0107(6)	0,0103(4)	0,0057(5)	-0,0024(4)	-0,0020(4)
O(3)	0,0080(6)	0,0097(6)	0,0107(4)	0,0054(5)	0,0027(4)	0,0020(4)
O(4)	0,0095(6)	0,0096(6)	0,0197(5)	0,0026(5)	0,0009(5)	-0,0046(5)

C – 7. (vi) Paramètres de déplacements atomiques anisotropes

C – 7. (vii) Distances et angles (Å, °)

Ga(1)	O(1)	O(1 ⁱ)	O(1 ⁱⁱ)	$O(1^{iii})$	O(1 ^{iv})	O(1 ^v)
O(1)	1,9576(12)	3,9153(17)	2,837(3)	2,698(2)	2,83743(18)	2,698(2)
O(1 ⁱ)	180	1,9576(12)	2,698(2)	2,83743	2,698(2)	2,83743
$O(1^{ii})$	92,88(6)	87,12(6)	1 ,958(2)	3,9153(17)	2,83743	2,698(2)
$O(1^{iii})$	87,12(6)	92,88(6)	180	1,958(2)	2,698(2)	2,83743
$O(1^{iv})$	92,88(7)	87,12(7)	92,88(9)	87,12(9)	1,9576(15)	3,9153(17)
$O(1^{\nu})$	87,12(7)	92,88(7)	87,12(9)	92,88(9)	180	1,9576(15)

Ga(2)	O(2)	O(2 ⁱⁱ)	O(2 ^{iv})	O(3 ^{vi})	O(3 ^{vii})	O(3 ^{viii})
O(2)	1,9436(12)	2,8074(17)	2,807(2)	3,9292(17)	2,755(2)	2,8583(19)
O(2 ⁱⁱ)	92,48(6)	1,9436(14)	2,80745	2,85803	3,92901	2,75512
O(2 ^{iv})	92,48(6)	92,48(6)	1,9436(19)	2,75512	2,85803	3,92901
$O(3^{vi})$	174,11(5)	92,48(8)	88,90(6)	1,9908(12)	2,69789	2,69789
O(3 ^{vii})	88,90(6)	174,11(8)	93,18(8)	85,31(6)	1,9908(13)	2,69789
O(3 ^{viii})	93,18(6)	88,90(8)	174,11(5)	85,31(6)	85,31(8)	1,9908(19)

P(1)	O(1)	O(2)	O(3)	O(4)
O(1)	1,5075(12)	2,5583(18)	2,4735(19)	2,485(2)
O(2)	115,27(8)	1,5212(15)	2,554(3)	2,4754(17)
O(3)	108,84(10)	113,46(8)	1,5338(19)	2,501(3)
O(4)	106,74(8)	105,46(9)	106,43(8)	1,5890(16)

Rb(1)-O(2)	3,2499(14)
$Rb(1)-O(2^{ix})$	3,2499(13)
$Rb(1)-O(2^{x})$	3,2499(14)
$Rb(1)-O(2^{xi})$	3,250(2)
$Rb(1)-O(2^{vii})$	3,250(2)
$Rb(1)-O(2^{xii})$	3,2499(13)
Rb(1)-O(4)	3,0204(17)
$Rb(1)-O(4^{ix})$	3,0204(16)
$Rb(1)-O(4^{x})$	3,0204(17)
$Rb(1)-O(4^{xi})$	3,0204(19)
$Rb(1)-O(4^{vii})$	3,0204(19)
$Rb(1)-O(4^{xii})$	3,0204(16)
Rb(2)-O(1 ^{xiii})	3,2691(15)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv})	3,2691(15) 3,269(3)
$\frac{Rb(2)-O(1^{xiii})}{Rb(2)-O(1^{xiv})}$ $\frac{Rb(2)-O(1^{v})}{Rb(2)-O(1^{v})}$	3,2691(15) 3,269(3) 3,2691(13)
$\frac{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}$ $\frac{\text{Rb}(2)-\text{O}(1^{\text{v}})}{\text{Rb}(2)-\text{O}(3^{\text{xiii}})}$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12)
$\frac{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}$ $\frac{\text{Rb}(2)-\text{O}(1^{\text{v}})}{\text{Rb}(2)-\text{O}(3^{\text{xiii}})}$ $\frac{\text{Rb}(2)-\text{O}(3^{\text{xiv}})}{\text{Rb}(2)-\text{O}(3^{\text{xiv}})}$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(14)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(14) 3,3190(12)
$\frac{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}{\text{Rb}(2)-\text{O}(1^{\text{xiv}})}$ $\frac{\text{Rb}(2)-\text{O}(1^{\text{v}})}{\text{Rb}(2)-\text{O}(3^{\text{xiv}})}$ $\frac{\text{Rb}(2)-\text{O}(3^{\text{xiv}})}{\text{Rb}(2)-\text{O}(3^{\text{v}})}$ $\frac{\text{Rb}(2)-\text{O}(4)}{\text{Rb}(2)-\text{O}(4)}$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(14) 3,3190(12) 2,9095(18)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(12) 2,9095(18) 3,4414(19)
$\begin{tabular}{l} \hline Rb(2)-O(1^{xiii}) \\ Rb(2)-O(1^{xiv}) \\ Rb(2)-O(3^{xiii}) \\ Rb(2)-O(3^{xiv}) \\ Rb(2)-O(3^{viv}) \\ Rb(2)-O(4) \\ Rb(2)-O(4) \\ Rb(2)-O(4^{xiii}) \\ Rb(2)-O(4^{ix}) \\ \hline \end{tabular}$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(14) 3,3190(12) 2,9095(18) 3,4414(19) 2,9095(16)
$\begin{tabular}{ c c c c c c c } \hline Rb(2)-O(1^{xii}) \\ \hline Rb(2)-O(1^{xi}) \\ \hline Rb(2)-O(3^{xii}) \\ \hline Rb(2)-O(3^{xi}) \\ \hline Rb(2)-O(3^{v}) \\ \hline Rb(2)-O(4) \\ \hline Rb(2)-O(4^{xii}) \\ \hline Rb(2)-O(4^{xii}) \\ \hline Rb(2)-O(4^{xiv}) \\ \hline Rb(2)-O(4^{xiv}) \\ \hline \end{tabular}$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(12) 2,9095(18) 3,4414(19) 2,9095(16) 3,441(2)
$\begin{tabular}{l} \hline Rb(2)-O(1^{xiii}) \\ Rb(2)-O(1^{xiv}) \\ Rb(2)-O(3^{xiii}) \\ Rb(2)-O(3^{xiv}) \\ Rb(2)-O(3^{v}) \\ Rb(2)-O(4) \\ Rb(2)-O(4) \\ Rb(2)-O(4^{xiii}) \\ Rb(2)-O(4^{xiv}) \\ R$	3,2691(15) 3,269(3) 3,2691(13) 3,3190(12) 3,3190(14) 3,3190(12) 2,9095(18) 3,4414(19) 2,9095(16) 3,441(2) 2,9095(19)

			O-H	О-Н…О	Н…О	00
O(4)	H(4)	$O(3^{\text{xv}})$	0,77(3)	169(3)	1,82(5)	2,578(3)

 $\begin{array}{l} \underline{Codes\ de\ symétrie:\ (i)\ 2/3-x,\ 4/3-y,\ 4/3-z;\ (ii)\ 1-y,\ 1+x-y,\ z;\ (iii)\ -1/3+y,\ 1/3-x+y,\ 4/3-z;\ (iv)\ -x+y,\ 1-x,\ z; \\ \underline{(v)\ 2/3+x-y,\ 1/3+x,\ 4/3-z;\ (vi)\ y,\ 1+x,\ 3/2-z;\ (vii)\ -x,\ -x+y,\ 3/2-z;\ (viii)\ 1+x-y,\ 1-y,\ 3/2-z;\ (ix)\ -y,\ x-y,\ z; \\ \underline{(x)\ y,\ x,\ 3/2-z;\ (xi)\ -x+y,\ -x,\ z;\ (xii)\ x-y,\ -y,\ 3/2-z;\ (xiii)\ -1/3-x,\ 1/3-y,\ 4/3-z;\ (xiv)\ -1/3+y,\ -2/3-x+y,\ 4/3-z; \\ \underline{(xv)\ -1-x+y,\ -x,\ z.}\end{array}$

S _{ij}	Rb(1)	Rb(2)	Ga(1)	Ga(2)	P(1)	Vanion
		0,07	0,54 0,54			
O(1)		0,07	0,54 0,54		1,30	1,90
		0,07	0,54 0,54			
	0,07 0,07			0,56		
O(2)	0,07 0,07			0,56	1,25	1,88
	0,07 0,07			0,56		
O(3)		0,06 0,06 0,06		0,49 0,49 0,49	1,21	1,76
	0,13 0,13	0,04 0,17				
O(4)	0,13 0,13	0,04 0,17			1,04	1,38
	0,13 0,13	0,04 0,17				
V _{cation}	1,18	1,01	3,24	3,17	4,80	

C – 7. (viii) Calculs de valence électrostatique

C – 7. (ix) Simulation du diffractogramme RX sur poudre

$C-8.RbAl(PO_3(OH))_2$

C – 8. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal RbAl(PO ₃ (OH)) ₂
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	RbOH (50%)
Précurseur métal trivalent M	Al ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (85%)
Masse totale des précurseurs	0,8 g
Composition A : M: P	2:1:4
Ajout eau distillée	0,5 ml
Ordre du mélange	RbOH + H_3PO_4 (85%), puis H_2O puis Al_2O_3
Cycle thermique	200°C 3 h 24 h 18 h
pH initial	1
pH final	2
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 1D et 3D
Poudre	Blanche

C – 8. (ii) Caractéristiques du cristal étudié

Formule	RbAl(PO ₃ (OH)) ₂
Analyse EDS (MEB)	22 : 22 : 56 pour Rb :Al : P
Masse molaire (g·mol⁻¹)	347,1
Densité calculée ρ (g·cm⁻³)	3,1655
Coefficient d'absorption μ (mm ⁻¹)	8,403
Dimension (mm ³)	0,101 imes 0,084 imes 0,044
Paramètres de maille	a = 8,0581(18) Å c = 51,081(12) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	2872,5(11) Å ³
Ζ	18
Extinctions systématiques visibles sur les clichés de précession reconstitués	(h,k,l) : h-k-l=3n (h,-h,l) : l=2n (h,-h,l) : 2h-l=6n (h,0,l) : 2h+l=6n (h,0,l) : l=2n (0,k,l) : l=2n (0,k,l) : 2k-l=6n (0,0,l) : l=3n
Groupe d'espace	R3c (n°167)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 180 s/° ; 2 itérations
Domaine angulaire θ	$5,90^{\circ} \le \theta \le 39,99^{\circ}$
Indices limitants	$-14 \le h \le 11$ $-8 \le k \le 13$ $-59 \le l \le 90$
Nombre de réflexions mesurées	9073
Nombre de réflexions avec I > 3σ	1977
Nombre de réflexions indépendantes (I>30)	1274
R_{sym}, R_{mes}, χ^2	0,058 ; 0,066 ; 3,144
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	SADABS (0,560 ; 0,691 ; 0,0313)
Correction de l'extinction secondaire	B-C Type I, Lorentzienne, isotrope
Coefficient d'extinction g	0,0006(2).10-4

C – 8. (iii) Conditions d'enregistrement du monocristal

C-8. (iv) Résolution et affinement structural

Logiciel	JANA2000				
Méthode de résolution	A partir du modèle de RbGa(PO ₃ (OH)) ₂				
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre) sauf Rb(1) (3 ^{ème} ordre)				
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à $\sin\theta/\lambda < 0,5$				
Traitement des atomes d'hydrogène	Positions et U _{iso} affinés				
Nombre de paramètres affinés	62				
Facteurs d'accord	$\begin{split} R &= 0,0289 \text{ et } Rw = 0,0321 \\ R_{\text{all}} &= 0,0639 \text{ et } Rw_{\text{all}} = 0,0355 \end{split}$				
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$				
Gof ; Gof _{all}	1,54 ; 1,36				
Δ/σ max ; moyen	4,1·10 ⁻³ ; 2·10 ⁻⁴				
Résidus Fourier différence (max ; min)	0,77 ; - 0,63				

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Rb(1)	0	0	0,75	0,02053(11)	1
Rb(2)	0	0	0,665993(6)	0,02172(9)	1
Al(1)	0,3333	0,6667	0,6667	0,0056(2)	1
Al(2)	0,3333	0,6667	0,753647(15)	0,00544(17)	1
P(1)	0,03306(6)	0,42167(6)	0,712882(8)	0,00569(13)	1
O(1)	0,11090(16)	0,52533(17)	0,68744(2)	0,0102(4)	1
O(2)	0,18290(15)	0,44881(15)	0,73306(2)	0,0074(4)	1
O(3)	-0,11780(15)	0,46838(16)	0,72339(2)	0,0073(4)	1
O(4)	-0,08058(18)	0,19884(18)	0,70641(3)	0,0119(4)	1
H(4)	-0,188(5)	0,166(5)	0,7102(6)	0,054(10)	1

C – 8. (v)	Paramètres	atomiques
------------	------------	-----------

Les atomes suivis par (*) ont été affinés avec des ADP isotropes. Les autres atomes, sauf Rb(1) qui a été affiné avec des ADP du $3^{\oplus me}$ ordre, ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP

isotrope équivalent
$$U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}.$$

C – 8. (vi) Paramètres de déplacements atomiques anisotropes

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,02393(14)	0,02393(14)	0,01373(18)	0,01196(7)	0	0
Rb(2)	0,02623(12)	0,02623(12)	0,01270(14)	0,01311(6)	0	0
Al(1)	0,0067(3)	0,0067(3)	0,0036(4)	0,00333(14)	0	0
Al(2)	0,00574(19)	0,00574(19)	0,0048(3)	0,00287(10)	0	0
P(1)	0,00491(15)	0,00685(17)	0,00507(15)	0,00275(13)	0,00041(13)	-0,00035(13)
O(1)	0,0081(5)	0,0145(5)	0,0060(4)	0,0041(4)	0,0023(4)	0,0026(4)
O(2)	0,0076(5)	0,0075(5)	0,0072(4)	0,0038(4)	-0,0019(4)	-0,0012(4)
O(3)	0,0065(5)	0,0081(5)	0,0081(4)	0,0044(4)	0,0015(4)	0,0011(4)
O(4)	0,0080(5)	0,0085(5)	0,0176(6)	0,0028(5)	0,0012(4)	-0,0037(4)

C - 8. (vii) Distances et angles (Å, °)

Al(1)	O(1)	O(1 ⁱ)	O(1 ⁱⁱ)	$O(1^{iii})$	$O(1^{iv})$	O(1 ^v)
O(1)	1,8958(10)	3,79177	2,72125	2,64052	2,72125	2,64052
O(1 ⁱ)	180	1,8958(10)	2,64052	2,72125	2,64052	2,72125
$O(1^{ii})$	91,73(6)	88,27(6)	1,8958(17)	3,79177	2,72125	2,64052
$O(1^{iii})$	88,27(6)	91,73(6)	180	1,8958(17)	2,64052	2,72125
$O(1^{iv})$	91,73(6)	88,27(6)	91,73(7)	88,27(7)	1,8958(12)	3,79177
$O(1^{v})$	88,27(6)	91,73(6)	88,27(7)	91,73(7)	180	1,8958(12)

Al(2)	O(2)	O(2 ⁱⁱ)	O(2 ^{iv})	O(3 ^{vi})	O(3 ^{vii})	O(3 ^{viii})
O(2)	1,8787(11)	2,69623	2,69623	3,79514	2,65140	2,75950
O(2 ⁱⁱ)	91,71(6)	1,8787(13)	2,69623	2,75950	3,79514	2,65140
O(2 ^{iv})	91,71(6)	91,71(7)	1,8787(16)	2,65140	2,7595	3,79514
$O(3^{vi})$	175,10(6)	93,17(5)	88,52(5)	1,9200(11)	2,63286	2,63286
O(3 ^{vii})	88,52(5)	175,10(8)	93,17(7)	86,57(6)	1,9200(12)	2,63286
O(3 ^{viii})	93,17(5)	88,52(7)	175,10(5)	86,57(6)	86,57(7)	1,9200(16)

P(1)	O(1)	O(2)	O(3)	O(4)
O(1)	1,5021(11)	2,55048	2,48635	2,48635
O(2)	115,24(6)	1,5178(13)	2,55387	2,47823
O(3)	109,11(8)	113,39(7)	1,5379(15)	2,49222
O(4)	107,03(7)	105,74(8)	105,64(7)	1,5899(13)

Rb(1)-O(2)	3,2666(11)
$Rb(1)-O(2^{ix})$	3,2666(10)
$Rb(1)-O(2^{x})$	3,2666(11)
$Rb(1)-O(2^{xi})$	3,2666(18)
Rb(1)-O(2 ^{vii})	3,2666(18)
$Rb(1)-O(2^{xii})$	3,2666(10)
Rb(1)-O(4)	2,9977(15)
$Rb(1)-O(4^{ix})$	2,9977(14)
$Rb(1)-O(4^{x})$	2,9977(15)
$Rb(1)-O(4^{xi})$	2,9977(16)
$Rb(1)-O(4^{vii})$	2,9977(16)
$Rb(1)-O(4^{xii})$	2,9977(14)
Rb(2)-O(1 ^{xiii})	3,2747(12)
$\frac{\text{Rb}(2)\text{-}O(1^{\text{xiii}})}{\text{Rb}(2)\text{-}O(1^{\text{xiv}})}$	3,2747(12) 3,275(2)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v)	3,2747(12) 3,275(2) 3,2747(11)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v) Rb(2)-O(3 ^{xiii})	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11)
Rb(2)-O(1 ^{xii)} Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v) Rb(2)-O(3 ^{xii)} Rb(2)-O(3 ^{xiv})	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v) Rb(2)-O(3 ^{xiii}) Rb(2)-O(3 ^{xiv}) Rb(2)-O(3 ^v)	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v) Rb(2)-O(3 ^{xiv}) Rb(2)-O(3 ^{xiv}) Rb(2)-O(3 ^v) Rb(2)-O(4)	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11) 2,8796(15)
Rb(2)-O(1 ^{xiii}) Rb(2)-O(1 ^{xiv}) Rb(2)-O(1 ^v) Rb(2)-O(3 ^{xiii}) Rb(2)-O(3 ^{xiv}) Rb(2)-O(3 ^v) Rb(2)-O(4) Rb(2)-O(4 ^{xiii})	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11) 2,8796(15) 3,3932(16)
$\begin{array}{c} Rb(2)-O(1^{xiii})\\ Rb(2)-O(1^{xiv})\\ Rb(2)-O(1^{v})\\ Rb(2)-O(3^{xiii})\\ Rb(2)-O(3^{xiv})\\ Rb(2)-O(3^{v})\\ Rb(2)-O(4)\\ Rb(2)-O(4^{xiii})\\ Rb(2)-O(4^{ixi})\\ \end{array}$	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11) 2,8796(15) 3,3932(16) 2,8796(14)
$\begin{array}{c} Rb(2)-O(1^{xii})\\ Rb(2)-O(1^{xiv})\\ Rb(2)-O(1^{v})\\ Rb(2)-O(3^{xii})\\ Rb(2)-O(3^{xiv})\\ Rb(2)-O(3^{v})\\ Rb(2)-O(4)\\ Rb(2)-O(4^{xii})\\ Rb(2)-O(4^{ixi})\\ Rb(2)-O(4^{xiv})\\ \end{array}$	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11) 2,8796(15) 3,3932(16) 2,8796(14) 3,3932(17)
$\begin{array}{c} Rb(2)-O(1^{xiii})\\ Rb(2)-O(1^{xiv})\\ Rb(2)-O(1^{v})\\ Rb(2)-O(3^{xiii})\\ Rb(2)-O(3^{xiv})\\ Rb(2)-O(4^{vi})\\ Rb(2)-O(4^{xiii})\\ Rb(2)-O(4^{xiv})\\ Rb(2)-O(4^{xiv})\\ Rb(2)-O(4^{xiv})\\ Rb(2)-O(4^{xi})\\ \end{array}$	3,2747(12) 3,275(2) 3,2747(11) 3,2417(11) 3,2417(13) 3,2417(11) 2,8796(15) 3,3932(16) 2,8796(14) 3,3932(17) 2,8796(17)

			O-H	0-H…0	Н…О	00
O(4)	H(4)	$O(3^{xv})$	0,79(4)	170(3)	1,79(4)	2,576(2)

<u>Codes de symétrie :</u> (i) 2/3-x, 4/3-y, 4/3-z; (ii) 1-y, 1+x-y, z; (iii) -1/3+y, 1/3-x+y, 4/3-z; (iv) -x+y, 1-x, z; (v) 2/3+x-y, 1/3+x, 4/3-z; (vi) y, 1+x, 3/2-z; (vii) -x, -x+y, 3/2-z; (viii) 1+x-y, 1-y, 3/2-z; (ix) -y, x-y, z; (x) y, x, 3/2-z; (xi) -x+y, -x, z; (xi) x-y, -y, 3/2-z; (xiii) -1/3-x, 1/3-y, 4/3-z; (xiy) -1/3+y, -2/3-x+y, 4/3-z; (xy) -1/3+y, -2/3-x+y, -2/3-x+y,

C – 8. (viii) Calculs de valence électrostatique

S _{ij}	Rb(1)	Rb(2)	Al(1)	Al(2)	P(1)	Vanion
		0,06	0,47 0,47			
O(1)		0,06	0,47 0,47		1,32	1,86
		0,06	0,47 0,47			
	0,07			0.50		
	0,07			0,50		
O(2)	0,07			0.50	1.26	1.83
- ()	0,07			- ,	, -	,
	0,07			0,50		
	0,07			- ,		
		0,07		0,44		
O(3)		0,07		0,44	1,20	1,71
		0,07		0,44		
	0,14	0,19				
	0,14	0,05				
O(4)	0,14	0,19			1 04	1 41
0(4)	0,14	0,05			1,01	1,11
	0,14	0,19				
	0,14	0,05				
V _{cation}	1,21	1,11	2,85	2,82	4,81	

$C-9.(NH_4)_{2,46}Cs_{0,54}Ga_2(PO_4)_3$

C – 9. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal (NH ₄) _{2,46} Cs _{0,54} Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Masse totale des précurseurs	0,8 g
Composition $A: M: P$	5:2:3
Ajout eau distillée	2 ml
Cycle thermique	200°C 3 h 25 h 18 h
pH initial	7
pH final	/
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	$\begin{array}{l} Ga_2O_3, \ CsNO_3, \ (NH_4)_{3-x}Cs_xGa_2(PO_4)_3, \\ \epsilon \ (NH_4)Ga(OH)(PO_4) \end{array}$

Synthèse	Échantillon monophasé (NH ₄) _{3-x} Cs _x Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Masse totale des précurseurs	0,8 g
Composition $A: M: P$	3:2:3
Ajout eau distillée	0,4 ml
Cycle thermique	180°C 3 h 25 h 18 h
pH initial	8
pH final	11
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	$ (NH_4)_{3-x} Cs_x Ga_2 (PO_4)_3 \ (80\ \%,\ x\approx 0,3),\ Ga_2 O_3 \ (20\ \%), \\ CsNO_3 \ (non \ quantifié) $

C – 9. (ii) Conditions d'obtention de l'échantillon quasi-monophasé

C – 9. (iii) Caractéristiques du cristal étudié

Formule	$(NH_4)_{2,46}Cs_{0,54}Ga_2(PO_4)_3$
Analyse EDS (MEB)	10 : 34 : 56 pour Cs : Ga : P
Masse molaire (g·mol ⁻¹)	540,5
Densité calculée ρ (g·cm ⁻³)	3,0731(6)
Coefficient d'absorption μ (mm ⁻¹)	6,756
Dimension (mm ³)	0,075 imes 0,075 imes 0,050
Paramètres de maille	
Volume	1167,8(2) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 h0l : h, l = 2n+1
Groupe d'espace	C2/c (n°15)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 15 s/° ; 2 itérations
Domaine angulaire θ	$5,84^{\circ} \le \theta \le 42^{\circ}$
Indices limitants	$-25 \le h \le 24$ $-19 \le k \le 15$ $-16 \le l \le 17$
Nombre de réflexions mesurées	9587
Nombre de réflexions avec I > 3σ	4060
Nombre de réflexions indépendantes (I>30)	2339
R_{sym}, R_{mes}, χ^2	0,067 ; 0,083 ; 1,656
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	SADABS (0,558 ; 0,713 ; 0,0553)
Correction de l'extinction secondaire	B-C Type I, Lorentzien, isotrope
Coefficient d'extinction g	0,05.10-4

C – 9. (iv) Conditions d'enregistrement du monocristal

C – 9. (v) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier Différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Contraintes	Somme de l'occupation de Cs + $N(1) = 1$ ADP de Cs et $N(1)$ identiques
Localisation des atomes d'hydrogène	Partielle (seulement sur site N(2) non substitué par Cs), par synthèse de Fourier différence sur les réflexions à $\sin\theta/\lambda < 0.5$
Traitement des atomes d'hydrogène	Affinement des positions et U_{iso} (tous identiques)
Nombre de paramètres affinés	107
Facteurs d'accord	$\begin{split} R &= 0,0363 \text{ et } R_W = 0,0366 \\ R_{\text{all}} &= 0,0937 \text{ et } R_{W\text{all}} = 0,0428 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,22 ; 1,07
$\Delta \sigma$ max ; moyen	$2,93\cdot10^{-2}$; $5,5\cdot10^{-3}$
Résidus Fourier différence (max ; min)	1,14 ; - 1,03

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Cs(1)	0	0,12672(4)	0,25	0,01862(13)	0,5382(13)
N(1)	0	0,12672(4)	0,25	0,01862(13)	0,4618(13)
Ga(1)	0,331402(18)	0,07678(3)	0,41892(3)	0,00661(7)	1
P(1)	0,5	0,00449(8)	0,25	0,0071(2)	1
P(2)	0,20666(4)	0,87290(6)	0,16066(6)	0,00786(15)	1
O(1)	0,26144(13)	0,22917(16)	0,33698(18)	0,0114(5)	1
O(2)	0,28230(13)	-0,08313(16)	0,32864(18)	0,0122(5)	1
O(3)	0,44869(12)	0,08668(17)	0,60803(17)	0,0112(4)	1
O(4)	0,22984(13)	0,05169(17)	0,53083(18)	0,0108(5)	1
O(5)	0,41873(12)	0,09400(16)	0,28341(18)	0,0107(5)	1
O(6)	0,09015(13)	0,8915(2)	0,1389(2)	0,0190(6)	1
N(2)	0,38597(18)	0,2958(3)	0,0412(3)	0,0178(7)	1
H(2a)	0,449(3)	0,319(4)	0,058(4)	0,040(5) ^(*)	1
H(2b)	0,347(3)	0,373(4)	0,014(4)	0,040(5) ^(*)	1
H(2c)	0,379(3)	0,246(4)	0,127(4)	0,040(5) (*)	1
H(2d)	0,356(3)	0,260(4)	-0,043(5)	0,040(5) (*)	1

C – 9. (vi) Paramètres atomiques

Les atomes suivis par ^{(]} ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)/N(1)	0,02050(19)	0,0196(2)	0,01458(17)	0	0,00494(13)	0
Ga(1)	0,00726(10)	0,00651(12)	0,00565(9)	0,00044(9)	0,00187(7)	0,00005(8)
P(1)	0,0064(3)	0,0101(4)	0,0047(3)	0	0,0019(2)	0
P(2)	0,0082(2)	0,0087(3)	0,0076(2)	-0,0012(2)	0,00388(16)	-0,00118(19)
O(1)	0,0141(7)	0,0066(7)	0,0140(6)	0,0027(6)	0,0058(5)	0,0025(6)
O(2)	0,0195(7)	0,0083(8)	0,0088(6)	-0,0042(7)	0,0052(5)	-0,0040(6)
O(3)	0,0104(6)	0,0138(8)	0,0064(6)	-0,0010(6)	-0,0005(5)	0,0021(6)
O(4)	0,0136(7)	0,0102(8)	0,0112(6)	-0,0007(6)	0,0074(5)	-0,0035(6)
O(5)	0,0109(6)	0,0106(8)	0,0135(6)	0,0019(6)	0,0078(5)	0,0007(6)
O(6)	0,0084(6)	0,0252(10)	0,0249(8)	0,0010(7)	0,0079(6)	0,0037(8)
N(2)	0,0167(9)	0,0205(12)	0,0161(9)	0,0000(9)	0,0058(7)	-0,0033(9)

α α (\cdots)		1 1/ 1	•	•
$(1 - 9)(v_{11})$	Parametres	de déplace	ements atomia	lies anisofrones
U). (VII)	1 urumetres	ue uepiae	chiefies acoming	ues anisotropes

Ga(1)	O(1)	O(2)	O(3)	O(4)	O(5)
O(1)	1,8470(16)	3,250(2)	3,160(2)	2,678(3)	2,716(3)
O(2)	122,64(6)	1,8575(16)	3,214(2)	2,593(3)	2,723(3)
O(3)	117,22(7)	119,95(7)	1,8550(13)	2,778(2)	2,815(2)
O(4)	88,56(8)	84,77(8)	92,54(7)	1,987(2)	3,966(3)
O(5)	90,14(8)	90,15(8)	94,17(7)	173,00(6)	1,9869(19)

C-9. (viii) Distances et angles (Å, °)

P(1)	O(3 ⁱ)	O(3 ⁱⁱ)	O(5)	O(5 ⁱⁱⁱ)
O(3 ⁱ)	1,5389(16)	2,4302(19)	2,519(2)	2,578(2)
$O(3^{ii})$	104,29(10)	1,5389(16)	2,578(2)	2,519(2)
O(5)	109,74(9)	113,61(8)	1,5413(18)	2,462(3)
$O(5^{iii})$	113,61(8)	109,74(9)	106,04(10)	1,5413(18)

P(2)	O(1 ^{iv})	O(2 ^v)	O(4 ^{vi})	O(6)
$O(1^{iv})$	1,5468(18)	2,393(2)	2,548(2)	2,551(3)
O(2 ^v)	100,97(8)	1,5549(15)	2,544(2)	2,532(2)
$O(4^{vi})$	111,64(11)	110,92(9)	1,5334(19)	2,477(3)
O(6)	113,02(11)	111,29(10)	108,86(10)	1,5120(19)

N(2)	H(2a)	H(2b)	H(2c)	H(2d)
H(2a)	0,84(4)	1,39(6)	1,51(7)	1,39(5)
H(2b)	103(4)	0,93(4)	1,62(6)	1,30(6)
H(2c)	113(3)	118(4)	0,96(4)	1,46(6)
H(2d)	115(4)	96(4)	111(4)	0,81(4)

	N-H	N-H…O	Н…О	NO
N(2)- $H(2a)$ ···O(6 ^{xiii})	0,84(4)	166(4)	1,91(4)	2,734(3)
N(2)- $H(2b)$ ···O(4 ^{iv})	0,93(4)	175(3)	2,08(4)	3,020(3)
N(2)-H(2c)-O(5)	0,96(4)	153(4)	2,05(4)	2,942(3)
$N(2)$ - $H(2d)$ ···· $O(2^{ii})$	0,81(4)	149(4)	2,20(4)	2,920(3)

Cs(1)/N(1)-O(3 ^{viii})	3,2076(17)
$Cs(1)/N(1)-O(3^{ix})$	3,2076(17)
Cs(1)/N(1)-O(4)	3,2895(14)
$Cs(1)/N(1)-O(4^{vii})$	3,2895(14)
$Cs(1)/N(1)-O(6^{x})$	3,048(2)
$Cs(1)/N(1)-O(6^{xi})$	3,048(2)
$Cs(1)/N(1)-O(6^{\vee})$	3,2806(17)
$Cs(1)/N(1)-O(6^{xii})$	3,2806(17)

$N(2)-O(1^{xii})$	3,276(3)
$N(2)-O(2^{iv})$	3,158(3)
N(2)-O(2 ⁱⁱ)	2,920(3)
$N(2)-O(4^{iv})$	3,019(3)
N(2)-O(5)	2,942(3)
N(2)-O(5 ⁱⁱⁱ)	3,271(3)
$N(2)-O(6^{xiii})$	2,734(3)
$N(2)-O(6^{xiv})$	2,963(3)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ 1-x, -y, \ 1-z \ ; & (ii) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ -\frac{1}{2}+z \ ; & (iii) \ 1+x, -y, \ \frac{1}{2}+z \ ; & (iv) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ \frac{1}{2}+z \ ; \\ (v) \ -x, \ 1-y, \ -z \ ; & (vi) \ \frac{1}{2}+x, \ \frac{3}{2}-y, \ -\frac{1}{2}+z \ ; & (vii) \ x, \ -y, \ \frac{1}{2}+z \ ; & (viii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ 1-z \ ; & (ix) \ -1+x, \ -y, \ -\frac{1}{2}+z \ ; \\ (x) \ -x, \ -1-y, \ -z \ ; & (xi) \ x, \ -1-y, \ \frac{1}{2}+z \ ; & (xii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ -z \ ; & (xiv) \ \frac{1}{2}+x, \ -\frac{1}{2}-y, \ \frac{1}{2}+z \ . \end{array}$

S _{ij}	Cs(1)/N(1)	N(2)	Ga(1)	P(1)	P(2)	V_{anion}
O(1)	0,032 0,016 0,032 0,016	0,059	0,744		1,174	2,025
O(2)		0,081 0,153	0,724		1,155	2,112
O(3)	0,064 0,033 0,064 0,033		0,721	1,181 1,181		1,998
O(4)	0,051 0,026 0,051 0,026	0,117	0,501		1,214	1,909
O(5)		0,144 0,059	0,500	1,216 1,216		1,920
O(6)	0,099 0,050 0,099 0,050	0,253			1,282	1,969
	0,053 0,027 0,053 0,027	0,136			-	
V _{cation}	0,901	1,140	3,190	4,795	4,825	

C_{-}	0 (iv)	Calcule	de va	lence	électros	aunitet
U	J. (IA)	Galcuis	uc va	ichec	cicciios	langue

Pour le site Cs(1)/N(1), la proportion relative de chaque entité a été prise en compte dans le calcul.

$C-10. \qquad (NH_4)_{2,77} Rb_{0,23} Ga_2 (PO_4)_3$

C-10. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal (NH ₄) _{2,77} Rb _{0,23} Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	RbNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Masse totale des précurseurs	1,5 g
Composition $A: M: P$	1:2:3
Ajout eau distillée	2 ml
Cycle thermique	180°C 3 h 20 h
pH initial	7
pH final	10
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	Ga_2O_3 , (NH ₄)Ga(OH)(PO_4), (NH ₄) _{3-x} Rb _x Ga ₂ (PO ₄) ₃

Poudre

Analyse du diffractogramme RX sur poudre

C – 10. (ii) Conditions	d'obtention de l'échantillon quasi-monophasé
Synthèse	Échantillon Monophasé (NH ₄) _{3-x} Rb _x Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	RbNO ₃
Précurseur métal trivalent M	Ga_2O_3
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Masse totale des précurseurs	0,8 g
Composition $A: M: P$	3:2:3
Ajout eau distillée	0,4 ml
Cycle thermique	180°C 3 h 25 h 18 h
pH initial	8
pH final	11
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D

Blanche

 $(NH_4)_{3-x}Rb_xGa_2(PO_4)_3, Ga_2O_3$

1 1) / 1 •11

C – 10. (iii) Caractéristiques du cristal étudié

Formule	$(NH_4)_{2,77}Rb_{0,23}Ga_2(PO_4)_3$
Analyse EDS (MEB)	10 : 33 : 57 pour Rb : Ga : P
Masse molaire (g·mol ⁻¹)	492,0
Densité calculée ρ (g·cm ⁻³)	2,8149(4)
Coefficient d'absorption μ (mm ⁻¹)	5,983
Dimension (mm ³)	$0,180 \times 0,130 \times 0,130$
Paramètres de maille	
Volume	1160,46(17) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 h0l : h, l = 2n+1
Groupe d'espace	C2/c (n°15)

Diffractomètre	<i>CAD4</i> de <i>ENRAF-NONIUS</i>
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Scans ω - 2/3 θ Largeur de scan : 1,20 + 0,35 tan θ Ouverture de la fente : 1,20 + tan θ 3 réflexions mesurées toutes les 3600 s
Domaine angulaire θ	$2,56^\circ \le \theta \le 44,90^\circ$
Indices limitants	$-26 \le h \le 26$ $0 \le k \le 20$ $-17 \le l \le 17$
Nombre de réflexions mesurées	9506
Nombre de réflexions avec I > 3σ	4758
Nombre de réflexions indépendantes (I>30)	2741
R_{sym}, R_{mes}, χ^2	/
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Sphérique (0,237 ; 0,281 ; 0,0546)
Correction de l'extinction secondaire	B-C Type I, Lorentzien, isotrope
Coefficient d'extinction g	0,10.10-4

C-10.~(iv) Conditions d'enregistrement du monocristal

C – 10. (v) Résolution et affinement structural

Logiciel	JANA2000		
Méthode de résolution	Fourier Différence à partir du modèle de $Cs_{0,54}(NH_4)_{2,46}Ga_2(PO_4)_3$		
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)		
Contraintes	Somme de l'occupation de Rb + N(1) = 1 ADP de Rb et N(1) identiques		
Localisation des atomes d'hydrogènePartielle (seulement sur site N(2) n par Rb), par synthèse de Fourier di les réflexions à $\sin\theta/\lambda < 0.5$			
Traitement des atomes d'hydrogène	Affinement des positions et U_{iso} (tous identiques)		
Nombre de paramètres affinés	107		
Facteurs d'accord	$\begin{split} R &= 0,0249 \text{ et } R_{W} = 0,0275 \\ R_{\text{all}} &= 0,0791 \text{ et } R_{W\text{all}} = 0,0310 \end{split}$		
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$		
Gof ; Gof _{all}	1,26 ; 1,49		
$\Delta \sigma$ max ; moyen	4,08·10 ⁻² ; 2,9·10 ⁻³		
Résidus Fourier différence (max ; min)	0,84 ; - 1,28		

Atome	X	у	Z	U _{iso(eq)} (Å ²)	occ.
Rb(1)/N(1)	0	0,11822(10)	0,25	0,0324(3)	0,2261(17)
N(1)	0	0,11822(10)	0,25	0,0324(3)	0,7739(17)
Ga(1)	0,331661(11)	0,077109(14)	0,419019(16)	0,00763(3)	1
P(1)	0,5	0,00318(5)	0,25	0,00816(11)	1
P(2)	0,20591(3)	0,87414(3)	0,16012(4)	0,00902(8)	1
O(1)	0,26302(9)	0,22983(10)	0,33687(13)	0,0133(3)	1
O(2)	0,28203(9)	-0,08202(10)	0,32766(12)	0,0141(3)	1
O(3)	0,44854(8)	0,08916(10)	0,60810(11)	0,0129(2)	1
O(4)	0,22899(9)	0,05119(10)	0,52928(12)	0,0131(3)	1
O(5)	0,41915(8)	0,09258(10)	0,28302(12)	0,0126(3)	1
O(6)	0,08973(9)	0,89490(13)	0,13958(16)	0,0208(4)	1
N(2)	0,38651(12)	0,29471(15)	0,03968(17)	0,0177(4)	1
H(2a)	0,460(2)	0,314(3)	0,057(4)	0,051(5) (*)	1
H(2b)	0,352(3)	0,345(3)	0,038(4)	0,051(5) (*)	1
H(2c)	0,384(2)	0,239(3)	0,139(4)	0,051(5) (*)	1
H(2d)	0,362(3)	0,241(3)	-0,038(4)	0,051(5) (*)	1

Les atomes suivis par ^{(‡} ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)/N(1)	0,0345(5)	0,0369(5)	0,0260(4)	0	0,0114(4)	0
Ga(1)	0,00811(5)	0,00739(5)	0,00679(5)	0,00047(5)	0,00199(4)	0,00010(5)
P(1)	0,00742(16)	0,01066(18)	0,00631(16)	0	0,00241(13)	0
P(2)	0,00926(12)	0,00957(13)	0,00932(12)	-0,00133(10)	0,00467(10)	-0,00106(10)
O(1)	0,0160(4)	0,0087(4)	0,0148(4)	0,0029(3)	0,0052(3)	0,0031(3)
O(2)	0,0208(5)	0,0105(4)	0,0100(3)	-0,0036(4)	0,0045(3)	-0,0036(3)
O(3)	0,0117(4)	0,0160(4)	0,0077(3)	-0,0009(3)	-0,0004(3)	0,0027(3)
O(4)	0,0156(4)	0,0139(4)	0,0124(4)	-0,0016(3)	0,0082(3)	-0,0024(3)
O(5)	0,0134(4)	0,0133(4)	0,0140(4)	0,0019(3)	0,0086(3)	0,0002(3)
O(6)	0,0112(4)	0,0254(6)	0,0286(6)	0,0013(4)	0,0106(4)	0,0040(5)
N(2)	0,0166(5)	0,0181(6)	0,0174(5)	-0,0006(4)	0,0050(4)	-0,0035(4)

C – 10. (vii) Paramètres de déplacements atomiq	ues anisotropes
---	-----------------

Ga(1)	O(1)	O(2)	O(3)	O(4)	O(5)
O(1)	1,8394(10)	3,2336(15)	3,1355(13)	2,6829(17)	2,7105(17)
O(2)	122,46(4)	1,8497(10)	3,2218(13)	2,5775(17)	2,7048(16)
O(3)	116,34(4)	121,06(4)	1,8510(8)	2,7865(16)	2,8133(15)
O(4)	88,99(5)	84,37(5)	93,08(5)	1,9857(13)	3,9632(18)
O(5)	90,13(5)	89,59(5)	94,22(5)	172,23(4)	1,9866(13)

C-10.~(viii) Distances et angles (Å, °)

P(1)	O(3 ⁱ)	O(3 ⁱⁱ)	O(5)	O(5 ⁱⁱⁱ)
O(3 ⁱ)	1,5425(10)	2,4251(12)	2,5205(14)	2,5726(16)
$O(3^{ii})$	103,64(6)	1,5425(10)	2,5726(16)	2,5205(14)
O(5)	110,15(6)	113,62(6)	1,5315(12)	2,4441(17)
$O(5^{iii})$	113,62(5)	110,15(6)	105,86(7)	1,5315(12)

P(2)	O(1 ^{iv})	O(2 ^v)	O(4 ^{vi})	O(6)
$O(1^{iv})$	1,5446(11)	2,3851(15)	2,5472(15)	2,5546(17)
O(2 ^v)	100,81(6)	1,5507(10)	2,5412(15)	2,5245(14)
$O(4^{vi})$	111,75(7)	111,02(6)	1,5324(13)	2,474(2)
O(6)	113,39(7)	111,03(8)	108,71(7)	1,5120(13)

N(2)	H(2a)	H(2b)	H(2c)	H(2d)
H(2a)	0,95(3)	1,42(5)	1,65(5)	1,48(4)
H(2b)	119(3)	0,69(3)	1,39(4)	1,30(5)
H(2c)	109(2)	101(4)	1,08(3)	1,52(5)
H(2d)	109(3)	114(3)	103(3)	0,86(3)

	N-H	N-H…O	Н…О	NO
N(2)- $H(2a)$ ···O(6 ^{xiii})	0,95(3)	158(3)	1,82(3)	2,7365(19)
$N(2)$ - $H(2b)$ ···· $O(4^{iv})$	0,69(3)	157(4)	2,37(3)	3,0147(18)
N(2)-H(2c)-O(5)	1,08(3)	154(3)	1,94(3)	2,9440(19)
$N(2)-H(2d)\cdots O(2^{ii})$	0,86(3)	161(4)	2,09(3)	3,178(2)

Rb(1)/N(1)-O(3 ^{viii})	3,2558(14)
$Rb(1)/N(1)-O(3^{ix})$	3,2558(14)
Rb(1)/N(1)-O(4)	3,2537(9)
Rb(1)/N(1)-O(4 ^{vii})	3,2537(9)
$Rb(1)/N(1)-O(6^{x})$	2,9364(16)
$Rb(1)/N(1)-O(6^{xi})$	2,9364(16)
$Rb(1)/N(1)-O(6^{\vee})$	3,2764(13)
$Rb(1)/N(1)-O(6^{xii})$	3,2764(13)

$N(2)-O(1^{xii})$	3,2638(16)
$N(2)-O(2^{iv})$	3,178(2)
N(2)-O(2 ⁱⁱ)	2,9133(17)
$N(2)-O(4^{iv})$	3,0147(18)
N(2)-O(5)	2,9440(19)
N(2)-O(5 ⁱⁱⁱ)	3,2625(17)
$N(2)-O(6^{xiii})$	2,7365(19)
$N(2)-O(6^{xiv})$	2,979(2)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ 1-x, -y, \ 1-z \ ; & (ii) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ -\frac{1}{2}+z \ ; & (iii) \ 1+x, -y, \ \frac{1}{2}+z \ ; & (iv) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ \frac{1}{2}+z \ ; \\ (v) \ -x, \ 1-y, \ -z \ ; & (vi) \ \frac{1}{2}+x, \ \frac{3}{2}-y, \ -\frac{1}{2}+z \ ; & (vii) \ x, \ -y, \ \frac{1}{2}+z \ ; & (viii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ 1-z \ ; & (ix) \ -1+x, \ -y, \ -\frac{1}{2}+z \ ; \\ (x) \ -x, \ -1-y, \ -z \ ; & (xi) \ x, \ -1-y, \ -z \ ; & (xii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ -z \ ; & (xiii) \ \frac{1}{2}-x, \ -\frac{1}{2}-y, \ -z \ ; & (xiv) \ \frac{1}{2}+x, \ -\frac{1}{2}-y, \ \frac{1}{2}+z \ . \end{array}$

S _{ij}	Rb(1)	/N(1)	N(2)	Ga(1)	P(1)	P(2)	Vanion
O(1)	0,008 0,008	0,024 0,024	0,061	0,737		1,153	1,983
O(2)			0,076 0,156	0,718		1,127	2,077
O(3)	0,015 0,015	0,048 0,048	0,022	0,716	1,177 1,177		1,978
O(4)	0,015 0,015	0,048 0,048	0,119	0,498		1,212	1,892
O(5)			0,144 0,061	0,499	1,192 1,192		1,895
O(6)	0,036 0,014 0,036	0,113 0,045 0,113	0,252			1,266	1,727
V _{cation}	0,014 0,7	0,045 36	1,020	3,168	4,738	4,758	

C – 10. (ix) Calculs de valence électrostatique

Pour le site Rb(1)/N(1), la proportion relative de chaque entité a été prise en compte dans le calcul.

C - 11. (NH₄)₃Ga₂(PO₄)₃

C – 11. (i) Condition d'obtention du cristal étudié par DRX

Synthèse	Cristal (NH ₄) ₃ Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	/
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Masse totale des précurseurs	1,2 g
Composition $A: M: P$	0:2:3
Ajout eau distillée	1 ml
Cycle thermique	180°C 3 h 25 h 18 h
pH initial	7
pH final	9
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	Ga_2O_3 , (NH ₄) $Ga(OH)PO_4$, (NH ₄) $_3Ga_2(PO_4)_3$

pH final Observation

Poudre

Couleur, Opacité, Morphologie

Analyse du diffractogramme RX sur poudre

C = 11. (11) Conditi	ons a obtention a un echantilion quasi monophase de
(NH ₄) ₃ Ga ₂ (PO ₄) ₃	
Synthèse	Échantillon monophasé (NH ₄) ₃ Ga ₂ (PO ₄) ₃
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	/
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄ : H ₃ PO ₄ (85%) 11 : 9
Masse totale des précurseurs	2 g
Composition $A: M: P$	0:2:5
Ajout eau distillée	1 ml
Cycle thermique	200°C 3 h 25 h 18 h
pH initial	6

6

Blanche

Incolore, Translucide, 3D

Ga₂O₃, (NH₄)₃Ga₂(PO₄)₃

11 (;;) d'un CJ'_h+ ntion áchantillan 1:+: L J
C – 11. (iii) Conditions d'obtention d'un échantillon quasi monophasé de $(NH_4)[Co(H_2O)_2]Ga_2(PO_4)_3$

Synthèse	Échantillon monophasé (NH ₄)[Co(H ₂ O) ₂]Ga ₂ (PO ₄) ₃		
Mode de synthèse	Hydrothermale		
Volume de l'enceinte	21 ml		
Précurseur métal divalent <i>M</i> '	CoCl ₂ ·6H ₂ O		
Précurseur métal trivalent M	Ga ₂ O ₃		
Précurseur phosphate P	(NH ₄) ₂ HPO ₄ : H ₃ PO ₄ (85%) (1 : 2)		
Masse totale des précurseurs	0,8 g		
Composition $M': M: P$	1:2:15		
Ajout eau distillée	1,1 ml		
Cycle thermique	180°C 3 h 25 h 18 h		
pH initial	2		
pH final	2		
Observation			
Couleur, Opacité, Morphologie	Violet, Translucide, 3D		
Poudre	Blanche (phase secondaire)		
Analyse du diffractogramme RX sur poudre	$(NH_4)[Co(H_2O)_2]Ga_2(PO_4)_3$; phase(s) au Ga de type leucophosphite (tri des cristaux pour études ϕ)		

C – 11. (iv) Conditions d'obtention d'un échantillon quasi monophasé de $(NH_4)[Mn(H_2O)_2]Ga_2(PO_4)_3$

Synthèse	Échantillon monophasé (NH ₄)[Mn(H ₂ O) ₂]Ga ₂ (PO ₄) ₃		
Mode de synthèse	Hydrothermale		
Volume de l'enceinte	21 ml		
Précurseur métal divalent M'	MnCl ₂ ·4H ₂ O		
Précurseur métal trivalent M	Ga ₂ O ₃		
Précurseur phosphate P	(NH ₄) ₂ HPO ₄ : H ₃ PO ₄ (85%) (1 : 2)		
Masse totale des précurseurs	0,8 g		
Composition M': M: P	1:2:15		
Ajout eau distillée	1 ml		
Cycle thermique	180°C 3 h 25 h 18 h		
pH initial	2		
pH final	2		
Observation			
Couleur, Opacité, Morphologie	Bleu pâle, Translucide, 3D		
Poudre	Blanche (phase secondaire)		
Analyse du diffractogramme RX sur poudre	$(NH_4)[Mn(H_2O)_2]Ga_2(PO_4)_3$; phase(s) au Ga de type leucophosphite (tri des cristaux pour études ϕ)		

C – 11. (v) Caractéristiques du cristal étudié

Formule	$(NH_4)_3Ga_2(PO_4)_3$
Analyse EDS (MEB)	38 : 62 pour Ga : P
Masse molaire (g·mol ⁻¹)	478,5
Densité calculée ρ (g·cm⁻³)	2,7320(5)
Coefficient d'absorption μ (mm ⁻¹)	5,114
Dimension (mm ³)	$0,100 \times 0,065 \times 0,050$
Paramètres de maille	a = 13,3948(16) Å b = 10,3138(9) Å c = 9,0361(9) Å β = 111,323(7) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	1162,9(2) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 h0l : h, l = 2n+1
Groupe d'espace	C2/c (n°15)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 36 mm Scans en φ et ω 0,8 °/image ; 25 s/° ; 2 itérations
Domaine angulaire θ	$5,84^{\circ} \le \theta \le 44,32^{\circ}$
Indices limitants	$-26 \le h \le 26$ $-20 \le k \le 19$ $-17 \le l \le 16$
Nombre de réflexions mesurées	18122
Nombre de réflexions avec I > 3σ	4589
Nombre de réflexions indépendantes (I>3 0)	2573
R_{sym}, R_{mes}, χ^2	0,055 ; / ; /
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	Gaussienne (0,687 ; 0,766 ; 0,0715)
Correction de l'extinction secondaire	B-C Type I, Lorentzien, isotrope
Coefficient d'extinction g	0,30.10-4

C – 11. (vi) Conditions d'enregistrement du monocristal

C – 11. (vii) Résolution et affinement structural

Logiciel	JANA2000			
Méthode de résolution	Fourier Différence à partir du modèle de $\rm Cs_{0,54}(\rm NH_4)_{2,46}Ga_2(\rm PO_4)_3$			
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)			
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur réflexions à $sin\theta/\lambda < 0{,}5$			
Traitement des atomes d'hydrogène	Affinement des positions et U _{iso} (tous identiques			
Nombre de paramètres affinés	112			
Facteurs d'accord	$\begin{split} R &= 0,0291 \text{ et } R_{W} = 0,0260 \\ R_{\text{all}} &= 0,0865 \text{ et } R_{W_{\text{all}}} = 0,0295 \end{split}$			
Schéma de pondération	$w = 1 / (\sigma^{2}(F) + 1.10^{-4} F^{2})$			
Gof ; Gof _{all}	1,13 ; 0,96			
Δ/σ max ; moyen	4,67.10 ⁻² ; 3,7.10 ⁻³			
Résidus Fourier différence (max ; min)	0,91 ; - 0,85			

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$
Ga(1)	0,332048(12)	0,077043(14)	0,419431(16)	0,00649(4)
P(1)	0,5	0,00313(5)	0,25	0,00696(13)
P(2)	0,20626(3)	0,87454(3)	0,16039(4)	0,00798(10)
O(1)	0,26364(9)	0,22990(10)	0,33761(12)	0,0124(3)
O(2)	0,28247(9)	-0,08222(10)	0,32789(12)	0,0130(3)
O(3)	0,44845(8)	0,08910(10)	0,60804(12)	0,0118(3)
O(4)	0,22955(9)	0,05075(10)	0,52989(12)	0,0116(3)
O(5)	0,41935(9)	0,09276(10)	0,28373(12)	0,0113(3)
O(6)	0,09030(9)	0,89636(11)	0,13954(15)	0,0199(4)
N(1)	0	0,1050(3)	0,25	0,0301(9)
N(2)	0,38717(13)	0,29546(15)	0,03893(18)	0,0183(5)
H(2a)	0,457(2)	0,322(3)	0,062(3)	0,052(3) (*)
H(2b)	0,347(2)	0,358(3)	0,026(3)	0,052(3) (*)
H(2c)	0,382(2)	0,252(3)	0,096(3)	0,052(3) (*)
H(2d)	0,365(2)	0,245(3)	-0,044(4)	0,052(3) (*)
H(1a)	0,036(2)	0,048(3)	0,205(3)	0,052(3) (*)
H(1b)	-0,040(2)	0,152(3)	0,219(4)	0,052(3) (*)

C – 11. (viii) Paramètres atomiques

Les atomes suivis par ⁽⁾ ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{a}_{i} \mathbf{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ga(1)	0,00751(6)	0,00616(6)	0,00545(6)	0,00036(5)	0,00194(5)	0,00010(5)
P(1)	0,0067(2)	0,0094(2)	0,00500(19)	0	0,00236(16)	0
P(2)	0,00888(15)	0,00828(15)	0,00808(14)	-0,00122(12)	0,00465(12)	-0,00101(12)
O(1)	0,0149(5)	0,0081(4)	0,0142(5)	0,0038(4)	0,0052(4)	0,0041(4)
O(2)	0,0210(5)	0,0090(4)	0,0090(4)	-0,0039(4)	0,0054(4)	-0,0029(4)
O(3)	0,0106(4)	0,0148(5)	0,0073(4)	-0,0006(4)	0,0000(3)	0,0024(4)
O(4)	0,0143(5)	0,0118(4)	0,0117(4)	-0,0016(4)	0,0082(4)	-0,0026(3)
O(5)	0,0121(4)	0,0116(5)	0,0131(4)	0,0014(3)	0,0082(4)	-0,0002(4)
O(6)	0,0113(5)	0,0235(6)	0,0276(6)	0,0010(4)	0,0103(5)	0,0037(5)
N(1)	0,0341(15)	0,0305(14)	0,0275(12)	0	0,0133(11)	0
N(2)	0,0192(7)	0,0185(7)	0,0174(6)	-0,0002(5)	0,0069(6)	-0,0026(5)

C – 11. (ix) Paramètres de déplacements atomiques anisotropes

Ga(1)	O(1)	O(2)	O(3)	O(4)	O(5)
O(1)	1,8382(10)	3,2327(15)	3,1319(13)	2,6867(16)	2,7067(18)
O(2)	122,24(4)	1,8504(10)	3,2219(13)	2,5799(17)	2,7037(17)
O(3)	116,30(4)	121,13(4)	1,8489(9)	2,7833(16)	2,8126(16)
O(4)	89,12(5)	84,39(5)	92,94(5)	1,9878(14)	3,9638(19)
O(5)	90,06(5)	89,58(5)	94,31(5)	172,28(4)	1,9850(13)

 $C-11.~(x) \qquad \text{Distances et angles (Å, °)}$

P(1)	O(3 ⁱ)	O(3 ⁱⁱ)	O(5)	O(5 ⁱⁱⁱ)
O(3 ⁱ)	1,5437(10)	2,4316(13)	2,5201(14)	2,5769(16)
$O(3^{ii})$	103,92(6)	1,5437(10)	2,5769(16)	2,5201(14)
O(5)	109,92(6)	113,69(5)	1,5343(13)	2,4490(19)
$O(5^{iii})$	113,69(5)	109,92(6)	105,90(7)	1,5343(13)

P(2)	O(1 ^{iv})	O(2 ^v)	O(4 ^{vi})	O(6)
$O(1^{iv})$	1,5437(11)	2,3877(14)	2,5457(15)	2,5542(17)
O(2 ^v)	100,95(5)	1,5518(10)	2,5437(15)	2,5269(14)
$O(4^{vi})$	111,68(7)	111,11(6)	1,5327(13)	2,470(2)
O(6)	113,42(7)	111,13(7)	108,46(7)	1,5119(13)

N(1)	H(1a)	H(1a ^{vii})	H(1b)	$H(1b^{vii})$
H(1a)	0,94(3)	1,48(5)	1,51(4)	1,26(4)
$H(1a^{vii})$	103(3)	0,94(3)	1,26(4)	1,51(4)
H(1b)	134(3)	99(3)	0,70(3)	1,01(3)
$\mathrm{H}(1\mathrm{b}^{\mathrm{vii}})$	99(3)	134(3)	93(3)	0,70(3)

N(2)	H(2a)	H(2b)	H(2c)	H(2d)
H(2a)	0,92(3)	1,43(4)	1,36(5)	1,49(4)
H(2b)	111(3)	0,82(3)	1,27(4)	1,39(4)
H(2c)	113(3)	112(4)	0,70(3)	1,21(4)
H(2d)	112(3)	110(2)	99(3)	0,88(3)

	N-H	N-H…O	Н…О	NO
N(1)-H(1a)O(6 ^x)	0,94(3)	163(3)	1,91(3)	2,822(3)
$N(1)\text{-}H(1a^{\text{vii}})\text{-}O(6^{\text{xi}})$	0,94(3)	163(3)	1,91(3)	2,822(3)
N(2)- $H(2a)$ ···O(6 ^{xiii})	0,92(3)	168(3)	1,83(3)	2,741(2)
$N(2)$ - $H(2b)$ ···· $O(4^{iv})$	0,82(3)	165(3)	2,21(3)	3,0094(19)
N(2)-H(2c)-O(5)	0,70(3)	161(3)	2,28(3)	2,9591(19)
$N(2)-H(2d)\cdots O(2^{ii})$	0,88(3)	154(3)	2,11(3)	2,9147(18)

N(1)-O(3 ^{viii})	3,382(9)
N(1)-O(3 ^{ix})	3,382(9)
N(1)-O(4)	3,2416(10)
$N(1)-O(4^{vii})$	3,2416(10)
N(1)-O(6 ^x)	2,822(3)
N(1)-O(6 ^{xi})	2,822(3)
N(1)-O(6 ^v)	3,2797(12)
N(1)-O(6 ^{xii})	3,2797(12)
$N(2)-O(1^{xii})$	3,2753(17)
$N(2)-O(2^{iv})$	3,193(2)
N(2)-O(2 ⁱⁱ)	2,9147(18)
$N(2)-O(4^{iv})$	3,0094(19)
N(2)-O(5)	2,9591(19)
$N(2)-O(5^{iii})$	3,2611(18)
$N(2)-O(6^{xiii})$	2,741(2)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ 1-x, -y, \ 1-z \ ; & (ii) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ -\frac{1}{2}+z \ ; & (iii) \ 1+x, -y, \ \frac{1}{2}+z \ ; & (iv) \ \frac{1}{2}+x, \ \frac{1}{2}-y, \ \frac{1}{2}+z \ ; \\ (v) \ -x, \ 1-y, \ -z \ ; & (vi) \ \frac{1}{2}+x, \ \frac{3}{2}-y, \ -\frac{1}{2}+z \ ; & (vii) \ x, \ -y, \ \frac{1}{2}+z \ ; & (viii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ 1-z \ ; & (ix) \ -1+x, \ -y, \ -\frac{1}{2}+z \ ; \\ (x) \ -x, \ -1-y, \ -z \ ; & (xi) \ x, \ -1-y, \ \frac{1}{2}+z \ ; & (xii) \ \frac{1}{2}-x, \ \frac{1}{2}-y, \ -z \ ; & (xiv) \ \frac{1}{2}+x, \ -\frac{1}{2}-y, \ \frac{1}{2}+z \ . \end{array}$

S _{ij}	Ga(1)	P(1)	P(2)	Vanion
O(1)	0,746		1,177	1,923
O(2)	0,722		1,152	1,874
O(3)	0 725	1,177		1 002
	0,725	1,177		1,902
O(4)	0,498		1,213	1,711
O(5)	0,502	1,207 1,207		1,709
O(6)			1,283	1,283
V _{cation}	3,194	4,769	4,824	

C – 11. (xi) Calculs de valence électrostatique

Table de calcul effectuée sans prendre en compte la contribution des ions ammoniums.

S _{ij}	N(1)	N(2)	Ga(1)	P(1)	P(2)	Vanion
O(1)		0,059	0,746		1,177	1,982
O(2)		0,073 0,155	0,722		1,152	2,102
O(3)	0,044 0,044		0,725	1,177 1,177		1,946
O(4)	0,064 0,064	0,120	0,498		1,213	1,895
O(5)		0,138 0,061	0,502	1,207 1,207		1,908
O(6)	0,200 0,200 0,058 0,058	0,249 0,125			1,283	2,055
V _{cation}	0,732	0,980	3,194	4,769	4,824	

Table de calcul complète

C – 11. (xii) Simulation du diffractogramme RX sur poudre

$C-12. \qquad Cs_2Ga_6(OH)_2(PO_4)_6{\cdot}1{,}55H_2O$

Synthèse	Cristal $Cs_2Ga_6(OH)_2(PO_4)_6 \cdot xH_2O \ (x \approx 1.55)$
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsOH (50%)
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	H ₃ PO ₄ (85%)
Masse totale des précurseurs	0,8 g
Composition A : M: P	1:2:2
Ajout eau distillée	2 ml
Cycle thermique	180°C 3 h 48 h 18 h
pH initial	1,5
pH final	6
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D & 3D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	$\begin{split} &Cs_{2}Ga_{6}(OH)_{2}(PO_{4})_{6}\cdot xH_{2}O\ (x\approx 1,55)\ (minoritaire),\\ &CsGa_{2}(OH)(OH_{2})(PO_{4})_{2}\cdot(H_{2}O),\\ &Cs_{2}[Ga_{4}(HPO_{4})_{4}(PO_{4})_{4}]\cdot 0,5(H_{2}O) \end{split}$

Synthèse	Échantillon monophasé Cs ₂ Ga ₆ (OH) ₂ (PO ₄) ₆ ·xH ₂ O (x \approx 1,55)
Mode de synthèse	Hydrothermale
Volume de l'enceinte	21 ml
Précurseur métal alcalin A	CsOH (50%)
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse (creuset Pt)	$Ga_2O_3: (NH_4)_2HPO_4 (1:1); ~12 h; 400^{\circ}C$
Masse totale des précurseurs	0,8 g
Composition <i>A</i> : <i>M</i> : P	1:3:3
Ajout eau distillée	5 ml
Cycle thermique	180°C 3 h 10 h 25 h 130°C
pH initial	9
pH final	4
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 2D
Poudre	Blanche
Analyse du diffractogramme RX sur poudre	$ \begin{split} &CsGa_2(OH)(OH_2)(PO_4)_2 \cdot (H_2O) \\ &Cs_2Ga_6(OH)_2(PO_4)_6 \cdot xH_2O \ (x\approx 1,55), \\ &tri \ des \ cristaux \ pour \ études \ complémentaires \end{split} $

C – 12. (ii) Conditions d'obtention de l'échantillon quasi-monophasé

C – 12. (iii) Caractéristiques du cristal étudié

Formule	$Cs_2Ga_6(OH)_2(PO_4)_6{\cdot}xH_2O~(x\approx 1,55)$
Analyse EDS (MEB et TEM)	13 : 43 : 44 pour Cs :Ga : P
Masse molaire (g·mol ⁻¹)	1315,0
Densité calculée ρ (g·cm ⁻³)	3,547
Coefficient d'absorption μ (mm ⁻¹)	9,899
Dimension (mm ³)	$0,321\times0,039\times0,034$
Paramètres de maille	a = 10,2190(4) Å b = 13,9565(15) Å c = 17,260(2) Å β = 90,193(5) ° <i>POSTREF</i> à partir de toutes les réflexions
Volume	2461,6(4) Å ³
Ζ	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h = 2n+1 0k0 : k = 2n+1
Groupe d'espace	P2 ₁ /a (n°14)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
	Dx = 34 mm
Stratégie de la collecte de données	Scans en ϕ et ω
	1,4°/image ; 120 s/° ; 2 itérations
Domaine angulaire θ	$5,85^\circ \le \theta \le 37,50^\circ$
	$-17 \le h \le 17$
Indices limitants	$-18 \le k \le 23$
	$-25 \le l \le 29$
Nombre de réflexions mesurées	39034
Nombre de réflexions avec I > 3σ	12372
Nombre de réflexions indépendantes (I>30)	7681
R_{sym}, R_{mes}, χ^2	0,088 ; 0,100 ; 8,707
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	SADABS (0,316; 0,714; 0,0661)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

C – 12. (iv) Conditions d'enregistrement du monocristal

C – 12. (v) Résolution et affinement structural

Logiciel	JANA2000		
Méthode de résolution	Patterson et Fourier Différence		
Paramètres de déplacements atomiques (ADP)	Anisotrope (2^{eme} ordre) sauf Cs(1) (3^{eme} ordre)		
Loi de macle ; taux de macle α	miroir perpendiculaire à \vec{c} ; $\alpha = 0,3285(7)$		
Localisation des atomes d'hydrogène	Partielle (seulement H de O(28)), par synthèse de Fourier différence sur les réflexions à $\sin\theta/\lambda < 0.5$		
Traitement des atomes d'hydrogène	Affinement des positions et U _{iso} (tous identiques)		
Nombre de paramètres affinés	398		
Facteurs d'accord	$\begin{split} R &= 0,0419 \text{ et } Rw = 0,0396 \\ R_{\text{all}} &= 0,0911 \text{ et } Rw_{\text{all}} = 0,0443 \end{split}$		
Schéma de pondération	$w = 1 / (\sigma^{2}(F) + 1.10^{-4} F^{2})$		
Gof ; Gof _{all}	1,33 ; 1,17		
$\Delta \sigma$ max ; moyen	$5 \cdot 10^{-3}$; $2 \cdot 10^{-4}$		
Résidus Fourier différence (max ; min)	1,45 ; - 1,16		

C – 12. (vi) Paramètres atomiques

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Cs(1)	0,45294(9)	0,32130(7)	0,48291(5)	0,03639(15)	1
Cs(2)	0,70123(4)	0,30188(3)	-0,00271(2)	0,02239(10)	1
Ga(1)	0,16542(5)	0,51388(4)	0,19739(3)	0,00815(14)	1
Ga(2)	0,11788(6)	0,43536(4)	0,39560(3)	0,00816(14)	1
Ga(3)	0,38062(6)	0,75561(4)	0,30301(3)	0,00971(13)	1
Ga(4)	0,66794(5)	0,48331(4)	0,30275(3)	0,00802(13)	1
Ga(5)	0,62055(6)	0,56612(4)	0,10542(3)	0,00757(13)	1
Ga(6)	0,93267(5)	0,23943(4)	0,20020(3)	0,00948(14)	1
P(1)	0,37396(13)	0,53773(10)	0,34143(7)	0,0095(3)	1
P(2)	0,37531(13)	0,42964(10)	0,08273(7)	0,0075(3)	1
P(3)	0,13160(13)	0,74079(10)	0,19970(7)	0,0089(3)	1
P(4)	0,86522(13)	0,45444(10)	0,15991(7)	0,0086(3)	1
P(5)	0,87149(13)	0,57389(10)	0,41807(7)	0,0077(3)	1
P(6)	0,68656(12)	0,25124(10)	0,30022(7)	0,0093(3)	1
O(1)	-0,0012(4)	0,4953(3)	0,1401(2)	0,0157(11)	1
O(2)	0,3281(4)	0,5242(3)	0,2576(2)	0,0146(11)	1
O(3)	0,2400(4)	0,4417(3)	0,1192(2)	0,0139(10)	1
O(4)	0,1723(4)	0,6426(3)	0,1704(2)	0,0154(11)	1
O(5)	0,0839(3)	0,4773(3)	0,2884(2)	0,0131(10)	1
O(6)	0,1421(3)	0,3882(3)	0,5000(2)	0,0120(9)	1
O(7)	-0,0483(3)	0,4815(3)	0,4169(2)	0,0121(10)	1
O(8)	0,2727(3)	0,5046(3)	0,4006(2)	0,0139(11)	1
O(9)	0,1330(4)	0,3066(3)	0,3671(2)	0,0154(10)	1
O(10)	0,4399(4)	0,8483(3)	0,3688(2)	0,0143(10)	1
O(11)	0,3985(4)	0,6454(3)	0,3578(2)	0,0186(12)	1
O(12)	0,2098(4)	0,7692(3)	0,2731(2)	0,0160(11)	1
O(13)	0,4853(3)	0,7561(3)	0,21878(19)	0,0150(11)	1
O(14)	0,5002(4)	0,4827(3)	0,3561(2)	0,0148(11)	1
O(15)	0,8307(4)	0,4851(3)	0,2425(2)	0,0139(11)	1
O(16)	0,7349(3)	0,5547(3)	0,3840(2)	0,0133(10)	1
O(17)	0,6911(4)	0,3542(3)	0,3265(2)	0,0214(12)	1
O(18)	0,5844(3)	0,5291(3)	0,2133(2)	0,0124(10)	1
O(19)	0,6408(3)	0,6088(3)	-0,0012(2)	0,0122(9)	1
O(20)	0,4486(3)	0,5256(3)	0,08297(19)	0,0092(9)	1
O(21)	0,7646(4)	0,4876(3)	0,0992(2)	0,0127(10)	1
O(22)	0,6596(4)	0,6912(3)	0,1332(2)	0,0152(11)	1
O(23)	0,8654(4)	0,3435(3)	0,1522(2)	0,0192(12)	1
O(24)	0,9544(4)	0,1457(3)	0,1291(2)	0,0164(11)	1
O(25)	1,1019(4)	0,2603(4)	0,2273(2)	0,0201(12)	1
O(26)	0,8253(3)	0,2129(3)	0,2821(2)	0,0149(11)	1
O(27)	0,2675(12)	0,1643(8)	0,4941(6)	0,054(4)	0,549(19)

O(28)	0,5086(6)	0,1297(5)	-0,0092(3)	0,0350(19)	1
H(28a)	0,539(9)	0,117(8)	0,019(5)	0,04(2) (*)	1
H(28b)	0,503(8)	0,095(7)	-0,044(5)	0,04(2) (*)	1

Les atomes suivis par ^{(‡} ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,0356(2)	0,0484(3)	0,0252(2)	0,0138(2)	-0,00143(17)	0,0037(2)
Cs(2)	0,02853(18)	0,01837(18)	0,02026(16)	0,00667(15)	-0,00067(15)	-0,00305(14)
Ga(1)	0,0101(2)	0,0074(3)	0,0069(2)	0,00003(20)	0,00082(19)	0,0003(2)
Ga(2)	0,0098(2)	0,0077(3)	0,0070(2)	0,0004(2)	0,0004(2)	-0,00044(19)
Ga(3)	0,0118(2)	0,0091(3)	0,0082(2)	-0,0013(2)	0,0003(2)	-0,0012(2)
Ga(4)	0,0102(2)	0,0071(3)	0,0068(2)	0,0000(2)	-0,00034(20)	0,0000(2)
Ga(5)	0,0097(2)	0,0064(3)	0,0066(2)	0,0004(2)	-0,0005(2)	-0,00030(19)
Ga(6)	0,0113(2)	0,0083(3)	0,0088(2)	0,0016(2)	-0,0011(2)	-0,0015(2)
P(1)	0,0085(5)	0,0111(6)	0,0088(5)	-0,0018(5)	-0,0004(4)	0,0021(4)
P(2)	0,0095(5)	0,0068(6)	0,0062(5)	0,0003(5)	0,0009(4)	0,0004(4)
P(3)	0,0119(5)	0,0077(6)	0,0073(5)	0,0005(5)	0,0009(5)	0,0014(4)
P(4)	0,0087(5)	0,0096(6)	0,0075(5)	0,0008(5)	0,0005(4)	0,0006(4)
P(5)	0,0103(5)	0,0068(6)	0,0060(5)	0,0007(5)	0,0001(4)	0,0003(4)
P(6)	0,0117(5)	0,0076(6)	0,0085(5)	0,0009(5)	0,0013(5)	0,0028(4)
O(1)	0,0145(16)	0,020(2)	0,0123(17)	-0,0038(15)	-0,0005(13)	0,0017(15)
O(2)	0,0101(17)	0,024(2)	0,0095(16)	-0,0012(16)	0,0002(12)	0,0010(15)
O(3)	0,0129(17)	0,0101(19)	0,0186(18)	-0,0030(15)	0,0039(14)	-0,0067(15)
O(4)	0,0228(19)	0,0043(18)	0,0190(18)	0,0019(15)	0,0010(15)	0,0025(14)
O(5)	0,0129(16)	0,019(2)	0,0076(16)	-0,0001(15)	0,0000(12)	0,0045(14)
O(6)	0,0156(16)	0,0159(19)	0,0045(14)	0,0019(14)	-0,0013(12)	-0,0018(13)
O(7)	0,0110(17)	0,0088(18)	0,0166(17)	0,0016(15)	0,0029(13)	-0,0005(14)
O(8)	0,0103(16)	0,019(2)	0,0124(16)	-0,0050(15)	0,0032(13)	0,0003(15)
O(9)	0,025(2)	0,0102(19)	0,0111(16)	0,0015(17)	0,0070(14)	-0,0034(14)
O(10)	0,0174(18)	0,0115(19)	0,0140(17)	0,0005(16)	-0,0012(14)	-0,0070(14)
O(11)	0,028(2)	0,0085(19)	0,0197(19)	-0,0047(16)	-0,0036(15)	0,0023(15)
O(12)	0,0146(17)	0,022(2)	0,0108(15)	-0,0004(16)	-0,0004(13)	-0,0047(14)
O(13)	0,0106(16)	0,022(2)	0,0122(16)	-0,0011(16)	0,0036(12)	-0,0013(15)
O(14)	0,0079(15)	0,021(2)	0,0153(17)	0,0038(15)	0,0019(13)	0,0072(15)
O(15)	0,0085(16)	0,024(2)	0,0093(16)	0,0015(15)	0,0013(12)	-0,0004(15)
O(16)	0,0095(15)	0,020(2)	0,0108(16)	0,0024(15)	-0,0025(12)	-0,0036(15)
O(17)	0,033(2)	0,009(2)	0,022(2)	0,0014(18)	0,0013(17)	0,0026(16)
O(18)	0,0125(16)	0,018(2)	0,0069(16)	0,0034(14)	-0,0012(12)	0,0029(14)
O(19)	0,0205(17)	0,0092(16)	0,0068(14)	-0,0008(14)	0,0013(13)	0,0007(13)
O(20)	0,0110(16)	0,0060(17)	0,0105(15)	-0,0002(14)	-0,0021(12)	0,0024(12)
O(21)	0,0155(17)	0,013(2)	0,0095(16)	0,0107(15)	-0,0007(13)	-0,0023(14)
O(22)	0,027(2)	0,0085(18)	0,0099(15)	-0,0036(16)	0,0070(14)	-0,0038(13)
O(23)	0,024(2)	0,012(2)	0,0215(19)	0,0027(17)	-0,0027(16)	0,0026(15)
O(24)	0,023(2)	0,012(2)	0,0137(17)	-0,0034(17)	-0,0013(15)	-0,0066(14)
O(25)	0,0153(19)	0,031(3)	0,0140(17)	-0,0038(18)	-0,0035(13)	-0,0065(17)
O(26)	0,0114(16)	0,020(2)	0,0133(16)	0,0074(16)	0,0008(13)	0,0043(14)
O(27)	0,090(9)	0,030(6)	0,041(7)	0,005(6)	0,020(6)	0,004(5)

C – 12. (vii) Paramètres de déplacements atomiques anisotropes

O(28)	0,048(3)	0,031(3)	0,026(3)	-0,003(3)	0,000(2)	-0,009(2)

C – 12. (viii) Distances et angles (Å, °)	
---	--

Ga(1)	O(1)	O(2)	O(3)	O(4)	O(5)
O(1)	1,983(4)	3,943(5)	2,602(5)	2,763(6)	2,712(5)
O(2)	176,18(18)	1,962(4)	2,797(5)	2,741(6)	2,635(5)
O(3)	85,42(16)	94,35(16)	1,850(4)	3,020(6)	3,369(5)
O(4)	92,00(18)	91,67(18)	109,12(17)	1,857(4)	3,209(6)
O(5)	89,93(16)	87,35(15)	130,99(18)	119,80(18)	1,852(4)

Ga(2)	O(5)	O(6)	O(7)	O(8)	O(9)
O(5)	1,970(4)	3,901(5)	2,602(5)	2,756(5)	2,786(6)
O(6)	176,26(16)	1,933(4)	2,741(5)	2,715(5)	2,562(5)
O(7)	85,70(15)	92,73(15)	1,854(4)	3,309(5)	3,184(5)
O(8)	92,11(16)	91,55(16)	126,24(18)	1,856(4)	3,163(6)
O(9)	92,99(17)	84,71(16)	117,55(17)	116,21(18)	1,870(4)

Ga(3)	O(10)	O(11)	O(12)	O(13)
O(10)	1,824(4)	2,869(6)	3,074(5)	2,930(5)
O(11)	104,12(18)	1,814(4)	2,971(6)	2,991(5)
O(12)	114,63(18)	109,25(19)	1,829(4)	2,976(5)
O(13)	107,57(18)	111,32(19)	109,84(16)	1,808(3)

Ga(4)	O(14)	O(15)	O(16)	O(17)	O(18)
O(14)	1,948(4)	3,911(5)	2,644(5)	2,700(6)	2,691(5)
O(15)	176,19(15)	1,965(4)	2,808(5)	2,737(6)	2,637(5)
O(16)	88,17(16)	94,76(16)	1,850(4)	3,003(6)	3,338(5)
O(17)	90,16(19)	91,26(19)	107,91(18)	1,864(4)	3,309(6)
O(18)	89,52(15)	86,77(15)	127,41(18)	124,63(18)	1,873(4)

Ga(5)	O(18)	O(19)	O(20)	O(21)	O(22)
O(18)	1,969(4)	3,911(5)	2,641(5)	2,762(5)	2,763(6)
O(19)	174,74(15)	1,946(4)	2,709(5)	2,729(5)	2,595(5)
O(20)	86,45(15)	89,97(15)	1,885(3)	3,284(5)	3,276(5)
O(21)	92,93(16)	92,27(16)	123,73(17)	1,839(4)	3,094(6)
O(22)	92,51(16)	86,14(15)	122,37(17)	113,88(17)	1,853(4)

Ga(6)	O(23)	O(24)	O(25)	O(26)
O(23)	1,807(4)	2,935(6)	2,974(6)	2,920(6)
O(24)	108,52(18)	1,808(4)	2,772(6)	3,102(5)
O(25)	110,5(2)	99,90(19)	1,813(4)	3,056(5)
O(26)	106,80(18)	116,97(18)	114,02(16)	1,831(4)
P(1)	O(2)	O(8)	O(11)	O(14)
O(2)	1,532(4)	2,550(5)	2,523(6)	2,510(5)
O(8)	112,9(2)	1,528(4)	2,464(6)	2,470(5)
O(11)	109,9(2)	106,3(2)	1,550(4)	2,498(6)
O(14)	110,6(2)	108,1(2)	108,8(2)	1,522(4)
P(2)	O(3)	O(19 ⁱ)	O(20)	O(24 ⁱⁱ)
O(3)	1,531(4)	2,479(5)	2,512(5)	2,513(5)
O(19 ⁱ)	109,0(2)	1,514(4)	2,517(5)	2,464(5)
O(20)	110,1(2)	111,3(2)	1,534(4)	2,520(5)
O(24 ⁱⁱ)	109,5(2)	107,2(2)	109,7(2)	1,547(4)
P(3)	O(4)	O(12)	O(13 ⁱⁱⁱ)	O(22 ⁱⁱⁱ)
O(4)	1,519(4)	2,531(6)	2,522(5)	2,411(6)
O(12)	111,3(2)	1,547(4)	2,500(5)	2,528(5)
O(13 ⁱⁱⁱ)	111,4(2)	108,6(2)	1,532(4)	2,489(5)
O(22 ⁱⁱⁱ)	105,1(2)	111,2(2)	109,3(2)	1,518(4)
P(4)	$O(1^{iv})$	O(15)	O(21)	O(23)
$O(1^{iv})$	1,519(4)	2,472(5)	2,495(5)	2,527(6)
O(15)	108,3(2)	1,530(4)	2,561(5)	2,543(6)
O(21)	109,5(2)	113,2(2)	1,536(4)	2,436(6)
O(23)	110,7(2)	111,1(2)	104,0(2)	1,554(5)
P(5)	O(6 ^v)	O(7 ^{iv})	O(10 ^{vi})	O(16)
O(6 ^v)	1,517(4)	2,509(5)	2,481(5)	2,491(5)
O(7 ^{iv})	110,9(2)	1,528(4)	2,519(6)	2,503(5)
O(10 ^{vi})	108,1(2)	110,0(2)	1,547(4)	2,508(5)
O(16)	109,4(2)	109,6(2)	108,9(2)	1,536(4)
P(6)	O(9 ^{vii})	O(17)	O(25 ⁱⁱ)	O(26)
O(9 ^{vii})	1,512(4)	2,425(6)	2,517(5)	2,471(5)
O(17)	106,9(2)	1,507(5)	2,512(6)	2,522(6)
O(25 ⁱⁱ)	111,4(2)	111,4(3)	1,534(4)	2,497(5)
O(26)	107,7(2)	111,3(2)	108,2(2)	1,548(4)

,325(4) ,517(4) ,455(4) ,255(4) ,170(4) ,179(4) ,462(4) ,903(11) ,226(12)
517(4) 455(4) 255(4) 170(4) 462(4) 903(11) 226(12)
,455(4) ,255(4) ,170(4) ,179(4) ,462(4) ,903(11) ,226(12)
,255(4) ,170(4) ,179(4) ,462(4) ,903(11) ,226(12)
,170(4) ,179(4) ,462(4) ,903(11) ,226(12)
,179(4) ,462(4) ,903(11) ,226(12)
,462(4) ,903(11) ,226(12)
,903(11) ,226(12)
.226(12)
,,
8,268(4)
3,142(4)
3,169(4)
3,198(4)
3,082(4)
3,204(4)
8,480(4)
8,108(6)

O(28)-H(28a)	0,61(9)
O(28)-H(28b)	0,77(9)
H(28a)-O(28)-O(28b)	118(12)

			O-H	Н…О	О-Н…О	00
O(28)	H(28a)	$O(1^{ix})$	0,61(9)	2,64(10)	137(11)	2,938(7)
O(28)	H(28b)	$O(1^{\text{vii}})$	0,77(9)	2,17(9)	150(8)	3,115(7)

<u>Codes de symétrie :</u> (i) 1-x, 1-y, -z; (ii) $x-\frac{1}{2}$, $\frac{1}{2}-y$, z; (iii) $x-\frac{1}{2}$, $\frac{3}{2}-y$, z; (iv) 1+x, y, z; (v) 1-x, 1-y, 1-z; (vi) $x+\frac{1}{2}$, $\frac{3}{2}-y$, z; (vii) $\frac{1}{2}+x$, $\frac{1}{2}-y$, z; (viii) $\frac{1}{2}+x$, $\frac{1}{2}-y$, z; (viii) $\frac{3}{2}-x$, $y-\frac{1}{2}$, -z; (ix) $\frac{1}{2}-x$, $y-\frac{1}{2}$, -z.

S _{ij}	Cs(1)	Cs(2)	Ga(1)	Ga(2)	Ga(3)	Ga(4)	Ga(5)	Ga(6)	P(1)	P(2)	P(3)	P(4)	P(5)	P(6)	V_{anion}
O(1)			0,50									1,26			1,76
O(2)			0,53						1,21						1,75
O(3)			0,72							1,22					1,94
O(4)		0,10	0,71								1,26				2,07
O(5)			0,72	0,52											1,24
O(6)	0,09 0,05			0,58									1,27		1,98
O(7)	,			0,72									1,23		1,94
O(8)	0,06			0,71					1,23						2,00
O(9)	0,10			0,68										1,28	2,07
O(10)					0,78								1,17		1,94
O(11)	0,13				0,80				1,16						2,09
O(12)					0,77						1,17				1,93
O(13)					0,81						1,21				2,02
O(14)	0,13					0,55			1,25						1,93
O(15)						0,53						1,22			1,75
O(16)	0,06					0,72							1,20		1,98
O(17)						0,70								1,30	2,00
O(18)						0,68	0,52								1,20
O(19)		0,14					0,56			1,28					1,98
O(20)		0,13					0,66			1,21					2,00
O(21)		0,12					0,74					1,20			2,07
O(22)		0,17					0,72				1,26				2,15
O(23)		0,12						0,81				1,14			2,08
O(24)		0,06						0,81		1,17					2,03
O(25)								0,80						1,21	2,01
O(26)								0,76						1,16	1,92
O(27)	0,27 0,11														0,21
O(28)		0,16 0,10													0,25
V _{cation}	0,83	1,09	3,19	3,21	3,15	3,18	3,20	3,18	4,85	4,87	4,90	4,83	4,86	4,95	

C – 12. (ix) Calculs de valence électrostatique

C – 12. (x) Simulation du diffractogramme RX sur poudre

$C-13. \qquad Cs_2Ga_6(OH)_2(PO_4)_6$

T (°C)	28	100	10	50
Groupe d'espace	P2 ₁ /a	P2 ₁ /a	P2 ₁ /a	Pcab
a (Å)	10,2220(6)	10,2260(8)	10,2290(12)	10,1994(14)
b (Å)	13,9565(7)	13,9519(9)	13,9536(14)	13,9714(18)
c (Å)	17,2629(8)	17,2631(11)	17,2687(16)	17,0440(19)
β (°)	90,452(2)	90,406(2)	90,351(4)	90
V (Å ³)	2462,2(2)	2462,9(3)	2464,7(4)	2428,8(5)
Ratio des phases (%)	/	/	62,9(1,4)	37,1(1,2)
R _{Bragg} (%)	11,4	12,5	12,7	12,9
R _F (%)	8,7	7,09	9,41	8,98
χ^2	1,11	1,19	1,	04
T (°C)	22	25	350	28 (*)
T (°C) Groupe d'espace	22 P2 ₁ /a	25 Pcab	350 Pcab	28 ^(*) Pcab
T (°C) Groupe d'espace a (Å)	22 P2 ₁ /a 10,2198(16)	25 Pcab 10,2093(9)	350 Pcab 10,2278(7)	28 ^(*) Pcab 10,1694(6)
T (°C) Groupe d'espace a (Å) b (Å)	22 P2 ₁ /a 10,2198(16) 13,9462(18)	25 Pcab 10,2093(9) 13,9574(11)	350 Pcab 10,2278(7) 13,9442(10)	28 ^(*) Pcab 10,1694(6) 13,9850(8)
T (°C) Groupe d'espace a (Å) b (Å) c (Å)	22 P2 ₁ /a 10,2198(16) 13,9462(18) 17,2703(22)	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14)	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11)	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10)
T (°C) Groupe d'espace a (Å) b (Å) c (Å) β (°)	22 P2 ₁ /a 10,2198(16) 13,9462(18) 17,2703(22) 90,332(9)	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14) 90	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11) 90	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10) 90
T (°C) Groupe d'espace a (Å) b (Å) c (Å) β (°) V (Å ³)	22 P2 ₁ /a 10,2198(16) 13,9462(18) 17,2703(22) 90,332(9) 2461,4(6)	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14) 90 2431,8(3)	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11) 90 2439,6(3)	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10) 90 2410,8 (2)
T (°C) Groupe d'espace a (Å) b (Å) c (Å) β (°) V (Å ³) Ratio des phases (%)	P21/a P21/a 10,2198(16) 13,9462(18) 17,2703(22) 90,332(9) 2461,4(6) 29,3(1,2)	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14) 90 2431,8(3) 70,7(1,5)	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11) 90 2439,6(3) /	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10) 90 2410,8 (2) /
T (°C) Groupe d'espace a (Å) b (Å) c (Å) β (°) V (Å ³) Ratio des phases (%) R_{Bragg} (%)	22 P2 ₁ /a 10,2198(16) 13,9462(18) 17,2703(22) 90,332(9) 2461,4(6) 29,3(1,2) 12,7	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14) 90 2431,8(3) 70,7(1,5) 12,0	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11) 90 2439,6(3) / 13,7	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10) 90 2410,8 (2) / 9,12
T (°C) Groupe d'espace a (Å) b (Å) c (Å) β (°) V (Å ³) Ratio des phases (%) R_{Bragg} (%) R_F (%)	P21/a 10,2198(16) 13,9462(18) 17,2703(22) 90,332(9) 2461,4(6) 29,3(1,2) 12,7 9,41	25 Pcab 10,2093(9) 13,9574(11) 17,0657(14) 90 2431,8(3) 70,7(1,5) 12,0 8,24	350 Pcab 10,2278(7) 13,9442(10) 17,1055(11) 90 2439,6(3) / 13,7 9,30	28 ^(*) Pcab 10,1694(6) 13,9850(8) 16,9516(10) 90 2410,8 (2) / 9,12 5,32

C – 13. (i) Affinements structuraux par DRX sur poudre

Résultats des affinements structuraux par DRX sur poudre de $Cs_2Ga_6(OH)_2(PO_4)_6\cdot 1,55H_2O$ *et* $Cs_2Ga_6(OH)_2(PO_4)_6$ *en fonction de la température. Les résultats marqués* ^(*) *correspondent à l'affinement réalisé sur l'échantillon de poudre après son retour à température ambiante.*

Formule	$Cs_2Ga_6(OH)_2(PO_4)_6$
Analyse EDS (MEB et TEM)	13 : 43 : 44 pour Cs :Ga : P
Masse molaire (g·mol⁻¹)	1288,0
Densité calculée ρ (g·cm ⁻³)	3,555
Coefficient d'absorption μ (mm ⁻¹)	10,121
Dimension (mm ³)	0,337 × 0,063 × 0,046
Paramètres de maille	a = 10,1662(4) Å b = 13,9762(12) Å c = 16,931(2) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	2405,6(4) Å ³
Ζ	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hk0 : k = 2n 0kl : l = 2n h0l : h = 2n
Groupe d'espace	Pcab (n°61)

C – 13. (ii) Caractéristiques du cristal étudié

C – 13. (iii) Conditions d'enregistrement du monocristal

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 100 s/° ; 2 itérations
Domaine angulaire θ	$5,84^{\circ} \le \theta \le 40,00^{\circ}$
Indices limitants	$-17 \le h \le 18$ $-25 \le k \le 14$ $-30 \le l \le 30$
Nombre de réflexions mesurées	46728
Nombre de réflexions avec I > 3σ	7435
Nombre de réflexions indépendantes (I>30)	5111
R_{sym}, R_{mes}, χ^2	0,077 ; 0,083 ; 7,477
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	SADABS (0,372 ; 0,628 ; 0,0531)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier Différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2^{eme} ordre) sauf Cs (1) (3^{eme} ordre)
Localisation des atomes d'hydrogène	Par synthèse de Fourier différence sur les réflexions à $sin\theta/\lambda < 0{,}5$
Traitement des atomes d'hydrogène	Affinement des positions et U _{iso}
Nombre de paramètres affinés	195
Facteurs d'accord	$ \begin{array}{l} R = 0,0272 \mbox{ et } Rw = 0,0274 \\ R_{all} = 0,0555 \mbox{ et } Rw_{all} = 0,0312 \end{array} $
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,28 ; 1,20
Δ/σ max ; moyen	9·10 ⁻⁴ ; 1·10 ⁻⁴
Résidus Fourier différence (max ; min)	0,84 ; - 0,83

C – 13. (iv) Résolution et affinement structural

C – 13. (v) Paramètres a	atomiques
--------------------------	-----------

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Cs(1)	0,43435(4)	0,31088(4)	0,48204(3)	0,03661(6)	1
Ga(1)	0,16503(2)	0,520252(15)	0,195690(13)	0,00788(4)	1
Ga(2)	0,12180(2)	0,437821(15)	0,395918(13)	0,00733(4)	1
Ga(3)	0,39086(2)	0,756615(15)	0,302555(13)	0,00881(5)	1
P(1)	0,37269(5)	0,54354(4)	0,34592(3)	0,00857(10)	1
P(2)	0,37488(5)	0,42836(3)	0,08422(3)	0,00701(9)	1
P(3)	0,14368(5)	0,74471(3)	0,19854(3)	0,00771(9)	1
O(1)	-0,00499(14)	0,51620(11)	0,13887(10)	0,0136(3)	1
O(2)	0,32867(15)	0,53161(13)	0,26034(9)	0,0151(4)	1
O(3)	0,23736(14)	0,44411(11)	0,11804(9)	0,0123(3)	1
O(4)	0,18214(17)	0,64725(10)	0,16651(10)	0,0153(4)	1
O(5)	0,08546(15)	0,47128(12)	0,28562(9)	0,0126(3)	1
O(6)	0,13841(15)	0,38661(11)	0,50204(9)	0,0118(3)	1
O(7)	-0,04925(14)	0,47719(10)	0,41702(9)	0,0104(3)	1
O(8)	0,26627(14)	0,51591(11)	0,40581(9)	0,0131(3)	1
O(9)	0,17593(17)	0,31504(11)	0,36692(10)	0,0162(4)	1
O(10)	0,44881(15)	0,85438(11)	0,36393(10)	0,0133(3)	1
O(11)	0,40718(17)	0,64993(11)	0,36283(11)	0,0175(4)	1
O(12)	0,21810(15)	0,76830(13)	0,27486(10)	0,0158(4)	1
O(13)	0,49506(15)	0,75100(13)	0,21553(10)	0,0153(4)	1
H(5)	0,025(4)	0,474(3)	0,283(3)	0,038(12) (*)	1

Les atomes suivis par ⁽⁾ ont été affinés avec des ADP isotropes. Les autres atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,02874(9)	0,05658(14)	0,02451(8)	0,01680(9)	-0,00316(7)	0,00071(9)
Ga(1)	0,00689(8)	0,00782(7)	0,00893(7)	0,00008(6)	0,00088(7)	0,00020(7)
Ga(2)	0,00615(8)	0,00740(7)	0,00843(7)	0,00047(6)	0,00001(7)	-0,00068(6)
Ga(3)	0,00795(8)	0,00845(8)	0,01003(8)	-0,00078(7)	-0,00039(7)	-0,00082(7)
P(1)	0,00602(17)	0,00962(17)	0,01007(18)	-0,00093(15)	-0,00061(16)	0,00131(14)
P(2)	0,00655(17)	0,00732(16)	0,00716(16)	-0,00104(14)	0,00054(15)	0,00028(13)
P(3)	0,00720(17)	0,00737(16)	0,00856(16)	0,00022(14)	0,00000(15)	0,00162(14)
O(1)	0,0077(5)	0,0174(6)	0,0158(6)	-0,0025(5)	-0,0009(5)	0,0056(5)
O(2)	0,0077(6)	0,0278(8)	0,0099(5)	-0,0020(6)	-0,0016(5)	-0,0006(5)
O(3)	0,0087(6)	0,0132(6)	0,0150(6)	-0,0015(5)	0,0034(5)	-0,0046(5)
O(4)	0,0188(7)	0,0062(5)	0,0210(7)	-0,0001(5)	0,0020(6)	-0,0006(5)
O(5)	0,0074(6)	0,0211(7)	0,0093(5)	-0,0008(5)	-0,0006(5)	0,0034(5)
O(6)	0,0143(6)	0,0125(5)	0,0085(5)	0,0029(5)	-0,0010(5)	-0,0011(4)
O(7)	0,0078(5)	0,0100(5)	0,0134(6)	0,0030(4)	0,0009(5)	0,0013(5)
O(8)	0,0089(5)	0,0189(6)	0,0115(6)	-0,0062(5)	0,0021(5)	-0,0025(5)
O(9)	0,0213(7)	0,0111(6)	0,0161(6)	0,0069(5)	-0,0082(6)	-0,0073(5)
O(10)	0,0115(6)	0,0116(6)	0,0169(6)	-0,0010(5)	0,0008(5)	-0,0073(5)
O(11)	0,0233(8)	0,0108(6)	0,0184(7)	-0,0035(5)	-0,0042(6)	0,0039(5)
O(12)	0,0095(6)	0,0256(8)	0,0122(6)	0,0002(6)	-0,0021(5)	-0,0040(6)
O(13)	0,0063(6)	0,0259(8)	0,0136(6)	0,0004(5)	0,0011(5)	-0,0032(6)
H(5)	0,02874(9)	0,05658(14)	0,02451(8)	0,01680(9)	-0,00316(7)	0,00071(9)

 $C-13. \ (vi) \qquad \text{Paramètres de déplacements atomiques anisotropes}$

C-13. (vii) Distances et angles (Å, °)

Ga(1)	O(1)	O(2)	O(3)	O(4)	O(5)
O(1)	1,9789(15)	3,973(2)	2,685(2)	2,682(2)	2,723(2)
O(2)	174,85(7)	1,9978(15)	2,857(2)	2,712(2)	2,647(2)
O(3)	89,15(7)	95,99(7)	1,8444(15)	3,008(2)	3,253(2)
O(4)	88,84(7)	89,53(7)	109,00(7)	1,8506(15)	3,329(2)
O(5)	90,43(7)	86,72(7)	123,10(7)	127,88(8)	1,8549(16)
Ga(2)	O(5)	O(6)	O(7)	O(8)	O(9)
O(5)	1,9603(16)	3,888(2)	2,614(2)	2,812(2)	2,740(2)
O(6)	170,41(7)	1,9414(15)	2,705(2)	2,759(2)	2,526(2)
			1.050((1.4)	0.050(0)	0.001(0)

O(6)	170,41(7)	1,9414(15)	2,705(2)	2,759(2)	2,526(2)
O(7)	86,34(7)	90,72(7)	1,8586(14)	3,259(2)	3,331(2)
O(8)	95,50(7)	93,73(7)	123,68(7)	1,8375(15)	3,026(2)
O(9)	91,39(7)	83,04(7)	126,74(7)	109,52(7)	1,8678(16)

Ga(3)	O(10)	O(11)	O(12)	O(13)
O(10)	1,8149(16)	2,889(2)	3,037(2)	2,936(2)
O(11)	105,49(7)	1,8144(17)	2,941(2)	3,002(2)
O(12)	113,08(7)	107,82(8)	1,8252(16)	2,999(2)
O(13)	107,92(7)	111,56(8)	110,90(7)	1,8164(16)
P(1)	O(1 ⁱ)	O(2)	O(8)	O(11)

O(1 ⁱ)	1,5198(16)	2,493(2)	2,486(2)	2,488(2)
O(2)	109,93(9)	1,5255(16)	2,553(2)	2,526(2)
O(8)	109,10(9)	113,19(9)	1,5323(16)	2,468(2)
O(11)	108,05(9)	110,22(10)	106,17(9)	1,5542(17)

P(2)	O(3)	O(6 ⁱⁱ)	O(7 ⁱ)	O(10 ⁱⁱⁱ)
O(3)	1,5267(15)	2,469(2)	2,504(2)	2,507(2)
O(6 ⁱⁱ)	108,56(9)	1,5148(15)	2,515(2)	2,478(2)
O(7 ⁱ)	110,03(9)	111,41(9)	1,5290(15)	2,520(2)
O(10 ⁱⁱⁱ)	109,13(9)	107,84(9)	109,81(8)	1,5506(16)

P(3)	O(4)	O(9 ^{iv})	O(12)	O(13 ^v)
O(4)	1,5173(16)	2,413(2)	2,522(2)	2,516(2)
O(9 ^{iv})	105,36(9)	1,5172(17)	2,524(2)	2,486(2)
O(12)	111,54(10)	111,70(9)	1,5333(17)	2,495(2)
O(13 ^v)	110,77(10)	108,87(9)	108,56(9)	1,5393(16)

		O-H	Н…О	O-H…O	00	
O(5)	H(5)	$O(2^{\text{ix}})$	0,62(4)	2,12(4)	164(5)	2,724(2)

$Cs(1)-O(1^{i})$	3,2268(17)
$Cs(1)-O(3^{vi})$	3,4376(16)
$Cs(1)-O(4^{i})$	3,6074(18)
Cs(1)-O(6)	3,2072(16)
$Cs(1)-O(6^{vii})$	3,4694(16)
Cs(1)-O(8)	3,5773(16)
Cs(1)-O(9)	3,2717(17)
$Cs(1)-O(9^{vii})$	3,5954(17)
$Cs(1)-O(11^{viii})$	3,1296(18)
$Cs(1)-O(13^{iii})$	3,5029(17)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ \frac{1}{2} + x, \ 1 - y, \ \frac{1}{2} - z; & (ii) \ \frac{1}{2} - x, \ y, \ -\frac{1}{2} + z; & (iii) \ x, \ -\frac{1}{2} + y, \ \frac{1}{2} - z; & (iv) \ x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (v) \ -\frac{1}{2} + x, \ \frac{3}{2} - y, \ z; \ (vi) \ \frac{1}{2} - x, \ y, \ \frac{1}{2} + z; \ (vii) \ \frac{1}{2} + x, \ \frac{1}{2} - y, \ z; \ (viii) \ 1 - x, \ 1 - y, \ 1 - z; \ (ix) \ -\frac{1}{2} + x, \ 1 - y, \ \frac{1}{2} - z. \end{array}$

S _{ij}	Cs(1)	Ga(1)	Ga(2)	Ga(3)	P(4)	P(5)	P(6)	V_{anion}
O(1)	0,11	0,51			1,26			1,88
O(2)		0,48			1,24			1,72
O(3)	0,06	0,73				1,23		2,03
O(4)	0,04	0,72					1,26	2,03
O(5)		0,71	0,54					1,25
O(6)	0,12 0,06		0,56			1,27		2,02
O(7)			0,71			1,22		1,93
O(8)	0,04		0,75		1,21			2,01
O(9)	0,10 0,04		0,69				1,26	2,09
O(10)				0,79		1,16		1,95
O(11)	0,15			0,80	1,14			2,09
O(12)				0,77			1,21	1,98
O(13)	0,05			0,79			1,19	2,04
V _{cation}	0,78	3,16	3,24	3,16	4,85	4,88	4,93	

C – 13. (viii) Calculs de valence électrostatique

C – 13. (ix) Simulation du diffractogramme RX sur poudre

$C-14. \qquad BaIn_2(P_2O_7)_2$

C – 14. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal BaIn ₂ (P ₂ O ₇) ₂
Mode de synthèse	État solide ; Tube scellé
Précurseur métal alcalin A	$Ba(NO_3)_2$
Précurseur métal trivalent M	In ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	0,8 g
Composition A : M: P	1:1:2
Cycle thermique	1100°C 6 h 10 h 100°C
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 14. (ii) Caractéristiques du cristal étudié

Formule	BaIn ₂ (P ₂ O ₇) ₂
Analyse EDS (MEB)	14 : 27 : 59 pour Ba : In : P
Masse molaire (g·mol ⁻¹)	714,9
Densité calculée ρ (g·cm ⁻³)	4,256
Coefficient d'absorption μ (mm ⁻¹)	8,25
Dimension (mm ³)	$0,09 \times 0,05 \times 0,03$
Paramètres de maille	a = 10,9008(4) Å b = 10,6517(4) Å c = 9,8799(4) Å β = 103,531(4)° <i>POSTREF</i> à partir de toutes les réflexions
Volume	1115,33(4) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 h0l : l = 2n+1
Groupe d'espace	C2/c (n°15)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
	Dx = 34 mm
Stratégie de la collecte de données	Scans en ϕ et ω
	1°/image ; 110 s/° ; 2 itérations
Domaine angulaire θ	5,98°≤ θ ≤ 39,99°
	$-19 \le h \le 19$
Indices limitants	$-16 \le k \le 19$
	$-17 \le I \le 17$
Nombre de réflexions mesurées	10077
Nombre de réflexions avec I > 3σ	3444
Nombre de réflexions indépendantes (Ι>3σ)	2412
R_{sym}, R_{mes}, χ^2	0,047 ; 0,056 ; 3,757
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	SADABS (0,660 ; 0,781 ; 0,0314)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

C – 14. (iii) Conditions d'enregistrement du monocristal

C – 14. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	99
Facteurs d'accord	$\begin{split} R &= 0,0264 \text{ et } Rw = 0,0243 \\ R_{\text{all}} &= 0,0521 \text{ et } Rw_{\text{all}} = 0,0277 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,08 ; 1,02
Δ/σ max ; moyen	$12 \cdot 10^4$; $1 \cdot 10^4$
Résidus Fourier différence (max ; min)	1,23 ; - 1,35

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Ba	0,25	0,25	0,5	0,01748(7)	1
In(1)	0	0,55330(2)	0,25	0,00607(6)	1
In(2)	0	0	0	0,00543(5)	1
P(1)	0,05670(5)	0,30865(7)	0,06050(6)	0,00608(14)	1
P(2)	0,27607(6)	0,45498(6)	0,20050(6)	0,00626(15)	1
O(1)	0,06744(18)	0,32032(19)	-0,08743(17)	0,0123(5)	1
O(2)	-0,03666(16)	0,40110(18)	0,09906(17)	0,0088(5)	1
O(3)	0,01791(17)	0,17798(18)	0,09363(17)	0,0099(5)	1
O(4)	0,19179(16)	0,32983(18)	0,16296(18)	0,0096(5)	1
O(5)	0,33841(18)	0,4865(2)	0,08471(19)	0,0135(5)	1
O(6)	0,18637(17)	0,56058(18)	0,21492(18)	0,0106(5)	1
O(7)	0,36478(17)	0,41373(19)	0,33502(17)	0,0112(5)	1

C – 14. (v) Paramètres atomiques

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{\ddot{a}}_{i} \mathbf{\ddot{a}}_{j}$.

C – 14. (vi) Paramètres de déplacements atomiques anisotropes

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ba	0,00700(9)	0,01270(11)	0,03249(13)	0,00076(8)	0,00414(8)	0,00812(9)
In(1)	0,00613(9)	0,00654(10)	0,00581(9)	0	0,00193(7)	0
In(2)	0,00483(9)	0,00560(9)	0,00583(9)	0,00041(7)	0,00118(6)	-0,00027(7)
P(1)	0,0060(2)	0,0057(3)	0,0061(2)	-0,0004(2)	0,00059(18)	-0,0001(2)
P(2)	0,0049(2)	0,0082(3)	0,0057(2)	-0,0006(2)	0,00130(18)	-0,0004(2)
O(1)	0,0171(9)	0,0138(9)	0,0073(7)	0,0040(7)	0,0058(6)	0,0026(6)
O(2)	0,0073(7)	0,0086(8)	0,0106(7)	0,0002(6)	0,0021(6)	-0,0028(6)
O(3)	0,0134(8)	0,0062(8)	0,0105(7)	-0,0039(6)	0,0040(6)	-0,0018(6)
O(4)	0,0054(7)	0,0089(8)	0,0124(7)	-0,0014(6)	-0,0023(6)	-0,0011(6)
O(5)	0,0111(8)	0,0192(10)	0,0126(8)	-0,0026(7)	0,0073(6)	0,0012(7)
O(6)	0,0078(7)	0,0084(8)	0,0165(8)	0,0005(6)	0,0049(6)	-0,0028(7)
O(7)	0,0106(8)	0,0111(9)	0,0088(7)	-0,0010(6)	-0,0038(6)	-0,0007(6)

In(1)	O(1 ⁱ)	O(1 ⁱⁱ)	O(2)	O(2 ⁱⁱⁱ)	O(6)	O(6 ⁱⁱⁱ)
$O(1^{i})$	2,0928(18)	3,205(2)	2,985(3)	4,248(3)	3,036(3)	2,879(3)
$O(1^{ii})$	99,93(7)	2,0928(18)	4,248(3)	2,985(3)	2,879(3)	3,036(3)
O(2)	88,74(7)	168,70(7)	2,1756(18)	2,902(2)	2,967(2)	3,214(3)
$O(2^{iii})$	168,70(7)	88,74(7)	83,65(7)	2,1756(18)	3,214(3)	2,967(2)
O(6)	91,65(7)	85,68(7)	86,85(7)	96,25(7)	2,1408(19)	4,279(3)
$O(6^{iii})$	85,68(7)	91,65(7)	96,25(7)	86,85(7)	175,85(7)	2,1408(19)

C-14. (vii) Distances et angles (Å, °)

In(2)	O(3)	O(3 ^{iv})	O(5 ^v)	O(5 ^{vi})	O(7 ^{vii})	O(7 ^{viii})
O(3)	2,0985(18)	4,197(3)	2,813(3)	3,149(3)	3,104(3)	2,876(2)
$O(3^{iv})$	180	2,0985(18)	3,149(3)	2,813(3)	2,876(2)	3,104(3)
O(5 ^v)	83,55(8)	96,45(8)	2,125(2)	4,249(3)	3,240(3)	2,762(3)
O(5 ^{vi})	96,45(8)	83,55(8)	180	2,125(2)	2,762(3)	3,240(3)
O(7 ^{vii})	94,36(7)	85,64(7)	99,11(7)	80,89(7)	2,1330(16)	4,266(2)
O(7 ^{viii})	85,64(7)	94,36(7)	80,89(7)	99,11(7)	180	2,1330(16)

P(1)	O(1)	O(2)	O(3)	O(4)
O(1)	1,4985(19)	2,530(3)	2,498(3)	2,529(2)
O(2)	113,49(11)	1,527(2)	2,454(3)	2,538(2)
O(3)	112,15(11)	107,64(11)	1,513(2)	2,464(3)
O(4)	109,63(11)	108,69(10)	104,84(10)	1,5958(16)

P(2)	O(4)	O(5)	O(6)	O(7)
O(4)	1,6122(19)	2,553(3)	2,514(3)	2,397(2)
O(5)	110,21(11)	1,499(2)	2,454(3)	2,543(3)
O(6)	106,81(10)	108,80(12)	1,519(2)	2,561(3)
O(7)	100,05(10)	115,12(11)	115,18(11)	1,5143(16)

Ba-O(2 ⁱⁱⁱ)	2,8092(17)
Ba-O(2 ^{ix})	2,8092(17)
Ba-O(3 ⁱⁱⁱ)	2,9510(18)
Ba-O(3 ^{ix})	2,9510(18)
Ba-O(5 ⁱⁱ)	3,021(2)
Ba-O(5 ^{viii})	3,021(2)
Ba-O(6 ⁱⁱ)	3,122(2)
Ba-O(6 ^{viii})	3,122(2)
Ba-O(7)	2,867(2)
$Ba-O(7^{x})$	2,867(2)

<u>Codes de symétrie :</u> (i) -x, 1-y, -z; (ii) x, 1-y, $\frac{1}{2}+z$; (iii) -x, y, $\frac{1}{2}-z$; (iv) -x, -y, -z; (v) $-\frac{1}{2}+x$, $-\frac{1}{2}+y$, z; (vi) $\frac{1}{2}-x$, $\frac{1}{2}-y$, -z; (vi) $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+z$; (vii) $\frac{1}{2}-x$, $-\frac{1}{2}+y$, $\frac{1}{2}-z$; (ix) $\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z$; (x) $\frac{1}{2}-x$, $\frac{1}{2}-y$, $\frac{1}{2}-z$, $\frac{1}{2}-y$, $\frac{1}{2}+z$; (x) $\frac{1}{2}-x$, $\frac{1}{2}-y$, $\frac{1}{2}-z$, $\frac{1$

C - 15. RbGa₃(P₃O₁₀)₂

C – 15. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal RbGa ₃ (P ₃ O ₁₀) ₂
Mode de synthèse	État solide ; Tube scellé
Précurseur métal alcalin A	RbNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	0,8 g
Composition A : M: P	3:5:12
Cycle thermique	830°C 5 h 20 h 30 h 800°C 20 h 600°C
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 15. (ii) Caractéristiques du cristal étudié

Formule	RbGa ₃ (P ₃ O ₁₀) ₂
Analyse EDS (MEB)	/
Masse molaire (g·mol⁻¹)	800,5
Densité calculée ρ (g·cm ⁻³)	3,365
Coefficient d'absorption μ (mm ⁻¹)	8,879
Dimension (mm ³)	0,08 imes 0,06 imes 0,05
Paramètres de maille	a = 10,0017(8) Å b = 13,0822(8) Å c = 12,0710(4) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	1579,42(17) Å ³
Ζ	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 00l : l = 2n+1
Groupe d'espace	C222 ₁ (n°20)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	5,95°≤ θ ≤ 41,99°
Indices limitants	$-18 \le h \le 18$ $-24 \le k \le 24$ $-22 \le l \le 19$
Nombre de réflexions mesurées	14620
Nombre de réflexions avec Ι > 3σ	5415
Nombre de réflexions indépendantes (I>30)	2778
R_{sym}, R_{mes}, χ^2	0,073 ; / ; /
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Gaussienne (0,703 ; 0,849 ; 0,0878)
Correction de l'extinction secondaire	B-C Type I, Gaussienne, isotrope
Coefficient d'extinction g	0,15.10 ⁻⁴

C – 15. (iii) Conditions d'enregistrement du monocristal

C – 15. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	139
Facteurs d'accord	$\begin{split} R &= 0,0350 \text{ et } Rw = 0,0290 \\ R_{\text{all}} &= 0,1075 \text{ et } Rw_{\text{all}} = 0,0339 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^{-4} F^2)$
Gof ; Gof _{all}	1,08 ; 0,90
Δ/σ max ; moyen	$2 \cdot 10^{-4}$; < 10^{-4}
Résidus Fourier différence (max ; min)	1,36 ; - 1,24
Paramètre de Flack	-0,009(7)

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Rb(1)	0,47254(5)	0	0,5	0,02601(15)	1
Ga(1)	0,13548(4)	0	0	0,00854(12)	1
Ga(2)	0,5	0,25501(3)	0,25	0,00550(11)	1
Ga(3)	0	0,29389(3)	0,25	0,00649(11)	1
P(1)	0,05518(7)	0,20469(6)	0,48826(7)	0,00646(18)	1
P(2)	0,23061(7)	0,13610(6)	0,31723(6)	0,00584(18)	1
P(3)	0,23825(7)	-0,06473(6)	0,22343(6)	0,00584(19)	1
O(1)	-0,0339(2)	0,11134(17)	0,47918(19)	0,0168(7)	1
O(2)	0,0796(2)	0,24184(18)	0,60341(17)	0,0105(6)	1
O(3)	0,0147(2)	0,29005(15)	0,41175(16)	0,0091(5)	1
O(4)	0,1994(2)	0,16421(17)	0,44281(17)	0,0098(6)	1
O(5)	0,3780(2)	0,14535(16)	0,30075(17)	0,0089(6)	1
O(6)	0,1408(2)	0,19230(15)	0,24000(18)	0,0094(5)	1
O(7)	0,19002(19)	0,01837(15)	0,31429(17)	0,0096(5)	1
O(8)	0,25546(19)	-0,00520(18)	0,11425(15)	0,0095(5)	1
O(9)	0,1292(2)	-0,14057(17)	0,20867(17)	0,0123(6)	1
O(10)	0,3701(2)	-0,09922(16)	0,2664(2)	0,0122(6)	1

C – 15. (v) Paramètres atomiques

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{\ddot{a}}_{i} \mathbf{\ddot{a}}_{j}.$

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,0228(2)	0,0222(2)	0,0329(3)	0	0	-0,0052(2)
Ga(1)	0,00916(19)	0,0086(2)	0,0079(2)	0	0	0,00030(17)
Ga(2)	0,00598(18)	0,00624(18)	0,00427(19)	0	-0,00015(17)	0
Ga(3)	0,00625(19)	0,00669(18)	0,0065(2)	0	-0,00102(18)	0
P(1)	0,0076(3)	0,0071(3)	0,0047(4)	-0,0007(2)	0,0007(3)	-0,0002(3)
P(2)	0,0062(3)	0,0056(3)	0,0057(3)	0,0005(3)	0,0008(3)	-0,0008(3)
P(3)	0,0062(3)	0,0044(3)	0,0069(4)	0,0001(2)	-0,0004(2)	0,0007(3)
O(1)	0,0210(11)	0,0167(11)	0,0127(13)	-0,0091(9)	0,0016(9)	-0,0008(9)
O(2)	0,0128(10)	0,0159(11)	0,0029(10)	-0,0022(8)	0,0010(7)	-0,0030(9)
O(3)	0,0107(10)	0,0099(8)	0,0066(9)	0,0038(9)	0,0005(8)	-0,0008(7)
O(4)	0,0116(10)	0,0130(10)	0,0047(10)	0,0036(8)	0,0008(8)	-0,0012(8)
O(5)	0,0067(9)	0,0089(10)	0,0113(11)	0,0001(8)	0,0008(8)	0,0004(8)
O(6)	0,0117(9)	0,0120(9)	0,0043(10)	0,0059(7)	-0,0009(8)	0,0001(9)
O(7)	0,0133(9)	0,0053(9)	0,0102(10)	-0,0021(7)	0,0045(7)	-0,0025(8)
O(8)	0,0100(8)	0,0116(10)	0,0069(9)	-0,0037(8)	-0,0004(7)	0,0037(8)
O(9)	0,0135(10)	0,0106(10)	0,0129(11)	-0,0071(8)	-0,0039(9)	0,0029(8)
O(10)	0,0098(9)	0,0123(9)	0,0147(13)	0,0032(7)	-0,0036(8)	-0,0024(8)

C – 15. (vi) Paramètres de déplacements atomiques anisotropes

C – 15. (vii) Distances et angles (Å, °)

Ga(1)	O(1)	O(1 ⁱ)	O(8 ⁱⁱ)	O(8 ⁱⁱⁱ)
O(1)	1,794(2)	2,955(4)	3,083(3)	2,918(3)
O(1 ⁱ)	110,92(10)	1,794(2)	2,918(3)	3,083(3)
O(8 ⁱⁱ)	116,57(11)	107,25(11)	1,830(2)	2,763(3)
O(8 ⁱⁱⁱ)	107,25(11)	116,57(11)	98,02(10)	1,830(2)

Ga(2)	O(2)	O(2 ^{iv})	O(5)	O(5 ^{iv})	O(9)	O(9 ^{iv})
O(2)	1,941(2)	3,881(3)	2,834(4)	2,754(3)	2,673(4)	2,780(3)
$O(2^{iv})$	177,54(11)	1,941(2)	2,754(3)	2,834(4)	2,780(3)	2,673(4)
O(5)	92,56(10)	89,23(10)	1,981(2)	2,730(3)	2,804(4)	3,923(3)
O(5 ^{iv})	89,23(10)	92,56(10)	87,13(10)	1,981(2)	3,923(3)	2,804(4)
O(9)	86,91(10)	91,36(10)	91,16(10)	175,71(9)	1,945(2)	2,770(3)
$O(9^{iv})$	91,36(10)	86,91(10)	175,71(9)	91,16(10)	90,81(10)	1,945(2)

Ga(3)	O(3)	O(3 ^v)	O(6)	O(6 ^v)	O(10)	O(10 ^v)
O(3)	1,958(2)	3,915(3)	2,743(3)	2,721(3)	2,839(3)	2,695(3)
O(3 ^v)	177,02(6)	1,958(2)	2,721(3)	2,743(3)	2,695(3)	2,839(3)
O(6)	89,43(9)	88,53(9)	1,9401(17)	2,827(3)	2,731(3)	3,856(3)
O(6 ^v)	88,53(9)	89,43(9)	93,52(7)	1,9401(17)	3,856(3)	2,731(3)
O(10)	94,12(9)	88,05(9)	90,08(8)	175,55(9)	1 ,919(2)	2,629(3)
O(10 ^v)	88,05(9)	94,12(9)	175,55(9)	90,08(8)	86,44(10)	1,919(2)

P(1)	O(1 ^v)	$O(2^{vi})$	O(3)	O(4)
$O(1^{\nu})$	1,515(3)	2,539(3)	2,523(3)	2,472(3)
O(2 ^{vi})	115,19(14)	1,492(3)	2,485(3)	2,495(3)
O(3)	113,27(12)	112,01(13)	1,505(2)	2,503(3)
O(4)	103,48(13)	105,92(12)	105,83(13)	1,632(2)

P(2)	O(4)	O(5)	O(6)	O(7)
O(4)	1,591(3)	2,489(3)	2,544(3)	2,460(4)
O(5)	107,62(13)	1,492(2)	2,558(3)	2,514(3)
O(6)	111,35(13)	118,19(13)	1,489(2)	2,494(3)
O(7)	101,22(13)	109,09(13)	108,04(11)	1,593(3)

P(3)	O(7 ^{vii})	O(8)	O(9)	O(10)
O(7 ^{vii})	1,618(3)	2,520(3)	2,514(4)	2,438(3)
O(8)	105,87(14)	1,540(3)	2,456(3)	2,490(3)
O(9)	108,13(13)	108,54(13)	1,485(2)	2,566(3)
O(10)	103,36(13)	110,67(13)	119,35(14)	1,487(2)

Rb-O(3 ⁱⁱ)	2,9766(15)
Rb-O(3 ⁱⁱⁱ)	2,9766(15)
Rb-O(5 ^{viii})	3,209(3)
$Rb-O(5^{iv})$	3,209(3)
Rb-O(8 ⁱⁱ)	3,051(2)
Rb-O(8 ⁱⁱⁱ)	3,051(2)
$Rb-O(10^{ix})$	3,268(2)
Rb-O(10 ^x)	3,268(2)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ x, \ -y, \ -z; & (ii) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ -\frac{1}{2} + z; & (iii) \ -x, \ -1 + y, \ \frac{1}{2} - z; & (iv) \ \frac{3}{2} - x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (v) \ \frac{1}{2} - x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; & (vi) \ \frac{1}{2} - x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; & (vii) \ 1 - x, \ -y, \ -\frac{1}{2} + z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ \frac{1}{2} + z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ \frac{1}{2} + z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ \frac{1}{2} + z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ \frac{1}{2} + z; \\ (x) \ \frac{1}{2} - x, \ \frac{1}{2} - y, \ \frac{1}{2} - z; \\ (x) \ \frac{1}{2} - z; \ \frac{1}{2} - y, \ \frac{1}{2} - z; \ \frac{1}{2} - y, \ \frac{1}{2} - z; \ \frac{1}{2}$

C - 16. RbAl₃(P₃O₁₀)₂

C – 16. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal RbAl ₃ (P ₃ O ₁₀₎₂
Mode de synthèse	État solide ; A l'air (creuset Pt)
Précurseur métal alcalin A	RbNO ₃
Précurseur métal trivalent M	Al ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	1,6 g
Composition A : M: P	1:3:6
Cycle thermique	850°C 20 h 5 h 20 h 830°C 10 h 730°C
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 16. (ii) Caractéristiques du cristal étudié

Formule	RbAl ₃ (P ₃ O ₁₀) ₂
Analyse EDS (MEB)	9 : 29 : 62 pour Rb : Al : P
Masse molaire (g·mol ⁻¹)	672,2
Densité calculée ρ (g·cm ⁻³)	2,943
Coefficient d'absorption μ (mm ⁻¹)	4,192
Dimension (mm ³)	$0,09 \times 0,05 \times 0,045$
Paramètres de maille	a = 9,8757(7) Å b = 12,8854(10) Å c = 11,9192(7) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	1516,75(18) Å ³
Ζ	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 00l : l = 2n+1
Groupe d'espace	C222 ₁ (n°20)
Diffractomètre	Kappa CCD de BRUKER-NONIUS
--	--
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 120 s/° ; 2 itérations
Domaine angulaire θ	$6,03^\circ \le \theta \le 34,95^\circ$
Indices limitants	$-15 \le h \le 12$ $-20 \le k \le 18$ $-18 \le l \le 19$
Nombre de réflexions mesurées	10808
Nombre de réflexions avec I > 3σ	3243
Nombre de réflexions indépendantes (I>30)	2197
R_{sym}, R_{mes}, χ^2	0,078 ; 0,086 ; 3,46
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	Gaussienne (0,805 ; 0,889 ; 0,0799)
Correction de l'extinction secondaire	B-C Type I, Gaussienne, isotrope
Coefficient d'extinction g	0,32.10-4

C – 16. (iii) Conditions d'enregistrement du monocristal

C – 16. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Affinement à partir du modèle de $RbGa_3(P_3O_{10})_2$
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	139
Facteurs d'accord	$\begin{split} R &= 0,0371 \text{ et } R_W = 0,0324 \\ R_{\text{all}} &= 0,0689 \text{ et } R_{W_{\text{all}}} = 0,0360 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,08 ; 0,98
Δ/σ max ; moyen	$2 \cdot 10^{-4}$; < 10^{-4}
Résidus Fourier différence (max ; min)	0,44 ; - 0,72
Paramètre de Flack	-0,004(9)

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Rb(1)	-0,52329(5)	0	0	0,02464(17)	1
Al(1)	-0,13193(12)	0	0	0,0061(3)	1
Al(2)	-0,5	0,25240(11)	0,25	0,0045(3)	1
Al(3)	0	0,29253(11)	0,25	0,0049(3)	1
P(1)	-0,05324(7)	0,20594(7)	0,48905(7)	0,00509(18)	1
P(2)	-0,22990(8)	0,13540(6)	0,31786(7)	0,00450(18)	1
P(3)	-0,26395(8)	0,43193(7)	0,27694(7)	0,00445(18)	1
O(1)	-0,0344(2)	0,10908(18)	0,0163(2)	0,0105(6)	1
O(2)	-0,4267(2)	0,2522(2)	0,1043(2)	0,0082(6)	1
O(3)	-0,0109(2)	0,28865(18)	0,40741(18)	0,0070(5)	1
O(4)	-0,2010(2)	0,16449(19)	0,4452(2)	0,0074(6)	1
O(5)	-0,3788(2)	0,14527(18)	0,29718(19)	0,0072(6)	1
O(6)	-0,1359(2)	0,19081(18)	0,2423(2)	0,0078(6)	1
O(7)	-0,1912(2)	0,01525(18)	0,3169(2)	0,0080(6)	1
O(8)	-0,2549(2)	0,4923(2)	0,38780(19)	0,0087(6)	1
O(9)	-0,3730(2)	0,35317(19)	0,2858(2)	0,0085(6)	1
O(10)	-0,1278(2)	0,39658(18)	0,2386(2)	0,0093(6)	1

C – 16. (v) Paramètres atomiques

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{\ddot{a}}_{i} \mathbf{\ddot{a}}_{j}.$

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,0214(3)	0,0190(3)	0,0335(3)	0	0	0,0052(3)
Al(1)	0,0074(5)	0,0050(5)	0,0060(6)	0	0	0,0000(5)
Al(2)	0,0048(6)	0,0041(5)	0,0047(5)	0	-0,0010(4)	0
Al(3)	0,0049(6)	0,0047(6)	0,0051(5)	0	0,0012(4)	0
P(1)	0,0061(3)	0,0053(3)	0,0039(3)	-0,0003(3)	-0,0002(3)	-0,0005(3)
P(2)	0,0044(3)	0,0035(3)	0,0056(3)	-0,0005(3)	-0,0002(3)	0,0000(3)
P(3)	0,0042(3)	0,0037(3)	0,0054(3)	0,0002(3)	0,0003(3)	0,0006(3)
O(1)	0,0129(10)	0,0068(9)	0,0118(11)	-0,0068(8)	-0,0024(9)	0,0014(9)
O(2)	0,0093(10)	0,0093(11)	0,0060(10)	0,0015(8)	0,0004(8)	0,0006(9)
O(3)	0,0093(10)	0,0077(10)	0,0040(9)	-0,0011(9)	0,0014(7)	0,0016(8)
O(4)	0,0068(10)	0,0100(10)	0,0053(10)	-0,0010(8)	0,0002(7)	-0,0016(8)
O(5)	0,0069(10)	0,0062(10)	0,0084(11)	-0,0003(8)	-0,0024(8)	0,0006(8)
O(6)	0,0073(11)	0,0096(10)	0,0065(10)	-0,0038(8)	0,0017(7)	-0,0015(9)
O(7)	0,0100(9)	0,0058(10)	0,0083(9)	0,0009(8)	-0,0036(8)	-0,0024(8)
O(8)	0,0105(10)	0,0088(10)	0,0067(9)	-0,0013(9)	0,0022(7)	-0,0025(9)
O(9)	0,0071(10)	0,0084(11)	0,0101(10)	-0,0048(8)	0,0009(8)	-0,0006(8)
O(10)	0,0050(10)	0,0087(10)	0,0141(12)	0,0028(8)	0,0018(8)	0,0015(9)

C – 16. (vi) Paramètres de déplacements atomiques anisotropes

C – 16. (vii) Distances et angles (Å, °)

Al(1)	O(1)	O(1 ⁱ)	O(8 ⁱⁱ)	O(8 ⁱⁱⁱ)
O(1)	1,715(2)	2,838(4)	2,895(3)	2,811(3)
O(1 ⁱ)	111,69(12)	1,715(2)	2,811(3)	2,895(3)
O(8 ⁱⁱ)	113,56(11)	108,62(11)	1,746(2)	2,682(3)
O(8 ⁱⁱⁱ)	108,62(11)	113,56(11)	100,37(11)	1,746(2)

Al(2)	O(2)	O(2 ^{iv})	O(5)	O(5 ^{iv})	O(9)	O(9 ^{iv})
O(2)	1,882(2)	3,763(3)	2,722(3)	2,639(5)	2,580(3)	2,706(3)
$O(2^{iv})$	179,84(14)	1,882(2)	2,639(5)	2,722(3)	2,706(3)	2,580(3)
O(5)	91,70(10)	88,18(10)	1,911(3)	2,645(3)	2,683(4)	3,763(3)
O(5 ^{iv})	88,18(10)	91,70(10)	87,56(11)	1,911(3)	3,763(3)	2,683(4)
O(9)	87,31(10)	92,80(11)	90,83(10)	175,17(10)	1,855(3)	2,650(3)
$O(9^{iv})$	92,80(11)	87,31(10)	175,17(10)	90,83(10)	91,13(12)	1,855(3)

Al(3)	O(3)	O(3 ^v)	O(6)	O(6 ^v)	O(10)	O(10 ^v)
O(3)	1,880(2)	3,758(3)	2,643(3)	2,622(3)	2,705(3)	2,616(3)
O(3 ^v)	176,94(14)	1,880(2)	2,622(3)	2,643(3)	2,616(3)	2,705(3)
O(6)	89,38(10)	88,48(10)	1,878(3)	2,691(3)	2,653(4)	3,724(3)
O(6 ^v)	88,48(10)	89,38(10)	91,50(11)	1,878(3)	3,724(3)	2,653(4)
O(10)	93,08(11)	89,15(11)	90,85(10)	177,19(11)	1,847(3)	2,539(3)
O(10 ^v)	89,15(11)	93,08(11)	177,19(11)	90,85(10)	86,84(11)	1,847(3)

P(1)	O(1 ^v)	$O(2^{vi})$	O(3)	O(4)
O(1 ^v)	1,520(3)	2,528(3)	2,525(4)	2,476(3)
O(2 ^{vi})	114,32(14)	1,489(3)	2,483(3)	2,518(3)
O(3)	113,35(13)	112,20(15)	1,502(3)	2,508(3)
O(4)	103,08(13)	107,06(12)	105,79(13)	1,640(2)

P(2)	O(4)	O(5)	O(6)	O(7)
O(4)	1,589(3)	2,501(3)	2,526(3)	2,458(4)
O(5)	108,24(13)	1,496(2)	2,555(3)	2,509(3)
O(6)	110,84(13)	118,43(14)	1,477(2)	2,490(4)
O(7)	101,13(13)	108,50(13)	108,30(13)	1,594(3)

P(3)	O(7 ^{vii})	O(8)	O(9)	O(10)
O(7 ^{vii})	1,613(3)	2,515(3)	2,503(4)	2,444(3)
O(8)	105,98(14)	1,536(3)	2,460(3)	2,502(3)
O(9)	107,79(13)	109,11(13)	1,483(2)	2,458(3)
O(10)	103,79(13)	111,45(13)	117,88(14)	1,491(2)

Rb-O(3 ⁱⁱ)	2,958(3)
Rb-O(3 ⁱⁱⁱ)	2,958(3)
Rb-O(5 ^{viii})	3,207(2)
Rb-O(5 ^{iv})	3,207(2)
Rb-O(8 ⁱⁱ)	3,057(2)
Rb-O(8 ⁱⁱⁱ)	3,057(2)
$Rb-O(10^{ix})$	3,306(2)
$Rb-O(10^{x})$	3,306(2)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ x, -y, -z; & (ii) -\frac{1}{2}-x, \frac{1}{2}-y, -\frac{1}{2}+z; & (iii) -1-x, -1+y, \frac{1}{2}-z; & (iv) -\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z; \\ (v) \ \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z; & (vi) -\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z; & (vii) -1-x, y, \frac{1}{2}-z; & (viii) -1-x, -y, -\frac{1}{2}+z; & (ix) -\frac{1}{2}+x, -\frac{1}{2}+y, z; \\ (x) -\frac{1}{2}+x, \frac{1}{2}-y, -z. \end{array}$

Diffractomètre	Philips PW 1830
Domaine angulaire 2θ	5°≤2θ≤100°
Pas	0,02°
Temps de mesure (s/pas)	9,8
Logiciel	FULLPROF en « Pattern Matching »
Paramètres de maille	a = 9,8849(3) Å b = 12,9032(4) Å c = 11,9279(4) Å
Groupe d'espace	C222 ₁
Phases détectées	$RbAl_3(P_3O_{10})_2$

C – 16. (viii) Études par DRX sur poudre

C - 17. $CsAl_3(P_3O_{10})_2$

C – 17. (i) Conditions d'obtention du cristal étudié par DRX

Synthèse	Cristal CsAl ₃ (P ₃ O ₁₀) ₂
Mode de synthèse	État solide ; A l'air (creuset Pt)
Précurseur métal alcalin A	CsNO ₃
Précurseur métal trivalent M	Al ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	1 2 g
Composition A : M: P	1:3:6
Cycle thermique	900°C 4 h 24 h 48 h 820°C
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 17. (ii) Caractéristiques du cristal étudié

Formule	CsAl ₃ (P ₃ O ₁₀) ₂
Analyse EDS (MEB)	15 : 26 : 59 pour Cs : Al : P
Masse molaire (g·mol ⁻¹)	719,7
Densité calculée ρ (g·cm ⁻³)	2,951
Coefficient d'absorption μ (mm ⁻¹)	3,156
Dimension (mm ³)	0,06 × 0,09 × 0,20
Paramètres de maille	a = 10,0048(7) Å b = 13,3008(10) Å c = 12,1698(7) Å <i>POSTREF</i> à partir de toutes les réflexions
Volume	1619,46(19) Å ³
Z	4
Extinctions systématiques visibles sur les clichés de précession reconstitués	hkl : h+k = 2n+1 hk0 : h = 2n+1, k = 2n+1 h0l : l = 2n+1
Groupe d'espace	C2ce (n°41)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	5,89°≤ θ ≤ 39,94°
Indices limitants	$-18 \le h \le 16$ $-23 \le k \le 24$ $-21 \le l \le 17$
Nombre de réflexions mesurées	15758
Nombre de réflexions avec I > 3σ	4177
Nombre de réflexions indépendantes (I>30)	3212
R_{sym}, R_{mes}, χ^2	0,064 ; 0,069 ; 2,44
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	Gaussienne (0,747 ; 0,873 ; 0,0503)
Correction de l'extinction secondaire	B-C Type I, Gaussienne, isotrope
Coefficient d'extinction g	0,11.10-4

C – 17. (iii) Conditions d'enregistrement du monocristal

C – 17. (iv) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	137
Facteurs d'accord	$\begin{split} R &= 0,0314 \text{ et } Rw = 0,0318 \\ R_{\text{all}} &= 0,0482 \text{ et } Rw_{\text{all}} = 0,0332 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,32 ; 1,20
Δ/σ max ; moyen	$3 \cdot 10^4$; < 10^4
Résidus Fourier différence (max ; min)	0,84 ; - 2,06

Atome	Х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Cs(1)	0	0	0	0,04132(12)	1
Al(1)	0,38030(10)	0	0	0,0078(2)	1
Al(2)	0,04897(8)	0,27177(5)	0,22074(5)	0,00594(13)	1
P(1)	0,06637(7)	0,18662(4)	0,45755(4)	0,00696(11)	1
P(2)	0,27095(7)	0,13268(4)	0,30481(4)	0,00610(10)	1
P(3)	0,30196(7)	0,42303(4)	0,28026(4)	0,00578(10)	1
O(1)	0,4779(2)	0,09478(10)	0,05100(10)	0,0178(5)	1
O(2)	0,0754(2)	0,27257(10)	0,07056(10)	0,0129(4)	1
O(3)	0,0289(2)	0,26411(10)	0,37393(10)	0,0115(4)	1
O(4)	0,2149(2)	0,14669(10)	0,42647(10)	0,0124(4)	1
O(5)	0,4015(2)	0,18446(10)	0,3000(2)	0,0137(4)	1
O(6)	0,1638(2)	0,15673(10)	0,22457(10)	0,0084(3)	1
O(7)	0,2982(2)	0,01604(10)	0,30423(10)	0,0133(4)	1
O(8)	0,2702(2)	0,46579(10)	0,39448(10)	0,0113(4)	1
O(9)	0,1989(2)	0,35296(10)	0,24079(10)	0,0128(4)	1
O(10)	0,4430(2)	0,38607(10)	0,27795(10)	0,0112(4)	1

C – 17. (v) Paramètres atomiques

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} \mathbf{a}^{*i} \mathbf{a}^{*j} \mathbf{\ddot{a}}_{i} \mathbf{\ddot{a}}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,01189(9)	0,0908(3)	0,02131(11)	0	0	-0,00353(16)
Al(1)	0,0079(4)	0,0091(3)	0,0063(3)	0	0	0,0000(3)
Al(2)	0,0058(3)	0,0069(2)	0,0051(2)	0,00014(20)	-0,0003(2)	0,00013(19)
P(1)	0,0077(2)	0,00843(17)	0,00473(18)	-0,00022(18)	0,00093(17)	-0,00005(16)
P(2)	0,00559(18)	0,00580(16)	0,00689(19)	0,00030(16)	0,00015(16)	-0,00048(15)
P(3)	0,00534(19)	0,00540(15)	0,00661(18)	-0,00038(15)	-0,00060(16)	0,00001(15)
O(1)	0,0227(10)	0,0156(7)	0,0152(7)	-0,0125(7)	-0,0030(7)	0,0006(6)
O(2)	0,0162(8)	0,0165(7)	0,0059(6)	0,0014(6)	0,0012(6)	0,0012(5)
O(3)	0,0160(7)	0,0120(6)	0,0065(6)	0,0051(6)	0,0018(5)	0,0015(5)
O(4)	0,0097(7)	0,0202(8)	0,0074(6)	0,0059(6)	0,0007(5)	-0,0003(6)
O(5)	0,0076(6)	0,0148(7)	0,0187(8)	-0,0046(6)	0,0003(6)	0,0016(6)
O(6)	0,0089(6)	0,0081(5)	0,0082(6)	0,0025(5)	-0,0017(5)	-0,0008(5)
O(7)	0,0215(9)	0,0058(5)	0,0125(6)	0,0039(5)	-0,0055(7)	-0,0028(5)
O(8)	0,0110(7)	0,0153(6)	0,0075(6)	-0,0007(6)	0,0004(5)	-0,0040(5)
O(9)	0,0089(7)	0,0119(6)	0,0176(7)	-0,0030(6)	-0,0023(6)	-0,0031(5)
O(10)	0,0064(6)	0,0097(6)	0,0175(7)	0,0026(5)	-0,0008(6)	-0,0018(5)

C – 17. (vi) Paramètres de déplacements atomiques anisotropes

	Al(1)	O(1)	O(1 ⁱ)	O(8 ⁱⁱ)	O(8 ⁱⁱⁱ)	
	O(1)	1,7113(17)	2,8108(19)	2,775(3)	2,932(2)	
	O(1 ⁱ)	110,42(10)	1,7113(17)	2,932(2)	2,775(3)	
	O(8 ⁱⁱ)	106,52(7)	115,68(7)	1,7518(17)	2,7242(17)	
	O(8 ⁱⁱⁱ)	115,68(7)	106,52(7)	102,08(10)	1,7518(17)	
A1(2)	O(2)	O(2)	$O(5^{iv})$	O(6)	O(0)	$O(10^{iv})$
AI(2)	1 9462(14)	3 7220(17)	0(3)	25828(10)	O(3)	O(10)
O(2)	1,6402(14)	3,7220(17)	2,023(3)	2,3828(19)	2,030(2)	2,720(2)
O(2)	170,54(8) 80.04(10)	1,8//3(14)	2,000(3)	2,077(2)	2,030(2)	2,0000(19)
O(5)	89,04(10)	90,90(10)	1,6943(19)	2,007(3)	3,738(3)	2,7200(19)
O(0)	00,74(7)	(/)۲(,۲۵ ۵0 20(7)	00,7U(ð)	1,7142(18)	2,0416(19)	3,707(2)
O(9)	90,03(7)	07,27(7)	177,39(8)	00,70(0)	1, 0040(19)	2,008(3)
0(9)	94,09(7)	88,38(7)	93,34(8)	177,25(8)	89,07(8)	1,0559(17)
	- (1)					
	P(1)	O(1")	O(2')	O(3)	O(4)	
	O(1 ^{IV})	1,5119(17)	2,500(2)	2,4832(19)	2,485(3)	_
	O(2 ^v)	113,29(9)	1,4816(13)	2,4870(18)	2,485(2)	_
	O(3)	111,28(9)	113,26(8)	1,4963(14)	2,512(2)	
	O(4)	104,82(9)	106,27(10)	107,24(9)	1,623(2)	
	P(2)	O(4)	O(5)	O(6)	O(7)	
	O(4)	1,5945(14)	2,471(3)	2,5132(18)	2,435(2)	
	O(5)	107,04(12)	1,478(2)	2,576(3)	2,468(2)	
	O(6)	109,36(10)	120,78(11)	1,4846(18)	2,500(2)	
	O(7)	100,39(7)	107,83(10)	109,50(9)	1,5757(15)	
I			1			
	P(3)	O(7)	O(8)	O(9)	O(10)	
	O(7)	1,6084(14)	2,5242(18)	2,447(2)	2,467(2)	
	O(8)	106,79(7)	1,5354(14)	2,5017(19)	2,747(2)	
	O(9)	105,18(9)	112,66(10)	1,4702(18)	2,523(3)	
	0(10)	105 25(0)	100 51(0)	116 62(0)	1 404(2)	

C – 17. (vii) Distances et angles

Cs-O(3 ⁱⁱ)	3,5048(13)
Cs-O(3 ⁱⁱⁱ)	3,5048(13)
$Cs-O(4^{iv})$	3,5698(18)
$Cs-O(4^{vii})$	3,5698(18)
$Cs-O(5^{iv})$	3,594(2)
Cs-O(5 ^{vii})	3,594(2)
$Cs-O(7^{iv})$	3,1304(16)
Cs-O(7 ^{vii})	3,1304(16)
Cs-O(8 ⁱⁱ)	3,0271(19)
Cs-O(8 ⁱⁱⁱ)	3,0271(19)

 $\begin{array}{c} \underline{Codes \ de \ symétrie:} & (i) \ x, \ -y, \ -z; & (ii) \ x, \ -\frac{1}{2} + y, \ \frac{1}{2} - z; & (iii) \ \frac{1}{2} + x, \ 1 - y, \ -\frac{1}{2} + z; & (iv) \ -\frac{1}{2} + x, \ -1 + y, \ \frac{1}{2} - z; \\ (v) \ \frac{1}{2} + x, \ 1 - y, \ \frac{1}{2} + z; & (vi) \ x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (vi) \ \frac{1}{2} + x, \ 1 - y, \ \frac{1}{2} + z; & (vi) \ \frac{1}{2} + x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (vi) \ \frac{1}{2} + x, \ 1 - y, \ \frac{1}{2} + z; \\ (vi) \ \frac{1}{2} + x, \ \frac{1}{2} + y, \ \frac{1}{2} - z; \\ (vi) \ \frac{1}{2} + x, \ \frac{1}{2} - y, \ -\frac{1}{2} + z. \end{array}$

C – 17. (viii)	Études par DRX	sur poudre
----------------	----------------	------------

Diffractomètre	Philips PW 1830
Domaine angulaire 2θ	5°≤2θ≤85°
Pas	0,02°
Temps de mesure (s/pas)	12
Logiciel	FULLPROF en « Pattern Matching »
Paramètres de maille	a = 10,0214(5) Å b = 13,3292(7) Å c = 12,1873(6) Å
Groupe d'espace	C2cb
Phases détectées	$CsAl_3(P_3O_{10})_2$

$C-18. \qquad RbGa_2P_5O_{16}$

C-18. (i) Conditions d'obtention du cristal étudié par DRX,

Synthèse	Cristal RbGa2P5O16
Mode de synthèse	État solide ; Tube scellé
Précurseur métal alcalin A	RbNO ₃
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	0,8 g
Composition A : M: P	3:5:12
Cycle thermique	830°C 5 h 20 h 30 h 800°C 20 h 600°C
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 18. (ii) Conditions d'obtention de l'échantillon quasi-monophasé

Synthèse	Échantillon monophasé RbGa ₂ P ₅ O ₁₆		
Mode de synthèse	État solide ; Tube Scellé		
Précurseur métal alcalin A	Rb ₂ CO ₃		
Précurseur métal trivalent M	Ga ₂ O ₃		
Précurseur phosphate P	H ₃ PO ₄ (85%)		
Perte de masse	quelques heures à 400°C dans un creuset en Pt		
Masse totale des précurseurs	1,66 g		
Composition A : M: P	1:2:5		
Cycle thermique	800°C 850°C qq h 3 h qq h		
Observation			
Couleur, Opacité, Morphologie	/		
Poudre	Blanche		

Formule	RbGa ₂ P ₅ O ₁₆
Analyse EDS (MEB)	/
Masse molaire (g·mol ⁻¹)	635,8
Densité calculée ρ (g·cm ⁻³)	3,2779(6)
Coefficient d'absorption μ (mm ⁻¹)	8,656
Dimension (mm ³)	$0,077 \times 0,051 \times 0,026$
Paramètres de maille	
Volume	643,93(12) Å ³
Ζ	2
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h+l = 2n+1
Groupe d'espace	Pn (n°7)

C – 18. (iii) Caractéristiques du cristal étudié

C – 18. (iv) Conditions d'enregistrement du monocristal

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
Stratégie de la collecte de données	Dx = 34 mm Scans en φ et ω 0,5°/image ; 60 s/° ; 2 itérations
Domaine angulaire θ	$5,89^\circ \le \theta \le 40,99^\circ$
Indices limitants	$-13 \le h \le 13$ $-13 \le k \le 17$ $-18 \le l \le 18$
Nombre de réflexions mesurées	10735
Nombre de réflexions avec I > 3σ	6061
Nombre de réflexions indépendantes (I>30)	2657
R_{sym}, R_{mes}, χ^2	0,109 ; 0,137 ; 1,217
Correction de l'absorption (T_{min} , T_{max} , R_{sym})	Gaussienne (0,592 ; 0,749 ; 0,0852)
Correction de l'extinction secondaire	B-C Type I, Gaussienne, isotrope
Coefficient d'extinction g	0,08(2)·10 ⁻⁴

Logiciel	JANA2000
Méthode de résolution	Patterson et Fourier différence
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	216
Facteurs d'accord	$\begin{split} R &= 0,0366 \text{ et } Rw = 0,0310 \\ R_{\text{all}} &= 0,1373 \text{ et } Rw_{\text{all}} = 0,0381 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^4 F^2)$
Gof ; Gof _{all}	1,03 ; 0,82
$\Delta \sigma$ max ; moyen	$4 \cdot 10^{-4}$; < $1 \cdot 10^{-4}$
Résidus Fourier différence (max ; min)	1,27 ; - 1,30
Paramètre de Flack	0

C – 18. (v) Résolution et affinement structural

C – 18. (vi) Paramètres atomiques

Atome	х	у	Z	$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Rb(1)	-0,03884(12)	0,70183(7)	-0,10080(12)	0,0358(3)	1
Ga(1)	0	0,13098(6)	0	0,00579(17)	1
Ga(2)	-0,45115(9)	0,63832(6)	-0,89115(8)	0,00620(17)	1
P(1)	-0,21265(17)	0,62668(13)	-0,56066(15)	0,0060(4)	1
P(2)	-0,30319(18)	0,36296(13)	-0,98941(15)	0,0059(3)	1
P(3)	-0,09418(18)	0,20569(13)	-0,73205(16)	0,0068(4)	1
P(4)	-0,28750(17)	0,95680(14)	-0,87211(15)	0,0062(4)	1
P(5)	-0,14805(18)	0,08480(13)	-0,33324(15)	0,0056(4)	1
O(1)	-0,1487(5)	0,5121(4)	-0,4455(4)	0,0093(11)	1
O(2)	-0,2866(5)	0,7612(4)	-0,5140(4)	0,0110(12)	1
O(3)	-0,3392(5)	0,5635(4)	-0,7007(4)	0,0094(12)	1
O(4)	-0,0136(4)	0,6774(4)	-0,5836(4)	0,0082(11)	1
O(5)	-0,1685(5)	0,3028(4)	-0,0551(4)	0,0076(11)	1
O(6)	-0,2821(5)	0,5234(4)	-0,9620(4)	0,0102(12)	1
O(7)	-0,2796(5)	0,2844(4)	-0,8427(4)	0,0082(11)	1
O(8)	-0,0522(6)	0,2706(4)	-0,5918(5)	0,0122(12)	1
O(9)	-0,3497(5)	0,7962(4)	-0,2958(4)	0,0090(11)	1
O(10)	-0,1750(5)	0,0448(4)	-0,7286(4)	0,0091(11)	1
O(11)	-0,2568(5)	0,7981(4)	-0,8438(5)	0,0107(12)	1
O(12)	-0,2313(5)	0,0206(4)	0,0128(4)	0,0095(11)	1
O(13)	-0,0063(5)	0,0054(4)	-0,4028(4)	0,0079(11)	1
O(14)	-0,1368(5)	0,2456(4)	-0,3526(4)	0,0092(12)	1
O(15)	-0,0722(5)	0,0376(4)	-0,1803(4)	0,0093(12)	1
O(16)	-0,3474(4)	0,0336(4)	-0,4180(4)	0,0101(12)	1

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Rb(1)	0,0233(3)	0,0265(3)	0,0522(5)	-0,0011(3)	0,0070(3)	0,0020(3)
Ga(1)	0,0055(2)	0,0056(2)	0,0063(3)	0,0003(2)	0,0022(2)	0,0001(2)
Ga(2)	0,0064(2)	0,0047(2)	0,0072(3)	0,0008(2)	0,0021(2)	-0,0006(2)
P(1)	0,0046(5)	0,0060(5)	0,0067(6)	0,0003(4)	0,0013(4)	0,0005(5)
P(2)	0,0059(5)	0,0045(5)	0,0069(6)	0,0014(4)	0,0018(4)	0,0009(5)
P(3)	0,0069(5)	0,0071(5)	0,0057(6)	-0,0002(4)	0,0014(5)	0,0010(5)
P(4)	0,0062(5)	0,0056(5)	0,0067(6)	-0,0002(4)	0,0021(5)	-0,0001(5)
P(5)	0,0063(5)	0,0041(5)	0,0070(6)	-0,0007(4)	0,0030(5)	-0,0005(5)
O(1)	0,0109(15)	0,0097(17)	0,0093(19)	0,0024(13)	0,0061(14)	0,0009(15)
O(2)	0,0047(15)	0,0096(17)	0,018(2)	0,0027(13)	0,0035(15)	-0,0018(16)
O(3)	0,0083(15)	0,0093(17)	0,009(2)	-0,0022(13)	0,0018(14)	0,0004(14)
O(4)	0,0012(14)	0,0115(15)	0,0098(18)	-0,0004(11)	-0,0008(13)	0,0045(14)
O(5)	0,0093(15)	0,0066(16)	0,010(2)	0,0031(13)	0,0079(14)	-0,0010(14)
O(6)	0,0089(15)	0,0085(16)	0,016(2)	0,0012(13)	0,0079(15)	-0,0007(15)
O(7)	0,0105(15)	0,0090(16)	0,0059(17)	0,0021(12)	0,0040(14)	0,0015(14)
O(8)	0,0190(18)	0,0102(17)	0,0065(18)	-0,0004(15)	0,0034(15)	-0,0016(15)
O(9)	0,0057(14)	0,0131(17)	0,0082(18)	-0,0002(13)	0,0023(13)	-0,0013(15)
O(10)	0,0139(16)	0,0048(15)	0,0063(17)	-0,0028(12)	0,0006(13)	0,0007(13)
O(11)	0,0062(15)	0,0093(17)	0,016(2)	0,0012(13)	0,0039(15)	-0,0041(16)
O(12)	0,0085(15)	0,0092(17)	0,0104(19)	-0,0030(12)	0,0028(14)	-0,0002(14)
O(13)	0,0097(15)	0,0069(16)	0,0101(18)	-0,0013(12)	0,0072(14)	-0,0003(14)
O(14)	0,0100(16)	0,0038(15)	0,015(2)	-0,0017(12)	0,0066(15)	-0,0013(15)
O(15)	0,0134(16)	0,0096(17)	0,0070(19)	0,0037(13)	0,0063(15)	0,0007(15)
O(16)	0,0070(16)	0,0060(16)	0,016(2)	-0,0012(12)	0,0033(15)	-0,0044(14)

C – 18. (vii) Paramètres de déplacements atomiques anisotropes

C-18.~(viii)~ Distances et angles (Å, °)

Ga(1)	O(2 ⁱ)	O(5)	O(9 ⁱ)	O(12)	O(15)	O(16 ⁱⁱ)
O(2 ⁱ)	1 ,914(4)	2,772(5)	2,830(7)	3,949(6)	2,866(5)	2,785(5)
O(5)	91,07(16)	1,970(4)	2,721(5)	2,770(5)	2,952(6)	3,853(5)
O(9 ⁱ)	90,73(17)	84,91(15)	2,060(4)	2,878(5)	3,958(6)	2,716(6)
O(12)	178,56(14)	87,51(15)	89,31(16)	2,035(4)	2,615(7)	2,723(5)
O(15)	97,08(18)	99,08(15)	171,13(16)	82,98(17)	1,910(4)	2,662(5)
O(16 ⁱⁱ)	93,87(15)	170,20(19)	86,57(16)	87,56(15)	88,71(16)	1,897(3)

Ga(2)	O(1 ⁱⁱⁱ)	O(3)	O(6)	O(8 ⁱⁱⁱ)	O(11)	O(14 ⁱⁱⁱ)
$O(1^{iii})$	1 ,948(4)	2,798(5)	2,798(6)	2,897(6)	3,941(5)	2,619(5)
O(3)	92,32(16)	1,931(4)	2,839(6)	3,999(6)	2,785(6)	2,812(5)
O(6)	91,49(16)	93,77(16)	1,959(4)	2,732(5)	2,776(5)	3,835(6)
O(8 ⁱⁱⁱ)	92,19(15)	175,43(15)	85,33(17)	2,071(4)	2,751(5)	2,710(7)
O(11)	177,17(15)	90,37(16)	89,22(16)	85,14(16)	1,995(4)	2,813(6)
O(14 ⁱⁱⁱ)	86,09(16)	94,84(18)	171,14(16)	86,25(18)	92,80(16)	1,888(4)

P(1)	O(1)	O(2)	O(3)	O(4)
O(1)	1,516(4)	2,507(5)	2,504(5)	2,501(6)
O(2)	112,6(3)	1,497(4)	2,549(6)	2,487(6)
O(3)	111,7(2)	116,1(2)	1,508(4)	2,508(4)
O(4)	104,8(2)	104,8(2)	105,6(2)	1,639(4)

P(2)	O(4 ⁱⁱⁱ)	O(5 ^{iv})	O(6)	O(7)
$O(4^{iii})$	1,556(3)	2,476(5)	2,525(5)	2,460(5)
O(5 ^{iv})	108,9(2)	1,487(5)	2,506(6)	2,560(6)
O(6)	111,36(19)	114,0(2)	1,502(4)	2,507(5)
O(7)	102,3(2)	111,9(2)	107,7(2)	1,602(4)

P(3)	O(7)	O(8)	O(9 ^v)	O(10)
O(7)	1,603(3)	2,497(5)	2,503(5)	2,484(5)
O(8)	108,9(2)	1,465(5)	2,555(7)	2,485(5)
O(9 ^v)	107,6(2)	119,1(2)	1,498(5)	2,546(6)
O(10)	101,49(18)	108,0(2)	110,3(2)	1,604(4)

P(4)	O(10 ^{vi})	O(11)	O(12 ^{vii})	O(13 ⁱⁱⁱ)
O(10 ^{vi})	1,610(4)	2,527(5)	2,502(6)	2,503(4)
O(11)	109,0(2)	1,492(4)	2,556(6)	2,503(5)
$O(12^{vii})$	107,7(2)	118,1(3)	1,487(5)	2,482(6)
O(13 ⁱⁱⁱ)	103,5(2)	109,3(2)	108,2(2)	1,577(4)

P(5)	O(13)	O(14)	O(15)	O(16)
O(13)	1,629(4)	2,538(5)	2,479(6)	2,490(5)
O(14)	108,3(2)	1,501(4)	2,517(5)	2,440(5)
O(15)	104,4(2)	113,6(2)	1,507(4)	2,538(5)
O(16)	105,6(2)	109,00(19)	115,4(2)	1 ,496(3)

Rb-O(3 ⁱ)	3,199(4)
Rb-O(6 ^{viii})	3,115(4)
Rb-O(9)	3,049(3)
Rb-O(14 ⁱ)	3,175(3)
Rb-O(15 ^{vii})	3,184(4)
Rb-O(16 ⁱ)	3,082(4)

C – 18. (ix) Études par DRX sur poudre
--

Diffractomètre	Philips PW 1830
Domaine angulaire 2θ	5°≤2θ≤100°
Pas	0,02°
Temps de mesure (s/pas)	10
Logiciel	FULLPROF en « Pattern Matching »
Paramètres de maille	
Groupe d'espace	Pn
Phases détectées	RbGa ₂ P ₅ O ₁₆ , ε GaPO ₄

C – 18. (x) Simulation du diffractogramme RX sur poudre

C – 19. (i) Conditions d'obtention du cristal étudié par DRX,

Synthèse	Cristal CsGa ₂ P ₅ O ₁₆			
Mode de synthèse	État solide ; A l'air			
Précurseur métal alcalin A	Cs ₂ CO ₃			
Précurseur métal trivalent M	Ga ₂ O ₃			
Précurseur phosphate P	H ₃ PO ₄ (85%)			
Perte de masse	4 heures à 400°C dans un creuset en Pt			
Masse totale des précurseurs	1,77 g			
Composition $A: M: P$	1:2:5			
Cycle thermique	800°C 850°C qq h 3 h qq h			
Observation				
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D			
Poudre	Blanche			

Synthèse	Échantillon monophasé CsGa ₂ P ₅ O ₁₆
Mode de synthèse	État solide ; A l'air (creuset en Pt)
Précurseur métal alcalin A	CsNO3
Précurseur métal trivalent M	Ga ₂ O ₃
Précurseur phosphate P	(NH ₄) ₂ HPO ₄
Perte de masse	quelques heures à 500°C dans un creuset en Pt
Masse totale des précurseurs	0,94 g
Composition $A: M: P$	1:2:5
Cycle thermique	750°C 4 h 50 h 25 h 700°C 25 h
Observation	
Couleur, Opacité, Morphologie	Incolore, Translucide, 3D
Poudre	Blanche

C – 19. (ii) Conditions d'obtention de l'échantillon quasi-monophasé

C – 19. (iii) Caractéristiques du cristal étudié

Formule	$CsGa_2P_5O_{16}$
Analyse EDS (MEB)	11 : 20 : 69 pour Cs : Ga : P
Masse molaire (g·mol⁻¹)	683,2
Densité calculée ρ (g·cm ⁻³)	3,4815(17)
Coefficient d'absorption μ (mm ⁻¹)	7,598
Dimension (mm ³)	$0,046 \times 0,026 \times 0,013$
Paramètres de maille	
Volume	651,5(3) Å ³
Ζ	2
Extinctions systématiques visibles sur les clichés de précession reconstitués	h0l : h+l = 2n+1
Groupe d'espace	Pn (n°7)

Diffractomètre	Kappa CCD de BRUKER-NONIUS
Température	Ambiante (293 K)
λ(ΜοΚα)	0,71069 Å
	Dx = 37 mm
Stratégie de la collecte de données	Scans en ϕ et ω
	0,5°/image ; 150 s/° ; 2 itérations
Domaine angulaire θ	$5,90^{\circ} \le \theta \le 37,00^{\circ}$
	$-8 \le h \le 12$
Indices limitants	$-13 \le k \le 15$
	$-17 \le I \le 13$
Nombre de réflexions mesurées	8190
Nombre de réflexions avec I > 3σ	4054
Nombre de réflexions indépendantes (I>30)	2367
R_{sym}, R_{mes}, χ^2	0,063 ; / ; /
Correction de l'absorption (T _{min} , T _{max} , R _{sym})	SADABS (/ ; / ; 0,0741)
Correction de l'extinction secondaire	Aucune
Coefficient d'extinction g	/

C-19.~(iv) Conditions d'enregistrement du monocristal

C – 19. (v) Résolution et affinement structural

Logiciel	JANA2000
Méthode de résolution	Modèle RbGa ₂ P ₅ O ₁₆
Paramètres de déplacements atomiques (ADP)	Anisotrope (2 ^{ème} ordre)
Nombre de paramètres affinés	216
Facteurs d'accord	$\begin{split} R &= 0,0382 \text{ et } R_W = 0,0346 \\ R_{\text{all}} &= 0,0975 \text{ et } R_{W\text{all}} = 0,0406 \end{split}$
Schéma de pondération	$w = 1 / (\sigma^2(F) + 1.10^{-4} F^2)$
Gof ; Gof _{all}	1,03 ; 0,91
Δ/σ max ; moyen	3.10^{-4} ; 5.10^{-4}
Résidus Fourier différence (max ; min)	1,13 ; - 1,15
Paramètre de Flack	0,054(19)

Atome	х	y z		$U_{\text{iso(eq)}}(\text{\AA}^2)$	occ.
Cs(1)	0,04211(13)	0,69651(6)	69651(6) 0,10864(9) 0,02131(16)		1
Ga(1)	0	0,13068(8)	0	0,0053(2)	1
Ga(2)	0,45071(13)	0,63851(8)	0,89214(9)	0,0056(2)	1
P(1)	0,2115(3)	0,62735(19)	0,56037(18)	0,0057(5)	1
P(2)	0,3054(3)	0,36051(19)	0,98945(18)	0,0050(5)	1
P(3)	0,0957(3)	0,20316(19)	0,73335(19)	0,0059(5)	1
P(4)	0,2872(3)	0,95501(19)	0,87249(18)	0,0056(5)	1
P(5)	0,1456(3)	0,08507(19)	0,33414(18)	0,0056(5)	1
O(1)	0,1471(7)	0,5125(6)	0,4464(5)	0,0091(15)	1
O(2)	0,2893(7)	0,7593(6)	0,5135(5)	0,0102(16)	1
O(3)	0,3366(7)	0,5660(5)	0,7006(5)	0,0075(14)	1
O(4)	0,0159(7)	0,6810(5)	0,5835(5)	0,0084(15)	1
O(5)	0,1728(7)	0,3012(5)	0,0565(5)	0,0061(14)	1
O(6)	0,2853(6)	0,5208(5)	0,9634(5)	0,0084(15)	1
O(7)	0,2810(7)	0,2827(5)	0,8423(5)	0,0093(15)	1
O(8)	0,0511(8)	0,2692(5)	0,5928(5)	0,0086(15)	1
O(9)	0,4439(7)	0,7986(5)	0,2989(5)	0,0085(15)	1
O(10)	0,1758(7)	0,0442(5)	0,7287(5)	0,0082(14)	1
O(11)	0,2572(7)	0,7973(6)	0,8443(5)	0,0097(15)	1
O(12)	0,2307(7)	0,0191(5)	-0,0124(5)	0,0078(15)	1
O(13)	0,0040(6)	0,0067(5)	0,4041(5)	0,0077(15)	1
O(14)	0,1349(7)	0,2466(5)	0,3536(5)	0,0084(15)	1
O(15)	0,0705(7)	0,0395(6)	0,1794(5)	0,0109(16)	1
O(16)	0,3438(7)	0,0333(6)	0,4191(5)	0,0093(15)	1

C – 19. (vi) Paramètres atomiques

Tous les atomes ont été affinés avec des ADP anisotropes exprimés sous la forme d'un ADP isotrope équivalent $U_{iso(eq)} = \frac{1}{3} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} a^{*i} a^{*j} \vec{a}_{i} \vec{a}_{j}$.

Atome	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Cs(1)	0,0153(2)	0,0170(2)	0,0293(3)	-0,0010(2)	0,00506(19)	-0,0004(2)
Ga(1)	0,0064(3)	0,0050(3)	0,0050(3)	-0,0005(3)	0,0026(3)	-0,0003(3)
Ga(2)	0,0067(3)	0,0044(3)	0,0052(3)	-0,0007(3)	0,0016(3)	0,0006(3)
P(1)	0,0050(7)	0,0056(8)	0,0051(7)	0,0003(6)	0,0001(6)	-0,0006(6)
P(2)	0,0066(7)	0,0036(7)	0,0047(7)	-0,0006(6)	0,0019(6)	-0,0006(6)
P(3)	0,0074(7)	0,0054(8)	0,0049(7)	-0,0002(6)	0,0020(6)	-0,0005(6)
P(4)	0,0068(7)	0,0064(7)	0,0045(7)	0,0006(6)	0,0030(6)	-0,0001(6)
P(5)	0,0062(7)	0,0055(8)	0,0057(7)	0,0020(6)	0,0028(6)	0,0001(6)
O(1)	0,012(2)	0,007(2)	0,006(2)	-0,0037(18)	0,0001(19)	-0,0036(17)
O(2)	0,008(2)	0,006(2)	0,016(2)	-0,0041(18)	0,005(2)	0,0017(19)
O(3)	0,004(2)	0,008(2)	0,006(2)	-0,0020(17)	-0,0039(17)	0,0001(17)
O(4)	0,004(2)	0,011(2)	0,011(2)	0,0025(17)	0,0031(19)	-0,0035(17)
O(5)	0,005(2)	0,009(2)	0,005(2)	0,0002(17)	0,0040(17)	-0,0002(18)
O(6)	0,006(2)	0,010(2)	0,009(2)	0,0050(18)	0,0027(18)	0,0017(18)
O(7)	0,010(2)	0,012(3)	0,0050(19)	-0,0060(18)	0,0019(18)	-0,0064(18)
O(8)	0,012(2)	0,012(2)	0,004(2)	0,004(2)	0,0061(18)	0,0031(18)
O(9)	0,003(2)	0,010(2)	0,009(2)	0,0010(17)	-0,0015(18)	-0,0003(19)
O(10)	0,012(2)	0,004(2)	0,006(2)	0,0008(17)	0,0005(18)	0,0014(16)
O(11)	0,005(2)	0,011(2)	0,009(2)	-0,0001(18)	-0,0025(18)	-0,002(2)
O(12)	0,006(2)	0,009(2)	0,008(2)	0,0003(17)	0,0021(18)	-0,0048(17)
O(13)	0,004(2)	0,010(2)	0,010(2)	0,0014(17)	0,0056(19)	-0,0001(18)
O(14)	0,010(2)	0,001(2)	0,016(2)	0,0002(17)	0,007(2)	0,0020(18)
O(15)	0,018(3)	0,009(2)	0,006(2)	0,0018(19)	0,005(2)	0,0039(18)
O(16)	0,007(2)	0,008(2)	0,014(2)	0,0045(18)	0,0047(19)	0,0029(18)

 $C-19. \ (vii) \quad \ \ \text{Paramètres de déplacements atomiques anisotropes}$

C-19.~(viii)~ Distances et angles (Å, °)

Ga(1)	O(2 ⁱ)	O(5)	O(9 ⁱ)	O(12)	O(15)	O(16 ⁱⁱ)
O(2 ⁱ)	1,917(6)	2,795(7)	2,816(9)	3,965(8)	2,860(7)	2,785(7)
O(5)	91,4(2)	1,987(5)	2,719(6)	2,772(7)	2,939(8)	3,885(7)
O(9 ⁱ)	90,9(2)	85,15(15)	2,031(5)	2,857(6)	3,915(7)	2,716(8)
O(12)	178,1(2)	86,7(2)	88,9(2)	2,049(5)	2,619(8)	2,763(7)
O(15)	97,2(2)	98,3(2)	171,1(2)	83,1(2)	1,896(5)	2,661(6)
O(16 ⁱⁱ)	93,4(2)	170,9(2)	87,1(2)	88,5(2)	88,7(2)	1,910(5)

Ga(2)	O(1 ⁱⁱⁱ)	O(3)	O(6)	O(8 ⁱⁱⁱ)	O(11)	O(14 ⁱⁱⁱ)
$O(1^{iii})$	1,956(5)	2,826(6)	2,782(8)	2,916(8)	3,949(7)	2,620(7)
O(3)	93,1(2)	1,937(4)	2,844(8)	3,407(7)	2,763(8)	2,812(6)
O(6)	90,4(2)	93,6(2)	1,963(6)	2,752(7)	2,800(7)	3,834(8)
O(8 ⁱⁱⁱ)	92,5(2)	174,4(2)	85,8(2)	2,079(3)	2,755(6)	2,710(8)
O(11)	177,51(19)	89,3(2)	90,1(2)	85,1(2)	1,994(5)	2,816(8)
O(14 ⁱⁱⁱ)	86,0(2)	94,8(2)	171,02(19)	86,1(2)	93,1(2)	1,883(6)

P(1)	O(1)	O(2)	O(3)	O(4)
O(1)	1,513(5)	2,506(7)	2,504(6)	2,502(8)
O(2)	112,6(3)	1,498(6)	2,534(7)	2,491(8)
O(3)	112,1(3)	115,1(3)	1,505(3)	2,500(6)
O(4)	105,2(3)	105,3(3)	105,5(3)	1,634(6)

P(2)	O(4 ⁱⁱⁱ)	O(5 ^{iv})	O(6)	O(7)
$O(4^{iii})$	1,569(5)	2,483(7)	2,536(6)	2,469(6)
O(5 ^{iv})	108,6(3)	1,488(6)	2,504(7)	2,570(8)
O(6)	111,3(3)	113,7(3)	1,503(5)	2,513(7)
O(7)	102,2(3)	112,4(3)	108,0(3)	1,603(5)

P(3)	O(7)	O(8)	O(9 ^v)	O(10)
O(7)	1,608(5)	2,500(6)	2,511(7)	2,480(7)
O(8)	108,5(3)	1,471(5)	2,559(8)	2,483(7)
O(9 ^v)	107,7(3)	118,8(3)	1,501(6)	2,545(8)
O(10)	101,6(3)	108,2(3)	110,7(3)	1,592(5)

P(4)	O(10 ^{vi})	O(11)	O(12 ^{vii})	O(13 ⁱⁱⁱ)
O(10 ^{vi})	1,621(5)	2,538(7)	2,511(7)	2,507(6)
O(11)	109,4(3)	1,487(5)	2,557(7)	2,500(7)
O(12 ^{vii})	107,4(3)	118,2(3)	1,492(6)	2,479(8)
O(13 ⁱⁱⁱ)	103,4(3)	109,5(3)	107,8(3)	1,574(5)

P(5)	O(13)	O(14)	O(15)	O(16)
O(13)	1,634(6)	2,546(7)	2,508(8)	2,498(7)
O(14)	108,0(3)	1,511(5)	2,528(7)	2,454(7)
O(15)	105,2(3)	112,6(3)	1,522(5)	2,555(6)
O(16)	105,6(3)	109,1(3)	115,4(3)	1,501(5)

Cs-O(3 ⁱ)	3,180(5)
Cs-O(6 ^{viii})	3,157(6)
Cs-O(9)	3,081(4)
Cs-O(14 ⁱ)	3,257(4)
Cs-O(15 ^{vi})	3,240(5)
Cs-O(16 ⁱ)	3,176(5)

<u>Codes de symétrie :</u> (i) $-\frac{1}{2}+x$, 1-y, $-\frac{1}{2}+z$; (ii) $-\frac{1}{2}+x$, -y, $-\frac{1}{2}+z$; (iii) $x+\frac{1}{2}$, 1-y, $z+\frac{1}{2}$; (iv) x, y, 1+z; (v) $-\frac{1}{2}+x$, 1-y, $z+\frac{1}{2}$; (vi) x, y+1, z; (vii) x, y+1, z+1; (viii) x, y, -1+z.

C – 19. (ix) Études par DRX sur poudre

Diffractomètre	Philips PW 1830
Domaine angulaire 2θ	5°≤2θ≤100°
Pas	0,02°
Temps de mesure (s/pas)	10
Logiciel	FULLPROF en « Pattern Matching »
Paramètres de maille	
Groupe d'espace	Pn (n°7)
Phases détectées	CsGa ₂ P ₅ O ₁₆

Nouveaux Phosphates d'Élément Trivalent : Synthèses, Déterminations Structurales et Caractérisations physico-chimiques

Cette thèse porte sur l'étude de phosphates à charpentes mixtes dont les structures comportent des cavités ou des feuillets susceptibles d'accueillir des cations en insertion. Ces matériaux trouvent des applications dans de nombreux domaines, notamment en catalyse. Nous nous sommes plus particulièrement intéressés aux systèmes A-M-P-O dans lesquels $A = NH_4$, Rb, Cs, Ba ou Sr et M = Ga, In ou Al. Nous avons isolé dix neuf nouvelles phases, par synthèse hydrothermale à basse température et par synthèse à l'état solide à haute température, à l'air et en tube scellé. Les déterminations structurales ont été effectuées par diffraction des rayons X sur monocristaux, systématiquement combinées par des études en diffraction des RX sur poudre et par des analyses EDS, parfois complétée par des investigations en diffraction et microscopie électronique, en spectroscopie infrarouge et par des analyses thermogravimétriques. Nous avons également caractérisé l'activité d'une de ces phases en réduction sélective des oxydes d'azote, par spectrométrie de masse et spectroscopie IR in situ et operando. La détermination précise des structures cristallines des nouvelles phases découvertes, dont deux sont originales, nous a permis de confirmer la grande diversité structurale de cette famille de composés. De plus, l'analyse de leurs caractéristiques et leur comparaison avec celles des phosphates de même nature ont permis de mettre en évidence les relations existantes entre le mode de synthèse utilisé, la composition chimique étudiée et la structure obtenue. L'ensemble de ces résultats nous a conduit à élaborer une méthode simple pour classer ces structures en fonction de leur degré d'ouverture.

New Trivalent Element Phosphates: Synthesis, Structural Determinations and physicochemical Characterizations

This thesis deals with the study of mixed framework phosphates whose structures contain cavities or sheets, which are able to host cations in insertion. These materials can be used in numerous fields, in catalysis for example. We studied more particularly A-M-P-O systems in which A = NH₄, Rb, Cs, Ba or Sr and M = Ga, In or Al. We have isolated nineteen new phases by low temperature hydrothermal synthesis and high temperature solid-state synthesis, in air or sealed tube. Structural determinations have been performed by single crystals X Ray diffraction, systematically combined with powder X Ray diffraction studies and EDX analysis, and sometimes completed by electron diffraction in a TEM, infrared spectroscopy and thermogravimetric analysis. We have also tested the activity of one of these phases in selective catalytic reduction of nitrogen oxides, by mass spectroscopy and *in situ* and *operando* IR spectroscopy. The precise determination of the crystalline structures of these new phases (two of them are original) allowed us to confirm the great structural diversity of this class of compounds. Moreover, the analysis of theirs characteristics and their comparison with similar phosphates highlighted the relationships existing between the way of synthesis used, the chemical composition studied and the structures obtained. All this results led us to conceive a simple method to order those structures depending on their opening level.

Mots-clés : PHOSPHATES

STRUCTURE CRISTALLINE (SOLIDES) COMPOSES INORGANIQUES, SYNTHESE RAYONS X, DIFFRACTION MONOCRISTAUX GALLIUM CATALYSE HETEROGENE

Discipline : CHIMIE DES MATÉRIAUX

Laboratoire d'accueil : Laboratoire CRISMAT, UMR6508 ENSICAEN 6, Boulevard du Maréchal Juin 14050 CAEN Cedex 4