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Abstract

State machine replication (SMR) is a software technique for tolerating failures using com-
modity hardware. The critical service to be made fault-tolerant is modeled by a state machine.
Several, possibly different, copies of the state machine are then deployed on different nodes.
Clients of the service access the replicas through a SMR protocol which ensures that, despite
concurrency and failures, replicas perform client requests in the same order.

Two objectives underly the design and implementation of a SMR protocol: robustness
and performance. Robustness conveys the ability to ensure availability (liveness) and one-
copy semantics (safety) despite failures and asynchrony. On the other hand, performance
measures the time it takes to respond to a request (latency) and the number of requests that
can be processed per time unit (throughput).

In this thesis, we present two contributions to state machine replication. The first contri-
bution is LCR, a uniform total order broadcast (UTO-broadcast) protocol that is throughput
optimal in failure-free periods. LCR can be used to totally order the requests received by
a replicated state machine. LCR has been designed for small clusters of homogeneous ma-
chines interconnected by a local area network. It relies on a perfect failure detector and
tolerates the crash failures of all but one replicas. It is based on a ring topology and only
relies on point-to-point inter-process communication. We benchmark an implementation of
LCR against two of the most widely used group communication packages and show that LCR
provides higher throughput than them, over a large number of setups.

The second contribution is Abstract, a new abstraction to simplify the design, proof
and implementation of SMR protocols. Abstract focuses on the most robust class of SMR
protocols, i.e. those tolerating arbitrary (client and replica) failures. Such protocols are called
Byzantine Fault Tolerant (BFT) protocols. We treat a BFT protocol as a composition of
instances of our abstraction. Each instance is developed and analyzed independently. To
illustrate our approach, we first show how, with our abstraction, the benefits of a BFT protocol
like Zyzzyva could have been developed using less than 24% of the actual code of Zyzzyva.
We then present Aliph, a new BFT protocol that outperforms previous BFT protocols both in
terms of latency (by up to 30%) and throughput (by up to 360%).
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Chapter 1

Introduction

Since I obtained my PhD in December 2005, I have been working on four research topics:
component-based software engineering, large-scale distributed systems, system support for
multicore architectures, and replication-based fault tolerance. I briefly describe below the
main results achieved for each topic.

• Component-based software engineering. I have contributed to the design of the Frac-
tal component model. This component model is original in the sense that it was the
first model allowing component sharing (a component can simultaneously be a sub-
component of two distinct components). Moreover, another distinguishing feature in
this model is that components can be endowed with arbitrary reflective capabilities,
from plain black-box objects to components that allow a fine-grained manipulation of
their internal structure. This work has been published in SP&E in 2006 [24]. We
also designed an extensible toolset for easing the development of component-based
software systems. The originality of this toolset is that it does not define its own in-
put Architecture Description Language (ADL), but rather uses a grammar description
mechanism to accept various input languages, e.g. ADLs, Interface Definition Lan-
guages (IDLs), Domain Specific Languages (DSLs). This work has been published at
ICSE 2007 [72].

• Large-scale distributed systems. I have participated in the design of several gossip-
based protocols. Such protocols are used in very large-scale peer-to-peer systems,
where nodes cannot have a full knowledge about other nodes in the network. In gossip-
based protocols, each node knows a (constantly changing) subset of other nodes in
the network, with which it periodically exchanges data. We designed a replication
protocol that ensures eventual consistency in large-scale distributed systems subject to
network partitions and asynchrony. This work has been published at SSS 2006 [13].
We also designed TERA, a topic-based publish-subscribe protocol. This work has been
published at DEBS 2007 [12]. We proposed Nylon, the first gossip-based protocol
able to work despite the presence of Network Address Translation (NAT) gateways.
This work has been published at ICDCS 2009 [65]. We were also among the first
to design and deploy a gossip-based streaming protocol able to take into account the
heterogeneity in node capabilities. This protocol, called HEAP, has been published at
DSN 2009 [50] and Middleware 2009 [49]. Finally, we have designed FireSpam, the
first spam-resilient gossip-based broadcasting protocol. This work has been published
at SRDS 2010 [80].

• System support for multicore architectures. I have participated in the design of a
new runtime supporting event-driven programming for multicore platforms. Event-
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1.1. CONTEXT

driven programming is a popular approach for the development of efficient applica-
tions such as networked systems. This programming and execution model is based
on continuation-passing between short-lived and cooperatively-scheduled tasks. The
originality of our runtime is that it encompasses an efficient workstealing algorithm in
charge of balancing the execution of very fine-grain tasks on the available cores. This
work has been published at ICDCS 2010 [55].

• Replication-based fault tolerance. I have participated in the design of algorithms and
abstractions that are used as core building blocks in reliable distributed systems. In
particular, we designed LCR, the first total order broadcast protocol that is throughput-
optimal in LAN environments. This work has been published at DSN 2006 [60] and in
ACM TOCS in 2010 [61]. We have also designed a throughput-efficient atomic stor-
age algorithm that has been published at ICDCS 2007 [59]. This protocol, as well as
LCR, achieve very high throughput by organizing nodes in a ring topology and by only
relying on point-to-point communications. Finally, we have designed a new abstrac-
tion to ease the design, proof and implementation of Byzantine-resilient replication
protocols. The originality of our abstraction lies in the fact that it is possible to build
Byzantine-resilient replication protocols as a composition of distinct instances of our
abtraction. Each instance can be developed and analyzed independently. This work has
been published at EuroSys 2010 [58] and was awarded best paper of the conference.

In this document, I focus on the work I carried out on replication-based fault tolerance. In
the reminder of this section, I first describe the context of this work. Then I briefly introduce
the main contributions. Finally, I describe the outline of the document.

1.1 Context

As an ever increasing number of critical tasks are being delegated to computers, the un-
foreseen failure of a computer can have catastrophic consequences. Unfortunately, the ob-
served increase of computing power as predicted by Moore’s law has not been coupled with
a similar increase in reliability. On the other hand, because of rapidly decreasing hardware
costs, ensuring fault tolerance through state machine replication [86] is gaining in popularity.

State machine replication is a software technique for tolerating failures using commodity
hardware. It has been initially proposed by Lamport in his seminal paper “Time, Clocks, and
the Ordering of Events in a Distributed System” [69]. The critical service to be made fault-
tolerant is modeled by a state machine. Several, possibly different, copies of the state machine
are then deployed on different nodes. Clients of the service access the replicas1 through
a state machine replication protocol which ensures that, despite concurrency and failures,
replicas perform client requests in the same order. In a replicated database for instance, all
replicas must perform the same write queries (INSERT and UPDATE) in the same order.
Read queries (SELECT) do not change the state of the replicated database and do not have
to be performed by all replicas.

Two objectives underly the design and implementation of a state machine replication
protocol: robustness and performance. Robustness conveys the ability to ensure availability
(liveness) and one-copy semantics (safety) despite failures and asynchrony. On the other
hand, performance measures the time it takes to respond to a request (latency) and the number
of requests that can be processed per time unit (throughput).

1Replicas are also called “processes” throughout the thesis.

10



1.2. CONTRIBUTIONS

1.2 Contributions
In this thesis, two contributions to state machine replication are presented. I briefly intro-

duce them below before presenting them in details in the next chapters.

The LCR Uniform Total Order Broadcast Protocol. The first contribution presented in
this thesis is LCR [60, 61, 73], a uniform total order broadcast (UTO-broadcast) protocol
that is throughput optimal in failure-free periods. A UTO-broadcast protocol is a primitive
that can be used by replicas of a replicated state machine to order requests received from
clients. More formally, a UTO-broadcast protocol ensures the following for all messages that
are broadcast [62]: (1) Uniform agreement: if a replica delivers a message m, then all correct
replicas eventually deliver m; (2) Strong uniform total order: if some replica delivers some
message m before message m′, then a replica delivers m′ only after it has delivered m.

LCR has been designed for small clusters of homogeneous machines interconnected by
a local area network. It relies on a perfect failure detector (P ) [28] and tolerates the crash
failures of all but one replicas.

The motivation that led us to develop LCR is that most of the total order broadcast proto-
cols that have been designed in the last two decades [64, 8, 26, 54, 21, 97] target low latency.
On the other hand, very few protocols have been designed for high throughput. Nevertheless,
we believe that in some high load environments, e.g. database replication for e-commerce,
throughput is often as important, if not more, than latency. Indeed, under high load, the time
spent by a message in a queue before being actually disseminated can grow indefinitely. A
high throughput broadcast protocol reduces this waiting time.

The key to achieving high throughput in LCR is to organize processes in a ring topol-
ogy: each process always sends messages to the same process, thus avoiding any possible
collisions. To eliminate bottlenecks, messages in LCR are sequenced using logical vector
clocks instead of a dedicated sequencer. Moreover, using a ring topology, acknowledgement
messages can easily be piggy-backed, which further reduces the message overhead.

We have proposed a new (simple) distributed system model that we use to define an upper
bound on the throughput that can be achieved by UTO-broadcast protocols. Using this model,
we have shown that LCR theoretically matches this lower bound. This model is a round-based
model [76]: time is decomposed in rounds of equal duration. It assumes that a process can
send a message to one (unicast) or more processes (multicast) at the start of each round, and
can receive one message sent by other processes at the end of the round2. This model is
similar to the Postal model [16] with the addition of a multicast primitive which is available
on all current local area networks.

We have implemented LCR in order to (i) confirm the theoretical analysis made using
our new distributed system model, and (2) compare its performance with that achieved by
the two most popular group communication frameworks: Spread [3] and JGroups [14]. Our
experiments show that the proposed distributed system model is accurate: the throughput
achieved by LCR is very close to the expected one. Our experiments also show that LCR
consistently outperforms Spread and JGroups. For instance, with 4 processes, LCR achieves
throughput of up to 50% higher than that of Spread and up to 28% higher than that of JGroups.

The Abstract framework. The second contribution presented in this thesis is Abstract [58,
95], a new abstraction that significantly reduces the development cost of state machine repli-
cation protocols and makes it significantly easier to develop new efficient ones. Abstract
focuses on state machine replication protocols tolerating arbitrary (client and replica) fail-
ures. These protocols are commonly called “BFT protocols” (for Byzantine Fault Tolerance).

2In contrast with the classical round-based model which assumes that a process can receive several messages at
the end of each round.
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1.3. OUTLINE

The motivation that led us to develop Abstract is twofold:

• BFT protocols are notoriously complex to design and implement. As an example, the
only complete proof of a BFT protocol we know of is that of PBFT [27] and it involves
35 pages. Moreover, any change to an existing protocol, although algorithmically in-
tuitive, is very painful to design and implement (as exemplified by Zyzzyva which can
be seen as an extension of PBFT [67]). Regarding implementations, existing research
prototypes, although providing often incomplete implementations, involve more than
20.000 lines of (non-trivial) C++ code, e.g., PBFT [27] and Zyzzyva [67].

• There is no “one size that fits all” BFT protocol. A recent study [87] of three existing
BFT protocols (PBFT [27], Zyzzyva [67], and Q/U [1]) showed that their performance
can be heavily impacted by different factors. Our own experiences indeed reveal that
the performance of BFT protocols are impacted by the size of messages, the actual
number of clients, the total number of replicas, as well as the cost of the cryptographic
primitives being used. There are thus good reasons to believe that new BFT protocols
will need to be designed in the future in order to efficiently deal with some specific
(possibly new) operating conditions.

In order to address the need to develop new BFT protocols, and to decrease the com-
plexity of this task, we have proposed Abstract. Using Abstract, a BFT protocol is viewed
as a composition of instances of our abstraction, with each instance targeting and optimized
for specific operating conditions. An instance of Abstract looks like a traditional BFT state
machine replication protocol, with one exception: it may sometimes abort a client’s request.
The (non-triviality) condition under which Abstract cannot abort is a generic parameter. At
one extreme, one can for example specify a (useless) Abstract instance that could abort in
every execution. At the other extreme, one can prevent Abstract from ever aborting: in such
a case, Abstract implements a standard BFT state machine replication protocol. Interesting
Abstract instances are “weaker” ones, in which an abort is allowed, e.g., if there are failures
or asynchrony (or even contention). When such an instance aborts a client request, it returns
an unforgeable request history that can be used by the client to “recover” using another in-
stance of Abstract. Any composition of Abstract instances is possible; we expect many of
these to lead to interesting flexible BFT protocols.

We illustrate the benefits of Abstract by developing two BFT protocols. The first proto-
col, AZyzzyva, illustrates the ability of Abstract to significantly ease the development of BFT
protocols. AZyzzyva is a composition of two Abstract instances. It mimics Zyzzyva [67]
when there are no asynchrony or failures and requires about 1/4 of the code of Zyzzyva.
The second protocol is Aliph, a protocol that demonstrates the ability of Abstract to develop
novel efficient BFT protocols. Aliph uses three Abstract instances. It achieves up to 30%
lower latency and up to 360% higher throughput than state-of-the-art BFT protocols.

1.3 Outline
The thesis is organized as follows. Chapter 2 presents the LCR protocol. The Abstract

framework is presented in Chapter 3. Chapter 4 concludes the thesis.
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Chapter 2

LCR: a Throughput Optimal Total
Order Broadcast Protocol

This chapter presents LCR [60, 61, 73], the first throughput optimal uniform total order
broadcast protocol. LCR is based on a ring topology. It only relies on point-to-point inter-
process communication and has a linear latency with respect to the number of processes.
LCR is also fair in the sense that each process has an equal opportunity of having its messages
delivered by all processes. We benchmark an implementation of LCR against Spread [3] and
JGroups [14], two of the most widely used group communication packages. We show that
LCR provides higher throughput than them, over a large number of setups.

2.1 Introduction
As explained in the Introduction of this thesis, uniform total order broadcast (UTO-

broadcast) protocols can be used to implement state machine replication [86]. The role of
the UTO-broadcast protocol is to ensure that all replicas perform the same operations on
their copy in the same order, even if they subsequently fail. UTO-broadcast can be formally
defined as follows [62]: (1) Uniform agreement: if a replica delivers a message m, then all
correct replicas eventually deliver m; (2) Strong uniform total order: if some replica delivers
some message m before message m′, then a replica delivers m′ only after it has delivered m.

Clearly, even though UTO-broadcast is very useful, not all applications need the strong
guarantees that it provides. Some applications might only need reliable or even best-effort
broadcast. We will show however that there are no weaker broadcast protocols that can obtain
higher throughput than the protocol described in this chapter. In a sense, the strong uniform
total order guarantees provided by our protocol are free.

Latency vs. Throughput. Historically, most total order protocols have been devised for
low broadcast latency [64, 8, 26, 54, 21, 97]. Latency usually measures the time required to
complete a single message broadcast without contention. (It is typically captured by a number
of rounds in the classical model of [76]: in that model, at the start of each round a process can
send a message to one or more processes. It receives the messages sent by other processes
at the end of the round.) On the other hand, very few protocols have been designed for high
throughput. Throughput measures the number of broadcasts that the processes can complete
per time unit. In some high load environments, e.g. database replication for e-commerce,
throughput is often as important, if not more, than latency. Indeed, under high load, the time
spent by a message in a queue before being actually disseminated can grow indefinitely. A
high throughput broadcast protocol reduces this waiting time.

13



2.1. INTRODUCTION

Algorithm BAlgorithm A

p1

p2

p3

p4

p1

p2

p3

p4

Figure 2.1: Latency vs. Throughput: comparison of two broadcast algorithms A and B. Pro-
cess p1 initiates the broadcast. Broadcast latency is 2 rounds for A and 3 rounds for B.
However, B has higher throughput than A: in algorithm B one broadcast is completed every
round, while in algorithm A only one broadcast is completed every 2 rounds.

Maybe not surprisingly, protocols that achieve low latency often fail to provide high
throughput. To illustrate this, consider the example depicted in Figure 2.1:

1. In algorithmA, process p1 first sends a message to p2. In the next step p2 forwards the
message to p4 and at the same time p1 sends the message to p3.

2. In algorithm B, process p1 first sends a message to p2. In the next step p2 forwards the
message to p3 and finally p3 forwards the message to p4.

Algorithm A has a latency of 2 whereas algorithm B a latency of 3. Latency wise, A
is better than B. If we look at the throughput however, we see that A can only start a new
broadcast every 2 time units, while B can broadcast a new message every time unit. Therefore
even though the latency of B is higher than that of A, the maximal throughput of B is twice
that of A.

Contributions. In this chapter we present LCR [60, 61, 73], a uniform total order broadcast
protocol that is throughput optimal in failure-free periods. LCR relies on point-to-point com-
munication channels between processes. It uses logical clocks and a ring topology (hence the
name). The ring topology ensures that each process always sends messages to the same pro-
cess, thus avoiding any possible collisions. To eliminate bottlenecks, messages in LCR are
sequenced using logical vector clocks instead of a dedicated sequencer. Furthermore, the ring
topology allows all acknowledgement messages to be piggy-backed, reducing the message
overhead. These two characteristics ensure throughput optimality and fairness, regardless of
the type of traffic. In our context, fairness conveys the equal opportunity of processes to have
their broadcast messages delivered.

We give a full analysis of LCR’s performance and fairness. We also report on performance
results based on a C implementation of LCR that relies on TCP channels. The implementa-
tions are benchmarked against Spread and JGroups on a cluster of 9 machines and we show
that LCR consistently delivers the highest throughput. For instance, with 4 machines, LCR
achieves throughput of up to 50% higher than that of Spread and up to 28% higher than that
of JGroups.

Roadmap. Section 2.2 introduces the relevant system and performance models. Section 2.3
gives an overview of the related work. We describe LCR in Section 2.4, then we give an
analytical evaluation of it in Section 2.5, and we report on our experimental evaluation in
Section 2.6. Section 2.7 concludes the chapter with some final remarks.
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2.2 Model

2.2.1 System Model
Our context is a small cluster of homogeneous machines interconnected by a local area

network. In our protocol, each of the n machines (or processes) creates a TCP connection to
only a single process and maintains this connection during the entire execution of the protocol
(unless the process fails). Because of the simple communication pattern, the homogeneous
environment, and low local area network latency, it is reasonable to assume that, when a TCP
connection fails, the server on the other side of the connection failed [46]. We thus directly
implement the abstraction of a perfect failure detector (P ) [28] to which each process has
access.

2.2.2 Performance Model
Analyzing the performance of a communication abstraction requires a precise distributed

system model. Some models only address point-to-point networks, where no native broadcast
primitive is available [41, 15]. The model of [91], which was recently proposed to evaluate to-
tal order broadcast protocols, assumes that a process cannot simultaneously send and receive
a message. This does clearly not capture modern network cards for these provide full duplex
connectivity. Round-based models [76] are in that sense more convenient as they assume that
a process can send a message to one or more processes at the start of each round, and can
receive the messages sent by other processes at the end of the round. Whereas this model is
well-suited for proving lower bounds on the latency of protocols, it is however not appropri-
ate for making realistic predictions about the throughput. In particular, it is not realistic to
consider that several messages can be simultaneously received by the same process.

In this chapter, we analyze protocols using the model used in [60, 59]. This model as-
sumes that processes can send one message to one (unicast) or more processes (multicast) at
the start of each round, but can only receive a single message sent by other processes at the
end of the round. If more than one message is sent to the same process in the same round,
these messages will be received in different rounds. The rationale behind this model is that
machines in a cluster are each connected to a switch via a twisted pair ethernet cable. As
modern network cards are full-duplex, each machine can simultaneously send and receive
messages. Moreover, as the same physical cable is used to send and receive messages, it
makes sense to make the very same assumption on the number of messages that can be re-
ceived and on the number of messages that can be sent in one round. The model we use can
thus be described as follows: in each round k, every process pi can execute the following
steps:

1. pi computes the message for round k, m(i, k),

2. pi sends m(i, k) to all or a subset of processes,

3. pi receives at most one message sent at round k.

In a sense, our model is similar to the Postal model [16] with the addition of a multicast
primitive which is available on all current local area networks.

2.2.3 Throughput
Basically, throughput captures the average number of completed broadcasts per round.

A complete broadcast of message m means that all processes delivered m. In this model, a
broadcast protocol is optimal if it achieves an average of one complete broadcast per round
regardless of the number of broadcasters. Considering a cluster with n processes, we seek for
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an optimal throughput with k simultaneous broadcasters, k ranging from 1 to n. When eval-
uating throughput, we assume a variable number k of processes continuously sending mes-
sages, where 1 ≤ k ≤ n. Using this assumption, we can accurately model bursty broadcast
patterns. In the general case with random broadcast patterns, we can observe the following:
as soon as the load on the broadcast system approaches the maximum throughput (the case
we are interested in), processes will not be able to broadcast new messages immediately. This
will result in the creation of a queue of messages at the sender which leads to sending a burst.
Thus our model can accurately represent the general case in high load scenarios.

2.3 Related Work
The five following classes of UTO-broadcast protocols have been distinguished in the

literature [43]: fixed-sequencer, moving sequencer, privilege-based, communication history,
and destination agreement. In this section, we only survey time-free protocols, i.e. protocols
that do not rely on physical time, since these are the ones comparable to the LCR protocol.
The reason is that the assumption of synchronized clocks is not very realistic in practice,
especially since clock skew is hard to detect. We also do not discuss protocols with disk
writes as in [92] for instance. Our goal (and that of most of the related work surveyed here)
is to optimize the broadcasting of messages at the network level.

2.3.1 Fixed Sequencer

p1

p2

p3

p4

m

m, seq(m)

ack stable

Figure 2.2: Fixed sequencer-based UTO-broadcast.

In a fixed sequencer protocol [64, 8, 26, 54, 21, 97], a single process is elected as the
sequencer and is responsible for the ordering of messages (Figure 2.2). The sequencer is
unique, and another process is elected as a new sequencer only in the case of sequencer fail-
ure. Three variants of the fixed sequencer protocol exist [11], each using a different commu-
nication pattern. Fixed sequencer protocols exhibit linear latency with respect to n [42], but
poor throughput. The sequencer becomes a bottleneck because it must receive the acknowl-
edgments (acks) from all processes1 and must also receive all messages to be broadcast. Note
that this class of protocols is popular for non-uniform total order broadcast protocols since
these do not require all processes to send acks back to the sequencer, thus providing much
better latency and throughput.

2.3.2 Moving Sequencer
Moving sequencer protocols [31, 96, 66, 40] (Figure 2.3) are based on the same princi-

ple as fixed sequencer protocols, but allow the role of the sequencer to be passed from one
process to another (even in failure-free situations). This is achieved by a token which carries

1Acknowledgments in the fixed sequencer can only be piggy-backed when all processes broadcast messages all
the time [42].
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p1
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p3

p4

m

seq(m)

Figure 2.3: Moving sequencer-based UTO-broadcast.

a sequence number and constantly circulates among the processes. The motivation is to dis-
tribute the load among sequencers, thus avoiding the bottleneck caused by a single sequencer.
When a process p wants to broadcast a message m, it sends it to all other processes. Upon
receiving m, processes store it into a receive queue. When the current token holder q has a
message in its receive queue, q assigns a sequence number to the first message in the queue
and broadcasts that message together with the token. For a message m to be delivered, it has
to be acknowledged by all processes. Acks are gathered by the token. Moving sequencer pro-
tocols have a latency that is worse than that of fixed sequencer protocols [43]. On the other
hand, these protocols achieve better throughput, although not optimal. Figure 2.3 depicts a 1-
to-n broadcast of one message. It is clear from the figure that it is impossible for the moving
sequencer protocol to deliver one message per round. The reason is that the token must be re-
ceived at the same time as the broadcast messages. Thus, the protocol cannot achieve optimal
throughput. Even in the n-to-n case, optimal throughput cannot be achieved because at any
given time there is only one process which can send messages. Thus, the throughput when all
processes broadcast cannot be higher than when only one process broadcasts (in Section 2.5.1
we will show that optimal throughput can only be achieved when all processes broadcast).
Note that fixed sequencer protocols are often prefered to moving sequencer protocols because
they are much simpler to implement [43].

2.3.3 Privilege-based Protocols

p1

p2

p3

p4

m

seq(m)

token

token

Figure 2.4: Privilege-based UTO-broadcast.

These protocols [51, 39, 47, 4, 56] rely on the idea that senders can broadcast messages
only when they are granted the privilege to do so (Figure 2.4). The privilege to broadcast
(and order) messages is granted to only one process at a time, but this privilege circulates from
process to process in the form of a token. As with moving sequencer protocols, the throughput
when all processes broadcast cannot be higher than when only one process broadcasts.

2.3.4 Communication History-based Protocols
As in privilege-based protocols, communication history-based protocols [84, 77, 48, 82,

81] use sender-based ordering of messages. Nevertheless, they differ by the fact that pro-
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cesses can send messages at any time. Messages carry logical clocks that allow processes to
observe the messages received by other processes in order to learn when delivering a message
does not violate the total order. Communication history-based protocols have poor through-
put because they rely on a quadratic number of messages exchanged for each message that is
broadcast.

2.3.5 Destination Agreement
In destination agreement protocols, the delivery order results from an agreement between

destination processes. Many such protocols have been proposed [29, 20, 75, 53, 7]. They
mainly differ by the subject of the agreement: message sequence number, message set, or
acceptance of a proposed message order. These protocols have relatively bad performance
because of the high number of messages that are generated for each broadcast.

Note that hybrid protocols, combining two different ordering mechanisms have also been
proposed [48, 85, 94]. Most of these protocols are optimized for large scale networks instead
of clusters, making use of multiple groups or optimistic strategies.

2.4 The LCR Protocol
LCR combines (a) a ring topology for high-throughput dissemination with (b) logical

(vector) clocks for message ordering. It is a uniform total order broadcast (UTO-broadcast)
protocol exporting two primitives, utoBroadcast and utoDeliver, and ensuring the following
four properties:

• Validity: if a correct process pi utoBroadcasts a message m, then pi eventually
utoDelivers m.

• Integrity: for any message m, any correct process pj utoDelivers m at most once,
and only if m was previously utoBroadcast by some correct process pi.

• Uniform Agreement: if any process pi utoDelivers any messagem, then every correct
process pj eventually utoDelivers m.

• Total Order: for any two messagesm andm′, if any process pi utoDeliversmwithout
having delivered m′, then no process pj utoDelivers m′ before m.

We detail our LCR protocol in the following. We assume a set Π = {p0, · · · , pn−1} of n
processes. Processes are organized in a ring: every process has a predecessor and a successor
in the ring: p0 is before p1, which is before p2, etc. We call p0 “the first process in the ring”,
and pn−1 “the last process in the ring”. We first describe how we totally order messages
in LCR. We then describe the behavior of the protocol in the absence of failures and then
we describe what happens when there is a group membership change, e.g. a node failing or
joining/leaving the system.

2.4.1 Total Order Definition
As we explain later in this section, to broadcast a message, a process sends it to its suc-

cessor, which itself send its its successor, and so on until every process received the message.
We define the total order on messages in LCR as the order according to which messages are
received by the last process in the ring, i.e. process pn−1. To illustrate this, consider any
two messages mi and mj broadcast by processes pi and pj , respectively. Assume i < j,
i.e. pi is “before” pj in the ring. In order to determine whether mi is ordered before mj , it
is enough to know whether pj had received mi before sending mj . This is achieved using
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vector clocks: process pj is equipped with a logical vector clock Cpj
= (ck)k=[0..n−1]. At

any time, the value Cpj
[i] represents the number of broadcasts initiated by process pi that

pj received so far. Before initiating the broadcast of message mi, process pi increments the
number of broadcasts it initiated (stored in Cpi

[i]) and timestamps mi with its clock. Upon
reception of message mi, process pj updates its logical clock to take into account message
mi: it increments the value stored in Cpj [i]. If later pj sends message mj , it will timestamp
mj with its logical clock that reflects the fact that it received mi before sending mj . Every
process can thus order mi and mj by comparing their clocks. More precisely, let us note Cmi

(resp. Cmj
) the logical clock carried by mi (resp. mj). Message mi is ordered before mj ,

noted mi ≺ mj , if and only if Cmi [i] ≤ Cmj [i] when i < j, and Cmi [i] < Cmj [i] when if
i = j.

2.4.2 Failure-free Behavior

The pseudo-code of the LCR sub-protocol executed in the absence of failures is depicted
in Figure 2.5. To broadcast a message mi, process pi sends mi to its successor in the ring.
The message is then successively forwarded until it reaches the predecessor of pi. Processes
forward messages in the order in which they receive them. To ensure total order delivery,
each process ensures, before delivering message mi, that it will not subsequently receive a
message that is ordered before mi (according to the order defined in the previous section).
Moreover, for the sake of uniform delivery, each process ensures, before delivering mi, that
all other processes already received mi (mi is stable). These guarantees rely on a local
list, denoted pending, used by every process to store messages before they are delivered.
Messages in pending are totally ordered according to the order defined above. We now
explain when messages stored in pending are delivered.

When the predecessor of pi receives message mi, it sends an ACK message along the
ring. The ACK message is then successively forwarded until it reaches the predecessor of the
process that sent it. Upon receiving this ACK message, each process knows (1) that mi is
stable, and (2) that it already received all messages that are ordered before mi. The first point
is obvious. The second point can be intuitively explained as follows. Consider a message mj

that is ordered before mi. We know, by definition of the total order on messages, that process
pn−1 will receivemj beforemi. Provided that messages are forwarded around the ring in the
order in which they are received, we know that the predecessor of pi will receive mj before
sending the ACK for mi. Consequently, no process can receive the ACK for mi before mj .
Once a message has been set to stable, it can be delivered as soon as it becomes first in the
pending list.

To illustrate the behavior of LCR, consider the following simple example (Figure 2.6) as-
suming a system of 4 processes. For simplicity of presentation, we consider that the compu-
tation proceeds in rounds. The arrays in Figure 2.6 depict the state of the pending list stored
at each process at the end of each round. At the beginning of round (A), processes p1 and
p3 broadcast m1 and m3, respectively. Message m1 is the first message broadcast by p1 and
the latter did not receive any message before broadcasting m1. Therefore, Cm1 = [0, 1, 0, 0].
Similarly, Cm3 = [0, 0, 0, 1]. At the end of the round, p1 and p2 (resp. p3 and p0) have m1

(resp. m3) in their pending list. During round (B), p0 (resp. p2) forwards m3 (resp. m1).
At the end of the round, the pending lists of p1 and p3 contain two messages: m1 and m3.
Note that in both lists, m3 is ordered before m1. Indeed, processes know that m3 is ordered
before m1 (m3 ≺ m1) because p1 < p3 and Cm1 [1] > Cm3 [1], which indicates that when p3

sent m3, it had not yet received m1. During round (C), p1 (resp. p3) forwards m3 (resp. m1).
At the end of the round, all processes have both m1 and m3 in their pending list. Moreover,
p0 (resp. p2) knows that message m1 (resp. m3) completed a full round around the ring.
Indeed, p0 (resp. p2) is the predecessor of the process that sentm1 (resp. m3). Consequently,
p0 (resp. p2) sets m1 (resp. m3) to stable. At that time, p0 (resp. p2) knows that it will

19



2.4. THE LCR PROTOCOL

Procedures executed by any process pi

1: procedure initialize(initial_view)
2: pendingi ← ∅ {pending list}
3: C[1 . . . n]← {0, . . . , 0} {local vector clock}
4: view ← initial_view

5: procedure utoBroadcast(m)
6: C[i]← C[i] + 1
7: pending ← pending ∪ [m, pi, C,⊥]
8: Rsend 〈m, pi, C〉 to successor(pi, view) {broadcast a message}

9: upon Rreceive 〈m, pj , Cm〉 do
10: if Cm[j] > C[j] then
11: if pi 6= predecessor(pj , view) then
12: Rsend 〈m, pj , Cm〉 to successor(pi, view) {forward the message}
13: pending ← pending ∪ [m, pj , Cm,⊥]
14: else
15: pending ← pending ∪ [m, pj , Cm, stable] {m is stable}
16: Rsend 〈ACK, pj , Cm〉 to successor(pi, view) {send an ACK}
17: tryDeliver()
18: C[j]← C[j] + 1 {update local vector clock}

19: upon Rreceive 〈ACK, pj , Cm〉 do
20: if pi 6= predecessor(predecessor(pj), view) then
21: pending[Cm]← [∗, ∗, ∗, stable] {m is stable}
22: Rsend 〈ACK, pj , Cm〉 to successor(pi, view) {forward the ACK}
23: tryDeliver()

24: procedure tryDeliver()
25: while pending.first = [m, pk, Cm, stable] do
26: utoDeliver(m) {deliver a message}
27: pending ← pending − [m, pk, Cm, stable]

Figure 2.5: Pseudo-code of the LCR protocol.
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Figure 2.6: Illustration of a run of the LCR protocol with 4 processes.
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no longer receive any message that is ordered before m1 (resp. m3). Indeed, if a message
m is ordered before m1 (resp. m3), it means, by definition of the total order on messages,
that p3 will receive it before m1 (resp. m3). Consequently, p0 (resp. p2) will also receive
m before m1 (resp. m3). Although process p0 knows that m1 is stable, it cannot deliver it.
Indeed, it first needs to deliver m3 (which is first in its pending list), which it cannot do. The
reason is that it does not know yet whether m3 is stable or not. Delivering m3 could violate
uniformity. In contrast, process p2 can deliver m3 because it is stable and first in its pending
list. Process p2 thus knows that the delivery of m3 respects total order and uniformity. At the
start of round (D), p0 (resp. p2) sends an ACK for m1 (resp. m3). These ACK messages are
forwarded in rounds E and F until they reach the predecessor of the process which initiated
the ACK message: for instance, the ACK for message m1 was initiated by process p0 in
round D. It is forwarded until it reaches process p3 in round F. Upon reception of these ACK
messages (rounds D, E, F), processes set m1 and m3 to stable and deliver them as soon as
they are first in their pending list.

2.4.3 Group Membership Changes
The LCR protocol is built on top of a group communication system [19]: processes are

organized into groups, which they can leave or join, triggering a view change protocol. Faulty
processes are excluded from the group after crashing. Upon a membership change, processes
agree on a new view. When a process joins or leaves the group, a view_change event is
generated by the group communication layer and the current view vr is replaced by a new
view vr+1. This can happen when a process crashes or when a process explicitly wants to
leave or join the group. As soon as a new view is installed, it becomes the basis for the new
ring topology.

The view_change procedure is detailed in Figure 2.7. Note that when a view change
occurs, every process first completes the execution (if any) of all other procedures described
in Figure 2.5. It then freezes those procedures and executes the view change procedure. The
latter works as follows: every process sends its pending list to all other processes. Upon
receiving this list, every process adds to its pending list the messages it did not yet receive.
Then the processes send back an ACK_RECOVER message. Processes wait until they receive
ACK_RECOVER messages from all processes before sending an END_RECOVERY message
to all. When a process receives END_RECOVERY messages from all processes, it can deliver
all the messages in its pending list. Thus, at the end of the view change procedure, all pending
lists have been emptied, which guarantees that all messages from the old view have been
handled.

2.4.4 Correctness
In this section, we prove that LCR is a uniform total order broadcast protocol. We proceed

by successively proving that LCR ensures the four properties mentioned at the beginning of
Section 2.4: validity, integrity, uniform agreement and total order.

Lemma 2.4.1 (Validity) If any correct process pi utoBroadcasts a messagem, then it even-
tually utoDelivers m.

Let pi be a correct process and let mi be a message broadcast by pi. This message
is added to pi’s pending list (Line 7 of Figure 2.5). If there is a membership change, pi
being a correct process, it will be in the new view. Consequently, the view change procedure
guarantees that pi will deliver all messages stored in its pending list (Line 6 of Figure 2.7). It
will thus deliver mi. Let us now consider the case when there is no membership change. All
processes (including pi) will eventually set mi to stable (Line 21 of Figure 2.5). This is due
to the fact thatmi will be forwarded along the ring (because Cmi [i] is higher than the ith value
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Procedures executed by any process pi

1: upon view_change(new_view) do
2: Rsend 〈RECOVER, pi, pending〉 to all pj ∈ new_view
3: Wait until received 〈ACK_RECOVER〉 from all pj ∈ new_view
4: Rsend 〈END_RECOVERY〉 to all pj ∈ new_view
5: Wait until received 〈END_RECOVERY〉 from all pj ∈ new_view
6: forceDeliver()
7: view ← new_view

8: upon Rreceive 〈RECOVER, pj , pendingpj 〉 do
9: for each [m, pl, Cm, ∗] ∈ pendingpj do

10: if Cm[l] > C[l] then
11: pending ← pending ∪ [m, pl, Cm,⊥]
12: Rsend 〈ACK_RECOVER〉 to pj

13: procedure forceDeliver()
14: for each [m, pk, Cm, ∗] ∈ pending do
15: utoDeliver(m) {deliver a message}
16: pending ← pending − [m, pk, Cm, ∗]
17: C[k]← C[k] + 1 {update local vector clock}

Figure 2.7: Pseudo-code of the view_change procedure.

stored in the clock of each process) until it reaches the predecessor of pi. The latter marks
mi as stable (line 15 of Figure 2.5) and sends an ACK to its successor in the ring containing
Cmi

. Similarly to mi, the ACK message is forwarded along the ring (line 22 of Figure 2.5)
until it reaches the predecessor of the predecessor of pi. Upon receiving the ACK message,
each process marks mi as stable. When pi sets mi to stable, its pending list starts with a
(possibly empty) set of messages m such that m ≺ mi and m has not been yet delivered by
pi. Let us call undelivered this set of messages. Let us first remark that this set cannot grow.
Consider, for instance, the case of a message mj sent by a process pj that precedes mi (i.e.
mj ≺ mi). We know that pj sent mj before receiving mi. Consequently, the predecessor
of pi will receive mj before receiving mi, and thus before sending the ACK for mi. As
each process forwards messages in the order in which it receives them, we know that pi will
necessarily receive mj before receiving the ACK for message mi. Let us now consider every
message in undelivered. As there is no membership change, the same reasoning as the one
we did for mi applies to messages in undelivered: every process will eventually set these
messages to stable. Consequently, all messages in undelivered will be delivered. Message
mi will thus be first in pending and marked as stable. It will thus also be delivered by pi.

Lemma 2.4.2 (Integrity) For any message m, any process pj utoDelivers m at most once,
and only if m was previously utoBroadcast by some process pi.

No spurious message is ever utoDelivered by a process as we assume only crash fail-
ures. Thus, only messages that have been utoBroadcast are utoDelivered. Moreover, each
process keeps a vector clock C, which is updated in such a way that we are sure that every
message is only delivered once. Indeed, if there is no membership change, Lines 10 and 18
of Figure 2.5 guarantee that no message can be processed twice by pj . Similarly, when there
is a membership change, Line 10 of Figure 2.7 guarantees that process pj will not deliver
messages twice. Moreover, Line 17 of Figure 2.7 guarantees that pj’s vector clock is updated
after the membership change, thus preventing the future delivery of messages that have been
delivered during the view_change procedure.
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Lemma 2.4.3 (Uniform Agreement) If any process pi utoDelivers any message m in the
current view, then every correct process pj in the current view eventually utoDelivers m.

Let mk be a message sent by process pk and let pi be a process that delivered mk in
the current view. There are two cases to consider. In the first case, pi delivered mk dur-
ing a membership change. This means that pi had mk in its pending list before executing
line 15 of Figure 2.7. Since all correct processes exchange their pending list during the view
change procedure, we are sure that all correct processes that did not deliver mk before the
membership change will have it in their pending list before executing line 6 of Figure 2.7.
Consequently, all correct processes in the current view will deliver mk. The second case to
consider is when pi delivered mk outside of a membership change. The protocol ensures that
mk did a full round around the ring before being delivered by pi: indeed pi can only deliver
mk after having set it to stable, which either happens when it is the predecessor of pk in the
ring or when it receives an ACK for message mk. Consequently, all processes stored mk in
their pending list before pi delivered it. If a membership change occurs after pi delivered mk

and before all other correct processes delivered it, the protocol ensures that all correct pro-
cesses that did not yet deliver mk will do it (Line 6 of Figure 2.7). If there is no membership
change after pi delivered mk and before all other processes delivered it, the protocol ensures
that an ACK for mk will be forwarded around the ring, which will cause all processes to set
mk to stable. Each correct process will thus be able to deliver mk as soon as mk will be
first in the pending list (Line 26 of Figure 2.5). The protocol ensures that mk will become
first eventually. The reasons are the following: (1) the number of messages that are before
mk in the pending list of every process pj is strictly decreasing, and (2) all messages that
are before mk in the pending list of a correct process pj will become stable eventually. The
first reason is a consequence of the fact that once a process pj sets message mk to stable,
it can no longer receive any message m such that m ≺ mk. Indeed, a process pl can only
produce a message ml ≺ mk before receiving mk. As each process forwards messages in
the order in which it received them, we are sure that the process that will produce an ACK for
mk will have first received ml. Consequently, every process setting mk to stable will have
first received ml. The second reason is a consequence of the fact that for every message that
is utoBroacast in the system, the protocol ensures that an ACK will be forwarded around
the ring (Lines 16 and 22 of Figure 2.5), implying that all correct processes will mark the
message as stable. Consequently, all correct processes will eventually deliver mk.

Lemma 2.4.4 (Total Order) For any two messagesm andm′, if any process pi utoDelivers
m without having delivered m′, then no process pj utoDelivers m′ before m.

We prove the lemma by contradiction. Let m and m′ be any two messages and let pi
be a process that utoDelivers m without having delivered m′. Consider a process pj that
utoDelivers m′ before delivering m. Let us denote ti the time at which pi delivered m and
tj the time at which pj delivered m′. Let us first note that the protocol ensures that at time
ti (resp. tj), all processes have already received m (resp. m′). Indeed, when there is no
membership change, a message can only be delivered after it is set to stable, which requires
the message to have done a full round around the ring. When there is a membership change,
the protocol ensures (by broadcasting messages stored in pending lists and waiting for all
processes to have received all broadcast before delivering any message) that all processes
have a consistent pending list before delivering messages (Lines 2 to 5 of Figure 2.7).

Case 1: tj ≤ ti. It follows that at time ti, process pi had already received m′. Con-
sequently, m ≺ m′, otherwise, pi would have delivered m′ first. We will show that in that
case, we are sure that pj receivedm beforem′, thus contradicting the fact that it deliveredm′

before m. Let us note pk the process that utoBroadcastm. Provided m ≺ m′, we know that
pk sent m before receiving m′. There are two cases to consider: if there is no membership
change before pj delivers m′, as each process forwards messages in the order in which it

24



2.5. THEORETICAL ANALYSIS

received them, we are sure that pj will receive m before it can set m′ to stable. The second
case is when there is a membership change before pj delivers m′. Process pj could not re-
ceive m before the membership change, otherwise, it would not deliver m′ before m (since
we know that m ≺ m′). Provided that pi delivers message m, we know that this can only
happen during the membership change. Indeed, the message can not have been delivered be-
fore, otherwise pj would have received it. Consequently, at the beginning of the view change
procedure, pi has m in its pending list and will send it to all processes. Consequently, pj will
receive m during the view change procedure. In both cases, we are sure that pj received m
before delivering m′, which is in contradiction with the fact that it delivered m′ before m
provided that m ≺ m′.

Case 2: ti < tj . It follows that at time tj , process pj had already received m. Con-
sequently, m′ ≺ m, otherwise, pj would have delivered m first. With a similar reasoning
as the one we did for case 1, we know that pi received m′ before delivering m, which is in
contradiction with the fact that it delivered m without delivering m′ provided that m′ ≺ m.

Theorem 2.4.5 LCR is a uniform total order broadcast protocol.

By lemmas 2.4.1, 2.4.2, 2.4.3, and 2.4.4, we can derive the very fact that the LCR protocol
ensures validity, integrity, uniform agreement, and total order. Thus, it is a uniform total order
broadcast protocol.

2.5 Theoretical Analysis
This section analyzes several key aspects of LCR’s performance from a theoretical per-

spective. The performance of LCR is evaluated in failure free runs which we expect to be the
common case. We prove that LCR is throughput optimal in such case. Then we discuss its
fairness.

2.5.1 Throughput
In this section we show that the throughput of LCR is optimal and that no other broadcast

protocol (even with weaker consistency guarantees) can obtain strictly higher throughput. We
do this by proving an upper bound on the performance of any broadcast protocol and show
that LCR matches this bound.

Theorem 2.5.1 (Maximum throughput for any broadcast protocol) For a broadcast pro-
tocol in a system with n processes in the round-based model introduced in Section 2.2.2, the
maximum throughput µmax in completed broadcasts per round is:

µmax =

{
n/(n− 1) if there are n senders
1 otherwise

We first consider the case with n senders. Each broadcast message must be received at
least n − 1 times in order to be delivered. The model states that at each round at most n
messages can be received. Thus, for n processes to broadcast a message, a minimum of n−1
rounds are necessary. Therefore, on average, at most n/(n− 1) broadcasts can be completed
each round. In the case with less than n senders it is sufficient to look at a non sending pro-
cess. Such a process can receive at most 1 message per round and since it doesn’t broadcast
any messages itself, it can deliver at most 1 message per round. Since the throughput is de-
fined as the number of completed broadcasts per round, the maximum throughput with less
than n senders is equal to 1.
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Determining the throughput of LCR is straightforward: processes receive one message
per round and the acknowledgements are piggy-backed. Thus LCR allows each process to
deliver one message per round if there is at least one sender. When there are n senders,
each process can deliver one message per round broadcast by other processes in addition
to its own messages. LCR thus matches the bound of Theorem 2.5.1 and is theoretically
throughput optimal. Thus, from a throughput perspective, the strong uniform total order
guarantees provided by LCR are free.

2.5.2 Fairness
Even though the throughput of LCR as described thus far is optimal, there is still a prob-

lem. Consider two processes p1 and p2 that are neighbors on the ring. If p1 is continuously
broadcasting messages and p2 systematically forwards p1’s messages, then p2 cannot broad-
cast its own messages. Consequently, the protocol is not fair.

Fairness captures the fact that each process has an equal opportunity of having its mes-
sages delivered by all processes. Intuitively, the notion of fairness means that in the long
run no single process has priority over other processes when broadcasting messages. Said
differently, when two processes want to broadcast a large number of messages during a time
interval τ , then each process should have approximately the same number of messages deliv-
ered by all processes during τ .
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Figure 2.8: Illustration of the fairness mechanism as implemented in LCR. Each process has
two queues (send and forward) and uses the burst_size, received, and sent variables to
determine whether to forward messages or send its own.

The mechanism for ensuring fairness in LCR acts locally at each process. If a process
wishes to broadcast a new message, it must decide whether to forward a message received
from its predecessor or to send its own. Figure 2.8 provides an illustration of the fairness
mechanism as implemented in LCR. Processes have two queues: send and forward. Processes
put broadcast requests coming from the application level in their send queue. Messages
received from predecessors that need to be forwarded are buffered in the forward queue.
When a process has a burst of messages to send (i.e. it has more than one message in its send

26



2.6. EXPERIMENTAL EVALUATION

queue), it piggybacks on the first message it sends an integer burst_size representing the
number of messages currently stored in its send queue. Each process keeps a data structure
which stores 3 integers per process in the ring: burst_size, received and sent. For each
process pi, the burst_size variable is updated every time pi piggybacks a new burst_size
value on a message it sends. The received variable keeps track of the number of messages
that the process received from pi since pi’s burst_size has been updated. The sent variable
keeps track of the number of messages that the process sent since pi’s burst_size has been
updated. When the received variable is equal to the burst_size, the three integers kept for
process pi are reset (i.e. the burst initiated by pi is finished). When the process wants to
send a message, it retrieves the first message in the forward list. Assume that this message
has been sent by process pj . The process only sends its own message if the received integer
stored for pj is higher or equal than the sent integer stored for pj , which intuitively means
that since pj started its last burst, the process initiated less broadcasts than pj .

2.5.3 Latency

The theoretical latency of broadcasting a single message is defined as the number of
rounds that are necessary from the initial broadcast of message m until the last process deliv-
ers m. The latency of LCR is equal to 2n− 2 rounds.

2.6 Experimental Evaluation

This section compares the performance of LCR to that of two existing group communica-
tion systems: JGroups and Spread. Spread ensures uniform total order delivery of messages,
whereas JGroups only guarantees non-uniform total order delivery. The experiments only
evaluate the failure free case because failures are expected to be sufficiently rare in the tar-
geted environment. Furthermore, the view change procedure that is used in LCR is similar to
that of other total order broadcast protocols [43].

We first present the experimental setting we used in the experiments and then study var-
ious performance metrics: throughput, response time, fairness, and CPU consumption. In
particular, we show that LCR always achieves a significantly better throughput than Spread
and JGroups when all processes broadcast message. We also show that when only one process
broadcasts messages, LCR outperforms Spread and has similar performance than JGroups.
Regarding response time, we show that LCR exhibits a higher response time than Spread
and JGroups when there is only one sender in the system. In contrast, it outperforms both
protocols when all processes broadcast messages. Finally, we show that LCR and Spread are
both fair and have a low CPU consumption. This contrasts with JGroups that is not fair and
has a higher CPU consumption than Spread and LCR.

2.6.1 Experimental Setup

The experiments were run on a cluster of machines with a 1.66GHz bi-processor and
2GB RAM. Machines run the Linux 2.6.30 − 1 SMP kernel and are connected using a Fast
Ethernet switch. The raw bandwidth over IP is measured with Netperf [63] between two
machines and displayed in Table 2.1.

The LCR protocol is implemented in C (≈ 1000 lines of code). It relies on the Spread
toolkit to provide a group membership layer and uses TCP for communication between pro-
cesses. As explained in [46], it is reasonable to assume, in an low-latency cluster, that when
a TCP connection fails, the server on the other side of the connection failed. It is thus easy
to implement the abstraction of a perfect failure detector [28]. Moreover, using TCP, it is not
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Protocol Bandwith
TCP 93Mb/s
UDP 93Mb/s

Table 2.1: Raw network performance measured using Netperf.

necessary to implement a message retransmission mechanism: a message sent from a correct
process to another correct process will be delivered eventually.

The implementation of LCR is benchmarked against two industry standard group com-
munication systems:

• Spread. We use Spread version 4.1 [3]. The message type was set to SAFE_MESS
which guarantees uniform total order. Spread implements a privilege-based ordering
scheme (see Section 2.3.3). A Spread daemon was deployed on each machine. All
daemons belong to the same Spread segment. Spread was tuned for bursty traffic ac-
cording to Section 2.4.3 of the Spread user guide [89]. Our benchmark uses the native
C API provided by Spread.

• JGroups. We use JGroups version 2.7.0 [14] with the Java HotSpot
Server 1.6.0_16 virtual machine. We use the “sequencer” stack that
contains the following protocols: UDP, PING, MERGE2, FD_SOCK,
FD_ALL, VERIFY_SUSPECT, BARRIER, pbcast.NAKACK, UNICAST,
pbcast.STABLE, VIEW_SYNC, pbcast.GMS, SEQUENCER, FC,
FRAG2, STATE_TRANSFER. This stack provides non uniform total ordering.
It implements a fixed-sequencer ordering scheme without acknowledgements (see
Section 2.3.1).

All experiments we present in this section start with a warm-up phase, followed by a
phase during which performance are measured. Finally, there is a cool-down phase without
measurements. The warm-up and cool-down phases last 5 minutes. The measurement phase
lasts 10 minutes.

2.6.2 Throughput
To assess the throughput of total order broadcast protocols, we use the following bench-

mark: k processes out of the n processes in the system broadcast messages at a predefined
throughput (we call this experiment k-to-n broadcast). Each message has a fixed size, which
is a parameter of the experiment. Each process periodically computes the throughput at
which it delivers messages. The throughput is calculated as the ratio of delivered bytes over
the time elapsed since the end of the warm-up phase. The plotted throughput is the average
of the values computed by each process.

We first want to confirm our claim that LCR achieves optimal throughput. Figure 2.9
shows the results of an experiment with n = 5 processes. We vary the number k of broad-
casting processes (X axis). The size of messages broadcast by processes is 10kB. Moreover,
each broadcasting processes produce messages at the maximum throughput it can sustain. We
first execute LCR without enabling the fairness mechanism described in Section 2.5.2. We
observe that the throughput obtained by LCR is far from optimal: in practice, a theoretical
throughput of 1 should be equal to the raw link speed between the processes, i.e. 93Mbit/s as
shown in Table 2.1. The reason why the throughput is not optimal is that when the fairness
mechanism is disabled, senders can broadcast more messages than can be delivered, resulting
in overflowing network buffers and the data structures maintained by each process.

28



2.6. EXPERIMENTAL EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5

Th
ro

ug
hp

ut
 (M

b/
s)

Number of senders

LCR - no flow control

Figure 2.9: LCR throughput with the fairness mechanism disabled in a system with 5 pro-
cesses. Buffers are quickly saturated, which explains the low throughput.

Figure 2.10 depicts the throughput obtained by LCR when the fairness mechanism is en-
abled. The throughput clearly improves and is now close to optimal. The reason why the
throughput improves is that the fairness mechanism throttles the senders, and does thus pre-
vent them from injecting too many new messages into the ring. Note that the throughput with
5 senders is higher than with fewer senders, the reason being LCR’s theoretical throughput
of n/(n−1) when all processes are senders. Finally, note that in all subsequent experiments,
the fairness mechanism is enabled.
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Figure 2.10: LCR throughput with the fairness mechanism enabled in a system with 5 pro-
cesses. Senders are throttled, which improves the throughput.

The next experiments we present (Figure 2.11 and 2.12) measure the impact of varying the
message size on the throughput of LCR, Spread and JGroups for a system with 5 processes.
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In the experiment depicted in Figure 2.11, only one process broadcasts messages, whereas all
processes broadcast messages in the experiment depicted in Figure 2.12. In both cases, we
can observe that if the messages are too small, the throughput of all protocols suffers. This is
due to the cost of ordering which remains constant despite a decrease in payload size. We can
nevertheless observe that LCR achieves significantly better performance with small messages
than Spread and JGroups. To improve performance, it is possible to batch small messages
together into bigger messages when the load on the system is high as suggested in [52]. For
all further experiments the message size is set to 10kB, which is the optimal message size
for the three protocols in both the 1-to-n and n-to-n cases.
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Figure 2.11: Throughput with respect to message size for a system of 5 processes with one
sender.
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Figure 2.12: Throughput with respect to message size for a system of 5 processes with 5
senders.

Having studied the impact of message size, we now study how the throughput evolves as a
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function of the number of processes. Figure 2.13 plots the results of an experiment consisting
in 1-to-n broadcasts of 10kB messages. The throughput achieved by LCR and JGroups is
close to optimal and almost constant despite the increasing number of processes. Note that
JGroups does not provide uniformity, and does thus implement a very simple communication
pattern: the sender sends its messages to the sequencer, which multicast them to all other
processes. Spread’s throughput suffers a bit more from increasing the number of processes.
This can be explained by the fact that Spread uses a token to order messages and ensure
uniformity. Increasing the number of processes increases the time it takes for the token to
circulate among all processes.
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Figure 2.13: 1-to-n throughput comparison. The optimal line is constant at 93Mb/s.
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Figure 2.14: n-to-n throughput comparison. The optimal line is calculated as n/(n − 1) ∗
93Mb/s.

Figure 2.14 plots the throughput as a function of the number of processes in a system
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where all processes broadcast 10kB messages. The optimal line for best effort broadcast
(n/(n − 1) times the maximum link speed of 93Mb/s) is plotted as a reference. We can
first observe that the throughput of LCR is very close to optimal. Since the optimality line
is calculated for best effort broadcast and LCR provides uniform total order broadcast, we
can conclude that the ordering, reliability and uniformity properties of LCR are effectively
almost free. The throughput of JGroups is almost constant (at 92Mb/s) and only slightly
better than the throughput achieved with only one sender (Figure 2.13). This can be easily
explained by the fact that the throughput is limited by the throughput at which the sequencer
can broadcast messages to other processes in the system (using IP multicast). The throughput
achieved by Spread is better than in the 1-to-n case due to the fact that every process makes
use of the token to broadcast the messages it produces. Nevertheless, as in the 1-to-n case, the
throughput slightly decreases when the number of processes increases due to the increasing
cost of ensuring uniformity (cost that JGroups does not have).

To summarize, we can say that LCR is the only protocol that fully exploits available net-
work links when all processes broadcast messages, which we believe is the common case in
many applications. It does thus sustain a significantly higher throughput than other protocols.
For instance, the gain in throughput in a system with 4 processes is of about 28% compared
to JGroups and of about 49% compared to Spread.

2.6.3 Response Time

In this section, we evaluate the response time of LCR, Spread and JGroups in the 1-to-n
and n-to-n cases. We setup a system with 5 processes. We vary the throughput at which
the sender processes inject new messages. The size of messages that are broadcast is 10kB.
During the measurement phase, for every message m it broadcasts, the sender evaluates the
elapsed time between the broadcast and the delivery of m. For each protocol, we stop the
curve when the injected load is higher than the throughput the protocol is able to sustain.

Figure 2.15 depicts the results obtained with one sender. In order to evaluate the gen-
eral case where every process could be the sender, we do not colocate the sender and the
sequencer in JGroups. We observe that Spread exhibits a consistently lower response time
than JGroups and LCR (3ms against 4ms for JGroups and 5ms for LCR when the input load
is below 10Mb/s). The fact that LCR exhibits higher response time in the 1-to-n case is
not surprising provided that processes are organized in a ring topology. Interestingly, LCR’s
response time does not degrade when the input load increases. This is in contrast with the
response time of JGroups which increases when the input load is greater than 10Mb/s (a
similar behavior is observed in the n-to-n case). Finally, a last remark we can make is that,
although providing uniform delivery of messages, Spread achieves better response time than
JGroups. This is due to the fact that Spread uses a token. Once the sender process obtains the
token, it can send messages in burst, thus decreasing the average response time. In JGroups,
the sender always needs to first send the message to the sequencer, which will then multi-
cast the message to other processes. Finally, note that the fact that the sender in Spread can
send multiple messages in burst when it owns the token also explains why the response time
slightly decreases when the load gets higher (between 20Mb/s and 40Mb/s).

Figure 2.16 depicts the results obtained with n senders (note that the scale used on the
Y axis is different than in Figure 2.15). LCR and JGroups exhibit a lower response time
than Spread (5.2ms for JGroups against 5.4ms for LCR and 7ms for Spread when the input
load is below 10Mb/s). The reason is that with Spread, senders must wait to have the token
before sending their messages. As every process has messages to send, it takes a longer
time to obtain the token. Note that the response time of Spread is almost constant, and
only slightly increases when the maximum delivery throughput is reached. The same remark
applies to LCR for which the response time only slightly increases when the input load is
higher than 80Mb/s but remains low until the maximum delivery throughput is reached (up
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Figure 2.15: 1-to-n response time comparison.

to 108Mb/s, the response time is below 7.5ms). In contrast, the response time of JGroups
starts degrading when the input load is higher than 10Mb/s. It becomes high for input loads
higher than 70Mb/s. This is probably due to the fact that the sequencer simultaneously
receives messages from all other processes, which fills up its network buffers and increases
the time it takes for a message to be sequenced.
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Figure 2.16: n-to-n response time comparison.

To summarize, LCR exhibits a higher response time than other protocols when there is
only one sender. When there are multiple senders, LCR’s response time equals or outperforms
those of other protocols. More precisely, it exhibits better response time than Spread and
JGroups (when the load is higher than 20Mb/s), and similar response time than JGroups
(when the load is below 20Mb/s), but contrarily to the latter, it ensures uniform delivery of
messages and the response time does not degrade when the input load increases.
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2.6.4 Fairness
We evaluate the fairness of LCR, JGroups and Spread as follows: we setup a system

with 5 processes, of which 3 are senders. Each sender continuously broadcasts messages.
At the end of the measurement phase, every process computes the percentage of messages
it delivered that were issued by each of the 3 senders (called p1, p2 and p3). In the case
of JGroups, process p1 is also the sequencer. The results are depicted in Figure 2.17. We
can first observe that both LCR and Spread are fair: each process delivers 33% of messages
from each sender. Concerning LCR, this is due to the fact that it implements the fairness
mechanism described in Section 2.5.2. Concerning Spread, this is due to the fact that, on
average, each sender owns the token for the same amount of time. We can also observe that
JGroups is not fair. This comes from the fact that processes p2 and p3 first need to send
their messages to the sequencer p1, whereas the latter can directly broadcast the messages it
produces. This induces a significant unbalance: 50% of the messages that are delivered have
been broadcast by p1.
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Figure 2.17: Fairness assessment of the LCR, Spread and JGroups protocols. Experiments
were performed with 5 processes and 3 senders.

2.6.5 CPU Usage
The last performance metric we evaluate is the CPU usage of LCR, Spread and JGroups

under high load. During the experiment, the CPU usage of all active protocol threads was
periodically logged, added up and averaged. We study both the 1-to-n and n-to-n cases.

The experiment in Figures 2.18, 2.19, and 2.20 plot the CPU usage measured in a sys-
tem with 5 processes, of which one broadcasts 10kB messages. The X axis represents the
message size (in kB). The Y axis represents the CPU consumption (in %). To ease the com-
parison between the various protocols, the three graphs use the same scale. In the case of
JGroups, the sender was not sequencer in order to be able to isolate the CPU consumption of
the sequencer, the sender and receiver processes, respectively. The first remark we can make
is that among the three protocols, JGroups has the highest CPU consumption. In particular,
the sequencer process consumed more than 55% of the CPU in all experiments we performed.
The sender performs also significantly more work than receiver processes due to the fact that
it needs both to send and receive the messages it broadcasts. Spread and LCR have a CPU
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usage that is very reasonable: it is systematically below 30% with messages bigger than 1kB.
In LCR, it is interesting to notice that the sender has less work to do than other processes.
The reason is that the sender does not receive messages to forward; it only receives acks. In
contrast, the sender and the receivers in Spread use the same percentage of CPU time. Finally,
it is interesting to note that Spread uses more CPU than LCR for large messages.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1kB 2kB 5kB 10kB

CP
U 

us
ag

e 
(%

)

Message size

Sender
Receivers

Figure 2.18: CPU usage during high load 1-to-n broadcasts of the LCR protocol.
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Figure 2.19: CPU usage during high load 1-to-n broadcasts of the Spread protocol.

The experiment in Figure 2.21, 2.22, and 2.23 plot the CPU usage measured in a system
with 5 processes, each broadcasting 10kB messages. As was the case with only one sender,
we observe that JGroups consumes more CPU than other protocols. Interestingly, the con-
sumption of the sequencer is a bit lower than what it was in the previous experiment. We
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Figure 2.20: CPU usage during high load 1-to-n broadcasts of the JGroups protocol.

explain this by the fact that in this experiment, the sequencer itself broadcasts messages, thus
reducing the number of messages it gets from other processes, and thus its CPU consump-
tion. We can also remark that Spread and LCR have a slightly higher CPU usage than in the
previous case. This is explained by the fact that both protocols handle more messages (they
achieve higher throughput) in the n-to-n case than in the 1-to-n case, thus requiring higher
CPU usage. Finally, we observe that, similarly to the previous case, LCR consumes less CPU
than Spread when messages are larger.
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Figure 2.21: CPU usage during high load n-to-n broadcasts of the LCR protocol.

36



2.6. EXPERIMENTAL EVALUATION

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

1kB 2kB 5kB 10kB

CP
U 

us
ag

e 
(%

)

Message size

Spread

Figure 2.22: CPU usage during high load n-to-n broadcasts of the Spread protocol.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

1kB 2kB 5kB 10kB

CP
U 

us
ag

e 
(%

)

Message size

Sequencer
Others

Figure 2.23: CPU usage during high load n-to-n broadcasts of the JGroups protocol.
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2.7 Conclusion
In this chapter, we have presented LCR [60, 61, 73], a uniform total order broadcast

protocol that can be used as the main communication block of a state machine replication
scheme to achieve software-based fault-tolerance.

LCR is the first uniform total order broadcast protocol that is throughput optimal in
failure-free periods. In short, throughput optimality captures the ability to deliver the largest
possible number of message broadcasts, regardless of message broadcast patterns. This no-
tion is precisely defined in a round-based model of computation which accurately captures
message passing interaction patterns over clusters of homogeneous machines interconnected
by a fully switched LAN. LCR is based on a ring topology and only relies on point-to-point
inter-process communication. LCR is also fair in the sense that each process has an equal op-
portunity of having its messages delivered by all processes. Performance benchmarks showed
that LCR had a very high throughput in all cases, while exhibiting very reasonable response
time. Moreover, benchmarks showed that LCR has a low CPU usage.

38



Chapter 3

ABsTRACT: a Modular Approach
to Building BFT Protocols

This chapter presents Abstract [58, 95], a new abstraction to simplify the design, proof
and implementation of BFT protocols. We treat a BFT protocol as a composition of instances
of our abstraction. Each instance is developed and analyzed independently. To illustrate
our approach, we first show how, with our abstraction, the benefits of a BFT protocol like
Zyzzyva could have been developed using less than 24% of the actual code of Zyzzyva. We
then present Aliph, a new BFT protocol that outperforms previous BFT protocols both in
terms of latency (by up to 30%) and throughput (by up to 360%).

3.1 Introduction
In this chapter, we focus on the most robust class of state machine replication (SMR)

protocols. These protocols tolerate (a) arbitrarily large periods of asynchrony, during which
communication delays and process relative speeds are unbounded, and (b) arbitrary (Byzan-
tine) failures of any client as well as up to one-third of the replicas (this is the theoretical
lower bound [70]). These are called Byzantine-Fault-Tolerance SMR protocols, or simply
BFT protocols, e.g., PBFT, QU, HQ and Zyzzyva [1, 27, 38, 67]. The ultimate goal of the
designer of a BFT protocol is to exhibit comparable performance to a non-replicated server
under “common” circumstances that are considered the most frequent in practice. The no-
tion of “common” circumstance might depend on the application and underlying network,
but it usually means network synchrony, rare failures, and sometimes also the absence of
contention.

Not surprisingly, even under the same notion of “common” case, there is no “one size
that fits all” BFT protocol. According to our own experience, the performance differences
among the protocols can be heavily impacted by the actual network, the size of the messages,
the very nature of the “common” case (e.g, contention or not); the actual number of clients,
the total number of replicas as well as the cost of the cryptographic libraries being used. This
echoes [87] which concluded for instance that “PBFT [27] offers more predictable perfor-
mance and scales better with payload size compared to Zyzzyva [67]; in contrast, Zyzzyva
offers greater absolute throughput in wider-area, lossy networks”. In fact, besides all BFT
protocols mentioned above, there are good reasons to believe that we could design new proto-
cols outperforming all others under specific circumstances. We do indeed present an example
of a such protocol in this chapter.

To deploy a BFT solution, a system designer will hence certainly be tempted to adapt a
state-of-the-art BFT protocol to the specific application/network setting, and possibly keep

39



3.1. INTRODUCTION

adapting it whenever the setting changes. But this can rapidly turn into a nightmare. All pro-
tocol implementations we looked at involve around 20.000 lines of (non-trivial) C++ code,
e.g., PBFT and Zyzzyva. Any change to an existing protocol, although algorithmically intu-
itive, is very painful. The changes of the protocol needed to optimize for the “common" case
have sometimes strong impacts on the part of the protocol used in other cases (e.g., “view-
change” in Zyzzyva). The only complete proof of a BFT protocol we knew of is that of PBFT
and it involves 35 pages (even without using any formal language).1 This difficulty, together
with the impossibility of exhaustively testing distributed protocols [30] would rather plead
for never changing a protocol that was widely tested, e.g., PBFT.

We propose in this chapter a way to have the cake and eat a big chunk of it. We present
Abstract [58, 95] (Abortable Byzantine faulT-toleRant stAte maChine replicaTion): a new
abstraction to reduce the development cost of BFT protocols. Following the divide-and-
conquer principle, we view BFT protocols as a composition of instances of our abstraction,
each instance targeted and optimized for specific system conditions. An instance of Abstract
looks like BFT state machine replication, with one exception: it may sometimes abort a
client’s request.

The progress condition under which an Abstract instance should not abort is a generic
parameter.2 An extreme instance of Abstract is one that never aborts: this is exactly BFT. In-
teresting instances are “weaker” ones, in which an abort is allowed, e.g., if there is asynchrony
or failures (or even contention). When such an instance aborts a client request, it returns a
request history that is used by the client (proxy) to “recover” by switching to another instance
of Abstract, e.g., one with a stronger progress condition. This new instance will commit sub-
sequent requests until it itself aborts. This paves the path to composability and flexibility of
BFT protocol design. Indeed, the composition of any two Abstract instances is idempotent,
yielding yet another Abstract instance. Hence, and as we will illustrate in the chapter, the
development (design, test, proof and implementation) of a BFT protocol boils down to:

• Developing individual Abstract instances. This is usually way much simpler than
developing a full-fledged BFT protocol and allows for very effective schemes. A single
Abstract instance can be crafted solely with its progress in mind, irrespective of other
instances.

• Ensuring that a request is not aborted by all instances. This can be made very simple
by reusing, as a black-box, an existing BFT protocol as one of the instances, without
indulging into complex modifications.

To demonstrate the benefits of Abstract, we present two BFT protocols:

1. AZyzzyva, a protocol that illustrates the ability of Abstract to significantly ease the de-
velopment of BFT protocols. AZyzzyva is the composition of two Abstract instances:
(i) ZLight, which mimics Zyzzyva [67] when there are no asynchrony or failures, and
(ii) Backup, which handles the periods with asynchrony/failures by reusing, as a black-
box, a legacy BFT protocol. We leveraged PBFT which was widely tested, but could
replace it with any BFT protocol. The code line count and proof size required to obtain
AZyzzyva are, conservatively, less than 1/4 than those of Zyzzyva. In some sense, had
Abstract been identified several years ago, the designers of Zyzzyva would have had
a much easier task devising a correct protocol exhibiting the performance they were
seeking. Instead, they had to hack PBFT and, as a result, obtained a protocol that is
way less stable than PBFT.

1It took Roberto De Prisco a PhD (MIT) to formally (using IOA) prove the correctness of a state machine protocol
that does not even deal with malicious faults.

2Abstract can be viewed as a virtual type; each specification of the this progress condition defines a concrete
type. These genericity ideas date back to the seminal chapter of Landin: The Next 700 Programming Languages
(CACM, March 1966).
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2. Aliph, a protocol that demonstrates the ability of Abstract to develop novel efficient
BFT protocols. Aliph achieves up to 30% lower latency and up to 360% higher through-
put than state-of-the-art protocols. Aliph uses, besides the Backup instance used in
AZyzzyva (to handle the cases with asynchrony/failures), two new instances: (i) Quo-
rum, targeted for system conditions that do not involve asynchrony/failures/contention,
and (ii) Chain, targeted for high-contention conditions without failures/asynchrony.
Quorum has a very low-latency (like e.g., [23, 44, 1]) and it makes Aliph the first
BFT protocol to achieve a latency of only 2 message delays with as few as 3f + 1
servers. Chain implements a pipeline message-pattern, and relies on a novel authen-
tication technique. It makes Aliph the first BFT protocol with a number of MAC op-
erations at the bottleneck server that tends to 1 in the absence of asynchrony/failures.
This contradicts the claim that the lower bound is 2 [67]. Interestingly, each of Quorum
and Chain could be developed independently and required less than 25% of the code
needed to develop state-of-the-art BFT protocols.3

The rest of the chapter is organized as follows. Section 3.2 presents Abstract. After
describing our system model in Section 3.3, we describe and evaluate our new BFT pro-
tocols: AZyzzyva in Section 3.4 and Aliph in Section 3.5. We presented related works in
Section . Section 3.7 discusses the related work and concludes the chapter. For better read-
ability, details are postponed to appendices. Appendix A contains the formal specification of
Abstract. Appendix B contains protocol details with the correctness proofs given separately
in Appendix C.

3.2 Abstract
We propose a new approach for the development of BFT protocols. We view a BFT

protocol as a composition of instances of Abstract. Each instance is itself a protocol that
commits clients’ requests, like any state machine replication (SMR) scheme, except if certain
conditions are not satisfied, in which case it can abort requests. These conditions, determined
by the developer of the particular instance, capture the progress semantics of that instance.
They might depend on the design goals and the environment in which a particular instance is
to be deployed. Each instance can be developed, proved and tested independently, and this
modularity comes from two crucial properties of Abstract:

1. Switching between instances is idempotent: the composition of two Abstract instances
yields yet another Abstract instance.

2. BFT is nothing but a special Abstract instance — one that never aborts.

A correct implementation of an Abstract instance always preserves BFT safety — this
extends to any composition thereof. The designer of a BFT protocol only has to make sure
that: a) individual Abstract implementations are correct, irrespectively of each other, and
b) the composition of the chosen instances is live: i.e. that every request will eventually be
committed. We exemplify this later, in Sections 3.4 and 3.5. In the following, we highlight
the main characteristics of Abstract. For better readability, precise specification of Abstract
and our theorem on Abstract switching idempotency are postponed to Appendix A.

3.2.1 Switching
Every Abstract instance has a unique identifier (instance number) i. When an instance

i commits a request, i returns a state-machine reply to the invoking client. Like any SMR
3Our code counts are in fact conservative since they do not discount for the libraries shared between ZLight,

Quorum and Chain, which amount to 10% of a state-of-the-art BFT protocol.
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Figure 3.1: Abstract operating principle.

42



3.2. ABSTRACT

scheme, i establishes a total order on all committed requests according to which the reply
is computed for the client. If, however, i aborts a request, it returns to the client a digest of
the history of requests h that were committed by i (possibly along with some uncommitted
requests); this is called an abort history. In addition, i returns to the client the identifier of
the next instance (next(i)) which should be invoked by the client: next is the same func-
tion across all abort indications of instance i, and we say instance i switches to instance
next(i). In the context of this chapter, we consider next to be a pre-determined function
(e.g., known to servers implementing a given Abstract instance); we talk about deterministic
or static switching. However, this is not required by our specification; next(i) can be com-
puted “on-fly” by the Abstract implementation (e.g., depending on the current workload, or
possible failures or asynchrony) as long as next remains a function. In this case, we talk
about dynamic switching; this is out of the scope of this chapter.

The client uses abort history h of i to invoke next(i); in the context of next(i), h is
called an init history. Roughly speaking, next(i) is initialized with an init history, before it
starts committing/aborting clients’ requests. The initialization serves to transfer to instance
next(i) the information about the requests committed within instance i, in order to preserve
total order among committed requests across the two instances.

Once i aborts some request and switches to next(i), i cannot commit any subsequently
invoked request. We impose switching monotonicity: for all i, next(i) > i. Consequently,
Abstract instance i that fails to commit a request is abandoned and all clients go from there
on to the next instance, never re-invoking i.

3.2.2 Illustration
Figure 3.1 depicts a possible run of a BFT system built using Abstract. To preserve con-

sistency, Abstract properties ensure that, at any point in time, only one Abstract instance,
called active, may commit requests. Client A starts sending requests to the first Abstract
instance. The latter commits requests #1 to #49 and aborts request #50, becoming inactive.
Abstract appends to the abort indication an (unforgeable) history (hist_1) and the informa-
tion about the next Abstract instance to be used (next = 2). Client A sends to the new
Abstract instance both its uncommitted request (#50) and the history returned by the first
Abstract instance. Instance #2 gets initialized with the given history and executes request
#50. Later on, client B sends request #51 to the first Abstract instance. The latter returns
an abort indication with a possibly different history than the one returned to client A (yet
both histories must contain previously committed requests #1 to #49). Client B subsequently
sends request #51 together with the history to the second abstract instance. The latter be-
ing already initialized, it simply ignores the history and executes request #51. The second
abstract instance then executes the subsequent requests up to request #130 which it aborts.
Client B uses the history returned by the second abstract instance to initialize the third ab-
stract instance. The latter executes request #130. Finally, Client C, sends request #131 to
the third instance, that executes it. Note that unlike Client B, Client C directly accesses the
currently active instance. This is possible if Client C knows which instance is active, or if all
three Abstract instances are implemented over the same set of replicas: replicas can then, for
example, ‘tunnel’ the request to the active instance.

3.2.3 A View-Change Perspective
In some sense, an Abstract instance number can be seen as a view number, e.g., in

PBFT [27].4 Like in existing BFT protocols, which merely reiterate the exact same sub-
protocol across the views (possibly changing the server acting as leader), the same Abstract

4The opposite however does not hold, since multiple views of a given BFT protocol can be captured within a
single Abstract instance.
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implementations can be re-used (with increasing instance numbers). However, unlike exist-
ing BFT protocols, Abstract compositions allow entire sub-protocols to be changed on a
‘view-change’ (i.e., during switching).

3.2.4 Misbehaving Clients
Clients that fail to comply with the switching mechanism (e.g., by inventing/forging an

init history) cannot violate the Abstract specification. Indeed, to be considered valid, an
init history of next(i) must be previously returned by the preceding Abstract i as an abort
history. To enforce this causality, in practice, our Abstract compositions (see Sec. 3.4 and
Sec. 3.5) rely on unforgeable digital signatures to authenticate abort histories in the pres-
ence of potentially Byzantine clients. View-change mechanisms employed in existing BFT
protocols [27, 67], have similar requirements: they exchange digitally signed messages.

3.3 System Model
We assume a message-passing distributed system using a fully connected network among

processes: clients and servers. The links between processes are asynchronous and unreliable:
messages may be delayed or dropped (we speak of link failures). However, we assume fair-
loss links: a message sent an infinite number of times between two correct processes will
be eventually received. Processes are Byzantine fault-prone; processes that do not fail are
said to be correct. A process is called benign if it is correct or if it fails by simply crashing.
In our algorithms, we assume that any number of clients and up to f out of 3f + 1 servers
can be Byzantine. We assume a strong adversary that can coordinate faulty nodes; however,
we assume that the adversary cannot violate cryptographic techniques like collision-resistant
hashing, message authentication codes (MACs), and signatures.

We further assume that during synchronous periods (i.e., when there are no link failures)
any message m sent between two correct processes is delivered within a bounded delay ∆
(known to sender and receiver) if the sender retransmits m until it is delivered.

Finally, we declare contention in an Abstract instance whenever there are two concurrent
requests such that both requests are invoked but not yet committed/aborted.

3.4 Putting Abstract to Work: AZyzzyva
We illustrate how Abstract significantly eases the design, implementation, and proof of

BFT protocols with AZyzzyva. This is a full fledged BFT protocol that mimics Zyzzyva [67]
in its “common case” (i.e., when there are no link or server failures). In “other cases” we rely
on Backup, an Abstract implementation with strong progress guarantees that can be imple-
mented on top of any existing BFT protocol. In our implementation, we chose PBFT [27]
for it has been extensively tested and proved correct. We chose to mimic Zyzzyva, for it is
known to be efficient, yet very difficult to implement [35]. Using Abstract, we had to write,
prove and test less than 24% of the Zyzzyva code to obtain AZyzzyva.

In the “common case”, Zyzzyva executes the fast speculative path depicted in Figure 3.2.
A client sends a request to a designated server, called primary (r1 in Fig. 3.2). The pri-
mary appends a sequence number to the request and broadcasts the request to all replicas.
Each replica speculatively executes the request and sends a reply to the client. All mes-
sages in the above sequence are authenticated using MACs rather than (more expensive)
digital signatures. The client commits the request if it receives the same reply from all
3f + 1 replicas. Otherwise, Zyzzyva executes a second phase that aims at handling the case
with link/server/client failures (“worst-case”). Roughly, this phase (that AZyzzyva avoids to
mimic) consists of considerable modifications to PBFT [27], which arise from the “profound
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effects” [67], that the Zyzzyva “common-case” optimizations have on its “worst-case”. The
second phase is so complex that, as confessed by the authors themselves [35], it is not entirely
implemented in the current Zyzzyva prototype. In fact, when this second phase is stressed,
due to its complexity and the inherent bugs that it contains, the throughput of Zyzzyva drops
to 0.

In the following, we describe how we build AZyzzyva, assess the qualitative benefit of
using Abstract and discuss the performance of AZyzzyva.
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Figure 3.2: Communication pattern of ZLight.

3.4.1 Protocol Overview
Our goal when building AZyzzyva using Abstract is to show that we can completely

separate the concerns of handling the “common-case” and the “worst-case”. We thus use
two different Abstract implementations: ZLight and Backup. Roughly, ZLight is a Abstract
that guarantees progress in the Zyzzyva “common-case”. On the other hand, Backup is an
Abstract with strong progress: it guarantees to commit an exact certain number of requests
k (k is itself configurable) before it starts aborting.

We then simply construct AZyzzyva such that every odd (resp., even) Abstract instance is
ZLight (resp., Backup). ZLight is first executed. When it aborts, it switches to Backup, which
commits the next k requests. Backup then aborts subsequent requests and switches to (a new
instance of) ZLight, and so on.

Note that ZLight uses a lightweight checkpointing protocol (shared with Aliph’s Quorum
and Chain, Sec. 3.5) triggered every 128 messages to truncate histories (see Sec. B.6.1).

In the following, we briefly describe ZLight and Backup. Details are postponed to Ap-
pendix B, whereas correctness proofs can be found in Appendix C.

3.4.2 ZLight
ZLight implements Abstract with the following progress property which reflects Zyzzyva

“common case”: it commits requests when (a) there are no server or link failures, and (b) no
client is Byzantine (simple client crash failures are tolerated). When this property holds,
ZLight implements Zyzzyva “common-case” pattern (Fig. 3.2), described earlier. Outside the
“common-case”, when a client does not receive 3f + 1 consistent replies, the client sends a
PANIC message to replicas. Upon reception of this message, replicas stop executing requests
and send back a signed message containing their history (replicas will now send the same
abort message for all subsequent requests). When the client receives 2f + 1 signed messages
containing replica histories, it can generate an abort history and switch to Backup. Client
generates abort history ah such that ah[j] equals the value that appears at position j ≥ 1 of
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f + 1 different replica histories (the details of the panic and switching mechanisms are in the
appendix, in Sec. B.5 and B.6, respectively).

3.4.3 Backup
Backup is an Abstract implementation with a progress property that guarantees exactly

k ≥ 1 requests to be committed, where k is a generic parameter (we explain our configuration
for k at the end of this section). We employ Backup in AZyzzyva (and Aliph) to ensure
progress outside “common-cases” (e.g., under replica failures).

We implemented Backup as a very thin wrapper (around 600 lines of C++ code) that
can be put around any existing BFT protocol. In our C/C++ implementations, Backup is
implemented over PBFT [27], for PBFT is the most extensively tested BFT protocol and it is
proven correct. Other existing BFT protocols that provide robust performance under failures,
like Aardvark [35], are also very good candidates for the Backup basis (unfortunately, the
code of Aardvark is not yet publicly available).

To implement Backup, we exploit the fact that any BFT can totally order requests sub-
mitted to it and implement any functionality on top of this total order. In our case, Backup
is precisely this functionality. Backup works as follows: it ignores all the requests deliv-
ered by the underlying BFT protocol until it receives a request containing a valid init history,
i.e. an unforgeable abort history generated by the preceding Abstract (ZLight in the case of
AZyzzyva). At this point, Backup sets its state by executing all the requests contained in a
valid init history it received. Then, it simply executes the first k requests ordered by BFT
(neglecting subsequent init histories) and commits these requests. After committing the kth

request, Backup aborts all subsequent requests returning the signed sequence of executed
requests as the abort history (replica digital signature functionality assumed here is readily
present in all existing BFT protocols we know of).

The parameter k is generic and is an integral part of the Backup progress guarantees. Our
default configuration increases k exponentially, with every new instance of Backup. This
ensures the liveness of the composition, which might not be the case with, say, a fixed k in a
corner case with very slow clients5. More importantly, in the case of failures, we actually do
want to have a Backup instance remaining active for long enough, since Backup is precisely
targeted to handle failures. On the other hand, to reduce the impact of transient link failures,
which can drive k to high values and thus confine clients to Backup for a long time after
the transient failure disappears, we flatten the exponential curve for k to maintain k = 1
during some targeted outage time6. In our implementation, we also periodically reset k.
Dynamically adapting k to fit the system conditions is appealing but requires further studies
and is out of the scope of this chapter.

3.4.4 Qualitative Assessment
In evaluating the effort of building AZyzzyva, we focus on the cost of ZLight. Indeed,

Backup, for which the additional effort is small (around 600 lines of C++ code), can be
reused for other BFT protocols in our framework. For instance, we use Backup in our Aliph
protocol as well (Sec. 3.5).

Table 3.1 compares the number of pages of pseudo-code, pages of proofs and lines of code
of Zyzzyva and ZLight. The comparison in terms of lines of code is fair, since Zyzzyva and

5In short, k requests committed by a single Backup instance i might all be invoked by the same, fast client. A
slow client can then get its request aborted by i. The same can happen with a subsequent Backup instance, etc.
This issue can be avoided by exponentially increasing k (for any realistic load that does not increase faster than
exponentially) or by having the replicas across different Abstract instances share a client input buffer.

6For example, using k = dC ∗ 2me, where m is incremented with every new Abstract instance, with the rough
average time of 50ms for switching between 2 consecutive Backup instances in AZyzzyva, we can maintain k = 1
during 10s outages with C = 2−200.
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all protocols presented in this chapter use the same code base (inherited from PBFT [27]).
Notice that, all implementations in the PBFT code base, share about 7500 lines of code
implementing cryptographic functions, data structures (e.g. maps, sets), etc. We do not
count these lines, which we packaged in a separate library. The code line comparison shows
that to build ZLight we needed less than 24% of the Zyzzyva line count (14339 lines). This
is, however, conservative since we needed only about 14% to implement ZLight “common
case”; the remaining 10% (1391 lines) are due to panicking and checkpointing mechanisms,
which are all shared among ZLight, Quorum and Chain (the latter two are used in Aliph,
Sec. 3.5). The difference in the ZLight vs. Zyzzyva code size is that ZLight aborts as soon
as the system conditions fall outside the “common-case” (in which case AZyzzyva shifts the
load to Backup). Hence, we avoid the “common-case”/“worst-case” code dependency that
plagued Zyzzyva.

Using the same syntax as the one used in the original Zyzzyva chapter [67], ZLight re-
quires approximately half a page of pseudo-code, its plain-english proof requires about 1
page (see Sec. C.1). In comparison, the pseudo-code of Zyzzyva (without checkpointing)
requires 4.5 pages, making it about 9 times bigger than that of ZLight. Due to the complexity
of Zyzzyva, the authors first presented a version using signatures and then explained how to
modify it to use MACs. The correctness proof of the Zyzzyva signature version requires 4
(double-column) pages, whereas the proof for the MAC version is only sketched.

Zyzzyva ZLight
Pages of pseudo-code 4,5 0,5
Pages of proofs > 4 1
Lines of code 14339 3358

Table 3.1: Complexity comparison of Zyzzyva and ZLight.

3.4.5 Performance Evaluation

We have compared the performance of AZyzzyva and Zyzzyva in the “common-case”,
using the benchmarks described in Section 3.5.2. Not surprisingly, AZyzzyva and Zyzzyva
have the exact same performance in this case. In this section, we do thus focus on the cost
induced by Abstract switching mechanism when the operating conditions are outside the
common-case (and ZLight aborts a request). We could not compare against Zyzzyva. Indeed,
as explained above, it has bugs in the second phase in charge of handling faults, which makes
its impossible to evaluate the current prototype outside the “common-case”.

To assess the switching cost, we perform the following experiments: we feed the request
history of ZLight with r requests of size 1kB. We then issue 10000 successive requests. To
isolate the cost of the switching mechanism, we do not execute the ZLight common case;
the measured time comprises the time required (1) by the client to send a PANIC message to
ZLight replicas, (2) by the replicas to generate and send a signed message containing their
history, (3) by the client to invoke Backup with the abort/init history, and (4) by the (next)
client to get the abort history from Backup and initialize the next ZLight instance. Note that
we deactivate the functions in charge of updating the history of ZLight, so that we ensure that
for each aborted request, the history contains r requests. We reproduced each experiment
three times and observed a negligible variance.

Figure 3.3 shows the switching time (in ms) as a function of the history size when the
number of tolerated faults equals 1. As mentioned above, ZLight uses a checkpointing mech-
anism triggered every 128 requests. To account for requests that might be received by servers
while they are performing a checkpoint, we assume that the history size can grow up to 250
requests. We plot two different curves: one corresponds to the case when replicas do not
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miss any request. The other one corresponds to the case when replicas miss requests. More
precisely, we assess the performance when 30% of the requests are absent from the history
of at least one replica. Not surprisingly, we observe that the switching cost increases with the
history size and that it is slightly higher in the case when replicas miss requests (as replicas
need to fetch the requests they miss). Interestingly, we see that the switching cost is very rea-
sonable. It ranges between 19.7ms and 29.2ms, which is low provided faults are supposed
to be rare in the environment for which Zyzzyva has been devised.
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3.5 Putting Abstract to Really Work: Aliph
In this section, we demonstrate how we can build novel, very efficient BFT protocols,

using Abstract. Our new protocol, called Aliph, achieves up to 30% lower latency and up to
360% higher throughput than state-of-the-art protocols. The development of Aliph consisted
in building two new instances of Abstract, each requiring less than 25% of the code of state-
of-the-art protocols, and reusing Backup (Sec. 3.4.3). In the following, we first describe Aliph
and then we evaluate its performance.

3.5.1 Protocol Overview
The characteristics of Aliph are summarized in Table 3.2, considering the metrics of [67].

In short, Aliph is the first optimally resilient protocol that achieves a latency of 2 one-way
message delays when there is no contention. It is also the first protocol for which the number
of MAC operations at the bottleneck replica tends to 1 (under high contention when batching
of messages is enabled): 50% less than required by state-of-the-art protocols.

Aliph uses three Abstract implementations: Backup (introduced in Sec. 4.3), Quorum
and Chain (both described below). A Quorum instance commits requests as long as there
are no: (a) server/link failures, (b) client Byzantine failures, and (c) contention. Quorum
implements a very simple communication pattern and gives Aliph the low latency flavor when
its progress conditions are satisfied. On the other hand, Chain provides exactly the same
progress guarantees as ZLight (Sec. 3.4.2), i.e., it commits requests as long as there are no
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PBFT Q/U HQ Zyzzyva Aliph
Number of replicas 3f+1 5f+1 3f+1 3f+1 3f+1
Throughput (MAC ops at bottleneck server) 2+ 8f

b
2+4f 2+4f 2+ 3f

b
1+ f+1

b

Latency (1-way messages in the critical path) 4 2 4 3 2

Table 3.2: Characteristics of state-of-the-art BFT protocols. Row 1 is the number of replicas.
Row 2 is the throughput in terms of number of MAC operations at the bottleneck replica
(assuming batches of b requests). Row 3 is the latency in terms of number of 1-way messages
in the critical path. Bold entries denote protocols with the lowest known cost.

server/link failures or Byzantine clients. Chain implements a pipeline pattern and, as we
show below, allows Aliph to achieve better peak throughput than all existing protocols. Both
Quorum and Chain share the panicking mechanism with ZLight, which is invoked by the
client when it fails to commit the request.

Aliph uses the following static switching ordering to orchestrate its underlying protocols:
Quorum-Chain-Backup-Quorum-Chain-Backup−etc. Initially, Quorum is active. As soon as
it aborts (e.g., due to contention), it switches to Chain. Chain commits requests until it aborts
(e.g., due to asynchrony). Aliph then switches to Backup, which executes k requests (see
Sec. 3.4.3). When Backup commits k requests, it aborts, switches back to Quorum, and so
on.

In the following, we first describe Quorum (Sec. 3.5.1.1) and Chain (Sec. 3.5.1.2) (full
details and correctness proofs can be found in Appendix B and C, respectively). Then, we
discuss some system-level optimizations of Aliph (Sec. 3.5.1.3).

3.5.1.1 Quorum

Quorum implements a very simple communication pattern (see Fig. 3.4); it requires only
one round-trip of message exchange between a client and replicas to commit a request.
Namely, the client sends the request to all replicas that speculatively execute it and send a
reply to the client. As in ZLight, replies sent by replicas contain a digest of their history. The
client checks that the histories sent by the 3f + 1 replicas match. If that is not the case, or
if the client does not receive 3f + 1 replies, the client invokes a panicking mechanism. This
is the same as in ZLight (Sec. 3.4.2): (i) the client sends a PANIC message to replicas, (ii)
replicas stop executing requests on reception of a PANIC message, (iii) replicas send back a
signed message containing their history. The client collects 2f + 1 signed messages contain-
ing replica histories and generates an abort history. Note that, unlike ZLight, Quorum does
not tolerate contention: concurrent requests can be executed in different orders by different
replicas. This is not the case in ZLight, as requests are ordered by the primary.

The implementation of Quorum is very simple. It requires 3200 lines of C code (including
panicking and checkpoint libraries). Quorum makes Aliph the first BFT protocol to achieve a
latency of 2 one-way message delays, while only requiring 3f + 1 replicas (Q/U [1] has the
same latency but requires 5f + 1 replicas). Given its simplicity and efficiency, it might seem
surprising not to have seen it published earlier. We believe that Abstract made that possible
because we could focus on weaker (and hence easier to implement) Abstract specifications,
without caring about (numerous) difficulties outside the Quorum “common-case”.

3.5.1.2 Chain

Chain organizes replicas in a pipeline ( see Fig. 3.5). All replicas know the fixed ordering
of replica IDs (called chain order); the first (resp., last) replica is called the head (resp., the
tail). Without loss of generality we assume an ascending ordering by replica IDs, where the
head (resp., tail) is replica r1 (resp., r3f+1).
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Figure 3.4: Communication pattern of Quorum.
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Figure 3.5: Communication pattern of Chain.
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In Chain, a client on invoking a request, sends the request req to the head, who assigns
sequence numbers to requests. Then, each replica ri forwards the message to its successor
−→ri , where −→ri = ri+1. The exception is the tail whose successor is the client: upon receiving
the message, the tail sends the reply to the client. Similarly, replica ri in Chain accepts a
message only if sent by its predecessor ←−ri , where ←−ri = ri−1; the exception is the head,
which accepts requests only from the client.

The behavior of Chain, as described so far, is very similar to the protocol described
in [93]. That protocol, however, did only tolerate crash faults. We tolerate Byzantine failures
by ensuring: (1) that the content of a message is not modified by a malicious replica before
being forwarded, (2) that no replica in the chain is bypassed, and (3) that the reply sent by the
tail is correct. To provide those guarantees, our Chain relies on a novel authentication method
we call chain authenticators (CAs). CAs are lightweight MAC authenticators, requiring pro-
cesses to generate (at most) f + 1 MACs (in contrast to 3f + 1 in traditional authenticators).
CAs guarantee that, if a client commits request req, every correct replica executed req. CAs,
along with the inherent throughput advantages of a pipeline pattern, are key to Chain’s dra-
matic throughput improvements over other BFT protocols. We describe below how CAs are
used in Chain.

Replicas and clients generate CAs in order to authenticate the messages they send. Each
CA contains MACs for a set of processes called successor set. The successor set of clients
consists of the f+1 first replicas in the chain. The successor set of a replica ri depends on its
position i: (a) for the first 2f replicas, the successor set comprises the next f + 1 replicas in
the chain, whereas (b) for other replicas (i > 2f ), the successor set comprises all subsequent
replicas in the chain, as well as the client. Dually, when process p receives a message m it
verifies m, i.e., it checks whether m contains a correct MAC from the processes from p’s
predecessor set (a set of processes q such that p is in q’s successor set). For instance, process
p1 verifies that the message contains a valid MAC from process p0 and the client, whereas
the client verifies that the reply it gets contains a valid MAC from the last f + 1 replicas in
the chain. Finally, to make sure that the reply sent by the tail is correct, the f processes that
precede the tail in the chain append a digest of the response to the message.

When the client receives a correct reply, it commits it. On the other hand, when the reply
is not correct, or when it does not receive any reply (e.g., due to the Byzantine tail which
discards the request), the client broadcasts a PANIC message to replicas. As in ZLight and
Quorum, when replicas receive a PANIC message, they stop executing requests and send
back a signed message containing their history. The client collects 2f + 1 signed messages
containing replica histories and generates an abort history.

Chain’s implementation requires 3300 lines of code (with panic and checkpoint libraries).
Moreover, it is the first protocol in which the number of MAC operations at the bottleneck
replica tends to 1. This comes from the fact that, under contention, the head of the chain
can batch requests. Head and tail do thus need to read (resp. write) a MAC from (resp. to)
the client, and write (resp. read) f + 1 MACs for a batch of requests. Thus for a single
request, head and tail perform 1 + f+1

b MAC operations. Note that all other replicas process
requests in batch, and have thus a lower number of MAC operations per request. State-of-
the-art protocols [67, 27] do all require at least 2 MAC operations at the bottleneck server
(with the same assumption on batching). The reason why this number tends to 1 in Chain can
be intuitively explained by the fact that these are two distinct replicas that receive the request
(the head) and send the reply (the tail).

3.5.1.3 Optimizations

When a Chain instance is executing in Aliph, it commits requests as long as there are
no server or link failures. In the Aliph implementation we benchmark in the evaluation,
we slightly modified the progress property of Chain so that it aborts requests as soon as

51



3.5. PUTTING ABSTRACT TO REALLY WORK: ALIPH

replicas detect that there is no contention (i.e. there is only one active client since at least
2s). Moreover, Chain replicas add an information in their abort history to specify that they
aborted because of the lack of contention. We slightly modified Backup, so that in such case,
it only executes one request and aborts. Consequently, Aliph switches to Quorum, which is
very efficient when there is no contention. Finally, in Chain and Quorum we use the same
checkpoint protocol as in ZLight.

3.5.2 Evaluation
This section evaluates the performance of Aliph. For lack of space, we focus on experi-

ments without failures (of processes or links), since we compare to protocols that are known
to perform well in the common-case — PBFT [27], Q/U [1] and Zyzzyva [67].

We first study latency, throughput, and fault scalability using Castro’s microbenchmarks [27,
67], varying the number of clients. Clients invoke requests in closed-loop (meaning that
a client does not invoke a new request before it commits a previous one). In the x/y mi-
crobenchmark, clients send xkB requests and receive ykB replies. We also perform an exper-
iment in which the input load dynamically varies.

We evaluate PBFT and Zyzzyva because the former is considered the “baseline” for
practical BFT implementations, whereas the latter is considered state-of-the-art. Moreover,
Zyzzyva systematically outperforms HQ [67]; hence, we do not evaluate HQ. Finally, we
benchmark Q/U as it is known to provide better latency than Zyzzyva under certain condi-
tion. Note that Q/U requires 5f + 1 servers, whereas other protocols we benchmark only
require 3f + 1 servers.

PBFT and Zyzzyva implement two optimizations: request batching by the primary, and
client multicast (in which clients send requests directly to all the servers and the primary only
sends ordering messages). All measurements of PBFT are performed with batching enabled
as it always improves performance. This is not the case in Zyzzyva. Therefore, we assess
Zyzzyva with or without batching depending on the experiment. As for the client multicast
optimization, we show results for both configurations every time we observe an interesting
behavior.

PBFT code base underlies both Zyzzyva and Aliph. To ensure that the comparison with
Q/U is fair, we evaluate its simple best-case implementation described in [67].

We ran all our experiments on a cluster of 17 identical machines, each equipped with
a 1.66GHz bi-processor and 2GB of RAM. Machines run the Linux 2.6.18 kernel and are
connected using a Gigabit ethernet switch.

3.5.2.1 Latency

0/0 benchmark 4/0 benchmark 0/4 benchmark
f=1 f=2 f=3 f=1 f=2 f=3 f=1 f=2 f=3

Q/U 8% 14,9% 33,1% 6,5% 13,6% 22,3% 4,7% 20,2% 26%
Zyzzyva 31,6% 31,2% 34,5% 27,7% 26,7% 15,6% 24,3% 26% 15,6%
PBFT 49,1% 48,8% 44,5% 36,6% 38,4% 26% 37,6% 38,2% 29%

Table 3.3: Latency improvement of Aliph for the 0/0, 4/0, and 0/4 benchmarks.

We first assess the latency in a system without contention, with a single client issuing
requests. The results for all microbenchmarks (0/0, 0/4 and 4/0) are summarized in Table 3.3
demonstrating the latency improvement of Aliph over Q/U, PBFT, and Zyzzyva. We show
results for a maximal number of server failures f ranging from 1 to 3. Our results show
that Aliph consistently outperforms other protocols, since Quorum is active when there is
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no contention. These results confirm the theoretical expectations (see Table 3.2, Sec. 3.5.1).
The results show that Q/U also achieves a good latency with f = 1, as Q/U and Quorum
use the same communication pattern. Nevertheless, when f increases, performance of Q/U
decreases significantly. The reason is that Q/U requires 5f + 1 replicas and both clients
and servers perform additional MAC computations compared to Quorum. Moreover, the
significant improvement of Aliph over Zyzzyva (31% at f = 1) can be easily explained by
the fact that Zyzzyva requires 3-one-way message delays in the common case, whereas Aliph
(Quorum) only requires 2-one-way message delays.

3.5.2.2 Throughput

In this section, we present results obtained running the 0/0, 0/4, and 4/0 microbenchmarks
under contention. We do not present the results for Q/U since it is known to perform poorly
under contention. Notice that in all the experiments presented in this section, Chain is active
in Aliph. The reason is that, due to contention, there is always a point in time when a request
sent to Quorum reaches replicas in a different order, which results in a switch to Chain.
As there are no failures in the experiments presented in this section, Chain executes all the
subsequent requests.

Our results show that Aliph consistently and significantly outperforms other protocols
starting from a certain number of clients that depends on the benchmark. Below this thresh-
old, Zyzzyva achieves higher throughput than other protocols.

0/0 benchmark. Figure 3.6 plots the throughput achieved in the 0/0 benchmark by various
protocols when f = 1. We ran Zyzzyva with and without batching. For PBFT, we present
only the results with batching, since they are substantially better than results without batching.
We observe that Zyzzyva with batching performs better than PBFT, which itself achieves
higher peak throughput than Zyzzyva without batching (this is consistent with the results of
[67, 87]).
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Figure 3.6: Throughput for the 0/0 benchmark (f=1).

Moreover, Figure 3.6 shows that with up to 40 clients, Zyzzyva achieves the best through-
put. With more than 40 clients, Aliph starts to outperform Zyzzyva. The peak throughput
achieved by Aliph is 21% higher than that of Zyzzyva. The reason is that Aliph executes
Chain, which uses a pipeline pattern to disseminate requests. This pipeline pattern brings
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two benefits: reduced number of MAC operations at the bottleneck server, and better net-
work usage: servers send/receive messages to/from a single server.

Nevertheless, the Chain is efficient only if its pipeline is fed, i.e. the link between any
server and its successor in the chain must be saturated. There are two ways to feed the
pipeline: using large messages (see the next benchmark), or a large number of small messages
(this is the case of 0/0 benchmark). Moreover, as in the microbenchmarks clients invoke
requests in closed-loop, it is necessary to have a large number of clients to issue a large
number of requests. This explains why Aliph starts outperforming Zyzzyva only with more
than 40 clients.
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Figure 3.7: Response-time vs. throughput for the 0/0 benchmark (f=1).

Figure 3.7 plots the response-time of Zyzzyva (with and without batching), PBFT and
Aliph as a function of the achieved throughput. We observe that Aliph achieves consistently
lower response-time than PBFT. This stems from the fact that the message pattern of PBFT
is a very complex one, which increases the response time and limits the throughput of PBFT.
Moreover, up to the throughput of 37Kops/sec, Aliph has a slightly higher response-time than
Zyzzyva. The reason is the pipeline pattern of Chain that results in a higher response time
for low to medium throughput, which stays reasonable nevertheless. Moreover, Aliph scales
better than Zyzzyva: from 37Kops/sec, it achieves lower response time, since the messages
are processed faster due to the higher throughput ensured by Chain. Hence, messages spend
less time in waiting queues. Finally, we observe that for very low throughput, Aliph has lower
response time than Zyzzyva. This comes from the fact that Aliph uses Quorum when there is
no contention, which significantly improves the response-time of the protocol.

0/4 benchmark. Figure 3.8 shows the throughput of the various protocols for the 0/4 mi-
crobenchmark when f = 1. PBFT and Zyzzyva are using the client multicast optimization.
We observe that with up to 15 clients, Zyzzyva outperforms other protocols. Starting from
20 clients, Aliph outperforms PBFT and Zyzzyva. Nevertheless, the gain in peak through-
put (7,7% over PBFT and 9,8% over Zyzzyva) is lower than the gain we had with the 0/0
microbenchmark. This can be explained by the fact that the dominating cost is now sending
replies to clients, partly masking the effect of request processing and request/sequence num-
ber forwarding. In all protocols, there is only one server sending a full reply to the client
(other servers send only a digest of the reply). We were expecting PBFT and Zyzzyva to out-
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perform Aliph (which executes Chain when there is load), since the server that sends a full
reply in PBFT and Zyzzyva changes on a per-request basis. Nevertheless, this is not the case.
We again attribute this result to the fact that Chain uses a pipeline pattern: the last process in
the chain replies to clients at the throughput of about 391MB/sec.
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Figure 3.8: Throughput for the 0/4 benchmark (f=1).

4/0 benchmark. Figure 3.9 shows the results of Aliph, PBFT and Zyzzyva for the 4/0
microbenchmark with f = 1. Notice the logarithmic scale for the X axis, that we use to
better highlight the behavior of various protocols with small numbers of clients. For PBFT
and Zyzzyva, we plot curves both with and without client multicast optimization. The graph
shows that with up to 3 clients, Zyzzyva outperforms other protocols. With more than 3
clients, Aliph significantly outperforms other protocols. Its peak throughput is about 360%
higher than that of Zyzzyva. The reason why Aliph is very efficient under high load and when
requests are large was explained earlier in the context of the 0/0 benchmark.

Notice also the interesting drop in the performance of Zyzzyva and PBFT when client
multicast optimization is used (Fig. 3.9). This is to be contrasted with the case when the
primary forwards requests, where the performance of PBFT and Zyzzyva remain almost con-
stant after the peak throughput has been reached. These results may seem surprising given
that [67, 27] recommend to use the client multicast optimization when requests are large, in
order to spare the primary of costly operations request forwarding. Nevertheless, these re-
sults can be explained by the fact that simultaneous multicasts of large messages by different
clients result in collisions and buffer overflows, thus requiring many message retransmis-
sions7 (there is no flow control in UDP). This explains why enabling the concurrent client
multicasts drastically reduces performance. On the other hand, when the primary forwards
messages, there are fewer collisions, which explains the better performance we observe.

Impact of the request size. In this experiment we study how protocols are impacted by
the size of requests. Figure 3.10 shows the peak throughput of Aliph, PBFT and Zyzzyva

7Note that similar performance drops with large UDP packets have already been observed in the context of
broadcast protocols. For instance, a recent study made by the authors of the JGroups toolkit showed that with 5K
messages, their TCP stack achieves up to 5 times the throughput of their UDP stack, even if the latter includes some
flow control mechanisms.
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as a function of the request size for f = 1. To obtain the peak throughput of PBFT and
Zyzzyva, we benchmarked both protocols with and without client multicast optimization and
with different batching sizes for Zyzzyva. Interestingly, the behavior we observe is similar
to that observed using simulations in [87]: differences between PBFT and Zyzzyva diminish
with the increase in payload. Indeed, starting from 128B payloads, both protocols have almost
identical performance. Figure 3.10 also shows that Aliph sustains high peak throughput with
all message sizes, which is again the consequence of Chain being active under contention.
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Fault scalability. One important characteristic of BFT protocols is their behavior when the
number of tolerated server failures f increases. Figure 3.11 depicts the performance of Aliph
for the 4/0 benchmark when f varies between 1 and 3. We do not present results for PBFT
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and Zyzzyva as their peak throughput is known to suffer only a slight impact [67]. Figure 3.11
shows that this is also the case for Aliph. The peak throughput at f = 3 is only 3,5% lower
than that achieved at f = 1. We also observe that the number of clients that Aliph requires to
reach its peak throughput increases with f . This can be explained by the fact that Aliph uses
Chain under contention. The length of the pipeline used in Chain increases with f . Hence,
more clients are needed to feed the Chain and reach the peak throughput.
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Figure 3.11: Impact of the number of tolerated failures f on the Aliph throughput.

3.5.2.3 Performance in Case of Faults

As mentioned in Section 3.4.3, when Aliph switches to Backup, it executes k requests,
and then switches back to Quorum. To asses the impact of k on system’s performance, we
compared performance for two different values of k – in the first case, k = 1, and in the
second case, k = 2i, where i is the number of invocations of Backup since beginning.

In this experiment, we skip execution in Chain, and focus only on Quorum and Backup.
There is one client, which issues 15.000 requests in total. If run just under Quorum, system
would process these requests in 7s. After client sends 2.000 requests, one of the replicas goes
down, and remains down for 10s. During this time, only three replicas are active. Hence, as
Quorum protocol requires all replicas to respond, it will not execute any request. Figure 3.12
shows the throughput of the system, when Aliph switches to Backup for a single request. As
discovery of replica failure in Quorum is done with timers, only handful of requests will be
serviced (by Backup) while one replica is down. On the other hand, Figure 3.13 shows the
behavior of the system if it stays in Backup for 2i requests. Although it takes less time to
finish the experiment, system may stay for too long in Backup. Replica came back up at
t = 11s in the experiment, but switch from Backup to Quorum occurred around t = 14s,
because Backup had to process 8192 requests.

3.5.2.4 Dynamic Workload

Finally, we study the performance of Aliph under dynamic workload (i.e., fluctuating
contention). We compare its performance to that achieved by Zyzzyva and by Chain alone.
We do not present results for Quorum alone as it does not perform well under contention.
The experiments consists in having 30 clients issuing requests of different sizes, namely, 0k,
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Figure 3.12: Throughput under faults, when system switches to Backup for one request.
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Figure 3.13: Throughput under faults, when system switches to Backup for 2i requests.
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0.5k, 1k, 2k, and 4k. Clients do not send requests all at the same time: the experiment starts
with a single client issuing requests. Then we progressively increase the number of clients
until it reaches 10. We then simulate a load spike with 30 clients simultaneously sending
requests. Finally, the number of clients decreases, until there is only one client remaining in
the system.

Figure 3.14 shows the performance of Aliph, Zyzzyva, and Chain. For each protocol,
clients were invoking the same number of requests. Moreover, requests were invoked after
the preceding clients had completed their bursts. First, we observe that Aliph is the most
efficient protocol: it completes the experiment in 42s, followed by Zyzzyva (68.1s), and
Chain (77.2s). Up to time t = 15.8s, Aliph uses Quorum, which performs much better than
Zyzzyva and Chain. Starting at t = 15.8, contention becomes too high for Quorum, which
switches to Chain. At time t = 31.8s, there is only one client in the system. After 2s spent
with only one client in the system, Chain in Aliph starts aborting requests due to the low load
optimization (Sec. 3.5.1.3). Consequently, Aliph switches to Backup and then to Quorum.
This explains the increase in throughput observed at time t = 33.8s. We also observe on
the graph that Chain and Aliph are more efficient than Zyzzyva when there is a load spike:
they achieve a peak throughput about three times higher than that of Zyzzyva. On the other
hand, Chain and Aliph have slightly lower performance than Zyzzyva under medium load
(i.e. from 16s to 26s on the Aliph curve). This suggests an interesting BFT protocol that
would combine Quorum, Zyzzyva, Chain and Backup. However, this requires smart choices
for dynamic switching, e.g., between Zyzzyva and Chain. We believe that building such a
protocol is an interesting research topic.
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Figure 3.14: Throughput under dynamic workload.

3.6 Related Work

Several BFT protocols have been proposed in the last ten years with practical motivations
in mind: PBFT [27] was the first to make a convincing argument for the practical potential of
BFT. PBFT was in particular the first to use MAC vectors (instead of signatures) to improve
performance. Q/U [1] was the first to implement the idea of a single communication round
to expedite a decision in the absence of contention or timeouts. It required however 5f + 1
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servers to tolerate f Byzantine server failures, unlike our Quorum protocol which enables the
same communication pattern with only 3f + 1 servers.

Several examples of speculative protocols, distinguishing an optimistic phase from a re-
covery one, were discussed in the survey of Pedone [83]. These speculation ideas were used
in the context of Byzantine state machine replication, e.g., in HQ [38] and Zyzzyva [67]. We
are however the first to clearly separate the phases and encapsulate them within first class,
well-specified, modules, that can each be designed, tested and proved independently. In a
sense, Abstract enables to build a BFT protocol as the composition of as many (gracefully
degrading) phases as desired, each with a “standard” interface. This allows for an unpreceded
flexibility in BFT protocol design that we illustrated with Aliph, a BFT protocol that combines
three different phases. In retrospect, and with Abstract in mind, one can obtain a modular pro-
tocol that mimics Zyzzyva (or HQ) in favorable cases for which it was optimized, by adding
less than 24% to the code of a black-box BFT protocol (e.g. PBFT).

The idea of aborting if “something goes wrong” is almost as old as distributed comput-
ing. It underlies for instance the seminal two-phase commit protocol (2PC) [57]: abort can
be decided if there is a failure or some database server votes negatively. Interestingly, our
decomposition of a BFT protocol into several BFT sub-protocols with various progress se-
mantics can be be viewed as way to obtain an effective non-blocking commit protocol [18], by
combining several 2PC protocols (each optimized for a specific operating condition) together
with a backbone 3PC protocol [88].

Two forms of abortable agreement were proposed in [32] and [22]. In the first case,
a process can abort if a majority of processes cannot be reached whereas, in the second, a
process can abort if there contention. The latter idea was generalized for arbitrary shared
objects in [9] and then [2]. In particular, in [2], a process can abort and then query the
object to seek whether the last query of the process was performed. This query can however
abort if there is contention. Our abstraction is different in two senses. First, the condition
under which Abstract can abort is a generic parameter: it can express for instance contention,
synchrony or failures. Second, in case of abort, Abstract returns (without any further query)
an information needed for recovery. This, in turn, can be used to invoke another, possibly
stronger, Abstract. This ability is key to the composability of Abstract.

Several abstractions were proposed to deconstruct BFT protocols. In [45], a BFT protocol
is viewed as a series of weak-interactive consistency instances. In [25], a BFT protocol is built
using the abstraction of multi-valued Byzantine agreement with external validity. These ab-
stractions are orthogonal to our and can, we believe, implement instances of Abstract. Neither
of those tackle however the problem of composing several BFT protocols. The optimistically
terminating consensus (OTC) framework proposed in [98] captures the notion of a round of
communication and allows the deconstruction of single-instance agreement protocols. OTC
seeks latency-optimal BFT protocols whereas Abstract is oblivious to any particular complex-
ity metric. We indeed illustrated the benefits of Abstract with latency as well as throughput
efficient BFT protocols.

Finally, let us note that there have been research works aiming at preserving what we call
“common circumstances”, even in the presence of attacks. Notably, some protocols [36, 34]
have been devised by means of distributed systems models and architectures that limit, by
construction, the attack model, that is to say, the potential of hackers to create deviations
from “common circumstances”. These works are complementary to the work presented in
this chapter. One might devise Abstract instances following the principles described in these
papers.
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3.7 Conclusion
Progress in computer science comes with the design and implementation of abstractions

that encapsulate specific aspects of a computation problem within a well-defined interface.
Seminal examples include data structures like records and arrays for sequential program-
ming, as well as synchronization primitives like semaphores and monitors for concurrent
programming. Distributed programming abstractions do exist, such as sockets or signatures,
but these are low-level and the difficulty of building and maintaining distributed systems calls
for higher level abstractions. State machine replication might be viewed as one such high-
level abstractions: it seeks to entirely hide distribution by providing the single, immortal,
sever illusion. Yet, in some sense, once state machine replication is achieved, the job is over.
What is lacking is a suite of abstractions to simplify the implementation and maintenance of
state machine replication itself. We presented one such abstractions in this chapter [58, 95],
with the aim to simplify the construction of the most resilient form of state machine replica-
tion protocols, namely BFT (Byzantine Fault-Tolerant) protocols.

The idea underlying our abstraction echoes Lampson’s recommendation to build practi-
cally effective protocols by handling common and worst cases separately [71]. Clearly, what
might be considered the common case for a given application and environment might not be
considered common for another one. Even for the same application, what might be consid-
ered common might well change over time: the load that is considered normal for Amazon
servers right before thanksgiving is not the same as the one that is considered normal dur-
ing the early morning of January 5th. Our abstraction seeks to simplify the implementation
of separate BFT sub-protocols, each intended to be executed under a specific common case.
The key to simplicity is the observation that, precisely because many of those normal cases
are favorable ones (e.g., no timeout, no failures or even sometimes no contention), there is
no reason a BFT sub-protocol that needs to be executed only during those cases need to be
as hard to implement, test and prove than a full-fledged BFT protocol, supposed to be per-
formed under all conditions. The challenge to make that simplification possible was however
to precisely define what needs to be ensured under a normal case and what exactly happens
when the operating conditions are not those expected anymore: this is exactly what Abstract
encapsulates. The genericity of Abstract captures the diversity of the very notion of a “nor-
mal case”. Not surprisingly, certain Abstract instances are simple to implement and prove
as they only need to guarantee progress under favorable circumstances. Yet, although simple
to implement, some of those instances, such as our Chain sub-protocol, can drastically boost
the peak throughput of a BFT protocol.

Needless to say, Abstract does not trivialize the problem of building effective BFT pro-
tocols. It does however give back to Caesar what belongs to Caesar. BFT experts can focus
on building libraries of Abstract instances, whereas system experts can focus on analyzing
which BFT protocol is best suited to a specific environment. Several directions can be in-
teresting to explore. It would be interesting to devise efficient Abstract implementations
for other interesting definitions of the progress property, e.g., implementations that perform
well despite failures. It would be also interesting to explore possibilities for signature-free
switching, to obtain practical BFT protocols that do not rely on signatures [37]. Moreover,
we believe that an interesting research challenge is to define and evaluate effective heuristics
for dynamic switching among Abstract instances. While we described Aliph and showed
that, albeit simple, it outperforms existing BFT protocols, Aliph is simply the starting point
for Abstract. The idea of dynamic switching depending on the system conditions seems very
promising.
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Chapter 4

Conclusion

This chapter concludes the thesis. We start by a brief summary of the contributions pre-
sented in this document. We then give some research directions for future work.

4.1 Summary of Contributions

This thesis makes two contributions to state machine replication, a software technique
aiming at building fault-tolerant systems using commodity hardware. The operating principle
of state machine replication is very simple: the service to be made fault-tolerant is replicated
on different machines. A state machine replication protocol ensures that all replicas receive
the same set of requests in the same order.

The first contribution is LCR [60, 61, 73], a uniform total order broadcast protocol that
can be used to implement a state machine replication protocol in an environment where nodes
only fail by crashing, and where crashes can be accurately detected (using a failure detector).
When executed on a set of homogeneous machines interconnected by a LAN, LCR ensures
optimal throughput during failure-free periods. To the best of our knowledge, LCR is the first
total order broadcast protocol to achieve optimal throughput in this environment. Contrarily
to most existing protocols, LCR does not rely on a native multicast primitive, but rather uses
point-to-point communication channels. More precisely, LCR organizes processes in a ring
topology: each node has only one successor in the ring to which it forwards messages. We
show both theoretically and experimentally that this ring topology yields optimal throughput.
Moreover, we benchmark an implementation of LCR and we show that it outperforms the
two most widely used total order broadcast protocols.

The second contribution presented in this thesis is Abstract [58, 95], a novel abstraction
that simplifies the design, implementation, testing and verification of state machine replica-
tion protocols. In particular, Abstract focuses on state machine replication protocols tolerat-
ing arbitrary (also called Byzantine) faults. In a sense, Abstract is an abortable state machine
that enables to build a state machine replication protocol as the composition of as many
(gracefully degrading) phases as desired, each with a “standard” interface. These phases are
Abstract instances and each of them can be designed, implemented, tested and proved in-
dependently. This allows for an unpreceeded flexibility in state machine replication protocol
design that we illustrated with the development of two protocols. The first one mimics a state
of the art protocol, but requires writing much less code (only 24% of the legacy code size).
This is due to the fact that Abstract’s modularity allows easily reusing and factorizing code.
The second protocol we developed using Abstract is called Aliph. It illustrates the ability
to develop very efficient protocols using this modular approach. In particular, we evaluated
Aliph using microbenchmarks and showed that it outperforms state of the art protocols both
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in terms of latency (by up to 30%) and throughput (by up to 360%).

4.2 Future Work
State machine replication has been a very active research topic for more than 20 years.

Yet, we believe that many works remain to be done. In the remainder of this section we
discuss three of them.

Wide-area Byzantine-resilient state machine replication. Services are increasingly mi-
grating to data centers geographically spread across the Internet. This is the so-called “cloud”
architecture. The benefits of cloud architectures are numerous. Let us mention, for instance,
the ability for users to access services from any host or the possibility to automate both service
upgrades and data backups.

Unfortunately, a whole data center can be rendered unavailable by a catastrophic event, a
loss of power, or simply a loss of connectivity. For reliability reasons, it is thus not a good
idea to execute a service on a single data center. Moreover, it is often desired to decrease the
latency perceived by clients. This can be achieved by locating a service on several data centers
geographically spread around the world in order to decrease the probability to encounter
network congestion between clients and the service.

It is thus becoming necessary to devise state machine replication protocols for services
hosted on multiple clouds. We believe that it is important that these protocols tolerate Byzan-
tine faults as it does not seem reasonable to assume only crash failures in large-scale envi-
ronments, where nodes are hosted on different clouds and administered by different entities.
BFT protocols studied in Chapter 3 are not good candidates for such environments. Indeed,
they do either not tolerate contention [38, 1], or they rely on a leader to allocate sequence
numbers [67, 27]. Requests generated by clients close to the leader might be favored by such
protocols. Moreover, leader-based protocols have unbalanced communication patterns that
limit the utilization of the available bandwidth. Finally, these protocols rely on IP multicast,
which is known to perform poorly in large-scale settings.

To the best of our knowledge, only two BFT protocols have been specifically devised for
wide-area networks. The first one, called Steward [6], is a hierarchical BFT protocol that
combines a BFT protocol running on each site (or cloud) and a Paxos-like protocol between
the different sites. The main drawback of this protocol is that it requires a minimum of 3f+1
machines running in each cloud. Another weakness is that the Paxos-like protocol running
between the different sites is not optimized for wide-area networks. The second protocol
is proposed by Amir et al. [5]. The paper describes a mechanism that allows establishing
a reliable virtual communication link between sets of machines located in different sites.
The goal of this mechanism is to have all machines of a given site appear as being a single
machine. A traditional replication protocol can then be used between the different sites. This
replication protocol needs to deal with a reduced number of nodes (only one virtual node per
site). Like Steward, the protocol used for inter-site replication is not optimized for wide-area
networks.

We would like to propose BFT protocols optimized for wide-area communications. Such
protocols must provide both high throughput under high client load and low latency under
low client load. They must also be able to face changing network conditions and varying
client load. Finally, they must be able to leverage asymmetric network link performance. A
path we would like to explore is the use of multiple leaders to assign distinct sets of sequence
numbers. This idea has been initially proposed by Mao et al. [78] to tolerate benign failures.
We believe that it could be adapted to tolerate Byzantine failures. Another path we envision is
the combination of multiple communication patterns (e.g. tree, multicast, pipe-line) in order
to deal with the heterogeneity of environments comprising multiple clouds. For instance, one
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might combine the pipelining pattern used in the Chain protocol presented in Chapter 3 with
the multicast-based pattern used in Zyzzyva [67].

Parallel state machine replication. Hardware technology trends indicate that processor
clock rates are stalling and that future performance improvements are likely to come from in-
creased parallelism rather than raw speed improvements. As hardware parallelism increases,
services are expected to become more and more parallel in order to provide better perfor-
mance.

Unfortunately, state machine replication systems have traditionally required deterministic
execution achieved through sequential state machine execution. This means that current tech-
niques for state machine replication are only applicable to single-threaded applications and
cannot safely leverage hardware parallelism. This is a real and major performance penalty
considering that it is now admitted that the performance bottleneck in replicated state ma-
chines is the execution of the state machine rather than the coordination of replicas.

There have been proposals to avoid the limitations of sequential state machine execu-
tion. For instance, it has been suggested to weaken reliability guarantees in order to allow
replica states to temporarily diverge [79, 90]. This approach can nevertheless not be applied
to services, such as databases, that require strong consistency. Another approach is to enforce
determinism at the operating system level. Recently, an operating system called Determina-
tor [10], has been proposed. Determinator enforces determinism on both multi-threaded and
multi-process computations. It can run parallel applications deterministically both on multi-
core PCs and across nodes in a cluster. This approach works well for applications exhibiting
coarse-grained parallelism, but it induces a high overhead for fine-grained parallel applica-
tions. Finally, a third approach has been described in [68], where authors propose to use
application-specific information to identify and concurrently execute independent requests.
They design an architecture in three stages responsible for agreement on request order, re-
quest parallelization, and request execution, respectively. The parallelization stage uses rules
supplied by the application designer to identify the set of requests that can be executed in
parallel without compromising safety. This approach has a major drawback: it requires rules
to be correct, otherwise, safety is not ensured. Writing correct rules might not be trivial.
Consider for instance a database that implements row-level locking. In order to achieve the
highest level of parallelism, rules should be based on the set of rows that each database query
will update, which can be extremely hard to know at design time.

We believe that state machine determinism is not necessarily exclusive with parallel ex-
ecution. We plan to study the possibility to design an architecture that let replicas optimisti-
cally execute requests and then verify whether or not they have produced equivalent results.
This is in contrast with current state machine replication architectures that, even when spec-
ulative [67], first agree on the order in which requests will be executed and then rely on
deterministic execution to guarantee that all replicas reach the same state. Embracing the
mantra of “trust but verify” should allow leveraging benign parallelism, but it will introduce
additional cost and complexity for higher degrees of parallelism. Specifically, two replicas
that execute requests in parallel may produce different outputs based on differences in local
thread scheduling. When replicas diverge, it will be necessary to invoke repair mechanisms
in order to maintain consistency. In order for repair to be efficient, we will need to imple-
ment various mechanisms such as incremental state rollback, fast checkpoint generation and
comparison, and fast incremental state transfer.

Single-node Byzantine-resilient state machine replication. The number of standard pro-
cessing cores per chip doubles with every semi-conductor process generation. Unfortunately,
the increase in computing power has not been followed by an increase in software and hard-
ware reliability. Zhenmin Li et al. have recently presented a study of around 29,000 bugs in
Mozilla and Apache Web Server [74]. They observe that around 10% of Apache bugs lead to
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a crash and that bugs related to the security of the application are increasingly present over
the years. On the hardware side, core failures such as manufacturing defects and soft errors
are becoming a concern. This comes from the fact that the number of transistors put into a
processor drastically increases, but not the reliability of each individual transistor.

We have seen in this thesis that one way to improve the reliability of software systems
is to use replication. We have studied various protocols that allow running several (possibly
different) copies of a state machine on different machines. We believe that an interesting
research topic is to study the possibility to implement state machine replication on a single-
machine. The idea is to collocate the different replicas of the state machine on the same
physical machine in order to take advantage of the increasing power of modern computers
to improve the resilience of software systems. Note that the idea of considering a single
computer as a distributed system is a current research trend. For instance, Baumann et al.
argue that modern computers resemble a distributed system and propose Barrelfish [17], an
operating system designed as a distributed system. Note also that implementing state machine
replication on a single machine has been studied by Chun et al. in a position paper [33]. This
paper does nevertheless not propose a solution. It only describes challenges that need to be
solved and a few potential designs.

Implementing state machine replication on a single machine will open new perspectives
for the design of replication protocols and underlying communication mechanisms. Indeed,
if current BFT replication protocols can easily run on a multi-core machine, they will most
probably not achieve the best possible performance. The reasons are twofold. First, these
protocols have been designed for asynchronous systems. On a multicore machine, it is maybe
possible to make some synchrony assumption on processing time and communications. More
precisely, if we assume that memory and I/O buses are fault-free and that replicas are equally
fast, it is possible to assume a synchronous system model. Second, current BFT protocols
rely on existing communication mechanisms, such as Inet sockets, that have been designed
for communications between remote machines. These mechanisms can be used by processes
running on the same machine. Nevertheless, their performance will not be as good as what
could be achieved by customized mechanisms. We believe that it will thus be necessary to
design a new communication mechanism implementing a very efficient and robust multicast
primitive for single-machine communications. This mechanism cannot be implemented using
shared memory techniques (as done in Barrelfish [17]) since it needs to be robust, i.e. to
ensure that messages cannot be forged by erroneous replicas.
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Appendix A

Abstract: specification

Before diving into the precise specification of Abstract, we first introduce some notations
and definitions. We denote the output function of the (replicated) state machine by rep(h),
where h is a sequence of requests called commit history: the initial state is an implicit argu-
ment of rep(). Basically, rep(h) represents replies that state machine outputs to clients. We
assume that every Abstract instance has its own unique id i (a natural number) that uniquely
determines the implementation and the set of underlying servers.

Abstract i exports one operation: Invokei(m, [h]), where m is a request, and h a (op-
tional) sequence of requests called init history; we say the client invokes request m (with init
history h). By convention, when i = 1, the invocation never contains an init history. Abstract
i returns two indications to the client:

1. Commiti(m, rep(h)), where commit history h contains m;

2. Aborti(m,h, next(i)), where the sequence of requests h is called an abort history and
next is a function that returns an integer.

Respectively, we say that a client commits/aborts the request m. In the case of an abort,
we also say that instance Abstract i switches to instance next(i). We also define a valid
init history (VIH) as follows: init history h is a VIH if there is an Abstract j that returned
Abortj(∗, h, i) (i.e., such that next(j) = i). Similarly, we define a valid init request (VIR)
as follows: (1) if i = 1, any invoked request is a VIR; (2) if i 6= 1,m is a VIR if and only ifm
is invoked with a VIH. We say that an instance i > 1 is initialized upon it commits or aborts
some VIR. Finally, we say that a request m is valid if (1) m is a VIR, or (2) m is invoked
after i gets initialized.

We are now ready to specify the properties of Abstract (parametrized by a predicate P ).
In the following, “prefix” refers to a non-strict prefix.

1. (Validity) In every commit/abort history, no request appears twice and every request is
a valid request, or an element of a valid init history.

2. (Termination) If a correct client c invokes a valid request m, then c eventually commits
or aborts m.

3. (Progress) If a correct client c invokes a valid request m and some predicate P holds,
then c commits m.

4. (Init Order) The longest common prefix of all valid init histories is a prefix of any
commit or abort history.

75



5. (Commit Order) Let h and h′ be any two commit histories: either h is a prefix of h′ or
vice versa.

6. (Abort Order) Every commit history is a prefix of every abort history.

7. (Switching Monotonicity) For every Abstract instance i, i < next(i).

It is important to see that Abstract is a strict generalization of BFT. Namely, BFT is pre-
cisely an Abstract (with id i = 1) that never aborts. In this case, Abort Order and Switching
Monotonicity become irrelevant, and Init Order trivially holds.

We build BFT protocols by composing Abstract instances. At the heart of the composi-
tion lies a simple scheme (we refer to as Abstract composition algorithm (ACA)), given in
Figure A.1, where: a) correct clients use an abort history of an aborting Abstract instance
(e.g., i) as the init history for the next instance (next(i)), and b) a given client invokes next(i)
with an init history included only once (with its first invocation of next(i)): subsequently, it
invokes next(i) without any init history.

INVOKEi (m,[h])

active:=i

active = i

Invokeactive
(m,[h])

ABORTi (m,hA,next) COMMITi (m,rep(hC))

active : = next;
h := hA;

Abortactive
(m,hA,next)

Commitactive
(m,rep(hC))

no

yes

initialization

Figure A.1: Abstract composition algorithm (ACA). Invocations/indications of the com-
posed Abstract are in uppercase.

The key invariant in the Abstract framework is idempotence: a composition of any two
Abstract instances is, itself, an Abstract instance. More precisely:

Theorem 1 Given any two Abstract instances i and i′ and integer i′′, such that i′ = next(i)
and next(i′) = i′′, ACA implements a single Abstract instance with the instance id i, such
that next(i) = i′′.

By induction, the theorem extends to a composition of any number of Abstract instances,
which yields again an Abstract instance.
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Appendix B

Abstract: detailed protocol
descriptions

In this Appendix, we give the details of ZLight, Quorum, Chain and their shared panick-
ing mechanism (Sec. B.2 - B.5). For ease of presentation, we first give details about handling
invocations without init histories and then (Sec. B.6) we show how we handle init histories
and switch between Abstract instances in AZyzzyva and Aliph. Finally, we give the details
of our checkpointing subprotocol in Section B.6.1. Correctness proofs can be found in Ap-
pendix C.

B.1 Notations
A message m sent by process p to the process q and authenticated with a MAC is denoted

by 〈m〉µp,q . A process p can use vectors of MACs (called authenticators [27]) to simultane-
ously authenticate the message m for multiple recipients belonging to the set S; we denote
such a message, which contains 〈m〉µp,q

, for every q ∈ S, by 〈m〉αp,S
. In addition, we denote

the digest of the messagem byD(m), whereas 〈m〉σp
denotes a message that containsD(m)

signed by the private key of process p and the message m. All processes are assumed to own
the public key of every other process. Finally, we denote the set of all (3f + 1) replicas by Σ.

i - current Abstract id
c/rj - client (resp., replica) ID
tc - local timestamp at client c

tj [c] - the highest tc seen by replica rj

o - operation invoked by the client
LHj - a local history at replica rj

replyj - rep(LHj) (application reply in function of LHj)
snj - sequence number at replica rj (not used in Quorum)

Figure B.1: Message fields and local variables.

Notation for message fields and client/replica local variables used in ZLight, Quorum and
Chain is shown in Figure B.1. To help distinguish clients’ requests for the same operation o,
we assume that client c calls Invokei(req), where req = 〈o, tc, c〉 and where tc is a unique,
monotonically increasing client’s timestamp. A replica rj executes req by appending it to
LHj .
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B.2. ZLIGHT DETAILS

B.2 ZLight Details
Step Z1. On Invokei(req), client c sends the message m′ = 〈REQ, req, i〉αc,Σ to the pri-
mary (say r1) and triggers timer T .

Step Z2. The primary r1 on receiving m′ = 〈REQ, req, i〉αc,Σ , if:

• req.tc is higher than t1[c],

then it:

• updates t1[c] to req.tc,

• increments sn1, and

• sends 〈〈ORDER, req, i, sn〉µr1,rj
,MACj〉 to every replica rj , where MACj is the

MAC entry for rj in the client’s authenticator for m′.

Step Z3. Replica rj on receiving (from primary r1)
〈〈ORDER, req, i, sn′〉µr1,rj

,MACj〉, if:

• MACj authenticates req and i,

• sn′ = snj + 1, and

• tj [c] < req.tc,

then it:

• updates snj to sn′ and tj [req.c] to req.tc,

• executes req, and

• sends 〈RESP, replyj , D(LHj), i, req.tc, rj〉µrj,c
to c1.

Moreover, if MACj verification fails, rj stops executing Step Z3 in instance i.

Step Z4. If client c receives 3f + 1 〈RESP, reply, LHDigest, i, req.tc, ∗〉µ∗,c messages
from different replicas before expiration of T , with identical digests of replicas’ local his-
tory (LHDigest) and identical replies (or digests thereof), then the client commits req with
reply. Otherwise, the client triggers the panicking mechanism explained in Section B.5 (Step
P1).

B.3 Quorum Details
Step Q1. On Invokei(req), client c sends message 〈REQ, req, i〉µc,Σ to all replicas and trig-
gers timer T .

Step Q2. Replica rj on receiving 〈REQ, req, i〉µc,Σ from client c, if:

• req.tc is higher than tj [c]

then it:

• updates tj [c] to req.tc,

• executes req, and

• sends 〈RESP, replyj , D(LHj), i, req.tc, rj〉µrj,c to c.

Step Q3. Identical to Step Z4 of ZLight.
1As an optimization (which also applies to Step Q2 of Quorum), all but one designated replica can send reply

digests D(replyj) instead of replyj .
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B.4. CHAIN DETAILS

B.4 Chain Details

In the following, we assume that every CHAIN message sent by process p contains its
respective chain authenticator (CA), as well as MACs p received from its predecessor←−p des-
tined to processes in p’s successor set (see Sec. 3.5.1.2).

Step C1. On Invokei(req), client c sends the message m′ = 〈CHAIN, req, i〉 to the head
(say r1) and triggers the timer T .

Step C2. The head r1, on receiving m = 〈CHAIN, req, i〉 from client c, if:

• req.tc is higher than t1[c], and

• the head can verify client’s MAC (otherwise the head discards m),

then the head:

• updates t1[c] to req.tc,

• increments sn1, and

• sends 〈CHAIN, req, i, sn1,⊥〉 to −→r1 = r2.

Step C3. Replica rj on receiving m = 〈CHAIN, req, i, sn, REPLY 〉 from←−rj , if

• it can verify MACs from all processes from its predecessor set against the content of
m,

• sn = snj + 1, and

• req.tc is higher than tj [c],

then it:

• updates snj to sn and tj [c] to req.tc,

• (ii) executes req, and

• (iii) sends 〈CHAIN, req, i, sn,REPLY,LHDigest〉 to−→rj , whereREPLY = LHDigest =
⊥ in case of the first 2f replicas, REPLY = D(replyj) and LHDigest = D(LHj)
in case i ∈ {2f +1 . . . 3f}, or REPLY = replyj and LHDigest = D(LHj) in case
rj is tail.

In case MAC verification mentioned above fails, replica stops executing Step C3 in in-
stance i.

Step C4. If client c receives 〈CHAIN, req, i, ∗, reply, LHDigest〉 from the tail before expi-
ration of T , and with MACs from last f + 1 replicas that authenticate req, i, LHDigest and
D(reply) (or reply itself), then c commits req with reply. Otherwise, the client triggers the
panicking mechanism explained in the following section (Step P1, Sec. B.5).
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B.5 Panicking Mechanism

This is the mechanism through which we initiate the switching from ZLight (resp., Quo-
rum, Chain) in Step Z4 (resp., Q3, C4).

Step P1. If the client does not commit request req by the expiration of timer T (triggered in
Steps Z1/Q1/C1), c panics, i.e., it sends a 〈PANIC, req.tc〉µc,rj

message to every replica rj .
Since messages may be lost, client periodically PANIC messages , until it aborts the request.

Step P2. Replica rj , on receiving a 〈PANIC, req.tc〉µc,rj
message, stops executing new re-

quests (i.e., stops executing Step Z3/Q2/C3) and sends 〈ABORT, req.tc, LHj , next(i)〉σrj

to c.

Step P3. When client c receives 2f + 1 〈ABORT, req.tc, ∗, next(i)〉 messages with correct
signatures from different replicas and the same value for next(i), the client collects these
messages into the set ProofAHi , and extracts the abort history AHi from ProofAHi as
follows:

• First, c generates history h such that AH[j] equals the value that appears at position
j ≥ 1 of f + 1 different histories LHj that appear in ProofAHi ;

• If such a value does not exist for position x then h does not contain a value at position
x or higher.

• Finally, AHi is the longest prefix of h in which no request appears twice.

B.6 Handling Init Histories and Switching

To switch from ZLight, Quorum or Chain instance i, client invokes instance i′ = next(i)
by accompanying req with init history IHi′ = AHi and ProofAHi . Then a replica running
instance i′, executing its first request in i′ (e.g., in Step C3 of Chain), simply makes the library
call to verify IH ′i against ProofAHi

following the algorithm given in Sec. B.5 and verifies
that ABORT messages in ProofAHi

indeed declare i′ as next(i). In the case of switching to
Backup, this check is simply a part of the functionality implemented on top of the underlying
BFT.

To switch from Backup2, Backup replicas must provide the client with f +1 different sig-
natures of the identical abort history and the next Abstract instance id i′. This is a reasonable
requirement on the BFT that underlies Backup, since any BFT protocol must anyway provide
an identical reply from at least f + 1 replica; in the case of Backup abort history, we just
require this particular reply to be signed (we trivially implemented this in PBFT). Then, the
client includes these signatures with req in its invocations of an Abstract i′ (e.g., ZLight) and
replicas running i′, before executing the request (e.g., in Step Z3 of ZLight), simply verify
the signatures against the submitted init history to find f + 1 matching ones.

In all cases of switching, a replica running instance i′ executes all the requests contained
in the first verified init history IH ′i before executing the invoked request itself. Replicas
simply ignore all subsequent init histories. Below we summarize the additional init history
related actions performed by processes in steps of ZLight, Quorum and Chain. In the follow-
ing, we assume that the verification of init histories is performed as described above.

2In AZyzzyva, Backup switches to ZLight, whereas in Aliph it switches to Quorum.
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Step Z1/Q1/C1. On Invokei′(req, IH), the message(s) sent by the client contain also IH
and the set of signatures ProofIH returned by the preceding Abstract i, where i′ = next(i).

Step Z2/C2. If its local history LH1 is empty, the primary/head r1 executes the step only if
IH can be verified against ProofIH .

Step Z3/Q2/C3. If its local history LHj is empty, the replica rj executes the step only if it
receives IH that can be verified against ProofIH . If so, then (before executing req) rj exe-
cutes all the requests contained in IH (i.e., rj sets LHj to IH); then rj executes req unless
req was already in IH .

Step P1. On sending PANIC messages for a request that was invoked with an init history,
client also includes IH and the set of signatures ProofIH returned by the preceding Ab-
stract i within a PANIC message.

Step P2. If its local history LHj is empty, replica rj , executes the step only if IH can be
verified against ProofIH . Then, before executing the step as described in Section B.5, rj
first sets LHj to IH .

B.6.1 Lightweight Checkpointing Subprotocol
In ZLight, Quorum and Chain we use a lightweight checkpoint subprotocol (LCS) to trun-

cate histories every CHK requests (in our evaluations, CHK = 128), similarly to check-
point protocols used in [27, 67]. Here, we explain our simple LCS and its impact on our
implementations as presented earlier in this appendix.

LCS consists in the following:

1. every replica rj increments the checkpoint counter cc and sends it along with the digest
of its local state to every other replica (using simple point-to-point MACs), when its
(non-checkpointed suffix of) local history reaches CHK requests. Then, rj triggers a
checkpoint timer.

2. if the timer expires and there is no checkpoint, the replica stops executing all requests.

3. If replica rj receives the digest of the same state st with the same checkpoint counter
number cc greater than lastcc (initially lastcc = 0) from all replicas, rj : (a) truncates
its local history and checkpoints its state to st and (b) stores cc to variable lastcc. Such
a checkpointed state (referred to as stcc) becomes a prefix of replicas’ local histories
to which new requests are appended and is treated as such in all operations on local
histories in our algorithms. Moreover, every abort or commit history of length at most
cc ∗ CHK is considered to be a prefix of stcc.

LCS has no impact on ZLight, Quorum and Chain as described earlier in this appendix,
with a single exception, related to client extraction of abort histories from the received ABORT
messages (see Step P3, Sec. B.5). Namely, if the client receives a history from some replica
rj consisting of a checkpointed state followed by CHK requests, the client will first collapse
all such histories into the single checkpointed state (i.e., the client will perform the check-
point on behalf of the replica). Only in case the client cannot retrieve t + 1 confirmations
of (some) checkpointed state when executing Step P3 in this way, the client will repeat the
procedure described in this step with replica histories as received from replicas, i.e., precisely
as described in Step P3, Section B.5.
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Appendix C

Abstract: correctness proofs

In this Section, we give the correctness proofs of ZLight, Quorum, and Chain. Moreover,
we omit the correctness proof of Backup which is straightforward due to the properties of
the underlying BFT. Finally, the proofs of liveness of our compositions trivially rely on the
assumption of an exponentially increasing Backup configuration parameter k (Sec. 3.4.3).
Since ZLight and Quorum share many similarities, we give their correctness proof together.
This is followed by the proof of Chain.

C.1 ZLight and Quorum

In this Section, we prove that ZLight and Quorum implements Abstract. We first prove
the common properties of the two implementations and then focus on the only different prop-
erty (Progress).

Well-formed commit indications. It is easy to see that the reply returned by a commit in-
dication always equals rep(h)), where (commit history) h is a uniquely defined sequence of
requests. Indeed, by Step Z4/Q3, in order to commit a request a client needs to receive iden-
tical digests of some history h′ and identical reply digests from all 3f + 1 replicas including
at least 2f + 1 correct ones. By Step Z3 of ZLight (reps., Q2 of Quorum), a digest of the
reply sent by a correct replica is D(rep(h′). Hence, h′ is exactly a commit history h and is
uniquely defined due to our assumption of collision-free digests.

Moreover, since a correct replica executes an invoked request before sending a RESP
message in Step Z3 (resp., Q2), it is straightforward to see that if req is committed with a
commit history hreq , then req is in hreq.

Validity. For any request req to appear in a commit or abort history, at least f +1 replicas
must have sent a history (or a digest of a history) containing req to the client (see Step Z4/Q3
for commit histories, and Step P3 for abort histories). Hence, at least one correct replica
appended req to its local history. By Step Z3/Q2, the correct replica rj appends req to its
local history only if rj receives a REQ message with a valid MAC from a client. This is, in
turn, present only if some client invoked req, or if req is contained in some verified (valid)
init history.

Moreover, by Step Z3/Q2, no replica executes the same request twice (since every replica
maintains tj [c]). Hence, no request appears twice in any local history of a correct process,
and consequently, no request appears twice in any commit history. In the case of abort histo-
ries, no request appears twice by construction (see Step P3 Sec. B.5).
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C.1. ZLIGHT AND QUORUM

Termination. By assumption of a quorum of 2f + 1 correct replicas and fair-loss links:
(1) correct replicas eventually receive the PANIC message sent by correct client c (in Step
P1) and (2) c eventually receives 2f + 1 abort messages from correct replicas (sent in Step
P2). Hence, if correct client c panics, it eventually aborts invoked request req, in case c does
not commit req beforehand.

To prove Commit and Abort Ordering we first prove the following Lemma.

Lemma 1 Let rj be a correct replica and LHreq
j the state of LHj upon rj executes req.

Then, LHreq
j remains a prefix of LHj forever.

A correct replica rj modifies its local history LHj only in Step Z3/Q2 by sequentially
appending requests to LHj . Hence, LHreq

j remains a prefix of LHj forever.

Commit Order. Assume, by contradiction, that there are two committed requests req (by
benign client c) and req′ 6= req (by benign client c′) with different commit histories hreq
and hreq′ such that neither is the prefix of the other. Since a benign client commits a request
only if it receives in Step Z4/Q3 identical digests of replicas’ local histories from all 3f + 1
replicas, there must be a correct replica rj that sent D(hreq) to c and D(hreq′) to c′ such that
h(req) is not a prefix of hreq′ nor vice versa. A contradiction with Lemma 1.

Abort Order. First, we show that for every committed request req with the commit history
hreq and any ABORT message m sent by a correct replica rj containing local history LHm

j ,
hreq is a prefix of LHm

j . Assume, by contradiction, that there are request req′, correct replica
rj′ and ABORT message m′ such that the above does not hold. Then, since a benign client
needs to receive identical history digests from all replicas to commit a request (Step Z4/Q3),
and since rj′ stops executing new requests before sending any ABORT message (Step P2),
rj′ executed req before sending m′. However, by Lemma 1, hreq′ is a prefix of LHm′

j′ — a
contradiction.

By Step P3, a client that aborts a request waits for 2f + 1 ABORT messages including at
least f + 1 from correct replicas. Since any commit history hreq is a prefix of every history
sent in an ABORT message by any correct replica (as shown above), at least f + 1 received
histories will contain hreq as a prefix, for any committed request req. Hence, by construc-
tion of abort histories (Step P3 Sec. B.5) every commit history hreq is a prefix of every abort
history.

Init Order. By the clarifications of Step Z3/Q2 and Step P2 given in Section B.6, every
correct replica must initialize its local history (with some valid init history) before sending
any RESP or ABORT message. Since any common prefix CP of all valid init histories is a
prefix of any particular init history I , CP is a prefix of every local history sent by a correct
replica in an RESP or ABORT message. Init Order for commit histories immediately follows.
In the case of abort histories, notice that at least out of 2f + 1 ABORT messages received
by a client on aborting a request in Step P3, at least f + 1 are sent by correct processes and
contain local histories that have CP as a prefix. Hence, by Step P3, CP is a prefix of any
abort history.

ZLight Progress. Recall that ZLight guarantees to commit clients’ requests if: there are
no replica/link failures and Byzantine client failures. We assume that the message processing
at processes takes negligible time and that clients set the timer T triggered in Step Z1 to 3∆.
Then, to prove Progress, we prove a stronger property that no client executes Step P1 and
panics (consequently no client ever aborts and Progress follows from Termination).

Assume by contradiction that there is a client c that panics and denote the first such time
by tPANIC . Since no client is Byzantine, c must be benign and c invoked request req at
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t = tPANIC − 3∆. Since no client panics by tPANIC all replicas execute all requests they
receive by tPANIC . Then, it is not difficult to see, since there are no link failures, that: (i)
by t + ∆ the primary receives req and take Step Z2 and (ii) by time t + 2∆ < tPANIC the
replicas take Step Z3 for req. Since the primary is correct all replicas execute all requests
received before tPANIC in the same order (established by the sequence numbers assigned by
the primary). Hence, by t + 3∆ = tPANIC , c receives 3f + 1 identical replies (Step Z4),
commits req and never panics. A contradiction.

Quorum Progress. Recall that Quorum guarantees to commit clients’ requests only if:

• there are no replica/link failures,

• no client is Byzantine, and

• there is no contention.

We assume that the message processing at processes takes negligible time and that the
timer T triggered in Step Z1 to 2∆. Like in the proof of ZLight Progress, we prove a stronger
property that no client executes Step P1 and panics.

Assume by contradiction that there is a client c that panics and denote the first such time
by tPANIC . Since no client is Byzantine, c must be benign and c invoked request req at
t = tPANIC − 2∆. Since no client panics by tPANIC all replicas execute all requests they
receive by tPANIC . Then, it is not difficult to see, since there are no link failures, that by
time t+ ∆ < tPANIC all replicas receive req and take Step Q2. Since there is no contention
and all replicas are correct, all replicas order all requests in the same way and send identical
histories to the clients. Hence, by t+2∆ = tPANIC , c receives 3f+1 identical replies (Step
Q3), commits req and never panics. A contradiction.

C.2 Chain
In this Section, we prove that Chain implements Abstract with Progress equivalent to

that of ZLight. We denote the predecessor (resp., successor) set of the replica rj , by
←−
Rj

(resp.,
−→
Rj). We also denote by Σlast the set of the last f + 1 replicas in the chain order,

i.e., Σlast = {rj ∈ Σ : i > 2t}. In addition, we say that correct replica rj executes req at
position pos if snj = pos when rj executes req.

Before proving Abstract properties, we first prove two auxiliary lemmas. Notice also
that Lemma 1, Section C.1, extends to Chain as well.

Lemma 2 If correct replica rj executes req (at position sn, at time t1), then all correct
replicas sj , 1 ≤ j < i execute req (at position sn, before t1).

By contradiction, assume the lemma does not hold and fix rj to be the first correct replica
that executes req (at position sn), such that there is a correct replica rx (x < j) that never
executes req (at position sn); we say rj is the first replica for which req skips. Since CHAIN
messages are authenticated using CAs, rj executes req at position sn only if rj receives a
CHAIN message with MACs authenticating req and sn from all replicas from

←−
Rj authenticate

req and sn, i.e., only after all correct replicas from
←−
Rj execute req at position sn. If rx ∈

←−
Rj ,

rx must have executed req at position sn — a contradiction. On the other hand, if rx /∈
←−
Rj ,

then rj is not the first replica for which req skips, since req skips for any correct replica (at
least one) from

←−
Rj — a contradiction.

Lemma 3 If benign client c commits req with history h (at time t1), then all correct replicas
in Σlast execute req (before t1) and the state of their local history upon executing req is h.
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To prove this lemma, notice that correct replica rj ∈ Σlast generates a MAC for the client
authenticating req and D(h′) for some history h′ (Step C3): (1) only after rj executes req
and (2) only if the state of LHj upon execution of req equals h′. Moreover, by Step C3, no
correct replica executes the same request twice. By Step C4, a benign client (resp., replica)
cannot commit req with h unless it receives a MAC authenticating req andD(h′) from every
correct replica in Σlast. Hence the lemma.

Well-formed commit indications. By Step C4, in order to commit a request a client needs
to receive MACs authenticating LHDigest = D(h′) for some history h′ and the reply digest
from all replicas from Σlast, including at least one correct replica. By Step C3, a digest of
the reply sent by a correct replica is D(rep(h′). Hence, h′ is exactly a commit history h and
is uniquely defined due to our assumption of collision-free digests.

Moreover, since a correct replica executes an invoked request before sending a CHAIN
message in Step C3, it is straightforward to see that if req is committed with a commit history
hreq, then req is in hreq.

Validity. For any request req to appear in a abort (resp., commit) history h, at least f + 1
replicas must have have sent h (resp., a digest of h) in Step P2 (resp., Step C3) such that
req ∈ h. Hence, at least one correct replica executed req.

Now, we show that correct replicas execute only requests invoked by clients. By contra-
diction, assume that some correct replica executed a request not invoked by any client and
let rj be the first correct replica to execute such a request req′ in Step C3 of Chain. In case
j < f+1, rj executes req′ only if rj receives a CHAIN message with a MAC from the client,
i.e., only if some client invoked req, or if req is contained in some valid init history. On the
other hand, if j > f + 1, Lemma 2 yields a contradiction with our assumption that rj is the
first correct replica to execute req′.

Moreover, by Step C3, no replica executes the same request twice (every replica main-
tains tj [c]). Hence, no request appears twice in any local history of a correct process, and
consequently, no request appears twice in any commit history. In the case of abort histories,
no request appears twice by construction (see Step P3(ii) Sec. B.5).

Termination. See the proof of Termination for ZLight/Quorum (Sec. C.1).
Moreover, to see that a committed request req must be in its commit hreq, notice that a

client needs to receive the MAC for the same local history digestD(hreq) from all f+1 from
Σlast including at least one correct replica rj . By Step C3, rj executes req and appends it to
its local history LHj before authenticating the digest of LHj ; hence, req ∈ hreq.

Commit Order. Assume, by contradiction, that there are two committed request req (by
benign client c) and req′ 6= req (by benign client c′) with different commit histories hreq
and hreq′ such that neither is the prefix of the other. By Lemma 3, there is correct replica
rj ∈ Σlast that executed req and req′ such that the state of LHj upon executing these re-
quests is hreq and hreq′ , respectively. A contradiction with Lemma 1 (recall that this lemma
extends to Chain as well).

Abort Order. Assume, by contradiction, that there is committed request reqC (by some
benign client) with commit history hreqC

and aborted request reqA (by some benign client)
with commit history hreqA

, such that hreqC
is not a prefix of hreqA

. By Lemma 3 and the
assumption of at most f faulty replicas, all correct replicas (at least one) from Σlast execute
reqC and their state upon executing reqC is hreqC

. Let rj ∈ Σlast be a correct replica with
the highest index ind among all replicas in Σlast. By Lemma 2, all correct replicas execute all
the requests in hreqC

at the same positions these requests have in hreqC
. In addition, a correct

replica executes all the requests belonging to hreqC
before sending any ABORT message in
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Step P2; indeed, before sending any ABORT message, a correct replica must stop further
execution of requests. Therefore, for every local history LHj that a correct replica sends in
an ABORT message, hreqC

is a prefix of LHj .
Finally, by Step P3, a client that aborts a request waits for 2f + 1 ABORT messages

including at least f + 1 from correct replicas. By construction of abort histories (Step P3)
every commit history, including hreqC

is a prefix of every abort history, including hreqA
, a

contradiction.

Init Order. The proof is identical to the proof of ZLight/Quorum Init Order.

Progress. Chain guarantees to commit clients’ requests under the same conditions as
ZLight, i.e., if: there are no replica/link failures and Byzantine client failures. Assuming
that the message processing at processes takes negligible time, it is sufficient that clients set
the timer T triggered in Step C1 to (3f + 2)∆. Then, Progress of Chain is very simple to
show, along the lines of ZLight Progress (Sec. C.1).
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