
HAL Id: tel-00538512
https://theses.hal.science/tel-00538512

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Sequence Summarization: Theory and
Applications

Quang-Khai Pham

To cite this version:
Quang-Khai Pham. Time Sequence Summarization: Theory and Applications. Computer Science [cs].
Université de Nantes, 2010. English. �NNT : �. �tel-00538512�

https://theses.hal.science/tel-00538512
https://hal.archives-ouvertes.fr


UNIVERSITE DE NANTES

École Doctorale

�sciences et technologies de l'information et de
mathematiques�

Année: 2010

Thèse de Doctorat de l'Université de Nantes

Spécialité : INFORMATIQUE

Présentée et soutenue publiquement par

Quang-Khai Pham

le 09 juillet 2010

à l'École polytechnique de l'Université de Nantes

Time Sequence Summarization:
Theory and Applications

Jury
President : Pr. Michel SCHOLL CNAM Paris
Rapporteurs : Pr. Bernd AMANN LIP6, Université Paris 6

Pr. Mohand-Said HACID LIRIS, Université Claude
Bernard Lyon 1

Examinateurs : Pr. Boualem BENATALLAH UNSW, Sydney, Australie
Pr. Noureddine MOUADDIB LINA, Université de Nantes
Dr. Guillaume RASCHIA LINA, Université de Nantes

Directeur de thèse : Pr. Noureddine MOUADDIB
Co-directeur de thèse : Pr. Boualem BENATALLAH
Encadrant de thèse : Dr. Guillaume RASCHIA
Laboratoire : LINA UMR 6241
2, rue de la Houssiniere. BP 92209. 44322 Nantes, Cedex 03. N◦ ED 503-095





Time Sequence Summarization:

Theory and Applications

Résumé de séquences d'événements:
théorie et applications

Quang-Khai Pham

./

favet neptunus eunti

Université de Nantes
&

University of New South Wales





To my parents and family,
who trusted and supported me,

who believed in me and made all this possible,





Acknowledgements

This PhD work was achieved in a Cotutelle program between the University of Nantes,
in the Atlas-Grim group, and the School of Computer Science and Engineering (CSE) at
the University of New South Wales (UNSW), in the Service-Oriented Computing (SOC)
group. Working in both groups has been a great pleasure, a formidable experience and a
unique privilege.

First of all, I would like to thank my supervisors Professor Noureddine Mouaddib and
Professor Boualem Benatallah who made this Cotutelle program possible. My French su-
pervisor, Professor Noureddine Mouaddib has encouraged me, trusted me and provided me
all the means to pursue my work in this Cotutelle program. But, most of all, I would like
to express all my gratitude to my Australian supervisor, Professor Boualem Benatallah, for
his guidance, encouragements and support during these �ve years. Boualem has guided me
and taught me the way high quality research should be led. I deeply thank him for all the
energy and patience it took to teach me. His scienti�c insight, his outstanding intuition
and his exceptional passion have inspired me to reach for the same excellence.

I gratefully thank my co-supervisors and co-authors Dr. Régis Saint-Paul and Dr.
Guillaume Raschia for all their invaluable time, energy and e�orts. I have really enjoyed
the work achieved together, the numerous hours spent in discussions that have bloomed
into most interesting ideas. They have allowed me to express, develop and explore my
creative skills while enforcing my scienti�c rigor.

I have special thoughts for all the PhD students, colleagues, administrative sta�, visi-
tors, friends from the Atlas-Grim and from the SOC group, reviewers and organizers from
conferences I have submitted my work to, and all the people from other horizons whom
I have worked with, whom I had great pleasure discussing my work with or who have
simply supported or encouraged me. Without any order or preference: Julie Lafoux, Dr.
Woralak Kongdenfha, Dr. Hakim Hacid, Dr. Claudia Marinica, Pierrick Bruneau, Dr.
Julien Ponge, Dr. Helen Paik, Dr. Fethi A. Rabhi, Dr. Adnene Guabtni, Renato & Elena,
Julie Bador, etc..

Last but, by all means not least, I am forever indebted to my family who has encour-
aged and supported me throughout my life. They have provided me with all the means to
access high quality education and given me the thirst and enthusiasm for higher education.
In particular, I want to thank my mother who has sacri�ced so much for me to achieve
what I have today.

Finally, I would like to thank the French National Scienti�c Research Center (CNRS),
the region Pays de la Loire, the Atlas-Grim group, the University of Nantes, the French
Ministry of Foreign a�airs, the SOC group and the CSE for their �nancial support of my
work through scholarships and travel grants. Without their help, it would have been very
di�cult to complete this Cotutelle program.





Abstract

Domains such as medicine, the WWW, business or �nance generate and store on a daily
basis massive amounts of data. This data is represented as a collection of time sequences
of events where each event is described as a set of descriptors taken from various descrip-
tive domains and associated to a time of occurrence. These archives represent valuable
sources of insight for analysts to browse, analyze and discover golden nuggets of knowledge.
For instance, biologists could discover disease risk factors by analyzing patient history, web
content producers and marketing people are interested in pro�ling client behaviors, traders
investigate �nancial data for understanding global trends or anticipating market moves.
However, these applications require mining massive sequences, e.g., �nance can generate
millions of events daily, where the variability of event descriptors could be very high,
since descriptors could be extracted from textual contents. For these reasons, discovering
golden nuggets of knowledge for such domains with conventional data mining techniques
is a challenging task. Recent studies show that data mining methods might need to op-
erate on derived forms of the data, including aggregate values, previous mining results or
summaries. Knowledge extracted in such a way is called Higher Order Knowledge. In
this thesis work, we propose to address this challenge and we de�ne the concept of �Time
sequence summarization� whose purpose is to support chronology-dependent applications
to scale on very large data sources. Time sequence summarization uses the content and
temporal information of events to generate a more concise, yet informative enough, time
sequence that can seamlessly be substituted for the original time sequence in the desired
application. We propose a user-oriented approach called TSaR built on a 3-step process:
Generalization, grouping and concept formation. TSaR uses background knowledge in
the form of taxonomies to represent event descriptors at a higher level of abstraction. A
temporal parameter controls the grouping process and only allows events close on the time-
line to be gathered. Also, we propose to make the time sequence summarization process
parameter-free. For this purpose, we reformulate the summarization problem into a novel
clustering problem. The originality of this clustering problem relies on the speci�city of
the objective function to optimize. Indeed, the objective function takes into account both
the content and the proximity of events on the timeline. We present two greedy approaches
calledG-BUSS and GRASS to build a solution to this problem. Finally, we explore and
analyze how time sequence summaries contribute to discovering Higher Order Knowledge.
We analytically characterize the higher order patterns discovered from summaries and
devise a methodology that uses the patterns discovered to uncover even more re�ned pat-
terns. We evaluate and validate our summarization algorithms and our methodology by
an extensive set of experiments on real world data extracted from Reuters's �nancial news
archives.

Keywords: Time sequence, Event sequence, Summarization, Categorical data, Data
mining, Clustering, Sequential pattern mining
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Résumé

Les domaines de la médecine, du web, du commerce ou de la �nance génèrent et stockent
de grandes masses d'information sous la forme de séquences d'événements. Ces archives
représentent des sources d'information très riches pour des analystes avides d'y découvrir
des perles de connaissance. Par exemple, les biologistes cherchent à découvrir les facteurs
de risque d'une maladie en analysant l'historique des patients, les producteurs de contenu
web et les bureaux de marketing examinent les habitudes de consommation des clients et les
opérateurs boursiers suivent les évolutions du marché pour mieux l'anticiper. Cependant,
ces applications requièrent l'exploration de séquences d'événements très volumineuses, par
exemple, la �nance génère quotidiennement des millions d'événements, où les événements
peuvent être décrits par des termes extraits de riches contenus textuels. La variabilité
des descripteurs peut alors être très grande. De ce fait, découvrir des connaissances non
triviales à l'aide d'approches classiques de fouille de données dans ces sources d'information
prolixes est un problème di�cile. Une étude récente montre que les approches classiques de
fouille de données peuvent tirer pro�t de formes condensées de ces données, telles que des
résultats d'agrégation ou encore des résumés. La connaissance ainsi extraite est quali�ée de
connaissance d'ordre supérieur. À partir de ce constat, nous présentons dans ces travaux
le concept de �résumé de séquence d'événements� dont le but est d'amener les applications
dépendantes du temps à gagner un facteur d'échelle sur de grandes masses de données.
Un résumé s'obtient en transformant une séquence d'événements où les événements sont
ordonnés chronologiquement. Chaque événement est précisément décrit par un ensemble
�ni de descripteurs symboliques. Le résumé produit est alors une séquence d'événements,
plus concise que la séquence initiale, et pouvant s'y substituer dans les applications. Nous
proposons une première méthode de construction guidée par l'utilisateur, appelée TSaR. Il
s'agit d'un processus en trois phases : i) une généralisation, ii) un regroupement et iii) une
formation de concepts. TSaR utilise des connaissances de domaine exprimées sous forme
de taxonomies pour généraliser les descripteurs d'événements. Une fenêtre temporelle est
donnée pour contrôler le processus de regroupement selon la proximité temporelle des
événements. Dans un second temps, pour rendre le processus de résumé autonome, c'est-
à-dire sans paramétrage, nous proposons une redé�nition du problème de résumé en un
nouveau problème de classi�cation. L'originalité de ce problème de classi�cation tient au
fait que la fonction objective à optimiser dépend simultanément du contenu des événements
et de leur proximité dans le temps. Nous proposons deux algorithmes gloutons appelés
G-BUSS et GRASS pour répondre à ce problème. En�n, nous explorons et analysons
l'aptitude des résumés de séquences d'événements à contribuer à l'extraction de motifs
séquentiels d'ordre supérieur. Nous analysons les caractéristiques des motifs fréquents
extraits des résumés et proposons une méthodologie qui s'appuie sur ces motifs pour en
découvrir d'autres, à granularité plus �ne. Nous évaluons et validons nos approches de
résumé et notre méthodologie par un ensemble d'expériences sur un jeu de données réelles
extraites des archives d'actualités �nancières produites par Reuters.

Mots clés: Séquence d'événements, Résumé, Temps, Données catégorielles, Classi�-
cation, Fouille de données, Motifs séquentiels
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Résumé étendu

Introduction

Des domaines tels que la médecine, le WWW, les a�aires ou la �nance génèrent et stockent
quotidiennement des quantités massives de données. En e�et, la taille des entrepôts de don-
nées actuels est de l'ordre du téraoctet et continue de croître. Les entrepôts les plus large
sont même susceptibles de passer à l'échelle du pétaoctet d'ici 2012 [Win]. Ces sources
de données colossales représentent de précieuses sources d'inspiration pour les analystes
qui veulent pouvoir y naviguer, analyser et découvrir des perles de connaissance. Plus
précisément, certaines applications sont d'un grand attrait : les prévisions économiques,
les prévisions de ventes, l'analyse du recensement, la bourse ou l'analyse de l'utilisation
d'Internet sont des applications qui s'appuient sur l'analyse de larges collections de séries de
données. Il est coutume de penser qu'il existe une structure interne telle que l'auto corréla-
tion, des tendances ou des variations saisonnières qui pourraient être prises en compte dans
le processus de découverte de connaissances. Traditionnellement, ces applications traitent
des séries de données numériques monodimensionnelles (voire multidimensionnelles). Par
exemple, dans l'étude de l'évolution des marchés �nanciers, les traders analysent les indices
et valeurs boursières à l'échelle de la minute, de l'heure ou de la journée pour identi�er de
nouvelles opportunités d'investissement ou pour consolider leurs investissements.

Cependant, l'avènement des technologies des bases de données au début des années
80 [McG81] a enrichi ce paysage d'applications et permet l'analyse de formes plus com-
plexes de séquences, c'est-à-dire des séquences de transactions. Dans ces séquences, une
transaction est caractérisée par un ensemble d'objets et par une estampille. Par conséquent,
l'unité de la donnée n'est plus contrainte d'être monodimensionnelle (voire multidimension-
nelle) et numérique, mais peut être multidimensionnelle et catégorielle. Dans ce nouveau
contexte, les biologistes peuvent découvrir les facteurs de risque de maladies en analysant
l'historique des patients [WRZ05], les producteurs de contenu web et les agences de market-
ing sont intéressés par le pro�lage des comportements des clients [SCDT00] et les traders
peuvent analyser les informations �nancières pour comprendre ou pour anticiper les ten-
dances des mouvements de marché [ZZ04].

Un exemple de cette évolution est le paradigme de l'analyse du panier de la ménagère
proposé par Agrawal et al. dans [AS95]. Cette nouvelle forme d'analyse, appelée Ex-
traction de Motifs Séquentiels (EMS), consiste à découvrir les séries de collections d'objets
qui sont fréquemment achetés ensemble par les clients. Par conséquent, extraction de
motifs séquentiels repose sur l'analyse des séquences de transactions: Chaque client est
associé à une séquence de transactions ordonnées chronologiquement et chaque transac-
tion est dé�nie par un ensemble d'objets qu'il a acquis et une estampille indiquant quand
l'opération a eu lieu. Un exemple concret pour illustrer les connaissances découvertes par
le biais de l'extraction de motifs séquentiels dans ces séquences est la suivante: � Dans
une enseigne de location de DVD, les clients qui louent � Star Wars IV: un nouvel espoir
� loueront �Star Wars V: l'empire contre-attaque� et �Star Wars VI: le retour du Jedi� à
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quelques jours d'intervalle.�
Nous soulignons ici le contraste qui existe entre les deux types de séries évoquées

dans la littérature. D'une part, les séries temporelles sont des suites d'objets ordonnées
par ordre chronologique, où chaque objet est dé�nie sur une (ou plusieurs) dimension(s)
discrète(s) à valeur numérique. D'autre part, les séquences temporelles sont des suites
d'objets/données ordonnées par ordre chronologique où chaque objet est dé�ni sur une
(ou plusieurs) dimension(s) à valeur catégorielle et/ou numérique. Plus généralement, les
séquences temporelles sont aussi appelés séquences temporelles d'événements (séquences
temporelles, séquence d'événements ou séquence pour faire court) [PRSP+09].

L'extraction de connaissances à partir de sources de données très volumineuses, par
exemple, les entrepôts de données de ventes ou les logs d'usage du Web, est une tâche qui
exige l'emploi d'algorithmes rapides et e�caces. Malheureusement, des études récentes sur
la fouille du contenu du Web [MTT04,RKS07] ont montré que les performances des tech-
niques de fouille de données les plus pointues rencontrent une limite lorsque les paramètres
de l'algorithme de fouille sont trop ra�nés. En fait, ces études montrent que lorsque le
paramètre de support des algorithmes d'extraction de motifs séquentiels descend en dessous
0,06%, le temps d'exécution de l'algorithme explose exponentiellement. Ce constat a mo-
tivé notre travail pour chercher et concevoir des techniques de transformation de données
pour créer des représentations plus concises des séquences d'événements et ainsi aider de
telles applications à passer à l'échelle. Cette transformation est appelée: le résumé de
séquence d'événements.

Au cours des trente dernières années, les techniques de synthèse ou de résumé de
données ont été élaborées pour diverses sources de données tels que les �chiers textes,
les bases de données, les entrepôts de données, les �ux de données, etc.. Le but de ces
technologies est de représenter la source d'entrée sous une forme plus concise pour des
usages qui incluent, mais sans s'y limiter, le stockage, l'analyse, la visualisation ou la
navigation exploratoire.

Les techniques développées spéci�quement à des �ns de stockage sont plus communé-
ment appelées des algorithmes de compression. La compression de données considère une
donnée comme une suite de bits. L'objectif de la compression consiste donc à transformer
une suite de bits A en une suite de bits B plus courte, contenant les mêmes informations,
en utilisant un algorithme particulier. Il s'agit d'une opération de codage, c'est-à-dire
changer la représentation de l'information dans le but de rendre la représentation com-
pressée plus courte que la représentation originale. Cependant, la compression réalisée
transforme structurellement l'information d'origine et ne peut donc pas être traitée sans
une transformation inverse au préalable, c'est-à-dire une décompression. Cette forme de
résumé ne correspond donc pas au contexte de notre travail de thèse et ne sera donc pas
considérée dans le reste de ces travaux.

Beaucoup d'e�orts ont été investis dans la conception de techniques de résumés qui
utilisent la sémantique du contenu des données pour créer des représentations plus concises.
La croissance continue et exponentielle des contenus riches en données séquentielles, par
exemple, sous forme de �ls de nouvelles RSS ou même de �ls Twitter, a déclenché la
nécessité de faire usage et de gérer la nature temporelle des événements dans les séquences.
Á notre connaissance, peu d'intérêt a été accordé à la prise en compte de l'information
temporelle dans le but de résumer. À la lumière des contraintes des applications de fouille
de données qui reposent largement sur la chronologie des événements des séquences de
données, la construction des résumés de séquences d'événements vient avec de nombreux
dé�s à relever:

• Les données qui sont à résumer sont complexes et peuvent contenir aussi bien de
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l'information non-structurée, par exemple du texte, que de l'information structurée,
par exemple des valeurs d'attributs.

• Le volume des données à traiter croît de manière exponentielle

• Les applications ont tendance à basculer vers le traitement des données en temps
réel. Cette contrainte supplémentaire requiert que les algorithmes utilisés aient une
complexité algorithmique la plus faible possible, idéalement linéaire ou sous-linéaire.

Dans ce travail de thèse, nous relever les dé�s inhérents à la construction de résumés de
séquences temporelles dans le but d'aider les applications dépendantes du temps à passer
à l'échelle. Pour cela, nous présentons les contributions suivantes:

• Nous dé�nissons formellement la notion de résumé de séquence d'événements pour
délimiter précisément le périmètre de notre recherche. Nous étudions en détail l'état
de l'art des méthodes existantes dans la littérature qui rentrent dans ce périmètre.

• Nous propose une approche orientée utilisateur, appelée TSaR, pour créer un ré-
sumé de séquence d'événements. Cette approche orientée utilisateur procède en trois
phases: (i) une phase de généralisation, (ii) une phase de regroupement et (iii) une
phase de formation de concepts. TSaR produit un résumé, c'est-à-dire une séquence
d'événements, où les données sont représentés à un niveau d'abstraction plus élevé et
où les événements sont regroupés uniquement s'ils sont similaires et proches sur la
ligne temporelle. La technique proposée a une complexité algorithmique linéaire avec
le nombre d'événements à traiter dans la séquence. L'utilisateur contrôle la qualité
des résumés d'un point de vue du contenu et du l'ordonnancement des événements
dans les résumés grâces à un paramétrage précis de chaque étape du processus de
résumé.

• Dans le but de rentre le processus de résumé indépendant des paramètres d'entrée,
nous reformulons le problème de résumé de séquence d'événements en un nouveau
problème de fouille de données. L'originalité de cette redé�nition du problème réside
dans la nature de la fonction objective à optimiser. En e�et, ici la fonction objec-
tive doit considérer simultanément l'information provenant du contenu des données et
l'information temporelle associée aux données. Nous proposons deux approches glou-
tonnes pour construire des solutions sous-optimales appelées G-BUSS et GRASS.
Notamment, GRASS est une technique de classi�cation hiérarchique ascendante
basée sur un algorithme parallèle qui exploite les caractéristiques de la fonction ob-
jective. Nous montrons à travers nos expériences que GRASS permet d'accélérer
le processus de fouille de données de 2 à 3 ordres de grandeurs par rapport à la
technique de base G-BUSS.

• Nous proposons d'étudier comment un résumé de séquence d'événement peut être
utilisé en pratique sur une application telle que l'extraction de motifs séquentiels
sur des données du monde réel. Par conséquent, nous étudions soigneusement les
relations qui existent entre les motifs séquentiels découverts dans une collection de
séquences originales et les motifs séquentiels d'ordre supérieur découverts dans une
collection de résumés de séquences d'événements. Nous en proposons une étude an-
alytique ainsi qu'une étude expérimentale. Aussi, nous proposons une méthodologie
qui utilise au mieux l'analyse faite précédemment pour découvrir des motifs plus
riches et plus précis à partir des motifs d'ordre supérieur extraits des résumés. Cette
méthodologie est appelée Fouille exploratoire.
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• Nous soutenons toutes nos contributions grâce à d'importants jeux d'expériences
sur des données réelles extraites des archives de l'actualité �nancière produite par
Reuters en 2003.

Le restant de ce résumé étendu de la thèse est organisé comme suit. Nous dé�nissons
dans la Section 1 le concept de résumé de séquence d'événements a�n de délimiter le champ
d'étude de cette thèse. Puis, nous discutons de l'état de l'art des méthodes permettant
de construire un résumé à partir de sources de données qui contiennent de l'information
temporelle. En outre, nous formalisons le problème de la construction d'un résumé de
séquence d'événements. Nous proposons dans la Section 2 la technique orientée utilisateur
appelée TSaR. Dans la Section 3, nous proposons d'aborder le problème lié au fait de
devoir paramétrer précisément l'algorithme TSaR. Par conséquent, nous reformulons le
problème du résumé de séquence d'événements en un nouveau problème de classi�cation.
L'originalité de ce problème de classi�cation réside dans la fonction objective à optimiser.
En e�et, la fonction objective doit prendre en compte simultanément le contenu séman-
tique et l'information temporelle des données. Nous proposons deux approches gloutonnes,
G-BUSS et GRASS. Dans la Section 4, nous proposons un scénario d'application sur des
données réelles extraites des archives d'actualités �nancières de Reuters. Nous étudions
dans quelle mesure le résumé de séquences d'événements peut aider une application dépen-
dante du temps telle que l'extraction de motifs séquentiels à découvrir de la connaissance.

1 Résumé de séquences d'événements: état de l'art

1.1 Introduction

Dans cette thèse, nous positionnons notre travail plus proche des idées au coeur de la
recherche sur les bases de données. Dans cette perspective, notre compréhension de la
tâche de résumé est de construire une nouvelle représentation d'un ensemble de données
primitifs. Cette représentation peut ensuite être utilisée pour soutenir d'autres applica-
tions complexes qui peuvent éventuellement avoir recours à des traitements intensifs. Plus
précisément, nous visons à soutenir les applications dépendantes du temps, à savoir, les
applications qui reposent sur l'ordre chronologique des données pour être signi�catif. Un
exemple d'application dépendante du temps est l'Extraction des Motifs Séquentiel [AS95].
Un autre exemple d'application dépendante du temps est Google Finance [Goo]. Il s'agit
d'une application de visualisation développée par Google. Sur une ligne temporelle dé�nie
par l'analyste, Google Finance fournit aux analystes un outil pour naviguer au travers
des indices et des valeurs boursières des entreprises tout en visualisant des informations
générales sur les entreprises. Cette information textuelle de base est fourni à l'utilisateur
sous la forme d'une séquence de nouvelles qui apparaissent à certains moments jugés in-
téressants, par exemple, lors des sauts de prix. Par conséquent, dans ce travail de thèse,
nous considérons le travail de résumé la tâche de transformer, en un objet plus concis et
plus abstrait, des objets pris dans une séquence d'objets primitifs.

1.2 Résumé dans...

Nous présentons dans les sections suivantes les principales techniques de résumé rencontrées
dans la littérature sur les bases de données (de transactions, relationnelles et temporelles),
sur les �ux de données et les séquences d'événements.
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1.2.1 Les bases de données de transactions

Les principales approches de résumé de données proposées pour les bases de données de
transactions, au sens du panier de la ménagère, sont les suivants: Chandola et al. [CK05],
SUMMARY [WK06], HYPER [XJFD08] et Wan et al. [WA05]. Les méthodes présentées
s'appuient sur l'extraction d'itemsets fréquents (FIM). Le problème de ces approches réside
dans la perte d'information lorsque le paramètre de support de l'algorithme d'extraction
des itemsets fréquents est �xé trop haut. Il faut noter que ce paramètre doit tout de même
être �xé de manière assez �ne sinon les temps d'exécution explosent exponentiellement.

Chandola et al. [CK05]

Chandola et al. proposent deux algorithmes de résumé pour les ensembles de données
de transactions avec des attributs catégoriels. Dans ce travail, les auteurs formulent le
problème de résumé comme un problème d'optimisation qui comporte deux fonctions ob-
jectives: (i) gain en compression et (ii) la perte d'information. Les auteurs considèrent que
la tâche du résumé est de compresser une série de transactions en un ensemble plus restreint,
c'est-à-dire, un ensemble ayant un plus petit nombre de transactions tout en conservant
le maximum d'information possible. La première approche proposée consiste à utiliser
un algorithme de classi�cation classique pour générer des classes et ensuite de représen-
ter chaque classe par un objet représentatif de la classe. La deuxième approche proposée
est une approche Buttom-Up qui utilise la fouille d'itemset fréquents pour représenter des
groupes de transactions.

SUMMARY [WK06]

Avec SUMMARY, Wang et Karypis proposent une technique pour générer des résumés de
bases de données de transactions basée sur l'extraction d'itemsets fermés fréquents. L'idée
est d'identi�er les itemsets fermés fréquents, car plus compacts. Ensuite, les itemsets
fermés les plus longs sont utilisés pour représenter les transactions de la base de données.

HYPER [XJFD08]

Xiang et al. proposent de résumer les bases de données de transactions grâce à HYPER.
C'est une technique qui considère les données d'entrée sous la forme d'une matrice. Le
résumer est donc un ensemble d'hyperrectangles calculés de telle sorte à couvrir toutes
les cellules de la matrice, c'est-à-dire de la base de données de transactions. Les auteurs
démontrent que le problème est NP-di�cile et proposent une technique qui s'appuie aussi
sur l'identi�cation d'itemsets fréquents.

Wan et al. [WA05]

Wan et al. [WA05] proposent de créer une structure spéci�quement pour supporter les
applications d'extraction de motifs séquentiels. Les auteurs construisent une structure
appelée �base de données de transaction compacte�. A l'aide d'un algorithme basé sur
Apriori, les auteurs exploitent cette structure pour extraire des motifs fréquents tout en
améliorant le temps de calcul par rapport aux méthodes classiques à base d'Apriori.

1.2.2 Les bases de données relationnelles

Il existe un certain nombre de techniques de résumé spéci�quement développées pour
les bases de données relationnelles comme: AOI [Cai91], Fascicles [JMN99], SPARTAN
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[BGR01], ItCompress [JNOT04] et SaintEtiQ [RM02,SPRM05].

Induction orientée attribut (AOI) [Cai91]

L'induction orientée attribut (AOI) est une technique initialement proposée par H. Cai, J.
Han et N. Cercone [Cai91,HCCC92,HF96]. Le processus a ensuite été amélioré et mis en
oeuvre dans DBLearn [HFH+94] puis dans DBMiner [HFW+96].

L'objectif initial de AOI est de traiter les tables de bases de données relationnelles
(mais n'est pas limité à) pour la découverte de connaissances. La découverte de connais-
sances dans une table R(A1, . . . , An) est obtenue en réduisant le domaine des attributs
Ai, puis en réduisant le nombre de lignes dans R par un procédé de Généralisation et de
Fusion. Les auteurs supposent des connaissances de base sont disponibles et/ou fournies
par des spécialistes du domaine sous la forme de hiérarchies de concepts, autrement dit,
des taxonomies. À chaque itération, le processus AOI choisit un attribut Ai et toutes les
valeurs d'attribut dans R dé�nie sur Ai sont généralisées une fois en utilisant la taxonomie
associée. Le processus est répété jusqu'à ce qu'un critère d'arrêt soit atteint (taux de
compression, nombre de tuples restant etc.).

Fascicles [JMN99]

Jagadish et al. [JMN99] ont introduit la notion de Fascicles pour réduire la taille des bases
de données relationnelles dans le but de réduire au minimum leur stockage. En outre,
les auteurs proposent aussi une méthode utilisant les fascicles produits pour extraire des
motifs des bases de données compressées. Fascicles s'appuie sur une forme élargie des règles
d'association, plus exactement, la fouille d'itemsets fréquents, pour compresser les données.
Les auteurs soulignent le fait que, souvent, de nombreux tuples peuvent avoir des valeurs
similaires sur plusieurs attributs. Par conséquent, la notion de fascicles capture et forme
des groupes à partir de tels tuples. Un fascicule est un sous-ensemble de tuples F dans
une relation R pour lesquels il existe un ensemble de k attributs compacts. Un ensemble
d'attributs A est dit compact lorsque les tuples dans F ont les mêmes valeurs d'attributs
pour les attributs dans A.

SPARTAN [BGR01]

SPARTAN [BGR01] est une technique proposée pour compresser les données de grandes ta-
bles en utilisant la sémantique des données. Les auteurs font les observations suivantes sur
la démarche de Fascicles [JMN99]: Fascicles permet de faire de la compresssion avec perte
en regroupant les tuples similaires. Le degré de similarité est spéci�é par les paramètres
dé�nis par l'utilisateur. Dans cette perspective, les fascicles permettent de garantir des
bornes supérieures sur l'erreur de compression. Toutefois, Fascicules procède au niveau
des tuples pour détecter les tendances, à savoir, les tuples ayant des valeurs semblables sur
plusieurs attributs. Ce procédé orienté tuple pourrait être impossible à réaliser lorsque les
données ont de fortes dépendances entre les attributs, c'est-à-dire, entre colonne. Par con-
séquent, l'idée sous-jacente de SPARTAN est de détecter de telles dépendances de colonne
et de représenter les dépendances de façon concise et précise à partir d'un modèle prédictif,
à savoir, les arbres de classi�cation et de régression.

ItCompress [JNOT04]

La technique de compression itérative, alias ItCompress, est une technique de compression
sémantique proposée par Jagadish et al. dans [JNOT04]. L'idée sous-jacente des auteurs
est de compresser une table de données notée R en réduisant le nombre de tuples, ou lignes,

xiv



dans la table. Cet e�et de compression est obtenu en représentant les lignes similaires par
une ligne représentative. Dans la pratique, étant donné un paramètre de tolérance d'erreur
dé�nie sur chaque attribut, ItCompress trouve un ensemble de lignes représentatives qui
correspond le mieux aux tuples dans la table d'origine au sein de l'intervalle de tolérance
d'erreur. Toutes les lignes représentatives sont regroupés dans une table notée RR. La
table compressée, notée RC , contient alors trois attributs, à savoir, (i) ERId, (ii) Bitmap et
(iii) les valeurs aberrantes. ERId attribut aux lignes dans R un identi�ant correspondant
à l'identi�ant d'une ligne représentative dans la table RR. L'attribut Bitmap exprime,
pour une ligne donnée dans la table original R, quelles sont les valeurs des attributs de
ERId qui ne sont pas à portée de la valeur de tolérance d'erreur. Le dernier attribut
contient les valeurs aberrantes, c'est-à-dire celles qui ne sont pas à portée de la valeur de
tolérance d'erreur. La question principale dans ItCompress est de choisir une bonne série
de lignes représentatives qui maximise la couverture totale des lignes représentées. Les
auteurs montrent que ce problème est équivalent au problème des k-centre [GJ79] et est
donc un problème NP-di�cile.

ItCompress calcule une solution de manière itérative. À la première itération, l'algorithme
choisit au hasard un ensemble de k lignes représentatives dans la table d'entrée. Puis, à
chaque itération, ce choix aléatoire est améliorée avec l'objectif d'accroître la couverture
totale sur la table à compresser. Même si cette technique ne garantit pas l'optimalité,
les auteurs montrent qu'ItCompress donne un bon taux de compression sans sacri�er son
e�cacité.

SaintEtiQ [RM02,SPRM05]

La dernière technique que nous étudions ici est l'approche SaintEtiQ proposé par R.
Saint-Paul et al. dans [RM02, SPRM05]. SaintEtiQ n'a pas été spéci�quement conçu
pour la compression de données relationnelles à des �ns de stockage. L'objectif principal
de SaintEtiQ est de produire une vue plus petite et plus concise de bases de données
très volumineuses. Cette technique prend en entrée des tuples d'une base de données et
produit une forme de connaissance en sortie. Le processus est divisé en deux grandes
étapes: la première consiste à réécrire les données brutes en entrée et la seconde est
l'étape d'apprentissage. L'étape de réécriture s'appuie sur la théorie des ensembles �ous
de Zadeh [Zad65] pour transformer des tuples bruts en entrée en tuples candidats. Cette
étape de réécriture est réalisée conformément aux connaissances de domaine fournies au
système sous la forme de partitions linguistique �oues sur les domaines d'attribut. Chaque
classe d'une partition est aussi marquée par un descripteur linguistique qui est fourni par
l'utilisateur ou un expert du domaine.

Chaque tuple candidat est évalué par un algorithme d'apprentissage. Tout d'abord, le
tuple candidat est classée dans la hiérarchie de résumés à partir de la racine de la hiérarchie.
L'algorithme de classi�cation conceptuelle trouve le meilleur noeud résumé dans lequel il
faut ajouter le tuple candidat suivant une approche top-down. A chaque noeud dans la
hiérarchie de résumés, la hiérarchie est modi�ée pour intégrer cette nouvelle instance au
moyen d'opérations qui peuvent créer ou supprimer des noeuds enfants. Les décisions
sont prises sur la base d'un critère d'optimisation locale appelée la qualité de la partition
(PQ), qui tente de minimiser la longueur de la description intentionnelle du résumé. Cette
description intentionnelle est constituée d'un ensemble �ou de descripteurs de domaine sur
chaque attribut et est associé à une mesure de possibilité.
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1.2.3 Les bases de données temporelles

Les bases de données temporelles sont un domaine de recherche dynamique et fructueux
qui a émergé au début des années 60. Le domaine a motivé des centaines de chercheurs
à publier plus de deux mille papiers de recherche. Les principaux aspects de ce corpus de
travail peuvent être trouvés, et sans s'y limiter, dans une série de bibliographies [BADW82,
Soo91,Kli93, SS98,WJW98,Noh04]. Il existe de nombreuses recherches approfondies sur
les fondements théoriques des bases de données temporelles. Ces orientations de recherche
incluent sans s'y limiter:

• Comment modéliser une sémantique di�érente de la notion du temps en bases de
données relationnelles classiques?

• Créer de nouveaux langages de requête

• Le traitement de requêtes pour bases de données temporelles

• Méthodes d'accès et de stockage pour optimiser les requêtes contrainte par le temps

• Information temporelle incomplète

• Contraintes d'intégrité temporelle, etc.

Á notre connaissance, un intérêt très limité a été accordé aux méthodes pour représenter
les bases de données temporelles en une forme plus concise mais informative. Le corpus de
travail le plus pertinent pour un résumé des bases de données temporelles sont l'opérateur
PACK dé�nie pour des intervalles de temps [DDL02], le travail de Claudio Bettini sur la
compression sémantique de données temporelles [Bet01] et Wang et al. pour leur travail
sur le temps de transaction dans les systèmes de base de données temporelles [WZZ08].

L'opérateur PACK [DDL02]

L'opérateur PACK considère en entrée une relation unique n-aire notée R, où au moins un
attribut est un intervalle de temps. Cet attribut est appelé �au cours�. L'opérateur PACK
produit une autre relation n-aire qui est connu sous le nom de forme canonique de R, notée
PACK(R). L'objectif principal de cette forme canonique est de réduire la redondance de
la relation originale R. Intuitivement, l'opérateur PACK groupe les tuples dans R qui ont
des descriptions identiques, à savoir, les valeurs d'attribut, et qui sont contigus sur la ligne
temporelle, c'est-à-dire, les intervalles de temps sur lesquels les tuples se chevauchent.

La compression sémantique de données temporelles de Claudio Bettini [Bet01]

Claudio Bettini propose dans [Bet01] une méthode pour compresser une base de données
temporelles. L'auteur s'appuie sur les notions de granularité temporelle et sur des hy-
pothèses sémantiques pour réaliser la compression. Il s'appuie sur la notion d'hypothèse
sémantique qui exprime la façon dont les valeurs de certains attributs évoluent avec le
temps et comment ces valeurs changent lorsqu'on les considère en termes de granularité de
temps di�érents. L'auteur considère qu'une base de données temporelles est représentée
comme une base de données relationnelle avec un attribut qui indique la période de validité
des données. La base de données temporelle compressée est ensuite utilisée pour répondre
à des requêtes.
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ArchIS [WZZ08]

Archis est un système proposé par Wang et al. dans [WZZ08] pour appuyer des applica-
tions temporelles sur des SGBDs. Les auteurs s'attaquent au problème de la conception
d'une solution intégrée pour résoudre plusieurs problèmes: (i) l'expression des représenta-
tions temporelles et modèle de données, (ii) un puissant langage de requêtes temporelles
et des requêtes instantanées, et (iii) l'indexation, le regroupement et l'optimisation de re-
quête pour gérer l'information temporelle e�cacement. A�n de soutenir et d'optimiser les
requêtes sur les données temporelles de transactions, les auteurs proposent une approche
basée sur XML pour représenter l'histoire de base de données dans une forme aggrégée.

1.2.4 Les �ux de données

Dans le début des années 90, les chercheurs ont fait le constat qu'un nombre croissant
d'applications du monde réel avait besoin de gérer de très grandes quantités de don-
nées générées par des sources multiples et de façon automatisée. Des exemples de ces
sources comprennent: les indicateurs �nanciers, les mesures de performance dans le suivi
des réseaux informatiques, l'utilisation des logs du Web, les capteurs, les détails des relevés
d'appels les télécommunications, etc.. Ces sources sont supposées être de taille in�nie,
de produire des données de façon continue en temps réel, éventuellement, à des débits
très élevés et irréguliers. Pour ces raisons, le meilleur modèle de représentation pour ces
données n'est pas celui des relations persistantes mais celui des �ux de données continus
transitoires, appelé aussi �ux pour faire court. Le traitement des données des �ux conti-
nus dans le but répondre à requêtes continues, de trouver les articles les plus fréquentes
dans les �ux ou de découvrir des connaissances pose de nombreux dé�s. En e�et, un tel
environnement très dense en données volatiles vient avec des exigences très fortes sur les
algorithmes qui traitent les données de �ux. Par exemple, puisque les �ux sont potentielle-
ment in�nis, il est communément admis que les �ux ne peuvent pas être stockés et traités
en mode hors connexion. Par ailleurs, chaque donnée d'un �ux ne peut être considérée
qu'une seule fois: soit elle est traitée, soit elle est rejetée.

1.2.5 Travaux précédents

La part du corpus des travaux destinés aux �ux de données numériques est hors du
périmètre d'étude de cette thèse. Dans ce domaine là, les techniques proposées s'appuient
généralement sur la relation d'ordre total qui existe sur les ensembles de valeurs numériques,
par exemple, pour calculer les agrégats, les distances, les similarités, etc. Comme il n'existe
pas un ordre naturel total sur les valeurs d'attributs catégoriels, ces techniques sont mal
adaptées aux données des �ux de données catégorielles. Toutefois, en supposant une cer-
taine adaptation des techniques aux attributs catégoriels, les idées sous-jacentes dans cer-
taines approches peuvent encore être utiles, à savoir, l'échantillonnage, le load shedding,
les synopsis, etc...

Échantillonnage

L'échantillonnage [Olk93,OR90,Vit85,CMN99,JPA04,HK04,CMR05] ou encore [JMR05,
EN06, Agg06b] est une technique simple et bien étudiée. Mais c'est aussi un puissant
outil probabiliste pour décider si une donnée doit être traitée ou non. L'échantillonnage
permet de capturer dans un espace mémoire réduit et limité les données les plus récentes
à partir d'un �ux d'entrée. La limite du taux d'erreur d'échantillonnage peut être calculée
par l'utilisation d'une fonction de la fréquence d'échantillonnage. La borne supérieure de
Hoe�ding [Hoe63], c'est-à-dire, la probabilité pour la somme de variables aléatoires de
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s'écarter de sa valeur attendue, a souvent été utilisée avec des techniques d'apprentissage
machine très rapides [DH01]. Toutefois, les méthodes d'échantillonnage sou�rent en général
des limitations suivantes: (i) la taille d'un �ux en entrée est inconnue et trouver les limites
d'erreur exige une analyse particulière, (ii) l'échantillonnage ne permet pas de répondre au
problème de la �uctuation des débits des données qui est inhérente aux �ux de données et
(iii) l'échantillonnage ne permet pas de répondre à applications qui nécessitent de travailler
sur des données historisées, par exemple, la classi�cation k-means ou requêtes continues.
Néanmoins, l'échantillonnage pourrait encore être utilisé pour maintenir la part des données
récentes les plus pertinentes.

Load shedding

Le load shedding [BM03,TCZ+03] est une technique similaire à l'échantillonnage. L'idée
est de laisser tomber des portions du �ux de données. Le load shedding a été utilisé avec
succès pour répondre aux requêtes approximatives. Cependant, cette technique ne convient
pas pour tâches de fouille de données car elle pourrait laisser tomber des portions de �ux
de données qui pourraient représenter ou de contribuer à un motif d'intérêt, par exemple,
lors de l'extraction de motifs séquentiels fréquents.

Sketching

L'idée du sketching [BBD+02,Mut05] est de projeter aléatoirement un sous-ensemble des
attributs des données. Cette approche peut être comprise comme une forme d'échantillonna-
ge vertical sur le �ux de données entrant. Le sketching a été appliqué pour comparer
di�érents �ux ou pour répondre à des requêtes d'agrégation.

Synopsis

La création d'une structure de synopsis des données est l'application d'une technique de
résumé a�n de représenter un �ux de données entrant en un autre �ux de données (ou
en un autre format) qui peut ensuite être utilisé pour une analyse plus approfondie. Il
existe un pot-pourri de techniques qui sont conformes à cette dé�nition. Ces techniques
comprennent: l'analyse par ondelettes, l'analyse des moments fréquents, les quantiles ou
les histogrammes. Nous donnons ici un aperçu des méthodes les plus pertinentes:

• Quantiles [GK01,LXLY04,AM04,GRM05,ZLX+06].

• Moments fréquents [BBD+02].

• Analyse à base d'ondelettes [VW99,CGRS00,GKMS01,GKS04,KM05].

• Histograms mono- ou multi-dimensionnels [PIHS96,JMN99,GK01,GKS01,TGIK03,
GGI+02,MM02,WS03,GSW04,Dob05,KNRC05]: Les histogrammes sont des outils
e�caces pour capturer rapidement la densité de la fréquence des intervalles (dans
le cas d'attributs numériques). Dans le cas de l'attribut catégorique, histogrammes
pourrait saisir la fréquence de chaque valeur d'attribut. Toutefois, étant donné qu'il
n'existe pas un ordre naturel total sur les attributs catégoriels, les histogrammes de
domaines catégoriels perdent le béné�ce de la capture de la densité de fréquence des
agrégats tels que sur des intervalles numériques.

Fenêtre glissante

Une technique pertinente pour le résumé de données est le concept de fenêtre glissante
[BBD+02,BDMO02]. Ce modèle tient compte des éléments les plus récents dans les �ux
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de données. Comme un �ux de données évolue, les éléments à la �n de la fenêtre sont
mis au rebut et de nouveaux éléments sont ajoutés. Les fenêtres glissantes ont plusieurs
propriétés intéressantes qui leur permettent d'être utilisées pour des applications comme
répondre aux requêtes approximatives. La sémantique d'une fenêtre glissante est claire et
les utilisateurs comprennent bien sa sémantique. Les fenêtres glissantes sont déterministes
et mettent l'accent sur les données fraîches.

Fouille de données � classi�cation

La fouille de données dans les �ux de données, notamment en matière de regroupement �ux
de données, est une autre forme populaire de résumé de �ux de données qui a attiré de nom-
breux travaux de recherche [GMMO00,AHWY03,GMM+03,OWNL04,HXDH03,Agg06a,
GLSS06, AHWY07, CCC08]. Guha et al. font de la classi�cation de �ux de données en
utilisant une approche fondée sur le k-means [GMMO00,GMM+03]. L'approche proposée
permet en un seul passage sur le �ux de données de générer k classes occupant un faible
espace mémoire. Cette approche nécessite O(nk) temps et O(nε) espace avec k le nom-
bre de classes. Les auteurs ont également prouvé que toute approche k-médian qui permet
d'obtenir une approximation constante ne peut pas atteindre un meilleur temps d'exécution
que O(nk). Babcock et al. améliorent l'approche de Guha et al. dans [BDMO03], grâce
à l'utilisation d'histogrammes exponentiels (EH). Les auteurs améliorent l'approche de
Guha et al. en abordant le problème de la fusion des groupes lorsque deux ensembles
de centres de classes à fusionner sont éloignés. Pour cela, ils maintiennent une structure
EH. Lin et al. [LKLC03] proposent SAX pour transformer des séries chronologiques en
une représentation symbolique. La réduction de la dimensionnalité et de la numérosité
résulte de l'association (i) d'une technique d'approximation fragmentaire globale suivie (ii)
de la représentation de chaque agrégat par un symbole discret, par exemple, {a, b, c,. . . }.
Aggarwal et al. [AHWY03, AHWY07] proposent une technique de classi�cation appelé
CluStream à base de micro-classes et d'une structure de temps pyramidale pour résumer
les données de �ux volumineux. Les auteurs construisent un ensemble de micro-classes
également appelé instantanés à des moments précis dans le temps qui suivent un schéma
pyramidal. Une micro-classe est un ensemble d'informations représentées par des vecteurs
fonction de classe [ZRL96] à laquelle on ajoute des informations sur les estampilles. La
structure de temps pyramidale fournit une approche e�cace pour répondre aux exigences
de stockage et permet de rappeler des statistiques sommaires à partir de di�érents horizons
temporels.

Les techniques énumérées ici montrent une caractéristique commune: elles considèrent
toutes la classi�cation de données numériques. Á notre connaissance, peu d'intérêt a été
donné à la classi�cation ou à la construction des résumés de �ux de données catégorielles.
Toutefois, ce besoin est très réel et présent. Les techniques connues pour traiter les �ux de
données catégorielles semblent avoir principalement émergé ces dernières années avec les
contributions suivantes [HXDH03,OWNL04,CL05,PMR06,Agg06a,WFZ+08].

Parmi les techniques les plus prometteuses, Ong et al. [OWNL04] proposent SCLOPE,
une approche hybride basé sur CluStream et sur CLOPE [YGY02]. CLOPE est un al-
gorithme de classi�cation initialement développé pour les données de transaction. L'idée
derrière CLOPE est de créer des classes tout en optimisant une fonction de critère global qui
cherche à accroître la coopération intra-classe en accroissant le rapport hauteur-largeur des
histogrammes de classe. Un histogramme de classe est tout simplement un histogramme
qui capte la fréquence des articles de transaction des opérations dans une classe. Par
conséquent, SCLOPE capitalise sur CluStream en construisant des micro-classes, et en
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utilisant la structure de temps pyramidale, et sur CLOPE en abordant la question des
attributs catégoriels grâce à l'utilisation des histogrammes de classe. Puisque SCLOPE
adresse le problème classi�cation sur les �ux de données, les histogrammes de classes sont
construits en un seul passage en utilisant la structure de FP-Tree [HY00]. La structure de
temps pyramidale permet d'intégrer une logique de temps pour réaliser des constructions
d'instantanés. Malheureusement, cette approche n'a pas de mécanisme pour séquentialiser
les micro-classes au sein d'un instantané.

Nous avons proposé dans les travaux antérieurs une approche [PMR06] pour résumer les
�ux de données en utilisant une technique de classi�cation conceptuelle. Comme l'approche
est basée sur SaintEtiQ, elle sou�re fondamentalement des mêmes limitations. Le résumé
produit ne re�ète pas la chronologie des données d'entrée et ne peut être directement
exploité par les applications dépendantes du temps.

Après de nombreux travaux sur les �ux de données numériques, Aggarwal et al. ont
changé d'intérêt et se sont tournés dans [Agg06a] vers les �ux de données catégorielles. Les
auteurs proposent une méthodologie similaire à l'OLAP où des résumés statistiques sont
calculés sur les données stockées à intervalle régulier dans le but de répondre à des requêtes
répétées. Plus intéressant encore, les auteurs attribuent un poids sensible au facteur temps
pour chaque donnée. Grâce à une fonction f de dégradation, ce poids est utilisé pour
exprimer le taux de décroissance de chaque donnée et est utilisé pour contrôler la fraîcheur
des données historisées. Les pôles sont un ensemble de classes gouttelettes qui contiennent
un certain nombre d'informations statistiques: (a) nombre de cooccurences des valeurs
d'attribut catégorique, (b) nombre de valeurs possibles de chaque attribut catégorique
survenant dans un groupe, (c) le nombre de points de données dans la classe, (d) la somme
des poids du temps au temps t et (e) l'horodatage du dernier élément rajouté à la classe.
Les auteurs ont introduit une méthode élégante pour gérer la décroissance du poids d'une
classe, cependant, les gouttelettes de classe sont générées uniquement en fonction de leur
similitude avec les données entrantes et non en fonction de leur distance dans le temps.

1.2.6 Les séquences d'événements

Les applications de suivi des utilisateurs ou du système, dans des domaines tels que les télé-
communications, la biostatistique ou le WWW, génèrent de grandes quantités de données
de séquences appelé séquences d'événements. Les séquences d'événements sont composées
d'événements qui se produisent à un point précis dans le temps. Dans [KT08, KT09],
Kiernan et Terzi proposent une dé�nition formelle du résumé de séquence d'événements
et donnent les propriétés souhaitables qu'un résumé de séquence d'événements devraient
présenter:

1. La concision et la précision: Le système de résumé doit construire un résumé
concis mais qui décrit précisément les données d'entrée.

2. Description globale des données: Les résumés doivent donner une indication de
la structure globale de la séquence d'événements et de son évolution dans le temps.

3. Identi�cation de motifs locaux: Le résumé doit révéler des informations sur
les motifs lacaux: événements ou suspects ou une combinaison d'événements qui se
produisent à certains points dans le temps doivent pouvoir être identi�és simplement
en regardant le résumé.

4. Libre de paramètrage: Aucune paramétrage supplémentaire ne devrait être requis
de la part de l'analyste pour que la méthode de résumé puisse donner des résultats
instructifs et utiles.

xx



Les auteurs considèrent des séquences particulières où plusieurs événements peuvent se
produire à un même point t dans le temps. Ils proposent de s'appuyer sur le principe de
Minimum Description Length (MDL) pour produire d'une manière sans paramètres un ré-
sumé complet d'une séquence d'événements. L'idée de base est de segmenter la chronologie
des événements d'entrée de la séquence en k tronçons contigus, sans chevauchement des
intervalles de temps: ces tronçons sont aussi appelé des segments. Par la suite, la partie
des données correspondant à chaque segment S est décrite grâce à un modèle local M .
En un mot, les auteurs formalisent le problème du résumé d'une séquence d'événement en
un problème d'identi�cation d'un entier k, de segmenter la séquence d'entrée S en k seg-
ments et d'identi�er pour chaque segment S le modèle M qui décrit le mieux les données
de S tout en minimisant la longueur totale de description. Les auteurs montrent que ce
problème peut être résolus de façon optimale en temps polynomial et donnent l'algorithme
correspondant. En outre, les auteurs proposent une solution alternative sous-optimale,
mais pratique et e�cace.

Le résumé établi par Kiernan et Terzi réduit e�cacement la séquence d'événements
d'entrée en un ensemble de k segments et donne des informations intéressantes sur la densité
des données dans chaque segment. Toutefois, puisque le modèle utilisé pour décrire chaque
segment S est un modèle probabiliste, les algorithmes de fouille de données ne peuvent
s'exécuter directement sur le résumé produit et nécessite une forme de décompression avant.
En outre, le modèleM utilisé pour décrire chaque segment S perd l'information temporelle
des événements au niveau du segment S. Les informations temporelles perdues sont l'ordre
dans lequel les événements apparaissent dans la séquence d'événements.

1.3 Résumé de séquences d'événements: dé�nition

Etant donné une séquence d'événements s, un résumé de séquence d'événements est noté
χ(s) = (s2C , s

?
M ) et est dé�ni de la manière suivante:

• s2C = {(Yi, t′i)} avec 1 ≤ i ≤ m ≤ n, est une séquences d'événements où chaque
événement (Yi, t

′
i) dans s

2
C est en fait un groupe Yi d'événements (xi,j , ti,j), pris dans

s et obtenus grâce à une forme de classi�cation C qui tient compte du contenu et de
l'information temporelle des événements, auquel est associé une estampille t′i.

• s?M = {(x?i , t′i)} est une séquence d'événements ordinaire où chaque événement repré-
sente un groupe d'événements Yi et est obtenu for formation de concept. Les concepts
x?i sont obtenus en caractérisant les événements dans le groupe Yi.

s2C et s?M peuvent être compris comme l'extension et l'intention, respectivement, du résumé
χ(s).

Nous avons présenté dans cette partie l'état de l'art des techniques capables de produire
de résumés pour des modèles de données relativement similaires aux séquences de données.
Cependant, cette étude a mis en évidence l'inadéquation de ces méthodes pour prendre en
compte complètement l'aspect temporel des données et de produire un résumé tel que nous
le dé�nissons. Nous proposons dans la partie suivante une approche orientée utilisateur
pour créer des résumés de séquences d'événements.
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2 TSaR: une technique de résumé de séquences d'événements
orientée utilisateur

Dans les travaux précédents [KT08], Kiernan et Terzi montrent que le résumé sans paramé-
trage est une technique souhaitable pour l'utilisateur. Nous pensons que cette propriété
est d'importance car les outils de résumé sont conçus pour aider les utilisateurs dans leurs
tâches d'analyse de données, en particulier lorsque des ensembles de données volumineux
sont considérés. E�et, les utilisateurs non-informaticiens n'ont pas nécessairement les con-
naissances techniques pour paramétrer et modi�er des algorithmes complexes pour répon-
dre aux spéci�cités et aux exigences de tels ensembles de données. Sinon, le paramétrage
requis de l'utilisateur doit être simple et compréhensible [HBMB05] et les structures de
données produites informatives au regard de ces paramètres.

L'inconvénient d'une telle méthodologie du point de vue utilisateur est le manque
de contrôle sur la sortie produite. Cette limitation pourrait être frustrante si elle va à
l'encontre de la manière dont l'utilisateur perçoit la façon dont des groupes d'événements
devraient être organisés. Cela surcharge sa capacité à traiter les quantités d'information
supplémentaires. Nous nous e�orçons de répondre à cette limitation, en termes de �ex-
ibilité et des conditions du regroupement des techniques de résumés sans paramétrage.
Nous proposons une solution qui implique plus activement l'analyste, mais de manière
simple, et qui requiert qu'il décide comment les résumés doivent être construits. Cette
approche centrée sur l'utilisateur est appelée TSaR. Le but de TSaR est de fournir aux
analystes un outil qui peut produire un résumé informatif et intuitif à partir d'une séquence
d'événements.

2.1 Principes

Le principe de base de TSaR est de représenter les descripteurs d'événement sous une
forme plus abstraite en utilisant une certaine forme de connaissances de base (BK) pour
réduire leur variabilité. Lorsque la variabilité des événements est réduite, certains événe-
ments pourraient avoir des descriptions similaires, à savoir, des ensembles de descripteurs
identiques à un certain niveau d'abstraction. Si cela se produit et ces événements sont
proches sur la ligne temporelle, ils sont rassemblés pour former un groupe ou une classe.
Chaque groupe formé est alors représenté par un seul événement, aussi appelé événement
représentatif, qui est produit (dans notre cas, il est pris dans) à partir du groupe corre-
spondant. Pour cela, TSaR est conçu comme un processus en 3 phases qui s'appuie sur la
généralisation des descripteurs d'événements, le regroupement des événements similaires
et proches sur la ligne temporelle et sur la formation de concept.

La phase de généralisation est responsable pour représenter les descripteurs des événe-
ments d'entrée dans une forme plus abstraite grâce à l'utilisation d'une base de connais-
sances fournie par l'utilisateur. Cette base de connaissance est entrée sous la forme d'une
taxonomie, c'est-à-dire, une hiérarchie de concepts, une pour chaque domaine sur lequel
les descripteurs d'événement sont dé�nis. En outre, le niveau d'abstraction de chaque
descripteur d'événements est dé�nie par un paramètre appelé vecteur de généralisation ϑ.
Ce vecteur de généralisation contrôle pour chaque domaine de dé�nition, le niveau auquel
les descripteurs d'événements sont à généraliser. Par ailleurs, le vecteur de généralisation
contrôle la précision du résumé produit du point de vue du contenu.

Étant donné que l'abstraction des descripteurs d'événements réduit la variabilité des de-
scripteurs, des événements généralisés pourraient éventuellement avoir des descriptions sim-
ilaires. Dans cette approche, nous considérons des ensembles de descripteurs d'événement
comme étant similaires si elles sont identiques (à un niveau de généralisation donné). Ainsi,
la phase de regroupement est responsable pour le groupement des événements généralisés
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qui sont identiques. Ce processus de regroupement est contrôlée par un paramètre temporel
w. Intuitivement, le paramètre w indique la distance maximale sur la ligne temporelle
qui autorise des événements similaires à être regroupés. Vu sous un angle di�érent, le
paramètre w �xe (ou estime) la localité temporelle de chaque événement. Par conséquent,
w contrôle la précision du résumé du point de vue temporel (par rapport à la chronologie
des événements).

La dernière phase est la phase de formation de concept. Cette phase est responsable
de la production ou du choix d'un événement pour représenter un groupe d'événements
obtenus dans la phase de regroupement. Puisque nous considérons que deux événements
sont semblables dès lors que leurs descripteurs sont identiques, à un niveau d'abstraction
donné, la formation de concept est simple. Nous choisissons arbitrairement l'événement le
plus ancien du groupe pour représenter le groupe.

2.2 Algorithme

Nous proposons un algorithme incrémental ayant une complexité linéaire et une empreinte
mémoire faible. Dans cet algorithme, nous supposons qu'une séquence d'événements peut
être contenue en mémoire et nous ne tenons pas compte des environnements où le charge-
ment en mémoire de sous-parties de la séquence doit être fait auparavant. D'un point de
vue opérationnel, notre mise en oeuvre de TSaR considère comme entrée une séquence
d'événements et retourne en sortie une autre séquence d'événements où: (i) les descripteurs
d'événements sont abstraits par la généralisation et (ii) les événements similaires dans une
certaine localité temporelle sont regroupés. L'algorithme est paramétré par un ensemble
de taxonomies (fournies dans un format XML), un vecteur de généralisation (fourni dans
un tableau d'entiers) et un paramètre de localité temporelle (exprimé sous la forme d'une
valeur numérique entière qui représente un nombre de groupes). Les événements sont
pris en compte dans l'ordre croissant d'estampille, un à la fois. L'algorithme incrémental
généralise chaque événement entrant en un événement généralisé. Cet événement général-
isé est ensuite comparé aux autres événements qui ont été regroupés au sein de groupes à
une distance dt de w.

TSaR e�ectue la généralisation, le regroupement et la formation de concept à la volée
pour chaque événement entrant. Le processus a une complexité algorithmique linéaire avec
le nombre d'événements dans la séquence d'événements en entrée. L'empreinte mémoire
de TSaR repose sur deux objets: (i) une table de hachage en mémoire qui regroupe les
résultats précalculés de généralisations de descripteurs et (ii) |W | le nombre de groupes au
sein de la fenêtre de localité temporelle w. Comme les groupes qui sont à une distance dt
supérieur à w sont sauté par la fenêtre W , ceux-ci peuvent être directement écrites sur le
disque ou transmis en �ux à d'autres applications. Par conséquent, TSaR n'a besoin de
maintenir en mémoire qu'un petit nombre de groupes. Cette utilisation de la mémoire est
liée par la largeur de w et la taille moyenne m des descripteurs d'événement.

Il convient de noter que, dans certaines con�gurations, le nombre d'événements dans un
groupe en mémoire pourrait devenir très important. Cela se produit par exemple lorsque
le paramètre de localité temporelle est choisi trop grand ou quand il existe de nombreuses
répétitions d'événements similaires à travers la séquence. Ce scénario peut être traité par
l'exploitation (i) de l'hypothèse que s?M est la forme la plus utile d'un résumé et (ii) le
fait que le processus de formation de concept choisit simplement le premier événement
du groupe pour le représenter, c'est-à-dire, le plus ancien événement dans le groupe. Par
conséquent, un événement entrant e′ qui est semblable à un groupe (Y, t′) dans W n'a pas
besoin d'être physiquement ajouté au groupe (Y, t′), puisque le groupe (Y, t′) sera de toute
façon représenté par le plus ancien événement dans (Y, t′) par le processus de formation de
concept. En�n, l'empreinte mémoire globale de TSaR est constante et limitée par rapport

xxiii



à la quantité de RAM disponible sur n'importe quelle machine récente.

2.3 Résultats d'expériences

Grâce à une étude expérimentale approfondie, nous avons montré sur un large jeu de don-
nées extraits des archives �nancières de Reuters que TSaR est une technique de résumé
de séquence d'événements qui permet de produire un résumé avec un temps d'exécution
linéaire avec le nombre d'événements à traiter. A�n d'évaluer la qualité des résumés pro-
duits par TSaR, nous introduisons deux mesures, à savoir la précision sémantique et
la précision temporelle d'un résumé. Ainsi, TSaR produit des résumés qui permettent
d'atteindre des taux de compression élevés tout en conservant une grande précision tem-
porelle. Le taux de compression peut être amélioré si l'utilisateur autorise le processus de
généralisation d'abstraire encore plus les données. Ce choix a une incidence directe sur
la précision sémantique du résumé produit. Nous montrons empiriquement qu'à chaque
fois le niveau de généralisation des descripteurs d'événement est incrémenté de 1, la préci-
sion sémantique du résumé est réduit d'environ 50% et le taux de compression augmenté
d'environ 50% aussi. Il appartient ensuite à l'utilisateur de décider, dans le but de parvenir
à un taux de compression plus fort, s'il est prêt (i) à accepter plus de perte de précision
temporelle et de maintenir la précision sémantique ou (ii) d'accepter la perte de plus de
précision sémantique et de maintenir la précision temporelle.

3 Le résumé de séquences d'événements: un nouveau prob-
lème de classi�cation

La technique de résumé TSaR présentée précédemment s'articule en trois phases: (i) la
généralisation des descripteurs d'événement, (ii) le regroupement des événements ayant
des descripteurs généralisés similaires au sein d'une certaine localité temporelle et (iii)
la représentation de chaque groupe par un événement représentatif. Si nous regardons
l'approche plus en détail, nous pouvons remarquer que les résumés produits par TSaR
ont une ressemblance frappante avec des classes qui pourrait être produite par un algo-
rithme traditionnelle de classi�cation de données. En fait, les idées sous-jacentes sont très
similaires avec TSaR, à savoir, diviser ou partitionner les événements dans une séquence
temporelle en di�érents groupes d'événements similaires.

En e�et, TSaR rassemble seulement ensemble des événements dont les descripteurs
généralisés sont identiques. En d'autres termes, TSaR rassemble des événements dont
les descripteurs sont similaires à un niveau d'abstraction donné; Ce niveau d'abstraction
est �xé par le processus de généralisation. Cette opération de regroupement correspond
typiquement à la méthodologie des techniques traditionnelles de classi�cation de données.
Ces techniques reposent sur les caractéristiques communes des deux objets et une fonction
de mesure basée sur une distance pour calculer leur similarité. Les objets sont regroupés
lorsque leur similitude correspond à une condition donnée. En outre, dans TSaR, les événe-
ments éligibles pour le groupement doivent être situé dans une certaine localité temporelle
dé�nie par le paramètre de localité temporelle w. Cette condition peut être considérée
comme une forme de segmentation temporelle de la ligne temporelle. Nous présentons
donc comment nous pouvons redé�nir le problème de résumé en un nouveau problème de
classi�cation.

3.1 Redé�nition du problème du résumé

Sous la lumière de ces observations, le résumé réalisé par TSaR peut facilement être in-
terprété comme une classi�cation qui opère une forme de segmentation temporelle �exible
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de la ligne temporelle et qui groupe les événements similaires au sein de chaque segment
produit (à noter que les limites de la segmentation ne sont pas bien dé�nies). En contraste
avec la classi�cation de données classique, TSaR ajoute une étape de formation de concept
pour représenter chaque groupe d'événements par un événement représentatif unique. Par
conséquent, une question intéressante à explorer est la suivante: est-il possible de tirer
parti des méthodes traditionnelles de classi�cation de données, par exemple, k-means ou la
classi�cation hiérarchique ascendante, pour construire un résumé de séquence d'événement
tel que nous le dé�nissons dans ces travaux?

Pour répondre positivement à cette question, une méthode de classi�cation de données
doit remplir deux conditions au préalable: (i) manipuler des données catégorielles et (ii)
gérer la dimension temporelle associée aux événements. En ce qui concerne les données
catégorielles, il existe une multitude de travaux de recherche sur la classi�cation des données
catégorielles. En fait, nous pensons que le dé� à relever, pour exploiter un algorithme
classique de classi�cation de données pour réaliser un résumé de séquence d'événements,
est la manière dont l'information temporelle est traitée. La manière la plus intuitive et la
plus simple de manipuler le temps associé à des événements dans une séquence temporelle
est de considérer le temps comme un attribut numérique qui sera traitée comme tout autre
attribut. Toutefois, nous montrons les limites de cette hypothèse au travers des deux
exemples suivants.

D'une part, supposons que la dimension temporelle est considérée de manière équiv-
alente à tout autre attribut. Mécaniquement, la dimension temporelle a moins de poids
lorsque les événements sont décrits sur un grand nombre d'attributs que lorsque les événe-
ments sont décrits sur un petit nombre d'attributs. Par conséquent, deux événements
très similaires qui se produisent très loin sur la ligne temporelle pourraient être regroupés
ensemble.

D'autre part, supposons que la dimension temporelle est considérée comme une di-
mension discriminante. En d'autres termes, la méthode de classi�cation commencera par
segmenter la chronologie des événements, puis une classi�cation sera faite sur les autres
attributs dans chaque segment de la ligne temporelle. Cette approche est exactement celle
adoptée par Kiernan et Terzi dans [KT08] comme décrit précédemment. L'idée est intéres-
sante, mais la segmentation temporelle peut e�ectuer une coupe trop nette et pourrait
empêcher des classes plus compactes d'être formées.

Intuitivement, une solution à ce problème consiste à attribuer un poids approprié à la
composante temporelle. Le dé� d'utiliser une méthode de classi�cation classique pour faire
du résumé de séquence d'événements peut alors être réduit à la question de la dé�nition
d'un poids approprié à la composante temporelle. Nous avons l'intention de relever ce dé�
et, pour cela, nous reformulons le problème du résumé de séquence d'événements d'une
manière qui comprennent totalement la composante temporelle des événements. Ce faisant,
nous exprimons en fait un nouveau problème de classi�cation dont la fonction objective à
optimiser doit prendre en considération, simultanément, le contenu des événements et le
temps associé. Aussi, à travers cette redé�nition du problème, nous adressons la propriété
mise en avant par Kiernan et Terzi, c'est-à-dire, le processus de résumé de séquences
d'événement doit se faire sans paramétrage.

De ce fait, nous redé�nissons résumé séquence temporelle en utilisant la terminologie
consacrée à la classi�cation de données. Pour cela , nous dé�nissons une nouvelle fonction
de coût pour évaluer la distance entre les événements sur la ligne temporelle. La nouveauté
de ce coût se situe dans la double considération du contenu et le temps associés aux
événements. Ainsi, le nouveau problème de classi�cation est présenté comme suit: Étant
donné un taux de compression désiré, un résumé de séquence d'événement optimal est un
résumé qui a atteint le taux de compression souhaité tout en en minimisant la fonction
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de coût qui considère la similarité entre le contenu des événements et la proximité des
événements sur la ligne temporelle.

3.2 Solutions

Nous proposons trois approches, à savoir N-TSS, G-BUSS et GRASS pour résoudre le
problème présenté. N-TSS est une solution naïve qui construit tous les résumés candidats
et choisit ensuite celui qui minimise la fonction de coût. Cette solution est supposée servir
de base de comparaison. Cependant, nos expériences préliminaires ont montré que la so-
lution naïve a un temps de calcul prohibitif.

G-BUSS et GRASS sont deux algorithmes gloutons qui construisent des solutions
optimales locales. G-BUSS est un algorithme de classi�cation hiérarchique ascendante
classique qui utilise la fonction de coût introduite. À chaque itération, l'algorithme G-
BUSS calcule pour chaque paire d'événements dans la séquence le coût de classi�cation.
La paire d'événements qui induit le plus bas coût est sélectionné et les événements sont
regroupés ensemble. Le processus est répété jusqu'à ce que le taux de compression désiré
soit atteint. Étant donné que G-BUSS a une complexité algorithmique quadratique, nous
proposons une technique d'élagage qui permet de réduire en pratique le temps de calcul de
l'algorithme. Cette technique d'élagage est basée sur la composante temporelle et permet
de dé�nir un voisinage d'événements dans lequel le calcul de coût doit se faire. Cette
amélioration permet de réduire en pratique le temps de calcul de G-BUSS de plus d'un
ordre de grandeur.

Le deuxième algorithme que nous proposons est appelé GRASS. L'intuition derrière
GRASS repose sur deux hypothèses: (i) les événements à proximité sur la ligne tem-
porelle sont plus susceptibles d'être groupés ensemble et (ii) les meilleurs candidats pour
être regroupé sont situés dans un voisinage restreint (technique d'élagage introduite pour
G-BUSS). De ce fait, GRASS est un algorithme parallèle glouton qui pro�te de la tech-
nique d'élagage introduite pour G-BUSS et du fait que les stations de travail actuelles
disposent de processeurs avec au moins deux coeurs d'exécution physique (et quatre pour
les processeurs qui implémentent la technologie HyperThreading d'Intel). A chaque itéra-
tion, GRASS sélectionne au hasard un (ou plusieurs) événements sur la ligne temporelle
et décide si cet événement est à regrouper avec un de ses voisins proches. Le processus est
répété jusqu'à ce que le taux de compression désiré soit atteint.

3.3 Résultats d'expériences

Nous évaluons et validons nos algorithmes grâce à un ensemble d'expériences sur des don-
nées du monde réel: les archives �nancières de Reuters, soit, une séquence d'environ 10
000 événements. Nous résumons les données d'entrée et évaluons chaque approche sur trois
dimensions: (i) le temps de calcul, (ii) le coût de classi�cation total et (iii) la qualité des
classes produites, c'est-à-dire, leur homogénéité.

Nos résultats montrent que G-BUSS a bien une complexité algorithmique quadratique
mais que l'utilisation de la technique d'élagage introduite, c'est-à-dire, la sélection d'un
voisinage restreint lors du calcul du coût de classi�cation, permet de réduire d'un ordre
de grandeur le temps d'exécution. De la même manière, sur une échelle logarithmique,
GRASS donne l'impression d'être linéaire. Dans les faits en regardant plus précisément
les résultats, GRASS a bien un comportement quadratique. Cependant, le fait d'avoir
implémenté la technique d'élagage introduite pour G-BUSS et le fait d'utiliser plusieurs
coeurs d'exécution pour explorer l'espace de recherche, l'algorithme GRASS permet de
produire des classi�cations de qualité équivalente à celles produites par G-BUSS (il y a
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en moyenne une di�érence de qualité de l'ordre de 1 à 3%). Cependant, GRASS améliore
le temps d'exécution de G-BUSS de 2 à 3 ordres de grandeur.

4 Extraction de motifs d'ordre supérieur: application aux
données de Reuters

Des domaines tels que la médecine, le WWW, les a�aires ou la �nance de génèrent et stock-
ent sur une base quotidienne des quantités massives de données. Ces données représentent
d'importantes collections de séquences d'événements où les événements sont associés à des
ensembles de données primaires et à une estampille qui horodate l'événement. Par ex-
emple, Reuters a une équipe de plusieurs milliers de journalistes qui produisent des série
d'articles qui relatent les événements survenus à travers le monde. Les informations pro-
duites et archivées sont quali�ées de primaires ou brutes car elles n'ont pas encore été
traitées ou analysées. Ces données primaires ont un contenu riche et contiennent sou-
vent un mélange d'informations non structurées, par exemple, du texte libre, et des infor-
mations structurées, par exemple, des valeurs dé�nies sur des domaines catégoriels et/ou
numériques. Ces archives représentent de précieuses sources d'inspiration pour les analystes
avides d'applications de navigation et d'analyse pour y découvrir des perles de connais-
sance. Par exemple, les biologistes pourraient découvrir les facteurs de risque des maladies
en analysant l'historique des patients [WRZ05], les traders peuvent suivre l'évolution des
données �nancières pour mieux comprendre les tendances mondiales et anticiper des mou-
vements de marché [ZZ04], les producteurs de contenu web et du marketing sont intéressés
par le pro�lage des comportements des clients [SCDT00].

Récemment, Roddick et al. [RSLC08] ont présenté et formalisé le paradigme de fouille
de données d'ordre supérieur ou l'exploration de données d'ordre supérieur. Les auteurs ont
observé que dans de nombreux environnements tels que les environnements de traitement en
temps réel, la vitesse de calcul pour analyser et extraire de la connaissance atteint certaines
limites �xées par les restrictions du matériel et les technologies du �rmware. Dans certains
cas, les données primaires ne sont pas disponibles ou disponibles pour l'analyse seulement
pour une période de temps limitée. En �n de compte, les méthodes d'exploration de don-
nées ont besoin, pour fonctionner, de travailler sur une forme dérivée des données. Parmi
ces formes dérivées des données on peut citer par exemple: des résultats d'agrégats, de la
connaissance résultant de précédentes fouilles de données ou des résumés des données. Par
conséquent, le paradigme de fouille de données d'ordre supérieur englobe toutes les méth-
odes et techniques d'exploration de données qui opèrent sur une forme dérivée des données.

Dans ce contexte, l'extraction de motifs séquentiels est un paradigme d'exploration de
données introduite par Agrawal et Srikant dans [AS95] qui est du plus grand intérêt. En
e�et, le développement de la technologie des codes barres dans les années 90 et la masse
croissante des informations provenant des transactions captées par ces technologies ont mo-
tivé les auteurs à proposer un nouveau paradigme de fouille de données pour identi�er les
habitudes récurrentes des clients. Par conséquent, l'objectif initial de extraction de motifs
séquentiels consiste à analyser les opérations de vente a�n d'identi�er les comportements
d'achat fréquents: le principe de l'extraction de motifs séquentiels est d'identi�er à par-
tir des séquences de transactions ou sous-ensembles de transactions, les séries d'ensembles
d'objets aussi appelés itemsets qui sont fréquemment achetés par les clients. Ce paradigme
d'exploration de données est depuis connu sous le nom d'analyse du panier de la ménagère.
L'extraction de motifs séquentiels a attiré beaucoup d'attention au cours des 15 dernières
années (ces enquêtes [ZB03, TPBM05, HPY05] donnent un aperçu intéressant sur le do-
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maine). Le volume croissant des données à traiter et la taille croissante des ensembles de
connaissances produites ont motivé les chercheurs à dé�nir des motifs plus compacts, égale-
ment connu sous le nom motifs séquentiels fermés [YHA03,TYH03,WH04,SBI06,BS07].

Agrawal et Srikant ont ensuite étendue et généralisé dans [SA96] le paradigme d'extrac-
tion de motifs séquentiels avec le concept d'extraction de motifs séquentiels généralisés
(EMSG). Les auteurs étendent le paradigme en introduisant des mécanismes d'assouplissement.
Par conséquent, l'extraction de motifs séquentiels généralisés peut découvrir à partir des
collections de transactions des clients motifs séquentiels où les itemsets sont exprimés à
di�érents niveaux d'abstraction. L'extraction de motifs séquentiels généralisés réalise cet
e�et par le biais (i) d'un mécanisme d'assouplissement sémantique et (ii) d'un mécanisme
d'assouplissement temporel. Le mécanisme d'assouplissement sémantique est chargé de
représenter les objets dans les itemsets à di�érent niveaux de granularité. Ceci est possible
grâce à l'utilisation de taxonomies. Dans la pratique, les itemsets sont complétés avec les
parents de chaque élément dans l'itemset en se référant aux taxonomies. Cet assouplisse-
ment sémantique permet de découvrir des motifs séquentiels où les articles sont exprimés
à di�érents niveaux d'abstraction.

L'assouplissement temporel permet aux algorithmes d'extraction de motifs séquentiels
de découvrir des motifs qui n'auraient pas pu être trouvé en utilisant la dé�nition originale
de l'extraction de motifs séquentiels. L'assouplissement temporel est exprimé par le biais
d'une fenêtre glissante w dans laquelle un ensemble de transactions peut contribuer au
support d'un motif candidat p. En d'autres termes, dans la dé�nition initiale de l'extraction
de motifs séquentiels, un motif candidat est supporté par une séquence de transactions si
chaque itemset dans le motif est supporté par au moins une opération dans la séquence.
Dans l'hypothèse de l'assouplissement temporel, un itemset peut être soutenu par l'union
d'un ensemble d'au plus w transactions contigües.

Par conséquent, l'assouplissement sémantique permet aux algorithmes d'extraction de
motifs séquentiels généralisés de découvrir des connaissances à di�érents niveaux d'abstrac-
tion, par ailleurs dissimulées par la spéci�cité des données tandis que l'assouplissement
temporel permet de découvrir des connaissances qui ne peuvent être trouvées en raison
de la dé�nition rigide des événements dans le paradigme traditionnel de l'extraction de
motifs séquentiels. Pour ces raisons, l'extraction de motifs séquentiels généralisés peut être
facilement comprise comme une forme d'exploration ordre supérieur.

Nous avons présenté précédemment l'approche de résumé TSaR comme une technique
dont le but est de construire des résumés pour aider des applications dépendantes du
temps à passer à l'échelle. Notamment, une application intéressante est l'extraction de
motifs séquentiels. TSaR est conçu comme une étape de prétraitement pour permettre
aux applications nécessitant des calculs intenses, tels que l'extraction de motifs séquentiels,
à découvrir des connaissances à di�érents niveaux de représentation. Grâce à l'utilisation
de taxonomies, les descripteurs des événements considérés par le système sont exprimés à
di�érents niveaux de granularité. De ce manière, si les techniques classiques d'extraction
de motifs séquentiels sont exploitées sur les résumés produits par TSaR, les motifs ex-
traits sont intuitivement comparables à ceux obtenus par les approches d'extraction de
motifs séquentiels généralisés. L'exploration de données dans les résumés de séquences
d'événements produits par TSaR peut aussi être comprise comme une forme d'exploration
de données ordre supérieur. En ce sens, TSaR construit une structure support qui per-
met l'exploration de données d'ordre supérieur et permet la découverte de connaissances
d'ordre supérieur d'une manière similaire aux méthodes d'extraction de motifs séquen-
tiels généralisés. A partir de ces observations, nous proposons d'étudier la façon dont un
algorithme d'extraction de motifs séquentiels disponible dans le commerce, tel que Pre�xS-
pan [PHMA+01], pourraient exploiter dans la pratique des résumés produits par TSaR
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pour extraire des connaissances d'ordre supérieur.

Les contributions abordées dans cette partie applicative sont les suivantes.

Tout d'abord, nous introduisons la notion de motif d'ordre supérieur. Nous présentons
les motifs d'ordre supérieur comme une forme de connaissance extraite de résumés de
séquences d'événements en utilisant une technique classique comme Pre�xSpan. Nous
analysons avec rigueur les motifs d'ordre supérieur extraits des résumés produits par TSaR
par rapport aux motifs découverts à partir des séquences d'événement originales.

Deuxièmement, nous proposons une méthodologie appelée Fouille exploratoire qui utilise
des motifs d'ordre supérieur découverts sur les résumés produits par TSaR pour découvrir
des motifs plus spéci�ques, à savoir, des motifs ayant un support encore plus faible. La
fouille exploratoire est un processus Drill-Down qui s'appuie sur deux mécanismes: la re-
combinaison des événements dans un motif et la spécialisation des événements d'un motif.
Nous détaillons ces deux mécanismes et discutons de la façon dont ils contribuent à la
tâche de découvrir des motifs plus ra�nés.

Troisièmement, nous évaluons et validons nos contributions à travers un ensemble im-
portant d'expériences sur les archives d'actualités �nancières écrites par Reuters. L'ensem-
ble des données choisi est un sous-ensemble des données Reuters prétraitées précédemment.
L'ensemble des données représente environ 4600 séquences d'événements pour approxima-
tivement 100000 événements au total. Nous avons implémenté l'algorithme Pre�xSpan et
réalisé un large éventail d'expériences d'exploration des données. Les résultats prélimi-
naires viennent appuyer nos revendications qu'une structure support est nécessaire pour
les applications de fouille de données dans des domaines tels que la �nance. Nous mon-
trons que (i) le temps d'exécution de Pre�xSpan explose exponentiellement lorsque l'on
réduit le paramètre de support minimum de l'algorithme et (ii) que l'ensemble des résultats
produit en sortie pourrait ne pas être humainement exploitable. Puis, nous construisons
des résumés TSaR à di�érents niveaux de précision de contenu et de précision temporelle
et explorons les résumés construits de cette manière. Nous montrons que l'exploration de
résumés compacts peut permettre la découverte de motifs qui ont un support très faible
(≈ 0, 01%) tout en améliorant le temps de calcul par un ordre de grandeur. Plus important
encore, nous réalisons des opérations de fouille exploratoire à partir de motifs déjà décou-
verts et montrons que l'on peut atteindre l'objectif de trouver des connaissances encore
plus spéci�ques, à savoir, des motifs ayant un support encore plus faible.

4.1 Dé�nition d'un motif d'ordre supérieur

Roddick et al. ont inventé le terme fouille de données d'ordre supérieur dans [RSLC08]
pour se référer aux tâches d'extraction de connaissance à partir de données non-primaires.
Nous étudions comment les résumés de séquences d'événements peuvent béné�cier une
tâche spéci�que comme l'extraction de motifs séquentiels. L'idée est de représenter ces
sources de données à di�érents niveaux d'abstraction, puis d'utiliser une méthode classique
d'extraction de motifs séquentiels pour découvrir des connaissances. Intuitivement, TSaR
est un bon candidat pour cette tâche, car il utilise le contenu des données et des informa-
tions temporelles pour créer des résumés qui re�ètent la compréhension et les préférences
de l'utilisateur. Dans cette perspective, la tâche de découvrir une forme de connaissance
sur les résumés TSaR grâce à une méthode d'extraction de motifs séquentiels classique
peut être comprise comme une nouvelle forme de fouille de données d'ordre supérieur.
Par conséquent, nous étendons la terminologie de Roddick et al. et dé�nissons les motifs
extraits de résumés de séquence d'événements comme étant des motifs d'ordre supérieur.
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4.2 Caractérisation

Nous caractérisons les motifs d'ordre supérieur découverts sur les résumés TSaR et évalu-
ons dans quelle mesure les motifs d'ordre supérieur sont liés à la connaissance découverte
sur des séquences temporelles primaires. Nous caractérisons et analysons aussi complète-
ment que possible les relations suivantes: motifs découverts (i) des séquences d'événements
originales par rapport aux motifs d'ordre supérieur découverts des séquences généralisées,
(ii) le rapport entre les motifs d'ordre supérieur découvert des séquences généralisées par
rapport aux motifs d'ordre supérieur découverts des séquences résumées et (iii) le rap-
port entre les motifs découverts des séquences originales par rapport aux motifs d'ordre
supérieur découverts des résumés.

Nous avons établi dans cette section des relations qui lient les motifs séquentiels dé-
couverts des séquences temporelles primaires aux motifs d'ordre supérieur découverts des
résumés de séquence d'événements. Toutes les relations n'ont pas pu être décrites analy-
tiquement. Cette limitation est dûe au fait que ces relations dépendent profondément des
paramètres de résumé, des paramètres de fouille de données et des données elles-mêmes.
Tous ces paramètres compliquent grandement la tâche, notamment il est très compliqué
d'établir précisément les relations qui lient les motifs d'ordre supérieur découverts des ré-
sumés aux motifs découverts des séquences d'origine, à partir du moment où on s'intéresse
aux motifs de longueur deux au minimum. Pourtant, nous avons pu identi�er les situa-
tions et les conditions qui permettent de déterminer si, pour un résumé donné, un motif
pourraient être supporté par la séquence d'événements originale sous-jacente.

4.3 Fouille exploratoire: une méthodologie pour découvrir de la con-
naissance à partir des résumés

Auparavant, nous avons caractérisé les relations qui lient les motifs découverts des séquences
originales aux motifs d'ordre supérieur découverts des séquences d'événements généralisés
ou résumés. En particulier, nous avons donné une propriété qui stipule que des motifs
d'ordre supérieur pouvaient servir à trouver des motifs encore plus précis. Nous comptons
sur cette propriété et présentons une méthodologie qui utilise toutes les caractéristiques déjà
démontrées pour obtenir des motifs plus spéci�ques à partir de motifs d'ordre supérieur
découverts des résumés TSaR. Cette méthodologie est appelée Fouille exploratoire. La
fouille exploratoire est réalisée grâce à deux opérations complémentaires, à savoir: (i) la
spécialisation des événements d'un motif et (ii) la recombinaison des événements d'un motif.

Les idées qui guident ces deux opérations complémentaires reposent sur des observations
faites à partir de l'utilisation dans TSaR des opérateurs ϕϑ et ψw. D'une part, l'opérateur
ϕϑ réécrit les descripteurs d'événement à un niveau d'abstractio supérieurn. Ce faisant, la
variabilité des descripteurs diminue alors que le support de chaque événement généralisé
est augmenté. Mécaniquement, les événements qui ont un support très faible dans une
séquence d'événement originale, par exemple, en raison de l'utilisation d'un vocabulaire
spécialisé, pourrait avoir un support plus important dans son résumé, par exemple, dû à
l'association d'un vocabulaire spécialisé à des concepts plus communément utilisés. L'idée
de la spécialisation des événements d'un motif est alors d'identi�er, dans les résumés de
séquence d'événements, un motif p d'intérêt qui aurait un support important et d'essayer
de trouver des motifs ayant un support moins élevé en spécialisant certains descripteurs
d'événements dans p en utilisant les mêmes taxonomies que celles utilisées lors du proces-
sus de résumé.

D'autre part, l'opérateur ψw regroupe des événements qui sont similaires et à une cer-
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taine distance w les uns des autres sur la ligne temporelle. Comme conséquence directe, les
résumés de séquences d'événements sont plus courts que leurs homologues non-résumés et
induisent une perte de précision temporelle. Nous avons montré précédemment que cette
opération entraîne une perte de capacité de rappel, à savoir, les motifs d'ordre supérieur
découverts des résumés de séquences d'événements ne peuvent pas capturer tous les motifs
découverts des séquences originales. Par conséquent, l'idée de la recombinaison des événe-
ments dans les motifs est d'atténuer les conséquences de l'opérateur de regroupement ψw
et de produire des motifs candidats à partir de motifs d'ordre supérieur déjà découverts
dans les résumés. Ces motifs candidats sont générés par recombinaison des événements qui
composent le motif d'ordre supérieur.

4.4 Expériences

Dans cette section, nous expérimentons l'extraction de motifs séquentiels sur les résumés de
séquences d'événements produits parTSaR. Nous avons montré dans nos travaux d'analyse
qu'il existe un lien fragile entre les motifs découverts des séquences d'événements primaires
et les motifs d'ordre supérieur découverts des résumés. Cette connexion dépend grande-
ment de 3 dimensions: (i) les paramètres de résumé, (ii) les paramètres de la fouille de
données et (iii) la distribution des données. Il est indéniable qu'extraire des motifs d'ordre
supérieur de résumés entraîne une perte de motifs, éventuellement cette perte peut être
importante, si l'on se concentre uniquement sur le critère de rappel des motifs qui de-
vraient être découverts des séquences d'événements originales. Toutefois, l'objectif des
motifs d'ordre supérieur n'est pas nécessairement de produire exactement les mêmes con-
naissances que celles découvertes des séquences d'événements originales. Pour cette rai-
son, dans l'application de l'extraction de motifs séquentiels sur les résumés de séquence
d'événements, nous pensons qu'il n'y a pas de sens à utiliser les mesures classique et large-
ment acceptées en recherche d'information, à savoir la précision et le rappel, pour évaluer
la qualité des motifs découverts. Nous préférons montrer dans ce travail expérimental que
les motifs extraits des résumés permettent de découvrir di�érents types de connaissances
qui seraient autrement restées dissimulées.

Dans cette perspective, il nous semble beaucoup plus intéressant d'évaluer l'utilité des
résumés TSaR face à la tâche de découvrir des connaissances très précises et spéci�ques.
Nous proposons d'expérimenter Pre�xSpan sur des résumés TSaR en deux phases: (i)
évaluer si les résumés TSaR forment bien une structure support pour les algorithmes
comme Pre�xSpan, c'est-à-dire, évaluer leur capacité à aider à réduire les temps de calcul,
et (ii) e�ectuer la fouille exploratoire sur les résumés construits par TSaR a�n de voir
quel type de connaissance peut être découvert. Pour cela, nous avons réutilisé l'ensemble
des données d'actualités �nancières extraites des archives de Reuters. Cependant, comme
les algorithmes d'extraction de motifs séquentiels sont des algorithmes très intensifs, nous
limitons l'ensemble des données à un mois d'actualités seulement. L'ensemble des don-
nées utilisées représente encore approximativement 100000 événements répartis sur 4600
séquences d'événements.

4.4.1 Scénarios d'usage des résumés TSaR

Nos résultats préliminaires montrent que les techniques d'extraction de motifs séquentiels
peuvent tirer partie de structures supports comme les résumés, au moins pour réduire les
temps de calcul. Toutefois, ces expériences n'informent pas explicitement l'analyste sur
la nature, la qualité ou le contenu des connaissances extraites. Pour cette raison, nous
présentons dans cette section deux scénarios pour illustrer la façon d'utiliser les résumés
TSaR pour extraire des motifs séquentiels.
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Scénario 1 (Sc.1): trouver de la connaissance plus abstraite

Le but du premier scénario est de découvrir des motifs d'ordre supérieur des séquences
d'événements de l'actualité �nancière. Ces motifs sont des tendances qui informent l'analys-
te sur le thème général des motifs les plus fréquents. En d'autres termes, les motifs d'ordre
supérieur découverts donnent le pro�l des séries d'événements les plus récurrents parmi
les événements survenus. Par conséquent, l'objectif de la découverte des tendances est
d'informer l'analyste sur les principaux thèmes des événements fréquents. C'est pourquoi
les motifs séquentiels découverts des résumés très compacts, c'est-à-dire, construits avec
un niveau de généralisation important et un paramètre de localité temporelle important,
donnent de précieux renseignements sur les données sous-jacentes. Si l'analyste a besoin
de connaître des tendances à un degré de granularité plus �n, il peut ra�ner les résumés
TSaR utilisés.

Scénario 2 (Sc.2): découvrir des motifs spéci�ques à partir de motifs d'ordre
supérieur

Le deuxième scénario est complémentaire au scénario 1. Dans le cas où l'analyste a trouvé
un (ensemble de) motif(s) d'ordre supérieur d'intérêt, il faut lui donner l'occasion d'a�ner
cette connaissance sans nécessiter d'opérer à nouveau une opération d'extraction de motifs
séquentiels. Par conséquent, ce scénario permet à l'analyste d'utiliser les connaissances déjà
découvertes pour découvrir des motifs plus spéci�ques dans un mode Drill-Down utilisant la
méthodologie de fouille exploratoire. Nous choisissons un motif d'ordre supérieur d'intérêt
et spécialisons les descripteurs de l'événement et/ou recombinons les événements pour
générer un ensemble de motifs candidats. Nous calculons le support de ces motifs candidats
générés et montrons qu'il est possible de trouver des motifs encore plus spéci�ques qui
béné�cient d'un support très faible, autrement di�ciles à découvrir.

4.4.2 Les scénarios en pratique

Nous construisons des résumés TSaR à partir les données précédentes avec les paramètres
de résumé ϑ = 〈1〉 et w = 50. Le résumé χϑ=〈1〉,w=50(E) est notée E?. Nous explorons les
motifs séquentiels ayant pour support γ = 14 et limitons la longueur maximale des motifs
séquentiels à 7. Cette contrainte est ajoutée pour réduire le temps de calcul et le nombre
total des motifs extraits. L'ensemble des motifs séquentiels découverts est noté Pγ(E?).
Nous donnons dans le Tableau 1 certains motifs séquentiels d'intérêt découverts dans E? et
leur support respectif. L'ensemble des descripteurs utilisés pour décrire chaque événement
dans le Tableau 1 est donné dans le Tableau 2.

Sc.1: trouver de la connaissance plus abstraite

Dans le premier scénario d'utilisation, nous mettons en évidence la possibilité de décou-
vrir des connaissances générales sous la forme de tendances à partir des résumés compact
produits par TSaR. Par exemple, considérons le motif P3 dans le Tableau 1. De la de-
scription des événements donnée dans le tableau 2, des nouvelles qui impliquent �une sorte
d'opération relative aux pays de l'Ouest� semblent être très fréquentes (suppE?(P3) = 273).
Plus précisément, le motif p1,3,4 a un support de 24 dans E? et indique que des événe-
ments qui impliquent �certaines institutions �nancières� ou �des a�aires� sont également
fréquents. Ces deux motifs par eux-mêmes fournissent su�samment d'information sur la
tendance de certaines séries d'actualités fréquentes. Ici, la tendance des nouvelles est �des
a�aires/opérations �nancière dans les pays occidentaux�.
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Motif suppE?

p1=〈e1〉 132
p2=〈e2〉 121
p3=〈e3〉 273
p4=〈e4〉 83
p1,2=〈e1, e2〉 33
p1,3,4=〈e1, e3, e4〉 24
p3,4,1=〈e3, e4, e1〉 21

Table 1: Motifs découverts et sup-
port

Event Descripteurs

e1
{any_operation, �nancial institution,
west}

e2 {any_operation, sales, west}
e3 {any_operation, west}

e4
{any_operation, business, �nancial in-
stitution, west}

e↓1,1 {any_operation, islf, west}
e↓1,2 {any_operation, ins, west}
e↓1,3 {any_operation, �n, west}
e↓1,4 {any_operation, bnk, west}
e↓2,1 {any_operation, bus, west}
e↓2,2 {any_operation, ret, west}
e↓2,3 {any_operation, who, west}

Table 2: Description des événements

Si l'analyste a besoin plus de détails sur les motifs et sur les nouvelles en cause, ce motif
d'ordre supérieur découvert dans les résumés pourrait être ra�née grâce à la méthodologie
de fouille exploratoire. Tel est l'objet du scénario 2. Nous proposons d'utiliser et d'explorer
le motif p1,3,4 en plus de détails.

Sc.2: fouille exploratoire

Sc.2.1: recombinaison des événements

Dans le scénario Sc.2, nous essayons de découvrir des tendances plus détaillées à partir
des motifs extraits dans le scénario Sc.1 en suivant la méthodologie de fouille exploratoire.
Nous commençons par recombiner les événements dans le motif d'ordre supérieur extrait
précédemment. Considérons le motif d'ordre supérieur p1,3,4 dans le Tableau 1. Le support
de p1,3,4 dans E? est de 24. En fait, quand on extrait des motifs séquentiels de E? avec
un support minimum de γ = 24, p1,3,4 est l'unique motif qui implique les trois événements
e1, e3 et e4. En d'autres termes, les motifs 〈e1, e4, e3〉, 〈e3, e1, e4〉, 〈e3, e4, e1〉, 〈e4, e1, e3〉 et
〈e4, e3, e1〉 ont un support inférieur à 24 dans E?.

e1 , e 3, e 4

Support: 24

e 3, e 1, e 4

e 3, e 4, e 1

Support: 19

Support: 21

e 1,  e 4,  e 3

Support: 19

e 4, e 3, e 1

e 4, e 1, e 3

Support: 18

Support: 17

Figure 1: Séquences d'événements recombinés

Par conséquent, nous commençons par recombiner les événements dans le motif p1,3,4 et
nous produisons toutes les combinaisons possibles des événements de p1,3,4. L'ensemble des
motifs candidats résultant de la recombinaison et leur support respectif dans E? est donné
dans la Figure 1. Notez que le support de tous les candidats recombinés est inférieure au
support de p1,3,4. En moyenne, chaque séquence combinée a un support inférieur à celui du
motif p1,3,4 d'environ 21%, tandis que le motif candidat qui a le support le plus important

xxxiii



est p1,3,4 avec un support égal à 21, soit 12,5% inférieur à p1,3,4. Cette observation montre
que nous avons été capables de découvrir d'autres motifs qui: (i) contiennent tous les
trois événements e1, e2 et e3, et qui (ii) ont un support plus faible que p1,3,4, sans avoir à
complètement refaire une opération complète d'extraction de motifs.

Sc.2.2: spécialisation des événements d'un motif

Le second mécanisme impliqué dans la fouille exploratoire est la spécialisation des événe-
ments d'un motif. Nous illustrons ce deuxième mécanisme en utilisant un motif choisi
parmi les connaissances extraites précédemment. Supposons que nous nous intéressons à
des motifs qui contiennent les descripteurs �sales� et ��nancial sector� du domaine �In-
dustrial sector� (Tableau 4.5(b) et Tableau 4.5(a) du Chapitre 4 donnent des détails de la
spécialisation des descripteurs �sales� et ��nancial sector�, respectivement).

Dans la pratique, sans aucune connaissance préalable, le motif d'ordre supérieur p1,2 =
〈e1, e2〉 est une série de deux événements qui peut être comprise comme suit: �une sorte
d'opération dans le secteur �nancier dans un pays occidental� suivi d'�une sorte d'opération
de vente d'une industrie dans un pays occidental�. Ces deux événements donnent des ren-
seignements généraux sur l'emplacement et la nature de l'industrie concernée. Ces connais-
sances peuvent être ra�nées grâce à la spécialisation des descripteurs �sales� et ��nancial
sector�. Par conséquent, le motif p1,2 est spécialisée en 12 motifs spécialisés candidats.
Une remarque intéressante est que parmi ces motifs candidats spécialisés, il y en a un qui
a un support de seulement 4.

Nous avons fourni dans cette section une étude expérimentale approfondie sur l'utilisa-
tion des résumés TSAR pour l'extraction de motifs séquentiels fréquents avec un algorithme
classique appelé Pre�xSpan. Nous avons montré que pour certaines applications, telles que
les applications �nancières, l'extraction de motifs séquentiels des données brutes au moyen
d'un algorithme classique n'est pas su�sante. Les motifs intéressants, à savoir, les motifs
qui impliquent au moins 2 à 4 événements, ne sont extraits qu'à des niveaux de support
très faible, c'est-à-dire, γ ≤ 0, 06%. Malheureusement, à ces faibles niveaux de support,
le temps de calcul explose et l'utilisateur est submergé par la masse des motifs extraits.
D'autre part, les résumés TSaR sont apparus comme des candidats intéressants pour
appuyer les algorithmes d'extraction de motifs séquentiels. Les expériences montrent qu'il
est possible d'extraire des motifs séquentiels à partir des résumés à des niveaux de support
très faibles, c'est-à-dire, γ ≈ 0.01%, mais cette opération nécessite des résumés compacts.
Toutefois, nous avons fourni deux scénarios d'utilisation et démontré que l'application de la
méthodologie de fouille exploratoire sur les motifs d'ordre supérieur a permis de découvrir
à partir des résumés des motifs séquentiels très précis.

Conclusion

Dans ce travail de thèse, nous avons abordé un certain nombre de dé�s pour aider des
applications dépendantes du temps à passer à l'échelle. Nous avons mis en place et
formalisé la notion de �Résumé de séquence d'événements�. Puis, nous avons proposé
plusieurs techniques qui permettent de produire un résumé de séquence d'événement.
La première approche est une technique de résumé orientée utilisateur appelée TSaR.
TSaR est conçu pour tenir compte des préférences de l'utilisateur et de sa compréhension
des domaines sur lesquels les données sont dé�nies. TSaR produit avec ces préférences
une séquence d'événements plus compacte où les événements sont représentés à di�érents
niveaux d'abstraction. L'e�et de compression est obtenu par le regroupement de don-
nées qui sont semblables à un certain niveau d'abstraction et qui sont proches sur la ligne
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temporelle.
Puis, nous avons proposé une approche de résumé sans paramétrage. Pour cela, nous

avons reformulé le problème de résumé en un nouveau problème de classi�cation de don-
nées. L'originalité de cette reformulation du problème en un problème de classi�cation est
que la fonction objective à optimiser doit prendre en compte simultanément le contenu et
l'information temporelle des données. Nous proposons deux algorithmes gloutons qui per-
mettent de construire des solutions localement optimales à ce problème, à savoir G-BUSS
et GRASS.

Étant donné que les résumés de séquences d'événements ont été conçus pour soutenir
les applications dépendantes du temps, nous avons fourni une vaste étude sur l'utilisation
des résumés dans le contexte d'extraction de motifs séquentiels. Par conséquent, nous
avons complètement caractérisé la connaissance qui pourrait être extraite à partir des
résumés TSaR au regard des connaissances qui peuvent être extraites à partir de séquences
originales. Aussi, nous avons exploré les connaissances extraites des résumés grâce à la
méthodologie introduite: la fouille exploratoire. Nous avons montré sur quelques exemples
concrets tirés des archives des actualités �nancières de Reuters que notre méthodologie nous
a permis de découvrir grâce à l'utilisation des résumés, des motifs et des connaissances très
précises et concrètes.
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Introduction

�Now the reason the enlightened prince and the wise general

conquer the enemy whenever they move and their achieve-

ments surpass those of ordinary men is foreknowledge�

� Sun Zi, The Art of War, 6th century BC.

January 18th 2006. TechCrunch relayed the following rumor on its website:

�YouTube Acquisition Rumors
Rumors are �ying that Silicon Valley based YouTube (pro�led here) has signed
an agreement to be acquired. Whoever the buyer may be, it's not News Corp.
They have con�rmed directly to me it has not acquired YouTube. YouTube
raised $3.5 million in venture capital just three months ago from Sequoia. It
was founded in February 2005.�

During the period January 13th to January 20th 2006, Google's share price lost -14.32%,
News Corp. lost -0.52%, Yahoo! lost -15.43% and Microsoft lost -2.86%.

October 6th 2006. TechCrunch France relayed the following rumor on its website:

�Des rumeurs d'acquisition de YouTube par Google
Nous venons de recevoir un email faisant part d'une acquisition probable de
YouTube par Google qui serait en court de �nalisation. La rumeur fait état
d'un prix d'acquisition de $1,65 milliard. Nous avons appelé un investisseur de
la place qui con�rme que cette rumeur circule bien...
[We just received an email informing us that Google is in talks with Youtube
for a takeover plan. The rumor states the takeover could cost $1.65 billion.
We contacted a trader who con�rmed the rumor was spreading out on the trade
�oor...] �

October 7th 2006. The Wall Street Journal con�rms Google is in talk with Youtube.
October 10th 2006. The Guardian announces:

�Google nets YouTube in $1.65bn takeover
The founders of the video website YouTube last night accepted a $1.65bn
(¿880m) takeover o�er from Google for their 20-month-old venture, which has
a big online following but has yet to make money...�
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During the period September 29th to October 13th 2006, Google's share price gained
+6.31%, News Corp. gained +4.60%, Yahoo! lost -3.40% and Microsoft gained +3.72%.

April 14th 2007. Bloomberg announces:

�Google's DoubleClick Strategic Move
Three billion dollars? On Apr. 13, Google announced that it would pay $3.1
billion for the advertising out�t DoubleClick.[...] DoubleClick has something
that Google, for all its money and smarts, doesn't: a vibrant advertising busi-
ness for banners, videos, and other so-called display ads...�

Six months right after spending $1.65 billion, Google announces it would reinvest $3.1
billion to buy a company specialized in display advertising, notably in video ads. �Is this a
move to monetize Youtube and make it pro�table? Will there be an impact of any shares
of IT companies I hold? Will Yahoo!'s share price drop again? Will News Corp.'s share
price increase like in October?� These are legitimate and realistic questions an investor
would ask himself when �rst receiving Bloomberg's news �ash. Without any knowledge of
the past, answering these questions is a challenging task. However, hints to wisely answer
these questions could eventually be derived by analyzing historical data and by identifying
similar situations that could have occurred to related companies. This would �just� require
to analyze gigantic �nancial news archives and correlate the news information to thousands
of companies' share price evolution: It is simply not humanly possible. This is typically the
goal of a Knowledge Discovery in Databases (KDD) process: Help us cope with this data
overload to identify valid, novel, potentially useful and ultimately understandable patterns
(or knowledge in general) [FPSS96].

Domains such as medicine, the WWW, business or �nance generate and store on a
daily basis massive amounts of time-varying data. For instance, data warehouses keep
swelling within the terabyte scale while the largest ones are expected to grow by an order
of magnitude and reach the petabyte scale by 2012 [Win]. These colossal data sources
represent valuable sources of insight for specialists to browse, analyze and discover golden
nuggets of knowledge. More speci�cally, some applications of interest such as economics
forecasting, sales forecasting, census analysis, web usage analysis or stock market analysis
rely on discovering and extracting patterns from large collections of series of data points.
It is commonly accepted that there exists some internal structure such as autocorrelation,
trend or seasonal variation that could be accounted for in the knowledge discovery process.
Traditionally, these analysis applications operate on series of mono- or multi-dimensional
numerical data. For example, in stock market analysis, investors and trader focus on the
daily, hourly or minutely variations of a companies' share prices to predict future trends.

However, the advent of database technologies in the early 70's and 80's [McG81] has
enriched this landscape of applications and allowed the analysis of more complex forms of
sequences, i.e., sequences of transactions where transactions are sets of items. Hence, the
data unit is no longer constrained to be a numerical data object. In this new context, biol-
ogists could discover disease risk factors by analyzing patient histories [WRZ05], web con-
tent producers and marketing people are interested in pro�ling client behaviors [SCDT00]
and traders investigate �nancial data for understanding global trends or anticipating mar-
ket moves [ZZ04]. An example of such evolution is the customer market basket analysis
paradigm proposed by Agrawal et al. in 1995 [AS95]. This novel form of analysis, known
as Sequential Pattern Mining (SPM), consists in discovering collections of items that are
frequently purchased together by customers. Hence, sequential pattern mining relies on
the analysis of sequences of customer transactions: Each customer is associated with a
sequence of chronologically ordered transactions and each transaction is a set of items he
purchased. A tangible example used by the authors to illustrate the knowledge discovered
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by means of sequential pattern mining in such sequences is the following: �In a book store,
5% of customers bought �Foundation�, then �Foundation and Empire�, and then �Second
Foundation�� within a certain period of time.

We highlight here the contrast between the two types of series of data that exist in
the literature. On the one hand, �Time series� are sequences of chronologically ordered
data objects, where each data object is a mono- or multi-dimensional numerical value.
On the other hand, �Time sequences� are sequences of chronologically ordered data ob-
jects where each data object is a multi-dimensional categorical and/or numerical entity.
More generically, �Time sequences� are also called �Time sequences of events� [PRSP+09].
Discovering knowledge in very large sources of time sequences of events, e.g., sales data
warehouses or web usage logs, is a process-intensive task that requires fast and e�cient
algorithms. Unfortunately, recent studies on Web Usage Mining (WUM) [MTT04,RKS07]
have shown that even state-of-the-art pattern mining algorithms hit a performance limit
when the data mining parameters are too re�ned, i.e., when the support parameter drops
approximatively below 0.06%. This context has motivated our work in designing a data
transformation technique to create a concise, yet comprehensive and informative, repre-
sentation of time-varying data that can support such categories of applications. We name
this transformation: Time sequence summarization.

In order to support applications such as sequential pattern mining, time sequence sum-
marization comes with a strong constraint inherent to time sequences: Events in time se-
quences are chronologically ordered and some data mining applications rely on this chronol-
ogy to produce meaningful and useful knowledge. For instance, the sequence 〈Lehman
Brothers's Bankruptcy, Lehman Brothers's Rescue〉 only makes sense because the events
related to the bankruptcy needs to occur before the rescue could happen. Hence, time
sequence summarization needs to account for the temporal ordering of the data.

During the past thirty years, data summarization techniques have been developed for
various data sources such as text �les, databases, data warehouses, data streams, etc..
The purpose of these technologies is to represent the input source in a more concise form
for usages that include, but not limited to, storage, analysis, visualization or exploratory
browsing. The approaches developed for storage purposes are more commonly called data
compression algorithms and are mainly aimed towards �le compaction. Data compression
relies on the syntactic, e.g., byte, character or word redundancies, or statistic properties
of the input �le to reduce its representation. However, the compressed �le is structurally
di�erent from its original form and thus can not be directly operated on without prior
decompression. This form of summarization does not �t the context of time sequence sum-
marization and will not be considered in our work.

The alternative idea is to take advantage of the semantic content of the data to per-
form summarization. During the past decade, semantic data summarization has been
addressed in various areas such as databases, data warehouses or datastreams [HCCC92,
HF96, JMN99,BGR01, JNOT04, SPRM05,PMR06]. These approaches output summaries
that have been used for various purposes such as �exible query or exploratory browsing.
However, accounting for the time dimension in the summarization process is an additional
constraint that requires the chronology of events in the sequence to somehow be preserved.
Much e�ort has been put into designing summarization techniques that use the semantic
content of the data to create more concise representations. The continuous and exponential
growth of content-rich sequential data feeds, e.g., in the form of RSS news feeds or even
Twitter feeds, has triggered the need to somehow manage and make use of the temporal
nature of events in sequences. To the best of our knowledge, small interest has been given
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to temporal information for the purpose of summarizing. Under the light of applications
that heavily rely on the chronology of events in a sequence, facing this new constraint
comes with numerous challenges:

• The data generated is complex, i.e., contains both unstructured information (free
text) and structured information (attribute-value pairs).

• The volume of the data keeps increasing.

• Applications require low complexity solutions.

In this thesis work, we address the challenges inherent to supporting chronology de-
pendent and process intensive applications. For this purpose we make the following con-
tributions:

• We formally de�ne the concept of �Time sequence summarization� and thoroughly
study related work.

• We propose a used-oriented technique to produce a time sequence summary.

• We reformulate the time sequence summarization as a novel conceptual clustering
problem where a criterion function that considers both the content and temporal
information of data needs to be optimized. We propose a naive solution and two
greedy methods to solve this problem.

• We propose to study how well a time sequence summary can support in practice,
on real world data, a speci�c chronology dependent applications: Sequential Pattern
Mining. For this purpose, we thoroughly study the relationships that link sequential
patterns discovered in original sequences to patterns discovered on summaries. We
detail the analysis of these relationships.

• We propose an novel methodology to use patterns discovered in summaries called
Exploratory mining to discover even more speci�c knowledge.

• We support all our contributions thanks to extensive sets of experiments on real
world data extracted from Reuters 2003 �nancial news archives.

This dissertation is organized as follows.

We de�ne in Chapter 1 the concept of �Time sequence summarization� to delimit the
scope of our study. Then, we discuss the state-of-the-art methods that have been pro-
posed to summarize time-varying data according to our de�nition. Also, we formalize the
problem of building time sequence summaries. We present in Chapter 2 a user-oriented
technique to build a time sequence summary, called TSaR. TSaR builds on top of the
ideas of the Generalize and Merge and uses background knowledge in the form of domain
speci�c taxonomies to represent events at higher levels of abstraction. Summarization is
achieved by gathering similar events that occur close on the timeline and each step is
parameterized by a user-de�ned parameter. In Chapter 3, we propose to address the issue
of having to parameterize the summarization algorithm. Hence, we reformulate the time
sequence summarization activity into a novel conceptual clustering problem where events
are clustered based on the similarity of their content and their proximity on the timeline.
We introduce the parameter-free property and switch the summarization activity to an
optimization problem. We propose a naive solution, called N-TSS, and two greedy solu-
tions, called G-BUSS and GRASS, to solve this new problem formulation. We present
and thoroughly study in Chapter 4 an application framework to show how time sequence
summarization can bene�t in practice, on real world data, a speci�c chronology dependent
application, namely Sequential Pattern Mining.
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Chapter 1

Time sequence summarization:

State of the art

1 Introduction

The analysis of series of data, or time-varying data in general, has long been the interest
of specialists for applications as various as signal processing, economics forecasting, sales
forecasting, census analysis, census analysis or stock market analysis. The belief is the
existence of some internal structure such as autocorrelation, trend or seasonal variation that
could be accounted for while forecasting or monitoring. Traditionally these applications
rely on the analysis of a series of one dimensional numerical data. For example, in stock
market analysis, trader focus on the daily, hourly or minutely variations of a company's
stock value to predict future trends and consolidate or create new business opportunities.

However, the advent of database technologies in the early 80's [McG81] has enriched
this landscape of applications and allowed the analysis of more complex forms of data
such as sequences of transactions. For example, Agrawal et al. [AS95] proposed to mine
customer transaction databases for discovering frequent consumer patterns. This novel
form of analysis consists in �nding sequential patterns, i.e., series of sets of items frequently
purchased together by customers at di�erent points in time. A tangible example used by
the authors to illustrate the knowledge discovered by means of sequential pattern mining
in such sequences is the following: �In a book store, 5% of customers bought �Foundation�,
then �Foundation and Empire�, and then �Second Foundation�� within a certain period of
time.

Through these two categories of applications, we highlight the contrast between the
two types of series that are considered: (i) �Time series� and (ii) �Time sequences�. These
two types of time-varying data are commonly misde�ned and used one for the other. On
the one hand, a �Time series� is a sequence of mono- or multi-dimensional numerical data
points. On the other hand, a �Time sequence� is sequence of mono- or multi-dimensional
categorical and/or numerical data objects. In this thesis, we focus our work on the second
type of series, i.e., on time sequences.

In a similar way, the concept of summarization has often been misunderstood with the
concept of compression. The e�ect of both concepts is the same, i.e., reduce a piece of
information into a more concise piece of information. However, the purpose of each method
di�ers. Compression, also known as syntactic compression, uses the structural information
of data to reduce its representation. Syntactic compression techniques use statistical or
dictionary-based methods, e.g., Lempel-Ziv [ZL77]. These methods are syntactic since they
consider data as a large string of bytes and operate at the byte level.
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In contrast, other methods [JMN99, BGR01] consider the semantics of the data to
achieve compression. These methods are more commonly called semantic compression
techniques. The general idea in these approaches is to derive a descriptive model from
the data. This model is built in a way that considers the semantic content of the data.
The compressed version of the data is more concise but remains comprehensive without
the need for desummarization. From this point of view, we believe that the concept of
summarization is closer to semantic compression.

�Time sequence summarization� is an activity that is de�ned by the two ambiguous
notions �time sequence� and �summarization�. For this reason, we start this chapter by
giving a de�nitive de�nition to �Time sequence summarization�. By doing so, we are able
to delimit the scope of this research work and present with precision and in details the
state of the art that lies within this scope. Then, we will formally de�ne the problem of
building time sequence summaries.

Organization of the chapter

The remaining of this chapter is organized as follows. In Section 2, we attempt to dis-
ambiguate the concepts of �Time sequence� and of �Summarization� to precisely delimit
related work and position the contributions presented in this thesis. We discuss in Sec-
tion 3 work related to summarization in domains that consider time-varying data, i.e.,
(i) customer transaction databases, (ii) relational databases, (iii) temporal databases, (iv)
data streams and (v) event sequences. Section 4 presents our de�nition of �Time sequence
summarization� and we conclude this chapter in Section 5.

2 �Time sequence� and �Summarization�

�Time sequence� and �summarization� are two terms that are ambiguous as well in English
common knowledge as in Computer Science research literature. This observation requires
us to �nd or give a de�nitive de�nition to both terms to precisely delimit the scope of our
study. For this purpose, we explore in this section the de�nitions of the two terms that
have been considered in the literature.

2.1 De�nitions of a �Time sequence�

The expression �Time sequence� has endorsed various meanings in Computer Science re-
search during the past two decades. In the quest of �nding a de�nition for the expression
�Time sequence�, one is tempted to refer to well established sources of common knowledge
such as Merriam-Webster's Dictionary online1, Dictionary.com2 or the universal encyclo-
pedia Wikipedia3. Here are some of the de�nitions given:

Webster's: First attempt, �rst pitfall. The expression �time sequence� is not refer-
enced, however, the term �sequence� is de�ned as follows:

� Main Entry: sequence
Pronunciation: 's	e-kw@n(t)s, -jkwen(t)s
Function: noun
Etymology: Middle English, from Anglo-French, from Medieval Latin sequen-
tia, from Late Latin, sequel, literally, act of following, from Latin sequent-,

1http://www.merriam-webster.com/dictionary
2http://dictionary.reference.com
3www.wikipedia.org
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sequens, present participle of sequi
Date: 14th century
[. . .] 2: a continuous or connected series: as [. . .] d: a set of elements ordered
so that they can be labeled with positive integers�

Dictionary.com: Second attempt, second pitfall. Similar to Webster's dictionary, the
expression �Time sequence� is not referenced and the term to follow is �Sequence�.

� se·quence [see-kwuh ns]
-noun
[. . .] 10. Mathematics. a set whose elements have an order similar to that of
the positive integers; a map from the positive integers to a given set. [. . .]
Origin: 1350−1400; ME < LL sequentia, equiv. to sequ- (s. of sequi to follow)
+ -entia -ENCE
Synonyms: 1. See SERIES. 2. arrangement. 4. outcome, sequel.�

The synonym �series� leads to the following de�nition:

� se·ries [seer-eez]
-noun
1. a group or a number of related or similar things, events, etc., arranged or
occurring in temporal, spatial, or other order or succession; sequence.�

Wikipedia: The user is automatically redirected to the de�nition of a �Time series�:

� In statistics, signal processing and �nancial mathematics, a time series is
a sequence of data points, measured typically at successive times spaced at
uniform time intervals. Examples of time series are the daily closing value of
the Dow Jones index or the annual �ow volume of the Nile River at Aswan.
[. . .] Time series data have a natural temporal ordering.�

The �rst observation one can make from these de�nitions is that the expression �Time
sequence� is known but not necessarily well de�ned. For instance, Wikipedia needs to
redirect the user to the de�nition of a �Time series�. Still, there exists a consensus between
Merriam-Websters dictionary and Dictionary.com, i.e., a time sequence is described as a
set of objects ordered or mapped by/to positive integer values. However, these de�nitions
remain unclear on the exact nature of the objects and their ordering criterion. We believe
that the nature of the objects considered needs to be well de�ned since categorical data
can not be processed the same way as numerical data. For instance, data clustering tech-
niques rely on the continuity and the total order that exist in numerical domains. Thanks
to this property, traditional data clustering methods can de�ne distances and aggregation
functions, e.g., min, max, average, etc., to compare objects. However, these metrics are
not or are poorly applicable to categorical domains since there does not exist a total order
on categorical data.

Literature in Computer Science has also given con�icting de�nitions. For instance, Lin
et al. [LRSB96, LR98] or Korn et al. [KJF97] de�ne a time sequence as a series of data
objects associated to a timestamp and ordered by ascending timestamp. These objects can
be 1-dimensional or multi-dimensional numerical values.

Meanwhile, Agrawal and Srikant introduced in 1995 the concept of Sequential Pattern
Mining [AS95] for analyzing customer transactions which is later known as the customer
market basket analysis paradigm. The authors' purpose is to discover frequent sequences of
itemsets purchased together by customers. In this scenario, the data mined is a collection
of sequences of customer transactions, where each transaction consists of: (i) a customer id,

7



(ii) a transaction time, or timestamp, and (iii) an itemset, i.e., the set of items purchased
by the customer. The authors simply refer to the input data as a sequence or a data
sequence.

In 1997, Mannila et al. [MTV97] introduce the concept of Event Sequence for the task
of frequent episode mining. Frequent episode mining is an analysis task that aims at �nding
partially ordered collections of events that occur frequently together. The authors de�ne
an event sequence as a sequence or series of events where each event has an associated time
of occurrence. An event is a pair (A, t) where A is an event taken from E a set of prede�ned
event types and where t is an integer, the occurrence time of the event. Eventually, event
types can be de�ned on several attributes, but the authors limit their study and consider
and event type as a single value. Events in the sequence are organized by increasing time
of occurrence t.

In a nutshell, Mannila et al. consider series of objects taken from a prede�ned set of
event types and these objects are ordered by ascending time value. On the other hand,
Agrawal and Srikant consider sequences of transactions. In other words, Agrawal and
Srikant describe these objects as a collection of items. The important feature in this
de�nition is the fact items are taken from categorical domains.

2.2 Taxonomy of �Time sequence� considered

In this thesis work, we look at the concept of �Time sequence� under the angle presented
by Agrawal et al. and by Mannila et al.. We consider time sequences in their most general
form, i.e., a time sequence is a series of objects, also called events, to which is associated a
time of occurrence that is materialized as a timestamp. The timestamp is used to organize
events in the sequence by ascending order on the timeline. Each event is described by a set
of values, more generally called descriptors, that can be of numerical and/or categorical
nature. Descriptors can be taken from one or more attributes, also called descriptive
domains. Eventually, several descriptors can be taken from one same descriptive domain.

This general de�nition of a time sequence allows us to abstract various representations
of time sequences or of time-varying data models in the literature. Indeed, time sequences
are not new concepts and, as mentioned previously, have been used in di�erent applications
under di�erent denominations. Table 1.1 gives three examples of conventional data sources
that can be understood as time sequences in the sense of our work, namely, (i) customer
transaction databases, (ii) relational databases and (iii) event sequences. For instance,
the weekly record of a stock price is commonly known as a �Time series� which can also
be understood as a particular instance of time sequence, i.e., a time sequence where each
event is a mono-dimensional or multi-dimensional numerical value. Time series analysis is
a well studied area [Ham94,Hei99, SZ04,Bri08] and lies out of the scope of our study. In
this thesis work, we do not consider time series but restrict our focus to time sequences
where events are characterized by categorical descriptors.

2.3 De�nitions of �Summarization�

The term �Summarization� has multiple senses in English common language and also refers
to di�erent activities in Computer Science research. The previous sources of knowledge
used to de�ne the expression �Time sequence� give the following de�nitions for �Summari-
zation�:

Webster's:

� Main Entry: sum·ma·ri·za·tion
Pronunciation: js@-m@-r@-hz	a-sh@n, js@m-r@-
Function: noun
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Dataset type Example

Transaction
database

TID Itemset
T1 {Bread, Milk}
T2 {Beer, Bread, Diapers, Eggs}
T3 {Beer, Cola, Diapers, Milk}
T4 {Beer, Bread, Diapers, Milk}
T5 {Bread, Cola, Diapers, Milk}

Relational
database

CID Timestamp Att. 1 Att. 2 Att. 3 Att. 4
c1 t1 Bread Milk
c1 t2 Beer Bread Diapers Eggs
c1 t3 Beer Cola Diapers Milk
c1 t4 Beer Bread Diapers Milk
c1 t5 Bread Cola Diapers Milk

Event sequence

Time t1 t2 t3 t4 t5 t6
A B A D B

Events C D C E D
F F

Table 1.1: Examples of time sequences

Date: 1865
[. . .] 2 : SUMMARY�

Following up the term �Summary� gives us the following de�nition:

� Main Entry: sum·ma·ry
Pronunciation: hs@-m@-r	e also hs@m-r	e
Function: noun
Date: 1509
1: an abstract, abridgment, or compendium especially of a preceding discourse�

Dictionary.com:

� sum·ma·rize [suhm-uh-rahyz]
-verb (used with object), -rized, -riz·ing
1. to make a summary of; state or express in a concise form[. . .]�

Similarly, we follow up the de�nition of a �Summary�:

� sum·ma·ry [suhm-uh-ree]
-noun
1. a comprehensive and usually brief abstract, recapitulation, or compendium
of previously stated facts or statements.
[. . .] Synonyms:
1. outline, précis. summary, brief, digest, synopsis are terms for a short
version of a longer work. A summary is a brief statement or restatement of
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main points, esp. as a conclusion to a work: a summary of a chapter. A brief

is a detailed outline, by heads and subheads, of a discourse (usually legal) to be
completed: a brief for an argument. A digest is an abridgment of an article,
book, etc., or an organized arrangement of material under heads and titles: a
digest of a popular novel; a digest of Roman law. A synopsis is usually a
compressed statement of the plot of a novel, play, etc.�

The most remarkable feature in these two de�nitions is the fact a summary is supposed
to be a concise statement or restatement of an original piece of information. This charac-
teristic can be understood in computer science terminology as a concise representation of
the primitive piece of information.

Interestingly, the term �Summarization� itself is not referenced by Wikipedia. In return,
a list of articles assumingly related to the term �Summarization� is proposed. Among the
articles proposed, �Automatic summarization� and �Multi-document summarization� are
the main computer science-related propositions. In this case, summarization is de�ned as
the creation of a shortened but comprehensive version of one or multiple text documents.
In fact, this de�nition positions the summarization activity as a subproblem of Natural
Language Processing (NLP) research. Note that the de�nitions given by Merriam-Webster
and Dictionary.com also seem to point the summarization task into the direction of NLP
research.

In the Core Database Technology research area, data summarization can be understood
in at least two di�erent manners:

1. It is a mechanism to represent very large datasets of primitive data by only the rel-
evant and meaningful information. The purpose of this mechanism is for instance
to facilitate visualization, data exploration or decision making. Hence, the sum-
marization mechanism is responsible for generating a more concise and general but
comprehensive representation of messy primitive data.

2. Summarization appears as a compression tool to support other processing intensive
applications by reducing the volume of the data. Examples of such applications
include querying or data mining tasks such as clustering [BKKS01]. This reduction
e�ect is achieved by grouping redundant primitive data and representing primitive
data by suitable representative data objects.

In the later understanding of summarization, however, the compression task should
not be mistaken with data compression as de�ned in Information Theory. Indeed, the
semantics of compression in Information Theory is the process of encoding a piece of
information using less bits than the unencoded version of the same piece of information.
Compression is usually achieved by leveraging the structural properties of the data, e.g.,
using byte-wise redundancies. This compression scenario is mainly aimed at reducing the
size of the data for storage or network transmission purposes. This form of compression is
not the objective of our work and out of the scope of this thesis.

The few de�nitions presented here clearly highlight the inherent ambiguity that sur-
rounds the summarization activity. This ambiguity takes it roots from the research area
from which summarization is considered: The summarization activity in the area of Nat-
ural Language Processing, of Information Theory or of Core Database Technologies do
not have the same needs nor objectives. However, even though the nature of the data
and the purposes attributed to summarization di�er in these examples, there still exist
common trends that should be noted. The summarization task is meant to: (i) reduce the
volume of the primitive data and (ii) represent the primitive data in a more abstract but
comprehensive form.
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2.4 Taxonomy of �Summarization� considered

In this thesis, we position our work closer to ideas of the Core Database Technology re-
search area. In this perspective, our understanding of the summarization task is to build
a new representation of a primitive dataset. This representation can then be used to
support other possibly complex and process-intensive applications. More speci�cally, we
aim at supporting chronology dependent applications, i.e., applications that rely on the
chronological order of the data to be meaningful. An example of chronology dependent
applications in the data mining is Sequential Pattern Mining [AS95]. Another example
of chronology dependent application is Google Finance [Goo]. Google Finance is a vi-
sualization application developed by Google. In a user-de�ned timeline, Google Finance
provides analysts with a tool to browse through companies' stock prices while visualizing
background information about the companies. This background information is provided in
the form of a series of chronologically ordered news events that occured at some interesting
moments, e.g., during price jumps.

Therefore, in this thesis work, we consider summarization as the activity of transforming
a collection of primitive data objects into a more concise and abstract, yet comprehensive
and informative, representative object. This representative object can either (i) exist
in the collections of primitive data objects or (ii) be a �ctive object generated from the
underlying data. Note that this task can also be understood as a form of concept formation
in Conceptual Clustering [MS80] research.

3 Summarization in ...

We have identi�ed the summarization activity as the task of forming more concise and
abstract, yet comprehensive and informative, data objects from collections of primitive data
objects. In fact, summarization has been widely used in various domains for di�erent data
models: customer transaction databases, relational databases, data warehouses, temporal
databases, data streams, etc.. Due to the absence of a unifying de�nition and due to the
diversity of tasks operated on summaries, each domain has proposed speci�c summarization
solutions. In this section, we explore and discuss the state of the art of research works in
these domains that relate to the activity of summarizing time-varying data.

3.1 Customer transaction database

Agrawal et al. introduced in the early 90's [AIS93] the idea of Frequent Itemset Mining
(FIM) in customer transaction databases [AIS93, MTV94, AS94]. Progress in bar-code
technology made it possible to store the basket data, i.e., all items purchased by a customer,
on a per-transaction basis. Thus, analysts were eager to discover association rules to create
new business opportunities. For instance, a piece of knowledge that is typically extracted by
frequent itemset mining approaches is: �Men that buy baby nappies (diapers) on Thursdays
or Saturdays also by beer�. This piece of knowledge can then be exploited in various ways
to increase revenues, e.g., position beer closer to diapers or make special package deals on
beer on Thursdays.

In this context, a customer market basket database, or more generally, a customer
transaction database (TDB), is a collection of customer transactions. In this thesis, we will
equivalently use the term (customer) transaction database to refer to a customer market
basket database. Each customer is associated to a table (or a collection of rows) where each
row corresponds to a purchase transaction performed by the customer. Each transaction
contains a unique identi�er TID and a set of items, called itemset, bought by the customer.
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Transactions are chronologically ordered by the transaction ID or eventually thanks to a
timestamp.

Formally, as de�ned by Agrawal et al. in [AIS93], let I = I1, . . . , Im be a set of binary
attributes called items. TDB is a database of transactions. Each transaction t in TDB is
represented as a binary vector with t[k] = 1 if transaction t bought item Ik, and t[k] = 0
otherwise. There is one tuple in the database TDB for each transaction t. An example of
customer transaction database is given in Table 1.2.

TID Beer Bread Cola Diapers Eggs Milk
T1 1 0 0 0 0 1
T2 1 1 0 1 1 0
T3 1 0 1 1 0 1
T4 1 1 0 1 0 1
T5 0 1 1 1 0 1

Table 1.2: Example of customer transaction database

On should note that this representation of transaction databases can also be understood
as a time sequences of events. Indeed, in a TDB, transactions are ordered by ascending
transaction TID and the set of attribute-value pairs of each tuple, e.g., {beer=1, bread=0,
cola=0, diapers=0, eggs=0, milk=1}, can be considered as the descriptors of the event. It
su�ces to map a transaction itemset to a set of descriptors where descriptors are items for
which the binary vector t[k] equals 1. Hence, the example of Agrawal et al.'s transaction
database given in Table 1.2 is equivalent to a time sequence of events as given in Table 1.1.

Thanks to the advent of bar-code technologies, the size of customer transaction data-
bases has dramatically increased and risen new challenges for handling these data sources.
These challenges have attracted many researchers' interest in creating more compact rep-
resentations of these data sources. Hence, a bulk of work [CK05,WA05,WK06,XJFD08]
has focused on creating summaries for representing customer transaction databases in a
more concise but informative form. We discuss in the following paragraphs the state of the
art of summarization methods designed for customer transaction databases.

Chandola et al. [CK05]

Chandola et al. propose in [CK05] two summarization algorithms for sets of transactions
de�ned on categorical attributes. In this work, the authors formulate summarization as
an optimization problem that involves two objective functions: (i) compaction gain and
(ii) information loss. The authors view summarization as the activity of compacting a set
of transactions into a smaller set of transactions, i.e., a set having a smaller number of
transactions, while retaining the maximum possible information.

For this purpose, Chandola et al. consider as input a set of transactions T , with |T | = m
transactions, where each transaction Ti is de�ned on a set of n categorical features F =
{F1, F2, . . . , Fn}. The set F is associated to a set of weightsW such that the weightWi ∈W
corresponds to the weight of feature Fi ∈ F . A summary S of the set of transactions T
is: A set of individual summaries {S1, S2, . . . , Sl} where (i) each Sj represents a subset of
transactions in T and (ii) each transaction Ti ∈ T is represented by at least one Sj ∈ S.
Hence, each summary Sj ∈ S is a representation of the subset of the transactions covered
and Sj is de�ned as the feature-wise intersection of all transactions covered, i.e., Sj =⋂k
i=1 Ti.
The measures introduced by the authors for evaluating the quality of a summary are

based on the (i) compaction gain of the summarization algorithm and (ii) the information
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loss. The compaction gain is measure by the ratio |T ||S| and the information loss of a
transaction Ti represented by an individual summary Sk is the weighted sum of the number
of features in Ti that are not covered by Sk, i.e., lossik =

∑n
q=1Wq × bq where bq = 1 if

Tiq /∈ Sk and 0 otherwise.
The �rst summarization method proposed uses any conventional clustering algorithm

to generate clusters from T then represents each cluster by a representative summary using
the feature-wise intersection operator. This technique works well in general but has poor
performances, in terms of information loss, when dealing with outliers.

The second summarization method proposed is a Bottom-Up Approach to Summariza-
tion (BUS) that uses Frequent Itemset Mining (FIM) in a �rst step to determine all closed
frequent itemsets of T , denoted Cc. Then, at each iteration a best candidate is chosen from
Cc, i.e., the candidate that reduces the size of the data and incurs the less information
loss, and all transactions covered by this candidate are summarized together. The process
is repeated until a desired compaction gain is achieved.

Let us give an example of summary produced by Chandola et al.. We adapt the
transaction database time sequence given in Table 1.1 to the authors' input format and
take the categorical features for characterizing each transaction in the set {Alcohol, Baby,
Diary, Food, Soft drink, Pastry}. Each feature has equal weight. Hence, Table 1.3 gives
the input set of transactions T . One possible summary is given in Table 1.4. In this
example, summary S1 groups transaction T1, S2 groups transactions T3 and T4 and S3

groups transactions T2 and T5. The quality of the summary is as follows:

• Compaction gain: 3
5

• Information loss: 0 + (2
6 + 2

6) + (4
6 + 4

6) = 2

TID Alcohol Baby Cooked food Diary Raw food Soft drink
T1 N/A N/A Bread Milk N/A N/A
T2 Beer Diapers Bread N/A Eggs N/A
T3 Beer Diapers N/A Milk N/A Cola
T4 Beer Diapers Bread Milk N/A N/A
T5 N/A Diapers Bread Milk N/A Cola

Table 1.3: Example T in Chandola et al.'s format
S Alcohol Baby Cooked food Diary Raw food Soft drink
S1 N/A N/A Bread Milk N/A N/A
S2 Beer Diapers *** Milk N/A ***
S3 *** Diapers Bread *** *** ***

Table 1.4: Example of Chandola et al.'s summary

This technique generates compact and comprehensive summaries. However, the authors
do not take into account nor use the inherent sequentiality or ordering of transactions in
T for summarizing transactions. For instance, it is not explicit with S, if transactions in
summary S2 occur in T before or after transactions in summary S3. This information is
most important for chronology dependent applications. Hence, this technique still lacks a
methodology to explicitly re�ect the sequentiality of original transactions.

SUMMARY [WK06]

Wang and Karypis [WK06] propose the SUMMARY method to generate summaries from
transaction databases represented as in Table 1.1. The authors present a technique based
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on Frequent Closed Itemset Mining [PBTL99]. The idea is to mine, given a desired min-
imum support min_sup, the set of all frequent closed itemsets in the input transaction
database TDB. Once these itemsets are identi�ed, for each transaction Ti in TDB, any one
longest frequent itemset is chosen to represent, or summarize, Ti. This itemset is called
the summary itemset of Ti and the set of all summary itemsets of transactions is TDB is
called a summary set.

In practice, the list of frequent items, i.e., items that have minimum support min_sup,
in ascending support order is generated and is denoted f_list. The list of frequent items in
each transaction is sorted according to f_list. Let us give an example of summary obtained
thanks to SUMMARY. Suppose min_sup = 2, the f_list obtained from transaction
database in Table 1.1 is f_list={Cola:2, Beer:3, Bread:4, Diapers:4, Milk:4}. Table 1.5
gives the ordered frequent itemset list in column 3. From Table 1.5, one summary set w.r.t.
the input TDB is {{Beer, Bread, Diapers}:2, {Cola, Diapers, Milk}:2}.

TID Items Ordered frequent itemset list
T1 {Bread, Milk} {Bread, Milk}
T2 {Beer, Bread, Diapers, Eggs} {Beer, Bread, Diapers}
T3 {Beer, Cola, Diapers, Milk} {Cola, Diapers, Milk}
T4 {Beer, Bread, Diapers, Milk} {Beer, Bread, Diapers}
T5 {Bread, Cola, Diapers, Milk} {Cola, Diapers, Milk}

Table 1.5: Example of summary set, min_sup = 2

The di�erent SUMMARY algorithms proposed by the authors have very interesting
performances. The algorithms run very fast even when the selected minimum support
is extremely low, i.e., 0, 2% ≤ min_sup ≤ 1%. However, the summary produced still
su�er from at least two shortcomings. First, the summary set produced does not cover all
transactions in the TDB. Since the process is guided by a minimum support parameter,
outliers will not be selected by the frequent itemset mining algorithm and will not have a
representative summary itemset. This is highly undesirable in applications where outliers
could be of great signi�cance to analysts. Second, the approach does not explicitly express
the trade-o� compaction gain for the loss of items in the summary. Again, since items
present in the summary are controlled by a minimum support parameter, gaining in data
compaction requires to increase the minimum support. By doing so, more transactions will
become infrequent (in the sense of the support), and will be completely lost.

HYPER [XJFD08]

Xiang et al. propose to summarize transaction databases thanks to the HYPER [XJFD08]
method. The authors assume the input transaction database TDB is represented as a bi-
nary matrix such that cell (i, j) has value 1 if transaction i contains item j, 0 otherwise.
This representation is exactly the one used in Table 1.2. In [XJFD08], a summary is ex-
pressed using the hyperrectangle notation where a hyperrectangle H is a Cartesian product
of (i) a set of transactions T and (ii) a set of items I, i.e., H = T×I = {(i, j), i ∈ T and j ∈
I}. The cost associated to representing hyperrectangle H is the sum |T |+ |I|. If a set of
hyperrectangles, denoted CDB, covers all the cells of the transaction database TDB, CDB
is said to be the covering database or summarization of TDB. Let us give an example of
CDB that covers the transaction database in Table 1.2. Table 1.2 can be covered by six
hyperrectangles as de�ned in Table 1.6.

The summarization problem is formalized as the problem of �nding CDB while minimiz-
ing the total representation cost, i.e., the sum of representation cost of all hyperrectangles
in CDB. The authors prove the problem formulation is a NP-di�cult and much related
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Hyperrectangle Transactions Items
H1 {T1, T4} {Beer, Milk}
H2 {T3, T5} {Cola, Diapers, Milk}
H3 {T2, T4} {Bread, Diapers}
H4 {T2, T3} {Beer}
H5 {T2} {Eggs}
H5 {T5} {Bread}

Table 1.6: CDB of transaction database in Table 1.2

to the Weighted Set Covering problem. The authors propose a solution called HYPER.
HYPER relies on the use of frequent itemset mining to handle hyperrectangles having
same itemsets as a single group. HYPER �nds a solution identical to the solution of the
greedy approach for the weighted set covering problem and has an approximation ratio
of ln(k) + 1, with k the number of hyperrectangles produced. HYPER has polynomial
computational time that depends on:

• |Fα|: the number of frequent itemsets having minimum support α.

• |I|: the number of all items in the transaction database TDB.

• |T |: the number of transactions in TDB.

In total, the computation complexity of HYPER is O(k|T |(|I|+ log|T |)(|Fα|+ |I|)). Note
that the authors do not consider the computation cost of the Apriori-based algorithm
used to compute all frequent itemsets. In practice, depending on the dataset used, this
computation cost can be prohibitive. For instance, on the UCI Machine Learning chess
dataset (I = 75 and T = 3196), the summarization run time is approximatively 104s when
α = 25%, 3.5× 104s when α = 20% and 8× 104s when α = 15%.

Since the hyperrectangles in CDB are formed from frequent itemsets, the summary pro-
duced gives an interesting high level understanding of the transaction database. However,
this representation can not be directly reused and piped to other chronology dependent
application and requires some form of desummarization beforehand. Also, the hyperrect-
angles produced are not organized to re�ect in any way the chronology of the underlying
transactions.

Wan et al. [WA05]

Wan et al. [WA05] propose to support sequential pattern mining by representing the input
transaction database TDB as a Compact Transaction Database CTDB. The author pro-
pose an Apriori-based algorithm, called CT-Apriori, that uses the speci�cities of this rep-
resentation to improve the computational time of conventional Apriori-based algorithms.
Compact transaction databases are build using a novel data structure called a Compact
Transaction Tree (CT-Tree). The purpose of the CT-Tree is to enumerate and represent
transactions in a sequence of transactions in a compact manner and associate to each
transaction its number of occurrences in the sequence. Therefore, items in a transaction
are supposed to be organized in lexicographical order and the generation of a CT-Tree
starts from a �root� node. Every other node in this tree is compound of two parts: the
name of the item and an occurrence count of the path that goes from �root� to this node.
Transactions are examined one at a time and the tree is grown from each transaction. For
instance, Table 1.7(a) gives an example of transaction database and Figure 1.1 gives the
CT-Tree generated from Table 1.7(a).
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(a) Original TDB

TID List of items
T1 Bread,Milk
T2 Beer,Bread,Diapers,Eggs
T3 Beer,Cola,Diapers,Milk
T4 Beer,Bread,Diapers,Eggs
T5 Bread,Cola,Diapers,Milk

(b) CTDB

head

Item Bread Diapers Beer Milk Cola Eggs

Count 4 4 3 3 2 2

body

Count List of items

1 Beer,Milk

2 Bread,Diapers,Beer,Eggs

1 Diapers,Beers,Milk,Cola

1 Brad,Diapers,Milk,Cola

Table 1.7: Example of Compact Transaction Database

Root

Bread: 0

Milk: 1

Beer: 0

Cola:0

Diapers: 0

Milk: 1

Bread: 0

Diapers: 0

Eggs: 2

Cola: 0

Diapers: 0

Milk: 1

Figure 1.1: CT-Tree for transaction database in Table 1.7(a)

The compact transaction database of the input TDB is then generated from its cor-
responding CT-Tree. A CTDB is compound of two parts: a head and a body. The head
of the CTDB is a list of couples (In, Ic) where In is an item and Ic is the frequency
count of In in the transaction database TDB. All couples in the head are organized in
frequency-descending order. The body of the CTDB is a list of couples (Tc, Tn) where Tc
is a unique transaction in TDB and Tn is the occurrence count of Tc in TDB. As an
example, Table 1.7(b) gives the CTDB that is built from CT-Tree in Figure 1.1.

This compact transaction database structure is speci�cally designed for supporting
sequential pattern mining using an Apriori-based algorithm. Indeed, the head section of
the CTDB is designed so that Apriori-based algorithm do not need to scan the entire TDB
to generate the set of frequent sequences of length 1. Note that this representation does
not necessarily reduce the number of transactions in the CTDB. Indeed, if transaction T4

in Table 1.7(b) was replaced by itemset {Beer,Bread,Diapers,Milk}, all transaction counts
in the CTDB would equal 1. No compaction gain would be achieved by building the
CTDB. Also, the technique does not integrate any mechanism to manage the chronology
of transaction in the CTDB, i.e., the transactions listed are not organization in a way
that would allow to reproduce the chronology of transactions. Hence, this structure is only
useful in the context of sequential pattern mining and more speci�cally to custom-designed
Apriori-based algorithms.

3.2 Relational databases

Edgard F. Codd introduced in 1969 the Relational model [Cod69] for database manage-
ment. Codd's idea was to propose a relational view of data and hence represent all data
as a mathematical n-ary relation, i.e., as a subset of the Cartesian product of n domains
or attributes. These attributes can as well be de�ned on numerical domains or categorical
domains. The relational model relies on �rst-order logic and describes the data by means
of its natural structure only. Queries are operated on the data by means of a relational
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calculus or relational algebra performed on the model. The relational model was then
extended with criteria, i.e., normalization or normal forms, for determining the model's
degree of vulnerability to logical inconsistencies and anomalies, e.g., redundancies or func-
tional depedencies on part of a candidate key in a relation. We refer the reader to Chris
Date's reference book [Dat04] for an insight into more than thirty years of research on the
relational model.

Since, the relational model has been the most popular data model for data representa-
tion and organization. Relational Database Management Systems (RDBMS) have become
a multi-billion dollar business [Gar07] and are the most used systems worldwide to man-
age data. Note that the relational model does not directly support the time dimension of
data and this time dimension is handled in a very naive way, i.e., as a numerical or cate-
gorical attribute as any other. This limitation is addressed in RDBMS by implementing
extensions from temporal database research to handle in a more advanced way temporal
information [TLHY03]. However, the size of data generated worldwide, captured, analyzed
and stored by these systems keeps increasing at a crazy rate [Aki06,GCM+08,Cuk10]. This
phenomenon has been foreseen by many researchers from the Core Database research com-
munity and various methods we designed to represent this data in a more concise form,
yet informative and comprehensive, to allow its analysis. We discuss in this section the
most important contributions that build summaries for relational databases.

Attribute Oriented Induction (AOI) [Cai91]

Attribute Oriented Induction (AOI) is an approach initially proposed by H. Cai, J. Han
and N. Cercone [Cai91,HCCC92,HF96]. The process was then improved and implemented
in DBLearn [HFH+94] then in DBMiner [HFW+96].

The original purpose of AOI is to process relational database tables for knowledge
discovery. Knowledge discovery in a relation table R(A1, . . . , An) is achieved by reducing
the domain of attributes Ai, then reducing the number of tuples in R in a Generalize and
Merge process. The authors assume background knowledge is available and/or provided
by knowledge engineers and domains experts in the form of concept hierarchies organized
as taxonomies. A taxonomy of a knowledge domain is a particular classi�cation into a
hierarchical structure of concepts de�ned in that domain. Concepts in a taxonomy, also
called descriptors in this work, are linked by a generalization-specialization relationship,
also known as a IS-A relationship, and are partially-ordered thanks to this generalization-
specialization relationship. The root of the taxonomy is the most general concept, usually
a reserved word denoted �any_Domain_name�, and the leaves in the taxonomy are the
most speci�c concepts. Figure 1.2 gives an example of taxonomy for the location domain.
In this example, the root of the taxonomy is �any_Location�.

Russia Poland Austria

Eastern
Europe

France Spain Germany UK

Western
Europe

Europe

Equador Brasil Colombia

Latin
America

USA Canada

North
America

America

Western Country

Kashmir Iran ...Tahiti Mexico

Rest of
the world

any_Location

... Ethiopia...Kenya

Africa

Western
Africa

Eastern
Africa

Figure 1.2: Example of taxonomy for the location domain

At each iteration, the AOI process chooses an attribute, denoted Ai, and all attribute
values in R de�ned on Ai are generalized once using the taxonomy associated to Ai, denoted
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HAi . A direct consequence of the generalization phase is the reduction of the variability of
attribute values for the domain generalized. The output table is called a generalized table.
In practice, an attribute value d is generalized by replacing d by its parent, denoted d′, in
taxonomy HAi . For instance, in our location domain taxonomy, the descriptor �France� is
generalized into the descriptor �Western Europe�.

Since generalization is responsible for reducing the variability of attribute domains,
tuples in the generalized table could eventually become identical. Merging is then respon-
sible for grouping tuples that have become identical into one single tuple. The number of
tuples that has been grouped together this way is maintained in an extra attribute called
vote. This generalization and merging process is repeated until one of the following condi-
tions are met: (i) a generalization threshold for one/each attribute is met, (ii) a minimum
number of generalization is achieved, (iii) a tuple reduction threshold is met, etc..

Table 1.8(a) gives an example of relational table on which we operate AOI. Relation
Import(Location, Good, Quantity) gives the amount of goods imported from a given coun-
try. Table 1.8(b) gives the generalized version of Table 1.8(a) when the location attribute
is chosen for generalization. Note that after generalization no tuples have become identi-
cal, thus, we reiterate and choose to generalize using the quantity attribute. Note that we
assume the existence of a taxonomy that maps numerical values to concepts taken in the
set {Low, Average, Above average, Important}. The output table is given in Table 1.8(c).
We can now note that identical tuples have been generated thanks to this generalization
step. These tuples are then merged together and their count maintained, the result is given
in Table 1.8(d).

(a) Original table R

Location Good Quantity

Ecuador Co�ee 400

Brazil Co�ee 450

Colombia Cocoa 300

Ethiopia Co�ee 420

Kashmir Sa�ron 80

Kenya Co�ee 410

Iran Sa�ron 90

Tahiti Vanilla 210

Mexico Vanilla 200

(b) Genealization on location

Location Good Quantity Vote

Latin America Co�ee 400 1

Latin America Co�ee 450 1

Latin America Cocoa 300 1

Eastern Africa Co�ee 420 1

World Sa�ron 80 1

Eastern Africa Co�ee 410 1

World Sa�ron 90 1

World Vanilla 210 1

Latin America Vanilla 200 1

(c) Genealization on quantity

Location Good Quantity Vote

Latin America Co�ee Important 1

Latin America Co�ee Important 1

Latin America Cocoa Above average 1

Eastern Africa Co�ee Important 1

World Sa�ron Low 1

Eastern Africa Co�ee Important 1

World Sa�ron Low 1

World Vanilla Average 1

Latin America Vanilla Average 1

(d) Merged table

Location Good Quantity Vote

Latin America Co�ee Important 2

Latin America Cocoa Above average 1

World Sa�ron Low 2

Eastern Africa Co�ee Important 2

World Vanilla Average 1

Latin America Vanilla Average 1

Table 1.8: Example of Attribute Oriented Induction

The authors propose seven basic strategies for operating attribute-oriented induction
on relational databases. Among these strategies, the �rst one states that attributes to
be chosen �rst are the ones with the smallest decomposable components. The purpose of
this strategy is to avoid over-generalization. Despite this strategy, attributes can still be
over-generalized by the induction process. In [HF96], Han et al. address this issue and
improve the induction process by dynamically adapting the level of generalization of each
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attribute.
This technique displays interesting domain reduction and tuple numerosity reduction

capabilities: In our example, the variability of attribute values decreases from 22 values
to 10 values and the number of tuples is reduced from 9 to 6. However, as the process
is designed, when generalized tuples become identical, the authors do not propose any
mechanism to group identical tuples in a manner that re�ects their ordering or sequen-
tiality. For instance, between Table 1.8(b) and Table 1.8(d), the merging step induces the
following information lost: �An important amount of co�ee was imported from Eastern
Africa after an above average amount of cocoa was imported from Latin America (tuples
3 and 4 in Table 1.8(c))�. This shortcoming can be troublesome for chronology dependent
applications.

Fascicles [JMN99]

Jagadish et al. [JMN99] introduce the notion of fascicles to reduce the size of relational
databases for the purpose of minimizing storage. Also, the authors propose a method
for extracting patterns from the compressed databases produced. Fascicles rely on an
extended form of association rules, more exactly, frequent itemset mining, to achieve data
compression. The authors highlight the fact that, often, many tuples in a relation share
similar values for several attributes. Therefore, the notion of fascicles introduced captures
and groups such tuples. A fascicle is a subset of tuples F in a relation R for which there
exists a set of k compact attributes A where the tuples in F have similar attributes values
for attributes in A. An attribute Ai is said to be compact for all records in F if the range
of Ai's values (for numerical attributes) or the number of distinct values (for categorical
attributes) does not exceed a compactness tolerance parameter denoted tAi . For instance,
in the Import relation in Table 1.7(a), suppose the compactness tolerance parameters on
attributes are:

• tlocation = n: Any attribute value is acceptable; We assume that |location| = n.

• tgood = 1: An exact match is required.

• tquantity = 50: The range tolerance is 50, i.e., the maximum di�erence between
attribute values must not exceed 100.

Under these tolerance parameters, an example of fascicle extracted from Table 1.8(a) is the
set of tuples F containing tuples: (Ecuador, Co�ee, 400), (Brazil, Co�ee, 450), (Ethiopia,
Co�ee, 420) and (Kenya, Co�ee, 410).

Storage minimization is achieved by projecting all compact attributes and storing their
representative values only once separately. The representative value for a given attribute
Ai is computed di�erently whether the attribute is categorical or numerical. In the case of
categorical attributes, suppose tuples in F are described by attribute value d on attribute
Ai. Since the tolerance parameter is often strict, i.e., tAi = 1, the representative value is
trivial and chosen as the value d itself; In our example, for attribute good, the representative
value chosen would be �co�ee�. In the case the tolerance parameter is relaxed, i.e., tAi = n,
any attribute value can be chosen. In the case of numerical attributes, an aggregative
function can be used to compute the representative value, e.g., the average value between
the min and max attribute values. Thus, in our example, the representative value for the
quantity attribute would be average(410, 450) = 430.

Jagadish et al. formulate the semantic compression problem as a storage minimization
with fascicles problem. Since the authors allow fascicles to contain an arbitrary number
of k compact attributes, the search space is considerably increased. The authors pro-
pose several algorithms with di�erent parameters, i.e., �xed k compact attribute fascicles
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(Single-k algorithm) or ≥ k compact attribute fascicles (Multiple-k algorithm), that allow
the extraction of such fascicles. The ideas developed for Fascicles are mostly interesting
for handling numerical values since de�ning an aggregate function for numerical values is
intuitive. For instance, they can be chosen as the min, max, average, etc.. However,
in the case of categorical attributes, even if the tolerance parameter can be relaxed, the
authors enforce in practive a strict tolerance parameter, i.e., tAi = 1. This choice is due to
the lack of a mechanism in AOI for representing a set of categorical attribute values by a
representative value.

For application view point, fascicles are used to extract frequent patterns, i.e., in this
context patterns are frequent itemsets. The notion of frequency is de�ned by the number
of tuples grouped by a fascicle. The quality of patterns extracted is directly linked to the
compactness factor k of attributes and the tolerance parameters for each attribute of the
fascicles generated. Incidentally, the quality of patterns extracted is re�ected in the orga-
nization of fascicles, thanks to a partial order de�ned on fascicles and the Smyth [Smy78]
ordering for powers sets, by decreasing tolerance and increasing k value.

SPARTAN [BGR01]

SPARTAN [BGR01] is a method proposed to compress massive data tables using its
semantics. The authors make the following observations from the Fascicles approach
[JMN99]: Fascicles allows to operate lossy compression by grouping approximatively match-
ing tuples, where the degree of approximation is speci�ed by user-de�ned compactness
parameters. From this perspective, fascicles allow to guarantee upper bounds on the com-
pression error. However, fascicles proceed on a tuple-wise (or row-wise) manner to detect
patterns, i.e., tuples having similar values on several attributes. This row-wise approach
could be impossible to achieve when the data has very strong attribute-wise (or column-
wise) dependencies. Therefore, the undercurrent idea in spartan is to detect such column-
wise dependencies and represent those dependencies in a concise and accurate predictive
model, namely, in Classi�cation and Regression Trees (CaRT).

For this purpose, SPARTAN makes the same assumptions as Fascicles, i.e., a er-
ror tolerance parameter is de�ned for each attribute that the input data table is de�ned
on. Hence, SPARTAN detects predictive attribute dependencies thanks to the use of a
Bayesian network [Pea78] on the underlying set of attributes. The sets of predicted at-
tributes selected are then used to generate CaRT -based predictors such that the overall
storage cost is minimized, within the tolerance error range. The authors demonstrate that
�nding the CaRT s that minimize the overall storage cost maps to the Weighted Maximum
Independent Set (WMIS) problem and is a NP-hard problem. Hence, the generation of
these CaRT s go through the costly generation, in terms of computational time and of
memory usage, of an important number of CaRT predictors. The authors overturn this
shortcoming thanks to the use several optimization techniques: (i) random sampling, (ii)
leaves are only expanded if accurate predictions are not possible and (iii) pruning the
growing tree by exploiting prescribed error tolerance for the predicted attribute.

For instance, in our Import relation given in Table 1.8(a), we can devise a simple
classi�cation tree for predicting the good attribute with the quantity attribute as predictor.
The CaRT generated is given in Figure 1.3.

Even though SPARTAN outperforms Fascicles from compression view point, SPAR-
TAN su�ers from the same shortcomings as Fascicles for supporting chronology dependent
applications. The approach was designed to maximize the reduction of data tables size for
storage purpose only. Even though CaRT s give a high level understanding of attribute
dependencies, applications such as mining can not use the data tables compressed with
SPARTAN without a form of decompression beforehand. Also, in order to maximize the
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Figure 1.3: CaRT for predicting the good attribute with quantity as predictor

compression ratio of the algorithm, SPARTAN only focuses on attribute dependencies and
gather tuples from anywhere in the table of generate the classi�cation trees. As a conse-
quence, applications that rely on the sequentiality of the tuples can not use the compressed
table.

ItCompress [JNOT04]

The Iterative Compression, a.k.a. ItCompress, semantic compression approach was pro-
posed by Jagadish et al. in [JNOT04]. The authors' basic underlying idea is to compress
a data table R by reducing the number of tuples, or rows, in the table. This compression
e�ect is obtained by representing similar rows by a representative row (RR). In practice,
given an error tolerance parameter de�ned on each attribute, ItCompress �nds a set of
representative rows (RR) that matches at best the tuples in the original table within the
error tolerance range. All representative rows are grouped in a RR table. The compressed
table, denoted Rc, then contains three attributes, i.e., (i) ERId, (ii) Bitmap and (iii) Out-
liers. The ERId attribute matches rows in R with representative rows' ID in the RR table.
Suppose row t1 in R is represented by RR ERId1. The Bitmap attribute expresses, for
row t1 in the original table R, which are the attributes values of ERId1 that are not within
error tolerance range.

Let us give an example of summary produced by ItCompress with our Import relation
de�ned earlier in Table 1.9. Similar to our example on fascicles, we assume the error
tolerance parameter for attributes location, good and quantity are 1, 1 and 50 respectively.
Table 1.9(a) is the original table R, Table 1.9(b) is the compressed table Rc and Table 1.9(c)
is the table of representative rows.

In a nutshell, the output summary is compound of: (i) the RR table which is char-
acterized by a representative row ID and the attributes of the summarized table, (ii) the
compressed table where each row corresponds to a row in the original table and where the
attributes are (1) the RRid to which the tuple matches, (2) a bitmap expressing which are
the outlying values, i.e., values for attributes that do not match within error tolerance,
and (3) the set of outlying values. The main issue in ItCompress is to choose a good
set of representative rows that maximizes the total coverage of representative rows. The
authors show this problem is equivalent to the k-center problem [GJ79] and is therefore a
NP-hard problem.

ItCompress computes a solution in an iterative way. At the �rst iteration, the al-
gorithm randomly chooses a set of k representative rows from the input table. Then, at
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(a) Original Import relation R

Location Good Quantity
Ecuador Co�ee 400
Brazil Co�ee 450

Colombia Cocoa 300
Ethiopia Co�ee 420
Kashmir Sa�ron 80
Kenya Co�ee 410
Iran Sa�ron 90
Tahiti Vanilla 210
Mexico Vanilla 200

(b) Compressed relation Rc

ERId Bitmap Outliers
1 111
1 011 Brazil
2 111
1 011 Ethiopia
3 111
1 011
3 011 Iran
4 111
4 011 Tahiti

(c) Representative rows table RR

ERId Location Good Quantity
1 Ecuador Co�ee 400
2 Colombia Cocoa 300
3 Kashmir Sa�ron 80
4 Tahiti Vanilla 210

Table 1.9: Example of ItCompress summarization

each iteration, this random choice is improved with the objective of increasing the total
coverage over the table to be compressed. Even though this approach does not guarantee
optimality, the authors show that ItCompress gives good compression ratio without sac-
ri�cing e�ciency. Note that the authors do not clearly express how the compression ratio
is de�ned, however we assume compression ratio is de�ned as the ratio 1 − |RR|−1

|R|−1 , i.e.,
the ratio between the �nal number of representative rows and the number of tuples in the
input table.

ItCompress has computational complexity in O(kmnl + kdl) where n is the number
of rows in the original table, k the number of rows in the RR table, m the number of
columns, d the total number of domain values/intervals and l the number of iterations.
This means that ItCompress is mostly linear in processing time with the number of
rows to summarize. The experimental results presented by the authors show that the
approach is still in�uenced by the number of iterations and sampling ratio under certain
conditions. Thus, when dealing with high dimension datasets such as in a �nancial stock
market environment, the number of RR, the sampling ratio and the number of iterations
are parameters that might highly degrade computational time.

Considering these characteristics, ItCompress appears as a serious candidate for sum-
marizing sequences of events, stored in a relation database. Indeed, the summary produced
by ItCompress has the following desirable properties: (i) handling of numerical and cate-
gorical data, (ii) the ordering of tuples in the original table is preserved in the compressed
table and (iii) the (theoretical) computational complexity is linear.

However the ItCompress approach still su�ers from several shortcomings to support
chronology dependent applications. The summary produced can not be directly piped
to and used by such applications. Some form of decompression needs to be operated
beforehand so that applications that usually perform on relation tables can be executed.
Also, even though the compressed table produced is concise, it is not informative enough
for a user. The bitmap representation used is a compact way to represent commonalities
between a representative row and a row in the original table. However, much time and
e�ort need to be spent to �nd the representative row and understand the representation.
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This e�ort is even truer when very large datasets are compressed. In short, the approach
lacks a mechanism to represent at a higher level of abstraction rows in the compressed
table to make the table more informative.

SaintEtiQ [RM02,SPRM05]

The last technique we discuss here is the SaintEtiQ summarization approach proposed
by R. Saint-Paul et al. in [RM02,SPRM05]. SaintEtiQ was not speci�cally designed to
compress relational data for storage purposes, i.e., to reduce large amounts of data into a
small package. The main purpose of SaintEtiQ is to produce a smaller and more concise
view of very large databases. This approach takes database records as input and gives
some kind of knowledge as output. The process is divided into two main steps: the �rst
one consists in rewriting the input raw data and the second one is the learning step. The
rewriting step relies on Zadeh's fuzzy set theory [Zad65] to transform the input raw tuples
into candidate tuples. This rewriting step is achieved in accordance with Background
Knowledge (BK) provided to the system in the form of fuzzy linguistic partitions over
attribute domains. Each class of a partition is also labeled with a linguistic descriptor
which is provided by the user or a domain expert. For example, the fuzzy labels {Low,
Average, Above average, Important} could belong to a partition built over the domain of
the attribute quantity. Figure 1.4 gives an example of the partitioning. In our Import
relation, when the quantity of goods imported equals �400�, �400� can be rewritten into
two linguistic descriptors: (i) �Above average� and (ii) �Important�. Both descriptors have
a satisfaction degree, i.e., the accuracy of the descriptor regarding the attribute value,
of 0.50. The general framework of the approach is illustrated on our Import relation in
Figure 1.5.

100 200 300 400

1
Low Average Above

Average Important

Quantity

Figure 1.4: Example of linguistic partition for the quantity attribute
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Figure 1.5: SaintEtiQ process applied to the Import relation
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Once a raw tuple is rewritten into one or many cooked tuple(s), they are considered
by a machine learning algorithm, i.e., a conceptual clustering algorithm. In our example,
the �rst tuple is rewritten into two cooked tuples since quantity �400� is rewritten into two
descriptors. First, the candidate tuples are classi�ed into the output summary hierarchy
from the root of the hierarchy. The conceptual clustering algorithm �nds the best matching
summary node to add each input candidate tuple following a top-down approach. At each
summary node in the summary hierarchy, the hierarchy is modi�ed to incorporate this
new instance through operations that can create or delete child nodes. Decisions are
taken based on a local optimization criterion called the Partition Quality (PQ) that tries
to minimize the length of the intentional description of the summary. This intentional
description is made of a fuzzy set of domain descriptors on each attribute associated with
a possibility measure. Designed as a pluggable service-oriented system, SaintEtiQ has
linear computational complexity, i.e., in O(n) with n the number of tuples to summarize,
for the construction and maintenance of the summaries.

The SaintEtiQ summarization process uses the semantics of input databases to pro-
duce summaries that are informative, i.e., no desummarization is necessary to comprehend
the intention of a summary node. Since the intention of a summary node preserves the
tabular structure of the original database, it could be used for other purposes, such as
querying [VRUM04, Bec09]. Also, SaintEtiQ is an incremental process and has linear
computational complexity. These are desirable properties for a summary structure to sup-
port more process-intensive applications such as data mining. However, the hierarchical
summary produced by SaintEtiQ does not re�ect the sequentiality of candidate tuples
fed to the conceptual clustering process. This is the main shortcoming that does not qual-
ify summaries generated by SaintEtiQ as support structures for chronology dependent
applications.

3.3 Temporal databases

The temporal database research area is a vibrant and fruitful research domain that emerged
in the early 1960's. The domain has driven hundreds of researchers to publish more than
two thousand papers. The main aspects of this corpus of work can be found, and not
limited to, in a series of surveys [BADW82,Soo91,Kli93,SS98,WJW98,Noh04].

Research in temporal databases was triggered by the observation that real world phe-
nomena contain time-varying information, i.e., events occur at speci�c points in time, and
objects and relationships exist over time. Conventional databases capture the state, or a
snapshot, of an application, company or institution at a given point in time. However, this
snapshot does not consider the history of the data and does not model the evolution of the
events, objects or relationships in time.

This issue is speci�cally addressed in temporal databases. The time dimension is given
di�erent levels of representation, i.e., (i) on a tuple level or (ii) on an attribute level, and
carry di�erent semantics. Most common semantics are (a) valid time, (b) transaction time
and (c) bi-temporal relation that combines both valid and transaction time. The valid time
of a database fact is the collected time �spanning the past, present and future� where the
fact is true in the real world. Intuitively, all facts in real world have a valid time, e.g., its
creation time, however, this valid time may not be recorded for a number of reasons and
could be de�ned by the user. For instance, the valid time may be unknown or it may be
irrelevant from application point of view. The transaction time of a database fact is the
time when the fact is current in the database.

Let us give the example from the Wikipedia article on �Temporal database� 4. John
Doe is a �ctional man who was born on April 1975 in Smallville and who died in Bingtown

4http://en.wikipedia.org/wiki/Temporal_database
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in April 2001. We suppose the life on John Doe is recorded in a conventional database table
Person(Name, Address), where Name is the primary key. Therefore, in this conventional
database, an entry (John Doe,Smallville) is added when John Doe is born. This entry is
then deleted and replaced by (John Doe, Bingtown) when John Doe moves to Bingtown.
Finally, this entry is deleted when John Doe dies. This example shows the limitations of
how conventional databases handle the temporal information related to John Doe. For
instance, the information of how long John Doe lived in Smallville before moving to Bing-
town is lost. Table 1.10 gives a sum up of the series of facts relating to John Doe. A
temporal database corresponding to the facts relating to John Doe using the notions of
valid time and transaction time is given in Table 1.11.

Table 1.11 clearly shows that it is possible to retrace John Doe's history on the timeline.
For instance, fact entry e1 states that John Doe's �rst address is in Smallville. This fact
is recorded in the database at date 4th April 1975 (transaction time) but the fact itself is
valid starting from 3rd April 1975 (valid time). Then, fact entry e3 states that John Doe
moved to Bingtown on 26th August 1994 and was recorded on 27th December 1994. Given
this information, e2 is inserted and e1 preserved, i.e., e1 is not deleted, to record the end
of John's address in Smallville. e1 is updated to re�ect the end time of the transaction.

Date Event in real world Database action Database shows

APR 3,1975 John is born Nothing No John Doe

APR 4,1975
John's father o�cially re-

ports birth

Inserted:

Person(John Doe,Smallville)
John Doe lives in Smallville

AUG 26,1994
John moves to Bingtown but

does not register new address
Nothing John Doe lives in Smallville

DEC 26,1994 Nothing Nothing John Doe lives in Smallville

DEC 27,1994 John registers new address
Updated:

Person(John Doe,Bingtown)
John Doe lives in Bingtown

APR 1,2001 John dies
Deleted:

Person(John Doe)
No John Doe

Table 1.10: Series of facts concerning John Doe

Entry Name Address Valid-from Valid-to Transaction-from Transaction-to

e1 John Doe Smallville 03Apr1975 ∞ 04Apr1975 27Dec1994

e2 John Doe Smallville 03Apr1975 26Aug1994 27Dec1994 ∞
e3 John Doe Bigtown 26Aug1994 ∞ 27Dec1994 02Feb2001

e4 John Doe Bigtown 26Aug1994 01Jun1995 02Feb2001 ∞
e5 John Doe Beachy 01Jun1995 03Sep2000 02Feb2001 ∞
e6 John Doe Bigtown 03Sep2000 ∞ 02Feb2001 01Apr2001

e7 John Doe Bigtown 03Sep2000 01Apr2001 01Apr2001 ∞

Table 1.11: Temporal database for John Doe facts

There has been extensive research on the theoretical foundations of temporal database.
These research directions include (but are not limited to):

• How to model di�erent semantics of time in conventional relational databases

• Design new query languages

• Query processing for temporal databases

• Storage and access methods to optimize time-constrained queries

• Incomplete temporal information

• Temporal integrity constraints, etc.
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To the best of our knowledge, very small interest has been given to represent temporal
databases into a more compact and concise form. The corpus of work most relevant
to summarization in temporal databases includes the PACK operator de�ned for time
intervals [DDL02], Bettini's work on semantic compression of temporal data [Bet01] and
Wang et al.'s work on transaction time in temporal database systems [WZZ08].

The PACK operator [DDL02]

The PACK operator considers as input a unique n-ary relation R where at least one
attribute is a time interval. This attribute is called �During�. In our example in Table 1.11,
the �During� time interval attribute could be de�ned from the �Transaction-from� and
�Transaction-to� attributes. This operator produces another n-ary relation that is known
as the canonical form of R, denoted PACK(R). The main purpose of this canonical form
is to reduce redundancy of the original relation R. Intuitively, the PACK operator groups
tuples in R that have identical descriptions, i.e., attribute values, and that are contiguous
on the timeline, i.e., the tuples' time interval overlaps.

Let us give an example of how the PACK operator proceeds in Table 1.12. Table 1.12(a)
is a temporal database and Table 1.12(b) is a representation of Table 1.12(a) where the
attributes �From� and �To� are replaced by a �During� attribute. Finally, Table 1.12(c)
gives the packed temporal database.

(a) Original temporal
database

Item From To
I1 d02 d04
I1 d03 d05
I2 d02 d05
I2 d04 d06
I2 d09 d10

(b) Preprocessed tem-
poral database R

Item During
I1 [d02:d04]
I1 [d03:d05]
I2 [d02:d05]
I2 [d04:d06]
I2 [d09:d10]

(c) PACK(R)

Item During
I1 [d02:d05]
I2 [d02:d06]
I2 [d09:d10]

Table 1.12: Example of PACK operation

The intuitions behind the PACK operator is most interesting since it can handle at-
tributes of any type, i.e., numerical and categorical. Also, tuples in R are packed based
on their contiguity on the timeline, but note that here, the notion of contiguity is de�ned
by the overlapping of the events' �During� attribute value. However, this PACK operator
su�ers from at least two shortcomings: (i) large numbers of attributes might result in few
packings and (ii) further compaction could be achieved.

In the �rst case, our simple example shows that relation R is solely de�ned on the
�Item� attribute and the PACK operation is straightforward. When there exists are larger
number of attributes de�ned over large domains, it is less likely for contiguous tuples to
have identical attribute values. In this situation, the PACK operator will have smaller
impact and few tuples would be packed together. This shortcoming could be leveraged by
introducing a mechanism to abstract attribute values such that they become identical at
a certain level of representation.

In the second case, Table 1.12(c) shows that tuples (I2,[d02:d06]) and (I2,[d09:d10])
have identical �Item� attribute value, i.e., I2, but these tuples are not packed together
since their �During� attribute values do not overlap, i.e., [d02:d06] ∩ [d09:d10]=∅. More
compaction could be achieved and the number of tuples in Table 1.12(c) could be further
reduced if tuples (I2,[d02:d06]) and (I2,[d09:d10]) were packed together. We argue that
this packing operation makes sense since the tuples' �Item� attribute value is identical
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and �During� time interval are close on the timeline. Hence, this shortcoming could be
leveraged by introducing a mechanism to evaluate the proximity of the tuples' time interval
on the timeline and representing, or characterizing, intervals [d02:d06] and [d09:d10] by a
more abstract time interval representation.

Claudio Bettini's semantic compression of temporal data [Bet01]

Claudio Bettini propose in [Bet01] a method to compress a temporal database using the
semantics regarding how the values of certain attributes evolve over time and how these
values change when considered in terms of di�erent time granularities. The author consid-
ers a temporal database is represented as a relational database with a valid time attribute.
The compressed temporal database is then used for query answering.

The author relies on the notions of time granularity and semantic assumptions (more
speci�cally, (i) instant assumption and (ii) granularity assumption) to achieve compression.
On one hand, a time granularity is de�ned as a mapping G from integers to subsets of the
time domain such that: (i) ∀(i, j) ∈ N, i < j, G(i) and G(j) are not empty and each
element in G(i) is smaller than all elements in G(j), and (ii) ∀k ∈ N, i < k < j, if G(i) and
G(j) are non empty, than G(k) is non empty. This de�nition of a time granularity covers
standard granularities like day, week, month, quarter, etc..

On the other hand, a semantic assumption provides a formal speci�cation of how un-
known values, i.e., implicit values, can be deduced from data explicitly present in the
database. In other words, a temporal semantic assumption relies on the use of meth-
ods, called interpolation methods, to derive an implicit value from explicit values. For
instance, one can decide to infer a missing value as the average value between the next
and previous values. Semantic assumptions can be of two di�erent nature: (i) persis-
tence assumption, denoted PX(Y meth1 . . . Y methn) or (ii) granularity assumption, denoted
IX(Y conv1 . . . Y convn). Under the persistence assumption, PX(Y meth1 . . . Y methn) is under-
stood as follows: implicit values of attribute Yi are derived from attribute X thanks to
interpolation method methi.

Under the granularity assumption, information for a certain granule of one time gran-
ularity can be derived from information at granules of a di�erent time granularity. Let us
explicit these de�nitions thanks to the example given in Table 1.13. This example presents
a relation R=(Item, Price, Time) that represents the evolution of the price of items I1

and I2. Here, the time granularity G chosen is quarter-since-2010 ; Hence, G(1) is �1st
quarter 2010�, . . ., and G(5) is �1st quarter 2011�. Under the persistence assumption, we
can observe that the price of an item increases by 5$ for each passing quarter. Thus, the
interpolation method can be de�ned as meth1 = Cj + ((i− 1)× 5), where Cj is the price
of item Ij at G(1) and i ≥ 1. Under the granularity assumption, relation R4 could say:
�If a given item price is stored in the relation for a given quarter, the same price can be
considered a good estimate for any month (or week, day, hour, etc.) of that quarter.�
Hence, since item I1 costs $35 during 2nd quarter 2010, item I1 also costs $35 in May.

The authors also de�ne a function φ called a mapping or time windowing function. In-
tuitively, this function gives the tuples that hold at a time granularityG(i) of granularityG.
In our example: φ(1st quarter 2010)={(I1, $30), (I2, $80)}, φ(2nd quarter 2010)={(I1, $35),
(I2, $85)} and φ(1st quarter 2011)={(I2, $100)}. Using these concepts, a temporal module
is de�ned as the triplet (R,G,φ). Putting all the pieces together, given a database and a set
of assumptions, semantic compression is achieved by �nding the minimal representation of
the database such that no tuple implied by the assumptions appear in any of the temporal
modules.

In our example, semantic assumption PItem(PriceC1+(i−1)×5) allows to imply tuple
(I1, $35), also, semantic assumption PItem(PriceC2+(i−1)×5) allows to imply tuples (I2, $85)
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and (I2, $100). In this case, these three tuples can be dropped from relation R as shown in
Table 1.13(b). Consequently, Table 1.13(b) is the minimal representation of the database
given in Table 1.13(a) w.r.t. these two semantic assumptions.

(a) Price relation R

Item Price Time
I1 $30 1st quarter 2010
I1 $35 2nd quarter 2010
I2 $80 1st quarter 2010
I2 $85 2nd quarter 2010
I2 $100 1st quarter 2011

(b) Compressed relation R′

Item Price Time
I1 $30 1st quarter 2010
I2 $80 1st quarter 2010

Table 1.13: Example of temporal database compression

This compression scheme allows to compress a temporal database in a way that some-
how preserves the chronology of the tuples. Here, compressed tuples are simply dropped
from the relation and are implied thanks to the semantic assumptions de�ned. However,
the approach proposed comes with the cost of several strong constraints: (i) the interpo-
lation methods meth (persistence assumption) or conversion methods conv (granularity
assumption) only process numerical attributes, and (ii) the time granularity needs to be
de�ned by the user. The latter shortcoming could be leveraged by using a taxonomy of the
time dimension, however, the former shortcoming is more troublesome. Usual interpola-
tion functions rely on the total ordering of numerical values to compute aggregates. In the
case of categorical attributes where concepts are not necessarily ordered, these aggregate
functions are not applicable, e.g., it is not clear how the average between concepts �cheap�
and �expensive� should be computed.

ArchIS [WZZ08]

ArchIS is a system proposed by Wang et al. in [WZZ08] to support temporal applications
on top of Relational Database Management Systems (RDBMS). The authors tackle the
problem of designing an integrated solution for several problems: (i) expressive temporal
representations and data model, (ii) powerful language for temporal queries and snapshot
queries, and (iii) indexing, clustering and query optimization for managing temporal in-
formation e�ciently. For this purpose of supporting and optimizing queries on transaction
time data, the authors propose an XML-based approach to represent database history in
a grouped form.

In temporal databases, when an attribute value is changed for a given tuple, e.g., a
price or salary change, a new tuple is created in the database (remember that in temporal
databases, tuples are not deleted so that the history of an entity can be tracked). Temporal
queries frequently need to coalesce tuples, e.g., to track all the price changes of a given
item. However, temporal coalescing is complex and hard to scale in RDBMSs.

The authors overcome this issue by representing temporal data in a form where at-
tribute values are grouped according to their time of validity. Time intervals that are
contiguous or overlap for a same attribute value are coalesced. In other words, a coalesced
timestamp history, i.e., start time and end time, is associated to each attribute value. This
representation is di�cult to implement in �at �les but is naturally represented in an XML
format.

Let us illustrate this approach thanks to an upgraded version of our John Doe example
in Table 1.14. Table 1.14(a) gives the original relation Person(ID, Name, Address, Job,
Salary, (Transaction-)From, (Transaction-)To). Table 1.14(b) is the grouped (or com-
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pressed version) of the Person relation. Note that John Doe's name and ID does not
change in this history, thus, these attribute values are legitimately grouped throughout the
whole history.

The XML-based compressed structure produced by the authors is essentially used for
query answering. Powerful temporal queries are expressed thanks to XQuery without the
need to de�ne a new query language. This approach is most interesting from summariza-
tion view point since it allows to reduce the representation of numerical and categorical
attributes. Attribute values are gathered together if they are identical and if they are close
on the timeline. Here, the notion of closeness is de�ned as contiguity or overlapping of the
time intervals where the attribute value is true.

(a) Original Person relation

ID Name Address Job Salary From To
1001 John Doe Smallville Paperboy $10,000 04Apr1975 27Dec1977
1001 John Doe Smallville Delivery man $10,000 28Dec1977 01Feb1980
1001 John Doe Smallville Delivery man $12,500 02Feb1980 27Dec1982
1001 John Doe Bigtown Engineer $60,000 15Jun1984 31Dec1986
1001 John Doe Bigtown Engineer $65,000 01Jan1987 31Jun1990
1001 John Doe Beachy Engineer $70,000 01Jul1990 31Dec1994
1001 John Doe Bigtown Senior Engineer $85,000 01Jan1995 31Dec2000
1001 John Doe Bigtown Senior Engineer $85,000 01Jan2001 01May2010

(b) Compressed form of the Person relation

ID Name Address Job Salary
04Apr1975 04Apr1975 04Apr1975 04Apr1975 04Apr1975

1001 John Doe

Smallville

Paperboy $10,000
27Dec1977 01Feb1980
28Dec1977 02Feb1980

Delivery man $12,500
27Dec1982 27Dec1982 27Dec1982
15Jun1984 15Jun1984 15Jun1984

Bingtown

Engineer

$60,000
31Dec1986
01Jan1987
$65,000

31Jun1990 31Jun1990
01Jul1990 01Jul1990
Beachy $70,000
31Dec1994 31Dec1994 31Dec1994
01Jan1995 01Jan1995 01Jan1995

Bingtown Senior Engineer $85,000

01May2010 01May2010 01May2010 01May2010 01May2010

Table 1.14: Example of transaction database - Person relation

We believe the underlying ideas could be developed further to achieve a more compact
representation: (i) Allow attribute values to be subsumed into more abstract concepts and
(ii) perform compression tuple-wise. Indeed, in our example, during the period 04Apr1975
to 27Dec1982 John Doe has worked as a �paperboy� and a �delivery man�, and earned a
salary of �$10,000� and �$12,500�. Intuitively, these primitive values could be rewritten into
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a more abstract concept. For instance, the terms �paperboy� and �delivery man� could be
subsumed by the concept �manual work� and the values �$10,000� and �$12,500� could be
subsumed by the concept �low�. These attribute values can be rewritten using Background
Knowledge in the form of concept hierarchies as done in [SPRM05]). In this case, the
compressed form of relation Person could be even more concise.

3.4 Data streams

In the early 90', researchers made the observation that a growing number of real world
applications needed handle very large amounts of data generated by multiple sources in
an automated way. Examples of such sources include: Financial tickers, performance
measurements in networking monitoring, web usage logs, sensors, call detail records in
telecommunications, etc.. These sources are assumed to be unbounded in size, continuously
produce data in real time and eventually at very high and uneven rates. For these reasons,
this data is not best modeled as persistent relations but as transient continuous data
streams, also called streams for short. Processing continuous data streams for the purpose
of knowledge discovery, e.g., �nd most frequent items in the stream, raises many challenges.
Indeed, such a data-intensive environment comes with very strong requirements on the
algorithms that process data streams. For instance, since streams are potentially in�nite
it is commonly accepted that streams can not be stored and processed o�ine. Incidentally,
each input data object can only be considered once, either it is processed or discarded.

Here, we introduce the necessary notions to show how research on data stream pro-
cessing is linked to our work on summarization of time sequences. For this purpose, we
discuss in Section 3.4.1 the di�erent representations of data streams used in the fruitful
literature throughout the last two decades. We clearly state the nature and representation
of the data streams we consider as related work. This distinction is of utmost importance
since part of the research corpus on how to represent data streams within constrained
memory will be ruled out of related work. Then, we discuss the limitations of traditional
database management systems for handling streaming data and its consecrated applica-
tions, e.g., continuous queries. Indeed, continuous queries is a class of queries that makes
sense thanks to the dynamic and constantly evolving nature of data streams. Traditional
database management systems are very ill prepared for handling such queries. Hence, this
is how we show the extent to which the ideas put in place to support continuous queries
intersect with our work on summarizing time sequences of events.

3.4.1 Data stream model

Research on data streams, in its early stages, has given various de�nitions of a data stream.
Here we present the most consensual de�nitions so that time sequence summarization can
be positioned w.r.t. all the research e�orts on data streams. Two main tendencies clearly
appear in the literature on data streams: Data streams are either considered as (i) an
ordered series of numerical objects or as (ii) an ordered series of relational tuples. In
the former case, data streams are de�ned as a series of data points, which can be simple
numerical values [BS05, Mut05] or more complex relation tuples [BBD+02] de�ned on
multiple numerical attributes. De�nition 1.1 gives a formal de�nition of a data stream of
numerical values and De�nition 1.2 is its extension to streams of relational tuples de�ned
on numerical attributes.

De�nition 1.1 (Data stream of numerical values)
A data stream consists of an ordered sequence of data points x[1], . . . , x[i], . . . , x[n], . . . such
that the value of each data point x[i] lies in a bounded range, i.e. x[i] ∈ [Rmin, Rmax].
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De�nition 1.2 (Multi-dimensional numerical data stream)
A multi-dimensional data stream consists of an ordered sequence of data points x[1], . . . , x[i],
. . . , x[n], . . .. Let R be a relation de�ned on a set of m numerical attributes A. Each data
item x[i] in the data stream is a tuple in R and de�ned on attributes in A. Let x[i, k] be
the value of x[i] on attribute Ak with 1 ≤ k ≤ m and Ak is numerical. Each data point
value x[i, k] lies in a bounded range, i.e. x[i, k] ∈ [Rmin, Rmax].

In the latter case, a data stream can be understood as an extension of traditional
relational databases into a streaming environment. Therefore, each data point in a data
stream is a relational tuple [ABB+04, DGGR02, Agg06a] de�ned on multiple attributes
that can be numerical or categorical. De�nition 1.3 formally de�nes such data stream as
a generic multi-dimensional data stream.

De�nition 1.3 (Generic multi-dimensional data stream)
A generic multi-dimensional data stream consists of an ordered sequence of data points
x[1], . . . , x[i], . . . , x[n], . . .. Let R be a relation de�ned on a set of m numerical attributes
A. Each data item x[i] in the data stream is a tuple in R and de�ned on attributes in A.
Let x[i, k] be the value of x[i] on attribute Ak with 1 ≤ k ≤ m and Ak is either numerical
or categorical. If Ak is numerical, each data point value x[i, k] lies in a bounded range,
i.e. x[i, k] ∈ [Rmin, Rmax]. If Ak is categorical, each data point value x[i, k] is a descriptor
taken from the de�nition domain of Ak.

These de�nitions implicitly embed a notion of time and ordering of data points in data
streams. One can clearly notice the lack of a time dimension in the de�nitions given here.
This notion of time can be either explicitly or implicitly expressed in each data point. In the
case the notion of time is explicitly expressed, each data point in a stream is timestamped
thanks to a designated attribute. Explicit timestamps are used when tuples correspond
to a real world event that occurs at a particular time and that information is important
for the understanding of the event. In contrast, when the notion of time is implicitly
expressed, either the system that generates the stream does not include a timestamp or
the time associated to a tuple is not important. In this case, for the purpose of ordering
incoming data points of a stream, the data stream management system can add a special
�eld to capture the arrival time of each item. This distinction between implicit and explicit
timestamps is similar to that between transaction and valid time in the temporal database
literature.

Interestingly, Muthukrishnan gives in his survey on data streams algorithms and their
applications [Mut05] three formal models for data streams: (i) Time series model, (ii) Cash
register model and (iii) Turnstile model. Suppose a signal A, also understood as a one-
dimensional function A : [1 . . . n]→ R, is described by an input stream a1, a2, . . . arriving
sequentially, item by item. Even though the author's de�nition of a data stream matches
our de�nition of a mono-dimensional numerical data stream as given in De�nition 1.1, the
formalism of the three models introduced apply to generic multi-dimensional data streams.
The model essentially di�ers on how data points ai describe A:

• Time series model: Each ai equals A[i] and they appear in increasing order of i. This
time series model is most suitable for updating the �nancial trade volumes each minute,
or for observing the evolution of temperatures every hour, etc..

• Cash register model: Each ai is an increment to A[j]. The state of the signal af-
ter seeing the ith stream item is denoted Ai[j]. Hence, since ai is an increment Ii to
the current state of signal A, Ai[j] is expressed as follows: Ai[j] = Ai−1[j] + Ii, i.e., as
the sum of the previous state Ai−1[j] and the increment Ii. This model is similar to a
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cash register where multiple incoming ais could increment cash register A[j]'s state over
time. This model is one of the most popular data stream model. It �ts applications such
as IP address monitoring, e.g., monitoring multiple accesses to a web server from a same IP.

• Turnstile model: Each ai is an update to A[j]. The state of the signal after seeing
the ith stream item is denoted Ai[j]. Hence, since ai is an update Ui to the current state
of the signal A, Ai[j] is expressed as follows: Ai[j] = Ai−1[j] + Ui, i.e., as the sum of the
previous state Ai−1[j] and the update Ui where Ui can be positive or negative. This model
is the most generic model and allows to capture fully dynamic situations, i.e., situations
where there are inserts and deletes to the system.

Considering these formal models that describe data streams, we can easily state that
research on time sequences summarization should be related to research on data streams
modeled in the cash register model. Indeed, once produced, events in time sequences have
a proper existence and can only be altered (or incremented) be an increment to a previous
event. New events do not annihilate previous events.

3.4.2 Limitations of traditional DBMS

Processing data streams needs to take into account the speci�cities of streaming environ-
ments. Babcock et al. [BBD+02] list these constraints as follows:

• Data items in data streams arrive into the system in real time.

• The system might need to address multiple streams simultaneously.

• The system has no control over the order of arrival of stream items within a data
stream or across multiple streams.

• The arrival rate can be very high and uneven.

• Streams are potentially unbounded in size.

• Each data item in a stream can only be processed exactly once. Once processed,
a data item is either discarded or archived, eventually in a transformed version.
Since streams are potentially unbound in size, the storage memory remains limited
in comparison to the size of the stream.

Hence, systems intended to manage data streams need to be able to cope with the continu-
ous arrival of multiple rapid, time-varying, possibly unpredictable and unbounded streams.
The naive approach would be to simply load the arriving data stream into a traditional Re-
lational Database Management System (RDBMS) and operate on it. However, traditional
RDBMS are not designed for continuously loading individual data items. These systems
are ill prepared to handle heavily streamed-oriented applications.

Speci�c data stream systems have been developed to address monitoring, analysis or
query answering needs. The application domains include �nance, web applications, se-
curity, networking and sensor monitoring. iPolicyNetworks [iPo] and Traderbot [Tra] are
examples of such dedicated systems. iPolicyNetworks provides an integrated security plat-
form with services such as �rewall and intrusion detection over multi-gigabyte network
packet streams. Traderbot is a web-based �nancial search engine that evaluates queries
over real-time streaming �nancial stock data. The website allows users to register one-time
queries as well as continuous queries.
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3.4.3 Handling contiguous queries

Continuous queries, in contrast with traditional ad-hoc queries, are queries that are issued
once and that henceforth run continuously over a dataset. Relational databases are not
originally designed to support contiguous queries since the history of a tuple's updates is
not necessarily maintained. Note that this history could eventually be maintained if the
relational database is the representation of a temporal database, in this case, related work
is presented in Section 3.3. However, in data streaming environments, continuous queries
gain full meaning and are of utmost importance.

Answering continuous queries on data streams is one of the main challenges that have
led to the development of speci�c systems. As a stream is updated with new items, new
results can match a registered continuous query. These results are then returned to the user
or application. Supporting continuous queries on data streams is a challenging task. The
issue was �rst implicitly tackled by Gupta and Mumick with materialized views [GM99],
which is a form of continuous query since materialized views are continuously updated to
re�ect changes on the underlying relations. Materialized views have then been extended
to the chronicles data model [JMS95].

Answering continuous queries on data streams was �rst explicitly de�ned in Tapestry
[TGNO92], then a large corpus of work has followed, including, TelegraphCQ [CC03],
ATLaS [WZL03], Aurora [CC02], the Tribeca [Sul96] stream-processing system for net-
work tra�c analysis, GSQL [CJS03] is a SQL-like language developed for Gigascope or
CQL [ABW06], a SQL-based declarative language to register continuous queries against
streams and updatable relations, etc..

This corpus of research work on query answering in data streams has quickly raised
the necessity to provide approximate answers to ad-hoc and continuous queries. Arasu et
al. [ABB+04] started to distinguish between (i) queries that can be answered exactly given
a bounded amount of memory and (ii) queries that must be approximated unless steam
items were accessible on disk. The authors show that, without prior knowledge of the size
of input streams, it is impossible to bound the memory requirements for most common
queries such as join queries (unless attribute domains are restricted) or aggregate queries.

These results has thus motivated a large corpus of work on developing general tech-
niques for data reduction and synopsis construction. The general techniques developed
include random sampling, histograms, wavelets, synopsis (or sketches) or sliding windows.
The basic intuition behind these approaches is to produce a concise yet informative rep-
resentation of the stream that can be maintained in memory. This is the reason why our
research work on time sequence summarization intersects with the Algorithms community
e�orts in the data streaming environment.

3.4.4 Prior work

Most of the corpus of work intended for data streams of numerical objects as de�ned in
De�nition 1.2 is out of the scope of our work. The techniques proposed usually rely on the
total order de�ned on numerical values, e.g., to compute aggregates, distances, similarities,
etc.. Since there does not exist a natural total order on categorical attribute values, these
techniques poorly adapt to multi-dimensional categorical data streams. However, provided
some adaptation to categorical attributes, the underlying ideas in some approaches can still
be useful.

Sampling

Sampling [Olk93,OR90,Vit85,CMN99, JPA04,HK04,CMR05, JMR05,EN06,Agg06b] is a
old and simple, yet powerful, probabilistic tool to decide if a data item should be processed
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or not. Sampling allows to capture in reduced and constrained memory the most recent
data from an input stream. The boundary of the error rate induced by sampling is used
as a function for the sampling rate. Hoe�ding's [Hoe63] error upper bound, i.e., the
probability for the sum of random variables to deviate from its expected value, has been
used to measure the sample size, e.g., with Very Fast Machine Learning techniques [DH01].
However, sampling approaches usually su�er from the following shortcomings: (i) the
input size of a stream is unknown so �nding the error bounds requires special analysis,
(ii) sampling does not address the problem of �uctuating data rates that is inherent to
data streams and (iii) sampling does not �t applications that require more historical data,
e.g., top-k queries or continuous queries. Nevertheless, sampling could still be used as a
complementary approach for keeping most relevant recent data.

Load shedding

Load shedding [BM03,TCZ+03] is a technique similar to sampling. The idea is to drop
portions of the data stream. Load shedding has been successfully used for approximate
query answering. However, this approach does not suit all data mining tasks, e.g., sequen-
tial pattern mining, since it could drop trunks of the data stream that might represent or
contribute to a pattern of interest.

Sketching

The idea of sketching [BBD+02,Mut05] is to randomly project a subset of features. This
approach can be understood as vertical sampling of the input data stream. Sketching has
been applied in comparing data streams and aggregate queries.

Synopsis

Creating a synopsis data structure is the application of a summarization technique to
represent an incoming data stream into another stream or format that can be used for
further analysis. There exists a potpourri of techniques that comply to this de�nition of
a synopsis that include wavelet analysis, frequency moments, quantiles or histograms. We
list here the most relevant methods:

• Quantiles [GK01,LXLY04,AM04,GRM05,ZLX+06]

• Frequency moments [BBD+02]

• Wavelet-based analysis [VW99,CGRS00,GKMS01,GKS04,KM05]

• Single- or multi-dimensional histograms [PIHS96, JMN99, GK01, GKS01, TGIK03,
GGI+02,MM02,WS03,GSW04,Dob05,KNRC05]: Histograms are e�cient tools to
quickly capture the frequency density of intervals (in the case of numerical attributes).
In the case of categorical attribute, histograms could capture the frequency of each
attribute value. However, since there does not naturally exist a total order on cate-
gorical attributes, histograms of categorical domains loose the bene�t of capturing
the frequency density of aggregates such as on numerical intervals.

Sliding window

Also relevant to summarization, the sliding window [BBD+02,BDMO02] model captures
the most recent data items in a stream. As the data stream progresses, items from the
end of the window are discarded and new items are added. Sliding windows have several
attractive properties that allow it to be used for applications such as approximate query
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answering. The semantics of a sliding window are clear and users understand what the
approximation is. Sliding windows are deterministic and emphasizes recent data.

Data mining � clustering

Data stream, in particular data stream clustering, is another popular form of data stream
summarization that has attracted extensive research in [GMMO00,AHWY03,GMM+03]
and in [OWNL04, HXDH03, Agg06a, GLSS06, AHWY07, CCC08]. Guha et al. perform
data stream clustering using a k-median based approach [GMMO00,GMM+03]. The pro-
posed approach makes a single pass over the data stream and generates k clusters that
use small space. The approach requires o(nk) time and O(nε) space. The authors also
prove that any k-median approach that achieves a constant factor approximation can not
achieve better run time than O(nk). Babcock et al. improve Guha et al.'s approach
in [BDMO03] thanks to the use of Exponential Histograms (EH). To do so, the authors
address the problem of merging clusters when the two sets of cluster centers to be merged
are far apart. This is achieved by maintaining an EH structure. Lin et al. [LKLC03]
propose SAX to transform time series into a symbolic representation. Dimensionality and
numerosity reduction is achieved by computing piecewise aggregate approximation and in
a second step, each aggregate is represented by a discrete symbol, e.g., {a,b,c,. . . }. Aggar-
wal et al. [AHWY03,AHWY07] propose a clustering framework called CluStream based
on micro-clusters and a pyramidal time frame for summarizing massive data streams. The
authors build a set of micro-clusters also called snapshots at particular moments in time
which follow a pyramidal pattern. A micro-cluster is a set of information represented as
cluster feature vectors [ZRL96] to which is added information about timestamps. The
pyramidal time frame provides an e�ective trade o� between the storage requirements and
the ability to recall summary statistics from di�erent time horizons.

The techniques enumerated here show a common feature: They all consider clustering
on numerical data streams. To the best of our knowledge, small interest has been given
to clustering or building summaries for categorical data streams. However, this need is
very true and actual. Methods for categorical data streams seem to have mainly emerged
these last few years with the following contributions [HXDH03,OWNL04,CL05,PMR06,
Agg06a,WFZ+08].

Among the most promising techniques, Ong et al. [OWNL04] propose SCLOPE, a
clever hybrid approach based on CluStream and CLOPE [YGY02]. CLOPE is a clus-
tering algorithm originally developed for transaction data. The idea behind CLOPE is
to build clusters while optimizing a global criterion function that tries to increase the
intra-cluster overlapping of transaction items by increasing the height-to-width ratio of
cluster histograms. A cluster histogram is simply a histogram that captures the frequency
of transaction items of transactions in a cluster. Therefore, SCLOPE capitalizes on CluS-
tream by building micro-clusters and using the pyramidal time frame, and on CLOPE
by addressing the issue of categorical attributes thanks to the use of cluster histograms.
Since SCLOPE addresses clustering on data streams, cluster histograms are built in one
pass using the FP-Tree structure [HY00]. The pyramidal time frame allows to integrate
a time logics for building snapshots. Unfortunately, this approach lacks a mechanism to
sequentialize micro-clusters within a snapshot.

We proposed in previous work an approach [PMR06] to summarize data streams using
a conceptual clustering method. Since the approach is based on SaintEtiQ, the approach
fundamentally su�ers from the same shortcomings. The summary produced does not re�ect
the chronology of the input steram items and can not be directly exploited by chronology
dependent applications.
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After much work on numerical data streams, Aggarwal et al. have switched interest
in [Agg06a] towards categorical data streams. The authors propose a methodology similar
to Online Analytical Processing algorithms (OLAP) where statistical summary data is
stored at regular interval for the purpose of answering repeated queries. Most interestingly,
the authors assign a time-sensitive weight to each data point. Thanks to a fading function
f , this weight is used to express the decay rate of each data point which is used to control
the freshness of historical data. The clusters are a set of cluster droplets that contain a
number of statistical information: (a) number of co-occurring categorical attribute values,
(b) number of possible values of each categorical attribute occurring in a cluster, (c) number
of data points in the cluster, (d) sum of time weights at time t and (e) the timestamp of
the last data item added to the cluster. The authors have introduced an elegant method
to handle the time decay of a cluster, however, cluster droplets are grown only based on
their similarity with an incoming data point and not their distance or proximity on the
timeline.

3.5 Event sequences

System or user monitoring applications, in domains such as telecommunications, biostatis-
tics or the WWW, generate large amounts of sequence data called event sequences. Event
sequences consist of events that occur at speci�c points in time. A formal de�nition of
an event sequence is given in De�nition 1.4. Alarms in telecommunication networks and
web access logs are examples of such event sequences. In the case of telecommunication
networks, the set E of event types could be the set of possible error messages. In the case of
web access analysis, the set E of event types could be the set of possible pages. Note that
as event sequences are de�ned, event sequences can easily be understood as a particular
instance of multi-dimensional data streams, temporal database or even relational database
(where a tuple is an event). This explains why a number of data mining techniques from
these areas have been adapted to event sequences. We give in Figure 1.6 an example of
event sequence as de�ned in De�nition 1.4.

De�nition 1.4 (Event sequence)
Let ε be a set of event types. An event sequence is a collection of pairs (E, t) where E ∈
ε is an event type and t is the time of occurrence of event E.

EDF A BCEF C D BADC BEAECF AD

Event types E : {A, B, C, D, E, F} 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13t14 t15t16t17t18t19t20 t21t22

Time

Figure 1.6: Example of event sequence

The practical applications of the event sequence data model has attracted many re-
search e�orts in mining frequent patterns [MTAI97, Spi99a, SOL03,MR04,Abr06, SBC06,
ENK06,HC08,OKUA09], also known as frequent episodes. These data mining algorithms
succeed in extracting recurring local patterns, but prove inadequate in the task of �nding
a global model of the data. Also, the knowledge discovered by these technique usually
overwhelm the analyst. In such case, analysts require additional tools to visualize or nav-
igate through the output results. The alternative idea is to create summaries of the event
sequences to provide a global model of the data [KT08,KT09].

In [KT08, KT09], Kiernan and Terzi propose a formal de�nition of event sequence
summarization and give the desirable properties an event sequence summary should have:
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1. Brevity and accuracy: The summarization system should construct short sum-
maries that accurately describe the input data.

2. Global data description: The summaries should give an indication of the global
structure of the event sequence and its evolution in time.

3. Local pattern identi�cation: The summary should reveal information about the
local patterns: Normal or suspicious events or combination of events that occur at
certain points in time should be identi�ed by just looking at the summary.

4. Parameter free: No extra tuning should be required by the analyst in order for the
summarization method to give informative and useful results.

The authors consider particular event sequences where multiple events could occur at
a same time point t. They propose to rely on the Minimum Description Length (MDL)
principle to produce in a parameter-free way a comprehensive summary of an event se-
quence. The core idea is to segment the input event sequence timeline into k contiguous,
non overlapping, intervals also called segments. Thereafter, the portion of data correspond-
ing to each segment S is described thanks to a local model M . The local model M can
be understood as a partition of event types ε into groups {X1, . . . , Xm} such that Xi ∈ ε
and Xj ∩Xj′ = ∅ for every j 6= j′. Each group Xj is described by a single parameter p(Xj)
that corresponds to the probability of seeing an event of any type in Xj within segment S.

B

A

Event types E : {A, B, C} 

Time

AA AAAAAA A A AAA AAAAAA

B B B B B B B B B B B B B B B B B B B B

C C C C C C C C C C C C C C C C C C C

1 30

(a) Input event sequence

Time1 3012 21

B

AAA AAAAAA A A A AA AAAAAA

BBBBBBBBBB BBBBBBBBB B

C CCCCCCCCC CCCCCCCCC

(b) Segmented event sequence

Time1 3012 21

B

C C

A,B

B,C

A A

(c) Output summary

Figure 1.7: Example of summarization
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In a nutshell, the authors formalize the event sequence summarization problem as
the problem of identifying an integer k, segmenting input sequence S into a partition of k
segments {S1, . . . , Sn} and identifying for each segment Si the modelMi that best describes
the data in Si while minimizing a total description length metric. The authors show
that this problem can be optimally solved in polynomial time and give the corresponding
algorithm. Also, the authors propose an alternative sub-optimal but practical and e�cient
approach. Figure 1.7 gives an example of summaries produced by Kiernan and Terzi. The
shaded area for each group in the summary in Table 1.7(c) represents the probability of
seeing an event from that group. For more readability, the proportions of groups X1,2 =
{C}, X2,1 = {A} and X3,2 = {B} are not respected in Table 1.7(c).

Time1 3012 21

B

AAA AAAAAA A A A AA AAAAAA

BBBBBBBBBB BBB BBB BB B B

C CCC CCC CC C CCCCCCCCC

(a) Possible vertical grouping

Time1 3012 21

B

A

B

A

B

C

B

C

B

C

A

C

A

B

CC

(b) Alternate summary with partial order preservation

Time1 3012 21

B

A

B

A

B

C

B

C

B

C

A

C

A

B

CC

A

B B

C

A

B

C

B

C

A

B

C

A

C

(c) Alternate summary with total order preservation

Figure 1.8: Example of alternate summarizations

The summary produced by Kiernan and Terzi e�ectively reduces the input event se-
quence into a set of k = 3 segments and gives interesting information on the data density in
each segment. However, since the model used to describe each segment S is a probabilistic
model, traditional mining algorithms can not directly operate on the summary output.
Also, the model M used to describe each segment S looses the temporal information of
events within segment S. The temporal information lost is the order in which events ap-
pear in the system. For instance, in segment S1 in Table 1.7(b), events A and B arrive at
t = 1, then, at t = 4, event A stops arriving and event C arrives. This information is lost
in Table 1.7(c).

In order to address this issue, a preprocessing step to desummarize the summary could
be adopted beforehand. For instance, the preprocessing step can simply consist in asso-
ciating an approximate time of occurrence, or timestamp, to each group Xj in S, so that
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groups Xj can be chronologically ordered. This timestamp could be computed from the
timestamp of events in each group, e.g., thanks to an aggregate function min, max, avg,
etc.: This operation is also known as a characterization of the timestamp. Thereafter,
traditional mining methods could apply to the preprocessed summary.

In its current state, the summarization operated here can be understood as a horizontal
grouping of data in each segment S. The alternative approach would be a vertical grouping
of events in each segment S. Vertical grouping would allow to address the issue of loss of
temporal information in a controlled manner. We give an example of an alternate way to
operate summarization in Figure 1.8. Figure 1.8(a) gives one possible vertical grouping of
events in each segment. The corresponding summary obtained is presented in Figure 1.8(b).
We can note in this �gure that the sequentiality of events is partially preserved, e.g., in
segment S1, we preserved the sequence S′ = 〈{A,B}, {B,C}, {B}〉 but lost the information
that 〈A,B〉 is the last group of events in the original segment. Figure 1.8(c) presents a
second alternative summary. In this case, the overall sequentiality of events in completely
presented. These examples show that the compression ratio achieved, here expressed as the
ratio ρ = 1− #groups in summary-1

#events in original sequence-1
, by the di�erent alternative summaries is di�erent,

i.e., in Figure 1.8(b) ρ = 0.76 and in Figure 1.8(c) ρ = 0.55. This di�erence in compaction
gain is traded o� in the form of temporal accuracy of the summary produced.

3.6 Discussion

Summarization techniques developed in each research area came with speci�c limitations.
We propose to sum up in Table 1.15 the main limitations identi�ed for each approach.
As a reminder, time sequence summarization was introduced as an activity to support
chronology dependent and process-intensive applications on very large data sets. Hence, a
number of desirable properties naturally arise: For instance, (i) the summarization algo-
rithm should have low algorithmic complexity, (ii) all the data should be represented in the
summary, (iii) the chronology of events should somehow be re�ected in the summary, (iv)
applications should operate seamlessly on summaries, etc.. For this reason, we consider
that the related works, studied throughout this chapter, present a limitation when they do
not satisfy these intuitive and natural properties. From Table 1.15, in each research area,
we can identify some main shortcomings w.r.t. these properties. These shortcomings are
listed and analyzed in the following paragraphs:

• Customer transaction databases: The purpose of summarization in this area is to
(but not limited to) facilitate knowledge extraction tasks. This objective explains
why summaries are built using data mining techniques, e.g., Frequent Itemset Mining
(FIM). However, such pattern mining techniques rely on algorithms that have high
computational complexity. For instance, the candidate generation phase in Apriori-
based algorithms explodes exponentially with the decrease of the minimum support
parameter. Also, once patterns are generated, the notion of chronology of events
in the summary does not hold anymore. Hence, these two observations explain the
limitations identi�ed in Table 1.15.

• Relational databases: Some relational database summarization techniques are de-
signed for storage purposes. Therefore, research works have focused on optimizing
the compaction of databases in a fast and e�cient manner. Hence, higher compaction
gain is usually achieved by considering the time dimension as any other dimension
and results in disregarding the temporal ordering of the data.

• Temporal databases: In contrast with relational databases, here, the time dimensions
(valid time and transaction time) are use to discriminate the tuples to be grouped

39



together. Hence, most research work has focused on these time dimensions and have
given low interest in designing mechanisms for grouping the data based on its content.

Data

model
Ref.

Shortcomings

Complexity Coverage Chronology Substitution Other observations

Customer
TDB

[CK05] High Yes Yes Based on FIM

[WK06] Yes
Based on FIM; No ex-
plicit compaction gain

[XJFD08]
Polynomial Yes Yes Based on FIM

[WA05] Yes
Generates a structure
for Apriori-based SPM

Relational
DB

[Cai91] Yes

[JMN99]
Low support for cate-
gorical data

[BGR01]
O(logn)

to O(ρn
2

2
)

Yes Yes

[JNOT04]
Yes

Compressed table Rc
not informative

[SPRM05]
Yes Yes

Temporal
DB

[DDL02]

No mechanism to abs-
tract the data; Low
compaction gain on
high dimension data

[Bet01] Numerical data only

[WZZ08]
No mechanism for tu-
ple wise compression

Data
streams

[OWNL04]
Yes

Lacks a mechanism to
order micro-clusters
within a snapshot

[PMR06] Yes Yes Based on SaintEtiQ

[Agg06a] Yes

Cluster droplets grown
only based on their
similarity; Lacks a
mechanism that con-
siders the temporal
proximity of droplets

Event se-
quences

[KT08] Polynomial Yes Yes
Lacks a mechanism to
order groups within
each segment

Table 1.15: Shortcomings of main summarization approaches proposed in the literature

• Data streams: Data streams processing is a young research area. The main appli-
cations that drive research e�orts in this area include �nancial analysis, monitoring
sensor networks, etc.. By essence, these application deal with numerical data and
few e�orts have been given to summarize categorical data streams. Here, the closest
activity to time sequence summarization is the clustering of categorical data streams.
However, these methods mainly su�er from the lack of a mechanism to handle the
temporal information associated to events, i.e., events are solely clustered based on
their content.

• Event sequences: Finally, Kiernan and Terzi's e�orts on summarizing event sequences
is closest to our research work. The main di�erence between the authors approach
to summarization and our understanding of time sequence summarization lies in the
�nal objective of the summary. Indeed, Kiernan and Terzi designed event sequence
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summaries to help the end-user understand his data. On the other hand, we un-
derstand time sequence summarization as a support structure for other applications.
This di�erence in our objectives explain (i) why the author's technique only partially
takes into account the temporal information of events, i.e., through segmentation,
and (ii) why the summary produced can not be directly exploited by other applica-
tions.

In this section, we have thoroughly discussed work related to time sequence summariza-
tion developed for customer transaction databases, relational databases, temporal databa-
ses, data streams and event sequences. This corpus of related work has shown that building
summaries capable of (i) handling categorical domains and (ii) the temporal dimension of
data are by themselves challenging tasks. However, to the best of our knowledge, designing
summaries for time sequence data that simultaneously take into account (i) the content
and (ii) the temporal dimension of the data is a new and very challenging research problem.
In the following section, we formally de�ne the concept of Time sequence summarization.

4 Time Sequence Summarization: Problem De�nition

In this section, we present the problem of building time sequence summaries. We give
an illustrative example then introduce the terminology necessary to formally de�ne Time
sequence summarization.

4.1 Illustrative example

To illustrate the ideas and concepts exposed in this section, we generate in Example 1.1 a
simple toy example with a time sequence of events extracted from conference proceedings.
Here, we associate to author N. Koudas a time sequence of events where each event is
one conference publication timestamped by its date of presentation. For simplicity, the
set of descriptors describing an event is taken from one single descriptive domain, namely,
the paper's topic. Without loss of generality, this discussion is valid for any number of
descriptive domains.

Example 1.1
We present here an example of time sequence of events extracted from conference pro-
ceedings. Descriptors in the itemsets are taken from the topic descriptive domain. This
descriptive domain represents the di�erent topics covered by conference papers. This se-
quence is given in Table 1.16.

Author Event descriptors Time
x1={Datastreams, Aggregation} JUN05
x2={Datastreams, Top-k query} AUG06

N. Koudas x3={Top-k query} AUG06
x4={Top-k query} SEP06
x5={Join query, Selection query} SEP06
x6={Clustering} SEP07

Table 1.16: Example of time sequence of events in conference proceedings

4.2 Terminology

Let Ω be the universe of discourse, i.e., the set of all categorical or numerical values that
could describe a data object. In our research work, we call descriptor any categorical or
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numerical value taken from Ω and we call event any data object de�ned as a part of Ω.
The term event is a generic term for designating any data object, be it a simple numerical
value or a complex relation de�ned on categorical and/or numerical attributes.

Ω =
⋃
ADA is organized into several attribute domains DA, also called descriptive

domains, corresponding to each domain A that is used to describe the content of an event.
Example 1.1 gives an example of time sequence of events in conference proceedings. For
author N. Koudas, each conference publication is described by the paper's topic, e.g., the
topic descriptors {Data streams, Aggregation} are used to describe the paper entitled
�Multiple Aggregations Over Data Streams� presented in June 2005.

We refer to a part of Ω, i.e., a subset of descriptors taken from various descriptive
domains, as itemset x ∈ P(Ω). Therefore, an event e is denoted e = (x, t) and is de�ned
by (i) an itemset x that describes e and (ii) is associated with a time of occurrence, or
timestamp, t. In our case, the paper entitled: �Multiple Aggregations Over Data Streams�
is described by descriptors x={Data streams, Aggregation} and presented at SIGMOD in
t=�JUN05�. We assume a time sequence of events (or time sequence or sequence for short)
for a given entity s, e.g., N. Koudas, is the set of events relating to s ordered by ascending
timestamp. A formal de�nition of a time sequence of events is given in De�nition 1.5.

De�nition 1.5 (Time sequence of events)
A time sequence of events s, denoted s = {e1, . . . , en} with n ∈ N, is a series of events
ei = (xi, ti), 1 ≤ i ≤ n, where xi is an itemset in P(Ω) and eis are ordered by ascending
timestamp ti. We denote by S = {x1, . . . , xn} the support multi-set of s. A time sequence
s veri�es: ∀(ei, ej) ∈ s2, i < j ⇔ ti < tj. We denote by s[T ] the set of timestamps of
events in S.

It should be noted that this de�nition does not require an explicit timestamp to exist for
a time sequence to be de�ned. Indeed, we make the same assumption as in the de�nitions
of data streams given in Section 3.4. Events in a stream or sequence can have either an
explicit or implicit time of occurrence. This only depends on the need or requirements
from application view point. In the case events do not have an explicit time of occurrence,
the associated timestamp can simply consist of an integer that corresponds to the index of
the event in the sequence of events.

Also, one should note that de�ning the set of descriptors that describes an event as a
part of Ω makes our time sequence model more generic and richer than the usual de�ni-
tions that rely on relations. The usual relation-based representation of complex streams,
sequences or relational databases is in a normalized form [Cod70]. Here, we allow multiple
descriptors from a same descriptive domain to be used for precisely describing an event.

De�nition 1.5 states that events in a sequence are ordered by ascending timestamp,
be it explicit or implicit. This total order on timestamps allow us to lighten the formal
expression of a time sequence. Therefore, we can equivalently use the notations:

• s = {e1, . . . , en}, n ∈ N

• s = {ei}, 1 ≤ i ≤ n, n ∈ N

We denote by S(Ω) the set of time sequences of events de�ned on P(Ω). This notion
of time sequence can be generalized and used to de�ne a sequence of time sequences that
we hereafter call second-order time sequence. A formal de�nition of second-order time
sequences is given in De�nition 1.6.

De�nition 1.6 (Second-order time sequence)
A second-order time sequence of events de�ned on S(Ω) is a time sequence s = {(Y1, t

′
1), . . . ,
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(Yn, t
′
n)} with n ∈ N, or equivalently, s = {(Yi, t′i)} with 1 ≤ i ≤ n, n ∈ N. The second-

order time sequence s can be understood as a series of events (Y, t′) where each itemset Y
is itself a regular time sequence of events in S(Ω) and t′ is a timestamp. Events (Y, t′) in
s are ordered by ascending timestamp t′.

Since itemset Y is a regular time sequence, Y can be expressed as follows: Y={ej},
where ej = (xj , tj) and 1 ≤ j ≤ m. Then, timestamp t′ is an aggregative timestamp
value that is computed from the timestamps of events that compose Y , i.e., t1, . . . , tm. The
aggregative function that computes t′ can be of any nature, e.g., min, max, avg, etc..

The set of second-order time sequences of events de�ned on S(Ω) is denoted S2(Ω).

Let us give an example of second-order time sequence from Example 1.1. N. Koudas's
time sequence can be reorganized as a second-order time sequence as follows:
s = {(Y1, t

′
1), (Y2, t

′
2), (Y3, t

′
3))} where:

• Y1={(x1={Datastreams, Aggregation}, t1=JUN05)} and t′1=t1=JUN05
• Y2={(x2, t2), (x3, t3), (x4, t4), (x5, t5))} and t′2 = min {t2, . . . , t5}, i.e., t′2=AUG06,

where:
- x2={Datastreams, Top-k query} and t2=AUG06
- x3={Top-k query} and t3=AUG06
- x4={Top-k query} and t4=SEP06
- x5={Join query, Selection query} and t5=SEP06

• Y3={(x6={Clustering}, t6=SEP07)} and t′3=t6=SEP07
A second-order time sequence can be obtained from a time sequence s as de�ned in

De�nition 1.5 by the means of a form of clustering based on the semantics and temporal
information of events e in s. Reversely, a time sequence can be obtained from a second-
order time sequence s by means of concept formation [Mic80,MS80] computed from events
(Y, t′) in s.

4.3 Problem statement

We have introduced in previous section all the elementary concepts required for de�ning a
time sequence summary as understood in this thesis work. We give a formal de�nition of
a time sequence summary using these concepts in De�nition 1.7.

De�nition 1.7 (Time sequence summary)
Given s a time sequence of events in S(Ω), s = {ei} with ei = (xi, ti) and 1 ≤ i ≤ n, we
de�ne the time sequence summary of s, denoted χ(s) = (s2C , s

?
M ) as follows:

• s2C = {(Yj , t′j)} with 1 ≤ j ≤ m ≤ n, is a second-order time sequence of events. An
event (Y, t′) in s2C is (i) a group Y of events e taken from s and obtained thanks to
a form of clustering C that relies on the events' semantic and temporal information,
to which is associated a time of occurrence t′.

• s?M = {(x?j , t?j )} is a regular time sequence of concept events, or concepts for short,
obtained by characterizing, or by forming concepts from, events (Y, t′) in s2C . Con-
cept x?j is obtained from the characterization of event itemsets in group Yj and t?j is
obtained from the characterization of event timestamps in group Yj.

s2C and s?M can be understood as the extension and the intention, respectively, of summary
χ(s).

For example, let (s, s?) be N. Koudas's time sequence summary where s is the extension of
the summary as de�ned in Section 4.2 and s? is intention of the summary, i.e., the sequence
of concepts formed from groups in s. The summary is detailed as follows:
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• s = {(Y1,JUN05), (Y2,AUG06), (Y3,SEP07)}

• s? = {({Datastreams, Aggregation},JUN05), ({Query optimization},AUG06), ({Clus-
tering},SEP07)}

The given de�nition of a time sequence summary is purposely generic. We used termi-
nology borrowed from conceptual clustering research since the underlying ideas are similar,
i.e., group data objects based on their similarity or proximity. The novelty of time sequence
summaries relies on the fact that events are grouped thanks to their semantic and temporal
information. As discussed previously, traditional clustering techniques mostly rely on the
joint features of the data objects considered. Their similarity is evaluated on these features
thanks to a distance measure, e.g., Euclidean distance or Manhattan distance in a metric
space, or entropy-based measure in categorical spaces. In time sequence summarization, a
form of temporal approximation should also be applied so that events that are close from
temporal view point are grouped. Consequently, local rearrangement of the data objects
on the timeline should also be allowed.

From applicative view point, the objective of time sequence summarization is to support
chronology dependent applications that operate on time sequences of events. For this
purpose, time sequence summaries should display certain desirable properties for e�ectively
supporting such applications. We list the desirable properties of time sequence summaries
in Property 1.8.

De�nition 1.8 (Properties of a time sequence summary)
The desirable properties of a time sequence summary are the following:

1. Brevity: The number of summarized events in the output time sequence should be
reduced in comparison to the number of events in the input time sequence.

2. Substitution principle: An application that operates on a time sequence s should be
capable of seamlessly performing if the input time sequence is replaced by its summary
intention.

3. Informativeness: Summarization should transform and reduce time sequences of
events in a way that keeps the semantic content available to and understandable by
the analyst without the need for desummarization.

4. Accuracy and usefulness: The input time sequence of events should not be over-
generalized to preserve descriptive precision and keep the summarized time sequence
useful. However, ensuring high descriptive precision of events in the summarized
time sequence requires trading o� the brevity property of the summary.

5. Chronology preservation: The chronology of summarized events in the output time
sequence should re�ect the overall chronology of events in the input time sequence.

6. Computational scalability: Time sequence summaries are built to support other
process-intensive applications and, thus their construction should not become a bot-
tleneck. Applications such as data mining might need to handle very large and long
collections of time sequences of events, e.g., news feeds, web logs or market data, to
rapidly discover knowledge. Therefore, the summarization process should have low
computational and memory requirements.

One should note that the desirable properties given in De�nition 1.8 partially overlap
with those given in the de�nition of an event sequence summary proposed by Kiernan and
Terzi in [KT08, KT09]. The main di�erence resides in the fact the authors impose the
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summarization approach to be parameter free. In return, our de�nition of a time sequence
summary impose the chronology preservation and the substitution principle properties.

We believe the chronology preservation property is of utmost importance, since it marks
the delimitation between traditional summarization or clustering techniques with time se-
quence summarization. In the case the chronology preservation property is completely
ignored, time sequence summarization degenerates into a simple summarization or clus-
tering approach that has for sole objective to achieve or optimize a compression ratio.
However, when the chronology preservation property is handled, ensuring high level of
temporal accuracy requires trading o� the brevity property, i.e., compression ratio, of
the summary. Therefore, there exists a fragile equilibrium to maintain so that ensuring
high compaction gain does not degenerate the summarization process into a traditional
summarization or clustering technique.

4.4 Discussion

In a nutshell, the objective of time sequence summarization is to �nd the best method
for grouping events in a time sequence of events based on events' semantic content and
proximity on the timeline. Note that this general de�nition of time sequence summari-
zation can partially encompass Kiernan and Terzi's work on event sequences summariza-
tion [KT08, KT09]. Indeed, when Kiernan and Terzi segment an event sequence S into
k segments Si, 1 ≤ i ≤ k, this segmentation can be understood as organizing S into a
second-order time sequence s2C where the method C is their segmentation method, e.g.,
Segment-DP. Note that the authors' segmentation method does not permit any form of
approximation that would allow to rearrange events on the timeline: In other words, events
that belong to a segment Si can not be rearranged on the timeline to belong to a di�erent
segment Sj , e.g., Si−1 or Si+1. Consequently, this rigid de�nition of segmentation could
limit the compaction gain of the algorithm.

Also, the authors describe each segment S by a set of event type groups {Xi} where
each group Xi gathers event types of similar appearance rate. Hence, the modelM used to
describe each segment is a probabilistic model. To this point, our de�nition of a time se-
quence summary fully generalizes Kiernan and Terzi's work. However, the authors perform
what we named in Section 3.5 horizontal grouping and associate to each event type group
Xi its probability of appearance p(Xi) in S. By doing so, the authors do not support (i)
the chronology of appearance of each event type group nor (ii) the substitution principle.

These two property violations could be addressed simultaneously as follows. The sum-
marization process could be adapted to our problem de�nition if the authors implemented
a form of vertical grouping (as introduced in Figure 1.8(b) and Figure 1.8(c) in Section 3.5)
on top of their horizontal grouping. Hence, their current horizontal grouping will simply be
used to collect distribution statistics of event type groups in each segment and the vertical
representation of event type groups can directly be processed by applications.

5 Chapter summary

In this chapter, we have explored and discussed the concepts that constitute �Time sequence
summarization�. At �rst glance, the notions of �Time sequence� and �Summarization� are
not well de�ned in the common knowledge literature nor in research literature. Therefore,
we introduce the de�nition of �Time sequence summarization� that we consider. This de�-
nition allows us to di�erentiate �Time series� from �Time sequences� and �Summarization�
from �Compression�. De�ning exactly the taxonomy of �Time sequence summarization�
considered allowed us to precisely delimit and pinpoint all related work in the literature.

45



In fact, summarization of time-varying data is a concept widely used across a broad
range of research activities on data models that include: customer transaction databases,
relational databases, temporal databases, data streams or event sequences. Since the data
generated worldwide tends to increase at a very fast rate, researchers have focused on
designing summary structures to support applications on these data sources. However,
due to the lack of an unifying de�nition or framework, each domain has developed speci�c
summarization methods for speci�c applications and needs. We studied in details the main
approaches proposed in each domain and reached the following conclusion. This corpus
of existing work has shown that building summaries capable of (i) handling categorical
domains and (ii) the time dimension of the data are by themselves challenging tasks.
However, designing summarization methods capable of simultaneously handling both types
of data is a new and an even more challenging problem.

Therefore, we formally gave a de�nition for the concept of �Time sequence summariza-
tion� and introduced all the desirable properties a time sequence summary, that complies
to our de�nition, should display. We showed that this de�nition can partially encompass
previous works such as Kiernan and Terzi's most recent work on event sequence summari-
zation. The main di�erence in Kiernan and Terzi's de�nition of summarization and ours
resides in the desirable properties a summary should display.

In the following chapters, we will present di�erent �Time sequence summarization�
techniques and we will study how time sequence summaries can support in practice a
chronology dependent application, namely, Sequential Pattern Mining. Hence, in Chapter 2
we present a user-oriented technique to build a time sequence summary, called TSaR.
TSaR builds on top of the ideas of Attribute Oriented Induction and uses background
knowledge in the form of domain speci�c taxonomies to represent events at higher levels
of abstraction. Summarization is achieved by gathering similar events that occur close on
the timeline.
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Chapter 2

TSaR: a user-centered T ime

Sequence SummaRy

1 Introduction

Data mining and summarization methods designed for operating on time sequences of
events, or time-varying data in general, are often custom-tailored for speci�c applications.
Such applications include knowledge discovery, visualization, speci�c queries, pattern min-
ing, storage, etc.. Some previous summarization work [SPRM05,KT08] has attempted to
propose more general purpose summarization techniques. Unfortunately, there can not ex-
ist a silver bullet method capable of addressing di�erent users' and di�erent applications'
needs since these needs and the way summaries are built could be mutually exclusive. For
instance, on the one hand, summaries produced by SUMMARY [WK06] are built on top of
frequent closed itemsets mined from transaction databases. Since frequent closed itemsets
are mined, SUMMARY is susceptible of loosing information. This loss of information is
conditioned by the choice of the minimum support value that indicates which itemsets will
be extracted from the transaction database. On the other hand, other applications, e.g.,
infrequent item mining [XCY06, BMS07, CYL+08] or outlier detection [HA04, CBKC07],
could use summaries as a support structure. Clearly, these applications can not leverage
summaries built by SUMMARY.

In [KT08], Kiernan and Terzi propose a more general purpose summarization approach
that builds event sequence summaries in a parameter-free manner. The authors emphasize
on the importance of unburdening the user from the need to parameterize the summari-
zation algorithm. We actually believe this property is of importance since summarization
tools are designed to assist users in their data analysis tasks and not make them loose time
on this preprocessing task. Also, users are not computer scientists and do not necessarily
have the technical background to parameterize and tweak complex algorithms. At least,
if parameterization is required from the user, it should be simple, intuitive and compre-
hensive [HBMB05]. The structures produced should be informative w.r.t. the parameters
chosen. For instance, if Kiernan and Terzi's algorithm [KT08] was parameterized, it should
simply require the user to specify the maximum number of segments into which the timeline
should be segmented.

The downside of a parameter-free methodology remains the lake of control over the
output produced. For instance, let us consider in Figure 2.1 the alternative summary
produced from Kiernan and Terzi's summary. This �gure shows that the group of events
X3,3 = {A,B,C} in segment S3 has the possibility of being grouped with other groups
in segment S2. The rationale behind this grouping could be: �The group of events X3,3

arrived lated due to network delays, hence, it should be given a chance to be gathered with
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one group in previous segment S2�. From user view point, the absolute groupings and the
increased volume of information imposed by the strict segmentation of the timeline could be
considered a limitation of parameter-free approaches. This limitation could be frustrating
since the way events are grouped could go against the user's perception of content w.r.t.
time and the way he would have grouped the events. Visually and conceptually, these
event groups are identical and seem to occur relatively close on the timeline, why not
gather them together? Actually, Miller [Mil62] found that individuals tend to focus on
�ltering and omitting (ignoring) information as the primary e�ective way of coping with
this sort of information overload. This means that anyways, the user might gather X3,3

with another group in segment S2.
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Figure 2.1: Alternate summary

In this chapter, we propose to operate time sequence summarization in a way that
limits the number of parameters required from the user, i.e., limited to two parameters
only. The two parameter settings required from the user should be simple and intuitive
and allow him to express the way he wants the data represented w.r.t. his understanding
and preferences of the domain of representation of the data. Hence, we propose a solution
that involves more actively the user. This user-oriented T ime Sequence summARization
approach is called TSaR. The purpose of TSaR is to provide users with a tool that can
produce an informative and useful summary of time sequences of events. The idea is
to allow users to customize, with the help of their knowledge and understanding of the
domain, the summary produced in a simple and intuitive way. Later in Chapter 3, we
will propose a full-�etched parameter-free time sequence summarization approach. The
contributions discussed in this chapter are the following.

Contributions

First, we propose to build a time sequence summary that display all properties given in
De�nition 1.8, in Chapter 1, in a user-oriented way. We present the user-oriented time
sequence summarization technique called TSaR. TSaR is a summarization method that
proceeds in three phases: (i) generalization, (ii) grouping and (iii) concept formation. The
generalization phase is responsible for representing the data at a higher level of abstraction
while the grouping phase gathers similar events that are close on the timeline. The concept
formation phase is responsible for producing a regular time sequence from the sequence
of groups produced in the grouping phase. The accuracy of the summaries produced is
controlled in the generalization and grouping steps by the user thanks to two parameters.
These parameters re�ect the user's preference in terms of: (i) the level of abstraction to
which the data should be represented and (ii) the level of temporal precision of events
represented on the timeline.

Second, we evaluate and validate our summarization method thanks to an extensive set
of experiments on real world data: Reuters's 2003 �nancial news archive, i.e., approxima-
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tively 1.2M news events. We de�ne a semantic and temporal accuracy measure to evaluate
the quality of summaries produced by TSaR. Hence, we summarize the input data and
evaluate each approach on four dimensions: (i) computational time, (ii) semantic accu-
racy, (iii) temporal accuracy and (iv) compression ratio. Our experimental study shows
that TSaR has linear computational complexity and can achieve high compression ratio.
The user can produce summaries that achieve even higher compression ratio by trading o�
semantic and/or temporal accuracy. This control over the compression ratio is obtained
by actioning the generalization and the grouping parameters.

Organization of the chapter

The remaining of this chapter is organized as follows. We present in Section 2 an overview of
theTSaR approach, then we discuss in Section 3 the fundamental concepts on whichTSaR
relies and the work related to these fundamental concepts. Using the concepts introduced,
Section 4 details the mechanisms of TSaR. Section 5 presents the implementation of TSaR
and studies the technique's computational complexity and memory footprint. We present
our experimental study in Section 6 and conclude this chapter in Section 7.

2 Overview of TSaR

TSaR is a technique designed to produce a concise, yet informative, time sequence sum-
mary from a time sequence of events as de�ned in De�nition 1.5 in Chapter 1. As a
reminder, events in an input time sequence of events are described thanks to a set of de-
scriptors taken from various descriptive domains and associated to a time of occurrence.
In market basket analysis terminology, an event is described by an itemset where items are
taken from various descriptive domains and the associated time of occurrence is a times-
tamp. This timestamp is used for organizing events in ascending order. The particularity
of this data representation resides in the fact an event can be described by multiple descrip-
tors taken from a same descriptive domain. This particularity makes this representation
of events richer in terms of content and more general in terms of data model. However,
this step towards generality has a price in terms of complexity of the underlying concepts
and in terms of computational complexity. We will discuss this aspect later in Chapter 3.

Example 2.1
Time sequence of events extracted from conference proceedings. Descriptors are taken from
the topic descriptive domain and represent the di�erent topics covered by conference papers.
This sequence is given in Table 2.1.

Author Event descriptors Time
x1={Datastreams, Aggregation} JUN05
x2={Datastreams, Top-k query} AUG06

N. Koudas x3={Top-k query} AUG06
x4={Top-k query} SEP06
x5={Join query, Selection query} SEP06
x6={Clustering} SEP07

Table 2.1: Time sequence of events in conference proceedings for N. Koudas

We recall in Example 2.1 our example of time sequence of events extracted from con-
ference proceedings. It will be used throughout this chapter to illustrate the notions
introduced.
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An overview of TSaR is given in Figure 2.2. The basic principle of TSaR is to represent
event descriptors in a more abstract form using some form of Background Knowledge (BK).
Here, this background knowledge is provided to the system in the form of domain speci�c
taxonomies, i.e., IS-A hierarchies of concepts. These taxonomies are used to generalize
event descriptors into their antecedents and consequently reduce the variability of event
descriptors. Since the variability of events is reduced, some events might have similar
descriptions. In this work, we consider for simplicity that two sets of event descriptors
are similar if both sets are identical. If this situation occurs and such generalized events
occur close on the timeline, they are gathered together to form a group of generalized
events. Each group produced this way is then represented by a single event, also known
as a representative event. This representative event is produced in our case by picking one
event from the corresponding group.

Time Sequence
SummaRization (TSaR)

Phase 1:
Generalization

Phase 2:
Grouping

Phase 3:
Concept Formation

Background Knowledge 
parameters

Temporal parameter

Time sequence of 
summarized events

Generalized events

Grouped events

Time sequence of events

Figure 2.2: TSaR's basic principle

Putting the pieces together, TSaR is designed as a 3-phase process that relies on event
descriptors generalization, event grouping and concept formation from groups formed. The
user controls the generalization phase thanks a generalization parameter that operates with
the taxonomies input into the system. This parameter expresses the level of abstraction
at which the user wants the data to be represented. The closeness of similar events
is controlled by a temporal parameter. This parameter allows the user to express how
precisely the chronology of representative events in the output time sequence summary
should re�ect the chronology of their corresponding events in the original time sequence.

3 Fundamental concepts

In this section, we present the fundamental concepts involved in TSaR and discuss their
related work. TSaR's overview showed that the approach represents event descriptors at
di�erent levels of abstraction thanks to the use of background knowledge provided to the
system in the form of domain speci�c taxonomies. Here, we will justify our choice to input
background knowledge in the form of domain speci�c taxonomies. Also, TSaR considers
that events that are similar and close on the timeline should be gathered together. Hence,
we discuss how this notion of temporal closeness of events on the timeline is handled by
introducing the concept of temporal locality, borrowed from Operating System research.
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3.1 Background Knowledge

Previous observations regarding parameter free summarization approaches has highlighted
the necessity for separating summarization techniques into two families of approaches. On
the one hand, Kiernan and Terzi impose event sequence summarization algorithms to be
parameter free. This property allows summaries to be automatically built without the need
for human intervention. This is a nice property since it requires no intellectual e�ort from
the user, and, the summaries produced can eventually be exploited by other analysis tools.
On the other hand, the summaries produced in such manner might not �t other users'
natural way of grouping objects. Hence, in this second family of techniques, we believe the
user should be given a more proactive role in the summarization process. However, the user
should be involved in a simple and intuitive manner, i.e., in a way that is comprehensive
and that does not require strong technical background. This approach concurs with Hiltz
and Turo� for whom [HT85]:

�Unless computer-mediated communication systems are structured, users will
be overloaded with information. But structure should be imposed by individu-
als and user groups according to their needs and abilities, rather than through
general software features.�

Here we attempt to provide users with a tool that allows them to customize the way
summarization is to be operated, i.e., decide the way sequence data is to be represented
and the way such resulting data is to be grouped. For this purpose we go back to the
fundamentals and rely on research on Cognitive Science. In the early 70's, research on
the role of organization in human memory has coined the concept of Semantic memory
in contrast with Episodic memory. Mainly in�uenced by the ideas of Reiss and Scheers
who distinguished in 1959 two forms of primitive memory, namely, remembrances and
other memoria, Tulving proposed to distinguish Episodic memory from Semantic mem-
ory. Episodic memory [Tul93,Tul02], also called autobiographical memory, allows one to
remember events personally experienced at speci�c points in time and space. For exam-
ple, an instance of such memory is the name and place of the last conference one has
attended. On the other hand, semantic memory is the system that allows one to store,
organize and connect one's knowledge of the world and make it available for retrieval. This
is a knowledge base that anyone can obtain through learning, training, etc., that one can
access quickly and without e�ort. In contrast with episodic memory, this knowledge does
not refer to unique and concrete personal experiences but to factual knowledge of the world.

Bous�eld and Cohen [BC52] advanced the idea, later shared by Mandler [Man67], that
individuals tend to organize or cluster information into groups or subgroups. Numerous
data models have been proposed to represent semantic memory, including: Feature mod-
els, Associative models, Statistical models and Network models. In the network model,
knowledge is assumed to be represented as a set of nodes connected by links. The nodes
may represent concepts, words, expressions, perceptual features or nothing at all. Links
may be weighted such that some links are stronger than others.

A particular instance of network model are the semantic networks [BLV02]. In semantic
networks, nodes are to be interpreted as standing for physical or non physical entities in the
world, classes or kinds of entities, relationships or concepts. Links between nodes encode
speci�c relationships between entities, concepts, etc., where the type of the relationship is
a symbolic label on the link. Semantic networks can be characterized as being general or
restricted.

On the one hand, general semantic networks are also known as ontologies in Ontology
research [DF02a,DF02b]. There exists various meanings for ontologies [SKSC06]: Philo-
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sophical ontology, Domain ontology or Formal ontology. In particular, Domain ontology is
de�ned as a representation of things that exist within a particular domain of reality such
as medicine, geography, ecology, law, etc.. More precisely, the most commonly used and
accepted de�nition of a domain ontology is the one proposed by Gruber [Gru93] where:

�An ontology is a formal, explicit speci�cation of a shared conceptualization.
Given a phenomenon in the world, the term conceptualization refers to an abs-
tract model that identi�es the relevant concepts to the phenomenon. Explicit
means the concept used and the constraints on their use are explicitly de�ned.
Formal refers to the fact an ontology should be machine readable. Shared re-
�ects that ontologies should be able to capture consensual knowledge accepted
by communities.�

Example 2.2 (Example of conceptualization)
The object �Porsche 911� can be conceptualized as:

- IS-A �car�, that IS-A �motor vehicle�,
- is INST of �supercar� and
- is COMPOUND-OF {4 wheels, engine, 2 doors, breaks, etc.}

Example 2.2 gives an example of conceptualization for the object �Porsche 911�. This
example shows that ontologies are rich tools and have high semantic expressiveness. For
instance, this conceptualization would also apply to the real world object �Porsche Cay-
man�. In fact, the precision of this conceptualization results from the choice of the links
and the associated semantics (here, the links are IS-A, INST and COMPOUND-OF). We
argue that such detailed conceptualization requires (too) much e�ort, domain knowledge
and pro�ciency from individuals to generate machine processable ontologies.

On the other hand, in restricted semantic networks, most common understandings of
a link are: (i) IS-A relationship, i.e., generalized-to-specialized relationship, and (ii) INST
relationship (standing for instance of ), i.e., an individual-to-kind relationship. The most
interesting purpose of restricted semantic networks is its strict hierarchical organization
of concepts. For instance, the IS-A relationship de�ned in Example 2.2 can be extended
as follows1: a �car� IS-A �motor vehicle�, which IS-A �self-propelled vehicle�, which IS-A
�wheeled vehicle�, which IS-A �vehicle�, which IS-A �transport�, etc.. For a given knowledge
domain, an instance of such restricted semantic network is also known as a taxonomy over
concepts of the domain.

Smith et al. [SKSC06] de�ne a taxonomy as a tree-form graph-theoretic representa-
tional artifact with nodes representing universals or classes and edges representing IS-A
or subset relations. Note that a representational artifact is a representation �xed on some
medium (e.g., a text, a diagram, etc.) so that the cognitive representations that exist in an
individual's mind (e.g., the concept �car�) become publicly accessible in an enduring man-
ner (e.g., a drawing representing the �car�). From this discussion, organizing knowledge in
a hierarchical way is in practice a process that naturally occurs to individuals. For this
reason, we believe feeding the TSaR summarization process with background knowledge
in the form of domain speci�c taxonomies is a reasonable and simple way to allow the user
to control the level of representation of the data. For instance, the descriptors of the topic
domain in our running example in Table 2.1 can be organized into the taxonomy shown in
Figure 2.3.

Therefore, the use of taxonomies allows users to control which event descriptors are to
be abstracted and what they are to be abstracted into. Intuitively, abstraction is achieved

1Extracted from WordNet [Lab]
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Figure 2.3: Taxonomy for the topic descriptive domain

by generalizing event descriptors following the IS-A relationship de�ned in the taxonomy.
In other words, abstraction is achieved by rewriting a descriptor (one or multiple times)
into its antecedent in the taxonomy. However, taxonomies alone do not specify how, or to
what level, this abstraction process is carried on. We will discuss this matter in Section 4.1.

3.2 Temporal locality

The second fundamental idea on which TSaR relies on is the concept of temporal locality
borrowed from Operating Systems research [Den05]. In fact, temporal locality is a special
case of the more general concept of locality of reference, also known as the Principle of
locality [ASU86]. In Operating Systems research, the locality principle is the phenomenon
that a collection of data locations (in Random Access Memory � RAM), referenced in a
short period of time in a running computer, often consists of relatively well predictable
clusters. An example of application of this locality principle in programming languages,
e.g., C, is the reuse of memory addresses to optimize matrix multiplication operations.

Temporal locality is a special case of locality of reference that assumes that if, at a given
point in time, a data location is referenced, then it is likely that the same location will be
referenced again in the near future. The presence of temporal locality has been recognized
in a number of applications such as web server caching [CC00, SMG02,KS02,Min02] and
exploited to improve performances such as the hit ratio, i.e., the number of times (from all
accesses) a requested �le was found in the cache.

Therefore, in this approach, we make the assumption that there exists a phenomenon of
temporal locality in time sequences of events and transpose the temporal locality principle
to summarizing time sequences of events. Hence, it this work, we assume that events that
occur close on the timeline have high probability of referring to a same phenomenon or
topic 2. Note that these events might eventually need to be expressed at a higher level of
abstraction to be similar.

However, events in a time sequence of events could eventually be intertwined, e.g., due
to network delays, or arrive out of order, e.g., in highly distributed environments [LLD+07].
Intuitively, making the assumption that there exists a temporal locality at each point in
time and estimating (or arbitrarily attributing a value to) this temporal locality would
allow to gather events that actually belong together, in the sense they describe a same
phenomenon or topic.

2In Topic Detection and Tracking (TDT) research pursued under the DARPA Translingual Information
Detection, Extraction, and Summarization (TIDES) program [TID], this phenomenon is also called a topic
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4 Detailed mechanisms of TSaR

We have given in previous sections an overview of TSaR and discussed the fundamental
concepts on which TSaR relies to achieve time sequence summarization. In the following
discussion, we detail the mechanisms of the summarization process. Hence, TSaR proceeds
in 3 phases to achieve summarization: (i) generalization phase, (ii) grouping phase and
(iii) concept formation phase. The detailed overview of the process is shown in Figure 2.4.

Time Sequence
SummaRization (TSaR)

Phase 1:
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Phase 2:
Grouping

Phase 3:
Concept Formation

Taxonomies and generalization vector V

Temporal parameter w

Generalized events

(t'1, {{A1},{A1}})
(t'2, {{A2, A3},{A2, A3})

(t1, {A1})
(t2, {A1})

(t3, {A2, A3})
(t4, {A2, A3})

.....

Grouped events(t'1, {A1})
(t'2, {A2, A3})

.....

Time sequence of 
summarized events

(t1, {a1, a3})
(t2, {a2, a4})

(t3, {a5, a8})
(t4, {a6, a10})

.....

Raw data

any_Cany_Bany_A

A2

a5 a6

A1

a1 a4...
A3

a7 a10...

Figure 2.4: TSaR principle more detailed

The generalization phase is responsible for representing input event descriptors into a
more abstract form thanks to the use of background knowledge. This background knowl-
edge is given to the system as a collection of domain speci�c taxonomies, one for each
descriptive domain on which event descriptors are de�ned. Also, the level of abstraction of
each event descriptor is de�ned by a user de�ned parameter called the generalization vector
ϑ. This vector controls for each descriptive domain, the level to which event descriptors are
to be rewritten. Hence, the generalization vector allows the user to control the precision
of the summary from content view point.

Since rewriting the input data reduces its variability, generalized events could eventu-
ally have similar descriptions. As a reminder, we assumed earlier that two sets of event
descriptors are considered similar if they are identical ; Hence, we will interchangeably use
the terms identical and similar in the remaining of this chapter. Then, the grouping phase
is responsible for grouping generalized events that have identical sets of descriptors. This
grouping process is controlled by a temporal locality parameter w. Intuitively, parameter
w indicates how far ahead in the time sequence an event should be looked up for grouping,
i.e., w indicates the maximum distance on the timeline separating two similar events that
allows them to be grouped. Understood under a di�erent angle, parameter w �xes (or
estimates) the temporal locality for each event. Hence, w allows the user to control the
precision of the summary from temporal view point.

The last phase is the concept formation phase. This phase is responsible for generating
a representative event for each group of events produced in the grouping phase. Since
we consider events to be similar when event descriptors are identical at a given level of
abstraction, concept formation is straightforward. We arbitrarily choose the oldest event
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in a group as the representative event of the group.

We discuss in details the di�erent phases that compose the TSaR algorithm in the
following sections.

4.1 Generalization phase

The generalization phase is responsible for representing event descriptors at a higher level
of abstraction. This e�ect is achieved by means of rewriting event descriptors into their
antecedents in the taxonomies provided to the system. Here, we will discuss how these
taxonomies can be obtained and how they are exploited in TSaR.

4.1.1 Obtaining Background Knowledge in the form of taxonomies

The term taxonomy is the practice and science of classi�cation. The word itself derives from
two ancient Greek stems: taxis and nomos, i.e., �order� or �arrangement� and �law� or �sci-
ence�, respectively. Organizing knowledge has attracted scientists worldwide throughout
the ages, in particular in agriculture, botany or biology. Agriculture, botany or biology
in general were most certainly the �rst domains that needed thorough knowledge orga-
nization [SheBC] (an interesting timeline of the history of taxonomy is given in [Bih]).
The actual task of a taxonomist as de�ned in the Merriam-Webster's Dictionary online is
to orderly classify plants and animals according to their presumed natural relationships.
Incidentally, there naturally exists a large corpus of ontologies and taxonomies publicly
available in the domains of biology, botanic or medicine. We give a summary3 of some of
the publicly available sources in Table A.1 in the Appendix of this thesis.

However, the emergence of research on the Semantic Web [BLHL01] has designated
ontologies and taxonomies as natural forms of Knowledge Representation [DSS93]. The
basic idea in Semantic Web research is to extend the current World Wide Web so that
computers can understand information content. For this purpose, knowledge representa-
tions have been developed for numerous speci�c domains including [Ont]: Food, Countries
- geography, Cyc, Enterprise, Music, Wine, Finance [Van], etc..

These observations back our assumption that users have access to publicly available
domain speci�c ontologies and taxonomies. Even though these repositories exist, they
do not necessarily cover all knowledge domains. In this case, there exists a number of
tools that can help the user generate ad-hoc taxonomies. For instance, a corpus of work
has focused on automatic generation of taxonomies using Wikipedia's categories classi�ca-
tion [SJN06,PS07,CIK+08]. Indeed, in [PS07], Ponzetto et al. rely on the fact Wikipedia
allows for structured access by means of categories since May 2004. These categories form
a graph which can be taken to represent a conceptual network with unspeci�ed semantic
relations. The authors use this graph to derive IS-A and NOT-IS-A relations from the
generic links in the graph thanks to the use of methods based on the connectivity of the
network and on applying lexico-syntactic patterns (Hearst patterns [Hea92]) to very large
corpora.

A state-of-the-art approach for inducing semantic taxonomies is proposed by Snow
et al. [SJN06]. The authors address the problem of sense-disambiguated noun hyponym
acquisition. They propose to use evidence from multiple classi�ers over heterogeneous
relationships in association with a novel coordinate term learning model. In other words,
the authors extract hypernyms from a corpus and solve the problem of choosing the correct
word sense to which to attach a new hypernym.

3Source: Wikipedia
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Since lexico-syntactic patterns have low performances in extracting all relations from
a generic corpus, Kliegr et al. [CIK+08] argue that traditional semantic taxonomies in-
duction still yield relatively poor results. The authors propose to apply lexico-syntactic
patterns on one suitable document with the intent to extract exactly one hypernym at
a time. They refer to this approach as Targeted Hypernym Discovery (THD) and argue
that THD can achieve much higher extraction accuracy than conventional approaches, e.g.,
close to 90% in image concept classi�cation [KCN+08].

Also, an interesting work that can be leveraged for automatically generating taxonomies
is the system proposed by Yao et al. [YHC09] for constructing evolutionary taxonomies
from a collaborative tagging system, e.g., Del.icio.us 4 for web page bookmarking or Flickr 5

for photo sharing. The authors believe online collaborative tagging systems have become
popular enough and are simple enough for acquiring user domain knowledge. Indeed, the
authors argue that the tags used to describe an online content are generally correlated and
evolve according to the changes to the content. Hence, the authors propose an approach
based on association rule mining to discover the co-occurrences of tags and structuring
tags into a hierarchy, i.e., into a taxonomy.

4.1.2 Control term abstraction thanks to the generalization vector ϑ

The generalization process makes use of taxonomies for abstracting event descriptors. This
process is made possible thanks to the partial order that exists in IS-A hierarchies. Indeed,
we assume that each descriptive domain DA, on which event descriptors are de�ned, is
structured into a taxonomy HA ∈ H =

⋃
AHA, de�ning a generalization-specialization

relationship between descriptors of DA. The taxonomy HA provides a partial ordering ≺A
overDA and is rooted by the special descriptor �any_A�, i.e., ∀d ∈ DA, d ≺A �any_A�. For
convenience, we assume in the following that the descriptor �any_A� belongs to descriptive
domain DA. An example of taxonomy de�ned for the topic descriptive domain in given in
Figure 2.3.

The partial ordering ≺A on DA de�nes a cover relation <A that corresponds to di-
rect links between items in the taxonomy. Hence, we have ∀(x, y) ∈ D2

A, x ≺A y ⇒
∃(y1, y2, . . . , yk) ∈ Dk

A such that x <A y1 <A . . . <A yk <A y. The length of the path
from x to y is `(x, y) = k + 1. In other words, we need k + 1 generalizations to reach y
from x in HA. For example, given the topic domain taxonomy in Figure 2.3, it takes 2
generalizations to reach the concept �Queries� from the concept �Top-k query�. So, thanks
to this relation, we can de�ne a containment relation v over subsets of Ω, i.e., P(Ω), as
follows:

∀(x, y) ∈ P(Ω)2, (x v y) ⇐⇒ (2.1)(
∀i ∈ x, ∃i′ ∈ y, ∃A ∈ A, (i ≺A i′) ∨ (i = i′)

)
For the purpose of generalization, we need to replace event descriptors with their an-

tecedents in the taxonomies, i.e., upper terms of the taxonomies. We call generalization
vector on Ω, denoted ϑ ∈ Ni, a list of integer values. ϑ de�nes the number of generaliza-
tions to perform for each descriptive domain in A. We denote by ϑ[A] the generalization
level for the domain A. Equipped with this generalization vector ϑ, we are now able to
de�ne a restriction v↓ϑ of the containment relation above:

∀(x, y) ∈ P(Ω)2, (x v↓ϑ y) ⇐⇒ ∀i ∈ x,∃i′ ∈ y,∃A ∈ A, (2.2)(
(i ≺A i′) ∧

(
(`(i, i′) = ϑ[A]) ∨ ((`(i, i′) < ϑ[A]) ∧ (i′ = �any_A�))

))
4http://delicious.com
5http://www.�ickr.com
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From the user's view point, ϑ represents the semantic accuracy he desires for each
descriptive domain. If he is interested in the minute details of a speci�c domain, such as a
paper's topic in our illustrative example, he can set ϑ to a low value, e.g., ϑ[topic] = 0 or
ϑ[topic] = 1. The rationale of these parameters are the following: In the case ϑ[topic] = 0,
descriptors for the topic domain are not generalized and kept in their original form. This
is the most accurate form of the data. This parameter should be set when one is interested
in events' minute details on this particular descriptive domain. In the case ϑ[topic] = 1,
some approximation is tolerated: One is interested in events on this particular descriptive
domain but only requires the general trend.

Also, an additional bene�t of �xing a small number of generalizations is to allow the
summarization approach to handle outliers. Indeed, in some situations, descriptors can
correspond to very specialized vocabulary in speci�c domains. In conventional approaches
these descriptors might simply be discarded. However, from taxonomy point of view, these
descriptors might be close to other more well known or more commonly used terms. Hence,
generalizing such descriptors a small number of times has the nice property of capturing
those descriptors at a higher level of taxonomy and allow their comparison to more com-
monly used descriptors.

On the other hand, the user can set ϑ to higher values for a more abstract representa-
tion of events on this particular descriptive domain. In the most extreme case, one can set
ϑ[topic] =∞. The rationale of this setting is that the user is simply not interested in the
topic descriptive domain and any value is acceptable.

In a nutshell, the generalization vector ϑ introduced here is a tool allowing the user to
control the level of generalization of event descriptors on each descriptive domain. This
tool has two bene�ts: (i) it allows the user to express his preferences for abstracting
events and (ii) it allows the user to control the trade o� between personal conception of
the data representation vs. lost of semantic content and summary informativeness. One
might argue that de�ning integer values for the generalization vector is a tedious task. We
believe this shortcoming can be addressed and the task simpli�ed for the user. Indeed,
the integer values that represent the level of generalization for each descriptive domain
can be mapped to a set of intuitive categorical concepts such as {�Very precise�, �Precise�,
�Fuzzy�, �Gross�}. For instance, �Very precise� could be mapped to ϑ = 〈0〉, �Precise�
could be mapped to ϑ = 〈1〉, etc..

4.1.3 Generalization process

Equipped with a set of taxonomies, i.e., one taxonomy for each descriptive domain, and
a user-de�ned generalization vector ϑ, we can now de�ne the generalization operator that
achieves generalization on time sequences of events. This generalization operator is denoted
ϕϑ and formally de�ned in De�nition 2.1. In this de�nition, an event e′i in ϕϑ(s) is called
a generalized event, and, a time sequence of events ϕϑ(s) is equivalently called a time
sequence of generalized events, a generalized time sequence of events, a generalized time
sequence or a generalized sequence.

De�nition 2.1 (Generalization operator)
Given s a time sequence of events in S(Ω), s = {e1, . . . , en} with ei = (xi, ti), and a
generalization vector ϑ, we de�ne a parametric generalization function ϕϑ that operates on
s as follows:

ϕϑ : S(Ω) −→ S(Ω)
s 7−→ ϕϑ(s)={e′1, . . . , e′n}, e′i=(x′i, ti), such that ∀i ∈ {1..n}, xi v↓ϑ x′i
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As an example of generalization, we can operate ϕϑ on our illustrative example using
the topic domain taxonomy given in Figure 2.3. The generalized sequence obtained by
generalizing Table 2.1 with ϑ = 〈1〉 is given in Table 2.2. This operation has allowed to re-
duce the variability of event descriptors in Table 2.1 from 6 descriptors to 2 descriptors. By
doing so, some event descriptors have become similar. For instance, in events (x′3,AUG06)
and (x′4,AUG06), x

′
3 and x′4 are identical, then, events (x′3,AUG06) and (x′4,AUG06) can

be considered for grouping.
In addition, one should note that the v↓ϑ relation also allows to reduce itemsets'

cardinality. Indeed, Datastreams and Top-k query both generalize into QO. As a result,
in N. Koudas's time sequence, the event {Datastreams, Top-k query} is generalized into
{QO} having one single event descriptor.

Author Event descriptors Time
x′1={QO, DM} JUN05
x′2={QO} AUG06

N. Koudas x′3={QO} AUG06
x′4={QO} SEP06
x′5={QO} SEP06
x′6={DM} SEP07

Table 2.2: Generalized events with ϑ = 〈1〉

Once input time sequences of events have undergone the generalization process, the
output time sequence of generalized events may present generalized events that are close
on the timeline and have similar descriptors, e.g., (x′3,AUG06) and (x′4,AUG06). These
generalized events are good candidates to be gathered together to form a group of (similar)
generalized events. This group represents events that relate to a same topic, e.g., {QO}.
This operation is the purpose of the grouping phase.

4.2 Grouping phase

The grouping phase is responsible for gathering similar generalized events that are close
on the timeline. This phase relies on three concepts: (i) second-order time sequence as
de�ned in De�nition 1.6 in Chapter 1, (ii) event similarity and (iii) temporal locality as
de�ned in Section 3.2. The notion of second-order time sequence is a convenient tool for
producing a sequence of grouped events and the notion of temporal locality will be useful
for deciding which events are eligible for grouping.

4.2.1 Temporal locality and temporal parameter w

The most interesting concept on which the grouping process relies is temporal locality. We
assume that events that occur close enough on the timeline have high probability of re-
lating to a same topic. Therefore, the grouping process is controlled by the user thanks
to a temporal locality parameter denoted w. Intuitively, parameter w is an estimation
or a measurement of the temporal locality phenomenon at the time of occurrence of each
generalized event. In other words, at a given instant t on the timeline, parameter w in-
dicates the range within which generalized events are eligible for grouping to describe a
same phenomenon or topic.

More formally, the temporal locality is measured as the time di�erence dT , on a tem-
poral scale T , between an incoming event and previously considered events in the output
sequence of grouped events. This output sequence of grouped events is a second-order
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time sequence that represents the groupings of generalized events operated. This output
sequence is also equivalently called a time sequence of groups or sequence of groups. Events
in a sequence of groups are themselves a grouping of generalized events; Each such event
is called a group for short.

The temporal scale T may be de�ned directly through timestamps if there exist explicit
timestamps or through integer values if there are no timestamps, or if timestamps are not
relevant, or not of interest. During the grouping process, an incoming generalized event can
only be compared to previous groups within a distance w, i.e., dT ≤ w, in the sequence of
groups. In fact, the temporal locality parameter w acts as a sliding window on the sequence
of groups and its value corresponds to the user's own estimation of the temporal locality
of events � then, note that w will be equivalently called temporal window or temporal
parameter hereafter. Said otherwise, w can be understood as the loss of temporal accuracy
the user is ready to tolerate for grouping generalized events.

This temporal window can be de�ned as a duration, e.g., w equals six months, or as a
number of groups, e.g., w equals two groups, independently from the way temporal scale
T is de�ned. This means that if the temporal scale T is de�ned through timestamps, the
temporal window can be de�ned either as a duration or as a number of groups. However,
reversely, if the temporal scale T is de�ned through integer values, the temporal window
can only be de�ned as a number of groups. Indeed, in this case the notion of duration does
not make sense.

SEP07JAN07SEP06AUG06 Time

Generalized sequence

(FEB07)

Time

Temporal locality w=6 months

Grouped sequence

New temporal locality

(a) Temporal scale de�ned through timestamps and temporal locality as a du-
ration

Time

Generalized sequence

Time

Temporal locality w=2 groups of events

Grouped sequence

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

(b) Temporal scale de�ned through integer values and temporal locality as a
number of groups

Figure 2.5: Example of time scales and temporal locality
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De�ning w as a number of groups is useful in particular when considering bursty se-
quences, i.e., sequences where the arrival rate of events is uneven and potentially high. The
downside of this approach is the potential grouping of events distant on the timeline. This
limitation could be solved by de�ning w as both a duration and a constraint on the number
of groups. Since certain domains, e.g., networking or Finance, give more importance to
the freshness of most recent information, we choose in the TSaR approach to express the
temporal scale as a number of groups in order to handle bursts of events.

Let us illustrate the choice of w with an example. Figure 2.5(a) presents the grouping
of events circle and square when the temporal scale is de�ned through timestamps and the
temporal locality chosen as a duration of 6 months. Figure 2.5(b) presents the grouping of
events circle, square and triangle when the temporal scale is de�ned through integer values
and the temporal locality is chosen as a number of groups: The number of groups is set to
two groups and is chosen in accordance to the number of groups formed in Figure 2.5(a).
The interesting observation here is the di�erence in the number of groups obtained in total.
In Figure 2.5(a), event circle at t=SEP07 generates a new group; In Figure 2.5(b), event
circle at t16 is grouped with events circle at t1 and t2. This observation illustrates the
issue of potentially grouping events that are distant on the timeline. In this illustrative
example, the best choice would have been de�ning the temporal locality as a duration,
since events are not bursty, or choosing a smaller parameter w, i.e., w equals one group.
In the case w equals one group, the exact same groupings as in Figure 2.5(a) would have
been achieved.

In short, the temporal locality parameter w allows users to control the accuracy of the
summary from temporal view point. Examples in Figure 2.5 have shown that the choice
of w as a duration or number of groups and their value directly impacts the groupings
achieved. Our indication to users is that smaller temporal window sizes will allow to
capture more details on the chronology of events. Larger window sizes will gather events
on long periods of time. This is useful for instance for retrieving the very general trend of
the chronology of events.

4.2.2 Grouping process

Equipped with the temporal locality parameter w, we can now de�ne the grouping operator
that gathers events from the generalized sequence output by the generalization process that
are similar and close on the timeline. This grouping operator is denoted ψw and formally
de�ned in De�nition 2.2. Intuitively, ψw takes as input a time sequence of events, either
generalized or not, and outputs a second-order time sequence of events. Events in this
second-order time sequence of events are regular time sequences themselves and correspond
to similar events within the temporal locality de�ned by w. In this de�nition, an event
(Yi, t

′
i) in s is called a group, and, a second-order time sequence s is equivalently called a

time sequence of groups, a grouped sequence, a time sequence of groups or a sequence of
groups.

De�nition 2.2 (Grouping operator)
Given s a time sequence of events in S(Ω), s = {e1, . . . , ep}, and a temporal locality
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parameter w, we de�ne a parametric grouping function ψw that operates as follows:

ψw : S(Ω) −→ S2(Ω)
s 7−→ ψw(s) = {(Y1, t

′
1), . . . , (Yn, t

′
n)}

where Yi = {ei,1, . . . , ei,m}, ei,j = (xi,j , ti,j) and t′i = ti,1, such that:

(Part) ∀k ∈ [w, p],
⋃
k−w≤i≤k Yi ⊆ S and Yi ∩ Yj = ∅ when 1 ≤ i < j ≤ n, j − i ≤ w

(Cont) (xi,q v xi,r), 1 ≤ r < q ≤ mi, 1 ≤ i ≤ n
(TLoc) if w is de�ned as duration,

(
dT (ti,q, t

′
i) ≤ w

)
, 1 ≤ i ≤, 1 ≤ q ≤ mi

if w is de�ned as an integer, given Y = {Yi, . . . , Yi+w−1}, with 1 ≤ i ≤ n− w,
then ∀(j, k) with i ≤ j < k ≤ i+ w − 1,

⋃
eu∈Yj xu ∩

⋃
ev∈Yk xv = ∅

(Max) ∀xq ∈ Yi, ∀xr ∈ Yj , 1 ≤ i < j ≤ n, (xq v xr) =⇒
(
dT (tr, t

′
i) > w

)
,

1 ≤ q ≤ mi, 1 ≤ r ≤ mj

Note in Figure 2.6(a) that even though events ({QO,DM},JUN05) and ({QO}, AUG06)
have a common descriptor, i.e., �QO�, they are not grouped together. This fact directly
results from our de�nition of similarity between two events, i.e., we require similar events
to have identical sets of descriptors. From practical view point, suppose event (x′1,AUG05)
in Table 2.2 has been processed and produces (Y1,AUG06) with Y1 = {(x′1, AUG06)}.
When generalized event (x′2,AUG06) is considered, since w = 1 the grouping process can
only consider the 1 last previously considered group within w, i.e., Y1. Since x′1 6= x′2,
events (x′1,AUG05) and (x′2,AUG06) are considered non similar. So, the temporal window
w slides on and event (x′2,AUG06) initiates a new group in w, i.e., Y2. Since, the temporal
locality parameter w controls how well the chronology of groups should be observed, we
can clearly note that when w = 1 only similar and contiguous events on the timeline are
eligible for grouping. We will discuss in more details this notion of contiguity in Chapter 3.

Now, suppose that generalized event (x′6,SEP07) is altered and the event is described
by itemset x′′6={QO,DM}. Suppose we de�ne the temporal locality parameter as an integer
value set to w = 2. Figure 2.6(b) gives the grouped sequence obtained in this case. This
example highlights the loss of chronology of grouped events when the temporal locality
parameter w is increased: Event (x′′6,SEP07) normally occurs after events (x′2,AUG06),
..., (x′5,SEP06) but is grouped with event (x′1,JUN05) when w = 2. Grouping events in
this manner has the nice property of reducing the overall number of groups in the output
sequence but requires to trade o� the temporal accuracy of the summary, i.e., the precision
of the chronology of events.

Let us give an illustration of grouping on our running example before we detail the
properties (Part), (Cont), (TLoc) and (Max). Suppose we are interested in the details of
the chronology of events and decide to express the temporal locality as an integer value
set to w = 1. Table 2.3 presents the expected output sequence of groups when operating
ψw on Table 2.2 with w = 1 and Figure 2.6(a) shows how the temporal window w slides
on the timeline.

Author Groups Time
Y1={({QO,DM},JUN05)} JUN05

N. Koudas Y2={({QO},AUG06), ({QO},AUG06), ({QO},SEP06),
({QO},SEP06)}

AUG06

Y3={({DM},SEP07)} SEP07

Table 2.3: Grouped events with w = 1

Having illustrated the mechanism of the grouping operator, we can detail the properties
of the ψw operator:
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• Property (Part) (standing for Partitioning) ensures that the support multi-set of w-
contiguous groups in ψw(s), e.g., {(Y1, t

′
1), . . . , (Yw, t

′
w)}, {(Y2, t

′
2), . . . , (Yw+1, t

′
w+1)}, etc.,

is a non-overlapping part of S. This is a direct consequence of grouping events that relate
to a same topic within a same temporal locality. In other words, the (Part) property en-
sures that for any sliding window, having w duration or w number of groups, taken in the
sequence of groups ψw(s), e.g., Y = {(Y1, t

′
1), . . . , (Yw, t

′
w)}, for all ((Yi, t

′
i), (Yj , t

′
j)) ∈ Y 2,

i 6= j,
⋃
eu∈Yi xu ∩

⋃
ev∈Yj xv = ∅. For instance, in Table 2.3, since w = 1, any window

having 1 event, i.e., W = {(Yi, ti)}, complies to this property. Now suppose Table 2.3 was
obtained from Table 2.2 with w = 2 (this statement is true). Then, let us select a sequence
having 2 contiguous events from ψw(s), e.g., Y = {(Y1, t

′
1), (Y2, t

′
2)}. Property (Part) holds

since, the set of descriptors {QO,DM} is contained in an event in Y1 and not in any events
in Y2.

x2'={QO}
AUG06

x1'={QO, DM}
JUN05 Time

Generalized sequence

Time

Temporal locality
 w=1 group

Grouped sequence

x3'={QO}
AUG06

x4'={QO}
SEP06

x5'={QO}
SEP06

x6'={DM}
SEP07

slides slides

Y1 Y2 Y3

Non similar
events

New group

Non similar
events

New group

1 2

3

4 5 6 7
8

9

10

(a) Grouping of generalized sequence in Table 2.2 with w = 1

x2'={QO}
AUG06

x1'={QO, DM}
JUN05 Time

Generalized sequence

Time

Temporal locality w=2 group

Grouped sequence

x3'={QO}
AUG06

x4'={QO}
SEP06

x5'={QO}
SEP06

x6''={QO,DM}
SEP07

Non similar
events

Y1 Y2

New group

1 2

3

4 5 6 7 8

(b) Alternate grouping with w = 2

Figure 2.6: Example of groupings

• Property (Cont) (standing for Containment) gives a containment condition on events
of every time sequence in ψw(s). Given a time sequence Yi in ψw(s), all events ei,j ∈ Yi
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are comparable w.r.t. the containment relation v and ei,1 is the greatest event, i.e., xi,1
contains all other event descriptors of events in Yi. For instance, in Table 2.3, we have
x2,1={QO}, x2,2={QO}, x2,3={QO} and x2,4={QO}, and the property (Cont) is veri�ed
since x2,1 v x2,2 v x2,3 v x2,4={QO}.

• Property (TLoc) (standing for Temporal locality) de�nes a temporal locality con-
straint on events that are grouped into a same time sequence Yi in ψw(s). When w is
expressed as a duration, property (TLoc) enquires that Yi only groups events ei,j that
are within a distance dT from timestamp t′i = min(Yi[T ]), i.e., dT (ti,j , t

′
i) ≤ w. When w

is expressed as a integer value, any w consecutive groups in ψw(s) are mutually non similar.

• Property (Max) guaranties that the joint conditions (Cont) and (TLoc) are maxi-
mally satis�ed.

When we refer to the de�nition of a time sequence summary in De�nition 1.7 given
in Chapter 1, the second-order time sequence output by the grouping operator ψw can
be understood as the extension of the summary, i.e., s2C in the notation of De�nition 1.7.
The intention of the summary, and thus the reduced version of the input time sequence, is
obtained thanks to the concept formation phase as presented in the following section.

4.3 Concept formation phase

Concept formation, also known as concept learning or category learning in cognitive science,
refers to the task of �searching for and listing of attributes that can be used to distinguish
exemplars from non exemplars of various categories�, Bruner et al. [BGA65]. Concepts
are mental representations that help one to classify objects, events or ideas that have a
common set of features. For example, suppose we are given two sets of words representing
two categories D1={�sh, whale, shark, dolphin} and D2={lion, bear, cougar, fox}. If
an individual is asked to classify the object �cat� into one of the two categories D1 and
D2, most likely he/she would classify �cat� into D2. This process results from the fact a
human needs to represent D1 and D2 by a representative concept d1 and d2, respectively,
that exhibits features common to all objects in D1 and D2, respectively. For instance, d1

could be an aquatic animal, that has a tail and no legs, and, d2 could be a furry 4-legged
terrestrial animal.

In 1980, Michalski [Mic80, MS80, Mic93] introduced the novel conceptual clustering
paradigm in the area of Machine Learning research. In contrast with the traditional data
clustering paradigm, a concept description is constructed for each class generated by the
clustering method. Conceptual clustering has since attracted much research [Fis86,Fis87,
GLF89,Gen89,TL91,CR04,JHC00,TB01,SPRM05]. In particular, Gennari et al. [Gen89]
de�ned the tasks as:

• Given: a sequential representation of objects and their associated descriptions;

• Find: clusterings that group these objects into concepts;

• Find: a summary description for each concept;

• Find: a hierarchical organization for these concepts;

From this prospect, the TSaR summarization approach can be understood as a form
of conceptual clustering since events in a time sequence of events are grouped, or clustered
if we use clustering terminology, based on the similarity of their content and proximity on
the timeline. Therefore, the concept formation phase is responsible for representing each
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group obtained from the grouping process by one single concept or representative event.
Hence, this phase is responsible for generating the time sequence of events s?M , i.e., the
intention of the summary as de�ned in De�nition 1.7 given in Chapter 1, from the sequence
of groups s2C .

Concept formation can be achieved in various ways. For instance, in traditional data
clustering, the centroid of a cluster can be chosen to represent the cluster. This cluster
centroid is usually computed as themean of all objects in the cluster. This approach usually
�ts numerical attributes but does not �t categorical attributes since aggregation functions
such as average can not be directly applied to categorical values. For instance, what is the
average between categorical values �few� and �plenty�? Hence, in the case of categorical
values, other distance measures could be leveraged, e.g., semantic measures [Bud99], or
aggregation functions such as theMost Speci�c Common Subsumer (MSCS) (also known as
the Lowest Super-Ordinate (LSO)). We will discuss these measures in details in Chapter 3.

Probabilistic methods can also be used to represent a cluster of objects. Cobweb [Fis87]
must be one of the most well known of such methods. Indeed, Cobweb incrementally builds
a classi�cation tree where each node represents a class and is label by a probabilistic con-
cept. This probabilistic concept summarizes the attribute-value distribution of objects
classi�ed under the node.

In TSaR, we gathered in the grouping phase events that have identical sets of event
descriptors. Consequently, we do not need to go through the costly task of computing
distances between events in a group to generate a representative event for the group.
Hence, this concept formation phase is straightforward. Here, concept formation is achieved
thanks to the projection operator π de�ned in De�nition 2.3. Intuitively, π represents each
group Yi in the sequence of groups s2C by a representative event denoted e?i = (x?i , t

′
i):

The representative event e?i is actually contained in Yi and chosen as the oldest event in
the group. Consequently, π produces from s2C a regular time sequence of events denoted
s?M where s?M = π(s2C) is the intention of the summary. In this de�nition, an event e?i
in s? is equivalently called a representative event or a representative concept, and, the
time sequence of events s? is equivalently called a representative time sequence of events,
a representative time sequence, a representative sequence or a summarized time sequence.

De�nition 2.3 (Projection of a second-order time sequence)
Given s a second-order time sequence of events in S2(Ω), s = {(Y1, t

′
1), . . . , (Yn, t

′
n)}, where

Yi = {(xi,1, ti,1), . . . , (xi,mi , ti,mi)}, the projection operator performs as follows:

π : S2(Ω) −→ S(Ω)
s 7−→ π(s) = {e?1, . . . , e?n}, e?i = (x?i , t

?
i ) and x

?
i = xi,1 and t?i = t′i = ti,1

Let us illustrate the projection operator with our example. The projection of N.
Koudas's grouped sequence in Table 2.3 occurs as follows:
s?=π({(Y1,JUN05),(Y2,AUG06),(Y3,SEP07)}={(x?1,JUN05),(x?2,AUG06),(x?3,SEP07)}). The time
sequence obtained is given in Table 2.4. One can note that, in �ne, the projection oper-
ator is responsible for e�ectively reducing the numerosity of events in the representative
sequence w.r.t. the number of events in the original time sequence. In this example, the
number of events in the representative sequence is reduced from 6 events to 3 events.
Hence, the compression ratio achieved by TSaR on the input time sequence is 60% (the
compression ratio achieved is not 50% due to the fact 100% compression ratio corresponds
to a summary containing single event - see De�nition 2.7). The compression ratio measure
will be formalized in details in Section 6.2.3.
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Author Event descriptor Time
x?1={QO,DM} JUN05

N. Koudas x?2={QO} AUG06
x?3={DM} SEP07

Table 2.4: Projection of the second-order time sequence in Table 2.3

4.4 TSaR summarization process

TSaR achieves summarization by associating the three operators presented in previous
sections, namely, (i) the generalization operator, (ii) the grouping operator and (iii) the
projection operator, ϕϑ, ψw and π, respectively. The summarization function is formally
de�ned in De�nition 2.4.

De�nition 2.4 (T ime Sequence SummaRization (TSaR) operator)
Given s a time sequence of events in S(Ω), a user de�ned generalization vector ϑ and a
user de�ned temporal locality parameter w, the summary of s is obtained by combining a
generalization ϕϑ, followed by a grouping ψw and a projection π:

χϑ,w : S(Ω) −→ S2(Ω)× S(Ω)
s 7−→ χϑ,w(s) = (s2C , s

?
M ) where s2C = ψw ◦ ϕϑ(s) and s?M = π(s2C).

The association of the generalization and grouping function, ϕϑ and ψw respectively,
outputs the extension of the summary, i.e., s2C . The extension of the summary s2C satis�es
the conditions of the generalization-grouping process. The (Cont) property of ψw is then
enforced by the generalization process ϕϑ of events in s. Note that every element in the
reduced form of the summarized time sequence, i.e., s?M , is an element of ϕϑ: s?M is a
representative subsequence of the generalized sequence of s, i.e., ϕϑ(s).

The reduced form of the summary, i.e., its intention s?M , is a time sequence obtained by
forming concepts from groups in s2C thanks to the projection operator π. For this reason,
one can note that loss of semantic content only occurs during the generalization phase, i.e.,
through event descriptors rewriting. The operations performed by the grouping and the
concept formation operators have no incidence on the semantic content. This characteristic
is given in Property 2.1. This property will be most useful for characterizing sequential
patterns that can be extracted by any conventional Sequential Pattern Mining algorithm
on TSaR summaries. We will detail this application in Chapter 4.

Property 2.1 (Semantic preservation)
Given s a time sequence of events in S(Ω), s = {e1, . . . , en} with ei = (xi, ti), we denote by
s′ the generalization of s, i.e., s′ = ϕϑ(s) = {e′1, . . . , e′n} with e′i = (x′i, ti) and we denote by
s?M the intention of s's summary, i.e., s?M = {e?1, . . . , e?m} with e?i = (x?i , t

?
i ). The following

property is true:

∀e′i = (x′i, ti) ∈ s′, ∃e?j = (x?j , t
?
j ) ∈ s?M , x′i = x?j with tj,1 = t?j and t

?
j ≤ ti (2.3)

reversely, ∀e?j ∈ s?M , ∃Y ′j = {e′i,k ∈ s′, x′i,k = x?j and t
?
j = t′i,1} (2.4)

Proof 1 (Proof of Property 2.1)
By de�nition, s?M = π ◦ ψw ◦ ϕϑ(s) or equivalently, s?M = π ◦ ψw(s′) = π(s2C) where
s2C = {(Y1, t

′
1), . . . , (Ym, t

′
m)}, Yi = {e′i,1, . . . , e′i,k} and e′i,j ∈ s′. Note that all generalized

events e′i,j in Yi have the same set of event descriptors, i.e., x′i = x′i,1 = . . . = x′i,k. Since
π(s2C) = s?M = {e?1, . . . , e?m} with e?j = (x?j , t

?
j ) = (π(Yj), t

′
j), by the de�nition of the π

operator, we have: (i) t?j = t′j = tj,1 = and (ii) x?j = x′j = x′j,1 = . . . = x′j,k. We proved
Property 2.1. �
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4.5 TSaR properties w.r.t. a summary's desirable properties

From a practical view point, since s?M is itself a regular time sequence of events, i.e., as de-
�ned in De�nition 1.5 in Chapter 1, and is the most concise format, users and applications
are only given the intentional form s?M of s's time sequence summary χϑ,w(s). Addition-
ally, being a regular time sequence of events, s?M complies to the substitution principle and
can seamlessly replace s in any application that operates directly on s. Thus, s?M is the
most useful form from application view point. In the rest of this dissertation, we will in-
terchangeably use the term summary to designate the intention s?M of a summary (s2C ,s

?
M ).

The representative sequence given as example in Table 2.4 highlights the compression
capability of the TSaR approach. We already observed the reduction in terms of number
of events (from 6 to 3 events). Also, one should notice the reduction of variability of event
descriptors (from 6 to 2). Here, TSaR achieves the dual goal of numerosity reduction and
domain reduction while preserving comprehensive information on events. Also, the tempo-
ral locality parameter w allows to control the numerosity reduction factor by limiting the
scope or neighborhood in which the grouping process selects events for grouping. By doing
so, we showed that this temporal locality parameter allows to control how well the overall
chronology of events in the summarized time sequence is preserved (see Figure 2.6). In
a nutshell, these compression e�ects obtained thanks to the two user de�ned parameters
control the trade-o� between resp. semantic accuracy vs. standardization and temporal (or
chronology) accuracy vs. compression.

In the following section, we show that TSaR can be implemented as an incremental
algorithm that has linear computational complexity and limited memory footprint. We
will also empirically demonstrate the computational scalability property in our experimental
study in Section 6. For all these reasons, we can argue that TSaR presents all the desirable
properties expected from a time sequence summary, as given in De�nition 1.8 in Chapter 1.

5 TSaR algorithm

In this section, we present the implementation of the TSaR summarization process. We
propose here an incremental algorithm that has linear computational complexity and low
memory footprint. In this algorithm, we assume a time sequence of events can be contained
in-memory.

From an operational view point, our implementation of TSaR is given in Algorithm 1.
This algorithm considers as input a time sequence of events and outputs another time
sequence of events after abstracting event descriptors through generalization and grouping
similar events within a certain temporal locality. The algorithm is parameterized by a
set of taxonomies provided in an XML format, a generalization vector provided as an
array of integers and a temporal locality parameter provided as an integer value, i.e., a
number of groups. Events are considered in ascending order of timestamp, one at a time.
The incremental algorithm generalizes each incoming event into a generalized event. This
generalized event is then compared to previously grouped events within a temporal distance
dT equal to w.

More precisely, assume the input time sequence of events is s = {e1, . . . , en}. Assume
the incoming event is ei = (xi, ti) and previous i− 1 events have already been summarized
in s?M , where s?M is in the following state:
s?M = χϑ,w({e1, . . . , ei−1}) = {(Y1, t

′
1), . . . , (Yj , t

′
j)}. The algorithm computes χϑ,w({e1, . . . ,

ei−1, ei}) with only a local update to s?M , i.e., changes are only made within the last w
groups in s?M . So �rst, incoming event ei = (xi, ti) is generalized into generalized event
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e′i = (x′i, ti) (Line 5).
Assume the set of groups that are included within the temporal locality window w

is denoted W = {(Yj , t′j)}, |W | ≤ w. Then, TSaR checks if x′i is contained in a group
(Y, t′) ∈W (Line 6). e′i is either incorporated into the group (Y, t′) if it satis�es the (Cont)
condition (Line 6 to Line 16), or it initializes a new group (Yj+w, t

′
j+w) inW with t′j+w = ti

(Line 9 to Line 15). Once all input events are processed, the last w groups contained in
W are projected and added to the output summary s?M (Line 18 to Line 21). The �nal
output summary is then returned and/or stored in a database.

Algorithm 1 TSaR's pseudo-code
1. INPUTS
s: time sequence of events
H: taxonomies
ϑ: generalization vector
w: temporal locality

2. OUTPUT: s?M : Summary
3. LOCAL: W : FIFO list containing the w last groups stored in s?M

4. for all incoming event ei = (xi, ti) ∈ s do
5. e′i = (x′i, ti) ← ϕϑ(ei) {// Generalization using ϑ and H}
6. if (∃ (Y, t′) ∈W, such that ∃e′u ∈ Y, and x′i = x′u) then
7. Y ← Y ∪ {e′i} {// Grouping}
8. else
9. if (|W | = w, i.e., W is full) then
10. Pop W 's 1st group (Yj , t

′
j) out of W

11. end if
12. Yj+w ← {e′i}
13. t′j+w ← ti
14. W ← W ∪ {(Yj+w, t′j+w)}
15. s?M ← s?M ∪ {(π(Yj), t

′
j)} {// Update the summary intention s?M}

16. end if
17. end for
18. while (W 6= ∅) do
19. Pop W 's 1st group (Yj , t

′
j) out of W

20. s?M ← s?M ∪ {(π(Yj), t
′
j)}

21. end while
22. return s?M

5.1 Algorithmic complexity

TSaR performs generalization, grouping and concept formation on the �y for each incom-
ing event. The process has an algorithmic complexity linear with the number of events
in the input time sequence of events. This computational cost can be re�ned by taking
into account the computational cost induced by the generalization and grouping phases,
i.e., the cost induced by generalization and for looking up for grouping candidates within
a temporal locality w. Hence, the processing cost is weighted by a constant cost c = a ∗ b:

• a is the cost for generalizing an event's set of descriptors and mainly depends on the
number of taxonomies and their size.

• b is the cost to scan the �nite list of groups previously summarized inW . This cost is
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however negligible since the temporal locality window parameter w used is in general
small, e.g., mostly w ≤ 25 in our experiments.

Regarding the generalization cost, a is constrained. Indeed, taxonomies are input to
the TSaR algorithm in the form of XML trees, thus, generalizing a descriptor is equivalent
to looking up the descriptor in the trees and retrieving its antecedent. This can be a costly
task since there does not exist any ordering in the XML tree. A �rst approach to mitigate
this e�ect is to build a trie [Fre60], or pre�x tree, to index the position of descriptors in
the XML tree. Doing so induces a cost a′ that corresponds to the cost for building the trie
and allows to reduce a to O(gm) where o(m) is the search time of a descriptor in the trie
and m is the average length of descriptors in the taxonomy, g is the level of generalization
desired for the descriptor. This approach implies generalization still needs to be computed
for each incoming event.

We propose to mitigate further the generalization cost by trading o� memory usage
and building a hashtable. The hashtable is used to precompute a generalization for each
descriptor. Therefore, the hashtable's �key-value� pairs are the �descriptor-generalized
descriptor� pairs. Building this hashtable requires one single scan of the input taxonomies
to store the pair �descriptor-descriptor's antecedent�. This corresponds to g = 1 level of
generalization. If further generalizations are required, the hashtable is used to compute
the generalizations of each concept using the �key-value� entries. This approach allows
to access a descriptors's antecedent in O(1) time. Our experiments showed that storing
this hashtable requires a negligible amount of memory. For instance, the dataset used in
Section 6.1.2 is described thanks to approximatively 7000 descriptors. Suppose the average
length of a descriptor is 32 characters encoded in UTF-8, i.e., each characters is encoded
with 4 bytes. In total, the memory usage for storing the hashtable is 2× 7000× 32× 4 =
1750kB, which is negligible.

The pseudo-code for constructing this hashtable is given in Algorithm 9 in Appendix B.
This algorithm uses the subroutine in Algorithm 8 in Appendix B that actually scans the
XML tree.

5.2 Memory footprint

TSaR's memory footprint relies on two objects: (i) the in-memory hashtable that results
from precomputing descriptor generalizations and (ii) |W | groups within the temporal
locality window w. Since groups that are at a distance dT greater than w are popped
out of window W , these can be directly written to disk or streamed to other applications.
Therefore, TSaR only needs to maintain in-memory a small number of groups. This
memory usage is bound by w and the average size m of an event's set of descriptors.

One should note that under certain con�gurations, the number of events in an in-
memory group could grow very large. This happens for instance when the temporal locality
parameter is chosen too large or when there exist numerous repetitions of similar events
throughout the whole time sequence. This scenario can be handled by exploiting (i) the
assumption that s?M is the most useful form of a summary and (ii) the fact the concept
formation process simply selects the oldest event in a group of events to represent the
group. Therefore, an incoming event e′i that is similar to events in a group (Yj , t

′
j) in W

does not need to be physically added to group (Yj , t
′
j), since group (Yj , t

′
j) will anyways

be represented by the oldest event in (Yj , t
′
j) in the concept formation process. Finally,

TSaR's overall memory footprint remains constant and limited compared to the amount
of RAM now available on any machine.
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6 Experimental study

In this section we evaluate and validate the TSaR summarization approach through an ex-
tensive set of experiments on real-world data from Reuters's �nancial news archives. First,
we describe the dataset used and discuss how the data is preprocessed into time sequences
of events that comply to De�nition 1.5. Then, we present how taxonomies are acquired for
the descriptive domains on which Reuters's �nancial news are described. Through these
experiments we highlight the following results: (i) TSaR's summarization computational
complexity, (ii) the loss of information from content view point, (iii) the loss of information
from temporal view point and (iv) the compression ratio achieved.

The rest of this section is organized as follows. We present in Section 6.1 the hardware
and software setup of this experimental work. Section 6.2 presents the metrics used to
evaluate TSaR's performances and the quality of summaries produced. We report and
discuss the results obtained in Section 6.3.

6.1 Experimental setup

6.1.1 Hardware et software setup

The TSaR algorithm presented in Algorithm 1 is implemented under Microsoft Visual Stu-
dio 2008 IDE in the C# language. The development environment was chosen for its ease of
integration in distributed and service-oriented architectures. TSaR was deployed as a web-
service in the context of the STEAD analysis framework demonstrated in [PSPB+08] and
discussed in Chapter 4. One objective in this framework is to show in a small environment
how summarization could be used to support applications such as data mining.

Experiments on TSaR were carried out on a Core2Duo processor running at 2GHz,
2GB of memory, 4200rpm hard drive and running Windows Vista Pro. The persistence
layer, responsible for storing Reuters's time sequences of �nancial news and summaries
built upon these time sequences, was ensured by the latest version of PostgreSQL 8.4.

6.1.2 Reuters's �nancial news archive

In �nancial applications, traders are eager to discover knowledge and eventual relation-
ships between live news feeds and market data in order to create new business oppor-
tunities [ZZ04]. Reuters has been generating and archiving such data for a couple of
decades. To experiment and validate the TSaR summarization approach in a real-world
environment, we used one year of Reuters's �nancial news articles from 2003 and written
in English. The unprocessed dataset comes as a log of 21,957,500 entries where each entry
includes free text and a set of approximatively 30 attribute-value pairs of numerical or
categorical values. An example of raw news event is given in Table 2.5. As provided by
Reuters, the data can not be processed by TSaR for the following reasons: (i) TSaR does
not process free text and (ii) there is no notion of sequence in the raw archive. Hence, the
news data needs �rst to be cleaned and preprocessed into a collection of time sequences of
�nancial news events computable by TSaR.

Among all the information embedded in Reuters's �nancial news articles we focused
on 4 main components for representing the archive into a collection of time sequences of
events:

• Co_ids: For each news article, the co_ids is a multivalued attribute that corre-
sponds to the IDs of companies to which the current piece of news relates to. There-
fore, this attribute is used to build time sequences. In other words, we associate
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Timestamp 01 Jan 2004
Company_ID AAH.AS ABN.N MER.N
Topic code EUROPE USA Bank INS NL

Free text

�Dutch bank ABN AMRO said on Wednesday it had reached a
preliminary agreement to sell its U.S.-based Professional Broker-
age business to Merrill Lynch & Co. The Professional Brokerage
business provides securities clearing, trade execution and opera-
tional support services to participants in the US options and secu-
rities markets. It operates out of San Francisco, Chicago and New
York. Completion is subject to the usual closing conditions and
regulatory approvals, and is expected to be �nalized within three
months. [. . . ]�

Table 2.5: Example of raw news event

to each company that has a co_ids a time sequence of events. Events in this time
sequence are taken from the news that mention the company's co_ids.

• Timestamp: This value serves for ordering news events within each company's time
sequence of events. We assumed that there can not be two news events, concerning
a same company, such that they have exactly the same timestamp, since timestamps
are precise to the millisecond.

• Topic_codes: When Reuters's journalists write news articles, they are required to
add topic_codes to describe the main content and ideas of the news article. In the
technical documents received from Reuters, we have identi�ed a total of 525 di�er-
ent codes relating to 17 di�erent categories, equivalently called descriptive domains
in our work. These categories are the following: cross-market, equities, industrial
sector, economy central banking & institution, FX and money market, �xed income,
commodities, energy, general news, region, country, sports, language, muni state,
special muni, personal �nance and new organizations. We decide to use 7 of the
most popular categories to describe the data, i.e., {Country, Commodities, Economy
Central Banking and Institution, Energy, Equities, Industrial sector, General news}.

• Free text: The textual content of a news article is a rich source of information from
which precise content descriptors can be extracted. We assume that the 7 categories
previously selected from the topic_code categories are not informative enough to give
precise descriptions of the content of the �nancial news. Therefore, we de�ne 5 addi-
tional categories, namely, {Business, Operation, Economics, Government, Finance},
on which we want news events to be described. For this purpose, we need to extract
descriptors corresponding to these categories from the news free text. We used the
WordNet [Lab] ontology as described in the rest of this section.

Extracting pertinent descriptors from free text is a non trivial task. This task is made
even more di�cult when one needs to organize the descriptors extracted into taxonomies.
Traditional research work in Natural Language Processing (NLP) could be leveraged to
extract relevant key words from the free text based on their corpus, e.g., using Term
Frequency-Inverse Document Frequency (TF-IDF) weights as done in [HS02] or using online
resources such as OpenCalais [Reu].

However, in this speci�c application, there exists a number of limitations. Suppose
we can leverage NLP techniques to extract relevant descriptors from the free text. TSaR
requires descriptors of each descriptive domain to be organized into a taxonomy. The
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problem is dual: (i) how do we decide to which descriptive domain a descriptor should be
classi�ed? (this is the problem of sense-disambiguated noun hyponym acquisition tackled
by Snow et al. [SJN06]), and (ii) how should the extracted descriptors be organized into
a taxonomy? These two problems are very interesting and challenging research problems
that unfortunately lie out of the scope of this thesis work.

A simple alternative approach is to work the problem the other way around. One
can �rst de�ne or generate taxonomies for the descriptive domains of interest, e.g., the
additional categories selected {Business, Operation, Economics, Government, Finance},
then use the taxonomies generated to �lter the free text: descriptors from the taxonomies
that appear in the free text are extracted and used to describe the content of the news. This
approach also has its shortcomings, the most evident being (i) the problem of homonymy
and polysemy [Kro97], and (ii) the coverage of the taxonomies.

Homonymy and polysemy are common issues that originate from the fact terms used
in the free text and descriptors in taxonomies might not refer to the same descriptive
domain. For instance, the term �Jersey� can either refer to a knitted sweater (in the Cloth-
ing category) or to the British island in the English Channel (in the Country category).
This issue could be circumvented by leveraging techniques in Word Sense Disambiguation
(WSD) that use the corpus, context and/or dictionaries [Les86,YSLS07,Rad07,ADLS09]
to disambiguate the sense of descriptors extracted from the free text.

The second shortcoming with this alternative approach is the coverage of taxonomies
for each descriptive domain. In other words, each concept in a given descriptive domain
may have multiple synonyms and all synonyms may or may not be captured in the associ-
ated taxonomy. The issue is double: either (i) the taxonomy is too rich, i.e., all synonyms
are captured in the taxonomy, or (ii) the taxonomy is too poor, i.e., only few synonyms
are captured in the taxonomy. In the case the taxonomy is too rich, multiple synonymous
descriptors could be extracted from a piece of free text. In fact, this operation does not
necessarily penalize the summarization algorithm since all synonyms will be generalized
into one single concept. In the other case, i.e., only few synonyms are captured in the
taxonomy, the descriptor extraction process might not be able to extract all relevant de-
scriptors for a given category, e.g., due to the variability of vocabulary used by di�erent
journalists. This issue can be overcome by using very rich ontologies or taxonomies such
as WordNet [Lab], i.e., bring the issue back to the �rst one.

In our experimental work, we decided to clean up and preprocess Reuters's �nancial
news archives into time sequences of news events using the alternative approach. Since
the domains of topic_codes are relatively small, we manually generated taxonomies for the
categories in {Country, Commodities, Economy Central Banking and Institution, Energy,
Equities, Industrial sector, General news}. On the other hand, we generated taxonomies
for the additional descriptive domains {Business, Operation, Economics, Government, Fi-
nance} using the rich general purpose ontology WordNet [Lab]. We chose to use WordNet
due to the pre-existing hierarchical organization of concepts and the richness of the vocab-
ulary. Concepts such as nouns in WordNet are linked by at least three relationships: (i)
multiple senses for each concept, (ii) hypernym, i.e., antecedents, and (iii) hyponym, i.e.,
specialization, links. Therefore, we generate taxonomies from WordNet by choosing for
a descriptive domain, e.g., Business, one sense we are interested in. The selected sense's
hyponyms are then extracted and added as the concept's sons. The process is repeated
until the taxonomy reaches a prede�ned height. Figure 2.7 gives an example showing how
the business domain taxonomy is extracted.

In total, Reuters's 2003 �nancial news archive was preprocessed into 1,283,277 news
events distributed over 34458 companies' time sequences. Each news event is described on
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Figure 2.7: Taxonomy generated for the business domain

the 12 descriptive domains selected earlier. One should note that several descriptors from
each domain can be used to describe a news event. We generated a taxonomy for each of
these descriptive domains.

6.2 Metrics

The quality of the TSaR algorithm can be evaluated by several di�erent methods. One
method could be evaluating the summarization algorithm w.r.t. the application that it
is meant to support, e.g., Sequential Pattern Mining (SPM). In this case, the summary
could be evaluated based on its ability to improve the mining computational time w.r.t.
not mining summaries, while generating similar knowledge. We will develop this aspect
further in Chapter 4.

As reminder, TSaR relies on generalization to reduce the variability of event descrip-
tors and on grouping/concept formation to reduce the numerosity of events in the output
summary sequence. Also, the algorithm was designed as an incremental process with the-
oretical linear computational complexity. For these reasons, we propose to evaluate TSaR
on its inherent features and hence, we evaluate the summarization process on the following
dimensions: (i) the computational time, (ii) the loss of semantic accuracy, (iii) the loss
of temporal accuracy and (iv) the compression ratio. We detail the semantic accuracy,
temporal accuracy and compression ratio metrics in the following sections.

6.2.1 Semantic accuracy

TSaR's generalization phase is responsible for reducing the variability of event descrip-
tors. For this reason, we believe it is most important to evaluate the quantity of content
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information lost in the summary produced. This metric is called semantic accuracy.
The semantic accuracy of the summary is computed as the ratio between the number

of generalized descriptors in the summary and the number of descriptors in the original
time sequence. This measure is formally de�ned in De�nition 2.5. The semantic accuracy
expressed here is a simple vision of how content information is lost. Indeed, it does not
take into account the provenance of descriptors nor the structure of taxonomies used to
generalized the data, e.g., height and/or width of the taxonomies. In other words, the
loss of content information is the same whether descriptors are taken from short or deep
taxonomies. This semantic accuracy measure could take into account such these structural
information of taxonomies for more re�ned analysis.

Also, note that this semantic accuracy measure by itself is inadequate to evaluate the
quality of the summary produced. It should be considered together with the temporal
accuracy metric de�ned in De�nition 2.6 and the compression ratio achieved as de�ned in
De�nition 2.7.

De�nition 2.5 (Semantic accuracy)
Given s a time sequence of events in S(Ω) and its summary s?M by χϑ,w, let D ∈ P(Ω)
be the set of descriptors on which all events in s are de�ned, i.e., D =

⋃
e∈s x, e = (x, t),

and let D′ ∈ P(Ω) be the set of descriptors on which all events in s?M are de�ned, i.e.,
D′ =

⋃
e?∈s?M

x?, (x?, t?). The semantic accuracy measure of the summary s?M , denoted α,
is de�ned as the following ratio:

α =
|D′|
|D|

α ranges in [0, 1] and the closer α to 1 the higher the semantic accuracy of the summary.

6.2.2 Temporal accuracy

In addition to semantic accuracy, we also propose a temporal accuracy measure. Intuitively,
the grouping process �xes a sliding temporal locality window W and groups all similar
events within a distance dT ≤ w. This process can be understood as a form of event
rearrangement on the timeline so that events close on the timeline, i.e., event within
a same temporal locality, become contiguous. Intuitively, two events ei = (xi, ti) and
ei+1 = (xi+1, ti+1) are considered contiguous if there does not exist an event ek = (xk, tk)
such that ti < tk < ti+1; We will develop this notion in Chapter 3. The temporal accuracy
of a summary is computed as a temporal rearrangement penalty cost that re�ects all the
permutation operations necessary to rearrange events.

Figure 2.8 gives an example that illustrates this idea of event rearrangement. Fig-
ure 2.8(a) shows that Y3 needs to be permutated one time with Y2 to be contiguous and
grouped with group Y1. In this case, we arbitrarily assume this permutation operation
comes with a cost equal to 1. On the other hand, Figure 2.8(b) shows that Y3 does not
need any permutation to become contiguous with group Y2. Therefore, the temporal accu-
racy of the summary can be evaluated by summing up all permutations performed during
the grouping phase of the TSaR algorithm. The temporal accuracy of a summary is best
when the value Cτ is closer to 0. When the temporal locality is de�ned as an integer value,
this situation occurs when the temporal locality parameter is chosen equal to 1. When
the temporal locality is de�ned as a duration, this situation occurs when the temporal
locality parameter is chosen as the smallest duration between two similar events. The cost
associated to this rearrangement operation is formalized in De�nition 2.6.

De�nition 2.6 (Temporal rearrangement penalty cost)
Given s a time sequence summary extent in S2(Ω), s = {(Y1, t

′
1), . . . , (Ym, t

′
m)}, a temporal
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Figure 2.8: Examples of event arrangements

locality parameter w de�ned as an integer value with w > 1 and its associated temporal win-
dow W , the temporal rearrangement penalty cost for grouping an incoming event e = (x, t)
with a group (Yj , t

′
j) ∈ W is denoted Cτ (e, s). Cτ (e, s) expresses the number of rearrange-

ments necessary on the timeline of s so that event e can be grouped with group (Yj , t
′
j)

in window W . Cτ (e, s) penalizes incoming events that are grouped with older groups in
W . On the other hand, if (Yj , t

′
j) is the most recent group in W , i.e., (Yj , t

′
j) = (Ym, t

′
m),

no penalty occurs since e and (Ym, t
′
m) would be contiguous on the timeline. Cτ (e, s) is

formally de�ned as follows:
• if (∀(Y, t′) ∈W, ∀eu ∈ Yj , x 6= xu), then Cτ (e, s) = 0
• if (∃(Yj , t′j) ∈W, ∃ej,u ∈ Yj , x = xj,u), then:

∗ if (@k > j, (Yk, t
′
k) ∈W ), then Cτ (e, s) = 0

∗ else, given (m = |{(Yk, t′k) ∈W,k > j}|, 1 ≤ m ≤ w − 1) then Cτ (e, s) = m

The total temporal rearrangement penalty cost for summarizing s into s?M is denoted
Cτ (s?M ) and is given by the following equation:

Cτ (s?M ) =
∑
e∈s
Cτ (e, s) (2.5)

The absolute value of the total temporal rearrangement penalty cost is meaningless by
itself and needs to be normalized so other summaries' costs are comparable. For this pur-
pose, since to the best of our knowledge, there is no comparable summarization techniques,
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we propose to normalize Cτ (s?M ) with the temporal rearrangement penalty cost of the worst
summary that can be produced, denoted s?worst. Intuitively, given a generalization level ϑ,
s?worst should be the most compact summary, i.e., ρ(s, s?worst) = 1, while maximizing the
total temporal rearrangement penalty cost to produce. If X is the set of distinct itemsets
of events in s, i.e., X = {xi ∈ P(Ω), (xi, ti) ∈ s}, then |s?worst| = |X| and each itemset in
X should be used to describe only on event in s?worst and should appear in s?worst in the
order in which they appear in s.

Unfortunately, building the worst summary s?worst is a di�cult and non trivial task, and
is itself an optimization task. An approximation of the worst summary, denoted s?worst,
can be built as follows:
Let us denoted by Ei the set of all occurrences of events in s that are described by itemset
xi; Formally, Ei = {e ∈ s, x = xi}. Then, the set X =

⋃
Xi is the collection of all Xi's in

s. For each Xi, we denote by ti,1 the �rst time of occurrence of events in Xi.
An approximation of the temporal rearrangement penalty cost for the worst summary

s?worst is the sum, for each Xi, of the temporal rearrangement penalty cost between events
in Xi and event (xi, ti,1), i.e.:

Cτ (s?worst) =
∑
Xi∈X

∑
(xj ,tj,k)∈Xi

(dT (tj,1, tj,k))

where dT (tj,1, tj,k) = 0 if (xj , tj,1) and (xj , tj,k) are contiguous on the timeline. However, in
practice, our experiments showed that Cτ (s?worst) is 3 to 4 orders of magnitude higher than
the temporal rearrangement cost of any summary we produced in TSaR. This observation
motivates or decision to choose a di�erent normalization cost for the results to be more
meaningful and tangible.

For this reason, we propose to normalize the total temporal rearrangement penalty cost
Cτ (s?M ) thanks to the range of the input parameters used in our experiments. We detail
in Section 6.3, the parameters used for evaluating our algorithm. The worst summary
that can be built with these input parameters is obtained with the strongest generalization
vector and the largest temporal locality parameter, i.e., ϑ = 〈3〉 and w = 100, respectively.
Therefore, we can measure the temporal accuracy of a summary thanks to the following
formula:

β = 1−
Cτ (s?M )

Cτ (π ◦ χ{3},100(s))
(2.6)

β is in the range [0, 1] and the higher β, the better the temporal accuracy.

6.2.3 Compression ratio

The third measure used to evaluate the quality of a summary is its capability of reducing
the number of events w.r.t. the number of events in the original time sequence of events.
This measure is called the compression ratio ρ, also known as compression rate, compaction
rate or compaction gain. The higher ρ, the better the compression ratio achieved. We chose
to use ρ as a measure to evaluate the quality of a summary since it is a well known and
well accepted measure for evaluating the compression e�ect of algorithms.

De�nition 2.7 (Compression ratio)
Given s a time sequence of events in S(Ω) and its summary by χϑ,w, i.e., χϑ,w(s) =
(s2C , s

?
M ), the compression ratio achieved by χϑ,w, denoted ρ(s, χϑ,w(s)), is de�ned as the

following ratio:

ρ(s, χϑ,w(s)) = 1−
|s?M | − 1

|s| − 1
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where |seq| is the number of events in a time sequence seq. The ratio ρ is in the range
[0, 1] and the closer ρ to 1, the higher the compression ratio achieved.

In contrast with traditional work on compression algorithms, we do not limit the eval-
uation of our time sequence summarization algorithm to the compression ratio only. We
believe ρ needs to be weighted by the summary's semantic and temporal accuracy, α and
β, respectively.

6.3 Results

We present in this section our experimental results. We evaluate TSaR on the following
four dimensions: (i) computational time, (ii) semantic accuracy of summaries generated,
(iii) temporal accuracy of summaries generated and (iv) compression ratio of summaries
produced.

Here, we are interested in the impact of the generalization vector and the temporal
locality parameter on the computational time, semantic accuracy, temporal accuracy and
compression ratio. Thus, the parameters setup used to build TSaR summaries is the
following:

• Generalization vector: ϑ is taken in the set {〈0〉, 〈1〉, 〈2〉, 〈3〉}.

• Temporal locality parameter: w is varied between 1, i.e., a very strict temporal
locality where only similar contiguous events are considered within a same temporal
locality, and 100 which re�ects a very strong relaxation of the temporal locality, i.e.,
the algorithm degenerates into a regular compression algorithm that does not take
into account the temporal aspect of data.

We start by setting the generalization vector ϑ = 〈1〉, i.e., all descriptors are generalized
once, and w ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100}. The maximum value for w was chosen
equal to 100 (i) to represent a very strong temporal locality relaxation and (ii) because the
quality of the summary produced with setting w = 100 is used as baseline for computing
the relative temporal accuracy measure. Figure 2.9(a) gives TSaR's computational time
for di�erent temporal locality parameters. For the sake of readability, we only display the
plots for temporal locality parameter w in {1, 5, 100}. These plots show that whatever
the temporal locality parameter used, TSaR is linear in the number of input events. In
addition, we can observe that computational time is almost constant whatever the temporal
locality window considered. A slight variation can be observed in between di�erent values
of w and has two complementary explanations. First, it is more costly to scan large
temporal locality windows during grouping. Second, a larger temporal locality window w
allows to maintain more groups in-memory and, so, requires less I/O operations for writing
into storage.

We compute the compression ratio ρ achieved by summaries built with di�erent gen-
eralization vectors ϑ ∈ {〈0〉, 〈1〉, 〈2〉, 〈3〉}. The results are given in Figure 2.9(b). Note
that the best compression ratio achieved with ϑ = 〈0〉 is only 0.39. For a given tempo-
ral window w, relaxing the semantic accuracy of the data by generalizing each descriptor
once, twice or three times allows an average compaction gain of +46.15%, +94.87% and
+133.33% respectively. In other other words, the compression ratio is approximatively
doubled when increasing the generalization level. Another interesting observation is that
for all generalization vector ϑ, the plots show that highest numerosity reduction is achieved
with larger temporal windows while computational times are almost constant, as shown
in Figure 2.9(a). This observation is very helpful from user view point for setting the
summarization parameters ϑ and w. In fact, as computational times are almost constant
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Figure 2.9: Summarization performances

whatever the temporal locality window considered, the user needs only to express the de-
sired precision in terms of (i) semantic accuracy for each descriptive domain and in terms
of (ii) temporal locality, without worrying about computational times.

Table 2.6 gives the semantic accuracy of the summaries produced and Figure 2.9(c)
gives their temporal accuracy. Note in Table 2.6 that the number of descriptors in the raw
data, i.e., ϑ = 〈0〉, is 1208. When summarizing each descriptive domain once, i.e., ϑ = 〈1〉,
the number of descriptors in the summaries drops to 50. This loss of semantic information
can be explained by our choice of using the WordNet ontology. Indeed, we mentioned
earlier in Section 6.1.1 that we chose to generate very rich taxonomies (to address the
issue of taxonomy coverage). For this reason, numerous descriptors extracted from the
free text might in fact be synonyms and are easily generalized into one common concept.
The semantic accuracy is then directly impacted. Consequently, the concepts obtained
with ϑ = 〈1〉 should be considered as better descriptive concepts than the raw descriptors.
Hence, we choose to compute α using as baseline |D′| = 50, as shown in Table 2.6. In
this case, each time ϑ is increased, the semantic accuracy is approximatively halved. This
observation is consistent with our previous observation on the average compaction gain.

ϑ |D′| α

〈0〉 1208 N/A
〈1〉 50 1
〈2〉 20 0.40
〈3〉 13 0.26

Table 2.6: Semantic accuracy

Figure 2.9(c) gives the relative temporal accuracy of each summary. Higher levels of
generalization reduce the temporal accuracy of the summaries. This phenomenon results
from the reduction of the variability of events through generalization. Incidentally, more
event rearrangements are made possible during the grouping phase. However, the temporal
accuracy remains high, i.e., ≥ 0.80, for small and medium sized temporal windows, i.e.,
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w ≤ 25. The temporal accuracy only deteriorates with large windows, i.e., w ≥ 25. This
result means that the user can achieve high compression ratios without sacri�cing much
the temporal accuracy of the summaries.

Unfortunately, guaranteeing the compression ratio ρ achieved with TSaR is a di�cult
task, if not impossible, as its depend on the input parameters and on the data's distribution.
Also, the user needs to weight the semantic and temporal accuracy he is ready to trade
o� for higher compression ratio. Therefore, guaranteeing a compression ratio becomes an
optimization problem that requires the algorithm to self-tune the input parameters and
take into account the user's preferences.

Through this experimental study, we have shown that TSaR is a time sequence sum-
marization approach that achieves summarization in linear time. In order to evaluate the
quality of summaries produced by TSaR, we introduce two measures, namely the semantic
accuracy and the temporal accuracy of a summary. Hence, TSaR produces summaries that
achieve high compression ratios while maintaining high temporal accuracy. More compres-
sion ratio can be achieved by allowing the process to generalize further event descriptors
with the consequence of reducing semantic accuracy. We empirically show that increasing
once the level of generalization of all event descriptors reduces the semantic accuracy of
summaries produced by approximatively 50%. It is then up to the user to decide, for the
purpose of achieving more compression ratio, whether he is ready (i) to accept more tem-
poral accuracy loss and maintain high semantic accuracy or (ii) to accept more semantic
accuracy loss and maintain high temporal accuracy loss.

7 Chapter summary

In this chapter, we have presented a user-oriented approach to build time sequence sum-
maries, called TSaR. TSaR relies on the a generalization, grouping and concept formation
process. Input time sequences of events are incrementally processed and event descriptors
are represented at a higher level of abstraction thanks to the use of Background Knowledge
expressed in the form of domain speci�c taxonomies.

The user has a limited number of parameters to set, i.e., two parameters, for TSaR
to operate. These parameters are the generalization vector ϑ and the temporal locality
parameter w. The generalization vector ϑ controls the level of abstraction of the data
by indicating for each descriptive domain the number of generalizations that need to be
operated on descriptors taken from that domain. The grouping process is responsible for
grouping together similar events, i.e., events having same descriptors, that are close on the
timeline. This notion of temporal closeness is captured by the temporal locality parameter.
This temporal locality parameter controls how well the chronology of events on the timeline
should be preserved. Finally, the concept formation process is responsible for outputting
the summary in the form of a regular time sequence.

We have provided an extensive set of experiments to evaluate and validate our summa-
rization approach. Therefore, we showed that TSaR has linear computational complexity
and is capable of generating summaries that achieve high compression ratios. We provide
two metrics, namely the semantic accuracy and the temporal accuracy metrics, to evaluate
the quality of summaries produced by TSaR. These metrics give the user an indication
on how precise summaries produced are from content and from temporal view points.
Since the compression ratio of a summary can not be guaranteed, the user needs to decide
whether he is ready to trade o� semantic accuracy or temporal accuracy to achieve higher
compression ratios.

Two interesting work orientations already addressed in the following chapters of this
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thesis work are: (i) how to make time sequence summarization a full-�etched parameter-
free process? and (ii) how to use TSaR summaries in real world data mining applications?
On the one hand, even though parameter-free algorithms might not produce summaries
that reproduce with �delity a user's representation of the data, in some case, he might just
want the data to be contained within a certain memory space. Hence, the summarization
problem becomes an optimization problem: the summarization function needs to produce
a summary that achieves a desired compression ratio while minimizing the loss of semantic
and temporal accuracy. In other words, events on the timeline should be gathered in a
way that considers their content and proximity on the timeline. By addressing this issue,
we actually de�ne a novel conceptual clustering problem. This problem will be thoroughly
explored in Chapter 3.

On the other hand, we motivated the design of TSaR as a user-friendly summarization
approach that as the goal of supporting chronology dependent and processing intensive ap-
plications. Still, we need to evaluate if the approach proposed is useful in practice. For
instance, Sequential Pattern Mining is an application that highly depends on the sequen-
tiality of the data. An interesting work orientation is then to study how well TSaR can
bene�t such application. Intuitively, since TSaR's generalization process expresses event
descriptors at a higher level of abstraction, patterns discovered on TSaR summaries should
give higher order knowledge of the data. Also, since TSaR's grouping process reduces the
size of sequences, there should be a direct consequence on the nature and number of pat-
terns that can be discovered on summaries w.r.t. patterns normally discovered on non
summarized sequences. This study will be discussed in details in Chapter 4.

In Section 6.1.2, we have presented a simple approach to preprocess and generate
taxonomies for the dataset used in our experiments. There exist a number of interesting
approaches in Natural Language Processing research that address the issues of extracting
descriptors from corpus data and the issues of building taxonomies, in the presence or not
of corpus data. These more advanced NPL techniques could be leveraged to preprocess
Reuters's �nancial news archives and to build more re�ned taxonomies for the descriptive
domains of interest. One direction of our future work is to study the impact of such
methods on summarization. In particular, we are interested in knowing if higher quality
preprocessed data and higher quality taxonomies could allow to produce summaries having
higher semantic and/or temporal accuracy while achieving more compression.
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Chapter 3

Time sequence summarization as a

novel clustering problem

1 Introduction

The TSaR summarization technique presented in Chapter 2 proceeds in three steps: (i)
generalization of event descriptors, (ii) grouping of events having identical generalized de-
scriptors within a certain temporal locality and (iii) representation of each group formed
by a representative event. TSaR is tuned by the user thanks to several input parameters,
i.e., (i) taxonomies are used to abstract event descriptors and it is required from the user
(ii) a generalization parameter and (iii) a temporal parameter that control the content and
temporal accuracy, respectively, of summaries produced. In some situations, e.g., when
the user does not know at what level of abstraction the data should be represented, these
parameters may not be trivial to set and require the user to try di�erent combinations
of settings. In addition, if the user is interested in having a summary of a given size,
since each parameter setting induces a di�erent compression ratio, that desired compres-
sion ration can not be guaranteed beforehand. TSaR does not satisfy the parameter-free
property introduced by Kiernan and Terzi [KT08] for event sequence summarization. This
parameter-free property is a nice feature for unburdening the user with choosing these
input parameters.

Now, if one looks into minute details, one can see that summaries produced by TSaR
strikingly resemble clusters that could be produced by a traditional data clustering algo-
rithm. In fact, the underlying ideas are very similar, i.e., TSaR divide or partition events
in a time sequence into dissimilar groups of similar events. Indeed, TSaR only gathers
together events whose generalized descriptors are identical. In other words, TSaR gath-
ers events whose event descriptors are similar at a given level of abstraction; This level
of abstraction is �xed by the generalization process. The grouping operation typically
corresponds the methodology of traditional data clustering techniques. Most traditional
data clustering techniques rely on the joint features of two objects and compute pair-wise
distances, or linkage distances. Data objects are grouped when their similarity matches a
given condition. Also, in TSaR, the only events eligible for grouping should be located
within a certain temporal locality de�ned by the temporal locality parameter w. This
condition can be understood as a form of temporal segmentation of the timeline.

Here, we address the shortcoming of TSaR, i.e., the approach not being parameter-
free, and propose to rede�ne the time sequence summarization problem so that summaries
can be built in a parameter-free manner. For this purpose, we translate the time sequence
summarization problem from the generalization grouping and concept formation paradigm
into the clustering and concept formation paradigm. In this prospect, we show that time
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sequence summarization can be understood under the angle of clustering where the objec-
tive function to optimize takes into account both the categorical content and the temporal
information of event in the sequence. Once clusters of events are de�ned, a concept for-
mation technique is operated to provide for each cluster a representative event to which is
associated a timestamp. Hence, the set of representative events are ordered on the timeline
and de�ne the time sequence summary. More formally, given an input time sequence and
a desired compression ratio, time sequence summarization then becomes the problem of
producing a summary that achieves the desired compression ratio while minimizing a cost
function. Designing a time sequence summary that displays all desirable properties listed
in Chapter 1 in a parameter-free manner is a challenging task, and is, to the best of our
knowledge, a problem that has not been addressed so far.

Under the light of these observations, designing a time sequence summary that displays
all these properties is equivalent to designing a data clustering method that needs to ful�ll
two conditions: (i) handle categorical features and (ii) handle the time associated to events.
Regarding categorical data, there exists a wealth of research work on clustering categorical
data. We discuss these techniques in Section 7. In fact, we believe a most challenging
issue in this new problem formulation is the way temporal information is handled. The
most intuitive and straightforward manner to handle the time associated to events in a
time sequence is to consider the time dimension as a numerical feature that will be treated
as any other feature. However, let us show the limitations of this assumption through the
two following examples.

On the one hand, suppose the time dimension is considered as a feature equivalent to
any other and events are described on numerous features, e.g., 100 features. Mechanically,
the time dimension will have less weight than in a situation where events were described
on a smaller number of features, e.g., 10 features. Consequently, two very similar events
that occur very distantly on the timeline could be grouped together. This situation is
illustrated in Figure 3.1: Events e1 and e10 are both dark circles but are very distant on
the timeline, i.e., events very similar on every feature except on the time dimension. Under
this assumption, the dark circles will have very high probability to be clustered together
regardless of the time that separates them.

TimeTime
sequence

e1 e10

Distant

Identical descriptors

Figure 3.1: Example of similar but distant events

On the other hand, suppose the time dimension is considered as a discriminative di-
mension. In other words, the clustering method will �rst segment the timeline then cluster
events within, and limited to, each segment of the timeline based on their joint features.
This approach is exactly the one adopted by Kiernan and Terzi in [KT08] as described in
Chapter 1. The idea is interesting but the temporal segmentation operated could be too
crisp and might prevent more compact clusters to be formed. This situation is illustrated
in Figure 3.2: The timeline is segmented into three segments S1, S2 and S3 and the clus-
tering of each segment produces in total 5 clusters. However, one should notice that the
dark squares in segment S1 and S2 generate two individual clusters, while their distance
on the timeline does not seems more important than the distance between the �rst and
third dark circles in segment S1. Therefore, the alternate clustering given in Figure 3.2
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where the two dark squares are grouped into one single cluster seems to be a more natural
clustering.

TimeTime
sequence

Temporal segmentation

Time

Clustering S1 S2 S3

TimeAlternate
Clustering

Figure 3.2: Example of clustering with time as a discriminative dimension

Intuitively, a solution to this issue is to attribute an appropriate weight to the time
dimension. Therefore, the challenge of designing a time sequence summary as a parameter-
free clustering problem comes down to the problem of handling categorical descriptors and,
most importantly, to handling the weight of the time dimension. We intend to tackle this
challenge in this chapter. For this purpose, we reformulate time sequence summarization
in a way that completely includes the temporal information associated to events in a time
sequence. By doing so, we present time sequence summarization under the light of a novel
conceptual clustering problem where the objective function to optimize relies on a measure
or cost that determines how close two events are thanks to their content and their time of
occurrence. The contributions discussed in this chapter are the following.

Contributions

First, we rede�ne time sequence summarization using data clustering terminology and
reformulate time sequence summarization as a novel conceptual clustering problem. For
this purpose, we de�ne a new but simple cost function to evaluate the distance between
events on the timeline. The novelty of this cost function lies in the dual consideration
of the similarity of events from content view point and the proximity of events on the
timeline. Thus, we present this novel conceptual clustering problem as follows: Given a
desired compression ratio, an optimal time sequence summary is a summary that achieves
the desired compression ratio while globally minimizing the cost function.

Second, we propose three solutions to build a time sequence summary under this new
de�nition, namely N-TSS, G-BUSS and GRASS. N-TSS is a naive solution that builds
all candidate summaries and then chooses the one that minimizes the cost function. Since
this approach is the simplest, common sense would entice us to choose this solution as the
baseline approach for comparison. However, we will show that approach has prohibitive
performances. Hence, we also propose two greedy algorithms that build locally optimal
solutions, namely, G-BUSS and GRASS. G-BUSS is a greedy hierarchical ascending clus-
tering algorithm that aggregates clusters based on their content and temporal information.
Since, G-BUSS has quadratic computational complexity, we propose a pruning technique
that relies on the characteristics of the cost function used to reduce in practice G-BUSS's
computational time. GRASS is a greedy parallel random-seeded algorithm that heavily
uses the pruning technique introduced for G-BUSS and that explores the search space at
multiple sites.
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Third, we evaluate and validate the algorithms proposed thanks to an extensive set
of experiments on real world data: Reuters's 2003 �nancial news archive, i.e., approxima-
tively 1.2M news events. We propose three measures to evaluate the quality of summaries
produced by the approaches proposed: (i) computational time, (ii) total clustering cost and
(iii) quality of clusters produced. Therefore, we summarize the input data and evaluate
each approach on these three dimensions. Our preliminary experimental study shows that
the N-TSS solution's computational and memory footprints are prohibitive. For this rea-
son, G-BUSS is in turn chosen as the baseline approach. Hence, GRASS's performances
are compared to G-BUSS's performances. We show that GRASS reduces in practice G-
BUSS's computational time by two to three orders of magnitude while producing clusters
of equivalent quality.

Organization of the chapter

The remaining of this chapter is organized as follows. We de�ne time sequence summari-
zation using clustering terminology in Section 2 and we present in Section 3 the problem
of building optimal summaries (or clusters) under this new de�nition. Section 4 presents
a naive solution, called N-TSS, to build optimal time sequence summaries. Section 5
presents our two greedy solutions, namely G-BUSS and GRASS. We provide in Section 6
an extensive set of experiments to evaluate and validate the algorithms proposed. Related
work is then discussed in Section 7. We conclude this chapter in Section 8 and discuss
some perspective work.

2 Time sequence summarization formulated in clustering ter-
minology

We have highlighted the existence of a very close link between time sequence summariza-
tion and data clustering. This observation has motivated us to reformulate time sequence
summarization as a conceptual clustering problem where an objective function needs to be
optimized. Here, this objective function to optimize is a cost function to globally minimize.
The originality of this cost function resides in the fact it considers the content and the time
associated to events. Hence, we provide in this section a reformulation of a time sequence
summary, inspired and revisited from De�nition 1.7 given in Chapter 1.

Events in a time sequence are de�ned on two orthogonal dimensions: (i) their content,
i.e., event descriptors, and (ii) their time of occurrence, i.e., a timestamp. Then, the simi-
larity between two events ei = (xi, ti) and ej = (xj , tj) should be computed by evaluating
(i) the similarity between their descriptive content, i.e., xi and xj , in conjunction with (ii)
their proximity on the timeline using their temporal information, i.e., ti and tj . Intuitively,
the situation that is easily understood and well addressed is when events are similar and
close on the timeline or the opposite situation, i.e., dissimilar and distant on the timeline.
The murkier situation is when events are quite similar and quite close on the timeline. We
believe such events should be given a chance to be grouped together. However, if such
grouping occurs, a cost expressed as a loss of temporal accuracy should also be taken into
account by the clustering process. In total, we propose to devise a methodology to eval-
uate what it would cost in terms of semantic accuracy and in terms of temporal accuracy
for these events to be considered similar on both dimensions. This mechanism is then
leveraged as the cost function to minimize for operating time sequence summarization as
a data clustering task.
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As a reminder, a time sequence summary of a sequence s, as de�ned in Chapter 1, is
denoted χϑ,w(s) = (s2C , s

?
M ). Under this de�nition, s2C is a second-order time sequence that

is the extension of the summary and s?M is a sequence of representative events that is the
intent of the summary. In Chapter 1, the intent s?M is obtained by building for each group
Y in s2C an event e? = (x?, t?) where x? is a set of descriptors taken from any event in Y ,
since all events in Y have identical sets of descriptors, and t? is the timestamp of the �rst
event in Y .

In fact, de�ning an intent for the summary of a sequence s requires to characterize
subsequences of s both on their content and their position on the timeline. Thus, achieving
the summarization task as a clustering task requires to de�ne a concept formation model
that is able to provide a single generalized event e? from a group of events Y = {e} with
e = (x, t). Depending on the targeted application, this model could take various forms. A
basic but realistic model is for instance to generalize every descriptor in the x's by the way
of IS-A hierarchies on domains DA, until they all become the same, denoted x? for each Y .
Then, the generalized description x? is the description associated to the generalized event
e?.

From temporal view point, the time of occurrence t of events e in Y should be used to
generate a timestamp t? that represents the time of occurrence of event e?. The aggregation
function used to compute t? deeply depends on the semantics one wants to give to the
summary. For instance, t? could be computed by taking the minimum timestamp tmin in
Y . This is the choice done in TSaR. This choice re�ects our preference for the information
that the series of events in Y started at tmin, i.e., the time of occurrence of the �rst event
represented by e?. On the other hand, if t? is computed by taking the maximum timestamp
tmax in Y , it would mean that event e? represents a series of events that end at the time
of occurrence of the last event represented by e?. Eventually, t? could not represent a time
of occurrence but a duration and inform of the length of time on which a series of events
spans.

More formally, we need a function to characterize events' content and temporal infor-
mation. This characterization function is described in De�nition 3.1.

De�nition 3.1 (Dual characterization function F = (f,T))
Given s a time sequence of events in S(Ω), s = {e1, . . . , em} with ei = (xi, ti), the dual
characterization function F , de�ned on S(Ω), produces a single event e? = (x?, t?) from s,
F (s) = e? = (x?, t?). F is composed of a couple of function, i.e., F = (f,T) where:

• f({x1, . . . , xm}) = x?, x? ∈ P(Ω) and

• T({t1, . . . , tm}) = t?, t is a timestamp, i.e., value on the timeline, or eventually a
duration

Equipped with this dual characterization such function, we are now able to propose
the cluster-based de�nition of a time sequence summary. This de�nition is given in De�-
nition 3.2.

De�nition 3.2 (Time sequence summary revisited)
Given a time sequence s ∈ S(Ω); Let F be a dual characterization function de�ned on
S(Ω). Using clustering terminology, we de�ne the time sequence summary of s, denoted
χF (s) = (s2C , s

?
M ), as follows:

• Π(s) = {Yk} is a partition of events in s where every cluster Yk = {eki, 1 ≤ i ≤ n} ∈
s2C is a subset of events eki of s and

⋃
Π(s) Yk = s and Yk ∩ Y` = ∅ pairwise.
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• s? = {e?k = F (Yk)} is the time sequence of representative events e?k = (x?, t?) formed
from every cluster Yk in Π(s), with (x?k = f(xki, 1 ≤ i ≤ n), t?k = T({tki, 1 ≤ i ≤ n})).

Given a partition Π(s) = {Yk} of a time sequence s ; Let F be a dual characterization
function that provides a way of building a generalized event from an entire sequence. Then,
we can compute the intent s? of χF (s) such that for every Yk in Π(s) we have e?k = F (Yk).
For instance, we used in TSaR, a generalization and merging paradigm to compute the
summaries, and F has been dually de�ned as (i) f : the Most Speci�c Common Subsumer
(MSCS) or Lowest Super-Ordinate (LSO) of the descriptors in the IS-A hierarchy and (ii)
T : the minimum timestamp of each group formed in s2C . Hence, we can claim that our
new de�nition of a time sequence summary generalizes the de�nition of time sequence
summarization given in Chapter 1.

From the above de�nition, Π(s) and s? can be understood as the extent and the intent,
respectively, of summary χF (s). In other words, every e? in s? is the concept, represented
with a single generalized event, of a group Y of raw events of s. Besides, observe that
every Y is also a subsequence of s if we rank the events ei by means of their timestamps
ti as for regular time sequences.

Finally, let us be given the summary of a time sequence s, i.e., χF (s) = (Π(s), s?)
where Π(s) = {Y1, . . . , Ym} and s? = {e?1, . . . , e?m} and e?i = (x?i , t

?
i ). Notice that we can

build a canonical second-order time sequence denoted S from χF (s). For this purpose,
it su�ces to associate each cluster Yk of Π(s) with the corresponding timestamp t?k in s?

such that: S = {E1, . . . , Em} with Ek = (Yk, t
?
k) for 1 ≤ k ≤ m. We will extensively use

this canonical structure in the following sections. The main reason for such trick is that
we need to combine clustering techniques on sets, i.e., Yk = {ek1, . . . , ekm}, with temporal
analysis on sequences, i.e., s, and we have to go back and forth between both concepts.
This idea is at the heart of our contribution.

3 The problem of building optimal summaries

We have previously reformulated time sequence summarization using data clustering ter-
minology. In this section, under this new de�nition of a summary, we formalize the time
sequence summarization task as a clustering activity where an objective function needs
to be optimized. This objective function is expressed as a cost that takes into account
the content and the time associated to events to cluster. For this purpose, we adopt a
constructive methodology where we provide elementary operators to iteratively transform
one sequence into another. The more iterations the less similar sequences become. The
objective of the clustering problem is then to minimize the global cost for transforming
a sequence into another until the summary is obtained. Our constructive methodology
is largely inspired from usual edit distances [Ham50, Lev65] between structures such as
strings, genes [PWP08] or trees, and is adapted to our summarization problem.

We give in Section 3.1 the basic concepts necessary to build the elementary clustering
operation. Then, we formally de�ne in Section 3.2 the elementary clustering operation
itself and its associated cost to compare two time sequence summaries. Equipped with all
the necessary material, we formally state the problem of building optimal time sequence
summaries in Section 3.3.

3.1 Preliminaries

Here are introduced both content and temporal components of the elementary clustering
operation used for de�ning the objective function that needs to be optimized in our clus-
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tering problem.

3.1.1 Illustrative example

We illustrate all concepts and properties introduced hereafter by reusing the running ex-
ample provided in Chapter 2. For commodity, we recall in Table 3.1 the time sequence
of events extracted from conference proceedings. Each event is a publication whose topic
is described thanks to descriptors taken from the topic domain taxonomy also recalled in
Figure 3.3.

Author Event descriptors Time
x1={Datastreams, Aggregation} JUN05
x2={Datastreams, Top-k query} AUG06

N. Koudas x3={Top-k query} AUG06
x4={Top-k query} SEP06
x5={Join query, Selection query} SEP06
x6={Clustering} SEP07

Table 3.1: Time sequence of events in conference proceedings

any_Topic

Query
rewriting

Query
optimization 

(QO)

Queries

DatastreamsSkyline
query

Join
query

Top-k
query

Selection
query

Security

Anonymization Privacy Compression
Summarization

Datamining
(DM)

AggregationSegmentationTransaction
DB mining Classification

Clustering

Databases Sequential
patterns

Frequent
items

Figure 3.3: Taxonomy for the topic descriptive domain

3.1.2 Event content representation

When partitioning a set of data objects, it is necessary to evaluate the similarity between
objects from content view point. Traditionally, a good partition is obtained when objects
are grouped while minimizing intra-class inertia and maximizing inter-class inertia, i.e.,
form dissimilar groups of similar objects. In time sequence summarization, since events
are described by a set of categorical descriptors, the general notion of inertia is di�cult
to grasp. Usual techniques rely on properties of contiguous domains to de�ne distance-
based measurement functions, e.g., the weighted total, average distance between pairs of
objects, etc.. These metrics de�ned for numerical values can not apply, or poorly apply,
to categorical values. As a reminder, it is for instance not trivial to de�ne the average
between descriptors �few� and �plenty�.

Here, we de�ne the distance between two sets of event descriptors xi and xj as the num-
ber of operations necessary to represent xi and xj at the level of abstraction where they
become strictly identical. Intuitively, two di�erent sets of event descriptors have a common
representation if they are substituted by ancestors at a higher level of taxonomy. This com-
mon representation is also known in literature on ontologies as the Most Speci�c Common
Subsumer (MSCS) or the Lowest Super-Ordinate (LSO). We present in De�nition 3.4 the
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basic concept of MSCS of two event descriptors and in De�nition 3.5 the cost associated to
the MSCS operation. This concept relies on the idea of Atomic Generalization Operation
(AGO) de�ned in De�nition 3.3. An AGO allows to represent an event descriptor at a
superior level of abstraction using a taxonomy, i.e., by rewriting the descriptor with its
ancestor in the taxonomy. The cost associated to each AGO is also given in De�nition 3.3
and simply corresponds to 1 if a descriptor is successfully rewritten into its ancestor in the
taxonomy. For instance, in the topic domain taxonomy, it takes two AGOs for descriptor
�Frequent itemset� to be generalized into �Datamining�; This operation then comes with a
cost of 2.

De�nition 3.3 (Atomic generalization operator (AGO) Gen)
Let d be an event descriptor taken from descriptive domain DA and suppose descriptive
domain DA is structured into taxonomy HA. The atomic generalization operation, denoted
Gen(d), that rewrites d into its ancestor in HA is de�ned as follows:

Gen : DA −→ DA

d 7−→ Gen(d) =

{
�any_A�, if d = �any_A�
d′, otherwise

where d′ ∈ DA, d ≺A d′ and @d′′ ∈ DA, d ≺A d′′ ≺A d′. The cost associated to an atomic
generalization operation is denoted CGen and de�ned as follows:

CGen(d) =

{
0, if d = �any_A�
1, otherwise

De�nition 3.4 (Most speci�c common subsumer mscs)
Let di and dj be two event descriptors taken from descriptive domain DA and suppose
descriptive domain DA is structured into taxonomy HA. The most speci�c common sub-
sumer (MSCS) of descriptors di and dj is denoted d = mscs(di, dj) ∈ HA and is de�ned
as follows:

∀(di, dj) ∈ D2
A, d = mscs(di, dj) ⇔

(
(di ≺A d) ∨ (di = d)

)
∧(

(dj ≺A d) ∨ (dj = d)
)
∧
(
@d′ ∈ DA, (di ≺A d′) ∧ (dj ≺A d′) ∧ (d′ ≺A d)

)
Note that the mscs operator is symmetric, i.e., mscs(di, dj) = mscs(dj , di).

De�nition 3.5 (MSCS cost)
The cost for representing two descriptors di and dj, taken in a single descriptive domain
DA, by their MSCS is denoted Cmscs(di, dj) and de�ned as follows:

Cmscs(di, dj) = Ni +Nj

where Ni is the length of the path from di to d in HA, i.e., Ni = `(di, d), and where Nj

is the length of the path from dj to d in HA, i.e., Nj = `(dj , d). Note that the MSCS cost
is symmetric, i.e., Cmscs(di, dj) = Cmscs(dj , di), and the closer Cmscs(di, dj) to 0, the more
related di and dj. The situation where Cmscs(di, dj) = 0 occurs when di = dj.

Suppose d is the MSCS of the pair of descriptors (d1, d2), i.e., d = mscs(d1, d2). Since
we denote by Ni = `(di, d) the length of the path from di to d in HA, we can also say that
di requires Ni atomic generalization operations (AGO) to be generalized into d. Hence, the
distance between two descriptors d1 and d2 is evaluated as the sum of all AGOs necessary
for representing both event descriptors d1 and d2 into their MSCS d. This distance can
also be understood as the shortest path, in terms of number of edges, from di to dj in
taxonomy HA. In literature on semantic distances, this generalization cost is comparable
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to Rada et al's [RMBB89] simple edge counting method. We discuss di�erent semantic
distances available in the literature in Section 7.

De�nition 3.6, 3.7 and 3.8 are generalizations of the MSCS concept. These generaliza-
tions are necessary since two events in a time sequence can be de�ned thanks to descriptors
taken from multiple descriptive domains and several descriptors from a same descriptive
domain could be used to describe an event. Therefore, De�nition 3.6 generalizes the basic
notion of MSCS to a set of descriptors taken from one single descriptive domain. De�-
nition 3.7 generalizes MSCS to two sets of descriptors where descriptors are taken from
multiple descriptive domains. De�nition 3.8 is the most general de�nition and de�nes
MSCS for multiple sets of descriptors where descriptors are taken from multiple descrip-
tive domains. These properties will be helpful in Section 4 for computing the generalization
cost for clustering multiple events.

One should note that the mscs operator has some nice properties, i.e., it is symmet-
ric, re�exive and associative. These properties are recapitulated in Property 3.1. These
properties are important for de�ning the MSCS costs for the generalized de�nitions of
MSCS.

De�nition 3.6 (Generalized MSCS - form 1)
We are given a set x = {d1, . . . , dm} of m event descriptors taken from one single descriptive
domain DA, the MSCS of set x is d ∈ HA, denoted d = mscs(x), de�ned as follows:

d = mscs(d1,mscs(x− {d1}))

where ∀dj ∈ DA,mscs(dj , ∅) = dj. The cost for representing x by its MSCS, denoted
Cmscs(x), is de�ned as the sum of the cost for representing each descriptor di by its MSCS:

Cmscs(x) =

m∑
i=1

Cmscs(di,mscs(x))

De�nition 3.7 (Generalized MSCS - form 2)
We are given two sets of descriptors x = {d1, . . . , dm} and x′ = {d′1, . . . , d′n} of m and n
event descriptors, respectively. Suppose x is partitioned into M subsets xA, where every
xA ⊆ DA and x =

⋃
A∈A xA. Also suppose x

′ is partitioned into N subsets x′A, where every
x′A ⊆ DA and x′ =

⋃
A∈A x

′
A. The generalized MSCS of two sets of descriptors, where

descriptors are taken from several di�erent descriptive domains, is de�ned as follows:

mscs(x, x′) =
⋃
A∈Amscs(xA, x

′
A) where

∀A ∈ A,mscs(∅, ∅) = ∅ and
∀A ∈ A,mscs(xA, ∅) = mscs(∅, xA) = {“any_A′′} and

∀A ∈ A,mscs(xA, x′A) =

{
xA, if xA = x′A
mscs(xA ∪ x′A), otherwise

The total cost induced for generalizing x and x′ into their MSCS is de�ned as follows:

Cmscs(x, x′) =
∑

A∈A Cmscs(xA, x′A) where
∀A ∈ A, Cmscs(∅, ∅) = 0 and
∀A ∈ A, Cmscs(xA, ∅) = Cmscs(∅, xA) and
∀A ∈ A, Cmscs(∅, xA) = Cmscs(xA ∪ {“any_A′′}) and

∀A ∈ A, Cmscs(xA, x′A) =

{
0, if xA = x′A
Cmscs(xA ∪ x′A), otherwise
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De�nition 3.8 (Generalized MSCS - form 3)
We are given n sets of event descriptors x1, . . . , xn where event descriptors are taken from
multiple descriptive domains. We denote by X the set of all sets of event descriptors, i.e.,
X = {x1, . . . , xn}. The generalized MSCS of X is de�ned as follows:

mscs(X) = mscs(x1,mscs(X − x1))

The total cost induced for generalizing X into its MSCS is de�ned as follows:

Cmscs(X) =

n∑
i=1

Cmscs(xi,mscs(X))

For simplicity, in the rest of this chapter, these costs will be interchangeably called the
MSCS cost or the generalization cost.

Property 3.1 (Properties of the mscs operator)
Given two sets of descriptors x = {d1, . . . , dm} and x′ = {d′1, . . . , d′n} of m and n event
descriptors, respectively, taken from descriptive domains DA in A, suppose each descrip-
tive domain DA is organized into taxonomy HA. The mscs operator has the following
properties:

• Symmetry: mscs(x, x′) = mscs(x′, x)

• Re�exivity: mscs(x, x) = x

• Associativity: ∀x′′ ∈ P(Ω), mscs(mscs(x, x′), x′′) = mscs(x,mscs(x′, x′′))

Proof 2 (Proof of Property 3.1)
Symmetry and re�exivity: By construction these two properties are veri�ed.
Associativity: Supposing mscs(x, x′) = x?, we have the following equalities:

mscs(mscs(x, x′), x′′) = mscs(x?, x′′) where ∀d ∈ x ∪ x′, ∃d? ∈ x?, d ≺A d?
mscs(mscs(x, x′), x′′) = x+ where ∀d ∈ x? ∪ x′′, ∃d+ ∈ x+, d ≺A d+

On the other hand, supposing mscs(x′, x′′) = x† we have the following equalities:

mscs(x,mscs(x′, x′′)) = mscs(x, x†) where ∀d ∈ x′ ∪ x′′, ∃d† ∈ x†, d ≺A d†
mscs(x,mscs(x′, x′)) = x� where ∀d ∈ x ∪ x†, ∃d� ∈ x�, d ≺A d�

Therefore, ∀d ∈ x∪x′∪x′′, suppose d has a MSCS in x+ and in x�, i.e., ∃d+ ∈ x+, d ≺A d+

and ∃d� ∈ x�, d ≺A d′′. Suppose d+ 6= d�. Then either d+ ≺A d� or d� ≺A d+. If the
situation d+ ≺A d� occurs, then by the de�nition of a MSCS, d� is not the MSCS of
x ∪ x′ ∪ x′′. If the situation d� ≺A d+ occurs, then by the de�nition of a MSCS, d+ is not
the MSCS of x ∪ x′ ∪ x′′. In any way, we proved that d+ = d� and by extent we proved
Property 3.1. �

3.1.3 Rearrangement of events on the timeline

The second component of the objective function relies on the notion of proximity between
events on the timeline. The novelty in time sequence summarization is the fact that
events are timestamped and chronologically ordered. As a reminder, we assume two events
need to be similar and close on the timeline to be candidates for clustering. Suppose
the two events ei and ej are to be grouped together in a sequence S: A mechanism to
virtually rearrange events ei and ej on the timeline, so the grouping can occur, needs to

90



be de�ned. In addition, a cost should be associated to the event rearrangement operated.
Hereafter, since we consider on the one side clusters, i.e., collections of events, and on
the other side sequences, i.e., lists of events, we will extensively use the canonical second-
order time sequence notation introduced earlier. This notation is important for keeping
the consistency of all notations used.

Under our time sequence summarization problem reformulation, we assume that two
events ei = (xi, ti) and ej = (xj , tj) are eligible for clustering i.f.f. ei and ej satisfy two
conditions: (i) xi and xj are similar and (ii) times of occurrence ti and tj are close on the
timeline. The notion of closeness on the timeline can be expressed by di�erent manners:
(i) the time di�erence between ti and tj can be compared to a given threshold w, i.e.,
tj − ti ≤ w, (ii) the number of events that separates (xi, ti) and (xj , tj) is lower than a
given threshold, etc.. Here, we provide a simple way of evaluating the temporal proximity
of two events by means of the number of events between them.

In fact, to support a constructive de�nition of the summarization problem, we de-
cide that two candidate events for clustering are close on the timeline when they are
contiguous on the timeline. This notion of contiguity is de�ned in De�nition 3.9. For in-
stance, in Example 3.1, events ({e3},AUG06) and ({e4},SEP06) are contiguous but events
({e3},AUG06) and ({e6},SEP07) are not contiguous on the timeline. This example is true
even when the notion of closeness is chosen as a time duration w, for example w=1 month.
Indeed, SEP06-AUG06=1 month and events ({e3},AUG06) and ({e4},SEP06) are contigu-
ous; However, SEP07-AUG06=12 months and events ({e3},AUG06) and ({e6},SEP07) are
not contiguous.

De�nition 3.9 (Contiguous events)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Ek = (Yk, t

?
k)} and 1 ≤ k ≤ m. Given two events Ei and Ej in S,

with 1 ≤ i < j ≤ m, event Ei is said to be contiguous to event Ej (and equivalently, �Ej
is contiguous to Ei� or �Ei and Ej are contiguous�) i.f.f.:

@u ∈ N, such that Eu = (Yu, t
?
u) ∈ S and t?i < t?u < t?j

In practice, two events are clustered by a simple set union operation. However, we
believe this operation should be detailed and corresponds to a series of virtual Atomic
Permutation Operations (APOs) of events on the timeline until the events become con-
tiguous. Hence, we provide an operator denoted τ , that virtually rearranges events on the
timeline so they become contiguous by a series of APOs. By rearranging events on the
timeline in such way, operator τ is responsible for degrading the temporal accuracy of the
sequence.

The atomic permutation operator is denoted σi−(s) and de�ned as follows:

σi−(s) =

{
s, if i = 1
〈e1, . . . , ei−2, ei, ei−1, . . . , em〉, if 1 < i ≤ n

Note that we could also de�ne σi+(s) as the opposite permutation operation. However,
for simplicity, we will focus only on the operator σi− . Following up this choice, we lighten
the notation and equivalently denote σi = σi− . Also, when an event ei undergoes k
successive APOs σi, the operation is called a k-permutation and is denoted σki (s).

The de�nition of the atomic permutation operator allows us to give an alternate de�ni-
tion of contiguous events. Intuitively, two events Ei and Ej in a canonical second-order time
sequence S are contiguous events in S, if when Ej is permutated and then Ei is permutated,
the resulting permutated sequence is identical to S. For instance, suppose S = 〈E1, E2, E3〉
where events E2 and E3 are clearly contiguous events. Notice that σ3(S) = 〈E1, E3, E2〉
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and σ2(σ3(S)) = 〈E1, E2, E3〉, i.e., σ2 ◦ σ3(S) = S. On the other hand, events E1 and E3

are not contiguous events. Notice that σ1(σ3(S)) = 〈E1, E3, E2〉, i.e., σ1(σ3(S)) 6= S. We
formalize this alternate de�nition of contiguous events in De�nition 3.10. This de�nition
is useful for proving Property 3.2.

De�nition 3.10 (Contiguous events - Alternate de�nition)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Ek = (Yk, t

?
k)} and 1 ≤ k ≤ m. Given two events Ei and Ej in S,

with 1 ≤ i < j ≤ m, event Ei is said to be contiguous to event Ej (and equivalently, �Ej
is contiguous to Ei� or �Ei and Ej are contiguous�) i.f.f.:

σi ◦ σj(S) = S

Property 3.2 (Existence of a unique event rearrangement)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Ek = (Yk, t

?
k) and 1 ≤ k ≤ m. Given two events Ei and Ej in S,

with 1 ≤ i < j ≤ m, there exists a unique k-permutation σki with 0 ≤ k ≤ m − 2, so that
Ei and Ej are contiguous events in σkj (S).

Proof 3 (Proof of Property 3.2)
Existence:

Suppose S = 〈E1, . . . , Ei, Ej , . . . , Em〉. Trivially, Ei and Ej are contiguous events (and
require 0 permutation).

Suppose S = 〈E1, . . . , Ei, . . .︸︷︷︸
n events

, Ej , . . . , Em〉 with n ≥ 1. Hence, we can hence write

the following expressions:

σj(S) = 〈E1, . . . , Ei, . . .︸︷︷︸
n-1 events

, Ej , Ej−1, Ej+1, . . . , Em〉

...
σj ◦ . . . ◦ σj︸ ︷︷ ︸
n permutations

(S) = σnj (S) = 〈E1, . . . , Ei, Ej , Ei+1, . . . , Em〉

Consequently: σi ◦ σj(σnj (S)) = σnj (S) (De�nition 3.10)

This is the condition for Ei and Ej to be contiguous. In this case, Ej required k = n
permutations to be contiguous to Ei. We proved the existence of the k-permutation.

Unicity:

Suppose S = 〈E1, . . . , Ei, . . . , Ej , . . . , Em〉 and suppose there exists at least two k-
permutations of Ej in S, denoted σ

k1
j and σk2j with k1 < k2, so that Ej becomes contiguous

to Ei. We can hence write the following expressions:

σk1j (S) = 〈E1, . . . , Ei, Ej , Ei+1, . . . , Em〉
As k2 > k1, σk2j (S) = σj ◦ . . . ◦ σj︸ ︷︷ ︸

k2 − k1 permutations

σk1j (S)

Then σk2j (S) = σj ◦ . . . ◦ σj︸ ︷︷ ︸
k2 − k1 permutations

(〈E1, . . . , Ei, Ej , Ei+1, . . . , Em〉).

If i < (k2 − k1), σk2j (S) = 〈Ej , E1, . . .︸ ︷︷ ︸
i events

, Ei, . . . , Em〉.

If i ≥ (k2 − k1), σk2j (S) = 〈E1, . . . , Ej , . . .︸︷︷︸
k2 − k1 events

, Ei, . . . , Em〉.
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In both cases, Ei and Ej are not contiguous in σk2j (S) and necessarily k1 = k2. We
proved the unicity of the k-permutation. �

Equipped with the notion of event permutation and the existence and unicity properties
given in Property 3.2, we can �nally give a formal de�nition of the event rearrangement
operator τ in De�nition 3.11. The cost induced by this event rearrangement operator is
expressed as a loss of temporal accuracy and given in De�nition 3.12.

De�nition 3.11 (Event rearrangement operator τi,j)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. The event rearrangement operator

τi,j, 1 ≤ i < j ≤ m, virtually performs the unique k-permutation, with k = j − 1 − 1, on
Ei and Ej such that they become contiguous in the canonical second-order time sequence
S. τi,j operates as follows:

τi,j(S) = 〈E1, . . . , Ei, Ej , Ei+1, . . . , Ej−1, Ej+1, . . . , En〉

De�nition 3.12 (Event rearrangement cost Cτ)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. Let Ei and Ej be two events in S

to rearrange. Ei and Ej require a k-permutation with k = j − i− 1 to become contiguous,
so, the event rearrangement cost is de�ned as follows:

Cτ (i, j, s) = j − i− 1

One should note that this de�nition of the event rearrangement cost is no di�erent from
the temporal rearrangement penalty cost given in De�nition 2.6 in Chapter 2. Here, we
detailed this de�nition with all necessary concepts introduced in this chapter for rigorously
de�ning the Elementary Clustering Operator (ECO).

Also, one should note that in De�nition 3.12, Cτ is a very �rst attempt to estimate the
loss of temporal accuracy since the linearity of Cτ does not penalize event rearrangements
that require a large number of permutations. Cτ could be improved and re�ned to re�ect
di�erent time decay models. For instance, Cτ could be expressed as an exponential function,
which is most commonly used, or as a polynomial function, which is less common, of time.
We present in Section 7 some interesting directions taken in time decay modeling that could
be implemented. Anyway, the basic temporal cost function keeps the model consistent and
does not yield any loss of generality in the approach.

3.2 Elementary Clustering Operator (ECO)

Previously, we showed that building a summary χF (s) from s comes down to partitioning
s and providing a characterization function F to describe every cluster. Since we adopt a
constructive approach to de�ne the summarization problem, partitioning s is equivalent to
iteratively grouping two clusters Yi and Yj in Π(s). The process is initialized from a time
sequence s = 〈e1, . . . , en〉 with the partition of singletons Π(s) = {{e1}, . . . , {en}}. Then,
the elementary clustering operator feco, de�ned in De�nition 3.14, performs the grouping
on a summary with n clusters and provides a summary with n − 1 clusters. The cost of
feco, denoted Ceco, is introduced in De�nition 3.15. Intuitively, Ceco is the MSCS cost
for representing Yi ∪ Yj by its MSCS to which is added the cost to virtually rearrange Yi
and Yj . We assume that the grouping operation, de�ned in De�nition 3.13, is free of cost
since it does not involve any update neither on the content nor on the timestamps of the
sequence.
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De�nition 3.13 (Set union operator ψi,j)
Given S a collection of clusters, with S = {Y1, . . . , Yn} and where each cluster is a collection
of objects, the set union operator is de�ned as follows:

ψi,j(S) = 〈Y1, . . . , Yi = Yi ∪ Yj , . . . , Yj−1, Yj+1, . . . , Yn〉

De�nition 3.14 (Elementary clustering operator feco)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary. Let Yi
and Yj be two elements in Π(s). The elementary clustering operator feco that groups Yi
and Yj is de�ned as follows:

feco(i, j, χF (s)) = χ′F (s) = (Π′(s), s? ′) where
Π′(s) = ψi,j(Π(s)) = {Yi ∪ Yj , Y1, . . . , Yi−1, Yi+1, . . . , Yj−1, Yj+1, . . . , Yn} and
s? ′ = {F (Y ), Y ∈ Π′(s)}

De�nition 3.15 (Elementary clustering operation cost Ceco)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. Let Yi and Yj be two elements in

Π(s). The clustering cost induced by the ECO feco(i, j, χF (s)) is denoted Ceco(i, j, χF (s))
and is de�ned as follows:

Ceco(i, j, χF (s)) = Cτ (i, j, S) + Cmscs(Yi ∪ Yj) + 0

The last null term corresponds to cost of the grouping operation.

Finally, we propose to measure the overall cost of all elementary clustering operations
necessary for computing a summary χF (s) from the raw sequence s. This cost is denoted
T Cfeco(s, χF (s))=

∑
Ceco(i, j, χF (s)). Roughly speaking, we de�ne here a counting of

successive elementary editions, on content and time, to transform a sequence s into its
summary χF (s). Hence, this cost can be understood as the edit distance d(s, χF (s)) be-
tween a sequence s and its summary χF (s).

Let us give an example of elementary clustering using our running example in Ta-
ble 3.1. Suppose Π(s) = {Y1, . . . , Y6}, with Yi={ei}={(xi, ti)}, e.g., e1=({Datastreams,
Aggregation}, JUN05), is the partition of singletons built from N. Koudas's time sequence
of events. We compute the following elementary clustering operations:

• feco(3, 4,Π(s)): This elementary clustering operation comes with a cost Ceco(3, 4,
χF (s)) = 0 as Y3 and Y4 are contiguous and mscs(Y3 ∪ Y4) = Y3 = Y4 (no AGO
needed).

• feco(3, 6,Π(s)): This elementary clustering operation comes with a cost Ceco(3, 6,
χF (s)) = 2+(2+3)+0 = 7. Indeed, Y3 and Y6 require 2 APOs to become contiguous.
In addition, in the topic domain taxonomy in Figure 3.3, the MSCS of �Top-k query�
and �Clustering� is �any_Topic�; Hence, there are (i) a path of length 3 between
�Top-k query� and �any_Topic� and (ii) a path of length 2 between �Clustering� and
�any_Topic�, which totals to 5 AGOs.

3.3 Problem statement

Using the elementary clustering operator de�ned in Section 3.2, we can state the problem
of �nding an optimal time sequence summary in De�nition 3.16.
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De�nition 3.16 (Optimal Time Sequence Summarization Problem Statement)
Given s a time sequence of events in S(Ω) and a dual characterization function F de�ned
on S(Ω), let ρobj be the desired compression ratio. The optimal time sequence summariza-
tion problem consists in building the summary χ+

F (s) of s that satis�es:

1. ρ(s, χ+
F (s)) ≥ ρobj, and

2. T Cfeco(s, χ+
F (s)) is minimum.

Given a time sequence s; let F be a dual characterization function used to de�ne sum-
mary χF (s). For the sake of simplicity, and without any loss of generality, we indistinctly
adopt in the following the canonical second order sequence S to represent the summary
χF (s). The search space for �nding the optimal time sequence summary is a lattice L
de�ned as follows:

• The lowest node in lattice L is S.

• The highest node in lattice L is denoted S, where S = {
⋃
Y ∈S Y }.

• Two nodes u and v in lattice L are linked by an arc i.f.f. there exists an elementary
clustering operation such that v = feco(i, j, u) with 1 ≤ i < j ≤ n and having
clustering cost Ceco(i, j, u). An illustration of the search space is given in Figure 3.4.

S={Y1UY2UY3UY4}

S={Y1 ,Y2, Y3, Y4}

{Y1UY2,Y3,Y4}
{Y1,Y2UY3,Y4} {Y1UY3,Y2,Y4}

{Y1,Y2,Y3UY4}

{Y1,Y2UY4,Y3}

…………………………………………….......

{Y1UY4,Y2,Y3}

Figure 3.4: Search space of optimal time sequence summaries

The problem statement given here rises several legitimate questions listed as follows:

1. Does an optimal summary exist?

2. Is this optimal summary unique?

3. Is it always possible to compute an optimal summary?

Theorem 3.1 (Existence of a summary)
Given a time sequence s and a characterization function F ; let ρobj be the desired com-
pression ratio. There exists at least one time sequence summary χF (s) that achieves the
compression ratio ρobj.

Sketch of the proof: The ECO is monotone in the cardinality of the summary: Each
time we perform an ECO, the size of the summary decrements by 1. Hence, if we apply
successively the ECO on a given summary, [feco(_,_, χF (s))]N−1, with N the length of
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s, the resulting summary has a partition Π(s) with a single cluster equal to the set of
events in s. It is exactly the upper bound in the lattice L, denoted by S. In this case, the
compression ratio is maximal, i.e., ρ(s, S) = 1. Hence, for every desired compression ratio
ρobj ∈ [0, 1], we can build at least summary S to meet the problem requirements. �

Contrarily, unicity of the answer to the problem of De�nition 3.16 is unlikely observed.
It is easy to see that di�erent instantiations of an elementary clustering operation feco
could be associated to equal costs. For instance, the sequence (a, a, b, b) is reduced to
(a, b, b) or (a, a, b), both with a cost equal to zero.

Theorem 3.1 states that it is always possible to achieve the desired compression ratio.
In fact, as the compression ratio ρ de�ned in De�nition 2.7 in Chapter 2 is connected to the
number of events in the output time sequence summary, a time sequence summarization
algorithm needs only to perform a �nite number of elementary clustering operations to
achieve the desired compression ratio ρobj . This minimum number of elementary clusterings
is denoted mineco and detailed in Theorem 3.2.

Theorem 3.2 (Min. nb. of ECOs vs. desired compression ratio)
Given s a time sequence of events in S(Ω) and a desired compression ratio ρobj, there exists
a �nite number of elementary clusterings operations, denoted mineco, necessary to achieve
the desired compression ration ρobj. mineco is given by the following formula:

mineco = dρobj × (|s| − 1)e

Proof 4 (Proof of Theorem 3.2)
Theorem 3.2 is proved with the de�nition of the compression ratio. Given χF (s)=(Π(s), s?)
the summary of s:

ρobj = 1− |s
?|−1
|s|−1

ρobj = |s|−1−|s?|+1
|s|−1

|s| − |s?| = ρobj × (|s| − 1)

The quantity |s| − |s?| represents the number of events that summary s? has less w.r.t.
the original sequence s. Hence, it also represents the number of elementary clustering
operations performed to achieve ρobj since for each event less in s? corresponds to one
elementary clustering operation performed. �

Therefore, given a desired compression ratio ρobj , Theorem 3.2 implies that the optimal
time sequence summaries are found in the upward closure of nodes at a distance ofmineco−
1 elementary clustering operations from S in lattice L. We denote by Z the set of time
sequence summaries that can be generated with mineco elementary clustering operations.
Z can also be understood as the set of summaries that contain exactly |S|−mineco events.

4 Basic solution

The most basic solution to build an optimal time sequence summary from time sequence
s is to generate the set of all candidate summaries Z. Then, the optimal time sequence
summary is the one obtained with the lowest total clustering cost, also called the canonical
cost. Given a candidate summary S′ in Z, it is adamant to be capable of computing the
canonical cost for partitioning S into S′. Since there exist multiple paths in lattice L from
S to the candidate summary S′, each path induces a di�erent clustering cost. However,
with the only knowledge of S and candidate summary S′, computing the canonical cost
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for generating S′ from S is di�cult and itself an optimization problem. A heuristic can
be devised to approximate this canonical cost. We propose a greedy top-down algorithm
for this purpose. Still, note that this basic approach to compute an optimal summary is
natively combinatorial since we have �rst to enumerate Z, that is an exponential task, and
then, decide based on the lowest cost computation whether each candidate summary is the
optimal solution.

The rest of this section is organized as follows. We detail in Section 4.1 the basic
structural characteristics of clusters in a summary. These characteristics will be used for
building the heuristic to approximate the canonical cost. We present our heuristic in
Section 4.2. Finally, we put the pieces together and propose in Section 4.3 the N-TSS
algorithm, and its performances are studied in Section 4.4.

4.1 Characteristics of clusters

In this section, we present some characteristics of summaries in lattice L. The characteris-
tics presented in this section will be useful for deriving an estimation of the canonical cost
for producing a candidate summary S′ from S. Hence given S and candidate summary
S′, each cluster Yi ∈ S′ required exactly |Yi| − 1 elementary clustering operations to be
formed. De�nition 3.15 states that the clustering cost for producing cluster Yi depends on
the number of atomic permutation operations necessary to group events into Yi and the
MSCS cost to represent all events in Yi by a representative event. However, the de�nition
of the MSCS cost given in De�nition 3.8 allows us to state that this MSCS cost for cluster
Yi is constant and we denote this constant cost ci.

As a consequence, the clustering cost for generating cluster Yi only varies with the
cost Cτ necessary for rearranging events on the timeline, i.e., the number of atomic per-
mutation operations. Let us present from our illustrative example the cost induced by
two di�erent summarizations: Suppose S = {{e1}, . . . , {e6}} and its summary is S′ =
{Y1 = {e1, e4, e6}, Y2 = {e2, e3, e5}} where the MSCS cost of Y1 is c1 and the MSCS cost
of y2 is c2. Here are two di�erent sequences of ECOs that produce S′ and their associated
clustering cost:

1. The �rst algorithm χ1 performs all ECOs necessary to generate Y1 then performs all
ECOs necessary to generate Y2. The sequence of ECOs is broken down as follows:

• feco(1, 4, S)=S′
1={Y1={x1, x4}, {x2}, {x3}, {x5}, {x6}} and requires 2 APOs.

• feco(1, 6, S′
1)=S′

2={Y1={x1, x4, x6}, {x2}, {x3}, {x5}} and requires 3 APOs.

• feco(2, 3, S′
2)=S′

3={Y1={x1, x4, x6}, Y2={x2, x3}, {x5}} and requires 0 APO.

• feco(2, 5, S′
3)=S′ and requires 0 APO.

The total clustering cost is thus T Cχ1=c1 + c2 + 2 + 3 + 0 + 0=c1 + c2 + 5.

2. The second algorithm χ2 performs all ECOs necessary to generate Y2 then performs
all ECOs necessary to generate Y1. The sequence of ECOs is broken down as follows:

• feco(2, 3, S)=S′
1={{x1}, Y2={x2, x3}, {x4}, {x5}, {x6}} and requires 0 APO.

• feco(2, 5, S′
1)=S′

2={{x1}, Y2={x2, x3, x5}, {x4}, {x6}} and requires 1 APO.

• feco(1, 4), S′
2=S

′
3={Y1={x1, x4}, Y2={x2, x3, x5}, {x6}} and requires 1 APO.

• feco(2, 5, S′
3)=S′ and requires 1 APO.

The total clustering cost is thus T Cχ2=c1 + c2 + 0 + 1 + 1 + 1=c1 + c2 + 3.

97



These simple examples of summarization show that there is a di�erence of 2 APOs
between the clustering costs of χ1 and χ2. These two examples also show it is possible to
lower bound the clustering cost for forming each cluster Yi ∈ S′. Indeed, for any given
cluster Yi ∈ S′, a minimum of m − 1 elementary clustering operations on S are required
to form Yi. The lower bound is attainable when exactly m − 1 ECOs are performed
successively to form yi.

For instance, if S = {{x1}, {x2}, {x3}, {x4}} and S′ = {Y1 = {x1, x4}, Y2 = {x2, x3}},
Y1 requires one single ECO to be formed, i.e., feco(1, 4, S), and induces a clustering cost of
c1 + 2. However, if Y2 is formed �rst, i.e., feco(2, 3, S) = S1 is performed (with clustering
cost c2+1), then followed by feco(1, 2, S1), the actual clustering cost for forming Y1 is c1+1
and has required 2 ECOs. These observations allow us to characterize in De�nition 3.17
the lower bound of the clustering cost for forming any cluster Yi ∈ S′.

De�nition 3.17 (Clustering cost lower bound)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. Let S′ be a candidate summary in

Z. For any Yi ∈ S′ with Yi = {ei1 , . . . , eim}, the clustering cost induced to form cluster Yi
with exactly |Yi| − 1 successive ECOs is denoted CLB(Yi). This cost is lower bound by the
following formula:{

CLB(Yi) = 0, if |Yi| = 1
CLB(Yi) = (im − i1 − 1)− (|Yi| − 2) otherwise

Let us explicit the rationale of De�nition 3.17. Events ei1 and eim in cluster Yi can
be understood as the boundary events of cluster Yi in s, i.e., all events in cluster Yi are
temporally located in between events ei1 and eim on the timeline. There exists a number
of events ej in between events ei1 and eim that do not belong to cluster Yi. In fact, there
are exactly (im− i1−1)−(|Yi|−2) events temporally located in between events ei1 and eim
that do not belong to cluster Yi. Therefore, forming cluster Yi from S in exactly |Yi| − 1
ECOs requires to reduce this number of intermediary events to zero. This can be achieved
by performing exactly (im − i1 − 1)− (|Yi| − 2) APOs and |Yi| − 1 grouping operations.

From practical view point, this lower bound can be achieved by means of an algorithm
that iteratively clusters Yi's boundary event. Informally, one starts by adding the cost for
clustering in S the most recent cluster in Yi, i.e., eim , with its second most recent event,
i.e., eim−1. The cluster obtained is denoted Yim−1. The process is repeated and cluster
Yim−1 is clustered with the third most recent event in Yi, and so on until the least recent
event ei1 in Yi is reached. Figure 3.5 gives an example of how this algorithm operates.
Here, the cluster to form is Y1 = {e1, e5, e8, e10} where the boundary events are e1 and e10,
i.e., eim = e10. Y1's clustering cost lower bound is computed in 3 iterations and gives a
total cost of 6. Note that Y1 is formed in exactly |Y1| − 1 operations and the resulting cost
perfectly corresponds to CLB(Y1) = (10 − 1 − 1) − (4 − 2) = 6. Also, visually, this cost
corresponds to the number of events in between e1 and e10 that are not contained in Y1.

This notion of clustering cost lower bound for forming a cluster Y allows us to char-
acterize the temporal relatedness of events in Y . Indeed, Property 3.3 shows that if the
number of events in a cluster Y is smaller than CLB(Y ), some events in Y must be con-
tiguous. Since contiguous events do not induce an event rearrangement cost, this property
is most interesting for deciding the order of the ECOs necessary to generate S′.

Property 3.3 (Contiguous events in cluster Y vs. CLB(Y ) vs. |Y |)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
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TimeSequence S
e1 e5 e8 e10

1 APO

Timee1 e5

2 APOs

Timee1

3 APOs

Time

Iteration 1

Iteration 2

Iteration 3

Total = 6 APOs

Boundary event Boundary event

Y10

Y8

Y5

Y1

Y1={e1, e5, e8, e10}

Figure 3.5: Example of CLB computation for forming Y1

S = {E1, . . . , Em} with Eu = (Yu, t
?
u)} and 1 ≤ u ≤ m. Let S′ be a summary in Z. The

following property is true:

∀Y ∈ S′, (|Y | > 1) ∧ (CLB(Y ) < |Y | − 1) ⇒
there exist at least

(
|Y | − CLB(Y )− 1

)
couples of contiguous events in Y

Consequently, there exist at least |Y | −CLB(Y )− 1 ECOs of events in Y that require zero
APO.

Proof 5 (Proof of Property 3.3)
Previously, we described the quantity CLB(Y ) as the number of events in s in between
the boundary events of cluster Y , i.e., events e1 and em, that are not contained in Y . We
denote by CLB(Y ) this set of events. Suppose CLB(Y ) = |Y |−1. This situation can only
be true when events in Y and CLB(Y ) alternate on the timeline. For instance, suppose
s = 〈e1, e2, e3, e4, e5〉 and Y1 = {e1, e3, e5}, then, CLB(Y1) = 2 and CLB(Y ) = {e2, e4}.

Therefore, when CLB(Y ) = |Y |−1−1, there exists at least one pair of events in Y that
are contiguous. Recursively, when CLB(Y ) < |Y |−1 there exist at least |Y |−CLB(Y )−1
pairs of events in Y that are contiguous. �

4.2 Greedy canonical clustering cost evaluation algorithm

Equipped with Property 3.3, we can present the greedy algorithm that computes an ap-
proximation of the canonical clustering cost for producing a candidate summary S′ from
a sequence S. As mentioned earlier, since the MSCS cost for forming each cluster Y ∈ S′
is constant, the total cost for forming Y mainly relies on the order in which events are
clustered (or equivalently, the order in which events are rearranged). The intuition behind
the algorithm is that the lowest clustering cost is obtained when the cheapest elementary
clustering operations are performed �rst.
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Also, we observe that when Y 's CLB is low and the number of events in Y is important,
many events in Y must be contiguous on the timeline. This observation allows us to
introduce the density index of a cluster Y . The idea of the density index is to indicate
how dense on the timeline are events within a cluster Y . The density index of a cluster is
given in De�nition 3.18 and used as an indicator for our greedy algorithm.

De�nition 3.18 (Density index of a cluster)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. The density index of each cluster

Yi in S, such that |Yi| ≥ 2, is denoted ri and computed by the following ratio:

ri =
CLB(Yi)

|Yi|
, with 0 ≤ ri ≤ 1

The closer ri to zero, the more events ei,j ∈ Yi are close on the timeline and require less
APOs to be clustered.

We chose to de�ne the density index as a ratio based on the CLB measure due to its
relationship with the notion of contiguity of events on a timeline. Other more common
measures could have been used to compute the density of the cluster, e.g., entropy-based
measures.

The intuition behind our greedy algorithm is to proceed in a top-down fashion and
guess from candidate summary S′ which was possibly theminth

eco
(or equivalently, the last)

elementary clustering operation performed that produced S′. Since, ri gives the density
of clusters Yi, we choose the cluster whose density index is the closest to zero: The closer
to zero, the more chances events in the cluster are close on the timeline. Let us denote
by Yj this cluster. Suppose, feco(j, k, u) was the minth

eco
elementary clustering operation

performed to produce S′, i.e., S′ = feco(j, k, u) where u is the intermediary summary in
lattice L used for clustering and Yj and Yk the clusters grouped. Suppose events ej,i and
ej,k are the couple of events in Yj that induces the lowest clustering cost, or equivalently, the
couple of events in Yj that induces the smallest event rearrangement cost, in S. Therefore,
we assume that Yk = {ej,k} and split ej,k from cluster Yj to rebuild intermediary summary
u. This process is repeated mineco times so that at the last iteration, the intermediary
summary u is S. We present in Algorithm 2 the pseudo-code of our algorithm.

First, the cluster density index ri is computed for each cluster Yi ∈ S′ (Line 6 to
Line 13). Then, we choose cluster Yj ∈ S′ that has the smallest density index (Line 14).
Property 3.3 indicates that if CLB(Yj) < |Yj | − 1 there exist |Yi| − 1−CLB(Yi) ECOs of
events in cluster Yj that can be performed with no APO cost. Any one of these operations
can be performed �rst. Otherwise, i.e, there are no contiguous events, we choose the couple
of events eu ∈ Yj and ev ∈ Yj that minimizes the event rearrangement cost Cτ (u, v, S)
(Line 15 to Line 16). The total clustering cost is increased with Cτ (u, v, S) (Line 17).
This process is repeated mineco times. Note that sequence S is updated by deleting event
ev from S. This operation is permitted, since, from event rearrangement point of view,
deleting event ev is equivalent to grouping event ev with event eu.

4.3 N-TSS: Naive Time Sequence Summarization approach

Now that we have de�ned the function that computes an approximation of the canonical
clustering cost, we can give the details of our naive algorithm called N-TSS. N-TSS is an
Exhaustive Enumeration (EE) approach, i.e., N-TSS generates all candidate summaries

100



and then determines which is the optimal summary. Algorithm 3 gives the pseudo-code
of N-TSS. First, the set Z of all time sequence summaries possibly obtained with mineco
elementary clustering operations is generated (Line 6). Then, for each candidate summary
S′ ∈ Z, the approximate canonical cost to produce S′ from S (Line 8) is computed and
added to the MSCS cost of clusters in S′. If this cost is the lowest computed so far, it is
recorded and S′ is marked as the (local) optimal summary.

Algorithm 2 Greedy Canonical clustering Cost approximation function G-CC
1. INPUTS:
S = {Y1 = {e1}, . . . , Yn = {en}}: Input sequence
S′ = {Y1, . . . , Ym}, Yi = {ei,1, . . . , ei,mi}: Summary
mineco: Minimum number of ECOs to perform

2. OUTPUT: C: Approximate canonical clustering cost
3. LOCALS:
R: Array of density ratios of size m
C: Approximate canonical clustering cost
min: Index of the cluster Yi with minimum density index ri

4. C ← 0 {// Initialize clustering cost}
5. for cpt = 1 to mineco do
6. for i = 1 to m do
7. {// Compute density index of each cluster Yi}
8. if (|Yi| = 1) then
9. R[i]← −1 {// Default value for singleton clusters}
10. else
11. R[i]← CLB(Yi)

|Yi|
12. end if
13. end for
14. min← argmini(R[i]) with R[min] 6= −1
15. Generate the set Y of all couples of events in Ymin, i.e.,

Y ← {(ei, ej) ∈ Y 2
min, i < j}

16. Find (eu, ev) ∈ Y such that
(eu, ev)← argmin(ei,ej)∈Y (Cτ (i, j, S))

17. C ← C + Cτ (u, v, S) {// Update clustering cost}
18. S ← S − {ev} {// Update sequences}
19. Ymin ← Ymin − ev
20. end for
21. return C

4.4 Complexity

The N-TSS algorithm is an exhaustive and very costly approach from computational and
memory usage view point. Indeed, step 6 in Algorithm 3 requires the Exhaustive Enu-
meration (EE) and storage in-memory of all candidates summaries. Given the number of
elementary clustering operations to perform on a sequence S to achieve the desired com-
pression ratio mineco, the number of clusters formed in S is k = |S| − mineco. Since,
there are approximatively kn

k! ways of partitioning a set of n data points into k clus-
ters [DH73], the computational and memory footprint of the N-TSS are exponential in
O(k

n

k! ) and O(R× kn

k! ), respectively, where R is the memory necessary for storing a summary
in-memory.
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Algorithm 3 Naive Time Sequence Summarization algorithm N-TSS
1. INPUTS:
S = {Y1 = {e1}, . . . , Yn = {en}}: Input sequence
ρobj : Objective compression ratio

2. OUTPUT: Sopt: (Local) Optimal time sequence summary
3. LOCALS:
mineco: Minimum number of ECOs to perform
Z: Set of candidate summaries
minCost: Minimum clustering cost computed so far
Sopt: Optimal time sequence summary identi�ed so far

4. mineco ← d|S| × (1− ρobj)e
5. minCost←∞
6. Generate the (lattice) set Z with S and mineco
7. for i = 1 to |Z| do
8. {// Compute the approximate canonical clustering cost of Si}

C ← G-CC(S, Si,mineco)
9. if ((C +

∑
Yj∈Si Cmscs(Yj)) < minCost) then

10. minCost← C +
∑

Yj∈Si Cmscs(Yj) {// Update lowest clustering cost}
11. Sopt ← Si {// Update optimal summary}
12. end if
13. end for
14. return Sopt

Let us give a more tangible example of the memory usage: Suppose the input sequence
contains 12 events, i.e., |S| = 12, and we require 60% compresion ratio, i.e., mineco = 8
operations and thus k = 12−8 = 4. Suppose each event is described by a set of descriptors
of 128 characters encoded in UTF-8, i.e, each event takes 128*4=512 bytes in memory.
Generating the set Z requires 512× 412

4! ≈ 341MB; This is a prohibitive amount of memory
usage for such a small input sequence.

Once all candidate summaries are generated, each candidate summary needs to be in-
spected to approximate its canonical clustering cost. The computational cost for processing
G-CC is upper bound by (i) the number mineco of ECOs necessary to generate S′, (ii)
the number of clusters in a summary, i.e., |S| −mineco, and (iii) the maximum possible
number of events in a cluster, i.e., mineco + 1. Hence, this computational cost is bound
by O(min2

eco
× n). In total, the overall computational footprint of the N-TSS algorithm

is O(min2
eco
× n × kn

k! ). N-TSS could give very high quality results but, in practice, the
approach is infeasible except for extremely small values of n and k. For these reasons,
even though N-TSS is the most basic solution, its prohibitive performances do not allow
us to use it as the baseline technique for comparing other solutions. Instead, we will use
as baseline the greedy algorithm presented in Section 5.1.

5 Greedy algorithms to build locally optimal solutions

In this section, we present two time sequence summarization algorithms that build locally
optimal summaries. These summaries are approximations of the optimal time sequence
summary. The �rst approach presented in Section 5.1 is a straightforward greedy ascending
clustering algorithm that performs in a bottom-up fashion. At each iteration, the algo-
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rithm performs the ECO that induces the lowest elementary clustering operation cost and
works its way up to the summary that achieves the desired compression ratio. The second
approach presented in Section 5.2 is an algorithm that randomly selects one (or multiple)
cluster(s) Yi in S and decides if Yi should be clustered with any one of its neighboring
clusters on the timeline that minimizes the clustering cost Ceco. The process is repeated
until the desired compression ratio is achieved.

5.1 G-BUSS: Greedy Bottom-Up time Sequence Summarization

We propose a Greedy Bottom-Up time Sequence Summarization algorithm called G-

BUSS to build a locally optimal time sequence summary. G-BUSS is a hierarchical
ascending clustering algorithm that has the particularity of using our objective function
de�ned upon the content and temporal information of events in the sequence. Hence, G-
BUSS uses the elementary clustering cost Ceco to measure the distance between clusters.
The algorithm achieves the desired compression ratio by processing the input sequence in
a bottom-up fashion in four steps that are repeated mineco times:

1. Enumerate all possible clusterings between any 2 candidate clusters Yi and Yj in S.

2. Evaluate Ceco(i, j, S) for each couple (Yi, Yj).

3. Perform the actual ECO on the couple that induces the lowest clustering cost.

4. Update the total clustering cost with Ceco(i, j, S).

The pseudo-code of this approach is given in Algorithm 4.

Algorithm 4 G-BUSS algorithm
1. INPUTS:
S = {Y1, . . . , Yn}: Input sequence
ρobj : Objective compression ratio

2. OUTPUT: Summary
3. LOCALS:
C: Clustering cost
mineco: Minimum number of ECOs to perform
CM : Cost matrix storing the clustering cost of clusters in S
X: Set of couples (u, v) for which CM is minimal

4. C ← 0 {// Initialize clustering cost}
5. mineco ← d|S| × (1− ρobj)e
6. for cpt = 1 to mineco do
7. for i = 1 to |S| do
8. for j = i+ 1 to |S| do
9. CM [i, j]← Ceco(i, j, S) {// Compute clustering costs}
10. end for
11. end for
12. X ← argmin(k,l)∈[1...|S|]2 (CM [k, l]) with k > l
13. (i, j)← �rst couple in X
14. C ← C + CM [i, j] {// Update clustering cost}
15. S ← feco(i, j, S) {// Perform the actual ECO}
16. end for
17. return S
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This greedy algorithm chooses at each iteration the couple of candidate clusters that
minimizes the cost Ceco (Line 6 to Line 12). When input sequences are very large, it is
possible di�erent candidates induce the same minimal clustering cost. As it is de�ned, G-
BUSS arbitrarily chooses the �rst couple of candidate (Line 13). This observation alone
allows us to state that G-BUSS does not necessarily build the optimal time sequence sum-
mary but produces a local optimum. Since algorithm N-TSS has prohibitive theoretical
performances, we assume that the local optimum solution produced by G-BUSS is a good
enough solution. In the rest of this chapter, G-BUSS will be used as the baseline for
performance comparisons.

5.1.1 Complexity

G-BUSS's computational footprint is bound by (i) the number of iterationsmineco and (ii)
n the number of clusters in S, i.e., the algorithm is bound by O(mineco×n2). G-BUSS's
memory footprint is bound by O(1

2n
2) and corresponds to the storage of the matrix that

stores the clustering cost, i.e., �oat values, of all pairs of clustering candidates.

5.1.2 Pruning technique

G-BUSS's computational complexity does not allow the technique to scale and process
very large datasets. However, since the clustering cost Ceco has two components, i.e., Ceco
is based on the (i) content and (ii) temporal information, it is possible to use the temporal
component to reduce the number of costs Ceco to compute between pairs of clusters.

Intuitively, for a given cluster Yi in S, Yi has a limited number of possible clustering
candidates. These candidates are located in a neighborhood of m clusters around Yi on
the timeline. Beyond that neighborhood, it becomes more costly to rearrange a candidate
cluster Yj than clustering Yi with one of its neighbors within the neighborhood of m
clusters. In this case, there is no bene�t in computing the clustering cost between Yi with
any cluster Yj such that j > i + m or 0 ≤ j < i −m. One possible way to determine m
is to compute the Cmscs between Yi and its contiguous clusters since these clusters do not
induce an event rearrangement cost. This property is formally given in Property 3.4.

Property 3.4 (Event's clustering candidate neighborhood)
Given s a time sequence of events in S(Ω), let χF (s) = (Π(s), s?) be its summary and
let S be the canonical second-order time sequence built from the summary χF (s), i.e.,
S = {E1, . . . , Em} with Eu = (Yu, t

?
u)} and 1 ≤ u ≤ m. Let Yi and Yj be two elements

in Π(s). The clustering candidates for a cluster Yi in S that minimize the elementary
clustering cost Ceco are located in a limited neighborhood. Yj is a clustering candidate
i.f.f.:

for m = min(Cmscs(Yi−1, Yi), Cmscs(Yi, Yi+1)), i−m < j < i+m is true

Proof 6 (Proof of Property 3.4)
Suppose there exists a cluster Yb in S that is outside the neighborhood of m clusters and
that is a better clustering candidate for Yi, and b < i and Cτ (b, i, S) > m. Therefore the
following inequality is true: Ceco(b, i, S) = Cτ (b, i, S) + Cmscs(Yb ∪ Yi) ≤ m (where m =
min(Cmscs(Yi−1, Yi), Cmscs(Yi, Yi+1))). Since Yb is outside the neighborhood of m clusters,
m ≤ Cτ (b, i, S). Putting the pieces together, we should have the following truths: Cmscs(Yb∪
Yi) = 0 and m ≤ Cτ (b, i, S) ≤ m, i.e., Cτ (b, i, S) = m. By hypothesis, Cτ (b, i, S) > m. We
proved Property 3.4. �

Let us give an explicit example. Figure 3.6 illustrates this notion of neighborhood in
which clustering candidates are located. In this example, we assume Ceco(i, i + 1, S) =
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Cmscs(Yi ∪ Yi+1) = 2. Therefore, the best clustering candidates for cluster Yi can only be
in a neighborhood of m = 2 clusters. Note that since Ceco(i, i + 2, S) = Cτ (i, i + 2, S) +
Cmscs(Yi ∪ Yi+1) = 1 + 2 = 3, cluster Yi+2 is not a better clustering candidate than Yi+1.
Hence, we can not reduce the size of the neighborhood m. Also, notice cluster Yi−3 that is
outside the neighborhood of m = 2 clusters. Cluster Yi−3 requires an event rearrangement
cost of Cτ (i − 3, i, S) = 2 to be eligible for clustering with Yi. Yi−3 and Yi could only be
grouped i.f.f. Cmscs(Yi−3 ∪ Yi) = 0. This grouping is unlikely and counter-productive since
it requires to evaluate the cost Cmscs(Yi−3 ∪ Yi). This observation highlights our intuition
that in some case, it is more costly to rearrange clusters than actually grouping clusters
within a restricted neighborhood.

Time

Sequence S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

Cluster yi

Neighborhood of 
m=2 clusters

Cluster yi+1 Cluster yi+2Cluster yi-3

Figure 3.6: Example of neighborhood for searching clustering candidates

Therefore, Algorithm 4 can take into account this pruning technique to reduce the
time spent on computing the costs Ceco between all pairs of clusters in S. Algorithm 4 can
make use of this improvement simply by replacing Line 8 in Algorithm 4 by the following
instruction:

�for j = i+ 1 to min(Cmscs(Yi−1, Yi), Cmscs(Yi, Yi+1))�

We will show in our experimental study that this simple pruning technique allows to reduce
in practice G-BUSS's computational time by approximatively one order of magnitude.

5.2 GRASS: Greedy RAndom-seeded time Sequence Summarization

The second greedy algorithm we present here relies on the observation that G-BUSS does
not scale to address very large data sources. When performing tasks such as knowledge dis-
covery, indexation or summarization on very large data sources, it is most desirable if each
input data item is considered a limited number of times, ideally once or less. We propose
another greedy algorithm called GRASS. The idea in GRASS is to reduce the practical
complexity of G-BUSS while maintaining high quality clusters. This is achieved by select-
ing at each iteration multiple seed clusters and exploring each seed cluster's neighborhood
for good clustering candidates. This approach heavily relies on the pruning technique
introduced in Property 3.4 for G-BUSS.

5.2.1 Algorithm

The intuition behind GRASS relies on two assumptions: (i) events close on the timeline
are more likely to relate to a same topic and (ii) the best clustering candidate for each
event Yi is located in a restricted neighborhood on the timeline (Property 3.4).

Suppose Yj is the best clustering candidate for cluster Yi within a neighborhood of
m events. This statement does not imply that Yi is the best clustering candidate for Yj ,
i.e., there might exist another event Yk in Yj 's neighborhood such that Ceco(j, k, S) <
Ceco(i, j, S). In this case, since Yj 's neighborhood provides a better clustering candidate,
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one should not cluster Yj with Yi and should instead consider exploring cluster Yj 's context.
This step is reiterated until there is no improvement of the clustering cost or when a
prede�ned number of hops is reached. It is possible to limit the number of clusters to
explore for searching for a better clustering candidate. We call this parameter the depth
of the search and we denote it D with D ≥ 1. When D =∞, the search step is reiterated
until the clustering cost does not improve. Note that these steps guarantee the algorithm
to converge towards a local optimum since at each step, the clustering cost is reduced by
at least 1. When Yi and Yj are their mutual best clustering candidates, they are grouped
together. Therefore, our GRASS algorithm proceeds as follows:

1. Randomly select a cluster Yi in S, also called seed hereafter.

2. Find Yi's best clustering candidate Yj within its neighborhood.

3. Determine if Yi is Yj best clustering candidate, i.e., perform step 2 on Yj .

4. Cluster Yi and Yj if Yi is Yj 's best clustering candidate. Otherwise, repeat from step
2 with Yj at most D times.

At �rst glance, GRASS might appear to su�er from several shortcomings:

1. GRASS has quadratic computational complexity. In the worst case scenario, at each
iteration, the clustering cost of all pairs of clusters in the input sequence is computed.
If this scenario occurs, then GRASS degenerates into the G-BUSS algorithm and
has a computational complexity in O(mineco × n2).

2. Randomly selecting a seed and exploring its neighborhood might not give good clus-
ters as the seeds chosen could be outliers or lead to bad local optima.

3. The quality of the summary can not be guaranteed.

For the �rst shortcoming, indeed, GRASS has in theory quadratic computational com-
plexity. However, it is possible to characterize the sequence S that will lead GRASS to
degenerate into theG-BUSS algorithm. The only scenario that makes possible forGRASS
to achieve quadratic computational complexity occurs when the MSCS cost between all
contiguous pairs of clusters on the timeline monotonously decreases by at least 1, i.e.,
∀Yi ∈ S, Cmscs(Yi ∪ Yi+1) = Cmscs(Yi+1 ∪ Yi+2) + k with k ≥ 1. In this situation, the seed
selected by the algorithm should always be the �rst cluster in the sequence, i.e., Y1.

However, our preliminary experiments on our real world dataset show that this sit-
uation is a very unlikely situation and hardly happens. In fact, the GRASS algorithm
has in practice much lower computational complexity. We show in our experiments that
GRASS's computational time actually improves G-BUSS's computational time by 2 to 3
orders of magnitude. In fact, GRASS performs well on real-life scenarios.

Also, it is possible to alleviate the second and third shortcoming by not limitingGRASS
to using one single seed at each iteration. Indeed, when GRASS explores a cluster's neigh-
borhood, sequence S remains unchanged. The ECO is performed and sequence S is altered
only when a best local clustering candidate is found. Hence, it is possible to randomly
chose P di�erent seeds in the sequence and �nd the best clustering candidates generated
from each seed. Then, the algorithm consolidates the results produced by the P di�erent
seeds and the best pair of clustering candidates is chosen for the actual ECO. The overhead
induced by this approach is the time necessary for synchronizing all P threads responsi-
ble for �nding the clustering candidates. In comparison to the base GRASS algorithm
that randomly selects only one seed, this approach has the additional bene�t of allowing
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the algorithm to explore more clustering possibilities in the search space and improving
the quality of clusters formed. The pseudo-code of this multi-seed version of GRASS is
given in Algorithm 5. This algorithm relies on the procedure named BestCandidate that
searches for each seed a pair of best clustering candidates. The details of the BestCandidate
procedure are given in Algorithm 6.

Algorithm 5 GRASS Algorithm
1. INPUTS:
S = {Y1, . . . , Yn}: Input sequence
ρobj : Objective compression ratio
D: Depth of local search; P : Number of processing units or threads

2. OUTPUT: Summary
3. LOCALS:
Yseed: Seed cluster
(Yi, Yj): Best clustering candidates
mineco: Minimum number of ECOs to perform
PTab: Table storing best clustering candidates for each seed

4. while mineco 6= 0 do
5. for i = 1 to P do
6. Randomly select one seed Yseed from S
7. {// BestCandidates: routine computed in separate thread}

PTab[i]← BestCandidates(Yseed,D,S)
8. end for
9. Wait for all threads to complete
10. {// Get best clustering candidates from PTab}

(Yi, Yj)← argmink=(Yl,Y
′
l )∈PTab Ceco(l, l′, S)

11. S ← feco(i, j, S) {// Perform ECO}
12. mineco ← mineco − 1 {// Update mineco}
13. end while
14. return S

We argue that this approach is realistic, feasible and comes with low overhead. Indeed,
it has become a widespread trend for workstations to have hardware with a minimum of
two to four physical cores (up to four to eight virtual cores using Intel's HyperThread-
ing technology). In most cutting-edge single server hardware, it is even possible to �nd
con�gurations having 8*8 (Nehalem-EX1) or 1*16 (Niagara 32) physical cores capable of
handling 128 to 512 threads, respectively. Also, note that the number of cores usable for
scienti�c computation is multiplied 10- to 100-fold thanks to General-Purpose computing
on Graphics Processing Units (GPGPU) technology on newest GPU architectures such as
Fermi [Nvi] from Nvidia. Therefore, we believe that it is not a receivable argument to
consider this approach as a simple parallelization of the algorithm. Here, parallelism is
inherent to the process and is a mechanism that uses the available hardware to support
and improve the quality of summaries produced.

1http://www.intel.com/p/en_US/products/server/processor/xeon7000
2http://en.wikipedia.org/wiki/UltraSPARC_T3

107



Algorithm 6 BestCandidates routine
1. INPUTS:
Yseed: Seed event; D: Depth of local search
S = {Y1, . . . , Yn}: Original sequence

2. OUTPUT: (Yi, Yj): Best clustering candidates
3. LOCALS:
m: Neighborhood of clustering candidates
Yj : Best clustering candidate for Yseed

4. {// Compute neighborhood size of Yseed}
mi ← min(Cmscs(Yseed−1, Yseed), Cmscs(Yseed, Yseed+1))

5. {// Get the best clustering candidate for Yseed}
Yj ← argminYk∈{Yseed−m+1,...,Yseed+m−1} Ceco(seed, k, S)

6. if (D = 1) then
7. return (Yi, Yj)
8. else
9. if (Ceco(seed, j, S) < Ceco(j,BestCandidates(yj , D − 1, S))) then
10. return (Yi, Yj)
11. else
12. return BestCandidates(yj , D − 1, S)
13. end if
14. end if

6 Experiments

In this section we evaluate and validate the time sequence summarization algorithms pro-
posed throughout this chapter. We provide an extensive set of experiments on real-world
data from Reuters's �nancial news archives. We reuse again the dataset extracted from
Reuters's 2003 �nancial news archives as described in Section 6.1.2 in Chapter 2. The N-
TSS, G-BUSS and GRASS algorithms were implemented under Microsoft Visual Studio
2008 IDE in C#.

However, since the GRASS algorithm uses hardware speci�cities, we changed the hard-
ware con�guration so that more processing units could be used in our experiments. Ex-
periments on N-TSS, G-BUSS and GRASS were carried out on a Core2Quad at 2.4GHz
workstation with 4GB of memory running Windows Seven Pro 64bit. The persistence
layer, responsible for storing Reuters's time sequences of �nancial news and summaries
built upon these time sequences, was ensured by PostgreSQL 8.4.

6.1 Metrics

The measures used for evaluating N-TSS, G-BUSS and GRASS are:

1. Computational time

2. Total clustering cost

3. Average MSCS cost for forming a representative event for clusters formed

The computational time is a trivial measure. Since di�erent summarization approaches
can achieve the desired compression ratio and could eventually have comparable compu-
tational time, it is interesting to evaluate the quality of the summaries produced.

Here, we propose two measures to evaluate the quality of a summary. We evaluate
(i) the e�ort necessary to build the summary and (ii) the e�ort necessary to represent
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each cluster by a representative event. Therefore, the second measure on which N-TSS,
G-BUSS and GRASS are evaluated is the total clustering cost induced for building a
summary. Indeed, we mentioned earlier that T Cfeco could be understood as the edit
distance d(s, χF (s)) between a sequence s and its summary χF (s), i.e., the e�ort in terms
of elementary operations to build the summary. Naturally, the smaller the total clustering
cost, the better.

However, the total clustering cost does not indicate if clusters formed are homogeneous.
This is the purpose of our third measure. Here, we chose to evaluate the homogeneity of
clusters by evaluating the cost for representing each cluster by a representative event.
Therefore, we use the MSCS cost and compute the average MSCS cost for forming a
representative event from all clusters in a summary. This average MSCS cost is then
denoted avgMSCS and de�ned as follows:

avgMSCS =
1

|S|
∑
Yi∈S
Cmscs(Yi) (3.1)

Hence, if events in a cluster have similar descriptors, the MSCS cost for representing
that cluster by a unique representative event should be low, i.e., close to zero. In total,
if all clusters produced by a summarization algorithm are homogeneous, then the average
MSCS cost should also be low: The lower avgMSCS on the plots, the more homogeneous
the clusters. An observation one could make is that avgMSCS is an absolute value. For
instance, if the average MSCS cost of a cluster equals 12, there is no indication on how good
the quality of this cluster is. We can only compare this value to the quality of clusters
obtained in other summaries. Ideally, a relative value would be more comprehensive.
However, since we can not generate an optimal time sequence summary and compute its
exact canonical cost, we do not have a reference cluster quality to normalize this metric.
Eventually, we could use the average MSCS cost of clusters produced by G-BUSS as a
reference.

6.2 Evaluation of N-TSS, G-BUSS and GRASS

We sum up in Table 3.2 the summarization setup on which N-TSS, G-BUSS and GRASS
are evaluated. Since N-TSS has exponential computational complexity and since G-BUSS
has quadratic computational complexity, we do not perform summarization on the entire
sequence of news events preprocessed. We limit experiments on N-TSS to sequences of 5,
10 and 20 events, and G-BUSS to sequences of 20, 50, 100, 200, 300, 400 and 500 events.
The desired compression ratio ρobj for N-TSS is taken from the set {5%, 10%, 15%} and
for G-BUSS, ρobj is taken in the set {5%, 10%, 15%, 20%, 25%, 50%}. We described in
Section 5.2 the worst input sequence for GRASS. In practice, our preliminary experiments
show that the worst case scenario is unlikely to occur, at least in our dataset. For this
reason, we use a larger dataset and also experiment GRASS on sequences of size up to 104.
Since we perform all experiments on a quad-core microprocessor, we varied the number of
processing units P up to 4. Also, as GRASS randomly selects seed events, we consolidate
GRASS performance results by running the algorithm 10 times on each setting and we
report the average computational time, clustering cost and average cluster quality.

Summarization computational times are plotted in Figure 3.7, Figure 3.8 and Figure 3.9
for algorithms N-TSS, G-BUSS and GRASS respectively. Figure 3.7 gives N-TSS's com-
putational time with n = 20 events in comparison to G-BUSS's and GRASS's compu-
tational time for n = 500 and n = 100, 000, respectively. This �gure shows that with
parameters as small as n = 20 and ρobj = 15%, N-TSS could not complete even after
approximatively 23 hours of run time. These preliminary results con�rm that N-TSS can
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Algorithm N-TSS G-BUSS GRASS

Sequence size n 1 ≤ n ≤ 20 100 ≤ n ≤ 500 100 ≤ n ≤ 104

Compression ratio ρobj 5% ≤ ρobj ≤ 15% 5% ≤ ρobj ≤ 50%

Processing units P P ∈ {1, 2, 3, 4}
Depth D ∈ {1, 5, 10,∞}

Table 3.2: Experiments setup
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Figure 3.7: N-TSS computational time w.r.t. G-BUSS and GRASS

not be reasonably used as a baseline approach. So, we will mainly focus on G-BUSS and
GRASS, and use G-BUSS's performances as baseline.

The total clustering cost of G-BUSS andGRASS are given in Figure 3.11. The average
MSCS cost for forming a representative event for clusters formed by both techniques is given
in Figure 3.12. Since G-BUSS is used as baseline instead of N-TSS, G-BUSS's clustering
cost and average MSCS cost also appear in all sub�gures of Figure 3.11 and Figure 3.12.

Figure 3.8(a) gives G-BUSS's computational time without using the pruning technique
of Property 3.4 and Figure 3.8(b) gives the computational time with the use of the prun-
ing technique. Figure 3.8 con�rms our complexity study and shows that G-BUSS has
quadratic computational time. On the other hand, Figure 3.8(b) shows that this computa-
tional time can be reduced by more than one order of magnitude thanks to Property 3.4.
The computational time for each plot is clearly reduced by a factor of approximatively 10.
For instance, for ρobj = 10% in Figure 3.8(a) the computational time is approximatively
6000 seconds, while in Figure 3.8(b) the computational time is approximatively 600 sec-
onds. Note that these improvements did not alter the total clustering cost or the average
MSCS cost of the clusters produced.

Figure 3.9 gives GRASS's computational times when the desired compression ratio is
set to ρobj = 50% and the depth setting is varied. More precisely, Figure 3.9(a) corresponds
to D = 1, Figure 3.9(b) corresponds to D = 5, Figure 3.9(c) corresponds to D = 10 and
Figure 3.9(d) corresponds to D =∞. Sub-�gures in Figure 3.9 show that GRASS seems
to have linear computational complexity on the logarithmic scale. This observation is
mainly in�uenced by the scale used in the plots. Figure 3.10(b) presents a zoom on the
computational time of GRASS for sequences of size smaller than 500 events: This �gure
shows that GRASS does have a quadratic evolution.

Also, when the number of processing units used increases, the computational time
slightly increases. However, this overhead is progressively reduced for each additional
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Figure 3.8: G-BUSS computational time
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Figure 3.9: GRASS computational time
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Figure 3.10: GRASS computational time: zooms
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Figure 3.11: Clustering cost
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processing unit added. For instance, Figure 3.10(a) presents a zoom of Figure 3.9(b) at
n = 104. The computational time overhead between P = 3 and P = 4 is less signi�cant
w.r.t. the computational time overhead between P = 1 and P = 2. This e�ect can be
explained by the fact the algorithm needs to synchronize more threads, i.e., wait for more
threads to complete. When more seeds are added (limited to the number of available
physical processing units), the overhead converges towards the sum of the computational
time of the slowest thread at each iteration.

Nevertheless, the overall computational times presented in these �gures con�rm our in-
tuition that even though GRASS has quadratic complexity in theory, in practice, GRASS
reduces G-BUSS's computational time by several orders of magnitude. Now, we evaluate
the quality of the summaries produced by GRASS.

Figure 3.11 presents the clustering cost for each dataset. For the sake of clarity, we
do not plot all results for all compression ratios and only present the results obtained for
ρobj = 50%. However, the results obtained for all other compression ratios are consistent
with those obtained with ρobj = 50%. Hence, Figure 3.11(a) give the clustering cost when
the depth parameter is set to D = 1, Figure 3.11(b) when D = 5, Figure 3.11(c) when
D = 10 and Figure 3.11(d) gives the clustering cost is set to D = ∞. First, note that in
all sub-�gures in Figure 3.11, the total clustering cost for both algorithms increases almost
linearly with the size of input sequences. Second, note that the total clustering cost for
building summaries with GRASS is almost identical to the total clustering cost induced
by building summaries with G-BUSS. In fact, summaries built by GRASS with P = 1
processing unit induce the highest total clustering cost. When using at least P = 2 pro-
cessing units, the total clustering cost induced becomes equivalent to the total clustering
cost induced by G-BUSS.

Figure 3.12 presents the average MSCS cost for forming representative events from
clusters built by G-BUSS and GRASS. Again, for similar reasons, we only plot here
the results obtained when the compression ratio is ρobj = 50%. Note that for almost all
datasets G-BUSS produces summaries where clusters are the most homogeneous. In most
cases, clusters formed by GRASS with P = 1 processing unit are the less homogeneous.
This is consequent to the poor seach space coverage when only P = 1 processing unit is
used. On the other hand, when P increases, the homogeneity of clusters increases and
converges towards the homogeneity of clusters formed by algorithm G-BUSS.

Interestingly, these results show that the clustering cost and the homogeneity of clus-
ters in summaries produced by GRASS are only worse than those produced by G-BUSS
by an average of 1% to 3%. On some datasets, GRASS actually slightly reduces the clus-
tering cost and improves the homogeneity of clusters w.r.t. G-BUSS, e.g., n = 400 in
Figure 3.12(c). This observation con�rms again the fact that G-BUSS does not generate
the optimal time sequence summary but a local optimum. Also, this observation shows
that randomly selecting seeds in GRASS can bene�t in �nding other local optima and
globally improve the quality of summaries produced. Therefore, given a desired compres-
sion ratio ρobj , GRASS has achieved the goal of building very high quality summaries
while improving G-BUSS's computational time by more than two orders of magnitude.

7 Related work

Data clustering in databases, data warehouses, data streams, etc., is an important data
mining task that has been well studied [JMF99,Ber02] when data is represented in numer-
ical form. The essence of data clustering is to form dissimilar groups of similar objects by
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optimizing a prede�ned distance measure or objective function. Time sequence summari-
zation formulated as a clustering problem is most relevant to the corpus of work in data
clustering that addresses categorical data or mixed numerical and categorical data.

However, the clustering task is rendered more di�cult when the data considered is
de�ned on categorical domains. Traditional data clustering techniques mostly rely on con-
tinuous domains and on the existence of a metric space in these domains to compute the
similarity/distance between two objects. When data is de�ned on categorical domains, the
usual distances are no more available, e.g., what is the average between descriptors �few�
and �plenty�? A corpus of work has emerged and addressed the issues of categorical data
clustering without using traditional distance measures. We will discuss these approaches
in Section 7.1.

The time sequence summarization algorithms we proposed in this chapter rely on the
notion of most speci�c common subsumer. The cost associated to the mscs operator as
de�ned in De�nition 3.6, 3.7 and 3.8 is in fact a special instance of semantic distances,
namely Rada et al's [RMBB89] simple edge counting method. There exists a wealth of
research work in Natural Language Processing, from word sense disambiguation to text
summarization and speech recognition that make use of the ability to measure the seman-
tic relatedness or distance between words of a natural language [Bud99]. We will discuss
in Section 7.2 semantic distance metrics from this literature that are most relevant to the
algorithms we proposed in this chapter.

When discussing the cost Cτ (i, j, S) associated to the event rearrangement operator τi,j
in Section 3.1.3, we mentioned the fact that Cτ (i, j, S) was de�ned as a function linear with
the time dimension. There exist a number of time decay functions widely adopted across
a broad spectrum of systems, e.g., data warehouses, data streaming systems or sensor
networks. We discuss these alternative approaches in Section 7.3.

7.1 Categorical clustering

Clustering categorical data has attracted many researcher e�orts, e.g., [Hua98, GRS99,
GGR99,YGY02] and [BLC02,ATMS04,ZP05], and the �rst methods available in the liter-
ature are adaptations of techniques designed for traditional data clustering [Hua98]. Some
approaches build summary information [GRS99, GGR99, ATMS04], e.g., in the form of
links, connectivity or statistics, while others rely on well de�ned measures from informa-
tion theory, e.g., entropy [BLC02]. Also, in [ZP05], the clustering problem is reformulated
as a graph problem. A very interesting common feature of these approaches is their capabil-
ity of clustering categorical data without necessarily relying on explicit distance measures
on categorical values themselves. The underlying ideas could be reused to re�ne or to sub-
stitute to the MSCS cost used in our algorithms. However, the most important observation
on these techniques is their lack any mechanism for handling the temporal information em-
bedded in the data and for organizing the clusters formed w.r.t. that information. Still, we
discuss hereafter these works as they represent the closest related work to our reformulation
of time sequence summarization as a clustering problem.

K-MODES [Hua98]

K-MODES is an extension of k-means algorithm for categorical data clustering. K-

MODES addresses the issues of traditional k-means methods on categorical data by (i)
using a simple matching dissimilarity measure for categorical objects, (ii) replacing the
means of clusters by modes and (iii) using a frequency-based method to update modes to
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minimize the clustering cost function. The matching dissimilarity measure serves for eval-
uating the total number of (categorical attribute) mismatches between two objects. Then,
equipped with this dissimilarity measure, the approach can replace a clusters' means calcu-
lus by its mode calculus. Finally, the k-means approach becomes a K-MODES approach
by using a frequency-based method to update the mode of a set of objects.

ROCK [GRS99]

ROCK [GRS99] and CACTUS [GGR99] are representative techniques for clustering trans-
actional databases. In ROCK, Guha et al. propose a novel concept of links to measure the
similarity/proximity between pairs of objects. The authors overcome the issue of distance
by simply not using distances but links to merge clusters. Intuitively, a pair of transactions
in a cluster might have few items in common but are linked by a number of transactions in
the cluster that have substantial items in common with the two transactions. Hence, the
authors de�ne the number of links between two objects as the number of common neighbors
between the two objects. An object's neighbor is an object that is considerably similar to
it, i.e., sim(pi, pj) ≥ θ where θ is a prede�ned threshold. In fact, the function sim could be
a well-known distance metric for numerical values, e.g., L1 or L2, or non-metric distances,
e.g., the Jaccard coe�cient [Jac01]3. The authors rede�ne the objective function thanks
to the concept of links and propose a hierarchical clustering approach.

CACTUS [GGR99]

CACTUS [GGR99] is a combinatorial search-based algorithm where the central idea is
that summary information built from the dataset is su�cient for discovering well-de�ned
clusters. In CACTUS, the authors assume that attribute domains are compact, i.e., do
not contain more that thousands of values. Clustering is then operated in three phases: (i)
summarization, (ii) clustering and (iii) validation. The summarization phase is responsible
for computing summary information from the dataset, i.e., counts of inter-attribute and
intra-attribute strongly connected pairs. This summary information is then used in the
clustering phase to generate a set of candidate clusters. Finally, the validation phase
produces the actual set of clusters by verifying the support of candidate clusters against a
user-speci�ed threshold.

COOLCAT [BLC02]

COOLCAT [BLC02] is an entropy-based technique for clustering data de�ned on catego-
rical attributes. The authors de�ne the objective function to optimize thanks to the notion
of entropy. Given X a random variable, S(X) the set of values X can take, and p(x) the
probability function of X, the entropy E(X) is de�ned as follows:

E(X) = −
∑

x∈S(X)

p(x) log(p(x))

Hence, the entropy of a multivariate vector x = {X1, . . . , Xn} is de�ned as follows:

E(x) = −
∑

x1∈S(X1)

. . .
∑

xn∈S(Xn)

p(x1, . . . , xn) log(p(x1, . . . , xn))

Therefore, for a set D of N points p1, . . . , pn, the authors de�ne the objective function,
i.e., the total entropy of a clustering C = {C1, . . . , Ck}, as follows:

3The Jaccard index of two transactions T1 and T2 is de�ned as: J(T1, T2) = |T1∩T2|
|T1∪T2|
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E(C) =

n∑
k=1

|P (Ck)|
|D|

(E(P (Ck))) where P (Ck) is the set of points in Ck (3.2)

The idea in COOLCAT is to incrementally build clusters by reducing the entropy of the
system (hence, cooling down the system). COOLCAT proceeds in two phases: (i) an
initialization step followed by (ii) an incremental step. The authors build an initial set of
clusters thanks to a bootstrapping algorithm that �nds the k most dissimilar data points
from a sample set. Then, each remaining data point is incrementally clustered in a suitable
cluster thanks to a greedy process that minimizes the total entropy of the system at each
iteration. The fact this algorithm is incremental is made possible thanks to Equation 3.2
as it only needs to evaluate the change of entropy when attributing a new data point pi to
cluster Cj . Since this approach highly depends on the order of the data points selected,
the authors propose to mitigate this dependency by removing the worst �tting points at
de�ned times. These points are then clustered again.

LIMBO [ATMS04]

LIMBO [ATMS04] is a scalable hierarchical categorical clustering algorithm that builds
on top of the Information Bottleneck (IB) framework [TPB99] for quantifying the relevant
information preserved when clustering. The IB framework is a technique for �nding the
best trade o� between accuracy and complexity when clustering a random variableX, given
a joint probability distribution between X and an observed relevant variable Y . Hence,
the central idea in LIMBO is that tuples in the dataset and clusters need not be kept in-
memory, but just su�cient statistics to describe them are necessary. LIMBO operates in
three phases: (i) build statistics summaries, (ii) build clusters from the statistics gathered
and (iii) associate tuples to the clusters built.

First, the authors summarize a cluster of tuples in a Distributional Cluster Feature
(DCF ). The DCF of a cluster c, denoted DCF (c) is the couple (p(c), p(A|c)) where
p(c) is the probability of cluster c and p(A|c) the conditional probability distribution of
attribute values given cluster c. Hence, the authors build a DCF tree by considering tuples
one by one to grow the DCF tree. Then, LIMBO employs an Agglomerative Information
Bottleneck algorithm to cluster the DCF s at the leaves level to produce a clustering of
k DCF s. These k DCF s serve as representatives of the clusters. LIMBO's �nal phase
associates the tuples from the dataset to the corresponding clusters. Interestingly, the
summary/clustering produced by LIMBO partially complies to De�nition 1.7 of a time
sequence summary. Even though LIMBO does not consider the temporal aspect of data,
in its second phase the algorithm produces representatives for the cluster, i.e., the intent
of the summary, and in the third phase produces the extent of the summary.

CLICKS [ZP05]

CLICKS [ZP05] is a clustering algorithm based on graph/hyper graph partitioning. CLI-
CKS models the dataset as a graph where the vertices (attribute values) form k disjoint
set. Vertices are connected by an edge if the two corresponding attribute values occur in
a same instance. The authors match the categorical clustering problem to the problem
of enumerating maximal k-partite cliques in the k-partite graph. Hence, the clustering
problem is solved by enumerating all maximal k-partite cliques in the graph, then forming
the �nal clusters by verifying the support of the candidate cliques within the original
dataset.
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7.2 Semantic distances

Semantic distance is a metaphor for measuring the degree of relatedness between con-
cepts. Supposing concepts are the units of knowledge, then semantic distance is a tool
for organizing that knowledge. Semantic distances are useful in applications as various
as sense disambiguation, text summarization, text annotation, topic tracking, information
extraction, information retrieval, indexing or automatic word correction. The problem of
formalizing and quantifying the intuitive notion of similarity takes its roots in philosophy,
psychology, cognitive science, arti�cial intelligence, etc.. For instance, we have already
discussed in Chapter 2 how humans organize their knowledge in their memory.

Many researchers actually distinguish two kinds of semantic distances: semantic sim-
ilarity and semantic relatedness. Semantic similarity evaluates the degree to which two
concepts resemble each other, while semantic relatedness encompasses a wider variety of
relationships. The di�erence between semantic similarity and semantic relatedness can be
very subtle and is usually better de�ned through examples. A commonly used example
is given by Resnik in [Res95]: For instance, the concepts car and gasoline appear more
related than car and bicycle since car uses gasoline; However, car and bicycle are certainly
more similar since they share common features (wheels, brakes, etc.).

Since our work makes use of Background Knowledge acquired in the form of taxonomies,
i.e., IS-A relations only, we focus this discussion on semantic similarity techniques. There-
fore, we present in this section most prevailing measures proposed in the literature. A more
detailed study on this literature can be found in Budanitsky's survey [Bud99] and evalu-
ation work [BH01]. These measures can be separated into two categories: (i) taxonomy-
based relatedness and similarity measures and (ii) corpus-based measures of distributional
similarity.

7.2.1 Taxonomy-based measures

Rada et al.'s Simple Edge Counting distance [RMBB89]

Rada et al. [RMBB89] propose to evaluate the similarity between two concepts in terms of
the path that link the two concepts in a taxonomy. The degree of similarity is determined
on the basis of this path and generally corresponds inversely to the length of the path.
Approaches based on this path are also known as edge-counting approaches.

The authors o�er a simple representation of the distance between two concepts c1 and
c2 in a taxonomy H. They de�ne this distance as the number of edges in H between c1

and c2 in H. This measure is very intuitive but its quality highly depends on the quality
of the taxonomy employed. The MSCS cost employed in the GRASS algorithm is a direct
application of Rada et al.'s Simple Edge Counting distance.

Wu and Palmer [WP94]

Wu and Palmer investigate in [WP94] the semantic representation of verbs in computer
systems and its impact on lexical selection problems in Machine Translation (MT). In
machine translation research, the inherent di�culty of verb representation lies in the fact
verb meanings are involved in several conceptual domains. For instance, the verb hit
identi�es a complex event that involves the domains force, motion and contact. For the
purpose of identifying the sense/meaning of a verb V , the authors project V into simpler
concepts in which V is involved. Then, they propose an edge-counting based similarity
and distance measure, denoted simWP and distWP , respectively, for concepts in these
domains. Given two concepts c1 and c2 within one single conceptual domain A organized
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into taxonomy HA, Wu and Palmer's similarity metric simWP and distance distWP are
de�ned as follows:

simWP (c1, c2) =
2×N3

N1 +N2 + 2×N3
(3.3)

distWP (c1, c2) = 1− simWP (c1, c2) =
N1 +N2

N1 +N2 + 2×N3
(3.4)

where N3 is the distance (in terms of number of edges) from the root of the hierarchy
to the most speci�c common subsumer of c1 and c2, denoted mscs(c1, c2) (in our termi-
nology), N1 the distance between c1 to mscs(c1, c2) and N2 the distance between c2 and
mscs(c1, c2). We can illustrate this semantic measure with our topic domain taxonomy
given in Figure 3.3. We compute the similarity measure between concepts �Sequential pat-
terns� and �Datamining�, and between concepts �Query rewriting� and �Join query�. The
following results show the clear similarity between the two �rst concepts:

simWP (�Sequential patterns�, �Datamining�) = 2×N3
N1+N2+2×N3

simWP (�Sequential patterns�, �Datamining�) = 2×1
2+0+2×1

simWP (�Sequential patterns�, �Datamining�) = 0.5

simWP (�Query rewriting�, �Join query�) = 2×1
1+2+2×1

simWP (�Query rewriting�, �Join query�) = 0.4
Since verbs could be involved in multiple conceptual domains, the authors extend their

similarity measure on one single domain to multiple domains. Given two verbs V1 and V2,
this similarity measure is de�ned as a summation of weighted similarities between pairs of
simpler concepts in each of the domains the two verbs V1 and V2 are projected onto:

WordSim(V1, V2) =
∑
i

Wi × simWP (ci,1, ci,2) (3.5)

This similarity measure is most interesting since it considers both the commonality
and the di�erences between concepts c1 and c2; It actually re�nes Rada et al.'s simple
edge counting measure. Also, one should note that verbs are not the only terms that can
be involved in multiple conceptual domains. We already mentioned in Section 6.1.2 in
Chapter 2 the problem of homonymy and polysemy when preprocessing Reuters's �nancial
news archives into time sequences of �nancial news events. The generalized similarity mea-
sure given in Equation 3.5 presents an alternative for addressing homonymy and polysemy
issues.

Leacock and Chodorow [LC98]

Leacock and Chodorow address in [LC98] the problem of polysemous word sense iden-
ti�cation using local context and WordNet similarity. Local context consists of semantic
and syntactic cues in the immediate vicinity of a polysemous word. The authors augment
local context classi�ers with semantic information obtained by �nding concepts similar
to concepts already known by the classi�ers. The authors's approach exclusively relies on
WordNet to compute the similarity between two concepts c1 and c2. First, the length of the
shortest path between the di�erent senses of the two concepts in WordNet is determined.
Then the length of the path found is scaled as follows:

simLC(c1, c2) = max(− log(
Np

2×D
)) (3.6)

where Np is the number of nodes in the path p between concepts c1 and c2 and D is
the maximum depth of the taxonomy. We can illustrate this semantic measure with our
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topic domain taxonomy given in Figure 3.3. We compute the similarity measure between
concepts �Sequential patterns� and �Datamining�, and between concepts �Sequential pat-
terns� and �Join query�. The following results show the clear similarity between the two
�rst concepts:

simLC(�Sequential patterns�, �Datamining�) = − log(path(Sequential patterns,Datamining)
2∗3 )

simLC(�Sequential patterns�, �Datamining�) = − log(1
6)

simLC(�Sequential patterns�, �Datamining�) = 0.77

simLC(�Sequential patterns�, �Join query�) = − log(path(Sequential patterns,Join query)
2∗3 )

simLC(�Sequential patterns�, �Join query�) = − log(5
6)

simLC(�Sequential patterns�, �Join query�) = 0.07

7.2.2 Corpus-based measures

Philip Resnik [Res95]

Philip Resnik introduced in [Res95] the �rst similarity measure to combine an edge-
counting methodology with corpus statistics. The author's intuition is that �one criterion
of similarity between two concepts is the extent to which they share information in com-
mon�. This information in common is actually the Most Speci�c Common Subsumer of
the two concepts. Hence, Resnik determines the similarity between two concepts as the
information content of the shared subsumers. The higher the information content, the
more the concepts share in common and therefore they are more similar.

First, Resnik de�nes the probability of encountering an instance of a concept c denoted
P (c). For this purpose, the author relies on frequency information from text corpus.
He calculates the number of occurrences of concept c and all occurrences of all concepts
subsumed by c. The total number frequency of concept c is denoted freq(c) and de�ned
as follows:

freq(c) =
∑

i∈Word(c)

count(i) (3.7)

where Word(c) is the set of words that corresponds to all concepts subsumed by c.
Then, given a text corpus of size N , the probability of encountering an instance of

concept c is de�ned as follows:

P (c) =
freq(c)

N
(3.8)

Putting the pieces together, Resnik's similarity measure between two concepts c1 and c2

is given by:

simR(c1, c2) = maxc∈S(c1,c2)[− log(P (c))] (3.9)

where S(c1, c2) is the set of concepts that subsume both c1 and c2.

Jiang and Conrath [JC97]

Similar to Resnik's idea, Jiang and Conrath propose in [JC97] a hybrid approach that
relies on information from taxonomies and from text corpus. The authors compensate the
unreliability of edge counting by weighting each edge with a probability based on corpus
statistics. In contrast with Resnik's approach who uses the information content of the
MSCS node, the authors use information theory to weight each edge in the path that links
two concepts c1 and c2.
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The authors show that the semantic distance between a parent concept and its child
concept is the di�erence of their information content. The underlying rationale is that the
di�erence in information content re�ects the information required to distinguish a concept
from its siblings. Therefore, Jiang and Conrath measure the semantic distance between
two concepts by summing the individual semantic distance between nodes in the path that
links concepts c1 and c2. This distance is de�ned as follows:

distJC(c1, c2) = IC(c− 1) + IC(c2)− 2IC(mscs(c1, c2))

distJC(c1, c2) = 2× log(P (mscs(c1, c2)))− (log(P (c1)) + log(P (c2))) (3.10)

Lin [Lin98]

Lin [Lin98] proposes an information-theoretic approach to de�ne a semantic similarity
measure. The author actually proves that �the similarity between A and B is measured
by the ratio between the amount of information needed to state their commonality and the
information needed to describe what they are�. This theorem translates as follows:

sim(A,B) =
log(P (common(A,B)))

log(P (description(A,B)))
(3.11)

This theorem is applicable to numerous domains and in particular for computing the se-
mantic similarity in a taxonomy. The author de�nes the semantic similarity between two
concepts c1 and c2 as:

simL(c1, c2) =
2× log(P (mscs(c1, c2)))

log(P (c1)) + log(P (c2))
(3.12)

where the notations P (c) and mscs(c1, c2) are similar to Resnik's notations. One should
notice that Wu and Palmer's similarity measure [WP94], denoted simWP , can be under-
stood as a special case of simL. In fact, if P (C|C ′) is the same for all pairs of concepts
such that there is an IS-A link from C to C ′ in the taxonomy, simWP coincides with simL.

LIMBO [ATMS04]

Andritsos et al. propose in [ATMS04] a novel application of LIMBO to quantifying the
distance between attribute values of a same attribute. The authors' intuition is that the
similarity between two attribute values from a same attribute domain could be evaluated
thanks to their context. For instance, in a movie database, given relation Movie(Director,
Actor, Genre), it is not apparent how to evaluate the similarity of attribute values �Scorses�
and �Coppola� from the Director attribute domain since each movie only has one direc-
tor. Intuitively, these values are similar if the context in which they appear is similar.
The authors de�ne the context as the distribution these values induce on the remaining
attributes.

Formally, suppose A' is the attribute of interest, e.g., Director, and A' the domain of
A', i.e., the set of all values that can be taken by A'. The authors denote by Ã = A \
A' the set of attribute values in the remaining attributes, e.g., if A'=�Director� then Ã
contains all attribute values of �Actor� and �Genre�. The random variables that range over
A' and Ã are denoted A′ and Ã, respectively. Then, p(Ã|v) denotes the distribution that
value v ∈ A' induces on the values in Ã. For some a ∈ Ã, p(a|v) is the fraction of the
tuples in T that contain v and a. Also, for some v ∈ A', p(v) is the fraction of tuples
in T that contain the value v. In total, given two attribute values v1 and v2 in A', the
authors de�ne the semantic distance between v1 and v2 as the information loss δI(v1, v2)
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incurred about variable Ã if v1 and v2 are merged. This information loss is equivalent to
the increase of uncertainty of predicting values in Ã when v1 and v2 are replaced by v1∨v2.

The LIMBO algorithm can be applied to the joint distribution of random variables A'
and Ã for clustering the values of attribute A'. Since v1 and v2 never appear together in
the database (e.g., these are the directors �Scorses� and �Coppola�), we can produce a new
value v1 ∨ v2:

p(v1 ∨ v2) = p(v1) + p(v2) and

p(a|v1 ∨ v2) =
p(v1)

p(v1 ∨ v2)
p(a|v1) +

p(v2)

p(v1 ∨ v2)
p(a|v2) (3.13)

This approach seems interesting since the authors rely only on the data content and do
not require additional domain taxonomies to be available. However, it is di�cult to assess
the impact of the approach proposed since the authors do not report any experiments on
their LIMBO-based measure w.r.t. to other taxonomy-based or corpus-based (or hybrid)
measures.

DILKA [IM09]

DILKA [IM09] is another context-based technique for Distance Learning of Categorical
Attributes. The authors also back the idea that the semantic similarity between two
attribute values v1 and v2 can be evaluated through the frequency of attribute values vj
that are employed in association with v1 and v2. Formally, let S1 be the set of examples,
i.e., data points, having value v1 for attribute Ai and let S2 be the set of examples having
value v2 for the same attribute Ai. The authors rely on the frequency with which values in
a certain set of attributes Aj , the context of Ai, occur in S1 and S2. Hence, the distance
between two values v1 and v2 of attribute Ai is evaluated as the di�erence of the frequency
with which values in Aj occur in S1 and S2.

The key operations in DILKA are:

• Select a relevant subset of attributes Aj as the context for a given attribute Ai.

• Compute the distance between values in Ai using its context Aj

For the purpose of selecting a relevant subset of attributes Aj as the context for a
given attribute Ai, the authors leverage ideas from the well known data mining problem of
feature selection. In particular, the authors use the Symmetric Uncertainty [YL03] (SU)
correlation measure de�ned to quantify the mutual dependence of two variables X and Y .
This measure consists in some mutual information that measures how much knowledge on
one of the two variables reduces uncertainty on the other variable. This mutual information
is then normalized by the entropy of each variable, i.e., H(X) and H(Y ), respectively:

SU(X,Y ) = 2× IG(X|Y )

H(X) +H(Y )
(3.14)

where IG represents the Information Gain. The authors extend this correlation measure
so that the context of an attribute Ai can be expressed as a set of attributes Aj , i.e., a set
of variables.

Equipped with the context for a given attribute Ai, the authors then compute the
distance between every pair of values in Ai. The conditional probability of the value v of
attribute Ai given the value yk of the context attribute Aj,k is denoted P (v|yk). Thus, the
distance between two values v1 and v2 is computed by the formula:

distIM (v1, v2) =

√ ∑
Y ∈context(Ai)

∑
yk∈Y

(P (v1|yk)− P (v2|yk))2 (3.15)
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Similarly to LIMBO, DILKA is of utmost interest since it relies only on the data
content and does not require additional domain taxonomies. The authors show through
their experiments that DILKA allows to produce high level quality clusters when coupled
to existing hierarchical clustering algorithms. For instance, the Ward hierarchical clustering
algorithm [War63], denoted HCL, is used in their experiments. The authors show that the
accuracy, expressed as a classi�cation error w.r.t. to a reference classi�cation, achieved
by DILKA associated to HCL outperforms the accuracy achieved by ROCK or LIMBO
associated to HCL. Also, the computational time when operating HCL with DILKA

outperforms the computation time when operating HCL with LIMBO by almost 2 orders
of magnitude.

From time sequence summarization view point, DILKA is an interesting approach that
could be leveraged to compute the similarity between events in a time sequence of events.
Taxonomies de�ned for the descriptive domains from which event descriptors are taken
could be used solely for concept formation. However, using DILKA alone is not su�cient
and some form of integration with event rearrangement should be considered for handling
the temporal dimension of events.

7.3 Time decay models

Research on time decay models has been widely in�uenced and boosted by research on data
streams processing. Indeed, Data Streams Management System need to handle streams of
data that arrive at very high rates and that require immediate processing. Much research
work has focused on answering queries on these sources of data under some temporal con-
ditions. For instance, sliding windows [CC02,CF02,MWA+03,CJS03,MFHH03,HAF+03,
Gol02] have been widely used to address queries. Sliding windows have been very pop-
ular due to the fact they capture with very high precision the most recent data in the
stream and since in some applications, e.g., networking or �nance, it is assumed that the
information of interest usually lies in the most recent data.

In [CSSX09], Cormode et al. give a formal de�nition of a time decay function for a
data stream, but this de�nition broadly applies to any form of sequence data. The authors
consider a stream of input items (ti, vi) which describes item arrivals. The ith item is
associated to a timestamp ti and a value vi; In the case of time sequences of events, vi
would correspond to the set of descriptors associated to the ith event. Hence, the authors
de�ne a time decay function w(i, t) as a function that takes some information about the
ith item and returns a weight for this item that satisfy the following properties:

• w(i, t) = 1 when ti = t and 0 ≤ w(i, t) ≤ 1 for all t ≥ ti

• w is monotone non-increasing as time increases: t′ ≥ t⇒ w(i, t′) ≤ w(i, t)

The most well known and commonly used time decay function is the exponential time
decay function. This decay function is de�ned as follows: w(t) = a0 × exp−λ×t with a0 an
initial quantity or weight at time t = 0 and λ > 0 the decay constant. This decay function
is borrowed from natural science phenomenons. It has been used to describe natural sci-
ence phenomenons such as the radioactivity decay, atmospheric pressure, electromagnetic
radiation etc.. However, in some cases, an exponential function might render the data
obsolete too fast. In such situations slower decay functions might be more adapted [CS06].
Polynomial time decay functions are more commonly used in Physics applications such
as acoustic energy propagation. A polynomial time decay function's most general form
is w(t) =

∑
i∈θi ai × t

i where θi is a set of values. However the most commonly used
polynomial functions are monomials, i.e., w(t) = tθ with θ > 0.

Cormode et al. distinguish in [CSSX09] two classes of decay functions, namely backward
decay functions and forward decay functions. In the class of backward decay functions,
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the weight of an item in the sequence is written as a function of its age, i.e., the weight
of the item is measured back from the current time and it is constantly changing since
time is constantly evolving. On the other hand, in the class of forward decay functions,
the decay or weight of an items is computed as an amount of the time between the arrival
of the item and a �xed point L. L is called a landmark. Therefore, the decay of the item
is obtained by looking forward from the landmark L. The authors show that this model
captures well known time decay models, such as exponential decay, polynomial decay or
landmark windows (equivalent to backward sliding windows model). The authors provide
empirical evidence that their novel model is e�ective and can be executed in streaming
environments without the need to extend the underlying system.

An original piece of work is Harrison et al.'s study on progress bars [HAB07]. The
authors explore the impact of progress bar behaviors on user perception of process duration.
We believe this work is related to ours since it highlights what are tolerable or acceptable
evolutions of time from a user point of view. Most time decay functions already presented
aim at modeling with �delity natural phenomenons. However, from summarization view
point, we believe the user's perception is as important. In other words, information should
be gathered and presented to the user at a temporal granularity that suits his preference
and not necessarily only at the granularity that �ts the data.

The authors observe the fact that progress bar behavior is often modeled as a linear
function to the load of work achieved while human perception of the passage of time is
not linear [Hog78,All79,Blo90]. The authors de�ned nine di�erent progress functions, e.g.,
linear, slow wavy, fast wavy, power or inverse power, and listed 22 individuals' preferences
scores. Interestingly, this study shows that users are ready to tolerate negative behaviors,
e.g., stalls and inconsistent progress, at the beginning of a process while they have strong
aversion to negative behaviors at the end of a process. When designing time decay func-
tions, we believe these results should be considered to properly re�ne the decay function
such that the function models the natural phenomenon while taking into account the user's
perception of time.

8 Chapter summary

Massive collections of time sequences of events appear in a number of domains such as
medicine, the WWW, business or �nance. A concise representation of these collections
is desirable to support chronology-dependent applications. Time sequence summarization
is a summarization concept introduced to transform time sequences of events into a more
concise but informative form, using the data's content and temporal information. However,
the TSaR approach proposed in Chapter 2 has numerous non-trivial parameters to tune.

In this chapter, we have presented time sequence summarization under the angle of a
novel conceptual clustering task. The problem of building a time sequence summary from
a time sequence of events has been introduced as the problem of building an optimal clus-
tering of events in the sequence. The novelty in de�ning time sequence summarization as a
conceptual clustering problem lies in the function used to evaluate how similar two events
or clusters on the timeline are. The speci�city of this function is its dual consideration
of the content of events and their proximity of the timeline. We introduced a simple but
e�ective cost function that consists of two components: (i) a component that evaluates the
cost for generalizing events in a cluster into one single and common representation, also
called the Most Speci�c Common Subsumer (MSCS), and (ii) a component that evaluates
the cost for virtually rearranging clusters on the timeline so they are considered close and
eligible for clustering. We rely on this cost function and formalize the novel problem of
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building optimal time sequence summaries. Hence, time sequence summarization becomes
a parameter-free approach.

We propose three algorithms to solve this problem: (i) a basic exhaustive approach
called N-TSS, (ii) a greedy hierarchical ascending algorithm called G-BUSS that gener-
ates a local optimal summary and (iii) a greedy parallel random-seeded algorithm called
GRASS that computes summaries of quality equivalent to G-BUSS's. Our preliminary
experiments on N-TSS show that N-TSS has prohibitive performances and hence, could
not be used as a baseline for evaluation.

G-BUSS is a hierarchical ascending clustering algorithm that has the particularity
of using our cost function. Events are thus iteratively clustered thanks to their content
and their time of occurrence. We showed that G-BUSS has quadratic computational
complexity and proposed a pruning technique that exploits the temporal component of our
cost function to reduce in practice G-BUSS's computational time. Our experiments show
that this improvement allows to reduce G-BUSS's computational time by approximatively
one order of magnitude. This approach is therefore chosen as baseline for evaluation.

GRASS is a random-seeded parallel algorithm that builds on top of the pruning tech-
nique introduced for G-BUSS and further reduces in practice G-BUSS's computational
time. At each iteration GRASS explores the search space at multiple locations on the
timeline to improve the quality of clusters produced. Our extensive set of experiments on
Reuters's 2003 �nancial news archives showed that GRASS improves G-BUSS's compu-
tational time by two to three orders of magnitude while producing clusters of quality only
worse than G-BUSS's by 1% to 3%.

In Section 7.3, we have discussed works related to time decay functions. An interesting
direction for future work is to study how to decay the data w.r.t. to the time decay. Indeed,
the purpose of a time decay function is to compute a weight for each data point on the
timeline. However, the weight attributed to a data point does not state how the content of
the data should be degraded or abstracted. Hence, an interesting perspective is to explore
how the content of a data point should be abstracted w.r.t. to the weight it is attributed.

Also, so far, the time sequence summarization problem has been de�ned for summariz-
ing historical archives in an o�ine mode. However, some applications in networking, e.g.,
intrusion detection or �nance can require real-time analysis of the data. Addressing time
sequence summarization in an online mode is an even more challenging task. As presented
earlier, addressing streaming data comes with speci�c limitations: Since data streams are
assumed to be in�nite and generated at high rates, summaries should be built in con-
strained memory and in one single pass over the data. Therefore, an interesting research
orientation is to study how (locally) optimal time sequence summaries can be built in an
incremental way and how the theoretical computational complexity of the algorithm could
be reduced. One should note that addressing this challenge also requires to handle the way
the content of each data point on the timeline should be degraded or abstracted.
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Chapter 4

Mining higher order patterns:

Application to Reuters's archives

1 Introduction

Domains such as medicine, the WWW, business or �nance generate and store on a daily
basis massive amounts of data. This data represents large collections of time sequences
of events where events are associated to some primitive information and a time of occur-
rence. For instance, Reuters has a team of several thousand of journalists that produce
series of news articles that report events occurring around the world. The information
produced and archived is said to be primitive or raw since it has not been processed for
any analysis purpose. This primary data has rich contents and often contains a mix of
unstructured information, e.g., free text, and structured information, e.g., descriptors de-
�ned on categorical and numerical domains. These archives represent valuable sources of
insight for analysts to browse, analyze and discover golden nuggets of knowledge. For in-
stance, biologists could discover disease risk factors by analyzing patient history [WRZ05],
traders investigate �nancial data for understanding global trends or anticipating market
moves [ZZ04], web content producers and marketing people are interested in pro�ling client
behaviors [SCDT00].

Recently, Roddick et al. [RSLC08] formally introduced the Higher Order Mining (HOM)
paradigm. The authors observed that in many environments, e.g., streaming environments,
data analysis computation speed hits limits set by hardware and �rmware technologies.
Also, in some cases, the primary data is not available or available for analysis for a limited
time period. Ultimately, data mining methods need to operate upon a derived form of the
data. Such derived forms of the data include for instance: Results from previous mining
activities, results of aggregates or summaries. Therefore, the HOM paradigm encompasses
all data mining methods that operate on such forms of the data.

In this context, Sequential Pattern Mining (SPM) is a data mining paradigm introduced
by Agrawal and Srikant in [AS95] that is of utmost interest. Indeed, the development of
code bar technologies in the 90's and the increasing mass of transaction information gen-
erated by these technologies has motivated Agrawal and Srikant to propose a new data
mining paradigm to identify recurrent customer patterns. Hence, the original purpose of
sequential pattern mining is to analyze customer sales transactions to identify frequent pur-
chase behaviors: The principle of SPM is to identify, in customer sales transactions sets (or
subsets) of items, also called itemsets, that are often purchased together. This data mining
paradigm has since been known as themarket basket analysis paradigm. SPM has attracted
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much attention during the past 15 years (these surveys [ZB03,TPBM05,HPY05] give an
interesting insight on the domain). The increasing volume of data to address and the in-
creasing size of knowledge sets uncovered has motivated researchers to de�ne more compact
patterns, also known as closed sequential patterns [YHA03,TYH03,WH04,SBI06,BS07].

Agrawal and Srikant extended and generalized in [SA96] the sequential pattern min-
ing paradigm with the concept of Generalized Sequential Pattern Mining (GSPM). The
authors augmented the paradigm by introducing semantic and temporal relaxations, and
temporal constraints. Hence, GSPM uncovers from collections of customer transactions
sequential patterns where itemsets are expressed at di�erent levels of abstraction. GSPM
achieves this e�ect by means of (i) a semantic relaxation mechanism and (ii) a temporal
relaxation mechanism. The semantic relaxation mechanism is responsible for expressing
items in itemsets at di�erent levels of granularity thanks to the use of taxonomies, i.e.,
IS-A hierarchies, that are assumed to be available to the user. In practice, itemsets are
augmented with each item's antecedents taken from the taxonomies. This semantic relax-
ation allows to discover sequential patterns where items are expressed at di�erent levels of
taxonomy.

Temporal relaxation allows SPM algorithms to discover patterns that could not be dis-
covered under the original de�nition of SPM. Temporal relaxation is expressed as a sliding
window w within which a set of transaction can contribute to the support of a candidate
pattern p. In other words, in the original de�nition of SPM, a pattern is supported by
a sequence of transactions if each itemset in the pattern is supported by at least exactly
one transaction in the sequence. Under the assumption of temporal relaxation, an itemset
could be supported by the union of a set of at most w contiguous transactions.

Therefore, semantic relaxation allows GSPM algorithms to discover knowledge at dif-
ferent levels of abstraction otherwise hidden by the speci�city of the data while temporal
relaxation allows to uncover knowledge that can not be found due to the rigid de�nition
of events in traditional SPM. For these reasons, GSPM can easily be understood as a form
of higher order mining.

We presented in Chapter 2 the TSaR summarization approach whose purpose is to
build summaries to support chronology-dependent applications such as Sequential Pattern
Mining (SPM). TSaR is designed as a preprocessing step to allow process-intensive appli-
cations such as SPM to discover knowledge at di�erent levels of representation. Thanks to
the use of taxonomies, input event descriptors are expressed at di�erent levels of taxonomy.
From this prospect, when SPM is operated on TSaR summaries, patterns extracted are
intuitively comparable to those extracted by GSPM techniques. Hence, mining sequential
patterns in TSaR summaries can also be understood as a form of higher order mining.
In other words, TSaR builds a support structure that enables higher order mining and
allows the discovery of Higher Order Knowledge (HOK) in a way similar to GSPM. From
these observations, we propose in this chapter to study how an o�-the-shelf SPM algorithm
could exploit in practice summaries produced by TSaR to extract higher order knowledge.
The contributions discussed in this chapter are the following.

Contributions

First, we introduce the notion of Higher Order Pattern (HOP). We present a higher order
pattern as a form of knowledge extracted from time sequence summaries using any conven-
tional SPM technique. We analytically characterize higher order patterns extracted from
TSaR summaries w.r.t. sequential patterns discovered from original time sequences.
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Second, we propose a methodology called Exploratory Mining that uses higher order
patterns discovered on TSaR summaries to uncover more speci�c patterns, i.e., patterns
having even lower support. Exploratory mining is a drill-down process that relies on
two mechanisms: Pattern Events Recombination (PER) and Pattern Events Specialization
(PES). We detail these two mechanisms and discuss how they contribute to the task for
discovering more re�ned patterns.

Third, we evaluate and validate our contributions through an extensive set of exper-
iments on Reuters's �nancial news archives. The dataset chosen is a subset of Reuters
dataset preprocessed in Chapter 2. The overall dataset represents 4600 time sequences
and totals approximatively 100,000 news events. We implemented a conventional but ef-
fective SPM algorithm, namely Pre�xSpan [PHMA+01], and performed a large series of
mining experiments. The preliminary results obtained support our claims that a support
structure is necessary for mining applications in domains such as �nance. We show that
(i) mining computational time explodes at low support and that (ii) the result set output
might not be humanly exploitable. Then, we build TSaR summaries at di�erent levels of
content and temporal accuracy and mine the summaries built. We show that mining com-
pact summaries can allow the discovery of trends that have very low support (≈ 0.01%)
while improving computational time by one order of magnitude. More importantly, we
perform exploratory mining on the patterns discovered and achieve the goal of �nding
even more speci�c knowledge, i.e., patterns having even lower support.

Finally, we present a comprehensive Service-based TEmporAl Data analysis frame-
work called STEAD for discovering knowledge in textual contents. The STEAD analysis
framework is a set of online tools designed to provide analysts with a comprehensive en-
vironment to supervise and interactively perform higher order mining. One central com-
ponent of the system is the summarization service that is built on top of time sequence
summarization, e.g., TSaR. We will show how this framework is integrated in an even
more ambitious project for e�cient management of information resources over Ad-Hoc
DAta Grids Environments, i.e., the ADAGE project.

Organization of the chapter

The remaining of the chapter is organized as follows. We extend in Section 2 the illus-
trative example used throughout this thesis. We add two more time sequences to the
example. Section 3 recalls the basic principles of Sequential Pattern Mining and gives
the de�nitions and notations that will be useful for characterizing knowledge discovered
in summaries. Section 4 introduces the concept of Higher Order Patterns and character-
izes the relationships that exist between higher order patterns discovered in summaries
and sequential patterns that can be discovered in original sequences. The mechanisms of
Exploratory mining are detailed in Section 5 and we discuss our experimental study in
Section 6. Section 7 presents the STEAD framework and ADAGE project, and positions
time sequence summarization in those environments. Related work is discussed in Section 8
and we conclude this chapter in Section 9.

2 Illustrative example

To illustrate the ideas exposed in this chapter, we extend our example already introduced
in previous chapters. Example 4.1 presents three time sequences extracted from confer-
ence proceedings. The authors N. Koudas, N. Mamoulis and J. Pei are associated to a
time sequence of events where each event is one publication timestamped by its date of
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presentation. For simplicity, we make the same assumptions as previously, i.e., the set of
descriptors used to describe an event is taken from one single descriptive domain, namely,
the paper's topic. Without loss of generality, this discussion is valid for any number of de-
scriptive domains. Again, we purposely choose this example unrelated to the application
domain of our experiments in Section 6 to illustrate all the concepts introduced and show
the genericity of our approach.

Example 4.1
Time sequences of events extracted from conference proceedings. Descriptors are taken
from the topic descriptive domain and represent the di�erent topics covered by conference
papers for the authors: N. Koudas, N. Mamoulis and J. Pei. These sequences are given in
Table 4.1.

Author Event Descriptors Time
x1,1 ={Datastreams, Aggregation} JUN05
x1,2 ={Datastreams, Top-k query} AUG06

N. Koudas x1,3 ={Top-k query} AUG06
x1,4 ={Top-k query} SEP06
x1,5 ={Join query, Selection query} SEP06
x1,6 ={Clustering} SEP07
x2,1 ={Datastreams, Join query} JUN05
x2,2 ={Summarization} AUG07

N. Mamoulis x2,3 ={Top-k query} SEP07
x2,4 ={Anonymization} SEP07
x2,5 ={Anonymization, Privacy} AUG08
x3,1 ={Skyline query} AUG05
x3,2 ={Datastreams} OCT05

J. Pei x3,3 ={Mining} AUG07
x3,4 ={Top-k query} SEP07
x3,5 ={Privacy} SEP07
x3,6 ={Skyline query} SEP07

Table 4.1: Time sequences of events in conference proceedings

3 Sequential Pattern Mining (SPM)

In this section, we recall the basic principles of SPM and introduce the de�nitions and
notations that will be used throughout the rest of this chapter.

3.1 Principles

Sequential Pattern Mining (SPM) is a data mining paradigm �rst proposed by Agrawal
and Srikant [AS95,SA96]. The original purpose of sequential pattern mining is to identify
customer behaviors thanks to the analysis of customer sales transactions. It is also known
as the market basket analysis paradigm. Since its introduction in the data mining land-
scape, SPM has been very popular in any various domains including web usage mining,
pattern discovery in protein sequences or mining XML query access patterns for caching
and has attracted much more research e�orts. We refer the reader to the following sur-
veys for more indepth details and a larger coverage of the domain [ZB03,TPBM05,HPY05].
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Informally, SPM considers a set of customers, or objects of interest in general, where
each customer is associated to a list of transactions. Each transaction is characterized
by the set of items purchased by the customer and a timestamp that indicates when the
transaction took place. In this chapter, the list of transactions associated to each customer
is called a sequence for short. Hence, a transaction database TDB, in the sense of market
basket data, is a collection of customer sequences. The number of occurrences a transaction
or a series of transactions appear in all customer sequences is called its support. Therefore,
the Sequential Pattern Mining task consists in identifying all series of transactions that
occur for a signi�cant user-de�ned number of sequences. This user-de�ned number is called
the minimum support and series of transactions that achieve the minimum support in the
TDB are called sequential patterns or patterns for short. Note that this minimum support
is often expressed as a fraction of sequences in the TDB. For simplicity, we simply express
the minimum support as an integer value that represents the number of sequences in the
TDB that needs to support a pattern. Two examples of sequential patterns SPM are given
in Example 4.2 and Example 4.3.

Example 4.2
Suppose the TDB is the customer transaction history of a book store. We can �nd frequent
sequential patterns of purchases as follows:

�80% of customers who bought the book Database Management typically bought the book
Data Warehouse and then bought the book Web Information System within a certain period
of time inbetween each transaction.�, or:

�80% of customers who bought the book Intro to Visual C++ typically bought the book
C++ Primer and then bought the books Perl for Dummies and TCL/TK.� Identifying such
purchase patterns in a book store would allow to strategically place books: Book on web
information systems could be placed in the same section as books on data management and
Perl for Dummies could be placed closer to books that relate to C++ programming.

Example 4.3
Suppose the TDB is the history of IT companies' stock prices. An example of sequential
pattern would be:

�Every time Microsoft's stock price drops by 5%, IBM's stock price will also drop by at
least 4% within three days.� The knowledge of such trends would allow analysts to anticipate
market movements and consolidate their investments.

An interesting observation one can make through our informal de�nition of SPM is that
the data model of data used in SPM algorithms completely matches our de�nition of a time
sequence of events as given in De�nition 1.5 in Chapter 1. This observation allows us to use
all the concepts and terminology already introduced and employed for time sequences of
events. Therefore, in the rest of this chapter, we will interchangeably and equivalently use
terminology from both domains. For instance, a pattern in a collection of time sequences
of events is a series of events that is supported by a given number of time sequences. In this
case, the notion of support of an event is reduced to the support of the event's content, i.e.,
its set of descriptors. This speci�city aside, all concepts are interchangeably applicable.

3.2 De�nitions and notations

In previous section, we have laid out the intuition of the SPM paradigm. Here, we will
formally detail the concepts on which SPM relies. These concepts and their formalization
will be useful for characterizing knowledge that can be discovered in time sequences, gen-
eralized time sequences and time sequence summaries. Thus, Sequential Pattern Mining
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relies on the notion of subsequence and the notion of support of a subsequence. We detail
these two concepts in De�nition 4.1 and De�nition 4.2, respectively.

De�nition 4.1 (Subsequence)
Given s a time sequence of events in S(Ω), s = {e1, . . . , en} with ei = (xi, ti), a sequence
ssub, ssub = {e′1, . . . , e′m} with e′j = (x′j , t

′
j), is a subsequence of s and we note ssub v s

i.f.f. there exist m integers i1 < . . . < im such that, for all events e′1, . . . , e
′
m in ssub, exists

events ei1 , . . . , eim in s such that x′1 ⊆ xi1 ∧ . . . ∧ x′m ⊆ xim .

For example, if ssub = {(A, t1), (B, t2), (C, t3)} and if we have ssub v s, then s has the
form s = {∗(A, t′1) ∗ (B, t′2) ∗ (C, t′3)∗}, where ∗ represents any sequence of events, possibly
empty. We also equivalently say that �s contains ssub� or �ssub is contained in s�.

De�nition 4.2 (Support of a subsequence)
Given E a collection of time sequences of events, the support of a subsequence s, denoted
suppE(s), is the number of sequences of E that contain s:

suppE(s) = |{s′ ∈ E, s v s′}|

For instance, in our illustrative example, the series of events p = {({�Top-k query�},
t1), ({�Privacy�}, t2)} is a subsequence of N. Mamoulis's time sequence and of J. Pei's time
sequence. Indeed:

• In the case of N. Mamoulis's time sequence, itemset {�Top-k query�}⊆ x2,3={�Top-k
query�} at t = SEP07 and itemset {�Privacy�}⊆ x2,5={�Anonymization�, �Privacy�}
at t = AUG08.

• In the case of J. Pei's time sequence, itemset {�Top-k query�}⊆ x3,4={�Top-k query�}
at t = SEP07 and itemset {�Privacy�}⊆ x3,5={�Privacy�} at t = SEP07.

Since pattern p is a subsequence of 2 time sequences, the support of p is 2 (or equiva-
lently 2

3 if using the fraction notation in traditional literature on sequential pattern mining).
One should note that a pattern p can only be supported once by a sequence s, i.e., if s
contains multiple occurrences of pattern p, e.g., 3 occurrences, its support will only be 1
(and not 3). Equipped with these de�nitions of a subsequence and its support in a collec-
tion of time sequences, we can de�ne the notion of sequential pattern and the actual task
of sequential pattern mining in De�nition 4.3 and De�nition 4.4, respectively.

De�nition 4.3 (Sequential pattern)
Given E a collection of time sequences of events and given an integer value γ, a sequen-
tial pattern (or pattern for short) p is a subsequence of at least γ sequences in E, i.e.,
suppE(p) ≥ γ.

De�nition 4.4 (Sequential Pattern Mining task)
Given E a collection of time sequences of events and a user-de�ned minimum support γ,
the Sequential Pattern Mining task is the task of extracting the set of all patterns p from
E that achieve the minimum support γ. This set of patterns having minimum support γ in
E is denoted Pγ(E) and de�ned as follows:

Pγ(E) = {p ∈ S(Ω), suppE(p) ≥ γ}

It is worth to mention that the de�nition of a subsequence given in De�nition 4.1 con-
siders a sequence p to be a subsequence of a sequence s, i.e., p v s, when itemsets in p are
contained in larger itemsets in s. In other words, this de�nition of subsequence does not
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consider each itemset in p as a unique item. For instance, suppose candidate pattern p is
de�ned as p = {e′}, where the itemset associated to e′ is {�Top-k query�}. Suppose s is a
sequence where s = {e} and the itemset associated to e is {�Top-k query�, �Datastreams�}.
Under De�nition 4.1, p is a subsequence of s since {�Top-k query�} is contained in {�Top-k
query�, �Datastreams�}.

However, in this work, we limit the de�nition of SPM to mining time sequences where
the itemset associated to each event is considered as a single-item. Under this assumption,
pattern p = {e′} is not a subsequence of s = {e} since itemset {�Top-k query�}6={�Top-k
query�, �Datastreams�}.

The reasons why we consider time sequences of single-items are the following: (i) single-
item time sequences represent one of the most important and popular type of sequence,
e.g., DNA sequences, strings, web click streams etc. [WH04]; (ii) in �nancial news domain,
we believe that the set of descriptors x that describes the content of a piece of news event
e is the atomic unit for understanding event e. In other words, a part of x is not enough to
grasp the entire content of the news. Therefore, we revisit the de�nition of a subsequence as
given in De�nition 4.5. All other de�nitions remain unchanged and completely compatible.

De�nition 4.5 (Subsequence - revisited)
Given s a time sequence of events in S(Ω), s = {e1, . . . , en} with ei = (xi, ti), a sequence
ssub = {e′1, . . . , e′m} with e′j = (x′j , t

′
j), is a subsequence of s and we note ssub v s i.f.f.

there exist m integers i1 < . . . < im such that, for all events e′1, . . . , e
′
m in ssub, there exist

events ei1 , . . . , eim in s such that x′1 = xi1 ∧ . . . ∧ x′m = xim .

For instance, let us consider again our previous example where p is de�ned as the se-
ries of events ({�Top-k query�}, t1) followed by ({�Privacy�}, t2). Under De�nition 4.1,
p's support equals 2 since p is a subsequence of N. Mamoulis's time sequence and of J.
Pei's time sequence. Under de�nition 4.5, p is not a subsequence of N. Mamoulis's time
sequence anymore since itemset {�Privacy�} at t2 in p is not equal to itemset x2,5, i.e.,
{�Privacy�}6={�Anonymization�, �Privacy�}, at t = AUG08. Therefore, the support of
pattern p in our illustrative example drops to 1.

Source Length=1 Length=2
Raw γ=3 {�Top-k query�} N/A
Raw γ=2 {�Top-k query�} N/A

Table 4.2: Example of patterns discovered on raw time sequences under De�nition 4.5

Also, we re�ne the de�nition of a sequential pattern to characterize patterns extracted
by their length. De�nition 4.6 restricts the de�nition of a sequential pattern to patterns
of length k, with k ≥ 1. The restricted de�nition of a sequential pattern to a given length
is necessary for characterizing in details patterns that are extracted from summaries.

De�nition 4.6 (Sequential patterns of length k)
Given E a collection of time sequences of events, the set of sequential patterns of length
k ≥ 1 having minimum support γ ≥ 1 that can be extracted from E is denoted P kγ (E) and
is de�ned as follows:

P kγ (E) = {p ∈ Pγ(E) such that |p| = k}

Note that this de�nition allows to rewrite the de�nition of Pγ(E) as follows:
Pγ(E) =

⋃
k∈[1...m] P

k
γ (E), where m is the maximum length of sequential patterns in Pγ(E).
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Therefore, under De�nition 4.5, applying a traditional SPM algorithm on our illustra-
tive example would give patterns presented in Table 4.2. The sequential patterns extracted
under De�nition 4.5 limits the number of patterns that could be extracted. For instance,
pattern p = {({�Datastreams�}, t1), ({�Top-k query�}, t2)} is a sequential pattern having
support γ = 3 under De�nition 4.1, but it only has support γ = 1 under De�nition 4.5. In
fact, in our example no pattern of length k ≥ 2 could be extracted under De�nition 4.5.

For convenience, we remind in Figure 4.1 the taxonomy for the topic descriptive domain
already presented in previous chapters. When observing this taxonomy, we can note that
concepts �Anonymization� and �Privacy� could be represented by a unique concept which
is �Security�. This observation is frustrating when knowing that generalizing descriptors
�Anonymization� and �Privacy� into descriptor �Security� would allow a traditional SPM
algorithm to capture the pattern p′ = {({�Top-k query�}, t1), ({�Security�}, t2)}, where
pattern p′ can be understood as a more abstract pattern than p, or a higher order pattern.
This is the intuition that will guide our work in Section 4.
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Figure 4.1: Taxonomy for the topic descriptive domain

In this section, we have introduced all the de�nitions necessary for understanding and
characterizing the knowledge, i.e., sequential patterns, that can be extracted from a collec-
tion of time sequences of events. We have pinpointed through our examples some limita-
tions, in terms of the knowledge that could be discovered, of traditional Sequential Pattern
Mining algorithms. Therefore, we propose in the rest of this chapter to support traditional
SPM algorithms with time sequence summaries. For this purpose, we need to (i) study how
time sequence summaries can contribute in practice to sequential pattern mining and (ii)
characterize the knowledge that can be extracted from summaries. This is the subject of
Section 4. For convenience, we sum up in the Table 4.3 all notations previously introduced
and notations that will be used in the rest of this chapter.

Notation Meaning

E={s ∈ S(Ω)} Collection of raw time sequences of events

E={ϕϑ(s) ∈ S(Ω), s ∈ E} Generalization of E by ϕϑ, also denoted E = ϕϑ(E)

E={χϑ,w(s), s ∈ E} Summary of E by χϑ,w, also denoted E = χϑ,w(E)

Pγ(E)={p ∈ S(Ω), suppE(p) ≥ γ} Patterns having minimum support γ in E

P kγ (E)={p ∈ Pγ(E), |p| = k} Patterns of length k having minimum support γ in E

Pγ(E)={p ∈ S(Ω), suppE(p) ≥ γ} Patterns having minimum support γ in E
P kγ (E)={p ∈ Pγ(E), |p| = k} Patterns of length k having minimum support γ in E
Pγ(E)={p ∈ S(Ω), suppE(p) ≥ γ} Patterns having minimum support γ in E

P kγ (E)={p ∈ Pγ(E), |p| = k} Patterns of length k having minimum support γ in E

ϕϑ(Pγ(E)))={ϕϑ(p) ∈ S(Ω), p ∈ Pγ(E)} Generalization of patterns discovered on E by ϕϑ

Table 4.3: Notations used for operating SPM on time sequence summaries
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4 Higher Order Patterns (HOP): Patterns mined from sum-
maries

TSaR was designed as a support structure for chronology dependent applications, i.e.,
applications that require the time dimension of the data to be considered for the output to
be meaningful, on massive data sources. Sequential Pattern Mining is one such application.
Hence, mining sequential patterns on TSaR summaries can be understood as a form of
Higher Order Mining. Sequential patterns discovered in this manner are called Higher
Order Patterns (HOP). We de�ne higher order patterns in Section 4.1 and throughly
analyze higher order patterns that can be discovered in TSaR summaries in Section 4.2.

4.1 De�nition

Roddick et al. coined the term Higher Order Mining in [RSLC08] to refer to data mining
tasks operated on non-primitive data:

�Higher Order Mining (HOM) is the sub-�eld of knowledge discovery concerned
with mining over patterns/models derived from one or more large and/or com-
plex datasets.�

The purpose of this chapter is to study how time sequence summaries can bene�t the
speci�c task of mining sequential patterns. The idea is to represent large sources of time-
varying data at a higher level of abstraction then operate a conventional SPM technique to
discover some form of knowledge. Intuitively, TSaR is a good candidate for this task since
it uses the data's content and temporal information to produce summaries that re�ect
a user's understanding of the domains on which the data is de�ned. Hence, we extend
Roddick et al.'s terminology and de�ne patterns extracted from time sequence summaries
as Higher Order Patterns (HOP) in De�nition 4.7.

De�nition 4.7 (Higher Order Pattern)
Let us be given E a collection of time sequences of events, i.e., E = {s ∈ S(Ω)}, χ a time
sequence summarization function and E = χ(E) = {χ(s), s ∈ E}. For a given user de�ned
minimum support γ, a Higher Order Pattern (HOP) is a pattern taken from the set Pγ(E).

In the following section, we will thoroughly study the implications of mining sequential
patterns in time sequence summaries w.r.t. the knowledge that could be uncovered in the
original datasets.

4.2 Characterization

We characterize higher order patterns discovered in TSaR summaries and evaluate how
well higher order patterns are linked to knowledge discovered in raw time sequences. We
analytically describe as thoroughly as possible the following relationships:

• Patterns discovered in E a collection of raw sequences vs. higher order patterns
discovered in E the collection of generalized time sequences, i.e., time sequences
summarized with parameters ϑ = 〈k〉, with k ≥ 1, and w = 0.

• Higher order patterns discovered in E a collection of generalized sequences vs. higher
order patterns discovered in E the collection of summarized time sequences, i.e.,
generalized time sequences in E summarized with parameter ϑ = 〈0〉 and w ≥ 1.

• Patterns discovered in E a collection of raw sequences vs. higher order patterns
discovered in E the collection of summarized time sequences.

135



However, due to the use of a generalization vector ϑ = 〈k〉 with k ≥ 1, one should note
that in generalized and in summarized time sequences, events are described by descriptors
represented at higher levels of taxonomy than descriptors used to describe events in raw
time sequences. Hence, higher order patterns can not be directly compared to patterns
discovered in raw time sequences. Some transformation needs to be operated beforehand.
For this reason, we propose to represent events of patterns in Pγ(E) at the same level
of taxonomy as events in E and E. This transformation is legitimate since both sets of
patterns are (i) expressed at the same level of taxonomy and (ii) patterns in ϕϑ(Pγ(E))
remain unchanged from temporal view point.

We generalize all patterns discovered in Pγ(E) with the same generalization vector
used to generate E and E. Consequently, our study and analysis task comes down to
characterizing the relationships that link:

1. ϕϑ(Pγ(E)) to Pγ(E)

2. Pγ(E) to Pγ(E)

3. ϕϑ(Pγ(E)) to Pγ(E)

Remind that notations are summed up in Table 4.3.

4.2.1 Patterns in raw sequences vs. HOP in generalized sequences

We study the relationship that links sequential patterns discovered in raw time sequences
to higher order patterns discovered in generalized time sequences. We highlighted above
the fact that sequential patterns discovered in raw time sequences need to be represented
at the same level of taxonomy as sequences in E and E. This transformation is adamant
so that patterns become comparable. We give in Property 4.1 a direct consequence of
generalization on the cardinality of ϕϑ(Pγ(E)).

Property 4.1 (Cardinality reduction of ϕϑ(Pγ(E)))
Given E a collection of time sequences of events, the following inequality occurs:

|ϕϑ(Pγ(E))| ≤ |Pγ(E)| (4.1)

This property can be re�ned and expressed at the granularity of sequential patterns of length
k ≥ 1. In this case, this property is expressed as follows:

|ϕϑ(P kγ (E))| ≤ |P kγ (E)|, m maximum length of sequential patterns discovered in E (4.2)

Property 4.1 states that the number of patterns obtained in ϕϑ(Pγ(E)) after generalization
is reduced w.r.t. the number of patterns originally in the set Pγ(E). This e�ect results
from the capability of the ϕϑ operator to reduce the variability of event descriptors. For
instance, in our example, suppose Pγ(E) = {p1, p2} with p1 = {({�Top-k query�}, t1),
({�Privacy�}, t2)} and p2 = {({�Top-k query�}, t1), ({�Anonymization�}, t2)}. We showed
earlier with the taxonomy in Figure 4.1 that concepts �Privacy� and �Anonymization� could
be generalized into concept �Security�. Therefore, a possible generalization of Pγ(E) could
be {p′} with p′ = {({�Top-k query�}, t1), ({�Security�}, t2)}, and |{p′}| < |Pγ(E)|.

In order to establish the relationship that links sequential patterns discovered in raw
time sequences to higher order patterns discovered in generalized time sequences, we need
to study their respective support. We give compare in Theorem 4.1 the support of a
pattern in a collection of raw time sequences to its support in a collection of generalized
time sequences.
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Theorem 4.1 (Support of patterns in raw vs. generalized sequences)
Given E a collection of time sequences of events and E the generalization of E by ϕϑ, the
following inequality occurs:

∀p ∈ S(Ω), suppE(p) ≤ suppE(ϕϑ(p)) (4.3)

Proof 7 (Proof of Theorem 4.1)
The proof is straightforward and relies on the monotonicity of the generalization function
ϕϑ: ∀s ∈ E,∀p ∈ E, p v s ⇒ ϕϑ(p) v ϕϑ(s). Hence, if s supports the candidate pattern
p in E, then ϕϑ(s) supports the candidate pattern ϕϑ(p) in E. From De�nition 4.2, we
obtain suppE(p) ≤ suppE(ϕϑ(s)). The situation where p is not contained in any sequence
s of E (i.e., suppE(p) = 0) trivially states that suppE(ϕϑ(p)) ≥ 0. �

Theorem 4.1 states that any pattern p in E has lower support than its corresponding
generalized candidate pattern ϕϑ(p) in E ; this e�ect is a consequence of generalization.
As a direct rule, for a given minimum support γ, every sequential pattern p in raw time
sequences in E has an image by ϕϑ, i.e., ϕϑ(p), that is also a higher order pattern in E .
This property is given in Corollary 4.1.

Corollary 4.1 (Patterns in raw vs. HOP in generalized sequences)
Given E a collection of time sequences of events and E = ϕϑ(E) the generalization of E
by ϕϑ, the following containment relation occurs:

ϕϑ(Pγ(E)) ⊆ Pγ(E) (4.4)

Proof 8 (Proof of Corollary 4.1)
∀p′ ∈ ϕϑ(Pγ(E)), ∃ p ∈ Pγ(E), p′ = ϕϑ(p)∧ suppE(p) ≥ γ [Def. 4.3]. From Theorem 4.1,
one can say that suppE(p) ≤ suppϕϑ(Pγ(E))(p

′). Hence, suppϕϑ(Pγ(E))(p
′) ≥ γ; that is the

condition for p ∈ Pγ(E) [Def. 4.3]. �

A direct restriction of Corollary 4.1 can be given using the restriction of sequential
patterns to patterns of a length k. Corollary 4.2 restricts Corollary 4.1 and states that
every sequential pattern of length k in a collection of raw time sequences E has an image
by ϕϑ that is also a higher order pattern of length k in the set of generalized time sequences
E .

Corollary 4.2 (Patterns in raw vs. HOP in generalized sequences/restricted)
Given E a collection of time sequences of events and E = ϕϑ(E) the generalization of E
by ϕϑ, the following containment relation occurs:

ϕϑ(P kγ (E)) ⊆ P kγ (E) (4.5)

Proof 9 (Proof of Corollary 4.2)
Proof is identical to Proof of Corollary 4.1 using the P kγ (E) notation instead. �

The relationship that links sequential patterns discovered in raw time sequences to
higher order patterns discovered in generalized time sequences is intuitive and straightfor-
ward. It simply relies on the fact that generalizing a time sequence reduces the variability
of events descriptors and increases the support of events. Since no grouping is operated,
there is no loss of temporal accuracy and hence no loss of patterns at all. However, note
that since generalization is responsible of the increase of events' support, for a given min-
imum support γ, mining sequential patterns in generalized sequences will output many
more patterns. Thus, the mining process could require longer computational time. In
the following section, we focus on the relationship that links higher order patterns discov-
ered in generalized time sequences to higher order patterns discovered in summarized time
sequences.
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4.2.2 HOP in generalized sequences vs. HOP in summarized sequences

In this section, we study the relationship that links higher order patterns discovered in gen-
eralized time sequences to higher order patterns discovered in summarized time sequences.
Before we can present this relationship, we need to introduce in Property 4.2 an important
containment property on the π ◦ ψw operations of the TSaR summarization function.

Property 4.2 (Subsequence containment in a summary intent)
Given s a time sequence of events in S(Ω), s′ its generalization by ϕϑ and s? its summary
intent, i.e., s? = π ◦ ψw(s′), the following implication occurs:

∀p ∈ S(Ω), p v s? ⇒ p v s′ (4.6)

Proof 10 (Proof of Property 4.2)
Since p v s?, for all e = (x, t) ∈ p, ∃ e? = (x?, t?) ∈ s? such that x = x?. The semantic
preservation given in Property 2.1 in Chapter 2 allows to write that there exists a set of
events Y = {e′1, . . . , e′r, } v s′ with e′k = (x′k, t

′
k) such that x = x′1 = . . . = x′r and t

?
k = t′1.

Therefore, there exist m integers values i1 < . . . < im such that, for all events e1, . . . , em
in p, exist sets Y1, . . . , Ym such that x1 = x′1,1 = . . . = x′1,r, . . . , xm = x′m,1 = . . . = x′m,r.
This is the condition for p v s′ as given in De�nition 4.5. We proved Property 4.2. �

This property is necessary for characterizing the support of patterns in generalized se-
quences vs. patterns in summarized sequences. We state in Property 4.2 that given a
time sequence s and a grouping ψw(s) of s, any subsequence p in π ◦ ψw(s) is actually a
subsequence of s. In other words, this property states that if a pattern is supported by
a grouped-and-projected sequence, it is also supported by the non-grouped-and-projected
counterpart.

Now, equipped with this property, we can establish the relationship that links higher
order patterns discovered in generalized time sequences to higher order patterns discov-
ered in summarized time sequences. For this purpose, we study their respective support.
We compare in Theorem 4.2 the support of a pattern in a collection of generalized time
sequences to its support in a collection of summarized time sequences.

Theorem 4.2 (Support of HOP in generalized. vs. in summarized sequences)
Given E a collection of time sequences of events, E the generalization of E by ϕϑ and E
the summary of E by χϑ,w, the following inequality occurs:

∀p ∈ S(Ω), suppE(p) ≤ suppE(p) (4.7)

Proof 11 (Proof of Theorem 4.2)
Suppose suppE(p) = k, with k ≥ 1. Let us denote by Sk = {s1, . . . , sk} the set of general-
ized sequences in E that support pattern p of length k, i.e., Sk ⊆ E and ∀s ∈ Sk, p v s. We
denote S? = {s? = π ◦ψw(s), s ∈ Sk}, with w ≥ 0, the summarization of time sequences in
Sk. Since there are k sequences in Sk there are also k summarized sequences in S?, i.e.,
|S?| = |Sk|. Also, we denote by S† the set of summarized time sequences in E that support
pattern p and thus, S† ⊆ S? and |S†| ≤ |S?|. Proving Theorem 4.2 is equivalent to proving
the following inequality: |S†| ≤ |Sk|.

When w = 0, there is no event rearrangement and no loss of temporal accuracy. Hence,
this inequality is trivial and the sets Sk, S? and S† are identical and thus |S†| = |Sk|.

When w ≥ 1, summarizing sequences in E is equivalent to operating ψw on all sequences
in E since E = ϕϑ(E). Having w ≥ 1, groupings of distant events on the timeline might
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be operated by the ψw operator on sequences in Sk. In the case such operations occur, the
number of events in sequences in Sk could be reduced, formally:
∀s ∈ Sk, let s? = π ◦ ψw(s) then s? ∈ S? and s? ⊆ s (Property 4.2)
if ∃ s′ ∈ S?, such that p 6v s′,
then necessarily, s′ /∈ S† and consequently |S†| < |S?|, i.e., |S†| < |Sk|
otherwise, |S†| = |S?| = |Sk|

In any case, we proved the inequality |S†| ≤ |Sk| and Theorem 4.2. �

Theorem 4.2 states that any candidate pattern p in E has lower support in E than in
E , i.e., there exist fewer sequences s in E for which p v s. Consequently, we give in Corol-
lary 4.3 the actual containment relationship that links higher order patterns discovered in
generalized sequences to higher order patterns discovered in summarized sequences.

Corollary 4.3 (HOP in generalized seq. vs. HOP in summarized sequences)
Given E a collection of time sequences of events, E the generalization of E by ϕϑ and E
the summary of E by χϑ,w, the following containment relation occurs:

Pγ(E) ⊆ Pγ(E) (4.8)

Proof 12 (Proof of Corollary 4.3)
In Table 4.3, we de�ned Pγ(E) as follows: Pγ(E) = {p ∈ S(Ω), suppE(p) ≥ γ}. Therefore,
we can write the following equations:
∀p ∈ Pγ(E), ∃ S? = {s?1, . . . , s?m}, with m ≥ γ,
where ∀s ∈ E, p v s with s = π ◦ ψw(s′), and s′ ∈ E.
Therefore, p ⊆ s′ and s′ ∈ E (as a direct consequence of Property 4.2)
Let us denote by S = {s1, . . . , sm} the set of sequences in E that support pattern p.
Hence, ∀s ∈ S, ∃ s? ∈ S?, s? = π ◦ ψw(s) and p v s.
Since we proved in Theorem 4.2 that ∀p ∈ S(Ω), suppE(p) ≤ suppE(p)
then S is only a subset of Pγ(E), i.e., S ⊆ Pγ(E).

Putting the pieces together, we proved that for any pattern p in Pγ(E) there exists a set
S′ of sequences in E that supports p, and this set S′ is a subset of Pγ(E). We proved that
Pγ(E) ⊆ Pγ(E). �

The general rule is that mining sequential patterns in generalized sequences allows to
capture all patterns that could be discovered in summarized sequences. This relationship
can be re�ned and detailed by considering the length k of the patterns discovered. This
re�nement is given in Corollary 4.4.

Corollary 4.4 (HOP in generalized vs. HOP in summarized sequences/k=1)
Given E a collection of time sequences of events, E the generalization of E by ϕϑ and E
the summary of E by χϑ,w, the following equality occurs:

P 1
γ (E) = P 1

γ (E) (4.9)

Proof 13 (of Corollary 4.4)
Theorem 4.4 is proved thanks to the semantic preservation of Property 2.1 given in Chap-
ter 2. Property 2.1 allows us to write: ∀s ∈ E , ∀e = (x, t) ∈ s, ∃ e? = (x?, t?) ∈
π ◦ ψw(s), such that x = x?. Therefore, if s supports pattern {e} then sequence π ◦ ψw(s)
supports pattern {e}. �

Corollary 4.4 re�nes this containment relationship to patterns containing one single
event, i.e., k = 1. In fact, this re�ned relationship shows that patterns of length 1 captured
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in generalized or summarized patterns are identical. On the other hand, Corollary 4.5 is a
simple rewriting of the containment relationship in Corollary 4.3 to account for the length
of patterns with k ≥ 2. This case is more general and patterns discovered deeply depend
on the distribution of the data and the summarization parameters, in particular w. For
this reason we believe it is di�cult if not impossible to analytically characterize any more
precisely this containment relationship.

Corollary 4.5 (HOP in generalized vs. HOP in summarized sequences/k≥2)
Given E a collection of time sequences of events, E the generalization of E by ϕϑ and E
the summary of E by χϑ,w, the following equality occurs:

P kγ (E) ⊆ P kγ (E), k ≥ 2 (4.10)

Let us give an example to support our claim. We show in the following example that
even for a pattern of length k = 2, it is not possible to give a de�nitive containment
relationship. Suppose p is a higher order pattern in E with p = {(x1, t1), (x2, t2)}. Suppose
pattern p is supported in E by only 2 sequences, namely s1 and s2. s1 is de�ned as follows:
s1 = {. . . , (x1, t1), (x2, t2)} and ∀e = (x, t) ∈ s1 with t < t1, x 6= x1 ∧ x 6= x2. In other
words, there is one unique subsequence in s1 that supports pattern p. Similarly, s2 is
de�ned as follows:
s2 = {. . . , (x2, t1), (x1, t2), (x2, t3)} and ∀e = (x, t) ∈ s2 with t < t1, x 6= x1 ∧ x 6= x2.
Therefore, the summarization of s1 and s2 with temporal locality parameter w = 2 gives:
s?1 = π ◦ ψw=2(s1) = {. . . (x1, t1), (x2, t2)} and s?2=π ◦ ψw=2(s2)={. . . (x2, t

′
1), (x1, t2)}.

Consequently, pattern p of length k = 2 is supported by s1 and s2, and by s?1 but not
by s?2. This is a counter-example illustrating the fact it is not possible to analytically
characterize further Corollary 4.5.

4.2.3 Patterns in raw time sequences vs. HOP in summarized sequences

Most interesting is the relationship that links sequential patterns discovered in raw time
sequences to higher order patterns discovered in summarized time sequences. However,
this relationship is not trivial and deeply depends on the distribution of the data and the
summarization parameters, in particular w. We present in the following section the few
characteristics that are actually provable.

We showed in Property 4.3 that higher order patterns of length 1 mined in TSaR

summaries capture patterns of length 1 that can be discovered in raw time sequences. As
simple as this relationship might appear, generalizing this relationship to k ≥ 2 is a very
di�cult task, if not impossible. Intuitively, the grouping function in TSaR reduces the
numerosity of events in a time sequence. Therefore, a pattern p ∈ ϕϑ(Pγ(E)) that was
supported by a sequence s in E could eventually not be supported by sequence s? = π◦ψw(s)
in E. In other words, the support of pattern p in E is reduced due to the shortening of
sequences in E. Similarly to Section 4.2.2, this loss of support deeply depends on the
summarization parameters, the SPM algorithm parameters and the data themselves.

Property 4.3 (Patterns in raw vs. HOP in summarized sequences/k=1)
Given E a collection of time sequences of events, E the generalization of E by ϕϑ and E
the summary of E by χϑ,w, the following containment relation occurs:

ϕϑ(P 1
γ (E)) ⊆ P 1

γ (E) (4.11)

Proof 14 (of Property 4.3)
The proof of this theorem is straightforward. Corollary 4.4 states that P 1

γ (E) = P 1
γ (E)
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and Corollary 4.2 states that ϕϑ(P kγ (E)) ⊆ P kγ (E). Consequently, the containment relation
ϕϑ(P 1

γ (E)) ⊆ P 1
γ (E) is true. �

Property 4.4 gives a direct consequence of generalization on the support of patterns in
E, i.e., the generalization operator ϕϑ is responsible for reducing the variability of event
descriptors. By the same mechanism, the support of generalized events is augmented w.r.t.
the support of events they subsume. Therefore, events that did not have minimum support
γ in E could eventually have minimum support in E and E. In other words, events that
have support η in E with η < γ could be captured in E and E. Property 4.4 describes this
phenomenon.

Property 4.4 (Existence of lower support patterns)
Given E a collection of time sequences of events and E the summary of E by χϑ,w, the
following relation occurs:

if ∃ p ∈ Pγ(E), such that p /∈ ϕϑ(Pγ(E))
then ∃ η ≥ 1 with η < γ, such that ∃ q ∈ Pη(E), ϕϑ(q) = p, γ > 1

Proof 15 (Proof of Property 4.4)
Trivially, the set of patterns Pη(E) with η = 1 contains all subsequences of sequences in
E. If p ∈ Pγ(E) and p /∈ ϕϑ(Pγ(E)) then at least p ∈ ϕϑ(Pη(E)). �

This is an interesting property since it could be used for discovering very low support
sequential patterns in E that otherwise would have not been captured. We will give a
more detailed usage scenario in our experiments reported in Section 6. However, one
should note that it is not possible to analytically determine the exact support increase of
each generalized event.

Despite the di�culty of establishing the exact relationship that links patterns discov-
ered in raw time sequences to higher order patterns discovered in summarized time se-
quences, the structural information of summaries can still be useful for analyzing patterns.
Indeed, an interesting question to answer is whether a given pattern p in ϕϑ(Pγ(E)) that
is not supported by a summary s? is actually supported by the underlying time sequence
s, where s? = π ◦ χϑ,w(s). In the case the underlying time sequence s did not support p,
the summary is not responsible for any loss of patterns.

Therefore, given only the knowledge of a time sequence summary s? and p a pattern
of interest in ϕϑ(Pγ(E)), we show it is possible to decide from s? for any raw sequence s:

1. if s could possibly have supported p or

2. if s de�nitely does not support p

We provide in Property 4.5 the minimal structural conditions on s? to determine if s
could have supported pattern p.

Property 4.5 (Conditions for possibly supporting a pattern)
Let s? be a summary intent, i.e., s? = π◦χϑ,w(s) and s? = {e?1, . . . , e?m} where e?i = (x?i , t

?
i ).

Let p be a sequential pattern of length r ≥ 2 in ϕϑ(Pγ(E)) and p = {e1, . . . , er} where
ej = (xj , tj). The following conditions occur:

1.1. If ∃ e ∈ p, ∀e? ∈ s?, x 6= x? then sequence s does not support pattern p.
1.2. Otherwise, s? supports individually each generalized event in p. The order in

which these events are supported needs to be determined. Let us denote by P the col-
lection of couples of contiguous events (as de�ned in De�nition 3.9) in pattern p, i.e.,
P = {(ej , ej+1), 1 ≤ j ≤ r − 1, {ej , ej+1} v p}. Then, one of the following conditions
apply:
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2.1. If ∀(ej , ej+1) ∈ P, ∃e?u = (x?u, t
?
u) ∈ s? and e?v = (x?v, t

?
v) ∈ s? with t?u < t?v such

that x?u = xj and x?v = xj+1, then s possibly supports p.
2.2. Otherwise, it means that exists at least one couple (ej , ej+1 ∈ P does not satisfy

condition 2.1.. In this case, since condition 1.2 is veri�ed, i.e., s? support individually each
event in p, ∃e?p = (x?p, t

?
p) ∈ s? and e?q = (x?q , t

?
q) ∈ s? such that x?p = xj+1 and x?q = xj with

t?p < t?q. In other words, events ej and ej+1 are supported in summarized sequence s? but
in reverse order. There are two possible cases:

2.2.1 If dT (t?p, t
?
q) ≤ w, then it is possible that s supports pattern p.

2.2.2 Otherwise, i.e., dT (t?p, t
?
q) > w, s does not support pattern p.

Let us explicit the conditions given in Property 4.5. Conditions 1.x are straightforward
and state that each individual event e in p needs to be supported by sequence s? for s to
possibly support pattern p. When condition 1.2 is met, condition 2.1 states that if all
events e in pattern p appear in their exact order in sequence s? then sequence s possibly
supports pattern p. However, if some events in pattern p do not appear in their exact order
in sequence s?, it does not necessarily mean that sequence s does not support pattern p.
Indeed, due to the groupings of distant events on the timeline performed by operator ψw,
there are conditions on the temporal locality parameter w to be taken into account before
it can be decided whether sequence s supports pattern p or not.

Hence, Condition 2.2. takes into account the structure of the summary s?. This
condition supposes that there exist at least two contiguous events ej and ej+1 in p that
do not appear in their exact order in s?, i.e., �ej followed by ej+1�. In other words, ej and
ej+1 are permutated in s?. In this case, it is still possible to determine whether sequence
s possibly supports pattern p.

Under Condition 2.2.1, we state that as long as ej is within a temporal locality w from
ej+1 in s?, i.e., dT (t?p, t

?
q) ≤ w, then it is still possible for sequence s to support pattern p.

Indeed, when Condition 2.2.1 occurs, sequence s? can be described as follows:
s? = {. . . , e?p, . . . , e

?
q︸ ︷︷ ︸

dT (t?p,t
?
q)=w′≤w

, . . .}. We denote by W the subsequence of contiguous events in

s? that are located within a distance w′ of event e?p, i.e., W = {e?p, e?p+1, . . . , e
?
q}. W

is generated by a subsequence ssub contained in the set {{ep, (. . . e . . . , )∗eq}} with e?p =
π ◦ ψw(ep) and e?q = π ◦ ψw(eq) (De�nition 4.5), i.e., the collection of all combinations of
generalized events that produce ssub after operating ψw. Therefore, under condition 2.2.1,
W is possibly generated by a subsequence ssub in which event ej+1 could occur after event
ej . For this reason, s possibly supports pattern p. Condition 2.2.2 states that s certainly
does not support pattern p.

We established in this section some relationships that link sequential patterns discov-
ered in raw time sequences to higher order patterns discovered in time sequence summaries.
Not all relationships could be established since these relationships deeply depend on the
summarization parameters, the mining parameters and the data themselves. All of these
parameters greatly complexify the task, in particular establishing the relationships that
link patterns discovered in raw time sequences to higher order patterns discovered in sum-
marized sequences when the length k of patterns considered is greater than 2.

5 Exploratory Mining: A methodology to uncover speci�c
knowledge from HOP

Previously, we characterized the relationships that link patterns discovered in raw time se-
quences to higher order patterns discovered in generalized or summarized time sequences,
and those that link higher order patterns discovered in generalized sequences to higher
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order patterns discovered in summarized sequences. In particular, we gave in Property 4.4
the intuition that mining higher order patterns having support γ in TSaR summaries
could allow to capture patterns in raw sequences having support η lower than γ. This
observation is interesting since it might not be possible to directly mine the original se-
quences with minimum support η. We rely on this property and present in this section
a methodology that uses all characteristics already demonstrated to derive more speci�c
patterns from higher order patterns discovered on TSaR summaries. This methodology is
called Exploratory mining. Exploratory mining is achieved thanks to two complementary
operations, namely, (i) Pattern Events Specialization and (ii) Pattern Events Recombina-
tion.

The ideas that guide these two complementary operations rely on observations made
from the usage of TSaR's ϕϑ and ψw operators. On the one hand, operator ϕϑ rewrites
event descriptors at a higher level of taxonomy. By doing so, the variability of event de-
scriptors decreases while the support of each generalized event is increased. Mechanically,
events that have very low support in a raw time sequence, e.g., due to the use of speci�c
vocabulary, might have high support in its summarized counterpart, e.g., due to the associ-
ation of speci�c vocabulary to more commonly used concepts. The idea of Pattern Events
Specialization (PES) is then to identify in summarized sequences a pattern p of interest
that have high support and try to �nd lower support patterns by specializing some event
descriptors of events in pattern p using the same taxonomies input to TSaR.

On the other hand, operator ψw groups similar events that are within a certain temporal
locality w on the timeline. As a direct consequence, summarized time sequences are shorter
than their non-grouped counterpart and induce a loss of temporal accuracy. We showed
in Section 4.2.3 that this operation induces a loss of recall capability, i.e., higher order
patterns discovered on time sequence summaries can not capture all patterns discovered
in raw sequences. Hence, the idea of Pattern Events Recombination (PER) is to mitigate
the consequences of the ψw operator and produce candidate patterns from higher order
patterns already discovered in the summaries. These candidate patterns are generated by
recombining events that compose the higher order pattern. We detail these two operations
in the following sections.

5.1 Pattern Events Specialization (PES)

The �rst mechanism that supports exploratory mining is called Pattern Events Specializa-
tion (PES). This operation is responsible for generating a set of candidate patterns from
a higher order pattern mined in a collection of summarized time sequences. The idea of
pattern event specialization is to select a pattern of interest, denoted p = {e1, . . . , er} with
r ≥ 1, and a descriptive domain of interest denoted A. The domain of A is assumed to be
organized into taxonomy HA.

PES operates by parsing events e = (x, t) in p and identifying descriptors d in x
that are contained in taxonomy HA. Each such descriptor is associated to a collection
of descriptors denoted D. Descriptors in D are the direct specializations of descriptors
d taken from taxonomy HA. If a descriptor d does not appear in taxonomy HA, it is
not specialized and simply added to D. For instance, in our topic domain taxonomy,
if descriptor d=�Security� then D={�Anonymization�, �Privacy�}. Therefore, each event
e = (x, t) in p generates a set of candidate events denoted Ce. Ce is obtained by pro-
ducing all possible combinations of descriptors taken from sets of descriptors D, i.e.,
Ce = {(x′, t), x′ ∈ {{d1} ∪ . . . ∪ {dm}, d1 ∈ D1, . . . , dm ∈ Dm}} where Dk is the set

143



of specializations of descriptor dk in x. The total set of candidate patterns generated by
PES is denoted Cp and is the set of all possible combinations of events taken from the set
of candidate events Ce for each event e in pattern p, i.e., Cp = {{e1, . . . , er}, ei ∈ Ce}.

Let us give a tangible example with a pattern having one single event. Suppose our
pattern of interest is p = {e} where e = (x, t) with x={�Market data�, �Security�} and we
want to specialize this pattern on the topic descriptive domain. �Market data� does not
belong to the topic descriptive domain but �Security� does. Therefore, set D1 is associated
to descriptor d1=�Security� of event e, whereD1={�Anonymization�, �Privacy�}. The set of
candidate events generated by PES is Ce = {e1, e2} where e1 = (x1, t) and e2 = (x2, t), and
x1={�Market data�, �Anonymization�} and x2={�Market data�, �Security�}. Therefore, the
set of candidate patterns generated by PES on our pattern p is Cp = {p1 = {e1}, p2 =
{e2}}.

The pseudo-code of the PES mechanism is given in Algorithm 7. Descriptors that
appear in taxonomy HA are identi�ed and specialized between Line 5 and Line 11. The
specialize procedure in Line 9 is responsible for retrieving from taxonomy HA the set of
concepts that specialize a given descriptor d. Candidate events are generated in Line 12
and candidate patterns are generated from these candidate events between Line 13 and
Line 17.

Algorithm 7 Pattern event specialization pseudo-code
1. INPUTS:
HA: Taxonomy of attribute of interest
p = {e1, . . . , er}: pattern

2. OUTPUT: Cp: Collection of candidate patterns
3. LOCALS:
D: Collection of specialized descriptors for descriptor d in event e
Ce: Collection of candidate events for event e
Cp: Collection of candidate patterns

4. for all event e = (x, t) in p do
5. for all descriptor d in x do
6. if (d /∈ HA) then
7. D ← {d}
8. else
9. D ← specialize(d)
10. end if
11. end for
12. Ce ← {(x′, t)}, where x′ ∈ {{d1} ∪ . . . ∪ {dm}, d1 ∈ D1, . . . , dm ∈ Dm}}
13. if (Cp = ∅) then
14. Cp ← Ce
15. else
16. Cp ← p ∪ {e}, p ∈ Cp and e ∈ Ce
17. end if
18. end for
19. return Cp

The bene�t of pattern event specialization for sequential pattern mining is to gener-
ate candidate patterns that are more precise from semantic view point. Therefore, these
candidate patterns allow the discovery of more re�ned higher order patterns such that:
(i) specialized patterns have lower support and (ii) descriptors used to describe events in
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specialized patterns are more precise and speci�c. These two properties of pattern events
specialization are most interesting for the following reasons: (i) since specialized patterns
have lower support, it could have not been possible to discover such patterns using con-
ventional algorithms (due to the explosion of computational time); (ii) if an analyst is
not satis�ed by the level of abstraction of given pattern, he can obtain other patterns by
specialization without the need to mine the entire dataset again.

5.2 Pattern Events Recombination (PER)

The second mechanism that supports exploratory mining is called Pattern Event Recom-
bination (PER). Properties demonstrated in Section 4.2 show that event rearrangements
during summarization could be responsible for the loss of sequential patterns. These ef-
fects should somehow be mitigated. Hence, the idea of pattern events recombination is
inspired from the application of edit distances to approximate string matching in spell
checking applications. The assumption is that a higher order pattern p discovered in a
summary could actually represent a larger number of patterns if a certain number of edits
on pattern p are permitted. For instance, suppose there are two patterns p1 and p2 where
p1 = {e1, e2, e3} and p2 = {e1, e3, e2}. Patterns p1 and p2 are visually similar and in fact,
p2 is only di�erent from pattern p1 due to the permutation of events e2 and e3.

Therefore, PER operates by selecting a higher order pattern of interest, denoted p =
{e1, . . . , er} with r ≥ 2. The events e that compose this pattern are then used to gener-
ate a set of candidate patterns Cp. Candidate patterns are obtained by recombining all
events e involved in pattern p. This event recombination process could (i) generate all
possible combinations of events in p or (i) be controlled by a maximum number of edits,
e.g., 1, 2 or 3 permutations of events. In this case, the number of edits could be computed
using well known edit distances such as Hamming's distance [Ham50] or Levenshtein's dis-
tance [Lev65].

The bene�t of pattern events recombination for sequential pattern mining is to generate
candidate patterns that might have been lost due to the shortening of time sequences by
the ψw operator. Also, it allows to widen the exploratory space for searching for higher
order patterns.

Exploratory mining is then the process of reiterating the two PES and PER mechanisms
to continuously re�ne in a drill-down fashion higher order patterns discovered in TSaR
summaries.

6 Experiments

In this section, we experiment Sequential Pattern Mining on time sequence summaries pro-
duced by TSaR. We have shown in our analysis work that there exists a fragile connection
between patterns discovered in raw time sequences and higher order patterns discovered
in summaries. This connection deeply depends on 3 dimensions: (i) The summarization
parameters, (ii) the mining parameters and (iii) the distribution of the data. It is unde-
niable that mining summaries induces loss of patterns, possibly important losses. If one
only focuses on the recall of patterns that should be discovered in raw time sequences.
However, the purpose of Higher Order Mining is not necessarily to produce exactly the
same knowledge that should be discovered in raw time sequences. For this reason, in the
application of mining sequential patterns on time sequence summaries, we believe that it
does not make sense to use conventional and widely accepted measures from Information
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Retrieval, namely precision and recall, to evaluate the quality of patterns discovered. We
would rather show in this experimental work that mining summaries allows to discover
di�erent knowledge that would otherwise have remained hidden.

From this perspective, it seems to us most interesting to evaluate how useful TSaR
summaries are for the task of discovering very precise and speci�c knowledge. We propose
to experiment SPM on TSaR summaries in two phases: (i) evaluate TSaR summaries
as a support structure for SPM algorithms, i.e., their capability of aiding in reducing
computational time, and (ii) operate exploratory mining on summaries produced by TSaR
to see what kind of knowledge can be uncovered and how precise and speci�c it is. For this
purpose, we reuse again the dataset extracted from Reuters's 2003 �nancial news archives
as described in Section 6.1.2 in Chapter 2. However, since SPM algorithms are process-
intensive tasks, we limit the dataset to one month of news. The dataset used still represents
approximatively 100,000 �nancial news events distributed over 4600 time sequences where
each sequence is associated to a company.

This section is organized as follows. We study in Section 6.1 how well TSaR sum-
maries support SPM algorithms in the knowledge discovery task. We evaluate this sup-
port by observing the computational time of a traditional SPM algorithm, namely Pre-
�xSpan [PHMA+01]. Then, in Section 6.2, we explore two scenarios for using TSaR

summaries. We propose a �rst scenario for �nding trends of events thanks to higher order
patterns discovered. Then, we put into practice the exploratory mining methodology for
re�ning and detailing the higher order patterns discovered with the objective of �nding
informative patterns having even lower support.

6.1 Mining �nancial time sequence summaries

We report here our experiments on mining TSaR summaries with a conventional SPM al-
gorithm. We chose to implement the Pre�xSpan [PHMA+01] algorithm to avoid the �aws
of Apriori-based algorithms, i.e., the generation of too many candidate patterns. Also, we
chose Pre�xSpan for its high performances. Note that even though Pre�xSpan is relatively
old, its high performances still make it a premium choice as a base technique for some
state of the art approaches such as BIDE [WH04].

We generate TSaR summaries using the following parameters: (i) ϑ = 〈1〉 and (ii)
w ∈ {1, 2, 3, 4, 5, . . . , 50, 55, 60}. The overhead induced by summarizing the input time se-
quences of news data with these parameters is almost constant and takes approximatively
35 seconds. In comparison to the mining computational time presented in Figure 4.2(a),
this overhead is negligible. This observation con�rms our �rst intuition, i.e., summariza-
tion is a costless preprocessing step in comparison to the actual SPM task.

Figure 4.2(a) gives the computational time of Pre�xSpan at di�erent minimum sup-
port levels: γ ∈ [10 . . . 20] which represents 0.01% to 0.02% of input time sequences. These
minimum support values are in fact very low values. For more readability, we only re-
port in Figure 4.2(a) the computational time obtained when mining summaries built with
w ∈ {50, 55, 60}. As the minimum support γ decreases, we can observe in Figure 4.2(a) the
exponential increase of the computational time when mining raw time sequences. Para-
doxically, mining sequential patterns on �nancial news requires the use of very low support
values γ in order to obtain non trivial results, i.e., patterns with a least a minimum of 2
to 4 events.

For instance, at the lowest value of minimum support, i.e., when γ = 10 (i.e. γ =
0.01%), the mining task could not complete even after approximately 45 hours of runtime.
These performances are very similar to those obtained by Masseglia et al.'s [MTT04] and
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Raju et al.'s [RKS07] who operated SPM on Web Usage logs. Masseglia et al. and
Raju et al. also showed that conventional SPM algorithms hit a performance wall with
minimum support levels as low as ≈ 0.06% to ≈ 0.02%. These �gures empirically show
that performing SPM on raw time sequences of �nancial news events is a very costly task.
This conforts our choices (i) to mine TSaR summaries to discover knowledge and (ii) to
limit the size of our dataset to one month of news.

When mining TSaR summaries, the combination of (i) few event rearrangements,
i.e., small temporal locality windows w, (ii) the increased support of each event due to
generalization and (iii) using low minimum support, i.e., w ≤ 5, ϑ = 〈1〉 and γ < 15,
respectively, makes the computational time explode exponentially as well. Note that this
phenomenon occurs slower than on raw time sequences. However, interestingly, when
TSaR summaries are compact enough, e.g., built with temporal locality window w ≥ 25
or w ≥ 50, we observe that mining higher order patterns having minimum support as low
as γ = 10 is possible and can be achieved faster than on raw time sequences, e.g., at least
one order of magnitude faster.
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Figure 4.2: SPM performances

6.2 TSaR summary usage scenarios

Our preliminary results show that extracting knowledge from time sequences of �nancial
news could use summaries as a support structure, at least to reduce computational time.
However, these experiments do not explicitly inform the analyst on the nature, quality or
content of the knowledge extracted. For this reason, we present in this section two scenarios
to illustrate how to use TSaR summaries for sequential pattern mining applications.

6.2.1 Scenario 1 (Sc.1): Discover higher order knowledge

The purpose of the �rst scenario is to discover higher order patterns in the sequences of
�nancial news events. These patterns are trends that inform the analyst on the general
topic of most frequent patterns. In other words, higher order patterns discovered give
the pro�le of the most recurring series of events. Indeed, we have shown in Section 4.2
that, due to the loss of temporal information when rearranging events, it is very di�cult
to establish the exact relationship that links sequential patterns discovered on raw time
sequences to higher order patterns discovered on time sequence summaries.

Therefore, the purpose of the trends discovered is to inform the analyst on the main
topics of frequently occurring events. This is why sequential patterns discovered on very
compact summaries, i.e., built with strong generalization and large temporal locality win-
dows w, still give valuable information on the underlying data. If the analyst requires more
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�ne grain trends, more re�ned TSaR summaries, i.e., built with lower generalization levels
and smaller temporal locality windows, could be used by the SPM algorithm.

6.2.2 Scenario 2 (Sc.2): Discover speci�c patterns from high order patterns

The second scenario is complementary to scenario 1. In the case the analyst has found a
(set of) higher order pattern(s) of interest, he should be given the opportunity to re�ne
this knowledge without the need to operate SPM again. Hence, this scenario allows the
analyst to use knowledge already discovered to uncover more speci�c patterns in a drill-
down fashion using the exploratory mining methodology. We select a higher order pattern
of interest then specialize its event descriptors and/or recombine events to generate a set
of candidate patterns. We compute the support of these candidate patterns and show that
it is possible to �nd speci�c patterns that have very low support, otherwise di�cult to
discover.

6.3 Usage scenarios in practice

We build TSaR summaries for the input dataset with summarization parameters ϑ = 〈1〉
and w = 50. The output summary χϑ=〈1〉,w=50(E) is denoted E. We mine in E higher
order patterns having minimum support γ = 14 and limit the maximum length of patterns
to 7. This constraint is added to conveniently reduce the mining computational time and
the total number of patterns output. The set of sequential patterns discovered is denoted
Pγ(E). We give in Table 4.4 some sequential patterns of interest discovered in E and their
respective support. The set of descriptors used to describe each event in Table 4.4 is given
in Table 4.5.

Pattern suppE
p1={e1} 132
p2={e2} 121
p3={e3} 273
p4={e4} 83
p1,2={e1, e2} 33
p1,3,4={e1, e3, e4} 24
p3,4,1={e3, e4, e1} 21

Table 4.4: Patterns discovered and
support

Event Event descriptors

e1
{any_operation, �nancial institution,
west}

e2 {any_operation, sales, west}
e3 {any_operation, west}

e4
{any_operation, business, �nancial in-
stitution, west}

e↓1,1 {any_operation, islf, west}
e↓1,2 {any_operation, ins, west}
e↓1,3 {any_operation, �n, west}
e↓1,4 {any_operation, bnk, west}
e↓2,1 {any_operation, bus, west}
e↓2,2 {any_operation, ret, west}
e↓2,3 {any_operation, who, west}

Table 4.5: Description of events

6.3.1 Sc.1: High order trends

In usage scenario Sc.1, we highlight the possibility of discovering general knowledge in the
form of trends from compact TSaR summaries. For instance, let us consider pattern p3 in
Table 4.4. From the event's description given in Table 4.5, news that involve �some kind
of operation related to western countries� seem to be very frequent (suppE(p3) = 273).
More speci�cally, pattern p1,3,4 has support 24 in E and indicates that series of news that
involve �some �nancial institution� or �business� are also frequent. These two patterns
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by themselves provide comprehensive and informative enough information on the trend of
some frequent series of news. Here, the trend of the news is �business/�nancial operation
in western countries�. If the analyst requires more insight into the patterns and news
involved, this higher order pattern discovered in the summaries could be re�ned thanks to
the exploratory mining methodology. This is the purpose of scenario 2. We propose to use
and explore pattern p1,3,4 in more details.

6.3.2 Sc.2: Exploratory mining

Sc 2.1: Pattern events recombination

In scenario Sc.2, we try to discover more re�ned and more detailed knowledge from trends
discovered in Sc.1 by means of exploratory mining. We start by operating pattern events
recombination on higher order patterns discovered earlier. Let us consider higher order
pattern p1,3,4 in Table 4.4. The support of p1,3,4 in E is 24. If fact, when mining sequential
patterns in E with minimum support γ = 24, p1,3,4 is the only higher order pattern that
involves all three events e1, e3 and e4. In other words, patterns {e1, e4, e3}, {e3, e1, e4},
{e3, e4, e1}, {e4, e1, e3} and {e4, e3, e1} should have support lower than 24.

e1 , e 3, e 4

Support: 24

e 3, e 1, e 4

e 3, e 4, e 1

Support: 19

Support: 21

e 1,  e 4,  e 3

Support: 19

e 4, e 3, e 1

e 4, e 1, e 3

Support: 18

Support: 17

Figure 4.3: Sequences of combined events

Therefore, we start by recombining events in pattern p1,3,4 and we generate all possible
combinations of events in p1,3,4. The resulting set of candidate recombined sequences and
their respective support in E is given in Figure 4.3. Note that the support of all candi-
date recombined sequences is lower than the support of p1,3,4. In average, each combined
sequence has a support lower than that of pattern p1,3,4 by approximately 21%, while the
candidate pattern that has the highest support is p3,4,1 with support equal to 21, i.e.,
12.5% lower than p1,3,4. This observation shows that we were capable of discovering other
patterns that (i) contain all three events e1, e2 and e3, and that (ii) have lower support
than p1,3,4 without the need to completely reoperate SPM on the entire dataset.

Also, let us consider pattern p3,4,1 that has support 21 in E, built with temporal local-
ity window w = 50. When we compute the support of p3,4,1 in all summaries built with a
temporal locality window w that ranges from w = 1 to w = 50, the support of p3,4,1 goes
below 24 as soon as w ≥ 25. This observation empirically con�rms our statement that
event rearrangements during summarization can be responsible of the loss of sequential
patterns.

These observations allows us to con�rm that pattern event recombination is an inter-
esting tool to discover other higher order patterns. Eventually, these other higher order
patterns have lower support. In our experiments, suppose the minimum support γ used
for mining is low enough, e.g., γ ≈ 10, then pattern event recombination could allow the
discovery of patterns with support lower than 10. These patterns would have remained
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undiscovered due to (i) the very long mining computation time when performing SPM with
γ < 10 or due to (ii) the information overload inherent to the exponentially large result
sets.

Sc 2.2: Pattern events specialization

The second mechanism involved in exploratory mining is pattern events specialization. We
illustrate this second mechanism using a pattern selected from the knowledge extracted
earlier. Suppose we are interested in patterns that contain the descriptors ��nancial sector�
and �sales� taken from the �Industrial sector� domain. Table 4.6(a) and Table 4.6(b) give
in details the specialization of descriptors ��nancial sector� and �sales�, respectively.

In practice, without any prior knowledge, higher order pattern p1,2 = {e1, e2} is a
series of two news events that can be understood as follows: �some kind of operation in
the �nancial sector occured in a western country� followed by �some kind of operation in
the sales industry occured in a western country�. These two news events carry some very
general information on the location and the nature of the industry concerned.

(a) Specialization of descriptor ��nancial sector�

Item Meaning Concerns
islf Islamic

�nance
News relating to Islamic �nance and banking; Stories about banks
run entirely according to Koranic precepts; Stories about the de-
velopment of Islamic bond markets as well as the individual is-
suance of Islamic bonds; Development of Islamic banking regula-
tions and other guidelines similarly.

ins Insurance Life and health insurance; property and casualty insurance; rein-
surance; regulation or regulatory bodies associated with the in-
surance industry; Medicare and Medicaid and insurance brokers.

�n Financial
and
Business
Services

Agents or brokers of �nancing and �nancial services; invest-
ment trusts; o�shore funds; investment banks; brokers; merchant
banks; travel-related money services; personal, consumer and
educational credit; lease �nancing and regulation or regulatory
bodies associated with the �nancial services industry.

bnk Banking Private banking; medium-term �nancing; all depository and
credit institutions e.g. commercial banks, clearing banks, sav-
ings and loans, chartered banks, universal banks; futures and
options exchanges and regulation or regulatory bodies associated
with the banking industry.

(b) Specialization of the �sales� descriptor

Item Meaning Concerns
bus Business,

Public
services

Services to business and consumers including o�ce supplies; ad-
vertising/marketing; software development, data vendors & data
processing; security; transporters, custom agents, package and
mail delivery; agencies; water distribution; airport, port, tunnel,
highway management; port-harbour transport and warehousing;
waste management, cleaning, water �ltration

ret Retail All retailing including retail sales and consumer price indexes
who Wholesale Wholesaling and distribution, including wholesale price indexes

Table 4.6: Descriptor specializations and meanings

This knowledge can be re�ned thanks to the specialization of descriptors �sales� and
��nancial sector�. Therefore, pattern p1,2 is specialized into 12 candidate specialized pat-
terns. The support of each candidate specialized pattern in χϑ′,w(E) is computed and
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results are gathered in Table 4.7. In this example, the support of p1,2 in E is 33 and all
candidate specialized patterns obtained from p1,2 have lower support in χϑ′,w(E).

Note that ϑ′=(A1, . . . , A12) and ϑ[Ai] = 1 if Ai 6=�Industrial sector�, ϑ[Ai] = 0 other-
wise. In other words, χϑ′,w(E) is the summary obtained when descriptors from descriptive
domain �Industrial sector� are generalized one time less; Since ϑ = 〈1〉, i.e. all descrip-
tors are generalized exactly once, ϑ′ is obtained when descriptors from descriptive domain
�Industrial sector� are not generalized at all. Thus, the pattern events specialization mech-
anism requires the building of new summaries. However, we already showed that this task
has negligible computational time.

Now, let us consider candidate pattern p(1,1;2,3) = {e↓1,1, e↓2,3}. In practice, this can-
didate pattern represents a series of two news that can be understood as follows: �some
kind of operation in Islamic �nance and banking occurred in a western country� followed
by �some kind of wholesale operation occurred in a western country�.

Specialized patterns suppχϑ′,w(E)

p(1,1;2,1)={e↓1,1, e↓2,1} 3
p(1,1;2,2)={e↓1,1, e↓2,2} 1
p(1,1;2,3)={e↓1,1, e↓2,3} 4
p(1,2;2,1)={e↓1,2, e↓2,1} 8
p(1,2;2,2)={e↓1,2, e↓2,2} 5
p(1,2;2,3)={e↓1,2, e↓2,3} 15
p(1,3;2,1)={e↓1,3, e↓2,1} 3
p(1,3;2,2)={e↓1,3, e↓2,2} 0
p(1,3;2,3)={e↓1,3, e↓2,3} 9
p(1,4;2,1)={e↓1,4, e↓2,1} 0
p(1,4;2,2)={e↓1,4, e↓2,2} 0
p(1,4;2,3)={e↓1,4, e↓2,3} 0

Table 4.7: p1,2 specialized sequences & support

Interestingly, the support of p(1,1;2,3) in χϑ′,w(E) is only 4. When considering in Fig-
ure 4.2(a) that mining computational time explodes exponentially with the decrease of the
minimum support γ, we can safely claim that pattern p(1,1;2,3) is impossible to discover
in normal conditions. Furthermore, Figure 4.2(b) shows that the number of sequential
patterns discovered also explodes exponentially with the decrease of the minimum support
γ. Hence, even if we suppose mining sequential patterns with γ = 4 was possible in an
acceptable computational time, pattern p(1,1;2,3) would still have been lost in the mass of
sequential patterns discovered.

Now, let us consider pattern p(1,2;2,3) = {e↓1,2, e↓2,3}. Table 4.7 shows that this pattern
has support suppχϑ′,w(E)(p(1,2;2,3)) = 15. This sequential pattern can be understood as
follows: �some kind of operation occurred in the insurance domain in a western country�
followed by �some kind of wholesale operation occurred in a western country�. This series
of events has occurred 15 times in the entire dataset. If the granularity of descriptors that
describe events in this higher order pattern does not satisfy the analyst, he can reiterate
the exploratory mining process and detail the pattern by specializing other descriptors,
e.g., �west�, or by recombining events in p(1,2;2,3).

We have provided in this section a thorough experimental study on mining TSaR sum-
maries with a conventional SPM algorithm. We have shown that for certain applications,
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such as �nancial applications, mining the raw data by means of a conventional SPM al-
gorithm is not su�cient. Interesting patterns, i.e., patterns that involve at least 2 to 4
events, are only extracted for very low support levels, i.e., γ ≤ 0.06%. Unfortunately, at
such low levels of support, the mining computational time simply explodes and the user is
overwhelmed with the mass of patterns extracted. On the other hand, TSaR summaries
have appeared as interesting candidates for supporting SPM algorithms. Experiments
show that it is possible to mine summaries at very low support levels, i.e., γ ≈ 0.01%,
but this operation requires the summaries to be compact, i.e., built with large temporal
locality windows w. However, we provided the two usage scenarios and demonstrated that
applying the exploratory mining methodology on higher order patterns discovered in very
compact summaries could allow the discovery of very precise knowledge.

7 TSaR as a support service in the ADAGE project

Since the late 90's, Reuters has been generating and storing a massive amount of �nancial
information, e.g., market quotes and �nancial news articles. A very natural application
and need that has risen is to correlate both sources of data. For instance, suppose a trader
receives a news �ash on his information system. A most desirable application is to estimate
if this piece of news will have an impact on market shares and when that might occur. This
additional information that is most strategic for analysts to be able to anticipate market
movements to consolidate their customer portfolios.

Time series analysis to estimate stock prices' very short term variations is a well studied
area [Ham94,Hei99,SZ04,Bri08]. However, evaluating the impact of a piece of news on the
evolution of stock prices is a di�erent and (maybe more) di�cult problem. Since �nancial
news contains both unstructured, e.g., free text, and structured data, e.g., attribute-value
pairs, conventional techniques used for analyzing time series can not be leveraged. In fact,
a whole Knowledge Discovery �from Databases� (KDD) process should be implemented to
uncover patterns from news data and then correlate patterns discovered to stock data. This
scenario and the speci�cities of the input data considered has motivated our work to build
a framework dedicated to analyzing time sequences of events where events have complex
structure. Therefore, we present in Section 7.1 the STEAD framework that proposes a set
of tools for discovering knowledge from textual contents. We then present in Section 7.2
the more general project called ADAGE in which STEAD is implemented.

7.1 The STEAD framework

We present hereafter the Service-based TEmporAl Data (STEAD) analysis framework
for discovering knowledge from textual contents. The STEAD framework was designed
to provide analysts with a comprehensive tool that allows them to supervise and inter-
actively re�ne sequential pattern mining on complex data. This tool was demonstrated
in [PSPB+08]. An overview of the STEAD framework is illustrated in Figure 4.4. The
framework is organized into �ve services for processing textual datasets and an additional
service intended for analysts to de�ne and express their understanding of domains of in-
terest in the form of taxonomies. The �ve base services are (i) Data Selection, (ii) Data
preprocessing, (iii) Data transformation, (iv) Data mining and (v) Results evaluation.
These services correspond to the �ve classical steps identi�ed for Knowledge Discovery
from Databases (KDD) proposed by Fayyad et al. in [FPSS96].

Through a User Interface (UI), STEAD allows analysts to specify parameters for set-
ting the di�erent services and con�guring the analysis task. The Domain Knowledge Ac-
quisition service assists analysts in the de�nition of taxonomies that allow them to express
their interests and understanding of speci�c domains regarding the data. Taxonomies are
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Figure 4.4: STEAD analysis framework

then used for controlling other steps of the services, e.g., data cleaning, preprocessing and
TSaR summarization. Knowledge extracted from the input data is then presented to the
analyst through the UI. Analysts may re�ne the taxonomies and/or summarization pa-
rameters and/or mining parameters to further investigate certain aspects of the data or
certain aspects of the higher order patterns discovered. We detail the role of each service
in the following paragraphs.

7.1.1 Domain knowledge acquisition service

The analyst expresses the way raw data should be preprocessed and the way TSaR should
abstract data descriptors through sets of taxonomies over the features he is interested
in. For instance, in previous chapters, we chose to preprocess Reuters's �nancial news
archives and extract descriptors from 15 domains that include: Location, Commodities,
Industrial sector, etc.. For this purpose, we generate background knowledge for these
domains in the form of taxonomies. This background knowledge (i) can already exist, e.g.,
in the form of domain speci�c ontologies such as WordNet, or (ii) needs to be de�ned.
When unde�ned, we propose to manually generate this knowledge thanks to tools such as
Protégé [fBIRatSUSoM] or to automatically generate it using mechanisms as presented in
Section 6.1.2 in Chapter 2. This understanding of the data then serves for all subsequent
preprocessing and transformation tasks.

7.1.2 Data access service

The analyst selects through this service the data source on which he wishes to operate his
analysis. This services acts as a Data Access Service from which the analyst can retrieve
as well the raw input data or any other processed form of the data. This �exibility in the
retrieval of the data is the key to an interactive approach for operating KDD. It allows
analysts to examine data in any form, i.e., in a primitive form, as summaries or as a data
mining result set.
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7.1.3 Data preprocessing service: cleaning and �ltering

Conventional sequential pattern mining algorithms require the input data to be in the
format of a customer transactions database as described in Chapter 1. In order to analyze
textual content, the preprocessing service takes as input (i) a collection of raw structured
or unstructured data, (ii) a collection of taxonomies for the descriptive domains of interest,
(iii) parameters that identify how to organize the data into time sequences and that deter-
mine the nature of the timestamps, i.e., actual dates or integer values, for timestamping
events on the timeline. This service outputs a collection of time sequences. However, this
data preprocessing task is not trivial. When we consider x�nancial news data generated by
Reuters, it contains both structured (i.e. single- or multi-valued categorical descriptors)
and unstructured information (i.e., free text):

• Structured information: For instance, in the context of �nancial news, descriptors
are provided as Topic_codes or Company_ID by Reuters' journalists at the time
a news is written. For example: {Timestamp: 01 Jan 2004}, {Company_ID: AAH.AS

ABN.N MER.N}, {Topic_codes: EUROPE USA Bank INS NL}

• Free text: In �nancial news, free text appears both in the news header and in its
body. For example �Dutch bank ABN AMRO said on Wednesday it had reached
a preliminary agreement to sell its U.S.-based Professional Brokerage business to
Merrill Lynch & Co...�.

Structured information is well handled by SPM algorithms. However, free text needs
to be processed and a set of descriptors extracted to precisely describe the content of
the news article. As discussed earlier in Chapter 2, advanced techniques from Natural
Language Processing can be leverage, e.g., OpenCalais [Reu], or more simple, terms in the
free text that match concepts de�ned in input taxonomies could be extracted to describe
the content of the news. Whatever the technique chosen, an interesting work perspective
is to assess the quality of descriptors w.r.t. the quality of summaries produced and the
quality of the knowledge extracted.

7.1.4 Data transformation service

The purpose of this service is to provide an additional preprocessing step responsible for
building support structures, if needed, for the data mining task the analyst wants to carry
out. For the purpose of mining sequential patterns, we propose to implement a time se-
quence summarization algorithm. We chose TSaR for its capability (i) of reducing the
variability of descriptive domains, (ii) of reducing the numerosity events in time sequences
and (iii) summaries produced are time sequences of events that can be directly exploited
by the underlying data mining algorithms. Also, the analyst has total control over the
knowledge discovered since we have analytically identi�ed and determined the character-
istics of higher order patterns that could be extracted from TSaR summaries. Hence, this
service implements the TSaR summarization algorithm as it is presented in Chapter 2.

7.1.5 Data mining service

The data mining service is the core of the framework for knowledge discovery. The frame-
work was designed to allow any kind of mining but most particularly we focused on sequen-
tial pattern mining for discovering knowledge in Reuters's �nancial news archives in the
form of higher order patterns. This service takes as input a collection of customer trans-
actions and data mining parameters, e.g., the minimum support and the maximum length
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of frequent patterns to discover. The service outputs a collection of frequent sequential
patterns.

Initially, the AprioriAll [AS95] algorithm was implemented for mining sequential pat-
terns but subsequent experiments failed to operate on Reuters's �nancial news dataset.
There are two reasons for this failure: (i) mining �nancial news requires the minimum
support to be very low, i.e., γ ≤ 0.06%, for patterns to be of interest, and (ii) the can-
didate generation phase of Apriori-based algorithms induce a combinatory explosion at
very low levels of minimum support. Therefore, we chose to mitigate these issues by
implementing the more e�cient pre�x-projected pattern growth algorithm called Pre�xS-
pan [PHMA+01]. This service can account for more advanced approaches in the literature,
especially all the work done in Web Usage Mining [MTT04,RKS07] where neural network
based clustering methods are used to partition the input dataset or techniques that only
mine closed sequential patterns such as BIDE [WH04].

7.1.6 Knowledge evaluation and �ltering service

When performing intensive mining, an issue is to assess the mass of knowledge discov-
ered and present to the analyst the information that might be of interest. Indeed, most
existing data mining techniques focus on the e�cient computation of result sets and
give little interest to its quality or usability. The purpose of this service is to provide
a workspace and mechanisms for taking into account analysts' needs, experience and feed-
back to post-process and �lter the result sets. This �ltering activity can be done using
some metrics [GH06], text �ltering, post-mining [Spi99b], etc.. Previous work such as
Xin et al.'s [XSMH06] that focuses on the users feedback for discovering interesting pat-
terns is a very good candidate for extracting golden nuggets from large result sets. In our
implementation of the service, we adopted an approach that allows the analyst to �lter
and select higher order patterns of interest using keyword-based searches. Higher order
patterns selected this way can then be used to discover more re�ned patterns using the
exploratory mining methodology introduced in Section 5.

The STEAD analysis framework presented in this section is an independent KDD
system for analysts to discover knowledge from Reuters's �nancial news archives. As it is
presented here, STEAD does not specify how Reuters's data sources are accessed, how data
from Reuters is modeled and transformed, etc.. The reason is that di�erent components of
the STEAD framework such as the Data access service are actually integrated in a more
generic system called the Ad-Hoc DAta Grids Environments (ADAGE) project. We give
an overview of this project in the following section.

7.2 STEAD as part of the ADAGE project

7.2.1 Overview

The E�cient Management of Information Resources Over Ad-Hoc DAta Grids Environ-
ments (ADAGE) project [Srg,RGY09] is a project funded by the DEST-ISL Competitive
Grants Program (Round 10). The project will also be closely lined to the newly launched
European Union funded project (called SORMA) aimed at developing methods, tools and
software for e�ciently managing grid computing resources.

The ADAGE project is primarily concerned with data grids. A �data grid� is a new
term used to refer to huge repositories of data which are distributed across several hetero-
geneous platforms and systems. In particular, the ADAGE project deals with ad-hoc data
grids which commonly refer to unstructured data, i.e., data that is not formatted according
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to any standards, or dirty structured data, i.e., data that still needs cleaning due to errors
introduced during data generation. Ad-hoc data is becoming increasingly important in all
walks of life. It does not only include data generated by humans but also includes data
generated by machines. For instance, many sensors generate incomplete data, some market
data feeds also generate data with missing information or gaps and documents written by
human operators might contain misspelled terms.

The purpose of the ADAGE project is to investigate how to e�ciently gather, store,
retrieve and process ad-hoc data grids from both a manager and an end-user perspective.
These techniques can bene�t various applications in e-science and e-research including:
Flexible sharing of data among researchers, analysis of information for security purposes,
analysis of sensed data, etc.. Supporting these applications involve researching and ap-
plying a wide spectrum of Information and Communication Technologies (ICT) in areas
as diverse as databases, query-processing, data mining, visualization and grid computing.
For instance, one target application is to understand existing correlations between several
data grids, i.e., market data generated and announcements and �nancial news data grids
from Reuters.

7.2.2 STEAD's place in ADAGE

The ADAGE project is a user-driven Service-Oriented Architecture (SOA) enabling a
separation of concerns regarding large news data provision, processing and visualization.
In each of these three categories of services, re-usable and interoperable software compo-
nents are de�ned as Web Services to manipulate entities of an underlying event-based data
model. ADAGE provides a uniformized framework for representing data from heteroge-
nous sources and relies on the Common Base Event (CBE) Model [OLS+02] promoted by
IBM. This data model was proposed to facilitate the analysis of message-like information
introduced by networked computer systems and captured in log �les.

Therefore, the CBE data model implemented in ADAGE allows to manage data gen-
erated by diverse data grids, e.g., numerical values such as stock values or textual data
such as �nancial news articles, under a same data representation. Hence, all data ob-
jects generated by the data grids are produced as sequences of events. In this conceptual
model, �nancial electronic markets (e-markets) [Her03] can be understood as distributed
event systems producing di�erent types of events such as market events or news events.
Market events capture data attributes such as bid/ask, types of products being traded,
volume/number of products etc.. News events capture data related to particular news
stories being published by news organizations such as Reuters.

From this perspective, the STEAD analysis framework naturally appears as a subsys-
tem of the more general ADAGE architecture. The STEAD analysis framework provides
the tools and services necessary for selecting, summarizing, mining and/or visualizing large
amounts of primitive news events, events summarized into higher level entities or high or-
der patterns extracted from these entities. Generating and using such higher level entities
reduces the number of news entities to manipulate and this makes a range of data mining
techniques feasible on larger datasets. Visualization becomes also feasible on very large
amount of data as a group of news is represented as one single generalized news item.
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8 Related work

8.1 Mining patterns at di�erent levels of representation

The applicative study presented in this chapter relates most to research focused on discover-
ing generalized sequential patterns as introduced by Srikant and Agrawal with GSP [SA96].
Indeed, we mentioned earlier in this chapter that Agrawal and Srikant's extension for se-
quential pattern mining could be understood as a form of higher order mining: (i) tax-
onomies generalize the level of representation of the data, (ii) sliding windows relax the
notion of support of a pattern and (iii) time constraints allow to limit the scope of the
mining operation. These add-ons address various limitations and the rigidity of the original
de�nition of SPM and allow to discover more general knowledge or knowledge at di�erent
levels of abstraction.

This extension to the SPM paradigm has attracted much interest and new methods
have been proposed to improve GSP's Apriori-based performances [LLSYW02,RCYBY04,
MPT04,HY06]. In particular, some methods focus on the temporal aspect of GSPM, i.e.,
the sliding window relation, the minimum and maximum gap parameters:

• Sliding window w: This notion relaxes the de�nition of when a time sequence s con-
tributes to the support of a candidate pattern p. This relaxation allows a collection
of events within a range w, i.e., ei, . . . , ei+w, to support each event ei in p. In other
words, suppose event e = (x, t) in pattern p is not supported by any event in s.
However, there exists two events ei and ei+1 within a neighborhood w of each other,
e.g., ti+1−ti ≤ w, such that x ⊆ xi∪xi+1. In this case, the sliding window relaxation
considers that event e is supported in s, by the combined events ei and ei+1.

• Minimum gap: mingap represents the minimum time gap in a time sequence between
two events that could contribute to the support of a candidate pattern p. This
temporal constraint limits the number of sequences that could support a pattern
and, ultimately, reduces the overall number of patterns that can be discovered.

• Maximum gap: maxgap represents the maximum time gap in a time sequence between
two events that could contribute to the support of a candidate pattern p. This
temporal constraint limits the number of sequences that could support a pattern
and, ultimately, reduces the overall number of patterns that can be discovered.

In a nutshell, these additional temporal parameters allow GSPM algorithms to discover
knowledge at di�erent levels of temporal granularity and even patterns that otherwise
would have remained hidden. The temporal relaxation provided by sliding windows allow
to uncover knowledge that can not be found due to the rigid de�nition of events in tra-
ditional SPM. Methods as DELISP [LLSYW02], EPSpan [RCYBY04] and Hirate et al.'s
method [HY06] are Pre�xSpan-based [PHMA+01] techniques for e�ciently mining gener-
alized sequential patterns. These approaches mainly focus on (i) the temporal relaxation
and (ii) improving the performances of Apriori-based approaches. In [MPT04], Masseglia
et al. propose GTC that takes up the principles of GSP and PSP [MC98]. GTC contrasts
with GSP by handling the temporal constraints in the earlier stage of the algorithm for
more e�ciency.

However, these approaches contrast with our study by the fact they are speci�cally
developed to e�ciently address the temporal aspects of GSPM. In comparison, our study
gives more interest to the semantic aspect of GSPM and proposes to apply o�-the-shelf
SPM algorithms, e.g., Pre�xSpan, to discover higher order knowledge from TSaR sum-
maries.
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When one considers the semantic relaxation introduced by GSPM, one can notice that
this relaxation has an important impact on mining computation performances. Indeed,
semantic relaxation is achieved by extending an itemset by means of adding each item's
antecedents taken from input taxonomies into the itemset. Under the traditional de�-
nition of a subsequence (De�nition 4.1), the computational time of conventional GSPM
algorithms, in particular Apriori-based algorithms, will explode. This e�ect directly results
from adding more abstract terms into itemsets. Mechanically, the variability of itemsets
is reduced and their support augmented: The number of candidate generated by Apriori-
based algorithms at each iteration will increase exponentially. Assuming the mining task
could be achieved in acceptable times, the bene�t of semantic relaxation is it capability of
capturing all patterns that could be discovered on TSaR summaries.

Also, in this work we assume that event descriptors in input sequences form a single-
item itemset, i.e., an itemset is understood as an atomic unit. Thus, we limit the de�nition
of Sequential Pattern Mining to mining sequences of single-item itemsets. As a reminder,
the reasons why we consider such sequences are as follows: (i) Sequences of single-item
itemsets represent one of the most important and popular type of sequence, e.g., DNA
sequences, strings, web click streams etc. [WH04]; (ii) In �nancial news domain, we believe
that the set of descriptors that describes a piece of news is the atomic unit for understanding
its content. A subset of these descriptors is not enough to grasp the entire content of the
news.

In fact, under this assumption, conventional GSPM algorithms can not be leveraged to
discover higher order patterns for the following reasons:

• In GSPM algorithms, semantic relaxation augments items with each item's an-
tecedents taken from the available taxonomies. However, when mining sequences
of single-item itemsets, this relaxation has no bene�t. If a single-item itemset x does
not support a itemset x′, its extended single-item itemset x† will not support x since
∃d ∈ x† such that d /∈ x. Therefore, patterns at higher levels of representation can
not be discovered.

• Sliding window w: The notion of sliding window is less relevant when mining se-
quences of single-items. Indeed, given a candidate pattern p and events ej in p,
events x = ∪xi within a sliding window w from a sequence s must be strictly equal
to events xj for sequence s to contribute to the support of p. In applications such
as �nancial news, xi is a set of descriptors that very precisely describes the semantic
content a piece of news thanks to speci�c vocabulary. It is very unlikely the set of
descriptors x of a random event e equals xj .

For these reasons, GSPM algorithms degenerate into conventional SPM algorithms
under the assumption of sequences of single-item itemsets and do not allow the discovery
of any form of higher order knowledge. This observation comforts our study to transform
input sequences into a more abstract representation beforehand then leverage conventional
SPM techniques to extract higher order patterns.

8.2 General KDD frameworks

We proposed in STEAD a framework that implements all the necessary steps to extract
knowledge from rich textual contents. Fayyad et al. [FPSS96] identi�ed �ve steps in gen-
eral Knowledge Discovery from Databases (KDD) processes: (i) Data selection, (ii) Data
preprocessing, (iii) Data transformation, (iv) Data mining and (v) Results interpreta-
tion/evaluation. These steps are represented in Figure 4.5.
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Figure 4.5: Overview of the steps in a KDD process (source: [FPSS96])

The data mining component in KDD processes has by far received the most attention
in literature. However, we agree with Fayyad et al. [FPSS96] that other steps such as data
preprocessing and data transformation for a particular type of mining are as important.
This view is shared in Ding et al.'s work [DEWY06] where the authors propose a framework
speci�cally designed for mining regional association rules in spacial datasets in 2 phases:
(i) Discovery and identi�cation of subregions of interest through clustering and (ii) spatial
association rule mining.

More general frameworks were proposed by Tsai et al. [TT05] and Pan et al. [DS05]
where the idea of using web services was introduced. Indeed, Tsai et al. [TT05] proposed
a Service-Oriented Architecture (SOA) to support Dynamic Data Mining Processes. The
authors throughly studied the service integration aspects (databases integration, mining
services composition, etc.) of their architecture. However, even though analysts can search,
design and execute mining tasks, their domain knowledge is a valuable source of insight
that was not exploited. We believe in the importance of this knowledge for generating
high quality preprocessed data which is accepted to signi�cantly a�ect mining results. For
this purpose, Pan et al. [DS05] proposed an architecture based on an ontology service that
(i) shares and reuses previous knowledge, (ii) constitutes a knowledge discovery platform
extending support for logical and physical data independence. Our contribution can be
understood as a best pick between these frameworks where each service can bene�t from
(i) all the work done on services integration and (ii) exploit the expressiveness power of
domain knowledge for addressing large volumes of textual contents.

9 Chapter summary

In this chapter, we have focused on the applicative aspect of time sequence summariza-
tion. TSaR was originally designed to build a support structure for chronology dependent
applications on massive data sources, i.e., applications that require the time dimension of
the data to be considered for the output to be meaningful. Sequential Pattern Mining is
one such application. However, there can be a large gap between the purpose of an ob-
ject and its actual utility. For this reason, we proposed to study how well TSaR summary
could support Sequential Pattern Mining in a speci�c application, i.e., mine sequential pat-
terns from Reuters's �nancial news archives. The purpose of this application is to discover
sequential patterns from news data, then use the knowledge extracted to help analysts
anticipate markets.

Roddick et al. introduced and formalized in [RSLC08] the concept of Higher Order Min-
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ing, i.e., any form of data mining on non-primitive data. We showed that our motivation to
operate conventional SPM methods on time sequences summaries could also be understood
as a form of higher order mining. Hence, we build on top of the notions introduced by
Roddick et al., and de�ne and formalize knowledge that is extracted from collections of
time sequence summaries as Higher Order Patterns. Therefore, we recalled the principles
of the sequential pattern mining and thoroughly analyzed higher order patterns that could
be extracted from TSaR summaries. We analytically established the relationships that
link sequential patterns discovered in raw sequences to higher order patterns discovered in
TSaR summaries. We showed that there are situations where this relationship could be
completely characterized, but due to the summarization choices and to the variability of
the data, the more general cases could not be characterized.

Equipped with this theoretical study, we proposed a new methodology to �nd very
precise knowledge from higher order patterns extracted from TSaR summaries. This
methodology is called Exploratory mining and relies on two mechanisms: (i) Pattern Event
Specialization and (ii) Pattern Event Recombination. These two mechanisms directly ad-
dress the processes in TSaR that reduce the accuracy of the data, i.e., (i) generalization
and (ii) grouping.

We provided a thorough experimental study to evaluate how well TSaR summaries
could support conventional SPM algorithms in the task of �nding higher order patterns.
Once again, we used Reuters's �nancial news archives for this study. Our results show
that using TSaR summaries has made it possible to extract patterns having very low
support, i.e., γ ≈ 0.01%, where conventional SPM algorithms simply could not complete.
However, this operation has required the use of very compact summaries and such limita-
tions could be considered as a shortcoming since compact summaries are obtained at the
price of important loss of content and/or temporal accuracy. We address these observa-
tions by providing two usage scenarios. We demonstrated in these scenarios and on the
dataset used that applying the exploratory mining methodology on higher order patterns
discovered from very compact summaries still allows discovery of very precise and speci�c
knowledge.

We mentioned that the purpose of mining Reuters's �nancial news archives is to use
from historical data to help analysts anticipate markets. In fact, mining recurrent patterns
in news archives only represents half of the task. Indeed, one orientation of future work
is to evaluate the impact of patterns, that have been identi�ed as frequent, on the market
data. This problem can also be understood as evaluating the cross-correlation between
patterns mined in news data and market data.
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Conclusion

In this thesis work, we have investigated a particular form of data summarization called
�Time sequence summarization�. Time sequence summarization is a summarization ac-
tivity speci�cally designed to represent time-varying data, e.g., time sequence of events,
in a more concise, yet comprehensive and informative, representation. The originality of
this representation resides in the dual and simultaneous consideration of the content and
the temporal information associated to events. The motivation to design such summary
structure originates from the need in domains such as medicine, the WWW, business or
�nance, for data structures capable of supporting process intensive and chronology depen-
dent applications on very large data sources, i.e., applications that rely on the chronology
of the data to produce meaningful and useful information.

In this context, we made the following contributions.

We started by introducing and formalizing the concept of a �Time sequence summary�.
We proposed several solutions to build a time sequence summary under this de�nition.
The �rst solution is a user-oriented time sequence summarization approach called TSaR.
TSaR is designed to take into account the user's preferences and understanding of speci�c
domains to represent time sequences at di�erent levels of abstraction. TSaR is a three
phase process that builds on top of the generalize and merge paradigm introduced for
Attribute Oriented Induction. The three phases are (i) generalization, (ii) grouping and (iii)
concept formation. Generalization is responsible for representing events at a higher level
of abstraction while grouping is responsible for gathering events similar at a given level of
abstraction that are close on the timeline. Concept formation is responsible for representing
groups formed this way by a single representative event. The semantic accuracy and
the temporal accuracy of the summary are controlled by the user thanks to two input
parameters for the generalization and grouping phases, respectively. We showed through
an extensive set of experiments on real world data extracted from Reuters's �nancial news
archives that TSaR has linear complexity and low memory footprint. Our technique
produces summaries that can achieve high level of compression while preserving the quality
of the data, from semantic and temporal view point.

Then, we proposed to improve our de�nition of a �Time sequence summary� by intro-
ducing the parameter-free property. Doing so, we reformulated the time sequence sum-
marization problem into a novel conceptual clustering problem. The originality of this
clustering problem de�nition resides in the objective function to optimize. Indeed, we
introduced an objective function that takes simultaneously into account (i) the semantic
content of events and (ii) their time of occurrence in the sequence. Hence, the objective
function to optimize is a cost function to globally minimize. This cost considers the e�ort
required to produce a common representation for a group of events and the e�ort required
to gather these events together on the timeline. We proposed three solutions to solve
this problem: (i) N-TSS a basic solution based on Exhaustive Enumeration, (ii) G-BUSS
a greedy hierarchical ascending technique used as baseline and (iii) GRASS a random-
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seeded parallel technique. G-BUSS is a conventional hierarchical ascending approach that
uses our cost function. Since G-BUSS has quadratic computational complexity, we pro-
posed a pruning technique based on the temporal component of the cost function. Our
experiments showed that this pruning technique allows to reduce in practice G-BUSS's
computational time by one order of magnitude. GRASS is a parallel algorithm based on
the pruning technique introduced for G-BUSS that explores the search space at multi-
ple locations simultaneously. Even though GRASS has in theory quadratic complexity,
GRASS improves in practice G-BUSS's computational time by two orders of magnitude
while producing summaries of quality similar to G-BUSS's.

Last, we studied how well a time sequence summarization technique such as TSaR
could support in practice one speci�c chronology dependent application, namely, Sequen-
tial Pattern Mining. In fact, mining sequential patterns from summaries produced by
TSaR can be understood as a form of Higher Order Mining. Therefore, we introduced the
notion of Higher Order Patterns, i.e., sequential patterns that are discovered from time
sequence summaries. We provided a complete analysis and characterization of the knowl-
edge that can be extracted from time sequence summaries w.r.t. knowledge extracted from
non summarized sequences. Thanks to the properties and characterizations presented, we
proposed a new methodology for discovering more precise knowledge from higher order
patterns discovered in summaries. This methodology is called Exploratory mining and
relies on two mechanisms: (i) Pattern Event Rearrangement and (ii) Pattern Event Spe-
cialization. We proposed an extensive set of experiments and showed on some tangible
examples taken from Reuters's �nancial news archives that exploratory mining allows to
identify very precise and speci�c knowledge thanks to the use of higher order patterns
discovered on the summaries.

Throughout this thesis work, we have identi�ed at each stage of the summarization
process several directions for future work. These perspectives are listed as follows:

• The datasets used for our experiments were generated form Reuters's 2003 �nancial
news archives. The operations performed to preprocess the data are simple techniques
that we limited by the need to extract pertinent descriptors from the free text and by
the need to organize the descriptors extracted into taxonomies. Hence, one direction
for future work is to leverage more advanced Natural Language Processing techniques
to extract descriptors, e.g., OpenCalais [Reu], and organize descriptors. It would then
be very interesting to study the summaries produced w.r.t. (i) the compression ratio
that can be achieved and (ii) their quality.

• In this thesis work, we have focused on processing historical data. Therefore, time
sequence summarization is operated in an o�ine mode and is not limited by the
constraints of data streaming environments. One of the most interesting and chal-
lenging work orientation would be operating time sequence summarization in an
online mode. Addressing summarization on data streams comes with several require-
ments: (i) improve the computational complexity of summaries produced, i.e., make
the algorithms linear, (ii) maintain the summary in constrained memory space and
(iii) handle the way the semantic content of events in the summary should be decayed
w.r.t. passing time.

• A last, but not least, future work orientation concerns discovering knowledge from
time sequence summaries. Indeed, we have only studied how sequential patterns
could be extracted from textual contents, e.g., Reuters's �nancial news. In the intro-
duction of this thesis we have presented the scenario of Google taking over Youtube.
We gave examples of questions an investor might be asking himself when Bloomberg
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announces that Google intends to buy DoubleClick. Mining sequential patterns from
the news information thanks to the use of summaries is not enough to answer these
questions. We also need to study how to cross-correlate patterns mined over the
news with market data. This is another interesting and most challenging problem to
tackle.
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Appendix A

Background Knowledge

This section of the appendix synthesizes in Table A.1 di�erent sources where Background
Knowledge can be acquired as taxonomies or ontologies.

Table A.1: Example of published domain speci�c ontologies and taxonomies
Name Description

Basic Formal Ontology
A formal upper ontology designed to support sci-
enti�c research

BioPAX
An ontology for the exchange and interoper-
ability of biological pathway (cellular processes)
data.

BMO
An e-Business Model Ontology based on a review
of enterprise ontologies and business model liter-
ature.

CCO (Cell-Cycle Ontology)
An application ontology that represents the cell
cycle.

CContology
An e-business ontology to support online cus-
tomer complaint management.

CIDOC Conceptual Reference
Model

An ontology for cultural heritage.

COSMO

A Foundation Ontology (current version in
OWL) that is designed to contain representations
of all of the primitive concepts needed to logi-
cally specify the meanings of any domain entity.
It is intended to serve as a basic ontology that
can be used to translate among the representa-
tions in other ontologies or databases. It started
as a merger of the basic elements of the Open-
Cyc and SUMO ontologies, and has been sup-
plemented with other ontology elements (types,
relations) so as to include representations of all
of the words in the Longman dictionary de�ning
vocabulary.

Continued on next page
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Table A.1: continued from previous page
Name Description

Cyc
A large Foundation Ontology for formal repre-
sentation of the universe of discourse.

Disease Ontology
Designed to facilitate the mapping of diseases
and associated conditions to particular medical
codes.

DOLCE
A Descriptive Ontology for Linguistic and Cog-
nitive Engineering.

Dublin Core A simple ontology for documents and publishing.
Foundational, Core and Linguistic Ontologies.
Foundational Model of Anatomy An ontology for human anatomy.
Gene Ontology for genomics.

GUM (Generalized Upper Model)
A linguistically-motivated ontology for mediat-
ing between clients systems and natural language
technology.

Gellish English dictionary

An ontology that includes a dictionary and tax-
onomy that includes an upper ontology and a
lower ontology that focusses on industrial and
business applications in engineering, technology
and procurement. See also Gellish as Open
Source project on SourceForge.

GOLD General Ontology for Linguistic Description

IDEAS Group
A formal ontology for enterprise architecture be-
ing developed by the Australian, Canadian, UK
and U.S. Defence Depts.

Linkbase
A formal representation of the biomedical do-
main, founded upon Basic Formal Ontology.

LPL Lawson Pattern Language

NIFSTD
Ontologies from the Neuroscience Information
Framework: a modular set of ontologies for the
neuroscience domain.

OBO Foundry
A suite of interoperable reference ontologies in
biomedicine.

Ontology for Biomedical Investiga-
tions

an open access, integrated ontology for the de-
scription of biological and clinical investigations.

OMNIBUS Ontology
An ontology of learning, instruction, and instruc-
tional design.

Plant Ontology
For plant structures and growth/development
stages, etc..

POPE
Purdue Ontology for Pharmaceutical Engineer-
ing.

Continued on next page
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Table A.1: concluded from previous page
Name Description

PRO
The Protein Ontology of the Protein Information
Resource, Georgetown University.

Program abstraction taxonomy.
Protein Ontology for proteomics.
Systems Biology Ontology (SBO) for computational models in biology.
Suggested Upper Merged Ontology a formal upper ontology.

SWEET
Semantic Web for Earth and Environmental Ter-
minology.

ThoughtTreasure ontology.
TIME-ITEM Topics for Indexing Medical Education.
YATO Yet Another Top-level Ontology.
WordNet A lexical reference system.
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Appendix B

Algorithms

This section of the appendix gathers utility pseudo-code for the time sequence summari-
zation algorithms proposed throughout this dissertation.

Algorithm 8 PopulateHashFromSubtree
1. INPUTS:
T : XML tree node
L: List of leaves
Hash: Hashtable

2. OUTPUT: None
3. LOCAL: N : Son node

4. for all (Son node N of T ) do
5. Hash.add(N,T )
6. if (N is a leaf) then
7. L ← L ∪N
8. else
9. PopulateHashFromSubtree(N ,L,Hash)
10. end if
11. end for
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Algorithm 9 Populate hashtable from XML tree pseudo-code
1. INPUTS:
g: Generalization level for the descriptive domain DA (we assume g ≥ 1)
T : Taxonomy HA for descriptive domain DA in XML tree

2. OUTPUT: Hash: Hashtable with precomputed generalizations
3. LOCALS:
L: Current list of leaves in HA

NewL: New list of leaves

4. Initialize L
5. Initialize Hash with Hash.add(T, T )
6. Call PopulateHashFromSubtree(T ,L,Hash)
7. g ← g − 1 {// Update number of generalizations already performed}
8. while (L 6= {T}) do
9. Initialize NewL
10. for (int i = 0;i ≤ L.count;i+ +) do
11. if (NewL.contains(Hast[L[i]])) then
12. NewL ← NewL ∪ Hast[L[i]]
13. end if
14. for (int j = 0;j ≤ g − 1;j + +) do
15. Hash[L[i]] ← Hash[Hash[L[i]]]
16. end for
17. end for
18. L ← NewL
19. end while
20. return Hash
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Résumé de séquences d’événements : théorie et applications 

Résumé 
 

Les domaines de la médecine, du web, du commerce ou de la finance génèrent et stockent de grandes masses d'information sous la 
forme de séquences d'événements. Ces archives représentent des sources d’information très riches pour des analystes avides d’y 

découvrir des perles de connaissance. Par exemple, les biologistes cherchent à découvrir les facteurs de risque d’une maladie en 
analysant l’historique des patients, les producteurs de contenu web et les bureaux de marketing examinent les habitudes de 
consommation des clients et les opérateurs boursiers suivent les évolutions du marché pour mieux l’anticiper. Cependant, ces 

applications requièrent l’exploration de séquences d’événements très volumineuses, par exemple, la finance génère quotidiennement 
des millions d’événements, où les événements peuvent être décrits par des termes extraits de riches contenus textuels. La variabilité 
des descripteurs peut alors être très grande. De ce fait, découvrir des connaissances non triviales à l’aide d’approches classiques de 

fouille de données dans ces sources d’information prolixes est un problème difficile. Une étude récente montre que les approches 
classiques de fouille de données peuvent tirer profit de formes condensées de ces données, telles que des résultats d'agrégation ou 
encore des résumés. La connaissance ainsi extraite est qualifiée de connaissance d'ordre supérieur. À partir de ce constat, nous 
présentons dans ces travaux le concept de « résumé de séquence d’événements » dont le but est d'amener les applications 
dépendantes du temps à gagner un facteur d'échelle sur de grandes masses de données. Un résumé s'obtient en transformant une 
séquence d'événements où les événements sont ordonnés chronologiquement. Chaque événement est précisément décrit par un 
ensemble fini de descripteurs symboliques. Le résumé produit est alors une séquence d'événements, plus concise que la séquence 
initiale, et pouvant s'y substituer dans les applications. Nous proposons une première méthode de construction guidée par 
l'utilisateur, appelée TSaR. Il s'agit d'un processus en trois phases : i) une généralisation, ii) un regroupement et iii) une formation de 
concepts. TSaR utilise des connaissances de domaine exprimées sous forme de taxonomies pour généraliser les descripteurs 
d’événements. Une fenêtre temporelle est donnée pour contrôler le processus de regroupement selon la proximité temporelle des 
événements. Dans un second temps, pour rendre le processus de résumé autonome, c’est-à-dire sans paramétrage, nous proposons 
une redéfinition du problème de résumé en un nouveau problème de classification. L’originalité de ce problème de classification tient 
au fait que la fonction objective à optimiser dépend simultanément du contenu des événements et de leur proximité dans le temps. 
Nous proposons deux algorithmes gloutons appelés G-BUSS et GRASS pour répondre à ce problème. Enfin, nous explorons et 
analysons l'aptitude des résumés de séquences d'événements à contribuer à l'extraction de motifs séquentiels d'ordre supérieur. Nous 
analysons les caractéristiques des motifs fréquents extraits des résumés et proposons une méthodologie qui s'appuie sur ces motifs 
pour en découvrir d'autres, à granularité plus fine. Nous évaluons et validons nos approches de résumé et notre méthodologie par un 
ensemble d'expériences sur un jeu de données réelles extraites des archives d'actualités financières produites par Reuters. 
 
Mots-clés : Séquence d’événements, résumé, temps, données catégorielles, fouille de données, classification, motifs séquentiels 
 

Time Sequence Summarization : Theory and Applications  

Abtract 
 

Domains such as medicine, the WWW, business or finance generate and store on a daily basis massive amounts of data. This data is 
represented as a collection of time sequences of events where each event is described as a set of descriptors taken from various 
descriptive domains and associated to a time of occurrence. These archives represent valuable sources of insight for analysts to 
browse, analyze and discover golden nuggets of knowledge. For instance, biologists could discover disease risk factors by analyzing 
patient history, web content producers and marketing people are interested in profiling client behaviors, traders investigate financial 
data for understanding global trends or anticipating market moves. However, these applications require mining massive sequences, 
e.g., finance can generate millions of events daily, where the variability of event descriptors could be very high, since descriptors 
could be extracted from textual contents. For these reasons, discovering golden nuggets of knowledge for such domains with 
conventional data mining techniques is a challenging task. Recent studies show that data mining methods might need to operate on 
derived forms of the data, including aggregate values, previous mining results or summaries. Knowledge extracted in such a way is 
called Higher Order Knowledge. In this thesis work, we propose to address this challenge and we define the concept of “Time 

sequence summarization” whose purpose is to support chronology-dependent applications to scale on very large data sources. Time 
sequence summarization uses the content and temporal information of events to generate a more concise, yet informative enough, 
time sequence that can seamlessly be substituted for the original time sequence in the desired application. We propose a user-
oriented approach called TSaR built on a 3-step process: generalization, grouping and concept formation. TSaR uses background 
knowledge in the form of taxonomies to represent event descriptors at a higher level of abstraction. A temporal parameter controls 
the grouping process and only allows events close on the timeline to be gathered. Also, we propose to make the time sequence 
summarization process parameter-free. For this purpose, we reformulate the summarization problem into a novel clustering problem. 
The originality of this clustering problem relies on the specificity of the objective function to optimize. Indeed, the objective function 
takes into account both the content and the proximity of events on the timeline. We present two greedy approaches called G-BUSS 
and GRASS to build a solution to this problem. Finally, we explore and analyze how time sequence summaries contribute to 
discovering Higher Order Knowledge. We analytically characterize the higher order patterns discovered from summaries and devise 
a methodology that uses the patterns discovered to uncover even more refined patterns. We evaluate and validate our summarization 
algorithms and our methodology by an extensive set of experiments on real world data extracted from Reuters’s financial news 

archives. 
 
Keywords : Time sequence, event sequence, summarization, categorical data, data mining, clustering, sequential pattern mining 
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