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CHAPTER

INTRODUCTION

Once upon a time...

U NTIL the second half of the nineteenth century, science studied macroscepicmh
ena that were directly perceptible by human senses, even though sciegtistsften
led to enhance the sensory perception with the more objective measureniastsiofients.
For instance, microscopes allowed biologists to discover cells — the buildingsbdddife
— and their inner structure. In the field of physics, scientists studied mieshalectricity,
optics, acoustics but also thermodynamics and states of matter. All these donsaim
considered independent in the nineteenth century. In particular, thgnmamicians were
far from imagining that their theory would take its roots in mechanics.

Despite its successes, macroscopic physics was condemned to evengeltg foin-
damental character to the benefit of microscopic physics. Indeed, teeeaith century
saw the accession at the scientific level of the antique philosophical idea dabthe dy-
pothesis introduced by Leucippus and his student Democritus in the fifthrgeiQ. [1].
The quantitative study of chemical reactions revealed some stoichiometric latvdotim
Dalton and Amedeo Avogadro interpreted very convincingly within the frame aitibraic
hypothesis: reactants were aggregates of microscopic compog@ge8}s This hypothesis,
which was first considered a convenient way of presenting results e-isiwas impossible
at that time to directly prove the existence of atoms — progressively gaioeddduring
the nineteenth century.



James C. Maxwell, who was at first reluctant to take position in favor of ateassthe
first to introduce probabilistic methods to compute the distribution of particle velpaitie
gasin 18604, 5]. In 1872, Ludwig Boltzmann set the building blocks of out-of-equilibrium
statistical mechanics by introducing the so-called Boltzmann equation thaibasstnre
generic transport properties in a gas by taking into account the dynafricdlisions. In
1877, he was the first to give a probabilistic interpretation of the secondiflerof ther-
modynamics with its celebrated formdi&or the entropyS = kg In [6]. This resolved
the paradox raised by Lord Kelvin (and relayed by Johann J. Loschthilt)it seemed
impossible to deduce irreversible phenomena from microscopic mechaystairs.

In 1902, Josiah W. Gibbs formalized and generalized the previous rexults C.
Maxwell and L. Boltzmann without the use of molecular models in the first modeatytr
of statistical physics7]. Indeed, refusing to enter the debate about the very structure of
matter, he reformulated statistical mechanics by introducing the conceptsafical and
grand canonical ensembles. Statistical physics was born and it wastodael generalized
to the study of quantum systems.

In 1905, the same year he unified mechanics and electromagnetism with thedheo
special relativity and proposed the quantization of light, Albert Einstein puddisim arti-
cle [8] devoted to the observable consequences of statistical physics thantsidared as a
fundamental theory. Phenomena that occur at our scale are more diréet€onsequences
of underlying mechanisms involving microscopic constituents and their propénagone
is entitled to study to get a fundamental understanding of the whole physoréd. wA.
Einstein was the first, together with Marian von Smoluchovski, to understandhi con-
tinual and irregular motion of small particles in water (observed first in 1828dpotanist
Robert Brown with pollen particles, then with inorganic materif]}ig caused by the ther-
mal agitation of the water molecules. In his 1905 article, he computed the fluctsiafitre
Brownian particles and showed that they can be tested experimentally.€ankater, Jean
B. Perrin conducted a series of refined experiments in which he meaber¢djectories
and velocities of grains of different sizes and masses in solution. By usiiigjnatein’s
theory, he showed, that one could obtain a precise estimate of the Aeagaaiber by dif-
ferent methods. His experiments put a definitive end to the controversydthe atomic
hypothesis 10].

The first theoretical insight into non-equilibrium statistical physics is due ts Ca-
sager who, in 1931, worked out the classical thermodynamics of stateslese to equi-
librium [11, 12]. He established that the crossed effects in a physical system, forgestan
the coefficient that relates the heat flux to the pressure gradient andéhbat relates the
particle flux to the temperature gradient, are equal. These relations arenown las the
Onsager reciprocal relations. Herbert B. Callen and Theodore A. Weitmred in 1951

1. This expression of the formula was given by Max K. E. L. Planck in0190



the so-calledluctuation-dissipation theoremvhich predicts the non-equilibrium behavior
of a system — such as the irreversible dissipation of energy into heat —itsaeversible
fluctuations in thermal equilibriunip].

The development of far from equilibrium statistical physics had to wait untiséeend
half of the twentieth century. The study of phase ordering dynamics b&gaoon as a
better understanding of the phase transitions was given by the theory &f.lLendau [L4]
and new field theoretical tools were borrowed from high energy physics

The interest in disordered systems began with Philip W. Anderson whasteghjin
1958 the possibility of electron localization inside a semiconductor, providedheale-
gree of randomness of the impurities or defects of the underlying atomic laititdo¢
sufficiently large. In 1974, together with Samuel F. Edwards, he intratitlee so-called
Edward-Anderson (EA) model to describe a class of dilute magnetic all@}sThis first
spin glass model lead to a new phenomenology and new theoretical concetbis same
paper, they introduced a new order parameter for the study of spireglassed on the
concept of replica. Replicas were later used in 1979 by Giorgio Parisilte she statics
of the Sherrigton-Kirkpartrick (SK) model, introduced in 1975 by Davic@igton and
Scott Kirkpartrick [L7], which is the mean-field version of the EA mod&H]. Its out-of-
equilibrium dynamics after a quench in temperature were worked out in 1994ticia
F. Cugliandolo and Jorge Kurchahd. The techniques and concepts that have been de-
veloped in spin glass theory have led to several valuable applications in theatas
such as probability theory2D, 21], computer science, information science, biology and
economics 22-24].

A major breakthrough in out-of-equilibrium statistical physics took place thepast
twenty years with the discovery of exact fluctuation relations in systems df@reinom
equilibrium. These so-calleftuctuation theoremdeal with the fluctuations of entropy or
related quantities such as irreversible work, heat or matter currents. pFafsosed and
tested using computer simulations by Denis Evans, Eddie G. D. Cohen andViGeigs
in 1993 R5], much mathematical and computational work has been done in the following
years to show that the fluctuation theorems apply to a large variety of situationsasuc
isolated systems or systems in contact with a thermal bath, closed or opensydtessical
or quantum systemg§6-30].

1.1 Systems coupled to an environment

Systems in nature are never isolated. In order to give an accuratéptiescof their
properties or to be able to justify why they can be treated as isolated, oneridex to study
the impact of their environment. Both the environment and the system itselbasétaents
of an energy-conserving global system (so-called universe) antbtimer is supposed to



have many more degrees of freedom than the latter.

In some simple cases, like when the system and its environment are in equilibrium,
a few parameters are needed to characterize the influence of the envitgortbat one
can concentrate again on the system of interest solely. However, innleeagjease one is
constrained to describe the environment and its coupling to the system ostntedetail.

We make the distinction between equilibrium environments and non-equilibrium en-
vironments. All the internal variables of the former are in equilibrium. This méans
particular that the fluctuation-dissipation theorem is satisfied for all possiblelamrs of
these variables and their corresponding responses. An equilibriunoemant is said to
be ‘good’ if its stays in equilibrium irrespective of the state of the system it imtact
with. This is typically achieved by environments with a large enough numbergoéds of
freedom so that their macroscopic properties do not fluctuate.

In the so-called canonical situation, the environment is made of one or séveral
mostats that are reservoirs of energy. The thermal contacts betweeystbmsand the
reservoirs allow for the exchange of energy, but particles canne¢ lgee system. In R.
Brown’s experiment of 1828, the pollen particles and the surrounding wadkecules that
constitute the thermal bath interact through short-ranged and highly nar-forees such
as Lennard-Jones forces. If the environment is composed of $éwemaostats at the same
temperature, they constitute an equilibrium environment. If they have differetetea-
tures, they constitute a non-equilibrium environment which induces a heathitowgh the
system. Non-equilibrium environments are expected to drive any systenic¢h thley are
connected out of equilibrium. By extension, we also consider all typestefred forces or
fields applied directly to the system as non-equilibrium environments.

The canonical set-up can be generalized to the grand canonical situatoa tvb sys-
tem also exchanges particles with its environment. This describes situations im ahic
fermionic system is connected to two electronic leads. As soon as they tdifferant
chemical potential, they constitute a non-equilibrium environment and a cestiilishes
through the system.

Finally, we would like to stress the fact that the distinction between the systemraatd w
is treated as the environment is not always clear. Sometimes it is even posdielat one
part of the system as an environment of another part. This has beerfatoexample in
cosmology with self-interacting quantum fields in which the short-wave lengtlessetve
as thermal baths for longer wave-length modes with slower dynaiesS.

Systems with disordered interactions

Disorder breaks spatial homogeneity such as translational symmetry. In albodpy
system, disordered interactions can either be found in one-body interagticimas a mag-



netic field or in two(or more)-body interactions between the particles. Thetyps of
disorder is when some of the degrees of freedom of a system are caom@dexternal
spatially disordered potential. We include the case of the coupling to a diedréietd
(so-calledrandom field. It occurs in most ferromagnets where the underlying crystalline
structure shows some defects randomly distributed in the sample that gite sisd¢ic ran-
dom local magnetic fields. In cold atom experiments, a spatially disorderendtiabteap

for the atomic gas can be realized by using a laser speckle. The secendftgisorder

is when randomness is found in the interactions between the particles of tegyan-
dom bond} It occurs for instance just after high temperature initial conditions when th
configuration of this system is disordered. In glasses, the Lennaes jartential between
particles has an attractive and a repulsive part, depending on the anteig distance.
This creates frustration in the sense that each particle receives frorartbersding par-
ticles ‘contradictory’ messages concerning where it should move to. Irexaisiple, the
disorder is self-induced and co-evolve with the positions of the particless iStcalled
annealeddisorder. In the case the time scale on which the competing interactions evolve
is much longer than the time of the experiment, they can be considered as tanstame
disorder is referred aguenched

Quenched randomness may be weak or strong in the sense that the éiysotypary to
the second, does not change the nature of the low-temperature plaasianiRfields in 8d
ferromagnet belong to the first type as the existence of an ordered diateedemperature
was proved rigorously36, 37]. In the contrary, random bonds equally distributed between
positive and negative values belong to the second category and leadgiolyaftustrated
and disordered phase at low temperatures. This phase is widely beliebedatglassy
phase although it has not been proved analytically.

Glassy systems are systems whose relaxation time becomes extremely long when a
control parameteg.g. the temperature, is changed. Experimentally, the slowing down of
the dynamics manifests itself in the very fast growth (typically orders of madgitof the
viscosity with decreasing temperature. A ‘glass transition’ is said to occun thiisudden
growth is well localized around a characteristic temperafgreUnderT,, the relaxation
time grows beyond the experimentally accessible time scales and the systenmdstbou
evolve out of equilibrium. In conventional glasses, this temperature depenitie history
of the sample, in particular on the rate at which the temperature has beed.célgace
the glass transition is not a true thermodynamic transition but rather a dynansoweas
Disordered interactions is the characteristic ingredient believed to lead tcetiasibr.

AboveT,, there are two typical phenomenological behaviors of the viscosity asca fu
tion of the temperature. In the so-called strong glasses, the viscosity followsrae-
nius law as it grows asxp(A/T'), where A is some activation energy. The viscosity of
the so-called fragile glasses obeys a Vogel-Fulcher law, which is aredius law with a
temperature dependent activation eneryy= BT /(T — Ty) whereTj is a material de-



pendent temperature around which the relaxation diverges even faastethih Arrhenius
law [38, 39].

Spin glasses are prototypical systems of glasses with strong quencbetedisl inter-
actions. They are simple models of magnetic impurities randomly distributed in a static no
magnetic medium. The Ruderman-Kittel-Kasuya-Yosida (RKKY) interactionsdsivihe
impurities depend on their relative distances. Since the latter are randomtdfraciions
take random values in sign and strength. In the case of spin glassesatbenany corrob-
orating facts supporting the idea that the glass transition is a true thermodynarsitidran
(e.g.the invariance of’, with the cooling rate)40-44].

Quantum spin glasses are spin glasses where quantum fluctuations péaynadalition
to thermal fluctuations. These quantum fluctuations act as another disorfieldnghich
usually reduces the transition temperature. In the vicinity of a phase transitmmzagro
temperature, the critical behavior of a quantum spin glass model is the satma athe
classical model; thus the effect of quantum mechanics merely renormatinesniversal
quantities such as the transition temperatdge4 7).

Dynamics

Let us consider the most generic situation in which a system is prepared aftime
some initial condition and let us evolve with a given protocol. There are mainlyways
of creating non-equilibrium dynamics.

Equilibrium environment. Quench.

The first one consists in evolving the system with an equilibrium environmeind ties
not correspond to that which is used to prepare the system. For insiarzcgyenchone
prepares the system in equilibrium at a very high temperadtarel suddenly lowers the
temperature of the thermal bath. This very simple protocol is a good startingtpaan-
erate and study out-of-equilibrium dynamics. It turns out, as we shalltisaethere exist
well developed analytical methods to deal with it, from a classical and qoramtechan-
ics standpoint. The system subsequently relaxes on a time gggleto an equilibrium
corresponding to the new values of the control parameters. More @hedisis so-called
thermalization is said to be reached when the density matrix of the system is gitea b
Gibbs-Boltzmann distribution. This puts three conditions on the final density métax:
the final density matrix is constant in time, that it does not depend on the initiadstéte of
the bath (but rather on macroscopic characteristics such as the temgeaaidithat it does

2. Notice that it is not always possible to prepare a system in equilibriurgiaea temperature. A prepara-
tion at very high temperature (compared to all the other energy scatdsenl is nevertheless always possible
to achieve.



not depend on the initial state of the system. Notice that a general prabifthermaliza-
tion of quantum systems is still lacking although the first two conditions above lesare b
shown in 8]. Indeed the main difficulty emerges from the fact that quantum mechanically
even when we have complete knowledge of the state of a sysegnit,is in a pure state and
has zero entropy, the state of a subsystem may be mixed and have nentzepy. This

is different classically where probabilities arise as a purely subjectikedbknowledge,
since in principle the knowledge of a whole system implies the knowledge ofwaimsys-
tem. Both classically and quantum mechanically, the question of knowing whatmet

a system thermalizes is not always of practical interest. The relevastiguén practice

is to know for instance how the typical time of the experiment,, compares withrjax.

As long as the number of degrees of freeddhstays finite, the system always reaches the
equilibrium in a finite time. But in the thermodynamic limif — oo, one has to see how
Trelax SCales withV. For example, in th8d Ising model which is the simplest model for a
3d ferromagnet, the largest relaxation time scales@$cN?/?) with the constant > 0 of
order one 49].

If Trelax IS Much shorter than.,,,, once equilibrium is established, the state of the system
depends only on the instantaneous values of the state parameters sutipestiere or
pressure and all equilibrium environments are equivalent no matter theofdim strength
of their coupling to the system. The statics of the system can be computed directly in
the canonical ensemble with no need to model the environment. If a contewhpter €.g.
temperature) of the equilibrium environment is changed quasi-staticallp( a time scale
much larger tham,..x), the system is expected to follow instantaneously the environment
and the tools of statistical mechanics can still be used in this time-dependbldmro

If Trelax IS Much longer tham.,,, the statics are irrelevant since an equilibrium state is
never reached, at least within the time of the experiment.

Dynamics through a phase transition. If a quench is performed from a high temperature
equilibrium state to another temperature in the high temperature phase, omtsekge
dynamics to quickly relax towards the new equilibrium state. However, if theadues
performed down to a temperature where the system is expected to shodesedphase,
non-trivial dynamics occur and the new equilibrium state may never beegdach

This is for instance the case of the ferromagnet after a quench throagetiond or-
der phase transition. The order parameter has to choose between theadegenerate
minima of the free energy. Because different parts of the system carsiahtaneously
communicate with each other, the order parameter takes simultaneously difeiess in
different regions of the sample. The relaxation proceeds by the annihilatitre walls
(topological defects) separating the domains of up spins and down spitige thermody-
namic limit this yields a never-ending competition between domains and the overakmagn



tization remains zero. A growing length scalet), can be easily identified by measuring
the typical size of the domains. In the absence of disoRigpically grows as/z.

The picture is slightly different for a quench through a first order phi@sesition with
degenerate free energy minima in the low temperature phase. Domains durmang
stantaneously after the quench but there is a temperature-dependesitriygleation time
before the local order parameter chooses a free energy minimum. dieetie¢ first stage
of the dynamics shows some domains forming and expanding freely. It isndréy all
the sample is populated by domains that competition between them becomes that releva
process.

This out-of-equilibrium phenomena is known in this geometrical contexthase or-
dering dynamicsMore generally, the competition between two (or more) low temperature
ordered phases is namedaarsening

The two-time observables like two-time correlations or two-time response fuscien
generally considered in experiments, theories and numerical simulatioreedtidey are
the simplest non-trivial quantities that give information on the dynamics of ersyp0-
52]. In equilibrium, correlation and response are linked through the fluctuatioipdism
theorem which is broken out of equilibrium. Theoretically, they are usudbyee in a sim-
ple way to the Green functions for which an important artillery of computational odstis
available. Experimentally or in numerical simulations, two-time correlations are cqste e
to measure since they entail taking two snapshots of the system at diffienesstduring
the evolution. The behavior of the response function was shown to be rédagedmetric
properties of the domain walls such as roughness and topological iesdes, 54]. How-
ever its measurement is usually not an easy task since it requires a ldisticgtbaveraging
to get a good signal-to-noise ratio.

In the coarsening regime, the behavior of two-time observables can bendesed in
two steps. For short time differences, the observables probe theilosplace and in time)
properties of the sample. They are expected to behave as if equilibriumacieiered. In
particular, they should be function of the time-difference only and the fluctudigsipation
theorem is expected to hold in those short temporal windows. Howevearfger time-
differences, the non-equilibrium features are expected to show up like skeofatime-
translational invariance. The time scalg that separates this two regimes is usually a
growing function of the age of the systam. the time spent after the quench. The older
the system is, the longer it will take for two-time observables to relax. Thisghenon is
calledaging

Effect of disorder. In the presence of weak quenched disorder, dynamics are expected to
be slower than in the pure case due to the induced frustration and the pirirtivegioter-
faces. At zero temperature, this can even lead to a complete cessatiowtf.gror finite



temperatures, thermal fluctuations can release the pins, but in generapited tgngth
R(t) grows slower than is the pure case (typically logarithmically in tins&}-57].

In the presence of strong disorder, such as in spin glasses, the sldaxinygof the
dynamics is even more catastrophic. As the nature of the ground state lssiotrinsically
disordered, the identification and the observation of such a growing lendérsoaains an
important question because a diverging length scale at the glassy transititthlveoa key
argument in favor of a true thermodynamic transition scenario.

Non-equilibrium environment. Drive.

The second way to generate non-equilibrium dynamics is to couple the syst&m to
non-equilibrium environment such as those we mentioned earlier. When aruoiostz,
field or drive is applied during the evolution of the system, a steady state mayligsta
after a transient if the system has the capacity to dissipate the energy thattedn As
an example of a classical drive, the rheometer is an instrument used texihae the
rheological properties of fluids such as viscosity. It imposes a corsttaar deformation to
the fluid, and one monitors the resultant deformation or stress once in a statedy¢hen
it comes to time-dependent non-equilibrium environments, the most importanpkesare
the cyclic protocols in the mechanism of heat engines used to producesfoa energy.

1.2 Models and methods

In the following, we list the particular models we use to study the effect ofrdeso
on coarsening phenomena, the glassy dynamics and the effect of quanttuations. We
later briefly present the basic analytical and numerical tools to analyzedire@mics.

Models

Coarsening. The archetypal examples of coarsening phenomena are ferromadpielts w
can be simply described by thig(n) lattice models. They are made uprfcomponent
vectors of fixed length (called spins) placed on the nodes of&dimensional lattice and
interacting through nearest-neighbor ferromagnetic interactidns- (0). Typically, we
think of a (hyper-)cubic lattice i dimensions where each spin Haknearest neighbors.
Their Hamiltonian reads

HZ—ZJSZ‘~Sj, (1.1)
(i.7)

with the constraints; - s; = n. Forn = 3 it corresponds to the Heisenberg model, for
n = 2 it is called theXY model whereas fon = 1 it reduces to the well known Ising
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model (s; = +1). Notice the absence of a kinetic term in the Hamiltoniarl)( This
is justified for processes in which inertia can be neglected or when studyargdtics in
which kinetic terms typically supply trivial contributions. Therefore thereraréntrinsic
dynamics and the relevant dynamics will be given by coupling the system tvanrement.

At a critical temperaturé, depending on the values afandd, these models undergo
a phase transition from a high-temperature phase where the typical sfigucations are
disordered to a low-temperature phase where all the spins tend to align imteelsaction.

Although lattice models are quite amenable for numerical simulations, it is often diffi-
cult to deal with the discreteness of the lattice analytically. A first possibility i®tsicler
the mean-field (or fully-connected) versions of the models that correlsjpaihe Hamilto-
nian

T
H=—+ > Tsi-s;. (1.2)
i<j=1

Thel/N prefactor is there to ensure that energy scales Wiltthe total number of spins) in
the thermodynamic limifV. — oo. This approximation is equivalent to taking tlie— oo
limit and wipes out the effects of small dimensionality. Another possibility is to write a
effective field theorya la Ginzburg-Landau for the coarse-grained other parameter (
the local magnetization). Theé-dimensionalO(n) non-linear sigma model is a coarse-
grained approximation of theg&(n) lattice models. The spatial dependence is given by the
continuousi-dimensional vectok and the spins are upgradedrtadimensional real fields
¢(x). The Hamiltonian reads
u

1 (00000 . (13

1= [ at [jv@s(x) Vo) - Lo plx) +

The first term models the nearest-neighbor interactions. The field compa@agntizke any
real value. However the interplay between the quadratic and quartic tesithsu( g > 0)
favors thep(x) - ¢(x) = n g/u configurations.

Weak disorder. Weak disorder can be introduced in the previous models by adding an
interaction with a spatially random magnetic fidl For theO(n) lattice models this
yields the following Hamiltonian:

H=-) Jsi-sj—Y H;-s;. (1.4)
(i.4) i
We shall focus on the cagse= 3 andn = 1, the so-called random field Ising modaki(

RFIM), with 6 nearest neighbors and a bimodal distribution for the randelusfiF; =
+ H with equal probability).

The RFIM is relevant to a large class of materials due to the presenceenftsiétiat
cause random fields. Dilute anisotropic antiferromagnets in a uniform fieltharmost
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studied systems expected to be described by the RFIM. Several revielesadescribe

its static and dynamic behaviob{] and the experimental measurements in random field
samples have been summarizedi8][ Dipolar glasses also show aspects of random field
systems$9, 60].

In the caseH = 0, the RFIM reduces to the pure Ising model with a phase tran-
sition from a paramagnetic to a ferromagnetic state occurring at a critical tataper
T, ~ 4.515J. Itis well established that id = 3 (not ind = 2) the ordered phase sur-
vives for finite H: there is a phase separating line on tiie /') plane joining(7., H = 0)
and (T = 0, H.) with H. ~ 2.215(35) J [61, 62]. At T" = 0 and small magnetic field,
it has been rigorously proven that the state is ferromagna@c37]. The nature of the
transition close to zero temperature has been the subject of some debate. Clidibgs o
ing first order B3] have now been falsified and a second order phase transition has been
proven B4, 65]. The presence of a spin glass phase closglte= 0, H.) [66] has been
almost invalidatedq7] although there is still a possibility it exist6§].

Quenched disorder can also be introduced in(te) lattice models by considering
some random couplingd,;, between the spins:

H:_Zjijsi’sja (15)
(i.7)

where theJ;;’s are independent random variables. The familly of models this Hamiltonian
encompasses is calledndom bondmodels. If the couplings are ferromagnetic with a
finite probability to be zero, this gives the bond-diluted models (percolationigs)yd$-or

n = 1, the Random Bond Ising Model (RBIM), with ferromagnetic couplings disted

on a small window of width/ around.Jy > .J, is another typical model used to study the
domain growth in the presence of weak disorder.

Glasses. The case of strong disorder is realized when fh¢s are equally distributed
between positive (ferromagnetic) and negative (anti-ferromagneticdsaln this case the
models exhibit glassy behavior at low temperatures..Fer 1, the corresponding models
are often called the Ising spin glasses. The lower-critical dimension oé thslels is
expected to be two and fdr= 2 the transition occurs at zero temperature. We shall focus on
the casel = 3, the so-called Edwards-Andersdi(EA) model, with 6 nearest neighbors
and a bimodal distribution for the random couplings; (= +J with equal probability).
The 3d EA is in a sense complementary to théRFIM which has some weak disorder in
the local magnetic fields whereas tB& EA model has a strong disorder localized on the
bonds. This model undergoes a static phase transition from a paramagreesipitoglass
phase afl,, ~ 1.14(1) J [69]. The nature of its low temperature static phase is not clear
yet and, as for the out-of-equilibrium relaxation, two pictures developaahara situation
with only two equilibrium states as proposed in the droplet mod&l{1] and a much more
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complicated vision emerging from the solution of its mean-field version, the SKIfioZe
whose Hamiltonian reads

N
1
H=—-— Z Jij SiSj - (16)
VN i<j=1
Notice thel/v/N prefactor that is needed to ensure a well defined thermodynamic limit.
More generally, the mean-field version of th¢n) lattice model reads

N
1
H = —77\[ Z Jij S; Sj 5 (17)

i<j=1
and is equivalent in the — oo limit to the the soft-spin version of SK model (so-called the
p = 2 spin glass) where the length constraint on each spin is relaxed andeefinche
global spherical constraiq% Zfil si-si = n[73, 74]. Thep = 2 spin glass model does
not have a true spin glass behavior but is more of a ferromagnet. Ingeeshall see it has
a strong connection with the puse O(n) ferromagnet model in the limit — oc.

Quantumness. Quantum mechanics determines the behavior of physical systems at atomic
and subatomic scales. The search for quantum effects at macroscalgis started soon

after the development of quantum mechanics. A number of quantum manifestatio
such scales have been found including quantum tunneling of the phasseph3on junc-

tions [75] or resonant tunneling of magnetization in spin cluster systéfis [Quantum
fluctuations are expected to play an important role specially in the absencaoiatifluc-
tuations at zero temperature. A way to introduce quantum fluctuations in(thelattice
models (or their disordered versions) is to add a non-commuting term to the Hanmiltonia
Forn = 1, one can think of adding a transverse field to the quantum Ising model ygeldin
the following Hamiltonian ind = 3:

H:—ZJUfUJZ-—ZHJf, (1.8)
(i.4) i

where thes!' (1 = z,y, 2) are the familiar Pauli matrices. This model was proposed to be
realized experimentally with LiHoY ;. F4 [77], an insulating magnetic material in which
the magnetic ions are in a doublet state due to crystal field splittingn Berl, quantum
fluctuations can be put in by reintroducing a kinetic term to the Hamiltonian, yieldmg th
family of so-called quantum rotor models. For instance the Hamiltonian abthg lattice

model is upgraded to
N

H:%Z%Lg—zm.sj. (1.9)
=1 (3,9)

The spinss; are stilln-component vectors (with; - s; = n) but are now called ‘rotors’

to avoid confusions with real quantum spins described by Pauly matrices. differ-

ence between rotors and quantum spins is that the components of the lattersaime
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site do not commute whereas the components; ao. L; is thei-th generalized angular
momentum operator which involves the momentum operator canonically conjioggte

pi = —ihd/0s;. Thes;'s and thepy’s satisfy the usual quantum mechanical commuta-
tion relations.T" > 0 acts like a moment of inertia and controls the strength of quantum
fluctuations; wherk?I'/J — 0 the model approaches the classicdh) lattice model. As
discussed in8 models of quantum rotors are non-trivial but still relatively simple and
provide coarse-grained descriptions of physical systems such ad-Bidard models and
double layer antiferromagnets.

We focus in particular on the mean-field version of the quantum rotor gladddamil-
tonian of which reads

N
H:EZQLi—ﬁZJijsi-sj. (1.10)

i=1 i<j=1

The J;; couplings are taken randomly from a Gaussian distribution with zero measi’and
variance. We shall see that the connection to the pii@(n — o) ferromagnet holds for
the quantum models as well.

Analytical treatment
Classical

Master Equation. The microcanonical postulate (stating the equi-probability of all the
accessible microstates in a closed isolated system in macroscopic equilibriub® gan-
eralized to non-equilibrium situations as the so-called evolution postulate, or Mastay

tion. The Master equation is a first order differential equation describing thesaletion

of an isolated classical system in terms of the probabiliigs) for the system to be in

a given microstate at timet¢. It can be derived from the first principles of quantum me-
chanics (basically the Sabilinger equation) under the hypothesis that the quantum phases
of wave functions are randomized on a short time scale (quantum chawe®dkyexternal
processes/9. It reads

dPt(S)
dt

=N [R)W(r > 5) = Ps)W(s = 7)] (1.11)
T#S

whereW (r — s) is the probability of transition from the microstatdo the microstate.

These transition rates respect the energy conservdtign:— s) = 0if |E; — E,| < 0F
whered E is the incertitude on the energy at a macroscopic level. As a consequence of
the invariance of the underlying microscopic equations under time-revénsglare also
symmetric: W(r — s) = W(s ~ r). In the canonical set-up, one can write a similar
equation for the evolution of the system. The transition rates no longer satisfpehgye
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conservation and are no longer symmetric. However, as a consequehedime-reversal
symmetry of the microscopic equations of the equilibrium bath variables, theyysthisf
so-called detailed balance condition:

W(r— s)e PEr = W(s s r)e PEs | (1.12)

whereg is the inverse temperature of the bath and throughout this manuscript waitse
inwhichkp = 1. In order to satisfy the evolution postulate and evolve towards equilibrium,
the system must have the so-called mixing property that generalizes thicepgimciple

to non-equilibrium situations. For a given set of control parameters, a ntagiosstate

is characterized by a probability density that is non zero on a manifold oftasepspace.
During the evolution, the mixing property spreads the non-homogeneous digtabu-

tion on the whole manifold to finally reach the uniform microcanonical distributiardey

this mixing condition, one can show that the probabilitie$t) converge to the equilib-
rium Gibbs-Boltzmann distribution regardless of the initial conditio@sany macroscopic
classical system evolves towards its equilibrium state.

Langevin Equation. It is often difficult to give a precise description of the environment
and its interactions with the system. And when it is possible, it is almost always sibjpes
to explicitly integrate out the degrees of freedom of the bath to computegeseria the
system of interest. In the Master equation formalism, this difficulty lies in knowieg th
transition rate$V (r — s). To overcome this difficulty, one is led to find an heuristic way
of modeling the environment that should be guided by the symmetries of the sgatkm
physical intuition.

In his study of Brownian motiorg0], Paul Langevin wrote in 1908 the following equa-
tion, that later took his hame, for the positigof a Brownian particle of mass:

mg = F(q) —yoq +&(t) - (1.13)

F(q) is the systematic interaction force due to the intramolecular and intermolecular in-
teractions. The interaction with the environment is modeled by two heuristic foldes

first is a friction force term that introduces the dissipation and is here pgiopal to the
particle’s velocity: (Stokes’ law). The second is a random foggeéaken to be a Gaussian
process, that models the rapid thermal excitations. If the environment isilibegm, the

two terms are linked through a fluctuation-dissipation relation that A. Einstein estblish
in his 1905 article on Brownian motio].

In many cases of practical interest the Langevin equation is given in thdawped
limit (inertia is neglected) and with a white noise (the environment has a vanisiang
ation time). However, since there are other interesting instances in which tinerenent
exhibits retardation and motivated by the generalization to quantum systemsepinke
tia and introduce color for the noise. Moreover, to be even more genegiconsider the
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case in which the noise acts multiplicatively. This situation is expected to occur when th
environment is coupled non-linearly to the system.

This heuristic modeling of the interactions with the environment can be transpbsed
the (even more) mesoscopic level in terms of a coarse-grained ondengi@r fields(z, t).
Once again, the spatio-temporal coarse-graining procedure is rarefighiiea but one ex-
pects the action of the environment to be similar to the one of the Langevin dynadmics
the so-called model A for non-conserved order-parameter, anavgred evolutionife. in-
ertia can be neglected, for instance when the short-time dynamics haveda#sa-grained
in time) is given by

_ 6Flg)
dp(x,t)

whereF is the Ginzburg-Landau free-energy functional that one typically cocistusing
symmetry and simplicity considerations together with physical intuition.

_’70(1.7(‘7:775) +§($,t) ) (114)

MSRJD formalism. It is possible to give a field theory representation of the stochastic
Langevin dynamics by use of the Martin-Siggia-Rose-Janssen-deDomidiSiR ID) for-
malism B1-86]. In a nutshell, the generating functional is obtained by first upgrading the
physical degrees of freedom of the system and the random noise inw fidld Langevin
equation of motion and its initial conditions are turned into a path integral and the action
of the corresponding field theory is evaluated on-shell, thanks to the imfiod of one
extra Lagrange multiplier field for each physical degree of freedom. Singé&saussian,

the noise field appears quadratically in the action and can thus be integrat€rheus left

with a path integral over twice as many fields as number of physical degfée=sedom.

The MSRJD formalism is particularly well suited to treating the dynamics of disedde
systems following a quench. Indeed, provided that the initial conditionsrarerrelated
with disorder €.g. for very high temperature initial conditions), the generating functional
evaluated at zero sources is equal to one and can therefore be traxiallgged over the
disorder configurations without having to use the Replica Trd&k. [

Quantum

Schrodinger equation. Quantum mechanically, the evolution of a system and its envi-
ronment is given by the Saidinger equation. This microscopic equation is invariant under
time-reversal unless magnetic fields (or spins, or more generally cyragatisivolved. The
evolution for the reduced system, once the degrees of freedom of thedwathbéen some-
how integrated out, is however not unitary. Despite the lack of a general,pt is widely
believed that equilibrium quantum systems in contact with a thermal bath tend ricetliey

like in the classical case.
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Schwinger-Keldysh formalism. A convenient way to treat the out-of-equilibrium dy-
namics of a quantum system coupled or not to an environment is the use fhifnihe
tional Schwinger-Keldydh formalism which can be seen as the quantumatjgagon of
the MSRJD formalism. This was initiated by Julian S. Schwinger in 1961, antders
further developed by Leonid V. Keldysh and many others. For the lagedfs, this tech-
nigue has been used to attack a number of interesting problems in statisticaspdoyd
condensed matter theory such as spin systé@is $uperconductivity §8-91], laser P2],
tunneling P3, 94], plasma P5], other transport processe®d and so on. For equilibrium
problems, it has also been an alternative to the sometimes cumbersome Maésdigtical
continuation.

For a system initially prepared at timg = 0, it involves a closed time-contodr that
goes from zero to plus infinity and then comes back to zero. This two-bremttour and
the doubling of the number of degrees of freedom that comes with it take tiodé in the
time evolution of an operator (let s&y) in the Heisenberg picture,

T{eh A B} o) T {om i o Hn) )

whereT andT are respectively the time and anti-time ordering operatéis,(t) = H (t)+
Hint () + Heny Is the total Hamiltonian of the system plus the environment. Once the system
and the environment have been encoded in this path integral, one has tateiger the
environment variables in order to obtain an effective action for the systems chn be
performed in the case the environment is described by a Lagradgjarthat is quadratic

in its variables. The Lagrangiafy,; describing the interaction between the system and the
environment can be averaged over the environment variables by usinghation theory

in the coupling constant. Like in the classical case, a very simple model of a theatha
consists in a set of non-interacting harmonic oscillators that are coupled system of
interest. The interaction with the bath gives rise to non-local terms in the actiopléyad
similar role to the ones of a colored bath in the previous classical picture.

The Schwinger-Keldysh formalism, like its classical analog, is well suited &ditig
the dynamics of disordered systems after a quench from infinite temperature.

Numerics: Monte Carlo

Equilibrium simulations. It is usually impossible to give an analytical treatment of in-
teracting statistical systems beyond the mean-field or fully-connected apptimxintizat
wipes out all the effects of the small dimensionality of the world in which we I@em-
puter simulations provide a flexible way to tackle such problems. The task dibeigu
statistical mechanics is to compute averages of the }ype>.(s)O(s) wheres runs over
all the configurations anf, is the equilibrium Gibbs-Boltzmann probability proportional
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to e #H(s), The previous sum can never be computed exactly for the number ofjconfi
urations grows exponentially with the number of degrees of freedom. Tlehdeind
Monte Carlo simulations is to provide numerical estimates of these sim@sstochastic
trajectoryS in the configuration space. Since the Boltzmann faetot” (*) vanishes for
most of the configurations, Nicholas Metropodéis al. introduced the so-called ‘impor-
tance sampling’ algorithm9[7] in which a configuratiors is chosen to be part of the sum
with probability P.,(s). The average then reduces to the arithmetical mean of the type
> scs A(s). The method Metropolis proposed to obtain this result is based on Markov the
ory. It generates a sequence of configuratiSns sy — s1 — s2 — ... in which each
transition has a probability’ (s; — s;+1) to occur. The probability for a configuration

to be selected at theth step,P;(s), converges to the equilibrium distributidi,,(s) re-
gardless of the initial conditiosy provided that the detailed balance condition is satisfied:
W(si + s;)e PHE) = W(s; s s;)e”PH5) A simple choice for the transition rates
W uses the energy variatiohE' = H(s;) — H(s;) by settingiV = 1if AE < 0 and

W = e PAF otherwise. The rapidity of the convergence to the equilibrium distribution and
the simplicity to compute\ £ depends on the choice of the transitions between two succes-
sive configurations but the final result is independent of that choioceaBystem of Ising
spins, the simplest transitions consist in flipping one single spin at a time but inetisoes
useful to implement cluster algorithms in which the transitions are collective spinltliss
only after the Markov chain has converged to equilibrium, that one canasteompute the
static averages.

Out of Equilibrium simulations.  The Monte Carlo method briefly explained aboveais
priori not suited for out-of-equilibrium dynamics. If one measures observabfesebequi-
librium is achieved, we saw that the choice of the transition rates matters. Thecisqly
the analogue situation of having the Master equation but not knowing the transites r
since these depend on the details of the environment. If one wants to rumpaites sim-
ulation to study the out-of-equilibrium dynamics of a system connected to an euniibr
thermal bath without any further information on the environment, the only canistrathe
choice of the transitions is that they must satisfy the detailed balance condition.

Fortunately, there are some dynamical properties of the system that apmemukent
of the transition rules, at least within families of these. For example, the experian
the Ising model appears to be the same for the Metropolis, the heat-bathcomtireuous
time algorithms. Such algorithms fall in the same dynamic universality class. Neesghe
other algorithms like the Wolff cluster one or the simulated tempering do not. Irusion,
when one is interested in the dynamics of a model to get a typical picture of lsgatem
evolves to equilibrium, it is sensible to start by using the simplest dynamics. This is th
philosophy we adopt.
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1.3 Questions

Equilibrium and time-reversal symmetry

Despite the invariance of the microscopic physics under time revisi well known
from the second principle that the evolution of out-of-equilibrium macrosceystems is
not invariant under this transformation. However, when equilibrium is reidhe sym-
metry is restored: it is experimentally impossible to determine whether a movie isplaye
forward or backward in time. This time-reversal symmetry, specific to equitiigrinas
been addressed many times in the past. It was for instance one of the kegiemgs in
L. Onsager’'s work of 193111, 12] to establish the reciprocal relations. Time-reversal is
also at the heart of fluctuation theorems that give relations between foandrdackward
trajectories.

In Chapter2, we address this question one more time by identifying this symmetry in the
context of a field theory description of classical dissipative systems: tHeJ@S$ormalism.
For equilibrium situations, we identify the field transformation corresponding to the time
reversal symmetry. It consists in a set of transformations for both the ghfigicls and the
Lagrange multiplier fields involving, as expected, a time-reversal of thdsls fiEhis sym-
metry is presented as a necessary and sufficient condition for equilibrinamdgs. Indeed,
at the level of observables, we show that the corresponding Warah#&aki identities lead
to all the well-known equilibrium properties and relations such as stationaritj étion-
dissipation theorem and the Onsager reciprocal relations. This symmetryvgeafpidool
to derive, in a rapid and systematic approach, all sorts of fluctuation-dissigelations.

In equilibrium, the MSRJD formalism can be written in terms of a super-symmetric
formulation. It involves the integration over a super-field whose componectzde the
physical fields, the Lagrange multiplier fields and two extra fermionic fieldsogioired
to give an integral representation of a functional determinant). This formulb@isrbeen
introduced and derived for overdamped (no inertia) Langevin equatiithsan additive
white noise environmen®p-101]. We generalize this approach to the case with inertia and
a multiplicative colored noise. The generating functional is invariant under d&wbtrzious
super-symmetric field transformations that exchange the bosonic and ithieriar fields.

At the level of observables, the corresponding Ward-Takahashiitiésread to some of
the already mentioned equilibrium properties like stationarity or fluctuation dissipation the
orems. However, they fail to generate relations involving a time-reversalH&®nsager
reciprocal relations. We discuss the relations these two super-symmetriesviiavthe
previous MSRJD symmetry.

When the system is out of equilibrium, this symmetry of the MSRJD formalism is

3. At least in non-relativistic theories.
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broken in a way that leads very naturally to fluctuation relations like the Jatzgqgaality
or even the underlying fluctuation theorem.

We identify another new symmetry of the MSRJD generating functional, whicHid va
in but also out of equilibrium. At the level of observables, it generateat&ns of motion
coupling correlations and responses. These Schwinger-Dyson equabteitem nice way
to express all sorts of responses in terms of correlation functions witholyirgppany extra
field. This has direct applications in computer simulations where the computation af linea
responses using weak perturbations (to stay in the linear regime) is not aaglgdyesides
requiring two simulations (one with and one without the perturbation) it also rexjailet
of statistical averaging to get a good signal-to-noise ratio.

Dynamical scaling and universality

Out-of-equilibrium dynamics deperal priori on the whole protocol used to prepare
and evolve the system. Therefore, finding universal features ofythendics does not seem
easy. However, in many situations the late stage dynamics are believed to beegbbvg a
few properties of the system and environment whereas material detailsl $feoirrelevant.
The renormalization group (RG) analysis is a powerful tool to detect asctitbe the uni-
versal features of models in equilibrium. In particular, it gives accessaingcrelations.
Although there were many attempts to include the time evolution in the RG proceduee, the
is no exact scheme to generalize this approach to dynamical problemsrawegriticality.

The difficulty arises as a result of the absence of a small parameterganaltoe = 4 — d
for critical phenomena: because of this, one cannot obtain explicit RGomes.

Coarsening. In the field of coarsening phenomena, motivated by experimental observa
tions and simulations, ttiynamical scaling hypothesitates that there exists, at late times,
a single characteristic length scait) such that the domain structure is (in a statistical
sense) independent of time when lengths are scale®({®y [50]. In terms of observ-
ables, this predicts that the time dependence enters only thBugh For example, the
aging contributiot of the two-time correlation functiod(¢,¢') is expected to scale as
Cag(t,t") = f(R(t)/R(t")). In a field theory description, such dynamical scaling can be
interpreted as consequences of symmetries of the effective dynantical @t describes

the late-stage dynamics.

This scenario has been proven analytically at zero temperature (withé&slaumodel
A dynamics) in some mean-field models like thén — oo) non-linear sigma model.pZ]
and in some very simple one dimensional models likelthésing model [L03 104 or the
1d XY model [LOF [both defined in eq.X.3)]. More recently it has been proven for the

4. As opposed to the thermal contribution that is time-translational invariant.
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distribution of domain areas in ti2el Ising model [LOg. The dynamical scaling hypothesis
can be supplemented by the statement that the temperature dependerealtsorbed into
the domain scalé(t) such that the scaling functions are independent of the temperature.
This is somehow supported by equilibrium renormalization group analysis theicts the
existence of a few fixed points controlling the low temperature phase. Thisgeastested
numerically for instance in thd Ising model L07] with Metropolis dynamics. Daniel S.
Fisher and David A. Huse pushed this idea a bit further, in the presémeeas disorder in
which the coarsening picture is expected to hold. They conjectured tbatloa dynamical
scaling hypothesis is used to describe the long times dynamics, so that times gthad len
are measured in units d@®(¢), none of the out-of-equilibrium observables depend on the
guenched randomnesg( and their scaling functions are thus identical to those of the
pure limit. This is referred as super-universality. Notice that a typicaltteng®, can be
associated to disorder by matching the energy barriers it creates anétimakienergyl*

is by definition temperature and disorder dependent. In this picture, Whign< L*, the
dynamics are the one of the pure system and wRén = L*, the dynamics are slowed
down by activated escape over the barriers.10d], it was argued in the context of tHe/
and2d RBIM that the ratioR(¢) /L* should enter the scaling functions independently of the
other scalings. For the two-time correlation function, this implies the scalipg, t’) =
f(R(t)/R(t"), L*/R(t)) that violates the super-universality. However, for the late stage
dynamicsR(t) > L*, the ratioL*/R(t) becomes negligible and the super-universality
hypothesis is expected to hold. It has been tested nhumerically on somedelestevables

in a few Ising models with weak disorder. It has been shown to hold for thal-¢gnes two-
point function of the3d random field Ising model (RFIM)1[09 and the2d random bond
Ising model (RBIM) [L10, 111]. More recently, the distribution of domain areas in this last
model [L12] and the integrated responsEL[ has also be shown to be super-universal.

In Chapter3, we test, by means of numerical simulations, the dynamical scaling and
the super-universality hypothesis in thé RFIM [defined in eq. {.4)] after a temperature
qguench in the coarsening phase. We place the emphasis on the spatio-tdimgtoggtions
by studying the distributions of local coarse-grained observables.

Spin glasses. The droplet picture of the out-of-equilibrium dynamics of spin glasses pre-
dicts a single characteristic length scale that is developing in the system eftprahchT0,

71, 114, 119. Its existence is less clear than in the field of coarsening phenomena. Some
evidence for a growing length in ti3&€ EA model at low temperatures have been interpreted
within the droplet scenarial[L6-118], but other groups understand this length within the
other mean-field picturelfl9. The studies of finite dimension structural glasses both from
numerical simulations and experimental probes have provided mounting ewittanihe
existence of a growing length, at least in the super-cooled liquid phaske nuly glassy
regime, the existence of a growing length scale is supported by the faatdiratation
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functions show some dynamical scalings which can be naturally explained in émetrsx
Dynamics of glasses are believed to be heterogeneous in the sensefdérantdiegions
of the sample age at different rate2[] and dynamic heterogeneities could be crucial to
understand the full temporal evolution. Therefore, considerable attemimibeen paid to
the study of the local fluctuations of two-time observables such as two-timeaiions or
linear responses. In glasses, the average over disorder makes thecgpeglation func-
tions short ranged. Spatially fluctuating quantities such as locally coarsed@orrelation
functions and their probability distribution functions are candidates to detectromény
length.

We study, by means of numerical simulations, the dynamics of4heA model [de-
fined in eq. (.5)] after a temperature quench in the glassy phase. We focus in particular o
fluctuating local observables used to describe the heterogeneous dyn&deicshow that
the super-universality hypothesis does not hold and the comparison witkghlts of the
quenched RFIM sheds a new light on the differences between domaithgrevsus glassy
dynamics from the point of view of out-of-equilibrium scaling relations.

Effect of a drive

The effect of a non-equilibrium environment such as a drive on a mampassystem
close to a quantum phase transition is a by and large unexplored subject. v&wkse
have focused on non-linear transport properties close to an (equilibriuamtemn phase
transition [L121-123. Others have studied how the critical properties are affected by non-
equilibrium drives 1 24-126. However, a global understanding of phase transitions in the
control parameter spade V, T', with T the temperaturé; the driving strength, antl the
strength of quantum fluctuations, is still lacking. Furthermore, to the bestrdfrmwledge,
the issue of the relaxation toward the quantum non-equilibrium steady stateS®Nias
not been addressed in the past.

In Chapter4, we address these questions by considering the fully-connected quantum
rotor glass defined in eql(10. We prepare the system at very high temperature and then
suddenly couple it to two electronic lead$[ at different chemical potentials but at the
same temperatur€. The voltage drogd/ creates a current tunneling through the system.
In a first part, we study the properties of the non-equilibrium environmemposed by
the two leads. In particular we show that its effect on the slow modes of thanaigs is
the one of a thermal equilibrium bath. Then we study how the dynamical plzassition,
which separates the paramagnet and the ordering phase, survivespretfience of the
drive by deriving the dynamical phase diagram of the model in Thé/(T", g) parameter
space wherg is the coupling constant to the environment. In a third part of this chapter,
we analytically solve the long-time dynamics in the coarsening phase and we {biat
a generalized super-universality hypothesis holds for the long-timevioehaf two-time
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correlation functions since the scaling functions do not deperid, ¢ime strength of disorder

J, I'norV. As in the classicap = 2 spin glass, the response is found to loose memory
in the aging regime, corresponding to an infinite effective temperature. iS¢ess$ the
connection with real space coarsening by establishing the mapping 8a thén — o)
guantum pure ferromagnet. Finally, we compute the curfexst a function o’ and show
that it quickly saturates to a constant value.

In the concluding chapter, we present some lines for future research.
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THE stochastic evolution of a classical system coupled to a quite generic envinbnme
can be described with the Langevin formalis®,[127-129 and its generating func-
tional, the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-intggfaB6]. In
many cases of practical interest the effect of the environment is cdpbyren additive
white noise and its memory-less friction, Brownian motion being the paradigmatic exam-
ple [80]. Nevertheless, there are many other interesting instances in which theisoise
multiplicative and colored, and the friction effect is consistently described imgm@ory
kernel coupled to a non-linear function of the state variable. Such Langeguiations ap-
pear in many different branches of physics (as well as chemistry amd stiences). In
magnetism, the motion of the classical magnetic moments of small particles is phenomeno-
logically described by the Landau-Lifshitz-Gilbert equation in which the flugina of the
magnetic field are coupled multiplicatively to the magnetic mom&dd,[131]. Many other
examples pertain to soft condensed matter; two of these are confinesidiffin which

the diffusion coefficient of the particle depends on the positiarnydrodynamic interac-
tions [L32], and the stochastic partial differential equation that rules the time-evolution of
the density of an ensemble &f Brownian particles in interactionlB3 134]. In a cos-
mological framework, they are effective equations of motion for the outltdfdagh close

to) equilibrium evolution of self-interacting quantum fields in which the short-vength
modes serve as thermal baths for longer wave-length modes with slowambmp2—

34, 135, 13€]. Such type of fluctuations may yieldpriori unexpected results such as noise
induced phase transitions in systems in which the associated deterministic pateasal
not exhibit any symmetry breaking 37140, 140, 141].
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In order to better understand these processes it is useful to distingsiss icawhich
sources of fluctuations and dissipation can be different. On the one handopige and
friction term can have an ‘internal’ origin, like in diffusion problems. On theeothand,
the stochastic fluctuations can be due to an ‘external’ sol#3.[In the former cases one
usually assumes that the variables generating the noise and friction are in aquildd
the terms in the Langevin equation associated to them are linked by a fluctuatipatiss
theorem. In the absence of non-conservative external forces fbevBmn measure of the
system of interest is a steady state of its dynamics. In the latter cases nbidissipation
are not forced to satisfy any equilibrium condition and this translates into ttséildg of
having any kind of noise and friction terms. For concreteness we shai foe the first
type of problems and only mention a few results concerning the latter.

In treatments of the examples mentioned in the first paragraph, the delicate timitb
of vanishing fast variables relaxation time and noise correlation time is often. tdkese
lead to a first order stochastic differential equation with multiplicative white nolse.
interpretation in the i, Stratonovich or other sense requires a very careful analysis of the
order of limits, see e.g1¢3 and references therein. In the body of this chapter we shall
keep both time scales finite and thus avoid the subtleties encountered in thevimibhing
limit.

We identify a number of symmetries of the MSRJD generating functional of inertial
Langevin processes with multiplicative colored noise. One symmetry is only vadiguin
librium. The corresponding Ward-Takahashi identities between the ciorefanctions
of the field theory lead to various equilibrium relations such as stationarity, flimtaa
dissipation theoremd i4-149 or Onsager relations. Away from equilibrium, the symme-
try is broken giving rise to various out-of-equilibrium fluctuation relatio?s P7, 150, 29,

151, 157, [153-15§], [159-161]. Another symmetry holds for generic out-of-equilibrium
set-ups and implies dynamic equations coupling correlations and linear respdinaks
lows in particular to express the linear response in terms of correlations withplyireg a
perturbing field 162-169, [170-174].

We are aware of the fact that some of the results we derive — especidlig imit of
additive noise — were already known and we do our best to attribute thene @muthors
of the original papers for review articles. Still, the presentation that weugiddevelop
allows one to go beyond the simple cases and treat the multiplicative non-Nkamkano-
cesses with the same level of difficulty. As far as we know, these constituteaseilts.
Moreover, we discuss in greater detail than previously done the tramsfion of the mea-
sure and several Jacobians, and the domain of integration of the fieldspattivntegral.
The importance of dealing with a colored noise, and to treat the transformatibe fi¢lds
in the complex plane, is enhanced by our purpose to extend this analysiarttugudissi-
pative problems.
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2.1 Langevin equation

We consider #&-dimensional field) (e.g. a particle at position’) with massm driven
by a forceF and in contact with a thermal bath in equilibrium at inverse temperature
The initial time, ¢, is the instant at which the particle is set in contact with the bath and
the stochastic dynamics ‘starts’. We calltit = —7" and without loss of generality we
work within a symmetric time-interval € [—7, 7). In this chapter, contrary to the rest
of the manuscript] is not a temperaturel{ # ') but a time. The extension to higher
dimensional cases is straightforward.

Our conventions are given hA.

2.1.1 Additive noise

The Langevin equation with additive noise is given by

T
EQ(el.) = mi(t)~ Pl + [ dun(tu)il) =€), @)

with ¢(t) = di(t)/dt andi(t) = d*¥(t)/dt®. The force can be decomposed into con-

servative and non-conservative parfs{[y],t) = =V’ (¢ (t), \(t)) + f([¢],t). V is a

local potential the time-dependence of which is controlled externally thraugiotocol

A(t). V' denotes the partial derivative &f with respect tap. f2¢([¢],t) collects all the

non-conservative forces that are externally appligd<([¢],¢) is assumed to be causal

in the sense that it does not depend on the future states of the systéjmwith ¢’ > ¢.

Furthermore, we suppose thdt([¢], t) does not involve second — nor higher — order time-

derivatives of the field)(¢). The last term in the left-hand-sidet(s) and the right-hand-side

(RHYS) of the equation model the interaction with the bath. These two heuristic terms can

be derived using a model[5, 176 in which the bath consists in a set of non-interacting

harmonic oscillators of coordinatgsthat are bilinearly coupled to the state variable of the

system of interest). The functiony is the retarded frictions[(¢,¢') = 0 for ¢’ > t] and

the noisef is a random force taken to be a Gaussian process. This assumption is quite

reasonable, for instance, for a Brownian particle with much larger masstteame of the

particles of the bath, its motion being the result of a large number of suceesglisions,

which is a condition for the central limit theorem to apply. Since we assume theenv

ment to be in equilibriumy (¢, ') is a function oft — ¢ and the bath obeys the fluctuation

dissipation theorem of the ‘second kind’4g}:

€the=0, (D)) =BT R(E-1), (2.2)

where (... )¢ denotes the average over the noise history. We introduced the symmetric
kernelX(t — ¢') = n(t —t') + n(t' —t) = V(" — t). If X has a finite support, the noise
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is said to be colored in reference to optics (it has a non-constant Fepaetrum). In our
context a colored noise refers to a (Gaussian) stochastic processmaimary kernel. One
of the simplest examples is the Ornstein-Uhlenbeck process which exhilaigpanential
correlation function,

N(t— t) = Relt=tl/m (2.3)

Tn
wherer, is the correlation time of the noise angl > 0 is the friction coefficient. The white
noise limit, in which the bath has no memory, is achieved by sendirig zero or setting
n(t —t') =nod(t — t'). The Langevin equation then takes the more familiar form

EQ([v],t) = mip(t) — F([¢], 1) + noth(t) = &(1) , (2.4)

with (€(£)€())e = 28~ nod (t — ).

Notice that colored noises can be generated from underlying white naisegses. For
example the Ornstein-Uhlenbeck process given in2§) €orresponds to the overdamped
relaxation of a particle of coordinatein a quadratic potential and in contact with a white
noise thermal bath:

mé (1) + 2E(0) = (1)

where( is a white noise following¢ (¢)¢(#))¢ = 2noB~16(t — t').

Newtonian dynamics, for which the system is not in contact with a thermal begh,
recovered by simply taking(t) = R(¢) = 0 at all£. Out of equilibrium environments can
be taken into account by relaxing the condition between the noise statisticseainittion
kernelX(t —t') = n(t —t') + n(t’ —t).

2.1.2 Multiplicative noise

We generalize our discussion to the multiplicative noise case in which the Gaussia
noise¢ is coupled to a state-dependent functighi()). The Langevin equation reads

EQ([¢).t) = ma(t) — F([¢],t) + M'(4(1)) /du 0(t —w) M’ (¢ (u))i(u)
= M'(¥())&(t) - (2.5)

This equation can also be shown by using the oscillator model for the bathreomdlaear
coupling of the formM (v) >, c;q; wherec; are coefficients that depend on the details of
the coupling andV/(¢) is a smooth function of the state variable with(0) = 0. By a
suitable renormalization af, one can always achiew®’(0) = 1. For reasons that will
soon become clear, we need to assume Miat)) # 0 V. These assumptions can be
realized with functions of the typ#&/(v)) = ¢ + L(v)) whereL is a smooth and increasing
function satisfyingL(0) = L’(0) = 0. The complicated structure of the friction term takes
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its rationale from the fluctuation-dissipation theorem of the second kind thatsse® the
equilibrium condition of the bath. This equation models situations in which the friction
between the system and its bath is state-depenééat the same statistics as in the additive
case, see eg2(2. The Langevin equation for the additive noise problem is recovered by

taking M (v)) = .

2.1.3 Initial conditions

The Langevin equation is a second order differential equation that needitiab
values, say the field and its derivative at tim&'. We shall use initial conditions drawn
from an initial probability distribution?; (v (—T'), 4 (—T)) and average over them. The
initial conditions are not correlated with the thermal ngisén the particular case in which
the system is prepared in an equilibrium stateis given by the Boltzmann measure.

2.1.4 Markov limit

Langevin equations are often given in the Markov limit in which they appeage fior&t
order stochastic differential equations. Second and higher order timexilees as well
as non-local terms such as memory kernels are not allowed. In otheswbedeffect of
inertia is neglected (Smoluchowski limit) and the bath is taken to be white. This isgdstifi
in situations in which the two associated time scales are sufficiently small compared to
all other time scales involved. Concretely, the resulting equation is deriveciby an
adiabatic elimination procedure that consists in integrating over the fast variatiles
system (the velocities) and of the bath. However, this double limiting procedquéres a
careful analysis and leads to the well knowdHEtratonovich dilemma.

The physics of the resulting equation may depend on how the relaxation time ésdocia
to inertia compares with the correlation time of the noise before sending the twerof th
to zero. In cases in which the latter is much larger than the former, the limiting stacha
equation should be interpreted in the sense of Stratono%ich 178. TherHsof eq. €.5)
is given a meaning by stating thatin M’(v(¢)) is evaluated at half the sum of its values
before and after the kick. Conversely, when the inertia relaxation time is mcggr gan
the noise correlation time, the limiting equation should be interpreted indteetise 179,
180. In this scenario, the rule is that/’(¢y(t)) is evaluated just before the kickt).
When the noise is additive the two conventions are equivalent&e8) for all practical
purposes. However, they are not for processes with multiplicative nbik. [For these
it is possible to rewrite the &t stochastic equation in terms of a Stratonovich stochastic
eqguation by adding an adequate drift term to the deterministic force — and bediowse
the rules of conventional calculus. The Fokker-Planck equation assbttatke Markov
process does not depend on the scenario and the Boltzmann distributiote&lyg state
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independently of the convention used. However, the action of the generatingonal
acquires extra terms depending on the discretization prescrigi8m181].

In this article, we decide not to cope with the Markov limit and, unless othestéged,
we always keep the inertia of the system in our equatiensA 0) and we use a colored
noise with a finite relaxation time.

2.2 The MSRJD path-integral formalism

The generating functionals associated to the equations of mdtiGhgnd @.5 are
given by the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) pathraiién this Sec-
tion we recall its construction for additive noist?] and we extend it to multiplicative noise
using a continuous time formalism. In App.B we develop a careful construction in the
discretized formulation.

2.2.1 Action in the additive noise case

The Langevin equatior2(l) is a second order differential equation with sougcéd he
knowledge of the history of the field and the initial conditions)(—7) and(—T) is
sufficient to construct)(¢). Therefore, the probability?[¢)] of a giveniy history between
—T andT is linked to the probability of the noise histof, [£] through

PRIDI] = Rilg] DI R (6(=T),d(=T)) d(~T) dih(~T)

implying
Pl = PulEQl]) 7] B (v(=T),4(-T)) . (2.6)
where7 1] is the Jacobian which reads, up to some constant factor,
7] = det,, |3 | = det, | “E2)] = gy @7)

det]...] stands for the functional determinant. We introduced the notafign] for future
convenience and we shall discuss it in S2@.3 After a Hubbard-Stratonovich transfor-
mation that introduces the auxiliary real fielg the Gaussian probability for a given noise
history to occur reads

)

Pl = N /Dw] o Jdu i)+ ] ffdudv Wh(u)8~ R (u—v)idh(v)

with the boundary conditiong(—7") = (") = 0 and where all the integrals over time
run from—T to T'. In the following, unless otherwise stated, we shall simply denote them
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/. N is ainfinite constant prefactor that we absorb in a re-definition of the Measy.
Back in eq. £.6) one has

Ply] = /DW] o~ Jdu i (wEQ([W]u)+3 [f dudv it (w) 87 R(u—v)ih(v)+In Pi+In | Jo[¢]

and we obtain
PRIDIY] = Dl9] [ D) e,
with the MSRJD action functional
S.d) = A (u(-1),9(-1)) - [duibwEal(].)
% //dudv ih(u) B7IR(u — v) i(v) + In | T[] - (2.8)
The latter is the sum of a deterministic, a dissipative and a Jacobian term,
Sl,d] = S, G+ ST, d) + In | Tl
with
s = WR (-T).0-1)) - [dutd [mit) - Fulw)]. @9
Sssfy ] = / du i)(u) / do n(u—v) [ (0) = 9(v)] - (2.10)

Sdet takes into account inertia and the forces exerted on the field, as well astisire of
the initial condition.S* has its origin in the coupling to the dissipative bath. In the white
noise limit,;(t — ') = 18 (¢ — t'), the dissipative action naively simplifies §5[y), 1] =

no [ du it (u) [ﬁ—liz[;(u) - ¢(u)} (see Sec2.1.4for additional details on this limit).

Notice that integrating away the auxiliary field yields the Onsager-Machlup action
functional [L1, 12, 182-184]. However, we prefer to work with the action written in terms
of ¢ andh[z as this is the form that arises as the classical limit of the Schwinger-Keldysh
action used to treat interacting out-of-equilibrium quantum systém 85, that we shall
analyze along the same lines it8f.

2.2.2 Action in the multiplicative noise case

To shorten expressions, we adopt a notation in which the arguments of lttediel
functions appear as subindices, = ¢ (u), n,—», = n(u — v), and so on and so forth, and
the integrals over time as expressed as= f_TT du .
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In the case of the Langevin equatidh) with multiplicative noise, the relatior2(6) is
modified and reads

EQ[+/]
M'()

Pl = Pn{ ]wwnawmwm

with the Jacobian

R [6EQUW]/M'(¢u)]:detw[ Bucs

0ty M (4hu)

and the generalization of the definition @f in eq. .7) to the multiplicative case:

SEQuY] — M"(¢u)
0ty M’ ()

The construction of the MSRJD action follows the same steps as in the additieecagis,
complemented by a further transformation of the figld— iy M’(v)), the Jacobian of
which cancels the first determinant factor in ties of eq. €.11). Therefore, the MSRJD
action reads

} AW (11)

joW = detw |: EQu[¢] 5u—v] . (212)

Sy, 9] = 1HH(¢—T7¢—T)—/i1@uEQu[T/J}

u

w3 [ [ @) B e, M) + 0|0 229

with 7, defined in eq.Z.12 . The deterministic part of the action is unchanged compared
to the additive noise case and the dissipative part is now

sidl = [ib, [ @anearw) [ -0 . @)

2.2.3 Jacobian

In App. 2.Cwe prove that even in the multiplicative colored noise case that the Jacobian
Jo is a field-independent positive constant as long as the Markov limit is nehta®ne
can therefore safely drop the Jacobian term in the normalization. Howegeatecide to
keep track of this term in our expressions. Furthermore, it will be usefgive an explicit
representation offy in which it is the result of a Gaussian integration over Grassmann
conjugate fields andc*,

Jo[v] = /D[c, c’l ST [ec* ¥l : (2.15)

with

6 " w
SJ[C, C*,l/)] = / /CZ E;Q;f¢} Co — CZ x/((:fu; EQU[QM Cy (216)
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and the boundary conditions{—7") = ¢(—=17) = ¢*(T') = ¢*(T") = 0. Plugging in the
Langevin equation?.5), we arrive at

C c*, )] // [ 62 Oy—v — 5§¢[¢] +M/(¢u) ulhu— vM/(wv) Co

M"(hu) a2
— | ¢, mo vy, — Fy, Cy - 2.17
[ e mot— Rl (2.17)
The Grassmann fieldsandc* that enter the integral representation of the determinant are
known as Faddeev-Popov ghosts and can be interpreted as spinteiem&erThe two-time
fermionic Green function defined as

(GGep)ygs = /D[c,c*] c;‘fct/esj[c’c*’w] , (2.18)

is related, by use of Wick’s theorem, to the inverse operat ’[w] %,((;f’f) EQ[t)t]d¢—vr.
(cfcy) g7 inherits the causality structure of the latter and it vanlshes at equal timegeason
the Markov limitis not takeni(e. all fermionic tadpole contributions cance{}; cy) g7 = 0

for t > ¢. The last statement can be easily verified by considering the discretirgidrve

of S (see App2.B.3and App2.C) and by checking that the diagonal terms of the inverse
operator vanish in the continuous limit. Notice ti$f only involves combinations of the
form c*c, i.e. it conserves the fermionic charge afig) g = (¢;)gs = 0. This implies
furthermore that" [c, ¢*, ] and more generally the MSRJD generating functional (at zero

sources) are invariant under the following field transformation

¢ e yaecr. (2.19)
¢ = o,

The Jacobian of the transformation is trivially equal to one and the me&3ure’| is left
unchanged. One h&5; (a)T7(8) = T7(apB).

The total MSRJD action given in eR.(L3 can be written equivalently as a functional
of 4, 1, c ande* provided that the path-integral measure is extended to the newly introduced
fermionic fields:

S[w, v, ¢, ] =S4, 4] + ST, P + 57 [e, ¢, 4] (2.20)

2.2.4 Observables
Measure.

We denotd ... ) the average over the thermal noise and the initial conditions. Within the
MSRJD formalism, the average is evaluated with respect to the action funcsipfab] or
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S[i, 1), ¢, ¢*] and we use the notatigp.. ) g

(.)s

/Dw,@z}] ... Sl (2.21)

= /D[w,zﬁ,c, c*] ... eSbec] equivalently. (2.22)

Local observable.

The value of a generic local observablat timet is a function of the field and its time-
derivatives evaluated at timei.e. a functional of the field) aroundt, A([¢],t). Unless
otherwise specified we assume it does not depend explicitly on time and deAdtd)].
Its mean is value

(Alp@)]) = (Alp@)])s - (2.23)

Time-reversal.

Since it will be used in the rest of this work, we introduce the time-reverséahfi by
Y(t) = ¢(—t) for all t. The time-reversed observable is defined as

A9, 1) = A([y], —1). (2.24)

It has the effect of changing the sign of all odd time-derivatives in theession of local
observablese.g. if A[(t)] = 0wp(t) then A [y(t)] = —0)(t). As an example for non-
local observables, the time-reversed Langevin equafidi) feads

EQ()t) = mi(t) — Fe(il.) - / dunu— ). (2.25)

-T

Notice the change of sign in front of the friction term that is no longer dissipaiti this
new equation.

Generating functional
Formally, the generating functional reads
Z|[J, j] = <efdu J(u)w(u)+f(u)i¢(u)>s , (2.26)

whereJ and.J are the sources fap and<) respectively andZ|0, 0] is normalized to unity
by construction.
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Two-time correlation.

We define the two-time self correlation function as

Ct,t) = W) = Wt)vE))s . (2.27)
In terms of the generating functional it is expressed as

o 02Z[J, ]
ot = AOIAG) . (2.28)

Given two local observable4 and B, we similarly introduce the two-time generic correla-
tion as

Clapy(t,t) = (AR®]BE)])s , (2.29)

The curly brackets are here to stress the symmetry that underlies this defi6itios, (¢, t') =
C’{BA} (t/7 t)'

Linear response.

If we slightly modify the potential according 16 (¢)) — V (v) — fy, the self linear
response at timéeto an infinitesimal perturbation linearly coupled to the field at a previous
timet' is defined as

5(1h(t)) OIS TH

R(t,t) = (wa(t/) fum0 - 5f¢(t/) foo .

(2.30)

Itis clear from causality that if’ is later thart, (1(¢)) sy, cannot depend on the pertur-
bation f,,(t') so R(t,t') = 0 for ¢’ > t. At equal times, the linear respon&t, ¢) also
vanishes as long as inertia is not neglected 0) 1. More generally, the linear response
of A at timet to an infinitesimal perturbation linearly applied Bat timet’ < t is

RAB(t,t/) = M :% , (2.31)

ofB(t') fB=0 ofB(t') fB=0

with V() — V() — fe B[]

1. Inthe double limit of a white noise amnd — 0, the equal-time response can slightly violate the causality
principle depending on the order in which the limits are taken. In thedenario it vanishes whereas in the
Stratonovich one it has a finite value.
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2.2.5 Classical Kubo formula

By computing explicitly the functional derivativi/ ¢ f,, in the path integral generating
functional, we get

6<>S[f¢] _ < 68[1/}71&707 C*;fdi} >S
0L gm0 A T
= (..i(t))s + (... mc*(t)c(ms .

The first term in therHs comes from the functional derivative 6f°t. The second term
comes from the Jacobian term expressed with the fermionic ghtand vanishes iden-
tically (see the discussion on the equal-time fermionic Green function in2S28. One
has

- RIS SETS B
<1¢(t)>5 = W fo =0, (2.32)
NN T 5%(1)s1f]
<11/1(t)1¢(t )>S = m o =0. (2.33)
=

From the definition of the linear response, eg.3(), we get the ‘classical Kubo for-
mula’ [14§

A~

R(t,t') = (()i(t))s - (2.34)

The linear response is here written within the MSRJD formalism as a correlatiorutednp
with an unperturbed action. The causality of the response is not explicértheless fol-
lowing the lines of 137 one can check it is built-iR. Because of this expression, the
auxiliary field ¢ is often called the response field. Observe that we have not specified the
nature of the initial probability distributio®; nor the driving forces; eq2(34) holds even

out of equilibrium. In terms of the generating functional it is expressed as

9 A

_ ] (2.35)
5Tt J ()

J=J=0

Similarly, by plugging eq.Z.23 into eq. €.31), we obtain the classical Kubo formula

2. In general, a multi-time correlator involvirig (¢, ) vanishes if; is the largest time involved.
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for generic observables:

55[%1/}7 ¢, C*; fB]

RAB (t7 t/) - <A[¢(tﬂ 5fB (t/)

)s
fB=0
oo OB ()]
= (A[Y(t)] [d —
(Ap) [dui) s
o oy OB[()]
= (Afp(t ()
(AL O () Gy
This formula is valid in and out of equilibrium and allows us to write the respamsetions
associated to generic observablegy( functions of the position, velocity, acceleration,
kinetic energy, etc.) as correlators®f ¢> and their time derivatives. For exampleBfis
just a function of the field (and not of its time-derivatives), only the: 0-term subsists in

the above sum, yielding

Vs . (2.36)

N o OB(1)]
Ran(t,t) = (W@ =5 G )s - (2.37)

As another example, if one is interested in the response of the accelergtidn)| =

d?71(t) to a perturbation of the kinetic enerd{t(t)] = 1m(d,(t))* one should compute

Rap(t,t") = m(0f(t)0yid(t)opv(t))s - (2.38)

Furthermore, it is straightforward to see that within the MSRJD formalism wesgtand
all the previous definitions and formulee #obeing a local functional of the auxiliary field:

Al(t)]. For example, ifA[)p(t)] = i (t) and B[y(t)] = (t), we obtain the mixed
response

A~ ~

Ry, (tt) = (W(@)iw(t)s=0, (2.39)

where we used eg2(33.

2.3 Equilibrium

In this Section we focus on situations in which the system is in equilibrium. We iden-
tify a field transformation that leaves the MSRJD generating functional (evalaatasto
sources) invariant. The corresponding Ward-Takahashi identitiegeba the expectation
values of different observables imply a number of model independeiiitemum proper-
ties including stationarity, Onsager relations and the fluctuation-dissipation théeem
These proofs are straightforward in the generating functional formalismouigtrating its
advantage with respect to the Fokker-Planck formalism or master equatisnvamen the
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environment acts multiplicatively and has a non-vanishing correlation time. Weebart

soon [L86 on the extension to the quantum case where the Keldysh action also exhibits a
non-trivial symmetry for equilibrium dynamics. Similarly to the classical case,synis-

metry leads to the quantum FDT.

2.3.1 The action

Equilibrium dynamics are guaranteed provided that, apart from its interactitimthe
bath, the system is prepared and driven with the same time-independentresetvadive
forces ¢ = —V”). In such situations, the initial state is taken from the Boltzmann proba-
bility distribution

In P(¢_p,p-7) = —fH[-_7] —In Z ,

whereH[y,] = Qmwt + V(¢) is the internal energy of the system, afids the partition
function. The Langevin evolution of the system in contact with the bath can tie plue

form
5[¢U] M,(wt) / "t “M/(wu)@/)u - M/(l/}t)ét ’ (240)
u wt w

with L[] = %mwﬁ — V(¢,,) being the Lagrangian of the system. In this equilibrium
set-up, the deterministic part of the MSRJD action functional reads

OL[thy]
0ty

- 5( map? g+ V(4 T)) —1nz—Ln;u [mzﬁﬁv’(%) (2.41)

S ] = —AHp_r] —In 2 + / i

The dissipative part of the MSRJD action functional remains the same, se& ®Bf. As
discussed in Se€..2.3 the Jacobiag/, enters the action through the constant tény, or
it can be expressed in terms of a Gaussian integral over the ghostscfeshdis:*. In that
case, its contribution to the action reads

ST e, e Y] = //CZ [MO25u—u + M (1) Outtu—o M (1) ] €y

B e M”(wu) M”(wu) .
/uu[ V7 (4u) + (o) O Oathy + A () V' (1) | ¢y -(2.42)

2.3.2 Symmetry of the MSRJD generating functional

We shall prove thaff D[y, 1), ¢, ¢*] eS¥¥:<'] is invariant under the field transforma-
tion:

i"&u — ilﬁ—u+ﬂau¢—U7 CZ = —Cy -
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This transformation is involutary7. 7., = 1, when applied to the fieldg or izﬁ and
the composite field*c. It does not involve the kernel and includes a time-reversal. It
is interesting to notice that the invariance is achieved independently by thendesic
(S9¢t), the dissipative§%%%) and the Jacobiars(’) contributions to the action. This means
that it is still valid in the Newtonian limit:{ = 0).

In terms of the generating functional, the symmetry reads
Z[J,J) = 2|J + BaJ, J], (2.44)

whereJ (u) = J(—u) and.J(u) = J(—u).
The detailed proof that we develop here consists of two parts: we fiost it the
Jacobian of the transformation is unity, then that the integration domain of théoimawesl

fields is unchanged. Afterwards we show that the action functishaly, ¢, ¢*] is invariant
under7e,.

Invariance of the measure.

The transformatiory,, acts separately on the fielgsandit) on the one hand, and the
fields c andc* on the other. The Jacobiaft, thus factorizes into a bosonic part and a
fermionic part. The bosonic part is the determinant of a triangular matrix:

i 5¢—u
— 5(¢7¢) —1 Py 0 ] 1 2
Jb = det| —— | =det;} | s | = (et} [6u1]) =1
q [5(72(]%7;01@] G, [ 512;” &ilu (det, [6urv])

. . . . . . . . f _
and it is thus identical to onel§7]. Itis easy to verify that the fermionic part,, = 1 as
well.

Invariance of the integration domain.

Before and after the transformation, the functional integration on the fieikl per-
formed for values of); on the real axis. However, the new domain of integration for the
field ¢) is complex. For a given time v, is now integrated over the complex line with
a constant imaginary partiso:1p;. One can return to an integration over the real axis by
closing the contour at both infinities. Indeed the integrafidgoes to zero sufficiently fast
atiy; — +oo for neglecting the vertical ends of the contour thanks to the &Thmo(izﬂt)Z
in the action. Furthermore the new field is also integrated with the boundarytiooisd
B(=T) =(T) = 0.

The transformatiory,, leaves the measuf[c, ¢*| unchanged together with the set of
boundary conditions(—T") = ¢(—=T) = ¢*(T') = ¢*(T) = 0.



41

Invariance of the action functional.

The MSRJD action functiona[i), 1, ¢, ¢*] = Sy, )] + ST [1h, )] + 57 (¢, ¢*,1h)
is invariant term by term. The deterministic contribution given in 8411 satisfies

S T Tegd] = 0 A ) = [ [+ B0u0-u] (o4 V(-]
—w Aurdr) — [ 3 [ + V0] +5 [ [+ V(0]
~ I R, dr) — | it [ + V)] + 5 [ 0.0
= Sy, 9],

where we used the initial equilibrium measume? (v, ) = —BH[¢] — In Z. In the first
line we just applied the transformation, in the second line we made the substitution v,
in the third line we wrote the last integrand as a total derivative the integrabichvwancels
the first term and creates a new initial measure.

Secondly, we show that the dissipative contributi¥¥[¢, v], defined in eq.%.10), is
also invariant undev.,. We have

S [ Toqth, Toqt)]

/u [ilﬁ—u +/68uw_u} /v BTIM (1h—y) Ny M (th_y) it)_yy
/U[N’Eu _’Bwu} /UM/(%) Nv—u M'(%)ﬁ_lizﬂy
— Sdiss[lz)ﬂ[)] ]

In the first line we just applied the transformation, in the second line we made thttsub
tion u — —wu and in the last step we exchangedndv.

Finally, we show that the Jacobian term in the action is invariant once it is &squle
in terms of a Gaussian integral over conjugate Grassmann fieltsdc*). We start from

eq. .42

ST (TaqCs Toq€®s Toq?)) = / / C_uy ma Oy + M (V) Ounu—s M’ (Y—y)] ¢,

- / / & mazav_u - M’wu)aum_uM'(wv)] e

- [ v + G o, + v e

=S (c,c* ).
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In the first line we just applied the transformation, in the second line we exctiahge
anti-commuting Grassmann variables and made the substitutiens—« andv — —wv, in
the last step we usedn,_, = —9,m,—» and exchanged andwv.

2.3.3 Ward-Takahashi identities

We just proved that equilibrium dynamics manifest themselves as a symmetry of the
MSRJD action and more generally at the level of the generating functional. yifhimstry
has direct consequences at the level of correlation functiontidfa generic functional of
v andy) we get the following Ward-Takahashi identity

(A, ] ..)s = (Al Teq¥h, Teq?] ... )5 - (2.45)

The use of this identity leads to all the possible equilibrium relations betweenvabes
as we shall now describe in the following.

2.3.4 Stationarity

In equilibrium, one expects noise-averaged observables to be indeperfdea time
to at which the system was prepared (in our cgse- —1'). One-time dependent noise-
averaged observables are expected to be constélnt;|) = ct, and two-time correlations
to be time-translational invarian{A[y,| B[y ]) = f;—¢. Similarly, one argues that multi-
time correlations can only depend upon all possible independent time-difesdetween
the times involved. These statements have been proven for additive whigepnotesses
using the Fokker-PlancKiBg or SUSY formalisms §9-101]. The use of the transforma-
tion 7., allows one to show these properties very easily for generic Langeviepses.

One-time observables. Taking A = 1 and lettingB be a generic local observable, the
equal-time linear response vanishBs,z(t, t) = 0. Using the classical Kubo formula (36
we obtain

Rap(t,t) Zat i) 8”1/;1

Applying the transformatioff.,, we find

N 1/]] . [1/}]
Rap(t,t) = Zatwtaawt +523+1¢_ 88%t>

The LHS and the first term in th&Hs vanish identically at all times. One is left with the
second term in theHs that simply read$0; B, [v)—]) = 0,(B:[¢—¢]) = 0, proving that all
one-time local observables are constant in time.
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Two-time observables. Because we just showed that[)(¢)]) is constant in equilibrium,

the response&k 45 (t,t'), see its formal definition in eq2(31), can only be a function of
the time-difference between the observation time and the time at which the padnrisa
applied. Therefore can it be written in the foly (¢, ') = f(t — ¢")0(¢t — t'). We shall

see in Sec2.3.7that the fluctuation-dissipation theorem relates, in equilibrium, the linear
responseiap(t,t') to the two-time correlatiol’; 4 gy (¢, t') implying that this last quantity

is also time-translational invariant.

Similarly, (n + 1)-time correlators can be proven to be functions @fidependent time-
differences because they are related, in equilibrium, to responsetroe correlators that
are time-translational invariant.

2.3.5 Equipartition theorem

Let us consider the local observablég)(t)] = 0, (t) and By (t)] = ¢(t). In that
caseRap(t,t') = (Dubity)s = 8, (1hithy) s and we recognizé, R(t,t'). Using the field
transformatiort/.,, we get

OR(tY) = O (_iit_y)s + BOW—Opb_y)s

= (Y_ith_p)s + B(Ordpiby) s

If t > t/, the first term in therHS vanishes by causality. Considering moreover the limit
t' — t~ theLHs is 1/m as we shall show in Se2.4.2 Finally, we get the equipartition
theorem

Bm(O)®) = 1. (2.46)

2.3.6 Reciprocity relations
If we use7.q in the expression( 29 of generic two-time correlation functions, we get
(Alr]Blvw])s = (Arl—] Be[—v])s
reading
Crapy(t,t') = Cra,py (=t =) . (2.47)
In the cases in whichl and B have a definite parity under time-reversal we obtain

Ciapy(1) = Ciapy(|7]) if AandB have the same parity,
Ciapy (1) = —Cyapy(—7) otherwise.
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2.3.7 Fluctuation-dissipation theorem (FDT)
Self FDT.

Applying the transformation to the expressich34) of the self respons&(t,t’) we
find

(ri)s = (TeqTeqith)s = (Yiith_v)s + B Ort_p)s
and we read
R(t,t) = R(—t,—t')+ BOyC(—t,—t')
that, using the equilibrium time-translational invariance, becomes
R(r) = R(-7) = —p0.C(-7),

where we set = ¢ — t’. SinceC(7) is symmetric inr by definition, this expression can be
recast, once multiplied b@(7), as

R(r) = —0O(r)Bo.C(r). (2.48)

Equation 2.48) is the well-known fluctuation-dissipation theorem. It allows one to predict
the slightly out-of-equilibrium behavior of a system — such as the irreversiddgdtion of
energy into heat — from its reversible fluctuations in equilibrium.

Generic two-time FDTs.

We generalize the previous FDT relation to the case of generic local elidesvl and
B. Applying the transformatiofi., to expressionZ.36) of the linear responsB p(t,t')

> .. OB[y
Al Y Opid “’f;j = Zazhw y %b
n=0
o n OB:[¢—v]
+5 <Ar[¢_t];)aﬂ+lwt Doy

= (Ao 3 0pit- St B A Bl
n=0

Applying once again the transformation to the last term inRRs yields

wtz iy 28| f;j;b - Z iy Zt,% + B0 (Al Blge])s
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which reads
Rap(T) = RaB,(—=7) = —B0:Clapy(7) . (2.49)
By multiplying both sides by () we obtain the FDT for any locad and B

Rap(t) = —0O(7)B0-Crapy(7) - (2.50)

2.3.8 Higher-order FDTs: e.g. 3-time observables

We give a derivationyia the symmetry of the MSRJD formalism, of relations shown
and discussed ire.g.[188, within the Fokker-Planck formalism for stochastic processes
with white noise.

Response of a two-time correlation.

We first look at the response of a two-time correlator to a linear perturbatigiedat
timet;

R(ts, to;t1) = M . (2.51)

(Sfibtl fu=0
In the MSRJD formalism, it can be expressed as the 3-time correlator

R(ts, ta;t1) = (Yethisithe, ) - (2.52)

Causality ensures that the response vanishes if the perturbation is pdstéhie observa-
tion times: R(ts, to; t1) = 0 if ¢; > max(t2, t3). We assume without loss of generality that
ta < t3. Under equilibrium conditions, the response transforms ufideas

R(ts, tast1) = (V_tg¥_tyi00_4,)s + O, (W—ta¥—1,90—1,) s -

Multiplying both sides byo(¢3 — t1) and transforming once again the last term inries,
we get

ﬁatl <¢t3wt2wt1>5’ if 1 <ty <t3 s
R(ts, ta;t1) =  R(—t3, —t2; —t1) 4 B0 (Vi 1,01y ) s i ta < t1 < 3, (2.53)
0 ifteg <tz <ty.



46

Second order response.

Let us now look at the response to a perturbation at ttmef the linear response
R(tg, tz)l

R(ts;ta,t1) = M . (2.54)

6f1/1t1 6.](.111152 fu=0
In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t3;t2’t1) = <¢t3i¢tzi¢;t1>5 . (255)

Itis clear from causality that the response vanishes if the observation tirméiglthe two
perturbationsR(t3; t2,t1) = 0 if t3 < min(¢y,¢2). The response transforms undey as

R(t3;ta, t1) = R(—t3;—ta, —t1) + [0y R(—t3, —t1; —t2)
+ 58t2R(_t37 —t2; _tl) + 62875181&2 <¢—t3w—t2¢—t1>5 .

Let us assume without loss of generality that< ¢». Using causality arguments and
applying once more th&., transformation to the remaining terms we obtain

0 iftg <ty <tg,
R(tsito, t1) = § R(—t3; —ta, —t1) + B0y, R(ts, t1;t2) if t1 <t3 <ta, (2.56)
Bath(tg,tl;tQ) if t1 <ty <ts3.

2.3.9 Onsager reciprocal relations

Rewriting twice eq.2.49 as

Rap(T) — Ra,p,(—7) = —B0:Ciapy(7),
Rpa(—7) — Rp,a, (1) = B0;Cipay(—7) = B0rCiapy(7) ,

and summing up these two equations with- 0 we get
RAB (T) - RBrAr (T) N

These equilibrium relations, known as the Onsager reciprocal relatiormessxpe fact that
the linear response of an observaldldo a perturbation coupled to another observable
can be deduced by the responseé3pfto a perturbation coupled td,.
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2.3.10 Supersymmetric formalism
Generating functional.

The generating functional of stochastic equations with conservative fadres a su-
persymmetric formulation. This has been derived and discussed for aduliiise in a num-
ber of publications189,98-101]. We extend it here to multiplicative non-Markov Langevin
processes (seé9( for a study of the massless and white noise limits). To this end, let us
introduced and#*, two anticommuting Grassmann coordinates, and the superfield

MW@»_
M’ (4(t))

The MSRJD actiort [see eq. 2.20)] has a compact representation in terms of this super-
field:

U(t,0,0%) = h(t) + c*(t) 0 + 0% c(t) + 670 (izﬁ(t) + ¢*(t) e(t)

de diss
S = S5 + S (2.57)
with
de — * * *
Ssusty[\ll] = —B/dede OOH[Y(-T,0,0")] —an+/dT LY (1)),
iss _ 1
st = 5 [ farar awee) DO 1) arcu(r))

H[W] = Lm¥? + V() andL[V] = im T2 — V(¥). We used the notatiolf = (¢, 6, 0*)
anddY = dt df d#*. The ‘dissipative’ differential operator is defined as

2 — 6)
1sigy— ),

0
00 00*

DAY T) = ' —t)5(6" —0")5(0' — 0) (251 o

Wheres_i>gg is a short notation foﬁﬁ% — 1. Itis equal to 1 if there is & factor in the right
and to -1 otherwiseD(?) can be written as
DAY, T) = n(t' —)s(8*" — 6*)6(¢' — 0) (DD — DD) ,

with the (covariant) derivatives acting on the superspace:

_ 0 ., 0 0
D=o.. D=p'o0 6o, (2.58)
that obey* {D,D} = —£ and{D,D} = {D,D} = 0. In the white noise limit the
dissipative part of the action simplifies to
iss 1
St = 5 [aT M0 DA M(w(Y)).

3. Covariant in the sense that the derivative of a supersymmetrie®sipn is still supersymmetric.
4. Therefore theb? term in £[¥] can be written in terms of covariant derivatives(4®, D}\I/)Q.
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with the ‘dissipative’ differential operator

2

0
00 00*

+S_i>gga> — o (DD — DD) .

(2) — -1
D¥(T) = no (25 g

Notice that this formulation is only suitable situations in which the applied forces are co
servative. The Jacobian terfiY’ contributes to both the deterministis %) and the dissi-
pative part £41%) of the action.

susy

Symmetries.
In terms of the superfield, the transformatipn(«) defined in eq.Z.19 acts as
T7(a) = U(t,0,0%) — U(t,a 10,00*) VaeC*, (2.59)

and leaves the actiof[¥], see eq. 4.57), invariant. The transformatiofic, given in
eg. .43 acts as

Teq = V(t,0,0%) — W (-t — 6760, —0",0) , (2.60)
and leaves the actiofi|¥], see eq.4.57), invariant.
The actionS[¥] given in 2.57) has an additional supersymmetry generated by

9
96+

Q= [3712 —1—9*3

Q= a0 " ot

that obey{Q,Q} = F and{Q.Q} = {Q.Q} = {D,Q} = {D,Q} = {D,Q} =
{D, Q} = 0. Both operator€) andQ are thus nilpotent anfiQ, Q} is the generator of the
Lie sub-group. They act on the superfield as

AU =T+ *QU, QU =T+ QU,

wheree ande* are two extra independehGrassmann constants and

QU = c+0 (i&ﬂ*ﬁ)\?ffﬁ) , (2.61)
Qv = gt = (570 - 0wt 5t

Expressed in terms of superfield transformatic#{d] is invariant under both

> — 000, . (2.62)

U(t,0,0%) — (0,0 + ¢*) (2.63)

5. e ande™ are independent in particular of the coordinatesdo™.
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and
U(t, 0,0%) — \P(t+e€*,9+ﬁfle,9*). (2.64)

Here again, the invariance of the action is achieved independently by thendestic
(59t and the dissipativeq**) contributions. We would like to stress the fact that the
presence of the boundary term accounting for the initial equilibrium meastine Gield )
as well as the boundary conditions for the fieldsc andc¢* are necessary to obtain a full
invariance of the action.

BRS symmetry.

The symmetry generated [ is the BRS symmetry that generically arises when a
system has dynamical constraints (here we impose the system to obey ¢fewinsaguation
of motion). Applying the corresponding superfield transformatiofili(t, 6, 6*)) s gives

(U(t,0,0%)s = (V(t,0,0%) + QY (t,0,0%))s ,
and therefordQU (¢, 6,0%))s = 0. This leads to

. M (1)
= fo———2Vg=0. 2.65
<Ct>s O Y <1/¢)t + Ct Ct M/(d)t) >S 0 ( )
Applying the transformation inside the two-point correlapdn(, 0, 0*)¥ (', 0, 6*')) s, we
get (QU(t,0,0%)W(t,0,0%))s + (t,0,0%) < (¢',6',60*) = 0. This leads in particular to
identify the two-time fermionic correlator as being the (bosonic) linear regpons

M (¢r)
M" ()

Corroborating the discussion in S&c2.3 this tells us in particular that; ¢;/) s (and more
generally the fermionic Green functidn;c;) ) vanishes for > ¢’ and also fort = ¢/
provided that the Markov limit is not taken. Using this result, the second relati(?.65
now yields(iv;)s = 0.

R(t, t/) = <¢t i’l[}t/ -+ C:/Ct/

)s = (cice)s - (2.66)

FDT.

The use of the symmetry generated®yon (¥ (¢, 6, 6*)) s gives,

(ct)s =0, (i — BO)s = 0. (2.67)

By use of(izﬁgg = 0 (which was a consequence of the BRS symmetry), the second relation
become9®),(y;)s = 0. This expresses the stationarity and can be easily generalized to more
complicated one-time observableXy), by use of the supersymmetry (Al (¥))s.
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The use of the symmetry generated Qyon a two-point correlator of the superfield
reads

(U(t, 0,00, 0',0)) s = (U(t + 0,0 + Be, )V (' + 0™, 0 + Be, 0*))s |
giving, amongst other relations,

M@ _ ctep)s =0. (2.68)

MW ]

As discussed in Se@.3.1Q (cfcy)gs vanishes fort > ¢'. Therefore, the term imj ¢,
disappears from eg2(68 and the FDT is obtained by multiplying both sides of the equation
by ©(t — t')

(V¢ i&t’ — B0y + iy

R(t,t) = BoCt )01 -1).

2.3.11 Link between7,, and the supersymmetries

It is interesting to remark that both supersymmetries (the one genera@®damgl the
one generated bQ) are needed to derive equilibrium relations such as stationarity or the
FDT. All the Ward-Takahashi identities generated by the combined uses¢ $upersym-
metries can be generated iy, but the inverse is not true. The supersymmetries do not
yield relations in which a time-reversal appears explicitly such as the Onsagprocal
relations.

It is clear from its expression in terms of the superfield, 86, that the equilibrium
transformatiorf/., cannot be written using the generator of a continuous supersymmetry.
However, the transformatiofi., can be formally written in terms of the supersymmetry
generators as

Teq =V > TZeQ 0T (2.69)

wherell is the time-reversal operatar &+ —t), = exchanges the extra Grassmann coordi-
nates ¢ — —6* andd* — 6) and the generatd is defined in terms 0@ andQ as

Q=-50"0{Q,Q} = —59*0% . (2.70)

2.3.12 Newtonian limit: a phase space approach

For a system described by the time-independent HamiltoHian p), wherex is the
coordinate ang the conjugate momentum, the dynamics are given by the two Hamilton’s
equations:

EQX[x(t), p(1)]
EQP{z(t), p(t)]

& — OpH(z,p) =0,
P+ OyH(z,p) =0.

(2.71)
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For a given set of initial conditions; andp;, they have only one set of solutiong, (¢) and
Psol(t). One can construct a path integral as

(Alz, p]) o / Dz, p| Az, plé[z — zs01][p — psor]e PHEET)P(=T))
x / Dl p, &, ] Alw, pl|J= TP |eSepdil (2.72)

with the boundary condition8(—71") = p(—71") = z(T") = p(T) = 0. We averaged over
equilibrium initial conditions and introduced the action functional

S[Ji,p,ﬂ?‘,ﬁ] = —BH(I(—T),]?(—T))
- / lfi'u [pu + 8a:u/H(CUU7pu)] + lﬁu [mu - 8puH($U7pu)] .

Let us now assume th&{(z,p) = g(p) + f(z). It follows that the Jacobiang” =
det,, [WLandjp = det,, [%W} are field independent constants that
can be dropped in the normalization. The generating functional at zero sasiiogariant

under the transformation

€T Ty Pu = —P-u
P e b 273
eq 1Ly > 1T + /Bauxfu y 1Dy —1Pp—y + Baupfu > ( )

as long as the Hamiltonian is time-reversal invariaet,H(x, p) = H,(x,p) = H(x, —p).

2.4 Out of equilibrium

We now turn to more generic situations in which the system does no longer evolve in
equilibrium. This means that it can now be prepared with an arbitrary distribaitidiit can
evolve with time-dependent and non-conservative fof¢€s

We first show that the way in which the symmefly, is broken gives a number of so-
called transierft fluctuations relations25, 27, 150, 29, 151, 157, [153-15§, [159-161].
Although fluctuation theorems in cases with additive colored noise were studsedenal
publications [54-157], we are not aware of similar studies in cases with multiplicative
noise.

We then exhibit another symmetry of the MSRJD generating functional, valid in and
out of equilibrium. This new symmetry implies out-of-equilibrium relations betweereeor
lations and responses and generalizes the formuldsii-169 obtained for additive white
noise. Finally, we come back to the equilibrium case to combine the two symmetries and
deduce other equilibrium relations.

6. As opposed teteady-statéluctuation relations the validity of which is only asymptotic, in the limit of
long averaging times.
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2.4.1 Non-equilibrium fluctuation relations
Work fluctuation theorems.

Let us assume that the system is initially prepared in thermal equilibrium withatetspe
the potentiall’ (4», \_7) ’. The expression for the deterministic part of the MSRJD action
functional [see eq.A.9)] is

S, i X, 2] = —BH([W—1], \or) —In Z(A_7)
~ [ 0 [+ V(s ) —

whereH (1], \¢) = %ml/}? + V (¢, A¢). The external work done on the system along
a given trajectory between timesI’ and T is the sum of the work induced by the non-
conservative forces and the one performed through the externatptroto

Wls A, ™) = / b 2 / Duda OV (10 A (2.74)

The transformatiorf,, does not leavé* invariant but yields

SO, Dy A, 1 e S, i X, fE + BAF: — W A, £ (2.75)
or equivalently

SO, Dy A, FU) + BAF — BW [ A, f2] v SO, s A, 7] . (2.76)

Sdet[q), z[z; A, £1¢] corresponds to the MSRJD action of the system that is prepared (in equi-
librium) and evolves under the time-reversed protodal) = A\(—u) and external forces
ne([y],u) = fA°([¢], —u). AF, is the change in free energy associated to this time-
reversed protocolBAF, = —In Z(A\(T)) + In Z(A(-T)) = —BAF between the initial
and the final ‘virtual’ equilibrium states. The dissipative part of the actists, is still
invariant undef7.,. This means that, contrary to the external forégshe interaction with
the bath is time-reversal invariant: the friction is still dissipative after the toamsttion.

This immediately yields

eBA]:< W} @ZJ] —AWLAf® ]> S[A, fre] _< [ eq¢a eqw]> S\, fac] (2.77)

for any functionalA of ¢ and<). In particular for a local functional of the fieldi [ (t)], it
leads to the relationlpZ

P2 (Al ()]e PN oy ey = (As[0(=B)]) 513 pe) (2.78)

7. This is in fact a restriction on the initial velocitiez;é,_T, that are to be taken from the Boltzmann dis-
tribution with temperaturegd—!, independently of the positions_r. The distribution of these latter can be
tailored at will through the\ dependence df".
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or also
AT AL ()] Bl ()] PV gy e
= (A [ (=] B (—t)]) s e (2.79)
SettingA[t), ¢] = 1, we obtain the Jarzynski equalityq1, 150
AT (e WA N o1y g = 1. (2.80)

SettingA[y, ¢)] = §(W — W [4; A, f¢]) we deduce the Crooks fluctuation theorei, 29,
197

P(W) = P(—W) PW=4AF) (2.81)

where P(WW) is the probability for the external work done betweefi’ and 7" to be W
given the protocol\(¢) and the non-conservative forg&<([¢],t). P.(W) is the same
probability, given the time-reversed protocolnd time-reversed forcg®. The previous
Jarzynski equality is the integral version of this theorem.

Fluctuation theorem.

Let us now relax the condition that the system is prepared in thermal equilibondm a
allow for any initial distributionP,. We recall the corresponding deterministic part of the
MSRJD action functional given in Se2.2, eq. .9

S, 9] = IR (p(-T),(-T))
— [auib(w) [mi + V(o). Aw) - () w).
The transformatiorfe, does not leavé&“°® invariant but one has
S W, A =S = SN, £,

with the stochastic entrop§ = — [mpi(wm, —(T)) — In P(¢(~T), ¢(—T))} ~Bo.

The first term is the Shannon entropy whereas the second term is thangeckntropy
defined through the heat transf@r= AH — Wy; A, f*°. AH = H([Y(T)],\T)) —
H([v(=T)], \(—T)) is the change of internal energy. The dissipative part of the action,
Sdiss is still invariant undefT.,. This immediately yields

(Alp, e %) gn pne) = (AlTeqth, Teq?) s pocy (2.82)

for any functionalA of ¢ and<). SettingA[t), ] = 1, we obtain the integral fluctuation
theorem (sometimes referred as the Kawasaki ideritia [194)])

1= (%) (2.83)

Sl fre] -
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which using the Jensen inequality giv@%>s[w Did, fre] > 0, expressing the second law of

thermodynamics. Setting [, zﬁ] = (¢ — S) we obtain the fluctuation theorerq, 29,
192

P(¢) = Pi(—() e, (2.84)

where P(() is the probability for the entropy created betweef andT' to be ¢ given
the protocol\(¢) and the non-conservative forg&“([¢],¢). P.(¢) is the same probability,
given the time-reversed protocbland time-reversed forcghc.

Similar results can be obtained for isolated systems by switching off the interadtio
the bathj.e. by takingn = 0. Itis also straightforward to obtain extended relations when the
bath is taken to be out of equilibrium, for example by usitig—t') # n(t —t¢') +n(t' —t),
and the contribution of the change in the dissipative action is taken into accdustkiiid
of fluctuation relation may be specially important in quantum systems.

2.4.2 Generic relations between correlations and linear rggnses

A number of generic relations between linear responses and the avefagheraob-
servables have been derived for different types of stochastionigeaLangevin with ad-
ditive white noise 162, Ising variables with Glauber updates33, or the heat-bath algo-
rithm [164-167], and even molecular dynamics of hard spheres or Lennard-Joréadepa
systems 16§. Especially interesting are those in which the relation is established with
functions of correlations computed with the unperturbed dynanigg [L65 as explained
in [169. The main aim of the studies in$3-169 was to give the most efficient com-
putational method to obtain the linear response in the theoretical limit of no applied fie
Another set of recent articles discusses very similar with the goal ofggasthermodynamic
interpretation to the various terms contributing the linear respdn&e-173.

In the concrete case of Langevin processes this kind of relations caerpeimply
derived by multiplying the equation by the field or the noise and averaging av@ioike in
the way done in162. We derive here the same relations within the MSRJD formalism, us-
ing a symmetry property that is more likely to admit an extension to systems with gquantu
fluctuations.

A symmetry of the MSRJD generating functional valid also out of equlibrium.

We consider the most generic out-of-equilibrium situation. We allow for any initial
preparation ) and any evolution of the systen#’). [ D[, 1&] ¢S s invariant under



55

the involutary field transformatiofi...,, given by

Yu = Yu,
7;0111 = < 7 -7 2/8 —1 EQU W] (285)
{ vau — _1wu+ M’('¢u) /vNuv M/(wv) )

The meaning of the subscript referring to ‘equation of motion’ will become dledine
following. For additive noise/[/’(¢)) = 1] the transformation becomes

il;u 1'¢u + 25/ U—v {Wubv - F, [1” + / 77vw¢w] s
and in the additive white noise limit simplifies to
i'([}u — _h&u + 57761 [m¢u - Fuhﬂ + 7701[}14 . (286)

The proof is similar to the one of the previous equilibrium symmetry (seeSe&). The
Jacobian of this transformation is unity since its associated matrix is block triarvgitite
ones on the diagonal. The integration domainyaé unchanged while the one gfcan be
chosen to be the real axis by a simple complex analysis argument. In the fgltngs

we show that the actiofi evaluated in the transformed fields remains identical to the action
evaluated in the original fields. We give the proof in the case of an additise but the
generalization to a multiplicative noise is straightforward. We start from thesggjfum 2.8)

and evaluate

S[%omwplﬁ)om'@;] = lnPi(waﬂ;Z)fT) /|: _Q/B/Nu vEQv :|

X [EQU /B N, w( 11/1w+25/N_1 EQ.[¢ )]
= WmP®_p, 1)+ /{ —25/N‘1 EQ,[¢ ] [;/10/3_1Nu—w izﬁw]

= Sy, ¢].
Contrary to the equilibrium transformatiof,, it does not include a time-reversal and is

not defined in the Newtonian limit(= 0).

Supersymmetric version.

In Sec.2.3.1Q in the equilibrium case, we encoded the fieldsy), c andc* in a unique
superfield¥. In this fashion, the transformatioR,,, given in eq. 2.85 acts as

. > B[ N M (U (u, 0, 0%))EQ,[V]
‘P(t,e,e)%@(t-i-e at ( (tee*))

and leaves the equilibrium actigf{¥], see eq.4.57), invariant.

,9,9*) . (2.87)
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Out of equilibrium relations.

We first derive some relations in the additive casg () = 1] and then we generalize
the results to the case of a multiplicative noise.

Additive noise. UsingT in the expression(34) of the self respons&(t, ¢') we find
(Wit )s = (Teom¥t TeomiVr)s = — (Wit )s + 25/ oUEQu[Y])s
giving an explicit formula for computing the linear response without perturbeid:fi
Rt V) = B/va t' —v) (2.88)
X [m@EC’(t,v) + /du n(v —u)0,C(t,u) — (b(t)F([¢],v))]| .
Once multiplied by, and integrated ovef yields
mdAC(t,t') + /du n(t —u)0,C(t,u)
- WOF@LO) =57 [dund - R, @89)

with no assumption on the initia® (/_7, ¢_7).

If one now use§ in (EQ;[¢]ity ), one obtains

<EQt w)]uﬁt’%g = <EQt[ eom¢] eomu/}t’>
— —(EQuulive)s +28 | N1 (EaERu)s

Since(EQ[¥]EQyu[¥])s = B~ 1N, this simplifies in
(EQq W]Mﬁs = 0y
that yields
molR(t, V') + /dv n(t — )R (v, t') — (i)t )F([¢], 1)) = 6(t — t') (2.90)

with no assumption on the initid?,. One can trade the last term in thies of eq. .90 for
B[R 2L (E(u)Fy[4))¢ by use of Novikov's theorem.

Notlce that despite the fact that the transformafigy, is not defined in the Newtonian
limit (n = 0), both eqgs. 2.89 and .90 are well defined in this limit. Therefore, in
order to compute out-of-equilibrium relations in a isolated system, one can actdiaus
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equilibrium bath interacting with the system, ugg,, to compute the out-of-equilibrium
relations and then finally sengto 0.

Integrating both eqs2(89 and @.90 aroundt = ¢’ we find the equal-time conditions

m OpC(t, 1)

::0, ﬂlé%fat,/

e =1, moR(t)

=0. (2.91)

t'=t t'—tt

The last two conditions above imply that the first derivative of the resplmssion is
discontinuous at equal timés

The use of this symmetry is an easy way to get a generalization oR&f) for a
generic respons®& 4. Indeed, applying this transformation to expressiard§ of the
linear response we obtain

Ras(t.t) = 6 [ax e -0 Y fmoramolvwS o ohs
n=0 t/
~OLARELF (o]0 G s

# a0 Al G A - @92

This formula gives the linear response as an explicit function of multiple-timelators of
the field. For example, ifB is a function of the field only (and not of its time-derivatives),
just then = 0-term subsists in the above sum:

OB,
00(1)
OB[(Y)

<A[¢(t)]F([¢]aU)W>S

n / dv n(u — v)dy (Al ()i (v)

Ras(t,t) = 8 [aun(¢ —) {m B2 (A () (w)

OB[p(t)]

5 o) >S} . (2.93)

As another example if one is interested in the self-response of the veldgity/)] =
B[y (t)] = 0 (t), one obtains

Rap(t,t') = B/du N — ) { m 0;03C(t,u) — 030, (V(t)F([¢],u))s

—|—/dv n(u —v)02C(t,v) } . (2.94)

8. Itis clear from the expressions given i1 g1 that the overdampeech — 0 limit allows for a sudden
discontinuity of the response function as well as a finite slope of the cborefanction at equal times.
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Multiplicative noise. Similar results can be obtained in the case of a multiplicative noise.
Applying the transformation in the correlatér Nt/_u<1/;tM’(zpt,)M’(¢u)iq/3u)g we get

(EReleDs = 871 [ R )M ()i
yielding
mOBCUY) + [ oM ()M ()0
— (W Fuyl)s = B! / R (0o M ()M ()i )s . (2.95)
Applying now the transformation in the correlatdq, []it ) s, one obtains

(EQulid)s = by + 5! / Re—u (M (360) M (46Dt s | (2.96)

yielding
mOER(EE) + [ oM )M )0 i) s
— (Rlie)s = o8 [ Moo M )M ()id) s 297

One can check from eq2.09 and @.97) that the equal-time conditions given in edg 1)
are still valid in the multiplicative case.

2.4.3 Composition of7c,, and 7,

For an equilibrium situation, the MSRJD action functional is fully invariant under the
composition of7¢om and7e,

Yy = Yoy,
7;q o 7;0m - { .7 . 7 2/8 —1 EQ’U[QL] (298)
u AV —u au —u AT Nu_vi 9
A M'(z/}_u)/v MI(6o,)
that simply reads in the white noise limit
Yu = Yoy,
Teq © Teom = { ity —ith_y + __bs [m@Qw + V' (¥-a)] - (2.99)
h oM ()2 T -

For simplicity we only show the implication of this symmetry in this limit and in the additive
noise case:

(1) = —R(—u—t’)%[ B2C(—t, ) + ((—)V" (b)) s] -
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Using equilibrium properties,e. time-translational invariance of all observables and time-
reversal symmetry of two-time correlation functions of the fiéldgshown in Sec2.3.2),
and causality of the response, we get

R(1) = ©(1)— [md2C(r) + A(1)] , (2.100)

with 7 = ¢ — ¢ andA(7) = (¥ (t)V'(¥(t')))s which is eq. .89 after cancellation of the
LHS with the last term in th&hs when FDT betweeR andC' holds [also eq.4.90) after a
similar simplification]. Here again, one can easily obtain a generalization of thiglason
for a generic respongde 4 3 by plugging the transformation into the expressi2rgf) of the
linear response.

2.5 Conclusions

In this chapter we recalled the path-integral approach to classical stacbgnamics
with generic multiplicative colored noise. The action has three terms: a determihistic (
tonian dynamics) contribution, a dissipative part and a Jacobian. We idértifiember of
symmetries of the generating functional when the sources are set to zermvaliance of
the action is achieved by the three terms independently.

One of these symmetries applies only when equilibrium dynamics are assumad. Eq
librium dynamics are ensured whenever the system is prepared with equilibitiahcon-
ditions at temperaturg—! (a statistical mixture given by the Gibbs-Boltzmann measure),
evolves with the corresponding time-independent conservative faodss in contact with
an equilibrium bath at the same temperatdré. The invariance also holds in the limit
in which the contact with the bath is suppresseads. under deterministic (Newtonian)
dynamics, but the initial condition is still taken from the Gibbs-Boltzmann meadtis.
symmetry yields all possible model-independent fluctuation-dissipation theoiemslia
as stationarity and Onsager reciprocal relations. When the field-transfornsaapplied
to driven problems, the symmetry no longer holds, but it gives rise to diftekinds of
fluctuation theorems.

We identified another more general symmetry that applies to equilibrium and -out-of

equilibrium set-ups. It holds for any kind of initial conditions — they can be stayis-

tical mixture or even deterministic, and the evolution can be dictated by time-demtend
and/or non-conservative forces as long as the system is coupled gqoidihreum bath. The
symmetry implies exact dynamic equations that couple generic correlations andrénea
sponses. These equations are model-dependent in the sense thaptay ebeplicitly on

the applied forces. They are the starting point to derive SchwingersbDyg® approxi-
mations and close them on two-time observables. Although the symmetry is ill-defined in
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the Newtonian limit, the dynamic relations it yields can nevertheless be evaluategl in th
Newtonian case.

Finally, we gave a supersymmetric expression of the path-integral fiagms with
multiplicative colored noise and conservative forces. We expressecdegtirévious sym-
metries in terms of superfield transformations and we discussed the relatioesivgeh
supersymmetry and other symmetries.

Appendices

2.A Conventions and notations

O is the Heaviside step function. When dealing with Markov Langevin equations, the
choice of the value of the Heaviside step functt(t) at¢ = 0 is imposed by the choice
of the 15 [©(0) = 0] or the Stratonovich conventio®0) = 1/2]. However, away from
the Markov casei.e. as long as both inertia and the color of the bath are not neglected
simultaneously, the choice 6é4(0) is unconstrained and the physics should not depend on
it. We recall the identities

* dz izy Y
/ 5. ¢ = I(y) and / dz 0(z) = O(y) , (2.101)

—0o0 —0o0

whered is the Dirac delta function.

Field theory notations. Let ) be a real field. The integration over this field is denoted
/D[y . If Ais a functional of the field, we denote.[]. If it also depends on one or
several external parameters, such as the tiued a protocol\, we denote itA([¢], A, t).
WheneverA is a local functional of the field at time (i.e. a function of«(t) and its
first time-derivatives), we use the short-hand notatiti(¢)]. The time-reversed field
constructed fromp is denoted): () = v(—t). The time-reversed functional constructed
from A([¢], A, t) is calledA,: A, ([¢], A, t) = A([¢], A, —t). Applied on local observables
of 1, it has the effect of changing the sign of all odd time-derivatives in tipeession of

A.

To shorten expressions, we adopt a notation in which the arguments ofltisesippear
as subindices); = ¢ (t), i,y = n(t — '), and so on and so forth, and the integrals over
time as expressed gs= [ dt .

Grassmann numbers. Let6; andf; be two anticommuting Grassmann numbers éhd
andé; their respective Grassmann conjugates. We adopt the following conveatithe
complex conjugate of a product of Grassmann numb@igs)* = 6;67.
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2.B Discrete MSRJD for additive noise

In this appendix we discuss the MSRJD action for processes with additmedaoise.

2.B.1 Discrete Langevin equation

The Langevin equation is a stochastic differential equation and one caa giyerous
meaning to it by specifying a particular discretization scheme.

Let us divide the time intervdl-T7",T] into N + 1 infinitesimal slices of widthe =
2T'/(N + 1). The discretized times atg, = —71' + ke with & = 0,..., N + 1. The
discretized version of(t) is 1, = ¥ (t). The continuum limit is achieved by sending
to infinity and keepind N + 1)e = 27 constant. Given some initial conditions andq)x,
we sety; = 1 andiyy = ¥ — et meaning that the first two timegy(andt,) are reserved
for the integration over the initial conditions whereas ftidollowing ones correspond to
the stochastic dynamics given by the discretized Langevin equation:

k
o el = 20k + P Fi(t 1) + Ganlwl —61bzf1

2
=1
= &, (2.102)

EQr_1

defined fork = 1,..., N. The forceF}, typically depends on the statg, but can have

a memory kernelife. it can depend on previous stateés_1, ¥;_», €tc.). The notation
N Stands fomy; = €71 [_du n(ty — t; + u). Theg, are independent Gaussian random
variables with variances,&;) = 3718, whereRy; = ni + .. Inspecting the equation
above, we notice that the value ¢f, depends on the realization of the previous noise
realization{;_; and there is no need to specfiyand{n .

In the white noise limit, one hag,; = ¢~ 'nodw, (E16) = 2108~ Le 16, whered is the
Kronecker delta, and

Y41 — 2¢ + Y1
m 62

EQkfl = _Fk(wkuwkflw“)—i_n(]% :gk .

2.B.2 Construction of the MSRJD action

The probability density” for a complete field historyig, 11, ..., ¥)n+1) IS set by the
relation
P(tho, ¥1, s v g1) dpodepr... 1
= P(¢, i) dpidehy Pa(&1, &2, - En) d§1d&a...déy
P, is the initial probability distribution of the field. The probability for a given noissdry
to occur between times andty is given by

Pu(€1,n€n) = Myte 2 Ziu=m &N & (2.103)
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WhereN,;l1 is the inverse matrix of; (and not the discretized version of the inverse operator

. . . . 2 _ (27I—)N
of R) and the normalization is given byts, = det, () where det...) stands for the

matrix determinant. From e (L03, one derives

Y1 — o

€

P(¢07¢17-~7¢N+1) - ’\7N|-Pl(w17

)Pu(EQo; -, EQN 1) (2.104)

with the Jacobian

0 (Vi ¥, &1, ... EN) 9 (Y1, ¥4, EQu, . .. ,EQn—1)

Jn = det = det ,
N <8(¢0>¢17--~a¢N+1) a(¢07wla"'a¢N+1)

that will be discussed in Apj2.B.3. The expressior2(103 for the noise history probability

reads, after a Hubbard-Stratonovich transformation that introducesitileagy variables
U (k=1,..,N),

NNPn(éla 751\7) = /d’lzjld'&N eiezk i¢k£k+%[37162 Zkl iz&k&klil&l

N /d@Zo---dlﬁNﬂ 5(o)8(thv 1) e~¢ T IrEQ 13T IE R iRuiide - (2,105)

with Ny = (27/¢)V. In the last step, we replaceg by Eq,_; and we allowed for sum-
mations overk = 0 andk = N + 1 as well as integrations oveﬁo and ”@NH at the

cost of introducing delta functions. The Hubbard-Stratonovich transftion allows for

some freedom in the choice of the sign in fronﬁibfc in the exponent (indee#, is real so

P, = P}). Together with eq.2.104 this gives

NNP (o, 1, ..., ¥n+1) = |IN| /dﬁo---dlzwﬂ 8(100)8(n+1)

e Sk iYREQu_1+ 5871 Xy, ik Rpsith +In Py ('lﬁh@)

that in the continuum limit becomes

NP = ‘j[w”ema /DW}] o= Jdu i (w)EQ([Y],u)+2 [fdudv i) (w) B~ R(u—v)i(v) :

with the boundary conditions(—7") = ¢(T') = 0 and where all the integrals over time run

from —T to T'. In the following, unless otherwise stated, we shall simply denote thefn by

The infinite prefacto = Nlim (27 /€)™ can be absorbed in the definition of the measure:
—00

N+1

Dy, 4] = lim (i)N TT dwn die - (2.106)
k=0

N—oo
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Markov case. Inthe Markov limit, the Langevin equation is a first order differential equa-
tion, therefore only the first tim&) should be reserved for integrating over the initial con-
ditions. Moreover, one has to specify the discretization:

EQe .y = m Y=l B =g, (2.107)

€

whereyy, = ayy, + (1 — a)yr_1 with a € [0,1]. @ = 0 corresponds to thedtinterpretation
whereast = 1/2 corresponds to the Stratonovich one (see the discussion ir2Sed.
Following the steps in App2.B.2, we upgrade eq.2(107 to the following a-dependent
action®:

Sn(a) =€) (5‘1770@%)2 — it [now’“_ew’” — Fk@k)] — %F,Q(W) . (2.108)

k

The last term in th&HS comes from the Jacobian:

OEQy_ ~ N s a
v = 150 =TT —ertn) = () ettty

In the I discretization scheme: (= 0) this Jacobian term disappears from the action.
Although Sy (a) seems to be-dependent, we now prove that all discretization schemes
yield the same physics by showing that the differefgga) — Sx(0) is negligible. The
Taylor expansion off,(¢,) aroundiy,_1, Fi,(vr—1) + a ¥k — Y1) F' (¥4—1) + O(e)
[sincevy, — ¥_1 = O(/€)], yields

Sy (@) = Sn(0) = ae S Fwne) [i (0~ ta) = -] +0(). (2109
k

Although the first term within the square brackets looks smaller than the secendhey
are actually bottO(1) sinceity, = O(1//€). Thus, each term in the sum in tReis is
O(e). We now compute the average$f;(a) — Sy (0) with respect ta5x (0) by neglecting
in the latter the termizﬁka(zpk,l) which is of order,/e whereas the others are of order
Since iy, (¥r — Ye-1))sy(0) = 1/n0, it is easy to show thatSy (a) — Sy (0)) s, ) = 0
and therefore all thé'y (a) actions are equivalent to the simpleb tine.

9. We omit the initial measure which is not relevant in this discussion.
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2.B.3 Jacobian
Discrete evaluation of the Jacobian.

In this Section we take the continuum limit of the Jacobian defined inZ2f09. In
the additive noise case, we start from

jN — det<a(¢i)wiaEQ0)"'aEQN1))

8(1/)0,7#17 cee 71;Z)N+1)

0 1 0...

—1/e 1/e 0...
9EQq 9EQy 9EQy

— det| B8 S8 83 ok

0o oY1 02 O3 0..
. 0
OEQN_1 OEQN_1
o T YN 11
OEQq
8é02 0...
1 gt fEu g,
= Zdet| 92  Ovs 0 (2.110)
€ e
OEQNn_1 OEQN_1
02 T OYN+1

Causality manifests itself in the lower triangular structure of the last matrix. @ne\al-
uate the last determinant by plugging €&11032. It yields

The Jacobiayy = A}im Jn is therefore a field-independent positive constant that can be
—00
absorbed in a redefinition of the measure:

N+1
1

Di, ] = lim - (%)N I dew ddy, (2.111)
k=0

N—oo €

We show that this result also holds for multiplicative noise in Apg.

Continuous evaluation of the Jacobian.

One might also wish to check this result in the continuous notations. A very similar
approach can be found i1%7. In the continuous notations],\}im Jn reads up to some
—00
constant factor

101 e, [ 200

9p(v)
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where def...] stands for the functional determinant. Definifg, asdF,[i]/dv,, the Ja-
cobian reads

JY] = det,, [magau_v + / Nu—w Owbuw—v = Fyy [w]}
= det,, [maic;uu +/ Thu—w 6w5wv:| det,, |:5UU _/ GUWFZUU[’(’Z}]]

= det,, |:ma35u—v + / Thu—w awéw—v:| exp Tryy In [5u—v - Muv]

= det,, {m@?ﬁu_v + / Nu—w 8w5w_v] exp — Z % / {MOMO...OM} (2.112)
w n—1 U Y

n times

where we used the notatiodd,, = {Go '}, = [ Gu_wF,,[¢]. G is the retarded
Green function solution to

mo>G(u — v) + /dw n(u — w)0G(w —v) = d(u —v) . (2.113)

Since both,,_,, andF,, are causal, it is easy to see that the: 2 terms do not contribute
to the sum in eq.4.112. If the force F'([], t) does not have any local term (involving the
value ofi or ¢ at timet) then = 1 term is also zero. Otherwise the= 1 term can still
be proven to be zero provided th@ft = 0) = 0. This will be true, as we shall show in the
next paragraph, unless the white noise limit is taken together with the Smolskihlowit
(m = 0). Away from this Markov limit we establish

JW] = det,, {m@Z(S(u — ) +/ Nu—w 8w5w_y] ,

meaning that the Jacobian is a constant that does not depend on the field

We now give a proof that(¢t = 0) = 0. Taking the Fourier transform of e2.(13,

G(t = 0) :/OO W ) = —/Oo o 1 (2.114)

o 2 o 2 mw? + iwn(w)

G(w) andn(w) are the Fourier transforms of the retarded Green function and frictiory. The
are both analytic in the upper half plang+P) thanks to their causality structure. The con-
vergence of the integrals aroupd — oo in eq. £.119 is ensured by either the presence
of inertia or the colored noise. For a white noigéy) = 7], it is clear that the mass term
renders the integrals in e®.(14 well defined. In then = 0 limit the convergence is still
guaranteed as long as the white noise limit is not taken simultaneously. |rukeElse
n(w) is analytic in theuHp, it is hence either divergent on the boundaries of k@ or
constant everywherey{w) = no]. In the first case, which corresponds to a generic colored
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noise, this renders the integrals in €g.1(14 well defined. In the second case, correspond-
ing to a white noise limit, they are ill-defined and require a more careful treafthémhen

the integrals in eq.2.114 are well defined on the boundaries, the absence of poles (or
branch cuts) in thesHp of G(w) gives, after a little deformation of the integration contour
in eq. .114 above thev = 0 pole, the resul&G(t = 0) = 0.

Representation in terms of a fermionic field integral.

The determinant can be represented as a Gaussian integration oven&maiss con-
jugate fieldsc andc*. This formulation is a key ingredient to the supersymmetric repre-
sentation of the MSRJD path integral. Let us first recall the discretizecssion of the
Jacobian obtained in ed2.(L10:

1 OEQ;._
JNzedem( ok 1) :

0141

wherek and/ run from1 to N. Introducing ghosts, it can be put in the form

11 25 N-1 5 N+1 1 9EQy
IN = —-—x deadeg...denrdey_g e 2ik=0 =3 ke ou
€€
11 2 SNALSINAL 19EQ;
* * * * — — 1
= N depdey...denq1dey g €y pcycicge TR0 =0 TR e ou

where in the last step, we allowed integration owgr ci, ¢ andcy,,, at the cost of
introducing delta functions (remember that for a Grassmann nuepbiee delta function is
achieved by itself). In the continuum limit, absorbing the prefactor into a redefinition of
the measure,

) 1 N+1 ) N+1
Dly,$] = lim oLb kHO dyy dy and Dle,c’] = lim. kHO deg def , (2.115)

this yields

MUE / Dle, "] 57174

10. In the white noise limitG(t) = ny* [1 — e ™t/™| 9(t) is a continuous function that vanishes at

t = 0. If we takem — 0 in the previous expression, we still hag0) = 0 andG(t) = O(t)/no for

t > m/no. By choosing®(0) = 0, these two results can be collectedGtit) = O(t)/no for all t. The
Jacobian is still a constant. This limiting procedure where inertia has beemoseero after the white noise
limit was taken, is the so-calleddltconvention. However ifn is set to0 from the beginning, in the so-called
Stratonovich convention wit®(0) = 1/2, thenG(t) = O(t)/no for all t andG(0) = 1/(2n0). This can lead
to a so-called Jacobian extra-term in the action(f«], t) is a function ofi(¢) only (ultra-local functional),
itreads—1/(2no) [, F. (1u). Itis invariant under time-reversal of the field, — ., as long ag”’ is itself
time-reversal invariant.
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with

ey [ [ 50,

and the extra boundary condition§—7") = ¢(—T) = ¢*(T) = ¢*(T') = 0. Plugging the
Langevin equation.1), we have

) g, S
by = mauéu—v iy + wnw—vawéw—v-

The kinetic term inSY[c, ¢*, 1] can be recast

//c 025, UCU—/CZB cu+©gl¢fc—c c] 7+ ©0do [¢* c]TT.

The last two terms in theHs vanish by use of the boundary conditionsf = ¢_7 =
¢y = ¢ = 0). The retarded friction can be recast

/ /CZ 8u"7u—v Cy — G)0 / CZ [nu-i-T C—T — Nu—T CT] y
u Jv U

where the second term vanishes identically for two reasons: the bquratatition ¢_ =

0) k kills the first part and the causality of the friction kerng), (= 0V« < 0) suppresses
the second one. If there is a Dirac contributiomtoentered at. = 0 such as in the white
noise case, the other boundary conditioh,{ = 0) cancels the second part. Finally, we

have
Sj[c,c*,w] :/c 820u // { Ty — I;w[w] Cy - (2.116)

2.C Discrete MSRJD for multiplicative noise

The discretized Langevin equation reads:

— %y + -
EQr_1 = %H j;k Vi L F(Qr, U1, ...

k
_|_Ml wk Z?’/kM/ w)wl ewl 1

=1

= M'({1)& -

with ¢, = athy + (1 — a)ip_1 andk = 1,..., N. In the Markov limit n = 0 and,; =
e~ 1nody) the results depend an(see the discussion in Set1.4. In the additive noise
case, the choices = 0 anda = 1/2 correspond to the @ and Stratonovich conventions,
respectively. However, we decide to stay out of the Markov limit: the resuksthen
independent ofi and we choose to work witta = 1. The probability for a field history is

P(¢07¢17-~-,¢N+1) |jN|P(17Z117w1 o

)P (EQ, ..., EQn-1) (2.117)
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where we introduced the shorthand notatiim, = Eqy, /M’ (¢, ). The Jacobian is

O (i, i, €1, ., EN) d (v, 41, EQq, - .. ,EQN _1)
=d =d . 2.
jN et<8(w01¢17"'>wl\/+1)> et( a(¢07¢17---;¢N+1) ) ( 118)

P, is still given by expressior2(109 andPn(Eéo, e EéN_l) reads, after the substitution
Vi = Y M (Yy),

J\/’&l/dl%--d1/3N+15(1/30)5(1&N+1) || @€ S W0kEQu1-+387 1% B ihi M (V)R M’ ()il

whereJy = dety, (0x1 M’ (3)y)) is the Jacobian of the previous substitution. The probabil-
ity for a given history is therefore

P(o, Y1, s ¥nt1) = Ny /dlﬂo-.-dl/}NH ’ijN’

Yo Sk iR EQr_1+ 3871 Y ith M (k) Rey M (1 )ity +1n P, (111171/)1%%) .

The Jacobiaif/y defined in eq.4.119 reads

1 1 0EQ_1 M"(¢x)
= —-d - EQr_19
Iy oM (M'(ﬂ}k) Dy M(y)2 1Ok
1 - OEQr—1  M" ()
= - de - EQr_19 2.119
- Iy dety ( Do M (0n) Qk—10k141 ( )
wherek and/ run from1 to N. Causality is responsible for the triangular structure of
the matrix involved in the last expression. The second term within the squackebs
yields matrix elements below the main diagonal and these do not contribute tetigara

Therefore, we find

A OEQp—1 1 /mn\N
Iy = H e (3)

that is the same field-independent positive constant as in the additivecagis¢hat can be
dropped in the measure, see eq1(J).

A fermionic functional representation of the Jacobian can be obtained bylurirg
ghosts, expressior2 (119 can be put in the form

N 11 7
S
InIN = E:N dCOdCS...dCN+1dC}<V_~_1 C}(V_HC}’KVCICO e,
with
N+1N+1 N+1

1 OEQ M" (¢hr41)
ST = & = _ e 0 Whi1) g .
N ‘ Z Z@ e N ot kzo o M (Yp11) Qb Gl
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In the continuum limit it becomes

s7 = gms{= [ [ 25l [ M ),

N—ro00 51/11)

with the boundary conditiong(—7") = ¢(—7) = 0 andc*(T) = ¢*(T) = 0 and the
measure of the corresponding path integral is giverzih15.
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THE physics of domain growth is well understodid] 195. Just after the initial thermal
guench into the ordered phase, the spins in a ferromagnetic system tewet@od
form domains of the equilibrium states. In clean systems the ordering dynargmssisned
by the symmetry and conservation properties of the order parameter. Whaeritiagpare
present the dynamics are naturally slowed down by domain-wall pinsiseb[]. The dy-
namic scaling hypothesistates that the time-dependence in any macroscopic observable
enters only through a growing length scal¥;), either the instantaneoaseragedor typ-
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ical domain radius. However, a complete description of the phenomenon is lackitige In
clean cases the scaling functions are not known analytically and no fullyssatisf ap-
proximation scheme to estimate them is know€] In presence of disorder the limitations
are more severe in the sense that the growth laws are derived by assuatiihg tielaxation
is driven by activation over free-energy barriers and the propertige datter are estimated
with energy balancing arguments applied to single interfaces that are hautlttwthe test.
Even in the relatively simple random bond Ising model (RBIM) the time depwredef the
growth law remains a subject of controverdpg-199.

The dynamics of generic glassy systems is less well understood buh{zresene sim-
ilar aspects to those mentioned above. The droplet model of finite-dimensminglasses
is based on the assumption that in the low-temperature phase these systemdetigo do-
main growth of two competing equilibrium state&)]. In the mean-field limit spin glasses
have, though, a very different kind of dynamid®[ 200 that cannot be associated to a sim-
ple growth of two types of domains. Numerical studies of3ieedwards-Anderson (EA)
model P01, 116-118 202-20€ have not been conclusive in deciding for one or the other
type of evolution and, in a sense, show aspects of both. A one-time depécaigerence’-
length, R(t), has been extracted from the distance and time dependenceexjubktime
overlap between two replicas evolving independently with the same quedddwdered
interactions 03 204, 206. A power-law R(t) ~ t!/#(T) with the dynamic exponent
z(t) = 2(T.)T./T fits the available data for th&l EA andz(7.) = 6.86(16) with Gaus-
sian 06 and z(7) = 6.54(20) with bimodal P03 204 couplings. Still, it was claimed
in [204] that the overlap decays to zero as a power law at long distances aniiht@sgsuch
thatr/R(t) is fixed, implying that there are more than two types of growing domains in the
low temperature phase.

A two-time dependent lengtlg(t, ¢'), can be extracted from the analysis of the spatial
decay of the correlation between two spins in the same system at distancedifferent
timest andt’ after preparationJ07, 20§. The latter method is somehow more powerful
than the former one in the sense that it can be easily applied to glassy probitmost
quenched disorder. If there is only one characteristic length scale inytierdcs R(t)
should be recovered as a limit ft, ¢') but this fact has not been demonstrated.

The mechanism leading to the slow relaxation of structural glasses is alsodhat u
stood. Still, molecular dynamic studies of Lennard-Jones mixti@9g pnd the analysis
of confocal microscopy data in colloidal suspensidiE] show that two-time observables
have similar time dependence as in BitEA model. Two-time correlations scale using
ratios of one-time growing functions that, however, cannot be associatatbtoan radius
yet. A two-time correlation length with characteristics similar to the one in thé EA can
also be defined and measured.

The understanding of dynamic fluctuations in out-of-equilibrium relaxing systp-
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pears as a clear challeng&lfl]. In systems with quenched randomness different sample
regions feel a different environment and one expects to see theit sfeifest in different
ways working at fixed randomness. In structural or polymer glasses énemo quenched
interactions instead, but still one expects to see important fluctuations in theimétyn
behavior both in metastable equilibrium and in the glassy low temperature regingee. Th
question of whether the fluctuations in generic glassy systems resemble thoaes@ning
systems has only been studied in a few solvable cases such as the madebmihnetic
coarsening in the large limit [ 217 and the Ising chain13 214).

We study ferromagnetic ordering in tBé RFIM following a quench from infinite tem-
perature and we compare it to the dynamics ofati&=A spin glass. Our aim is to signal
which aspects of their out-of-equilibrium evolution differ and which are simijafdzus-
ing on freely relaxing observables — no external perturbation is applied asure linear
responses. We test the scaling and super-universality hypothesis if-theaRd we ex-
plicitly show that the latter does not apply to the EA model. We analyze the spati@tainp
fluctuations in the coarsening problem and we compare them to the ones fospthin
glassesZ05, 207, 208, the O(n) ferromagnetic coarsening in the largdimit [212), and
other glassy system&]0, 215 214|.

The organization of the chapter is the following. In S&d.we define the models and we
describe the numerical procedure. Secahis devoted to the study of the growing length
scale,R, the scaling and super-universality hypothesis, and the two-time growigghlen
&. In Sec.3.3we focus on the local fluctuations of two time observables. We study two-
time coarse-grained correlations and we analyze their statistical propertiesesevolves.
Finally, in Sec.3.4we present our conclusions.

3.1 The models

Two varieties of quenched disorder are encountered in spin modeldormaress in
the strength of an externally applied magnetic fielthflom field and randomness in the
strength of the bondsgndom bondl The RFIM and the EA spin glass are two archetypal
examples of these which were introduced in Se&. In this Section we briefly recall their
definitions and some of their main properties.

3.1.1 The Random Field Ising Model

The3d Random Field Ising model (RFIM) is defined by the Hamiltoniah7]

H=-J SiS5 — ZH’LSZ . (31)
(1,9 ¢
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The first term encodes short range ferromagnefic{ 0) interactions between nearest
neighbor Ising spins;; = +1, placed on the nodes of a cubic lattice with linear dized;
represents a local random magnetic field onssitde adopt a bimodal distribution for these
independent identically distributed random variablds £ + H with equal probability).H
guantifies the strength of the quenched disorder. Hereafter in this Chaptset/ = 1.

In the cased = 0, the RFIM reduces to the clean Ising model with a phase transition
from a paramagnetic to a ferromagnetic state occurring.at- 4.515. Ind = 3, the
ordered phase survives for finifé: there is a phase separating line on {fie H) plane
joining (7, H = 0) and(T" = 0, H..) with H. ~ 2.215(35) [61, 62].

3.1.2 The Edwards-Anderson spin glass

The 3d Edwards-Anderson (EA) spin glass is defined by

H=— Z JZ‘jSiSj . (32)
(.4)

The interaction strengthg; act on nearest neighbors on a cubic three-dimensional lattice
and are independent identically distributed random variables. We aduptalal distri-
bution, J;; = £J with equal probability. Hereafter in this Chapter, we det= 1. This
model undergoes a static phase transition from a paramagnetic to a spin lyhasssap

T, ~ 1.14(1) [69]. The nature of the low temperature static phase is not clear yet and,
as for the out-of-equilibrium relaxation, two pictures developed around atisituavith

only two equilibrium states as proposed in the droplet model and a much mordicateqh
vision emerging from the solution of the Sherrington-Kirkpatrick model, its nfedd ver-

sion [72].

3.1.3 Methods

We study the relaxation dynamics with non-conserved order parameter id the3)
ferromagnetic phase of the RFIM at relatively low temperature and small dgdjgld after
a quench from very high temperature.

It is difficult to give an accurate analytical treatment for the dynamics o8thRFIM.
A continuous coarse-grained version of the model can be given with thel non-linear
sigma model [defined in eql )] (i.e. a ¢* theory) with an extra random field. One can
write down a Langevin equation for the dynamics of this model. The simplestefwithe
environment is a thermal bath with a non-correlated noise in time (white noidejpate:
E(z,)&(z,t))e = 287 y96(z — 2')5(t — ¢'). In the MSRJID formalism, the action reads
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after integration over the noise

S[o, g%] = — //da: du id;(:r,u) [708u¢(x,u) + JAP(z,u)
+90(z,u) — ud®(z,u) + h(z)
+8 1 / / da du (ié@;,u))Q . (3.3)

We omitted the initial measure since the system is supposed to be prepareditat fefi-
perature § = 0). The fieldh(z) is spatially random and taken from a Gaussian distribution
with (h(x)), = 0 and(h(x)h(z')), = H?5(x — 2'). Therefore, after integration over the
random field, one get2[L§

Sl.d = — / / dz du iz, u) [100ud(z, u) + TAG(z,u) + 9(z, u) — ug®(, u)]

+87 1, //dxdu (ig?)(:v,u)>2+%H2 ///dxdudv i6(x, 1) id(z, v) .

Due to the interaction termg¢?, the action is not quadratic, and one has to use perturbation
theory in powers of; in order to be able to compute anything.

Instead of working with approximate expressions, and since the RFIM i yarly
well suited to using numerical simulations (lattice model with short-range interactighs an
a discrete set of configurations), we follow the dynamics by means of Maartie €imu-
lations. The instantaneous quench from infinite temperature at the initial time(), is
realized by choosing a random initial condition(t = 0) = +1 with probability one half.
The order parameter is not conserved during the evolution. For the dys\andcuse the
continuous time Monte Carlo (MC) procedulp-221]. This algorithm, which is nothing
else but a re-organization of the standard Metropolis transition rules, isiogjéee. This
makes it spectacularly faster than standard Metropolis algorithm which wautldrejec-
tion rate close td in the ferromagnetic phase of the RFIM. Times are expressed in usual
Monte Carlo steps (MCs)t MCs corresponds t&V = L? spin updates with the standard
Metropolis algorithm. The way to translate from the continuous time MC to standard MC
units, in which we present our results, is explained2hd-221].

Interesting times are not too short — to avoid a short transient regime — atabriong
— to avoid reaching equilibration (in ferromagnetic coarsening a non-zeroetiagtion
density indicates that the coarsening regime is finished and other moredrefgtbods
are used in the spin glass cake We delay equilibration by taking large systems since
the equilibration time rapidly grows with the size of the lattice. A reasonable numerical

1. A way to check whether a spin glass model gets close to equilibration iidw fine evolution of spin
replicas with the same quenched randomness and testing when the aistidqotion develops a non-trivial
structure. Some papers explaining and using this techniqu@22e223 200.
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time-window is[10?,10"] MCs. We show results obtained using lattices with= 250
(N = 1.5 x 107 spins) in the RFIM and. = 100 (N = 10° spins) in the spin glass.
We checked that finite size effects are not important in any of these t@asaseraged
guantities.

3.2 The typical growing length

In this Section we study the typical growing length (a geometric object) in the RIRM
the EA model. We establish scaling and super-universality relations for thyeg ¢f corre-
lations functions (statistical objects). Two of them involve either two space paidtsize
time, or one space point and two times, and are the usual observables stutharsening
phenomena. The third one is commonly used in the study of glassy systemswigreint
correlations are not sufficient to characterize the dynamics of the sysi&f<2D7-210
and allows for the definition of a two-time dependent length that we can cortgtre one
obtained in the3d EA model and glassy particle systems.

3.2.1 The RFIM

During the ferromagnetic coarsening regime, there are as many positivegatve
spins in such a way that the magnetization density stays zero in the thermodynamic limit
and weakly fluctuates around zero for finite size systems. Everywhéne sample, there
is a local competition between growing domains. Eventually, after an equilibratiomgime
(that diverges with the system size), one of the two phases conquevhdkesystem scale.

In the coarsening regime (times shorter thay) dynamic scaling$0] applies and the
growth of order is characterized bytgpical domain radiusR(¢; T, H), that increases in
time and depends on the control parametérand H, and the dimension of spacé?.
While in the absence of impurities it is clearly established that, for non-cesderder
parameter dynamics, the domain lendttgrows asRk ~ t'/2 independently ofl [50] with
a prefactor that monotonically decreases upon increasing temper&iufethe functional
form of R is less clear in random cases. Scaling arguments based on the energétigkeof s
interfaces p5-57, 224229 predict a crossover from the clean case result at short time
scales when it is easy to inflate, to a logarithmic growth,

R(t; H,T) = % In(t/7(T,H)) . (3.4)

The fact that the prefactor grows wiihi (as opposed to what happens for clean curvature
driven dynamics107]) is due to the activated character of the dynamics. Several proposals

2. Note that some coarsening problems have a distribution of domainwitldilong-tails, see 106 and

[107.
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for the characteristic time exist: 7 ~ (7/H?)? [224, 225,195 and 7 ~ e T/ H* with
A(T) aweakly temperature dependent functi®89. To ease the notation in what follows
we do not write explicitly th&” and H dependence aR.

From the point of view of the renormalization group (RG), all points within theoferr
magnetic region of théT", H) phase diagram flow to the stable, zero-temperature, zero-
disorder sink. Hence, randomness and temperature should be irtalewuilibrium at
T < T.. The super-universality hypothesis states that for non-equilibriumriogiey-
namics, once lengths are scaled with the typical lengtlguenched random fields are
irrelevant and all scaling functions are the ones of the ciaising system afl’ = 0
with non-conserved order parametég] It has been tested numerically on some selected
observables in a few Ising models with weak disorder. It has been stotwld for the
equal-times two-point function of tiiel random field Ising model (RFIM)I[09 and the2d
random bond Ising model (RBIM) with disordered ferromagnetic interastjph0, 111].
More recently, the distribution of domain areas in this last mo#@ieéf[and the integrated
response]13 has also be shown to be super-universal.

In the context of theld and2d Random Bond Ising Model (RBIM) with disordered
ferromagnetic couplings, it was argued based on numerical simulations, thstbrde
typical lengthL* should enter the scaling functioui the ratioR(¢)/L* independently of
the other scalingslpg. For theld case, the two-time correlation function was measured
after a quench in the critical region (just abde= 0) and the data were shown to obey the
following scaling: C(t,t") = f(R(t)/R(t"), L*/R(t)) which violates super-universality.
For thed = 2 case, other simulations deep in the ferromagnetic phase also showed-a super
universality violation for the two-time correlation. However, super-unisswas showed
to be restored for spatio-temporal correlatioig; ¢, ') as soon as is sufficiently large (a
few lattice spacings)1[13. This could be interpreted by a scaling of the fofir; ¢, ') =
g(R(t)/R(t"), L*/R(t), L* /r) which would saturate t9(R(t)/R(t"), L*/R(t),0) as soon
asr > L* and therefore restore the super-universality property. Forithe 2 case,
notice that even in equilibrium at the critical point, where the irrelevance ofdis was
shown rigorously229-237], numerical simulations are rather inconclusive since one needs
very large lattices to observe the convergence of the RG flow to the mmddr fixed
point [233.

The equal-time spatial correlation.

A careful analysis of the field and time dependence of the growing lengihtscgether
with tests of the scaling hypothesis applied to the equal-time correlation

Cao(rst) = (si(t)s; (D)7 - =r - (3.5)
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Figure 3.1:(a) With line-points (red), the growing leng#(t) at7 = 1 and H = 1. The green curve is the
power law+/ that describes well the data at short times, right after the temperatanelguThe blue line is a
logarithmic law apt to describe the behavior at longer time scales. In thie theesame data in a log-log scale
to highlight the quality of the/ behavior at short times. (b) Study of the dependenc® of the parameters
T and H for two values ofl" and three random field strengthsgiven in the key.

where the average runs over all spins in the sample, appeareddr234. In the coarsen-
ing regime, at distances< r < L with a the lattice spacing and/ R(t) finite, Ca(r; t) is
expected to depend onand timet only through the ratio/ R,

Cy(r;t) ~ mgq fa(r/R(t)) , (3.6)

with m., the equilibrium magnetization density (that decreases with incredsiagd/or
H), lim, o f2(x) = 1 andlim,_,~ fo(z) = 0. Since the spatial decay is approximately
exponentialCy(r;t) o e~"/E®) for not too longr, we use this functional form to extragt
from the data fit at each set of parametéfsH, t). Figure3.1(a) shows that the growing
length R has two regimes: shortly after the quenghgrows ast'/? like in the clean case
and it later crosses over to a logarithmic growth. This is consistent with prewviamerical
studies in2d [110, 235 and 3d systems 109, 234]. In Fig. 3.1 (b) we test the dependence
onT andH by plotting HTQR versust/7 forT'=1, 2andH = 0.5, 1, 1.5. We found the
best collapse using ~ H 3 but the precision of our data is not high enough to distinguish
between this and thes proposed in424, 225 and [L09. Our numerical results tend to
confirm theT'/ H? dependence aR even in the early stages of the growth.

Since the work of 109, it is now clear thatf, in Eq. (3.6) is independent of, and
very similar to the one of the clean system. In H@we also find that the scaling functions
f2 at differentT fall on top of one another. Thug is independent off andT.
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Figure 3.2:(a) The scaling functiorfz(r/R) for T = 0.5,1,2 and H = 1,1.5. (b) The same data in a
linear-log scale showing thét is close to an exponential at shoptR.

The two-time self-correlation.

Itis commonly defined as
| N
C(t,t") = N z;<3i(t)3i(t/)> ; (3.7)
1=
and quantifies how two spin configurations of the same system, one take(waiting-
time) and the other one at> t/, are close to each other. The angular brackets here indicate
an average over different realizations of the thermal noise. In the Migeit, this quantity
is self-averaging with respect to noise and disorder induced fluctuatibhis. two-time
function has been used as a clock for the out-of-equilibrium dynamics ofyggstems19,
20Q and we shall use this property again, in the study of the two-time growingHeargd
fluctuations.

The behavior o’ is well understood for coarsening systems. As long as the domain
walls have not significantly moved betwegrandt(> t') (that defines what we shall call
later short time delay), the self-correlation is given by the fluctuations of shatsare in
thermal equilibrium inside the domains. As any other equilibrium two-time function, the
self-correlation depends then only ba- t'. Later, for longer time delays, the displacement
of domain walls cannot be neglected any more @hlboses its time-translational invari-
ance. The self-correlation can be written as a sum of two terms represémitigermal
and aging regimes:

C(t,t') = Cin(t —t') + Cag(t, 1) (3.8)

with the limit conditions

Cth(o) =1- dEA tllg?_ Cag(ta t,) = 4EA ,
: Y — : n _
tlgnt/ Cin(t—1) =0, tlgntl Cag(t,t') =0.
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qeA 1S @ measure of the order parameter and in a ferromagnetic phase it simﬂlymﬁya
the magnetization squared.

In Fig. 3.3(a) we show the decay of the two-time correlat@ms a function of the time
delayt — t' for ¢/ = 103, 10%, 10> atT = 1 and H = 1. On each of these curves, one
can distinguish the two dynamic regimes. The longer the waiting-tirtree later the aging
regime appears. In Fi@.3(b) we show the decay of the two-time correlation as a function
of time-delay fort’ = 10% and five pairs of paramete(¢’, /) given in the key. It is clear
that the full relaxation depends strongly on the external parameters:grliginemperature
or reducing the random field strength speeds up the decay. For tHass @&l and H,
qea does not change much but the decay in the aging regime does.

Dynamic scaling implies that in the aging regime

Cag(t»t/) =qga f (RR((;))) > (39)

with R the typical length extracted froifiz, f(1) = 1 and f(co) = 0. For our choice of
parameter$T’, H), g4 is close to unity so we can easily compufté&om the measured’

by usingf = Cag/qra ~ C/qra. Super-universality states thatdoes not depend off

and H. In Fig. 3.4 we show that both hypotheses apply to this quantity. In panel (a) we
use a linear-linear scale while in panel (b) we present the same data in a tmaslthmic
scale. Although the scaling functigfilooks like a power law it is not. One expects that
its tail [R(t) > R(t')] becomes a power-law with an exponentThe actual functiory is

not known. Most of the analytic efforts in domain growth studies are devitelevelop
approximation schemes to deriye f, and other scaling functions but none of them is fully
successfulg0].
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The four point-correlation function.

In order to successfully identify a growing correlation length in glassy systacluding
the 3d EA spin glass, one defines the two-time two-site correlation functé@®, [207—
210, 234

Ca(rst, t') = (si(t)si(t)s;(t)s;(t') 17—, =1 - (3.10)

We extracté from its approximate spatial exponential decay;(r;t,t') — C?(t,t')
e~"/Ett) at relativelyshortr /€. (Other methods, such as defining the connected four spin-
correlation and extractingfrom its volume integral yield similar qualitative results though
slightly different quantitatively.) Results of this analysis are shown in&ig(a) where we
plot&(t, ') as a function of for differentt’ at7T = 1 andH = 1. We identify a short — ¢/
regime that is independent tf(thermal regime), whereas for long- ¢, time-translational
invariance is broken (aging regime). In F&5(b) we ploté(¢,¢’) versusl — C(¢,t') for the
three same values ¢f usingt as a parameter. The dependencé e’ andt’ is monotonic
and very similar to the one obtained in t8& EA model P05 (see Fig.3.8). The thermal
regime is almost invisible here since it is contained betw@€es 1 andC' = g¢ga, with
qea =~ 1 for this set of parameters. We then propose

§(t,1) = R(t') 9(C). (3.11)

The limitg(C = 1) = 0is found by taking = #/, that corresponds 0 = 1 [extending the
scaling form 8.11) to include the thermal regime]. In this caSg(r;¢,t) = 1. If one uses
Cu(r;t,t) = Cy(r/€,C(t,t) = 1), see Sec3.2.], thené(t,t) must vanish to obtai® in-
dependent from, and this imposeg(1) = 0. In the other extreme, whens ¢’ andC' = 0
one expectg(0) = 1. The reason is the followindim;s., C4(r;t,t') = Ca(r,t)Ca(r,t'),
for the temporal decoupling @f4 can be done in the> ¢’ limit. Recalling thatCs(r, t) o
fo(r/R(t)) with lim,_,o fo(z) = 1, the only spatial contribution ttim;s.; Cy(r;t,t")
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the random field using three waiting-timggor each set of parameters. The clean cHse- 0,7 = 1 is also
included with a very short to avoid equilibration.

comes from the terms(r, t') o< fo(r/R(t')). Usinglim;s.y (¢, ¢') = R(t')g(0) and fur-
ther assuming that the functional forms@f(z) and f2(z) are, to a first approximation, the
same we deducg(0) = 1.

Figure3.5(c), where we plot(¢,t")/R(t") versusl — C(t, t') for differentt’, illustrates
the validity of the scaling hypothesi8.(1). We see that, as expectedlC = 1) = 0
and it seems plausible thhtne, o g(C') = 1. The scaling functiory is found to satisfy
super-universalityi,e. it is independent off andT'.

C, and super-universality.

Using the monotonicity properties @f as a function of — ¢’ andt’, and of¢ as a
function oft’ and1 — C we can safely exchange the dependena@,06n the two times by
a dependence ahandC. In other words((r, &, C') where, again for simplicity, we did
not write explicitly the dependence @hand H. Now, a reasonable scaling assumption is
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that one can measurdn units of¢ such that

Cu(r,t,t) = Cu(r/E(t, 1), C(L, 1) . (3.12)

In Fig. 3.6we put this scaling form to the test and we examine the possible supersatityer
of 04. We use different values of the parametens, 7', H such thatC' = 0.57 in all cases.
Both scaling and super-universality relations are well satisfied. Note thet¢#fiag relation
in Eg. (3.12 can also be transformed into

Ca(r;t,t)) = Cu(r/R(¥'), R(t)/R(Y)) (3.13)

by using Eqg. 8.9). This last scaling form was also found for the XO( ferromagnetic
model in the largeV limit although the scaling function does not have a simple exponential
relaxation p17).

3.2.2 3dEA

A detailed analysis of the relaxation properties of similar correlations irBthEA
model appeared ir2D5. The spatial one-time correlatiofz(r, t), vanishes identically in
this model due to the quenched random interactions. It seems pretty cleandioerical
studies CITE that the scenario given in e§.g for the two-time correlation function in
coarsening phenomena is valid for the case oBith&A model. In Fig.3.7 (a) we give the
typical behavior of the two-time correlation functiét{¢, ¢') at a given temperature, for dif-
ferent waiting-times. Moreover, the aging part is found to scal€.ast,t') = qua f(t/t)
(so-calledsimple aging as illustrated in Fig3.7 (b) (see also402). If there is a dynamical
growing length scale in the system, the dynamical scaling hypothesis statessimnauli
therefore grow af ~ t!/#(7). The question as to whether the scaling functjois super-
universal is not well posed since tffédependent powet/z(T") can be absorbed iff.
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scale for different’ given in the key. (b) Test of the simple aging scaling, the scaling fungtienC.. /qra is
plotted vst/t’ for the same values d¢fandt’.

The four-point correlation allows for the definition of a two-time growing lengtaleé
that behaves qualitatively as in EQ.11). In Fig. 3.8 we present(¢,t’) for the 3d EA.

Its behavior is very similar to the one of the RFIM exposed previously, mnvwauld like

to stress the fact that this quantity reaches much lower values i3t case (around
2a) than in the RFIM (around5a). Figure3.8 (c) demonstrates that the super-universality
property does not hold in thed EA model. We used?(t) « t*9 for both temperatures
and the resulting/(C) curves are significantly different. It is important to remark that no
T-dependent power-law if® would make the two curves collapse. Turning back to the
scaling of the two-time correlation and fixing the power la&w,x f[(¢/t')*%3] one finds
f(z) ~ =45 (atT/T, ~ 0.6) a much faster decaying power than in the RFIM. Note that
previous estimates of the dynamic exponent using the one-time replica of20l&a 204
yield1/z(T = 0.3T}) ~ 0.045 a slightly larger value; the reason for the discrepancy could
be traced to the lack of accuracy in the determinatiof afid thenk.

3.2.3 Colloidal glasses

The structure factor of colloidal suspensions and Lennard-Jones esxdue obviously
very different from the one of a sample undergoing ferromagnetiaimigleStill, two-time
self-correlations satisfy scaling with(¢) « ¢!/ although a clear interpretation &fis not
available.

Castillo and Parsaeian studi€dn a Lennard-Jones mixture of particles undergoing a
glassy arrest. One notices that, at short time delayst( ~ 10 molecular dynamic units),
¢ is monotonic with respect to— ¢" andt’ in this system, while one needs to reach much
longer time delays (and indeed go beyond the simulation window) iBdHieA and RFIM
cases ¢fr. Figs.3.5(a) and3.8 (a) to the first panel in Fig. 2 in2D9]. A form such as
(3.11) describeg in this case too wittR(t) ~ t'/# and1/z ~ 0.1.
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The two-time correlation length of colloidal suspensions was analyze#ili} {ising
a mapping to a spin problem. The data foremains, though, quite noisy and although a
similar trend in time emerges the precise functional form is hard to extract.

3.2.4 Summary

In short, the macroscopic correlations in all these systems admit the same dynamic
scaling analysis although there is no clear interpretatioR aé a domain size in the case
of the3d EA and colloidal suspensions.

3.3 Fluctuations

An approach apt to describe problems with and without quenched randerfoteises
on thermally induced fluctuation®211]. The local dynamics can then be examined by
studying two-time spin-spin functions which, instead of being spatially avdrager the
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whole bulk, are only averaged over a coarse-graining cell with volime (21)? centered
at some site [207, 209]:

Co(t, ) = Vi S sit)silt!) (3.14)

:
eV,

One can then characterize the fluctuations by studying their probability distndunction
(pdf) p(Cy;t,t',1, L, T, H) with mean value”' (¢, t').

In general, the variation ¢f(C,. ) with the size of the coarse-graining boxes is as follows.
For! < R the pdf is peaked aroung:s and has a fat tail towards small values ©f
including negative ones. Indeed, well in the coarsening regime, mose antiall coarse-
grained cells fall inside domains and one then expects to find mostly a theruilibigm
distribution — apart from the tail. For larger values/afuch ad ~ R, a second peak close
to C appears and the one @i, progressively diminishes in height. For still larger values
of [, the peak aypa disappears and a single peak centered gthe mean value of the
distribution) takes all the pdf weight.

At fixed temperature and field, the pdfC,;¢,¢',1, L) in the RFIM depends on four
parameters, two timesand¢’ and two length$ and L. In theagingregime the dependence
ont andt’ can be replaced by a dependence(tin, t') and&(t,t’), the former being the
global correlation and the latter the two-time dependent correlation lengtredn@dér, ¢')
is a monotonic function on the two timesff Fig. 3.3 (a)] and¢ is a growing function
of ¢t (cfr. Fig. 3.1), thus allowing for the inversiof¢, ) — (C,¢). Note that we do not
need to enter the aging, coarsening regime to propose this form. One wamaie@ the
natural scaling assumption that the pdfs depend,dhe coarse-graining lengthand the
system linear sizé through the ratiog/¢ andi/L. In the end, the pdfs characterizing the
heterogeneous aging of the system read

p(Cr; C(t, ), 1/E(, ), 1/L) . (3.15)

We numerically test this proposal by assuming that the thermodynamic limit apptiebe
last scaling ratio vanishes identically. Figl#® (a) shows the pdfs at two pairs of times
andt’ such that the global correlatidri(¢, t') is the same, antl= 9. It is clear that the two
distributions are different. In panel (b) we further chodse thatl/¢ ~ 0.7 is also fixed.
The two distributions now collapse as expected from the scaling hypothegi3. Eg. Note
that another peak &' = —1 exists, though with a lower weight. Figugel0(a) and (b)
show the scaling fol/¢ ~ 1.4 andl/¢ ~ 2.9, respectively. While the collapse is still good
in the case of panel (a), it is not satisfactory in panel (b). Indeedptbtsuffers from the
fact that the thermodynamic limit is far from being reachigd.(~ 0.15 is not so small).

In Fig. 3.10(a) we used several valuesBfand H and we found that all pdfs collapse
on the same master curve. We conclude that as long as coarse-grainitig l@regnot too
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Fig.3.9andC = 0.6 as well. (a)l/§ ~ 1.4. (b) /€ ~ 2.9.

close to the system size, the pdf of local correlation satisfy the scalitigy(with a scaling
function that is super-universal.

Let us now compare the forms of the pdfs in the RFIM 8dd&EA model. In the RFIM
the peak ayg, is visible untill/¢ ~ 2. Given that in this modef is quickly rather large
(€ reachedl5a in the simulation time-window) one has a relatively large interval fufr
which the peak agza can be easily seen. Instead, in theEA the two-time correlation
length grows very slowly and reaches ogly- 2a in similar times, meaning that the peak
atqra is hardly visible as soon as one coarse-grains the two-time observabgs [

Figure3.11demonstrates that the pdf of local correlations is not super-univerdal w
respect tdl’ in the 3d EA model, and compares the functional form at two temperatures,
T/T, = 0.3 andT'/T, = 0.6, with the one in the RFIM. The global correlatiofi, and
the ratio of coarse-graining to correlation lengths, are the same in all curves. Although
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timest’ such thalC = 0.6 andi/¢ = 2.9. The solid line (red) displays the super-universal pdf in the RFIM.

qualitatively similar, the pdf in the RFIM angli EA models are different, with the RFIM
one being more centered around the global value.

The study of Lennard-Jones mixtures Rilf used a constant coarse-graining length
and the pdfs of local correlations at const@hshowed a slow drift that should be cured by
taking into account the variation @¢f In colloidal suspensions the scaling for X5 is
well satisfied P10. In the context of coarsening phenomena these pdfs are to be campare
to the ones calculated for thi@(n) model in its largen limit [ 217].

3.4 Conclusions

We performed an extensive analysis of the dynamics of the RFIM in its eciag
regime. We showed that the equal-time correlation functions, global two-timelaorr
tion functions, and the four point correlation functions obey scaling and supeegfsality
relations in the aging regime. The scaling relations, by means of the typical growing
length,R  Int/7, reveal a non-trivial time-invariance for these statistical objects. Super
universality encodes the irrelevance of quenched randomness arerétunp on the scaling
functions and it is demonstrated by the fact that they are the same as for thésabeecase.

In the 3d EA, similar scaling forms were found for global two-time correlations and
four-point correlationsg05. The functionR(¢) could be associated to a domain radius
though a clear-cut confirmation of this is lacking. On the contrary, the redukisent large
scale simulations have been interpreted as evidence for an SK-like dynanariscR04.

The one-time function playing the role of the domain radius is a very weak dawgt’-?3
atT/T, ~ 0.3 — 0.6, and, in consequence, the two-time correlation length reaches much
shorter values than in the RFIM in equivalent simulation times. Super-ualitgréwvith
respect to temperature) does not apply in this case.
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A similar scenario applies to the Lennard-Jones mixtugd€][and colloidal suspen-
sions R10. The two-time correlation length remains also very short in accessible nuaheric
and experimental times.

In all these systems the analysis of local fluctuations of two-time functions leads to
scaling of their probability distribution functions. In the RFIM these also verifyesu
scaling with respect t@” and H. In the3d EA they do not. The intriguing possibility of
a kind of super-scaling in colloidal suspensions (with respect to contienirdas been
signaled in P10 and deserves a more careful study.

We conclude that all these systems, watlpriori very different microscopic dynamic
processes admit a similar dynamic scaling description of their macroscopic andaops
out-of-equilibrium evolution.
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DYNAMIC issues in isolated quantum many body systems are the focus of active re-
search. Some of the problems that are currently being studied theoretielltha

time evolution of the entropy of entanglement in spin syste®$5][ the nature of non-
equilibrium steady states in small quantum systems driven out of equilib&8& 239 due

to their relevance for nano-devices, quantum annealing technigds241], and the den-

sity of defects left over after a gradual change in a param2#&}.[ The influence of an envi-
ronment on the dynamics of quantum systems was also dealt with in a numbeesfstech

as the spin-boson modélq], disordered spin chains coupled to bosonic ba?d§[244], or

an electronic ring coupled to leads and further driven by a time-depéfidien245-247).

Once the interest is set upon macroscopic systems, the question as to \ilinetbarmn-
dergo phase transitions naturally arises. The theory of equilibrium classidajuantum
phase transitions is well developeNon-equilibriumphase transitions in which quantum
fluctuations can be neglected are also quite well understood. Thesalzedavhen a sys-
tem is forced in a non-equilibrium steady state (by a shear rate, an extarreitcflowing
through it, etc.) 248-251] or when it just fails to relaxd.g after a quench) and displays
aging phenomen&p2, 52]. In contrast, the effect of a drive omaacroscopisystem close
to a quantum phase transition is a rather unexplored subject. Some wokk$ocaged
on non-linear transport properties close to an (equilibrium) quantum plaasstiton [L21—
123. Others have studied how the critical properties are affected by noitibetum drives
[124-126. However, a global understanding of phase transitions in the contrahp
ter spacel’, V, T', with T' the temperaturel’ the driving strength, an@l' the strength of
guantum fluctuations, is still lacking. Furthermore, to the best of our kn@eleithe issue
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Figure 4.1: Non-equilibrium phase diagram of the fully connected driveantym rotor
model with an infinite number of components.

of the relaxationtoward the quantum non-equilibrium steady state (QNESS) has not been
addressed in the past.

In this chapter we study a class of analytically tractable models, systemsarhponent
N guantum rotors that encompass an infinite range spin glass and its thresidina¢pure
counterpart modeling coarsening phenomena. As discussé&d]impdels of quantum ro-
tors are non-trivial but still relatively simple and provide coarse-gihidescriptions of
physical systems such as Bose-Hubbard models and double layerrantdégnets. The
system is coupled to two different external electron reservoirs thattteacturrent flow-
ing through it and driving it out of equilibrium. (For a two dimensional modeldhgent
flows perpendicular to it, see the sketch in Fig. 11%4).) In the simplest settingl24]
each rotor is coupled to independent reservoirs; more realistic couplieglistussed in
[126. Using the Schwinger-Keldysh formalisri{6, 253 254] we obtain the complete out
of equilibrium dynamics of these models in the larg¥ limit. We show that at sufficiently
low T, V. T, see Fig. 1, the system never reaches a QNESS and coarsens withateimark
universal properties. We study the critical properties of the phassitiars, in particular
in the vicinity of the (drive-induced) quantum out-of-equilibrium critical gdip atT" = 0,
T = 0 and the “usual” quantum critical poift. atV = 0, T = 0. We analyze in detail
the relaxation in the coarsening regime and uncover the scaling propertiesrefaton
functions and linear response. We derive a general formula for thentdioeing through
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the system under such a voltage drop and we analyze its dependenealygndimics of the
system. Some of these results were announced recentpth [

4.1 The model

4.1.1 System of disordered quantum rotors

The model we focus on is a quantum disordered system malleneEomponent rotors
interacting via random infinite-range coupling$[256.

The quantum rotors should not be confused with true quantum Heiggsines present
in any isotropic antiferromagnet; the different components of the rotéahlas all com-
mute with each other, unlike the quantum spins.

We consider a fully-connected (mean-field) model where there is no lyimtegeom-
etry: each rotor is equivalently coupled to all the others. The Hamiltonian éndiy

I N n
H=—) L?- — JiiSi-S;. 4.1
o 2w 2 2
st (w = 1...n) are then components of thé-th rotor. The coordinates;’ constitute a
complete set of commuting observables. The scalar pregust; is given byZZ:1 sﬁ‘sé‘.

In order to better apprehend the largémit, we slightly changed the writing of the Hamil-
tonian compared to the one given in ef].10 by rescalings; — +/ns;. The length of
rotors is now fixed to unitys; -s; = 1V i = 1... N, at the price of an extra factor in
front of the potential term. The strengtlig’s are taken from a Gaussian distribution with
zero mean and variancg. .J controls the strength of disordek,; is thei-th generalized

angular momentum operator whielin — 1)/2 components are given by

Lfyz—ih<s§‘a(z;’—sé’ét> forit<u<v<n, (4.2)
L7 =, (Li")? [78,45, 256 T acts like a moment of inertia and controls the strength
of quantum fluctuations; whei’T’/J — 0 the model approaches the classical Heisen-
berg fully-connected spin glass. In the langdimit it is equivalent to the quantum fully-
connecteg = 2 spin glass257, 258. The classical mapping to ferromagnetic coarsening
in the 3d O(n) model withn — oo [52] holds, as we shall show in Seé.4.5 for the
quantum model as well.

4.1.2 Reservoirs of electrons

The system is coupled to two, ‘leftT) and ‘right’ (R), reservoirs of electrons. These
independent reservoirs are both in equilibrium at inverse temperatwaad5z. The situa-
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Figure 4.2:Density of states (DOS) of type A reservoirs, andyo + eV are the left and right Fermi levels,
respectively. The left reservoir is half-filled.

tion 51, # Br would create a heat flow from one reservoir to the other. We are intdrieste
the simpler case in which;, = 8r = 8 = T~'. An electric current is forced by imposing
different chemical potentialg,;, = 1o andur = o + eV (where—e is the electric charge

of one electron)eV is the strength of the drive. AS//J — 0, the effect of the reservoirs
on the system approaches the one of an equilibrium bath at tempéefatlitee details of
the reservoir Hamiltonian& ;, and Hy are not important since only the electronic Green'’s
functions matter in the small rotor-environment coupling we concentrate on.oveder

the simple case in which left and right fermionic reservoirs have the sansgylehstates
(DOS)pr, = pr = p. Moreover, we focus on simple cases in which the shape of the DOS is
controlled by only one typical energy scale. In the rest of this chapter, we often consider
the limit in whicheg is much larger than all the other energy scales involved. In this limit
the results become independent of the detailed functional form of the D@23 give
some results for finiter using the specific DOS that we introduce below.

DOS with a finite bandwidth

We first consider regular DOS which have a finite typical width (finite badthy con-
trolled by er andyy is set around the maximum of the distribution. In the limit where
is very large, they can be seen as almost flat distributions. We galthe finite energy
cut-off beyond which the DOS vanishes|e| > e.,;) = 0. Since the DOS we consider
have a single energy scalg, e.,+ should scale witliz. Notice that a finite:.,; constrains
the voltage not to excead/,.x = ecat — o Since the right reservoir is then completely
filled and therefore it cannot accept more fermions.

We call reservoir of type A a half-filleHireservoir the DOS of which has a finite band-
width controlled byer and is symmetric and derivable in the vicinity of its maximum (see
Fig. 4.2). The simplest example of a type A reservoir is given by the semi-circula® DO

1. Half-filled means that half the total number of available states are @xtup'’ dep(e) = 3 atT = 0.
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”o Ecut

Figure 4.3:An example of type A reservoir: the semi-circle density of states (haltijille

(see Fig4.3),

2 e—er\’
pa0= 2= (5 (4.3)

TER €r

that is symmetric and centered around Heree.,, = 2er. We choosgiy = e so that the
reservoirs are half-filled at zero drivel{ = 0). In this case, ai’ = 0, the voltage applied
between both reservoirs cannot exce&fl.x = €cut — o = €.

Type B reservoirs have finite bandwidth but no energy cut@ff; = eViax — 00. A
realization of these reservoirs is given by the following DOS [see&#fa)]

pp(e) = ;\/ie_é(s;> , (4.4)

wherea =~ 0.97 is a numerical constant fixed by normalization. The maximum of this
distribution is located atr/v/2. This reservoir is half-filled fory ~ 0.95 ep. This
distribution resembles the semi-circular one in the sense that they both start sgjtiaice
root behavior, have a maximum, and a bandwidth of oeger In contrast, the DOS in
eg. @.4) is different from zero at all finite and one can exploit this feature to apply strong
voltages.

DOS at low energy

In the previous examples  andpp), we focused on values @f, corresponding to
high energy states where the DOS is regular. We are also interested imgtadges where
Lo is centered around low energy states. To analyze these cases, weric DS which

reads [see Figt.4(b)]:
=_3 |
pC3d(€) = 4\/§€F €r : (45)
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Figure 4.4:Two examples of typeB reservoirs. (a) The distributiops vanishes asymptotically. (b) The
square root distribution diverges asymptotically.

This square root behavior is actually the one of3Hdree fermions reservoir. In this case
er is of the order of the hopping term for the free fermions. Since we shallfoclys on
the low energy states of the reservoir, we can neglect the non trivialdmgligy structure
of the reservoir and take the DOS equal to zerc:for 2¢p.

For the2d free fermions, the density of states is given by

1
— 4.
5 (4.6)

whereas for thad free fermions, the density of states is given by

1 €F
po1d(e) = 2\[@\/7 (4.7)

and, as fopcsq, We take these two densities of states to be equal to zero¥d2e .

4.1.3 Coupling between the system and the reservoirs

An electron hop from thd.(R) reservoir to theR(L) reservoir is linearly coupled to
each rotor component:

1nt

N n M
ZZ Z Z Vi s[5 ot Yy + L R), (4.8)

whereqﬂukl is thel-th component of a/-component spinor operator that creates an ad-
ditional fermion with energyiw;, in the L reservoir associated to tleh rotor. & labels the
electron energy inside the reservoifg, is the total number of states in each reserveit.

are the generalized Pauli matrices fl7 (M) of dimensionM x M with M? — 1 = n.
They are chosen to be normalized such that"lt” = ¢,,,.. Vs are the rotor-environment
coupling parameters chosen to be constépti = fiw.. Hing is O(n) andO(N) invariant.
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4.2 The dynamics

4.2.1 Quench setup

The system is initially prepared (at times< 0) in such a way that its initial configura-
tion (at timet = 0) is neither correlated with disordes;(’s) nor with the reservoirs. This
can be realized, for instance, by coupling the system to an equilibrium batimpa¢tature
Ty > J,T so that any correlation in the system is suppressed. Attime the quench is
performed by suddenly coupling the system to thend R reservoirs. These are supposed
to be “good reservoirs” in the sense that their properties are not affbgtthe state of the
system.

This setup generates non-equilibrium dynamics at times 0 for multiple reasons.
First of all, the rapid quenching procedure puts the system in a non-gguitilnitial con-
dition with respect to its new environment. Moreover, the latter is not an equiliboatim
but a bias drive the role of which is to constantly destabilize the system. Fiaslyconse-
quence of its disordered interactions, the system of rotors experierigasitndifficulties
to reach equilibrium. Indeed, even if it were embedded within an equilibrium enmieot
it would show a glassy phas2j8-260 in some parts of the phase diagram.

Since system and reservoirs are decoupled at timed), the initial density matrix of
the whole system is given by

N N
ot =0)tot = 0(t =0) ® 0Li ® ORi- (4.9)

i=1 i=1

oLi/ri corresponds to the equilibrium density matrix of ther reservoir associated with
the i-th rotor. The system of rotors being prepared at very high temperataritial
density matrix is the identity in the rotors space:

o(t=0)ox 1. (4.10)

All these density matrices are normalized to be of unit trace. {The0 evolution of the
whole system plus environment is encoded in

010t (t) = U(t,0) 0101(0) [U(£,0)] (4.11)

where the unitary evolution operator is givenliyt, 0) = Te~# Jo 4t Hioe(t) with ., =
H + Hp + Hi + Hye andT the time-ordering operator (see AppA). We analyze the
non-equilibrium dynamics using the Schwinger-Keldysh formalism (8&8€, [254] for a
modern review) that we briefly introduce in the following lines.
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4.2.2 Schwinger-Keldysh formalism

The Suzuki-Trotter decomposition of the two unitary evolution operators thpetaapn
2 = lim TrU(r,0) 0wt (0) [U(7, 0f=1, (4.12)

yields a path-integral involving two sets of fields with support on two diffet@anches.

The first ones are time-integrated on a forward branch frea? to 4+oc. In the following,

these fields carry & superscript. The other ones are time-integrated on a backward branch
from +o00 to 0 and carry a- superscript. These two branches constitute the Keldysh contour
C, see Fig4.5. The identity ¢.12 can now be expressed as a path integral,

Z= /D £t B b5 (57(0), 7 (0)] e ()]s (0), 957 (0)) . (4.13)

where we collected all the!"” fields into the notatiors®, and all the fermionic fieldg?,
and their Grassmannian conjugates igitband” (with a = +).

(sT(0), 1Z+(0)\gt0t(0)]s*(0),¢*(0)> is the matrix element of the density matrix which
has support at time= 0 only. The actionS;. is a functional of all these fields:

Siot = 261/000 dt £([s%, 9, P"];t) . (4.14)
The Lagrangian is given bt = £ + Lint + £L + L with
L([s%);t) = % ng(t Z Jij 0d(t) - nl(t) , (4.15)
; z J<i
Lin([s*, 9%, 4] 1) f =D s O L (1) ofy Vi (t) + L < ] (4.16)
mkk’ll’

L and Ly are the Lagrangians of the free fermions in fhand R reservoirs. The index

¢’ at the bottom of the integral sign in egt.(3 is here to remind us that the integration
is performed over fields satisfying the constraint that each rotor haga fixit length:
s;l(t)2 = 1V a,i,t. The path-integral formalism gives a nice way to restore an uncon-
strained integration over all field$ by the introduction of Lagrange multipliet$:

/C pis®) = [ Dls" [[ sl - st0) (4.17)
= /D[sa, 2% exp (711 /Ooodt ag sz(t) <1 - sg(t)2)>. (4.18)

where we used the integral representation of the delta function (seel&9mnd collected
the new auxiliary real fields into the notatiorz®. In terms of a Lagrangian, this gives rise
to the new term

Lim([s, z* Z 2I(t)[1 — st 2] . (4.19)
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Figure 4.5:The Keldysh contou€ goes from0 to +oco and then back t@. The Keldysh action involves
forward fields (that live on the-branch ofC) that are time-integrated fromto +-oco and backward fields (that
live on the—branch ofC) and are time-integrated fromoo to 0.

4.2.3 Macroscopic observables

We are interested in the macroscopic dynamics of the rotors after an infirajgiy r
guench and we wish to give an answer to the following questions (among )othees the
system reach a steady state? Does a steady state current establistéé/ationg-time
dynamics? We first obtain an effective generating functional for the rbjoexpanding the
system-drive interaction up to second order in the coupling, integrating awagrthehic
degrees of freedom, and averaging over the disorder distribution.

Introducing the external real fields, () that we collect in the notatioh®(t) (a = +),
the generating functionat[h*] reads

— i -+
Z[h*] = /D[si,ziﬂ/’iﬂﬁi] o Stot[s®,2F T T ]

x(s7(0), %" (0)] 0ot (0)[s7(0),557(0)) ,  (4.20)

where we introduced the source term
h
Stot = Stot + T Z /dt Z Z spt(h(t) - (4.21)
a==+ i W

The generating functional obeys the normalization prop&fy™ = 0] = Z = 1 which is
a fundamental feature of the Keldysh formalism in this setup (sed&d) @nd Sec4.4.1]).
One has

1 6 Z[hF]

(s7°(t)) = Z ShPD) ) (4.22)

ht=0

where we introduced the notation
()= / D[ s*, 25, 9% 7] - enSet (s7(0), 957 (0)] 010t (0)]57(0), 97 (0)) (4.23)

Notice that one can distinguish this bracket notation from the quantum statisteralge
that we denote similarly by the occurrence of Keldysh indices inside th&dtsadHowever,
they coincide in the case of one time observaldas,

(s (1) = (s{"(1)) , (4.24)

with a = + or — equivalently if the observable is time-reversal invariant.
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Keldysh Green’s functions

We introduce the two-time Green’s functioﬁ;‘jzy(t, t'), defined on the Keldysh con-
tour (@, b = +), as

1 82Z[hF

(L)) = = g =G5, (t.1) . (4.25)
Z 0h ()R (') hE—o
si'* being real fields, one has the following time-reversal property
ab ba
nguu( ) G]wu( / ) (426)
In the operator formalism, the Keldysh Green’s functions read
1th?Zy( t') =Tr[Te sty (t, a) siu(t',b) 010t (0)] (4.27)

wheres!}; (¢, a) denotes the Heisenberg representation of the opestat timet and on
the a- branch of the Keldysh contoutl¢ is the time-ordering operator acting with respect
to the relative position oft, a) and (¢, b) on the Keldysh contowt (see App4.A).

We define the macroscopic Keldysh Green’s functions by summing oveY ttators
and each of thein components

GOt ) = + ZZGW (4.28)

=1 p=1
From the identity 4.27), one establishes two relations between the four Green'’s functions

Gtr(t,t') = G (¢, t)e(t—t)+G T (t,t)O —t),

4.29
G (t,t) = G (t,thet—t)+ G T(t, e —t), ( )
leading to
GTP+G—~ = G~ +G T, (4.30)
G (t,t)— G (t,t') = signit—t)[G T (t,t') -G (t,t)] . '
Self correlation
We define the macroscopic two-time correlation as
N = +
ci,t) = NZ () +s; ()87 (1) (4.31)

ih ih
- ! 5 (Gt + G )] = 15 (G (t, ) + GTH(t,1")] . (4.32)
Itis symmetric in its time arguments(¢, t') = C(¢, t). Given the constrain(t)-s(t) = 1,
it is one at equal time<'(¢,t) = 1. The two-time correlation function is the simplest non-
trivial quantity giving information on the dynamics of a system. In particularsa ff its
time translational invariance is a signature of aging.
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Self linear response

The response at timeof the observable!’ to an infinitesimal perturbation performed
at a previous time’ on an observabl¢! linearly coupled tos!' is defined as

NERICAO))
Rt 1) = 5P |y (4.33)

(3

with the modified Hamiltonian
Hv—— H — fl'st'. (4.34)

Causality ensures that the response vanishes<ift’. We define the macroscopic linear
response as

N n
Rt 1) = % z; 231 RM(t, 1) . (4.35)
=1 p=

The functional derivative with respect §'(¢') in eq. @.33 can be written in terms of the
source fieldshfi(t’) since f!" appears to play a similar role in the action functional:

5 i 5 5
Sff(t) h(&ﬁ+W)_5@‘@0>' (4.36)

A LA | 52Z[h¥]
R(t,t) = NZZ%? (5h§‘“(t)5hf+(t’)

i=1 p=1

Therefore we obtain a Kubo relation, stating that the response can besxgia terms of
two-time Green'’s functions:
- )
= G (t,t') — G“"(t,t") with a = + or — equivalently
1
= 3 G (t, )+ G (4, ) = GTH () — GH (¢, t)]

= [GT@tt)-G Tt erw-t), (4.37)

where we made use of the relatiods29).

Finally the four Keldysh Green’s functiorg®(t,t') can be re-expressed in terms of a
couple of physical observables (namely correlation and response):

ihG(t,t') = C(t,t') — % [aR(t',t) + bR(t, )] . (4.38)
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Keldysh rotation

The Keldysh rotation of the fields is a change of basis that simplifies the eikpresd
the physical observables such as the correlafiaand the responsR in terms of Green’s
functions. One introduces new fields as

1 _— o+ -
2s; = s’ +s;
[ v v 4.39
{ h sgg) = sj T ( )
and the inversion relation
h
sy = st 4 s (4.40)

i 97t

We define the Green’s functions of these new fieldha&™* (¢, ') = 1/N SN (si(t) -
s (t')) with r, s = (1), (2). We have

ihGM (¢t = O, '), RGO (t,t) = —iR(t, 1),

4.41
ihGCY(t, ) = —iR(t',t) , RGP (t,t') =0. (4.41)

The fact thatG(?2) vanishes identically is very general and can be tracked back to be a
consequence of causality. The unit length constraint imposed on thecamtodinates,
s?(t) - s?(t) = 1, becomes an orthogonality constraint between the fields in the new basis,
sgl)(t) : 552) (t) = 0, and a relation between their nornﬁl.)(t)2 + %st.z) (t)2 = 1.

After the Keldysh rotation, the connection with the classical MSRJD generating f
tional presented in Chaptéris straightforward 253, 254, 259, 26(. Indeed, comparing
the relations 4.41) with egs. £.27) and @.34) reveals a very strong resemblance between
the field5s§1) andt on the one hand, and betwe'xsﬁz) and®) on the other hand. We shall
come back to this connection in Séc4.5

Bosonic FDT

When the system of rotors is in equilibrium at a given temperatare the fluctuation-
dissipation theorem holds (in its bosonic version) giving an extra relation batuee
Green's functions. In Fourier space (see Apg for our Fourier conventions) it reads

C(w) = h coth (Bhw/2) Im R(w) . (4.42)

For completeness, we derive this theorem in App.2
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4.3 The influence of the fermionic environment

4.3.1 Self-energy

We treat the interactions with the environment in perturbation theory up to secded
in the coupling. After the fermionic degrees of freedom are integrated cutesgulting
effective action for the rotors acquires an extra term encoding thetefiéthe reservoirs.
The detailed computation, given in App.D.1, yields

Seii = S + Star + S (4.43)

with

i 2.1 rs r s
L@, s = a3 / [ avar sz s i), @40

rs=(1),(2 i=1

and the four self-energy components

SE = 2(hw.)?Re|GEGE" — 1?4 (GEGH +GEGE )| = —3k, . (4.45)
) = 9i(fw,)? Re[G GE* + GEGR" } ok (4.46)
202 = 9i(hw,)? Re [Gz‘Gg* +GE GA*} = x4 (4.47)
s = 0. (4.48)
The fact that!L vanishes identically is a consequence of causality. Similarly to what we
have done in Seéd.2.3we renamed]gfv), gﬁ,) andEgl%) into Eﬁfw, Effw andEQw These

real functions are usually referred to as the Keldysh, retarded and@etvaomponents of
the self-energyGX, G andG4 are the Keldysh, retarded and advanced Green'’s functions
of the free electrons in the-reservoir respectively (see App.B.1). Using their properties
under time reversal (see App.B.2), we establish

2gvlv( ) Zglv( ) ) Eglv( ) _Eélv( ) : (449)

These relations reduce the number of independent self-energy contptméno (namely
»E andXZ ). By plugging the expressions of the fermionic Green’s functions given in

env env

App. 4.B.1, we obtain
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The notation(( - - - ).) g stands for[de;, der pr(er)pr(er) --- . The Fourier transforms
read
=K W) = —%wh(m0)2<( [tanh(ﬁeL SHE) tanh (3L EE) 1]
X [5(M—€LR)+(5(M+€LR)]>L>R , (4.50)
ReH ) = — (e tamh(5E ) — tanh (352 |y
M) = panen?([rann(5L ) — tann(s R |
x [6(hw — eLr) — 6(hw + €Lr)) L) R (4.51)

whereerr = €1, — eg. SinceXX (1) is a real and even function of =%

o oy (w) isalso areal
and even function ab. = _ (1) being real X2  (w) is Hermitian: X2 (w) = B2 (-w)".

env

4.3.2 Some limits

Expressions4.50 and @.51) of the Keldysh and retarded self-energies are somehow
cumbersome. We simplify them here in some physical limits. These expresstdmseaily
used in the rest of this work.

Zero drive

The L and R reservoirs constitute an equilibrium bath for the rotors as soon as they
share the same temperature and the strength of the drive is set tguzeroi(r, eV = 0).
In this case, the fluctuation-dissipation theorem applies to the environmertleariand
gives an extra relation between the environment self-energy compofitartds

»E (w) =h coth <,6h;"> ImE (w). (4.52)

Ultimately the number of independent self-energy components reduces.tdvechecked
in App. 4.D.2that the expressiong 60 and @.51) comply with the FDT in the equilibrium
case.

Low frequency

Let us consider the low frequency limit (— 0), or long time-difference in real time, of
the self-energy components of a generic non-equilibrium environm&nt£ 0 a priori).
Parity considerations oi%  andXZ  show that-X  (w) approache&X (w = 0) which

depends ofT, eV ander whereas IMEf  (w) oc w. The low frequency limit, which can

env
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also be seen as the classical linfit(< 7") of the quantum fluctuation-dissipation theorem
in eq. @.52 gives a way to express the temperature of an equilibrium bath as

1 K (w)
T =lim = ——ev 4.53
2502 d,lm SE_(w) (4.53)

By analogy with the equilibrium case, we introduce for non-equilibrium situations

1 3K (w)
T = lim L Zew(®) 4.54
©502 d,lm 2B _(w) (4.54)

We expect that the effect of the reservoirs on the long time-differeyicardics of the rotors
is the one of an equilibrium bath at temperatilire

er much larger than all other energy scales

The reservoirs act as @hmicbath in the limit in whichez is much larger than the
temperature, the drive arfdb (eV, T, hw < er). Equation 4.51) with Ae = ¢, — e reads

My () = %w(hwc)Q / ae / dAe p(€)ple — Ae) [(hw — Aé) — d(hw + Ae)]

x [tanh(ﬂel _2“0) — tanh(8 Ae - Ae){ Ho— ev)} . (4.55)
In the limit hw < ep, we usep(e’ + hw) ~ p(¢’) and we derive
mEh, @) = gmlwo? [dd ) (4.56)
x [tanhwe/ e S V) _ tanh(sE = S ev)} .

The factor within the square brackets in the integrand is peak€d=aty, + ¢V. Hence
we can approximatg?(¢') ~ p?(uo) and then compute the remaining integral exactly to
obtain an Ohmic (in the sense that it is proportionaljdehavior for the imaginary part of
the retarded self-energy:

Im n2

env

(w) = 27h(Twe)? p* (o) w . (4.57)
Interesting enough, this expression is independefit andV. Similar calculations give

eV sinh(feV') — hw sinh(Shw)

ZK
cosh(fBeV') — cosh(fhw)

env(w) = Zﬂh(hwc)ZPQ(MO) (458)

In order to determiné/™*, we investigate the low frequency limit ofX (w) given in
eq. 4.59.
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Zerodrive. ForeV < T < er, eq. ¢.59 yields

K
Eenv

(w) =~ 21h? (hw,)? p* (110) w coth (Bhw/2) . (4.59)

Equations 4.57) and @.59 are linked through FDT. In the low frequency limii, eV <
T < ep) it reads

K
Eenv

(w) ~ dmh(fw:)?p?* (o) T, (4.60)

yielding 7" = T as expected in this equilibrium situation.

Finite drive. As soon as the drive is not negligible compared to temperature, in the low
frequency regimefiw < T < ep andeV < er)

YE (W) =~ 27hi(fw.)?p? (o) €V coth (BeV/2) (4.61)
yielding
T = % coth (BeV/2) . (4.62)

An “FDT like” relation is verified in these limits

EK

K (w) = heoth (hw/2T*) Im £8 (W) . (4.63)
A similar interpretation of the effect of a two-leads environment in these limits odythe
namics of a single localized spin was given 26 [] and [267].

Furthermore, in the low temperature limit{ < T < eV < ep)

YE (W) ~ 2nhi(hw:)?p* (o) |eV] (4.64)

env

yieldingT* = |eV] /2.
Finally in the zero temperature limi = T < hw, eV < €p)

EK

env

(4.65)

V] if |fw| < |eV],
— 91h mc 2 2 |6

In the low frequency regime, we recover expressiii4). In the zero temperature and zero
drive limit (0 = 7' = eV < hw < €r) the Keldysh component of the environment self-
energy read&’  (w) = 2nh(hw.)?p? (o) |hw| that goes linearly to zero in thies — 0
limit.



108

Zero temperature

In theT" = 0 limit, we obtain for finite values of the other parameter, (iw, cr)

pot+eV+hw
SEw) = wh)? [sianey + h) [ de p(p(e — )
Ho
wo+eV —hw
+ sign(eV — fw) / de p(e)ple + hw)] (4.66)
Ho
o+eV+hw
Im 22 (w) = 7 (hwe)? [/ de p(e)p(e — hw)
Ho
po+eV —hw
- / de p(e)p(e + h/.u)] . (4.67)
Ho
In the low frequency limit(( = 7' < hw < eV, er) they yield
po+eV
YK (W) ~ 2rh(fwe)?sign(eV) / de p(c) | (4.68)
Ho
Im 28 (@) = wh(hwe)? [0 (ko) + p* (1o + V)] w (4.69)

so that

|4
f:ooJre de ,0 )

rr=0= Sign(ev)p (ko) + p?(po +€V)

(4.70)

Some specific reservoirs

For the half-filled semi-circular DOS (type A), at zero drive and zero teaipes, we
establish the following analytical results at finite:

22 TE — S2%(1e
Saw(T) = 2 <Z) Til F/?T/h)il( r/h). (4.71)
. 8 hwc 2J1(T€F/h)51(7'€p/h)
Zvﬁlv(’r) - % ( €F > (T/h)2 @(7—) ) (472)

with & (7 = 0) = 0, SE (7 = 0) = L (7w.)?. J1 andS; are the Bessel and the Struve
functions of first kind and first order, respectively. From eds/Q) and @.72), we see that
the temporal extent of bofi  and>Z  is of orders/er. In the limit in whichez is much
larger than any other energy scale, a numerical analysis shows thatdpésrtyrholds for
finite values of the temperature and the drive as well. As a way of summary, .id Big
(a) we plotoX as a function ofrep for ez = 10J,100J and at(T = J,V = 0) and
(T' =0,V = J). In the case in whicl is finite, one can computé* for the half-filled
semi-circular DOS at zero temperature:

leV|1—1/3 (eV/ep)?

(T =0)= 2 1-1/2(eV/er)?

for |eV] < eVipax = €F . (4.73)
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Figure 4.6:(a) =X, (for the half-filled semi-circle DOS) as a functionaf in the regime wherer is much
larger than any other energy scale: farz = 100 andSer = 1000 ateV = 0 and also forV/2 = e /100
atT = 0. The three curves are indistinguishable. This shows ¥{at is indeed a function of ¢ in this
regime and shows furthermore thdt/2 plays the same role &. (b) Im X2, (w) is represented in a double
logarithmic scale for the three following DOS wifter = e /eV = 100: the half-filled semi-circlg 4 (¢), the
half-filled type B with pp(e) and the3d free electrons DO®¢34(c). The straight line above all is a guide to
the eye for a pure Ohmieq( w) behavior. The rapid decay aboke ~ ¢ is a signature of the energy cut-off,
€cut X €, Of the DOS.

In Fig. 4.6 (b) we give a numerical integration of 1B (w) for the three types of
reservoirs we introduced in Seé¢.1.2and in the case in whichg is the largest energy
scale. This shows that the self-energy is indeed the one of an Ohmic bia¢hfadt that
their Ohmic behavior is approximately valid untib = e supports the property that the

temporal extent of the self-energies (in real time) is of the ordéy/ef.

4.4 Results

In this Section we present our results. We first complete the calculation ofddisor
averaged generating function and, from it, we derive Schwinger-Dggoations for the
two-time correlation and linear response valid for all values of the parametéesnext
derive the dynamical phase diagram as a function of the temperature estrwwairs (),
the strength of quantum fluctuatiori$)( the voltage €1") and the coupling to the leads for
which we introduce the new dimensionless parameter hw./er. We distinguish two
phases separated by a second order phase transition. For high iatbesemperature
and/or strong drive and/or strong quantum fluctuations, we find a naiibeigum steady
state that approaches the usual paramagnet whien> 0. Whereas for low temperatures
and/or low drive and/or quantum fluctuations we find a coarsening phase.
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4.4.1 Average over disorder

At this stage, after tracing out all fermionic degrees of freedom, theteféeaction of
our system is quadratic in the fields and reads

5 [ A= - sP @ D) i [ o SEe- 1) 520 s)

+2Lh Z azd(t) [1 — % (sE”(t))2 —ah Sgl)(t) : Sz@) (t) - 712 (SZ('Q) (t)>1 } '

Given that the initial condition for the rotors is taken to be uncorrelated with igeraer
configuration (the/;;'s), neither the initial density matrix(0) nor the generating functional
without sources;{Z[hjE = 0] = 1) depend upon disorder. This property allows us to write
dynamic equations by averaging over disorder the generating functionahigselé without
resorting to the use of replicagq9, 26(0. As in other quantum systems with quenched
disorder P58-260, 263-265 46, 47, 266-27(, we are therefore interested in

1,7 <t

ZhE] = / (H dJ;, P(Jl-j)) 2[h] (4.75)

where P(J;;) is the Gaussian density distribution for the rotor couplings with zero mean
and variance/?. The disorder average over a random Gaussian potential can be readily
done and the effective action of the system is quartic in the fields and reads

. N .
ig RRNC PRNE)
* Sur ng / dt {F sD() . 52 ) (4.76)
J?n
- / at' S {sgl)(t) : s§2)(t)} [sﬁ”(t’) sP ) +sP ) s (t’)]
—% / at' $E ¢ —1) s () - sP () +i / at' sB (t—t)sP ) - s

+% S ez (1) [1 _ % (s§1>(t))2 —ahsM(t) s (1) ~ T (s (t)ﬂ } ‘
a==%
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4.4.2 Schwinger-Dyson equations
In the largen limit, we show that the Lagrange multipliers are homogeneous,

() =2 (t) = 2(t) Vi, t. (4.77)

2

See App4.Efor a detailed computation. Moreover, introducing

sE=72c+xE | sB=JR4+3E .

(4.78)

we obtain the Schwinger-Dyson equations which fully determine the dynamtbe slys-
tem:

1 2 t t
[thg —i—z(t)} C(t,t) = / de” SE ¢, YRt t") —i—/dt” s, e ), (4.79)
0 0

Eg; + z(t)] R(t,t)=0(t—t)+ /tdtu SH( R, ), (4.80)

t/

t 2
2(t) = / dt” 2Kt " R(t, ") + B, ) O (t, ") — ;%g(t,t’ —17). (4.81)
0

We remark that the expression for the response is decoupled from tlreselation apart
from a residual coupling through the Lagrange multiplier. This is actually ascprence
of two features of the model: the disordered potential is quadratic in thesratat the
coupling to the reservoirs is linear in the rotors. The “initial” conditions are giyen

Ct,t)=1, R(tt)=0 Vt. (4.82)

Moreover, integrating eqs4(79 and @.80 over an infinitesimal interval around = ¢,
one sees that the first derivative of the correlation is continuous at tiopesl

lim 8,C(t,t) = lim 8,C(t,t')=0, (4.83)

t/—t— t/—tt

whereas the one of the response function is discontinuous

lim ;R(t,t') =T, lim O;R(t,t')=0. (4.84)

t/—t— t/—tt

The structure of these equations is the same as the one in other out-of-aquifiooblems
studied in P58-260, 263-265, 46, 47, 266-271].

4.4.3 Quantum non-equilibrium steady state (QNESS) phase

One expects that if the system is quenched into the high temperature pfiese a
short transient it should relax toward a quantum non-equilibrium steady(Q&ESS). The
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system of rotors cannot be in equilibrium since, ¥o&£ 0, an electronic current is passing
through it. Nevertheless the dynamics are still stationary (time translationally intjaria
This implies thatC'(¢,¢') and R(¢, ¢') are only functions of — ¢’. Guided by a numerical
analysis (see Sed.4.5, we make the assumption (that we later check to be consistent) that
the quantityz(¢) is a one-time observable that converges toward a finite vatueln this
situation, one can Fourier transform the Schwinger-Dyson equationd @nd @.80 with
respect tad — ¢’ to find

1
- 4.
R(w) 12 4op00 ZR(w) ) ( 85)
Cw) = IFw)RW)*, (4.86)
Seny (@)
CW) = fmyr_o)mE, (4.87)
Using the fact thatli_>m R(w) has to vanish, eq4(85 implies
R(w) = ooy [ ~T7W? 4 2% — R (w) + \/(—F—1w2 +2%° — DR (w))? - 42
2.J2 env env

(4.88)
We note that in the cases in which the DOS of the reservoirs have an enggif .,

Clw)=ImR(w) =%X (v) =ImxE

env

(w) = 0for hw > ecyt - (4.89)

4.4.4 Critical manifold
Equation for criticality

Approaching the putative critical manifold from the disordered phase Fgget.1,
where after a short transient the system should be time translationally irtyavhook
for a singularity in the Fourier transformed Schwinger-Dyson equations thaltvibe the
signature of the loss of time translational invariance and ultimately of a phasditarto-
ward an out-of-equilibrium behavior. Anticipating a second order phaasiti@n scenario
where the onset of criticality is characterized by long-wavelength instabiltiesnspect
these equations at = 0.

The constraint that rotors have a unit lengtty, t) = 1 implies
> dw 1
and replacing” (w) with its expression in eq4(87):

*dw LE (w) 1
envi*/ | =—. 491
/0 2 Im X2 (w) m R(w) 2 (4.91)
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Equation ¢.88 atw = 0 reads

_ _ 1 00 R — o) R — 2
Rw=0)= 55 <z S8R (w=0)+ /(=% — SR (w =0))’ 4J2> . (4.92)
R(w = 0) = [;°dr R(7) has to be real sinc&(r) is real’. However, it is clear from
eq. @¢.92 thatz>® = 2° = 2J + X2 (w = 0) is a singular point (a minus sign would be

incoherent with the approach in Séc4.5. This is the signature of the phase transition we
were looking for. At criticality,

R(w = 0)] oo = 1/J . (4.93)

Concomitantly, the value af'(w = 0) blows up. Inserting>° in eq. @.91), we obtain the
equation for the critical manifold,

©dw TE (w 1
/0 %mezi,%lm R(w)|z0= 3 (4.94)
The parameters are the strength of quantum fluctuafiptise temperaturé’, the voltage
applied between the two reservoirs We recall that/ is the typical interaction between
two rotors. The energy variation scale of the reservoirs is characterized bnd 7w,
quantifies the coupling strength of the rotors to their environment through thesiioméess
small parametey = hw./ep.

In the rest of this section, we use ed.94) to uncover the phase diagram of Fig.1
The critical surface is parametrized in theI" V' space byl,, I';, V. (g is kept constant).
We introduce the critical point¥, = T.(I' = V = 0), V. = V.(T =T = 0), . =
I'.(T =V = 0). Anticipating the coming results, we introduce the dimensionless reduced
parameterd = T/J, v = eV/2J, v = (4h/37)? T/J. In the planeV = 0, where the
reservoirs act like an equilibrium bath, we recover the result®58][ In the classical limit
V =T =0, we recover the ones iR2 273.

In the limit in which ez is much larger than any other energy scale, using €qgs7)(
and @.58), the equation for the critical surface reads

/°° dw 1 eV sinh(fBeV) — hw sinh(Shw)
0

1
21w  cosh(BeV) — cosh(Bhw) M R(w)]:eo= 5 - (4.95)

Critical points on the I' = 0 plane

Taking thel' — 0 limit of expression £.88 one has

im R = {}\/1—(1—w’2)2 for ' €10,v2], (4.96)

0 for W' >2,

2. 28 (w= 0) is real for the same reason.
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Figure 4.7:Study of the behavior of the = 0 critical line with the ratice/.J for the half-filled semi-circle
DOS. (a) They = 0 critical line 6.(v) is given for four different values of the ratig-/.J. The analytical
expression of ther /J — oo curve is given in eq.4.99. Forer/J < 3/2 the critical pointo. is rejected to
infinity. (b) o, = v.(0 = v = 0) is plotted againstr/J. All thesey = 0 results are independent of the value
g.

where we introduced’ = w/v/2JT. The expression of Ink(w) does not involve the
reservoirs: the time scale of the rotors (controllediBytotally decouples from the one of
the reservoirs in such a way that the rotors only couple with the zero maelsl¢tvest) of
the reservoirs. Using et ©4), we write the equation of the critical manifold in tive= 0
plane

b
h]m/2F d‘“ — 1 (1-w?)p Zen (V2ITW) :%. (4.97)

0 Im S2(V2JTw)

env

Using the definition4.54) of 7*(T, V) introduced in Sect.3.2 this simply reads

T (Te,eVe) = J . (4.98)
At eV = 0, the reservoirs constitute an equilibrium bath and the ffig /Im X% is
given by the FDT and we find a temperature-induced classical criticat pig 7,.(I' =
V = 0) = J. Interms of the reduced temperature this re@ds= 1. In the next two
paragraphs we look at how this critical point is affected by a finite daVe £ 0).

Infinite ex. We first consider the limit¢x — oo, using the explicit expressiod .62 for
T* one finds:

Te(eV) = 6;//arccoth (;i) . (4.99)

From this equation we find a drive-induced critical pointdt/2 = J. In terms of the
reduced voltage this reads = 1. The departure from the classical critical temperature on
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Figure 4.8:Phase diagram in terms of the reduced parameters analytically deterimitiedlimit g — 0.
(a) Critical line forV = 0. (b) Critical line forT = 0 in the limiter — oo.

they = 0 plane is quadraticd. ~ 1 — 1/3 v? for v < 1. Instead, on the zero-drive plane,
v = 0, the critical line leave8, linearly: 6. ~ 1— 372 /16 ~ for v < 1. More details on the
critical line~.(t) atv = 0 are given in 5, 256. Close tou. on thed = 0 andy = 0 planes
the departure of the critical lineg.(v) andd.(v), respectively, are non-analytical and thus
very steep [see Figd.7(a) and4.8(b)].

Finite ex. Let us now investigate th& = 0 critical pointV,, for finite values ofep. For
our simple DOS depending on a unique paramegero, is controlled byer/.J. Plugging
the expressior4( 70 for T (T = 0) into the expressior4(99 we obtain

fl"(ﬁ‘e‘/cdep )
J (o) + p2(uo + Vo)

The existence and the value of the solutidndepend on the details of the DQ). If
the DOS has an energy cut-eff,;, the existence of a solution is guaranteed if the cut-off is
larger than the solutiog’i" of

sign(eV,.) = (4.100)

min

[ e =30 (4.101)
1

0

For the type A half-filled semi-circle distributionf = ep, ecut = 2€r), it turns out that
eg. @.100 admits a finite solution as soon ag/J > 3/2. Forep/J = 3/2, one finds
eVe = 3/2 J (0. = 3/4) . Forep/J > 3/2, the finite solutiont. goes to one as one
increases the ratiep/.J. Forer/J < 3/2 the critical point is rejected to infinity and the
critical line in thel' = 0 plane converges to the asymptotic valiiév > 1) = 1/2 as
er/J — 0. See Fig4.7.

For the distribution B, iy # 0, the scenario is the same as for the semi-circle distri-
bution there is a finite value of the ratig-/J under which, the critical point. is rejected
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to infinity, and above whichy,. has a finite value that goes toin the limitezp — oo. If
1o = 0 theno, remains finite.

For the distribution of type C, et (100 always admits a finite solutiof. independent
of ep. For the distributiorC3d, ©. = 1 regardless ofig, ez and.J. For the distributiorC2d,
we also get, = 1. For the distributiornC'1d, one can show that as long ag > 0, there is
a finite ., function only ofu = J/ug: 0. = [exp (u + L(ue™")) — 1] /2u, whereL(x) is
the only solution of the equatiobe’” = x that is analytic ir0. For uq(ez — co) — oo, we
recovero, = 1.

Quantum critical point

Weak coupling limit. We first consider the limit of the weak coupling to the reservoirs
g — 0 after the long-time limit such that the asymptotic regime has been established. It
is actually in thisg — 0 limit that the self-energy was computed (we expanded the total
action up to second order ) in Sec.4.3. g = hw./er can be sent to zero by sending the
coupling parameters to zero, but for our simple DOS, it can also be realjzeghlolinge »
to infinity.
In equilibrium (V = 0) atT = 0, the FDT gives
)

Im 22 (w)

env

=hfor0 < hw < eyt - (4.102)

By turning off the coupling to the reservoirg  0) in eq. ¢.92 on has

m R — {},«/1—(1—0;’2)2 for W €[0,v2], (4.103)

0 for o' >V2,

where we introduced’ = w/+v/2JT. Plugging egs.4.102 and @.103 in the equation for
the critical manifold 4.94) gives the quantum critical point

2
W, = (7) J if et > %WJ and no solution otherwise. (4.104)

For type A reservoirs in they — oo limit, one can prove that the critical surface is
parabolic close to the quantum critical poiti.e. 7. ~ 1 — 16/372 6% at§ < 1 and
v =0, andy. ~ 1 —16/37% v? for v < 1 andf = 0.

Finite coupling. When the coupling to the electronic reservagjrs finite this quantum
critical point (actually the whole critical surface) moves upward whereiasing the cou-
pling constant (see Figt.9). The coarsening phase is thus stabilized when increasing the
coupling to the reservoirs. In thg: — oo limit, one has fory <« 1

2
Yo 1+2 (?’D (hwe)?p? (o) - (4.105)
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Figure 4.9:Numerical study of the evolution of the critical poift = ~.(f = 0,v = 0) with the coupling
parametey (here forer/J = 10).

[e(V=0) ~ To-T T.(l=0) ~ NA Vo(T=0) ~ (Te-1)?

[(T=0) ~ NA T.(v=0) ~ (T.-1)"? Vor=0) ~ (Te—T7)"*

Table 4.1:Eehavior of the critical manifold close to the critical points for~ 0 ander — oo. Close to the
critical pointV,. = V.(T' = I" = 0) the critical lines are non-analytical@).

In the case of the type A half-filled semi-circle distribution this reads~ 1 + 9/2 ¢2.
This is similar to what was found for other quantum spin models embedded irnanicO
harmonic oscillator bath and is due to a spin-localization-like eff288[263 264]. This
similitude is not surprising since we showed in S£&.2 eq. @.57), that the mixed elec-
tronic reservoirs behave like an Ohmic bath in ¢he— oo limit.

Summary of the phase diagram

Let us summarize the key features of the critical manifold in the case of a DS w
er — oo. When the coupling to the reservaijris set to zero, the values of three critical
points (I, I, eV.) are only controlled by that measures the disorder strength. Figufle
gathers all they — 0 results in thel’, T', V space. The increase of either the thermal or
quantum fluctuations, by raisidgor the temperatur@’, respectively, leads to the destabi-
lization of the coarsening phase. The same occurs for an increase edsheltagel’. The
summary of the behavior of the critical manifold close to the critical pdibtsI'. andV,
is given in Table4.1. Furthermore, an increase of the rotors-reservoirs couglimgjls the
quantum critical poinf’. upward (as indicated in Fig..1by a vertical arrow) enlarging the
low temperature phase.
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4.45 Coarsening phase

We study the dynamics in the loW, weakI', weakV region of the phase diagram by
solving the Schwinger-Keldysh equations in two ways: with an exact nunhapgaoach
and using analytic approximation in the long-time dynamics. We prove that in thisref
the phase diagram there is coarsening and that the aging dynamics tinaaianiversal
and equivalent to the ones of the classical (and undriven) limit of ourein@dck.a. the
p = 2 spherical model with quenched disorder).

Numerical solution

Our numerical analysis consists in solving the Schwinger-Dyson equatiat$y, (4.80
and @.817) after a quench into the low temperature, weak quantumness, weak dase.ph
Thanks to their causal structure, the equation€’o® andz can be integrated step by step
in time, with a Runge-Kutta method. Apart from arbitrarily small numerical sgrais
approach is exact.

We concentrate on reservoirs at temperafuthat have a type A semi-circle DOS (both
L and R reservoirs).L reservoirs are kept half-filled while a voltadeis applied between
L and R reservoirs.ep is chosen to be the largest energy scale. Typically, we consider the
following values for the parameterg: ~ I' ~ eV ~ 0.1J andep ~ 10J.

The analysis shows (analytical arguments are given in &dc) that the dynamics
after the quench below the critical surface do not reach a QNESSe Tharseparation of
two-time scales typical of aging phenomehd][ The data in Figs4.10-4.12were obtained
using the algorithm briefly described.

Mapping to Langevin dynamics

The goal of this subsection is to map our quantum field theory description obthe r
tors dynamics, which involves the two fields) ands(® (see Sec4.2.3, to an equivalent
description in terms of Langevin dynamics. In the long-time limit of the coarsenyng d
namics, we establish that the equation of motion for the fiéld is actually a Langevin
equation driven by a colored noigethe statistical characteristics of which are controlled
by the self-energies of the fermion reservoirs.

Let us take a step back and rewrite the effective action as it was beferagavg over
disorder. Making the assumption (we later check its consistency) that tharigemulti-
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pliers satisfyz;" (t) = z; (t) = 2(t) V i, t, the effective action reads
1 N
j Serls, o ’—”Z/“{pz 370+ 750570

;/&zgﬁ_mg% of /wzm»—t<%wsﬁw>

where introduced the real and symmetric matfixdefined by.7;; = in/\/ﬁ if j <14,
Ji; = Jji if j > i. Like the other components of this matrix, we sgf to be taken
from a Gaussian distribution with zero mean and variaffGgV [we saw that the constraint
si(t)? =1 yield3s§1)(t) : sz@) (t) = 0]. The total effective action adopts the quadratic form

. N
% eff:—n;/dt {isf)(t).EQi(tH;/dt’ s () 5K (1) st )},

where we introduced the notation

EQi(t) = é/dt’ { [(11163 + zi(t)> Sij — jl-j] S(t—t)—XB (t - t’)dij} 55,1)(7:’) .
(4.106)

By comparing this action with the action of the MSRJD formalism [see for examp(& &},
the quantityEQ; can be interpreted as a Gaussian random process and can theeafoie b
ten as a set of coupled Langevin equations

EQ;(t) = &(t) , (4.107)

with £,(t) a Gaussian random noise with statistigg(t) - £;(t'))¢ = 0555, (t —t'). This
mapping is possible since the action of the rotor system, once the constraiationotor
has been imposed through(t) and z;(¢) is treated independently, is quadratic. In more
general models the mapping is not exact, sgethe discussion inf74-277).

Under the further assumptiofi(t) = z(¢), justified in the largeV limit, the stochastic
equations 4.109 are rendered independent — apart from a residual coupling thringgh
Lagrange multiplier — by a rotation onto the basis that diagonalizes the interaction matrix
J. Indeed,J being real and symmetric, it ha$ real eigenvalues with corresponding
eigenvectorgr that constitute a complete and orthonormal basis of the space of rotor sites:
ogeo’' =,y Whereo is the usual scalar product in this space. Let us collect all the rotors in
the vectors = {s },e ] and introduce its projections on the eigenvecteps= s e 0.

If we project eq. 4.109 onto:r, we are left withV uncoupled Langevin equations reading

(;af — o+ z(t)) o (t) — /dt SR (t—t)s,(t") = €,(t) , (4.108)
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with
EM)e=0, (& t) &) = 0o Bh (E— 1) . (4.109)

There areclassicalLangevin equation for the fields,. The noise statistics is controlled
by ¥X  and is peculiar because of the quantum origin of the environment: it has memor
(colored), and depends dR eV, h. L& appears like a friction kernel. Becausgt
andxZ  do not satisfy a classical fluctuation-dissipation relation, it is a non-equilibrium

environment even in theV = 0 case.

Two-time self correlation. Within the effective Langevin formalism, the two-time self
correlation function defined in eq4.31) reads

Clt,t) = 5, ) -5, (0)) (4.110)

where the average over disorder is realized by
= /da pilo) -+, (4.111)

andp (o) is the probability density of the eigenvalues of the interaction mafrixFor
our case of an infiniteY' — oo) and symmetric random matrix with Gaussian elements of
varianceJ?/N it is given by the Wigner semi-circle distribution:

(0)= 1 /1- (1)2 for € [=2J: 42] (4.112)
PINT) =TT 2] 7 ’ ’ '

and zero elsewhere.

Following the analysis in472, 273, the correlation function4.110 is expected to
show a separation of time scales (at least in some parts of the phase diagnenig.usual
in coarsening phenomena and corresponds to a stationary regime atirakedifference
and an aging one at long time-difference with respect to a waiting-time deptecttkrac-
teristic time. The stationary part of the correlation approaches a plateau athtaads-

Anderson order parametef;y = (s(,)?], that measures the of frozen rotor fluctuations on
time scales much smaller than this characteristic time. The valgesoflepends on all pa-
rametersT, eV, T, g). Itis non-vanishing in the spontaneously symmetry-broken phase and
continuously goes t6 on the critical surface. In certain cases it can be computed exactly.

It is reasonable to expect that the long-time aging dynamics is determined lynthe
frequency (or long time) form of the Langevin equations only. The simplificatitsmg in
this asymptotic limit are discussed below.
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Long-time dynamics

In the low-frequency, long time-difference limiw < T', the Keldysh self-energy can
be approximated by a constant [sedy, eq. @.61) in Sec.4.3.2for its exact expression in
theer — oo limit]

L

env

(1) ~6(1)2E (w=0)>0. (4.113)

Similarly, we keep the leading contributions in the derivative expansiatfif:

R
Z]env

(1) ~ Zf;w(w =0)d(7) + 1od ()07 , (4.114)

with o = 9,Im ©£ (w = 0) > 0. The Langevin equations read in this limit

env

1
fafsg(t) + Nodiss(t) = (0 —z(t) + ng(w = O)) Sq(t) + &,(1) (4.115)
wheren plays the role of a friction coefficient argd.(¢) has white noise statistics:

(&, (t) - & (t)e = boor0(t — ') L (w = 0) . (4.116)

In the Langevin formalism, the kernel of an equilibrium white bath is given byEihstein
relation (known as the FDT of the second kindj{(¢)&(t))e = 2noTo(t — t'). Thus, the
temperaturé’ of the bath can be seen as the ratio of the diffusion coefficient of a particle
embedded in that bath with the friction coefficietof the bath on the particle. For our
reservoirs, in the low-frequency long time-difference limit, one can aatothis ratio to an
equivalent temperatufg*

1 2K (w)

T* = lim eny

- 4.117
w—0 2 8wlm Zgw(w) ’ ( )

the properties of which were discussed in S&€8.2 Thus, we confirm here that* acts
like a temperature in the sense that the effect of the (out-of-equilibriumjveseon the
long-time dynamics is the one of aguilibriumdissipative (Ohmic) bath at a temperature
T*. This has been reported in different works and is at the root of thigatien of the
stochastic Gilbert equation for a spin under biz&]].

We expect that as far as the long time dynamical behavior is concernexlettial term
in eg. @.115 can also be dropped, thus leading to the equations:

0151 (8) = Aol0) 50(0) + - &40 (4.118)

where we introduced the shorthand notatiorit) = [0 — Az(t)] /no andAz(t) = 2(t) —
¥ (w=0).

This particular Langevin equation has been analyzed intensively in the sfuithe
classical spherical Sherrington-Kirkpatrick model (or spherjcat 2 spin glass model)
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and the results ind72, 273 apply to our problem witly” — 7. The solutionto eq4.118
for a given disorder realization and noise history is

t t t
So(t) = s,(0) exp (/ dr )\U(T)> + 1 / dr &,(7) exp </ dr’ )\U(T')> . (4.119)
0 o Jo T
Copying results inZ72, 273, the aging part of the correlation (in the limit>> ¢ — o0)
shows a simple aging scaling behavior

(t/t)"

C(t,t') ~2v2 —_—t
(a ) \fQEA (1+t/tl)3/2

=Ct/t). (4.120)
The solution to eqs.4(11§ leads togea = 1 — T%(eV,T)/J. However, this result is
obtained by taking the limit of relatively close times — with respedt te whereas, as we
stressed, eq4(119 is valid for the long time’ and long time-differencé — ¢’ properties
only. As a consequence, we expect the scaling result4e2@, to hold at long times with
the value of the Edwards-Anderson parameter not necessarily gyven-bl™ (eV, T)/J.
Its computation requires a full solution of the equations of motion.

We now focus on the aging dynamics in different parts of the phase disgmdrargue
that the Langevin dynamicg (115 indeed provide a correct description of the dynamical
evolution.

Dynamics in theelV = 0 plane. In this case, the Edwards-Anderson order paramgter
measures the static order parameter. Static calculations yield the following eqaaitbn

~ﬁ‘mm<¢iﬂ“—0)
N oT ’

that gives in principle the value af° (T, eV') for any temperature and strength of the quan-
tum fluctuations. It is large fof’, eV > J and decreases with bofhandeV'. However,
because of the square roots in the above equation, it cannot go beloritittad ealue fixed

by the upper edge* of the distribution of eigenvalues;. In the case of the Wigner semi-
circle distribution [see eq4(113)], this corresponds to>° = ¢* = 2J and the critical line

is given by

1= /da ps(o) (4.121)

VI 1
1= /d —————— coth I'ev2J —o. 4,122
/"’”(")zmco or, Vieval = (#4122)

Under the critical line, there is some sort of Bose-Einstein condensatioaedinéh order
for the constraind_,(s?) = >~_(s2) = N to be satisfied, the weight of the edge eigenvalue
o* = 2J has to become macroscopic aigh is a measure of the fraction of ‘frozen’
rotors in the condensate. In the classical limit €q121) simplifies considerably yielding

1 = [do ps(0)-=Z— and one identifiegea = % (so+) = 1 — T/T..

2 —0o
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The dynamic calculations based on the use of the quantum FDT to relate tbkatonr
to the linear response in the stationary regime detaile@5@][ or the replica equilibrium
computation in 263 264, can be easily extended to deal with a generic electronic bath in
equilibrium. One confirms thajza = 1 atT =T = eV = 0 and continuously approaches
0 on the critical linel'.(T") for all values ofg. The precise variation ofgs within the
coarsening phase depends on the bath kernels. lazthe oo limit, the results in 25§
apply also to our problem. The solution of the Schwinger-Dyson equations iaging
regime confirms that the scaling result, e¢;.1¢0, holds.

Dynamics in the' = 0 plane. Another interesting case is the effective overdamped
Langevin limit obtained fol® — 0 and (eV,T) in the coarsening phase. In this case
dropping the inertial term in eg4(119 is exact and not an approximation.

Here the resuliga = 1 — T*(eV, T')/J can be shown to hold. The Edwards Anderson
parameter approaches one f6r= V' = I' = 0 and goes continuously to zero on the
critical line, as in a second order phase transition. Consistently with the anafytie
critical surface derived from the QNESS phase (see &dcd), one findsT* (1., eV.) =
J. Numerical integration of the integro-differential equations of motion confirmistkiea
scaling result, eq.4(120, holds in the aging regime.

Despite the fact that dropping the inertial term is exact, the equatibh&g are still
not exact at all times. In particular, the initial conditions for this approximatggon of
motion should be given by the state of the system a short while after the queimeh the
long-timescale description starts to be valid. Apparently, this delay seems to beaffiot
cient to significantly correlate the rotors with the interaction maffiand, to any practical
purposes, (0) can still be considered “random”, at least as far as the Edwardsréonle
parameter is concerned.

Dynamics in theT' = 0 plane. The zero-temperature plane is more difficult to deal with
analytically. One is not entitled to use FDT since the system is driveri/bgor dropping
the second time-derivative is exact. Furthermore, this is the case whesarpigication
leading to eq.4.119 are more dangerous because of the power law tails appeaflhg dt

in correlation and response functions.

In order to check that the scaling result, e§).1¢0, holds we numerically integrate the
full set of Schwinger-Dyson equations.

In Fig. 4.10(a) we show the decay of the two-time correlation function. For short time
differences — ¢’ with respect to the waiting timé&, there is a stationary regime depending
on all control parameters in which the correlation approaches a platempeically in
the time-difference. The plateau valuegisy and measures the fraction of frozen rotor
fluctuations on time scales much smaller ttanAfterwards, there is an aging regime in
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Figure 4.10:Dynamics in the driven coarsening regime: numerical solution to Schervibgson eqs.4.79

and @.80 where the reservoirs have a half-filled semi-circle DOS with= 10J. (a) The self correlation
C(t,t") after aquench td = 0.02,v = 0.02, v = 0.2, g = 1 (in reduced quantities) shows first a stationary
regime for shortt — ¢', then a slow aging regime where the time translational invariance is lost. hg) T
self correlationC' is plotted versug /¢’ for two waiting times after two quenches into the coarsening region:
0 =0.02,v =0,v=0.2andd = 0,v = 0.02,y = 0.2. There is a double collapse of the curves. The collapse
for the differentt’ proves the simple aging scalin@(t'/t) and the collapse for the two different quenches
shows thafl'™™ ~ eV/2 plays the role of a temperature. The theoretical curve is the solutiod @0 with

qea ~ 0.6.

which C depends on the two times explicitly. In Fig.10(b), we plotC againstt/t’ to
prove that the simple aging scaling predicted analytically with 4d.20 holds at these
long times. Moreover, we show that the dynamics after a quengh<0.02, v = 0 are the
same that the ones after a quencld te 0, v = 0.02, illustrating the fact thai™ ~ eV//2
acts here like a temperature.

Super-universality. It is remarkable that in the largeN limit, the long-time dynamics

of our model are exactly the ones of the classical fully connegted 2 spherical spin
glass. The latter being a classical model in contact with an equilibrium bath({, eV =

0), the former being its quantum version in contact with a non-equilibrium emviemt

(' # 0,eV # 0). The fact that the scaling functions asaper-universalin the sense
that they do not depend on the external paraméierd/,I" onceqgga IS extracted as a
factor, can be understood as follows. First the fact that the non-equitibenvironment

of our model give rise to the same long-time dynamics than an equilibrium envir@nme
can be seen as a consequence of the Ohmic behavior of the reseelfogsesgy kernels

at small frequencies (see Sec3.2. Secondly, the fact that our quantum model shows
a classical behavior at late times can be understood as a consequeleoeluérence due
to the dissipative (and Ohmic) bath. Furthermore, the effect of the tempef@tan the
long-time dynamics being irrelevant (in a RG sense) in the classical limit, onexgaatt
the same to hold in the quantum case with respect to all parameters.
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We found quite naturally that the long-time dynamics correspond to a Bostekin
like condensation process of thén-dimensional ‘vectorss, on the direction of the edge
eigenvector. The relaxation is controlled by the decay g#) close to its edge*. For
Gaussian i.i.d. couplings .

We now prove the strong connection with the dynamics of the pdr&(n — oo)
models. For thedd O(n — oo) non-linear sigma model [defined in ed..§ and after
rescalings; — +/ns;], the equations of motion are rendered independent in Fourier space
and read

(;aE—JkQ—gZ\squ)P—u)sk<> [ She - tst) =€) (4129

E = —k? are the Laplacian eigenvalues the distribution of which is givemb{F) =
k)| %] wherepy,(k)dk ~ d% ~ ki='dk. This yieldspa(E) ~ (—E)¥*~1 which
commdes ford = 3 with the edge of the distribution of eigenvalues of tfig matrix,
ps(o) 7" (2J — 0)/2. For this reason all models with a square root singularity of the
distribution of “masses?, such as the ferromagnetic rotor modekiin= 3 and the com-
pletely connected spin glass rotor model, are characterized by the samtéterdynamics.

This result has an interesting consequence. In the case of lameantum3d coars-
ening the classical-quantum mapping extends to space-time correlationsged fhre ex-
istence of a growing coherence lengtki) o t'/2 over which the rotors are oriented in the
same direction. This real-space interpretation of aging unveils the connedtiocoarsen-
ing that was announced all along this manuscript.

Linear response

It has already been noticed in Séc4.2that the response function was somehow pecu-
liar since its equation of motion is decoupled from the one of the self correlatiovinga
argued that the long-time dynamics are governed by their classical cparitgrthe linear
response should also scale as in the classical limit. Therefore, the qulnttoation-
dissipation relation between integrated linear respogéet’) = ftf dt"” R(t,t") and self
correlationC/(¢, t") approaches the classical oney ct+ (gea — C)/Tes, with aninfinite
effective temperature?[/g, T.g — oo, as shown in Fig4.11 The relations between in-
tegrated responses and correlation functions in other quantum problenassthapproach
classical-like form in the aging regime were shown2s9, 260, 265, 46, 47, 266-27(.

The Lagrange multiplier

One should check the validity of a key assumption that was used to derive dlse ph
diagram: the convergence oft) to an asymptotic value on the critical manifold. We first
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Figure 4.11:The integrated linear response(t, ') = [, drR(t, ) againstC(t,t'), for ¢ = 1024 and
usingt as a parameter. The curved part corresponds to the stationaryalatay regime with(t—t) /t' — 0
while the straight line is for times in the monotonic aging decag'of

derive analytically the asymptotic behavior (within our long-time approximation)©fin
theT' = 0 coarsening phase showing that this is indeed the case. Then we giveicaime
evidence that(¢) converges in the whole phase space.

The conditionC(¢,t) = [do ps(o) (ss(t) - ss(t))e = 1 reads after taking its time
derivative and assuming furthermore tkaf0) is uncorrelated withr (s, (0) = sp,V o),
that is valid for random initial conditions (coming from infinite temperature forainse)

0 = [ 40 ps0) @15 (0)-sa(0)e (4.124)

% t
= /da ps(o) {sg/\g(t)ezfoth rom) I [1+2)\U(t)/ dr’ e2frrdr” MH’)]} .

Mo 0

Taking the derivative with respect &g yields
0= / do py(0) e (t) €2Jo 97 Ae(m) (4.125)
that can be recast into

Az(t) = % Oy ln/da ps(o) et/ (4.126)

Asymptotic behavior of z(¢). By plugging in p; the Wigner semi-circle distribution
givenin eq. 4.119, we get

Ax(t) = Mg Ly <4Jt> , (4.127)
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Figure 4.12:(a) Az(t) = z(t) — &, (w = 0) quickly converges toward.J, the largest eigenvalue of the
Ji; matrix (herel' = eV =T = 0.1J, g = 1 ander = 10J). (b) Dependence of* with T" (plain curve)
andeV (dashed curve).

whereI; is the modified Bessel function of the first kind and first order. we obtam, th
pre-asymptotic behavior far> ny/J

3

2(t) ~2J + B8 (w=0)—mn e (4.128)

env
We just showed that inside the coarsening phase, the Lagrange multiglieeaches an
asymptotic value which is actually the critical valug? = 2J + S (w = 0), calculated
in Sec.4.4.3from the QNESS phase TTI equations without neglecting any term. The co-
herence between those two results somehow justifies the approximations madegtye
In theer — oo limit (reservoirs acting like an Ohmic bath)z(w = 0) vanishes and we

recover the same mechanism as in the classical eaged73.

These analytical results are supported by the numerical analysis. Calrgitege the
quench, the Lagrange multiplieft) quickly converges to an asymptotic valu®. As an
example, we plot in Figd.12(a) the behavior of(t) after a quench into the QNESS phase.
The oscillations and the zero initial slope are signatures of the second amet loigler
derivatives in €q.4.109. These terms were dropped in the analytical study of the long-
time limit, see eq.4.119, but the numerical integration does not neglect them. We give in
Fig. 4.12(b) the dependence of° with 7" andeV'. Itis quite clear that> is constant (and
equal toz2°) inside the critical surface and increases Vilithl' andeV as soon as entering
the QNESS phase. This justifies the assumptions made i 3e8.

To summarize the results, in the whole phase diagtémalways rapidly reaches an
asymptotic value. Inside the QNESS phasgy is a growing function of the parameters
T,T',V whereas on the critical surface and inside the coarsening region, iastox:°.
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Link between z(¢) and the potential energy density One is interested in computing the
energy density(¢) of the effective Brownian particle. It is given by

1

N
)= 3 3 w0 = 4 [ a0 ps(o)osi) @129)
ij=1

Using the solution4.119 for s, (¢) atT* = 0, one has
2e(t) = —s2 ¢ 0 o 72T / do op(o) e2t/m | (4.130)
By use of eq.4.126, we obtain
2(t) = —%at In / do p(c) e2ot/m . (4.131)
We recognize eq4(127 in the Rhs of this last expression, giving finally
() = —%Az(t) . (4.132)

This result is valid for any disorder densityo). For a non-zerd™, similar calculations
give, see 72 273,

(t) = % T — As(t)] . (4.133)

4.5 The current

The physics of electric currents through mesoscopic quantum impuritiestiof-ou
equilibrium settings has attracted a lot of attention in the recent years. The Kopddty
is the canonical example of a strongly correlated system that has bothdwésd experi-
mentally 279-281] and theoretically by non-perturbative metho@8%-285. It is, to our
knowledge, the first time that some fermionic reservoirs are coupled to astagic disor-
dered quantum system. In the previous sections we analyzed the effeasvoftdge drop
on the system dynamics. In this Section we study the properties of the ctiva¢mtstab-
lishes between the two reservoirs. In particular we are interested in thiblgasfluence of
the rotors on the current. Is the current, that is rather easy to meageenszntally, able
to give information about the dynamics of the rotors ?

We recall the expression of the interaction Hamiltonian given in#):(

n N M

N
Hiny = —V/n h;; SN ST Wl ol vriwe + Lo R (4.134)

i=1 p=1kk'=111=1
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From the point of view of the electric current, our model consists in twavess coupled
through time-dependent tunneling constasit&). It is different from the usual quantum
impurity problems in the fact that the electrons cannot stay on the rotor shstisonly hop
directly from one reservoir to the other. Furthermore, the quantum clearaf the system
is not expected to play any significant role since its level spacings are sthalteany other
energy scale in the largeN limit. The computation of the current will therefore lead to
Landauer formulag86, 287] a priori dependent on the rotors states.

The electric current carried by the fermions flowing from the right to thteréefervoirs

dN ie ie

Tpop(t) = e (~g") = = {[Huot. NiJ) = = ([Hin Ni]) (4.135)

where —e is the electric charge of a fermion and, = ) ., ¢TLikﬂ/’Likl is the number
operator of the left reservoirg;,; is the part of the total HamiltoniaA.. that couples the
system and the reservoirs, see €qd); After straightforward algebra, we obtain

Ip—p(t) = —if(ﬁ

heoe
h > ohst [%kﬂ%w — L R}> : (4.136)

N
ipkk!ll
In the Keldysh field theory formalism, this corresponds to the quantity

Inon(t) = 2 5 Lasp(®) + Ip () (4.137)

with

IR—)L( ) \/>

SN ol st [ (DU () — L R]) . (4.138)

N, ipkk!ll

Expanding the action up to first order in the coupling consjamte obtain an average over
the rotors and the free fermions that are now uncoupled, that we note;,

Ipp(t) = %<(IZF_>R(75) +1;,5()) ihSint>int

“ " ( >Z 2 2 / dt’ of}, 0%, (17 (1)sY (1) (4.139)

ab ipkk'll juqq' mm/
X [0 (VR () — L < R] {lﬂ%qu(t/)w?ﬁq'm/ )+ L R} )int -

Averaging over the free fermions, we obtain

Tpp(t) = %nN(hwc)Q > b/dt/ WG (¢, t) [ihGib(t,t’)ihG‘;g(t’,t) — L R} .
ab=+

G are the macroscopic Keldysh Green’s functions for the rotorsﬁ#}g, are the Green’s
functions of the free fermions in thie/ R-reservoirs. This reads, after Keldysh rotations,

I p(t) :—an/Oth Clt,t — )2 (1) + R(t,t — ) TIE (7),  (4.140)



with
HglV = _2(M0)2 Im G?Gg* — Fﬁ (G}L%Gg* +Gng*):| ,
4 (4.141)
nh, = 20w m|GEGK +GEGE]

The expression for the current given in ed.140Q is quite generic. It is valid as soon as
the system and the fermionic leads are coupled with an interaétign The details of the
system and the leads enter in the formula through their respective Gfarat®ons. The
formula was obtain after a first order expansion in the coupling congtaiithe second
order term like all the even order terms are zero by use of Wick's theoréhe third
and higher odd order terms would have involved higher order correlatioetibns of the
system. Plugging the expressions of the fermionic Green’s functidhsG%, G4 (o =

L, R) that are given in App4.B.1, we get

£0(r) = i {anh (555 anh (575 2) 1] sin (£

172, (r) = %(hwcm [tanh (BE5HE) - tanh (5 “R)] cos <€L > 6RT>>L>R@(7),

where the notatiof - - - ) ) g stands for[ [de de’ pr(€e)pr(€’) --- . One can check that the
current vanishes when the bias voltag¥ (= 1z — 11) is set to zero.

Linear conductance. We develop the current formuld.(L40 to the first order ireV and
compute the linear conductance

Inor(t) = —%nNeV (4.142)
i dig, (r) A, (r)
de'(t,t — — sz R(t,t — — oo
< [t =y T 1 Rl T

One can derive for a flat half-filled DOB(e) o< O(ep — |e — ep|), in the limitex — oo (in
that limit we expect the results to depend very little on the precise shape ofas¢ D

diZ - (r) )

—env 177 = —7g%s 4.143
eV | Tg7o(7) (4.143)

dik, (1) 5 1
ny \T) - _ho®— 4.144
deV V=0 g 2T ( )

Therefore the linear current very quickly goes from zero to

o R(t,t—
Inor(t) = %nNgQ eV (w + h/ dr <TT)> : (4.145)
0
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The dependence on the history of the two-time correlation function has dezaojend the
second term in eq4(149 goes to zero due to the rapid decay of the response function.
Finally the current quickly takes an asymptotic value

R, = 2—27mNg2 ev . (4.146)

From this computation, it appears that the current only probes the vergyfaamics of the
system it passes through and does not give information on the long-timmaym&since the
short-time dynamics of the system are equilibrium ones even in the coarsegintgr the
current cannot be used to tell in which regime the system is. An exact reahategration
of eq. @.140 supports these findings for other types of DOS, for finite values @nd far
from the linear regime.

4.6 Conclusions

In this chapter we presented a detailed study of the quantum fully-conmetbedhodel
driven out of equilibrium by a fermionic drive. We determined analytically thage dia-
gram of the model and we showed that a critical manifold, controlled by the & the
disorder strength, separates a QNESS with zero order parameter rirondexing phase
with non-zero order parameter. We solved the equations that describgrniids in the
different phases with a numerical integration and analytically by using \v@gpproxima-
tion schemes that give valuable physical insights. In particular, we shthaéthis (quasi)
quadratic model maps to a set of Langevin equations with additive coloree thaisde-
scribes the dynamics of the rotors. The nature of the noise is determinee Ihypth of
electron baths used and, in the driven case, the friction kernel and muise correlation
are not linked by any fluctuation-dissipation relation. By using this effectivegyéein de-
scription we established the connection with theeBarsening dynamics of th@(n) model
and we showed that the long-time ordering dynamics are in the class of tisecaldsnit
of our model without a drive,e. with the typical length growing ag /2.

Finally, we derived a generic expression for the current flowing thidbg system that
involves a time-convolution between the characteristics of the system (thitsuggrrela-
tion and linear response) and the ones the leads (through their retardedldystikernels).
Interestingly enough, for the type of density of states used in the &rdjenit the current
depends only on the short-time difference (stationary) regime in whicheacsis not
relevant.
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Appendices

4.A Conventions

O is the Heaviside step function. We chod3€)) = 1/2, so thatO(z) + O(—x) =
1V x € R. We recall the identities

/OO %eiwy =4d(y) and /y dz 0(z) = O(y) , (4.147)

whered is the Dirac delta function. In particulr_;frf)OO dz é6(x) =1/2.

4.A.1 Fourier transform

The convention for the Fourier transfotmthat we use is

FUOI@ =) = [ ar e ),

P aw (4.148)
FURIN =) = [ 5 e fw),
The Fourier transform of the step function is
FlOM)] (W) = i pvé +ro(w) (4.149)

where ‘pv’ denotes the principal value. Convolutions in real and Foupiaces are defined
by

(fog)r) = /dT’ F()g(r =) = FH(f 9)(@)(7)
Ao’ (4.150)
(Fog) = [5G fglo—u) = FF o))
4.A.2 Heisenberg representation
In the Heisenberg representation the operators evolve as
Ap(t) = UT () AU (1) . (4.151)
with the unitary operator ‘
U(t) = Te~i Jodt' HE) (4.152)

and thug/t(t) = Te~# /i " H(t) T andT are respectively the time and anti-time-ordering
operators (see Appt.A.3). For HamiltoniansH that do not explicitly depend on time we
get

Ag(t) = /P A)e M (4.153)
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4.A.3 Time-ordering operator

On the real time axis, the time-ordering operalaearranges operators with ascending
times to the left:

T Au()Bu(t') = Au(t)Bu(t)O(t — ') + ¢ Bu(!)Au()O( —t),  (4.154)

with ( = —1 if both A and B are fermionic operators, = 1 otherwise. The anti-time-
ordering operatoll rearranges operators the other way round:

T An()Bu(t') = Au(t)Bu(t)O(t' — ) + ¢ Bu(t) Au()O(t —t') , (4.155)

On the Keldysh contou€, the position of an operator is specified by both the time and
the branch index. By the notatiofiy (¢, a), we denote the operatot in the Heisenberg
representation at time(t € [0, +o0[) on the branchu (a« = +). One can similarly define

a time-ordering operatof¢ that rearranges operators along the contouepresented in
Fig. 4.5 The rules are

Te An(t, —)Bu(t', +) (t)BH(t’) ;

Te AH(t, +>BH(t/, —) = H(t/)AH(t , (4 156)
Te Au(t,+)Bu(t',+) = H(t)BH(t’) (t—t)+ ¢ Ba(t)Au(t)OEt —t) ,

Te An(t, —)Bu(t', —) An(t)Bu(t)Ot —t) + ¢ Bu(t')Au(t)O(t —t')

4 A.4 Green’s functions

Let ¢ ando! be respectively annihilation and creation operator (bosonic or fermionic).
In the field theory formalism of the Keldysh approach, we define the Gréamctions as

WG (t,t') = (1) 4 (1)) . (4.157)

a,b = =+, ¢ is either the complex conjugate (for bosons) or the Grassmannian conjugate
(for fermions) of¢y and the average is understood as

= / Dl¢=, ¢*] - exp( S[o™, qﬁi]) (4.158)
In the operator formalism the Green’s function read
G (t,¢) = Tr [ Te gu(t,a) @i (¥,b) u(0, %)) . (4.159)

whereg¢y (¢, a) denotes the Heisenberg representation of the opepabtimet on thea-
branch of the Keldysh contous; (0, £) = 0(0) is the initial density matrix (normalized to
be of unit trace) and its location on theor —-branch does not matter thanks to the cyclicity
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of the trace.T¢ is the time-ordering operator acting with respect to the relative position of
(t,a) and(t’, b) on the Keldysh contour (see App.A.3).

One has, independently of the bosonicity or fermonicity of the field
GOt 1) = —GY(t,¢)* (4.160)

where the star indicates complex conjugate anel —a.

4.B Fermionic reservoir

We define the fermionic Keldysh Green'’s functions
ihG(t, 1) = (¥ ()P (1)) (4.161)

wherea, b = +. Like for bosons [see eqst.9 , one has
Gt (t,t') = G L)t —t)+ G (¢, —1t),

4.162
G (t,t) = G (L)t —t)+G (el —t), ( )

leading to the relation between Keldysh Green'’s functions
Gt+G =Gt 4G 7", (4.163)

4.B.1 Keldysh rotation
We introduce the new fermionic fields
29 = gt 4y, 290 = Pr 4y,

{ o = g, hg® = g (@169

These definitions leads to

G (t,t) = ORpVE)) =in/4 [GTF+G T +G T +GT] =G6F,
G2ty = (W)@ ) =i/2 [GTH -G~ + G T - Gt] = -iGE,
GOt = (P )pHE) =i/2 [GTT -G -G T +GT] =iGt,
G (t,t) = WAWA ) =i/h [GTF+G -G T -G ] =0.

Where we defineden passantthe KeldyshG*, the retarded>” and the advance@“
Green’s functions in the same manner that we didf@ndR in Sec.4.2.3 Using relation
(4.163 we get

GK = in/2 [GTF +G"} =in/2 [GTT+ G, (4.165)
GF = - [G++ = [G+— G-l e(r), (4.166)
GA = [GTT -G~ } = [G* —fle(-1), (4.167)

which are inverted as 0
ihGe = GK + 2( aGA—b Gl . (4.168)
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4.B.2 Symmetry properties undert < t/
Using eq. ¢.160, one establishes
Gi(r)y=-GA(-1)", GE(r)=GK(-n)". (4.169)

And hence in Fourier space

Glw)=-GAw), GFfw)eRr. (4.170)

4.B.3 Free fermions
Single free fermion
The free fermion Hamiltonian is
H=cyly. (4.171)
Starting from the expression in terms of operators of the Keldysh Graami$ions,
WG (t,t') = Tr | Te u(t, a)yh (8, 0)o(0) ] (4.172)
with a, b = + and the grand-canonical density mati%) o e~ #(#=#N) one computes

Gt (e;7) = —npe i,

i 4.173
ihnG=t(e7) = (1—np)e 7. ( )

np is the Fermi factor given by (e) = (1 + eﬁ(e—“))_l. After the Keldysh rotation we
get

1 — i
GE(er) = itanh <B€2> e 7T,
i

GR(E;T) = he_%”@(r), (4.174)

1

GA(E;T) = ﬁe_%”@(—ﬂ.

Collection of free fermions

For our left and right reservoirs, we consider continuous distributiongitieof states)
pr(€) andpg(e) of these free fermions. This yields to the Keldysh Green’s functions

G(r) = / de pa(€)GP(e;7) (4.175)
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with o = L, R. After a Keldysh rotation it yields

¢ = /d6 P %tanh[ﬁ(e - M)/Q] TR = %(tanh[ﬁ(e — ) /2 e F ),

GR(T) = /de p(€) %67%679(7) = % <eiiﬁﬁ>e o(r), (4.176)
GAr) = [dep(e) e O(=) = 1 (eTHT ) B(-7),

where we introduced a short-hand notation for the integration over enesgjg.lén terms
of the Fourier transforms gf(¢) it reads

GR(T) = % 27p(7/h)O(T) , GA(T) = % 27p(T/h)O(—7) . (4.177)

Fourier transforms

hw — 1

G¥(w) = Thtanh (5 ) p(hw) e R, (4.178)
G (W) + GMw) = 2imp(hw) € iR .

Sincep(e) is real, one computes
ImGE(w) = mp(hw) . (4.179)

Thus we get, as a check, the grand-canonical fermionic fluctuation-aligsigheorem that
is established generally in SetC:

GX(w) = hitanh <ﬁh‘*’2 “) Im GR(w) . (4.180)

4.C Fluctuation-Dissipation Theorem

In this Section we give a proof of the fluctuation-dissipation theorem both in itos
and fermionic versions. This theorem only holds in equilibrium and givelatior between
the Green’s functions. In the grand-canonical ensemble, the initial deoystator reads
0(0) o< exp (—B(H — uN)), whereN is the number operator commuting wikh (in non-
relativistic quantum mechanics), is the chemical potential fixing the average number of
particles. One can obtain the theorem for the canonical ensemble by fosatihg;, = 0.

Let us consider a pair of either bosonic or fermionic operators, for instareation and
annihilation operatorg! and¢. Let us write the following Keldysh Green’s function

G () = Tr [TC dult, )l (', —)o(0)] . (4.181)
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By resolving the time-ordering we get
hGT(4,1) = CTr |8l (¢)du(t)0(0)] (4.182)

with ¢ = +1 in the bosonic case ad= —1 in the fermionic case. Using tlanalyticity of
the Green’s functions and then expanding(t + i8h) = exp (—G8H) ¢u(t) exp (+8H),
we get

WG (t+iBht) = CTr [qﬁ;(t’)qﬁH(Hwn)g(o)} (4.183)
o CTr[6ly(t) exp (~BH) ou(t) exp (BuN)| . (4.184)

SinceH and N commute and since for any operait{t\V'), one haspf(N) = f(N + 1)¢,
we have

ou(t) exp (BuN) = exp (Bu(N + 1)) ¢u(t) , (4.185)
and so
G (¢ + 180, ') = Cexp(B) Tr o] (£)0(0)du ()] - (4.186)

Using thecyclicity of the trace, we come to

G (L +180,¢) = Cexp(B) Tr [én(t)oh(t)o(0)] (4.187)
= exp(Bp) ihG—F(t,1). (4.188)

If the system is in equilibrium, théme translational invariancef the previous equation
gives the KMS relation:

Gt (w) exp(Bhiw) = Cexp(Bp) G~ (w) . (4.189)
Using eqs.4.169 and @.167, we have on the one hand
Gw) + GMw) = G (w)(1 ~ ¢ exp(B(w — p)) . (4.190)
On the other hand ed4 (169 implies
() = TG (@)1 + Cexp(B(hw — )] (4.191)

These two last relations yield the grand-canonical quantum FDT:

—¢
G®(w) = h tanh (5}” 2_ a ) Im GR(w) . (4.192)
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4.D Computing the self-energy

4.D.1 Derivation within the Schwinger-Keldysh formalism

In the Schwinger-Keldysh path-integral representation we had (sgé.2@)) for the
whole system (rotors and environment)

Z[ht] = / Dl s, yF, e Sl EE P (65 (0), 457 (0) 010t (0)]s(0), 357 (0))

Attime ¢ = 0, just after the quench, the initial density is assumed to be factoriggd) =
I ® or*¢(0) @ oftee(0) (see Sec4.2.]) yielding

(s*(0),9"(0)]00e(0)|s~(0), 5 (0))
= 3(st(0) — 57(0)) (b1, (0)]0F°°(0) 1 (0)) (4D 15 (0)|fic*(0) [ 5 (0)) -

The generating functional reads

ZhF) = / D st, s JerSels o TRl ((enSimlsT Wt BTy (4,193)
Cl

The indexc’ at the bottom of the integral is here to remind the constraints on the field
integration, namely,j(t)2 = s;(t)2 = 1 ands(0) = s; (0) V i. We introduced the
average over the free environment composed of the two reservoirs:
(- Vp)p = /p[@bi,(;ﬂ . ohSLeRSH
7 ree — T+ Tee _
(P (0)]oF ()b (0)) (B (0)|ef(0)[t5(0) . (4.194)
We now develop the couplin@sint up to the second order,

(R )1)p =~ 1+ (S )R~ gy (( S )b (4.195)

The first order term is zero. The second order term reads

>2abz:iab//ooodtdt’§: i Zn: i

ij=1kk'qq’=1 pr=11'mm’=1

(8 uhn=n (e

xsfa(t)s?b(t’) OO (4.196)
([Pt OV ipr(8) + L0 B) [0 (® )0k (€) + L B| Vi)
Developing the term on the second line, we obtain
(( [0%ina ()i (t) + L < R] [&%qu(t/)d)?ﬁq/m/ )+ L« R} JL)R
= (PR (VL g (t)&%qu(t/)w%jq’m/ )+ L+ R)L)r
= —<¢Ek'l'(t)¢%qu(t/)>L <1/}l})2jq’m’ () k() + L < R
= 510140t Ot Oty 12 [G% (t, )G (¢, 8) + L ¢ R} . (4.197)
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With the free fermionic Green’s functions defined on the Keldysh contouirG, (,t') =
(P(t) 8 (¢)q for a = L, R, a, b = 4 and wherek labels the electron’s energy. Expression
(4.1969 now reads

> Z ab// dtdt’ i i Zn: > sttt ooty

=1 kk'=1 pr=11l'=1
[GW( )Gl (¢, t)+L<—>R} . (4.198)

<Slnt >LR = hQn <

By using the property To#o” = §,,,, we get

> ab// dt d¢’ Zs

ab==+

xZ[GLk,tt )Gla (¢, )+LHR} . (4.199)
kk'

(820 )en = i (5 )

Finally expression4.199 can be recast into

((ehSimt ) ) g ~ b (4.200)
with
N
SPst, 57 = ——n 3 // dtdt’ 22, (t,¢) 3 si(t) - sU(t'),  (4.201)
ab=+ =1

where the exponeriR) is here to recall that we developed until second order and with the
self-energy

S (8, t') = —abih (hw,)? [G%b(t,t')a’;g(t’,t) +GR ()G )], (4.202)

where the Keldysh Green'’s functions of the fermions in édheeservoir & = L, R) are
given by

Ga(t, 1) = / dea palea)Gel(east — ') = G2(t — 1) . (4.203)

pa(€) is the density of states im-reservoir and>%°(¢; 7) are the Keldysh Green’s functions
of a free fermion with energyin equilibrium in thea-reservoir (see App?.B.3):

ihGE= (1) —ng(€)e” h”7
WG (e;7) = [1—na(e)]e nT

« ’ ’ 4.204
WGt (e;7) = ihGLT(6;7)O(7) +1AGL (6, 7)O(—T) , ( )
ihG, = (e;7) = ihGEI~(e;7)O(7) +1ihG, T (e;7)O(—T) ,
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with the Fermi factom,,(¢) = (1 + efel<=#a))=1 |t is clear then that the self-energy is

time translational invariant£2 (t,t') = ¥ (7) with 7 = ¢t — t'. Moreovers% (7)is a
symmetric matrix with respect to time and Keldysh indices:
S (1) = Béie (7)., (4.205)

Using the time reversal property edt.160 of the Keldysh Green’s functions one also
establishes
Eab * _ _E&B

env (T) env

(1), (4.206)
where we notea = —a.

After a Keldysh rotation of the rotors coordinates, it yields

. o N
PSR = gn 3 [[Carar s Yosiosie) . @2om)
rs=(1),(2) =1

with
sGa = —i/2 (S5 + San]
oY = —iSE
%) . [ o _+] (4.208)
Eenv = 1 [Eenv + Eenv] )
S = </ S+ Shy 4 Sah + San] = 0.
which is inverted as
h
ihzgn, = —absE - 2 (azg}g + bzg}[@) . (4.209)

4.D.2 FEDT check

We checked that the fermion-reservoir self-energy satisfies the boBBic This is
only valid when the reservoirs constitute an equilibrium bath, 5, = gr = g and
pr = ur = o (V = 0). Note that distribution functionsy, (w) andpr(w) can be different
although the proof given below uses(w) = pr(w) = p(e) for simplicity reasons. The
goal is to check

S0 = o (7)) < (2 (2

env

21

SR+ 358,] (W)
2 i '
(4.210)
We first develop the term in theHs, then we do the same with tireHs to prove their
equality.

Sen(w) = TF35(7)

= —2(hw.)? TF {GKGE* — 1?/4 [GAG* + GRGR**]}
= —2(hw)? TF{GXG** — 1?/4 [GF + G4 [G™* + GM]}
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where we used the nullity of cross terms of the typEG4 sinceG* « O(r) andG4
O(—7).

SEe(w) = —2(hwe)? {GF o GF* — 12 /4 [GT + G o [GR* + GM]} | (4.211)

whereo is the symbol for the convolution (see AppA) andG*(w) stands for the Fourier
transform ofG%(7)*. Since we easily obtain

GHw) +GA(w) = 2imp(hw)

G (w) + GM* (W) = —2imp(—hw) , (4.212)
and
K = T hw—po
G"(w) = mhp(hw)tanh (5 ) 7 o1s
GK*(w) = mhp(—hw) tanh (ﬁ ﬁw;uo) ,

we get by replacing in4.217)

(w) = —2(hw)2(wh)?

x {[ () tamh (872540 ) o [ p(~ o) tanh (51550 ) | — [p(o)o]p(—hv)]}
= ~2(0e)?(h) [ §5p(e (€' — ) {bamb (55 ) tanh (5500 ) — 1

= —h(le)? coth (51%) A p()p(e’ — o) {tanh (<=1 ) — tamh (5 ) }

where we used the trigonometry relation

EK

env

(4.214)

tanh z — tanhy

tanh (z —y) = '
anh (z — y) 1 — tanh z tanh y

Let’'s now calculate thehs of @.210.
(B + D] (W)

= i(hw)® TF {GGF* + GAGK* + GX G + gF g™}

2i
= i(hwe)? TF {(GF + GG + GF (G + M)
= i) {67+ G o [0+ (6] o [67 + G}
giving
h coth (5%) ZeanFZé?nv]( )
2(mh)?(hw)? coth (8%2)

x{[p(hw)] o |p(—w) tanh (ﬁw)} — [ () tanh (52520)] o [p(~heo)]}
= —mh(hw)?(27h) coth (%) [ de’ p(')p(e' — hw)
x { tanh (Be/_ﬁ#) — tanh (ﬁel_%)} .
We recognize here the developmeh(14 of XX . We just proved that the bosonic FDT is

satisfied provided that the two fermionic reservoirs have the same temgesiatlichemical
potential. They can have a different density of states.
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4.E Dynamics

4.E.1 Quadratic effective action

One can render the effective action quadratic at the price of introducindielels. For
a giveni and a given pair ofr, i, t) and(s, v, t'), the identity

Z/in,’fy(t,t') 8 (si"(8)s7*(t') — Qi (t,1) (4.215)

becomes, after using the integral representation of the delta distribution jfpeé.A),

Loc [AQp ()N (18 exp (SN (Y (57 (O5°(F) - Qi (t.t))

Introducing similar identities for all possible pairs @f, 11, t) and (s,v,t’), we obtain a

path integral over twd fields Qljfy(t ') and)\ljj,(t t') that are symmetric in the Keldysh

indices, times and rotor componengd;7, (¢, t) = Q,;, (¢,t') andA;7 (', 1) = A5 (¢, 1).

The effective action is now also a functional@fand\ and reads

pe =3 > / [ arar 33 AW OB+ NS (0
J2 22 [[ atar ZQWLU Qi (4.4) + Q) (1.)Q 5 (1.1

+,fz /dtzz +1Z//dtdt XN ORG )

+ boundary terms

where we introduced the operatop;;;,(t,t') defined as

Op 2 (1,t) = id,,0(t —t) 1383@24@)] 10, 508, (1.1)
a==+

2 = gritien

Op 2t t) = héﬂ,,é Zaz )+ 6, SK (1) (4.216)
(11) _

Opi,“/ (tvt/) = 2h ,uz/ - Zaz

Op;;, (t, ') is symmetric in the Keldysh indices, times and rotor componénts’ (t',¢) =
Opyy,, (t,t'). The functional integration ovet.” is now quadratic and can be performed,

3. There areV(n?K*? + nK)/2 of each of these fields, whe#€ = 2 is the number of possible Keldysh
indices.
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leading to

i

+Sent = —%Tr Inn (Op + iA) (4.217)
J2 i dt d¢’ £,0)Q PV (¢t QB¢ ¢
Z ZQZMV ][U/ ( )+Qz'u,y ( )Q]MV ( )
+——Z /dtz +1Z//dtdt/ZZ>\W )Qs (8.t

where the trace in the first term is spanning the whole space of indices|ynatwe sites,
Keldysh indices, times and rotor components.

4.E.2 Saddle-point evaluation

In this subsection, we evaluate in the limilv.— oo the saddle-point equations with
respect to the dummy fields we introduced previously, namgfy(t, '), @,/ (¢,t') and
z¢(t). The fluctuations around the saddle are neglected. In particular, usifg 259 we
have the identity (see the definition of Green’s functions in 8et3

Qipn(t,1") = ihG5, (t,1) . (4.218)

Wy

Along the lines we prove that the solution in the saddi@ (V) andO(n), like the starting
Hamiltonian.

The saddle-point with respect /7 (¢, t') yields

0Sef 1 4] . N
—_— = — T —1 = t 4.219
OXiji (1) S e M OP N H Q0 (K1) =0, (4.219)
giving in matrix notations
"Op+irN)~'t=nQ, (4.220)

where the symbdl represents the transposition. Since all operators in the last equation are
symmetric by definition, we get

Op+i\ = %Q*l . (4.221)

The saddle-point equation with respecagj,(t, t') yields

I\ (1) = —— Z Qs (tt) Vi, (4.222)
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where(2) = (1) and (1) = (2). Therhs of this last equation being site-independent,
Aszy(t t') does not depend on )\ny(t t) = )\fj,(t,t’). Equations 4.221) and @.229
imply
7“8 ‘]2 75 1 —17s
op + IS Q- Lo =0, (4.229)
J

The saddle-point equation with respectfdt) yields to the two equations:

S (op+7) e + (op+in ) e =0,

" e (4.224)
(11) 2 22) -
Op +iN ™!
%:([ p + i) )w

(to)+ = ([op+ix" );5 (t,1) =

This is nothing more than the constraint that rotors should have a unit leiHgthever, A
being site-independent, it is clear from these equations that it has to bentleef@a0p.
Finally at the saddleQp, @ andz are site-independent (homogeneous) so we can get rid
of the sites indicesOp,;;, (') = Opj;, (t,1'), Q;0 (8. 1) = Q)5 (¢, ') and2f (t) = 2(1).
Equation ¢.223 becomes

Op™* + J*nQ"™ — %Q‘”S =0. (4.225)

Since from its def|n|t|on4 219 Opj; (¢, t') o d,., the previous equation tells us that it
has to be the same fap); (¢,¢') so we can get rid of all the rotor component indices.
Multiplying by Q**(¢', t"), and summing oves andt’, we get

- 1
/dt/ ZOp”(t,t’)QS”(t/,t”)+J2nQ’“8(t,t’)st(t’,t”)—56m5(t—t’/) =0. (4.226)
The macroscopic Green'’s function reading:"*(¢,t') = nQ"*(t, ') we obtain

€ / dt’ Z Op"s (t,t)ihG* (', t") + JHRGT (t, 1 )ihG (', t") — 6,,0(t — ") =0 .
’ (4.227)

4.E.3 Schwinger-Dyson equations

The(r = (2),v = (1)) component of eq4(.227) gives a complex equation the real part
of which yields

)=z (t)=2(t)Vt, (4.228)
and the imaginary part of which is the dynamic equation for the self-correlation:

1 2 t/ t
[Fgﬁ + z(t )]C(t,t’) = / dt” SE @t YRt ") +/dt” SR e 1), (4.229)
0 0
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where we introduced
K= p0+3sk,,  SEP=7R+xl . (4.230)

Similarly, the(r = (2),v = (2)) component of eq.4.227) yields the equation of motion
for the self-response:
1 82 ! / ! " vR " "ogl
Tog +z(t)| R(t,t")=0(t—t' )+ [ dt”" 27, t")R(t", ) . (4.231)
t/
The (r = (1),v = (1)) component of eq.4.227 leads to the same equation and the
(r = (1),v = (2)) component express@s= 0. Settingt’ = t in eq. @.229 we obtain the
expression for the Lagrange multiplier
! " 19%°C
2(t) :/ dt” 5 (t,#")R(t,t") + R, Ot ") — fW(t,t’ —t7). (4.232)
0
Equations 4.229 and @.231) together with eq.4.232 constitute the Schwinger-Dyson
equations that fully determine the dynamics of the interacting system.






CHAPTER

CONCLUSIONS AND OUTLOOK

I N this manuscript, we studied some aspects of the dynamics of systems coupied to a
environment. We first had some formal considerations on the classical equilibyiu

namics. We started from the Langevin equation which gives a heuristic moalig

interactions between a system and its thermal environment. We did not restsei\es

to the Markovian case and to additive noise, but we coped with inertialmgsteupled

to a generic multiplicative and colored bath. By considering the associatedMB&h-
integral formalism, we showed that equilibrium dynamics can be seen as a synairibie

level of the MSRJD action and more generally as a symmetry of the corrasgayeher-

ating functional. At the level of observables, the corresponding Wakdhshi identities

yield all the equilibrium theorems.

We then turned to out-of-equilibrium situations where we showed how the beyken
metry naturally gives rise to all the fluctuation theorems at the level of olddes/aFur-
thermore, we exhibited another symmetry of the MSRJD generating functiofidlpuaof
equilibrium, that yields Schwinger-Dyson-type equations which correlatiothsesponses.
They are of particular interest for numerical simulations where the possibilitprigpute
responses without applying any extra-field —iatcorrelations — is often of great help.

From the third chapter and on, we left these formal and system-indepecmiesid-
erations to focus on some of the aspects of out-of-equilibrium dynamics. Wedaat
the scaling relations in the dynamics that take place after a quench that devegstem
through a phase transition. We placed the emphasis on scaling relations in th@rleng-
dynamics, and more specifically, on the super-universality conjectyreneé&ns of numer-

147
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ical simulations, we compared the aging dynamics 8# dsing ferromagnet with random
fields (RFIM) to the ones of 2d Ising spin glass (EA). The former is an archetypal model of
coarsening phenomena with weak disorder whereas the latter is probablyniilest model
for a3d glass. In both cases we showed that global observables obey some s=ialiiogs
once lengths and times are measured in units of a growing length we exhihiteddio
case. We also proved that the distribution of a local observable — namelgahseegrained
two-time correlation function — exhibits the same kind of scaling property. Howasdar

as super-universality is concerned, both models differs since the sigis dpes not show
super-universal scalings contrary to the ferromagnet.

In the fourth chapter, we analytically studied the impact of both quantum #&tiohs
and a non-equilibrium environment — a fermionic drive — on the dynamics &fcadered
system of rotors that shows aspects of a ferromagnet in many reddedgave a detailed
description of the influence of the two-lead environment that creates timéof@c current
tunneling through the system. In particular, we showed that the fermionie betaves
like an equilibrium thermal bath on the long-time dynamics of the rotors. By solviag th
mean-field dynamics, we determined the full dynamical phase diagram aittivs.rin the
ordering phase, we gave an expression for the long-time limit of two-timeletion, and
showed its scaling function does not depend on the temperature, the strédigbrder,
the strength of quantum fluctuations nor the strength of the drive. This-sumpersality
feature of the long-time dynamics allowed us to extend the well-know mappingebetw
the classicap = 2 spherical model and the cledn coarsening ferromagnet to this driven
out-of-equilibrium quantum case.

In models of quantum coupled rotors, there are visible effects when thieamgomen-
tum states are restricted to even or odd symmetry. This is the case for instémeenodels
used for Josephson junctiorZ3B, 289 or systems like solid hydrogen where homonuclear
molecules (H and D) can assume only even or odd values of the rotational quantum num-
ber j, depending on the parity of the nuclear spin. At low pressure or high texryper
evens species are found in a paramagnetic state. Increasing the presswe @airscrease
of the molecular coupling and eventually leads to a orientationally ordered stalg; O
species on the other hand are orientationally ordered at low temperaturas)biedht pres-
sure and remain ordered as pressure is increased. The strongardenol odds species
to order can be traced back to the fact that thei 1 lowest rotational state allows for a
spherically asymmetric ground state unlike yphe: 0 ground state of ever-species290.
Noteworthy enough, when all the rotational states are allowed, and whegaphieetween
the ground statg = 0 andj = 1 is not to large, small thermal excitations can induce the
ordering by populating thg¢ = 1 level. The order is lost when the thermal fluctuations
become too large. This phenomenon is responsible for a reentrant gibgsam. In our
language this means that the critical poihtis rejected to infinity in the case of odd-
species. By implementing such restrictions on the angular momenta, it would batimigre
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Figure 5.1:The complex-time contou.

to study their effects on the phase diagram of our disordered modeleanid they yield
similar effects in equilibrium and predict out-of-equilibrium features.

In order to complete the work presented here, we intended to generalidestigsion
around the equilibrium symmetry of the Langevin generating functionals to theofase
quantum interacting systems. Unfortunately, we were not able to finish tHeamdrmake
in presentable in time, but we give here some of the main ingredients. The DAS®RA-
integral has a natural quantum extension in the Schwinger-Keldysh liermd-or systems
described by a time-dependent Hamiltoniiit) and prepared at timg = 0 in thermal
equilibrium with respect td7 (0), the expectation value of an operatdra timet is given

by
() =Tr [T {emt it o) T femi hodu AL =0 O 2z (5.1)

whereg is the inverse temperature of the initial preparation &net Tr [e=##(©)]. T and

T are respectively the time and anti-time-ordering operators (see Appérds). Reading
the arguments in the above trace from the right to the left, one sees thahvdesign an
complex-time contou¢ with a branch going fromi3% to 0 along the imaginary axis then a
forward branch fron®) to ¢ along the real axis and then coming backward.t@his contour
is illustrated in Fig5.1 Letting the variable, run along this same contour, e§.1) can be
formally recast as

(O(t)) = Tr [TC {e*%fc du H<“>0(t)H /2, (5.2)

whereT, is time-ordering operator that rearranges operators along the cantdbe trace
over the operators can be recast into a path integral using the standaridjtes (Suzuki-
Trotter decomposition). Let us consider the simple case of a time-depenailtdhian of
the formH = % +V(¢,t) wherer is the momentum conjugated to the coordinatdhis

yields a path-integral whose action reasig] = fC du L([¢(u)],w) whereL is the time-
dependent Lagrangian. The fieldu) has support on the complex-time contquiThanks
to the unitary evolution, we are free to deform this contour in the complex pklung as
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it passes trough, where the operatdp has to be evaluated. Under the condition of a time-
independent Lagrangiand. equilibrium dynamics), and for particular contours, we were
able to exhibit some field transformations that leave the corresponding actamaimy At
the level of observables, the corresponding Ward-Takahashi identigtl relations such
as reciprocity relations or the quantum fluctuation-dissipation theorem. We hoppdx
soon on these.

The out of equilibrium quantum fluctuations theorems have not reachedrttecleeel
of understanding obtained for the classical systems. We believe ounambpbased on
symmetries in a field theory description is a powerful tool not only to derilaioms in a
systematic manner but also to better understand the underlying physicsowarthe iden-
tification of these symmetries is fundamental to construct a theory of dynamicialdtions
in and out of equilibrium. It should serve as guide to select self-consigpgmbximations
which do not violate important physical symmetries, to construct approximativenses
for interacting problems such as mode-coupling methods.
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CETTE these traite principalement de la dynamique de&ysis statistiques horsatjui-
libre. Dans la nature, les sgshes physiques ne sont jamais &olSia I'equilibre
thermodynamique, l'influence de I'environnement pétre caradrisee par un tout petit
nombre de paragtres (comme la ten@pature), il est en revanclaepriori nécessaire &tre
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renseig® sur les dtails de I'environnement et de son couplage avec l&sysipour écrire
les situations hors dedquilibre thermodynamique.

Nous distinguons deux types d’environnements. Les premiers sont liesrerements
a I'equilibre, comme par exemple un bain thermiguene temprature3—. Les variables
internes qui les @crivent oleissent, entre autres, aleteme de fluctuation-dissipation.
Les seconds sont les environnements inlrgueement hors @quilibre qui é@stabilisent le
syséme en injectant (ou en pompant) denérgie. lls sont, par exemple, I'ensemble con-
stitué par deux bains thermiquasdes temgratures diferentes. Nous consderons aussi
le cas de deuxéservoirs celectrons qui, sous l'effet d’'une défence de potentiel, peuvent
passer de l'ura l'autre par effet tunned travers le sysime. Par extension, nous incluons
dans les environnements horequilibre le cas des forces éxieures appligges sur le
syseme.

6.1 Synetries autour deséquations de Langevin

6.1.1 Equation de Langevin

Dans le chaftre 2, nous nous aétons sur le cas des sgates classiques en interaction
avec un environnemeat 'équilibrea la temg@rature3—'. La dynamique du sysime peut
étre tes gereralement dcrite par une&quation de Langevin. Dans nombre d’applications,
I'inertie peutétre regligée et I'effet du bain peugtre captug par un bruit blanc. Toute-
fois, motives par une gréralisation aux sysmes quantiques (des effets de @moire du
bain sont incontournables, typiquement sur des temps de I'ordé&)Janous conservons
le terme de masse et considns le cas @eérique d’'un bruit colog et multiplicatif. En
toute geréralite, I'équation de Langevin pour une masseeperée par la coordorée) est
donrée par

map(t) — F([v],t) + M'((t)) /du 0t —u)M'((u)d(u) = M'(()ER) . (6.1)

ou laforceF ([¢],t) = =V’ (¢, A(¥))+ f2°([¢)], t) rassemble les contributions conservatives
et non-conservative$, est un potentiel dont lagppendance temporelle est canée, s'il y

a lieu, par le protocola(t). M est une fonction bien compée qui caraérise le couplage
non lineairea I'environnement /(0) = 0 et M’(0) = 1). Le cas du bruit additif est
retrou& en prenant un couplage &aire, M (¢)) = . Le dernier terme du membre de
gauche de Bqg. 6.1) ainsi que le membre de droite n&dsent les interactions avec le
bain. La friction visqueuse est do@a par une iréigrale temporelle sur le noyau de friction,
n(t,t"). Celui-ci, causali oblige, est nul pour < ¢'. Le cas du bruit blanc est retroeren
prenanty(t,t') = y9d(t — t'). £ est une force &atoire, issue d’'un processus stochastique
gaussien, qui magise I'agitation thermique. Puisque le bain est sugokéquilibrea la
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temgerature3—1, le noyaux;(t, t') est une fonction de— ¢ et il est rele a la statistique du
bruit £ par un ttleoeme de fluctuation-dissipation :

EWE))e =BR(Et— 1), (6.2)

ou nous avons introduit la notatiat(t — ¢') = n(t — t') + n(t' —t).

6.1.2 Fonctionnelle gnératrice

Nous construisons la fonctionnellémgratrice assoéea cette lequation de Langevir(1)
dans le formalisme de Martin-Siggia-Rose-Jassen-deDominicis (MSRIBY], 85]. Nous
travaillons dans un intervalle de temps @tnquet € [—7,7]. Nous pétons une atten-
tion particulére aux conditions initiales dont la distribution statistique est eeealdns la
mesurep; (1, ;&). Si au temps initiali{ = —T') le syseme est pepaé a I'equilibre thermo-
dynamique P, est don@e par la mesure de Gibbs-Boltzmann.

Action de MSRJD

L'action de MSRJD crit avec I'aide d’'un champ auxiliairé (souvent quali de
champ de&ponse) comme la somme de trois termsg/, 1] = Sy, ] + S95[y), )] +
ST [y], avec

Sl = WA (p-T)0-1) - [duid) [mit) - Flw)],  ©3)
Jawidta) [dv A @) atu - o) M) [5500) - )]

Sdiss [w’ &]

Sdiss provient de l'interaction avec le bain tandis g8t regroupe toutes les autres forces
appliqLees au sysime ainsi que la mesure initial¢. S7 est issu du jacobieresultant du
changement du champ d’ggrationé au champy). Dans le cas @réral, on montre que le
jacobien est une constante positive dont on peugbadasser dans une &ihition de la
mesure de l'inkgrale fonctionnelle. On peut aussi choisir de I'exprimi@rune ingégrale
gaussienne sur deux champs de Grassmatn*. Enétendant I'inégrale fonctionnelle de
MSRJDa ces deux nouveaux champs, la contribution jacobierteetion secrit alors :

SJ[Ca Y = //du dv ¢*(u) [maZ(S(U —v) — %

M () Dunu = v) M'((v)) | e(v)

- uc*uw md*y(u) — u)|c(u
Jaue g ot - e . 64
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Observables

Dans le formalisme de MSRJD, la moyenne prise sur les conditions initiales et les
histoires thermiques d’une observablg)] au tempg s’exprime de marre transparente
comme

(Afp())s = / D, b, e, ¢*] Afp(t))eSt¥dec] (6.5)

Entre autres, la fonction d’auto-cétationa deux temps et la fonction d’autéponse
linéaire s’expriment comme

~

Ct,t) = @Wty(t))s et Rtt)=(b@)ivt))s . (6.6)

6.1.3 Equilibre
Symetrie de I'équilibre

Il'y a deux conditions pour qu’un syshe soit assérd’évoluer avec une dynamique
d’équilibre : il doit étre pépaé dans unétat deéquilibre et sorévolution doit se faire
avec les rdémes forces (autres que celles provenant du baquilibre) qui ont particip
a sa peparation. Plus @ci€ment, il doitévoluer avec les Bmes forces conservatives (et
indépendantes du temps) que celles qui ont sesa peparation et les seules forces non-
conservatives autoges sont celles de I'interaction avec I'environnement. Celui cié&toit
al'équilibre et sa temfrature doit correspondéda tem@rature de f@paration du sysme.

Nous montrons que sous ces conditionéadiilibre, la fonctionnelle @rératrice de
MSRJD est invariante sous la transformation des champs suivante :

b o v, W) = (),
%Q‘{ () o i)+ BOWP(—w), W) o —c(—w). O

Cette transformation comporte un renversement du temps &tpend pas deg ce qui, en
particulier, la rend valable dans la limite newtoniemne 0, c’esta dire pour le€volutions
isolées.

Les identies de Ward-Takahashi qui correspondenette transformation &trivent

(Alp@))s = (Alp(=t)])s
(W(t)e(t))s

i V(=19 6.8)
(W@®)ip(t))s = (W(=t)ip(=t'))s + By (Y (=t)P(—t))s

I
—
—~

|

~
N—
<
—~
|
~
=~
~ ~—
~
n

Nous montrons que ces idegstdonnent lied tous les thoemes @réraux de lequilibre
tels que la stationnaét le tleoeme déquipartition de energie, les relations déciprocie
d’'Onsager, le thoreme de fluctuation-dissipation, etc.
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Super-synetrie

Dans le cas de forces conservativg&“(= 0) et independantes du tempa (= 0),
la fonctionnelle @rératrice assoée auxéquations de Langevin admet une é&gantation
super-syratrique. Cela &t demonté et discué pour le cas du bruit additif dans nombre
de publications$8-101]. Nousétendons le champ d’application de ce formalisme au cas
du bruit multiplicatif et coloe. L'action correspondante&girit S = Sdet 4+ §diss gyec

susy 1 Osusy
SeE ] = -8 /dede* O OH[U(-T,0,0%)] — an—i—/dT L[T(T)], (6.9)
Sl = % / / AT dY M(T(Y)) D (Y, T) M(¥(Y)), (6.10)
ol U est le champ composite (super-champ) feenpartir des champs, v, ¢ etc* selon
U(Y) = h(t) + ¢ (t) 0+ 0% ¢(t) + 670 (iqﬁ(t) + ¢ (t) e(t) m> .

0 etf* sont deux coordoréres de Grassmann su@plentaires regro@es dans les notations
T = (t,0,0%) etdY = dtddde*. Z est la fonction de partitiorH[¥] = m¥? + V() et
L[Y] = %m\if? — V(). Lopérateur diferentiel correspondaatlinteraction avec le bain
est don@ par

DAY, T) =n(t' — )50 — 6*)5(¢' — 0) (DD — DD) , (6.11)

ou les oggrateurs

9 0 0
=55 et D=p"'o o0 (6.12)

obéissent aux relations d’anticommutation suivant@®;D} = — 2 et{D,D} = {D,D} =
0.
Sous couvert d’avoir une mesure initiale déerpar la distribution @quilibre de Gibbs-

Boltzmann E.f. le premier terme de&q. 6.9)], I'action est invariante sous les transforma-
tions engendyes par

82* et Qzﬂ_laae—i-ﬁ*aat,
qui okéissent aux relations d’anticommutation suivantd€); Q} = % et {Q,Q} =
{Q.Q}={D,Q}={D,Q} ={D,Q} ={D,Q} =0.

Cette super-sy#étrie de I'action donne liewia les identiés de Ward-Takahashi cor-
respondantesy certains thoemes déquilibre comme la stationnagitou le tleoeme de
fluctuation-dissipation mais elle ne permet pas de montrer les relations comporant ex
plicitement un renversement du temps comme, par exemple, les relatiogsipmcie
d’Onsager. Nous explicitons le lien entre la $tne discuée pecddemment et cette super-
synetrie.

Q=
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6.1.4 Hors déquilibre

Nous abordons ensuite le cas des dynamiques héguiibre. Le systme peuttre
maintenant pgepaé de margre arbitraire eévoluer avec des forces non-conservatives et
dépendantes du temps. Nous n’envisageons pas le cas d’'un bain &gudidie mais la
géréralisation desasultatsa ce cas est imatiate.

Theoremes de fluctuation

La synttrie déquilibre discute peccdemment est bierlis briste. La transformation
des champ§., appliqieea 'action S|, ¥, ¢, ¢*] gérere des termes qui brisent explicite-
ment la synétrie. Nous montrons que ces termes donnent lieu deareutes naturelle
aux diverses relations de fluctuationsé@ieme de fluctuation de Crook&7, 29, 197,
egalie de Jarzynskil91, 150, identitt de Kawasakil93 194, théoeme de fluctua-
tion [27, 29, 197). Le cas des sysines isds peutétre facilement retrow® en prenant
la limite n = 0.

Symétrie hors d’équilibre

Nous exhibons ensuite une nouvelle €rie valable cette fois hors &fjuilibre. Nous
montrons que la fonctionnelleegératrice de MSRJD est invariante sous la transformation
des champs suivante :

P(u) = Y(u),

Teom =Y () o —igh(u) +

25 o R — o EQ([¢],v) (6.13)
() Jam 3w

ou EQ([¢], t) désigne I'inégralie du membre de gauche ded.. €.1). Cette fois-ci, la limite
newtonienne{ = 0) n'est pas bien &ffinie. Les identi#s de Ward-Takahashi correspondant
a cette transformation donnent liaudeséquations dynamiques du type Schwinger-Dyson
couplant les co#élations et les@ponses. Ces relations permettent en particulier d’exprimer
la reponseR(t,t') en fonction de co#@lations ce qui a une application directe dans les
simulations nurariques hors @&quilibre, ai le theoreme de fluctuation-dissipation ne peut
étre utili, et ai le calcul direct de lagponse est souvent prébhatique car il cessite
une moyenne sur un grand nombre d’histoires thermiques.

Dans les chdjres 3 et 4, nous laissons ces conéigdtions formelles pour se pencher
sur quelques aspects plus concrets de la dynamique Hegsilibre. Nous portons princi-
palement notre i@t sur lois déchelles dynamiques qui séwkloppent agrs une trempe
brutale d’'un systmea travers une transition de phase du second ordre. Plus pantauknt
nousétudions leurs caragtes super-universels, c’éstlire leur @pendance aux paratnes
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de contbles tels que la ten@pature, le dsordre, les fluctuations quantiques oame les
forcages exérieurs.

6.2 Lois d’échelle dynamiques et super-universal

Dans le chapitre3, nous effectuons unétude comparative des loiséthelles dy-
namiques et des progtes de super-universaiten dimension 3 en confrontant le cas de
la croissance de domaines ferromatiques en gsence deé&bsordre gel faible et celui de
la dynamique vitreuse d’un verre de spin (avec @satdre gel fort).

6.2.1 Mockles

Pour le cas de la croissance de domaines, nous choisissons de stiNagdéion lente
du mockle d’Ising3d soumisa un champ maggtique akatoire — Ie83d Random Field Ising
Model (RFIM) — apés une trempe en terapature. Le hamiltonien du meétk est dona par

H=-J) sisj—> Hs;. (6.14)
(4,3) @

Less; = £1 sont des spins d’lsing plés sur les nceuds d’'uégseau cubique de volume
L3. Le premier terme &krit des interactions ferromagtiques ¢ > 0) a courte poke
entre plus proches voisingl; repesente un champ magtique localig sur le site. Nous
choisissons une distribution bi-modale pour ces variableataires,H; = +H avec la
méme probabilé. A quantifie I'intensié du cesordre gé. Dans le ca$l = 0, le RFIM se
ramene au moéle d’lsing3d avec une transition de phase d’'une phase paraétiagea
une phase ferromagtiquea la temggrature critiquel, ~ 4.415.J. En pésence deé&sordre
(H > 0), la phase ordorge estéeduite mais survit jusqa’H. ~ 2.215(35).J [61, 62].

Pour le cas de la dynamique vitreuse, nous choisissons lelmmdiEdwards-Anderson
(EA) 3d défini par le hamiltonien

H=-— Z JijSZ'Sj . (615)
(,4)

Less; = £1 sontencore des spins d’lsing péascsur les nceuds d’'uaseau cubique de taille
L3. Les couplages entre plus proches voisins so@és tielon une distribution bi-modale,
Jij = £J avec la néme probabilé. Dans ce magle, c’est/ qui quantifie I'intensié du
desordre gdl. A la temperatureT, ~ 1.14(1)J [69], le mockle passe d'une phase para-
magrétiguea une phase vitreuse. La nature exacte de la phase de basszaimgpest
encore soumisa@ interpeétation et I'on distingue deugcoles quant la relaxation hors
d’équilibre. La vison en termes de goutteletig®plet picturg repose sur une corgfition
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entre dewétats fondamentaux'p, 71], alors que I'autre interg@tation repose sur les solu-
tions du moeéle de Sherrington-Kirkpartrick qui est la version en champ-moyen delaod
d'EA[72].

Nous suivons la relaxation de ces deux mled au moyen de simulations de Monte
Carlo. La trempe depuis une teérature initiale infinie estéali®e en prenant des condi-
tions initiales akatoiress; = 41 avec la nme probabili. Pour le cas du ferromagtique,
nous utilisons une version revisé de I'algorithme de Metropoli®¥f], le continuous time
Monte Carlg qui permet d’avoir un taux de rejet n@19-221]. Les parangtres de coniéiles
pertinents sontl/.J etT'/.J pour le3d RFIM, T'/J pour le3d EA.

6.2.2 Croissance d'unéchelle de longueur

Dans le3d RFIM, nous extrayons une longueur typighé) de I'analyse de la&crois-
sance spatiale de la fonction de @ationa un temps’s(r;t) = (si(t)s;(t)) 7, - = L€
comportement d& dépend des paragtresH /.J etT'/.J. En particulier, pouf = 0 R croit
commet!/? alors qu’en pesence de&sordre sa croissance est logarithmique (&eiv

Pour le3d EA, il est impossible d’extraire une quelconque longupartir de la fonc-
tion Cy(r; t) car celle-ci est strictement nulle pour> 0. Toutefois, I'analyse d’une fonc-
tion de corélation plus complexely(r;t, ') = (si(t)si(t')s;(t)s;(t')) 7 —r;|=r» PErMeEt la
déetermination d’'unéchelle de longueur deux tempg(t,t’). Celle-ci cepend del’/J et
est tes lentement croissante en ses deux temps (ell€pasde pas 2 fois le pas diseau
sur des simulations de)® pas de Monte Carlo).

6.2.3 Lois déchelle dynamique

Nous suivons le comportements de quelques observables pendantdéioeldes deux
mockles. Nous en distinguons les contributions thermiques des contributions vieiissan
Lorsque cette distinction est difficilemeréalisable, nous travailloreés basse ten@rature
ou les effets thermiques sont moindres. Nous montrons que les contributidhssartes
sont invariantes dans le temps une fois que les temps et les longueurs sofsea uniés
de R ou det.

Observables globales

Dans le cas du RFIM, nougvifions que les parties vieillissante de la fonction de&orr
lationa deux temps('(¢,t') = (si(t)si(t')) = Cn(t—t')+Cag(t,t'), obita laloi d’échelle
dynamiqueCis(t,t") = Cag (R(t)/R(t')). En extrayant dans ce mel¢, comme dans (&1
EA, une longueua deux temps(¢,t') a partir de la fonction de cahation Cy(r; ¢, '),
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nous montrons qu’elle @it a&(¢,¢') = R(¢')g(C(t,t")) ou g est une fonction &croissante.
Nous montrons plusé&yéralement qué€y(r;t,t') = Cy(r/R(t"), R(t)/R(t")).

Dans le cas du made d’EA, la corélationa deux temps est connue pa@gaheler selon
la loi du < vieillissement simple- : Cys(t,t') = Cag(t/t') [202; ce qui incitea penser
que s'il y a une longueur typiquB(t) qui se @veloppe, elle doit citre selon une loi de
puissanceR(t) ~ t'/#, ol 'exposant dynamique dépenda priori de T/T,. En faisant
cette hypotbse et en ajustanta la main, nous obtenons laéme loi dechelle que dans le
cas de la croissance de domaines ferrorgtigones £(t,t') = R(t')g(C(t,t')). Cela peut
etreégalement vu comme une nouvell@timode pour éterminer I'exposant dynamique
dans le cas des verres de spin.

Observables locales

Pour les deux masgles, nou€tudions les dynamiques locales par le biais d’'observables
qui ne sont plus moye@es sur tout Bchantillon (de volumé?) mais seulement sur un petit
volumel3. Leurs fluctuations spatiales peuvénte dcrites par des denéi de probabilé.

En particulier, nous nous concentrons sur la moyenne dans un volumided&’tde la
fonction de corelationa deux temps(,.(¢,t'), et nous mesurons sa degsite probabilié
p(Cr;t,t',1). Pour les deux magles considres, nous montrons que celle-ci@ba la loi
d'échellep(C,; C(t,t'),1/£(t,1)).

6.2.4 Super-universalié

La longueur typiquer ou¢ dépend des paragires de coniéiles que sont la ten@pature
T et l'intensi€ du cesordreH . Nous testons I'hypottse de super-univers@iselon laquelle
les lois dechelle sont inépendantes d€ et H [70] en faisant varier ces derniers. Dans le
cas du modle de croissance de domaines, nous montrons que toutes leséoiekEs
mentionrees peccdemment, y compris celles sur les fluctuations des observables locales,
sont super-universelles au sens qu’elles sont identiques all eag/ = 0. En revanche,
dans le cas du verre de spin, aucune des |l@stilles disciétes peccdemment ne gisente
de caradtre super-universel.

6.3 Dynamique forcee de roteurs quantiques ésordonres

Dans le chajire 4, nousétudions I'impact des fluctuations quantiques et d’un forcage
extérieur sur la dynamique d’un sgshe de roteurs en@sence d'interactionggdordonges.
Plus peciement, la dynamique hors@tuilibre est aggée en peparant le sysimea tres
haute temprature puis en le couplant brutaleméntin environnement constéwe deux
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réservoirs de fermions — ulmgauche et ua droite du systme. La diference de potentiel
chimiqueV entre les deux&servoirs @rere un courant qui gtablita travers le sysime et
le maintient hors de &quilibre.

6.3.1 Mockle

En ce qui concerne les roteurs, nous coasids le hamiltonien com@lement conneét
suivant :
T N n
HZ%ZLf—\/—NZJijSi.Sj. (6.16)

i=1 1,5 <1

Less; sont des roteurdn composantes dont la longueur eséfea 'unité (s; -s; = 1). Les
couplages entre les roteurs sonésiselon une distribution gaussienne de valeur moyenne 0
et d’ecart type/. J quantifie I'intensié du cesordre. Led.; sont les oprateurs de moment
angulaires gréeralisan dimensions. Les composantésobeissent aux relations de com-
mutation standards avec les moments congsgif qui interviennent dans I'expression des
L;. T joue le Ble d'un moment d’inertie et quantifie I'intengites fluctuations quantiques ;
lorsquen?T’/.J — 0, le mockle tend vers la version classique du verre de spin d’Heisenberg
compktement conneét Dans la limite a n est grand, le magle esgquivalent la version
guantique du verre de spin= 2 splerique R57, 258 dont la tem@rature critique clas-
sique " = 0) estT,. = J. La connection avec la croissance de domaines ferroatagres

du moekleO(n — oo0) en3d [52] se geréralisea notre cas quantique et horgduilibre.

Ce moctle a eja éte étudié dans le cadre d’un couplageun bain dequilibre p5§.
Pour des fortes fluctuation thermiqué9 et quantiquesly), les roteurs sont dans une phase
paramagatique. En revanche pour des valeurs plus faible® @I, il y a une transition
de phase du second ordre vers une phase o&o(itordre met d'ailleurs un temps infini
pour seétablir).

Notre environnement horsé&fjuilibre est comp@sde deuxé&servoirs célectrons libres.
La difference de potentiél entre les deux quantifie I'intenéidu forcage. Pour simplifier
la discussion, nous choisissons de travailler avec Expes temeratures et les émes den-
sites détats pour le&servoir de droite que pour celui de gauche. De plus, nous @osisl
des densits détats conlées par une une unigéaergie typigue » comme, par exemple,
une distribution semi-circulaire de rayen. La limite ez — oo correspond au casides
électrons qui participerit la dynamique (ceux qui sontgs du niveau de Fermi) voient une
densié d'etats constante. Nous choisissons une interactemsimple entre les fermions
et les roteurs en couplant éairement chaque composasfeau processus qu’un fermion
passe d’'un@servoira l'autre. Les constantes de couplages sont prises toutes identiques et
égalesafiw,. g = hw./er quantifie I'intensié du couplagé I'environnement.
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6.3.2 Influence de I'environnement

L'influence de cet environnement intrismguement hors @quilibre esétudié en pertur-
bationsa l'ordre g2. Nous Ealisons unétude @taillee de la selénergie selon la forme
des densés détats et les valeurs des parnes de conéile. En particulier, nous montrons
que I'environnement se comporte sur les modes lents des roteurs comme ohi&ioe
[ T4 . N , __ eV
al'équilibrea la temg@raturel™ = - coth (5eV/2).

6.3.3 Diagramme de phase

Nous utilisons le formalisme de Schwinger-Keldysh, parténeiment adaptpour traiter
la dynamique agrs une trempe des sggies quantiques avec désbrdre gé. Dans la
limite nN — oo, nousétablissons legquations de Swchwinger-Dyson qui couplent la
correlationa deux temps et le&éponse ligaire. Pouyy — 0, nous calculons le diagramme
de phase dans I'espace des pates de conéile que sonf’, T', V. Nous prouvons l'exis-
tence d’une transition de phase dynamique entre une phase stationnaire@tpiilibre et
une phase ordom@ea basse tengrature, faibles fluctuations quantiques et faiblegdéhce
de potentiel. Pour des valeurs géinies, la phase ordo®e gagne du terrain ereplacant
le point critique quantiqu€.(7 = V = 0) vers le haut. Nous&montrons I'existence d’un
nouveau point critique sur I'axg (le forcage) et la ligne critiqual’ — 0 obéit a la simple
équationl = J ce qui corrobore I'iée que I'environnement agit comme un bain ohmique
a I'équilibrea la tem@ratureT™ sur les modes lents des roteurs.

6.3.4 Dynamique

En exploitant une similitude entre I'action de Keldysh et celle de MSRJD, @crisons
la dynamique sous la forme d’ureguation de Langevin avec inertie et bruit céloNous
étudions la relaxation lente dans la phase oréenbans la limite des temps longs, la
couleur du bruit esté&gligeable efl™ appardt alors naturellement comme la teérpture
d’'un bain dequilibre. Lorsque par ailleurs, I'inertie (cottee parl’) est regligeable, lequation
de Langevin devient iggrable analytiquement et nous montrons que tout se passe comme
dans la version classique (et sans inertie) du &wgd = 2 splhérique coup a un bain
d’équilibrea la temggratureT™. En particulier, la fonction de cafationC,,(t,t’) est une
fonction super-universelle dg/'t’ au sens 0 elle ne @pend deT’, J etV que par I'in-
termédiaire d’un pefacteur nurarique (qui se trouvétre le pararatre d’ordre de Edwards-
Anderson). La fonction deéponse elle aussi se comporte comme dans le cas7avec
I' = V = 0. Le theoeme de flucutation-dissipation est laride la néme facon, avec une
temperature effective du syisne infinie. Dans le casud” est fini, nous &solvons la dy-
namique nurariquement et montrons que leep@rio pecedent est encore valable : I'inertie
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n'intervient que par une renormalisation deéfacteurs des lois thelle dynamiques.

Finalement, nous calculons le courant fermionique qétadilita travers le sysime.
Nous montrons gu’il converge rapidement vers une constante quinredgmas d'informa-
tion sur I'état dynamique des roteurs.

Le travail pésené dans cette #se a don@ lieu aux publications suivantes :

— C. Aron, G. Biroli et L. F. Cugliandolo, “Symmetries of generating functiera
Langevin processes with colored multiplicative noise”, J. Stat. Mech. RBLEDN 0),
arXiv :1007.5059;

— C. Aron, G. Birali et L. F. Cugliandolo, “Coarsening of disordereduafum rotors
under a bias Voltage”, Phys. Rev.8, 174203 (2010), arXiv :1005.2414 ;

— C. Aron, G. Birali et L. F. Cugliandolo, “Driven Quantum Coarseriirighys. Rev.
Lett. 102 050404 (2009), arXiv :0809.0590;

— C. Aron, C. Chamon, L. F. Cugliandolo et M. Picco, “Scaling and Suipeversality
in the Coarsening Dynamics of the 3D Random Field Ising Model”, J. Stat. Mech
P05016 (2008), arXiv :0803.0664.
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