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d’avoir accept́e d’enêtre les rapporteurs.
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I NTRODUCTION

Once upon a time...

UNTIL the second half of the nineteenth century, science studied macroscopic phenom-
ena that were directly perceptible by human senses, even though scientists were often

led to enhance the sensory perception with the more objective measurements ofinstruments.
For instance, microscopes allowed biologists to discover cells – the building blocks of life
– and their inner structure. In the field of physics, scientists studied mechanics, electricity,
optics, acoustics but also thermodynamics and states of matter. All these domains were
considered independent in the nineteenth century. In particular, thermodynamicians were
far from imagining that their theory would take its roots in mechanics.

Despite its successes, macroscopic physics was condemned to eventually lose its fun-
damental character to the benefit of microscopic physics. Indeed, the nineteenth century
saw the accession at the scientific level of the antique philosophical idea of the atomic hy-
pothesis introduced by Leucippus and his student Democritus in the fifth century B.C. [1].
The quantitative study of chemical reactions revealed some stoichiometric laws that John
Dalton and Amedeo Avogadro interpreted very convincingly within the frame of theatomic
hypothesis: reactants were aggregates of microscopic components [2, 3]. This hypothesis,
which was first considered a convenient way of presenting results – since it was impossible
at that time to directly prove the existence of atoms – progressively gained ground during
the nineteenth century.

1
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James C. Maxwell, who was at first reluctant to take position in favor of atoms,was the
first to introduce probabilistic methods to compute the distribution of particle velocities in a
gas in 1860 [4, 5]. In 1872, Ludwig Boltzmann set the building blocks of out-of-equilibrium
statistical mechanics by introducing the so-called Boltzmann equation that describes the
generic transport properties in a gas by taking into account the dynamics of collisions. In
1877, he was the first to give a probabilistic interpretation of the second principle of ther-
modynamics with its celebrated formula1 for the entropyS = kB lnΩ [6]. This resolved
the paradox raised by Lord Kelvin (and relayed by Johann J. Loschmidt)that it seemed
impossible to deduce irreversible phenomena from microscopic mechanical systems.

In 1902, Josiah W. Gibbs formalized and generalized the previous resultsof J. C.
Maxwell and L. Boltzmann without the use of molecular models in the first modern treaty
of statistical physics [7]. Indeed, refusing to enter the debate about the very structure of
matter, he reformulated statistical mechanics by introducing the concepts of canonical and
grand canonical ensembles. Statistical physics was born and it was ready to be generalized
to the study of quantum systems.

In 1905, the same year he unified mechanics and electromagnetism with the theory of
special relativity and proposed the quantization of light, Albert Einstein published an arti-
cle [8] devoted to the observable consequences of statistical physics that he considered as a
fundamental theory. Phenomena that occur at our scale are more or lessdirect consequences
of underlying mechanisms involving microscopic constituents and their properties that one
is entitled to study to get a fundamental understanding of the whole physical world. A.
Einstein was the first, together with Marian von Smoluchovski, to understand that the con-
tinual and irregular motion of small particles in water (observed first in 1828 bythe botanist
Robert Brown with pollen particles, then with inorganic materials [9]) is caused by the ther-
mal agitation of the water molecules. In his 1905 article, he computed the fluctuations of the
Brownian particles and showed that they can be tested experimentally. One year later, Jean
B. Perrin conducted a series of refined experiments in which he measuredthe trajectories
and velocities of grains of different sizes and masses in solution. By using A. Einstein’s
theory, he showed, that one could obtain a precise estimate of the Avogadro number by dif-
ferent methods. His experiments put a definitive end to the controversy around the atomic
hypothesis [10].

The first theoretical insight into non-equilibrium statistical physics is due to Lars On-
sager who, in 1931, worked out the classical thermodynamics of states very close to equi-
librium [11, 12]. He established that the crossed effects in a physical system, for instance
the coefficient that relates the heat flux to the pressure gradient and theone that relates the
particle flux to the temperature gradient, are equal. These relations are now known as the
Onsager reciprocal relations. Herbert B. Callen and Theodore A. Weltonproved in 1951

1. This expression of the formula was given by Max K. E. L. Planck in 1900.
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the so-calledfluctuation-dissipation theoremwhich predicts the non-equilibrium behavior
of a system – such as the irreversible dissipation of energy into heat – fromits reversible
fluctuations in thermal equilibrium [13].

The development of far from equilibrium statistical physics had to wait until thesecond
half of the twentieth century. The study of phase ordering dynamics beganas soon as a
better understanding of the phase transitions was given by the theory of Lev D. Landau [14]
and new field theoretical tools were borrowed from high energy physics.

The interest in disordered systems began with Philip W. Anderson who suggested in
1958 the possibility of electron localization inside a semiconductor, provided that the de-
gree of randomness of the impurities or defects of the underlying atomic lattice [15] be
sufficiently large. In 1974, together with Samuel F. Edwards, he introduced the so-called
Edward-Anderson (EA) model to describe a class of dilute magnetic alloys [16]. This first
spin glass model lead to a new phenomenology and new theoretical concepts. In the same
paper, they introduced a new order parameter for the study of spin glasses based on the
concept of replica. Replicas were later used in 1979 by Giorgio Parisi to solve the statics
of the Sherrigton-Kirkpartrick (SK) model, introduced in 1975 by David Sherrigton and
Scott Kirkpartrick [17], which is the mean-field version of the EA model [18]. Its out-of-
equilibrium dynamics after a quench in temperature were worked out in 1994 by Leticia
F. Cugliandolo and Jorge Kurchan [19]. The techniques and concepts that have been de-
veloped in spin glass theory have led to several valuable applications in the other areas
such as probability theory [20, 21], computer science, information science, biology and
economics [22–24].

A major breakthrough in out-of-equilibrium statistical physics took place overthe past
twenty years with the discovery of exact fluctuation relations in systems drivenfar from
equilibrium. These so-calledfluctuation theoremsdeal with the fluctuations of entropy or
related quantities such as irreversible work, heat or matter currents. First proposed and
tested using computer simulations by Denis Evans, Eddie G. D. Cohen and GaryMorriss
in 1993 [25], much mathematical and computational work has been done in the following
years to show that the fluctuation theorems apply to a large variety of situations such as
isolated systems or systems in contact with a thermal bath, closed or open systems, classical
or quantum systems [26–30].

1.1 Systems coupled to an environment

Systems in nature are never isolated. In order to give an accurate description of their
properties or to be able to justify why they can be treated as isolated, one is often led to study
the impact of their environment. Both the environment and the system itself are constituents
of an energy-conserving global system (so-called universe) and the former is supposed to
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have many more degrees of freedom than the latter.

In some simple cases, like when the system and its environment are in equilibrium,
a few parameters are needed to characterize the influence of the environment so that one
can concentrate again on the system of interest solely. However, in the general case one is
constrained to describe the environment and its coupling to the system of interest in detail.

We make the distinction between equilibrium environments and non-equilibrium en-
vironments. All the internal variables of the former are in equilibrium. This meansin
particular that the fluctuation-dissipation theorem is satisfied for all possible correlators of
these variables and their corresponding responses. An equilibrium environment is said to
be ‘good’ if its stays in equilibrium irrespective of the state of the system it is in contact
with. This is typically achieved by environments with a large enough number of degrees of
freedom so that their macroscopic properties do not fluctuate.

In the so-called canonical situation, the environment is made of one or severalther-
mostats that are reservoirs of energy. The thermal contacts between the system and the
reservoirs allow for the exchange of energy, but particles cannot leave the system. In R.
Brown’s experiment of 1828, the pollen particles and the surrounding water molecules that
constitute the thermal bath interact through short-ranged and highly non-linear forces such
as Lennard-Jones forces. If the environment is composed of several thermostats at the same
temperature, they constitute an equilibrium environment. If they have different tempera-
tures, they constitute a non-equilibrium environment which induces a heat flowthrough the
system. Non-equilibrium environments are expected to drive any system to which they are
connected out of equilibrium. By extension, we also consider all types of external forces or
fields applied directly to the system as non-equilibrium environments.

The canonical set-up can be generalized to the grand canonical situation where the sys-
tem also exchanges particles with its environment. This describes situations in which a
fermionic system is connected to two electronic leads. As soon as they have adifferent
chemical potential, they constitute a non-equilibrium environment and a currentestablishes
through the system.

Finally, we would like to stress the fact that the distinction between the system and what
is treated as the environment is not always clear. Sometimes it is even possibleto treat one
part of the system as an environment of another part. This has been done for example in
cosmology with self-interacting quantum fields in which the short-wave length modes serve
as thermal baths for longer wave-length modes with slower dynamics [31–35].

Systems with disordered interactions

Disorder breaks spatial homogeneity such as translational symmetry. In a many-body
system, disordered interactions can either be found in one-body interactionssuch as a mag-
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netic field or in two(or more)-body interactions between the particles. The first type of
disorder is when some of the degrees of freedom of a system are coupledto an external
spatially disordered potential. We include the case of the coupling to a disordered field
(so-calledrandom field). It occurs in most ferromagnets where the underlying crystalline
structure shows some defects randomly distributed in the sample that give riseto static ran-
dom local magnetic fields. In cold atom experiments, a spatially disordered potential trap
for the atomic gas can be realized by using a laser speckle. The second type of disorder
is when randomness is found in the interactions between the particles of the system (ran-
dom bonds). It occurs for instance just after high temperature initial conditions when the
configuration of this system is disordered. In glasses, the Lennard-Jones potential between
particles has an attractive and a repulsive part, depending on the inter-particle distance.
This creates frustration in the sense that each particle receives from the surrounding par-
ticles ‘contradictory’ messages concerning where it should move to. In thisexample, the
disorder is self-induced and co-evolve with the positions of the particles. This is called
annealeddisorder. In the case the time scale on which the competing interactions evolve
is much longer than the time of the experiment, they can be considered as constant and the
disorder is referred asquenched.

Quenched randomness may be weak or strong in the sense that the first type, contrary to
the second, does not change the nature of the low-temperature phase. Random fields in a3d
ferromagnet belong to the first type as the existence of an ordered state atfinite temperature
was proved rigorously [36, 37]. In the contrary, random bonds equally distributed between
positive and negative values belong to the second category and lead to a highly frustrated
and disordered phase at low temperatures. This phase is widely believed tobe a glassy
phase although it has not been proved analytically.

Glassy systems are systems whose relaxation time becomes extremely long when a
control parameter,e.g. the temperature, is changed. Experimentally, the slowing down of
the dynamics manifests itself in the very fast growth (typically orders of magnitude) of the
viscosity with decreasing temperature. A ‘glass transition’ is said to occur when this sudden
growth is well localized around a characteristic temperatureTg. UnderTg, the relaxation
time grows beyond the experimentally accessible time scales and the system is bound to
evolve out of equilibrium. In conventional glasses, this temperature dependson the history
of the sample, in particular on the rate at which the temperature has been cooled. Hence
the glass transition is not a true thermodynamic transition but rather a dynamic crossover.
Disordered interactions is the characteristic ingredient believed to lead to this behavior.

AboveTg, there are two typical phenomenological behaviors of the viscosity as a func-
tion of the temperature. In the so-called strong glasses, the viscosity follows an Arrhe-
nius law as it grows asexp(A/T ), where A is some activation energy. The viscosity of
the so-called fragile glasses obeys a Vogel-Fulcher law, which is an Arrhenius law with a
temperature dependent activation energyA = BT/(T − T0) whereT0 is a material de-
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pendent temperature around which the relaxation diverges even faster than the Arrhenius
law [38, 39].

Spin glasses are prototypical systems of glasses with strong quenched disordered inter-
actions. They are simple models of magnetic impurities randomly distributed in a static non-
magnetic medium. The Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the
impurities depend on their relative distances. Since the latter are random, the interactions
take random values in sign and strength. In the case of spin glasses, there are many corrob-
orating facts supporting the idea that the glass transition is a true thermodynamic transition
(e.g. the invariance ofTg with the cooling rate) [40–44].

Quantum spin glasses are spin glasses where quantum fluctuations play a role in addition
to thermal fluctuations. These quantum fluctuations act as another disorderingfield which
usually reduces the transition temperature. In the vicinity of a phase transition atnonzero
temperature, the critical behavior of a quantum spin glass model is the same asthat of the
classical model; thus the effect of quantum mechanics merely renormalizes non universal
quantities such as the transition temperature [45–47].

Dynamics

Let us consider the most generic situation in which a system is prepared at timet0 in
some initial condition and let us evolve with a given protocol. There are mainly twoways
of creating non-equilibrium dynamics.

Equilibrium environment. Quench.

The first one consists in evolving the system with an equilibrium environment that does
not correspond to that which is used to prepare the system. For instance,in a quenchone
prepares the system in equilibrium at a very high temperature2 and suddenly lowers the
temperature of the thermal bath. This very simple protocol is a good starting point to gen-
erate and study out-of-equilibrium dynamics. It turns out, as we shall see,that there exist
well developed analytical methods to deal with it, from a classical and quantum mechan-
ics standpoint. The system subsequently relaxes on a time scaleτrelax to an equilibrium
corresponding to the new values of the control parameters. More precisely, this so-called
thermalization is said to be reached when the density matrix of the system is given by the
Gibbs-Boltzmann distribution. This puts three conditions on the final density matrix:that
the final density matrix is constant in time, that it does not depend on the initial microstate of
the bath (but rather on macroscopic characteristics such as the temperature) and that it does

2. Notice that it is not always possible to prepare a system in equilibrium at agiven temperature. A prepara-
tion at very high temperature (compared to all the other energy scales involved) is nevertheless always possible
to achieve.
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not depend on the initial state of the system. Notice that a general proof forthe thermaliza-
tion of quantum systems is still lacking although the first two conditions above have been
shown in [48]. Indeed the main difficulty emerges from the fact that quantum mechanically
even when we have complete knowledge of the state of a system,i.e., it is in a pure state and
has zero entropy, the state of a subsystem may be mixed and have nonzeroentropy. This
is different classically where probabilities arise as a purely subjective lack of knowledge,
since in principle the knowledge of a whole system implies the knowledge of anysubsys-
tem. Both classically and quantum mechanically, the question of knowing whetheror not
a system thermalizes is not always of practical interest. The relevant question in practice
is to know for instance how the typical time of the experiment,τexp, compares withτrelax.
As long as the number of degrees of freedomN stays finite, the system always reaches the
equilibrium in a finite time. But in the thermodynamic limitN → ∞, one has to see how
τrelax scales withN . For example, in the3d Ising model which is the simplest model for a
3d ferromagnet, the largest relaxation time scales asexp(cN2/3) with the constantc > 0 of
order one [49].

If τrelax is much shorter thanτexp, once equilibrium is established, the state of the system
depends only on the instantaneous values of the state parameters such as temperature or
pressure and all equilibrium environments are equivalent no matter the formor the strength
of their coupling to the system. The statics of the system can be computed directly in
the canonical ensemble with no need to model the environment. If a control parameter (e.g.
temperature) of the equilibrium environment is changed quasi-statically (i.e. on a time scale
much larger thanτrelax), the system is expected to follow instantaneously the environment
and the tools of statistical mechanics can still be used in this time-dependent problem.

If τrelax is much longer thanτexp, the statics are irrelevant since an equilibrium state is
never reached, at least within the time of the experiment.

Dynamics through a phase transition. If a quench is performed from a high temperature
equilibrium state to another temperature in the high temperature phase, one expects the
dynamics to quickly relax towards the new equilibrium state. However, if the quench is
performed down to a temperature where the system is expected to show an ordered phase,
non-trivial dynamics occur and the new equilibrium state may never be reached.

This is for instance the case of the ferromagnet after a quench through the second or-
der phase transition. The order parameter has to choose between the new two-degenerate
minima of the free energy. Because different parts of the system cannotinstantaneously
communicate with each other, the order parameter takes simultaneously different values in
different regions of the sample. The relaxation proceeds by the annihilationof the walls
(topological defects) separating the domains of up spins and down spins. In the thermody-
namic limit this yields a never-ending competition between domains and the overall magne-
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tization remains zero. A growing length scale,R(t), can be easily identified by measuring
the typical size of the domains. In the absence of disorderR typically grows as

√
t.

The picture is slightly different for a quench through a first order phasetransition with
degenerate free energy minima in the low temperature phase. Domains do not form in-
stantaneously after the quench but there is a temperature-dependent typical nucleation time
before the local order parameter chooses a free energy minimum. Therefore the first stage
of the dynamics shows some domains forming and expanding freely. It is onlywhen all
the sample is populated by domains that competition between them becomes the relevant
process.

This out-of-equilibrium phenomena is known in this geometrical context asphase or-
dering dynamics. More generally, the competition between two (or more) low temperature
ordered phases is named ascoarsening.

The two-time observables like two-time correlations or two-time response functions are
generally considered in experiments, theories and numerical simulations. Indeed they are
the simplest non-trivial quantities that give information on the dynamics of a system [50–
52]. In equilibrium, correlation and response are linked through the fluctuation-dissipation
theorem which is broken out of equilibrium. Theoretically, they are usually related in a sim-
ple way to the Green functions for which an important artillery of computational methods is
available. Experimentally or in numerical simulations, two-time correlations are quite easy
to measure since they entail taking two snapshots of the system at differenttimes during
the evolution. The behavior of the response function was shown to be relatedto geometric
properties of the domain walls such as roughness and topological properties [53, 54]. How-
ever its measurement is usually not an easy task since it requires a lot of statistical averaging
to get a good signal-to-noise ratio.

In the coarsening regime, the behavior of two-time observables can be decomposed in
two steps. For short time differences, the observables probe the local (in space and in time)
properties of the sample. They are expected to behave as if equilibrium wereachieved. In
particular, they should be function of the time-difference only and the fluctuation-dissipation
theorem is expected to hold in those short temporal windows. However, for larger time-
differences, the non-equilibrium features are expected to show up like the loss of time-
translational invariance. The time scaleτag that separates this two regimes is usually a
growing function of the age of the systemi.e. the time spent after the quench. The older
the system is, the longer it will take for two-time observables to relax. This phenomenon is
calledaging.

Effect of disorder. In the presence of weak quenched disorder, dynamics are expected to
be slower than in the pure case due to the induced frustration and the pinning of the inter-
faces. At zero temperature, this can even lead to a complete cessation of growth. For finite
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temperatures, thermal fluctuations can release the pins, but in general the typical length
R(t) grows slower than is the pure case (typically logarithmically in time) [55–57].

In the presence of strong disorder, such as in spin glasses, the slowingdown of the
dynamics is even more catastrophic. As the nature of the ground state becomes intrinsically
disordered, the identification and the observation of such a growing length scale remains an
important question because a diverging length scale at the glassy transition would be a key
argument in favor of a true thermodynamic transition scenario.

Non-equilibrium environment. Drive.

The second way to generate non-equilibrium dynamics is to couple the system toan
non-equilibrium environment such as those we mentioned earlier. When a constant force,
field or drive is applied during the evolution of the system, a steady state may establish
after a transient if the system has the capacity to dissipate the energy that is injected. As
an example of a classical drive, the rheometer is an instrument used to characterize the
rheological properties of fluids such as viscosity. It imposes a constantshear deformation to
the fluid, and one monitors the resultant deformation or stress once in a steady state. When
it comes to time-dependent non-equilibrium environments, the most important examples are
the cyclic protocols in the mechanism of heat engines used to produce or transform energy.

1.2 Models and methods

In the following, we list the particular models we use to study the effect of disorder
on coarsening phenomena, the glassy dynamics and the effect of quantumfluctuations. We
later briefly present the basic analytical and numerical tools to analyze theirdynamics.

Models

Coarsening. The archetypal examples of coarsening phenomena are ferromagnets which
can be simply described by theO(n) lattice models. They are made up ofn−component
vectors of fixed length (called spins)si placed on the nodes of ad-dimensional lattice and
interacting through nearest-neighbor ferromagnetic interactions (J > 0). Typically, we
think of a (hyper-)cubic lattice ind dimensions where each spin has2d nearest neighbors.
Their Hamiltonian reads

H = −
∑

〈i,j〉
J si · sj , (1.1)

with the constraintssi · si = n. For n = 3 it corresponds to the Heisenberg model, for
n = 2 it is called theXY model whereas forn = 1 it reduces to the well known Ising
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model (si = ±1). Notice the absence of a kinetic term in the Hamiltonian (1.1). This
is justified for processes in which inertia can be neglected or when studying the statics in
which kinetic terms typically supply trivial contributions. Therefore there areno intrinsic
dynamics and the relevant dynamics will be given by coupling the system to an environment.

At a critical temperatureTc depending on the values ofn andd, these models undergo
a phase transition from a high-temperature phase where the typical spin configurations are
disordered to a low-temperature phase where all the spins tend to align in the same direction.

Although lattice models are quite amenable for numerical simulations, it is often diffi-
cult to deal with the discreteness of the lattice analytically. A first possibility is to consider
the mean-field (or fully-connected) versions of the models that correspond to the Hamilto-
nian

H = − 1

N

N∑

i<j=1

J si · sj . (1.2)

The1/N prefactor is there to ensure that energy scales withN (the total number of spins) in
the thermodynamic limitN → ∞. This approximation is equivalent to taking thed → ∞
limit and wipes out the effects of small dimensionality. Another possibility is to write an
effective field theoryà la Ginzburg-Landau for the coarse-grained other parameter (e.g.
the local magnetization). Thed-dimensionalO(n) non-linear sigma model is a coarse-
grained approximation of theseO(n) lattice models. The spatial dependence is given by the
continuousd-dimensional vectorx and the spins are upgraded ton-dimensional real fields
φ(x). The Hamiltonian reads

H =

∫
ddx

[
J

2
∇φ(x) · ∇φ(x)− g

2
φ(x) · φ(x) + u

4n
(φ(x) · φ(x))2

]
. (1.3)

The first term models the nearest-neighbor interactions. The field componentscan take any
real value. However the interplay between the quadratic and quartic terms (with u, g > 0)
favors theφ(x) · φ(x) = n g/u configurations.

Weak disorder. Weak disorder can be introduced in the previous models by adding an
interaction with a spatially random magnetic fieldH. For theO(n) lattice models this
yields the following Hamiltonian:

H = −
∑

〈i,j〉
J si · sj −

∑

i

Hi · si . (1.4)

We shall focus on the cased = 3 andn = 1, the so-called random field Ising model (3d

RFIM), with 6 nearest neighbors and a bimodal distribution for the random fields (Hi =

±H with equal probability).

The RFIM is relevant to a large class of materials due to the presence of defects that
cause random fields. Dilute anisotropic antiferromagnets in a uniform field arethe most
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studied systems expected to be described by the RFIM. Several review articles describe
its static and dynamic behavior [57] and the experimental measurements in random field
samples have been summarized in [58]. Dipolar glasses also show aspects of random field
systems [59, 60].

In the caseH = 0, the RFIM reduces to the pure Ising model with a phase tran-
sition from a paramagnetic to a ferromagnetic state occurring at a critical temperature
Tc ≃ 4.515 J . It is well established that ind = 3 (not in d = 2) the ordered phase sur-
vives for finiteH: there is a phase separating line on the(T,H) plane joining(Tc, H = 0)

and(T = 0, Hc) with Hc ≃ 2.215(35) J [61, 62]. At T = 0 and small magnetic field,
it has been rigorously proven that the state is ferromagnetic [36, 37]. The nature of the
transition close to zero temperature has been the subject of some debate. Claims of it be-
ing first order [63] have now been falsified and a second order phase transition has been
proven [64, 65]. The presence of a spin glass phase close to(T = 0, Hc) [66] has been
almost invalidated [67] although there is still a possibility it exists [68].

Quenched disorder can also be introduced in theO(n) lattice models by considering
some random couplings,Jij , between the spins:

H = −
∑

〈i,j〉
Jij si · sj , (1.5)

where theJij ’s are independent random variables. The familly of models this Hamiltonian
encompasses is calledrandom bondmodels. If the couplings are ferromagnetic with a
finite probability to be zero, this gives the bond-diluted models (percolation physics). For
n = 1, the Random Bond Ising Model (RBIM), with ferromagnetic couplings distributed
on a small window of widthJ aroundJ0 > J , is another typical model used to study the
domain growth in the presence of weak disorder.

Glasses. The case of strong disorder is realized when theJij ’s are equally distributed
between positive (ferromagnetic) and negative (anti-ferromagnetic) values. In this case the
models exhibit glassy behavior at low temperatures. Forn = 1, the corresponding models
are often called the Ising spin glasses. The lower-critical dimension of those models is
expected to be two and ford = 2 the transition occurs at zero temperature. We shall focus on
the cased = 3, the so-called Edwards-Anderson (3d EA) model, with 6 nearest neighbors
and a bimodal distribution for the random couplings (Jij = ±J with equal probability).
The3d EA is in a sense complementary to the3d RFIM which has some weak disorder in
the local magnetic fields whereas the3d EA model has a strong disorder localized on the
bonds. This model undergoes a static phase transition from a paramagnetic toa spin glass
phase atTg ≃ 1.14(1) J [69]. The nature of its low temperature static phase is not clear
yet and, as for the out-of-equilibrium relaxation, two pictures developed around a situation
with only two equilibrium states as proposed in the droplet model [70, 71] and a much more
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complicated vision emerging from the solution of its mean-field version, the SK model [72]
whose Hamiltonian reads

H = − 1√
N

N∑

i<j=1

Jij sisj . (1.6)

Notice the1/
√
N prefactor that is needed to ensure a well defined thermodynamic limit.

More generally, the mean-field version of theO(n) lattice model reads

H = − 1√
N

N∑

i<j=1

Jij si · sj , (1.7)

and is equivalent in then→∞ limit to the the soft-spin version of SK model (so-called the
p = 2 spin glass) where the length constraint on each spin is relaxed and replaced by the
global spherical constraint1N

∑N
i=1 si · si = n [73, 74]. Thep = 2 spin glass model does

not have a true spin glass behavior but is more of a ferromagnet. Indeed, we shall see it has
a strong connection with the pure3d O(n) ferromagnet model in the limitn→∞.

Quantumness. Quantum mechanics determines the behavior of physical systems at atomic
and subatomic scales. The search for quantum effects at macroscopic scales started soon
after the development of quantum mechanics. A number of quantum manifestations at
such scales have been found including quantum tunneling of the phase in Josephson junc-
tions [75] or resonant tunneling of magnetization in spin cluster systems [76]. Quantum
fluctuations are expected to play an important role specially in the absence of thermal fluc-
tuations at zero temperature. A way to introduce quantum fluctuations into theO(n) lattice
models (or their disordered versions) is to add a non-commuting term to the Hamiltonian.
Forn = 1, one can think of adding a transverse field to the quantum Ising model yielding
the following Hamiltonian ind = 3:

H = −
∑

〈i,j〉
J σzi σ

z
j −

∑

i

Hσxi , (1.8)

where theσµi (µ = x, y, z) are the familiar Pauli matrices. This model was proposed to be
realized experimentally with LiHoxY1−xF4 [77], an insulating magnetic material in which
the magnetic ions are in a doublet state due to crystal field splitting. Forn > 1, quantum
fluctuations can be put in by reintroducing a kinetic term to the Hamiltonian, yielding the
family of so-called quantum rotor models. For instance the Hamiltonian of theO(n) lattice
model is upgraded to

H =
1

n

N∑

i=1

Γ

2
L2
i −

∑

〈i,j〉
J si · sj . (1.9)

The spinssi are stilln-component vectors (withsi · si = n) but are now called ‘rotors’
to avoid confusions with real quantum spins described by Pauly matrices. The differ-
ence between rotors and quantum spins is that the components of the latter atthe same
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site do not commute whereas the components ofsi do. Li is thei-th generalized angular
momentum operator which involves the momentum operator canonically conjugateto si:
pi = −i~∂/∂si. The si’s and thepi’s satisfy the usual quantum mechanical commuta-
tion relations.Γ > 0 acts like a moment of inertia and controls the strength of quantum
fluctuations; when~2Γ/J → 0 the model approaches the classicalO(n) lattice model. As
discussed in [78] models of quantum rotors are non-trivial but still relatively simple and
provide coarse-grained descriptions of physical systems such as Bose-Hubbard models and
double layer antiferromagnets.

We focus in particular on the mean-field version of the quantum rotor glass the Hamil-
tonian of which reads

H =
1

n

N∑

i=1

Γ

2
L2
i −

1√
N

N∑

i<j=1

Jij si · sj . (1.10)

TheJij couplings are taken randomly from a Gaussian distribution with zero mean andJ2

variance. We shall see that the connection to the pure3d O(n→∞) ferromagnet holds for
the quantum models as well.

Analytical treatment

Classical

Master Equation. The microcanonical postulate (stating the equi-probability of all the
accessible microstates in a closed isolated system in macroscopic equilibrium) canbe gen-
eralized to non-equilibrium situations as the so-called evolution postulate, or Masterequa-
tion. The Master equation is a first order differential equation describing the time-evolution
of an isolated classical system in terms of the probabilitiesPt(s) for the system to be in
a given microstates at timet. It can be derived from the first principles of quantum me-
chanics (basically the Schrödinger equation) under the hypothesis that the quantum phases
of wave functions are randomized on a short time scale (quantum chaos) byweak external
processes [79]. It reads

dPt(s)

dt
=
∑

r 6=s
[Pt(r)W (r 7→ s)− Pt(s)W (s 7→ r)] , (1.11)

whereW (r 7→ s) is the probability of transition from the microstater to the microstates.
These transition rates respect the energy conservation:W (r 7→ s) = 0 if |Es − Er| < δE

whereδE is the incertitude on the energy at a macroscopic level. As a consequence of
the invariance of the underlying microscopic equations under time-reversal,they are also
symmetric:W (r 7→ s) = W (s 7→ r). In the canonical set-up, one can write a similar
equation for the evolution of the system. The transition rates no longer satisfy the energy
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conservation and are no longer symmetric. However, as a consequence of the time-reversal
symmetry of the microscopic equations of the equilibrium bath variables, they satisfy the
so-called detailed balance condition:

W (r 7→ s) e−βEr =W (s 7→ r) e−βEs , (1.12)

whereβ is the inverse temperature of the bath and throughout this manuscript we useunits
in whichkB = 1. In order to satisfy the evolution postulate and evolve towards equilibrium,
the system must have the so-called mixing property that generalizes the ergodic principle
to non-equilibrium situations. For a given set of control parameters, a macroscopic state
is characterized by a probability density that is non zero on a manifold of the phase space.
During the evolution, the mixing property spreads the non-homogeneous initialdistribu-
tion on the whole manifold to finally reach the uniform microcanonical distribution. Under
this mixing condition, one can show that the probabilitiesPs(t) converge to the equilib-
rium Gibbs-Boltzmann distribution regardless of the initial conditionsi.e. any macroscopic
classical system evolves towards its equilibrium state.

Langevin Equation. It is often difficult to give a precise description of the environment
and its interactions with the system. And when it is possible, it is almost always impossible
to explicitly integrate out the degrees of freedom of the bath to compute averages in the
system of interest. In the Master equation formalism, this difficulty lies in knowing the
transition ratesW (r 7→ s). To overcome this difficulty, one is led to find an heuristic way
of modeling the environment that should be guided by the symmetries of the systemand
physical intuition.

In his study of Brownian motion [80], Paul Langevin wrote in 1908 the following equa-
tion, that later took his name, for the positionq of a Brownian particle of massm:

mq̈ = F (q)− γ0q̇ + ξ(t) . (1.13)

F (q) is the systematic interaction force due to the intramolecular and intermolecular in-
teractions. The interaction with the environment is modeled by two heuristic forces. The
first is a friction force term that introduces the dissipation and is here proportional to the
particle’s velocityẋ (Stokes’ law). The second is a random forceξ, taken to be a Gaussian
process, that models the rapid thermal excitations. If the environment is in equilibrium, the
two terms are linked through a fluctuation-dissipation relation that A. Einstein established
in his 1905 article on Brownian motion [8].

In many cases of practical interest the Langevin equation is given in the overdamped
limit (inertia is neglected) and with a white noise (the environment has a vanishingrelax-
ation time). However, since there are other interesting instances in which the environment
exhibits retardation and motivated by the generalization to quantum systems, we keep iner-
tia and introduce color for the noise. Moreover, to be even more generic,we consider the
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case in which the noise acts multiplicatively. This situation is expected to occur when the
environment is coupled non-linearly to the system.

This heuristic modeling of the interactions with the environment can be transposedat
the (even more) mesoscopic level in terms of a coarse-grained order-parameter fieldφ(x, t).
Once again, the spatio-temporal coarse-graining procedure is rarely tractable but one ex-
pects the action of the environment to be similar to the one of the Langevin dynamics. In
the so-called model A for non-conserved order-parameter, an overdamped evolution (i.e. in-
ertia can be neglected, for instance when the short-time dynamics have beencoarse-grained
in time) is given by

0 = − δF [φ]
δφ(x, t)

− γ0φ̇(x, t) + ξ(x, t) , (1.14)

whereF is the Ginzburg-Landau free-energy functional that one typically constructs using
symmetry and simplicity considerations together with physical intuition.

MSRJD formalism. It is possible to give a field theory representation of the stochastic
Langevin dynamics by use of the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) for-
malism [81–86]. In a nutshell, the generating functional is obtained by first upgrading the
physical degrees of freedom of the system and the random noise into fields. The Langevin
equation of motion and its initial conditions are turned into a path integral and the action
of the corresponding field theory is evaluated on-shell, thanks to the introduction of one
extra Lagrange multiplier field for each physical degree of freedom. Sinceit is Gaussian,
the noise field appears quadratically in the action and can thus be integrated out. One is left
with a path integral over twice as many fields as number of physical degreesof freedom.
The MSRJD formalism is particularly well suited to treating the dynamics of disordered
systems following a quench. Indeed, provided that the initial conditions are uncorrelated
with disorder (e.g. for very high temperature initial conditions), the generating functional
evaluated at zero sources is equal to one and can therefore be triviallyaveraged over the
disorder configurations without having to use the Replica Trick [85].

Quantum

Schrödinger equation. Quantum mechanically, the evolution of a system and its envi-
ronment is given by the Schrödinger equation. This microscopic equation is invariant under
time-reversal unless magnetic fields (or spins, or more generally currents) are involved. The
evolution for the reduced system, once the degrees of freedom of the bath have been some-
how integrated out, is however not unitary. Despite the lack of a general proof, it is widely
believed that equilibrium quantum systems in contact with a thermal bath tend to thermalize
like in the classical case.
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Schwinger-Keldysh formalism. A convenient way to treat the out-of-equilibrium dy-
namics of a quantum system coupled or not to an environment is the use of thefunc-
tional Schwinger-Keldydh formalism which can be seen as the quantum generalization of
the MSRJD formalism. This was initiated by Julian S. Schwinger in 1961, and hasbeen
further developed by Leonid V. Keldysh and many others. For the last 40years, this tech-
nique has been used to attack a number of interesting problems in statistical physics and
condensed matter theory such as spin systems [87], superconductivity [88–91], laser [92],
tunneling [93, 94], plasma [95], other transport processes [96] and so on. For equilibrium
problems, it has also been an alternative to the sometimes cumbersome Matsubara analytical
continuation.

For a system initially prepared at timet0 = 0, it involves a closed time-contourC that
goes from zero to plus infinity and then comes back to zero. This two-branch contour and
the doubling of the number of degrees of freedom that comes with it take their roots in the
time evolution of an operator (let sayO) in the Heisenberg picture,

T̃

{
e−

i
~

∫ 0
t dt′ Htot(t′)

}
O(t)T

{
e−

i
~

∫ t
0 dt′ Htot(t′)

}
,

whereT andT̃ are respectively the time and anti-time ordering operators.Htot(t) = H(t)+

Hint(t)+Henv is the total Hamiltonian of the system plus the environment. Once the system
and the environment have been encoded in this path integral, one has to integrate over the
environment variables in order to obtain an effective action for the system. This can be
performed in the case the environment is described by a LagrangianLenv that is quadratic
in its variables. The LagrangianLint describing the interaction between the system and the
environment can be averaged over the environment variables by using perturbation theory
in the coupling constant. Like in the classical case, a very simple model of a thermal bath
consists in a set of non-interacting harmonic oscillators that are coupled to thesystem of
interest. The interaction with the bath gives rise to non-local terms in the action thatplay a
similar role to the ones of a colored bath in the previous classical picture.

The Schwinger-Keldysh formalism, like its classical analog, is well suited to treating
the dynamics of disordered systems after a quench from infinite temperature.

Numerics: Monte Carlo

Equilibrium simulations. It is usually impossible to give an analytical treatment of in-
teracting statistical systems beyond the mean-field or fully-connected approximation that
wipes out all the effects of the small dimensionality of the world in which we live.Com-
puter simulations provide a flexible way to tackle such problems. The task of equilibrium
statistical mechanics is to compute averages of the type

∑
s Peq(s)O(s) wheres runs over

all the configurations andPeq is the equilibrium Gibbs-Boltzmann probability proportional
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to e−βH(s). The previous sum can never be computed exactly for the number of config-
urations grows exponentially with the number of degrees of freedom. The idea behind
Monte Carlo simulations is to provide numerical estimates of these sumsvia a stochastic
trajectoryS in the configuration space. Since the Boltzmann factore−βH(s) vanishes for
most of the configurations, Nicholas Metropoliset al. introduced the so-called ‘impor-
tance sampling’ algorithm [97] in which a configurations is chosen to be part of the sum
with probability Peq(s). The average then reduces to the arithmetical mean of the type∑

s∈S A(s). The method Metropolis proposed to obtain this result is based on Markov the-
ory. It generates a sequence of configurationsS ≡ s0 7→ s1 7→ s2 7→ ... in which each
transition has a probabilityW (si 7→ si+1) to occur. The probability for a configurations
to be selected at thei-th step,Pi(s), converges to the equilibrium distributionPeq(s) re-
gardless of the initial conditions0 provided that the detailed balance condition is satisfied:
W (si 7→ sj)e

−βH(si) = W (sj 7→ si)e
−βH(sj). A simple choice for the transition rates

W uses the energy variation∆E ≡ H(sj) − H(si) by settingW = 1 if ∆E < 0 and
W = e−β∆E otherwise. The rapidity of the convergence to the equilibrium distribution and
the simplicity to compute∆E depends on the choice of the transitions between two succes-
sive configurations but the final result is independent of that choice. For a system of Ising
spins, the simplest transitions consist in flipping one single spin at a time but it is sometimes
useful to implement cluster algorithms in which the transitions are collective spin flips. It is
only after the Markov chain has converged to equilibrium, that one can startto compute the
static averages.

Out of Equilibrium simulations. The Monte Carlo method briefly explained above isa
priori not suited for out-of-equilibrium dynamics. If one measures observables before equi-
librium is achieved, we saw that the choice of the transition rates matters. This is precisely
the analogue situation of having the Master equation but not knowing the transition rates
since these depend on the details of the environment. If one wants to run a computer sim-
ulation to study the out-of-equilibrium dynamics of a system connected to an equilibrium
thermal bath without any further information on the environment, the only constraint on the
choice of the transitions is that they must satisfy the detailed balance condition.

Fortunately, there are some dynamical properties of the system that are independent
of the transition rules, at least within families of these. For example, the exponent z in
the Ising model appears to be the same for the Metropolis, the heat-bath or thecontinuous
time algorithms. Such algorithms fall in the same dynamic universality class. Nevertheless,
other algorithms like the Wolff cluster one or the simulated tempering do not. In conclusion,
when one is interested in the dynamics of a model to get a typical picture of how asystem
evolves to equilibrium, it is sensible to start by using the simplest dynamics. This is the
philosophy we adopt.
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1.3 Questions

Equilibrium and time-reversal symmetry

Despite the invariance of the microscopic physics under time reversal3, it is well known
from the second principle that the evolution of out-of-equilibrium macroscopicsystems is
not invariant under this transformation. However, when equilibrium is reached, the sym-
metry is restored: it is experimentally impossible to determine whether a movie is played
forward or backward in time. This time-reversal symmetry, specific to equilibrium, has
been addressed many times in the past. It was for instance one of the key ingredients in
L. Onsager’s work of 1931 [11, 12] to establish the reciprocal relations. Time-reversal is
also at the heart of fluctuation theorems that give relations between forwardand backward
trajectories.

In Chapter2, we address this question one more time by identifying this symmetry in the
context of a field theory description of classical dissipative systems: the MSRJD formalism.
For equilibrium situations, we identify the field transformation corresponding to the time-
reversal symmetry. It consists in a set of transformations for both the physical fields and the
Lagrange multiplier fields involving, as expected, a time-reversal of those fields. This sym-
metry is presented as a necessary and sufficient condition for equilibrium dynamics. Indeed,
at the level of observables, we show that the corresponding Ward-Takahashi identities lead
to all the well-known equilibrium properties and relations such as stationarity, fluctuation-
dissipation theorem and the Onsager reciprocal relations. This symmetry is a powerful tool
to derive, in a rapid and systematic approach, all sorts of fluctuation-dissipation relations.

In equilibrium, the MSRJD formalism can be written in terms of a super-symmetric
formulation. It involves the integration over a super-field whose components encode the
physical fields, the Lagrange multiplier fields and two extra fermionic fields (introduced
to give an integral representation of a functional determinant). This formulationhas been
introduced and derived for overdamped (no inertia) Langevin equationswith an additive
white noise environment [98–101]. We generalize this approach to the case with inertia and
a multiplicative colored noise. The generating functional is invariant under two continuous
super-symmetric field transformations that exchange the bosonic and the fermionic fields.
At the level of observables, the corresponding Ward-Takahashi identities lead to some of
the already mentioned equilibrium properties like stationarity or fluctuation dissipation the-
orems. However, they fail to generate relations involving a time-reversal likethe Onsager
reciprocal relations. We discuss the relations these two super-symmetries have with the
previous MSRJD symmetry.

When the system is out of equilibrium, this symmetry of the MSRJD formalism is

3. At least in non-relativistic theories.
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broken in a way that leads very naturally to fluctuation relations like the Jarzynski equality
or even the underlying fluctuation theorem.

We identify another new symmetry of the MSRJD generating functional, which is valid
in but also out of equilibrium. At the level of observables, it generates equations of motion
coupling correlations and responses. These Schwinger-Dyson equations provide a nice way
to express all sorts of responses in terms of correlation functions without applying any extra
field. This has direct applications in computer simulations where the computation of linear
responses using weak perturbations (to stay in the linear regime) is not an easytask; besides
requiring two simulations (one with and one without the perturbation) it also requires a lot
of statistical averaging to get a good signal-to-noise ratio.

Dynamical scaling and universality

Out-of-equilibrium dynamics dependa priori on the whole protocol used to prepare
and evolve the system. Therefore, finding universal features of the dynamics does not seem
easy. However, in many situations the late stage dynamics are believed to be governed by a
few properties of the system and environment whereas material details should be irrelevant.
The renormalization group (RG) analysis is a powerful tool to detect and describe the uni-
versal features of models in equilibrium. In particular, it gives access to scaling relations.
Although there were many attempts to include the time evolution in the RG procedure, there
is no exact scheme to generalize this approach to dynamical problems away from criticality.
The difficulty arises as a result of the absence of a small parameter, analogous toǫ = 4− d
for critical phenomena: because of this, one cannot obtain explicit RG relations.

Coarsening. In the field of coarsening phenomena, motivated by experimental observa-
tions and simulations, thedynamical scaling hypothesisstates that there exists, at late times,
a single characteristic length scaleR(t) such that the domain structure is (in a statistical
sense) independent of time when lengths are scaled byR(t) [50]. In terms of observ-
ables, this predicts that the time dependence enters only thoughR(t). For example, the
aging contribution4 of the two-time correlation functionC(t, t′) is expected to scale as
Cag(t, t

′) = f(R(t)/R(t′)). In a field theory description, such dynamical scaling can be
interpreted as consequences of symmetries of the effective dynamical action that describes
the late-stage dynamics.

This scenario has been proven analytically at zero temperature (with Glauber or model
A dynamics) in some mean-field models like theO(n→∞) non-linear sigma model [102]
and in some very simple one dimensional models like the1d Ising model [103, 104] or the
1d XY model [105] [both defined in eq. (1.3)]. More recently it has been proven for the

4. As opposed to the thermal contribution that is time-translational invariant.
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distribution of domain areas in the2d Ising model [106]. The dynamical scaling hypothesis
can be supplemented by the statement that the temperature dependence can be absorbed into
the domain scaleR(t) such that the scaling functions are independent of the temperature.
This is somehow supported by equilibrium renormalization group analysis that predicts the
existence of a few fixed points controlling the low temperature phase. This hasbeen tested
numerically for instance in the2d Ising model [107] with Metropolis dynamics. Daniel S.
Fisher and David A. Huse pushed this idea a bit further, in the presence of weak disorder in
which the coarsening picture is expected to hold. They conjectured that once the dynamical
scaling hypothesis is used to describe the long times dynamics, so that times and lengths
are measured in units ofR(t), none of the out-of-equilibrium observables depend on the
quenched randomness [70] and their scaling functions are thus identical to those of the
pure limit. This is referred as super-universality. Notice that a typical length, L∗, can be
associated to disorder by matching the energy barriers it creates and the thermal energy.L∗

is by definition temperature and disorder dependent. In this picture, whenR(t) ≪ L∗, the
dynamics are the one of the pure system and whenR(t) & L∗, the dynamics are slowed
down by activated escape over the barriers. In [108], it was argued in the context of the1d
and2d RBIM that the ratioR(t)/L∗ should enter the scaling functions independently of the
other scalings. For the two-time correlation function, this implies the scalingCag(t, t

′) =
f(R(t)/R(t′), L∗/R(t)) that violates the super-universality. However, for the late stage
dynamicsR(t) ≫ L∗, the ratioL∗/R(t) becomes negligible and the super-universality
hypothesis is expected to hold. It has been tested numerically on some selected observables
in a few Ising models with weak disorder. It has been shown to hold for the equal-times two-
point function of the3d random field Ising model (RFIM) [109] and the2d random bond
Ising model (RBIM) [110, 111]. More recently, the distribution of domain areas in this last
model [112] and the integrated response [113] has also be shown to be super-universal.

In Chapter3, we test, by means of numerical simulations, the dynamical scaling and
the super-universality hypothesis in the3d RFIM [defined in eq. (1.4)] after a temperature
quench in the coarsening phase. We place the emphasis on the spatio-temporal fluctuations
by studying the distributions of local coarse-grained observables.

Spin glasses. The droplet picture of the out-of-equilibrium dynamics of spin glasses pre-
dicts a single characteristic length scale that is developing in the system after the quench [70,
71, 114, 115]. Its existence is less clear than in the field of coarsening phenomena. Some
evidence for a growing length in the3d EA model at low temperatures have been interpreted
within the droplet scenario [116–118], but other groups understand this length within the
other mean-field picture [119]. The studies of finite dimension structural glasses both from
numerical simulations and experimental probes have provided mounting evidence for the
existence of a growing length, at least in the super-cooled liquid phase. Inthe truly glassy
regime, the existence of a growing length scale is supported by the fact thatcorrelation
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functions show some dynamical scalings which can be naturally explained in that scenario.
Dynamics of glasses are believed to be heterogeneous in the sense that different regions
of the sample age at different rates [120] and dynamic heterogeneities could be crucial to
understand the full temporal evolution. Therefore, considerable attentionhas been paid to
the study of the local fluctuations of two-time observables such as two-time correlations or
linear responses. In glasses, the average over disorder makes the spatial correlation func-
tions short ranged. Spatially fluctuating quantities such as locally coarse-grained correlation
functions and their probability distribution functions are candidates to detect the growing
length.

We study, by means of numerical simulations, the dynamics of the3d EA model [de-
fined in eq. (1.5)] after a temperature quench in the glassy phase. We focus in particular on
fluctuating local observables used to describe the heterogeneous dynamics. We show that
the super-universality hypothesis does not hold and the comparison with the results of the
quenched RFIM sheds a new light on the differences between domain growth versus glassy
dynamics from the point of view of out-of-equilibrium scaling relations.

Effect of a drive

The effect of a non-equilibrium environment such as a drive on a macroscopic system
close to a quantum phase transition is a by and large unexplored subject. Someworks
have focused on non-linear transport properties close to an (equilibrium) quantum phase
transition [121–123]. Others have studied how the critical properties are affected by non-
equilibrium drives [124–126]. However, a global understanding of phase transitions in the
control parameter spaceT, V, Γ, with T the temperature,V the driving strength, andΓ the
strength of quantum fluctuations, is still lacking. Furthermore, to the best of our knowledge,
the issue of the relaxation toward the quantum non-equilibrium steady state (QNESS) has
not been addressed in the past.

In Chapter4, we address these questions by considering the fully-connected quantum
rotor glass defined in eq. (1.10). We prepare the system at very high temperature and then
suddenly couple it to two electronic leads [45] at different chemical potentials but at the
same temperatureT . The voltage dropV creates a current tunneling through the system.
In a first part, we study the properties of the non-equilibrium environment composed by
the two leads. In particular we show that its effect on the slow modes of the dynamics is
the one of a thermal equilibrium bath. Then we study how the dynamical phase transition,
which separates the paramagnet and the ordering phase, survives in the presence of the
drive by deriving the dynamical phase diagram of the model in the (T, V,Γ, g) parameter
space whereg is the coupling constant to the environment. In a third part of this chapter,
we analytically solve the long-time dynamics in the coarsening phase and we prove that
a generalized super-universality hypothesis holds for the long-time behavior of two-time
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correlation functions since the scaling functions do not depend onT , the strength of disorder
J , Γ nor V . As in the classicalp = 2 spin glass, the response is found to loose memory
in the aging regime, corresponding to an infinite effective temperature. We discuss the
connection with real space coarsening by establishing the mapping to the3d O(n → ∞)

quantum pure ferromagnet. Finally, we compute the currentI as a function ofV and show
that it quickly saturates to a constant value.

In the concluding chapter, we present some lines for future research.
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THE stochastic evolution of a classical system coupled to a quite generic environment
can be described with the Langevin formalism [80, 127–129] and its generating func-

tional, the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-integral[81–86]. In
many cases of practical interest the effect of the environment is captured by an additive
white noise and its memory-less friction, Brownian motion being the paradigmatic exam-
ple [80]. Nevertheless, there are many other interesting instances in which the noiseis
multiplicative and colored, and the friction effect is consistently described by amemory
kernel coupled to a non-linear function of the state variable. Such Langevinequations ap-
pear in many different branches of physics (as well as chemistry and other sciences). In
magnetism, the motion of the classical magnetic moments of small particles is phenomeno-
logically described by the Landau-Lifshitz-Gilbert equation in which the fluctuations of the
magnetic field are coupled multiplicatively to the magnetic moment [130, 131]. Many other
examples pertain to soft condensed matter; two of these are confined diffusion, in which
the diffusion coefficient of the particle depends on the positionvia hydrodynamic interac-
tions [132], and the stochastic partial differential equation that rules the time-evolution of
the density of an ensemble ofN Brownian particles in interaction [133, 134]. In a cos-
mological framework, they are effective equations of motion for the out of (although close
to) equilibrium evolution of self-interacting quantum fields in which the short-wavelength
modes serve as thermal baths for longer wave-length modes with slower dynamics [32–
34, 135, 136]. Such type of fluctuations may yielda priori unexpected results such as noise
induced phase transitions in systems in which the associated deterministic potentialdoes
not exhibit any symmetry breaking [137–140, 140, 141].
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In order to better understand these processes it is useful to distinguish cases in which
sources of fluctuations and dissipation can be different. On the one hand, the noise and
friction term can have an ‘internal’ origin, like in diffusion problems. On the other hand,
the stochastic fluctuations can be due to an ‘external’ source [142]. In the former cases one
usually assumes that the variables generating the noise and friction are in equilibrium and
the terms in the Langevin equation associated to them are linked by a fluctuation-dissipation
theorem. In the absence of non-conservative external forces the Boltzmann measure of the
system of interest is a steady state of its dynamics. In the latter cases noise and dissipation
are not forced to satisfy any equilibrium condition and this translates into the possibility of
having any kind of noise and friction terms. For concreteness we shall focus on the first
type of problems and only mention a few results concerning the latter.

In treatments of the examples mentioned in the first paragraph, the delicate double limit
of vanishing fast variables relaxation time and noise correlation time is often taken. These
lead to a first order stochastic differential equation with multiplicative white noise.Its
interpretation in the It̂o, Stratonovich or other sense requires a very careful analysis of the
order of limits, see e.g. [143] and references therein. In the body of this chapter we shall
keep both time scales finite and thus avoid the subtleties encountered in the double vanishing
limit.

We identify a number of symmetries of the MSRJD generating functional of inertial
Langevin processes with multiplicative colored noise. One symmetry is only valid inequi-
librium. The corresponding Ward-Takahashi identities between the correlation functions
of the field theory lead to various equilibrium relations such as stationarity, fluctuation-
dissipation theorems [144–149] or Onsager relations. Away from equilibrium, the symme-
try is broken giving rise to various out-of-equilibrium fluctuation relations [25, 27, 150, 29,
151, 152], [153–158], [159–161]. Another symmetry holds for generic out-of-equilibrium
set-ups and implies dynamic equations coupling correlations and linear responses. It al-
lows in particular to express the linear response in terms of correlations without applying a
perturbing field [162–169], [170–174].

We are aware of the fact that some of the results we derive – especially, inthe limit of
additive noise – were already known and we do our best to attribute them to the authors
of the original papers for review articles. Still, the presentation that we gradually develop
allows one to go beyond the simple cases and treat the multiplicative non-Markovian pro-
cesses with the same level of difficulty. As far as we know, these constitute new results.
Moreover, we discuss in greater detail than previously done the transformation of the mea-
sure and several Jacobians, and the domain of integration of the fields in thepath-integral.
The importance of dealing with a colored noise, and to treat the transformation ofthe fields
in the complex plane, is enhanced by our purpose to extend this analysis to quantum dissi-
pative problems.
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2.1 Langevin equation

We consider a0-dimensional fieldψ (e.g. a particle at positionψ) with massm driven
by a forceF and in contact with a thermal bath in equilibrium at inverse temperatureβ.
The initial time,t0, is the instant at which the particle is set in contact with the bath and
the stochastic dynamics ‘starts’. We call itt0 = −T and without loss of generality we
work within a symmetric time-intervalt ∈ [−T, T ]. In this chapter, contrary to the rest
of the manuscript,T is not a temperature (T 6= β−1) but a time. The extension to higher
dimensional cases is straightforward.

Our conventions are given in2.A.

2.1.1 Additive noise

The Langevin equation with additive noise is given by

EQ([ψ], t) ≡ mψ̈(t)− F ([ψ], t) +
∫ T

−T
du η(t, u) ψ̇(u) = ξ(t) , (2.1)

with ψ̇(t) = dψ(t)/dt andψ̈(t) = d2ψ(t)/dt2. The force can be decomposed into con-
servative and non-conservative parts:F ([ψ], t) = −V ′(ψ(t), λ(t)) + fnc([ψ], t). V is a
local potential the time-dependence of which is controlled externally througha protocol
λ(t). V ′ denotes the partial derivative ofV with respect toψ. fnc([ψ], t) collects all the
non-conservative forces that are externally applied.fnc([ψ], t) is assumed to be causal
in the sense that it does not depend on the future states of the system,ψ(t′) with t′ > t.
Furthermore, we suppose thatfnc([ψ], t) does not involve second – nor higher – order time-
derivatives of the fieldψ(t). The last term in the left-hand-side (Lhs) and the right-hand-side
(RHS) of the equation model the interaction with the bath. These two heuristic terms can
be derived using a model [175, 176] in which the bath consists in a set of non-interacting
harmonic oscillators of coordinatesqi that are bilinearly coupled to the state variable of the
system of interestψ. The functionη is the retarded friction [η(t, t′) = 0 for t′ > t] and
the noiseξ is a random force taken to be a Gaussian process. This assumption is quite
reasonable, for instance, for a Brownian particle with much larger mass thanthe one of the
particles of the bath, its motion being the result of a large number of successive collisions,
which is a condition for the central limit theorem to apply. Since we assume the environ-
ment to be in equilibrium,η(t, t′) is a function oft − t′ and the bath obeys the fluctuation
dissipation theorem of the ‘second kind’ [148]:

〈ξ(t)〉ξ = 0 , 〈ξ(t)ξ(t′)〉ξ = β−1 ℵ(t− t′) , (2.2)

where 〈 ... 〉ξ denotes the average over the noise history. We introduced the symmetric
kernelℵ(t − t′) ≡ η(t − t′) + η(t′ − t) = ℵ(t′ − t). If ℵ has a finite support, the noise



29

is said to be colored in reference to optics (it has a non-constant Fourierspectrum). In our
context a colored noise refers to a (Gaussian) stochastic process with amemory kernel. One
of the simplest examples is the Ornstein-Uhlenbeck process which exhibits anexponential
correlation function,

ℵ(t− t′) = η0
τn

e−|t−t′|/τn , (2.3)

whereτn is the correlation time of the noise andη0 > 0 is the friction coefficient. The white
noise limit, in which the bath has no memory, is achieved by sendingτn to zero or setting
η(t− t′) = η0δ(t− t′). The Langevin equation then takes the more familiar form

EQ([ψ], t) ≡ mψ̈(t)− F ([ψ], t) + η0ψ̇(t) = ξ(t) , (2.4)

with 〈ξ(t)ξ(t′)〉ξ = 2β−1η0δ(t− t′).
Notice that colored noises can be generated from underlying white noise processes. For

example the Ornstein-Uhlenbeck process given in eq. (2.3) corresponds to the overdamped
relaxation of a particle of coordinateξ in a quadratic potential and in contact with a white
noise thermal bath:

η0ξ̇(t) +
η0
τn
ξ(t) = ζ(t) ,

whereζ is a white noise following〈ζ(t)ζ(t′)〉ζ = 2η0β
−1δ(t− t′).

Newtonian dynamics, for which the system is not in contact with a thermal bath,are
recovered by simply takingη(t) = ℵ(t) = 0 at all t. Out of equilibrium environments can
be taken into account by relaxing the condition between the noise statistics and the friction
kernelℵ(t− t′) = η(t− t′) + η(t′ − t).

2.1.2 Multiplicative noise

We generalize our discussion to the multiplicative noise case in which the Gaussian
noiseξ is coupled to a state-dependent functionM ′(ψ). The Langevin equation reads

EQ([ψ], t) ≡ mψ̈(t)− F ([ψ], t) +M ′(ψ(t))
∫
du η(t− u)M ′(ψ(u))ψ̇(u)

=M ′(ψ(t))ξ(t) . (2.5)

This equation can also be shown by using the oscillator model for the bath and anon-linear
coupling of the formM(ψ)

∑
i ciqi whereci are coefficients that depend on the details of

the coupling andM(ψ) is a smooth function of the state variable withM(0) = 0. By a
suitable renormalization ofη, one can always achieveM ′(0) = 1. For reasons that will
soon become clear, we need to assume thatM ′(ψ) 6= 0 ∀ψ. These assumptions can be
realized with functions of the typeM(ψ) = ψ + L(ψ) whereL is a smooth and increasing
function satisfyingL(0) = L′(0) = 0. The complicated structure of the friction term takes
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its rationale from the fluctuation-dissipation theorem of the second kind that expresses the
equilibrium condition of the bath. This equation models situations in which the friction
between the system and its bath is state-dependent.ξ has the same statistics as in the additive
case, see eq. (2.2). The Langevin equation for the additive noise problem is recovered by
takingM(ψ) = ψ.

2.1.3 Initial conditions

The Langevin equation is a second order differential equation that needs twoinitial
values, say the field and its derivative at time−T . We shall use initial conditions drawn

from an initial probability distributionPi

(
ψ(−T ), ψ̇(−T )

)
and average over them. The

initial conditions are not correlated with the thermal noiseξ. In the particular case in which
the system is prepared in an equilibrium state,Pi is given by the Boltzmann measure.

2.1.4 Markov limit

Langevin equations are often given in the Markov limit in which they appear to be first
order stochastic differential equations. Second and higher order time-derivatives as well
as non-local terms such as memory kernels are not allowed. In other words, the effect of
inertia is neglected (Smoluchowski limit) and the bath is taken to be white. This is justified
in situations in which the two associated time scales are sufficiently small compared to
all other time scales involved. Concretely, the resulting equation is derived by using an
adiabatic elimination procedure that consists in integrating over the fast variablesof the
system (the velocities) and of the bath. However, this double limiting procedurerequires a
careful analysis and leads to the well known Itô–Stratonovich dilemma.

The physics of the resulting equation may depend on how the relaxation time associated
to inertia compares with the correlation time of the noise before sending the two of them
to zero. In cases in which the latter is much larger than the former, the limiting stochastic
equation should be interpreted in the sense of Stratonovich [177, 178]. TheRHSof eq. (2.5)
is given a meaning by stating thatψ in M ′(ψ(t)) is evaluated at half the sum of its values
before and after the kick. Conversely, when the inertia relaxation time is much larger than
the noise correlation time, the limiting equation should be interpreted in the Itô sense [179,
180]. In this scenario, the rule is thatM ′(ψ(t)) is evaluated just before the kickξ(t).
When the noise is additive the two conventions are equivalent (see2.B.2) for all practical
purposes. However, they are not for processes with multiplicative noise [142]. For these
it is possible to rewrite the Itô stochastic equation in terms of a Stratonovich stochastic
equation by adding an adequate drift term to the deterministic force – and be allowed to use
the rules of conventional calculus. The Fokker-Planck equation associated to the Markov
process does not depend on the scenario and the Boltzmann distribution is a steady state
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independently of the convention used. However, the action of the generating functional
acquires extra terms depending on the discretization prescription [132, 181].

In this article, we decide not to cope with the Markov limit and, unless otherwisestated,
we always keep the inertia of the system in our equations (m 6= 0) and we use a colored
noise with a finite relaxation time.

2.2 The MSRJD path-integral formalism

The generating functionals associated to the equations of motion (2.1) and (2.5) are
given by the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-integral. In this Sec-
tion we recall its construction for additive noise [82] and we extend it to multiplicative noise
using a continuous time formalism. In App.2.B we develop a careful construction in the
discretized formulation.

2.2.1 Action in the additive noise case

The Langevin equation (2.1) is a second order differential equation with sourceξ. The
knowledge of the history of the fieldξ and the initial conditionsψ(−T ) and ψ̇(−T ) is
sufficient to constructψ(t). Therefore, the probabilityP [ψ] of a givenψ history between
−T andT is linked to the probability of the noise historyPn[ξ] through

P [ψ]D[ψ] = Pn[ξ] D[ξ] Pi

(
ψ(−T ), ψ̇(−T )

)
dψ(−T ) dψ̇(−T )

implying

P [ψ] = Pn[EQ[ψ]] |J [ψ]| Pi

(
ψ(−T ), ψ̇(−T )

)
, (2.6)

whereJ [ψ] is the Jacobian which reads, up to some constant factor,

J [ψ] ≡ detuv

[
δξ(u)

δψ(v)

]
= detuv

[
δEQ([ψ], u)

δψ(v)

]
≡ J0[ψ] . (2.7)

det[...] stands for the functional determinant. We introduced the notationJ0[ψ] for future
convenience and we shall discuss it in Sec.2.2.3. After a Hubbard-Stratonovich transfor-
mation that introduces the auxiliary real field̂ψ, the Gaussian probability for a given noise
history to occur reads

Pn[ξ] = N−1

∫
D[ψ̂] e−

∫

du iψ̂(u)ξ(u)+ 1
2

∫∫

du dv iψ̂(u)β−1ℵ(u−v)iψ̂(v) ,

with the boundary conditionŝψ(−T ) = ψ̂(T ) = 0 and where all the integrals over time
run from−T to T . In the following, unless otherwise stated, we shall simply denote them
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∫
. N is a infinite constant prefactor that we absorb in a re-definition of the measureD[ψ̂].

Back in eq. (2.6) one has

P [ψ] =

∫
D[ψ̂] e−

∫

du iψ̂(u)EQ([ψ],u)+ 1
2

∫∫

dudv iψ̂(u)β−1ℵ(u−v)iψ̂(v)+lnPi+ln |J0[ψ]|

and we obtain

P [ψ]D[ψ] = D[ψ]
∫
D[ψ̂] eS[ψ,ψ̂] ,

with the MSRJD action functional

S[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)
−
∫
du iψ̂(u)EQ([ψ], u)

+
1

2

∫∫
du dv iψ̂(u) β−1ℵ(u− v) iψ̂(v) + ln |J0[ψ]| . (2.8)

The latter is the sum of a deterministic, a dissipative and a Jacobian term,

S[ψ, ψ̂] ≡ Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + ln |J0[ψ]| ,

with

Sdet[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)
−
∫
du iψ̂(u)

[
mψ̈(u)− F ([ψ], u)

]
, (2.9)

Sdiss[ψ, ψ̂] ≡
∫
du iψ̂(u)

∫
dv η(u− v)

[
β−1iψ̂(v)− ψ̇(v)

]
. (2.10)

Sdet takes into account inertia and the forces exerted on the field, as well as themeasure of
the initial condition.Sdiss has its origin in the coupling to the dissipative bath. In the white
noise limit,η(t− t′) = η0δ(t− t′), the dissipative action naively simplifies toSdiss[ψ, ψ̂] =

η0
∫
du iψ̂(u)

[
β−1iψ̂(u)− ψ̇(u)

]
(see Sec.2.1.4for additional details on this limit).

Notice that integrating away the auxiliary field̂ψ yields the Onsager-Machlup action
functional [11, 12, 182–184]. However, we prefer to work with the action written in terms
of ψ and iψ̂ as this is the form that arises as the classical limit of the Schwinger-Keldysh
action used to treat interacting out-of-equilibrium quantum systems [176, 185], that we shall
analyze along the same lines in [186].

2.2.2 Action in the multiplicative noise case

To shorten expressions, we adopt a notation in which the arguments of the fields and
functions appear as subindices,ψu ≡ ψ(u), ηu−v ≡ η(u − v), and so on and so forth, and
the integrals over time as expressed as

∫
u ≡

∫ T
−T du .
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In the case of the Langevin equation (2.5) with multiplicative noise, the relation (2.6) is
modified and reads

P [ψ] = Pn

[
EQ[ψ]

M ′(ψ)

]
|J [ψ]| Pi(ψ−T , ψ̇−T ) ,

with the Jacobian

J [ψ] = detuv

[
δEQu[ψ]/M

′(ψu)
δψv

]
= detuv

[
δu−v

M ′(ψu)

]
J0[ψ] (2.11)

and the generalization of the definition ofJ0 in eq. (2.7) to the multiplicative case:

J0[ψ] ≡ detuv

[
δEQu[ψ]

δψv
− M ′′(ψu)
M ′(ψu)

EQu[ψ] δu−v

]
. (2.12)

The construction of the MSRJD action follows the same steps as in the additive noise case,
complemented by a further transformation of the fieldiψ̂ 7→ iψ̂ M ′(ψ), the Jacobian of
which cancels the first determinant factor in theRHS of eq. (2.11). Therefore, the MSRJD
action reads

S[ψ, ψ̂] ≡ lnPi(ψ−T , ψ̇−T )−
∫

u
iψ̂uEQu[ψ]

+
1

2

∫

u

∫

v
iψ̂uM

′(ψu) β
−1ℵu−v M ′(ψv)iψ̂v + ln |J0[ψ]| , (2.13)

with J0 defined in eq. (2.12) . The deterministic part of the action is unchanged compared
to the additive noise case and the dissipative part is now

Sdiss[ψ, ψ̂] ≡
∫

u
iψ̂u

∫

v
M ′(ψu) ηu−vM

′(ψv)
[
β−1iψ̂v − ψ̇v

]
. (2.14)

2.2.3 Jacobian

In App.2.Cwe prove that even in the multiplicative colored noise case that the Jacobian
J0 is a field-independent positive constant as long as the Markov limit is not taken. One
can therefore safely drop the Jacobian term in the normalization. However,we decide to
keep track of this term in our expressions. Furthermore, it will be usefulto give an explicit
representation ofJ0 in which it is the result of a Gaussian integration over Grassmann
conjugate fieldsc andc∗,

J0[ψ] =
∫
D[c, c∗] eSJ [c,c∗,ψ] , (2.15)

with

SJ [c, c∗, ψ] ≡
∫

u

∫

v
c∗u
δEQu[ψ]

δψv
cv −

∫

u
c∗u
M ′′(ψu)
M ′(ψu)

EQu[ψ] cu , (2.16)
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and the boundary conditions:c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0. Plugging in the
Langevin equation (2.5), we arrive at

SJ [c, c∗, ψ] =

∫

u

∫

v
c∗u

[
m∂2uδu−v −

δFu[ψ]

δψv
+M ′(ψu)∂uηu−vM

′(ψv)

]
cv

−
∫

u
c∗u
M ′′(ψu)
M ′(ψu)

[
m∂2uψu − Fu[ψ]

]
cu . (2.17)

The Grassmann fieldsc andc∗ that enter the integral representation of the determinant are
known as Faddeev-Popov ghosts and can be interpreted as spinless fermions. The two-time
fermionic Green function defined as

〈c∗t ct′〉SJ ≡
∫
D[c, c∗] c∗t ct′ eS

J [c,c∗,ψ] , (2.18)

is related, by use of Wick’s theorem, to the inverse operator ofδEQt′ [ψ]
δψt

− M ′′(ψt)
M ′(ψt)

EQ[ψt]δt−t′ .
〈c∗t ct′〉SJ inherits the causality structure of the latter and it vanishes at equal times as long as
the Markov limit is not taken (i.e. all fermionic tadpole contributions cancel):〈c∗t ct′〉SJ = 0

for t ≥ t′. The last statement can be easily verified by considering the discretized version
of SJ (see App.2.B.3and App.2.C) and by checking that the diagonal terms of the inverse
operator vanish in the continuous limit. Notice thatSJ only involves combinations of the
form c∗c, i.e. it conserves the fermionic charge and〈ct〉SJ = 〈c∗t 〉SJ = 0. This implies
furthermore thatSJ [c, c∗, ψ] and more generally the MSRJD generating functional (at zero
sources) are invariant under the following field transformation

TJ (α) ≡
{

ct 7→ α ct ,

c∗t 7→ α−1 c∗t ,
∀α ∈ C

∗ . (2.19)

The Jacobian of the transformation is trivially equal to one and the measureD[c, c∗] is left
unchanged. One hasTJ (α)TJ (β) = TJ (αβ).

The total MSRJD action given in eq. (2.13) can be written equivalently as a functional
of ψ, ψ̂, c andc∗ provided that the path-integral measure is extended to the newly introduced
fermionic fields:

S[ψ, ψ̂, c, c∗] ≡ Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + SJ [c, c∗, ψ] . (2.20)

2.2.4 Observables

Measure.

We denote〈 ... 〉 the average over the thermal noise and the initial conditions. Within the
MSRJD formalism, the average is evaluated with respect to the action functionalS[ψ, ψ̂] or
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S[ψ, ψ̂, c, c∗] and we use the notation〈 ... 〉S :

〈 ... 〉S ≡
∫
D[ψ, ψ̂] ... eS[ψ,ψ̂] (2.21)

=

∫
D[ψ, ψ̂, c, c∗] ... eS[ψ,ψ̂,c,c∗] equivalently. (2.22)

Local observable.

The value of a generic local observableA at timet is a function of the field and its time-
derivatives evaluated at timet, i.e. a functional of the fieldψ aroundt, A([ψ], t). Unless
otherwise specified we assume it does not depend explicitly on time and denoteit A[ψ(t)].
Its mean is value

〈A[ψ(t)]〉 = 〈A[ψ(t)]〉S . (2.23)

Time-reversal.

Since it will be used in the rest of this work, we introduce the time-reversed field ψ̄ by
ψ̄(t) ≡ ψ(−t) for all t. The time-reversed observable is defined as

Ar([ψ], t) ≡ A([ψ̄],−t). (2.24)

It has the effect of changing the sign of all odd time-derivatives in the expression of local
observables,e.g. if A[ψ(t)] = ∂tψ(t) thenAr[ψ(t)] = −∂tψ(t). As an example for non-
local observables, the time-reversed Langevin equation (2.1) reads

EQr([ψ], t) = mψ̈(t)− Fr([ψ], t)−
∫ T

−T
du η(u− t)ψ̇(u) . (2.25)

Notice the change of sign in front of the friction term that is no longer dissipative in this
new equation.

Generating functional

Formally, the generating functional reads

Z[J, Ĵ ] ≡ 〈e
∫

du J(u)ψ(u)+Ĵ(u)iψ̂(u)〉S , (2.26)

whereJ andĴ are the sources forψ andψ̂ respectively andZ[0, 0] is normalized to unity
by construction.
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Two-time correlation.

We define the two-time self correlation function as

C(t, t′) ≡ 〈ψ(t)ψ(t′)〉 = 〈ψ(t)ψ(t′)〉S . (2.27)

In terms of the generating functional it is expressed as

C(t, t′) =
δ2Z[J, Ĵ ]

δJ(t)δJ(t′)

∣∣∣∣∣
J=Ĵ=0

. (2.28)

Given two local observablesA andB, we similarly introduce the two-time generic correla-
tion as

C{AB}(t, t
′) ≡ 〈A[ψ(t)]B[ψ(t′)]〉S , (2.29)

The curly brackets are here to stress the symmetry that underlies this definition: C{AB}(t, t
′) =

C{BA}(t
′, t).

Linear response.

If we slightly modify the potential according toV (ψ) 7→ V (ψ) − fψψ, the self linear
response at timet to an infinitesimal perturbation linearly coupled to the field at a previous
time t′ is defined as

R(t, t′) ≡ δ〈ψ(t)〉
δfψ(t′)

∣∣∣∣
fψ=0

=
δ〈ψ(t)〉S[fψ ]
δfψ(t′)

∣∣∣∣
fψ=0

. (2.30)

It is clear from causality that ift′ is later thant, 〈ψ(t)〉S[fψ ] cannot depend on the pertur-
bationfψ(t′) soR(t, t′) = 0 for t′ > t. At equal times, the linear responseR(t, t) also
vanishes as long as inertia is not neglected (m 6= 0) 1. More generally, the linear response
of A at timet to an infinitesimal perturbation linearly applied toB at timet′ < t is

RAB(t, t
′) ≡ δ〈A[ψ(t)]〉

δfB(t′)

∣∣∣∣
fB=0

=
δ〈A[ψ(t)]〉S[fB ]

δfB(t′)

∣∣∣∣
fB=0

, (2.31)

with V (ψ) 7→ V (ψ)− fBB[ψ].

1. In the double limit of a white noise andm→ 0, the equal-time response can slightly violate the causality
principle depending on the order in which the limits are taken. In the Itô scenario it vanishes whereas in the
Stratonovich one it has a finite value.
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2.2.5 Classical Kubo formula

By computing explicitly the functional derivativeδ/δfψ in the path integral generating
functional, we get

δ〈 ... 〉S[fψ ]
δfψ(t)

∣∣∣∣
fψ=0

= 〈 ... δS[ψ, ψ̂, c, c
∗; fψ]

δfψ(t)

∣∣∣∣∣
fψ=0

〉S

= 〈 ... iψ̂(t)〉S + 〈 ... M
′′(ψ(t))

M ′(ψ(t))
c∗(t)c(t)〉S .

The first term in theRHS comes from the functional derivative ofSdet. The second term
comes from the Jacobian term expressed with the fermionic ghosts,SJ , and vanishes iden-
tically (see the discussion on the equal-time fermionic Green function in Sec.2.2.3). One
has

〈iψ̂(t)〉S =
δ〈 1 〉S[fψ ]
δfψ(t)

∣∣∣∣
fψ=0

= 0 , (2.32)

〈iψ̂(t)iψ̂(t′)〉S =
δ2〈 1 〉S[fψ ]

δfψ(t) δfψ(t′)

∣∣∣∣∣
fψ=0

= 0 . (2.33)

From the definition of the linear response, eq. (2.30), we get the ‘classical Kubo for-
mula’ [148]

R(t, t′) = 〈ψ(t)iψ̂(t′)〉S . (2.34)

The linear response is here written within the MSRJD formalism as a correlation computed
with an unperturbed action. The causality of the response is not explicit, nevertheless fol-
lowing the lines of [132] one can check it is built-in2. Because of this expression, the
auxiliary field ψ̂ is often called the response field. Observe that we have not specified the
nature of the initial probability distributionPi nor the driving forces; eq. (2.34) holds even
out of equilibrium. In terms of the generating functional it is expressed as

R(t, t′) =
δ2Z[J, Ĵ ]

δJ(t)δĴ(t′)

∣∣∣∣∣
J=Ĵ=0

. (2.35)

Similarly, by plugging eq. (2.23) into eq. (2.31), we obtain the classical Kubo formula

2. In general, a multi-time correlator involvingiψ̂(t1) vanishes ift1 is the largest time involved.
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for generic observables:

RAB(t, t
′) = 〈A[ψ(t)] δS[ψ, ψ̂, c, c

∗; fB]
δfB(t′)

∣∣∣∣∣
fB=0

〉S

= 〈A[ψ(t)]
∫
du iψ̂(u)

δB[ψ(t′)]
δψ(u)

〉S

= 〈A[ψ(t)]
∞∑

n=0

∂nt′ iψ̂(t
′)
∂B[ψ(t′)]
∂ ∂nt′ψ(t

′)
〉S . (2.36)

This formula is valid in and out of equilibrium and allows us to write the response functions
associated to generic observables (e.g. functions of the position, velocity, acceleration,
kinetic energy, etc.) as correlators ofψ, ψ̂ and their time derivatives. For example ifB is
just a function of the field (and not of its time-derivatives), only then = 0-term subsists in
the above sum, yielding

RAB(t, t
′) = 〈A[ψ(t)]iψ̂(t′)∂B[ψ(t′)]

∂ψ(t′)
〉S . (2.37)

As another example, if one is interested in the response of the accelerationA[ψ(t)] =

∂2t ψ(t) to a perturbation of the kinetic energyB[ψ(t)] = 1
2m(∂tψ(t))

2 one should compute

RAB(t, t
′) = m〈∂2t ψ(t)∂t′ iψ̂(t′)∂t′ψ(t′)〉S . (2.38)

Furthermore, it is straightforward to see that within the MSRJD formalism we canextend
all the previous definitions and formulæ toA being a local functional of the auxiliary field:
A[ψ̂(t)]. For example, ifA[ψ̂(t)] = iψ̂(t) andB[ψ(t)] = ψ(t), we obtain the mixed
response

Riψ̂ψ(t, t
′) = 〈iψ̂(t)iψ̂(t′)〉S = 0 , (2.39)

where we used eq. (2.33).

2.3 Equilibrium

In this Section we focus on situations in which the system is in equilibrium. We iden-
tify a field transformation that leaves the MSRJD generating functional (evaluatedat zero
sources) invariant. The corresponding Ward-Takahashi identities between the expectation
values of different observables imply a number of model independent equilibrium proper-
ties including stationarity, Onsager relations and the fluctuation-dissipation theorem(FDT).
These proofs are straightforward in the generating functional formalism, demonstrating its
advantage with respect to the Fokker-Planck formalism or master equation ones, when the
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environment acts multiplicatively and has a non-vanishing correlation time. We shall report
soon [186] on the extension to the quantum case where the Keldysh action also exhibits a
non-trivial symmetry for equilibrium dynamics. Similarly to the classical case, thissym-
metry leads to the quantum FDT.

2.3.1 The action

Equilibrium dynamics are guaranteed provided that, apart from its interactionswith the
bath, the system is prepared and driven with the same time-independent and conservative
forces (F = −V ′). In such situations, the initial state is taken from the Boltzmann proba-
bility distribution

lnPi(ψ−T , ψ̇−T ) = −βH[ψ−T ]− lnZ ,

whereH[ψt] ≡ 1
2mψ̇

2
t + V (ψt) is the internal energy of the system, andZ is the partition

function. The Langevin evolution of the system in contact with the bath can be put in the
form

−
∫

u

δL[ψu]
δψt

+M ′(ψt)
∫

u
ηt−uM

′(ψu)ψ̇u =M ′(ψt)ξt , (2.40)

with L[ψu] ≡ 1
2mψ̇

2
u − V (ψu) being the Lagrangian of the system. In this equilibrium

set-up, the deterministic part of the MSRJD action functional reads

Sdet[ψ, ψ̂] = −βH[ψ−T ]− lnZ +

∫

u

∫

v
iψ̂u

δL[ψv]
δψu

= −β
(
1

2
mψ̇2

−T + V (ψ−T )

)
− lnZ −

∫

u
iψ̂u

[
mψ̈u + V ′(ψu)

]
.(2.41)

The dissipative part of the MSRJD action functional remains the same, see eq. (2.14). As
discussed in Sec.2.2.3, the JacobianJ0 enters the action through the constant termlnJ0 or
it can be expressed in terms of a Gaussian integral over the ghosts fieldsc andc∗. In that
case, its contribution to the action reads

SJ [c, c∗, ψ] =

∫

u

∫

v
c∗u
[
m∂2uδu−v +M ′(ψu)∂uηu−vM

′(ψv)
]
cv

−
∫

u
c∗u

[
−V ′′(ψu) +

M ′′(ψu)
M ′(ψu)

∂2uψu +
M ′′(ψu)
M ′(ψu)

V ′(ψu)

]
cu .(2.42)

2.3.2 Symmetry of the MSRJD generating functional

We shall prove that
∫
D[ψ, ψ̂, c, c∗] eS[ψ,ψ̂,c,c∗] is invariant under the field transforma-

tion:

Teq ≡
{

ψu 7→ ψ−u , cu 7→ c∗−u ,
iψ̂u 7→ iψ̂−u + β∂uψ−u , c∗u 7→ −c−u .

(2.43)
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This transformation is involutary,TeqTeq = 1, when applied to the fieldsψ or iψ̂ and
the composite fieldc∗c. It does not involve the kernelη and includes a time-reversal. It
is interesting to notice that the invariance is achieved independently by the deterministic
(Sdet), the dissipative (Sdiss) and the Jacobian (SJ ) contributions to the action. This means
that it is still valid in the Newtonian limit (η = 0).

In terms of the generating functional, the symmetry reads

Z[J, Ĵ ] = Z[J̄ + β∂Ĵ, Ĵ ] , (2.44)

whereJ(u) ≡ J(−u) andĴ(u) ≡ Ĵ(−u).
The detailed proof that we develop here consists of two parts: we first show that the

Jacobian of the transformation is unity, then that the integration domain of the transformed
fields is unchanged. Afterwards we show that the action functionalS[ψ, ψ̂, c, c∗] is invariant
underTeq.

Invariance of the measure.

The transformationTeq acts separately on the fieldsψ andiψ̂ on the one hand, and the
fields c and c∗ on the other. The JacobianJeq thus factorizes into a bosonic part and a
fermionic part. The bosonic part is the determinant of a triangular matrix:

J b
eq ≡ det

[
δ(ψ, ψ̂)

δ(Teqψ, Teqψ̂)

]
= det−1

uv

[ δψ−u

ψv
0

δψ̂−u

ψv

δψ̂−u

ψ̂v

]
=
(
det−1

uv [δu+v]
)2

= 1

and it is thus identical to one [187]. It is easy to verify that the fermionic partJ f
eq = 1 as

well.

Invariance of the integration domain.

Before and after the transformation, the functional integration on the fieldψ is per-
formed for values ofψt on the real axis. However, the new domain of integration for the
field ψ̂ is complex. For a given timet, ψ̂t is now integrated over the complex line with
a constant imaginary part−iβ∂tψt. One can return to an integration over the real axis by
closing the contour at both infinities. Indeed the integrand,eS , goes to zero sufficiently fast
atψt → ±∞ for neglecting the vertical ends of the contour thanks to the termβ−1η0(iψ̂t)

2

in the action. Furthermore the new field is also integrated with the boundary conditions
ψ̂(−T ) = ψ̂(T ) = 0.

The transformationTeq leaves the measureD[c, c∗] unchanged together with the set of
boundary conditionsc(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0.
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Invariance of the action functional.

The MSRJD action functionalS[ψ, ψ̂, c, c∗] = Sdet[ψ, ψ̂] + Sdiss[ψ, ψ̂] + SJ (c, c∗, ψ)
is invariant term by term. The deterministic contribution given in eq. (2.41) satisfies

Sdet[Teqψ, Teqψ̂] = lnPi(ψT , ψ̇T )−
∫

u

[
iψ̂−u + β∂uψ−u

] [
m∂2uψ−u + V ′(ψ−u)

]

= lnPi(ψT , ψ̇T )−
∫

u
iψ̂u

[
mψ̈u + V ′(ψu)

]
+ β

∫

u
ψ̇u

[
mψ̈u + V ′(ψu)

]

= lnPi(ψT , ψ̇T )−
∫

u
iψ̂u

[
mψ̈u + V ′(ψu)

]
+ β

∫

u
∂uH[ψu]

= Sdet[ψ, ψ̂] ,

where we used the initial equilibrium measurelnPi(ψ, ψ̇) = −βH[ψ] − lnZ. In the first
line we just applied the transformation, in the second line we made the substitutionu 7→ −u,
in the third line we wrote the last integrand as a total derivative the integral of which cancels
the first term and creates a new initial measure.

Secondly, we show that the dissipative contributionSdiss[ψ, ψ̂], defined in eq. (2.10), is
also invariant underTeq. We have

Sdiss[Teqψ, Teqψ̂] =

∫

u

[
iψ̂−u + β∂uψ−u

] ∫

v
β−1M ′(ψ−u) ηu−vM

′(ψ−v) iψ̂−v

=

∫

u

[
iψ̂u − βψ̇u

] ∫

v
M ′(ψu) ηv−uM

′(ψv)β
−1iψ̂v

= Sdiss[ψ, ψ̂] .

In the first line we just applied the transformation, in the second line we made the substitu-
tion u 7→ −u and in the last step we exchangedu andv.

Finally, we show that the Jacobian term in the action is invariant once it is expressed
in terms of a Gaussian integral over conjugate Grassmann fields (c andc∗). We start from
eq. (2.42)

SJ (Teqc, Teqc∗, Teqψ) = −
∫

u

∫

v
c−u

[
m∂2uδu−v +M ′(ψ−u)∂uηu−vM

′(ψ−v)
]
c∗−v

+

∫

u
c−u

[
−V ′′(ψ−u) +

M ′′(ψ−u)
M ′(ψ−u)

∂2uψ−u +
M ′′(ψ−u)
M ′(ψ−u)

V ′(ψ−u)

]
c∗−u

=

∫

u

∫

v
c∗v
[
m∂2uδv−u −M ′(ψu)∂uηv−uM

′(ψv)
]
cu

−
∫

u
c∗u

[
−V ′′(ψu) +

M ′′(ψu)
M ′(ψu)

∂2uψu +
M ′′(ψu)
M ′(ψu)

V ′(ψu)

]
cu

= SJ (c, c∗, ψ) .



42

In the first line we just applied the transformation, in the second line we exchanged the
anti-commuting Grassmann variables and made the substitutionsu 7→ −u andv 7→ −v, in
the last step we used∂vηv−u = −∂vηu−v and exchangedu andv.

2.3.3 Ward-Takahashi identities

We just proved that equilibrium dynamics manifest themselves as a symmetry of the
MSRJD action and more generally at the level of the generating functional. This symmetry
has direct consequences at the level of correlation functions. IfA is a generic functional of
ψ andψ̂ we get the following Ward-Takahashi identity

〈A[ψ, ψ̂] ... 〉S = 〈A[Teqψ, Teqψ̂] ... 〉S . (2.45)

The use of this identity leads to all the possible equilibrium relations between observables
as we shall now describe in the following.

2.3.4 Stationarity

In equilibrium, one expects noise-averaged observables to be independent of the time
t0 at which the system was prepared (in our caset0 = −T ). One-time dependent noise-
averaged observables are expected to be constant,〈A[ψt]〉 = ct, and two-time correlations
to be time-translational invariant:〈A[ψt]B[ψt′ ]〉 = ft−t′ . Similarly, one argues that multi-
time correlations can only depend upon all possible independent time-differences between
the times involved. These statements have been proven for additive white noise processes
using the Fokker-Planck [188] or SUSY formalisms [99–101]. The use of the transforma-
tion Teq allows one to show these properties very easily for generic Langevin processes.

One-time observables. TakingA = 1 and lettingB be a generic local observable, the
equal-time linear response vanishes,RAB(t, t) = 0. Using the classical Kubo formula (2.36)
we obtain

RAB(t, t) = 〈
∞∑

n=0

∂nt iψ̂t
∂B[ψt]

∂ ∂nt ψt
〉S = 0 .

Applying the transformationTeq, we find

RAB(t, t) = 〈
∞∑

n=0

∂nt iψ̂−t
∂Br[ψ−t]
∂ ∂nt ψ−t

〉S + β〈
∞∑

n=0

∂n+1
t ψ−t

∂Br[ψ−t]
∂ ∂nt ψ−t

〉S .

The LHS and the first term in theRHS vanish identically at all times. One is left with the
second term in theRHS that simply reads〈∂tBr[ψ−t]〉 = ∂t〈Br[ψ−t]〉 = 0, proving that all
one-time local observables are constant in time.
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Two-time observables. Because we just showed that〈A[ψ(t)]〉 is constant in equilibrium,
the responseRAB(t, t′), see its formal definition in eq. (2.31), can only be a function of
the time-difference between the observation time and the time at which the perturbation is
applied. Therefore can it be written in the formRAB(t, t′) = f(t − t′)θ(t − t′). We shall
see in Sec.2.3.7that the fluctuation-dissipation theorem relates, in equilibrium, the linear
responseRAB(t, t′) to the two-time correlationC{AB}(t, t

′) implying that this last quantity
is also time-translational invariant.

Similarly, (n+1)-time correlators can be proven to be functions ofn independent time-
differences because they are related, in equilibrium, to responses ofn-time correlators that
are time-translational invariant.

2.3.5 Equipartition theorem

Let us consider the local observablesA[ψ(t)] = ∂tψ(t) andB[ψ(t)] = ψ(t). In that
caseRAB(t, t′) = 〈∂tψtiψ̂t′〉S = ∂t〈ψtiψ̂t′〉S and we recognize∂tR(t, t′). Using the field
transformationTeq, we get

∂tR(t, t
′) = ∂t〈ψ−tiψ̂−t′〉S + β〈∂tψ−t∂t′ψ−t′〉S

= ∂t〈ψ−tiψ̂−t′〉S + β〈∂tψt∂t′ψt′〉S

If t > t′, the first term in theRHS vanishes by causality. Considering moreover the limit
t′ → t− the LHS is 1/m as we shall show in Sec.2.4.2. Finally, we get the equipartition
theorem

βm〈(∂tψt)2〉 = 1 . (2.46)

2.3.6 Reciprocity relations

If we useTeq in the expression (2.29) of generic two-time correlation functions, we get

〈A[ψt]B[ψt′ ]〉S = 〈Ar[ψ−t]Br[ψ−t′ ]〉S ,

reading

C{AB}(t, t
′) = C{ArBr}(−t,−t′) . (2.47)

In the cases in whichA andB have a definite parity under time-reversal we obtain

C{AB}(τ) = C{AB}(|τ |) if A andB have the same parity,

C{AB}(τ) = −C{AB}(−τ) otherwise.
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2.3.7 Fluctuation-dissipation theorem (FDT)

Self FDT.

Applying the transformation to the expression (2.34) of the self responseR(t, t′) we
find

〈ψtiψ̂t′〉S = 〈TeqψtTeqiψ̂t′〉S = 〈ψ−tiψ̂−t′〉S + β〈ψ−t∂t′ψ−t′〉S ,

and we read

R(t, t′) = R(−t,−t′) + β∂t′C(−t,−t′)

that, using the equilibrium time-translational invariance, becomes

R(τ)−R(−τ) = −β∂τC(−τ) ,

where we setτ ≡ t− t′. SinceC(τ) is symmetric inτ by definition, this expression can be
recast, once multiplied byΘ(τ), as

R(τ) = −Θ(τ)β∂τC(τ) . (2.48)

Equation (2.48) is the well-known fluctuation-dissipation theorem. It allows one to predict
the slightly out-of-equilibrium behavior of a system – such as the irreversible dissipation of
energy into heat – from its reversible fluctuations in equilibrium.

Generic two-time FDTs.

We generalize the previous FDT relation to the case of generic local observablesA and
B. Applying the transformationTeq to expression (2.36) of the linear responseRAB(t, t′)

〈A[ψt]
∞∑

n=0

∂nt′ iψ̂t′
∂B[ψt′ ]

∂ ∂nt′ψt′
〉S = 〈Ar[ψ−t]

∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]
∂ ∂nt′ψt′

〉S

+β 〈Ar[ψ−t]
∞∑

n=0

∂n+1
t′ ψ−t′

∂Br[ψ−t′ ]
∂ ∂nt′ψt′

〉S

= 〈Ar[ψ−t]
∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]
∂ ∂nt′ψt′

〉S + β ∂t′〈Ar[ψ−t]Br[ψ−t′ ]〉S .

Applying once again the transformation to the last term in theRHS yields

〈A[ψt]
∞∑

n=0

∂nt′ iψ̂t′
∂B[ψt′ ]

∂ ∂nt′ψt′
〉S = 〈Ar[ψ−t]

∞∑

n=0

∂nt′ iψ̂−t′
∂Br[ψ−t′ ]
∂ ∂nt′ψt′

〉S + β∂t′〈A[ψt]B[ψt′ ]〉S
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which reads

RAB(τ)−RArBr(−τ) = −β∂τC{AB}(τ) . (2.49)

By multiplying both sides byΘ(τ) we obtain the FDT for any localA andB

RAB(τ) = −Θ(τ)β∂τC{AB}(τ) . (2.50)

2.3.8 Higher-order FDTs: e.g. 3-time observables

We give a derivation,via the symmetry of the MSRJD formalism, of relations shown
and discussed in,e.g. [188], within the Fokker-Planck formalism for stochastic processes
with white noise.

Response of a two-time correlation.

We first look at the response of a two-time correlator to a linear perturbation applied at
time t1

R(t3, t2; t1) ≡
δ〈ψt3ψt2〉
δfψt1

∣∣∣∣∣
fψ=0

. (2.51)

In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t3, t2; t1) = 〈ψt3ψt2 iψ̂t1〉S . (2.52)

Causality ensures that the response vanishes if the perturbation is posterior to the observa-
tion times:R(t3, t2; t1) = 0 if t1 > max(t2, t3). We assume without loss of generality that
t2 < t3. Under equilibrium conditions, the response transforms underTeq as

R(t3, t2; t1) = 〈ψ−t3ψ−t2 iψ̂−t1〉S + β∂t1〈ψ−t3ψ−t2ψ−t1〉S .

Multiplying both sides byΘ(t3 − t1) and transforming once again the last term in theRHS,
we get

R(t3, t2; t1) =





β∂t1〈ψt3ψt2ψt1〉S if t1 < t2 < t3 ,

R(−t3,−t2;−t1) + β∂t1〈ψt3ψt2ψt1〉S if t2 < t1 < t3 ,

0 if t2 < t3 < t1 .

(2.53)
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Second order response.

Let us now look at the response to a perturbation at timet1 of the linear response
R(t3, t2):

R(t3; t2, t1) ≡
δ2〈ψt3〉

δfψt1 δfψt2

∣∣∣∣∣
fψ=0

. (2.54)

In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t3; t2, t1) = 〈ψt3 iψ̂t2 iψ̂t1〉S . (2.55)

It is clear from causality that the response vanishes if the observation time is before the two
perturbations:R(t3; t2, t1) = 0 if t3 < min(t1, t2). The response transforms underTeq as

R(t3; t2, t1) = R(−t3;−t2,−t1) + β∂t1R(−t3,−t1;−t2)
+ β∂t2R(−t3,−t2;−t1) + β2∂t1∂t2〈ψ−t3ψ−t2ψ−t1〉S .

Let us assume without loss of generality thatt1 < t2. Using causality arguments and
applying once more theTeq transformation to the remaining terms we obtain

R(t3; t2, t1) =





0 if t3 < t1 < t2 ,

R(−t3;−t2,−t1) + β∂t1R(t3, t1; t2) if t1 < t3 < t2 ,

β∂t1R(t3, t1; t2) if t1 < t2 < t3 .

(2.56)

2.3.9 Onsager reciprocal relations

Rewriting twice eq. (2.49) as

RAB(τ)−RArBr(−τ) = −β∂τC{AB}(τ) ,

RBA(−τ)−RBrAr(τ) = β∂τC{BA}(−τ) = β∂τC{AB}(τ) ,

and summing up these two equations withτ > 0 we get

RAB(τ) = RBrAr(τ) .

These equilibrium relations, known as the Onsager reciprocal relations, express the fact that
the linear response of an observableA to a perturbation coupled to another observableB

can be deduced by the response ofBr to a perturbation coupled toAr.
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2.3.10 Supersymmetric formalism

Generating functional.

The generating functional of stochastic equations with conservative forcesadmits a su-
persymmetric formulation. This has been derived and discussed for additive noise in a num-
ber of publications [189, 98–101]. We extend it here to multiplicative non-Markov Langevin
processes (see [190] for a study of the massless and white noise limits). To this end, let us
introduceθ andθ∗, two anticommuting Grassmann coordinates, and the superfield

Ψ(t, θ, θ∗) ≡ ψ(t) + c∗(t) θ + θ∗ c(t) + θ∗θ

(
iψ̂(t) + c∗(t) c(t)

M ′′(ψ(t))
M ′(ψ(t))

)
.

The MSRJD actionS [see eq. (2.20)] has a compact representation in terms of this super-
field:

S = Sdet
susy + Sdiss

susy , (2.57)

with

Sdet
susy[Ψ] ≡ −β

∫
dθ dθ∗ θ∗θH[Ψ(−T, θ, θ∗)]− lnZ +

∫
dΥ L[Ψ(Υ)] ,

Sdiss
susy[Ψ] ≡ 1

2

∫∫
dΥ′ dΥM(Ψ(Υ′))D(2)(Υ′,Υ)M(Ψ(Υ)) ,

H[Ψ] ≡ 1
2mΨ̇2 + V (Ψ) andL[Ψ] ≡ 1

2mΨ̇2 − V (Ψ). We used the notationΥ ≡ (t, θ, θ∗)
anddΥ ≡ dt dθ dθ∗. The ‘dissipative’ differential operator is defined as

D(2)(Υ′,Υ) ≡ η(t′ − t)δ(θ∗′ − θ∗)δ(θ′ − θ)
(
2β−1 ∂2

∂θ ∂θ∗
+
−→
sigθ

∂

∂t

)
,

where
−→
sigθ is a short notation for2θ ∂

∂θ − 1. It is equal to 1 if there is aθ factor in the right
and to -1 otherwise.D(2) can be written as

D(2)(Υ′,Υ) = η(t′ − t)δ(θ∗′ − θ∗)δ(θ′ − θ)
(
D̄D−DD̄

)
,

with the (covariant3) derivatives acting on the superspace:

D̄ ≡ ∂

∂θ
, D ≡ β−1 ∂

∂θ∗
− θ ∂

∂t
, (2.58)

that obey4 {D̄,D} = − ∂
∂t and{D,D} = {D̄, D̄} = 0. In the white noise limit the

dissipative part of the action simplifies to

Sdiss
susy[Ψ] =

1

2

∫
dΥM(Ψ(Υ))D(2)(Υ)M(Ψ(Υ)) ,

3. Covariant in the sense that the derivative of a supersymmetric expression is still supersymmetric.
4. Therefore thėΨ2 term inL[Ψ] can be written in terms of covariant derivatives as

(

{D̄,D}Ψ
)2

.
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with the ‘dissipative’ differential operator

D(2)(Υ) ≡ η0

(
2β−1 ∂2

∂θ ∂θ∗
+
−→
sigθ

∂

∂t

)
= η0

(
D̄D−DD̄

)
.

Notice that this formulation is only suitable situations in which the applied forces are con-
servative. The Jacobian termSJ contributes to both the deterministic (Sdet

susy) and the dissi-
pative part (Sdiss

susy) of the action.

Symmetries.

In terms of the superfield, the transformationTJ (α) defined in eq. (2.19) acts as

TJ (α) ≡ Ψ(t, θ, θ∗) 7→ Ψ(t, α−1θ, αθ∗) ∀α ∈ C
∗ , (2.59)

and leaves the actionS[Ψ], see eq. (2.57), invariant. The transformationTeq given in
eq. (2.43) acts as

Teq ≡ Ψ(t, θ, θ∗) 7→ Ψ(−t− βθ∗θ,−θ∗, θ) , (2.60)

and leaves the actionS[Ψ], see eq. (2.57), invariant.

The actionS[Ψ] given in (2.57) has an additional supersymmetry generated by

Q ≡ ∂

∂θ∗
, Q̄ ≡ β−1 ∂

∂θ
+ θ∗

∂

∂t
,

that obey{Q̄,Q} = ∂
∂t and{Q,Q} = {Q̄, Q̄} = {D,Q} = {D, Q̄} = {D̄,Q} =

{D̄, Q̄} = 0. Both operatorsQ andQ̄ are thus nilpotent and{Q̄,Q} is the generator of the
Lie sub-group. They act on the superfield as

eǫ
∗QΨ = Ψ+ ǫ∗QΨ , eǫQ̄Ψ = Ψ+ ǫQ̄Ψ ,

whereǫ andǫ∗ are two extra independent5 Grassmann constants and

QΨ = c+ θ

(
iψ̂ + c∗c

M ′′(ψ)
M ′(ψ)

)
, (2.61)

Q̄Ψ = −β−1c∗ − θ∗
(
β−1iψ̂ − ∂tψ + β−1c∗c

M ′′(ψ)
M ′(ψ)

)
− θ∗θ ∂tc∗ . (2.62)

Expressed in terms of superfield transformations,S[Ψ] is invariant under both

Ψ(t, θ, θ∗) 7→ Ψ(t, θ, θ∗ + ǫ∗) , (2.63)

5. ǫ andǫ∗ are independent in particular of the coordinatesθ andθ∗.
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and

Ψ(t, θ, θ∗) 7→ Ψ(t+ ǫθ∗, θ + β−1ǫ, θ∗) . (2.64)

Here again, the invariance of the action is achieved independently by the deterministic
(Sdet) and the dissipative (Sdiss) contributions. We would like to stress the fact that the
presence of the boundary term accounting for the initial equilibrium measure of the fieldψ
as well as the boundary conditions for the fieldsiψ̂, c andc∗ are necessary to obtain a full
invariance of the action.

BRS symmetry.

The symmetry generated byQ is the BRS symmetry that generically arises when a
system has dynamical constraints (here we impose the system to obey the Langevin equation
of motion). Applying the corresponding superfield transformation in〈Ψ(t, θ, θ∗)〉S gives

〈Ψ(t, θ, θ∗)〉S = 〈Ψ(t, θ, θ∗) + ǫ∗QΨ(t, θ, θ∗)〉S ,

and therefore〈QΨ(t, θ, θ∗)〉S = 0. This leads to

〈ct〉S = 0 , 〈iψ̂t + c∗t ct
M ′′(ψt)
M ′(ψt)

〉S = 0 . (2.65)

Applying the transformation inside the two-point correlator〈Ψ(t, θ, θ∗)Ψ(t′, θ′, θ∗′)〉S , we
get 〈QΨ(t, θ, θ∗)Ψ(t′, θ′, θ∗′)〉S +(t, θ, θ∗)↔ (t′, θ′, θ∗′) = 0. This leads in particular to
identify the two-time fermionic correlator as being the (bosonic) linear response:

R(t, t′) ≡ 〈ψt
[
iψ̂t′ + c∗t′ct′

M ′(ψt′)
M ′′(ψt′)

]
〉S = 〈c∗t′ct〉S . (2.66)

Corroborating the discussion in Sec.2.2.3, this tells us in particular that〈c∗t ct′〉S (and more
generally the fermionic Green function〈c∗t ct′〉SJ ) vanishes fort > t′ and also fort = t′

provided that the Markov limit is not taken. Using this result, the second relation in (2.65)
now yields〈iψ̂t〉S = 0.

FDT.

The use of the symmetry generated byQ̄ on 〈Ψ(t, θ, θ∗)〉S gives,

〈c∗t 〉S = 0 , 〈iψ̂t − β∂tψt〉S = 0 . (2.67)

By use of〈iψ̂t〉S = 0 (which was a consequence of the BRS symmetry), the second relation
becomes∂t〈ψt〉S = 0. This expresses the stationarity and can be easily generalized to more
complicated one-time observables,A(ψ), by use of the supersymmetry in〈A(Ψ)〉S .
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The use of the symmetry generated byQ̄ on a two-point correlator of the superfield
reads

〈Ψ(t, θ, θ∗)Ψ(t′, θ′, θ∗′)〉S = 〈Ψ(t+ ǫθ∗, θ + βǫ, θ∗)Ψ(t′ + ǫθ∗′, θ′ + βǫ, θ∗′)〉S ,

giving, amongst other relations,

〈ψt
[
iψ̂t′ − β∂t′ψt′ + c∗t ct

M ′′(ψt)
M ′(ψt)

]
− c∗t ct′〉S = 0 . (2.68)

As discussed in Sec.2.3.10, 〈c∗t ct′〉SJ vanishes fort ≥ t′. Therefore, the term inc∗t ct
disappears from eq. (2.68) and the FDT is obtained by multiplying both sides of the equation
byΘ(t− t′)

R(t, t′) = β∂t′C(t, t
′)Θ(t− t′) .

2.3.11 Link betweenTeq and the supersymmetries

It is interesting to remark that both supersymmetries (the one generated byQ and the
one generated bȳQ) are needed to derive equilibrium relations such as stationarity or the
FDT. All the Ward-Takahashi identities generated by the combined use of these supersym-
metries can be generated byTeq but the inverse is not true. The supersymmetries do not
yield relations in which a time-reversal appears explicitly such as the Onsagerreciprocal
relations.

It is clear from its expression in terms of the superfield, eq. (2.60), that the equilibrium
transformationTeq cannot be written using the generator of a continuous supersymmetry.
However, the transformationTeq can be formally written in terms of the supersymmetry
generators as

Teq ≡ Ψ 7→ ΠΞeQ̃Ψ , (2.69)

whereΠ is the time-reversal operator (t 7→ −t), Ξ exchanges the extra Grassmann coordi-
nates (θ 7→ −θ∗ andθ∗ 7→ θ) and the generator̃Q is defined in terms ofQ andQ̄ as

Q̃ ≡ −βθ∗θ {Q̄,Q} = −βθ∗θ ∂
∂t

. (2.70)

2.3.12 Newtonian limit: a phase space approach

For a system described by the time-independent HamiltonianH(x, p), wherex is the
coordinate andp the conjugate momentum, the dynamics are given by the two Hamilton’s
equations:

EQX[x(t), p(t)] ≡ ẋ− ∂pH(x, p) = 0 ,

EQP[x(t), p(t)] ≡ ṗ+ ∂xH(x, p) = 0 .
(2.71)
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For a given set of initial conditionsxi andpi, they have only one set of solutionsxsol(t) and
psol(t). One can construct a path integral as

〈A[x, p]〉 ∝
∫
D[x, p] A[x, p]δ[x− xsol]δ[p− psol]e−βH(x(−T ),p(−T ))

∝
∫
D[x, p, x̂, p̂] A[x, p]|J xJ p|eS[x,p,x̂,p̂] , (2.72)

with the boundary conditionŝx(−T ) = p̂(−T ) = x̂(T ) = p̂(T ) = 0. We averaged over
equilibrium initial conditions and introduced the action functional

S[x, p, x̂, p̂] ≡ −βH(x(−T ), p(−T ))

−
∫

u
ix̂u [ṗu + ∂xuH(xu, pu)] + ip̂u [ẋu − ∂puH(xu, pu)] .

Let us now assume thatH(x, p) = g(p) + f(x). It follows that the JacobiansJ x ≡
detuv

[
δEQX[x(u),p(u)]

δx(v)

]
andJ p ≡ detuv

[
δEQP[x(u),p(u)]

δp(v)

]
are field independent constants that

can be dropped in the normalization. The generating functional at zero sources is invariant
under the transformation

T ′
eq ≡

{
xu 7→ x−u , pu 7→ −p−u ,
ix̂u 7→ ix̂−u + β∂ux−u , ip̂u 7→ −ip̂−u + β∂up−u ,

(2.73)

as long as the Hamiltonian is time-reversal invariant,i.e.H(x, p) = Hr(x, p) = H(x,−p).

2.4 Out of equilibrium

We now turn to more generic situations in which the system does no longer evolve in
equilibrium. This means that it can now be prepared with an arbitrary distributionand it can
evolve with time-dependent and non-conservative forcesfnc.

We first show that the way in which the symmetryTeq is broken gives a number of so-
called transient6 fluctuations relations [25, 27, 150, 29, 151, 152], [153–158], [159–161].
Although fluctuation theorems in cases with additive colored noise were studied inseveral
publications [154–157], we are not aware of similar studies in cases with multiplicative
noise.

We then exhibit another symmetry of the MSRJD generating functional, valid in and
out of equilibrium. This new symmetry implies out-of-equilibrium relations between corre-
lations and responses and generalizes the formulæ in [162–169] obtained for additive white
noise. Finally, we come back to the equilibrium case to combine the two symmetries and
deduce other equilibrium relations.

6. As opposed tosteady-statefluctuation relations the validity of which is only asymptotic, in the limit of
long averaging times.



52

2.4.1 Non-equilibrium fluctuation relations

Work fluctuation theorems.

Let us assume that the system is initially prepared in thermal equilibrium with respect to
the potentialV (ψ, λ−T ) 7. The expression for the deterministic part of the MSRJD action
functional [see eq. (2.9)] is

Sdet[ψ, ψ̂;λ, fnc] = −βH([ψ−T ], λ−T )− lnZ(λ−T )

−
∫

u
iψ̂u

[
mψ̈u + V ′(ψu, λu)− fncu [ψ]

]
,

whereH([ψt], λt) ≡ 1
2mψ̇

2
t + V (ψt, λt). The external work done on the system along

a given trajectory between times−T andT is the sum of the work induced by the non-
conservative forces and the one performed through the external protocol λ:

W [ψ;λ, fnc] ≡
∫

u
ψ̇u f

nc
u [ψ] +

∫

u
∂uλu ∂λV (ψu, λu) . (2.74)

The transformationTeq does not leaveSdet invariant but yields

Sdet[ψ, ψ̂;λ, fnc] 7→ Sdet[ψ, ψ̂; λ̄, fncr ] + β∆Fr − βW [ψ; λ̄, fncr ] , (2.75)

or equivalently

Sdet[ψ, ψ̂;λ, fnc] + β∆F − βW [ψ;λ, fnc] 7→ Sdet[ψ, ψ̂; λ̄, fncr ] . (2.76)

Sdet[ψ, ψ̂; λ̄, fncr ] corresponds to the MSRJD action of the system that is prepared (in equi-
librium) and evolves under the time-reversed protocolλ̄(u) ≡ λ(−u) and external forces
fncr ([ψ], u) ≡ fnc([ψ̄],−u). ∆Fr is the change in free energy associated to this time-
reversed protocol:β∆Fr = − lnZ(λ̄(T )) + lnZ(λ̄(−T )) = −β∆F between the initial
and the final ‘virtual’ equilibrium states. The dissipative part of the action,Sdiss, is still
invariant underTeq. This means that, contrary to the external forcesF , the interaction with
the bath is time-reversal invariant: the friction is still dissipative after the transformation.
This immediately yields

eβ∆F 〈A[ψ, ψ̂]e−βW [ψ;λ,fnc]〉S[λ,fnc] = 〈A[Teqψ, Teqψ̂]〉S[λ̄,fncr ] (2.77)

for any functionalA of ψ andψ̂. In particular for a local functional of the field,A[ψ(t)], it
leads to the relation [152]

eβ∆F 〈A[ψ(t)]e−βW [ψ;λ,fnc]〉S[λ,fnc] = 〈Ar[ψ(−t)]〉S[λ̄,fncr ] , (2.78)

7. This is in fact a restriction on the initial velocities,ψ̇−T , that are to be taken from the Boltzmann dis-
tribution with temperatureβ−1, independently of the positionsψ−T . The distribution of these latter can be
tailored at will through theλ dependence ofV .
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or also

eβ∆F 〈A[ψ(t)]B[ψ(t′)]e−βW [ψ;λ,fnc]〉S[λ,fnc]
= 〈Ar[ψ(−t)]Br[ψ(−t′)]〉S[λ̄,fncr ]. (2.79)

SettingA[ψ, ψ̂] = 1, we obtain the Jarzynski equality [191, 150]

eβ∆F 〈e−βW [ψ;λ,fnc]〉S[λ,fnc] = 1 . (2.80)

SettingA[ψ, ψ̂] = δ(W −W [ψ;λ, fnc]) we deduce the Crooks fluctuation theorem [27, 29,
192]

P (W ) = Pr(−W ) eβ(W−∆F) , (2.81)

whereP (W ) is the probability for the external work done between−T andT to beW
given the protocolλ(t) and the non-conservative forcefnc([ψ], t). Pr(W ) is the same
probability, given the time-reversed protocolλ̄ and time-reversed forcefncr . The previous
Jarzynski equality is the integral version of this theorem.

Fluctuation theorem.

Let us now relax the condition that the system is prepared in thermal equilibrium and
allow for any initial distributionPi. We recall the corresponding deterministic part of the
MSRJD action functional given in Sec.2.2, eq. (2.9)

Sdet[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)

−
∫
du iψ̂(u)

[
mψ̈(u) + V ′(ψ(u), λ(u))− fnc([ψ], u)

]
.

The transformationTeq does not leaveSdet invariant but one has

Sdet[ψ, ψ̂;λ, fnc]− S 7→ Sdet[ψ, ψ̂; λ̄, fncr ] ,

with the stochastic entropyS ≡ −
[
lnPi(ψ(T ),−ψ̇(T ))− lnPi(ψ(−T ), ψ̇(−T ))

]
− βQ.

The first term is the Shannon entropy whereas the second term is the exchange entropy
defined through the heat transferQ ≡ ∆H −W [ψ;λ, fnc]. ∆H ≡ H([ψ(T )], λ(T )) −
H([ψ(−T )], λ(−T )) is the change of internal energy. The dissipative part of the action,
Sdiss, is still invariant underTeq. This immediately yields

〈A[ψ, ψ̂]e−S〉S[λ,fnc] = 〈A[Teqψ, Teqψ̂]〉S[λ̄,fncr ] (2.82)

for any functionalA of ψ andψ̂. SettingA[ψ, ψ̂] = 1, we obtain the integral fluctuation
theorem (sometimes referred as the Kawasaki identity [193, 194])

1 = 〈e−S〉S[ψ,ψ̂;λ,fnc] . (2.83)
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which using the Jensen inequality gives〈S〉S[ψ,ψ̂;λ,fnc] ≥ 0, expressing the second law of

thermodynamics. SettingA[ψ, ψ̂] = δ(ζ − S) we obtain the fluctuation theorem [27, 29,
192]

P (ζ) = Pr(−ζ) eζ , (2.84)

whereP (ζ) is the probability for the entropy created between−T andT to be ζ given
the protocolλ(t) and the non-conservative forcefnc([ψ], t). Pr(ζ) is the same probability,
given the time-reversed protocolλ̄ and time-reversed forcefncr .

Similar results can be obtained for isolated systems by switching off the interaction with
the bath,i.e. by takingη = 0. It is also straightforward to obtain extended relations when the
bath is taken to be out of equilibrium, for example by usingℵ(t− t′) 6= η(t− t′)+η(t′− t),
and the contribution of the change in the dissipative action is taken into account. This kind
of fluctuation relation may be specially important in quantum systems.

2.4.2 Generic relations between correlations and linear responses

A number of generic relations between linear responses and the averages of other ob-
servables have been derived for different types of stochastic dynamics: Langevin with ad-
ditive white noise [162], Ising variables with Glauber updates [163], or the heat-bath algo-
rithm [164–167], and even molecular dynamics of hard spheres or Lennard-Jones particle
systems [168]. Especially interesting are those in which the relation is established with
functions of correlations computed with the unperturbed dynamics [162, 165] as explained
in [169]. The main aim of the studies in [163–169] was to give the most efficient com-
putational method to obtain the linear response in the theoretical limit of no applied field.
Another set of recent articles discusses very similar with the goal of giving a thermodynamic
interpretation to the various terms contributing the linear response [170–173].

In the concrete case of Langevin processes this kind of relations can be very simply
derived by multiplying the equation by the field or the noise and averaging over the noise in
the way done in [162]. We derive here the same relations within the MSRJD formalism, us-
ing a symmetry property that is more likely to admit an extension to systems with quantum
fluctuations.

A symmetry of the MSRJD generating functional valid also out of equilibrium.

We consider the most generic out-of-equilibrium situation. We allow for any initial
preparation (Pi) and any evolution of the system (F ).

∫
D[ψ, ψ̂] eS[ψ,ψ̂] is invariant under
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the involutary field transformationTeom, given by

Teom ≡





ψu 7→ ψu ,

iψ̂u 7→ −iψ̂u +
2β

M ′(ψu)

∫

v
ℵ−1
u−v

EQv[ψ]

M ′(ψv)
,

(2.85)

The meaning of the subscript referring to ‘equation of motion’ will become clearin the
following. For additive noise [M ′(ψ) = 1] the transformation becomes

iψ̂u 7→ −iψ̂u + 2β

∫

v
ℵ−1
u−v

[
mψ̈v − Fv[ψ] +

∫

w
ηv−wψ̇w

]
,

and in the additive white noise limit simplifies to

iψ̂u 7→ −iψ̂u + βη−1
0

[
mψ̈u − Fu[ψ] + η0ψ̇u

]
. (2.86)

The proof is similar to the one of the previous equilibrium symmetry (see Sec.2.3.2). The
Jacobian of this transformation is unity since its associated matrix is block triangular with
ones on the diagonal. The integration domain ofψ is unchanged while the one of̂ψ can be
chosen to be the real axis by a simple complex analysis argument. In the following lines
we show that the actionS evaluated in the transformed fields remains identical to the action
evaluated in the original fields. We give the proof in the case of an additivenoise but the
generalization to a multiplicative noise is straightforward. We start from the expression (2.8)
and evaluate

S[Teomψ, Teomψ̂] = lnPi(ψ−T , ψ̇−T ) +
∫

u

[
iψ̂u − 2β

∫

v
ℵ−1
u−vEQv[ψ]

]

×
[

EQu[ψ]−
1

2

∫

w
β−1ℵu−w

(
−iψ̂w + 2β

∫

z
ℵ−1
w−zEQz[ψ]

)]

= lnPi(ψ−T , ψ̇−T ) +
∫

u

[
iψ̂u − 2β

∫

v
ℵ−1
u−vEQv[ψ]

] [
1

2

∫

w
β−1ℵu−w iψ̂w

]

= S[ψ, ψ̂] .

Contrary to the equilibrium transformationTeq, it does not include a time-reversal and is
not defined in the Newtonian limit (η = 0).

Supersymmetric version.

In Sec.2.3.10, in the equilibrium case, we encoded the fieldsψ, iψ̂, c andc∗ in a unique
superfieldΨ. In this fashion, the transformationTeom given in eq. (2.85) acts as

Ψ(t, θ, θ∗) 7→ Ψ

(
t+ θ∗θ

2β
∫
u ℵ−1

t−uM
′(Ψ(u, θ, θ∗))EQu[Ψ]

∂tM(Ψ(t, θ, θ∗))
, θ, θ∗

)
, (2.87)

and leaves the equilibrium actionS[Ψ], see eq. (2.57), invariant.
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Out of equilibrium relations.

We first derive some relations in the additive case [M ′(ψ) = 1] and then we generalize
the results to the case of a multiplicative noise.

Additive noise. UsingT in the expression (2.34) of the self responseR(t, t′) we find

〈ψtiψ̂t′〉S = 〈Teomψt Teomiψ̂t′〉S = −〈ψtiψ̂t′〉S + 2β

∫

v
ℵ−1
t′−v〈ψtEQv[ψ]〉S ,

giving an explicit formula for computing the linear response without perturbing field:

R(t, t′) = β

∫
dv ℵ−1(t′ − v) (2.88)

×
[
m∂2vC(t, v) +

∫
du η(v − u)∂uC(t, u)− 〈ψ(t)F ([ψ], v)〉

]
.

Once multiplied byℵt′′−t′ and integrated overt′ yields

m∂2t′C(t, t
′) +

∫
du η(t′ − u)∂uC(t, u)

− 〈ψ(t)F ([ψ], t′)〉 = β−1

∫
du ℵ(t′ − u)R(t, u) , (2.89)

with no assumption on the initialPi(ψ−T , ψ̇−T ).

If one now usesT in 〈EQt[ψ]iψ̂t′〉S , one obtains

〈EQt[ψ]iψ̂t′〉S = 〈EQt[Teomψ] Teomiψ̂t′〉S
= −〈EQt[ψ]iψ̂t′〉S + 2β

∫

u
ℵ−1
t′−u〈EQtEQu〉S .

Since〈EQt[ψ]EQu[ψ]〉S = β−1ℵt−u, this simplifies in

〈EQt[ψ]iψ̂t′〉S = δt−t′ ,

that yields

m∂2tR(t, t
′) +

∫
dv η(t− v)∂vR(v, t′)− 〈iψ̂(t′)F ([ψ], t)〉S = δ(t− t′) (2.90)

with no assumption on the initialPi. One can trade the last term in theLHS of eq. (2.90) for
β
∫
u ℵ−1

t′−u〈ξ(u)Ft[ψ]〉ξ by use of Novikov’s theorem.

Notice that despite the fact that the transformationTeom is not defined in the Newtonian
limit (η = 0), both eqs. (2.89) and (2.90) are well defined in this limit. Therefore, in
order to compute out-of-equilibrium relations in a isolated system, one can add a fictitious
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equilibrium bath interacting with the system, useTeom to compute the out-of-equilibrium
relations and then finally sendη to 0.

Integrating both eqs. (2.89) and (2.90) aroundt = t′ we find the equal-time conditions

m ∂t′C(t, t
′)
∣∣
t′=t

= 0, m ∂tR(t, t
′)
∣∣
t′→t−

= 1, m ∂tR(t, t
′)
∣∣
t′→t+

= 0 . (2.91)

The last two conditions above imply that the first derivative of the responsefunction is
discontinuous at equal times8.

The use of this symmetry is an easy way to get a generalization of eq. (2.88) for a
generic responseRAB. Indeed, applying this transformation to expression (2.36) of the
linear response we obtain

RAB(t, t
′) = β

∫
du ℵ−1(t′ − u)

∞∑

n=0

{
m ∂n+2

u 〈A[ψ(t)]ψ(u)∂B[ψ(t′)]
∂ ∂nt′ψ(t

′)
〉S

−∂nu 〈A[ψ(t)]F ([ψ], u)
∂B[ψ(t′)]
∂ ∂nt′ψ(t

′)
〉S

+

∫
dv η(u− v)∂n+1

v 〈A[ψ(t)]ψ(v)∂B[ψ(t′)]
∂ ∂nt′ψ(t

′)
〉S
}
. (2.92)

This formula gives the linear response as an explicit function of multiple-time correlators of
the fieldψ. For example, ifB is a function of the field only (and not of its time-derivatives),
just then = 0-term subsists in the above sum:

RAB(t, t
′) = β

∫
du ℵ−1(t′ − u)

{
m ∂2u〈A[ψ(t)]ψ(u)

∂B[ψ(t′)]
∂ ψ(t′)

〉S

−〈A[ψ(t)]F ([ψ], u)∂B[ψ(t′)]
∂ ψ(t′)

〉S

+

∫
dv η(u− v)∂v〈A[ψ(t)]ψ(v)

∂B[ψ(t′)]
∂ ψ(t′)

〉S
}
. (2.93)

As another example if one is interested in the self-response of the velocity,A[ψ(t)] =

B[ψ(t)] = ∂tψ(t), one obtains

RAB(t, t
′) = β

∫
du ℵ−1(t′ − u)

{
m ∂t∂

3
uC(t, u)− ∂t∂u〈ψ(t)F ([ψ], u)〉S

+

∫
dv η(u− v)∂2vC(t, v)

}
. (2.94)

8. It is clear from the expressions given in (2.91) that the overdampedm → 0 limit allows for a sudden
discontinuity of the response function as well as a finite slope of the correlation function at equal times.
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Multiplicative noise. Similar results can be obtained in the case of a multiplicative noise.
Applying the transformation in the correlator

∫
u ℵt′−u〈ψtM ′(ψt′)M ′(ψu)iψ̂u〉S we get

〈ψtEQt′ [ψ]〉S = β−1

∫

u
ℵt′−u〈ψtM ′(ψt′)M

′(ψu)iψ̂u〉S ,

yielding

m∂2t′C(t, t
′) +

∫

u
ηt′−u〈ψtM ′(ψt′)M

′(ψu)∂uψu〉S

− 〈ψtFt′ [ψ]〉S = β−1

∫

u
ℵt′−u〈ψtM ′(ψt′)M

′(ψu)iψ̂u〉S . (2.95)

Applying now the transformation in the correlator〈EQt[ψ]iψ̂t′〉S , one obtains

〈EQt[ψ]iψ̂t′〉S = δt−t′ + β−1

∫

u
ℵt−u〈M ′(ψt)M

′(ψu)iψ̂uiψ̂t′〉S , (2.96)

yielding

m∂2tR(t, t
′) +

∫

u
ηt−u〈M ′(ψt′)M

′(ψu)∂uψuiψ̂t′〉S

− 〈Ft[ψ]iψ̂t′〉S = δt−t′β
−1

∫

u
ℵt−u〈ψtM ′(ψt′)M

′(ψu)iψ̂u〉S .(2.97)

One can check from eqs. (2.95) and (2.97) that the equal-time conditions given in eqs. (2.91)
are still valid in the multiplicative case.

2.4.3 Composition ofTeom and Teq

For an equilibrium situation, the MSRJD action functional is fully invariant under the
composition ofTeom andTeq,

Teq ◦ Teom =





ψu 7→ ψ−u ,

iψ̂u 7→ −iψ̂−u − β∂uψ−u +
2β

M ′(ψ−u)

∫

v
ℵ−1
u−v

EQv[ψ̄]

M ′(ψ−v)
,

(2.98)

that simply reads in the white noise limit

Teq ◦ Teom =





ψu 7→ ψ−u ,

iψ̂u 7→ −iψ̂−u +
β

η0M ′(ψ−u)2
[
m∂2uψ−u + V ′(ψ−u)

]
.

(2.99)

For simplicity we only show the implication of this symmetry in this limit and in the additive
noise case:

R(t, t′) = −R(−t,−t′) + β

η0

[
m∂2t′C(−t,−t′) + 〈ψ(−t)V ′(ψ(−t′))〉S

]
.
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Using equilibrium properties,i.e. time-translational invariance of all observables and time-
reversal symmetry of two-time correlation functions of the fieldψ (shown in Sec.2.3.2),
and causality of the response, we get

R(τ) = Θ(τ)
β

η0

[
m∂2τC(τ) + Λ(τ)

]
, (2.100)

with τ ≡ t − t′ andΛ(τ) ≡ 〈ψ(t)V ′(ψ(t′))〉S which is eq. (2.89) after cancellation of the
LHS with the last term in theRhs when FDT betweenR andC holds [also eq. (2.90) after a
similar simplification]. Here again, one can easily obtain a generalization of this last relation
for a generic responseRAB by plugging the transformation into the expression (2.36) of the
linear response.

2.5 Conclusions

In this chapter we recalled the path-integral approach to classical stochastic dynamics
with generic multiplicative colored noise. The action has three terms: a deterministic (New-
tonian dynamics) contribution, a dissipative part and a Jacobian. We identified a number of
symmetries of the generating functional when the sources are set to zero. The invariance of
the action is achieved by the three terms independently.

One of these symmetries applies only when equilibrium dynamics are assumed. Equi-
librium dynamics are ensured whenever the system is prepared with equilibriuminitial con-
ditions at temperatureβ−1 (a statistical mixture given by the Gibbs-Boltzmann measure),
evolves with the corresponding time-independent conservative forces, and is in contact with
an equilibrium bath at the same temperatureβ−1. The invariance also holds in the limit
in which the contact with the bath is suppressed,i.e. under deterministic (Newtonian)
dynamics, but the initial condition is still taken from the Gibbs-Boltzmann measure.This
symmetry yields all possible model-independent fluctuation-dissipation theorems as well
as stationarity and Onsager reciprocal relations. When the field-transformationis applied
to driven problems, the symmetry no longer holds, but it gives rise to different kinds of
fluctuation theorems.

We identified another more general symmetry that applies to equilibrium and out-of-
equilibrium set-ups. It holds for any kind of initial conditions – they can be anystatis-
tical mixture or even deterministic, and the evolution can be dictated by time-dependent
and/or non-conservative forces as long as the system is coupled to an equilibrium bath. The
symmetry implies exact dynamic equations that couple generic correlations and linear re-
sponses. These equations are model-dependent in the sense that they depend explicitly on
the applied forces. They are the starting point to derive Schwinger-Dyson-type approxi-
mations and close them on two-time observables. Although the symmetry is ill-defined in
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the Newtonian limit, the dynamic relations it yields can nevertheless be evaluated in the
Newtonian case.

Finally, we gave a supersymmetric expression of the path-integral for problems with
multiplicative colored noise and conservative forces. We expressed all the previous sym-
metries in terms of superfield transformations and we discussed the relationship between
supersymmetry and other symmetries.

Appendices

2.A Conventions and notations

Θ is the Heaviside step function. When dealing with Markov Langevin equations, the
choice of the value of the Heaviside step functionΘ(t) at t = 0 is imposed by the choice
of the Itô [Θ(0) = 0] or the Stratonovich convention [Θ(0) = 1/2]. However, away from
the Markov case,i.e. as long as both inertia and the color of the bath are not neglected
simultaneously, the choice ofΘ(0) is unconstrained and the physics should not depend on
it. We recall the identities

∫ ∞

−∞

dx

2π
eixy = δ(y) and

∫ y

−∞
dx δ(x) = Θ(y) , (2.101)

whereδ is the Dirac delta function.

Field theory notations. Let ψ be a real field. The integration over this field is denoted∫
D[ψ] . If A is a functional of the field, we denote itA[ψ]. If it also depends on one or

several external parameters, such as the timet and a protocolλ, we denote itA([ψ], λ, t).
WheneverA is a local functional of the field at timet (i.e. a function ofψ(t) and its
first time-derivatives), we use the short-hand notationA[ψ(t)]. The time-reversed field
constructed fromψ is denotedψ̄: ψ̄(t) ≡ ψ(−t). The time-reversed functional constructed
fromA([ψ], λ, t) is calledAr: Ar([ψ], λ, t) ≡ A([ψ̄], λ,−t). Applied on local observables
of ψ, it has the effect of changing the sign of all odd time-derivatives in the expression of
A.

To shorten expressions, we adopt a notation in which the arguments of the fields appear
as subindices,ψt ≡ ψ(t), ηt−t′ ≡ η(t − t′), and so on and so forth, and the integrals over
time as expressed as

∫
t ≡

∫
dt .

Grassmann numbers. Let θ1 andθ2 be two anticommuting Grassmann numbers andθ∗1
andθ∗2 their respective Grassmann conjugates. We adopt the following convention for the
complex conjugate of a product of Grassmann numbers:(θ1θ2)

∗ = θ∗2θ
∗
1.
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2.B Discrete MSRJD for additive noise

In this appendix we discuss the MSRJD action for processes with additive colored noise.

2.B.1 Discrete Langevin equation

The Langevin equation is a stochastic differential equation and one can givea rigorous
meaning to it by specifying a particular discretization scheme.

Let us divide the time interval[−T, T ] into N + 1 infinitesimal slices of widthǫ ≡
2T/(N + 1). The discretized times aretk = −T + kǫ with k = 0, ..., N + 1. The
discretized version ofψ(t) is ψk ≡ ψ(tk). The continuum limit is achieved by sendingN
to infinity and keeping(N + 1)ǫ = 2T constant. Given some initial conditionsψi andψ̇i,
we setψ1 = ψi andψ0 = ψi − ǫψ̇i meaning that the first two times (t0 andt1) are reserved
for the integration over the initial conditions whereas theN following ones correspond to
the stochastic dynamics given by the discretized Langevin equation:

EQk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψk, ψk−1, ...) + ǫ

k∑

l=1

ηkl
ψl − ψl−1

ǫ

= ξk , (2.102)

defined fork = 1, ..., N . The forceFk typically depends on the stateψk but can have
a memory kernel (i.e. it can depend on previous statesψk−1, ψk−2, etc.). The notation
ηkl stands forηkl ≡ ǫ−1

∫ ǫ
0−du η(tk − tl + u). Theξk are independent Gaussian random

variables with variance〈ξkξl〉 = β−1ℵkl whereℵkl ≡ ηkl + ηlk. Inspecting the equation
above, we notice that the value ofψk depends on the realization of the previous noise
realizationξk−1 and there is no need to specifyξ0 andξN+1.

In the white noise limit, one hasηkl = ǫ−1η0δkl, 〈ξkξl〉 = 2η0β
−1ǫ−1δkl whereδ is the

Kronecker delta, and

EQk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψk, ψk−1, ...) + η0

ψk − ψk−1

ǫ
= ξk .

2.B.2 Construction of the MSRJD action

The probability densityP for a complete field history(ψ0, ψ1, ..., ψN+1) is set by the
relation

P (ψ0, ψ1, ..., ψN+1) dψ0dψ1...dψN+1

= Pi(ψi, ψ̇i) dψidψ̇i Pn(ξ1, ξ2, ..., ξN ) dξ1dξ2...dξN .

Pi is the initial probability distribution of the field. The probability for a given noise history
to occur between timest1 andtN is given by

Pn(ξ1, ..., ξN ) = M−1
N e−

1
2

∑N
k,l=1 ξk βℵ

−1
kl ξl (2.103)
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whereℵ−1
kl is the inverse matrix ofℵkl (and not the discretized version of the inverse operator

of ℵ) and the normalization is given byM2
N ≡

(2π)N

detkl(βℵ−1
kl )

where det(...) stands for the

matrix determinant. From eq. (2.103), one derives

P (ψ0, ψ1, ..., ψN+1) = |JN |Pi(ψ1,
ψ1 − ψ0

ǫ
)Pn(EQ0, ..., EQN−1) , (2.104)

with the Jacobian

JN ≡ det

(
∂ (ψi, ψ̇i, ξ1, . . . , ξN )

∂ (ψ0, ψ1, . . . , ψN+1)

)
= det

(
∂ (ψi, ψ̇i, EQ0, . . . , EQN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)
,

that will be discussed in App.2.B.3. The expression (2.103) for the noise history probability
reads, after a Hubbard-Stratonovich transformation that introduces the auxiliary variables
ψ̂k (k = 1, ..., N ),

NNPn(ξ1, ..., ξN ) =

∫
dψ̂1...dψ̂N e−ǫ

∑

k iψ̂kξk+
1
2
β−1ǫ2

∑

kl iψ̂kℵkliψ̂l

=

∫
dψ̂0...dψ̂N+1 δ(ψ̂0)δ(ψ̂N+1) e

−ǫ
∑

k iψ̂kEQk−1+
1
2
β−1ǫ2

∑

kl iψ̂kℵkliψ̂l , (2.105)

with NN ≡ (2π/ǫ)N . In the last step, we replacedξk by EQk−1 and we allowed for sum-
mations overk = 0 andk = N + 1 as well as integrations over̂ψ0 and ψ̂N+1 at the
cost of introducing delta functions. The Hubbard-Stratonovich transformation allows for
some freedom in the choice of the sign in front ofiψ̂k in the exponent (indeedPn is real so
Pn = P ∗

n ). Together with eq. (2.104) this gives

NNP (ψ0, ψ1, ..., ψN+1) = |JN |
∫
dψ̂0...dψ̂N+1 δ(ψ̂0)δ(ψ̂N+1)

×e−
∑

k iψ̂kEQk−1+
1
2
β−1

∑

kl iψ̂kℵkliψ̂l+lnPi

(

ψ1,
ψ1−ψ0

ǫ

)

that in the continuum limit becomes

NP [ψ] = |J [ψ]| elnPi

∫
D[ψ̂] e−

∫

du iψ̂(u)EQ([ψ],u)+ 1
2

∫∫

dudv iψ̂(u)β−1ℵ(u−v)iψ̂(v) ,

with the boundary conditionŝψ(−T ) = ψ̂(T ) = 0 and where all the integrals over time run
from−T toT . In the following, unless otherwise stated, we shall simply denote them by

∫
.

The infinite prefactorN ≡ lim
N→∞

(2π/ǫ)N can be absorbed in the definition of the measure:

D[ψ, ψ̂] = lim
N→∞

( ǫ

2π

)N N+1∏

k=0

dψk dψ̂k . (2.106)
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Markov case. In the Markov limit, the Langevin equation is a first order differential equa-
tion, therefore only the first timet0 should be reserved for integrating over the initial con-
ditions. Moreover, one has to specify the discretization:

EQk−1 ≡ η0
ψk − ψk−1

ǫ
− Fk(ψ̃k) = ξk , (2.107)

whereψ̃k ≡ aψk +(1− a)ψk−1 with a ∈ [0, 1]. a = 0 corresponds to the Itô interpretation
whereasa = 1/2 corresponds to the Stratonovich one (see the discussion in Sec.2.1.4).
Following the steps in App.2.B.2, we upgrade eq. (2.107) to the followinga-dependent
action9:

SN (a) = ǫ
∑

k

(
β−1η0(iψ̂k)

2 − iψ̂k

[
η0
ψk − ψk−1

ǫ
− Fk(ψ̃k)

]
− a

η0
F ′
k(ψ̃k)

)
. (2.108)

The last term in theRHS comes from the Jacobian:

JN =
∏

k

∂EQk−1

∂ψk
=
∏

k

(η0
ǫ
− aF ′

k(ψ̃k)
)
=
(η0
ǫ

)N
e
−ǫ∑k

a
η0
F ′
k(ψ̃k) .

In the Itô discretization scheme (a = 0) this Jacobian term disappears from the action.
AlthoughSN (a) seems to bea-dependent, we now prove that all discretization schemes
yield the same physics by showing that the differenceSN (a) − SN (0) is negligible. The
Taylor expansion ofFk(ψ̃k) aroundψk−1, Fk(ψk−1) + a (ψk − ψk−1)F

′(ψk−1) + O(ǫ)

[sinceψk − ψk−1 = O(
√
ǫ)], yields

SN (a)− SN (0) = aǫ
∑

k

F ′(ψk−1)

[
iψ̂k (ψk − ψk−1)−

1

η0

]
+O(ǫ2) . (2.109)

Although the first term within the square brackets looks smaller than the second one, they
are actually bothO(1) sinceiψ̂k = O(1/

√
ǫ). Thus, each term in the sum in theRHS is

O(ǫ). We now compute the average ofSN (a)−SN (0) with respect toSN (0) by neglecting
in the latter the termǫiψ̂kFk(ψk−1) which is of order

√
ǫ whereas the others are of order1.

Since〈iψ̂k (ψk − ψk−1)〉SN (0) = 1/η0, it is easy to show that〈SN (a) − SN (0)〉SN (0) = 0

and therefore all theSN (a) actions are equivalent to the simpler Itô one.

9. We omit the initial measure which is not relevant in this discussion.
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2.B.3 Jacobian

Discrete evaluation of the Jacobian.

In this Section we take the continuum limit of the Jacobian defined in eq. (2.105). In
the additive noise case, we start from

JN = det

(
∂ (ψi, ψ̇i, EQ0, . . . , EQN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)

= det




0 1 0 . . .

−1/ǫ 1/ǫ 0 . . .
∂EQ0
∂ψ0

∂EQ0
∂ψ1

∂EQ0
∂ψ2

0 . . .
∂EQ1
∂ψ0

∂EQ1
∂ψ1

∂EQ1
∂ψ2

∂EQ1
∂ψ3

0 . . .

. . . 0
∂EQN−1

∂ψ0
. . .

∂EQN−1

∂ψN+1




=
1

ǫ
det




∂EQ0
∂ψ2

0 . . .
∂EQ1
∂ψ2

∂EQ1
∂ψ3

0 . . .

. . . 0
∂EQN−1

∂ψ2
. . .

∂EQN−1

∂ψN+1




. (2.110)

Causality manifests itself in the lower triangular structure of the last matrix. One can eval-
uate the last determinant by plugging eq. (2.102). It yields

JN =
1

ǫ

N∏

k=1

∂EQk−1

∂ψk+1
=

1

ǫ

(m
ǫ2

)N
.

The JacobianJ ≡ lim
N→∞

JN is therefore a field-independent positive constant that can be

absorbed in a redefinition of the measure:

D[ψ, ψ̂] ≡ lim
N→∞

1

ǫ

( m

2πǫ

)N N+1∏

k=0

dψk dψ̂k . (2.111)

We show that this result also holds for multiplicative noise in App.2.C.

Continuous evaluation of the Jacobian.

One might also wish to check this result in the continuous notations. A very similar
approach can be found in [157]. In the continuous notations,lim

N→∞
JN reads up to some

constant factor

J [ψ] = detuv

[
δEQ([ψ], u)

δψ(v)

]
.
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where det[...] stands for the functional determinant. DefiningF ′
uv asδFu[ψ]/δψv, the Ja-

cobian reads

J [ψ] = detuv

[
m∂2uδu−v +

∫

w
ηu−w ∂wδw−v − F ′

uv[ψ]

]

= detuv

[
m∂2uδu−v +

∫

w
ηu−w ∂wδw−v

]
detuv

[
δu−v −

∫

w
Gu−wF

′
wv[ψ]

]

= detuv

[
m∂2uδu−v +

∫

w
ηu−w ∂wδw−v

]
expTruv ln [δu−v −Muv]

= detuv

[
m∂2uδu−v +

∫

w
ηu−w ∂wδw−v

]
exp−

∞∑

n=1

1

n

∫

u



M◦M◦...◦M︸ ︷︷ ︸

n times




uu

(2.112)

where we used the notationsMuv ≡ {G ◦ F ′}uv ≡
∫
wGu−wF

′
wv[ψ]. G is the retarded

Green function solution to

m∂2uG(u− v) +
∫

dw η(u− w)∂wG(w − v) = δ(u− v) . (2.113)

Since bothGu−v andF ′
uv are causal, it is easy to see that then ≥ 2 terms do not contribute

to the sum in eq. (2.112). If the forceF ([ψ], t) does not have any local term (involving the
value ofψ or ψ̇ at timet) then = 1 term is also zero. Otherwise then = 1 term can still
be proven to be zero provided thatG(t = 0) = 0. This will be true, as we shall show in the
next paragraph, unless the white noise limit is taken together with the Smoluchowski limit
(m = 0). Away from this Markov limit we establish

J [ψ] = detuv

[
m∂2uδ(u− v) +

∫

w
ηu−w ∂wδw−v

]
,

meaning that the Jacobian is a constant that does not depend on the fieldψ.

We now give a proof thatG(t = 0) = 0. Taking the Fourier transform of eq. (2.113),

G(t = 0) =

∫ ∞

−∞

dω

2π
G(ω) = −

∫ ∞

−∞

dω

2π

1

mω2 + iωη(ω)
. (2.114)

G(ω) andη(ω) are the Fourier transforms of the retarded Green function and friction. They
are both analytic in the upper half plane (UHP) thanks to their causality structure. The con-
vergence of the integrals around|ω| → ∞ in eq. (2.114) is ensured by either the presence
of inertia or the colored noise. For a white noise [η(ω) = η0], it is clear that the mass term
renders the integrals in eq. (2.114) well defined. In them = 0 limit the convergence is still
guaranteed as long as the white noise limit is not taken simultaneously. Indeed,because
η(ω) is analytic in theUHP, it is hence either divergent on the boundaries of theUHP or
constant everywhere [η(ω) = η0]. In the first case, which corresponds to a generic colored
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noise, this renders the integrals in eq. (2.114) well defined. In the second case, correspond-
ing to a white noise limit, they are ill-defined and require a more careful treatment10. When
the integrals in eq. (2.114) are well defined on the boundaries, the absence of poles (or
branch cuts) in theUHP of G(ω) gives, after a little deformation of the integration contour
in eq. (2.114) above theω = 0 pole, the resultG(t = 0) = 0.

Representation in terms of a fermionic field integral.

The determinant can be represented as a Gaussian integration over Grassmannian con-
jugate fieldsc andc∗. This formulation is a key ingredient to the supersymmetric repre-
sentation of the MSRJD path integral. Let us first recall the discretized expression of the
Jacobian obtained in eq. (2.110):

JN =
1

ǫ
detkl

(
∂EQk−1

∂ψl+1

)
,

wherek andl run from1 toN . Introducing ghosts, it can be put in the form

JN =
1

ǫ

1

ǫN

∫
dc2dc

∗
0...dcN+1dc

∗
N−1 e

ǫ2
∑N−1
k=0

∑N+1
l=2 c∗k

1
ǫ

∂EQk
∂ψl

cl

=
1

ǫ

1

ǫN

∫
dc0dc

∗
0...dcN+1dc

∗
N+1 c

∗
N+1c

∗
Nc1c0 e

ǫ2
∑N+1
k=0

∑N+1
l=0 c∗k

1
ǫ

∂EQk
∂ψl

cl ,

where in the last step, we allowed integration overc0, c1, c∗N and c∗N+1 at the cost of
introducing delta functions (remember that for a Grassmann numberc, the delta function is
achieved byc itself). In the continuum limit, absorbing the prefactor into a redefinition of
the measure,

D[ψ, ψ̂] = lim
N→∞

1

(2π)N
1

ǫ

N+1∏

k=0

dψk dψ̂k and D[c, c∗] = lim
N→∞

N+1∏

k=0

dck dc
∗
k , (2.115)

this yields

J [ψ] =
∫
D[c, c∗] eSJ [c,c∗,ψ]

10. In the white noise limit,G(t) = η−1
0

[

1− e−η0t/m
]

Θ(t) is a continuous function that vanishes at

t = 0. If we takem → 0 in the previous expression, we still haveG(0) = 0 andG(t) = Θ(t)/η0 for
t ≫ m/η0. By choosingΘ(0) = 0, these two results can be collected inG(t) = Θ(t)/η0 for all t. The
Jacobian is still a constant. This limiting procedure where inertia has been sent to zero after the white noise
limit was taken, is the so-called Itô convention. However ifm is set to0 from the beginning, in the so-called
Stratonovich convention withΘ(0) = 1/2, thenG(t) = Θ(t)/η0 for all t andG(0) = 1/(2η0). This can lead
to a so-called Jacobian extra-term in the action. IfF ([ψ], t) is a function ofψ(t) only (ultra-local functional),
it reads−1/(2η0)

∫

u
F ′
u(ψu). It is invariant under time-reversal of the fieldψu 7→ ψ−u as long asF ′ is itself

time-reversal invariant.
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with

SJ [c, c∗, ψ] ≡
∫

u

∫

v
c∗u
δEQu[ψ]

δψv
cv ,

and the extra boundary conditions:c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0. Plugging the
Langevin equation (2.1), we have

δEQu[ψ]

δψv
= m∂2uδu−v −

δFu[ψ]

δψv
+

∫

w
ηw−v∂wδw−v .

The kinetic term inSJ [c, c∗, ψ] can be recast
∫

u

∫

v
c∗u ∂

2
uδu−v cv =

∫

u
c∗u ∂

2
ucu +Θ0 [ċ

∗c− c∗ċ]T−T +Θ0δ0 [c
∗c]T−T .

The last two terms in theRHS vanish by use of the boundary conditions (c−T = ċ−T =

c∗T = ċ∗T = 0). The retarded friction can be recast
∫

u

∫

v
c∗u ∂uηu−v cv −Θ0

∫

u
c∗u [ηu+T c−T − ηu−T cT ] ,

where the second term vanishes identically for two reasons: the boundary condition (c−T =

0) k kills the first part and the causality of the friction kernel (ηu = 0 ∀u < 0) suppresses
the second one. If there is a Dirac contribution toη centered atu = 0 such as in the white
noise case, the other boundary condition (c∗−T = 0) cancels the second part. Finally, we
have

SJ [c, c∗, ψ] =
∫

u
c∗u ∂

2
ucu +

∫

u

∫

v
c∗u

[
∂uηu−v −

δFu[ψ]

δψv

]
cv . (2.116)

2.C Discrete MSRJD for multiplicative noise

The discretized Langevin equation reads:

EQk−1 ≡ m
ψk+1 − 2ψk + ψk−1

ǫ2
− Fk(ψ̃k, ψ̃k−1, ...)

+M ′(ψ̃k) ǫ
k∑

l=1

ηklM
′(ψ̃l)

ψl − ψl−1

ǫ
=M ′(ψ̃k)ξk .

with ψ̃k ≡ aψk + (1 − a)ψk−1 andk = 1, ..., N . In the Markov limit (m = 0 andηkl =
ǫ−1η0δkl) the results depend ona (see the discussion in Sec.2.1.4). In the additive noise
case, the choicesa = 0 anda = 1/2 correspond to the Itô and Stratonovich conventions,
respectively. However, we decide to stay out of the Markov limit: the resultsare then
independent ofa and we choose to work witha = 1. The probability for a field history is

P (ψ0, ψ1, ..., ψN+1) = |JN |Pi(ψ1,
ψ1 − ψ0

ǫ
)Pn(ẼQ0, ..., ẼQN−1) , (2.117)
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where we introduced the shorthand notatioñEQk ≡ EQk/M
′(ψk+1). The Jacobian is

JN ≡ det

(
∂ (ψi, ψ̇i, ξ1, . . . , ξN )

∂ (ψ0, ψ1, . . . , ψN+1)

)
= det

(
∂ (ψi, ψ̇i, ẼQ0, . . . , ẼQN−1)

∂ (ψ0, ψ1, . . . , ψN+1)

)
. (2.118)

Pn is still given by expression (2.105) andPn(ẼQ0, ..., ẼQN−1) reads, after the substitution
ψ̂k 7→ ψ̂kM

′(ψk),

N−1
N

∫
dψ̂0...dψ̂N+1δ(ψ̂0)δ(ψ̂N+1) |ĴN | e−ǫ

∑

k iψ̂kEQk−1+
1
2
β−1ǫ2

∑

kl iψ̂kM
′(ψk)ℵklM ′(ψl)iψ̂l,

whereĴN ≡ detkl (δk lM ′(ψk)) is the Jacobian of the previous substitution. The probabil-
ity for a given history is therefore

P (ψ0, ψ1, ..., ψN+1) = N−1
N

∫
dψ̂0...dψ̂N+1

∣∣∣JN ĴN
∣∣∣

×e−
∑

k iψ̂kEQk−1+
1
2
β−1

∑

kl iψ̂kM
′(ψk)ℵklM ′(ψl)iψ̂l+lnPi

(

ψ1,
ψ1−ψ0

ǫ

)

.

The JacobianJN defined in eq. (2.118) reads

JN =
1

ǫ
detkl

(
1

M ′(ψk)
∂EQk−1

∂ψl+1
− M ′′(ψk)
M ′(ψk)2

EQk−1 δk l+1

)

=
1

ǫ
Ĵ −1
N detkl

(
∂EQk−1

∂ψl+1
− M ′′(ψk)
M ′(ψk)

EQk−1 δk l+1

)
(2.119)

wherek and l run from 1 to N . Causality is responsible for the triangular structure of
the matrix involved in the last expression. The second term within the square brackets
yields matrix elements below the main diagonal and these do not contribute to the Jacobian.
Therefore, we find

JN ĴN =
1

ǫ

N∏

k=1

∂EQk−1

∂ψk+1
=

1

ǫ

(m
ǫ2

)N
.

that is the same field-independent positive constant as in the additive noisecase that can be
dropped in the measure, see eq. (2.111).

A fermionic functional representation of the Jacobian can be obtained by introducing
ghosts, expression (2.119) can be put in the form

JN ĴN =
1

ǫ

1

ǫN

∫
dc0dc

∗
0...dcN+1dc

∗
N+1 c

∗
N+1c

∗
Nc1c0 e

SJ
N ,

with

SJ
N ≡ ǫ2

N+1∑

k=0

N+1∑

l=0

c∗k
1

ǫ

∂EQk

∂ψl
cl − ǫ

N+1∑

k=0

c∗k
M ′′(ψk+1)

M ′(ψk+1)
EQk ck+1 .
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In the continuum limit it becomes

SJ ≡ lim
N→∞

SJ
N =

∫

u

∫

v
c∗u
δEQu[ψ]

δψv
cv −

∫

u
c∗u
M ′′(ψu)
M ′(ψu)

EQu[ψ] cu ,

with the boundary conditionsc(−T ) = ċ(−T ) = 0 and c∗(T ) = ċ∗(T ) = 0 and the
measure of the corresponding path integral is given in (2.115).
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THE physics of domain growth is well understood [50, 195]. Just after the initial thermal
quench into the ordered phase, the spins in a ferromagnetic system tend to order and

form domains of the equilibrium states. In clean systems the ordering dynamics isgoverned
by the symmetry and conservation properties of the order parameter. When impurities are
present the dynamics are naturally slowed down by domain-wall pinning [55–57]. Thedy-
namic scaling hypothesisstates that the time-dependence in any macroscopic observable
enters only through a growing length scale,R(t), either the instantaneousaveragedor typ-
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ical domain radius. However, a complete description of the phenomenon is lacking. Inthe
clean cases the scaling functions are not known analytically and no fully satisfactory ap-
proximation scheme to estimate them is known [50]. In presence of disorder the limitations
are more severe in the sense that the growth laws are derived by assuming that the relaxation
is driven by activation over free-energy barriers and the properties of the latter are estimated
with energy balancing arguments applied to single interfaces that are hard toput to the test.
Even in the relatively simple random bond Ising model (RBIM) the time dependence of the
growth law remains a subject of controversy [196–199].

The dynamics of generic glassy systems is less well understood but presents some sim-
ilar aspects to those mentioned above. The droplet model of finite-dimensionalspin glasses
is based on the assumption that in the low-temperature phase these systems also undergo do-
main growth of two competing equilibrium states [70]. In the mean-field limit spin glasses
have, though, a very different kind of dynamics [19, 200] that cannot be associated to a sim-
ple growth of two types of domains. Numerical studies of the3d Edwards-Anderson (EA)
model [201, 116–118, 202–206] have not been conclusive in deciding for one or the other
type of evolution and, in a sense, show aspects of both. A one-time dependent ‘coherence’-
length,R(t), has been extracted from the distance and time dependence of theequal-time
overlap between two replicas evolving independently with the same quencheddisordered
interactions [203, 204, 206]. A power-lawR(t) ∼ t1/z(T ) with the dynamic exponent
z(t) = z(Tc)Tc/T fits the available data for the3d EA andz(Tc) = 6.86(16) with Gaus-
sian [206] andz(Tc) = 6.54(20) with bimodal [203, 204] couplings. Still, it was claimed
in [206] that the overlap decays to zero as a power law at long distances and longtimes such
thatr/R(t) is fixed, implying that there are more than two types of growing domains in the
low temperature phase.

A two-time dependent length,ξ(t, t′), can be extracted from the analysis of the spatial
decay of the correlation between two spins in the same system at distancer and different
timest andt′ after preparation [207, 208]. The latter method is somehow more powerful
than the former one in the sense that it can be easily applied to glassy problemswithout
quenched disorder. If there is only one characteristic length scale in the dynamicsR(t)
should be recovered as a limit ofξ(t, t′) but this fact has not been demonstrated.

The mechanism leading to the slow relaxation of structural glasses is also not under-
stood. Still, molecular dynamic studies of Lennard-Jones mixtures [209] and the analysis
of confocal microscopy data in colloidal suspensions [210] show that two-time observables
have similar time dependence as in the3d EA model. Two-time correlations scale using
ratios of one-time growing functions that, however, cannot be associated to adomain radius
yet. A two-time correlation lengthξ with characteristics similar to the one in the3d EA can
also be defined and measured.

The understanding of dynamic fluctuations in out-of-equilibrium relaxing systems ap-
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pears as a clear challenge [211]. In systems with quenched randomness different sample
regions feel a different environment and one expects to see their effect manifest in different
ways working at fixed randomness. In structural or polymer glasses there are no quenched
interactions instead, but still one expects to see important fluctuations in their dynamic
behavior both in metastable equilibrium and in the glassy low temperature regime. The
question of whether the fluctuations in generic glassy systems resemble those in coarsening
systems has only been studied in a few solvable cases such as the model of ferromagnetic
coarsening in the largen limit [ 212] and the Ising chain [213, 214].

We study ferromagnetic ordering in the3d RFIM following a quench from infinite tem-
perature and we compare it to the dynamics of the3d EA spin glass. Our aim is to signal
which aspects of their out-of-equilibrium evolution differ and which are similar by focus-
ing on freely relaxing observables – no external perturbation is applied to measure linear
responses. We test the scaling and super-universality hypothesis in the RFIM and we ex-
plicitly show that the latter does not apply to the EA model. We analyze the spatio-temporal
fluctuations in the coarsening problem and we compare them to the ones found inspin
glasses [205, 207, 208], theO(n) ferromagnetic coarsening in the largen limit [ 212], and
other glassy systems [210, 215, 216].

The organization of the chapter is the following. In Sec.3.1we define the models and we
describe the numerical procedure. Section3.2 is devoted to the study of the growing length
scale,R, the scaling and super-universality hypothesis, and the two-time growing length,
ξ. In Sec.3.3 we focus on the local fluctuations of two time observables. We study two-
time coarse-grained correlations and we analyze their statistical properties as time evolves.
Finally, in Sec.3.4we present our conclusions.

3.1 The models

Two varieties of quenched disorder are encountered in spin models: randomness in
the strength of an externally applied magnetic field (random field) and randomness in the
strength of the bonds (random bond). The RFIM and the EA spin glass are two archetypal
examples of these which were introduced in Sec.1.2. In this Section we briefly recall their
definitions and some of their main properties.

3.1.1 The Random Field Ising Model

The3d Random Field Ising model (RFIM) is defined by the Hamiltonian [217]

H = −J
∑

〈i,j〉
sisj −

∑

i

Hisi . (3.1)
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The first term encodes short range ferromagnetic (J > 0) interactions between nearest
neighbor Ising spins,si = ±1, placed on the nodes of a cubic lattice with linear sizeL. Hi

represents a local random magnetic field on sitei. We adopt a bimodal distribution for these
independent identically distributed random variables (Hi = ±H with equal probability).H
quantifies the strength of the quenched disorder. Hereafter in this Chapter,we setJ = 1.

In the caseH = 0, the RFIM reduces to the clean Ising model with a phase transition
from a paramagnetic to a ferromagnetic state occurring atTc ≃ 4.515. In d = 3, the
ordered phase survives for finiteH: there is a phase separating line on the(T,H) plane
joining (Tc, H = 0) and(T = 0, Hc) with Hc ≃ 2.215(35) [61, 62].

3.1.2 The Edwards-Anderson spin glass

The3d Edwards-Anderson (EA) spin glass is defined by

H = −
∑

〈i,j〉
Jijsisj . (3.2)

The interaction strengthsJij act on nearest neighbors on a cubic three-dimensional lattice
and are independent identically distributed random variables. We adopt abimodal distri-
bution,Jij = ±J with equal probability. Hereafter in this Chapter, we setJ = 1. This
model undergoes a static phase transition from a paramagnetic to a spin glass phase at
Tg ≃ 1.14(1) [69]. The nature of the low temperature static phase is not clear yet and,
as for the out-of-equilibrium relaxation, two pictures developed around a situation with
only two equilibrium states as proposed in the droplet model and a much more complicated
vision emerging from the solution of the Sherrington-Kirkpatrick model, its mean-field ver-
sion [72].

3.1.3 Methods

We study the relaxation dynamics with non-conserved order parameter in the (d = 3)
ferromagnetic phase of the RFIM at relatively low temperature and small applied field after
a quench from very high temperature.

It is difficult to give an accurate analytical treatment for the dynamics of the3d RFIM.
A continuous coarse-grained version of the model can be given with then = 1 non-linear
sigma model [defined in eq. (1.3)] (i.e. a φ4 theory) with an extra random field. One can
write down a Langevin equation for the dynamics of this model. The simplest choice for the
environment is a thermal bath with a non-correlated noise in time (white noise) and space:
〈ξ(x, t)ξ(x, t′)〉ξ = 2β−1γ0δ(x − x′)δ(t − t′). In the MSRJD formalism, the action reads
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after integration over the noise

S[φ, φ̂] = −
∫∫

dx du iφ̂(x, u)
[
γ0∂uφ(x, u) + J∆φ(x, u)

+ gφ(x, u)− uφ3(x, u) + h(x)
]

+β−1γ0

∫∫
dx du

(
iφ̂(x, u)

)2
. (3.3)

We omitted the initial measure since the system is supposed to be prepared at infinite tem-
perature (β = 0). The fieldh(x) is spatially random and taken from a Gaussian distribution
with 〈h(x)〉h = 0 and〈h(x)h(x′)〉h = H2δ(x − x′). Therefore, after integration over the
random field, one gets [218]

S[φ, φ̂] = −
∫∫

dx du iφ̂(x, u)
[
γ0∂uφ(x, u) + J∆φ(x, u) + gφ(x, u)− uφ3(x, u)

]

+β−1γ0

∫∫
dx du

(
iφ̂(x, u)

)2
+

1

2
H2

∫∫∫
dx dudv iφ̂(x, u) iφ̂(x, v) .

Due to the interaction termuφ̂φ3, the action is not quadratic, and one has to use perturbation
theory in powers ofu in order to be able to compute anything.

Instead of working with approximate expressions, and since the RFIM is particularly
well suited to using numerical simulations (lattice model with short-range interactions and
a discrete set of configurations), we follow the dynamics by means of Monte Carlo simu-
lations. The instantaneous quench from infinite temperature at the initial time,t = 0, is
realized by choosing a random initial condition:si(t = 0) = ±1 with probability one half.
The order parameter is not conserved during the evolution. For the dynamics, we use the
continuous time Monte Carlo (MC) procedure [219–221]. This algorithm, which is nothing
else but a re-organization of the standard Metropolis transition rules, is rejection free. This
makes it spectacularly faster than standard Metropolis algorithm which would have a rejec-
tion rate close to1 in the ferromagnetic phase of the RFIM. Times are expressed in usual
Monte Carlo steps (MCs):1 MCs corresponds toN = Ld spin updates with the standard
Metropolis algorithm. The way to translate from the continuous time MC to standard MC
units, in which we present our results, is explained in [219–221].

Interesting times are not too short – to avoid a short transient regime – and not too long
– to avoid reaching equilibration (in ferromagnetic coarsening a non-zero magnetization
density indicates that the coarsening regime is finished and other more refined methods
are used in the spin glass case1). We delay equilibration by taking large systems since
the equilibration time rapidly grows with the size of the lattice. A reasonable numerical

1. A way to check whether a spin glass model gets close to equilibration is to follow the evolution of spin
replicas with the same quenched randomness and testing when the overlapdistribution develops a non-trivial
structure. Some papers explaining and using this technique are [222, 223, 200].
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time-window is[103, 107] MCs. We show results obtained using lattices withL = 250

(N = 1.5 × 107 spins) in the RFIM andL = 100 (N = 106 spins) in the spin glass.
We checked that finite size effects are not important in any of these casesfor averaged
quantities.

3.2 The typical growing length

In this Section we study the typical growing length (a geometric object) in the RFIMand
the EA model. We establish scaling and super-universality relations for three types of corre-
lations functions (statistical objects). Two of them involve either two space points and one
time, or one space point and two times, and are the usual observables studied in coarsening
phenomena. The third one is commonly used in the study of glassy systems wheretwo-point
correlations are not sufficient to characterize the dynamics of the systems [205, 207–210]
and allows for the definition of a two-time dependent length that we can compareto the one
obtained in the3d EA model and glassy particle systems.

3.2.1 The RFIM

During the ferromagnetic coarsening regime, there are as many positive asnegative
spins in such a way that the magnetization density stays zero in the thermodynamic limit
and weakly fluctuates around zero for finite size systems. Everywhere inthe sample, there
is a local competition between growing domains. Eventually, after an equilibration timeτeq
(that diverges with the system size), one of the two phases conquers thewhole system scale.

In the coarsening regime (times shorter thanτeq) dynamic scaling [50] applies and the
growth of order is characterized by atypical domain radius, R(t;T,H), that increases in
time and depends on the control parameters,T andH, and the dimension of space,d 2.
While in the absence of impurities it is clearly established that, for non-conserved order
parameter dynamics, the domain lengthR grows asR ∼ t1/2 independently ofd [50] with
a prefactor that monotonically decreases upon increasing temperature [107], the functional
form ofR is less clear in random cases. Scaling arguments based on the energetics of single
interfaces [55–57, 224–228] predict a crossover from the clean case result at short time
scales when it is easy to inflate, to a logarithmic growth,

R(t;H,T ) =
T

H2
ln (t/τ(T,H)) . (3.4)

The fact that the prefactor grows withT (as opposed to what happens for clean curvature
driven dynamics [107]) is due to the activated character of the dynamics. Several proposals

2. Note that some coarsening problems have a distribution of domain radiiwith long-tails, see [106] and
[107].
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for the characteristic timeτ exist: τ ∼ (T/H2)2 [224, 225, 195] andτ ∼ τ0e
A(T )/H2

with
A(T ) a weakly temperature dependent function [109]. To ease the notation in what follows
we do not write explicitly theT andH dependence ofR.

From the point of view of the renormalization group (RG), all points within the ferro-
magnetic region of the(T,H) phase diagram flow to the stable, zero-temperature, zero-
disorder sink. Hence, randomness and temperature should be irrelevant in equilibrium at
T < Tc. The super-universality hypothesis states that for non-equilibrium ordering dy-
namics, once lengths are scaled with the typical lengthR, quenched random fields are
irrelevant and all scaling functions are the ones of the clean3d Ising system atT = 0

with non-conserved order parameter [70]. It has been tested numerically on some selected
observables in a few Ising models with weak disorder. It has been shownto hold for the
equal-times two-point function of the3d random field Ising model (RFIM) [109] and the2d
random bond Ising model (RBIM) with disordered ferromagnetic interactions [110, 111].
More recently, the distribution of domain areas in this last model [112] and the integrated
response [113] has also be shown to be super-universal.

In the context of the1d and2d Random Bond Ising Model (RBIM) with disordered
ferromagnetic couplings, it was argued based on numerical simulations, that a disorder
typical lengthL∗ should enter the scaling functionsvia the ratioR(t)/L∗ independently of
the other scalings [108]. For the1d case, the two-time correlation function was measured
after a quench in the critical region (just aboveTc = 0) and the data were shown to obey the
following scaling: C(t, t′) = f(R(t)/R(t′), L∗/R(t)) which violates super-universality.
For thed = 2 case, other simulations deep in the ferromagnetic phase also showed a super-
universality violation for the two-time correlation. However, super-universality was showed
to be restored for spatio-temporal correlationsC(r; t, t′) as soon asr is sufficiently large (a
few lattice spacings) [113]. This could be interpreted by a scaling of the formC(r; t, t′) =
g(R(t)/R(t′), L∗/R(t), L∗/r) which would saturate tog(R(t)/R(t′), L∗/R(t), 0) as soon
as r ≫ L∗ and therefore restore the super-universality property. For thed = 2 case,
notice that even in equilibrium at the critical point, where the irrelevance of disorder was
shown rigorously [229–232], numerical simulations are rather inconclusive since one needs
very large lattices to observe the convergence of the RG flow to the zero-disorder fixed
point [233].

The equal-time spatial correlation.

A careful analysis of the field and time dependence of the growing length scale together
with tests of the scaling hypothesis applied to the equal-time correlation

C2(r; t) ≡ 〈si(t)sj(t)〉|~ri−~rj |=r , (3.5)
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√
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T andH for two values ofT and three random field strengthsH given in the key.

where the average runs over all spins in the sample, appeared in [109, 234]. In the coarsen-
ing regime, at distancesa≪ r ≪ L with a the lattice spacing andr/R(t) finite,C2(r; t) is
expected to depend onr and timet only through the ratior/R,

C2(r; t) ≃ m2
eq f2(r/R(t)) , (3.6)

with meq the equilibrium magnetization density (that decreases with increasingT and/or
H), limx→0 f2(x) = 1 andlimx→∞ f2(x) = 0. Since the spatial decay is approximately
exponential,C2(r; t) ∝ e−r/R(t) for not too longr, we use this functional form to extractR
from the data fit at each set of parameters(T,H, t). Figure3.1 (a) shows that the growing
lengthR has two regimes: shortly after the quenchR grows ast1/2 like in the clean case
and it later crosses over to a logarithmic growth. This is consistent with previous numerical
studies in2d [110, 235] and3d systems [109, 234]. In Fig. 3.1 (b) we test the dependence
onT andH by plotting H2

T R versust/τ for T = 1, 2 andH = 0.5, 1, 1.5. We found the
best collapse usingτ ∼ H−3 but the precision of our data is not high enough to distinguish
between this and theτs proposed in [224, 225] and [109]. Our numerical results tend to
confirm theT/H2 dependence ofR even in the early stages of the growth.

Since the work of [109], it is now clear thatf2 in Eq. (3.6) is independent ofH, and
very similar to the one of the clean system. In Fig.3.2we also find that the scaling functions
f2 at differentT fall on top of one another. Thusf2 is independent ofH andT .
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The two-time self-correlation.

It is commonly defined as

C(t, t′) ≡ 1

N

N∑

i=1

〈si(t)si(t′)〉 , (3.7)

and quantifies how two spin configurations of the same system, one taken att′ (waiting-
time) and the other one att ≥ t′, are close to each other. The angular brackets here indicate
an average over different realizations of the thermal noise. In the largeN limit, this quantity
is self-averaging with respect to noise and disorder induced fluctuations.This two-time
function has been used as a clock for the out-of-equilibrium dynamics of glassy systems [19,
200] and we shall use this property again, in the study of the two-time growing length and
fluctuations.

The behavior ofC is well understood for coarsening systems. As long as the domain
walls have not significantly moved betweent′ andt(> t′) (that defines what we shall call
later short time delay), the self-correlation is given by the fluctuations of spinsthat are in
thermal equilibrium inside the domains. As any other equilibrium two-time function, the
self-correlation depends then only ont− t′. Later, for longer time delays, the displacement
of domain walls cannot be neglected any more andC looses its time-translational invari-
ance. The self-correlation can be written as a sum of two terms representingthe thermal
and aging regimes:

C(t, t′) = Cth(t− t′) + Cag(t, t
′) (3.8)

with the limit conditions

Cth(0) = 1− qEA , lim
t′→t−

Cag(t, t
′) = qEA ,

lim
t≫t′

Cth(t− t′) = 0 , lim
t≫t′

Cag(t, t
′) = 0 .
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qEA is a measure of the order parameter and in a ferromagnetic phase it simply equalsm2
eq,

the magnetization squared.

In Fig. 3.3(a) we show the decay of the two-time correlationC as a function of the time
delayt − t′ for t′ = 103, 104, 105 at T = 1 andH = 1. On each of these curves, one
can distinguish the two dynamic regimes. The longer the waiting-timet′ the later the aging
regime appears. In Fig.3.3(b) we show the decay of the two-time correlation as a function
of time-delay fort′ = 103 and five pairs of parameters(T,H) given in the key. It is clear
that the full relaxation depends strongly on the external parameters: raising the temperature
or reducing the random field strength speeds up the decay. For these values ofT andH,
qEA does not change much but the decay in the aging regime does.

Dynamic scaling implies that in the aging regime

Cag(t, t
′) = qEA f

(
R(t)

R(t′)

)
, (3.9)

with R the typical length extracted fromC2, f(1) = 1 andf(∞) = 0. For our choice of
parameters(T,H), qEA is close to unity so we can easily computef from the measuredC
by usingf = Cag/qEA ≃ C/qEA. Super-universality states thatf does not depend onT
andH. In Fig. 3.4 we show that both hypotheses apply to this quantity. In panel (a) we
use a linear-linear scale while in panel (b) we present the same data in a doublelogarithmic
scale. Although the scaling functionf looks like a power law it is not. One expects that
its tail [R(t) ≫ R(t′)] becomes a power-law with an exponentλ. The actual functionf is
not known. Most of the analytic efforts in domain growth studies are devoted to develop
approximation schemes to derivef , f2 and other scaling functions but none of them is fully
successful [50].
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The four point-correlation function.

In order to successfully identify a growing correlation length in glassy systems including
the 3d EA spin glass, one defines the two-time two-site correlation function [205, 207–
210, 236]

C4(r; t, t
′) ≡ 〈si(t)si(t′)sj(t)sj(t′)〉|~ri−~rj |=r . (3.10)

We extractξ from its approximate spatial exponential decay:C4(r; t, t
′) − C2(t, t′) ∝

e−r/ξ(t,t
′) at relativelyshortr/ξ. (Other methods, such as defining the connected four spin-

correlation and extractingξ from its volume integral yield similar qualitative results though
slightly different quantitatively.) Results of this analysis are shown in Fig.3.5(a) where we
plot ξ(t, t′) as a function oft for differentt′ atT = 1 andH = 1. We identify a shortt− t′
regime that is independent oft′ (thermal regime), whereas for longt− t′, time-translational
invariance is broken (aging regime). In Fig.3.5(b) we plotξ(t, t′) versus1−C(t, t′) for the
three same values oft′, usingt as a parameter. The dependence on1−C andt′ is monotonic
and very similar to the one obtained in the3d EA model [205] (see Fig.3.8). The thermal
regime is almost invisible here since it is contained betweenC = 1 andC = qEA, with
qEA ≃ 1 for this set of parameters. We then propose

ξ(t, t′) = R(t′) g(C) . (3.11)

The limit g(C = 1) = 0 is found by takingt = t′, that corresponds toC = 1 [extending the
scaling form (3.11) to include the thermal regime]. In this caseC4(r; t, t) = 1. If one uses
C4(r; t, t) = C̃4(r/ξ, C(t, t) = 1), see Sec.3.2.1, thenξ(t, t) must vanish to obtainC4 in-
dependent fromr, and this imposesg(1) = 0. In the other extreme, whent≫ t′ andC = 0

one expectsg(0) = 1. The reason is the following.limt≫t′ C4(r; t, t
′) = C2(r, t)C2(r, t

′),
for the temporal decoupling ofC4 can be done in thet≫ t′ limit. Recalling thatC2(r, t) ∝
f2(r/R(t)) with limx→0 f2(x) = 1, the only spatial contribution tolimt≫t′ C4(r; t, t

′)
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comes from the termC2(r, t
′) ∝ f2(r/R(t

′)). Usinglimt≫t′ ξ(t, t
′) = R(t′)g(0) and fur-

ther assuming that the functional forms ofC4(x) andf2(x) are, to a first approximation, the
same we deduceg(0) = 1.

Figure3.5(c), where we plotξ(t, t′)/R(t′) versus1−C(t, t′) for differentt′, illustrates
the validity of the scaling hypothesis (3.11). We see that, as expected,g(C = 1) = 0

and it seems plausible thatlimC 7→0 g(C) = 1. The scaling functiong is found to satisfy
super-universality,i.e. it is independent ofH andT .

C4 and super-universality.

Using the monotonicity properties ofC as a function oft − t′ and t′, and ofξ as a
function oft′ and1−C we can safely exchange the dependence ofC4 on the two times by
a dependence onξ andC. In other words,C4(r, ξ, C) where, again for simplicity, we did
not write explicitly the dependence onT andH. Now, a reasonable scaling assumption is
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that one can measurer in units ofξ such that

C4(r, t, t
′) = C̃4(r/ξ(t, t

′), C(t, t′)) . (3.12)

In Fig.3.6we put this scaling form to the test and we examine the possible super-universality
of C̃4. We use different values of the parameterst, t′, T ,H such thatC = 0.57 in all cases.
Both scaling and super-universality relations are well satisfied. Note that thescaling relation
in Eq. (3.12) can also be transformed into

C4(r; t, t
′) = C4(r/R(t

′), R(t)/R(t′)) (3.13)

by using Eq. (3.9). This last scaling form was also found for the O(N ) ferromagnetic
model in the largeN limit although the scaling function does not have a simple exponential
relaxation [212].

3.2.2 3d EA

A detailed analysis of the relaxation properties of similar correlations in the3d EA
model appeared in [205]. The spatial one-time correlation,C2(r, t), vanishes identically in
this model due to the quenched random interactions. It seems pretty clear from numerical
studies CITE that the scenario given in eq. (3.8) for the two-time correlation function in
coarsening phenomena is valid for the case of the3d EA model. In Fig.3.7(a) we give the
typical behavior of the two-time correlation functionC(t, t′) at a given temperature, for dif-
ferent waiting-times. Moreover, the aging part is found to scale asCag(t, t

′) = qEAf(t/t
′)

(so-calledsimple aging) as illustrated in Fig.3.7(b) (see also [202]). If there is a dynamical
growing length scale in the system, the dynamical scaling hypothesis states that itshould
therefore grow asR ∼ t1/z(T ). The question as to whether the scaling functionf is super-
universal is not well posed since theT -dependent power1/z(T ) can be absorbed inf .
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The four-point correlation allows for the definition of a two-time growing length scaleξ
that behaves qualitatively as in Eq. (3.11). In Fig. 3.8 we presentξ(t, t′) for the 3d EA.
Its behavior is very similar to the one of the RFIM exposed previously, but we would like
to stress the fact that this quantity reaches much lower values in the3d EA case (around
2a) than in the RFIM (around15a). Figure3.8 (c) demonstrates that the super-universality
property does not hold in the3d EA model. We usedR(t) ∝ t0.03 for both temperatures
and the resultingg(C) curves are significantly different. It is important to remark that no
T -dependent power-law inR would make the two curves collapse. Turning back to the
scaling of the two-time correlation and fixing the power law,C ∝ f [(t/t′)0.03] one finds
f(x) ∼ x−4.5 (atT/Tg ∼ 0.6) a much faster decaying power than in the RFIM. Note that
previous estimates of the dynamic exponent using the one-time replica overlap[203, 204]
yield 1/z(T = 0.3Tg) ≈ 0.045 a slightly larger value; the reason for the discrepancy could
be traced to the lack of accuracy in the determination ofξ and thenR.

3.2.3 Colloidal glasses

The structure factor of colloidal suspensions and Lennard-Jones mixtures are obviously
very different from the one of a sample undergoing ferromagnetic ordering. Still, two-time
self-correlations satisfy scaling withR(t) ∝ t1/z although a clear interpretation ofR is not
available.

Castillo and Parsaeian studiedξ in a Lennard-Jones mixture of particles undergoing a
glassy arrest. One notices that, at short time delays (t− t′ ∼ 10 molecular dynamic units),
ξ is monotonic with respect tot − t′ and t′ in this system, while one needs to reach much
longer time delays (and indeed go beyond the simulation window) in the3d EA and RFIM
cases [cfr. Figs.3.5 (a) and3.8 (a) to the first panel in Fig. 2 in [209]]. A form such as
(3.11) describesξ in this case too withR(t) ∼ t1/z and1/z ∼ 0.1.
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The two-time correlation length of colloidal suspensions was analyzed in [210] using
a mapping to a spin problem. The data forξ remains, though, quite noisy and although a
similar trend in time emerges the precise functional form is hard to extract.

3.2.4 Summary

In short, the macroscopic correlations in all these systems admit the same dynamic
scaling analysis although there is no clear interpretation ofR as a domain size in the case
of the3d EA and colloidal suspensions.

3.3 Fluctuations

An approach apt to describe problems with and without quenched randomness focuses
on thermally induced fluctuations [211]. The local dynamics can then be examined by
studying two-time spin-spin functions which, instead of being spatially averaged over the
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whole bulk, are only averaged over a coarse-graining cell with volumeVr = (2l)3 centered
at some siter [207, 208]:

Cr(t, t
′) ≡ 1

Vr

∑

−→ri∈Vr

si(t)si(t
′) . (3.14)

One can then characterize the fluctuations by studying their probability distribution function
(pdf) ρ(Cr; t, t′, l, L, T,H) with mean valueC(t, t′).

In general, the variation ofρ(Cr)with the size of the coarse-graining boxes is as follows.
For l < R the pdf is peaked aroundqEA and has a fat tail towards small values ofCr
including negative ones. Indeed, well in the coarsening regime, most of the small coarse-
grained cells fall inside domains and one then expects to find mostly a thermal equilibrium
distribution – apart from the tail. For larger values ofl such asl ≃ R, a second peak close
to C appears and the one atqEA progressively diminishes in height. For still larger values
of l, the peak atqEA disappears and a single peak centered atC (the mean value of the
distribution) takes all the pdf weight.

At fixed temperature and field, the pdfρ(Cr; t, t′, l, L) in the RFIM depends on four
parameters, two timest andt′ and two lengthsl andL. In theagingregime the dependence
on t andt′ can be replaced by a dependence onC(t, t′) andξ(t, t′), the former being the
global correlation and the latter the two-time dependent correlation length. Indeed,C(t, t′)
is a monotonic function on the two times [cfr. Fig. 3.3 (a)] andξ is a growing function
of t (cfr. Fig. 3.1), thus allowing for the inversion(t, t′) → (C, ξ). Note that we do not
need to enter the aging, coarsening regime to propose this form. One can now make the
natural scaling assumption that the pdfs depend onξ, the coarse-graining lengthl, and the
system linear sizeL through the ratiosl/ξ andl/L. In the end, the pdfs characterizing the
heterogeneous aging of the system read

ρ(Cr;C(t, t
′), l/ξ(t, t′), l/L) . (3.15)

We numerically test this proposal by assuming that the thermodynamic limit applies and the
last scaling ratio vanishes identically. Figure3.9 (a) shows the pdfs at two pairs of timest
andt′ such that the global correlationC(t, t′) is the same, andl = 9. It is clear that the two
distributions are different. In panel (b) we further choosel so thatl/ξ ≃ 0.7 is also fixed.
The two distributions now collapse as expected from the scaling hypothesis Eq.(3.15). Note
that another peak atC = −1 exists, though with a lower weight. Figure3.10(a) and (b)
show the scaling forl/ξ ≃ 1.4 andl/ξ ≃ 2.9, respectively. While the collapse is still good
in the case of panel (a), it is not satisfactory in panel (b). Indeed, thisplot suffers from the
fact that the thermodynamic limit is far from being reached (l/L ∼ 0.15 is not so small).

In Fig. 3.10(a) we used several values ofT andH and we found that all pdfs collapse
on the same master curve. We conclude that as long as coarse-graining lengths are not too
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close to the system size, the pdf of local correlation satisfy the scaling(3.15) with a scaling
function that is super-universal.

Let us now compare the forms of the pdfs in the RFIM and3d EA model. In the RFIM
the peak atqEA is visible until l/ξ ≃ 2. Given that in this modelξ is quickly rather large
(ξ reaches15a in the simulation time-window) one has a relatively large interval ofl for
which the peak atqEA can be easily seen. Instead, in the3d EA the two-time correlation
length grows very slowly and reaches onlyξ ∼ 2a in similar times, meaning that the peak
at qEA is hardly visible as soon as one coarse-grains the two-time observables [205].

Figure3.11demonstrates that the pdf of local correlations is not super-universal with
respect toT in the 3d EA model, and compares the functional form at two temperatures,
T/Tg = 0.3 andT/Tg = 0.6, with the one in the RFIM. The global correlation,C, and
the ratio of coarse-graining to correlation lengths,l/ξ, are the same in all curves. Although
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qualitatively similar, the pdf in the RFIM and3d EA models are different, with the RFIM
one being more centered around the global value.

The study of Lennard-Jones mixtures in [216] used a constant coarse-graining length
and the pdfs of local correlations at constantC showed a slow drift that should be cured by
taking into account the variation ofξ. In colloidal suspensions the scaling form (3.15) is
well satisfied [210]. In the context of coarsening phenomena these pdfs are to be compared
to the ones calculated for theO(n) model in its largen limit [ 212].

3.4 Conclusions

We performed an extensive analysis of the dynamics of the RFIM in its coarsening
regime. We showed that the equal-time correlation functions, global two-time correla-
tion functions, and the four point correlation functions obey scaling and super-universality
relations in the aging regime. The scaling relations, by means of the typical growing
length,R ∝ ln t/τ , reveal a non-trivial time-invariance for these statistical objects. Super-
universality encodes the irrelevance of quenched randomness and temperature on the scaling
functions and it is demonstrated by the fact that they are the same as for the clean Ising case.

In the 3d EA, similar scaling forms were found for global two-time correlations and
four-point correlations [205]. The functionR(t) could be associated to a domain radius
though a clear-cut confirmation of this is lacking. On the contrary, the results of recent large
scale simulations have been interpreted as evidence for an SK-like dynamic scenario [206].
The one-time function playing the role of the domain radius is a very weak powerlaw, t0.03

at T/Tg ∼ 0.3 − 0.6, and, in consequence, the two-time correlation length reaches much
shorter values than in the RFIM in equivalent simulation times. Super-universality (with
respect to temperature) does not apply in this case.
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A similar scenario applies to the Lennard-Jones mixtures [216] and colloidal suspen-
sions [210]. The two-time correlation length remains also very short in accessible numerical
and experimental times.

In all these systems the analysis of local fluctuations of two-time functions leads to
scaling of their probability distribution functions. In the RFIM these also verify super-
scaling with respect toT andH. In the3d EA they do not. The intriguing possibility of
a kind of super-scaling in colloidal suspensions (with respect to concentration) has been
signaled in [210] and deserves a more careful study.

We conclude that all these systems, witha priori very different microscopic dynamic
processes admit a similar dynamic scaling description of their macroscopic and mesoscopic
out-of-equilibrium evolution.
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DYNAMIC issues in isolated quantum many body systems are the focus of active re-
search. Some of the problems that are currently being studied theoretically are: the

time evolution of the entropy of entanglement in spin systems [237], the nature of non-
equilibrium steady states in small quantum systems driven out of equilibrium [238, 239] due
to their relevance for nano-devices, quantum annealing techniques [240, 241], and the den-
sity of defects left over after a gradual change in a parameter [242]. The influence of an envi-
ronment on the dynamics of quantum systems was also dealt with in a number of cases such
as the spin-boson model [75], disordered spin chains coupled to bosonic baths [243, 244], or
an electronic ring coupled to leads and further driven by a time-dependent field [245–247].

Once the interest is set upon macroscopic systems, the question as to whetherthese un-
dergo phase transitions naturally arises. The theory of equilibrium classicaland quantum
phase transitions is well developed.Non-equilibriumphase transitions in which quantum
fluctuations can be neglected are also quite well understood. These are realized when a sys-
tem is forced in a non-equilibrium steady state (by a shear rate, an external current flowing
through it, etc.) [248–251] or when it just fails to relax (e.g. after a quench) and displays
aging phenomena [252, 52]. In contrast, the effect of a drive on amacroscopicsystem close
to a quantum phase transition is a rather unexplored subject. Some works have focused
on non-linear transport properties close to an (equilibrium) quantum phase transition [121–
123]. Others have studied how the critical properties are affected by non-equilibrium drives
[124–126]. However, a global understanding of phase transitions in the control parame-
ter spaceT, V, Γ, with T the temperature,V the driving strength, andΓ the strength of
quantum fluctuations, is still lacking. Furthermore, to the best of our knowledge, the issue
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Figure 4.1: Non-equilibrium phase diagram of the fully connected driven quantum rotor
model with an infinite number of components.

of the relaxationtoward the quantum non-equilibrium steady state (QNESS) has not been
addressed in the past.

In this chapter we study a class of analytically tractable models, systems ofn-component
N quantum rotors that encompass an infinite range spin glass and its three dimensional pure
counterpart modeling coarsening phenomena. As discussed in [78] models of quantum ro-
tors are non-trivial but still relatively simple and provide coarse-grained descriptions of
physical systems such as Bose-Hubbard models and double layer antiferromagnets. The
system is coupled to two different external electron reservoirs that leadto a current flow-
ing through it and driving it out of equilibrium. (For a two dimensional model thecurrent
flows perpendicular to it, see the sketch in Fig. 1 of [124].) In the simplest setting [124]
each rotor is coupled to independent reservoirs; more realistic couplings are discussed in
[126]. Using the Schwinger-Keldysh formalism [176, 253, 254] we obtain the complete out
of equilibrium dynamics of these models in the largenN limit. We show that at sufficiently
low T, V,Γ, see Fig. 1, the system never reaches a QNESS and coarsens with remarkable
universal properties. We study the critical properties of the phase transitions, in particular
in the vicinity of the (drive-induced) quantum out-of-equilibrium critical point V̄c atΓ = 0,
T = 0 and the “usual” quantum critical point̄Γc at V = 0, T = 0. We analyze in detail
the relaxation in the coarsening regime and uncover the scaling properties of correlation
functions and linear response. We derive a general formula for the current flowing through
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the system under such a voltage drop and we analyze its dependence on the dynamics of the
system. Some of these results were announced recently in [255].

4.1 The model

4.1.1 System of disordered quantum rotors

The model we focus on is a quantum disordered system made ofN n-component rotors
interacting via random infinite-range couplings [45, 256].

The quantum rotors should not be confused with true quantum Heisenberg spins present
in any isotropic antiferromagnet; the different components of the rotor variables all com-
mute with each other, unlike the quantum spins.

We consider a fully-connected (mean-field) model where there is no underlying geom-
etry: each rotor is equivalently coupled to all the others. The Hamiltonian is given by

H =
Γ

2n

N∑

i=1

L2
i −

n√
N

∑

i,j<i

Jij si · sj . (4.1)

sµi (µ = 1 . . . n) are then components of thei-th rotor. The coordinatessµi constitute a
complete set of commuting observables. The scalar productsi · sj is given by

∑n
µ=1 s

µ
i s
µ
j .

In order to better apprehend the largen limit, we slightly changed the writing of the Hamil-
tonian compared to the one given in eq. (1.10) by rescalingsi 7→

√
n si. The length of

rotors is now fixed to unity,si · si = 1 ∀ i = 1 . . . N , at the price of an extran factor in
front of the potential term. The strengthsJij ’s are taken from a Gaussian distribution with
zero mean and varianceJ2. J controls the strength of disorder.Li is thei-th generalized
angular momentum operator whichn(n− 1)/2 components are given by

Lµνi = −i~
(
sµi

∂

∂sνi
− sνi

∂

∂sµi

)
for 1 ≤ µ < ν ≤ n , (4.2)

L2
i =

∑
µ<ν(L

µν
i )2 [78, 45, 256]. Γ acts like a moment of inertia and controls the strength

of quantum fluctuations; when~2Γ/J → 0 the model approaches the classical Heisen-
berg fully-connected spin glass. In the largen limit it is equivalent to the quantum fully-
connectedp = 2 spin glass [257, 258]. The classical mapping to ferromagnetic coarsening
in the 3d O(n) model withn → ∞ [52] holds, as we shall show in Sec.4.4.5, for the
quantum model as well.

4.1.2 Reservoirs of electrons

The system is coupled to two, ‘left’ (L) and ‘right’ (R), reservoirs of electrons. These
independent reservoirs are both in equilibrium at inverse temperatureβL andβR. The situa-



95

Figure 4.2:Density of states (DOS) of type A reservoirs.µ0 andµ0 + eV are the left and right Fermi levels,
respectively. The left reservoir is half-filled.

tion βL 6= βR would create a heat flow from one reservoir to the other. We are interested in
the simpler case in whichβL = βR ≡ β ≡ T−1. An electric current is forced by imposing
different chemical potentials,µL = µ0 andµR = µ0 + eV (where−e is the electric charge
of one electron).eV is the strength of the drive. AseV/J → 0, the effect of the reservoirs
on the system approaches the one of an equilibrium bath at temperatureT . The details of
the reservoir HamiltoniansHL andHR are not important since only the electronic Green’s
functions matter in the small rotor-environment coupling we concentrate on. We consider
the simple case in which left and right fermionic reservoirs have the same density of states
(DOS)ρL = ρR = ρ. Moreover, we focus on simple cases in which the shape of the DOS is
controlled by only one typical energy scaleǫF . In the rest of this chapter, we often consider
the limit in whichǫF is much larger than all the other energy scales involved. In this limit
the results become independent of the detailed functional form of the DOS. We also give
some results for finiteǫF using the specific DOS that we introduce below.

DOS with a finite bandwidth

We first consider regular DOS which have a finite typical width (finite bandwidth) con-
trolled byǫF andµ0 is set around the maximum of the distribution. In the limit whereǫF
is very large, they can be seen as almost flat distributions. We callǫcut the finite energy
cut-off beyond which the DOS vanishes,ρ(|ǫ| > ǫcut) = 0. Since the DOS we consider
have a single energy scaleǫF , ǫcut should scale withǫF . Notice that a finiteǫcut constrains
the voltage not to exceedeVmax = ǫcut − µ0 since the right reservoir is then completely
filled and therefore it cannot accept more fermions.

We call reservoir of type A a half-filled1 reservoir the DOS of which has a finite band-
width controlled byǫF and is symmetric and derivable in the vicinity of its maximum (see
Fig. 4.2). The simplest example of a type A reservoir is given by the semi-circular DOS

1. Half-filled means that half the total number of available states are occupied:
∫ µ0

−∞
dǫρ(ǫ) = 1

2
atT = 0.
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Figure 4.3:An example of type A reservoir: the semi-circle density of states (half-filled).

(see Fig.4.3),

ρA(ǫ) ≡
2

πǫF

√

1−
(
ǫ− ǫF
ǫF

)2

, (4.3)

that is symmetric and centered aroundǫF . Hereǫcut = 2ǫF . We chooseµ0 = ǫF so that the
reservoirs are half-filled at zero drive (eV = 0). In this case, atT = 0, the voltage applied
between both reservoirs cannot exceedeVmax = ǫcut − µ0 = ǫF .

Type B reservoirs have finite bandwidth but no energy cut-off:ǫcut = eVmax → ∞. A
realization of these reservoirs is given by the following DOS [see Fig.4.4(a)]

ρB(ǫ) ≡
α

ǫF

√
ǫ

ǫF
e
− 1

2

(

ǫ
ǫF

)2

, (4.4)

whereα ≈ 0.97 is a numerical constant fixed by normalization. The maximum of this
distribution is located atǫF /

√
2. This reservoir is half-filled forµ0 ≈ 0.95 ǫF . This

distribution resembles the semi-circular one in the sense that they both start with asquare
root behavior, have a maximum, and a bandwidth of orderǫF . In contrast, the DOS in
eq. (4.4) is different from zero at all finiteǫ and one can exploit this feature to apply strong
voltages.

DOS at low energy

In the previous examples (ρA andρB), we focused on values ofµ0 corresponding to
high energy states where the DOS is regular. We are also interested in studying cases where
µ0 is centered around low energy states. To analyze these cases, we focuson a DOS which
reads [see Fig.4.4(b)]:

ρC3d(ǫ) ≡
3

4
√
2ǫF

√
ǫ

ǫF
. (4.5)
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Figure 4.4:Two examples of typeB reservoirs. (a) The distributionρB vanishes asymptotically. (b) The
square root distribution diverges asymptotically.

This square root behavior is actually the one of the3d free fermions reservoir. In this case
ǫF is of the order of the hopping term for the free fermions. Since we shall onlyfocus on
the low energy states of the reservoir, we can neglect the non trivial highenergy structure
of the reservoir and take the DOS equal to zero forǫ > 2ǫF .

For the2d free fermions, the density of states is given by

ρC2d(ǫ) ≡
1

2ǫF
, (4.6)

whereas for the1d free fermions, the density of states is given by

ρC1d(ǫ) ≡
1

2
√
2ǫF

√
ǫF
ǫ

(4.7)

and, as forρC3d, we take these two densities of states to be equal to zero forǫ > 2ǫF .

4.1.3 Coupling between the system and the reservoirs

An electron hop from theL(R) reservoir to theR(L) reservoir is linearly coupled to
each rotor component:

Hint = −
√
n

Ns

N∑

i=1

n∑

µ=1

Ns∑

k,k′=1

M∑

l,l′=1

Vkk′ s
µ
i [ψ†

Likl σ
µ
ll′ ψRik′l′ + L↔ R] , (4.8)

whereψ†
Likl is thel-th component of anM -component spinor operator that creates an ad-

ditional fermion with energy~ωk in theL reservoir associated to thei-th rotor.k labels the
electron energy inside the reservoirs,Ns is the total number of states in each reservoir.σµ

are the generalized Pauli matrices forSU(M) of dimensionM ×M with M2 − 1 = n.
They are chosen to be normalized such that Trσµσν = δµν . Vkk′ are the rotor-environment
coupling parameters chosen to be constant:Vkk′ = ~ωc. Hint isO(n) andO(N) invariant.
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4.2 The dynamics

4.2.1 Quench setup

The system is initially prepared (at timest < 0) in such a way that its initial configura-
tion (at timet = 0) is neither correlated with disorder (Jij ’s) nor with the reservoirs. This
can be realized, for instance, by coupling the system to an equilibrium bath at temperature
T0 ≫ J,Γ so that any correlation in the system is suppressed. At timet = 0 the quench is
performed by suddenly coupling the system to theL andR reservoirs. These are supposed
to be “good reservoirs” in the sense that their properties are not affected by the state of the
system.

This setup generates non-equilibrium dynamics at timest > 0 for multiple reasons.
First of all, the rapid quenching procedure puts the system in a non-equilibrium initial con-
dition with respect to its new environment. Moreover, the latter is not an equilibriumbath
but a bias drive the role of which is to constantly destabilize the system. Finally,as a conse-
quence of its disordered interactions, the system of rotors experiences intrinsic difficulties
to reach equilibrium. Indeed, even if it were embedded within an equilibrium environment
it would show a glassy phase [258–260] in some parts of the phase diagram.

Since system and reservoirs are decoupled at timest < 0, the initial density matrix of
the whole system is given by

̺(t = 0)tot = ̺(t = 0)
N

⊗
i=1

̺Li
N

⊗
i=1

̺Ri . (4.9)

̺Li/Ri corresponds to the equilibrium density matrix of theL/R reservoir associated with
the i-th rotor. The system of rotors being prepared at very high temperature,its initial
density matrix is the identity in the rotors space:

̺(t = 0) ∝ I . (4.10)

All these density matrices are normalized to be of unit trace. Thet > 0 evolution of the
whole system plus environment is encoded in

̺tot(t) = U(t, 0) ̺tot(0) [U(t, 0)]† , (4.11)

where the unitary evolution operator is given byU(t, 0) ≡ Te−
i
~

∫ t
0 dt′ Htot(t′) with Htot =

H + HL + HR + Hint andT the time-ordering operator (see App.4.A). We analyze the
non-equilibrium dynamics using the Schwinger-Keldysh formalism (see [253, 254] for a
modern review) that we briefly introduce in the following lines.
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4.2.2 Schwinger-Keldysh formalism

The Suzuki-Trotter decomposition of the two unitary evolution operators that appear in

Z ≡ lim
τ→∞

Tr U(τ, 0) ̺tot(0) [U(τ, 0)]† = 1 , (4.12)

yields a path-integral involving two sets of fields with support on two different branches.
The first ones are time-integrated on a forward branch fromt = 0 to+∞. In the following,
these fields carry a+ superscript. The other ones are time-integrated on a backward branch
from+∞ to0 and carry a− superscript. These two branches constitute the Keldysh contour
C, see Fig.4.5. The identity (4.12) can now be expressed as a path integral,

Z =

∫

c
D[s±,ψ±, ψ̄

±
] e

i
~
Stot 〈s+(0), ψ̄+

(0)|̺tot(0)|s−(0),ψ−(0)〉 , (4.13)

where we collected all thesµai fields into the notationsa, and all the fermionic fieldsψaαi
and their Grassmannian conjugates intoψa andψ̄a (with a = ±).
〈s+(0), ψ̄+

(0)|̺tot(0)|s−(0),ψ−(0)〉 is the matrix element of the density matrix which
has support at timet = 0 only. The actionStot is a functional of all these fields:

Stot =
∑

a=±
a

∫ ∞

0
dt L([sa,ψa, ψ̄a]; t) . (4.14)

The Lagrangian is given byLtot = L+ Lint + LL + LR with

L([sa]; t) =
n

2Γ

∑

i

ṡai (t)
2 +

n√
N

∑

i,j<i

Jij n
a
i (t) · naj (t) , (4.15)

Lint([sa,ψa, ψ̄a]; t) =
√
n
~ωc
Ns

∑

iµkk′ll′

sµai (t)[ψ̄aLikl(t)σ
µ
ll′ ψ

a
Rik′l′(t) + L↔ R] .(4.16)

LL andLR are the Lagrangians of the free fermions in theL andR reservoirs. The index
‘c’ at the bottom of the integral sign in eq. (4.13) is here to remind us that the integration
is performed over fields satisfying the constraint that each rotor has a fixed unit length:
sai (t)

2 = 1 ∀ a, i, t. The path-integral formalism gives a nice way to restore an uncon-
strained integration over all fieldssai by the introduction of Lagrange multiplierszai :

∫

c
D[sa] =

∫
D[sa]

∏

i,t

δ(1− sai (t)
2) (4.17)

=

∫
D[sa, z a] exp

(
i

~

∫ ∞

0
dt a

n

2

∑

i

zai (t)
(
1− sai (t)

2
))

. (4.18)

where we used the integral representation of the delta function (see App.4.A) and collected
the new auxiliary real fieldszai into the notationz a. In terms of a Lagrangian, this gives rise
to the new term

LLM([sa, z a]; t) =
n

2

∑

i

zai (t)[1− sai (t)
2] . (4.19)
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Figure 4.5:The Keldysh contourC goes from0 to +∞ and then back to0. The Keldysh action involves
forward fields (that live on the+branch ofC) that are time-integrated from0 to +∞ and backward fields (that
live on the−branch ofC) and are time-integrated from+∞ to 0.

4.2.3 Macroscopic observables

We are interested in the macroscopic dynamics of the rotors after an infinitely rapid
quench and we wish to give an answer to the following questions (among others). Does the
system reach a steady state? Does a steady state current establish? Whatare the long-time
dynamics? We first obtain an effective generating functional for the rotorsby expanding the
system-drive interaction up to second order in the coupling, integrating away the fermionic
degrees of freedom, and averaging over the disorder distribution.

Introducing the external real fieldshaiµ(t) that we collect in the notationha(t) (a = ±),
the generating functionalZ[h±] reads

Z[h±] ≡
∫
D[ s±, z±,ψ±, ψ̄

±
] e

i
~
Stot[s±,z±,ψ

±,ψ̄
±
,h±]

×〈s+(0), ψ̄+
(0)|̺tot(0)|s−(0),ψ−(0)〉 , (4.20)

where we introduced the source term

Stot 7−→ Stot +
~

i

∑

a=±

∫
dt
∑

i

∑

µ

sµai (t)hµai (t) . (4.21)

The generating functional obeys the normalization propertyZ[h± = 0] = Z = 1 which is
a fundamental feature of the Keldysh formalism in this setup (see eq. (4.12) and Sec.4.4.1).
One has

〈sµai (t)〉 = 1

Z
δ Z[h±]
δhµai (t)

∣∣∣∣
h±=0

, (4.22)

where we introduced the notation

〈 · · · 〉 ≡
∫
D[ s±, z±,ψ±, ψ̄

±
] · · · e i

~
Stot〈s+(0), ψ̄+

(0)|̺tot(0)|s−(0),ψ−(0)〉 .(4.23)

Notice that one can distinguish this bracket notation from the quantum statistical average
that we denote similarly by the occurrence of Keldysh indices inside the brackets. However,
they coincide in the case of one time observables,e.g.

〈sµi (t)〉 = 〈s
µa
i (t)〉 , (4.24)

with a = + or− equivalently if the observable is time-reversal invariant.
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Keldysh Green’s functions

We introduce the two-time Green’s functionsG ab
ijµν(t, t

′), defined on the Keldysh con-
tour (a, b = ±), as

〈sµai (t)sνbj (t′)〉 = 1

Z
δ2Z[h±]

δhµai (t)δhνbj (t′)

∣∣∣∣∣
h±=0

≡ i~G ab
ijµν(t, t

′) . (4.25)

sµai being real fields, one has the following time-reversal property

G ab
ijµν(t, t

′) = G ba
jiνµ(t

′, t) . (4.26)

In the operator formalism, the Keldysh Green’s functions read

i~G ab
ijµν(t, t

′) = Tr
[
TC s

µ
iH(t, a) s

ν
jH(t

′, b) ̺tot(0)
]
, (4.27)

wheresµiH(t, a) denotes the Heisenberg representation of the operatorsµi at timet and on
thea-branch of the Keldysh contour.TC is the time-ordering operator acting with respect
to the relative position of(t, a) and(t′, b) on the Keldysh contourC (see App.4.A).

We define the macroscopic Keldysh Green’s functions by summing over theN rotors
and each of theirn components

Gab(t, t′) ≡ 1

N

N∑

i=1

n∑

µ=1

G ab
iiµµ(t, t

′) . (4.28)

From the identity (4.27), one establishes two relations between the four Green’s functions

G++(t, t′) = G−+(t, t′)Θ(t− t′) +G+−(t, t′)Θ(t′ − t) ,
G−−(t, t′) = G+−(t, t′)Θ(t− t′) +G−+(t, t′)Θ(t′ − t) , (4.29)

leading to

G++ +G−− = G+− +G−+ ,

G++(t, t′)−G−−(t, t′) = sign(t− t′) [G−+(t, t′)−G+−(t, t′)] .
(4.30)

Self correlation

We define the macroscopic two-time correlation as

C(t, t′) ≡ 1

N

N∑

i=1

1

2
〈s+i (t) · s−i (t′) + s−i (t) · s+i (t)〉 (4.31)

=
i~

2

[
G+−(t, t′) +G−+(t, t′)

]
=

i~

2

[
G−−(t, t′) +G++(t, t′)

]
. (4.32)

It is symmetric in its time argumentsC(t, t′) = C(t′, t). Given the constraints(t)·s(t) = 1,
it is one at equal times:C(t, t) = 1. The two-time correlation function is the simplest non-
trivial quantity giving information on the dynamics of a system. In particular, a loss of its
time translational invariance is a signature of aging.
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Self linear response

The response at timet of the observablesµi to an infinitesimal perturbation performed
at a previous timet′ on an observablefµi linearly coupled tosµi is defined as

Rµi (t, t
′) ≡ δ〈sµi (t)〉

δfµi (t
′)

∣∣∣∣
fµi =0

, (4.33)

with the modified Hamiltonian

H 7−→ H − fµi s
µ
i . (4.34)

Causality ensures that the response vanishes ift < t′. We define the macroscopic linear
response as

R(t, t′) =
1

N

N∑

i=1

n∑

µ=1

Rµi (t, t
′) . (4.35)

The functional derivative with respect tofµi (t
′) in eq. (4.33) can be written in terms of the

source fieldshµ±i (t′) sincefµi appears to play a similar role in the action functional:

δ

δfµi (t
′)
←→ i

~

(
δ

δhµ+i (t′)
− δ

δhµ−i (t′)

)
. (4.36)

Therefore we obtain a Kubo relation, stating that the response can be expressed in terms of
two-time Green’s functions:

R(t, t′) =
1

N

N∑

i=1

n∑

µ=1

i

~

1

Z

(
δ2Z[h±]

δhµai (t)δhµ+i (t′)

∣∣∣∣∣
h±=0

− δ2Z[h±]

δhµai (t)δhµ−i (t′)

∣∣∣∣∣
h±=0

)

= Ga−(t, t′)−Ga+(t, t′) with a = + or − equivalently

=
1

2

[
G−−(t, t′) +G+−(t, t′)−G++(t, t′)−G−+(t, t′)

]

=
[
G+−(t, t′)−G−+(t, t′)

]
Θ(t− t′) , (4.37)

where we made use of the relations (4.29).

Finally the four Keldysh Green’s functionsGab(t, t′) can be re-expressed in terms of a
couple of physical observables (namely correlation and response):

i~Gab(t, t′) = C(t, t′)− i~

2

[
aR(t′, t) + bR(t, t′)

]
. (4.38)
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Keldysh rotation

The Keldysh rotation of the fields is a change of basis that simplifies the expressions of
the physical observables such as the correlationC and the responseR in terms of Green’s
functions. One introduces new fields as

{
2 s

(1)
i ≡ s+i + s−i ,

~ s
(2)
i ≡ s+i − s−i ,

(4.39)

and the inversion relation

sai = s
(1)
i + a

~

2
s
(2)
i . (4.40)

We define the Green’s functions of these new fields asi~Grs(t, t′) ≡ 1/N
∑N

i=1〈sri (t) ·
ssi (t

′)〉 with r, s = (1), (2). We have

i~G(11)(t, t′) = C(t, t′) , i~G(12)(t, t′) = −iR(t, t′) ,
i~G(21)(t, t′) = −iR(t′, t) , i~G(22)(t, t′) = 0 .

(4.41)

The fact thatG(22) vanishes identically is very general and can be tracked back to be a
consequence of causality. The unit length constraint imposed on the rotorcoordinates,
sai (t) · sai (t) = 1, becomes an orthogonality constraint between the fields in the new basis,

s
(1)
i (t) · s(2)i (t) = 0, and a relation between their norms:s

(1)
i (t)

2
+ ~2

4 s
(2)
i (t)

2
= 1.

After the Keldysh rotation, the connection with the classical MSRJD generating func-
tional presented in Chapter2 is straightforward [253, 254, 259, 260]. Indeed, comparing
the relations (4.41) with eqs. (2.27) and (2.34) reveals a very strong resemblance between
the fieldss(1)i andψ on the one hand, and betweenis(2)i andψ̂ on the other hand. We shall
come back to this connection in Sec.4.4.5.

Bosonic FDT

When the system of rotors is in equilibrium at a given temperatureβ−1, the fluctuation-
dissipation theorem holds (in its bosonic version) giving an extra relation between the
Green’s functions. In Fourier space (see App.4.A for our Fourier conventions) it reads

C(ω) = ~ coth (β~ω/2) Im R(ω) . (4.42)

For completeness, we derive this theorem in App.4.D.2.
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4.3 The influence of the fermionic environment

4.3.1 Self-energy

We treat the interactions with the environment in perturbation theory up to secondorder
in the coupling. After the fermionic degrees of freedom are integrated out, the resulting
effective action for the rotors acquires an extra term encoding the effects of the reservoirs.
The detailed computation, given in App.4.D.1, yields

Seff = S + SLM + S
(2)
int , (4.43)

with

i

~
S
(2)
int [s

(1), s(2)] =
1

2
n

∑

rs=(1),(2)

∫∫ ∞

0
dt dt′ Σrsenv(t, t

′)
N∑

i=1

sri (t) · ssi (t′) , (4.44)

and the four self-energy components

Σ(22)
env = 2(~ωc)

2 Re
[
GKLG

K
R

∗ − ~
2/4

(
GALG

A
R
∗
+GRLG

R
R
∗)] ≡ −ΣKenv , (4.45)

Σ(21)
env = −2i(~ωc)2 Re

[
GRLG

K
R

∗
+GKLG

R
R
∗] ≡ iΣRenv , (4.46)

Σ(12)
env = 2i(~ωc)

2 Re
[
GALG

K
R

∗
+GKLG

A
R
∗] ≡ −iΣAenv , (4.47)

Σ(11)
env = 0 . (4.48)

The fact thatΣ(11)
env vanishes identically is a consequence of causality. Similarly to what we

have done in Sec.4.2.3we renamedΣ(22)
env , Σ(21)

env andΣ(12)
env intoΣKenv, ΣRenv andΣAenv. These

real functions are usually referred to as the Keldysh, retarded and advanced components of
the self-energy.GKα ,GRα andGAα are the Keldysh, retarded and advanced Green’s functions
of the free electrons in theα-reservoir respectively (see App.4.B.1). Using their properties
under time reversal (see App.4.B.2), we establish

ΣKenv(τ) = ΣKenv(−τ) , ΣRenv(τ) = −ΣAenv(−τ) . (4.49)

These relations reduce the number of independent self-energy components to two (namely
ΣKenv andΣRenv). By plugging the expressions of the fermionic Green’s functions given in
App. 4.B.1, we obtain

ΣKenv(τ) = −
1

2
(~ωc)

2〈〈
[
tanh(β

ǫL − µL
2

) tanh(β
ǫR − µR

2
)− 1

]
cos

(
ǫL − ǫR

~
τ

)
〉L〉R,

ΣRenv(τ) =
1

~
(~ωc)

2〈〈
[
tanh(β

ǫL − µL
2

)− tanh(β
ǫR − µR

2
)

]
sin

(
ǫL − ǫR

~
τ

)
〉L〉RΘ(τ) .
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The notation〈〈 · · · 〉L〉R stands for
∫
dǫL dǫR ρL(ǫL)ρR(ǫR) · · · . The Fourier transforms

read

ΣKenv(ω) = −1

2
π~(~ωc)

2〈〈
[
tanh(β

ǫL − µL
2

) tanh(β
ǫR − µR

2
)− 1

]

× [δ(~ω − ǫLR) + δ(~ω + ǫLR)]〉L〉R , (4.50)

ReΣRenv(ω) =−(~ωc)2〈〈
[
tanh(β

ǫL − µL
2

)− tanh(β
ǫR − µR

2
)

]
pv

ǫLR
(~ω)2 − ǫLR2

〉L〉R,

Im ΣRenv(ω) =
1

2
π~(~ωc)

2〈〈
[
tanh(β

ǫL − µL
2

)− tanh(β
ǫR − µR

2
)

]

× [δ(~ω − ǫLR)− δ(~ω + ǫLR)]〉L〉R , (4.51)

whereǫLR ≡ ǫL− ǫR. SinceΣKenv(τ) is a real and even function ofτ , ΣKenv(ω) is also a real
and even function ofω. ΣRenv(τ) being real,ΣRenv(ω) is Hermitian:ΣRenv(ω) = ΣRenv(−ω)

∗
.

4.3.2 Some limits

Expressions (4.50) and (4.51) of the Keldysh and retarded self-energies are somehow
cumbersome. We simplify them here in some physical limits. These expressions are heavily
used in the rest of this work.

Zero drive

TheL andR reservoirs constitute an equilibrium bath for the rotors as soon as they
share the same temperature and the strength of the drive is set to zero (µL = µR, eV = 0).
In this case, the fluctuation-dissipation theorem applies to the environment variables, and
gives an extra relation between the environment self-energy components.It reads

ΣKenv(ω) = ~ coth

(
β
~ω

2

)
Im ΣRenv(ω) . (4.52)

Ultimately the number of independent self-energy components reduces to one. We checked
in App.4.D.2that the expressions (4.50) and (4.51) comply with the FDT in the equilibrium
case.

Low frequency

Let us consider the low frequency limit (ω → 0), or long time-difference in real time, of
the self-energy components of a generic non-equilibrium environment (eV 6= 0 a priori).
Parity considerations onΣKenv andΣRenv show thatΣKenv(ω) approachesΣKenv(ω = 0) which
depends onT , eV andǫF whereas ImΣRenv(ω) ∝ ω. The low frequency limit, which can
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also be seen as the classical limit (~ω ≪ T ) of the quantum fluctuation-dissipation theorem
in eq. (4.52) gives a way to express the temperature of an equilibrium bath as

T = lim
ω→0

1

2

ΣKenv(ω)

∂ωIm ΣRenv(ω)
. (4.53)

By analogy with the equilibrium case, we introduce for non-equilibrium situations

T ∗ ≡ lim
ω→0

1

2

ΣKenv(ω)

∂ωIm ΣRenv(ω)
. (4.54)

We expect that the effect of the reservoirs on the long time-difference dynamics of the rotors
is the one of an equilibrium bath at temperatureT ∗.

ǫF much larger than all other energy scales

The reservoirs act as anOhmicbath in the limit in whichǫF is much larger than the
temperature, the drive and~ω (eV, T, ~ω ≪ ǫF ). Equation (4.51) with ∆ǫ ≡ ǫL− ǫR reads

Im ΣRenv(ω) =
1

2
π(~ωc)

2

∫
dǫ′

∫
d∆ǫ ρ(ǫ′)ρ(ǫ′ −∆ǫ) [δ(~ω −∆ǫ)− δ(~ω +∆ǫ)]

×
[
tanh(β

ǫ′ − µ0
2

)− tanh(β
~(ǫ′ −∆ǫ)− µ0 − eV

2
)

]
. (4.55)

In the limit ~ω ≪ ǫF , we useρ(ǫ′ ± ~ω) ≃ ρ(ǫ′) and we derive

Im ΣRenv(ω) ≃
1

2
π(~ωc)

2

∫
dǫ′ ρ2(ǫ′) (4.56)

×
[
tanh(β

ǫ′ + ~ω − µ0 − eV
2

)− tanh(β
ǫ′ − ~ω − µ0 − eV

2
)

]
.

The factor within the square brackets in the integrand is peaked atǫ′ = µ0 + eV . Hence
we can approximateρ2(ǫ′) ≃ ρ2(µ0) and then compute the remaining integral exactly to
obtain an Ohmic (in the sense that it is proportional toω) behavior for the imaginary part of
the retarded self-energy:

Im ΣRenv(ω) ≃ 2π~(~ωc)
2ρ2(µ0) ω . (4.57)

Interesting enough, this expression is independent ofT andV . Similar calculations give

ΣKenv(ω) ≃ 2π~(~ωc)
2ρ2(µ0)

eV sinh(βeV )− ~ω sinh(β~ω)

cosh(βeV )− cosh(β~ω)
. (4.58)

In order to determineT ∗, we investigate the low frequency limit ofΣKenv(ω) given in
eq. (4.58).
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Zero drive. ForeV ≪ T ≪ ǫF , eq. (4.58) yields

ΣKenv(ω) ≃ 2π~2(~ωc)
2ρ2(µ0) ω coth (β~ω/2) . (4.59)

Equations (4.57) and (4.59) are linked through FDT. In the low frequency limit (~ω, eV ≪
T ≪ ǫF ) it reads

ΣKenv(ω) ≃ 4π~(~ωc)
2ρ2(µ0) T , (4.60)

yieldingT ∗ = T as expected in this equilibrium situation.

Finite drive. As soon as the drive is not negligible compared to temperature, in the low
frequency regime (~ω ≪ T ≪ ǫF andeV ≪ ǫF )

ΣKenv(ω) ≃ 2π~(~ωc)
2ρ2(µ0) eV coth (βeV/2) , (4.61)

yielding

T ∗ =
eV

2
coth (βeV/2) . (4.62)

An “FDT like” relation is verified in these limits

ΣKenv(ω) = ~ coth (~ω/2T ∗) Im ΣRenv(ω) . (4.63)

A similar interpretation of the effect of a two-leads environment in these limits on thedy-
namics of a single localized spin was given in [261] and [262].

Furthermore, in the low temperature limit (~ω ≪ T ≪ eV ≪ ǫF )

ΣKenv(ω) ≃ 2π~(~ωc)
2ρ2(µ0) |eV | , (4.64)

yieldingT ∗ ≡ |eV |/2.

Finally in the zero temperature limit (0 = T ≪ ~ω, eV ≪ ǫF )

ΣKenv(ω) = 2π~(~ωc)
2ρ2(µ0)

{
|eV | if |~ω| ≤ |eV | ,
|~ω| if |~ω| > |eV | . (4.65)

In the low frequency regime, we recover expression (4.64). In the zero temperature and zero
drive limit (0 = T = eV ≪ ~ω ≪ ǫF ) the Keldysh component of the environment self-
energy readsΣKenv(ω) = 2π~(~ωc)

2ρ2(µ0) |~ω| that goes linearly to zero in the~ω → 0

limit.
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Zero temperature

In theT = 0 limit, we obtain for finite values of the other parameters (eV, ~ω, ǫF )

ΣKenv(ω) = π~(~ωc)
2

[
sign(eV + ~ω)

∫ µ0+eV+~ω

µ0

dǫ ρ(ǫ)ρ(ǫ− ~ω)

+ sign(eV − ~ω)

∫ µ0+eV−~ω

µ0

dǫ ρ(ǫ)ρ(ǫ+ ~ω)

]
,(4.66)

Im ΣRenv(ω) = π(~ωc)
2

[ ∫ µ0+eV+~ω

µ0

dǫ ρ(ǫ)ρ(ǫ− ~ω)

−
∫ µ0+eV−~ω

µ0

dǫ ρ(ǫ)ρ(ǫ+ ~ω)

]
. (4.67)

In the low frequency limit (0 = T ≪ ~ω ≪ eV, ǫF ) they yield

ΣKenv(ω) ≃ 2π~(~ωc)
2 sign(eV )

∫ µ0+eV

µ0

dǫ ρ2(ǫ) , (4.68)

Im ΣRenv(ω)≃ π~(~ωc)
2
[
ρ2(µ0) + ρ2(µ0 + eV )

]
ω , (4.69)

so that

T ∗(T = 0) = sign(eV )

∫ µ0+eV
µ0

dǫ ρ2(ǫ)

ρ2(µ0) + ρ2(µ0 + eV )
. (4.70)

Some specific reservoirs

For the half-filled semi-circular DOS (type A), at zero drive and zero temperature, we
establish the following analytical results at finiteǫF :

ΣKenv(τ) = 2

(
~ωc
ǫF

)2 J2
1 (τǫF /~)− S2

1(τǫF /~)

(τ/~)2
, (4.71)

ΣRenv(τ) =
8

~

(
~ωc
ǫF

)2 J1(τǫF /~)S1(τǫF /~)

(τ/~)2
Θ(τ) , (4.72)

with ΣRenv(τ = 0) = 0, ΣKenv(τ = 0) = 1
2(~ωc)

2. J1 andS1 are the Bessel and the Struve
functions of first kind and first order, respectively. From eqs. (4.71) and (4.72), we see that
the temporal extent of bothΣRenv andΣKenv is of order~/ǫF . In the limit in whichǫF is much
larger than any other energy scale, a numerical analysis shows that this property holds for
finite values of the temperature and the drive as well. As a way of summary, in Fig. 4.6
(a) we plotΣKenv as a function ofτǫF for ǫF = 10J, 100J and at(T = J, V = 0) and
(T = 0, V = J). In the case in whichǫF is finite, one can computeT ∗ for the half-filled
semi-circular DOS at zero temperature:

T ∗(T = 0) =
|eV |
2

1− 1/3 (eV/ǫF )
2

1− 1/2 (eV/ǫF )2
for |eV | < eVmax = ǫF . (4.73)
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Figure 4.6:(a)ΣKenv (for the half-filled semi-circle DOS) as a function ofτǫF in the regime whereǫF is much
larger than any other energy scale: forβǫF = 100 andβǫF = 1000 at eV = 0 and also foreV/2 = ǫF /100
at T = 0. The three curves are indistinguishable. This shows thatΣKenv is indeed a function ofτǫF in this
regime and shows furthermore thateV/2 plays the same role asT . (b) ImΣRenv(ω) is represented in a double
logarithmic scale for the three following DOS withβǫF = ǫF /eV = 100: the half-filled semi-circleρA(ǫ), the
half-filled typeB with ρB(ǫ) and the3d free electrons DOSρC3d(ǫ). The straight line above all is a guide to
the eye for a pure Ohmic (∝ ω) behavior. The rapid decay above~ω ∼ ǫF is a signature of the energy cut-off,
ǫcut ∝ ǫF , of the DOS.

In Fig. 4.6 (b) we give a numerical integration of ImΣRenv(ω) for the three types of
reservoirs we introduced in Sec.4.1.2 and in the case in whichǫF is the largest energy
scale. This shows that the self-energy is indeed the one of an Ohmic bath. The fact that
their Ohmic behavior is approximately valid until~ω = ǫF supports the property that the
temporal extent of the self-energies (in real time) is of the order of~/ǫF .

4.4 Results

In this Section we present our results. We first complete the calculation of disorder
averaged generating function and, from it, we derive Schwinger-Dysonequations for the
two-time correlation and linear response valid for all values of the parameters.We next
derive the dynamical phase diagram as a function of the temperature of the reservoirs (T ),
the strength of quantum fluctuations (Γ), the voltage (eV ) and the coupling to the leads for
which we introduce the new dimensionless parameterg ≡ ~ωc/ǫF . We distinguish two
phases separated by a second order phase transition. For high values of the temperature
and/or strong drive and/or strong quantum fluctuations, we find a non-equilibrium steady
state that approaches the usual paramagnet wheneV → 0. Whereas for low temperatures
and/or low drive and/or quantum fluctuations we find a coarsening phase.
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4.4.1 Average over disorder

At this stage, after tracing out all fermionic degrees of freedom, the effective action of
our system is quadratic in the fields and reads

i

~
Seff = n

N∑

i=1

∫
dt

{
i

Γ
ṡ
(1)
i (t) · ṡ(2)i (t)

+
i√
N

N∑

j<i

Jij

[
s
(1)
i (t) · s(2)j (t) + s

(2)
i (t) · s(1)j (t)

]
(4.74)

−1

2

∫
dt′ ΣKenv(t− t′) s(2)i (t) · s(2)i (t′) + i

∫
dt′ ΣRenv(t− t′) s(2)i (t) · s(1)i (t′)

+
i

2~

∑

a=±
azai (t)

[
1− 1

2

(
s
(1)
i (t)

)2
− a~ s

(1)
i (t) · s(2)i (t)− ~

2

4

(
s
(2)
i (t)

)2]
}
.

Given that the initial condition for the rotors is taken to be uncorrelated with the disorder
configuration (theJij ’s), neither the initial density matrix̺(0) nor the generating functional
without sources (Z[h± = 0] = 1) depend upon disorder. This property allows us to write
dynamic equations by averaging over disorder the generating functional itselfhence without
resorting to the use of replicas [259, 260]. As in other quantum systems with quenched
disorder [258–260, 263–265, 46, 47, 266–270], we are therefore interested in

Z[h±]
J ≡

∫ 
∏

i,j<i

dJij P (Jij)


Z[h±] , (4.75)

whereP (Jij) is the Gaussian density distribution for the rotor couplings with zero mean
and varianceJ2. The disorder average over a random Gaussian potential can be readily
done and the effective action of the system is quartic in the fields and reads

i

~
Seff = n

N∑

i=1

∫
dt

{
i

Γ
ṡ
(1)
i (t) · ṡ(2)i (t) (4.76)
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] [
s
(1)
i (t′) · s(2)j (t′) + s

(2)
i (t′) · s(1)j (t′)

]

−1

2

∫
dt′ ΣKenv(t− t′) s(2)i (t) · s(2)i (t′) + i

∫
dt′ ΣRenv(t− t′) s(2)i (t) · s(1)i (t′)

+
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azai (t)

[
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(
s
(2)
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)2]
}
.
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4.4.2 Schwinger-Dyson equations

In the largen limit, we show that the Lagrange multipliers are homogeneous,

z+i (t) = z−i (t) ≡ z(t) ∀ i, t . (4.77)

See App.4.Efor a detailed computation. Moreover, introducing

ΣK ≡ J2C +ΣKenv , ΣR ≡ J2R+ΣRenv , (4.78)

we obtain the Schwinger-Dyson equations which fully determine the dynamics ofthe sys-
tem:
[
1

Γ

∂2

∂t2
+ z(t)

]
C(t, t′) =

∫ t′

0
dt′′ ΣK(t, t′′)R(t′, t′′) +

∫ t

0
dt′′ ΣR(t, t′′)C(t′′, t′), (4.79)

[
1

Γ

∂2

∂t2
+ z(t)

]
R(t, t′) = δ(t− t′) +

∫ t

t′
dt′′ ΣR(t, t′′)R(t′′, t′), (4.80)

z(t) =

∫ t

0
dt′′ ΣK(t, t′′)R(t, t′′) + ΣR(t, t′′)C(t, t′′)− 1

Γ

∂2C

∂t2
(t, t′ → t−) . (4.81)

We remark that the expression for the response is decoupled from the selfcorrelation apart
from a residual coupling through the Lagrange multiplier. This is actually a consequence
of two features of the model: the disordered potential is quadratic in the rotors and the
coupling to the reservoirs is linear in the rotors. The “initial” conditions are givenby

C(t, t) = 1, R(t, t) = 0 ∀ t . (4.82)

Moreover, integrating eqs. (4.79) and (4.80) over an infinitesimal interval aroundt′ = t,
one sees that the first derivative of the correlation is continuous at equaltimes

lim
t′→t−

∂tC(t, t
′) = lim

t′→t+
∂tC(t, t

′) = 0 , (4.83)

whereas the one of the response function is discontinuous

lim
t′→t−

∂tR(t, t
′) = Γ, lim

t′→t+
∂tR(t, t

′) = 0 . (4.84)

The structure of these equations is the same as the one in other out-of-equilibrium problems
studied in [258–260, 263–265, 46, 47, 266–271].

4.4.3 Quantum non-equilibrium steady state (QNESS) phase

One expects that if the system is quenched into the high temperature phase, after a
short transient it should relax toward a quantum non-equilibrium steady state (QNESS). The
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system of rotors cannot be in equilibrium since, forV 6= 0, an electronic current is passing
through it. Nevertheless the dynamics are still stationary (time translationally invariant).
This implies thatC(t, t′) andR(t, t′) are only functions oft − t′. Guided by a numerical
analysis (see Sec.4.4.5), we make the assumption (that we later check to be consistent) that
the quantityz(t) is a one-time observable that converges toward a finite valuez∞. In this
situation, one can Fourier transform the Schwinger-Dyson equations (4.79) and (4.80) with
respect tot− t′ to find

R(ω) =
1

−Γ−1ω2 + z∞ − ΣR(ω)
, (4.85)

C(ω) = ΣK(ω)|R(ω)|2 , (4.86)

C(ω) =
ΣKenv(ω)

Im ΣRenv(ω)
Im R(ω) , (4.87)

Using the fact thatlim
ω→∞

R(ω) has to vanish, eq. (4.85) implies

R(ω) =
1

2J2

(
−Γ−1ω2 + z∞ − ΣRenv(ω) +

√
(−Γ−1ω2 + z∞ − ΣRenv(ω))

2 − 4J2

)
.

(4.88)
We note that in the cases in which the DOS of the reservoirs have an energycut-off ǫcut,

C(ω) = Im R(ω) = ΣKenv(ω) = Im ΣRenv(ω) = 0 for ~ω > ǫcut . (4.89)

4.4.4 Critical manifold

Equation for criticality

Approaching the putative critical manifold from the disordered phase, seeFig. 4.1,
where after a short transient the system should be time translationally invariant, we look
for a singularity in the Fourier transformed Schwinger-Dyson equations that would be the
signature of the loss of time translational invariance and ultimately of a phase transition to-
ward an out-of-equilibrium behavior. Anticipating a second order phase transition scenario
where the onset of criticality is characterized by long-wavelength instabilities, we inspect
these equations atω = 0.

The constraint that rotors have a unit lengthC(t, t) = 1 implies
∫ ∞

0

dω

2π
C(ω) =

1

2
, (4.90)

and replacingC(ω) with its expression in eq. (4.87):

∫ ∞

0

dω

2π

ΣKenv(ω)

Im ΣRenv(ω)
Im R(ω) =

1

2
. (4.91)
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Equation (4.88) atω = 0 reads

R(ω = 0) =
1

2J2

(
z∞ − ΣRenv(ω = 0) +

√
(z∞ − ΣRenv(ω = 0))2 − 4J2

)
. (4.92)

R(ω = 0) =
∫∞
0 dτ R(τ) has to be real sinceR(τ) is real2. However, it is clear from

eq. (4.92) thatz∞ = z∞c ≡ 2J + ΣRenv(ω = 0) is a singular point (a minus sign would be
incoherent with the approach in Sec.4.4.5). This is the signature of the phase transition we
were looking for. At criticality,

R(ω = 0)|z∞=z∞c
= 1/J . (4.93)

Concomitantly, the value ofC(ω = 0) blows up. Insertingz∞c in eq. (4.91), we obtain the
equation for the critical manifold,

∫ ∞

0

dω

2π

ΣKenv(ω)

Im ΣRenv(ω)
Im R(ω)|z∞c =

1

2
. (4.94)

The parameters are the strength of quantum fluctuationsΓ, the temperatureT , the voltage
applied between the two reservoirsV . We recall thatJ is the typical interaction between
two rotors. The energy variation scale of the reservoirs is characterized by ǫF and~ωc
quantifies the coupling strength of the rotors to their environment through the dimensionless
small parameterg ≡ ~ωc/ǫF .

In the rest of this section, we use eq. (4.94) to uncover the phase diagram of Fig.4.1.
The critical surface is parametrized in theT , Γ V space byTc, Γc, Vc (g is kept constant).
We introduce the critical points̄Tc ≡ Tc(Γ = V = 0), V̄c ≡ Vc(T = Γ = 0), Γ̄c ≡
Γc(T = V = 0). Anticipating the coming results, we introduce the dimensionless reduced
parametersθ ≡ T/J , υ ≡ eV/2J , γ ≡ (4~/3π)2 Γ/J . In the planeV = 0, where the
reservoirs act like an equilibrium bath, we recover the results in [258]. In the classical limit
V = Γ = 0, we recover the ones in [272, 273].

In the limit in which ǫF is much larger than any other energy scale, using eqs. (4.57)
and (4.58), the equation for the critical surface reads

∫ ∞

0

dω

2π

1

ω

eV sinh(βeV )− ~ω sinh(β~ω)

cosh(βeV )− cosh(β~ω)
Im R(ω)|z∞c =

1

2
. (4.95)

Critical points on the Γ = 0 plane

Taking theΓ→ 0 limit of expression (4.88) one has

Im R(ω′)|z∞c =

{
1
J

√
1− (1− ω′2)2 for ω′ ∈ [0,

√
2] ,

0 for ω′ ≥
√
2 ,

(4.96)

2. ΣRenv(ω = 0) is real for the same reason.
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Figure 4.7:Study of the behavior of theγ = 0 critical line with the ratioǫF /J for the half-filled semi-circle
DOS. (a) Theγ = 0 critical line θc(υ) is given for four different values of the ratioǫF /J . The analytical
expression of theǫF /J → ∞ curve is given in eq. (4.99). For ǫF /J < 3/2 the critical pointῡc is rejected to
infinity. (b) ῡc ≡ υc(θ = γ = 0) is plotted againstǫF /J . All theseγ = 0 results are independent of the value
g.

where we introducedω′ ≡ ω/
√
2JΓ. The expression of ImR(ω) does not involve the

reservoirs: the time scale of the rotors (controlled byΓ) totally decouples from the one of
the reservoirs in such a way that the rotors only couple with the zero mode (the slowest) of
the reservoirs. Using eq. (4.94), we write the equation of the critical manifold in theΓ = 0

plane

lim
Γ→0

√
2Γ

J

∫ √
2

0

dω′

2π

√
1− (1− ω′2)2

ΣKenv(
√
2JΓω′)

Im ΣRenv(
√
2JΓω′)

=
1

2
. (4.97)

Using the definition (4.54) of T ∗(T, eV ) introduced in Sec.4.3.2, this simply reads

T ∗(Tc, eVc) = J . (4.98)

At eV = 0, the reservoirs constitute an equilibrium bath and the ratioΣKenv/Im ΣRenv is
given by the FDT and we find a temperature-induced classical critical point T̄c ≡ Tc(Γ =

V = 0) = J . In terms of the reduced temperature this readsθ̄c = 1. In the next two
paragraphs we look at how this critical point is affected by a finite drive (eV 6= 0).

Infinite ǫF . We first consider the limitǫF → ∞, using the explicit expression (4.62) for
T ∗ one finds:

Tc(eV ) =
eV

2

/
arccoth

(
2J

eV

)
. (4.99)

From this equation we find a drive-induced critical point ateV̄c/2 = J . In terms of the
reduced voltage this reads̄υc = 1. The departure from the classical critical temperature on
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Figure 4.8:Phase diagram in terms of the reduced parameters analytically determinedin the limit g → 0.
(a) Critical line forV = 0. (b) Critical line forT = 0 in the limit ǫF → ∞.

theγ = 0 plane is quadratic:θc ≃ 1− 1/3 υ2 for υ ≪ 1. Instead, on the zero-drive plane,
υ = 0, the critical line leaves̄θc linearly: θc ≃ 1−3π2/16 γ for γ ≪ 1. More details on the
critical lineγc(t) atυ = 0 are given in [45, 256]. Close toῡc on theθ = 0 andγ = 0 planes
the departure of the critical linesγc(υ) andθc(υ), respectively, are non-analytical and thus
very steep [see Figs.4.7(a) and4.8(b)].

Finite ǫF . Let us now investigate theT = 0 critical point V̄c for finite values ofǫF . For
our simple DOS depending on a unique parameterǫF , ῡc is controlled byǫF /J . Plugging
the expression (4.70) for T ∗(T = 0) into the expression (4.98) we obtain

sign(eV̄c)
1

J

∫ µ0+eV̄c
µ0

dǫ′ ρ2(ǫ′)

ρ2(µ0) + ρ2(µ0 + eV̄c)
= 1 . (4.100)

The existence and the value of the solutionV̄c depend on the details of the DOSρ(ǫ). If
the DOS has an energy cut-offǫcut, the existence of a solution is guaranteed if the cut-off is
larger than the solutionǫmincut of

∫ ǫmincut

µ0

dǫ ρ2(ǫ) = Jρ2(µ0) . (4.101)

For the type A half-filled semi-circle distribution (µ0 = ǫF , ǫcut = 2ǫF ), it turns out that
eq. (4.100) admits a finite solution as soon asǫF /J ≥ 3/2. For ǫF /J = 3/2, one finds
eV̄c = 3/2 J (ῡc = 3/4) . For ǫF /J > 3/2, the finite solutionῡc goes to one as one
increases the ratioǫF /J . For ǫF /J < 3/2 the critical point is rejected to infinity and the
critical line in theΓ = 0 plane converges to the asymptotic valueθc(υ ≫ 1) = 1/2 as
ǫF /J → 0. See Fig.4.7.

For the distribution B, ifµ0 6= 0, the scenario is the same as for the semi-circle distri-
bution there is a finite value of the ratioǫF /J under which, the critical point̄υc is rejected
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to infinity, and above which,̄υc has a finite value that goes to1 in the limit ǫF → ∞. If
µ0 = 0 thenῡc remains finite.

For the distribution of type C, eq. (4.100) always admits a finite solution̄υc independent
of ǫF . For the distributionC3d, ῡc = 1 regardless ofµ0, ǫF andJ . For the distributionC2d,
we also get̄υc = 1. For the distributionC1d, one can show that as long asµ0 > 0, there is
a finite ῡc, function only ofu ≡ J/µ0: ῡc = [exp (u+ L(ue−u))− 1] /2u, whereL(x) is
the only solution of the equationLeL = x that is analytic in0. Forµ0(ǫF →∞)→∞, we
recoverῡc = 1.

Quantum critical point

Weak coupling limit. We first consider the limit of the weak coupling to the reservoirs
g → 0 after the long-time limit such that the asymptotic regime has been established. It
is actually in thisg → 0 limit that the self-energy was computed (we expanded the total
action up to second order ing) in Sec.4.3. g ≡ ~ωc/ǫF can be sent to zero by sending the
coupling parameters to zero, but for our simple DOS, it can also be realized by sendingǫF
to infinity.

In equilibrium (V = 0) atT = 0, the FDT gives

ΣKenv(ω)

Im ΣRenv(ω)
= ~ for 0 < ~ω < ǫcut . (4.102)

By turning off the coupling to the reservoirs (g → 0) in eq. (4.92) on has

Im R(ω′)|z∞c =

{
1
J

√
1− (1− ω′2)2 for ω′ ∈ [0,

√
2] ,

0 for ω′ ≥
√
2 ,

(4.103)

where we introducedω′ ≡ ω/
√
2JΓ. Plugging eqs. (4.102) and (4.103) in the equation for

the critical manifold (4.94) gives the quantum critical point

~
2Γ̄c ≡

(
3π

4

)2

J if ǫcut >
3π

2
J and no solution otherwise. (4.104)

For type A reservoirs in theǫF → ∞ limit, one can prove that the critical surface is
parabolic close to the quantum critical pointγ̄c i.e. γc ≃ 1 − 16/3π2 θ2 at θ ≪ 1 and
υ = 0, andγc ≃ 1− 16/3π2 υ2 for υ ≪ 1 andθ = 0.

Finite coupling. When the coupling to the electronic reservoirsg is finite this quantum
critical point (actually the whole critical surface) moves upward when increasing the cou-
pling constant (see Fig.4.9). The coarsening phase is thus stabilized when increasing the
coupling to the reservoirs. In theǫF →∞ limit, one has forg ≪ 1

γ̄c ≃ 1 + 2

(
3π

4

)2

(~ωc)
2ρ2(µ0) . (4.105)
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Figure 4.9:Numerical study of the evolution of the critical pointγ̄c ≡ γc(θ = 0, v = 0) with the coupling
parameterg (here forǫF /J = 10).

Γc(V=0) ∼ T c−T
Γc(T=0) ∼ NA

Tc(Γ=0) ∼ NA

Tc(V=0) ∼ (Γc−Γ)
1/2

Vc(T=0) ∼ (Γc−Γ)
1/2

Vc(Γ=0) ∼ (T c−T)
1/2

Table 4.1: Behavior of the critical manifold close to the critical points forg → 0 andǫF → ∞. Close to the
critical pointV c = Vc(T = Γ = 0) the critical lines are non-analytical (NA).

In the case of the type A half-filled semi-circle distribution this readsγ̄c ≃ 1 + 9/2 g2.
This is similar to what was found for other quantum spin models embedded in an Ohmic
harmonic oscillator bath and is due to a spin-localization-like effect [258, 263, 264]. This
similitude is not surprising since we showed in Sec.4.3.2, eq. (4.57), that the mixed elec-
tronic reservoirs behave like an Ohmic bath in theǫF →∞ limit.

Summary of the phase diagram

Let us summarize the key features of the critical manifold in the case of a DOS with
ǫF → ∞. When the coupling to the reservoirg is set to zero, the values of three critical
points (T̄c, Γ̄c, eV̄c) are only controlled byJ that measures the disorder strength. Figure4.1
gathers all theg → 0 results in theT , Γ, V space. The increase of either the thermal or
quantum fluctuations, by raisingΓ or the temperatureT , respectively, leads to the destabi-
lization of the coarsening phase. The same occurs for an increase of the bias voltageV . The
summary of the behavior of the critical manifold close to the critical pointsT̄c , Γ̄c andV̄c
is given in Table4.1. Furthermore, an increase of the rotors-reservoirs couplingg pulls the
quantum critical point̄Γc upward (as indicated in Fig.4.1by a vertical arrow) enlarging the
low temperature phase.
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4.4.5 Coarsening phase

We study the dynamics in the lowT , weakΓ, weakV region of the phase diagram by
solving the Schwinger-Keldysh equations in two ways: with an exact numerical approach
and using analytic approximation in the long-time dynamics. We prove that in this region of
the phase diagram there is coarsening and that the aging dynamics that occur are universal
and equivalent to the ones of the classical (and undriven) limit of our model (a.k.a. the
p = 2 spherical model with quenched disorder).

Numerical solution

Our numerical analysis consists in solving the Schwinger-Dyson equations (4.79), (4.80)
and (4.81) after a quench into the low temperature, weak quantumness, weak drive phase.
Thanks to their causal structure, the equations onC,R andz can be integrated step by step
in time, with a Runge-Kutta method. Apart from arbitrarily small numerical errors, this
approach is exact.

We concentrate on reservoirs at temperatureT that have a type A semi-circle DOS (both
L andR reservoirs).L reservoirs are kept half-filled while a voltageV is applied between
L andR reservoirs.ǫF is chosen to be the largest energy scale. Typically, we consider the
following values for the parameters:T ∼ Γ ∼ eV ∼ 0.1J andǫF ∼ 10J .

The analysis shows (analytical arguments are given in Sec.4.4.5) that the dynamics
after the quench below the critical surface do not reach a QNESS. There is a separation of
two-time scales typical of aging phenomena [52]. The data in Figs.4.10-4.12were obtained
using the algorithm briefly described.

Mapping to Langevin dynamics

The goal of this subsection is to map our quantum field theory description of the ro-
tors dynamics, which involves the two fieldss(1) ands(2) (see Sec.4.2.3), to an equivalent
description in terms of Langevin dynamics. In the long-time limit of the coarsening dy-
namics, we establish that the equation of motion for the fields(1) is actually a Langevin
equation driven by a colored noiseξ the statistical characteristics of which are controlled
by the self-energies of the fermion reservoirs.

Let us take a step back and rewrite the effective action as it was before averaging over
disorder. Making the assumption (we later check its consistency) that the Lagrange multi-
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pliers satisfyz+i (t) = z−i (t) = zi(t) ∀ i, t, the effective action reads

i

~
Seff [s

(1), s(2), z] = n
N∑

i=1

∫
dt

{
i

Γ
ṡ
(1)
i (t) · ṡ(2)i (t) + i

N∑

j=1

Jij s(1)i (t) · s(2)j (t)

−1

2

∫
dt′ ΣKenv(t− t′) s(2)i (t) · s(2)i (t′) + i

∫
dt′ ΣRenv(t− t′) s(2)i (t) · s(1)i (t′)

−izi(t)s(1)i (t) · s(2)i (t)

}

where introduced the real and symmetric matrixJ defined byJij ≡ Jji/
√
N if j < i,

Jij ≡ Jji if j > i. Like the other components of this matrix, we setJii to be taken
from a Gaussian distribution with zero mean and varianceJ2/N [we saw that the constraint
si(t)

2 = 1 yieldss(1)i (t) · s(2)i (t) = 0]. The total effective action adopts the quadratic form

i

~
Seff = −n

N∑

i=1

∫
dt

{
is

(2)
i (t) · EQi(t) +

1

2

∫
dt′ s(2)i (t) · ΣKenv(t− t′) s(2)i (t′)

}
,

where we introduced the notation

EQi(t) ≡
N∑

j=1

∫
dt′

{[(
1

Γ
∂2t + zi(t)

)
δij − Jij

]
δ(t− t′)− ΣRenv(t− t′)δij

}
s
(1)
j (t′) .

(4.106)

By comparing this action with the action of the MSRJD formalism [see for example eq.(2.8)],
the quantityEQi can be interpreted as a Gaussian random process and can therefore be writ-
ten as a set of coupled Langevin equations

EQi(t) = ξi(t) , (4.107)

with ξi(t) a Gaussian random noise with statistics〈ξi(t) · ξj(t′)〉ξ = δijΣ
K
env(t− t′). This

mapping is possible since the action of the rotor system, once the constraint on each rotor
has been imposed throughzi(t) andzi(t) is treated independently, is quadratic. In more
general models the mapping is not exact, seee.g. the discussion in [274–277].

Under the further assumptionzi(t) = z(t), justified in the largeN limit, the stochastic
equations (4.106) are rendered independent – apart from a residual coupling throughthe
Lagrange multiplier – by a rotation onto the basis that diagonalizes the interaction matrix
J . Indeed,J being real and symmetric, it hasN real eigenvaluesσ with corresponding
eigenvectorsσ that constitute a complete and orthonormal basis of the space of rotor sites:
σ•σ′ = δσσ′ where• is the usual scalar product in this space. Let us collect all the rotors in
the vectors ≡ {s(1)i }i∈[1,N ] and introduce its projections on the eigenvectors:sσ ≡ s • σ.
If we project eq. (4.106) ontoσ, we are left withN uncoupled Langevin equations reading

(
1

Γ
∂2t − σ + z(t)

)
sσ(t)−

∫
dt′ ΣRenv(t− t′)sσ(t′) = ξσ(t) , (4.108)
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with

〈ξσ(t)〉ξ = 0 , 〈ξσ(t) · ξσ′(t′)〉ξ = δσσ′ ΣKenv(t− t′) . (4.109)

There areclassicalLangevin equation for the fieldssσ. The noise statistics is controlled
by ΣKenv and is peculiar because of the quantum origin of the environment: it has memory
(colored), and depends onT, eV, ~. ΣRenv appears like a friction kernel. BecauseΣKenv
andΣRenv do not satisfy a classical fluctuation-dissipation relation, it is a non-equilibrium
environment even in theeV = 0 case.

Two-time self correlation. Within the effective Langevin formalism, the two-time self
correlation function defined in eq. (4.31) reads

C(t, t′) = 〈sσ(t) · sσ(t′)〉
J
, (4.110)

where the average over disorder is realized by

· · · J ≡
∫

dσ ρJ(σ) · · · , (4.111)

andρJ(σ) is the probability density of the eigenvalues of the interaction matrixJ . For
our case of an infinite (N →∞) and symmetric random matrix with Gaussian elements of
varianceJ2/N it is given by the Wigner semi-circle distribution:

ρJ(σ) ≡
1

πJ

√
1−

( σ
2J

)2
for σ ∈ [−2J ; +2J ] , (4.112)

and zero elsewhere.

Following the analysis in [272, 273], the correlation function (4.110) is expected to
show a separation of time scales (at least in some parts of the phase diagram).This is usual
in coarsening phenomena and corresponds to a stationary regime at shorttime-difference
and an aging one at long time-difference with respect to a waiting-time dependent charac-
teristic time. The stationary part of the correlation approaches a plateau at the Edwards-

Anderson order parameter,qEA ≡ 〈sσ〉2ξ
J
, that measures the of frozen rotor fluctuations on

time scales much smaller than this characteristic time. The value ofqEA depends on all pa-
rameters (T, eV,Γ, g). It is non-vanishing in the spontaneously symmetry-broken phase and
continuously goes to0 on the critical surface. In certain cases it can be computed exactly.

It is reasonable to expect that the long-time aging dynamics is determined by thelow
frequency (or long time) form of the Langevin equations only. The simplification arising in
this asymptotic limit are discussed below.
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Long-time dynamics

In the low-frequency, long time-difference limit,~ω ≪ T , the Keldysh self-energy can
be approximated by a constant [see,e.g., eq. (4.61) in Sec.4.3.2for its exact expression in
theǫF →∞ limit]

ΣKenv(τ) ≃ δ(τ)ΣKenv(ω = 0) ≥ 0 . (4.113)

Similarly, we keep the leading contributions in the derivative expansion ofΣRenv:

ΣRenv(τ) ≃ ΣRenv(ω = 0)δ(τ) + η0δ(τ)∂τ , (4.114)

with η0 ≡ ∂ωIm ΣRenv(ω = 0) > 0. The Langevin equations read in this limit

1

Γ
∂2t sσ(t) + η0∂tsσ(t) =

(
σ − z(t) + ΣRenv(ω = 0)

)
sσ(t) + ξσ(t) , (4.115)

whereη0 plays the role of a friction coefficient andξσ(t) has white noise statistics:

〈ξσ(t) · ξσ′(t′)〉ξ = δσσ′δ(t− t′) ΣKenv(ω = 0) . (4.116)

In the Langevin formalism, the kernel of an equilibrium white bath is given by theEinstein
relation (known as the FDT of the second kind):〈ξ(t)ξ(t′)〉ξ = 2η0Tδ(t − t′). Thus, the
temperatureT of the bath can be seen as the ratio of the diffusion coefficient of a particle
embedded in that bath with the friction coefficientη0 of the bath on the particle. For our
reservoirs, in the low-frequency long time-difference limit, one can associate this ratio to an
equivalent temperatureT ∗

T ∗ ≡ lim
ω→0

1

2

ΣKenv(ω)

∂ωIm ΣRenv(ω)
, (4.117)

the properties of which were discussed in Sec.4.3.2. Thus, we confirm here thatT ∗ acts
like a temperature in the sense that the effect of the (out-of-equilibrium) reservoirs on the
long-time dynamics is the one of anequilibriumdissipative (Ohmic) bath at a temperature
T ∗. This has been reported in different works and is at the root of the derivation of the
stochastic Gilbert equation for a spin under bias [261].

We expect that as far as the long time dynamical behavior is concerned, theinertial term
in eq. (4.115) can also be dropped, thus leading to the equations:

∂tsσ(t) = λσ(t) sσ(t) +
1

η0
ξσ(t) , (4.118)

where we introduced the shorthand notationλσ(t) ≡ [σ −∆z(t)] /η0 and∆z(t) ≡ z(t)−
ΣRenv(ω = 0).

This particular Langevin equation has been analyzed intensively in the studyof the
classical spherical Sherrington-Kirkpatrick model (or sphericalp = 2 spin glass model)
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and the results in [272, 273] apply to our problem withT 7→ T ∗. The solution to eq. (4.118)
for a given disorder realization and noise history is

sσ(t) = sσ(0) exp

(∫ t

0
dτ λσ(τ)

)
+

1

η0

∫ t

0
dτ ξσ(τ) exp

(∫ t

τ
dτ ′ λσ(τ

′)

)
. (4.119)

Copying results in [272, 273], the aging part of the correlation (in the limitt′ ≫ t → ∞)
shows a simple aging scaling behavior

C(t, t′) ≃ 2
√
2 qEA

(t/t′)3/4

(1 + t/t′)3/2
= C(t/t′) . (4.120)

The solution to eqs. (4.118) leads toqEA = 1 − T ∗(eV, T )/J . However, this result is
obtained by taking the limit of relatively close times – with respect tot′ – whereas, as we
stressed, eq. (4.118) is valid for the long timet′ and long time-differencet − t′ properties
only. As a consequence, we expect the scaling result, eq. (4.120), to hold at long times with
the value of the Edwards-Anderson parameter not necessarily given by 1 − T ∗(eV, T )/J .
Its computation requires a full solution of the equations of motion.

We now focus on the aging dynamics in different parts of the phase diagramand argue
that the Langevin dynamics (4.115) indeed provide a correct description of the dynamical
evolution.

Dynamics in theeV = 0 plane. In this case, the Edwards-Anderson order parameterqEA
measures the static order parameter. Static calculations yield the following equation[256]

1 =

∫
dσ ρJ(σ)

√
Γ

2
√
z∞ − σ coth

(√
Γ
√
z∞ − σ
2T

)
, (4.121)

that gives in principle the value ofz∞(T, eV ) for any temperature and strength of the quan-
tum fluctuations. It is large forT, eV ≫ J and decreases with bothT andeV . However,
because of the square roots in the above equation, it cannot go below the critical value fixed
by the upper edgeσ∗ of the distribution of eigenvaluesρJ . In the case of the Wigner semi-
circle distribution [see eq. (4.112)], this corresponds toz∞c = σ∗ = 2J and the critical line
is given by

1 =

∫
dσ ρJ(σ)

√
Γc

2
√
2J − σ coth

1

2Tc

√
Γc
√
2J − σ . (4.122)

Under the critical line, there is some sort of Bose-Einstein condensation. Indeed, in order
for the constraint

∑
i〈s2i 〉 =

∑
σ〈s2σ〉 = N to be satisfied, the weight of the edge eigenvalue

σ∗ = 2J has to become macroscopic andqEA is a measure of the fraction of ‘frozen’
rotors in the condensate. In the classical limit eq. (4.121) simplifies considerably yielding
1 =

∫
dσ ρJ(σ)

T
z∞−σ and one identifiesqEA = 1

N 〈sσ∗〉 = 1− T/Tc.
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The dynamic calculations based on the use of the quantum FDT to relate the correlation
to the linear response in the stationary regime detailed in [258], or the replica equilibrium
computation in [263, 264], can be easily extended to deal with a generic electronic bath in
equilibrium. One confirms thatqEA = 1 atT = Γ = eV = 0 and continuously approaches
0 on the critical lineΓc(T ) for all values ofg. The precise variation ofqEA within the
coarsening phase depends on the bath kernels. In theǫF → ∞ limit, the results in [258]
apply also to our problem. The solution of the Schwinger-Dyson equations in theaging
regime confirms that the scaling result, eq. (4.120), holds.

Dynamics in the Γ = 0 plane. Another interesting case is the effective overdamped
Langevin limit obtained forΓ → 0 and (eV, T ) in the coarsening phase. In this case
dropping the inertial term in eq. (4.115) is exact and not an approximation.

Here the resultqEA = 1− T ∗(eV, T )/J can be shown to hold. The Edwards Anderson
parameter approaches one forT = V = Γ = 0 and goes continuously to zero on the
critical line, as in a second order phase transition. Consistently with the analysisof the
critical surface derived from the QNESS phase (see Sec.4.4.4), one findsT ∗(Tc, eVc) =

J . Numerical integration of the integro-differential equations of motion confirms that the
scaling result, eq. (4.120), holds in the aging regime.

Despite the fact that dropping the inertial term is exact, the equations (4.118) are still
not exact at all times. In particular, the initial conditions for this approximated equation of
motion should be given by the state of the system a short while after the quench, when the
long-timescale description starts to be valid. Apparently, this delay seems to be notsuffi-
cient to significantly correlate the rotors with the interaction matrixJ and, to any practical
purposesσ(0) can still be considered “random”, at least as far as the Edwards-Anderson
parameter is concerned.

Dynamics in theT = 0 plane. The zero-temperature plane is more difficult to deal with
analytically. One is not entitled to use FDT since the system is driven byeV nor dropping
the second time-derivative is exact. Furthermore, this is the case where thesimplification
leading to eq. (4.118) are more dangerous because of the power law tails appearing atT = 0

in correlation and response functions.

In order to check that the scaling result, eq. (4.120), holds we numerically integrate the
full set of Schwinger-Dyson equations.

In Fig. 4.10(a) we show the decay of the two-time correlation function. For short time
differencest− t′ with respect to the waiting timet′, there is a stationary regime depending
on all control parameters in which the correlation approaches a plateau asymptotically in
the time-difference. The plateau value isqEA and measures the fraction of frozen rotor
fluctuations on time scales much smaller thant′. Afterwards, there is an aging regime in
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Figure 4.10:Dynamics in the driven coarsening regime: numerical solution to Schwinger-Dyson eqs. (4.79)
and (4.80) where the reservoirs have a half-filled semi-circle DOS withǫF = 10J . (a) The self correlation
C(t, t′) after a quench toθ = 0.02, v = 0.02, γ = 0.2, g = 1 (in reduced quantities) shows first a stationary
regime for shortt − t′, then a slow aging regime where the time translational invariance is lost. (b) The
self correlationC is plotted versust/t′ for two waiting times after two quenches into the coarsening region:
θ = 0.02, v = 0, γ = 0.2 andθ = 0, v = 0.02, γ = 0.2. There is a double collapse of the curves. The collapse
for the differentt′ proves the simple aging scalingC(t′/t) and the collapse for the two different quenches
shows thatT ∗ ≃ eV/2 plays the role of a temperature. The theoretical curve is the solution eq. (4.120) with
qEA ≈ 0.6.

which C depends on the two times explicitly. In Fig.4.10 (b), we plotC againstt/t′ to
prove that the simple aging scaling predicted analytically with eq. (4.120) holds at these
long times. Moreover, we show that the dynamics after a quench toθ = 0.02, v = 0 are the
same that the ones after a quench toθ = 0, v = 0.02, illustrating the fact thatT ∗ ≃ eV/2

acts here like a temperature.

Super-universality. It is remarkable that in the largenN limit, the long-time dynamics
of our model are exactly the ones of the classical fully connectedp = 2 spherical spin
glass. The latter being a classical model in contact with an equilibrium bath (Γ = 0, eV =

0), the former being its quantum version in contact with a non-equilibrium environment
(Γ 6= 0, eV 6= 0). The fact that the scaling functions aresuper-universal, in the sense
that they do not depend on the external parametersT, eV,Γ onceqEA is extracted as a
factor, can be understood as follows. First the fact that the non-equilibrium environment
of our model give rise to the same long-time dynamics than an equilibrium environment
can be seen as a consequence of the Ohmic behavior of the reservoirs self-energy kernels
at small frequencies (see Sec.4.3.2). Secondly, the fact that our quantum model shows
a classical behavior at late times can be understood as a consequence ofdecoherence due
to the dissipative (and Ohmic) bath. Furthermore, the effect of the temperature T on the
long-time dynamics being irrelevant (in a RG sense) in the classical limit, one canexpect
the same to hold in the quantum case with respect to all parameters.
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We found quite naturally that the long-time dynamics correspond to a Bose-Einstein-
like condensation process of theN n-dimensional ‘vectors’sσ on the direction of the edge
eigenvector. The relaxation is controlled by the decay ofρJ(σ) close to its edgeσ∗. For
Gaussian i.i.d. couplings .

We now prove the strong connection with the dynamics of the pure3d O(n → ∞)

models. For the3d O(n → ∞) non-linear sigma model [defined in eq. (1.3) and after
rescalingsi 7→

√
n si], the equations of motion are rendered independent in Fourier space

and read
(
1

Γ
∂2t − Jk2 − g

∑

q

|sq(t)|2 − 1]

)
sk(t)−

∫
dt′ ΣRenv(t− t′)sk(t′) = ξk(t) (4.123)

E = −k2 are the Laplacian eigenvalues the distribution of which is given byρ∆(E) =

ρk(k)
∣∣ dk
dE

∣∣ whereρk(k)dk ∼ ddk ∼ kd−1dk. This yieldsρ∆(E) ∼ (−E)d/2−1 which
coincides ford = 3 with the edge of the distribution of eigenvalues of theJij matrix,
ρJ(σ)

σ≃σ∗∼ (2J − σ)1/2. For this reason all models with a square root singularity of the
distribution of “masses”σ, such as the ferromagnetic rotor model ind = 3 and the com-
pletely connected spin glass rotor model, are characterized by the same long-time dynamics.

This result has an interesting consequence. In the case of (largen) quantum3d coars-
ening the classical-quantum mapping extends to space-time correlations and proves the ex-
istence of a growing coherence lengthR(t) ∝ t1/2 over which the rotors are oriented in the
same direction. This real-space interpretation of aging unveils the connection with coarsen-
ing that was announced all along this manuscript.

Linear response

It has already been noticed in Sec.4.4.2that the response function was somehow pecu-
liar since its equation of motion is decoupled from the one of the self correlation. Having
argued that the long-time dynamics are governed by their classical counterparts, the linear
response should also scale as in the classical limit. Therefore, the quantumfluctuation-
dissipation relation between integrated linear response,χ(t, t′) ≡

∫ t
t′ dt

′′ R(t, t′′) and self
correlationC(t, t′) approaches the classical one,χ ∼ ct+ (qEA − C)/Teff , with aninfinite
effective temperature [278], Teff → ∞, as shown in Fig.4.11. The relations between in-
tegrated responses and correlation functions in other quantum problems thatalso approach
classical-like form in the aging regime were shown in [259, 260, 265, 46, 47, 266–270].

The Lagrange multiplier

One should check the validity of a key assumption that was used to derive the phase
diagram: the convergence ofz(t) to an asymptotic value on the critical manifold. We first
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Figure 4.11:The integrated linear response,χ(t, t′) =
∫ t

t′
dτR(t, τ) againstC(t, t′), for t′ = 1024 and

usingt as a parameter. The curved part corresponds to the stationary and oscillatory regime with(t−t′)/t′ → 0
while the straight line is for times in the monotonic aging decay ofC.

derive analytically the asymptotic behavior (within our long-time approximation) ofz(t) in
theΓ = 0 coarsening phase showing that this is indeed the case. Then we give numerical
evidence thatz(t) converges in the whole phase space.

The conditionC(t, t) =
∫
dσ ρJ(σ) 〈sσ(t) · sσ(t)〉ξ = 1 reads after taking its time

derivative and assuming furthermore thatsσ(0) is uncorrelated withσ (sσ(0) = s0, ∀ σ),
that is valid for random initial conditions (coming from infinite temperature for instance)

0 =

∫
dσ ρJ(σ) 〈∂tsσ(t) · sσ(t)〉ξ (4.124)

=

∫
dσ ρJ(σ)

{
s20λσ(t)e

2
∫ t
0 dτ λσ(τ) +

T ∗

η0

[
1 + 2λσ(t)

∫ t

0
dτ ′ e2

∫ t
τ ′ dτ

′′ λσ(τ ′′)

]}
.

Taking the derivative with respect tos20 yields

0 =

∫
dσ ρJ(σ)λσ(t) e

2
∫ t
0 dτ λσ(τ) , (4.125)

that can be recast into

∆z(t) =
η0
2
∂t ln

∫
dσ ρJ(σ) e

2σt/η0 . (4.126)

Asymptotic behavior of z(t). By plugging in ρJ the Wigner semi-circle distribution
given in eq. (4.112), we get

∆z(t) =
η0
2
∂t ln

η0
2J

1

t
I1

(
4J

η0
t

)
, (4.127)
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Figure 4.12:(a)∆z(t) ≡ z(t) − ΣRenv(ω = 0) quickly converges toward2J , the largest eigenvalue of the
Jij matrix (hereΓ = eV = T = 0.1J , g = 1 andǫF = 10J). (b) Dependence ofz∞ with T (plain curve)
andeV (dashed curve).

whereI1 is the modified Bessel function of the first kind and first order. we obtain, the
pre-asymptotic behavior fort≫ η0/J

z(t) ≃ 2J +ΣRenv(ω = 0)− η0
3

4t
. (4.128)

We just showed that inside the coarsening phase, the Lagrange multiplierz(t) reaches an
asymptotic value which is actually the critical value,z∞c = 2J + ΣRenv(ω = 0), calculated
in Sec.4.4.3from the QNESS phase TTI equations without neglecting any term. The co-
herence between those two results somehow justifies the approximations made previously.
In the ǫF → ∞ limit (reservoirs acting like an Ohmic bath)ΣR(ω = 0) vanishes and we
recover the same mechanism as in the classical case [272, 273].

These analytical results are supported by the numerical analysis. Computed after the
quench, the Lagrange multiplierz(t) quickly converges to an asymptotic valuez∞. As an
example, we plot in Fig.4.12(a) the behavior ofz(t) after a quench into the QNESS phase.
The oscillations and the zero initial slope are signatures of the second and higher order
derivatives in eq. (4.108). These terms were dropped in the analytical study of the long-
time limit, see eq. (4.118), but the numerical integration does not neglect them. We give in
Fig. 4.12(b) the dependence ofz∞ with T andeV . It is quite clear thatz∞ is constant (and
equal toz∞c ) inside the critical surface and increases withT , Γ andeV as soon as entering
the QNESS phase. This justifies the assumptions made in Sec.4.4.3.

To summarize the results, in the whole phase diagramz(t) always rapidly reaches an
asymptotic valuez∞. Inside the QNESS phase,z∞ is a growing function of the parameters
T,Γ, V whereas on the critical surface and inside the coarsening region, it is fixed toz∞c .
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Link between z(t) and the potential energy density One is interested in computing the
energy densityǫ(t) of the effective Brownian particle. It is given by

ǫ(t) = −1

2

N∑

i,j=1

Jijsi(t)sj(t)
J
= −1

2

∫
dσ ρJ(σ)σs

2
σ(t) . (4.129)

Using the solution (4.119) for sσ(t) atT ∗ = 0, one has

2ǫ(t) = −s20 e
− 2
η0

∫ t
0 dτ ∆z(τ)

∫
dσ σρ(σ) e2σt/η0 . (4.130)

By use of eq. (4.126), we obtain

2ǫ(t) = −η0
2
∂t ln

∫
dσ ρ(σ) e2σt/η0 . (4.131)

We recognize eq. (4.127) in theRhs of this last expression, giving finally

ǫ(t) = −1

2
∆z(t) . (4.132)

This result is valid for any disorder densityρ(σ). For a non-zeroT ∗, similar calculations
give, see [272, 273],

ǫ(t) =
1

2
[T ∗ −∆z(t)] . (4.133)

4.5 The current

The physics of electric currents through mesoscopic quantum impurities in out-of-
equilibrium settings has attracted a lot of attention in the recent years. The Kondoimpurity
is the canonical example of a strongly correlated system that has both beentackled experi-
mentally [279–281] and theoretically by non-perturbative methods [282–285]. It is, to our
knowledge, the first time that some fermionic reservoirs are coupled to a macroscopic disor-
dered quantum system. In the previous sections we analyzed the effects of the voltage drop
on the system dynamics. In this Section we study the properties of the currentthat estab-
lishes between the two reservoirs. In particular we are interested in the possible influence of
the rotors on the current. Is the current, that is rather easy to measure experimentally, able
to give information about the dynamics of the rotors ?

We recall the expression of the interaction Hamiltonian given in eq. (4.8):

Hint = −
√
n
~ωc
Ns

N∑

i=1

n∑

µ=1

Ns∑

k,k′=1

M∑

l,l′=1

sµi [ψ†
Likl σ

µ
ll′ ψRik′l′ + L↔ R] . (4.134)
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From the point of view of the electric current, our model consists in two reservoirs coupled
through time-dependent tunneling constantssµi (t). It is different from the usual quantum
impurity problems in the fact that the electrons cannot stay on the rotor systembut only hop
directly from one reservoir to the other. Furthermore, the quantum character of the system
is not expected to play any significant role since its level spacings are smaller than any other
energy scale in the largenN limit. The computation of the current will therefore lead to
Landauer formula [286, 287] a priori dependent on the rotors states.

The electric current carried by the fermions flowing from the right to the left reservoirs
is

IR→L(t) = −e 〈
dNL

dt
〉 = − ie

~
〈[Htot, NL]〉 = −

ie

~
〈[Hint, NL]〉 , (4.135)

where−e is the electric charge of a fermion andNL ≡
∑

ikl ψ
†
LiklψLikl is the number

operator of the left reservoirs.Hint is the part of the total HamiltonianHtot that couples the
system and the reservoirs, see eq. (4.8). After straightforward algebra, we obtain

IR→L(t) = −
ie

~
〈√n ~ωc

Ns

∑

iµkk′ll

σµll′s
µ
i

[
ψ†
LiklψRjk′l′ − L↔ R

]
〉 . (4.136)

In the Keldysh field theory formalism, this corresponds to the quantity

IR→L(t) =
1

2

(
I+R→L(t) + I−R→L(t)

)
, (4.137)

with

IaR→L(t) ≡ −
ie

~
〈√n ~ωc

Ns

∑

iµkk′ll

σµll′s
µa
i (t)

[
ψ̄aLikl(t)ψ

a
Rjk′l′(t)− L↔ R

]
〉 . (4.138)

Expanding the action up to first order in the coupling constantg, we obtain an average over
the rotors and the free fermions that are now uncoupled, that we note〈 · · · 〉int

IR→L(t) =
1

2
〈
(
I+L→R(t) + I−L→R(t)

) i

~
Sint〉int

=
e

2~2
n

(
~ωc
Ns

)2∑

ab

∑

iµkk′ll′

∑

jνqq′mm′

b

∫
dt′ σµll′σ

ν
mm′〈sµai (t)sνbj (t′) (4.139)

×
[
ψ̄aLikl(t)ψ

a
Rjk′l′(t)− L↔ R

] [
ψ̄bLjqm(t

′)ψbRjq′m′(t′) + L↔ R
]
〉int .

Averaging over the free fermions, we obtain

IR→L(t) =
e

2~2
nN(~ωc)

2
∑

ab=±
b

∫
dt′ i~Gab(t, t′)

[
i~GabL (t, t′)i~GbaR (t′, t)− L↔ R

]
.

Gab are the macroscopic Keldysh Green’s functions for the rotors andGabL/R are the Green’s
functions of the free fermions in theL/R-reservoirs. This reads, after Keldysh rotations,

IR→L(t) = −
e

~
nN

∫ t

0
dτ C(t, t− τ) ΠRenv(τ) +R(t, t− τ) ΠKenv(τ) , (4.140)
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with

ΠKenv ≡ −2(~ωc)2 Im

[
GKLG

K
R

∗ − ~
2

4

(
GRLG

R
R
∗
+GALG

A
R
∗)
]
,

ΠRenv ≡ −2(~ωc)2 Im
[
GRLG

K
R

∗
+GKLG

R
R
∗]

.
(4.141)

The expression for the current given in eq. (4.140) is quite generic. It is valid as soon as
the system and the fermionic leads are coupled with an interactionHint. The details of the
system and the leads enter in the formula through their respective Green’sfunctions. The
formula was obtain after a first order expansion in the coupling constantg. The second
order term like all the even order terms are zero by use of Wick’s theorem.The third
and higher odd order terms would have involved higher order correlation functions of the
system. Plugging the expressions of the fermionic Green’s functionsGKα , GRα , GAα (α =

L,R) that are given in App.4.B.1, we get

ΠKenv(τ) =
1

2
(~ωc)

2〈〈
[
tanh (β

ǫL − µL
2

) tanh (β
ǫR − µR

2
)− 1

]
sin

(
ǫL − ǫR

~
τ

)
〉L〉R,

ΠRenv(τ) =
1

~
(~ωc)

2〈〈
[
tanh (β

ǫL − µL
2

)− tanh (β
ǫR − µR

2
)

]
cos

(
ǫL − ǫR

~
τ

)
〉L〉RΘ(τ),

where the notation〈〈 · · · 〉L〉R stands for
∫∫

dǫ dǫ′ ρL(ǫ)ρR(ǫ′) · · · . One can check that the
current vanishes when the bias voltage (eV ≡ µR − µL) is set to zero.

Linear conductance. We develop the current formula (4.140) to the first order ineV and
compute the linear conductance

IR→L(t) = − e
~
nN eV (4.142)

×
∫ t

0
dτC(t, t− τ)|eV=0

dΠRenv (τ)

deV

∣∣∣∣
eV=0

+ R(t, t− τ)|eV=0

dΠKenv (τ)

deV

∣∣∣∣
eV=0

.

One can derive for a flat half-filled DOS,ρ(ǫ) ∝ Θ(ǫF − |ǫ− ǫF |), in the limit ǫF →∞ (in
that limit we expect the results to depend very little on the precise shape of the DOS)

dΠRenv (τ)

deV

∣∣∣∣
eV=0

= −πg2δ(τ) , (4.143)

dΠKenv (τ)

deV

∣∣∣∣
eV=0

= −~g2 1

2τ
. (4.144)

Therefore the linear current very quickly goes from zero to

IR→L(t) =
e

2~
nNg2 eV

(
π + ~

∫ t

0
dτ

R(t, t− τ)
τ

)
. (4.145)
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The dependence on the history of the two-time correlation function has disappeared and the
second term in eq. (4.145) goes to zero due to the rapid decay of the response function.
Finally the current quickly takes an asymptotic value

I∞R→L =
e

2~
πnNg2 eV . (4.146)

From this computation, it appears that the current only probes the very fastdynamics of the
system it passes through and does not give information on the long-time dynamics. Since the
short-time dynamics of the system are equilibrium ones even in the coarsening regime, the
current cannot be used to tell in which regime the system is. An exact numerical integration
of eq. (4.140) supports these findings for other types of DOS, for finite values ofǫF and far
from the linear regime.

4.6 Conclusions

In this chapter we presented a detailed study of the quantum fully-connectedrotor model
driven out of equilibrium by a fermionic drive. We determined analytically the phase dia-
gram of the model and we showed that a critical manifold, controlled by the value of the
disorder strength, separates a QNESS with zero order parameter from an ordering phase
with non-zero order parameter. We solved the equations that describe the dynamics in the
different phases with a numerical integration and analytically by using various approxima-
tion schemes that give valuable physical insights. In particular, we showedthat this (quasi)
quadratic model maps to a set of Langevin equations with additive colored noise that de-
scribes the dynamics of the rotors. The nature of the noise is determined by the type of
electron baths used and, in the driven case, the friction kernel and noise-noise correlation
are not linked by any fluctuation-dissipation relation. By using this effective Langevin de-
scription we established the connection with the 3d coarsening dynamics of theO(n) model
and we showed that the long-time ordering dynamics are in the class of the classical limit
of our model without a drive,i.e. with the typical length growing ast1/2.

Finally, we derived a generic expression for the current flowing through the system that
involves a time-convolution between the characteristics of the system (throughits correla-
tion and linear response) and the ones the leads (through their retarded and Keldysh kernels).
Interestingly enough, for the type of density of states used in the largeǫF limit the current
depends only on the short-time difference (stationary) regime in which coarsening is not
relevant.
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Appendices

4.A Conventions

Θ is the Heaviside step function. We chooseΘ(0) = 1/2, so thatΘ(x) + Θ(−x) =

1 ∀ x ∈ R. We recall the identities
∫ ∞

−∞

dx

2π
eixy = δ(y) and

∫ y

−∞
dx δ(x) = Θ(y) , (4.147)

whereδ is the Dirac delta function. In particular
∫ 0
−∞ dx δ(x) = 1/2.

4.A.1 Fourier transform

The convention for the Fourier transformF that we use is

F [f(τ)](ω) ≡ f(ω) ≡
∫ ∞

−∞
dτ e+iωτ f(τ) ,

F−1[f(ω)](τ) ≡ f(τ) =

∫ ∞

−∞

dω

2π
e−iωτ f(ω) ,

(4.148)

The Fourier transform of the step function is

F [Θ(τ)](ω) = i pv
1

ω
+ πδ(ω) , (4.149)

where ‘pv’ denotes the principal value. Convolutions in real and Fourier space are defined
by

(f ◦ g)(τ) ≡
∫

dτ ′ f(τ ′)g(τ − τ ′) = F−1[(f g)(ω)](τ) ,

(f ◦ g)(ω) ≡
∫

dω′

2π
f(ω′)g(ω − ω′) = F [(f g)(τ)](ω) .

(4.150)

4.A.2 Heisenberg representation

In the Heisenberg representation the operators evolve as

AH(t) = U †(t)A(t)U(t) . (4.151)

with the unitary operator
U(t) ≡ Te−

i
~

∫ t
0 dt′ H(t′) , (4.152)

and thusU †(t) = T̃e−
i
~

∫ 0
t dt′ H(t′). T andT̃ are respectively the time and anti-time-ordering

operators (see App.4.A.3). For HamiltoniansH that do not explicitly depend on time we
get

AH(t) = eiHt/~A(t)e−iHt/~ . (4.153)
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4.A.3 Time-ordering operator

On the real time axis, the time-ordering operatorT rearranges operators with ascending
times to the left:

T AH(t)BH(t
′) = AH(t)BH(t

′)Θ(t− t′) + ζ BH(t
′)AH(t)Θ(t′ − t) , (4.154)

with ζ = −1 if both A andB are fermionic operators,ζ = 1 otherwise. The anti-time-
ordering operator̃T rearranges operators the other way round:

T̃ AH(t)BH(t
′) = AH(t)BH(t

′)Θ(t′ − t) + ζ BH(t
′)AH(t)Θ(t− t′) , (4.155)

On the Keldysh contourC, the position of an operator is specified by both the time and
the branch index. By the notationAH(t, a), we denote the operatorA in the Heisenberg
representation at timet (t ∈ [0,+∞[) on the brancha (a = ±). One can similarly define
a time-ordering operatorTC that rearranges operators along the contourC represented in
Fig. 4.5. The rules are

TC AH(t,−)BH(t
′,+) = AH(t)BH(t

′) ,
TC AH(t,+)BH(t

′,−) = ζ BH(t
′)AH(t) ,

TC AH(t,+)BH(t
′,+) = AH(t)BH(t

′)Θ(t− t′) + ζ BH(t
′)AH(t)Θ(t′ − t) ,

TC AH(t,−)BH(t
′,−) = AH(t)BH(t

′)Θ(t′ − t) + ζ BH(t
′)AH(t)Θ(t− t′) .

(4.156)

4.A.4 Green’s functions

Let φ andφ† be respectively annihilation and creation operator (bosonic or fermionic).
In the field theory formalism of the Keldysh approach, we define the Green’s functions as

i~Gab(t, t′) ≡ 〈φa(t)φ̄b(t′)〉 . (4.157)

a, b = ±, φ̄ is either the complex conjugate (for bosons) or the Grassmannian conjugate
(for fermions) ofφ and the average is understood as

〈 · · · 〉 ≡
∫
D[φ±, φ̄±] · · · exp

(
i

~
S[φ±, φ̄±]

)
. (4.158)

In the operator formalism the Green’s function read

i~Gab(t, t′) ≡ Tr
[
TC φH(t, a) φ

†
H(t

′, b) ̺H(0,±)
]
, (4.159)

whereφH(t, a) denotes the Heisenberg representation of the operatorφ at timet on thea-
branch of the Keldysh contour.̺H(0,±) = ̺(0) is the initial density matrix (normalized to
be of unit trace) and its location on the+ or−-branch does not matter thanks to the cyclicity
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of the trace.TC is the time-ordering operator acting with respect to the relative position of
(t, a) and(t′, b) on the Keldysh contour (see App.4.A.3).

One has, independently of the bosonicity or fermonicity of the field

Gab(t′, t) = −Gb̄ā(t, t′)∗ , (4.160)

where the star indicates complex conjugate andā ≡ −a.

4.B Fermionic reservoir

We define the fermionic Keldysh Green’s functions

i~Gab(t, t′) ≡ 〈ψa(t)ψ̄b(t′)〉 , (4.161)

wherea, b = ±. Like for bosons [see eqs. (4.29) , one has

G++(t, t′) = G−+(t, t′)Θ(t− t′) +G+−(t, t′)Θ(t′ − t) ,
G−−(t, t′) = G+−(t, t′)Θ(t− t′) +G−+(t, t′)Θ(t′ − t) , (4.162)

leading to the relation between Keldysh Green’s functions

G++ +G−− = G+− +G−+ . (4.163)

4.B.1 Keldysh rotation

We introduce the new fermionic fields{
2 ψ(1) ≡ ψ+ + ψ− , 2 ψ̄(1) ≡ ψ̄+ + ψ̄− ,

~ ψ(2) ≡ ψ+ − ψ− , ~ ψ̄(2) ≡ ψ̄+ − ψ̄− .
(4.164)

These definitions leads to

i~G(11)(t, t′) ≡ 〈ψ(1)(t)ψ̄(1)(t′)〉 = i~/4
[
G++ +G−− +G−+ +G+−] ≡ GK ,

i~G(12)(t, t′) ≡ 〈ψ(1)(t)ψ̄(2)(t′)〉 = i/2
[
G++ −G−− +G−+ −G+−] ≡ −iGR,

i~G(21)(t, t′) ≡ 〈ψ(2)(t)ψ̄(1)(t′)〉 = i/2
[
G++ −G−− −G−+ +G+−] ≡ iGA ,

i~G(22)(t, t′) ≡ 〈ψ(2)(t)ψ̄(2)(t′)〉 = i/~
[
G++ +G−− −G−+ −G+−] = 0 .

Where we defined,en passant, the KeldyshGK , the retardedGR and the advancedGA

Green’s functions in the same manner that we did forC andR in Sec.4.2.3. Using relation
(4.163) we get

GK = i~/2
[
G++ +G−−] = i~/2

[
G+− +G−+

]
, (4.165)

GR = −
[
G++ −G+−] =

[
G+− −G−+

]
Θ(τ) , (4.166)

GA =
[
G++ −G−+

]
=
[
G+− −G−+

]
Θ(−τ) , (4.167)

which are inverted as

i~Gab = GK +
i~

2
(a GA − b GR) . (4.168)
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4.B.2 Symmetry properties undert↔ t
′

Using eq. (4.160), one establishes

GR(τ) = −GA(−τ)∗ , GK(τ) = GK(−τ)∗ . (4.169)

And hence in Fourier space

GR(ω) = −GA(ω)∗ , GK(ω) ∈ R . (4.170)

4.B.3 Free fermions

Single free fermion

The free fermion Hamiltonian is

H = ǫ ψ†ψ . (4.171)

Starting from the expression in terms of operators of the Keldysh Green’s functions,

i~Gab(t, t′) = Tr
[
TC ψH(t, a)ψ

†
H(t

′, b)̺(0)
]
, (4.172)

with a, b = ± and the grand-canonical density matrix̺(0) ∝ e−β(H−µN), one computes

i~G+−(ǫ; τ) = −nF e−
i
~
ǫτ ,

i~G−+(ǫ; τ) = (1− nF )e−
i
~
ǫτ .

(4.173)

nF is the Fermi factor given bynF (ǫ) ≡
(
1 + eβ(ǫ−µ)

)−1
. After the Keldysh rotation we

get

GK(ǫ; τ) =
1

2
tanh

(
β
ǫ− µ
2

)
e−

i
~
ǫτ ,

GR(ǫ; τ) =
i

~
e−

i
~
ǫτΘ(τ) , (4.174)

GA(ǫ; τ) =
i

~
e−

i
~
ǫτΘ(−τ) .

Collection of free fermions

For our left and right reservoirs, we consider continuous distribution (density of states)
ρL(ǫ) andρR(ǫ) of these free fermions. This yields to the Keldysh Green’s functions

Gabα (τ) =

∫
dǫ ρα(ǫ)G

ab
α (ǫ; τ) , (4.175)
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with α = L,R. After a Keldysh rotation it yields

GK(τ) =

∫
dǫ ρ(ǫ)

1

2
tanh[β(ǫ− µ)/2] e− i

~
ǫτ =

1

2
〈 tanh[β(ǫ− µ)/2] e− i

~
ǫτ 〉ǫ ,

GR(τ) =

∫
dǫ ρ(ǫ)

i

~
e−

i
~
ǫτΘ(τ) =

i

~
〈 e− i

~
ǫτ 〉ǫ Θ(τ) ,

GA(τ) =

∫
dǫ ρ(ǫ)

i

~
e−

i
~
ǫτ Θ(−τ) = i

~
〈 e− i

~
ǫτ 〉ǫ Θ(−τ) ,

(4.176)

where we introduced a short-hand notation for the integration over energy levels. In terms
of the Fourier transforms ofρ(ǫ) it reads

GR(τ) =
i

~
2πρ(τ/~)Θ(τ) , GA(τ) =

i

~
2πρ(τ/~)Θ(−τ) . (4.177)

Fourier transforms

GK(ω) = π~ tanh

(
β
~ω − µ

2

)
ρ(~ω) ∈ R ,

GR(ω) +GA(ω) = 2iπρ(~ω) ∈ iR .
(4.178)

Sinceρ(ǫ) is real, one computes

ImGR(ω) = πρ(~ω) . (4.179)

Thus we get, as a check, the grand-canonical fermionic fluctuation-dissipation theorem that
is established generally in Sec.4.C:

GK(ω) = ~ tanh

(
β
~ω − µ

2

)
Im GR(ω) . (4.180)

4.C Fluctuation-Dissipation Theorem

In this Section we give a proof of the fluctuation-dissipation theorem both in its bosonic
and fermionic versions. This theorem only holds in equilibrium and gives a relation between
the Green’s functions. In the grand-canonical ensemble, the initial densityoperator reads
̺(0) ∝ exp (−β(H − µN)), whereN is the number operator commuting withH (in non-
relativistic quantum mechanics),µ is the chemical potential fixing the average number of
particles. One can obtain the theorem for the canonical ensemble by formallysettingµ = 0.
Let us consider a pair of either bosonic or fermionic operators, for instance creation and
annihilation operatorsφ† andφ. Let us write the following Keldysh Green’s function

i~G+−(t, t′) = Tr
[
TC φH(t,+)φ†H(t

′,−)̺(0)
]
. (4.181)
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By resolving the time-ordering we get

i~G+−(t, t′) = ζ Tr
[
φ†H(t

′)φH(t)̺(0)
]
, (4.182)

with ζ = +1 in the bosonic case andζ = −1 in the fermionic case. Using theanalyticityof
the Green’s functions and then expandingφH(t + iβ~) = exp (−βH)φH(t) exp (+βH),
we get

i~G+−(t+ iβ~, t′) = ζ Tr
[
φ†H(t

′)φH(t+ iβ~)̺(0)
]

(4.183)

∝ ζ Tr
[
φ†H(t

′) exp (−βH)φH(t) exp (βµN)
]
. (4.184)

SinceH andN commute and since for any operatorf(N), one hasφf(N) = f(N + 1)φ,
we have

φH(t) exp (βµN) = exp (βµ(N + 1))φH(t) , (4.185)

and so

i~G+−(t+ iβ~, t′) = ζ exp(βµ) Tr
[
φ†H(t

′)̺(0)φH(t)
]
. (4.186)

Using thecyclicityof the trace, we come to

i~G+−(t+ iβ~, t′) = ζ exp(βµ) Tr
[
φH(t)φ

†
H(t

′)̺(0)
]

(4.187)

= ζ exp(βµ) i~G−+(t, t′) . (4.188)

If the system is in equilibrium, thetime translational invarianceof the previous equation
gives the KMS relation:

G+−(ω) exp(β~ω) = ζ exp(βµ) G−+(ω) . (4.189)

Using eqs. (4.166) and (4.167), we have on the one hand

GR(ω) +GA(ω) = G+−(ω)(1− ζ exp(β(~ω − µ)) . (4.190)

On the other hand eq. (4.165) implies

GK(ω) =
i~

2
G+−(ω)[1 + ζ exp(β(~ω − µ))] . (4.191)

These two last relations yield the grand-canonical quantum FDT:

GK(ω) = ~ tanh

(
β
~ω − µ

2

)−ζ
Im GR(ω) . (4.192)
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4.D Computing the self-energy

4.D.1 Derivation within the Schwinger-Keldysh formalism

In the Schwinger-Keldysh path-integral representation we had (see eq.(4.20)) for the
whole system (rotors and environment)

Z[h±] ≡
∫

c
D[ s±,ψ±, ψ̄

±
]e

i
~
Stot[s±,ψ

±,ψ̄
±
]〈s+(0), ψ̄+

(0)|̺tot(0)|s−(0),ψ−(0)〉 ,

At time t = 0, just after the quench, the initial density is assumed to be factorized:̺tot(0) =

I ⊗ ̺freeL (0)⊗ ̺freeR (0) (see Sec.4.2.1) yielding

〈s+(0), ψ̄+
(0)|̺tot(0)|s−(0), ψ̄−

(0)〉
= δ(s+(0)− s−(0)) 〈ψ̄+

L (0)|̺freeL (0)|ψ−
L (0)〉 〈ψ̄

+
R(0)|̺freeR (0)|ψ−

R(0)〉 .

The generating functional reads

Z[h±] =
∫

c′
D[ s+, s−]e i

~
Stot[s+,s−,h] 〈〈 e i

~
Sint[s

+,ψ+,ψ̄
+
,s−,ψ−,ψ̄

−
] 〉L〉R . (4.193)

The indexc′ at the bottom of the integral is here to remind the constraints on the field
integration, namelys+i (t)

2
= s−i (t)

2
= 1 and s+i (0) = s−i (0) ∀ i. We introduced the

average over the free environment composed of the two reservoirs:

〈〈 · · · 〉L〉R ≡
∫
D[ ψ±, ψ̄

±
] · · · e i

~
SLLe

i
~
SRR

×〈ψ̄+
L (0)|̺freeL (0)|ψ−

L (0)〉 〈ψ̄
+
R(0)|̺freeR (0)|ψ−

R(0)〉 . (4.194)

We now develop the couplinge
i
~
Sint up to the second order,

〈〈 e i
~
Sint 〉L〉R ≃ 1 +

i

~
〈〈 Sint 〉L〉R −

1

2~2
〈〈 S2

int 〉L〉R . (4.195)

The first order term is zero. The second order term reads

〈〈 S2
int 〉L〉R = n

(
~ωc
Ns

)2 ∑

ab=±
ab

∫∫ ∞

0
dt dt′

N∑

ij=1

Ns∑

kk′qq′=1

n∑

µν=1

M∑

ll′mm′=1

×sµai (t)sνbj (t′) σµll′σ
ν
mm′′ (4.196)

×〈〈
[
ψ̄aLikl(t)ψ

a
Rik′l′(t) + L↔ R

] [
ψ̄bLjqm(t

′)ψbRjq′m′(t′) + L↔ R
]
〉L〉R.

Developing the term on the second line, we obtain

〈〈
[
ψ̄aLikl(t)ψ

a
Rik′l′(t) + L↔ R

] [
ψ̄bLjqm(t

′)ψbRjq′m′(t′) + L↔ R
]
〉L〉R

= 〈〈 ψ̄aRikl(t)ψaLik′l′(t)ψ̄bLjqm(t′)ψbRjq′m′(t′) + L↔ R 〉L〉R
= −〈ψaLik′l′(t)ψ̄bLjqm(t′)〉L 〈ψbRjq′m′(t′)ψ̄aRikl(t)〉R + L↔ R

= δijδk′qδkq′δl′mδlm′~
2
[
GabLk′(t, t

′)GbaRk(t
′, t) + L↔ R

]
. (4.197)
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With the free fermionic Green’s functions defined on the Keldysh contour asi~Gabαk(t, t
′) =

〈ψak(t)ψ̄bk(t′)〉α for α = L,R, a, b = ± and wherek labels the electron’s energy. Expression
(4.196) now reads

〈 S2
int 〉LR = ~

2n

(
~ωc
Ns

)2 ∑

ab=±
ab

∫∫ ∞

0
dt dt′

N∑

i=1

Ns∑

kk′=1

n∑

µν=1

M∑

ll′=1

sµai (t)sνbi (t′) σµll′σ
ν
l′l

×
[
GabLk′(t, t

′)GbaRk(t
′, t) + L↔ R

]
. (4.198)

By using the property Trσµσν = δµν , we get

〈 S2
int 〉LR = n~2

(
~ωc
Ns

)2 ∑

ab=±
ab

∫∫ ∞

0
dt dt′

N∑

i=1

sai (t) · sbi(t′)

×
∑

kk′

[
GabLk′(t, t

′)GbaRk(t
′, t) + L↔ R

]
. (4.199)

Finally expression (4.195) can be recast into

〈〈 e i
~
Sint 〉L〉R ≃ e

i
~
S
(2)
int , (4.200)

with

S
(2)
int [s

+, s−] ≡ −1

2
n
∑

ab=±

∫∫ +∞

0
dt dt′ Σabenv(t, t

′)
N∑

i=1

sai (t) · sbi(t′) , (4.201)

where the exponent(2) is here to recall that we developed until second order and with the
self-energy

Σabenv(t, t
′) ≡ −abi~ (~ωc)

2
[
GabL (t, t′)GbaR (t′, t) +GabR (t, t′)GbaL (t′, t)

]
, (4.202)

where the Keldysh Green’s functions of the fermions in theα-reservoir (α = L,R) are
given by

Gabα (t, t′) ≡
∫
dǫα ρα(ǫα)G

ab
α (ǫα; t− t′) = Gabα (t− t′) . (4.203)

ρα(ǫ) is the density of states inα-reservoir andGabα (ǫ; τ) are the Keldysh Green’s functions
of a free fermion with energyǫ in equilibrium in theα-reservoir (see App.4.B.3):

i~G+−
α (ǫ; τ) = −nα(ǫ)e−

i
~
iǫτ ,

i~G−+
α (ǫ; τ) = [1− nα(ǫ)] e−

i
~
ǫτ ,

i~G++
α (ǫ; τ) = i~G−+

α (ǫ; τ)Θ(τ) + i~G+−
α (ǫ; τ)Θ(−τ) ,

i~G−−
α (ǫ; τ) = i~G+−

α (ǫ; τ)Θ(τ) + i~G−+
α (ǫ; τ)Θ(−τ) ,

(4.204)
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with the Fermi factornα(ǫ) ≡ (1 + eβα(ǫ−µα))−1. It is clear then that the self-energy is
time translational invariant:Σabenv(t, t

′) ≡ Σabenv(τ) with τ ≡ t − t′. MoreoverΣabenv(τ) is a
symmetric matrix with respect to time and Keldysh indices:

Σabenv(τ) = Σbaenv(−τ) , (4.205)

Using the time reversal property eq. (4.160) of the Keldysh Green’s functions one also
establishes

Σabenv(τ)
∗
= −Σāb̄env(τ) , (4.206)

where we notēa ≡ −a.

After a Keldysh rotation of the rotors coordinates, it yields

i

~
S
(2)
int [s

(1), s(2)] =
1

2
n

∑

rs=(1),(2)

∫∫ ∞

0
dt dt′ Σrsenv(t, t

′)
N∑

i=1

sri (t)s
s
i (t

′) , (4.207)

with

Σ
(22)
env = −i~/2 [Σ++

env +Σ−−
env ] ,

Σ
(21)
env = −i [Σ++

env +Σ+−
env ] ,

Σ
(12)
env = −i [Σ++

env +Σ−+
env ] ,

Σ
(11)
env = −i/~ [Σ++

env +Σ+−
env +Σ−+

env +Σ−−
env ] = 0 .

(4.208)

which is inverted as

i~Σabenv = −abΣ(22)
env −

~

2

(
aΣ(21)

env + bΣ(12)
env

)
. (4.209)

4.D.2 FDT check

We checked that the fermion-reservoir self-energy satisfies the bosonicFDT. This is
only valid when the reservoirs constitute an equilibrium bath,i.e. βL = βR = β and
µL = µR = µ0 (V = 0). Note that distribution functionsρL(ω) andρR(ω) can be different
although the proof given below usesρL(ω) = ρR(ω) = ρ(ǫ) for simplicity reasons. The
goal is to check

ΣKenv(ω) = ~ coth

(
β
~ω

2

)
Im ΣRenv(ω) = ~ coth

(
β
~ω

2

) [
ΣRenv +ΣAenv

]
(ω)

2i
.

(4.210)
We first develop the term in theLHS, then we do the same with theRHS to prove their
equality.

ΣKenv(ω) = TF ΣKenv(τ)

= −2(~ωc)2 TF
{
GKGK∗ − ~

2/4
[
GAGA∗ +GRGR∗]}

= −2(~ωc)2 TF
{
GKGK∗ − ~

2/4
[
GR +GA

] [
GR∗ +GA∗

]}
,
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where we used the nullity of cross terms of the typeGRGA sinceGR ∝ Θ(τ) andGA ∝
Θ(−τ).

ΣKenv(ω) = −2(~ωc)2
{
GK ◦GK∗ − ~

2/4
[
GR +GA

]
◦
[
GR∗ +GA∗

]}
, (4.211)

where◦ is the symbol for the convolution (see App.4.A) andGR∗(ω) stands for the Fourier
transform ofGR(τ)∗. Since we easily obtain

GR(ω) +GA(ω) = 2iπρ(~ω) ,

GR∗(ω) +GA∗(ω) = −2iπρ(−~ω) , (4.212)

and

GK(ω) = π~ρ(~ω) tanh
(
β ~ω−µ0

2

)
,

GK∗(ω) = π~ρ(−~ω) tanh
(
β−~ω−µ0

2

)
,

(4.213)

we get by replacing in (4.211)

ΣKenv(ω) = −2(~ωc)2(π~)2
×
{[
ρ(~ω) tanh

(
β ~ω−µ0

2

)]
◦
[
ρ(−~ω) tanh

(
β−~ω−µ0

2

)]
− [ρ(~ω)]◦[ρ(−~ω)]

}

= −2(~ωc)2(π~)
∫

dǫ′

2π ρ(ǫ
′)ρ(ǫ′ − ~ω)

{
tanh

(
β ǫ

′−µ0
2

)
tanh

(
β ǫ

′−~ω−µ0
2

)
− 1
}

= −π~(~ωc)2 coth
(
β ~ω

2

) ∫
dǫ′ ρ(ǫ′)ρ(ǫ′ − ~ω)

{
tanh

(
β ǫ

′−~ω−µ0
2

)
− tanh

(
β ǫ

′−µ0
2

)}
,

(4.214)

where we used the trigonometry relation

tanh (x− y) = tanhx− tanh y

1− tanhx tanh y
.

Let’s now calculate theRhs of (4.210).
[
ΣRenv +ΣAenv

]
(ω)

2i
= i(~ωc)

2 TF
{
GRGK∗ +GAGK∗ +GKGR∗ +GKGA∗

}

= i(~ωc)
2 TF

{
(GR +GA)GK∗ +GK(GR∗ +GA∗)

}

= i(~ωc)
2
{[
GR +GA

]
◦
[
GK∗]+

[
GK
]
◦
[
GR∗ +GA∗

]}
,

giving

~ coth
(
β ~ω

2

) [ΣRenv+ΣAenv](ω)
2i

= −2(π~)2(~ωc)2 coth
(
β ~ω

2

)

×
{
[ρ(~ω)] ◦

[
ρ(−~ω) tanh

(
β−~ω−µ0

2

)]
−
[
ρ(~ω) tanh

(
β ~ω−µ0

2

)]
◦ [ρ(−~ω)]

}

= −π~(~ωc)2(2π~) coth
(
β ~ω

2

) ∫
dǫ′ ρ(ǫ′)ρ(ǫ′ − ~ω)

×
{
tanh

(
β ǫ

′−~ω−µ0
2

)
− tanh

(
β ǫ

′−µ0
2

)}
.

We recognize here the development (4.214) of ΣKenv. We just proved that the bosonic FDT is
satisfied provided that the two fermionic reservoirs have the same temperature and chemical
potential. They can have a different density of states.



142

4.E Dynamics

4.E.1 Quadratic effective action

One can render the effective action quadratic at the price of introducing newfields. For
a giveni and a given pair of(r, µ, t) and(s, ν, t′), the identity

1 =

∫
dQ rs

iµν(t, t
′) δ
(
sµri (t)sνsi (t′)−Q rs

iµν(t, t
′)
)
, (4.215)

becomes, after using the integral representation of the delta distribution (see App.4.A),

1 ∝
∫

dQ rs
iµν(t, t

′) dλ rs
iµν(t, t

′) exp
(
−in

2
λ rs
iµν(t, t

′)
(
sµri (t)sνsi (t′)−Q rs

iµν(t, t
′)
))

.

Introducing similar identities for all possible pairs of(r, µ, t) and (s, ν, t′), we obtain a
path integral over two3 fieldsQ rs

iµν(t, t
′) andλ rs

iµν(t, t
′) that are symmetric in the Keldysh

indices, times and rotor components:Q sr
iνµ(t

′, t) = Q rs
iµν(t, t

′) andλ sr
iνµ(t

′, t) = λ rs
iµν(t, t

′).
The effective action is now also a functional ofQ andλ and reads

i

~
Seff = −n

2

∑

r,s=(1),(2)

∫∫
dt dt′

∑

i

∑

µν

sµri (t)
[
Op rsiµν(t, t

′) + iλ rs
iµν(t, t

′)
]
sνsi (t′)

+
J2n2

2N

∑

i,j

∫∫
dt dt′

∑

µ,ν

Q
(11)
iµν (t, t′)Q (22)

jµν (t, t′) +Q
(12)
iµν (t, t′)Q (21)

jµν (t, t′)

+
i

~

n

2

∑

a

a

∫
dt
∑

i

zai (t) + i
n

2

∑

rs

∫∫
dt dt′

∑

i

∑

µν

λ rs
iµν(t, t

′)Q rs
iµν(t, t

′)

+ boundary terms,

where we introduced the operatorOp rsiµν(t, t
′) defined as

Op
(12)
iµν (t, t′) ≡ iδµνδ(t− t′)

[
1

Γ
∂2t′ +

1

2

∑

a=±
zai (t)

]
− iδµνΣ

R
env(t

′, t) ,

Op
(21)
iµν (t, t′) ≡ Op

(12)
iνµ (t′, t) ,

Op
(22)
iµν (t, t′) ≡ i~

4
δµνδ(t− t′)

∑

a=±
azai (t) + δµνΣ

K
env(t, t

′) ,

Op
(11)
iµν (t, t′) ≡ i

2~
δµνδ(t− t′)

∑

a=±
azai (t) .

(4.216)

Op rsiµν(t, t
′) is symmetric in the Keldysh indices, times and rotor components:Op sriνµ(t

′, t) =
Op rsiµν(t, t

′). The functional integration oversµri is now quadratic and can be performed,

3. There areN(n2K2 + nK)/2 of each of these fields, whereK = 2 is the number of possible Keldysh
indices.
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leading to

i

~
Seff = −1

2
Tr lnn (Op+ iλ) (4.217)

−J
2n2

2N

∑

i,j

∫∫
dt dt′

∑

µ,ν

Q
(11)
iµν (t, t′)Q (22)

jµν (t, t′) +Q
(12)
iµν (t, t′)Q (21)

jµν (t, t′)

+
i

~

n

2

∑

a

a

∫
dt
∑

i

zai (t) + i
n

2

∑

rs

∫∫
dt dt′

∑

i

∑

µν

λ rs
iµν(t, t

′)Q rs
iµν(t, t

′)

where the trace in the first term is spanning the whole space of indices, namely rotor sites,
Keldysh indices, times and rotor components.

4.E.2 Saddle-point evaluation

In this subsection, we evaluate in the limitnN → ∞ the saddle-point equations with
respect to the dummy fields we introduced previously, namelyλ rs

iµν(t, t
′), Q rs

iµν(t, t
′) and

zai (t). The fluctuations around the saddle are neglected. In particular, using eq. (4.215) we
have the identity (see the definition of Green’s functions in Sec.4.2.3)

Q rs
iµν(t, t

′) = i~G rs
iiµν(t, t

′) . (4.218)

Along the lines we prove that the solution in the saddle isO(N) andO(n), like the starting
Hamiltonian.

The saddle-point with respect toλ rs
iµν(t, t

′) yields

δSeff
δλ rs

iµν(t, t
′)

= −1

2
Tr

δ

δλ rs
iµν(t, t

′)
lnn (Op+ iλ) + i

n

2
Qrsiµν(t, t

′) = 0 , (4.219)

giving in matrix notations

t(Op+ iλ)−1 = nQ , (4.220)

where the symbolt represents the transposition. Since all operators in the last equation are
symmetric by definition, we get

Op+ iλ =
1

n
Q−1 . (4.221)

The saddle-point equation with respect toQ rs
iµν(t, t

′) yields

iλ rs
iµν(t, t

′) =
J2n

N

∑

j

Q r̄s̄
jµν(t, t

′) ∀ i , (4.222)
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where(2) ≡ (1) and (1) ≡ (2). The Rhs of this last equation being site-independent,
λ rs
iµν(t, t

′) does not depend oni: λ rs
iµν(t, t

′) = λrsµν(t, t
′). Equations (4.221) and (4.222)

imply

Op rsi +
J2n

N

∑

j

Q r̄s̄
j −

1

n
Q−1 rs

i = 0 . (4.223)

The saddle-point equation with respect tozai (t) yields to the two equations:

∑

µ

(
[Op+ iλ]−1

) (12)

iµµ
(t, t) +

(
[Op+ iλ]−1

) (21)

iµµ
(t, t) = 0 ,

∑

µ

(
[Op+ iλ]−1

) (11)

iµµ
(t, t) +

~
2

4

(
[Op+ iλ]−1

) (22)

iµµ
(t, t) = n .

(4.224)

This is nothing more than the constraint that rotors should have a unit length.However,λ
being site-independent, it is clear from these equations that it has to be the same forOp.
Finally at the saddle,Op, Q andz are site-independent (homogeneous) so we can get rid
of the sites indices:Op rsiµν(t, t

′) = Oprsµν(t, t
′), Q rs

iµν(t, t
′) = Qrsµν(t, t

′) andzai (t) = za(t).
Equation (4.223) becomes

Oprs + J2nQr̄s̄ − 1

n
Q−1rs = 0 . (4.225)

Since from its definition (4.216) Oprsµν(t, t
′) ∝ δµν , the previous equation tells us that it

has to be the same forQrsµν(t, t
′) so we can get rid of all the rotor component indices.

Multiplying by Qsv(t′, t′′), and summing overs andt′, we get
∫

dt′
∑

s

Oprs(t, t′)Qsv(t′, t′′)+J2nQr̄s̄(t, t′)Qsv(t′, t′′)− 1

n
δrvδ(t−t′′) = 0 . (4.226)

The macroscopic Green’s function readingi~Grs(t, t′) = nQrs(t, t′) we obtain

ǫv

∫
dt′

∑

s

Oprs(t, t′)i~Gsv(t′, t′′) + J2i~Gr̄s̄(t, t′)i~Gsv(t′, t′′)− δrvδ(t− t′′) = 0 .

(4.227)

4.E.3 Schwinger-Dyson equations

The(r = (2), v = (1)) component of eq. (4.227) gives a complex equation the real part
of which yields

z+(t) = z−(t) ≡ z(t) ∀ t , (4.228)

and the imaginary part of which is the dynamic equation for the self-correlation:
[
1

Γ

∂2

∂t2
+ z(t)

]
C(t, t′) =

∫ t′

0
dt′′ ΣK(t, t′′)R(t′, t′′) +

∫ t

0
dt′′ ΣR(t, t′′)C(t′′, t′),(4.229)
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where we introduced

ΣK ≡ J2C +ΣKenv , ΣR ≡ J2R+ΣRenv . (4.230)

Similarly, the(r = (2), v = (2)) component of eq. (4.227) yields the equation of motion
for the self-response:

[
1

Γ

∂2

∂t2
+ z(t)

]
R(t, t′) = δ(t− t′) +

∫ t

t′
dt′′ ΣR(t, t′′)R(t′′, t′) . (4.231)

The (r = (1), v = (1)) component of eq. (4.227) leads to the same equation and the
(r = (1), v = (2)) component expresses0 = 0. Settingt′ = t in eq. (4.229) we obtain the
expression for the Lagrange multiplier

z(t) =

∫ t

0
dt′′ ΣK(t, t′′)R(t, t′′) + ΣR(t, t′′)C(t, t′′)− 1

Γ

∂2C

∂t2
(t, t′ → t−) . (4.232)

Equations (4.229) and (4.231) together with eq. (4.232) constitute the Schwinger-Dyson
equations that fully determine the dynamics of the interacting system.
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5
CONCLUSIONS AND OUTLOOK

I N this manuscript, we studied some aspects of the dynamics of systems coupled to an
environment. We first had some formal considerations on the classical equilibrium dy-

namics. We started from the Langevin equation which gives a heuristic modelingof the
interactions between a system and its thermal environment. We did not restrict ourselves
to the Markovian case and to additive noise, but we coped with inertial systems coupled
to a generic multiplicative and colored bath. By considering the associated MSRJD path-
integral formalism, we showed that equilibrium dynamics can be seen as a symmetry at the
level of the MSRJD action and more generally as a symmetry of the corresponding gener-
ating functional. At the level of observables, the corresponding Ward-Takahashi identities
yield all the equilibrium theorems.

We then turned to out-of-equilibrium situations where we showed how the brokensym-
metry naturally gives rise to all the fluctuation theorems at the level of observables. Fur-
thermore, we exhibited another symmetry of the MSRJD generating functional, valid out of
equilibrium, that yields Schwinger-Dyson-type equations which correlations and responses.
They are of particular interest for numerical simulations where the possibility tocompute
responses without applying any extra-field – butvia correlations – is often of great help.

From the third chapter and on, we left these formal and system-independent consid-
erations to focus on some of the aspects of out-of-equilibrium dynamics. We looked at
the scaling relations in the dynamics that take place after a quench that drives the system
through a phase transition. We placed the emphasis on scaling relations in the long-time
dynamics, and more specifically, on the super-universality conjecture. By means of numer-
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ical simulations, we compared the aging dynamics of a3d Ising ferromagnet with random
fields (RFIM) to the ones of a3d Ising spin glass (EA). The former is an archetypal model of
coarsening phenomena with weak disorder whereas the latter is probably the simplest model
for a3d glass. In both cases we showed that global observables obey some scalingrelations
once lengths and times are measured in units of a growing length we exhibited for each
case. We also proved that the distribution of a local observable – namely the coarse-grained
two-time correlation function – exhibits the same kind of scaling property. However, as far
as super-universality is concerned, both models differs since the spin glass does not show
super-universal scalings contrary to the ferromagnet.

In the fourth chapter, we analytically studied the impact of both quantum fluctuations
and a non-equilibrium environment – a fermionic drive – on the dynamics of a disordered
system of rotors that shows aspects of a ferromagnet in many regards.We gave a detailed
description of the influence of the two-lead environment that creates the fermionic current
tunneling through the system. In particular, we showed that the fermionic drive behaves
like an equilibrium thermal bath on the long-time dynamics of the rotors. By solving the
mean-field dynamics, we determined the full dynamical phase diagram of the rotors. In the
ordering phase, we gave an expression for the long-time limit of two-time correlation, and
showed its scaling function does not depend on the temperature, the strength of disorder,
the strength of quantum fluctuations nor the strength of the drive. This super-universality
feature of the long-time dynamics allowed us to extend the well-know mapping between
the classicalp = 2 spherical model and the clean3d coarsening ferromagnet to this driven
out-of-equilibrium quantum case.

In models of quantum coupled rotors, there are visible effects when the angular momen-
tum states are restricted to even or odd symmetry. This is the case for instancein the models
used for Josephson junctions [288, 289] or systems like solid hydrogen where homonuclear
molecules (H2 and D2) can assume only even or odd values of the rotational quantum num-
ber j, depending on the parity of the nuclear spin. At low pressure or high temperature,
even-j species are found in a paramagnetic state. Increasing the pressure causes an increase
of the molecular coupling and eventually leads to a orientationally ordered state. Odd-j
species on the other hand are orientationally ordered at low temperatures andambient pres-
sure and remain ordered as pressure is increased. The stronger tendency for odd-j species
to order can be traced back to the fact that theirj = 1 lowest rotational state allows for a
spherically asymmetric ground state unlike thej = 0 ground state of even-j species [290].
Noteworthy enough, when all the rotational states are allowed, and when thegap between
the ground statej = 0 andj = 1 is not to large, small thermal excitations can induce the
ordering by populating thej = 1 level. The order is lost when the thermal fluctuations
become too large. This phenomenon is responsible for a reentrant phasediagram. In our
language this means that the critical pointΓ̄c is rejected to infinity in the case of odd-j
species. By implementing such restrictions on the angular momenta, it would be interesting
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Figure 5.1:The complex-time contourζ.

to study their effects on the phase diagram of our disordered model and see if they yield
similar effects in equilibrium and predict out-of-equilibrium features.

In order to complete the work presented here, we intended to generalize thediscussion
around the equilibrium symmetry of the Langevin generating functionals to the caseof
quantum interacting systems. Unfortunately, we were not able to finish the work and make
in presentable in time, but we give here some of the main ingredients. The MSRJD path-
integral has a natural quantum extension in the Schwinger-Keldysh formalism. For systems
described by a time-dependent HamiltonianH(t) and prepared at timet0 = 0 in thermal
equilibrium with respect toH(0), the expectation value of an operatorO a timet is given
by

〈O(t)〉 ≡ Tr
[
T̃

{
e−

i
~

∫ 0
t du H(u)

}
O(t)T

{
e−

i
~

∫ t
0 du H(u)

}
e−βH(0)

]
/Z , (5.1)

whereβ is the inverse temperature of the initial preparation andZ ≡ Tr
[
e−βH(0)

]
. T and

T̃ are respectively the time and anti-time-ordering operators (see Appendix4.A.3). Reading
the arguments in the above trace from the right to the left, one sees that we can design an
complex-time contourζ with a branch going fromiβ~ to 0 along the imaginary axis then a
forward branch from0 to t along the real axis and then coming backward to0. This contour
is illustrated in Fig.5.1. Letting the variableu run along this same contour, eq. (5.1) can be
formally recast as

〈O(t)〉 = Tr
[
Tζ

{
e−

i
~

∫

ζ du H(u)O(t)
}]

/Z , (5.2)

whereTζ is time-ordering operator that rearranges operators along the contourζ. The trace
over the operators can be recast into a path integral using the standard techniques (Suzuki-
Trotter decomposition). Let us consider the simple case of a time-dependent Hamiltonian of
the formH = π2

2m+V (φ, t) whereπ is the momentum conjugated to the coordinateφ. This
yields a path-integral whose action readsS[φ] =

∫
ζ du L([φ(u)], u) whereL is the time-

dependent Lagrangian. The fieldφ(u) has support on the complex-time contourζ. Thanks
to the unitary evolution, we are free to deform this contour in the complex plane as long as
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it passes trought, where the operatorO has to be evaluated. Under the condition of a time-
independent Lagrangian (i.e. equilibrium dynamics), and for particular contours, we were
able to exhibit some field transformations that leave the corresponding action invariant. At
the level of observables, the corresponding Ward-Takahashi identities yield relations such
as reciprocity relations or the quantum fluctuation-dissipation theorem. We hope toreport
soon on these.

The out of equilibrium quantum fluctuations theorems have not reached the same level
of understanding obtained for the classical systems. We believe our approach based on
symmetries in a field theory description is a powerful tool not only to derive relations in a
systematic manner but also to better understand the underlying physics. Moreover, the iden-
tification of these symmetries is fundamental to construct a theory of dynamical fluctuations
in and out of equilibrium. It should serve as guide to select self-consistentapproximations
which do not violate important physical symmetries, to construct approximation schemes
for interacting problems such as mode-coupling methods.
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6.2.1 Mod̀eles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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CETTE thèse traite principalement de la dynamique de systèmes statistiques hors d’équi-
libre. Dans la nature, les systèmes physiques ne sont jamais isolés. Sià l’équilibre

thermodynamique, l’influence de l’environnement peutêtre caract́eriśee par un tout petit
nombre de param̀etres (comme la température), il est en revanchea priori nécessaire d’être
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renseigńe sur les d́etails de l’environnement et de son couplage avec le système pour d́ecrire
les situations hors de l’équilibre thermodynamique.

Nous distinguons deux types d’environnements. Les premiers sont les environnements
à l’équilibre, comme par exemple un bain thermiqueà une temṕeratureβ−1. Les variables
internes qui les d́ecrivent ob́eissent, entre autres, au théor̀eme de fluctuation-dissipation.
Les seconds sont les environnements intrinsèquement hors d’équilibre qui d́estabilisent le
syst̀eme en injectant (ou en pompant) de l’énergie. Ils sont, par exemple, l’ensemble con-
stitué par deux bains thermiquesà des temṕeratures diff́erentes. Nous considérerons aussi
le cas de deux réservoirs d’́electrons qui, sous l’effet d’une différence de potentiel, peuvent
passer de l’uǹa l’autre par effet tunnel̀a travers le système. Par extension, nous incluons
dans les environnements hors d’équilibre le cas des forces extérieures appliqúees sur le
syst̀eme.

6.1 Syḿetries autour deséquations de Langevin

6.1.1 Équation de Langevin

Dans le chap̂ıtre 2, nous nous arrêtons sur le cas des systèmes classiques en interaction
avec un environnementà l’équilibreà la temṕeratureβ−1. La dynamique du système peut
être tr̀es ǵeńeralement d́ecrite par unéequation de Langevin. Dans nombre d’applications,
l’inertie peut être ńegligée et l’effet du bain peut̂etre captuŕe par un bruit blanc. Toute-
fois, motiv́es par une ǵeńeralisation aux systèmes quantiques (où les effets de ḿemoire du
bain sont incontournables, typiquement sur des temps de l’ordre deβ~), nous conservons
le terme de masse et considérons le cas ǵeńerique d’un bruit coloŕe et multiplicatif. En
toute ǵeńeralit́e, l’équation de Langevin pour une massem reṕeŕee par la coordonńeeψ est
donńee par

mψ̈(t)− F ([ψ], t) +M ′(ψ(t))
∫
du η(t− u)M ′(ψ(u))ψ̇(u) =M ′(ψ(t))ξ(t) . (6.1)

où la forceF ([ψ], t) = −V ′(ψ, λ(t))+fnc([ψ], t) rassemble les contributions conservatives
et non-conservatives.V est un potentiel dont la dépendance temporelle est contrôlée, s’il y
a lieu, par le protocoleλ(t).M est une fonction bien comportée qui caract́erise le couplage
non linéaireà l’environnement (M(0) = 0 et M ′(0) = 1). Le cas du bruit additif est
retrouv́e en prenant un couplage linéaire,M(ψ) = ψ. Le dernier terme du membre de
gauche de l’́eq. (6.1) ainsi que le membre de droite modélisent les interactions avec le
bain. La friction visqueuse est donnée par une int́egrale temporelle sur le noyau de friction,
η(t, t′). Celui-ci, causalit́e oblige, est nul pourt < t′. Le cas du bruit blanc est retrouvé en
prenantη(t, t′) = γ0δ(t − t′). ξ est une force aléatoire, issue d’un processus stochastique
gaussien, qui mod́elise l’agitation thermique. Puisque le bain est supposé à l’équilibreà la
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temṕeratureβ−1, le noyauxη(t, t′) est une fonction det− t′ et il est relíe à la statistique du
bruit ξ par un th́eor̀eme de fluctuation-dissipation :

〈ξ(t)ξ(t′)〉ξ = β−1ℵ(t− t′) , (6.2)

où nous avons introduit la notationℵ(t− t′) ≡ η(t− t′) + η(t′ − t).

6.1.2 Fonctionnelle ǵenératrice

Nous construisons la fonctionnelle géńeratrice associéeà cette l’́equation de Langevin (6.1)
dans le formalisme de Martin-Siggia-Rose-Jassen-deDominicis (MSRJD) [81, 82, 85]. Nous
travaillons dans un intervalle de temps symétriquet ∈ [−T, T ]. Nous pr̂etons une atten-
tion particulìere aux conditions initiales dont la distribution statistique est encodée dans la
mesurePi(ψ, ψ̇). Si au temps initial (t = −T ) le syst̀eme est pŕepaŕe à l’équilibre thermo-
dynamique,Pi est donńee par la mesure de Gibbs-Boltzmann.

Action de MSRJD

L’action de MSRJD s’́ecrit avec l’aide d’un champ auxiliairêψ (souvent qualifíe de
champ de ŕeponse) comme la somme de trois termes :S[ψ, ψ̂] ≡ Sdet[ψ, ψ̂]+Sdiss[ψ, ψ̂]+

SJ [ψ], avec

Sdet[ψ, ψ̂] ≡ lnPi

(
ψ(−T ), ψ̇(−T )

)
−
∫
du iψ̂(u)

[
mψ̈(u)− F ([ψ], u)

]
, (6.3)

Sdiss[ψ, ψ̂] ≡
∫
du iψ̂(u)

∫
dv M ′(ψ(u)) η(u− v)M ′(ψ(v))

[
β−1iψ̂(v)− ψ̇(v)

]
.

Sdiss provient de l’interaction avec le bain tandis queSdet regroupe toutes les autres forces
appliqúees au système ainsi que la mesure initialePi. SJ est issu du jacobien résultant du
changement du champ d’intégrationξ au champψ. Dans le cas ǵeńeral, on montre que le
jacobien est une constante positive dont on peut se débarrasser dans une redéfinition de la
mesure de l’int́egrale fonctionnelle. On peut aussi choisir de l’exprimervia une int́egrale
gaussienne sur deux champs de Grassmannc et c∗. Enétendant l’int́egrale fonctionnelle de
MSRJDà ces deux nouveaux champs, la contribution jacobienneà l’action s’́ecrit alors :

SJ [c, c∗, ψ] =

∫∫
du dv c∗(u)

[
m∂2uδ(u− v)−

δF ([ψ], u)

δψ(v)

+M ′(ψ(u)) ∂uη(u− v)M ′(ψ(v))
]
c(v)

−
∫
du c∗(u)

M ′′(ψ(u))
M ′(ψ(u))

[
m∂2uψ(u)− F ([ψ], u)

]
c(u) . (6.4)
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Observables

Dans le formalisme de MSRJD, la moyenne prise sur les conditions initiales et les
histoires thermiques d’une observableA[ψ] au tempst s’exprime de manière transparente
comme

〈A[ψ(t)]〉S ≡
∫
D[ψ, ψ̂, c, c∗] A[ψ(t)]eS[ψ,ψ̂,c,c∗] . (6.5)

Entre autres, la fonction d’auto-corrélation à deux temps et la fonction d’auto-réponse
linéaire s’expriment comme

C(t, t′) = 〈ψ(t)ψ(t′)〉S et R(t, t′) = 〈ψ(t)iψ̂(t′)〉S . (6.6)

6.1.3 Équilibre

Symétrie de l’équilibre

Il y a deux conditions pour qu’un système soit assuré d’évoluer avec une dynamique
d’équilibre : il doit être pŕepaŕe dans unétat d’́equilibre et sonévolution doit se faire
avec les m̂emes forces (autres que celles provenant du bain d’équilibre) qui ont particiṕe
à sa pŕeparation. Plus préciśement, il doitévoluer avec les m̂emes forces conservatives (et
indépendantes du temps) que celles qui ont servià sa pŕeparation et les seules forces non-
conservatives autorisées sont celles de l’interaction avec l’environnement. Celui ci-doitêtre
à l’équilibre et sa temṕerature doit correspondreà la temṕerature de pŕeparation du système.

Nous montrons que sous ces conditions d’équilibre, la fonctionnelle ǵeńeratrice de
MSRJD est invariante sous la transformation des champs suivante :

Teq ≡
{

ψ(u) 7→ ψ(−u) , c(u) 7→ c∗(−u) ,
iψ̂(u) 7→ iψ̂(−u) + β∂(u)ψ(−u) , c∗(u) 7→ −c(−u) . (6.7)

Cette transformation comporte un renversement du temps et ne dépend pas deη ce qui, en
particulier, la rend valable dans la limite newtonienneη = 0, c’està dire pour leśevolutions
isolées.

Les identit́es de Ward-Takahashi qui correspondentà cette transformation s’écrivent

〈A[ψ(t)]〉S = 〈A[ψ(−t)]〉S
〈ψ(t)ψ(t′)〉S = 〈ψ(−t)ψ(−t′)〉S
〈ψ(t)iψ̂(t′)〉S = 〈ψ(−t)iψ̂(−t′)〉S + β∂t′〈ψ(−t)ψ(−t′)〉S

...

(6.8)

Nous montrons que ces identités donnent lieùa tous les th́eor̀emes ǵeńeraux de l’́equilibre
tels que la stationnarité, le th́eor̀eme d’́equipartition de l’́energie, les relations de réciprocit́e
d’Onsager, le th́eor̀eme de fluctuation-dissipation, etc.
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Super-syḿetrie

Dans le cas de forces conservatives (fnc = 0) et ind́ependantes du temps (λ̇ = 0),
la fonctionnelle ǵeńeratrice associée auxéquations de Langevin admet une représentation
super-syḿetrique. Cela áet́e d́emontŕe et discut́e pour le cas du bruit additif dans nombre
de publications [98–101]. Nousétendons le champ d’application de ce formalisme au cas
du bruit multiplicatif et coloŕe. L’action correspondante s’écritS = Sdet

susy + Sdiss
susy avec

Sdet
susy[Ψ] ≡ −β

∫
dθ dθ∗ θ∗θH[Ψ(−T, θ, θ∗)]− lnZ +

∫
dΥ L[Ψ(Υ)] , (6.9)

Sdiss
susy[Ψ] ≡ 1

2

∫∫
dΥ′ dΥM(Ψ(Υ′))D(2)(Υ′,Υ)M(Ψ(Υ)) , (6.10)

oùΨ est le champ composite (super-champ) formé à partir des champsψ, ψ̂, c et c∗ selon

Ψ(Υ) ≡ ψ(t) + c∗(t) θ + θ∗ c(t) + θ∗θ

(
iψ̂(t) + c∗(t) c(t)

M ′′(ψ(t))
M ′(ψ(t))

)
.

θ etθ∗ sont deux coordonńees de Grassmann supplémentaires regroupées dans les notations
Υ ≡ (t, θ, θ∗) etdΥ ≡ dtdθdθ∗. Z est la fonction de partition.H[Ψ] ≡ 1

2mΨ̇2 + V (Ψ) et
L[Ψ] ≡ 1

2mΨ̇2 − V (Ψ). L’opérateur diff́erentiel correspondantà l’interaction avec le bain
est donńe par

D(2)(Υ′,Υ) = η(t′ − t)δ(θ∗′ − θ∗)δ(θ′ − θ)
(
D̄D−DD̄

)
, (6.11)

où les oṕerateurs

D̄ ≡ ∂

∂θ
et D ≡ β−1 ∂

∂θ∗
− θ ∂

∂t
, (6.12)

obéissent aux relations d’anticommutation suivantes :{D̄,D} = − ∂
∂t et{D,D} = {D̄, D̄} =

0.

Sous couvert d’avoir une mesure initiale donnée par la distribution d’équilibre de Gibbs-
Boltzmann [c.f. le premier terme de l’éq. (6.9)], l’action est invariante sous les transforma-
tions engendŕees par

Q ≡ ∂

∂θ∗
et Q̄ ≡ β−1 ∂

∂θ
+ θ∗

∂

∂t
,

qui ob́eissent aux relations d’anticommutation suivantes :{Q̄,Q} = ∂
∂t et {Q,Q} =

{Q̄, Q̄} = {D,Q} = {D, Q̄} = {D̄,Q} = {D̄, Q̄} = 0.

Cette super-syḿetrie de l’action donne lieu,via les identit́es de Ward-Takahashi cor-
respondantes,̀a certains th́eor̀emes d’́equilibre comme la stationnarité ou le th́eor̀eme de
fluctuation-dissipation mais elle ne permet pas de montrer les relations comportant ex-
plicitement un renversement du temps comme, par exemple, les relations de réciprocit́e
d’Onsager. Nous explicitons le lien entre la symétrie discut́ee pŕećedemment et cette super-
symétrie.
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6.1.4 Hors d’́equilibre

Nous abordons ensuite le cas des dynamiques hors d’équilibre. Le syst̀eme peut̂etre
maintenant pŕepaŕe de manìere arbitraire et́evoluer avec des forces non-conservatives et
dépendantes du temps. Nous n’envisageons pas le cas d’un bain hors d’équilibre mais la
géńeralisation des ŕesultats̀a ce cas est imḿediate.

Théorèmes de fluctuation

La syḿetrie d’́equilibre discut́ee pŕećedemment est bien sûr briśee. La transformation
des champsTeq appliqúeeà l’actionS[ψ, ψ̂, c, c∗] géǹere des termes qui brisent explicite-
ment la syḿetrie. Nous montrons que ces termes donnent lieu de manière tr̀es naturelle
aux diverses relations de fluctuations (théor̀eme de fluctuation de Crooks [27, 29, 192],
égalit́e de Jarzynski [191, 150], identité de Kawasaki [193, 194], théor̀eme de fluctua-
tion [27, 29, 192]). Le cas des systèmes isoĺes peutêtre facilement retrouv́e en prenant
la limite η = 0.

Symétrie hors d’équilibre

Nous exhibons ensuite une nouvelle symétrie valable cette fois hors d’équilibre. Nous
montrons que la fonctionnelle géńeratrice de MSRJD est invariante sous la transformation
des champs suivante :

Teom ≡





ψ(u) 7→ ψ(u) ,

iψ̂(u) 7→ −iψ̂(u) + 2β

M ′(ψ(u))

∫
dv ℵ−1(u− v)EQ([ψ], v)

M ′(ψ(v))
.

(6.13)

où EQ([ψ], t) désigne l’int́egralit́e du membre de gauche de l’éq. (6.1). Cette fois-ci, la limite
newtonienne (η = 0) n’est pas bien d́efinie. Les identit́es de Ward-Takahashi correspondant
à cette transformation donnent lieuà deséquations dynamiques du type Schwinger-Dyson
couplant les corŕelations et les ŕeponses. Ces relations permettent en particulier d’exprimer
la réponseR(t, t′) en fonction de corŕelations ce qui a une application directe dans les
simulations nuḿeriques hors d’́equilibre, òu le th́eor̀eme de fluctuation-dissipation ne peut
être utiliśe, et òu le calcul direct de la réponse est souvent problématique car il ńecessite
une moyenne sur un grand nombre d’histoires thermiques.

Dans les chap̂ıtres3 et 4, nous laissons ces considérations formelles pour se pencher
sur quelques aspects plus concrets de la dynamique hors d’équilibre. Nous portons princi-
palement notre intér̂et sur lois d’́echelles dynamiques qui se développent après une trempe
brutale d’un syst̀emeà travers une transition de phase du second ordre. Plus particulièrement
nousétudions leurs caractères super-universels, c’està dire leur d́ependance aux paramètres
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de contr̂oles tels que la température, le d́esordre, les fluctuations quantiques ou même les
forçages ext́erieurs.

6.2 Lois d’échelle dynamiques et super-universalit́e

Dans le chapitre3, nous effectuons unéetude comparative des lois d’échelles dy-
namiques et des propriét́es de super-universalité en dimension 3 en confrontant le cas de
la croissance de domaines ferromagnétiques en pŕesence de d́esordre geĺe faible et celui de
la dynamique vitreuse d’un verre de spin (avec du désordre geĺe fort).

6.2.1 Mod̀eles

Pour le cas de la croissance de domaines, nous choisissons de suivre larelaxation lente
du mod̀ele d’Ising3d soumisà un champ magńetique aĺeatoire – le3d Random Field Ising
Model (RFIM) – apr̀es une trempe en température. Le hamiltonien du modèle est donńe par

H = −J
∑

〈i,j〉
sisj −

∑

i

Hisi . (6.14)

Les si = ±1 sont des spins d’Ising placés sur les nœuds d’un réseau cubique de volume
L3. Le premier terme d́ecrit des interactions ferromagnétiques (J > 0) à courte port́ee
entre plus proches voisins.Hi repŕesente un champ magnétique localiśe sur le sitei. Nous
choisissons une distribution bi-modale pour ces variables aléatoires,Hi = ±H avec la
même probabilit́e.H quantifie l’intensit́e du d́esordre geĺe. Dans le casH = 0, le RFIM se
ramène au mod̀ele d’Ising3d avec une transition de phase d’une phase paramagnétiqueà
une phase ferromagnétiqueà la temṕerature critiqueTc ≃ 4.415J . En pŕesence de d́esordre
(H > 0), la phase ordonńee est ŕeduite mais survit jusqu’àHc ≃ 2.215(35)J [61, 62].

Pour le cas de la dynamique vitreuse, nous choisissons le modèle d’Edwards-Anderson
(EA) 3d défini par le hamiltonien

H = −
∑

〈i,j〉
Jijsisj . (6.15)

Lessi = ±1 sont encore des spins d’Ising placés sur les nœuds d’un réseau cubique de taille
L3. Les couplages entre plus proches voisins sont tirés selon une distribution bi-modale,
Jij = ±J avec la m̂eme probabilit́e. Dans ce mod̀ele, c’estJ qui quantifie l’intensit́e du
désordre geĺe. À la temṕeratureTg ≃ 1.14(1)J [69], le mod̀ele passe d’une phase para-
magńetiqueà une phase vitreuse. La nature exacte de la phase de basse température est
encore soumisèa interpŕetation et l’on distingue deux́ecoles quant̀a la relaxation hors
d’équilibre. La vison en termes de gouttelettes (droplet picture) repose sur une compétition
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entre deux́etats fondamentaux [70, 71], alors que l’autre interprétation repose sur les solu-
tions du mod̀ele de Sherrington-Kirkpartrick qui est la version en champ-moyen du modèle
d’EA [72].

Nous suivons la relaxation de ces deux modèles au moyen de simulations de Monte
Carlo. La trempe depuis une température initiale infinie est réaliśee en prenant des condi-
tions initiales aĺeatoiressi = ±1 avec la m̂eme probabilit́e. Pour le cas du ferromagnétique,
nous utilisons une version revisitée de l’algorithme de Metropolis [97], le continuous time
Monte Carlo, qui permet d’avoir un taux de rejet nul [219–221]. Les param̀etres de contr̂oles
pertinents sontH/J etT/J pour le3d RFIM, T/J pour le3d EA.

6.2.2 Croissance d’unéechelle de longueur

Dans le3d RFIM, nous extrayons une longueur typiqueR(t) de l’analyse de la d́ecrois-
sance spatiale de la fonction de corrélationà un tempsC2(r; t) ≡ 〈si(t)sj(t)〉|~ri−~ri|=r. Le
comportement deR dépend des param̀etresH/J etT/J . En particulier, pourH = 0R crôıt
commet1/2 alors qu’en pŕesence de d́esordre sa croissance est logarithmique (activée).

Pour le3d EA, il est impossible d’extraire une quelconque longueurà partir de la fonc-
tion C2(r; t) car celle-ci est strictement nulle pourr > 0. Toutefois, l’analyse d’une fonc-
tion de corŕelation plus complexe,C4(r; t, t

′) ≡ 〈si(t)si(t′)sj(t)sj(t′)〉|~ri−~rj |=r, permet la
détermination d’unéechelle de longueur̀a deux tempsξ(t, t′). Celle-ci d́epend deT/J et
est tr̀es lentement croissante en ses deux temps (elle ne dépasse pas 2 fois le pas du réseau
sur des simulations de108 pas de Monte Carlo).

6.2.3 Lois d’́echelle dynamique

Nous suivons le comportements de quelques observables pendant la relaxation des deux
mod̀eles. Nous en distinguons les contributions thermiques des contributions vieillissantes.
Lorsque cette distinction est difficilement réalisable, nous travaillons̀a basse temṕerature
où les effets thermiques sont moindres. Nous montrons que les contributions vieillissantes
sont invariantes dans le temps une fois que les temps et les longueurs sont mesuŕes en unit́es
deR ou deξ.

Observables globales

Dans le cas du RFIM, nous vérifions que les parties vieillissante de la fonction de corré-
lationà deux temps,C(t, t′) ≡ 〈si(t)si(t′)〉 = Cth(t−t′)+Cag(t, t

′), ob́eit à la loi d’échelle
dynamiqueCag(t, t

′) = Cag (R(t)/R(t
′)). En extrayant dans ce modèle, comme dans le3d

EA, une longueur̀a deux tempsξ(t, t′) à partir de la fonction de corrélationC4(r; t, t
′),
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nous montrons qu’elle obéit àξ(t, t′) = R(t′)g(C(t, t′)) où g est une fonction d́ecroissante.
Nous montrons plus ǵeńeralement queC4(r; t, t

′) = C4(r/R(t
′), R(t)/R(t′)).

Dans le cas du modèle d’EA, la corŕelationà deux temps est connue pourécheler selon
la loi du ≪ vieillissement simple≫ : Cag(t, t

′) = Cag(t/t
′) [202] ; ce qui inciteà penser

que s’il y a une longueur typiqueR(t) qui se d́eveloppe, elle doit crôıtre selon une loi de
puissance,R(t) ∼ t1/z, où l’exposant dynamiquez dépenda priori deT/Tg. En faisant
cette hypoth̀ese et en ajustantz à la main, nous obtenons la même loi d’́echelle que dans le
cas de la croissance de domaines ferromagnétiques :ξ(t, t′) = R(t′)g(C(t, t′)). Cela peut
êtreégalement vu comme une nouvelle méthode pour d́eterminer l’exposant dynamiquez
dans le cas des verres de spin.

Observables locales

Pour les deux mod̀eles, nouśetudions les dynamiques locales par le biais d’observables
qui ne sont plus moyennées sur tout l’́echantillon (de volumeL3) mais seulement sur un petit
volumel3. Leurs fluctuations spatiales peuventêtre d́ecrites par des densités de probabilit́e.

En particulier, nous nous concentrons sur la moyenne dans un volume de taille l3 de la
fonction de corŕelationà deux temps,Cr(t, t′), et nous mesurons sa densité de probabilit́e
ρ(Cr; t, t

′, l). Pour les deux mod̀eles consid́eŕes, nous montrons que celle-ci obéit à la loi
d’échelleρ(Cr;C(t, t′), l/ξ(t, t′)).

6.2.4 Super-universalit́e

La longueur typiqueR ouξ dépend des param̀etres de contr̂oles que sont la température
T et l’intensit́e du d́esordreH. Nous testons l’hypoth̀ese de super-universalité selon laquelle
les lois d’́echelle sont ind́ependantes deT etH [70] en faisant varier ces derniers. Dans le
cas du mod̀ele de croissance de domaines, nous montrons que toutes les lois d’échelles
mentionńees pŕećedemment, y compris celles sur les fluctuations des observables locales,
sont super-universelles au sens qu’elles sont identiques au casT = H = 0. En revanche,
dans le cas du verre de spin, aucune des lois d’échelles discutées pŕećedemment ne présente
de caract̀ere super-universel.

6.3 Dynamique forćee de roteurs quantiques d́esordonńes

Dans le chap̂ıtre 4, nousétudions l’impact des fluctuations quantiques et d’un forçage
ext́erieur sur la dynamique d’un système de roteurs en présence d’interactions désordonńees.
Plus pŕeciśement, la dynamique hors d’équilibre est cŕeée en pŕeparant le systèmeà tr̀es
haute temṕerature puis en le couplant brutalementà un environnement constitué de deux
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réservoirs de fermions – uǹa gauche et uǹa droite du syst̀eme. La diff́erence de potentiel
chimiqueV entre les deux réservoirs ǵeǹere un courant qui s’établit à travers le système et
le maintient hors de l’́equilibre.

6.3.1 Mod̀ele

En ce qui concerne les roteurs, nous considérons le hamiltonien complètement connecté
suivant :

H =
Γ

2n

N∑

i=1

L2
i −

n√
N

∑

i,j<i

Jij si · sj . (6.16)

Lessi sont des roteurs̀an composantes dont la longueur est fixéeà l’unité (si · si = 1). Les
couplages entre les roteurs sont tirés selon une distribution gaussienne de valeur moyenne 0
et d’écart typeJ . J quantifie l’intensit́e du d́esordre. LesLi sont les oṕerateurs de moment
angulaires ǵeńeraliśesàn dimensions. Les composantessµi obéissent aux relations de com-
mutation standards avec les moments conjuguéspµi qui interviennent dans l’expression des
Li. Γ joue le r̂ole d’un moment d’inertie et quantifie l’intensité des fluctuations quantiques ;
lorsque~2Γ/J → 0, le mod̀ele tend vers la version classique du verre de spin d’Heisenberg
compl̀etement connecté. Dans la limite òu n est grand, le mod̀ele est́equivalent̀a la version
quantique du verre de spinp = 2 sph́erique [257, 258] dont la temṕerature critique clas-
sique (Γ = 0) estTc = J . La connection avec la croissance de domaines ferromagnétiques
du mod̀eleO(n→∞) en3d [52] se ǵeńeraliseà notre cas quantique et hors d’équilibre.

Ce mod̀ele a d́ejà ét́e étudíe dans le cadre d’un couplageà un bain d’́equilibre [258].
Pour des fortes fluctuation thermiques (T ) et quantiques (Γ), les roteurs sont dans une phase
paramagńetique. En revanche pour des valeurs plus faibles deT etΓ, il y a une transition
de phase du second ordre vers une phase ordonnée (l’ordre met d’ailleurs un temps infini
pour s’́etablir).

Notre environnement hors d’équilibre est composé de deux ŕeservoirs d’́electrons libres.
La différence de potentielV entre les deux quantifie l’intensité du forçage. Pour simplifier
la discussion, nous choisissons de travailler avec les mêmes temṕeratures et les m̂emes den-
sités d’́etats pour le ŕeservoir de droite que pour celui de gauche. De plus, nous considérons
des densit́es d’́etats contr̂olées par une une uniqueénergie typiqueǫF comme, par exemple,
une distribution semi-circulaire de rayonǫF . La limite ǫF → ∞ correspond au cas où les
électrons qui participent̀a la dynamique (ceux qui sont près du niveau de Fermi) voient une
densit́e d’états constante. Nous choisissons une interaction très simple entre les fermions
et les roteurs en couplant linéairement chaque composantesµi au processus qu’un fermion
passe d’un ŕeservoirà l’autre. Les constantes de couplages sont prises toutes identiques et
égales̀a~ωc. g ≡ ~ωc/ǫF quantifie l’intensit́e du couplagèa l’environnement.
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6.3.2 Influence de l’environnement

L’influence de cet environnement intrinsèquement hors d’équilibre est́etudíe en pertur-
bationsà l’ordre g2. Nous ŕealisons unéetude d́etaillée de la self́energie selon la forme
des densit́es d’́etats et les valeurs des paramètres de contr̂ole. En particulier, nous montrons
que l’environnement se comporte sur les modes lents des roteurs comme un bainohmique
à l’équilibreà la temṕeratureT ∗ ≡ eV

2 coth (βeV/2).

6.3.3 Diagramme de phase

Nous utilisons le formalisme de Schwinger-Keldysh, particulièrement adapté pour traiter
la dynamique après une trempe des systèmes quantiques avec du désordre geĺe. Dans la
limite nN → ∞, nousétablissons leśequations de Swchwinger-Dyson qui couplent la
corŕelationà deux temps et la réponse lińeaire. Pourg → 0, nous calculons le diagramme
de phase dans l’espace des paramètres de contr̂ole que sontT , Γ, V . Nous prouvons l’exis-
tence d’une transition de phase dynamique entre une phase stationnaire de non-équilibre et
une phase ordonnéeà basse temṕerature, faibles fluctuations quantiques et faible différence
de potentiel. Pour des valeurs deg finies, la phase ordonnée gagne du terrain en déplaçant
le point critique quantiqueΓc(T = V = 0) vers le haut. Nous d́emontrons l’existence d’un
nouveau point critique sur l’axeV (le forçage) et la ligne critiquèaΓ→ 0 obéit à la simple
équationT ∗

c = J ce qui corrobore l’id́ee que l’environnement agit comme un bain ohmique
à l’équilibreà la temṕeratureT ∗ sur les modes lents des roteurs.

6.3.4 Dynamique

En exploitant une similitude entre l’action de Keldysh et celle de MSRJD, nousécrivons
la dynamique sous la forme d’uneéquation de Langevin avec inertie et bruit coloré. Nous
étudions la relaxation lente dans la phase ordonnée. Dans la limite des temps longs, la
couleur du bruit est ńegligeable etT ∗ apparâıt alors naturellement comme la température
d’un bain d’́equilibre. Lorsque par ailleurs, l’inertie (contrôlée parΓ) est ńegligeable, l’́equation
de Langevin devient intégrable analytiquement et nous montrons que tout se passe comme
dans la version classique (et sans inertie) du modèle p = 2 sph́erique coupĺe à un bain
d’équilibreà la temṕeratureT ∗. En particulier, la fonction de corrélationCag(t, t′) est une
fonction super-universelle det/t′ au sens òu elle ne d́epend deT , J et V que par l’in-
termédiaire d’un pŕefacteur nuḿerique (qui se trouvêetre le param̀etre d’ordre de Edwards-
Anderson). La fonction de réponse elle aussi se comporte comme dans le cas avecT =

Γ = V = 0. Le th́eor̀eme de flucutation-dissipation est brisé de la m̂eme façon, avec une
temṕerature effective du système infinie. Dans le cas où Γ est fini, nous ŕesolvons la dy-
namique nuḿeriquement et montrons que le scénario pŕećedent est encore valable : l’inertie
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n’intervient que par une renormalisation des préfacteurs des lois d’échelle dynamiques.

Finalement, nous calculons le courant fermionique qui s’établit à travers le système.
Nous montrons qu’il converge rapidement vers une constante qui ne donne pas d’informa-
tion sur l’état dynamique des roteurs.

.

Le travail pŕesent́e dans cette th̀ese a donńe lieu aux publications suivantes :
– C. Aron, G. Biroli et L. F. Cugliandolo, “Symmetries of generating functionals of

Langevin processes with colored multiplicative noise”, J. Stat. Mech. P11018 (2010),
arXiv :1007.5059 ;

– C. Aron, G. Biroli et L. F. Cugliandolo, “Coarsening of disordered quantum rotors
under a bias Voltage”, Phys. Rev. B82, 174203 (2010), arXiv :1005.2414 ;

– C. Aron, G. Biroli et L. F. Cugliandolo, “Driven Quantum Coarsening”, Phys. Rev.
Lett. 102, 050404 (2009), arXiv :0809.0590 ;

– C. Aron, C. Chamon, L. F. Cugliandolo et M. Picco, “Scaling and Super-Universality
in the Coarsening Dynamics of the 3D Random Field Ising Model”, J. Stat. Mech,
P05016 (2008), arXiv :0803.0664.
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Titre Dynamique hors d’́equilibre classique et quantique. Formalisme et applications.

Résuḿe Cette th̀ese traite de la dynamique de systèmes coupĺesà un environnement.
Nous recensons les symétries du formalisme Martin-Siggia-Rose-Janssen-deDominicis as-
socíe auxéquations de Langevin.̀A l’ équilibre, nouśetendons le formalisme super-sy-mé-
trique aux cas d’un bruit coloré et multiplicatif et exhibons une symétrie qui ǵeǹere tous les
théor̀emes d’́equilibre. Briśee, elle donne lieu aux différents th́eor̀emes de fluctuations. Une
autre syḿetrie, valable aussi hors d’équilibre, fournit deśequations dynamiques couplant
corŕelations et ŕeponses. Par ailleurs nousétendons le formalisme super-symétrique au cas
du bruit coloŕe et multiplicatif.
Nous suivons, par des simulations de Monte Carlo, la croissance de domaines dans le
mod̀ele d’Ising3d soumis̀a un champ magńetique aĺeatoire apr̀es une trempe en température.
En étudiant les lois d’́echelle dynamiques, nous confirmons la conjecture de super-univ--
ersa-lit́e. En revanche, nous montrons qu’elle est absente dans la dynamique vitreuse du
mod̀ele d’Edwards-Anderson3d malgŕe l’existence d’unéechelle de longueur permettant
d’écheler des observables globales et locales.
Nous étudions analytiquement la dynamique de roteurs quantiques désordonńes coupĺes
brutalement̀a un environnement qui impose un courantélectriquèa travers le système. Nous
prouvons l’existence d’une transition de phase dynamique entre une phase stationnaire de
non-́equilibre et une phase ordonnée à basse temṕerature, faibles fluctuations quantiques
et faible courant. Nous montrons que celui-ci joue le rôle d’un bain d’́equilibre sur la dy-
namique vieillissante qui est décrite par des lois d’échelle super-universelles.
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Title Classical and quantum out-of-equilibrium dynamics. Formalism and applications.

Abstract This thesis deals with the dynamics of systems coupled to an environment.
We review the symmetries of the Martin-Siggia-Rose-Janssen-deDominicis formalism asso-
ciated to Langevin equations. In equilibrium, we generalize the supersymmetric formalism
to the case of a colored multiplicative noise and we exhibit a symmetry yielding all the
equilibrium theorems. If broken, it naturally gives rise to all sorts of fluctuationtheorems.
Another symmetry, valid also out of equilibrium, yields dynamical equations couplingcor-
relations and responses.
We follow, by means of Monte Carlo simulations, the coarsening dynamics of the3d Ran-
dom Field Ising Model after a temperature quench. By studying the dynamical scalings, we
confirm the super-universality conjecture. On the contrary, it fails in thecase of the glassy
dynamics of the3d Edwards-Anderson model despite the existence of a growing length that
is shown to scale both global and local observables.
We analytically study the dynamics of disordered quantum rotors after an instantaneous
coupling to an environment which creates an electronic current tunneling through the sys-
tem. We show the existence of a dynamical phase transition between a non-equilibrium
stationary phase and an ordering phase at low temperature, weak quantum fluctuations and
weak current. The latter is shown to act as an equilibrium bath on the aging dynamics which
have super-universal scaling properties.
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