Dynamique hors d'équilibre classique et quantique. Formalisme et applications.

Camille ARON

LPTHE, Université Pierre & Marie Curie 20 Septembre 2010

		Membres du jury	
M.	Denis	Bernard	examinateur
M.	Federico	Corberi	examinateur
Mme	Leticia	Cugliandolo	directrice de thèse
M.	Gabriel	Kotliar	rapporteur
M.	Marco	Picco	directeur de thèse
M.	Frédéric	Van WIJLAND	rapporteur

Out-of-equilibrium dynamics

Situations

- environme constant,
- Changing a parameter: in the system or the environment (*e.g.* quenching a coupling constant, the temperature, ...)
 - Applying a drive: external force or non-equilibrium environment (*e.g.* shear, voltage biais, ...)

Systems of interest

Macroscopic systems exhibiting slow dynamics

- domain growth (e.g. ferromagnets, binary liquids, ...)
- disordered interactions
 - weak disorder (e.g. random fields)
 - strong disorder (e.g. glasses)

General questions

• How does the system relax ?

- What is similar to equilibrium ?
- What are the effects of
 - disorder ?
 - quantum fluctuations ?
- What is universal ?

General questions

- How does the system relax ?
- What is similar to equilibrium ?
- What are the effects of
 - disorder ?
 - quantum fluctuations ?
- What is universal ?

General questions

- How does the system relax ?
- What is similar to equilibrium ?
- What are the effects of
 - disorder ?
 - quantum fluctuations ?
- What is universal ?

General questions

- How does the system relax ?
- What is similar to equilibrium ?
- What are the effects of
 - disorder ?
 - quantum fluctuations ?
- What is universal ?

What can we do ?

• Equations for the dynamics

- Classical: stochastic processes (Langevin, Fokker-Planck, ...)
- Quantum: Schwinger-Keldysh
- Solving the dynamics
 - analytically
 - 1*d* systems
 - mean-field models
 - numerical simulations for small d
- exact statements
 - fluctuation theorems
 - bounds on entropy creation

What can we do ?

• Equations for the dynamics

- Classical: stochastic processes (Langevin, Fokker-Planck, ...)
- Quantum: Schwinger-Keldysh
- Solving the dynamics
 - analytically
 - 1d systems
 - mean-field models
 - numerical simulations for small d
- exact statements
 - fluctuation theorems
 - bounds on entropy creation

What can we do ?

• Equations for the dynamics

- Classical: stochastic processes (Langevin, Fokker-Planck, ...)
- Quantum: Schwinger-Keldysh
- Solving the dynamics
 - analytically
 - 1*d* systems
 - mean-field models
 - numerical simulations for small d
- exact statements
 - fluctuation theorems
 - bounds on entropy creation

Roadmap

- In and out-of-equilibrium dynamics, symmetry approach
- Out-of-equilibrium classical dynamics after a quench
- Driven out-of-equilibrium quantum dynamics

- In and out-of-equilibrium dynamics, symmetry approach
- Out-of-equilibrium classical dynamics after a quench
- Driven out-of-equilibrium quantum dynamics

Roadmap

- In and out-of-equilibrium dynamics, symmetry approach
- Out-of-equilibrium classical dynamics after a quench
- Driven out-of-equilibrium quantum dynamics

Introduction	Formalism	Equilibrium dynamics	Out-of-equilibrium dynamics	Quantum

Part I

Symmetries of Langevin and Quantum Generating Functionals

C. A., L. F. Cugliandolo, G. Biroli arXiv:1007.5059 (2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Formalisn

Equilibrium dynamics

Out-of-equilibrium dynamic

Quantum

Robert Brown's experiment (1828)

[Video]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Equilibrium dynamics

Out-of-equilibrium dynamics

Quantum

Paul Langevin's equation (1908)

Initial conditions $P_{\rm i}(\psi,\dot{\psi})$

Langevin equation

$$m\ddot{\psi} = F + F_{\text{bath} \rightarrow \text{system}}$$

with the heuristic force

$$F_{\text{bath} \to \text{system}} = -\eta_0 \dot{\psi} + \xi$$

Gaussian white noise

$$\langle \xi(t)
angle = 0, \quad \langle \xi(t) \xi(t')
angle \propto \delta(t-t')$$

Bath equilibrium condition

$$\langle \xi(t)\xi(t')
angle=2eta^{-1}\eta_0\delta(t-t')$$

Introduction	Formalism	Equilibrium dynamics	Out-of-equilibrium dynamics	Quantum

4 Formalism

5 Equilibrium dynamics

6 Out-of-equilibrium dynamics

Generalized Langevin equation

• Multiplicative noise

$$F_{\text{bath}\rightarrow\text{system}} = -\eta_0 M'(\psi)^2 \dot{\psi} + M'(\psi) \xi$$

Generalized Langevin equation

Multiplicative noise

$$\mathcal{F}_{\mathrm{bath}
ightarrow \mathrm{system}} = -\eta_0 M'(\psi)^2 \, \dot{\psi} + M'(\psi) \, \xi$$

• Colored noise

$$\langle \xi(t)\xi(t')\rangle = \beta^{-1}\aleph(t-t')$$

ex: Ornstein-Uhlenbeck process: $\aleph(t - t') = \eta_0 \tau^{-1} e^{-|t - t'|/\tau}$ Bath equilibrium condition

$$\mathcal{F}_{\mathrm{bath}
ightarrow \mathrm{system}} = -\int_{-\mathcal{T}}^{t} \mathrm{d}t' \, lpha(t-t') \dot{\psi}(t') + \xi(t)$$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Generalized Langevin equation

• Multiplicative noise

$$\mathcal{F}_{\mathrm{bath}
ightarrow \mathrm{system}} = -\eta_0 M'(\psi)^2 \, \dot{\psi} + M'(\psi) \, \xi$$

Colored noise

$$\langle \xi(t)\xi(t')\rangle = \beta^{-1}\aleph(t-t')$$

ex: Ornstein-Uhlenbeck process: $\aleph(t - t') = \eta_0 \tau^{-1} e^{-|t - t'|/\tau}$ Bath equilibrium condition

$$\mathcal{F}_{\mathrm{bath}
ightarrow \mathrm{system}} = -\int_{-\mathcal{T}}^{t} \mathrm{d}t' \, lpha(t-t') \dot{\psi}(t') + \xi(t)$$

• Multiplicative & Colored noise

Martin-Siggia-Rose-Janssen-deDominicis path-integral formalism

$$\psi_{
m sol}(t) \Longrightarrow P[\psi(t)] \propto \mathcal{J} \int \mathcal{D}[\hat{\psi}] \ \mathrm{e}^{\mathcal{S}[\psi,\hat{\psi}]}$$

Action

$$S = S^{\text{det}} + S^{\text{diss}}$$

$$S^{\text{det}}[\psi, \hat{\psi}] \equiv \ln P_{\text{i}}\left(\psi(-T), \dot{\psi}(-T)\right) - \int \mathrm{d}u \, \mathrm{i}\hat{\psi}(u) \left[m\ddot{\psi}(u) - F([\psi], u)\right]$$
$$S^{\text{diss}}[\psi, \hat{\psi}] \equiv \eta_0 \int \mathrm{d}u \, \mathrm{i}\hat{\psi}(u) \left[\beta^{-1}\mathrm{i}\hat{\psi}(u) - \dot{\psi}(u)\right]$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Additive white noise

Introduction Formalism Equilibrium dynamics Out-of-equilibrium dynamics Quantum
Classical field theory

Martin-Siggia-Rose-Janssen-deDominicis path-integral formalism

$$\psi_{
m sol}(t) \Longrightarrow P[\psi(t)] \propto \mathcal{J} \int \mathcal{D}[\hat{\psi}] \ \mathrm{e}^{\mathcal{S}[\psi,\hat{\psi}]}$$

Action

$$S = S^{det} + S^{diss}$$

$$S^{\text{det}}[\psi,\hat{\psi}] \equiv \ln P_{\text{i}}\left(\psi(-T),\dot{\psi}(-T)\right) - \int \mathrm{d}u\,\mathrm{i}\hat{\psi}(u)\left[m\ddot{\psi}(u) - F([\psi],u)\right]$$
$$S^{\text{diss}}[\psi,\hat{\psi}] \equiv \int \mathrm{d}u \int_{-\infty}^{u} \mathrm{i}\hat{\psi}(u)M'(\psi(u))\aleph(u-v)M'(\psi(v))\left[\beta^{-1}\mathrm{i}\hat{\psi}(v) - \dot{\psi}(v)\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Multiplicative & colored noise

Introduction

4 Formalism

6 Out-of-equilibrium dynamics

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||の��

Introduction

Formalism

Equilibrium dynamics

Out-of-equilibrium dynamics

Quantum

Conditions for equilibrium dynamics

- preparation: Gibbs-Boltzmann initial distribution $P_i(\psi(-T), \dot{\psi}(-T)) \propto e^{-\beta_i \mathcal{H}_i[\psi(-T)]}, \ \mathcal{H}_i[\psi] \equiv \frac{1}{2}m\dot{\psi}^2 + V_i(\psi)$
- evolution: same potential and time-independent forces ${\cal F}=-V_{\rm i}'(\psi)$
- equilibrium bath at temperature $\beta = \beta_{i}$

Action

$$S = S^{det} + S^{diss}$$

$$S^{\text{det}} = -\beta \mathcal{H}[\psi(-T)] + \iint du \, dv \, \mathrm{i}\hat{\psi}(u) \frac{\delta \mathcal{L}[\psi(v)]}{\delta \psi(u)}$$
$$S^{\text{diss}} = \int du \int^{u} dv \, \mathrm{i}\hat{\psi}(u) \mathcal{M}'(\psi(u)) \aleph(u-v) \mathcal{M}'(\psi(v)) \Big[\beta^{-1} \mathrm{i}\hat{\psi}(v) - \dot{\psi}(v)\Big]$$

・ロト・日本・日本・日本・日本・日本

 $\Upsilon \equiv \{t, \theta, \bar{\theta}\}$ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

$$\begin{split} S^{\text{det}}[\Psi] &\equiv -\beta \mathcal{H}[\Psi(-T,0,0)] + \int \mathrm{d}\Upsilon \ \mathcal{L}[\Psi(\Upsilon)] \\ S^{\text{diss}}[\Psi] &\equiv \frac{1}{2} \iint \mathrm{d}\Upsilon' \,\mathrm{d}\Upsilon \ M(\Psi(\Upsilon')) \, \mathbf{D}^{(2)}(\Upsilon',\Upsilon) \ M(\Psi(\Upsilon)) \end{split}$$

$$\mathrm{det}[\Psi] ~\equiv~ -eta \mathcal{H}[\Psi(-\mathcal{T},0,0)] + \int \mathrm{d}\Upsilon ~\mathcal{L}[\Psi(\Upsilon)]$$

$$S = S^{\text{det}} + S^{\text{diss}}$$

Action

$\left\{\psi,\hat{\psi},c,\bar{c}\right\}\mapsto\Psi(t,\theta,\bar{\theta})\equiv\psi+\bar{\theta}c+\bar{c}\theta+\bar{\theta}\theta\left(\mathrm{i}\hat{\psi}+\bar{c}c\frac{M''(\psi)}{M'(\psi)}\right)$

Superfield:

$$\mathcal{J} = \mathsf{det} \; rac{\delta \xi}{\delta \psi} = \int \mathcal{D}[c, ar{c}] \; \; \mathrm{e}^{\mathcal{S}^{\mathcal{J}}[\psi, c, ar{c}]}$$

Supersymmetric representation

Introduction

Out-of-equilibrium dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantum

Supersymmetry of the action

S is invariant under

$$\begin{split} \Psi &\longmapsto \Psi + \bar{\epsilon} \, \mathbf{Q} \Psi, \quad \mathbf{Q} \equiv \frac{\partial}{\partial \bar{\theta}} \\ \Psi &\longmapsto \Psi + \epsilon \, \bar{\mathbf{Q}} \Psi, \quad \bar{\mathbf{Q}} \equiv \beta^{-1} \frac{\partial}{\partial \theta} + \bar{\theta} \frac{\partial}{\partial t} \end{split}$$

Ward identities \Rightarrow equilibrium relations

- stationarity, time-translational invariance (TTI)
- fluctuation-dissipation theorem

Symmetry of the action

S is invariant under

$$\mathcal{T}_{
m eq} \equiv \left\{ egin{array}{ccc} \psi(t) &\longmapsto & \psi(-t) \ {
m i} \hat{\psi}(t) &\longmapsto & {
m i} \hat{\psi}(-t) + eta \partial_t \psi(-t) \end{array}
ight.$$

Equilibrium relations

Ward identities

$$\langle A[\psi, \hat{\psi}] \rangle_{S} = \langle A[\mathcal{T}_{\rm eq}\psi, \mathcal{T}_{\rm eq}\hat{\psi}] \rangle_{S}$$

- stationarity, TTI
- equipartition theorem
- fluctuation-dissipation th.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Onsager relations
- many more...

Introduction	Formalism	Equilibrium dynamics	Out-of-equilibrium dynamics	Quantum

Introduction

4 Formalism

5 Equilibrium dynamics

6 Out-of-equilibrium dynamics

7 Quantum

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

Broken symmetry

S is no longer invariant

$$S[\psi, \hat{\psi}] \stackrel{\mathcal{T}_{eq}}{\longmapsto} S_{r}[\psi, \hat{\psi}] + S$$

Out-of-equilibrium relations

$$\langle A[\psi, \hat{\psi}] \rangle_{\mathcal{S}} = \langle A[\mathcal{T}_{eq}\psi, \mathcal{T}_{eq}\hat{\psi}] e^{\mathcal{S}} \rangle_{\mathcal{S}_{r}}$$

- Kawasaki identity (1967): $\langle e^{-S} \rangle_{S} = 1$ Jarzynski equality (1997): $e^{\beta \Delta \mathcal{F}} \langle e^{-\beta \mathcal{W}} \rangle_{S} = 1$
- Fluctuation theorem (FT, 1993): $P(S) = P_r(-S) e^S$ Crooks FT (1998): $P(W) = P_r(-W)e^{\beta(W-\Delta F)}$
- many more...

Introduction

Formalism

Equilibrium dynamics

Out-of-equilibrium dynamics

Quantum

Out-of-equilibrium symmetry

Generalized Langevin equation:

$$\underbrace{m\ddot{\psi}(t) - F([\psi], t) + M'(\psi(t)) \int^{t} \mathrm{d}u \, \aleph(t - u) M'(\psi(u)) \dot{\psi}(u)}_{\equiv \, \mathrm{LHS}([\psi], t)} = M'(\psi(t))\xi(t)$$

S is invariant under

$$\mathcal{T}_{\text{eom}} \equiv \begin{cases} \psi(u) & \mapsto & \psi(u) \\ i\hat{\psi}(u) & \mapsto & -i\hat{\psi}(u) + \frac{2\beta}{M'(\psi(u))} \int dv \, \aleph^{-1}(u-v) \, \frac{\text{LHS}([\psi], v)}{M'(\psi(v))} \end{cases}$$

Ward identities \Rightarrow 'Schwinger-Dyson' out-of-equilibrium relations

For additive white noise:

$$\begin{split} m\partial_{t'}^2 C(t,t') &+ \eta_0 \partial_{t'} C(t,t') - \langle \psi(t) F([\psi],t') \rangle = 2\beta^{-1} \eta_0 R(t,t') \\ m\partial_t^2 R(t,t') &+ \eta_0 \partial_t R(t,t') - \langle i\hat{\psi}(t') F([\psi],t) \rangle_S = \delta(t-t') \end{split}$$

Introduction	Formalism	Equilibrium dynamics	Out-of-equilibrium dynamics	Quantum

Introduction

4 Formalism

5 Equilibrium dynamics

6 Out-of-equilibrium dynamics

Out-of-equilibrium dynamic

Quantum

Quantum generalization

Schwinger-Keldysh approach

Out-of-equilibrium dynamic

Quantum

Quantum generalization

Schwinger-Keldysh approach

$$\begin{array}{ll} \langle \mathcal{A}(t) \rangle &=& \mathcal{Z}^{-1} \mathrm{Tr} \left[\mathrm{e}^{\frac{\mathrm{i}}{\hbar} H t} \mathcal{A}(t) \, \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} H T} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} H T} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} H t} \mathrm{e}^{-\beta H} \right] \\ &\propto& \int \mathcal{D}[\phi] \, \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \int_{\zeta} \mathrm{d} u \, \mathcal{L}[\phi(u)]} \, \mathcal{A}[\phi(t)] \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Out-of-equilibrium dynamic

Quantum

Quantum generalization

Schwinger-Keldysh approach

$$\begin{array}{ll} \langle \mathcal{A}(t) \rangle &=& \mathcal{Z}^{-1} \mathrm{Tr} \left[\mathrm{e}^{\frac{\mathrm{i}}{\hbar} H t} \mathcal{A}(t) \, \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} H T} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} H T} \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} H t} \mathrm{e}^{-\beta H} \right] \\ &\propto& \int \mathcal{D}[\phi] \, \mathrm{e}^{\frac{\mathrm{i}}{\hbar} \int_{\zeta} \mathrm{d} u \, \mathcal{L}[\phi(u)]} \, \mathcal{A}[\phi(t)] \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Introduction	Formalism	Equilibrium dynamics	Out-of-equilibrium dynamics	Quantum
Symmetry	y			

Action

$$S = \int_{-T+i\beta\hbar}^{i\beta\hbar} \mathcal{L}[\phi^+(u)] + \int_{i\beta\hbar}^{0} du \,\mathcal{L}[\phi^e(u)] + \int_{0}^{T} du \,\mathcal{L}[\phi^+(u)] + \int_{T}^{-T} du \,\mathcal{L}[\phi^-(u)]$$

S is invariant under

$$\mathcal{T}_{\mathrm{eq}}^{Q} \equiv \begin{cases} \phi^{+}(u) & \longmapsto & \phi^{+}(\mathrm{i}\beta\hbar - u) \\ \phi^{-}(u) & \longmapsto & \phi^{-}(-u) \\ \phi^{e}(u) & \longmapsto & \phi^{e}(\mathrm{i}\beta\hbar - u) \end{cases}$$

★□> <個> <目> <目> <目> <0<</p>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Part II

Scalings and Super-Universality in Coarsening versus Glassy Dynamics

C. A., C. Chamon, L. F. Cugliandolo, M. Picco J. Stat. Mech. (2008) P05016

Overview of the 3d Random Field Ising Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Dynamical scaling

$$C_{\mathsf{T},\mathsf{H}}(t,t') \equiv \langle s_i(t)s_i(t') \rangle_i \qquad C^{\mathsf{ag}}_{\mathsf{T},\mathsf{H}}(t,t')$$

Dynamical scaling

$$\mathcal{C}_{\mathsf{T},\mathsf{H}}(t,t') \equiv \langle s_i(t)s_i(t')
angle_i \qquad \mathcal{C}_{\mathsf{T},\mathsf{H}}^{\mathsf{ag}}(t,t') = f_{\mathsf{T},\mathsf{H}}(rac{R_{\mathsf{T},\mathsf{H}}(t)}{R_{\mathsf{T},\mathsf{H}}(t')})$$

500

Dynamical scaling: super-universality

$$C_{\mathsf{T},\mathsf{H}}(t,t') \equiv \langle s_i(t)s_i(t') \rangle_i \qquad C^{\mathsf{ag}}_{\mathsf{T},\mathsf{H}}(t,t') = \mathsf{f}(\frac{R_{\mathsf{T},\mathsf{H}}(t)}{R_{\mathsf{T},\mathsf{H}}(t')})$$

Overview of the 3d Edwards-Anderson model

Frustration

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Results

Dynamical scalings: yes Super-universality: no

Setup	Model	Environment	Dynamical phase diagram	Dynamics

Part III

Driven Quantum Coarsening

C. A., G. Biroli, L. F. Cugliandolo Phys. Rev. Lett. **102**, 050404 (2009) arXiv:1005.2414 (2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setup	Model	Environment	Dynamical phase diagram	Dynamics
Quench				

Setup	Model	Environment	Dynamical phase diagram	Dynamics
Quench				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setup	Model	Environment	Dynamical phase diagram	Dynamics

10 Setup

12 Environment

13 Dynamical phase diagram

- *N n*-component quantum rotors: $\mathbf{n}_i \in \mathbb{R}^n, i = 1 \dots N$
- unit length: $\mathbf{n}_i^2 = 1$
- mass $\propto 1/\Gamma$
- fully connected via random couplings: $J_{ij} \leftarrow Gauss(0, J)$

Hamiltonian

$$\mathcal{H}_{S} = \frac{\Gamma}{2n} \sum_{i=1}^{N} \mathbf{L}_{i}^{2} - \frac{n}{\sqrt{N}} \sum_{i < j} \mathbf{J}_{ij} \mathbf{n}_{i} \cdot \mathbf{n}_{j}$$

 $\mathbf{L}_{i}^{2} = \sum_{\mu < \nu} (L_{i}^{\mu\nu})^{2} \text{ with } L_{i}^{\mu\nu} = -\mathrm{i}\hbar \left(n_{i}^{\mu} \frac{\partial}{\partial n_{i}^{\nu}} - n_{i}^{\nu} \frac{\partial}{\partial n_{i}^{\mu}} \right)$

- $\bullet\,$ Free fermions ' ψ_L ' and ' ψ_R ' in equilibrium at temperature ${\rm T}$
- applied voltage eV between 'L' and 'R' reservoirs.

Coupling System/Reservoirs

$$\mathcal{H}_{SB} = -\mathbf{g} \frac{\sqrt{n}}{N_s} \sum_{i=1}^{N} \sum_{k,k'=1}^{N_s} \sum_{l,l'=1}^{M} \mathbf{n}_i \cdot [\psi_{Likl}^{\dagger} \sigma_{ll'} \ \psi_{Rik'l'} + L \leftrightarrow R]$$

 $M^2 - 1 = n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Integration over the reservoirs: 2nd order in g
- Average over disorder

$$[\ldots]_J \equiv \int \prod_{i < j} \mathrm{d}J_{ij} P(J_{ij}) \ldots$$

↓ Quartic terms in **n**i

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• large *n* limit

Setup	Model	Environment	Dynamical phase diagram	Dynamics

10 Setup

13 Dynamical phase diagram

Effect of the environment

Non-equilibrium environment: $eV \neq 0$

The effect of the reservoirs on the low frequency dynamics is expected to be the one of an equilibrium bath at

$$\mathbf{T}^* \equiv rac{\mathbf{eV}}{2} \operatorname{coth}\left(rac{\mathbf{eV}}{2}/2\mathbf{T}
ight)$$

- Equilibrium (eV = 0): $T^* = T$
- Zero temperature (T = 0): $T^* = eV/2$

Setup	Model	Environment	Dynamical phase diagram	Dynamics

10 Setup

13 Dynamical phase diagram

Model

Dynamical phase diagram

Critical manifold: with drive $(eV \neq 0)$

New 'drive induced' critical point $eV_c/2 \propto J$ 500

Setup	Model	Environment	Dynamical phase diagram	Dynamics

10 Setup

12 Environment

13 Dynamical phase diagram

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 三 - のへで

Setup Model Environment

Dynamical phase diagram

Dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Long-time dynamics

Long-time dynamics described by a classical Langevin equation

$$\eta_0 \dot{\mathbf{n}} = \dots + \xi(\mathbf{t})$$

white noise statistics: $\langle \xi(t)\xi(t')\rangle = 2\eta_0 \mathbf{T}^* \delta(t-t')$ temperature $\mathbf{T}^* = \frac{\mathbf{eV}}{2} \operatorname{coth}(\mathbf{eV}/2\mathbf{T})$

Quantum driven scenario: we expect universal dynamics !

Same t/t' scaling, same f(x)

Quantum driven scenario: we expect universal dynamics !

Same t/t' scaling, same f(x)

Quantum driven scenario: we expect universal dynamics !

Same t/t' scaling, same f(x)

Setup Model Environment Dynamical phase diagram

Conclusions & Outlook

- - Symmetry associated to equilibrium in the MSRJD formalism
 - another symmetry is also valid out of equilibrium
 - handy formalism to obtain relations for non-Markovian systems and multiplicative noise
 - quantum generalization ?
- check of the super-universality hypothesis in the ordering dynamics of the 3*d* RFIM Vs 3*d*EA
- Driven quantum coarsening:
 - dynamical scalings and universality in $\textbf{J},\textbf{T},\textbf{\Gamma},\textbf{eV}$
 - does this picture survive for non-quadratic models, other couplings ?
 - experimental realizations ?

Dynamics

Conclusions & Outlook

- ${\ensuremath{\bullet}}$ Symmetry associated to equilibrium in the MSRJD formalism
 - another symmetry is also valid out of equilibrium
 - handy formalism to obtain relations for non-Markovian systems and multiplicative noise
 - quantum generalization ?
- check of the super-universality hypothesis in the ordering dynamics of the 3*d* RFIM Vs 3*d*EA
- Driven quantum coarsening:
 - dynamical scalings and universality in $\textbf{J},\textbf{T},\textbf{\Gamma},\textbf{eV}$
 - does this picture survive for non-quadratic models, other couplings ?
 - experimental realizations ?

Conclusions & Outlook

- ${\ensuremath{\bullet}}$ Symmetry associated to equilibrium in the MSRJD formalism
 - another symmetry is also valid out of equilibrium
 - handy formalism to obtain relations for non-Markovian systems and multiplicative noise
 - quantum generalization ?
- check of the super-universality hypothesis in the ordering dynamics of the 3*d* RFIM Vs 3*d*EA
- Driven quantum coarsening:
 - dynamical scalings and universality in $\textbf{J},\textbf{T},\textbf{\Gamma},\textbf{eV}$
 - does this picture survive for non-quadratic models, other couplings ?
 - experimental realizations ?