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Abstract

This doctoral dissertation presents a thorough determination of the phase diagrams of
classical Heisenberg triangular antiferromagnet (HTAF) and its anisotropic variants based on
theoretical and numerical analysis (Monte Carlo). At finite-field HTAF exhibits a non-trivial
interplay of discrete Zs symmetry and continuous S' symmetry. They are successively broken
(discrete then continuous) with distinct features at low and high fields: in the latter case the
ordering is along transverse direction; in the former case an intermediate collinear phase is
stabilised before 120-degree structure is. Due to zero-field behaviour, transition lines close at
(T, h) = (0,0).

Single-ion anisotropy is here considered. Easy-axis HTAF for moderate anisotropy strength
0 < d < 1.5 possesses Zg®S! symmetry at zero-field which induces triple BKT-like transitions.
At finite field the symmetry is the same as for HTAF: both thus share the same symmetry-
breaking pattern. Yet specificities can be observed in the easy-axis system: splitting of
zero-temperature transition at one-third magnetisation plateau, reduction of the saturation
field.

Easy-plane HTAF belongs to the class of universality of XY triangular antiferromagnet:
it thus interesting to start with this system. Zero-field behaviour results from the breaking
of Zy ® S' symmetry, where the discrete component is an emerging chiral symmetry. An
intermediate magnetically chiral ordered phase exists which extends to finite-field where the
symmetry is Zs ® Zs. The upper limit of this intermediate phase along field axis is a multicrit-
ical point at which transition lines are inverted. Above, the intermediate phase is a collinear
phase. At high field the compound symmetry is broken as a whole Zg.
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Résumé

Cette thése de doctorat présente la détermination théorique et numérique (Monte Carlo)
du diagramme de phase du systéme classique antiferromagnétique de Heisenberg sur réseau
triangulaire (HAFT) et de ses variantes anisotropes. Sous champ HAFT présente une intri-
cation non triviale des symétries discréte Z3 et continue S1. Elles sont successivement brisées
(discréte puis continue) selon des modalités différentes a champ fort et modéré : dans ce cas-la
Uordre a lieu selon la direction transverse ; dans ce cas-ci une phase colinéaire intermédiaire
est stabilisée avant la phase a 120 degrés. Du fait du comportement d champ nul les lignes de
transitions se terminent a (T, h) = (0,0).

L’anisotropie mono-ionique est ici considérée. HAFT avec anisotropie d’axe facile pour
une anisotropie modérée, 0 < d < 1.5, posséde une symétrie Zg @ S* a champ nul, qui induit
une triple transition BKT. Sous champ, la symétrie est identique a HAFT : les deux partagent
donc le méme scénario de brisure de symétries. Le systéme anisotrope présente toutefois des
spécificités ; séparation de la transition a température nulle au champ de tiers d’aimantation,
réduction du champ de saturation.

HAFT avec anisotropie de plan facile appartient d la classe d’universalité de XY AFT il
est donc intéressant de commencer par ce systeme-ci. Le comportement a champ nul résulte de
la symétrie Zo @ S' ot la composante discréte est une symétrie chirale émergente. Une phase
intermédiaire chirale magnétiquement désordonnée est stabilisée ; elle se prolonge sous champ,
ot la symétrie est réduite a Zo @ Zs, jusqu’a un point multicritique auquel les transitions
s’inversent. Au-dessus de celui-ci la phase intermédiaire est colinéaire. Sous champ fort la
symétrie composite se brise comme une symétrie Zg unique.
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Chapter 1

Introduction

Condensed matter physics deals with matter in its condensed form: what does
this tautology state? In this context condensed can be defined as held together thanks
to internal interactions. It means that this branch of physics doesn’t investigate el-
ementary entities but the collective behaviour of interacting particles. Its name was
coined rather recently (1967) by P. W. Anderson and V. Heine when they renamed
their Solid-state Theory laboratory at Cambridge, UK, Theory of Condensed Matter.
From a perspective in terms of macroscopic physical properties, they made the focus
evolve towards the underpinning phenomenon, the grounding effect of which extends
beyond the sole solid state, namely many-body interactions and the induced collective
phenomena measurable either at a microscopic or macroscopic level. One of the most
striking feature of collective phenomena is phase transition. Phase transitions are a
commonly experienced fact — anybody cycling in winter does know that water in its
solid form, also known as glaze when covering the ground, has quite distinct properties.
Yet their understanding and their description is far less straightforward and has been
fostering the development of theories and experiments by physicists for generations.
They arise whenever there are competitive processes governing the equilibrium of a
system: varying external parameters such as temperature, pressure, magnetic field, it
is then possible to change the equilibrium configuration. The trouble in condensed
matter physics stems from the hardship to analytically describe systems with more
than two interacting particles: yet any realistic system such as this very sheet of paper
consists of several billions of billions of atoms — this is no reason to conclude that this
thesis is intractable: another important characteristic of condensed matter physics is to
look at systems at the relevant scale and I doubt the atomistic one is the right choice
for this piece of work! To overcome this hardship it has been necessary to develop ways
of treating systems with a huge number of particles in a tractable way: this is what
statistical mechanics can do. It makes use of the observation that physical properties of
a given system can be correctly described by probabilistic distributions. Boltzmann can
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without hesitation be named the father of this revolutionary approach.! Thanks to this
revolutionary viewpoint it has been possible to describe macroscopic properties of mat-
ter from microscopic underpinning phenomena. The formalism of statistical mechanics,
however originally devised in a classical language, could fully be extended to quantum
context with a straightforward correspondence. With this toolbox in hand physicists
could further develop the understanding of collective phenomena, among which critical
phenomena that occur at phase transitions.

In a way or another various modern descriptions of critical phenomena are built
upon the observation criticality is characterised by a loss of scale hierarchy: about phase
transition the system look the same at different scales — this auto-similarity is coined as
fractal. In other words details don’t matter. An early understanding of this statement
took the form of mean field as enunciated by Weiss in 1907 [128]: this approach consists
in considering for each particle the interactions with its neighbours and the environment
at the level of mean values. However simplistic such a treatment may seem it has
revealed not only fruitful to orientate intuitions but also exact in certain limits (roughly
speaking in high dimensions for short-ranged interactions). Another development of this
idea was proposed by Landau with his phenomenological description of second-order
phase transitions? based on a symmetry analysis of the system. Landau’s discussion is
in fact two-fold. On the one hand he explicited symmetry rules governing a second-order
phase transition: at a continuous transition there must be a group-subgroup relation
between the symmetry groups of each phase on both sides of the transition. This leads
to a classification of possible continuous phase transitions given a model with a specific
symmetry group. On the other hand he proposed an hydrodynamic-like development
of the free energy functional in terms of successive powers of the order parameter and
its gradient (which is possible at a continuous transition as the order parameter goes
to zero®). Both sides of this reasoning work together as the development of the free
energy functional introduces terms that must respect the symmetry of the model. This
fruitful theory elegantly circumvents a major difficulty of statistical mechanics, namely
the explicit calculation of partition function given a specific Hamiltonian. A later
development fully pushing this idea of scale-invariance and discarding irrelevant details
was the development during the 1960’s of renormalisation group by Kadanoff [41] and
Wilson [129, 130]. The underlying idea is to describe the model at larger and larger

!Boltzmann’s epitaph reads: S = klog W.

2 After Ehrenfest’s first classification of phase transitions according to continuity properties of the
derivatives of free energy (in that classification an n-th order transition is a transition at which first
discontinuity occurs for the n-th derivative), modern classification distinguishes first-order transitions
characterised by the existence of non-zero latent heat from second-order ones that are continuous
(without any latent heat) and associated with a diverging correlation length at the transition. Infinite-
order transitions exist as well such as Berezinskii-Kosterlitz-Thouless transition that is dealt with in
this dissertation.

3Extensions of Landau’s formalism to certain first-order transitions can be done as presented for
example in [119].



scales using a coarse-graining approach: during this transformation, that is called a
flow, coupling constants of the model undergo changes that constitute a semi-group
(hence the name that mathematically speaking is not exact) with certain constants
flowing to zero, which means they don’t play any role for the criticality of the system.
With this viewpoint it was then possible to introduce classes of universality: such a
class groups various systems sharing common relevant interactions and consequently
common symmetries. Each class can then be defined by a set of critical exponents that
describe how quantities of interest such as specific heat behave in the vicinity of the
transition. Most of physicists’ efforts in the analysis of phase transitions has thus been
the determination of the class of universality which the model they investigate belongs
to and in another direction the attempt to describe all possible classes of universality.

The latter effort has undergone a dramatic change with conformal field theory. This
theory is based on the fact that critical theories are not only invariant under changes
of scale as previously introduced with the renormalisation group but also under the
action of conformal transformations®. If conformal invariance doesn’t bring anything
new in dimensions d > 3, for d = 2 it does bring new constraints that should enable to
catalogue bidimensional critical phenomena. This statement singles out the specificity
of dimension 2. 2 d is in many regards specific as it offers a wealth of models with exotic
critical behaviours that cannot be found in other dimensions; some of them even evade
treatment with methods such as mean-field approximation, renormalisation group, and
other methods perfectly working at higher dimensions. A way to grasp this specificity
of bidimensional models is to think of their topological properties: as can readily be
observed continuous deformations that are the pictorial way to glimpse at topology
are far more restricted in 2d than in higher dimensions where it is often possible to
circumvent a singularity using the extra dimensions. On the other side most methods
used in 1d systems are specific to this dimension with the extreme constraint of the
dimensionality that induces specific collective excitations.

Beside these theoretical achievements, numerical physics has grown in importance
and played quite crucial a role in the understanding of critical phenomena. As pre-
viously shortly alluded to one major hindrance in statistical mechanics is the actual
handling of partition function. Numerical methods can precisely help overcoming it
even without any explicit calculation of the partition function at stake — in the end
the interesting elements are physical observables rather than mathematical devices used
to built up theories. One major player in the field of numerical statistical physics is
Monte Carlo procedure in its various variants. Undoubtedly the algorithm proposed by
Metropolis and coworkers [78] fostered the emergence of the field, which has been fur-
ther boosted by the exponential growth of computing facilities pushing further away the
balking limitations of numerical simulations. In a word the idea behind these methods

4The group of conformal transformation is the subgroup of coordinate transformations that leave
the metric invariant up to a scale factor, ie that preserve the angle between two vectors.
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is to astutely explore the phase space to catch a faithful glimpse of the system under
scrutiny: this is achieved through a Markov chain®. Numerics has thus grown as the
third pillar on which modern statistical physics stands.

With this well equipped toolbox in hand it becomes possible to deal with phys-
ical models among which magnetic systems constitute one of the most appreciated
playground thanks to the variety of models that can be both theoretically devised
and experimentally studied. An incomparable advantage of magnetic systems is in-
deed that many experimental techniques are available to both probe macroscopic and
microscopic properties: from bulk thermodynamical measurements (specific heat, sus-
ceptibility, etc.) to local probing (atomic force microscopy, muon spin resonance), with
such fine structural investigation tools as neutron scattering experiments (elastic and
inelastic scattering, polarised or unpolarised neutrons, spin echo, etc.). Furthermore it
is most of the time possible to write models accurately describing these spin systems
or in the reverse way certain models initially theoretically devised and studied have
proven relevant for the description of real compounds. For sure magnetic materials are
less clean and less tunable than artificial magnetic crystals obtained in quantum optics.
The latter are however still out of the energy range of interest and therefore remain
promising experimental toys not yet at their full maturity [14].

As said condensed matter deals with collective phenomena and consequently coop-
erative behaviours. In quite a few circumstances cooperation can lead to an extreme
case which is frustration. Roughly speaking (more precise a definition is proposed in
the following) frustration occurs whenever it is impossible for all interacting entities to
simultaneously reach an optimum. In spin systems the concept was formally introduced
in the 1970’s. With the rough picture above proposed it can readily be understood that
this concept is relevant to a huge variety of problems in statistical mechanics, and even
far beyond, as such fields as econophysics or sociophysics flourish. As previously pointed
out magnetic systems provide an actual playground to deal with abstract concepts and
frustration is no exception: various compounds indeed embody frustration and make
it possible to confront models with experiments and reversely to seek inspiration in re-
ality. Frustrated magnets offer quite an interesting playground to test various exciting
concepts beside the release (or not) of frustration such as spin liquids, exotic phase
transitions, quantum criticality, etc.

With this background in mind it is now possible to proceed to a more precise intro-
duction of grounding concepts and questions supporting this dissertation. Symmetries
in 2d is the topic of Sec. 1.1. Then a thorough introduction to frustration is proposed
in Sec. 1.2. Last an historical perspective on the family that models studied in the fol-
lowing chapters of this dissertation belongs to, namely antiferromagnetic spin sytems
on a triangular lattice, is proposed in Sec. 1.3.

5A Markov chain is a random process such that next step only depends on the current state: it is
memoryless, which makes it perfectly suited for numerical simulations.
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1.1 Symmetry breaking in 2d

When dealing with phase transitions in general the question of symmetry breaking
naturally comes out. In 2d this issue acquires a dramatic specificity. In 1966 Mermin
and Wagner demonstrated that the breaking of a continuous symmetry in bidimen-
sional systems is impossible at any finite temperature. As a consequence second-order
phase transition in spin systems with continuous rotational symmetry, as is the case
of isotropic models of spins with more than one component in zero field, is excluded.
This statement doesn’t end the story. Berezinskii on the one hand [10, 11], Kosterlitz
and Thouless on the other hand [61] argued that despite its continuous symmetry XY
model on the square lattice does undergo a finite-temperature transition. No symmetry-
breaking is associated with this transition but a dramatic change in the behaviour of
stable topological defects. Such a transition is an example of an infinite-order transi-
tion; this one is referred to as a BKT transition. The discussion of phase transition in
terms of topological defects was formalised by different physicists [82, 76, 75, 79] in the
late 1970’s. It is based on homotopy groups: these groups concentrate the sufficient
information to describe topological properties of objects. The simplest one, the fun-
damental group, my, describes how closed loops in a topological object evolve under a
continuous deformation. For example any closed loop on the sphere S? can be shrunk
to a point, hence the fundamental group of the sphere is the trivial group: m;(5?%) = 0.
On a circle the situation is less simplistic: some closed loops can twine around the cir-
cle without being shrinkable to a single point; moreover these can twine several time,
which means an integer can be associated to loops which is its winding number (zero in
case of a shrinkable loop). This makes it understandable that the fundamental group
of a circle is the group of integers: 7(S') = Z. This theory enables the handling
of topological defects which exist in physical systems. These topological defects can
induce phase transitions, which means it is possible to describe phase transition cal-
culating the homotopy group of the symmetry group of the Hamiltonian. XY model
exemplifies this approach: the symmetry group of the Hamiltonian is S!; as seen above
m1(SY) =Z. As a consequence XY system admits stable point defects that are integer
vortices. The observation put forward by Berezinskii, Kosterlitz, and Thouless is that
vortices are bound into pairs of vortex-antivortex at low temperature and are free at
high temperature, which means a transition occurs in between: this binding-unbinding
transition is BKT transition. As a consequence of above mentioned Mermin-Wagner
theorem the order settling below the transition is not a long-range order but rather a
quasi-long-range order. This low-temperature phase is hence a soft massless phase with
power-law decaying correlation functions and continuously varying critical exponents
in contrast to what happens in Ising model with its massive low-temperature phase.

An interesting question is then the evolution from one model to the other. A way
to study it consists in investigating discrete Abelian models with Z, symmetry. Beside
this theoretical motivation, the study of such models is motivated by the melting of
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bidimensional crystals that are governed by discrete rotational symmetry (p = 2,3,4,6
are of experimental relevance). If an XY model perturbed by Z, terms was studied by
José and coworkers in their seminal 1977’s work, first specific studies of pure Z,, systems
came slightly later [28, 17, 27]. These works showed that there is a critical value p,
such that for p < p. two massive phases exist as in Ising model whereas for p > p.
between these two massive phases an intermediate critical massless phase (or quasilig-
uid) emerges the lower limit of which tends to zero as p goes to infinity in agreement
with Mermin-Wagner prescription. An even more striking result has been obtained
on p-state clock model, aka Z, models: the existence of an extended universality [65].
Above a certain temperature T, for p > 4, thermodynamical properties are proved
identical to those of the continuous model p = co. In particular for p > 8 this collapse
starts in the intermediate quasiliquid phase, which implies that the upper transition is
a real BKT transition. It constitutes an example of an emergent symmetry.

Another example of an emergent symmetry in bidimensional systems is the one of an
extra discrete degeneracy in certain bidimensional systems with a continuous symmetry
[122]. This phenomenon revealed by Villain arises as a consequence of multi-g structure.
Let’s introduce a spin structure S; = ucos q-r;+vsin q-r; where u and v are orthogonal
unit vectors and q is an ordering vector®. In case this structure describes all ground
states, which is the case with spins of dimension n = 2 or 3 (unless the ordering vector
q lies at special positions within Brillouin zone in this latter case), this formula shows
that an extra discrete degeneracy exists for spins of dimensionality n = 2 as soon as the
star” of q consists in more than one vector and for n > 3 if the star is not reduced to
{q, —q}. Let’s explicit this assertion in the former case: changing q into —q changes
sine into its opposite.As the vectors are bidimensional there is no direct continuous
transformation to change q structure into —q structure. The existence of this extra
degeneracy makes it possible for the system to order at finite temperature despite its
original continuous symmetry. A widely discussed example is the case of XY model on
the triangular lattice with its emergent chiral order that is presented in Chap. 4.

1.2 Frustration

Frustration is a concept that was formally introduced in the context of spin glasses
[121, 123] even though earlier studies dealing with frustrated magnets exist [125, 114,
44, 2]. A characteristic property of frustrated systems, namely their extensive entropy
at zero temperature, was discussed as early as 1935 by Pauling [96] in water ice. Frus-
tration can be defined as the impossibility to minimise all individual interaction terms

6q is obtained as a vector minimising with respect to k the Fourier transform > Jijcosk- (r; —rj)
where (J;;) is the set of bilinear exchange constants defining the Hamiltonian H =3,y S; - S;.

"The star of a vector k is the set of inequivalent vectors generated by the action of the lattice
symmetry group on the vector k.
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at the same time, may it be due to randomness, to geometric constraints, or to com-
peting interactions. After the formal introduction of the term frustration, frustrated
magnets without randomness were studied for a while for their connection with spin
glass. Yet it soon became obvious that these magnetic systems that had been stud-
ied for some of them before the hype about spin glass could bring more. Thanks to
the diversity of experimental methods available to study magnetic systems, this field
of research has experienced a continual and vivid cross-fertilisation between theoreti-
cians and experimentalists. Investigations on frustrated magnetic materials have had
implications far beyond magnetism itself. Indeed their highly degenerate ground state
manifold, their possibly non-collinear or incommensurate order, the assumptive spin
liquid, and their possibly novel phase transitions offer a playground to investigate chal-
lenging and exciting fundamental questions both in classical and quantum systems.
Regarding quantum systems such questions as the link between cuprates supraconduc-
tors and 2d quantum frustrated antiferromagnets [3] or as deconfined quantum critical
point, which is a new paradigm to describe phase transitions beyond Landau-Ginzburg-
Wilson paradigm encompassing transitions between phases with no symmetry relation
[104, 105], have renewed the vivacity of research on this topic. Interestingly various
analytical, numerical and experimental techniques have been used to study frustrated
magnetic systems: analytical developments a la Onsager, Landau-Ginzburg treatment
and more generally analysis of symmetry and topological properties, mean-field tech-
niques, renormalisation group apparatus, high- and low-T series expansions, Monte
Carlo simulations, experimental investigations. In certain cases some of these differ-
ent approaches may be at odds such as exemplified by the opposition between certain
renormalisation group methods (¢ = d — 2 development of a non-linear o model) on the
one hand and Monte Carlo simulations and topological discussions on the other hand
to describe classical frustrated Heisenberg spin systems [4, 49]. Renormalisation group
approaches, Monte Carlo simulations and experimental measurement do not yield a
consistent picture of such systems, which is the illustration how non-trivial the critical
behaviour of frustrated magnets is. It also points out the necessity to carefully under-
stand the limitations of the techniques that are used in order to identify the origin of
such mismatches; hence a better insight into these techniques can be gained. Frustrated
magnetism has been at the heart of much highlighted research of the past thirty years
as is the case with cuprates high-T, supraconductors, Josephson junction arrays, multi-
ferroics, etc. The most recent topic creating a real hype in this field was the description
of pseudo magnetic monopoles in spin ice systems [18]. Frustration can be studied in
insulating crystals as well as in metals or in disordered systems. Hereafter we consider
only the case of insulating crystals.

In insulating crystals the relevant picture to understand magnetism is the one of
isolated spins located at vertices of a lattice. From the Hubbard model one can derive
localised-spin interaction Hamiltonians: depending on spin dimensionality, they are
Ising (1d spin space), XY (2d) or Heisenberg (3d) models. The simplest cases consist



8 CHAPTER 1. INTRODUCTION

in bilinear interaction terms. In such cases the competition of interactions inducing
magnetic frustration can stem either from a competition between different interaction
paths (typically between nearest-neighbours and next-nearest neighbours) or from the
topology of the lattice. Widely studied examples of the former case are J; — Jo model
on the square lattice, spin ladders, among others [21, 81]. In the latter case the frus-
tration is said to be geometric. Geometrically frustrated magnets build up a major and
diverse group of magnets. Geometrically frustrated systems can typically be built with
triangular elementary plaquettes that can arrange either on a corner sharing pattern
(kagome lattice) or on an edge sharing one (triangular lattice), in 2d or 3d as well.
Another common building block is tetrahedron (corner sharing tetrahedra can form the
so-called pyrochlore lattice). Common frustrated lattices comprise the 2d triangular
lattice, kagome lattice, fce, and pyrochlore among other ones. Numerous materials in
this class exist [36]: anhydrous alum, jarosites, pyrochlores, spinels, magnetoplumbites,
garnets,etc. Geometrically frustrated spin systems enable us to study frustration in
very simply formulated models and to deal with non-trivial topology questions. Indeed
an important characteristic of these systems is the nature of the order parameter which
can be such an object as a matrix of SO(3), or a complex vector with S ® Z3 sym-
metry group. Homotopy theory then yields non-trivial topological excitations, which
may lead to exotic phase transitions. The identification of a new class of universality
is however a tricky issue due to the non-trivial critical behaviour of frustrated spin sys-
tems and the complicated order parameter symmetry group. A famous example of such
a difficulty is provided by the twenty-year-long controversy about the nature of the
phase transition in Heisenberg antiferromagnet in stacked triangular crystals. Early
claims of a new universality class based on two-loop renormalisation group analysis
and Monte Carlo simulations appeared [47, 48]. Various simulations and theoretical
analysis were then published. Using a non-linear ¢ model Azaria and coworkers [5]
claimed the transition should pertain to O(4) universality class if it were not first-order
or mean-field tricritical. Tissier and coworkers published an extensive non-perturbative
renormalisation group study of frustrated spin systems in dimension between two and
three: a consequence of their study is that the transition of Heisenberg stacked trian-
gular antiferromagnet is first-order; they further argue that the reason why numerical
simulations stalled around the transition and identified it as second-order with new
critical exponent is the existence of a region in the flow diagram where the flow is slow,
inducing a very weak first-order character [116, 118]. Last Ngo and Diep published a
careful Monte Carlo simulation using both advanced techniques and very large clusters
to support the first-order character of the transition [88]. Similarly in this work we
present results that firmly stand against a new universality class for the breaking of
S ® Z,, which agree with the detailed analysis presented on fully frustrated XY spin
systems [37].

An important characteristic of frustrated magnets is the extensive degeneracy of
low-energy modes, which induces extensive entropy at zero temperature. Such a highly
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degenerate ground state manifold can induce some long sought states such as spin
liquids or spin glasses without any randomness, which is another reason why so much
effort has flowed into research on frustrated spin systems. Spin liquids can be defined
as gapped spin systems with a finite correlation length at zero temperature [80]. One
good example of this is kagome antiferromagnet; yet its experimental realisation is still
lacking: the grail of a perfect spin-1/2 kagome system still seems far away. A dramatic
consequence of such a degeneracy is the possible appearance of extra soft modes, at least
at T = 0 as is the case for XY classical spins on the triangular lattice or for Heisenberg
spins on the triangular lattice. This is however a fragile feature that is quite sensitive
to various perturbations and makes it even harder to observe, all the harder as an
order by disorder phenomenon [124], for example induced by thermal fluctuations, can
occur. It is by no way a systematic phenomenon in geometrically frustrated systems as
Heisenberg pyrochlore and four-component spin system on kagome lattice show: both
remain disordered at low temperature [86].

Yet ways to remove this accidental continuous degeneracy exist. First, thermal
fluctuations are expected to induce an order by disorder phenomenon as pointed out by
Villain and collaborators at the very beginning of 1980’s [124]; however such an ordering
may occur in certain cases only at higher order than the second one as discussed by
Sheng and Henley [106]. Quantum fluctuations are another way to reduce degeneracy
and induce order that will not be developped in this work. Last anisotropy changes
symmetry, which may induce ordering: this point is the object of a large part of the
work here presented.

1.3 Triangular antiferromagnet: historical perspec-
tive

When considering geometric frustration the simpler system to come to the mind is
an antiferromagnetic model on the triangular lattice. With their stunning simplicity
triangular antiferromagnets have been occupying physicists for several decades. As this
dissertation deals with classical systems the historical perspective here proposed leans
towards classical systems even though their quantum counterparts do present several
interesting features. Reviewing what has been done on triangular antiferromagnets
clearly shows various research on these systems have gone different paths. After the
historical exact solution of Ising models [125, 126] completed by the demonstration this
model belongs to Ising universality class with a Zg symmetry-breaking term [1] with an
upper transition at 7' = 0 and further refinements in the discussion of Zg symmetry-
breaking as reinforced by the introduction of next-nearest-neighbour couplings [63, 33,
much effort has been devoted either to quantum Ising models with and without field (in
the latter case, a transverse field enables to have a glimpse at other interesting models:
the dual model is a Zy gauge model that is equivalent to quantum kagome antiferro-
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magnet, system expected to exhibit a spin-liquid phase) or to stacked triangular Ising
antiferromagnet. The investigation of stacked triangular antiferromagnets in case of
XY and Heisenberg models has also gathered much attention, probably thanks to ex-
perimental realisations of these models [23, 49]. Most investigated layered compounds
diverge from 2d models as they are in fact chains weakly coupled in a triangular lattice,
and thus exhibit 3d ordering properties of quasi-1d objects. A large class of compounds
pertains to ABX3 family where A stands for Cs or Rb, B for a magnetic ion, either
Mn, Cu, Ni, or Co, and X for one of the halogens, Cl, Br, or I. Depending on the
kind of anisotropy in the compound relevant model changes. For those with a strong
easy-axis anisotropy Ising model is adapted: this is the case of CsNiCls, CsNiBrs, and
CsMnl;. Easy-plane anisotropy as present in CsMnBrs and CsVBrj; leads to a descrip-
tion with XY model. As for systems with a very weak anisotropy, such as CsVBrg
and RbNiCls, they let Heisenberg model correctly describe them. Another reason why
stacked systems have been so widely studied is their amenability to mean-field analysis
[97, 99, 101, 100]. As already discussed a twenty-year-long controversy opposed propo-
nents of a continuous transition from the paramagnetic to the ordered phase in XY and
in Heisenberg stacked triangular antiferromagnet to opponents claiming these transi-
tions were first-order. After the non-perturbative renormalisation group approach by
Tissier and coworkers [116, 118, 117], and various numerical treatment, Ngo and Diep
proposed clear numerical evidence of a first-order transition thanks to Wang-Landau
flat histogram algorithm implemented on quite large clusters [89, 88] (and references
therein for previous numerical works).

At the other end research on 2d models and quasi-2d compounds has generated fewer
publications, many extensively discussing zero-field behaviour. The work by Miyashita
and Shiba on the one hand [85] and by Lee and coworkers on the other hand [66, 67
really started the investigations on 2d XY model which were complemented by Kawa-
mura’s spin-wave calculations [46] and Korshunov’s extensive analysis of symmetry and
topological excitations [57, 56, 60, 59]. The interest rose due to the emergent chiral tran-
sition as already forecast by Villain [122]. As a consequence two symmetry-breaking
occur, which at zero-field induces two distinct transitions that some authors failed to
distinguish [66, 67] as opposed to others [85, 68, 134, 69, 91]. Yet finite-field behaviour
has lacked thorough careful investigations despite the quite fine discussion proposed
by Korshunov [57], which was a motivation to undertake such investigations. As far
as Heisenberg triangular antiferromagnet is concerned if its quantum version has been
rather popular the classical model has been only quite partially studied. Zero-field be-
haviour, after the pioneering and inspiring topological analysis proposed by Kawamura
and Miyashita [51, 50|, did attract some interest [5, 6, 109, 133, 132, 53]. As this model
has a continuous symmetry in zero-field, after Mermin-Wagner theorem it is expected
no finite-temperature transition can occur. Kawamura and Miyashita challenged this
view putting forward the existence of two regimes with distinct properties of the stable
point topological defects, namely Zs vortices. Further numerical achievements [53] and



1.3. TRIANGULAR ANTIFERROMAGNET: HISTORICAL PERSPECTIVE 11

an experimental realisation of an Heisenberg triangular antiferromagnet [87] propose
convincing support for this transition. Finite-field behaviour contrastingly has been at
best overlooked [52]. With so little theoretical work on it and with new experimental
results on quasi-2d compounds (Rby;Mn(MoQ,)s, Nakatsuji et al., private communica-
tion) did require a correct study.

In this context the work presented in this dissertation intends to propose a clear
picture on the whole phase diagram of classical Heisenberg model (Chap. 2) and its
anisotropic variants, namely easy-axis (Chap. 3) and easy-plane anisotropic models
(Chap. 4) based on a blend of numerical simulations and symmetry analysis without
any heavy technical apparatus. If studies were published presenting elements of a phase
diagram for anisotropic models [84, 83], the anisotropy was exchange anisotropy. From
an experimental point of view single-ion anisotropy as used here seems more relevant.
Furthermore from a theoretical point of view its perturbing impact is much more dra-
matic. As easy-plane anisotropic Heisenberg triangular antiferromagnet is presented
and since a precise phase diagram was still absent, XY triangular antiferromagnet has
been studied as well and results are presented in Chap. 4.
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Chapter 2

Heisenberg Triangular
Antiferromagnet

In this chapter we deal with the isotropic version of Heisenberg triangular antiferro-
magnet (HTAF); in a way this is the original version that is referred to when speaking
of Heisenberg antiferromagnetic model on the triangular lattice. In the first section the
model is briefly introduced and key properties of its Hamiltonian are exposed. Then
results on zero-field behaviour are reviewed and critically compared. Sec. 2.3 and 2.4
are devoted to finite-field behaviour: first we discuss symmetries of HTAF in an exter-
nal field, then our numerical calculations for this system are presented and the phase
diagram of HTAF proposed. Considering existing results on zero-field behaviour of
HTAF, a new study has seemed worthless; yet to support this viewpoint and to draw
a complete picture of the phase diagram of HTAF as here intended, a critical review of
literature on this topic is included.

2.1 Model

To deal with electronic crystalline systems it is necessary to take into account two
competing energies describing the behaviour of electrons: Coulomb repulsion and ki-
netic energy (hopping). If the incompletely filled orbitals (3d in iron-group elements
and 4f in rare-earth elements) are decribed by localised orbitals, this is encompassed
in so-called Hubbard model:

H=>Y bn/_nai/ﬁan,s +UY a%awa;lan’l (2.1)

n,n’,s n

where n indexes sites and s is a spin index, ajl, s a fermionic creation operator creating
an electron at site n with spin s and a,, s the associated annihilation operator.

13
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This Hamiltonian can be written in another form when developing it in the low-

energy sector:
H=J>S;-S, (2.2)
(i.5)

where I have assumed for simplicity symmetry in the b,,_, terms and then a single
exchange energy (J can indeed be written in terms of an exchange integral). This
Hamiltonian is called Heisenberg Hamiltonian [136]. When considering systems with
large spins it is quite appropriate to describe spins as classical vectors which makes
Heisenberg model more tractable. In systems for which this work is relevant such an
approximation is correct (most of them are rare-earth compounds) and from now on
only classical models are used unless otherwise stated. For simplicity classical spins are
normalised to one.

Hereafter we consider HTAF with an applied field:

H=)> 8S;-S;—h-)_S; (2.3)
(i,5) i
written in the units of the exchange constant J. Even though we did not specifically
work on zero-field behaviour a glimpse on what happens without any field will be given
for the phase diagram to be entirely discussed.
Let’s discuss the ground states of (2.3) first at zero field then at finite field. A
preliminary observation is the following transformation of (2.3):

1 h
H = 5 Z (SAJ . SA,Q + SA’Q . SA,g + SA’g . SAJ) + 6 Z SA,i (2.4)
A A
1 h\?
= = Sai1+Sa2+Sas— = | + const. (2.5)
4 ~ 3

where summation runs over triangular plaquettes A.

This transformation makes it plain that to minimise the Hamiltonian a sufficient
condition is to equate each square in the sum to zero, which is possible: it even makes
it obvious that imposing a specific structure on a given triangle imposes the config-
uration on the whole lattice. Let’s indeed consider a given triangle A: let’s pick up
one configuration satisfying Sa 1 + Sa 2 + Sa s = 0 (infinity of solutions, among which
those with spins pointing at 120 degrees from one another equally share frustration
on the three bonds); then on a neighbouring triangle A’ there is a unique solution to
Sa1+Sa2+Sars = 0 as the two spins pertaining to both A and A’ are already fixed,
ged. As a consequence ground states respect a three-sublattice pattern, the so-called
V/3x /3 pattern that is associated with ordering wave vector qo = (47/3,0). Obviously
the condition is a necessary one as well: if one of the squares in the sum were non-zero
then the energy of the considered configuration would be strictly larger than the one
of configurations with all squares equal to zero — these configurations exist as already
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demonstrated — and hence would not be a ground state, ged. Such a constraint how-
ever lets a continuous degeneracy appear in the system. There are indeed six degrees
of freedom corresponding to the three unit-length vectors (spins) constrained by three
equations: three free parameters remain. A closer look at this extra degeneracy shows
that it corresponds to the degrees of freedom of the three-spin structure on a triangular
plaquette, thence the corresponding order parameter space SO(3).

As previously discussed the ordering respects a three-sublattice pattern: it is thus
natural to describe the spin structure as:

(Si) = Licos(qo - 1) + lasin(qo - ;) + m (2.6)

where m is static magnetisation, which is zero at zero field, and 1; and 1, are antiferro-
magnetic ordering vectors. In this language, 120-degree structure corresponds to a pair
of orthogonal vectors 1; L 1, |I;| = |Iz] and m = 0. In case of a distorted 120-degree
structure (either due to field or easy-axis anisotropy) m # 0. Let’s present two other
configurations of importance as well (an overall view of low-field planar configurations
can be found in Fig. 3.1). Collinear fully-ordered configuration, so-called up-up-down
configuration, is characterised by 1, = 0 and 1; and m collinear. High-field planar V-
shape configuration is defined by 1, = 0, 1; having components both along the field and
transverse to it, and m along the applied field direction.

2.2 Brief review of zero-field behaviour

At zero field this extra continuous degeneracy of ground state manifold coincides
with order parameter space which is SO(3) the group of rotations in 3 dimensions, or in
a more pictorial language the rigid body of three spins in a given triangle. Let’s discuss
possible phase transitions in such an order parameter space. First, an important remark
should be put forward: in this two-dimensional system there cannot be any finite-
temperature phase transition associated with the breaking of a continuous symmetry,
after Mermin-Wagner theorem [77]. With this viewpoint there shouldn’t be any finite-
temperature transition in HTAF. However the conclusion becomes less obvious when
the question is dealt with from a topological viewpoint: indeed stable topological defects
exist in HTAF, which may induce a phase transition in a similar way to what happens
in XY antiferromagnet as described by Berezinskii [10, 11] on the one hand and by
Kosterlitz and Thouless [61] on the other hand (see Sec. 1.1 and 4.1) with the so-
called BKT transition. Such a claim was made by Kawamura and Miyashita [51, 50].
Topologically stable defects are given by homotopy groups [82, 76, 75, 79]: line defects
by zeroth homotopy group, point defects by first homotopy group and instanton by
second homotopy groups. In this case the single non-trivial homotopy group is the first
one: m1(SO(3)) = Zy, which implies the system admits stable Z, vortices. How can both
viewpoints be reconciled? If later studies based on renormalisation group applied to a
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relevant non-linear o model [5, 6] predict a zero-temperature phase transition pertaining
to O(4) universality class, further investigations either based on harmonic expansion
and analytical predictions [133] or on Monte Carlo techniques [109, 132, 53] indicate two
regimes exist: a low-temperature one, T' < T™, which is consistent with renormalisation
group predictions, and a high-temperature one, 7' > 7™ in which the influence of
free vortices has to be taken into account, which is not done in renormalisation group
analysis. Wintel et al. and Southern and Young thus point out a crossover between two
regimes at T' = T, T* ~ 0.28 (Kawamura et al. [53] find 7% = 0.285 £ 0.005): in low-
temperature regime spin correlation length and antiferromagnetic susceptibility are well
described by renormalisation group; in high-temperature regime a fit to BK'T behaviour
is much more accurate. The latter indicates a certain similarity with BKT transition.
Their conclusion relies on the study of spin correlation length &, susceptibility x(qo)
and spin stiffness. ¢ is estimated with Orstein-Zernicke relation:

1 (Si - Sj) iqmi-ry)
x(a) = Lg%: e

x(do)
14 &(q — qo)?

The temperature T™ of this sharp crossover is compatible with Miyashita’s and Kawa-
mura’s results who found with quite a simple Monte Carlo approach T" ~ 0.3 as a
transition temperature. Contrary to above cited authors who consider it merely as a
sharp crossover, Kawamura supports the idea of a peculiar transition. The original ar-
gument by Kawamura and Miyashita [50] is based on a thorough discussion of vortices
in HTAF. As said these are Z, vortices and not Z vortices as is the case in XY systems
that exhibit BKT transition. To track the behaviour of vortices they introduce a vor-
ticity function that is defined on the dual lattice links: 120-degree structure now stands
at a vextex of the dual lattice; on the oriented links in the dual lattice the rotation of
120-degree structures from one end of the link to the other is a well-defined object that
can be represented by an SU(2) matrix U. Vorticity V' is the function defined on closed
loops C' as follows:

(2.7)

1

V(C) = =tr (H Ui> (2.8)
2 \ico

They showed that vorticity undergoes a transition between a perimeter-law asymptotic

behaviour at low-temperature (7" < 7*) and an area-law asymptotic behaviour at high

temperature (7' > T™), which is similar to the behaviour of Wilson’s loops [131, 55]:

Ve =(V(Cg)) —

— { exp(—aA) T >T* (2.9)

exp(—fR) T <T*

where Cg is a loop of length R, A is the enclosed area. In fact this point emphasises
the role played by free vortices to drive the system from low-temperature phase to
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high-temperature phase. On this particular point all groups do agree. On the nature
of the change at T™ there is a disagreement. Kawamura and coworkers further support
their viewpoint [53] pointing out the existence of two different length scales. Indeed
as already discussed in their early paper [51, 50], the transition cannot be a BKT
one. It is then hardly surprising that they disagree with other groups like Wintel and
his coworkers who are specifically looking for a BKT transition. Let’s further develop
the argument. Vorticity exhibits a sharp drop from low-temperature regime to high-
temperature regime, similarly to what happens in a usual BKT transition. There is
however an important difference: in HTAF spin stiffness doesn’t undergo any such sharp
drop whereas in usual BK'T transition both spin stiffness and vorticity behave the same
way with a jump at the same temperature. Here comes the main difference between a
BKT transition and what occurs in HTAF: the existence of two different length scales,
namely the one of spinwaves and the one of vortices [53]. The former doesn’t diverge at
the transition contrary to the latter. In other terms the system is characterised by two
different stiffnesses. Spin correlation function C(r;;) = (S; - S;) can be factorised into
a spinwave contribution and a vortex contribution, the same way it is done for BKT
transitions: C(7;;) = Csw(rij)Cu(ri;) [40]. Assuming the normal exponential form for
correlation functions, correlation length then reads:

— gswév
é‘ gsw + £’U

Consequently in the vicinity of the transition where &, > &, correlation length exhibits
a weak essential singularity:

(2.10)

£~ &sw (1 - 5““) (2.11)
é’U

Spin correlation length remains finite at low temperature: spin correlation decays expo-
nentially both above and below the transition. This exponential decay was expected due
to Mermin-Wagner theorem; a more sophisticated argument based on topological con-
siderations consists in the following: symmetries involved in a phase transition can be
found and analysed through the space associated with low-temperature phase removing
its topological defects, here vortices, and retaining all other parameters equal. In topo-
logical language this means calculating the universal covering of the order parameter
space. Here the universal covering of SO(3) is S3, the three-dimensional sphere. S3
is the order parameter space of Heisenberg ferromagnetic four-component spin system
as well: in two dimensions, spin correlations in this system decay exponentially, which
indicates the same occurs in HTAF at zero field. Low-temperature phase is not an
ordered state in the traditional way but is topologically ordered as the single accessi-
ble sector is the one without any free vortex. The nature of low-temperature phase is
thus rather uncommon: Kawamura and coworkers proposed to call such a state that is
neither a liquid nor an ordered AF state a spin gel [53].
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2.3 Finite-field behaviour: symmetry discussion

As discussed in the preceding section, zero-field behaviour excludes finite-temperature
transition to a long-range ordered phase with a gapped spectrum, ie a massive phase.
It was consequently quite surprising to realise so far published phase diagrams depict
transition lines going to a finite-temperature multicritical point at zero-field [52], which
disregards an essential feature of HTAF, namely that zero-field configurations are mass-
less. Indeed the existence of such a multicritical point would imply an infinitesimally
small field makes the system massive: this is quite questionable a statement! For this
reason it was necessary to examine anew finite-field behaviour in Heisenberg triangular
antiferromagnet. A more natural viewpoint is indeed that finite-field transition lines
close at (T, h) = (0,0).

Looking back at the antiferromagnetic order parameter in Eq. (2.6) symmetries at
finite field can be discussed. If we consider a simple translation T, with a lattice vector
a (r; — r; + a) the order parameter is transformed as

Tolly + ily) = (1; + ily)e 902 (2.12)

with the phase factor qo - a € {0,4+27/3}, which means that an inherent discrete Zs
symmetry exists besides the continuous S' symmetry associated with free rotations
about the direction of the applied field Z. Hence the system is governed by a compound
symmetry S ® Zz. Yet as seen with (2.5) a continuous degeneracy still exists: it
doesn’t match any symmetry in the Hamiltonian. In such a case it is legitimate to
wonder whether this degeneracy of ground state manifold is robust against fluctuations.
For a degeneracy not associated with any symmetry of the Hamiltonian, no Goldstone
mode exists [34], which implies there is no entropy gain for such states. In our case
relevant fluctuations are thermal ones. As shown by Sheng and Henley [106], thermal
fluctuations must be calculated at higher order than the second one for degeneracy to
be removed; a selection does occur reducing degeneracy to S* ® Zs. This reduction of
degeneracy is an example of an ‘order by disorder’ scheme [124].

At low temperature and low field the expected stable configuration is the so-called
120-degree configuration which is a natural solution of (2.5). A simple calculation
shows that 120-degree configuration is not stable above h = 3. Since ground state
configurations are defined by the configuration on any triangle, let’s write (2.3) using
a three-sublattice pattern:

H = §><§><6(m1-m2+m2-m3+m3-m1)—gh(ml—kmg—l—mg)

= Ne¢

where m; = (S;) is thermal averaged value of the spins of i—th sublattice, N is the
number of spins, and ¢ the average energy per spin:

£=m; -my+my-m3+ms-m; —— (m; + my+ ms) (2.13)

3
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Figure 2.1: Distorted 120-degree structure with the definition of the angle #. The structure
is rotationally symmetric about the dashed axis that stands for the external field direction or
the anisotropy axis (as discussed in Sec. 3.1). The three arrows stand for the three spins of a
triangular plaquette.

The energy of a deformed 120-degree structure (see Fig. 2.1) then reads:

h
€:c0829—20089+§(1—2c089) (2.14)

The minimisation of (2.14) with respect to 6 yields:

1 h
=—(1+ = 2.1
cos 6 2( + 3> (2.15)

which shows such a configuration exists if and only if h < 3.

At T = 0 a transition must therefore occur between low-field (h < 3) and high-field
(h > 3) regimes. In fact an intermediate phase separates the low-field low-temperature
and quasi long-range ordered 120-degree phase from high-field configuration [35]. The
intermediate phase corresponds to one-third magnetisation plateau: it is an up-up-down
collinear configuration. Consequently spin-flop transition doesn’t exist: instead double
continuous transitions occur. At 7" = 0, this intermediate collinear phase is confined to
the point A = 3 that hence is a critical point that can be studied in quantum limit as
an interesting quantum critical point. At finite temperature, thermal fluctuations are
strong enough to stabilise this collinear phase in a larger domain of temperature-field
plane in low field region (high fields obviously suppress up-up-down structure). At high
field thermal fluctuations select a planar configuration instead of umbrella structure
[106]: in this configuration two sublattices develop the same magnetisation [22] and
non-zero transverse magnetisation exists as illustrated in Fig. 2.2.
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Figure 2.2: High-field planar structure that is stabilised at h > 3, referred to as V-shape
configuration in the text. It is characterised by lo = 0, 1; with components both along the
direction of the dashed line that is the direction of field and of the easy-axis in case of easy-axis
HTAF, and transverse to this direction and m along the dashed line. The three arrows stand
for the three spins of a triangular plaquette.

The natural question is then the nature of phase transitions occurring in the system.
Such a treatment can be carried out discussing the order parameter symmetries. Con-
sidering the order parameter space, S* ®Zs, a discrete and a continuous symmetry have
to be broken. Different scenarios are possible as Korshunov discussed it [60, 57, 58, 59].
Naturally there are three of them: either (i) the restoration of S' occurs before the
restoration of the discrete symmetry or (7i) it is the opposite way round or (i) there
is a single transition that belongs to a new universality class. The latter case seems
quite exotic and rather unlikely: the reason why it may have been suggested in some
numerical studies is that numerical accuracy at that time was too limited to distin-
guish both transitions. Modern numerical investigations have ruled it out. First two
scenarios involve excitations associated with each symmetry: vortices for the continuous
symmetry, domain walls for the discrete symmetry. As a consequence it is possible to
investigate the restoration of the compound symmetry analysing the behaviour of these
excitations, or in other words tools used to investigate each transition can be used (spin
stiffness and/or vorticity for S*, correlation function and/or susceptibilities for Z3). A
major difference between both scenarios is that in the second case fractional vortices
form at kinks on domain walls [60, 57, 58|, which implies the jump in spin stiffness is
larger than it is in case of integer vortices, namely (2¢?/m)T for 1/q vortices. This can
be considered a definitive way to distinguish between both scenarios.

To discuss the succession of phase transition it is necessary to distinguish low-field
and high-field regions as the involved spin configurations are different. In low-field
region, as previously mentioned, thermal fluctuations stabilise up-up-down collinear
phase, which thus appear as an intermediate phase between 120-degree configuration
and both high-field configuration and high-temperature (paramagnetic) phase. This
means that discrete symmetry-breaking occurs first (in this case Zg) then continu-
ous symmetry-breaking (S1). Indeed collinear structure only breaks Zs symmetry and
leaves S! symmetry unbroken. The latter breaks down in 120-degree configuration.
Furthermore leading order parameters associated with each phase transition are dif-
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ferent: Zz symmetry-breaking is associated with the component along field direction
whereas S! symmetry-breaking is associated with transverse component. As ordering
occurs along different components in low-field region, the order of phase transition is
clear and associated universality classes as well: the upper transition corresponds to the
ordering along the field (up-up-down structure) and pertains to three-state clock model
universality class (cf.[9]) whereas the lower transition corresponds to the ordering along
a transverse direction (120-degree structure) and pertains to a BKT universality class.

At high fields the situation is less clear because there is only one ordered phase
which corresponds to a planar spin configuration with spins on two sublattices iden-
tical and with a finite transverse magnetisation, so-called V-shape configuration (see
Fig. 2.2). As 1, = 0 in this high-field configuration, there is a single order parameter
involved in the breaking of two symmetries. In real space the ordering actually occurs
along a single component, namely the transverse one; the ordering of parallel compo-
nent is induced by the ordering of transverse component as can be seen considering the
following term of Landau-Ginzburg functional that comes into play: Sy (S;)Q, which
indicates that transverse component acts as an ordering field on parallel component.
As previously discussed the breaking of compound symmetry Zs ® S* at once is quite
unlikely: successive transitions corresponding to the successive breaking of each com-
ponent of this compound symmetry are thus expected. The tricky question to answer
to is then the order of these transitions. Korshunov demonstrates case (ii) implies the
existence of fractional vortices centered at kinks on domain walls. Numerically it can
be checked examining spin stiffness jump at binding-unbinding transition: the jump
for a 1/q fractional vortex is indeed (2¢*/m)Tprr. From this observation he draws
the conclusion that scenario (i) necessarily occurs: the transition temperature for the
binding-unbinding transition of fractional vortices is indeed much lower than the es-
timate for the transition associated with domain walls (percolation threshold), which
is contradictory with scenario (7). Consequently there is no fractional vortices and
scenario (i) should occur. In next section a way to numerically find out the transition
sequence is proposed.
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Figure 2.3: Phase diagram of Heisenberg triangular antiferromagnet. Solid lines are a guide
to the eye linking calculated points. Dashed lines indicate theoretically expected transitions
for which precise numerical results have not yet been obtained. Spin structures are sketched
by the configuration on a triangular plaquette with z axis assumed vertical and xy plane
perpendicular to the plane of the sheet.
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2.4 Finite-field behaviour: numerical determination

The phase diagram is numerically calculated using a hybrid algorithm that asso-
ciates an optimised single-spin Monte Carlo algorithm with over-relaxation process (see
App. E). The latter increases the portion of explored configuration space and therefore
reduces the risk to remain trapped in a local minimum. With single-spin algorithm the
risk is indeed quite important to get stuck in a local minimum, which hinders ergodicity
property, an essential feature for Monte Carlo algorithm to be right. Our simulations
have been carried out on finite-size rhombic clusters with periodic boundary conditions
and linear sizes 24 < L < 120 compatible with a three-sublattice pattern in order to
avoid artificial frustration effects.

2.4.1 Preliminaries

Numerical calculation of a phase diagram consists in the identification of the rele-
vant order parameters in the system according to symmetries at stake in the various
phase transitions and the calculation of the most accurate numerical estimators of these
order parameters or of observables reflecting them. Then it is possible to locate singu-
larities in temperature or field dependence of these estimators, to use finite-size scaling
to extract information about the precise location of phase transition and its nature
(via the calculation of critical exponents). Both field and temperature sweeps have
been carried out. In case of temperature sweeps the initial configuration is a random
configuration in the paramagnetic region of phase diagram that is cooled down until
the temperature range of interest. For field sweeps the initial configuration is a fully
polarised configuration in the saturated phase.

Beside observables that are explicitly discussed and presented in the Monte Carlo
numerical parts of this work, few calculations of the ordering vectors 1; and 1, have been
carried out in terms of the third-order invariant (I$ + il$)3. This approach is yet more
adapted to mean-field analysis and within a Monte Carlo investigation the calculation
of more directly accessible observables is more interesting, which is the reason why I
only present results for these observables.

Let’s discuss how this general program is here implemented. Of course one of the
most straightforward idea is to track specific heat which can be defined as a measure-
ment of energy variance: ) ,

(B () (216)

N,T?
where E is the internal energy and N, = L? the number of spins in the considered
cluster. Specific heat is however hardly suited to precisely locate such transitions as
BKT (for the appearance of specific heat peak at a higher temperature 7" than T, see
eg Fig. 9.4.3in [20]) and often requires a fine sampling in the vicinity of phase transition
to extract a precise estimate of transition temperature. However specific heat can be
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helpful to identify the nature of a phase transition thanks to the determination of critical
exponent . Numerical estimators associated with other observables have therefore been
considered as well: spin structure factor components; Binder’s cumulant corresponding
to spin structure factor; spin susceptibility; spin stiffness. Let’s detail these different
quantities. Spin structure factor is the Fourier transform of spin configuration at the
ordering wave vector q = qo = (47/3,0) and its components constitute relevant order
parameters in this problem. In our numerical calculations we have calculated various
even powers of its components; for example:

1 S
(mg)” = N2 > (Spsg et (2.17)

s 17]

A frequently used quantity to locate phase transitions (first and second order and
infinite order as well) is Binder’s cumulant that is a fourth-order quantity defined as
follows:

(A%)
(4%)?

where A is the order parameter of interest. At critical points Binder’s cumulant becomes
size-independent: as a consequence plots of Binder’s cumulant versus temperature for
different cluster sizes cross at a second-order phase transition, merge at a BKT transi-
tion (plots are on top of each other in low-temperature phase). In this case finite-size
scaling is straightforward. As a fourth-order quantity Binder’s cumulant is a statistical
estimator that exhibits fluctuations that may be large especially in frustrated systems.
A remedy is to consider a second-order quantity with similar properties: a ratio of spin-
spin correlation functions fulfilling these requirements has been proposed by Tomita and
Okabe [120, 112] (see App. D):

Uy = (2.18)

v — 9(L/2,L.T) (2.19)
g(L/4,L,T)
where g(r, L, T) = L™ Y(S; - Siy,) is the spin-spin correlation function calculated on
a cluster of linear size L, at temperature 7' for spins at distance r apart (i + r short
for neighbours at distance r of spin 7). This ratio often exhibits better statistics than
Binder’s cumulant. As both observables are independent of any assumption on the
nature of the transition (order, class of universality) they are quite useful a reference
to check hypotheses made for the scaling of other parameters such as susceptibility.
Susceptibility is indeed a key element of various finite size scaling techniques to
locate transitions and to calculate critical exponents, details of which are developed
in App. D. Furthermore spin susceptibility is a second order quantity, which implies
weaker fluctuations than for Binder’s cumulant. Spin susceptibility characterises linear
response of spins to a magnetic field. It is a second-order tensor the indexes of which
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run over field directions in spin space. As there are here no off-diagonal terms, it then

reads:
~ Z

S’L]

SO‘SO‘> zq (ri—rj ) (220)

The most widely used means of studying BKT transition remains finite size scaling
of spin stiffness pg, which is associated with the very origin of this kind of transition,
namely the unbinding of stable point defect, vortices. At BK'T transition spin stiffness
exhibits a jump the height of which is universal: pg = 2Tpgr/7 in case of integer
vortices (ps = 0 in high-temperature phase). Spin stiffness is defined as a general
elasticity coefficient in response to a weak nonuniform twist of spins d¢“(r) performed
about a certain direction « in spin space. In our case it is sufficient to consider twists
about z direction, the direction of applied field, in spin space while all directions in
lattice plane are equivalent thanks to sixfold rotational symmetry. A single parameter
is thus left

oF =22 / e[V (r)]? (2.21)

Choosing a twist with a uniform gradient along an arbitrary direction € in the lattice
plane, one obtains in spherical coordinates

S; - S, = cos(6;) cos(8;) + sin(0;) sin(;) cos(@; — @) (2.22)

Calculating the change in the free energy up to second order in a small d¢ and
normalizing the result per unit area one obtains [92, 115, 127]:

ps = L\f Z (STST 4 SYSY) + W<{z<sgcs;!—sgs;)[é- (r; _rj)]}2> (2.23)

2.4.2 Numerical results

As discussed in section 2.3, low-field and high-field regions have to be treated in
different ways as the stabilised structures are different. Let’s start with low-field re-
gion: collinear ordering and the ordering into 120-degree configuration are expected.
The former happens along field direction z and can thus be probed plotting Binder’s
cumulant associated with z-component of S(q) versus temperature:

s
Vi =2

The crossing of plots for different cluster sizes indicates the transition into a long-range
ordered phase. As HTAF adopts a planar ordering and up-up-down collinear structure

(2.24)
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Figure 2.4: Scaling of spin susceptibility x; with critical exponent n = 4/15 corresponding
to three-state clock-model universality class as x7/ L2~ yields a transition temperature T, =
0.327 £ 0.001 (left). The temperature obtained with Binder’s cumulant U7 as shown on the
right is the same. Both figures are drawn at field h = 1.0.

breaks Zs symmetry the phase transition should pertain to three-state clock model
universality class as is the case for XY model. With this viewpoint it is then possible
to scale z-component of spin susceptibility (calculated as in (2.20) with a = z) with the
corresponding critical exponent 7, 7 = 4/15 in this case. The transition temperature
is obtained as the temperature of the crossing point of plots for different cluster sizes.
Fig. 2.4 illustrates both methods at h = 1.0.

As the system is cooled down a BKT transition is expected for transverse spin com-
ponent. This transition can be located using transverse spin susceptibility with n = 1/4
for its scaling as shown in Fig. 2.5. This method can be used both during temperature
and field sweeps: given the shape of the transition line BDD’ into 120-degree phase it
is indeed convenient to sweep field at fixed temperature in low-temperature region —
the closer to straight angle is the angle between the sweeping line and the transition
line, the sharper the location of the transition. Fig. 2.6 illustrates such a field sweep
at T' = 0.06 with both transverse spin susceptibility and Binder’s cumulant; insets pro-
vide an enlarged view around the transitions. Defined in a natural way using (2.20),
transverse spin susceptibility reads:

q_ 22

s Z?J

WW+WW>

el (ri=r;) (2.25)

In the final diagram (see Fig. 2.3) transition lines D'D at very low field appears as
dashed lines: this expresses the difficulty to precisely locate transitions in the vicinity
of zero-field. Even though hints of a transition can be sensed, statistical errors due
to large fluctuations in this critical region (due to the nature of low-temperature zero-
field phase, a severe slowing down of the convergence of Monte Carlo algorithm occurs)
prevent us to fix for sure transition lines. However the argument earlier put forward
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Figure 2.5: Scaling of spin susceptibility XqL with critical exponent n = 1/4 corresponding
to BKT universality class as XqL/LQ_77 at h = 1.0.

(an infinitesimal field cannot turn a massless phase into a massive one) lets us interpret
these numerical hints as a further support for our proposition that transition lines go
to (T, h) = (0,0).

Above h = 3.0 ordering occurs along transverse component. First a transition that
can be easily investigated is the transition between up-up-down collinear phase and
high-field phase: as previously explained there is no spin-flop first-order transition but
a continuous transition. From symmetry analysis this transition is associated with S*:
it can thus be located the same way as the transition between collinear phase and
120-degree phase as can readily be seen in Fig. 2.6.

Concerning the ordering process from paramagnetic phase or saturated phase, the
delicate problem of the breaking of compound Zz; ® S! symmetry for a single order-
parameter, namely (Sql)Q, has to be dealt with. As stated among three possible sce-
narios one is expected to occur: first the breaking of discrete Zs symmetry, then the
breaking of continuous S symmetry. To find out whether numerical results support
or not this hypothesis it is necessary to extract the relevant information from data.
Observables giving access to each symmetry separately have to be considered. As far
as Zs is concerned, scaling of transverse spin susceptibility can be used with critical
exponent 7 = 4/15 corresponding to the class of universality of three-state clock model.
This method yields a transition that is confirmed by the study of both the ratio of
correlation functions I't and Binder’s cumulant UqL as illustrated in Fig. 2.7. As for
BKT transition spin stiffness pg is used. It is plotted versus temperature; the height
of the jump in this case is incompatible with fractional vortices: integer vortices are at
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stake. The temperature at the intersection of pg(7, L) with the line (2/7)T is called
T1,. The extrapolation to thermodynamic limit reads (cf App. D and Eq. D.21)

T, — T, 1
L BKT _ (2.26)
TBKT 2(111 L + C)
This requires a non-linear fitting with two parameters, Tgxr and ¢ = —1In Ly. Such a

fit is illustrated in Fig. 2.7. In this way BKT transition is obtained at slightly lower
temperature than the one associated with discrete symmetry breaking. These results
support Korshunov’s defense of scenario (7). Interestingly that in the case of isotropic
HTAF the splitting between transitions is much tinier than in the case of easy-axis
HTAF as can be seen in Fig. 3.8



2.4. FINITE-FIELD BEHAVIOUR: NUMERICAL DETERMINATION 29

2 — — 18

q
=
o

P L
L b
=
N
AU LA B
|
TR
|

\\‘\\\\"\ \7
25 25 00

=

o
l

scaled spin susceptibility x '/ L*"

ING
~

18

t

=

o
T

14

Binder cumulant U

12

‘ 2.8 ‘
fieldh

Figure 2.6: Field sweeping at T = 0.06. Scaling of spin susceptibility XqL with critical
exponent 1 = 1/4 corresponding to BKT universality class as Xé /L?>7" (top). Insets give an
enlarged view of crossing points that corresponds to BKT transitions: h < 2.50 corresponds
to 120-degree phase, 2.50 < h < 3.04 to collinear phase, and 3.04 < h to high-field phase.
Binder’s cumulant plotted versus temperature (bottom) confirms these transitions; insets offer
an enlarged view on transition regions.
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Figure 2.7: Comprehensive data for the location of transitions at h = 5.0. Scaling of spin
susceptibility Xj with critical exponent 7 = 4/15 corresponding to the universality class of
three-state clock-model as Xé /L?>7" (upper left). Binder’s cumulant exhibits a merging of
curves for different cluster sizes at the upper transition; it illustrates how hard it is to dis-
tinguish close transitions involving the same spin component using Binder’s cumulant (upper
right). The ratio of correlation functions I'" sharply indicates the upper transition as a cross-
ing for different cluster sizes; yet it also shows that here considered cluster sizes are somewhat
too small to precisely locate BKT transition the presence of which can be seen in the merging
of curves occurring for the largest sizes (lower left). BKT transition is located thanks to
the scaling of T7, the temperature such that pg(7r, L) = (2/7)Ty, as described by Eq. D.21:
non-linear fitting yields Tprr = 0.203 £ 0.001 and ¢ = —2.99 £ 0.001.



Chapter 3

Heisenberg Triangular
Antiferromagnet with easy-axis
single-ion anisotropy

In previous chapter a presentation of the phase diagram of HTAF is proposed. As
seen one important characteristic of this diagram is the absence of ordering at zero field.
This peculiarity is yet often absent in real compounds due to various perturbation terms;
one of particular importance is single-ion anisotropy (see App. A for further details).
When considering the easy-axis case as done in this chapter the system retains exactly
the same symmetries as HTAF at finite field provided the field is applied along the
anisotropy axis — hereafter I consider the case of a system with a global anisotropy
axis rather than local anisotopy axes. As symmetries at finite field are the same as
in HTAF the reader should refer to Sec. 2.3; at zero-field symmetries are specific to
this anisotropic system and are discussed in Sec. 3.1: quite interesting a succession of
transitions occurs, with three transitions (see [73] as well). At a mean-field level this
succession reflects the change of sign of a sixth-order coefficient in Landau-Ginzburg
expansion of free energy, which is associated with the discrete six-fold symmetry existing
in the system. A mean-field analysis was carried out to further discuss symmetries
and for its relevance for quasi-2d layered systems; it ascertains the stability of three-
sublattice structures as structures with minimal energy as well. Mean-field treatment
is carried out in Sec. 3.2. Then thermal fluctuations are taken into account through a
Monte Carlo procedure and the whole phase diagram is calculated (see Fig. 3.8) both
at zero field (Sec. 3.3) and finite field (Sec. 3.4).

31
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3.1 Symmetries at zero field

Let’s first write the Hamiltonian:
H=13Si-S;—d> (S)"—h) 5; (3.1)
(3,5) i i

where terms are expressed in the units of the exchange constant J and spins are classical
spins normalised to 1. In this chapter easy-axis anisotropy is considered, ie d > 0.

In contrast to zero-field spin configuration in Heisenberg triangular antiferromagnet,
spin configurations in easy-axis Heisenberg antiferromagnet do exhibit a nonzero static
magnetisation even at zero field:

(S;) =1icos(q-1r;) 4+ lysin(q-r;) + m (3.2)

where q = qp = (47/3,0). Easy-axis anisotropy orients spin plane perpendicular
to xy crystallographic plane and simultaneously distorts the spin structure. Finding
directions and magnitudes of 1; and 15 then becomes quite nontrivial a task.

2
AN
Ilzy|2>< le:'Zz

Figure 3.1: Possible three-sublattice planar configurations of the easy-axis triangular anti-
ferromagnet. The direction of the easy-axis is indicated by Z. Non-zero components of the
order parameter (3.2) are indicated below each configuration.

The same way it was previously discussed (see Sec. 2.3) in order to elucidate sym-
metries of different phases, we note that a simple translation by a lattice vector a T,
(r; — r; + a) transforms the antiferromagnetic order parameter according to

Ta[(l +il)] = (I +ily) e~'a0® (3.3)

where the phase factor can take only three different values: qo-a = 0,£27/3. Hence,
besides the group S! of continuous rotations about z-axis the magnetic structure has an
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inherent discrete symmetry Zs. Such an additional symmetry corresponds to permuta-
tions of the three sublattices. In zero magnetic field the time-reversal symmetry implies
invariance with respect to 1, — —1;, which enlarges Z3 to Zg. The total symmetry group
is, therefore,

G=5"®7Z (3.4)

See also a similar discussion in Ref. [106]. The collinear phases shown in Figs. 3.1(a)-
(c) preserve the axial symmetry S but break in different ways the discrete symmetry
group Zg. In terms of the order parameter angle ¢ defined by

li. =lcosp, ly, = Isinp , (3.5)

the state in Fig. 3.1(a) corresponds to commensurate values ¢ = 2k7/6 with an integer
k, whereas the configuration in Fig. 3.1(b) has ¢ = (2k + 1)7/6. The third type
of collinear state is described by an arbitrary angle ¢ and is shown schematically in
Fig. 3.1(c). In such a state the phase ¢ remains unlocked and the sine and cosine
harmonics introduced in (3.5) coexist with an arbitrary ratio.

For large enough values of d > d. = 1.5 the magnetic anisotropy induces a highly
degenerate collinear Ising state at zero temperature. Quantum fluctuations can lead,
then, to interesting zero- and finite-temperature phases [25, 103]. This collinear ordering
results from the disappearance of deformed 120-degree structures. It can be understood
by a simple calculation of average energy per spin assuming a three-sublattice structure
with 120-degree configuration as shown in Fig. 3.1(d). Let’s introduce m; = (S;) the
thermal average magnetisation of spins in the i—th sublattice. Then the average energy
per spin ¢ reads:

d h
€ =1y My +my-Mm3+mg-m; — 3 ((mT)Q + (m3)* + (m§)2> - g(m‘f+m§+m§) (3.6)
The energy of a deformed 120-degree as depicted in Fig. 2.1 at zero field can then be
expressed in terms of the deviation angle 6 as

e = —2cosf + cos 20 — g(l + 2 cos® ) (3.7)

The angle 6 that minimises ¢ verifies

1
cosf = 2T—d/3) (3.8)
which immediately shows the upper bound of d for such a structure to exist, namely d. =
3/2. The Ising limit d > d. for interesting it may be is already well-documented and
has not been the focus of my attention. Moderate anisotropy domain which has been
overlooked for long presents quite interesting properties which are worth the discussion.
As a consequence I only develop this case of moderate anisotropy, 0 < d < d,.. In Sec. 3.2



34 CHAPTER 3. EASY-AXIS HTAF

d = 1.0 is used. Figures presented in Sec. 3.3 have been calculated with d = 1.0; yet
results for zero-field within Monte Carlo approach have also been obtained for d = 0.2
that is the value used to build the whole phase diagram presented in Fig. 3.8.

Both 120-degree structures 3.1(d) and (e) are not energetically degenerate. Indeed
evaluating (3.7) with (3.8) yields

51:—3—1—2(1_1%) (3.9)
A similar procedure for configuration 3.1(e) leads to the following
52:—2;—1—2(1+1d/3> (3.10)
Thence the energy difference
3
Ae=¢; —e9 = 1 (3.11)

This implies that both configurations are quasi-degenerate at low anisotropy as the
removal of degeneracy is a third-order effect of anisotropy. Entropy can thus enable
structure with the higher energy to be stabilised at finite temperatures as observed at
mean-field level.

3.2 Real-space mean-field approach

Despite the break-down of mean-field in bidimensional system, such an approach is
useful to assess symmetry analysis previously done: in this case mean-field calculations
support a three-sublattice ordering. On a technical point of view the extension of real-
space mean-field [7, 113, 19, 29] to a model with single-ion anisotropy presents some
interest as well — for example to deal with pyrochlore magnets. These technical details
can be found in Appendix B.

Mean-field Hamiltonian reads

(i) i @ 3@)
where m; = (S;). Mean-field treatment yields the following system of self-consistent
equations (cf Eq. B.14):

1 1 2
mf‘ = / dezv1— x2 ede/T ehi m/le (Zh) )
2ZZ —1
1 1 2
m; = / da z ™ /T ehie/T Io(ys) (3.13)
2Zz -1

1/t 2
Zi _ 5/_1 dx 6dzz/T ehi:c/TI()(yi) :
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Figure 3.2: Low-field part of mean-field phase diagram with h along the anisotropy axis and
the anisotropy strength d taken as d = 1. Spin configurations for each phase are schematically
indicated by arrows as in Fig. 3.1. Solid and dashed lines corresponds to first- and second-
order transitions, respectively.

where y; = hi*v/1 — 22/T and [,,(z) is the modified Bessel function of the n-th order:
1 ™
I,(z) = —/ da e*“* cos"a . (3.14)
7 Jo

In conjunction with the self-consistent constraint
n.n.

this system of equations can be iteratively solved on L x L clusters; in this study sizes
L with 3 < L < 12 have been used to check the stability of three-sublattice structure.
Then to precisely locate phase boundaries the system (3.13,3.15) is solved assuming a
three-sublattice structure.

Once convergence is achieved, various physical quantities are calculated including
the free-energy

(ig) i

the internal energy Fyp = (Hur), and the antiferromagnetic order parameters. The
latter cannot be calculated as such but have to be calculated using a third-order invari-
ant, which takes into account the effect of translation (Eq. (3.3)): (I¢ + il$)3, where
the real-part is zero if and only if [ = 0, and the imaginary part is zero if and only if
$ = 0. By explicit calculations for clusters with 3 < L < 12 at all temperatures and
weak magnetic fields we have verified stability of the three-sublattice structure with
qo = (47/3,0). After that a more detailed investigation of the H—T" phase diagram has
been performed with the three-sublattice ansatz. Precise location of phase boundaries
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in Fig. 3.2 has been determined from temperature and field scans for the antiferromag-
netic order parameters indicated in Fig. 3.1 as well as for the uniform magnetization.
The behaviour of the specific heat has been also used to independently verify these
results.

At the upper transition 7,y ~ 1.2 in zero magnetic field only z-component of mag-
netic moments become ordered. In accordance with Zg symmetry, selection between
various collinear structures is determined by the following invariant in Landau free-
energy:

W[l +il3)° +c.c] . (3.17)

For negative 75 < 0 the pure [y-state, Fig. 3.1(a), is energetically favored, while 75 > 0
corresponds to the lo-state, Fig. 3.1(b). We have verified the positive sign of ¥, in our
case by a direct analytical expansion of Eqgs. (3.13) (see App. C). Our numerical results
also confirm that the ly-state is stable below T.;. Such a partially ordered phase has
a vanishing moment on one of the antiferromagnetic sublattices. A similar phase has
been discussed in relation to the intriguing phase diagram of GdsTiyO7 [111]. Here, we
provide an example, where a partially ordered phase is realized at the mean-field level
in a simple spin model.

The second transition at T., ~ 0.6 is related to the breaking of the rotational
symmetry about z-axis. Below T, the third previously disordered magnetic sublattice
becomes ordered with moments oriented within the xy plane. Simultaneously, moments
of the other two sublattices start deviating from z-axis leading to a distorted triangular
structure shown in Fig. 3.1(e). This distorted spin structure is characterized by 1y || z
and 1; 1L 1. When temperature is further decreased the coefficient 7, in the effective
anisotropy term changes sign at 7.3 ~ 0.3 and one finds a first-order transition into
another distorted triangular structure shown in Fig. 3.1(d) with 1, || Z.

Note, that the related model with the exchange anisotropy [84, 106] has v, = 0
in the mean-field approximation, which leads to an additional continuous degeneracy.
As a result, only two finite-temperature transitions are found in this case: from the
paramagnetic state to a degenerate collinear configuration shown in Fig. 3.1(c) and
then to a degenerate distorted 120° configuration [84, 110]. Sheng and Henley [106]
have discussed how different types of fluctuations, thermal, quantum, or random dilu-
tion, can induce a finite 5. For the model with the single-ion anisotropy one finds a
different interesting possibility: the sign of the anisotropic term changes upon lowering
temperature.

The two phases in Figs. 3.1(a) and (d) have a nonvanishing total magnetisation m?.
The coupling between ferro- and antiferromagnetic components is determined by the
term

m*(I7 +il3)® + c.c. | (3.18)

which is invariant under Zs transformations (3.3). In zero magnetic field this yields
m? ~ (T.—T)*? for states with 1, || 2. In contrast, states in Fig. 3.1(b) and 3.1(e) with
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l, || Z have vanishing m?. This difference is important to understand the finite-field
behaviour, see Fig. 3.2. Magnetic field applied parallel to z-axis favours spin structures
with a finite magnetisation and stabilises states with {7 # 0, which is why the two
intermediate low-field phases are no longer pure [ states. This feature is emphasised
by hatches in Fig. 3.2. The collinear-noncollinear transitions are of the second order,
whereas all other transition lines are of the first order. In the case of the transition
from the paramagnetic state in external magnetic field the first-order nature of the
transition follows from the presence of the cubic invariant (3.18), while in other cases
the above conclusion is a consequence of the group-subgroup relation. The transition
lines intersect at a multicritical point (7%, h*) = (0.6, 0.25).

The mean-field phases and the structure of the phase diagram at fields larger than
h* are similar to the Heisenberg triangular antiferromagnet [84] so we do not go into
further details. As we shall see in the next section, the true thermodynamic phases
determined by Monte Carlo simulations of the model (3.1) differ from the mean-field
solutions, which is often the case in 2d. Still, the mean-field picture is expected to be
qualitatively correct for 3d layered triangular antiferromagnets. By including a ferro-
or antiferromagnetic interlayer coupling J’ in the mean-field equations (3.12) and (3.13)
we have verified that the predicted sequence of finite-temperature transitions remains
valid up to |J'/J| ~ 0.6. For larger values of |J’/J| we find a double transition with an
intermediate [; collinear phase similar to the previously studied case of very strong J’
[98].

3.3 Zero-field behaviour

£ QLRO ZLRO ZQLRO PARA

Figure 3.3: Sketch of zero-field diagram as obtained by symmetry analysis and Monte Carlo
calculations.

The expected sequence of finite-temperature phases is schematically shown in Fig. 3.3
with three BKT-type transitions. A similar suggestion was made before for the triangu-
lar antiferromagnet with the exchange anisotropy [106], though no supporting numerical
results were presented.

This scenario has been checked using Monte Carlo method on rhombic clusters
with linear size 18 < L < 96 for the same strength of anisotropy as in mean-field
approach, namely d = 1.0, for comparison (calculations at d = 0.2 which have been
used to establish phase diagram depicted in Fig. 3.8 are not presented for their being
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similar). An extensive use of finite-size scaling techniques has been made to assess the
value of critical exponents at the upper two transitions associated with the breaking of
Zg symmetry; at the lower one, that is of BKT type, spin stiffness has been used to
precisely locate the transition. Further details on Monte Carlo technique here used can
be found in App. E and Sec. 2.4.
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Figure 3.4: Results at h = 0 for the easy-axis HTAF with d = 1.0. Temperature dependence
of Binder’s cumulant associated with uniform magnetisation m?® for different cluster sizes
(left): the crossing indicates Tpo. Temperature dependence of Binder’s cumulant associated
with antiferromagnetic order parameter mg for different cluster sizes (right): the merging
indicates T,;.

To exploit data obtained during Monte Carlo calculations various observables and
techniques can be used depending on the specific sought features as explained in Section
2.4. In this case as the first symmetry breaking is expected along Z, observables along
Z are used: Binder’s cumulant only yields a rough estimate of transition temperatures
as shows Fig. 3.4: T,y ~ 0.4 and T, =~ 0.2. For these transitions to be more accurately
located the scaling of spin susceptibility is finer. First the value of critical exponent 7 is
checked using a procedure that doesn’t require a precise location of the transition [70, 8]:
it consists in the plotting of scaled susceptibility xg /L*7" versus Binder’s cumulant
U;. In Fig. 3.5 the exponent 7 yielding the best fits is shown. The obtained values
m = 0.26 £0.01 and 7, = 0.12 £ 0.01 are in very good agreement with renormalisation
group predictions: 1 = 1/4 and 1, = 4/6% = 1/9 [40]. Next, scaled susceptibility is
used to precisely locate transition temperatures as illustrated in Fig. 3.6.

Last, the third transition is associated with the breaking of S* and thence expected
as BKT-like. To deal with a BKT transition spin stiffness is very well adapted as
already discussed in Section 2.4. Furthermore the very fact that it exhibits a jump
the height of which is a universal value, namely 27,7 /7 for integer vortices, at the
transition clearly identify the transition as BKT. Using this method with the simplest
form of scaling to extract 1.3 as illustrated in Fig. 3.7 the transition temperature is
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Figure 3.5: Results at h = 0 for the easy-axis HTAF with d = 1.0. Scaled susceptibility
plotted versus Binder cumulant in the vicinity of T,; (left) and T, (right). The indicated
value of critical exponent 7 is the one that realises the best collapse of all data points onto a
single curve.

T.s = 0.168 & 0.001.

3.4 Finite-field behaviour

At finite field the symmetry of easy-axis HTAF Hamiltonian is the same as the sym-
metry of HTAF Hamiltonian: phase diagram should consequently look similar with the
same stabilised phases and the same nature of transitions. Yet due to the anisotropy
some differences are expected. As easy-axis anisotropy reduces transverse fluctuations
the domain of ordered phases should stretch to higher temperatures. Concerning the
very-low field region as zero-field behaviour in both systems is totally different the ways
transition lines close at h = 0 are different as well: it can be expected in the case of
easy-axis HTAF that lower BKT transition between up-up-down collinear structure and
distorted 120-degree structure closes at the finite-temperature zero-field BKT transi-
tion that exists in this system. Similarly the upper transition between collinear and
paramagnetic phases that belongs to three-state clock-model universality class closes
at zero-field upper transition, that is associated whith Zg symmetry: group-subgroup
relation enables such a junction of transitions.

Another effect of anisotropy is to enlarge one-third magnetisation plateau at zero
temperature. This appears as a splitting of the single transition existing in HTAF; the
splitting can be estimated by linearising zero-temperature energy about equilibrium
configurations in terms of small deviations. Let’s start with the transition between
distorted 120-degree structure and collinear one. Eq. (3.6) yields for up-up-down
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Figure 3.6: Results at h = 0 for the easy-axis HTAF with d = 1.0. Scaled susceptibility
as a function of temperature; scaling with n = 0.26 at the upper transition (left) and with
n = 0.12 at the second transition (right).

structure: "
Coud = —1—d — 3 (3.19)

For a distorted 120-degree structure as depicted in Fig. 2.1 Eq. (3.6) yields
d h
£(0) = cos20 —2cosh — 3 (14 2cos”0) — §(_1 +2cos0) (3.20)

Minimisation according to # yields either # = 0 mod 7, which is up-up-down collinear
structure, or

1+h/3
)= ——— 21
ORI o = d)3) (3:21)
and the associated energy
(14+h/3)* 2d
O) = ———F~+ — +tew 3.22

A straightforward analysis shows that the first part of right-hand-side term is negative
for 0 < d < d. = 3/2, where d, is the upper limit of stability for a distorted 120-
degree structure to exist; consequently the limit of stability is the one imposed by the
expression of cosfy:
he =3 —2d (3.23)

For d = 0.2, which has been used for Monte Carlo simulations, h. = 2.6.

As for the upper bound of the splitting about A = 3 it is obtained linearising the
energy of V-shape configuration (see Fig. 2.2) about (a, 3) = (,0).

d h
ev(a, B) = 142 cos accos 3—2 sinasinﬁ—g@ cos® 3+cos® a)—g(Z cos B+cosa) (3.24)
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Figure 3.7: Results at h = 0 for the easy-axis HTAF with d = 1.0. Spin stiffness for different
cluster sizes. T3 is determined by the scaling of T'(L), where T'(L) such that pg(T(L),L) =
2T (L)/m — these are the temperatures of the crossing points between the solid line and curves
representing ps. The inset depicts the extrapolation made to 1/L = 0.

Introducing v = m — «, the energy can be expanded as

1+24+5 1 )(ﬁ)
= cuua + (03, 3.3 3.25
€V = Euud (ﬁV)( 1 1+g_% 5 ( )

This yields

34 /9+8(2d + 9d)

th 9

(3.26)

For d = 0.2, heo = 3.95.
Zero-field saturation field is also reduced due to easy-axis anisotropy. The saturation
field can be determined developing ey around («, 3) = (0,0):

—1+4+4 —1 a
evzssat—l—(&,ﬁ)< —Bi 6 —1+2§l—§><ﬁ> (3.27)

where e,,; = 3 — d — h is the energy of a fully polarised configuration. Hence the
saturation field:

hagt = 9 — 2d (3.28)

For d = 0.2 this is hgy = 8.6
Numerical determination of transitions is carried out with a similar Monte Carlo
algorithm as previously described; the observables I used are the same as in the case
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Figure 3.8: Phase diagram of easy-axis HTAF calculated for d = 0.2. Solid lines are a guide
to the eye linking calculated points. Spin structures are sketched by the configuration on a
triangular plaquette with z axis assumed vertical and xy plane perpendicular to the plane of
the sheet.

of HTAF as the transitions belong to the same classes of universality. Let’s review the
different transitions and illustrate for each of them their determination. At low field
upper transition C'T; is investigated monitoring z spin component susceptibility x;7,
scaled as X7/ L?7" with n = 4/15 that is the critical exponent for the class of universality
of three-state clock model, and Binder’s cumulant Uy

The lower transition ET\C3 corresponds to the ordering of transverse component: it
is thus located using transverse spin component susceptibility Xj, scaled as XqL JL*
with Fisher’s exponent equal to 1/4 that is the value for a BKT transition; Binder’s
cumulant U, ql is used for cross-checking.

Transition BC between up-up-down phase and high-field phase can be located using
transverse spin component susceptibility x, scaled as x,;/L*™" with = 1/4 that is the
value for a BKT transition, and cross-checking with Binder’s cumulant U, qL. Given the
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Figure 3.9: This plot depicts scaled spin susceptibility along transverse component qu JL*"
in a field scan at T' = 0.27. Two transitions can clearly be seen: this denotes the roundig of
the transition line backward to multicritical C' point.

quasi horizontal shape of the transition it is more adapted to sweep field at constant
temperature rather than the opposite; Fig. 3.9 illustrates such a sweep in the vicinity
of C' point, which clearly shows the double transition that reflects the rounded shape
of the transition line in this vicinity.

Double transition associated with the breaking of S!' ® Zs between paramagnetic
or saturated phase presents the same hardship to be located as is the case in HTAF
due to the breaking along a single spin component. As in that case, phase transition
associated with the breaking of S! is located thanks to finite-size scaling of spin stiffness
whereas the transition associated with discrete symmetry breaking is located thanks to
the scaling of transverse spin component susceptibility XqL JL*7" with n = 1/4. Binder’s
cumulant can be used to further confirm the location of the upper transition: the
lower one cannot be seen with this observable as the range of its value for different
cluster sizes is dramatically reduced so that plots for different cluster sizes appear on
top of each other. Such a procedure is illustrated in Fig. 3.10. As can readily be
observed comparing Figs. 3.8 and 2.3 the separation between two transitions BC is
larger in case of the easy-axis HTAF than in case of HTAF, which is a consequence of
the reduced linear energy of domain walls in the anisotropic system where transverse
spin fluctuations are hindered.

Another point of interest is to question the evolution of zero-field behaviour at tiny
field. As previously seen an intermediate critical phase exists for T, < T < T,;: this
phase probably extends to finite fields for very weak fields scaling with d® which is the
order of degeneracy between configurations with and without phase locking (angle ¢ in
Eq. 3.5). This is however a field range out of reach for this numerical investigations.
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Figure 3.10: Location of successive transitions at A = 7.0. Upper transition associated
with the breaking of Zs is located thanks to the scaling of transverse component of spin
susceptibility Xj /L*7" with n = 4/15 (upper left); cross-checking with Binder’s cumulant
UqL (upper right). Lower transition associated with the breaking of S! is located using spin
stiffness: temperature Ty, such that ps(7r, L) = (2/7)Tr (lower left) is scaled according to
Eq. D.21 (lower right): the obtained parameters for this nonlinear fit are Tpxr = 0.092 and
c=—1.25.



Chapter 4

Heisenberg Triangular
Antiferromagnet with easy-plane
single-ion anisotropy

Determining the phase diagram of Heisenberg triangular antiferromagnet with easy-
plane single-ion anisotropy necessarily induces an interest in the phase diagram of XY
triangular antiferromagnet: the former shares the same symmetries as the latter which
is the paradigmatic model of this class of systems. Even though XY triangular antifer-
romagnet has been studied a lot since the 1980’s either directly [85, 66, 46, 26, 57, 60,
56, 67, 68, 134, 69, 91, 90] or indirectly by the study of closely related bidimensional
models such as fully frustrated XY model, associated with Josephson junction arrays
at half flux per plaquette [107, 108, 37, 59], and X X0 model [16, 15, 90], a detailed
discussion of its whole phase diagram is still welcome as it clarifies many questions left
so far unanswered as far as I know.

In this chapter the phase diagram of XY triangular antiferromagnet (XY TAF) is
thus discussed in some details (see Fig. 4.1) before dealing with Heisenberg triangular
antiferromagnet with easy-plane single-ion anisotropy (easy-plane HTAF). First zero-
field behaviour is described (Sec. 4.1); then the discussion of finite-field phase diagram is
split into two parts: the first one deals with moderate fields and the delicate question of
the connection of finite-field transition lines with zero-field transition points (Sec. 4.2);
the second one presents high-field behaviour, which means between one-third magneti-
sation field and saturation field (Sec. 4.3). Last the diagram of Heisenberg triangular
antiferromagnet with easy-plane single-ion anisotropy is presented (Sec. 4.4).

45
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Figure 4.1: Phase diagram of XY TAF. Lines are guides to the eye between calculated points.
The inset offers an enlarged view about low-field multicritical point D. Spin structures are
sketched by the configuration on a triangular plaquette with z axis assumed horizontal and y
axis vertical in the plane of the sheet. Transition line AC is split into two with an intermediate
critical phase.

4.1 XY triangular antiferromagnet at zero-field

Even though a continuous symmetry cannot be broken in bidimensional systems as
demonstrated by Mermin and Wagner [77], another kind of phase transition is possible:
it is induced by stable topological excitations as found out by Berezinskii on the one
hand [10, 11], and by Kosterlitz and Thouless on the other hand [61] — which is referred
to as a BKT transition. Interestingly some bidimensional systems intertwine both
continuous and discrete symmetries, which creates highly non-trivial phase transition
scenarios. This is the case of classical XY TAF at zero field:

(i5)
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where the Hamiltonian has been normalised by the coupling exchange and by spin as
well so that S; in the above expression is a classical bidimensional unit vector. At
low-temperature this Hamiltonian admits a 120-degree structure that can be described
as:

(S;) =1icos(q-r;) + lysin(q - ry) (4.2)
with (1;,12) a pair of orthogonal vectors and q = (47/3,0) the three-sublattice ordering
wave vector. Beside continuous S! symmetry associated with the global rotation of
spins, that is the rotation of the pair (1;,1), a discrete Zy symmetry comes into the
game, which corresponds to the direct or indirect character of the basis (1;,13). In
real space it corresponds to the fact spins in this non-collinear structure can rotate
either clockwise or anticlockwise around a triangle. This extra discrete symmetry,
called chirality, was pointed out in 1984’s pioneering works [85, 66]. Due to the discrete
character of Zs, its breaking does induce a long-range order. The subsequent questions
are then: what is the nature of the ordering? Does chiral order come with quasi-
long range magnetic order? Does a magnetically disordered chiral phase exist? If
an early agreement was reached on the existence of a quasi-long range magnetically
ordered phase with long-range chiral order, the scenario for ordering has remained a
controversial issue for more than twenty years with proponents of two transitions [85,
68, 134, 69, 91] opposing those in favour of a single one belonging to a new universality
class [66, 67]. This latter proposition was made possible by the hardship to numerically
resolve both transitions as they are quite close by — the latest estimate [95] published
before this work [74] yields Tipirar = 0.512(1) and Trr = 0.508(1), which agrees both
with certain older results and with our own ones, and participates to today’s consensus
on the number of transitions. Renormalisation group approaches for frustrated magnets
are at best difficult, at worst misleading, especially in the vicinity of d = 2, which is
the one of interest here. While a general agreement on the BKT nature of the lower
transition exists, the nature of the upper transition is regularly debated [85, 66, 69, 93,
91]. The point is that critical exponents are notoriously hard to compute. Symmetry
arguments make Ising universality class the most natural, which was pointed up from
the very beginning [85]. Yet numerical investigations have failed so far to calculate
critical exponents matching those of Ising universality class (see Table II in [95] for a
summary of results). As often noted misleading finite-size effects could be responsible
for these difficulties [91, 112]. In the following, specific heat is studied as the logarithmic
scaling of its peak value with cluster linear size L is a clear argument in favour of Ising
universality class.

To investigate chiral ordering the most adapted parameter is chiral susceptibility:

Xe = (k%) — (k) (4.3)

where chirality s reads

ZSA(81XSQ—|—SQX83—|—83X81) -7 (44)
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with summation running over triangles, spins numbered clockwise around a triangle,
and ep = *1 taking into account staggered ordering. In this definition & is really a
scalar: the cross product are all along Z as spins are strictly within xy plane. With this
definition k is a non-zero Ising variable in phases with chiral order: introducing spin
structure (4.2) in (4.4) yields (there are 2L? triangles)

k= xL) 2 (4.5)

which is zero in phases without chiral order (1; and 15 collinear or one of the two zero)
and is +1 in 120-degree phase, even if distorted (distortion doesn’t change 1; and 1,
but m). Chiral susceptibility can be scaled as x,./L?”", which quantity plotted against
temperature (see App. D) yields the transition temperature. Of course this requires
1 to be known, which is a matter of concern especially in this case as the nature of
chiral transition is much debated. As explained in App. D it is possible to determinate 7
plotting x,/L*™" vs U, adjusting 1 so that data points for different cluster sizes collapse
onto a single curve. Yet in this case due to the closeness of transitions it appears this
method is not satisfactory with cluster sizes here used. As critical exponents differ very
moderately between several class of universality in 2d, sorting out this question can
indeed be quite tricky. The argument here put forward makes use of a specificity of Ising
universality class that does dramatically distinguish it from other universality classes:
a = 0, which implies specific heat is logarithmically divergent. Obtained results tend to
exclude a > 0 as can be seen in log-log plot presented in Fig. 4.2: the clear downward
bending cannot be compatible with a > 0. My viewpoint is that numerical estimations
of other critical exponents are not yet satisfactory because too small systems are used.
Large clusters would be welcome not to yield high precision estimates as is the case
in most problems but right ones: as discussed in [91] and supported by Fig. 6 in that
article, too small clusters most probably exhibit a misleading behaviour and an idea
about thermodynamic limit can be gained only using very large clusters. Consequently
the assumption n = 1/4 according to Ising universality class value is used due to
theoretical arguments above mentioned, in agreement with symmetry considerations,
and numerical support gained from the analysis of specific heat. Fig. 4.3 shows this
scaling and the associated temperature: Ti.p;-qp = 0.512 £ 0.001.

As far as magnetic ordering temperature is concerned usual means of locating a
BKT transition can be used: spin stiffness, spin susceptibility, and Binder’s cumulant.
Spin susceptibility ,, which is the total spin susceptibility

x QT yQy
SS+SS>¢®%) (4.6)

Xq NQ Z

S Z,j

is used as illustrated in Fig. 4.3.
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Figure 4.2: Maximum of the specific heat at h = 0 plotted vs cluster linear size L in a
log-log plot: if critical exponent o were positive data points should align on a straight line.
As can be observed a clear downward bending exists that prevents o > 0.

4.2 Low fields: competing Z, and Z3 symmetry break-

ing

Let’s now apply a magnetic field along = direction:

H=YS,-S,—-hY S (4.7)
(i) i

At finite field XY triangular antiferromagnet retains a continuous degeneracy. In-
deed Hamiltonian (4.7) can be written taking into account a three-sublattice pattern

as:

1 h%\
H= 5 Z Sl + SQ + Sg — ? + const. (48)

A
This expression clearly shows that ground-states are characterised by the following set
of constraints:

1%
S; + S, + S = ?X (4.9)

From this relation the value of saturation field is immediately obtained as h = 9. As
there are three degrees of liberty (three bidimensional unit vectors) and two constraints,
one free parameter remains: a continuous degeneracy persists. As this degeneracy is not
related to a symmetry in the Hamiltonian (4.7), it can be expected thermal fluctuations
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Figure 4.3: The upper transition temperature is located thanks to chiral susceptibility
(right); the lower one with spin susceptibility (left).

lift it. This is indeed the case [46, 57, 102]: symmetry is reduced to the composite
discrete Zy ® Z3 symmetry.

As mentioned in the introduction to this chapter the discussion first focuses on
low-field part of the diagram, namely for h < 3. At h = 3 one-third magnetisation
plateau appears in magnetisation curves: it corresponds to an up-up-down structure
as can be seen from (4.9). This collinear structure is stable at 7" = 0 and h = 3
as shown in [46]. At finite temperature thermal fluctuations do widen the field range
of stability of up-up-down structure mainly towards h < 3 as increased fluctuations
of spin component transverse to applied field destabilise 120-degree structure. Hence
a twofold symmetry-breaking scenario: first Zs is broken with the collinear ordering;
then Zs symmetry with the ordering into 120-degree structure. This scenario implies
the successive symmetry-breakings occur along different components: Zj3 along field
direction X and Zy in transverse direction — or according to chiral order parameter: in
this case both magnetic ordering along ¥ and chiral ordering happen simultaneously
as 120-degree structure has an inherent chiral symmetry. Such a separation makes it
easier to numerically assess the scenario as there is a clear distinction among order
parameters, which may otherwise be problematic in case of multiple ordering along a
single component. According to the exact results of the hard hexagon model [9] the
upper transition belongs to three-state clock model universality class.

Let’s now detail how this numerical investigation has been done. For the upper
transition xj can be scaled as xg JL*™ using n = 4/15, the value of the universality
class of three-state clock model where

W A(S2)y = (832
Xq = T

witha € {z,y} (4.10)

This assumption theoretically grounded in Baxter’s results, can also be numerically
supported in various ways using Binder’s cumulant or the ratio of correlation functions
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Figure 4.4: Upper transition location at i = 1.0 Scaled spin susceptibility xg / L~2=) with
n = 4/15 is used to locate the upper transition (left). The correctness of the value of 7 is
checked plotting scaled spin susceptibility xg / L2 vs the ratio of correlation function I'*.
The value of three-state clock-model universality class is fully satisfactory to have data points
collapse onto a single curve (right).

' (see App. A, Eq. (2.19), and the discussion on the properties of this ratio): either
of them can be used to locate transition temperature as well, and even though Binder’s
cumulant may be less accurate the estimate thus obtained should be reasonably close
to the one resulting from the scaling of susceptibility; second to calculate n as explained
in App. D. Such a mix of techniques is illustrated in Figs. 4.4 and 4.5 at h = 1.0.

The lower transition can be investigated in two different ways: according to chirality
or to magnetic ordering along transverse direction. Both yield the same transition, in
strong support for the explicited scenario that implies simultaneous chiral and trans-
verse magnetic ordering at the lower transition as shows Fig. 4.6. Techniques are the
same as previously explained at zero field for chirality; concerning transverse magnetic
ordering x¥ is scaled using n = 1/4 (Ising universality class).

A delicate problem arises when drawing the phase diagram down to zero field: zero-
field symmetry-breaking pattern is different from the one above described at moderate
finite field. How can both be connected? Finite-field upper transition is a Z3 symmetry-
breaking line: it cannot join zero-field upper transition which is a Zy symmetry-breaking
point. On the contrary finite-field lower transition that corresponds to chiral ordering
can join zero-field upper transition: this is even the most natural scenario as it is the
simplest way to divide (7', h) plane into a chirally ordered part and a disordered one.
This scheme implies the existence of a multicritical point D defined by (Tp, hp) with
hp # 0. At D an inversion between Z3 and Z, symmetry-breakings takes plase: for
h > hp the former occurs first whereas for h < hp the latter does, which implies
that a magnetically disordered chiral phase is expected at very low field. Numerical
evidences of this scheme are sought using chiral susceptibility y, on the one hand and
spin susceptibility along X X7 on the other hand. Binder’s cumulant and y component
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Figure 4.5: Upper transition location at h = 1.0. Binder’s cumulant U7 (left) is compared
with the ratio of correlation functions I'* (right). In this case both exhibit similar precision
and yield following transition temperature: 0.520 4 0.005.
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Figure 4.6: Lower transition at h = 1.0. Finite-size scaling of chiral susceptibility (4.3)
(left) to locate Ising transition into chiral ordered phase and ratio of correlation functions I'Y
(right) to illustrate simultaneous ordering along transverse direction.

quantities are monitored as well. For illustration results at h = 0.1 are proposed in
Fig. 4.7. Measurements at h = 0.75 and h = 0.5 assures 0.5 < hp < 0.75. At h =0.75
the location of transitions carried out in a similar way to the case h = 0.1 yields
Tenirar = 0.503 £ 0.001 and Tz, = 0.507 £ 0.001 (see Fig. 4.8) whereas at h = 0.5 the
order is reversed: Topirer = 0.509 £ 0.001 and Tz, = 0.506 + 0.001 (see Fig. 4.9). In the
latter case chiral transition can be located only with chiral susceptibility or observables
built upon susceptibility: magnetic ordering is indeed disconnected from chiral ordering
in this regime as can readily be seen noticing there is no difference between x and
y component in their ordering temperature (see Fig. 4.10). As a consequence an
intermediate magnetically disordered chiral phase exists in this regime.

Last point not yet discussed about this low-field region is the way the lower transition
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Figure 4.7: Finite-size scaling of chiral susceptibility (4.3) (left) to locate Ising transition
into chiral ordered phase and finite-size scaling of xj (right) to locate the transition associated
with the breaking of Z3 symmetry; both at h = 0.1.

terminates at zero field. Actually it is fully admissible that it terminates at zero-field
BKT transition as Zs is a subgroup of S'. As low-field spin-wave expansion of the
free-energy yields a three-fold-anisotropy-like term [46, 74], which is irrelevant about
BKT transition in [40], finite-field transition line necessarily closes at zero-field BKT
transition.

4.3 Breaking of Z; symmetry at high fields

For h > 3 the behaviour is quite different. Indeed up-up-down structure is no longer
stable as constraint (4.9) clearly shows: in this equation there are indeed two regimes
depending on whether A < 3 or h > 3. In the latter regime stable structures exhibit
both the breaking of sublattice symmetry (which means the breaking of Zs) and of
the symmetry along transverse direction (therefore breaking of Zs) [46, 57]. These
structures can be described as

<Sz> = 11 COS (q . I'i) +m (411)

where m is uniform magnetisation. Only y component is critical. This has a striking
consequence on the breaking of composite Zs ® Zs discrete symmetry: it is broken as
a whole Zg symmetry. If Korshunov already proposed such a possibility for this high-
field transition [57], the proposition hadn’t found any further support, either theoretical
or numerical, before the results here presented (see also [74]). The hallmark of such
symmetry-breaking as compared to other possible symmetry-breakings in this system
is the existence of an intermediate critical phase with algebraically decaying correla-
tion functions between disordered and ordered phase [40]. As a consequence the most
convincing evidence for this scenario is the existence of the intermediate critical phase.
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Figure 4.8: Location of Zs and Z3 symmetry breakings at h = 0.75. The former is associated
with chiral ordering and is thus located using chiral susceptibility x,. scaled as x,/L?~"
with n = 1/4 (Ising universality class). The latter corresponds to the breaking of lattice
translational symmetry along the applied field and is thus located using spin susceptibility
scaled as xg/ L2~ with n = 4/15 (three-state clock model universality class). These results
show hp < 0.75.

Such an evidence can be obtained from the use of the ratio of correlation functions intro-
duced in Eq. (2.19) T'Y, which has the same properties as Binder’s cumulant but lower
noise as it is a second-order quantity (see App. D). In case of Zg symmetry-breaking as
is here investigated, this ratio shows both upper and lower transitions which is not the
case with Binder’s cumulant. This is neatly illustrated in Fig. 4.12 at A = 5.0 where
the width of the intermediate phase is rather large. For transition temperatures to be
more accurately calculated the scaling of spin susceptibility x¥ can then be used with
n = 1/4 at the upper transition and n = 4/62 = 1/9 at the lower one [40]. Figs. 4.11
and 4.12 shows the results for h=>5.0.

Another transition remains for the discussion: the one between high-field phase
and collinear phase. From the latter to the former a Z, symmetry-breaking occurs.
As shown by Kawamura there is no spin-flop transition but a continuous one. Hence
the transition is expected to be of Ising type. Results obtained through field scans
across the transition for transverse spin susceptibility and Binder’s cumulant support
this assumption.

In the proposed phase diagram another multicritical point, called C' in Fig. 4.1,
appears. I haven’t investigated it in details. What can be said is that transition line
C'D and upper transition line AC' merge at C' with different slopes as they correspond
to different representations. Lower transition line AC' is also expected to merge at
C": indeed the splitting of the transition with the existence of an intermediate critical
phase is observed in all the measurements; the occurrence of a first-order transition
in the small field range 3.4 < h < 3.8 seems improbable. Last Ising line BC' ends at
multicritical point C' as well.



4.3. BREAKING OF Z¢ SYMMETRY AT HIGH FIELDS 95

o
jl

K
o
®

q
o
o

o

o
o
3

o
~

scaled susceptibility x, /L*"

o
N

scaled spin susceptibility x */L*"

o
w

L L L L | L L L L | L L L L | L L h h PR N S S S IS T S SO SR SR N PETIAN T
%.5 0.505 0.51 0515 0.52 0.49 0.495 0.5 0.505 0.51 0.515 0.52
temperature T temperature T

Figure 4.9: Location of Zs and Z3 symmetry breakings at h = 0.5. The former is associated
with chiral ordering and is thus located using chiral susceptibility x,. scaled as y,/L?~"
with n = 1/4 (Ising universality class). The latter corresponds to the breaking of lattice
translational symmetry along the applied field and is thus located using spin susceptibility
scaled as x%/L*™" with 1 = 4/15 (three-state clock model universality class). These results
show hp > 0.5.
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Figure 4.10: Scaling of spin susceptibility along y direction x¥ as x¥/ L?77 with n = 4/15
which corresponds to the breaking of lattice translational invariance associated with magnetic
ordering. Comparison with scaled susceptibility along x direction xj/ L?77 with n = 4/15
in Fig. 4.9 shows that for h < hp the lower transition corresponds to magnetic ordering
along both component, which is an evidence of the existence of an intermediate magnetically
disordered chiral phase in this regime.
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Figure 4.11: Scaled spin susceptibility X};L_(z_") with n = 1/4 (upper transition; left
panel) and 77 = 1/9 (lower transition; right panel) to locate double transition of Zg symmetry
breaking at h=5.0.
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Figure 4.12: Correlation ratio (2.19) for critical y component at h = 5.0 (left). The in-
termediate phase with algebraically decaying correlations corresponds to the intermediate
temperature range over which plots for different cluster sizes L merge. Long-range ordered
phase with exponentially decaying correlation can also be identified as the lowest temper-
ature range with separated plots; the highest one corresponds to paramagnetic phase. For
comparison Binder’s cumulant is shown as well (right).
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4.4 Heisenberg triangular antiferromagnet with easy-
plane single-ion anisotropy
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Figure 4.13: Phase diagram of easy-plane HTAF calculated at d = —0.2. Lines are guides
to the eye between calculated points. The inset offers an enlarged view about low-field multi-
critical point D. Spin structures are sketched by the configuration on a triangular plaquette
with z axis assumed horizontal and y axis vertical in the plane of the sheet. Transition line
AC is split into two with an intermediate critical phase.

The Hamiltonian of Heisenberg triangular antiferromagnet with easy-plane single-
ion anisotropy reads

H=Y8;-S;—d> (S —nd s¢ (4.12)
(4,3) i i

with d < 0. It belongs to the same universality class as XY triangular antiferromagnet:
same symmetries are involved. Given the extra fluctuations in Z direction the whole
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phase diagram should shrink to lower temperatures. Phase transitions have been located
as in XY triangular antiferromagnet: details of this location are therefore not repeated
hereafter, which would not bring anything new.The phase diagram has been calculated
at d = —0.2: it is depicted in Fig. 4.13.

The splitting of zero-field transitions exhibits little dependence on the strength d of
the anisotropy as shows the comparison between d = —0.2 and d = —0.4: for d = —0.2,
T hirar = 0.366+0.0005 and Terr = 0.3621+0.0005; for d = —0.4, T pira = 0.3924+0.0005
and Terr = 0.389 4+ 0.0005. Even when comparing with XY model that can be seen
as d = —oo limit for which T,4;.q; = 0.512 & 0.0005 and Tpxr = 0.506 4= 0.0005, the
splitting looks almost constant. This observation suggests the splitting has little to
do with spin fluctuations and consequently with the formation of domain walls but is
rather mainly due to the screening of vortex-vortex interaction due to domain walls: as
a consequence, this screening effect being independent of spin fluctuations, the splitting
exhibits little dependence on anisotropy strength d.



Chapter 5

Conclusion

In this doctoral dissertation I have presented a determination of the whole phase
diagram of classical Heisenberg triangular antiferromagnet (HTAF) in the strict 2d case
and of its anisotropic derivatives. For the latter ones the case of single-ion anisotropy
was chosen for both its experimental relevance and its expected more altering character.
In the case of easy-plane anisotropy, the extensive study of XY (XY TAF) model has
appeared necessary as it is the paradigmatic model of the relevant class of universality
and its thorough study was still to be done.

After a statement of the motivations for such a study, I successively presented the
case of HTAF, of easy-axis HTAF and, last, of XY TAF and easy-plane TAF. However
surprising it may seem sixty years after the first study of a classical antiferromagnetic
spin system on the triangular lattice, the phase diagram of the systems here considered
had not yet been completely built. In case of HTAF and XY TAF, parts of the dia-
gram had been discussed but the overall picture was still unsatisfactory and important
features that are not refinements were at best lacking support, at worst fully ignored.

Let’s review the results presented in this dissertation for each system. Zero-field
behaviour of HTAF had been studied a lot and with convincing care for me not to
undertake another study of it. This system is governed by a continuous symmetry and
shouldn’t order at finite temperature as a consequence of Mermin-Wagner theorem.
Interestingly Kawamura challenged this viewpoint discussing the topological excita-
tions of HTAF and not only showed two temperature regimes for these exist, which
his opponents agree on, but precisely exposed the reason for the change of regime to
be a transition. His line of arguments parallels the one of Berezinskii, Kosterlitz, and
Thouless in their discussion of the phase transition now known after their names (BKT
transition): the transition is topological by nature; yet it is distinct of BKT transition
by the decoupling of spin excitations and vortex excitations, which induces a low-
temperature phase quite peculiar, coined as spin gel by Kawamura. In any case finite-
field behaviour that I studied was astonishingly lacking a precise discussion. The first
surprising feature of so-far published diagrams was the closing of finite-field transition

29
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lines at a finite-temperature multicritical point which is contradictory with the massless
nature of zero-field phases as opposed to the massive nature of low-temperature finite-
field phase. Other important features had already been presented: the existence of an
up-up-down collinear phase separating the so-called 120-degree phase from both para-
magnetic phase and high-field phase; the selection of a planar high-field phase rather
than the umbrella structure. A tricky issue had been laid aside, namely the nature of
the transition at high field between the ordered phase and the saturated/paramagnetic
phase. A compound S! ® Zs; symmetry has to be broken. The hardship lies in the
fact there is a single order parameter, namely transverse spin component. It appears
that both symmetries are separately broken, first the discrete Zs then the continuous
S!. Numerical determination of this sequence is somehow delicate as the symmetry
discussion underpinning this study.

The easy-axis HTAF as presented here in the case of a single-ion anisotropy term
exhibits quite rich a zero-field behaviour with triple BKT-like transition. This results
from the specific compound S! ® Zg symmetry of the system. The upper two tran-
sitions are associated with the breaking of the discrete Zg symmetry and delimit an
intermediate massless critical phase characteristic of Z, models with p > 4 (as p goes
to oo the lower transition temperature tends to zero to yield the limiting case, namely
XY model). They are BKT-like but not real BKT transitions. The third transition is
the BKT transition associated with the breaking of continuous S' symmetry. As for
finite-field the behaviour is similar to the one of HTAF as expected by their common
S ® Zs symmetry. In the case of easy-axis HTAF the diagram stretches to higher
temperatures thanks to reduced spin fluctuations. Furthermore the anisotropy creates
distinct features: first the splitting of zero-temperature one-third magnetisation tran-
sition with a finite field range of existence for the up-up-down collinear phase; second
saturation field is lowered.

XY TAF presents quite rich a diagram as well. At zero-field it exemplifies the emer-
gence of a discrete symmetry in a continuous model as introduced by Villain: here this
discrete Zs symmetry is the well-known chirality. If the successive breaking of Zs sym-
metry and S! symmetry has been fully demonstrated the precise nature of the upper
transition still excites controversy due to the notorious difficulty to calculate critical
exponents at this transition. In this dissertation I support the viewpoint this transi-
tion belongs to Ising class of universality. Finite-field behaviour exhibits interesting
patterns. If Korshunov had carefully discussed them, refinements and numerical evi-
dences were necessary. The first feature to be discussed is the existence of a low-field
multicritical point that delimits the magnetically disordered chiral phase. Indeed zero-
temperature intermediate magnetically disordered chiral phase survive at finite-field up
to a multicritical point. It is delimited by transition lines that both emerge from zero-
field transitions: the upper one is Zs symmetry-breaking chiral transition, the lower
one is Zz symmetry-breaking transition associated with lattice translational symmetry-
breaking. The emergence of a Zs line from a BK'T transition is fully allowed in terms of
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symmetry as Zs is a subgroup of S'; it is here both supported by numerical results and
by the observation that the coupling of spin-waves with field in this region presents a
three-fold anisotropy character.At this multicritical point transition lines are inverted:
above the multicritical point an intermediate up-up-down collinear phase is stabilised
above the low-temperature low-field long-range-ordered 120-degree phase. The second
feature to be put forward is the nature of the transition at high-field into the ordered
phase from the paramagnetic/saturated one. The compound Z3 ® Zs symmetry is bro-
ken as a whole Zg symmetry, which implies the existence of an intermediate massless
critical phase. The easy-plane HTAF exhibits the same behaviour as XY TAF without
much specificity.

Hence this dissertation sheds light on the behaviour of paradigmatic geometrically
frustrated magnets. Specifically I have refined finite-field diagram of HTAF and of easy-
axis HTAF pointing out a double transition at high field. For XY TAF the diagram is
now precise: I clarify the breaking of emergent Zg symmetry at high field and the exten-
sion to finite field of the magnetically disordered chiral phase. One point still remains
an open question that needs to be assigned, namely very low-field behaviour of HTAF.
The dissertation exemplifies the wealth of intricate transitions the intertwining of var-
ious discrete symmetries or of discrete symmetries with a continuous one can induce.
It also shows that a balanced blend of topological and symmetry arguments with not
too complicated yet astutely devised numerical simulations can bring much informa-
tion and pave the way for more sophisticated machinery to refine details of the overall
picture presented here. This theoretical dissertation naturally finds an experimental
extension: special attention should be given to the following compounds that are quite
well described by models previously discussed. HTAF emblematic system is NiGayS,
[135]. Yet the most interesting systems are easy-axis HTAF such as RbyMn(Mo0,);
[39] or RbyFe(MoOy)s [54].
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Appendix A

Single-ion anisotropy

As this dissertation presents systems in which the interplay between anisotropy and
geometric frustration plays a leading role a short reminder on magnetic anisotropy in
crystals doesn’t seem useless (the reader is referred to reference textbooks for detailled
calculations which are not the purpose of this appendix meant as a reminder; see for
example [136, 62]). Magnetic properties of a crystal results from the behaviour of
electrons in the partially filled outer shells of atoms. Two classes of elements are here of
interest for their magnetic properties: iron-group transition elements (electrons on 3d
shell) on the one hand and rare-earth compounds (electrons on 4f shell) on the other
hand. In both families it is possible to derive a single-ion anisotropy term even though
the energy hierarchy is different between both. What are the relevant energetic terms
to be considered in order to describe spins in a crystal? There are three terms: crystal
field, spin-orbit coupling LS and Zeeman energy. They respectively read

1

V(i) = —ed_V(rj) = —e_ o (A1)
J g !
with e the electric charge of the electron
Vis=AL-S (A.2)
and

where pp is Bohr magneton.

In iron-group elements spin-orbit coupling is much weaker than crystal field and
can hence be treated as a perturbation around the structure obtained from crystal
field. Perturbation theory to the second-order for Zeeman and LS terms then yields

H =S 205h 6 — Mw)Sy — X298, — pshuuhy (A.4)

pv
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where the tensor (A, ) is defined as

(0| L,|n)(n|L,|0)
= E A.
~ E, — Ey (4.5)

The second term that is the anisotropy term can be developed using x, y, and z crystal
directions as principal axis as

= (A= S+ A)) BS2 - S(S+ 1)+ J(A ~A)SI 82 (AG)

or in shortened notations

DS?+ E(S2+5)) (A7)

with the constant term dropped.

On the contrary in rare-earth elements spin-orbit coupling is the leading interaction.
As a consequence levels first split according to J = L + S values and levels are then
split by crystal field term. In an hexagonal geometry using the development of crystal
field term with Legendre polynomial on J states let us obtain

Ve = adgg(r®)[3J2 — J(J + 1)]

BA(r*)[35J2 — 30.J(J + 1)J2]

v Ao (r®)[231.J8 — 3151 (J + 1).J;

+105J%(J 4+ 1)%J2 = 5J3(J + 1)* + 7352

—525J(J + 1)J2 + 40J%(J 4+ 1)* + 2942 — 60J (J + 1)]

+ 7A66<r6>€13[(Jx i)+ (T — i) (A8)

_|_
_|_

where «, (3, and ~ are coefficient depending on J, L, S and [; Asy, A, Ago, and
Agg are symmetry coefficients in the polynomial expansion. Rare-earth compounds
generally exhibit strong anisotropy and the description with the formalism of single-ion
anisotropy appears the best suited.

In this work single-ion anisotropy term is used in the form of DS? which is fully
enough to make non-trivial interplay with geometric frustration appear and to correctly
describe real compounds (see chap. 6 in [62] and references therein).
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Real-space mean-field theory

In this appendix real-space mean-field theory is presented in the case of Heisenberg
spin systems. In the first section models with only spin exchange and Zeeman terms are
treated. In the second section models with single-ion anisotropy are carefully discussed.

B.1 Heisenberg Model

Here we treat explicitly an isotropic magnetic system with Heisenberg interaction
between neighbouring spins.

B.1.1 Single spin in an external field

Let us begin with a single spin in an external magnetic field described by the Hamil-
tonian H = —h - S, where S is either a unit classical vector or a quantum spin S. We
need to calculate the partition function corresponding to the above Hamiltonian.

(i) In the classical case the partition function is given by an integral:

in 0dod 1! T h
7 /% 6hcos€/T _ 2/1 da e*hx/T = ﬁ sinhf (Bl)

Local magnetization can be obtained by differentiating the free energy F' = —T'In Z:

oF A h T
= (cosf) = ——— =T-L =coth - — — . B.2
m = (cosf) 5 7 = coth -5 — - (B.2)
(ii) In the quantum case the partition function is obtained by summation of a finite
series:

/T _ sinh (S + 3)/T

7T —H/T _ _hS/T h(S=1)/T |
te ‘ e Tt sinh h/2T

(B.3)
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The magnetization is expressed as

1 MS+3) 1 h
m = <S + 5) coth — 7 T3 coth oT - (B.4)
B.1.2 Lattice model
Consider the following spin Hamiltonian:
H=>J;S;-S;—h->S;. (B.5)

(i5) @

The mean field approach amounts to neglecting correlations between spin fluctuations
on adjacent sites:

S;-S;, = [mi +(S; — mz)} : [mj +(S; — mj)]

m; - m; +m; - (S; —my) +m; - (S; — my)

Q

where m; = (S;) is a thermodynamic average of an on-site spin. The mean field
Hamiltonian, then, is
ﬂMF:—ZJijmi'mj—Zhi'Si, (B7)
(i) i
where
J

The problem of interacting spins is, thus, reduced to a set of single-spin problems
supplied by the self-consistency equations:

{coth @—z} or m; = ;ll KS—F}) coth M—lcoth i (B.9)

mi = T h, Z- 2 T 2 2T

FTE

with local fields defined by Eq. (B.8).
After the solution of self-consistent equations is found the internal energy Fyr and
the free energy Fyir are calculated by

Eyp =) Jym;m;—Y h;m; and Fyp=-> J;m;-m;—T» InZ , (B.10)

(i) i (i) i

where Z; is given by Eqgs. (B.1) or (B.3) depending on the nature of spins.
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B.2 Anisotropic Model

The above expressions with very little modifications can be transferred to anisotropic
systems with anisotropy coming from interspin interactions (anisotropic exchange,
Dzyaloshinskii-Moria interaction, dipolar interactions). In the presence of single-ion
anisotropy the basic equations must be modified significantly. Below we treat explicitly
the case of classical spins.

B.2.1 Classical spins problem

The single-site Hamiltonian is

H=D(n-S)>-h-S (B.11)

where D is a single-ion anisotropy constant and n is an anisotropy axis. We split local
magnetic field into two parts: component parallel to anisotropy axis hl = h - n and
transverse component: ht = y/h? — (hl)2. In the classical case the partition function
is given by

Z = /smid&dgo e EOR/T B0, 9) = Dcos® — hllcos® — htsinfcose  (B.12)
7r

while the resulting magnetization has two components in the direction parallel and
perpendicular to the axis n:

m = ”n—l—mL[h—n(h-n)]/hL
ml = / sin ededgo cos 0 e E09)/T (B.13)

0d9d
mt = E/SIHT sin 0 cos p e EOR)/T
Partial integration over azimuthal angle simplifies Egs.. (B.12) and (B.13) to

Lt Da?/T hllz/T

7z = 5/ dx e~ P=/T h /T I (y)

-1

1 1

ml = —/ zdy e P/T ehH”/Tlg(y) (B.14)
27 J-1
1 1

mt = ﬁ/ d:z:\/l—:UQG_DWQ/TehHI/Tll(y)

-1

where y = (htv/1 —22)/T and Iy(z) and I,(z) are the modified Bessel functions of
zeroth and first order:

1/ 1/
Iy(z) = /0 e ?dy | Li(z) = —/ e*“®% cos pdy . (B.15)

™ ™ J0o
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The lattice Hamiltonian is written as

H=DY(n;-S)*+> J; S-S, —h-YS;, (B.16)

(i) ¢

where the anisotropy axis can be either uniform or staggered. The mean-field approxi-
mation leads to the following Hamiltonian:

ﬂMF:_Zjijmi'mj+DZ(ni'Si)2_Zhi'Sia hi:h_zjijmj (B.17)
i J

(@) i

supplied by the mean-field equations (B.14). The free-energy is still given by the above
Eq. (B.10), while an expression for the internal energy becomes

Evp =) Jym;-m; =Y h;-m; + DZ((my)2> . (B.18)
(ig) i i

Here, square of the parallel component of the on-site moment is given by

1 1 2
((m”)2> = ﬁ/_l 22dz e P/T ehllx/TIO(y) ) (B.19)

B.2.2 Quantum case S=1

Let’s now introduce the case of a quantum system. Single-ion anisotropy is relevant
for S > 1 as (S-11)? = const in case of S = 1/2. Provided we consider the anisotropy
axis along z the single-site anisotropy can be written

. . A S, +5-
T =D, - hlg, - h¢+; (B.20)
In the case of spin S = 1 this can be written as
[ _ht
~ h —f],:LD \/i (])’LJ‘
0 = —nl+D

Introducing the characteristic polynomial the eigenvalues can be calculated and the
magnetisation deduced

g (E) = —E*+2DE*+ (h* — D*)E — D(h*)? (B.22)

—p 1 - 27 2k 2D
E., = 2 ?pcos (3 arccos( Qq”_pi%) + 37T> Y (B.23)
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where p = —(D?/3 + h?) and ¢ = 2D3/27 + D(—2(h1?/3 4 (h*+)?/3). Then using
TTLH’L = —T&h”,L In Z and ahH,LXﬂ(Ek) =0

Z _ Ze_Ek/T m” _ l Z _2h”Ek6_Ek/T mL _ l Z _<2Ek - D)hLe_Ek/T
- ’ 7 %~ 3E} —4ADE, + D? — b2’ 7 %= 3E} —4DFEy + D? — h?
(B.24)

Using the mean field approximation the lattice Hamiltonian can be expressed as in
(B.17), which enables to use the above results for the single-site.
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Appendix C

Zero-field upper transition in
mean-field treatment: sign of 9

In this appendix the sign of one of the sixth-order coefficients in Landau-Ginzburg
functional about zero-field upper transition is determined using mean-field description.
For the determination of some phenomenological parameters it is necessary to use the
description of a layered system and consider the specific case of fully decoupled layers
to obtain the sign of v, in case of the purely 2d system.

Let’s recall mean-field equations:

]. 1 2 z

m; = 57 /1dx\/1—:1:26D“ T () (C.1)
1 1 2

mo= 9z LdmeDIQ/Tehix/Tfo(yi) (C.2)
1 ! 2

Z; = 5/_1dx DT /T il T I (y,) (C3)

where y; = hi-v/1 —22/T, h; = h— Y, ., m;, and [,,(z) is the modified Bessel function
of the n-th order:

1 ™
I,(z) = 7T/O da e*“* cos" v . (C4)

At the upper transition from paramagnetic phase to collinear one hi- = 0, which
implies y; = 0, and m;- = 0 as well: Eq. (C.1) can be dropped. For clarity we hereafter
drop the index z: hf = h;, etc. Let’s expand Egs. (C.3) and (C.2) in powers of h;
around h; = 0. For calculations to remain legible abridged notations are introduced as
follows:

1 2
K, = / dz 2"eT  Vn €N, Kopny1 =0 (C.5)
-1

71



72 APPENDIX C. SIGN OF ~,

For our purpose following integrals will be used:

K« V/merfi (wd/T)
° 4T
K, = ﬂ_ Ko
d/T ~ 2d/T
2d4/T -3 3K,
K, = /T
T et ATy
15 — 10d/T + 4(d/T)? 1
Ko _ BB W0UT AT 15

A(d/T)? 8(d/T)

where erfi designates the imaginary error function defined as

£
erﬁ(z) = er ?(:ZZ) with erf \/_/ due” u? (CG)
With these notations the expansion to fourth-order of Eq. (C.3) reads
Ko Ky 9 Ky 4 6
Z; = 1 h; + h; h; :
iy { o, T 2aK, T } +O(h) (€.7)

thus

y2 o 053 — Ko,

11 {1 K>
2K, 12" 24 K2T*

77 hﬂ + O(hY) (C.8)

To calculate m;, let’s start with the calculation of the integral in Eq. (C.2):

1 dz’+h;x K2 Ky 3 K 5 7
d _ n3+ he + O(h] C.9
/_1 €T e T T 6T3 i 120T5 7 + ( ) ( )

Then combining with Eq. (C.8) Eq. (C.2) becomes

where
K,
— A1

b KoT (C.11)
KoKy — 3K?

by = ———-= 12

s 6K2T3 (C.12)
K¢K? — 15 KoK K,y + 30K2

by — 6130 0f828y + 3 (C.13)

120K3T5
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Now self-consistent equations are derived in the context of layered systems with an
interlayer coupling A, with A > 0 for antiferromagnetic coupling and A < 0 for ferro-
magnetic coupling. Let’s write down the definition of local fields in the case of an an-
tiferromagnetic coupling (six-sublattice structure: m;y, ma, mg on one layer, m), mj,, mj
on the other):

my = ll m’l = —ll
my = —hoVih my = Lty (C.14)
ms = —l1+2\/§l2 mé — l1—%/§l2
and
hy = —3(mi +mg) — 2 ml = —(3 + 2))btysl hy = (3+2))hty3h
hy = —3(mi +my) — 2dmly = —(3 + 2))b=y3l hy = (3+2\)h=y3k
(C.15)
where antiferromagnetic order parameters have been introduced:
m; = 11 COS(qQ : I'i) + 12 sin(qo : I'i> (C16>

As a consequence solving Eq. (C.10) is equivalent to solving the following polynomial
equation: ) . .
(b1 — 14 bsa® + bsa*) 2 =0 (C.17)

where the term O(z7) has been dropped, = € {Ii, (I; + v/3l5)/2}, and renormalised
coefficients b;’s read (one can easily check that the treatment of ferromagnetic and
antiferromagnetic couplings are equivalent, hence the introduction of |A| to encompass
both situations in the following)

be = (34 2|\|)*by, (C.18)
Solutions to Eq. (C.17) are either 2 = 0 or solutions to (51 — 1+ byx® + 551’4) that can

be written as
—bs £ VB

= 2 Y7 C.19
Y7903 1 2/A))2bs (C-19)
where .
B="b—-4(b — b 2
3 <1 3+%M>5 (C.20)
Then solutions can be expressed in terms of /1 and [s:
i =10=0 (C.21)
l pu—
{f S (C.22)
2 = ABEVY+
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ll = &/Y-
2
L = o o

where € = +1.

Of course conditions of positivity for B and y+ have been taken into account: on
the temperature range [1.04,1.30] B > 0 y+ > 0.

Let’s now turn to Landau-Ginzburg free energy functional:

F = oz(l% + l%) + 512([% + ZS)Q + ’71(l% + l;)g + ’72[([1 + il2)6 + CC] (024)

In this expression there is only a single fourth-order term as the development is made
about a collinear phase in which case both fourth-order terms have the same expression.
At equilibrium

o,F = 0
{ A (C.25)
which yields
o+ 2012(1F +13) + 3(n1 — dy2)lf +3( + )y + 6Bl = 0 (C.26)
3Vl + 30l — 100213 = 0 '
In terms of [; and Iy solutions read:

LL=10=0 (C.27)

or

B2 £V

L=0 and Iy =4 —"—— C.28
1 2= 30 —2) (€29

or

—B2 £ V0

i, =4+y/—"——— and =0 C.29
I (e : (€29

or

B2 £ V0 —B12 £ V0

L=+ —""—— and == C.30
' 12(y1 + 272) ’ 4(v1 +272) ( )

or
M and I, = + _ﬁm—i\/g (C.31)

4(y1 = 272) ’ 12(71 — 272)
where § = 37, — 3a(n — 272) and 0" = B, — 3a(1 — 272).
From the comparison of both sets of solutions it is then possible to extract an
expression for 75, which is the purpose of these calculations:

by (4 1 1 )

Taking |[A\| = 0 in Eq. (C.32) yields 75 > 0 in the vicinity of the upper transition at
zero field, T.; ~ 1.2 QED.



Appendix D

Finite-size scaling

A striking paradox lies at the very heart of our experience of phase transitions:
trusting our senses they do occur in systems around us, trusting our reason they are
mathematically possible only for infinite systems. As often physics just stands in be-
tween as shows the introduction of the thermodynamic limit, which can be understood
as a way to take an infinite limit to describe physical systems that are necessarily fi-
nite. Yet such a solution encounters its limits of accuracy as we start dealing with
systems characterised by small extent in one or several dimensions. Systems used in
numerical works do exhibit strong alterations to thermodynamic behaviour as they are
often of very limited sizes. Then it is necessary to question the way thermodynamic
limit is approached and what the correction terms are. In the late 1960’s Fisher initi-
ated the answering to this concern. If I don’t aim at reproducing this work hereafter,
which is quite clearly exposed in original papers [31, 32, 30] and the textbook review by
Barber [8], I will remind most important assumptions that lay the foundation for this
analysis of correction terms for finite-size systems, otherwise called finite-size scaling.
Interestingly what could be perceived a hindrance to numerical investigation of phase
transitions has in fact been turned into the way to extract information on phase tran-
sitions from calculations on finite-size systems. Of course it doesn’t mean misleading
results in finite-size clusters can always be circumvented.

D.1 Fundamentals

D.1.1 Geometry and boundary conditions

First the system under consideration has to be precised, especially the boundary
conditions that are adopted. There are three different geometries dealt with in scaling
theories:

e G: A completely finite system of volume V = L% in d dimensions (d’' = 0)

5
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e (5: A d-dimensional layer of infinite dimension in d = d — 1 dimensions and of
finite thickness L

e (73: A system finite in d — 1 dimensions and infinite in the last one with a cross-
section area characterized by length L (d' = 1)

(g1 corresponds to the situation of real systems and clusters used in Monte Carlo nu-
merical investigations as presented in this work. G is of interest mainly for analytical
calculations and enable to study dimensional crossover phenomena. Gj is the geome-
try used in transfer matrix method and phenomenological renormalisation group or in
quantum systems, with time as the infinite dimension.

When considering finite systems boundary conditions have to be assigned: these can
be expressed using a function ¢ defined on a d’ x (d — d') space (the first component
corresponds to dimensions along which the system is infinite, the second to those along
which it is finite) with (&), ;<4 4 a basis of the second component:

e Periodic boundary conditions: Vi, u,v, ¢(u,v+ L&;) = ¢(u,v)
e Open boundary conditions (or free surface): Yu,v, ¢(u,v)=0 if v¢[0,L]*

e Twisted boundary conditions, among which antiperiodic ones: Vi,u,v, ¢(u,v+
Lél) = —QO(U,V)

Each set of conditions presents advantages depending on the use: for example the latter
ones are often introduced in the study of helicity modulus, aka stiffness. Open boundary
conditions may be helpful when carrying out analytical calculations. The reason why
periodic boundary conditions are used in most numerical works is the quick convergence
of functions towards thermodynamic limit. Let’s indeed assume thermodynamic limit
exists:

F(T, VN
foo(T,p) = lim FT.V,N) (D.1)
Yo v
p=N/V=const

where F' is the free energy, T' the temperature, V' the volume, N the number of particles
and p the density. Then free surface boundary conditions yield surface terms:

F(T,V,N) =V f(T,p)+ Afe(T,p) + o(A) (D.2)

where A designates the area of the boundary. Periodic boundary conditions induce an
exponential convergence:

F(T,V,N) =V fu(T,p) + O (e *T) (D.3)

This expansion however breaks down in the vicinity of critical temperature T, as

Tlin% ['(T) = 0, which explains the so-called critical slowing-down about phase tran-

sition in numerical calculations.
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D.1.2 Alteration of singularities in finite systems

As previously seen finite size induces corrections to thermodynamic functions and es-
pecially a rounding of singularities. Let’s consider a diverging thermodynamic quantity
and discuss the behaviour of its estimate in finite-size systems for which no singularity
appears (typically in geometry G that is relevant for Monte Carlo numerical works).
Its estimate on finite systems exhibits a peak instead of a divergence, the height of
which increases with | = L/a (a is a typical microscopic lengthscale of the system),
located at T, (1) that tends to 7, the thermodynamic critical temperature, as [31, 32]

T,() =T, b

Another temperature of interest is the temperature 7*(1) at which the quantity eval-
uated on a finite-size system starts departing significantly from the thermodynamic
function. 7™ tends to T, as [31, 32]

() ~T, ¢

Fisher and Ferdinand put forward the following argument to assign a value to 6 [31]:
T* is such that £(T*) = L. In other words once the correlation length spans the whole
system it is no longer possible for criticality to grow. This argument yields § = 1/v as
E(T) ~ (T'—T.)7". For A the situation is less clear; yet a similar line of reasoning leads
toA=1/v.

D.1.3 Scaling

After having described the rounding of singularities in finite systems, next point is
to explain how to nevertheless extract information on thermodynamic singularity, ie on
transition, from finite-size data. This is the aim of finite-size scaling. Finite-size scaling
is based on the following Ansatz [32, 30]: in the vicinity of the bulk critical temperature
T, the behaviour of a system with at least one large but finite dimension is determined
by

L
y= (D.6)
§(T)
with & the bulk correlation length. Then considering a thermodynamic quantity Pp(7)
of the finite system with an algebraic singularity in the infinite system P o Cool 7P

where t = (T' — T..)/T. is the reduced temperature, the finite-size scaling hypothesis
reads

PL(T) ~ I“Rp(y) (D.7)
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or in terms of the reduced temperature as can be derived transforming scaling variable
(D.6) introducing the algebraic divergence of & (£(T") ~ (T'—T.)™")

P(T) ~ 1°Qp(I) (D.8)

where f = T — T,(L) and T.(L) is a pseudo-critical temperature — in fact as long as
the shift exponent A > 1/v there is a certain flexibility in the definition of this pseudo-
critical temperature based either on 7™ or T,,; it is even possible to substitute t =T —1T,
to ¢ in certain formulas as done in the following section where this formalism is actually
used. Then for these definitions to be coherent and reconcile with the infinite limit
exponents have to respect

w=pl = g (D.9)

In the case here considered (no transition in the finite system) hH(l) Qp(x) = Qp so that
r—

P(T.(D) ~_ Qol"" (D.10)
This relation states that the way estimates of thermodynamic quantities vary with
system size depends on thermodynamic critical exponents. It constitutes the heart of
finite-size scaling techniques to estimate critical exponents and critical temperature.
The preceding calculations are applicable in case of an algebraic singularity in the
infinite system. In case the thermodynamic quantity under scrutiny exhibits a loga-
rithmic divergence as is the case of specific heat in bidimensional Ising model:

Po(T) ~ cooInt (D.11)

then Eq. (D.8) cannot be used. Scaling is however possible introducing a non-critical
temperature Ty and then write [32]

(PL(T) — P(Ty)) ~ (Qp(1°t) — Qp(I°t)) (D.12)

Matching limiting cases yields once again the scaling equation of practical use:

Py(T(L)) ~ —%”mz +0(1) (D.13)
t—0

D.2 Expressions of direct interest in this study

This section aims at summarizing the quantities used in the numerical calculations
of this work. It starts with a specification of the general expressions introduced in the
previous section before a discussion of other interesting probes to locate and characterise
transitions, namely Binder’s cumulant and a ratio of correlation functions astutely
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chosen. The way procedures to locate transitions based on these equations can be built
is extensively discussed.

In preceding section as already mentioned some results can be expressed in terms of
the critical temperature of the infinite system. In particular (D.10) can be written in
terms of T,.. Hence for specific heat the exponent p is «; for susceptibility (D.10) reads

X(Te 1)~ Qol*™" (D.14)

where v/v = 2 — 7, when d = 2, has been used. This has been extensively used to
locate T, as it shows that (7, l)l_(Q_”) is size independent: in other words 7, is the
temperature of the intersection points of plots of x(T, 1)~ versus temperature for
different cluster sizes.

Another consequence of scaling was drawn by Binder when he introduced the cumu-
lant now often referred to after his name [12]. For the purpose of scaling scalar factors
introduced in the original paper can be taken off:

(4%)
(42)?
where A is the order parameter of interest (eg: Sy with o € {z,y, 2}, chirality &, etc.).

Applying scaling to fourth and second moments that appear in this definition yields
the following

UA(T, L) = (D.15)

Ua(T,L) = fa(y) (D.16)

A straightforward and important consequence of this expression is that Ux (7T, L) is

size-independent (f4(y) —2 f9): plots of Binder’s cumulant versus temperature for
y*)

different L cross at T, in case of a second-order transition, merge in case of a BKT
transition. Another consequence is that it can be used to estimate critical exponents
[70]. Let’s illustrate the method with susceptibility: expression (D.7) used for x4 (where
A is the order parameter of interest) shows that y./L?~" is a function of y; given (D.16)
it results that plotting ya/L?™" versus Uy with n as a free parameter can be used to
estimate 7: for the right value plots are indeed L-independent, which means all data
points collapse on a single curve.

An improvement has recently been brought with the consideration of a ratio of
correlation functions [120, 112] which has similar properties to Binder’s cumulant with
the great advantage of better accuracy as it is a second-order quantity. Let’s consider
spin-spin correlation function

o L.T) = 5 3(S8: S0 (D.17)

where the abridged notation ¢ + r indexes neighbours of spin ¢ at distance r. Scaling
form of ¢ introduces another length ratio beside y = L/¢:

.
g(r, L, T) ~ 7~ @20Q (Z’ y) (D.18)
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As a consequence

L gL LT) (L/Z)(d2+”) Q (4 y)

=T~ \17 (%) = Q(y) (D.19)
As it is a second-order expression statistical noise affects less severely this quantity. It
can then be used in a similar way to Binder’s cumulant and can also help identifying
an intermediate algebraic phase that is otherwise invisible using Binder’s cumulant.

Last, the case of BKT transition has to be addressed. In numerical calculations one
of the most efficient ways to study a BKT transition is spin stiffness pg (see Eq. 2.23).
At a BKT transition spin stiffness exhibits a jump the height of which is universal,
equal to ps(Texrr) = (2¢*/7) Tk for a transition driven by 1/q vortices. For integer
vortices (¢ = 1) it thus reads ps(Tsxr) = (2/7)Tprr. Renormalisation group flow
yields the following scaling for spin stiffness [127, 94]:

(1) = 2T (14 55155 (.20)

From this formula a way to extrapolate Tgpyxr can be devised: if T} is such that
PS(TL, L) = (2/7T)TL then
T, — T 1
L BKT _ (D.21)
TBKT 2(1Il L + C)
Often an approximate expansion in terms of 1/L can be used instead due to negligible
correction terms.




Appendix E

Monte Carlo algorithms

To study thermal averages in equilibrium statistical mechanics a powerful method
arose with the development of numerical simulations, viz. Monte Carlo simulation: it
uses a stochastic trajectory to explore the phase space. This method is quite efficient
as it enables to study any classical system even if analytically intractable and offers
results that can often be compared with experiments. Concerning quantum systems
the situation is less favourable due to the notorious sign problem. Quantum Monte
Carlo techniques are quite distinct of classical Monte Carlo and won’t be dealt with
hereafter: only classical Monte Carlo algorithms are indeed of interest for the present
work.

This appendix is not meant to provide an extensive presentation on Monte Carlo
algorithms, as may be found in [13, 45], but to review the basics about classical Monte
Carlo.

E.1 Back to basics

Let’s consider a system with Hamiltonian H. We are interested in calculating such
properties of this system as (A)r (canonical ensemble) where A is an observable (internal
energy, magnetisation, etc.) and the average is a thermal one. In other words we want
to average an observable over phase space €2 respecting a certain distribution of states
w in this space (typically w(x) = exp [—H(x)]):

_deX A(x)w(x)
Wr="1"5 o)

(E.1)

For such an average to be calculated an efficient integrating algorithm has to be used:
in high dimensions the most efficient one is a Monte Carlo integration. Monte Carlo
algorithms are based on the use of a pseudo-random variable: most of the time it is
enough to use variables provided by a well-designed random number generator rather

81
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than using a list of ‘true’ random numbers obtained, eg, through nuclear radiations and
thus we won’t make any distinction in the following. In our work we implemented a
random number generator proposed by Marsaglia [72].

If phase space were to be explored in a fully random manner the number of Monte
Carlo steps required for a good accuracy would be awfully huge as the distribution
of states in the phase space appears to be too peaked to make a simple sampling
method efficient. It is thus most desirable to devise an importance sampling that could
preferably sample regions according to the equilibrium distribution w: a Markov chain
offers such a possibility in a way perfectly adapted for numerical calculations as it has
no memory: the evolution only depends on the current state and the transition matrix
T defining the chain. Let’s remind what a Markov chain is and review the conditions
for a Markov process to converge to a given distribution w. For simplicity we hereafter
present the case of a Markov chain in a finite space : going to infinite discrete or even
continuous limit can be done in a natural way for spaces relevant to physical systems.

First let’s recall what a stochastic matrix is: let T be a matrix; then 7" is said to be a
stochastic matrix if all its row vectors are probability distributions. A Markov chain is a
stochastic process defined as a sequence of random variables (X,,),>1 on a space S such
that P(X,41 =X, = j) = T;; with (T};) a stochastic matrix. To initiate the process,
an initial distribution X is chosen. We note (X, A\, T') such a Markov process. For our
purpose the initial distribution A\ doesn’t matter as we aim at gaining information on
the stationary distribution 7 of the process, which is such that T'r = 7 and that we want
verifying m = w. The existence of a stationary distribution is guaranteed by the ergodic
theorem: let (X, A\, T") be a Markov process over a finite space S with 7" an aperiodic
and irreducible stochastic matrix, then there exists a unique stationary distribution 7.
Furthermore, for any initial distribution A and bounded function f over S, then

lim S > fi) =>_mf(i) almostsurely (E.2)

ie(Xn), =

An aperiodic and irreducible transition matrix for a Markov process prevents any finite
period of return for all states after a certain rank in the process and assures that any
state is reachable from any other state during the process. As a consequence, the chain
can be assumed independent of the initial distribution A after a certain rank depending
on its speed of convergence towards its stationary distribution. A-dependent initial
steps are typically called thermalisation steps and are discarded for measurement.

The next question is how to construct the transition matrix 7" such that its station-
ary distribution is the given distribution # = w. There are various ways of dealing with
this problem: we will concentrate on processes that can be described with a transition
matrix reading:

Tyj = PyjAij + 05 ) Prj(1 — Aj) (E.3)
k

where P is a proposal matrix and A an acceptance matrix. Time can be introduced
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in such a Markov chain through a characteristic time 7y associated with an elementary
step, multiplying 7;; by 7y ! Provided P is a symmetric stochastic matrix and A, a
matrix with elements in [0, 1], respecting detailed balance with respect to m:

V(i,7), Aiym; = Ay, (E.4)

then the Markov chain associated with 7" admits 7 as its stationary distribution and
property (E.2) applies. Different choices then exist for both P and A [45, 71]. Let’s first
discuss the choice of the acceptance matrix A. Among the most widely used methods
are Hastings’ ones [38]: :

. .. . ﬂ—jf ] ) 2) )

Ay = £(i, j) min (mf(z,’ﬁ 1 (E.5)
where f is an appropriate auxiliary function. The well-known algorithm proposed by
Metropolis et al. [78] corresponds to f =1 in (E.5) with Boltzmann’s distribution as
TT.

Various proposal matrices have been devised. In the case of non-frustrated systems
cluster algorithm are certainly among the most efficient ones; alas in case of the frus-
trated systems considered in this work they cannot be used. Therefore we present here
the solution we have adopted to update continuous Heisenberg or XY spins, namely a
single-spin restricted motion scheme.

A naive approach for Heisenberg spins consists in generating a random vector
uniformly distributed on S2?. This can be achieved using an angular representation:
dz = sin(f)df# and d¢ are uniform distributions. Then one can proceed as follows:

z = pl

phi = p2*pi

r = sqrt(l - plx*2)
x = 1 cos(phi)

y = 1 sin(phi)

where pl and p2 are random numbers uniformly distributed in [—1, 1] obtained before
this sequence by calling a random number generator. This method is quite heavy
in calculations as it calls two trigonometric functions and one root square. Another
straightforward method is a von Neumann rejection procedure:

(1) z =pl
y = p2
x = p3

r = sqrt(X**2+y**2+z*%x2)
if(r.gt.1) then goto (1)
X = x/r

y =y/r
z = z/r
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This is also quite CPU consuming as it uses a square root and has a poor acceptance
ratio a: a & Viphere/Veuve = 52%.

Marsaglia proposed another approach based on the fact that a uniform angular dis-
tribution (o, ) also yields a uniform distribution of the radius o*+/3°. As a consequence
if (o, 8) is uniformly drawn in [—1, 1] x [—1, 1], a rejection method then yield a uniform
distribution on the unit-radius circle with an acceptance ratio a ~ Agise/Asquare = 72%.
This uniformly distributed random variable o + 32 € [0, 1] is then used to build 2. z
and y are proportional to o and (3 respectively: one has just to renormalise the latter
variables. The algorithm reads:

(1) random(pl)
random(p2)
if ((pl**2+p2#*2) .gt.1.d0) goto (1)
z = 1 - 2x(pl**x2 + p2%*%2)

sqrt (2x(1+z))

axpl

ax*xp2

a
X
y

Landau and Binder [64] introduced in the context of the unfrustrated anisotropic
Heisenberg model on the square lattice a method to avoid the dramatic plummeting
of acceptance ratio at low temperature, namely restricted motion. They base this
proposition on the fact that nearby configurations are likely to have close-by energies.
This method can be adapted to frustrated systems and to the specific proposal generator
we use. This improvement devised by Zhitomirsky can easily be understood in terms of
local coordinates: sampling in a small cone about the spin to be updated is equivalent to
areduction of the interval of distribution of z which amounts to replace z = 1—-2(a?+3?)
by z = 1 — d,(a? + 3?) with d§, €]0,2[ adjusted to keep an acceptable acceptance rate.
Such a restriction restricts the dynamics in phase space, which may be a matter of
concern when phase space is very craggy: it is then possible to be locally trapped out
of equilibrium in a metastable configuration.

For XY spins to avoid the use of trigonometric functions one can use two random
variables for cartesian coordinates; for restricted motion to be implemented no such
equivalent of what is shown above for Heisenberg spins is known to us: at most consid-
ering local framework proposals can be restricted to the half plane in which the spin is
pointing.

E.2 QOut of traps: over-relaxation

When dealing with systems like frustrated magnets it is quite common to encounter
the problem of trapping as previously described. Unfortunately most clever updating
schemes designed for simple systems such as Ising ferromagnet don’t work for frustrated
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magnets. A way out is provided by the mixing with quite different a technique, namely
over-relaxation. It consists in proposing a new state the action of which is not increasing
as compared with the current one; the new state is related to the current one by a sym-
plectic transformation [24]. This evolution can be made micro-canonical as proposed
hereafter. For simplicity when we refer to over-relaxation we mean micro-canonical
over-relaxation.

Let’s illustrate how over-relaxation works in Heisenberg spin systems. In case the
model can be written in terms of a local field:

where h; is a function independent of S;, any rotation of S; around h; is a micro-
canonical evolution. The most efficient rotation to calculate thermal averages is m
rotation around h; [24, 42, 43]:

S = —S;+28!
h; - S;

= =Si+2hi—y (E.7)

7
Such an evolution enables the evolution to a far-away state in phase space enhancing
ergodicity, hence convergence. Furthermore this is a deterministic step as it doesn’t
require any random number. In case of Heisenberg models with a single-ion anisotropy
term, two different terms control the evolution of a given spin: the local field and the
anisotropic term. Let’s illustrate what a micro-canonical evolution looks like in this
case.

H= Z (h;-S; —d(n-S,)%) (E.8)

To keep both terms constant in (E.8), a possible action is to reflect S; with respect to
the plane (1, h;):

S, = 8,28
n x hl . Sz N

If investigations using pure over-relaxation algorithms exist (eg. [42]), which requires
careful treatment of the updating process in order to obtain an ergodic evolution, it is
often interesting to combine over-relaxation into Monte Carlo so that it is still possible
to work in the canonical ensemble that presents some advantages eg in the use of
finite-size scaling techniques. A typical mixed algorithm consists in the insertion of an
over-relaxation step after each Monte Carlo step. In our work an over-relaxation step
was devised as a sequential single-spin change according to (E.7) or (E.9) depending
on the case. In a pure over-relaxation algorithm sequential updating has to be avoided
for ergodicity considerations; in our algorithm as Monte Carlo steps breaks sequential
updating it is not a matter of concern.
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E.3 Estimating errors

As in any numerical work it is necessary to estimate errors on the obtained estimates.
Two kinds of errors have to be considered [13]: statistical errors and controllable system-
atic errors. Concerning the latter, once errors due to a bad random number generator
have been removed, there remains those due to finite-size clusters and finite-length
Markov chains. As explained in Appendix D, the first group of errors can be turned
into a powerful source of information; regarding the second group one can interpret the
Markov chain as a dynamical process: one can then discuss of relevant parameters af-
fecting the error as further explained below. Let’s consider N successive measurements
of A. The expectation value of the squared error can be written [13]:

(047) = (L7 (4~ ()] (E.10)

where the abridged notation A, = A(S,,) is used.

The handling of errors is not as trivial as in the case of the average of independent
random variables. In Markov chains, states are highly correlated. Let’s introduce the
autocorrelation time 74 that indicates the typical time over which configurations are
correlated. Shifting to a time representation with ¢ = 6t u where 0t = nry, 74 can be
defined as follows:

a = /OOO At oalt) (E.11)
i (AW)A) — (4)
) — 2
palt) = (A7) — (A7 (E.12)
Then (E.10) can be written:
(67 =3 () =) 1+ [T (1-D)eaw)  E13)
where ¢ty = Not. If ty > 74 then ((§A)?) reads:
L4 2714/0t ,, 5 5
() = (4)?) (B.14)

If 6t > 74 ie n > 74/70 (in other words measurements are carried out every n
elementary steps with n much larger than the autocorrelation for the observable A
acting on the states of the Markov chain), autocorrelations can be neglected, and the
error on the average can be estimated by the standard formula:

((6A)%) ~ (A%) — (A)? (E.15)
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On the contrary if 0t < 74 the error reads:
((0A4)%) = == ((A*) — (4)?) (E.16)

In this case the only relevant parameter is 74/ty which means either the length of
the Markov chain as to be improved or 74 reduced to reduce statistical error. At a
second-order transition this is a matter of concern as 74 diverges for several observables,
especially the order parameter. The divergence of 74 is called critical slowing-down.
In our simulation we have coped with critical slowing-down by increasing the length of
Markov chain, ie ty.

So far we have discussed how to estimate statistical error in a single finite-length
Markov chain. Another way to further improve data statistics is to carry out mea-
surements on several independent Markov chains, respecting the above considerations
for each of them. In fact it is a way to increase ¢ty in a reasonable manner regarding
available computing facilities. Note that the effective overall ¢y is larger than the sum
of the individual ones thanks to the independence between different Markov chains.
Results presented in this work are typically the average of ten to twenty independent
runs.
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Appendix F

French summary

Cette thése de doctorat est consacrée a l’étude d’un modéle paradigmatique de sys-
téme magnétique géométriquement frustré, a savoir le modéle antiferromagnétique de
Heisenberg sur réseau triangulaire et a ses variantes anisotropes — occasion de proposer
un diagramme complet du modeéle antiferromagnétique XY sur réseau triangualaire, en
relation avec le cas d’anisotropie de plan facile. Les cas d’anisotropie d’axe facile et
de plan facile sont envisagées pour une anisotropie mono-ionique (c¢f Ann. A) du fait
de sa pertinence expérimentale et de son caractére attendu plus altérant que celui de
[’anisotropie d’échange.

Le chapitre 2 est consacré a la détermination du diagramme de phase du modéle
antiferromagnétique de Heisenberg sur réseau triangulaire (Fig. 2.3). Il commence par
un rappel sur l’origine du modele de Heisenberg comme modéle de description de spins
localisés dans un systéme cristallin ; suit une discussion des états fondamentauzr du
modeéle de Heisenberg classique et l’introduction d’une paramétrisation de la structure
de spins, Eq. 2.6 (Sec. 2.1). Le comportement a champ nul qui n’a pas fait l’objet d’une
nouvelle €tude est discuté a travers une revue des résultats obtenus et [’explication
des lignes d’opposition existant entre les différents travauz et la prise de position en
faveur de interprétation proposée par Kawamura d’une transition de phase topologique
(Sec. 2.2). La nature des symétries gouvernant le comportement sous champ est ensuite
présentée, a savoir une symétrie composite S ® Zs, avec les implications en terme de
transitions de phases (Sec. 2.3). A faible champ, la symétrie discréte Zs est d’abord
brisée, laissant apparaOtre un ordre colinéaire, au cours d’une transition qui appartient
a la classe d’universalité du modeéle vectoriel de Potts a trois états ; la brisure de la
symétrie continue S* a ensuite lieu lors d’une transition de type BKT vers une phase
a ordre algébrique formée par la configuration a 120 degrés (voir Fig. 2.1). Un élément
mis en avant dans cette étude est qu’a contrario de ce qui se trouvait publié jusqu’alors
les deux lignes de transition a faible champ (brisure de Zsz et de S*) précédemment
discutées ne peuvent pas se terminer d un point multicritique a température finie en
champ nul mais doivent rejoindre le point (T,h) = (0,0) : cela résulte du caractére

89
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sans masse des phases a champ nul par contraste avec le caractére massique de la phase
de basse température a champ fini : un champ infinitésimal ne peut pas rendre le systeme
massique. A haut champ la brisure de symétrie est encore successive mais plus difficile
a mettre en évidence comme les transitions sont gouvernées par le comportement selon
la seule composante transverse pour stabiliser une structure planaire en forme de V
(Fig. 2.2). En Sec. 2.4 Uétude numérique réalisée pour construire le diagramme de
phase Fig. 2.3 est présentée. Cette présentation commence par une bréve esquisse de
Ualgorithme utilisé (cf Ann. E). Sont ensuite introduites les observables utilisées pour
localiser les transitions, a savoir la chaleur spécifique, le cumulant de Binder, un rapport
de fonction de corrélation de spin et la susceptibilité xq renormalisée selon Xg/LQ*” (cf
Ann. D). Enfin les résultats sont explicités.

Dans le chapitre 3 le diagramme de phase du modéle antiferromagnétique de Heisen-
berg sur réseau triangulaire avec anisotropie d’aze facile est déterminé (le diagramme
est calculE pour d = 0.2, Fig 3.8). Si la symétrie sous champ est identique a celle du
modéle isotrope, celle a champ nul est différente, a savoir S* ® Zg : les implications
en sont discutées en Sec. 3.1. Une présentation en champ moyen est ensuite proposée
(Sec. 8.2) pour son apport en termes de discussion des symétries, sa pertinence pour
les composés laminaires et ’intérét du développement d’une théorie correcte de champ
moyen dans l’espace réel en présence d’une anisotropie mono-ionique (cf Ann. B & C)
qui n’existe pas a ma connaissance dans la littérature et qui se révele utile par exem-
ple pour l’étude de certains systémes pyrochlores. La détermination du diagramme de
phase par une technique Monte Carlo est enfin présentée en deux temps : a champ
nul (Sec. 3.3) une succession de trois transitions est observée, les deux premiéres as-
sociées a la brisure de la symétrie discrete Zg avec une phase critique intermédiaire ;
sous champ (Sec. 3.4) les brisures de symétries sont similaires au cas isotrope. Dans
ce dernier cas certaines spécificités apparaissent cependant : la terminaison des lignes
de transition au point de transition en champ nul situés a température finie (auxr deux
points extrémauz en fait), la scission de la transition d température nulle au champ
de tiers d’atmantation permettant un élargissement de la zone d’existence de la phase
colinéaire autrement réduite a un point dans le cas isotrope ; la réduction du champ de
saturation.

Le sujet du chapitre 4 est la détermination du diagramme de phase du modéle anti-
ferromagnétique bidimensionnel sur réseau triangulaire : le modéle paradigmatique en
est le systeme de spins XY (Fig. 4.1); dans la continuité de [’étude proposée du modéle
de Heisenberg et de ses variantes anisotropes, le cas de ’anisotropie de plan facile est
aussi considérée. Apres lintroduction des spécificités du modéle XY a champ nul avec
I’émergence d’une symétrie chirale, la localisation des deux transitions correspondant a
la brisure successive de la symétrie chirale (Zy) puis de la symétrie continue (S*) est
présentée. La nature de la transition chirale est discutée et des arguments sont mis en
avant soutenant l'appartenance a la classe d’universalité d’Ising (Sec. 4.1). La déter-
mination des transitions sous champ est ensuite explicitée en deux temps. Tout d’abord
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le cas des champs faibles est étudié (Sec. 4.2) puis celui des champs forts (Sec. 4.3). A
faible champ [’existence d’un point multicritique auquel les lignes de transition de phase
s’inverse est mise en évidence : au-dessus de ce point la symétrie discréte composite
Zs @ Zs se brise successivement selon la translation du réseau (phase collinéaire) puis
la chiralité ; en-dessous de ce point une phase chirale intermédiaire désordonnée mag-
nétiquement apparait qui prolonge celle existant a champ nul ; les lignes de transitions
de phase rejoignent les transitions a champ nul, ce qui est une évidence pour la tran-
sition chirale, les transitions étant de méme nature. Dans le cas de la ligne associée a
la brisure de Zs cette terminaison est non seulement autorisée comme Zs est un sous-
groupe de S* mais encore attendue comme le développement de ['énergie libre des ondes
de spin a faible champ donne un terme dominant présentant une anisotropie d’ordre
trois qui est inessentielle (ou non pertinente) dans le voisinage d’une transition BKT. A
haut champ ’ordre se fait selon la seule composante transverse ce qui entraine la brisure
de la symétrie comme une symétrie Zg : ainsi une phase critique intermédiaire existe.
Pour compléter l’étude du modeéle de Heisenberg et de ses variantes anisotropes, le cas
du systeme avec anisotropie de plan facile qui appartient a la méme classe d’universalité
que le systeme XY est discuté en Sec. 4.4. Il n’y a pas de spécificité particuliere, si ce
n’est une contraction selon ['axe des températures, ce qui est attendu étant donné des
fluctuations de spins possibles selon la troisieme direction. Le diagramme est présenté
en Fig. 4.13 pour le cas d = —0.2.
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Abstract

This doctoral dissertation presents a thorough determination of the phase diagrams of classical Heisenberg triangular
antiferromagnet (HTAF) and its anisotropic variants based on theoretical and numerical analysis (Monte Carlo). At
finite-field HTAF exhibits a non-trivial interplay of discrete Zs symmetry and continuous S! symmetry. They are
successively broken (discrete then continuous) with distinct features at low and high fields: in the latter case the
ordering is along transverse direction; in the former case an intermediate collinear phase is stabilised before 120-degree
structure is. Due to zero-field behaviour, transition lines close at (T, h) = (0,0).

Single-ion anisotropy is here considered. Easy-axis HTAF for moderate anisotropy strength 0 < d < 1.5 possesses
76 ® ST symmetry at zero-field which induces triple BKT-like transitions. At finite field the symmetry is the same as for
HTAF: both thus share the same symmetry-breaking pattern. Yet specificities can be observed in the easy-axis system:
splitting of zero-temperature transition at one-third magnetisation plateau, reduction of the saturation field.

Easy-plane HTAF belongs to the class of universality of XY triangular antiferromagnet: it thus interesting to start
with this system. Zero-field behaviour results from the breaking of Zs ® S' symmetry, where the discrete component
is an emerging chiral symmetry. An intermediate magnetically chiral ordered phase exists which extends to finite-field
where the symmetry is Zo ® Z3. The upper limit of this intermediate phase along field axis is a multicritical point at
which transition lines are inverted. Above, the intermediate phase is a collinear phase. At high field the compound

symmetry is broken as a whole Zg.

Résumé

Cette thése de doctorat présente la détermination théorique et numérique (Monte Carlo) du diagramme de phase
du systéme classique antiferromagnétique de Heisenberg sur réseau triangulaire (HAFT) et de ses variantes anisotropes.
Sous champ HAFT présente une intrication non triviale des symétries discréte Z3 et continue S1. Elles sont succes-
stvement brisées (discréte puis continue) selon des modalités différentes a champ fort et modéré : dans ce cas-la l’ordre
a lieu selon la direction transverse ; dans ce cas-ci une phase colinéaire intermédiaire est stabilisée avant la phase a
120 degrés. Du fait du comportement a champ nul les lignes de transitions se terminent a (T, h) = (0,0).

L’anisotropie mono-ionique est ici considérée. HAFT avec anisotropie d’aze facile pour une anisotropie modérée,
0 < d < 1.5, posséde une symétrie Zg ® S & champ nul, qui induit une triple transition BKT. Sous champ, la symétrie
est identique & HAFT : les deux partagent donc le méme scénario de brisure de symétries. Le systéme anisotrope
présente toutefois des spécificités ; séparation de la transition d température nulle au champ de tiers d’aimantation,
réduction du champ de saturation.

HAFT avec anisotropie de plan facile appartient a la classe d’universalité de XY AFT il est donc intéressant de
commencer par ce systéme-ci. Le comportement d champ nul résulte de la symétrie Za @ S o la composante discréte
est une symétrie chirale émergente. Une phase intermédiaire chirale magnétiquement désordonnée est stabilisée ; elle
se prolonge sous champ, ou la symétrie est réduite a Zo @ Z3, jusqu’d un point multicritique auquel les transitions
s’inversent. Au-dessus de celui-ci la phase intermédiaire est colinéaire. Sous champ fort la symétrie composite se brise

comme une symétrie Le unique.

Keywords: statistical physics, frustrated magnetism, triangular antiferromagnet, Monte Carlo, over-relaxation



