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Préface

Les langages de programmation jouent un role important dans la science en général pas seulement
en informatique. Il existe plusieures types de langages de programmation comme des langages
imperatifs, foncionnels, orientés objet, etc. Dans le domaine de l'informatique théorique on
étudie entre autres des modeles formels de tels langages de programmation pour spécifier leurs
comportements, pour étudier leurs propriétés et afin de certifier leurs implémentations. Cette
étude se divise en 1’étude de la syntaxe et en I’étude de la sémantique. Pour pouvoir étudier la
sémantique, un modele formel de la syntaxe est prérequis. Cette étude est faite dans le cadre
des théories mathématiques. La présente theése est consacrée a I’étude syntactique dont le cadre
est la théorie de catégories.

Le modele formel le plus général d’un langage fonctionel est le Lambda—Calcul introduit par
A. Church dans les années 1930. L’idée de base est de considérer tout comme une fonction.
Il existe beaucoup de différentes extensions du Lambda—Calcul qui modélisent différents lan-
gages de programmation. Le Lambda—Calcul pur est présenté traditionellement comme suit.
Prenons un ensemble X des wvariables formelles et construisons ’ensemble des Lambda—termes

par les constructeurs application et abstraction. L’application est notée (—,—) et I’abstaction
par rapport a un variable x € X est notée Ax.—. Donc un Lambda—terme M sur X est de la
forme

M = z|(My My)|Az.M

L’abstraction Ax.— lie la variable z. Le Lambda—Calcul pur est I’exemple typique d’une syntaxe
avec liaison de variables, et il a été bien plus étudié par d’autres gens avant et apres, voir par
exemple [FPT99], [GP99], [HMO7].

Un exemple d'une syntaxe sans liaison de variables est le calcul propositionnel. On a le
droit d’utiliser la négation, conjonction, disjonction et I'implication pour former des nouveaux
propositions a partir d’un ensemble d’axiomes. D’autres exemples sont des structures algébriques
comme les monoides, les groupes et les anneaux. Cette sorte de syntaxe est consiérée en général
comme plus facile & modeliser, par exemple par des théories de Lawvere, introduites dans sa
these en 1963 (re-imprimée [Law04]) ou par la théorie des catégories, voir par exemple [Bor94b]
chapitre 3.

Toutes ces syntaxes sont non—typées. Il existe également des syntaxes typées — avec et sans
liaison de variables. Le cas avec liaison est considéré plus complexe. L’exemple standard d’une
syntaxe typée avec liaison de variables est le Lambda—Calcul simplement typé. Il est introduit
comme suit. D’abord on définit I’ensemble des types a partir d’'un ensemble de types de base
avec le constructeur binaire =. Etant donné une contexte I', c’est—a—dire un ensemble de couples
de la forme (z : t) qui signifie que la variable x est de type t, on a les régles de typage suivantes
pour les Lambda—termes

(x:t) el

I'kFax:t var

ix
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I'EM:s=t I'EN:s
(M N):t
Fo(x:s)FM:t

'FXXx:s.M:s=1t

app

abs

Dans le travail présent on s’occupe de deux différents points de vue de la syntaxe abstraite.
Tous les deux utilisent fortemenet le langage de la théorie des catégories. Le premier point de
vue est dans le sens de l'approche catégorique aux théories algébriques. L’article de base de
cet approche est celui de Fiore, Plotkin, Turi [FPT99]. Le cas simplement typé est obtenu avec
une modification légere du cas non—typé. Par simplement typé on veut dire que ’ensemble de
types est fixé et on s’intéresse principalement a la syntaxe sur les termes. Dans cette approche
la syntaxe est caracterisée comme 'algebre libre d’un certain foncteur.

Le deuxieéme point de vue est originaire de [HMO07]. La différence principale est qu'il est basé
sur la notion d’une monade et introduit la notion d’un module sur une monade qui généralise
la notion d’un module sur un monoide. Plus précisément, étant donné une monade R sur une
catégorie C, un R—module est un couple (M, o) o M est un foncteur de C dans D et o, I'action
de module, est une transformation naturelle M o R — M qui est compatible avec 'unité et
la multiplication de la monade R. La syntaxe est caracterisée comme l’objet initial dans la
catégorie de représentations associée a une signature. Ces représentations sont des familles de
morphismes de modules. Ce point de vue couvre les cas non—typés et simplement typés. On
peut ’étendre & la syntaxe typée. Par la syntaxe typée on veut dire qu’on considere la syntaxe
sur deux niveaux : sur les types et les termes et qui dépendent 'une de 'autre. Au contraire
au cas simplement typé ou la syntaxe des types est indépendant de celle de termes et peut étre
traité comme une syntaxe non—typée.

Cette these apporte deux contributions. Elle étudie la rélation entre les deux approches
mentionnées précédemment dans les cas non—typé et simplement typé. En plus ’approche
monadique est développée pour couvrir une classe plus large de signatures contenant des types
<légerement> dépendants et des liaisons de variables.

L’organisation de la these est comme suit. Le chapitre 2 rappelle des notions de la théorie
de catégories qui sont utiles pour les chapitres suivants. Dans le chapitre 3 on décrit la partie
pertinante de la théorie de monades. Le chapitre 4 détaille la rélation entre les deux approches
dans le cas non—typé. Les deux chapitres suivants présentent les deux approches dans le cas
simplement typé et ensuite le chapitre 7 décrit ’analogue au chapitre 4 pour le cas simplement
typé. Les deux derniers chapitres 8 et 9 contiennent I’approche monadique pour des syntaxes
typées, d’abord sans liaison mais avec quantification sur des variables de type et finalement
I’exemple du Lambda—Calcul typé comme exemple d’une syntaxe typée avec liaison de variables.



Chapter 1

Introduction

Programming languages play an important role in many different areas of science, not only
in computer science. There are various types of programming languages such as imperative,
functional, object oriented, etc. In theoretical computer science one studies among other things
formal models of such existing programming languages in order to specify their behaviour, to
investigate their properties and to allow certification of their implementations. This study splits
into syntax and semantics. In order to study semantics one needs an appropriate formal model
of the syntax. This PhD thesis is dealing with the syntactical part. The study of syntax and
its formal model is done in the context of mathematical theories. For the present work the
mathematical tools are the ones provided by category theory.

The most general formal model of a functional programming language is the Lambda Calculus
introduced by A. Church in the 1930’s. The basic idea is to consider everything as a function.
There exist many extensions of the Lambda Calculus that represent various sorts of programming
languages. Traditionally the pure Lambda Calculus is presented the following way. One takes a
set X of formal variables and builds then inductively the set of Lambda—terms with the aid of
the application and abstraction constructors. The application constructor is written (— —) and
the abstraction with respect to a variable x € X is written Axz.—. So a Lambda-term M on X
is of the form

M .= x|(M1 M2)|)\1‘M

The abstraction Az.— performs binding of the variable x. The pure Lambda Calculus being the
standard example of a syntax with variable binding, it has gained much attention in research,
just to mention a few, for example in [FPT99], [GP99], [HMO7].

Abstract syntax without variable binding is given for example by propositional calculus,
where one is allowed to use negation, conjunction, disjunction and implication to form new propo-
sitions from a given set of axioms. Other examples are algebraic structures such as monoids,
groups or rings. This kind of syntax is generally considered easier to handle. That is, it can
be described by mathematical theories, such as Lawvere Theories introduced in his thesis in
the nineteen-sixties (reprinted version [Law04]) or by means of category theory as explained in
[Bor94b] chapter 3.

All these syntaxes mentioned above are single—sorted. That means that all the syntactically
correct terms are of the same type. There exist also multi—sorted syntaxes — with variable
binding and without variable binding. Again the case with variable binding is generally consid-
ered to be more complex. The standard example of such a multi—sorted syntax with variable
binding is the simply typed Lambda Calculus. It can be presented the following way. Let T be
an inductive set of types obtained by a set of base types and a binary constructor =. Given a
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context I, that is, a set of pairs of the form (z : t), which stand for typed variables, one has the
following typing rules for Lambda—terms

(x:t) el
~—— var
I'kFax:t
I'EM:s=t I'EN:s
a
TF(MN):t pp
T tS)F Mt
(2 18) abs

P'FXXe:s.M:s=1t

The present work is dealing mainly with two points of view of abstract syntax with variable
binding. Both make extensive use of category theory. The first point of view is in the spirit of
the category theoretic approach to algebraic theories. The seminal paper for untyped abstract
syntax with variable binding is the one by Fiore, Plotkin, Turi [FPT99]. As the authors mention,
the simply typed case can be developed along those lines. By simply typed we mean that the
set of types is considered as a fixed set and we provide syntax of typed terms. In this approach
the syntax associated to a signature is characterized as the free algebra of a certain signature
functor. Throughout this work we refer to this approach as the presheaf approach.

The other point of view is a variation of the first one and originates in [HMO07]. The main
difference to the former approach is that it is strongly based on monads and introduces modules
on monads as the main tool for describing syntax, so we refer to this approach as the monadic
approach. This notion of module generalizes the well-known notion of module on a monoid.
More precisely given a monad R on a category C, an R—module is a pair (M, o) where M is a
functor C — D and o, the action, is a natural transformation MoR — M satisfying compatibility
conditions with the unit and multiplication of R. Syntax as a monad is characterized as the
initial object in the category of representations for a signature. These so—called representations
are collections of module morphisms. This point of view covers the untyped and simply typed
cases. It can be adapted to typed syntax. By typed syntax we mean that we have syntax on two
levels, on types and on terms which depend on each other. In the simply typed case however,
the syntax of types is independent and can be handled as an untyped syntax before coming to
the actual point of interest, the syntax of terms.

This PhD thesis has two main contributions. On the one hand the relationship between the
two mentioned approaches in the untyped and simply typed cases is examined and described
in detail. On the other hand the monadic approach is developed in order to cover a larger
class of syntaxes. At first we consider typed signatures containing quantification over types but
without variable binding. We define a notion of arity and signature in four steps. A theorem
of existing initial representations is formulated and proved. Then we consider an example of
such a signature and add a binding signature on top in order to prove that the typed Lambda
Calculus is the initial object of a certain category of representations.

1.1 Untyped syntax with variable binding

We describe briefly the two approaches originating in [FPT99] and in [HMO7]. Both have the
same underlying notion of binding signature, which is a collection of binding arities. A binding
arity is a finite sequence of natural numbers (ni,...,n,). Intuitively it stands for an operator
of p arguments that binds n; variables in its j-th argument.
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On the one hand the presheaf approach is based on the functor category [IF, Set] from finite
sets to sets. It contains the object V' = F(1,—) : F < Set (V for variables) which induces an
endofunctor ¢§ : [F,Set] — [F,Set], X — X" = X(— + 1). By iterating &, one associates to a
binding signature the signature endofunctor ¥ : [[F, Set] — [IF, Set]

XY 61X x5 X
i€l
where [ is the index set of arities contained in the signature. One is interested in TV the free
Y-algebra on the functor V' of [F,Set], which is the set of terms modulo a—conversion. By
free Y—algebra on a functor we mean the image of the left adjoint of the forgetful functor ¥—
alg — [F, Set]. This adjunction induces a monad 7" on [F, Set], that assigns to a functor X the
free ¥—-algebra on X. Moreover the category [F, Set] is monoidal with respect to the following
substitution monoidal product

k
XeY(n)= / X(k) x (Y(n))*

and the unit being V. The signature endofunctor admits a “pointed” strength sxy : X(X)eY —
Y (X oY) which extends to a strength txy : T(X) @Y — T'(X oY) for the induced monad 7.
Simultaneous substitution is given by a monoid in this monoidal category. The free Y—-algebra
on V is a monoid

TV eTV - T(VeTV)XTTV TV

One defines then the category of ¥—monoids, whose objects are ¥—algebras 3(P) — P equipped
with a monoidal structure and the following compatibility condition of these two structures
holds, that is, the following diagram commutes

S(P)eP——>PeP (1.1)
(

|

S(P e P)
|

S(P)

P

The main result is that T’V is initial in the category of ¥—monoids.
On the other hand the monadic approach makes only use of the category of sets. An arity
(n1,...,np) is represented in a monad R on Set by a morphism of R-modules

RM) »  x Rw 4 R

where R(™ stands for the so—called n-th derived module. The derived module of an R—module
M 1is defined on objects by
M :A— M(A+1)

and the R—action M'RA — M'A on a set A is defined by the following composite
M(RA+1) - MR(A+1) > M(A+1)

We remark that the first arrow comes from a “pointed” strength for the endofunctor (—) :
[Set, Set] — [Set, Set]. It extends to a “pointed” strength for the endofunctor (—)(™) x ... x
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(—)("P). Given a signature, one associates to it the category of representations whose objects
are monads provided with a representation for each arity. The main theorem states that the
category of representations has an initial object. It is as expected the set of terms modulo
a—conversion.

Chapter 4 contains the relationship between the two approaches. There is a monoidal ad-
junction between the monoidal categories [F, Set] and [Set, Set]. The left adjoint ¢ : [F, Set] —
[Set, Set] is given by the left Kan extension along V' or equivalently by the coend formula

keF
U(X)(A) = X (k) x A

and the right adjoint k : [Set,Set] — [F,Set] is given by precomposition by V. Since the
adjunction ¢ - k is monoidal, it maps monoids to monoids. Moreover we consider the “large”
categories of modules, that is (right) R-modules over monoids on [IF, Set] and on [Set, Set] in
the traditional sense. The monoidal adjunction maps modules to modules too. So we have
the two induced adjunctions between the categories of monoids on [F, Set] and [Set, Set], ¢ -
k : Mon([Set, Set]) — Mon([F, Set]) and the categories of modules ¢ 4 &k : Mod([Set, Set]) —
Mod([F, Set]). Given a signature .S, it induces a strong signature endofunctor 3, which permits
to define a P-module ¥(P) for a monoid P by

Y(P)eP — X(PeP)— X(P)

and the free Y—algebra structural map ¥(P) — P can be viewed as a P-module morphism by
diagram (1.1). The signature S also induces an R—module morphism M (R) — R for a given
monoid R on [Set, Set] with respect to composition of functors, that is, a monad on Set. The
link between ¥ and M is then given by the following arrows

a0 — Ml B:Sk — kM

which are mates under the adjunction ¢ 4 k : [Set, Set] — [F, Set]. They induce morphisms of
modules ap : £3X(P) - M({P) and fgr : X(kR) — kM(R). In fact ap is an isomorphism of
modules. With the aid of these two module morphisms, we deduce the universal property of one
approach starting with the universal property of the other one in the end of chapter 4.

1.2 Simply typed syntax with variable binding

Chapter 5 describes the presheaf approach for simply typed abstract syntax with variable binding
and chapter 6 does so for the monadic approach. They are both analogous to the untyped case.
For a fixed set T of types, we take an arity to be a collection of types written

(tl,l ce tl,ml)tl, ey (tn,l . tn,mn)tn — 1y

which stands for a binding operator with n arguments that binds m; variables of types ¢;1,...,tjm;
in its j-th argument of type t;. It yields a term of type to.

The presheaf approach is based on the functor category [F | 7, Set]” of 7-indexed presheaves
from F | 7 (finite sets over T) to sets. We write (¢) for the object 1 — 7,1 — t of F | T.
The category [F | 7,Set]” contains the collection of variables given by the Yoneda functor
Vi=Y{t)=F | T({t),—) : F | T — Set which induces endofunctors (—)¥{*) on [F | T, Set] and
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[FL7T,Set]”, X — XY® = X(— 4+ (t)). They can be provided with a “pointed” strength. One
associates to a binding signature the signature endofunctor ¥ : [F | T, Set]” — [F | T, Set]”

P V(R et )
(XJuer = > [[ X 7™

kel, i=1

where I, = {k €I ]t[()k) = u}. One is interested as before in the free Y¥-algebras. The forgetful
functor Y-alg — [F | 7, Set]” has a left adjoint, that assigns to an X € [F | T, Set]” the free
Y—algebra on X. This adjunction induces a monad 7T'. The free ¥—algebra T')Y on the functor
Yof [Fl]T, Set]T stands for the collection of typed terms modulo a—conversion. Moreover the
category [F | T, Set]” is monoidal with respect to the following substitution monoidal product

A -1
(X ®Y)(I") :/ Xi(A) x H Y (D)2 @)

and the unit being ). The signature endofunctor admits a “pointed” strength sxy : X(X)®Y —
(X ® Y) which comes from the “pointed” strength for (—)Y. It extends to a strength
txy :T(X)®Y = T(X ®Y) for the induced monad 7'. Simultaneous substitution is given by
a monoid in this monoidal category. The free Y—algebra on ) is a monoid

TYQTY -TQYTY)=2TTY - TY

The main result is again that 7)) is initial in the category of ¥—monoids.
In the monadic approach one defines a representation of an arity

(tl,l - tl,ml )tl, RN (tn,l o tn,mn)tn — 1p
in a monad R on Set /7. It is a morphism of R—modules of type
(8t1,m1 . atl,lR)tl X ... X (8tmmn . 8tn71R)tn — Rt()

where 0, R stands for the derived module with respect to u € 7. The derived module of an
R—module M with respect to u € T is defined on objects by

8uM : T — M(T + (u))

and the R-action 9, M RI" — 0,,MT on an object I € Set /T is defined by the following com-
posite
M(RT + (u)) - MR(I' + (u)) = M (I + (u))

We point out that the first arrow comes from a “pointed” strength 0, M o R — 9, (M o R) for 0,
derivation with respect to u. Moreover this “pointed” strength extends to one for the functor
(Ot1my -+ Oti =)ty X oo X (Ot -+ Oty — )1, Which is the underlying functor of the domain
module. A new sort of modules is used in the representation of an arity, the fiber modules. The
fiber module of an R—module M with respect to v € T is defined as follows on objects

My (L) = (MT) ™" (u)

The main theorem states that for a given signature, the syntax of typed terms is the initial
object in the category of representations.
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Chapter 7 details the relationship between the two approaches in the simply typed case.
There is an adjunction ¢ - k : [Set /T, Set] — [F | T, Set] and again a monoidal adjunction £ 4 k :
[Set /T,Set /T] — [F | T,Set]” and thus an induced adjunction £ 4 k : Mon([Set /7T, Set /T]) —
Mon([F | T,Set]”). Let S = (a;)ies be a signature. We write () for the piece of the binding
signature endofunctor corresponding to the arity o; and M for the underlying functor of the
domain module of the corresponding representation. We define then two morphisms of strengths
for each arity a; of S

a® : MOy — 50 b 2Ok - kM@

where @) is an isomorphism. With the aid of (¥ and b we construct the adjunction L
K : Rep(S) — ¥—Mon where ¥-Mon is the category of ¥-monoids for the signature functor
Y. associated to S and Rep(S) the category of representations of S. We cannot develop this
comparison further in the simply typed case because the representations in the monadic approach
cannot be “glued” together into one module. It would create a dependency of the potential
domain module from the codomain module.

1.3 Typed syntax

The chapter 8 develops a theory for typed syntax without variable binding and with quantifica-
tion over types. We mix arities of type constructors and term constructors in a signature and
we allow dependencies between the constructors. We mean by dependency of constructors that
the type of an argument of a constructor can depend on another constructor. For example the
zero and succ constructors of natural numbers depend on the type constructor nat of natural
numbers. So naturally one is led to a stratified signature in this sense which implies a compli-
cated notion of signature and a definition by recursion. Our proposed solution goes as follows
and tries to avoid such a recursive definition.

The base category for this setting is the category of arrows and commutative squares on
sets, TEns = [2, Set]. At first we define a notion of arity and signature on an object C': C — C
of TEns. An arity is a non—empty finite list of elements of C or an additional 1. We write C'
for C' + {L}. Intuitively this list stands for the types of each argument of the constructor and
the last one for the type of the result. The additional L is used for a type argument. Given an
index set I, an I-signature on an object of TEns is a collection of arities indexed by I. There is
a category Sign(I) whose objects are pairs (C,S) where C' € TEns and S is an [-signature on
C. We introduce a notion of endorepresentation of an arity a : r — C which is a map of type

r—1

[ clai = Cla(r)]

j=1
where we write

oy iftecC
C[t]'_{C’ ift=1

An [-endorepresentation consists of an [-signature S together with an endorepresentation of
each arity. We write EndRep(I) for the category of I-endorepresentations and morphisms of
I-endorepresentations. Furthermore there is a forgetful functor EndRep(I) — Sign(I). We
show that it has a left adjoint. This left adjoint assigns to an I-signature on C' its initial
representation. In order to define this adjoint and the initial representations, we define first a
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category of representations for a given I-signature S and we show that it has an initial object
C(S).

In order to model quantification over types, we introduce a notion of arity with degree where
arities of degree 0 are the ones introduced before. The basic idea is that a constructor using
quantification over types can be thought of as a constructor depending on additional constructors
representing the type variables. The degree is then just the number of these additional “local”
type variables. We think that this procedure of quantification over types could be easily adapted
to quantification over terms. So the next step is to define arities and signatures of higher degree
on an object C' € TEns. An arity of degree d is a map r — C'(d) where d stands for the signature

consisting of d equal arities 1 — L. For a given weighted set I, that is, a set I together with
a weight map d : I — N, we define a category of I-signatures Sign(/) of higher degree with a
forgetful functor to TEns and a category of I-endorepresentations EndRep(/). Again we show
that there is an adjunction between Sign(/) and EndRep(/), with the right adjoint being the
forgetful EndRep(I) — Sign(I).

Next we redefine all the above mentioned notions on a category of I’-endorepresentations
& = EndRep(I’) for a given weighted set I’. As mentioned above it comes equipped with a
forgetful functor to Sign(I’) which can be composed with another forgetful functor Sign(I’") —
TEns to obtain U : & — TEns. We define an arity on a I' = (C, 5, p') € £ and a signature on
I'. We do this in both cases of degree 0 and of higher degree. As before, in order to define the
case of higher degree, we have to consider first signatures of degree 0.

An arity of degree 0 on an object I' € £ is a : r — U(I"). Let I be a set. An I-signature

on I' of degree 0 is a collection of arities on I' of degree 0 indexed by I. Similarly as before
we define a category of [-signatures Signg([) with a forgetful functor to TEns and a category
of I-endorepresentations with a forgetful functor to Signg(I). Again our theorems state that
the forgetful functor EndRepg () — Signg (1) has a left adjoint and that there exists an initial
object T'(S) in the category of representations of a given I-signature S on I € £. The crucial
point in the construction of the initial object is that one has to add constructions by arities of
S’ that use terms constructed by S as arguments.

Now we are in a position to define signatures of higher degrees. Let d € N. An arity of degree
dis a:r— U(I'(d)), where as before d stands for the signature of degree 0 consisting of d equal

arities 1 — L. For a given weighted set I, we define a category of I-signatures Signg(I) of
higher degree and a category of I—endorepresentations EndRepg (). Again we show that there
is an adjunction between Signg(I) and EndRepg(/) with the right adjoint being the forgetful
EndRepg (I) — Signg(1).

Then for the next levels of signature, instead of defining arities and signatures on objects of
EndRepg(I), we can re-use the above definitions since EndRepg(I) = EndRep(I’ + I). So we
avoided a notion of stratified signature.

Chapter 9 treats the example of the typed Lambda Calculus. It involves variable binding, so
the results of chapter 8 do not cover this case. We do not develop a general theory in this case,
we only define a notion of arity and signature on top of an example of signature as in chapter
8. We think that this procedure can be generalised to any other signature with variable binding
on top of any signature of chapter 8.

The base signature for the typed Lambda Calculus is an I-signature on 0 — 0 of TEns
consisting of I = 1,d = 0 and the only arity 3 — 0, 1,2,3 — L. The category of representations
of this signature is written TEns™. An object is a pair (I', =) where I' € TEns and =: I'xI" — T.
Then on this category we (re-)define derived modules and fibre modules which are very similar
to the simply typed case. Then we define a notion of arity on TEns™ and we describe the
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signature of the typed Lambda Calculus. Finally we prove that the typed Lambda Calculus is
initial in the category of representations corresponding to its signature.

1.4 Synopsis

For the present work we suppose a certain familiarity with category theory and basic notions
such as categories, functors, natural transformations, monads, (co)products and adjunctions. It
is organised as follows. In chapter 2 we give a short recapitulation of left Kan extensions and
coends. The latter notion is extensively used in the later chapters.

In chapter 3 we summarise relevant parts of the theory of monads. We describe the construc-
tion of the free monad on an endofunctor by initial algebras of related endofunctors. Moreover
we recall methods of computing those initial algebras.

Chapter 4 details the link between the two approaches for untyped syntax with variable
binding. Chapter 5 presents the simply typed presheaf approach and chapter 6 the simply
typed monadic approach. The relationship between these two is presented in chapter 7.

Chapter 8 and 9 develop the typed monadic approach.



Chapter 2

(Generalities

2.1 Left Kan extensions
We recall some basic definitions and facts about left Kan extensions that will be used later.

Definition 2.1.1 (left Kan extension) Let A, B andC be three categories and F' : A — C and
G : A — B two functors. The left Kan extension of F' along G is given by the pair (Lang(F), )
where Lang (F) is a functor B — C and o : F = Lang(F)oG a natural transformation, satisfying
the following universal property. For all other pair (X, x) where X : B—C and x : F = X oG,
there exists a unique arrow u : Lang(F) = X such that x = (uo G) o av.

A—7F B
F Lang (F) :!
/%
C

Suppose that A and B are small. Then the left Kan extension Lang exists for all F' € [A, (]
if and only if the functor — o G : [B,C] — [A,C] precomposition by G has a left adjoint as
explained in [Bén00].

Theorem 2.1.2 ([Bor94a] 3.7.2) With the notations of definition 2.1.1, if A is small and C
cocomplete, then the left Kan extension Lang(G) ezists and is given for an object B € B by a
colimit, more precisely by

La‘nG(F)(B) = COlim(A,g:GA%B) F(A)

By this colim(4 g.ca—p) F'(A) we take the colimit of the diagram given by the category of
elements of the endofunctor B(G—, B) : A — Set.

Theorem 2.1.3 ([Bor94a] 3.7.3) With the notations of definition 2.1.1, if A is small and C
cocomplete and G full and faithful, then « is a natural isomorphism.

In the following we consider left Kan extensions along the inclusion functor U : F — Set. It
is full and faithful.
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Let us consider the left Kan extension of U along U. By definition we have a natural
isomorphism U = Lany (U) o U. It implies that Lang (U) = Idy.

Let X € [[F,Set] and F € [Set,Set]. Now consider the left Kan extension along U of the
composite F'X.

Set

mﬁ

Lang (X)

Set 7 |Lanp(Fx)

Set

We have a natural isomorphism 3 : X = Lany(X) o U and a natural isomorphism Fj: FX =
F oLany(F) o U. By universal property of (Lany(FX),«a : FX = Lany(FX) o U), there is a
unique arrow h : Lany (FX) = F oLany (F) such that '8 = (hU) o a. Moreover by proposition
3.7.4 of [Bor94a] if F is a left adjoint, then A is a natural isomorphism.

2.2 Coends

A clean introduction to coends can be found in the lecture notes [Win05]. We give the essential
extracts concerning coends.

Definition 2.2.4 (dinatural transformation) Let C,D be two categories and F,G : C°P x
C — D two bifunctors. A dinatural transformation o« : F' — G is a collection of arrows
ac @ F(C,C) — G(C,C) for all C € C such that the following diagram commutes for all
arrow f: C — D in C.

F(C,C) %~ G(C,C)

FW %f)

F(D,C) G(C,D)

Fm %:D)

Definition 2.2.5 (wedge) Let C,D be two categories, D € D and F : C°® xC — D a bifunctor.
A wedge from F to D is a dinatural transformation o : F' — AD where AD is the constant
bifunctor C°P x C — D that assigns D to each pair (C',C).
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Explicitly a wedge from F' to D is a collection of arrows ac : F(C,C) — D such that the
following diagram commutes for all arrow f: A — B in C.

F(A,4) (2.1)

F(B,A) D

F(B,B

~—

We are going to refer to this diagram (2.1) as the wedge condition.

Definition 2.2.6 (coend) Let C,D be two categories, D € D and F : C°? xC — D a bifunctor.
The coend of F is a pair (K, (ac)cec) consisting of an object K of D and a wedge (a¢)cec
from F to K such that for all pair (X, (xc)cec) there is a unique arrow u : K — X such that
Xc =uoac.

We write [ “F (C,C) for the object K. Therefore for all arrow f: C' — D in C we have the
following commutative diagram

(C,0)

F XC
FW m\

F(D,C) [F(C,0) =X

F;;b\\ //6;7
F

(D, D) *

So to give an arrow [ =3 (C,C) — X is by universal property of the coend equivalent to give
a wedge from F' to X. That is, a collection of arrows x¢ : F(C,C) — X satisfying the wedge
condition (2.1).

In the following we often use the following reasoning. If we wish to show that two elements
a € F(A,A) and b € F(B, B) are sent by the corresponding coprojections to the same element
in fc F(C,C), it suffices to find an arrow h : A — B and an element = € F(B, A) such that
F(h,ida)(z) = a and F(idp, h)(z) = b. Since the coprojections of fC F(C,C) satisfy the wedge
condition, the following diagram commutes

F(A, A)
F(h,iy7
F(B, A) JCF(C,0)
F(idg,h) /
F(

B, B)

and this shows that a and b are identical.

To finish this section we recall the Fubini theorem for coends, a theorem that will be used
later on.
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Theorem 2.2.7 ([Win05] or [ML98] IX. 8) Let A, B and D be categories and F : AP x
A x B°° x B — D such that fA F(A, A, B, B') exists for all B,B' € B and fB F(A, A, B,B)
exists for all A, A’ € A then

F(A A, B, ’ AF(A,A,B,B)
/A/B (AABB)—>//

is a natural isomorphism and if one side exists so does the other.

2.3 Left Kan extensions as Coends

We recall that the left Kan extension can be expressed as a coend formula. This is explained in
[ML98], chapter X section 4. The main theorem is the following

Theorem 2.3.8 ([ML98] X.4.1) Let A, B and C be three categories and F : A — C and
G : A — B two functors such that for all A, A’ € A and all B € B the copowers B(GA, B)e F A’
exist in C, then F has a left Kan extension Lang(F') along G if for every B € B the following
coend exists, and when this is the case, the object functor of Lang(F') is this coend

A
Lang(F)(B) :/ B(GA,B)e FA

If we consider the left Kan extension of X along U : F — Set, then we have the follwing
formula

nel nel
Lang (X)(A) = / Set(U(n), A) x X(n) = / X(n) x A"

since the copower in Set is given by the product.

2.4 Ends

The dual notion of coend is the notion of end.

Let C, D be two categories, D € D and F : C°°? x C — D a bifunctor. A wedge from D to
F' is a dinatural transformation o : AD — F where AD is the constant bifunctor C°? x C — D
that assigns D to each pair (C’,C).

So explicitly a wedge from D to F' is a collection of arrows a¢ : D — F(C, C) such that the
following diagram commutes for all arrow f: A — B in C.

F(A, A)
D F(A, B)
k T (fidg)
F(B,B)

Definition 2.4.9 (end) Let C,D be two categories, D € D and F : C°? x C — D a bifunctor.
The end of F is a pair (E,(ac)cec) consisting of an object E of D and a wedge (ac)cec
from E to F such that for all pair (X, (xc)cec) there is a unique arrow u : X — E such that

XC = Q¢ o u.
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We write usually |, o F(C,C) for E. We recall the Naturality Formula and the Fubini Formula
for Ends.

Proposition 2.4.10 ([Win05]) Let C,D be two categories and F,G : C — D be two functors.
Then

C.DI(F.G) = /C D(F(C),G(C))

Theorem 2.4.11 ([Win05]) Let A, B and D be categories and F : A°® x A x B°® x B — D
such that [, F(A, A, B, B') exists for all B, B' € B and [, F(A, A, B, B) exists for all A, A’ € A

then
//F(A,A,B,B)—>//F(A,A,B,B)
AJB BJA

is a natural isomorphism and if one side exists so does the other.
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Chapter 3

Monads and their algebras

3.1 Free monads

Let C be a category and G an endofunctor on C. Let us suppose that C is such that initial
algebras for all functors Gx of the form Y — Gx(Y) = X + G(Y) with X € C exist.

Notation 3.1.12 We write T for the functor C — C assigning X € C the initial Gx—algebra.

So T'X is the initial Gx—algebra. By the following lemma due to Lambek the structural map
of the initial algebra is an isomorphism.

Lemma 3.1.13 (Lambek) Let C be a category and F : C — C. The structural morphism a of
the initial F—-algebra (A,a: FA — A) is an isomorphism (if it exists).

Proof. The pair (FA,Fa: FFA — FA) is as well an F-algebra. By initiality of (A4, a),
there exists a unique morphism of F—algebras h: A — F'A such that

FA-L"% pRA
T
A——FA

commutes. Now let us consider the following diagram

rA-—t ppates pa
T
A——=FA——A

The composite a o h along the bottom is identity on A by initiality of (A, a), so the composite
Fa o Fh along the top is identity on FFA. By commutativity of the left-hand square hoa =
Fao Fh, so hoa=idp4 which concludes the proof. O

Proposition 3.1.14 The functor T can be provided with the structure of a monad on C.

15
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Proof. Since T'X is the initial Gx—algebra, we write for the following isomorphism

nx,ox]: X +GTX = TX

Functoriality of T
To define the image of an arrow f : X — Y under T, we provide TY with a Gx—algebra
structure. By initiality of T X, we take T'f to be the unique morphism of G x—algebras from T'X
to TY . Indeed we have [ny o f,oy]: X + GTY — TY.

Unit of T
We define the unit 1 of T" to be nx for all X € C. To check the naturality of n in X, we consider
the definition of the arrow T'f for a given f: X — Y in C.

id GT
X +GTx -2 vy ary
J/ f+id
nx.x] Y + GTY
J{[ny,oyl
TX = TY

This diagram implies the commutativity of the two following diagrams

GTf
X GTX —=GTY
X L
nx gx gy
TXTf>TY TXT>TY

which prove the naturality of n and o.

Multiplication of T
To define the composition px : 72X — TX of T for all X € C, we provide TX with a Gpx—
algebra structure. Then by initiality of TT'X, we have a unique morphism T7TX — T X which
we take for px. The arrow TX + GTX — TX is given by [idrx, ox].

Next we check the naturality of u. Let f: X — Y be an arrow in C. We have to check the
commutativity of the following square.

TTX X TX

TTfi in

TTY N_Y> TY

We provide TY with a Gpx—algebra structure and show that T'f and uy are morphisms of Gpx—
algebras. Since pux and TT f are by definition morphisms of Grx—algebras, we can conclude by
initiality of TTX that uy oTTf and T f o ux are equal.

o TY is a Grx—algebra:

[id,oy]

TX +ery Y 1y 4 gry 14y
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e T'f is a morphism of Grx—algebras:

id +GT
TX + 67X —M x4 ary
J{T F+id
fid.ox] TY + GTY
J/[idJY]
TX = TY

This diagram commutes by naturality of o.

e y is a morphism of Grx—algebras: We have to check the commutativity of the following
diagram

id G
TX + GTTY 25 ry 4 GTY

Tf‘HdGTTYi J{T f+id
idpy +G
TY + GTTY 2y L ary
[W%YJTY]i l[idTYvo'Y}

TTY e TY

The top square commutes obviously, the bottom square commutes in its first component
by one of the monad axioms and in its second component by definition of py being a
morphism of Gry—algebras.

Monad axioms

See appendix A.1.
Od

Notation 3.1.15 We write End(C) for the category of endofunctors on C and Mon(C) for the
category of monads on C. We write ¥ for the forgetful functor Mon(C) — End(C) which forgets
the monad structure: (T,n,u) — T.

Proposition 3.1.16 The forgetful functor ¥ : Mone — End¢ has a left adjoint ® : End(C) —
Mon(C). It is given on objects by the construction of proposition 3.1.14 and its proof.

Proof. See appendix A.2. a

3.2 Universal property for free monads

The construction of T" admits a natural transformation G — T. Its component at X € C is

given by GX EH—X—) GTX Z5 TX. Tt is natural in X since n and o both are.
Consider the following category. Its objects are pairs (M, p) where M is a monad on C and
p a natural transformation G — M. Its arrows are morphisms of monads ¢ : M — N such that

G

v\
p N

M
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commutes. We write Mon® for this category.
Proposition 3.2.17 T is the initial object in the category Mon®.

Proof. We have seen that (7,0 o Gn) is an object in Mon®. Let (M, p) be another object
of Mon®. We construct a monad morphism ¢ : T — M componentwise. It will be unique
by initiality of T'X for each X € C. We provide M X with a GGx—algebra structure and by
initiality of T X we take the unique morphism of Gx—algebras to be ¢x. Indeed we have

idx +pmx ¥ u¥
X+GMX ———= X+ MMX MX.
For the remaining verifications of naturality, monad morphism and morphism of Mon®, see
appendix A.3. O

In [BWS85] chapter 9 section 4 this property of T proved in 3.2.17 serves as the definition of
the free monad generated by the endofunctor G.

3.3 Free algebras and initial algebras

Let C be a category and GG an endofunctor on C. We write G—alg for the category of G-algebras.
Explicitly objects are pairs (C,c¢) where C € C and ¢ : GC — C'is a map in C. A morphism
from (C, ¢) to (D,d) in G-alg is an arrow f : C — D of C such that

cf
cc-ap
C—>D

commutes. The category of G—algebras comes equipped with a forgetful functor U : G-alg — C,
(C,c)— C.

Suppose this forgetful functor U has a left adjoint F' : C — G-alg. Then this adjunction
induces a monad on C. Moreover this monad is the free monad generated by G by the following
theorem 4.4 of chapter 9 in [BW85].

Theorem 3.3.18 ([BW85] 9.4.4) If U : G-alg — C has a left adjoint F', then the resulting
monad is the free monad generated by G.

The inverse implication is true if C is complete. And the categories of G-algebras and
T—algebras are equivalent. Let us recall that an algebra for a monad 7" on C is a pair (C,c)
consisting of an object C € C and an arrow ¢ : TC' — C such that the following diagrams
commute.

TTC L5 70 c 1

SN
ide

TC C C

C

A morphism of T—agebras from (C,c) to (D, d) is an arrow f : C — D in C such that
Tf
T7C——=1TD

cl &

C—5—P
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commutes. T-algebras and morphisms of T—algebras form a category T—Alg, the Eilenberg—
Moore category.

Proposition 3.3.19 ([BW85] 9.4.5) Let C be a complete category and G an endofunctor on C
which generates a free monad T'. Then U : G-alg — C has a left adjoint and T—-Alg is equivalent
to G-alg.

The free monad generated by G exists if U has a left adjoint F'. This left adjoint can be
computed as the colimit of a countable chain.

Proposition 3.3.20 ([BW85] 9.4.7) Let C be complete and have finite colimits and colimits
of countable chains. Let G be an endofunctor on C which commutes with colimits of countable
chains. Then G generates a free monad.

In the proof of this proposition, the free G—algebra is computed as the colimit of a countable
chain. Let X € C. We define the countable chain

Xo X3 Xo

and by the proof of the above proposition the underlying object of the free G-algebra on X is
given by F(X) = colim X,,. We set Xy := X and X; := X + G(X). The objects X; for i > 2
are defined by the following diagrams

Ge Ge e
G(Xo) 2% G(X1) S G(x,) B2

qi @i %i
Xo Xq Xo X3

eo el €2 €3

where each square

Ge;_1
G(Xi—1) — G(Xy)

Cii lcz?kl

X Xit1

is a pushout square. Remark that these squares are of the form

A—L-p
S
A+C—=D

so D =2 B + C by universal properties of sums and pushouts. So the chain

Xo X3 X9

X—=X+GX)—=X+G(X +G(X)) —>--- (3.1)

and the free G-algebra on X is computed as the colimit of this countable chain.
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Now we show that this colimit is equivalent to another colimit of a countable chain. Consider
the following chain

0—Gx(0) —=G%(0) —- -~ (3.2)

where 0 is the initial object of C. Its colimit is equivalent to the colimit of (3.1). Consider the
following diagram connecting the chains (3.1) and (3.2)

X —— Gx(X) —= G%(X) — -

IO TN

0——=Gx(0) ——=G%(0) ——"--

The first arrow u : 0 — X is the initial morphism and the other vertical arrows are Gx(u),
G% (u), ete. The first map i : X — Gx(0) = X + G(0) is the inclusion map and the other
diagonal arrows are Gx (i), G% (i), etc. Note that all the triangles commute. Let us write C
for the colimit of (3.1) and C” for the colimit of (3.2). The chain (3.1) forms a cocone for C’
and the chain (3.2) forms a cocone for C. The cocone conditions are satisfied since all triangles
commute. So there are two arrows C' — C’ and C' — C which are inverse to each other by
universal properties of the two colimits. To summarise this we showed that the free algebra can
be computed as well as colim,, G% (0).

Now we drop the completeness condition of C.

Proposition 3.3.21 Suppose that C has coproducts and initial algebras for functors Gx for all
X € C. Then the forgetful functor U : G-alg — C has a left adjoint F : C — G-alg. The free
G-algebra FX on X € C is given by the initial G x —algebra T X .

Proof. The initial Gx—algebra T X is also a G—algebra with ox : GTX — TX as the
structural map.
Let (Y,y) € G-alg and X € C. We are going to show the following isomorphism of hom—sets

G- alg((TX, UX)7 (K y)) = C(Xa Y)

and its naturality in (Y,y) and X.
Suppose given a morphism h of G—algebras TX — Y. It makes commute the following
square by definition

orx G qy
UX\L ly
TX ——Y

Since T'X is the initial G x—algebra we have the arrow nx : X — T'X and by composition with
h we obtain the desired arrow X - TX — Y.

Suppose given a morphism f: X — Y in C. Since Y is a G—algebra, we have the structural
map y : GY — Y and together [f,y] : X + GY — Y which means that Y is a Gx—algebra. By
initiality of T'X there is a unique map of Gx—algebras h : T X — Y such that

X +arX¥ % Ly (3.3)

[77X 1UX] i l [f7y]
TX Y
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commutes. This implies that

arx sy
T
TX ——=Y

commutes as well.

Now we check that the above constructed assignations are inverse to each other. Starting
with an f : X — Y, we assign the unique map of Gx-algebras h : TX — Y. Then we
precompose it with nx. By commutativity of (3.3) honx = f.

Starting with a morphism h’ of G-algebras, we precompose by nx to obtain A’ onyx : X —
TX — Y. Then we assign the unique map of Gx-algebras h : TX — Y such that (3.3)
commutes. In fact A’ is also a map of Gx—algebras since

idx

X —GY

nxi lnx oh

TXT>Y

commutes. Since h is the unique map of G x—algebras TX — Y, it follows that h' = h.
Next we check naturalities in (Y, y) and X. Let f: (Y,y) = (Z, 2) in G-alg. The naturality

square
G-alg((TX,o0x),Y,y)) —=C(X,Y)

| l

G-alg((TX,0x), (Z, 2)) —=C(X, Z)

commutes since we have the following assignations on elements
X hy———x2rx by
h f — nx h f
TX =Y =7 X —=TX Y =7
Now let f: X — Z in C. The naturality square
G-alg((TZ,0x),(Y,y)) —=C(Z,Y)
G-alg((TX,o0x),(Y,y)) —=C(X,Y)

commutes since we have the following assignations on elements

n

5

VA

|

o xLzrzhy
T =12y —x 2 rx vz by

by naturality of n, we have nz o f =T f onx. O
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Proposition 3.3.22 Let F be a functor C — C on a category C with initial object and colimits
of the countable chain
0 — F(0) = F2(0) = ... — F"(0) — ... (3.4)

If F preserves the colimit of the above countable chain then F has an initial algebra, which is
given by the colimit of (3.4).

Proof. We write C := colim F"(0). First we construct the structure map ¢ : F(C) — C.
Since F preserves the colimit of (3.4), F(C) = F(colim F™(0)) = colim F™"1(0). So F(C) is the
colimit of the subchain

F(0) = F2(0) = ... — F™"(0) — ...

Since C and its coprojection maps F?(0) — C for i > 1 are a cocone for this subchain, there
exists a unique map colim F"*1(0) — C which we take to be the structure map c.

Next we show initiality of (C, c). Let (B,b: F(B) — B) be another F-algebra. We construct
h : C — B by universal property of the colimit C'. There is a unique map u : 0 — B because 0
is initial. Then bo F(u) : F(0) — F(B) — B and bo F(bo F(u)) : F?(0) — F(B) — B and by
iterating this procedure we obtain a cocone (F*(0) — B);en,- It is indeed a cocone since for all
arrow F*(0) — F™1(0) the triangle

F*(0)

FH—I (O)

commutes for all ¢ € Ny because the square
0
!
B

commutes by initiality of 0 and thus all squares
Fi(0) —= Fi+1(0)

Fi(u) iFi‘“(u)
B F(B)

b

commute as well. The algebra morphism axiom

F(C) -t F(B)

l b

C h B

commutes by universal property of the colimit F(C) = colim F*T1(0). O

Proposition 3.3.23 Let C be a category with finite coproducts and colimits of countable chains.
If G preserves colimits of countable chains, then U : G-alg — C has a left adjoint.
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Proof. Let X € C. We apply proposition 3.3.22 with F' = Gx. Then by proposition 3.3.21,
U has a left adjoint. So it suffices to show that Gx preserves the colimit of

0—Gx0— G50 — ... > G%0 — ...
Since G preserves colimits of countable chains
G(colim G%0) 2 colim(G o G%0)
and thus

X + G(colim G’ 0) = X + colim(G o G%0)
= colim((X + G) o G0)

= colim G’)}HO
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Chapter 4

Comparison untyped syntax

We suppose familiarity with the two approaches to (untyped) abstract syntax with variable
binding. The first one that we are referring to as the presheaf approach originates in [FPT99].
The other approach that we are referring to as the monadic approach originates in [HMO07]. For
a short summary of these see section 1.1.

4.1 Base categories

The base category of the presheaf approach is F := [F, Set]. We write U for the representable
functor F(1, —) which is the inclusion F < Set. This inclusion is full and faithful. The category
[F, Set] is monoidal with respect to the following monoidal product

keF
X®Y(n) = X (k) x Y¥(n)

This monoidal product is also given by left Kan extension along U
X®Y =Lany(X)oY
In this category the left Kan extension is given by a colimit formula
Lang X (A) = colimy_, 4 X (k)

or by the following equivalent coend formula

kel
Lany X (A) = X (k) x A*

The unit for this monoidal product is U.
Lemma 4.1.24 The category F with ® and U as defined above is monoidal.

Proof. See appendix B.1. O

Lemma 4.1.25 Let X,Y,Z € F. Then
(XxY)®Z—->(X®Z)x (Y®2)

18 a natural isomorphism.

25
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Proof. See appendix B.2. O

Lemma 4.1.26 Let X,Y,Z € F. Then
X+Y)®Z—-(Xe2)+(Y®2)
18 a natural isomorphism.

Proof. See appendix B.3. a

The base category of the monadic approach is the functor category £ := [Set, Set]. It is
monoidal with respect to composition of functors and the unit is given by the identity functor.
The axioms of a monoidal category are obviously satisfied.

4.2 Monoidal functors

We have the following adjunction between £ and F. The right adjoint k£ : £ — F is given by
precomposition with U

k:F— FoU
and the left adjoint £ : F — £ is given by left Kan extension along U

£:X — Lany X

The left Kan extension along U is also given by the following coend formula as explained in
[MLI8] (or see section 2.3)

UX)(A) = / ' X (k) x AF

Lemma 4.2.27 The unit n of the above adjunction £ 4k is a natural isomorphism.

Proof. The arrow nx : X — Lany(X) o U is an isomorphism for each X € [F, Set], see for
example [Bor94a]. So n:Id — ko is a natural isomorphism. O

In the following we will need the following fact.
Lemma 4.2.28 Let X,Y € F. Then
UX XY) = UX x Y
1 a natural isomorphism.

Proof. See appendix B.4. |

In the remaining part of this section we characterise k and £ as monoidal functors.

Definition 4.2.29 (monoidal functor) Let (C,®,I) and (D,e,J) be two monoidal categories.
A monoidal functor F' : (C,®,I) — (D,e,J) consists of a functor F' : C — D together with a

natural transformation
$ap:FAeFB — F(A® B)

and a morphism
¢o:J—FI
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such that the following diagrams commute

(FAe FB)e FC —“2>~ FAe (FBe FC)

¢A,B.1\L llﬂﬁB,c
F(A® B)e FC FAe F(B®C(C)
¢A®B,C\L lm,B@c

F((A® B) & C) > F(A® (B® C))

and
le ol
FAeJ % FAeFI JeFB-"L FreFB
P’DJ/ \LQﬁA,I Avl J{‘ﬁI,B
FA o F(A®I) FB g F(I ® B)

The arrows ¢ are called structure morphisms.
Proposition 4.2.30 The functor k is monoidal.

Proof. The arrow ¢ : U — k(Id) = IdoU = U is given by the identity on U. The natural
transformation

Yrg : kF @ kG — k(F o G)

is explicitly
Lang(FoU)oGoU — FoGoU

It is given by the counit € : £k — 1d of the adjunction ¢ 4 k
epoGoU :Lany(FoU)oGolU - FoGoU

For the remaining verifications see appendix B.5. O

Proposition 4.2.31 The functor ¢ is monoidal.

Proof. The arrow ¢4 : [d(4A) — ¢(U)(A) = ["n x A" is given by the following mapping
composed with the corresponding coprojection

a = (l,a)e1lx Al

Let f: A — B. The naturality square

commutes because we have on elements

Q- (1,@)

Lo

fla)——(1, f(a))
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Next we define a natural transformation
dxy AXolY - (X R®Y)
Let A be a set. We rewrite the domain and codomain using the coend notation
UX(0Y (A)) = /nX(n) x (/m Y (m) x Am)"
:/n/m T X () % V() x . x V() x AT
(X @ Y)(A) = / /nX(n) <Y ()" x A"
By universal property of the coend it suffices to give for all n,mq,...,m, € F an arrow
X(n) xY(m1) x ... xY(my) x A=1™ 5 (X @ Y)(A)
satisfying the wedge condition. We take the following composite

X(n) xY(my) X ... x Y(my) x Ai=1 ™

|

mi) X ... x Y (3 my) x AXizami
i=1

|

X(n)x [TY(r)" x A"

|

["X(n)x [TY(r)" x A

=t

X(n) x Y

=1

For the remaining verifications see appendix B.6. O

Lemma 4.2.32 Let (F,¢) : (A,®,I) — (B,®,J) and (G,¥) : (B,®,J) = (C,e,K) be two
monoidal functors. Then their composite Go F : A — C is monoidal.

Proof. The structural morphisms are given by the composites of ¢ and :

K% a1 arr

and

Ypapar Goa ar

GFAeGFA 2, G(FA@ FA') —22 GF(A® A')
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We check the monoidal functor axioms.

(GFAeGFB)eGFC GFAe(GFBeGFC)
I.
G(FA® FB) e GFC —— G((FA® FB) ® FC) GFAeG(FB® FC)
II. \L /
GF(A® B) e« GFC G(FA®(FBOFC)) 1. GFAeGF(B®C)
G(F(A® B)® FC) V. G(FAGOF(B®())
GF(A® B)® () GF(A® (B®(C))

Diagrams I. and IV. commute because G and F' are monoidal, diagrams II. and III. are naturality
squares of .

KeGFA——GJeGFA——=GFIeGFA

oo ]

G(J®FA) ——G(FI® FA)

7w

GFA GF(I® A)

where the diagram [. commutes because G is monoidal and the diagram III. because F' is
monoidal. The square II. is a naturality square of .

GFAe K —=(GFAe(GJ——GFAeGFI

e b

G(FA®J)——=G(FAGFI)
/ III. l
GFA GF(A®1I)

where the diagram I. commutes because G is monoidal and the diagram III. because F' is
monoidal. The square II. is a naturality square of 1. O

4.3 Monoidal natural transformations

In this section we are going to characterise the unit 1 and the counit € as monoidal natural
transformations

Definition 4.3.33 (monoidal natural transformation) Let (C,®,I) and (D,e,J) be two
monoidal categories and (F,¢), (G,1) two monoidal funtors (C,®,1) — (D,e,J). A monoidal
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natural transformation is a natural transformation o : F' — G such that the following diagrams
commute for all A,B € C

FAeFB™2GAeGB

(Z)A,B\L lwA,B

S X

oy

and

FI

GI

Proposition 4.3.34 The unit n : Idr — k€ of the adjunction £ - k is a monoidal natural
transformation.

Proof. See appendix B.7. a
Proposition 4.3.35 The counit € : tk — Idg of the adjunction £ - k is a monoidal natural
transformation.

Proof. See appendix B.8. a

4.4 Monoidal adjunctions

Definition 4.4.36 (monoidal adjunction) Let (C,®,I) and (D,e,J) be two monoidal cat-
egories. An adjunction between the two monoidal functors (F,¢) : (C,®,I) — (D,e,J) and
(G,¢): (D,e,J) = (C,®,1) is an adjunction such that its unit and counit are monoidal natural
transformations.

We showed above that the adjunction ¢ 4 k is monoidal. We recall a theorem due to Brian
Day about monoidal adjunctions.

Theorem 4.4.37 (Day) Let (F,¢) 4 (G,¢) : (D,e,J) = (C,®,1I) be a monoidal adjunction.
Then F' is a strong monoidal functor, that is, its structure morphisms ¢ are isomorphisms.

Proof. We have to show that ¢ : J — F(I) has an inverse F'(I) — J. Since F' is a left
adjoint, it suffices to give its transpose I — G(J). Indeed we have ¢ : I — G(J) because G is
monoidal. Explicitly ¢! is given by the composite

FI1 2% rGr & g

Consider the composite ¢ o ¢~

IHFGJ*%]

N
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The upper left triangle commutes because 7 is monoidal, the square is a naturality square of €
and the left curved triangle is one of the triangle identities for the unit and the counit of the

adjunction. Now consider the composite ¢! o ¢.
e

FI id

y

FGJ

£J

This diagram commutes because ¢ is monoidal.

Next we have to show that ¢4 p: FAe FB — F(A® B) has an inverse qb;LIB :F(A® B) —
FAe FB. Since F is a left adjoint, it suffices to define its transpose A® B — G(F Ae FB). We
define it to be the following composite

VFAFB

A® B M9, GFA® GFB 22, G(FAe FB)
where 7 is the unit of the adjunction. Explicitly qﬁZIB is given by the composite

FypaFrp

F(Ag B) LU49), p(GFA® GFB) L5 AT2, RG(FAe FB) SP4*7%, F A o FB

Consider the composite ¢4 p o ¢.:llB

F
F(A® B) 2P GrA © GPB) X FG(FA o« FEf 2 % pA e B
Fnags lFG(jz AB

FGF(A® B) ba,B

W

F(A® B)

The upper left triangle commutes because 7 is monoidal, the right square is a naturality square
of € and the bottom triangle is one of the triangle identities for the unit and the counit of the
adjunction. Now consider the other composite qZ)ZlB °PAB

bA,B

FAeFB F(A® B)

FnpeF
W F(na®ng)
PGFA,GFB

FGFAe FGFB——— F(GFA® GFB)

FérarB

FG(FAeFB)

€EA®ER

EFAeFB

FAeFB
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The upper square is a naturality square of ¢, the bottom triangle commutes because ¢ is monoidal
and the curved left triangle is one of the triangle identities for the unit and counit of the
adjunction. O

Applying this result to our adjunction £ 4 k : £ — F means that we have natural isomor-
phisms
(ﬁX,y : E(X) 9} £<Y) i> €(X & Y)

and

4.5 Category of monoids

Definition 4.5.38 (monoid) Let (C,®, 1) be a monoidal category. A monoid consists an object
C of C together with two arrows
m:CeC—=C

and
e: I —-C

such that the following diagrams commute

CoC)8C—>Ce(Co0)2%csC

m®cl lm

CeC _ C
and
00 2% cec cor
C

A morphism of monoids (C,m,e) — (C',m/,€’) is an arrow f : C — C’ such that the
following diagrams commute

C®C&C’®C’

S

!
c C C 7

Cl

Monoids in a monoidal category (C,®, I) and morphisms of monoids form a category. We write
Mon(C) for it.

A monoid in (€,0,1d) is a monad on Set. The category of monoids in £ is the category of
monads on Set.

We are going to extend the adjunction ¢ 4k : &€ — F to the categories of monoids Mon(F)
and Mon(E).

Proposition 4.5.39 Let (C,®,1I) and (D, e, J) be two monoidal categories and (F,¢) : (C,®,I) —
(D,e,J) a monoidal functor. It induces a functor F : Mon(C) — Mon(D).
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Proof. Let (C,m,e) be a monoid of C. We are going to show that F'C' is a monoid in D.
The multiplication is given by the composite

oc,c

FCeFC 2% F(Cw 0) £ FC
and the unit is given by
7% Frr e po

We check the commutativity of the three monoid axiom diagrams.

o ['C ° ° FCe
Je FC 2 pre FO LS e o FOECE o 0 FT XY pC e g

\\ ¢1,cl ¢c‘*,c iqﬁc,z /
F(C®e)

\ F(e®C
N FUe0) " Prcec)<rcen

\
N
)‘II«“)C FC p?C’

The two upper squares are naturality squares of ¢, the bottom triangles are monoid axioms for
C and the two remaining diagrams on the sides commute because F' is monoidal.

oP Ce oF'm
(FC o FC) e FC -~ FC o (FC o FCJ} “CFC o F(C © IO 1 o FO

¢C,C'Fci ¢C,C®ci ¢c,cl
F(C2C) e FCYSF((C o) o) L% Fice (€ o N2 Ficw 0)
FmoFCl \LF(TYL@C) lFm

F(C®C) — FC

FC e FC

oc,c

The upper left rectangle commutes because F' is monoidal, the two squares are naturality squares
of ¢ and the bottom right rectangle is one of the monoid axioms for C.

Now let f: (C,m,e) — (C',m/,€e') be a morphism of monoids in C. We have to show that
Ff:FC — FC'is a morphism of monoids in D.

J—2>pr L po
F
Fe' \L !
FC’
commutes by one of the monoid morphism axioms.

oc,c

FCeFC—~F(C®C)™ + pc
Ff-Ffl F(f®f)i lFf
FC'e FC' —=F(C'®(C") — FC’

¢C’,C’ Fm

The left square is a naturality square of ¢ and the right square commutes by one of the monoid
morphism axioms. O
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Corollary 4.5.40 Let (C,®,I) and (D,e,J) be two monoidal categories and let F' 4 G be a
monoidal adjunction between two monoidal functors (F,¢) : (C,®,I) — (D,e,J) and (G,v) :
(D,e,J) — (C,®,1I). Then there is an adjunction F' 4 G : Mon(D) — Mon(C).

Proof. We have the induced functors F' : Mon(C) — Mon(D) and G : Mon(D) — Mon(C).
It suffices to check that for all monoid (S, m, e) in C the unit ng : S — GFS and for all (R, m,’,¢)
in D the counit eg : FGR — R is a monoid morphisms. We check the monoid morphism axioms.

ns®ns

S©S8" Y Grs © GFS
ml \ Yrs,rs
s "X GFsers)
Glos.5)
A\ GF(S® S)
GFm
GFS

The top triangle commutes because 7 : Id — GF is a monoidal natural transformation and the
bottom square is a naturality square of 7.

— Yy

Idl lG¢
I — GF(I)
This square commutes because 7 is a monoidal natural transformation.

ERVER

FGRe FGR™LReR
domcn im
G(FR® FR),™ R
F(¢R,R) /
FG(ReR) /..
GFm
FGR

The top triangle commutes because € : GF' — Id is a monoidal natural transformation and the
bottom square is a naturality square of €.

FI<2—

rol |

FGJ ? J
This square commutes because € is a monoidal natural transformation. a

So we have the induced adjunction ¢ - k : Mon(€) — Mon(F).
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4.6 Category of modules

Definition 4.6.41 (module) Let (C,®,I) be a monoidal category and (R,m,e) be a monoid
in this category. A right R—module is an object M of C together with an arrow s: M @ R — M
called action such that the following diagrams commute

(MR ®R—2>MaReR X2 MeR

sml l

M®R , M
and
Mol M2 MeR
pt is
M

One can define a left R—module in a similar way, but we are only concerned with right
modules in this work, so we drop the word right and call a right module simply a module.

Definition 4.6.42 (morphism of R—modules) Let (C,®,I) be a monoidal category and (R, m,€)
be a monoid in this category. Let (M, s) and (N,t) be two R—modules. A morphism of R—modules
from (M,s) to (N,t) is an arrow T : M — N of C such that the following diagram commutes

MoRZEENoR
| |
M N

Notation 4.6.43 R-modules and morphisms of R—modules form a category, written Modg(C).

Definition 4.6.44 (large category of modules) We also have a large category of modules
Mod(C). An object (R, M) consists of a monoid R and an R—module M. An arrow (f,T) from
(R, M) to (S,N) consists of a morphism of monoids f : R — S and a morphism of R—modules
M — f*N. The R-module f*N is based on the S—module N and its action is given by the
composite

NoRYY Nos N

Proposition 4.6.45 Let (C,®,1I) and (D, e, .J) be two monoidal categories and (F,¢) : (C,®,I) —
(D,e,J) a monoidal functor. Let (S,m,e) be a monoid in (C,®,I). It induces a functor
F: MOdS(C) — Modps(p).

Proof. Let (M,r) be an S—module. Then FM is an F'S-module. The action is given by
the composite
dM,s

FMeFS 2% p(M ® S) &5 FM
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It satisfies the module axioms:

(FMeFS)eFS—>FMe(FSeFSI M p N[ e F(S® S)2 T ) o FS

¢M,S®Si lfﬁM,s
F(M©S) e FSP S p(M e S) @ S) L% F(M @ (S ® §)) SV F(M ® 5)
FTGFS\L \LF(T®5) lFT

FMeFS FM®S) 7 FM

¢1\4,S'F5¢

oM,S

The upper right rectangle commutes because F' is monoidal, the upper right and bottom left
squares are naturality squares of ¢ and the bottom right rectangle is one of the module axioms
for M.

FMoFe

FMe JHFM FI——FMeFS
\ ¢M,Il l(i’M,S

\ (&4
N FMe D" MYr0 e s)

lpr

FM

Fp~1

The upper right square is a naturality square of ¢, the bottom triangle is one of the module
axioms for M and the remaining part on the left commutes because F' is monoidal.

Now let (M,r) and (N, q) be two S—modules and 7 a module morphism M — N. Then F'r
is a morphism of F'S—modules. We check the module morphism axiom

FMeFST 2 PN o FS

¢J\LS\L i(bzv,s
FM o9 2 p(Nes)

Fl in

FM FN

Fr

The upper square is a naturality square of ¢ and the bottom square is the module morphism
axiom for 7. O

Corollary 4.6.46 Let (C,®,I) and (D,e,J) be two monoidal categories and let F - G be a
monoidal adjunction between two monoidal functors (F,¢) : (C,®,I) — (D,e,J) and (G,) :
(D,e,J) — (C,®,I). Then there is an adjunction F 4 G : Mod(D) — Mod(C).

Proof. By the previous proposition we have F': Mod¢ — Mod(D), (S, P) — (F'S, FP) and
G : Mod(D) — Mod(C), (R, M) — (GR,GM). We are going to check that the unit 7 and the
counit € are module morphisms. Let (S, m,e) be a monoid in C and (P, r) be an S—module. To
show that the arrow np : P — GFP is also a morphism (5, P) — (GFS,GFP) in Mod(C) we
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have to check the commutativity of the following diagram

Pes . GrPw s
\WP®K GFP®ng
GFP® GFS
N brprs
, G(FP e FS)
Glér.s)
GF(P® S)
GFr
P———>GFP

The bottom square is a naturality square for 7, the diagram in the middle commutes because
7 is monoidal and the top triangle commutes obviously. Now let (R, m/,e’) be a monoid in D.
We have to check the commutativity of the following diagram

FGRe FGR™""Re FGR
borcr|  ww Recr
F(GR® GR) ReR
F(¢YR,R) %
FG(ReR) m
FGm/
FGR——. R

The bottom square is a naturality square of ¢, the diagram in the middle commutes because ¢
is monoidal and the top triangle commutes obviously. O

So we have the induced adjunction ¢ - k : Mod(€) — Mod(F).

4.7 Strengths

The definitions of this section and the following come mainly from [Fio08].

Definition 4.7.47 (right V—action) Let (V,®,I) be a monoidal category and C a category.
A V—-action on C is a bifunctor
x:CxV—=C

together with a natural tsomorphism whose components are
aapc:(AxB)xC — Ax (B ()
and another natural isomorphism whose components are

ra:AxT — A
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such that
(AxB)*xC)* D —— (AxB)* (C® D)
(Ax(B®C))*D
Ax(B®C)® D) — A% (B® (C® D))
and
(A*B)*IﬂA*(B@I) (A*I)*BMA*(I@B)
RMBl z//ﬁgg;/ rA®Bi k//ﬁﬁ;;/
Ax B AxB
commute.

Lemma 4.7.48 Let (V,®,1) be a monoidal category. Then the category I |V of elements over
I is monoidal too.

Proof. We write for the monoidal category isomorphisms of V
aapc:(A®B)®@C - A® (B®C)

M:I®A—A

and
pa:IRA—= A

Now we show that they are as well the monoidal category isomorphisms of I | V. Leta: 1 — A

be an object of I | V.
I
v

I®I @

o

I®A W A

commutes since it is one of the monoidal category axioms of V.

1
3
I®I a

>

Awl — A
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commutes since A\; = py and so it is one of the monoidal category axioms of V. Let b: [ — B
and ¢ : I — C be two objects of I | V.

I
A,ll
11
I®(Ix®I) TNE I)I
a®(b®c) l i (a®b)®c
AR (B® () Y AR (B® ()

The top triagle is one of the monoidal category axioms and the bottom square commutes by
naturality for . The monoidal category axioms for I | V are satisfied since «, A and p satisfy
the axioms for V. O

We are interested in two cases. The category U | F is monoidal and acts on F by
(X, U—=Y) —» XY
The category Idget | € id monoidal and acts on £ by
(F,LId—-G) — FoG

The action axioms are satisfied in both cases since the categories F and £ are monoidal. To
lighten up notation we are going to write simply Id | £ for Idge; | €.

Definition 4.7.49 (V—strength) Let (V,®,1I) be a monoidal category, C a category provided
with a V—action * and C' a category provided with a V—action *'. Let F be a functor C — C'.
We say that F is V—strong if there exists a natural transformation f whose components are

fap:FA¥ B— F(AxB)

such that
(FA+ B) ¥ CZ*PCFAY (B C) FAC T2 FA«T)
fA,B*Cl TFA\L -
TA
F(AxB) ' C fa,BocC FA

fA*B,Cl
F((AxB) x C>FE>CF(A *(B®C))

commute. We call f a V-strength.

We are interested in the following two cases of U | F—strong and Id | £—strong endofunctors.

Proposition 4.7.50 The endofunctor é on F is U | F—strong.
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Proof. First we recall the construction of the U | F—strength of §
SX)Y :(5X®Y—>(5(X®Y)

where X € F and (Y,y) € U | F. We rewrite the domain and codomain at the component
n € F by using the coend notation

/mX(m+ )xY(n)™— /TX(T) xY(n+1)"
By universal property of the coend it suffices to give a collection of arrows
X(m+1)xY(n)"™ — /TX(T) xY(n+1)"
for all m € F that satisfies the wedge condition. We take the following composite
X(m+1)xY(n)™

Xm+1)xY(n+1)"mx1

Xm+1)xY(n+1)"xY(n+1)

JTX(r) X Y (04 1)

where we used the transpose 7 : 1 — YU of the arrow y : U — Y. For the remaining verifications
see appendix B.9. O

Proposition 4.7.51 The endofunctor (=) on & is Id | E-strong.

Proof. We recall the Id | E—strength for F' € £ and (G,g) € Id | &
org:F oG — (FoQ)
its component at A € Set is
orgA: F(GA+1) - FG(A+1)

it is given by the arrow
F([Gir, gat1 o ir])

where i; : A— A+ 1 and i, : 1 = A+ 1. For the remaining verification see appendix B.10. O

Lemma 4.7.52 Let (V,®,I) be a monoidal category, C a category provided with a V—action x,
C" a category provided with a V-action ¥ and C" a category provided with a V—action x". Let
(F, f) and (F', f') be two composable V-strong functors C — C' and C' — C". Their composite
F'F is as well V-strong.
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Proof. The V-strength of F'F is given by the following composite
F'fapofrap:F'FA%" B— F'(FA%' B) —» F'F(Ax B)

Let us check the V—strong functor axioms.

(F'FA+" B) " C 2 F'FA+" (B® C)

f/*//C
F'(FA% B)«"C I. £

/! " f,

NS II1.
F'F(A*B)+" C F'((FA+ B)+ C) £ F'(FA« (B ® C))
! %
F'(F(AxB)+ C) I1. F'f
F'f

F'F((Ax B)* Q) F'F(Ax (B (C))

F'Fa
The diagrams I. and II. commute because f’ and f are V-strengths and the diagram III. is a

naturality square of f’.

FIFA [ F(FA«T) e FIR(AX )
F/T/\L /
r'! F'Fr
F'FA
The two triangles commute because f and f’ are V-strengths. O

Applying this result to §, we have that 6" is U | F—strong for all n € N. In a similar way,
(=)™ is Id | £-strong for all n € N.

Lemma 4.7.53 Let (V,®,1) be a monoidal category, C and C' two categories with finite prod-
ucts, C provided with a V—action * and C' provided with a V—action " such that

(Ax B)¥ C = (A¥ C)x (B+ O)
Let (F, f) and (F', ') be two V-strong functors C — C'. Their product F' x F' is V-strong.

Proof. We take

(f x f)ap: (FAx F'A) ¥ B~ (FA« B) x (F'A+ B) farxlae, p

(Ax B) x F'(Ax B)
to be the V-strength of F' x F’. The commutativity of the V-strong functor axiom follows
directly from the commutativity of the respective axioms of f and f’. O

Given an arity (ni,...,n,) the associated endofunctor §™ x ... x " on F is U | F-strong
since (X XY)® Z = (X ®Z) x (Y ® Z) by proposition 4.1.25. The associated endofunctor
(=)™ x ... x (<)) on € is Id | £-strong since (F x G) o H = (F o H) x (G o H).
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Lemma 4.7.54 Let (V,®,1) be a monoidal category, C and C' two categories with coproducts,
C provided with a V-action x and C' provided with a V-action %' such that

(A+B)¥ C 2 (A¥ C)+ (B« O)
Let (F, f) and (F', ') be two V-strong endofunctors on C. Their sum F + F' is V-strong.

Proof. We take

fA,B"f‘fA’B
e

(f+fap:(FA+FA)*«B~(FAxB)+ (F'AxB) F(AxB)+ F'(Ax* B)

to be the V-strength of F' + F’. The commutativity of the V-strong functor axiom follows
directly from the commutativity of the respective axioms of f and f’. |

Given a signature, that is, a collection of arities, where the i—th arity is of the form
(Rt -5 i)
the induced binding signature functor
pi
S [[5:F o F
el j=1

is U | F-strong.

4.8 Morphisms of strengths

Definition 4.8.55 (morphism of actions) Let (V,®,1I) and (V' e,J) be two monoidal cat-
egories and C and D two categories such that V acts on C by * and V' acts on D by x. A
morphism of actions is a triple ((M, ¢), N, x) consisting of a monoidal functor (M,$) : V — V',
a functor N : C — D and a natural transformation whose components are

XAaB:NAxMB — N(Ax B)

such that
(NA*MB)« MO 2 A % (MB o MC)
XAVB*MC\L \LNA*d)B’C
N(AxB)*MC NAxM(B®C)
XA*B,C\L lXA,B@@C
N((A*B)*C) N(Ax (B®(C))
A B,C
and
N Ax¢p
NAxJ—>NAxMI
TNAl lXA,I
NA o N(Ax1I)

commute.
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Lemma 4.8.56 Let (C,®,1I) and (D,e,J) be two monoidal categories and (F,¢) : (C,®,I) —
(D, e, J) be a monoidal functor. Then F induces a monoidal functor I | C — J | D.

Proof. By lemma 4.7.48 the categories I | C and J | D are monoidal as well. We show
that the structure morphisms ¢ of F' are morphisms in J | D. Let a: I — Aand b: I — B two
objects of I | C. We check that the following diagrams commute

SN N

FAeFB F(A® B)
The left diagram is explicitly
Je FI FI
‘f"d’l % l 5”1
FleFI F(I®I)
é1,1
FaoFbi \LF((I@b)
FAeFB F(A® B)
da,B

The bottom square is a naturality square of ¢ the right—hand side square with the curved inverse
arrow is a monoidal functor axiom of F'. The left triangle commutes trivially and the top triangle
with the curved inverse arrow is a naturality square of A of D.

The right diagram commutes trivially.

Moreover the axioms for the monoidal functor I | C — J | D are satisfied since this is the
case for the ones for F': C — D. O

So the monoidal functor (¢, ¢) : F — £ induces a monoidal functor (¢,¢): U | F — 1d | €.
Therefore ((¢, ¢), ¢, ¢) is a morphism of actions. The axioms are satisfied by the monoidal functor
axioms. In a similar way ((k,v), k, ) is a morphism of actions.

Definition 4.8.57 (morphism of strengths) Suppose given the following
e monoidal category (V,®,1)
e monoidal category (U, e, J)
e category C provided with a V—action
e category C' provided with a V—-action '
e category D provided with a U—-action x
e category D' provided with a U-action *'
e V-strong functor (F, f): (C,x) = (C',«)

e U-strong functor (G,g) : (D,*) — (D', +)
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e morphism of actions ((M, ), N, x) from (C,*) to (D,*)
e morphism of actions ((M,¢), N',x") from (C',+") to (D', %)

A morphism of strengths is a natural transformation oo : GN — N'F such that

aA*’MB
GNAX¥ MB—— N'FA+¥ MB

gNA,MBl ix’m,g
G(NAx MB) N'(FA+ B)
GXA*Bl iN’fA,B

GN(AxB) —— N'F(AxB)

commutes.
In the following we define two morphisms of strengths.

Definition 4.8.58 We define a morphism of strengths ay ' : (£(—))" — £(5—).
Let X € F. At first let us construct the arrow af}( : (X)) — L(0X) for all A € Set. Recall
that

(X)) (A) :/nX(n) X (A+1)"

and

L(0X)(A) = /mX(m—i—l) x A™

To define an arrow ((X)'(A) — £(6X)(A), by universal property of the coend it suffices to give
an arrow for alln € F

X(n) x (A+1)”—>/mX(m+1) x A™

that satisfies the wedge condition. We take the following composite
X(n)x(A4+1)" = X(m+1) xAm%/ X(m+1)x A™

where we use the following maps. Given a map f:n — A+ 1, we have a subset m of n defined
as the set {i € n s.t. f(i) € A}. This defines obviously a map f : m — A. Moreover we can

define a map ¢ :n— m+1 by
PN i ifiem
1 ifigm
For the remaining verifications see appendiz B.11.

Definition 4.8.59 We define a morphism of strengths 31 : 6(k—) — k((—)").
Let F € £ andn € F, then we have explicitly

(FoU)(n+1) R F'oU(n)
>~ F(n+1) >~ F(n+1)

which is given by the identity on F(n+ 1). For the remaining verifications see appendiz B.12.
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Lemma 4.8.60 Suppose given the following

e monoidal category (V,®,1)

e monoidal category (U, e,J)

e category C provided with a V—action

e category C' provided with a V-action '

e category C" provided with a V-action x”

e category D provided with a U—-action

e category D' provided with a U-action *'

e category D" provided with a U-action "
F, f):(C,x) — (C', %)
F' f):(C ) — (C",«")
G,g

/

e V-—strong functor (
e V-—strong functor (
e U-strong functor (G,g) : (D,x) — (D', «)

e U-strong functor (G',¢") : (D', ') — (D", +")

e morphism of actions (M, ¢), N, x) from (C,x) to (D,x)

e morphism of actions ((M,¢), N',x") from (C',+") to (D', %)

e morphism of actions ((M,¢), N",x") from (C",*") to (D",*")

e morphism of strengths o : GN — N'F

e morphism of strengths 3 : G'N' — N"F’
Then the composite BF o G'a : G’"GN — G'N'F — N"F'F is a morphism of strengths.

Proof. Recall that by lemma 4.7.52, F'F and G'G are V-strong and U-strong respectively.
Their strengths are given by

F'fapofrap: F'FA¥" B— F'(FA+ B) —» F'F(Ax B)
G'gc.p o glGC,D :G'GC "D — G'(GC + D) — G'G(C % D)
Now let us check that SF o G'« is a morphism of strengths.

G/ //MB //MB
G'GNA % MB 22N A MBS N prE A« MB
9IGNAMB g;V’FA,MB XII:“/FA,B
/ / G/(QA*IM@ / / 11 (T "
G(GNAX MB)——G'(N'FA+ MB) N"(F'FA«" B)
G'gna,MB G'X'rap N"fean
G'G(NAx MB) G'N'(FA+ B) 225 NUE/(FA < B)
G'Gxa,B G'N'(fa,B) N"F'fa B
G'GN(A « B) - G'N'F(Ax B) N"F'F(Ax B)

QXAxB F(A%B)
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The top square on the left is a naturality square of ¢/, the bottom diagram on the left commutes
because S is a morphism of strengths. The top diagram on the right commutes because « is a
morphism of strengths and the bottom square on the right is a naturality square of 5. O

Applying this result to our previously constructed morphisms of strengths, we have strength
morphisms

b (=)™ =g (-)

n

and

B £ 87(=) = K((-)™)
for all n € N.
Lemma 4.8.61 Suppose given the following
e monoidal category (V,®,1)
e monoidal category (U, e,J)
e category C provided with a V—-action
e category C' with finite products provided with a V—action ¥ such that
(Ax B)¥ C=(A+ C)x (B+CO)
forall A,Be(C and C €V
e category D provided with a U—-action
e category D' with finite products provided with a U-action ¥ such that
(CxD)¥ E~(C« E)x (D+ E)
for all C,D € D' and D € U
e V-—strong functors (F, f),(F', f'): (C,*) = (C', «')
e U-strong functors (G,g),(G',¢') : (D,x) — (D', «)
e morphism of actions ((M, ), N, x) from (C,*) to (D,*)

e morphism of actions ((M,¢), N',x") from (C',«") to (D', +") such that N’ preserves finite
products

e morphism of strengths o : GN — N'F
e morphism of strengths 3 : G'N — N'F’

Then a x : (G x G')N — N'(F x F') is a morphism of strengths.

Proof. F' x F' is V-strong and G x G’ is U-strong by lemma 4.7.53. We take o X 8 to be
the following composite

(GXxG)N=GNxGN - NFxNF 2N xF)
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The strength morphism axiom for a x 3 follows directly from the two corresponding axioms

for o and S. O
Applying this result to our case, for a given arity (n1,...,n,) we have the following strength
morphisms
P P
[T = e([ ] ()
i=1 i=1
and
P P
[0 k(=) = k(I ](—)")
i=1 i=1
Notation 4.8.62 Given an arity (ni,...,n,), we write o~ for the arrow
p P
ot [T ") = (o)
i=1 i=1
and B for the arrow
P P
B:]o" k(=) = k(J](—)™)
i=1 i=1

Lemma 4.8.63 Suppose given the following
e monoidal category (V,®,1)
e monoidal category (U, e,J)
e category C provided with a V—-action *
e category C' with coproducts provided with a V-action ' such that
(A+B)¥ C=(A¥ C)+(B+ C)
forall A,Be€C and C €V
e category D provided with a U—-action
e category D' with coproducts provided with a U—-action ¥’ such that
(C+D)¥ E=~(C«¥ E)+ (D+ E)
for all C,D € D' and D € U
e V-strong functors (F, f),(F', f') : (C,*) = (C', «')
e U-strong functors (G,g),(G',¢") : (D,*) = (D', %)
e morphism of actions (M, ¢), N, x) from (C,x) to (D,x)

e morphism of actions (M, @), N',x") from (C', ") to (D', %") such that N’ preserves coprod-
ucts

e morphism of strengths a« : GN — N'F
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e morphism of strengths 3 : G'N — N'F’
Then o+ B : (G+ G')N — N'(F + F') is a morphism of strengths.

Proof. F' + F’ is V-strong and G + G’ is U-strong by lemma 4.7.54. We take o + 8 to be
the following composite

(G+G)N=GN+GN - NF+NF 2N (F+F)

The strength morphism axiom for a + 3 follows directly from the two corresponding axioms
for o and S. O

Given a signature S where we write (n;1,...,n;p,) for the i-th arity for all i € I. We have
the following strength morphisms

ST = (S T 6% ()
iel j=1 icl j=1

and

> H k(=) = k(D 1‘1[(_)<m,j>)

iel j=1 iel j=1

4.9 Mateness

In this section we show that a~! is a natural isomorphism and we characterise its inverse a and
8 as mates over the adjunction £ + k.

Proposition 4.9.64 The arrow
art: (0=) = ()
constructed in definition 4.8.58 is an isomorphism.
Proof. First we construct the inverse arrow oy : ¢(0—) — (¢—)". To define an arrow

0(0X)(A) — (¢/X)'(A), by universal property of the coend, it suffices to give for all m € F an
arrow

X(m+1) ><Am—>/nX(n) x (A+ 1)

satisfying the wedge condition. We take it to be the composite
n
X(m+1)x A™ = X(m+1) x (A4 1)™H —>/ X(n)x (A+1)"

For the remaining verifications see appendix B.13. a

It follows that the arrow a;, ' : (=)™ — £(6"—) is also an isomorphism for all n € N since

it is a composite of n arrows of the form afl. The inverse is given by the composite of the
p

inverses. Given an arity (ni,...,n,), each a;} is an isomorphism, so their product [] a;} is as

=1
well an isomorphism.
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Notation 4.9.65 Given an arity (ni,...,ny), we write a for the arrow
P P

a:l(J[om =) — JJe—)

=1 i=1

Definition 4.9.66 (mates under adjunctions) Let F 4G :D — C and F' 4G : D' = ('
be two adjunctions. Let

a:F'H— KF

and

B:HG — G'K
be two natural transformations for functors H : C — C' and K : D — D'. Diagrammatically

H

TATAY
KD N, y\/

a and B are mates under the adjunctions F 4 G and F' + G’ if 8 is the composite

G'aG

e ™S, o rae 9% o' kra S,

G'K
and « is the composite

BF eKF

a2 prger 205 po ke 255 g
Proposition 4.9.67 The arrows oy and B1 are mates under the adjunction £ 41k : € — F.

Proof. Let X be a functor in F. We show that aq x = g(yxy 0 €81 ¢x 0 Lonx.

["X(r+1) x A" (s,f i1 — A)
x4
[T X (m) x (r+1)™ x A" (s,idr41, f)
£B1,0x,A
ST X (m) < (r+ 1) x AT (s,idr1, f)
Eexy’,A |

[TX(r) % (A+1) OX(f +1)(5,idrs1) = (s, f + 1)
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This is indeed o x,4. Let F' be a functor in £. Now we show that 81 p = k(ep) o kay kr © skr-

0kF(n) = F(n+1) x
NskFn
J™F(m+1) x n™ (z,idy,)
ko krn
J™FE(m) x (n+1)™ (x,id,, +1)
k(er)'
F(n+1) = (kF) (n) Flidns1)(z) = 2
This composite is indeed 51 F . O

Proposition 4.9.68 The arrows o, and B, are mates under the adjunction £ 4k : E — F for
alln € N.

Proof. The assertion is true for n = 1 by proposition 4.9.67. Now suppose that the assertion
is true for an n € N, that is,
o, X = E(gx)m © LPn,ex 0 €6 nx
and
Bn.r = k(er)™ o k(anir) © Nsnkr

for all functor X € F and F € £.
We are going to show that the assertion is true for n + 1. Explicitly we wish to show that

1
Ant1,X = E(pxyns1) © Bnyrex © 6" inx

But by definition of ay,11
Upt+1,X = O‘g’:l))( O Unsx
So we show that
£(ex)ntn) © EBny1ex 0 L8 iy = EEZ))()' o (£B1,6x)™ o (£61x)™ © & 45y © LBntsx © L8 s

for all functor X € F.

An §X
5m B, € e5x) (M)
0570 X ——25% g5 kts X — g0 X)W L2 (05x) ()
06" onx L £6™ klom x Lk (£5nx ) (™) (Lonx
£Br
0575k X sk pskox Tk sk x) ™ L sy
06" By ox 5" keBy o x (B 0x)™) (£B1,ex)™ | (a1,x)™)

8, )

15k (XY Y5tk (0X) () 2L )y )

m\ o7 ke (g xyr k(e (xy)™ (5(i§

0O"k(UX) ——— Ck((£X) )(n) ——— (¢X)(ntD)

B (exyr £(ex) (D)
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The three squares on the right are naturality squares of ¢, the three square in the middle are
naturality squares of 5 and the two squares on the right are naturality squares of . The bottom
left triangle is one of the triangle identities for 1 and e.

We also wish to show that

Bri1,r = k(er) ™™ o k(ani14r) 0 Ngntigp
But by definition of £,41
Bry1,F = By pe) © 0Pn,F

So we show that

k(er) ™™ o k(i1 pr) © N =

= k(epm) 0 k(0 g(p)) © Nar(pony © k(er) ™ 0 6k(0in kp) © O1oner

éﬁn,F

nsnkr

5k (n)
SO E — " SkisnkF Mer)

MR Sk(CkEF)™

Sk(F™M)

N§snkF N5kesmkF Msk(err)(m) Tsk(F&))

n, keSk(ep)(™
ke85 E sk e 0o (0 )R s ()

kal,é"kFl ko gesnkr kal,k(gkp)(n) kal,k(p(n)) Bl,F(n)

n (K than i ) em)(m))/
k(es"kF Y ook Y O ook ) D) ey

k / k(e ) k(e

k(65" kF) —>,k((w)<n>) EF(+)
k(on,kF)

k(e )

The top three squares are naturality squares of 7, the three squares in the middle row are
naturality squares of « and the bottom two squares are naturality squares of £. The bottom left

triangle is one of the triangle identities for n and e. a
Proposition 4.9.69 Given an arity (n1,...,np), the arrows
P P
a:(JTom =) — JJe—)
i=1 i=1
and
P P
B:Jo" k(=) = E(J](—)™)
i=1 i=1

are mates under the adjunction £ 1k : & — F.
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p
Proof. Let F € £. We check first that Sp = k [] (er)™) o kagp o NP, 67ikF

:1 1=

2

P
§mikF — 1 o k0 T] 6™ kF
=1

e

=1

/
/ ll‘[n l%
p p
A} klomikF ——— k [ (6™ikEF
i=1 i=1

[
\

=1

p p
gwm)(m) —— Kk [](tkF) (™)
=1

LF™i) — L 11 (i)

':*@ L

1

(2
The two bottom squares commute since k(F x G) = kF x kG. The top square commutes because

squares of the following form commute
XxY — " k(X xY)

nxXnyl iE

kO(X) x kO(Y) == k({(X) x £(Y))

since we have on elements
(:I:v y) e (I’, Y, ldn)

| |

(z,idy,, y,id,) (x,idyp, v, idy)

p
Let X € F. Now we check that ax = ¢ [] 6™nx o €8x O ErTr_, (ex)(ma)
i=1 =

D ~ P
O] 0% X — = S [ 5™ X
=1 =1

\
an

p ~ p
O] 6™keX —= [] L™ keX
=1 1=1

\
|
|
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The two top squares are naturality square of the isomorphism /(X x Y) = 0(X) x L(Y). The
bottom square commutes because it is of the form

Oh(X X YV) == ((kX x kY)

aml lN

XxY kX x EY
ey
which commutes because we have on elements
(z,y, ) == (7,y, f)

<

(X x Y)(f)(z,9) l
= (X)) Y (N — @)

Proposition 4.9.70 Given a signature S where we write (n;1,...,nip,) for the i-th arity (i €
1), the arrows

Di
(S I = X [T
iel j=1 iel j=1
and
pi
By [ k(=) — k( ZH )(nia))
iel j=1 el j=1

are mates under the adjunction £ 1k : & — F.

Proof. Let F' € £. We show that Sp =k ) stF © kagp oy T 67Tk
i€l j=1

Pi
S [ s kF

Pi
keSS [ 6" kF

i€l j=1 i€l j=1
= |
Pi Pi
S kT[] 0" kF —— kS, ¢ [] 0™ kF
el j=1 el j=1
> B i l ikZai
Pi Di
\\Z k ] (0kF)™) —— kS ] (CkF) ™)
el j=1 i€l j=1

\| =

Pi
S k] FO) —— kY [ FO)

i€l j=1 i€l j=1
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The two bottom squares commute because kY X; = > kX;. The top square is a square of the
il il

form
NX4+Y

X4+Y 5 k(X +Y)

77x+?7yl J/%

KX + kOY == k((X + £Y)

which commutes because we have on elements

S (2,idy)

L

(z,idy) (z,idy)

pi
Let X € F. We show that ax =¢) [[ 6™nx olfixoe

iel =1 Sier L (0

1> f‘[ " X) = ze(ﬁ 5" X)

i€l j=1 iel  j=1

o N

o T omkex) = s (]l 5%/%)()\

iel j=1 el j=1
ezwl J/ | Ca
Di - Di
(X k TT(X)0) ——= Zﬁk(H(ﬁX)("”/
i€l j=1 iel j=1

=)

(3 T (ex)() _ 5 11 (ex)()

i€l j=1 i€l j=1

The top two squares are naturality squares of (> X;) =N > ¢(X;). The bottom square com-
mutes because it is of the form

(X +Y) —— (kX + kY)
EXerl =~

X+Y~——/0lkX + kY

extey

and we have on elements
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4.10 Modules associated to a signature

Let (n1,...,np) be an arity. By the presheaf approach we associate the U | F-strong enodfunc-
tor 8™ x ... x 0™ on F to it. For a signature consisting of a collection of arities of the above
form, we associate the U | F-strong endofunctor ), ;6™ x ... x §"»i on F to it. We show
in this section that this endofunctor can be provided with the structure of a module.

By the monadic approach we associate to an arity a morphism of modules and to a signature
as many morphisms of modules as it has arities. We show that the source of each module
morphism comes from a Id | £ strong endofunctor (—)™) x ... x (=)") on &.

Moreover we are going to show that the constructed morphisms of strengths a~' and /3 are
module morphisms.

pi

Proposition 4.10.71 The U | F-strong endofunctor > [] 0™ (=) on F induces a functor
el j=1

P : Mon(F) — Mod(F).

Proof. Let (S, m,e) be a monoid in Mon(F). We define
pi
- [
el j=1
The functor P(S) can be provided with the following action

P(m)

P(S)® 8 25 P(S® S) — P(S)

where the first arrow is given by the U | F-strength for >, ; [[¥2, 0™ (—) and the second is

given by the monoid multiplication m. We check the module ax1om5

(P(S)®S)®S—2=P(S)® (S® 8) 22LP((S® (S ® 5)))

SS,S®SJ/ I. y iP(S@m

P(S®S)®S 22 p((S®S)® S) S® S8
P(m)®5l II. P(m®S)i III. iP(m
P(S)® S P(S®S) ——— P(S)

Diagram I. commutes because it is one of the U | F—strength axioms, diagram III. is one of the
monoid axioms and square II. is a naturality square of s.

P(S)®e

P(S)®1

The top square is a naturality square of s, the bottom triangle is a monoid axiom and the left
curved diagram is a U | F-strength axiom.
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Let h: (S,m,e) — (S',m/,¢') be a morphism of monoids. The arrow P(h) : P(S) — P(5")
is an S—module morphism since it satisfies the axiom

P(S)® 5" psh @ s

\ P(S’)@h
P(h)®h
55,8 PS)® S
SS’,S/

/ '
P(S® 8) poe P(S' ©8)
P(m) P(m/)

P(S) — = P(S)

The top triangle commutes trivially, the middle square is a naturality square of s and the bottom
square is a monoid morphism axiom of h. O

p
Proposition 4.10.72 The Id | €-strong endofunctor [](—)") on & induces a functor M :
i=1
Mon(&) — Mod(€).
Proof. Let (R, u,n) be a monoid in Mon(E). We define
p
M(R) = [[R™
i=1

The functor M (R) can be provided with the following action

M(R) o R 225 M(Ro R) X% Mi(R)

p
where the first arrow is given by the Id | £-strength for [](—)() and the second is given by
i=1
the monoid multiplication u. We check the module axioms.

(M(R)oR)oR—%> M(R)o (RoR) 2" M(Ro (RoR))

oR,ROR I. M (Rou)

M(RoR)oRZE“EM(RoR)oR) M(Ro R)
M(u)oRi II. M(#oR)J/ III. lM(u)
M(R)o R————> M(RoR) M(R)

Diagram I. commutes because it is one of the Id | £-strength axioms, diagram III. is one of the
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monoid axioms and square II. is a naturality square of o.

M(R)o1d MEen M(R)o R
N Jous
N M(Ron)
M(Ro1d) ™0 (Ro R)
M
N
M(R)

The top square is a naturality square of o, the bottom triangle is a monoid axiom and the left
curved diagram is a Id | £-strength axiom.

Let h : (Ry1,p1,m) — (R2, 2,m2) be a morphism of monoids. The arrow M (h) : M(R;) —
M(R3) is an R;-module morphism since it satisfies the axiom

A4QR1)O]%ﬁgﬁkgﬁﬂf(R2)Ofﬂ
M(h)oh M(Rz)oh
ORy,Ry M(R2) o Rs

ﬂ4(1%1<Df{1)4444>-ﬂ4(1%2<3132)
M (p1) M (p2)

M(Ry) M(R2)

The top triangle commutes trivially, the middle square is a naturality square of o and the bottom
square is a monoid morphism axiom of h. O

Let us write M; : Mon(£) — Mod(€) for the induced functor by the i-th arity. Now we
consider M := ) M;.
el

Proposition 4.10.73 Let (S, m,e) be a monoid of Mon(F). The morphism of strengths a§1 :
M(£S) — LP(S) induces a morphism of £S—modules.

Proof. We check the module morphism axiom

M(£S) 0 £5 2522 1p(S) 0 05

018,08 PP(S),s
M (¢S o £S) UP(S)® S)
M(ds,s) lsg,s
M((S ® S)) ——> (P(S & S)
Xses
M (¢m) LP(m)
M(S) ¢P(S)

g
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1

The top diagram commutes because a~* is a morphism of strengths and the bottom square is

a naturality square of o™ 1. O

Corollary 4.10.74 Let (S, m,e) be a monoid of Mon(F). The arrow ozgl : M(LS) — LP(S) is
an isomorphism of £S—modules.

Proof. Its inverse is given by ag. O

Proposition 4.10.75 Let (R, u,n) be a monoid of Mon(E). The morphism of strengths fr :
P(kR) — kM(R) induces a morphism of kR-modules.

Proof. We check the module morphism axiom

P(kR) @ kR M (R) @ kR
SkR,kR YM(R),R
P(ER® kR) E(M(R)o R)
P(¢Yr,R) kor,r
P(k(RoR)) ——=kM(Ro R)
BRror
P(kp) kM (u)
P(kR) kM (R)
R

The top diagram commutes because § is a morphism of strengths and the bottom square is a
naturality square of 3. O

4.11 Universal properties

For this section we suppose given a signature and we consider the associated functors P :
Mon(F) — Mod(F) of the presheaf approach and M : Mon(£) — Mod(€) of the monadic
approach. The object of interest from the former point of view is the initial monoid S with a
map of S—module morphisms P(S) — S. The object of interest from the latter point of view is
the initial monoid R with a map of R-modules M (R) — R. The aim of this section is to deduce
the initiality of the monad ¢S from the initiality of .S and inversely to deduce the initiality of
the monoid kR from the initiality of R.

4.11.1 From presheaf to monadic

Suppose that S is the initial monoid in F together with a map of S—modules s : P(S) — S.
We wish show that £(S) is the initial monoid in & together with a map of £S-modules M (£S) =
(P(S) — {8S.

Suppose we have a monoid R in £ together with a map of R—modules r : M(R) — R. Its
image under k is the monoid kR in F together with the map of kR—modules kr : kM (R) — kR,
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precomposed with Sgr, we get the module morphism kr o g : P(kR) — kR. By initiality of S,
there exists a unique morphism of monoids u : S — kR such that

P(S) 2% P(kR) (4.1)
sl lkroBR
S ——kR

commutes. The transpose of u across the adjunction £ 4 & is a morphism of monoids w : £S5 — R.
Now we are going to calculate the transpose of (4.1) across the adjunction. The transpose of

P(S) % S % kR

is
The transpose of

is
eP(S) 2% ePkR 2 MR 2 R

where SR is the composite

¢P(kR) LR tkMR 2% MR

Next we remark that

(P(S) % ¢p(kR) % kM (R)

asi iakR lale

M(68) ——= M(tkR) ——= M(R)

\,/

Mu

commutes because the left square is a naturality square of a and the right square commutes
because the following diagram commutes

kR)

ZkockR

(P(RR) B ke p(kR) LML 0 (R R)
idi % : lékMa R
(P(kR) (kM (R)
QLR i l€M(R)
M((kR) M(R)

Megr

the right and middle diagrams are naturality diagrams of € and the upper triangle is one of the
triangle identities the unit and counit of the adjunction. We used the fact that g is the mate of
a.
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Summarizing we found that the transpose of (4.1) is the following commutative square

eP(S) 25 Mo(S) M MR

esl l

S — R

IS

which means that

ag! =
0P(S) <=— Me(S) M R

esl l

(s - R

commutes and this shows that u is the unique morphism of monoids ¢(S) — R such that

Mmes) 2L ar(r)
|
IS R

<l

commutes.

4.11.2 From monadic to presheaf

Suppose that R is the initial monoid in £ with a map of R—modules r : M (R) — R. By applying
k and precomposing with Sz we obtain

P(kR) 22 kM(R) s kR

We wish to show that kR is the initial monoid in F together with the map of kR-modules
Br o kr. Given another monoid S in F together with a map of S—modules Ps: P(S) — S, by
applying ¢ and precomposing by a !

=l
M(S) 255 ¢P(S) & 18

we have a monoid in € together with a map of £S-modules M (¢S) — ¢S. By initiality of R
there exists a unique monoid morphism u : R — £S5 such that the following square commutes

M(R) % M (¢S) (4.2)
r (P(S)
lfs
R (S

u

We set B
v kR ks 'Sy g
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and we wish to show that v makes the following square commute

P(kR) 2>~ ps

kroBRl is

kR S

v

which implies that v is the unique monoid morphism kR — S. By replacing v by its definition
we have the following diagram

P(kR) -TF% p(keS) Prs’ PS
ﬁRl @zsi "PV
kM (R) MY k0 (eS) kas kCP(S) s
krl stJ/
kR - k(S ——= S

Ns

The upper left square is a naturality square of 3, the lower left diagram commutes because
(4.2) does and the bottom right square is a naturality square of 7. It remains to show the
commutativity of

P(S) L5 p(keS)

77P(S)l lﬁes

ag

Since a and B are mates under the adjunction ¢ 4 k, we can express 5 by « and we obtain the
following diagram

P(ns)

P(S) P(ktS)

NP(S) NP(kes)

keP(S) XL p(kes)

kag i kages
kM (¢ns

kM (eS) I (0kes)

kMe
km ‘s

kM (£S)

the upper square is a naturality square of 7, the square in the middle is a naturality square of
« and the bottom triangle is one of the triangle identities for the unit and the counit. o
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Chapter 5

The presheaf approach

This chapter details the theory of simply typed abstract syntax and variable binding in the sense
of [FPT99]. Some parts of it have been developed for example in [Fio02] and [Fio05], here we
give a complete description. We fix a set of types T for this chapter.

5.1 Category of contexts

We take the free cocartesian category generated by 7 to be the category of contexts. We use
the notation from [Fio02] for this category which is F | 7. We describe this category explicitly.

Its objects are arrows n L T where n stands for an object of the category of finite sets F.

AnarrowfromnLTtomgTisamaph:n—>m0f]Fsuchthat

h
m
N A
T
commutes in the category of sets.

The coproduct I' + A of two objects I' : n — 7 and A : m — 7 in F | T is given by the
unique map [I', A] : n +m — T and the coprojection maps I' — I' + A and A — I" + A are
given by the coprojection maps n — n+m and m — n + m in F.

The initial object of F | T is given by the unique map 0 — 7.

n

Notation 5.1.76 For each element t € T we have an object of F | T, which is the arrow
(t) : 1 — T that maps 1 to t.

5.2 The structure of [F | T, Set]

Similar to the untyped setting in [FPT99] we consider the presheaf category on the category of
contexts in order to define later the signature endofunctor. Throughout this section we fix a set
of types T.

The objects of the presheaf category [F | 7T, Set] are functors P : F | T — Set and an arrow
P — @ is a natural transformation p : P — . It is complete and cocomplete and limits and
colimits are computed pointwise.

The Yoneda embedding Y : (F | 7)°? — [F | T, Set] sends an object A of (F | 7)°P to the
representable presheaf Y(A) = F | T(A, —), in particular we have Y((t))(T') = F | T({t),T) =

63
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~1(t) for a type t € T and a context I'. We think of the set [ ~1(¢) as the set of variables of
type t in the context T'.

Notation 5.2.77 The presheaf of variables of type t is the Yoneda embedding Y ((t)). We omit
the parentheses and write Y(t).

We show now how to model variable binding in our typed setting. Let P be a functor in
[F | T,Set] and let us calculate the exponential functor pY{t) = pFIT(.-) for a typet € T:

PRTOD(T) = [F | T, Set](F 4 T(T, ), P70

[
[]F\LT, SetKF\LT(F, _) X F\LT(@)?_)?P)
[FlT,Set)(F| T+ (t),—),P)

=PI+ (1))

1

So we have

PY0 = P(= + (1)
Let t1,...,t, € T. Since the Yoneda embedding preserves products we have
V{t1) x ... x Y(tn) ZV((t1) + ...+ (tn))

We write shortly V(t1,...,t,) for Y({t1) + ...+ (tn)). Now we calculate the exponential functor
PY(t1sitn) o0 pITi, FIT((#:),-).

PEVT (), =) XELT (), =) (T) ¢ PEVT((h0) (). =) ()

=~ [F | T,Set](F | T(T, —), P70+ +(ta), =)y
=[FLT,Set)(FL T, —)xFLTt)+...+{ta), —), P)
> [F | 7,Set](F L T+ (1) + ...+ (t,), —), P)

> P(T 4 (t1) 4 ... + (tn))

So we have
PYttn) o p(— 4 (1) + 4 ()

5.3 Notion of signature

In this section we recall the definition of the notion of simply typed signature with variable
binding which is a collection of simply typed arities with variable binding. We also define the
binding signature endofunctor associated to a signature. We keep in mind our leading example,
the simply typed Lambda Calculus.

Definition 5.3.78 (arity) An arity is a collection of types consisting of t; fori=20,...,n and
(tij)j=1,..m; foralli=1,... ,n written

(t171 - thl)tl, RN (tn71 . tn,mn)tn — 1o

Intuitively this stands for an operator that binds my, variables of types t1,... %% m, in its
k—th argument of type t;. It yields a term of type #g.
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Example 5.3.79 (Abstraction of the simply typed Lambda Calculus) Let T be the in-
ductive set of types defined by
T == T|T=T

where T is a set of base types. Let s,t be two types of T. The arity of the abstraction that binds
a variable of type s in a term of type t is

()t »>s=t

Definition 5.3.80 (signature) A signature is a collection of arities.
Now let us take a look at some examples of signatures.

Example 5.3.81 (Lambda Calculus without product type) Let T be the inductive set of
types defined by
T == T|T=T

where T is a set of base types. The signature of the simply typed Lambda Calculus is given by
two collections of arities S = (s, Bs,t)steT Wwhere

agy = ()t—>s=>t

and
Bsg = s=>t,5—t

Example 5.3.82 (Lambda Calculus with product type) LetT be the inductive set of types
defined by

T o= TI|1|T=T|TxT

where T is a set of base types. The signature of the simply typed Lambda Calculus is given by
the following collection of arities

Vs,t €T, s,t—sxt
Vs, teT, sxt—s

Vs,teT, sxt—t

Vs,t €T, (s)t—>s=1t
Vs, t €T, s=ts—t

Notation 5.3.83 The collections of T —indexed presheaves of [F | T, Set] form a category which
we call [F | T,Set]”.

We interpret an arity such as in definition 5.3.78 in a T—indexed collection of presheaves
P = (P)ier € [F 1 T,Set]” as an arrow
e ti 1yt
HPSL)( TyLseeey z,mi) N Pto
=1
which is at the component ' e F | T
Bgl (F + (tl,b R atl,ml)) X ... X Ptn(F + (tn,h - ,tmmn)) — PtO(I‘)

To a signature we associate the following signature functor.
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Definition 5.3.84 (signature functor) Let S = (a)rer be a signature and oy an arity for
each k as in definition 5.3.78

N (P C N a2

ng, L My,

We associate to S the signature endofunctor ¥ : [F | T,Set]” — [F | T,Set]”, (P)ier

(Qu)uET where
"k t<k) 75(k) )

Q=Y TIA

kel, i=1

and I, = {k € I]ték) =u} forallu eT.

Example 5.3.85 (Lambda Calculus without product type) The signature functor ¥y of
the simply typed Lambda Calculus without product type is given by the collection (Qy)ueT where

S Prtomny X Po+ PP ifu=s=1t
veET

Z Pv:>u X Pv 6156
veT

Qu:

Example 5.3.86 (Lambda Calculus with product type) The signature functor ¥« of the
simply typed lambda calculus with product type is given by the collection (Qy)ueT where

( ZT(PU;»l X Py 4+ Pixy + Pyx1) + 1 ifu=1
:§T(P (sxt) X Po+ Ploxtyxo + Pox(sxt)) + Ps x P if u=sxt
Qu = > (Pos(smt) X Py +P(s¢t)><v+PvX(8;>T)>+Py< s) ifu=s=1
viT( Py, X Py + Pyxv + Pyxu) else
\ veT

5.4 Free algebras

Given a signature, we consider free algebras for the signature functor ¥ : [F | T, Set]” — [F |
T, Set]” associated to the signature.

By chapter 3, the forgetful functor U : Y-alg — [F | 7,Set]” has a left adjoint F if the
initial X + Y-algebra TX exists (since [F | T,Set]” has finite coproducts) and F maps X
to TX. By Lambek’s Lemma the structure map of the initial algebra is an isomorphism, so
X +XTX = TX. Furthermore [F | 7, Set]” has an initial object 0 and colimits of countable
chains, so T'X can be computed as the colimit of the following countable chain

0= X+30) = X+X(X+X2(0) —
if 3 preserves colimits of countable chains. So we chow now that 3 preserves such colimits. Let
Zo =21 —>Zy—> ... Ly — ...

be a countable chain of presheaves Z; € [F | T,Set]. We show first that for all u € T, the
endofunctor (—)Y{ preserves such colimits. We compute
(colim Z,)Y™) (') = (colim Z,)(T" + (u))
= colim(Z, (I + (u)))
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and

(colim(ZY))(I") = colim(ZY™ ("))
= colim(Z, (T + (u)))

so we have an isomorphism (colim Z, )Y (T') — (colim(Z%m))(F) forallT' € F | 7 and thus
an isomorphism (colim Z, )Y — colim(Z%} <u>). Now let uq,...,u, € T. We compute

(colim Z,, )Y (#-+um) (1) = (colim Zy,)(I' 4+ Y(u))
= colim(Z, (T + (u1) + ... + (um)))

and

(colim(ZY (Wirum)))(T) = colim(ZY (#1rum)(T))
= colim(Z, (T + (u1) + ... + (um)))

So we have an isomorphism (colim Z,, )Y (#1:-tm) — colim(Z?L](ul""’um)). Now let ¥ be a signature
endofunctor and

Zo =21 —>Zy—> ... Ly — ...

be a countable chain of presheaves Z; € [F | T, Set]”. We compute

Y(colim Zy,)y, Z H (colim Z,,)
= H (colim Zn ), (T + (i) + -+ (tmi)

= Z H colim(Zp ¢, (' + (tj1) + ... + <t3,m;>))

icl, j=1
and
(colim(EZ,))u(T) = colim((SZ,)(T))
= colim Zj ﬁ S () + - A (i)

NZ H colim(Zy ¢, (I + (tj1) + - +<tj,m;.>))

iel, j=1

where the last isomorphism comes from commutation of colimits with colimits and limits with
filtered colimits. So we have an isomorphism 3(colim Z,,) — colim(X%,).

Example 5.4.87 (Lambda Calculus with product type) The free algebra (£,)uer on the
presheaf of variables Y := (V(t))ieT, that is, the initial Y+3x« — algebra for the signature functor
Yax from the example 5.3.86 is the collection of arrows (¢y)ueT, Gu @ Y{u) + (Exx L)y — Lu.



68 Chapter 5. The presheaf approach

Ezxplicitly we have the following arrows

V() + 3 (Lomt X Lo+ Lixw + Lox1) +1 = & ifu=1
V(s x t;ing(gv:»(sxt) X Ly 4 Lisxtyxw T Lox(sxt) +Ls X & = Loy ifu=sxt
Vi(s=1t)+ UEZT(QU:>(3:>15) X Ly + Ls=t)xo T 21}><(5:>7‘)) + £3’<5> — Let fu=s=t
Y{u) + U;_(Sv:u X Lo+ Luxo + Loxu) = Ly else

Just like in the untyped case we have the following theorem.

Theorem 5.4.88 The terms of the simply typed Lambda Calculus modulo a—equivalence form
a free algebra on (Y(t))iet for the signature functor Xy from the example 5.5.86.

We do not give here the proof since it does not reflect the complete characterisation of the
object of interest for this particular signature ¥y .

5.5 Monoidal structure on [F | 7, Set]”

We recall the notations for the substitution monoidal structure introduced in [Fio05]. Let
P = (P)ier € [F | T,Set]” and A : A — T € (F | T)°°. The A-fold product of the
components of P is given by the formula

P& = 1] Paw
keA
Remark that P*2 € [F | T,Set]. If A = (u1,...,up), then
P2 =P, x...x P,
or equivalently for all T € F | T

PXA(F) — H Pu(r)Afl(u)
u€T

Let Re[F| T,Set]and T' € F | 7. We write
A€(FLT)oP
(ReP)(T) = | R(A) x P*A(T)

Now let Q = (Qy)ieT € [F | T,Set]”. The monoidal product of Q and P at the component
u € T is given by

AE(FT)oP
(Q® P)u(l) = (Qu e P)(T) = / Qu(d) x PXA(T)

The unit for this monoidal product is given by the collection of variables Y := (Y(t))eT-
For the construction of the monoidal category isomorphisms

apQr: (PRQ)® R),(T) = (P®(Q® R)).)
Ap: (Y& P)u (') = P,(I)
pQ : (Q®Y)u(T) = Qu(T)

see appendix C.1.
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Proposition 5.5.89 The above defined o : [F | T,Set] x Y | [F | T,Set]” — [F | T, Set]
(P,Y—=Q) — PeQ

is a right Y | [F | T, Set]” —action.

Proof. Let P € [F | 7,Set] and Q,R € Y | [F | 7,Set]”. We define the two natural

isomorphisms

apQr:(PeQ)eR— Pe(Q®R)

and

rp:Pe)Y — P

Let I' ¢ F | T. We rewrite the domain and the codomain of apg rr using the coend notation

(PeQ)e //A ) % Qu(A) % - X Quy (A) x T Rum)> @

teT

and

(Pe(Q®R)) / /AI / P(A) x Quy (A1) x [ Ri(D)2'®)

teT
X .

X Qu,, (Am) x [ Re(D)

teT

where A’ = (uy,...,up). To define a map ((PeQ)e R)(I') — (Pe(Q ® R))('), it suffices to
give a collection of arrows

P(A) % Quy(A) X . X Qu,, (A) x [T Ru(T) = (Pe(Q®R))T)

teT



70 Chapter 5. The presheaf approach

for all A, A’ € F | T that satisfies the wedge condition. We take the following composite

P(A) x Qu, (A) X ... X Qu,, (A) x [] R(IT)A™'®

teT

P(A’) X Qul(A) X H Rt(F)A—l(t)

teT

X ...

X Quy (A) x T Ry(1)A™'®
teT

|

P(A’) X fAl Qul(Al) % H Rt(F)Al—l(t)
teT
X

x fAm Qui (D) x T Re(T)A' )

teT

fA/ P(A/) X fAl Qul(AI) % H Rt(F)Al—l(t)

teT
X ...
X 2™ Quo(Agn) x [T Re(T)A )
teT

For the remaining verifications see appendix C.2.
Next we define rp. Let I' € F | 7. To define an arrow

/ ® P x [T '@)2 " ® = P(D)

teT

is equivalent by universal property of the coend to give a collection of arrows

PA) x JJ 2O = P(D)
teT

for all A € F | T that satisfies the wedge condition. We take the following mapping

p, (hi)ter +— P(th)(p)

teT

For the remaining verifications see appendix C.2. O

Lemma 5.5.90 Let P,Q € [F | T,Set] and R € [F | T,Set]”. Then
(PxQ)eR— (PeR)x (QeR)
18 a natural isomorphism.

Proof. See appendix C.3. O
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Corollary 5.5.91 Let P,Q,R € [F | T,Set]”. Then
(PXxQ)®R— (P®R) x (Q®R)
1$ a natural isomorphism.
Proof. The above bijection is componentwise the assertion of the previous lemma
(Pt x Qt) @ R)(I') — (P @ R)(I) x (Qr @ R)(I)

is a natural isomorphism for allt € 7T and ' e F | T. ]

Lemma 5.5.92 Let P,Q € [F | T,Set] and R € [F | T,Set]”. Then
(P+Q)eR— (PeR)+(QeR)
18 a natural isomorphism.

Proof. See appendix C.4. |

Corollary 5.5.93 Let P,Q,R € [F | T,Set]”. Then
(P+Q)®R— (P+R)®(Q+R)
1 a natural isomorphism.
Proof. The above bijection is componentwise the assertion of the previous lemma:
(P+Q)r o R)(T) = (P o R)(T') + (Qr » R)(T)

is a natural isomorphism for allt € T and ' € F | T. O

5.6 Monoidal closed structure on [F | T, Set]”

Let Y € [F ] 7,Set]”. Tt induces a functor —eY : [F | T,Set] — [F ] 7,Set] by X — X oYV
and a functor — @Y : [F ] T,Set]” — [F | T,Set]”.

We check functoriality. Let f: X — Z in [F | 7,Set] and ' € F | T. To give an arrow
(X oY )(I') = (ZeY)(I) is equivalent to give a collection of arrows

X(8) x [[w@a7® » (Zev)(T)
teT
for all A € F | T that satisfies the wedge condition. We take the following composite

X(A) x T ¥(r)2 '
teT

Z(A) x [ Yy(D)A™'0
teT

J2Z(A) x T] v(@)A ™' ®
teT
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We check the wedge condition. Let g : Ay — Ay. The diagram

x 1 Yi(I)
(t)

teT
X(Ar) x [] ¥a(D)2e"

teT

Az) x [ Yy(I)%2

teT

// R

(ZeY)(T)

“\

commutes because we have the following assignations on elements

ht © gt teT

/ fay (@), (he o ge)er
ht teT\ = fAz ( )( ))7(ht)t€T

ht teT

By naturality of f we have fa, o X(g9) = Z(g) o fa,. The elements fa,(x),(ht o gt)te7 and
Z(9)(fa,(x)), (ht)teT are equal since they come from fa,(z), (hi)eT € Z(A1) x ] Y}(I‘)Af(t)

teT
with the arrow g
Z(A1) x JL vu(0)AT®
teT
Z(Ay) x [ Yy(D)22'® (Z o Y)(T)

teT

Z(g)xid

D\
N

Z(A2) x [T V()

teT
Now we check that f eY is natural in I'. Let g : I’y = I's in F | 7. The naturality square
(X oY) (') —= (Z e Y)(I'1)
(X oY) (I'y) —= (Z e Y)(I'y)
commutes since we have the following assignations on elements
z, (he)rer ———— fa(®@), (he)teT

I |

z, (Yi(g9) o hi)ier —— fa(x), (Yi(g) o ht)ieT
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The functoriality of — @Y : [F | T,Set]” — [F | T,Set]” follows from the functoriality of
—eY :[F|T,Set] — [F] T,Set].

Proposition 5.6.94 The functor —eY on [F | T,Set] has a right adjoint.

Proof. Let Z € [F| T,Set] and ' € F | 7. We set
Y — Z(T) = / Set(Y*I'(A), Z(A))
AeF|T

and Y — — is a functor [F | T, Set] — [F | T,Set], X — Y — X.
We check functoriality. Let f: X — Z in [F | 7,Set] and T € F | 7. To give an arrow
(Y - X)(I') = (Y — Z)(I) is equivalent to give a collection of arrows

(Y — X)(I') — Set(Y*I'(A), Z(A)

~—

for all A € F | T that satisfies the wedge condition. We take the following composite

(Y — X)(I')

|

Set(Y*I'(A), X (A))

|

Set(Y*I'(A), Z(A))

We check the wedge condition. Let g : Ay — Ay, The diagram

X(A1))
/ \
W%X\\\\\\ Set(YXT (A1), Z(As))

/

commutes because on elements we have the following assignations

Set YXF Al)

Set yxI AQ

( ) fAlohl

X\\ — fay oy 0 Y¥T(g)
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The composites Z(g)o fa,oh1 = fa,0X(g)ohs and fa,oh20Y > (g) are equal since (Y —o X)(T)
is an end and thus

Set(Y*I'(A1), X

/ \
(¥ — X)(T \ Set (VT (A1), X (Ay)

/

commutes which means that X (g) o hy = hy o Y*I'(g).
Now we check that Y —o f isnatural in I'. Let g : I'y — I's in F | 7. The naturality square

Set YXF AQ)

(Y — X)(I') —= (Y — Z)(I'1)

| |

(Y — X)) —= (Y — Z)(I'y)
commutes since we have the following assignations on elements

h|—>foh

I I

hoY*9r——— fohoY™d
Next we show that the following Hom—sets are isomorphic
[FJl7T,Set](XeY,Z)=[F|T,Set](X,Y — Z)

and thus Y — — is the right adjoint of Y ¢ —. We compute

F | T, Set](X o Y, Z) = /A Set(X o Y(A), Z(A))

- [ salf LX) % YT(A), Z(A))
g/ /Set(X(F) < YT(A), Z(A))
//Set T) x YXT(A), Z(A))

~ / / Set(X (T, Z(A)Y " (@)
T'JA
%/Set(X(F),/ Z(A)YXF(A))
T A
~ / Set(X (T, /A Set(Y*1(A), Z(4)))

/Set ),Y — Z(T))
= [F | T,Set](X,Y —o Z)
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where we used the naturality formula, universal properties of colimits and limits, the Fubini
formula for ends and cartesian closedness of Set. O
Corollary 5.6.95 The functor —®Y on [F | T,Set]” is a left adjoint.
Proof. Let X € [F} 7,Set]” and t € T. We set
(Y = X); = (Y — Xy)

where —o on the right—hand side stands for the right adjoint defined in the proof of proposition
5.6.94. O

5.7 Strength for X

Let P = (P)ier € [F | T,Set]” and u € T. We write PY® for the collection of presheaves
Y (u)
(Pt )tET‘

Proposition 5.7.96 Let u € T. The endofunctor (=)Y on [F | T,Set] is Y | [F | T,Set]” -
strong.

Proof. First we define the Y | [F | T, Set]” —strength
ngg : PYW e Q — (P o)™

Let I' € F | T. We rewrite the domain and codomain of sgg using the coend notation

A=(U1,eeyUm)
Pﬂ’<u>.Q—/ P(A + () X Quy (T) X ... X Qu, (T)

and

AIZ(tl,...,tn)

(PeQP @ - | PA) x Qu (T {u)) . x Qo (T + (u)
To define an arrow (PY(" e Q)(I') — (P & Q)(I" + (u)) it suffices to give a collection of arrows
P(A + (u)) X Quy (') X ... X Qu,,, () = (P e Q)(I' + (u))
for all A that satisfies the wedge condition. We take the following composite
P(A 4 (u)) X Quy(T) X ... X Qy,, (T)

PA+ (u) X Quy (T 4+ (u) X .. X Qy,, (T'+ (u)) x 1

P(A A+ (1)) X Quy (T4 (u)) X ... X Quyp, (T + (u)) X Qu(l" + (u))

IA':(th...,tn) P(A') % Qtl(r + <u>) X .. X Qy, (F + <U>)

where we used g : 1 — ngw the transpose of ¢, : Y{(u) — Q. For the remaining verifications
see appendix C.5. O
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Corollary 5.7.97 Let u € T. The endofunctor (—)Y on [F | T,Set]” is U | [F | T,Set]” -
strong.

Proof. Let P € [F | T,Set]” and Q € Y | [F | T,Set]”. Then by the previous proposition,
there is a ) | [F | T, Set]” —strength

PP e Qs (Pe QP
for all t € T. So we take them as the fibres to define a Y | [F | T, Set]” —strength
PV @ Q = (P Q)Y™

The commutativity of the following diagrams

a s(w)
(PY" @ Q)® R PY ©(Q ® R) PYu gy —— (PgY)Yw
s(u)®RJ/ Pl i
(PoQ)Y"eR 5w pYu)

S(”)l

(P®Q)® R —= (P2 (Q® R)M

follows from the commutativity of the respective diagrams in each component t € 7. O

Proposition 5.7.98 Let S = (ag)rer be a signature and oy, an arity for each k as in definition
5.83.78
k k k k .
(tg,l)...tig“)tg ),...,(t( ) (k) )t(k) N té)

ng,1 " Ing,mn, /U ng

Let X be the binding signature functor associated to S. Then X is U | [F | T, Set]” —strong.

Proof. By proposition 4.7.52, for a collection of types u1, . .., umy € T, the functor (—)¥@1:tm)
is Y | [F | T,Set]” —strong on [F | T,Set] and [F | T, Set]” as well. By propositions 4.7.53 and
4.7.54, finite products and coproducts of such functors are Y | [F | 7, Set]” —strong as well. A
binding signature endofunctor is made up of such ingredients, so it is J | [F | T, Set]” —strong.

O

5.8 Strength for T

Definition 5.8.99 (strength for a monad) Let (C,®,I) be a monoidal category and (T, n, 1)
a monad on C. A strength for the monad T is a strength for the endofunctor T

tap:TA® B — T(A® B)

such that the following diagrams commute

B
Ao B S TAs B

\ ltA’B
NAQB

T(A® B)
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and
t Tt
TTA®B—2T(TA® B) —2TT(A® B)
ra®B i,uA@B

TA® B T(A® B)

ta,B

Let ¥ : [F | 7,Set]” — [F | T,Set]” be a binding signature functor and spg : P ® Q —
Y(PoQ)aY | [F|T,Set]” strength for X.

Proposition 5.8.100 The free monad T generated by ¥ is Y | [F | T, Set]” ~strong.

Proof. We are going to construct a natural transformation txy : 7X ®Y - T(X ®Y) for
X e[F|T,St]” andY €Y | [F| 7T,Set]” and show then the monad strength axioms. By
the adjunction — ® Y 4Y —o — explained in section 5.6, we define the transpose tAX’y TX —
Y - T(X ®Y) by initiality of 7X. We provide Y — T'(X ® Y) with a X x-algebra structure
and take tAXy to be the unique ¥ x—algebra morphism from T7X to Y - T(X ® Y).

To give an arrow X + X(Y = T(X ®Y)) - Y — T(X ®Y), is equivalent to giving two
arrows

X—=>Y -oT(X®Y)

and
Y -T(X®Y))=>Y -T(X®Y)

We have nxgy : X @ Y —» T(X ® Y) and by the above adjunction
7/7\X®y :X—)Y—OT(X@)Y)

Next we consider the composition of the following arrows

Y -T(X®Y)) oY
SY oT(X®Y),Y
B(Y = T(X@Y) oY)
Yer(xov)
ST(X®Y)

IXRY

T(X®Y)

where ¢ is the counit of the above adjunction. The transpose of o xgy oXer(xgy) oSy —T(XaY),Y
denoted «a, is of type X(Y = T(X ®Y)) > Y - T(X ®Y). For the remaining verifications see
appendix C.6. O

5.9 Substitution

Simultaneous substitution on a presheaf of terms is modeled by a monoid on [F | T, Set]” with
the above definition of substitution monoidal product.
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Proposition 5.9.101 Let ¥ : [F | 7,Set]” — [F | 7,Set]” be a binding signature functor
and TY the free ¥—algebra on Y. Then TY can be provided with a monoidal structure in
([FLT.Set],®,)).

Proof. The multiplication m : TY ® TY — T is given by the following composite:

ty, Ty

TYQRQTY —=T(YRTY) D rry 2, 7y

where t denotes the strength of 7. The unit is given by
YTy

We check the monoid axioms. The first one

(TYQTY)@TY =TV & (TY @ T " TY 0 TY
m®Ty\L lm
TY @ TY m Ty

becomes the following when we unfold the definition of m

(TYRTY) ————=>TYQ(ITYQRTY) ——=>TYQRTQYRTY) —————>TYRTTY ———>TYRTY

LT e T e T e

TYRTY)RTY ——=>T(VRTY)QTY) ——=>TYR(TYRTY) —=>TYRTYRTY)) —=>TQYRTTY) ——=>T (Y RTY)

TTYQTY ——————>T(TYRTY) —————>TT(YRTY) TTTY TTY
V. l VI. l VII. l
TY @ TY T ®TY) TTY TY

The diagram I. is a strength axiom, the squares II. are naturality squares of ¢, the triangle III. is

a monoidal category axiom, the squares IV. are naturality squares of A\, diagram V. is a monad

strength axiom, the square VL. is a naturality square of u and square VII. is a monad axiom.
The unit axioms

Veory 2 ryery 2 ry ey

S

TY
become the following when we unfold m
TY TY®
YOTY —>TY®TY . TY®Y
\ . /
T )7®77
VeIV 22TYey) /,

N TX|Tp Tpl

n
Ty TY
jz /

id

Ty
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The left upper triangle is an axiom for strength of monads and the bottom square is a naturality
square of A. The right upper square is a naturality square of ¢ and the right bottom square is
a naturality square of p. The upper right triangle is an axiom for strengths and the bottom
triangle is a monad axiom. |

5.10 Initial algebra semantics

The notion that combines algebra structure for a strong endofunctor F' and substitution is the
notion of F—monoid. We recall the definition.

Let (F, f) be a strong endofunctor on a monoidal category (C,®,I). An F-monoid is a
quadruple (A, m, e, a) consisting of an object A of C such that (A, m,e) is a monoid in (C,®,I)
and (A,a) is an F-algebra such that

FA® A F(Ag A) Fm pa

a®Al l

AR A A

commutes.

A morphism of F—algebras is a morphism of C such that it is a morphism of F'—algebras and
a monoid morphism.

F-monoids and morphisms of F—monoids form a category, we write F'-Mon for this category.

Theorem 5.10.102 Let ¥ : [F | 7,Set]” — [F | T,Set]” be a binding signature functor and
TY the free Y—algebra on Y. Then TY is an initial X—monoid.

Proof. We have seen that T') can be provided with a monoid structure. In order to show
that it is an object of ¥-Mon, we check the compatibility of the monoidal and the >-algebra
structures, that is, that the following diagram commutes.

STYRQTY —=X(TYRTY) —=XTY

| |

TyeTy Y

we unfold the arrows and we find

STY @ TY —> S(TY © TY) 2 STV © TY) S STTY s ST

aml |o l l

TY @TY - TYeTY)— TTY ——TY

The diagram on the left commutes because of (C.7), the square in the middle is a naturality
square of ¢ and the square on the right commutes by definition of ;y being the initial 7Y 4 ¥—
algebra.
In order to check initiality suppose that (X,m,e,x) is another object of ¥-Mon. It is in
particular a ) + »—algebra by
e,x] : Y+3X = X



80 Chapter 5. The presheaf approach

By initiality of T')Y there exists a unique morphism h of Y—-algebras from 7Y to X, so the
following square commutes
Y+Zh

y+yerx¥ Py Lvx (5.1)
[ny.oy] i \L [e,]
Ty N X

It remains to check that h is as well a morphism of monoids and thus a morphism of ¥>—monoids.
The diagram
ny

commutes by (5.1). The diagram

YTy ™ x o X

l X

Ty X

h

becomes the following when we unfold the arrows

yeTy 2P rye x N x e x (5.2)
t
TY®TY)
TTY
7
Ty . X

First remark that there is a unique arrow u of X 4 Y-algebras TX — X, defined by initiality
of T X since X can be provided with a X + Y—algebra structure

idx,2] : X + X — X

Next remark that the following diagram commutes

Te TX
X /

X

Te is by definition a morphism of ) + Y-algebras. We show that so is u and then by initiality
of T'Y we can conclude that the two morphisms of ) + ¥—algebras h and uw o T'e are equal. We

TY
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check that the following diagram commutes

V4yrx YLy vy

e+idl \Le—i-id
X+ YTX 2 X 42X
[nx.0x] l l lidx ,z]
TX X

u

The top square commutes trivially and the bottom square by definition of u being the unique
morphism of X + ¥—algebras from T X to X.
Now we rewrite the diagram (5.2) using the factorisation h = u o Te.

Ty@Ty TY®h Ty@X Te®X TX®XU®X XX

t I. tl III. ti

T(YRh T(e®X

T e TV Y270 e x)"CXr(x o X)
J/ Iv.
= II. = m
Tm

Ty — M X VI
Ky V. \
Ty - X

The squares I. and III. are naturality squares of ¢, square II. is a naturality square of A\ and
triangle IV. is one of the monoid axioms. It remains to check the commutativity of diagrams V.
and VI.

First we check the commutativity of V. We show that u and h are morphisms of TY + Y-
algebras. By definition py and T'h morphisms of T') + ¥ -algebras and by initiality of T7')Y we
can conclude that the two morphisms of Ty + ¥-algebras h o uy and wo T'h are equal.

e X is a Ty + X—algebra:
h,z] : TY + XX — X

e h:TY — X is a morphism of T'Y + Y-algebras:

TY + sV 2y Lovx

[id,ax}l l[h,x]

Ty —————X

This square commutes by definition of h being the unique morphism of ) + >—algebras
TY — X.

e u:TX — X is a morphism of T'Y + Y—algebras:

TY + STX 2241y 4 wx

[Te,ax]i \L[h,z]
TX X
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This square commutes by i = Teowu and by definition of v being the unique morphism of
X + Y-algebras TX — X.

To show the commutativity of VI., we show the commutativity of its transpose

uRX

TX X — (X ®X)
]
X -TX®X) X—om
X—OTml
X oTX ——>X o X

where u ® X is the transpose of u ® X. By definition
u®X = (X — (u®X))onrx

where 7 is the unit of the adjunction — ® X 4 X — —. By naturality of n
(X - (u®X))onprx =nxou

So we are going to show the commutativity of

TY — X —X — (X ®X)
]
X - T(X ®X) X—om
X—onl
X —oTX T X —oX

We check that X — TX and X — X are X + Y-algebras and that X — T'm, X —o u and
X —o monx are morphisms of X 4+ Y—algebras. Then by initiality of T X we can conclude that
the composites X —o 1w o0 X —oTmot and X — monx owu are equal.
e X -oTX isa X 4 Y-algebra: The arrow X + 3(X —TX) - X — T'X is given by
X—>X—-oTX
XX —-TX

where X @ X ™% X X TX and
(X —~TX) = X —TX
S(X - TX)®9X - TX

where

(X -oTX)® X
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e X — X isa X + Y-algebra: The arrow X + X(X — X) — X — X is given by

X=X —oX
XX XX

and
Y(X —oX)=5 X —oX
YX —oX)X = X

where where

Y(X X)X
(X - X)® X)
e

X

T

X

e X —o T'mis a morphism of X +>—algebras: We show that the following diagram commutes

X+ 5(X - T(X @ X)) 28T % L s(X o TX)

| |

X —-oT(X®X) o X —oTX

It commutes because the two following diagrams commute

X id X

| |

X = T(X@X) =X - TX

and

S(X - T(X @ X)) 22 | s(x — TX)

| |

X -oT(X®X) <~ X —oTX
They commute because their transposes commute
XX — X
inX@X lnX
T(X ® X) TX

Tm
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which is a naturality square of  and

Y(X -oTX)® X

S S

ES(X%Tm)@X)

DX - T(X®X)®X (X - TX)® X)

Ser(xex) Serx
ST(X ® X) > STX
OX®X ox

T(X ® X) — TX

the top square is a naturality square of s, the middle one a naturality square of € and the
bottom one a naturality square of o.

e X —o u is a morphism of X + Y-algebras: We show that the following diagram commutes

X45(X —ou)
X+3X —-oTX)— X + 3(X — X)

| i

X —oTX ~ X —o X
—oUu

It commutes because the two following diagrams commute

id

X X
X —oTX T X —oX
and
(X — TX) =27 L 5(X — X)
UXOEETXOS\L lonexos
X —oTX ~on X —oX
They commute because their transposes commute
XX
X m
nxl
TX X

u

commutes since by definition of u being the unique morphism of X + ¥—algebras from T'X
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to X, we have uonx = idx.

S(X o TX) 0 X -5 (¥ o X)@ X
S((X — TX) @ X) 22995 52X —o X) @ X)
Serx Yex
STX . DX
ox .

TX X

u

The top square is a naturality square of s, the middle one a naturality square of € and the
bottom square commutes by definition of u being the unique morphism of X 4 >—algebras

from T'X to X.
e (X — m)onx is a morphism of X + Y-algebras: We show that the following diagram
commutes
X+ nx TR (X o X)
lidx ] i i [, 505 x o]
X (X—om)onx X—X

It commutes because the following two diagrams commute

idy

X X

ax | |

X— X —oX

(X—om)onx

and
Y((X—om)o
wx e v x

X X —oX

(X —om)onx

The first diagram commutes trivially since by definition of the transpose m = (X —o
m) onx. The second diagram commutes because its transpose commutes

X
X ® X PN S(X o (X @ X))o X SR Y o X) @ X

\ I is II. s
)

S(X @ XTI (X = (X © X)) @ X IR — X) © X)

1V.
T®X Yexox V. Yex

id

II1. (X ®X) S »X

XX
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The squares I. and II. are naturality squares of s, diagram IIIl. is a ¥—monoid axiom,
triangle IV. is one of the triangle identities of the adjunction and V. is a naturality square
of e.



Chapter 6

The monadic approach

In this chapter we are going to focus on the point of view of Hirschowitz and Maggesi. It
is strongly based on monads which encompass variables and capture avoiding (simultaneous)
substitution.

6.1 Modules on monads

First we give the key notion of a module on a monad and we give some general constructions of
modules. This notion of module is more general then the classical notion of module on a monoid
such as in definition 4.6.41.

Definition 6.1.103 (module) Let (R,n, 1) be a monad on a category C. A module on R (or
an R-module) is a pair (M,o) where M is a functor C — D and o a natural transformation
Mo R — M such that

Muy Mn
MRR— MR MId— MR
« ) NP
MR M M

(el

commute.
We call o the module action of M.

Definition 6.1.104 (module morphism) Let (R,n, 1) be a monad on a category C. A mod-
ule morphism from (M,o™)) to (N,o™)) is a natural transformation T : M — N such that

MR -2~ NR

"(M)J/ lgw)

M *7_> N
commautes.

Notation 6.1.105 Modules on R with common codomain D and module morphisms between
them form a category Modg.

87
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Example 6.1.106 Let C,D,E be three categories.
e A monad R on C is an R-module.

e Let R be a monad on C , M an R—-module with codomain D and F a functor D — £. Then
F oM is also an R—module.

o Let D € D be an object. The constant functor C — D, C — D for all C' is an R—module
for every monad R on C.

e Let R be a monad, M, N two R—modules with codomain D and suppose that D is complete.
Then the pointwise product M x N is an R—module.

Example 6.1.107 (pull-back module) Let R, S be two monads on a category C and p be a
monad morphism R — S. Let (M,o) be an S—module. Then (M,o o Mp) is an R—module, the
pull-back module along p. We write p*M for it.

Example 6.1.108 Let R, S be two monads and p a monad morphism R — S. It induces an
R-module morphism R — p*S still denoted p.

There a large category of modules where modules based on different monads are mixed
together.

Notation 6.1.109 The objects are pairs (R, M) where R is a monad and M is an R—module.
An arrow from (R, M) to (S,N) is a pair (p,7) where p: R — S is a monad morphism and T
is an R—module morphism M — p*N. We write Modp for this category.

6.2 Modules on Set /T

In this section we introduce special kinds of modules on the slice category Set /T for a given
set T: the derived modules and the fibre modules. At first we give some notations on the slice
category Set /T.

The category Set /T has finite coproducts. The coproduct of T': T — 7 and A : A — T is
given by the unique arrow [I',A] : T+ A — T in Set.

Moreover an element ¢ of 7 induces an object in Set /T : (t) : 1 = T,1+—t.

6.2.1 Derived module

Definition 6.2.110 (derived module) Let R be a monad on Set /T, M an R-module with
codomain C and w € T. The derived module of M with respect to u is given on objects by

9uM(T) := M(T + (u))

We have to check that this definition is correct, that is, that 0, M is an R—module.
First let us check the functoriality. Let h : I' — A be an arrow in Set /7. We write h + (u)
for the unique arrow I' + (u) — A + (u) given by the universal property of the coproduct and

the composites I’ 25 A neley A (u) and (u) el A+ (u). We define 9, M (h) to be the arrow

M(h+ (u)) : M(I' 4 (u)) = M(A + (u))
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Next we provide 9, M with a module action ¢’ : 9, M o R — 0, M. We construct it compo-
nentwise: of. : M(RT + (u)) - M(R(T" + (u))). The arrow

ar : RT + (u) — R(T + (u))
is given by the two arrows
RD 22 R(T 4+ (u))
and
() 2 T 4 (u) S ROT A+ (u))
We define 7. to be the composite

M(RT + (u)) 22205 MR(T + (1) =% M(T + (u))

o’ is natural in T since a and o are.
At last we check the module axioms for o’.

M (np+(u))

M(T + (u)) M(RT + (u))

Map
Mnry )

MR(T + (u))

lUFHu)

M(T + (u))

g (r(u))

The bottom triangle commutes because it is the module axiom for o at the component I" 4 (u)
and the upper triangle commutes because the following triangle commutes

+{u
T4 () — " Rr 4 )
l [Rincle,np (u)oincly]

R(T + (u))

T+ ()

where we unfold the definition of ar and by naturality of n we have incly o np () = Rincly o nr
The other module axiom becomes the following diagram when we unfold o’.

M(RRT + (u)) M) M(RT + (u))
s e
MR(RT + (u)) M8 MRR(T + (u)) — _ MR(T + ()
O RT+(u) l UR(FJA@) i"r+<u>
M(RE + () —— MR(T + (1)) —5—> M(T' + (u))

The bottom right square is a module axiom for o at the component I' 4+ (u). The bottom left
square is a naturality square of ¢. The top square commutes because the two following diagrams

commute.

RRD =) RT

Rinclgl \Rincll J{Rinclz

R(RT + (u)) o> RR(T + (u)) ;= R(L' + (u))

KT+ (u)
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the triangle commutes by definition of o and the square is a naturality square of p.

id
(u) ————(u)

incl, incl,

RT + (u) <2 1 )
NRT + (u) T+ (w)
R(RT + ()] E2R(r + (w))

/
Rar R(nr-(uy) id
/

the top square commutes obviously, the square in the middle is a naturality square of 7, the
upper triangle commutes by definition of o and the bottom triangle is a monad axiom.

Lemma 6.2.111 For each u € T, derivation with respect to u yields an endofunctor 0, :
ModZ — Mod#.

Proof. The functor 9, is given on objects by the above construction. Let 7: M — N be an
R-module morphism for a monad R. The arrow 9,7 : 9,M — 9, N is given by the components

Trgquy * M+ (u) = N(T + (u))
The module axioms for 0,7 follow immediately from the ones for . O

Remark 6.2.112 More generally the endofunctor 0, : [Set /T,C] — [Set /T,C] can be provided
with an 1d | [Set /T, Set /T|-strength whose components are

P 8uF 0 G — 0,(F 0 G)

Proof. Let I € Set /T. The arrow pp g r is given by
F[G(ir), gr4(u) 0 jr] : F(GT + (u)) = F(G(I' + (u)))

where ir : I' = I' + (u), jr : (u) = I' + (u). Naturality in I' is given since all components are
natural in I". We check naturality in /" and G. Let f : F' — H be an arrow in [Set /T,C]. The
naturality square

OuF o G—— 0,(F o G)

| |

OyH o G — 0y(H o G)

commutes since it is a naturality square of f

F(GT + (u)) — FG(I" + (u))

| }

H(GT + (u)) — HG(T + (u))
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Let f: G — H in Id | [Set /T,Set /T]. The naturality square
Ol o G——0,(F o Q)

| |

since the following two diagrams commute

GT —— G(T + (u)) G+ (u))
| | i
HT — H(T + (u)) (u) —>T + (u) —> H(T + (u))

We check the commutativity of the Id | [Set /T, Set /T ]-strength axioms

(OuF oG)o H—=——=0,Fo(GoH) OuF old == 9, (F o1d)

| ~

Ou(FoG)oH O, F

|

Du((F 0 G) 0 H) —— 0,(F o (G o H)

The triangle commutes trivially. As for the rectangular diagram along the left—hand side we
have the following composite

FG[H (ir), hry(u) © jr] o F[G(inT), 9r+ (u) © JHT]

and along the right—hand side
F[GH (ir), ghr4 () © jr]
where gh : Id — G o H is the following composite

d—2=@

' |

H e GH
which are the same since the following diagrams commute

HT —2L HT + (u)

%‘ i[H(ir),th@Ojr]

H(T + (u))
and
JHT JHT+(u)
(u) ———HI'+ (u) ——= G(HI + (u))
jrl J/[H(ir)ahrﬂwojrl lG[H(ir)ahrH@OjF]
I+ (u) m)H(F + <U>)gm§H(F + (u)

ghry (u)
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O

Because of this Id | [Set /T, Set /T|-strength for 0,, we can “upgrade” 0, into a functor
Modg‘ — Modg as stated in lemma 6.2.111.

6.2.2 Fibre module

Next we introduce another kind of modules.

Definition 6.2.113 (fibre module) Let R be a monad on Set /T, M an R-module with codomain
Set /T and w € T. The fibre module of M with respect to u is given on objects by

M, (T) := (MT) " L(u)

We have to check that this notion is well-defined, that is, that M, is an R—module with
codomain Set.

First we check the functoriality. Let A : I' — A be an arrow in Set /7. We define M, (h) to
be the restriction of M (h) on the subset (MT)~!(u):

M (R)|(vrry-1(a) + (MT) ™ (u) = (MA) ™ (u)

Next we provide M, with a module action ¢” : M, o R — M,. We define it componentwise
for all T' € Set /T to be the restriction of the module action o of M on the subset (M RT")~!(u):

or |(rary-1(uy: (MRT) ™ (u) = (MT) ™! (u)

The module axioms for ¢’ are obviously satisfied. This follows immediately from the module
axioms for M and o.

Lemma 6.2.114 For eachu € T, fibre modules extend to a functor (—),, : Mod& T Mod&,,.

Proof. The assignation on objects is given by the above construction. Let 7 : M — N
be an R—module morphism. We construct an R—module morphism 7, : M, — N,. We take
the component in I' € Set /T to be the fibre of 7+ : MT' — NT in u, which is (MT)~!(u) —
(NT)~!(u). Naturality and the module morphism axioms follow directly from the ones for 7.
O

Proposition 6.2.115 Let C be a category and D a category with finite products. Let R,S be
two monads on a category C, p : R — S a monad morphism and M, N two S-modules with
codomain D. Then we have the following isomorphisms

1. if D has finite products then

p*(M x N) = (p*M) x (p*N)

2. if C=Set /T and u € T then
p*(0uM) = Ou(p™M)

3. if C=Set /T and u,v € T then

0pOuM = 0,0,M
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4. if C=D =Set /T and t,u € T then
Ou(My) = (0uM ),

Proof.

1. Since this is the pointwise product of modules, the action is given by the pointwise product
of the respective actions

(M xN)oR=MRxNR— MSxNS— MxN

2. The action of p*(9, M) at the component I" € Set /T is given by the composite
M(RT + (u)) = M (ST + (u)) - MS(T + (u)) — M(T" + (u))
and the action of 9, (p*M) at the component I' is given by
M(RT + (u)) - MR(T' + (u)) - MS(T + (u)) — M(T + (u))
They are the same since the following square commutes

RT + (u) ST + (u)

! l

R(T + (u)) — S(T + (u))

and this is the case because the following two diagrams commmute

p

RT ST (u)
| | |
R + (u)) ——~ ST+ (u)) T+ (u)

-

R(T + (w)) —5> ST+ (u))

The square on the left is a naturality square of p and the right triangle is a monad morphism
axiom.

3. Consider the two modules at the component I" € Set /7.
M(T + (u) + (v)) = M(I' + (v) + (u))
by universal property of the coproduct.

4. In this equation 9, on the left-hand side is an endofunctor [Set /7T, Set] and on the right—
hand side an endofunctor on [Set /T, Set /T]. So if we consider the two modules at the
component I € Set /T, we find

M (T + (w) ™ (w) = M(T + (u)) ™ (u)
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6.3 Signatures and their representations

Again we fix a set of types 7 and we use the same notions of arity and signature as introduced
in the previous chapter, in definitions 5.3.78 and 5.3.80. We call these arities and signatures
T —arities and T -signatures now.

Definition 6.3.116 (representation) Let « be a T —arity
(11 tm )ty s (bt - - trmn )t — to
and R a monad on Set /T . A representation of a in the monad R is an R—module morphism
r (O, - 00 Rty X oo X (B, - - Oty Rt — R

Definition 6.3.117 Let S = (ay)ker be a T —signature, R a monad on Set /T . A representation
of S in R consists of a representation of each T —arity ay in R.

Example 6.3.118 (simply typed Lambda Calculus) The signature of the simply typed Lambda
Calculus without product type is given by the signature in the example 5.3.81. A representation
in a monad R on Set /T is given by two collections of R—module morphisms

Vs, t €T, (85R>t — Ry
VS,tET, RS:>t XRS%Rt

Definition 6.3.119 (morphism of representations) Let S = (ax)ker be a T —signature and
(P, (px)ker) a representation of S in the monad P on Set /T and (R, (ri)ker) a representation
of S in the monad R on Set /T . A morphism of representations from (P, (px)rer) to (R, (rk)ker)
is a morphism of monads p: P — R such that

n
(ati,mi cee 8ti,1p)ti z Pto
i=1
ﬁ (ati,m~ O, 1P)til Pto
i=1 7 )
n
[1(0;,,, - Oy (P"R))s, —— (p*R)y,
i=1 pr
commutes in Modget for each arity o = (t11.. . t1mi)t1, oo, (tng - tnmn ) tn — to of S.

Notation 6.3.120 Let S be a T —signature. Representations of S and morphisms of represen-
tations form a category. We write Rep(S) for this category.

6.4 Initial representations

The object of interest of this approach is the initial object of Rep(S).

Theorem 6.4.121 Let S be a T —signature. Then the category Rep(S) has an initial object.
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Proof. We write S = (o )ker and for each T -arity

k k k k
A SN (1 P D T

Nng,1 * N, Miny,

(k

In this proof we write shortly s;
sponding object of Set /7.

) for the list of types (t(kl) . tyfq)%) and <s£k)> for the corre-

1y

Definition of STS
We define an object STS(T") € Set /T for allT" € Set /T the following way. First we define by
recursion the objects STS, (') for all n € N. Intuitively the set (STS/,):(T') := (STS,)(I')~1(¢)
for a t € T is the set of trees of type ¢ and of depth n. We write shortly STS], , for (STS;,);. We
set for all I" € Set /T and t € T
STS),(I) :=T"1(¢)

We write I; := {k € I such that ték) = t} for the index set of arities of S that yield a term
of type t. Let ©,, be the set of functions h : {1,...,p} — {1,...,n} such that there exists a
Jn € {1,...,n} such that h(jp) = n. Then we define

STSn+1 . Z Z HSTS, t(k) (I'+ (s (k)>)

k€l h€Op, n i=1

and we set
STSy(T) == > _STS),
neN
By setting > STS¢(I') — 7T, we obtain an object of Set /7.
teT

Functoriality of STS
We check functoriality of STS. For this we check functoriality of STS!, for all n € N. Let
f:T—=A.
STSEM(F) — STS(M(A)

is given by f; : T71(t) — A~L(¢) for all t € T. Which shows the functoriality of STS{. Suppose
that STS] is functorial for all m = 0, ..., n, then we construct

STSn+1 () — STSn+1 +(A)

which is explicitly

ooy HSTS (T (s s =S Y HSTS’ (k)A+((k)>)

k€l heOn, n i=1 kel heOy, n i=1

it is given by Y= > H(STS'

h(i),
KET; heOpy n i=1
We define the arrow STS(I') — STS(A) or equivalently the arrow Y~ STS;, (') — STS;(A)
neN
for all ¢ € T by universal property of the coproduct. We define a cocone (STS;M(F) —

STSt(A))nen:

t(k)(f_’_ (Sl(k)>) where f + <5§k)> T+ (s (k)> AL <S§k)>‘

STS!, ,(T') — STS,, ,(A) — STS,(A)
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Construction of ¢
Next we construct for all n € N and all v € 7 an arrow

Y, TS (D) + (u)e — STSH(T + (u))

(u)

For n = 0, the arrow ¢, : STSp () + (u)e — STS4(T' + (u)) is given by the composite of
the identity on (I' 4+ (u)); with the inclusion cort(uyt © STSo (T + (u)) = STSy(T + (u)). We
construct

W L STS 1 (1) + (u)e — STS,(T + (u))
It is explicitly

S HSTS’ oy (0 (s BIV) + (u)y — STSUT + (u))
kel; h€On, n i=1
this arrow is given by the two following arrows
(u)y = (T + (u))e = STS(4(L + (u)) — STS(T + (u))
and

> 5T TISTS) 00+ )

kel heOn, n i=1

=D HSTS o (0 () (7)) = STSU(T + (w)

kel he€On, n i=1

So by universal property of the coproduct, we have the arrow

Y STSHT) + (u)e — STSH(T + (u))

Given a finite set of types ui,...,u,, by iterating the above constructed arrow, we can define
P STSUD) + (ut, ..y up)e — STSH(T + (un, ... ) (6.1)

We check naturality of 1/)2“% ,inT. Solet f:I' = Ain Set /T. We check the commutativity of
the following square

by induction. For n = 0 we find

D=1 (t) + (u)y —— TS, (T + (u)
ft-‘r(u)tl lSTSt(f'i‘(u))
A~LE) + (u) STSH(A + (u))

fCOA+ (u),t
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which commutes by naturality of ¢y. For n + 1 we have to show that

PO HISTS/O oo (T + (s87)) + (u)s —~ STS,(T + (u))
€l he ng,nt a

|
PO HSTS

k
kel he® 1 h(i),t; (k)(A + s : )>) + (W — STSH(A + (u))
t nk,nz ’

commutes. It commutes because the two following diagrams commute

() — % (0 4 () 2T, (1 + ()

idl (f+<U>)t)l J{STSt(f+<U>)
() —= (A + () = STSU(A + (u)
L (u) 0,A+(u)
and
S % ST 0@+ M) S % Iists o (B + ()
kel heGpy ni=1 MOk kel heGmy mi=1 M)
S % ST W@+ ) ) T Y TISTS o (B (57 + ()
kel heOny ni=1 P4 kel heOny mi=1 P4

STS(I + (u)) STSH(A + (u))
which commutes by naturality of the inclusions I" + (sgk)> -+ <sl(-k)> + (u) and c¢pqq.
Naturality of wléuz in I' follows from the naturality of wiu%t And this implies naturality of
(6.1) in T.

Definition of p

Let oo = (s1)t1,...,(Sn)tn — to be one of the arities of S. We construct an arrow
P T STSH(T + (si)) = STSy, (T) (6.2)
i=1

By definition of STS

HSTSt (T + (si)) H > STS, (T + (si)

i=1 i=1 neN

By distributivity of the category of sets

HZSTS’ T+ (si) = > HSTS’ (T + (s))

i=1 neN geNn =1
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Remark that to each g € N" we can associate a function h, € Oy, ,,, where m, = max(g(i)), so
for a fixed g we have the inclusion

n Nk
[IsTSy @+ = > > TIsTs, 04 = ST, 140 (T)
i=1

kely, he@nk’mg i=1
and thus
n
> TISTS) 0 (T + (s) = STS(T)
geN™ =1
So we take the composite of the above arrows for (6.2).

We check naturality of p in I'. Let f: ' — A in Set /7. The naturality square

[T STSH(T + (5:)) — = L1 STSH(A + (s:))
=1 =1

| i

STS, () STSy, (A)

commutes because if we unfold the arrows we find

n

[T > STS,. (T + (si) > STS,, 1, (A + (si))
i=1 neN ' i=1 neN ’

i |

S TISTS )0 (0 (s0)) —= 3 T1STS ), (A + (s1))

geNn =1 geNn =1

.

> STS 114,(T) > STS 10 (B)

geN” geN”

STSy, (T) STSy, (A)

where the top square is a naturality square of the canonical isomorphism, the middle square is

a naturality square of inclusions and the bottom square is a naturality square of ¢y 41
geNn

Unit of STS
Now we provide the functor STS with a monad structure. The unit nr, : I 71 (¢) — STS;(T)

is given by the inclusion cor; : STSy,(I') — > STS;,,(T'). Its naturality follows from the
neN
naturality of the inclusion.

Multiplication of STS
Next we define the multiplication pr¢ : STS(STS(I')) — STS(I') by universal property of
the coproduct. We define a cocone (STS;, ,(STS(I')) — STS¢(T'))nen. For n = 0, the arrow

STSu(STS(T)) — STSy(T)
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is given by the identity on STS;(I") since STSp,(STS(T')) = STS4(T'). Suppose given an arrow
STS;, +(STS(I')) — STS¢(T') for all m = 0,...,n, we construct

STS;, 1 14+(STS(I')) — STS(I)

by definition of STS],,; , we construct the arrow

>y HSTS’ e (STS(T) + (™)) — STS,(T)

kel he@nk n =1

By universal property of the coproducts we give an arrow for all k € I; and h € ©,, ,
k
HSTSh( 0 (STS(D) + (s #y) = STS,(I)

We take the following composite

TLSTS) ) (STSI) + (5)
i STS’() oo STS(T + (s
=1

|

T (k)
1:[1 STStEk) (F + <Si ))

|

STS(I)

ng (k)
where the first arrow is [] STS;1 (64 (wlgsi >), the second comes from the induction hypotheses
i=1 )it

and the third is pp*. We check naturality of pr; in I'. So let f: T' — A in Set /7. We check
the commutativity of the following square

STS(STS(I)) — > STS(STS(A))

| l

STS(T) STS(A)

by induction. For n =0

STSp(STS(T')) —— STS;4(STS(A))

! l

STS,(T) STS.(A)
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commutes since STSp ,(STS(I')) = STS;(I') and STS;, (STS(A)) = STS;(A), the vertical arrows
are identities on STS;(I") and STS;(A) and the horizontal arrows are both STS,(f). Suppose
that

STS;,(STS(I')) —— STS;, ,(STS(A))

l i

STS(T) STS.(A)

commutes for all m < n. We show the commutativity of the square for n + 1. So explicitly we
show that for all £ € I; and h € O, ., the following diagram commutes

1LSTS, o (STS) + (s) = TTSTS, | 0y (STS(A) + (5)
ILSTS, o0 (TSI + (57)) ——~ [1 TS | (STS(A+ (7))

| |

ﬁ STS 0 (I + () 11 575,00 (A + (7))

i=1

| |

STS,(I) STS:(A)

. . (k) . . .
The top square is a naturality square of 1/1<si ), the middle square commutes by induction
hypotheses and the bottom square is a naturality square of p®. Then by universal property of
the coproducts

STS,41,4(STS(T)) ——=STS,,114,(STS(A))

| l

STS,(T) STS,(A)

commutes.

First monad axiom
We check the monad axioms. First we check the commutativity of

NsTS(T)

STS(I') —— STS(STS(I"))

S |

STS(I)

for all I'. We show that

TISTS(T),¢

STS(I') ——=STS,(STS(I'))

. KTt
idsTs, (1)

STS (D)
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commutes for all I and ¢. By definition of nsysr); being the coprojection cq sts(r) ¢

STSp(STS(T)) — > STS;,4(STS(I")) and the component of x at 0 being the identity on
neN
STS,(T"), the above triangle commutes.

Second monad axiom

Next we check the commutativity of

STS(I) 2L STS(STS(I))

e

STS(I)

for all I' or equivalently

n,t 1T,

STS!, (15 'S TS, (STS(T) (6.3)

Mn, Tt
Cn Tt

STS(I)

for all I',t and n € N. For n = 0, we have

STSp ,(T) 20t Do STS,(T)

neN
\ J{id
Co,I,t
STS,(T)

Now suppose that (6.3) commutes for all m < n, ¢t and I" and we show the commutativity of
(6.3) for n+ 1. We replace STS], | by its definition and unfold the arrows. Then we show that
the following diagram

(STS(T) + (s1))

’L

nk
I15TS, oo (T + (5{) 10578,

h(i)t;
\ 1.

1STS) | o (STST + (7))

II.

o (k)
1:[1 STStEk) (T'+(s;7))

|

STS(T)

II1.
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commutes for all £ € I; and h € ©,, ,,. The triangle I. commutes because the following diagram
commutes

D1(8) + (), — 2 3 STS,(T) + (e

[ 32 STS;, (41),¢0,0+ (u) £ 0% (u)]
Co,I+(u),t n€N

> STS, (I (u))

neN

for all ¢ and T' where the vertical arrow comes from (6.1). It commutes since ) STS;, ,(ir) o
neN
COTt = Co,r+(u),t © v Dy naturality of the inclusion cp.

Triangle II. commutes by induction hypotheses. Triangle III. commutes because by construc-
tion of (6.2), max(h(i)) = n and thus

Nk
fsts s by =2
LR TR %

[1STS o T+ (5)

STS(T)
commutes.
Third monad axiom
Next we check the commutativity of
STS ur
STS(STS(STS(T"))) ——=STS(STS(I"))
NSTS(I‘)\L lur
STS(STS(I)) — STS(T)
for all ' or equivalently
, STS,, ¢ b, ,
STS;, «(STS(STS(T'))) ——=STS,, +(STS(T)) (6.4)
Mn,STS(F),tl l#r,z
STS(STS(T)) — STS(T)

for all T, n and ¢. For n = 0 the square (6.4) becomes

STSH(STS(I')) =L~ STS,(I)

idsTs, (sTS(T) i lidSTSt(F)

STSH(STS(I')) /——= STSH(I)

It
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which commutes. Suppose that (6.4) commutes for all m < n; we show the commutativity for
n+ 1. Let k € I; and h € ©,, ,,. We have to show that

1 STS) ,).,00 (STS(STS(I)) + (s By H STS, .. e (STS(STS(T') + (s™)

=1 (e =1

I \

HSTS’ (1,0 (STSD) + (1)) HSTS (500 (STS(STS(I + (5)))) HSTS 00 (STS(T) + (5))

/ / |

H STShU (0 (STS(I + (s)) . H STS, i (STS(T' + (s Ry STS.(STS(T"))

l / /

H STS, 0 (T + (s, ) STS.(T

commutes. Diagram III. commutes by induction hypotheses, diagram II. commutes by natu-
ralities of pu,(;). It remains to check the commutativity of I. and IV. The diagram I. commutes
since the following diagram commutes

STS(STS(I)) + (™ STS(T) + (u)
TS(r)l

STS(STS(T) + (u)) e

STS(y F )

STS(STS(I' + (u))),——> STS(T + (u)

We show its commutativity by induction for all n

STS,, ;(STS(I)) + (u)s —= STSH(T) + (u); (6.5)

|

STSH(STS(I) + (u))

|

STSH(STS(T + (u))) ——= STS,(L + (u))

Forn=0
STSHT) + (u); idtid STSHT) + (u);
€0,STS(T)+(u) tl
v
STS(STS(T) + (u)) STS’ ASTS(T + (u))) q/;;“jg

idsTs, (r
ZN STS), +( §u>) C0,t,STS(T { L)
ne /

STS(STS(T + (u))) STS:(T + (u))

KT 4 ()t
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since @z;f;fgt = [cnt(STS}, 4 (ir)), co,t (i) and wé?}vt = [co,t(ir); co.t(i(w))] = co,r4(uy,+- The trian-
gle on the left is a naturality square of ¢y, the bottom triangle commutes by definition of  and
the diagram on the right commutes obviously.

Now suppose that (6.5) commutes for all m < n. We show the commutativity for n + 1.

(u)s “ (u)
() sy
STS(T) + + (u))
o \ /
STS(STS(T STS (STS(T" + ¢ o
S STS! (i) dSTst<r+<u>)
neN mArr
STSH(STS(I' + ( T STSU(T + (u))

The top diagram commutes by definition of wl(ﬁ, the left triangle by naturality of cg, the right
triangle commutes obviously and the bottom one by definition of u. To show the commutativity

of
STSnH (STS(I')) —————=STS(I)

|

STS,(STS(T) + (u))

o

we replace STS;H_I by its definition and chose a k € I; and a h € ©,, ;. So it remains to show
the commutativity of the following diagram

11575, , o (STS) + ()
1:[ STS) ) 0 (STS(T) + (u) + () H STS a0 (TSI + o Bl
ﬁSTS;(i)7t§k)(STS(F + ) + <82(k)>) H1 STSt(m T+ (s Z(k)>)

|

[[STS, ) o (STS(T + (u) + (s)))

11578, ., STS(T)

IT STS, o) (ir-+(s} ) STS: (ir)

ﬁl STS! o (T + {u) + (517)) STSI(T + (u))
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The bottom three diagrams are naturality squares of ¢ and the top left curved diagram com-
mutes because

STS(I)

T

STS(I) + (u) —= STS(T + (u))

commutes by definition of 1[)1@.
It remains to show the commutativity of the diagram IV. which is explicitly

ng pak
[1 STS, (STS(T) + (st)) =L STS,(STS(T)) (6.6)
=1 i
[ISTS (k) (¢l<~si))
o (k)
[T STS 0 (STS(T + ()
i=1 @
HNI’HL(si),t,L

ng
1 STS (4 (5) — > STS(D)

prF
Since

M ®yy T (k)
11 STS,w (STS(T) + {s;)) = 11> STS' ye (STS(T) + (s;))
i=1 i=1neN

ng

= > TISTS, ) o (STSI) + (s
geNm i=1 gt

(6.6) becomes the following

ng
[1STS! o (STS(D) + (sV)) —=STS., .1,(STS(T))

: (2
=1 [

TISTS, )., (wés”)l

I sTS!

I1STS) | o (STS(T + (5)) g0

H/‘g(i)»FHSz‘)ﬁti\L

ng
[1STS! o (0 {s()) ————STS(D)
i=1 gty Pr

for all g € N* where my = max(g(i)). It commutes by definition of fi,4 1.1

Representations

The arrows p® together with commutative diagrams such as in (6.6) define a module mor-
phism for each arity ay.
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So we showed that STS is an object of the category of representations of S.

Construction ¢

Next we show that STS is initial, that is, given another object ((R,n%, uf), (r®*)ier), we
construct a morphism of representations ¢ : STS — R and show then its uniqueness.

First we construct ¢r; : STSy(I') — R¢(T') for all t € 7 and I' € Set /7. By universal
property of the coproduct we give an arrow @ : STS], ;(I') — Ry(T') for all n € N. For n = 0,
we take nf : I71(t) — Ry(T) to be g, . Suppose given arrows @, : STS;,+(T') = Ry(T")
for all m < n, t and I', we define ¢,,1 ;. By universal properties of the coproducts we give an
arrow

HSTS’ PEILERC M) 5 Ry(T)

for all k € I; and h € Oy, . We take the following composite
HSTS o+ (s o) —>HR (%)) = Ry(T)
where the first arrow comes from the induction hypotheses and the last one is ri*.

Naturality of ¢
We check naturality of ¢r in I'. Solet f:IT' — A in Set /7. The naturality square

STS(T') —— R(I)

|

STS(A) —— R(A)

commutes since
STS'M(F) — R,(I") (6.7)

L

STS;, /(A) —= Ry(A)

commutes for all n € N. For n =0

R
-

I=1(t) — > Ry(T)

ftl \LRt(f)

A7) —— Ri(A)

ALt

commutes by naturality of n*. Suppose that (6.7) commutes for all m < n and we show that it
commutes for n + 1.

ISTS, o0 (0 (6) = I Ry (0 () —— Ru(r)
H STS! (A + (7)) — Il R o (A (s) — Ry(8)

h(@).t; =1
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commutes for all k£ € I; and h € ©,, , since the left square commutes by induction hypotheses

and the right square by naturality of r%.

 is a monad morphism

Next we check that ¢ is a morphism of monads STS — R. We check the commutativity of

r
> N
STS(T) o R(T)
By definition of  and ¢g we have that
I(t)
STS(T) oo R(T)

commutes. Next we check that

STS(STS(T)] Y sTS(R(T)) 2%

| |t

STS(T)

fr
commutes. By universal property of the coproduct, we show that

STS/ t n t
STS, (STS(T)) ' 28Ts! (R R, (R(T))

y‘n,l",tl luﬁt

STS(T) oo R,(T)
commutes for all n € N. For n =0
Pr,t ”gw%t
STS(I') —— R,(T') —= Ry (R(T"))

) R
ldi \\:E\\\x lur¢

STS«(T") R,(T)
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commutes by one of the monad axioms of R. Suppose that (6.8) commutes for all m < n, I" and
t and we show the commutativity for n 41 for all k € I; and h € Oy,

TISTS] ) o (STS() + (s07) —— TISTS] |y (AI) + () —— I By (R(D) + (1)) —= Ru(R(T)

I. \L II.

ng ng nE
1:[1 STS;L(i),tﬁk) (STS(T" + <s£k)>)) — > 1:[1 STS;L(i),t,(."’) (R(I" + <35’“)>)) - I:[l Rtgm (R(T+ <s§’“)>))

H STS, o (I' + (s ) ﬁ Ry (T + (s )
l v. \
STS.(T") R¢(T)

Diagram II. commutes by naturality of ¢, diagram III. commutes because r** is a module
morphism and the commutativity of IV. is given by the induction hypotheses. It remains to
check the commutativity of I. and V. Diagram I. commutes since the following diagram commutes

STS(T) + ()™ L R + (u)

for all I and u. In its second component we have

() ————— (u)s
i) o
(T + () (I + ()
id
STSos(C + (u) Lo
co. "I (u)
STSH(I' + <®xr + (u))

and in the first component

STS(I) — & R(I)
STS(ir) l lR(ip)
STS(I' + <u>)(pr<u>> R(T" + (u))

which commutes by naturality of ¢. Next we check the commutativity of V. Since

Nk Nk

[IsTS,0 T+ (s =TI>sTs’ POICEN sy = 3T HSTS’ PEICERC Ky

i=1 i=1neN gENm i=1
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We show the commutativity of
n
(2

k g(i) Tk
ST o ()220 T R (1 + (50

T

STS;ng-l-l,t(F) g
STS(T) @r,t Ri(1)

for all g € N™. It commutes by definition of ¢, 41,0+ where my = max(g(7)).
So ¢ is a monad morphism STS — R.

¢ as morphism of representations
Moreover since the square V. commutes for all arity oy, it shows the compatibility of ¢ with
the representations and thus ¢ is a morphism of representations.

Uniqueness of ¢

In order to prove the initiality of STS in Rep(S), we show that ¢ is the unique morphism of
representations STS — R. So suppose given another morphism of representations x : STS — R,
we show that x = ¢ or equivalently that xr (M) = ¢r (M) for all ', ¢t and M € STSy(I') =

> STS;, (). Suppose M = ¢y () with z € STS)(I') = I'"'(t), then by definition
neN

pre(M) = nfty(z)
and since y is a monad morphism and compatible with the units  and n’?

xrt(M) = xre(cors(@) = xra(nre(x) = oy (x)

Now suppose that xmri(N) = @mr(N) for all m < n, I', t and N € STS;, ,(T'). Then we
show that for M = cpy1,r¢(M') with M’ € STS; (') we have also xr (M) = ¢r (M) or
equivalently xpy1,04(M’') = @ni1,r4. By definition M’ = pp*(Ny, ..., Ny, ) for a certain k € I

and h € Oy, with N; € STS] 0 (T + (s for all i = 1,...,my.

Xn—i—l,l“,t(M,) = Xn—l—l,l",t(,o?k (Nla ey Nnk))
= 70 O ) ot 6.0 V0 X, 00 08 ()

Snk b nk
= T (P, (640 Vs P o 50,8600 (Vo))
= @n—&-l,ﬁt(ﬂ?k (N17 ceey Nnk))
= Oni1,0t(M')
0

Example 6.4.122 The initial object of the category of representations of the signature of ex-
ample 5.8.81 is the simply typed Lambda Calculus. We write STLCy for the monad on Set /T
and we have the following two collections of STLC—module morphisms

appy; : (STLC) st x (STLC)s — (STLC),
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and

ast’t : (STLCS)t — (STLC)S:>t
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Comparison simply typed syntax

7.1 Two equivalences of categories

We have the following equivalences of categories.
Lemma 7.1.123 The category [F | T, Set]” is equivalent to the functor category [F | T, Set /T].

Proof. Let (X;)ie7 be an object of [F | T,Set]”. We associate to it the functor Y € [F |

T,Set /T] that assigns an object I' : n — T of F | T the object > X;(I') — T of Set /T. The
teT
functor Y assigns to a morphism h : I' — A the arrow Y X;(h).
teT

Inversely let Y be a functor F | T — Set /7. We assign to it the object (ALY (T') 71 (¢))er
of [F ] T,Set].

These two assignations are inverse to each other. Starting with an object (Xi)ier of [F |
T,Set]”, we get (AI.X4(T))se7, which is just (X;)ier-

Starting with a functor Y : F | 7 — Set /T, we get a functor Z that assigns to an object
I':n— 7T of F| T the arrow

DAY (AT —» T
teT

which is

YO =T

and this is Y/(T'). O

The cellection of variables ) = (Y(t))ie7 becomes the functor that assigns I' of F | T the
object I' of Set /T. We write ) as well for this functor F | T — Set /7.

In a similar way we can show the following equivalence.

Lemma 7.1.124 The category [Set /T, Set]” is equivalent to the functor category [Set /T, Set /T].

7.2 From [F | T,Set]” to [Set /T, Set /T]
In this section we define first a functor £ : [F | T, Set] — [Set /T, Set].

111
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Definition 7.2.125 Let X be a functor of [F | T,Set]. For each I' € Set /T, we define

I=(u1,...,um ) EF}T
(X)(T) = /

eFT o
—/ XT@)x [t ®

teT

X(T) x T ug) x oo x T (uy)

Now we define ¢ on morphisms. Let f : X — Y be an arrow in [F | T, Set]. We construct
the arrow ¢(X)(I') — ¢(Y)(I"). By universal property, it suffices to give a collection of arrows

oy IVeF|T 1
XT)x [Tt — / YI) < [T ®

teT teT

for all " € F | T satisfying the wedge condition. We take the following mapping composed
with the corresponding coprojection

(z, (hi)eer) = (fro (@), (he)eeT)

For the remaining verifications see appendix D.1.
Now we define another functor [F | T, Set]” — [Set /T, Set /7] still called £.

Definition 7.2.126 We define the functor £ : [F | T, Set]” — [Set /T, Set /T] by
(Xeher = (UXe))er
The functor ¢ preserves finitie products by the following lemma and corollary.
Lemma 7.2.127 Let P,Q € [F | T,Set]. Then
(£P) x (£Q) — U(P x Q)
1 a natural isomorphism.

Proof. See appendix D.2. O

Corollary 7.2.128 Let P,Q € [F | T,Set]”. Then
(LP) x (£Q) — L(P x Q)
is a natural isomorphism.
Proof. Let I € Set /T and t € T. The fibre in ¢
(EP)(I)7H(t) > (LQ)(T)H(t) — £(P x Q)(T)~H(1)

is given by the construction in the proof of lemma 7.2.127. The naturality in P and in @ follows
from the naturalities of each fibre in ¢. O
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7.3 From [Set /T,Set /T] to [F | T,Set]”
We define the functor k : [Set /T, Set /7] — [F | T,Set]” which is precomposition with ),
k:Fw—Fo)y

Later we will also use the notation k for the functor [Set /T,Set] — [F | T,Set] which is
precomposition by ) as well.

Lemma 7.3.129 Let F,G € [Set /T, Set|. Then we have the following formulas

k(FxG)=kF xkG  and  k(F+G)=kF+kG

Proof. Let AcF|T.
E(F x G)(A) = (F x G)(V(A)) = FY(A)) x GV(A)) = kF(A) x kG(A)

and

kE+G)(A) = (F+G)V(A)) = F(A) +G(A))

kF(A) + kG(A)

|
Corollary 7.3.130 Let F,G € [Set /T,Set /T]. Then we have the following formulas
K(FxG)=kF x kG and  KF +G)=kF + kG
Proof. Let AeF | T.
k(E < G)(A) = (F x G)(Y(A)) = FV(A)) x GV(A)) = kF(A) x kG(A)
and
k(E+G)(A) = (F+G)(V(A) = FO(A)) +G(A)) = kF(A) + kG(A)
|

7.4 Adjunction between [Set /T,Set /T] and [F | T, Set]”

The functors ¢ and k define an adjunction between [Set /T, Set] and [F | 7, Set] on the one hand
and between [Set /7, Set /7] and [F | T, Set]” on the other hand. In both cases  is the left and
k the right adjoint.

At first we consider the adjunction ¢ 4 k : [Set /T,Set] — [F | 7,Set]. The unit 7 :
Id{g) 7 8et) — K¢ is in the component X € [F | T, Set] at A€ F | T

F/
X)) = [ x@x[[ate)®
teT

It is given by the following mapping composed with the corresponding coprojection

r = (z,(da-1))teT)
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For the remaining verifications see appendix D.3.
We can also define an inverse for nx a. By universal property it suffices to give a collection
of arrows

) x [Ta7 0" - x(a)
teT

for all I € F | T that satisfies the wedge condition. We take the following mapping

(@, (h)teT) = X(th)(x)

teT

We check the wedge condition. Let g : IV — I in F | 7. The diagram

X(T)

x [T A~ @)@

teT
X(T') x [] A~ ¢

X(A
teT
% /

X (1"//)

x [T A' @) '®
teT

commutes since we have the following assignations on elements

s (he o gt)eeT)
/ \
(@, (he)ieT) teZThtog)( x)
\\\\X ////

ht teT

So we have the following lemma.

Lemma 7.4.131 The unit of the adjunction ¢ 4 k : [Set /T,Set] — [F | T,Set] is a natural
isomorphism.

Proof. See appendix D.4. O

Now we turn to the unit 7 : Idg 7 g7 — k¢ of the adjunction £ 4k : [Set /T, Set /T] —
[FlT, Set]T. Its component at t € T is given by the above construction. Moreover we have an
analogous lemma to 7.4.131.

Lemma 7.4.132 The unit of the adjunction ¢ 4 k : [Set /T, Set /T] — [F | T,Set]” is a natural
isomorphism.
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Now we define the counit € : £k — Idge; /7 set] Of the adjunction £~ k : [Set /T, Set] — [F |
T, Set]. Its component at F' € [Set /T, Set] is

Fl
(Fo)@)x [[T'®)"® = F(D)
teT

By universal property of the coend it suffices to give a collection of maps
F()y < [ =" @™ ® — F(r)
teT
for all I € F | T that satisfies the wedge condition. We take the following mapping
(@, (h)ie) = (FOQ_ (@)
teT

For the remaining verifications see appendix D.5.
Next we define the counit € : £k — Id[ge; /7 et /77 Of the adjunction £ + & : [Set /T, Set /T] —
[F | T,Set]”. Its component at F € [Set /T, Set /T] in the fibre t € T is

/Fl(Foy () x []T( HI O 5 Py

teT

It is given by the above construction.
We have to check the the triangle identities for our definitions of 1 : Id 7 se) — k¢ and
€tk — Id[get /7 5et)- Let X € [F | T,Set] and I' € Set /T

JUX@) % [T (@, (fo)rer)

teT

\LZWX

ST X @) < L) @A
X HTP ()r/—l(t) ((x,(idp,_l(u)}}LGT)’(ft)teT)

teT

lSZX

M x@)yx [T '® X (thft)(w, (idp-1(u) JueT)
teT = (z, (ft oidp-1(4))teT)

This composite is the identity on (x, (f¢)ie7). Now let F' € [Set /T,Set] and A € F | T.

PO)) .
e

JE R < AT (@. (a1 uer)
s

PO(A)) 5 idacsy(e) = @

teT
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This composite is the identity on x.
The triangle identities for 7 : Idjp 7 gej7 — k€ and € : £k — Id[se; /7 set /7] follow from the

triangle identities for 7 : Idjp 7 seq) = k€ and € : bk — Id[get /7 Set]-
So we have the adjunctions ¢ 4 k : [Set /T, Set] — [F | T,Set] and ¢ 4k : [Set /T,Set /T] —
[F{T,Set]”.

7.5 Monoidal adjunction ¢ - k : [Set /T,Set /T] — [F | T, Set]”

We are going to show in the following that the constructed adjunction is monoidal. By theorem
4.4.37, it follows that the structure morphisms of ¢ are isomorphisms.

Proposition 7.5.133 The functor £ : [F | T,Set]” — [Set /T, Set /T is monoidal.
Proof. Let X = (X})ie7 and Y = (Y})ie7. We are going to construct an arrow
qbX,y : E(X) o f(Y) — f(X & Y)

in [Set /T, Set /T], natural in X and Y. Let I' € Set /T and t € T. Let us rewrite the domain
and codomain using the coend notation.

(X)(Y)IT) ) =

A=(ut, .. um)
/ X(A) % (Y )() ™ () % . x (V) (D)™ ()
/A=(u1,.~~:”’”) X(A) x (/ Yo, (A) x J] T° m))

ul €T

X ... X
Am

x( Y (Am) x ] F_%umYHJWMU

um €T

A=(U1 .., Um) Aq Am
/ / / Xi(A) x Yy, (A1) x oo x Yy, (Ay) %

% HF Y A1t Am) 1)
t'eT

I

and
(X @YD) Ht) =

F/
:/ (X @Y)(r) x J[]r )" '@

t'eT

Fl

//Xt )< [Ty@) @A = [T rt@)™ @
vET t'eT

A=(u1,...,um) I’
:/ &mnxAmxmanmx

XHI‘ Fll

teT
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By universal property of the coends, it suffices to give a collection of arrows
Xi(A) X Yo (A1) % .o x Yy (Ag) x [ D7 )B4 5 p(X @ Y) (D) (1)
veT
for all A, Aq,...,A,, € F | T that satisfies the wedge condition. We define it to be the following
mapping composed with the corresponding coprojections

(.%', Y1s -5 Ym, (ht’)t’ET) = ('% Yul (il)(yl)a R Yum (Zm)(ym)a (ht/)t’€T>

where 7; : Aj — Ay + ...+ A, is the j-th inclusion.
For the remaining verifications see appendix D.6.
Now we construct the arrow ¢ : Idge; y7 — €(Y). The component in I' € Set /T at the fibre

teT is .
) — / ey s [T te)™
tveT
we take the following mapping composed with the (¢)-th coprojection
r = 1xazte( ) X H - )
t'eT

For the remaining verifications see appendix D.6.

Proposition 7.5.134 The functor k : [Set /T,Set /T] — [F | T, Set]” is monoidal.

Proof. Let F and G € [Set /T, Set /T], we construct an arrow g g : k(F)®k(G) — k(FoG)
forall A€ F |7 and t € T. Let us rewrite the domain and the codomain using the coend
notation.

-
(k(F) e RE)A) 0 = [ FE) o« [[© L))

ueT
F/
_ / (P~ < [[(G Wy
ueT
and
k(FoG)(A)TH(t) = (FoGoY)(A)~(t)
= (FoG)(A)"}(t)
By universal property of the coend, it suffices to give a collection of arrows
)7 x [T G @0 = (FoG)(a) (1)

ueT

for all I € F | T that satisfies the wedge condition. We take the mapping

(&, (huer) = F(D hu) (@)

ueT
where we write F'( Y hy)¢(z) for the restriction of F( > h,,) to the fibre over ¢.
ueT ueT

The arrow 1 : Y — k(Id) is given by the identity on ). For the remaining verifications see
appendix D.7. O
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Proposition 7.5.135 The unit n : Id — k¢ of the adjunction ¢ 4 k : [Set /T,Set /T|] — [F |
T,Set]” is monoidal.

Proof. See appendix D.8. O

Proposition 7.5.136 The counit € : Lk — 1d of the adjunction ¢ + k : [Set /T,Set /T| — [F |
T,Set]” is monoidal.

Proof. See appendix D.9. u

The monoidal adjunction £ 4 k : [Set /T, Set /T] — [F | T,Set]” extends to the adjunction
¢ 4k : Mon([Set /T, Set /T]) — Mon([F | T,Set]”) by 4.5.40.

7.6 Strengths and morphisms of strengths
In this section we are concerned with the compatibility of the two “pointed” strengths for (—)¥(®
on [F | T,Set] and [F | 7, Set]” on the one hand and for 9, on [Set /T, C], where in our cases of
interest C is Set or Set /T, on the other hand. The former induces a “pointed” strength for the
binding signature endofunctor on [F | 7, Set]” associated to a signature. The latter strength is
necessary to provide 9, R on [Set /T, C] with a module structure for an monoid R on [Set /T, C].

We show that the link between these strengths involved in the presheaf and in the monadic
approach is given by two morphisms of strengths d,¢ — £(—Y) and k8, — (k—)Y{*. These
morphisms of strengths extend then to the strengths of the signature endofunctor and the
strength necessary for the module structure of the monadic approach.

Consider the category Y | [F | T,Set]”, the category of objects under Y. It is monoidal
by lemma 4.7.48 since [F | 7,Set]” is monoidal. The category Y | [F | 7T,Set]” acts on
[F | 7,Set]” by the following action

(PY—=Q) — PoQ

where ® is the monoidal product of [F | 7, Set]”. The action axioms are satisfied since ([F |
T,Set]”,®,Y) is a monoidal category.
Next consider Idge /7 | [Set /T, Set /T], the category of objects under Idge /7. To lighten
up notation we write simply Id | [Set /T, Set /T]. It is monoidal by lemma 4.7.48 since
([Set /T,Set /T],o,1dge /1) is monoidal. The category Id | [Set /T, Set /T] acts on [Set /T, Set /T]
by the following action
(FLId—G) = FoG

where o is the composition of endofunctors on Set /7. The action axioms are satisfied since
([Set /T,Set /T],0,1d) is a monoidal category.

For all u € T, the endofunctor (—)¥™ on [F | T,Set]” is ¥ | [F | T,Set]” strong by
lemma 5.7.97. By proposition 5.7.98, the signature endofunctor associated to a signature is also
YL [F]T,Set]”strong.

For all u € T, derivation 9, on [Set /T,C] is Id | [Set /T, Set /T|-strong by remark 6.2.112.
For all uy,...,u, € T, iterated derivation

D ... Ou,

on [Set /T,C] is Id | [Set /T, Set /T|-strong by proposition 4.7.52. Let t € T. We write (—); for
the fibre functor [Set /T, Set /T] — [Set /T, Set]. The fibre

(Ou,, - - - Ouy )t
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is as well Id | [Set /T, Set /T |-strong since each fibre of the Id | [Set /T, Set /T ]-strength
Oupy - Oy F oG — 0y, ...0u, (FoG)

is as well an Id | [Set /T, Set /T |-strength.
Given a T—arity
(t171 ... tl,ml)th e, (tn71 e tn,mn)tn — 1o

the functor
n

H(ati,mi s ati,l)ti
i=1
is Id | [Set /T, Set /T |-strong by proposition 4.7.53.

The monoidal functor (¢,¢) : [F | T,Set]” — [Set /T ,Set /T] extends to the monoidal
functor (£,¢) : Y | [F | T,Set]” — 1d | [Set /T, Set /T] by lemma 4.8.56. Therefore ((£, ¢), £, $)
is a morphism of actions. The axioms are satisfied since £ is monoidal.

The monoidal functor (k,%) : [Set /T,Set /T] — [F | T,Set]” extends to the monoidal
functor Id | [Set /T, Set /T] — Y | [F ] T,Set]” by lemma 4.8.56. Therefore ((k,), k, ) is a
morphism of actions. The axioms are satisfied since k is monoidal.

We construct two morphisms of strengths in the following.

Definition 7.6.137 Let u € T. We construct a morphism of strengths b® : (k(—))¥™ —
k(Ou(—)). Let R € [Set /T,Set /T| and A € F | T. The component b%)A is explicitly

s . RO(A+ ()
RAT 2 R(A (u)

R(Y(A) + (u))
R(A + (u)

which is given by the identity on R(A+ (u)). For the remaining verifications see appendiz D.10.

—

Definition 7.6.138 Let u € T. We construct a morphism of strengths o™ : 9,(0(=)) —
o)),
Let P € [F | T,Set]” and T € Set /T. We construct the following arrow

af} - (CP)(L + (u)) ™ (8) — (L(PY)(I1) 7 (2)
Using the coend notation we rewrite the domain and codomain
)+ )0 = [ Ry x T+ ) 1)@
veT

and

N
(e(PYh) (D)) 2/ P(A + (u)) x [T )2

t'eT

By universal property of the coend, it suffices to give a collection of arrows

PA) x JT @+ @)ty @) = pY ) )~ )
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for all A satisfying the wedge property. We take the following arrow

PA) x [T+ )™ ()2 = (A + () x [ TH)2 @)
veT t'eT

p, (hy)yeT = Pt(fA)(P)a (Et’)t’ET

composed with the corresponding coprojection, where for each (hy : A= (") — (D4+(u)) " (#)peT,
we set A C A such that

— A1 (t) ift' #u
AT = { {x € A=Y(u) such that hy(x) € T"Y(u)} ift =u

This defines (hy : N =1(t') = T1(t))per where

R ALY =T YY) ift #u
7 b AN w) 5 T (w) ift =u

Then we can define > : A — A + (u) where the fibre in t' is given by

z ift £u
fRx)=4 z ift' =u and x € N (u)
1 ift' =u and v ¢ A 7(u)
This construction of f is natural in A. For the remaining verifications see appendiz D.11.
Let ui,...,um € T. Then by lemma 4.8.60 the arrows
altum) 2 9 By (U(=)) = £((—)Y rum)

and

bt ) ()00 (B 01y (<)

are morphisms of strengths.
Let t € T. The fibres

(O, « - Ouy (U(—)))t — g((i)%}(ul,...,um)

and
(k(=))7 ) s k(B - - D ()

are as well morphisms of strengths.
Notation 7.6.139 Given a T —arity

o= (tl,l cotimg )tl, ey (tn,l ce tn’mn)tn — 1p

by lemma 4.8.61 the arrows a® and b are morphisms of strengths, where write

e Yty stim;
Hatm. raa (=) = AT )

=1
and

o - Y(ti1,estim; =
b TL(k(=) " k([ - s ()

i=1 =1
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Notation 7.6.140 Given a T —signature S = («;);c; where we write

a= () e D)

1 m n)tg) - t(()l)
for the arity a;. We have the following morphisms of strengths by lemma 4.8.63
S t(117 7t5127L)
ZH@() .. t(z —)fZH )

iel j=1 > iel j=1

and
(l) ()

bS ZH t(ljl’ ’tjm ZHa ) ...8t(i) _))t;i)

iel j=1 iel j=1 79 »t
Proposition 7.6.141 The arrow a™ : 9,(0(=)) = £((=)Y™) is an isomorphism.

Proof. Let P € [F ] T,Set]”. ag) has an inverse, dgg) S A(PY®) — 9,(¢P). Recall that
af 1—1
PN 0 = [ A ) x [T
veT
and

)+ )0 = [ @) [T+ ) ) ©

)

so by universal property of the coend, to define dg;fp it is equivalent to give a collection of arrows
) x [T 071 @) @ = (eP) (T + (u) (1)
veT

for all A’ € F | T that satisfies the wedge condition. We take the composite of the following
mapping with the corresponding coprojection.

(z,(he)ver) = (2, (b + (Wi)veT)
For the remaining verifications see appendix D.12. O

It follows that a(#1--%m) i as well an isomorphism for all uy,...,u, € T and we write
dum) for its inverse. Let t € T, the fibre of a(¥1%m) in ¢ is an isomorphism too.

Notation 7.6.142 Let o be o T —arity. We write d* for the inverse of a®.

a L y t;, a~~~:ti,mi
d oL ) 5 T O, -« Bt (),

i=1 =1

Now we investigate the link between d and b.
Lemma 7.6.143 Let u € T and R € [Set /T,Set /T|. We have the following formula
b\ = kduep o kd")
R uER O Rlpp O T(RY(u))

where n and € are unit and counit of the adjunction ¢ 4 k.
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Proof. Let A€ F | 7T and t € T. Along the composite we have

R(A + (u))~H(t) z
J{ A=A
T R(A + ()~ (t) x BIRNCa (¢, (ida-10)))
A=A+ (u)
SR x TLA + ) ()20 @ (dasen Hw) 7 (E)))
veT (z, (1d(A+SEL>)71(t’))t’)
R(A + (u)~L(¢) R(t%%_id)t(l‘) =z
which is the fibre of bgg,)A in ¢. O
Let u1,...,uy € T. By recursion as in the proof of proposition 4.9.68 we have as well the

following formula

D) = Ky, - Ouer 0 kg™ 0 My pyiasn)

Then for a given arity a we have the formula

_kH(?tzm . 8t 1 5R)t Okdsz nl_[n (kR)y(“ ,,,,, m«;)
i=1 t

by a similar proof as the one of proposition 4.9.69. And finally for a signature S we have the
formula

s _
b=k Ham RCO (>°kdkR°77 Y],k
iel j=1 Yier H;'Lzl(kR)tu) J
J

by a similar proof as the one of proposition 4.9.70.

7.7 From X—Mon to Rep(95)

Given a signature S = («;)ies, by the presheaf approach we associate to it a signature endofunc-
tor 3. In this section we start with an object of the category of Y-monoids (P, p, m,e) where
(P,p) is a X-algebra and where (P,m,e) is a monoid in [F | 7, Set]”. The aim is to construct
an object of the category of representations Rep(5).

First we introduce the following notations.

Notation 7.7.144 If we write for the arity o;

i = (0 0 @D ) )

s Mgy M,
then we write ¥4 for the corresponding piece of the signature functor; so explicitly
i (1) ()
" V(51 -t5m,)

»(@) — ]__[(—)t@)h1

j=1 7
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and we write MY for the underlying functor of the associated module of the monadic approach;
explicitly

M@ — H at(.” ...ﬁt(n (—)tgi)
j=1

Jym Mg Mn;

Using these notations recall that we have morphisms of strengths
SO YOPINS0

(with their inverses d(¥) : ¢x() — M®)y).
Recall that the fibre of ¥ P in u € T is by definition

(£P), =Y 5O(p)

1€y
and the fibre in u of the algebra structure map p : X P — P is by definition

pu: Y, EO(P) = P,
1€y

By universal property of the coproduct the arrow p, is equivalent to [pq(j)]ie 1, with pq(f) :

> (P) — P,.

Since the adjunction ¢ - k : [Set /T,Set /T] — [F | T,Set]” is monoidal, the object (P
is a monoid in [Set /T, Set /T], that is a monad on Set /7. We construct now a morphism of
¢P-modules

MO (pP) — (CP)
for all ¢ € I in the sense of the monadic approach. We define it to be the following composite
O]

. ald ‘ £(p;
MO (ep)y L5 p(x0) p) o), U(P),o) = (EP) )
0 0

Note that we use the same notation ¢ for the functor [F | 7, Set] — [Set /T, Set] and the functor
[F | 7,Set]” — [Set /T,Set /T]. In order to show that this is a morphism of /P-modules, we
have to verify that the following diagram commutes

M@ (eP) o (¢P) — (LP), o (LP)

|

MO (epP) (EP)

for all 7 € I. This square is explicitly the following diagram

M@ ({P)o ({P)— Z(E(i)p) o ((P)— EPt(()i> o (¢P)

II.
M®((tP)o (tP)) 1. (X PeP) UP e P)w
MO (P @ P)) —= (29 (P @ P))
III. IV.
MO(eP) (= P) (£P)go(I)
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The square IL. is a naturality square of ¢, the square III. is a naturality square of a(. The
diagram IV. commutes because P is a ¥-monoid and the diagram I. commutes because a(?) is a
morphism of strengths.

7.8 From Rep(S) to X—Mon

As in section 7.7 we suppose given a signature S = («;) and we use notations of 7.7.144. In this
section we start with an object of Rep(S) and construct a ¥—monoid.
Let (R,n, ) be a monad on Set /T together with a representation of each arity «;

r@: MY (R) - R,
0

Since k : [Set /T, Set /T] — [F | T,Set]” is monoidal, kR is a monoid on [F | T,Set]”. We
show that kR is an object of the category >—Mon, where X is the associated signature functor

to S.
Recall that we have the following morphisms of strengths

b 2Ok — kM®

By proposition 4.8.63, we also have the following morphisms of strengths
= 300 Y R0k S k(Y MO)
iel, icl, icly,
First we provide kR with a ¥-algebra structure map p : ¥kR — kR. Let u € T such that
I, = {i € I such that t((f) = u} # (). By definition the fibre of YkR in u € T is
(SkR)y =Y SO(kR)
iel,

We define p, to be the following composite

(SkR), = 5 SO (kR)

1€l
br
k(Y MO(R))
i€l
k‘[r(i)}ielu

k(Ry) = (kR)u
Next we have to show the commutativity of the following diagram

YERQkER—kR®ER

|

S(kR ® kR)

|

YER

kR
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This diagram in the fibre u is explicitly the following
S YO (kR) @ kR k(S MW(R)) e kR (kR)y, o kR
icly, icly, to

II.

621: SO(kR®kR) k(ezI; MO(R)oR) __. (RoR),

> 2O(k(RoR)) k(3 MY(RoR))
1€1y 1€y

II1. 1V.

> BO(kR) k(Y MO(R))

Z‘GIU. Z‘GIU.

(kR)to

The diagram I. commutes because b is a morphism of strengths, square III. is a naturality square
of b. The square II. is a naturality square of ¢ and the diagram IV. commutes because it is the
R-module morphism axiom of the (s,

7.9 Adjunction between Rep(S) and ¥—Mon

In this section we prove the following theorem

Theorem 7.9.145 Let S = («;);er be a binding signature as defined in . There is an adjunction

L 4K :Rep(S) — X-Mon
Proof. Again we write
n;

;= (t t @)D D )

Functor K : Rep(S) — £—Mon
In section 7.8 we constructed the assignation on objects of the functor

K : Rep(S) — ¥-Mon

Now we construct the assignation on arrows. Let p : (R, %, uf),7) — ((Q,n%, u?),q) be a
morphism of representations. We show that kp is a morphism of ¥—monoids kR — k(Q. Since k
is a monoidal functor, kp is a morphism of monoids. It remains to show that kp is a morphism
of Y¥—algebras, that is, that the following square commutes

EIIR —3kQ
kR kQ
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this square is explicitly in the fibre u € T

> BOkR) . 3 20(kQ)

1€1y 1€1y

k> MO(R) k3> MY(Q)

i€l i€l
klrDier, klgDier,
kR, kEQu

which commutes by naturality of the representations and by naturality of bp in R.

Functor L : ¥—Mon — Rep(S)
In section 7.7 we constructed the assignation on objects of the functor

L : ¥-Mon — Rep(9)

Now we construct the assignation on arrows. Let f : (P,m,e,p) — (Q,n,i,q) be a morphism
of ¥—monoids. Since ¢ is monoidal, ¢(f) : {P — ¢Q is a monoid morphism. It remains to show
that £(f) is a morphism of representations, that is, that the following square commutes for each
arity oy

MO (eP) —= MY ((Q)

l |

(EP), Q)

we unfold the vertical arrows and obtain

MO (eP) — MO (LQ)

The bottom square commutes because f is a morphism of Y—algebras and the top square is a
naturality square of al®,

Unit

Next we show that the unit  of the adjunction ¢ 4 k : [Set /T, Set /T] — [F | T,Set]”
a morphism of ¥-monoids. The component np in a ¥—monoid (P, m,e,p) is clearly a monoid
morphism since the adjunction is monoidal. It remains to show that np is a morphism of
Y—algebras, that is, that the following square commutes

E
sP—% skep

(O

P k(P
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Remark that by proposition 4.8.63, we have the following morphisms of strengths

a= Za(i) : ZM(i)E — E(Z E(i))

il icl, iel,
and their inverses
d=>Y_dP () nW) 5y My
i€l i€l, i€l,

Let u € T such that I, # (). The diagram in the fibre in u is explicitly the following

S »@)p QU S@pgp  bep EY M(i)gp)

i€ly 1€1y i€l

ka

M P

Pu k(S O Pp)
1€y
kl(p)u

P, klP),

(P )u ( )

The bottom diagram is a naturality square of 7. It remains to show that the top right triangle

commutes. We use the formula
b= kMe o kdk o nXk

where we write M =) M and it becomes explicitly

i€1y,

S xOp 0 S 2Okep
€1y 1€y

nEJ/ I. nZkl
ke Y x@p ke keSS 2Okep

1€y 1€l

1. kdke
kd

kS M@Oep kMg S MO pkep
1€, 1€y

IV. III.
\ kMel
id

kY MWep
i€y

ka

ke S x0Op
1€y

Square I. is a naturality square of 7. Square II. is a naturality square of d. Triangle III. is one
of the triangular identities and diagram IV. commutes since a and d are inverse.

Counit
We show that the counit & of the adjunction £ = k : [Set /T, Set /7] — [F | T,Set]” is a mor-
phism of representations. The component g in a monad (R, u,n) is clearly a monad morphism
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since the adjunction is monoidal. It remains to show that it is a morphism of representations.
That is that the following diagram commutes for each arity «; of S.

()
M (tkR) — = — (tkR)y,

M(i)aRl l(ER)téi)
1) (% *R) «
M@ (e*R) o (e"R), 0
R
This is explicitly
)
M® (kR) — (CkR)t,
NO!
kR
. (©)
(2D (kR) M (er) (5R)tgi)

kMO (R) — M (R) — Rtéw

MG (R) riD

The diagram on the right is a naturality square of 7(, so it remains to check the commutativity
of the left bottom diagram.

MOER
ol
kR
opr 1V &
i AN
Mgy g N .
N Ces@kr ) \
SDRR==SVDkR N
di N\
0kd ), 1. o \
. Ear(d) X
(kMO kR L MOkR
kM Dep 1. lM(%R
kMDR S MOR
MWW R

The two squares I. and II. are naturality squares of ¢, the triangle IIL is one of the triangle
identities for the unit and counit and the diagram IV. commutes because al(;)% and dlgzl)% are

inverse to each other. O



Chapter 8

Typed syntax without variable
binding

In this chapter we develop the monadic approach further. The class of signatures we consider is
typed signature with quantification over types only. We consider type and term constructors and
so we gather arities of both such constructors in a signature. We allow dependencies between
the constructors and thus between the arities.

First we give an intuitive description of typical signatures in pseudo-code coq. Then in the
following sections we introduce our notions of signature and prove the theorems stating that
initial representations exist.

8.1 Intuitive description

We consider the following example that corresponds to a sequence of declaration of variables
using the syntax of the Coq Proof Assistant ([INR]).

Example 8.1.146 (Lists of integers with length)

tip : Type;

term : tip — Type;

nat : tipy

zero  : term(nat);

succ  : term(nat) — term(nat);

list : term(nat) — tip — tip;

nil : Vit : tip, term(list(zero, t));

consy - Vit:tip, term(list(k,t)) — term(¢) — term(list(succ(k),t));

where we write k for the term succk(zero) of type term(nat).

More generally let I'g be the list of variable declarations

tip : Type;
term : tip — Type;

129
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and consider the following typing rules
Fro o 1)
Fro T Fkrt
l_FO F, (l’ : t)
Frol
T I—TFOtip(g)
FroT R Y(4)
I'trtip—>Y
FroT I'pt:tip I'Hp X
I'Frterm(t) — X
FroT (:E:t)EF(6)
F'Fpax:t
Fro T I'Fpt:tip
I ¢ term(t)
Fro T I'kp fitip—> X FI—FQL*:tip8

(2)

()

(7)

Fkr (fz): X (8)
Fro T Ckp f:term(t) —» X I'Fr o term(t) (9)
Fbp(fz): X
Fro T I’,t.:tlpl—TX(lo)
I'bp Vt:tip, X

The signatures we consider in this chapter are equivalent of a list of variable declarations I' in
coq satisfying the judgment Fpo I' by the above rules.

8.2 DBase category

We take the category TEns := [2, Set] to be the base category for the typed case, where 2 stands
for the category with two objects and exactly one non—identity arrow. We think of an object
of TEns as an environment I" : X — T where X is a set of variables or terms and 7' the set of
types. The category TEns is complete and cocomplete and comes equipped with two forgetful
functors to Set

Notation 8.2.147 We write (=) for the forgetful functor TEns — Set, X — T — X. We
write (—) for the forgetful functor TEns — Set, X — T — T.

Notation 8.2.148 Let I' € TEns. We write I' for its set of types and L for the set I 4 {L}.
Let f:T'— A. Wewrite f: L — A where f = f+ L.

Notation 8.2.149 LetT' € TEns and t € £ We write

[ TNt iftel
I‘[t]._{r i1

Let f:T — A andt € L. We write

.71 -1 i



8.3. Signature of degree 0 131

8.3 Signature of degree 0

In this section we define the notion of arity and signature of degree 0, that is without quantifi-
cation over types.

Definition 8.3.150 (arity) Let C € TEns. An arity on C of length r is an arrow a : v — C.

Definition 8.3.151 (I/—signature) Let I € Set, C € TEns. An I-signature S on C is a
collection of arities (S;)ier on C.

Definition 8.3.152 (direct image) Let I € Set, C,D € TEns and S an I-signature on C.
Given a morphism f: C'— D we define f.S the direct image of S along f, it is an [-signature
on D consisting of the following arities

[~

Si
ri—C =D

Definition 8.3.153 (category of [—signatures) Let I € Set, C, D € TEns. A morphism of
I-signatures from an I—-signature S on C to an I-signature T on D is a morphism f : C — D in
TEns such that T' = f,.S. I-Signatures and morphisms of I-signatures form a category, Sign(I).
It comes equipped with a forgetful functor Sign(I) — TEns.

Definition 8.3.154 (category of [—-endorepresentations) Let I € Set. An object of the
category of I—-endorepresentations is an I-signature S = (S;);cr on C together with a map

ri—1

pi: [ CLS:(7)] = ClSi(ra)]
j=1

foralli e I.
A morphism from (C,S,p) to (D,T,) is a morphism of I-signatures f : (C,S) — (D,T)
such that

'I’i—l

L C[Si(j)] 2 C[Si(r)]

J

I1 f[Si(j)]l F1Si(rs)]
ri—1
Hl DIT3(j)] e D[T;(r;)]
]: 1

commutes for all i € I.
I-Endorepresentations and morphisms of I-endorepresentations form a category written
EndRep(I). It comes equipped with a forgetful functor EndRep(I) — Sign([).

Definition 8.3.155 (representation) Let I € Set, C € TEns and S be an I-signature on
C. A representation of S in an object D € TEns is a morphism f : C — D and an I-
endorepresentation & = (&;)ier of the I-signature .S on D.

Definition 8.3.156 (category of representations) Let I € Set, C' € TEns and S = (S;)ier
be an I-signature on C. We build Rep(S) the category of representations of S. An object is a
representation (D, f,&) of S in an object D.
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A morphism of representations from (D, f,&) to (D', f',£') is a morphism ¢ : D — D' of

TEns such that
C
N
D 2 D’

commutes and which induces a morphism of I -endorepresentations from (D, f.S,€) to (D', f..5, ).

Proposition 8.3.157 Let I € Set, C € TEns and S = (a;)ie;r be an I-signature on C. The
category Rep(S) has an initial object. We write C(S) for the underlying object in TEns of the
initial representation.

Proof. To each arity a; : r; — C, we associate the C-arity (without variable binding)
(67 a,-(l), R ,ai(n — 1) — ai(n)

Then we construct the initial object C(S)" of the category of representations of the C-signature
(ai)ier as in the proof of theorem 6.4.121 with 7 being C and the starting object C’. This
object C' of Set /C' is obtained from C' by adding L to C and adding C' as the fibre of L.

Construction of the initial object C(S)
Then we construct C'(S) by adding the fibre of L to C(S)" and erasing L

C(8) = C(S) U C(S) (L) \ {1}

and

C(8)~H(e) = C(8) ()

for all c € C.

The arrow ¢ : C' — C(S) is given by the inclusion C' — C(S) which comes from the inclusion
C" — C(S)". We construct the I-endorepresentation of S in C(S). By construction of C'(S)’
we have for each arity «; an arrow

ri—1

H C(8) ™ (ai(4)) — C(8) ™ (ai(r4))

by our construction of C(S) this amounts to an arrow

ri—1

H C(S)e(ai(7))] = C(S)ulai(r:))]

as desired for an I-endorepresentation of 2,S.

Construction of the arrow h: C(S) — D
Let (D, f, (&)icr) be another representation. Explicitly ; is of the form

7’1'—1

[T Dlf o i) = DIf o as(r)



8.3. Signature of degree 0 133

We associate the object D’ to D such that &; is now of type

ri—1

HD’ 1 (foai(j)) = D' 1(foa@(7“z))

for all i € I.

We construct a morphism of I-endorepresentations h from (C(S), .5, p) to (D, fiS,&).
First we construct an arrow h' : C(S)" — D’. We define it recursively by giving an arrow
hl, = C(S)), — D' for all n.

For n = 0 we have C(S){, = C’, so the arrow hj, is given by f’: C’ — D’. Suppose given an
arrow hy, 2 C(S);, . — D' (f (¢t )) for all m <n and ¢t € C, then we construct the arrow h;,
forallt € C. B

ri—1
By definition C(S);,,1, = > >[I C(S ) ).as(j): S0 by universal property of the
i€l gG@7 —1,n Jj=1 J
r;—1
sums, it suffices to give an arrow [[ C(S >g(j) o) D'7L(f(t)) for alli € I; and g € O, _1 .
ji =
We take the following composite

ri—1 ri—1

HC o %HD”i ) = D)

since t = a;(r;) for all a; € I;.
Then we set b’ = [h] |,en : C(S) — D’. By undoing the operation’, we obtain h : C(S) — D.
By undoing the operation ’ we mean the following. The object C'(S)’ is of the form
(C+A)+(C+B)

c(sy

C+{L}

where C' + B is in the fibre of L and b’ is explicitly

(C+A)+ (C+B)—— K, D+ D
C(S)’J/ J/
C+{Ll} D+{Ll}

since we have C' + B — D, the following square commutes

C+A—D

oo)| iD

which we take to be h. The fibre of B along C(S) is empty.

h:C(S) — D as a morphism of representations
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The triangle

[T C(9)[e(ai())] 2 C(S)[e(ai(r:))]

hly(a;(ri))]

>
="
~

S

&
—~
<l
=
=

P

DI (as(rs))]

j=1 i

commutes since

J=1

ITh, (j)l ai(ry)
T 0 (i) DS ailr)
i=1 = i

commutes by definition of h’.

Uniqueness h: C(S) — D

Suppose given another morphism of I-endorepresentations k from (C(S), 2.5, p) to
(D, fS,€). We show that k = h and we can conclude then that C(S) is initial in Rep(S). We
write k], for the composite

C(S). — C(sY & pf

and ky, , for ts fibre in t. We show by induction that &, , = h;, , for alln € Nand t € C.
If n =0, we have

koo (x) = gi(x) = ho ()

since both A’ and k' make the triangle

commute. Suppose that &y, ; = hy, , for all m < n and t € C. We show that k;,;, = hj,.; .
Let M € C(S);,,1, By definition there exists a ¢ € I and a g € ©,,_1, such that M =
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(N1,...,Ny,—1) € T] C(S) . . We compute

a1t (M) = hy g (N1, oo Npyo1)
= &ilhg(1),a,0) (N1 -5 B, 1) 0, (1) (Vi)
= &ilkg1)ai)(N1)s - -5 Ko -1y, a0 (rs—1) (Vri—1))
== kqlfL—‘,-l,t(Nl’ “ e ,Nri,]_)
= kpp1,4(M)
since
ri—1
/
JIRSC DD ClShni
Hk/l k;;LJrl,t
ri—1
[T (D)~ (f(ai(4)) . (D)1 (£(#)
]:1 - 7 =
commutes by definition of k. O

Proposition 8.3.158 Using the notations of the proof of proposition 8.3.157 the assignation
(C,5) = (C(S), 1.5, p)
induces a functor Sign(I) — EndRep(I) .
Proof. The construction on objects is given by the proof of proposition 8.3.157.

Construction f(S) : C(S) — D(f.S)

Let f: C — D in TEns. We construct the arrow f(S) : C(S) — D(f.S) induced by f.

We write C’ for the object obtained by adding 1 to C and adding C as the fiber of 1. By
a similar construction we obtain D’ and also f': C’ — D’.

First we build the arrow f(S)" : C(S) — D(f.S)’. By definition C(S)" = Y C(S)!, and

neN "
D{f.S) = > D{f.S)),. So we define recursively f(S)!, for all n € N.
neN
For n = 0 the arrow f(S){ : C(S)y — D(f.S) is given by f': C" — D’ since C(S) = C’
and D(f.S){, = D’ by definition.
Suppose given an arrow f(S);,, : C(S);,; — D(f.S),, pp forallm <mnandteC = .

By definition

ri—1

n+1t_z Z HC J)al

el ge@ —1,n ] 1
So by applying the induction hypotheses, we obtain an arrow

ri—1

SOY O

i€l g€9r —1,n Jj=1

ri—1

> > L €O r@ey = DS i pw

zGIf @ 9€Oy, —1,n j=1
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We set f(S); = > f(S),+ Then we undo ’ of f(S)’ to obtain f(S).
neN

We write £ for the 0—endorepresentation of f.S on D(f.S), defined as in theorem 8.3.157.

f(S) : C(S) = D(f.S) as a morphism of /-endorepresentations
We check that f(S) is a morphism of I—endorepresentations (C'(S), 1.5, p) = (D{f.S), f«S,&),
that is, that the following square

T%_E(C<5>/)_1(Z(az(17))) P (C(S)Y)  a(ai(ri))
Hf(&’i sy
“ (D(£:8)) 7! (f(ai(5))) = (D{f8)) 7 ([ ai(r))
J= = i

ri—1

TS0 (©(8)) aslr)

I f<S>;(j>i £(sy
r;i—1
I D{LeS)y 5 ptaitany — (PU8)) 7 (£ ai(r2))
P !

commutes for all i € I and ¢ : 7; — 1 — N. If we unfold the horizontal arrows (which are vertical
in the following diagram), we obtain the following diagram

ri=l IT748)g05) '

JIRSE Yo ().a:(3) H D{£+5Y5), g0
ri=l Y TIH(S), izl
> > I COS)ray —= 2 > I C%6) st
€14, (r;) €O —1,n J=1 €11 (a;(ry)) 9EOT—1,n J=1 =
.
C( Xnal(n) 7o) <f* >mf (@i(ri))

(C(8)) " Hai(r:)) (D(£:8)) 71 (f (ai(ri))

f(sy

where we write m = max g(j) + 1. The first and third arrows on the right— and left—hand side
J

are inclusions, so all three squares commute by definition of f(S)’. O

Corollary 8.3.159 The forgetful functor U : EndRep(I) — Sign(I) has a left adjoint, which is
given by the functor F : Sign(I) — EndRep(I) of proposition 8.3.158.
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Proof. We define unit and counit and show then the triangle identities. The the unit
n:1d — UF at the component (C,S) € Sign([) is (C,S) — (C(S),2.S), which is a morphism
of I-signatures induced by ¢ : C — C(S) of TEns.

The counit € is given by initiality of (C'(S), .S, p) in the category of representations of S, its
component (C(S), .5, p) — (C, S, p') at (C, S, p") € EndRep([) is given by the unique morphism
of representations by 8.3.157.

We check the triangle identities. First we check the commutativity of

U(C, s, o) "L UFU(C, S, o)

e

U(c,s,p)

S e

(C,5)

which commutes since 7 is induced by the inclusion 2 : C' — C(S). Next we check the commu-
tativity of

it becomes

F(C,S) L FUF(C, )

it becomes
(c,s)(S

(C(S), %5, p) — ((&<S>)<l*5>a]*(l*5)’<) (8.1)

ECS,'L*S,
x \L(() P)

(C(S), %5, p)

where we write j for the morphism induced by the inclusion C(S) — (C(S))(2.S). The ver-
tical arrow is by definition the unique morphism ((C(S))(2.5), 74(2:5), () — (C(S),2.S,p) in
Rep(2..5).

But an object of Rep(2.5) is as well an object of Rep(.S) and a morphism in Rep(2,.59) is as well
a morphism of Rep(S) for the following reason. Let f : C(S) — D and ¢ an endorepresentation
of fi(1.5). If we write fp for the composite

C—>C’<S>—>D

then (fo, (f0)«S, ¢) is an object of Rep(S). Let ¢ be a morphism (D, fi(245),¢) — (D', f1(245),¢’)
of Rep(2.S). It is a morphism (D, (f)+S,¢) — (D', (f})«S, (") of Rep(S) as well since the fol-

lowing diagram commutes
c
/ l h
(2
NG

// AN
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So the triangle (8.1) commutes by initiality of (C(S), .5, p) in Rep(S). O

8.4 Signature of higher degree

In this section we define the notion of arity and signature of higher degree, that is signature
containing arities with quantification over types.

Definition 8.4.160 (arity) Let C € TEns and d € N. An arity of degree d on C is an arity
(of degree 0) on C(d), where d stands for the signature on C' consisting of d equal arities on C
1—-C, 1~ L.

Remark 8.4.161 Let C' € TEns and d € N. The object C(d) of TEns is just an arrow C —
(C+{1,...,d}) where the fibres of the d additional types are empty.

Notation 8.4.162 (weighted set) We call a pair (I,d) a weighted set where I € Set and
d : I — N. By abuse of notation, we write I as well for the underlying set and d; for d(i) for
ani € I.

For the remaining part of this section we fix a weighted set I.

Definition 8.4.163 (I—signature) Let C' € TEns. An [-signature on C is a collection (S;)icr
of arities of degrees d; on C.

Definition 8.4.164 (direct image) Let C,D € TEns, f : C — D and S = (S;)ier an I-
signature. The direct image f,.S of S along f is the I-signature on D consisting of the following
arities on D

Here we have written f(d;) for the induced arrow C{(d;) — D{d;) by f as explained in 8.3.158.

Definition 8.4.165 (category of [—signatures) Let C,D € TEns, S an I-signature on C
and T an I-signature on D. A morphism of I-signatures from (C,S) to (D,T) is an arrow
f:C — D such that T = f,S. I-Signatures and morphisms of I-signatures form a category,
Sign(l). It comes equipped with a forgetful functor Sign(I) — TEns.

Definition 8.4.166 (category of /—endorepresentations) An object of the category of -
endorepresentations is an I-signature S = (S;)ic; on C and for all i € I and for allt:d; — C

a map piy of type

ri—1

pit H ClSit(5)] = C[Six(ri)]
j=1
Here we have written S; 1 : ;i — C for the composite

d) = C+d; 129 ¢

3
l~°~’
Q
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A morphism from (C, S, p) to (D,T,&) is a morphism of I-signatures f : (C,S) — (D, T)
such that

[T Cl5i(9)] P O[S 4(ri)]

]:

Hf[Si,t(j)}J/ F1S4,t(r4)]
ri—1
1 DIT: got()) — DIT: gor ()]
j=1 - i, fot

commutes for allt : d; — C and all i € I, since

IS o P L

commutes.
I-Endorepresentations and morphisms of I-endorepresentations form a category written
EndRep(]). It comes equipped with a forgetful functor EndRep(I) — Sign([).

Definition 8.4.167 (representation) Let C € TEns and S an I-signature on C. A represen-
tation of S in D € TEns consists of an arrow f : C — D of TEns and an I-endorepresentation

of f.S.

Definition 8.4.168 (category of representations) Let C,D,D’ € TEns, S an [-signature
on C. An object of the category of representations of S is a representation (D, f,€).
A morphism of representations from (D, f,§) to (D', f',£') consists of a morphism ¢ : D —
D’ such that
c

/N
® D’

commutes and which induces a morphism of I -endorepresentations from (D, .S, &) to (D', f..S,£').
Representations of S and morphisms of representations form a category Rep(S).

D

Proposition 8.4.169 Let C € TEns and S = (a;)ier an I-signature on C. The category
Rep(S) has an initial object, its underlying object of TEns is written C(S).

Proof. We associate to each arity a; : r; — C(d;) = C +d; a collection of C-arities a4
indexed by t : d; — C. First we set

; id,
aiyt:ri%g—i-di —>[ t] g

and then we define
i air(l),. .. ai(ri — 1) = aj(rs)

Construction of the initial object C(S)
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We construct the initial object C(S)" of the category of representations of the C—signature
(cvit)ei as in the proof of theorem 6.4.121 with 7 being C' and the starting object C'. This
object C” of Set /C is obtained from C by adding L to C and adding C as the fibre of L.

Then we construct C(S) by adding the fibre of L to C C(S)" and erasing L

C(S) = C(S) U C(S) (L) \ {L}
and
C(S)~He) = C(S) " H(e)

forallce C.
The arrow ¢ : C — C(S) is given by the inclusion C — C(S). We construct the I-
endorepresentation of S in C(S). By construction of C'(S)" we have for each arity a;; an arrow

ri—1

H C(S) " Haia(5)) — C(S)Haia(rs))

by our construction of C(S) this amounts to an arrow

ri—1

H C(9)[e(ait(5))] = C(S)wlair(ri))]
as desired for an I fendorepresentation of 2,S.

Construction of the arrow h: C(S) — D
Let (D, f,€) be another representation. Explicitly &;; is of the form

’I‘i—l

H D[io ait(4)] — D[io ait(ri)]
=1

We associate the object D' to D such that & ; is now of type

ri—1
H D' foaiu(j) = D' (f o ailri)
j=1

forallt:d; — C and all 7 € 1.

We construct a morphism of I-endorepresentations h from (C(S),, p) to (D, f,&). First we
construct an arrow A’ : C(S) — D’. We define it recursively by giving an arrow h}, : C(S)!, — D’
for all n.

For n = 0 we have C(S); = C’, so the arrow hy, is given by f' : C' — D’. Suppose given
an arrow hy, .+ C(S);, . — D'~ 1(f( )) for all m < n and 7 € C, then we construct the arrow

ni1r forateC.

m,T

r;i—1
By definition C(S);,.;, = > > [ C(S ) 9(i)asa(j): S0 by universal property of the
i€l ge@r —1,n .] 1 ot
r;i—1
sums, it suffices to give an arrow H c(S)y a0 an) DY (f(r)) foralli € I and g € Oy, _1,5.
i =
We take the following composite

ri—1 ri—1

Hc ) —>HD’ (f(aie(§) = DN (f(7)
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since a;4(r;) = 7 for all (i,t) € I.
Then we set b’ = [h] |,en : C(S) — D’. By undoing the operation’, we obtain h : C(S) — D.
By undoing the operation ’ we mean the following. The object C'(S)’ is of the form
(C+A)+ (C+B)
J{c<s>/
C+{Ll}

where C + B is in the fibre of 1 and I’ is explicitly

C+A)+(C+B-2~D+D
c(S)’ D’

CH{L}———=D+{L)

since we have C + B — D, the following square commutes

C+A——D

C(s>i iD

C+B——=D

which we take to be h. The fibre of B along C(S) is empty.

h:C(S) — D as a morphism of representations
The triangle

commutes by construction of A and ¢ being the inclusion. The following diagram

ri—1

[T C(8)laia(i))] == O(S) t(aso(ri))]

J

Hhh(ai,t(j))li hlu(as,i(ri))]
T'i—l
I1 Dif(ait(7)] —— D[f(ai(r:))]
=1 = : B
commutes since

7"2‘—1 it

[T C(8)"Haia()) == C ()~ (aia(ri)

]:

h;i,t(j) l h:li,t(Ti)
T'i—l

[1 D7 (f (i) e D' (f(aia(ri)))



142 Chapter 8. Typed syntax without variable binding

commutes by definition of A'.

Uniqueness of h: C(S) — D

Suppose given another morphism of /-endorepresentations k& from (C(S),s,p) to (D, f,&).
We show that & = h and we can conclude then that (C(S),1, p) is initial in Rep(S ). We write
k! for the composite

C(S). < C(SY &5 D!

and k;, ;, for its fibre in t. We show by induction that k;, , = h;,, for alln € Nand t € C.
If n =0, we have

ko1 (2) = gi(x) = ho 4 (x)

since both A’ and k' make the triangle

commute. Suppose that k;, , = hy,, for all m < n and t € C. We show that &, = = hj, .
Let M € C<S>n+17' By deﬁnltlon there exists a (i,t) € I and a g € ©,, 1, such that M =

(N1,...,Np1) € Hl C(S);(j)m(j). We compute
J:
;1+177( ) _h’n—H T(N17"'7N7‘i—1)
= &it(hg(1),a0, 1) (N1)s - g1y yri—1) (N -1))
=& t(k;(l)vai,t(l)(Nl)’ T ’k;(mfl)ﬂi,t(n‘*l)(NTi—l))
- kn—i—l t(Nla s 7NT'7;71)

= k1t (M)
since
7;1;_[11 ) 903),a1. ) C{S) i
|
(D) (Gl (D) 510)
commutes by definition of k. O

Proposition 8.4.170 With the notations of the proof of proposition 8.4.169, the assignation
(C,5) = (C(5), 1.5, p)

induces a functor Sign(l) — EndRep(I).
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Proof. The construction on objects is given by the proof of proposition 8.4.169. Let f :
C — D in TEns.

Construction of f(S) : C(S) — D(f.S)

We construct the arrow f(S) : C(S) — D(f.S) induced by f. We write C’ for the object
obtained by adding 1 to C and adding C as the fiber of L. By a similar construction we obtain
D’ and also ' : C' — D'.

First we build the arrow f(S)" : C(S) — D(f.S)’. By definition C(S)" = Y C(S)!, and

neN
D{(f.S)Y = > D{f.S)),. So we define recursively f(S)!, for all n € N.
neN

For n = 0 the arrow f(S)(, : C(S); — D(f.S); is given by f': C" — D’ since C(S)(, = C’
and D(f.S){, = D’ by definition.

Suppose given an arrow f(S)y, . : C(S);,; — D{fS)], 20 for all m <nand 7€ C = C".
By definition

ri—1

n+17_ Z Z HC J)a“s(J

(Z t)eIT gee'r‘ —1,n ] 1

So by applying the induction hypotheses, we obtain an arrow

ri—1

> [T C(s > 9(4),ai,¢(5)

(i,t)€L- €O, —1,n j=1

o

> > H LSV, (anei)) = P g1 p ()

(Z t)EIf (r) geer —1,n ] -

We set f(S), = > f(S)},,- Then we undo ’ of f(S)" to obtain f(S).
neN

We write £ for the I-endorepresentation of f..S on D(f.S), defined as in theorem 8.4.169.

f{S) : C(S) = D(f.S) as a morphism of I-endorepresentations

We check that f(S) is a morphism of I-endorepresentations (C(S), .S, p) — (D{f«S), f«S,§),
that is, that the following square

ri—1

[T (C{8)) ™ (@ia(3) —=—= (C(8)) " ai(r4))
Hf<S>’J/ 78y

ri—1
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commutes for all ¢ € [ and ¢ : d; — C or equivalently that the following square

ri—1
]1;[1 CLSVg).a5.4 () (C(S)) Haiz(r:))
Hf<5>’g<]~)l 8y
ri—1
[T DULeSYy ) g0 tap — (P80 (L i)
Jj= =

commutes for all : € I, t : d; — C and g : ; — 1 — N. If we unfold the horizontal arrows (which
are vertical in the following diagram) we obtain the following diagram

o iy,
LS00 LR ON e

| |

r;i—1 ’ r;—1
: YIS, : ,
> > L CO)yiany —= " 2 > I CUS0) sanntin)
(l’t)el‘li,t(v'i) 9€Or;—1.n j=1 (Z’t)eli(ai,t(?"ﬁ) 9€Or;—1,n J=1 -
F(S) :
CS) o) D{feS)m p(aiars)

(C(8))Haiz(ri)

where we write m = max g(j) + 1. The first and third arrows on the right— and left—hand side
J

are inclusions, so all three squares commute by definition of f(S)". O

Corollary 8.4.171 The forgetful functor U : EndRep(I) — Sign(I) has a left adjoint, which is
given by the functor F : Sign(I) — EndRep(I) of proposition 8.4.170.

Proof. We define unit and counit and show then the triangle identities. The unit n : Id —
UF is the morphism of [-signatures induced by the inclusion ¢ : C' — C(S)

(€, 8) — (CS),2.8)

at the component (C,S) € Sign(I). The counit € is given by initiality of (C(S),.S,p) in
the category of representations of S, the component at (C,S,p’) € EndRep([) is the unique
morphism

(C(S),1.5.p) = (C, 8, )

We check the triangle identities. First we check the commutativity of

UC, s, o) - UFU(C,S, o)

e

U(C,s,p)
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it becomes

(C,5)

which commutes since 7 is the inclusion C' < C(S). Next we check the commutativity of

F(C,S) L FUF(C, )

it becomes

(C(8), 15, p) 222 (10(8))(1.). 1.5.0) (3.2)

ECS,'L*Sa

(C(S), %5, p)

where we write j for the morphism induced by the inclusion C(S) — (C(S))(2.S). The ver-
tical arrow is by definition the unique morphism ((C(S))(1.5), «(2:5),() — (C(S), 2.5, p) in
Rep(2..9).

But an object of Rep(z.5) is as well an object of Rep(.S) and a morphism in Rep(2,.5) is as well
a morphism of Rep(S) for the following reason. Let f: C(S) — D and ¢ an endorepresentation
of fi(2.S5). If we write fp for the composite

chols) Lo
then (fo, (f0)«S, ¢) is an object of Rep(S). Let ¢ be a morphism (D, fi(2.5),¢) — (D’, f1(2.5), ")
of Rep(2.5). It is a morphism (D, (f)+S,¢) — (D', (f})«S, (") of Rep(S) as well since the fol-

lowing diagram commutes
C
/ iz\
[

So the triangle (8.2) commutes by initiality of (C(S), .5, p) in Rep(S). 0

8.5 Mixed signature

In this section we define a notion of arity and signature on an object of a category of represen-
tations of another signature.

For this section suppose given a weighted set I’. We write short £ for the category of
endorepresentations EndRep(I’) and U : € — TEns.
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Definition 8.5.172 (arity) Let ' € £. An arity on I' of degree 0 and of length r is an arrow
a:r— U(T) in Set.

Such an arity a on I' is an arity on U(T') of degree 0 as defined previously. We write only
a:r — L instead.

In the following we fix a weighted set I with all weights equal to 0, so [ is just an ordinary
set.

Definition 8.5.173 (I—signature) Let I' € £. An I-signature S of degree 0 on T' is a collec-
tion (S;)ier of arities on T' of degrees 0.

Definition 8.5.174 (direct image) Let I'’A € £, f : T' — A and S an I-signature on T.
The direct image of S along f is an I-signature on A whose arities are the following ones

ri—L—=A
We write f.S for this signature on A.

Definition 8.5.175 (category of [—signatures) Let I')A € £. A morphism of I-signatures
from an I-signature S on I to an I-signature T on A is an arrow f : I' — A of € such that
T = f.S. I-Signatures and morphisms of I-signatures form a category, Signg(I).

Definition 8.5.176 (category of [—endorepresentations) An object of the category of -
endorepresentations is an I-signature S on I together with a map

ri—1

pi H L[Si(45)] — T[Si(ri)]

foralliel.
A morphism from (T, S, p) to (A, T,€) is a morphism of I-signatures f : (I',S) — (A, T)
such that

T'i—l

Ll L[Si(4)] 2= T[S;(ry)]

J

Hf[Si(j)}l F1Si(r:)]
ri—1
Hl A[T;(5)] e A[T;(rs)]
]: 1

commutes for all i € I.
I-Endorepresentations and morphisms of I-endorepresentations form a category written
EndRepg(I). It comes equipped with a forgetful functor EndRepg(I) — Signg([).

Definition 8.5.177 (representation) LetT € £ and S an [-signature on T'. A representation
of S in an object A of £ is a morphism f:I' = A of £ together with an I—-endorepresentation
of fxS in A.

Definition 8.5.178 (category of representations) Let I' € £ and S an I-signature on T.
We build Rep(S) the category of representations of S. An object of Rep(S) is a triple (A, f,§)
where A is an object of £, f : I' = A a morphism of £ and & an I—-endorepresentation of f.S
in A.
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A morphism of representations from a representation (A, f,€) to a representation (A', f', &)
is a morphism ¢ : A — A’ of € such that

2"

A @

A/

commutes and such that ¢ is a morphism of I-endorepresentations (A, f.S,&) — (A/, f1.5,¢).
We write Rep(S) for this category.

Proposition 8.5.179 Let I' € £ and S an I-signature on I'. The category of representations
Rep(S) has an initial object. We write I'(S) for the underlying object of TEns of the initial
representation.

Proof. We write C = U(T"), S’ for the I'-signature on C of " and p’ for its I’-endorepresentation.

Construction of the initial object I'(S)

We concatenate the signatures S” and S by setting J =I' + I and n = [d’,0] : J — N where
0 is the constant function I — N, 7 +— 0 and we write S’ + S for this J-signature of degree n. By
proposition 8.4.169 the category of representations of S’ + S has an initial object, its underlying
object of TEns is written C(S’ 4+ 5).

In the construction of C(S’ 4+ .S) we use the related object C'(S”+ S)’ that has an additional
type L and C(S’ + S) as its fibre. The object C(S’ + S)’ in the fibre 7 € C is constructed as
the coproduct ) C(S"+ S)], .. a

neN

We define a subset TO,, ; of each C'(S'+S);, ;. Intuitively the set of trees TO stands for trees

having a subtree constructed by S’. We do not want these trees in I'(S) since there is already

an element of C’ that corresponds to such a subtree.
ri—1
For n = 0 we set TOp, = 0. For n = 1, we have C(S'+ S)|,. = > > [] C{(8"+
’ i€Jr g€O0,r;—1 j=1
S )'g (7)) where g € Og ,,—1 is the constant function 0 and we chose the constructions of indexes

i € IL to be in TO; ;. More precisely if M € C(S" + S)] ., there exists i € J;, t : n; — C such

1,7
7‘1'—1
! /
that M € jl;[l C(S" + S>0,ai,t(j)
Suppose given TO,, » € C(S" + S)m,r for all m < n and all 7 € C, we construct TOy 17
Let M € C(S" + S)p+1.r, by definition there exists i € J, t : n; = C, g € ©,,_1,, such that

'I’i—l

Me [ C(8'+8),
j=1

and we set M € TOy . if i € I_.

(ais () and we write M = (Ny,...,Ny,—1). We take M € TO,,; ; if there

exists a j € {1,...,7 — 1} such that N; € TOy(;y.q,,(j)-
Then we take I'(S)! C(S"+8), -\ TOyp for all 7 and T'(S), = > T(S);, .. By undoing

n,T =
neN

"of T'(S)" we obtain I'(S).

Construction p: C(S'+ S) — T'(S)’

Intuitively this function p sends a tree of C'(S’ 4+ S)’ containing a subtree constructed by S’
to the same tree where we replace the subtree by the corresponding element of C’.

First we construct a collection of arrows s, : TO,, — (I'(S))71(7) induced by the d'—
endorepresentation p’. We construct s, » for all n € N and 7 € C by recursion.
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For n = 0 we have TO,,» = 0, so the arrow s¢ , is given by initiality of 0 € Set. For n =1

ri—1
let M € TO;,, by definition M € > [] C(5" + S>6a~t(j)’ so there exists a (i,t) € I' such
(it)el j=1 m
ri—1
that M € [] C""'(ai(j)). By pj, we have
j=1
T'i—l
I 67 (@isG) = ¢ 7Hr) = T (S
j=1

and then by inclusion
D(S),r = (T(S)) 7' (7)

Suppose given sqr : TOq, — (I'(S))~!(r) for all ¢ < n and 7 € C then we construct
Sp+1,7- Let M € TO, 41, then by definition there exists an ¢ € J and h € ©,,_1,, such that

'I’i—l
M = (Nl, . 7Nri—1) S H C<Sl + S>/h(j),a¢(j) where Nj S TOh(j) y or Nj S F<S>Ih(])

j=1
all j =1,...,7; — 1. Applying the recursion hypotheses to N; € TOy ) 4,(j) We obtain

Sn(i),ai ) (V) € (T(S)) ™ (ai())

i (j ai(4) for

Then we set B B
Sur1r (M) = (N1,..., Nyy_1) € (D(SY) ()
where Nj = Nj if Nj S F<S>Ih(]),al(]) and ﬁj = Sh(j),ai(j)(Nj) if Nj € TOh(j),ai(j).
So we take s; = [snr]nen. The arrow p;, . is given by

[incl,sn,r]

C(S' + 8, = D(S), , + TOy, r(s),

T

I-Endorepresentation of S
We construct an I-endorepresentation (I'(S),.5,&) of 2.5 on I'(S) along the inclusion ¢ :
C — TI'(S). Let i € I, we have to construct an arrow

'I’i—l

& ]I TS lai())] = T(S) e(airi)]
j=1

or equivalently
ri—1

& [T @ili) = (0(S)) " (ai(ri))

j=1
By distributivity of Set we have

ri—1 ri—1

[I>rnan= 2 TS0 an

j=1 neN h:NTi—1 =1
So for all h:r; — 1 — N, we construct an arrow

ri—l

T TSy — (TS (ailra))
j=1
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Since I'(S) C C(S" + S)’, we have

ri—1 ri—1
H P(S)iai) = 11 "+ 8N a
j=1
and by definition of C(S" 4 S)! ai(re)
ri—1
L1 C(8"+ S0ty = €S+ St
7j=1

where m = max(h(j)) + 1 then by p/
j

CUS" + ) gty — (D4S)) ™ (ai(r2))

Morphism of I'—-endorepresentations
Next we construct an I'-endorepresentation & of 1,5’ along the inclusion 2 : C' — I'(S). Let
1€ I'"and t : d; — C, we have to construct an arrow

T‘i—l

Eet 1@ aie)) = (T(S)) ™ (aie(ra))

i=1

By distributivity of Set we have

ri—1 ri—1
|| DIRACIPTEND DI | RECIATT
j=1 neN h:Nmi—1 j=1

So for all h:r; — 1 — N, we construct an arrow

ri—1

H F ]) ai,t(j) - (F<S>/)_1(ai,t(ri))

Since I'(S)’ € C(S" + S)’, we have

ri—1 ri—1
Hr o) = IO+ 96y e
7=1
and by definition of C(S" + S)! @it (rs)
ri—1
H ClS"+ niianet) = O+ S a )
j=1

where m = max(h(j)) + 1, then by p’
j

CS" + 8)arry = (T(S)) ™ (i (r2)
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Next we have to check that

Clai(rq)]

H I(9)[e(ait(5)] ——T(S)[s(aiz(rq))]

commutes for all ¢ : d; — C and i € I’ or equivalently that

T

T (C) (s (4)
7j=1

I1 (F(S>')’1(az’,t(j)) “Haig(r))

J=1

p’Lt

l(az,t

commutes. It does by construction of £, since + comes from the inclusion I'(S)y — I'(S)".

Construction ¢ : I'(S) — D

Let (A,g,¢) be another object of Rep(S), that is, A = (D,¢.5,{') € €, g: T - A a
morphism of £ and (D, g.5, () an I-endorepresentation of ¢,.S in A. We construct a morphism
o (D(S),1,€) = (A, 9,0) of Rep(S).

First we construct the underlying arrow ¢ : I'(S) — D of TEns or equivalently the arrow
¢ : ['(S) = D' by recursion. We construct an arrow ¢, _: I(S);, = — (D')"!(g(r)) for all
ne€Nand1e (. a

For n = 0 the arrow ¢, : (C") (1) = (D')"'(g()) is given by the fibre in 7 of g’ : ¢ — D'

r;—1
For n = 1 an element M € C(S' + S)}, = > I1 (C")Haiy(4)) is in T(S)] . if the

(i,t)e(I'+1)7 j=1
corresponding (i,t) € (I’ + I), is actually ¢ € I;. Then we take the following composite

\L[Ci]ieh—

(D) Hg(r))

e

Suppose given ¢y, . : T(S); . — (D)~ (g(T)) for all ¢ <n and all 7 € C. We construct ¢}, 4 ,.

ri—1

An element M = (Ny,..., Ny, 1) of C(S'+S)] = > > H C(S'+5);, h(i)sase(5)
() EI'+1)r h€Or, 1.5 j=1

q,T



8.5. Mixed signature 151

is in F<S>;1+1,T if all N; € F<S>’h
composite

(aie(): et (i,t) € I and h € O,,_1, and we take the

Let i € I- and h € ©,,_1, and we take the composite

ri—1

!
1L TS 0

Then we set ¢ = [¢], ,Jnen. By undoing ’ of ¢/ we obtain ¢ : T'(S)~*(1) — D(g(7)).

Note that by definition of ¢’ the following diagram commutes

¢ : I'(S) — D as a morphism of /-endorepresentations

We have to check that ¢ is a morphism of /—endorepresentations (I'(S),.S5,&) — (D, g5, (),
that is, that the following square commutes



152 Chapter 8. Typed syntax without variable binding

for all ¢ € I or equivalently

[T (D) (g(ai(h)) — (D)~ Hg(ai(ri)))
i=1 = i =

for alli € I and h:r; — 1 — N. When we unfold the above constructed arrow ¢ and ¢’ on the
right—hand side we obtain the following diagram

ri—1 ri—1

NV INCH
jl;ll < >h(])vai(ﬂ) ielz,:(m he@%:,l,m jl;Il < >h(]):“z(])
Hw'i iZZHs@’
r;—1 ri—1 )
[T (D)~ Hg(ai(5)) > ¥ ) Hgla)
7=1 - ielai(m he@?‘ifl,m 7j=1 -

\ i [Ci]h,i
(D)~ H(g(ai(r:)))

It commutes since the horizontal arrow on the top is an inclusion.

¢ :T(S) = D as a morphism of I'-endorepresentations

We have to check that ¢ is a morphism of I’-endorepresentations (T'(S),.5", &) — (D, g5, ")
such that

(C. S, p') (8.3)
(T(S), 25", €) % (D, 95", (')

commutes. First we check the commutativity of

ri—1 /

[T (T(S)") (@i (1)) == (T(S)") " (ase(r:))

for all (i,t) € I' or equivalently

ri—1 ’

[T T() ) (T(8)) ™ (@i(r))
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for all (i,t) € I’ and h : r; — 1 — N. When we unfold the above constructed arrow & and ¢’ on
the right—hand side we obtain the following diagram

ri—1 ri—1

TS0 = e, L TG00

€la; (r) €O —1,m J=1

H¢i lzznw
= N— . it n—1 a: +(7
jl;[l (D)~ g(ai(5))) id%(mhe@%_l,m ]1;[1 (D")~Yg(ais(5)))

\ l[cz{,t}h,(@t)
it

(D)~ H(g(ait(ri)))

It commutes since the horizontal arrow on the top is an inclusion.
Next we check the commutativity of (8.3) in £. By definition of # being the inclusion
C’" — T'(S), the following diagram commutes

P /
rizl Pit

I (€ (aia(5))

Uniqueness of ¢ : I'(S) - D
Let 1 be another morphism (I'(S),7,£) — (A, g,¢) of Rep(S). We show that ¢ = ¢. We
show that the underlying arrows on TEns are equal. We write 1)/, for the composite I'(S)) <

r'(S) Y, D' for all n € N and we write Yy, , for its fibre in 7 € C.
We show by recursion on n that ¢}, . = )y, .. For n = 0, we have

Pnr () = gr (@) = ¢y, - (x)

since both ¢’ and ¢’ make the following triangle commute

Cl
7N
!/ D/

Suppose that ¢, . = 1y, . is true for all m < n. We show that ¢;, ;- =1, . Let i € I; and

I'(S)
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h €O, _1,and M = (Ny,...,Np—1) € T(S);, .1, We compute

¢;I+I,T(M) = /IJZ);L-i-l,T(Nl? e 7Nr¢—1)
= G Wh1)yas(1) N1+ s Yhgri—1) s (ri—1) (Nri—1))
= Gi(Ph1)as(1) N1 -+ Phiri—1) s (ri—1) (NVri—1))
= @1, (&GN, Npym1)
= 90;1+1,T(M)

since
ri—1

!/
L TShaity =TS

J
Ilw’l W%+1;
T (0) (glasi) g () (a()

commutes by definition of ¢'. Let (i,t) € I. and h € ©,,_1, and M = (Ny,...,N,_1) €
['(S)}41.,- We compute
w;m-l,r(M) = w’;L-Fl,T(Nl? s 7Nn-—1)
= G(Whwyane )y - Uhr—1),a0 0 (ri—1) (Nri=1))
= Gi(Ph(1)as.0(1) N1+ s Phiri—1)a5. rim1) Nri—1))
= Oni17&e(N1, .o Ny 1))

= go;v,—i—l,’r(M)
since
ri—1
TP SGya000) — TEmsas
H@D’l g1t
ri—1
[T (D) (g(aie(5)) — (D) "Hg(7))
7j=1 - Q¢ -
commutes by definition of ¢’. |

Proposition 8.5.180 Using notations of the proof of proposition 8.5.179, the assignation
([, 8) = (I(S5),2.5,€)
induces a functor Signg(I) — EndRepg(1).

Proof. Let g : (I',S) — (A,T) be a morphism of signatures. By definition there is an
underlying arrow g : I' = A of £ and T' = ¢,S. By definition of the underlying arrow ¢ : I' =
(C,8,p) = A= (D,T,(') of £, it consists of an underlying arrow g : C' — D of TEns and
T = g.5".

Construction ¢(S) : I'(S) — A(g.5)
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First we construct an arrow g(S) : I'(S) — A(g«S) or equivalently an arrow g(S)’" : I'(S)" —
A(g.S)" by recursion. For n = 0 the arrow g(S) is given by ¢’ : C" — D’. Suppose given an
arrow g(S)y, » : T'(S);,, — A(g5)] o(7) for all m < n and 7 € C, we construct g(S);, ;. By

r;—1
definition I'(S)p41,- = >, > I T{S)n(),ai(j)- We take the following composite
i€(I'+1)r h€Oy,_1,n j=1

ri—1

> > H LS n(5),ai ()

i€(I'+1)7 h€EOr, 1 n j=

, > I Alg«S)n() (i)
ZG(II+I)g(T) hec"')ri—l,n le -

Then we set g(S), = [9(S), ;Inen and by undoing ’ of g(S)" we obtain g(S) : I'(S) — A(g..5).

g(S) : T(S) — A(g+S) as a morphism of &

We check that g(S) is an arrow in &, that is, that the following diagram commutes

T 0(8) 010 5))) = T8 asa (1)

commutes for all (i,¢) € I’ or equivalently

ri—1

TS50, = (TS (w0a(r0)

ri—1

[T M) gtan i — (A45)) " (glaia(ra)

=1

commutes for all b : r; —1 — N and (i,t) € I'. It does by definition of the horizontal arrows
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(that become the vertical ones in the following)

ri—1 ri—1

L TSh6) 000 L 29503 gtas )
" / / it / /
LS Shiranni L D5+ 945013 s )

|

(S’ + 8)! D{gS" + 948 ) g arare)

(A{g:5)) " Hg(ais(ri))

where m = max h(j).
j

g(S) : T'(S) — A(g.S) as a morphism of representations
We check that g(S) is an arrow in EndRepg (1), that is, that the following diagram commutes

j=1
ri—1 \L
I1 Alg-S)lglai(7)] — A(S)[g(ai(ri))]
j= =

commutes for all ¢ € I or equivalently

ri—1

TSNy~ (0N Halr)

ri—1

I AdgeS)h ) gtastay — (A08)) 7 (glai(ra)))

commutes for all h: r; —1 — N and 7 € I. It does by definition of the horizontal arrows (that
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become the vertical ones in the following)

ri—1 ri—1
jgl FS ) a0 j£l1 A9+50h(5) glaut))
e / ’ =3 ! /
jgl O+ St }31 (945" + 94501 g(au())
CS" + ) asro) D(g..S" + g*S);n,g(ai(”))

|

(A(g.5)) " (g(ai(ri))

(T(S) " ai(r:))

where m = max h(j). O
j

Corollary 8.5.181 The forgetful functor U : EndRepg(I) — Signg(I) has a left adjoint, which
is given by the functor F : Signg(I) — EndRepg(I) of proposition 8.5.180.

Proof. We define unit and counit and show then the triangle identities. The the unit
n:1d — UF at the component (I',S) € Signg (1) is (I, S) — (I'(S), 1.5), which is a morphism
of I-signatures induced by ¢ : I' <= I'(S) of &.

The counit ¢ is given by initiality of (I'(S), 2.5, ) in the category of representations of S, its
component (I'(S),2.5,&) — (I, S,{') at (I, S, ') € EndRepg (1) is given by the unique morphism
of representations by 8.5.179.

We check the triangle identities. First we check the commutativity of

U, s,¢) % UFU(, S, ¢')

e |

u(r,s,d’)

it becomes

e

(I',5)

which commutes since 7 is induced by the inclusion 2 : I' < I'(S). Next we check the commuta-
tivity of

F(,S) L FUF(T, )

T

(', S)
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it becomes
(r,s)49

(F<S>7l*57€)H’((IZ<S>)(Z*S>7J*(Z*S),C) (8.4)

EFS,'L*S,
XA l(m €)

(T(5),25,¢)

where we write y for the morphism induced by the inclusion I'(S) < (I'(S))(2.S). The vertical
arrow is by definition the unique morphism ((I'(S)) (2.5}, 7x(25), () = (T'(S), 2.5, &) in Rep(2.5).

But an object of Rep(2.5) is as well an object of Rep(.S) and a morphism in Rep(2,.59) is as well
a morphism of Rep(S) for the following reason. Let f : I'(S) — A and ¢ an endorepresentation
of fi(1.5). If we write fp for the composite

r 5185 A

then (fo, (f0)«S, () is an object of Rep(S). Let ¢ be a morphism (A, fi(2.5),¢) — (A, fi(1.5),{)
of Rep(2.5). It is a morphism (A, (f0)+S5,¢) — (A, (f})«S,¢") of Rep(S) as well since the fol-
lowing diagram commutes

Tr

N
N

7

/
fo // : 13
/ I'(S) \
Ve Xg,

14
A

)
So the triangle (8.4) commutes by initiality of (I'(S),.S,&) in Rep(S). O

8.6 Mixed signature of higher degree

In this section we define a notion of arity and signature of higher degree on an object of a
category of representations of another signature.

For this section too suppose given a weighted set I’. We write short £ for the category of
endorepresentations EndRep(I’) and U : £ — TEns.

Definition 8.6.182 (arity) LetI' € £ and d € N. An arity on I' of degree d and of length r is
an arrow a : v — I'(d) in Set. Here we refer to d as the signature consisting of d equal arities

1— 1.
For the remaining part of this section we fix a weighted set I of arbitrary weights d.

Definition 8.6.183 (I—signature) Let I' € £. An I-signature S on I is a collection (S;)ier
of arities on I' of degrees d;.

Definition 8.6.184 (direct image) Let I'A € £, f : ' — A and S an I-signature on I.
The direct image of S along f is an [—-signature on A whose arities are the following ones

where the second arrow is given by functoriality as explained in proposition 8.5.180. We write
f+S for this signature on A.
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Definition 8.6.185 (category of [—signatures) Let I')A € £. A morphism of I-signatures
from an I-signature S on I to an I-signature T on A is an arrow f : I' — A of € such that
T = f.S. I-Signatures and morphisms of I-signatures form a category, Signg(I).

Notation 8.6.186 LetI' € £ andt:d — L. The arrow t is a d—endorepresentation in I' of the
signature S = d on I' consisting of d equal arities 1 — L.
So together with the identity arrow of d' ~endorepresentations I' — T, the pair (idp,t) forms

a representation of d on I'. By initiality of T'(d) in Rep(d), there exists a unique morphism
t:T(d) —T.

Definition 8.6.187 (category of [—endorepresentations) An object of the category of -
endorepresentations is an I—signature S on I together with a map

Ti—l

pict [T D184 = T[Sua(ro)
j=1

forallt:d; = L and all i € I where we have written

Si,t LT i) F<dl> i);

the second arrow is the the unique arrow of notation 8.6.186.
A morphism from (I', S, p) to (A,T,€) is a morphism of I-signatures f : (I, S) — (A,T)
such that
[T T[S:(7)] == T[S;.e(ri)
j=1

I1 f[Sz‘,t(j)]l FSi(rs)]

ri—l
AT fot(5)] —— AT} for (r)]
j=1 - fi,iot
commutes for allt :d; — T and all i € I.
I-Endorepresentations and morphisms of I-endorepresentations form a category written
EndRepg (). It comes equipped with a forgetful functor EndRepg(I) — Signg(1).

Definition 8.6.188 (representation) LetI' € £ and S an I -signature onI'. A representation
of S in an object A of £ is a morphism f : T — A of £ together with an I—endorepresentation
of f+S in A.

Definition 8.6.189 (category of representations) Let I' € £ and S an [-signature on I'.
We build Rep(S) the category of representations of S. An object of Rep(S) is a triple (A, f,€)
where A is an object of £, f : T — A a morphism of £ and £ an I-endorepresentation of f.S
in A.

A morphism of representations from a representation (A, f,€) to a representation (A, f, &)
is a morphism ¢ : A — A’ of € such that

N

©

A

A/

commutes and such that ¢ is a morphism of endorepresentations (A, fS,&) — (A, f1.5,¢&"). We
write Rep(S) for this category.
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Proposition 8.6.190 Let I' € £ and S an [-signature on I'. The category of representations
Rep(S) has an initial object. We write T'(S) for the underlying object of TEns of the initial
representation.

Proof. We write C = U(T"), S’ the I'-signature of I" and p’ for its I’-endorepresentation.

Construction of the initial object I'(S)

We concatenate the signatures S’ and S by setting J = I'+ T and n = [d',d] : J = N
and we write S’ + S for this J-signature of degree n. By proposition 8.4.169 the category of
representations of S’ +.5 has an initial object, its underlying object of TEns is written C(S’+S).

In the construction of C(S’+ S) we use the related object C'(S” + S)’ that has an additional
type L and C(S’ + S) as its fibre. The object C(S’ + S)’ in the fibre 7 € C is constructed as

the coproduct ) C(S"+ 5)], ,
neN
We define a subset TO,, - of each C'(S"+.5);, ;. Intuitively the set of trees TO stands for trees

having a subtree constructed by S’. We do not want these trees in T'(.S) since there is already
an element of C’ that corresponds to such a subtree.

For n = 0 we set TOp, = 0. For n = 1, we have C(S" + S)], = > > H C(S" +
(i,t)eJr 9€O0,r;—1 J=

S>’g G)sas.e(G) where g € ©g,,—1 is the constant function 0 and we chose the constructions of

indexes (i,t) € I. to be in TO; ;. More precisely if M € C(S" + S)] ., there exists (i,t) € J;

such that M € H C(S" + 5)( 4. () and we set M € TOy if (i,1) € I..
]:1 s,
Suppose given TO,,» C C(S" + S)pm - for all m < n and all 7 € C, we construct TO,41 -

Let M € C(S' 4+ S)pn+1,r, by definition there exists (i,t) € Jr, t:n; —C, g€ ©,,—1,n, such that
ri—1
M € H (8" + S) o) aie(i) and we write M = (Ny,...,N,,_1). We take M € TO,,41 , if there
7=1
exists a j € {1,...,7; — 1} such that N; € TOy(;y.q,,(j)-
Then we take L(S),, = C(S" + S)nT \ TOyp; for all 7 and the I'(S); = > I'(S);,,. By

neN
undoing " of T'(S)’ we obtain I'(S).

Construction p: C(S"+ S) — T'(S)’

First we construct a collection of arrows s, : TO,, — (I'(S))71(7) induced by the d'—
endorepresentation p’. We construct s, - for all n € N and 7 € C by recursion.

For n = 0 we have TO,,» = 0, so the arrow s, is given byTnitiality of 0 € Set. Forn=1

r;—1
let M € TO; ;, by definition M € H C(S"+ 5)§ 4, L(j) S0 there exists a (i,t) € I' such
(i,0)el’ j=1
ri—1
that M € H C"Nait(5))- By pj, we have
7=1
Ti—l
11 ¢ aiu5)) = €~ (r) = T(Sh»
j=1

and then by inclusion

D(8)o- — ((S))~H(r)

Suppose given sqr : TOq, — (I'(S))"!(r) for all ¢ < n and 7 € C then we construct
Sp+1,7- Let M € TOyp41 ;- then by definition there exists an (i,t) € Jr and h € ©,,_1, such that
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ri—1

M = (Nl,... er—l) S H C(S/—i-S) where N S TOh( i),ai.4(j) OF N S F<S>

h(5),ai,t(5)
forall j =1,.. —1. Applymg the recursion hypotheses to N; € TOy(

Sh()aie(7)(N7) € (T(S)) " ais(5))

h(j),ai,t(3)

)i () We obtain

Then we set N N
3n+1,T(M) = (Nl, ceey N’V’i—l)
where Nj = N if N; € D{S), ) ) and Nj = s).0,,() (V) i Nj € TOwj) 00,5

So we take s; = [sp r]|nen. The arrow P, 18 given by

[incl,sn,r]

C<S,+S>;l,7' = F<S>;L,T+TOH,T F<S>,

T

I-Endorepresentation of S
We construct an I-endorepresentation (I'(S),.5,§) of S on I'(S). Let (i,t) € I, we have to

construct an arrow
ri—1

HF waie (7)) = T(S) e(aie(r:))]

or equivalently
ri—1

e [T @ES)) (aie)) = (D(S)) (aie(rs))
j=1

By distributivity of Set we have

ri—1 ri—1

1L 2 0Shan® 22 TG

Jj=1 neN h:Nmi—l j=1
So for all h:r; — 1 — N, we construct an arrow

ri—1

H F ]) ait(J) - (F<S>/)_1(ai,t(ri))

Since T'(S) C C(S" + S)’, we have

ri—1 ri—1
HF hiae) = 11 O+ Dhiiyan
7=1
and by definition of C(5" +5); (o)
ri—1
1 C48" + Shiiyan) = C" + i
7=1

where m = max(h(j)) + 1 then by p/
j

CS" + 8)arry = (T(8)) ™ (aia(r2)
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Morphism of I’-endorepresentations
Next we construct an I’—endorepresentation of 7, S’. First we construct an I’-endorepresentation
(T(S),2:57,&") of 2.5 on T'(S). Let (i,t) € I', we have to construct an arrow

r;i—1

& [T@ES)Y) ain)) = (T(S)) aie(ri))

j=1
By distributivity of Set we have

ri—1 ri—1

|| DIRCHPRESD DR | RACATPE

j=1 neN h:N7i—1 j=1
So for all h:r; — 1 — N, we construct an arrow

ri—1

HP hrase) = TS (aia(ri))

Since I'(S)" C C(S" + S)’, we have

ri—1 ri—1
Hp at])—>HCS’+S>h(J)at()
7=1
and by definition of C(S" + S)/ it (ri)
ri—1
L1 C(8"+ iy asetsy = €U+ Shimanatrn
J=1

where m = max(h(j)) + 1, then by p/
j
CS" + S)masi(ry = (T(S)) ™ (aie(ri))

Next we have to check that

Cla;i(ri)]

H I(9)[e(aii(5)] ——T(S)[(aiz(r:))]

commutes for all (i,t) € I’ or equivalently that

T

1 () (i)




8.6. Mixed signature of higher degree 163

commutes. It does by construction of &/, since 2 comes from the inclusion I'(S){ — T'(S)’.

Construction ¢ : I'(S) — D

Let (A, g,¢) be another object of Rep(S), that is, A = (D,¢.5,¢') € €&, g : T = A a
morphism of £ and (D, ¢..5, () a O—endorepresentation of g,S in A. We construct a morphism

¢ (I(9),2,8) = (A, g,¢) of Rep(9).

First we construct the underlying arrow ¢ : I'(S) — D of TEns or equivalently the arrow
¢ : I(S) — D' by recursion. We construct an arrow ¢, _ : I(S);, = — (D')"!(g(r)) for all
ne€Nand1e (.

For n = 0 the arrow ¢, : (C") (1) — (D’)_l(g(T)) is given by the fibrein 7 of ¢ : C' — D'.
For n = 1 an element M € C(S' + S)], = > ﬁ (C") " Hair(g)) is in T(S)] , if the
(i) E(T'+1)~ j=1
corresponding (i,t) € (I’ + I), is actually (i,¢) € I;. Then we take the following composite

ri—1

> TL(C) Hain(G)

(i,t)e(l)r j=1

\LZHQI

ri—1

(D)~ (g(aii(4)))
ie(I)r j=1 -
\L[Ci,t](i,t)elq—

(D)~} (g(r)

e

Suppose given ¢q ;- T{S)g , — (D")~(g()) for all ¢ < n and all 7 € C. We construct Pt
. r;i—1
Anelement M = (Ni,..o, Npya) of C(S'48) 0o = 3 50 T O +5),6)0,,0)
(L)1) he®r, 1, j=1 @,
is in T(S);,, ;. if all N; € T'(S)), Let (i,t) € I. and h € ©,,_1, and we take the

composite

(9),ai,¢(5)"
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Let (i,t) € I, and h € ©,,_1 , and we take the composite

Then we set ¢, = [¢], ,Jnen. By undoing ’ of ¢/ we obtain ¢, : T'(S)~*(1) = D(g(7)).
Note that by definition of ¢’ the following diagram commutes a

since ¢ comes from the inclusion C’ < T'(S)".
¢ : I'(S) = D as a morphism of /-endorepresentations

We have to check that ¢ is a morphism of I—endorepresentations (I'(S), 2.5, &) — (D, g5, (),
that is, that the following square commutes

ri—1 Ny it

[T (T(S)") " (aia(5)) = (T(S)") " (ais(ri))

[T (D) Hglaie()) (D) Hg(ais(r:)))

ri—1 -,
jl;ll TS hiaieti) (8 (aselr)
H%(”l ”
T () glae ) = () (glowa(r)
j= = it

for all (i,t) € I and h: 7, —1 — N. When we unfold the above constructed arrow £ and ¢’ on
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the right—hand side we obtain the following diagram

ri—1 ri—1

Jl;ll P00 > TS0

ie[%‘,t(n‘) h€®Oyr,—1,m j=1

H@'l lZZHW

[T (D)~ (g(ais(3))) > Y o) e

ie[%‘,t(%‘) h€Or,—1,m j=1

l[ci,t]h,(i,t)

(D) (glaid(ri)))

Git

It commutes since the horizontal arrow on the top is an inclusion.

¢ : T'(S) — D as a morphism of I'-endorepresentations

We have to check that ¢ is a morphism of I’-endorepresentations (I'(S),.5", &) — (D, g5, ")
such that

(C, 8" p) (8.5)

(0(S),2.5",€)

commutes. First we check the commutativity of

ri—1 /

[T (T(5)) " (i) —— (T(S)) " (ass(r3))

ri—1 /'t
jl;ll DESVhyane) — (L(S)) " aia(rs)
H%)l .
ril:_lll(D/) l(g(az,t(J)))ﬁ(D/) l(g(az‘,t(n)))

for all (i,t) € I' and h : r; — 1 — N. When we unfold the above constructed arrow £ and ¢’ on
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the right—hand side we obtain the following diagram

7’1'—1 Ti_l

-H1 DS ane) — .2 > I TS hg)a0)
e

ielaz‘,z(m) h€Or, —1,m j=1

Hw'i J{ZZH%?’
T e S 2 0 el
J=1 - i€la, 4(r;) hEOr—1,m J=1 o

\ J([Cl{,t}h,(i,t)
it

(D) Hglair(r:)))

It commutes since the horizontal arrow on the top is an inclusion.
Next we check the commutativity of (8.5) in £. By definition of ¢ being the inclusion
C" — T'(S)’, the following diagram commutes

ri—1

IT (€ (asel)

Uniqueness of ¢ : I'(S) — D
Let ¢ be another morphism (I'(S),,£) — (A, g,¢) of Rep(S). We show that ¥ = ¢. We
show that the underlying arrows on TEns are equal. We write 1)/, for the composite I'(S)! <

r(s) Y D' for all n € N and we write Yy, , for its fibre in 7 € C.
We show by recursion on n that ¢}, . = 1y, .. For n = 0, we have

Phr () = gr(z) = ¢y, -(2)

since both ¢’ and ¢’ make the following triangle commute

Suppose that ¢y, - = 9y, ; is true for all m < n. We show that ¢, . =y ;.. Let (i,t) € I,
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and h € ©p,—1n and M = (Ny,...,N;,—1) € I'(S)], 1 ;. We compute

w;H»l,T(M) = 1/};1+1,T(N17 s

) Nri—l)
= Gt (Ph(1)a5.0(1) N1 -+ s Chri—1) a4 (ri—1) (Nri—1))
!

- Ci7t((p;1(1):az‘,t Ni), .. ’('0;1(7’1'—1)7%,%”—1)(N”_l))
= 80;14—177(57;,15(]\[17 cee 7N7“i—1))
= SO;Z-FI,T(M)
since
T'i—l
[T TS 00— TS
j:
H@/l 99;1+1,7—

ri—1

I1 (D’)_l(g(ai,t(j))gf> (D) H(g(1))
Jj=1 - & -

commutes by definition of ¢'. Let (i,t) € I. and h € ©,,_1, and M = (Ny,..

['(S)41,-- We compute

Q%-s—l,r(M) = w’;L-Fl,T(Nl’ s 7Nn-—1)
= G(Uh1)a0.:() N1 -+ Vhiri—1) 051 (rs—1) NVri=1))
= Gi(Ph(1)as.0(1) D15 -+ - Phri—1)a5. ri—1) Nri—1))
= @pi1,0(Eit (N1, - Ny 1))

= @%H,T(M)
since
21311 TS ity =Tt
Htp’l Ot
1T (0) " glowali) — (D) (g

commutes by definition of ¢’.

167

. Nri—l) S

Proposition 8.6.191 Using notations of the proof of proposition 8.6.190, the assignation

(F,S) = (F<S>,Z*S,f)

induces a functor Signg(I) — EndRepg (7).

Proof. Let g : (I',S) — (A,T) be a morphism of signatures. By definition there is an
underlying arrow g : I' = A of £ and T' = ¢,S. By definition of the underlying arrow ¢ : I' =
(C,8, ) = A =(D,T',(') of £, it consists of an underlying arrow g : C' — D of TEns and

T = g.5".

Construction of g(S) : I'(S) — A(g.5)
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First we construct an arrow g(S) : I'(S) — A(g«S) or equivalently an arrow g(S)’" : I'(S)" —
A(g.S)" by recursion. For n = 0 the arrow g(S) is given by ¢’ : C" — D’. Suppose given an
arrow g(S)y, » : I'(S), . — A(g*S);ng(T) for all m < n and 7 € C, we construct g(S);, ;. By

m,T

Tifl

definition I'(S)p41,» = > > I T{S)n(),aii)- We take the following composite
(it)E(I'+1)7 hEOy, 1 n j=1 ’

ri—1

> I TGy ait)

(i,t)e(I'+1)7 h€Or; —1,n j=1

|

ri—1

: [T A(S)n(s) glair ()
(z,t)E(I/-i-I)g(T) hee’ri—l,n 7=1 <

Then we set g(S), = [9(S)}, ;Inen and by undoing ’ of g(S)" we obtain g(S) : I'(S) — A(g..S).

g(S) : T(S) — A(g+S) as a morphism of &

We check that ¢(S) is an arrow in &, that is, that the following diagram commutes

commutes for all (i,¢) € I’ or equivalently

ri—1

Jl;Il DSy o) — (T(S)) ™ Hai(ra))

ri—1

[T M) gtan i — (A45)) " (glaia(ra)

=1

commutes for all b : r; —1 — N and (i,t) € I'. It does by definition of the horizontal arrows
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(that become the vertical ones in the following)

ri—1 ri—l
ng (S Mhi).a00) jl;ll BS0h5) glove )

7‘1—1 Ti—l
! /
jl:[1 C(S" + 5V ()i () 3131 Dig.5"+ g*S>h(j),g(ai,t(j))
(" + >’/rn7ai,t(7"i) Dig.S"+ g*an’g(ai’t(”))

(A(g:5)) " (glaie(r:)))

where m = max h(j).
J

g(S) : T(S) — A(g.«S) as a morphism of representations
We check that g(S) is an arrow in EndRepg(]), that is, that the following diagram commutes

commutes for all (7,¢) € I or equivalently

ri—1

}}1 LSVt aney — (C(S)) " aie(rs))

[T A{gSYi() gtastay — (B (glain(r2)))

commutes for all A : 7, — 1 — N and (4,t) € I. It does by definition of the horizontal arrows



170 Chapter 8. Typed syntax without variable binding

(that become the vertical ones in the following)

’I"i—l 7"1'—1
jgl FS a0 El AL+ S) ) glawi ()
" / / = / /
jgl OS5t }31 (948" + 9+5)0h(5).g(ase ()
C(S" + S);n,%(m D(g..S" + g*S>;nag(ai,t(7"i))

|

(T(S)~H(aie(ri)) (A{g8) " (glais(ri))

where m = max h(j). O
j

Corollary 8.6.192 The forgetful functor U : EndRepg(I) — Signg(I) has a left adjoint, which
is given by the functor F : Signg(I) — EndRepg(I) of proposition 8.6.191.

Proof. We define unit and counit and show then the triangle identities. The the unit
n:1d — UF at the component (I',S) € Signg (1) is (I, S) — (I'(S), 1.5), which is a morphism
of I-signatures induced by ¢ : I' <= I'(S) of &.

The counit ¢ is given by initiality of (I'(S), 2.5, ) in the category of representations of S, its
component (I'(S),2.5,&) — (I, S,{') at (I, S, ') € EndRepg (1) is given by the unique morphism
of representations by 8.6.190.

We check the triangle identities. First we check the commutativity of

U, s,¢) % UFU(, S, ¢')

e |

u(r,s,d’)

it becomes

e

(I',5)

which commutes since 7 is induced by the inclusion 2 : I' < I'(S). Next we check the commuta-
tivity of

F(,S) L FUF(T, )

T

(', S)
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it becomes
(r,s)49

(F<S>7l*57€)H’((IZ<S>)(Z*S>7J*(Z*S),C) (8.6)

EFS,'L*S,
XA l(m €)

([(S),2:5,€)
where we write 7 for the morphism induced by the inclusion I'(S) < (I'(S))(2+.S). The vertical
arrow is by definition the unique morphism ((I'(S)) (245}, 7+(245), ¢) — (I'(S), 2.5, €) in Rep(2.5).
But an object of Rep(z.5) is as well an object of Rep(.S) and a morphism in Rep(,.59) is as well

a morphism of Rep(S) for the following reason. Let f : I'(S) — A and ¢ an endorepresentation
of fi(2.5). If we write fp for the composite

r5r) L a

then (fo, (f0)«S, ¢) is an object of Rep(S). Let ¢ be a morphism (A, f.(2.5),¢) = (A, f1(2..5), ()
of Rep(2.5). It is a morphism (A, (fo)«5,¢) — (A, (f})«S,¢") of Rep(S) as well since the fol-

lowing diagram commutes

T
/i\\
N
fo// NS
(s

[N

So the triangle (8.6) commutes by initiality of (I'(S), .S, &) in Rep(S). O

Example 8.6.193 We describe the example 8.1.146 with our introduced notions. We write 0
for the initial object 0 — 0 of TEns.

We set Iy = (1,dy) and dy : 1+ 0. The first layer of I -signature S* consists of one 0—arity
nat: 1 = 0,1— L

Then we set Cy := 0(S%) which is 0 — {nat}. Together with the obvious representation of S in
C1, it forms an object T'y of the category of representations of S*.
We set Iy = (3,d2) and dz2 : 1,2,3 +— 0. The next layer of Ia—signature S? on Ty consists of
the following arities
zero: 1 — I'1, 1+ nat

succ : 2 —I'1,1,2 + nat
list : 3 = I';,1+—mnat,2,3— L

We set Oy := I'1(S?) which is the following object of TEns

{zero, succ” (zero) |k € N}

|

{nat,
list(succ®t (zero), nat),
list(succ’ (zero), list (succ’ (zero), nat)),
|j GN,ij EN()}



172 Chapter 8. Typed syntax without variable binding

where only the fibre of nat is not empty. Together with the obvious representation it forms an
object Ty of the category of representations of S?.

We set I3 = (2,d3) and dz : 1,2 +— 1. The third layer is the following I3-signature S>
consisting of the following arities

nil : 1 — T'y(1), 1 — list(zero, 1)

consy, : 1 — [g(1), 1+ list(succ®(zero), 1),2 — 1,3 = list(succ® (zero), 1)

We set Co := I'5(S3). We do not describe it here explicitly. It can be provided obviously with
representations of S and it forms the initial object in the category of representations of S>.



Chapter 9

Typed Lambda Calculus

The aim of this chapter is to characterise the typed Lambda Calculus as the initial object of a
certain category. We do not develop a whole theory of signatures and their representations for
describing typed syntax with variable binding more generally, we consider only the particular
signature of the Lambda Calculus.

Example 9.0.194 We write 0 for the initial object 0 — 0 of TEns. Consider the 0—signature
S consisting of the arity =: 3 — 0, 1,2,3 — L. The category of representations has objects
(I',=) where ' € TEns and =: T x T — I'. We write TEns™ for this category. We write U for
the forgetful functor TEns™ — TEns.

For this chapter we consider monads R on TEns~ and derived monads of R: monads on the
comma categories (0 —n) | U.

Notation 9.0.195 We write ,TEns™ for the comma category (0 — n) | U.

9.1 Monads on comma categories

For our definition of arity and signature, we recall first the following fact.

Proposition 9.1.196 Let C, D be two categories, F : C — D, D an object of D and (R,n, u)
be a monad on C. It induces a monad RP on the comma category D | F.

Proof. We set
rRP.pLre = DL rc i Fre

We check that this definition is correct, that is, that this assignment on objects defines indeed
a monad RP on D | F. We check first the functoriality. Let
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be an arrow of D | F. Its image under R” is given by

D
N
FCy n FCs
F nCIl iF nCy
F RCl F RCQ
We set
nP = Fno— and pP = Fpo—
Let AL C be an object of A | C. The diagram
D
\
¥ FC
lF nc
C Fro FRC
commutes and the diagram
D
/ \
FC . FC
Fne l iF nc
FRC u FRC
F
| o
FRRC
commutes as well. O

Remark that the above construction is functorial. Let p : R — P be a morphism of monads
on C. It induces a morphism of monads p” : RP? — PP. We define its component at f : D —
FCeD|Fby

D
/ \
FC d FC
anl J/an
FRC Fp FPC

since p is compatible with the units.



9.2. Modules on derived monads 175

9.2 Modules on derived monads

Similarly to the simply typed case, we use modules on monads to describe syntax. More precisely
we use again derived and fibre modules and a new type of modules, the underlined modules.
Instead of an arbitrary category we define those modules on TEns™ only.

Definition 9.2.197 (derived module) Let R be a monad on ,TEns™, M an R-module and
T a natural transformation 1 — U. We define the derived module of M with respect to T on
objects by

MT: (Dot ty, =) = M([L, 7], t1,...,tn,=)

where we write T as well for the image of 1 at the component (I',t1, ... tn,=).

Definition 9.2.198 (fibre module) Let R be a monad on ,TEns~, M an R-module with
codomain ,TEns™ and o a natural transformation 1 — U o M. We define the fibre module of
M with respect to o on objects by

My (Tity, .. tn, =) = M(Tty, ... t, =) (0)
where we write o as well for the image of 1 at the component (T',t1,... tn,=).

Notation 9.2.199 We write R for the category of monads on TEns~. We write , R for the
category of monads on ,TEns~™. We write ,Modp for the large category of modules on monads
of n R with codomain D. If D = Set we write only ,Mod.

We upgrade the modules into functors from the category of monads R into the large category
of modules ,,Modp.

Notation 9.2.200 We write
¢ ,0:R — ,Mod, TEns>, R — (nR,nR) for the tautological modules

e ,0:R — ,Mod, R~ (,R,nR) for the underlined module where ,R is the composite of
nR and (—)

e M™ : ,Modp — ,Modp, (,R,M) +— (,R,MT) for the derived module of M with respect
tor:1—=>U

e [M],: nMod, tEns~ — nMod, (nR, M) — (,R, M) for the fibre module of M with respect
too:1—->M
9.3 Signature

We define the notion of arity, signature and representation that goes with in the particular case
of the category TEns™.

Definition 9.3.201 (TEns™ -arity) A TEns™ —arity is a pair (M, N) of functors R — ,Mod,
written M — N such that
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o M is either the constant funcor 1 or can be expressed as

such that there exists a permutation o of {1,...,p} and two integers 1 < ¢ < k < p such

that
P k P
T Mo = []20 % T W0l x ] 126"
i=1 =1 i=0+1 i=k+1
where t; is a natural transformation 1 — © for allt =0+ 1,...,p and s; is a natural

transformation 1 — U fori=k+1,... p.

o N is either ,© or [0, withty:1— O.
Definition 9.3.202 (TEns™ -signature) A TEns™ —signature is a collection of TEns™ —arities.

Example 9.3.203 (typed Lambda Calculus) The signature of the typed Lambda Calculus
consists of the following arities on TEns™

abs : 201y — [20]1=2

and

app : [20]1=2 X [20]1 = [20)]2

The module [20'y assigns a monad R on TEns™, the sR-module [aR'y. This module
assigns an object (I', s,t,=) the set oR([, (s)], 5,1, :>])_1(Q(F :>)(t)).
The module [20]1=2 assigns a monad R on TEns™, the oR-module [2R]1=2. This module

assigns an object (I', s,t,=) the set oR(I, 5,1, :>])_1(Q(F :>)(3 =1)).

Definition 9.3.204 (representation in a monad) Let « = M — N a TEns™ -arity. A
representation of « in the monad R on TEns™ is a morphism of ,R-modules M(R) — N(R).

Let S be a TEns™ —signature. A representation of S in the monad R consists of a represen-
tation of each arity of S in the monad R.

Definition 9.3.205 (category of representations) Let S = (a;)ic; be a TEns™ —signature.
We define the category of representations, Rep(S). An object consists of a monad R on TEns™
and a representation of each o; of S. A morphism from (R, (r;)icr) to (@, (q)icr) is a morphism
of monads p: R — Q such that

commutes for all c; = M; — Nj.
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9.4 Typed Lambda Calculus

In this section we prove the following theorem

Theorem 9.4.206 The typed Lambda Calculus is the initial object in the category of represen-
tations Rep(S) of the signature of example 9.3.203.

Proof.
Definition of the initial object TLC

Let (T': X —» T,=: T xT — T) be an object of TEns™. Remark that I' : X — T is
an object of Set /T. By chapter 6 the simply typed Lambda—Calculus is the initial object of a
certain category of representations. We write STLCr for this object. So we define

TLC(T, =) := (STLC(I), =)

Remark that TLC(T") = T.

We check the functoriality of TLC. Let h : (I'=) — (F’ =') be a morphism of TEns™
We define TLC(h) by defining TLC(h) : TLC(T, =) — TLC(I",=") and TLC(h) : TLC(T, =) —
TLC(IY, =) separately.

Since TLC(T',=) =T and TLC(I",=") =I", we set TLC(h) = h.

We define TLC(h) by induction. Remark that TLC(I',=) = STLCp(I') = > [STLCr];. Let
teT

t €T and P € [STLCp);.

e If P = varp(z) where x € T, we set

LC(h)(P) := varr (R(x))

o If P =app,,r(M,N) where M € [STLCy(I')]y=¢ and N € [STLCy(T')]., we set

LC(R)(P) = TLC(h)(appy,; r (M, N)) := appp(u) p(e) r (TLC(R) (M), TLC(R)(N))

o Ift =t; = ty and P = absy, 4, 1(M) where M € [STLCy([L, (¢1)])]t,, we set

TLC(h)(P) = TLC(h)(abStl’t%F(M)) = absﬁ(tl),@(tg),r’(TL (h + 1)(M))
where we write h + 1 : [T, (t1)] — [TV, (h(t1))] for
X412 x4

[F7<t1>]i i[F’&h(tl))}
T T

TLC as a monad on TEns™
First we show that TLC is a monad on TEns™. We set

Var(Tl«Ei) = ( ar%TLCT idr)
and
substErFL’i) = (substSTLCT, idr)
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Let (T',=) be an object of TEns™ where I' : X — T. We have to check the commutativity
of the following diagrams

TLC(var(r -
TLC(T, =) Leberr )

varTLc(r,=)

TLC(TLC(T, =)

\
) Subst(r":>>
idricr,=) V dric(r,=)

TLC(T, =)

TLC(T, =)

and

TLCsubst(r )
TLC(TLC(TLC(T,=))) ——————= TLC(TLC(I',=))
SUbStTLC(F,:ﬂi isubst(pyi)

TLC(TLC(T, =)) TLC(D, =)

subst(r )

We check these diagrams separately in the overlined and underlined parts. In the underlined
parts we have only identity arrows, so the diagrams commute trivially. In the overlined parts
we have the following diagrams

J— STLCT varp) VaFSTLcT( -
STLC(T) > STLCx( STLCT ~— L STLCH(T)
substp
STLCT
and
STLCy sub
STLC, (STLC(STLCH (D)) % STLC,(STLC(I))
SUbStSTLCT(F) l lsubstp
STLCH(STLC () e STLC,(T)

These diagrams commute since STLCy is a monad on Set /7.

TLC as an object of Rep(S)
Next we provide TLC with a representation of the signature of example 9.3.203.

[LTLCY2 = [TLC) =2

and
[2TLC]1;>2 X [QTLC]l — [QTLC]Q

Let (T, s,t,=) be an object of TEns;” where I' : X — T and v € T. Remark that

[oTLC(T, s,t,=)]y = [STLC(T)], (9.1)
So we set
TLC STLC
app(p st=) = aPPoy
and
STLC
abS(F st=) T abss,t,l" ’
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where
appS1tCT : [STLCr]sms X [STLCy]s — [STLCr],

and
abs? "7 1 [STLCH); — [STLCr sy

S

are the STLCpr—module morphisms of application and abstraction of the simply typed Lambda—
Calculus of chapter 6.
We have to check that the following diagrams commute

aAPP,TLC(T, s,t, =)

[QTLCQTLC(F, s, t, :>)]s:>t X [QTLCQTLC(F, s, t, :>)]s _— [QTLCQTLC(F, s, t, :>)]t

——TL —TL Subst &
subst(nc:w Xsubst(pf:>> SUbSt(F»Ci)

[oTLC(T, s,t,=)]s=¢ X [2TLC(T, s,t,=)]s [ TLC((T, s,t,=))]:

apP(r,s,t,=)

and
abs,TLC(r s,t,=)

LTLC S TLC(T, 5,8, =) ——————> [2TLCTLC(T, 5, =) | 5oy

1
——TLC
subst?

—TLC
(T,s,t,=) subst(r,q,¢, =)

[QTLCl(F,S,t, :>)]t [QTLC(Fasvtai)]sét)

abs(l",s,t,:ﬂ
By replacing the definitions and by using formula 9.1 we obtain

aPPs,t,STLC(T)
—_—

[STLC(STLC(I))]s=t x [STLC(STLC ()]s [STLC(STLC(T))]e

substp X substp substp

[STLC(I")]s=¢ x [STLCr(I)]s [STLCr(I)]:

apps,t,l—‘

and
absg ¢ sTLC(M)

[STLC([STLC(T), (s)])ls ———— [STLC(STLCT(T'))Js=
[STLCT(STLCT([F, <S>D)}t substp

SUbSt[F'<5>]\L

[STLCZ ([T, {s)])]:

[STLC(I)]s=¢

absg ;1

These last two diagrams commute since app and abs are STLCp—module morphisms.

Construction of the arrow ¢ : TLC - R
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Let ((R, 7", u), app®, abs®) be another object in the category of representations Rep(Sh)
of the signature of example 9.3.203. In this section we construct a morphism of representations
@ : ((TLC, var,subst), app, abs) — ((R, 7%, u), app®, abs®) and show then its uniqueness.

We construct separately the underlined and overlined parts. Let (I',=) be an object of
TEns~.

First we construct Pray TLC(I, =) — R(T",=). Since TLC(T', =) = ([, =), we set

)

_ R
Pr=) T M=)

Next we construct @ : TLC(I',=) — R(T',=) or equivalently STLC(I') — R(I',=) by
Pr,=)

structural induction. Note that STLCy(I') = > [STLCy(I')]¢, solet ¢t € T and P € [STLCy(I))s.
teT

o If P= va?TLCT (z) where z € T, we set

B o) (P) = B (75T (2)) = 7l ()

o If P = app, " (M,N) with u € T, M € [STLCy(D)]Just and N € [STLCp(I)y, by

definition of TLC we have that
M € [TLC(T, =)]u=v and N € [TLC(T, =)],

By induction hypothesis

and

We also have

P(r,=) (M) = 2P0ty (M) € LR(T, u,t, =), (w="nf _ (v)

Or,=)
and
P, (N) =280 t,%)(N) € RRI, ut,=)]yr, ()
So we set
Br,=)(P) = Br oy (@DDy 17 (M, N) = aDD(F 4 ) 0B (r ) (M), 2811, (V)

(9.2)

o If t =t =ty and P = abs; ;. F (M) with M € [STLC7 ([T, (t1)])]s,, by definition of TLC

we have

M e [TLC(IT, (t)], =)t
where [I', (t1)] : X +1 — T. By induction hypothesis

P, =) (M) € [RAL, 0] =)gr, (1)

and equally

(1)), =) (M) = 2D(1 (11 t1,802,2) (M) € R([T, ()], t1, 2, =)]yr (t2)

([T (t1)],=)
So we set

B(r,=)(P) = P(r oy (absy 1o F (M) i= abs(h ) ) ) (0B(r )ty (M) (9.3)
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We check naturality in (I',=) of the above defined ¢. Let h : (I''=) — (I",=') be a
morphism of TEns™ where IV : Y — U. We check that the following square commutes
TLC(T, =) =L TLC(T, =)
@(F;)l \L‘P(F/,:’)

R(T,=) R, =)

In the underlined part we have the following square

r— % .p

N o

R(T',=) EE(F’, =)

which commutes by naturality of nff. In the overlined part we have the following square

STLCA(I) -2 STLC, (1Y)

%0<r,:»>l J{Wr/,:»/)

R(T, =) = R(I", =)

We check the commutativity in the three possible cases of P € STLCy ().

e If P = varp(x) with « € [['] where t € I, we have

P11y © TLCh(P) = P(rv o (var(pr oy (h()))
= T(rr oy (A(2))
= Rh(7{t ) (x))
h@(r =) (varr(z)))
(Pr,=)(P))

S

o If P = app,;r(M,N) where M € [STLCp(I')]y=¢ and N € [STLCy(T')],, by induction
hypothesis we have moa(lﬂé)(M) = B/, =)0 TLCh(M) and Rho @ _y(N) = P/ s 0
TLCA(N).

B(rv,=) © TLCA(P) = B(pr ) (TLCh(appr 4, (M, N)))
= D1+ = (@PPh(u),h(t),r (TLCA(M ), TLCA(N)))
= aDD (P () a1, =) (B(rv,=n) (TLCA(M), TLCA(N)))
= appf?/,@(u),@(t),;u) (RR(B(r,=)(M)), RMB(r )(N)))
h(appr y 1 (B(r =) (M), B(r ) (N)))
M@ r,=) (appPr ¢ (M, N)))
ho@r = (P)

[l
= ==
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o If P =abs, (M) where M € [STLCy ([T, (u)])]:, by induction hypothesis we have R(h +
1) 0 B (1, uy],=) (M) = B, (a(uy)],=1) © TLC(h +1)(M).

Brv ) © TLCh(P) = B+ . (TLCh(abs, ., r(M)))
= B(rv,=)(@Sh(u) (). (TLC(R + 1) (M)
=absipy, @, (TEC(R + 1)(M)))
aDS(b n(un(e), =) (B + D@, w) =) (M)))
h(abs(h , ;) (@(r, (.= (M)
h(P(r,=) (absu,t,r(M)))
ho®r —)(P)

|
= ==

¢ : TLC — R as morphism of monads
Next we check that ¢ is a morphism of monads (TLC, var,subst) — (R, nt, uf). The diagram

V&I‘(F’:)

(T,=) TLC(T, =)
P(T,=)
R(T, =)
commutes because we have in the overlined and underlined parts
s Ter
X STLCr(I)
_ Pr,=)
nf}',j) - i’
R(T, =)
commutes by definition of i and
id
T i T
M\\ J{ngﬂé)
=(T,=)
R(T, =)

commutes by definition of ¢. The second monad morphism axiom is the following

RTLC(T, =) Ror,=)
—_—

TLC(TLC(I',=)) —= R(TLC(T',=)) R(R(T,=))
SubSt(F,:ﬂl lué}’:)
TLC(T, =) — R(N, =)

We have in the underlined part

1t ) Ry,
([, =) "R, =) —STR(R(T, =)

idrl l“gﬁ:ﬂ

(Ea :>) R R(F7 :>)
I
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which commutes by one of the monad axioms for R. In the overlined part we have

P(sTLC (), =) RTD(F =)

(STLC,(STLC7(I)), =) — > R(STLC4(T),=) — = R(R(T, =))

substpl l“g‘vﬁ)

(STLCr(I),=) R(T,=)

@(I‘,é)
We check the commutativity by induction.

o If VarSTLCT(F)(P) € (STLCT(STLCT(F)),:>),
more precisely varstic,r)(P) € [STLCp(STLCy(T))]; for a t € T with P € [STLCy(T)];,
we have three possible subcases.

— If P = varp(z) with = € [I'];, we set

?(r,—) (substr(varstic,(r) (varr(z)))) = @(r,=) (varr(z))

and

ﬁfp;)(R@(r,:s) (@(STLCT(F) é)(vaYSTLCT () (varp(x))))) =

= A, :>)(R (0= TS TLCp (1) =) (varr (2))))
Mf“} oy (T =y (T = (2)))
= 77(r,:>) (z)
— If P =app,;r(M,N) with M € [STLCp(T')]y=¢ and N € [STLCy(T')],, we have
P (1= (substr(varstic vy (appy, ., (M, N)))) = B =) (appy . r (M, N))
= appf%r,u,tp) (@r,=) (M), P(p,=)(N))
and

ﬁﬁr,;») (Ro(r =) (B(sTLCH(1),=) (VarsTLc, () (aPDy ¢ (M, N))))) =

= ﬁ{ir;) (Ro(r,—) (ﬁf%sTLcT(r);g (appy,,r (M, N))))
= Tt =) (T = (APD(F 4 1, (B(r2) (M), B ) (N))))
= app(f 11 ) (B(r =) (M), B(r =) ()
— If t =t1 =ty and P = absy, 4, r(M) with M € [STLCp([I, (t1)])]s,, then we have
?(r,=) (substr (varsric, () (absy, 1,0 (M)))) = B = (absy, 1,0 (M)
= abs(t;, 1, =) @(r, )= (M)
and

Ti(p ) (RO =) (B(sTLCr (1)) (VarsTLe, (1) (abst, 1,0 (M))))) =

=71t =) (Bo(r =) (TS TLC, (1), ) (@bSt 1.0 (M)
= Bi{p ) (Tiigr =) (abs(E, ) (B(r,e)=) (M)
= absﬁatlhé) (@, 10y, (M)



184 Chapter 9. Typed Lambda Calculus

o Ifapp,; stic, r)(M,N) € (STLCr(STLCy ('), =), more precisely app,, ; stic, ) (M, N) €
[STLCy(STLC7(T))] where u,t € I with M € [STLCy(STLC7(T))]y=+ and
N € [STLC7(STLC(I'))]y, by induction hypothesis we have

P(r,=) (substr(M)) = fiff _y (Ror ) (PsTienr) =) (M)))

and
B, (substr(N)) = it oy (R, =) (@ (sTLer(r),=) (V)
We find

P(r,=) (substr(app, ; stic, () (M, N))) =

= B(r,=)(@PPy ¢ p(substr (M), substr(N)))
= apP(h 4,1 =) (P(r =) (substr (M), Br - (substr (NV)))
= appﬁr,m,é)( (r :>)(RSO(F :>)( P(STLC(T),= ( )2
M(r =) (R<P(F =) (‘P(STLCT ( )
and

Ti(r ) (RO =) (B(sTLCH (1) =) (8PPt sTLCH () (M, N)))) =

= ﬂf%r,:g (Ri(p(f‘,é)(appﬁsTLCT(F),u,t,:ﬂ (PsTLCH1),=) (M), BsTLC(1),=)(N))))
Sz i)(appg(r wt=) (RO =) (BsTLCr (1),2) (M), Ror =) (PsTLc 1), (V)
= app(r u,t :>)( (r =) (RSD(F :>)( P(STLC(T), :>)( )2

Ti(r ) (Ro(r =) (B(sTic, (1)) (N))))

o If abs, ;stic,(r)(M,N) € (STLCp(STLC(T')), =), more precisely abs, ; stic,(r) (M) €
[STLCP(STLCy(T))]u=t where u,t € I with M € [STLCp([STLCy(T), (w)])]¢, by induction
hypothesis we have

B ) (BUDSE [ (07, T (M)

_ - STLC
= (e uy),=) B w)),=) @sTLCH (D )),=) (TP T (M))))

)

So we find

P(r,=) (substr(abs, ¢ st ) (M))) =

= P(r,=) (absu T (subst(p, ) (O’ETuLCT (M))))

= abs{f ¢ ) (B(r (u)],=) (SUDSED ) (07, T (M)

— STLC
_abs(Fut:)( gr,<u>],:>)(RSO([r< =) (PsTLC (T, w)),=) (0T T (M)))))

and

Tty (Ro(r ) (B(sTLCy (1), =) (@bsupsTLe () (M) =

= b =) (Ror =) (absfstLCT(F),uJ,é) (PsTLCH (), (w)],=) (M)
= I =) (ADST 1 =) (R(o(r =) + D(B(sTLCAT), (0= (M)
= abs(t ¢ o) (Bt )= (0T (Rer =) + D(@(sTLCr (), ()], (M)))))
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It remains to check

ot W (R(o(r,=) + 1) (@sTice )] =) (M) = Bo(r. =) (BsTLC (r m)])m) (Orm (M)
This is true since the following squares commute

STLC

STLCr(op, ©)
STLC,([STLCy, (u)]) ————> STLCH(STLCH ([T, (u)]))
PISTLCT (D), ()] l sTLc i‘PSTLCT([F&u)])
R(op , T
R([STLCr, (v)]) ’ R(STLCr ([T, (w)]))
R(<Pr+1)l lR(@[r,m)])
R([RT, (n(u))]) P R(R([T', (w)]))

The top square is a naturality square of ¢ and the bottom one is a naturality square of o.

@ : TLC — R as morphism of representations
We check the compatibility of ¢ with app and abs. By formula (9.2) we have

TLC
APP(T u,¢,=)

LTLC(T, b, = )ust X [TLC(T, 1w, £, =)]w — e [ TLC(T, £, =],
Zw(F,u,t,ﬁ)XQW(F,u,t,ﬁ)i i2@(f‘,u,t,:>)

[QR(F7 u, t? é)]ﬂﬁ(uét) X [QR(F7 u, t’ :>)] [QR(P7 u, t’ :>)]ﬂf3(t)

nE(u)
APP(T 1y, ¢,=)

since [o TLC(T, u, t, =)]u=t = [STLCH(T)]y=t, [QTLC(g,U,t, =)]u = [STLC(T)]u,

[QTLC(Fa u, t, :>)}t = [STLCT(F)]t’ appirfl‘_’it:}) = appuI}CT and 2¢(F,u,t,:>) = @(F,:ﬂ'
By formula (9.3) we have

absTLC -

LTLC(T, ()], u, t, =)y — "= L TLC(T, b, = )]st
QW(F,u,t,ﬁ)l iQSO(F,u,t,b)
[2R([F7 <u>}vu7t7:>)]ﬂlﬁ"(t) olt [2R(F7u7t7 :)]Qlﬁ(u:ﬁ)
a S(I‘,u,t,ﬁ)

Uniqueness of the previously defined ¢ : TLC — R
Let 1) be a morphism of representations ((TLC, var, subst), app, abs) — ((R, 7, uf?), app’, abs™).

Let (I',=) € TEns™ where I' : X — T, t € TLC(I',=) and P € TLC(I',=). We are going to
show

f(l“’:ﬂ(t) = %(F,:ﬂ(t) and @(F,:) (P) = w(F,ﬁ)(P)
By definition = (t) = ﬂgé)(t). The morphism of representations v is in particular
morphism of monads (TLC,var,subst) — (R,n%, uf*) thus compatible with the units var and
R
n't.

Q(R:ﬂ(t) = %(F,é) oidp(t)
¥

(I',=) o varr ) (t)
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Let P € [TLC(I,=)]; = [STLCy(D)]; for a t € T. We show @ —)(P) = ¢ - (P) by

induction.

o If P = varr(z) where z € [I'];, by definition of ¢ we have
By (varr(2)) = 7, (2)

by compatibility of ¢ with the units n® and var

Y = (varp(z)) = P oy 0 Var(p o () = ﬂfpf,é) (t)

o IfP = app(f‘,u,t,é) (M7 N) = appu7t,F(M7 N) with M € [STLCT(F)]uét and N € [STLCT<F)]U7
by induction hypothesis we have P (M) = @(Fé)(M) and P(p ) (N) = J(Fé)(N).
By definition of ¢

B(r,=) (PP ,u,t,) (M, N)) = app(t 1 2y (B2 (M), P =) (V)

Since 1) is a morphism of representations and compatible with app and app®, we have

w(F,=>) (a’pp(F,u,t,:>) (Ma N)) = ﬂ(nu,t,:}) (app(l",u,t,:> ( ))
= appg‘7u7t7:>) (ﬁ(l",u,t,ﬁ (M)7 211)(1" u,t,=) (N))
= appg“7u7t7§) (@(F,u,t,:) (M)a E(F,u,t,:}) (N))

Applying the induction hypothesis

@(F,ﬁ)(app(f‘,u,t,:ﬂ(M7 N)) = appff,u t :>)(E(F u,t,=) ( ), J Tu,t,=) (N))
= ppf%p, 1) Pt =) (M), P(r =) (N))

= D= (aPP(rut,=) (M, N))
o Ift =t =ty and P = abspy, 4, =) (M) = absy, 4, (M) where M € [STLCy([L, (t1)])]z,,

we have the following induction hypothesis @r )],y (M) = @([F7<t1>]7:,)(M). By defini-
tion of ¢

Pr,=) (@bS(r 4 1y =) (M) = absg‘,t1,t2,:>) (@([F,(h)]vé) (M))
Since 9 is a morphism of representations and thus compatible with abs and abs®
E(F,:ﬁ(abS(F,tl,tQ,é)(M)) = ﬂ(r,:ﬂ(abs(r tl,t2,¢)(M))
= abs(fy, 4, o) V(0. )], é)(M))
= absgﬂ7t17t27;\)( =) (M)

Applying the induction hypothesis
Do) (DS 1y 19, (M) = abs(h, 1y (D, a1y, (M)

= abs(t;, 1, =) @1, )= (M)
= @(F,i) (abS(F,tl,tQ,:) (M))



Appendix A

Proofs of chapter 3

A.1 Proof of proposition 3.1.14

We have to verify the monad axioms with our definitions of p and 7. To verify that the triangle

T
TX —TTX (A.1)

nx
i& \L

TX

commutes for all X € C, we have to provide TT X with a Gx—algebra structure:

X+GTTX — =X +GTX +GITX —>TX +GITX —>TTX

and check that px is a Gx—algebra morphism

id G
X + GTTX X HOnx X +GTX
id
X+GTX +G61TX T Fidarx
nx,ox]+idarrx nx,o0x]

IIT.
id Gu
TX + GTTX —XFC  _ry L GTX

N I [m

TTrX TX
125

Square II. commutes because pux is a Gx—algebra morphism by definition. Triangle III. commutes
obviously. Square I. commutes because the following two squares commute

idx Gux

X—X GITX —>GTX
idx \L idG’TTXl
X nx GITX idarx
nx l idarrx l
TX - TX GTTX - GTX

By definition T'nx is the unique Gx—algebra morphism T'X — T7TX and consequently the composition
puxoTnx : TX — TX is a morphism of G x—algebras. So by initiality of T X, we have idpx = ux oTnx,
which shows (A.1).

187
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In a similar way we show that the square

T3X 2% Ty (A.2)

T2X o TX
commutes for all X € C. We provide TTX and T'X with a structure of Gprrx—algebras

lidrrx,0rx]

TTX +GITX TTX

and

nx,0x]

TTrX +GTX [—> TX

and we check that px is a morphism of Gprx—algebras

id G
TTX + FTTX TIXYORY  TTX + GTX
lid,orx] [ux,0x]
TTX } TX
X

commutes for all X € C because the following two diagrams commute

i Gu
TTX —4>T7TX GTTX - arXx
idl \LMX oTXxX \L \LUX
TTX ?‘ TX TTX T‘ TX

where the second square commutes because px is by definition a morphism of Grx—algebras. Conse-
quently we have two morphisms of Gprx—algebras : uxoTux : T°X — TX and pxopury : T3X = TX,
by initiality of T3X we have uy o Tuyx = jux o jrx, which shows (A.2).

The third monad axiom

X <5 TX

Bx
iAf

TX

for all X € C, is a direct consequence of the definition of px.

A.2 Proof of proposition 3.1.16

A.2.1 Functoriality of ¢

At first let us define ® on arrows. Let p : P — @ be an arrow in Ende. We denote the corresponding
monads S := ®(P) and T := &(Q). We want to define an arrow ®(p) : S — T in Mong, that is a monad
morphism ®(p) : S — T. Let X be an object of C. We define ®(p) componentwise by initiality of SX,

which is the initial Px—algebra. We provide T'X with a Py—algebra structure and by initiality of SX we

take the unique Px—algebra morphism for ®(p)x. Indeed we have X + PTX Miprx, y +QTX = TX.
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Next we check that ®(p) is natural in X. Let f : X — Y be a morphism of End¢ then we need to

check that
@(p) x
SX —TX

s,fl le

SYWTY

commutes. We are going to provide TY with a Px—algebra structure and check that T'f and ®(p)y
are morphisms of Px—algebras. By definition Sf and ®(p)x are morphisms of Px-algebras. Then by
initiality of SX, we conclude that the two composites ®(p)Y o Sf and T'f o &(p)x are equal.

e TY is a Px—algebra: X + PTY M) Y +QTY =TY
e ®P(p)y is a morphism of Px—algebras:

X+ psy —YOM x| pry
f+id f+id
y + psy — MOy pry
id +pry

Y +QTY

o

IR

SY () TY

The bottom square commutes by definition of ®(p)y being the unique morphism of Py—algebras.
The top square commutes evidently.
e T'f is a morphism of Px—algebras:
id+PTf
X+PTX ———— X+ PTY

id+prx id +pry

X +QrXx —91 _ x4 ory
f+id
Y +QTY

o~

1R

TX 7 TY

The bottom square commutes by definition of T'f being the unique morphism of @ x—algebras
TX — TY. The top square commutes by naturality of p.
Next let us check that ®(p) is a monad morphism S — T'. By its definition at the component X the
following square commutes:
id +P®
X 1+ Psx —MOX, v prx

lid +orx
0% X +QTX
l[mTooE]
SX TX

®(p)x
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this implies that the following triangle commutes

T
Sl&
nx

SXWTX

which proves the compatibility of ®(p) with 1. In order to check the compatibility of ®(p) with p we
have to check that the following diagram commutes for all object X of C

s5% — 5 5x
S(MP)X)J/
STX ®(p)x
<I>(p)TxJ/

TTX ————>TX
Hx

We are going to provide ST X, TTX, TX with a structure of Pgx—algebras and check that ®(p)x, ®(p)rx
and p% are morphisms of Pgx—algebras. Then by initiality of SSX we can conclude that ®(p)x o p%
and p% o T(®(p)x) o ®(p)sx are equal.

e STX is a Pgx—algebra:

@ (p) x +id 07 x 07 x]
SX+PSTX ————TX+PSTX ————— STX

e TTX is a Pgx—algebra:

T T
SX + PTTX [®(p)x,pTTX] TX + QTTX Mx.0x] TTX

e TX is a Pgx—algebra:

id,o ©
SX + PTX [@(p)x pTx] TX +QTX lid,ox] TX

e ®(p)x is a morphism of Pgx—algebras:

SX 4 PSx —HPOX_ox L prx
lé(p)xﬂnx
lid,o$] TX +QTX
l[id,a?(]
SX TX

2(p)x
commutes because the following diagram commutes by definition of ®(p)x

Po(p)x
PSX ——PTX

lPTX

oS QTX

T
lox

_—
SX @(p)x rx
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e ®(p)rx is a morphism of Pgyx—algebras:

SX + PSTX PO ox | prrX
@(p)x +id @(p)x +id
TX + PSTX “POT e | prTX

id +prrx
M7 x 07 x] TX +QTTX
7 x 07 x]
STX TTX

®(p)Tx

The top square commutes obviously and the bottom square commutes by definition of ®(p)7rx
being a morphism of Prx—algebras.

° u§ is a morphism of Pgx—algebras:

id+Pu%
SX+PITX ——SX +PTX
@(p)x+id @ (p)x +id
id+Pp%
TX+PITX ———TX + PTX
id +prrx id +prx
id+Qu%
TX +QTTX —"™ 17X 1 QTX
[U%X’U’;X] [idra§]
TTX - TX
Hx

The top square commutes obviously, the middle square is a naturality square of p and the bottom
square commutes by definition of % being a morphism of Qrx—algebras.

We define now the counit and the unit of the adjunction. Let (S,1°, 1) be a monad. We denote
(T,nT, uT) the monad ®(S).

A.2.2 Counit

At first we define the monad morphism ¢(g s ,s) : (T,n", u") = (S,7°, 4®) componentwise. Let X be
an object of C. We provide SX with a Sx—algebra structure and by initiality of TX we take the unique

S S
Sx—algebra morphism to be €(g s ;) x. Indeed we have X + SSX —>[nx’ﬂx} SX.

Now we check the naturality of €(g s ,s) x in X. Let f: X —Y be a morphism of C. We have to
check the commutativity of the following square.

E(s.nS,u5),x

TX —SX

Tfl le

_—>
TY EpE— SY
We provide SY with a Sx-—algebra structure and check that Sf and €(g ;s ,s)y are morphisms of Sx-
algebras. By definition €(g ;s ,s) x and T'f are morphisms of Sx-algebras, then by initiality of T'X, we
can conclude that Sf oe(g s ,5) x and g(gys )y o Tf are equal.
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. . f+id (0%, 15]
e SY is a Sx-algebra: X +SSY — Y + SSY ——— SY
e Sf is a morphism of Sx—algebras:

i SS
X+ 85X —5 v 4 g9y

|

% m%] Y +SSY
J{[n\?#i}
SX 57 SY

commutes by naturality of 7° and p°.

® £(5,y5,45),y 18 a morphism of Sx-algebras:

id +SE(S,nS,uS),Y

X+8TY ————= X +SSY
f+idl ierid
id+S€(S,nS,uS),Y
Y+STY ————=Y 4+ 5SY
[n?»oal i[nivui]
TY SY

E(smS.ud)y

Next we check the naturality of £ ,s s in (S, n°, u®). Let
@ : (S1,n%, 1p5) = (S2,7%2, 152) be a monad morphism. We denote the corresponding monads (77,77, u™t) :=
®(S1) and (Ty, "2, u™2) := ®(S3). We have to check the commutativity of the following square

1>
(81,151,151)

(Tl,ﬁTlvﬂTl) (S17’r]817p’51)

(¥ (p)) ®

(T2a ’r]T27MT2) (52777327/1/82)

€
(S2,7%2,u52)

componentwise for all X € C

€(s1.m51,151), x

"X —5X
(¥ (p))x Px

ThX ——— > 55X
€(52.m52,152),x

We provide S> X with a S x—algebra structure and check that px and €(Sy,mS2,1uS2),X are morphisms of
Sy x—algebras. By definition e(g, ;51 51y, x and ®(¥(p))x are morphisms of S x—algebras. By initiality
of T1 X we can conclude that ¢x oe(g, ps1 ,51),x and €(g, ps2 ;52 x © ®(T(p))x are equal.

id +ps, x
—

So  So
e S5X is a Sy y—algebra: X + 5155X X + 55X M So X
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e x is a morphism of S y—algebras:

X 45,5 X X v 6,9, X
iid +esyx
3 n5t] X + 555, X
i (052 1052
S So

Yx
This diagram commutes because ¢ is a monad morphism.

® (5,552 u52),x 1S @ morphism of S y—algebras:

id +Sl€(52wn52 nS2).x

X+5ThX ————="X+515X

id+tpT2)(i \le +$05‘2X

id +Sse 1S2 52
X 4 SoTpX — 22 20% 1608y X
n32.032] i l (752 1 32]
T2 SZ

(52,152,152, x
The top square is a naturality square of ¢ and the bottom square commutes by definition of
£(8,m52,u52),x being a morphism of Sy y—algebras.
A.2.3 Unit

Next we define the unit n : Idgna, — ¥Y® of the adjunction componentwise. Let P be an endofunctor on
C and X be an object of C. We define np x to be the composite

Pn% ok
PX — PTX —TX

where T denotes the underlying functor of the monad ®(P). The naturality of np x in X follows from
the naturalities of n% and of o% in X. We check the naturality of n in P. Let p: P — @ be a morphism
of Endc and we denote the corresponding monads S := ®(P) and T := ®(Q). We have to check the
commutativity of the following diagram.

npe,x
PX —5X

PX\L J{‘I’(P)x

QX o IT'X

It commutes because of the following diagram commutes

Pns o5
PX —% psx X s 5X
pPX PTX ®(p)x
\LPTX
QX ——= QTX —>TX
Qnx Ox

The triangle commutes because ®(p) is a monad morphism. The left square is a naturality square of p
and the right square commutes by definition of ®(p)x being a morphism of Px—algebras.
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A.2.4 Triangle identities

We have defined the counit and the unit of the adjunction, it remains to check the two triangle identities.
Let (S,n°, 1) be a monad on C. We have to check the commutativity of the following triangle.

My (5,95 ,uS)

W(S,n%, pud) VO (S, 7%, )

Ve S .S
d (S,m=,p">)

U(S,n°%, 1)
Let X be an object of C. This diagram is componentwise

S T G'T
SX —X sTXx & TX

\ \LS‘S(SJIS»LS),X la(sws,us),x
n

s
¥ 85X ———= 59X
Hx

id

where T' denotes the monad ®(S). The triangle commutes because €(g s ,5),x is @ monad morphism
and the square commutes by definition of (g ;s ,s) x being a morphism of Sx-algebras.

Next we have to check the commutativity of the following diagram for all P € Endc.

2(np)

o(P) (v (2(P)))

EopP

o(P)
Let X be an object of C. This diagram’s component at X is the following diagram

®(cT)x
—_—

a(P) ()" () ()L B(T)(X)

€
(T,nT,uT), x
lde(p)(x)

(P)(X)

where (T,n", u") denotes the monad ®(P). We are going to check that ®(c”)x and ey, ) x are
morphisms of Px-algebras. The arrow ®(PnT)x is by definition a morphism of Px-algebras, then by
initiality of T7X = ®(P)(X) we can conclude that (7,7 ,7) x 0 ®(67)x o ®(Pn’)x and Ide(p)x) are
equal.
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o ®(0T)x is a morphism of Py-algebras:

id +P®(cT
X + PO(PT)(X) 7L X 4+ PO(T)(X)

id+Png prycx) id +Pngry x)
id +PT® (o™
X + PTo(PT)(X) S x4 prav(T)(X)

idx +0g (1) (x)

IR

X + To(T)(X)

o

P(PT)(X) —— > 2(T)(X)

The top square is a naturality square of n” and the bottom square commutes by definition of
®(07) x being a morphism of PTx—algebras.

® &7 7,7y, x 18 a morphisms of Px-—algebras:

id +Pe
X + PO(T)(X)

(7T, uT

"2 X + PT(X)

id +Png 7y (x) id+Pirx)

id +PT6(T,77T,;4,T),X
X 4 PTO(T)(X) — 0% 4 PTT(X)

id+0g(1)(x) id+o1(x)

id JFTE(T)T,T wTy,x

X + TO(T)(X) — D% ¥ 4 77(X)

&~ [

UEANTEY

(T)(X) T(X)

E(r T uT) X

The top square is a naturality square of 7, the middle square is a naturality square of ¢ and the
bottom square commutes by definition of (7,7 ,r) x being a morphism of Tx—algebras.

A.3 Proof of proposition 3.2.17

Next we check naturality of ¢. Let f : X — Y be a morphism in C. To check that

Tx -2 ux

Tfl le

Y — MY
oy

commutes, we check that TY and MY are Gx—algebras and that M f and ¢y are morphisms of Gx—
algebras. The two arrows ¢x and T'f are by definition morphisms of G x—algebras. Then by initiality of
TX we can conclude that M f o ¢x and ¢y o T f are equal.

]

o TY is a Gx algebra: X + GTY % v 4 gry 2020, 7y

ftpmy ¥

M
o MY is a Gy algebra: X + GMY L322 v o prypy 1280y
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e M f is a morphism of G x—algebras:

id+GM S
X+GMX ——— X +GMY
id+pmx id+pmy
id +MMf
X+MMX X+MMY
f+id
X Y+MMY
(73 k3]
MX MF MY

The top square is a naturality square of p and the bottom square commutes because of the natu-
ralities of n™ and pM of M.

e ¢y is a morphism of G x—algebras:

X +GTY XY v L amy
f+id f+id
Y + 6Ty — Yy L amy
idy +pmy
[y sy Y + MMY
(¥ u3t
TY MY

(2%

The top square commutes obviously and the bottom square commutes because ¢y is by definition
the unique morphism of Gy—algebras TY — MY

Next we check that ¢ is a monad morphism. By definition of ¢x, it is the unique morphism of
G x—algebras such that

X +6rx %Yy L amx
lid +onx

o] X+ MMX
l[nﬁ‘?»uﬁ‘f]

TXTMX

commutes. This implies the commutativity of the following triangle

X

\L%
nx

TX —MX
ox
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which is one of the monad morphism axioms. In order to check the other monad morphism axiom

TTX X > 7Xx

T¢xl

TMX Px

¢Mxl

MMX — MX
Hx

we are going to check that MMX and M X are Gpx—algebras and that ¢prx, uAX/[ and ¢x are Gprx—
algebra morphisms. By definition T'¢x and px are morphisms of Gpx—algebras, so by initiality of TTX

we can conclude that the two composites ¢x o ux and pl! o ¢y x o Topx are equal.

o MMX is a Gpx-algebra: TX + GMMX X7 vix + aMMx

. M M
Mibparax ary oMM x P A x

. . i M
o MX is a Grx algebra: TX + GMX 2559 vy ¢ aarx 2o vy oarrx 29450y x

e ¢y x is a morphism of G x—algebras:

TX + GTMX —2FE0 oy L GMMX

¢x+id ¢x +id

id4+G
MX + GTMX —FCMX  vrx + GMMX

id+pmmx

MX +MMMX

[77MX7‘71WX]

M M
[ x o Bar x ]

TMX MMX

¢]WX

The top square commutes obviously and the bottom square commutes by definition of ¢y;x being
the unique morphism of G,;x—algebras TMX — MMX.

° u)l‘g[ is a morphism of G x—algebras:

id+Guy
TX+GMMX ———TX+GMX
¢x +id ¢x +id
id +Guy
MX+GMMX ————MX+GMX
id+pmmx id +pmx
id +M[L§(l
MX+MMMX —— MX +MMX
[nﬁxvﬂﬁx] [idvﬂﬁvcf]
MMX _ MX

Hx

The top square commutes obviously, the middle square is a naturality square of p and the bottom
square commutes because of the monad axioms of M.
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e ¢x is a morphism of Gprx—algebras:

TX + GTX — %" L 7X + GMX
l%{ +prmx
lid,o x] MX+MMX
l[idwﬁf
TX o MX
The above square commutes because the following square
arx — 2 - qgux
lpm
ox MMX
I
TX B —— MX

commutes by definition of ¢ x being the unique morphism of G x—algebras TX — M X.

To prove that ¢ is a morphism of Mon®, we check the commutativity of the following diagram for all

XecC
GX

GTX "
v
TX MX
dx
this diagram becomes
GX o MX
a M
anl & II. \L]Wn% idmx
Gox PMX IIL.

GTX —GMX —MMX

J/ %
ox IV.

TX MX
ox

Triangle I. commutes because ¢ is a monad morphism, square II. is a naturality square of p, triangle III.
is a monad axiom and diagram IV. commutes by definition of ¢x being a morphism of G x—algebras.



Appendix B

Proofs of chapter 4

B.1 Proof of lemma 4.1.24

We are going to construct the three natural isomorphisms

axyz: (XQY)®Z X (Y ®Z)
pxlX®U—)X
Ain®X—>X

o We write the domain and codomain of ax y,z using the coend notation

k
(X®Y)® Z(n) = / (X @Y)(k) x Z(n)*

B /k R CE OO
and
xo (e = [ X0 (o2
- [ 0 / ([ vy =zer)
/ /p1 . X(r) xY(p1) X ... x Y(p,) x Z(n)PrFpr

To define an arrow (X ®Y)® Z - X ® (Y ® Z), by universal property of the coends it suffices to
give a family of arrows
X(r)xY (k)" xZn)* - Xo (Y ® 2)

for all r, k € F that satisfies the wedge condition. We take the following composite

X(r) x Y (k)" x Z(n)*

X(r) x Y(k)x...xY(k)x Z(n)r*k

x (fpl Y(p1) x Z(n)’”) X ... X% (fp* Y(p,) x Z(n)p,,)

7X@ % (7Y @) x Zr)

199
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by using 7 x k — k. We check the wedge conditions. Let h : k& — £. The following diagram

commutes
1d/><)/7 \

X(r) x Y (k) (X ® (Y ® 2))(n)

id XY (h)% /
" x Z(n)*

because we have the following assignations on elements

.'L' y17"'ay’r7

/ \ o
/

h),.
),f) ( () (), )

(xay17"'7y7’7

(Y (h)(y1)

and by universal property of the coend (yi, fo h) = (Y(h)(y;), f) since they come from (y;, f) €
Y (k) x Z(n)* with the arrow h

Y (k) x Z(n)*

id x (—oh \

Y (k) x Z(n)" Y (k) x Z(n)*

Y (R)xid /

Y (0) x Z(n)!

/

Let g : r — p. The following diagram commutes

x [*Y (k
< [*Y (k)P x Z(n)* (X ® (Y ®Z))(n)
< [FY (k) x Z(n

because we have the following assignations on elements

(xayg(1)7 s 7yg(r)af)

(‘rvylv‘"vyrvf)

(X(g)(x)ayl,“'ayr,f)
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The elements (z, (Y4(1), f), - - - (Yg(r)> f)) and (X (g)(®),y1,- - -, yr, f) are equal by universal property

of the coend since they come from (z, (y1, f),-.-, (yr, f)) € X(r) X (fk Y (k) x Z(n)k)P with the
arrow g

Y(k) x Z(n)*)"

/

x ("
/
< (" v (k \ (X (Y ®2)(n)

\

< (MY (k) x Z(n)k)"

Inversely to define an arrow X @ (Y ® Z) — (X ® Y) ® Z, by universal property of the coends it
suffices to give a family of arrows

X(r)xY(p1) x...xY(p,) x Z(n)Pr+Pr 5 (X @YV)®~Z
for all 7, p1,...,pr € F that satisfies the wedge condition. We take the following composite

X(T) X Y(pl) X ... X Y(pr) X Z(n)p1+~~+Pr

T

X() XY (X p) X ... xY ép

(32 pi) x Z(mp e
i=1 i=1

!
Y Z(n)*
l
"X x [*y Z(n)k

We check the wedge conditions. Let h; : p; — ¢; for i = 1,...,r. The following diagram commutes

X(r
Y
Z

~

(p1) x ... xY(pr)
(n)P1+ +pr

(X®Y)®Z)(n)

—~
~—

xY(q1) X ... xY(q)
xz(n)q1+..-+qr
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because we have the following assignations on elements

x’
yl’ R 7y7"7
f Zhl \
/ x7Y(cl)(y1)a"'aY(CT')(yT')v
fo) hi
y =, Y(¢; o ha)(y1), - V(e 0 ho)(yy),
\ f
Y (h)( Y(h (yr),
f
where ¢; :p; = > pjand ¢ : ¢; — Z g; and by naturality of these inclusions Z hjoc;, =cjoh;
i=1 i=1 i=
foralli=1,...,r. By universal property of the coend, the elements x, Y (c1)(y1),...,Y (¢)(yr), fo
> h;and z, Y (cfoh1)(y1), ..., Y (c.oh,)(yr), f are equal since they come from x, Y(cl)(yl), o Y(e)(yr), f €
i=1
X(r) xY(> pi) x Z(n)© T+ with the arrow Y. h;
=1 i=1

X(r )XY(ZPz)

x Z(n)prt- S
/
\

X(r )XY(ZPJ

X Z(n)n+- e /
X(r )XY(Z qi)"

X Z( )q1+ +qr
Let g : r — s. The following diagram commutes

X (7‘)
"Y (k) x

<(J
/ \
X(r) .

(X®Y)® Z)(n)

n)\ /
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because we have the following assignations on elements

g1 fo1))s (yg(r)jg(k)
/ 2 Y () e))s- -+
x, Y () (Yg(r)s [fg)s -+ s fo)]
(ylafl)v (ysafs :(X(g) x)vy(cl)(yl)a---,
\ Y(Cs)(ys)a [fla 7fs])
X(g)(l“)

yl,f1) (ysafS)

where ¢; : k; Z i and ¢ 1 kg — Z kg(j)- The arrow g : r — s induces the arrow
= ,
[Cg(1ys - Cq(m)] : Z 9G) — Z k; that makes the following commute

L,

XT: [Cg(1)7 7Cg(7

j=1

[foc1)s- 7fg& [f1yeeesfs]

So by the following universal properties of the coends

X(r )XY(Zk @)

xZ(n) q(1>+ +’€q<r>

id xy([cg(l),.m /

X()xY(Zk

XZ( )k1+ -‘rk
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and
X(r)x [* X (k)"
xZ(n)*
id x()aaf/
X(r)yx [ fTX f X(k
><Z( XZ(
m /
f X(k
xZ(n)k
we obtain

(X(9) (@), Y(e)) (1), -+, Y(es)(ys), [fr -, fs])

by (B.2) is equal to

($7Y(Cg(1))(yg(1))7"'7Y( g(r) )(yg(r)) [.fla-"afs])

by (B.1) is equal to

(.%', Y(Cll)(yg(l))7 ) Y(C;)(yg(r)% [fg(1)7 SRR fg(T)D

We check that the two arrows constructed above are inverse to each other. Starting with (z,y1,..., -, f) €
X(r) x Y (k)" x Z(n)*, we have the following composite
(x7y17"'ayr>f)
(xaylw"?yﬂ[fw"afb
($7 Y(Cl)(y1)7 v 7Y(CT)(yT)7 [f7 R f])
The two elements (z,y1,...,¥yr, f) and (z,Y (c1)(y1), .-, Y (cr)(yr), [f,- .-, f]) are equal since they
come from (z,Y (¢1)(y1),..., Y (c,)(yr), f) € (r)xY(rxk) Z(n)* with the arrow [idg, . . .,idy] :

rxk—k
X(r) x Y (k)" x Z(n)*

X(r) XY (rx k)" x Z(n)r**

Starting with (z,y1,...,yr, f) € X(r) XY (p1) x... XY (p,) x Z(n)P** TP we obtain the following

composite
(xvylau'aymf)

I

(@, Y (c1)(y), - Y(er)(wr), f)

|

(x,Y(cl)(y1)7 s ’Y(CT)(yT)v [f’ . af])
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The two elements (x,y1,...,yr, f) and (z,Y (c1)(y1), ..., Y (¢r)(yr), [f,- .-, f]) are equal since they

come from with the arrows ¢; : p; — > p; fori=1,...,r
j=1

X(r)xY(p1) x...xY(p,) x Z(n)pl-‘r...—i-pr

X(r)yxY(p1) x...xY(p)
X Z(n)Xpit P

id xm
s

X(T) X Y(Z pj)r X Z(n)zpj+~~+zpj

j=1
Next we check naturalities in n, X,Y and Z. Let h: n — m in F. The following naturality square

(XeY)®2Z)(n) —= (X ® (Y ®2))(n)

(XeY)®2Z)(m) —= (X (Y ®Z))(m)
commutes since we have the following assignations on elements

(Ivyla sy Yry Z) '% (.T, (yla Z)7 LR} (yrv Z))
(m7y17 s 7y7"7Z(h) © Z) — (1’, (ylaZ(h) 02)7. ) (yr,Z(h) © Z))

Let h: X — W in F. The following naturality square

(XQY)®2Z)(n) —= (X ® (Y ®2))(n)

(WRY)®2Z)(n) —= (W (Y ®2))(n)
commutes since we have the following assignations on elements

($, Yy -5 Yr, Z) e (‘r7 (yla Z)a L) (yT7 Z))

I !

(hr(@), 915+ 3 yr, 2) = (he(@), (Y1, 2), -+ (Ur, 2))

Let h: Y — W in F. The following naturality square
(XeY)®2)(n) —= (X ® (Y ® 2))(n)
(XoW)® Z)(n) —= (X (W Z))(n)
commutes since we have the following assignations on elements
(xvyh s Yry Z) — (1'7 (yla Z)v SRR (yr; Z))

! !

(.’E, hk(y1)7 ) hk(yr)v Z) NS (LE, (hk(yl)a Z)a SRR (hk(y?”)v Z))
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Let h: Z — W in F. The following naturality square

(X®Y)®Z)(n) —— (X ® (Y ® Z))(n)

| l

(XeY)aW)(n) — (X @ (Y @ W))(n)
commutes since we have the following assignations on elements

(37791, v ’yr,z) — (Z‘, (y1,2)7 ) (yr,z))

I I

(377?417 s Yry hn(z)) S (l‘, (yh hn(z))v ) (yT7 hn(z)))

e We define px : fk X (k) x n* — X(n) by the universal property of the coend. We give a mapping
X (k) x n* — X(n) for all k € F satisfying the wedge condition. We take it to be the following

mapping
(@, f) = X))

We check the wedge condition. Let g : k — ¢. Then the following diagram commutes
X (k) x nP
X (k) xn* X(n)
X(0) x n*
since we have the following assignation on elements

(z,

(z, f)

f ) g) \
)Og)’(””) = X(f) o X(g)()
)(@), f)

/N

(g

We define the inverse arrow X (n) — [ ' (k) x n* by the following mapping composed with the
n-th coprojection

z = (x,id,)
We check that these are inverse to each other. One of the composites yields
x = (x,id,) — X(@Adp)(z) ==
which is the identity on x. The other composite yields

(@f) = X(NE) = (X()(2)id,)
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These two elements are identic since they come from X (k) x n™ with the arrow f: k —n

X (k) x n*

(@, f)
/
X (k) x n"
\

(x,idy)
X(n) xn"
(X (f)(x),1dn)

We check the naturalities in n and X. Let h : n — m in F. The naturality square
(X®U)(n) —— X(n)
(X®U)(m) —— X(m)
commutes since we have the following assignations on elements
(z, f) ——— X(f)(z)
(@, ho f)—=X(ho f)(z)
Let h: X = Y in F. The naturality square
(X®U)(n) — X(n)
Y®U)n) ——=Y(n)
commutes since we have the following assignations on elements

(@, f) X(f)(=)

I I

(hi (), f) = hn o X (f)(z) = Y () (he(2))

o We define Ay : fk k x X(n)® — X (n) by the universal property of the coend. We give a mapping
k x X(n)k¥ — X(n) for all k € F satisfying the wedge condition. We take it to be the following
mapping

@ f) = [

We check the wedge condition. Let g : k — ¢. The following diagram commutes

_

kx X(n)

.

{x X(n)*

\X(n)
7

kx X(n)*
(
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since we have the following assignations on elements

/ \
\ /fog f(g(4))
(9(3)

We define the inverse arrow X (n) — f k x (X(n)* by the following mapping composed with the
corresponding coprojection
z o= (1)

where (z) : 1 = X (n),1 — x. We check that these two assignations are inverse to each other. One
of the composites yields
o= (L) = 1) =2

which is identity on x. The other composite yields

@f) = f@ = (L{E)

These two are identic since they come from 1 x X (n)¥ with the arrow (i) : 1 — k

B x (X(n)"

1x X(n)t
(1, {f(@))

We check the naturalities in n and X. Let h : n — m in F. The following naturality square

(U ® X)(n) — X(n)

i i

(U® X)(m) —— X(m)
commutes since we have the following assignations on elements

(1, f) ———— [ ()

| I

(1, X (h) o f) —— X(h)(f(2))
Let h: X = Y in F. The following naturality square

(U © X)(n) — X(n)

L

U@Y)(n) —=Y(n)



B.2. Proof of lemma 4.1.25 209

commutes since we have the following assignations on elements

(i, [) ——f(9)

b

(@, hn o f) = hn(f (7))

B.2 Proof of lemma 4.1.25

We rewrite the source and target using the coend notation

(X xY)o Z)( /X ) x Y (k) x Z(n)*
and

(X®2Z)x (Y ®Z) /X ) x Z(n / Y (m) x Z(n)™)

// X(0) x Y (m) x Z(n)™

To give an arrow (X xY)® Z)(n) = (X ® Z)(n) x (Y ® Z)(n), by universal property of the coend,
is equivalent of giving a family of arrows

X(k) x Y(k) x Z(n)* = (X ® Z)(n) x (Y ® Z)(n)
for all k € F that satisfies the wedge condition. We take the following composite
X(k) x Y (k) x Z(n)k

|

X (k) x Y (k) x Z(n)*+F

|

[X() x Z(n)t x [™Y (m) x Z(n)™

We check the wedge condition. Let g : k — £. The following diagram commutes

X (k) x Y (k)

(X®Z)(n) x (Y ®Z)(n)
because we have the following assignations on elements

(z,y,fog)

(z,y, f
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and by universal properties of the coends (z, f o g) = (X(g)(z), f) and (y, f o g) = (Y(g9)(y), f) since
X (k) x Z(n)*

and
Y (k) x Z(n)k
Y (k) x Z(n)* (Y ® Z)(n)
Y () x Z(n)*
commute.

Inversely to give an arrow (X ® Z)(n) x (Y @ Z)(n) —» (X xY) ® Z)(n) is equivalent, by universal
property of the coend, to give a family of arrows

X(0) xY(m) x Z(n)"™ = (X xY)® Z)(n)
for all £,m € FF that satisfies the wedge condition. We take te following composite
X () xY(m) x Z(n)Hm

|

X +m) x Y (£ +m)x Z(n)+m
"X (k) x Y (k) x Z(n)*
We check the wedge condition. Let g : /1 — ¢5 and h : m; — my. The following diagram commutes

) x Y (my) x Z(n)atm

/ \

X(ty) x Y (mq) x Z(n)t2tm2 (X xY)® Z)(n)

\ /

X (€9) x Y(mg) x Z(n)t2tms
because we have the following assignations on elements

(z,y,fo(g+h))

\

/

), Y (im, ) (), f o (9 + 1))
©9)(@),Y (im, o h)(y), f)

\
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where g, : 01 = 1+ M1, im, 2 M1 — L1+ M, tg, o — Lo+ mo and 4y, : ma — fo + ma. By naturality
of these inclusions ip, 0 g = (g + h) oip, and 4,,, oh = (g+ h) 04y, . Moreover by universal property of the

coend (X (ig, )(x), Y (im,)(y), f o (9 + h)) = (X((9 + D) 0 ig,)(x), Y ((9 + h) © im, ) (y), f) since they come
from (X (g, )(2),Y (im,)(y), f) with the arrow g + h

X(gl —+ ml)
><Y(€1 + ml)
XZ( )@1+m1
Xty 4+ my) \
XY (01 + my) ¥ X (k) x Y(k) x Z(n)*
x Z(n)tztms /
X (o +mg)
XY(€2 + mg)
x Z(n)fztm2

Now we check that these two arrows are inverse to each other. Starting with (x,y,2) € (X X Y) ®
Z)(n) we have the following composite

(,9,2) = (zylz2) = (X)), Y(im)(y), [z 2])

where iy : £ = ¢+ m and i,, : £ + m. The elements (z,y, z) and (X (i¢)(x),Y (im)(y), [2, 2]) come from
X(k+k)xY(k+k)x Z(n)F with the arrow f = [idg,idg] : k +k — k

X(f)xY(f)xi
%\

X(k+k) x Y(k+k) x Z(n)k+*

Y (k) x Z(n)"*

X(k+k) x Y(k+k) x

on elements
/ x e )
(X(i0)@).Y \

Y(im)(y), [z, 2])
Starting with (z,y,2) € (X ® Z) x (Y ® Z))(n) we have the following composite
(,y,2) = (X)), Y(im)(y),2) = (X)), Y (im)(v), [z 2])

The two elements (z,v,2) and (X (i¢)(2),Y (im)(¥), [2, 2]) come from X (£) x Y (m) x Z(n)F"H+™ with
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the arrows iy : { - ¢+ mand i, : M — £ +m

X() xY(m) x Z(n)Hm

X (0) x Y (m) x Z(n)cHm+ttm

X (ig) XY (i) X1

X(l+m)x Yl +m)x Z(n)ttmtttm

/

(,y, 2, 2])

on elements
(z,y,2)

(X(ie) (@), Y (im)(y), [2, 2])
Finally we check naturalities in X, Y and Z. Let f : X — W. The naturality square

(XxV)®Z —>(X®Z)x (Y ® Z)

| !

WxY)®Z——=WeZ)x (Y ®2Z)
commutes because we have on elements

(x,y,2) ——— (2,9, [2, 2])

|

(fk(fE),y,Z) S (fk(ér)?yv [Z,ZD
Let f: Y — W. The naturality square

(XxY)®Z —=(X®2Z)x (Y ®Z)

l |

(XxW)RZ—(X®Z)x (W®Z)
commutes because we have on elements

(x’ya Z) e (:177y7 [Zv Z])

I

(@, fi(y), 2) == (2, fx(y), [z, 2])

Let f: Z — W. The naturality square

(XxY)®Z——>(X®Z)x (Y ®Z)

l |

(XxYV)@W —= (X @ W) x (Y @ W)



B.3. Proof of lemma 4.1.26

commutes because we have on elements

(Z',y,Z) — (‘ray7 [Z’ZD

! I

(@Y, fn 0 2) —— (2,y, fn 0 [2,2])

B.3 Proof of lemma 4.1.26

We rewrite the source using the left Kan extension notation
(X+Y)®Z=Lany(X +Y)oZ

Since Lany is a left adjoint, it preserves coproducts, so

Lang (X +Y) o Z = (Lany (X) + Lany (Y)) 0o Z
=Lany(X)o Z 4 Lany(Y)o Z
=X®2)+(Y®2)

213

Naturalities in X and Y follow from naturalities of the canonical isomorphism Lany (X +Y) & Lany (X)+

Lany (Y). Naturality in Z is easy to see.

B.4 Proof of lemma 4.2.28

Let A be a set. We rewrite the source and target using the coend notation
k
(X xY)(A) = / X (k) x Y (k) x A*
and
(X (A) x (Y)(A) = (/ X(n) x A™) x (/ Y (m) x A™)
%/ / X(n) x Y(m) x A™t™

To give an arrow (X X Y)(A) — ¢(X)(A) x£(Y)(A), by universal property of the coend, is equivalent

of giving a family of arrows
X (k) x Y (k) x AF = 0(X)(A) x £(Y)(A)
for all k¥ € F that satisfies the wedge condition. We take the following composite

X (k) x Y(k) x A*

|

X (k) x Y(k) x AF+F

|

" X(n) x A" x ["Y(m) x A™
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We check the wedge condition. Let g : £k — r. The following diagram commutes

Y (k) x A*
/ \
X (k) x Y (k) >x A" (X)(A) x £(Y)(A)
\ ) x Y(r) x/

because we have the following assignations on elements

(z,y,fog)

(z.y, f

I
—
—

>
—
<
S~—

8
S~—
~
:_/

~
—
2
S
\.\/
~
S~—"

and by universal properties of the coends (x, og) = (X(g)(z), f) and (y, fog) = (Y(g)(y), f) since

and ) x 4+
\
(k) x A" ((Y)(A)
\ /
Y(r)x A"
commute.

Inversely to give an arrow £(X)(A) x £(Y)(A) — £(X x Y)(A) is equivalent, by universal property of
the coend, to give a family of arrows

X(n) xY(m) x A"™ = (X x Y)(A)
for all n,m € F that satisfies the wedge condition. We take te following composite
X(n) x Y(m) x Antm

|

X(n+m) xY(n+m)x Antm

|

¥ X (k) x Y(k) x A¥
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We check the wedge condition. Let g : ny — no and h : m; — ms. The following diagram commutes

/

X(n1) x Y(my) x Anztm2 X xY)(A)

\

X(ns) X Y (mg) x Anz+m

) X Y (my) x Amtm

\/

because we have the following assignations on elements

(z,y,fo(g+h))

(X @nl )(@),Y (im, ) (), f o

(g+h))
9)(), Y (im, 0 B)(y),

)

= an

/

where i, : n1 = N1+ M, by, M1 = N+ M, Iy, D N2 — N2 + Mg and iy, @ M2 — N + ma. By
naturality of these inclusions i,, 0 g = (g + h) 0 4p, and i, o h = (g + h) 04y, . Moreover by universal

property of the coend (X (in,)(2), Y (im, ) (y), f © (9 + h)) = (X((g + h) 0 in,) (@), Y ((g + 1) © im, ) (), [)
since they come from (X (in,)(x),Y (im,)(y), f) with the arrow g+ h

\

’

X(m + ml)
xY(nl + ml)
XAn1+m1

XY(TLl —|—m1) X Ak

XAH2+m2

oo - \
. /

X (na + mo)
XY (n2 +mo)
XAaner

Now we check that these two arrows are inverse to each other. Starting with (x,y,a) € (X x Y)(A)
we have the following composite

(,y,0) = (z,y(00]) = (X(in)(@),Y (im)(y), [a;d])

where i, : n = n+ m and 4., : n +m. The elements (z,y,a) and (X (i,)(x), Y (im)(y), [a, a]) come from
X(k+k)xY(k+k) x A* with the arrow f = [idg,ids] : k+k — k

X (k) x Y(k) x A*

X(H)xY(f)xi

X(k+k)xY(k+k)x A

m\

X(k+k) x Y(k+k) x Ak+*
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on elements

(z,y,0)

/

(X (in)(2), Y (im)(y), a)

\

(X (in)(), Y (im)(y), [a, a])
Starting with (z,y,a) € £(X)(A) x £(Y)(A) we have the following composite

(@,y,0) = (X(n)(2), Y (im)(y),a) = (X(in)(2),Y (im)(y), [a, a])

The two elements (z,y,a) and (X (i)(x),Y (im)(y), [a,a]) come from X (n) x Y (m) x APTMH+M with
the arrows i,, :n —>n+mand 7, :m —n—+m

X(n) x Y(m) x Avtm

X(n) x Y (m) x Avtmtntm

X (i) XY (i ) X1
X(n+m) x Y(n+m) x Antmtntm

on elements

(x7 y? a’)

/

(z,y,[a,al)

T

(X (in) (@), Y (im)(y), [a, a])
Finally we check naturalities in A and X, Y. Let f : A — B. The naturality square

UX % Y)(A) — 0(X)(A) x £(Y)(A)

| |

X xY)(B)——=4(X)(B) x L(Y)(B)
commutes because we have on elements

(x»yva) e (l',y, [av a])

I !

(@9, f o a) ——(z,y, f o a,d])

Let f: X — W. The naturality square

X xY)(A) ——=L(X)(A) x LY )(A)

i i

YW X Y)(A) — (W) (A) x £(Y)(A)
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commutes because we have on elements

(xvy’ Cl) — (.13, Y, [aa CL])

-

(fk('r)7y7a) S (.fk(x)7 ) [CL,CL])

Let f:Y — W. The naturality square

U(X % Y)(A) — £(X)(A) x £(Y)(A)

| |

X x W)(A) ——=L(X)(A) x L((W)(A)
commutes because we have on elements

(l‘,y, a) — (.13, Y, [CL, Cl])

I I

(Z‘, fk(y)va) S (mvfk(y)’ [ava])

B.5 Proof of proposition 4.2.30

It is obviously natural in F' and G. We verify the commutativity of the monoidal functor axioms. The
first one concerning the associativities is as follows.

JP T F @) < (G@))" x (H(n))? — [T F(r) x (J* G(q) x (H(n))")"

| |

JPF(G(p) x (H(n))? JTF(r) x (G(H(n))"

On elements we find

(z,9=1l91,...,9:): 7
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Now we turn to the right unit axiom. Along the right-hand side of the square we have the following
composite

S (F o U)(m) x (U ()™ (z, f)
J™(F 0 U)(m) x (IdoU (n) o)
= " F(m) x (140U (n)) !

FoldoU(n) F(f)(x)
FoU(n) F(f)()

which yields pp.,(z, f) = F(f)(x) as desired. Now we take a look at the left unit axiom. Along the
right—hand side of the square we have the following composite

" U(m) x (F o Uln))*

= ™ x (F(n))™ @, f)
J™1d(m) x (F o Un)™ (i.f)
IdoF o U(n) o
FoUn) %

which yields Ap (7, f) = f(i) as desired.

B.6 Proof of proposition 4.2.31

We check the wedge conditions. Let h; : m; — ¢; be arrows in F. The following diagram commutes

X(n) xY(my) x ... xY(my,)

X A2 i=1 ™
ff(lrg?ii(ml) - o /X =0
>< Y(ql)

XAZZ 14
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because on elements we have the following assignations

n
TyYly---53Yn, A0 Zhl
=1

\? /

TyYlyeo-sYnya i=1 ‘
= I7Y(C/1 o hl)( 1)’ )
° hn)(yn)va
Y(h)(y1)s -, Y (hn)(yn), a
The elements x, Y (¢1)(y1), ..., Y (en)(yn),ao > h; and 2, Y (¢} o h1)(y1), ..., Y (c), © hyn)(yn), a are equal
i=1
since they come from z,Y (¢1)(41), - .., Y (¢n)(yn),a € X (n) x Y (3 my)™ x AXi=19 with the arrow > hy
i=1 1=1

as illustrated below

X X(n)x
XY (3 my)" x Axi=14i x [TY(r)" x A"

i=1
id x(Y (3 hi))™

><Y(Z1 qi)" % A1 @

n
and Y h; o ¢; = ¢} o h; by naturality of the inclusions.
i=1

So by universal property of the coend we have an arrow X (n) x ([ Y (m) x Am)n =2 U X®Y)(A)
for all n € F.

Now let f:n — p be an arrow. The following diagram commutes

><Am
x (™Y (m) x A™)” UX®Y)(A)
><Am
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because on elements we find

'Ivyf(l)a"'ayf(n)vaoh

/

x,Y(cl)(yf(l)), ey
Y(Cn)(yf(n))a aoh

\ o/

TyYly -y Ypy @
et = X()@), Y ()n),- -,
\ Y(Cp)(yp);a
X(f)('r)zyla - Yp,a
n P
and h: Y7 myu — >, m; =7 — 1’ is induced by f. By universal property of the outer coend we have
i=1 i=1
X(n) x fT(Y(r))” x A" (B.3)
id x (=)o f) xi \
X(n) x fT(Y(r))p x A" fn X(n) x fT(Y(r))" x A"

m

X(p) x ["(Y () x A"

\

by universal property of the inner coend we have

Y(
idW

Y (r)" x A"

X(h)th\

V()" x A

)" x AT (B.4)

Y (r) x A"

\/

So together
X () @), Y () (), Y () (yp) a
is identic by (B.3) with

€T, Y(C} 1))(?/]”(1))7 RN Y(C}(n))(yf(n))va
=z, Y(hoc)(yray) - Y(hocn)(yrm))a

is identic by (B.4) with

z,Y(c1)(yray)s - Y(en)Wrmy)saoh

Now we check naturality in A, X and Y of the above constructed arrow. Let f : A — B. The
naturality square

(X (LY (A)) —= £(X @ Y)(A)

i |

(XY (B)) — (X ® Y)(B)
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commutes because on elements we find

Ty Y1y s Yn, O b———> 337Y(01)(1/1)7 e 7Y(Cn)(yn)’a’

I |

Y1y Yn, f oak—— 337Y(01)(1/1)7 (R 7Y(Cn)(yn)7 f ca
Let f: X — Z be an arrow in F. The naturality square

(X (LY (A)) —= 6(X @ Y)(A)

| l

LZ(Y (A) ——=UZ RY)(A)
commutes because on elements we find

LyYiy--- 7yn’a}%xay(cl)(yl)a < 'aY(Cn)(yn)va’

| ]

fn(x)7y17 cees Yn,a > fn(l'), Y(Cl)(yl)v s 7Y(C7l)(yn>7a
Let f:Y — Z be an arrow in F. The naturality square

X (Y (4)) —> (X @ Y)(A)

| |

(X (0Z(A)) — (X © Z)(A)

commutes because on elements we find

L T T z,Y(c)(wi),-..,Y(cn)(yn), a

| |

e Fo (Y ()W) (Y (en) ()
T (05 fun ) == ) e ) o Z(en) Fom (50,

Now let us check the left unit axiom. Along the right—hand side we have the following composite

™ X (n) x A" T,a1,-..,0n
m;=1
an(n)x(fmmxAm)n z,(1,a1),...(1,a,)

r=0, mi=n

[ X (n) x rm x A" x,idy,, a1,. .., a,

[T X(r) x A X(idp)(x),a1,...,an

which yields identity on z, a1, ..., a, as desired. As for the right unit axiom we find along the right hand
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side the following composite

me(m) x A™

[nx (™ X(m) x A™)"

fonnxX(r)”xAT 1,2,a1,...,a0n
fTX(T)XAT z,an, ; An
which yields identity on z,a,...,a, as desired.
The axiom concerning the associativities is as follows
((X 0lY)olZ)(A) == ({X o (Y o lZ))(A)
UXRY)olZ)(A) (UX o l(Y ® Z))(A)

On elements along the left hand side we have

L A L) L O Lt

Chapter B. Proofs of chapter 4

TyYly .- -
X(n) xY(my) x...xY(my) e e
XZ(kl,l) X ... X Z(k]}ml) X Ak1’1+"‘+k"11m1 s L 7. . NS 9
X ... ’
X Z(kn1) X .. X Z(nm,) X Akniteham, St lm an
r=y.m;
fnfopl-..prX(n)XY(:)n+ lexvy17'2:1':nym7
PiT...TPr SRR Myttt
XZ(pl) SRR Z(pr) . A Zn,la .. ;Zn,mn; [ah v 7an]
q=3_pi=3_ ki
Ty Y1y, 4,
" [T [*X(n) x Y(r)" x Z(q)" x A - Zi’m ’[a;"’ 0]
dseees Zn,mns sy
li=..=Lp=r=)_m,
Iv?lw-.ayma
z o2
TP X () x Y (6) X . x Y (6,) b
XZ(q)el+~u+£n x A4 - L
Zl,].7 MR ] zn,m"v

[a1,...,a]
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where 7; € Y/(

n
1=

M=

ml) and Zij € Z(
1 1=1

Zf k; ;). Along the right-hand side we have on elements
j=1

SRR e R R
n

X( )XY(ml)xxY(mn) Ly Y1s - Ym,
X Z(k11) X ... X Z(k1m, ) x ARratthim, 21,155 F1,my ) O1,
X ... ce
Zn,lye--y R ,a
XZ(kml) X ... X Z(kn,mw) X Akn,1+--.+kn,mn n,1 N, M An

lm—zj ki j

TyYtlye s Ym,
A AP R L L 211y s 21ms
X(n)xY(my) x...xY(my)
XZ(p1)™ X ... X Z(pp)™n x AP1TFPn

cy
~ ~
Zn,ls ey Anymp

[a1,...,an]

1Q=ZP1
fnquml"'fmn Ty Yl -5 Yms

X(n)xY(my) x...xY(my,)

21,17 .. 7zn,mn?
Xz(q)ml-i-...-i-mn X Aq

[a1,...,an]

The two resulting elements are equal since they come from X (n)xY (m1)x...xY (my)x Z(q)2= it -+ mix
A? with the arrows ¢j : m; — > m; for j=1,...,n

X(n)xY(my) x...xY(my)
XZ(q)m1++m7z X Aq

id X((W \
X(n) xY(mq) x...xY(my,)

XZ(q)EmiJr...Jeri x A4

id xym

X(n) x Y (X mi) x ... x Y (X my)
XZ(q)Zmi+~u+zmi % A4

..

B.7 Proof of proposition 4.3.34

Let us recall that nx , : X(n) — fm X (m) x n™ is given by the composite of the following mapping with
the n-th coprojection.
x = (x,idy)

By lemma 4.2.32 the composite k¢ is monidal. The identity functor Id is trivially monoidal.
The first monoidal natural transformation axiom is in our case

k(X @ k(Y
X®Y E(EX o tY)
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The composite along the right—hand side is the following

J7 X m) x (Y () (2315 )
TP [T X (p) x mP . . .
xj;/((]fl) {( N fo(qm)px ZZI'L:(%‘ (z,idm, Y1, - - - »Yms lidp,...,id,))
e A R @t i)
r=>321"
fr fm X(m) < (Y(T))m < n’ ($7Y(61[3((iy1) ld}’:]()cn)<yn)’
Along the left—hand side we have
J7 X (m) x (Y (n)™ (z, yh.I - Ym)
J7 T X (m) x (Y ()™ x n” (@1, - Y, idn)
These two elements (2,1, . . ., Ym,id,) and (x, Y (c1)(y1), - - ., Y (cn) (Yn), [idn, - . ., id,]) come from [ X (m)x
(Y(m x n))™ x n™ with the arrow [id,,...,id,] :n+...+n=mxn—=n
x (Y(
J™ X (m) x (Y(m x n))™ I ™ X (m)
xn" x(Y(r))™ x n"

Y(m x n) nmxn
and on elements

(m)ylv"'7ymvidn)

The triangle

U~ kU
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U
X
tdv k1d
w\
U

kLU

becomes the following

if we unfold the arrows. Let n € F and 7 € n. On elements we have

\

The two elements (1,¢) and (i,id,,) are identic since they come from 1 x n™ with the arrow i : 1 — n
™ m x nm

on elements

(i,id,,)

e

(1,id,)

(1,4)

B.8 Proof of proposition 4.3.35

Let us recall that ep 4 : fn F(n) x A™ — F(A) is given by the universal property of the coend, and the
arrows

F(n) x A™ — F(A)
for all n € F are given by the following mapping

(@, f) = F())

By lemma 4.2.32 the composite £k is monidal. The identity functor Idg is trivially monoidal.
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The first monoidal natural transformation axiom is in our case

OkF o tkG
((kF ® kG) FoQ
(k(F o G)

Along the left hand—side we have the following composite

M F(n)x
XG(ml) Xf s G(mn) < AXi1 ma (:E,yl,._._.,yn,a)
=30 ™M
J7 " B ) x Gy < AT (@, G(en) 1) - . Glen) (yn)s )
9=[G(ci)(yi)li=1..n:n—=G(r)
JTFG(r) x A (F(9)(x), a)
FG(A) F(G(a)o g)(z)

Along the top we find

M F(n)x
XG(my) X ... X G(my) x Aximam (@415 Yny @1 )

FG(A) F([G(ai)(yi)]i=1...n)(x)

l[c(ai)(yi)]iL“n:nﬁGA

where a = [a;]i=1..n and a0 ¢; = a;, so F([G(a;)(yi)]i=1..n)(z) = F(G(a) o g)(x). The triangle

S\

thld —————1Id

AN

becomes the following

lk Id
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if we unfold the arrows. Let A € Set and a € A we find on elements

(1,a) a

€1d

B.9 Proof of proposition 4.7.50

We check the wedge condition. Let g : m — p. The following diagram commutes

X(m+1) xY(n)™

/

/
X(m+1) (X ®Y)(n)
\

\

X(p+1) x Y(n)?

because we have the following assignations on elements

D(), [Y (in) © f,7n])

(:E, \
>/ ) f 0.5

The elements (z, [Y (in) o fog,7,]) and (X (g+1)(x),[Y (in)o f,7,]) are equal by universal property of the
coend since they come from (z, [Y (i,)o f,7,,]) € X(m+1)xY (n+1)P*! with the arrow g+1 : n+1 — p+1

X(m+1)
X(m+1) x Y(n+1)pPH (X ®Y)(n)

\

X(p+1)xY(n+1)P*t

+1 m—+1

Now let us check naturality of sx y,, inn, X and Y. Let f : n — p be an arrow in F. The naturality
square

(X®Y)(n) —=46(X®Y)(n)

i |

(X ®Y)(p) —= (X ®Y)(p)
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commutes because we find on elements
(x,g) e (Z‘, [Y(’L) © g’yn])

| I

(z,Y(f+1)o[Y(i)0g,7,)
@Y eg— (@ W@)oY(f)og.7,)

and by naturality of 7 we have Y (f+1)(7,,) = 7, and by naturality of the inclusions we have f+10i = iof.
Let f: X — Z an arrow in F. The naturality square

((X®Y)(n) —=46(X®Y)(n)

i |

(0ZRY)(n) ——=46(ZxY)(n)
commutes because on elements we find

(#,9) ———— (2, [Y(i) 0 9,9,])

! I

(fmt1(2), 9) > (fint1(2), [Y (i) © 9,7,])
Let f: (Y,y) — (Z,z) be an arrow in U | F. The naturality square

((X®Y)(n) —=46(X®Y)(n)

i |

(X ®Z)(n) —=6(X® Z)(n)
commutes because on elements we find
(z,9) ——(2,[Y (i) 0 9,7,])

J I

. (2, far1 0 [Y (1) 0 9,7,])
(@ fnog)— (xfz(i) © fn©°9,Zn])

by naturality of f we have f,,110Y (¢) = Z(i) o f,, and f,+1(7,,) = Z» by definition of an arrow in U | F.
Now we check the two axioms for U | F—strengths. The triangle

XU —=6(X®U)

L

0X
commutes because we find on elements

(l',f)'—>(x,[i0f,ﬁn}):(l',f+1)

I

X(f +1D(x)
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The other diagram is the following

XRY)®Z——=6X® (Y ®Z)

|

S(X®Y)®Z

|

(X eY)®Z) — X (Y ©Z)

Let n € F. Along the right—hand side we find on elements

" [T X(r+1) x Y (k)" x Z(n)* (z,a1,... a5, b1,... by
i ;|7P1:=k
[P X (r+1) x Y(p1) x Z(n)Pr (z,(a1,by,. .., by),
X ... R
xY (pr) x Z(n)Pr (@r,b1,...,br))
Im—r+l
(z,
i m (a1, Z(in)(b1), ..., Z(in)(br)),
™ X (m) x (f Y (k) x Z(n+1)k)
(ars Z(in)(ba),. .). , Z(in) (i),
Yz,

where i, :m > n+1,y: U >Y and z: U — Z andsowe have yz : U - URU — Y ® Z. At the

component n it assigns to an element ¢ € n, (y1(1),2,(i)) € fk Y (k) x Z(n)*. Along the left-hand side
we find on elements

r k (Jc,a1,...,ar7
f ["X(r+1)xY(k)" x Z(n) brse. . by)

Im-r—i—l

(z,Y(ix)(a1), ..., Y (ir)(ar), U,

[* ™ X (m) x YV (k+1)™ x Z(n)* bi,....by)
Iq-k#»l
JE™ X (m) x Y (@)™ x Z(n+ 1)1 (@, Y (ix)(a1), ., Y (ir)(ar), U,

Z(in)(b1), . -, Z(in) (bi) Zn)

lp—q—lwl

(z,
m (Y(ik)(al)az(in)(bl)v'"’Z(in)(bk)vzn)a
J" X m) < (S (0) x Z(n+ 1)) :
(Y( )( )’Z( )(bl) "7Z(in)(bk)azn)7
(> Z(in)(01), - - -, Z(in)(bk), Zn))

where iy : kK — k + 1. The two results along the right and the left-hand side are equal since each pair

(aj, Z(in)(B1), - ., Z(in) (b)) and (Y (ix)(a;), Z(in)(b1), - . -, Z(in)(br), Zn) comes from (aj, Z(in)(b1), .- ., Z(in)(be), Zn

)
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with the arrow i, : k — k+1

Y (k) x Z(n)*

id x (—oiy

/

Y (k) x Z(n)k+1 Y (k) x Z(n)*

4
\

Y (iy)oid
Yk +1) x Z(n)*+!

the last pair ¥z, = yznt1(1) = (y1(1), 2n+1(1)) and (G, Z(in)(b1), - .., Z(in) (b
(Yr+1(1), Z(10) (b1), - - -, Z(in ) (bk), 2n+1(1)) comes from (y1(1), Z(in)(b1), ..., Z(
arrow 71 : 1 > k+1

)7zn) =
i) (bk)s 2n+1(1)) with the

Y (1) x Z(n)

id X(—Oil

'

Y (1) x Z(n)" Y (k) x Z(n)*

4
\/

Y (i1)oid
Y(k+1) x Z(n)*+!

since by naturality of the inclusions Y (i1)(y1(1)) = yr+1(1).

B.10 Proof of proposition 4.7.51

Naturality in A is given since i;, i, and g are natural in A. Let f : FF — H be an arrow in £. The
naturality square

F(GA+1) —= FG(A+1)

| |

H(GA+1) —> HG(A + 1)

commutes because f is a natural transformation. Let f : (G,g) — (H,h) be an arrow in Id | €. The
naturality square

F(GA+1) —= FG(A+1)

| |

F(HA+1) —> FH(A+1)

commutes because the following two squares commute

GA——=G(A+1) IHA+1*>G(A+1)
HA——H(A+1) 1—=A+1——=H(A+1)

Now we check the two Id | £-strength axioms. The trianlge

F'old —— (Fold)

e

F/



B.11. Definition 4.8.58 of aj* 231

commutes trivially. The associativity diagram

F(GHA+1) =——= F(GHA + 1)
FG(HA+1)
FGH(A+1) == FGH(A+1)

commutes because along the left we have the composite FG[Hi;, hat1 oi,] o F[Gi}, guat+1 o4,.] and along
the right F[GHi;,Ghat1 0 gat1 ©ir]. They are identic since the following diagrams commute

Gij
GHA —>G(HA+1)

Gi,h Oty

GH(A+1)
G(A+1)

| y e
HA+1—— HA+1 ——=GH(A+1

zl hat108,]

the triangle on the left commutes by naturality of the inclusion, the middle square is a naturality square
of g and the right triangle commutes because Hij o ha = hat1 04, and [hat1 04, hatt 04 = hayl.

B.11 Definition 4.8.58 of a;*

We have to check the wedge condition, that is, that the following diagram commutes for all arrow h : n — k

X (A+1)" — > X(m+1) x (A+1)™

) A“\ Lt
FF e X(p 1) x (A4 1)
on elements we find
z € X(n) . S(¢)(x) € S(m)
fohin—ak—=A+1 foh:m— A
x € X(n)
f:k—=A+1
(z) € S(k) X()S(h)(z) € S(p+1)

f k—>A+1 fip— A
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The two expressions (X(¢)(x), foh) and (X (¥)S(h)(z), f) come from X(p + 1) x (A + 1)™ with the
arrow ¢ : m — p which makes the following square commute

n*>¢ m+1

1
k7p+

and this map ¢ factorises foh:m — Aby fog:m —p — A.
Now we check naturality in A. Let g : A — B. The naturality square

(UX)(A) ——=4(6X)(A)

l |

((X)(B) —=£(6X)(B)
commutes because we find on elements

(, f) ——=(X(9)(2), f)

I |

(z, (g + 1) o f) —— (X(d)(x),90° f)

since {i € n such that (g + 1) o f(i) € B} = {i € n such that f(i) € A} and (g+1)of =go f. Let
h: X — Y be an arrow in F. The naturality square

(£X)(A) —= £(0X)(A4)

| |

(LY)'(A) ——=L(6Y)(A)
commutes because we find on elements

(@, f) ——— (X(¢)(2). f)

I |

(P (), f) = (41 (X (9)(2)), f)

and by naturality of h we have h,,+1(X(4)(z)) = Y (¢)(hn(x)).
Net we check the strength morphism axiom.

a;loEY
((X) 0 Y —> 15X o 4y

| lqs

((X oY) (6X®Y)

q |

UX®Y)) —= (X Y)

in proposition 4.9.64 we show that afl has an inverse ;. So instead of verifying the above diagram, we
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check the commutativity of the diagram where we inverse the arrows al_l. Let A be a set.

ozloéY

05X (0 (A)) —2 (0X) (v (A) + 1)

% i

16X @Y)(A) (X (Y (A+1))

| :

(5(X @Y)(A) —= UX @ Y)(A+1)

Along the right hand—side we have the following assignations on elements

f k+1 (f Y XAm)k xay17a17_'_-'>yk7ak
=k+1
fZX(E)x(me(m)xAm—f—l)g T, Y1501, - - Yk Ok, 1

P1=mM1,...,Ppe—1=Mk | pp=1

X0 < (JPY(p) x (A+ 1)P)€ T,Y1,i4 001, Ykyia 0 ag,y(1),1
q=>_pi=>_ mi+1
fq fé X(0) x Y(Q)e x (A+1)4 x’Y(Cl)([:‘Z:);aljy(fl’zi(?ékczlligcxy(l))a

233

where ¢; :m; = > m; = > m;+1and c:1— > m;+1. Along the left hand side we have the following

assignations on elements

f k+1 (f Y XAm)k xay17a17_~_-'>yk7ak
n=y.m;
" ka(k:—i— 1) x Y(n)k x A" :U,Y(c’l)(yl),...,Y_(_cgg)(yk)7 lat,...,ak
{=k+1
n ol ¢ n x7Y(i’ﬂOcll)(yl)v'"7Y(ioc§q)(yk)7yn>
J [T X)) xY(n+1)x A lar, .. ax]
p=n+1
p ¢ 0 xvy(inoc/l)(yl)v"'ﬂy(inOc;c)(yk)7yna
f f X(K)XY(p) X(A+1)p [iAoal,...,iAoak,l]

Since ¥,, = Y (¢)(y(1)), we obtain the same result along the two sides.
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B.12 Definition 4.8.59 of (5,
The arrow is obviously natural in n and in F'. Now we check the strength morphism axiom

OkF @ kG —— k(F') ® kG

| |

5(kF @ kG) k(F' o G)

l i

Sk(F o G) — k((F o G))

which is

" F(m+1) x Gn)™ — [T F(m + 1) x G(n)™

| |

J"F(r)x G(n+1)" F(G(n)+1)
FG(n+1) FG(n+1)

This diagram commutes because on elements we find

(r,9); (,9)
r=m-41 1
(z,[G(i) o g, ken]) F(g+1)(x)

e FIG() ens1 0] 0 F(g + 1)(2)
FlE@ g henl() =" F(G(i) 0 g, Feal (@)

wheree:Id - G,i:n—-n+landj:1—=>n-+1.

B.13 Proof of proposition 4.9.64

Next we check that the following diagram commutes for all arrow h: m — k

X(m+1)x A ——= X(m+1) x (A+1)m*!

/ \

X(m+1) x AF ["X(n) x (A+1)"

\ /

X(E+1)x A" —— X(k+1) x (A4 1)kF!
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on elements we find

reX(m+1) zeSim+1)
foh:m—k—A (foh)+1:m+1—A+1

reX(m+1)
f:k—A

T

X(h+1)(x) € S(k+1) S(h+1)(z) € S(k+1)
fik—A T o f+lik+1 oA+

The two expressions (z, (f + 1) o (b + 1)) and (X (h + 1)(z), f + 1) come from X (m + 1) x (A + 1)**+1
with the arrow h+1:m+1— k+ 1.

Now we check the naturality in A. Let f : A — B be a map. We have to check the commutativity of
the following square:

[T X(mA+1) x A™ 25 17 5(n) x (A4 1)"
55X(f)i i(fs)/(f)
™ X(m+1) x Bmwan(n) X (B+1)"

on elements we find
(x,g:m—>A)——>(z,9g+1)

1 1

(z,(f+1)o(g+1))
@ fog)——= "1 (fog) +1)

Next we check the naturality in X. Let p : X3 — X5 be a morphism. We have to check the

commutativity of the following square

[ Xy (m+1) x A™ 252 [ X (n) x (A+ 1)

ZépAl l(zp);‘;

™ Xo(m+1) x A™ —— [" Xo(n) x (A+1)"

Xy, A

on elements we find

I I

(Pm+1(2), 9) —— (pmi1(x), 9+ 1)
Next we show that a1 x 4 : £(0X)(A4) — ((X)'(A) is the inverse of af}m (UX)'(A) = L(6X)(A).

X(m+1)x A™ x, f

| |

X(m+1) x (A+1)m+! r, f+1

| |

X(m+1) x A™ X (id)(z) =
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Since the subset of A + 1 such that {i € m + 1s.t. f+ 1(i) € A} is exactly A and therefore the

corresponding map A+ 1 — A + 1 is the identity on A 4 1.

x (A+ 1) z, f

<~
<~

X(m+1) > A™ X(¢)(x), f

|

X(m+1) x (A+1)m*! X(o)(x), f+1

We remark that (f + 1) o ¢ = f and therefore the two expressions (z, (f + 1) 0 ¢) and (X (¢)(z), f + 1)

come from S(n) x (A + 1)™*+! with the arrow ¢ : n — m + 1.



Appendix C

Proofs of chapter 5

C.1 Monoidal isomorphisms of [F | T Set]”

C.1.1 Construction «

Let I' ¢ F | 7. We rewrite the domain and the codomain of ap g g« r using the coend notation

((Pu / / ) % Quy (A) X ... X Qu,, (A) x [T R(D)> '@

teT

and

(Pue(Q R))( //A / Pu(A') % Quy (A1) x [ R(T)A®

teT
X .

> Qum >< H Rt AL

teT

where A" = (u1,...,Up). To define a map ((P, e Q) @ R)(T') — (P, e (Q ® R))(T'), it suffices to give a
collection of arrows

Pu(A') % Quy () X ... % Qu, (A) x [T Re(D)A™® = (P, o (Q @ R))(T)

teT

237
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for all A, A’ € F | T that satisfies the wedge condition. We take the following composite

Pu(A’) X Qul(A) X ... X Qum(A) X H Rt(l—\)Afl(t)

teT

Py(A) X Qu, (A) X HTRt(F)Nl(t)
te
X ...
XQup (A) x [T R(D)A®
teT

|

P’u.(A/) X fAl Qul(Al) % H Rt(F)Al—l(t)

teT
X ...
X 2 Qu (Am) x T Ry(T)A0'®
teT

|

fA/ PU(A/) X fAl Qul (Al) % H Rt(F)Afl(t)

teT
X ..
X J2™ Qun (Am) x T Ry(T)An'®
teT

We check the wedge condition. Let f: A; — Ay in F | 7. The diagram

PU(A/) X Qul(AI)
X oo X Qu,, (A7)

x T1 Rt(r)Afl(t)
teT

Pu(&) % Quy (A1) \
(Pue

X oo X Qu,, (A7) P,e(Q®R))(T)

x [ Ry(T)Az"®)
teT \ /
)

Py (A7) X Qu, (Asg
X oo X Qu,, (A2)

x T1 Rt(r)Az‘l(t)
teT
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commutes because we have the following assignations on elements

p)Qla" K
Gms (T2 © fi)teT

/ p7Q17(rtoft)tET7"'7

paq17"'7 qm?(rtoft)tET
qm, Tt teT =D, Qul (f) (Q1); (Tt)tETv R
\ Qum(f)(Qm)v (re)eet
P Qu, (f)(q1)

Qur (Flgm): (r)rer

amhpmr%,ozqﬁnefezQw<A1»<I;faawﬁf“ﬂamﬂqufxqﬂ,ounere<9w<A2»<r;faawA5“”
te te

is equal since they come from g, (7¢)ier € Qu; (A1) x ] Rt(F)A';l(t) with the arrow f
teT

Qu, (A1) x T] Re(D)A1®

teT

:i;&y/” \\\\\
////”

A
e [ Qu@)
Qo)< JL R0 e
te

\(}C)m\

Qu; (D) x T Ry()22"®)
teT

Let g: A" = A" in F | T where A’ = (uq,...,uy) and A” = (vy,...,v;). The diagram

) % [2 Qu, (A
><Qu ( )< I1 Rt( @

teT
N x [2 Qo (A

< Qu,(A)  TT R(D)A™®)

\

L (A7) [ Quy () x ..
Xka( )the_[TRt() ®)

e (Q® R))(T)
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commutes since we have the following assignations on elements

Dygy, s
9gu,, (re)eeT

/ b, qgu17(7"t)t€'7'7~-~7

2 6117~-~, qumv(Tt)teT
Gk, (1)teT =Pu(9)) a1, (re)eeTs s
\ dk, (Tt)teT
P),q1, - - -
ka (Tt)teT

The elements p,qq, ,(T)ieTs - 4g.,,, (Tt)teT € Pu(A') (fAl Qu, (A1) x T1 Rt(I‘)Afl(t)) X ... X
teT

(2" Qu,. (Am) % tHTRt(F) n ) and Py(g)(0), a1, (1e)teTs - - Qs (1)t € Pu(A")

€
X (fAl Qo (A1) x H Rt(F)Afl(t)) X ... X (IA’”” Qu,, (Ag) X H Ry(T)%% t)) are equal since they come
from p,q1, (T¢)teTs - -+ Gk, (1) teT € Pu(A) (fAl Qyv, (A7) X tle_[TRt( )2 )) X ... X (fAk Qu,, (Ag) X

11 Rt(F)A;I(t)) with the arrow g
teT

P,(A)
XfAl Qu, (A1) x T] Rt(F)Afl(t)

teT
X

X 27 Qu (D) x TT Re(D)A'

teT

P, (A)
X [2Qu, (A1)
x T1 Rt(r)Afl(t)

o (P, o (Q® R)(I)

% [ Qu (Ar)
x [I Ry(D)2:'®

/

//)
XfAl Qvl(Al) X H Rt(F)Afl(t)

teT
X ...
X [ Qu (Ag) x [T R(T)A'®)
teT

Next we construct an inverse arrow. By universal properties of the coends, it suffices to give a
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collection of arrows

( ) X Qul X H R ATH(®)
teT
X .

X Qu,, (Am) x J] Re(T) — ((P,eQ)eR)(T)

teT

for all A’, Aq,..., A, € F | T satisfying the wedge condition. We take the following composite

Pu(A/) X Qul(Al) X H Rt(F)Afl(t)

teT
X .
xQu Ap) x I Re(T)Am
teT

|

Pu(8) % czm(zm X Qua (3 A

=1
x I Rt( YL AT
teT

[2 Py(A) X Quy(A) X ... X Qu,, (A) x T[ Ry(T)A™'®

teT

T2 2 Pu(AY) % Quy (A) X ... X Qu, (A) x ] Ry(T)A™®

teT

We check the wedge condition. Let f': A; = Z; in F | 7 for all i = 1,...,m. The diagram

P,(A)
XQuy (A1) x T Ry(T)21 )
teT
X ...
XQu, (Am) x [T Re(T)An'®
teT
e /
XQu, (A1) %
Ry(I)Z'®
X . .tET (P, eQ)eR)(T)
XQu,, (D)
x [1 Re(D)==' (1)
teT \
P,(A)
XQu, (E1) x [[ R(D)='®)
teT
X .

XQu. (Em) % [] R(D)=x"®

teT
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commutes since we have the following assignations on elements

b, q1, (rtl © fg)tGTa
s @, (11 0 [ teT

1 p;qhnalqmal
D,q1, (rtl)teTy [/rt © ft 7Lloft]t€7—
"7qmv(rln)t€7_ :p7QU1( )(QI)’
s Qui (F7™) (),
[Tt PR ln]tET

b, Qu1 (fl)(Q1)v (rtl)tGT»
s Qu (™) (@m)s (P )teT

By naturality of the inclusions A; — Y A; and Z5 — Y Ei, Qu,(f7)(g;) = (X f)(g;) and [rf o
i=1 i=1 i=1
ftia oo 7""1"{” © fti]tET = ([Ttla e 7"";”] © ;fti)tET' The elements p7617 v aama ([rt17 s 7r;n] © ;fti)tET and
(Z @) (X ) @) [t - - - 7" lseT are equal since they come from p, Gy, - .., Gy [1F5 - - - 77 teT
1=1
with the arrow f:= > f?
i=1
P, (A )m .
XQM(EAl) XQum(; A;)
Rt F (Zi:l i)7 (t)
teT
id X(—oft)ier
P,(A)
XQM(;AZ)
e (PuoQ) e R)(T)
XQu,,L(Z A)

x 1 Rt( )(ZL =)' 0

teT
id X Quy (f) X X Quyy, (f

x@AZ DX X Qu (X E)

=1 =1

X H Rt(F)(21:1 Ei) )
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Let f: A" = A" inF | T where A" = (uq,...,uy) and A” = (vq,...,v,). The diagram

P,(A")
—1
X< [ Qui (A1) x T R(D)®
teT
X ...
A’"’L
X [T Quy (Am) x TI Re(D)%m
teT
Aq
X f Q'Ul (Al) .
X H Rt(I‘)A1 (t)
LT (P Q) o R)(T)
A
X f * ka (Ak) .
x [T Ry()2x )
teT \
A//)
< I Qu(B) x ] BT
teT
X ...
X [ Qu (k) x TT Ri(D)2" 0
teT
commutes since we have the following assignations on elements
paqful ( f’u )tETa
cesdfy t“’ )tGT\\
/ Pl
b, q1, rt teT > q [ fur . ,'nfum]
k fum 't s It teT
"’qk’ t tET = u(g)(p)vqlv y
Qs [17 -5 i TeeT

, (1 )te%
.. 7(114:7 (Tf)tET

m k
The arrow f : (u1,...,um) = (v1,...,vx) induces an arrow f': >° Ay, — Z A; such that Q. (f')(qy, ) =
i=1 J

s, where we write (—) for both the inclusions A; — Z Ajand Ay, — Z Ay, and [ry Jus

=1

,rtfuvn ] —

PR
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[rt,...,7¥ o f/. So by universal properties of the coends
P, (A
X 7 Qu(I) X .. % Qu, (1) (C.1)
x 1 Rt(F)(F )7 ()
teT
Pu(47) / \ IR AN
X 7 Qu, (1) <[ Qui (1)
X ... X ...
X Qu,, (I) ) % Qu,, (I)
x I Re()™7® x IT R(r)™) 0
teT teT
P /
PH(A//)
r’ ’ ’
X [T Qu (T )/><1... X Qu,, (T7)
x TL R(r)® "0
teT
and
Pu(A/) x Qm(Z Afui)
i=1
X X Qui (2 A, (C.2)
S Ag, )Lt
o T Ry 2O
teT
id X(—oféV
P,(A)
“Qu (3 A,.) P
<. < ST Quy (1)
m X ...
X Qu,, ( Zl Ar,) X Qu,, (T')
1= ) X R, (T (F/)il(t)
(3 A7) tle_[T (1)
x [ Ry(I) =t
teT
id X Quy (F)X X Qupp (f’)x\
k
P,(A") x Qul(z:l A;)
X X Qu,, (22 A)

«
Il
-

x ] Re(T)(Za 2071 ®)
teT
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we have
Pu(g)(p)vqlv cey Qs [7"}, s 77"f]t€7’

equals to by (C.1)
—= —= 1 k
p’qfula v 7qu,m7 [rta s aTt]tET
equals to by (C.2)

_ _ fu Sum
p’qu?""qfum’[Tt 1,~~';rt }tET

We check that the above defined arrows are inverse to each otlher. Starting with
DLy GmyT € Py(A) X Qu, (A) X ... X Qy,, (A) x T] Ry(T)2 ), we have the following assignations
teT

P,q1s---,4m;,T

D,q1, 7.5 qm, T
pvqlw"yq"m)[ra"'vr]

The two elements p, g1, . . ., g, 7 € Pu(A)XQuy (A)X. .. xQu. (A)x [[ B2 ® and p, gy, ..., G, [r,...,7] €
teT

Py(A) X Qu(m x A) x ... x Qu. (m x A) x [[ R(I)™*27'®) are equal since they come from
teT
DGy s Gy T € Pu(A)XQuy(mXA)X ... XQy,, (mXxA)X [] Rt(F)A_1<t) with the arrow b : mxA — A
teT
Pu(A) x Qu, (A)
X oo X Qu,, (A)
x [] Ry(T)A®
teT
id ><Q“1(h)><...><W \
Po(A") X Quy (m x A) J2 Pu(A) x Qu, ()
X oo X Qu,, (M x A) X .o X Qu, (A)
x [] Ry(T)A™'(® % T[] R(T)2'®
teT teT

id x(m /

P (A") X Qu, (m x A)
X .o X Qy,, (M x A)

x T1 Rt(p)(mxA)*l(t)
teT

Starting with p, g1, 71, .-+, @m, "'m € Pu(A)XQu, (A1) X ] Rt(F)Afl(t) X X Qu,, (Am)x T Rt(F)A‘fnl(t)7

teT teT
we have the following assignations
DPq1,7T15- -5 qmy Tm
p,qlv oo 7qm7 [rlv e 7Tm]

|

pv@lv[rlauwrm]au.anv[Tlvu-aTm]



246 Chapter C. Proofs of chapter 5

The two elements p, 1,71, - - - , Gm, 'm € Pu(A)XxQuy (A1) x [T Re(T)21 O x. . xQu. (Am)x [T Re(T)2n'®
teT teT

and p,qy, P15 Pmly e ooy Gy [T« - - s Tm) € Pu(A7) X Qul(z A;)
i=1

x [] Ry(I)(Xi= AN w L x Qu,, (32 A) x T Re(T)Eiza A)THB) are equal since each pair ¢;,r; and
teT i=1 teT

Gj> 1., m] comes from g;, [rq,...,7my] with the arrow i; : A; — Y7 A;
i=1
Qu(8))
x I Re(1)% @
teT

Qu,(8,) I Qu ()
x ] Rt(p)(&,z1 Ai)T(t) < T1 Rt(r)Aj (1)
teT teT

id x (—o(i;)¢)e \

Qu,( i A)

X TR (D) S 20710
teT

Now we check naturalities in I', P,@ and R. Let f:T'y — I's in F | 7. The naturality square

(PueQ)eR)(I') — (Pue(Q®R))(I')

| l

(PueQ)eR)(I'2) — (Pue(Q® R))(I)

commutes since we have on elements

P:q15---59m, (ﬁ)teT’ P, q1, (rt)tET ce s Qm, (Tt)tET

I I

Dyq1y---54m, (Rt(f) o ’rt)tGT D, q1, (Rt(f) o ’rt)tET <o Qm;, (Rt(f) o Tt)tET

Let f: P — Sin [F ] T,Set]. The naturality square

(PyoQ)eR)(I') — (Py e (Q® R))(T)

| i

(Sue@)eR)(I) —— (Sue(Q®R))()
commutes since we have on elements

P,q1y---5qm, (Tt)tET —>D,q, (rt)tET <o Qm, (rt)tET

I I

fu,A’ (p)? qi1y---y49m, (Tt)tET P fu,A' (p)a q1, (rt)tGT ce s Qm, (rt)tET
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Let f:Q— SinY | [F] T,Set]”. The naturality square
(PueQ)eR)(I) — (Py e (Q®R))T)

| i

((PyeS)eR)(I') —— (Pye(S®R))I)

commutes since we have on elements

DiQis- s Gm, (T)eeT ! D, q1, (Te)teT - s Gmo (T )teT
D, fu1,A(q1)7 DR fu1,A(QM)7 (rt)tET F—D, ful,A(Q1)7 (Tt)tET DY f’LL1,A(QTn)7 (Tt)tGT

Let f: R— SinY | [F] T,Set]”. The naturality square
(PueQ)eR)I) — (Py e (Q®R))T)

l i

(Py 0 Q) S)() —— (Pue (Q®9))(T)

commutes since we have on elements

pa‘]la---7(Jm,(rt)teT'—>p,QI7(7"t)teT---an,(rt)teT
P41, --5qm, (ft © rt)teT*—>PaCI1a (ft © Tt)teT---ana (ft © Tt)teT

C.1.2 Construction A\
The left—hand side is explicitly

(Y@ P), /Ty A)x J] P ATH®)

teT
= / A~ X H Pt 1(t
teT
By universal property of the coend it suffices to give a collection of arrows
Yu) x [T P2 @ = Py(I)
teT
for all A satisfying the wedge condition. We take the following mapping

(7, (he)ter) = hu()

and check the wedge condition. Let f : A; — Ao, the following diagram commutes

() x J] P(T

teT

1y/’ \
/

Ayt (u) x [T Por)42®

teT
M

x [[ P(T

teT



248 Chapter C. Proofs of chapter 5

since we have the following assignations on elements

x, (he o fi)ieT

/

\

We define the arrow in the inverse direction by the composite of the following mapping and the
corresponding coprojection in (u).

ht teT

—1
lexE XHPt )
teT

These two mappings are inverse to each other. One of the composites is
r — (L) =z
which is the identity on . The other composite is
(z,(h)ier) = hu(x) = (1 hu(2)h)

This is identity because (x, (hy)ue7) and (1, hy(z)!) come from
(1, (he)eer) € (W)~ H(u) x [[ P(T)A"® with the arrow = : (u) — A
teT

“Hu) x [T R(I)ATO

teT

( (ht teT
(u)= (u) x [] P(T)A7"®)

teT Y& P), ()
(1, (he)teT) /

()~ (u) x [] PT)@ O
teT
(1, by () )

We check naturalities in I and P. Let f:T'y — 'y in F | 7. The naturality square

(y ® P)u(rl) — Pu(rl)

l l

(V@ P)y(l2) —— Pu(T2)
commutes since we have the following assignations on elements

z, (he)teT "> hu(2)

I |

z, (Pi(f) © he)rer —— Pu(f)(hu(z))
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Let f: P— Qin [F | T,Set]”. The naturality square
(V@ P)u(I) — P, (I)

l |

(V© Q)u(l) — Qu(I)
commutes since we have the following assignations on elements
z, (he)rer "> hu(2)
h

z, (fr,r o he)ieT = fu,al

uld

C.1.3 Construction p
The left—hand side is explicitly

Q& V) / Qu(A) x [T ynym)a~®

teT
A —1
— [ Quayx Lo
By universal property of the coend it suffices to give a collection of arrows
A)x JTC 1 @)2 70 = Qu(r)

for all A that satisfies the wedge condition. We take the mapping
(z, (ht)teT) + Qu(z he) ()

teT

and check the wedge condition. Let f : A1 — As. The following diagram commutes

Qu(A1) x TL 1)~ ®

teT
t

Qu(A1) x JT ()R ®

teT

AQ >< H
teT

since we have the following assignations on elements

ht o ft teT

/
\

s (hi)teT teT > (he oft))( )

ht teT

\
\/

249
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We define the arrow in the inverse direction by the composite of the following mapping and the
corresponding coprojection in I'.

r = (z,(idp-1)teT)
These two mappings are inverse to each other. One of the composites is

r = (z,(idr-1)er) = Qulidr)(z) ==z

which is the identity on z. The other composite is

(@, (h)ier) = Qud_h)@) =  (Qu_ hi)(x), (idr-1(p))eer)

teT teT

This is the identity because (x, (h¢)ier) and (Qu( Y- he)(), (idp-1(4))teT) come from
teT

(z, (idp-1(4))te7) € Qu(A) x ] (T=1())T " ® with the arrow > hy: A — T
teT teT

Qu(A) x TT (012 ®

teT

( (ht feT
Qu(A) x T (D71 ()T ' ®

teT (Q®Y)u(l)
(l', (idr—l(t))teT) /

Qu(T) x TL(r1e)r®

teT

(QU(ZteT hi)(z), (idr—l(t))teT)

We check naturalities in I' and Q. Let f: 'y — I's in F | 7. The naturality square

(Q % V)u(l1) — Qu(T1)

l l

(Q X V)u(l2) — Qu(T2)

commutes since we have the following assignations on elements

, (he)teT ——— Qu(g;ht)( x)

| 1

x, (ft o hy)teT ——> Qu( > (fie ht))(@

teT
Let f:Q — Rin [F | T,Set]”. The naturality square

(@ x V)u(l) — Qu(I)

i |

(RxY)u() —— R,(I)
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commutes since we have the following assignations on elements

z, (he) e > Qu(g% he) ()

I

fur (Qu( X he)(@)
fua(@), (h)teT —— - teT

teT

C.2 Proof of proposition 5.5.89

We check the wedge condition of apg r. Let f: Ay = Ay in F | 7. The diagram

P(A") % Qu, (A1)
X oo X Qu,, (A7)
x T1 Rt(r)Afl(w

teT
P8 % Qu (8 \
X Qu,, o
e ) (Pe (@@ R)(T)
teT \ /
P(A") X Qu, (Az)
X X Qum( 2)
x [ Ry()Az'®)
teT

commutes because we have the following assignations on elements

paqla" K
Gm.s (T2 © fit)teT

/ p7Q17(rtoft)t€T7"'7

paq17"'7 va(rtoft)teT
qm, Tt teT =D, Qul (f) (ql); (rt)tETv SRR
\ Qum (f)(Qm)v (Tt)tET
P Qu, (f)(q1)

Qun (D) (@), ()T
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each pair g;, (r¢0 f¢)reT € Qu, (A1) x HTRt(F)Afl(t) and Qu, ()(;), (r)ter € Qu,(Az)x HTRt(F)A;l(”
te te

is equal since they come from g, (7¢)ie1 € Qu; (A1) X ] Rt(F)Agl(t) with the arrow f
teT

Qu] X H Rt( ) fl(t)

teT

id x(=ofe)s \

™ Qu,(8))
Qu;(A) x TT Ru(D) o T] Ry (T)AT 0
teT

%\

QUJ A2 H Rt( 2 (t)
teT

Let g: A" = A" in F | T where A’ = (uq,...,uy) and A” = (vy,...,v;). The diagram

)% 2 Quy () %
xQu. (A) x T] Rt(l“ 0

teT
P(A) % [2Qu, (A)) X ... \
XQu, (A) x ] Ry(D)A'® / * (Q®R))(I)

teT

P(A") x [ Qu (8) x ...
XQu (A) X tle_[TRt<) “

commutes since we have the following assignations on elements

Pigu, -+
9., (Tt teT

/ D, QQul ) (Tt)t€T7 ey

b, CI17~-~, quma(rt)teT
dk, Tt teT = P(g)(p)7q17(rt)t€7—a"'7
\ qk (Tt)teT
) qiy,-- -,
QIm (Tt)te’r
Ay ATL(H) A,
The elements p, qq,, (re)eeTs -1 4qga,, s (Te)teT € P(A (f Qu, (A1)X [T Re(T)> )><. L.X (f Qu,, (A

teT
H Rt(F)A;ll(t)> and P(g)(p)a q1, (Tt)tETa -5 Gk, (Tt>tET € P(AH)
teT

X (fAl Qu, (A1) X t];[TRt(F)Afl(t)) X X (fA’“ Qu,, (Ag) X H R(T)2%" () are equal since they come
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from p.g (rher i (eher € PAY x (1 Qu(80) x [T R O) oo (2 Quu () x
te
I1 Rt(F)Agl(t)) with the arrow g
teT
P(A)
XfAl Qul(Al) X H Rt(F)Al—l(t)
teT
X ...
XfAmQum( )X HRt(
teT
AN /
x .[Al Q'Ul (Al)
x [] R(T)2 ®
y teT P ) Q . R
X fAk Q'Uk (Ak)
x I Rt(F)All(t
teT \
A//
XfAl Qul(Al) X H Rt(F)Al—l(t)
teT
X ...
X [ Qo (D) x [T R(D)A%®
teT

Next we construct an inverse arrow. By universal properties of the coends, it suffices to give a
collection of arrows
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for all A', Ay,..., A, € F | T satisfying the wedge condition. We take the following composite

P(A") X Qqu, (A1) x T] Rt(F)Al—l(t)

teT
X ...
XQu. (Am) x [ Re(I)An'®
teT

|

PAY) % Quy (32 ) x .. Qum(iAi)

=1
x [] Ry(I)Za 807 ®)
teT

J2P(A) X Quy (A) X ... % Qu,, (A) x thRt(F)A—l(t)

T2 2 PIAY) X Quy(A) X .. % Qu, (A) x T] Ry(D)A™'®

teT

We check the wedge condition. Let f%:A; — Z;in F | T for alli = 1,...,m. The diagram

P(A)
X Quy (A1) x [ Ry(D)AT'®
teT
X,
XQu, (Am) x [T Re(T)An'®
teT
P(A") /
XQUl (Al)x
1 R(D)= ()
< (PeQ) e R)T)
XQum (Am)
x ] Ry(T)Em"®)
teT \
P(A)
X Quy (Z1) x [ Ry(T)=®
teT
X

XQu. (Em) % [ Ry(D)=='®
teT
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xQu,n(ZA)
x 1 Rt( I)(ZL =)' 0

teT
id X Quy (f) X X Quyy, (f)Xid

P(A)
XQul(Zlﬂ) X Qu,, (
X H t(l")( P ED)THY)

255
commutes since we have the following assignations on elements
b, q1, (rtl © fg)tGTa
s Gy (1] 0 f)teT
p?617"'aqma )
P, a1, (P et [t off,...iri"o filter
N Z]mt(T;)geT =2 Qu(/)(@),
s Quy, (f™) (),
[Tt PR ln]tET
D, Qul (fl)(ql)v (rtl)tGTa
s Qu (™) (@m)s (P )teT
By naturality of the inclusions A; — Z A; and B; — Y 5, Qu,(f7)(g;) = (X f7)(g;) and [r} o
i=1 i=1 i=1
ftia ) 7""1"{” © fti]tET = ([Ttla v 7"";”] 2 ft)tET The elements b, QI7 s aama ([rt17 s 7r;n] ° ;fti)tET and
(Z @) (X 1) @m)s [t - - 77" leeT ave equal since they come from p, Gy, .., Gy, 175 -+ 7" eeT
=1
with the arrow f:= > f?
i=1
P(A)
XQM(ZAl) XQum(Z i)
x 1 Rt(r)@ !
teT
id X(*Oft)tgfr

P(A)

XQul(; Aj)

o ° Q) e R)(I')

=
=
=)

O

=1
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Let f: A" = A" inF | T where A" = (uq,...,uy) and A” = (vq,...,v,). The diagram

P(A)
X [ Qua (1) x TT Ry(D)A'®
teT
X ...
A .
X [ Quy (Am) x T Ry(D)A#'®
teT
s /
Aq
x [T Qu, (A1) x
[1 Ry(1)2"®
LT (PeQ)eR)T)
A
X f § ka (Ak) L
x T1 Ry(I)%x )
teT \
A//)
Ay -
X [0 Qu, (A1) x TT Re(D)A'®
teT
X ...
X [25 Quy (Ar) x TT Re(D)2®
teT
commutes since we have the following assignations on elements
D, qful ( f“ )tETa
TN (i )teT\
/ P,
— Suy Sum
b,q1, rt 1]; €T (quma [’rt ) y Tt ]tET
'-7(]k7 t tET :P(g)(p)v(hv""
G, 7 [ . an]teT
, (1 )te%
.. 7qk:7 (Tf)tET
m k
The arrow f : (u1,...,up) — (v1,...,vy) induces an arrow f': 3 Ay, — Z A; such that Q. (f')(Gy, ) =
J

=1

s, where we write (—) for both the inclusions A; — Z Ajand Ay, — Z Ay, and [ry Jus

=1

,rtfuvn ] —

PR
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[rt,...,7¥ o f/. So by universal properties of the coends
P(A)
X 7 Qu(I) X . % Qu, () (C.3)
x 1 Rt(I’)(F ) ()
teT
. / \ IA/ s
X 7 Qu, (1) <[ Qui(I)
X ... X ...
“Qu) “Qu,. (1)
x [ R/()T " (® « T] Ry(T)T) 0
teT teT
P(f)xid //////
P(A//)

s [ Qo (1) % . % Qu (T)
x TL R(D)™™®

teT
and
P(A)
XQul(;Afui) XX Qum(;Afui)
(35 Ap,)7'®)
% T Ro(r)' =
teT
idx(—of)teT
P(A")

m /
XQ’U«l(Z Afui) P(Al—‘,)
LA < Q)

R X ...
XQum(Z%Aﬁ”) X Qu,, (I'")
i= ‘ « R.(T)YT) ()
(32 A1) tg—d>
x [] R(T') =2
teT
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we have
P@) )Ty Tps [1d - - e eeT
equals to by (C.3)
p’qful goee 76fuyma [rtla s arf]tET
equals to by (C.4)
— fu fuyn
panulv"'aqf,Lm [ Y » Tt }tET

‘We check that the above defined arrows are inverse to each other

pana"'aqmaTGP(A/)XQul( ) XQum( )X HRt( )
b,q1y---54m,T
D,q1, 7.5 qm, T
pvqh e 7q"m7 [T, s 7T]
The two elements p, g1, . . ., gm, 7 € P(A)XQu, (A)X. .. xQu, (A)x [] R(T)2 W andp,qy,...,q,,, [T -
teT
P(A"YXQu, (mXA)X. .. XQ., (mxA)x [] Rt(I‘)(mXA)_l(t) are equal since they come from p, gy, ...,G,,,
teT
P(A") X Qu,(m x A) X ... X Qq, (m x A) x [ R(I)» ® with the arrow h:m x A — A
teT
P(A") x Qu, (A)
. X Qum(é)
x [T Ry(T)2
teT
id ><Qu1(h)><...><W \
P(A') X Quy (m x A) 2 P(A) % Quy ()
...xQum(m>1<A) ce e X Qy,, (A)
x [ R(T)2 @ x [] Ry(T)A'®
teT teT
id x(% /
P(A") X Qu, (m x A)
X Qy,, (M x A)
x [1 Rt(p)(mxA)*l(t)
teT
Starting with p. i, 1, G € P(A)x Quy (A1) % TL RUD)AT O xQu (M) x [ RUD)AR O,
teT teT
we have the following assignations
DPq1,7T15- -5 qmy Tm
p,qlv oo 7qm7 [rlv e 7Tm]
pv@lv [Tla cee a’rm]a cee aqma [Tlv cee arm]

Chapter C. Proofs of chapter 5

Starting with

t) we have the following assignations
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The two elements p, g1, 71, - - - , G, 'm € P(A)XxQu, (A1) x [T Re(T)21 O x.. . xQu. (Am)x [ Re(T)2m'
teT teT

and p, Gy, P15 Pmls ooy Gy [T15 - -+ 5 Tm) € P(A') X Qul(z A;)
i=1

x T R@)EZ 207 0 x Q. (32 Ay) x T Re(T)EE1 207 () are equal since each pair ¢;,r; and
teT i=1 teT

Gj> 1., m] comes from g;, [rq,...,7my] with the arrow i; : A; — Y7 A;
i=1
Qu(8)
x [T Re(D)® @
teT

Qu,(8) T Quy(8y)
% H Rt<I‘)(ZEL1 A)T(t) % H Rt(F)A;l(t)
teT teT

id x(=o(i3)e)s \

Qu,j (ZJ) Xi
Quj' (; AZ)

x T1 Rt(r)(_ZZ”:l AN
teT

Now we check naturalities in I', P,@ and R. Let f : 'y — I'; in F | 7. The naturality square

(PeQ) e R)(I'1) — (P (Q R))(T)

| |

(PeQ)e R)(I'y) — (P (Q R))(T2)

commutes since we have on elements

b,q1y---54m, (Tt)te’]‘i b, q1, (Tt)tET <o Qm, (’rt)tET

| I

D,q1s- -5 4m, (Rt(f) © Tt)tET D, q1, (Rt(f) © Tt)tE'T <o Qm, (Rt(f) © rt)tET
Let f: P— Sin [F ] T,Set]. The naturality square

(PeQ)e R)(I) —(Pe(Q®R))()

l l

(SeQ)e R)(I') —— (Se (Q® R))(I)
commutes since we have on elements

pb,q1, ... 4m, (rt)tGT —Dq, (rt)tGT <o Gmy, (Tt)tGT

! I

far (P)»(h, <oy Qm, (Tt)teT — far (p),(h, (rt)tGT <oy Qm,y (Tt)teT
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Let f:Q— SinY | [F] T,Set]”. The naturality square

(Pe@Q)eR)(I") — (Pe(QaR))(I)

l l

(P eS)eR)(I") ——(Pe(S®R))I)

commutes since we have on elements

Dyq1y---54m, (Tt)tET f D, q1, (rt)tET ce s Qm, (Tt)tET
D, ful,A<Q1), DRI ful,A(qm)a (rt)tET D, ful,A(ql)7 (ﬁ)teT ey ful,A(qm)7 (rt)tET

Let f: R— SinY | [F] T,Set]”. The naturality square

(PeQ)e R)(I) —(Pe(Q®R))()

| i

(PeQ)eS5)() ——(Pe(Q®S5))I)

commutes since we have on elements

D, q1,---5qm, (Tt)tGT 0,41, (Tt)tGT <oy Qm, (Tt)tGT
pb;q1,---5qm; (ft S Tt)teT D, q1, (ft ° T’t)teT <oy Qm, (ft S Tt)teT

We check the wedge condition of rp. Let f: Ay — Agin F | 7. The diagram

P(Ay) x [[ I

teT

/ \
( ) tle_['TF
\ /
P(As) x tle_[TF

commutes because we have the following assignations on elements

toft teT

/\

ht tET

ht teT

We define the arrow in the inverse direction by the composite of the following mapping and the
corresponding coprojection in I'.
r = (z,(idp-1p)teT)
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These two mappings are inverse to each other. One of the composites is
€T — (.r, (idp—l(t))teT) — P(ldr)( ) T

which is the identity on z. The other composite is

(@, (ht)ter) P(th)(x) = th , (idr—1(2))ee)

teT teT
This is the identity because (z, (hs)ier) € P(A) x [T (D71()2 ' ® and
teT
(P( ZTht)(l‘)y (idr—l(t))te’l’) S P(F)X H (F—l(t))l“*l(t) come from (,%‘7 (idrfl(t))tET) c P(A)X H (F_l(t))rfl(t)
te

teT teT
with the arrow ) hy: A =T
teT

P(A) x [T ()~ "

teT
P(A) x T (T4 ()" ® Y)(I)

teT
m\

teT ( " H ( 1(t)

teT

We check naturality of rpr in I" and P. Let f : 'y — I'y in F | 7. The naturality square

(PeY)(IT1) — P(I'1)

l l

(PoY)(Ty) — P(T'2)

commutes since we have the following assignations on elements

D, (h)ter ———> P(th ht) (p)

| l

Ds (ftOht)teTl—>P(f)°P(Z he) (p)

teT
Let f: P — @ in [F | T,Set]. The naturality square

(PeY)(I') — P(T)

L

(QeY)(I') —= Q)
commutes since we have the following assignations on elements
P, (ha)ier | P(ET he) (p)

| I

Fa(®), (he)er —— (P he)(p) = Q( 3 he) (£a(p)

teT teT
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We check the axioms for a right ) | [F | T, Set]” —action. First we check the commutativity of the
following diagram

(PeQ)eR)eS)(I') ——((PeQ)e(R®S5))I)

|

(P e (Q R))eS)(T)

|

(Pe((QeR)@5))([I) —(Pe(Qa(R®5)))T)

Along the left hand side we have the following assignations on elements

T 0N

b,
XQvl (A,) - X ka (A/) q1,---,4k,
xRul(A)x...xRum(A) Ty Toms
x ]I St(F)Ail(t) §
teT
l Ar=..=Ap,=A’
A A rA fAk P(A”) p
XQ'UI (Al) X Rul,l(A) XX Rul,'ml (A) Q1,7"17 e 7r7n)
X ...
X Qu,, (A) X R'lfk,l(A) X ... X Ruk’w (Ag) Qs Ty s s
x I Se(M)A~'® s
teT

J{ T'i=..=T=A

fA” IFI fAl ka fAA P(A")
X

I 2
Q’Ul (Al) X Ru1 1 ) o X Rul,ml (Fl) X tle_[TSt(F> () G
X o ce ey
XQu, (Ak) X Ry, (Th) x ... ¥ Ruy .. T) x I1 St(I‘)FEI(t) Qhos Ty 3T, S
teT _
fAu fAl . fAk P(A”) o
XQvl(Al)F -
Xf b Rulyl(Fl,l) X H St(F)F1,1(t)
teT
.-1_:1'7"1 m ) D,
< s (P ) tle_ITSt( e G171, 8,3 Tm, S
>< o ey
Xka(Ak) qk,T1,S...,"m,S
r-t
x [T xRy, (D) x x TT Si(D)T0
teT
X,

x [T Ry (Timy) % I sir e ®
S
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Along the right hand side we have the following assignations

I f P(A")

b,
XQM( ) Xka(AI) q1y-.-54k,
X Ry, (A) % 1>< Ry, (A) Tlyenes T,
X H St( ) ®) S
teT
J( Mi=..=Tp,=A
fA/ fA// P(A//)
XQ? (A") x o X Qy, (A") »
"R, (T S ' ’
Xf 1( 1) tle—IT t( ) ' q1y---,4k,
X ... T1,8,---3Tm,S
X [ Ry, (D) x T Sy(D)T 0 T
teT
PR prany B
XQUI (Al) .
x [TV Ry, (T11) x [T Se(D)Fa® T, =T,
' teT
X ...
Fl,ml ™ D,
8 f B, (P ) tle_ITSt( ) ot Q1571583 m, S
X ... .
Xka(Ak) qk,T1,8-..,Tm, S
X T X Ry (Dg) % x TT Sp(0) e
teT
X .
1
R R (Fpm) % TL 81
teT

So we obtain the same result. Next we check the commutativity of the two triangles.
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For the left triangle, we have the following assignations along the right—hand side

I3 12 P
XQuy (A) X oo X Qy,, (A)
x [T D)~

teT

TR A A peary
XQu, (A1) x T] D712 O

teT
X ...
X Qu,, (Am) x ] Fil(t)A;‘l(t)
teT

|

T2 P(AY) % Qu, (1) % ... x Qu,, (T

and along the left—hand side

JAPeQ)(A)x T[T L2 ®

teT

|

PeQ(I)

and

(PoQ)(D hi): (PeQ)(A)— (PeQ)(I)

teT

b, q1y-- -, ?ZYM (h't)tET

Ar=..=A,,=A

b, 41, (ht)t€T> e dm, (ht)tET

b, Qul (tg’ ht) (ql)a
s Qu, (ET hi)(qm)

X, (ht)tET

(Pe@Q)(2 hi)(x)

teT

(pa qiy .-, qM) = (pa Qu1 (Z ht)(q1)7 SRR Qum (Z ht)(qm))

teT

For the right triangle we have the following assignations along the right—hand side

J2 2 Py
x A7 u

b, T1,. .. 79_:_7?7,7 (ht)tGT

Ar=..=A,=A

P, 71, (ht)tGTa s s Ty (ht)tET

D, hu1 (xl)v ey hum (.’L‘m)
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and along the left—-hand side

e | O
/2 P(A) % r;q&awA‘%ﬂ P(X ) ®): (ho)ier

The two elements p, by, (21), ..., ha,, (Zm) =, (he © fi)ier and P( Y fi)(p), (he)ieT are equal since the
teT

come from p, (hy)ie7 € P(A) x ] Qt(F)Ail(t) with the arrow f= > fi : A’ = A
teT teT

P(A) x [T QuD)A™'®
teT

P(f)xid \
[2 P

P(A) x T] QD)2 ® P(A) x T] QD)2 ™'®
teT teT

id X (—of¢)te

P(A') x T] Q(r)»'®
teT

C.3 Proof of lemma 5.5.90

We construct two arrows of the bijection, then we show that they are each other’s inverses. Let ' € F | T .
We have

A
(@wame=/<Px@mmXR“w>

_ /A P(A) x Q(A) x [] B> ®

teT

and

(P eR)x (QeR)I') = (PeR)T)x(QeR)I)

- (/A P x ] Rt(r)ﬂ”l(t)) x (/ANQ(A”) <11 Rt(F)A”’l“))

teT teT

A’ A
= [ P Q< T Roy@ 070

teT

o First we construct the arrow ((P x Q) e R)(I') — ((P e R) x (Q e R))(I"). By universal properties
of the coend and the product it suffices to give for all A two families of arrows

P < Q)< TLRD 0 = [ Py T a0

teT teT

and
A//

PA) < @A) x JLAMATO o [ Q) [T )¢

teT teT
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that satisfy the wedge condition. We take the following composites

P(A) x Q(A) x ] Re(T)A™'®) P(A) x Q(A) x [ R(D)A'®
teT teT
P(A) x [ R(D)A7®) Q(A) x [ R(D)A™'®
teT teT
JE P x T Ry()A'0) T2 Q(A") x TT R(D)A" '
teT teT

Let f: Ay — A,. The following diagram commutes

P(Aq) x Q(Ar)
x ] Rt(r)Afl(t)

teT

1d><(y/ \
P(Al) X Q /—1
R, ()~ ®)
x T (D)™ ) LA
teT
%\ /
AQ) X Q A12
x [T Ry(T)%2 )
teT

since we have the following assignations on elements

p7Q7 ht © ft teT

/ Pa (ht o fi)teT
p.q, (he)ier (F)®), (h)eeT

\

The two elements p, (heofy)ie7 and P(f)(p), (ht)ier come from p, (hy)ie € P(A1)x T Ry(I)32'®
teT

ht teT
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with the arrow f

P(Ay)

x [T R(T)A1" ®
teT

idx(=ofede \
A/
J© )

P(A") x T] Ry(D)A'®
teT

P(Ay)
x [ R(I)Az'®

teT
Py /

P(Az)

x I1 Rt(F)A51<t>
teT

To check the wedge condition for the collection of arrows

Pa) < Q)< JLAM>O = [+ o)« T rur)> ¢

teT teT
goes the same as above by only replacing P by Q.

e Next we construct the arrow in the inverse direction. By universal properties of the coends, it
suffices to give for all A’ and A" a collection of arrows

P& x Q) x T] Rary® #8770 [ " P(a) < Qa) < [] R0

teT teT

that satisfies the wedge condition. We take the following composite

P(A") x Q(A") x ] R(D)A+2"71®
teT

P(A + A") x QA+ A”) x T Ry(I)A'+2")7®)
teT

fA P(A) xQ(A) x T] Rt(F)Afl(t)
teT

Let f': A}l — A} and f” : AY — AJ. The following diagram commutes

P(A]) x Q(AY)
x ] Ry(T)Ai+a071 )
teT
id x (=o(f'+f")1)

J2P(A) x Q(A)
x [] Ry ®
teT

P(f/m\ /
)

P(A3) x Q(Ay
x [ Ry()@at+2)7" (1)
teT
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since we have the following assignations on elements

pvQ) hto f/+f” tET

/

/ 12
pqu ht teT (f f ) >t€T

\ ) Q(f/)( ) (ht)teT

f ht teT

The two elements B, , (he o (f' + f")¢)eer and P(f")(p), Q(f")(q), (h )teT are equal since by nat-
urality of the inclusions P(f’)(p) = P(f' + f”)(@) and Q(f")(q ) ( + f)(q) and they come

from P, 7, (h)ier € P(A] + A") x Q(A’ + AY) x ] Re(I)R2+ ') with the arrow f’ + f”
teT

P(A] + AY) x Q(A] + A7)
x [] Ry(D)A1+AD7 0
teT

id x( W

P(A] + Al x Q(A} + AY)
x ] Rt(r)(AéJrA”) HO)

teT
P 1% QU +] /

A/ +A//) X Q(Al _|_Al/)
x [ Re(I)(A2+2)71 (1)
teT

J2P(A) x Q(A)
x [T Ry(r® '™
teT

e These arrows are inverse to each other. Starting with p, ¢, (h¢)ieT € P(A)xQ(A)X[[;c Rt(F)Afl(t),
we obtain the following composite

0, ¢, (hi)eer = Dy (h)eer @, (hi)eer = DG [he, haleeT

The two elements p, g, (ht)te7 and B, G, [ht, ht]teT are equal since they come from p, G, (ht)te7e P(A+
A) x QA+ A) x [ R(D)Y ' with the arrow f = [ida,ida] : A+ A = A

teT
P(A) x Q(A
x [] Ry(T)A'®
teT
P(f)xQ(f \
P(A+A)><Q(A+A P(A) x Q(A)
x T Ry(T)A¢ x H Ry(TA™'®)
teT teT

P(A+A) x QA+ A)

x [] Ru(T )A+A )7H(t)
teT
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e Starting with p,q, (h)ieT € P(A) x Q(A") x [[,c7 Re(T )(A'JFA”)_l(t), we obtain the following
composite
p ¢, (h)er = DG (M)er = P (M)ieT: T (hi)teT
The two elements p, q, (ht)re7 and B, (he)ieT, G, (ht)ieT are equal since they come from p, q, [h, helieT €
P(A)XQ(A")x [] Ry(I)& +A+A+A) TN with the arrows i/ : A — A'+A" i+ AV — A+ A
teT

P(A") x Q(A”)
x [] Ry(T)A+2")7" ()

teT
id X(V \
P( ) X Q AH R(F)

« 1_[ R (F) A/+A”+A,+A”) 1(t)

teT
P xQ@") X1
P( A”) > Q A+ A”

% 1_[ R( )A—&-A”—J—A—&-A”) l(t)
teT

Now we check naturalities in I',P,QQ and R. Let f : 'y — I's be an arrow in F | 7. The naturality square

(P x Q) o R(I'1) — (P R)(T) x (Q ¢ R)(T")

| l

(P x Q) ® R(Ty) —> (P« R)(T2) x (Q o R)(T2)

commutes because we have the following assignations on elements

D, q, (he)eT | D, (he)ee @5 (he)reT

I |

P, ¢, (Re(f) o hi)teT ——=p, (Re(f) © he)eeT, @, (Re(f) © hi)eeT

Now let f: P — S in [F | T,Set]. The naturality square
(PxQ)eR(I') ——= (PeR)(T) x (QeR)T)
(S x Q) e R(I') —— (S e R)(T') x (Q e R)(I')
commutes because we have the following assignations on elements

b,q, (h’t)tET D, (ht)t€T7 q, (ht)tET

I I

Ia), q, (he)teT ——= fa(p), (ht)teT, @, (he)eeT

Let f:Q — Sin [F ] T,Set]. The naturality square

(PxQ)eR(I') ——= (PeR)(T") x (QeR)T)

i |

(P x S) e R(I') — (PeR)T) x (S R)I)
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commutes because we have the following assignations on elements

D, ¢, (he)ieT ——>p, (hi)reT. 4, (he)teT

I I

P, fa(@), (he)ter ——=p, (he)eT, fa(q), (he)ieT
Let f: R— Sin [F | T,Set]”. The naturality square
(PxQ)eR(I) ——= (PeR)T) x (QeR)TI)

i l

(PxQ)eS()——=(PeS)(T) x (QeS)T)
commutes because we have the following assignations on elements

p,q, (ht)tET D, (ht)t€T7 q, (ht)tET

! !

b, 4, (ft,F o ht)teT D, (ft,r S ht)tGTv q, (ft,F ° ht)teT

C.4 Proof of lemma 5.5.92

We construct two arrows of the bijection, then we show that they are each other’s inverses. Let ' € F | T.
We have

(P+Q e RD) = [ (PA)+Q(A) x R™(1)

= / " Py x [[rm@* O +0@) x [T rR(m)*®

teT teT

and

(P R)+(Qe R)(T) = (P o RYT) +(Qe R)(T)
B /A P [ )0 Jr/A QA" x T[ B2 ®

teT teT

e First we construct the arrow ((P+Q)eR)(I') — (PeR)(I')+ (QeR)(T"). By the universal properties
of the coend and the coproduct, it suffices to give for all A a collection of two arrows

P(A) x [T Re(D)27® = (Pe R)(I) + (Q ¢ R)(T)
teT

and
Q) x [T R(T)* ™ = (Pe R)(T) +(Q e R)(T)
teT
that satisfies the wedge condition. We take the following the composites

P(A) x [] Ry(m)A™® Q(A) x [ ()2~ ®
teT teT
(p.R)(r\ /Q.R)(P)
(P e R)(I)
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Let f: Ay — As. The following diagram commutes

P(A1) x ] Ry(I)AT'®

teT

Q(A1) x [ R()*
teT
P(Ay) x [ Ry(I)22"®)

\/5‘

teT ) (PeR)I)
+Q(A) x [T Ry()%=® +(Q e R)(T)
teT
P(Az) x thRt( )az
+Q(As) x [ Ry(T)22®
teT
because each component
P(A1) x T R(T)2:®)
teT
P e R)(T)

teT

/
P(A1) x ] Ry(I)A2 ®
\

\A/

x T Re(T') A

teT

and the one with @ instead of P commutes since we have the following assignations on elements

, (ht) / (ht o fi)teT
t t”\ (@), (he)eer

ht teT

ht © ft teT

e Next we construct the arrow in the inverse direction. By the universal properties of the coproduct
and the coends, it suffices to give a collection of arrows

A) x ] Re(@A '@ = (P +Q) e R)(T)

teT

for all A’ satisfying the wedge condition and a collection of arrows

QA" x [T R ® = (P + Q) » R)(T)
teT
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for all A” satisfying the wedge condition. We take the following composites

P(A') x T] Ry(D)A'®

teT

P(A) x [T Re(D)A 0 + Q(A") x [T R(D)A®

teT teT

JAP(A) x [T R(D)AT O 4.Q(A) x ] R(D)A™'®)

teT teT

and

Q(A") x ] Ry(D)A"'®

teT

P(A") x T[T Ry(D)A"'® 4 Q(A") x ] R(T)2"'®
teT teT

J2P(A) x TT Ri(T)2 ' +Q(A) x [] Ry(D)2 ')

teT teT

We check the wedge conditions. Let f: A; — As. The following diagram commutes

P(AI)
X H Rt

teT

id X(—w"}r/

P(A

) \
x 1 Rt(rl)A;%t) (P+Q)eR)T)
teT

P(As

XHRt()

teT

since we have the following assignations on elements
, (Bt o fi)ieT

/\
/

p7 (ht o ft)teT
( )s (ht)teT

\

the two elements p, (ht o fi)ie7 and P(f)(p), (ht)ieT are equal since they come from p, (hy)ieT €

ht teT
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P(A) x [T Ry(T)22"® 4 Q(A1) x [] R(I)22"®

teT teT

P(Ar) % HRt()l“

teT

+Q(A1) x [ R(T

teT
id x(oft)tgﬁdx(/om{f

P(Al) v H Rt(F)Agl(t) \
teT P+Q )

+Q(A1) x [ R(D)22'®

teT
P(f)xm

P(A) x [ Ri(T)22"®
teT .
+Q(A2) x 1 RAF)AZ ©
teT
The diagram
Q(Al)
X H Rt
teT

QA

) \
x 1 Rt(rl)A;%t) (P+Q)eR)T)
teT

QA

x 1 Re(I)22"®

teT
commutes by the same reasoning as above.

e Now we check that the above defined arrows are inverse to each other. Starting with x, (hy)iet €
((P+ Q) e R)(T"), we obtain the following composite

z, (hi)ter = @, (h)ter = @, (he)ieT
Starting with x, (ht)ie7 € (P R)(T") + (Q o R)(T"), we obtain the following composite

z,(hi)ier = 2 (hiher =z, (hi)teT

Next we check naturalities in I', P, @ and R. Let f:I'; — I's in F | 7. The naturality square
(P+Q)eR)(I'y) — (P e R)(I') + (Q e R)(I'y)
(P+Q)eR)(I'2) — (P e R)(I'2) + (Q e R)(I'2)

commutes because we have the following assignations on elements

z, (h)teT z, (he)eeT

I |

z, (Re(f) o he)ter >z, (R (f) © he)ieT
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Let f: P — Sin [F ] T,Set]. The naturality square

(P +@Q) e R)(T) — (P e R)(') + (Q e R)(I')

l l

(S+Q) e R)(I') —— (S e R)(I') + (Q » R)(I')
commutes because we have the following assignations on elements, supposing that x € P(A)

z, (h) e 1, (he)teT

| |

fa@), (he)ter = fa(x), (h)ieT
Let f:Q — Sin [F ] T,Set]. The naturality square

(P +@Q) e R)(T) — (P e R)(I') + (Q o R)(I')

l l

(P+5)eR)(I') —— (P e R)(I') + (S e R)(I')
commutes because we have the following assignations on elements, supposing that = € Q(A)

z, (h) e >, (he)teT

| |

fa@), (he)ter = fa(x), (h)ieT
Let f: R— Sin [F | T,Set]”. The naturality square

(P+Q) e R)(I') — (P e R)(I') + (Q e R)(I')

|

(P+Q)eS)(I) —— (PeS)(I)+ (Qe5)(I)
commutes because we have the following assignations on elements

z, (ht)teT > z, (hi)teT

I 1

z, (fer o hi)ieT —— 2, (fir o hi)ieT
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C.5 Proof of proposition 5.7.96

We check the wedge condition. Let f: Ay — Ay inF | T where Ay = (ug, ..., Uy) and Ay = (v, ..., vk).
The diagram

(A1+< ) X Qu1

o X Qy,, (T
P(A1+ (u)) x Qu, (T') \\
‘X Qu(T) /Q (+ (w)
(A2+<> XQUI

X oo X Qq, (T)

commutes because we have on elements the following assignations

b, aful

© Ofu,,

b aful 7afumaq7u,1“

b,ai,...,a _ o
bt (B, a1 Ta

(u))(b),a1,...,a

The elements b, @y, ... Gy, Gur € P(A1+ () X Qu, (T + (1)) X ... X Qu,, (T'+ (u)) X Qu(T + (u)) and
P(f+{u))(0), a1, -8, Gur € P(Az+ (1)) X Qu, (T + (1)) X ... X Qu, (T + (u)) X Qu(T" + (u)) are equal
since they come from b,@1, ..., @k, Gup € P(A1+ (1)) X Qu, (T + (u)) X ... X Qu, (T + (u)) x Qu(T + (u))
with the arrow f+ (u) : Ay + (w) = Ag + (u)

P(A1 + (1) X Qu, (I' + (u))

X oo X Qi (T + (u))
XQu(l' + (u)

(PeQ)(I'+ (u))

Ag 4 (u)) X Qu, (T + (u))
X oo X Qu (T + (u))
XQu(T + (u))

The constructed arrow Sgégr is natural in I'. Let f : 'y — I's. The naturality square

(PY) 0 Q)(T'1) —= (P e Q)Y/(I')

i l

(PY() 0 Q)(T2) —= (P e Q)¥"(I'y)
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commutes because we have on elements

(pvxlw"awm) —— (pvflv"'afwuqiu,r‘l)

(p7 Qu1(f+ <u>)(§1)v
Qu (f + (1)) ()

(0 Quy (H)(@1)s -+ o3 Quy, () (m)) ——  Qulf + (W) (Turp,)
(pﬂQ’lLl(f)(xl)?

Qu.,, (f)( m), QU,FQ)

)

By naturality of the inclusions Q. (f + (u))(T;) = Qu, Qu. (f)(z;) (x;) and Q. (f + (u >)(qTF1) =Qu,p,-
Let f: P — R be an arrow in [F | T, Set]. The naturality square

(PY) 0 Q)(T) — (P o Q)¥/(I)

| i

(RY() 0 Q)(I) —— (Re Q)¥(T)

commutes because we have on elements

(p7x17"'7xm) B (pvjla"'vfmaT%F)

! I

(fA(p)ax17 cee 7xm) — (fA(p)vfh v >Emﬂq7u,r)
Let g : Q — R be an arrow in Y | [F | T, Set]”. The naturality square

(PY) 0 Q)(I) — (P o Q)”/(I)

| i

(PY() & R)(T) —— (Po R)¥(T)

commutes because we have on elements

(paxlw--vxm)l (paflv--wfmaTu,F)

(p7 Guy, T+(u) (fl)7 LR
(pa gu1,1‘(x1)a cee 7gum,F(xm)) B Gty D+ (u) (fm)a Gu, T+ (u) (Tuﬂr‘))
= (p7 gul,l"(xl)a cee 7gum,F(xm)aT7u,r)

By naturality of the inclusions gy, r4 (u)(T;) = gu, r(z;) and since g is a morphism of Y | [F | T, Set]”
we have g, 4 (u) (Tu,p) = Tu, -



C.5. Proof of proposition 5.7.96 277

Next we check the commutativity of the following diagrams

a s
(PY") e Q) e R PY{) o (Q® R) PYw ¢y g (P e Y)Y
S(“’).Rl Tl PV ()
(Pe Q)y<u> o R s PY{w)

S(u)l

(PeQ)eRPW —

Along the left-hand side of the rectangular diagram we have the following assignations on elements

2T P+ ) P
XQvl(A)X...Xka(A) T1ye-s Tk,
XRy, (T) X ... x Ry, (T) Y- Ym
i IA”—A’HM
12 2" pean P,
XQuy (A 4+ () X ... X Qo (A + (1) X Qu(A + (u)) Ty oy Thy Qu, ps
XRul(F)X...XRum(F) Yis-orYm
i IF’—A-‘-(u)
2 pan 3
XQupy (T) X ... X Q. (TV) x Qyu(T) T1y- 5 Thy Qu, p >
XRy, (T + (u) x ... x Ry, (T'+ (u)) x Ry (T + (u)) Yis- o s YmsTu,p
i Fl_...l—rkﬂ—r’
fA” fFl o ka-H P(AN) D,
XQ’Ul (Fl) X Rul (F + <7.L>) X ... X Rum(F + <’U,>) X Ru(F + <'LL>) T1, Y1 7ym7/r7u,1"u
X ... ol
XQu,. (T) X Ryy (T4 (u)) X ... X Ry, (T4 (u)) x Ry (T + (u)) Thy Y1+ -5 Ymo Tu,ps
XQU(Fk+1) X Ru1 (F + <u> X ... X Rum(F + <u>) X Ru(F + <u>) T?L,A7y17 s 7ynlaru,1"

where we write A = (uy,...,uy) and A’ = (v1,...,v;). Along the right-hand side we have the following
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b,
XQuy (A) X oo X Qy, (A) 1y Tk,
XRul(F) XRum(F) Y5 Ym
J{ IAl:..zAsz
AT A A pa (u)) 3
XQy, (A ) X Rul(I‘) X Ry, (T) L1 Y1y Ym,
X . Sy
Xka( )X Ry (T) X ... X Ry, (T) Thy Y15+ -5 Ym
l IA” A+ (u)
fAN fAl .fAk fAk+1 P(A//) P,
XQvl( ) X Rul(F + <U>) X ... X Rum(f‘+ <u>) wlayla v a?ma
X . e
Xka( ) % Ry (T + (u) X ... X Ry, (I + (u)) ThyY1s -+ r U
XQu(A) X Ry, (T + (u)) X ... X Ry, (T + (u)) qTu,p

where gr : Y - YV ® )Y — Q ® R, by definition

Vu(T) — [5 A w) x [T DA

teT

A=
T {w) 1, xt

[ Qu(A) x T R(D)AT®

teT

thus WF 1= (Qu L4 R)y<u> (F)v 1= un,l"+(u>(1) =

The two results along the two composites are equal, since each pair =;,y;,

Qu,(u) (1)3 ru,F(x)

(qu,a(1), 7y r4quy (1))-

s Yo Tu,p A0 T4, Yy e Yy
comes from z;,7,,...,7,,, 7o, With the arrow A — A + (u)
QUL A) x Ry, (T + (u >)
X Ry, (T4 (u
Qvl / \
X Ry, ( F+ /7 Qu(a
o ><Ru1 F+< )
><Ru F
m Jr \ / X Ry, >)

Qu; (A + (u ><Ru1 (T + (u
X .

% Ru, (T + () X Ru(T

and the last pair Gu, ;%1 Ums

Tur = Quat(1),7,- -

+(w)

3 ymv Tu, T4 (u) (1) and Gu, (u) (1)7 T, T4 (u) (1)
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comes from gy (uy(1), 71, -+ Upns Tu,r+<u>(1) with the arrow i : (u) — A+ (u)
XRu f Qu
; » xF (T +4 "
xR,
XR \ / - um F+ >)
) x Rul (T'+¢
><

xRy, (I'+ <u>) X RU(I‘ + (u))

since Qu (1) (qu,(u)(1)) = Gu,a+(u) (1)-
Now we turn to the triangular axiom. Along the right-hand side we have the following assignations
on elements

[ P+ () x I T @A z.(hirer
fA' P(A") x tg—(f‘ + (u))*l(t)A’—l(t) x, (he + <'U:}_1(t))t€7’

P(T) P(X he+ (u)(x)

teT

which is exactly rpyw (2, (ht)teT)-

C.6 Proof of proposition 5.8.100

First we check naturality of txy in X. Let f: X — Z be a morphism of [F | 7, Set]”. It is equivalent
to check the naturality of ¢x y in X because of the adjunction —®Y 4Y —o — and the following square

?X,Y®Y ET(XQ®Y)
- >

TXQY — " s (Y = T(X®Y))®Y T(X®Y)
Tf®Yl (Y%aT(ffi)Y))@Y lT(f(X)Y)

TZ0Y ——— > (Y = T(ZRY)®Y — > T(ZR®Y)

tz,y®Y ET(Z®Y)

which commutes if and only if tAX,y is natural in X. So we have to check the commutativity of the
following square

X XY o T(X @)
Tfl J/Y_OT(fé@Y)
TZ ——=Y o T(Z®Y)

tz,y
We are going to provide Y —o T(Z ® Y) with a ¥ x-algebra structure and check that tzy and Y —o
T(f ®Y) are morphisms of ¥ x—algebras. By definition T'f and tx y are morphisms of ¥ x—algebras. By
initiality of TX we can then conclude that Y = T(Z ® Y) otxy and tzy o T'f are equal.
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e YV o T(Z®Y)is a X x—algebra: First we define the arrow X — Y — T(Z®Y) to be the transpose
of

Xov I zev 225 1z Y)

Then we define the arrow §: 3(Y - T(Z®Y)) Y - T(Z®Y) to be the transpose of

(Y -T(ZoY))®Y
S5Y oT(ZQY),Y
Y ~T(ZeY)®Y)
S(er(zov))
S(T(Z@Y))

0ZRY

T(Z®Y)

° tAZ’y is a morphism of ¥ x—algebras: We have to check the commutativity of the following square

id +3(Z;

X+yrz ) v sy o T(Z oY)
[nzof,Uz]l \L[WZQQYO(JC@Y),/?_’)]
TZ — Y -T(Z®Y)

tz,y

which commutes if and only if the following two diagrams commute

X—E sy o (X®Y)

fJ/ iY—o(f@Y)

Y oY - (Z0Y)

'flgi iyﬂquﬂegy

TZ ——=Y —oT(ZRY)
tz,y

where 1 denotes the unit of the adjunction —®Y 4Y — — and n” denotes the unit of the monad
T'. The top square is a naturality square of n and the bottom square commutes because tzy is by
definition a morphism of ¥ —algebras.

w172 sy o T(Z0Y)

i E

tz,y

which commutes by definition of ?Z,y being the unique morphism of ¥ —algebras TZ — Y —o
T(ZRY).

e YV - T(f®Y) is a morphism of ¥ y—algebras: We have to check the commutativity of the following
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square
id +32(Y —T(fQY))

X+3(Y - T(X®Y)) X+35(Y - T(Z®Y))

J/fHd
Mxey,a] Z + E(Y —o T(Z ® Y))

\L[WZ@YO(f@Y)ﬂ]
Y -T(Z®Y)

Y - T(X®Y) T

This square commutes if and only if the two following squares commute.

X Z
nY\L \L’WZ
Y o (Xoy) Y v L (zey)
Y_°(77Y®x)l lY—O(ﬁ@y)
Y - T(X®Y) Y ~T(Z®Y)

_
Y T (f®Y)

where 7 denotes the unit of the adjunction — ®Y 4Y —o — and 5’ the unit of the monad 7. The
top square is a naturality square of  and the bottom one a naturality square of n7.

E(Y T (fQY))

S(Y - T(X®Y)) S(Y - T(Z®Y))

Ne(Y T (XRY)) NS(Y =T (ZQY))

Yﬂ(E(YﬂT(f®Y))®Y)Y

Y oY -T(X®Y))RY) - (BY -T(ZY))®Y)

Y —osn(y »T(x8Y),Y Y —osn(y wT(z0Y),Y
Y =S -T(X0Y)oY) 0 =TV 3 sy oT(ZeY)eY)
Y —oSer(xgy) Y —oXer(zov)
Y o S(T(X@Y)) YeRuey)) Y - S(T(Z®Y))
Y—ooxoy Y —ozgx
Y - T(X®Y) T Y ~T(Z®Y)

These squares are naturality squares of 7, s, € and of o (from top to bottom).

We check the compatibility of ¢ with n and p of the monad T and the compatibility with s the
strength of ¥. By definition of tx y we have the following commutative square

X+Xt
X+3TX — 25 X+ 5(Y - T(X®Y))

[nx,0x] [xey,d]

TX — Y -T(X®Y)
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it implies the commutativity of the following two diagrams

X (C.5)

lw\
nx

TX ——>Y o T(X®Y)

tx,y
-
STX —— L N(Y o T(X ®Y)) (C.6)
ox @

TX ————>Y o T(X®Y)

tx,y
By transposition (C.5) is equivalent to
XY
7IX®Y\L W
TX®Y T(X®Y)
which proves the compatibility of ¢ with 7.
By transposition (C.6) is equivalent to
Six y ®Y ~
STX @Y — sy wT(X oY) ey 2 s (Y = T(X@Y) oY)
ox Y TX (29 Y Yer(xeY)
x
TXRY oy T(X®Y) e ST(X®Y)

where the square I. is a naturality square of s and by definition of the transpose of t the triangle II.
commutes. So we find the following commutative diagram

s >
STX oY — 7 L S(TX oY) 2 LST(XeY) (C.7)
ox®Y TXQY
TX®Y . T(X®Y)
XY

This proves the compatibility of the two strengths ¢ and s with o.
In order to check the compatibility of ¢ with u, we have to check the commutativity of the following
diagram for all X|Y € [F, Set]

TTX Y ZXTTX oY) 2L TT(X oY)
Mx®Yl \L#X@)Y
TX®Y T(X®Y)

tx, v
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This diagram becomes by transposition

Y—-oTtx vy

TTX Y—oT(TX@Y)—’>Y—oTT(X®Y)
nx iY—wx@’
TX — Y -T(X®Y)

tx,y

In order to check its commutativity we provide Y — TT(X ® V) and ¥ — T(X ® V') with a Xpx—
algebra structure and show that ¥ — Ttxy, Y — uxgy and tAX y are morphisms of Y x—algebras.
Since tT x,y and px are by definition morphlsms of Y px—algebras, we can conclude by initiality of TTX
that tX vopx and Y —o uxgy oY — Ttxy o tTX y are equal.

eV oTT(X®Y) is a Xrx—algebra: We define the arrow
TX + E(Y —o TT(X ® Y)) —-Y —o TT(X (9 Y)

by giving the two arrows TX - Y - TT(X ®@Y) and 2(Y = TT(X®Y)) 2 Y =TT (X ®Y).
For the first one we take the transpose of

T
tx vy Nr(xey)
_—

TXRY —T(X®Y) TT(X®Y)
and for the second one we take the transpose of
(Y -TT(X Y)Y
SY oTT(X®Y),Y
(Y oTT(XRY)®Y)
Lerr(x@Y)

STT(X ®Y)

OT(XR®Y)

TT(X®Y)

oY oT(X®Y)is a Lpx—algebra: We define the arrow
TX—&—E(Y—OT(X@Y)) —>Y—OT(X®Y)

by giving the two arrows TX - Y - T(X®Y) and X(Y - T(X®Y)) Y - T(X®Y). For

the first one we take
tX Y

TX —Y oT(X®Y)
and for the second one the transpose of

SV -T(X®Y))eY
5Y T (X®Y),Y
SV -T(X®Y)®Y)
Zer(xoY)
ST(XQ®Y)

TXQY

T(X®Y)

(which is «).
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e Y —o Ttxy is a morphism of Y7 x—algebras: We check the commutativity of the Yrx-algebra
morphism axiom separately in the first and the second component.

TX e Y oTX®Y

nTXl lY—otx,y
Y —otxy

Y -TXR®Y Y -T(X®Y)
Yﬁn;x@yl lyﬁ’ng(xggy)
Y oTTXRY)——=Y -oTT(XRY)
Y —oTtx,y

The top square commutes obviously and the bottom square is a naturality square of 7.

(Y —T
(Y = T(TX ®Y)) eTtey)

Y -TT(X®Y))
NE(Y —-T(TXQY)) NE(Y —oTT(XQ®Y))

Y —oX(Y—-oT Y
Y =S =T(TX0Y) @Y 0 T8 sy TT(X0Y) Y
Y —opy or(TXx®Y),Y Y—opy orT(X0Y).Y

Y o3 (Y —-oT Y
Y oS(Y «T(TX®Y)oY) Lo Ty oy)

Y—oE(Y—oTT(X@Y)@Y)

Y —oXer(rxoy) Y —oXYerr(xov)

Y —oXT
Y = ST(TX®Y) il

Y o STT(X®Y)

Y —oorxgy

Y—or(xeYv)

Y - T(TX®Y)

e Y - TT(X®Y)

These squares are naturality squares of 77, s, € and of ¢ (from top to bottom).

o Y —o uxgy is a morphism of Ypx—algebras: We check the commutativity of the Xpx—algebra
morphism axiom separately in the first and the second component.

TX

nrx

Y—o(TX@Y)

Y —otx vy
Y -T(X®Y)

T Y —idr(xgv)
YH’"T(X@Y)

Y oTT(XRY) ————=Y - T(X®Y)

Y—ouxgy

The top triangle commutes because ¢ is by definition the transpose of t and the bottom triangle is
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a monad axiom.

S(Y —ouL
(Y — TT(X @ Y)) oy (Y - T(X®Y))
Ne(Y —-TT(XQY)) NE(Y —oT(XQY))
Y oS (Y —ouk gy)®Y
Y — E(Y'—QTTIK)(@g)/))@>}’ Y —o Z(Y’—«)TK)(Q§§/»<®<Y

Y—osy orr(x0Y),Y Y—osy or(x0Y),Y

Y —oS(Y —ouk oy ®Y)

Y—oE(Y—oTT(X@Y)@Y) Y—OZ(Y—OT(X(X)Y)@Y)
Y—OEETT(X(@y) Y—OZET(X[@y)
Yw2u§®y
Y — Z]jT()(Q@)/) Y — Z]X)(Q@Yﬁ
Y —or(xeYv) Y —ooxgy
Y TT(X®Y) = Y -T(X®Y)
Y_°“X®Y

The top three squares are naturality squares of 7, s and of €. The bottom square commutes because
1k oy is by definition the unique morphism of 7 (ygy)-algebras TT(X ® Y) — T(X ® Y) such

that
d+Sp% ey
TX® Y) +3XTT(X ® Y) ——=TX® Y) + ET(X & Y)
M%X@YwUﬂX®Y”l iﬁ¢ax®ﬂ
TT(X ®Y) p= T(X ®Y)
Pxey
commutes.

. fxy is a morphism of ¥ x—algebras: We have to check the commutativity of the following diagram

id +Ztx,
TX +3TX — 2> TX +5(Y - T(X®Y))
[id,ax]l i[?xyy,a‘)(@yOEET(X@y)Op]
TX — Y -T(X®Y)
tx,y

This square commutes obviously in its first component. The commutativity in its second component
is a consequence of the definition of tx y being the unique morphism of ¥ x—algebras TX — Y —o

T(X®Y).
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Appendix D

Proofs of chapter 7

D.1 Definition of ¢: [F | T, Set] — [Set /T, Set]

We check that ¢(X) is indeed a functor of [Set /T,Set]. Let f : I' — A be an arrow in Set /7. We
construct the arrow £(X)(T') — £(X)(A). By universal property of the coend it suffices to give an arrow

’ F’ L(t) r GNT I —1 /' (1)
X(T) x H r- — ') x H A7)

teT teT

for all T € F | T satisfying the wedge condition. We take the following mapping composed with the
corresponding coprojection

(@, (he)ier) = (@, (feohe)ieT)
We check the wedge condition. Let g : IV — I in F | 7. The following diagram

X (1)
« H F—l(t)r/*l(t)
teT
id X(Oy/ \
X(T) JUxT)
x [ THo)r x [T A7 )@
teT teT
X (g)xid /
F//
% H F ( )F” 1( )
teT

commutes since we have the following assignations on elements
s (ht © gt)teT)

/ (z, ffohtogt)teT)

(@, (he)eT) (@), (fe o hi)teT)

\

ht teT

287
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The two elements (x, (f; o hy o gt)teT) and (X (g)(z), (ft o ht)ter) are equal since they come from (z, (f; o
hi)ieT) € X(I) x H A= ® with the arrow g

X ()
x [ AT ™0

teT

i}%/

/

X(1) M x(r)
X H A_l(t)lwil(t) « H A—l(t)l“/’l(t)
teT teT
X (g)xid /
F//
x [T A~ ®
teT

Definition on morphisms: We check the wedge condition. Let g : IV — I in F | 7. The diagram

X(T7)
v H F—l(t)l"/’l(t)
teT
ldy/ \
X(I") Y (1)
< LT o < [T (o
teT teT
X(g)xid /
X(F//)
x [T ®
teT

commutes since we have the following assignations on elements

ht © gt tET

/\

(fr(z), (he 0 9t)teT)
(z, (he)teT) (frr(X(9)(2)), (ht)teT)

\/

ht tET

The two elements (fr (), (htogt)ier) and (fr(X(g9)(z)), (ht)ieT) = (Y (9)(fr/(z))) are equal since they
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come from (fr (), (he)ier) € Y(I') x ] T71#)T" @ with the arrow g

teT
Y ()
x H Ffl(t)l“’_l(t)
teT
Y ()
x [0 (0 [Tt (e
teT teT
Y (g)xid /
F//
x [T 0™ ®
teT

D.2 Proof of lemma 7.2.127

Let I" € Set /7. On the one hand we have

A1 pAs L
(¢P)(T) / / ) % Q(Ag) x [T ()2 ™

teT
and on the other hand
A
(P x Q) = [Py x Q) x [T
teT

In order to define an arrow (¢P)(T") x (¢Q)(T") — £(P x Q)(T"), by universal property of the coend we give
a collection of arrows

P(A1) x Q(Ag) x [T P71 (1)@+207° 0 - p(P x Q)(I)

teT

for all Ay, Ay € [F | T, Set] that satisfies the wedge condition. We take the following mapping composed
with the A; + As-th coprojection.

(P, ¢ (ha)eer) = (P(i1)(p), Q12)(q), (he)reT)

where we write 71 : A1 — A and i3 : Ay — A for the inclusions. We check the wedge condition. Let
fi: A1 = Al and fy: Ay — AL, The following diagram commutes

P(A1) x Q(Az)
x [] T~1(¢) (A1+A2) L)
tE
p(hW \
P(A ) X Q AQ
x T[T~ )(A’+A2> (@) {(P > Q)(T)
teT
idx(—m&
Q(A)
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since we have the following assignations on elements

(P, q, (he o (f1 + f2)e)eeT)

(P(i1)(p), Q(i2)(q),
(heo (f1 + f2)e)eeT)
(ht)eeT)

(2, a4, (he)teT)

(P(f1)(p), Q(f2)(q), (he)eeT)

By naturality of the inclusions we have i} o f; = (f1 + f2) oi1 and iho fo = (f1 + f2) 0ia. The two elements

(P(ir)(p), QUi2)(q), (hs o (f1 + fa)i)ier) and (P((f1 + f2) 0 i1)(p), Q((f1 + f2) © f2)(q), (ht)reT) are equal
since they come from (P(i1)(p), @(i2)(q), (ht)ter) with the arrow f1 + fa

P(Al + Ag) X Q(Al + Ag)
< L Dl (e)arran

teT
P(f1+f2W \
(Al + AQ) X Q(Al + AQ
x [ T )(A’+A) L(t) (P x Q)(I)

teT
id X(—o(f1+f2)e)t

P(A] +A’)><Q (A} + AL)
X H T~ ( )(A1+A 2)” 1(t)
teT

In order to define an arrow in the inverse direction, by universal property of the coend we give a

collection of arrows »
P(A) x Q) x [T )2 @ — (eP)(T) x (4Q)(T)
teT
for all A € F | T that satisfies the wedge condition. We take the following mapping composed with the
corresponding coprojections.
(0, a0, (h)ter) = (D¢ ([hes hal)eeT)

where we write [hy, hy] @ (A + A)7H(t) — A7L(t). We check the wedge condition. Let f: A — A in
F | T. The following diagram

P(A) xQ(A)
x [T T2 ®

teT

1d><(of/,/ \
P(&) x @A
x [[ It P”@ /////7xw@m
QA

teT
P(f)m
X

XHF(P“”

teT
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commutes since we have on elements

p q, htoft tET

/ htoft,htoff])feT)

(P4, (he)eeT) p), Q(F)(@), ([he, hi])reT)

\

The two elements (p, (hy o fi)ie7) and (P(f)(p), (hi)ier) are equal since they come from (p, (hy)ieT) €

P(A) x ] T-1(#)A '™ with the arrow f
teT

Q(f)(q), (ht)teT)

P(A)
x [[ T~

teT
id x(y \
P(A)

« H Ffl(t)A”l(t)

teT
m
P

% H -t (t)A/’l(t)
teT

and by an analogous reasoning (q, (hy o ft)ie7) and (Q(f)(p), (h¢)ie7) are equal.
Let us check that these two arrows are inverse to each other. One of the composites yields

(P, ¢, (ha)ier) = (P(ir)(p), Qi2)(q), (he)reT) = (P(i)(p), Qi2) (), ([Pe hul)ieT)

These two elements are identical since they come from (p, q, ([he, he])ieT) € P(A1) X Q(A2)

X H Fil(t)(A1+A2+A1+A2)_l(t) with the arrows ’il : Al — Al + AQ and ig : AQ — Al + AQ
teT

P(A1) x Q(Az)x
x 1 I‘*l(t)(ﬁﬂrﬁz)*l(t)

teT
idx [T (—o(i1+i2)t)
t€7/

(p7qa (ht)tET)
P(A1) x Q(Ag)x
% H I‘*l(t)(A1+A2+A1+A2)_1(t)

teT
P(im\

(p7 q, ([htvht])tET)
P(Al + Ag) X Q(AI + AQ)X
% H I‘*l(t>(A1+A2+A1+A2)_1(t)
teT

(P(i1)(p), Q(i2)(q), ([Pt, he])teT)
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where (i1 + i2) is the fibre of 41 + i9 in t and [he, he] o (i1 + i2): = hy.
The other composite yields

(2, a4, (h)eeT) = (D, @, ([hes be])eer) = (P(i1)(p), Q(i2)(q), ([Pt he])teT)

These two elements are identical since they come from P(A + A) x Q(A + A) x [] T=H(t)A'® with
teT
the arrow [ida,ida]=p: A4+ A > A=2xXA = A

P(A) x Q(A)x
x [ T-1(t)™ 7' ®
teT
(xa Y, (ht)teT)

P(p)xQ(p)xi

PA+A)x QA+ A)x
x [T 1 ()2 ®
teT
(P(ir) (@), Qi2)(y), (he)ieT)

idm

teT

P(A+A) x m+A)
x [T T ®

teT

(P(i1)(2), Qi2)(y), ([Ps; hal)ieT)

where p, is the fibre of p in ¢ and [id,id] 0 41 = id and [id, id] o i5 = id.
Now we check naturality in T, P and Q. Let f : Ty — T's in Set /7. The naturality square

(£P)(T'1) x (LQ)(T'1) ——=£(P x Q)(I'1)
(£P)(T'2) x ((Q)(T2) ——£(P x Q)(I'2)

commutes because we have the following assignations on elements

(P, q, ({fﬁ)teﬂ ———-(P(i1)(p), Q(T)(Q)a (ht)teT)
(P @, (ft © hi)teT) = (P(i1)(p), Q(i2)(q), (ft © ht)teT)

Let f: P— Rin [F ] T,Set]. The naturality square

(£P)(T) x (LQ)(T) —— (P x Q)(I)

| |

(LR)(I) x (LQ)(T) —— (R x Q)(T)

commutes because we have the following assignations on elements

(P, ¢, (ht)teT) ———— (P(i1)(p), Q(i2)(q), (ht)teT)

l o

(fA1+A2( ( )(p>)’ 22)(q t
) ), (he)

)teT)
(Fau ), @ (he)eer) = "R (fa, (0), Qi) t

eT)
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Let f:Q — Rin [F ] T,Set]. The naturality square

(P)(I') x (£Q)(T) ——£(P x Q)(T)

| |

((P)(T") x ((R)(T') ——=£(P x R)(T")
commutes because we have the following assignations on elements

(P, q; (ht)ie7) ———— (P(i1)(p), Q(i2)(q), (ht)1eT)

l (P(i1)(D), fas 2 (QCi) (@), (R)ecr)
(b S @): (o) = b () B3 (fan (). (hi)eer)

D.3 Unit of ¢ Hk: [Set /T,Set] — [F | T, Set]

Let us check naturality in A. Let g : A1 — As. The naturality square

nx, Al

X(A1) — (B£X)(A1)

X(Q)\L l(kﬁx)(g)
X(Ag) —— (kX)(A2)

NX,A

commutes because on elements we find

&( (ldA (t))teT)

T
l I(kfx)t(g)

(l‘, (gt)teT) =
X)) =2z, (x (9)(@), (das1())eeT)

The elements (z, (g:)te7) and (X (g)(x), (1dA 1(¢))teT) come from X (Aq) x [T A ()R '® with the

teT
arrow g

X(Ag) x TT AF1 (1) ®
teT

(X(9)(@), (id 51 eeT)

X(A1) x JT A7 ()@

////
\\\\&

(@, (idAgl(t))teT)
X(Ay) x [T A HAT®
teT
(2, (gt)teT)
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Now we check naturality in X. Let f: X — Y be a morphism in [F | 7, Set]. The naturality square

X(A) 2 (keX)(A)
fa l(klf)A

Y(A) = (hY)(A)

commutes because we find on elements

nx,A

(@, (ida-1(t))eeT)

x
fAl I(kéf)a

fa(@) = (Fa(e), (ida-1@))reT)

D.4 Proof of lemma 7.4.131

It remains to check that the two mappings are inverse to each other. One of the composites yields
r = (w (idAfl(t))teT) = X(ida)(z) =2

which is the identity on . The other composite is

(@, (he)ieT) + X(th)(ﬂf) = (X(th)(x)a(idAfl(t))teT)

teT teT

which is the identity because (x, (h¢)te7) and (X (> h¢)(x), (ida-1(4))te) come from X (') x [T AL (AT

teT teT
with the arrow > hy: IV — A
teT

X(IM)x [T A @O

teT

(z, (ht)teT)
X[y x [T A YA W

teT

(z, (ida-1(1))teT)
X(A)x T] A~Y(p)2 @
teT

(X(tg_ he)(x), (idA—l(t))tET)
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D.5 Counit of ¢ 4k : [Set/T,Set] — [F ] T, Set]

We check the wedge condition. Let g : IV — T in F | 7. The following diagram

F(I)
x [T 1)@
teT
idy/ \
F(I)
x [T 1)@ F(T)
teT
F(g)xid
F(F”)
x [T 1) ®
teT

commutes since we have the following assignations on elements

(z, (ht 0 g¢)teT)

T,

(, (ht)teT) F(X hog)(x)

\ teT
(F(9)

(), (ht)teT)

Let f: Ty — I'y be an arrow in Set /7. The following naturality square

Ck(F)(Ty) — F(T')

L

Ck(F)(I'y) — F(I'2)
commutes since we have on elements

(x, (ht)teT) ——> (F(tg_ht))(l’)

I

F(fotg_ht)(x)
(@, (fe o hi)teT) —> _ (F(> froh))(x)

teT

Let f: F — G be an arrow in [Set /T, Set]. The naturality square
lk(F)(T) —— F(T)

(T

Ik(G)(I') — G(T)

295
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commutes since we find on elements

(z, (ht)teT) —————> (F( X he))(x)

teT

frF(Z ht) ()
=(F (Z ht))(ff"( )

(fr (@), (ht)teT) >

D.6 Proof of proposition 7.5.133

We check the wedge condition. Let f; : A; — A;- inF |7 forj=1,..

.,m. The diagram

Xi(A) x Yy, (Ay)
ox Yy, (An)
« T D)@t am

teT
Xt(A) X Y, (A1)

Y., (An) \
x 11 r (X)AH AHAL)THE) /Y )
X (A) X Y,, (A))

teT
XY, (A

x 1 rfl(t/)@ﬁ +A )@
veT

commutes since we have the following assignations on elements

("I: yl""7ym7
(he o Z f] t/)t’eT

/ ( Ym(h)(yl) Y (i) (Ym),

(T, Y155 Y, ( ht' t'GT (hy o (Z f.])t/)t’ET)

- (&, Yurlih o £1)(01)..
Yu,. (i1, 0 fn) (Um)s (ht')t'eT)
x Ym /

m ) ht’)t’ET)

By naturality of the inclusions we have Y, (i o f;)(y

Ms

Y, (.,

i)p)ver) and (z, Yo (2 fi o) (),

j=1

fjoi;)(y;) for all j =1,...,m. The

1

3

i) =
two elements (z, Yy, (41)(y1), - -+, Yu,, (im) (Ym), (he o (g:
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=t

Y0 (D0 [ ©9m)(Ym), (he)reT) are equal since they come from (x, Yy, (41)(¥1), - - -, Yu,, (im) (Um),

1

J
(hy)per) with the arrow Y f;

Jj=1

X(8) x Vi (3 4))

X..ox Yy (D0 A))
=1

« H F—l(t/)(Al—o—...-&-Am)*l(t/)
t'eT

id x(—o(g;l f])t,%

Aj)

NIE

X:(A) x Yul(

XX Yo (3 A)) (X @Y)(

3

x T T-L(t) A1+ ()

t'eT
i X Yay (3 )% “(\N
=

X (A) x Yy, ( Z Al)

X ... X Yum(z A%)
j=1

x TI I‘*l(t/)(A'1+~~+A'm)_l(t')
t'eT

Now let f: A — A’ in F | T where A = (u1,...,up) and A" = (vy,...,v;). The diagram

Xi(A) )
x [21Y, (Ay) x [T THE)AT (@)
teT
X .
A o (A T-1()An" ()
t'eT
Xt(ﬁ) /
Xf 1le(A1)
x ] Ffl(t/)Al_l(t’)
y t'eT X®Y
fo’“Y
% H F—l(t/)Akfl(t/)
- \
X:(A)
Al AT
X [T Yo (Ar) x [T T7H#)™
t'eT
X ...

« fAk Yvk(Ak) % tHTF—l(t/)AI:l(t/)
'e
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commutes since we have on elements

Fuy
(T, Yty (h/ e
Y (B )

/ (2. Y5, (i0)(u, ).

<x,y1, M, Vi () [T B L)
Yk (W )eeT) = (Xe(f)(2), Yo, (21)(91)
\ Yo, (k) (Yk) [ht”"'?h?’]t'eT)
h )t’GTv

--,ym( )t'eT)

k m
where i; : Aj — '21 Aj and i Afuj — Zl Afuj. The arrow f : (u1,...,Um) — (v1,...,v;) induces an
j= j=

m k
arrow f': Ay, — > Aj such that if,, = flodlforall j=1,...,k
j=1 j=1

X(8) x [ Y, (1)

X x Yy, (I') (D.1)
x I1 Ffl(t/)(l“’)‘l(t
t'eT
idX(V
X,(8) % 7Y, (1)
X ... x Y, (I (XY t
PR I D)~ )
t'eT
Xm
N Y (T
X ... x Y, (T)

x I1 Ffl(t/)(l“’)’l(t/)

t'eT
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m k
and we write short I'” := 2:1 Afuj and IV := 21 A
J= J=

X:(A) x Y, (T

X ... X Yum (FN) (DQ)
x I1 Ffl(t/)(l“”)’l(t')
t'eT
id X(W \
Xy(A) % Yy, (") Xo(A) % [7 Y, (1)
X...xY, (I X ... xY, (I
x ] F—l(t/)(l“/)*l(t’) < 11 F—1(t/)(r')*1(t’)
t'eT t'eT

ideul(f/)x...xm /

X¢(A) x Yy, (TY)

X...xY, (I')

x ] 1)@ ')
t'eT

So the two elements (z, Y7, (i) (Wfu,)s -+ Yo, (i) (s, )s [B2 o ™ er) and
t

(3
(Xe(f)(@), Yo, (i) (Y1), -+, Yo (i) (yr), [Blr, - . ., hE]pe7) are equal since
(Xe() (@), Yor (1) (1), - - Yo (i) (yw), 1y - R lveT)
equals to by (D.1)

(xﬂ Yf”l (Z‘ful.) (yful )3 Tt Yf“m (Z.f'u,m )(yfum )3 [h’%/? Tt h’f’]ﬂiT) =
(@, Y5, (f 0 @) (Wsu,)s s Vi, (F 0 00) (Wpa,, )s [t R lver)

equals to by (D.2)
. . fu Sum
(@, Yy, () Wray ) Yeu, () Wi, ) [R5 By Jeer)

Let f:I'y = I's. The naturality square

(X)(Y)T)7HE) —= (X @ Y)(T1) ()

l |

UX)(Y)(T2) () —=UX @Y )(T2)~1(t)
commutes because we find on elements

(@41, s yms (e )ver) = (2, Yo, (i) (1) - - - Yo, (i) (), (P ) e)

| |

(@, 915 Yms (fr 0 heJver) —— (2, Yu, (01) (91), - - -, Yu,, (i) (Ym), (fer © b JveT)
Now let f: X — Z be an arrow in [F | T, Set]”. The following naturality square commutes

(X)) HEH) —= X @ Y)(T) ()
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because we have the following assignments on elements
(J?, Yty - -5 Ym, h) e (JJ, Yu1 (11)(y1)7 s 7Yum (Zm)(ym)7 h)

] ]

(fA($)7y17'-'7ym7 ) (fA( ) u1(11)(y1)7'"7Yum(im)(ym)7h)
Let g: Y — Z be an arrow in [F | T, Set]”. The following naturality square commutes
LX) (EY)(I) M) —= (X @Y)(T) 7' (t)
U(X)(UZ)(I)~Ht) —=UX @ Z)(T)~H(¢)
because we have the following assignments on elements

(xayla s Ymy h) } (x7Yu1 (il)(yl)a R Yum (Zm)(ym)a h)

l I im)(Ym)); h)

(@, guy ;17 (Ya, (1) (Y1) - - 7gum,F/(Yum (im ) (y

Ty Guy, A1 \Y1)s -+ o5 Guon , Ay, ym,h P :
(®: Gus,00 (1) ) ) 7 (02) s () Za (i) G 5 0)). )
and by naturality of g, for all j = 1,...,m we have g, 1’ o Yy, (ij) = Zu, (ij) © gu; A, -
Now we construct the arrow ¢ : Idset = AY). The component in I' € Set /T at the fibre t € T is
1—\/
—>/ ey x [[rte)t @
teT
we take the following mapping composed with the < }-th coprojection
r = Ixazte )7t x H r- ()
teT

Let f: 'y = I's. The naturality square
L) —=)(T1) 7 (2)

| |

Lyt (t) —= ) (T2) (1)
commutes because we find on elements
I —(1,21)
fe(@) —— (1, fe(x)")
It remains to check the monoidal functor axioms.

1. We check the commutativity of the following diagram for all I' € Set /T and t € T

Tdger /7 (£X (1) 71 (1) 25
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we find on elements

J2 XA x T T AT
t'eT

lr’_(w,m_ﬁ

fF/z(ul,..A,um) F_l(t) %

fol X, (A1) x 1 F‘l(t’)Afl(t/)x

t'eT
X ... X

X [A™ Xy (D) x [ T7H(E)A )

t'eT

\LA’—ALF’—(t)

< 11 F—l(t/)A’*l(t’)
t'eT

|

I XAy x I T E)A e
t'eT

which is the identity on (z, (hy)yer)-

(. (h)ver)

(1, (x’ (h_t_’)t’ET)l)

(15 (Z‘, (h‘_t_')t'ET)l)

(@, (he')ereT)

2. We check the commutativity of the following diagram for all T" € Set /T and t € T

Pex

301
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We find on elements

fA:(ul ,,,,, U ) Xt(A) X F_l(ul) X ... X F_l(u’rn)

lAa‘_Wj)

T2 X(A) x 2 AT ) x T] D42 )

t'eT
X ..
x [A™ AL ) x T D712 )
t'eT
lr’ 3 ()=

j=1
I 12 X0(A) x T (ug) . x T ()
< I1 F—l(t/)l“’*l(t’)
, t'eT
= [T IS X(A) x [T T E)A T
t'eT
x I1 Ffl(t/)l"*l(t’)
t'eT

|

J5 X () x I TN
t'eT

which is the identity on (z,a1,...,am).

Chapter D. Proofs of chapter 7

(x,a1,...,am)

(z,1 x ay,

1xal)

(2,i1(1),...,im(1),

(huj 1= aj)j)

= (z, (ida-1¢1)) e
(huj 1l aj)j)

(Xt(t%:TidAfl(t'))(x) =,
(huj 1= aj)j)

3. We check the commutativity of the following diagram for all X,Y,Z € [F | T,Set]”, I" € Set /T

andteT

((LX 0 £Y) 0 £Z)(D)~1(t) == (£X o (£Y 0 £2))(T)~}(t)
d)X’YOEZl léXo¢yﬁz
(X ®Y)otZ)(T)"L(t) ((X o (Y @ Z))(T)~1(t)
¢X®Y,zl l@c,‘/@z

(XY)2) D) 1(t) — (X 2 (Y ®2)(T)"1(t)

lax,y,z
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Along the left—hand side we have the following composite

[N R [ e

Xi(A) X Yoy (A1) X o X Yy, (Ay)
XZUl,l(El,l)X H F 1( ) 11)71(75/)

X ...

XZval (El7k1) X

t'eT

t'eT

X Zypy 1 (Bm) x [T T7HE)EmD )

X (A) x Y, (T x...xY, (I)
X Zy (E1) x T[] T7H(#)ETE)
teT
X .
X, (Z¢) x [T T7H(#)E @)
teT
A" T A
I~ T Xt(
Yo (I7) X ... x Y, (1)
X Zuy (A7) X X 2y, (A)
x [T T2t )(A) Ht')
t'eT
AT A Ty meXt(A
XYul (Fl) X Ztl 1(A/) X...X Zt1,51 (Al)
X .
qum (L) X Zy, ((A) X oo X Zy,
x I1 Ffl(t/)(A’)’l(t’)
teT
where we write A = (u1,...,um), Aj = (v1,...,

Fi = (ti,lw--

t'eT

ati,si)~

1) Ee) ()

(A7)

vj,) forall j=1,...,

TyYly -3 Ym,
21,1, W11y -+ 5 21,ky s WKy
.

Zm,1s Wm, 1y« Bm ke s Wm ko,

IM'=A1+..4+A,,
b=k1+...+km

xaylau.,gma
21,1, W11y -5 21k W1k
.

Zm,1s Wm, 1y -« Bm ke s Wm ko,

’
Al= ] 1_‘]

x7yl7~..7yma

E1717"'721,161)' --7§m717~-~7zm,km7

[wl,la . 7wm,km]

r;=1’

:E7
Y1,21,15 - -+ > Zmkom s
R
Yims 21,15+ - 3 Zmkom >
[w171, ‘e ,mecm]

m, IV = (wy,...

303

,wy) and
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Along the right—hand side we have the following composite

SO R E L E B ke

Xt (A) x Yy, (A1) x ... x Y, (Ap)
X Zyy 1 (B11) x [ D7HE)E0 @)

t'eT
X ... _ i TyYlye s Ym,
><Zv1’k1 (El,kl) X H F_l(t/)(il,m) (t") 21,1, W11+ Z1,kys W1,kys
t'eT
X ... W ;'k W
_ o = 1, m,ly myly 9 “M,Rm m,Km
X Zy, (Zma) x T D) EmD ) N
t'eT
X ...
X Zup o (Bmp) X ] D7) Emitn) ™ ()
\Lt’GT Ti=Ei1+...4+8i,m,
A pAp oD AVSS
[ ) !
XYul(Al) X Zvl,l(rl) X Z'Ul,kl (Pl) y > ’ 2
« 1) T~ ) 15 21,1y« -y RLkys
t’l;[T ( ) [wl,lv"';wm,l]a
X ... .
XY, (D) X Zy,, (L) X oo X Zy, o (D) Yms Zmls - - s 2m ko s
X H F_l(tl)(rm)il(t/) [wm,l,...,wm7km]
t'eT
J/ A'=T1+...4Tpm,
A" A A A
ST T Xu(A)
XYy, (A1) x ... x Yy, (Ap) T Ymy
X Zyy 1 (A") X oo X Zyy  (AT) XX Zy, (A) 21159 ZLkys e e Bmkm
x T 1)@ [wr s W W]

t'eT
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305
The two results are equal since they come from with the arrows ¢; : A; = A1 +...+ Ay,
Xi(A)
x Yy, (Al) X Zy,  (A)
- X Z'Ul kq (A )
X ...
XYoo, (A) X Zo,, (A
X . ..vamkm(A’)
x JT T NTHE)
t'eT \
X (A) Xt(A)
XYul (Al) U1 1 (AI) f Yul X Z'Ul 1 (A )
X ... X va,km (A/) - X Z'Ul k1 (A )
X ... .
X Yo (Am) X Zo, , (A) X [ Yo (A) X Zoy,, , (A)
XX Zmn o (A7) X oo X Ly, (A)
% r=1()@n" ) D=1 A) ()
jis x T T4t

\ t'eT
Xt(A) /

Yo (30 A)) X Zy,, (A)

i=1

Xooo X Ly, (A)

qum(Z Ay) X Zy,  (A)
X . _ X va VA

x LT )07

t'eT

D.7 Proof of proposition 7.5.134

We check the wedge condition. Let g : TV — T in F | T. The diagram

F(I")=(t)
x I1 G(A) ™ (w)" @
u€T

W \
F(IT) ()
x 1 G(A)(w)™ ' (FoG)(A)~H(t)

u€T
F(g)exi

FN ( )
x T] G(A)~H(w)™ (@

ueT
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commutes since we have the following assignations on elements

(1‘, (hu © gu)ueT)

/

(@, (hu)ueT) F(3 huog),(@)

ueT

/

(F(9):(2), (hu)ueT)

Let f: Ay — Ay be an arrow in F | 7. The naturality square

(k(F) @ k(G)) (A1) H(t) —— (F o G)(A1) 71 (1)

l l

(E(F) ® k(G))(A2) 7 (t) — (F o G)(A2)7H(t)

commutes because on elements we find

(& (huer) P Z 1) (@)

| 5

(2, (G(f)u © hu)uer) ——> F(G(f))e 0 F( ;Thu>t(x)

Now let f: F — H be an arrow in [Set /T, Set /T|. The following naturality square commutes

(kF @ kG)(A) L (t) —=k(F o G)(A)~!

| l

(kH ® kG)(A)"H(t) —=k(H o G)(A)~!

because we have the following assignments on elements

(&, (hauer) = F (5 1) (@)

I

(feak (F(Z 1) @)

ueT

= H( S h) (fo)i()

ueT

((fl—")t(z)v (hu)uET) —

and by naturality of f we have foa o F(3,c7hu) = H(Q 7 hu) © frr. Let g : G — K be an arrow in
[Set /T,Set /T]. The following naturality square commutes

(kF @ kG)(A) = (t) — k(F o G)(A)~!

l l

(kH @ kK)(A)"Y(t) —=k(F o K)(A)™!
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because we have the following assignments on elements

(@ (huuer) ————=F( T 1),

I

(Faah(F(E n), @)

(1’, ((gA)u © hu)uET) B u€T
— F(

Z (gA)u o hu) (3’3)
ueT t
The arrow 1) : Y — k(Id) is given by the identity on ).

It remains to check the monoidal functor axioms.

1. We check the commutativity of the following diagram for all F' € [Set /T,Set /T], A € F| T and
teT

(V@ kF)(A) 222 (k1d @kF),(A)

ld)m,p

W\ (K F)(4)
lk(m)
(kF):(A)
we find on elements
JUT ) JLFPATHEOTO (@ (b ver)
[T x TEFATO™ O (her)
FA7L(t) ht_(_l')
FA7L(t) h(z)

which is Agp.
2. We check the commutativity of the following diagram for all F' € [Set /T,Set /T], A € F | T and
teT

(kF © V)(A) 2222 (kF @ k1d),(A)

le,Id

(K(F o1d)):(A)

\Lka

(kF)(A)

PkF
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we find on elements

[TVF(I)1(t) x t/E[TA—l(t/)P”l(t') (@, (ho)oer)
R A
FAL(1) F (t%__h”)(x)
FA=L(1) F (ET he)(x)

which is pgr.

3. We check the commutativity of the following diagram for all F,G, H € [Set /T,Set /T], A€ F | T
andte T

QRF,kG,kH,

(kF © kG) @ kH)(AS"2 4 F © (kG @ kH))o(A)

wF,G®kH\L \LkF®'¢G,H
(K(F 0 G) @ kF),(A) (kF k(G o H))y(A)
k((FoG)oH)y(A) == k(F o (G o H))(A)

Along the left-hand side we have the following assignations on elements

% G]_-w//fl =1 (u)
ule_[T () T, (gu)uez’_a (hu)ueT
x [ HA Y (u)r"™ @

u€T

M FG@n-t) ]
x [T HA L (u)" '@ F(X gu), (@), (huduer
ueT -

|

FGHA=(t) e (u;r hu), o F (u;gu)t(x)
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Along the right—hand side we have the following assignations on elements

fFN fl" FF/_l(t)
XGF”_l(ul) X ... X Grll_l(um)

x [ HA Y (u)r" '@

u€T

TR Y b o Vo)
xGAT (u1) x [T HA L (u)Ar @

Ty Yty aylna (hu)uGT

y ueT T,Y1, (hu)uETv s s Ymy (hu)uET
XGAZ () x [ HA™ (u)An' @
ueT
fF” FT'=(t) z,G he) (y1),...,G hy Y
XGHA  (uy) % ... x GHA™ (uy,) (u;r Ju, () (u;r Ju (W)
" _ _ =10 = ,G hu u
= fF I’ 1(t) « uI;ITGHA 1(U)F (u) x (ugT )oung
FGHA_l(t) F(G( Z hu) © Z gu) (‘T)
ueT u€T t

The two sides yield the same result, so the diagram is commutative.

D.8 Proof of proposition 7.5.135

We check the two monoidal natural transformation axioms.

1. First we check the commutativity of the following diagram for all A€ F |7 andt e T

(k1d),(A) =

We have explicitly on elements

kp:xe At) —  (Lzh) e #)7H1) x H AL @)
veT

and

ny:xeATHE) = (a (ida-1)ereT) € ATt x H A_l(t’)Ail(t/)
teT
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These two are equal since they come from (¢) ! (¢) <[], e A7} (t")A () with the arrow = : (£) — A

ANt x [T AH)A @)

t'eT

(z, (idAfl(t/)>t'eT)
(710 x T ATH()> )

I

(B7H(1) x T ATHE)@ @)
t'eT
(L,a")

2. Next we check the commutativity of the following diagram for all X,Y € [F | T,Set]”, A€ F | T
andt e T

nx @My

(X @Y ) (A) —/—— (kX @ kLY )¢ (A)

77X®Yl lwex,ey

BUX @ Y)i(A) £ (K(EX 0 0Y)),(A)

X

On elements along the right-hand side we find

[A= ) X U(A) X Y, (D) % ... x Y, (T) (.01, am)
iF’—A,Ai—F
JATm) (T X () x TT AT )TN
ver (2, (da-1())ereT),
A _ — /
X [T Y, (Ar) % tHTF LA (a1, (idp-1(p))reT),
‘e
X ... A
X 27 Vi, (D) x T D71 )20 (@m, (idr-2)ver))
t'eT
A=(U1,...,Um)
X,(A
! folYt((A)ﬂ x T M)A ) (Xilida) (@),
“ veT (a1, (idr-1(1))ver),
X ... .
X [27 Yy (Ap) x ] T7L(#)A=" 1) (@m, (idp-1())veT))

t'eT
ooee ]

A" pA=(ur,.yum) Xt(A) ($,
f f XYul(AI) X ... X Yum(A/) Y%(il)(al)a~'~7Yum(im)(am)a
x I D) @) (22 idp-r(e))reT)

t'eT j=1
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On elements along the left-hand side we have

(A=) X (A) X Y, (D) % ... x Yy, (T) (z,a1,...,am)

o 1

A=(U1,...,Um)
S f ' Xy (/A) ) (z,
XYy, (A') x. /leum(A) A1y ey Qo
X H 71(t/)A t) (idF_l(t’))t’ET)

t'eT

This is identity because the two elements come from (X @ Y);(m x ') x [T, o1 1)) with
the arrow p := (i1,...,0m): P +... 4T 5T =mxT > T.

(X ®Y)(m xT)x

x I1 F—l(t/)(mxl“)*l(t/)
veT .
(177 Y;ld (Zl)(al)a ceey Yum (Zm)(am)7

(32 idposy)ver)

J=1
(X@Y)(mxT)x [[ T-1E)" ')
teT
(2, Yu, (i1)(a1), ..., Y, (im)(am),

(idrfl(t'))t'eT)

(X®Y)(I)x [] D7'()F @)
t'eT
(X @ Y)u(p)(z, Yu, (i1)(ar),
Yy (i) (am)),

(idr—l(t'))t'eT)
and

(X @Y )u(p)(w, Yu, (i1)(a1), - - -, Yu,, (im) (am))
= (@, Yu, (p) (Ya, (i1) (1)), - - -, Yau,,, (p) (Yai,,, (i) (@)
= (z,a1,...,am)

D.9 Proof of proposition 7.5.136

We check the two monoidal natural transformation axioms.

1. First we check the commutativity of the following diagram for all T" € Set /7 and t € T

(1)
/ \
(EV)D) (1) —— e (R1A)(T) (1)

Explicitly on elements we have

zel™'(t) (1,x1)e<t>*1(t)xHrfl(t/)m-l(t') o
t'eT
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2. Next we check the commutativity of the following diagram for all F, G € [Set /T,Set /T|, T € Set /T

andt €T

(EkF o tkG)(T)~

‘fbkF.kG\L

1(t) EROEQG

(FoG)T)~H(t)

TEFOG

((kF @ kG)(T) 71 (t) ;o (Ck(F 0 G)(T) (1)
Along the bottom we find on elements
fF/ fAl o J‘Am F(F/)—l(t) .
~1()AT () ’
XGUI (Al) X uI;[TF (u) Y1, (h )u€T7
X ... o ’
XGum (Am) X H F_l(u)A;zl (u) ym’ “ uET
u€T
l A=A1+...+An,
fF/ fA F(F,)_l 2,
—1(,\A~
xGul(A)x...xG (A) xulgTF (w) G, (i1 z[yll 7]7 )(Ym),
r—1 h e hﬂl
= F )= 1(t) x Gy w)t e
X H F_ (u) - (u) ([hllu t "hzn])uET

e |

fA F(G(A))il(t) « H I\fl(u)A—l(U) ueT
u€T ([hllu ceey h;n])ueT

FG( X [hys--- i), o F( X gu),(@)

F(GH(T)) ™ (¢) z z

where IV = (uq,...,un). Along the top we have the assignation

T, Y1, (hi)u€T7 s Ym, (hT)UET = F(Z gu)t(x)
u€T

where (gu)uer @ ] Gu(T)F
u€T

equal since

) with gy, 1 Gy, (D), 1 Gy, (X hi)(y;). These results are
u€T

Goy (Sl HT)ogt, = oy (X ) (5 A2,

ueT ueT ueT

:Gu]‘[(z hzlz)a 7(thn)]°Guj(ij)

ueT ueT

= Gu]‘ (Z hi)

u€T
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D.10 Definition 7.6.137 of b
It is clearly natural in A and R. Next we have to check the commutativity of the following diagram

(kR)Y & (lﬂQ))t(A)bw$kR (K(9uR) @ (kR)):(A)

sgﬁgl lwauR,R

(kB)® (kR))T™ (A ((0uR 0 R)i(A)
ona | s
(k(R o R)Y™ (8) — = (k(9u(R o R))u(A)

Along the left—-hand side we have the following composite

T2 R + (u) 71 (1) x t/@(RA)*(t')A?”’) (. (he)rer)
A=A+ (u)
fA” (RAH)_l(t) . t’I;[T(R(A M <u>))_1(t/)Alil(tl) (m, (ﬁt)teT)
R(R(A + (u)) 1 (t) (% he)(@)
where th/
N R(Z)t/ o ht/ if ¢/ 7é u
I = { [R(i)u o huiVa a] it/ =u

where i : A — A+ (u) and 7)), : 1 — R(— + (u))~!(u) is the transpose of nY, : Y{(u) = (RY)..
Along the right-hand side we have the following composite

J¥ R @) x T (RA) ()X (2, (hu)ier)
R(RA + (u))~*(t) RO he + ()l (=)

» R[Ri, na () © Jlt
R(R(A + (u)))~*(t) R( Y>> hy 4 (u))e(x)
t'eT

where j : (u) — A + (u). One can easily show that 7). A = at(u) © J, 0 the the two composites yield
the same result.
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D.11 Definition 7.6.138 of o

We check the wedge condition. Let g : A — =. The diagram

&) x T+ (u) 7 )2 )
1de
P(A)x \
[T (T + ()~ )= (PYEN))(I) (1)
teT /
P(E)x I T+ (u =
t'eT

commutes since we have the following assignations on elements

ht/ Ogt/ t'eT
/ Pt ( ) (ht’ ogt’)t’ET
s (he)veT e
t te\ ~ Hog)( ) (ht/)t/eT
P(g)(p), (he')vreT

By naturality of f, there is an arrow g’ : A’ — Z’ such that fZog = (¢’ + (u))o f2 and ht//o\gt/ =hy og,.
The two elements P;(f2)(p), (he o gy )veT and Pi(fE09)(p) = Pi((g" + (u)) o f2)(p), (he')weT are equal
since they come from P;(f2(p), (hy')yer with the arrow ¢’

Pi(A + (u)) x T] D7)~ )

t'eT

idW \

J& P + ()%
11 F—l(t/)A/’l(t’)
t'eT
Py (g’ +(u)) xi

Pi(E + (u) x [ D)= @)

t'eT

Next we check naturalities of ag% inT and P. Let g : 'y — I'y in Set /7. The naturality square

(EP)(Ty + (u))~H(t) —— (((PY()(T1) (1)

l |

(EP) (T2 + (u)) =1 (t) — (£(PY))(T2) 7' (2)
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commutes since we have the following assignations on elements

D, (bt )ereT ! Pt(fA)(p)a(ﬁt’)t’eT
. ] e P(F) ), (g0 hu)ver
p, (g + (w)p o hy)peT —> = P,(f2)(p), (g + (W) © he e

Let g: P — Qin [F | 7,Set]”. The naturality square

(EP)(T + ()~ (t) —— (L(PYN)) (1)1 (1)

| |

Q)T + ()~ (t) — (@) ()~ (t)

commutes since we have the following assignations on elements

p, (he)preT ————— P,(f®)(p), ( ht JireT

l ge.a (P(f2)(p))
9e.a(p), (h)per ——> _ Qi(f*)(91.a)), (he)ver

Next we have to check the commutativity of the following diagram for all I" € Set /T

B a{™o(£Q)
(LPY(LQ(T) + (u)) (1) ———= (L(PY))(£Q(T)) ~(¢)

l l‘ﬁ

(CP(QT + (u)))) 1 (1) (L(PY™ @ Q))(D) (1)

o .

(P @ Q)T + (w)~H () —= (U(P @ Q) (1)~ (t)

In lemma 7.6.141 we show that a(*) is an isomorphism, its inverse being d(*). We check the above diagram
where we inverse the arrows a(®), so explicitly we check the commutativity of the following diagram

at o£Q

(EPYE))(Q(T)) " (2) (EP)(LQ(T) + (u))~H(1)

% l

(LPY™ @ Q))(I) (1) (CP(QT + (u)))) 1 (1)

| )

(P ®Q)YMN))(I) M (t) —= (L(P @ Q)T + (u) (1)
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Along the left—hand side we have the following composite

X Quy (A1) D1 (t)A )
t'eT

X ...

XQuy (D) x [T DTL(#)A0 (1)
t'eT

J5 R Py
XQyy (T") X oo X Qy, (T7)

x TT (T + ()~ () ™))
t'eT

z,
Y1, 21,

cey
ymazm

I'=Ai1+..+A,

x7
gla e a?ma
[21, .-, 2Zm]
A'=A+(s)
:1:7
iF(?1), s ,ir(?m), Qu,p
[Zla ceey Zm]
F”:F/—‘r(s)
:I;7
ir(71), ail‘(gm)aqmp
irofz1,. .., 2m] + (u)

where we write A = (ug,...,Up), A" = (v1,...,0%), ir : ' > T+ (u) and g : 1 — Q%u) for the

transpose of g, : Y{u) — Q..
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Along the right—hand side we have the following composite

JESR R PU(A ()

XQuy (A1) x T T7H ()2 ) §
teT Y1, 21,
X ... ey
X Qu,, (M) x [ T7H()An 1) Y Zm
t'eT
i A=A+ (u)
J* Py 1 z,
X ([ Qu () x TI TH(#)AT @) 4 () (o) yi.21,
teT -
- (D / —1nATNE) -1 Ym: Zm;
X (ST Quo (A7) x TT D)2 ) + (u) = (v1) 1
teT
i FI_AI;-N’}FIC1_A7717Fk_<u>
[ T R | "
XQuy (T1) X TT (T + (w) () ) Yi,ir 0 21,
teT e
Ko 1 =1 ymvif‘oz’ma
X Quu ()  TT (T ()~ )F7 ) o)1
t'eT
i lr”=1“1+...+1“k
F// A/
f f //Pt(AI) Y x,
XQvl(F ) X... Xka(F_)l , iF(yl)a"'viF(ym)aT%F
x T (T )t @) T [ir o 21,...,ir 0 Zm, 1]
teT
where we write again A = (uy,...,up), A" = (v1,...,05), ir : T > T+ (u) and @ : 1 — Q%m for the

transpose of ¢, : Y{u) = @Q,. The results along the left—hand side and the right—hand side are equal so
the diagram commutes.

D.12 Proof of proposition 7.6.141

We check the wedge condition. Let f: A’ — A” in F | T. The diagram

id X (=0 fy )y \
B (A" + (u)

x T1 r-! (t/)A”*l(t’)

(LP) (T + (u))
t'eT
)

P(A" + (u
x I1 -t (t/)A”’l(t’)
t'eT

~—

()
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commutes since we have the following assignations on elements

s (her o fo)veT)

(@, (he)o / <h/oft/>+<s>t/>t/efr>
) T\ Pt + () (@), (her + (W) )oer)

(P(f + (w)(x), (he)peT)

The two elements (x, ((hy o fy) + (W) )ver) and (P(f + (u))(x), (hy + {(u)p)pe7) are equal since they
come from (z, (hy + () )wer) € P&+ () x T[ (T4 ()~ (#) (& +H0D ™ @) ith the arrow f + {u) :

, " t'eT
A+ (u) = A" + (u)

Py(A + (u)) x
L (C -+ {u)) ()& +0) ")
t'eT

id X (—o(f+(u) ) per \

Py (A" 4 (u)) x [ P(A)x
H (I‘+ <u>)*1(t/)(A”+<U>)_1(t') H (F+ <u>)71(t')A_

f+\d\ /

P,(A” + (u))x
IT (T + {u)) =1 ()&
t'eT
Next we have to check that ag) and d§3 are inverse to each other. The composite a dgf yields
on elements

ht/ t/eT

N

( ht’ <u t’GT)

I

(Pe(f)(2), (her + (w)e)ereT)
= (@, (he')ver)
We remark that A”~(u) = {z € (A’ + (u))~1(u) such that (h, + (u),)(xz) € T71(uw)} = A'"1(u), so
fi A+ (u) = A” + (u) is the identity on A’ + (u) and (hy + (u)y )peT = (hy)per. So this composite
yields the identity on (a: (he)ver)-

The composite d( o ag_f‘,‘) yields on elements

(l‘, (ht’)t’€T>

I

(P(f)(@), (he)weT)

I

(Pf) (@), ((h + (u)i)ve)
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These two elements are identical since they come from P,(A) x [ (T + (u)) =1 (#/ )& )~

t'eT
arrow f: A — A+ (u)

P(A)
< LI+ ()03
( (ht’)t’eT)
Pi(A)
x LT+ () 1 ()@ 1)
t'eT =R
(@, (he + (Wt )veT)

PO

thlgT(P+< w)) () A ) )

(P(f) (), (e + (W) )preT)
We remark that (/i{t/ + (u)¢ )y o fyr = hy since in the fibre v we have explicitly

e {5 ) Erean
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Abstract. In order to specify the behavior of programming languages, to investigate
their properties and to allow certification of their implementations, one studies formal
models of existing programming languages. This study splits into the study of syntax and
semantics, where the latter is based on appropriate formal models for the syntax. This
PhD thesis is located in the syntactic part and is mainly concerned with two approaches to
abstract syntax with variable binding. Both make use of the language of category theory.
The first one is in the spirit of the category theoretic approach to algebraic theories. The
second one is based on the notion of monads and introduces modules on monads instead
of working with functors and their algebras. Furthermore the latter approach is adapted
to a larger class of typed syntax with types depending on terms.

Résumé. Afin de spécifier le comportement des langages de programmation, de
préciser leurs propriétés et de certifier leurs implémentations, on étudie des modeles
formels des langages de programmation. IL’étude se divise en 1’étude de la syntaxe et
en celle de la sémantique. La deuxieme est basée sur des modeles formels de la syntaxe.
Cette these de doctorat se situe dans 'étude de la syntaxe et est consacrée principale-
ment a deux approches a la syntaxe abstraite typée avec liaison de variables. Ces deux
approches utilisent le langage de la théorie des catégories. La premiere approche est dans
I’esprit de 'approche catégorique aux théories alébriques. La deuxieme est basée sur la
notion de monade et introduit la notion d’un module sur une monade qui remplacent les
foncteurs et leurs algebres. En outre la deuxieme approche est adaptée pour une classe
plus large de syntaxes typées ou les types dépendent des termes.
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