Formation and evolution of macrotidal chenier ridges

- Experimental and in-situ approaches -

Doctorat de l'Université de Caen
-Terre solide et enveloppes superficielles -

Pierre Weill

Lab. M2C (UMR CNRS/INSU 6143) Université de Caen Basse-Normandie

Directed by:

Bernadette Tessier Dominique Mouazé

Chenier

Coarse littoral barrier anchored in a prograding mudflat sequence (Otvos & Price, 1979).

Chenier construction implies a **balance** between:

- -Fine-grained sediment supply (fluvial or tidal origin)
- Coarse-grained sediment concentration (marine or continental, wave dynamic)

Cheniers in the Gulf of Carpentaria, Northern Australia

Modified from Hoyt (1969)

Introduction

2 types of cheniers

- siliclastic cheniers at the outflow of large rivers (Augustinus 1980, Penland & Suter 1989, Anthony 1989...)
- bioclastic cheniers in meso to macrotidal bays and estuaries (Greensmith & Tucker 1968, Neal et al. 2002, Vilas et al. 1999, ...)

2 types of cheniers

- siliclastic cheniers at the outflow of large rivers

(Augustinus 1980, Penland & Suter 1989, Anthony 1989...)

Archetypal exemple – Louisiana chenier plain

Chenier plain progradation controlled by Mississippi distributaries avulsion

Chenier plain in Louisiana (source: R.L. Watson, Consulting Geologist, Texas)

McBride et al. (2007)

2 types of cheniers

- bioclastic cheniers in meso to macrotidal bays and estuaries (Greensmith & Tucker 1968, Neal et al. 2002, Vilas et al. 1999, ...)

Gulf of California, Mexco (max. tidal range 6.5 m)

Firth of Thames, New Zealand (max. tidal range 3 m)

Essex, UK (max. tidal range 5 m)

Several deposition models for chenier plains in tidal influenced bays and estuaries (climatic changes, sea level fluctuation, storms, ...)

→ No investigation on the role of tides in cheniers construction

Formation and evolution of macrotidal chenier ridges

- Experimental and in-situ approaches -

Objectives

- Identify the main parameters controlling chenier dynamics in tidal environments
- -Dissociate the action of waves and tide
- Identify sedimentary facies of chenier at the scale of the sedimentary body
- -Link the hydrodynamic processes to the chenier sedimentary structures

→ Mont-Saint-Michel bay

Integrating time and space scales... ...from grain motion to coastal evolution

Mont-Saint-Michel bay - SPOT satellite image (1994)

Hirel - Photographie aérienne (Bruno Caline – 1993)

The Dol Marshes

Last episode of sedimentary infilling (progradation) periodically interrupted from 3 500 y. BP by coarse shelly littoral barriers

Hydrodynamic conditions - Waves

Shallow and protected embayment → Low wave environment

Fair weather conditions (13/03/2009)

Storm conditions (10/02/2009)

Hydrodynamic conditions - Tides

Spring tidal range : 14 m

Strong alternating currents in the estuary

Weak rotating currents in the embayment

Level of tidal flooding

Hydrodynamic conditions - Tides

Spring tidal range : 14 m

Strong alternating currents in the estuary

Weak rotating currents in the embayment

Level of tidal flooding

Wave and tide conjunction

Variations in cumulated time of chenier flooding per year

- → 4.4 years tidal cycles
- → 18.6 years tidal cycles

Waves

Multi-annual climatic variations

Field work – Sedimentary architecture

Observation during high spring tide
Trenching and coring
GPR survey

Ground Penetrating Radar (GPR)

Propagation of high-frequency electro-magnetic waves

GPR antennas - 400, 900 MHz and 2.6 GHz

6,5 km of radar profiles (cross-shore and longshore)

+ Trenching and coring

GPR Equipement : GSSI, distributed by MDS Paris

GPR Profile n° 1 (cross-shore) – 900 MHz

GPR Profile n° 1 (cross-shore) – 900 MHz

Eroded tidal flat

GPR Profile n° 1 (cross-shore) – 900 MHz

GPR profile n° 2 (cross-shore) – 900 MHz

GPR profile n° 2 (cross-shore) – 900 MHz

High-resolution cross-shore profile - 2.6 GHz

GPR profile n° 3 (cross-shore) – 900 MHz

GPR profile n° 3 (cross-shore) – 900 MHz

Core analysis

X-ray slices and virtual sections

X-ray density / porosity correlation

Constant head permeameter

Arrivée d'eau Divergent Nid d'abeille Vis de maintien + joint torique d = 10 cmd = 7,5 cm $A = \pi (d/2)^2$ Tiges de serrage Prise de pression (tube alu 3 mm) Vis de maintien + joint torique Grille et Pompe sortie d'eau Design: Sylvain Haquin

Porosity and permeability log

Geotechnical and lithological facies of radar units

Sedimentary Architecture → Synthesis

Different progradation or accretion units identified (2-3) over the period of chenier construction on the upper tidal flat (30-40 years)

Influence of low frequency tidal cycles (4.5 and 18.6 years) ? (peak periods → massive sediment reworking by waves)

Questions...

How can coarse material be concentrated in a low energy environment?

How can we explain the grain sorting observed in the beddings?

Field work – Sedimentary architecture

Lab work Sediment behaviour

Settling velocity
Threshold of motion

Wave flume experimental model

Sediment composition and sieve size distribution

Sediment sampled in the field

Bimodal distribution

Meaning of the sieve diameter for shell debris?

Settling velocities converted into equivalent settling diameters

Bioclastic particles : flat shape

→ Small settling velocity and equivalent diameter

Threshold of motion under unidirectional current

Sieved sediment in flat bed

Unidirectional current generated

Velocity and turbulence profiles using Laser Doppler Anemometry (LDA)

Threshold of motion under unidirectional current

Velocity and turbulence profiles using Laser Doppler Anemometry (LDA)

Velocity and stress profiles

Critical velocity and shear stress for sediment motion

Threshold of motion for bioclastic sediment:

- close to common values with sieve diameter

- over estimated with settling diameter

- isolated particles suspended in highly turbulent flows

Need to dissociate behaviour of:

- Imbricated particles and armoured bed under unidirectional flows

Questions...

Sediment behaviour in breaker zone, swash zone, overwash?

Field work - Sedimentary architecture **Cheniers Wave flume** experimental model

Lab work
Sediment behaviour

Equilibrium morphology

Montage of 2 photographs taken through the side glass of the flume

Breaker zone → Chenier foot

Breaker zone

No surf zone - Surging breaker

Intense erosion – Topographic step

Sediment eroded, sorted and transported in the swash zone

Coarse bioclastic particles easily sorted

Swash zone – Chenier seaward face (beach)

Swash zone Chenier seaward face (beach)

Coarse sediment transported and deposited in the upper swash zone

Fine sediment left in the lower swash zone

Washover zone – Chenier landward face

Washover zone - Chenier landward face

Washover zone – Chenier landward face

Washover zone - Chenier landward face

Morphological response to mean water level fluctuations

Morphological response to mean water level fluctuations

Falling water level

- → Small ridge formation seaward of the chenier
- → New sediment stock at the chenier foot

Rising water level

- → Sediment stock reworked
- → Beach accretion

Rising water level

- → Chenier foot erosion and migration
- → Washover

Very high water level

- → Large washover
- → Chenier landward migration and vertical aggradation

Falling water level

- → Chenier stabilization
- → Sediment accumulation at the foot of the chenier

Rising water level

- → Sediment stock reworked
- → Formation of a new ridge at the chenier foot

High water level

- → Migration of the new ridge on the chenier beach face
- → Stabilization of the ridge Seaward progradation of the chenier

Experimental modelling → Synthesis

With constant monochromatic waves

Mean water level fluctuation

- → Chenier ridge morphology
- → Washover dynamic
- ightarrow Sedimentation style controlled by water level
- → Chenier landward migration
- → Chenier progradation
- → Striking similarities with field data

Transgressive chenier morphology

Prograding chenier morphology

Wave Flume (final stage)

GPR (Box 3)

A depositional model controlled by tides Internal architecture and stages of evolution

A depositional model controlled by tides

Goals

- To characterize the genesis, growth and stabilization of cheniers in macrotidal environments

Methods

Field work - Sedimentary architecture

-GPR, X-ray, geotechnical analysis (porosity, permeability)
- Hydrodynamic processes observed during high spring tide floodings
- Long term evolution by aerial photographs

Lab work Sediment behavior

- Settling velocity
- Threshold of motion

Wave flume experimental model

- Sediment behavior under waves
 - Morphological response to mean water level fluctuations

Results

A peculiar sediment behaviour

A revealed internal architecture

A deposition model controlled by tides

