
PhD defence

Formation and evolution of macrotidal chenier ridges

- Experimental and in-situ approaches -

Doctorat de l’Université de Caen

-Terre solide et enveloppes superficielles -

Pierre Weill

Lab. M2C (UMR  CNRS/INSU 6143)

Université de Caen Basse-Normandie

Directed by : Bernadette Tessier

Dominique Mouazé

P. Weill 22nd October 2010



• Introduction

2

Chenier

Coarse littoral barrier anchored in a prograding  mudflat sequence
(Otvos & Price, 1979). 

Chenier construction implies a balance between : 

-Fine-grained sediment supply (fluvial or tidal 

origin)

- Coarse-grained sediment concentration (marine 

or continental, wave dynamic)

Modified from Hoyt (1969)

P. Weill 22nd October 2010

Cheniers in the Gulf of Carpentaria, Northern Australia



• Introduction

3

2 types of cheniers

- siliclastic cheniers at the outflow of large rivers                                         
(Augustinus 1980, Penland & Suter 1989, Anthony 1989...)

- bioclastic cheniers in meso to macrotidal bays and estuaries                   
(Greensmith & Tucker 1968, Neal et al. 2002, Vilas et al. 1999, ...)

P. Weill 22nd October 2010
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2 types of cheniers

- siliclastic cheniers at the outflow of large rivers                                          
(Augustinus 1980, Penland & Suter 1989, Anthony 1989...)
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McBride et al. (2007)

Chenier plain in Louisiana
(source : R.L. Watson, Consulting Geologist, Texas)

Archetypal exemple – Louisiana chenier plain

Chenier plain progradation controlled by Mississippi distributaries avulsion
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2 types of cheniers

P. Weill 22nd October 2010

- bioclastic cheniers in meso to macrotidal bays and estuaries                     
(Greensmith & Tucker 1968, Neal et al. 2002, Vilas et al. 1999, ...)

Gulf of California, Mexco 

(max. tidal range 6.5 m)

Firth of Thames, New Zealand 

(max. tidal range 3 m)

Essex, UK (max. tidal range 5 m)

Several deposition models for chenier plains 

in tidal influenced bays and estuaries

(climatic changes, sea level fluctuation, storms, …)

 No investigation on the role of tides in cheniers construction



• Introduction

6

Objectives

- Identify the main parameters controlling chenier dynamics in tidal environments

-Dissociate the action of waves and tide

- Identify sedimentary facies of chenier at the scale of the sedimentary body

-Link the hydrodynamic processes to the chenier sedimentary structures

 Mont-Saint-Michel bay

P. Weill 22nd October 2010

Formation and evolution of macrotidal chenier ridges

- Experimental and in-situ approaches -
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Field work – Sedimentary architecture

Lab work

Sediment behaviour

Wave flume 

experimental model

Integrating time and space scales…

…from grain motion to coastal evolution

 

P. Weill 22nd October 2010

Cheniers
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Mont-Saint-Michel bay - SPOT satellite image (1994)
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Hirel - Photographie aérienne (Bruno Caline – 1993)
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The Dol Marshes

Last episode of sedimentary infilling (progradation) 

periodically interrupted from 3 500 y. BP by coarse 

shelly littoral barriers

from Desdoigts (1970) in Bonnot-Courtois et al. (2004)

L’Homer et al. (2002) in Bonnot-Courtois et al. (2002)

P. Weill 22nd October 2010
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Hydrodynamic conditions - Waves

Shallow and protected embayment  Low wave environment

Fair weather conditions (13/03/2009) Storm conditions (10/02/2009)

P. Weill 22nd October 2010
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Hydrodynamic conditions - Tides

Spring tidal range : 14 m

Strong alternating currents in the estuary

Weak rotating currents in the embayment

Level of tidal flooding

P. Weill 22nd October 2010

Modif. from L’Homer et al. (1999) and Bonnot-Courtois et al. (2002)
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Hydrodynamic conditions - Tides

Spring tidal range : 14 m

Strong alternating currents in the estuary

Weak rotating currents in the embayment

Level of tidal flooding

(data: C. Bonnot-Courtois)

P. Weill 22nd October 2010

Modif. from L’Homer et al. (1999) and Bonnot-Courtois et al. (2002)



• Introduction  Hydrodynamic settings

13

Wave and tide conjunction

P. Weill 22nd October 2010

Variations in cumulated time of  

chenier flooding per year

 4.4 years tidal cycles 

 18.6 years tidal cycles

+

Waves

Multi-annual climatic variations
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Field work – Sedimentary architecture
Observation during high spring tide

Trenching and coring

GPR survey

Lab work

Sediment behaviour

Wave flume 

experimental model

P. Weill 22nd October 2010

Cheniers
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Ground Penetrating Radar (GPR)

Propagation of high-frequency electro-magnetic waves

GPR antennas - 400, 900 MHz and 2.6 GHz

6,5 km of radar profiles 
(cross-shore and longshore)

+ Trenching and coring

P. Weill 22nd October 2010

GPR Equipement : GSSI, distributed by MDS Paris
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Localisation of GPR profiles and cores

P. Weill 22nd October 2010

Box 1

Box 2

Box 3

500 m

N

20 x 60m

1 core

12 x 44m

7 cores

20 x 55m

1 core
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GPR Profile n° 1 (cross-shore) – 900 MHz

Seaward

Landward

HST (110)

1m 5m 10m

P. Weill 22nd October 2010

Box 1

500 m

Weill et al. (in press)
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2006
GPR Profile n° 1 (cross-shore) – 900 MHz

P. Weill 22nd October 2010

beach lamination

(swash built)

basal unit

erosion surface

Landward

Seaward HST (110)

1m 5m 10m

Eroded salt marsh deposits Eroded tidal flat
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2006
GPR Profile n° 1 (cross-shore) – 900 MHz

P. Weill 22nd October 2010

beach lamination

(swash built)

basal unit

erosion surface

Landward

Seaward HST (110)

1m 5m 10m

Millimetric beach lamination Centimetric beach lamination
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GPR Profile n° 1 (cross-shore) – 900 MHz

50 

cm

Washover deltas

(progradation)

Sub-aerial washover sheets 

(aggradation)

Landward

HST (110)

1m
5m 10m

P. Weill 22nd October 2010
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GPR profile n° 2 (cross-shore) – 900 MHz

Landward
Seaward

HST (110)

2m 5m 10m

P. Weill 22nd October 2010

Box 2

500 m

Weill et al. (in press)
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basal unit

Washover deltas 

(progradation)

erosion surface

beach lamination

(swash built)

Sub-aerial washover sheets 

(aggradation)

LandwardSeaward

2m 5m 10m

High-resolution cross-shore profile – 2.6 GHz

0.5m

5m 10m

GPR profile n° 2 (cross-shore) – 900 MHz

P. Weill 22nd October 2010



2006

n° 1

Box 3

500 m
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GPR profile n° 3 (cross-shore) – 900 MHz

Landward
Seaward

HST (110)

2m 5m 10m

P. Weill 22nd October 2010

Weill et al. (in press)
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GPR profile n° 3 (cross-shore) – 900 MHz 2006

10 m5 m
2 m

1982

beach lamination

(swash built)

Washover deltas  

(progradation)

Sub-aerial washover sheets 

(aggradation)

erosion surface

(fossil beach surface)

Landward

Seaward

HST (110)

2m
5m 10m

P. Weill 22nd October 2010

1990 2002 2006
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Core analysis

X-ray density / porosity correlation

X-ray slices and virtual sections
Porosity log
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Constant head permeameter Porosity and permeability log

Low NullPermeability

Very fine sand,

silt, silt and clay
Clay

Sediment

type

Good

Clean sand, 

sand / gravel mix
Clean gravel

Design: Sylvain Haquin
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Geotechnical and lithological facies of radar units

Permeability

k ~ 1 10-3 m.s-1

k ~ 2.5 10-4 m.s-1

k ~ 7 10-4 m.s-1

Low

Sediment

type
Clean gravel

Very fine sand,

silt, silt and clay

Good

Clean sand, 

sand / gravel mix

k ~ 9 10-4 m.s-1

k ~ 6 10-3 m.s-1
Weill et al. (in press)



Mature transgressive
Tidal flat

Salt marsh

Active transgressive

Tidal flat
Salt marsh

Mature progradational

Tidal flat
Salt marsh

• Sedimentary Architecture  Synthesis
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Box 3

LandwardSeaward

HST (110)

Box 2

Box 1

HST (110)

HST (110)
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• Sedimentary Architecture  Synthesis

Mature transgressiveTidal flat
Salt marsh

Active transgressive

Tidal flat
Salt marsh

Mature progradationalTidal flat Salt marsh

Different progradation or accretion units 

identified (2-3) over the period of chenier 

construction on the upper tidal flat 

(30-40 years)

Influence of low frequency tidal cycles (4.5 and 18.6 years) ?

(peak periods  massive sediment reworking by waves)
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Questions...

How can coarse material be concentrated in a low energy environment ?

How can we explain the grain sorting observed in the beddings ?

Field work – Sedimentary architecture

Lab work

Sediment behaviour
Settling velocity

Threshold of motion

Wave flume 

experimental model

Cheniers
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Sediment composition and sieve size distribution

Sediment sampled in the field

Bimodal distribution

Meaning of the sieve diameter for shell debris ?

Fine silicoclastic fraction
Coarse bioclastic fraction
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Design: Sylvain Haquin

Settling velocities converted into equivalent settling diameters

Bioclastic particles : flat shape

 Small settling velocity and equivalent diameter

L

 V =  L /  t

Stroboscopic photographs (5 Hz)

Weill et al. (2010)

Sieve diameter (mm)
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Threshold of motion under unidirectional current

u

w

Sieved sediment in flat bed

Unidirectional current generated

Velocity and turbulence profiles using

Laser Doppler Anemometry (LDA)

Design: Sylvain Haquin
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• Sediment hydrodynamic behaviour  Threshold of motion
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Threshold of motion under unidirectional current

Velocity and turbulence profiles using

Laser Doppler Anemometry (LDA)

Velocity and stress profiles

Critical velocity and shear stress for 

sediment motion
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settling diameter

sieve diameter

Weill et al. (2010)

Threshold of motion for bioclastic sediment :

- close to common values with sieve diameter

- over estimated with settling diameter

Need to dissociate behaviour of  :

- isolated particles suspended in highly 

turbulent flows 

- Imbricated particles and armoured  bed

under unidirectional flows
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Questions...

Sediment behaviour in breaker zone, swash zone, overwash ?

Field work – Sedimentary architecture

Lab work

Sediment behaviour Wave flume 

experimental model

Cheniers
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18 m long wave flume – piston type wave maker

+ Mean water level fluctuations

Natural sediment shaped in a 6 m long smooth beach

 Material and methods
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Equilibrium morphology

 Material and methods

Montage of 2 photographs taken through the side glass of the flume 
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Breaker zone  Chenier foot

 Hydro-sedimentary processes
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Breaker zone

No surf zone – Surging breaker

Intense erosion – Topographic step

Sediment eroded, sorted and transported in the 

swash zone

Coarse bioclastic particles easily sorted

 Hydro-sedimentary processes
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Swash zone – Chenier seaward face (beach)

 Hydro-sedimentary processes
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Swash zone

Chenier seaward face (beach)

Coarse sediment transported and 

deposited in the upper swash zone

Fine sediment left in the                       

lower swash zone

 Hydro-sedimentary processes
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Washover zone – Chenier landward face

 Hydro-sedimentary processes
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Washover zone – Chenier landward face

 Hydro-sedimentary processes
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Washover zone – Chenier landward face

 Hydro-sedimentary processes
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Washover zone – Chenier landward face

 Hydro-sedimentary processes
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Morphological response to mean water level fluctuations

 Morphological response
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Morphological response to mean water level fluctuations

 Morphological response
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 Morphological response

Falling water level

 Small ridge formation seaward of the chenier

 New sediment stock at the chenier foot
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 Morphological response

Rising water level

 Sediment stock reworked

 Beach accretion
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 Morphological response

Rising water level

 Chenier foot erosion and migration

 Washover 
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 Morphological response

Very high water level

 Large washover

 Chenier landward migration and                   

vertical aggradation

Landward migration

90 cm in 2 h 30 min
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 Morphological response

Falling water level

 Chenier stabilization

 Sediment accumulation at the foot                  

of the chenier
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 Morphological response

Rising water level

 Sediment stock reworked

 Formation of a new ridge at the chenier foot
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 Morphological response

High water level

 Migration of the new ridge on                        

the chenier beach face

 Stabilization of the ridge 

Seaward progradation of the chenier Time (min)
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 Synthesis

With constant monochromatic waves

+

Mean water level fluctuation

 Chenier ridge morphology

Washover dynamic

 Sedimentation style controlled by water level

 Chenier landward migration

 Chenier progradation

 Striking similarities with field data
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 Synthesis

Transgressive chenier morphology

Wave Flume (initial stage)

GPR (Box 2)
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Prograding chenier morphology

 Synthesis

Wave Flume (final stage)

GPR (Box 3)
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A depositional model controlled by tides       

Internal architecture and stages of evolution

1

2

3

4

5

Tidal flat Salt marsh Chenier
Weill et al. (in press)
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A depositional model controlled by tides       
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Goals

- To characterize the genesis, growth and stabilization of cheniers in macrotidal environments 

Methods
Field work – Sedimentary architecture

-GPR, X-ray, geotechnical analysis (porosity, permeability)

- Hydrodynamic processes observed during high spring tide floodings

- Long term evolution by aerial photographs

Lab work

Sediment behavior
- Settling velocity

- Threshold of motion

Wave flume 

experimental model
- Sediment behavior under waves

- Morphological response to 

mean water level fluctuations

Cheniers



Tidal flat Salt marsh

• Conclusion
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Results

1- A peculiar sediment behaviour

2- A revealed internal architecture

3- A deposition model controlled by tides
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