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Abstract 
 
This thesis deals with experiments and simulations of nanoindentation in copper single crystals. 
Indentation experiments are performed with different orientations of the indentation axis and 
both the load-displacement curve and the surface imprint observed by atomic force microscopy 
are analysed and compared. Indentation size effect is observed for low penetration of the 
indenter. Simulations are then performed using crystal plasticity finite element modelling. 
ABAQUS user subroutines are specially developed in order to account for the physics of 
dislocation activity in the twelve glide systems of copper crystals. 3D simulations are then 
performed and comparisons with the experiments give access to key parameters of the 
constitutive equations. The indentation size effect is reproduced using a simplified size effect 
theory implanted in the finite element modelling. Finally, a multiscale approach based on 
discrete dislocation dynamics is used to reproduce (111) indentations of copper single crystals. 
Molecular dynamics simulations give details of dislocation nucleation beneath the indenter. 
Dislocation dynamics simulations are then performed and the indentation size effect is 
addressed. 
 
 

Keywords: Nanoindentation, Crystal plasticity, Finite element method (FEM), Dislocation 
dynamics (DD), Molecular dynamics (MD), Indentation size effect, Multi-scale simulation, 
ABAQUS, TRIDIS, CASTEM 
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Notations 
 

A Surface created by the closed dislocation loop 
Aj Component of the surface A 
AprojC Projected contact area during or after nanoindentation 
ArealC Real contact area during or after nanoindentation 
Ar,sphere  Real surface area of a sphere shape of tip front 
Ap,sphere  Projected area of a sphere shape of tip front 

asp  Matrix for dislocation generation  
 
Bp Phonon drag coefficient 

b  Burgers vector 
b Norm of the Burgers vector 
bi Component of Burgers vector 
 
C Constrained factor between hardness and yield strerss 
C*

eq Equivalent indentation compliance  

C*
indenter Indentation compliance of indenter 

C*
sample Indentation compliance of sample   

C*
experimentIndentation compliance from experiment  

C*
simulation Indentation compliance from simulation   

CC 4th order elastic modules tensor for the relationship between stress and strain measure 
from Cosserat theory 

CD 4th order elastic modules tensor for the relationships between curvature and coupled 
stress from Cosserat theory 

CE  4th order elastic stiffness matrix 

Cρ Closed dislocation loop 
 

D Deformation rate tensor  
DE Elastic deformation rate tensor  
Dp Plastic deformation rate tensor  
Dn Normal gradient operators acting on a surface with normal vector n 
Dt  Tangent gradient operators acting on a surface 
Di Intrinsic dissipation 
Dh(x)   Homogeneous function of degree 6 
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dmax  Distance form surface center to the maximum stress position 
 

E*  Almansi-Hemel strain tensor  
E  Elastic modulus 
Eindenter  Elastic modulus of indenter material 
Esample  Elastic modulus of sample  
Esapphire  Elastic modulus of sapphire  
 

F Deformation gradient tensor  
FE Elastic deformation gradient tensor  
Fp Plastic deformation gradient tensor 
Ff Point force vector 
Ff

m Component of the point force 
Fiter Function for Newtonian iteration 
fsg Dissipation potential from strain gradient theory   
f1

c Dissipation potential from stress measure at Cosserat theory 
f2

c
  Dissipation potential from coupled stress measure at Cosserat theory 

flmk Function defined by Willis 
 
glmk Function defined by Willis 
 
H Indentation hardness 
H0 Indentation hardness in the absence of any size effect 

hsp  Matrix of hardening parameter 
hp  Matrix of hardening parameters for latent hardening  
h0, ss, a Hardening parameters from Anand’s hardening theorem 

h0, n, τ0 Hardening parameters from Asaro and Needelman’s hardening theorem 
 

I Second order identity tensor 
 
k Boltsman constant 
Kg Parameter for dislocation generation 
 

L Velocity gradient tensor  
LE Elastic velocity gradient tensor  
Lp Plastic velocity gradient tensor 
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L0
p Plastic velocity gradient tensor measured by intermediate state  

Lwil(ζ) Function for deriving Green function proposed by Willis 
Lcyl Contour for the condition given by Willis 
Lg  Length scale about global length from theory we proposed 
Lloop Length of generated prismatic loop 
l  Length between two junction points 
le  Intrinsic length scale from strain gradient theory 
lg Length scale about local length from theory we proposed 
lp

sg  Characteristic length from strain gradient theory 
lpc  Characteristic length from Cosserat theory 
ld Length of dislocation segment 
 

M  Couple stress tensor from Cosserat theory 

Msg  Couple stress tensor from strain gradient theory 
M*

eq Equivalent indentation modulus  
M*

ind Indentation modulus of indenter 
M*

sample Indentation modulus of sample 
M*

experimentIndentation modulus from experiment  
M*

simulation Indentation modulus from simulation 

msur
sg  Double force vectors on the surface from strain gradient theory 

msur Couple vectors acting on a surface element from Cosserat theory 
ms  Slip direction vector of the sth slip system for a current state of a material 

ms
0  Slip direction vector of the sth slip system for an initial state of a material 

msg  Resolved hyper stresses  

mτ Resolved shear strain from coupled stress at Cosserat theory 
mr Parameter for rate sensitivity 
 

Nmk(ζ)  Homogeneous function of degree 4 in ζ 
nsur Surface normal vector 
n  Slip plane normal vector  
ns  Slip plane normal vector of the sth slip system for a current state of a material 

ns
0

  Slip plane normal vector of the sth slip system for an initial state of a material 
nwil Parameter for transforming the integral by Willis  
 

O33  3 x 3 matrix fully populated by ones 
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Pcriterion  Load criterion from nucleation criterion at the given indentation depth 
Pind Applied load for given indentation depth 

p Position vector for the material state after plastic deformation 
pwil Perpendicular distance from x to the dislocation line 
pi  Power densities of internal  
pc  Contact forces  
pm  Internal material property which affects to local deformation 
 

qsp  Coefficients for self hardening  
q  Ratio between the latent hardening and self hardening  
 

R Distance vector between r and r’ 
R Norm of the vector R 
Rcont  Contact radius at the giving indentation depth during nanoindentation 
Rind  Radius of the sphere indenter 

r Evaluation position vector  
r’ Position vector for a dislocation line  
 
S Indentation stiffness  
Ssur Arbitrary surface 
Scyl Element of area on the cylinder 

 

T*  Second Piola-Kirchhoff stress tensor 
T  Temperature 

tsur  Traction vectors acting on a surface element  
td  Dislocation line vector 
 

u  Displacement vector 
um Components of the displacement vector 

umk Green’s function tensor for the elastic displacement  
 
v Velocity of a dislocation segment  
 
W Interaction energy 
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X  Position vector of final material state 
x3 Surface displacement through indentation direction 

x  Position vector of initial material state 
x’ Coordinate for the point lay on dislocation loop 
xE End point of arbitrary dislocation segment 
xS Start point of arbitrary dislocation segment 
xind Indentation depth 
x*

ind Length that characterizes the depth dependence of the indentation hardness 
xeq

ind Total indentation depth 
xindenter

ind Indentation depth of indenter 
xsample

ind Indentation depth of sample 
 
yc  Minimum dislocation dipole length 
 
Z Plain defined by Willis 
 

αnye Nye tensor 
α  Constant for line tension  
αsp Junction strength matrix  
 

∆G0  Gibbs free energy 
∆V*  Volume change 
δij  Kronecker delta function 
 

ε Infinitesimal strain tensor (represent global strain) 
εe Elastic infinitesimal strain tensor  
εp Plastic infinitesimal strain tensor  
εc  Strain measure defined at Cosserat theory 
εc

e
  Elastic strain measure defined at Cosserat theory 

εc
p

  Plastic strain measure defined at Cosserat theory 
εp,global  Global averaged strain from theory we proposed 
εp,local  Local strain from theory we proposed 
εijk Third order permutation tensor 
εcon

 Convergence factor 
εext Deformation field represents the material deformation  
εint Local deformation at slip system 
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φ Μicro rotation 
φf Arbitrary function 
 

γS  Resolved slip gradient variable  
γs Resolved shear strain of the sth slip system 
γs

0 Ιnitial resolved shear strain rate of the sth slip system 
 

ηp Plastic strain gradient 
η Strain gradient  

ηe Elastic strain gradient 
ηζ Normalized element ζ in Fourier space 

κ Second rank tensor for curvature 
κe Elastic second rank tensor for curvature 
κp Plastic second rank tensor for curvature 
 

λsg Plastic multiplier from strain gradient theory  
λ1

c Plastic multiplier for plastic strain measure from Cosserat theory  
λ2

c Plastic multiplier for plastic curvature measure from Cosserat theory  
λ Lame constant  
 

µs  sth slip system tensor in a material for a current state of a material 
µs

0  sth slip system tensor for an initial state of a material  
µnx x directional vector components of the nth slip system tensor (n=1,2…) 
µ Shear modulus 
 

ν  Poisson ratio  
νindenter  Poisson ratio of indenter material  
νsample  Poisson ratio of sample 
νsapphire  Poisson ratio of sapphire 
vs  Average velocity of the mobile dislocations of the sth slip system 

νD Frequency of dislocation passed to obstacles 
 

θn Αngle criteria for obtaining contact surface defined  
θ  Resolved curvature from Cosserat theory 
θwil  Angle variable by Willis 
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ρsg  Coefficient for the relationships at the state low from strain gradient theory 
ρCosserat  Coefficient for the relationships at the state low from Cosserat theory 
ρg  Geometrically necessary dislocations 
ρs  Statistically stored dislocations 
ρm

s Density of mobile dislocations 
ρp  Dislocation density of the pth slip system 

ρζ Νorm of the element ζ in Fourier space 
ρζΝ Νorm of the element ζ in Fourier space defined by Willis 
 

σextra  Extra stress from theory we proposed 
σc  Stress tensors at Cosserat theory 
σ Cauchy stress tensor (represent global strerss) 
σapp Applied stress tensor as a boundary condition of DD simulation 
σint Internal stress tensor due to dislocation loops 
σext All of the external information obtained by the external boundary conditions  
σint

y Internal yield stress against local deformation 
σy Yield stress  
 

τs Resolved shear strain of the sth slip system 
τs

µ  Critical resolved shear stress 
τ*s Short range stress field from obstacles or forest dislocations 
τpk Peach Koehler Forces at a dislocation segment 
τlt Line tension force at a dislocation segment  
τnet Net force after reducing by lattice friction  
τpeierls Force due to the lattice friction   
τcriterion  Resolved shear stress criterion  
τmax  Maximum resolved shear stress at the maximum stress position  
 

Ω Rigid body rotation rate tensor  
ΩE Elastic rigid body rotation rate tensor  
Ωp Plastic rigid body rotation rate tensor  
Ω Solid angle 
 

ω Element on the unit sphere |ηζ|=1  
 

ξ Vector normal to both slip the slip direction vector and the slip plane normal vector 
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ψ  Τip angle of cone shape indenter between tip axis and tip surface 
Ψ Free energy density 
 

ζ Position vector at Fourier space 
ζΝ Position vector at Fourier space by Willis 
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I. Introduction  
 
Indentation experiments and related sized effect 
Indentation has recently become a widely used method to measure mechanical properties of 
metals and ceramics. Recent advances in indentation technique have led to the development of 
very low load with depth sensing indentation also called nanoindentation. This nondestructive 
examination allows estimating local material properties using a measurement of the penetration 
depth into extremely small regions of material. Therefore, it is now widely used for probing 
local material properties of bulk solids or welding joints but also to test confined materials such 
as multiphase materials, thin films, or when the volume of materials is limited like for irradiated 
samples.  
The usual objective of nanoindentation test is to find out the hardness of the probed material. 
This is defined by the ratio of the indentation force and the current contact area during load. 
Note that this is different from the conventional hardness measurements (Vickers, Brinell and  
Rockwell) where the contact area is measured on the imprint left after the indenter removal. For 
elastic solids for example, this difference implies that a Vickers hardness is infinite (residual 
contact area being null) whereas there is a finite value for nanoindentation measures. Although 
the force can be measured directly (see figure I-1(a) for example), it is not the case for the 
contact area which has to be estimated. This is classically done using Oliver-Pharr method 
[OP92], but the accuracy depends on the mechanical properties of the tested material. An 
alternative way consists of measuring the contact area by atomic force microscopy (AFM) 
which gives access to the actual surface shape after indentation.  
 
 

 
Figure I-1 (a) Typical load displacement curve during nanoindentation,  

(b) Residual imprint of (111) copper surface after a 1400nm indentation. 
(c) Typical indentation size effect of copper single crystal 
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Figure I-1(b) shows the residual imprint left on a (111) surface of copper single crystal after a 
conical indentation at a depth 1400nm. Such a picture can then be exploited in order to measure 
the contact area between the indenter and the surface at the maximum load.  
Even when most attention is paid to the measurement of the contact area, it is found that the 
value of the hardness depends on the indentation depth: hardness increases when the depth is 
decreased. In copper single crystals for example, this so called Indentation Size Effect (ISE) is 
observed for a large range of penetration depths as shown in figure I-1(c). As a conclusion, the 
hardness of a given sample is not a constant value and should always refer to tip geometry and 
penetration depth (or load). Consequently, the modeling of indentation requires constitutive 
equations that account for the physics at the origin of the plasticity of the materials. In the case 
of copper crystals, this can be done in the frame of continuum mechanics using crystal plasticity 
modeling where the discrete character of plastic slip is taken into account through the definition 
of the crystal slip systems.  
 
Finite element modeling of indentation using crystal plasticity (CPFEM) 
Crystal plasticity (CP) is a general framework of deformation theory based on continuum 
mechanics devoted to modeling the mechanical behavior of crystalline materials. Such modeling 
is based on two main ingredients: (i) a theoretical framework designed to describe the 
kinematics of the deformation, and (ii) a set of constitutive equations needed to reproduce the 
physics of the plastic deformation. For crystalline materials, plasticity is mainly developed by 
the motion of dislocation lines on crystallographic planes. In the case of FCC crystals, there are 
twelve {111} slip systems. Thus, the local deformation is by nature discrete (see slip lines in 
figure I-1 (b)) and the collective motion of the dislocations line may introduce plastic anisotropy 
that homogeneous description of plasticity could not reproduce. Figure I-2 shows a typical 
result obtained by crystal plasticity in the case of a polycrystalline aggregate deformed by 
tension. The colors indicate the plastic strain accumulated in the different finite elements.  
In such modeling, the constitutive equations consist of analytical expressions relating the plastic 
strain rate to the applied stress state. This is usually defined through a flow law involving a yield 
stress. This law should be complemented by a hardening equation which gives the evolution of 
the yield stress with the plastic deformation. Some theories introduce internal variables whose 
role is to reflect the physics. One possibility is to introduce the dislocation densities on the 
different slip systems. This requires adding a third equation which specifies the evolution of the 
dislocation densities with the plastic deformation. Although these efforts spent to fit to reality, 
these models are scale independent and thus, they cannot reproduce size effects. One need to 
modify these equations in order to introduce an intrinsic length like in theories of generalized 
continuum mechanics. 
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Figure I-2 Example of application of CPFEM in the case of Zinc polycrystal aggregates loaded 
in tension. Second figure shows plastic deformation on basal slip systems [FF04]. 
 
Generalized continuum mechanics of materials 
The terminology of generalized continuum mechanics includes different extensions of the 
classical theory of continuum mechanics. On one hand there is the higher level medium for 
which additional degrees of freedom are introduced in the formalism but only first order 
gradients are used like in the classical theory. Micromorphic medium where a local micro-strain 
tensor is introduced is an example of higher level medium. Cosserat theory which introduces 
couple stresses as local variables is also a part of these media. On the other hand, there are the 
higher order media which use second or above gradients of the displacement field in their 
description. Examples of these theories are the second order theory which accounts for the 
gradient of the strain and all the media of gradient of internal variables. 
Although different in their descriptions, these theories have a common advantage which other 
classical continuum mechanics don’t have: they can reproduce size effects. Figure I-3 shows the 

lattice rotations computed in γ/γ’ single crystals within the frame of classical plasticity and the 
same quantity computed from Cosserat modeling. 
Despite this better description of material behavior, generalized media are still a field of 
research and not widely used in the industry. The main reason is certainly the computing time 
which dramatically increases with the model complexity (number of degrees of freedom, high 
order non-linearities, and so on).  
Finally, these models are still continuum descriptions whereas the plastic behavior of crystalline 
materials is discrete. Only discrete models where the dislocation lines are individually simulated 
can reproduce this feature.  
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Figure I-3 Comparison of lattice rotations computed in classical continuum mechanics and 

using Cosserat modeling [For07]. 
 
Dislocation dynamics modeling (DD) 
The concept of 3D dislocation dynamics method has been imagined in the early 1990s. In such 
modeling, the dislocation lines are discretized in sets of segments embedded in a continuum 
medium. Each of the segments can then move in the simulation box according to local rules 
describing the local reactions that may occur during the flight (phonon drag, junctions, cross-
slip, and so on). The DD approach can be used to analyze plasticity in confined volumes. 
Because of computation constraints, the amount of cumulated plasticity is limited to a few 
percents.  Consequently, these models generally focus the understanding of the initial stage of 
plasticity as shown for example in figure I-4 in the case of low amplitude fatigue simulations.  
 

      

Figure I-4 Typical DD simulation of the fatigue behavior of 316L stainless steels [Dép04] and 
precipitate hardened material [Shi04]. 
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The figure also shows that this description gives access to the discrete character of plastic strain: 
slip lines are printed in the surface when dislocations shear the crystal. The model can reproduce 
size effects since it makes use of an internal length which is the Burgers vector of the 
dislocation lines that is to say the elemental carrier of crystal plasticity. 
 
Outline of the thesis 
In this thesis, nanoindentation experiments of copper single crystals are analysed and compared 
to numerical analysis. The numerical investigation is performed using different models: 
classical finite element crystal plasticity, strain gradient model, and dislocation dynamics.  
  
Firstly, the state of the art in the different modeling used in this thesis is introduced in chapter II.  

- Section II-1 concerns crystal plasticity modeling. The general framework of continuum 
mechanics is recalled and dislocation based constitutive equations are introduced. The model is 
then implanted in UMAT and VUMAT subroutines supported in ABAQUS package and 
validation of the code is performed in the case of a simple tensile test of copper single crystal.  

- Non-local theories are presented in section II-2. After a brief recall of Cosserat and second 
gradient theories, a simplified strain gradient theory is proposed. The model is integrated by 
FEM and applied to reproduce size effect both in case of tensile and shear deformation.  

- Section II-3 described the basic ingredients of discrete dislocation dynamics modeling. 
The code TRIDIS is modified and extended to treat anisotropic media. 
 
The case of nanoindentation is treated in chapter III.  

- Section III-1 presents the analysis methods we have developed to measure the actual 
contact area in the simulations. It also describes several correction methods needed to compare 
simulation results with experiments.  

- Section III-2 shows results of indentation experiments performed with different 
orientations of the indentation axis. Both the load-displacement curve and the surface imprint 
observed by atomic force microscopy are analysed and compared.  

- Numerical analysis is then performed using crystal plasticity finite element modelling in 
section III-3. 

- The numerical results are quantitatively compared to the experiments in section III-4, 
which gives access to key parameters of the constitutive equations of the dislocation density 
based crystal plasticity model.  

- In section III-5, the indentation size effect is reproduced using the simplified strain 
gradient theory proposed in section II-2. 

- Finally, dislocation dynamics simulations of indentation are presented in section III-6. A 
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nucleation criterion is proposed from atomic considerations. The nanoindentation loading is 
applied using a coupling with finite element modelling (code CAST3M) and results are given in 
the case of a (111) spherical indentation. 
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II. State of the art of crystal plasticity modeling   
1. Crystal plasticity theories  
 
Crystal plasticity theory is a deformation theory based on continuum mechanics developed for 
understanding the mechanical behavior of crystalline materials. Most of the crystal plasticity 
theories were developed during the early 20th century, from 1900 to 1938 [ER00, BB33, TE23, 
TE25, Tay34, Pol22 and Sch24]. For most of the loading conditions, plastic deformation is 
mainly due to the movement of dislocations. Dislocations are line defects of the crystals that 
carry the plastic deformation through a slip vector: the Burgers vector. Dislocation lines lie and 
move on specific planes imposed by the crystal lattice. The combination of one specific planes 
and one specific Burgers vector defines a slip system. As an example, there are 12 slip systems 
in FCC crystals as shown in table II-1-1.  

 

Table II-1-1. The slip systems for a FCC crystal 
 

A slip system can then be defined by the Schmid matrix µs expressed as the tensor product of 
the slip vector ms and the normal to the slip plane ns: 

sss nmµ ⊗=                                 (II-1-1) 
When dislocations move on the slip systems, they contribute to the global plastic deformation. 
In practice, crystal plasticity theory is a mathematical description of empirical or physical rules 
relating the local behavior of the dislocations and the global deformation of the volume.  

In crystal plasticity models, generally, the deformation and stress field (εext , σext) are discretized 
as functions of local deformation and stress field (εint , σint

y) for each slip systems (s). 

( ) ( )∑=
s

ss
y εσf int,int, ,, extext εσ                           (II-1-2) 

The local deformation (εint) is given by the flow law: 

( )m
y pf ,, intint σε extσ=                            (II-1-3) 

where σext , σint and pm represent external information due to a boundary conditions, local yield 
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against given local deformation and internal variables which affect the local deformation.  

The local yield stress (σint
y) is obtained from another local rule: the hardening law: 

( )m
y pf ,, intint εσ extσ=                            (II-1-4) 

Normally, the effect of pm is ignored for simplicity. However, some attempts have tried to link 
the physical properties of the material (pm) to the constitutive equations in order to give back the 
anisotropic behavior [TH98]. In these approaches, the physical property is obtained from 
another local rule: the evolution law. 

 ( )intint ,, y
m fp σεextσ=                            (II-1-5) 

Following the first development of mathematical crystal plasticity model proposed by Taylor 
[Tay38], many authors have developed and proposed different crystal plasticity models [Hil66, 
HR72, AR77, HR82, Asa, TF97, PAN83, BW91, CO92, MC91, Wen87 and Oha87]. In these 
models, an attention has been paid to the description of the visco-plastic deformation of 
crystalline metals using phenomenological laws [Hil62]. More recently, Tabourot et al. have 
proposed a complete crystal plasticity model based on dislocation dynamics theories [TF97].  
In this section, details of crystal plasticity models based on empirical rules are introduced. Then, 
the rules are linked to the physical theory based on dislocation dynamics. Finally the dislocation 
based model is implanted in FEM routines and tested in several simple loading conditions. 
 
 

1.1 Crystal plasticity theory based on empirical rules 
 
Global deformation and local deformation 
The global deformation of a single crystal material is related to the plastic deformation 
cumulated on the different slip systems. Figure II-1-1 depicts a schematic description of two slip 

systems with the related global deformation. In this figure, µ1x and µ2x are x directional vector 
components of the 1st and 2nd slip system tensor which is defined by direction cosine value 
between each slip systems and global x direction, respectively. Local deformations of 1st or 2nd 

slip system are represented by shear strains (γ1 and γ2) and shear stresses (τ1 and τ2) resolved on 
each slip systems and the global macroscopic quantities are represented by the global strain (ε) 
and stress (σ).  
Although the global deformation is produced by the local deformations accumulated on each 
slip systems, not all the slip systems are required to accommodate the global deformation. 
Mathematically, the slip system with the highest Schmid factor will multiply the first. If two or 
more slip systems have the same highest value of Schmid factor, they are activated 
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simultaneously.  
 

 
Figure II-1-1. Schematic description of two interacting slip systems loaded in tension. 

 
Figure II-1-2 depicts the slip systems activated in the case of uniaxial tensile deformation for 
FCC materials. In this stereographic projection, if the loading direction falls within a triangular 
domain, the slip system indicated in figure II-1-2 will feel the highest Schmid factor (see table 
II-1-1 for slip system description).  
If the projection falls on the lines delimitating two adjacent triangles in figure II-1-2, both slip 
systems beside the line are simultaneously activated. Similarly, if it lays on the line intersections, 
all the slip systems surrounding the intersection point are activated simultaneously. As an 
example there are respectively 4, 6 and 8 slip systems activated simultaneously when the tensile 
direction is aligned with directions (110), (111) and (001) whereas only B4 slip system is 
activated when the direction is inside the domain delimitated by the projections of [0 0 1], 
[ 0 1 1] and [-1 1 1].  
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Figure II-1-2. Stereographic projection of the slip systems activated in tension for different 
orientations of the tensile direction 

 
Mathematical description of crystal plasticity 

Let define the deformation gradient (F) as: 
XFx dd ⋅=                              (II-1-6) 

where dX and dx are position vectors of initial and final state respectively.  
As shown in figure II-1-3, the final state of deformation is obtained by a composition of plastic 
and elastic strains. The plastic strain is the irreversible part of the deformation due to the 
movement of dislocations and the elastic deformation is the remaining material deformation 

including the rigid rotation of the material. Hence, the deformation gradient (F) can be 
decomposed into the elastic deformation gradient (FE) and the plastic deformation gradient (Fp) 
[Asa]. 

pE FFF ⋅=                                (II-1-7) 
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Figure II-1-3. Schematic description of the transformation decomposition into elastic and plastic 
deformations 

 

Then the plastic deformation gradient (Fp) transforms a vector dX into a deformed state dp as  
XFp p dd ⋅=                             (II-1-8) 

The plastic deformation gradient (Fp) can be expressed from the local plastic strain (γs) 
cumulated on each slip systems as:  

( )∑∑ +==
s

s

s

s
0

psp µIFF γ                        (II-1-9) 

where I, µs
0 are second order identity tensor and tensor matrix of sth slip system at the initial 

state, respectively.  

Similarly, the elastic deformation gradient (FE) can be defined by following equation. 
pFx E dd ⋅=                                (II-1-10) 

This elastic deformation gradient represents not only all the elastic deformation but also the 
rigid body rotation of the crystal lattices (note that the crystal lattice is not modified by the 
plastic deformation). 
Since, both slip plane and slip direction are changed after the elastic deformation, their 
orientations at the current state are expressed as a function of the elastic deformation gradient.  

s
0

Es mFm ⋅=                              (II-1-11) 

1Es
0

s Fnn −⋅=                             (II-1-12) 
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where ms
0 and ns

0 are the slip direction and slip plane of system s at the initial state respectively. 
The previous relationships are illustrated in figure II-1-3. The bottom left picture represents the 
initial state of a single crystal material. Horizontal and vertical dashed lines depict the crystal 

lattice orientations of the materials represented by the slip direction (ms) and the normal to the 
slip plane (ns). The bottom right picture depicts the intermediate state of the single crystal 
obtained after plastic deformation: the material shape is changed but the dotted lines are not 
modified. The top picture depicts the current state of the single crystal after both elastic and 
plastic deformations: both material shape and dashed lines are changed.  

The velocity gradient parameter (L) is also needed the crystal plasticity theory. It is expressed 
by  

ΩDFFFFFFFFL 1E1ppE1EE1 +=⋅⋅⋅+⋅=⋅= −−−− &&&            (II-1-13) 
where the velocity gradient (L) is divided into the deformation rate (D) and the rigid body 

rotation rate (Ω). The deformation rate (D) is defined by the symmetry part of the velocity 
gradient (L) and the rigid body rotation rate (Ω) is defined by skew symmetry part of the 
velocity gradient (L). 

( ) ( )TT LLΩLLD −=+=
2
1,

2
1

                       (II-1-14) 

Both the deformation rate and rigid body rotation rate are decomposed into two parts as done 
for the deformation gradient. 

pEpE ΩΩΩDDD +=+= ,                        (II-1-15) 
The dislocation movements induce a plastic strain rate which is represented by the plastic 

deformation rate (Dp) and the plastic spin (Ωp). The other deformation of the material is called 
elastic deformation and it is expressed by elastic deformation rate (DE) and elastic spin (ΩE).  
Using equation (II-1-13) and (II-1-15), new relationships among plastic and elastic parts of all 

the L, D, Ω and F can be induced as followed 
1EEEEE FFΩDL −⋅=+= &                          (II-1-16) 

1Ep
0

E1E1ppEppp FLFFFFFΩDL −−− ⋅⋅=⋅⋅⋅=+= &              (II-1-17) 

where L0
p is the velocity gradient measured at the intermediate state before any crystal lattice 

deformation. This parameter can be estimated from the resolved shear strain rate and slip system 
tensor. 
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s
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ps
0

p
0 µLL γ&                        (II-1-18) 

 
Lp can also be expressed from the shear strain rate and slip system tensor by using equation (II-
1-1), (II-1-11), (II-1-12), (II-1-17) and (II-1-18).  
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Ep µFLFL γ&                        (II-1-19) 

 
 
Constitutive equations 
Constitutive equations are needed to relate the stress to the strain. At the macroscopic level, it is 
written as: 

 [ ]*E* ECT =                               (II-1-20) 
where CE , E* and T* are 4th order elastic stiffness matrix, Almansi-Hemel strain tensor and 
second Piola-Kirchhoff stress tensor, respectively. The strain tensor and stress tensor can be 
written as functions of deformation gradient and Cauchy stress tensor. 

{ }IFFE ETE* -
2
1

=                            (II-1-21) 

( ){ } TEE1E* FσFFT −−= det                     (II-1-22) 

where σ is the Cauchy stress tensor.  
At the microscopic level, the flow law relates the resolved shear stress τs to the resolved shear 
strain rate for each slip systems as:  

( )s
m

s

s
ss sign

r

τ
τ
τγγ

µ

1

0&& =                          (II-1-23) 

where  s is the system index and s
0γ& , τs

µ  and mr are the initial shear strain rate, the critical 

resolved shear stress and the strain rate sensitivity, respectively.  
Figure II-1-4 illustrates the meaning of the flow law. The resolved shear strain is generated on 
system at a rate s

0γ&  if the resolved shear stress is reaching the critical value (τs
µ). Once the 

resolved shear stress overcomes the critical resolved shear stress, the shear strain increases at a 
rate imposed by the strain rate sensitivity coefficient (mr). Hence, the meaning of the critical 
resolved stress is a minimum value to generate a shear strain rate. In other words, the critical 
resolved stress is a minimum stress value for starting plastic deformation so that it defines a 
yield criterion and consequently the parameter for the isotropic hardening. 
Resolved shear stress is expressed as a function of second Piola-Kirchhoff stress tensor. 

( ) s
0

*s
0

*T µTµFTF :: ≈=sτ                                (II-1-24) 
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Figure II-1-4. Illustration of the flow law relating resolved shear strain rate to shear stress 

 
The dependency between the resolved shear strain rate and the resolved shear stress depends on 
quantity of strain rate sensitivity variable (mr). A large value for mr would lead to a small power 
exponent (1/mr) and consequently enhances the sensibility of the strain rate to the stress. On the 
other hand, a small mr induces no dependence between them since the shear strain rate will 
quickly change from zero to s

0γ&  when the shear stress increases. 

 
Hardening law 
In general, most of materials increase their strength when the plastic deformation is increased. 
This is known as the deformation hardening. In the models developed and proposed by many 
authors [Hil66, HR72, AR77, HR82, Asa, TF97, PAN83, BW91, CO92, MC91, Wen87 and 
Oha87], an attention has been paid to the description of the anisotropic work hardening of 
crystalline metals available for large strain using phenomenological laws [Hil62]. Bassani and 
Wu [Bas90 and BW91] have proposed a model in which the hardening matrix is diagonally 
dominant, and Pierce and co-workers [PAN83] model latent hardening effects by means of a 
hardening matrix in which the off-diagonal terms are dominant. These theories are commonly 
adopted for the interpretation of latent hardening experiments [Bas90, Koc70, RKC65, KB66 
and FBZ80]. Following is the description of several representative hardening rules.  
For a given slip system, the hardening can be induced not only by the plastic deformation 
cumulated on itself (the so called self hardening) but also by the plastic deformation 
accumulated on the other slip systems i.e. the latent hardening. Many authors have reported 
experimental results about the hardening [Koc70, KB66 and JB67] and these results give the 
fundamental of mathematical hardening rule which is expressed by following form.  

∑
=

=
n

p

ps dd
1

γτ µ
sph                            (II-1-25) 

where hsp is the matrix of hardening parameters. Many authors have proposed mathematical 
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expression of the hsp [PAN83, Wen87, NK66, HS77 and AN85]. Nakada and Keh proposed 
hardening rules based on two independent hardening coefficients: one (hp) for self hardening 

and the second (qsp) for latent hardening [NK66]. The model is expressed by following equation. 

  ∑
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=
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pps dhd
1

γτ µ
spq                            (II-1-26) 

where hp and qsp are self hardening coefficient and matrix of hardening parameters for latent 

hardening. For FCC crystals with 12 slip systems, qsp  can be expressed by followed equation 
[AN85]  
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                            (II-1-27) 

where q is the ratio between the latent hardening and self hardening and O33 is 3 x 3 matrix fully 
populated by ones.  

hp is identical for each systems. Anand and co-workers have proposed mathematical description 
for hp as the following power-law type expression [ KBA92, BKA89 and BKA92].  
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where h0, a and ss are slip system hardening parameters which are taken to be identical for all 
slip systems. In the equation (II-1-28), the self hardening is directly related to the critical 

resolved shear stress (τp
µ). 

Asaro and Needelman proposed another power-low type description for hp [AN85] as followed  
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                           (II-1-29) 

where h0, n and τ0 are self hardening parameters which are also taken to be identical for all slip 
systems. Here the hardening rule is a function of the resolved shear strain on the slip system.  
Since all of these mathematical hardening rules are just based on empirical fitting of 
experimental results, parameters of the rules are not easy to explain with physical arguments 
and the values of the parameters for a material are obtained by fitting experimental results. 
Therefore, a full physical description of hardening rules is still challenging today and it 
motivates many other groups in the world since people do want to get rid of any fitting sequence. 
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1.2 Dislocation based theories of crystal plasticity  
 

The development of constitutive equations for crystal plasticity model is still challenging today. 
The objective is to derive a set of behavior laws with physics based theory and physical 
meaningful parameters. The physics based plastic deformation behavior has been studied since 
the early sixties [Teo75]. Recently, Tabourot et al. proposed a full crystal plasticity model based 
on dislocation dynamics theory [TF97]. Each rule of this model is derived from physical 
considerations of dislocation motions. In this section, details of the model proposed by Tabourot 
et al. are introduced.  
 
Origin of the flow law 
The flow rule can be derived from the motion of each single dislocation gliding on slip system s 
by Orowan equation.  

ss
m

s bvργ =&                            (II-1-30) 

where ρm
s, b, vs are the density of mobile dislocations, normalized value of the Burgers vector 

and average velocity of the mobile dislocations, respectively.  
The average velocity can be derived from the velocity of a single dislocation moving in a 
heterogeneous stress field. In the FCC crystal structure, it is admitted that the dislocation motion 
is governed by the obstacle which can be classified in two categories. The first one includes the 

obstacles inducing long range stresses (τµ
s) which do not depend on temperature, like 

dislocations stored at grain boundaries or around precipitates and the second one accounts for 

the obstacles including a short range stress field (τ*s) which are thermally activated, such as 
forest dislocations or impurities.  
Figure II-1-5 depicts the spatial evolution of the stress components induced by the two types of 
obstacles.  

When considering only the isotropic hardening, the stress evolution of the athermal stress (τµ
s) 

is similar to a periodic function with a null average and a large wave length. When a dislocation 
meets an obstacle which induces a short range stress within few atomic distances to the 

dislocation position, it needs an additional stress (τ*s) to pass the obstacle. Therefore the 
resolved shear stress needed for the dislocation movement could be expressed by the sum of the 
two stresses. 

sss *τττ µ +=                            (II-1-31) 
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Figure II-1-5.  Spatial evolution of the different stress components which affect the 
dislocation movement 

 
Teodosiu and Sidoroff proposed the following expression of the dislocation velocity within the 
assumption that the time for the dislocation flight is negligible in comparison to the waiting time 
in front of the obstacles [TS76]. 
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where νD, ∆G0, k, T and ∆V* are Debye frequency, Gibbs free energy, Boltzmann constant, 
temperature and volume change, respectively. The term with sinh function in equation (II-1-32) 
models the probability for passing the obstacles, which includes reverse directional jumping 
probability. 

The τ*s can be replaced by τµ
s- τs because of equation (II-1-31). When the resolved shear stress 

is less than 70% of stress value at 0K (τ0
*s), one can neglect the reverse directional jumping 

probability so that the sinh part in equation (II-1-32) can be replaced by the negative 
exponential function.  

( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
∆⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+∆−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆−+∆−
=

kT

VG
bv

kT
VG

bvv
s

s
s

D

ss

D

*
0*

0

1
expexp µ

µ
µ τ

ττ
ττ

  (II-1-33) 

The exponential term can be approximated by first order Taylor approximation.  
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Assuming that the average velocity for all the mobile dislocations follows a similar expression, 
one can replace v in Orowan equation (II-1-30) and obtain: 
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Equation (II-1-35) is similar to equation (II-1-23) if we write: 
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These relationships give a physical meaning of the parameters involved in equation (II-1-23).  
 
Hardening rule 

Isotropic strain hardening is defined by the increase of the athermal stress τµ
s with the internal 

variables like the dislocation densities. Figure II-1-6 depicts a physical origin of the 
mathematical expression for such a relationship. Let consider a dislocation moving on slip 
system (s) (normal n(s)) through a population of dislocations piercing the slip plane.  
 

 
Figure II-1-6. Illustration of the Taylor expression for forest hardening 

 
These dislocations, called as forest dislocations, are impacting the slip plane at many points 

separated from an average distance l=1/√ρ. According to line tension theory, the resolved shear 
stress needed to bend a dislocation pinned on two points separated of l is given as  

   Flt
s b

l
b ραµαµττ µ ===                              (II-1-37) 

where µ, α and ρF are the shear modulus, a constant for line tension and the forest dislocation 
density respectively. Such a relationship between the critical resolved shear stress and the 
dislocation density is known as the Mecking and Kocks equation [MK81]. 

This equation can be split over the 12 slip systems of the FCC crystal using a matrix α which 
corresponds to the slip system interactions. 
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where, αsp and ρp are junction strength matrix and dislocation density on slip system p, 

respectively. For FCC crystals, αsp is a 12×12 matrix, but because of symmetry, only 6 
coefficients are independent. They are denoted as the self (α1), coplanar (α2), hirth (α3), glissile 
(α4), lomer (α5) and collinear (α6) coefficients. Table II-1-2 details the junction matrix for FCC 
crystal [Fiv97].  
 

 

Table II-1-2. Values of the system interaction matrix for FCC crystals 
 
In order to get the closed forms of the strain hardening equations it is needed to specify the 
evolution rule of the dislocation densities with the deformation. The evolution can be explained 
from statistic considerations of dislocation production and annihilation [ML70 and EM67]. 
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where asp and Kg are parameters for dislocation generation and yc is the annihilation distance. 

Here again asp is a 12×12 matrix, like αsp. Recently, Kubin et al. has proposed that the matrix for 
dislocation generation (asp) is the same matrix as that of the junction strength (αsp) [KDH08]. 
Note that this equation implies that the dislocation densities saturate for a given system when 
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the production term equals the annihilation term, which will lead to a saturation of the isotropic 
hardening when all the dislocations densities have saturated. 
Finally, the general form of the hardening rule at crystal plasticity model like equation (II-1-25) 
is defined by the combination of the two equations (II-1-38) and (II-1-39).  
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Since all the rules in this frame work are based on physical considerations, the corresponding 
parameters have a physical meaning and could be estimated through dislocation dynamics 
simulations [DKH06 and DF02] or nano scale experiment [KWD01 and CFP05]. 
A benefit of this model is that the dislocation evolution during macroscopic deformation can be 
analyzed. The model gives also access to the orientation change, resolved shear stress and strain 
on the slip systems during the macroscopic deformation.  
 

1.3 Applications of the model  
 
Tensile test – a simple integration 
Since tensile deformation behavior of FCC single crystal is one of the most well known 
behaviors both theoretically and experimentally, we will first check the model in this 
configuration.  
The test calculations have been done by simple integration routine to get a stress field from 
Newtonian iteration method, given the strain field and the crystal plasticity model. For 
simplicity, the algorithm is started from the relationship between Cauchy stress and infinitesimal 
strain field.   

( )pEeE εεCεCσ dddd −==                     (II-1-41) 
where we assumed that the plastic infinitesimal strain filed could be earned by the flow rule in 
equation (II-1-23).  
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The following equation is obtained from equation (II-1-41) and (II-1-42).  
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Therefore, we can have a Cauchy stress field (σ) from a given infinitesimal strain field (ε) by 
following simple iteration equation.  
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Table II-1-3 gives the values for the parameters corresponding to copper single crystals [Fiv97]. 

The shear modulus (µ) and the Poisson ratio (ν) are set to 42000 MPa and 0.3, respectively. The 
initial resolved shear strain rate (γ0) and the strain rate sensitivity variable (mr) in the flow rule 
equation (II-1-23) are 0.001 /sec and 0.005, respectively. Junction strength matrix (α) and 
Burgers vector (b) for hardening equation (II-1-38) are 0.09 for all the invariant at α matrix and 
2.56 × 10-10 m, respectively. Finally parameters, asp, K, yc and initial dislocation density on the 
slip system (ρ0

s) are (0.01, 0.4, 0.4, 0.75, 1.0, 0.4), 56, 1.43×10-9m and 108m-2. 
In the following simulations the macroscopic tensile strain is increased up to 1.0. Six initial 
tensile directions are tested: [-1 2 5], [-1 3 5], [-2 3 5], [-5 6 10], [-14 15 25] and [-3 3 5], 
respectively. Results will be analyzed in term of orientation change, resolved shear stress versus 
resolved shear strain relationship, number of activated slip systems and dislocation density 
evolutions. Finally the effect of initial orientation on the mechanical response will be discussed.   
 

 
Table II-1-3. General parameter values of copper single crystal 

 
Figure II-1-7 shows the orientation change in the case of [-1 2 5] orientation of the tensile axis. 
Since [-1 2 5] orientation lays in the triangle delimitated by [001], [011] and [-1 1 1], B4 slip 
system activates the first (see figure II-1-2). B4 slip direction being [-1 0 1], the initial 
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orientation moves towards [-1 0 1] direction until it meets a line between [0 0 1] and [-1 1 1]. 
When the tensile direction reaches this line, Both B4 and C1 slip systems are simultaneously 
activated. Consequently, the tensile direction moves to the [-1 1 2] direction which is summation 
of slip directions of B4 ([-1 0 1]) and C1 ([0 1 1]). 

 
Figure II-1-7. Orientation change during <-1 2 5> directional tensile deformation 

 
Figure II-1-8 gives the relationship obtained between the shear stress and the shear strain 
resolved on system B4 during the [-1 2 5] tensile deformation. The evolution of the resolved 
shear stress is dictated by the rule given in equation II-1-40. Hence, it depends on the total 
dislocation density stored on the different slip systems and the dislocation generation matrix 
(a1~6). 
 

 

Figure II-1-8. Resolved shear stress versus resolved shear strain computed on slip system B4 
during <-1 2 5> tensile test 
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Since slip system B4 activates at the beginning of the tensile test, the resolved shear stress on 

B4 is mainly imposed by the resolved shear strain γ(B4) and the self hardening parameter, a1,. 
The value of a1 being smaller than the others, the initial resolved shear stress rate is low. This 
correspond to the Stage I behavior of single crystals. After 40% of cumulated resolved shear 
strain, however, the resolved shear stress rate strongly increases. This coincides to the instant 
when the second slip system (C1) starts to activate. This second activated slip system implies 
the interaction parameter (a5), which has a much higher value than a1. This directly influences 
the rate of the resolved shear stress and leads to the Stage II behavior of single crystals. At last, 
after a large deformation of about 60% of cumulated resolved shear strain, the increasing rate of 
the resolved shear stress is decreasing with the increasing resolved shear strain. This is because 
the increasing dislocation density on the activated slip system is disturbed by the dislocation 
annihilations. Indeed, when the dislocation production rate equals the annihilation rate for all 
the slip systems, all the dislocations densities have saturated, which will lead to a saturation of 
the resolved shear stress and the well-known Stage III behavior of single crystals. 
The instant when the second slip system activates can be estimated by plotting the shear strain 
resolved on system (C1) versus the shear strain cumulated on system (B4) as given in figure II-
1-9.  
 

 
Figure II-1-9. Shear strain resolved on C1 slip system plotted versus the shear strain resolved on 

B4 slip system 
 

It appears that system C1 activates when the shear strain cumulated in system (B4) reaches 40%. 
Then the slope of the curve is closed to 1.00 which demonstrates that the two slip systems are 
simultaneously activated with an identical Schmid factor.  
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Figure II-1-10 shows the evolution of the dislocation densities on B4 and C1 slip systems. It 
also gives information about single slip or double slip system activation during the tensile test. 
Initially, the dislocation density on system B4 increases dramatically whereas the density on C1 
remains constant and equal to the initial value. After 15% of global shear strain, i.e. at the 
beginning of stage II, the dislocation density on system B4 dramatically increases together with 
that of system C1.  
 

 
Figure II-1-10. Evolution of dislocation density at B4 and C1 slip systems 

 
The increasing rate of dislocation density on C1 appears to be much higher than the initial 
increasing rate on B4. This comes from the evolution rule for the dislocation densities on the 
slip systems which depend on the dislocation densities stored on all the slip systems. Thus, the 
total dislocation density at the time of C1 slip system activation being much higher than the 

initial total dislocation density, the slope of ρ(C1) is increased and so does the slope of B4. At 
the end of the tensile test, both dislocation densities on C1 and B4 slip systems are saturating to 
values close to 8×1013/m2.   
 
Figure II-1-11 gives the orientation of the tensile axis in the crystal frame for tensile tests 
conducted up to 100% of tensile strain and for the different tensile directions investigated. Since, 
every tensile directions except [-3 3 5] lay inside a triangular region made from [001], [011] and 
[-1 1 1], B4 slip system always activates at the beginning of the simulation and the orientation 
of the tensile axis move toward the glide direction [-1 0 1] until second slip system C1 is 
activated. The second slip system activation changes the tensile axis direction so that all the 
projections move to [-1 1 2]. As a consequence, although the initial tensile direction is different 
they all converge to the same final direction [-1 1 2] after a given amount of plastic deformation.      
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Figure II-1-11. Orientation changes for several tensile directions of the tensile axis 
 

Figure II-1-12 shows the mechanical response of the deformed samples for different orientations. 
The resolved shear stresses on B4 slip systems are plotted as a function of the global tensile 
strain.  

 
Figure II-1-12. Shear stresses resolved on slip system B4 plotted versus the global tensile strain 

for different orientation of the tensile axis 
 
The figure shows that when the slopes for stage I and stage II are all similar although they do 

not begin at the same time. The [-1 3 5] orientations leads to the longest stage I (ε~30%) and the 
initial double glide configuration [3 3 5] display no Stage I and directly starts in Stage II. For all 



 39

the orientations the resolved shear stresses saturate at 30MPa. The reason is that the saturation 
density with double slip systems activation does not depends on the initial tensile directions.     

 
Tensile test - FEM integration 
The above results have been obtained by using a simple integration algorithm. The Tabourot et 
al. model described above can be implemented in FEM codes so that complex loading 
conditions and heterogeneous stress states can be investigated. In this study, we have implanted 
the set of constitutive equations into ABAQUS software [ABA04]. In order to simulate a tensile 
test, the sample has been chosen to be parallelepiped with dimensions (6mm×6mm×30mm). A 
slender shape of the sample has been chosen in order to limit the boundary effects and promote 
a homogeneous stress state as done experimentally for dog-bones specimens. The volume is 
meshed into 512 elements eight-node elements as shown in figure II-1-13 (a). For the boundary 
conditions, two points at the center of dog-bones specimen as shown in figure II-1-13 (a) are 
fixed to prohibit rigid body movement and rotation and all of the nodes on both sides of 
specimen are stretched out through the tensile direction, simultaneously. Parameters for the 
calculations are the same as given in table II-1-3. Orientation for the initial tensile direction is [-
1 2 5]. After the calculation, the results of shear stress, strain and dislocation density cumulated 
on activated systems are picked at the center element of the specimen shown by red dotted cube 
in figure II-1-13 (a).  
 

 

Figure II-1-13. (a) 512 element mesh and boundary conditions used for FEM tensile simulation 
along direction is <-1 2 5> (b) Deformed shape and resolved shear strain distribution on slip 

system B4 after up to 33% of global tensile deformation 
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Figure II-1-13 (b) shows the deformed mesh obtained after 40% of macroscopic plastic strain. 
The isovalues indicate the local resolved shear strain cumulated on system B4. It is found to be 
maximum resolved shear strain at the center of the specimen. One can notice the ‘S’ like curved 
shape of the deformed sample. This is directly related to the rotations induced by the activation 
of the slip systems. 
Figure II-1-14 shows the comparison between results from FEM calculation and simple 
integration algorithm during the [-1 2 5] tensile deformation.  
 

 
Figure II-1-14. Comparison between FEM calculation and simple integration (a) Resolved shear 

stress with resolved shear strain on slip system B4 during <-1 2 5> tensile test  
(b) Shear strain resolved on slip system C1 plotted versus the shear strain resolved on B4 

 
The relationships obtained between the shear stress and the shear strain resolved on system B4 
from FEM calculation and simple integration algorithm are depicted in figure II-1-14 (a). The 
evolution of the shear strain resolved on system (C1) versus the shear strain cumulated on 
system (B4) from the two kinds of calculation methods are given in figure II-1-14 (b), where the 
black line and red line with square symbols depict the results from simple integration algorithm 
and FEM calculation, respectively.  
The simple integration method makes a clear distinction between Stage I and II behavior when 
the shear strain cumulated in system (B4) reaches 40%. However, the FEM calculation makes a 
more gradual change from Stage I to Stage II. The resolved shear stress rate from FEM 
calculation does not show any strong increase, but it rather increases gradually with the resolved 
shear strain as shown in figure II-1-14 (a). It appears from FEM calculation that system C1 
starts to activate with very weak slope when the shear strain cumulated in system (B4) reaches 
about 20% and the slope of the curves increasing gradually with resolved shear strain, where the 
slope of the curve is closed to 1.00 only after the shear strain cumulated in system (B4) reaches 
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about 50% as shown in figure II-1-15 (b). On the other hand, after about 60% of resolved shear 
strain, both curves of resolved shear stress from the two calculation methods decrease their 
slope, which means that both the calculation methods give the Stage III behavior. These are due 
to the difference of boundary conditions. The simple integration method calculates the response 
with free boundary condition (except for the tensile direction constraint), whereas the FEM does 
not allow 100% of free boundary condition: each element interacts with its neighbor elements, 
which in term disturbs the free motion of the element.   
   
Figure II-1-15 shows the evolution of the dislocation densities on B4 and C1 slip systems 
calculated from FEM. It also gives information about gradual changing between Stage I and II. 
 

 

 
Figure II-1-15. Evolution of dislocation densities on slip system B4 and C1 obtained from FEM 

calculation 
 

Initially, the dislocation density on system B4 increases dramatically whereas the density on C1 
increases with very weak increasing rate, but the increasing rate of density on system C1 is 
increasing with strain. Therefore, the density difference between system B4 and C1 is reducing 
gradually. After about 20% of global shear strain, the two curves which depict the dislocation 
density on system B4 and C1 meet together and show the same increasing tendency. After about 
40% of the tensile test, the dislocation density on system B4 and C1 have reached values close 
to 4×1013m-2 which is similar to the values obtained at the same global strain with the simple 
integration algorithm. 
All of the simulation results during tensile deformation from figure II-1-7 to figure II-1-15 are 
exactly the same as the theoretical expectations, which verify that the model gives excellent 
results about deformation behavior of single crystal material.  
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1.4 What should be retained from this section 
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2. Generalized continuum mechanics to understand size effect 
 
Experimentally, size effects are observed for micrometric sample sizes and for various modes of 
plastic deformation. Generally, a smaller size gives a stronger response for a given deformation 
field. This was evidenced for elastic bending experiments of marble [EVK01] and epoxy 
polymeric beams [LYC03]. It was also found in porous media, such as bones or foams [YL81, 
Lak86 and Aif99]. When the size effects have been observed, the need for advanced continuum 
formulations was also recognized, since in all cases, the classical theories substantially fail to 
predict the experimental results.  
The recent advanced theories were derived from the approximation of the average strain by a 
Taylor expansion [MA91]. These theories all introduce an intrinsic material length and an 
additional hardening rule that can be related to the strain gradient or to the lattice curvature as 
first proposed by Nye [Nye53]. Nye noticed that after bending or torsion a crystal contains 
excess dislocations of a definite sign that gives rise to lattice curvature.  
Later, it was commonly admitted that the dislocations can be divided into dislocations needed 
for the accommodation of the lattice curvature and the others (statistically stored). According to 
Ashby [Ash70], dislocations may store in a plastically non-homogeneous solid for two reasons. 
The first one is that dislocations are either required for the compatible deformation of various 
parts of the specimen and the other is that they accumulated by trapping each other in a random 
way. This gives rise on the one hand to the density of so-called geometrically necessary 

dislocations (GND) ρg and on the other hand to the density of statistically stored dislocations 
(SSD) ρs.  
The density of GND can be computed approximately in some situations like plastic bending or 
punching. This quantity comes out directly from the continuum theory of dislocations and 
corresponds to the components of the dislocation density tensor so called Nye tensor. In contrast, 

the density ρs belongs to the second group of variables that have been listed and called 
hardening variables. However, as shown by Ashby [Ash70], geometrically necessary 
dislocations may lead to additional hardening. The relative importance of GND and SSD 
depends on the amount of overall plastic deformation. Clearly GND can dominate in the case of 
strong deformation gradients and it is believed that the character of GND is at the origin of size 
effect. Therefore, the recent advanced theories widely use the concept of GND. 
Recent theories such as the Cosserat theory [FCS97] or the strain gradient theory [FH97 and 
SF99] were demonstrated their ability to reproduce the experimental evidence of size effects. As 
examples, they could predict particle size effects [Ash70], indentation size effects [NG98 and 
GHN99] and size effect in micro torsion [FMA94] or thin beams bending [SE98] as well as in 
multi-phase materials [FBC00].  
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However, in the case of the advanced theories involving higher order derivatives such as strain 
gradient theories, it was shown that their implementation into the FEM is rather limited. The 
performance of the implementation was reported to be poor in the context of strain gradient 
theories [XH96] and the extension to a three-dimensional interpolation is considered to be too 
much complex. There are several way to implement these recent theories into FEM codes 
[ZPV01], but one always need to define a very large number of additional nodal degrees of 
freedom which will increase the calculation time dramatically. To make it worse, contact theory 
based on these theories have not been developed yet. Hence, FEM simulations with contact 
problem like nano indentation could not be easily calculated with these advanced theories yet. 
Therefore it is worth developing a simple size effect theory without any extra constitutive 
equations or degree of freedom.  
In this section, two advanced theories for size effect are introduced: strain gradient theory and 
Cosserat theory. Then we propose an alternative theory for accounting of size effect in plasticity 
which does not require any extra constitutive equation and degree of freedom. Finally, a simple 
example is shown in order to test the proposed model.   
 
 

2.1 Recent theories for size effect  
 
In the continuum theory of dislocations, the notion of geometrically necessary dislocations is 
associated with that of the dislocation density tensor introduced by Nye [Nye53] and the recent 
theories consist of introducing the dislocation density tensor into the single crystal constitutive 
equations.  
The starting point is the famous relation by Nye that relates the dislocation density tensor to the 
lattice curvature. This is the key ingredient of the Cosserat crystal plasticity model detailed in 
[FCS97]. It is also well-known that the dislocation density tensor is also related to the curl of 
the plastic deformation, which in turn led to the second grade approach settled by Mindlin 
[ME68] and more recently by Fleck and Hutchinson [FH97].  
One should note that the approach proposed by Aifantis [Aif87] is not directly related to the 
dislocation density tensor although it also accounts for size effects in plasticity. The basic 
ingredient of this theory is related to the dislocation patterning during deformation and not from 
the GND. In the previous Aifantis models, the internal variable is then limited to the scalar 
dislocation density (so-called density of statistically stored dislocations) or the cumulative 
plastic strain.  
In the following, two representative theories for size effect are presented: the Cosserat theory 
and the strain gradient theory. 
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Cosserat plasticity 

The degree of freedom and modeling variables of the Cosserat theory are the displacement u, 

the micro-rotation ϕ and their gradients.   
( )φuφu ∇∇ ,,,                            (II-2-1) 

Until now, the physical meaning of micro-rotation ϕ has not been specified. It is in fact intended 
to coincide with the notion of crystal lattice rotation, so that the Cosserat directors are simply 
lattice directions defined in the released isoclinic configuration introduced in [Man73]. 

For the strain measure, Cosserat strain εc and second rank tensor for curvature κ are introduced 
and these can be divided into elastic and plastic quantities.  

p
c

e
cijkc εεφεuε +=⋅+∇=                              (II-2-2) 

pe κκφκ +=∇=                                   (II-2-3) 

where εijk is the third order permutation tensor whose components give the sign of the micro-
rotation. The definition of Cosserat relative deformation implies that the skew-symmetric part of 

elastic deformation εc
e measures the difference between lattice and Cosserat rotation. The 

constraint that εc has to be symmetric must therefore be added for the micro-rotation to have the 
wanted physical meaning.  

The free energy Ψ(εc
e,κe) is a function of elastic deformation and curvature. The state laws for 

defining the stress measures are defined by the free energy function, where the state laws are 
deduced from the analysis of the entropy principle. 

e
c

c ε
σ

∂
Ψ∂

= Cosseratρ                     (II-2-4) 

eκ
M

∂
Ψ∂

= Cosseratρ                    (II-2-5) 

where σc and M are stress tensors and couple stress tensor, respectively and ρCosserat is a 
coefficient. This leads to the following intrinsic dissipation.  

pp
cc κMεσ && :: +=iD                   (II-2-6) 

Here, two constitutive equations are deduced. The elastic constitutive equations require two 

symmetric fourth rank tensors of elastic modulii CC and CD having the dimension of MPa and 
MPa·m2, respectively. 

c
C

c εCσ :=                          (II-2-7) 

κCM D :=                          (II-2-8) 
We resort here to two dissipation potentials f1

c(σ,R) and f2
c(M,R). This corresponds to a multi-

criterion framework, involving two plastic multipliers. 
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1λ&                         (II-2-9) 
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∂

=
c

c f2
2λ&                       (II-2-10) 

Note that the choice of the proper plastic multiplier to be used in the evolution equation for 
hardening variable (II-2-9) and (II-2-10) depends on the specific type of hardening laws and 
number of internal variables. Let us specify the potentials retained to model Cosserat crystal 
plasticity.  

( )nmσc ⊗== :,1 ττ withf c                (II-2-11) 

( )mξM ⊗== :,2
ττ mwithmf c                (II-2-12) 

where  
mnξ ×=                                                    (II-2-13) 

A coupling must exist between the different hardening variables of the model to give rise to size 
effects. In contrast, in the specific second gradient model, the coupling is introduced directly by 
a single criterion and plastic multiplier. Within the present Cosserat model, the flow rules 
become. 

( )nmεp
c ⊗= γ&&                          (II-2-14) 

( )mξκp ⊗=
pcl
θ&

&                          (II-2-15) 

where γ, θ and lpc are resolved shear strain, resolved curvature and a characteristic length, 
respectively.  
The two plastic multipliers are rewritten according to (II-2-9)~(15). 

( )τγλ signc &=1                           (II-2-16) 

( )τθλ msign
lpc

c
&

=2                           (II-2-17) 

The meaning of the second plastic multiplier therefore is that of a scalar curvature rate, for 
example, the ratio of a rotation rate by a characteristic length.  
The power densities of internal forces pi and contact forces pc are used to derive two balance 
equations, named balance of momentum and balance of moment of momentum.  

κMεσ cc && :: +=ip                           (II-2-18) 
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φmut sursur ⋅+⋅= &cp                            (II-2-19) 
where the traction and couple vectors acting on a surface element are denoted by tsur and msur. 
The balance and boundary conditions then read.  

0:,0 =−= ccc σεMσ divdiv                  (II-2-20) 

sursursur
c

sur nMmnσt ⋅=⋅= ,                      (II-2-21) 

 
Second grade constitutive framework 
The degree of freedom and the modeling quantities of the theory are the displacement field and 
its first and second gradients.  

( )uuu ∇∇∇ ,,                            (II-2-22) 

The corresponding strain measures are the second order strain tensor ε, which is the same as the 
classical definition, and its gradient (η=∇ε). They are split into elastic and plastic contributions. 

pe εεε +=                             (II-2-23) 
pe ηηη +=                             (II-2-24) 

Here it is assumed that the plastic strain gradient (ηp) is not equal to the gradient of plastic strain 
(εp) in the theory in [FH97].  
The stress tensor and couple stress tensor are defined from the energy density and previous 
strain measures as: 

eε
σ

∂
Ψ∂

= sgρ                     (II-2-25) 

e
sg

η
M

∂
Ψ∂

= sgρ                    (II-2-26) 

The authors in [FH97] and [SFV01] propose a simplified version of elasticity constitutive 

equations including the usual four-rank tensor of elasticity modulii CE and additional intrinsic 
length scale le. 

eE εCσ :=                          (II-2-27) 

eEsg ηCM :2
el=                        (II-2-28) 

The intrinsic dissipation can be written as followed  
psgp ηMεσ M& += :iD                   (II-2-29) 

In contrast to two plastic potentials used in the Cosserat theory, only one potential function 

fsg(σ,M) is used for defining plastic strain measures.  

σ
εp

∂
∂

=
sg

sg fλ&                         (II-2-30) 
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η
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=
sg

sg fλ&                       (II-2-31) 

where λsg is the plastic multiplier of strain gradient theory. If we assumed the particular case of 
rate-independent plasticity for simplicity, The potential functions are derived by extended 
Schmid law with not only resolved shear stresses but also resolved hyper stresses and related 
constitutive length lp

sg.  

( ) ( )mnmMnmσ sg ⊗⊗=⊗=+= Msg
sg
p

sg

mwith
l
m

f ,:, ττ         (II-2-32) 

Hence, the plastic strain and strain gradient rates follow from the normality rules. 

( )nmεp ⊗= γ&&                          (II-2-33) 
( )mnmηp ⊗⊗= Sγ&&                      (II-2-34) 

For the sake of simplicity, we have introduced only the effect of slip gradient in the slip 
direction m, although the original model also contains a contribution of slip gradient in the slip 

normal direction n. It must be noticed that the slip gradient variable γS does not coincide with 
the gradient of slip ∇γ.  

Both are related to the plastic multiplier λsg according to (II-2-30) ~ (34). 

( ) ( )sgSsgsg msignlsign p γτγλ && ==             (II-2-35) 

Therefore, for monotonous loading, the slip gradient variable γS turns out to be equal to the 
amount of slip γ divided by lp

sg.  
These stress tensors and associated strain measure make the power densities of internal and 
contact forces. 

ηMεσ &M& sgip += :                           (II-2-36) 

umut sur
sg

sur
n

c Dp ⋅+⋅= &                            (II-2-37) 

where Dn, tsur and msur
sg are the normal gradient operators acting on a surface with normal 

vector n, the traction vectors and double force vectors on the surface, respectively.   
The balance and boundary conditions are derived as followed.  

sgdivwithdiv Mσττ sgsg −== ,0                  (II-2-38) 

( ) ( ) ( )nnMmnMnnMnτt sur
sg

sgsur ⊗=⋅−⊗+⋅= :,:2 sgsg
t

sg DR    (II-2-39) 

Where Dt is a tangent gradient operators acting on a surface. 
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2.2 Proposition of a simplified strain gradient model 
 
As shown above, the recent theories for size effects generally need extra degrees of freedoms 
and additional constitutive rules. It means that these theories strongly increase the calculation 
time and they can not be easily implanted into general FEM. Besides, any of these theories do 
not have a general solution for complex contact boundary conditions. Therefore, FEM 
simulations using these theories can only be realized for simple loading conditions or very small 
deformations. They can not solve nanoindentation problems for which contact boundary 
conditions are required. 
In this work, we propose an alternative theory which can also reproduce size effects, which has 
no extra degree of freedom and no extra constitutive rules. Hence it can be easily implanted in 
general FEM solvers and with few extra costs in term of computation time. In this theory, size 
effect comes from an extra stress measure induced by the difference between the local 
deformation and the global averaged deformation.  
First, the origin of the extra stress source is introduced, which gives physical back ground of the 
theory. Then, the proposed theory is presented.  
 
Microscopic effect of Nye tensor as an origin of extra stress  
Many authors insist that Nye tensor, which is vector summation within a given volume, induces 
extra stress related to size effect. Therefore most of recent theories for size effect are based on 
mathematical effect of the Nye tensor, but they all focus on the effect of the Nye tensor as a 
macroscopic point of view. The Nye tensor can also be considered as a microscopic contributor 
to the size effect. As an example, one could consider the effect of the Nye tensor on the 
dislocation movement.  
We have verified the effect of Nye tensor on the dislocation motion using simple dislocation 
dynamics simulation. This gives several clues about the effect induced on the global plastic 
deformation of materials.  

Nye tensor, αnye, is defined as the following quantity implying both the line direction and the 

Burgers vector at a given material point x averaged over a volume: >⊗=< )()( xξxbαnye .  

For sake of simplicity, in the following, the definition of Nye tensor is simplified as the 
equivalent vector produced by the simple summation of Burgers vectors within a given volume. 

It is named SNye. 

∑= bSNye

r
                               (II-2-40) 

Figure II-2-1 depicts two sets of dislocations array with the same number of dislocations, but 
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different orientations of the Burgers vector. Since all the dislocations in figure II-2-1 (a) have 

the same directions, Burgers vectors of these dislocations are the same, so that SNye should be 6b. 
On the other hand in figure II-2-1 (b), half of the dislocations have opposite Burgers vectors, 

which make a zero component of the SNye.  
 

 
Figure II-2-1. Examples of dislocation arrays  

(a) all of the Burgers vector are the same  high Nye tensor   
(b) Mixed Burgers vectors with half and half ratio  zero Nye tensor 

 
These two arrays should have a different effect on the dislocation movement since the induced 
internal stress is very different. According to recent theories, dislocation array like figure II-2-1 
(a) makes more extra hardening that can be related to size effect than the array in figure II-2-1 
(b). We can image in that a dislocation will have more difficulties to move in presence of an 
array with a high value of Nye tensor, i.e. a large number of polarized dislocations in its 
neighborhood. Therefore, dislocation dynamics simulation is a suitable tool that can be used to 
test the effect of the Nye tensor on dislocation movement.  
First, a dislocation is forced to move through the two arrays as depicted in figure II-2-2 and 
results are analyzed in terms of Nye tensor effect. Figure II-2-2 (a) corresponds to the case of a 
dislocation moving through forest dislocations with the same directional Burgers vector. When 
the moving dislocation meet the first forest dislocation, the two dislocations reacts in order to 
minimize the line energies. This could lead to the formation of a junction if the configuration is 
favorable. Thus, the moving dislocation changes its shape to minimize the interaction energy. If 
the moving dislocation has enough energy to break the junction, it will move through the first 
forest dislocation with a modified shape. After the first reaction, the moving dislocation does 
not need to change its shape anymore when it meets another forest dislocation because it already 
has the shape needed for minimizing the breaking energy of the junction. Therefore the moving 
dislocation moves through the other forest dislocations without any need of changing the shape 
and consequently it does not require any increase of the applied stress.  
On the other hand, figure II-2-2 (b) shows the case of a mobile dislocation moving through a 
statistic (none polarized) set of forest dislocations made of two opposite directional Burgers 
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vectors. When the moving dislocation meets the first forest dislocation, it will make a junction 
with the forest dislocation like in situation in figure II-2-2 (a). Then it changes its shape to 
minimize the energy needed for breaking the junction and moves through the first forest 
dislocation with the changed shape. After moving through the first forest, the moving 
dislocation will meet another forest dislocation with a different Burgers vector direction. Hence, 
it should stop to make another type of junction and changes its shape again to minimize the 
interaction energy for breaking the new junction. After changing into its new shape again, it can 
move through the second forest dislocation. Every time the moving dislocation encounters a 
forest dislocation the same feature is repeated: the moving dislocation stops to make a junction, 
changes its shape for minimum energy and moves through the forest dislocation. 
 

 

Figure II-2-2. Synopsis of dislocation movement through two kinds of dislocation array  
(a) through array with high value of Nye tensor (b) through array with low value of Nye tensor 

 
This repetition will take much time and energy to move the dislocation. Therefore, the figure II-

2-2 shows that a smaller SNye magnitude makes it harder to move a dislocation. In other words, 
smaller Nye tensor values will give higher stress for plastic deformation. It is exact opposite 
results to the belief about a role of Nye tensor. Following this reasoning one could think that the 
Nye tensor should not affect dislocation motion.  
However, reality can be different, especially when we account for long range stresses. Another 
situation is depicted in figure II-2-3. A dislocation moves in proximity to two arrays of forest 
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dislocations inducing long range forces. For sake of simplicity, the array of forest dislocations is 
assimilated to a single super dislocation whose Burgers vector is equivalent to that induced by 
the resulting Nye tensor. On one hand, the dislocation group sharing the same directional 
Burgers vector induces a strong long range stresses. On the other hand, the dislocations with 
different Burgers vectors decrease the stress field amplitude. In other world, higher value of Nye 
tensor increases the long range stress field and vice versa. Hence, moving a dislocation near the 
forest dislocation array with a high value of Nye tensor is more difficult, than moving a 
dislocation near the forest dislocation array with a zero value of the net Burgers vector. The 
results shown in figure II-2-3 are then opposed to the previous situation. The Nye tensor effect 
should affect dislocation motion through the long range forces.  
 

 

Figure II-2-3. Synopsis of dislocation movement beside two kinds of dislocation array  
(a) through array with high Nye tensor (b) through array with low Nye tensor 

 
Figure II-2-4 shows a last situation helpful for understanding the effect of Nye tensor of 
dislocation mobility. It corresponds to the case of a moving dislocation pushed through an array 
of forest dislocations located near another array of polarized forest dislocations. Figure II-2-4(a) 
depicts that the moving dislocation moves through the forest dislocation array with a high Nye 
tensor value, changes its shape and is also affected by the long range forces induced by the other 
forest dislocation group nearby. If the shape of the moving dislocation minimizes the energy 
needed to shear the forest dislocation array with a given Nye tensor value, the new shape must 



 53

also minimize the long range force induced by any forest dislocation array in the neighborhood 
provided the Nye tensor is similar to that of the sheared forest dislocations. Inversely, the shape 
should also maximize the long range force induced by a forest dislocation array with the 
opposite Nye tensor. Therefore, a moving dislocation as shown in figure II-2-4 (a) is affected 
with a minimum long range force whereas the moving dislocation shown in figure II-2-4 (b) is 
strongly affected by the long range forces induced by the forest dislocation group nearby. This 
result indicates that there exists a complex coupling between local reactions and long-range 
forces. 

 

 

Figure II-2-4. Synopsis of dislocation movement through dislocation array near forest 
dislocations (a) two arrays with same Nye tensor (b) two arrays with opposed Nye tensor 

 
Figure II-2-5 gives a schematic diagram about the effect of forest dislocation groups with a 
given Nye tensor on dislocation mobility. A dislocation moves with two types of interactions 
due to different forest dislocation groups. One corresponds to a short range interaction and the 
other one to long range forces. The classical crystal plasticity theory like the model described in 
Chapter II-1 only considers the short range interactions. 
In order to account for size effects, however, the long range forces should also be considered. 
Therefore we need to describe the long range interactions in the frame of continuum mechanics. 
The key parameters are the distance between the moving dislocation and the forest dislocation 
group and the difference in term of Nye tensors between the short range forest dislocation 
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groups and the long range forest dislocation groups.    

 

Figure II-2-5. Synopsis of dislocation motion through forest dislocation groups with different 
Nye tensor 

 
There exists recent theories which could explain size effects but they are usually complex 
because they use additional degrees of freedom and more constitutive laws. Here, we introduce 
a new concept without any extra degree of freedom or any new constitutive equation which in 
turn will reduce the CPU time and facilitate the implantation in general FEM softwares.  
 
Model for size effect based on averaged strain 
The global deformation of a material is closely related to the dislocations stored inside the 
material. The three figures in figure II-2-6 show schematically both the shape of a piece of 
material and the associated dislocations located inside the material. Figure II-2-6 (a) depicts the 
initial state of the material and the initial dislocation microstructure. When the material is 
loaded (here in pure shear), it starts to deform by movement of dislocations. Figure II-2-6 (c) 
depicts the final state of the material after the applied forces are removed. During the 
deformation process, the total number of dislocations inside the material increases because of 
the dislocation interactions. Here there is no need to introduce size effect theory and classic 
theories perfectly explain this situation very well mathematically using the classical Orowan 
equation.  
The deformation state is homogeneous everywhere inside the material, at least for the two states 
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described in figure II-2-6 (a) and (c). On the opposite, the plastic strain is not homogeneous 
during the deformation process and this may induce size effects. Let’s take the intermediate 
state as shown in figure II-2-6 (b).  
 

 
Figure II-2-6. Scheme describing both the shape of a deformed material with the associated 

dislocations. (a) initial state of the material (b) intermediate state (c) final state. 
 

At this deformation stage, the piece of material is deformed heterogeneously. GNDs and extra 
forces are generated to compensate for the heterogeneous shape. By definition, the GND can 
move by the application of the applied loading. When the GND move through a free surface of 
the material the GND and the extra forces disappear and give raise to the homogeneous like in 
figure II-2-6 (c). In other words, we assumed that the theories for size effect like theories of 
GNDs, Cosserat and strain gradient are closely related to non-homogeneous and transient 
deformation inside a strained material. 
Note that this description is similar to the strain gradient theory or Cosserat theory which 
explains that the extra forces at the origin of size effects are due to strain gradients or local 
rotations inside the material. Figure II-2-7 explains the non-homogeneous deformation state 
from several theories.  
Figure II-2-7 (a) shows a description in term of dislocation dynamics. The big red dislocations 
represent GND and the others represent SSD. GNDs are related to material deformation and 
especially curvature of the crystal lattice. When the material is deformed, the GND is generated 
to accommodate the applied loading one can imagine that the GND induce extra force related to 
size effect.  
The point of view expressed by strain gradient theories or Cosserat theory is shown in figure II-
2-7 (b). In these theories, each local site in the material has its own strain and strain gradient or 
local rotation between neighbor sites. The extra forces related to size effects come from the 
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strain gradient or local rotations. The GND in figure II-2-7 (a) is represented by the strain 
gradient or local rotations in figure II-2-7 (b).  
 

 
Figure II-2-7. Explanation of different non-homogeneous deformation state  

(a) from GND theory (b) from Strain gradient or Cosserat theory  
(c) from difference of local and global deformation 

 
Because we assumed that a lower force is needed when the material deforms homogeneously, 
the source of extra hardening related to size effect can also be explained by the difference 
between the local deformation and a virtual global homogeneous deformation as shown in 
figure II-2-7 (c). The virtual homogeneous deformation can be estimated by averaging the local 
deformation inside the material. This assumption relies on the same concept as the strain 
gradient theory in the sense that a difference of strain generates the extra force.  
The originality of this proposition is that the extra forces come from strain difference between 
local strain and its global averaged strain, not the difference between neighbor local strains. 
Then, we do not need any extra degree of freedom and more constitutive equations. We just 
need to calculate the average strain and to compare it with the local strain. This will generate 
extra local force explicitly.  
In the following, we will detail the method used to get an extra force from the strain difference 
between local and global averaged strain. We should consider two types of differences: the 
global strain could be higher than the local strain or it could lower as shown in figure II-2-8. In 
practice, we don’t need to differentiate the two cases since both cases can be converted into one 
simple compaction as shown in two blue boxes in figure II-2-8. Therefore, we used the simple 
compression equation for calculating the extra forces. 
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Figure II-2-8. Comparison between the global averaged strain (red dot) and the local strain 
(black line). Though global strain could be greater or smaller than the local strain these two 

configurations can be represented by simple compaction (blue box) 
 
Figure II-2-9 depicts the basic situation explaining the extra compression force. 

 

 
Figure II-2-9. The schematic diagram for extra compression forces and related variables 

 
Compression stresses can be written by the simple elastic equation. 

( )
g

g

g

g

L
dl

L
dl

Eσ µν−== 12                         (II-2-41) 

In this equation, there are two length scale parameters, Lg and dlg. Lg is the length related to the 
piece of material deformed homogeneously, i.e. the global length scale. This should be the same 
as the grain size or material size when we explain a grain size effect or material size effect, or it 
can also represent the size of the plastic zone when we explain a nano-indentation size effect. 
The dlg represents the difference between global averaged strain and local strain. The length of 
difference can be written as followed.  

gg ldl ×−= localp,globalp, εε                      (II-2-42) 

where εp,global and εp,local are global averaged strain and local strain. Here lg is the length for 
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calculating the local strain, i.e. the local length scale. It can be related to the dislocation mean 
free path as used in dislocation dynamics theory. 

ρ
Kllg ==                            (II-2-43) 

Finally, the extra stress σextra can be estimated by merging equation (II-2-41) ~ (II-2-43).  
( )

localp,globalp,extra εεσ −
−

=
ρ

µν

gL
K12

               (II-2-44) 

This extra stress will be added to the general stress computed from classical crystal plasticity 
theory like adding extra kinematic hardening stress. 
 

 
2.3 Applications of the model  
 
A benefit of the size effect theory proposed here relies in its simplicity. There is no extra degree 
of freedoms and no new constitutive equation. It just requires simple calculations to get the 
average strain and to derive the extra stress. Another benefit of this theory is that it is easy to 
implant to general FEM softwares since it has the same number of degrees of freedoms and 
constitutive equations as in general FEM formulations. In the following, this theory is 
introduced in the dislocation dynamics based crystal plasticity theory as shown in section II-1. It 
has been implanted into the user material subroutine (UMAT) available in ABAQUS packages 
[ABA04].  
The numerical model is now tested in simple loading conditions. Shape and meshes used for the 
test are shown in figure II-2-10. It consists of a 3-dimensional cubic shape for which each edge 
is meshed into 5 eight-nodes elements with reduced integration. Therefore, a total number of 
125 elements are used for this simple simulation. The material property used for the test 
simulation is chosen to represent copper single crystals as given in table II-1-3 section II-1. The 
bottom face of the cube is fixed, and the opposite top face has two kinds of loading conditions: 
either pure shear displacement (condition a) is imposed on component 13 or pure longitudinal 
displacement (condition b) is applied along normal direction 3. After each calculation the global 
stress is calculated by averaging all the stress tensors of all the elements and the global strain is 
directly estimated from the applied boundary conditions. Here, the global length scale, L 
represents the size of the plastic deformation; it is calculated by the cube root of the total 
volume of the plastically deformed elements. Generally, the value found for L is close to the 

edge length of the cube which will vary within 50, 200 and 600 µm for the different simulations. 
For comparison purpose, simulations with the original crystal plasticity code without extra 
hardening for size effect are also performed. Results are referred as the original calculation. 
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Figure II-2-10. Mesh and boundary conditions used for the test simulation. 
 

Figure II-2-11 depicts the global loading curves plotting the global stress versus the global strain 
and for the different cubic sizes. Without extra hardening, the original code gives a shear stress 
of about 130MPa for a cumulated strain of 50 percents. The modified model shows that smaller 

sizes of the simulated volume give higher shear stresses. The shear stress reached for a 600 µm 
volume is close to 150MPa whereas for 50 µm we obtain 300 MPa, which is about 2.5 times 
higher than the shear stress obtained with the original code.  
For tensile loading conditions (b), the tensile stress obtained at 25% of global plastic strain 
without extra stress is about 160MPa as shown in figure II-2-11 (b). Once again, a smaller size 
of the cube gives a higher tensile stress but globally, the size effect is weaker than in shear 

loading condition. The smaller size of 50 µm of cubic size gives only a shear stress of 220MPa, 
which is about 1.3 times higher than the original model.  
The difference of sensibility to the volume size comes from the homogeneity of the plastic 
strain during the deformation process. Figure II-2-12 depicts the local strain recorded in each 
element versus the global strain.  
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Figure II-2-11. Global loading curves plotted against the global strain  

(a) shear stress for difference element sizes (b) tensile stress for difference element sizes 
 

 

Figure II-2-12. Local strain in all the elements as function of the global strain  
(a) from shear loading condition (b) from tensile loading condition 

 
The thick red line represents the global averaged shear strain. For the shear loading conditions 
shown in figure II-2-12 (a), the distribution of the local strain during the deformation is very 
wide. In some elements the shear strain reaches negative values and in others it can be as high 
as twice the global shear strain. This wide distribution gives higher extra stress since the extra 
stress derived from the difference between local and global strains.  
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On the other hands, for the tensile deformation as shown in figure II-2-12 (b), the local strain 
distributions nearly follows the global averaged tensile strain. Although there is still a deviation 
to the global strain, the difference is rather small compared to the shear loading conditions. This 
is the main reason why tensile loading conditions display a smaller size effect. In the proposed 
model, a higher heterogeneity gives a larger amount of size effect.   
Figure II-2-13 depicts contour of extra stress after final strain, which will show maximum extra 
stress regions. Both loading conditions are shown in figure II-2-13 (a) and (b).  
 

 

Figure II-2-13. Contour of extra stress developed at the final applied strain  
(a) from shear strain condition (b) from tensile strain condition 

 
It is shown that the top and bottom faces of the cube have the lowest extra stress. This is 
because the two faces are the region of the applied boundary conditions. Indeed, these regions 
have high tendency for the local strain to follow the global strain, which will consequently 
reduce the extra stress. On the other hands, the other two front and back faces of the cube are 
the location of the maximum extra stress. Since, the two faces are free boundary conditions 
region these have low constraints to the global deformation. This free constraint at the surface 
should give high differences to the global strain, and thus, a large extra hardening.  
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2.4 What should be retained from this section  
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3. Dislocation dynamics theory 
 
Though, continuum theory of plasticity is a good way to investigate material behavior, it should 
rely on physical background in order to be predictive. This can be provided by experimental 
database. However it can be difficult to extrapolate the experimental database outside its range 
of measurements. Experiments also fail to provide some of the internal parameters such as the 
inherent length scale [HGW03]. This difficulty can be overcome by using dislocation dynamics 
(DD) approaches that directly simulate the dynamics of dislocation ensembles. Many authors 
have reported about this type of modeling [AG90, KCC92, RZH98, VFG98 and Sch99].   
In the DD approach, the dislocation lines are discretized piecewise. The elastic stress field of the 
dislocation ensemble is determined within the simulation volume using dislocation theory 
[HL82]. Then, this stress tensor is added to the applied stress tensor enforcing the boundary 
conditions and the Peach-Kohler force is computed on each dislocation segments. The 
integrated resultant force is finally used to determine the velocity of the dislocation segments. 
The different DD codes differ in some details but the general algorithm is always the same: 
discretization of the dislocation lines, computation of the Peach Koehler Forces, derivation of 
the mobility law, updating the dislocation positions. 
Once resolved on the dislocation moving direction, the Peach Koehler force induces a shear 

stress (τpk ) on a given dislocation segment that can be expressed from the applied and internal 
stress as:  

( ){ } ltpk ττ +⋅⋅+= bnσσ intapp                     (II-3-1) 

where σapp and σint are the applied stress resulting from the boundary conditions and the internal 
stress induced by the dislocation segments, respectively and n is slip plane normal vector of 
given dislocation segment.  

The Peierls forces should then be subtracted to get the net shear stress τnet:  
( ) peierlspkpknet sign ττττ ⋅−=                       (II-3-2) 

Finally, the dislocation velocity can be obtained from the net shear stress as:  

p

net

B
bv τ

=                                 (II-3-3) 

where Bp is a Phonon drag coefficient. For a given time step dt, equation (II-3-3) allows 
updating the position of dislocation segment according to v.dt.  
For all the DD simulation, one of the key ingredients is then the formula for calculating the 

stress field (σint) induced by a dislocation segment. Main DD codes use analytical expressions 
of dislocations segments given by Li [Li65] or deWitt [Wit67]. However these expressions are 
only valid in the case of isotropic elasticity and in some metals such as copper, the anisotropy 
may play a crucial role. In the following, we propose to set up expressions of dislocation stress 
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fields in anisotropic media.  
Next section recalls how to establish the stress field of a dislocation segment in the case of 
isotropic medium. Then these expressions are extended to the case of anisotropic medium. The 
two expressions are compared in section II-3.3. 
 

3.1 Stress field from dislocation segment in isotropic media 
 
Displacement due to dislocation segment in isotropic media 
The displacement and derivation of the displacements associated with a dislocation loop of 
arbitrary shape is obtained in the frame of linear elasticity theory. Let consider a material of 

infinite extent, and suppose that a closed dislocation loop Cρ with Burgers vector b produces 
some displacement u(r) at point r. If a point force Ff acts at r while the dislocation is created, it 
induces a work given by following 

)()( rruFf
m

f
m uFW =⋅=                        (II-3-4) 

where um and Ff
m are the components of u and Ff, respectively. If the displacement relieves the 

point force, it decreases the interaction energy by an amount W. Therefore, a positive value of 
W in equation (II-3-4) represents a decrease in the system energy. Since, there is no cross term 
in the elastic energy between the stress field of the dislocation and the stress field produced by 
the force Ff and since the dislocation line is not a sink of interaction energy, the entire energy W 

can also be written as the work dissipated on a surface A defined by closed loop (Cρ) (see figure 
II-3-1) [HL82],  
 

 
Figure II-3-1. Definition of dislocation configuration used to get the displacement field 
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( )∫ −′−=
A ijm

f
mij FbdAW rrσ                      (II-3-5) 

where Ff
mσijm(r’-r) is the stress σij at r’ caused by the components Ff

m of a point force Ff at r. 
The bi is the components of b and dAj is the components of dA, respectively.  
In terms of the umk(r’-r) which is so-called Green’s function and is that mth component of 
displacement caused by a unit point force applied in the kth direction at the origin, the equation 
(II-3-5) can be written as  
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where the umk can be substituted in the elastic isotropic media. 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+
+

−∇=
km

mkmk xx
u rrr

2
2

28
1

µλ
µλδ

πµ
               (II-3-7) 

where λ and δij are the Lame constant and Kronecker delta function with the properties 
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Equaling equations (II-3-4) and (II-3-6) with only one non vanishing component of Ff, one 
obtains the displacement field um due to the dislocation by canceling Ff

m, 
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Equation (II-3-9) is called Burgers integral expression and is the general formula used to 
establish dislocation stress field.  
 
Displacement gradient due to dislocation segment in isotropic media 
Mura has demonstrated that the Burgers integral expression in equation (II-3-9) can be 

transformed to a line integral for the gradient of um(r) [Mur63]. Because the coordinates in 
equation (II-3-9) are relative coordinates dx’=-dx, so the derivative of equation (II-3-9) can be 
written with R  
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where the vector R is the distance between the r and r’. 

rrR −′=                           (II-3-11) 
This quantity enters the strains, which must be continuous across the cut A. In accord with the 
equilibrium equations of classical elasticity, we obtain 
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where the R should not be zero.  
This condition is similar to the requirement for mechanical equilibrium in the strain field of a 

point force. Since the surface area A can always be chosen so that R≠0 on the cut surface, 
equations (II-3-10) and (II-3-12) can be combined to give  
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Application of Stokes’ theorem to equation (II-3-13) yields the line integral  
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where the Stokes’ theorem has the form. 
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Equation (II-3-14) is called Mura’s formula. When the dislocation is in the isotropic media, the 
equation (II-3-14) could be substituted by introducing the Green function in isotropic media as 
shown in equation (II-3-7). 
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where the R is norm of the vector R.  
 
 
Stress field due to dislocation segment in isotropic media 
The stress field due to any arbitrary dislocation loop can be derived from the displacement 
gradient shown in equation (II-3-16) and following equation.  
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This can also be a starting point to obtain the stress field from a dislocation segment as usually 
used in DD codes. The analytical expressions of stress field due to dislocations segment is 
proposed by Li [Li65].  
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3.2 Stress field from dislocation segment in anisotropic media 
 
Equation (II-3-14) is generally valid for both isotropic and anisotropic materials. Therefore, the 
stress and strain fields caused by arbitrary dislocation loop in anisotropic media can be 

calculated once the Green’s function umk(R) for the anisotropic media is defined. Until now 
there is no closed form of the Green function, but many authors proposed explicit expressions to 
get the Green function in anisotropic media. 
For a finite straight dislocation, the elastic stress field in anisotropic media can be explicitly 
obtained through the evaluation of a sextic equation or line integration [Wil70, Bar72, AHB73 
and MM76]. Using the results for a straight segment, Willis derived a line integral expression 
for a curved dislocation loop [Wil70]. Mura also developed a line integral for the stress field of 
an arbitrarily curved dislocation loop [Mur63]. Other procedures for the elastic field of 
anisotropic crystals were also developed by a number of investigators. Indenbom and Orlov 
obtained a solution for a curved dislocation loop, which contains higher derivatives of the 
straight dislocation solution [IO68]. On the other hand, Lothe [Lot67] and Brown [Bro67] 
developed alternate solutions for the in-plane field of a planar loop. The general anisotropic 
theory of dislocations has been discussed by Bacon et al. [BBS80], Hirth and Lothe [HL82] and 
Mura [Mur87]. 
 
In this section, derivation of an expression based on Willis’ paper is described.  
 
Displacement and displacement gradient in anisotropic media 
Equation (II-3-14) is the starting point in the analysis of Willis [Wil70], whose approach gives 

an integral representation for the Green function umk(R). Using Fourier transforms, the Green’s 
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function umk(R) is immediately obtained that 
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In (II-3-24) 
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where 
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It should be noted for future reference that, in general, Nmk (ζ) is a homogeneous function of 
degree 4 in ζ, Dh(ζ) is a homogeneous function of degree 6 and Dh(ζ)=0 only when ζ=0, if all 
three components of ζ are real.  
Equations (II-3-9) and (II-3-24) yield to the displacement field in anisotropic media. 
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The displacement gradient field in equation (II-3-14) can also be described as the following. 
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Displacement gradient from dislocation segment in anisotropic media 
Equation (II-3-28) and (II-3-29) are quite explicit but these will be reduced to usable forms 

especially for arbitrary dislocation segment (r’) which is expressed as following.  
( ) 10 ≤≤−+=′ tt SES xxxr                   (II-3-30) 

Using equation (II-3-30), equation (II-3-29) thus reduces to:  
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In this simplified equation, several functions are set.  
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where dω is an element on the unit sphere |ηζ|=1. Remembering the homogeneity of Nmk(ζ) and 
Dh(ζ).  
These substitutions reduce (II-3-31) to  
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The convergence factor εcon having been inserted to enable the integrals to be evaluated in any 
desired order. Integrating first with respect to ρζ and then with respect to t reduces (II-3-34) to 
the form 
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To proceed further, we first define 
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We now transform the integral over the unit sphere to one over the circular cylinder, with sides 
parallel to n and unit radius, defined by 

1=∧ wilnζ                            (II-3-37) 

Then the following equation is obtained by the operation of projection 

3ζρ
ω

cyldSd =                             (II-3-38) 

where dScyl is the element of area on the cylinder. 
The two following equations are also obtained by the projection. 
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Therefore, the equation (II-3-35) can be reproduced as    
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where  
wilnζ ⋅=Ζ                             (II-3-42) 

and Lcyl is the contour of  

1,0 =∧= wilnζζ                           (II-3-43) 

The integral with respect to Ζ can be performed by noting that the integrand is O(Ζ-3) when 
|Ζ|→∞. Therefore by closing the contour in the upper half of the complex Z plane and using 
Cauchy’s theorem, we obtain 
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where  

Ζ+= wilN nζζ                             (II-3-45) 

ζ being restricted to lie on Lcyl and ΖN(N=1,2,3) are the roots of the equation 
( ) 0=Ζ+ NhD wilnζ                            (II-3-46) 

which have positive imaginary parts.  

The symbol ρζN is defined as ( ){ } 2
121 NN

Ζ+=ζρ   

the branch of square root being chosen so that it is positive whenever ΖΝ is real. This means that 
ρζN always has a positive real part and (II-3-44) can be expressed in the simpler form 
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The term [ζ(xS-r)-0i]-1, [ζ(xE-r)-0i]-1 behave rather like delta functions.  
The result of evaluating the integral in (II-3-47) is 
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where  
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ζ*(xS) and ζ*(xE) are unit vectors in the plane of r, xS and xE which are perpendicular to (r- xS) 
and (r- xE) respectively, and pwil is the perpendicular distance from r to the dislocation line, as 
shown in figure II-3-2. 
  

 
Figure II-3-2. Definition of the parameters used in Willis expression valid for anisotropic media 
 
Equation (II-3-48) shows that the displacement gradient from arbitrary dislocation segment in 
anisotropic media is closed form in Fourier space. In real space, it is described as the line 
integral formula.  
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The distortions due to any polygonal loop may be found by forming a finite sum of term like 
(II-3-50). 
 
Stress field from dislocation segment in anisotropic media 
Equation (II-3-50) and (II-3-17) yield to the stress field from any dislocation segment in 
anisotropic media.  
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In DD code, the integration is calculated using numerical method such as Gaussian integration 
method.  

 
 
3.3 Comparison between equations for isotropic and anisotropic media 
 
Stress field from dislocation loops in isotropic and anisotropic media 
In order to compare the analytic formulas of isotropic and anisotropic media, stress results are 
computed from dislocation loops using equation (II-3-18~23) and (II-3-47). 
The calculation conditions are shown in figure II-3-3. A dislocation loop made of four 
dislocation segment whose Burgers vector is (1 0 0) and length is 260 nm is introduce in the 
(z=0) plane. Two dislocation segments are edge dislocations and the other two are screw 
dislocations. The stress fields due to the dislocation loops are obtained at the calculation points 
shown by red spots forming a regular grid as shown in the figure. The calculation grid is located 
26nm above the dislocation loops through the z direction. The range of calculation grid is from -
5200nm to 5200nm through x and y direction. Each calculation line has 100 or 1000 points. 
Hence, the total number of calculation points is 104 or 106. 
 

 
Figure II-3-3. Configuration of the dislocation loop and calculation points 
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The calculations need information about Burgers vectors and stiffness matrix. The length of 
Burgers vector is set to 0.254 nm. The stiffness matrix for isotropic media is defined by the two 

independent parameters, λ and µ. The stiffness matrix for the anisotropic media has three 
independent parameters, C11, C12 and C44. The properties for copper material are shown in table 
II-3-1.  

 

Table II-3-1 Material properties for copper 
 
Contours of shear stress field computed from both the isotropic and anisotropic media are 
depicted in figure II-3-4 (a) and (b) respectively. The tendencies of stress contours are quite 
similar. Both show that the region inside and outside the dislocation loops have negative and 
positive stress field, respectively and the shear stress decreases with the increasing distance 
from dislocation loops. On the other hand, the specific distributions near the dislocation loop, 
especially at the corner of the loop, are a bit different. Stress contour in isotropic media near 
dislocation loop has homogeneous distribution including corner region, but the contour in 
anisotropic media has heterogeneous distribution especially at the corner regions. The black 
color region which has less than -80MPa of shear stress at anisotropic media is a bit larger that 
one at isotropic media.   

 
Figure II-3-4. Internal shear stress computed in (a) isotropic medium (b) anisotropic medium 
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The formulas for isotropic and anisotropic media are described by closed form and integral form, 
respectively. Since the formula of anisotropic media is described with integrals, the Gaussian 
integration method is used for the formula. Here for example we used 51 Gauss points on each 
segment. Therefore, the calculation for anisotropic media needs much time because of the 
integration part. The calculation time from the two calculations is summarized in table II-3-2.  
 

 
Table II-3-2. Calculation time needed for estimating the internal stress 

 
For the 10000 calculation, the formula for anisotropy need about 100 times larger calculation 
time than the formula for isotropy. For the 1000000 calculation, the time difference between 
them is about 200 times.  
 
Limitation of the formula for anisotropic media 
Since the anisotropy may play a crucial role in some metals such as copper, the expressions of 
stress field due to dislocation loops in anisotropic media may be an important element of future 
DD code needed to increase the accuracy especially for the stress field near the dislocation 
loops.  
However, the difference between the formulas decreases with increasing the distance between 
the dislocation loop and the calculation point. Moreover the formula for anisotropic media is not 
a closed form but an integration form. This consumes a lot of calculation time. The DD code for 
anisotropic media is about 100 times slower than the DD code for isotropic media and the 
difference of time consumption between isotropic and anisotropic media should be increased 
with the continuously increasing number of dislocation segments. This problem of time 
consumption makes the DD code for anisotropic media hard to be applicable to DD simulations 
with large deformation such as nanoindentation simulation. Because of these reasons, the DD 
calculation for nanoindentation described at section III-6 will be done using isotropic 
expressions of the dislocation stress field.  
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3.4 What should be retained from this section 
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III. Indentation of copper single crystal  
Indentation experiments have been used since the 18th century at least in geology to measure 
the hardness of materials [Tab51], thereby characterizing the strength of solids. Specific 
indenter geometries such as spherical or pyramidal tests have been traditionally used for 
material characterization of metals and ceramics [OP92, SP01 and GS90]. In addition to the 
mechanical characterization of microstructures of metals and ceramics, this test has been 
successfully applied to biological materials [LSB02] and thin film materials [DN86, OP92, 
FS93, BAS75, Sne65 and NG98]. 
In a typical instrumented indentation test, an indenter tip is driven into the material of interest at 
either a constant loading, displacement or deformation rate until a certain load or depth has been 
reached. After a short hold period, the load is gradually removed from the indenter. During this 
process, both load and displacement are recorded continuously. Usually, the principle goal of 
such test is to extract the elastic modulus and hardness of the specimen from the load 
displacement curve. If instrumented with “nano-” resolution in depth and load, the test is 
commonly called nanoindentation. The experimental recording can characterize not only elastic 
property and hardness, but also define the nature of theology law (visco-elastic, elasto-visco 
plastic etc...) and quantify some of the parameters [KLB08] of great concern for metals 
deforming at room temperature which is the core of this work such as elasto-plastic properties 
obtained in uniaxial testing (yield stress and work hardening) [FS95, TZK98, KM01, HT99, 
NEB02, HPO01, CL04 and CHA06]. Recently, Charleux have published a study to extract the 
plastic properties of materials by using inversion approach from indentation curves [CHA06]. 
The method has been evaluated for a wide range of material properties.  
 
Theoretical analysis of indentation 
On the other hand, analytical and experimental analysis of deformation and stress field beneath 
the indenter is an active field of study, since the methods for extracting the material properties 
are based on this analysis. These studies have been carried out for Vickers [GLV94], Berkovich 
[LSG96] and conical [Joh70] indenters. Many authors have also proposed analytical models. 
Tabor [Tab48] and Stilwell and Tabor [ST61] have shown that the recovery of the indentation 
during unloading can be calculated from the theory of elasticity for spherical and conical 
indenters. Subsequently, Johnson’s spherical cavity model [Joh70] was used to predict the 
relationship between hardness and yield strength.  

yCH σ=                             (III-1-1) 

where H, C and σy are the indentation hardness, the constrained factor and yield stress, 
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respectively.  
The methods of determining the area of contact from depth measurements are founded upon the 
elastic equations of contact of Hertz for a sphere and Sneddon for a cone (more generally a 
parabolic revolution) [Len896 and Sne65].  
Doerner and Nix [DN86] and Pharr et al. [POB92] have modeled the loading and unloading 
process of indentation test by considering the contact of an indenter with an elastic half space. 
Most of these approaches are using isotropic elasticity.  However, micro and nanoindentation 
experiments are often performed on single grains or on textured or single crystal epitaxial thin 
films, which are elastically anisotropic.  
For analysis of anisotropic material, it is assumed that elastic properties are some 
polycrystalline average of the elastic constants [FWK89] or correspond to the elastic modulus in 
the direction of the indentation [CSK90 and Doe87]. Recently, Joost J. Vlassak et al. [VN93, 
VN94 and VCB03] have shown that the indentation modulus can be calculated for arbitrary 
anisotropic solids using a semi-inverse approach first given by Willis [Wil66].  
 
Indentation size effect 
Size effect characterizes the observation that in some solids, hardness depends on the scale of 
load or depth used. This is known for a long time, and it usually manifests as “smaller is harder”. 
Fleck et al. [FMA94] have pointed out that the well-known indentation size effect (ISE) for 
metals especially in the sub-micrometer depth regimes. This same physical description was 
given earlier by Stelmashenke et al. [SWB93] and De Guzman et al. [DNF93] to account for the 
depth dependence of the hardness.  
This is in contrast to classical continuum mechanics plasticity theory where it is usually 
assumed that the mechanical properties of a material do not depend on the scale. Therefore, 
earlier researchers had proposed environmental explanation for the ISE, such as the presence of 
oxide layer [TS81], chemical contamination [PT79] of surface layers, inadequate measurement 
capability and elastic recovery of indents [Sam86], indenter-specimen friction [LGH93] and 
edge effects for small indents [MC95]. All of these suggestions have some merit and are likely 
to have contributed to the ISE. However, it has become clear that the inherent size dependence 
in many cases is not an artifact caused by unwanted environmental effects [SWB93, FMA94, 
MC95, PAF96, SE98, NG98, Gur02, ES02, KPM06, RMP07 and RMP08]. 
The size effect can be interpreted by models dealing with a strain gradient in the deformation 
field and geometrically necessary dislocations (GNDs) to accommodate this strain gradient 
[GHN99, AB00, HGN00, FH01, ES03 and Mug04]. Ma and Clarke [MC95] used the same 
physical description and recognized its connection to strain gradient plasticity. In these 
descriptions, statistically stored dislocations, which are created by homogeneous strain, and 
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geometrically necessary dislocations, which are related to strain gradients, both contribute to the 
flow stress. Nix and Gao [NG98] have proposed a model of GND to describe the depth 
dependence of hardness of crystalline materials. They assumed that the indentation is 
accommodated by circular loops of GNDs as shown in figure III-1-1.  
 

 
Figure III-1-1. Schematic description of conical indentation accommodated by GNDs [NG97] 

 
The relationships between hardness and indentation depth derived by Nix and Gao can be 
written by following formula.  

ind
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1+=                             (III-1-2) 

where H0, x*
ind and xind are the indentation hardness in the absence of any size effect, the length 

that characterizes the depth dependence of the indentation hardness and the indentation depth, 
respectively. 
However, despite several different strain-gradient based theoretical development [FMA94, 
MC95, NG98, GHN99, HGN00 and FH01], no direct evidence between the strain gradient 
length parameter and some physical parameter of the structure of the solid has been obtained yet.  
 
Numerical simulation of indentation 
Finite element simulations have been used for explanation of mechanism of indentation 
experiments. Such continuum based simulations have provided an insight into the contact 
mechanics and the effect of strain hardening solids during nanoindentation (for isotropic 
material see [HSZ89, GLV94, BS95, BFN93, MF99, CV01, MAA02, MAS04, BK04, FRS04, 
GJS06 and MCA06] and for anisotropic materials see [WRK04, LBY05, ZRS06, EG07, 
COA07, ACO08 and ZRR08]). However, these simulation methods have covered one or few 
case of experimental results. Because these modeling incorporate phenomenological 
deformation law they can be used only within the experimental database used for their 
adjustment, and it is too difficult to extrapolate the results outside the range of measurements 



 79

using continuum theory [HGW03].  
To overcome the weakness of the continuum theory at small scale, the other spectrum of 
simulation approach, such as atomistic and discrete dislocation dynamics simulations have been 
used for analyzing ultra low-load nanoindentation experiments (e.g. [KPH98, FRC98, LZF03, 
FDS03, MY03, ZVO04, SL04, YKJ04, LPK05, SMC05, SM06, MAS06 and TS07]). Although 
the results from these simulation methods are quite important for understanding the physics of 
indentation in terms of defect nucleation, interaction between them etc, the simulation scale and 
time regime of these methods are too small to cover the analysis of mechanics of 
nanoindentation at micro scale indentation depth.  
These are the reasons why the three kinds of simulation methods, which are molecular dynamics, 
dislocation dynamics and finite element simulation, required to be merged in a so called multi-
scale approach. 
This section is dedicated to an analysis of nanoindentation of copper single crystal by various 
experiments and numerical simulations. Quantitative comparison between both approaches is 
presented. For this purpose, several new analysis methods are proposed in section III-1. Results 
concerning the effect of crystal surface orientation and initial dislocation densities are described 
in section III-2 and III-3, respectively. In section III-4, the two results from experiment and 
simulations are compared quantitatively. Section III-5 presents an example of the effect of a 
gradient of dislocation density introduced below the surface. Finally, nanoindentation 
simulations using a multi-scale scheme from molecular dynamics to FEM simulation are 
presented in section III-6.  
 

1. Analysis methods 
 
Indentation testing is a well known experimental method used for determination of the 
constitutive properties of conventional materials such as metals and alloys, [Tab51, Joh70, 
Joh85, DN86 and Mot56]. Usually, the main goal of such testing is to extract indentation 
modulus and hardness of the specimen from experimental readings of indenter load, depth of 
penetration and of the residual projected area, where the residual area refers to the area of the 
indentation measured after the indenter has been completely unloaded from the sample. An 
analysis of the initial portion of the unloading response and residual area give an estimate of the 
indentation modulus of the indented material, because the initial portion of the unloading is 
assumed to be purely elastic. The hardness value is obtained by dividing the load by the residual 
projected area of the indentation. 
 Therefore, the method to get the contact area is of great importance to obtain material 
properties with high accuracy; however there is no general method to obtain a contact area from 
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an anisotropic material.  
On the other hand, most of the numerical simulations of nanoindentation test have used the rigid 
body indenter assumption because the calculations usually focus on the deformation of material 
not of the indenter. However, the deformation of the indenter may affect the applied load and 
indentation stiffness with penetration depth. Especially, we have observed that the results from 
experimental indentation carried out with a sapphire indenter which has relatively low elastic 
modulus compared to diamond are different to the results from indentation test with rigid body 
indenter. This is the reason why we need the correction of the test results for including the effect 
of deformation of indenter.  
In this section, the new methods for obtaining contact area from the indentation test with 
anisotropic material are presented and the correction methods for the difference of indenter 
properties are also described.   
 
 

1.1 Determination of contact area 
 
Several methods for getting the contact area have been developed. [Len896, POB92 and DN86]. 
The general method is to use a criterion based on surface displacement after the nanoindentation 
experiment or simulation. The displacement criterion to evaluate a boundary of contact area 
depends on the type of surface morphology. There are two kinds of surface displacement which 
are called pile-up or sink-in morphology (see figure below) and which depend on a 
dimensionless ratio (flow stress/elastic modulus).  

 
Figure II-1-2 Description of the contact area in (a) pile-up and (b) sink-in mode. 

 
However, these methods are based on the assumption that the material can be considered as an 
isotropic media. Therefore, the contact boundary profile from these methods is a homogeneous 
shape with respect to the angular direction.  
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Copper single crystal presents a non negligible elastic anisotropy (depending on the crystal 
orientation in uniaxial loading, the modulus varies between 94 and 140 Gpa) and of course its 
intrinsic plastic flow along octahedral slip systems (111)[110]. As a matter of fact, we observed 
that both pile-up and sink-in behavior can be present on a single indented surface. This makes it 
very complex to define the contact area, since general methods used for isotropic material have 
not been verified to give a realistic contact area for anisotropic material. We have proposed 
several methods to evaluate the surface area for anisotropic material under load and after 
unloading in such a way that the procedure could be applied to both experiments and 
simulations or at least to allow precise comparison between the loaded and unloaded situations. 
 
Direct method to get a contact area from FEM simulation  
One very obvious method to get a contact area in anisotropic material is to use the simulation 
results. One of commercial FEM package, ABAQUS [ABA04] can provide the real contact area 
not a projected area. Therefore, the value of contact area from ABAQUS post processing should 
be converted to projected area because all of the analyses after nanoindentation are based on 
projected contact area, not on the real contact area.  

Real contact area is simply converted to projected contact area by using the tip angle (ψ).  

realCprojC AA ×= ψ2sin                        (III-1-3) 

where ψ is tip angle between tip axis and tip surface which is 71.2o in our nanoindentation 
experiment or simulation and AprojC and ArealC are projected contact area and real contact area, 
respectively. The real contact area, ArealC is given by ABAQUS post processing program. This 

equation (III-1-3) is only for nanoindentation using cone type indenter because the angle ψ of 
cone type indenter is constant. If the indenter has a spherical shape, the tip angle ψ should 
depend on the indentation depth. Hence, an integration of equation (III-1-3) with indentation 
depth is needed for obtaining the projected contact area. Therefore, the equation is modified for 
our indenter tip which has a sphero-conical shape.  

 ( ) spherepsphererrealCprojC AAAA ,,
2sin +−×= ψ             (III-1-4) 

where Ar,sphere and Ap,sphere are surface area of sphere shape at our indenter which is about 4.1895 

µm2, projected area of the sphere shape which is about 4.0214 µm2, respectively. Good point of 
this method is its simplicity because this equation (III-1-4) could allow getting the value of 
contact area from ABAQUS directly. However, accuracy of contact area value from this method 
depends on the contact mesh size and it provides it only during the loading state. 
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Indirect method to get a contact area from contact pressure distribution  
Another obvious method for getting contact area is to use the contact pressure distribution from 
the FEM simulation. Figure III-1-3 (a) shows a two dimensional map of contact pressure 
distribution from FEM simulation.  
 

 
Figure III-1-3. Contact pressure distribution from FEM simulation,  

(a) two dimensional mapping of the contact pressure distribution from FEM simulation,  
(b) pressure value through the blue line in figure III-1-1 (a) 

 
The contrast in the figure III-1-3 (a) depicts the amount of contact pressure value. This shows 
the contact boundary directly, because contact pressure values can have non-zero value only if 
the surface of material contacts to the indenter tip. However, the contact boundary line is not a 
sharp line, but a broadened area made from the red region. Therefore, there are two type of 
contact boundary, the one is boundary from the outside of the bright yellow region and the other 
is a boundary from the outside of the red region.  
 
Figure III-1-3 (b) depicts the pressure value through the blue line in figure III-1-3 (a). Contact 
pressures within the contact are about 900 MPa but the others are zero. We can see a linear 
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transition region between the contact and the non-contact zone, which is the same region as the 
broad red one: this is a direct effect of the mesh. Hence, obtained value of contact area depends 
on the criterion of the minimum pressure threshold selected as due to the contact. Higher 
pressure criterion value gives smaller contact area and vice versa. In our simulation, three kinds 
of pressure criterion are used, which are an absolute value of 1MPa, a relative quarter and 
relative half of maximum pressure value, are used to find out minimum and maximum value of 
contact area. The uncertainty in determining the contact area is due to the fact that it can be 
located inside a mesh element and depends on its size. However, this method is not able to apply 
for obtaining contact area from experimental results and it can not be used as well for the 
unloaded state. 

 
Indirect method to get the contact area from surface normal angle distribution  
The last method proposed for obtaining contact area is by using the surface normal vector. If the 
surface of material is in contact with the indenter, its surface normal vector should be same as  
the surface normal vector of the tip. Hence, the angle between normal vector from the material 
surface and indentation axis could be good criteria for obtaining contact area.  
Figure III-1-4 explains the reason why the surface normal angle could be a criterion of contact 
boundary.  
 
 

 

Figure III-1-4. Detection of the contact area with the surface normal angle 
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The surface displacement during or after indentation from both experiment and simulation can 
be defined by a function as followed: 

 ( )213 , xxFx sur=                             (III-1-5) 
Then local surface normal vector was obtained by differentiating the function Fsur in equation 
(III-1-5).  
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Since, in general, the surface displacement function could not be defined theoretically, the 
surface normal vector is obtained by numerical differentiating method such as Bi-cubic 2D 

spline method. After having the surface normal vector, an angle (θn) between indentation axis 
and local surface normal vector (nsur) is defined by : 
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Figure III-1-5 depicts the surface angle (θn) distribution, where the black and white color in the 
figure III-1-5 shows the angle value of 0o and 18o, respectively. Note the presence of the 
spherical apex. 
 

 

Figure III-1-5. Surface angle (θn) distribution from the simulation results of 1400 nm depth. 
Black and white colors depicts the angle value of 0o and 18o, respectively.  
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If the surface angle is close to 18o, which is the same as the surface normal angle of the tip 
surface, it means that the surface have been contacted with the indenter tip. This distribution 
shows very sharp boundary line and that means there is a big difference between inside and 
outside of the contact line. We can also see the mesh shape around the contact boundary from 
the figures. This means that there is only one surface angle value inside a mesh. It is just 
because that we use the 8 nodes linear cubic element. Theoretically, differentiation the 
displacement inside 8 nodes mesh is always constant.  
The contact area value from the surface angle criteria do not depend on criteria so much, 
compared to the pressure criteria method. Like a pressure criterion, in our calculation, three 
angle criteria which are 18.8 o, 17 o and 9.4o are used for minimum and maximum contact area 
value respectively.  
The advantage of this method is that it can be used to get a contact area from experimental 
results and simulation results during loading and after unloading state because it just uses 
information of surface displacement. Therefore, the contact areas from both experiment and 
simulation results are comparable to each other directly by using the same analyzing method 
based on surface angle criterion. Of course this method depends on the mesh size and shape 
very much, so shape and value of contact area may be unreasonable if these come from coarse 
meshes. 
 
 

1.2 Correction of material properties from indentation results  
 
Stiffness and indentation modulus 
The contact stiffness is the slope of the load displacement curves during elastic loading a 
material, which can be expressed by a differentiation of applied load or a function of indentation 
modulus and contact area. 
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=                           (III-1-8) 

where Pind and xind are the applied load for given indentation depth, and indentation depth, 
respectively, and S, and M*

eq are indentation stiffness and equivalent indentation modulus, 
respectively. The equivalent indentation modulus is assumed to be given by the serial spring 
sum of indentation modulus of indenter (M*

indenter) and sample (M*
sample).  
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If the indenter and sample are isotropic material, the indentation modulus can be obtained from 
their elastic modulus and Poisson ratio.   
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On the other hand, the measurement of indentation modulus for anisotropic material is still a 
challenging task. Few have reported about it [VN93, VN94 and VCB03]. Until now, the best 
way to get an indentation modulus for anisotropic material is obtained from indentation stiffness 
value and imaging its contact area after the indentation experiment. The ways of getting contact 
area from anisotropic material were already described in previous section. In the following we 
detail the method for obtaining the indentation stiffness from experiments or numerical 
simulations.   
During an indentation experiment, the contact stiffness at any depth can be obtained directly by 
using the continuous stiffness measurement mode providing adequate synchronous detection, 
and the remained contact area after the indentation could be obtained by the method described at 
previous section with AFM for example. After that, we can calculate the indentation modulus 
value from the obtained indentation stiffness and the contact area value by using the Sneddon 
equation.  
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However, for the numerical simulation, there is no direct way to obtain the contact stiffness.  
Because the definition of the indentation stiffness is the slope of applied load curve with 
indentation depth due to the elastic property of a material, we can calculate the indentation 
stiffness from the differentiating the applied load at the given indentation depth if we simulate 
the nanoindentation simulation with elastic material properties only. We can calculate the 
contact area during the nanoindentation simulation even with pure elastic condition. After that, 
the indentation modulus value is obtained by the indentation stiffness, the contact area and the 
equation (III-1-11).  
The method using the nanoindentation simulation elastic condition is a good way to get the 
indentation modulus and to compare the value to the one taken out from the experiment. The 
interest of establishing the elastic stiffness (depth) curve is, as Vlassak and Chen have shown :  
for two materials, either elastic or elastic-plastic, their contact stiffness are equal if they share 
the same area of contact. However, without knowing the equivalent indentation modulus, we 
can not compare the indentation stiffness at the given indentation depth between the experiment 
and the simulation with pure elastic condition directly.  Since, the copper material can not 
assume the pure elastic material, the contact area with given depth from the experiment should 
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be different to the contact area from the elastic simulation. We can not compare the indentation 
stiffness at the given contact area between them neither, because there is no way to get a contact 
area with given indentation depth during the nanoindentation from the experiment.  
For getting indentation stiffness from the applied load with indentation depth curve of 
experiment or simulation with material condition of crystal plasticity, differentiation of 
unloading load is used. Since, load decrease at the unloading state is assumed to be due to 
elastic recovery. Here, there will be a big difference between indentation modulus from 
indentation stiffness of the experiment and simulation. It is because the indentation stiffness is a 
function of equivalent indentation modulus, not the sample’s indentation modulus. The indenter 
for the experiment is made of a sapphire single crystal, whose elastic modulus is about 345GPa, 
and the imaginary rigid indenter which has infinite elastic modulus is used for the simulation. 
The difference of elastic modulus of indenter between experiment and simulation will make the 
difference of equivalent indentation modulus between them though the same sample’s 
indentation modulus property is used. Therefore, we should compare the indentation modulus 
and indentation stiffness from the experiment and the simulation just after correction of the 
difference of indenter’s elastic modulus.  
The relationship between indentation modulus from experiment and simulation could be 
described from the equation (III-1-8) and (III-1-9).  
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The relationship between indentation stiffness from experiment and simulation is also described 
from equation (III-1-8) and (III-1-12), if the contact area from experiment and simulation is the 
same.  
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Load verse depth curve 
Since a different elastic modulus of indenter between experiment and simulation also affects the 
applied load, we should also compare the applied load with given indentation depth from the 
experiment and the simulation just after correction of the difference of indenter’s elastic 
modulus.  
The effect of the modulus of the tip to an applied load curve can be obtained with two 
assumptions. The first assumption is that the indenter shape is a cone. The other assumption is 
that both indenter and sample material can be considered as elastic material. The two 
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assumptions will make the two relationships about the loading and about the indentation depth.  
At first, an applied load with indentation depth can be described by square type equation of 
indentation depth, when the elastic material is indented by cone type indenter, and because of 
energy equilibrium, applied load at the indenter, sample and total media are always same among 
them. 

( ) ( ) ( )2*2*2* sample
indsample

indenter
indindenter

eq
indeqind xCxCxCP ===        (III-1-14) 

where C*
eq, C*

indenter and C*
sample are indentation compliance of equivalent, indenter and sample 

materials, respectively, and xeq
ind, xindenter

ind and xsample
ind are indentation depth of total, indenter 

and sample materials, respectively.  
The second relationship is the relationship between the indentation depth of total, indenter and 
sample materials.  
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Using the equation (III-1-14) and (III-1-15), the relationship among the compliances can be 
described.  
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If we assume that the indenter follows an elastic behavior, the indentation compliance can be 
described as a function of elastic modulus of the indenter material.  
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Although, the above relationship is based on elastic material behavior, it is proved that the 
applied load with sample, which has the elasto-plastic deformation behavior, is also expressed 
by a square type equation like equation (III-1-14) (see for ex. [Fis02]). Therefore, the 
relationship as shown in equation (III-1-16) can apply to the sample followed by elasto-plastic 
behavior if the indenter could be assumed that it has only pure elastic deformation.  
Finally, the relationship between indentation compliance and applied load from experiment and 
simulation is also described by following equation, like the relationship of indentation stiffness 
between them:  
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1.3 What should be retained from this section 
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2. Experimental indentation 
 
Recently, interest in the indentation test has grown with the development of very low-load, 
depth-sensing indentation instruments [DN86, OP92 and PHO83]. These instruments allow one 
to make indentations as shallow as a few nanometers. The nanoindentation test is, therefore, 
particularly well-suited for the measurement of mechanical properties extremely small volume 
of material. These instruments also allow recording the applied load-depth curves and stiffness-
depth curves directly. The properties are obtained during the test by using recent indentation 
technique. Hence, in the last few years these techniques have also been used to measure material 
properties such as the hardness, Young’s modulus [DCV01, DN86 and OP92], and plastic 
properties [DCV01, BSF03, CDS03, GS99, FWT01, Gia02, CC03, MA03, DY03, BSS04, 
MA04, CL04a and CL04b].  
Experimental analysis of surface deformation beneath the imprint after indentation test is 
another interest of nanoindentation. Such observations are important to understand the 
deformation mechanism of anisotropic materials. However, few authors have reported about the 
observation and analyze the surface deformation morphology of indented anisotropic material, 
such as copper single crystal, and they have used pyramidal indenter for the nanoindentation test 
of anisotropic material. Though the indentation test with pyramidal indenter is used widely as a 
standard indentation method, the indenter shape has weak point to analyze the effect of 
anisotropy because of the geometrical anisotropy of the indenter itself. The anisotropy effect 
from the nanoindentation test with pyramidal indenter is due to the both of anisotropy of 
material and geometry of indenter. For the exact observation of anisotropy effect, wide range of 
nanoindentation test with conical indenter, which has geometrically isotropy, is required.  
In this section, we present the results of indentation test of different copper single crystal. The 
analysis about the effect of surface orientation and initial dislocations and about the mechanism 
of slip system activation are also described by using the experimental results of applied load-
depth curves, indentation stiffness-depth curves during the indentation test and surface 
deformation morphology after the indentation test.  
 
 

2.1 Sample preparation 
 
Bulk copper single crystals of a minimum thickness of 5 mm have been used. Four different 
single crystals are used to vary both surface normal orientation and initial dislocation density. 
The orientations of the samples are shown in figure III-2-1.  
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Figure III-2-1. Pole figures used to define the normal orientations of the prepared samples for 

nanoindentation experiments 
 
Initial dislocation densities of the samples are not the same among them because of different 
growth methods for the single crystal samples. A very low initial dislocation density crystal was 
grown from high purity Cu using Bridgman technique in a graphite mold along a <541> 
direction with a square section geometry. The orientations of the other sections are (111) and 
(123) planes, respectively. The low density crystal is supplied by Prof. M. Niewczkas at 
McMaster University is characterized and reported in [Nie]. The crystal sample are used for 
nanoindentation in the (123) and (111) surface orientation. Three other crystals with (110), (111) 
and (001) surface normal plane were cut by spark erosion from neutron mirror bulk single 
crystal. Hence, their initial dislocation density is not as low as the first crystal, since a controlled 
minute bending was introduced during their growth. These crystals are kindly supplied by the 
Institute Laue Langevin- ILL Grenoble and we use these for nanoindentation in the (110), (111) 
and (001) surface orientations.  
Surfaces of all the four crystals are polished mechanically before electrochemical polishing at 
1.65V in a (25%H3PO4 - water) solution. The mechanical polishing step was required to flatten 
the surfaces to allow detailed observations of rosette of dislocation slip systems around the 
indents by Atomic Force Microscopy (AFM), though the mechanical polishing increase the 
initial dislocation densities. On the other hands, one side of (123) crystal, (111) orientation, was 
not flattened mechanically but only polished electrochemically. This (111) surface without 
mechanical flattening was used for analyzing initial density effect with same surface orientation 
with mechanical polishing. All instrumented indentations were carried out within a few hours 
after surface preparation to avoid roughness development due to oxide layer.   
Table III-2-1 shows the surface orientations orientation miscut, and Bragg peak broadening 

around the diffraction vector direction (θ−2θ) and in its perpendicular direction (θ scan).  
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Table III-2-1. Surface orientations and misfit. Band broadness through diffraction vector 

direction (θ−2θ °) and its perpendicular direction (θ scan °). 
 

The surface orientations are not exactly ideal as in the numerical simulation, the respective 
miscut are small enough to be negligible (all but for the (110) crystal where 7° miscut is 

recorded). The Bragg peak width in the (θ−2θ °)  scan is proportional to the internal residual 
microstrain which is proportion to the square root of the initial dislocation density, whereas in 
the  (θ scan ) geometry, the width expresses the crystallographic mosaicity (presence of small 
misorientation due to subgrains for example). 
The crystal whose surface has (123) orientation presents a weaker peak broadening than the 
others, which is due to the sample growing method difference. Especially, the other surface of 
this crystal which is a (111) surface orientation, has also the lowest value of peak broadening.  
The peak broadening of the other crystals are all a bit higher than one of crystal with (123) 
orientation. The maximum value of peak broadening is more than 10 times higher than the 
minimum value of the (123) crystal. Therefore, we can assume that the initial dislocation 
density differences among the crystals are as big as the differences of peak broadening among 
them. 
 
 

2.2 Indenter properties 
 
For the nanoindentation of the Cu single crystals, a sphero-conical type geometry tip is used, 
because this study focuses on comparison between experiments and finite element modeling 
(FEM) using crystal plasticity model. This sphero-conical type geometry avoids the threefold 
symmetry and edge effects from traditional pyramidal tip geometry such as the Berkovich or 
Cube corner geometry classically used in nanoindentation.   
Manufacturing perfect conical tip with small tip apex is difficult with diamond, therefore we use 
[0001] sapphire single crystal. This tip geometry was characterized by measuring its real height-
area function by direct AFM scan. The radius and height of tip which has sphere shape 

geometry is about 3.3 µm and 200 nm, respectively, and angle between tip axis and tip surface 
is 71.2o as shown in figure III-2-2 [Cha06]. 
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Figure III-2-2. Description of the tip geometry used in the nanoindentation experiments 

 
A MTS XP nanoindenter machine is used for testing the various copper single crystals. A 
continuous stiffness measurement mode was used with frequency of 50 Hz and displacement 
amplitude of 2 nm. At the final depth of 1400 nm, good control of the oscillation is insured, 
contrary to the first 200 nm depth. After the nanoindentation experiments, both load (Pind) and 
contact stiffness (S) with total displacement depth (xind) are obtained. 
Standard indentation procedures are carried out with the following parameters [SP04 and TP04]. 
During the indentation experiment up to 1400 nm of indentation depth, the strain rate is 
controlled constant at 5×10-2 s-1. Thermal drift is corrected by correction method [SP04 and 
TP04] recorded at the end of each individual indents. Only tests with a minimum average drift 
less than 0.05 nm/s are retained. At least 5 indents were processed on each sample to make sure 
of reproducible mechanical data. 
Surface topography on residual indents was investigated using an AFM (Veeco 3100 
commercial system) in tapping mode. Typical scan of indents consisted of a minimum 30×30 
µm2 square area, large enough to include flat surface reference around the indents, with a 5122 
data sampling. From the AFM investigation, the residual rosette of dislocation slip systems with 
the various surface orientations and height of deformed surface are obtained.  
The height measurement data are used for post data processing to calculate the angle between 
the indentation axis and the local surface normal axis. This allowed us to obtain contact shape 
and area of the highly anisotropic shape of the residual indents. For getting the angle, 2D 
bicubic spline surface fitting method is used [Sci]. Details are described in the section III-1. 
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2.3 Experimental Results 
 
Crystal orientation effect 
Figure III-2-3 shows the applied load versus the depth curves for four different surface 
orientations from the nanoindentation experiments. The loading part follow a typical parabolic 
curve, but applied loads at the same indentation depth are different with surface orientations. 
The highest load is around 60 mN with 1400nm of indentation from (110) surface orientation. 
Increasing amount of applied loads for (001) and (111) surface orientations are quite similar 
which is about 55mN with 1400 nm of indentation depth, although loads for (111) surface 
orientation is a bit higher than one for (001) orientation. The lowest load with final indentation 
depth is about 38mN for the (123) crystal orientation. It shows more than 55% difference 
comparing to highest load value with same indentation depth.  
 

 

Figure III-2-3. Experimental load-displacement curves obtained for different orientations 
 

The table III-2-2 presents the contact areas with various surface orientations after 
nanoindentation experiments, which are different for the various surface orientations. The 

highest value of contact area is about 69µm2, which for the (110) crystal orientation and the 
lowest value of one is about 57µm2 for the (123) surface orientation. The contact areas from 
(001) and (111) orientation are quite similar between them, which is about 68µm2. The tendency 
of the contact area differences among the various orientations is the same as for the final applied 
load, though the difference between maximum and minimum contact area is about 20% which is 
smaller than the 55 % difference between maximum and minimum applied loads.  
 



 95

 
Table III-2-2. Remaining contact areas for various surface orientations after 1400nm indentation 
 
Two kinds of effects could be a reason for the contact area and applied load differences among 
the orientations. The one is their surface orientation effect. The surface orientation could make a 
difference of elastic modulus through the indentation axis and number of activated slip system. 
This one will make the plastic hardening difference among surface orientations and that one will 
make elastic response discrepancy among them. Moreover, the surface orientation can affect the 
contact area because of their characteristic symmetry. The other is their initial density effect. 
Their initial density is closely related to the yield stress which is a criterion between elastic and 
plastic behavior of Cu single crystal. Higher initial dislocation density induces higher yield 
stress and this increase amount of elastic response from the material. This can also affect to the 
contact area because the ratio between elastic and plastic response is an important parameter of 
remained contact area.  
As a result, the applied load and contact area differences with various surface orientations are 
due to the complex mechanism mixed by several reasons, but it is not known yet which factor 
affect to differences predominantly. It is hard to count how big each reason makes the amount of 
the differences quantitatively by using experimental technique, because this requires extremely 
well controlled sample preparation. Therefore, for detail quantitative analysis, these results 
should be compared with the results from numerical simulations. The detailed simulation results 
are shown in section III-3 and detailed comparisons between experiment and simulation results 
are in section III-4. 
Figure III-2-4 plots the stiffness versus the indentation depth for several surface orientations. 
Stiffness curves with indentation depth show weak oscillation which is due to the continuous 
stiffness measurement technique. The four stiffness traces are very similar among each other. At 
the beginning, the stiffness increases with high slope and the slope is decreasing with 
indentation depth. It is due to the spherical shape of the tip front. After the tip front region, the 
stiffness increases linearly as expected with indentation depth due to the cone shape indenter tip. 
The four orientations can be divided into two by the amount of stiffness. The stiffness from 
(110) and (111) orientations, which is about 1.00 MN/m for 1400nm indentation depth are a bit 
higher than the stiffness from (001) and (123) orientations with same indentation depth, which 
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is about 0.85 MN/m.  
In general, the stiffness result has been used for analyzing the elastic property, because stiffness 
is calculated from elastic property once the area is known using the extension of Sneddon 
relation. The difference of stiffness curves among surface orientations depicts the difference of 
the elastic property due to the elastic anisotropy. However, for detailed analysis, contact area 
effect should be also considered since stiffness is a result from combination of indentation 
modulus which is purely elastic material property and its contact area as shown in equation (III-
1-8). Even though, the elastic property is same, the stiffness could be varied due to the contact 
area difference. Therefore, to see an elastic anisotropic effect exactly it is more useful to analyze 
the indentation modulus with orientations. 
 

 
Figure III-2-4. Experimental stiffness plotted in function of the indentation depth 

 
Figure III-2-5 depicts the indentation modulus with different surface orientations from 
nanoindentation experiments. 
Because of the indentation modulus is just material property based on elasticity of the material, 
the difference of indentation modulus among the surface orientations should be caused by 
elastic anisotropy of the copper single crystal. The highest indentation modulus is about 105 
GPa which for (111) orientation and the lowest one is about 90GPa for the (001) orientation. 
Indentation modulus with (110) and (123) orientation is just between them, which is about 100 
GPa and 98 GPa, respectively and close to the value of (111) surface orientation. The tendency 
of indentation modulus with surface orientation is the same as elastic modulus with surface 
orientations. This is because of the relationship between elastic modulus and indentation 
modulus. It is indeed a well known relationship recalled in equation (III-1-8) and valid for 
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isotropic materials. It has published recently that the relationship is still accepted even for 
anisotropic materials [VN93 and VN94]. The result from figure III-2-5 confirms the recent 
reports.  
 

 
Figure III-2-5. Indentation modulus obtained experimentally for different surface orientations 

 
Figure III-2-6 depicts the surface displacement morphology with different surface orientations 
from AFM experiments. Figure III-2-6 (a-d) depicts the surface displacement morphology of 
(001), (110), (111) and (123), respectively. Every orientation presents both pile-up and sink-in 
regions simultaneously. It is because of anisotropy of the copper material. Hence, each of the 
surface morphology in figure III-2-6 depicts their own symmetry, which is same as the 
symmetry of plastic slip system array projected on the surface crystal plane. The symmetries 
due to the surface orientations are 4-fold symmetry for (001), 2-fold symmetry for (110) and 3-
fold symmetry for (111), respectively. Surface morphology from (123) orientation has weak 2-
fold symmetry but the height of the four upheaval are different among them. Maximum heights 
from the other surface orientations are different among them. Maximum height of (110), and 
(001) surface orientation are about 300 nm high but the height of (111) and (123) orientations 
are just about 200 nm high. 
In general, the pile-up height depends on the yield stress and plastic work hardening but these 
relationships are observed for isotropic material. Few reports about pile-up height for the 
anisotropic material have been published. Qualitatively speaking, because of the indentation, 
some slip systems are activated and dislocations at the activated slip systems are start to move 
to the specific direction, which generate the surface pile-up morphology. The other regions are 
not affected by the dislocation movement at the activated slip system shows sink-in morphology. 
Therefore, the pile-up and sink-in morphology are due to the activated slip system differences 
just below the surface.  
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Figure III-2-6 AFM surface displacement morphology measured for different surface 
orientations (a) (001) surface orientation, (b) (110) surface orientation,  

(c) (111) surface orientation (d) (123) surface orientation 
 

Quantitative analysis about it is not reported yet, because of its complexity. We should analyze 
first the slip system activation and dislocation evolution around the indentation region 
quantitatively. These are not easy to do by experiment (it requires various Focus Ion Beam cross 
section and detailed subsequent crystal rotation analysis by Electron Back Scatter Pattern, see 
the recent work of [KPM06, RMP07 and RMP08] for example). Therefore, for detail 
quantitative analysis for the surface morphology, the results from numerical simulations is 
needed. The detailed simulation results about the surface morphology are shown in section III-3 
and the detailed comparison between experiment and simulation results are presented in section 
III-4. 
 
Initial dislocation density effect 
To understand initial density effect, 111 orientations with two different initial densities are 
compared in figure III-2-7 for the applied load depth curves. Though their surface orientations 
are the same, applied load values with same indentation depth are quite different between each 
other, where the load for final indentation depth with high initial dislocation density is 55mN 
and the load with low initial dislocation density is about 30mN, respectively.  
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Figure III-2-7. Experimental load-depth curves for (111) indentation in two samples having 

different initial dislocation densities 
 
High initial density needs more than 80% higher applied load than required with low initial 
dislocation density. It is quite reasonable because higher initial dislocation density increase yield 
stress which means that the material becomes harder.  
Table III-2-3 shows the different remaining contact areas of (111) surface orientations with high 
and low initial dislocation density from experiments. 
 

 
Table III-2-3. Remaining contact areas of (111) surface orientations with high and low initial 

dislocation density measured by AFM after indentation experiments 
 
The contact area from (111) surface orientation with high initial dislocation density is about 

68µm2 and the one from same surface orientation with low initial dislocation density is about 54 
µm2, respectively. The contact area difference between two different dislocation densities is 
about 25% which is the same tendency as applied load difference between two difference 
dislocation densities.  
The results from figure III-2-7 and table III-2-3 support the assumption that one of the important 
reason of applied load and contact area differences among surface orientations in figure II-2-3. 
Figure III-2-3 and table III-2-2 have a difference in initial dislocation density. The difference in 
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ratio between minimum and maximum from figure III-2-7 and table III-2-3 explains the 
difference in ratio from figure III-2-3 and table III-2-2, respectively. The other reason is that it is 
quite reasonable that the low initial dislocation density of (111) surface orientation is similar to 
the initial dislocation density of (123) surface orientation, because the two surface orientation 
comes from the same sample, although mechanical polished (123) surface could be higher than 
the non mechanical polished (111) surface. In the same way, the high initial dislocation density 
of (111) surface orientation should be similar to the initial dislocation density of (110) surface 
orientation because the two samples are grown by the same method (bending for neutron mirror 
purpose).  
Figure III-2-8 presents the surface morphology of the (111) surface orientation with two 
different initial dislocation densities. 
 

 

Figure III-2-8. Surface morphology of the (111) surface orientation with two different initial 
dislocation densities measured from nanoindentation experiments  

(a) low initial density  (b) high initial density 
 
Although the same indentation condition, surface morphologies with two different initial 
dislocation densities are very different between each other. (111) surface orientation with low 
initial density as shown in figure III-2-8 (a) gives 6-fold symmetry with 6 pile-up picks and the 
height of the maximum pile up site is about 50nm. On the other hand, (111) surface orientation 
with high initial density as shown in figure III-2-8 (b) shows a 6 pile-up upheaval which height 
is about 200 nm but the surface morphology looks like a 3-fold symmetry not a 6-fold 
symmetry as shown in figure III-2-8 (a). It is shown that the initial dislocation density is a very 
important parameter for both the surface morphology and maximum pile-up height. We can 
explain the mechanism qualitatively. At first, the low initial dislocation density produces 6 picks 
with 6-fold symmetry. If the initial dislocation density is increased, 2 peaks of them are getting 
closer to each other and join. Finally, they make a 'bundle', which produces surface morphology 
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with 3-fold symmetry when the initial dislocation density is high enough.  
For detailed analysis about applied load, stiffness, surface morphology and maximum pile-up 
height with surface orientation or with initial dislocation density, it is needed that the 
experimental results are compared to the simulation results with same indentation conditions. 
Hence, details of experimental results are described and compared to results of numerical 
simulation which is shown in section III-4.  
 
Slip system activation effect 
Figure III-2-9 (a-d) depict AFM image of slip bands with (001), (110), (111) and (123) surface 
orientations, respectively. The images about the slip bands show the symmetry same as shown 
in figure III-2-6 due to their surface orientation. The (001), (110) and (111) surface orientations 
have 4-fold, 2-fold and 3-fold symmetries of the slip band morphology, respectively. (123) 
orientations has only one directional slip band. We can assume that the pile-up heights in figure 
III-2-6 are closely related to slip band distribution in figure III-2-9, because the maximum pile-
up height region is exactly the same as the slip band region.  
A qualitative explanation about it is already mentioned above. The symmetry of surface 
morphology is due to symmetry of the slip system projected to surface orientation. Figure III-2-
10 (a), (b) and (c) depicts the projected slip system to its own surface orientations which is 
(001), (110) and (111) surface orientation, respectively, where the blue arrows are activated slip 
systems. The projected slip systems shows exactly same symmetry as the one of surface 
morphology.  
(001) surface orientation as shown in figure III-2-10 (a) has 4-fold symmetry from both surface 
morphology and projected slip system. The positions of the 4 Burgers vectors and 8 slip 
system’s normal planes explain the reason of 4-fold symmetry of surface morphology.  
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Figure III-2-9. AFM images showing slip bands surrounding the imprint for  
(a) (001) orientation, (b) (110) orientation, (c) (111) orientation (d) (123) orientation 

 
 

 
Figure III-2-10. Symmetry of the projected slip system to its own surface orientations  
(a) (001) surface orientation (b) (110) surface orientation (c) (111) surface orientation 
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Because for the surface orientation (001) two Burgers vector named 5 and 6 lay perpendicular to 
the surface normal orientation, therefore slip system with the two Burgers vectors are not 
activated. The two Burgers vector are also perpendicular to each other. The other 4 Burgers 
vectors named 1, 2, 3 and 4 lay with a slope of 45o compare to 5 or 6 Burgers vectors, and slip 
systems including the four Burgers vectors are activated. Four slip system’s normal planes 
named A, B, C and D lay with direction to top left, top right, bottom left and bottom right pile-
up site. Now, we can figure out easily that the pile up of top left is just due to the A2 and A3 slip 
system activation, the pile-up of top right is due to the B2 and B4 slip system activation, the pile 
up of bottom left is due to the C1 and C3 slip system activation and the pile-up of bottom right 
is due to the D1 and D4 slip system activation, respectively. 
(110) surface orientation as shown in figure III-2-10 (b) has 2-fold symmetry from both surface 
morphology and projected slip system. The positions of 4 Burgers vectors and 4 slip system’s 
normal planes explain the reason of 2-fold symmetry of surface morphology.  
For the surface orientation (110), one Burgers vector named 6 is parallel to the surface normal 
orientation and other Burgers vector named 5 is perpendicular to the surface normal orientation, 
so the slip system including the two Burgers vectors are not activated. The Burgers vectors 
named 2 and 4 and slip plane named B has a direction on the left side of (110) surface 
orientation and the 1 and 3 Burgers vectors and C slip plane lay with a direction on the right 
side of the (110) surface. The other 2 slip plane normal is perpendicular to the (110) surface 
orientation. Now, we can figure out easily that the two pile up sites at left are just due to the B2 
and B4 slip system activation, the two pile-up peaks at right are due to the C1 and C3 slip 
system activation, respectively. 
(111) surface orientation as shown in figure III-2-10 (c) has 3-fold symmetry from both surface 
morphology and projected slip system. The positions of the 3 Burgers vectors and 6 slip 
system’s normal planes explain the reason of 3-fold symmetry of surface morphology.  
Because surface orientation is (111), one slip plane normal named B is parallel to surface 
normal orientation, the slip systems including B slip plane is not activated. Three Burgers vector 
named 2, 4 and 5 also lay perpendicular to the surface normal orientation, therefore slip system 
with the three Burgers vectors are neither activated. The other 3 Burgers vectors named 1, 3 and 
6 lay with an angle of 60o between them. The slip systems including this 3 Burgers vectors are 
activated. Three slip system’s normal planes named A, C and D lay with directions to the three 
pile-up sites. Now, we can figure out easily that the 6 pile-up peaks are just due to the A3, A6, 
D6, D1, C1 and C3 slip system activation, respectively. 
As a result, slip systems projected to the various surface orientation can give the reason for the 
observed symmetry of the various surface morphology and the activated slip systems tell the 
reason of pile-up sites, respectively. However, these arguments are simple and details only what 
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happens at or just below the surface: it is not easy to tell the reason of the pile-up height 
difference among the surface orientations. This is the reason why complete 3D simulation is 
needed to get the complex plastic crystal flow around the indenter tip  
 

2.4 What should be retained from this section 
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3. FEM simulations of indentation 
 
State of the art of continuum simulations of indentation 
Finite element simulations (e.g. [HSZ89, GLV94, MF99, MAA02, MAS04, BK04, FRS04, 
GJS06 and MCA06]) are used to reproduce the nanoindentation of wide variety of crystalline 
solids. In spite of the fact that the elastoplastic behavior of the material is considered as 
isotropic, such simulations allow to settle fundamental understanding of indentation test [MF99, 
HSZ89, BS95, BFN93 and CV01].  
However, instrumented indentation experiments are often performed on single grains or on 
textured or single crystal epitaxial thin films, which are anisotropic. Only finite element 
simulation making use of models that takes into account crystal plasticity is able to give back 
experimental evidence corresponding to nanoindentation inside a grain. This has been the object 
of recent work presented in [WRK04, LBY05, ZRS06, EG07 and COA07]. Some investigations 
aim to reproduce applied load-penetration depth curves of instrumented indentation made with a 
spherical indenter [WRK04 and LBY05]. They also analyze the surface morphology underneath 
the spherical tip in connection with anisotropy [ZRS06]. Casals et al. [COA07] explore 
nanoindentation of annealed and strain-hardened copper single crystals thanks to crystal 
plasticity finite element simulations. of nanoindentation. The pyramidal indenter is of Vickers 
and Berkovich type. Zaafarani et al. [ZRS06 and ZRR08] have captured and explained 
crystallographic orientation patterns of copper single crystalline induced by conical indenter. J. 
Alcala et al. [ACO08] analyze sharp indentation experiments performed in a variety of FCC 
crystals by using the crystal plasticity simulation.  
In spite of the fact that the finite element simulation making use of crystal plasticity is a good 
way to retrieve experimental material behavior, they still have a lack of physical reality if the 
deformation law used is phenomenological. Due to this fact, models can be used only for cases 
that correspond with experimental condition of model parameters identification. Other 
applications like nanoindentation lead to risky extrapolation [HGW03].  
In this section, original results issued from nanoindentation simulations are presented. A fully 
physically based constitutive behavior law has been implemented in a user material routine. 
Because the theory is fully physically based [Koc94], all the parameters have a physical sense. 
Thus, they can be identified with numerical computations at a lower scale such as dislocation 
dynamics simulation (see for example [Fiv97]). Due to the generic features of the model, the 
simulation can cover a wide range of indentation conditions without any restriction due to the 
identification process. 
The results concern the applied load-depth curves, the contact stiffness-depth curves during the 
indentation test and surface deformation morphology after unloading. In section III-3, general 
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results from finite element methods using the crystal plasticity are presented and in the section 
III-4, quantitative comparison between simulation and experiment are presented.  
 
 

3.1 Model framework 
 
Geometry 
Various nanoindentation tests on a copper single crystal with various surface orientations and 
initial dislocation densities are simulated with finite element method (FEM). Figure III-3-1 (a) 
shows the cylinder which is used to describe the sample submitted to nanoindentation. This 
volume is meshed with 8 nodes cubic elements. The mesh is composed of 10959 nodes and 

10308 elements. The radius and depth of the mesh shape are 50µm and 100µm, respectively. 
The mesh is composed of 24 circumferential elements, 34 elements along radial direction (on 
the surface) and 35 elements along the height (in the center of the cylinder).  

 

Figure III-3-1. (a) Cylindrical shape of the FEM mesh used for simulations  
(b) Modeled indenter defined as a sphere-cone type 

 
Figure III-3-1 (b) shows the indenter used in the simulation. It is of conical shape ended with a 

sphere at the top. The sphere radius is 3.3µm. The height of the spheroid part is about 200nm. 
After 200nm, the indenter is conical with an angle of about 71.8o. The total radius and height of 
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the indenter are about 15µm and 5µm, respectively. The modeled indenter is not composed by 
rigid body type elements, but described with analytical equation supported by commercial FEM 
solution packages named ABAQUS [ABA04]. The geometry of the modeled indenter tip 
reproduces exactly the geometry of the experimental indenter tip.  
 
Plastic Behavior 
The plastic behavior of the material is described with the physically based model, proposed by 
Tabourot et al.[TF97] and described in section II-1. This model is implanted into a finite 
element method (FEM) using the material user subroutine (VUMAT) in ABAQUS [ABA04]. 
The material parameters of the constitutive behavior laws are given in table III-3-1 for copper 
single crystal.  
 

 
Table III-3-1. Material parameters used in the FEM elasto-plastic model. 

 
Since the mechanical behavior of copper single crystal is anisotropic, three parameters are 
necessary to build the anisotropic stiffness matrix (see table III-3-1). The other values used in 
relations that describe hardening rule and dislocation evolution are determined by recent 
dislocation dynamics simulation [DKH06, Fiv97 and KDH08]. Only the value of initial 
dislocation density is considered as an adjustable parameter. As initial dislocation density is one 
of the most influencing parameters on load, surface morphology and contact area as shown in 
the previous section, various values are used to quantify the effect of initial dislocations density 
on results.  
The hardening matrix (αsp) is given with a reduced set of only six independent parameters. Two 
different sets are used during simulations.  
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1. The value 0.09 is taken for all 6 independent parameters when hardening on system is 

supposed to be homogeneous [Fiv97]. 
2. The values of the independent parameters are (0.122, 0.122, 0.07, 0.137, 0.122, 0.625) 

when non-homogeneous hardening is induce by self, coplanar, ortho, glissile, lomer and 
collinear interactions, respectively [DKH06].  

The matrix parameters (asp) which controls the dislocation evolution is also described with a set 
of 6 independent parameters. Two sets are tested.  

1. The value of the parameters are (0.01, 0.4, 0.4, 0.75, 1.0, 0.4) as proposed by M. Fivel 
et al. in [Fiv97]  

2. The values for (asp) are similar to the (αsp) values following the assumption of Kubin et 
al.’s [KDH08].  

Four different surface orientations are used in simulation in order to determine orientation 
effects. Correspondence between local and global axis for each orientation is shown in figure 
III-3-2, where the global Z direction coincides with 4 different indentation crystallographic axis 
(001), (110), (111) and (123).  
 

 
Figure III-3-2. Local and global axis definition for (a) (001) surface orientation  

(b) (110) surface orientation (c) (111) surface orientation (d) (123) surface orientation 
 

The transformation from the global axes to the local crystallographic axes is defined by 3 Euler 
angles. These three angles are used to find surface orientation in the simulations. The Euler 
angles corresponding to (001), (110), (111) and (123) crystallographic surface orientation as 
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shown in figure III-3-2 are given in table III-3-2. 
 

 
Table III-3-2. Euler angles defining the crystallographic orientation of the crystal. 

 
 

3.2 Solver method 
 
Integration 
One of the possible integration schemes when dealing with finite element technique is implicit 
method. For most cases, implicit method guarantees the stability of the calculation. However, 
the implicit method consumes huge calculation time if contact boundary limit conditions are 
involved during simulation. Especially, the implicit method leads to a critical problem during 
the nanoindentation simulation.  
Figure III-3-3 gives an overview of the problem. The deformed mesh as shown in figure III-3-3 
is obtained after a simulation done with implicit scheme. The material behavior is purely elastic.  
 

 

Figure III-3-3. Overview of diverging mesh effect due to the implicit method 
(a) initial mesh and initial stress results from nanoindentation of (111) surface orientation  

(b) deformed mesh obtained after deeper nanoindentation. 
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Figure III-3-3 (a) shows the initial mesh. Indentation axis is coincident with the (111) 
crystallographic orientation. The whole mesh is fine enough to avoid simulation problem. 
However, the meshes and stress results diverge during the nanoindentation simulation as shown 
in figure III-3-3 (b). Central point which should remain on indentation axis is moving upwards. 
Hence, the neighboring elements are widely distorted. The mesh distortion may be due to the 
numerical instability which breaks the force equilibrium of the central point. When the position 
is changed, the instability is increased leading to an acceleration of the movement. 
Consequently, stress distribution in figure III-3-3 (b) is not really realistic. Indeed, stress results 
should exhibit a 3-fold symmetry due to the symmetry induce by a (111) surface orientation.  
This mesh distortion does not occur during nanoindentation simulation with explicit integration 
scheme using Arbitrary Lagrangian and Eulerian (ALE) method. This method consumes much 
less time than the implicit method for the present nanoindentation simulations. Table III-3-3 
shows time consumption of the two integration methods for a given nanoindentation calculation, 
whose final indentation depth is 1400nm indentation depth. The two methods use same meshes 
and the same elastoviscoplastic behavior is considered for the material.  

 

Table III-3-3. Comparison of the CPU time required for two integration methods 
 
Nevertheless, this technique takes into account acceleration effect and thus boundary conditions 
have to be carefully controlled in order to impose quasi-static loading. Therefore, the velocity of 
indenter is monitored in order to minimize the kinematic energy. The explicit integration is then 
retained for all the nanoindentation simulations.  
 
Boundary condition 
Imposed velocity profile of the indenter is shown in figure III-3-4. This smoothed velocity 
variation is an excellent way to minimize kinematic energy and to obtain quasi static material 
behavior during simulation.  
During the loading stage at a constant velocity, the indenter moves downwards to a depth of 
1400nm. Then, the indenter penetrates 50nm deeper during the interval where velocity is 
decreasing. This smooth transition is also needed to minimize the kinematic energy. If this 
smooth transition is not respected, the indented material would be given a huge kinematic 
energy generated by the important acceleration induced by the strong velocity variation between 
loading and unloading. 
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Figure III-3-4. Prescribed indenter velocity during one nanoindentation cycle (load and unload). 
 
In the third stage the indenter starts to move upwards 10 times slower than its loading velocity. 
This unloading velocity is also imposed progressively in order to limit kinematic energy as well. 
When the indenter tip is not in contact anymore with the materials, the simulation is stopped 
automatically. 
It is therefore necessary to check if these conditions keep the explicit finite element simulation 
in quasi static regime. To reach this objective, the corresponding results are compared with the 
results obtained with implicit simulation which is under quasi-static calculation.  
For a simple verification, the comparison between implicit and explicit are performed under the 
condition of indentation an elastic material with 4 different surface orientations which are (001), 
(110), (111) and (123). Figure III-3-5 shows the applied load versus indentation depth curves of 
4 different orientations and two kinds of simulation methods, where the standard and explicit 
designations means respectively implicit and the explicit method. The two simulation methods 
give quite similar results. 

There is one missing triangle point at the indentation depth of 0.04µm for the (110) surface 
orientation. The calculation stops due to a mesh distortion problem. For the same reason, the 

implicit method fails to give results at a depth of 0.05µm for all the four surface orientation. As 
a conclusion, the boundary conditions guarantee stable calculation even with very deep 
indentation depth. In this latter case, simulation can not be achieved with implicit integration. 
 
 

3.3 Important parameter analysis 
 
Surface orientation effect 
In figure III-2-3, a big difference is noticed between the experimental load displacement curves 
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corresponding to the indentation of crystals with 4 different orientations. The reasons of the 
difference could be found either in the effect of surface orientation, either in the effect of the 
initial amount of dislocations in the sample. Numerical simulation is the convenient mean to test 
the effect of surface orientation with an initial dislocation density kept constant.  
For these FEM simulations, hardening coefficients of the model are those of table III-3-1. The 
hardening coefficients are 0.09 for all the 6 independent parameters of matrix (asp) and initial 
dislocation density is set to 4.8×1011/m2 for any of the slip systems and for all sample whatever 
the surface orientation is. 
 

 

Figure III-3-5. Applied load versus indentation depth curves for the indentation of an elastic 
sample with 4 different orientations obtained in the case of implicit and explicit finite element 

simulation. 
 
Figure III-3-6 shows the computed load-depth curves in the case of four surface orientations. 
The figure shows that the surface orientations induce difference between applied loads at a 
given indentation depth. Nevertheless, these differences are not really big when compared to the 
differences observed in the experimental results as shown on figure III-2-3. 
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Figure III-3-6. Load versus indentation depth for 4 different surface orientations obtained by 

FEM simulation including homogeneous plastic hardening coefficients 
 

The maximum applied load, for the (110) surface orientation, is about 39200µN at 1500nm 
depth whereas the minimum applied load for the (123) surface orientation is about 36000µN at 
1500nm depth. Hence, the difference between maximum and minimum applied load at a given 
indentation depth is less than 8%. The values of applied loads obtained in the case of (001) and 
(111) orientations are just between the values obtained with (110) and (123) orientation, namely 

37600µN at 1500nm depth i.e. about 3% lower than the value obtained in the case of the (110) 
surface orientation. In the experimental results, the applied load at a given indentation depth and 
for (110) surface orientation is about 55% higher than that corresponding to the (123) surface 
orientation and about 10% higher than that corresponding to (001) and (111) surface 
orientations. 
Besides, the surface orientation affects the indentation modulus and the plastic hardening slope. 
The influence of the surface orientation on the value of elastic modulus is shown in figure III-3-
5 where the material behavior is purely elastic. Thus, the order of the applied load displacement 
curves due to the crystal anisotropy is (111), (110), (123) and (001). This order is different when 
plasticity is involved during deformation as can be seen on figure III-2-3 and figure III-3-6. This 
order is (110), (111), (001) and (123). It shows that the elastic anisotropy can not explain the 
order of applied load versus displacement curves in both experimental and simulation results. 
Surface orientations affect strain-hardening because activated slip systems are not the same due 
to modification in Schmid factor distribution. Identical hardening coefficients reduce naturally 
difference due to surface orientation effect. Therefore, it is a reasonable assumption that surface 
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orientation effect on strain hardening may be enhanced by using the non-identical hardening 
coefficients. Therefore, non-homogeneous hardening coefficients may increase applied load 
difference among surface orientations. 
In order to check if this assumption is correct, nanoindentation is now simulated using non-
identical hardening coefficients. Figure III-3-7 shows the applied load displacement curves 
corresponding to the 4 surface orientations obtained from these simulations. 
 

 

Figure III-3-7. Load versus indentation depth for 4 different surface orientations. Results 
obtained from FEM simulation where hardening coefficients are non homogeneous. 

 
Initial dislocation density is set to 4.8×1011/m2 for all the surface orientations. Applied load 
differences are smaller than the difference shown in figure III-3-6. The applied load at 1500nm 

depth in the case of (111) surface orientation is 40000µN, and the applied load at the same 
indentation depth in the case of (123) surface orientation is 38000µN. The difference between 
(001), (111) and (110) is less than 2%. This means that use of non-identical hardening 
coefficients reduces differences, which is a result opposite to initial expectations. This is due to 

the high increase induced by the (111) and (123) surface orientation which is about 2400µN and 
a smaller increase for (001) and (110) which is about 800µN.  
In conclusion, the chosen surface orientations induce differences about 8% with identical 
hardening coefficients and 5% with non-homogeneous hardening coefficients. This is not really 
a big difference compared to experimental one which is about 55%. Therefore, the maximum 
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55% of difference at the applied load with various surface orientations from the experiment is 
not only due to the surface orientation difference but to different initial densities in the crystals 
used for experimentation.    
 
Initial dislocation density effect 
The indentation experiment is widely used for getting the yield stress at an industrial level 
because it is proved that hardness value from the indentation experiments is closely related to its 
yield stress [AT65]. In the frame of crystal plasticity theory presented in section II-1, the yield 
stress is calculated with initial dislocation density and hardening coefficients as following 
equation (II-1-35). Therefore, initial dislocation density deeply affects to results of the 
nanoindentation.  
Figure III-3-8 shows applied load displacement curves with 3 different initial densities for in the 
case of a (111) surface normal orientation. 
 

 

Figure III-3-8. Load versus indentation depth curves obtained from (111) nanoindentation 
simulations for four different initial dislocation densities. Experimental curves with two 

different initial dislocation densities are superimposed in thick lines. 
 
Increasing initial dislocation density results in increasing applied load for a given indentation 
depth. The applied load for 1400nm indentation depth with 3.6×1013 /m2 initial dislocation 

density is 55000 µN and the one with 1.2×1013/m2, 3.6×1012/m2 and 1.2×1012 /m2 initial 
dislocation densities are about 45000 µN, 35000 µN and 30000 µN, respectively.  
As a result, 3 times higher initial dislocation density multiplies applied load by 1.2 for a given 
indentation depth. The applied load on the sample with 1.2×1012/m2 initial dislocation density is 
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quite similar with the applied load obtained experimentally in the case of (111) surface 
orientation. The applied load on a sample with 3.6×1013/m2 initial dislocation density is quite 
similar to the applied load obtained experimentally in the case of test on one another (111) 
surface orientation. The curvatures of the load displacement curves are a bit different between 
the experiments and simulations. It means that it is possible to fit experimental applied loads 
displacement curves by using only one parameter, the initial dislocation density. 
Figure III-3-9 gives the relationship between hardness and yield stress in the case of a (111) 
surface normal orientation. 
 

 
Figure III-3-9. Relationship between hardness and yield stress obtained from (111) 

nanoindentation simulations 
 
The hardness values are calculated as the maximum force from the indentation simulations 
divided by the related contact area (see figure III-3-9 and table III-2-3). The yield stresses are 
obtained from total dislocation density and equation II-1-37. In this figure, the hardness values 
have a linear relationship with yield stress, where the red line in figure III-3-9 shows the best 
linear fitting curve. The fitting slope is about 12.8 and the curve intercepts 444.17 of y axis.  
Figure III-3-10 shows experimental applied load versus displacement curves in the case of the 4 
different surface orientations compared to those obtained numerically. Appropriate initial 
dislocation densities are determined in order to obtain a good agreement between experimental 
and numerical data. The curvatures of the load versus displacement curves are a bit different 
between experiments and simulations. The initial dislocation densities of (110), (111) and (001) 
surface orientations are quite similar to each others but the initial dislocation density of (123) 
surface orientations is lower than the others. This is probably due to the difference of sample 
preparation method as described in previous sections.  
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Figure III-3-10. Experimental applied load versus indentation depth obtained for 4 samples with 

different surface orientations. Initial dislocations are fitted in order to retrieve the data in the 
case of numerical simulation 

 
Plastic crystal flow effect 
The various orientations induce also various morphologies of the imprint. For each surface 
orientation, figure III-3-11 gives the surface displacement obtained by FEM simulations. 

 

Figure III-3-11. The surface displacement morphology with different surface orientations from 
FEM simulation (a) (001) surface orientation, (b) (110) surface orientation, (c) (111) surface 

orientation (d) (123) surface orientation 
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To obtain such presentation, FEM simulations results are post processed with a routine 
developed under the Scilab software environment [Sci]. The surface profiles obtained with FEM 
simulation are quite similar to the experimental ones when referring to figure III-2-6. Each of 
the surface morphologies in figure III-3-11 has its own typical symmetry. The symmetries due 
to the surface orientations are 4-fold symmetry for (001), 2-fold symmetry for (110) and 3-fold 
symmetry for (111), respectively. Surface morphology from (123) orientation has weak 2-fold 
symmetry but the height of the 4 pile-up picks are different among them. The symmetry of the 
morphologies is connected to projection of active slip systems as shown in figure III-2-10. 
Every orientation induces both pile-up and sink-in regions simultaneously. It is assumed from 
figure III-2-9 and figure III-2-10 that the pile-up peaks are caused by the activated dislocations. 
Figure III-3-11 (a), (b) and (c), shows the geometry of a cutting layer including a maximum 
pile-up peak. Such layer corresponds indeed to the plane of locally activated slip system. The 
cutting angles for getting the layers are 54.5o for (001) surface orientation, 35.5o for (110) 
surface orientation and 70.5o for (111) surface orientation, respectively. Because the cutting 
layer is parallel to the slip plane of the activated slip system, the regions of high dislocation 
densities are distributed through the slip direction of the activated slip system. 
The dislocation densities and moving direction of the dislocations of the activated slip systems, 
at the cutting layer from (001) surface orientation are given in figure III-3-12. 
 
 

 
Figure III-3-12. Dislocation densities and moving direction of the dislocations in the activated 

slip systems in the cutting layer for (001) surface orientation  
(a) dislocation density of slip system B2 (b) dislocation density of slip system B4 
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The cutting layer is parallel to B slip plane. The activated slip systems for pile-up peak at the 
cutting layer are B2 slip system, whose dislocation density is shown in figure III-3-12 (a), and 
B4 slip system, whose dislocation density is shown in figure III-3-12 (b), as expected in figure 
III-2-10 (a). The sign of dislocation density depicts the moving direction of the dislocation at the 
slip system, where the plus sign depicts the dislocation moving upward and vice verse. 
Therefore, we can observe the flow of dislocation movement from this figure. Below the pile-up 
peak, there is a high density spot, whose color is the red. Hence, the dislocations at the high 
density spot are moving through upward direction. Besides the high dislocation density moving 
upward, it is observed that another high dislocation densities, whose color is blue, moves 
downward. We can also observe from the figure that the high dislocation density regions are laid 
through the slip direction of the activated slip system, exactly.  
The dislocation densities and moving direction of the dislocations of the activated slip systems 
in the cutting layer for (110) surface orientation are given in figure III-3-13. 

 
Figure III-3-13. Dislocation densities and moving direction of the dislocations of activated slip 

system in the cutting layer for (001) surface orientation (a) dislocation density of C1 slip system 
(b) dislocation density of C3 slip system 

 
This cutting layer is parallel to C slip plane. The activated slip systems responsible of pile-up 
peak in the cutting layer are C1 and C3. The corresponding dislocation densities are shown in 
figure III-3-13 (a) and (b). For the latter system, it can be also referred to figure III-2-10 (b). 
The positive sign of dislocation density indicates the upward moving direction of the dislocation 
on the slip system. In the figure III-3-12, this convention is applied. Below the pile-up peak, 
there is a high density spot, whose color is red and whose moving direction is upward. 
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Backward through slip direction of the C1 and C3 slip systems, it is observed one another spot 
of high dislocation densities, whose color is blue. Consequently, the dislocations move 
downward. A third high dislocation spot with upward moving direction is also noticeable. We 
can also observe from the figure that the line made from the three high dislocation density 
regions is parallel to the slip direction of the C1 and C3 slip systems, too.  
The dislocation densities and moving direction of the dislocations of the activated slip systems 
in the cutting layer for (111) surface orientation is given in figure III-3-14. 

 

Figure III-3-14. Dislocation densities and moving direction of the dislocations in the activated 
slip systems in the cutting layer for (001) surface orientation 

(a) dislocation density in slip system D1 (b) dislocation density in slip system D6 
 
The cutting layer is parallel to D slip plane. The activated slip systems for pile-up peak in the 
cutting layer are D1 slip system, whose dislocation density is shown in figure III-3-14 (a), and 
D6 slip system, whose dislocation density is shown in figure III-3-14 (b) : it can be compared to 
figure III-2-10 (c). Below the pile-up peak, there is a small high density spot, whose color is red 
and whose moving direction is upward. The high density region is smaller than the other high 
density regions below the pile-up peaks at the figure III-3-12 and III-3-13. It may be due to the 
value of the angle between the surface and the slip plane normal which is close to 90o. This 
could explain that the pile-up height for (111) surface orientation is lower than the pile-up 
height for (001) or (110) surface orientation. Backward through slip direction of the D1 and D6 
slip systems, it is observed that other big spots of high dislocation densities, whose color is blue. 
The line made from the two high density regions is parallel to the slip direction of the D1 and 
D6 slip systems, exactly.   
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As a result, the dislocation’s upward movement at the activated slip system causes the pile-up 
peak morphology of (001), (110) and (111) surface orientations. 
 

3.4 What should be retained from this section 
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4. Quantitative comparison between simulations and experiments 
 
4.1 Correction of stiffness and load-depth curves  
 
Correction of elastic compliance for comparison of load displacement curves  
The real indenter is made of sapphire, whose elastic modulus and Poisson ratio are 345GPa and 
0.34, respectively. In the simulation, the indenter is modeled as a rigid body whose elastic 
modulus is infinite. This differs from reality and affects the comparison between experiment and 
simulation. Therefore, for a clear comparison between experiments and simulations, the results 
of simulation should be corrected.  
Figure III-4-1 zooms on numerical and experimental applied load displacement curves in the 
zone defined by the transition between loading and unloading. In the simulation each 
orientations have their own fitted initial dislocation densities, which are 4.8×1013/m2, 3.6× 
1013/m2, 3.6×1013/m2 and 9.6× 1012/m2 for (110), (111), (001) and (123) surface orientations, 
respectively. With those parameters, the simulated applied load displacement curves are quite 
well superimposed to the experimental ones in the loading phase as shown in figure III-3-9. 
However, a gap exists between experimental and numerical results in the unloading phase as 
shown in figure III-4-1. Especially, the initial slopes of the 4 simulated curves are much higher 
than the initial slopes of experimental curves.  
 

 

Figure III-4-1. Load-displacement curves during unloading state from experiments with 4 
different surface orientations and from simulations using appropriate initial dislocation densities 

to fit the experimental curves 
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As mentioned above, this is mainly due to the infinite stiffness of the indenter and correction 
should be introduced on the numerical results. Following equation (III-1-14), square root of the 
applied load is a linear function of the indentation depth, and the slope is related to the square 

root of the indentation compliances (√C*). Therefore, the correction of the simulation results can 
be done. 
Figure III-4-2 (a-d) shows the square root of applied load displacement curves extracted from 4 
simulations with different surface orientations of the sample. The curves are not linear at the 
beginning. 
 

 
Figure III-4-2. Square root of the applied loads versus indentation depth extracted from 

simulations with 4 different surface orientations, (a) for (001) surface orientation,  
(b) for (110) surface orientation, (c) for (111) surface orientation, (d) (123) surface orientation 

 
This non-linearity is due to the non-conical (spherical) part on the top of the indenter. Once the 

conical part is sufficiently inside the material (i.e. after 0.2 µm displacement), the curve 
becomes linear. The sample compliances (C*

sample) are then obtained by least squares 
minimization for each surface orientation. Compliances for (110), (001), (111) and (123) surface 
orientations are 25.4GPa, 22.9GPa, 23.3GPa and 17.2GPa, respectively. As indenter is modeled 
by a rigid body in the simulation, the comparison between experimental and numerical results 
requires a correction of these compliances should be corrected as described in section III-1-2. 
The elastic coefficients of sapphire are 345GPa for elastic modulus and 0.34 for Poisson ratio 
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[Cha06]. Then, the compliance C*
indenter of the sapphire indenter is estimated with equation (III-

1-17) to the value of 709GPa. The bulk material's compliances are then corrected following 
equation (III-1-18). The corrected compliances for (110), (001), (111) and (123) surface 
orientations are finally 18GPa, 16.5GPa, 16.7GPa and 12.9GPa, respectively. Original and 
corrected curves are presented in figure III-4-2 (a-d). Application of the correction tends to 
lower the curves as presented on the figure above. 
Figure III-4-3 shows the effect of the correction applied in the case of an indentation on a 
sample with a (111) surface orientation. 
 

 
Figure III-4-3. Simulated applied load versus indenter displacement curves for indentation of 

(111) surface oriented samples with various initial dislocation densities (a) before correction of 
the simulation results, (b) after correction of the simulation results 

 
Simulations are done with six initial dislocation densities. In order to have experimental 
reference, the corresponding curves for nanoindentations on sample with two different initial 
dislocation densities are also reported. Figure III-4-3 (a) refers to results without any correction 
while (b) stands for the corrected ones. 
Before correction as shown in figure III-4-3 (a), the applied load displacement curve for 
1.2×1012/m2 and 3.6×1013/m2 initial dislocation density values are quite similar with the two 
experimental curves corresponding to low and high initial dislocation densities, though the 
curvatures of experimental and simulated curves are a bit different. As the correction lowers 
simulated curves, the curves for 1.2×1012/m2 and 3.6×1013/m2 initial dislocation densities 
become lower than the experimental reference curves. Instead, the curves for 6.0×1012/m2 and 
1.2×1014/m2 initial dislocation densities become quite similar to experimental reference curves. 
After introducing correction due to the elasticity of the sapphire indenter, 6.0×1012/m2 and 
1.2×1014/m2 are considered as reasonable initial dislocation densities to fit experimental results. 
Using the same procedure, the initial dislocation densities in the case of (001), (110) and (123) 
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oriented samples are recalculated. Those results are use to obtain the curves presented in 
figure III-4-4 (a) and (b). 
Figure III-4-4 (b) focuses on the transition between loading and unloading phases. It becomes 
clear, that with these corrections, the unloading phase is well described by the numerical results.  

 

Figure III-4-4. Simulated applied loads versus displacement curves of samples with different 
surface orientation after correction of indenter elasticity effect (a) during loading state (b) 

during unloading state 
 
Correction of the indentation modulus for comparison of the stiffness-depth curves 
One way to obtain the indentation stiffness value is based on the use of the applied load 
displacement curve. As described in section III-1-2 (see equation (III-1-8)), the indentation 
stiffness is obtained by differentiating the applied load with respect to indentation depth when 
the indentation is done in such a way that strains remain elastic. Another way to get stiffness is 
to differentiate applied load with respect to indentation depth just after starting unloading in the 
case of the elastoviscoplastic material. In our calculations, the stiffness at a given indentation 
depth is obtained from simulations where the material is considered to have pure elastic 
behavior as shown in figure III-3-5 and from simulations where the material has 
elastoviscoplastic behavior.  
Figure III-4-5 (a-d) show the applied load displacement curves obtained by simulations of 
indentation on samples with (110), (001), (111) and (123) surface orientations. The material 
behavior is elastoviscoplastic. During the loading phase, 10 indentations depths are considered 
to start simulations of unloading phase and get corresponding indentation stiffnesses. The 10 
unloading curves for (110), (001), (111) and (123) surface orientation are gathered in figure III-
4-5 (a-d). 
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Figure III-4-5. Applied load versus indentation depth for loading and unloading states from the 
10 different indentation depths (a) for (110) surface orientation, (b) for (001) surface orientation, 

(c) for (111) surface orientation (d) for (123) surface orientation. 
 
The beginning of the curve in unloading phase are used to get the slope which should 
correspond to the stiffness at the given indentation depth. The results are plotted in figure III-4-6. 
Figure III-4-6 (a-d) shows the evolution of indentation stiffness for samples with (110), (111), 
(001) and (123) surface orientations with respect to contact area extracted from simulations of 
indentation of a material with pure elastic behavior or elastoviscoplastic behavior.  
Contact area is an important parameter in the determination of stiffness. To make comparable 
the values of stiffness determined either with elastic material or with elastoviscoplastic material, 
same contact area determination should be used. When the indentation is carried on elastic 
material, one determines the contact area, simply by calling specific function of Abaqus which 
provides value of contact area between indenter and specimen. A complementary computation is 
necessary to obtain the projected area used in the relationship for stiffness determination. The 
green symbols are indentation stiffness for each surface orientation with respect to contact area 
extracted by calling specific function of ABAQUS from the simulation for a material with pure 
elastic behavior. For the elastoplastic material indentation, determination area takes place once 
the material is unloaded. A method based on surface normal angle criterion as described in 
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section III-1-1 is then available to estimate the area of the residual deformed cavity induced 
formally by the indenter. 
 

 
Figure III-4-6. Indentation stiffness versus square root of contact area curves obtained from 
simulations of indentation of purely elastic samples and elastoplastic material (a) for (110) 

surface orientation, (b) for (111) surface orientation, (c) for (001) surface orientation (d) (123) 
surface orientation 

 
The color symbols except for green one in the figure III-4-6 correspond to contact area values 
provided by the method with 17 o angle criterion. The method with 18.8 o and 9.4o angle 
criterions is used to get the minimum and maximum values of contact area at the given 
indentation depth. The extremities of horizontal error bars are obtained by plotting the minimum 
and maximum contact areas at the given indentation depth. 
The stiffness values obtained either for elastic material or after removing the indenter in the case 
of indentation of an elastoplastic material are similar to each other. It is also seen that the 
indentation stiffness values at a given contact area do not depend on initial dislocation density 
as shown in figure III-4-6 (b) which allows to be confident in the simulation.  
Stiffness depends only on elastic behavior. For the isotropic material, it is well known that the 
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stiffness values from the simulations of indentation of elastic material are the same as stiffness 
values for elasto-plastic materials [Fis02]. However, it has not been confirmed that this rule 
apply to anisotropic material. Now, Because of results of figure III-4-6, we can say that stiffness 
do not depend on the plastic properties including initial dislocation density even for anisotropic 
material.  
Equation (III-1-8) implies that stiffness should increase linearly with the square root of contact 
area. The indentation modulus is then obtained by determining the slope of the stiffness vs. 
square root of contact area curve. The black lines shown in figure III-4-6 corresponds to 
theoretical stiffness values computed by equation (III-1-8), where the indentation modulus is 
taken as the best fitting slopes of the simulation data. The indentation modulus of (110), (111), 
(001) and (123) are 155.1GPa, 158.9GPa, 142.0GPa and 148.0GPa, respectively. Ordering the 
surface orientations on their corresponding indentation modulus value basis is (111), (110), 
(123), (001) (decreasing order). It is not the same order when the sorting criterion is funded on 
values of applied load at a given depth which is (110), (111), (001), (123). 
The objective is now to compare the stiffness values between experiment and simulation. One 
way is the comparison on the indentation stiffness vs. square root of contact area curves. One 
difficulty is that there is no way to calculate the contact area during the loading phase of a 
nanoindentation experiment. The only measurable geometry is the residual contact area value 
after unloading state. Before comparing the indentation stiffness values from experiment and 
simulation therefore, first thing to do is to see whether the contact areas from experiment and 
simulation are identical or not.  
 

 

Figure III-4-7. Contact area values for various surface orientations after unloading obtained 
from experiments and simulations 
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The figure III-4-7 gives the contact area values in function of the surface orientations after 
unloading obtained from experiment and simulation. Blue squares are used for contact area 
values from experiment using an angle criterion to get the contact area of 17o, while blue error 
bar extremities are obtained with the minimum and maximum values of contact area for an 
angle criterion of 18o and 9o, respectively. Red circle are used to plot contact area from 
simulation using an angle criterion of 17o angle. The red error bar extremities are obtained 
following the experimental prescriptions as well (angle criterion of 18o and 9o).  
The contact areas in the case of (110) and (001) surface orientations issued from simulation are 

66.4 µm2 and 63.7µm2. They are a bit lower than the values issued from experiments but the 
difference ratio is less than 5%. The simulated contact area for (111) surface orientation is about 

68.4 µm2 which is quite similar to the value determined from experiment, which is 67.7 µm2. 
The simulated contact areas for (123) surface is 62.2 µm2. It is a bit higher than the 
experimental value. The difference between experiment and simulation for (123) surface 
orientation is about 9%. From this comparison, it is retained that the contact area from 
simulation is determined with a good approximation since the maximum difference between 
experiment and simulation is less than 10%.  
The values of indentation modulus for each surface orientation from both experiment and 
simulation are plotted in figure II-4-8.  
 

 
Figure III-4-8. Indentation modulus for various surface orientations obtained both from 

experiments and simulations 
 
The blue and black symbols are used for the values extracted from numerical simulation and 
experiment by mean of equation (III-1-11).The corrected modulus by means of equation (III-1-
12) (taking into account sapphire elasticity) is plotted with the red symbols. Error bars for 
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experimental data are due to the fluctuation of stiffness value and contact area variation when 
different angle criterions are used. Error bars for simulation data are due to contact area 
variation when different angle criterions are used. 
The highest experimental indentation modulus is about 105GPa obtained for the (111) surface 
orientation and the lowest one is about 90GPa for (001) surface orientation. Indentation 
modulus for (110) and (123) orientations are 100GPa and 98GPa, respectively. The indentation 
modulus determined numerically without correction are respectively 142.0GPa, 148.0GPa, 
155.1GPa, 158.9GPa for the (001), (123), (110) and (111) surface orientations. These values are 
reduced after application of the correction. They are respectively 103.3GPa, 106.4GPa, 
110.7GPa and 111.9GPa for (001), (123), (110) and (111) surface orientation. Though there is 
about 10% difference between indentation modulus from experiment and simulation, the 
difference is not as big as their error range.  
Figure III-4-9 compares the evolution of indentation stiffness for the various surface 
orientations in function of indentation depth obtained from experiment and by simulation.  
 

 

Figure III-4-9. Experimental and simulated indentation stiffness versus indentation depth curves 
for samples with different surface orientations. 

 
The elasticity of indenter is introduced by making use of equation (III-1-13). At the beginning, 
the indentation stiffness values from experiment and simulation are similar, but a growing 
difference between results is noticed when indentation depth increases. The maximum 
difference is about 10% for the final indentation depth. It is nevertheless considered that the 
numerically determined stiffness is rather in good accordance with experimental results.  
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4.2 Effect of hardening parameters 
 
Model explanation and simulation conditions 
In order to carry on a refined study of nanoindentation of a copper single crystal with a (111) 
surface orientation a new finite element model with refined mesh is designed.  
Figure III-4-10 shows the cylinder shape finite element mesh, composed of 30924 elements and 

32509 nodes. The elements are 8 nodes cubic elements. Dimensions are 50µm for the radius and 
100µm for the height. The mesh is composed of 72 circumferential elements, 34 radial elements 
and 35 elements along the height. The cross section of the fine meshes for detailed 
nanoindentation simulation is the same as the previous mesh (see figure III-3-1), but the number 
of circumferential elements increases by a ratio of 3. This refinement is necessary for detailed 
observation of surface morphology and pile up height distribution through section of the 
specimen. Figure III-4-10 (a) shows a top view of the mesh, on which the high mesh density in 
circumferential direction can be seen.  
 

 

Figure III-4-10. Cylindrical mesh used (a) top view (b) front section view 
 
Figure III-4-10 (b) shows front view which looks similar to the previous meshes shown in figure 
III-3-1 (a). The sphere-cone type rigid body indenter is used in this simulation as previously 
described in the figure III-3-1 (b).  
The behavior model is the same as the one used previously in paragraph III-3.1. The material 
parameters are the same as those proposed in table III-3-1 apart from the hardening parameters 
and those involved in dislocation evolution rule. The initial dislocation density for the bulk 
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material is set to 1.2×1014 /m2 for (111) surface orientation (see table III 3-1). 
Six combinations involving hardening rule and dislocation evolution rule parameters are used 
for analyzing the effect of the plastic parameters on indentation test. The 6 different 
combinations are shown in table III-4-1. 
 

 

Table III-4-1. Various parameters set for hardening rule and dislocation evolution rule 
 

Two kinds of matrix for hardening rule (αsp) are used. The first one is designed to give back 
homogeneous hardening on all system and is named Taylor matrix. The second one which 
considers heterogeneous hardening rule on the different slip system is named Hetero. It takes 
into account the various junction strengths including very high collinear junction strength. The 
matrix coefficients for Taylor hardening rule (αsp) are all equal and their value is 0.09. For the 
Hetero hardening rule, the 6 independent parameters are 0.122, 0.122, 0.07, 0.137, 0.122, 0.625.  
Dislocation evolution rule requires the determination of the matrix coefficients (asp) and a 
storage variable (Kg). Three sets of parameters are used. They are named "normal", "same" and 
"high K".  

• The parameter set "normal" has the following values: (0.01, 0.4, 0.4, 0.75, 1.0, 0.4) and 
Kg value is 36.  

• The parameter set named "high K" is defined by (0.01, 0.4, 0.4, 0.75, 1.0, 0.4) and Kg value 
is 100 which induce a very weak dislocation storage.  

• The matrix parameters for the set named "same" are identical to the parameters set used for 
hardening coefficients, as proposed by Kubin et al. [KDH08] and Kg value is 36.  

To avoid mesh distortion during simulation, the finite element simulation was carried out with 
explicit integration method. The monitoring of the indenter displacement is done as in the 
previous paragraph in order to minimize the transformation of applied work into kinetic energy. 
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Parameters for plastic property effect 
Figure III-4-11 shows the applied load displacement curves for the six sets of plastic parameters 
(see table III-4-1). Experimental results are also reported on this figure. The maximum and 

minimum applied loads at a depth of 1400nm are 66000µN and 48000µN for the parameters set 
Hetero+normal and Taylor+highK, respectively.  
 

 

Figure III-4-11. Load versus indentation depth curves obtained from simulations with six plastic 
parameters sets in the case of (111) surface orientation. 

 
The value of minimum applied load is about 30% lower than the maximum applied load. The 

applied loads for the other parameter sets at the same indentation depth are 60700µN for 
Hetero+same, 59100µN for Hetero+highK, 55000µN for Taylor+normal and 48700µN for 
Taylor+same, respectively.  

The applied loads from the three Hetero hardening parameter sets are above 60000 µN. On the 
other side, the applied loads from the three parameter sets involving Taylor coefficients are 

below 55000 µN. They are 20% lower than the value from sets involving Hetero hardening 
coefficients with dislocation evolution which is similar in both cases. For a given hardening set 
(Taylor or Hetero) changing from parameter sets highK to same parameters set has practically 
no influence, but they are about 10% lower than the applied load from parameter set named 
normal.  
As a conclusion of this study, the hardening coefficients are among the important parameters 
which control the applied load evolution during loading. The load itself results from stresses 
inside the specimen. The evolution of resolved shear stress is related to total dislocation 
densities through the 6 values of hardening matrix (αsp). The average value of Taylor hardening 
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parameters is 0.3, whereas this average is 0.5 for Hetero hardening parameters. Therefore, 
change from Taylor to the Hetero parameters will increase the applied load about 20% at the 
same indentation depth. 
The matrix for dislocation evolution (asp) and Kg are related to storage ratio between generated 
dislocations and total dislocations. Mean ratios are obtained by dividing the average values of 
asp by the Kg. These ratios are 0.02, 0.01 and 0.007 for parameter set normal, same and high K, 
respectively. It can be seen that decreasing the storage ratio will decrease the applied load by 
10% at a given indentation depth. It is due to subsequent decrease of the total dislocation density. 
Figure III-4-12 shows the values of the area after indentation for the six sets of plastic 
parameters. The contact area from nanoindentation experiment is also plotted on this figure. The 
H, T same and H hK notations on the x axis stand for the name of parameter set, i.e. 
Hetero+normal, Taylor+same and Hetero+highK, respectively.   

The maximum and minimum simulated contact areas are 73.0µm2 and 66.6µm2 correspond to  
parameter set Taylor+highK and Hetero+normal, respectively. All values from the various 
simulations are just within the error interval of experimental measurement, which ranges from 

66.9µm2 to 74.0µm2. Hence, the range of contact areas induced by the different set of plastic 
parameters is smaller than experimental incertitude on contact area measurement.  
However, plastic parameters play a significant role in the contact area. It is detectable in table 
III-4-2.  
 

 
Table III-4-2. Contact area values with their corresponding parameters sets 

 
Even if the contact area induced by the Hetero+normal parameters seems to be not really 
different from the contact area from the Taylor+normal parameters set, there is a difference 
between values which is 3%. Furthermore, the contact area is affected by the dislocation storage 
term which is determined when to the matrix for dislocation evolution (asp) and Kg are chosen 
Low storage value of (asp) or high Kg value increases contact radius. The contact radii 
determined with parameters sets named same, or highK are about 9% higher value than the 
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contact radius determined with the parameters set named normal.  
For isotropic materials, it is well known that smaller hardening stiffness and smaller yield stress 
induce bigger contact areas, and vice versa [CV01]. The main reason is that smaller hardening 
stiffness and yield stress promote surface piled up, which increases contact radius. This explains 
the results from the figure III-4-12. 
 

 
Figure III-4-12. Simulated residual contact area in the case of the indentation of a sample with 

(111) surface orientation for six plastic parameter sets 
 

 

Table III-4-3. Synthetic comparison of experimental and simulated results  
 

The use of parameter set named Hetero implies higher yield stress than the parameter set named 
Taylor. Regarding the effect of storage term, the parameter set named highK or same gives 
smaller hardening stiffness than the parameter set named normal. The associated contact areas 
on figure III-4-12 respect the ranking induced by hardening stiffness. In conclusion, it is verified 
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that he relationship between contact radius and hardening stiffness for isotropic material [CV01] 
are still applicable to the anisotropic material, too.  
Figure III-4-13 shows the various surface morphologies for each set of parameters. Maximal 
heights are tabulated in table III-4-3. Hence, it is assumed that the maximum pile up height 
depends on the dislocation storage term that is deduced from the asp and Kg values. The smaller 
storage term from (asp) or high Kg increases the maximum pile up height.  
 

 

Figure III-4-13. Surface morphology of (111) surface orientation obtained from nanoindentation 
simulations in the case of six plastic parameters sets (a) Taylor normal (b) Taylor same 

(c) Taylor highK (d) Hetero normal (e) Hetero same (f) Hetero highK 
 
There are two kinds of morphology after indentation. The first one is detected in the figure III-
4-13 (a) and (d). It shows 3-fold symmetry which split into two pile-up peaks. Between two 
pile-up peaks, there is a radial channel especially noticeable in the figure III-4-13 (d), where the 
channel morphology is very similar in the case of experimental results as shown in figure III-2-6 
(c).  
The other morphologies are present in figure III-4-13 (b), (c), (e) and (f). They still reveal the 3-
fold symmetry with 3 sets of two pile-up peaks but the two peaks are merged. They look then 
like one broad pile-up peak. The radial channel is very smooth compared to the figure III-4-13 
(d). It is also observed 3 sink-in trenches. On the other hand, the heights in the sink-in regions in 
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figure III-4-13 (b) and (c) are a bit higher than the height in the figure III-4-13 (e) and (f), so the 
height differences between pile-up and sink-in region in the figure III-4-13 (b) and (c) are a bit 
smaller than the differences from the others. 
The high value of storage term induces 6 sharp pile-up peaks, though the heights of the pile-up 
peaks are much smaller than the pile-up height from experiment results. The radial channel 
between two neighboring pile-up peaks is therefore clearly visible. On the other hand, the small 
value of storage term makes the two pile-up peaks merged and it smoothes the channel between 
two neighboring peaks. Especially, the radial channel almost disappears in the figure III-4-13 (c) 
due to the really small storage term in the case of Taylor highK. The Taylor hardening matrix 
reduces the differences of surface displacement of pile-up and sink-in regions. It may be due to 
the fact that homogeneous hardening matrix with small storage terms reduces heterogeneity of 
material.  
Figure III-4-14 (a) to (f) shows the elevation along a circle which is indicated with a dashed line 
in figure III-4-13 (a). 
 

 
Figure III-4-14. Surface displacement along the contact line indicated as a dashed line in figure 

III-4-13 (a), from nanoindentation simulation with (a) Taylor normal, (b) Taylor same, 
(c) Taylor highK, (d) Hetero normal, (e) Hetero same, (f) Hetero highK 

 
The displacements extracted from simulations results exhibit 3 main undulations with 3 
regularly spaced maximum and minimum values whereas the experimental displacement has 6 
undulations with 6 regularly spaced maximum and minimum.  
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There are three kinds of curve distributions. The first one is the distribution of figure III-4-14 (a) 
and (d), which corresponds to a parameters set which has a higher storage term than the others. 
The displacement level extracted from the simulations is about 0nm, which is about 100nm 
lower than the displacement level from experiment. The evolution of elevation presents 6 peaks 
especially at the figure III-4-14 (d).  
The second distribution is presented in figure III-4-14 (b) and (c). It is obtained when small 
storage term and homogeneous hardening parameters named Taylor are used for the simulation. 
The peak height of the displacement distribution from simulations is about 100nm which is 
similar with the peak height of displacement distribution from experiment. The minimum height 
from the simulations is about 50nm, which is a bit higher than the minimum height from the 
experiment which is below the 0nm. It looks like that the amplitude between maximum and 
minimum height is reduced by the homogeneous hardening matrix named Taylor.  
The third distribution is observed in figure III-4-14 (e) and (f), which corresponds to parameter 
sets with small storage parameters and heterogeneous hardening parameters. The maximum and 
minimum height from the simulation is 100nm and -100nm in the figure III-4-14 (e) and 100nm 
and 0nm in the figure III-4-14 (f), respectively, which is similar to the displacement distribution 
from the experiment. The difference between simulation and experiment is that there is only 
three peaks from the simulation while experimental results reveal 6 ones.  
As a result, the height, amplitude and number of peaks are related to the plastic parameters. The 
high storage term gives similar distribution to the experiment, qualitatively and the small 
storage term with heterogeneous hardening parameter gives quantitatively similar distribution to 
the experiment.  
Figure III-4-15 shows the elevation along a circle which is indicated in dotted line in figure III-
4-13 (a). The experimental displacement evolution along the circle has 6 waves. One wave is 
bigger than the others. The difference between those maximum points is about 50nm. The 
maximum and minimum heights are about 200nm and 100nm, respectively.  
The numerical curves have different typical shapes. The first shape is visible on figure III-4-15 
(a) and (d) and corresponds to simulations which present higher storage term than the others. 
The maximum height from the simulations is about 100nm, which is about 100nm lower than 
the experimental displacement. The minimum height from the simulation is about 50nm, which 
is also lower than the experimental displacement. However, the displacement evolutions 
determined by the simulations are qualitatively similar to those measured experimentally result. 
These results extracted from simulations have 6 peaks and are similar to experimental results, 
especially in the figure III-4-15 (d).  
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Figure III-4-15. Surface displacement along the line defined by pile up, which is indicated with 

dotted line in figure III-4-13 (a), from nanoindentation simulation with (a) Taylor normal,  
(b) Taylor same, (c) Taylor highK, (d) Hetero normal, (e) Hetero same, (f) Hetero highK.  

 
The other distribution in figure III-4-15 (b), (c), (e) and (f) is obtained with a small storage 
parameters set. The maximum and minimum heights of the displacement distribution from 
simulations are about 200nm and 100nm respectively, which are similar with the peak height of 
displacement distribution from experiment, and the height of third peak is about 30nm lower 
than the other two peaks. Although the height distributions of simulated curves have only three 
broad peaks, they are quantitatively similar to the experimental height distribution. Especially, 
the height distributions from figure III-4-15 (f) are quite similar to the height distribution from 
the experiment.  
In conclusion, the best hardening parameters which allow a good reproduction of experimental 
results are parameters set named Hetero same, and Hetero highK. All of the results as shown in 
figure III-4-11 ~ 15 from these parameters sets give quite reasonable quantitative results 
compared to the results from the experiment.  

 
 
4.3 Best fitted results from simulation 
 
Finally, the initial dislocation density and plastic parameters that allow the best reproduction of 
the experimental results are selected. In the next section the results of quantitative comparison 
between nanoindentation tests from experiments and simulations with the best fitting parameters 
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are presented.  
Figures III-4-16 to III-4-20 show the quantitative comparison between the experimental and 
simulated results of nanoindentation. The surface orientations of tested samples are (111), (001), 
(110), (123) and (111) with low initial dislocation density. Appropriate initial dislocation 
densities are adopted for all orientations. The initial dislocation densities for nanoindentation 
simulations are 1.56×1014/m2, 1.2× 1014/m2, 1.2×1014/m2 and 3.0×1013/m2 for the samples with 
(110), (111), (001) and (123) surface orientations respectively. The initial dislocation density for 
(111) with low initial dislocation density is 6.0×1012/m2. The parameters set named Hetero same 
is used for all the simulations. 
The comparison is relative to surface morphology, surface displacement through the contact 
boundary and surface displacement through the pile-up boundary. The left and right figures in 
figure III-4-16~20 (a) present surface morphology extracted from simulation and measured 
experimentally. All the results from simulation as shown in figure III-4-16~20 (a), (b) and (c) 
show that the simulation reproduces the experimental results if the appropriate initial dislocation 
density and parameters for plasticity are used. Both the results from experiment and simulation 
show the symmetry of each surface orientation, which are 3-fold, 4-fold, 2-fold, irregular 2-fold 
and 6-fold for (111), (001), (110), (123) and (111) orientation surface respectively. Simulation 
reproduces the results of applied load with indentation depths, stiffness with indentation depth, 
indentation modulus and contact area from experiments as it can be seen in figure III-4-4, 7, 8 
and 9. 
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Figure III-4-16. Quantitative comparison between experiment and simulation of (111) 
nanoindentation. 

 

Figure III-4-17. Quantitative comparison for (001) nanoindentation. 
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Figure III-4-18. Quantitative comparison for (110) nanoindentation. 

 

Figure III-4-19. Quantitative comparison for (123) nanoindentation. 
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Figure III-4-20. Quantitative comparison for (111) nanoindentation with low initial dislocation 
density. 

 

4.4 Prospective 
 
The numerical analysis of local rotation beneath the imprint has become one of interesting issue, 
because it could be a key information to verify recent theories related to Nye tensor [Nye53] 
such as Cosserat theory which counts extra hardening from the local rotation. The crystal 
plasticity model used in this thesis can calculate the local rotation during and after 
nanoindentation, and it can be compared to the experimental observation by using electro back-
scattered diffraction (EBSD) technique. The comparison will give many interesting results. 
The crystal plasticity model used in this thesis is only concerning the isotropic hardening which 
is not good for cyclic loading conditions [BTF01 and Mec99]. To improve the model for 
complex loading condition, it should be modified by implanting kinematic hardening model. 
Déprés have proposed physics based kinematic hardening model [Dép04]. His model can be 
merged with the crystal plasticity model used in this thesis. This modification will expand 
application boundary of the model especially for cyclic loading conditions. 
The other possibility to improve the model used in this thesis is to modify evolution rule. 
Recently, Kubin et al. have proposed new evolution rule, which counts the heterogeneous 
behavior with various loading orientation of anisotropic material [KDH08]. His evolution rule 
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can also be merged with the model easily. This modification will improve the accuracy to 
retrieve anisotropic deformation behavior and imprints after nanoindentation. 
 

4.5 What should be retained from this section 
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5. Size effect of nanoindentation reproduced by FEM simulation 
 
Indentation size effect (ISE) appears when sample size is decreased. At the beginning, there 
have been some discussions between researchers about the fact that unexpected environmental 
effect may explain the indentation size effect [TS81, PT79, Sam86, LGH93 and MC95]. All of 
these suggestions have contributed to clarify the indentation size effect. It has become clear that 
the inherent size dependence in nanoindentation is not an artifact caused by these unexpected 
environmental effects [SWB93, FMA94, MC95, PAF96, SE98, NG98, Gur02, ES02, KPM06, 
RMP07 and RMP08].  
Theoretically, some models such as strain gradient model and geometrically necessary 
dislocation based models can explain the indentation size effect [GHN99, AB00, HGN00, FH01, 
ES03 and Mug04]. Recent theories to explain the indentation size effect introduce extra degrees 
of freedom or extra constitutive equations. Though simulations using the theories would be able 
to reproduce size effect from simple loading state of material, the required computer time due to 
the actualization of the numerous variables introduced by the model makes it practically 
impossible. Moreover, most of size effect theories have no rules about contact conditions. Hence, 
it is difficult to simulate the indentation size effect by using these theories and there has not 
been simulation of the indentation size using these models yet. Therefore, the searches for 
models that allow the reproduction of the indentation size effect is still an important challenge. 
On the other hand, because the size effect theory we proposed in section II-2 has no extra degree 
of freedom or constitutive equations, it can also use the classical contact theories used in finite 
element method. Therefore, our size effect theory can be used to simulation with complex 
loading conditions including contact boundary condition. We have done the nanoindentation 
simulation using the size effect theory we proposed, where the theory is implanted to the user 
material subroutine in ABAQUS FEM package [ABA04].  
In this section we apply the size effect theory proposed in section II-2 to the case of 
nanoindentation. Simulations are performed using ABAQUS with the dedicated VUMAT 
routine.  
 

5.1 Environmental explanation for size effect 
 
Various articles have reported the size effect at the nanoindentation experiment [TS81, PT79, 
Sam86, LGH93 and MC95]. Although the indentation size effect seems a natural state of the 
material because the indentation size effect is observed even within controlled environment, it is 
reported that one of the reasons for indentation size effects may be due to some artifacts such as 
indenter surface quality or material surface roughness [SWB93, FMA94, MC95, PAF96, SE98, 
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NG98, Gur02, ES02, KPM06, RMP07 and RMP08].  
The report about size effect due to some artifacts insists on the fact that the effect origin 
between inherent material characteristic and experimental conditions should be clarified. 
Therefore, before simulation considering the size effect as intrinsic to the material, it is worth 
simulating size effect including specific experimental condition. Here, the simulations are done 
using classical crystal plasticity theory which cannot reproduce any size effect.  
In general, the surface of sample material is polished mechanically for flattening the surface 
before nanoindentation experiment. After this treatment, the surface is polished again 
electrically or chemically to get rid of the hardened layer due to the mechanical polishing, to 
avoid any effect of the hardened layer on nanoindentation experiment.  
In order to get rid totally of the hardened layer effect, the chemical polishing requires a 
sufficient time. Despite, there is no reference about the chemical polishing time because there is 
no idea about the depth of hardened layer. Therefore, it is worth understanding the effect the 
hardened layer by comparing the results between simulation of nanoindentation on sample with 
and without the hardened layer.  
To understand the effect of the hardened layer, nanoindentation simulation with hardened layer 
is designed as shown in figure III-5-1. Thickness of the layer is set to 300nm and the layer has 
one of the two initial dislocation densities which are 300 and 1500 times higher than the initial 
density of the bulk material. The indentation surface orientation and initial density of the bulk 
material are set to (111) direction and 1.2×1012 /m2, respectively. Other parameters for this 
simulation and indentation conditions are identical to those of the previous simulations of 
section III-3. After the simulation, hardness values corresponding to the bulk sample without 
hardened layer and the sample with a layer involving the 2 initial densities of dislocation are 
calculated and compared.  
 

 

Figure III-5-1.  Mesh used for nanoindentation simulation including a hardened layer 
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Figure III-5-2 shows the hardness versus indentation depth curves extracted from 
nanoindentation simulations where an ideal material and sample with two different hardened 
layers are considered. 
 

 
Figure III-5-2.Hardness versus indentation depth curves extracted from nanoindentation 

simulations of ideal bulk material and sample with two different hardened layers 
 
If there is no hardened layer as shown by red symbol in figure III-5-2, hardness is increasing 
with increasing depth at the beginning of the indentation. It is because of the sphere type tip 
front. The hardness value from the nanoindentation with the sphere shape indenter tip is 
naturally increasing with indentation depth. When the indentation depth is greater than 200nm 
which is the depth corresponding to the transition between sphere to cone shape of the tip, the 
hardness values stabilizes around 500MPa even with increasing indentation depth. The cone 
type indenter increases both force and contact area with a dependence to the square of 
indentation depth. Therefore, the hardness value is constant when increasing indentation depth.  
On the other hand, hardened layer changes the tendency of hardness curve with indentation 
depth from the beginning. Because the hardness is affected by only the hardened layer at the 
beginning of indentation and the hardness is increasing with the initial dislocation density of the 
material, the initial hardness from the simulation with hardened layer, where the layer has much 
higher initial dislocation densities than the initial dislocation density of the bulk material, should 
be greater than the hardness from the simulation with pure bulk material, as shown by the cyan 
and black symbol. The simulations with hardened layer, which have 300 and 1500 times higher 
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initial dislocation density, give about 800MPa and 2GPa at the beginning, respectively.  
The huge high hardness values are decreasing with indentation depth, because it starts to be 
affected by the smaller initial dislocation density of the bulk material below the hardened layer. 
Especially, the hardened layer, which has 1500 times higher initial dislocation density than the 
initial dislocation density of bulk material, make the hardness decrease dramatically with 
indentation depth down to 1.0GPa. The tendency of hardness curves with indentation depths of 
the black symbols looks like general tendency of the indentation size effect.  
As a result, we can reproduce the indentation size effect from the hardness value with 
indentation depth by just using the hardened layer. This means that though mechanical polishing 
is good way to flatten the surface of a material, it could induce indentation size effect. Hence, 
the hardened layer due to the mechanical polishing should be cancelled clearly in order to get 
rid of that kind of size effect due to the surface preparation. 
 
 

5.2 Results from FEM simulation using the simplified strain gradient model  
 
The mesh and indenter shape used for the finite element modeling is shown in figure III-4-1 (a) 
and (b). Orientation of the indented surface is set to (001). The maximum indentation depth is 
set to 1500nm. In order to get rid of the effect of the indenter tip morphology, a perfect conical 
indenter tip was used. The other simulation conditions and parameters are the same as the 
conditions and parameters described in section III-3. The only difference comes from the 
additional stress theory introduced to account for the size effect. In this formalism, the internal 
length Lg needs to be defined. Here we propose that this length represents the size of the plastic 
volume, i.e. Lg is calculated as the triple root of the total plastic deformation volume. Lg is 
continuously updated with the time steps. 
Figure III-5-3 shows the surface displacement morphology of the (001) indented surface 
obtained at indentation depth of 1500nm during loading state. The surface morphology shows a 
four-fold symmetry involving four pile-up peaks and four sink-in zones located between the 
peaks. This surface morphology is quite similar to the experimental results as shown in figure 
III-2-6 (a). It is found that the extra stresses introduced to account for size effects does not 
change the tendency of the surface morphology generally obtained in the case of (001) surface 
orientation. 
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Figure III-5-3. The surface displacement morphology of (001) surface orientation from 

nanoindentation simulation with size effect theory 
 
Figure III-5-4 gives the square root of the applied loading force versus the indentation depth. It 
is found that the relationship is not perfectly linear as expected for self similar indenter with a 
constant value of the hardness.  
 

 

Figure III-5-4. Square root of the applied load plotted versus the indentation depth. 
 

The value indeed increases with the indentation depth but the slope is not a constant. First, the 
slope is very stiff which as depicted by the dashed line. Then, the slope is decreasing with 
increasing indentation depth up to about 1200nm. Finally, for depths above 1200nm, the slope is 
almost constant. This is obviously a direct evidence of indent size effect simulated by FEM. 
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Figure III-5-5 plots the evolution of the hardness versus the indentation depth. Despite the 
fluctuations observed for low values of the depth, it is found that the hardness clearly decreases 
with indentation depth.  
 

 

Figure III-5-5. Hardness versus indentation depth calculated from the strain gradient model 
 
Hardness at a depth of 50nm is about 3GPa and decreases down to 1 GPa for 1200nm depth. 
Above this depth, the hardness of 1.0GPa is almost constant. 
The fluctuations in the curve are due to the mesh size. Indeed, the hardness is computed as the 
ratio of the load and the size of the contact surface which is computed by the total area of the 
elements in contacts between the indenter and the tip. Although the applied force is 
continuously increasing with the indentation depth, the contact area is digitized by the number 
of elements in contact. Thus, the fluctuation amplitude can be reduced by decreasing the mesh 
size, but it can never disappear. 
Figure III-5-6 gives the evolution of the hardness with the square root of inversed indentation 
depth. Nix and Gao have proposed that indentation size effects lead to a linear relationship with 
a slope which quantify the intensity of the indentation size effect [NG98]. The FEM results 
indeed show a line as plotted in figure III-5-6.  
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Figure III-5-6. Hardness value plotted versus the square root of inversed indentation depth. 

 
The three figures above demonstrate that the model reproduce the indentation size effect like in 
real experiments at least qualitatively. This comes from the extra stresses introduced in the 
model and which is related to the inverse of the internal length (taken here as the size of the 
plastic zone) as shown in figure III-5-7. Since the size of the plastic zone is increasing with the 
indentation depth, this extra stress is large at the beginning of indentation, and continuously 
decreases with increasing indentation depth as shown in figure III-5-8.  
 

 
Figure III-5-7.  Characteristic global length scale with the indentation depth from 

nanoindentation simulation with size effect theory 
 
In this figure the 9 curves correspond to 9 points located on the line indicated in figure III-5-3. 
The red line depicts the extra stress at the center point, and the cyan line depicts the extra stress 
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at the last point, the farthest from the indentation axis. For a given point, one can see that the 
extra hardening starts after a given amount of depth. This critical depth corresponds to the 
instant when the plastic zone reaches the probing point. Then, the generated extra stress 
increases up to a maximum value which level decreases when the distance to the indentation 
axis increases. After the extra stress reaches the maximum peak, it continuously decreases with 
increasing indentation depth with a decreasing rate lower than that of the central point.  
 

 
Figure III-5-8. Extra stress effect with indentation depth at 9 different points located on the line 

from the center to boundary as shown in figure III-6-3 
 
According to equation (II-2-44), there are three parameters that may affect the extra stress: the 
difference between the local strain and the global strain, the total dislocation density and the 
global length scale. We have already explained the effect of the internal length. The total 
dislocation density is increasing with indentation depth. A larger value for the total dislocation 
density will decrease the extra stress. The difference between the local strain and averaged strain 
is also reduced with the increasing indentation depth. These two behaviors may explain why the 
extra stress decreases with the indentation depth after it has reached the maximum extra stress. 
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5.3 What should be retained from this section 
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6. Dislocation Dynamics simulations of nanoindentation 
 
Nanoindentation is an ideal case for applications of the DD method at least for indentation depth 
of the order of 100nm. Indeed, for these range of depth, the plastic volume is smaller than a 
micron and thus, the number of dislocation lines to handle is limited. Consequently, the 
computing time required to perform a typical nanoindentation test is still reasonable (about one 
week). 
On the other hand, DD simulations as detailed in II-3 do not possess all the ingredients needed 
to reproduce nanoindentation experiments. Indeed, DD can perfectly simulate the behavior of 
ensemble of existing dislocations including their multiplication through Frank-Read mechanism 
but they cannot predict the apparition of new dislocations. And in the case of low penetration 
indentations, there is evidence of dislocation nucleation. This phenomenon being relevant from 
the atomic scale, this could be incorporated in DD simulations using Molecular Dynamics 
simulations. 
The second ingredient needed to perform DD simulations of nanoindentation is a method to 
impose the indentation loading that is to say the image force on the free surface and the contact 
between the indenter and the surface. This will be done here by coupling the DD code with the 
finite element code CAST3M [CAS07]. Such a coupling was already realized in the past 
[FVC97 and Fiv97]. In this thesis we propose a new algorithm aiming at imposing a realistic 
loading.  
Theoretically it would be necessary to use the anisotropic expressions of the dislocation stress 
field as introduced in section II-3.2. However, this would dramatically increase the computation 
time so that in the following we will only use the isotropic expressions. 
 
  

6.1 Nucleation criterion computed from Molecular Dynamics simulations 
 
Conditions of the Molecular Dynamics 
MD simulations are performed using the embedded atom method (EAM) with the inter-atomic 
potential dedicated to Nickel developed by Voter. The figure III-6-1 (a) depicts the schematic 
diagrams of simulated volume and conditions. The simulated volume is typically a 
parallelepiped box of 224 x 284 x 285 A3 (1675080 atoms). The indenter is represented by a 
spherical repulsive potential of radius R = 120 Ǻ.  
The position of the center of the sphere is imposed step by step (displacement control). The 
normal to the indented surface is chosen as (111). Periodic boundary conditions are applied on 
the (-101) and (1-21) side of the box. The atoms lying on the bottom surface are forbidden to 



 155

move alone the (111) direction but the other in plane directions are allowed (See figure III-6-1 
(a)). 
 

 
Figure III-6-1. (a) Schematic representation of simulated volume and conditions for 

nanoindentation simulation using MD. (b) Applied load displacement curve calculated by MD 
  
 
Results of the Molecular Dynamics simulations 
A simulation campaign has been performed using both molecular static and MD simulations 
which confirmed that the indentation induced dislocations do not depend upon the loading rate. 
As shown in the loading curves given in figure III-6-1 (b), after an initial elastic stage, 
discontinuity is observed in the force displacement curve which is the signature of dislocation 
pop-in. The process for the formation of the dislocations beneath the indenter is rather complex 
as illustrated by the snapshots printed in figure III-6-2. In this figure, only the atoms for which 
the number of neighbors does not correspond to that of a perfect FCC crystal are plotted. This 
way, dislocation leading and tail partials appears in red (dark) and atoms in the stacking fault in 
yellow (clear).  
After an elastic deformation of the volume (figure III-6-2 (a)), defects appear beneath the 
indenter (figure III-6-2 (b)). These defects consist of three extrinsic defects lying in the three 
(111) planes activated by the indentation. Each defect is made of an assembly of three adjacent 
stacking fault planes. This structure is unstable and rapidly transforms into intrinsic defects 
(figure III-6-2 (c)) then into three half loops of dislocations touching the free surface (figure III-
6-2 (d)). Each loop is lying in the two slip system sharing a common Burgers vector. These 
loops expend in the volume and cross-slip events finally emit a closed prismatic loop which can 
easily glide on the cylinder based on the Burgers vector (figure III-6-2 (e-f)).  
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Figure III-6-2. The process for the formation and movement of the dislocations beneath the 
indenter 

 
In figure III-6-2 (f), two loops are completely formed and a the expansion of a third one on the 
left is prohibited by the periodic boundary conditions which reintroduce the prismatic loop 
escaping from the right side of the box. When changing the size of the simulation box, we 
observe that three identical prismatic loops are simultaneously nucleated when indentation 
along the (111) direction. Moreover, when the indenter is further pushed in the crystal, more and 
more prismatic loops are introduced with a size directly related to the contact area between the 
indenter and the surface.  
This nucleation mechanism will be used in the DD simulation presented below. For DD, the 
details of the formation of the prismatic loops are not accounted for and only the final shape and 
position of the prismatic loops are conserved as given in figure III-6-3.  

 
Figure III-6-3. Schematic representation of the prismatic loops to introduce in DD. 
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This means that at this upper scale, pure perfect prismatic loops will be introduced in the DD 
simulation box each time the load sufficient to make them progress in the volume. 
 
 

6.2 DD algorithm used for nanoindentation simulations 
 
Coupling DD and FEM 
Figure III-6-4 depicts the superposition method used for the coupling between FEM and 
dislocation dynamics in the case of nanoindentation. Superposition can be applied since both 
FEM and DD make use of linear elasticity. 
 

 
Figure III-6-4. Superposition method used to couple FEM and DD for nanoindentation 

 
The objective is to compute the stress field to apply on the dislocation segments corresponding 

to a given imposed displacement DTOT of the indenter. This stress field is obtained by the 

summation of the elastic field σFEM computed by FEM and the internal stress σDD induced by all 
the dislocations present in the simulation box. The latter being valid only for infinite medium, it 

induces forces FPS on the surface and displacements DP in the contact region. FEM calculations 
are then used to enforce the actual boundary condition on the surface: A displacement DTOT-DDD 
is applied in the contact region and a force –FPS is imposed on the remaining free surface. FEM 

then solve this elastic boundary problem and give the stress field σFEM. 
In the following; the code CAST3M [CAS07] is used as the FEM solver and TRIDIS [TRI09] is 
for dislocation dynamics. CAST3M is a pseudo commercial and open source based program. 
For the coupling, different communications between the CAST3M and TRIDIS are required. 
This is done by including TRIDIS inside CASTEM as a subprogram [Fiv97]. The coupled code 
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is now referred as KTRIDIS. 
 
Nanoindentation algorithm 
Figure III-6-5 depicts the general flow chart used in KTRIDIS program to realize the 
nanoindentation simulations. In practice this algorithm is written in GIBI, the meta-language 
used in CAST3M. 
At the beginning, the mesh is designed using the CAST3M operators. Then boundary conditions 
are imposed to bottom nodes of the mesh as done in the FEM crystal plasticity case: all degrees 
of freedom are canceled. This boundary condition is not changed during the entire simulation.  
 
 

 
Figure III-6-5. Flow chart of KTRIDIS used for nanoindentation simulations. 

 
Then, the indenter position is moved down to the desired indentation depth and the block 
CALCULATION starts to calculate the indentation force using both FEM and DD solvers. 
During this step, the elastic stress field inside the bulk material is calculated by the FEM solver 
and the results of the previous DD calculation. The surface displacement and surface forces due 
to the dislocation are recursively updated by the TRIDIS routine up to an equilibrium position. 
Details of this procedure are given below. This means that the loading is quasi-static. Finally, all 
the results are stored and next calculation with updated indentation depth is started. The routine 
is repeated until the final indentation depth is reached. The unloading state can also be 
calculated if we impose the indenter position to move upward.  
Figure III-6-6 depicts the flow chart of the calculation part in figure III-6-5. The calculation 

begins by obtaining the values of surface displacement (dDD) and force (Fs,DD) from the 
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dislocation positions and the surface displacement (dFEM) from the FEM elastic field computed 
at the previous step. The values are then used for detecting both the contact area and the 
displacements to impose as boundary conditions of this step. Surface forces from the 
dislocations are imposed at the surface of the bulk material as image forces. Then, the elastic 
stress field due to the imposed boundary condition is calculated and recorded, for the following 
TRIDIS calculation. After this FEM calculation is done, we can estimate if the contact points 
are over constraint or not. This notion of constraint is detailed below. If some over constraint 
points are found, they are removed and the FEM calculation is repeated.  
 

 
Figure III-6-6. Flow chart of calculation part of the main nanoindentation algorithm. 

 
The TRIDIS calculation is starting with the elastic stress field calculated just before. The 
calculation is divided in two parts, the first one concerns nucleation of new dislocation loops 
and the second one deals with moving the dislocations within the elastic stress field.  
At first, it is decided if nucleation of dislocation loops is needed or not. If it does, new 
dislocation loops are generated and the boundary conditions are updated. If no nucleation is 
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needed, the dislocations are moved other a few time steps within the elastic field. The 
dislocation motion is repeated until the dislocations all reach an equilibrium state. After this step 
the algorithm checks again if nucleation of new dislocation loops is needed or not. If it does not, 
the TRIDIS calculation is ended with recording the surface displacement and force field for the 
calculation of next step. If it does, the whole loop of TRIDIS calculation is repeated. Sometimes, 
it may be needed to repeat the FEM calculation during the nucleation process. In this case, the 
calculation is done from the beginning with the updated results from the TRIDIS calculations.  
Details about the boundary conditions on the top surface nodes, checking method of over 
constraint points and nucleation and equilibrium procedure for the TRIDIS calculation are 
described in the following paragraphs. 
 
Boundary conditions on the contact nodes 
Figure III-6-7 illustrates the boundary condition to apply on the nodes of the top surface in 
contact with the indenter. In the detection algorithm, we first need to compute the number of 
contact nodes and the corresponding amount of displacement to impose in order to fit with the 
geometry of the indenter.  
 

 
Figure III-6-7.  Boundary condition of top surface nodes corresponding to a spherical 

indentation. 
 

A node is considered as a contact node if it is inside the indenter tip. Then the node should be 
forced to move down due to the action of the indenter tip. To do so, we have to impose 
displacement boundary conditions (Dirichlet conditions). The amount of displacement is 
calculated from the distance between the tip surface and the position of the node. Displacement 
is imposed along the indentation axis. The perpendicular displacements are let free. In practice, 
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we have programmed two geometries for the indenter, spherical and perfect cone. In this thesis, 
only results regarding the spherical tip will be given. 
 
Checking over constraint points 
The procedure used to find out the constraint points is shown in figure III-6.8.  
 

 

Figure III-6-8. Method used to find the over constraint points. 
 

After any FEM calculation, a reaction force is obtained for each node for which the 
displacement was imposed. Normally, the direction of the reaction forces should be same as the 
direction of imposed displacement. Therefore, the direction of this reaction forces should be 
negative in regards to the surface normal direction. However, it may happen that the force 
direction is opposed because of the plastic displacement induced by the dislocations. The points 
which have a reaction force direction opposed to the indentation direction are the over-
constraint nodes. In reality they should not be given an imposed displacement conditions 
because their stable positions are already below the indenter surface (see figure III-6-8).  
Therefore, the direction of the reaction forces is checked after each FEM calculation. If some of 
the displacement imposed points have an opposite direction of reaction force, we recalculate the 
FEM solution without imposing the displacement on the over-constraint points. This checking 
routine is repeated until all of the constraint points have the same reaction force direction.  
 
Validation test: fully elastic case 
The boundary condition for nanoindentation simulation described above is now verified in the 
case of fully elastic material properties where the elastic modulus and Poisson ratio are 
112000MPa and 0.34, respectively. Figure III-6-9 shows results of a (111) indentation using a 
spherical tip of radius 150nm  
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Figure III-6-9. The indentation results in case of elastic material indented with a spherical 
indenter (tip radius = 150nm) (a) applied force displacement curves (b) contact radius (c) 

hardness (d) stress distribution. 
 
The force displacement curves, contact radius, hardness and Von Mises stress distributions with 
deformed shape are shown in (a), (b), (c) and (d) of the figure III-6-9, respectively. These results 
are now compared with theoretical predictions.  
Theoretically, the force, contact radius and hardness during indentation by sphere indenter are 
estimated using the following equations:  
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Results show that the force computed by FEM using our algorithm for the detection of the 
contact nodes is about 5% lower than the theoretical expectations. In figure III-6-9 (b), the 
contact radius from the FEM calculations is slightly lower that the theoretical contact radius 
because of mesh effects. As a consequence, this increases the hardness value compared to the 
theoretical hardness as shown in figure III-6-9 (c). Discrepancies may come because we impose 
the surface displacement only through the surface normal direction. Because all of the surface 
nodes are free to move in the plane perpendicular to the surface normal direction, the surface 
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nodes can then penetrate into the indenter. This can reduce the applied force. 
Although there are some differences between the FEM results and the theory, the discrepancies 
are quite reasonable (less than 5% on the loading curve). This validates the surface boundary 
conditions we described above and the proposed algorithm will be retained for the DD 
simulations.  
 
Dislocation nucleation algorithm 
Basically, the DD simulation starts the nanoindentation calculation without any dislocations 
inside the material. As said before, DD simulations can not predict the apparitions of new 
dislocations. This feature should be incorporated through rules that can emerge from 
experiments or atomic modeling. In this work we chose to get rid of the empirical assumptions 
and experimental fittings procedure. Thus all the information about the nucleation criterion 
comes from the molecular dynamics simulations described in section III-6.1.  
A nucleation criterion should answer two questions:  

(i) when the nucleation starts and finishes,  
(ii) what are the shape and position of the new nucleated dislocation.  
 

First part of the question is answered in figure III-6-10. 
The master curve referred as the ‘Nucleation criterion’ comes from the MD simulations results 
shown in figure III-6-1 (b). For a given indentation depth, when the loading force is found 
higher than the nucleation criterion, new dislocation loops are generated until the current point  
satisfies the nucleation criterion. After each nucleation stage, the indentation depth is increased 
because of the displacement field induced by the generated dislocation loops. The indentation 
force is once again compared to the value predicted by the nucleation criterion at the increased 
indentation depth. If the force is still higher than the nucleation criterion, other new dislocations 
are nucleated. Therefore, dislocations are introduced until the indentation force is lower than the 
nucleation criterion at the final updated indentation depth. 
For the following, this nucleation process will be called as the explicit method. The advantage of 
this method is that it needs a single FEM calculation for one step of indentation simulation so 
that the total calculation time is reduced. 
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Figure III-6-10. Schematic description of the nucleation criterion (a) explicit method (b) quasi-
implicit method 

 
Sometimes, because the indentation force is very high in comparison to the nucleation criterion 
at the given depth, the nucleation criterion will never be satisfied just by increasing the total 
indentation depth as shown in figure III-6-10 (b). In that case, the explicit algorithm is changed 
into a quasi-implicit method aiming at reducing the indentation force. In that case, the FEM 
calculation is repeated using decreasing values for the indentation depth. These depths are 
calculated by subtracting the depth induced by the nucleated dislocation from the previous depth. 
After this recalculation of the force (which requires a new FEM solution), the explicit algorithm 
is applied to satisfy the nucleation criterion. Although, this quasi-implicit method will take more 
time than the explicit algorithm, this method will minimize the number of generated 
dislocations required to satisfy the nucleation criterion at a given step of calculation. 
Figure III-6-11 answers the second question of the nucleation method: where the nucleation 
takes place and what is the shape of nucleated dislocation. Once again, answers are taken out 
from the molecular dynamics as shown in figure III-6-3. Generated Dislocation loops are 
prismatic loops made by edge dislocations on two slip systems sharing the same Burgers vector. 
In DD simulations however, one should conserve the material volume. Thus, two kinds of 
prismatic loops are simultaneously introduced: on interstitial prismatic loop inside the material 
and one vacancy prismatic loops located outside the material. The later is a virtual dislocation 
loop required to get a unique value of the dislocation displacement at the surface.  
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Figure III-6-11. Shapes of the nucleated prismatic loops (a) front section view (b) top view. 
Dashed lines show the virtual vacancy loops, continuous lines show the interstitial loops. 

 
The position of the inner interstitial prismatic loops is defined by the distance from the center of 
indented surface through the Burgers vector direction of the given prismatic loop as shown in 
figure III-6-11 (a). The distance is calculated according to the position of maximum value of the 
resolved shear stress computed elastically (Hertz predictions):  

 contRd 48.0max =                        (III-6-4) 

where the Rcont, and dmax are respectively the contact radius at the given indentation depth and 
distance to the surface computed along the indentation axis.  
The size of the prismatic loop is also calculated from the contact radius using the following 
equation (see also figure III-6-11 (b)).  

cont
o

loop RL ×= 60sin                        (III-6-5) 

 
Checking equilibrium in dislocation dynamics 
On one hand, the FEM simulation is based on static state, which implies an equilibrium state 
between the external forces and the internal material reactions. On the other hand, the DD 
calculation is based on succession of dynamic states (out of equilibrium), which induces 
instabilities and time dependencies. Therefore, for the coupling the two simulation method, 
FEM and dislocation dynamics, one of them should change its basal state. The easiest one is 
changing dislocation dynamics into static state, because repeating TRIDIS simulation with same 
external stress field will give the equilibrium state.    
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Figure III-6-12 illustrates the method developed to detect the equilibrium state during the DD 
calculation. The summation of the surface forces due to the dislocations inside the material, 
(black line), is used to check the equilibrium state. This force should be stable when all the 
dislocation segments will have reached an equilibrium position.  
 

 
Figure III-6-12. Method used to check the equilibrium state during the DD calculations  

(a) using local derivative (b) using global average 
 
Two methods have been implemented. The first one is uses the local derivative as shown in 
figure III-6-12 (a). Firstly, the averaged surface force is calculated for every simulation set made 
from several calculations (red line in figure III-6-12 (a)). Then, the average value is compared 
with the one of the previous simulation step. If the differences do not exceed a given criterion, it 
is decided that the DD calculations have reached an equilibrium state.  
Sometime, the equilibrium state can not be found because of the fluctuation as shown in figure 
III-6-12 (b). In that case the global average value is used in place of the local derivative. The 
average is obtained from integration of the surface forces curve (see dotted red line in figure III-
6-12 (b)). When the global average value is stable, it is assumed that the DD calculations have 
reached an equilibrium state.  
In the simulations presented below, a simulation set is composed of five DD steps. In practice, 
the local derivative procedure is first used. If the difference between two local averages is less 
than 2.0%, we assume the equilibrium state is reached. If not, the global average is computed 
and compared to the previous one. If the second difference between two global averages is less 
than 0.5 %, it is decided that the dislocations reached the equilibrium state. If both the 
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comparisons fail to detect the equilibrium state, the DD steps are repeated until one of the two 
criteria is satisfied. 
 
 

6.3 Dislocations dynamics simulation of (111) nanoindentation in copper single crystal 
  
Mesh design 
Figure III-6-13 shows the mesh used for the nanoindentation simulations. The cross section of 
mesh is shown in figure III-6-13 (a). There are 5 by 5 coarse meshes. One mesh at the top center 
is divided into very fine meshes close to the contact regions. The radius and height of the bulk 

material is respectively 2µm, and 4µm. The length and height of fine mesh region is 
respectively set to 1.5 times and 3 times as long as the indenter radius (see figure III-6-12 (b)). 
 

 

Figure III-6-13. FEM mesh used for the nanoindentation simulation  
(a) Cross section of mesh (b) Zoom of the refined zone (c) 3D view of the entire mesh. 

 
The fine mesh consists of three different parts. At the top center point, there is a squared fine 
mesh made of 64 elements. The length and height of this region is set to 0.5 times and 1 time as 
long as the indenter radius, respectively. Beside the square mesh region there are two trapezoid 
regions. These regions wrap the fine mesh in order to grow the mesh size. The 3D volume is 
obtained by rotating the cross section with 30 angular directional meshes as shown in figure III-
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6-13 (c). The nodes at the top and bottom surfaces are picked for imposing the boundary 
conditions in the FEM calculations. They are represented as the red and green points in figure 
III-6-13 (c).  
The general elastic properties selected to model copper material (here assumed to be isotropic) 
are 112000MPa for Young elastic modulus and 0.34 for Poisson ratio.  
 
DD results: force, contact radius and hardness 
Figure III-6-14 shows the results obtained from KTRIDIS in term of force, contact radius, 
hardness and displacement. Several unloading stages have been simulated at different 
indentation depth: 10nm, 30nm, 60nm and 100nm (see figure III-6-14 (a)). In figure III-6-14 (a), 
the total force is the summation of the elastic field and the dislocation field. The force criterion 
is the MD master curve shown in figure III-6-1 (b). 
 
 

 

Figure III-6-14. DD simulation results .(a) force displacement curves, (b) contact radius vs. 
displacement, (c) hardness vs. displacement, (d) displacement fields 

 
One can distinguish three periods in the loading curve of figure III-6-14 (a). During the first 
period (I), the total force only comes from the elastic field because there is no dislocation inside 
the material. The period ends at about 5nm indentation depth when the total force is high 
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enough to nucleate dislocation loops. Once, the total force is higher than the force criterion, 
dislocation loops are nucleated in the materials so that the total forces exactly follow the by 
force criterion. This corresponds to period (II). During this period the force computed from the 
dislocation fields starts to increase but the magnitude is very weak compared to the force of the 
elastic field. Period (III) starts after 50nm when the total force does not follow the force 
criterion anymore. During this stage, the slope of the loading curve is higher than the slope of 
the force criterion, and continuously increases with the indentation depth. At 100nm, the force 
coming from the dislocation field is reaches up to about 20% of the force of the elastic problem. 
This behavior appears when the dislocation density in the nucleation region is too high to allow 
introducing new dislocation loops. No loop is introduced in the simulation so that the force 
criterion cannot be fulfilled. 
After the unloading, the remaining indentation depth is about half of the maximum depth. This 
means half of the depth is recovered. This will be discussed further in next paragraph. 
The evolution of the contact radius with the indentation depth is given in figure III-6-14 (b). 
Results are compared to the contact radius obtained from FEM simulation in the case of a 
perfectly elastic material as shown in figure III-6-9 (b). During the first period, the two contact 
radii are the same, but the DD simulations give higher values of contact radius in the second and 
third period. This is due to the expansion of the dislocation loops inside the material which pile-
up at the surface and increases the plastic zone size.    
The evolution of the hardness is shown in figure III-6-14 (c). Generally, the hardness from 
sphere indenter test will increase with the indentation depth. If the material is fully elastic, the 
hardness is related to the square root of the depth as described in equation (III-6-3) and shown 
in figure III-6-9 (c). Here, in the case of DD simulations, the tendency of the hardness does not 
follow this general expectation. During the second period, the hardness is almost stable. It starts 
to increase with indentation depth only during the third period. The tendency of the increasing 
slope during the third period is quite similar to tendency that obtained for elastic materials. This 
shows that the indentation size effect may depend on the nucleation mechanism during the 
indentation. Although no final conclusion could be derived from this single DD simulation, one 
can however conclude that dislocation starvation decreases the indentation size effect.  
The evolution of the indentation depth computed from the elastic and dislocation is given in 
figure III-6-14 (d) as functions of the total depth. During the first period, the total displacement 
just comes from the elastic field. During the second period, the displacement induced by the 
dislocation field increases with a stiff slope. This means that progressively, most of the 
indentation depth is given by the plastic displacement i.e. the nucleation and development of 
dislocation loops occurring during the second period. However, the slopes of the two kinds of 
displacement are changed in the third period. The slope of the elastic curve is still increasing 



 170

and that of the dislocations is decreased. This comes from the interruption of the new 
dislocation generation.  
 
Surface displacement distributions 
Figure III-6-15 shows the surface distribution of the different components of the displacement 
and the Von Mises stress obtained at 30nm indentation depth. The displacement computed from 
the elastic field is shown in figure III-6-15 (a). It displays a three-fold symmetry complimentary 
to that of the DD field given in figure III-6-15 (b).  
 

 

Figure III-6-15. Surface displacement distribution at 30nm indentation depth, (a) displacement 
from elastic field, (b) displacement from dislocation field, (c) total displacement, (d) Von Mises 

stress distribution due to elastic displacement. 
 
These distribution shapes are similar to the shape of nucleated dislocation loops as obtained in 
MD (see figure III-6-3 and figure III-6-11 (b)). This shows that the displacement induced by the 
dislocation field is strongly related to the shape of the nucleated dislocation loops and this 
stands all along the indentation process. Let remember here that the cross-slip was not allowed 
in the present simulations so that the dislocation lines have less flexibility than in reality. Results 
may be different if cross-slip is accounted for, but today, there is no satisfactory cross-slip rules 
to implement in DD when the applied loading is as complex as in nanoindentation. Indeed, in 
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practice cross-slip rules refer to a given local stress and in nanoindentation this critical stress is 
always overcome so that cross-slip events are very easy. 
The summation of the two kinds of displacements gives the total displacement distribution as 
shown in figure III-6-15 (c). The distribution shape is close to that coming from the dislocation. 
It means that most of the indentation displacement is accommodated by the dislocations. 
Globally this shape distribution is the closest to the actual shape of the spherical tip, as expected.  
The Von Mises stress distribution due to the elastic displacement field at the surface is shown in 
figure III-6-15 (d). This distribution reflects the shape of contact surface. The contact shape has 
again a three-fold symmetry and is similar to the region of maximum displacement from the 
elastic field. A popular assumption about contact surface during indentation is that the contact 
surface has a circular shape whose radius is the same as the contact radius. However, the DD 
simulation demonstrates that the contact surface does not include an inner triangular region 
centered on the indenter axis.  
 
Evolution of the dislocation microstructure during indentation 
Figure III-6-16 gives snapshots of the dislocation microstructure during indentation up to 
100nm. Figure III-6-16 (a) shows the dislocations introduced just after the first nucleation 
process. There are three interstitial dislocation loops right below the surface and three vacancy 
virtual dislocation loops positioned outside the material. In figure III-6-16 (b)-(f), the virtual 
segments are not figured out. The shape is exactly the same as in figure III-6-11 (b). Once the 
dislocation loops are generated, they glide down along their own Burgers vector direction, and 
another set of dislocation loops is generated. At the beginning of indentation, dislocation 
nucleation and dislocation motion is repeated. See figure III-6-16 (b) for the dislocation 
microstructure obtained at 5nm indentation depth. The length of the generated loops increases 
with the contact radius. Consequently, the line tension of the edge segments forming the loops 
decreases with the penetration depth. On the other hand, the stress field at the location of the 
nucleated loops increases with the indentation depth. Thus, when the stress field at a given edge 
segment becomes higher than the line tension, each side of generated loops can act as a Frank-
Read source and glissile loops are generated as shown in figure III-6-16 (c) which gives the 
microstructure obtained at a penetration depth of 10nm. Some parts of the glissile loops escape 
the material through the free and print slip lines on the indented surface. 
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Figure III-6-16. Dislocation microstructure obtained at different depths . 

(a) just after the first generation of dislocation loops,  
(b) after 5nm, (c) after 10nm, (d) after 30nm, (e) after 60nm (f) after 100nm indentation depth 

 
For larger penetration depth, the dislocation lines are composed of two kinds of dislocation 
loops. One is prismatic loops as generated by the nucleation process. These loops are stacked on 
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their cylinder defined by their initial shape and the Burgers vector. The biggest prismatic loops 
are the closest to the indenter. The other type of dislocation is made of glissile loops generated 
from the side of the prismatic loops. Since one prismatic loop is composed by edge dislocations 
on two conjugate slip systems, it can make four glissile loops. Each glissile loop has ellipsoidal 
shape imposed by the effective stress. Increasing the penetration depth induce more and more 
glissile loop as shown in figure III-6-15 (d-f) for indentation depth varying from 30nm to 60nm 
and 100nm.  
 
Residual displacement 
Figure III-6-17 (a-f) shows the total surface displacement distribution before and after unloading 
from penetration depth of 10nm, 30nm and 60nm, respectively. The areas of deformed regions 
are dramatically reduced after unloading. It is found that 30 ~ 50 % of the deformation is 
recovered after unloading. This reflects the large elastic recovery found on the loading curves of 
figure III-6-14 (a). 
During the unloading stage, the displacement induced by the elastic filed should be recovered, 
but the dislocations displacement can persist unless dislocations inside the material reach the 
free surface or disappear by annihilation. According to figure II-6-14(d), the displacement 
reached at 30nm and 60nm are about 25nm and 50nm, respectively. This is higher than the 
remaining displacement after unloading. Therefore, we can expect that some of dislocations are 
disappear during the unloading stage.  
 
Figure III-6-18 shows the dislocation microstructure after unloading from 10nm, 30nm and 
60nm indentation depth, respectively. Most of the glissile loops have disappeared. A possible 
explanation for this recovery is the effect of the image forces acting at the surface. They can 
easily attract the dislocations near to the surface and make them disappear. As shown in figure 
III-6-16 most of the glissile loops are located just below the surface, precisely where they are 
strongly affected by the image force.  
In reality, this unloading process should also be influenced by cross-slip which could entangle 
the dislocations in the materials. Without cross slip, the dislocation motion is certainly more 
recoverable. 
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Figure III-6-17. Total surface displacement distribution before and after unloading  
(a) before unloading from 10nm indentation depth, (b) after unloading from 10nm indentation 

depth, (c) before unloading from 30nm indentation depth, (d) after unloading from 30nm 
indentation depth, (e) before unloading from 60nm indentation depth (f) after unloading from 

60nm indentation depth 
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Figure III-6-18. The dislocation distributions with indentation depth after unloading state (a) 
after unloading from 10nm indentation depth, (b) after unloading from 30nm indentation depth, 

(c) after unloading from 60nm indentation depth 
 
Concluding remarks on the dislocation dynamics simulation 
It can be concluded from this study that indentation simulation can be done at the micron scale 
using KTRIDIS i.e. a coupling between DD and FEM. The coupled simulation can give not only 
the force displacement curves during loading and unloading stage, displacement distribution 
from elastic and dislocation fields but also the dynamic evolution of the dislocation 
microstructure during the indentation.  
DD simulations can also be used to test the effect of parameters. Such a study has already been 
started and we have analyzed the effect of cross-slip, or tip geometry (cone and sphere). DD 
simulations also showed a new light on size effect which seems to be related to the nucleation 
mechanism.  
 
 

6.4 Prospective 
 
The DD code used in this thesis uses dislocation stress fields established for isotropic media. 
Therefore, this model should have lack of expecting accuracy for anisotropic material. It can 
now be improved using the expressions given in section II-3. However, the major problem is 
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that the computation time of DD code for anisotropic media is more than 100 times slower than 
the DD code for isotropic media. It means that one calculation for 100 nm indentation depth 
using the DD code for anisotropic media will need more than 100 months, which is totally out 
of range. Therefore, the DD code for anisotropic media should be improved in term of 
calculation speed for example by using parallel computing technique and probably on the recent 
graphic card: the general purpose graphic programmable units (GPGPU). 
A key parameter of the DD simulation presented in this thesis is the nucleation process. In this 
study, the nucleation condition for indentation using spherical indenter is taken out from results 
of molecular dynamics. However, this could not apply to other geometry like conical 
indentations for example. One would need to realize similar MD simulations which are not 
available yet. In this case, an alternative way consists of using the experimental results to get the 
master curve and assuming a shape for the nucleated dislocations.  
Practically, the ideal solution would be to define a nucleation procedure which does not depend 
upon any predefined criterion. One possibility is to express the number of dislocations to 
introduce as a function of the penetration depth according to the geometrically necessary 
dislocations needed to be introduced in order to accommodate the indentation at a given depth. 
Then, DD simulations would be predictive. Such an work is now in progress.   
Finally, the dislocation dynamics model can calculate the local rotation during and after 
nanoindentation using the Nye tensor as described in equation (II-2-40). It would be interesting 
to compare the distributions of the local rotations obtained by DD and those obtained by crystal 
plasticity. The ultimate goal would be to compare both to experimental observation performed 
using electro back-scattered diffraction (EBSD) technique.  
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6.5 What should be retained from this section 
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IV. Conclusion   
The work presented in this document required several numerical developments performed at 
different scales: namely at the continuum level with finite element implantations and at the 
discrete sub-micron scale with dislocation dynamics simulations. The topics developed during 
this thesis are the following. 
 

At the continuum level, a dislocation density based crystal plasticity model has been 
implanted into the ABAQUS user material subroutines for both implicit and explicit 
calculations. The codes have been validated in the case of tensile simulations with various kinds 
of loading orientations. It is shown that such a numerical tool can perfectly reproduce the 
deformation behavior expected for single crystals and give access to the evolution of the 
dislocation densities.   

At the continuum scale again, size effect is addressed using a simplified strain gradient model 
which does not require any extra degree of freedom or any new governing equation. The 
proposed model calculates the extra stress due to the difference between global averaged strain 
and local strain. The model displays size effects in simple situations like simple shear and 
tensile loading condition.  
 

At the discrete level, expressions for the dislocation stress field of anisotropic media are 
developed. The expression is compared to the isotropic case. Although, the formula for 
anisotropic media will be useful in the future for obtaining the exact internal stress field in the 
case of strongly anisotropic material such as copper single crystal, the computation time is too 
important to be used on single processors. This implantation in the dislocation dynamics code 
needs to be optimized on parallel computing.  
 
Following these numerical developments, applications have been performed in the case of 
indentation loading conditions. 
 

Nanoindentation experiments and FEM simulations have been performed with various 
surface orientations and initial dislocation densities. Results have been analyzed in term of load-
depth curve, indentation stiffness, indentation modulus and contact area. The experimental 
results obtained with 4 different surface orientations are quantitatively reproduced by the crystal 
plasticity model provided the initial dislocation density and hardening parameters are adapted.  
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When applied to nanoindentation, the simplified strain gradient model was able to reproduce the 
well known indentation size effect (the hardness decreases when the penetration depth 
increases) 
 

Finally, dislocation dynamics simulations of (111) nanoindentation have been performed using 
a code coupled to FEM routines needed to account for the complex boundary conditions. A 
nucleation criterion has been introduced to specify the shape, location and time of apparition of 
new dislocation during the indentation process. The criterion has been obtained from molecular 
dynamics simulations. Results of dislocation dynamics simulations have been analyzed in term 
of mechanical response, size effect and dislocation microstructure. 
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