Régularisation de problèmes inverses à l'aide de l'équation de diffusion, avec application à l'assimilation variationnelle de données océaniques

Soutenance de thèse de Isabelle Mirouze

CERFACS / CNRS-UMR 5219

17 septembre 2010

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVA
- Exp./Imp

Conclusions perspectives

Régularisation de problèmes inverses

Un problème est mal posé au sens de Hadamard si :

- il n'existe pas de solution
- Ia solution n'est pas unique
- Ia solution n'est pas stable
- Il faut alors le régulariser :
 - Information a priori
 - Critères de sélection

o ...

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

lmagerie médicale http://www.rdgn.ucl.ac.be/fr/

Sismologie http://planetevivante.wordpress.com/

Acoustique http://www.dossiers.latroupeduroy.fr/

Météorologie http://france.meteofrance.com/

Applications des problèmes inverses

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp.

Conclusions perspectives

Observations) Océan Mise en Comparaison équations Résolution Condition Numérique + Etat initiale des équations Modèle Problème inverse

Le problème inverse pour l'océanographie

http://www.oceanleadership.org/

http://www.mercator-ocean.fr/

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

L'assimilation de données en océanographie

Applications :

- Fournir des conditions initiales pour les prévisions climatiques
 - Mensuelles, saisonnières, pluriannuelles
 - Modèles globaux à plutôt basse résolution ($\approx 1^\circ$)
- Fournir des conditions initiales pour les prévisions océaniques
 - Quelques jours à quelques semaines
 - Modèles globaux, régionaux, côtiers à résolution moyenne ou haute ($\approx 1/4^\circ,\,\approx 1/12^\circ,\,\ldots)$
- Reconstruire l'histoire de l'océan (réanalyses)
 - Modèles globaux à plutôt basse ou moyenne résolution

Méthodes :

- Séquentielles : Interpolation optimale, Filtre de Kalman
- Variationnelles : 3D-Var et 4D-Var

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

L'assimilation de données en océanographie

Applications :

- Fournir des conditions initiales pour les prévisions climatiques
 - Mensuelles, saisonnières, pluriannuelles
 - $\bullet\,$ Modèles globaux à plutôt basse résolution ($\approx 1^\circ$)
- Fournir des conditions initiales pour les prévisions océaniques
 - Quelques jours à quelques semaines
 - Modèles globaux, régionaux, côtiers à résolution moyenne ou haute ($\approx 1/4^\circ,\,\approx 1/12^\circ,\,\ldots)$
- Reconstruire l'histoire de l'océan (réanalyses)
 - Modèles globaux à plutôt basse ou moyenne résolution

Méthodes :

- Séquentielles : Interpolation optimale, Filtre de Kalman
- Variationnelles : 3D-Var et 4D-Var

Cycle ou fenêtre d'assimilation : $[t_0, t_N]$ Vecteur d'ébauche x^b : état a priori du modèle à t_0

Cycle ou fenêtre d'assimilation : $[t_0, t_N]$ Vecteur d'ébauche x^b : état a priori du modèle à t_0

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension eı 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'assimilation de données variationnelle

Cycle ou fenêtre d'assimilation : $[t_0, t_N]$ **Vecteur d'ébauche** \mathbf{x}^b : état a priori du modèle à t_0 **Vecteur d'observation** \mathbf{y}^o : y_i^o à l'instant t_i

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

L'assimilation de données variationnelle

Cycle ou fenêtre d'assimilation : $[t_0, t_N]$ **Vecteur d'ébauche x**^b : état a priori du modèle à t_0 **Vecteur d'observation** y^o : y_i^o à l'instant t_i **Vecteur d'analyse x**^a : combinaison ébauche + observations

Formulation 4D-Var

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'assimilation de données variationnelle

Cycle ou fenêtre d'assimilation : $[t_0, t_N]$ **Vecteur d'ébauche x**^b : état a priori du modèle à $t_{N/2}$ **Vecteur d'observation y**^o : y_i^o à l'instant t_i **Vecteur d'analyse x**^a : combinaison ébauche + observations

Formulation 3D-Var

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

La méthode variationnelle

Vecteur d'ébauche x^b de taille $n \ (\approx 10^7)$

- Variables : Température, salinité, courant zonal, courant méridien, hauteur d'eau en surface, ...
- Grille du modèle

Vecteur d'observation y° de taille p

- Variables : fonction des instruments de mesure
- Grille des observations
- Mesures effecutées sur la fenêtre d'assimilation $[t_0, t_N]$

$Opérateur \ d'observation \ (éventuellement \ non \ linéaire) \ \mathcal{H}$

- Interpolation de la grille du modèle vers la grille des observations
- Correspondance des variables du modèle par rapport aux variables observées

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension ei 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

Formulation du 3D-Var / 4D-Var

 \mathbf{x}^t : vecteur représentant l'état vrai de l'océan

Hypothèses :

Erreurs
$$\varepsilon^{b}$$
 et ε^{o} gaussiennes
 $\mathbf{x}^{b} = \mathbf{x}^{t} + \varepsilon^{b}$ avec $E[\varepsilon^{b}] = 0$, $E[\varepsilon^{b}(\varepsilon^{b})^{\mathrm{T}}] = \mathbf{B}$
 $\mathbf{y}^{o} = \mathcal{H}[\mathbf{x}^{t}] + \varepsilon^{o}$ avec $E[\varepsilon^{o}] = 0$, $E[\varepsilon^{o}(\varepsilon^{o})^{\mathrm{T}}] = \mathbf{R}$
 $E[\varepsilon^{b}(\varepsilon^{o})^{\mathrm{T}}] = \mathbf{0}$

Fonction coût (maximum de vraissemblance) :

$$J(\mathbf{x}) = \underbrace{\frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b})}_{J_{b}} + \underbrace{\frac{1}{2} (\mathcal{H} [\mathbf{x}] - \mathbf{y}^{o})^{\mathrm{T}} \mathbf{R}^{-1} (\mathcal{H} [\mathbf{x}] - \mathbf{y}^{o})}_{J_{o}}$$

Le 4D-Var prend en compte l'aspect temporel en transportant par le modèle le vecteur x aux instants d'observation.

- Numérique

- NEMOVAR

Introduction

- 2 L'assimilation variationnelle
- - 1 La matrice des covariances d'erreur d'ébauche

- - 4 L'opérateur de diffusion implicite 1D et sa normalisation

Extension à des fonctions de corrélation en 2D ou 3D. application au système NEMOVAR

6 Conclusions et perspectives

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Formulation du 3D-Var / 4D-Var incrémentale

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{b})^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{b}) + \frac{1}{2} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^{o})^{\mathrm{T}} \mathbf{R}^{-1} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^{o})$$

Difficultés de la minimisation de la fonction coût

- Problème de grande taille
- \mathcal{H} non linéaire \Rightarrow minima locaux

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVA
- Exp./Imp

Conclusions, perspectives

Formulation du 3D-Var / 4D-Var incrémentale

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^o)^{\mathrm{T}} \mathbf{R}^{-1} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^o)$$

Difficultés de la minimisation de la fonction coût

- Problème de grande taille
- ${\cal H}$ non linéaire \Rightarrow minima locaux

Formulation incrémentale (Courtier *et al.*, 1994) basée sur la méthode de Gauss-Newton

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

Fonction quadratique \Rightarrow minimum unique $\delta \mathbf{x}^{*}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Formulation du 3D-Var / 4D-Var incrémentale

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^o)^{\mathrm{T}} \mathbf{R}^{-1} (\mathcal{H}[\mathbf{x}] - \mathbf{y}^o)$$

Difficultés de la minimisation de la fonction coût

- Problème de grande taille
- ${\mathcal H}$ non linéaire \Rightarrow minima locaux

Formulation incrémentale (Courtier *et al.*, 1994) basée sur la méthode de Gauss-Newton

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

Fonction quadratique \Rightarrow minimum unique $\delta \mathbf{x}^{*}$

• Linéarisation de ${\cal H}$ au voisinage de ${f x}^b+\delta{f x}^*$

• . . .

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Minimisation par méthode itérative

Problème à minimiser :

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

Exemple :

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension ei 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Minimisation par méthode itérative

Problème à minimiser :

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

 $\label{eq:preconditionnement} \begin{array}{l} \mbox{Préconditionnement optimal}: \mbox{inverse de la Hessienne} \\ \mbox{P} = \left(\mbox{B}^{-1} + \mbox{H}^{\rm T} \mbox{R}^{-1} \mbox{H} \right)^{-1} \end{array}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

$$\mathbf{v} = \mathbf{U}^{-1} \delta \mathbf{x}$$
 tel que $\mathbf{B} = \mathbf{U} \mathbf{U}^{ ext{T}}$

Nouveau problème à minimiser :

$$J(\mathbf{v}) = \frac{1}{2}\mathbf{v}^{\mathrm{T}}\mathbf{v} + \frac{1}{2}(\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})^{\mathrm{T}}\mathbf{R}^{-1}(\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})$$
$$\nabla_{\mathbf{v}}J = \mathbf{v} + \mathbf{U}^{\mathrm{T}}\mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}(\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})$$

Solution du problème :

$$(\mathbf{I} + \mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{U}) \mathbf{v}^{*} = \mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d}$$

$$\mathbf{A} \mathbf{v}^{*} = \mathbf{b}$$

$$\delta \mathbf{x}^{*} = \mathbf{U} \mathbf{v}^{*}$$

En pratique, $\delta \mathbf{x} = \mathbf{v} = \mathbf{0}$ pour le premier itéré.

 \Rightarrow II n'y a donc aucun système à résoudre par rapport à U.

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'erreur d'ébauche

L'erreur d'ébauche ε^b est constituée de l'ensemble des erreurs en chaque point z de la grille du modèle pour chaque variable. Les interactions entre ces erreurs sont quantifiées par les fonctions de covariance, et de corrélation :

$$b(\mathbf{z},\mathbf{z}') = E\left[\varepsilon_{\mathbf{z}} \ \varepsilon_{\mathbf{z}'}\right] \qquad c(\mathbf{z},\mathbf{z}') = \frac{b(\mathbf{z},\mathbf{z}')}{\sqrt{b(\mathbf{z},\mathbf{z})b(\mathbf{z}',\mathbf{z}')}}$$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAF
- Exp./Imp

Conclusions perspectives

L'erreur d'ébauche

L'erreur d'ébauche ε^b est constituée de l'ensemble des erreurs en chaque point z de la grille du modèle pour chaque variable. Les interactions entre ces erreurs sont quantifiées par les fonctions de covariance, et de corrélation :

$$b(\mathbf{z}, \mathbf{z}') = E\left[\varepsilon_{\mathbf{z}} \ \varepsilon_{\mathbf{z}'}\right] \qquad c(\mathbf{z}, \mathbf{z}') = \frac{b(\mathbf{z}, \mathbf{z}')}{\sqrt{b(\mathbf{z}, \mathbf{z})b(\mathbf{z}', \mathbf{z}')}}$$

lci, $c(\mathbf{z}, \mathbf{z}')$ est représentée par une matrice **C** 30 × 30

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Exemple (1D) de fonctions de corrélation

Fonction gaussienne homogène et isotrope (r = |z - z'|) : $f(r) = e^{-r^2/2L_g^2}$ avec L_g l'échelle de corrélation

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

Exemple (1D) de fonctions de corrélation

Fonction gaussienne homogène et isotrope (r = |z - z'|) : $f(r) = e^{-r^2/2L_g^2}$ avec L_g l'échelle de corrélation

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

Exemple (1D) de fonctions de corrélation

Fonction gaussienne homogène et isotrope (r = |z - z'|) : $f(r) = e^{-r^2/2L_g^2}$ avec L_g l'échelle de corrélation

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

La matrice des covariances d'erreur d'ébauche B

Principales difficultés en pratique :

- B ne peut pas être définie explicitement
 - Grande taille
 - Manque d'informations

Estimation à partir d'une méthode d'ensemble

- Hypothèse diagonale dans l'espace spectral ou ondelettes
 - Corrélations généralement homogènes et isotropes
- Matrice de rang réduit
- Filtrage, localisation

Modélisation par une suite d'opérateurs

- Gestion des frontières facilitée dans l'espace physique
- Matrice de rang plein
- Spécification des caractéristiques
 - Hypothèse de corrélations gaussiennes

Combinaison estimation / modélisation

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

La matrice des covariances d'erreur d'ébauche B

Principales difficultés en pratique :

- B ne peut pas être définie explicitement
 - Grande taille
 - Manque d'informations

Modélisation par une suite d'opérateurs

- Problème multivarié : covariances entre les variables
 - Changement de variables : Opérateur d'équilibre K
 - ightarrow nouvelles variables supposées décorellées entre elles
- Covariances spatiales des nouvelles variables
 - Variances spatiales : Matrice diagonale D
 - Corrélations spatiales : Matrice bloc diagonale C

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension ei 2D et 3D

- Construc.
- NEMOVAI
- Exp./Imp

Conclusions, perspectives

La matrice des covariances d'erreur d'ébauche B

Principales difficultés en pratique :

- Grande taille et manque d'informations
 - Modélisation par une suite d'opérateurs
 - Opérateur d'équilibre K
 - Variances spatiales **D**
 - Corrélations spatiales C
- B doit être symétrique, (semi-)définie positive

Une solution : $\mathbf{B} = \mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{K}\mathbf{D}^{1/2}\mathbf{C}^{1/2} \left(\mathbf{C}^{1/2}\right)^{\mathrm{T}}\mathbf{D}^{1/2}\mathbf{K}^{\mathrm{T}}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAF
- Exp./Imp

Conclusions perspectives

La matrice des covariances d'erreur d'ébauche B

Principales difficultés en pratique :

- Grande taille et manque d'informations
 - Modélisation par une suite d'opérateurs
 - Opérateur d'équilibre K
 - Variances spatiales D
 - Corrélations spatiales C
- B doit être symétrique, (semi-)définie positive
 - $\mathbf{B} = \mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{K}\mathbf{D}^{1/2}\mathbf{C}^{1/2} \left(\mathbf{C}^{1/2}\right)^{\mathrm{T}}\mathbf{D}^{1/2}\mathbf{K}^{\mathrm{T}}$
- Evolution à chaque cycle d'assimilation

Caractéristique souhaitable : Dépendance à l'écoulement

- Variances
- Echelles de corrélation
- •

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension ei 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

La matrice des covariances d'erreur d'ébauche B

Principales difficultés en pratique :

- Grande taille et manque d'informations
 - Modélisation par une suite d'opérateurs
 - Opérateur d'équilibre K
 - Variances spatiales D
 - Corrélations spatiales C
- B doit être symétrique, (semi-)définie positive
 - $\mathbf{B} = \mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{K}\mathbf{D}^{1/2}\mathbf{C}^{1/2} \left(\mathbf{C}^{1/2}\right)^{\mathrm{T}}\mathbf{D}^{1/2}\mathbf{K}^{\mathrm{T}}$
- Evolution à chaque cycle d'assimilation
 - Dépendance à l'écoulement via les échelles de corrélation

Besoin :

• Calcul d'un produit matrice vecteur $\Phi=C\Psi$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Opérateur de corrélation (1D)

Le produit matrice vecteur $\mathbf{\Phi} = \mathbf{C} \mathbf{\Psi}$ peut être considéré comme la discrétisation du problème continu :

$$arphi(z) = \int_{-\infty}^{\infty} c(z, z') \psi(z') \, dz'$$

où c(z, z') est une fonction de corrélation.

D'où :
$$arphi(z) = \mathcal{C}\left[\psi
ight]$$

avec ${\mathcal C}$ l'opérateur de corrélation de noyau c(z,z')

Hypothèse :

Si c(z, z') est une fonction de corrélation homogène et isotrope, alors c(z, z') = f(z - z') = f(r), avec r = |z - z'| et on a

$$\varphi(z) = \mathcal{C}[\psi] = (f * \psi)(z)$$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Equation de diffusion 1D à coefficient constant

Egbert et al. (1994), Weaver et Courtier (2001),

Equation de diffusion 1D avec $\eta = \eta(z, t)$ et la condition initiale $\eta(z, t_0) = \eta_0(z)$

$$\frac{\partial \eta}{\partial t} - \kappa \frac{\partial^2 \eta}{\partial z^2} = 0 \qquad \kappa > 0$$

Solution :

Sur un domaine infini $(z \in \mathrm{I\!R})$ pour une intégration de t_0 à t_M

$$\eta(z, t_M) = \frac{1}{\sqrt{4\pi\kappa t_M}} \int_{-\infty}^{\infty} e^{-\frac{(z-z')^2}{4\kappa t_M}} \eta_0(z') dz'$$
$$= \frac{1}{\lambda} (g * \eta_0) (z)$$

avec g(z) la fonction de corrélation gaussienne $g(z)=e^{-rac{z^2}{4\kappa t_M}}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives Opérateur de corrélation C de noyau f(r) : $\varphi(z) = (f * \psi)(z)$

Solution de l'équation de diffusion :

$$\eta(z,t_M) = rac{1}{\lambda_M} \left(g*\eta_0
ight)(z)$$

Equivalence :

Intégrer numériquement l'équation de diffusion 1D sur le pseudo-temps $[t_0, t_M]$ et normaliser le résultat (maximum à 1)

$$arphi(z) = \lambda_{\mathcal{M}} \, \mathcal{H}\left[\eta_0(z)
ight] = \mathcal{G}\left[\eta_0(z)
ight]$$

est équivalent à appliquer à la condition initiale, un opérateur de corrélation de noyau gaussien

 $g(r) = e^{-r^2/2L_g^2}$, avec $L_g = \sqrt{2\kappa t_M}$ et $\lambda_M = \sqrt{2\pi}L_g$ où L_g est l'échelle de corrélation.

17 septembre 2010	Equation de diffusion 1D pour $\eta_0(z) = \delta(z - z_0)$
La matrice B	
Extension en 2D et 3D • Construc. • NEMOVAR • Exp./Imp.	$\eta(z, t)$ $\lambda_M = \sqrt{2\pi} L_g$

$$L_g = \sqrt{2\kappa t}$$

17 septembre 2010	Equation de diffusion 1D pour $\eta_0(z)$ quelconqu
La matrice B	
Extension en 2D et 3D • Construc. • NEMOVAR • Exp./Imp.	$\eta(z,t)$ $\lambda_{M}=\sqrt{2\pi}L_{g}$

elconque

 $\lambda_M \eta(z, t)$

 $L_g = \sqrt{2\kappa t}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives L'équation de diffusion inhomogène permet de prendre en compte des échelles de corrélation variant spatialement :

$$\frac{\partial \eta}{\partial t}(z,t) - \frac{\partial}{\partial z}\left(\kappa(z)\frac{\partial \eta}{\partial z}(z,t)\right) = 0$$

L'opérateur de corrélation devient :

$$\mathcal{G}[\eta_0(z)] = \sqrt{\lambda_M(z)} \mathcal{L}^M\left[\sqrt{\lambda_M(z)}\eta_0(z)
ight]$$

La normalisation doit être définie en chaque point de grille.
Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
 Numérique
- Numerique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Le problème de la normalisation

Normalisation $\lambda_M = \sqrt{2\pi} L_g$:

- Domaine infini
- Echelles de corrélation constantes

Normalisation $\lambda_M(z)$ à définir en chaque point de grille :

- Domaine borné (conditions aux frontières)
- Variations d'échelle de corrélation

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
 Numérique
- Numerique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Le problème de la normalisation

Normalisation $\lambda_M = \sqrt{2\pi} L_g$:

- Domaine infini
- Echelles de corrélation constantes

Normalisation $\lambda_M(z)$ à définir en chaque point de grille :

- Domaine borné (conditions aux frontières)
- Variations d'échelle de corrélation

Méthodes de normalisation :

• Méthode exacte :

applique l'éq. de diffusion n fois (n=nb points de grille)

• Méthode par vecteurs aléatoires :

applique l'éq. de diffusion P fois, P=f(précision)

Méthodes coûteuses.

Souvent utilisées "offline" \Rightarrow les paramètres restent figés

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives Discrétisation temporelle : $t_M = M\Delta t$

Pour chaque pas de temps $0 < t_m \le t_M$ $\eta(z, t_m) = \left(1 + \kappa \Delta t \frac{\partial^2}{\partial z^2}\right) \eta(z, t_{m-1})$ $\equiv \mathcal{L}_e[\eta(z, t_{m-1})]$

On a donc :

$$arphi(z) = \lambda_M \mathcal{L}_{ ext{e}}^M \left[\eta_0(z)
ight]$$

 $_{\odot}$ Codage simple $_{\odot}$ Critère de stabilité : $M > (L_g/\Delta z)^2$

 \Rightarrow le schéma est d'autant plus coûteux que la résolution est fine \Rightarrow le schéma est d'autant plus coûteux que l'échelle est grande

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives Discrétisation temporelle implicite (Euler)

Discrétisation temporelle : $t_M = M \Delta t$

Pour chaque pas de temps $t_M \ge t_m > 0$ $\eta(z, t_m) = \left(1 - \kappa \Delta t \frac{\partial^2}{\partial z^2}\right) \eta(z, t_{m+1})$ $\equiv \mathcal{L}_i^{-1} \left[\eta(z, t_{m+1})\right]$

On a donc :

$$\varphi(z) = \lambda_M \mathcal{L}_{i}^M \left[\eta_0(z) \right]$$

Inconditionnellement stable
 Nécessite la résolution d'un système linéaire

 \Rightarrow le nombre d'itérations ne dépend pas de la résolution \Rightarrow le nombre d'itérations ne dépend pas de l'échelle

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 11

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions perspectives

Introduction

- 2 L'assimilation variationnelle
 - La matrice des covariances d'erreur d'ébauche
- 4 L'opérateur de diffusion implicite 1D et sa normalisation
 - Le noyau de l'opérateur
 - Les conditions aux frontières
 - Les aspects numériques
 - 5 Extension à des fonctions de corrélation en 2D ou 3D, application au système NEMOVAR
 - 6
 - Conclusions et perspectives

Introduction

L'assimilation variationnelle

La matrice E

Diffusion implicite 11

Noyau

• Frontières

Numerique

Extension e 2Det 3D

• Construc.

NEMOVAR

• Exp./Imp

Conclusions, perspectives

Formulations explicite / implicite

Explicite	Implicite	
${\cal L}\equiv 1+\kappa\Delta trac{\partial^2}{\partial z^2}$	$\mathcal{L}^{-1}\equiv 1-\kappa\Delta trac{\partial^2}{\partial z^2}$	
$M > (L/\Delta z)^2$	Libre	
$e^{-\frac{r^2}{2L^2}}$	$\sum_{j=0}^{M-1}\beta_j \left(\frac{r}{L}\right)^j e^{-\frac{r}{L}}$	
$L = \sqrt{2\kappa M \Delta t}$	$L = \sqrt{\kappa \Delta t}$	
$L_{ m g} = L$	$L_{\rm AR} = \sqrt{2M-3} L$	
$\lambda_{M} = \sqrt{4\pi\kappa M\Delta t}$	$\lambda_M = \upsilon_M L$	
	Explicite $\mathcal{L} \equiv 1 + \kappa \Delta t \frac{\partial^2}{\partial z^2}$ $M > (L/\Delta z)^2$ $e^{-\frac{r^2}{2L^2}}$ $L = \sqrt{2\kappa M \Delta t}$ $L_g = L$ $\lambda_M = \sqrt{4\pi \kappa M \Delta t}$	

$$v_M = 2^{2M-1} \left[(M-1)! \right]^2 / (2M-2)!$$

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 1[

Noyau

Frontières
Numérique

Extension e 2D et 3D

- Construc.
- NEMOVA
- Exp./Imp

Conclusions, perspectives

Les fonctions autorégressives (AR)

Une classe largement utilisée en géostatistiques pour spécifier des corrélations est donnée par la famille de Matérn (Stein, 1999; Guttorp et Gneiting, 2006) : $\zeta_{\nu}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{r}{L}\right)^{\nu} K_{\nu}\left(\frac{r}{L}\right)$

Le cas particulier $\nu = M - 1/2$ conduit aux fonctions AR, issues des processus de Markov ou autorégressifs (e.g. Gelb, 1992) $f_{M}(r) = \sum_{j=0}^{m-1} \beta_{j} \left(\frac{r}{L}\right)^{j} e^{-\frac{r}{L}}$ M=2 M=2 -M=4 M=4 M=6 Normalized correlation spectrum M=6 0.8 -Gaussian Gaussian 0.0 Correlation 0.2 10 _50 -40 -30 -20 -10 10⁻³ 10-2 10⁰ 0 10 20 30 40 50 10 10 Distance Wave number $\hat{f}_M(\hat{r})/\hat{f}_M(0)$ $f_M(r)$

Exemple à L_{AR} fixé pour différents M

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 10

Noyau

Frontières
Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Variation de l'échelle de corrélation

L'équation de diffusion inhomogène permet de prendre en compte des échelles de corrélation variant spatialement :

$$\frac{\partial \eta}{\partial t}(z,t) - \frac{\partial}{\partial z}\left(\kappa(z)\frac{\partial \eta}{\partial z}(z,t)\right) = 0$$

L'opérateur de corrélation devient :

$$\mathcal{F}_{M}[\eta_{0}(z)] = \sqrt{\lambda_{M}(z)} \mathcal{L}^{M}\left[\sqrt{\lambda_{M}(z)}\eta_{0}(z)\right]$$

La normalisation doit être définie en chaque point de grille. Une approximation raisonnable est donnée par $\lambda_M(z) \approx \upsilon_M L(z)$

avec $L(z) = \sqrt{\kappa(z)\Delta t}$.

🤕 Calcul simple et peu cher

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

● Noyau

Frontières

• Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Conditions aux frontières pour l'opérateur de diffusion

L'océan est borné par des frontières solides : côtes, bathymétrie, interface océan-atmosphère ou océan-glace de mer.

Conditions aux frontières de Neumann ou Dirichlet (Egbert et al., 1994; Weaver et Courtier, 2001)

imple à implémenter via des masques terre-océan
 normalisation → méthode exacte ou vecteurs aléatoires
 altération du noyau de corrélation près des frontières :

- NEMOVAR

Conditions aux frontières pour l'opérateur de diffusion

L'océan est borné par des frontières solides : côtes, bathymétrie, interface océan-atmosphère ou océan-glace de mer.

- Onditions aux frontières de Neumann ou Dirichlet (Egbert et al., 1994; Weaver et Courtier, 2001)
 - simple à implémenter via des masques terre-océan $\textcircled{}_{120}$ normalisation \rightarrow méthode exacte ou vecteurs aléatoires
 - 👜 altération du noyau de corrélation près des frontières

2 Points fictifs d'océan près des frontières

(Dobricic et Pinardi, 2008; Liu *et al.*, 2009; filtre récursif)

simule des frontières transparentes si la zone d'extension est suffisamment grande

normalisation \rightarrow approximation du facteur

😥 nécessite des changements non triviaux sur la grille

nécessite des calculs supplémentaires sur les points fictifs

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Conditions aux frontières pour l'opérateur de diffusion

Solution de l'équation de diffusion pour $\eta_0(z) = \delta(z - z_0)$: • Domaine infini :

$$\eta_g(z,t) = \frac{1}{\sqrt{4\pi\kappa t}} e^{-(z-z_0)^2/4\kappa t} = h(z-z_0,t)$$

Domaine borné avec conditions de Neumann :

$$\eta_N(z,t) = h(z-z_0,t) + h(z+z_0,t)$$

• Domaine borné avec conditions de Dirichlet :

$$\eta_D(z, t) = h(z - z_0, t) - h(z + z_0, t)$$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 11

● Noyau

• Frontières

• Numérique

Extension e 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

3 Définir l'opérateur de diffusion comme $\frac{1}{2}\lambda_M(\eta_N + \eta_D)$

Conditions aux frontières pour l'opérateur de diffusion

ignoins précis si l'échelle de corrélation est $\approx O(taille du domaine)$ ou $\approx O(taille de la maille) ou varie rapidement$ ignoins précessite l'application d'une diffusion supplémentaire

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

Noyau
 Eroptière

• Numérique

Extension e 2D et 3D

• Exp./Imp

Conclusions, perspectives $\mathbf{B} = \mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{K}\mathbf{D}^{1/2}\mathbf{C}\mathbf{D}^{1/2}\mathbf{K}^{\mathrm{T}}$

Discrétisation sur une grille curvilinéaire : $\mathbf{C} = \mathbf{\Lambda}^{1/2} \mathbf{L}^M \mathbf{W}^{-1} \mathbf{\Lambda}^{1/2}$

A : matrice diagonale des facteurs de normalisation
 L : forme matricielle de l'opérateur de diffusion
 W : matrice diagonale des éléments de la grille curvilinéaire

L'opérateur de diffusion est autoadjoint par rapport à W : $\mathbf{L} = \mathbf{W}^{-1} \mathbf{L}^{\mathrm{T}} \mathbf{W}$

De plus : $L^{M} = L^{M/2}L^{M/2} = L^{M/2}W^{-1}(L^{M/2})^{T}W$

$$\begin{split} \mathsf{D}' \mathsf{o} \hat{\mathsf{u}} : & \mathsf{C} &= \mathbf{\Lambda}^{1/2} \mathbf{L}^{M/2} \mathbf{W}^{-1} \left(\mathbf{L}^{M/2} \right)^{\mathrm{T}} \mathbf{\Lambda}^{1/2} \\ &= \mathbf{C}^{1/2} \left(\mathbf{C}^{1/2} \right)^{\mathrm{T}} \end{split}$$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

Noyau
 Erontière

• Numérique

Extension of 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Application de l'opérateur de diffusion 1D

• Application de la moyenne de deux diffusions

$$\begin{split} \mathbf{C} &= \frac{1}{2} \mathbf{\Lambda}^{1/2} \begin{pmatrix} \mathbf{L}_{\mathrm{N}}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{\mathrm{N}}^{M/2})^{\mathrm{T}} + \mathbf{L}_{\mathrm{D}}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{\mathrm{D}}^{M/2})^{\mathrm{T}} \end{pmatrix} \mathbf{\Lambda}^{1/2} \\ &= \frac{1}{2} \mathbf{\Lambda}^{1/2} \begin{pmatrix} \mathbf{L}_{\mathrm{N}}^{M/2} & \mathbf{L}_{\mathrm{D}}^{M/2} \end{pmatrix} \begin{pmatrix} \mathbf{W}^{-1} \\ \mathbf{W}^{-1} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} \left(\mathbf{L}_{\mathrm{N}}^{M/2} \right)^{\mathrm{T}} \\ \left(\mathbf{L}_{\mathrm{D}}^{M/2} \right)^{\mathrm{T}} \end{pmatrix} \mathbf{\Lambda}^{1/2} \end{split}$$

Matrices rectangulaires ⇒ la taille du vecteur de contrôle est doublée dans l'algorithme de minimisation

- NEMOVAR

Application de l'opérateur de diffusion 1D

Application de la moyenne de deux diffusions

$$\begin{split} \mathbf{C} &= \frac{1}{2} \mathbf{\Lambda}^{1/2} \begin{pmatrix} \mathbf{L}_{\mathrm{N}}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{\mathrm{N}}^{M/2})^{\mathrm{T}} + \mathbf{L}_{\mathrm{D}}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{\mathrm{D}}^{M/2})^{\mathrm{T}} \end{pmatrix} \mathbf{\Lambda}^{1/2} \\ &= \frac{1}{2} \mathbf{\Lambda}^{1/2} \begin{pmatrix} \mathbf{L}_{\mathrm{N}}^{M/2} & \mathbf{L}_{\mathrm{D}}^{M/2} \end{pmatrix} \begin{pmatrix} \mathbf{W}^{-1} \\ \mathbf{W}^{-1} \end{pmatrix} \begin{pmatrix} \begin{pmatrix} \left(\mathbf{L}_{\mathrm{N}}^{M/2} \right)^{\mathrm{T}} \\ \left(\mathbf{L}_{\mathrm{D}}^{M/2} \right)^{\mathrm{T}} \end{pmatrix} \mathbf{\Lambda}^{1/2} \end{split}$$

 \odot Matrices rectangulaires \Rightarrow la taille du vecteur de contrôle est doublée dans l'algorithme de minimisation

Résolution du système linéaire à chaque itération

🔞 décomposition de Cholesky

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 11

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAI
- Exp./Imp

Conclusions, perspectives

Introduction

- 2 L'assimilation variationnelle
 - La matrice des covariances d'erreur d'ébauche

L'opérateur de diffusion implicite 1D et sa normalisation

Sommaire

- Extension à des fonctions de corrélation en 2D ou 3D, application au système NEMOVAR
 - \bullet Construction des opérateurs 2×1D ou 3×1D
 - Application au système NEMOVAR
 - Explicite vs. Implicite

Conclusions et perspectives

Introduction

L'assimilatior variationnelle

La matrice B

Diffusion implicite 10

● Noyau

- Frontières
 Numérique
- Numérique

Extension er 2D et 3D

- Construc.
- NEMOVA
- Exp./Imp

Conclusions, perspectives Hypothèse :

Fonctions de corrélation séparables : $c = c_x c_y c_z$

Discrétisation : $\mathbf{C} = \mathbf{\Lambda}^{1/2} \mathbf{L}^{M} \mathbf{W}^{-1} \mathbf{\Lambda}^{1/2}$

avec $\mathbf{L}^{M} = \mathbf{L}_{x}^{M} \mathbf{L}_{y}^{M}$ pour l'opérateur 2×1D horizontal ou $\mathbf{L}^{M} = \mathbf{L}_{x}^{M} \mathbf{L}_{y}^{M} \mathbf{L}_{z}^{M}$ pour l'opérateur 3×1D

Sensibilité au nombre d'itérations :

 \Rightarrow Modélisation de fonctions gaussiennes uniquement

Introduction

L'assimilation variationnelle

La matrice E

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

Construc.
 NEMOVAF

• Exp./Imp

Conclusions, perspectives

L'hypothèse de séparabilité

L'opérateur L^M est-il autoadjoint?

Les opérateurs 1D sont autoadjoints. Hypothèse de séparabilité \Rightarrow les opérateurs 1D commutent. S'ils commutent, alors l'opérateur L^M est autoadjoint.

On propose alors d'écrire (exemple 2D) $\mathbf{L}^{M} = \mathbf{L}^{M/2} \mathbf{L}^{M/2} = \mathbf{L}_{x}^{M/2} \mathbf{L}_{y}^{M/2} \mathbf{W}^{-1} \left(\mathbf{L}_{y}^{M/2}\right)^{\mathrm{T}} \left(\mathbf{L}_{x}^{M/2}\right)^{\mathrm{T}} \mathbf{W}$ Et on a $\mathbf{C} = \mathbf{\Lambda}^{1/2} \mathbf{L}_{x}^{M/2} \mathbf{L}_{y}^{M/2} \mathbf{W}^{-1} \left(\mathbf{L}_{y}^{M/2}\right)^{\mathrm{T}} \left(\mathbf{L}_{x}^{M/2}\right)^{\mathrm{T}} \mathbf{\Lambda}^{1/2}$ $= \mathbf{C}^{1/2} \left(\mathbf{C}^{1/2}\right)^{\mathrm{T}}$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

Construc.
 NEMOVAR
 Exp./Imp.

Conclusions perspectives

L'hypothèse de séparabilité

L'opérateur L^M est-il autoadjoint?

Les opérateurs 1D sont autoadjoints. Hypothèse de séparabilité \Rightarrow les opérateurs 1D commutent. S'ils commutent, alors l'opérateur \mathbf{L}^{M} est autoadjoint.

On propose alors d'écrire (exemple 2D) $\mathbf{L}^{M} = \mathbf{L}^{M/2} \mathbf{L}^{M/2} = \mathbf{L}_{x}^{M/2} \mathbf{L}_{y}^{M/2} \mathbf{W}^{-1} \left(\mathbf{L}_{y}^{M/2}\right)^{\mathrm{T}} \left(\mathbf{L}_{x}^{M/2}\right)^{\mathrm{T}} \mathbf{W}$ Et on a $\mathbf{C} = \mathbf{\Lambda}^{1/2} \mathbf{L}_{x}^{M/2} \mathbf{L}_{y}^{M/2} \mathbf{W}^{-1} \left(\mathbf{L}_{y}^{M/2}\right)^{\mathrm{T}} \left(\mathbf{L}_{x}^{M/2}\right)^{\mathrm{T}} \mathbf{\Lambda}^{1/2}$ $= \mathbf{C}^{1/2} \left(\mathbf{C}^{1/2}\right)^{\mathrm{T}}$

- L'hypothèse de séparabilité n'est pas vérifiée
 - près des frontières
 - lorsque les échelles varient
- \Rightarrow le résultat est différent suivant l'ordre d'application des opérateurs 1D.

Introduction

L'assimilatio variationnell

La matrice E

Diffusion implicite 11

- Noyau
- Frontières
- Numérique

Extension e 2D et 3D

• Construc.

- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Non séparabilité près des frontières

Introduction

L'assimilatio variationnell

La matrice E

Diffusion implicite 11

- Noyau
- Frontières
- Numerique

Extension e 2D et 3D

- Construc.
- NEMOVAF
 Exp./Imp.

Conclusions, perspectives

Non séparabilité près des frontières

Introduction

L'assimilatio variationnell

La matrice E

Diffusion implicite 11

- Noyau
- Frontieres
 Numérique
- Numerique

Extension eı 2D et 3D

- Construc.
 NEMOVAR
- Exp./Imp

Conclusions, perspectives

Non séparabilité près des frontières

- Moyenne ¹/₂ (L^{M/2} + L̃^{M/2}) (Dobricic et Pinardi, 2008)
 coût de l'opérateur ×2 en 2D (×6 en 3D)
- Moyenne $\frac{1}{2} \left(\mathbf{C} + \tilde{\mathbf{C}} \right)$
 - coût de l'opérateur $\times 2$ en 2D ($\times 6$ en 3D)

Pour nos configurations, l'hypothèse de séparabilité reste satisfaisante.

Introduction

L'assimilation variationnelle

La matrice E

(

Diffusion implicite 1D

- Noyau
- Frontière
- Numérique

Extension er 2D et 3D

- Construc.
- Exp./Imp.

Conclusions, perspectives

Opérateur 3×1D pour 2 diffusions

Application de 2 diffusions sur chaque axe :

$$\mathbf{L} = \frac{1}{8} \mathbf{\Lambda}^{1/2} \{ \mathbf{L}_{N_x}^{M/2} \mathbf{L}_{N_y}^{M/2} \mathbf{L}_{N_z}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{N_z}^{M/2})^{\mathrm{T}} (\mathbf{L}_{N_y}^{M/2})^{\mathrm{T}} (\mathbf{L}_{N_x}^{M/2})^{\mathrm{T}} \\
+ \mathbf{L}_{N_x}^{M/2} \mathbf{L}_{N_y}^{M/2} \mathbf{L}_{D_z}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{D_z}^{M/2})^{\mathrm{T}} (\mathbf{L}_{N_y}^{M/2})^{\mathrm{T}} (\mathbf{L}_{N_x}^{M/2})^{\mathrm{T}} \\
+ \dots \\
+ \mathbf{L}_{D_x}^{M/2} \mathbf{L}_{D_y}^{M/2} \mathbf{L}_{D_z}^{M/2} \mathbf{W}^{-1} (\mathbf{L}_{D_z}^{M/2})^{\mathrm{T}} (\mathbf{L}_{D_y}^{M/2})^{\mathrm{T}} (\mathbf{L}_{D_x}^{M/2})^{\mathrm{T}} \} \mathbf{\Lambda}^{1/2}$$

🔞 Taille du vecteur de contrôle ×8

$$\begin{split} \text{Application de 2 diffusions sur la verticale :} \\ \text{C} &= \frac{1}{2} \pmb{\Lambda}^{1/2} \ \{ \ \ \ \text{L}_{N_x}^{M/2} \textbf{L}_{N_y}^{M/2} \textbf{L}_{N_z}^{M/2} \textbf{W}^{-1} (\textbf{L}_{N_z}^{M/2})^{\mathrm{T}} (\textbf{L}_{N_y}^{M/2})^{\mathrm{T}} (\textbf{L}_{N_x}^{M/2})^{\mathrm{T}} \\ &+ \textbf{L}_{N_x}^{M/2} \textbf{L}_{N_y}^{M/2} \textbf{L}_{D_z}^{M/2} \textbf{W}^{-1} (\textbf{L}_{D_z}^{M/2})^{\mathrm{T}} (\textbf{L}_{N_y}^{M/2})^{\mathrm{T}} (\textbf{L}_{N_x}^{M/2})^{\mathrm{T}} \} \pmb{\Lambda}^{1/2} \end{split}$$

🔞 Taille du vecteur de contrôle ×2

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

• Construc

- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Application au système NEMOVAR (CERFACS, ECMWF, UK MetOffice, INRIA/LJK)

NEMOVAR (Mogensen et al., 2009) :

système d'assimilation variationnelle de données pour le modèle océanique NEMO (Madec, 2008)

Applications :

- Conditions initiales pour les prévisions climatiques
- Réanalyses océaniques

Code parallèle (interface MPI)

• Décomposition par domaines horizontaux

Configurations globales :

- ORCA2 : $\approx 2^{\circ} \rightarrow 182 \times 149 \times 31$ avec 4 \times 2 processeurs
- ORCA1 : $\approx 1^{\circ} \rightarrow 362 \times 292 \times 42$ avec 4 \times 4 processeurs
 - Conf. pré-op. pour la prévision saisonnière de l'ECMWF

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

• Construc

NEMOVAR

• Exp./Imp

Conclusions, perspectives

Application au système NEMOVAR (CERFACS, ECMWF, UK MetOffice, INRIA/LJK)

Méthode d'assimilation :

• 3D-Var (FGAT)

Minimisation des fonctions quadratiques :

- CONGRAD : préconditionnement par U
- CGMOD : préconditionnement par B
 matrices rectangulaires

Modélisation des corrélations spatiales :

Explicite 2D+1D

$$M_h = 200 \, {
m et} \, M_z = 10$$

Echelles fixées numériquement

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'opérateur 2×1D horizontal ou 3×1D dans NEMOVAR

Principe :

Toute partie de "ligne" d'océan entre deux frontières constitue un domaine borné sur lequel appliquer l'éq. de diffusion 1D.

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'opérateur 2×1D horizontal ou 3×1D dans NEMOVAR

Principe :

Toute partie de "ligne" d'océan entre deux frontières constitue un domaine borné sur lequel appliquer l'éq. de diffusion 1D.

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1D

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

L'opérateur 2×1D horizontal ou 3×1D dans NEMOVAR

Principe :

Toute partie de "ligne" d'océan entre deux frontières constitue un domaine borné sur lequel appliquer l'éq. de diffusion 1D.

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Résolution des systèmes linéaires 1D

🧿 Décomposition de Cholesky

Nécessite la réorganisation horizontale des processeurs

Réorganisation suivant x

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Résolution des systèmes linéaires 1D

🔊 Décomposition de Cholesky

Décessite la réorganisation horizontale des processeurs

Réorganisation suivant y

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1

- Noyau
- Frontières
- Numérique

Extension eı 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Exemple de corrélations de température (ORCA1)

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension er 2D et 3D

- Construc
- NEMOVAR

• Exp./Imp

Conclusions, perspectives

Expérience d'assimilation sur 5 ans

Observations assimilées : profils de température et salinité Pas d'observation près des côtes ou en eau peu profonde

Diagnostics de performance pour la température : analyse - observations (T. Pangaud, A. Weaver)

- NEMOVAR

Tests de comparaison explicite / implicite

適 meilleures perf.

🔞 moins bonnes perf.

Min. quadratique	Temps CPU s		Mémoire Mo	
Normalisation	Explicite	Implicite	Explicite	Implicite
"online" (P=1000)	711 s	-45 %	13 Go	+0.7 Go
"offline"	170 s	-25 %	13 Go	+0.5 Go

Configuration ORCA1 en 4×4 sur IBM Power 6

- Numérique

- NEMOVAR

Tests de comparaison explicite / implicite

🔞 meilleures perf.

🔞 moins bonnes perf.

Min. quadratique	Temps CPU s		Mémoire Mo	
Normalisation	Explicite	Implicite	Explicite	Implicite
"online" (P=1000)	711 s	-45 %	13 Go	+0.7 Go
"offline"	170 s	-25 %	13 Go	+0.5 Go

Configuration ORCA1 en 4×4 sur IBM Power 6

	Implicite 3×1D		Explicite 2D+1D	
Min. quadratique	Nb appels	Coût s	Nb appels	Coût s
$L_h^{M/2}$	127 (1280)	4,0	127 (<mark>12800</mark>)	19,5
Réorganisation	768	3, 5	-	0,00
Inter-proc. total	2152	2, 5	27888	22,0

Configuration ORCA2 en 4×2 sur DELL Precision T5500

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR

• Exp./Imp

Conclusions, perspectives

Exemple : réanalyse océanique sur 10 ans

Configuration ORCA1 en 4 \times 4 sur IBM Power 6 Fenêtre d'assimilation : 10 jours

Coût des minimisations quadratiques :

- Normalisation "offline"
 - Explicite \rightarrow 17h
 - Implicite \rightarrow 13h
- Normalisation "online" avec P=1000
 - Explicite \rightarrow 3 jours
 - Implicite $\rightarrow 1 \text{ jour } 2/3$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc.
- NEMOVAR

• Exp./Imp

Conclusions, perspectives Configuration ORCA1 en 4 \times 4 sur IBM Power 6 Fenêtre d'assimilation : 10 jours

Coût des minimisations quadratiques :

- Normalisation "offline"
 - Explicite $\rightarrow 17h$
 - Implicite \rightarrow 13h
- Normalisation "online" avec P=1000
 - Explicite \rightarrow 3 jours
 - Implicite $\rightarrow 1 \text{ jour } 2/3$

Remarque : coût très dépendant de la normalisation utilisée. Dépendance à l'écoulement \Rightarrow calcul de la norm. à chaque cycle.
Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 11

Noyau

Frontière

Numérique

Extension en 2D et 3D

• Construc.

• NEMOVAR

• Exp./Imp.

Conclusions, perspectives Evaluation de la normalisation par vecteurs aléatoires

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

Echelles zonales (°) estimées localement à partir d'une méthode d'ensemble (Daget, 2008)

Variation géographique des échelles (ORCA2)

Corrélations de température Implicite : $M_x = M_y = M_z = 10$

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 1[

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp.

Conclusions, perspectives

Echelles zonales (°) estimées localement à partir d'une méthode d'ensemble (Daget, 2008)

Variation géographique des échelles (ORCA2)

 $M_h \approx 900, M_z \approx 1900$

Sommaire

- 2 L'assimilation variationnelle

- 4 L'opérateur de diffusion implicite 1D et sa normalisation

6 Conclusions et perspectives

- Noyau
- Numérique

Conclusions

- Travaux réalisés :
 - 💥 Etude théorique du cas 1D
 - Mirouze et Weaver (2010). Representation of correlation functions in variational assimilation using an implicit diffusion operator. Q. J. R. Metorol. Soc., 136, 1421-1443. 🌺 Mise en oeuvre dans NEMOVAR
- Opérateur de corrélation implicite :
 - Pas de critère de stabilité Coût réduit par rapport à l'explicite
 - 🙉 Prise en compte de grandes échelles
 - Permet d'élargir le choix du noyau (1D)
- Conditions aux frontières :

🔞 Meilleure prise en compte

Normalisation :

Approximation du facteur satisfaisante dans certaines conditions

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Perspectives pour les opérateurs $2 \times 1D$ et $3 \times 1D$

• Mise en œuvre :

- Mise en œuvre du 4D-Var
- Utilisation de plus hautes résolutions
- Prise en compte de la dépendance de B à l'écoulement
- Extension à la modélisation des corrélations spatiales et/ou temporelles d'autres erreurs :
 - Observations sur une grille (SSH, SST)
 - Corrélations spatiales et temporelles de l'erreur modèle
- Localisation des corrélations issues d'un ensemble
 - Filtre récursif : Wang et al. (2008)

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 10

- Noyau
- Frontière
- Numérique

Extension en 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

Perspectives pour l'équation de diffusion

• Equation de diffusion 2D et 3D :

- Etude analytique et lien avec la famille de Matérn
- Etude d'un algorithme efficace pour la résolution des systèmes linéaires
 - Gradient conjugué préconditionné, multi-grille, ...
- Prise en compte de l'anisotropie ("multi-axes")

• Normalisation :

- Nb de membres de la méthode par vecteurs aléatoires
 - Filtrage spatial (Raynaud et al., 2009)
- Amélioration de l'approximation du facteur
 - Evaluation de l'erreur numérique de discrétisation
 - Evaluation de l'impact des variations d'échelle
- Combinaison des méthodes?

Introduction

L'assimilation variationnelle

La matrice B

Diffusion implicite 11

- Noyau
- Frontières
- Numérique

Extension en 2D et 3D

- Construc
- NEMOVAR
- Exp./Imp

Conclusions, perspectives

The End!

Merci de votre attention.

Disney - Pixar : Le monde de Nemo