
HAL Id: tel-00524737
https://theses.hal.science/tel-00524737

Submitted on 8 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a common hardware/software specification and
implementation approach for distributed, rel time and

embedded systems, based on middlewares and
object-oriented components

Gregory Gailliard

To cite this version:
Gregory Gailliard. Towards a common hardware/software specification and implementation approach
for distributed, rel time and embedded systems, based on middlewares and object-oriented components.
Engineering Sciences [physics]. Université de Cergy Pontoise, 2010. English. �NNT : �. �tel-00524737�

https://theses.hal.science/tel-00524737
https://hal.archives-ouvertes.fr

ECOLE DOCTORALE SCIENCES ET INGENIERIE
de l’université de Cergy-Pontoise

THESE

Présentée pour obtenir le grade de docteur d’université
Discipline : Sciences et Technologies de l’Information et de la Communication

Spécialité : Informatique

Vers une approche commune pour le logiciel et le matériel de spécification et d’implémentation
des systèmes embarqués temps-réels distribués, basée sur les intergiciels et les composants

orientés objet
Application aux modèles de composants Software Communications Architecture (SCA) et Lightweight

Corba Component Model (LwCCM) pour les systèmes de radio logicielle

Towards a common hardware/software specification and implementation approach for
distributed, real-time and embedded systems, based on middlewares and object-oriented

components
Application to Software Communications Architecture (SCA) and Lightweight Corba Component

Model (LwCCM) component models for Software Defined Radio (SDR) systems

par
Grégory Gailliard

Laboratoire Equipes Traitement des Images et du Signal (ETIS) - CNRS UMR 8051
Equipe Architecture, Systèmes, Technologies pour les unités Reconfigurables Embarquées (ASTRE)

Thèse soutenue le Vendredi 5 Février 2010

Devant le jury composé de :

M. Jean-Luc Dekeyser Président
M. Michel Auguin Examinateur
M. Christophe Dony Examinateur
M. Laurent Pautet Rapporteur
M. Guy Gogniat Rapporteur
M. François Verdier Directeur de thèse
M. Michel Sarlotte Invité

1

The devil lies in the details
Proverb

Everything should be made as simple as possible, but not simpler
Albert Einstein

Acknowledgments

I would like to thank my thesis director, François Verdier, and my industrial tutor, Michel Sarlotte,
for providing me with a very interesting Ph.D. topic. I appreciated the autonomy and trust they have
given me throughout my thesis. I am grateful to Michel Sarlotte for having allowed me to have a trainee,
Benjamin Turmel, who helped me a lot in the implementation ofmy ideas down to hardware. I also
thank the members of the jury for having accepted to be part ofmy Ph.D. examinating board.

I would also like to thank Bruno Counil for discussions aboutthe SCA, Hugues Balp and Vin-
cent Seignole for discussions about CCM, the IDL-to-VDHL mapping and participation in the SPICES
project.

I also thank Eric Nicollet for discussions about the MDE approach and the importance of an IDL-to-
VHDL mapping.

I am very grateful to Bertrand Caron for its precious advicesabout VHDL and for the discussions
about the Transceiver and the MHAL.

I also thank Bertrand Mercier for our common work on DiMITRI.
My thanks are also due to Bernard Candaele for its suggestions and the trainings.
I acknowledge my colleagues during three years for providing me a very nice work environment

at Thales: Helene Came, Frédéric Dotto, Olivier Pierrelee,Eric Combot, Laurent Chaillou, François
Kasperski, Jérôme Quevremont, Rémi Chau, Matthieu Paccot,Pauline Roux, Jessica Bouvier, Laurent
Chmelesvki, Eric Chabod, Vincent Chiron, Eliane Carimantrant and all the others.

My gratitude also goes to Lesly Levy for its native rereadingof some chapters.
Finally, I thank my close family members and relatives for their support and encouragements all

through this work.

3

4 Acknowledgments

Contents

Acknowledgments 3

1 Introduction 9

1.1 Context: Real-Time, Heterogeneous and Distributed Hardware/Software Embedded Systems 9

1.2 Thesis Organization 13

2 Models and Methodologies for Embedded Systems Design 15

2.1 Introduction 15

2.2 Languages .. . 18

2.3 Models of Computation 22

2.4 Models of Communication 23

2.5 Parallel Programming Models 24

2.6 Traditional hardware/software design flow 25

2.7 System-Level Design (SLD) with Transaction-Level Modeling (TLM) 27

2.8 Model-Based Design (MBD) and Model-Driven Engineering(MDE) 29

2.9 Platform-Based Design (PBD) 33

2.10 Conclusion 33

3 Hardware Communication Infrastructure Architecture 35

3.1 On-chip buses 35

3.2 Interconnection Sockets 38

3.3 Network-On-Chip (NoC) Architecture 44

3.4 Conclusion 49

4 Object-Oriented Design (OOD) 51

4.1 Fundamental Concepts 52

4.2 Object-Oriented Hardware Design 63

4.3 Synthesis 84

4.4 Conclusion 84

5

6 Contents

5 Middlewares 89

5.1 Middleware Definition 90

5.2 Middleware Requirements 90

5.3 Middleware Classification 92

5.4 OMG Object Management Architecture (OMA) 97

5.5 CORBA Object Model 99

5.6 State of the art on hardware implementations of object middlewares 119

5.7 Conclusion 126

6 Component-Oriented Architecture 127

6.1 Introduction 129

6.2 Definitions 131

6.3 From Object-Oriented to Component-Oriented approach 132

6.4 Principles 135

6.5 Technical Concepts 137

6.6 Software Component Models 144

6.7 Hardware Component Models for FPGAs and ASICs 163

6.8 System Component Models 173

6.9 Conclusion 175

7 Unified Component and Middleware Approach for Hardware/Software Embedded Systems 179

7.1 Introduction 180

7.2 Component-Oriented Design Flow 181

7.3 Mapping OO component-based specification to system, SW and HW components 185

7.4 Hardware Application of the Software Communications Architecture 235

7.5 Hardware Middleware Architecture Framework 245

7.6 Limitations 249

7.7 Conclusion 250

8 Experiments 253

8.1 Introduction 253

8.2 DiMITRI MPSoC for Digital Radio Mondiale (DRM) 254

8.3 High-Data Rate OFDM Modem 258

8.4 Conclusion 276

9 Conclusions and Perspectives 279

9.1 Problems .. . 279

7

9.2 Synthesis 279

9.3 Contributions 280

9.4 Limitations 282

9.5 Conclusions 282

9.6 Perspectives 283

A CORBA IDL3 to VHDL and SystemC RTL Language Mappings 285

A.1 Naming Convention 286

A.2 Common Standard Interfaces and Protocols 287

A.3 Constant 295

A.4 Basic Data Types 295

A.5 Constructed Data Types 297

A.6 Attribute 310

A.7 Scoped Name .. . 310

A.8 Module .. 310

A.9 Interface 311

A.10 Operation Invocation 318

A.11 Object 321

A.12 Inheritance 321

A.13 Interface Attribute 322

A.14 Component Feature 324

A.15 Not Supported Features 326

A.16 Mapping Summary 326

B Personal Bibliography 329

C Résumé Etendu 331

List of Figures 335

List of Tables 339

List of Listings 340

Acronyms 343

Glossary 347

Bibliography 351

Chapter 1

Introduction

Contents
1.1 Context: Real-Time, Heterogeneous and Distributed Hardware/Software Embedded Systems 9

1.1.1 Modem applications .. . 9

1.1.2 Embedded Systems .. 10

1.1.3 Middlewares .10

1.1.4 Real-Time Systems .. . 10

1.1.5 Software Defined Radio .. . 10

1.1.6 Software Communications Architecture (SCA) Requirements 12

1.1.7 Problems Formulation 13

1.2 Thesis Organization 13

1.1 Context: Real-Time, Heterogeneous and Distributed Hardware/Soft-
ware Embedded Systems

This PhD thesis took place in collaboration between Thales Communications and the ETIS laboratory
of the University of Cergy-Pontoise in France. This work deals with the design of real-time, heteroge-
neous and distributed hardware/software embedded systemsfor Software Defined Radio(SDR). Within
the digital hardware design service led by Bernard Candaelethen Michel Sarlotte, we focused on the
hardware implementation of the physical layer of radio modems (modulator-demodulator).

1.1.1 Modem applications

In telecommunications, amodemis a digital communication system that transmits and receives user
application data by applying successive signal processingtransformations: source coding/decoding i.e.
data compression, channel coding/decoding for detection and correction of transmission errors (a.k.a.
Forward Error Correction(FEC)), and modulation/demodulation of an analog carrier wave into a digital
bit stream. This digital bit stream is then converted into electromagnetic signals usingDigital-to-Analog
andAnalog-to-Digital Converters(DAC/ADC) and antenna(s).

9

10 Chapter 1. Introduction

1.1.2 Embedded Systems

Embedded systems designate almost every electronic devices commonly used in our daily life such as
consumer electronics (e.g. televisions, MP3/DVD players,digital watches, hand-held game consoles),
communication systems (e.g. mobile phones, ADSL modems, satellites, GPS receivers), household ap-
pliances (e.g. microwave ovens, washing machines), and many others like cars and medical devices. An
embedded system is a specialized computing system dedicated to a given application domain. Typically,
an embedded system consists of a set of software applications executed on a hardware platform provid-
ing limited computation, storage and communications resources. There are several classes of embedded
systems from highly embedded systems based on 8-bit micro-controllers toMultiProcessor Systems-on-
chips(MPSoCs).

An MPSoC is an integrated circuit that contains most hardware components of a general-purpose
computing system such as processors, memories, buses, inputs-outputs (I/Os) and specialized hardware
devices, but is customized for an application domain. MPSoCs are composed of heterogeneous process-
ing elements, which are more and more complex to integrate and program. Indeed, they have different
specifications and implementation languages, simulation/execution environments, interaction semantics
and communication protocols.

1.1.3 Middlewares

A middleware is a software infrastructure, which supports transparent communications between het-
erogeneous distributed systems regardless of their physical location, hardware computing architecture,
programming language, operating system, transport layer and data representation. For decades, software
middlewares address these issues thanks to standardInterface Definition Languages(IDL), data encod-
ing rules and message passing protocols. Face to the heterogeneity of MPSoCs, some works have been
carried out to apply middleware concepts in distributed embedded systems.

1.1.4 Real-Time Systems

Some embedded systems are often characterized by real-timeconstraints. A real-time system must per-
form computations according to timing deadlines. Two kindsof real-time systems are typically distin-
guished: hard real-time systems and soft real-time systems. In hard real-time systems, a deadline miss
is considered as an error and may be critical e.g. in transportation systems, while it is tolerated in soft
real-time systems e.g. in multimedia applications.

1.1.5 Software Defined Radio

Our everyday environment is full of radio signals ranging from cordless and cellular phones, to AM/FM
receptors, HDTV sets, garage door openers, and wireless communications between Personal Computers
(PCs), WIFI routers to access the Internet, and bluetooth peripheral devices such as printer.

Face to the multiplication of wireless communication protocols, the termSoftware-Defined Radio
andSoftware Radiowere coined in the 90s to designate a wireless communicationdevice, whose main
functionalities including some signal processing treatments, are defined and implemented in software.
The concept of SDR originates from the first US DARPA programson military software radios such as
Speakeasy [Tor92] [LU95]. To overcome the communication problems appeared during the Desert Storm
operation in Irak, the Speakeasy program might allow communication interoperability among several
wireless communication devices operating in different frequency bands ranging from High-Frequency
(HF) band (3 to 30 MHz) to X band (8 to 12 GHz) used forSatellite Communications(SATCOM).

1.1. Context: Real-Time, Heterogeneous and Distributed Hardware/Software Embedded Systems11

Software-Defined Radios are much more flexible than older "hardware-defined radios" whose func-
tionalities were hard-wired. A Software Defined Radio is a reconfigurable radio whose functionalities
are defined in software and moved closer to the antenna [Tut02] [III00]. It is able to run a set of waveform
applications on the same radio platform

A waveform applicationis a component-based software application. The waveform components
notably implement signal processing treatments, which process the received data from the antenna to the
end user and vice versa. These treatments are defined in custom or standard waveform specifications
such as military NATO (North Atlantic Treaty Organization)Standardization Agreements(STANAGs)
or civil ITU(International Telecommunication Union) standards such as WIFI/WIMAX. A waveform
application may be roughly seen as a radio protocol stack organized in a similar way to the OSI (Open
Systems Interconnection) reference model. Aradio platform is a set of software and hardware layers,
which provide the services required by the waveform application layer throughApplication Programming
Interfaces(APIs). A radio platform includes radio devices (e.g. a GPS receiver) and radio services (e.g.
a log service).

Thanks to this software definition, a SDR fosters reuse and flexibility, since product evolutions can
be easily performed via software updates instead of hardware replacements. As illustrated in figure 1.1,
the two main SDR needs are theportability of waveform applications across different radio platforms
and thereconfigurability of the hardware platform to execute several waveforms. Another need is that
software waveform applications can be easily reused from one radio platform to another.

Figure 1.1: SDR needs

Multiple waveform applications may be loaded and unloaded from a radio platform according to
user, operational or environmental needs.

The combination of software radio and artificial intelligence leads to the concept ofCognitive Radio
(CR) proposed by Joseph Mitola III. A Cognitive Radio is a self-adaptive SDR system which adapts
and optimizes its radio parameters according to its environment to efficiently use the available radio
frequency spectrum and network resources, and better satisfy user’s needs.

TheJoint Tactical Radio System(JTRS) is a US Department of Defense (DoD) program aimed to
create a global communication network of scalable and interoperable SDRs for US and allied terrestrial,
maritime and airborne joint forces. The JTRS is built upon the Software Communications Architecture
(SCA).

As depicted in figure 1.2, the Software Communications Architecture is a software architecture
framework, which allows some independence between the waveform applications and the underlying
radio platforms. The SCA specifies anOperating Environment(OE) in which waveform applications
are executed. The OE enables the management of waveform applications and provides radio platform
services. It is composed of aCore Framework(CF), a middleware compliant withCommon Object Re-

12 Chapter 1. Introduction

quest Broker Architecture) (CORBA) for embedded (CORBAepreviously calledMinimum CORBA), and
aPortable Operating System InterfacePOSIX-compliantOperating System(OS). The Core Framework
is a set of interfaces and related behaviors used to load, deploy and run waveform applications.

Figure 1.2: Heterogeneous and Distributed Radio Architecture

Beyond the ideal vision of software radio, some real-time signal processing treatments of wave-
form applications nevertheless require a huge computationpower which can not be satisfied by current
General Purpose Processors(GPP). They need dedicated processing units such asDigital Signal Pro-
cessors(DSPs), Field Programmable Gate Arrays(FPGAs) andApplication Specific Integrated Circuits
(ASICs). An FPGA is a semiconductor device, which containConfigurable Logic Blocks(CLBs), I/O
pins and a reconfigurable interconnection network that can be configured after manufacturing using an
Hardware Description Language(HDL). Early versions of the SCA (2.0) only specified a high-level
software architecture for GPPs, which is not adequate for highly-constrained real-time processing units
such as DSPs, FPGAs and ASICs. The current version of the SCA (2.2) defines aModem Hardware
Abstraction Layer(MHAL) API to support the communications between GPP and non-CORBA capable
devices such as DSPs, FPGAs and ASICs. However, the MHAL API is a low-level message passing API,
which does not provide a high-level and common design approach for GPPs, DSPs, FPGAs and ASICs.

1.1.6 Software Communications Architecture (SCA) Requirements

In the SCA, software radio applications are broken down intoobject-oriented components to be deployed
on radio platforms. These components provide and require abstract software interfaces specified in the
SCA Core Framework as a set of operation signatures, which are described in theUnified Modeling
Language(UML) profile for CORBA and in CORBA IDL. The portability and reusability of SCA com-
ponents require that their abstract functional interfacescould be defined at a system-level regardless of
their software or hardware implementation and can be indifferently translated in software and hardware
implementation languages such as C, SystemC orVHDL (Very-High-Speed Integrated Circuits (VHSIC)
Hardware Description Language (HDL)).

The interoperability between SCA components within the same heterogeneous platform require
transparent communications regardless of their location and implementation.

The reconfigurability of radio platforms require standard hardware interfaces to physically connect
hardware waveform components, but also standard control interfaces to software and/or hardware dy-
namic reconfiguration. Dynamic reconfiguration denotes therun-time modification of the architecture
of component-based applications by dynamically adding/removing components. Dynamic reconfigura-
tion may be required to dynamically switch from one waveformapplication to another and allows the
dynamic deployment of hardware/software waveform components.

1.2. Thesis Organization 13

In addition to the SCA component model, we consider the general-purpose component model of the
CORBA middleware calledCORBA Component Model(CCM). In particular, we focus on a reduced
version of CCM which is dedicated to embedded systems and called Lightweight CORBA Component
Model(LwCCM). The main reason of this choice is that LwCCM is a software industry standard main-
tained by an open industry consortium calledObject Management Group(OMG). For instance, UML
and CORBA are OMG standards. Moreover, Thales is an active OMG member.

1.1.7 Problems Formulation

The ambitious goal of this PhD thesis is to apply some successful software engineering concepts used
in the SCA down to FPGAs to propose a common and unified approach of specification and implemen-
tation of hardware/software component-based waveform applications. These concepts are distilled from
component-based software architecture and middlewares.

To address the portability requirement for SCA hardware components, we propose some require-
ments and mapping rules between an operation-based abstract software interface in CORBA IDL or
UML, an operation-based concrete software interface in system languages such as SystemC at trans-
actional level, and a signal-based physical interface in HDLs such as VHDL and SystemC at Register
Transfer Level (RTL).

The interoperability requirement has been addressed by prototyping a middleware core which trans-
parently implements memory-mapping and message-passing using two protocols: the General Inter-ORB
Protocol (GIOP) used by CORBA middlewares and the SCA MHAL messages. As opposed to hardware
implementation of commercial CORBA middlewares, we demonstrated the overhead of a request-reply
GIOP message decoder compared to a MHAL message decoder, anda classical memory-mapped address
decoder with the same functionalities on an application example implemented on FPGA.

The second objective of this PhD thesis is to evaluate the useof virtual platforms in SystemC at
Transaction Level to improve the design and validation of hardware/software waveform applications on
virtual radio platforms. Indeed, waveforms and platforms design becomes more and more complex (high
data rate antenna processing, programmable RF...) and involves new methodological needs, that we try
to address in this work. Indeed, executable specifications are needed to validate waveform consistency
and compliance against specifications. Hardware/softwarepartitioning and architecture exploration have
to be studied to achieve the required performances, which have to be estimated and compared to Quality
of Service (QoS) and real-time constraints. We modeled partof a MPSoC platform in SystemC using
Transaction Level Modeling(TLM) and propose a SystemC-based design methodology.

1.2 Thesis Organization

In chapter 2, we provide an overview of the concepts, models and methodologies used to design embed-
ded systems. In chapter 3, we present the on-chip communication architecture of buses and network-on-
chips. In chapter 4, we present the fundamental concepts of the object-oriented approach used by the
SCA and their applications in hardware design. In chapter 5,we provide an overview of middlewares
used by the SCA to abstract the distribution of software entities and their hardware implementations in
SoCs. In chapter 6, we present the concepts of the component-oriented approach in software and hard-
ware engineering and stress their commonalities. In chapter 7, our unified object-oriented component
and middleware approach is presented for both hardware and software components. In chapter 8, some
experiments are described to validate our proposition. Finally, a conclusion summarizes our contribu-
tions.

Chapter 2

Models and Methodologies for Embedded
Systems Design

Contents
2.1 Introduction 15

2.1.1 Models and Methodologies 16

2.1.2 General Concepts of Design 17

2.2 Languages .. 18

2.2.1 Modeling Languages .. . 19

2.2.2 Software Programming Languages 20

2.2.3 Hardware Description Languages (HDL) 21

2.2.4 Structured Data Description Language 21

2.3 Models of Computation 22

2.4 Models of Communication 23

2.4.1 ISO OSI Reference Model .. . 23

2.5 Parallel Programming Models 24

2.5.1 Shared Memory Programming, Communication and Architecture Model 24

2.5.2 Message Passing Programming, Communication and Architecture Model . . . 25

2.5.3 Combination of Shared memory and Message Passing Model 25

2.6 Traditional hardware/software design flow 25

2.7 System-Level Design (SLD) with Transaction-Level Modeling (TLM) 27

2.8 Model-Based Design (MBD) and Model-Driven Engineering(MDE) 29

2.8.1 OMG Model-Driven Architecture (MDA) 30

2.9 Platform-Based Design (PBD) 33

2.10 Conclusion 33

2.1 Introduction

Embedded systems are more and more complex to design notablydue to the increasing number of ap-
plication needs in terms of performances to take into account and the heterogeneity of computation,
storage and communications resources which are integratedin MPSoCs. This complexity is also due to

15

16 Chapter 2. Models and Methodologies for Embedded Systems Design

the design trade-offs to accomplish between cost, time, performances, the inherent concurrency issues
and the huge exploration space all along the design flow. The design exploration space is a multidi-
mensional problem with some orthogonal directions such as hardware/software partitioning, hardware/-
software architecture, tools availability and maturity, reusability of previous designs, etc. The design of
embedded systems requires skills in various domains such assoftware engineering and hardware engi-
neering, along with expertise in the targeted application domain(s) such as signal processing. In order
to manage such complexity, numerous models, languages, methods and methodologies have been de-
veloped to raise the abstraction level of design. Many design methods have been developed in industry
and academia to address the specification, modeling, development and validation of embedded systems.
Examples include models of computation and communication,Model-Based Design and Model-Driven
Engineering, Platform-Based Design, Hardware/Software Co-design, Transaction-Level modeling and
High-Level Synthesis. The objective of system, software, hardware engineers consists in choosing the
better combination of models, languages, methods and methodologies that satisfy the application needs
and the allocated cost and time budgets.

A fundamental problem is how to unambigously specify an application with sufficient details to
perform a good implementation. Industry companies may either define custom specification languages
and models or use existing standards to guarantee the perenity of application specifications, tools and
design flows. In the latter case, companies need to identify and select the relevant standards to build a
coherent design methodology.

This chapter is organized as follows. Section 2.2 presents modeling languages such as UML and
SystemC, software programming languages such as C/C++ and Java, and hardware description languages
such as VHDL and Verilog. Section 2.3 describes models of computation such as Finite State Machines
and Synchronous Data Flow. Section 2.4 presents models of communication such as the OSI reference
network model. Section 2.5 exposes parallel programming models such as shared memory model and
the message passing model. Section 2.8 presents model-based design and model-driven engineering such
as the OMG Model-Driven Architecture. Section 2.9 describes platform-based design for embedded
systems. Finally, section 2.10 concludes this chapter.

2.1.1 Models and Methodologies

It is commonly accepted that engineering is all about modeling. modeling allows engineers to abstract a
problem regardless of the scientific domain: mathematical model, data model, biological model, social
model, mechanical model, electrical/electronic model, object/component model, etc. Generally speak-
ing, a model represents the key characteristics of a problemand provides a conceptual framework to
reason about it. A model is a specification of the function, structure and/or behavior of an application
or system. This specification may be formal when it is based ona strong mathematical foundation.
Otherwise, the specification is informal and may be subject to interpretations e.g. in case of textual
specifications. In embedded systems design, several modelsmay be required to capture all the functional
and non-functional properties of a system such as behavioral and structural models. A complete design
methodology relies on a collection of models. Each model focuses on different aspects of a system like
its behavior, its architecture or its real-time constraints. A typical methodology consists on a number of
steps such as specification, design, developing and validating the system.Model Refinementconsists in
successively enriching a model with additional details. For instance, a high-level behavioral model of a
signal-processing treatment must be refined to be implemented as an software or hardware module in an
electronic circuit. Models are formalized by languages. Like any human spoken language, a language
have aSyntaxand Semantics. The syntax of a language defines its well-formed structure, while seman-
tics define its meaning and behavior [RIJ04]. A language may have a textual and/or graphical syntax.
Moreover, a language may be based on mathematically-provenformal methods or be informal.

2.1. Introduction 17

2.1.2 General Concepts of Design

The general concepts underlying the design of any system isabstraction, encapsulation, modularity
andhierarchy. They provide valuable design practices. These concepts have been presented by Booch
[BME+07] in the context of the object-oriented approach, which ispresented in chapter 4, but they are
quite general enough to be applicable to any design approachregardless of the engineering domain. In
the following, we present these concepts as the main characteristics common to the models and method-
ologies presented in these chapter.

Abstraction

Generally speaking, anabstractionis a relative distinction made between relevant and less relevant de-
tails of a problem domain to enhance understanding and reduce complexity [Arm06, BME+07]. The
relevant details become explicit, whereas the other details are implicit. Abstractions help the separation
or orthogonalization of concerns in a system. Raising the abstraction level is the main objective of lan-
guages, models and methodologies created for system design. However, higher the level of abstraction
is, bigger the conceptual gap between the specification and their implementation is. Several abstraction
levels are thus required to present a manageable view of a system and ease the refinement from one
level of abstraction to another. The key point is to define theright set of abstractions for a particular
domain. According to Booch [BME+07], the quality of an abstraction may be measured by its coupling,
cohesion, sufficiency, completeness and primitiveness. Inthis chapter, we will briefly present the main
abstractions used in the today models and methodologies fordesigning complex embedded systems.

Encapsulation

Encapsulationconsists in hiding the internal view of an abstraction in order to better deal with its com-
plexity [BME+07]. The principle of encapsulation supports the well-known separation of concerns be-
tween the definition of an interface and its implementation in a software programming language or a
hardware description language as proposed in Interface-Based Design [RSV97]. Encapsulation allows
one to modify the implementation of an interface without changing the way users access to it. Encapsu-
lation is often used a a synonym for an older concept calledinformation hiding[Arm06] [BME+07].

Modularity

Modularity consists in breaking down a complex system into aset of simple and more manageable
modules [BME+07]. A module represents a unit of design and reuse, which allows developers to work in
parallel independently of one another. The objective of a modular approach is to improve cohesion within
a module and reduce coupling among modules. A highly cohesive module encapsulates a set of related
abstractions, while a loosely coupled module has few dependencies on other modules. Designers have to
make a trade-off on the granularity of a module and their number: too many modules result in too many
interfaces and possible communication overhead, while toofew modules are less manageable. In the
object-oriented approach presented in chapter 4, a module is an object, while in the component-oriented
approach presented in chapter 6, a module corresponds to a component. Many languages support the
concept of modularity as for example through packages in Java, Ada and VHDL, or through namespaces
in C++.

18 Chapter 2. Models and Methodologies for Embedded Systems Design

Hierarchy

Hierarchy establishes an ordering among a set of abstractions [BME+07]. The decomposition of a
system into hierarchical layers of abstraction is a key concept to design complex systems. An upper
layer is built upon a lower layer. In particular, the explicit details of the lower layer becomes implicit in
the upper layer. Examples of layered systems include theOpen Systems Interconnection(OSI) model, the
socket-based approach for on-chip communication buses, Network-On-Chips and middlewares presented
in chapter 5.

Like for modularity, designers have to trade off the abstraction level of a layer and their number. A
higher abstraction level is more independent from low-level details of a platform at the expense of less
control over it. Conversely, too many layers result in important performance overhead e.g. in term of
memory footprint, latency, bandwidth and silicon area.

2.2 Languages

In order to better manage the ever increasing complexity of embedded systems and to increase produc-
tivity, several specification, modeling and implementation languages have been developed since 1950s to
raise the abstraction level at which design is performed. These languages allows designers to reduce de-
velopment time and cost as less lines of code are needed to implement the same functionality. The brief
history of languages shows that each new generation of language is build upon the previous one and re-
sides at a higher-level of abstraction The trend is applicable to both software programming languages and
hardware description languages. The often cited generation of software programming languages include
[BME+07] [WQ05] [MSUW04]:

• Gear-Oriented Design with Pascal’s mechanical computer in 1642;

• Switch-Oriented Design with the first electronic computerENIAC1 in 1942;

• Instruction-Oriented Design with assembly languages;

• Procedure-Oriented Design or Structured Design based on sub-programs with Fortran, Pascal, C
and RPC IDL;

• Object-Oriented Design (OOD) with Smalltalk, Java, C++, Python, CORBA IDL 2.x, UML;

• Aspect-Oriented Design (AOD) [KLM+97] with AspectJ and AspectC++;

• Component-Oriented Design (COD) with ArchJava, CORBA IDL3.x, UML 2;

• Model-Based Design (MBD) with ArchJava, CORBA IDL 3.x;

Each term before the wordorienteddesignates the main design abstraction. For instance, the Object-
Oriented Design considers anobjectas the main design unit.

In the same manner, hardware design has evolved to reach higher-level of abstraction.

• Transistor-level Design;

• Gate-level Design using AND, OR and NAND gates;

• Register-Transfer Level (RTL) Design with VHDL and Verilog, SystemC RTL;

1Electronic Numerical Integrator And Computer

2.2. Languages 19

• IP-based Design with SystemC;

• Transaction Level Modeling (TLM) with SystemC;

• Object-Oriented Design with object-oriented Hardware Description Language (HDL);

• Component-Based Design with hardware modules called Intellectual Properties (IPs);

• Model-Based Design with Model-Driven Engineering generating RTL code.

• Component-Oriented Design with SCA hardware components [JTR05] andthis thesis;

This work is an attempt to unify component-oriented design for both software and hardware compo-
nents.

2.2.1 Modeling Languages

Unified Modeling Language (UML)

UML [OMG07d] is a graphical object-oriented modeling language standardized by the Open Manage-
ment Group (OMG). UML allows designers to model a complex system according to multiple viewpoints
such as its structural and behavioral characteristics.

UML specifies thirteen diagrams divided into two main categories: Structural modeling and behav-
ioral modeling. The structural diagrams include package diagrams, component diagrams, deployment
diagrams, class diagrams, object diagrams, composite structure diagrams, interaction overview diagrams
and communication diagrams. The behavioral diagrams include use case diagrams, activity diagrams,
sequence diagrams, state machine diagrams, timing diagrams. Obviously, we cannot describe all these
kinds of diagrams here, nevertheless some of them are brieflydescribed in the following [BME+07]:

• A package diagram provides the means to organize the artifacts of the development process.

• A component diagram shows the internal structure of components and their dependencies with
other components. This diagram provides the representation of components, collaborating through
well-defined interfaces, to provide system functionality.

• A deployment diagram shows the allocation of artifacts to nodes in the physical design of a system.
During development, we use deployment diagrams to indicatethe physical collection of nodes that
serve as the platform for execution of our system.

• A use case diagram depicts the functionality provided by a system. Use case diagrams depict
which actors interact with the system.

• An activity diagram provides the visual depiction of the flow of activities. These diagrams focus on
the activities performed and who (or what) is responsible for the performance of those activities.

• A class diagram captures the structure of the classes and their relationships in the system.

• A sequence diagram represents a temporal sequence of operation calls

• An interaction overview diagram is a combination of activity diagrams and interaction diagrams
to provide an overview of the flow of control between diagram elements.

20 Chapter 2. Models and Methodologies for Embedded Systems Design

• A composite structure diagram provides a way to depict a structured classifier with the definition
of its internal structure. This diagram is also useful during design to decompose classes into their
constituent parts and model their runtime collaborations.

• A state machine diagram expresses behavior as a progression through a series of states, triggered
by events, and the related actions that may occur.

• A timing diagram shows how the states of an element or elements change over time and how events
change those states.

• An object diagram shows the relationships between objectsin a system

• A communication diagram focuses on how objects are linked and the messages they pass.

For further information of UML, the reader can refer to the UML specification [OMG07d] and
[RIJ04].

UML profiles allow designers to define Domain-Specific Modeling Language (DSML) by extend-
ing the UML syntax with model annotations calledstereotypes. A number of UML Profiles has also
been standardized by the OMG. The most relevant UML profiles for this work include the UML Profile
for System on a Chip (SoC) inspired from SystemC, the UML Profile for modeling and Analysis of
Real-Time and Embedded Systems (MARTE) [OMG08h], the UML Profile for CORBA and CORBA
Components (CCM) [OMG08g], the UML profile for Software Radio (a.k.a. PIM & PSM for Software
Radio Components) [OMG07e] inspired from SCA [JTR01].

For instance, the SCA is specified using the UML profile for CORBA v.1.0 [OMG02] and stan-
dard UML diagrams such as class diagrams, use cases diagrams, sequence diagrams and collaboration
diagrams. Furthermore, the UML Profile for Software Radio a.k.a. PIM & PSM for Software Radio
Components (SDRP orP 2SRC) is based on the SCA [OMG07e]. As opposed to the SCA, the SDRP
specification is not yet widely used to design software radioapplications and supported by commercial
tools. Another UML profile for SDR calledA3S UML profilewas defined in the scope of the A3S RNRT
project [S.06] in which Thales participated.

SystemC

SystemC [GLMS02] is an object-oriented hardware/softwaremodeling language based on a C++ class
library maintained by theOpen SystemC Initiative(OSCI). SystemC is based on early works from Liao
et al. [LTG97] in the Scenic framework to model hardware/software systems. Thanks to its growing ac-
ceptance in the industry, SystemC has been standardized as the IEEE standard 1666 in 2005. To provide
hardware modeling capabilities, SystemC extends C++ with architectural constructs such as modules,
ports and signals, and behavioral constructs with a notion of time, events and concurrent sequential pro-
cesses implemented as co-routines. In this language, hardware modules are declared assc_module
and contain hardware ports calledsc_ports. These ports are bound to ansc_interface, which al-
lows the separation between computation and communicationthrough a mechanism calledInterface
Method Call (IMC). This interface is implemented by ansc_module that is typically ansc_channel.

2.2.2 Software Programming Languages

C/C++

The C language is a procedural and portable language which was initially created for system program-
ming on the Unix operating system. Nowadays, it is widely used for the programming of embedded

2.2. Languages 21

systems notably thanks to the error-prone concept ofpointer which allows developers to directly access
system memory and memory-mapped hardware registers. C++ isa general-purpose language that ex-
tends C with object-oriented capability of C++ and standardhigh-level library such as theStandard Tem-
plate Library (STL). For instance, software waveform components are mainly implemented in C/C++
on embedded radio platforms. C/C++ may also be used to build functional model of hardware waveform
components.

Java

Java is a general purpose, concurrent, object-oriented andplatform independent programming language.
Java is compiled into abstract instructions calledbytecodein .classfiles. This bytecode is executed by
a run-time environment called the Java Virtual Machine (JVM). Java may also be compiled to a native
instruction set using the GNU Compiler Collection (GCC). Due to its interpreted nature, Java is not
widely used for embedded systems and notably for radio applications.

2.2.3 Hardware Description Languages (HDL)

A Hardware Description Language(HDL) is a language to formally model electronic circuits. Whereas
software programming languages are compiled into a binary code executed on an instruction-set pro-
cessor, HDLs are synthesized into a piece of hardware typically on Field Programmable Gate Array
(FPGA) or Application Specific Integrated CircuitASIC. An HDL allows hardware designers to de-
scribe at Register Transfer Level (RTL) the architecture ofhardware building blocks, whose temporal
and logic behavior is checked thanks to simulation tools i.e. simulators. The two main Hardware De-
scription Languages (HDL) are the Very-High-Speed Integrated CircuitsVHSIC Hardware Description
Language (VHDL) and Verilog. Interestingly, HDLs were originally developed for the documentation
and simulation of gate-based schematics. HDLs may model discrete events for digital hardware and con-
tinuous time for analog hardware. As hardware is inherentlyparallel, an HDL allows to explicitly specify
concurrency through concurrent statements and time with wait statements for simulation purpose. HDLs
support appropriate data types to model hardware modules like bit arrays.

Logic synthesisis a process by which a RTL model specified in an HDL is inferredinto a set of
interconnected logic gates described by anetlist. The hardware model have to typically respect some
coding guidelines imposed by synthesis tools calledsynthesizerin order to produce the required behavior.
These guidelines include the use of a synthesizable subset of HDLs and some code templates to facilitate
the inference of memory units such as registers, RAM/ROM or hardware operators like multipliers.
For instance, high-level HDL constructs, which are used forsimulation in testbenches, are typically not
synthesizable. In a similar way than code written in low-level assembly languages is more optimized, but
less portable than code written in portable programming languages like C, HDL code based on vendor-
specific modules is optimized for a given FPGA platform, but is not portable for another platform, while
HDL code written with generic modules are portable, but not optimized. Hence, it is not always possible
to write portable code for FPGAs.

2.2.4 Structured Data Description Language

Structured data description languages are used to describeuser-defined data and the data used to de-
scribed the user-defined data themselves calledmeta-data. The eXtensible Markup Language (XML) is
a structured data description language with use markups to describe information as plain text in files with
the.xml extension. The content and structure of XML documents are constrained by rules expressed
in a XML Schema Language such asDocument Type Definition(DTD) with .dtd extensions and XML

22 Chapter 2. Models and Methodologies for Embedded Systems Design

Schemewith .xsd extension. DTD files describe a type of XML documents as a structured set of ele-
ments that contain data and attributes. For instance, XML isused in software component models such as
CCM and SCA, meta-data for hardware components such as SPIRIT, and storage of UML models such
as XMI.

2.3 Models of Computation

A Model of Computation(MoC) is the formal abstraction of the execution in a computer. Itallows one to
formally describe and reason about concurrent and distributed systems. A model of computation defines
the behavior and interaction semantics that govern the elements in different parts or at different levels of a
system. As its name does not suggest, a model of computation describes the semantics of communication
between components. It contains operational rules which drive the execution of a model in particular
when components perform computation, update their state and perform communication [LN04]. Models
of computations are to actor-oriented design what design patterns are to object-oriented design and what
communication protocols are to signal-oriented design [LN04]. Many models of computation have been
identified in the literature:

• Synchronous Data Flow(SDF) is a static data flow in which the number of data token produced or
consumed by each processing node is known at design time [LM87]. Nodes communicate through
queues and can be statically scheduled at compile time. Signal processing applications can be
typically described as a synchronous data flow. They can be specified by aData-Flow Graph
(DFG) where each node represents a processing block and each arc adata path. This model has
been used to describe both hardware and software systems.

• In theContinuous Time(CT) MoC, processing elements communicate via a continuous time signal
at a given time point. Such systems are typically represented by differential equations like physical
systems.

• Communicating Sequential Processes(CSP) communicate via synchronous message passing or
rendezvous.

• Process Networks(PN) like Kahn Process Networks(KPN) communicate via asynchronous mes-
sage passing. Sequential processes communicate through unbounded FIFO channels. KPNs are
notably used to model signal processing applications e.g. see our experiments in Â§8.3.2.

• Finite State Machines(FSM) are represented byControl-Flow Graph(CFG) in which a node
represent a state and an arc a state transition triggered by some boolean expression called guard.

• Discrete-Events(DE): processing nodes interact via an event queue. This model is used to model
digital circuits, asynchronous circuits and events in physical systems.

• Petri Nets(PN): processing nodes performs asynchronous computation with explicit synchroniza-
tion points. The UML2 activity model is inspired from Petri nets [RIJ04].

• Synchronous Reactive(SR): computation elements update the values of their output until the sys-
tem stabilizes. This MoC is used in synchronous languages like Esterel, Lustre and Signal used to
describe both hardware and software systems.

For instance, a domain-specific specification language calledWaveform Description Languages(WDL)
has been proposed by E.W. at Thales Reseach Inc. to specify waveform applications. WDL is a

2.4. Models of Communication 23

component-based graphical language where components havedata-flow ports and is based on a Syn-
chronous Data Flow model of computation.

Various modeling frameworks such as Ptolemy [HLL+03], Metropolis [BWH+03] and BIP [Sif05]
propose to model and simulate embedded systems through the hierarchical composition of computation
models [GBA+07].

As far as SDR is concerned, waveform applications are roughly based on FSM for the control path
e.g. to manage a mode switch and a synchronous data flow for thedata path.

2.4 Models of Communication

2.4.1 ISO OSI Reference Model

The International Organization for Standardization (ISO)Reference Model (RM) of Open Systems Inter-
connection (OSI) is an abstract layered communication architecture organized as a stack of seven layers:
Physical, Data Link, Network, Transport, Session, Presentation and Application [Zim80]. The OSI RM
provides a common conceptual framework to describe standard protocols.

Basically, a computer network is a set of computers calledhostwhich communicate to one another.
The seven layers are implemented on each host, while only thetree lowest layers are used in the inter-
mediate routers.

Such a layered approach allows an independent modification of the implementation of each layer,
while their interfaces and behaviors must remain the same. Asystem is logically divided into successive
horizontal layers from the Application layer at the top to the Physical layer at the bottom.

Each layer provides and requires a set of services to the nextupper and lower layer through interfaces
calledService Access Point(SAP), which are implemented by groups of functions calledEntities. Within
the same horizontal layer, two entities on different hosts virtually communicate using a peer-to-peer
protocol based on a standardized message format calledProtocol Data Unit(PDU). In reality, the data
are transferred through the protocol stack of the lower layers. Each successive protocol layer encapsulates
the data received from the previous layer with a layer-specific control header to build a new message.
The layers do not know the meaning of the encapsulated data, the message format or protocol used to
provide a complete decoupling of each layer.

The ISO OSI reference model is structured as a hierarchy of seven layers.

• The Physical Layer (PHY) deals with the transfer of rawbit stream on a medium (cable, air,
water, space, etc). This layer defines the electrical and mechanical characteristics for transmis-
sion such as wire voltages, timing, frequency, width. Examples include serial (RS232), Ethernet
(10/100/1000BASE-T) and WIFI (802.11 PHY).

• TheData Link Layer is in charge of the reliability offramesused by the network layer. This layer
performs physical addressing and error control by introducing additional bits in the raw bit stream
to detect and correct transmission errors. It typically contains two sub-layers calledMedium Access
Control (MAC) andLogical Link Control(LLC). Examples include Ethernet MAC (802.3), WIFI
MAC/LLC (802.11), ATM and HDLC.

• TheNetwork Layer is responsible for the delivery and routing of packets used by the transport
layer. This layer performs logical addressing and flow control to avoid congestion in the routers.
Examples include the Internet Protocol (IP) and Internet Control Message Protocol (ICMP) used
by ping and traceroute tools.

24 Chapter 2. Models and Methodologies for Embedded Systems Design

• TheTransport Layer establishes an end-to-end communication between hosts using the network
layer. Examples include TCP (Transmission Control Protocol) and UDP (User Datagram Proto-
col).

• The Session Layercopes with setting up, managing and tearing down connectionbetween ap-
plication processes based on the transport layer between hosts. Examples includeInter-Process
Communication(IPC) such as named pipes and sockets.

• ThePresentation layer is concerned with the transformations of application data prior to trans-
mission such as compression, encryption, conversion called marshallingto a common data repre-
sentation. Examples include ASCII, MPEG, MIME, XDR, SSL, CORBA CDR.

• TheApplication Layer is used by the user applications for distributed communications. This layer
performs synchronization between application processes.Examples include HTTP, FTP, DNS and
CORBA GIOP

For instance, SDR applications are an assembly of waveform components, whose functionalities
are organized as in the OSI model: digital signal processingfor Modem components in the physical
layer, medium acess control for MAC components, data link for Link components, routing for Network
components and input/output access for I/O components.

2.5 Parallel Programming Models

A parallel computing architecture contains a set of processing elements that communicate and cooperate
to execute applications according their performances requirements. Concurrent software applications
executed on parallel computing architectures need to be developed according to one or severalparallel
programming models. A programming model defines how parts of an application communicate with one
another and coordinate their activities [CSG98].

The two main programming models which have been traditionally identified for parallel computing
architectures are shared memory and message passing. Otherprogramming models include data parallel
processing i.e. Single Program Multiple Data (SPMD), data-flow processing and systolic processing
[CSG98].

A parallel programming model allows developers to abstractthe heterogeneity of different hard-
ware/software platform architectures and to abstract communication using an Application Programming
Interfaces (API). This API specifies communication and synchronization operations which are used by
the applications and implemented by the platform using compilers and libraries from languages, OS and
middlewares. Parallel programming models must balance twocontradictory objectives: reduce devel-
opment time and cost using higher-level programming model,and improve system performances using
lower-level programming model [JBP06]. As opposed to classical APIs for desktop and enterprise com-
puters such asPortable Operating System Interface(POSIX) andMessage Passing API(MPI), APIs for
MPSoCs may be not standard and customized for a particular platform and their implementation must
be optimized to satisfy the performance requirements of a specific application or application domain.

Each programming model provides different trade-offs in terms of performance, time, space and
synchronization coupling [LvdADtH05]. For instance, the MultiFlex platform [PPL+06b] supports both
a CORBA-like message passing model and a POSIX-like shared memory model.

2.5.1 Shared Memory Programming, Communication and Architecture Model

In the shared memory model, two or more application entitiescommunicate through shared variables
by writing and reading data at pre-defined addresses in the same shared address space. This memory

2.6. Traditional hardware/software design flow 25

is shared and accessible by all participants in the communication. Application data do not need to be
copied because they are directly accessible. The application entities reside in the same address space.
The shared memory model implies a tight coupling between communicating entities due to synchroniza-
tion. Since the memory locations are shared, only one writerat a time is allowed on a given address to
ensure memory consistency, while several readers can read this location without harm. The writer must
acquire and release a lock before and after a write. This requires special hardware support for indivisi-
ble or atomic operations for synchronization. Successive writes from several writers must be serialized
to ensure ordered memory accesses and avoid race conditions. Standard APIs for shared memory in-
clude POSIX and synchronization primitives offered by programming languages. From a programming
viewpoint, different processes/threads running on the same or different processors may communicate
through shared variables. The basic communication primitives arereadandwrite operations, which are
implemented by the load and store instructions of processors. From a hardware architecture viewpoint,
a shared memory multiprocessor calledSymmetric Multiprocessor(SMP) may be used with aUniform
Memory Architecture(UMA) where the access time to the shared memory is the same for allprocessors.

2.5.2 Message Passing Programming, Communication and Architecture Model

In the message passing model, two or more application entities communicate with each other by sending
and receiving messages. The application entities reside indifferent address space and have their own
private memory. Application data must be copied from the sender memory to the message and from the
message to the receiver memory. The message passing model allows a loose coupling between commu-
nicating entities e.g. via buffering. The basic communication primitives are send and receive operations.
Standard APIs for message passing include MPI [For08]. Froma programming viewpoint, process-
es/threads running on the same or different processors may communicate through message queues, OS
or middleware calls. From a hardware architecture viewpoint, each processing unit has its own private
memory and form a dedicated node which communicate with other nodes through the network e.g. a
bus.

2.5.3 Combination of Shared memory and Message Passing Model

Both models may be used independently and they may be combined. For instance, a memory access
may be encapsulated in a message to be sent over the network [Bje05]. Each processing unit has its
own memory which has either a private and a shared part or is private the processor can access a global
shared memory. This architecture has a Non-Uniform Memory Architecture (NUMA) where the memory
access time depends on the memory location. Indeed, a local memory access takes less time than a remote
memory access in the local memory of another processor. The local memory controller determines if a
memory access on the local memory or a message passing with the remote memory controller has to be
performed.

Traditionally, the design of modems relies on a shared memory model in which DSPs read/write data,
commands, parameters and status to/from FPGAs using register banks. Due to the heterogeneous and
distributed nature of SDR platforms, the SCA introduces theuse of middlewares such as CORBA and
the SCA Modem Hardware Abstraction Layer (MHAL) for modem design. Hence, SDR applications
and platforms may be developped using a combination of both programming models.

2.6 Traditional hardware/software design flow

The traditional hardware/software design flow is depicted in figure 2.1. First, an executable model of
the system is developed according to system requirements such as the number of operations per second,

26 Chapter 2. Models and Methodologies for Embedded Systems Design

latency, bandwidth and power consumption - regardless of implementation languages. Then, hardware/-
software partitioning of the system is performed based on application performance requirements using
complexity analysis and profiling, and performance offeredby the target platform(s). After hardware/-
software partitioning, hardware and software design are led in parallel. Hardware design consists in
hardware specification using textual description, graphical block diagrams and finite state machines,
hardware modeling in VHDL or Verilog, behavioral simulation, synthesis for a given RTL library, and
placement and routing on a given FPGA or ASIC chip. Software design consists in (object-oriented)
software analysis, design and development using a target programming languages (typically C or C++)
in embedded systems. Co-simulations of the system including both software and HDL code may be per-
formed to detect eventual errors before integration on the target platform. Finally, the last step consists in
integrating hardware and software on the target platform and validating that initial system requirements
are satisfied.

Figure 2.1: Classical HW/SW design flow

As systems are becoming more complex and implemented on multiprocessor platforms, hardware/-
software partitioning is a difficult task to perform. Moreover, the partitioning study is usually performed
without any tool, so only few solutions can be foreseen and studied, and significant margins have to be
taken to avoid any bottleneck in the final implementation e.g. in terms of bandwidth. Since design space
exploration cannot be exhaustive, sufficient margins must be taken and hardware/software partitioning is
often sub-optimal.

Another drawback of this classical design flow is that software and hardware developments are sep-
arated. For example regarding timing constraints, it is necessary to allocate a timing budget at each side,
while a global assignment could be more efficient. The software integration is possible only when the

2.7. System-Level Design (SLD) with Transaction-Level Modeling (TLM) 27

hardware module are already modeled. Indeed, in the classical flow, no intermediate hardware model
is available for software integration, hence hardware modeling and software integration cannot be per-
formed in parallel. Moreover, hardware and software teams can make misleading interpretations resulting
in difficult integration, rework and time loss. An importantabstraction gap exists between algorithms
captured by the C/C++/Matlab reference model, also calledbusiness code, and the final hardware imple-
mentation.

Face to the number of applications to be integrated on System-on-Chip platforms, new methodolo-
gies and tools are required to address the drawbacks of the classical hardware/software design flow. In
particular, these methodologies must fill in the gap betweensystem modeling and hardware modeling.
In the next sections, we describe methodologies that may address these needs.

2.7 System-Level Design (SLD) with Transaction-Level Modeling (TLM)

System-Level Design(SLD) also calledElectronic System Level(ESL) design consists in raising the
abstraction level of design to specify a system more easily and quickly. SystemC [Ini08] is recognized as
a de facto standard for System-Level Design. It allows the modeling of a system composed of hardware
and software modules at different abstraction levels. System-Level Design may rely on a methodology
calledTransaction-Level Modeling(TLM) [GLMS02] [Ghe06]. Transaction-Level Modeling consists in
modeling the communications within a system at different abstraction levels using function calls, rather
than hardware signals, notably to increase simulation speed. The use of SystemC for Transaction-Level
Modeling is usually referred to as SystemC TLM. Transaction-Level Modeling is based on different
abstraction levels which are depicted in figure 2.2. These abstraction levels provide different views of a
system that correspond to different use cases:Functional View(FV), Programmers View(PV), Architects
View (AV) andVerification View(VV) Transaction duration, data granularity and timing considerations
depend on the abstraction level. TLM allows designers to trade off modeling accuracy and simulation
speed. The higher the abstraction level is, the faster the simulation speed is, but the less the modeling
accuracy is. Designers must therefore choose the level of abstraction which is appropriate for their needs.

Transaction Level Model may help to fill in the gap between system modeling and hardware model-
ing. This gap implies at least two kinds of refinement: refinement of peripheral models and refinement
of communication architecture. Transaction Level Modeling supports both refinements. The refinement
from one abstraction level to another is validated by a functional testbench.Transactors are transac-
tion adapters which allows mixing models at different levels of abstraction. SuccessiveBus Functional
Models(BFMs), for instance a generic OCP Transaction Level (TL)2 or a cycle accurate AHB BFM, can
be used for communication architecture refinement down to RTL implementation. Concrete examples of
peripheral devices and bus functional models at ProgrammerView and will be presented in chapter 8.

Providing a high-level virtual model of the hardware platform to the system and software engineers
allows developing software in an environment close to the final target and to develop the HDL code in
parallel, which reduces the system implementation duration. The virtualization of the hardware platform
also eases design space exploration, as the description level of the platform is sufficiently high to allow
fast simulations of the architecture. This approach can mainly address the design needs of software
validation and architecture exploration.

A complementary refinement approach is the automatic refinement from TLM to RTL, which ad-
dress the productivity need and communication architecture refinement. An example is proposed by the
TRAIN methodology [KGG06] in which abstract TLM 1.0 communication channels usingget andput
primitives are mapped on the on-chip communication architecture, e.g. a CoreConnect bus, via virtual
channels. Another example is the synthesis of TLM 1.0 channels in Forte Design Cynthetiser [Sys]

28 Chapter 2. Models and Methodologies for Embedded Systems Design

Figure 2.2: Abstraction Levels

2.8. Model-Based Design (MBD) and Model-Driven Engineering (MDE) 29

The second refinement approach is High-Level Synthesis (HLS) that consists in the automatic gener-
ation of HDL code using the system model with tools such as Mentor Catapult [Gra07] and Mathworks
Simulink [Mat08]. As a single team is involved in the translation of system requirements, some mis-
interpretations may be avoided. Moreover, rework is quite simple as automatic re-generation can be
performed quickly. Nevertheless, most of these tools mainly address data flow oriented digital signal
processing applications, while control and scheduling functionalities are much less supported and may
require third-party tools. HLS only satisfies the productivity need of coding and the translation of pe-
ripheral models. As there is no intermediate model between the high-level algorithmic model and its
RTL implementation, this approach is similar to the hardware classical flow and its drawbacks: slow
simulation speed and time consuming verification. A trade-off between simulation speed and modeling
accuracy is no more possible and this does not provide the good level of details to address use cases such
as software validation and architecture exploration.

The OSCI published a first version of TLM APIs called TLM 1.0 [RSPF05] to provide common
modeling interfaces and allow portability of TLM models across academic and industry organizations.
However, the format of TLM 1.0 messages was not standardized. As a result, TLM 1.0 models were
not interoperable. So, the OSCI published a second version of TLM APIs called TLM 2.0 [OSC09] to
better support interoperability between TLM models. TLM 2.0 notably defines a generic payload for
TLM messages with ignorable extensions for advanced bus features.

In addition, working group of OCP-IP dedicated to System Level Design proposed a TLM API for
OCP [OI07]. This modeling is based on three TLM layers above the RTL layer: a Message Layer (TL3),
a Transaction Layer (TL2) and a Transfer Layer (TL1), while the RTL Layer is called TL0. A TLM
standardization agreement was signed between OSCI and OCP-IP [OI04]. Besides, OCP TL2 and TL3
can be mapped to the OSCI TLM API [THA05], and both TLM APIs canbe mixed using transactors, as
presented in chapter 8. The PV API from OSCI is a standard interface enabling SystemC IP reuse, while
OCP TLM layers are standard user layers, above OSCI foundation layer [THA05].

A partnership exists between OSCI and OCP-IP to guarantee some coherence between TLM inter-
faces.

2.8 Model-Based Design (MBD) and Model-Driven Engineering(MDE)

A model is a formal specification of the function, structure and/or behavior of an application or system.
Model Driven Engineering(MDE) is a promising design methodology in whichmodelsare the corner-
stone of system development. The objective is to extensively use models all along the design flow of a
system from specification to design and implementation. A model allows designers to raise the abstrac-
tion level by hiding implementation details and to better manage complexity usually via hierarchical
visual models. Models may be described at different abstraction levels and may focus on specific aspects
or views of a system such as its structure or behavior.

Model-Based Design(MBD) aims at developing customized design environments which are tailored
to a particular application domain e.g. automotive, avionic or radio domain. With MDE, designer’s
work is shifted from code development to system modeling. Designers describe a system using domain-
specific concepts and their relationships. The most popularMDE approaches are the OMG initiatives
calledModel-Driven Development™(MDD™) andModel Driven Architecture®(MDA ®) [MSUW04].
These initiatives are naturally based on the UML modeling language which is standardized by the OMG.
Other closely related terminologies for MDE includeModel-Based Design(MBD) andModel-Integrated
Computing(MIC) [SK97].

Model-Based Design places an abstract model of an algorithmat the center of the design cycle and
provides a coherent view in all design phases: executable specification, simulation, test and verification,

30 Chapter 2. Models and Methodologies for Embedded Systems Design

and implementation based on automatic code generation.
An often-cited example of Model-Based Design tools is MathWorks Simulink [Mat08]. MathWorks

Simulink is a graphical modeling tool for algorithms and systems whose models provide an executable
specification. Designers may interconnect predefined processing blocks and configure them, or they may
describe an algorithm in the Matlab language calledM language. Code generation allows the synchro-
nization between the model and its implementation. Designers can select particular platforms or target
specific tools such as TI Code Composer, Altera DSPBuilder orXilinx System Generator.

In addition, a design methodology for SoC/SoPC developmentis proposed based on MDD and the
MARTE UML profile in the scope of the MOPCOM research project [AKL +09] . The MOPCOM toolset
notably supports HDL code generation within the Rhapsody UML modeler.

2.8.1 OMG Model-Driven Architecture (MDA)

The Model-Driven Architecture (MDA) [OMG03] [MSUW04] is the Model-Driven Engineering ap-
proach standardized by the OMG. The MDA promotes the separation between the specification of system
functionalities captured in aPlatform Independent Model(PIM) from the specification of their imple-
mentation on a particular platform defined in thePlatform Specific Model(PSM).

Platform Independent Model (PIM)

One or several PSMs can be associated to the same PIM. PIMs andPSMs may be specified in UML. For
instance, the PIM may be defined using standard UML or a domain-specific UML profile like the UML
profile for SDR [OMG07e], while the PSMs may rely on platform-specific UML profiles such as the
UML profile for CORBA and CCM. A PSM results from the mapping ofa PIM on the implementation
technologies available on a particular hardware/softwareplatform such as a programming language like
C, C++, Java, SystemC and VHDL, a meta-data language like XMLor a middleware platform like .NET,
EJB and CORBA.

For instance, the UML Profile for Software Radio [OMG07e] leverages the SCA using the MDA
approach in which PIMs of SDR applications are decoupled from their realization in PSMs such as
CORBA.

MDA raises the level of abstraction and reusability and introduces the concept ofdesign-time interop-
erability [MSUW04]. Indeed, MDA aims developers to build independentand reusable models of a sys-
tem and to combine or glue them "only at the last minute" to build and deploy the system. These models
are typically an application model and a platform model which are mapped together using a deployment
model to build a system. Model transformations may also be used to generate adapters [KMD05] or in-
teroperability bridges [Bon06]. The MDA is based on three main OMG standards: theUnified modeling
Language(UML) [OMG07b] for modeling, theMeta Object Facilities(MOF) [OMG05a] [OMG06c]
for meta-modeling and theXML Metadata Interchange(XMI) [OMG07c] for storing orserializingmod-
els and meta-models as persistent XML files.

MOF is a meta-model and modeling language to describe meta-models. A meta-model is a model
of a modeling language. A meta-model is a model whose instances are the data types of another model.
It specifies the concepts of the language used to define a model. A meta-model defines the structure,
semantics and constraints for a family of models conformingto this meta-model. Each model is captured
by a particular meta-model.

Meta-models allow the definition of model transformations from a source model conforming to a
source meta-model to a target model conforming to a target meta-model. XMI is a mapping from MOF
to XML. XMI is a XML schema allowing the exportation and importation of UML models from/to UML
modeling tools. XMI supports the interoperability and integration of different tools along the design

2.8. Model-Based Design (MBD) and Model-Driven Engineering (MDE) 31

flow. Any modeling language conforming to MOF can be associated to a XML schema describing its
structure.

A UML profile exists for MOF allowing the description of meta-models in UML. A MOF to CORBA
IDL mapping allows the manipulation of meta-models and its conforming models. Furthermore, theJava
Metadata Interface(JMI) is the mapping of MOF to Java.JMI allows the generation of Java interfaces
and their implementation to manipulate a meta-model and thecorresponding models. The generated
interfaces support the importation and exportation of models in XMI.

The objectives of the MDA are to increase the reusability of existing applications using models and
to ease the integration of new technologies and platforms. The maintenance of an application does not
consist in changing the application code but the high-levelmodel of the application itself. To target
another platform, developers select the corresponding target model and generate the specific implemen-
tation code.

The MDA is based on four abstraction layers:

• M0 contains the application data e.g. the name of a class instance

• M1 contains the model of the application data e.g. a class diagram

• M2 contains the meta-model of the modeling language e.g. UML concepts such as class, attribute
and instance.

• M3 contains the meta-meta-model describing the properties of the meta-data e.g. MOF with the
concept of class. M3 is self-descriptive and no other level is thus required.

An example of this four-layer meta-model hierarchy is depicted in Figure figure 2.3.

Figure 2.3: Example of this four-layer meta-model hierarchy [OMG07b]

32 Chapter 2. Models and Methodologies for Embedded Systems Design

Model Transformation

A fundamental concept of the MDE/MDA approach is the creation of models at different abstraction
levels and the transformation of models to map them togetherand build an implementation. This concept
is for instance applied by compilers and assemblers which automatically map a high abstraction level to a
lower abstraction level e.g. from a high-level programminglanguage to assembly language and machine
code. A system is modeled in a PIM model using a modeling language such as UML which is described
by a meta-modeling language such as MOF. The meta-model may be tailored to the particular business
concepts of an application domain like SDR. The definition ofa meta-model for an application domain
requires the experience of a domain expert.

Transformation Rules

Model transformation consists in translating a source model M1 conforming to the meta-model MM1
into a model M2 conforming to the meta-model MM2 using mapping rules. A model transformation
converts a model at a given abstraction level to another model at another abstraction level. The mapping
rules are reusable and systematic design decisions as opposed to code-driven engineering where the
mapping rules are implicit. Mapping rules are defined at the meta-model level and are not dedicated to
a particular model. They are applicable to the set of source models conforming to the meta-model for
which the mapping rules have been defined. Automatic model transformations reduce development time
and cost while increasing software quality.

The principles underlying the MDE/MDA approach are not restricted to UML and may be used for
Domain-Specific Languages(DSL) andDomain-Specific modeling Languages(DSML).

Face to the heterogeneity of specification, simulation, execution languages, and abstraction levels, a
model-based approach may provide a separation of concerns between the applications and the hardware/-
software platforms, the mapping between them and the interoperability between the different languages
and abstraction levels.

The MDA approach may support the specification of application models and hardware architecture
models using UML tools, the reuse of functional and physicalIPs, the refinement between abstraction
levels using mapping rules, the interoperability between abstraction levels during co-design and co-
simulation, and the interoperability between tools using standards such as XMI [DMM+05].

As model transformation is at the heart of the MDA approach, the OMG has standardized a model
transformation standard called MOFQuery / Views / Transformations(QVT) [OMG08e]. The QVT
specification is organized into a two-layer declarative part and an imperative part. The two-layer declara-
tive part includes two declarative transformation meta-models and languages at two different abstraction
levels calledRelationsandCorewith standard mapping rules from the Relations to the Core language.
The Relations language has a textual and a graphical syntax.The imperative part containsBlack Box
implementations and an imperative transformation meta-model and language calledOperational Map-
pingswhich extends both Relations and Core languages. QVT/BlackBox allows model transformations
with non-QVT languages, libraries and tools such as any programming language with a MOF binding
using the MOF-to-CORBA mapping or JMI, domain-specific libraries and tools. Implementations of
QVT are developed in the Model to Model Transformation (M2M)2 subproject of the top-level Eclipse
modeling Project and by France Telecom R&D with SmartQVT3 in the IST Modelware project4. Three
transformation engines are developed in the M2M project: Atlas Transformation Language (ATL)5,

2http://www.eclipse.org/m2m
3http://smartqvt.elibel.tm.fr
4http://www.modelware-ist.org
5http://www.eclipse.org/m2m/atl

2.9. Platform-Based Design (PBD) 33

Operational QVT Language (QVTO) a.k.a Procedural QVT (Operational Mappings), Relational QVT
Language (QVTR) a.k.a. Declarative QVT (Core and Relations). ATL is a QVT-like transformation
language and engine with a large community of users and an open source library of transformations.
SmartQVT is an open source model transformation tool implementing the MOF 2.0 QVT-Operational
language. Other transformation languages similar in capabilities to QVT include Tefkat, Kermeta, and
GREAT.

The MDA approach has been proposed for the co-design of embedded system notably by the LIFL
[DBDM03] [DMM +05] and to map waveforms to radio platforms [GTS+05].

In addition, a methodology for SDR based on MDA and a dedicated UML profile were proposed in
the scope of the A3S RNRT project [S.06] in which Thales participated. In the A3S design flow, the
modeling and the specification of the application is performed in a PIM. In parallel, the modeling and
the specification of the hardware platform is realized. Then, both models are mapped during hardware/-
software partitioning to build the PSM. Non-functional properties may be verified such as scheduling
and resource usage. The A3S design flow relies on a library of abstract UML components representing a
library of concrete hardware and software components.

2.9 Platform-Based Design (PBD)

Platform-Based Design(PBD) [SV07, CSL+03, SV02] consists in mapping an application model and a
platform model successively through various abstraction levels. PBD is neither a top-down or bottom-up
approach, but a middle-out approach, where an application instance from the application design space
and a platform instance from the platform design space are mapped together to form the desired em-
bedded system. The application model is an abstract and formal application specification, typically an
algorithm, whereas a platform model corresponds to a specific implementation. An application model
describes the functionalities to be implemented and the required services that should be provided by
the platform model characterized by platform constraints.This methodology is similar to the Gajski’s
Y-diagram, however the result of a mapping of an applicationto a platform model at level N is the
application model at the level N+1 that will be mapped on the platform model at level N+1. A platform-
based taxonomy reviews in [DPSV06] the existing methodology and tools from a platform viewpoint.
Moreover, UML has been used to specify application and platform models in PBD [CSL+03].

2.10 Conclusion

In this chapter, we presented the main concepts, models and methodologies used to design hardware/-
software embedded systems. These notions will be encountered all along this document.

As far as the SCA is concerned, the UML profile for CORBA v.1.0 is used to specify abstract software
interfaces, which are typically implemented in C/C++ by application and platform components. The
UML Profile for Software Radio a.k.a. PIM & PSM for Software Radio Components (SDRP orP 2SRC)
is based on the SCA and leverages its architecture with the Model-Driven Architecture (MDA) approach.
Waveform applications are roughly based on Finite State Machine for the control path e.g. to manage
a mode switch and a synchronous data flow for the data path. SDRapplications are an assembly of
waveform components, whose functionalities are organizedas in the OSI model. In this work, we focus
on the functionalities of the physical layer of SDR applications, which are implemented on FPGAs.
Traditionally, the design of modems relies on a shared memory model using register banks. Due to the
heterogeneous and distributed nature of SDR platforms, theSCA introduces the use of middlewares such
as CORBA and the SCA Modem Hardware Abstraction Layer (MHAL)for modem design. Hence, SDR
applications and platforms may be developped using a combination of both programming models. Due

34 Chapter 2. Models and Methodologies for Embedded Systems Design

to the portability need of the SCA and its use of OMG standardssuch as UML and CORBA IDL, the
SCA naturally tends to follow Model-Driven Architecture and Platform-Based Design.

As far as our work is concerned, we propose to combine the presented concepts, models and method-
ologies to build a common object-oriented component approach for embedded systems. Our objectives
are to describe applications are a set of components whose interfaces are defined by abstract specification
languages at system-level and to map these definitions to hardware, software or system implementation
languages. We propose language mappings from UML/IDL to VHDL and SystemC RTL/TLM accord-
ing to MDA. Application components have ports, which may be gouverned by different computation
models such as FSM and synchronous data flow. These components are deployed on a component-based
hardware/software platform following a platform-based design. To support transparent communications
between distributed components, we propose a layered middleware architecture framework supporting
both programming models and inspired from the OSI communication model.

Chapter 3

Hardware Communication Infrastructure
Architecture

Contents
3.1 On-chip buses .. . 35

3.1.1 Shared and Hierarchical Bus Architecture 36

3.1.2 ARM Advanced Microcontroller Bus Architecture (AMBA) 36

3.1.3 IBM CoreConnect .37

3.2 Interconnection Sockets 38

3.2.1 Wishbone . 38

3.2.2 Advanced eXchange Interface (AXI) 39

3.2.3 Altera Avalon .. 40

3.2.4 OCP-IP Open Core Protocol (OCP) 41

3.2.5 VSIA Virtual Component Interface (VCI) 43

3.3 Network-On-Chip (NoC) Architecture 44

3.4 Conclusion .. . 49

Numerous hardware communication interfaces and protocolsexist for System-On-Chip such as ARM
Advanced Microcontroller Bus Architecture (AMBA), Advanced eXtensible Interface (AXI) [ARM04],
IBM CoreConnect and its Xilinx’s implementation, Altera Avalon, OpenCores Wishbone [Ope02], and
Open Core Protocol International Partnership (OCP-IP) OCP.

Some critical application domains such as SDR have hard-real time constraints and require Quality-
of-Service such as guarantees regarding throughput, latency and arbitration policies.

In this chapter, we review some on-chip bus protocols used for communication between hardware
components.

This chapter is organized as follows. Section 3.1 presents on-chip bus architecture and some exam-
ples such as AMBA and CoreConnect. Section 3.2 describes interconnection sockets such as WishBone,
XI, Avalon, OCP and VCI. Section 3.3 presents network-on-chip characteristics such as topology, routing
and quality of services, along with some examples of NoCs. Finally, section 3.4 concludes this chapter.

3.1 On-chip buses

In this section, we present some on-chip buses which are commonly used in System-on-Chips.

35

36 Chapter 3. Hardware Communication Infrastructure Architecture

3.1.1 Shared and Hierarchical Bus Architecture

An on-chip bus is shared between all interconnected entities. These entities may have a master or slave
role and associated to a bus address. A master initiates bus requests such as write or read commands,
while a slave receives requests and may return read data. A bus is typically composed of a command
bus, an address bus, write and read data buses. In write transfers, a master sends a write command, a
write address within the slave address space and the data to be written at the given address in the slave.
The slave receives the write message and writes the data at anaddress offset. In read transfers, a master
sends a read command and a read address, while the slave returns the data at the given address. Only a
single master can communicate with a single slave at each time.

A hierarchical bus is an assembly of two or more buses which are interconnected by bridges. It
divides a SoC into different traffic classes such as a high-speed bus for high-performance IP cores such
as processors and memories, and a low-speed bus for low peripheral IP cores like I/O devices.

A shared and hierarchical bus may have acentralizedor distributedarchitecture. The centralized bus
architecture is composed of a bus arbiter and an address decoder. The bus arbiter selects a unique master
among the masters that compete for the bus according to some arbitration policies such as priority-based
or round-robin schemes. The address decoder selects a unique slave among all slaves according to the
address provided by the granted master. Examples of shared and hierarchical bus include ARM AMBA
2 and IBM CoreConnect.

The distributed bus architecture is based on a bus wrapper for each IP core. Wrappers are configured
with TDMA slots, then each wrapper counts the clock cycles until it can transfer data. This provides a
simple approach to provide guaranteed services using a traditional bus approach. An example is HIBI
[Lah04] [SKH05].

3.1.2 ARM Advanced Microcontroller Bus Architecture (AMBA)

Figure 3.1: Example of AMBA-based System-On-Chip

As illustrated in figure 3.1, the Advanced Microcontroller Bus Architecture (AMBA) developed by
ARM is an on-chip shared and hierarchical bus specification targeting high-performance System-On-
Chips.

The AMBA specification defines three buses: the Advanced High-performance Bus (AHB), Ad-
vanced System Bus (ASB) and the Advanced Peripheral Bus (APB). This bus architecture consists of
multiple AHB masters and AHB slaves, an AHB address decoder and an AHB bus arbiter. The AHB
decoder serves to decode the address of a data transfer and toselect the appropriate slave. This decoder
is implemented as a single centralized decoder. The role of the AHB bus arbiter is to grant access to
the AHB bus, the shared resource, to only a single bus master among the masters wanting to transfer
data. The data bus width may be 32-, 64-, 128-, or 256-bit, while the address bus width is 32 bit. The

3.1. On-chip buses 37

AMBA bus protocol pipeline supports single read/write transfer, burst transfer with 4, 8 or 16 beats and
split transactions. The granularity of a data transfer may be a byte, half-word or a word. The AHB is
used for high-performance communications between modulessuch as processors, memories and DMA
controllers. The ASB is a subset of the AHB when all AHB features are not required by a SoC. The ASB
is deprecated in favor of the most widely used AHB.

The APB is designed for on-chip peripheral devices that can be slow and require less high-performance
communications and power consumption. The APB can be indifferently used with the AHB or the ASB.
The address bus width is 32 bit. Its architecture supports a single master i.e. a AHB-APB bridge and
multiple slaves. The APB does not support Pipelined and burst transfers. The APB protocol requires two
cycles to perform a single read/write transactions. All these bus are interconnected to each other by a
bridge.

For instance in the DiMITRI MPSoC for Digital Radio Mondiale(DRM) [QSC04] presented in
section 8.2, an ARM processor and a Viterbi decoder IP core are interconnected by an AHB bus, while
an APB bus is used for I/O IP cores such as analog RF frontends.

3.1.3 IBM CoreConnect

Figure 3.2: CoreConnect Bus Architecture

CoreConnect is a high-performance on-chip bus architecture developed by IBM and presented in
figure 3.2. The CoreConnect bus architecture contains buses: the Processor Local Bus (PLB), the on-chip
peripheral bus (OPB) and the Device Control Register (DCR) bus. The PLB bus is a high-performance
and low latency bus for hardware modules such as processor core, memories and hardware accelerators.
The OPB bus is designed for low speed and low power peripheraldevices. The DCR bus is used to
transfer data between the general purpose registers of a processor and the device control registers. DCR
bus removes configuration registers from the memory addressmap, which reduces loading and thus
improves bandwidth of the PLB.

As an example, the hardware implementation of CoreConnect in Xilinx FPGAs was used in the
dynamic partial reconfiguration of FPGAs under the control of the SCA Core Framework [SMC+07]
presented in paragraph 6.7.6.0.0 and in the hardware middleware prototype presented in section 8.3.3.

38 Chapter 3. Hardware Communication Infrastructure Architecture

3.2 Interconnection Sockets

A socket is a point-to-point hardware interface used to connect an IP core to an on-chip communication
bus. A socket allows the separation of concerns between computation and communication. The objec-
tive of socket should be independent from any interconnection network to improve IP cores portability,
interoperability and reusability regardless of the bus/network protocol. In the following, we present five
interface sockets: WishBone, AXI, Avalon, OCP, and VCI.

3.2.1 Wishbone

Figure 3.3: Wishbone socket interface [Ope02]

Wishbone was developed by Silicore and is in the public domain. The Wishbone specification is
maintained by OpenCores.org6, which is a web site hosting open source IP cores compliant with Wish-
bone. According to its specification [Ope02], the purpose ofWishbone is foster design reuse by creating
a common, logical interface between IP cores.

As represented in figure 3.3, Wishbone specifies a simple master-slave interface for high-speed data
transfers. This interface is configurable in terms of signalwidth. The address bus can support an address-
ing space up to 64 bit. The data bus width can be configured from8 to 64 bits. Wishbone supports four
types of data transfers: single or block read/write, Read/Modify/Write (RMW) e.g. to support atomic
transactions and constant and incrementing burst. The Wishbone interface is based on a two-phase hand-
shaking protocol and can support retry and error.

Wishbone provides flexibility usingtagsignals, which are user-defined signals attached to an existing
group of signals i.e. the address bus, the data bus and the cycle bus. For instance, a parity bit can be
added to the data bus as a data tag. However, these tags do not guaranty the interoperability of WishBone-
compliant IP cores. Such extensions must thus be well-documented to minimize integration problems.

The Wishbone interface supports streaming and incrementalburst transfers to transfer a large amount
of data. Streaming bursts allow successive transfers at thesame address like for instance to read/write a
FIFO. Incremental bursts allow successive transfers at increasing addresses like for instance to read/write

6http://www.opencores.org/

3.2. Interconnection Sockets 39

a RAM. In this last case, the transfer address is incrementedwith a linear or wrapped increment. In
linear bursts, the address is incremented by one according to the data width e.g. 4 for 32-bit transfers. In
wrapped burst, the address is also incremented by one, but the address is modulo the size of wrap, which
is 4, 8 or 16 in Wishbone.

Wishbone supports various topologies such as point-to-point, shared bus, data flow or crossbar
switch. However, no arbitration schemes are specified and arbitration policies must be defined by the
users. To improve design reuse, the Wishbone specification requires that Wishbone-compliant IP cores
are described in a template document similar to a datasheet.Examples of Wishbone compliant IP cores
can be freely downloaded from the OpenCores web site along with a Wishbone interconnection fabric
generator and a Wishbone-to-AHB bridge.

As more advanced bus features such as access control are not defined by the WishBone specification,
they have to be developed for more complex SoCs.

3.2.2 Advanced eXchange Interface (AXI)

Figure 3.4: AXI write interface

TheAdvanced eXchange Interface(AXI) supports low-latency and high-speed data transfers. AXI
is part of AMBA 3.0 and is backward compatible with the AHB andAPB interfaces from AMBA 2.0.
AXI specifies five communication channels: two read channelsand three write channels shown in 3.4.
The read channels consist of a read address channel for address and control information and a read data
channel to carry the read data. The write channels is composed of a write address channel for address
and control information, a write data channel for the written data and a write response channel to retrieve
write responses.

These five channels are unidirectional and independent. In each channel, a two-phase handshaking
protocol is used to acknowledge transfers of control and data between the source and the destination.
The source asserts theVALID signal to indicate that the data are valid or that the controlinformation are
available, while the destination activates theREADY to indicate that it can accept the data. The address
and data bus are configurable and their width may be between 8 and 1024-bit wide. The AXI protocol
is packet-oriented. Each AXI transaction is a burst from oneto 16 data. The size of a transfer is from
8 to 1024 bits. Burst may be at constant, incrementing or wrapped addresses. ALAST signal indicates

40 Chapter 3. Hardware Communication Infrastructure Architecture

the end of a transaction. The response to a request may be out-of-order. Atomic operations guarantee
data integrity through exclusive locked accesses. Non-aligned transfers enable burst to start at unaligned
addresses.

AXI defines various optional advanced features. A protection unit supports three types of access:
normal or privileged, secured or not, instruction or data. Asystem cache proposes optional bit attributes:
thebufferable bitallows to delay a transaction for an arbitrary number of cycles, thecacheable bitallows
multiple write or read fetches to be merged, a read (resp. write) allocation bit enables to allocate a
read (resp. write) transfer in case of cache miss. AXI also supports alow-powerinterface which allows
peripheral devices to request the activation or deactivation of their clock.

3.2.3 Altera Avalon

The Altera Avalon protocol contains two open but proprietary interface protocols: the Avalon Memory-
Map (MM) Interface and the Avalon Streaming (ST) Interface.

Avalon Memory-Map (MM) Interface

Figure 3.5: Example of System-On-Chip based on Avalon Memory-Map interface [Alt07a]

The Avalon Memory-Mapped [Alt07a] interface specificationdefines address-based read/write in-
terfaces typically used by master and slave IP cores such as microprocessors, SRAM memory, UART,
timer, etc. As presented in figure 3.5, the Avalon MM interface is a lightweight and high-performance
socket interface, which resides between application or platform IP cores and an interconnect switch fab-
ric. This fabric supports the interconnection of any type ofmaster and slave IP cores e.g. regardless
of their data width. The number and type of interface signalsused by an IP core are limited to those
required to support its data transfers e.g. without burst signals. The Avalon-MM interface has dedicated
control, address, data signals. The data bus may have an arbitrary data width up to 1024-bit and is not

3.2. Interconnection Sockets 41

mandatorily an even power of two. The Avalon-MM interface isan open standard and does not require a
license to be used.

Avalon Streaming (ST) Interface

Figure 3.6: Example of System-On-Chip based on Avalon Streaming interface

The Avalon Streaming Interface allows component designersto build interfaces for unidirectional
flow of data, including multiplexed streams, packets, and DSP data. The Avalon-ST interface defines
a protocol for data transfers from a source interface to a sink interface. The Avalon-ST interface sig-
nals can describe traditional streaming interfaces supporting a single stream of data without knowledge
of channels or packet boundaries. The interface also supports burst and packet transfers with packets
interleaved across multiple channels.

3.2.4 OCP-IP Open Core Protocol (OCP)

Figure 3.7: Open Core Protocol (OCP) socket interface

TheOpen Core Protocol(OCP) [OI06] is a hardware interface specification maintained bythe OCP-
IP organization created in 2001 by members such as TI, MIPS, Sonics, Nokia and ST. As illustrated in
figure 3.7, OCP aims at providing an interconnection standard independent of any bus to enable true
reuse. OCP offers configurable and rich protocol semantics,which can be mapped on any protocol. As
stated in the specification, "the OCP is the only standard that defines protocols to unify all of the inter-
core communication". OCP is highly configurable thanks to profiles which captures IP cores commu-
nication needs notably interruption or error signaling. OCP supports communication protocols ranging

42 Chapter 3. Hardware Communication Infrastructure Architecture

from simple acknowledge to multiple out-of-order pipelined concurrent block transfers. The OCP in-
terface acts as a contract between two communicating entities, a master and a slave. Both entities are
directly connected via point-to-point signals. Each OCP-compliant IP core is connected to a wrapped
interconnection network via a complementary master, slaveor both OCP interface. Two IP cores can
thus have a pair of master/slave entities for peer-to-peer communications. The OCP promotes a socket
based layered architecture [OIb].

This communication architecture reminds the one of distributed systems like CORBA. When two
OCP compliant IPs core communicate through an on-chip bus, the initiator or client sends a request in
the form of command, control and data signals to a kind of stubcalled bus wrapper interface. It consists
of a slave entity and a bus initiator which converts an OCP request into a bus access according to the
underlying bus protocol. The slave entity acts as a proxy andthe bus initiator as an adapter. A kind of
skeleton receives the request and achieves the dual work. Itbuilds up again a valid OCP request from
the on-chip bus transfers and an OCP master entity applies iton the point-to-point link towards the slave
side of the target IP core. This socket approach provides communication transparency.

OCP supports advanced features such as threads identifiers to support interleaved requests and replies
and out-of-order transaction completion, connexion identifiers for end-to-end identification from one IP
core to another one through the underlying interconnectionnetwork and extensions for test (JTAG).
Address and data width are not necessarily a power of two. This is for instance useful for DSP with
12-bit bus

OCP have well-defined protocol semantics. The layered hierarchical protocol is made of transactions,
transfers and phases. A transaction is composed of a set read/write transfers. A transfer may have three
phases: request from master to slave, response from slave tomaster and optional data handshake for write
operations. Each phase has a two-way handshaking protocol.The decoupling of these phases allows high
performance through pipelining. At each phase is associated of group of signals. All OCP signals are
point-to-point, unidirectional and synchronous to the OCPclock. There are three groups of signals: data-
flow, sideband and test signals. The data flow signals are composed of basic signals and simple, burst,
tag and thread extensions. Only theMCmd andClk signals of the basic signals are mandatory, while all
the others signals are optional and selected by profiles. Thebasic signals provide signals for address and
data bus, request and data acknowledge.MCmd signals encodes eight commands in MCmd: basic write,
basic read, exclusive read, linked read, non posted write, conditional write and broadcast.

OCP defines posting semantics for writes. In non posted writes, a response is send after a basic,
conditional or broadcast write commands (writeresp_enable= 0). SResp encodes four responses: no
response (NULL), data valid/accept (DVA), request failed (FAIL) or response error (ERR). The simple
extension add support to signal multiple address spaces, byte enable and in-band information in any of
the three OCP phases. This extension can be used for error correction.

The burst extension enables to regroup several independenttransfers associated by an address rela-
tionship. Burst transfers use more efficiently available bandwidth by sending only the starting address,
the address relationship and the length of the burst. OCP supports incrementing, wrapping, user-defined
with or without packing of data and streamed burst. Burst address sequences are packing or not. With
packing, data width conversion between different OCP interfaces is achieved by aggregating words from
narrow-to-wide and splitting from wide-to-narrow. Without packing, data width conversion is achieved
by padding words from narrow-to-wide and using byte enable,and stripping from wide-to-narrow. The
OCP support precise (exact) and imprecise (approximate) burst length, and packets thanks to single re-
quest/multiple data (SRMD) bursts.

The tag extension enables concurrent transfers within a single shared flow of control. Without tags,
the order of slave responses shall match the master request one. Tags acts as request identifiers and allow
out-of-order responses. The thread extension enables concurrent transfers within independent flows of
control. Whereas transfers within a single thread shall be ordered unless tags are used, transfers within

3.2. Interconnection Sockets 43

different thread are independent and have no ordering constraints. Threads are identified bythread ID.
Flow control or split transactions may use thread busy signals. Sideband or out-of-band signals add
support for control information: reset, interrupt, error and core-specific flags between master and slave;
control and status between an IP core and the rest of the system. Test signals support scan, clock control
and JTAG.

OCP enables partial words transfers thanks to configurable byte enables. The OCP defines a word
as the natural transfer unit of a block. The OCP word size corresponds the configurable data width of
power-of-two or not. Byte enable specify which octets are tobe transferred. Transfers can be aligned
within precise incrementing burst withburst_alignedparameter : the number of transfers is a power-of-
two and the starting address is aligned with the burst length. The parameterforce_alignedforce the byte
enable patterns to be aligned to a power-of-two size. The endianness of OCP interfaces can be little, big,
both or neutral and is specified thanks to the parameter endian. Byte enable allows to be endian neutral.

Connections establish a end-to-end logical link between a system initiator and a system target in
a global scope. A contrario, threads have a local scope in thepoint-to-point logical link between a
master and a slave entity. Connections are identified byconnection ID. The OCP specification proposes
a networking analogy: thread ID refers to the data link layer(level 2), whereas connection ID refers to
the transport/session layer (level 4/5). A connection ID can be allocated by the system and associated to
an initiator for identification by the target (access control) or a QoS.

Others strength of OCP are documentation, configuration, verification and compliance. Interface
configuration file written in TCL provides a description of non OCP interface signals: width, direction
and type. Core RTL configuration file is required to describe acore and its interfaces: version, memory
map, matching between custom signals names and OCP ones. Core synthesis configuration file doc-
uments clock, area and timing. The OCP specify native profiles to describe native OCP interfaces for
block data flow, register access, AHB like bus and AXI like read/write channels. Layered profiles provide
additional features to existing profiles like security.

As an example, we use OCP to encapsulate custom IP core interfaces as detailed in paragraph 8.3.2.0
and for the hardware middleware prototype presented in section 8.3.3.

3.2.5 VSIA Virtual Component Interface (VCI)

Figure 3.8: VSIA Virtual Component Interface (VCI)

44 Chapter 3. Hardware Communication Infrastructure Architecture

TheVirtual Component Interface(VCI) [Gro01] was standardized by the Virtual Socket Interface7

Alliance (VSIA). The VSI Alliance was an open internationalorganization founded in 1996 by tool
vendors such as Mentor Graphics, Cadence Design Systems andSynopsys and others companies from
the SoC industry such as ARM, ST, NXP, Intel and IBM. It aimed at defining standards to improve the
productivity, development, integration (see figure 3.8), and reuse of IP cores. The VSI Alliance was
dissolved in 2008 and the maintenance and ongoing development of its documents were transferred to
other international organizations. For instance, future works related to theHard Intellectual IP Tagging
Standardare moved to the SPIRIT consortium8, while the Virtual Component Interface Standard (On-
Chip Bus - OCB 2 2.0) [Gro01] are archived by OCP-IP. The VSI Alliance dedicates all copyright of its
documents notably the Virtual Component Interface Standard to the public domain.

The differences between VCI and OCP are described in the FAQsof the OCP-IP web site9. VCI is
considered as outdated as it has not evolved for many years and has been superseded by OCP. Indeed, VCI
can be viewed as a subset of OCP that goes further with not onlydata flows signals, but also standardizes
control and test signals.

As an example, VCI is used in the SoCLib10 virtual platform for multi-processors system on chips.

3.3 Network-On-Chip (NoC) Architecture

Traditional bus architectures are not scalable and providepoor performance when the number of IP cores
to integrate in SoC platforms significantly increases. Network-On-Chips are recognized in academia and
industry as the next generation of on-chip communication infrastructure for SoCs [BM02]. Some surveys
on network-on-chips have been published like [BM06] [SKH07] where 60 NoCs are briefly compared
on criteria such as topology, routing and switching scheme.

Distributed Layered Architecture

As illustrated in figure 3.9, the basic building blocks of a network-on-chip are the following [BM06]:

• Nodes contain the computation, storages and I/O IP cores such as processors, memories, hardware
accelerators and RF front-ends.

• Network Adapters (NA) provides the Network Interface through which IP cores communicate
across the network. They support the separation of concernsbetween computation in the nodes
from communication in the on-chip interconnect. Network Adapters are in charge of end-to-end
flow control and encapsulation of core messages or transaction into packets with routing infor-
mation such as X-Y coordinates for packet-switch networks or connection identifier for circuit-
switched networks. A Network Adapter provides two interfaces: aCore Interface(CI) at the core
side and aNetwork Interface(NI) at the network side. It offers high-level communication services
to the node built upon the primitive read/write services implemented by the network. The Core
Interface of the NA may implement a standard interconnection socket such as OCP [OI06], AXI
[ARM04], VCI [Gro01] or Philips DTL (Device Transaction Level). The Network Interface may
be specific for each NoC thanks to the decoupling offered by the Network Adapter.

• Switches or routers route the packets from the nodes to other routers and vice versa according to a
static or dynamic adaptive routing policy.

7http://vsi.org
8http://www.spiritconsortium.org
9http://www.ocpip.org/about/faqs/vsia

10http://www.soclib.fr

3.3. Network-On-Chip (NoC) Architecture 45

Figure 3.9: Network-On-Chip main components [Bje05]

46 Chapter 3. Hardware Communication Infrastructure Architecture

• Links corresponds to the point-to-point buses that interconnect the routers. They provide physical
or logical channels to transfer atomic unit of data called flits (flow control units) or phits (physical
units) into which packets are fragmented.

Topology

Figure 3.10: Example of network topology [Bje05]

Like in the networking domain for desktop computers, a network topologyfor NoC designates the
arrangement of nodes, routers and links. As illustrated in figure 3.10, the typical types of network topol-
ogy include point-to-point, bus and hierarchical bus, crossbar, star, ring, mesh, tree and fat-tree, torus
and hybrid topology. Each topology provides different trade-off between scalability, area consumption,
throughput and latency. Most NoCs use a 2D mesh and torus notably to ease hardware placement and
routing on the regular resources of FPGAs and ASICs. NoCs maybe customized to meet the specific
requirements of a given application domain e.g. with additional links.

Switching policy

Switchingrefers to the basic multiplexing of data among switch ports,whereasrouting performs smarter
processing such as find a path. Incircuit switching , a path orcircuit is allocated from a source to a
destination node through a set of routers and links whose resources (e.g. time slot, buffer) are reserved
before transferring data. The path is set-up then torn down for each data transfer. The routing information
only consists of a circuit or connection identifier. Circuitswitched networks provide connection-oriented
communication Circuit switching necessitates less buffering since the data can be directly forwarded.
This mechanism may be used to guarantee the QoS of continuousdata streams at the expense of the
latency required to establish the circuit.

In packet switching, a packet is routed at each router depending on the routing information in-
cluded in the packet such as the X-Y coordinate in a 2D mesh. Packet switching requires more buffering
than circuit switching and may introduce additional transfer jitter which are harmful to provide appli-
cations with performance guarantees. Packet switched network may support both connection-less and
connection-oriented communication. This switching policy is the most used, for instance in 80% of the
NoCs compared in [SKH07]. Some NoCs can support both switching techniques like Octagon and Slim-
Spider (see [SKH07]). Three usual strategies may be employed to transfer packets through a router:
store-and-forward, cut-throughand wormhole. In store-and-forward switching, the packet is entirely
stored in the router before being forwarded to another router according to the routing information in the
packet header, while the packet is forwarded in cut-throughswitching as soon as the routing information
are available. Both schemes require the router to have a buffer size of at least one packet. In wormhole

3.3. Network-On-Chip (NoC) Architecture 47

switching, a packet is fragmented into several flits, which are routed as soon as possible like the cut-
through switching. The packet may be spread among several routers along the data path like a worm. In
this case, the router needs less buffering resources and mayrequire at least one flit. Wormhole switching
is widely used in NoCs to reduce silicon area while providingthe same switching functionality.

Routing

Routing consists in forwarding a packet to the right router or node according to a routing strategy. Rout-
ing may bedeterministicor adaptive. In deterministic routing, all packets are routed along thesame
path from a source to a destination node as opposed to adaptive routing. Deterministic routing schemes
include source routing and X-Y routing. In source routing, the source node provides the route e.g. a list
of router included in the packet header up to the destinationnode. Each router may remove itself from
the list before forwarding the packet to the next router and gradually reduce the size of the packet header.
In X-Y routing, packets are forwarded in one direction alongthe columns (X) or the rows (Y) then along
the other direction up to the destination node. In adaptive routing, the path is re-determined at each hop
from one router to another according to some criteria such aslink congestion. Adaptive routing may thus
be used to dynamically find a better path to reduce congestion, bypass faulty routers and support load
balancing [BM06]. However, additional hardware resourcesare required to avoid livelocks/deadlocks
and re-order out-of-order packets.

NoCs may also support routing schemes for group communications between one source node and
several destination nodes such as one-to-all i.e. broadcast communications, one-to-many i.e. multicast
communications [BM06].

Flow Control

NoCs may control the flow of data usingvirtual channels(VC). A virtual channel is a logical channel
within a router or network adapter. It has its own buffering resources, but shares a common physical
channel i.e. a link with other virtual channels. For instance, a router may have between 2 and 16 virtual
channels per physical channel [BM06]. Obviously, virtual channels consume more area and may increase
power consumption and transfer latency. However, they alsoprovide some additional benefits such as
decreasing latency, better wire efficiency, better performance, avoiding deadlock and providing different
levels of QoS.

Quality of Services

Some high-performance and real-time applications may require stringent guarantees on the Quality of
Services (QoS) provided by NoCs. Each IP core in a SoC may havedifferent communication needs
and the level of services proposed by NoCs should be independent of the number and nature of IPs
to be interconnected. The QoS guarantees may concern properties such as timing (throughput, latency
and jitter), integrity (error rate, packet loss) and packetdelivery (in-order or out-of-order) [SKH07].Two
classes of QoS are commonly distinguished:Best-Effort(BE) services andGuaranteed Services(GS).
Best Effort services provide no guarantees on packet routing and delivery. Guaranteed Services mostly
provide predictable throughput, latency and jitter using Time-Multiplexing Division (TDM) like in Nos-
trum [MNTJ04], AEthereal [RGR+03] and HIBI [SKH05] or Spatial-Multiplexing Division (SDM) like
in [MVS+05]. To provide hard-real time guarantees and avoid congestion, each data stream must be
assigned to a dedicated connection. A connection is established by creating a virtual circuit with logi-
cally independent resources such as virtual channels, temporal slots (TDM) or individual wires in links
(SDM). Each one of these resources may be associated with a priority to allow high-priority packets to
be routed before lower-priority packets.

48 Chapter 3. Hardware Communication Infrastructure Architecture

Some router implementations implement both Best-Effort and Guaranteed Services like AEthereal
[RGR+03] and Mango [Bje05].

NoC services for platform-based design

To support the portability of applications from one NoC platform to another and reuse a NoC platform
in different applications, the interfaces of the services required by the application layer and provided by
the platform layer should be standardized. Obviously, computer network protocols [Tan96] cannot be
directly applied to NoCs and must be reduced to limit the necessary overhead in terms of memory/area
footprint, latency and throughput.

Some works have been carried out to propose a layered communication model for NoCs [BM06]
[MNT+04] [SSM+01].

Millberg et al. propose a communication protocol stack for the Nostrum NoC [MNT+04]. The
Nostrum protocol stack provides a layered communication architecture based on four layers: physical
layer, data link layer, network layer and transport layer.

Each layer process different granularity of data. The Physical Layer deals with the physical transfer
of words from the output port of a switch to the input port of another. The Data Link Layer is in charge
of the reliability of frames transmitted on top of the physical layer using synchronization, error and flow
control. The Network Layer copes with the delivery and routing of packets from the source network
adapter to the destination network adapter and the mapping between a node address and an application
process identifier. This layer may provide differentiated services such as best effort delivery and guar-
anteed bandwidth using virtual circuits. The Transport Layer establishes an end-to-end communication
between nodes with flow-control e.g. to avoid congestion.

The NoC from Arteris is based on three layers: transaction, transport, and physical layers [Mar05].
Each layer is independent of the other layers. The transaction layer provides IP cores with communica-
tion primitives. ANetwork Interface Unit(NIU) transforms IP core interface protocols such as AHB,
AXI, VCI and OCP to the interface protocol of the transactionlayer. The transport layer routes priori-
tized packets among NIUs according to a given quality of service. The physical layer transfers the raw
packets on the physical wires.

Examples of NoCs

Numerous examples of NoCs have been proposed in the literature including AEthereal [RDP+05] from
NXP, MANGO [Bje05] from DTU and Nostrum from KTH, SPIN from LIP6,µSpider from LESTER.

Nostrum is a packet-switch NoC with a 2D-mesh topology to simplify layout and switches and pro-
vide high-bandwidth and scalability. Nostrum contains resources and switches which are interconnected
by channels. Each resource is a computation or storage unit.A switch routes packet and may include
queues to store messages and avoid congestion. A channel comprises two one-directional point-to-point
buses between a pair of switches or between a resource and a switch. Nostrum supports both best ef-
fort (BE) and guaranteed latency (GL) Quality-of-Service [Jan03]. In BE, packets are independently
routed accorded to a long header including the whole addressinformation. They may travel over dif-
ferent paths depending on the network congestion and thus can not provide latency guarantees. In GL
communications, an independent virtual circuit is first opened by allocating dedicated time slots in ev-
ery switch along the path from the source to the destination node and provide a bounded latency. GL
packets contains short headers without address information which are configured in switches. The Nos-
trum architecture is organized in four communication layers: a physical, link, network and session layer
[MNT+04]. Communication primitives have been defined to support both shared memory and message
passing. These primitives allows the definition of QoS properties such as direction, burstiness, latency,

3.4. Conclusion 49

bandwidth, reliability for message passing channels. The NoC Assembler Language (NoC-AL) [Jan03]
provides an interface contract between applications and NoC platforms that specifies application func-
tionality, communication semantics and performance, and the mapping of tasks to resources. NoC-AL
describes the architecture of a NoC in terms of the topology,number, type and location of its resources
and the mapping of application processes on these resources. These resources communicate through
explicit channels via predefined communication primitivessimilar to the Berkeley socket API.

3.4 Conclusion

In this chapter, we presented the architecture and interface of on-chip buses and network-on-chips. A
shared and hierarchical bus may have a centralized architecture like ARM AHB and IBM CoreConnect,
or adistributedarchitecture like HIBI. The centralized bus architecture is composed of a bus arbiter and
an address decoder. A bus arbiter selects a unique master among several that compete for the bus, while
an address decoder selects a unique slave among all slaves according to the address provided by the
granted master. The distributed bus architecture is based on a bus wrapper for each IP core. Wrappers
are configured with TDMA slots, then each wrapper counts the clock cycles until it can transfer data.

A socket is a point-to-point hardware interface used to connect an IP core to an on-chip communi-
cation bus. A socket allows the separation of concerns between computation and communication. The
objective of a socket interface should to be independent from any interconnection network to improve
IP cores portability, interoperability and reusability regardless of the underlying bus/network protocol.
To provide communication transparency to IP cores, a socketbased layered architecture converts socket
transactions into bus transactions.

Unfortunately, there is not one but several open socket interfaces such as AXI, VCI and OCP. This
multitude of socket interfaces do not favour the adoption ofa socket approach. Socket standards define
low level data transfer interfaces and protocols at Register Transfer Level. As modeling and verification
at this level are very slow, new modeling methodologies havebeen developed like Transaction Level
Modeling (TLM) to raise the abstraction level and the simulation speed. We will present TLM in chapter
2 section 2.7.

Traditional shared bus architectures are not scalable and provide poor performance when the number
of IP cores to integrate in SoC platforms significantly increases. Network-On-Chips (NoCs) are rec-
ognized in academia and industry as the next generation of on-chip communication infrastructure for
SoCs.

NoCs have a distributed layered architecture composed of nodes, network adapters, switches/routers
and links. Nodes may be computation, storage or I/O nodes. Network adapters adapt IP cores interfaces
and network interfaces, and en/de-capsulate transactionsinto/from packets. Switches route packets in
the NoC. Links are point-to-point buses between switches that carry packets.

The two main switching policies are circuit switching and packet switching. In circuit switching, a
path or circuit is allocated from a source to a destination node through a set of routers and links whose
resources (e.g. time slot, buffer) are reserved before transferring data. In packet switching, a packet is
routed at each router depending on the routing information included in the packet.

A network topology designates the arrangement of nodes, routers and links. The typical types of
network topology include point-to-point, bus and hierarchical bus, crossbar, star, ring, mesh, tree and
fat-tree, torus and hybrid.

NoCs may control the flow of data using virtual channels. A virtual channel is a logical channel
within a router or network adapter. It has its own buffering resources, but shares a common physical
channel i.e. a link with other virtual channels.

The choice between a bus and a NoC depends on the number of IP cores to be interconnected and

50 Chapter 3. Hardware Communication Infrastructure Architecture

the required performances in terms of latency and throughput. As a rule of thumb, a bus is preferred
below 15/20 IPs in a SoC to minimize area and latency, otherwise a NoC is better for its scalability and
throughput [Bje05].

NoCs may typically provide two classes of Qualities of Service (QoS): Best Effort (BE) services
provide no guarantees on packet routing and delivery, whereas Guaranteed Services (GS) mostly pro-
vide predictable throughput, latency and jitter using Time-Multiplexing Division (TDM) or Spatial-
Multiplexing Division (SDM).

An important point is that custom or legacy military applications such as NATO standards and com-
mercial applications such as 3G/4G do not have the same performance requirements, and therefore do
not need the same hardware/software architectures. In traditional hardware/software architectures of
modems, digital signal processing IP cores in the data path do not need to be shared and can be typically
interconnected via point-to-point links to maximixe throughput and reduce latency. For the control path,
off-chip or on-chip shared buses commonly support communication between DSPs and FPGAs. As the
number of IPs in military waveform applications are typically inferior to 20, the main on-chip communi-
cation architectures usable in a SCA context are classical on-chip buses. However, future high data rate
modems may require NoC architecture.

We will see in our contribution presented in chapter 7 how we used some of these concepts for our
hardware middleware prototype. In the next chapter, we willpresent the concepts of the object-oriented
approach and their applications for hardware/software design.

Chapter 4

Object-Oriented Design (OOD)

Contents
4.1 Fundamental Concepts 52

4.1.1 Origin . 52

4.1.2 Identifiable Objects as Instances of Classes 52

4.1.3 Method Invocation and Message Passing 53

4.1.4 Encapsulation: Interface and Implementation(s) 54

4.1.5 Inheritance and White-Box Reuse 55

4.1.6 Polymorphism .56

4.1.7 Relationship .. 57

4.1.8 Concurrency, Synchronization and Coordination 58

4.1.9 Persistence .. 61

4.1.10 Distribution 61

4.2 Object-Oriented Hardware Design 63

4.2.1 Object-Oriented Extensions to Hardware DescriptionLanguages 63

4.2.2 Object-Oriented Languages for Hardware Design 64

4.2.3 Object-Oriented Hardware Architecture 66

4.2.4 Model Driven Engineering (MDE) for Hardware Design 76

4.3 Synthesis .. . 84

4.4 Conclusion .. . 84

In this chapter, the terminology and main concepts of the concurrent and distributed object-oriented
model are introduced notably the principles of encapsulation, inheritance and polymorphism. The subtle
differences of terminology, semantics and implementationof these concepts are also presented when
relevant in the UML object-oriented modeling language and in object-oriented programming languages
such as SmallTalk, C++, Java and Ada.

A state of the art is then presented on the applications of these concepts in hardware/software co-
design of embedded systems. Finally, the intrinsic strengths and weaknesses of the object paradigm are
identified to justify the emergence of the more evolvedcomponent-oriented modelpresented in the next
section.

This chapter is organized as follows. Section 4.1 presents the fundamental concepts underlying the
object model such as the equivalence between method invocation and message passing, encapsulation,

51

52 Chapter 4. Object-Oriented Design (OOD)

inheritance and polymorphism. Section 4.2 describes Object-Oriented Hardware Design such as Object-
Oriented Hardware Description Languages (OO-HDL), Object-Oriented Languages for Hardware De-
sign like SystemC, Object-Oriented Hardware Architectureand Model Driven Engineering (MDE) for
Hardware Design. Section 3.3 presents network-on-chip characteristics such as topology, routing and
quality of services, along with some examples of NoCs. Section 4.3 proposes a synthesis on the works
presented in this chapter. Finally, section 4.4 concludes this chapter.

4.1 Fundamental Concepts

Surprisingly, no real consensus seems to exist about the concepts characterizing the object model and
their definition [Arm06]. Armstrong reviewed the OO literature from 1966 to 2005 to identify the fun-
damental concepts underlying the object model. She identified 39 concepts and classified them by their
number of occurrences in the literature. The eight first retained concepts mentioned by more than 50%
of the reviewed papers were inheritance, object, class, encapsulation, method, message passing, poly-
morphism and abstraction. Instead of selecting only eight of these concepts, we will attempt to put
together all these concepts and stress their relationshipsto build the whole concurrent and distributed
object paradigm.

4.1.1 Origin

The object-oriented approach evolved from previous works achieved during the sixties in various re-
search domains such as data structure abstraction, system simulation, operation systems, database mod-
els, graphical user interface (GUI) and artificial intelligence [Cap03] [Kay93]. The concept of "object"
emerged almost independently and simultaneously in these research domains in the early 1970s to des-
ignate a set of common concepts [BME+07] [Kay93]. This concept was introduced in the Simula 67
programming language by Nygaard and Dahl. Its designers observed that Simula I "processes often
shared a number of common properties, both in data attributes and actions, when writing simulation
programs" [ND81]. The term "object" was considered more neutral compared to the word "process" of
Simula I. Interestingly, the first application of Simula I was the simulation of logic circuits. The term
"object-oriented" was chosen by Alan Kay to refer to this newdesign paradigm during the development
of the Smalltalk programming language from 1972. "Smalltalk’s design - and existence - is due to the
insight that everything we can describe can be represented by the recursive composition of a single kind
of behavioral building block that hides its combination of state and process inside itself and can be dealt
with only through the exchange of messages" [Kay93].

4.1.2 Identifiable Objects as Instances of Classes

The primary abstraction of the object-oriented design isclasses of objectsto represent a system. An
object is a self-contained and identifiable entity, which encloses its own state and behavior and commu-
nicates only through message passing [Arm06] [BME+07]. In the client-server model of interaction, a
client object is any object that requires the services provided by another object called the server object.
An object typically represents a category orclassof real or imaginary things. In object terminology, an
object is said to be aninstanceof a class. A class describes the common characteristics shared by a set of
objects in term of structure and behavior [BME+07]. In programming languages, a class defines thetype
of an object. The state of an object corresponds to the set of values of all static and dynamic properties
or attributesof an object [BME+07]. An object behavior is provided by the implementation ofclass
functionalities.

4.1. Fundamental Concepts 53

4.1.3 Method Invocation and Message Passing

The behavior of an object takes the form of a set of methods in the object class. A method describes the
actions that an object must perform depending on the type of invocation message received by the object.
The process of selecting a method based on a request message is calledmethod dispatching. The term
methodoriginates from Smalltalk, whereas the termsoperationandmember functionare respectively
employed in Ada and C++ [BME+07]. In such programming languages, the terms "method" and "op-
eration" can be considered as synonyms. However, OMG standards such as UML and CORBA make a
clear distinction between method and operation. In UML, a method is an operation implementation that
specifies the algorithm associated with an operation, whilean operation declares a service that can be
provided by class instances [OMG07d]. An operation is invoked by a call. A method may have addi-
tional constraints compared to its operation. For instance, a sequential operation may be implemented
as a concurrent method [RIJ04]. Generally speaking, a classprovides services to clients through its
methods. Methods typically allows one to get and set object attributes and process the data passed as
method parameters. A method may raise anexceptionto indicate that an user-defined or system error
has occurred. The concepts of method and message are often used as synonyms in the OO literature
[Arm06].

The concept of message undeniably makes sense in distributed systems, where it provides the same
abstraction to unify both local and remote communications between distributed objects. Indeed, the
local and implicit transfer of control and data of a method invocation can be formally translated into the
remote and explicit transfer of a message and vice versa. In distributed systems, the systematic translation
between method invocation and message passing is the cornerstone ofRemote Method Invocation(RMI)
used in object-oriented middlewares such as Sun Java RMI, Microsoft DCOM or OMG CORBA. RMI
results from the straightforward transposition ofRemote Procedure Call(RPC) [BN84] in the object-
oriented model. Typically,proxies or surrogates[GHJV95] are automatically generated to make local
and remote communications indistinguishable from the viewpoint of client and server objects thanks
to request-replymessage protocol. A client-side proxy calledstub encodes the input and input-output
parameters of a remote method invocation into a request message payload and conversely decodes a
reply message payload into the output and input-output parameters and the return value. A server-side
proxy calledskeletondecodes a request message payload into the input and input-output parameters of a
local method invocation to the object implementation and conversely encodes the output and input-output
parameters and the return value into a reply message payload.

In the UML object model, objects communicate through two types of messages. A message is either
anoperation callor asignal. A signal may represent, for instance, a hardware interruption e.g. mouse
button click. A message has argument values, which have to becompliant with the direction and types
of the corresponding operation parameters or signal attributes. The parameter direction may bein, inout,
out, or return for input, output or return parameters.

An operation call may be asynchronous or synchronous i.e. blocking as the caller waits until it
receives a response with any return values.

A signal is sent from one sender object to one or several receiver object i.e. broadcast. The sending of
a signal is oneway and asynchronous i.e. non-blocking as thesender continues immediately its execution
after signal sending. The receipt of a signal may trigger a state machine transition.

Figure 4.1 represents the graphical notation used for all these types of messages within an UML se-
quence diagram. Real-time constraints may be specified bytiming constraintsandduration constraints.

In hardware, these interaction styles will depend on the hardware invocation protocol used by hard-
ware objects to communicate. We will analyze how they have been implemented in hardware in section
4.2 p. 63.

54 Chapter 4. Object-Oriented Design (OOD)

Figure 4.1: Message notation in UML sequence diagrams [RIJ04]

4.1.4 Encapsulation: Interface and Implementation(s)

An interfaceis the boundary between the inside view of an object, which should be hidden or private, and
its outside view, which should be visible or public. A class interface captures the outside view, whereas
the class implementation performing the required behaviorconstitutes the inside view [BME+07]. In
Smalltalk, the interface of an object is the set of messages to which an object can respond [GR83].
This interface is the only way to interact with an object and may be viewed as a "service access point
(SAP)". The separation of concerns between class interfaceand class implementation is known as the
encapsulationor information hidingprinciple. The concept of information hiding was used in structured
design and programming, whereas the object paradigm refersto the term encapsulation.

The declaration of a class corresponds to the specification of the access right, the type and the name
of class attributes and to the specification of a set of operation signatures or prototypes. An operation
signature contains the name of the operation, the type and name of its input, output, input-output pa-
rameters, the type of the return value and the name of errors or exceptions which may be raised. The
set of operations signatures specifies aninterface between the outside view of a class provided by its
declaration and the inside view incarnated by the object implementation. This programming interface
serves as afunctional contractbetween the user and the developer of an object. As an object is seen as
a black box from the user’s point of view, the object implementation can be transparently substituted by
the developer as long as it respects the interface contract.Thus the user code is independent from object
implementation and can be reused.

In the object-oriented approach, the principle ofencapsulationmeans at least two things. First, the
state of an object should only be modified from the outside by method invocations. Dedicated object
methods are typically used to modify the object state. They are named getter/setter or accessor/mutator
methods to respectively read and write private and protected attributes. Second, the implementation of
an object does not need to be visible to the user, who can only interact with the object through its public
and published interface. The implementation of an object can be change without modifying its clients as
long as the object interface remains the same.

In mainstream object-oriented languages such as Java or C++, an interface is typically asyntactical
contractused by compilers to check the conformance between the declaration of operations and their use
through type checking. The deployment of critical applications onto embedded platforms may require

4.1. Fundamental Concepts 55

more guarantees in terms of behavior, performance or origine.g. trusted computing.
Beugnard et al. define four levels of contract [BJPW99] of increasing negotiability: basic or syntac-

tical, behavioral, synchronization and quantitative.
Syntactical contractsrefer to static or dynamic type checking in any language. This include model-

ing languages like UML, interface definition languages (IDLs), usual software programming languages
e.g. Java, C/C++/C#, SystemC and hardware description languages e.g. VHDL and Verilog.

Behavioral contracts rely on boolean assertions called pre- and post-conditions[Hoa69] to con-
straint operation behavior and enforce class invariant properties. An interface may be defined by its
behavior protocol [PV02] that describes the ordered set of operation invocations that a client is allowed
to perform. Such a protocol can be represented by a so-calledprotocol state machine [OMG07d] in
UML. The termDesign by Contract™(DbC) [Mey92] was coined by Meyer to refer to this design
methodology also know asProgramming by Contract. This approach has been supported either na-
tively or via libraries in various programming languages such as Eiffel designed by Meyer, Java and
C/C++ and in UML through behavioral and protocol state machines and the Object Constraint Language
(OCL) [OMG06d]. In hardware, Programming by Contract corresponds to Assertion-based Verification
with Hardware Verification Languages (HVL) such asProperty Specification Language(PSL) [Acc04a],
Cadence Specmane, SystemC [Ini08] and SystemVerilog [Acc04b].

Synchronization contracts specify synchronization constraints between concurrent method calls.
Such constraints may take the form of synchronization policies such as mutual exclusion or single
writer/multiple readers as defined by McHale [McH94]. For instance, the mutual execution of method
executions is supported in Java with thesynchronizedkeyword. In hardware, synchronization between
hardware modules relies on explicit arbiters in classical HDLs or rules in BlueSpec that produce implicit
arbiters.

Quantitative contracts allow one to define quality of service constraints also knownas non-functional
properties to ensure execution guarantees such as performance (latency, throughput), security or avail-
ability [Kra08]. Examples are the Real-Time (RT) CORBA policies. In hardware, quality of services
typically refers to latency and throughput of data transfers between hardware master and slave modules
in on-chip buses or NoCs.

This work primary aims at defining an interface mapping from IDL to VHDL therefore at a syntacti-
cal level. However, we will attempt in our proposition to include other aspects related to behavioral and
concurrency semantics and quality of services within on-chip interconnection networks.

4.1.5 Inheritance and White-Box Reuse

Inheritance permits to gather common functionalities between classes and to reuse interface definitions
and implementations. This mechanism avoids duplication and redundancy. It also provides an elegant
way to extend functionality and to more easily manage complexity by using a hierarchy of classes from
a general parent to specialized derived classes. The definition of interfaces is therefore modular and
reusable. Theinheritance principle consists in deriving the declaration and possibly implementation of
a derivedor child class from abaseor parent class. The child class includes by default the data and
behavior of the parent class. It may also declare additionalattributes and methods. The behavior of the
derived class may be either based on or replace (override) the behavior of its base class. Inheritance
supports the substitution principle of Liskov: if an interface I2 is derived from an interface I1, then I2
is a subtype of I1 and a reference to an object of type I1 can be substituted by any object of type I2
[OMG08b]. Reuse based on inheritance is called white-box reuse [GHJV95]. Indeed, the subclass may
access the private implementation of its parent, actually breaking the encapsulation principle.

Multiple inheritance allows a child class to inherit from more than one parent class. For instance,
Java only supports single inheritance, whereas C++ supports multiple inheritance.

56 Chapter 4. Object-Oriented Design (OOD)

An abstractmethod does not provide an implementation. A class is said tobe abstract, when at
least one of its methods is abstract. An abstract class typically cannot be instantiated and delegates
the implementation of methods to concrete classes. If a derived class inherits from an abstract class, the
derived class has to implement the abstract methods. An abstract class specifies thus an interface offering
a framework, which is customized by derived classes [GHJV95]. In C++, anabstract interface is declared
using pure virtual methods with thevirtual keyword, whereas Java includes theabstractkeyword.

Inheritance is often associated with white-box reuse, because the parent class implementation is often
visible to the subclasses.

An alternative approach to inheritance is an implementation mechanism called delegation [BME+07],
in which an object forwards or delegates a request to anotherobject. For instance, this feature is used in
languages which do not natively support inheritance.

4.1.6 Polymorphism

Polymorphism refers "the ability to substitute objects of matching interface for one another at run-time"
[GHJV95]. Methods may be invoked on objects with a common parent class in the same way whatever
the object specific subclass. The type of an object is dynamically determined at runtime. Polymorphism
implies late binding i.e. the binding of a method to a name is not known until execution.Dynamic
dispatchingrefers to the process of determining at run-time which method to invoke.

Polymorphism may be mainly implemented either thanks to memory pointer like in C++ or thanks
to tagged references like in Ada. The first approach uses dynamic memory allocation to maintain a table
of pointers to methods implementations calledVirtual Method Table(VMT) in C++. In the second one,
the object data structure have an implicit field, which contains a tag corresponding to the object type.

As an example, an abstract ALU11 class may define an abstractcomputemethod inherited by con-
crete adder and multiplier classes. Both derived classes implement appropriately this operation as shown
in figure 4.2 and listing 4.1. Thanks to polymorphism, a pointer designating an abstract ALU class
may transparently indicate any objects, whose class derives from this abstract class. When thecompute
method is invoked, the type of the pointed object is dynamically determined and the corresponding im-
plementation is executed. Polymorphism supports the addition of new implementations without changing
the invocation code.

Figure 4.2: UML class diagram of the abstract ALU and concrete adder and multiplier classes

/ / A b s t r a c t Base C lass D e c l a r a t i o n
c l a s s AbstractALU {

pub l i c : v i r t u a l i n t compute (i n t a , i n t b) = 0 ; } ;
/ / Two Concre te Der ived C l a s s e s D e c l a r a t i o n

11Arithmetic Logic Unit

4.1. Fundamental Concepts 57

5 c l a s s Concre teAdder : pub l i c AbstractALU {
pub l i c : i n t compute (i n t a , i n t b) { re turn a+b ; } } ;

c l a s s C o n c r e t e M u l t i p l i e r : pub l i c AbstractALU {
pub l i c : i n t compute (i n t a , i n t b) { re turn a* b ; } } ;

/ / The method t o i n v o k e i s de te rm ined a t run t ime
10 / / depend ing on t h e t y p e o f t h e p o i n t e d o b j e c t

AbstractALU* theALU ; / / p o i n t e r d e c l a r a t i o n
theALU = new Concre teAdder () ; / / c r e a t i o n o f a new c l a s s

i n s t a n c e
cout <<" a+b="<<theALU−>compute (1 , 2) << end l ;
theALU = new C o n c r e t e M u l t i p l i e r () ;

15 cout <<" a* b="<<theALU−>compute (1 , 2) << end l ; / / r e u s e o f s t a t i c
i n v o c a t i o n code

Listing 4.1: Illustration of the polymorphism principle inC++

As illustrated in listing 4.1, polymorphism enables transparent method invocations, extensibility and
reuse. Because derived classes implement the same interface, the code to invoke methods on objects
remains the same. This allows updating or extending object functionality without breaking the code and
recompiling thanks to dynamic loadable libraries. Withoutpolymorphism, the developer would have
to write switch-case statements to explicitly determine the type of an object and invoke the appropriate
methods.

4.1.7 Relationship

As objects collaborate with each other to fulfill the functionalities of a system, the concept of relationship
among classes is an integral part of the object-oriented approach. A relationship is a semantic link, which
associates classes of objects [RIJ04].

According to [Cap03] and [BME+07], the object model was notably inspired by the Entity-Relationship
(ER) model of Chen [Che76], who proposed to represent the real world as consisting of entities, their
attributes and the relationships among them.

Rumbaugh proposed to combine both models into theobject-relationmodel [Rum87], where rela-
tions exist between the objects themselves and not between their attributes. Rumbaugh’s work helped to
create the object-oriented modeling language UML [RIJ04] and refine the definition of the object model
itself.

Relationships may be naturally expressed during object-oriented design and are notably incarnated by
annotated lines in UML. Traditional OO languages provide syntactic or semantic constructs to express
relations such as instantiation ("instance of") and generalization ("kind of") with thenewandextends
keywords in Java. However, no construct exists to make explicit association relationships. As a conse-
quence, the traceability of these relations between designand implementation may be lost during code
development [Rum87].

Besides, in the recent Armstrong’s survey [Arm06], the concept of relationship appears at the 13th
place of the most cited OO concepts with only 14% of the OO literature considering this notion. Conse-
quently, the relationship concept is lacking in the taxonomies studied and the one proposed by Armstrong.

Hence, the importance of relationships is often underestimated in the OO approach [Rum87]. Some
works proposed to treat relationships as first-class citizens with OO languages such as the Data Structure
Manager (DSM) [Rum87] or Relationship Java (RelJ) [BW05]. We argue that this notion is incarnated by
the concept of connector [BP04] in the component-oriented design, which goes further by encapsulating
different interaction patterns and communication styles.

58 Chapter 4. Object-Oriented Design (OOD)

Three main kinds of relationships may be distinguished among objects: association, generaliza-
tion/specialization and containment including aggregation and composition [BME+07].

An association denotes an "exchange messages with" relationship. In OO languages this relation
takes the form of a method invocation between the associatedobjects. Association relations are typically
simulated in programming languages by relative referencesor pointers from one object to another as
instance variables [Rum87]. As we will see in chapter 6, thismilitates in favor of a component-oriented
approach in which references are automatically managed by component frameworks, and the association
and containment relationships are explicit thanks to the connector and component concepts.

A generalization/specialization designates an "is a" or "kind of" relationship. This relationship is
represented in OO languages by inheritance.

A containment denotes "has a", "part of" or "whole/part" relationship. A distinction may be made as
in UML between the weak containment by reference calledcompositionand the strong containment by
value calledaggregation.

In the aggregation relationship, part and whole objects do not exist independently. They are the same
lifecyle and are tightly coupled. Aggregation is typicallyimplemented in OO languages by including the
contained objects as instance variables inside the whole object.

When a whole object is composed of part objects, their instances are loosely coupled and may be
created and destroy independently.

Such conceptual relationships are typically translated inOO implementation code by academic and
commercial modeling tools according to translation rules or language mappings. For instance, skeletons
of code may be generated from UML diagrams in various OO languages such as C++ or Java.

Reuse based on object composition is called black-box reuse[GHJV95], because the only way to
interact with composed objects is through their object interface and there are less implementation depen-
dencies compared to class inheritance. Composition thus allows less coupling and is often preferable over
inheritance [GHJV95]. Object composition may be as powerful as inheritance in terms of reuse thanks to
delegation. The combination of inheritance from abstract interfaces, object composition and delegation
is a powerful mechanism notably used in design patterns [GHJV95] and also in the component-oriented
model.

For instance, consider a Mac class, which needs an ALU class to multiply and accumulate two
integers. The unidirectional association from the Mac to the ALU class is represented in UML by an
arrow as depicted in figure 4.3. This relation is translated into a pointer calledalu_ptr of ALU type
as shown in listing reflst:relation. The ALU interface contains theadd andmultiply abstract methods.
Two different architectures are proposed to implement thisinterface through an inheritance relation. The
CompositeALUclass is composed of an Adder and Multiplier object appearing as instance variables,
whereas two pointers on these object types are aggregated asinstance variables in theAggregateALU
class. The composition relation is a containment by value, which implies that both objects are unique
to the ALU class and have the same lifecycle as the composite.As contrario, the participants in the
aggregation relation are shared and may be created or destroyed independently of the ALU class leading
to possible errors.

4.1.8 Concurrency, Synchronization and Coordination

For Booch et al. [BME+07], concurrency is a useful, but not essential concept of the object model.
Besides, this concept was only cited by a single work among 88papers reviewed in Armstrong’s survey
on OO concepts. However, concurrency is a fundamental characteristic to take into account from the
specification, design and implementation of embedded systems.

Embedded systems are inherently concurrent to achieve several things at the same time and react
simultaneously to various external events such as interruptions.

4.1. Fundamental Concepts 59

Figure 4.3: Illustration of the main relationships in UML

A flow of control designates the number of things that can takeplace concurrently. In SW, a flow
of control may designate either a SW process or a SW thread in an operating system. A SW process is
an heightweight and independent flow of control that has its own state information and address space.
A SW thread is a lightweight flow of control executed concurrently with other threads within the same
process.

Concurrent programming uses two main types of synchronization: mutual exclusion and condition
synchronization [And00]. Mutual exclusion guarantees that when one process is accessing a shared re-
source e.g. a global variable no other process can gain access [BW07]. The sequence of statements
that manipulates the shared resource is called acritical sectionof code. Mutual exclusion is typically
implemented with mutual exclusion locks calledmutexthat protect critical sections of code. Condition
synchronization ensures that a process only accesses a shared resource when this resource is in a partic-
ular state e.g. "buffer is not full". This is typically implemented with condition variables as provided by
the Pthread library.

A semaphore is a non-negative counter decremented to acquire a lock and incremented to release
a lock. If the semaphore value becomes zero, then the callingthread will wait until it acquires the
semaphore.

A monitor protects a shared resource by guaranteeing that the execution of all operations accessing
the resource are mutually exclusive. Instead of managing explicitly critical sections of code using locks,
monitor declarations are used by compiler to transparentlyintroduce synchronization code. For instance,
Java and Ada 2005 use thesynchronized keyword to declare monitors.

As an object is conceptually similar to a logical execution unit communicating through messages, the
concept of object has been used to abstract concurrency. Thecombination of concurrent programming
and object-oriented programming led to the creation of concurrent object models and concurrent object-
oriented programming (COOP) languages [GT03] [Pap92].

A taxonomy of concurrent object models is proposed by Papathomas in [Pap92] according to three
aspects:object models, object threadsandobject interactions. Object models are classified into three
approaches:orthogonal if the concurrent execution of threads is independent of objects,homogeneous
if objects are only active andheterogeneousif objects may be active or passive. Object threads refer
to the number and scheduling of threads of control in an object: sequentialwith a single thread of
control,quasi-concurrentwith only one active thread among several possible threads and explicit thread
switching,concurrentwith several active threads. Object interactions are divided into the sending of

60 Chapter 4. Object-Oriented Design (OOD)

requests by clients and the acceptance of requests by servers. The sending of requests can be either
asynchronousvia one-way messages without reply orsynchronousvia request/reply messages. The
acceptance of requests can beexplicit through a statement,conditional through a guard orreflective
through a meta-object. We note that the acceptance of reply messages is not considered in the studied
software concurrent object models and languages.

In many concurrent programming languages, the concept ofactive objecthas been usually used
to introduce concurrency between objects [GT03] [GMTB04].For Booch et al., "Concurrency is the
property that distinguishes an active object from one that is not active" [BME+07]. The termactor is
sometimes employed to refer to active objects [Lea99]. The concept of active object relies on the support
of concurrency by OO languages that is either built-in as in Java, Smalltalk and Ada or provided by
external libraries such as POSIX OS libraries for C++.

In VHDL, parallelism is modeled with hardware semantics according to 1 writer-N readers protocol:
only one sequential or concurrent process is allowed to write onto an entity port or an architecture signal
to avoid conflicts, whereas any number of processes can read them in the same clock cycle. Otherwise,
concurrency between several writers has to be explicitly managed by the hardware designer. An access
arbiter controlling a multiplexer is typically used to implement an via an ad-hoc N writers-N readers
protocol.

As concurrency inherently exists in embedded systems and have to be implemented in HW and SW
languages by designers, object-oriented system specifications should make explicit concurrency among
objects and among methods within an object.

In the UML object model, concurrency may be modeled by activity, state, sequence and class dia-
grams. Two granularity levels of concurrency may be specified in class diagram: at the class level with
theactive classconcept or at the operation level with a dedicated concurrency attribute [GT03].

At the class level, a class is eitheractiveor passive. An active (resp. passive) object is an instance of
an active (resp. passive) class.

According to [OMG07d] [RIJ04] [BRJ05] [BME+07], an active object has "its own thread of con-
trol", whereas a passive object is executed in the context ofanother thread of control. However, an
attentive reading of [BRJ05] shows that "an active class is aclass whose objects own one or more pro-
cesses or threads". In this work, we consider that active object can own multiple flows of control to allow
the most general object model as supported by object-oriented programming languages.

To model class behavior, two kinds of state machines exist inUML: behavioral state machineand
protocol state machine[OMG07d]. A behavioral state machine specifies an executable behavior of a
class or method through states and transitions, which are triggered by events. A transition is associated
with a sequence of actions. In contrast, a protocol state machine specifies the legal order of operation
invocations and signals reception that an object expects.

As the independent execution of an operation may access shared resources e.g. attributes in a passive
object, the concurrent execution of multiple operations may require some execution control to prevent
data corruption or inconsistent behavior. At the operationlevel, UML defines three semantics for con-
current invocations to the same passive object i.e. with theisActiveattribute set to false. The meta-class
Operationowns an inherited attribute calledconcurrency, whose value is defined by the enumeration
CallConcurrencyKind[OMG07d] [BRJ05]:

• sequential: the operation assumes sequential invocations. Concurrent invocations have to be ex-
plicitly serialized to allow only one invocation at a time. Object semantics and integrity cannot
be guaranteed with multiple flows of control. Hence, some coordination may be required between
calling objects through synchronization, scheduling or arbitration.

• guarded: the operation supports simultaneous invocations from multiple flows of control, but only

4.1. Fundamental Concepts 61

a single execution. Only one invocation is executed, while the others are blocked until the first one
completes. Thus, invocations are implicitly serialized.

• concurrent: the object supports simultaneous invocations and executions of any concurrent opera-
tion requested from multiple flows of control. For instance,these flows may read data or write to
independent set of data.

Concurrency must be defined separately for each operation and for the entire object [BRJ05]. Operation-
level concurrency specifies that multiple invocations of anoperation can execute concurrently, while
object-level concurrency means that invocations of different operations can execute concurrently.

In OO programming languages, the UMLconcurrencyattribute is supported either natively like in
Java with the equivalentsynchronizedkeyword [GJSB05] or by construction using mutex, semaphores
and monitors.

Active objects can control the simultaneous invocations oftheir behavior as they have their own
thread(s) of control. Each instance of an active class controls its own concurrency. Their behavior is
typically specified by state machines, whose semantics haveto be clarified to support unambiguously
concurrent invocations [GMTB04].

However, even after several decades of concurrent and object-oriented technologies, UML semantics
have still ambiguities and inconsistencies concerning concurrency. Numerous works emphasize their
limitations and propose to clarify UML semantics about active and passive object model [OS99] [GO01]
[SS01] [GMTB04] [Sel04] [JS07].

As opposed to software objects, hardware modules have always one or several independent threads
of control, which are modeled in VHDL by sequential processes and concurrent statements. From a
conceptual viewpoint, VHDL processes correspond to SW threads and are modeled by SC_THREAD
in SystemC. These processes are simulated concurrently, but truly run in parallel in hardware and co-
ordinate their execution through signals within a VHDL architecture. Hardware entities can be consid-
ered asactiveobjects, which are internally parallel and communicate with each other through signals.
Synchronous or asynchronous interaction styles depend on the hardware invocation protocol. We will
analyze how concurrency and synchronization have been implemented in hardware objects in section 4.2
p. 63.

4.1.9 Persistence

Persistencerefers to the capability for an object to exist, while its creator e.g. process or thread has
ceased to exist. In practice, persistence is performed by saving the state of an object from a volatile
memory e.g. RAM or registers to a non-volatile or persistentstorage e.g. file, database or flash memory.
The persistent object is saved before it is destroyed and restored in another class instance at its next
creation or "reincarnation". Objects that are not persistent are calledtransientobjects.

4.1.10 Distribution

The metaphor of objects as little computers that interact only through messages [Kay93] provides a suit-
able model to abstract distributed systems and let to the emerging of the distributed object model. Object
oriented-middleware platforms such as CORBA have been designed to offer an infrastructure supporting
the development, deployment and execution of distributed object-oriented applications. One of the main
goals of object-oriented middlewares is to make invisible or transparentthe distribution of objects from
the viewpoint of the objects themselves, and the application designers and users. TheReference Model of
Open Distributed Processing(RM-ODP) [Org98] standardizes an object modeling approach to system

62 Chapter 4. Object-Oriented Design (OOD)

specification along with numerous transparency criteria. Some of these criteria directly originate from a
previous initiative called the Advanced Networked SystemsArchitecture (ANSA) project [Man89].

RM-ODP defines the following distribution transparencies [Org98]:

• Access transparencymasks differences in data representation and invocation mechanisms to en-
able interworking between objects.

• Failure transparency masks from an object the failure and possible recovery of other objects
(or itself) to enable fault tolerance. Failure transparency depends on replication and concurrency
transparencies [PPL+06a].

• Location transparency masks the use of information about location in space when identifying
and binding to interfaces. This distribution transparencyprovides a logical view of naming, inde-
pendent of actual physical location.

• Migration transparency masks from an object the ability of a system to change the location
of that object. Migration is often used to achieve load balancing and reduce latency. Migration
transparency depends on access and location transparencies [PPL+06a].

• Relocation transparencymasks relocation of an interface from other interfaces bound to it.

• Replication transparencymasks the use of a group of mutually behaviorally compatibleobjects
to support an interface. Replication is often used to enhance performance and availability. Repli-
cation transparency depends on access and location transparencies [PPL+06a].

• Persistence transparencymasks from an object the deactivation and reactivation of other objects
(or itself).

• Transaction transparency masks coordination of activities among objects to guarantee consis-
tency.

The ANSA project also definestechnology transparencyas the fact that different technologies such
as programming languages or operating systems are hidden from the user [PRP05]. Other forms of
transparency include [PPL+06a]:

• Scalability transparency: the system can continue to operate as more resources and services are
added and more concurrent requests have to be dispatched andprocessed. Scalability transparency
depends on migration and replication transparencies.

• Performance transparencymeans it is transparent to users and programmers how performance is
actually achieved. Performance transparency depends on migration and replication transparencies.

• Concurrency transparency allows multiple clients to request transparently the same service si-
multaneously. Each client does not need to know the existence of other clients or how concurrency
and consistency are managed by the service.

However, a variable number of these distribution criteria may be not relevant for some class of
embedded systems, which are static by nature. In these cases, objects are statically assigned to execution
nodes and do not require location, migration or replicationtransparencies.

In a unified approach, an application of middleware conceptsinto hardware necessitates defining an
architecture supporting part or all of the distribution transparencies. In the following we will present the
works performed towards this goal.

4.2. Object-Oriented Hardware Design 63

4.2 Object-Oriented Hardware Design

Although it originates from software engineering, the object model appears to be sufficiently general and
technology independent to be applicable to the hardware domain in an attempt to provide a common and
unified high-level approach to embedded systems design.

As studied in a recent survey performed in 2004 [Dv04a], manyresearchers have proposed to apply
the object-oriented concepts for hardware design. The mainquestions that cross our mind are how many
object concepts and how these concepts have been interpreted and implemented in hardware.

In the following, the various forms through which the object-oriented model has been applied down
to hardware will be presented. On the one hand, hardware description languages like VHDL and Verilog
have been extended to support object-oriented features like OO-VHDLs and SystemVerilog. On the other
hand, mainstream object-oriented languages such as Java and C++ have been extended with hardware-
specific libraries like SystemC. Moreover, hardware objectarchitectures have been proposed using Jav-
aBean, Finite-State Machine (FSM) and distributed objects. Other works have presented object-oriented
hardware platforms with OO-ASIP and hardware middlewares like StepNP, OOCE (Object-Oriented
Communication Engine) and hardware CORBA, implementations. Finally, model-driven engineering
has been used to model hardware objects in UML and generate VHDL and Verilog. The presentation
of the related work and the associated discussions will be focused on the interpretations of objects in
hardware and particularly on the hardware interfaces used for method invocations.

4.2.1 Object-Oriented Extensions to Hardware DescriptionLanguages

In the 1990s, numerous works were devoted to the propositionof object-oriented extensions to HDLs
[AWM99]. VHDL was widely selected since it natively separates the declaration of component interface
in entity from their implementation(s) inarchitecture(s). These extensions took the form of new OO
language constructs, which were translated by preprocessors into synthesizable VHDL. According to
[Rad00], two main approaches have been distinguished to provide object-orientation to VHDL.

In theentity-basedapproach, a VHDL entity is considered as a class declaration, whereas a VHDL
architecture is viewed as a class implementation. Hence, hardware objects are interpreted as VHDL
component instances.

Thetype-basedapproach extends HDLs with a novel class data type, whose instances are equivalent
to VHDL variables and signals. If one consider that VHDL was inspired by Ada, this approach is similar
to consider the object-oriented data types added to Ada83 tobuild Ada95. Examples of this category
include OO-VHDL [Sch99], SUAVE [AWM98] and Objective VHDL [Rad00]. Interestingly, an IEEE
study group called OO-VHDL12 was created in late 1993 to establish requirements for an object-oriented
VHDL and to propose language extensions. A merger of the SUAVE and Objective VHDL proposals
was investigated [AR98]. However, many advanced concepts of SUAVE were not synthesizable and no
simulator was developed, whereas Objective VHDL was designed to be synthesizable, but the translation
tool to VHDL was not mature enough [Opp05]. Both works stopped and these efforts unfortunately failed
to be standardized. Afterwards, the community preferred tomodel hardware design using high-level
object-oriented languages as presented below. Recent revisions of the VHDL standard called VHDL-
200x should include object-orientation with inheritance and interface modeling based on Ashenden’s
proposal according to [BMB+04] [Lew07].

Furthermore, Verilog has been enhanced with object-oriented extensions to build SystemVerilog 3.x
[Acc04b] to facilitate the verification of abstract hardware models. As Verilog syntax is inspired by the
C language, SystemVerilog naturally provides OO extensions close to C++. Aclassconstruct was intro-

12http://www.eda.org/oovhdl

64 Chapter 4. Object-Oriented Design (OOD)

duced to declare instance variables calledpropertiesand member functions namedmethods. SystemVer-
ilog supports class inheritance, polymorphism and dynamicallocation of classes, but the synthesizable
semantics of these advanced features are not defined.

Although our work could benefit from OO extensions to HDLs, wedo not consider such custom
extensions and we restrict our proposition to the synthesizable subset of standard HDLs such as VHDL
and Verilog.

4.2.2 Object-Oriented Languages for Hardware Design

In order to raise the level of hardware abstraction and increase simulation speed, mainstream OO lan-
guages such as Java and C++ have been intensively used to model hardware design. The main objective
was to replace the use of two languages such as C/C++ and VHDL/Verilog to specify software and
hardware with different programming models and semantics by a common language for system specifi-
cation [HO97, YMS+98, KSKR00]. Obviously, usual OO languages do not natively provide adequate
constructs to model hardware characteristics like ports, wires, time, event or specific data types such as
bitvectors. OO libraries have thus been developed to provide new language syntax and semantics close
to those found in HDLs. The main advantage of this approach isthe possibility to model both hardware
and software thanks to widely available software tools likethe free and open-source GNU tools. This
trend gained so importance in industry and academia that a defacto C++ library calledSystemCbecame
an IEEE standard in 2005.

Java

The Java software programming language has been proposed inthe 2000s to design, specify and simulate
hardware/software embedded systems. Java is a high-level and platform independent language with real-
time extension. Java provides an object-oriented framework with standard APIs allowing to explicitly
specify concurrency with threads and monitors, and reactivity with events and timing. However, dy-
namic loading and linking of Java objects at run-time complicate the analysis and optimization of system
specification [HO97] [YMS+98].

In [HO97], Java is used as an executable system specificationlanguage to support functional vali-
dation and hardware/software co-design. In [YMS+98], Java serves as a general purpose language to
capture a first system specification, which is successively refined by an user-guided tool into a formal
model that is deterministic in term of behavior, bounded execution time and memory consumption.

Whereas both previous approaches are only focused on behavioral specifications of hardware/soft-
ware systems from an algorithmic viewpoint, Java is considered as a behavioral and structural description
at system, algorithmic and register transfer levels in [KR98], [KRK99] and [KSKR00]. These later works
will be described in more details in the next section.

From our viewpoint, Java cannot be considered as a system-level language as Java is basically not
used for real-time signal-processing applications on embedded GPPs and DSPs. In contrast, C and C++
are quasi-exclusively used in such a context. Hence, system-level languages derived from C/C++ such
as SystemC are more relevant notably to refine a behavioral specification down to implementations on
GPPs and DSPs.

SystemC

SystemC [GLMS02] is an OO modeling language based on a C++ class library. It allows the model-
ing of hardware/software embedded systems at various levels of abstraction. However, there is still no
consensus on the number and purpose of these abstraction levels. Although the OSCI Transaction Level

4.2. Object-Oriented Hardware Design 65

Modeling (TLM) [Ghe06] standards have defined some APIs (TLM1.0 and TLM 2.0), the main difficulty
remains the refinement from one level of abstraction to another. The transformation from a high-level
functional specification down to a synthesizable hardware description is still tedious and error-prone.
For instance, SystemC FIFOs have to be manually translated into signals. Moreover, the draft of a syn-
thesizable subset [oOSI04] started in 2004 is still under public review. As a consequence, commercial
and academic tools such as Cynthesizer [Sys, CM08] and FOSSY[GGON07] may propose their own
abstraction levels and refinement methodology. Furthermore, OO concepts like inheritance or polymor-
phism are not supported by such synthesis tools. In conclusion, SystemC allows OO HW modeling, but
not OO HW design [SVL01] [SKWS+04].

From SystemC-Plus to OSSS+R at the University of Oldenburg and OFFIS Institute In the scope
of the project ICODES [ICO08], a synthesizable subset of SystemC calledOSSS[GGON07] [BGG+07]
for OldenburgSystemSynthesisSubset was developed by the OFFIS research institute and the Univer-
sity of Oldenburg to improve the refinement of SystemC modelsdown to HW implementation. OSSS is
a C++ class library on top of SystemC with well-defined synthesizable semantics to model HW/SW em-
bedded systems based on OO principles. OSSS is based on the SystemC-Plus library [ICE01] [GTF+02]
[GO03]. A Remote Method Invocation(RMI) mechanism has been designed to transform method-based
communications between HW/SW objects to signal-based communications through buses and point-to-
point channels.

The concept ofShared Objectis used to homogeneously model HW/SW as well as HW/HW com-
munications through method invocations. Shared objects arbitrate concurrent invocations on shared re-
sources like a buffer using provided or user-defined scheduling algorithms.

In the scope of the ANDRES [AND08] project, the OSSS+R13 [SON06] library is developed as
an extension of the existing OSSS library to target the modeling and simulation of dynamic and partial
reconfiguration in digital hardware systems. OSSS+R aims tooffer new language features to SystemC to
manage the reconfiguration process transparently from the designer’s point of view. OSSS+R approach
is based on an analogy between polymorphism and hardware run-time reconfiguration. Polymorphism
allows one to dynamically change the behavior of an object, while the code to call it remains static.
The same remains valid for reconfigurable hardware where thehardware interface between the static
and dynamic part is fixed, while the implementation of the dynamic part may be changed at run-time by
loading partial bitstreams. In OSSS+R, polymorphic objects act as reconfigurable containers to model
reconfigurable areas. A container is responsible for arbitrating the access to the contained objects and to
request a unique reconfiguration controler.

As the analogy between polymorphism and routing in [GZH07],we consider that the analogy be-
tween polymorphism and reconfiguration is interesting since the high-level operation-based interface
specified in a class hierarchy is directly translated into a low-level signal-based hardware interface speci-
fied in VHDL. Moreover, polymorphic objects cope with non functional services such as object life cycle
and resource sharing in a similar way tocontainersand component factories in the component approach
described in the next section.

The OASE project at the University of Tübingen The OASE project [UoT08] at the University of
Tübingen was concerned with the object-oriented design of hardware/software systems. This project
studied the modeling [SKWS+04], specification [KSKR00], co-simulation [KR98, KRK99] partitioning
[SKKR01], synthesis and verification [KOSK+01, KOW+01] of embedded systems based on various
object-oriented languages such as Java [KR98, KRK99, KSKR00], e [KOSK+01, KOW+01], C++ and
SystemC [SKWS+04].

13OSSS+Reconfiguration

66 Chapter 4. Object-Oriented Design (OOD)

OOAS proposes a unified object-oriented design flow from high-level OO specifications down to
HW/SW implementations. Classical synthesis approaches such as CDFG extraction and data dependen-
cies analysis have been adapted to take into account OO features like polymorphism with a multiplexer.
OOAS uses inheritance for HW/SW partitioning, which is invasive as the user class diagram has to be
changed at each new partitioning. An alternative consists in using deployment diagrams like [SFB05].
We also observe that the proxy design pattern was applied to support transparent blocking communi-
cations between HW/SW objects and the delegation pattern tomigrate part of an object state and im-
plementation. Both patterns are used by the IDL compilers ofobject-oriented middlewares to generate
communication adapters.

Instead of relying on implementation-specific object-oriented languages such as C++, Java or even
SystemC, we consider interface-centric and component-oriented specification at system-level in CORBA
IDL3 or UML2. As the mapping of such specifications to software languages already exists, we focus
on mappings to SystemC and HDLs.

4.2.3 Object-Oriented Hardware Architecture

The object-orientation of hardware allows one to raise the abstraction level of interactions between hard-
ware blocks as the low-level transfer of control and data of the communication protocol is interpreted
as a high-level method invocation. According to Kuhn et al. [KRK99, KSKR00], two interpretations
of hardware objects can be distinguished: the behavioral and the structural interpretation. As we focus
on hardware object interfaces, both interpretations provide two kind of hardware interfaces which are
presented below.

Behavioral Interpretation

Figure 4.4: behavioral Interpretation [KRK99][KSKR00]

Description In the behavioral interpretation shown in figure 4.4, an object method corresponds to a
hardware module that takes as inputs an object environment and its input method parameters and reply
by a return value along with its inout parameters.

This interpretation is similar to the way object-oriented extensions to programming languages such as
C++ are built on top of procedural languages like C. Indeed, amethod invocation is equivalent to calling
a function using as additional parameter an object environment that contains the object state. In C++ and
Java, this object environment is represented by thethis pointer or reference. In software languages, this
environment is typically passed by reference, whereas Kuhnet al. propose to pass it by value in HDLs.
As opposed to [Dv04a] and [KRK99], we consider that the behavioral interpretation is inappropriate
for the external interface of hardware object, since it breaks the encapsulation concept of the object

4.2. Object-Oriented Hardware Design 67

model. Indeed this interpretation does support encapsulation of behavior inside a hardware black box,
but no encapsulation of state as public andprivateobject attributes would be clearly transferred outside
hardware modules.

Structural Interpretation

Figure 4.5: Structural Interpretation

The structural interpretation shown in figure 4.5 considersobjects as hardware modules. Object
methods are invoked by writing to the input ports of the hardware object a request message consisting of a
method identifier and of the input method parameters. The result and the output parameters are then read,
thanks to the output ports. The hardware invocation protocol may rely on additional signals to indicate the
validity of parameters data and to signal the method completion. The type of method parameters must be
of primitive types to be synthesizable as bitvector [KRK99][Rad00]. This interpretation is quite natural
for hardware designers and supports both encapsulation of state and behavior. Moreover, hardware
objects can be used like any other legacy hardware modules with a structural description [KRK99].

Damacevicius et al. suggest a third interpretation [Dv04a]of hardware objects based on Radetzki’s
implementation [Rad00]. However, we will notice that this work follows in fact both approaches: a
structural interpretation according to the public and external interface of Radetzki’s hardware objects
and a behavioral interpretation according to their privateinternal interface. Both interpretations are thus
complementary. In virtue of the encapsulation principle, only the public object interface really matters
for client objects, while the private interface and their implementation are hidden. Hence, we consider
that Radetzki’s approach belongs to a structural interpretation.

As a conclusion, we argue that the only valid interpretationof hardware objects is structural as
it guarantees both encapsulation of state and behavior. In the remaining parts of this work, we will
consider the structural approach and focus on a fundamentalobject concept neglected in the hardware
object literature: thehardware object interface. Indeed, three structural approaches will be now presented
each with its own hardware interface.

FSM-based Implementation of Radetzki

Radetzki proposed in his PhD thesis [Rad00] a hardware implementation of the main OO concepts such
as encapsulation, message passing, inheritance and polymorphism. The mapping from an object-oriented
specification in UML to a hardware model was mathematically formalized. Concretely, object instance
variables of primitive types are mapped to a synthesizable bitvector and the object interface to a hard-
ware module interface. Hardware objects are modeled in an OO-HDL called Objective VHDL and
implemented based on the well-known and synthesizable FSM model as shown in figure 4.6. Indeed,

68 Chapter 4. Object-Oriented Design (OOD)

this object architecture typically separates the control path with state transitions and the output logic
from the data path with state storage in memory.

Figure 4.6: FSM-based implementation of hardware object [Rad00]

The hardware object interface consists of the following signals:

• CLK and RESET signals are the clock and reset signals to synchronize and initialize the object
implementation.

• SELECT_METHOD signals carry a binary encoded method identifier. This bitvector controls a
multiplexer, which selects the output parameters of the desired method implementation. The value
’0’ is reserved to mean ’no invocation request’. The signal width is the binary encoding of the total
number of object methods plus one.

• IN_PARAMS signals contain the concatenation of input parameters of one method at a time. The
width of this bitvector is the maximum number of bits required to encode the largest aggregation
of inputs among all object methods.

• STATE_OUT signals transport the current object state monitored by guards to forward an invoca-
tion request if a so-called guard expression is verified.

• OUT_PARAMS signals carry the largest concatenation of output parameters among all methods.
As input parameters, output parameters are binary encoded.

• DONE signal is used both to accept an invocation request andto signal that output parameters are
available when a method execution is completed.

• CHANNELS signals are used for the communication between a client to a server method.

We notice that this public and external hardware interface corresponds to thestructural interpretationof
Kuhn et al. [KRK99].

The object state is stored in memory elements such as registers or SRAMs depending on instance
variable size. An object method is implemented as a hardwaresub-component.

4.2. Object-Oriented Hardware Design 69

Inheritance is supported via expansion by adding new methodcomponents and extending the object
state memory, the controler and the multiplexers shown in figure 4.6. The object state memory may
include additional bits to encode a class identifier or tag like Ada to support polymorphism by value.
The implementation of an inherited method is dynamically dispatched by a multiplexer according to the
current object class type in the tag, which may change at run-time.

Message passing is performed by sending a method invocationon a point-to-point channel from a
client object to a server object. As concurrent client objects may send an invocation request to a server
object, the access to the server interface is granted by an arbiter that is composed of a scheduler and
a guard. The guard accepts an invocation request only if a corresponding execution condition is true.
The client object is blocked until the condition becomes true. The guard indicates to the scheduler the
accepted client requests. The scheduler selects a client request according to a classical scheduling policy
such as a round-robin policy or a priority-based policy.

As a conclusion, the proposed architecture for hardware objects addresses all mentioned OO con-
cepts. The combination of both Kuhn et al.’s interpretations demonstrates their complementarity for the
implementation of objects. The hardware implementation ofarbiters, schedulers and guards permits
to guarantee the concurrency and synchronization constraints defined in object-oriented specifications.
However, we observe some drawbacks in this architecture. This implementation may require a lot of
silicon area. Even if hardware resources may be shared with classical high-level synthesis methods,
static class instance variables and method implementations are not shared among class instances, since
a method implementation is duplicated in each class instance. Moreover, all method parameters are sent
in parallel simultaneously. This is not desirable for routing purpose. Furthermore, the invocation and
execution of object methods are sequential, since the hardware object interface is shared by all method
invocations and the hardware object implementation is based on a FSM. This is regrettable, as hardware
is inherently parallel. The important requirement of parallelism between configuration and computa-
tion cannot be satisfied for real-time signal processing applications. Indeed, the parallel invocation of
configuration and computation methods is intrinsically impossible with a single hardware interface.

As typical shared bus architecture, a single channel arbiter implemented as a multiplexer is not scal-
able for a great number of clients and constitutes a communication bottleneck. Communications between
distributed and heterogeneous HW/SW objects is not considered through communication infrastructures
like buses. Moreover, the only supported interaction mechanism is blocking, whereas non-blocking in-
teractions are required to hide communication latency.

In the following ICODES and ANDRES projects, object-oriented specifications have been captured
in SystemC instead of OO-VHDL with the OSSS(+R) library. Radetzki’s hardware object architecture
has evolved into the previously presented concept of sharedobject. Heterogeneous communications
between HW/SW objects have been supported by a RMI protocol through OSSS channels.

Figure 4.7 represents the hardware architecture of an OSSS shared object, which is connected to
clients via two communication interfaces IF1 and IF2. For instance, these interfaces may be an OPB
bus used by a SW client and a point-to-point connection used by a HW client. ASchedulerdetermines
which client request is granted according to the Client ID and Method ID of the RMI request header,
a Guard Evaluatorand a pre-defined or user-defined scheduling algorithm. The Scheduler returns the
granted Client ID and MethodID to acontroler. This controler selects via a multiplexer the invocation
parameters from the RMI request message to be written into anArgument RAM (Arg-RAM). It then
asserts the MID signal to activate the Shared Object method,which can directly read and write operation
parameters from/to the Arg-RAM. After operation completion, the controler must indicate to the granted
interface module that it can build a reply RMI message from the ArgRAM and send it on the OSSS
channel.

We notice that OSSS application and platform models providean executable specification, which
encompasses explicit behavioral informations required for high-level synthesis. In contrast, an abstract

70 Chapter 4. Object-Oriented Design (OOD)

Figure 4.7: OSSS shared object architecture [BGG+07]

interface specification e.g. in CORBA IDL does not inherently provide such information to guide inter-
face synthesis. All necessary behavioral properties have thus to be incorporated into a complementary
specification e.g. in UML or in a mapping configuration file.

Distributed Objects from Barba et al.

Barba et al. [BRM+06] propose to apply the distributed object model to SoCs that are considered as a
distributed system in which hardware/software objects communicate through the on-chip interconnection
network. The proposed hardware object model is based on a standardized method invocation interface
and a synchronous method invocation protocol. One of their goals is to define a direct mapping from the
specified abstract object interface to the concrete hardware module interface, which allows it to automate
integration. The abstract object interface is specified in UML and in an interface definition language
called SLICE (Specification Language for ICE). ICE (Internet Communications Engine) is a proprietary
object-oriented middleware inspired by CORBA, which was notably created by Michi Henning [Hen04]
[HM07] at ZeroC Inc. [HS08].

The hardware object interface shown in figure 4.8 is composedof:

• common signals such as clock and reset

• an input signal to invoke a method and indicates that input method parameters are valid.

• a logical group of input and output signals calleddata port for one or several input and output
method parameters, which may be transferred in parallel or serial to save area.

• an output signal calleddoneto inform that the method is completed and that output parameters are
available.

4.2. Object-Oriented Hardware Design 71

Figure 4.8: Hardware Proxy Architecture [BRM+06]

The proxy design pattern [GHJV95] is used to encapsulate thenetwork protocol and to support loca-
tion transparency. The proxy architecture is depicted in figure 4.8. As its software counterpart, the role
of the hardware proxy is to handle the RMI protocol. It translates a local method invocation into an invo-
cation request message, which is transferred on the available interconnection network e.g. bus and NoC.
A method invocation is interpreted as a sequence of reads andwrites on the communication network.
Some data encoding/decoding rules are required to standardize the data layout "on the wires". A hard-
ware object has an unique identifier, which corresponds to the base address of the skeleton. The method
signal is associated with a skeleton address offset in the proxy that is transferred on the network address
bus, while packed input and output method parameters are respectively written and read on the network
data bus. The proxy architecture template is composed of aPort Acquisition Unit(PAU) and thePort
Delivery Unit (PDU) modules responsible for the packing and unpacking of method parameters. The
Combinational Adaptation Logic(CAL) module establishes a mapping between the RMI protocol and
bus/network protocols. This mapping is described for each network protocol in configuration files and
allows one to be independent of protocols. The object-oriented interface synthesis flow is based on Ob-
ject and Collaboration diagrams [RIJ04] to represent a system in terms of its objects, their relationships
and the ordered sequence of messages they exchange. These UML diagrams guides the wrapper gener-
ation process, which consists in customizing the proxy architecture template for a given interconnection
network (bus, NoC).

The proposed hardware object model follows a structural approach, in which objects are considered
as IPs. Compared to Radetzki’s works, there is a clear separation between local method invocations based
on the signal-level protocol and remote method invocation based on message passing. The proposed
invocation protocol and hardware interface are simple, custom and an adaptation is required with a
standard bus/NoC protocol. As soon as the interface protocol is concerned, a binary encoding of methods
similar to Radetzki’s approach is preferable over the linear encoding used to save area and ease routing

72 Chapter 4. Object-Oriented Design (OOD)

as the number of method activation signals is equal to the number of methods. From a hardware protocol
design point of view, a single activation signal is better than the bitvector proposed by Radetzki and
method parameters may be transferred in parallel or in serial to save area.

One weakness of this proposition is that method invocationsmay be potentially parallel, but no
mechanism is considered to guarantee state coherency. Moreover, the arbitration and scheduling of
concurrent accesses to hardware objects are entirely delegated to the underlying communication network.

HardwareBean from Kuhn et al.

Kuhn et al. proposed to use Java to model HW/SW systems at behavioral, algorithmic and Register-
Transfer Level (RTL). A Java class library was developed to model and simulate hardware at RTL level
in Java [KR98]. Kuhn et al. specified hardware objects as JavaBeans [Mic97], which are calledHard-
wareBeans.

A JavaBean is an ordinary Java class that must conform to a setof standard coding and naming
conventions. A JavaBean class is mainly characterized by attributes calledpropertiesthat can be read
and written thanks to getters and setters,methodsthat are public Java methods andeventsthat are fired
by event source bean and received by event listener bean. Events notify interested listener objects that a
state change has occurred [Mic97].

The java2structtool [KRK99] transforms the behavioral description of a hardware object based on
method invocations into the structural description of a HardwareBean. Each port of a hardware module
is represented by a JavaBean property.

The hardware module interface contains:

• an inputmethodport to indicate a method identifier;

• an inputstart port to invoke a method;

• an input port for each input method parameter;

• an outputreadyport to signal that the result is available;

• an output port for each return/output method parameter.

Getter and setter methods are respectively created for eachinput and output ports composing the
hardware object interface. The width of a hardware port is determined during synthesis by the associated
property data type. Events are used to notify that the value of a property i.e. a port has changed. This
fires an event that may be captured by a listening JavaBean that may retrieved the computed values by
invoking getter methods on the skeleton. The stub translates a method invocation towards a hardware
object into a set of methods invocation on the skeleton.

Thanks to inheritance, a HardwareBean may be used both as a behavioral and structural description.
A stub and skeleton JavaBean are generated from the hardwareclass. Another tool calledJavaPart
allows one to simulate and prototype hardware/software systems. A proxy object is a HardwareBean that
may forward a method invocation from a software object to ever the software bean for simulation or the
synthesized hardware bean for prototyping. TheJavaSynthtool translates a hardwareBean into a VHDL
component according to a given object interpretation and may include proxy objects. Communication
from hardware to software is also supported.

Kuhn et al propose the JavaBean object model to provide a common framework for HW/SW objects.
This work demonstrates the need to go beyond the general principles of the object model by adopting
a more constrained model with common rules. Here, the JavaBean model only provides common cod-
ing and naming conventions, but the next section will show that component models impose common

4.2. Object-Oriented Hardware Design 73

interfaces to automatically manage component creation/destruction, configuration and communication.
Distributed communications are besides mediated through stubs/skeletons. Like Radetzki’s work, the
invocation interface only permits sequential invocationsand parallel transfers of parameters. However,
the HardwareBean interface has a single activation signal and cannot control the flow of requests as
in Barba’s proposal. Moreover, concurrent accesses to a HardwareBean are not taken into account for
instance using arbiters, schedulers or guarded methods as in Radetzki.

OO-ASIP

In the scope of the ODYSSEY (Object-oriented Design and sYntheSiS of Embedded sYstems) project, an
Object-Oriented Application Specific Instruction set Processor (OO-ASIP) [Gou05] has been proposed
to provide another implementation alternative to the OO concepts. An OO-ASIP is a dedicated processor,
whose custom instructions encode object methods, while instruction operands are considered as method
parameters.

Figure 4.9: OO-ASIP Architecture Template [GHM03] (dark grey indicates dedicated parts)

A first architecture of the OO-ASIP [GHM03] is depicted in figure 4.9. This architecture is similar
to a von Neumann processor with Harvard architecture [PH07], which is extended to support object-
orientation in hardware. The traditional Control Unit, ALUand memory controler are respectively trans-
formed into aMethod Invocation Unit(MIU), anExecution Unit(EU) and anObject Management Unit
(OMU) in the OO-ASIP [Gou05]. The MIU implements a subset of the Java Virtual Machine (JVM) in-
struction set and particularly itsinvokevirtualinstruction, which is used to dispatch a method invocation
on an instance method according to the runtime type of the object [LY99]. This instruction is used as
OO-ASIP instructions to indicate hardware method implementations. A Functional Unit implements a
method of the "hardware class library" and is part of the Execution Unit. The OMU manages the object
data stored in registers or in data memory and the access fromthe FUs to these shared resources. A HW
method may invoke another HW or SW method.

In [GZH07], the processor and FUs have been interconnected through a Network of Chip (NoC) and
the OO-ASIP architecture has evolved to exploit the routingcapabilities of NoCs. Goudarzi et al. propose
to use packet-switched networks to dispatch virtual methods. Method invocations are seen as network
packets and a network address is assigned to each HW or SW implementations of methods. Thanks to
this well-chosen addressing scheme, virtual method dispatching is equivalent to packet routing.

A method implementation i.e. FU has two interfaces: an invocation interface with the MIU and
an object data access interface with the OMU [Gou05]. The invocation interface consists of acommand

74 Chapter 4. Object-Oriented Design (OOD)

signal to activate the FU, anoid signal to indicate the object on which the operation is invoked, signals for
input method parameters, astatussignal to indicate operation completion and signals for output method
parameters. Operation parameters of primitive data types like integers are passed by value, whereas only
objects in global memory can be passed by reference. An optional instruction signal allows a FU to
invoke another operation through the MIU i.e. when the method implementation acts as a client. The
object data access interface consists of avirtual addresssignal, which carries an oid and an index to
an object memory element, and data/control signals to read and write data. This virtual address is then
translated to a physical address by the OMU, which performs the desired memory accesses.

In conclusion, an object is separated between its state, which is stored in OO-ASIP shared memory,
and its behavior, which is either implemented in software asJava instructions or in hardware as custom
instruction accelerators. As each hardware method is associated with a hardware module with an object
data access interface, this architecture may correspond tothe behavioral interpretation of Kuhn et al.
[KRK99]. As in [BRM+06], a single activation signal thus is required instead of amethod identifier
as in [Rad00]. A single method implementation per class reduces area and power consumption, but
implies the sequential execution of a method for all objectsas opposed to one method implementation
per object as in [Rad00]. As noticed in [GHM03], both approaches represent different trade-offs between
concurrency and area/power consumption in the object-oriented design space We observe that the duality
between method invocation and message passing through a network is similar to how object-oriented
middlewares work.

NXP Interface-based and Platform-based approach: Task Transaction Level (TTL)

Van der Wolf et al. propose an interface-based [RSV97] and platform-based [SV02] approach for MPSoC
design [vdWdKH+04][vdWdKH+06]. The authors argue for an integration of HW/SW modules based
on the mapping ofabstract interfacesto systematically refine the specification of application models into
its implementation on MPSoC platforms and thus to improve design productivity and quality.

Figure 4.10: HW/SW mapping of the abstract TTL interface [vdWdKH+04]

Multimedia applications are designed as a set of concurrenttasks which exchange streams of tokens
through communication channels. Tasks communicate by calling functions on their ports, which imple-
ment an abstract interface calledTask Transaction Level(TTL). Each channel supports uni-directional,
reliable, ordered and multicast communications between one producer task and several consumer tasks.
The TTL interface supports different communication stylesthrough a set of interface types for each
task port. The seven TTL interface types represent different tradeoffs between abstraction and ef-
ficiency in terms of synchronization, data transfer granularity and ordering of data accesses and re-

4.2. Object-Oriented Hardware Design 75

leases. The platform infrastructure provides services such as inter-task communication, multi-tasking
and (re)configuration to application tasks through the abstract TTL interface. Both shared memory and
message passing models are supported.

The abstract TTL interface has been implemented as a SW API for the SW shell and as a HW
interface for an Application-Specific Processor (ASP) as illustrated in figure 4.10. The HW shell imple-
ments the platform services on top of a lower interconnect interface such as AHB, AXI, DTL or OCP.
The abstract TTL interface has been mapped onto a HW interface that resides between the application
co-processor and the TTL HW shell connected to the interconnection network via a proprietary DTL
interface. The TTL interface consists of the following signals:

• the requestandacknowledgesignals are used to initiate and return from a function call,so only
sequential function calls are supported by a shell. Concurrent function calls could be implemented
with multiple pairs of shell and DTL interface instead of more complex multiple DTL interfaces
per shell.

• theport_typesignal indicates an input or output task port with the respective value 0 and 1. The
shell implementation includes a mapping table between port_ids and the channel location to which
they are logically connected.

• theprim_req_typesignal should refer to the22 TTL interface classes: Combined Blocking, Rela-
tive, Direct In-Order and Direct Out-Of-Order, since no description is available in [vdWdKH+04].

• the is_non_blockingand is_grantedsignals are used to designate a non-blocking function and
return the boolean result value.

• theport_id signals indicate the logical task port on which a sequentialcall is performed.

• theoffsetsignals should correspond to the offset parameter of the store and load operations of the
Relative TTL interface class and maybe the count parameter of acquire and release functions, since
no description is available in [vdWdKH+04].

• theesizesignal represents the size parameter of the store and load operations.

• thewr_* andrd_* signal are used to handshake the transfer of data between thecoprocessor and
the shell.

We consider this API at the same abstraction level than communication APIs such as MPI. This API
has been mapped onto hardware interfaces according to a custom mapping. As a result, this manual
mapping has to be performed at each new definition of an abstract business interface. We argue that
arbitrary user-defined application interfaces should be defined and manually or automatically mapped
into hardware interfaces according to strict and explicit mapping rules to enable portable definitions of
abstract business interfaces and to ease integration independently of any proprietary platform. These
domain-specific interfaces could be mapped on top of available communication APIs such as TTL in the
same way that CORBA IDL application interfaces could be mapped on top of MPI.

Synthesis and Contribution

We argued that the behavioral interpretation of hardware object breaks the encapsulation principle of
the object model. Moreover, the structural interpretationis coherent with the component-based model
supported by HDLs. A synthesizable implementation of main OO concepts such as inheritance, mes-
sage passing and polymorphism is undeniably feasible with astructural interpretation of objects. Such

76 Chapter 4. Object-Oriented Design (OOD)

an application of OO principles may potentially provide thesame benefits as obtained in software to
hardware design such as a higher level of abstraction and thereuse of specification and implementation.
However, these works suffer from some limitations notably due to the object model itself. The proposed
hardware interfaces and protocols do not provide enough flexibility to address the complex communica-
tion requirements of modern IPs. For instance, the previoushardware objects cannot control the flow of
requests and replies. Moreover, they provide a single hardware interface, which only supports sequential
invocation and execution of methods. Both sequential and concurrent invocations of methods are made
possible using several hardware interfaces.

4.2.4 Model Driven Engineering (MDE) for Hardware Design

Model Driven Engineering(MDE) [Sch06] is a promising design methodology, which shifts designer
work from code implementation to system modeling. A model allows designers to better cope with
complexity. It represents a system through domain-specificconcepts and their relationships. One of
the most popular MDE approaches isModel-Driven Development™(MDD™) andModel Driven Archi-
tecture®(MDA ®) [MSUW04], which are OMG trademarks. These initiatives are naturally based on
the OMG UML modeling language. Another closely related terminologies for MDE areModel-Based
Design(MBD) andModel-Integrated Computing(MIC) [SK97].

The Unified Modeling Language (UML) has been used to specify embedded systems and notably
hardware modules. UML provides a semi-formal graphical object-oriented specification language, which
is intensively used in software engineering. A number of works [Dv04b] [SFB05] [RSB+06] have pro-
posed UML to offer anunifiedspecification language for hardware and software. The main challenge
to target the hardware domain is to define themappingbetween the high-level object-oriented concepts
of UML and the low-level hardware constructs of HDLs such as VHDL. We consider that defining a
mapping from an object-oriented IDL such as CORBA IDL to VHDLis similar to the definition of an
UML-to-VHDL mapping from class diagrams. Indeed, UML-to-IDL mapping already enables UML
modeling tools such as Rational [Rat] to generate IDL definition files from UML class diagrams. In the
scope of this work, we focus on mapping object interface and structural specification, and not behavioral
specification, that is why we present existing mappings fromUML class diagrams and not from other
diagrams such as state diagrams e.g as in [CT05] and [AHMMB07].

McUmber and Cheng

McUmber and Cheng [MC99] propose a UML-to-VHDL mapping to validate the behavior of embedded
systems specified by UML class and state diagrams. The mapping rules from class diagrams to VHDL
are the following. A UML class is mapped to a pair of VHDL entity/architecture constructs. Associations
between UML classes i.e. message passing correspond to VHDLsignal declarations in the entity. Class
instance variables are represented with VHDL shared variables declared in the entity. A package and a
package body are declared for each UML class.

This work follows an "hardware unaware" top-down approach from UML-to-VHDL and targets a
simulable rather than a synthesizable specification in VHDL. For an efficient mapping, a "hardware
aware" top-down approach is required. This implies that themapping should be configurable and flexible
enough to allow different trade-offs between area and performance and that the result of the mapping
should be synthesizable.

Damaševǐcius and Štuikys

Damaševǐcius and Štuikys present a mapping of VHDL language constructs on a simplified UML meta-
model in [Dv04b] [Dv04a]. This UML meta-model contains the basic modeling elements of an UML

4.2. Object-Oriented Hardware Design 77

class diagrams notably classifiers, relationships and features [RIJ04] as depicted in figure 4.11.

(a) Relationships

(b) Features

Figure 4.11: Structural mapping between UML class diagramsand VHDL language constructs [Dv04a]

Kinds of classifiers that describe UML models include class and interface. As previously described
in the object model, the relationships between classes include inheritance, composition and realization,
as shown in figure 4.11a. The features depicted in figure 4.11brepresent classifier properties such as
operation, attribute or parameters. Aninterfacei.e. an abstract class is mapped to a VHDLentity. Class
template parameters are translated into VHDLgenericstatements. Public class attributes correspond to
VHDL ports, while private class attributes are converted into VHDL signals. Class methods are mapped
to VHDL processes. The inheritance relationship implies that the VHDLports of the parent entity is
added to the entity declaration of a derived entity. The composition relationship is translated to aport

78 Chapter 4. Object-Oriented Design (OOD)

mapstatement. The realization relationship that exists when aclass implements an interface is mapped
to a VHDL architecture.

Compared to the previous work, this approach follows a bottom-up approach, which targets the reuse
of third-party IPs. As shown by the application of the wrapper design pattern presented in [Dv04b], the
proposed mapping does not raise the abstraction level at which hardware modules are specified and only
allows an UMLrepresentationof hardware modules. The mapping of public class attributesto VHDL
ports implies that the same UML specification cannot be used independently of the implementation lan-
guages. Indeed, the UML specification inferred from VHDL modules provides a signal-based interface,
which is incompatible with a traditional high-level method-based interface used in software. Moreover,
the mapping of a method-based interface to a signal-based interface is inefficient and is incomplete as
this mapping does not specify an invocation protocol, whichis sadly lacking in hardware.

MOCCA from the University of Mittweida, Germany

The Embedded Control Laboratory (LEC) of the Institute of Automation Technology (IfA) at the Univer-
sity of Mittweida in Germany has developed a HW/SW co-designmethodology for reconfigurable com-
puting based on Model-Driven Architecture (MDA) and Platform-Based Design (PBD). A tool called
MOCCA for Model Compiler for reConfigurable Architectures[Moc08] supports the object-oriented
system-level specification, design and implementation of applications for Run-Time Reconfigurable
(RTR) architectures [Frö06] [SFB05] [BFS04].

The proposed approach uses UML and a dedicated action language [MB02] calledMOCCA Ac-
tion Language(MAL) [SBF04] for object-oriented specification and design at system level. An action
language is a platform independent and domain-specific language, which allows designers to specify
behavior in UML. The objectives are to build executable specifications also known as eXecuTable UML
(xUML or xtUML) [MB02] and to map such languages into platform-specific programming languages
such as C, C++. MAL is an action language targeting distributed embedded systems and is compliant
to the UML action semantics. Its syntax is inspired by Java and allows explicit data organization and
access.

From the design, implementation and deployment models of applications and platforms, the MOCCA
compiler supports design space exploration, estimation, model transformations and HW/SW implemen-
tation languages generation such as C++, Java, VHDL and partly Verilog. The main object-oriented
concepts such as inheritance, polymorphism and encapsulation are supported down to the final imple-
mentation.

MDA based design methodology MOCCA design methodology is depicted in figure 4.12. Appli-
cations and target platforms are described by separate models with UML and MAL. An application is
modeled as objects communicating through messages. The structure and behavior of these objects are
captured in an executable and platform-independent designmodel (PIM). The target platform model
(TPM) specifies the architecture of the target hardware and the necessary information for platform map-
ping and synthesis. The application objects of the PIM are mapped to the target architecture described
by a TPM to build a Platform Specific Model (PSM). The PIM elements are bound to the target plat-
form devices resources. The application PSM is then transformed into an implementation model, which
is synthesized into software and hardware modules. This synthesis is parameterized by implementation
language specific patterns and rules, which are included into the target platform models and the synthesis
tools.

An UML component is implemented as a hardware component template depicted in figure 4.13.
This template includes a memory-mapped communication interface to access internal hardware objects

4.2. Object-Oriented Hardware Design 79

Figure 4.12: MOCCA Design Methodology [BFS04]

Figure 4.13: Hardware Component Template [SFB05]

80 Chapter 4. Object-Oriented Design (OOD)

through a register file and common building blocks to generate clock and reset signals. This communi-
cation interface is the external interface of each hardwarecomponent. Hardware objects may communi-
cate through point-to-point links or via multiple single-master shared buses calledMOCCA Object Bus
(MOB) with a Wishbone-like interface within a group of collaborating objects.

Model compilers perform the memory address layout of the object interface register file according to
given alignment constraints and automatically generate the appropriate address decoders.

Mapping of UML class The behavior of classes is implemented as a Finite State Machine with Data-
path (FSMD). The implementation of class behavior containsa controller, a datapath and a synchroniza-
tion process. For each hardware object, the state and behavior of the object class and its parent classes
are replicated. This offers better performance at the expense of extra hardware resources.

The logical hardware object interface designates a memory-mapped HW/SW interface. It consists
of a control interface, a data interface and an exception interface, which are physically implemented in a
register file. Each HW method invocation interface includesthe following signals:

• Control interface

– theGO signal activates the execution of the FSM implementing the method behavior. If this
signal is deasserted, the FSM state is reset to its initial state. Before activation, all input
parameters have to be written in the register file through thedata interface.

– the DONE signal indicates the completion of the method execution when the FSM has
reached its final state. It signals the availability of output parameters in the register file.

• Data interface

– inout signals for attributes of scalar data types

– MOB bus interface for attributes of array data types

• Exception interface

– This interface is not described in details and its automatedimplementation was not supported
in [Frö06].

The type register stores the current type of polymorphic objects and controls a multiplexer to select
the appropriate method implementation. Object attributesand parameters are mapped to a storage com-
ponent of the necessary width. Storage components are either individual registers or dedicated memory
blocks and must be dual-ported.

Software proxy objects synchronize concurrent accesses tohardware objects by serializing them.

Application deployment on reconfigurable platform and SW-to-HW object communication A
RTR Managermanages the dynamic creation and destruction of hardware objects deployed in recon-
figurable hardware. It serves as hardware component factoryand a hardware object broker. Each hard-
ware object is accessed from software through a dedicated proxy, which encapsulates communication
protocols. The proxy is explicitly modeled in the implementation platform model thanks to theremote
type. An application requests a hardware object from the RTRManager by its type. If no object of the
required type was previously deployed, the RTR Manager loads the appropriate bitstream and returns a
SW proxy to the application. If a reconfigurable fabrics (RF)is not mapped into the local address space
of the host processor, the RTR-manager may handle data conversion, marshalling, and unmarshalling for
remote communication [Frö06].

4.2. Object-Oriented Hardware Design 81

In conclusion, the MOCCA project comprehensively illustrates the application of the OMG MDA
approach from object-oriented specifications of embedded systems down to the final implementation of
HW/SW objects. The use of a domain-specific action language to describe application behavior allows
a truly system-level executable specification independentfrom HW/SW partitioning, target platforms
and final implementation languages. The implementation of state-of-the-art compilation and synthesis
techniques [Frö06] allows MOCCA to generate optimized implementations in C++, Java and VHDL
based on the precise information incorporated with application, platform and deployment models.

The proposed hardware invocation interface is similar to Barba’s proposal and shares the same draw-
backs. There is one control interface i.e. GO and DONE signals for each operation. This is not scalable
with the number of operations. As opposed to previous proposals, the mapping of arrays is supported
and may be mapped to a data transfer interface with control flow thanks to the ACK signal. The MOB is
restricted to a simple shared bus interface. A socket based-approach would allow one to be independent
of any bus/network protocol and topology, while offering advanced features such as request/response
pipelining.

GASPARD2 from the University of Lille (LIFL), France

GASPARD2 (Graphical Array Specification for PARallel and Distributed computing) [WT08] is a model
transformation and code generation tool for intensive and systematic multidimensional signal processing
on MPSoCs. The targeted signal processing applications perform iterative, massively parallel and sys-
tematic computations. Gaspard2 uses the Array-OL (Array-Oriented Language) [GRE95] specification
language, whose concepts are used in the application, architecture and mapping meta-models to describe
repetitive structures such as array of application tasks, hardware modules (SIMD units, multi-bank mem-
ories, NoCs) and task-to-computation unit mapping. Array-OL allows one to specify both task and data
parallelism within intensive signal processing applications.

GASPARD2 is based on a UML profile [ABC+07] to model applications and MPSoC architec-
tures by means of components and the mapping between both models. The Gaspard2 UML profile is a
subset of the UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE)
[OMG08h]. Gaspard2 revisits the Y chart of Gajski and Kuhn [GK83], which is based on structural,
functional and geometrical representations with an MDE approach based on application (PIM), architec-
ture (PDM) and deployment (PSM) models. Gaspard2 uses a meta-model calledDeployedthat combines
four meta-models: application, architecture, association and deployment meta-models depicted in figure
4.14.

The application, architecture and association meta-models are platform independent. The application
meta-model supports the modeling of an application, while the architecture meta-model is used to model
the physical components of a hardware platform. The association meta-model describes the mapping of
tasks and data from the application model to the hardware components in the architecture model. The
deployment meta-model defines the mapping of an applicationor architecture model elements on SW
or HW modules both calledIntellectual Property(IP) from a library. A Deployed model describes the
modeling of an application, an architecture and their association model in compliance with the Deployed
meta-model. Based on this model, the Gaspard2 tool can automatically generate application descriptions
in synchronous languages such as Lustre or Signal, in procedural languages such as Fortran/OpenMP, in
SystemC at PVT and CABA abstraction levels [Bon06] and in VHDL [Beu07].

Le Beux proposes a RTL meta-model independent from HDLs syntax [Beu07]. This meta-model
allows one to describe HW components, their interface, their recursive and repetitive composition in a
factorized form. The execution model of data parallelism within HW accelerators is either parallel or
sequential depending on the mapping or "placement" of application components into a HW accelerator
in the target architecture.

82 Chapter 4. Object-Oriented Design (OOD)

Figure 4.14: Gaspard2 MDE based design flow

4.2. Object-Oriented Hardware Design 83

In the proposed RTL meta-model, a HWComponent is eitherElementary or Hierarchical. An el-
ementary component calledElementaryTask denotes an atomic computation unit associated with an
IP Implementation. A hierarchical component is eitherCompound to represent task parallelism or
Repetitive to model data parallelism with a sequential or parallel execution. The concepts ofcontroller
and(de)multiplexerhave been modeled to support the sequential and repetitive execution of HW accel-
erators. HW component interface in the RTL meta-model is represented by the concept ofPort, whose
meta-model is depicted in figure 4.15.

Figure 4.15: Component interface meta-model

A Port is either anInputPort or anOutputPort , whose dimension and size is defined byShape
and its type byDataType. Semantics is added to a port through a named composition relationship. For
instance, each component consists of onereset port and oneclock port. The concept ofConnector
represents the signals of data, control, clock, etc. that bind port instances , which are incarnated by the
PortInstance concept. The RTL meta-model extends theDataType concept of Gaspard2 meta-models
with anb_bitsattribute to estimate resources consumed by a data type.

Based on this RTL meta-model, a high-level application model compliant with the Deployed meta-
model is translated into a RTL model through a model transformation calledDeployed2RTL. Deployed2-
RTL is composed of a set of transformation rules.

During the Deployed2RTL model transformation, ArrayOL tilers expliciting data parallelism are
transformed into wires when there is no data dependency and into shift registers when data overlap in
time.

As the RTL meta-model represents generic hardware conceptsexisting in HDLs, VHDL code is
directly generated from the RTL meta-model by a model to texttransformation calledRTL2VHDL. Code
generation is based on EclipseJava Emitter Templates(JET) [Fou08]. JET allows one to write code
templates in an implementation code e.g. Java or VHDL, whichare customized by Java code.

In conclusion, the Gaspard2 tool supports a MDE approach in which model transformations allow
one to refine a deployment model from an application model on an architecture model into an RTL model
from which VHDL code can be automatically generated.

Due to the underlying ArrayOL MSDF model and intensive signal processing domain, only data
paths are specified in the Gaspard2 meta-models. The RTL meta-model represents hardware component
interface in a generic way with input and output ports. No semantics are attached to RTL ports apart from
clock and reset ports introduced by the Deployed2RTL model transformation. The generated "business"
interface of hardware accelerators only consists of data ports and does not require a communication

84 Chapter 4. Object-Oriented Design (OOD)

protocol. This data interface is the simplest member of the family of interfaces, which is required for the
communication between HW components. Our goal is to be able to specify this interface family and not
only simple data wire interface. Furthermore, HW/SW communication through some buses or NoCs is
not supported in Gaspard2 as the application is entirely deployed either in SW or in HW.

Other approaches

Some approaches define a mapping from UML to C-like hardware description languages such as Handel-
C in [SR04] or ImpulseC [PT05] in [WX07]. In our proposition,we do not target such proprietary
languages and focus on the standard HDLs such as VHDL.

4.3 Synthesis

Tables 4.1 and 4.2 summarizes the state of the art concerningthe application of the object-oriented
concepts down to hardware. This table particularly shows the mapping space from object-oriented speci-
fications into the interface and architecture of hardware objects. A flexible UML/IDL-to-VHDL mapping
should be able to address all these mapping solutions with standardized hardware interfaces and archi-
tecture templates/patterns while only consuming the required hardware resources.

4.4 Conclusion

The object-oriented design methodology is a widely teachedand used methodology to develop software
applications. It is based on high-level concepts such as encapsulation, inheritance and polymorphism,
and favors reuse. In the object-oriented approach, an object is a self-contained and identifiable entity,
which encloses its own state and behavior in a method-based interface, and communicates only through
message passing. A method describes the actions to perform depending on the type of message received
by the object. A method invocation requests the execution ofa method. Method invocation is equivalent
to message passing. The local and implicit transfer of control and data of a method invocation can be for-
mally translated into the remote and explicit transfer of a message over a network and vice versa. A client
object is any object that requires the services provided by another object called the server object. Proxies
or surrogates make local and remote communications indistinguishable from the viewpoint of client and
server objects by translating local method invocations into request-reply messages. A client-side proxy
calledstub encodes the input parameters of a remote method invocation into a request message and con-
versely decodes a reply message into the output parameters and the return value. A server-side proxy
calledskeletondecodes a request message into the input parameters of a local method invocation to the
object implementation and conversely encodes the output parameters and the return value into a reply
message payload.

Usually, the integration of hardware modules relies on low-level hardware/software interfaces, which
consists of proprietary bus interfaces, memory-mapped registers and interrupts to synchronize hardware/-
software modules. As a result, this integration is tedious and error-prone, and the reuse of HW/SW
modules is limited. Co-design methodologies have been developed to bridge the conceptual gap between
hardware design and software design. To provide a common hardware/software design approach, the
concepts of the object model has been applied to hardware design through four main directions: object-
oriented extensions to hardware description languages such as OO-VHDL, object-oriented languages for
hardware design such as Java and SystemC, object-oriented hardware architecture with hardware objects,
and model-driven engineering for hardware design using UML.

4.4.
C

onclusion
85

University/Company Tübingen U. Oldenburg U.-OFFIS UCLM
Project OASE ODETTE - ICODES, AN-

DRES
OOCE

Language UML, Java, SystemC, C++, e Objective VHDL, SystemC
(SystemC Plus, OSSS+R)

UML, ICE SLICE IDL

Attribute local local, registers or SRAMs registers or SRAMs
Method inlining, replication sub-component, entity, impl.

per object, FSM
N.C.

Polymorphism method inlining, multiplexing method replication and multi-
plexing

N.C.

Inheritance yes yes, expansion N.C.
Composition yes yes N.C.
Concurrency active class, SW thread mapped

on process, data dependency
analysis

arbiter, scheduler with user de-
fined policies, guard

N.C.

Distribution stub/skeleton, delegation, in-
heritance based partitioning

no - RMI stub/skeleton RMI stub/skeleton

Comm. non-blocking, synchr. request blocking, synchr non-blocking, a/synchr
Op. Invocation sequential, fixed, custom sequential, fixed, custom parallel, fixed, custom
Op. Execution sequential? sequential (FSM) N.C.
Flow control no request no
Local Transfer parallel parallel parallel or serial
Message N.D. client_id, method_id method_id mapped to a net-

work address
Deployment N.C. N.C. N.C.
Reconf. N.C. OSSS+R container reconfiguration interface
Interface
request start no method
request accept N.C. DONE, guards N.C.
method id method SELECT_METHOD - MID no
in method param param1...N IN_PARAMS - bus param1...N
invocation reply ready DONE - ? method_done
out method param return OUT_PARAMS - bus return_value

Table
4.1:

S
ynthesis

ofhardw
are

im
plem

entation
ofobjectc

oncepts
(part1)

86
C

hapter
4.

O
bject-O

riented
D

esign
(O

O
D

)

University/Company Sharif U. ST Prismtech MOCCA
Project OO-ASIP MultiFlex ICO MOCCA
Language C++ ST System IDL (SIDL) CORBA IDL MDE: MOCCA UML2

profile, MOCCA Action
Language (MAL) then
C++, Java, VHDL and
partly Verilog

Attribute central data memory local local local
Method shared, SW instructions,

HW entity, impl. per
class

N.D. N.D. impl. per object

Polymorphism tables then routing mes-
sages as NoC packets

NC NC method replication and
multiplexing

Inheritance yes N.C. N.C. yes
Composition N.C. N.C. N.C. N.C.
Concurrency inside method implemen-

tations
HW multithreading,
Concurrency Engine,
ORB FIFO scheduler

N.C. active class, guarded op-
eration.

Distribution SW on ASIPs using NoC HW message passing en-
gine, HW custom ORB

HW CORBA ORB memory mapped
stub/skeleton

Comm. synchr. ? Both blocking and non-
blocking

non-blocking blocking

Op. Invocation sequential, fixed, custom N.D. parallel? parallel
Op. Execution sequential N.D. can be parallel parallel
Flow control no N.D. no no
Local Transfer data bus N.D. parallel parallel
Message mid, oid, method impl.

mapped on a network ad-
dress

N.D. GIOP N.D.

Deployment N.C. N.C. yes yes
Reconf. N.C. N.C. yes yes
Interface
request command N.D. opName_write GO_opname
request accept N.C. N.D. N.C. N.C.
method id no N.D. no no
in method param param1...N, bus N.D. inParam1...N param1...N or bus
invocation reply status N.D. opName_read DONE_opname
out method param signals or bus N.D. outParam1...N signals or bus

Table
4.2:

S
ynthesis

ofhardw
are

im
plem

entation
ofobjectc

oncepts
(part2)

4.4. Conclusion 87

To apply the object model down to synthesizable hardware, the previous works propose a mapping
between a method-based interface to a signal-based interface. Hardware object-oriented design allows
to raise the abstraction level of hardware module interfaces, to reduce the conceptual and abstraction gap
between interface specification and implementation, and toenforce a clean separation between compu-
tation and communication through remote method invocation.

However, these works suffer from some limitations notably due to the object model itself. The
proposed hardware interfaces and protocols do not provide enough flexibility to address the complex
communication requirements of modern IPs. Indeed, they provide a single hardware interface, which
only supports sequential invocation and execution of methods. Each presented work proposes a mapping,
which represents one solution in the mapping exploration space.

We propose to generalize and leverage the existing mapping propositions with an explicit and fine
mapping configuration using a named family of hardware interfaces with well-defined semantics. Our
mapping approach gives the user a level of control over the mapped hardware interface never reached
by all other fixed mapping approaches and is similar to what isavailable for hardware designers in high-
level synthesis e.g. from C-like languages. To go further tothe object-oriented approach, we propose
a component-oriented approach in which component ports maybe independently mapped to hardware
interfaces and which allows both sequential and concurrentinvocations of methods. In the next chapter,
we will present middlewares. In particular, we will focus onthe application of the distributed object
model in object-oriented middlewares like CORBA.

Chapter 5

Middlewares

Contents
5.1 Middleware Definition 90

5.2 Middleware Requirements 90

5.2.1 Portability .. . 91

5.2.2 Interoperability 92

5.3 Middleware Classification 92

5.3.1 Message Passing .. 92

5.3.2 Procedural middlewares 93

5.3.3 Distributed Object Middlewares 93

5.3.4 Component middlewares 94

5.3.5 Message-Oriented Middlewares 94

5.3.6 Publish-Subscribe middlewares 95

5.3.7 Transaction middleware 95

5.3.8 Database Middleware 96

5.3.9 Distributed Shared Memory 96

5.3.10 Web middlewares .. . 96

5.3.11 Position .. 97

5.4 OMG Object Management Architecture (OMA) 97

5.5 CORBA Object Model .. 99

5.5.1 CORBA Overview . 99

5.5.2 CORBA Implementation .. . 102

5.5.3 Illustration of CORBA Middleware Design Flow 103

5.5.4 Overview of CORBA Interface Definition Language (IDL). 105

5.5.5 Portability using CORBA IDL mapping to implementation languages 108

5.5.6 Interoperability with CORBA Inter-ORB Protocol (IOP) 112

5.5.7 Real-Time CORBA .112

5.5.8 CORBA for embedded systems .. . 113

5.5.9 OMG Extensible Transport Framework (ETF) 113

5.5.10 State of the art on real-time and embedded CORBA middlewares 114

5.6 State of the art on hardware implementations of object middlewares 119

5.6.1 ST StepNP MPSoC Platform and MultiFlex Programming Models 119

89

90 Chapter 5. Middlewares

5.6.2 UCLM Object-Oriented Communication Engine (OOCE) 120

5.6.3 Commercial Hardware CORBA ORBs 122

5.6.4 PrismTechnologies, Ltd. Integrated Circuit ORB (ICO) 123

5.6.5 Objective Interface Systems, Inc. ORBexpressFPGA 125

5.6.6 OMG IDL-to-VHDL mapping .. 126

5.7 Conclusion .. . 126

This chapter is divided into three parts: first we present in ageneral way the definition, the main
requirements and a classification of middlewares. We then focus on distributed object middlewares and
in particular on the OMG CORBA middleware required by the SCA. Finally, we present a state of
the art on software implementations of real-time and embedded CORBA middlewares and on hardware
implementations of object middlewares including CORBA.

This chapter is organized as follows. Section 5.1 defines what are middlewares. Section 5.2 describes
the main requirements of middlewares, portability and interoperability. Section 5.3 presents a middle-
ware classification. Section 5.4 presents the Object Management Architecture (OMA) from the Object
Management Group (OMG). Section 5.5 presents the CORBA Object Model and its software implemen-
tations notably for embedded and real-time systems. Section 5.6 describes a state of the art on hardware
implementations of object-oriented middlewares including CORBA. Finally, section 5.7 concludes this
chapter.

5.1 Middleware Definition

A middleware platform is a software communication infrastructure that is used forthe development,
deployment and execution of applications that are distributed across different computing environments
ranging from enterprise to embedded computers. From an application designer viewpoint, a middleware
is a software layer between applications, operating systems and network protocol stacks. It is basically
implemented as a software library with which applications are linked. From an OSI model viewpoint,
a middleware is traditionally a set of layers from the application layer down to the network layer. A
middleware aims at supporting transparent communicationsbetween heterogeneous systems regardless
of their distribution, hardware computing architecture, programming language, operating system, trans-
port layer and data representation. The objective is to provide a uniform view of a distributed system to
application developers.

A middleware is often referred to as a software or logical busbetween communicating entities, al-
though in reality a middleware instance typically resides at each communication node. A middleware
raises the abstraction level at which distributed applications are developed. Developers no longer need
to cope with low-level, tedious and error-prone aspects of distribution such as network programming
e.g. using Internet sockets to locate objects, marshal application data, demultiplex and dispatch requests
[SLM98]. This complexity is shifted from application to middleware designers. Developers can thus
focus on business application logic.

5.2 Middleware Requirements

The two key requirements of middlewares are to provideportability and interoperability to distributed
applications [PRP05].

5.2. Middleware Requirements 91

5.2.1 Portability

Portability denotes the property of an application, which can be migrated or ported from one operating
environment to another one with little or no efforts in termsof time and cost. Two kinds of portability
can be distinguished: portability atsource codelevel viaApplication Programming Interface(API) and
portability atbinary codelevel viaApplication Binary Interface(ABI) [PH07]. Concretely, an API is a
set of operations which are directly called by developers according to some use rules. Examples of APIs
include the Portable Operating System Interface (POSIX) for system programming and the Berkeley
Socket API for network programming. An API is traditionallyredefined for each specific procedural or
object-oriented implementation language and operating environment. For instance, the Socket API has
been redefined in C for Linux and Windows, in Java for Sun Java Virtual Machines (JVMs) and in .NET
languages (C++.NET, VB.NET, C#) for Microsoft Virtual Machines called Common Language Runtime
(CLR). The porting of an application from one tuple (language, operating system, processor) to another
one may require its source code to be adapted to the target APIinterface and to be recompiled and linked
to its implementation library.

In contrast, an ABI corresponds to the instructions set and calling convention of real and virtual
machines. It is indirectly used by developers via the binarycode executed by real machines from the
compilation of native programming languages such as C/C++ or by virtual machines from the interpre-
tation or run-time/design-time compilation of languages such as Java and Microsoft .NET languages.
The porting of an application from one tuple (language, operating system, processor) may require no
extra work as the binary code of the application compiled forone machine can be directly executed onto
another machine without recompilation.

Middlewares support the portability of distributed applications through standard middleware APIs
and abstraction of underlying language, operating system,processor and network. The middleware API
is used by distributed applications and provided by each middleware platform implementation. It allows
applications to communicate with each other and use middleware services e.g. to locate application
entities. Each middleware platform like CORBA, Java RMI or .NET provides its unique, yet closely
related, API in terms of functionalities [SSC98] [VKZ04].

A standard middleware API guarantees that the porting of a distributed application from one com-
pliant middleware implementation e.g. the TAO CORBA middleware [SLM98] to another one e.g. the
omniORB CORBA middleware [GLR06] only requires some minor source code modifications, recom-
pilation and linking with the target middleware library.

In addition to using middleware APIs, distributed applications specify user-defined APIs. These
application APIs are provided by distributed object implementations and required by client objects to
request application services through the middleware platform. Whatever the implementation technology,
middleware platforms allow client and server objects to be portable so long as the application interface
on which they depend remains the same. An application API is either specified in a specific program-
ming language like Java for Java RMI or .NET languages for .NET Remoting or an implementation-
independentInterface Definition Language(IDL) such as CORBA IDL, Microsoft COM IDL and XML-
based WSDL (Web Service Definition Language).

IDLs allow the specification of abstract APIs that are translated into concrete APIs. IDL compilers
automatically perform this translation in target implementation languages according to language map-
pings. Developers no longer need to manually redefine APIs ineach implementation language and
operating environment. The automatic mapping of APIs guarantees a systematic consistency across lan-
guages and enforces common coding rules. Hence, the combination of IDLs and standard mapping rules
enables the portability of APIs themselves regardless of their implementation and operating environment.

In summary, IDLs allow portability at source code level using API, while programming languages
and virtual machines provide portability at binary code level using ABI. The main differences between

92 Chapter 5. Middlewares

these interface and implementation-centric approaches is1) an interface is less likely to change than
its implementation and 2) the integration of legacy systemsis achieved through interface adaptation
rather than source code reimplementation [Vin03]. In this work, we follow an interface-centric approach
using IDLs since this approach is technology independent and more applicable to hardware application
modules i.e. IPs.

5.2.2 Interoperability

The second objective of middleware is interoperability. Interoperability is the ability of applications to
interoperate (i.e. understand each other) and perform system functionalities although they are executed
using different operating environments. Middlewares provide interoperability to distributed applications
thanks to standard message protocols. A message protocol specifies the ordered set of messages, which
are sent and received between middleware implementations through the communication network. These
messages are formatted according to message building blocks calledProtocol Data Units(PDUs). The
associated message format defines a standard data structurewith an ordered set of message fields for
message header and payload along with standard data encoding and alignment rules. These encoding
rules indicate how the common IDL data types defined and used by an application are encoded in a neu-
tral data representation for network transmission in messages. Examples of message protocols include
CORBA GIOP (General Inter-ORB Protocol), Sun JRMP (Java Remote Method Protocol) and SOAP
(Simple Object Access Protocol) used in Web Services.

5.3 Middleware Classification

Middlewares may implement one or several distributed communication models. These communication
models belong to different abstraction levels and are not obvious to classify and compare [EFGK03].
The main communication models include: Message Passing, Message Queuing, Remote Procedure
Calls (RPC) and Remote Method Invocations (RMI), Publish-Subscribe, Transaction, Distributed Shared
Memory (DSM) [Tho97] [EFGK03] [LvdADtH05].

Based on these communication paradigms, middlewares can bedivided into the following main
classes [Hur98] [Rit98] [Emm00]: Procedural middlewares,Object middlewares, Message Queuing mid-
dlewares, Messaging middlewares, Publish-Subscribe middlewares, Transaction middlewares, Database
middlewares, Shared Spaces middlewares, and Web middlewares.

The separation between these different kinds of middlewares is rather fuzzy [Hur98]. Indeed, database
middlewares may have object-orientation. Object middlewares like CORBA provide services for trans-
action, queuing, messaging and publish-subscribe. Finally, message queuing middlewares may also sup-
port transaction, DBMS and publish-subscribe. For instance, the Java Message Service (JMS) [Mic02]
supports both message queuing and publish-subscribe models.

5.3.1 Message Passing

In Message Passing, a sender directly sends messages to a receiver using low-level send/receive prim-
itives. Communications are mainly point-to-point and unidirectional from the sender to the receiver.
Senders may send messages asynchronously and continue their processing, while receivers wait for the
messages and receive them synchronously. The send/receiveoperations may be blocking, non-blocking
or a combination of both. Higher-level interactions can be built on top of these primitives like remote
invocations. Senders and receivers are time and space coupled as they need to be running at the same
time and the sender needs to know the receiver address. Message passing does not generally provide
access and location transparency as data marshalling and addressing are explicit at the application level.

5.3. Middleware Classification 93

Examples of message passing API are Internet sockets and Message Passing Interface (MPI) [For08].
The socket API explicitly requires the network address endpoint (IP address and port number). Read-
/write operations include as parameters a data buffer and its size. Sockets may also be used for group
communication. In MPI, instead of using an interface definition language, developers explicitly describe
the data types of user-defined data structures programmatically at low-level in order that the MPI runtime
library automatically performs data alignment (MPI_GET_ADDRESS) and marshalling.

5.3.2 Procedural middlewares

Procedural middlewares rely on Remote Procedure Calls (RPCs) [BN84]. Examples include Distributed
Computing Environment (DCE)14 RPC from the Open Software Foundation (OSF), the Open Network
Computing (ONC)15 RPC from Sun Microsystems, and Microsoft RPC (MSRPC)16. A distributed
entity is viewed as a loosely cohesive set of user-defined procedures typically in C. A caller acting as
client calls an user-defined callee procedure at server side. The signatures of remotely accessible pro-
cedures are defined in a language-independent Interface Definition Language (IDL) such as DCE/RPC
IDL or Microsoft IDL. The call statement is exactly the same regardless of the local or remote location
of the server. This location transparency is allowed by a proxy representing the server called stub that
performs data marshalling and unmarshalling to and from a neutral network data representation. The
marshalling and unmarshalling routines are automaticallygenerated by an IDL compiler and provides
access transparency to client and server entities. The IDL compiler performs the mapping or binding
of language-independent interfaces defined in IDL to language-specific procedures e.g. in C. When the
client performs a remote call, the input procedure parameters are marshalled by a stub into a byte stream,
which is sent in a request message to the server using networkprotocols such as TCP or UDP. Then
the message is received by the server, the parameters are unmarshalled and the procedure is called. Fi-
nally the results of the remote procedure are marshalled into a reply message and returned to the stub,
which unmarhalls the return value and delivers it to the local procedure. In synchronous RPCs, the caller
thread of control is blocked until a reply is returned, whileasynchronous RPCs do not block the caller
[ATK92]. RPCs are space and time coupled with partial synchronization decoupling [LvdADtH05]. RPC
request is a blocking send and non-blocking receive, while RPC reply is a non-blocking send and block-
ing receive. Asynchronous RPCs allow a caller to initiate aninvocation that immediately returns and
continues its processing, whereas the invocation is concurrently performed. Caller execution and callee
invocation are thus decoupled, while the latency of communication and callee computation are masked.
Asynchronous RPCs may be without a reply (unreliable onewaycalled fire-and-forget [VKZ04]) or with
a reply (twoway). A twoway synchronous invocation can be transformed into two request-reply asyn-
chronous invocations for the request and the reply. Communications between the caller and the callee are
primarily point-to-point, while group communications could be built on top of the basic RPC mechanism.

5.3.3 Distributed Object Middlewares

Distributed Object Middlewares, also known as Object-Oriented Middlewares, are based on Remote
Method Invocation (RMI). Examples include OMG CORBA [OMG08b], Sun Java RMI [Mic08], ZeroC
ICE [HM07], Microsoft Distributed Component Object Model(DCOM) 17 and Microsoft .NET Remot-
ing 18. RMI is to object-oriented programming languages what RPC is to procedural languages. RPCs

14http://www.opengroup.org/dce
15http://www.ietf.org/rfc/rfc1831.txt
16http://msdn.microsoft.com/en-us/library/ms691207(VS.85).aspx
17http://www.microsoft.com/com/default.mspx
18http://msdn.microsoft.com/en-us/library/72x4h507(VS.85).aspx

94 Chapter 5. Middlewares

have been basically applied to object-oriented languages and extended with object-oriented concepts
such as interface, object references and exceptions to build RMI. Object reference can be passed by
value and used to call remote operations. The object paradigm is used as the primary abstraction in RMI
to encapsulate the state and behavior of a distributed entity. A distributed object represents typically an
atomic distribution unit. After obtaining an object reference typically from a naming service, a client
object invokes user-defined remote methods on a server object as if it were local. As RPC, an IDL such
as CORBA IDL or Java for Java RMI is used to describe the interfaces provided by objects, but are more
naturally mapped to the native concept of interfaces in object-oriented languages. The automatic gener-
ation of client and server stubs is also supported by IDL compilers to marshal method parameters into
requests and replies. Object Request Brokers (ORB) convey and dispatch requests from client to server
objects and return replies in the opposite direction. RMI may be synchronous or asynchronous e.g. using
CORBA reliable oneway operations and Asynchronous Method Invocation (AMI) with explicit polling
or callback model. Both RPC and RMI are based on a request-reply message protocol, which is inher-
ently asynchronous and characteristic of client-server interaction. However, request-reply messages are
more implicit than in message passing and message-orientedmiddleware. As opposed to RPCs, Java
RMI is space decoupled, but also time coupled with partial synchronization decoupling [LvdADtH05].
Java RMI request is blocking send and non-blocking receive,while Java RMI reply is non-blocking send
and blocking receive. CORBA is time coupled, space coupled or decoupled with blocking send and
non-blocking receive [LvdADtH05]. Based on the basic mechanism of RMI, Distributed Object Mid-
dlewares can provide the same functionalities as RPCs, Transaction middlewares and Message-Oriented
Middlewares and replace them [Pin04].

5.3.4 Component middlewares

Component middlewares [SDG+07] are an extension to distributed object middlewares. A distributed
entity is no longer a single object, but an aggregation of objects with explicit dependencies called a com-
ponent. Examples are as OMGCORBA Component ModelCCM [OMG06a], SunEnterprise JavaBeans
(EJB) [Mic06], Microsoft Distributed Component Object ModelDCOM 19. The concept of component
will be studied deeper in the next section.

5.3.5 Message-Oriented Middlewares

Message-Oriented Middlewares (MOM) include message passing, Message Queuing [Kra08] and Publish-
Subscribe middlewares. Many MOM supports both Message Queuing and Publish-Subscribe models like
the Java Message Service (JMS).

Message Queuing (MQ) middlewares provide a fixed set of predefined asynchronous messaging
primitives to send and receive messages anonymously from one sender to one or multiple receivers
through indirect, explicit and named communication channels calledmessage queues. A message queue
is basically a FIFO message buffer and is managed by a queue manager. The sender send a request
message to a message queue, then the receiver receives the request message from the queue and may
return a reply message via another queue. Typically, a message consists of a header including control and
routing information and a payload with application-specific data. Message Queuing may provide Quality
of Services such as reliable and ordered message delivery. Message Queuing systems may store/forward
and route messages. Message queues may be persistent for fault-tolerance or mobile receivers, which are
sometimes disconnected from the network. They may be also transactional to guarantee atomic i.e. all or
nothing delivery of messages to multiple receivers. Messages can be reordered by priority or deadlines
or converted from one sender native format to another receiver format. Compared to RPCs, messaging

19http://technet.microsoft.com/en-us/library/cc722927.aspx

5.3. Middleware Classification 95

systems support more network protocols [Emm00]. Message Queuing provides location transparency as
senders and receivers do not know the physical address of each other. Access transparency is limited since
message queues are used for remote (but not for local) communications and marshalling is not automated,
but handled by application developers [Emm00]. Messaging products do not guaranty portability and
interoperability of applications due to the lack of platform-independent standards. Indeed, JMS appears
as a de-facto standard API, but only for Java platforms.

Examples of MOM include Java Message Service (JMS) [Mic02],IBM WebSphere MQ20, Microsoft
Message Queuing (MSMQ)21, and Apache ActiveMQ22

Message-Oriented Middlewares such as JMS, MSMQ, WebSphere-MQ are time and space decoupled
with blocking send and blocking receive (pull) or non-blocking receive (notification) for synchronization
decoupling [LvdADtH05]. Indeed, senders and receivers do not know each other and can use the message
queues at different time. Group communication from one sender to several receivers may be supported
using multicast delivery. Besides, the concept of message queues is also used for inter-process, task and
thread communication in RTOS such as VxWorks andµC/OS. The SCA MHAL [JTR07] specification
defines a standard MOM API and message header for GPP, DSP and FPGAs/ASICs. Hence, the MHAL
can be considered as a hardware/software message broker forSDR platforms. The MHAL Logical
Destination (LD) serves as Message Endpoint [BHS07].

5.3.6 Publish-Subscribe middlewares

In Publish-Subscribe middlewares, message receivers called subscribersregister their interest in the
middleware to receive a particular kind of information typically calledevent. When a message producer
calledpublishergenerates this information, the middleware notifies i.e. deliver the desired event to all
registered subscribers. Examples of such middlewares include OMG Data-Distribution Service for Real-
Time Systems (DDS) [OMG07a], TIBCO Rendezvous, Tuxedo, Apache ActiveMQ , CORBA Event and
Notification services and JMS. Publication and subscription may be based on the topic, content or type
of events [EFGK03]. Publish/subscribe messaging allows one-to-many, non-blocking and anonymous
communications between a publisher and its subscribers [McH07]. Publish-Subscribe provides thus
decoupling in terms of time, space and synchronization [EFGK03]. Publish-Subscribe supports location
transparency as senders and receivers do not know the physical address of each others. For instance,
DDS is a topic and content-based data-centric publish-subscribe middleware.

5.3.7 Transaction middleware

Transaction middleware or Transaction Processing (TP) Monitors are based on the concept of transac-
tion. A transaction is a sequence of operations, which is either totally executed or not at all. It represents
a single logical operation and unit of distributed processing. If an operation in a transaction fails, all
the previous operations are cancelled orrolled backedusing transaction logs. Otherwise, the transac-
tion is totally executed orcommited. A widely cited example of transaction is a money transfer opera-
tion, which requires two operations i.e. to withdraw money from one account and deposit it to another
[CDK01]. Examples of transaction middlewares include IBM CICS 23 (Customer Information Control
System), Oracle Tuxedo24, CORBA Object Transaction Service (OTS), Java TransactionAPI (JTA) and
X/Open Transaction Architecture (XA).Transaction provides a powerful abstraction to manage concur-

20www.ibm.com/software/mqseries
21http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx
22http://activemq.apache.org
23www.ibm.com/cics
24http://www.oracle.com/products/middleware/tuxedo/index.html

96 Chapter 5. Middlewares

rent accesses to shared resources such as data from multipledistributed clients. Transaction middlewares
support both synchronous and asynchronous interactions, fail over and recovery capabilities that provide
fault-tolerant and reliability, load balancing and replication. However, they do not automate marshalling
and unmarshalling of complex data structures [Emm00].

The fundamental properties of reliable transactions are contained in the "ACID" mnemonic: Atom-
icity (transactions are indivisible - all or nothing), Consistency (the state of a system remains consistent
before and after a transaction), Isolation (transactions are independent from each other) and Durability
(the commitment of a transaction is persistent and resistant to failures). The concept of atomic transaction
has been used in database systems, distributed systems, filesystems like Transactional NTFS, Software
Transactional Memory (STM) [ST95] and in BlueSpec for High-Level Synthesis (HLS) [CM08]. Note
that the term transaction aforementioned has nothing to do with "Transaction Level Modeling" (TLM)
[Ghe06], which will be described later in this work. The linkbetween both terms is studied in [NH07].

5.3.8 Database Middleware

Database Middleware mediate access to Database ManagementSystems (DBMS) like Microsoft Access,
Oracle databases or MySQL using standard APIs like the Open Database Connectivity (ODBC), which
is independent of programming languages, operating systems and DBMS. SQL (Structured Query Lan-
guage) is a declarative query language with procedural programming extensions that is used to create,
insert, update, retrieve and delete data in relational DBMS.

5.3.9 Distributed Shared Memory

Distributed Shared Memory (DSM) provides a global logical address space, which is shared by producers
and consumers in distributed address spaces.An example is tuple spaces. Tuple spaces can be viewed as
software Distributed Shared Memory, Blackboard [BHS07], content-addressable memory or associative
memory. In mathematics, a n-tuple is a bounded sequence i.e.ordered list of n elements, which may be
of various types and present multiple times. A tuple space isa repository of tuples, which are accessed
concurrently by producers and consumers working in parallel. Producers write data as tuples to the tuple
space, while consumers read or take (i.e. read and remove) data from the tuple space according to some
search criteria e.g. content or type. Tuple spaces are time and space decoupled with total or partial
synchronization coupling thanks to asynchronous notifications [LvdADtH05]. Indeed, producers and
consumers are anonymous and do not know each other. The tuplespaces paradigm originates from early
works on the Linda coordination language [GC92]..

5.3.10 Web middlewares

Web middlewares are based on Internet technologies and protocols such as XML and HTTP to offer an
uniform view of Web applications independently of languages, operating systems or databases. Examples
are Web Services, Web portals and application servers. Web Services are based on XML for both service
definition using the Web Service Definition Language (WSDL) and message protocol using the Simple
Object Access Protocol (SOAP).

Web Services are application services, which are remotely accessible using Internet technologies
and protocols. Web Services target the integration of distributed enterprise applications that may rely
on heterogeneous middleware platforms such as RPC, CORBA, Java RMI, .NET, JMS or MQSeries to
build an independent Service-Oriented Architecture (SOA).

Web Services use XML for both service interface definition and message protocol using respectively
WSDL and SOAP. The eXtensible Markup Language (XML) allows storing any data in .xml files under

5.4. OMG Object Management Architecture (OMA) 97

Middleware Type Communication
Model

Participation Space De-
coupling

Time De-
coupling

Synchronization
Decoupling

Message Passing oneway messaging 1-1, 1-N No No from blocking to
non-blocking

RPC/RMI Request/reply 1-1 No No partial
Async. RPC/RMI Request/reply 1-1 No No Yes
Notification Event 1-N No No Yes
Database distributed shared

memory
N-M Yes Yes Yes

Message queuing Message queuing N-M Yes Yes Producer-side
Tuple spaces distributed shared

memory
N-M Yes Yes Producer-side

Publish/subscribe event N-M Yes Yes Yes

Table 5.1: Comparison of middleware communication models [Tho97] [EFGK03] [LvdADtH05]

a structured form using markups. The functionalities provided by a Web Service are specified in the Web
Services Definition Language (WSDL). However, no APIs for Web Services are standardized.

5.3.11 Position

In this work, our target application domain is SCA-compliant Software Defined Radio based on real-
time and embedded radio platforms. Communications are primarily point-to-point between application
objects and platforms or services objects.

We will first focus on object-oriented middlewares, then on component middlewares using CORBA
middleware platform as example.

Table 5.2 presents a comparison of some middleware platforms.
After this general introduction to middlewares, we focus onthe particular CORBA middleware plat-

form to provide more details on typical middleware architecture and services that collaborate to offer
portability, interoperability and distribution transparency to distributed objects. To give an overview
of middleware architectures, we will briefly describe the main elements and services of the Common
Object Request Broker Architecture (CORBA) that collaborates to offer portability, interoperability and
transparency of access, location and technology to distributed objects.

5.4 OMG Object Management Architecture (OMA)

TheCommon Object Request Broker Architecture(CORBA) is a freely available specification published
by theObject Management Group(OMG).

CORBA is the specification of a concrete middleware platformbased on an abstractCore Object
Model and reference architecture called theObject Management Architecture(OMA) [OMG95] de-
picted in figure 5.1. The abstract Core Object Model cannot bedirectly implemented as nothing is
specified in terms of data types, signature and semantics of operations provided by the object interface,
invocation message format etc. as opposed to the concrete CORBA object model. The OMA captures
the conceptual OMG vision on object technologies. This vision evolves to Model Driven Architecture
(MDA) with the multiplication of middleware technologies such as CCM, .NET, J2EE and WebServices
and the growing need for higher level of abstraction and reuse through modeling e.g. using UML.

98 Chapter 5. Middlewares

Criteria CORBA Java RMI .NET Web Services
Interface Definition IDL Java .NET languages WSDL
Interface language map-

pings, CORBA
API

Java RMI API .NET Remoting
API

not supported

Representation CDR - specific Object Serializa-
tion

Object Serial-
ization (Binary
Format or SOAP
mapping)

XML serialization

Message GIOP - specific GIOP, JRMP .NET Remoting
Core Protocol

SOAP, GIOP

Transport TCP, UDP - ATM,
VME, SHM - CAN

TCP/UDP TCP, HTTP, SOAP
on TCP or HTTP

HTTP, SMTP, FTP,
JMS, TCP (IIOP)

Table 5.2: Comparison of some middleware platforms

The OMA is structured around:

Figure 5.1: Object Management Architecture (OMA) Reference Architecture

• anObject Request Broker(ORB), which provides a communication bus between distributed ob-
jects. It allows transparent communications independently of the location and implementations of
objects. These communications take the form of method invocations on objects. An ORB isolates
objects from heterogeneity of programming languages, operating systems, hardware platform and
networks;

• Object servicesdenote a set of common system services independent of any application domain
such as naming, life cycle, event services. The services areaccessed through standard interfaces
by application objects;

• Common facilities or Horizontal Facilities represent services used by different application do-
mains such as printing service;

• Domain servicesor Vertical Facilities designate domain specific services e.g. medical, telecom-
munications and finance;

5.5. CORBA Object Model 99

• Application objects provide application-specific services for which no standard interfaces are
specified by the OMG as opposed to the previous ones.

5.5 CORBA Object Model

The CORBA object model is a concrete object model derived from the abstract Core Object Model
defined in the Object Management Architecture. However, this object model does not specify imple-
mentation details such as if one or more threads should be used in service user (i.e. client), or service
provider (i.e. server). An object is defined as "an identifiable, encapsulated entity that provides one or
more services that can be requested by a client" [OMG08b]. Service users are independent from the
implementation of services through a well-defined interface. An interface is a set of operations that a
client can invoke on an object. An object is identified by one or severalobject referencesused to request
a service. An object reference designates anobject type, which is represented by aninterface type. The
CORBA object model is a typical object model, in which a client sends request messages to an object
implementation, which may return a reply message. A client request consists of an operation, a target
object, zero or more parameters and an optional request context. A parameter may be an input, output
or inout i.e. input-output parameter. A method designates the code to be executed to perform a service.
The execution of a method is referred as amethod activation. When a client sends a request, a method
is selected according to the operation identifier either by the object, but more generally by the ORB.
After method dispatch, a method is called on the target object. Operation results, if any, are sent back
to the client by areturn, output or inout parameter. If a problem occurs during operation execution, an
exception may be returned with exception-specific parameters.

5.5.1 CORBA Overview

Figure 5.2: CORBA Overview

In CORBA terminology, a server is a process that includes object implementations calledservants,
whereas a client is a process that calls object operations [McH07]. Before any communication with an
object through method invocations, a client must retrieve their object references.

100 Chapter 5. Middlewares

Object Reference

Each CORBAObject is represented by a universally unique identifier calledInteroperable Object Ref-
erence(IOR) in CORBA and a servant. The IOR is indistinguishably used byclients for both local and
remote access to servants. This provides access transparency, since object methods are invoked in the
same way regardless of object locations. An IOR contains an IDL interface identifier calledReposito-
ryId, an addressing information and an Object Key. An ObjectKey identifies an object within an ORB.
An Object Key includes the Object Identifier (ObjectId) and an unique identifier for the POA of the ob-
ject. An ObjectId is unique within an object adapter and is assigned by an object adapter or the designer.
An ObjectId maps an object to its servant implementation(s). An object can be associated with one or
several servants over the duration of its existence. A client can obtain an IOR though various means: a
file, an URL25 address calledcorbalocation(corbaloc) or a lookup service calledNaming Service. An
IOR corresponds to theAbsolute Object Referencepattern [VKZ04]. The association between a CORBA
Object and a Servant is calledIncarnation, whereas the de-association is calledEtherealization.

Remote Object Implementation

A Servant implements the operations of IDL interfaces in a target programming language. In OO lan-
guages such as C++ and Java, servants are implemented as classes. In procedural languages like C, they
are implemented as a collection of functions and data structures. A Servant is activated by an object
adapter or through aServant manager. A Servant is referred as aRemote Objectin [VKZ04].

Client-side invocation interface adapter

A Stub adapts the user-defined interface used by a client and theStatic Invocation Interface(SSI) of the
ORB. It acts asClient Proxy[VKZ04] to the servant. A stub encodes or marshals the input parameters
of the operation into a request message payload according tocommon data encoding rules. It then de-
serializes or unpacks the reply message to present operation results to the client. Hence, it plays the
role of a Marshaller [VKZ04]. A stub is also considered as anInvocation Interceptor[VKZ04]. A
dynamic stub allows one to send CORBA requests and receive CORBA responses to an object unknown
at compile-time thanks to a reflection service calledInterFace Repository(IFR).

Server-side invocation interface adapter

A Skeleton is a glue between the user-defined interface implemented by aservant and the generic in-
terface provided by an ORB. It demarshals binary request packets into native data types and calls the
operation on the servant as anInvoker [VKZ04]. Then it packs results and errors or exceptions in a
response returned to the client. A skeleton is also considered as anInvocation Interceptor[VKZ04]. A
dynamic skeleton allows one to receive CORBA requests and send CORBA responses at run-time by
dynamically discovering the IDL of an object through the Interface Repository.

IDL Compiler

An IDL compiler generates automatically stubs and skeletons from the interface definitions in IDL ac-
cording to standard language mappings. An IDL compiler offers the portability of IDL interfaces, since
client and server-side applications can be independently written in any language supported by language
mappings. IDL compilers automate the tedious and error-prone tasks of marshalling/demarshalling ap-
plication data to and from a binary stream.

25Uniform Resource Locator

5.5. CORBA Object Model 101

Object Adapter

A Portable Object Adapter(POA) is responsible for generating the Object Key, associatingobjects and
servants, demultiplexing and dispatching invocations to the right servant using skeletons. It conforms
to the Object Adapter design pattern [GHJV95]. Typically, aPOA maps Object IDs to servants via an
Active Object Map(AOM). The association between an object to an implementation may be one-to-
one, one-to-many for load balancing or fault-tolerance through replication, or many-to-one to shared
resource. This latter mapping is referred to thedefault servant. POAs are organized as a hierarchy from
the top-level defaultRootPOA to several levels of user-defined child POAs.

ORB Core

An ORB core is in charge of delivering the client request to the target servant and return its reply if any
throughClient Request HandlerandServer Request Handler. An ORB core is aLocal Object[VKZ04]
that implements the standard ORB interface. This interfacenotably serves to start/stop the ORB, to
convert hexadecimal IOR to human readable strings and vice versa, and to build at run-time requests
from a list of parameters for the Dynamic Invocation Interface (DII). An ORB core can be designed
as a Micro-Kernel [BHS07] with well-defined interfaces to plug in ORB modules such as schedulers,
invocation adapters, object adapters,Protocol Plug-Ins [VKZ04] and transport modules [PRP05]. An
ORB Core may implement several strategies for network eventdemultiplexing likeReactor[BHS07]
and for concurrency such as Thread-per-Request, Thread-per-Connection, Thread-per-Object and Thread
pool like Worker andLeader-Followers[BHS07] architectures [Sch98].

ORB message protocol

An abstract message protocol calledGIOP defines the format of service request and response messages
and how data types are encoded for network transmission using data encoding rules defined in theCom-
mon Data Representation(CDR). GIOP supports communication interoperability.

ORB transport protocol

ORB messages are transferred on a standard or proprietary transport layer such as TCP/UDP-IP, ATM or
a CAN bus.

Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI)

The DII allows clients to build requests at run-time while they do not know object interfaces at compile-
time. Conversely, the DSI allows an ORB to dispatch requeststo servants, whose interfaces are unknown
at compiler-time. Clients and servers do not need an a prioriknowledge of the static or dynamic interfaces
used at each side. This is totally transparent and provides access transparency.

Interface Repository (IFR)

The InterFace Repository is a reflection service, which allows one to dynamically discover the service
definition of objects unknown at compile time. The IFR is usedto dynamically create requests and invoke
the associated methods through the DII.

102 Chapter 5. Middlewares

The Implementation Repository (IMR)

The Implementation Repository maps an object reference to another one. The IMR is typically used to
dynamically and transparently start servers or perform load balancing in case of failure thanks to the
location forwarding capabilities of CORBA ORBs.

The OMG specifies a multitude of common object services for Event, Log, Security or Naming
Service and domain specific services for Real-Time, QoS, Streams or Asynchronous Messaging. We
only introduce the main services:

Naming Service

The Naming Service is a lookup service [BHS07] [VKZ04], which maps a hierarchical object name to
an object reference. A serverbinds a name to an object within a naming context to register the service
it provides. Each clientresolves this name to retrieve a proxy for this object on which it invokes
its methods. TheLightweight Naming Service specifies a PIM in UML and a PSM for the CORBA
platform. It is limited to the most commonly used subset of the Naming Service.

Event Service

The Event Service is a type-based publish-subscribe service [EFGK03]. An event source orsupplier
signals the occurrence of an event to anevent channel, which notifies allregisteredevent sinks orcon-
sumers. TheLightweight Event Servicespecifies a PIM in UML and a PSM for the CORBA platform.

Notification Service

The Notification Service is a content-based publish-subscribe service [EFGK03], which overcomes the
limitations of the Event Service. The Notification Service extends the Event Service interfaces with the
capability to define structured event data, notifies not all registered but all interested consumers using
event filteringand a filter constraint language, obtains the event types required by consumers through
event discovery, retrieves the event types provided by suppliers throughevent subscriptionand configures
theQoSof event delivery.

Invocation path

As a summary, we describe the different steps involved during an invocation. The client-side ORB
builds the GIOP and request message headers, marshals operation input parameters in a request message
body and sends the message across the network. Then the server-side ORB parses the message header,
demarshals the parameters, finds the servant, invokes the method, marshals return and output parameters,
builds the reply message and send it. Finally, the client-side ORB receives the reply message, parse the
reply header, demarshals the parameters and returns them tothe application.

5.5.2 CORBA Implementation

The CORBA specification defines a reference model and architecture, its IDL interfaces and functional-
ities. However, CORBA does not specify the implementation of these functionalities and their quality.
There is no official reference implementation, although theTAO ORB [TAO08] can be considered as
such an implementation.

Middleware architecture and services have been extensively formalized in the literature under the
form of numerousdesign patterns[GHJV95] [VKZ04] [BHS07] [Kra08] [SC99]. Middleware design

5.5. CORBA Object Model 103

patterns capture key elements and services of middlewares architecture. Instead of continuously rein-
venting the wheel, a design pattern names and describes a common solution to a recurring problem.
Even if software design patterns deal with software architecture, some concepts behind design patterns
are fundamentally technology-agnostic and have been applied to hardware design [DMv03] [RMBL05]
[RMB+05].

In the following, an overview of middleware architecture and functionalities is presented from a
CORBA viewpoint. The suggestive names of the underlying design patterns are indicated as an illustra-
tion.

The main design patterns used to implement middlewares include:

1. The PROXY or Surrogate pattern [GHJV95] allows one to give the illusion to a client object that
it directly interacts with a server object, while it may be remote. A proxy encapsulates various
services such as object location, un/marshalling, networktransfers or access control [Sha86].

2. The ADAPTER or Wrapperpattern [GHJV95] allows one to adapt two incompatible interfaces,
this is referred to aninterface adapteror to an interface to an implementation, this is referred to
anobject adapter.

3. The BROKER pattern [GHJV95] is used to define the general architecture of an ORB. A broker
provides a communication infrastructure that enables distributed objects to communicate trans-
parently in a heterogeneous environment regardless of location or languages. It also provides
decoupling between the applications and the middlewares themselves.

4. The LAYER pattern allows one to decouple middleware services, whose implementation may
evolve without impacting each other.

5. The WRAPPERFACADE pattern encapsulates low-level services with portable object-oriented in-
terfaces.

6. The REACTOR pattern serves to demultiplex network events such as incoming connections and
data transfers that are triggered by multiple concurrent clients.

7. The PROACTORpattern extends the Reactor pattern via efficient asynchronous I/Os, which permits
concurrent request demultiplexing and processing.

8. The STRATEGY pattern is used to transparently change the implementationof middleware services
via dynamic loading/unloading of libraries.

Obviously, these patterns are connoted by software abstractions like thread, network programming
with connection-oriented transport layers like TCP-IP andtypical software source of overheads such as
dynamic memory allocation. Design patterns capture different solutions in middleware design space. A
similar approach is required for the design of hardware middleware implementations. In this work, we
will discuss the design trade-off of such implementations.

5.5.3 Illustration of CORBA Middleware Design Flow

To illustrate the development of distributed applicationsusing the CORBA middleware, we present a
small example based on the CORBA compliant MICO ORB [PRP05].

104 Chapter 5. Middlewares

IDL Definition

First, an object interface is defined in CORBA IDL. As presented in listing 5.1, the interfaceExample
contains a single operation calledsend. This operation takes as input parameter a short calleds and a
sequence of bytes calledo.

i n t e r f a c e Example {
t y p e d e f sequence < o c t e t > Octe tSeq;
vo id send (i n s h o r t s , i n Octe tSeq o);

} ;

Listing 5.1: example.idl

Then, this IDL interface is translated by an IDL compiler in accordance to a language mapping. Here,
we chose the C++ mapping. The IDL compiler generates an header file, Example.h, which contains
the glue code (invocation adapters) for the ORB of this IDL compiler.

idl example.idl

The server and client part of the applications are then developed.

Server Implementation

The server application implements the IDL interface. As shown in listing 5.2, the servant classExample-
_impl inherits from the skeleton class calledPOA_Example. Thesend operation simply prints the
parameters received from the client application.

1 # i n c l u d e " example . h "
u s i n g namespace s t d;
c l a s s Example_impl : v i r t u a l p u b l i c POA_Example {

p u b l i c :
vo id send (CORBA : : S h o r t s , c o n s t Example : : Oc te tSeq& o) {

6 cou t << " Rece ived : \ n0x " << hex << u p p e r c a s e << s << end l;
f o r (CORBA : : ULong i = 0; i < o . l e n g t h () ; i ++)

cou t << " o [" << i << "] = " << (i n t) o [i] << end l ;
}

} ;
11 i n t main (i n t argc , cha r* argv []) {

/ / I n i t i a l i z e t h e ORB
CORBA : : ORB_var o rb = CORBA : : ORB_ini t (argc , a rgv);
/ / Ob ta in a r e f e r e n c e t o t h e RootPOAand i t s Manager

CORBA : : O b j e c t _ v a r poaob j = orb−> r e s o l v e _ i n i t i a l _ r e f e r e n c e s (" RootPOA ");
16 P o r t a b l e S e r v e r : : POA_var poa = P o r t a b l e S e r v e r : : POA : : _narrow (poaob j);

P o r t a b l e S e r v e r : : POAManager_var mgr = poa−>the_POAManager ();
/ / C r e a t e an o b j e c t Example
Example_impl ex;
/ / A c t i v a t e t h e o b j e c t

21 P o r t a b l e S e r v e r : : O b j e c t I d _ v a r o id = poa−> a c t i v a t e _ o b j e c t (&ex);
/ / Ob ta in t h e o b j e c t r e f e r e n c e

CORBA : : O b j e c t _ v a r r e f = poa−> i d _ t o _ r e f e r e n c e (o id . i n ());
CORBA : : S t r i n g _ v a r s t r = orb−> o b j e c t _ t o _ s t r i n g (r e f . i n ());
cou t << s t r . i n () << end l;

26 / / A c t i v a t e t h e POAand s t a r t s e r v i n g r e q u e s t s
mgr−> a c t i v a t e ();

5.5. CORBA Object Model 105

orb−>run () ;
/ / Shutdown (neve r reached)
poa−>d e s t r o y (TRUE, TRUE);

31 re turn 0 ;
}

Listing 5.2: Server Implementation

Client Implementation

As presented in listing 5.3, the client application invokesthesend operation on the stub.

i n c l u d e " example . h "
i n t main (i n t argc , cha r * argv []) {

3 CORBA : : ORB_var o rb = CORBA : : ORB_ini t (argc , a rgv);
CORBA : : O b j e c t _ v a r ob j = orb−> s t r i n g _ t o _ o b j e c t (a rgv [1]);
Example_var ex = Example : : _narrow (ob j);
Example : : Oc te tSeq o;
o . l e n g t h (3);

8 o [0]=1 ; o [1]=2 ; o [2]=3 ;
ex−>send (0 x1234 , o);
re turn 0 ;

}

Listing 5.3: Client Implementation

After compilation of the client and server applications, the server and client processes are launched
e.g. in a shell. The server process waits on a network connection from the client application. The
following command line parameter are specific to the MICO ORB.

./server -ORBNoResolve -ORBIIOPAddr inet:127.0.0.1:5000 -ORBNoCodeSets

The client application takes as parameter the object reference of the servant hosted in the server
process.

client IOR:010000001000000049444c3a4578616d706c653a312e30000100000000
0000002c000000010100000a0000003132372e302e302e31008813140000002f31393
634392f313232383934373434302f5f30

Table 5.3 describes the content of an object reference.

5.5.4 Overview of CORBA Interface Definition Language (IDL)

In CORBA, an object interface is specified independently of any particular programming language thanks
to the OMG IDL. An IDL interface defines the publicApplication Programming Interface(API) pro-
vided by an application object. The type of a CORBA object is called an interface, which is similar in
concept to a C++ class or a Java interface. In contrast to imperative languages that describe a sequence
of instructions to be executed, CORBA IDL is a declarative language only used to formally describe a
set of operation signatures i.e. the set of messages that canbe sent to an object. In CORBA IDL, an
operation signature is typically defined as:

[oneway] <op_return> <op_name>(param1, ... paramL) [raises(except1,... exceptM)] [con-
text(name1,...,... nameN)]

which consists of:

106 Chapter 5. Middlewares

Index Hex Data Comments
0 01 00 00 00 Endianness: Little endian + Padding
4 10 00 00 00 Length of thetype_idstring = 16
8 49 44 4c 3a 45 78 61 6d Repo Id: "IDL:Example:1.0\0"
16 70 6c 65 3a 31 2e 30 00
24 01 00 00 00 A tagged profile
28 00 00 00 00 TAG_INTERNET_IOP
32 2c 00 00 00 Length profile_data = 44 octets
36 01 01 00 00 Little Endian + IIOP Version 1.0 + Padding
40 0a 00 00 00 Length host = 10
44 0a 31 32 37 2e 30 2e 30"127.0.0.1\0"
50 2e 31 00
54 88 13 TCP Port = 5000
52 14 00 00 00 Length object_key = 20 octets
56 2f 31 39 36 34 39 2f 31 object_key = /PID/timestamp/ObjectID
64 32 32 38 39 34 37 34 34 /19649/1228947440/_0
72 2f 5f 30

Table 5.3: Example of IOR in little endian

• Invocation semantics: an operation is executedexactly-oncewhen an operation returns normally,
at-most-oncewhen an exception is raised ormaybewhen the optionalonewaykeyword is used
to denotebest-effortor Fire and Forget[VKZ04] semantics. Best-effort semantics mean that the
delivery of an operation call is not guaranteed. A best-effort operation is a request-only operation
for which no results i.e. output/inout parameters and user-defined exceptions can be returned. The
return value is thus declared as avoid type. Oneway operations are often referred as non-blocking
or "asynchronous" invocations, as the caller cannot synchronize with the operation completion. To
avoid synchronization side effects, reliable oneway operations have been introduced in Real-Time
CORBA by specifying four synchronization scopes: none, when the transport layer accepts the
message, before and after invocation on the servant [OMG05b]. Operation invocations may raise
user-defined exceptions or standard system exceptions.

• Return type: specifies the type of the return value. Avoid type indicates that no value is returned.
A return result is equivalent to an output parameter.

• Operation name: defines an unique operation identifier within an interface.

• Parameter list: each operation parameter has a mode, a type and a name. The mode may bein,
out or inout to respectively indicate whether the parameter is transferred from the client to the
server, from the server to the client or in both directions.

• Exception list: the optionalraiseskeyword is followed by a list of user-defined error types that
can be returned to a client. An exception type may have exception-specific information defined as
a data structure.

• Context list: the optionalcontext keyword precedes a list of request context information. This
feature is rarely used and won’t be addressed in this work.

5.5. CORBA Object Model 107

CORBA IDL is a specification language currently only employed to describe software interfaces. In
this work, we investigate the use of CORBA IDL at system levelindependently of hardware or software
implementations.

In the following, we briefly introduce the common object-oriented type system of CORBA IDL
version 2.x. Words in bold denote IDL keywords. IDL providesbasic and constructed types, whose
syntax is closely inspired by C++. The basic data types of CORBA IDL are listed below. A constant data
type is preceded by theconst keyword.

• boolean is a data type taking TRUE or FALSE.

• char is a character encoded in ISO latin-1.

• octet is an opaque 8-bit data type, which is not encoded for networktransmission.

• short, long, long long and theirunsigned versions are respectively 16, 32 and 64-bit
integer types;

• fixed-point decimal numbers;

• float,double andlong double are respectively single-precision (32-bit), double-precision
(64-bit) and double-extended IEEE floating-point types;

• any, which can contain any basic or constructed IDL data type. Anany includes a value and
a TypeCode to indicate the type of this value. A TypeCode is an enumeration (see below),
which identifies an IDL data type like basic and constructed types, object references and interfaces.
TypeCodes are for instance internally used by ORBs to pass byreference an object in operation
calls.

The constructed data types of CORBA IDL are listed below.

• enum, which is an ordered set of identifiers like in C/C++

• struct, which is similar to a C/C++ struct or a Java class with publicmembers

• array, which is a multi-dimensional fixed-size array of a single type like in C/C++. Atypedef
defines a new name or alias for an existing type. Atypedef is often used for array and sequence

• sequence, which is a one-dimensional variable-length array of a single type similar to a vector
in the C++STL (Standard Template Library) or a list in Java. A sequence has either a maximum
length fixed at compile time for bounded sequence or a dynamiclength for unbounded sequence
available at run-time.

typedef sequence<short> ShortBSeq; // unbounded sequence
typedef sequence<short, 16>ShortUSeq; // bounded sequence
ShortUSeq.length(); // Return 16;

• union, which contains a value determined at runtime by thediscriminatorof a switch-case state-
ment.

• string, which is a sequence of characters;

108 Chapter 5. Middlewares

• interface, which is a set of operations that an object of this type should implement. An
interface implies a pass-by-reference semantics. CORBA IDL supports multiple inheritance of
interfaces like in C++. IDL interfaces can be constrained by thelocal keyword. Alocal
interface is implemented by local objects, which can only beused within a local node. Local ob-
jects correspond to usual objects in the target programminglanguages. It does not have an IOR
reference, but it is locally identified in the target programming language e.g. as a C++ pointer or
a Java reference. Invocations on local objects correspond to usual local invocations, which are not
mediated by an ORB. Examples of CORBA entities defined as local interfaces include the ORB
and the POA.

• attribute, which may be contained in an interface definition. An attribute is not translated
in an implementation language as a class member, but as a pairof getter/setter operations. A
readonly attribute is similar to a single get operation.

• exception, which is either an user-defined or system exception.

• module, which allows one to group together related user-defined data types likeinterfaces
and is similar to a namespace in C++.

The OMG has standardized an UML profile for CORBA [OMG08g], which allows developers to
graphically represent user-defined IDL data types like interface, sequence and struct. This graphical
representation can then be translated into textual IDL definitions.

As we target hardware, real-time and embedded systems, we donot consider in the following sophis-
ticated IDL data types such as wide characters, wide character strings, value type and abstract interface.
However,string andany are still considered for "backward compatibility" with existing specifica-
tions as they are used in SCA interfaces.

5.5.5 Portability using CORBA IDL mapping to implementation languages

IDL specifications can be automatically translated byIDL compilers into target implementation lan-
guages according to standardlanguage mappings, which have been specified for various software pro-
gramming languages such as C [OMG99], C++ [OMG08c], Java [OMG08d], Ada 95 [OMG01], COBOL,
Lisp, Python and Smalltalk. The termbinding is also sometimes employed as synonym for the term map-
ping.

A language mapping establishes a link between the abstract abstractions offered by CORBA IDL
and the concrete abstractions found in implementation languages. A mapping between two languages
addresses the intersection, not the union of the concepts, functionalities and data types of both languages
and removes the disjoint characteristics [Vin03]. As Vinoski said, we consider that a 100 percent map-
ping is not desirable or even possible and should restrict tothe language features really required. OMG
language mappings have inherent limitations, but they are standardized and thus assure long-term support
and no vendor lock-in for enterprise applications.

One important point about IDL language mappings is that theyare not specified by formal mapping
rules, but by textual descriptions in which each IDL conceptis expressed in a target language concept
along with some basic examples. One goal of this work is to investigate the specification of such a
language mapping for hardware description languages such as VHDL and system-level languages such
as SystemC.

IDL compilers generate for each IDL interface a pair of stub and skeleton proxies. These glue
codes act both as invocation interface adapters and proxies. Both proxies give the illusion to the client
and the server that they directly interact even when they mayreside on different network nodes. The

5.5. CORBA Object Model 109

stub presents to the client object the same user-defined interface as the server object, while the skeleton
invokes uses by respectively presenting and calling the same user-defined interface. On the one hand,
these glue codes adapt user-defined IDL interfaces e.g. witha void add(in long a, inout long b, out long
c) operation with the generic and ORB-specific interface with an operation likevoid invoke(in string
operationName, in any inArgs, inout any inoutArgs, out any outArgs. Another important point is that
IDL language mappings only standardize glue code interfaces, but not their implementation. This allows
ORB implementers to provide additional features like smartproxies as in TAO ORB or optimizations
e.g. when the client and the server are colocalized in the same address space. Application developers
have to implement their business logic within the code generated by the IDL compiler.

User-defined IDL interfaces implicitly inherit from the pseudoObject interface. AnObjectmust
provide a set of predefined operations, which are part of the CORBA Object model. The implementation
of these operations is not provided by the application, but by the ORB or by the glue code generated
by the IDL compilers. TheObject interface does not represent an user object implementation, but its
object reference.

Tables 5.4 and 5.5 summarize language mappings for C, C++, Java and Ada 95. Obviously, we do
not aim at describing in detail these mappings, but only the interesting points for this work. We chose to
present the mappings to the C language and its object-oriented extension, C++, since these languages are
widely used in the embedded domain, whereas Java was designed as a portable object-oriented language
from the outset. The mapping to Ada 95 is also presented as VHDL syntax was inspired from Ada
syntax.

What is interesting to note from the table 5.4 is that each mapping is closely adapted to the syntax
and semantics of the target language.

As the C and Ada languages are not object-oriented programming languages, IDL object-oriented
constructs had to be "emulated" in both IDL language mappings. The lack of code modularization con-
structs like C++ namespace and class is overcome by naming conventions, in which IDL data types
and operation names are respectively prefixed withCORBA_and the name of IDL modules and in-
terfaces in C. An IDL operation is mapped to a C function usingas arguments: an opaque data type
called CORBA_Objectsimilar to the self-object referencethis in C++ and Java that includes the ob-
ject state and identity, the operation parameters mapped tofunction arguments, an optional opaque data
type called CORBA_Context that provides a request invocation context, and a partially opaque data type
CORBA_Environment that allows developers to set and get an exception identifier when an exception is
raised.

The C++ mapping is reputed to be complicated and to require animportant learning curve [Hen04]
[KKSC04] [SV01]. As the size of C++ data types are not standardized and are thus not portable, CORBA
data types were defined in C++. The mapping of multiple inheritance in IDL and C++ is direct. As Java
data types are portable, a direct mapping of type has been proposed between CORBA IDL and Java.

Each CORBA middleware implementation includes its own IDL compiler. As any compiler, the main
objective of IDL compilers is to generate optimized proxy code in terms of footprint and performance.
IDL compilers improve local communications between objects colocalized in the same address space
thanks tocolocalizationproxies [PRP05] [SLM98]. First IDL compilers had an monolithic implemen-
tation with inextensible and hardwired IDL language mappings. Some works have been carried out to
study the design and implementation of flexible IDL compilers such as Flick (Flexible IDL Compiler
Kit) [ESSL99], IDLFlex [RSH01] and USC (Universal Stub Compiler) [OPM94]. Basically, there are
two marshalling approaches for stub and skeleton proxies: compiled and interpreted approaches. In the
compiled approach, the marshalling code is hardwired and dedicated to the user-data types. In the inter-
preted approach, the marshalling code dynamically encodesand decodes operation parameters based on
the types of user-data that are either transferred with the messages or read from the IDL meta-data stored
in the Interface Repository. A natural trade-off exists between the size and speed of marshalling code

110 Chapter 5. Middlewares

IDL C C++
module M M_ operation name prefix namespace M
interface I typedef CORBA_Object I and I_

operation name prefix
class I, smart pointer class I_var,
skeleton class POA_I

const #define static const
short CORBA_short CORBA::Short
unsigned short CORBA_unsigned_short CORBA::UShort
long CORBA_long CORBA::Long
unsigned long CORBA_unsigned_long CORBA::ULong
long long CORBA_long_long CORBA::LongLong
unsigned long long CORBA_unsigned_long_long CORBA::ULongLong
float CORBA_float CORBA::Float
double CORBA_double CORBA::Double
long double CORBA_long_double CORBA::LongDouble
char CORBA_char CORBA::Char
wchar CORBA_wchar CORBA::WChar
boolean CORBA_boolean CORBA::Boolean
octet CORBA_octet CORBA::Octet
string 0-byte terminated character ar-

rays
String_var class

enum E #define enum E
struct S struct S struct S
union U struct with union class U
array A array A and A_slice class A_var and A_slice
sequence S struct S class S
fixed<X,Y> CORBA_fixed_X_Y struct Fixed class or implementation-

defined typedef
typedef X Y typedef X Y typedef X Y
any CORBA_any struct Any class
TypeCode CORBA_TypeCode TypeCode class
exception E typedef struct E, #defined ex_E,

CORBA_Environment with
CORBA_exception_set

class E derived from
CORBA::UserException class

operation function with CORBA_Object,
optional CORBA_Context,
CORBA_Environment

member function

attribute T A T _get_A(...) and _set_A(T,...) A(), A(T)
local interface l N.A. derived both from the

mapped class and from
CORBA::LocalObject

servant void* inherited from ServantBase class
single inheritance interface expansion single inheritance
multiple inheritance interface expansion multiple inheritance

Table 5.4: IDL Language mappings to C++, Java, Ada95 and C - N.A.: Not Available (part 1)

5.5. CORBA Object Model 111

IDL Java Ada95
module M package M package M, child package M if

nested
interface I interface I and IOperations, ab-

stract class IHelper, IHolder,
IPOA and optional IPOATie

package with Tagged Type, child
Package if nested)

const interface field constant
short short CORBA.Short
unsigned short short CORBA.Unsigned_Short
long int CORBA.Long
unsigned long int CORBA.Unsigned_Long
long long long CORBA.Long_Long
unsigned long long long CORBA.Unsigned_Long_Long
float float CORBA.Float
double double CORBA.Double
long double N.A. CORBA.Long_Double
char char CORBA.Char
wchar char CORBA.Wchar
boolean boolean CORBA.Boolean
octet byte CORBA.Octet
string java.lang.String CORBA.String and

CORBA.Bounded_Strings
enum E class E, EHelper, EHolder type E is (...)
struct S class S, SHelper, SHolder record S
union U class U, UHelper, UHolder type E(...) is record with

case/when
array A class AHelper, AHolder type A_Array is array ...
sequence S class SHelper, SHolder type S is newsequence package
fixed<X,Y> java.math.BigDecimal Fixed_X_Y decimal type
typedef X Y Helper classes type/subtype Y is
any class org.omg.CORBA.Any helpers
TypeCode class TypeCode and TypeCode-

Holder
child package
CORBA.TypeCode.Object

exception E class E extends
org.omg.CORBA.UserException

Exception identifier and record
type

operation method Primitive Subprogram
attribute T A A(), A(T) Set_A and Get_A subprograms
local interface l interface l, lOperations, _lLocal-

base
based on CORBA.Local package

servant interface l, lOperations, _lLocal-
base

based on CORBA.Local package

single inheritance single inheritance Tagged Type Inheritance
multiple inheritance delegation Tagged Type Inheritance for first

parent, interface expansion for
subsequent parents

Table 5.5: IDL Language mappings to C++, Java, Ada95 and C - N.A.: Not Available (part 2)

112 Chapter 5. Middlewares

[Hos98]. Compiled marshalling code is faster, but requiresmore memory, while interpreted marshalling
code is slower, but more compact [SLM98]. After presenting how CORBA ORB provide portability to
business applications through language mappoibngs, we will now see how they guarantee interoperability
between ORBs.

5.5.6 Interoperability with CORBA Inter-ORB Protocol (IOP)

GIOP is the native protocol of CORBA ORBs. GIOP is an abstractprotocol which has to be mapped onto
concrete transport protocols. For instance,Internet Inter-ORB Protocol(IIOP) is a mapping of GIOP
on TCP-IP. AnEnvironment-Specific Inter-ORB Protocol(ESIOP) provides interoperability between
CORBA ORBs and other middleware through legacy or custom protocols. GIOP specification describes a
Common Data Representation(CDR), messages format and transport layer requirements. CDR specifies
the bijective mapping from IDL data types to a byte or octet stream and vice versa. In CDR, primitive data
types are aligned on their natural boundaries. Any primitive of sizen octets must start at an octet stream
index that is a multiple ofn. This data alignment implies padding. In constructed data types of fixed
length like struct, union or array, constituents are marshalled by their respective type. The marshalling of
variable length types like string or sequence consists in encoding their length, then their constituents. To
minimize the overhead of encoding integers as octets,Compact CDR(CCDR) [KJH+00a] was porposed
as an optimization of CDR. GIOP defines eight messages to sendrequests, receive replies, locate objects
and manage logical connections. Four versions of GIOP messages exist from 1.0 to 1.3. To be conformed
to the 1.n version, the ORB shall implement the 1.m versions with m≤ n.

Like a visiting card, an object reference may list all the ways to contact an object using several trans-
port profiles. Each profile contains a profile Id and addressing information to locate a communication
endpoint for a given transport protocol. A profile may include information about QoS, network, transport
and message protocols, data encoding rules, addresses or routes. For instance, IIOP profiles comprise
IIOP version, host address and port number to locate the server process and an Object Key. This latter
contains typically a POA Id an Object Id to locate a servant.

GIOP requires that the transport layer is connection and byte stream oriented, reliable and notifies
failures. Multiple independent requests for different objects, or a single object, may share the same
connection. GIOP requests can be ordered or not thanks to request_id. Clients may have multiple
pending requests. A client need not wait for a reply from a previous request before sending another
request.

For instance, the GIOP request message for the invocation ofthesendoperation presented in listing
5.3 is depicted in table 5.6.

5.5.7 Real-Time CORBA

Real-Time systems require strict QoS guarantees in terms ofexecution time, bandwidth, latency and jitter.
However, CORBA does not offer natively IDL interfaces to configure QoS properties.Real-Time (RT)
CORBA [OMG05b] [KKSC04] is an extension to the CORBA and CORBA Messaging specifications
to supportend-to-end predictabilityfrom client to server applications across the network. Middleware
elements have been extended with RT-POA, RT-ORB and RT-policies. To support QoS constraints,
ORBs must schedule CPUs, memory and network resources. RT-CORBA allows the explicit control and
configuration of processor, communication and memory resources [KKSC04]:

• Processor resourceswith priorities, mutexes, threadpools and a static scheduling service.

• Communication resourceswith priority banded connections, private connections andprotocol
properties and asynchronous invocations.

5.5. CORBA Object Model 113

Index Hex Data Comments
0 47 49 4F 50 ’G’ ’I’ ’O’ ’P’

01 00 01 00 GIOP ’1’.’0’ + little endian + Request message
24 00 00 00 message size

12 00 00 00 00 service context
00 00 00 00 request_id

20 01 00 00 00 response expected + padding
24 14 00 00 00 Length object_key = 20 octets
32 2F 31 39 36 34 39 2F 31 object_key = /PID/timestamp/ObjectID
40 32 32 38 39 34 37 34 34 /19649/1228947440/_0
48 2F 5F 30 00
52 05 00 00 00 operation name length = 5

73 65 6E 64 00 operation name = "send\0"
64 00 00 00 00 principal
68 34 12 00 00 s short value = 0x1234 + padding
72 03 00 00 00 o octet sequence length = 3
76 01 02 03 o sequence values = [1, 2, 3]

Table 5.6: Example of GIOP request message in little endian in MICO ORB

• Memory resourceswith request buffering and fixed thread pools size.

5.5.8 CORBA for embedded systems

Many embedded devices including SDR platforms have strict constraints regarding memory footprint,
performance, size, weight and power (SWAP). To address these constraints, theCORBA for embed-
ded specification alias CORBA/e™defines two lightweight CORBA profiles for DRE systems: the
Compact and Micro profiles. The objectives are to reduce the footprint and overhead of embedded
middlewares and to improve the predictability of resource-constrained distributed applications. Hence,
CORBA/e eliminates many dynamic features of CORBA such as the Interface Repository, dynamic
invocations (DII/DSI) and implicit activations. Both profiles support Real-Time CORBA with static
scheduling and interoperability with legacy CORBA applications by supporting all versions of GIOP
and IIOP. TheCompact profile targets real-time applications like signal and image processing that are
executed on board-based systems with 32-bit embedded processors supporting Real-Time Operating Sys-
tems (RTOS). This profile replaces the Minimum CORBA specification and includes most of the POA
features and Naming, Event and Lightweight Logging services. TheMicro profile targets chip-based
mobile devices with deeply embedded processors like low-power microprocessor or high-end Digital
Signal Processor (DSP). This profile removesAny and common services. It only supports a single fixed
POA and Mutex interfaces from RT-CORBA. CORBA/e compact profile would only reduce memory
footprint by about a half [MDD+03].

5.5.9 OMG Extensible Transport Framework (ETF)

The Extensible Transport Framework(ETF) [OMG04] specifies a set oflocal IDL interfaces imple-
mented bytransport plug-insto allow CORBA ORBs to support new transport protocols otherthan the
default TCP transport layer.

114 Chapter 5. Middlewares

The ETF specification suffers from a number of issues, which have been notably presented in [FAM05].
As its name suggests, ETF specifies a transport framework andnot a protocol framework. Hence, it is
not clear from [OMG04] if alternative ORB message protocolsother than GIOP can be used to build new
transport protocols using the same transport layer [FAM05]. Furthermore, this specification seems to be
not widely implemented by software middlewares.

Figure 5.3: TAO Pluggable Protocols Framework [OKS+00]

TAO does not implement ETF, but proposes a similar approach called "pluggable protocol frame-
work" depicted in figure 5.3 [OKS+00]. TAO provides transport protocols such as UIOP (GIOP over
local IPC i.e UNIX domain sockets), SHMIOP (GIOP over sharedmemory), DIOP/MIOP (GIOP over
UDP-IP uni/multi-cast) and SSLIOP (GIOP over SSL (Secure Socket Layer)). Compared to ETF, TAO
pluggable protocol framework aims at using not only transport protocols such as ATM or PCI, but also
other lightweight pluggable ORB protocols e.g. ESIOPs as analternative to GIOP. Moreover, TAO ORB
designers have applied the same approach to the real-time Java ORB ZEN that contains a dynamically
configurable messaging protocols framework [KRS03].

Beyond a standard transport framework like ETF, embedded middlewares require frameworks for
message formats other than GIOP like MHAL messages for SDR, custom data encoding rules other than
CDR e.g. CCDR (Compact CDR) [KJH+00a] or ASN.1 Packed Encoding Rules (PER) [IT02], etc.

5.5.10 State of the art on real-time and embedded CORBA middlewares

General-purpose CORBA implementation

TAO [TAO08] TAO [SLM98] is an open-source Real-Time CORBA middleware written in C++. TAO
targets static hard real-time applications such as avionics or medical systems. TAO architecture is based
on an object-oriented framework for concurrent and networkprogramming called The ADAPTIVE Com-
munication Environment (ACE) framework [Sch94] [SSRB00] (TAO meansThe ACE ORB) and numer-
ous design patterns [BHS07] [SB03]. TAO supports RTCORBA 1.0, most of CORBA 3.0 and parts
of RT-CORBA 2.0 [KKSC04]. The design and performance of CORBA middlewares and its services
have been deeply studied through the implementation of TAO:optimized IDL compiler [GS99], POA
[PS98], request demultiplexing strategies [PSG+99] such as perfect hashing and active demultiplexing
with constant time lookup of servants regardless of the number of objects, operations or nested POAs,

5.5. CORBA Object Model 115

multi-threaded CORBA ORB architecture [Sch98], pluggableprotocols framework [OKS+00], [GS98],
A configuration file allows the definition of the strategies tobe loaded in the TAO ORB to cope with
aspects like concurrency, request demultiplexing, scheduling and connection management. TAO is a
highly configurable and efficient middleware for real-time systems, however its footprint between 1 and
2Mo is a limitation for some memory-constrained embedded systems. An inherent limitation cited in
[KKSC04] is the complexity and the associated learning curve of the IDL-to-C++ mapping.

RTZen [RTZ] RTZen is an open-source Real-Time CORBA middleware [RZP+05] developed accord-
ing to the Real-Time Specification for Java (RTSJ) to enhancepredictability. Java provides interesting
features such as dynamic class loading, introspection, andlanguage-level support for concurrency and
synchronization. RTZen is based on the experience gained inthe TAO design and evaluation. RTZen
has also a pattern-oriented software architecture. The primary design goal are predictability with end-
to-end priority preservation, bounded latency and jitter,bandwidth guarantees, and 2) a micro-kernel
[BHS07] architecture to dynamically plug in the needed middleware services and to reduce the ORB
footprint. Eight modular ORB services have been identified:object adapters [KKS02], message buffer
allocators, GIOP message handling, CDR Stream readers/writers, protocol transports [KRS03], object
resolvers, IOR parsers andAny handlers. Java is both an advantage and a drawback as real-time vir-
tual machines are not widely available and employed in radioplatforms with embedded processors and
DSPs. For instance, Java is typically used for portable GUI on workstations and not for signal processing
applications.

ZeroC Internet Communication Engine (ICE) According to Henning [Hen04], the CORBA Object
model suffers from some limitations such as opaque object reference, complex type system and lack
of multiple interfaces. ICE provides interface inheritance and interface aggregation like COM. It has an
IDL calledSpecification Language for ICE(SLICE). SLICE does not include character, unsigned, fixed-
point, unicode string, typedef, any and unions, array and bounded sequences, attributes, inout, context.
The ICE C++ mapping is thread-safe and uses ISO C++. The only standardized transport layer for
CORBA is TCP-IP, while ICE supports TCP-IP, SSL and UDP. Developers can implement new transport
plug-ins. In ICE, all data are always in little endian byte order and with byte-alignment (no padding) for
simplicity, compactness and to minimize bandwidth consumption. The protocol state machine consists
of five messages types: Request, BatchRequest, Reply, ValidateConnection and CloseConnection. The
ICE protocol supports compression. ICE compresses messages larger than 100 bytes in bzip2 which
is useful for low-bandwidth links. ICE-E is an implementation of ICE for embedded systems, which
removes the dynamic features of ICE.

Special-purpose CORBA implementation

PicoObjects [MVV +07] PicoCORBA and PicoICE are minimalist implementations of CORBA and
ZeroC ICE [HM07] middlewares to provide interoperability with embedded objects calledpicoObjects
in Wireless Sensor Networks (WSN). Instead of generating one skeleton per object interface as in con-
ventional object-oriented ORBs, the picoObject compiler generates a single skeleton for all the interfaces
implemented on a server node. This skeleton contains an ad-hoc Finite State Machine (FSM) that parses
requests and builds replies according to CORBA and ICE message protocols. Instead of byte-level
decoding, the FSM compares the request signature with the set of expected signatures. PicoCORBA
objects implement the bare minimum to ensure CORBA interoperability. They only implement the
non_existent andis_a operations from the CORBA::Object interface and the Request and Re-
ply GIOP 1.0 messages. All non-supported messages are simply ignored. The FSM is generated in a
implementation independent description, which is translated in supported target languages such as C,

116 Chapter 5. Middlewares

Microchip PIC assembler, Java and VHDL. The footprint of minimal software servers in PicoCORBA
is significantly lower than in various middleware implementations. However, this ad-hoc approach does
not target portability using standard language mappings.

CAN-CORBA CAN-CORBA [KJH+00b] is a specialized CORBA implementation dedicated to dis-
tributed embedded control systems using the CAN26 bus. The CAN bus is a standard embedded bus
originally designed for the automotive domain that supports up to 8 bytes communication at 1Mbps be-
tween microcontrollers and devices e.g. within a car. CAN-CORBA supports both connection-oriented
point-to-point and publish-subscribe communication overCAN. Kim et al. [KJH+00a] [HK05] propose
an Environment Specific Inter-ORB Protocol (ESIOP) calledEmbedded Inter-ORB Protocol(EIOP)
for the CAN bus. EIOP is based on the optimization of CORBA CDRencoding rules calledCompact
Common Data Representation(CCDR). To remove padding bytes, integers are not aligned on 32-bit
boundaries, use variable-length encoding and big-endian ordering. The first two MSBs are used to in-
dicate the integer size in bytes. An integer is encoded usingone to five bytes according to its value.
Moreover, EIOP supports only theRequest andCancelRequestmessages from the eight messages
of GIOP. The packed encoding rules may require more processing, but use the network bandwidth more
efficiently. EIOP drastically reduces the size of invocation messages by optimizing GIOP and CDR.
Even if CORBA interoperability is sacrified, application portability is preserved using the same CORBA
IDL and APIs.

ROFES ROFES (Real-Time CORBA For Embedded Systems)27 [LJB05] is a RT-CORBA middle-
ware, which extends the Embedded Inter-ORB Protocol (EIOP)from Kim et al. [KJH+00a] to sup-
port RT-CORBA on the CAN bus. Lankes et al. propose another ESIOP called the CAN-based Inter-
ORB Protocol (CANIOP), which reuse the same CCDR encoding rules [KJH+00a]. CAN priorities are
mapped on RT-CORBA priority bands. The CANIOP message header only contains a single octet to
indicate the message type and some flags like protocol version and endianness, and two octets for the
message size.

nORB nORB28 [SXG+04] [SCG05] is a customized middleware for distributed real-time and embed-
ded systems. It targets the networks of memory-constrainedmicrocontrollers. Instead of using a top-
down approach by subsetting an existing middleware, nORB follows a bottom-up approach by reusing
only the needed concepts and features from existing frameworks like ACE portable infrastructure, TAO
ORB core, Kokyo real-time scheduler and dispatcher, UCI-Core canonical middleware and CORBA
object model. From CORBA IDL, nORB supports only the data types required by the application do-
main such as primitive types, structures and sequences. From CORBA GIOP, nORB uses CORBA CDR
encoding rules. A subset of GIOP messages has been selected and customized like such as Request,
Reply, Locate Request and Locate Reply [SCG05]. Some message fields have been moved like the
operation name in Request andobject_key in object references. Others fields have been removed
like requesting_principal andservice_context in Request. APriority field has been
added to Request messages and object reference to support similar concepts as RT-CORBA. nORB only
provides a single object adapter per ORB. Object registration operations have been moved from the
object adapter interface to the ORB interface. In conclusion, nORB sacrifices both CORBA portabil-
ity and interoperability to reduce the middleware footprint and presents the trade-offs needed to adapt

26Controller Area Network
27http://www.rofes.de
28http://deuce.doc.wustl.edu/nORB

5.5. CORBA Object Model 117

general-purpose CORBA middleware concepts to the requirements, memory and real-time constraints of
the deeply embedded domain.

MicroQoSCORBA MicroQoSCORBA [MDD+03] is a CORBA middleware framework and design
environment for small embedded devices including a GUI-based fine-grained configuration tool and an
IDL compiler. The IDL compiler generates optimized stub andskeleton code for a customized ORB
and POAs. The generated stubs use a dedicated protocol and transport layer. Interoperability may be
maintain or removed. Unneeded functionality like exception, large data types and some messages can be
removed. MicroQoSCORBA supports fault tolerance, security and real-time QoS constraints. Different
implementations allows the trading off of QoS and resource consumption. MicroQoSCORBA has been
developed in Java 2 Standard and Micro Edition. MicroQoSCORBA notably supports IIOP and its own
protocol called MQCIOP, optional inclusion of CORBA systemand user exceptions and fixed length
messages.

Reflective middlewares

Reflection middlewares are based on the separation of concerns proposed by Kiczales in the Meta-
Object Protocol (MOP) [RKC01]. The meta-object protocol separates base-level objects implementing
functional aspects from the meta-level objects implementing non-functional aspects such as policies,
mechanisms and strategies for communication, security or resources allocation. Reflection middlewares
use meta-level objects to observe and modify base-level objects. Reflection middlewares enable self-
introspection and reconfiguration of the ORB core and services at run-time. In the following, we present
DynamicTAO and its successors: LegORB and UIC-CORBA. This family of reflective middlewares
targets ubiquitous computing that requires dynamic adaptation to the environment and relies on hetero-
geneous and resource-constraint devices such as PDAs, sensors and phones.

Dynamic TAO Dynamic TAO29 [RKC01] [KCBC02] is a reflective middleware built on top of TAO.
It provides interfaces to retrieve SW modules from the network, to load and unload these modules into
the ORB and to examine and change the configuration of the ORB.Application servants can also be
dynamically reconfigured. ORB modules implement differentORB strategies relative to concurrency,
scheduling, security or monitoring. APersistent repositorycontains the software modules organized by
category.

LegORB LegORB30 [RMKC00] is a dynamically reconfigurable and component-based micro-ORB
kernel for ubiquitous computing. It targets communications between heterogeneous devices e.g. between
the PDA acting as the client and the desktop computer acting as server. Component configurators at ORB,
client and server-level allows the assembly of only the components required by an application from a set
of pre-defined services: de/marshaller, GIOP reader/writer, Connector/Acceptor and Invocation/Object
Adapter. In contrast to monolithic ORB cores, this modular approach allows the dramatic reduction
of the middleware footprint. LegORB provides a simplified dynamic invocation interface and CORBA
interoperability e.g. IIOP on top of which additional interfaces may be implemented e.g. CORBA ORB
interface. Hence, LegORB addresses interoperability of embedded applications, rather than portability,
which still remains at the charge of the designer.

29http://srg.cs.uiuc.edu/2k/dynamicTAO
30http://srg.cs.uiuc.edu/2k/LegORB

118 Chapter 5. Middlewares

UIC-CORBA Universally Interoperable Core (UCI) [RKC01] is a reflective middleware for ubiquitous
computing and a modular middleware framework that captureswithin abstract modules key middleware
services such as network and transport protocols, connection establishment, object registration, object
reference generation and parsing, marshalling and demarshalling strategies, method invocation, method
dispatching, client and server interface, object interface and attributes, scheduling, memory management
and concurrency strategies. These abstract modules are extended by concrete modules, which are dynam-
ically loadable. Apersonalityrefers to the specialization of the UIC framework for a givenexecution en-
vironment (middleware platforms, devices, networks) to satisfy specific application requirements. Three
kinds of personalities have been distinguished: client-side, server-side or both. UIC can support both
single and multiple personalities. A single personality UCI is dedicated to a certain middleware platform
like CORBA, JavaRMI or DCOM. The difference between these middleware platforms is the implemen-
tation of the abstract middleware services. In contrast, a multi-personality UIC allows applications to
use the same invocation interface independently of the target middleware platform, while the UIC can
transparently dynamically loads and/or selects the required personality. As a result, applications directly
interact with native UIC interfaces and are portable regardless of the underlying middleware platforms.
For instance, a servant can be registered with different personalities at the same time. Personalities can
be built in different configurations: from fully static to purely dynamic or hybrid configurations to trade
off size and flexibility. Personalities are entirely interoperable with standard middleware platforms. The
footprint of client-side CORBA personalities can range from 18KB for PalmOS to a 48.5KB for a Win-
dows CE. The CORBA personality implements a custom dynamic invocation interface, a subset of data
types like basic types, struct and sequences.

PolyORB PolyORB31 [VHPK04] [Hug05] is aschizophrenicmiddleware in Ada 95 that supports dif-
ferent distribution models such as CORBA, SOAP, Ada 95 Distributed System Annex (DSA), JMS (Java
Message Passing) adapted for Ada 95 and Ada Web Server (AWS)32.

PolyORB proposes aNeutral Core Middleware(NCM) sandwiched betweenapplication-leveland
protocol-levelpersonalities. Application personalities make the adaptation between applications and
the middleware, register applications in the NCM and support communications between different ap-
plications. Protocol personalities translates neutral application requests into messages. The NCM is a
decoupling layer, which enables interoperability betweenall combinations of local, remote, application
and protocol personalities. The NCM and personalities implement the following primitive middleware
services: addressing for global identification e.g. CORBA IOR, binding to associate entities with the re-
sources they use to communicate e.g. CORBA stubs, representation for marshalling e.g. CORBA CDR,
protocol for interoperability e.g. CORBA GIOP, transport for data transmission e.g. CORBA ETF, acti-
vation to associate a request to a concrete implementation e.g. CORBA POA with servants and execution
to allocate resources for request processing e.g. RT-CORBApooled thread. PolyORB supports the fol-
lowing application personalities: RMI with CORBA and DSA, RPC with DSA, message passing with
MOMA (Message-Oriented Middleware for Ada) and Web applications with AWS (Ada Web Server).
The supported protocol personalities include GIOP 1.0 to 1.2 with CDR, Internet IOP, Multicast IOP and
Datagram IOP) and SOAP [Rec07] based on XML. Moreover, PolyORB has been formally modeled with
PetriNets to verify its behavior. [HVP+05] PolyORB-HI33 is a subset of PolyORB for High-Integrity
Systems written in Ada2005. It is modeled in (AADL) Architecture Analysis & Design Languagefor
analysis, verifications and automatic code generation withan AADL tool suite called Ocarina.

In summary, the following optimization principles can be used to reduce the footprint of embedded

31https://libre.adacore.com/polyorb/
32https://libre.adacore.com/aws
33http://aadl.enst.fr/polyorb-hi

5.6. State of the art on hardware implementations of object middlewares 119

middlewares [PSG+99] [KKSC04] [MVV+07]: elimination of dynamic invocation and instantiation,
reduced interface definition language without complex or variable length data types, bypass of optional
fields in messages, simplification or complete elimination of optional protocol features like exceptions,
common services and indirect references are not supported,modular design with only needed modules.

The difference with our work is that research WSNs and networked devices use custom and deeply
embedded environments i.e. microcontrollers. Some of these optimization principles cannot be used in
application domains where backward compatibility with stringent standards like the SCA is required.
Instead of reducing the embedded unaware GIOP message format, our approach is based on the SCA
MHAL push-only protocol originally designed for embedded radio systems.

After presenting the state on the art on software middlewareimplementations, we will present the
state on the art on hardware middleware implementations.

5.6 State of the art on hardware implementations of object middlewares

5.6.1 ST StepNP MPSoC Platform and MultiFlex Programming Models

StepNP[PPB02] [PPB+04] [PPL+06c] is a simulation environment to explore network applications and
Network Processor Units (NPU) architectures.

StepNP is based on a NPU virtual platform with multi-threaded RISC processor models, a NoC
channel model and dedicated coprocessors. These models communicate with each other using a Sys-
temC Open Core Protocol (SOCP) communication channel. As inobject-oriented middlewares, the
SOPC interface is defined in aSystemC Interface Definition Language(SIDL), which corresponds to
pure virtual C++ class declarations like the SystemCsc_interface. An SIDL compiler generates glue
code between the model implementations acting as server andthe client StepNP tools written in various
languages (TCL, C++, Java). The generated stubs and skeletons allow distributed simulation among
multiple workstations, virtual platform introspection, instrumentation and control of SystemC models.

The MultiFlex [PPL+06b] [PPL+06c] mapping tool automates the integration of parallel anddis-
tributed application objects onto HW/SW heterogeneous MPSoC platforms. This integration relies on
two high-level parallel programming models as used in Java and C#: a loosely coupled CORBA-like
object-oriented message passing model calledDistributed System Object Component(DSOC) and a
tightly coupled POSIX-like shared memory model calledSymmetric Multi-Processing(SMP). As both
programming models provide different trade-offs in terms of performance and coupling, Multiflex allows
one to combine them in a unified approach.

The DSOC programming model supports interoperable communication between heterogeneous pro-
cessing elements and is inspired by the distributed object model used in CORBA and DCOM. The DSOC
model is based on three hardware services:

• a hardwareMessage Passing Engine(MPE) encodes service requests into messages according to
a neutral data format, encapsulates them into NoC packets and performs the reverse work at the
reception node.

• a hardwareObject Request Broker(ORB) engine coordinates and dispatches communications be-
tween distributed client and server objects. It also synchronizes and performs the mapping between
client and server threads. The HW ORB maps client service requests to servers and allows run-time
load balancing. The least loaded server is currently selected.

• a hardware thread manager by processor schedules hardwarethreads with a round-robin policy,
while a priority based policy is explored.

120 Chapter 5. Middlewares

Each DSOC object is described by aSystem IDL(SIDL) interface. An SIDL compiler generates soft-
ware MPE drivers for processors, while for coprocessors thehardware data encoding logic is produced
and bound to the NoC interface. Both blocking and non-blocking invocations are supported.

The SMP programming model supports threads, monitors, conditions and semaphores. Its imple-
mentation relies on a memory-mapped hardwareConcurrency Engine(CE). The CE is controlled by a
POSIX-like C++ class library, which is implemented by in-lining read/writes operations.

Figure 5.4: Mapping of OO applications to MPSoC platform based on a mixed DSOC-SMP model

In MultiFlex, both shared memory and message passing programming models are supported through
hardware ORBs, message passing and concurrency engines. Nooperating system or virtual machine is
required, yet the same high-level programming models are supported. The use of well-defined interfaces
either in IDL or through POSIX-like APIs allows a system-level application to be independent of the
underlying platform implementation. Horever, a single HW ORB represents a communication bottleneck
and constitutes a central point of failure.

Instead of the custom SIDL, we propose to use an industry standard, CORBA IDL, which supports
a language-independent type system and standard software language mappings. This allows application
interfaces to be portable and independent of platform providers. What is required for a unified approach
is to propose standard IDL-to-HDLs mappings. We aim at proposing such a mapping for VHDL in this
work. Besides, we consider that POSIX-like APIs could be written as local IDL interfaces like the mutex
interface in Real-Time CORBA.

Moreover, a MultiFlex component-oriented programming model inspired by the Fractal component
model [Fra08] is under development to enable the composition and (re)configuration of DSOC objects.
From our point-of-view, this initiative demonstrates the need of a component model to address the limi-
tations of the object model presented in chapter 6.

5.6.2 UCLM Object-Oriented Communication Engine (OOCE)

The Object-Oriented Communication Engine (OOCE) [BRM+07] is an HW/SW platform based on
object-oriented model, which provides remote method invocation semantics between HW/SW objects

5.6. State of the art on hardware implementations of object middlewares 121

on top of which different synchronization, concurrency andprogramming models can be implemented.
OOCE is based on the non-standard ICE middleware, which proposes to resolve CORBA limitations with
custom and improved implementations of CORBA architectureand services. OOCE uses the ICE SLICE
IDL, the ICE message protocol called ICE Protocol (ICEP) andits data encoding rules. This choice en-
ables OOCE to provide interoperability with off-chip objects communicating with ICEP. OOCE supports
blocking and non blocking communications.

Communications between HW/SW objects are handled in OOCE bytwo elements: theLocal Net-
work Interface(LNI) and theLocal Object Adapter(LOA). The LNI is a hardware coprocessor, which
monitors the bus/network traffic to detect the address of software objects based on a mapping table be-
tween object identifiers and bus/network addresses. The LOAacts as a skeleton implemented as an
Interrupt Service Routine (ISR).

For communications from off-chip client objects to on-chipserver objects, aRemote Object Adapter
(ROA) translates a TCP-IP message encapsulating an ICEP messageinto a local message for the object
skeleton. For on-chip to off-chip communications, the ROA has a mapping table between server object
identifiers and their remote network addresses.

OOCE provides a reconfiguration service [DRB+07] consisting of four logical layers. In the layer
1, dynamically reconfigurable objects implement an additional interface to start, stop and reconfigure its
processing and to load/store their state. In the layer 2, theentire reconfiguration process is performed -
notably object persistence. The layer 3 includes high-level services such as the scheduling, location and
migration of dynamically reconfigurable objects. The last layer corresponds to the application or OS,
which directly or indirectly uses the underlying services.

In OOCE, synchronization and concurrency are the concern ofthe designer, who is not limited by a
fixed and specialized set of APIs as in other interface-centric approaches like Philips TTL [vdWdKH+06],
but his implementation can use a HW/SW library of basic building blocks such as mutexes, locks and
semaphores.

The same middleware architectural building blocks were applied to NoC-based platforms to support
location transparency between off-chip and on-chip objects [RMB+05] with a minimum overhead. In
this later work, an ORB is called a communication engine orcommunicator, which is a hardware core that
contains middleware services such as objects adapters, remote servants, indirect servants and message
passing engines.

As their software counterpart, the object adapter maps object identities to object implementations
i.e. servants through an Active Object Map (AOM). An object adapter contains a finite state machine to
implement the message protocol (e.g. GIOP for CORBA, ICEP for ICE etc.) and to decode/encode data
types.

Hardware objects are implemented as servants, which are registered in an Object Adapter (OA) inside
the communicator. The OA forwards messages received from the remote network to the local network
towards the desired servant. Each servant implements all class methods and manages the attributes of
each object along with their consistency. These attributesmay be stored in a local memory, a shared
memory, a register file or flash memory to support persistence. Each method invocation message has
a unique server object identifier, a unique method identifierand the associated parameters. Proxies
know the location of servants and translate signal-based invocation into bus transactions, while skeletons
convert the received invocation request into writes on the hardware object interface. Local objects may
directly interact by method invocation without the communicator.

Remote servantstranslate local invocations for remote objects into remotemessages through the off-
chip network using the necessary encoding rules and messageprotocol. Each remote servant contains a
Remote Object Map, which maps local bus addresses to global object identifiers.

Run-time location of objects through location forwarding is implemented byindirect servants.
In conclusion, key architectural elements of the object-oriented middlewares have been adapted to

122 Chapter 5. Middlewares

embedded SoC platforms. Local network transparency is based on stubs and skeletons, remote network
transparency is provided by remote servants and objects adapters using look-up tables, and location
transparency relies on indirect servants via location forwarding. High-level services may be implemented
on top of these middleware building blocks such as load balancing, fault tolerance based on replication,
object persistence and migration and reconfiguration transparency.

In [RMB+05], Rincon et al. consider that OCP provides a common syntaxbetween hardware mod-
ules, but not a common semantics, and propose the remote method invocation model to offer these
lacking semantics. We argued in [GBSV08] that OCP does provide common syntax and semantics but
only at transport level instead of at application level and we investigate a mapping of semantics between
RMI and OCP.

Moreover, we follow a component-oriented approach, in which connectors enable to explicitly ex-
press synchronization and concurrency, while their deployments are useful to infer local or remote com-
munications through stubs and skeletons.

5.6.3 Commercial Hardware CORBA ORBs

In the SDR context, the SCA software architecture relies on CORBA middlewares, up to its version
2.2.1, to support transparent communications between waveform application objects based on the mini-
mum CORBA profile. However, digital signal processing performed in modems from the physical layer
or in a transceiver [NP08] is typically implemented using resource-constrained computation units such
as DSPs, FPGAs and ASICs on which commercial CORBA middlewares were not available. Until re-
cently, three main approaches based on the Adapter [GHJV95]design pattern [JTR06] have been used
to abstract the communications between the application modules on non CORBA-capable devices (FP-
GAs/ASICs and DSPs) and application objects on CORBA-capable devices (GPPs and DSPs) [PB07].
These adapters translates a CORBA IDL interface into a function-based software interface on Instruction-
Set Architectures (ISAs) i.e. GPPs/DSPs or a signal-based hardware interface on FPGAs/ASICs. These
three approaches are described below.

Application-level Adapter a.k.a. Resource Adapter: an application object on GPPs represents an
application module on FPGA or DSP. It directly uses a custom low-level HAL API to communicate
with these modules. This HAL API encapsulates software device drivers to send data to the application
modules via proprietary transport layers. Such transport layers may be based on memory-mapping or
message-passing such as off/on-chip serial or parallel buses. At the receiving side, a decoding logic
dispatches the transferred data to the requested application module based on a physical memory ad-
dress or a logical address e.g. an identifier within a message. This decoding logic is dedicated to a
given transport layer and thus not portable. Two kinds of application-level proxy can be distinguish:
generic and custom proxies. Ageneric proxya.k.a. Resource proxy implements the fixed and generic
SCA Resource interface to control and configure applicationmodules e.g. via calls tostart() or con-
figure(sequence(struct(param_id, value))). A customproxy is dedicated to an user-defined business
application interface e.g. withdoFFT()or setFrequencyoperations. As proposed in [JTR05], a custom
proxy may use a generic proxy to translate some user-defined operations e.g.setFrequencyinto standard
operations from the Resource interface e.g.configure. A custom proxy may also directly use a custom
HAL. Application-level proxies satisfy the SCA requirement of portability across SDR platforms only
for software application objects on GPPs, but not for application modules on DSPs or FPGAs. This
approach is also called "Proxy Component Level Adapter" approach in [PB07].

Platform-level Adapter a.k.a.Custom Device: when the existing standard SCA APIs like GpsDe-
vice or EthernetDevice used to abstract hardware devices like Audio and Ethernet chipsets do not cover
all needed devices typically a modem device, a platform SCA Device object implements a custom busi-
ness interface e.g. ModemDevice to abstract the required devices. This approach is not compliant with

5.6. State of the art on hardware implementations of object middlewares 123

the SCA specification as 1) platform SCA Devices should not provide user-defined interfaces and 2) ap-
plication SCA Resource objects uses custom Devices and are thus not portable. This approach is called
"Device Component Adapter" in [PB07].

Modem Hardware Abstraction Layer(MHAL) [JTR07] API: to avoid the two previous approaches,
the MHAL API has been recently standardized by the JPEO JTRS in May 2007. The MHAL API
abstracts modem devices by platformMhalDeviceobjects from application software on GPPs. This
API defines standard message-passing communication and routing interfaces combined with a common
message format to support homogeneous communications between application modules amongCompu-
tational Elements(CEs) i.e GPPs, DSPs and FPGAs. The MHAL interfaces are specified in CORBA
IDL for GPPs, C for DSPs and VHDL for FPGAs. A MhalDevice on GPPis a CORBA object used to
route MHAL messages to application modules on DSPs and FPGAs. The FPGA MHAL API defines
VHDL interfaces and timing diagrams of Transmit and Receivenodes used to respectively write and
read MHAL messages. The MHAL API is a low-level message passing API used at application level,
instead of being used as a message protocol plug-in at middleware level. Indeed, waveform application
developers on GPPs and DSPs has directly to build and manipulate MHAL messages. Standard mes-
sages are only defined for the RF Chain for instance used to configure Power Amplifiers (PA). For other
application messages, no common data type system and encoding rules are specified to automatically
build messages as in CORBA from high-level and (semi-)formal system interfaces described in UML
or IDL(s). As in traditional approaches, application messages must be defined in textual specifications
prone to interpretations. The application modules portability and communications interoperability can-
not be formally guaranteed at system level and functional level. Application modules on GPPs, DSPs and
FPGAs could encode differently message parameters and could not understand each other. For CORBA-
capable devices, this solution proposes a standard messagepassing API to access standard modem de-
vices. However,applicationmodules on non CORBA-capable DSPs and FPGAs are still encapsulated
within black-box software proxies and are not treated as "first-class citizens" by software application
objects. This approach is called "Component Level Adapter"approach in [PB07].

In order to support seamless communications between distributed CORBA applications and notably
compliant with the SCA specification, two leading providersof software CORBA ORBs, PrismTech and
OIS, propose to implement in hardware the main functionalities of CORBA ORBs that make adapters and
HALs needless. A hardware ORB could be useful to satisfy hardreal-time constraints as it is inherently
deterministic in terms of latency and jitter compared to a software implementation especially with a TCP-
IP transport layer. Communications performance could reach an improvement up to a hundred times over
software ORBs on GPPs [Hum06], but as far we know there are no published details about benchmarks
or descriptions about the experimental protocol (processor, memory and communication architecture,
messages size, load conditions, ...).

5.6.4 PrismTechnologies, Ltd. Integrated Circuit ORB (ICO)

PrismTech, Ltd. [Pri08] is a company specialized in enterprise, real-time and embedded middlewares
used in various application domains such as defense, aerospace, telecommunications and software de-
fined radio.

The OpenFusionIntegrated Circuit ORB(ICO) engine [HP06] [Hum06] [Hum07] [Fos07] is a hard-
ware implementation of a CORBA ORB core depicted in figure 5.5. The OpenFusion ICO design envi-
ronment consists of the ICO hardware communication engine,an IDL-to-VHDL compiler and optional
Spectra MDE Tools for SCA compliant hardware implementations. ICO implements in VHDL the GIOP
message protocol used by CORBA middlewares to provide communication interoperability among dis-
tributed software objects. ICO decodes GIOP request and reply message headers and converts the en-
dianness of message data if required. Like the address decoding logic used in hardware bus interfaces,

124 Chapter 5. Middlewares

Figure 5.5: PrismTech Integrated Circuit ORB (ICO) [Fos07]

ICO routes GIOP requests to the appropriate hardware modules according to the object key and operation
name contained in GIOP request messages. The direction of IDL operation parameters is interpreted as
read/write primitives using read/write strobe signals on registers and memories within hardware com-
ponents. User data in the GIOP message payload are decoded byremoving padding and transferred to
the desired hardware module. If a GIOP reply message is expected, the OpenFusion ICO engine reads
the storage elements of the hardware modules to retrieve theresponse data if any. It then encodes the
GIOP reply message header and the outgoing user-data into a GIOP reply payload. The reply message is
finally written to the local transport layer via a typical FIFO interface. A bridge interface maps the ORB
read/write strobe signals and data buses to the applicationmodules interface. This bridge could be based
on standard interfaces such as OCP [Fos07]. Hardware modules can also act as client. When a hard-
ware module initiates a request, ICO reads the request data,encodes them into a GIOP request message
and transfers this message to the required servant using thelocal transport layer. If a reply message is
received by ICO, the response data are written to the client hardware module.

To allow hardware modules to communicate with the outside world through ICO, hardware designers
have to describe each storage element of an application module i.e. register or memory by an operation
name. The in, out and inout direction of an IDL operation parameter is respectively interpreted as writing,
reading and writing/reading a storage element [Hum06]. IDLinterfaces seem to be only described as
low-level read/write primitives on register banks like hardware dependent software (HdS) drivers e.g.
void wrReg1 (in unsigned long p1)as presented in [Fos07]. In order that IDL interfaces can be used at
system level independently of their hardware or software implementations, we argue that they should be
described at application level e.g.void setMode(in unsigned char mode).

The IDL compiler maps IDL operation parameters to storage elements within an application module.
It establishes a mapping between each IDL operation name anda single read or write strobe signal
depending on operation parameters direction. The integration of hardware application modules with ICO
is performed by connecting the read and write strobe signalsand the data buses generated by the IDL
compiler. The ICO IDL-to-VHDL compiler supports primitiveIDL data types like char, octet, unsigned
short, unsigned long and unsigned long long. It also supports constructed data types like simple strings,
sequence and any of primitive types and structures of primitive types, strings and anys. Additionaly, ICO
supports the SCA Resource and Device interfaces.

Based on the OMG Extensible Transport Framework (ETF) specification [OMG04], ICO proposes to
support several transport layers via ETF interface modules. An ETF module may be introduce between

5.6. State of the art on hardware implementations of object middlewares 125

ICO and the local transport layer to encapsulate GIOP messages with transport headers.
In conclusion, PrismTech militates in favor of a "GIOP Everywhere" approach into which external

as well as internal processors (GPPs/DSPs) communicate with hardware application modules in FPGA
using the GIOP protocol. GIOP was not initially designed forembedded systems, even if it remains the
default message protocol in CORBA for embedded a.k.a. minimum CORBA [OMG08a]. An obvious
example of GIOP overheads is the encoding of operation namesas sequences of characters in ORB
messages instead of using numerical identifiers. These identifiers could be mapped into strings via
lookup-tables in stubs and skeletons and accelerate operation demultiplexing in lieu of hashing as used
in TAO. In real-time and resource-constrained environments, domain-specific message protocols such as
MHAL for SDR could be integrated into CORBA as ESIOPs and provide similar functionalities, but may
be more efficient in terms of hardware resources e.g. networkbandwidth usage and encoding/decoding
latency. Moreover, CORBA IDL could be used to generate stubs/skeletons for message-passing between
different address spaces e.g. internal processor(s) within an FPGA, but also for memory-mapping within
the same address space e.g. for internal processor(s) within FPGAs [MRC+00]. Such an approach could
allow one to use the transfer model adapted to the distribution of objects, while preserving the same
user-defined interface.

5.6.5 Objective Interface Systems, Inc. ORBexpress FPGA

Objective Interface Systems (OIS) [OIS08] is a firm which provides CORBA middlewares used in a wide
range of application domains such as Telecom, Defence, SDR,Aerospace, process control, transportation
and consumer electronics.

ORBexpress®FPGA [Sys08] [Jac08] [JU08] is a hardware CORBA ORB writtenin VHDL. The
ORBexpress®IDL compiler could support all CORBA IDL data types. It generates hardware wrappers
with "a simple, well-documented interface" to the FPGA designer, which support the dynamic and partial
reconfiguration of Xilinx Virtex FPGAs. Hardware application modules could be disconnected from
and reconnected to the hardware ORB without disturbing the processing of the ORB or other hardware
modules. CORBA application functionalities could be transparently migrated between GPPs, DSPs and
FPGAs. The latency to process CORBA messages would be inferior to a microsecond and the footprint
would take a "small fraction" of FPGA LUT and gates [Jac08].

Figure 5.6: OIS ORBexpressFPGA [OIS08]

As a conclusion, OIS proposes a hardware implementation of aCORBA ORB like PrismTech. How-

126 Chapter 5. Middlewares

ever, as far we know there are not many published details on its implementation and particularly on the
hardware object interface, which are generated by their IDL-to-VHDL compiler.

5.6.6 OMG IDL-to-VHDL mapping

The two main providers of commercial real-time and embeddedCORBA middlewares - PrismTech and
OIS - have proposed a hardware implementation of a CORBA ORB core. The implementation of a
common message protocol such as GIOP should provide communications interoperability. However,
PrismTech and OIS have implemented their own IDL-to-VHDL mapping as no OMG standard exists at
the moment. As a consequence, the portability of hardware application modules cannot be guaranteed for
ORB users. The migration from one ORB vendor to another will require a manual integration between
the application logic and the proprietary and incompatiblestubs and skeletons. Hence, this is against
one of the main motivations underlying object-oriented middlewares i.e. to automate the integration of
application objects. To solve these issues, initial discussions about a standard IDL-to-VHDL language
binding have started since December 2007 between four OMG members: on the one hand, the two ORB
vendors that have implemented CORBA in hardware and on the other hand, two ORB users - Mercury
and Thales - whose goal is to present industrial requirements.

In the scope of this work, we propose the mapping requirements for Thales based on the previous
analysis of the state of the art about the application of the object concepts down to hardware [WSBG08].
These requirements will be presented later with our contribution.

Initially, PrismTech wanted to propose a Request for Comments (RFC) concerning the IDL-to-VHDL
mapping [Bic07], but finally OIS and PrismTech were not focused on the interface mapping at this time,
but more on using GIOP for heterogeneous communications with FPGAs [GP08].

5.7 Conclusion

A middleware aims at supporting transparent communications between heterogeneous systems regard-
less of their distribution, hardware computing architecture, programming language, operating system,
transport layer and data representation. The main objectives of middlewares are to provide portability
and interoperability to distributed applications. Since the CORBA object-oriented middleware is re-
quired by the SCA framework v.2.2.2 for SDR applications, wefocused on the CORBA object model
and presented its design flow, language mappings, message protocol and implementations. CORBA pro-
vides portability through the standard CORBA middleware API and middleware services, and standard
language mappings from CORBA Interface Definition Language(IDL) to software programming lan-
guages. IDL describe user-defined messages as operation signatures. CORBA provides interoperability
through a standard protocol calledGeneral Inter-ORB Protocol(GIOP), which is mapped to transport
layers such as internet protocols or shared memory. CORBA also allowsEnvironment Specific Inter-ORB
Protocols(ESIOPs) to support communications in resource-constraint systems. We presented a state of
the art on software implementations of real-time and embedded CORBA middlewares and on hardware
implementations of object middlewares including CORBA. Inembedded and real-time hardware/soft-
ware platforms, middleware implementations have been lightened and customized to limit middleware
functionalities to what is really needed by an application domain and to reduce middleware footprint.
In the next chapter, we will present the component-orientedapproach, which leverages the object and
middleware approach.

Chapter 6

Component-Oriented Architecture

Contents
6.1 Introduction 129

6.2 Definitions .. . 131

6.3 From Object-Oriented to Component-Oriented approach 132

6.3.1 Object model vs. component model 132

6.3.2 Separation of concerns 133

6.3.3 Explicit dependency and multiple interfaces 134

6.3.4 Interactions .. . 134

6.3.5 Composition rather than implementation inheritance. 134

6.3.6 Granularity of composition, distribution and reuse 134

6.3.7 Language Independence 134

6.3.8 Deployment and administration 135

6.3.9 Higher-level reuse 135

6.4 Principles .. . 135

6.4.1 From Hardware/Software Design to System Architecture 135

6.4.2 From Development to Integration 136

6.4.3 Separation of Concerns 136

6.4.4 Reusability .. 137

6.4.5 Assembly and Composition 137

6.4.6 Component infrastructure or framework 137

6.5 Technical Concepts 137

6.5.1 Component Infrastructure or Framework 137

6.5.2 Component . 138

6.5.3 Component Model .138

6.5.4 Interfaces .. 139

6.5.5 Behavior . 141

6.5.6 Port . 141

6.5.7 Connection Model .. 141

6.5.8 Container .143

6.5.9 Deployment model .. 143

6.6 Software Component Models 144

127

128 Chapter 6. Component-Oriented Architecture

6.6.1 Software Component Models for Software Defined Radio 144

6.6.2 General Purpose Component Models 157

6.6.3 Software Component Models for Real-Time and EmbeddedSystems 160

6.6.4 Architecture Description Language (ADL) 162

6.6.5 Comparison of Software Component Models 162

6.7 Hardware Component Models for FPGAs and ASICs 163

6.7.1 Component Models supported by Hardware Description Languages 163

6.7.2 Connection Model for hardware 166

6.7.3 High-Level Synthesis (HLS) 166

6.7.4 Hardware Interface Synthesis 168

6.7.5 Packaging Model .. 169

6.7.6 Deployment Model .. 169

6.8 System Component Models 173

6.8.1 SystemC components .. . 173

6.8.2 Actor-Oriented Components 175

6.9 Conclusion .. . 175

In software architecture, the component-oriented approach is a specialization of the object-oriented
approach in which a component may be roughly viewed as a composition of objects, which are dedicated
to a particular functionality or aspect such as computation, communication, (re-)configuration, life-cycle,
etc.

The component-oriented approach has been successfully applied to embedded software. Our objec-
tive is to explore and propose a common object-oriented component-based approach for both hardware
and software components, all along the design flow and at different abstraction levels.

The main goal of the component-oriented software architecture is the separation of concerns between
what is the responsibility of the software designer (business code implementation) and all the other
orthogonal preoccupations such as component management (instantiation, configuration, deployment...)
and communication protocols.

In this chapter, we will introduce the main component models, which are used in the design of
hardware/software embedded systems.

This chapter is organized as follows. Section 6.1 introduces the notion of component as used in
hardware and software engineering. Section 6.2 presents classical definitions of software components
and discusses their applicability to hardware components.Section 6.3 motivates the transition from an
object-oriented approach to a component-oriented approach for both software and hardware entities.
Section 6.4 describes the principles of the component approach such as architecture, integration and
composition. Section 6.4 explains the technical concepts of the component approach such as component
model, connection model and deployment model. Section 6.6 presents software component models for
SDR such as SCA, general purpose component model such as CCM and software component models
for real-time and embedded systems. Section 6.7 describes the hardware component model supported by
hardware description languages and connection models Section 6.8 presents system component models
such as the SystemC component model at different abstraction levels and actor-oriented components.
Finally, section 6.9 concludes this chapter.

6.1. Introduction 129

6.1 Introduction

Generally speaking, a component is a smaller, self-contained part of a larger entity34. Etymologically,
componentis the present participle ofcomposefrom Latin "componere" that means "to put together":
com- ("together") and ponere ("to put"). Components are assembled to form larger components that
compose a system. Hence, the term component is quite generaland usually employed to designate any
physical or logical piece of hardware and software in electronic devices.

Hardware engineering inherently follows a component-based approach at all design levels. From
a macroscopic viewpoint, the motherboard of Personal Computer (PC) supports the assembly of vari-
ous components such as microprocessor chips on CPU sockets,memory modules in memory slots, hard
disk, dedicated boards such as graphics card, sound card, network card using internal buses like PCI
and peripheral devices like mouse, keyboard on external buses such as USB and Firewire. Each of these
components has well-defined hardware interfaces and implement standard protocols to provide portabil-
ity from one motherboard to another and interoperability ofcommunications between these components.
Over the past 50 years, the continuous improvement of integrated circuits fabrication allows the miniatur-
ization and integration of the main components of usual PCs onto a single chip to build System-on-Chip
(SoC) on ASICs and FPGAs. From a microscopic viewpoint, hardware components in System-on-Chip
(SoC) are basically calledIntellectual Properties(IP) cores and include soft microprocessor cores (e.g.
Xilinx MicroBlaze and Altera Nios II), bus controllers (e.g. UART35, I2C36 and RapidIO) memory con-
troller (e.g. DDR2 SDRAM37 and Flash memory), Ethernet MAC cores, Digital Signal Processing IPs
such filters (e.g. FIR38 and CIC39 filters), encoder-decoder (e.g. Viterbi, Reed-Solomon, Turbo Code IPs)
and much more. In ASICs, hardware components are custom IPs and standard cells, which implement
basic functionalities such as NAND gates, FIFOs and RAMs.

Software engineering also follows a component-based approach through the use of various software
libraries provided by languages e.g. C standard library, device drivers, OS, middlewares, and software
platforms such as the Java Class Library (JCL) of the Java platform and the Base Class Library (BCL) of
the .NET Framework.

Hardware components such as hardware devices and IP cores typically appear as software compo-
nents through device drivers. A device driver is a software code that bridges the gap between high-level
procedural or object-oriented application interfaces andlow-level software interfaces based on read and
write primitives to configure and control hardware devices.

A software library is merely a reusable set of classes and functions used by developers to obtain
some functionality. In contrast, an object-oriented framework is a set of classes that provide a reusable
software architecture dedicated to a given application domain [BHS07] [SB03]. Examples of frame-
works include graphical user interface (GUI) frameworks such as Microsoft Foundation Classes (MFC),
network frameworks such as ACE, middleware frameworks likeTAO, application frameworks like the
SCA [JTR06] for SDR applications.

The application of the concept of hardware component in software led to the emergence of "Component-
Based Software Engineering (CBSE)". One of the first appearances of the concept of "software com-
ponents" originates from McIlroy [McI68]. Instead of redeveloping from scratch, component-based
hardware and software engineering consists of assembling new systems by reusing in-house business
components or purchasing a license for prebuilt black-box components often calledCommercial Off-

34http://en.wiktionary.org/wiki/component
35Universal Asynchronous Receiver Transmitter
36Inter Integrated Circuit
37Double Data Rate Synchronous Dynamic Random Access Memory
38Finite Impulse Response
39Cascaded Integrator-Comb

130 Chapter 6. Component-Oriented Architecture

The-Shelf(COTS) components. Components can have a wide spectrum of granularity ranging from
fine-grained components like device drivers and UART cores to large-grained components such as OS
and soft CPU cores. Facing ever increasing design size and complexity, the reuse and assembly of previ-
ously validated components allows increased productivityand quality, while reducing development time
and costs. Component-Based Design allows one to design or buy oncea component and use itmultiple
times, amortizing its development or purchase costs. In classical software engineering, the traditional
design flow consists of object-oriented analysis, design, programming, testing and integration.

In CBSE, designers activity is shifted from component specification, design, development and valida-
tion to component selection and integration. The selectionof components is based on technical descrip-
tions provided by datasheets. For hardware components, datasheets mainly describe hardware interface,
timing behavior and footprint in terms of logical elements and/or gates. For software components, they
typically contain memory footprint and supported instruction set architecture and compilers. The integra-
tion work depends on the quality of the chosen component, itsdocumentation and optional testbenches
and drivers. Due to proprietary standards, the use of COTS components results in a dependency on com-
ponent suppliers or even vendor lock-in as users do not have any control on future component changes.
For instance, the migration of a design from one FPGA vendor to another may require choosing func-
tionally equivalent IP cores and lead to supplementary integration problems since each vendor uses its
own bus interface and protocol. This clearly shows the limitations of the classical hardware component
approach based on IP cores, on which we will focus in the following.

Due to the weak meaning of the termcomponent, a "component-based system" does not have much
more sense than a "part-based whole" [BBB+00]. Like the distinction made between object-based and
object-oriented languages [Cap03], we make a distinction between component-based and component-
oriented approaches. Indeed, Ada83 was defined as an object-based language because it provided the
concept of object, but not the concept of inheritance which is characteristic of object-oriented languages
[Cap03]. In the same way, the component-oriented approach goes further than the component-based
approach as it provides in addition :

• standardcomponent models to define component structure and behavior like the interfaces com-
ponent must implement,

• standardconnector models to specify component interactions, assemble components into larger
components and into applications,

• standardcontainer models to mediate access to middleware services such as event, notification,
transaction and persistence services,

• standardpackaging and deployment models to deploy distributed component-oriented applica-
tions.

Over the past 40 years, a cross-fertilization, i.e. a mutually productive and beneficial exchange, has
occurred between component-based software engineering and component-based hardware engineering.
Starting from the vision of McIlroy [McI68] in 1968, software components have been inspired by hard-
ware components. Then, software components have independently evolved and led to a higher-level of
abstraction and better separation of concerns that could improve hardware components. Our goal is to
propose a common and unified component-oriented approach ofdesign at system-level.

An important question is what are the differences between hardware and software components ? For
Wang and Qian [WQ05], hardware components and software components are logically equivalent, but
the software component approach needs a formal theory and associated tools to reach the maturity of
hardware engineering. They propose an algebra for components in [WQ05] that is illustrated with EJB,
CCM, OSGi and Web Services.

6.2. Definitions 131

From a logical viewpoint, the same algorithm and model of computation can be clearly implemented
in a hardware and/or software component. A system-level specification must be defined independently
of hardware and software implementation languages. Examples of specifications languages are UML,
SDL and Esterel. Various modeling frameworks such as Ptolemy [HLL +03], Metropolis [BWH+03] and
BIP [Sif05] propose to model and simulate embedded systems through the hierarchical composition of
computation models [GBA+07], which are implementation agnostic. However from an implementation
viewpoint, hardware and software components have different execution model. Hardware components
can be defined using logical equations according to the boolean logic and simulated as well-understood
discrete events. Software components can be notably specified with the Hoare logic [Hoa69] using pre-
and post-conditions, that have to be extended from procedural programming to component behavior and
interactions [WQ05].

To support a common component-oriented approach at system-level which can be refined at im-
plementation level as hardware/software components, system, hardware and software engineering must
share the same abstract concepts and how these concepts can be implemented using system, software
and hardware implementation languages. Such an approach will allow a better communication between
system, hardware and software engineers.

6.2 Definitions

As in the case of objects, there is no real consensus on the definition of software components [Kra08].
The main reason is that each commercial, industrial and academic component technology applies the
concept of component slightly differently for each execution environment (e.g. enterprise, embedded
and/or real-time system) according to application domain requirements (e.g. financial, consumer elec-
tronics, automotive, avionics, software radio domain).

There is a lack of agreement about what software components are and how they are used to design
and develop component-based applications [BBB+00]. Nevertheless, one of the most cited definition of
software components is [SP96]:

"A component is a unit of composition with contractually specified interfaces and explicit context
dependencies only. A component can be deployed independently and is subject to composition by third
parties."

This definition underlines that the raison d’être of components is to be composed i.e. put together
only through multiple well-defined interfaces and explicitdependencies forming a contract with their
environment in which they are deployed. Note that this definition is sufficiently general to be applicable
to both software components and hardware components including chips and IPs. Numerous discussions
exist in the software literature about a definition of software components [WQ05], whereas there are no
such debates in the hardware literature probably since hardware components are much better understood.
Software component interfaces are typically operation-based software interfaces, while the component
context in this definition is vague and may designate required interfaces or some software platform
services such as periodic activation and communication services. Similarly, hardware component inter-
faces designate "wire"-based hardware interfaces, while the component context may designate required
input/output wires or some hardware platform services suchclock frequency, asynchronous reset and
communication bus. Although this definition could be sufficient for hardware components, it needs to be
extended with the closely related definitions of component model and software component architecture
defined by Heineman and Councill in [HC01] and cited in [Kra08]:

"A software componentis a software element that conforms to a component model and can be
independently deployed and composed without modification according to a composition standard."

"A component modeldefines specific interaction and composition standards. A component model

132 Chapter 6. Component-Oriented Architecture

implementation is the dedicated set of executable softwareelements required to support the execution of
components that conform to the model."

Bachmann et al [BBB+00] add that "the component model imposes design constraints on component
developers, and the component framework enforces these constraints in addition to providing useful
services."

These definitions stress the need for a component model, a composition standard and a supporting
component infrastructure. The composition model includesa connector model and a deployment model.
These definitions specify that components obey the interaction and composition rules of a component
model, whose implementation allows one to enforce them. Forhardware components, the interaction and
composition standards may respectively designate standard communication protocols such as AMBA and
hardware interconnection rules such as matching types and width of input/output ports for IPs or voltage
for chips.

"A software component infrastructure is a set of interacting software components designed to en-
sure that a software system or subsystem constructed using those components and interfaces will satisfy
clearly defined performance specifications."

A component infrastructure guaranties that a component assembly will respect the performance con-
straints specified at a system level.

However, this formulation was more clearly refined by Krakowiak in [Kra08]:
"A software component infrastructureor framework, is a software system that provides the services

needed to develop, deploy, manage and execute applicationsbuilt using a specific component model
implementation. It may itself be organized as a set of interacting software components."

A possible application of this definition to hardware components is the collection of EDA tools used
by hardware designers to respectively write and simulate HDL code, synthesize, place, route and load
bitstream down to FPGAs and/or produce ASICs.

A software component technology consists of a component model and component framework [BBB+00].
Each component technology has its own component model, component framework, languages and files
to specify component interfaces, assembly, packaging, configuration and deployment.

This heterogeneity led the OMG to shift from Object Management Architecture [OMG95] centered
around object request brokers to Model-Driven Architecture [OMG03] focused on models.

The integration of multiple heterogeneous component technologies requires component middlewares.
Moreover, the concept of connectors has been proposed to provide interoperability between these tech-
nologies.

6.3 From Object-Oriented to Component-Oriented approach

The inherent limitation of the object-oriented approach has motivated the emergence of an evolutionary
component-oriented approach. The main differences between the object orientation (OO) and component-
orientation (CO) are listed below [WQ05] :

6.3.1 Object model vs. component model

The only constraint that is imposed on objects is to satisfy the principles of the object model such as
encapsulation, inheritance, methods that can be invoked onan object interface i.e. messages that can
receive an object. In contrast, a component model imposes much more constraints on components such
as rules of naming, design, composition, configuration, packaging, deployment and interfaces to use and
implement.

In the list below, we briefly review object concepts and contrast them with component concepts.

6.3. From Object-Oriented to Component-Oriented approach 133

• Identifiable Objects as Instances of Classes: Like an object, a component is a self-contained
and identifiable entity. While an object is said to be an instance of a class, there is not such a
clear distinction between the static type of a component andits run-time existence. We will simply
say that a "component instance" is an instance of a "component type". The term "component"
generally refers to a component instance.

• Method Invocation and Message Passing: while an object is conceptually based on a single form
of interaction i.e. method invocation, a component do not only communicate through message
passing, but also via other communication models such as event and data stream.

• Encapsulation: Interface and Implementation(s): Like an object, a component encloses its own
state and behavior that are only accessible through interface. Hence, a component also respects
the encapsulation principle.

• White-Box Reuse and Black Box Reuse: Objects and components may support both white-box
reuse through inheritance and black-box reuse through composition.

• Polymorphism: polymorphism can be extended to component interface type and component type.

• Relationship: As opposed to objects, components explicitly specify their dependencies. Compo-
nents may support hierarchical containment to build composite components from primitive com-
ponents. A component may be part of more than one assembly called configuration and shared
between several components.

• Concurrency, Synchronization and Coordination: While interactions between objects are pri-
marily based on method invocations, interactions between components may be explicitly mediated
by special components calledconnectors.

• Persistence: As opposed to objects, components are hosted in containersthat provide and mediate
access to common services like persistence.

• Distribution : While an object is typically a fine-grained unit of distribution, a component may be
from a fine to a large-grained unit of distribution thanks to hierarchical containment. Connectors
can transparently deal with the non-functional aspect of distribution, while avoiding deployment
anomalies [B́02].

Component concepts will be describe in more details in the following.

6.3.2 Separation of concerns

Objects directly use various technical services for naming, event, persistence, transaction, concurrency
and security that are dependent on the underlying software platform and are interwoven with business
logic. However, the same component could be reused in various applications and operating environ-
ments. The component-oriented approach introduces the concept of CONTAINER [BHS07] to mediate
component access to platform services and automate their use instead of manual user interventions.
These common services are provided by component frameworksthat encapsulate middleware and OS
services. Designers can thus focus on component functionallogic rather than on the technical details of
each platform on which components may be deployed.

134 Chapter 6. Component-Oriented Architecture

6.3.3 Explicit dependency and multiple interfaces

An object only provides one interface that is the most-derived interface in the inheritance tree called
principal interface in CORBA [OMG08b]. In contrast, a component provides and requires multiple
interfaces that allow 1) an explicit specification of the external dependency of components, and 2) a
separation of concerns between functional interfaces for business logic and non-functional interfaces for
technical logic e.g. regarding configuration, deployment and activation. Component interfaces can be
more easily added to extend component functionalities.

6.3.4 Interactions

OO basically supports a single type of interactions under the form of method invocations. CO goes fur-
ther by taking into account multiple types of interactions such as invocations, events, and data streams.
In CO, these interactions are reified i.e. materialized by the first-class concept of connectors. Connec-
tors are used to mediate interactions between components and allow one to clearly separate component
computation from component communication.

6.3.5 Composition rather than implementation inheritance

OO extensively relies on inheritance. While specification inheritance is beneficial to constrain implemen-
tations through abstract interfaces, implementation inheritance results in loose cohesion, tight coupling,
may break the encapsulation principle and lead to inheritance anomaly [MS04]. Objects are loosely
cohesive because attributes and methods implementation are implicitly scattered all over the inheritance
hierarchy. Objects are tightly coupled since classes depend on each other implementation. Derived
classes depend on the implementation of all classes on top ofthem in the inheritance hierarchy. Base
classes may depend on the implementation of some functionalities that are left to derived classes or that
derived classes should customize. Modifications in some classes may cause unexpected behavior and
side effects in others classes. The encapsulation principle may be broken when derived classes directly
access base classes attributes without using accessor methods as permitted by the public and protected
qualifier of some OOLs such as Java and C++. Inheritance anomaly designates the abnormal modifi-
cation of base classes that is required to guarantee the synchronization constraints of derived classes.
In contrast, CO is based on the composition of components through their interfaces and results in tight
cohesion, loose coupling and tight encapsulation.

6.3.6 Granularity of composition, distribution and reuse

In OO, units of composition, distribution and reuse are fine-grained objects, while CO allows a hierar-
chical composition of components from fine to large granularity. A component can be basically viewed
as a composition of objects.

6.3.7 Language Independence

While OO mainly assumes object-oriented languages to notably provide inheritance, CO could be imple-
mented in any language [WQ05]. One possible reason is that composition is basically supported by all
languages as opposed to inheritance. Examples are softwarecomponents in C such as in the Kaola, Frac-
tal and PIN component models, in SmallTalk like in [FDH08], and hardware components in HDLs. Both
C and HDLs are clearly not object-oriented languages, but they support component-based approaches.
Nevertheless, non-OO languages must also preserve component concepts such as encapsulation.

6.4. Principles 135

6.3.8 Deployment and administration

OO is focused on implementation, while CO is centered on packaging, deployment (i.e. installation,
connection), life cycle (i.e. initialization, configuration and activation), administration (e.g. monitoring
and reconfiguration) in distributed systems [Kra08]. Indeed, objects and classes are not self-contained
and self-deployable [WQ05].

6.3.9 Higher-level reuse

Due to their difference of granularity, OO is primarily based on low-level reuse of attributes, methods
and classes through inheritance or composition, while CO originally supports higher-level reuse of com-
ponent assemblies.

In summary, the software component-oriented approach is anevolution from the object-oriented
approach. The object-oriented approach is focused on classes, objects and inheritance, whereas the
component-oriented approach is focused on interfaces, interactions, dependencies and compositions.

6.4 Principles

Whatever the disagreements concerning their definitions, the principles underlying software components
are basically the same in the literature and exposed in [WQ05]. Interestingly, these principles are also
applicable to hardware components and are presented in an implementation-agnostic manner.

1. Components are based on decomposition and abstraction. Decomposition breaks a system into
modules called components, which are self-described, self-contained and self-deployable. Ab-
straction determines the relevant level of details with which decomposition is performed.

2. During their design flow, components permits reuse at eachlevel of their existence: component
specification, component interface specification, component implementation in source code, com-
ponents binaries registered in a repository and deployed component instances.

3. Component-based engineering increases quality and dependability since each component is sup-
posed to have been tested and reused many times.

4. Component-based engineering could increase productivity since components are reused instead of
being redeveloped from scratch at each time.

5. Component-based engineering promotes standardizationto enable component "plug-and-play" and
the emergence of component markets [Szy02]. Indeed, the need for portability and interoperabil-
ity of hardware and software components has motivated the creation of international standards by
various consortium such as IP-XACT [SPI08] specification for XML meta-data and tool interfaces
from the SPIRIT (Structure for Packaging, Integrating and Re-using IP within Tool flows) consor-
tium, interface and protocol standard such as AXI, VCI and OCP, the Corba Component Model
(CCM) and Deployment and Configuration (D&C) [OMG06b] of Component-based Distributed
Applications by the OMG.

6.4.1 From Hardware/Software Design to System Architecture

To tackle the complexity of modern embedded systems, it is increasingly accepted that hardware/software
design needs to evolve towards system-level design [KNRSV00] [Dv04a] [SV07]. This evolution has
motivated the emergence of system-level standards such as SystemC and SysML. In the same way that

136 Chapter 6. Component-Oriented Architecture

hardware/software design evolves towards hardware/software architecture, system-level design needs to
evolve to system-level architecture.

System-level architecture is the art and science of structuring a system, which may consist of het-
erogeneous parts such as a combination of hardware and software modules. A software architecture
describes the subsystems and components of a software system, their relationships and their functional
and non-functional properties [BHS07]. Software architecture separates multiple levels of concerns such
as computation and communication thanks to two structural constructs: components and connectors. A
software architecture can be dynamically changed through run-time allocation, instantiation and binding
of components and connectors to provide a software system with adaptability and evolution. Similarly,
the increasing industrial maturity of dynamic and partial reconfiguration of FPGAs enables to dynami-
cally change a hardware architecture by loading partial bitstreams.

In [Per97], Perry justifies the required separation between(software) architecture and design. Archi-
tecture resides at a higher level of abstraction than design. It targets early engineering steps and provides
a preliminary structure to a system. While design is focusedon concrete implementation constructs such
as algorithms, procedures, types and their interactions such as procedures calls and data access, archi-
tecture reasons about a system in terms of their components and their interactions. The constituents are
represented by components, while their interactions are embodied by connectors. In our opinion, these
principles are common to hardware and software architecture and could be applied at system-level.

An architectural style defines a set of rules that describe orconstrain the structure of architectures
and the way in which their components interact. Common architectural styles include pipes and filters,
Abstract Data Type(ADT) like objects, events, messages and dataflow [GS94] [MMP00], layered style,
shared memory with repositories (database and blackboard), distributed processes with client-server or-
ganization, FSM state transition systems. These common architectural styles have been formalized in
architectural patterns such as LAYERS, PIPES AND FILTERS, BROKER, BLACKBOARD to build Pattern-
Oriented Software Architecture (POSA) [BMR+96] [BHS07].

We believe that software architecture helps reason about hardware architecture through common,
well-defined and well-understood architectural patterns and concepts such as connectors.

6.4.2 From Development to Integration

Component-based engineering accelerates development cycle and reduce costs. The assembly of com-
ponents is based on their interfaces and semantics. The creation of a system from sub-system made of
components is a natural work for numerous engineering domains such as aerospatial, avionic, automo-
tive, mechanical, electrical and electronics systems.

6.4.3 Separation of Concerns

Separation of concerns allows the reduction of the conceptual size of each individual abstraction and
makes it more cohesive [BME+07]. Components have multiple interfaces. Each component interface
corresponds to an individual object interface and deals with a single aspect or facet. This decomposi-
tion favors separation of concerns and avoids monolithic or"god" objects. The multiple interfaces of
components allow scalability and extensibility since a newinterface can be added to a component to
handle unforeseen aspects.Aspect-Oriented Programming(AOP) [KLM +97] provides another form of
separation of concerns at source-code level rather than at interface level. In other words, an aspect is
encapsulated within an interface in component-oriented programming rather than a piece of code as in
aspect-oriented programming.

6.5. Technical Concepts 137

6.4.4 Reusability

Reuse allows one time implementation and multiple use, and increases productivity and quality [WQ05].
Reuse can be performed at different levels of granularity from low-level source code copy, inextensible
function libraries, extensible class libraries that require a lot of understanding to high-level black-box
reuse of components [WQ05].

6.4.5 Assembly and Composition

The key technical challenges of component-based design areformal approaches forcorrect by construc-
tion assembly of components [WQ05] and the prediction of the properties of a component-based system
from the properties of the components themselves [BBB+00].

6.4.6 Component infrastructure or framework

A component infrastructure or framework consists of three models: a component model, a connection
model, and a deployment model [WQ05]. The component model defines what a component is and how to
create a new component under the component infrastructure.Component designers build components ac-
cording to the component model. The connection model definesa collection of connectors and supporting
facilities for component assembling. The deployment modeldescribes how to install component-based
applications into the execution environment. A component infrastructure or framework is also sometimes
called "component technology" or "component architecture" in literature [WQ05].

Examples of component technologies include JavaBeans fromSun Microsystems, COM (Component
Object Model) and DCOM (Distributed COM) from Microsoft andCORBA Component Model (CCM)
from the OMG.

6.5 Technical Concepts

6.5.1 Component Infrastructure or Framework

A component infrastructure or framework consists of a component model, a connection model and com-
ponent management. Component framework automates tedioustasks such as the configuration and de-
ployment of component-based applications. These tasks areno longer required to be performed by the
designers, who can now focus on business logic aspects. A component framework supports components
with middleware services such as persistence, transaction, event service, security and quality of service
such as availability and real-time performances. In many respects, component frameworks can be viewed
as high-level and specialized operating systems [BBB+00].

Requirements

A component framework is required to manage a component-based application, notably its deployment
into the execution environment. Application deployment consists in retrieving component artifacts (bi-
naries, bitstreams) from a component repository, allocating the needed processing, memory and com-
munication resources, installing component artifacts on the distributed execution nodes, then creating,
initializing, connecting, configuring and activating component instances. The component framework
makes component interfaces available to the end-users and monitors application activities to obtain its
status, performances, load factors etc [Kra08]. When the end-users cease to use an application, the com-
ponent framework can perform the reverse deployment actions: deactivation, disconnection, destruction
of component instances, disinstallation and disallocation of component artifacts. Component framework

138 Chapter 6. Component-Oriented Architecture

are required to provide common services to applications andguarantee their quality of services. Devel-
opers should have the capabilities to indicate the servicestheir applications require, while component
frameworks automatically inject the needed invocations inthe application code and encapsulate compo-
nents into containers to enforce separations of concerns [Kra08].

6.5.2 Component

A component provides its functionalities through requiredand provided interfaces. While most current
component technologies only recognize software application components, we distinguish like the SCA
two basic kinds of components: application components and platform components. A component can be
viewed in multiple layers of a system. For instance, a software application component may be deployed
on a software platform component called GPP logical device that represents the soft processor IP core
(virtual hardware component) on which it is deployed. This IP core, its software and other hardware ap-
plication components may be deployed on an FPGA chip and in anexternal flash memory chip (hardware
platform components).

Application components implement business logic and require HW/SW platform services, while
platform components implement technical logic and provides HW/SW platform services.

A component may have a functional or algorithmic implementation e.g. in executable UML, Mat-
lab/Simulink, SystemC TLM; a software implementation e.g.in C, C++ or Java; or a hardware imple-
mentation e.g. in synthesizable SystemC RTL, VHDL or Verilog.

Logically, a software component has logical ports that provide and require properties, methods and
events. Component properties also called attributes are either functional properties or non-functional
properties also called extra-functional properties. Non-functional properties may be related to quality
of service such as memory footprint and worst-case execution time (WCET) or to component meta-
data such as required processor, OS and software libraries or component name, version and source files.
Events trigger the execution of an associated method calledan event handler or callback. Methods may
be synchronous or asynchronous i.e. blocking or non-blocking using oneway semantics, while events are
typically asynchronous.

A hardware component has input, output, input/output hardware ports that provide and require one
or several signal-based interfaces. Logically, it also provides and requires functional and non-functional
properties and events. Functional properties or attributes are explicitly read and write through the com-
ponent interface according to a custom or standard data transfer protocol and may be stored in registers
or RAMs. Non-functional properties include footprint in terms of area, maximum execution frequency,
latency, bandwidth regarding QoS or required FPGA, bus and hardware libraries, component name, ver-
sion and source files. Writing on component ports triggers the activation of processes that implement
component functionalities. Hardware components are typically synchronized by a clock port and initial-
ized by an asynchronous reset port.

A component is governed by a component model, which may be based on a composition of models
of computation, one for each of its different types of interfaces. For instance, control interfaces may
rely on a FSM model of computation, while data stream interfaces may rely on a data flow model of
computation.

6.5.3 Component Model

A component model is a set of standards, conventions and rules that components must respect. These
rules assure that component developed by different designers and enterprises can be correctly installed in
component repositories, deployed in an execution environment and interact at run-time with each other.

6.5. Technical Concepts 139

A component model defines the set of rules that describes the creation, configuration, composition
and interaction of software components. A component model contains the interfaces that must implement
a component.

Some works have been carried out to define formal component models using component algebra
[WQ05] [BBS06] [dAH01] and models of computation [GBA+07] [RL02].

Requirements for component models

Requirements for a component model depend on the targeted application domains and application needs.
General-purpose enterprise component technologies such as CCM and EJB provide full-featured com-
ponent frameworks with advanced services such as persistence, transaction and security. In contrast,
special-purpose embedded and real-time component technologies such asPErvasive COmponent Sys-
tems(PECOS) [GCW+02] require a small number of lightweight services to decrease memory footprint
and may have stringent non-functional constraints regarding latency, bandwidth, deadlines, and priority.

We reformulate the requirements for a component model proposed by Bruneton et al. [BCS02] and
Krakowiak [Kra08] at the hardware/software system level. In addition to requirements inherited from
the object approach such as encapsulation and reusability,a component model should support:

• hierarchical containment of primitive components to build composite or compound components,

• component sharingto allow a component to be part of several component assemblies or configu-
rations. Shared components may be used to abstract logical and hardware resources that are shared
by multiple components such as processor, memory, communication bus,

• explicit architectural description of a component-based system to specify units of composition
such as components and connectors usingArchitecture Description Languages(ADL s),

• off-line or run-time reconfiguration of component assemblies to add, remove, replace, modify
component interfaces, components and connectors and allows system adaptation and evolution,

• component control and managementduring its life cycle to deploy components i.e. to instal-
l/uninstall, create/destroy, initialize, configure/query, connect/disconnect and start/stop compo-
nents and during its execution for interception, monitoring and introspection.

Few component models such as Fractal support shared components. We add that a component model
should enforce real-time constraints using scheduling anddeal with concurrency within a component,
while a connector model should cope with concurrency between components. Moreover, a component
model should be able to describe software components as wellas hardware components, but also appli-
cation components as well as platform components. For instance, the SCA component model supports
the description of hardware platform components as software components called logical devices.

6.5.4 Interfaces

Components specify the functionalities they provide and require through one or several interfaces.

Software component interfaces

Software interfaces typically define the set of operations they implement. In OO languages, a software
component interface is generally a plain old object interface.

140 Chapter 6. Component-Oriented Architecture

Two kinds of software component interfaces can be distinguished: user-defined application interfaces
and standard interfaces from the component technology including the component model, the connection
model, the deployment model and external middleware/OS services.

Component technologies may be based on implementation-independent interfaces such as CCM
with CORBA IDL or implementation-specific interfaces such as EJB with Java and .NET with C# and
VB.NET.

Hardware component interfaces

A hardware interface consists of the set of input, output andinput-output ports offered by a hardware
component. It is specified by an entity in VHDL or a module in SystemC and Verilog for virtual hardware
components i.e. IP cores or a schematic in a datasheet for virtual and physical components.

Four dimensions for hardware interfaces can be distinguished: custom vs. standard, bus vs. core-
centric.

Custom hardware interfaces are based on proprietary namingconventions and protocols that are
particular to a designer, a group of designers or an enterprise. Hardware component ports are named
according to traditional naming rules for clock (clk), active low asynchronous reset (rst_n), enable
(en), strobe, data valid, chip select (cs), address (addr) and data etc. Interface protocols are graphically
represented by timing diagrams in datasheets or in application specifications. Each usual and basic
hardware components such as shifter, serial-parallel converter, FIFOs and RAMs has its own custom
interfaces. As a result, designers need more time to understand, assemble and use hardware components.

In contrast, standard hardware interfaces provide common signal names and protocols among hard-
ware designers. They favor component composition and avoidintegration errors. Interface adapters are
required to adapt custom interfaces to standard interfacesand may add performance overheads.

Contract

A contract determines the rights and duties of participantsin a relationship. Beugnard et al. define four
levels of contract [BJPW99] of increasing negotiability: basic or syntactical, behavioral, synchronization
and quantitative 4.1.4.

A software component interface is often restricted to a syntactic contract [BJPW99] in standard
component technologies, while academic component technologies may include syntactical, behavioral,
synchronization and quantitative contracts. The definition of quality of service for components remains
a major concern in component specification.

For Bachmann et al. [BBB+00], two kinds of contracts are required for CBSE: componentcontacts
and interaction contracts. However beyond distinctions regarding these contracts, Bachmann et al. do
not describe concretely what they should include.

A component contractspecifies patterns of interaction that are specific to a component. Component
contracts include the functional and non-functional requirements (rights) and provisions (duties) specific
to a component as a whole and the interface contract of all component interfaces.

An interaction contract specifies patterns of interaction that are generic and independent from com-
ponents. For naming consistency with the term "component contract", we consider that interaction con-
tract can be more clearly renamed intoconnector contract. These patterns of interaction are represented
by roles provided by connectors and used by components. Examples of interaction patterns include
method invocation between client and server roles, event delivery between publisher and subscriber
roles, data stream between source and sink roles, message passing between sender and receiver roles and
shared memory between writer and reader roles.

6.5. Technical Concepts 141

Although the separation of responsibilities and contractsbetween components and connectors is not
obvious, we consider that component contracts should include syntactical, behavioral and quantitative
contracts through each of its interface contracts, while connector contracts should consist of synchroniza-
tion and quantitative contracts. Indeed, a component provides typed service interfaces with well-defined
usage rules and whose services may be required to execute in agiven worst-case execution time. A con-
nector may deal with communication, synchronization, arbitrating, scheduling between components with
a given quality of service e.g. latency or fairness. It is independent from typed component interfaces.

Component-based system are assembled from the compositionof components and connectors that
respects each other’s contract.

6.5.5 Behavior

A software component can be viewed as a composition of software objects. The same techniques used
to specify object behavior can be extended to describe component behavior. Like an object, the behavior
of a component can be divided into different views such as specified by UML diagrams. Temporal
behavior can be specified by UML sequence diagrams for software components, and chronograms or
timing diagrams for hardware components. Functional behavior can be specified by:

• state machines for hardware and software components e.g. using UML behavioral and protocol
state machines [OMG07d], statecharts [Har87], interface automata [dAH01] or behavior protocols
[PV02]. These state machines specify the order in which the methods provided and required by a
component interface can be invoked. Based on these different formalisms, the compatibility and
composition of components can be analyzed like in [dAH01] and [PV02].

• an implementation-dependent language such as C/C++/Java/SystemC for software and hardware
components in case of High-Level Synthesis, and VHDL/Verilog for hardware components

• by an implementation-independent language such as an UML action language, the Matlab M lan-
guage or through the assembly of pre-existing components like in Simulink,

• assertion-based constraints to specify pre-/post-conditions and invariants using e.g. OMG Object
Constraint Language (OCL) [OMG06d] for software components or Hardware Verification Lan-
guages (HVL) such asProperty Specification Language(PSL) [Acc04a] and Cadence Specmane
for HW components.

6.5.6 Port

A component has ports that are service access points and the conceptual interface between the inner and
outer view of a component. Component ports have a type such asan integer type e.g. for properties, a
method-based interface type or an event type, a direction such as input, output or input-output or inout
for short and interaction semantics such as synchronous or asynchronous method invocations in point-
to-point mode, asynchronous event in publish-subscribe mode, or data stream in point-to-point mode.

6.5.7 Connection Model

In software architecture, a software connector is a component which binds the required and provided
ports of two or more components. While components have ports, the interface access points of connec-
tors are called roles [B́02]. In contrast to the object-oriented approach, the notion of connector reifies the
relationships and interactions among components. Software connectors have been treated as first-class
architectural entities in software architectures notablyby Architecture Description Languages (ADLs).

142 Chapter 6. Component-Oriented Architecture

Connectors separate computation from interactions. A connector may implement all functionalities ex-
cept application functionalities. They can be used as a means of communication, mediation, coordination
and control, and allows one to decouple and compose all theseaspects [Per97]. While usual components
implement application-specific functionalities, connectors implement generic and reusable communica-
tion and interaction patterns. Components and connectors can thus be reused independently.

Taxonomy of Software Connectors

In the taxonomy of connectors proposed in [MMP00], the threeidentified building blocks of software
interactions are ducts, data transfer, and control transfer. A software connector mediates component
interactions through one or more basic channels calledducts without associated behavior along which
data and/or control are transferred among components. For instance, a pipe is a simple connector with one
duct that only supports unidirectional transfer of raw datastreams. Four main categories of connectors
are identified according to the services they provide: communication for transfer of data, coordination
for transfer of control, conversion regarding the type, number, frequency, or order of interactions, and
facilitation for scheduling, arbitration, synchronization and concurrency control and load balancing. Both
communication and coordination services may be provided byconnectors such as function calls and
method invocations. Like noted in [MMP00], transfer of control does not mandatorily imply loss of
control from the caller to the callee. Moreover, eight typesof connector are distinguished: procedure call
for transfer of control and data; event for transfer of control and data; data access for transfer of data,
conversion and persistence; linkage for facilitation; stream for data transfer; arbitrator for facilitation and
coordination; adapter for conversion; and distributor forfacilitation. Each connector type supports one
or more interaction services. Connectors may thus adapt different interaction semantics and protocols.

Connectors as Middlewares

Connectors can provide components with distribution transparency. When components bound by a con-
nector are deployed in the same address space on a single node, the connector may be implemented as
simple pointers [Kra08]. When the same components are deployed on several nodes in different address
spaces, the connector may use or implement the required middlewares services such as marshalling/un-
marshalling, interface adaptation, interception, request dispatching etc. In this case, the connector is
partitioned into two "fragments" that may represent a stub/skeleton pair or two middleware instances.
For instance, software connectors have been employed in distributed embedded systems to drive the
generation of dedicated middlewares thanks to their explicit expression of communication [SG07b].

Middlewares provide generic services to support various interactions among components, but it is
often difficult to tailor a middleware to the specific needs ofan application. Connectors typically pro-
vide services which are typically found in middlewares suchas persistence, invocation, messaging and
transactions. In the connector model proposed in [B0́2], the three generic types of connectors that have
been selected from [MMP00] are procedure calls, event delivery and data stream. Connector template
architecture may include interceptors, stub/skeleton, dispatcher, arbiter and scheduler. Each connector
template called frame is generic and parametrized by user-specific interfaces.

Composite connectors

To encapsulate various component interactions, connectors may implement from simple to complex func-
tionalities. For instance, a connector may represent a POSIX mutex, a simple FIFO or use burst transfers
and DMA. Composite connectors result from the composition of connectors and components [B0́2].

An assembly of components and connectors is called a configuration. A configuration must com-
ply with the composition rules of the connection model that describe how components and connectors

6.5. Technical Concepts 143

can be assembled. If the component model supports hierarchical containment, a configuration may be
considered itself as a deployable component [Kra08].

Soundness of connectors

Some works such as [Kel07] [FDH08] have recognized that the distinction between components and
connectors is not obvious or even artificial [Szy02]. We argue that the distinction between component
and connector is relative to the considered level of abstraction. For instance, the Linux process scheduler
can be viewed as a connector for application developers since it is not part of application functionalities
[MMP00], but it can also be seen as a component for OS developers since it is part of OS business
logic e.g. for innovative scheduling algorithms. In other words, components in the platform layer can be
considered as connectors in the application layer and vice versa.

Related work on support of connectors in ADLs and component frameworks

The concept of connector has been used in Architecture Description Languages (ADLs) [MT00] and
in some component frameworks such as SOFA [B0́2] [BP04]. The use of explicit connectors has been
proposed for distributed embedded systems in [SG07a] and in[RRS+05] with Lightweight CCM.

Connector model

A connector is governed by a connector model, which may be based on a composition of models of
communication, one for each of its different types of roles.For instance, method-based interfaces rely
on a message-passing model of communication, while event-based interfaces may rely on a publish-
subscribe model of communication.

Although connectors have been studied for over a decade, they are not widely used in standard
component technologies and have been proposed only recently by Thales and Mercury at the OMG for
CCM and DDS.

6.5.8 Container

The CONTAINER design pattern [BHS07] allows the isolation of a component from the technical de-
tails of its possibly numerous operating environments. Components can access platform services from
their container either through an explicit interface or viacallbacks. Containers transparently integrate
components into their execution environment. They use middleware services such as persistence, event
notification, transactions, load-balancing and security as proxy of components. Containers also manage
component life cycle such as creation/destruction using component factories, interconnection of com-
ponent ports, configuration using configuration files typically in XML and activation e.g. using a timer
service. A component typically provides a DECLARATIVE COMPONENT CONFIGURATION [BHS07] as
in CCM, EJB and .NET that describes the platform services andresources it requires and how it wants to
use them. The component framework or infrastructure automatically generates part of the container i.e.
the glue code that is specific to the component requirements and the underlying platform.

6.5.9 Deployment model

The deployment model of a component infrastructure includes component instantiation, interconnec-
tion, configuration and activation. The deployment model isone of the fundamental differences among
different component infrastructures [WQ05].

144 Chapter 6. Component-Oriented Architecture

6.6 Software Component Models

In this section, we provide an overview of some component models.

6.6.1 Software Component Models for Software Defined Radio

JTRS JPEO Software Communications Architecture (SCA)

Introduction, Context and Objectives The Software Communications Architecture (SCA) [JTR01]
[JTR06] [BJ07] is a software radio architecture published and maintained by the Joint Program Executive
Office (JPEO) of the US Military Joint Tactical Radio System (JTRS) program. The SCA is considered
as the de-facto standard for the SDR industry [OMG07e].

The SCA aims at enabling the portability, interoperabilityand reusability of software waveform ap-
plications that are deployed on different SCA-compliant radio platforms and reducing their development
time and costs using software industry standards such as IEEE POSIX and its Application Environment
Profile (AEP) for Realtime and Embedded Applications, OMG UML v.1.4.2, OMG Minimum CORBA
v.1.0, W3C XML v.1.0 and OSF DCE v.1.1 UUID40 .

UML is used to graphically represent SCA interfaces, operational scenarios, use cases, and collabo-
ration diagrams using when possible the UML profile for CORBAv.1.0 [OMG02]. CORBA IDL is used
to define the SCA interfaces. XML is used in the SCA Domain Profile, which identifies the capabilities,
properties, dependencies, and location of software components and hardware devices of SCA-compliant
radio systems.

The SCA has been primarily designed to satisfy the requirements of military radio applications, but
it can also be used for commercial radio equipments. The SCA has received wide acceptance from mili-
tary radio manufacturers, industry associations such as the SDRForum41 and support from tools such as
ZeligSoft Component Enabler and PrismTech Spectra tools. The ultimate goal would be that the SCA
becomes a commercial standard maintained by an international organization such as the OMG. A con-
crete realization of this objective is the UML Profile for Software Radio a.k.a. PIM & PSM for Software
Radio Components (SDRP) based on the SCA [OMG07e]. The SDRP specification leverages the SCA
with the OMG Model-Driven Architecture (MDA) approach in which the Platform-Independent Model
of SDR applications are decoupled from their realization inPlatform-Specific Models for instance using
a CORBA middleware. As opposed to the SCA, the SDRP specification is not yet widely used to design
software radio applications and supported by commercial tools. The SCA follows a component-oriented
software architecture approach through its own software component model and software architectural
patterns (e.g. LAYERS and WHOLE-PART [BHS07]) and an object-oriented design and implementation
approach using software design patterns (e.g. FACTORY METHOD, DISPOSAL METHOD, ADAPTER,
PROXY, WRAPPERFACADE, OBJECTMANAGER, L IFECYCLE CALLBACK [BHS07]). The SCA masks
the heterogeneity of hardware/software applications and platforms using a common object-oriented com-
ponent approach. The SCA allows a functionality to be implemented either in hardware or software.

The SCA standardizes a software architecture for the deployment, management, interconnection, and
intercommunication of software SDR application and platform components within radio communication
systems.

The SCA specifies an implementation-independent set of interfaces, behaviors and rules to constrain
the design and deployment of waveform applications and improve their portability. However, the SCA
does not specify, like CORBA, how application components must be implemented notably in terms of

40Universally Unique IDentifier
41http://www.sdrforum.org

6.6. Software Component Models 145

concurrency e.g. whether components must be passive or active, how they must be synchronized or
whether their implementations must be thread-safe (reentrant), even if the SCA allows the use of POSIX.

The SCA software architecture defines anOperating Environment(OE), which consists of aCore
Framework(CF), a minimum CORBA-compliant middleware and lightweight middleware services such
as Naming service, Event service and Lightweight Log service, a POSIX-based Operating System (OS),
a network stack andBoard Support Packages (BSP).

The CF is a set of software interfaces defined in UML and CORBA IDL for the deployment, con-
figuration and management of software application components on distributed real-time and embedded
radio platforms.

In the following, we describe the last release of the SCA (version 2.2.2. [JTR06]) and its extensions
at the time of this writing. Differences with SCA version 2.2still in use are described when relevant.
The SCA 2.2.2. extension addresses the deployment of non-SCA services other than Log, FileSystem,
Event and Naming and a mechanism to manage and optimize application deployment.

Layered Software Architecture The SCA software architecture consists of several layers:

• Bus layer provided by Board Support Package (BSP) to use on-board transport buses such as VME,
PCI and Ethernet.

• Network and Serial Interface Services to support multipleserial and network interfaces such as RS-
232, RS485, Ethernet, 802.x and associated network protocol stacks such as an Internet Protocol
(IP) stack from the OS layer.

• OS layer compatible with the SCA POSIX Application Environment Profile (AEP), which is based
on the Real-Time Controller System Profile (PSE52) from POSIX 1003.13 [IEE04].

• Core Framework that is the set of application interfaces, framework interfaces and properties to
abstract, manage and support hardware platform devices andsoftware application components as
a collection of distributed objects. All CF interfaces are defined in CORBA IDL.

• CORBA middleware is used by the CF to provide communicationtransparency among distributed
computing objects and mask heterogeneity of languages and radio platforms.

• Application Layer in which SDR applications are an assembly of waveform components, which
communicate through a CORBA ORB and perform functionalities organized as in the OSI model
such as digital signal processing for modem components, data link for Link components, and
routing processing for Network components, input/output access for I/O components and encryp-
tion/decryption for security components and radio services. Applications must implement some
CF interfaces and use CF services and OS services restrictedto the allowed SCA POSIX profile.

Core Framework The Core Framework v2.2.2. consists of four categories of software interfaces,
which are graphically represented by UML class diagrams andtextually defined in CORBA IDL.

• Base Application Interfacescontain the interfacesLifeCycle,PropertySet,Testable-
Object, Port, PortSupplier, Resource and ResourceFactory. The Resource
interface inherits from the interfacesLifeCycle, TestableObject, PropertySet and
Port- Supplier. These interfaces are implemented and possibly extended bysoftware appli-
cation components calledResources. Application components inherit from theResource base
interface and are used by the SCA Framework Control interfaces for their management and control.

146 Chapter 6. Component-Oriented Architecture

An SCA application is an assembly ofResource components. Examples ofResources in-
clude RouterResource, NetworkResource, LinkResource, BridgeResource, UtilityResource. Ap-
plication components communicate either with each other orwith the devices and services. The
SCA does not specify how the functionalities of a Resource must be designed internal In the SCA,
application components are only implemented in software, while in our approach we consider
hardware application components i.e. signal processing IPcores as first-class components.

• Base Device Interfacescontain the interfacesDevice,LoadableDevice,ExecutableDe-
vice, andAggregateDevice. TheExecutableDevice interface inherits fromLoadable-
Device that inherits fromDevice that inherits fromResource. An AggregateDevice is
an aggregation of device components. These interfaces are implemented by software platform
components calledDevices. TheResource components of an application usesDevice com-
ponents. Platform components inherit from theDevice base interface and are used by the SCA
Framework Control interfaces to manage and control hardware platform resources.Device com-
ponents serve as software proxies [GHJV95] to represent real hardware platform devices such as
ModemDevice, AudioIODevice and CryptoSecurityDevice. Weconsider that theDevice inter-
face is an instance of the WRAPPERFACADE pattern [BHS07] as this common high-level object
interface encapsulated the low-level procedural or read/write interface of device drivers.

• Framework Control Interfaces contain the interfacesApplication,ApplicationFactory,
Domain Manager, andDeviceManager that are implemented by the SCA component frame-
work to deploy and manage software application and platformcomponents. These components are
managed by an implementation of the Framework Control Interfaces.

• Framework Services Interfacescontain the interfacesFile,FileSystem, andFileManager
to provide distributed file systems [CDK01] using CORBA. Other software services not included
in these interfaces include middleware services such as Log, Event and Naming services and radio
services such as Time, Vocoder services.

Differences between the definition of the CoreFramework between SCA v2.2 and SCA v2.2.2 include
the new "Base Device Interfaces" category that was initially included in the Framework Control Inter-
faces and the removal of the Domain Profile that do define software interfaces but deployment meta-data
in XML.

As SCA devices and services called "System Components" are platform and domain specific, they are
specified by standard APIs in dedicated documents separatedfrom the SCA core specification. Where
the SCA uses the term "system", we consider that the terms "platform" or "infrastructure" are more
appropriate. For us, a system is a whole entity which resultsfrom the combination of both an application
and a supporting platform.

Domain Profile The Domain Profile represented in figure 6.1 is a hierarchicalset of XML files that
describe the properties, interfaces, logical location, dependencies and assembly ofResource compo-
nents with a Software Profile using a Software Profile, hardware Devices and services using a Device
Profile.

The Domain Profile is a hierarchical set of XML files that describe the properties, interfaces, log-
ical location, dependencies and assembly of Resource components using a Software Profile, hardware
Devices and services using a Device Profile.

The Domain Profile is described by graphical UML class diagrams and textual DTD syntax. It has
been adapted from the CORBA Components Specification (OMG version 3.0, formal/02-06-65: Chapter
6 - Packaging and Deployment). The Domain profile uses standard DCE UUID to uniquely identify XML

6.6. Software Component Models 147

Figure 6.1: XML files from the SCA Domain Profile

elements and allows them to reference each other to express dependencies. A DCE UUID contains the
characters "DCE:", the printable form of the UUID, a colon, and an optional decimal minor version num-
ber, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". A DCE UUID thus represents 42
characters or bytes. Besides, DCE UUID can be used for CORBA RepositoryIds [OMG08b].

Software components are described by a software profile which consists of one Software Assembly
Descriptor (SAD) file that references (directly or indirectly) one or more Software Package Descriptor
(SPD), Software Component Descriptor (SCD), and properties (PRF) files.

Software Package Descriptor (SPD) During application deployment, a SPD is used by the do-
main manager to load a component and its implementations. The SPD may describe several software
implementations of a component for different types of processors, OS etc.

Software Component Descriptor (SCD) The SCD is based on the CORBA Component Descrip-
tor specification. The SCD defines the component CORBA repository id (derived from CFResource,
Device orResourceFactory), the component type (resource, device, resourcefactory,domainman-
ager, log, filesystem, filemanager, devicemanager, namingservice and eventservice), CORBA interfaces
that the software component supports i.e. inherits (e.g. Resource or Device), provides and requires
through component ports. Component ports have a name, a repid, a direction (provides or uses) and a
type (data, control (default), responses or test).

Properties Descriptor The Properties Descriptor defines the value of configurationattributes for
components and devices. Depending on the property kind (i.e. configure, test, allocation, execparam,
factoryparam) and mode (i.e. readonly, readwrite, writeonly), ApplicationFactoryandDevice-
Managerinvokes the appropriate operations of theResource (configureand/orquery, runTest), Device
(de/allo- cateCapacity, execute) andResourceFactory (createResource) interfaces during deploy-
ment.

148 Chapter 6. Component-Oriented Architecture

Device Package Descriptor (DPD) A device may have a Device Package Descriptor (DPD) file
which provides a description of the hardware device along with its model, manufacturer, etc. The DPD
belongs to the Device Profile and describes hardware device registration. Hardware components defined
in DPDs can be from single hardware element to a whole hardware structure of a radio Hardware com-
ponents should belong to the object-oriented hardware module classes defined by the SCA v2.2. section
4.2.2 e.g. Modem, RF, I/O, GPS, INFOSEC, Power Supply, and Processor. However, this part has been
removed from SCA v2.2.2. and replaced up to some extend by theJTRS APIs (e.g. MHAL API, I/O
device, GPS device) and used in [OMG07e].

Device Configuration Descriptor (DCD). A device manager is associated with a Device Config-
uration Descriptor (DCD) file. The DCD identifies all devicesand services associated with a device
manager by including references to the required SPDs. The DCD also defines properties of the spe-
cific device manager, enumerates the needed connections to services (e.g. file systems), and provides
additional information on how to locate the domain manager.

Software Assembly Descriptor (SAD). The SAD is an XML-based ADL, which originates from
the CORBA Component Assembly Descriptor (CAD). This descriptor specifies the interconnection and
configuration of application components.

The SAD references all SPDs needed for an application, defines required connections between ap-
plication components (connection of provides and uses ports / interfaces), defines needed connections
to devices and services, provides additional information on how to locate the needed devices and ser-
vices, defines any co-location (deployment) dependencies,and identifies a single component within the
application as the assembly controller.

DomainManager Configuration Descriptor (DMD). The Domain Manager is described by the
DomainManager Configuration Descriptor (DMD). It providesthe location of the (SPD) file for the
specific DomainManager implementation to be loaded. It alsospecifies the connections to other software
components (services and devices) which are required by thedomain manager.

Application Component Model The CF Base Application Interfaces depicted in figure 6.2 constitutes
the SCA application component model. Application developers must implement these interfaces in order
that application components are SCA compliant. The base interface for application components is the
Resource interface that inherits from interfaces dedicated to a specific functionality.

Interfaces The LifeCycle interface allows one toinitialize a component instance to a
known initial state and toreleasea component instance from the CORBA environment. This inter-
face is an application of the LIFECYCLE CALLBACK pattern [BHS07] TheTestableObject in-
terface allows one torun built-in tests (BIT) to check component implementation behavior as black-
box. ThePropertySet interface provides operations toconfigure a component andquery
its properties. Theconfigure operation assigns a sequence of id/value pairs containing configura-
tion Properties that may be defined in the Properties file of the Software Component Descriptor.
Thequery operation returns a sequence of id/value pairs whose configuration Properties has been re-
quested. ThePort interface allows one toconnectand disconnectcomponent ports. Each requires
Port calledusesport has a type defined by an application-specific interface that must inherit from the
Port interface. TheconnectPort operation of a requires Port associates the port name of a provides
Port calledconnectionId to its object reference in order than the requires Port can invoke opera-
tions on the provides Port. A requires port may be connected to one or several provides ports using

6.6. Software Component Models 149

Figure 6.2: SCA Core Framework Base Application Interfaces

differentconnectionId. ThePortSupplier interface is used to retrieve the object reference of
provides and/or requires port by its name. TheResource interface inherits from theLifeCycle,
PropertySet,TestableObject, andPortSupplier interfaces. This interface provides a com-
mon API to configure and control a component. It contains a read-only string identifier that uniquely
identifies aResource component. It also provides astart andstop operations to enable and dis-
able its internal processing. TheResourceFactory interface allows the creation and destruction of a
Resource component. A read-only string identifier is used touniquely identify aResourceFactory
instance. ThecreateResource operation allows the instantiation of a Resource componentin the
same address space as the resource factory or to retrieve theobject reference of an already created re-
source. ThereleaseResource operation removes a given resource from the CORBA environment.
Theshutdown operation removes the resource factory from the CORBA environment. Each opera-
tion of Base Application Interfaces may raise associated exceptions that are not described due to space
limitation.

Component Definition The SCA does not specify a standard way to define and implementa com-
ponent. A component may be defined using UML and/or CORBA IDL 2.x. In UML, a SCA component
may be defined as a component class that inherits from the Resource interface and may either inherit
from the Port interface or contains Port objects. The SCA does not define a component concept using
UML extensions such as a SCA UML profile and stereotypes. Suchextensions are defined by the UML
Profile for Software Radio [OMG07e]. The SCA uses CORBA IDL2.x, which only supports the concept
of objects and not the concept of component, which is defined in CORBA IDL3.x. In IDL, a SCA com-
ponent may be defined as a component interface that inherits from the Resource interface and may either
inherit from the Port interface or separate port interfacesmay be defined. In summary, a component is
defined as an aggregation of objects instead of as a whole due to the lack of component constructs in the
chosen versions of UML and CORBA IDL.

Hardware Platform Component Model As presented in figure 6.3, the CF Base Device interfaces
constitute the SCA hardware platform component model. The SCA provides the concept of Logical De-
vice to abstract physical hardware devices as software components. As theDevice interface inherits

150 Chapter 6. Component-Oriented Architecture

from theResource interface, a logical device is also a resource and provides the same attribute and op-
erations. Each device provides its own capacities (e.g. memory, bandwidth), which are allocated during
deployment using theallocateCapacity anddeallocateCapacity operations. A device ref-
erences a Software Package Descriptor (SPD) which defines its connections to Resources and Services,
and its configuration and capacity properties.

Figure 6.3: SCA Core Framework Base Device Interfaces

The Loadable Device extends the Device interface to providethe capability toload andunload
to/from a devicesoftwarebinary artifacts such as kernel modules, drivers, shared libraries or executable
files. Loadable Devices have been used to represent FPGAs [PH04] [SMC+07]. The Executable Device
extends the Loadable Device interface to allow one toexecute andterminate the execution of a
softwareprocess on a device. An Executable Device may representInstruction Set Processors(ISP)
such as GPP, DSP, ASIP and soft processor cores.

TheAggregate interface allows child devices to register and unregister themselves from a parent
device. For instance on FPGAs, an aggregate device may represent a modem device which contains
sub-devices such as encoder/decoder and modulator/demodulator IP cores.

Hence, the SCA supports hierarchical composite platform components (Devices), but only flat
primary application components (Resources).

Connection Model The SCA connection model is based on thePort andPortSupplier inter-
faces. Application components only interact through theirports whose interconnexions embodies the
concept of connector. Ports provide channels through whichdata and/or control pass. The SCA specifies
two kinds of point-to-point ports. A component port that requires services is auses port, while a com-
ponent port that provide services is aprovides port. A uses port is defined as an user-defined UML class
or IDL interface that inherits from thePort interface to be connectable to provides port(s). A provides
port is defined as an user-defined UML class or IDL interface. Apossible definition of two connected
Resource components is presented in figure 6.4.

6.6. Software Component Models 151

Figure 6.4: Class diagram of two connected Resource components

A connection from an uses port to a provides port is unidirectional from the invocation direction point
of view. A uses port plays a client role, while the provides port acts as a server. A logical connection
is established when the uses port obtains the object reference of the provides port in order to be able to
invoke operations on it.

/ / In Component1 c l a s s , i m p l e m e n t a t i o no f P o r t S u p p l i e r i n t e r f a c e
CORBA : : O b j e c t _ p t r Component1 : : g e t P o r t (c o n s t cha r* name) {

i f (s t rcmp (name , " d a t a O u t P o r t ") == 0)
4 re turn CF : : P o r t : : _ d u p l i c a t e (d a t a O u t P o r t . i n ()); / / r e t u r n

da taOu tPo r t r e f e r e n c e
e l s e re turn CORBA : : Ob jec t : : _ n i l (); }

/ / In UsesPo r t c l a s s , i m p l e m e n t a t i o no f P o r t i n t e r f a c e
vo id UsesPo r t : : c o n n e c t P o r t (CORBA : : O b j e c t _ p t r connec t ion , c o n s t cha r *

c o n n e c t i o n I d) {
D a t a T r a n s f e r _ v a r p o r t = D a t a T r a n s f e r : : _narrow (c o n n e c t io n) ; / / c a s t

t o t h e p o r t t y p e
9 component1−>se tComponen t2Da ta InPor t (p o r t . i n ()); } / / whole−p a r t

r e l a t i o n s h i p

/ / In Component2 c l a s s , i m p l e m e n t a t i o no f P o r t S u p p l i e r i n t e r f a c e
CORBA : : O b j e c t _ p t r Component2 : : g e t P o r t (c o n s t cha r* name) {

i f (s t rcmp (name , " d a t a I n P o r t ") == 0)
14 re turn D a t a T r a n s f e r : : _ d u p l i c a t e (d a t a I n P o r t . i n ());

e l s e re turn CORBA : : Ob jec t : : _ n i l (); }
/ / In P r o v i d e s P o r t c l a s s , i m p l e m e n t a t i o no f user−d e f i n e d D a t a T r a n s f e r

i n t e r f a c e
vo id P r o v i d e s P o r t : : sendData (CORBA : : UShort d a t a) { / /

152 Chapter 6. Component-Oriented Architecture

Figure 6.5: Sequence diagram for the connection between twoResource component ports

cou t << " component2 . d a t a I n P o r t r e c e i v e d : " << dec << d a t a <<end l ;
}

Listing 6.1: Implementation example for Resource components and ports

The kind of each component port is defined in the Software Component Descriptor. Operations of
the uses port interface, which inherits from thePort interface, are used to transfer user-defined control
and/or data. The logical interconnection between requiresand provides component ports is automatically
performed by the component framework during application deployment using the Software Assembly
Descriptor (SAD) and the Device Configuration Descriptor (DCD).

Deployment Model The Framework Control interfaces and the Domain profile represent the SCA
Deployment model. The Framework Control interfaces use themeta-data from the XML files of the
Domain Profile to deploy, manage and configure a software application on a radio platform. The Domain
Profile embodies the SCA packaging model to package application components and platform devices as
deployable software artifacts.

TheApplication interface allows one to control, configure and obtain the status of an deployed
application in a SCA domain. It inherits from theResource interface. AnApplication instance
is returned by thecreate operation of anApplicationFactory instance. TheApplication
delegates invocations on therunTest, start, stop, configure andquery operations to the
Assembly Controlleridentified in the SAD file.

TheApplicationFactory interface is used to create anApplication instance. Thecreate
operation takes configuration properties and a list of assignments of components to devices as parameters
and returns anApplication instance. AnApplicationFactory instance controls the deploy-
ment of application components on platform devices. When a user invokes thecreate operation on
the application factory, it assigns application components on available devices and allocates the required
device capabilities (e.g. memory, processor time). Then itloads and executes the application components
on the devices using the software profile. As indicated in theSAD, the application factory retrieves the

6.6. Software Component Models 153

object reference of a Resource either directly using the Naming Service or indirectly using a registered
Resource Factory that willcreates it. The application factoryinitializes the obtained Resource,
gets its Ports andconnects them. Itconfigures the assembly controller that can dispatch con-
figuration commands to the assembled components. Finally, theApplication instance is returned, a
message may be writen to the Log service and a event may be pushed to the domain event service.

TheDevice Manager interface allows the management of a set of logical devices and services. A
Domain Manager instance allows one toregister andunregister devices and services with a
device manager,shutdown a device manager andget the SPD implementation ID used by the Device
Manager to create a component.

The Domain Manager interface serves for the control and configuration of a SCA domain. A
Domain Manager instance allows one toregister andunregister device managers with a
domain manager, devices and services with a device manager,objects in an given event channel and
install anduninstall an application.

Evolution of the integration of application components on non-CORBA capable processors

Adapters in SCA v2.2 in 2001 Adapters [GHJV95] areResources or Devices that transpar-
ently convert CORBA invocations toResource or Device operations into appropriate actions for
application or platform components e.g. Modem and Securitycomponents that reside on non-CORBA
capable processing units such as DSPs, FPGAs and ASICs. Thisadaptation allows the integration of
business, legacy or COTS components which are implemented in hardware or software with CORBA-
capable Resources in an uniform object-oriented approach.However, this integration is manually per-
formed by application developers for each specific component. Resource adapters include dedicated code
to control and communicate with non-CORBA capable application components and thus do not meet the
portability and interoperability requirements of the SCA.Device adapters do not belong to predefined
Device types such as AudioDevice and cannot implement theirassociated standard APIs. Moreover,
these adapters only address the portability and interoperability of software application components, but
not of non-CORBA capable application components on DSP, FPGA and ASIC.

Software integration approaches for software components on DSPs and hardware components on
FPGAs has been successively proposed in [JTR04], [JTR05] [KB05].

Specialized Hardware Supplement (SHS) to the SCA specification v3.0 in 2004 The SCA spec-
ification version 3.0 was proposed to extend the version 2.2 and address the limitations of the SCA re-
garding the portability of application components on specialized processing units such as DSPs, FPGAs
and ASICs. These dedicated processors suffer from a lack of standard operating environments to support
portability such as standard OS on DSP and execution models on DSPs, FPGAs and ASICs. The SCA
v.3.0 never became a standard release of the SCA and is not anymore available on the SCA JTRS web
site 42. The Specialized Hardware Supplement (SHS) [JTR04] to the SCA v3.0 specified four ingredi-
ents to improve the portability of components on non-CORBA capable processing units: a Hardware
Abstraction Layer Connectivity (HAL-C), a reduced POSIX Application Environment Profile for DSPs,
waveform functional blocks and an API for antenna subsystem.

The Hardware Abstraction Layer Connectivity (HAL-C) defines standard hardware and software
communication interfaces between application componentsdeployed on specialized hardware devices
i.e. DSP and FPGA.

42http://sca.jpeojtrs.mil

http://sca.jpeojtrs.mil

154 Chapter 6. Component-Oriented Architecture

TheHAL-C Infrastructurerefers to the software or hardware implementations of HAL-Cinterfaces
that provides the operating environment for HCs and supports location transparent communication be-
tween HCs residing on the same and/or different PEs.

The HAL-C infrastructure may be considered as a message-passing middleware that supports porta-
bility through the HAL-C API like the socket API, but no built-in support for inter-HC communication
interoperability using a standard message protocol like CORBA GIOP.

Extension for component portability for Specialized Hardware Processors (SHP) to the SCA
v3.1x a.k.a. SCA Change Proposal (CP) 289 in 2005A container-component approach is proposed
in [KB05] for non-CORBA capable SCA components calledworkeron FPGAs and DSPs. We focus on
the proposition for hardware components.

Workers have three kinds of ports: a control port, "business" ports associated to a subset of IDL
and ports for local services provided by containers. An OCP profile is provided for each port category.
Workers produce and consume messages through their ports. Mapping from IDL to OCP in this ap-
proach is not systematic since it depends on the meaning of the operations within an IDL interface. SCA
control operations (i.e start/stop) are encoded on OCP address signals on thread 0, while invocations
without parameter are interpreted as read. Configuration operations (i.e. configure/query) are not seen
as invocations, but as regular read/write on the OCP MThreadID 1. Business operations are mapped on
OCP Control or Status signals. For business interfaces, there is one port for requests and one port for re-
sponses. The logical container invokes and controls one or several components. It provides local services
such as Reset, Clock and local memory services. This container only addresses waveform component
portability. Interoperability is considered the integrator or platform provider responsibility. Willingly,
no standard message format is proposed. A generic software proxy is proposed to adapt SCA Resource
interface to a simplified control interface to manage hardware components.

We assume that the message header can be encoded by the container, while message body is encoded
with CDR and has to be decoded a priori within the worker instead of within the container. Input and
output ports only support read and write operations respectively. Provides component ports receive
request messages on input ports and send response messages on output ports. Uses component ports
send request messages on output ports and receive response messages on input ports. Port readiness
can be indicated using theSThreadBusysignal on thread 0. On output ports, operation or exception
are encoded on OCP Control signals, on input ports, operation or exception are encoded on OCP Status
signals. Signals can be removed for one way operation (response port), single operation (Control/Status)
or FIFO access (MAddr). Moreover, the granularity of the data unit transferred through component ports
is a request or response message body rather than individualoperation parameters.

Modem Hardware Abstraction Layer (MHAL) API in 2007 The SCA MHAL [JTR07] spec-
ification defines a standard MOM API and message header for GPP, DSP and FPGAs/ASICs. Hence,
the MHAL can be considered as a hardware/software message broker for SDR platforms. The MHAL
Logical Destination (LD) correspond to Message Endpoint [BHS07] and notably to HAL-C endpoints.

Development of a new SCA release in 2009The JPEO JTRS annonced in August 2009 the de-
velopment of a new SCA release [JTR09] in which the SCA specification will become technology in-
dependent and make CORBA optional. The change proposals forthis new release notably concern the
definition of SCA PIM and PSMs, SCA profiles with lightweight SCA components, operating environ-
ments other than for GPPs, real-time implementations.

Implementations

6.6. Software Component Models 155

Software Implementations Open source implementations of the SCA Core Framework include
SCARI43 (Software Communications Architecture - Reference Implementation) from the Canadian CRC
(Communications Research Centre) which is written in Java and was demanded by the SDRForum and
OSSIE44 (Open Source SCA Implementation::Embedded) from VirginiaTech which is written in C++.
The OSSIE Core Framework has been ported on the TI OMAP SoC [Bal07]. Moreover, the SCA CF has
been been used in mobile robots [HLEJ06].

Commercial implementations of the SCA Core Framework include Componennt Enabler from Zelig-
Soft and Spectra SDR tools from PrismTech.

SCA Overhead Evaluation The overhead of implementing waveform with the SCA has been
evaluated in [OS07] compared to a custom waveform implementation, in terms of latency [TBR07] and
memory [BDR07].

Hardware Implementations Dynamic and partial hardware reconfiguration of FPGAs has been
implemented under the control of the SCA CF [SMC+07]. Hardware implementations of SCA com-
ponent have been proposed in [Hum06]. Standard interfaces for FPGA components using OCP are
motivated in [NK07].

Extension for Quality of Services Some works such as [LPHH05] [LKPH06] have been carried
out to extend the SCA CF to support the specification of Quality of Services.

OMG UML Profile for Software Radio

The adoption of the SCA by the SDRForum has contributed to theevolution of the SCA as a commer-
cial standard within the OMG. Following the OMG Model-Driven Architecture (MDA) initiative, the
UML Profile for Software-Defined Radio specifies a Platform-Independent Model (PIM) and a Platform-
Specific Model (PSM) for CORBA of software radio infrastructures on top of which waveform appli-
cations may be developed. This profile is also known as PIM & PSM for Software Radio Components.
The separation between the PIM and its implementation in PSM(s) facilitates the portability of waveform
applications which may be deployed on various heterogeneous SDR platforms.

The UML Profile for Software Radio (SDRP) extends the UML modeling language with SDR domain
specific concepts using stereotypes to model software radiocomponents.

This specification defines a set offacilities to model the behavior of SDR systems and specify stan-
dardized APIs. A facility is defined as the realization of certain functionality through a set of well-defined
interfaces. Facilities are independent from a particular middleware technology such as CORBA.

The SDRP specification is divided into 5 volumes: Communication Channel and Equipment, Com-
ponent Document Type Definitions, Component Framework, Common and Data Link Layer Facilities,
and POSIX Profiles.

The set of stereotypes of the UML profile defined in the Component Framework volume is organize
in two main packages: the Applications and Devices package and the Infrastructure package.

The Applications and Devices package defines the concepts for the development of waveform appli-
cations and devicesResourceandDevicecomponents. The Infrastructure package defines the concepts
to deploy services and applications on a SDR platform.

The Application and Device Components package contains 5 packages:

• Base Typespackage defines types for applications, logical devices, and component definitions.

43http://www.crc.ca/scari
44http://ossie.wireless.vt.edu

http://www.crc.ca/scari
http://ossie.wireless.vt.edu

156 Chapter 6. Component-Oriented Architecture

• Propertiespackage defines properties for configure, query, testable, service artifact and executable
properties for components and executable code artifacts.

• Interface & Port Stereotypespackage defines stereotypes for interfaces and components.

• Resource Componentspackage defines stereotypes for the interfaces and components for the
ResourceComponent, which is the basic component type for application and device components.

• Device Componentspackage defines stereotypes for the logical device components on which
components are deployed or which are provided by the radio platform.

• Application Componentspackage defines stereotypes for the ResourceComponents within appli-
cations.

Within the UML profile for Software Radio, the UML Profile for Component Framework specifi-
cation defines UML stereotypes for component property, interface and port.Interface stereotypes
represent the type of interface provided or used by components through their ports.Port stereotypes
represent the kind of ports a component may have.Property stereotypes represent the type of proper-
ties for interface and component attributes.

TheInterface stereotype defines the following types of interfaces: IControl, IDataControl, IData,
IStream and StreamControl. TheIControl interface allows sending or receiving control. TheIData
interface allows sending data. TheIDataControl interface allows sending data with control. The
IStream interface allows managing streams. TheIStreamControl interface allows controlling
streams including user data and control information.

Based on these interfaces, thePort stereotype defines the following types of component ports:
ControlPort,DataControlPort,DataPort,ProvidesPort,RequiresPort,Service-
Port, StreamControlPort andStreamPort.

The Property stereotypes defines the following types of component properties: Constant,
ReadOnly andReadWrite.

The Communication Channel Facilities PIM is a non-normative specification of the physical layer
and radio control facilities. It defines Physical Layer Facilities and Radio Control Facilities.

The Physical Layer Facilities specify a set of interfaces toconvert the digitized signal into a propa-
gating RF wave and vice versa, and to control and configure HW/SW physical layer components. The
Physical Layer Facilities are divided into data transfer facilities, control facilities and I/O facilities. The
data transfer facilities are defined in the Common and Data Link Layer Facilities::Common Layer Facil-
ities. A physical layer component must realize i.e. implement data transfer interfaces to communicate
with the upper OSI layers. The control facilities contain modem facilities and RF/IF facilities. The
modem facilities include all digital signal processing elements required to convert bits into symbols
and vice versa. They include baseband and passband digital modulation schemes such as QAM, PSK,
Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplex (OFDM), and ana-
log modulation schemes such as Amplitude Modulation (AM), Frequency Modulation (FM), and Phase
Modulation (PM).

The modem facilities defines modem interfaces and components realizing these interfaces such as
PNSequenceGeneratorComponent,ChannelCoder,BlockInterleaver,Mapper,Source-
CoderComponent andChannelCoderComponent.

The RF/IF facilities defines interfaces and components realizing these interfaces such as:Amplifier-
Device,SwitchDevice,HoppingFrequencyConverterDevice,FrequencyConverter-
Device, AntennaDevice,DigitalConverterDevice andFilterDevice.

The I/O facilities defines two types of I/O mechanisms: Serial IO and Audio IO. The Serial I/O pack-
age defines theSerialIODeviceComponent which provides and uses theSerialIOSignals,

6.6. Software Component Models 157

SerialIODevice,SerialIOControl interfaces. The Audio I/O package defines an AudioIODe-
viceComponent that provides and uses the AudioIOControl and AudioIODevice interfaces.

The ModemComponentcomponent is an abstract component from which all components in the
modem facilities inherit. Modem components are stereotyped as«resourcecomponent» to indi-
cate that they could either be implemented in software or in hardware via a«devicecomponent»
component. ModemComponent provides oneControlPort and at least oneDataControlPortor
DataPort.

The Radio Control Facilities defines a set of interfaces to manage the radio domain and channels
within the radio.

Finally, the Common and Data Link Layer Facilities defines the Quality of Service Facilities, Flow
Control Facilities, Measurement Facilities, Error Control Facilities, Protocol Data Unit (PDU) Facilities
and Stream Facilities.

GNU Radio

The GNU Radio45 project, founded by Eric Blossom, provides an open-source software signal process-
ing library to build software-defined radios primarily on desktop computers. A software radio application
results from the interconnection of signal processing components. GNU Radio components are imple-
mented in C++ and optimized using SIMD instructions, then they are wrapped in the Python object-
oriented scripting language using SWIG46(Simplified Wrapper and Interface Generator). GNU Radio
targets the Universal Software Radio Peripheral (USRP) board which can be connected to a desktop
computer via an USB cable (USRP1) or an Ethernet cable (USRP2).

6.6.2 General Purpose Component Models

Sun Enterprise Java Bean (EJB)

The Enterprise JavaBeans (EJB) is a commercial and general-purpose component model for desktop
and server-side applications developed by Sun MicroSystems. EJB components are developped in Java.
They extend theEJBObject base interface to add user-defined interfaces. Required interfaces are
not explicitly specified. EJB does not provide the concept ofport. EJB components are deployed and
executed within EJB containers, which manage component life-cycle (creation/destruction, start/stop,
activation/passivation) and mediate access to non-functional platform services such as the Java naming
and directory service (JNDI), Java RMI, Java Message Service (JMS), transactions, persistence. Compo-
nents are created using theEJBHomeinterface implemented by containers . The EJB component model
does not support hierarchical composition or dynamic reconfiguration. The EJB deployment model is
based on component packages in .jar files calledbeansand a deployment descriptor in XML. EJB does
not exist in a lightweight version for embedded systems Moreover, EJB are based on the standard Java
platform, which is not appropriate for resource-constrained embedded platforms.

OMG CORBA Component Model (CCM) and its Lightweight version (LwCCM)

The distributed object-oriented model of CORBA evolved to the distributed component-oriented model
of the CORBA Component Model (CCM) [OMG06a]. New CORBA IDL keywords have been added
to the object-oriented IDL 2.x to form the component-oriented IDL 3.x, which supports CCM. IDL 3.x
keywords are intuitive and written in bold in the following.

45http://gnuradio.org
46http://www.swig.org

158 Chapter 6. Component-Oriented Architecture

Component Model For synchronous or blocking interactions, a CCM componentprovides an inter-
face through afacet port andusesan interface through areceptacleport. A receptacle can be either
simplexor multiplex, if it is connected to a single facet or multiple facet(s). For asynchronous or non-
blocking interactions, a CCM componentpublishesevents (broadcast) oremitsevents (unicast) through
an event source port andconsumesevents via an event sink port. Other OMG specifications propose
additional functionalities such as the support for streamsand quality-of-service.

The base interface implicitly inherited by all CCM components is theCCMObject interface. The
CCMObject interface inherits from three others interfaces, which provides information on the compo-
nent. TheNavigation interface allows a client to retrieve references to the facet ports of a component.
TheReceptaclesinterface allows one to connect a receptacle to a facet, to retrieve receptacles of a com-
ponent and existing connections. TheEvents interface allows a component to be connected to send and
receive events, and to retrieve consumers, emitters and publishers. CCM components are created through
dedicated interfaces calledCCMHome andKeylessCCMHome.

Lightweight CORBA Component Model (LwCCM) The Lightweight CORBA Component Model
(LwCCM) is a lightweight profile of CCM which targets distributed embedded systems. In particular,
the following features are removed from the general purposeCCM model: Persistence, Introspection,
Navigation, Transactions and Security.

Connection Model The CCM offers two kinds of messages: Synchronous messages provided by
the communication between facet and receptacles, Asynchronous messages provided by event-based
communication.

CCM D&C XML descriptors serve as an ADL and notably specify the configuration, assembly and
allocation of CCM components onto execution nodes. CCM is based on a container, which is strongly
inspired from the EJB. The CCM container is the execution environment, which transparently manage
for component developers the life cycle of the hosted components, the management of events, the use
of CORBA middlewares As the full CCM container is more dedicated to large distributed information
systems, it may also manage advanced features such as persistence, security and transactions.

Deployment and Configuration Model A mapping from the abstractDeployment and Configura-
tion (D&C) specification has been standardized to address the deployment of CCM based applications.
The deployment process consist in:

• Installation : software packages are installed into the software repository.

• Configuration: this step consists in creating multiple assembly of the component-based applica-
tion.

• Planning: according to application requirements, a component implementation is selected and
associated to an execution node. The result of the planning is a "deployment plan".

• Preparation: this step consists in the installation of the binary files onthe execution nodes.

• Launch: this step consists in instantiating components, interconnecting and configuring them, and
starting application execution.

CCM is based on several XML descriptors:

• the Component Interface Descriptor (.ccd) contains data from the Component Interface De-
scription. It is created by thearchitectand can be generated from the component IDL.

6.6. Software Component Models 159

• The Component Implementation Descriptor (.cid) describes a single implementation and is
created by thedeveloperwhich creates a monolithic implementation, or by anassemblerthat cre-
ates a component assembly. It contains information about Component Implementation Descrip-
tion, Component Assembly Description, Monolithic Implementation Description.

• TheImplementation Artifact Descriptor (.iad) contains information from Implementation Ar-
tifact Description and is created by the developer of the artifact.

• TheComponent Package Descriptor(.cpd) contains data from the Component PackageDescrip-
tion. It is created by thepackagerthat put together one or several implementations.

Implementations Open-source implementations of the CORBA component model includeOpen-
CCM47 written in Java and developed by LIFL, INRIA and Thales in various european research projects,
andMICO-CCM 48 written in C++ and implemented by Frank Pilhofer. An open-source implementation
of the Lightweight CORBA component model ismicroCCM developed by Thales and CEA in the
COMPARE project. Commercial implementations of CCM have also been developed such asMyCCM
from Thales and OpenFusion CCM from PrismTech.

In [JNH06], HW/SW components are described as CCM components to target a custom middle-
ware for robotic. Indeed, the separation of concerns of the component-approach allows one to decouple
components from their execution and communication environment e.g. CORBA itself.

Software CCM components have also been simulated in SystemC[KBG+08] [KBY+06]. Some tools
have been created for the development, deployment and configuration of CCM components like Cadena49

from the Kansas State University based on Eclipse and COSMIC50 from the Vanderbilt University based
on Model-Driven Engineering.

Microsoft Component Object Model (COM)

The Component Object Model (COM) is a commercial and general-purpose component model for desk-
top and server-side applications developed by Microsoft. The COM component model considers com-
ponents as a set of binary object interface to support interoperability between components written in
different language. The object interfaces of COM components are defined in a proprietary Interface Def-
inition Language (IDL) derived from DCE IDL. The COM component model supports a limited form of
introspection through interface navigation which allows one to retrieve a pointer to every interface sup-
ported by the object. COM technologies include COM, DCOM (Distributed Component Object Model)
and COM+. DCOM (Distributed Component Object Model) extends COM to support distributed compo-
nents. COM+ is an execution environment for COM/DCOM components provided with Windows. COM
technologies are being replaced by the .NET framework. OpenCOM51 is an open source implementation
of COM developed by the University of Lancaster.

Fractal

Fractal [Fra08] [BCL+06] is a generic component model developed by France TelecomR&D and the
french national institute for research in computer scienceand control called INRIA52 . The Fractal com-
ponent model provides advanced features such as hierarchical composition, introspection and sharing of

47http://openccm.objectweb.org
48http://www.fpx.de/MicoCCM
49cadena.projects.cis.ksu.edu
50http://www.dre.vanderbilt.edu/cosmic
51http://sourceforge.net/projects/opencom
52Institut National de Recherche en Informatique et Automatique

160 Chapter 6. Component-Oriented Architecture

components to represent shared resources such as device drivers. A Fractal component has a content
part containing the implementation of primitive components or sub-components for composite com-
ponents and a control part implementing multiple control interfaces and other non-functional aspects.
Fractal defines a component model template which may be customized to meet application needs. For
instance, Fractal has been used to build a component-based operating system called Think [FSLM02] and
a message-oriented middleware called DREAM53. The Fractal component model has been implemented
in various programming languages such as Julia in Java, Cecilia and THINK in C, while implementations
in .NET and SmallTalk are being developed.

Software Appliances (SOFA)

SOFA and its extension SOFA 2.0 [BHP06] is a component model developed at Charles University in
Prague. SOFA supports the hierarchical composition of primitive components to build composite com-
ponents. Primitive components are directly implemented ina programming language e.g. Java, while
composite components are implemented by its sub-components. The SOFA component model defines a
component by aframeand anarchitecture. The frame represents the black-box view of a component in
which its provided and required interfaces are specified. The implementation of a SOFA component con-
sists of a functional part implementing thebusinessinterfaces and a control part implementing the control
interfaces required by the component model. These control interfaces provide non-functional services
such as life-cycle, connection, reconfiguration and introspection which are implemented by controllers
e.g. a lifecycle controller and binding controller. Controllers are used by the component framework (run-
time environment, administration and deployment tools) and by the application business logic for some
services e.g. to retrieve component properties. The control part is composed ofmicro-componentswhich
are objects implementing a control interface. The SOFA connection model reifies component binding
by first-classconnectorsthat support four communication styles: method invocation, message passing,
streaming and distributed shared memory [BP04]. These communication styles are supported at both
design and execution time. In SOFA 2, connectors allow provided-to-provided and required-to-required
connections to integrate multiple communication styles. The assembly of components and connectors is
described by an Architecture Description Language calledComponent Description Language(CDL) in
SOFA and by a meta-model in SOFA 2. This meta-model allows theautomatic generation of a repos-
itory, model editor, code skeletons for primitive components, XML descriptors (e.g. deployment plan)
and automatic application deployment. The behavior of SOFAcomponents can be formally specified by
behavior protocols based on regular expressions [PV02]. Based on CDL description, the SOFA CDL
compiler generates component templates to be filled by the programmer in a target programming lan-
guage such as C++ or Java. The SOFA deployment model is based on a repository to store component
description and implementation, a deployment plan to associate components to execution nodes and to
allocate the required resources, and a distributed runtimeenvironment calledSOFA nodecomposed of
component containers called deployment docks. SOFA 2 supports dynamic reconfiguration of software
components according to predefined reconfiguration patterns.

6.6.3 Software Component Models for Real-Time and EmbeddedSystems

Koala

The Koala [vOvdLKM00] component model is used at Philips forembedded software design in resource-
constrained systems such as TV sets. Software component interfaces are described by a textualInter-
face Definition Language(IDL). Component configurations are specified by anArchitecture Description

53http://dream.ow2.org

6.6. Software Component Models 161

Language(ADL) having both a textual notation calledComponent Description Language(CDL) and a
graphical notation. The component model supportsprovidesand requires interfaces, and hierarchical
containment of basic components to build compound components. Diversity interfaces are used to con-
figure component properties like application modes. Component properties are required through such
interfaces instead of being provided as in other component models such as CCM. Components access all
non-functional properties such as memory management and device drivers viarequiresinterfaces. The
connection model supports both static binding at compile time and dynamic binding at run time. Static
binding is implemented using naming conventions and renaming macros. Dynamic binding is imple-
mented usingswitcheswhich dynamically route function calls to the desired components according to
its configuration. The deployment model is based on globallyaccessible interface and component repos-
itories, and configuration management. For each component,the interface repository contains a formal
IDL definition and an informal textual description for interface semantics. In addition, the component
repository stores for each component a CDL definition, a textual description, and a collection of C files.

PErvasive COmponent Systems (PECOS)

In the PECOS IST project, a component model was proposed for embedded software on field devices
[GCW+02]. A field device retrieves physical measures such as temperature or pressure from sensors to
control actuators like valves or motors. Such devices have limited computing and memory resources and
usually consist of a 16-bit microcontroller with 256KB of ROM and 40KB of RAM. The component
model supports hierarchical composition ofleaf components to buildcompositecomponents. Com-
ponents may have multipledata-flow-orientedports which represent shared variables. Three types of
components are distinguished: active components, passivecomponents and event components. Active
components have their own thread of control to schedule their activities and those of their passive sub-
components. Passive components have no thread of control and are executed synchronously for short
periods. Event components are components whose behavior istriggered by events and represent hard-
ware devices producing events such as timers, sensors and actuators. The PECOS component model has
also a formal execution model based on Petri Nets to synchronize components with different threads of
control and enforce their real-time constraints e.g. deadlines. TheCoCocomposition language is a tex-
tual Architecture Description Language (ADL) used to specify components, their assemblies and related
families of component-based architectures. The PECOS composition tool can formally check component
assemblies using semantics rules expressed as Horn clauses, and first order predicate logic. All compo-
nent instances are statically created and scheduled at system start-up. Components and their instances
may have functional and non-functional properties organized asproperty bundlessuch as initial values
for ports, memory-consumption and scheduling information(worst-case execution time, execution period
and priority). Component ports are interconnected throughconnectors. To specify component behavior,
the PECOS component model defines three operations referredto ashookswhich are automatically gen-
erated by a code generator and filled by component developpers in a target language (C++ or Java). The
initialize operation is called at system start-up for component initialization e.g. to configure port
initial values. Theexecute operation computes the output values from the internal component state
and the input values. It is invoked either synchronously by ascheduler for passive components or contin-
uously for active components. Thesync operation is implemented by active and event components. Itis
synchronously called by a scheduler to synchronize the dataexchange between asynchronous active and
event components and the synchronous environment. Families of component-based applications may
be specified in CoCo usingabstractcomponents which define a template architecture implemented by
concrete components.

The authors have defined language mappings from CoCo to target languages such as C++ and Java.
PECOS components are mapped to classes, while their instances are mapped to the member variables.

162 Chapter 6. Component-Oriented Architecture

The PECOS execution model is mapped to the prioritized, pre-emptive and multithreaded PECOS Exe-
cution Environment that provides a common API to abstract the underlying RTOS from C++ and Java.
The scheduler is automatically generated from the component timing properties. Active and event com-
ponents are executed in their own thread, while passive components are executed in the thread of their
parent component. Component ports are mapped to getter and setter methods according to their direction.
Connectors are mapped to an automatically generated data structure calledData Store. The connectors
between components in the same thread use the Data Store as a shared memory. The connectors between
components in different threads copy the data from the Data Store in one thread to the Data Store in other
thread using thesync operation for synchronization.

The PECOS approach shows that a component framework may be efficiently implemented on highly
embedded and real-time systems using formal methods for component execution and assembly.

BIP (Behavior, Interaction and Priority)

The BIP framework and language address the modeling of heterogeneous real-time components [BBS06].
The BIP component model considers a component as the superposition of three orthogonal layers:Be-
havior described as a set of transitions,Interactions between transitions of the behavior usingconnec-
tors, andPriority used to select an interaction among the feasible ones. BIP components areatomic
components whose behavior is specified as a set of transitions with empty interaction and priority layers.
Atomic components may have a set of ports used for synchronization, control states to indicate synchro-
nization points, variable to store local data, transitionsto represent atomic computation executed if a
guard is true. The composition of two component is performedby composing each component layer of
the same type two by two. A compound component results from the composition of its sub-components.
The connection model supports connectors to specify interaction patterns between atomic component
ports based on strong synchronization i.e. rendezvous and/or weak synchronization i.e. broadcast. The
BIP execution platform manages the execution of BIP components written in C/C++. The execution may
be multithreaded (one thread per atomic component) or single threaded (the thread of execution engine).

6.6.4 Architecture Description Language (ADL)

A component-based application is a component assembly, which is typically specified thanks to an Ar-
chitecture Description Language (ADL) [MT00]. ADLs provide two main architectural abstractions
componentandconnectorto separate respectively computation from communication.Examples of ADLs
include Acme, Darwin and Wright, UML2 and AADL. ADLs may havea textual syntax like XML-based
ADLs, a graphical syntax like UML2 or both like AADL. They maymodel from static configurations to
dynamic reconfigurations. Some ADLs such as Acme[GMW00], Darwin and Wright target the modeling
and analysis of component-based architectures at design time, but do not provide a support at run-time.
Other ADLs such as UML2 and AADL supports also code generation through model transformations.

6.6.5 Comparison of Software Component Models

An important gap exists between the features supported by the industrial component models such as
EJB, COM, CCM, SCA, Koala and the academic component models such as SOFA, Fractal and BIP.
Industrial component models aim at providing standard and stable component frameworks with less, but
mature features. In contrast, academic component models aim at supporting advanced features such as
hierarchical composition, behavior specification and verification, dynamic reconfiguration and several
interaction semantics. However, even if these features aresupported at design-time, there is no or little

6.7. Hardware Component Models for FPGAs and ASICs 163

support for them at run-time in the academic component frameworks [BHP06]. Recent comparison of
software component models have been proposed in the literature such as [BS05] [CCSV07] [LW07].

6.7 Hardware Component Models for FPGAs and ASICs

In this section, we focus on the component models of hardwarecomponents on FPGAs and ASICs called
Intellectual Property(IP) cores. We first present hardware components models throughthe modeling
capabilities of hardware description languages such as VHDL and Verilog. Then, we describe the two
main connection models of hardware components, which are either centered on bus interfaces or on core
interfaces. Moreover, High-Level Synthesis (HLS) of hardware components from software programming
languages is described to motivate the need of a highly configuration mapping from object-oriented
software interfaces to signal-based hardware interfaces.The packaging model of hardware components
is also presented based on an emerging standard called Structure for Packaging, Integrating and Re-using
IP within Tool flows (SPIRIT). Finally, the deployment modelof hardware components is described
through the full static configuration and partial dynamic reconfiguration of FPGAs.

6.7.1 Component Models supported by Hardware Description Languages

VHDL

VHDL [IEE02] was developed in the 1980s under the aegis of theUnited States Department of Defense
(DoD) in a program called Very-High-Speed Integrated Circuits (VHSIC) at the origin of its acronym
VHSIC HDL (VHDL). It was first standardized by the IEEE in 1987. New versions of the language
were released in 1993, 2000 and 2002. VHDL is commonly used inEurope, but also in the United
States. VHDL is a concurrent language with strong and statictyping whose syntax is inspired by the
Ada programming language. Digital hardware is modeled in VHDL by components communicating
through wires represented bysignals. A VHDL component is a black box with a hardware interface
declared in anentitywhich consists of input and outputports. A componententity is associated
with one or several component implementations defined by anarchitecture. The association be-
tween anentity and anarchitecture to build acomponent is declared in aconfiguration.
VHDL supports modularity throughpackages, functions andprocedures. A package con-
tains globally defined data such as data types and subprograms Declarations ofentity, package and
configuration are put together into alibrary. A library represents a directory on the de-
velopment workstation in which compiled hardware components are stored. [Smi98] Apackage may
have apackage body for the declaration of subprograms.

Listing 6.2 provides an overview of the VHDL syntax for a simple hardware counter and its testbench
used to simulate and test its implementation.

l i b r a r y i e e e;
2 use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l; −− r e q u i r e d packages

use i e e e . numer i c_s td . a l l;
−− I n t e r f a c e d e c l a r a t i o n
e n t i t y c o u n t e r i s

g e n e r i c (COUNT_WIDTH: n a t u r a l); −− e n t i t y parameter
7 p o r t (r e s e t : i n s t d _ l o g i c;

c l o c k : i n s t d _ l o g i c;
c lock_en : i n s t d _ l o g i c;
coun t : ou t s t d _ l o g i c _ v e c t o r (COUNT_WIDTH−1 downto 0));

end;
12 −− I n t e r f a c e i m p l e m e n t a t i o n

164 Chapter 6. Component-Oriented Architecture

a r c h i t e c t u r e c o u n t e r _ b e h a v i o ro f c o u n t e r i s
−− s h a r e d s i g n a l i n f e r r e d as r e g i s t e r
s i g n a l v a l u e : uns igned (COUNT_WIDTH−1 downto 0) := (o t h e r s => ’0 ’);

begin
17 −− s e q u e n t i a l e x e c u t i o n s t a t e m e n t

c n t _ p r o c : p r o c e s s (r e s e t , c lock , c lock_en)
begin

i f r e s e t = ’1 ’ then
v a l u e <= (o t h e r s => ’0 ’);

22 e l s i f r i s i n g _ e d g e (c l o c k)then
i f c lock_en = ’ 1 ’ then

v a l u e <= v a l u e + 1;
end i f ;

end i f ;
27 end p r o c e s s;

−− c o n c u r r e n t ass ignmen t s t a t e m e n t
coun t <= s t d _ l o g i c _ v e c t o r (v a l u e);

end ;

32 e n t i t y c o u n t e r _ t e s t b e n c h i s
g e n e r i c (N: n a t u r a l : = 4);

end e n t i t y c o u n t e r _ t e s t b e n c h;

a r c h i t e c t u r e b e h a v i o ro f c o u n t e r _ t e s t b e n c h i s
37 −− component d e c l a r a t i o n

component componen t_coun ter i s
g e n e r i c (COUNT_WIDTH: n a t u r a l);
p o r t (r e s e t : i n s t d _ l o g i c;

c l o c k : i n s t d _ l o g i c;
42 c lock_en : i n s t d _ l o g i c;

coun t : ou t s t d _ l o g i c _ v e c t o r (COUNT_WIDTH−1 downto 0));
end component;
−− component c o n f i g u r a t i o n
f o r d u t _ i n s t : componen t_coun ter

47 use e n t i t y work . c o u n t e r (c o u n t e r _ b e h a v i o r);
−− component c o n f i g u r a t i o n
f o r t e s t _ i n s t : c o m p o n e n t _ t e s t _ c o u n t e r

use e n t i t y work . t e s t _ c o u n t e r (t e s t _ b e h a v i o r);
−− . . .

52 −− ’ w i re ’ d e c l a r a t i o n
s i g n a l r e s e t _ s : s t d _ l o g i c;
s i g n a l c l o c k _ s : s t d _ l o g i c ;
s i g n a l c lock_en_s : s t d _ l o g i c;
s i g n a l coun t_s : s t d _ l o g i c _ v e c t o r (N−1 downto 0);

57 begin
−− component i n s t a n t i a t i o nand i n t e r c o n n e c t i o n

c o u n t e r _ i n s t : componen t_coun ter
g e n e r i c map (COUNT_WIDTH => N)
p o r t map (r e s e t => r e s e t _ s ,

62 c l o c k => c lock_s ,
c lock_en => c lock_en_s ,
coun t => coun t_s);

−− . . .
end a r c h i t e c t u r e;

6.7. Hardware Component Models for FPGAs and ASICs 165

Listing 6.2: A counter in VHDL

Concurrent behavior is basically implemented either in sequentialprocesses or in concurrent state-
ments. Concurrent statements and processes are simulated concurrently, but run in parallel on FPGAs/A-
SICs. The simulation model of a process is an infinite loop, whose execution is conditioned by discrete
events to which the process is sensitive and that are declared in a sensibility list. In addition to user-
defined signals,processes are typically sensitive on a reset signal to initialize signal values and a
clock signal to synchronize their execution. Intra-communications in component between processes and
concurrent statements is performed through shared signalsdeclared in the architecture.

The current revisions of VHDL called VHDL-200x are focused on verification [BMB+04]. They
should include abstract data types like FIFOs, lists and queues to ease testbenchs writing, fixed and
floating point packages [Lew07] and assertion-based verification based on the Property Specification
Language (PSL), The VHDL Analog and Mixed-Signal (AMS) language extends VHDL to support the
description and simulation of analog, digital, and mixed-signal heterogeneous circuits.

Verilog

Verilog was the first modern HDL created in 1985 by Gateway Design Automation. Its syntax is inspired
by C. Verilog and VHDL share the same basic hardware constructs of modules, ports and wires. Verilog
seems easier to learn than VHDL, because it is less verbose and typed, but it provides less constructs
than VHDL for large scale development e.g. architectures and configurations. Listing 6.3 presents the
same counter example in Verilog.

module c o u n t e r (r e s e t , c lock , c lock_en , coun t) ;
parameter COUNT_WIDTH = 3 ;

i nput c l o c k ;
4 i nput r e s e t ;

i nput ena ;
output [COUNT_WIDTH−1:0] coun t ;
reg [COUNT_WIDTH−1:0] v a l u e ;
wire coun t ;

9 / / s e q u e n t i a l e x e c u t i o n s t a t e m e n t
always @(posedge r e s e t or posedge c l o c k)
begin

i f (r e s e t)
v a l u e = 0 ;

14 e l s e i f (c l ock_en)
v a l u e = v a l u e + 1 ;

end
/ / c o n c u r r e n t ass ignmen t s t a t e m e n t

a s s i g n coun t = v a l u e ;
19 endmodule

Listing 6.3: A counter in Verilog

SystemVerilog

Verilog has been enhanced with object-oriented extensionsto build SystemVerilog 3.x [Acc04b] to fa-
cilitate the verification of abstract hardware models. As Verilog syntax is inspired by the C language,

166 Chapter 6. Component-Oriented Architecture

SystemVerilog naturally provides OO extensions close to C++. A classconstruct was introduced to de-
clare instance variables calledpropertiesand member functions namedmethods. SystemVerilog supports
class inheritance, polymorphism and dynamic allocation ofclasses, but the synthetizable semantics of
these advanced features are not defined.

6.7.2 Connection Model for hardware

Two main integration approaches are usually distinguishedconcerning the interfaces of IP cores: bus-
centric and core-centric approaches [CLN+02].

Bus-Centric Interfaces

In the bus-centric approach, hardware component interfaces conform to a computer or SoC bus speci-
fication such as ARM AMBA, IBM CoreConnect or Altera Avalon for virtual IP core components, or
PCI Express or USB for physical components. Dedicated wrappers must be developed or bought to reuse
existing IPs on another bus. Such an approach is not satisfactory for a standard mapping for IDL to HDL.

Core-Centric or Socket-based Interfaces

In the core-centric or socket-based approach, hardware component interfaces conform to a hardware
interface specification such as VCI [Gro01] or OCP [OI06]. Socket-based design allow designers to
decouple IPs cores from each other and from the on-chip interconnect. Sockets favor reuse and portability
of IP cores. Interface adapters are required to convert the common interface and protocol to proprietary
interfaces and protocols. However, this adaptation is inferior or equal to the efforts required by the bus-
centric approach, as the socket interface is designed to only capture the communication needs of each IP
core [OIa] [OIb]. The core-centric approach is compatible with the portability requirement of hardware
business components, that is why we propose in chapter 7 an IDL-to-HDL mapping inspired by the
socket-based approach.

6.7.3 High-Level Synthesis (HLS)

With equivalent functionalities, writing HDL code is oftenmuch more verbose, error-prone and time
consuming than coding in a high-level software programminglanguages. This productivity gap is similar
to the use of assembly languages instead of high level languages like C. The main reason is the low level
of abstraction offered by HDLs. Since the 2000s, numerous works have thus proposed to translate high-
level languages into HDLs throughHigh-Level Synthesis(HLS). Thanks to the maturity of HLS tools,
HLS recently seems to have gained more acceptance in the electronics industry. Advances in HLS allow
to obtain comparable or even better results in terms of speedand area than handwritten HDL code, since
designers may focus on design space exploration instead of HDL coding.

Numerous commercial tools perform high-level synthesis mostly from C-like languages such as Cyn-
thesizer [Sys] from Forte Design Systems, PICO [Syn] from Synfora Inc., CoDeveloper [Tec] from Im-
pulse Accelerated Technologies Inc., DK Design Suite [Sol]from Agility Design Solutions Inc., C-To-
Hardware [Alt] from Altera and Catapult C [Gra] from Mentor Graphics Corp, CyberWorkBench [NST]
from NEC System Technologies Ltd., XtremDSP from Xilinx andBluespec SystemVerilog (BSV) [Blu]
from Bluespec Inc.

There are also various academic tools such as Stream-C [FGL01] from Los Alamos National Lab-
oratories, ROCCC [GMN06] from the university of Riverside,SA-C [RCP+01] from the university of
Colorado, SPARK [GDGN03] from the university of San Diego and GAUT [CCB+06] from Lester in
France. Some of these commercial and academic tools are presented in [CM08].

6.7. Hardware Component Models for FPGAs and ASICs 167

HLS from sequential languages

G.A.U.T. GAUT54 [CCB+06] is an academic HLS tool targeting digital signal processing applica-
tions. GAUT generates RTL VHDL and cycle-accurate SystemC for the SoCLib55 virtual platform from
a bit-accurate algorithmic specification in C/C++. After choosing a library of hardware operators char-
acterized for specific FPGA/ASIC technology targets and compiling the C/C++ code, GAUT generates a
control-data flow graph describing the dependencies between input/output data and hardware operators
like multipliers and adders. Designers may specify hardware synthesis constraints such as clock period,
cadence i.e. throughput, target technology, allocation strategy (e.g. distributed or global) and scheduling
strategy. (e.g. As Soon As Possible (ASAP) or no pipeline). Designers may also specify I/O timing and
memory mapping constraints. Memory constraints allow assigning variables and constants in registers
or in memory banks at user-defined addresses and with initialvalues. After synthesis, a GANTT dia-
gram presents the scheduling of accesses to operators, variables and registers. The architecture may be
automatically pipelined. The generated accelerator may besimulated with ModelSim. The architecture
of the produced accelerators contains of a functionalProcessing Unit(PU), a Memory Unit (MU), a
Communication and Multiplexing Unit(COMU) and a GALS/LIS56 interface. The interface of a PU
has clock, reset, enable and internal input/output data signals. The PU consists of operators, registers
and FSM with Datapath (FSMD). The MU has the same type of interface and contains RAM(s), address
generators, mux, read and write registers and tri-states connected to the internal input/output data buses.
The COMU has also the same type of interface and provides external signals (clock, reset and I/O ports).
The generation of the memory unit is configured with the assignment of variables to memory banks,
their address and initial values of constants. The generation of the configuration unit is configured by
choosing the number of dedicated I/O ports, their latency and by selecting between different kinds and
role of hardware interfaces (LIS master, LIS slave, FIFO andSundance57-specific interfaces).

HLS from concurrent languages

Instead of using sequential C code, some HLS tools such as Cynthesizer and BlueSpec use natively
concurrent languages resp SystemC and BlueSpec SystemVerilog (BSV).

Forte Cynthesizer Cynthesizer [Sys] [CM08] from Forte Design Systems is a HLS tool which takes
as input SystemC code and generates SystemC RTL and Verilog RTL code. As opposed to ANSI C,
SystemC allows designers to explicitly describe concurrency. Supported SystemC constructs include
SC_CTHREAD, SC_METHOD, MODULE and sc_in/sc_out ports. Designers must implement the
communication protocol in SystemC RTL using sc_in/sc_out ports. The member variables in MODULEs
are inferred as storage elements. The supported data types includesc_int/sc_bigint, fixed-point
and floating-point types. Examples of generated designs go from control-oriented applications such as
USB/SATA controllers to signal-processing IPs. Cynthesizer also supports architecture exploration. To
optimize the synthesis, each operator such as multipliers has been characterized in terms of timing in
particular latency, area and power consumption.

BlueSpec BlueSpec HLS tool relies on a formal and parallel language called BlueSpec SystemVerilog
(BSV). This language is inspired from works achieved in concurrent programming, notably the Haskell
functional language, and Hoe and Arvind’s works [HA04] at MIT on Term Rewriting Systems (TRS) for

54http://www-labsticc.univ-ubs.fr/www-gaut
55https://www.soclib.fr
56Latency-insensitive system
57http://www.sundancedsp.com

168 Chapter 6. Component-Oriented Architecture

hardware design. BSV is based on the concept of parallel transactions. As in transaction middlewares,
an atomic transaction is a collection of sequential actionswhich are either all executed (commit) or
not at all (cancelled or rollback). As opposed to blocking synchronization based on locks using mutex
and semaphores, transactions support non-blocking synchronization avoiding deadlocks. Atomicity of
transactions allows safer composition and better scalability than the lock-based approach. The BSV
language allows the definition of guarded atomic methods whose execution is conditioned by execution
rules such as empty/full FIFO. BlueSpec automatically generates the control logic to shared resources.
The hardware interface of method invocations contains an inputenable signal, an outputready signal,
input signals for method parameters and output signals for results. Implementations in BSV can be
parametrized by generic data types similar to templates andmodule composition. Methods may be
regrouped into interfaces provided and required by modules. IP cores in Verilog can be imported in the
tool and converted to BSV description to ease IP reuse. The tool has been used to design control-oriented
applications such as processor, DMA, peripheral devices and data-oriented applications such as H264,
OFDM 802.11a (WiFi) and 802.16 (WiMax)58.

6.7.4 Hardware Interface Synthesis

The application of the object model downto hardware presented in chapter 4.2.3 shows that a single kind
of hardware interfaces, i.e. write-only interfaces, is proposed for hardware objects and such an interface
represents one point in the mapping space. Works achieved inhardware interface synthesis [RBK00] mo-
tivate the need for more flexibility when mapping object interfaces to hardware interfaces. In [SKH98],
the following classification of hardware interfaces is proposedsend and forgetinterfaces for data buses,
strobe interfaces to indicate when data are valid on a data bus,handshakeinterfaces andFIFO inter-
faces. In Mentor Catapult®tool [Gra07], designers explicitty associate to one or several parameters of a
C function hardware interfaces similar to the ones proposedin [SKH98]. Input function parameters are
read, while output parameters are written. In Altera C2H ®compiler [Alt07b], the generated hardware
accelerators have read-only Avalon Memory-Mapped ports for input parameters and write-only ports for
output parameters.

Position of this work

Classical works have been carried out in hardware interfacesynthesis [RBK00] to generate the hardware
component interfaces such as network interfaces in MPSoCs [GRJ04] or the wrappers to adapt the in-
terfaces of hardware components [PRSV98] [DRS04]. However, all these works are based on low-level
interface specification typically at RTL level, while we target high-level interface synthesis and interface
refinement.

An IDL-to-VHDL mapping should generate standard core interfaces to support reuse. In addition to
the low-level contract of interconnection protocols, a higher level approach requires a functional contract,
which may be specified in IDL and formally mapped onto a message whatever the abstraction levels. Our
proposition consists in mixing the higher semantics level of hardware components and the flexibility of
HLS.

There are still open questions regarding HLS tools such as the portability of C-like source codes
from one tool to another due to the use of proprietary libraries, the lack of a standard mapping from
C-like languages to HDLs, and the integration of the generated hardware modules within existing SoCs
on FPGAs.

58http://csg.csail.mit.edu/oshd/index.html

6.7. Hardware Component Models for FPGAs and ASICs 169

6.7.5 Packaging Model

An emerging standard packaging model for hardware components at different abstraction level is the
IP-XACT specification. IP-XACT is a set of specifications proposed by the SPIRIT (Structure for Pack-
aging, Integrating and Re-using IP within Tool flows) [SPI08] consortium, which is composed of EDA
vendors such as Cadence, Mentor Graphics and Synopsis, and end-users such as ARM, ST, NXP and
TI. The objective of this consortium are to improve IP reuse and enables design automation. Another
objective is that the same hardware component could be described at several abstraction levels, notably
TLM and RTL, that offer different views according to the level of details required by the design phase
(design, validation, integration) [Ghe06]. The IP-XACT specification defines XML files formats (XML
Schema) to describe the characteristics of Intellectual Properties such as hardware component interfaces
(signal direction and width, bus interfaces), registers (address, width and bitfields) and the interconnec-
tion between hardware components (business components andbus components).

An API calledTight Generator Interface(TGI) is also specified to make this information (meta-data)
accessible to generation tools. Based on this API, a chain ofgenerators can be developed to automate and
customize each phase of enterprise design flow notably the documentation, configuration and integration
of IP blocks. These generators may be scripts or software programs that instantiate hardware components
in a top-level component and generate the required interface and protocol adapters and drivers. These
specifications are freely available and are studied by the IEEE Working Group P1685 for standardization.
We consider that the IP-XACT specification could correspondto a Platform Specific Model (PSM) for
the Deployment and Configuration (OMG D&C) of hardware components. The IP-XACT API allows
access to repositories of hardware components. Compared tosoftware packaging models, SPIRIT does
not define the location of hardware artifacts such as bitstream.

6.7.6 Deployment Model

Hardware IP core components can be either statically deployed on an FPGA at reset-time or dynamically
deployed at run-time. Static FPGA reconfiguration means thecomplete configuration of the FPGA chip
using a total bitstream. In dynamic partial reconfiguration, IP cores belonging to the so-called static part
within the FPGA may be still running, while other IP cores arebeing physically configured by a partial
bitstream.

FPGA devices are configured by loading a set of configuration bits referred to as abitstreamfile into
the SRAM-based configuration memory of the FPGA. As the SRAM59 memory is volatile i.e. its content
may be lost when the memory is not powered, FPGA devices need to be configured at each power-up.

Static Total Reconfiguration of FPGAs

Static total reconfiguration of FPGAs is typically triggered outside the FPGA by a third party e.g. the
end users when the chip is reset either when powered-up (a.k.a. power-on reset) or while running.
Another classical way to totally reconfigure an FPGA is via a JTAG 60 port but this is only used by
the designers for debug purpose and not by the end users during system operation. Usually, the total
bitstream is persistently stored in an on-board EEPROM (Electrically-Erasable Programmable Read-
Only Memory) which may be programmed by FPGA vendor programmer tools such as Xilinx iMPACT
or Altera Quartus Programmer.

As the reconfiguration time is proportional to the bitstreamsize, the width of the physical configura-
tion bus and the bitstream transfer rate, a total reconfiguration of an FPGA is time consuming. Moreover,

59Static Random Access Memory
60Joint Test Action Group

170 Chapter 6. Component-Oriented Architecture

a total reconfiguration of an FPGA does not satisfy the systemavailability requirement of some real-time
and critical applications [SMC+07].

Dynamic Partial Reconfiguration (DPR) of FPGAs

Despite the intrinsic capability of FPGAs to be partially reconfigured at run-time, the dynamic partial
reconfiguration is industrially supported only recently bythe design tools of a single FPGA vendor,
Xilinx, due to its growing need in professional applications for signal and image processing.

Dynamic partial reconfiguration may be triggered from outside the FPGA via an external bus trans-
ferring reconfiguration messages or from inside the FPGA by asoftware or hardware entity. The partial
bitstream can be stored outside the FPGA in a local persistent storage like a hard disk drive or a memory
card, or a remote persistent storage like a bitstream server[BDGC08]. The partial bitstream may then
be transferred via a DMA controller from persistent storages in the main memory of an FPGA board to
perform the partial reconfiguration.

The main benefits of the dynamic partial reconfiguration of FPGAs is the reduction of size, cost and
power consumption of an FPGA chip [DPML07]. To some extend, partial reconfiguration offers the
same benefits than software reprogrammation such as easier maintenance (e.g. bug fixing), on-demand
loading of hardware components, extensibility and flexibility.

Dynamic partial reconfiguration of FPGAs provides the opportunity to support the dynamic deploy-
ment of both software and hardware waveform components in FPGAs according to the operational needs
under the coherent control of a component framework such as the SCA Core Framework.

We proposed in [GMS+06] a system-level design flow taking into account the partial and dynamic re-
configuration of hardware modules. Other SystemC methodologies like [QS05], [SON06] and [BKH+07]
have been proposed to model and simulate reconfigurable systems.

Dynamic Partial Reconfiguration Capability of Xilinx FPGAs

As an example, the Virtex family of FPGAs from Xilinx supports the dynamic partial reconfiguration of
FPGAs via the ISE and Plan Ahead design tools. Virtex-II Pro,Virtex-IV and Virtex V FPGA devices
contain an on-chipInternal Configuration Access Port(ICAP) [Xil07] which provides the user logic with
a hardware configuration interface to the FPGA internal configuration logic. The ICAP interface allows
the user logic to write a partial bitstream to the configuration memory of reconfigurable areas and thus to
perform the partial reconfiguration. It also allows designers to read back the content of the configuration
memory e.g. to save the configuration context. Figure 6.6 presents the interface of the ICAP_VIRTEX2
primitive which must be instantiated in the user design to beable to use the reconfiguration capability of
Xilinx FPGAs.

Figure 6.6: Internal Configuration Access Port (ICAP) [Xil07]

The ICAP interface consists of a clock (CLK) signal, a Clock Enable signal (CE), a read-write control
signal (WRITE), a write data bus (I[7:0]), a read data bus (O[7:0]) and a status signal (BUSY) for read

6.7. Hardware Component Models for FPGAs and ASICs 171

commands. The data bus widths of the ICAP interface can be configured to 8 bits in Virtex II FPGAs,
8 or 32 bits in Virtex IV FPGAs and 8, 16 or 32 bits in Virtex V FPGAs. Hence, ICAP has a simple
hardware interface which can be wrapped to any bus protocol and used by any hardware component (IP
core) or any software component using software drivers. ICAP is a shared hardware resource which must
be guarded by an HW/SW arbiter to serialize the reconfiguration requests. In summary, ICAP provides
access to the dynamic reconfiguration service of Xilinx FPGAs. This service may be used during the
deployment of hardware components under the control of component frameworks such as the SCA Core
Framework.

In February 2006, Xilinx and ISR Technologies announced a SDR kit supporting a SCA-enabled
SoC and the partial reconfiguration of Virtex IV61. The partial reconfiguration is controlled by a SCA
CF running on an embedded PowerPC 405 processor. The PowerPCexecutes the SCA Operating En-
vironment (OE) with the POSIX-compliant Integrity RTOS from Green Hills, the ORBexpress CORBA
ORB from Objective Interface Systems (OIS) and the SCA Core Framework from the Canadian Commu-
nications Research Center (CRC). This kit includes two modem applications implementing a wideband
waveform for video communications and a narrowband waveform for voice communications. A similar
experiment was conducted in [SMC+07] [MMT+08] with a different OE. This experiment is described
in the following.

Example of Dynamic Partial Reconfiguration of FPGAs under the control of the SCA Core Frame-
work In [SMC+07], a partially reconfigurable hardware module was dynamically deployed on a Virtex
IV FPGA device under the control of the SCA Core Framework.

Figure 6.7: Dynamic partial reconfiguration by a SCA Core Framework [SMC+07]

Figure 6.7 illustrates the HW/SW SoC architecture of the demonstration platform. This platform
is based upon a ML405 evaluation board from Xilinx. This board contains a Virtex-4 FX20 device
including a PowerPC 405 hard processor core with 128MB DDR RAM, several I/O components for

61http://www.xilinx.com/prs_rls/dsp/0626_sdr.htm

172 Chapter 6. Component-Oriented Architecture

communications such as USB chip and Ethernet PHY transceiver, and audio and video facilities via
VGA62 and AC6397 chips.

Hardware architecture The hardware architecture consists of a CoreConnect On-Chip Periph-
eral Bus (OPB) bus on which are connected an ICAP controller and various IP cores such as an AC97
controller to control external I/O chips.

The embedded PowerPC manages the dynamic partial reconfiguration through the ICAP controller
driver, the continuous display of a video on a TFT screen connected to the VGA chip and the communi-
cation with a GUI residing on a laptop via an Ethernet cable. Amicrophone and a speaker are connected
to the board.

An audio processing module is implemented as a dynamically and partially reconfigurable module.
The user may choose via the GUI the audio effects to be appliedon the voice which is captured by the
microphone. This choice triggers the partial reconfiguration of a dynamic reconfigurable area with the
partial bitstream of the audio processing module.

Software architecture The software architecture of the demonstrator is compliantwith the SCA
specification [JTR01] The SCA OE is based on the MontaVista64 Linux Real-Time Operating System,
the open-source MICO65 CORBA ORB and Thales SCA-compliant Core Framework.

The static bitstream of the hardware platform components (i.e. the OPB bus and the I/O IP cores),
the dynamic bitstreams of the hardware application components (i.e. the audio processing module), the
sofware image of the OE and the software application components are stored on a Compact Flash card
using System ACE66. The static bitstream and the sofware image of the OE are loaded on the FPGA
when the board is powered up. During application deployment, the Core Framework dynamically loads
the partial bitstream stored in the Compact Flash and writesits content to the ICAP controller using the
ICAP driver appearing as a Linux kernel module.

The SCA Core Framework manages both the deployment of software application components on the
PowerPC processor and the deployment of the hardware audio component in the reconfigurable area.
The PowerPC processor is abstracted by a GPP Executable Device which provides an OS-independent
API to load and execute the software application on the processor. The reconfigurable area is abstracted
by an FPGA Loadable Device which provides an FPGA-independent API to load a partial bitstream in a
reconfigurable region.

An open design decision about the software architecture concerns the granularity of an FPGA logical
device i.e. the number of reconfigurable areas which must be assigned to an FPGA logical device.
Indeed, a SCA logical device may be assigned to all reconfigurable areas or to each area. In this case,
the number of logical device instances depends on the numberof reconfigurable areas. In the next
chapter, we will consider that an FPGA logical device for allreconfigurable areas is a better solution
as 1) a single logical device coherently represents the configuration logic (e.g. the ICAP controller)
as a shared resource which can only be used by a single software driver and can only satisfy a single
reconfiguration request at a time, and 2) the bitstream is self-contained andself-deployableas it contains
a header with addressing information indicating the area tobe reconfigured. The main avantage is that
there is always a single FPGA logical device instance regardless of the number of reconfigurable areas.
Hence, the software architecture is independent from the hardware reconfiguration architecture and both

62Video Graphics Array
63Audio Codec
64http://www.mvista.com
65http://www.mico.org
66Advanced Configuration Environment

6.8. System Component Models 173

architectures may be designed in parallel and seamlessly integrated. An FPGA Device is an FPGA-
specific platform component which may be developed once and reused multiple times with different
waveform applications as it implements the standardized Loadable Device API.

6.8 System Component Models

In this section, we presents system component models such asthe SystemC component model at different
abstraction levels and actor-oriented components.

6.8.1 SystemC components

SystemC may be seen as a HW/SW component model in which SystemC modules must implement
standard C++ interfaces. A SystemC component is ansc_module with required ports calledsc_in
andsc_export and provided ports calledsc_port. Ports are bound to object-oriented interfaces
calledsc_interface. These interfaces may model from hardware interface at register transfer level
to read from and write to signals to logicial interface at functional level to invoke services on another
components. The counter example is presented in SystemC at Register Transfer Level in listing 6.4 and
at Functional Level in listing 6.4.

1 # i nc lude <systemc . h>

c o n s t i n t COUNT_WIDTH=8;
SC_MODULE(c o u n t e r)
{

6 sc_ in <bool > r e s e t ;
sc_ in <bool > c l o c k ;
sc_ in <bool > c lock_en ;
sc_ou t < s c _ u i n t <COUNT_WIDTH> > coun t ;
s c _ u i n t <COUNT_WIDTH> v a l u e ;

11
vo id c n t _ p r o c ()
{

i f (! r e s e t) {
v a l u e = 0 ;

16 } e l s e i f (c l ock_en) {
v a l u e ++;

}
coun t = v a l u e ;

}
21

SC_CTOR(c o u n t e r)
{

SC_METHOD(c n t _ p r o c) ;
s e n s i t i v e << r e s e t . neg () << c l o c k . pos () << c lock_en . pos ();

26 }
} ;

Listing 6.4: Counter in SystemC at Register Transfer Level

c l a s s Count : p u b l i c v i r t u a l s c _ i n t e r f a c e {
p u b l i c :

3 v i r t u a l vo id coun t (i n t v a l u e&) =0 ;

174 Chapter 6. Component-Oriented Architecture

} ;
c l a s s C l i e n t : p u b l i c sc_module {
p u b l i c :

s c _ p o r t <Count > pC ;
8 i n t v a l u e ;

SC_HAS_PROCESS (C l i e n t) ;
C l i e n t (c o n s t sc_module_name &n) ;
vo id i n v o k e _ s e r v i c e () {

pC−>coun t (v a l u e) ;
13 }

} ;
c l a s s Connec to r : Count , sc_module {

s c _ p o r t <Count > pC ;
sc_expo r t <Count > pS ;

18 Oc te tSequence s ;
SC_CTOR(Connec to r) : pS (" pS ") {

pS (* t h i s) ; / / b ind sc_expo r t−>i n t e r f a c e by name
}
vo id coun t (i n t v a l u e&) {

23 pC−>coun t (v a l u e) ;
}

} ;
c l a s s S e r v e r : Count , sc_module {

p u b l i c :
28 sc_expo r t <Count > pS ;

SC_CTOR(Modem) : pS (" pS") {
pT (* t h i s) ; / / b ind sc_expo r t−>i n t e r f a c e by name

}
vo id vo id coun t (i n t v a l u e&) {

33 v a l u e ++;
} ;

} ;

SC_MODULE(Top)
38 {

C l i e n t c l i e n t ;
Connec to r c o n n e c t o r ;
S e r v e r s e r v e r ;
SC_CTOR(Top) :

43 c l i e n t (" C l i e n t ") ,
c o n n e c t o r (" Connec to r ") ,
s e r v e r (" S e r v e r ")

{
c l i e n t . pC (c o n n e c t o r . pS) ;

48 c o n n e c t o r . pC (s e r v e r . pS) ;
}

} ;

Listing 6.5: Counter in SystemC at Functional Level

A SystemC connector may be SystemC channelssc_channel, transactors, bus functional models
and OSSS channels [GBG+06].

However, the SystemC component model does not support a packaging and deployment model, since
it targets centralised system modelling and simulation.

6.9. Conclusion 175

6.8.2 Actor-Oriented Components

To bridge the conceptual gap between signal-based hardwaredesign and method-based software design,
Lee et al. propose the concept ofactors. Actors are abstract system components which are concurrent and
reconfigurable. They provide a data-flow oriented interfacecomposed of ports and configurable param-
eters. A hierarchical composition of actors is called amodel. An actor provide an executable behavioral
specification based on operational semantics. The component model of actor-oriented components are
model of computations. Each model of computations containsoperational rules which govern the exe-
cution of a model in particular when components perform computation, update their state and perform
communication. The Ptolemy II tool supports the hierarchical composition of heterogeneous models of
computation.

The concept of Lee’s actor is related to the actor concurrency model introduced by Hewittt and
developed by Agha. The differences between Lee’s and Agha’sactors are that Agha’s actors are active
components with their own thread of control and communicatethrough asynchronous message passing,
while Lee’s actors are passive components without their ownthread of control and communicate through
asynchronous or synchronous message passing.

The differences between object-oriented components and actor-oriented components are that object
interfaces do not describe explicitly time, concurrency, communication and usage patterns as opposed
to actors. The differences between signal-based hardware components and actor-oriented components
are that patterns of communication and interaction are difficult to specify in HDLs. The set of signals
provided and required by hardware component interfaces describe a low-level transfer syntax but not the
high-level semantics needed for component composition.

For Lee et al., software methods represent atransfer of controland sequential execution, while
hardware signals represent atransfer of dataand parallel execution. We consider this separation as too
simplistic. Any application has both control-oriented anddata-oriented processing at various degrees. We
consider that software methods and hardware signals may represent a transfer of control, a transfer of
data or a transfer of control and data. Transfer of control does not mandatorily imply loss of control from
the caller/master to the callee/slave [MMP00]. Software methods may be blocking or non-blocking using
future variables to perform computation and communication in parallel. Hardware interfaces typically
contain control and/or data signals to implement synchronization and communication protocols.

However, the refinement and generation of hardware and software components from actor-oriented
models are not described in details as far as we know. While actor-oriented components have data ports,
object-oriented components have higher-level object-oriented interfaces that provide functional services.
In contrast to the execution model of actor-oriented components based on formal models of computation,
the object-oriented component approach relies on more models for component, connector, configuration,
packaging and deployment. In this work, we focus on the interface refinement of abstract object-oriented
components to synthetizable hardware object-oriented components.

6.9 Conclusion

In this chapter, we presented the main concepts underlying the component oriented approach for software
and hardware engineering.

Hardware components provide and require low-level signal-based interfaces, which consist of input,
output and input/output RTL ports. Software components provide and require high-level method-based
interfaces, which consist of operations with input, outputand input/output parameters.

The software component-oriented approach is an evolution from the object-oriented approach. Whereas
the object-oriented approach is focused on classes, objects and inheritance, the component-oriented ap-
proach is focused on interactions, dependencies and composition.

176 Chapter 6. Component-Oriented Architecture

In software architecture, the component-oriented approach relies on four main standard models:
component models defining component structure and behavior,connector models to specify com-
ponent interactions,container model to mediate access to middleware services, andpackaging and
deployment models to deploy distributed component-based applications. Thecomposition model in-
cludes the connector model and the deployment model. The component model is a set of standards,
conventions and rules that components must respect. The connection model defines a collection of con-
nectors and supporting facilities for component assembling. The deployment model describes how to
install component-based applications into the execution environment.

A software component provides and requires services through multiple interfaces that allow an ex-
plicit specification of external dependencies and a separation of concerns between functional interfaces
for business logic and non-functional interfaces for technical logic e.g. regarding configuration, deploy-
ment and activation, packaging, deployment (i.e. installation, connection), life cycle (i.e. initialization,
configuration and activation), administration (e.g. monitoring and reconfiguration). A software compo-
nent has logical ports that provide and require properties,methods and events.

A software connector is a component which binds the requiredand provided ports of two or more
components. It mediates component interactions. Examplesof interaction patterns include method in-
vocation between client and server roles, event delivery between publisher and subscriber roles, data
stream between source and sink roles, message passing between sender and receiver roles and shared
memory between writer and reader roles. It may deal with non-functional services such as commu-
nication, coordination, conversion, synchronization, arbitrating, routing, and scheduling. Connectors
separate computation from interactions. The notion of connector reifies the notions of relationships and
interactions in the object model. When the same components are deployed on nodes in different address
spaces, the connector may use or implement the required middlewares services such as marshalling/un-
marshalling and interface adaptation. In this case, the connector is partitioned into two "fragments" that
may represent a stub/skeleton pair or two middleware instances.

Connector template architecture may include interceptors, stub/skeleton, dispatcher, arbiter and sched-
uler.

A software container transparently integrates componentsinto their operating environment, mediate
access to middleware services and manage component life cycle.

Like the SCA, we distinguish two basic kinds of components: application components and platform
components. Application components implement business logic and require HW/SW platform services,
while platform components implement technical logic and provides HW/SW platform services.

A component may have a functional or algorithmic implementation e.g. in executable UML, Mat-
lab/Simulink, SystemC TLM; a software implementation e.g.in C, C++ or Java; or a hardware imple-
mentation e.g. in synthesizable SystemC RTL, VHDL or Verilog.

For instance, the SCA component model defines an ApplicationComponent Model with theLifeCycle
andPropertySet interface withih theResource interface and a Hardware Platform Component
Model with theDevice interface. The SCA connection model is based on thePort andPortSupplier
interfaces. The SCA deployment model is based on the Framework Control interfaces and the Domain
profile defining XML descriptors.

In the hardware component models, a hardware component has input, output, input/output RTL ports
that provide and require one or several signal-based interfaces. The connection model of hardware com-
ponents is based on standard bus interfaces and communication protocols. An emerging packaging model
for hardware components is the IP-XACT specification, whichdefines XML schema files to describe the
characteristics of IP core components such as hardware interfaces, registers and interconnection. The
deployment model of hardware IP core components can be either statically deployed on an FPGA at
reset-time or dynamically deployed at run-time.

In the next chapter, we will expose how we propose to unify hardware, software and system compo-

6.9. Conclusion 177

nents by mapping high-level method-based software interfaces onto the signal-based hardware interfaces
to reduce the abstraction and implementation gap.

Chapter 7

Unified Component and Middleware
Approach for Hardware/Software

Embedded Systems

Contents
7.1 Introduction 180

7.2 Component-Oriented Design Flow 181

7.2.1 Existing design flow and methodology for SDR 181

7.2.2 Proposed simulation methodology 182

7.2.3 Proposed Design Flow .. . 183

7.3 Mapping OO component-based specification to system, SW and HW components 185

7.3.1 IDL3 to SystemC Language Mapping 185

7.3.2 IDL3 to HDL Mapping .191

7.3.3 Hardware Mapping Applications 211

7.3.4 Mapping Implementation and Code Generation 219

7.4 Hardware Application of the Software Communications Architecture 235

7.4.1 Hardware SCA Resources, Device and Services 235

7.4.2 SCA Operating Environment for FPGA 236

7.4.3 Hardware SCA Resource Interface 239

7.4.4 Memory-Mapped Hardware/Software Resource Interface 240

7.4.5 Extension of the SCA Domain Profile for hardware components 241

7.4.6 Deployment of Hardware SCA Resource Components 244

7.5 Hardware Middleware Architecture Framework 245

7.5.1 Application and Protocol personalities 246

7.5.2 Application layer 246

7.5.3 Presentation layer 246

7.5.4 Dispatching layer 248

7.5.5 Messaging layer .. 248

7.5.6 Transport layer .. . 249

7.5.7 Performance Overhead 249

7.6 Limitations 249

179

180Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

7.7 Conclusion .. . 250

In the previous chapters, we saw that different concepts, models and methodologies were proposed
to unify the design of hardware/software embedded systems.The distributed object model was notably
applied to hardware/software modules to provide common concepts between hardware and software de-
signers. Language mappings were proposed to map method-based software interfaces to signal-based
hardware interfaces, but each mapping proposition only represents one solution in the mapping explo-
ration space. The component-oriented model was proposed toaddress the limitations of the object model
notably to impose strict design constraints to designers inorder to ease component reuse and integration.
We showed that the component-based design is natural for both hardware and software engineers, but
few language mappings were proposed to support the mapping of abstract component-oriented models
to hardware, software and system component models. The purpose of this chapter is to define such
language mappings, while exploring the mapping exploration space and providing transparent commu-
nications between the mapped components.

7.1 Introduction

The CORBA Interface Definition Language (IDL) 3.x allows designers to specify the software interfaces
that a software component provides and requires through ports. Language mappings or bindings specify
mapping rules to translate IDL3 interfaces into software interfaces in a target implementation language.

Our objective is to propose an IDL3-to-VHDL mapping and IDL3-to-SystemC mapping at different
abstraction levels to apply the same middleware and component concepts down to hardware and provide
a common design flow for hardware, software and system components. The goal is also to propose a sys-
tematic refinement of interfaces. Hence, IDL3 interfaces would be used to specify business component
interfaces at system-level independently of their hardware or software implementation.

The specification from an operation-based abstract software interface to a signal-based hardware
interface is not an easy task due to the important abstraction and conceptual gap.

One goal of the following chapter is to define the necessary requirements to enable the generation
of hardware component interfaces from a HW/SW neutral IDL specification. These requirements are
based on the analysis of the state of the art presented in the previous chapters. The key questions raised
by such a high-level mapping are: What is a hardware component from a software component-oriented
point of view ? How a software operation invocation is translated into VHDL code ? What is the VHDL
entity interface of a hardware component, which should be generated from the IDL specification of
this component ? How component attributes and operation parameters appear to hardware designers in
his/her business code ? Our mapping proposition tries to answer these mapping requirements.

The second objective is to propose a middleware architecture framework to host the mapped hardware
components and provide interoperability between hardware/software components.

This chapter is organized as follows. Section 7.2 presents the Component-Oriented Design Flow
we propose. Section 7.3 describes the proposed mapping fromobject-oriented component-based spec-
ification to system components at transactional level and hardware components at Register Transfer
Level. Section 7.4 proposes to extend the Software Communications Architecture for hardware IP core
components in FPGAs. Section 7.5 presents a hardware middleware architecture framework to support
transparent communication between hardware/software components Finally, section 7.7 concludes this
chapter.

7.2. Component-Oriented Design Flow 181

7.2 Component-Oriented Design Flow

In this section, we present the conceptual design methodology for SDR, which existed at Thales Com-
munications in 2005. Then we propose to leverage this designflow with SystemC TLM to simulate the
platform independent model of waveform applications, and the platform specific model of the waveform
and the platform. Finally, we propose a common design flow forsystem, hardware and software com-
ponents based on MDA, SystemC TLM, language mappings from logical interfaces to simulation and
implementation languages.

7.2.1 Existing design flow and methodology for SDR

The conceptual design methodology is based on two concepts:Model Driven Architecture (MDA)
MDAGUIDE03 and the component/container model. As presented in section2.8.1, MDA advocates the
separation between system functionalities specification defined in a Platform Independent Model (PIM)
from their implementation specification on a target platform captured by a Platform Specific Model
(PSM). The PIM can be expressed in UML, while the associated PSMs are described in target program-
ming languages such as C, C++ and VHDL. The MDA approach is useful in a SCA context because
of the amalgam in the SCA specification between business choices (interfaces and behavior) and tech-
nical/implementation choices (type of middleware, POSIX profile). The component/container model
enables a clear separation of concerns between behavioral and technical properties.

Figure 7.1: Existing methodology inspired from MDA and component/container paradigm.

The methodology illustrated in figure 7.1 consists in defining in the PIM the logical interfaces, e.g.
A, B and C, between abstract processing resources (waveformmanagement components, waveform re-
sources, radio services and radio devices). Then the PIM-to-PSM transition is performed. A component
implements the useful treatments specified at logical leveland communicate with its environment thanks
to a container through the mapped interfaces A, B and C. The container performs the adaptation between

182Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

logical interfaces and available technical services. These latter provide the software and hardware ser-
vices used by the implementation of the logical semantics. This approach is compliant with SCA for
GPPs and has been successfully applied on DSPs. It seems to bepromising for FPGAs.

The design flow based on this methodology starts at PIM level with waveform specifications. The
logical interfaces and real-time constraints between the logical waveform components themselves and
with the radio sub-system are modeled in UML thanks to use case, class, statechart and scenario graph-
ical diagrams. The breakdown into waveform logical components are performed according to system
requirements (characteristics of usable GPPs, DSPs, FPGAs) and business experience. Then subsequent
hardware and software design flow can begin. The waveform application can be lately validated on an
SCA compliant workstation. However, the final validation can only be done once the hardware platform
is available. Thanks to SystemC TLM, we propose a PIM/PSM design flow to design and validate earlier
waveform applications on virtual SDR platforms.

7.2.2 Proposed simulation methodology

MDA and component/container paradigm approach can be simulated thanks to SystemC TLM as illus-
trated in figure 7.2. The business services of logical components are implemented in a C/C++ model.
This independent and reusable model is encapsulated in a SystemC TLM container, which abstracts it
from its virtual execution environment. For a software component, the container could use an API, while
for a hardware component, it could contain a register bank (see our experiments in chapter 8). Devel-
opers can validate that the SystemC TLM virtual module provides the required behavior and perform a
partitioning based on performances estimation. The model can be either refined until RTL for a hardware
component or extracted to be optimized and cross-compiled for a software component. If the partitioning
was already performed, the C/C++ model can be used without a SystemC TLM encapsulation directly
on an Instruction Set Simulator (ISS) if available, otherwise the SystemC kernel could be used. This
SystemC TLM based methodology allows to simulate the heterogeneous architecture of SDR platforms.

Thus, we propose SystemC TLM for the simulation and validation of PIM and PSM. In the SDR
context, an important need is to be able to simulate the real-time constraints of a radio system, from its
specifications to its final validation. SystemC appears, as far as we know, as the only language addressing
this kind of needs.

At PIM side, SystemC at functional level can be used to model the logical interfaces and simulate
the real-time constraints between the waveform logical components themselves and with the radio sub-
system. The resulting SystemC TLM modules could include a behavioral model or acts as dummy black
box. This model can be used as a useful and undeniable executable specification between hardware and
software teams that anticipates the PSM and accelerates thedevelopment cycle. The concepts of required
and provided interfaces specified in the PIM can be natively found in SystemC 2.1 and used to simulate
a PIM.

Event and time driven systems can be modeled withsc_event andwait statements, while UML
synchronous and asynchronous calls can be respectively modeled with SystemC TLM blocking and non-
blocking calls.

At PSM side, SystemC at cycle level enables performance estimation (profiling) of waveform soft-
ware components executed on a virtual radio platform composed of ISS for GPP and DSP andBus
Functional Models(BFM) if available. Thus, real-time constraints simulated in the PIM model can be
reused to validate the PSM model. SystemC TLM allows one to simulate and to validate only critical
parts instead of the entire radio system model. A concrete example will be seen in our experiments to
illustrate the modeling of PIM and PSM in SystemC TLM (see chapter 8).

7.2. Component-Oriented Design Flow 183

Figure 7.2: SystemC TLM model of PIMs/PSMs.

7.2.3 Proposed Design Flow

As the SCA specifications [JTR01] [JTR06] and the deprecatedSCA developer’s guide [JTR02] rely on
the UML standard for the design of waveform applications andas Thales is an active OMG member
which has participated in the UML profile for software radio [OMG07e] based on the SCA, the UML
profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [OMG08h] and
the CORBA Component Model, we propose a coherent design flow with state-of-the-art and standard
technologies notably following an OMG MDA-based design flow. Indeed, our proposition must integrate
well into and extends the existing SCA design flow. The proposed design flow is depicted in figure 7.3

Other UML profiles may be used for an MDA design flow for embedded systems such as the UML
Profile for CORBA and CORBA Components Specification [OMG08g], the PIM and PSM for Smart
Antenna [OS09] from OMG and SDRF, and the UML Profile for System on a Chip (SoC) [OMG06e]
inspired from SystemC, and Systems Modeling Language (SysML) [OMG08f].

Face to the number and complexity of UML profiles, the relative maturity of tools, the required
training of software, hardware and system engineers and theassociated costs, a coherent HW/SW co-
design flow is not easy to define and to apply within an enterprise or a set of specialized enterprise
departments.

The proposed design flow applies the MDA-based Y design flow proposed by the LIFL [DMM+05]
to the SCA-based SDR domain.

We make a clear separation of concerns between the component-oriented application (e.g. with SCA
and/or CCM personalities), the software platform (e.g. CORBA) and the hardware platform (e.g. with
GPP(s), DSP(s) and FPGA(s)). Indeed, an application may be defined independently from the under-
lying software platform, and the software platform may be defined independently from the underlying
hardware platform. Clearly, an application is specified as an assembly of hardware/software components
as in the SCA and CCM.

The proposed design flow starts with the capture of waveform applications and hardware platform

184Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.3: Proposed Design Flow

requirements in UML PIMs.

A component-oriented application may be specified by the waveform application component de-
signers in a HW/SW Platform-Independent Model (PIM) using standard UML. Then this PIM may be
annotated or marked [MSUW04] using the UML interfaces standardized in the PIM of the UML profile
for Software Radio and SysML to model non-functional systemrequirements.

In parallel, the component-oriented hardware platform maybe specified by the platform compo-
nent i.e. device designers with the PIM of the UML profile for Software Radio, MARTE for the Non-
Functional Properties (NFP) and hardware architecture, UML4SoC for virtual hardware platform in Sys-
temC and the emerging UML profile for SPIRIT to describe hardware signal-based interfaces and the
memory mapped registers.

The PIMs may then be translated in SystemC TLM containers, where a functional model is en-
capsulated to validate algorithms choice, by simulating the behavior of the system and measuring its
performances (e.g. in terms of theBit Error Rate (BER) for a modem application). This executable
specification can be reused for example to validate waveformcompliance to specifications, in particular
the real-time constraints.

During hardware/software partitioning, several architectures and partitioning choices can be evalu-
ated for the system regarding for example the interconnection network and the memory dimensioning.
Associated tools perform for instance profiling or bottlenecks check. This partitioning enables to ease
the definition of waveform breakdown/granularity, and thusreusable/reconfigurable components.

During architecture exploration, a feasibility study may be conducted. If the requirements cannot be
met, a feedback is given to the system engineers in order to review their partitioning or eventually their
algorithms. After several iterations, this step results ina system architecture definition, which provides a
breakdown of the application with associated hardware targets and the interfaces of each component.

Then hardware modeling and software developments can startin parallel. The system can be refined
progressively to platform specific models in SystemC TLM, for both hardware and software modules,
keeping the same testbench to functionally verify the successive translations. This refinement can be re-

7.3. Mapping OO component-based specification to system, SWand HW components 185

alized through timing annotations or use of another bus/topology and results in a better design. Moreover,
these models can be reused earlier in future developments. In software, application code is developed,
eventually for managing the partial reconfigurability (bitstream download, application deployment, con-
figuration...).

Co-simulations can be performed to check the behavior of theapplication in a specific operating
mode. Then the hardware workflow can start (synthesis, placeand route) and finally the platform inte-
gration on the real target is performed. A validation shall then be led to check that all system requirements
are met.

In the next section, we will present how the mapping of object-oriented component-based specifica-
tions to software, system and hardware components can be achieved in the proposed design flow.

7.3 Mapping object-oriented component-based specification to system, soft-
ware and hardware components

As the mapping of object-oriented component-based specifications to software components already exists
using standard software language mappings e.g. CORBA IDL3 to C++, we propose a unified approach
to also map such specifications to system components at transactional level and hardware components at
register transfer level. We propose the use of hierarchicalcomponent ports to ease interface refinement
and better manage the difference of abstraction levels between software components at logical level in
UML, SCA and CCM; system components at transaction level in SystemC and hardware components at
RTL level in HDLs like VHDL and SystemC RTL. Hence, a hierarchical port provides different views of
the same high-level functional component port. Table 7.1 presents the mapping between software, system
and hardware component ports at different abstraction levels for a given RTL mapping configuration.

7.3.1 IDL3 to SystemC Language Mapping

IDL3 to SystemC at Functional Level

The proposed mapping from IDL3 to functional SystemC is relatively straightforward. It extends the
IDL-to-C++ mapping with additional mapping rules summarized in table 7.2 to fit specific SystemC
language constructs. A SystemC component is asc_module component with requiredsc_export
ports and providedsc_port ports associated tosc_interface interfaces.

An alternative mapping for SystemC consists in using the IDL-to-C++ mapping and inheriting from
the SystemC interface. However, we prefer to consider SystemC not as a C++ library, but as a language
and use its syntax and semantics.

The same functional interface in IDL may be used at each abstraction level without interface redefi-
nition.

In the SPICES project, the mapping of CCM components is basedon multiple inheritance. The
mapped CCM component inherits from the mapped IDL interfaces to C++, theCCMObject interface,
the sc_module interface, and thesc_interfaces for the connectors. Facet and receptacles are
respectively mapped tosc_export<the_provided_interface> andsc_port<the_used-
_interface> types.

IDL-to-SystemC Mapping Illustration at Functional Level

The Platform Independent Model (PIM) of a partial waveform application is represented in UML in
Figure 7.4a and Figure 7.4b. In the class diagram of this waveform depicted Figure 7.4a, a circle repre-
sents an abstract interface, which is required (use dashed arrow) by a component and provided (realize

186Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Port Logical Port Message Port Signal Port Signal Port Description
in provides in request in push receive request from caller

in addr identifier of the callee operation
in data operation in/inout parameters
out ack request accepted by callee

out reply out push send reply to caller
out data return value and out/inout parame-

ters
in ack reply accepted by caller
out exc exception triggered by callee

out requires out request out push send request to callee
out addr identifier of the callee operation
out data operation in/inout parameters
in ack request accepted by callee

in reply in push receive reply from callee
in data operation out/inout parameters
out ack reply accepted by caller
in exc exception triggered by callee

Examples
SCA, CCM, Sys-
temC (FV, PV, OSCI
TLM 1.0 transport)

SystemC TLM
(OCP, OSCI TLM
1.0 request-reply,
TLM 2.0)

OCP RTL

Table 7.1: Mapping of component ports at different abstraction levels

IDL3 constructs SystemC constructs
module M { ... }; namespace M { ... };
interface I { ... }; class I : virtual sc_interface { ...

};
component C { class C: sc_module {
provides I1 P1; sc_export<I1> P1;
uses I2 P2; sc_port<I2> P2;
}; };
connector C { ... }; class X: sc_channel { ... };

Table 7.2: Summary of the proposed IDL3-to-SystemC mappingat functional level

7.3. Mapping OO component-based specification to system, SWand HW components 187

association) by another one. Some real-time constraints are also captured by a UML sequence diagram
given in Figure 7.4b. According to this PIM, a Transceiver Resource shall asynchronously call (truncated
arrow) the Modem Resource method with a maximum latency of 250µs to push the received baseband
samples. This call shall return with aMaximum Return Time(MRT) of 100µs. Moreover, theMinimum
Inter-Arrival Time(MIAT) is 150µs between two Transceiver calls, and theMinimum Inter-Return Time
(MIRT) between two Modem returns is 100µs.

(a) Class diagram

(b) Sequence diagram

Figure 7.4: Platform Independent Model (PIM) of a partial waveform application

Based on UML specifications, interface definition in CORBA IDL3 can be generated as shown in
listing 7.1. An octet sequence is transferred from theTransceiver to theModem component by
calling the onewaypushBBSamplesRx operation. The CORBA sequence Abstract Data Type (ADT)
is implemented in C++ and the same API is used to use CORBA sequences in SystemC. Two connec-

188Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

tors are defined to respectively support blocking and non-blocking (oneway) invocations. We use the
component IDL3 keyword to define connectors for backward compatibility, but a newconnector
keyword could be introduced in CORBA IDL.

module Example {
t y p e d e f sequence <Octe t > Oc te tSequence ;
i n t e r f a c e Rece ive {

oneway vo id pushBBSamplesRx (i n Oc te tSequence samples) ;
5 } ;

component T r a n s c e i v e r {
uses Rece ive pR ;

} ;
component SynchronousConnec to r {

10 p r o v i d e s Rece ive pR ;
use Rece ive pT ;

} ;
component AsynchronousConnec to r {

p r o v i d e s Rece ive pR ;
15 use Rece ive pT ;

} ;
component Modem {

p r o v i d e s Rece ive pT ;
} ;

Listing 7.1: Transceiver Modem Example in IDL3

In the PIM, theTransceiver component requires theReceive interface implemented by the
Modem component. In the SystemC functional model of the PIM depicted in Figure 7.5, theReceive
interface (line 4 in listing 7.2) is required by theTransceiver module port (l. 10) and is im-
plemented inside theModem module (l. 67), which is called by theTransceiver port through a
SynchronousConnector (l. 25) or AsynchronousConnector (l. 38) channel. These chan-
nels model the communication real-time constraints e.g. throughput and latency (l. 33) usingwait
statement. In fact, real-time constraints can be encapsulated in the SystemC TLM container itself (Ex-
plicit Timing Annotation) or in a transactor between the module and the channel, which can be better
to separate timing from behavior (Implicit Timing Annotation) [THA05]. A transactor is a hierarchical
connector channel, which acts as a TLM protocol and interface converter. Traffic generators can be used
to transfer samples according to various probability laws to observe the behavior of the communication
chain following operational conditions (link overload, Signal-to-Noise Ratio decrease...). After the val-
idation of real-time constraints, the SystemC TLM models ofthe containers and components in the PIM
can be refined to their PSM models.

1 namespace Example {
u s i n g namespace CORBA;
t y p e d e f UnboundedSequence <Octe t > Oc te tSequence ;
c l a s s Rece ive : p u b l i c v i r t u a l s c _ i n t e r f a c e {

p u b l i c :
6 v i r t u a l vo id pushBBSamplesRx (c o n s t Oc te tSequence& samples) =0 ;

} ;
c l a s s T r a n s c e i v e r : p u b l i c sc_module {
p u b l i c :

s c _ p o r t <Receive > pR ;
11 SC_HAS_PROCESS (T r a n s c e i v e r) ;

T r a n s c e i v e r (c o n s t sc_module_name &n) ;
vo id t r a n s m i t () {

7.3. Mapping OO component-based specification to system, SWand HW components 189

Figure 7.5: Executable specification in SystemC at Functional View

wai t (TRANSCEIVER_LATENCY , SC_NS) ;
f o r (UShort j = 0 ; j < 2 ; j ++) {

16 Oc te tSequence samples ;
samp les . l e n g t h (3) ;
f o r (UShort i =0 ; i < samp les . l e n g t h () ; i ++) {

samp les [i] = i + j* 3 ;
}

21 pR−>pushBBSamplesRx (samp les) ;
wai t (100 , SC_NS) ;
}

} ;
c l a s s SynchronousConnec to r : Receive , sc_module {

26 s c _ p o r t <Receive > pR ;
sc_expo r t <Receive > pT ;
Oc te tSequence s ;
SC_CTOR(SynchronousConnec to r) : pT ("pT") {

pT (* t h i s) ; / / b ind sc_expo r t−>i n t e r f a c e by name
31 }

vo id pushBBSamplesRx (c o n s t Oc te tSequence& samples) {
a s s e r t (SYNC_CHANNEL_LATENCY<SYNC_CHANNEL_MAX_LATENCY) ;

wai t (SYNC_CHANNEL_LATENCY, SC_NS) ;
pR−>pushBBSamplesRx (samp les) ;

36 }
} ;
c l a s s AsynchronousConnec to r : p u b l i c Receive , s c _ c h a n n e l{

p u b l i c :

190Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

s c _ p o r t <Receive > pR ;
41 sc_expo r t <Receive > pT ;

SC_HAS_PROCESS (AsynchronousConnec to r) ;
AsynchronousConnec to r (c o n s t sc_module_name & n) :

sc_module (n) , pR ("pR") , pT ("pT") {
pT (* t h i s) ; / / b ind sc_expo r t−>i n t e r f a c e by name

46 SC_THREAD(t r a n s f e r t) ;
s e n s i t i v e << s ; d o n t _ i n i t i a l i z e () ;

vo id pushBBSamplesRx (c o n s t Oc te tSequence& samples) {
tmp . l e n g t h (samp les . l e n g t h ()) ;
f o r (CORBA : : ULong i =0 ; i < samp les . l e n g t h () ; i ++) {

51 tmp [i] = samp les [i] ;
}
s . n o t i f y () ;

}
p r i v a t e :

56 s c _ e v e n t s ;
Oc te tSequence tmp ;

vo id t r a n s f e r t () {
whi le (t r u e) {
a s s e r t (ASYNC_CHANNEL_LATENCY<ASYNC_CHANNEL_MAX_LATENCY) ;

61 wai t (ASYNC_CHANNEL_LATENCY, SC_NS) ;
pR−>pushBBSamplesRx (tmp) ;
wai t () ;
}

}
66 } ;

c l a s s Modem : Receive , sc_module {
p u b l i c :
sc_expo r t <Receive > pT ;
Oc te tSequence s ;

71 SC_CTOR(Modem) : pT ("pT") {
pT (* t h i s) ; / / b ind sc_expo r t−>i n t e r f a c e by name

}
vo id pushBBSamplesRx (c o n s t Oc te tSequence& samples) {

wai t (MODEM_LATENCY, SC_NS) ;
76 / / C /C++ model f u n c t i o n s c a l l s

cou t << " Samples r e c e i v e d : " << end l ;
f o r (CORBA : : ULong i =0 ; i < samp les . l e n g t h () ; i ++)

cou t << " samp les [" << i << "] = " << (unsigned s h o r t) samp les [i]
<< end l ;

} ;
81 } ;

SC_MODULE(Top)
{

T r a n s c e i v e r t r a n s c e i v e r ;
86 # i f d e f ASYNC

AsynchronousConnec to r c o n n e c t o r ;
e l s e

SynchronousConnec to r c o n n e c t o r ;
e n d i f

91 Modem modem;
SC_CTOR(Top) :

7.3. Mapping OO component-based specification to system, SWand HW components 191

t r a n s c e i v e r (" T r a n s c e i v e r ") ,
c o n n e c t o r (" Connec to r ") ,
modem("Modem")

96 {
t r a n s c e i v e r . pR(c o n n e c t o r . pT) ;
c o n n e c t o r . pR (modem . pT) ;

}
} ;

Listing 7.2: Transceiver Modem Example in SystemC at Functional View

IDL3 to SystemC at Transactional Level

The IDL-to-HDL mapping can be seen as a refinement problem in SystemC. User-defined interfaces
in IDL may be mapped to SystemC at Functional Level. Transactional connectors called transactors
may adapt these interfaces to standard TLM interfaces. The key point is that the invocation messages
derived from IDL interfaces are identical and carry the samesemantics at all abstraction levels. For
instance in TLM 2.0, invocation messages may be sent in the generic payload of TLM transactions.
At all abstraction levels, the syntax and semantics of the business interfaces in UML or IDL and the
associated messages will the same, only the manner to transfer the messages will change according to
the abstraction level. The equivalence between operation invocation and message transmission provides
a systematic approach for the refinement from one abstraction level to another. This object-oriented
approach to refinement contrast with the classical ad-hoc refinement in SystemC where the syntax and
semantics of business interfaces are lost during refinement.

This mapping proposition will be illustrated in chapter 8 with the refinement of a business component
from a functional model in C to a SystemC component at Programmer View (PV) level (see §8.2.2), the
refinement of a transactional connector from an OCP TL2 to an AHB bus functional model (see §8.2.2),
and the refinement at different abstraction levels from SystemC FIFO to OCP TLM and OCP RTL (see
§8.3.2).

The mapping from IDL3 to SystemC RTL is presented in the following subsection with the IDL3 to
HDL Mapping and detailed in chapter

7.3.2 IDL3 to HDL Mapping

In this section, we present a language mapping from component specification in CORBA IDLs to com-
ponent specification in HDLs in particular VHDL.

Differences between a SW-to-SW interfaces mapping and a SW-to-HW interfaces mapping

Basically, software IDLs like CORBA IDL have been designed for software programming languages.
There is only a systematic and one-to-one mapping between anIDL interface and a software interface
in the target implementation language, which reside at close abstraction levels. Defining a standard
mapping for HDLs such as VHDL is much more difficult.

In software programming languages, a procedure call convention [PH07] specifies the execution
model of an operation call for compilers and transparently hides this model from the application devel-
oper’s point of view. For instance in MIPS processors [PH07], the first four procedure arguments are
passed in registers, while the remaining arguments are pushed on the stack. The return address of the
caller is saved in a register and the program counter jumps tothe callee procedure. The callee performs
the computations and place the results in dedicated registers. The program counter finally jumps to the

192Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

saved return address to return the control to the caller. Compared to a hardware designer, a software de-
signer has little room in its design to optimize the execution time or memory consumption of an operation
call. Indeed, this optimization is performed by the compiler according to the procedure call convention
and directives given by the user. In hardware description languages, an inherent design trade-off ex-
ists between area, performance (e.g. bandwidth, latency) and power consumption for hardware modules.
Hardware designers require a complete control over this trade-off. An example is the numerous knobs of-
fered by usual synthesis tools and/or high-level synthesistools to explore and optimize the design space.
Note that we focus on the mapping space for hardware component interfaces and not on the design space
related to the implementation of component business functionalities. An IDL-to-HDL mapping requires
to select and configure non-functional properties such as hardware interfaces, timing and protocols. As
opposed to software mapping, the final hardware interface may depend on the set of methods declared
in the IDL interface for instance to configure a address bus used for method invocations. Because the
CORBA IDL3 only specifies functional properties i.e. behavior, a standardized mapping configuration
file should explicitly define these non-functional properties. This file could be generated manually, via a
graphical tool or inferred by an IDL compiler front-end.

Mapping Requirements

In the following, we present some mapping requirements based on the compilation of the state of the art
on hardware and software implementations of objects, middlewares and components. They are notably
focused on concurrency, message and transport.

Component-oriented hardware architecture A component interface is represented by a VHDLentity.
A component implementation is represented by a VHDLarchitecture. A component implementa-
tion is selected by a VHDLconfiguration.

Encapsulation The value of component attributes shall be retrieved and modified only through dedi-
cated accessor and mutator operations called "getter" and "setter". No direct access to internal component
attributes should be allowed from component outside. Awriteonly keyword is required for IDL3 at-
tributes and would implicitly infer a setter method. For instance, a hardware register may be write-only
for software and read-only for hardware. In this case, the external bus interface may be a write-only
hardware port, while the internal component interface may be a read-only hardware port.

Concurrent implementation of a method There should be no assumption on component hardware
implementation, sequential processes and concurrent statements may be used. Sequential implementa-
tions only based on FSMs such as in [Rad00] are not required. Implementation may be hand-coded or
generated by some HLS tools. The only constraint is to respect the interface contract both at system-level
in IDL and at RTL-level with the mapped hardware interface.

Concurrent method invocations and executions within a component Multiple clients may invoke
simultaneously the same method or distinct methods that maybe executed in both cases sequentially
or in parallel. Multiple methods may be invoked and executedindependently to enable pipelining of
configuration and computation and exploit hardware parallelism.

Figure 7.6 illustrates that parallel method invocations may increase performance by pipeling opera-
tion executions. In case A), sequential method invocationswith no pipeline require 2 cycles per iteration.
In case B), parallel method invocations allows one to achieve 1 cycle per iteration using a simple pipeline
with 2 stages that is a gain of 1 cycle compared to case A). Sucha requirement militates in favor of a

7.3. Mapping OO component-based specification to system, SWand HW components 193

component approach instead of an object approach as each component aspect e.g. configuration and
computation may have a dedicated interface with different qualities of service e.g. timeliness and may
require a distinct hardware interface to allow parallel method invocations.

Figure 7.6: Concurrent invocations of methods to enable pipeline of configuration and computation

Concurrent accesses to internal attributes and method parameters Component attributes may be
accessed concurrently from the outside by clients via method invocations or from the inside by method
implementations themselves. Moreover, a method implementation may require parallel accesses to
method parameters. The mapping of IDL abstract data types tostorage elements e.g. register, inter-
nal/external RAM and FIFOs should be flexible enough to use dedicated or shared resources for multiple
attributes and parameters depending on parallel access constraints, data dependencies, area and perfor-
mance.

Concurrent invocations of methods from multiple clients A centralized or distributed scheduler
may be required to grant access to one client invocation at a time on one component port as illustrated
in figure 7.7. For instance, schedulers are used in [Rad00] and [ICO08] to arbitrate concurrent access to
hardware components from respectively only hardware or hardware/software clients. Priorities may be
associated to client requests. Like in Real-Time CORBA, scheduling policies could be standardized. The
scheduling policy should be explicitly chosen and configured in an hardware ORB configuration file or
in D&C XML files. Such schedulers may be generic and reused in several applications. These dedicated
components correspond to hardware connectors.

Concurrent requests and replies of method invocations To simplify hardware component imple-
mentation, responses to method invocations are assumed to be strictly ordered inside a component port.

Interaction Semantics As opposed to the literature on hardware objects that only support a single
hardware interface and protocol without flow control, component interfaces may require to support vari-
ous interaction semantics. For instance, a data producer may require a write only output port withpush
semantics in which the sender is the initiator, while a data consumer may require a read only input port
with pull semantics in which the receiver is the initiator.

Component implementations should be reusable even if the execution environment changes e.g. in
terms of clock domains, data production and consumption rates, etc. Connectors may be used and reused
to adapt different interaction semantics and mask such execution environment changes.

194Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.7: Example of concurrent invocations from hardware and software clients

Hardware interface and protocol framework To improve the portability and interoperability of com-
ponents, a standardized family of interfaces and protocolsis required. A component may need to manage
its input/output control and data flow if this management is part of the application logic. An example is
a SCA Resource component that use thepushPacket API. Otherwise, connectors may transparently
performed flow control e.g. by buffering data and may deal with other non-functional aspects.

Synchronization

Blocking invocations By default, method invocations should be blocking i.e. the caller thread of
control is blocked until the invocation results are returned. This behavior is coherent with the usual
software programming model and simplify development and validation at the expense of performance.

Non-blocking invocations without reply (oneway) Oneway operations only have input param-
eters and a void return type. As opposed to unreliable onewayoperations, reliable oneway operations
should use a hardware handshake on their invocation interface to acknowledge the acceptation of in-
put parameters. Like CORBA Synchronization Scope (SynchScope) policies, the synchronization point
in the communication path where an acknowledge is returned may be defined at stub, ORB, transport,
skeleton or server level. This synchronization policy could be configured in the mapping configuration
file or an ORB configuration file.

Non-blocking invocations with reply: Asynchronous MethodInvocation (AMI) An input hand-
shake should be used to acknowledge the acceptation of inputparameters. Conversely, an output hard-
ware handshake may indicate the availability or validity ofoutput parameters. Connectors may be used
to adapt different synchronization schemes, for instance,between blocking software and non-blocking
hardware.

Message passing

7.3. Mapping OO component-based specification to system, SWand HW components 195

Data types encoding rules Data types encoding rules are required to be with or without padding
to enable a trade-off between encoding/decoding complexity and efficient use of bandwidth. CORBA
CDR (Common Data Representation) align all IDL data types ontheir natural boundaries. The result-
ing padding may not be required for embedded computing. Examples of other encoding rules without
padding are: CCDR (Compact CDR) [KJH+00a], ASN.1 Packed Encoding Rules (PER) [IT02] and Ze-
roC Internet Communication Engine (ICE) Protocol [HM07]. Designers should be able to configure the
mapping or ORB to specify what encoding rules they want theirmessages to use.

Extensible Message Framework CORBA GIOP (General Inter-ORB Protocol) messages are too
expensive for embedded computing. Special purpose messageformat with only the necessary function-
ality such as the ESIOPs (Environment Specific Inter-ORB Protocols) are required. A family of ESIOPs
could be defined using IDL structures to support messages interoperability. Examples of domain-specific
message formats include the SCA MHAL messages [JTR07] for Software-Defined Radios, and EIOP
[KJH+00a] and CANIOP [LJB05] for the CAN bus based automotive systems. A comparison between
the hardware implementations of CORBA GIOP and SCA MHAL willbe presented in chapter 8.

Streaming Inter-ORB Protocol Data stream oriented applications may require that messages can
be treated on the fly at wire speed. The beginning of a reply canbe received as soon as the request transfer
is started [MVV+07]. In other words, requests and replies may be pipelined. Dedicated communication
channels may be allocated to request/reply messages with guaranteed services in terms of throughput,
latency and jitter [Bje05]. Two solutions can be envisaged.Time-Division Multiplexing(TDM) allocates
time slots to interleave requests and replies.Spatial-Division Multiplexing(SDM) uses dedicated physi-
cal bus for requests and replies. The required message format should be selected from different standard
message formats in the mapping or ORB configuration file.

Extensible Transport Framework In addition to the family of application-level hardware inter-
faces, a generic bus interface for messages transfer shouldbe defined to keep the same connector interface
regardless of the underlying bus protocol e.g. AMBA and CoreConnect. This bus interface could enable
the establishment of point-to-point connections through virtual channels like in OCP.

Data types mapping Only the needed IDL data types must be efficiently mapped to VHDL data types.
General-purpose IDLs need extensions to be "hardware-aware" and to notably support bit-accurate data
types like in SystemC.

Reference A client component port needs to identify the servant component port with which it wants to
communicate like object identifiers in [RMB+05]. Component instances and their ports may be identified
by a system unique identifier. This identifier may be encoded in an enumerated type in the same order
as it appears in the D&C component deployment plan. During method invocations, servant component
identifiers may be transferred on an output signal calledservantId . The width of this signal could
correspond to the number of bits required to binary encode the maximum number of components allowed
in a system. This number may be known from the component assembly description.

Implementation As shown in figure 7.8, several servant component instances may be implemented in
the same hardware module to save area [RMB+05].

196Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.8: Multiple component instances in the same hardware module

Persistence The component state may be automatically stored and restored by the execution frame-
work by calling getter and setter methods according to the servantId [RMB+05]. However, only the
public component state can be accessed by these methods inferred from the public attributes specified in
IDL interfaces. A dedicated persistence API may be implemented by component developers to store and
restore both public and private component properties usingsome standard serialization format. Serial-
ization could be based on the same data encoding rules than the ones used for message marshalling/un-
marshalling.

Mapping simplification The IDL-to-HDL mapping may be simplified. For instance, servantId signals
can be removed in point-to-point connections between two components. OperationId signals can be
removed if an IDL interface only supports one operation [JTR05].

Inheritance In IDL3, the inheritance consists in reusing the definition of a parent component interface
to define a derived component interface. During implementation, the child component can reuse the
parent implementation or re-implement another behavior using the same interface definition as illustrated
in figure 7.9. Inheritance could be implemented in hardware by extension of the parent component
hardware interface and implementation [Rad00]. The child component has additional attributes and
methods implementations. The inherited attributes and methods can share resources with the new ones.

Figure 7.9: Example of inheritance implementation

Polymorphism Polymorphism of a component reference enables to call a parent or child method im-
plementation without distinction. The implementation of the method is selected at run time (late binding

7.3. Mapping OO component-based specification to system, SWand HW components 197

or dynamic binding) depending on the type of the referenced component. Hardware implementations of
polymorphism have been presented in [Rad00], [GHM03] and [Frö06].

Systematic mapping The transformation rules to map software interfaces to hardware interface should
be (semi-)formal to be automated and not on a case by case basis as in [JTR05]. A systematic mapping
allows one to map every IDL interfaces from application objects and components to lightweight ORB
services such as Name service, Event service and ExtensibleTransport Framework (ETF).

Mapping Proposition

We propose to map abstract object-oriented components in a PIM to object-oriented hardware compo-
nents in PSMs. The mapping of concepts from software to hardware components is general enough to
address software components such as SCA, CCM and UML components and hardware description lan-
guages such as VHDL, Verilog and SystemC RTL. In this chapter, we focus on language mappings from
CORBA IDL3 [OMG08b] to VHDL and SystemC RTL. CORBA IDL3 notably includes the component
concepts of the CORBA Component Model. We give an overview ofthe mapping proposition in the fol-
lowing. The language mappings are described in details in chapter A. The IDL-to-HDL mapping focuses
on the interface between business components and the connector fragments a.k.a. stubs/skeletons with-
out making any assumption on the middleware implementation. The underlying hardware middleware
architecture framework will be presented in section 7.5.

Our mapping proposition is based on a structural interpretation of abstract object-oriented compo-
nents. A hardware CCM component is represented by a VHDLentity and its implementation corre-
sponds to a VHDLarchitecture, which is selected by a VHDLconfiguration. An abstract
CCM component port is mapped to a logical hardware componentport, which is a set of VHDL input
and output ports. Each hardware CCM component port is based on one or more named hardware inter-
faces for the invocation request (incl. operation identifier and input parameters) and reply (incl. output
parameters, return value and optional exceptions).

Hardware CCM component port allows the separation of concerns between computation in the com-
ponent and non-functional properties like synchronization and storage. To separate concerns and improve
its reuse, a hardware component port may correspond to a VHDLentity with its architecture.
The component coreentity and its logical portentitiesmay be put together in a global component
entity. In this case, a logical component port is a subset of the global entity ports.

A hardware connector may represent non-functional properties such as synchronization and commu-
nication: flow control, clock domain crossing, interactionsemantics, protocols of point-to-point buses,
shared buses or NoCs. A connector may also handle interruption and DMA services to transfer messages
between two connector fragments. The implementation of theconnector fragments may be software-to-
hardware or hardware-to-hardware.

A hardware container provide all remaining non-functionalservices such as persistence and lifecycle.
The lifecycle service may manage component creation/destruction e.g. with dynamic partial reconfigu-
ration, component initialization e.g. with a asynchronousor synchronous reset, parameters configuration
with register banks, and activation/deactivation e.g. with a clock or enable signal.

Besides, we consider that IP-XACT is to hardware componentswhat D&C is to software compo-
nents. OMG D&C and SPIRIT IP-XACT XML files describe the implementation, configuration and
interconnection of respectively hardware and software components. The IP-XACT specification could
correspond to a D&C PSM for the deployment and configuration of hardware components. D&C mainly
specifies application software components, while IP-XACT describes application and platform IP core
components. We argue that D&C concepts should be extended with SCA and IP-XACT concepts to

198Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

address the description, configuration and deployment of hardware/software application components on
distributed hardware/software platforms.

In the following, we present the mapping from abstract component concepts such ascomponent, port,
interface, attributes, operation parameters, andconnectors to concrete component concepts in
HDLs.

Component Implementation An abstract object-oriented component at system-level mayhave a func-
tional implementation e.g. in executable UML, Matlab/Simulink, SystemC TLM; a software implemen-
tation e.g. in C, C++ or Java; or a hardware implementation e.g. in synthesizable SystemC RTL, VHDL
or Verilog.

Component Port Owing to the abstraction gap between hardware and software constructs, an ab-
stract component port corresponds to several HDL I/O ports.The HDL block construct such as VHDL
entity or Verilogmodule permits a logical grouping of related signals to form a hardware interface.
A HW component port may be either a logical set of I/O ports in ahardware module e.g. VHDL in/out
ports in anentity, or a hardware module e.g. a VHDLentity. In the first approach, all software
interfaces of an abstract component are mapped to a single hardware interface. Due to the lake of name
scoping in HDLs, signal names must be artificially prefixed bythe port name of the abstract component
to ensure their uniqueness. The second approach allows the reuse of component ports as hardware mod-
ules which implement reusable hardware interfaces and protocols. This is coherent with object-oriented
software components, in which each port is represented by a class in software and therefore a module in
hardware. This ensures the separation of concerns between different component ports. From a synthesis
viewpoint, the hierarchy of blocks in the second approach isbroken by the synthesis tool and becomes
thus similar to the first mapping approach. A hardware mapping should be configurable to permit both
alternatives depending on the user preferences. Regardless of the mapping choices, both approaches
allow a transparent interconnection of hardware modules asthey finally provide and require the same
signals.

Moreover, input and output hardware ports may be passive or active. An input component port may
be active by pulling/reading data like the consumer in the producer/consumer model e.g. SystemC input
port. An input port may also be passive, when the outside pushes/writes data on it. Conversely, an
output port may be active by pushing/writing data like the producer in the producer/consumer model
e.g. SystemC output port. An output port may also be passive,when the outside pulls/reads data on it.
Connectors may adapt and decouple data production and consumption rates.

Component Interfaces A component interface is represented by a VHDLentity, a Verilog or Sys-
temCmodule. We distinguish three kinds of hardware interfaces: the business component core inter-
face, the invocation interface of component ports and the connector interface. These interfaces may be
configured by VHDL generics, Verilog parameter and SystemC static class variables or#define.

Internal component interface to access operation parameters The component interface is the
internal interface directly visible by the hardware designer. This interface is explicitly chosen and con-
figured from a family of standardized hardware interfaces. These choices are described in a standardized
mapping configuration file used by IDL3-to-VHDL compilers togenerate hardware component. Such a
standard configuration file can be inspired by High-Level Synthesis tools and could also be used in these
tools instead of custom configuration file, scripts or GUI. For instance, a read-write component attribute
or property may be associated to a register, RAM or FIFO interface.

7.3. Mapping OO component-based specification to system, SWand HW components 199

External component interface to send/receive invocations The invocation interface is the exter-
nal interface of component ports that is visible from the outside world i.e. the operating environment,
component users, bus etc. An operation call is invoked on this interface by a client through a connector.
The Operation Identifier (OpID) enables to select the methodto execute as in numerous works such as
[KR98], [Rad00] and [BGG+07].

The distinction between internal component object interfaces and external component port object
invocation interfaces can be useful for RAMs to explicitly express an external dependency thanks to a
generic RAM interface and to enforce reusable components independent of proprietary RAMs inside a
component.

Concurrent method invocations By default, operations defined in the same object interface are
mapped to the same hardware logical port. To simplify the mapping, method invocations on the same
hardware logical port are sequential, while method invocations on different hardware logical ports are
parallel. To enforce these mapping constraints, operationidentifiers are assigned on a single shared
address bus e.g. "operationID" like in [Rad00]. Protocol state machines may specify the order in which
methods are allowed to be called. We also consider to extend OMG IDL or UML to explicitly specify
the concurrency constraints among operations like in [GMTB04] and [JS07] and to map accordingly
sequential invocation to the same hardware logical port. The objective is to allow parallel execution of
non-concurrent methods and sequential execution of concurrent methods.

Interface Family We propose a family of named hardware interfaces with well-defined semantics
to enable a flexible, extensible and efficient IDL3-to-VHDL mapping. Indeed, such a mapping must be
highly flexible to satisfy the various performance-cost trade-offs inherent to the hardware domain. In
our proposition, the same IDL interface could be mapped to several hardware interfaces, because the
same functionality may require different hardware invocation protocols depending on the performance
trade-off.

Selection of the abstract interfaces or operations to be mapped A hardware mapping should
allow the selection of the abstract interfaces or operations, which are meaningful in hardware. Even
if theoretically any abstract interface could be mapped in hardware, the hardware cost would be too
important in practice.

Attributes and operation parameters In the same way that CORBA provides transparent access to
attributes and operation parameters, a hardware mapping should mask the access to and storage of com-
ponent properties and method parameters. To allow concurrent access to operation parameters from
method implementation, each parameter must have unshared data signals.

The width of the data bus used to transfer parameters may be explicitly chosen during IDL compila-
tion to save area. Operation parameters, whose size are larger that the data bus width, must be serialized.
Component interfaces should have unshared data buses.

Attributes and method parameters stored within hardware component ports The location of
the memory to store attributes and method parameters may be within the component, in the component
port or in an external on-chip or off-chip memory.

Attributes and methods parameters may be stored in registers or RAM/ROM inside a component port
to separate functional aspects such as computation from non-functional aspects such as memory storage
and concurrent access control.

200Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

The nature of the memory (register, internal or external RAM/ROM) used to store attributes and
parameters value may be inferred by an IDL compiler from their types (scalar like integer or constructed
like array and struct). However, the resulting hardware component interface shall be explicitly chosen in
a mapping configuration file used by IDL3 compilers. A family of named hardware interfaces shall be
standardized and parameterized e.g. by VHDL generics. The internal component interface for attributes
stored in registers may be composed of only a data bus since nocontrol signals may be required. The
component interface for attributes stored in RAM require a generic RAM interface to be independent
from proprietary memory interfaces on FPGA/ASIC platforms.

The memory address mapping and data layout of parameters should be explicitly defined in the
mapping configuration file. The method invocation interfacerequires control and data buses to invoke
the hardware method implementation. The control bus contains an virtual address bus to select the
method to execute as in [Rad00].

Implementation A component implementation is represented by a VHDLarchitecture.

Configuration A component implementation is selected by a VHDLconfiguration.

Connectors Software connectors are typically represented in programming languages with procedure
calls and shared data, and usually take the form of librariesand frameworks. In hardware description
languages, we can notice that interactions among hardware modules are specified using VHDL signals,
Verilog wires and SystemC channels, memory modules (registers, FIFO, RAM) and more rarely proce-
dure calls.

Taxonomy of hardware connectors We consider all these hardware languages constructs as hard-
ware connectors that are used to bind hardware components. Like abstract components, an abstract con-
nector at system-level may have a functional implementation e.g. in executable UML, Matlab/Simulink,
SystemC TLM; a software implementation e.g. in C, C++ or Java; or a hardware implementation e.g. in
synthesizable SystemC RTL, VHDL or Verilog.

Moreover, we argue that the taxonomy of software connectorsproposed in [MMP00] can be eas-
ily applied to hardware to provide a unified concept of connector at system-level. Indeed, a hardware
connector consists of one or more ducts i.e. wires or signalsused for control transfer e.g. forclock,
reset, data_valid,enable, control bus signals, and data transfer e.g. data bus signals for packets
serialized on a parametrized data width. The separation between control and data in software connec-
tors is a common practice in hardware design with the controlpath e.g. implemented using conditional
statements and FSM, etc., and the data path e.g. implementedusing data flow operators such as adders,
shifter, etc.

We propose some examples of hardware connectors for each connector type identified in [MMP00].
Procedure call connectorshave been proposed in the application of object concepts down to hard-

ware [Dv04a]. They were studied in the section 4.2. Examplesof such connectors include [KRK99],
[Rad00] and [BRM+06].

Event connectorsinclude the heterogeneous composite connector for interruptions, which consists
of Interrupt Service Routines (ISRs), Programmable Interrupt Controllers (PICs) and interruption lines.
Transfer of control is supported by IRQ signals that make theprocessor Program Counter (PC) jump to
the ISR, while transfer of data are supported by usual bus transfers and DMA controllers.

Data access connectorsare used to read/write data from transient memories such as registers, FIFO,
internal and external RAM or persistent memories like flash memories, Direct Memory Access (DMA)
controllers, parallel-to-serial data converters using shift registers, rate converter using FIFOs, protocol

7.3. Mapping OO component-based specification to system, SWand HW components 201

converters such as bus bridges. Adata access connectormay be bound to a standard bus interface to
configure hardware components.

Linkage connectorsinclude wires connecting IP cores to on-chip/off-chip buses and NoC links.
Stream connectorsinclude hardware pipes i.e. the point-to-point wires used in custom data bus to

bind data flow-oriented IP cores within the same FPGA chip that act as hardware filters in the PIPES

AND FILTERS architectural pattern [BMR+96], serial bus controllers such as RapidIO and Ethernet con-
trollers, and burst based buses. A stream connector that communicates behind the FPGA chip boundaries
may be directly bound to the physical interface i.e. pins. ofFPGA chips.

Arbitrator connectors include hardware multiplexers (mux), arbiters, schedulers and address de-
coders that are typically found in on-chip, off-chip bused such as AHB and NoC routers, or in OSSS
guards [BGG+07] and channels [GBG+06].

Adaptor connectors include hardware interface and protocol adapters in bridges and NoC Network
Adaptor. Many works in the literature deal with the synthesis of hardware adapters such as [MS98].

Distributor connectors are represented by the broadcast functionality of NoCs and off-chip bus like
the CAN bus and socket interface like OCP.

Connector Duct Family We keep the same connector model than [MMP00]. A hardware connec-
tor has one or more ducts used to transfer control and data. However, the taxonomy in [MMP00] does
describe ducts and the direction of data and control flow. Based on our previous family of interfaces, we
refine our taxonomy of hardware connectors by identifying atomic ducts whose roles may have different
interaction semantics as shown in figure 7.10. A connector results from the composition of hardware
interfaces to represent different interaction semantics.Connector ports or roles implement the chosen
hardware interfaces.

In this section, we explore the mapping space for procedure call connectors, which are required by
the client-server object model of CORBA. As a consequence, interactions are mainly based on point-to-
point and one-to-one communications.

The transfer of control is either blocking for synchronous invocations or not blocking for asyn-
chronous invocations. A procedure call connector is composed of two ducts: one duct for invocation
requests and one duct for invocation replies. These ducts may support buffering (e.g. register, FIFO,
LIFO or local/system RAM), flow control, reliability, and ordering of transfers. A duct may be a simple
set of point-to-point wires, an on-chip bus such as AHB or on-board bus like TI DSP EMIF (External
Memory Interface), HPI (Host Port Interface) and Expansion(XBUS) buses. The roles of duct are a
composition of two atomic push or pull interactions. The direction of the transfer of control goes from
the client to the server and is indicated by the direction of the push and pull arrows in figure 7.10. The
direction of the transfer of data goes from a component output port to a component input port. In push
interactions, the direction of the transfers of control anddata is the same from the client to the server. In
pull interactions, transfer of control goes from the clientto the server, while transfer of data goes from
the server to the client.

Thepush connector ductis only based on push interfaces. Two push connector ducts are used to
transfer requests and replies in hardware objects [Frö06] [Rad00] [KRK99] [BRM+06]. The "wire" push
connector contains a duct without memory, while the "delay"push connector has a duct with register(s)
to delay the arrival of data. This type of connector is also used in software to send messages in the
message passing model.

Thepull connector duct is only based on pull interfaces. We distinguish theproactivepull connector
in which the master input port initiates the pull interaction on its own and thereactivepull connector in
which an event triggers the pull interaction. For instance,theproactivepull connector is used for polling
the value of a register i.e. to perform blocking read. Thereactivepull connector is used to trigger a read

202Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

after an event e.g. an interrupt. In this case, the client is master on the bus, whereas the server is slave on
the bus. The server initiates the interaction instead of theclient: there is aninversion of control[Kra08].

The push-pull connector duct uses both push and pull interfaces. It may provide memory and
flow control. This connector is used in the producer/consumer communication model like in Unix pipes
and sockets, in SystemC channels, OSSS channels [GBG+06] and HLS tools such as [Gra07] [Alt07b].
Producers and consumers act as clients, while the duct acts as a server, which receives push requests
from the producer and pull requests from the consumer.

Thepull-push connector ductrepresents an active connector duct in which the duct acts asa client,
and input and output component ports acts as servers. The duct reads data from an output port and writes
data to an input port. For instance, this connector is used bythe SCA Core Framework toget a provides
port object reference andconnect it with a uses port.

Figure 7.10: Collection of connector ducts supporting different interaction semantics

Mapping configurations Based on our previous family of hardware connectors, we define a set of
non-exhaustive mapping configurations to take into accountdifferent combinations: hardware compo-
nents request and reply ports may be master or slave, performread or writes for requests and responses,
and share interface signals. A mapping configuration results from the composition of hardware/software
components and connectors. The request and reply messages of an operation call may be transferred in
one or two connectors. We identify four mapping configurations for procedure call connectors that are
represented in figure in 7.11: 1) two push connector ducts forthe request and the reply (peer-to-peer),
2) a push connector duct for the request and a pull connector duct for the reply (client-server or master-
slave), 3) one connector duct for request and reply; the hardware interface is thus shared, but requests
and replies are not pipelined, 4) a non-blocking connector duct for non-reliable oneway operations, for
which no reply is expected, and a blocking connector duct forreliable oneway as in Real-Time CORBA.

Figure 7.12 presents two possible mapping configurations for two component ports. In figure 7.12a,
two wire push connector ducts are used for requests and replies, while two FIFO push-pull connector
ducts are used in figure 7.12b.

More generally, we argue that the mapping exploration spacefor connectors include the solutions
proposed in [LvdADtH05]. Lachlan et al. identify 16 types ofinteractions for one way message-passing
communication according to time, space and synchronization decoupling, and 16*16 = 256 possibilities
for two way interactions. We consider that these interactions should be represented by and "capitalized"

7.3. Mapping OO component-based specification to system, SWand HW components 203

Figure 7.11: Different component interface configurations

(a) With two wire push connector ducts

(b) With two FIFO push-pull connector ducts

Figure 7.12: Two possible mapping configuration for two component ports

204Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

in connectors.
One of our objectives is to show that the mapping explorationspace is much more vast and the

hardware/software interactions much more rich than the design points represented by the works from the
hardware object literature .

Hardware Invocation Protocol To provide a coherent programming model for HW and SW CCM
components, method invocations on the same CCM port i.e. defined within the same IDL interface
are sequential. The hardware invocation interface is thus shared between all methods as in [Rad00].
However, the method invocations on different CCM port may beconcurrent as in [Frö06] [BRM+06],
consequently they are mapped onto different hardware CCM component ports. These mapping assump-
tions are coherent with the software interpretation of CCM port as a communication interface. Thanks
to this interpretation, the invocation concurrency is explicitly expressed in IDL3 and the state coherency
modified by getters and setters is guaranteed thanks to sequential invocations.

Chu presents in [Chu06] handshaking protocols and data transfer protocols. Even if these protocols
are presented in the scope of data transfers between hardware components driven by different clock
frequencies, they are also applicable to hardware components in the same clock domain. The two main
handshaking protocols are based on four or two protocol phases.

The advantage of the four-phase handshaking protocol are that both the master and the slave do not
need to know the data transfer rate of each other and/or the clock frequency at which they operate.

The two-phase and four-phase handshaking protocol can be used for a two-way hardware operation
call without parameters and a void return value e.g.void start() and a reliable oneway operation
e.g. oneway void start(). Some possible mapping configurations include one pair ofreq/ack
signals forming one interface for the request-reply, two interfaces with the same direction (push-push) or
the opposite direction (push-pull) for the request and the response phase in parallel, one interface for the
request then the response phase in serial. These mapping configurations correspond to different trade-off
in terms of number of wires, handshaking overhead and reliability.

The two-phase and four-phase handshaking protocol allows the transfer of control like an enable
pulse between a master and a slave. The addition of a data signal can be introduced to transfer not
only control, but also data. Based on the previous handshaking protocols, three data transfer protocols
can be identified with decreasing reliability and overhead:four-phase handshaking transfer, two-phase
handshaking transfer and one-phase transfer. The four-phase handshaking transfer has a high latency and
blocks the master longer than the other protocols, but both participants make no timing assumption on
each other. For synchronous masters and slaves, a data transfer takes 5 cycles as master and slave FSMs
have three and two states respectively.

The one-phase transfer allows the maximum throughput of onetransfer per clock cycle, but cannot
receive back-pressure feedback from the slave to control the data flow. The master and the slave need
a timing agreement to guarantee that no data is lost or duplicated during the transfer. The two-phase
handshaking transfer is a trade-off between both previous solutions. It can divide the latency of the
four-phase handshaking transfer by 2 as a single handshaking phase occurs instead of two.

Interestingly, writing data from one asynchronous sub-system to another is called apushoperation,
while reading data is called apull operation [Chu06]. We have used the same terminology in our mapping
proposition.

Unidirectional data transfers can be implemented by apushoperation and apull operation depending
on the data signal direction. Bidirectional data transferscan be implemented by a push-pull operation
using two unidirectional data signals, a command signal to indicate the type of operation (push or pull)
and an optional address signal to designate a memory location. Since the push and pull operations
are mutually exclusive, a single command signal can be shared. Any number and kind of signals can

7.3. Mapping OO component-based specification to system, SWand HW components 205

be further added to the basic handshaking protocols to exchange additional control, address and status
information and build more complex protocols like bus protocols.

The two-phase and four-phase handshaking protocols requires synchronization during each transfer
and result in a high latency. To transfer a huge amount of data, the synchronization overhead can be
reduce using data transfer protocols based on a memory buffer such as a FIFO or a shared memory
(RAM). A FIFO only requires synchronization and blocks whena write transfer is initiated when the
FIFO is full or when a read transfer is initiated when the FIFOis empty. Otherwise, a data transfer can
be performed at each clock cycle. The shared memory buffer may be based on a single port RAM or
a dual port RAM to support concurrent read/write at different memory locations. Synchronization only
occurs when simultaneous access to the same address is requested.

We presented the basic communication building blocks used to transfer control and data between two
hardware modules: four phase, two phase, one phase, FIFO-based and shared memory-based protocols.
In conclusion, the choice of a hardware interface and protocol depends on the amount of data to transfers
and a trade-off between latency and area consumption as presented in [SKH98]. Our mapping proposition
is based on the semi-automatic choice and composition of these building blocks to map CORBA IDL
and UML interfaces to hardware interfaces.

Local transfer of operation parameters on the invocation interface As several operation pa-
rameters may be mapped onto the same hardware component port, the way parameters are transferred
on hardware interface signals should be explicit. The mapping configuration file should specify infor-
mations like: the data bus width allocated to each parameter, the endianness to determine if transfers
are LSB or MSB first and the data layout of parameters transfer. Indeed, different transfer modes may
be distinguished: Parallel or Spatial-Division Multiplexing (SDM) like in [Rad00] and [BRM+06], and
Serial or Time-Division Multiplexing (TDM) like in [BRM+06]. Different data type encoding and align-
ment rules may also be distinguished e.g. unaligned withoutpadding or aligned on data types size with
padding as in [Frö06] and CORBA CDR (Common Data Representation). The mapping configuration
depends on several trade-offs between timing/area, en/decoding complexity and bandwidth efficiency.

Transfer models to exchange messages on the communication interface Defining a family of
hardware interfaces is not sufficient to guarantee communication interoperability. Indeed, messages
derived from the IDL may be transparently transferred according to two models:Address Mapping
(AM) or Message Passing(MP).

In the Address Mapping model used in [Frö06], a message containing all packed parameters is se-
rialized according to the bus data width and each message chunk is sent at multiple network addresses.
There is at most one address per message chunk. The address decoder inside the skeleton splits message
chunks into parameters depending on their data type size. These parameters may be written into regis-
ters, FIFOs, RAMs or wires. A last write is required to signalthe last message chunk and locally invoke
the operation. An IDL specification could be used to generateHW/SW interfaces like [MRC+00].

In the Message Passing model used in [BRM+06], an operationId is mapped to a single address, on
which each message chunk is sent. This model only requires⌈log2(#operations)⌉ address signals per
IDL interface. The address decoder triggers a dedicated FSMfor each invocation message, which splits
message chunk into parameters and may write them into storage elements. There is one FSM state per
message chunk. This FSM statically knows the last message chunk and no additional write is required to
invoke the method.

206Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Common Interfaces and Protocols

Defining a mapping from IDLs to HDLs is a high-level interfacesynthesis problem. This mapping
requires to be flexible enough in reason of the inherent hardware trade-off between timing, area and
power consumption.

To support portability and interoperability of hardware components and propose a flexible and exten-
sible mapping, we propose common hardware interfaces and protocols to provide the building blocks of
a mapping framework. Such a framework will allow to customize a mapping to fit application require-
ments.

The purpose of this mapping framework is to explicitly associate with one or more operation param-
eters the required hardware interface and protocol that best correspond to the implicit communication
model of the parameter (control or data, continuous or buffered stream, with or without control flow,
memory-mapped access and so on). These interfaces present the mapping framework approach, but can
not be considered as exhaustive. New interfaces could be added to address unforeseen needs. The names
of the presented signals may be changed by the user to correspond to specific coding rules. User-defined
names are alias for the real name of the standard interfaces signal. The only important point is to respect
the standard interface protocol.

Figure 7.13 depicts this non-exhaustive and generic set of interfaces: from simple data interface
for registered attributes to addressable blocking interface for sequential synchronous invocations. Each
successive interface adds semantics: blocking or non-blocking, push semantics for write or pull for
read, with or without flow control, addressable or not. Theseinterfaces can be easily mapped onto
socket protocols like OCP. Instead of the raw OCP interface,its 1̃00 parameters, its bridging profiles and
some OCP subsets, these named interfaces explicitly specify the invocation semantics and ease mapping
configurability.

These interfaces are presented in more details in annexe A which describes the CORBA IDL3 to
VHDL and SystemC Language Mappings.

Mapping of Data Structure

As depicted in figure 7.14, the data address offset, data layout and endianness must be explicitly defined
in the mapping configuration file.

Transfer of operation parameters

A logical hardware input port is a a set of VHDL entity I/O ports that is associated with one or several
input parameters It implements a standard hardware interface (syntax) and protocol (semantics) e.g.
push or pull, blocking or non-blocking, with/without data or flow control and addressable interface. This
mapping should be flexible and extensible, because the nature of operation parameters is totally implicit
in IDL: control flow, data flow or a mix, continuous or discontinuous, with or without flow control etc.
The association between parameters and input ports is explicitly specified in a mapping configuration
file. The component-oriented nature of CORBA can be used to define dedicated IDL interfaces for
control, configuration or data-oriented aspects. The nature of communication could be expressed by new
IDL keywords to better characterize CORBA component ports such asbuffered, addressable,
stream and infer hardware interfaces based on register, fifo, and RAM. When several input parameters
are associated to an input port, the way input parameters aretransferred on hardware interface signals
should be explicit. The data bus width is specified in the mapping configuration file. It is not required
to be a power of two. The endianness is configured to determineif transfers are LSB or MSB first. The
data layout of parameters transfer shall also be configured.

7.3. Mapping OO component-based specification to system, SWand HW components 207

Figure 7.13: Non exhaustive standard interfaces required for invocation and parameters transfer

208Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.14: Data layouts for data structures aligned on 32bits

Different transfer modes can be distinguished in particular: Serial or Time-Division Multiplexing
(TDM), where one parameter (chunk) is transferred at a time, andParallel or Spatial-Division Multi-
plexing (SDM) where (one chunk of) each parameter is transferred at a time[Bje05]. Serial transfers
require less hardware wires therefore less silicium area and power consumption, but are slower. Paral-
lel transfers require more hardware wires therefore more silicium area and power consumption, but are
faster.

Different encoding rules can be distinguished in particular: with paddingwhere non-significant data
are inserted to align parameters on address boundaries as inCORBA CDR [OMG08b], andwithout
paddingwhere no data are inserted to align parameters as in ICE [HS08] [Hen04]. As in ASN.1 Packed
Encoding Rules (PER) [IT02] support both alternatives. Unaligned data are more compact but are slower
for middlewares to encode and decode. Aligned data are easier to encode and decode but use more
bandwidth.

We propose to support all these solutions to best fit each particular application requirements in DRE
systems. Designers should indicate to IDL-to-HDL compilers which one they want to use during map-
ping configuration. For both transfer modes and encoding rules, reusable connectors can be envisaged to
convert parameter data from one configuration to another.

Figure 7.15 illustrates the different data layouts to transfer input parameters and the associated trade-
offs in terms of performance (timing, area and power consumption).

Hence, we identify two main solutions to transfer parameters: 1) a dedicated signal for each parame-
ter whose width correspond to the size of the parameter data type. An appropriate naming convention is
required to avoid a name clash. This solution is user-friendly and performant, but requires a lot of area.

2) shared wires for all parameters going in the same direction whose width is fixed by a constant (e.g.
VHDL generic). This may generalized to all parameters of alloperations of an interface. This approach
is the most generic, area-efficient, but less user-friendlyas parameters are serialized.

The data width used to transfer parameters in parallel or serial may be chosen at instantiation time.
The endianness and alignment rules - with or without padding- should be defined. The VHDL data
type e.g. record inferred from UML/IDL definitions could notbe used in entity/component interface,
but within VHDL implementation (architecture) where thesedata types should be serialized in a generic

7.3. Mapping OO component-based specification to system, SWand HW components 209

Figure 7.15: Transfer of parameters

way on the shared data bus (solution 2). Each approach has itsstrengths and weaknesses. It is a trade-off
between flexibility, complexity to guaranty portability/interoperability and performance (area, timing,
power consumption).

By default, the transfer of parameters should beGlobally Serial Locally Parallel(GSLP). Indeed,
request messages are typically globally serialized on buses, while operation parameters may be locally
transferred in parallel to maximize performance and avoid abottleneck regardless of the use of serial or
parallel buses. Adapter connectors would be in charge of serialization/deserialization between the bus
interface and the hardware invocation interface.

Mapping Illustration and Hardware Component Architecture

We consider a filter component that provides one configuration interfaceConfig to configure the mode
m, the precisionp, the lengthl and the coefficientscf and toinitialize, start andstop its
processing. This filter also provides and requires a data transfer interface calledDataStream to receive
and send an octet sequence.

i n t e r f a c e Conf ig {
a t t r i b u t e i n t 3 m; a t t r i b u t e o c t e t p ;
a t t r i b u t e s h o r t l;
vo id i n i t i a l i s e () ; vo id s t a r t () ; vo id s t o p () ;

5 vo id s e t C o e f f (i n sequence < o c t e t , 128> c f);
/ / a l t e r n a t i v e s d e f i n i t i o n s :
/ / vo id c o n f i g u r e (i n i n t 3 m, i n o c t e t p , i n s h o r t l);
/ / vo id setMode (i n i n t 3 m); vo id getMode (ou t i n t 3 m) ;

} ;
10 i n t e r f a c e DataSt ream {

210Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

vo id pushOc te t (i n sequence < o c t e t > s t rm);
} ;
component F i l t e r {

p r o v i d e s Conf ig c o n f i g P o r t;
15 p r o v i d e s DataSt ream i n p u t P o r t;

uses DataSt ream o u t p u t P o r t;
} ;

Listing 7.3: Interface and component definitions for the FIRfilter example

The hardware filter component is depicted in Figure 7.16. This figure illustrate the hardware com-
ponent architecture we propose and a possible architecturetemplate to be filled by an IDL-to-VHDL
compiler. As all configuration attributes and methods are defined in the same IDL interface, they share
the sameAddressable Blocking Push(ABH) interface for invocation request and Blocking Push (BH)
interface for reply. After configuration, these parametersmay be accessed concurrently by the IP core as
required.

Figure 7.16: Hardware object-oriented component architecture of the FIR filter

Blocking push interfaces are also selected forDataStream ports. Connectors are fragmented into
so-called connector fragments representing notably stubsand skeletons. TheConfig connector frag-
ment includes a skeleton, which translates invocation messages received from a bus into invocations. The
inputDataStream connector fragment includes a skeleton and a FIFO to buffer data. Due to the point-
to-point connection with another component, no stub is required for the outputDataStream connector
fragment. Note that the same sequence data type may be eithermapped into RAM(s) forcf or a FIFO
for strm and thus requires different hardware interfaces.

7.3. Mapping OO component-based specification to system, SWand HW components 211

7.3.3 Hardware Mapping Applications

In the following, we illustrate the application of the IDL-to-VHDL mapping to a Transceiver and to
hardware CORBA components with the Dining Philosophers problem.

Transceiver

To improve the portability of waveform applications, the SDRForum investigates the standardization of
APIs to manage theTransceiverof radio platforms.

For instance, the Universal Software Radio Peripheral (USRP) used in the GNU radio project is a
hardware radio platform including an FPGA and DAC/ADC on which different transceiver boards may
be plugged in to transmit and receive radio signals in predefined frequency bands such as AM/FM radio,
cell-phones (GSM), WIFI, GPS or HDTV bands. The USRP boards may be connected through an USB
port in the first version or a Gigabit-Ethernet port in the second version to any desktop computer, which
control this board using the GNU radio software library. Basically, the GNU radio software applications
send and receive IQ samples to and from the USRP board. Interestingly, the GNU radio APIs remains
the same regardless of the transceiver board.

Figure 7.17: Position of the transceiver sub-system in a radio chain

As illustrated in figure 7.17, a Transceiver transforms complex baseband samples from the physical
layer (PHY) into a low-power RF analogue signal to the Power Amplifier (PA) in the transmit channel
and conversely in the receive channel [NP08]. In addition, the Transceiver perimeter tends to be extended
to the PA and the Antenna. The Transceiver may be configured bythe Physical layer, the MAC layer or
a reconfiguration controller e.g for cross-layer optimization in cognitive radio. Typically, a RF front-end
contains one or several sets of transceiver, Power Amplifiers (PA) and antennas for instance in Multiple
Input Multiple Output (MIMO) radio systems using multiple antennas. For instance, in the open source
hardware design written in Verilog of the USRP v1, the FPGA contains a pair of DUC/DDC including
hardware filters and a CORDIC-based NCO.

TheTransceiver Facilityspecification proposed by Thales [NP09] defines a set of radio-relatedCom-
mon ConceptsandFeatures, which are organized as a toolbox allowing the control and configuration of
a Transceiver. The Common Concepts define radio-specific notions such asBase-band Samples,
Channelization,Dwell Structure,Frequency Set, RF Level andGain.

Each Feature represents a capability within the Facility which may be selected to satisfy waveform
application needs and implemented by the Transceiver. In particular, the Transceiver Facility defines
nine features:Transmit, Receive, HalfDuplexControl, FrequencyHoppingControl,
RxAdaptiveGainControl,TxAdaptiveLevelControl,AsynchronousTxFlowControl,

212Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

DeviceManagement andErrorsManagement. For more information, the reader may refer to
[NP08]. Each Feature specifies a set of APIs and non-functional QoS properties called "performance at-
tributes" to allow application or platform developers to manage the transceiver capabilities. A Transceiver
may be viewed as an abstract component having a set of optional ports, which are bound to a chosen Fea-
ture interface. Following a MDA/MDE approach, the objective of this specification is to define abstract
interfaces in a Platform-Independent Model (PIM) and map them to software and hardware interfaces in
Platform-Specific Models (PSM). These abstract interfacesare primarily defined in UML class diagrams,
while definitions in CORBA IDL were also requested by SDRForum partners to implement them in a
SCA CoreFramework.

In this work, we participated with an hardware engineer fromThales and Indra to the definition of
the hardware interfaces for theTransmitand ReceiveFeatures. This experiment allows me to apply
my mapping proposition and evaluate it on a concrete examplefrom the beginning of our interface and
component-centric specification and design flow. Figure 7.18 provides an overview of the Transmit
Channel feature. ATransmit Channel of a Transceiver subsystem performs the up-conversion of
an input Baseband Signal burst into an RF Signal burst. It basically consists of a FIFO to store Baseband
samples and an up-conversion chain which performs the upsampling and filtering of baseband samples
to generate the RF signal.

The Transmit Channel is managed by two APIs:TransmitDataPushandTransmitControl.
The TransmitDataPush interface contains an abstract operation calledpushBBSamplesTx to
send packets of base-band samples in the Transceiver FIFO. Its performance attributes include the ex-
pected sample rate and the size of the base-band samples packet. TheTransmitControl interface
is used by a Waveform Application to determine when and how the RF signal is transmitted during a
Transmit Cycle.

Figure 7.18: Overview of the Transmit Channel Feature [NP09]

The specification has deliberately been written to be simpleas possible to ease its software and
hardware implementation. Basically,bidirectional IDL operations within, out andinout parameters
and exceptions may be translated intounidirectional operations with onlyin parameters to simplify
synchronization problems. As no IDL interface was defined inthe first version of the specification
[NP09], listing 7.4 presents a possible interface.

module T r a n s c e i v e r F a c i l i t y {
/ / BBSample and BBPacket Concep ts

3 t y p e d e f s t r u c t BBSampleStruct {

7.3. Mapping OO component-based specification to system, SWand HW components 213

s h o r t v a l u e I;
s h o r t valueQ;

} BBSample;
t y p e d e f sequence <BBSample> BBPacket;

8 / / T ransm i t F e a t u r e
module T ransm i t {

i n t e r f a c e T ransm i tDataPush {
vo id pushBBSamplesTx (i n BBPacket thePushedPacke t , i n boolean

endOfBurs t);
} ;

13 } ;
} ;

Listing 7.4:TransmitDataPush interface in CORBA IDL

Listing 7.5 presents the proposed hardwareTransmitDataPush interface described in VHDL.

1 l i b r a r y IEEE;
use IEEE . s t d _ l o g i c _ 1 1 6 4 .ALL;
e n t i t y T ransm i tDa taPush i s
g e n e r i c (

G_CODING_BITS : n a t u r a l := 16−− f o r i n s t a n c e
6) ;

p o r t (
−− Common S i g n a l s
c l k : i n s t d _ l o g i c; −− Clock s i g n a l
r s t _ n : i n s t d _ l o g i c; −− R e s e t s i g n a l

11 −− pushBBSamplesTx
BBSample_I : i n s t d _ l o g i c _ v e c t o r (G_CODING_BITS−1 downto 0);
BBSample_Q : i n s t d _ l o g i c _ v e c t o r (G_CODING_BITS−1 downto 0);
BBSample_wri te : i n s t d _ l o g i c;
B B P a c k e t _ s t a r t : i n s t d _ l o g i c;

16 BBPacket_end : i n s t d _ l o g i c;
BBSample_ready : ou t s t d _ l o g i c
−− Other s i g n a l s

) ;
end e n t i t y T ransm i tDa taPush;

Listing 7.5: HardwareTransmitDataPush interface in VHDL

A blocking push data interface based on a two-phase handshake was chosen to allow the communi-
cation between a client and a server with different data production and consumption rates. ABBSample
is transmitted only if bothBBSample_write and BBSample_ready signals are asserted. The
BBSamplePacket concept is described in VHDL using additional signals to indicate the start and
the end of a sample packet. Every feature using theBBSamplePacket concept has to implement
the following protocol: theBBSamplesPacket_start signal is asserted with the first sample of a
packet, theBBSamplesPacket_end signal is asserted with the last sample of a package. In any other
case,BBSamplesPacket_start andBBSamplesPacket_end signals are deasserted.

During the elaboration of this mapping with hardware engineers, I observed that VHDL records
are not flexible enough as they cannot be parametrized by VHDLgenerics. Obviously, a "software-
oriented" naming convention likepushBBSamplesTx_push instead ofBBSample_write is not
natural for hardware engineers, that is what an IDL-to-VHDLmapping should allow the renaming of
signals like in OCP configuration file [OI06], while respecting a standardized interface protocol like the
blocking push data interface in this case. It is also more natural to define a VHDLentity rather than

214Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

a VHDL component in a VHDL package even if both basically define the same hardware interface.
Hardware engineers do not understand the necessity of defining a hardware interface in HDL to support
the portability of RTL code at source-level like for software APIs, even if the SCA MHAL [JTR07]
already proposes such interfaces for FPGA/ASIC.

As shown in figure 7.19, a simple table describing the direction, size and meaning of signals are
sufficient for hardware engineers.

Figure 7.19: TransmitDataPush VHDL entity signals

Defining hardware interface signals is not sufficient to use them, that is why their timing behavior
has also been specified by a timing diagram presented in figure7.20.

Figure 7.20: BBSamplePacket TransmitDataPush Timing diagram

In a similar way, the mapping of theReceive interface has been proposed. ThepushBBSamplesTx
interface signals have only the opposite direction.

Even if we also proposed internally IDL interfaces for the configuration services, they did not have

7.3. Mapping OO component-based specification to system, SWand HW components 215

been incorporated in the first release of the specification. Nevertheless, we present our proposition for the
TransmitControl IDL interface in listing 7.6. In this interface, thecreateTransmitCyclePro-
file operation [NP09] is not represented as this kind of "factory" method is useful for a software imple-
mentation, but not for a hardware implementation. Indeed, such an operation is used to create a software
data structure, which is already available in the hardware implementation e.g. under the form of regis-
ters. Interestingly, this shows that a IDL-to-RTL mapping should allow to choose which operations are
required to be implemented in hardware instead of blindly generating RTL code for all IDL operations.

module T r a n s c e i v e r F a c i l i t y {
t y p e d e f Time ULong; / / f o r i n s t a n c e
t y p e d e f Frequency ULong; / / f o r i n s t a n c e
t y p e d e f AnaloguePower ULong; / / f o r i n s t a n c e

5 / / T ransm i t F e a t u r e
module T ransm i t {

i n t e r f a c e T r a n s m i t C o n t r o l {
vo id c o n f i g u r e T r a n s m i t C y c l e (

ULong t a r g e t C y c l e I d ,
10 Time r e q u e s t e d T r a n s m i t S t a r t T i m e ,

Time reques tedT ransm i tS topT ime ,
Frequency r e q u e s t e d C a r r i e r F r e q u e n c y ,
AnaloguePower requestedNominalRFPower);

vo id se tT ransm i tS topT ime (
15 ULong t a r g e t C y c l e I d ,

Time r e q u e s t e d T rans m i tS t opT i me);
} ;

} ;
} ;

Listing 7.6:TransmitControl interface in CORBA IDL

Listing 7.7 presents the proposed hardwareTransmitControl interface described in VHDL. We
choose a non-blocking push interface to locally transfer inparallel all operation parameters. According
to our mapping proposition, the configuration registers arelocated in theTransmitControl skeleton
providing storage and synchronization services. The_write signals are used to forward the invocation
to the application component and inform it that configuration registers may have been modified. The
configuration values may be written to the skeleton either asa message containing all operation param-
eters in a FIFO or as memory-mapped accesses for each parameter. Regardless of the message-passing
or memory-mapping interface chosen to transfer parameters, the hardware application component may
continuously read register values via theTransmitControl interface signals (data interface) and
keep inform for their modifications. To not restrict the performance of hardware application components
regardless of the platform communication service, we propose the concept ofGlobally Parallel Locally
Serial(GPLS) transfer. Globally at the system level, application data are serialized on platform commu-
nication buses e.g. on 16 or 32 bits. Locally at the IP core level, a serial data transfer to and from an IP
represents an inherent communication bottleneck that could not efficiently use a parallel bus. Conversely,
a local parallel transfer provide the maximum performance regardless of the use of a serial or parallel
bus. We conclude that the transfer of operation parameters between an application component and a
platform adapter (stub/skeleton or container) should be bydefault parallel, while transfers between this
platform adapter and another platform adapter via an hardware ORB and the available transport layers
(on-chip/off-chip bus/NoC) are generally serialized. In this way, the routing constraints are only local
between a component and its adapter, which may adapt the datawidths of the application invocation
interface and the platform connectivity interface. In any case, the final IDL-to-RTL mapping should be
configured according to the specific QoS needs of the application and the capabilities of the platform.

216Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

1 l i b r a r y IEEE;
use IEEE . s t d _ l o g i c _ 1 1 6 4 .ALL;
e n t i t y T r a n s m i t C o n t r o l i s
g e n e r i c (

G_TIME : n a t u r a l := 32−− f o r i n s t a n c e
6 G_FREQUENCY : n a t u r a l := 32−− f o r i n s t a n c e

G_ANALOGUE_POWER : n a t u r a l := 32−− f o r i n s t a n c e
) ;
p o r t (
−− Common S i g n a l s

11 c l k : i n s t d _ l o g i c; −− Clock s i g n a l
r s t _ n : i n s t d _ l o g i c; −− R e s e t s i g n a l
−− c o n f i g u r e T r a n s m i t C y c l e
c o n f i g u r e T r a n s m i t C y c l e _ w r i t e : i n s t d _ l o g i c; −− push i n t e r f a c e
c o n f i g u r e T r a n s m i t C y c l e _ t a r g e t C y c l e I d : i n s t d _ l o g i c _ v ec t o r (31 downto 0);

16 c o n f i g u r e T r a n s m i t C y c l e _ r e q u e s t e d T r a n s m i t S t a r t T i m e: i n s t d _ l o g i c _ v e c t o r (
G_TIME−1 downto 0);

c o n f i g u r e T r a n s m i t C y c l e _ r e q u e s t e d T r a n s m i t S t o p T i m e : i ns t d _ l o g i c _ v e c t o r (
G_TIME−1 downto 0);

c o n f i g u r e T r a n s m i t C y c l e _ r e q u e s t e d C a r r i e r F r e q u e n c y : i ns t d _ l o g i c _ v e c t o r (
G_FREQUENCY−1 downto 0);

con f i gu reT ransm i tCyc le_ reques tedNomina lRFPower : i n s td _ l o g i c _ v e c t o r (
G_ANALOGUE_POWER−1 downto 0);

−− se tT ransm i tS topT ime
21 s e t T r a n s m i t S t o p T i m e _ w r i t e : i n s t d _ l o g i c; −− push i n t e r f a c e

s e t T r a n s m i t S t o p T i m e _ t a r g e t C y c l e I d : i n s t d _ l o g i c _ v e c t or (31 downto 0);
s e t T r a n s m i t S t opT i me_ r eque s t edT ran sm i t S t opT i me : i n s t d_ l o g i c _ v e c t o r (

G_TIME−1 downto 0);
−− Other s i g n a l s

) ;
26 end e n t i t y T r a n s m i t C o n t r o l;

Listing 7.7: HardwareTransmitControl interface in VHDL

Hardware CORBA Components with the Dining Philosophers problem

To illustrate the IDL3-to-VHDL mapping, we reuse the same example which has been implemented in
CCM in OpenCCM67 and MicoCCM68: the Dining Philosophers.

Dining Philosophers The Dining Philosophers example is a classical concurrencyproblem. Philoso-
phers sit around a round table. There is a fork between each Philosopher. Philosophers think until they
become hungry, then they try to take two forks in their left and right side in order to eat. Obviously, there
are not enough forks for all philosophers to eat at the same time. The objective is that philosophers do
not die from starvation. In the following section, we present the CORBA IDL3 modeling of this problem
and a possible mapping in VHDL.

IDL3

67http://openccm.ow2.org
68http://www.mico.org, http://www.fpx.de/MicoCCM

7.3. Mapping OO component-based specification to system, SWand HW components 217

--philo.idl3
import Components;
module DiningPhilosophers {

exception InUse {};
interface Fork {
void get () raises (InUse);
void release ();

};
component ForkManager {
provides Fork the_fork;

};
home ForkHome manages ForkManager {};
enum PhilosopherState {
EATING, THINKING, HUNGRY,
STARVING, DEAD

};
eventtype StatusInfo {
public string name;
public PhilosopherState _state;
public unsigned long ticks_since_last_meal;
public boolean has_left_fork;
public boolean has_right_fork;

};
component Observer {
consumes StatusInfo info;

};
home ObserverHome manages Observer {};
component Philosopher {
attribute string name;
uses Fork left;
uses Fork right;
publishes StatusInfo info;

};
home PhilosopherHome manages Philosopher {
factory new (in string name);

};
};

RTL mapping in VHDL We apply our mapping proposition to the previous IDL3 definitions in
philo.idl3 file according to the mapping rules defined in the annexe. The following code has been man-
ually generated in thephilo.vhdfile. Each VHDL component is associated to a dedicated VHDL file
which contains VHDL entities:ForkManager.vhd, Observer.vhdandPhilosopher.vhd. Obviously, these
files are not represented for space reasons. TheCorba.vhdcontains the definitions of CORBA types.

--philo.vhd
library IEEE;
use IEEE.std_logic_1164.all;
library CORBA;

218Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

use CORBA.CORBA_types.all;
library philo;

package DiningPhilosophers is
constant getId : std_logic_vector(1 downto 0) := "01";
constant releaseId : std_logic_vector(1 downto 0) := "10";
constant DiningPhilosophersExc : natural := 1;
constant InUse : std_logic_vector(DiningPhilosophersExc-1 downto 0) := "1";
component ForkManager port (
clk : in std_logic;
rst_n : in std_logic;
the_fork_req : in std_logic;
the_fork_opID : in std_logic_vector(2 downto 0);
the_fork_ack : out std_logic;
the_fork_exc : out CORBA_exception;
the_fork_exc_id : out std_logic_vector(DiningPhilosophersExc-1 downto 0)

);
end component ForkManager;
type PhilosopherState is (EATING, THINKING, HUNGRY, STARVING, DEAD);
type StatusInfo is record
name : CORBA_short;
state : PhilosopherState;
ticks_since_last_meal : CORBA_unsigned_long;
has_left_fork : CORBA_boolean;
has_right_fork : CORBA_boolean;

end record StatusInfo;
component Observer port (
clk : in std_logic;
rst_n : in std_logic;
info_req : in std_logic;
info : in StatusInfo

);
end component Observer;
component Philosopher port (
clk : in std_logic;
rst_n : in std_logic;
get_name : in std_logic;
set_name : in std_logic;
left_req : out std_logic;
left_opID : out std_logic_vector(2 downto 0);
left_ack : in std_logic;
left_exc : out CORBA_exception;
left_exc_id : out std_logic_vector(DiningPhilosophersExc-1 downto 0);
right_req : out std_logic;
right_opID : out std_logic_vector(2 downto 0);
right_ack : in std_logic;
right_exc : out CORBA_exception;
right_exc_id: out std_logic_vector(DiningPhilosophersExc-1 downto 0);

7.3. Mapping OO component-based specification to system, SWand HW components 219

info_req : out std_logic;
info : out StatusInfo

);
end component Philosopher;

end package DiningPhilosophers;

7.3.4 Mapping Implementation and Code Generation

Although the OMG promotes an MDA approach based on standardssuch as MOF, UML, XMI, and
transformation languages like QVT (Query/View/Transformation) and MOF-to-Text (M2T), no standard
meta-model is standardized for standard programming languages such as C, C++ and Ada. As far we
know, only a Java meta-model has been standardized by the OMGin the scope of the UML Profile for
Enterprise Distributed Object Computing (EDOC). As a result, standard CORBA IDL language map-
pings are not standardized using a MDA approach with standard model-to-model transformations, but
using language-to-language mappings with non-executabletextual specifications and without any refer-
ence implementation [OMG08c] [OMG01] [OMG99] [OMG08d].

As illustrated in [JTR05] with OCP and by high-level synthesis tools from C-like languages, we
argue that the mapping between software interfaces in UML and CORBA IDL to hardware interfaces
in HDLs needs to be much more flexible and configurable than classical one-to-one mappings between
software programming languages.

Besides, some works have proposed in the literature meta-models and UML profiles for VHDL
[Dv04a] [Frö06] [Beu07] [WAU+08] and SystemC [RSRB05] [WZZ+06]. Such works may be a starting
point for standard OMG specifications.

To specify standard language mappings from textual or graphical specification languages such as
UML, CORBA IDL, AADL, Domain Specific Languages (DSLs) to software programming languages
such as C, C++, Ada, and Hardware Description Languages (HDLs) such as VHDL, Verilog, SystemC
and SystemVerilog which are compliant with a MDA approach:

1. a meta-model must be specified using OMG Meta-Object Facilities (MOF) for each of these input
and output languages to efficiently exploit their concepts and semantics in model transformations

2. model-to-model transformations must be defined from input meta-models to output meta-models
using MOF QVT transformation language,

3. model-to-text transformations must be defined using the MOF Model to Text Transformation Lan-
guage (MOFM2T) to generate source code from models according to language syntax.

In this work, we focus on mapping object-oriented software components defined in UML and/or
CORBA IDL3 to hardware components at register-transfer level (RTL) in VHDL and transactional level
in SystemC.

Interestingly, the UML profile for CORBA and CCM [OMG08g] already specifies a standard meta-
model and UML stereotypes for CORBA objects and components.Parts of the CORBA/CCM meta-
model are depicted in figure 7.21. To apply an OMG MDA approachfor software to hardware language
mappings, a meta-model and a UML profile for VHDL, Verilog andSystemC RTL/TLM should also be
standardized. Such meta-models define the structured data model of the language and language keywords
are data types (classes) of the meta-model.

The CORBA and CCM meta-model contains four packages:

• theBaseIDL package is a meta-model of the CORBA Interface Repository (IR) [OMG08b] which
was initially defined in IDL for CORBA objects. It is depictedin figure 7.21.

220Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.21: Simplified UML class diagram of the BaseIDL package of the CCM meta-model

Figure 7.22: Simplified class diagram of the ComponentIDL package of the CCM meta-model

7.3. Mapping OO component-based specification to system, SWand HW components 221

• theComponentIDL package extends the BaseIDL package with the CORBA Component Model
(CCM) concepts.

• theCIF package is a meta-model of the language used to describe component implementations.

• theDeploymentpackage is a meta-model of the Deployment and Configuration (D&C) concepts
for CCM such as the assembly of CCM components. It can be used to generate CCM XML
descriptors.

• theStreamspackage extends the CCM meta-model to describe the exchangeof continuous data
streams between CORBA components. These streams seem to initially target multimedia streams
for music and video contents over computer networks, but could be relevant for data streaming in
Software Defined Radio applications.

• the CCMQoS package extends the CCM meta-model with the definition of QoSproperties for
CORBA components.

Note that in the Lightweight CORBA Component Model (LwCCM) meta-model defined in [OMG08g],
the event ports and provides/uses ports are included, but not the stream ports.

In a similar way, to apply an MDA approach to the SCA, a UML profile for SCA concepts and a
meta-model for the SCA component model need to be defined. TheUML profile for SCA is already stan-
dardized within the UML profile for Software Radio [OMG07e].Moreover, since SCA uses the object-
oriented CORBA IDL 2.x to define SCA component interfaces, the meta-model for these interfaces is
already standardized in the BaseIDL package of the UML profile for CORBA and CCM. Finally, since
the SCA component model evolved from an early version of the CORBA Component Model (CCM),
the meta-model for the SCA component model can be consideredas a subset of the CORBA Compo-
nent Model which is standardized in the ComponentIDL package of the UML profile for CORBA and
CCM. For instance, the uses and provides ports of SCA components that are described in SCA Software
Component Descriptors (SCD) can be considered as the facetsand receptacles of CCM components.
Furthermore the SCDs specify some types of uses and providescomponents ports such as control, data,
responses, and test ports. These types of ports have been refined and included in the UML profile for
Software Radio as stereotypes for component ports such asControlPort, DataControlPort,
DataPort, StreamControlPort and StreamPort. Besides, the SCA and CCM component
models rely on different base interfaces, respectivelyResource andCCMObject, but these interfaces
are internal to the component model and are not for instance part of the CCM meta-model. Hence, the
meta-model for SCA and Software Radio components may be defined as the CCM meta-model extended
to Control ports,DataControl ports,Data ports andStreamControl ports.

The necessity for interoperability between multiple inputand output standards requires a flexible
IDL compiler architecture, which can certainly benefit froman MDA approach. Each input and out-
put formalism needs respectively a dedicated front-end andbackend centered around central models.
Input and output formalism are described by a meta-model andIDL compilation can be revisited as a
transformation of models between between input models to output models.

Architecture of the IDL3-to-VHDL compiler prototype

From a general point of view, we propose the following architecture for an IDL3-to-HDL compiler:

• multiple input standards such as domain-specific UML profiles like UML for SDR and MARTE,
CORBA IDL, Domain-Specific Languages (DSLs) and Domain-Specific Modeling Languages
(DSMLs).

222Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

• object-oriented component meta-models e.g. for SCA, CCM,but also VHDL, Verilog and Sys-
temC.

• multiple output standards for VHDL, Verilog, SystemC, IPXACT SPIRIT.

Obviously, already standardized language mappings to software languages can be included notably
to target SDR embedded platforms using C, C++ and Ada.

Model transformations can be used from input formalisms to software component models such as
SCA and CCM and from software component models to hardware component models for VHDL, Verilog
and SystemC.

We have built a prototype for an IDL3-to-VHDL compiler usingthe MDA principles. The implemen-
tation of our prototype uses the front-end of an open-sourceproject developed at Thales called MyCCM
High Integrity (HI) 69 available on source forge web site. MyCCM-HI is a C componentframework for
critical distributed real time embedded software. MyCCM-HI contains a meta-model of the Lightweight
CORBA Component Model described using the meta-language ofthe Eclipse project called Ecore.

Eclipse is an open-source community which develops a Java-based software development platform.
The Eclipse Project was originally initiated by IBM in 2001.Eclipse provides an Integrated Devel-
opment Environment (IDE) which can be extended by means of user-developed or free/commercial
third-party components called plug-ins or bundles. These components are besides developed against
a service-oriented component framework called OSGi whose implementation is called Equinox. The
Eclipse Foundation hosts a number of Eclipse projects notably the Eclipse Modeling Project. The Eclipse
Modeling Project contains subprojects such as the Graphical Editing Framework (GEF) to build domain-
specific editors, Graphical Modeling Framework (GMF) project to build Domain-Specific Modeling Lan-
guages (DSML), the Eclipse Modeling Framework (EMF) project to build Domain-Specific Meta-Model,
the Model-to-Model Transformation (M2M) and the Model To Text (M2T) projects, Textual Modeling
Framework (XText) project to build Domain-Specific Languages (DSLs). The EMF project allows de-
velopers to describe a structured data meta-model in UML, inXML as XML Schema Definition (XSD)
or Java and to generate the associate Ecore meta-model. Based on this meta-model, Eclipse can generate
Java code to manipulate and serialize a compliant model in XML and to create and edit models with an
automatically generated simple editor.

Extension of the CCM meta-model for RTL mapping configuration

We have extended the Ecore meta-model of LwCCM from MyCCM-HIto allow the flexible config-
uration of the IDL3-to-HDL mapping. In addition to the existing baseidl, cif and componentidl
packages in the rootccm package, we introduce aRtlMappingConfiguration package which is
depicted in figure 7.23.

This package contains a data model with the following mapping information:

• the FlowControlKind enumeration indicates how a hardware component interface handles
flow control. For instance, flow control may beProactivee.g. using a accept signal orReactive
e.g. using a busy signal.

• theProtocolKind enumeration indicates a signal-based interface protocol such asTwoPhase-
Handshakeor FourPhaseHandshake.

• theAlignmentKind enumeration indicates how the alignment of data in a messageand on the
wire. The alignment may beOnZeroBytes, OnTwoBytes, OnFourBytesor OnDataTypeSizelike in
CORBA GIOP.

69http://myccm-hi.sf.net

7.3. Mapping OO component-based specification to system, SWand HW components 223

Figure 7.23: CCM meta-model with RtlMappingConfiguration class

• theMultiplexingKind enumeration indicates how message data are multiplexed in time and
space on the wire for instance usingTimeDivisionMultiplexingor SpatialDivisionMultiplexing

• theMultiplexingKind enumeration indicates how message data are multiplexed in time and
space on the wire for instance usingTimeDivisionMultiplexingor SpatialDivisionMultiplexing

• theRtlConnectorKind enumeration indicates the kind of hardware connectors usedto inter-
connect two or more hardware or software components. For instance, a connector mayPoint2Point,
AMBA_AHB, AMBA_APB, CoreConnect_OPB, CoreConnect_PLBor OCP.

• theRtlConnectorKind enumeration indicates the kind of hardware connectors usedto inter-
connect two or more hardware or software components. For instance, a connector mayPoint2Point,
AMBA_AHB, AMBA_APB, CoreConnect_OPB, CoreConnect_PLBor OCP.

As depicted in figure 7.24, theStorage subpackage defines all concepts related of the storage of
operation parameters in memory elements like registers within hardware component ports and contains
the following information:

• the abstractMemory class represents a memory element like a register or FIFO. Itis the base
class of all memory element classes. It contains an integer attribute calledaddr representing the
relative address of the memory element on a bus e.g. 0x4 and aninteger attribute calledwidth
representing the data width of the memory element e.g. 32 bits.

• theRegister class represents a register and inherits from theMemory class.

• the FIFO class represents a First-In First Out (FIFO) memory elementand inherits from the
Memory class. Its attributes include thedepthof the FIFO and various boolean flags such as

224Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.24: Storage UML package

fullIndication, emptyIndication, almostFullIndication, almostEmptyIndicationand the correspond-
ing integer threshold calledalmostFullThresholdandalmostEmptyThreshold.

• theRAM class represents a Random Access Memory (RAM) and inherits from theMemory class.
It contains an integer attribute calledsizerepresenting the size of the RAM in octets.

• theROM class represents a Read-Only Memory (ROM) and inherits fromtheRAM class.

ThePort subpackage defines the concepts related to the hierarchicalports of software, system and
hardware components and contains the following information:

• theDirectionKind enumeration indicates the direction of a component port such asin, out
or inout.

• the abstractPort class represents a component port. It is the base class of allcomponent port
classes. The component port classes are defined in dedicatedpackages and represent component
ports at different abstraction levels. ThePort class contains adirectionattribute ofDirectionKind
type to indicate the direction of the component port.

• the LogicalPort subpackage defines the kind of logical ports that a software,hardware or
system component may have at logical or functional level.

• theMessagePort subpackage defines the kind of message ports that a software,hardware or
system component may have at message or transactional level.

• theRtlPort subpackage defines the kind of RTL ports that a hardware or system component
may have at RTL or signal level.

As depicted in figure 7.25, theMessagePortsubsubpackage defines the following kind of message
component ports:

7.3. Mapping OO component-based specification to system, SWand HW components 225

Figure 7.25: MessagePort UML package

• the abstractMessagePort class represents a message component port and is the base class of
following message component port classes. The messages maybe middleware messages such
as GIOP or MHAL messages, transactional messages such as OSCI TLM, OCP TLM, PV/AV
messages, or on-the-wire messages with memory-mapped read/write messages ItsrtlInterface at-
tribute of typeInterface::RtlInterface may contain a list of RTL ports representing a
signal-based hardware interface. The abstractInterface::RtlInterface class belongs to
theInterface package and is described in the following.

• the RequestPort class represents a message component port through with request messages
may be sent or received. Its inheritedrtlInterface may be a push-only or pull-only RTL interface
i.e. write-only or read-only RTL interface.

• theReplyPort class represents a message component port through with reply messages may
be sent or received. The inheritedrtlInterface has the same characteristics than the RequestPort
attribute.

• theRequestReplyPort class represents a message component port through with request and
reply messages may be sent or received. Its inheritedrtlInterface is a push/pull RTL interface i.e.
write/read RTL interface.

As depicted in figure 7.26, theLogicalPort subsubpackage defines the following kind of logical
component ports:

• the abstractLogicalPort class represents a logical component port and is the base class of all
logical component port classes. This class contains three logical port attributes which may have
an instance each i.e. with [0..1] multiplicity. TherequestPortattribute of typeMessagePort
::RequestPort allows a logical port to send or receive request messages. The replyPort at-
tribute of typeMessagePort::ReplyPort allows a logical port to receive or send reply mes-
sages. TheinoutRequestReplyPortattribute of typeMessagePort::RequestReplyPortal-
lows a logical port to transport both request and reply messages. A logical port may have either
a request port and a reply port, or an inout request-reply port. Such constraint may be expressed

226Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.26: LogicalPort UML package

using the OMG Object Constraint Language (OCL) [OMG06d]. The request and reply ports may
be mapped to two dedicated set of RTL ports, while the request-reply port may be mapped to a
single shared set of RTL ports.

• theProvidesPort class represents a logical component port providing an operation-based soft-
ware interface. This kind of ports may represent the provides port of SCA components, the
facet port of CCM components, the TLM port of SystemC components at transaction level, the
sc_export port of SystemC components and/or the logical port of object-oriented hardware
components. The inherited inputrequestPortallows a provides port to receive request messages.
The inherited outputreplyPort allows a provides port to send reply messages. The inheritedin-
outRequestReplyPortallows a provides port to receive request messages and send reply messages.

• theRequiresPort class represents a logical component port requiring an operation-based soft-
ware interface. This kind of port may represent the uses portof SCA components and the re-
ceptacle port of CCM components, the TLM port of SystemC components at transaction level,
thesc_port port of SystemC components and/or the logical port of object-oriented hardware
components. The outputrequestPortallows a requires port to send request messages. The input
replyPort allows a requires port to receive reply messages. TheinoutRequestReplyPortallows a
requires port to send request messages and to receive reply messages.

• the other logical port classes include the kind of ports defined in the UML profile for Software
Radio [OMG07e] suchControlPort, DataControlPort, DataPort, ServicePort,
StreamControlPort,StreamPort andStreamDataPort, and in the UML profile UML
profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [OMG08h]
such asMessagePort andFlowPort. The configuration of the RTL mapping for these logical
ports is the same as theProvidesPort andRequiresPort thanks to the inheritance of the
generic attributes of theLogicalPort class. Other kinds of logical port classes may be defined
by extending theLogicalPort class.

As depicted in figure 7.27, theRtlPort subsubpackage defines the following kind of RTL compo-
nent ports:

• theRtlPort class represents a component port at Register Transfer Level (RTL) and is the base
class of all RTL component port classes. It contains an integer attribute calledwidth which indi-

7.3. Mapping OO component-based specification to system, SWand HW components 227

Figure 7.27: RtlPort UML package

cates the width of the RTL port whose value is -1 for a wire e.g.for VHDL std_logic and
the data width for a signal bus e.g. for VHDLstd_logic_vector, a boolean attribute called
activeLowthat indicates at which electrical level (0 or 1) the signal is considered as active with
false as default value, and a boolean attribute calledsyncwhich indicates whether the signal is
synchronous with aClkPortwith true as default value.

• the others RTL component port classes explicitly define a generic and extensible family of RTL
ports which are typically used by hardware designers. Theseport classes includeClockPort,
EnablePort, ResetPort, PushPort, PullPort, AddrPort, DataPort, AccPort,
ReqPort,AckPort,StatusPort,BusyPort,ClearPort,LoadPort,FullPort,Emp-
tyPort,AlmostFullPortandAlmostEmptyPort. TheAlmostFullPortandAlmostEmptyPort
have an integerthreshold which indicates from which number of tokens a full or empty flow
control signal is activated. Other kinds of logical port classes may be defined by extending the
RtlPort class.

As depicted in figure 7.28, theRtlInterface subpackage defines a family of named and typed
RTL interfaces:

• the abstractRtlInterfaceclass represents a signal-based hardware interface at Register Trans-
fer Level (RTL). It inherits from theIdentifiableElement class and theRtlMapping-
Configuration class and is the base class of all RTL interface classes. We propose two means
to configure the mapping of a logical component port to the RTLinterface(s) of message com-
ponent port(s). The configuration of the RTL interface mapping may be either defined explicitly
by adding RTL port instances in theIHwInterface class or by choosing a predefined interface
from the family of interfaces.

• theIHwInterface class may contain an instance of each kind of ports defined in theRTLPort
package [0..1] cardinality and an optional generic list of RTL ports to add RTL ports not defined
in theRTLPort package. This inbterface is depicted in figure 7.29.

228Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Figure 7.28: InterfaceFamily UML package

Figure 7.29: HwInterface UML class

7.3. Mapping OO component-based specification to system, SWand HW components 229

• the other classes are the object-oriented modeling of the named hardware interfaces previously
proposed in [GBJV08]. Inheritance is used to factor out RTL ports from RTL interfaces. Each
hardware interface adds a RTL port and its associated semantics. For instance, theIData class
contains adata attribute of typeDataPort. Then, theIPush class inherits from the abstract
INonBlockingControl interface and contains thepushattribute of typePushPort. Finally,
theIPushData class inherits from theIPush andIData interfaces.

TheMessage subpackage defines all concepts related to messages.

• theMessageKind enumeration defines the kind of messages which can be transported through
message ports. It includes messages such asCORBA_GIOP, SCA_MHAL, ReadMessage and
WriteMessage for TLM and RTL messages, andDataMessage for raw data message.

• theMessage class contains an integerversion attribute to indicate the version of the message
protocol and amessage attribute of typeMessageKind to indicate the message protocol.

TheRtlMappingConfiguration class is the base class of RTL mapping configuration classes
calledRtlInterfaceMappingConfiguration, RtlParameterMappingConfiguration
andRtlConnector-MappingConfiguration. TheRtlMappingConfigurationclass con-
tains an optional instance of theRTLInterface class calledprivateInterfacewhich is contained by
value and another optional instance calledsharedInterfacewhich is contained by reference. This distinc-
tion allows designers to define either a dedicated RTL interface defined at local scope or a shared RTL
interface defined at global scope.

The RtlInterfaceMappingConfiguration class allows designers to configure the map-
ping of logical ports to message ports containing RTL ports.It contains the following attributes. The
requestPortattribute of typeRequestPort may contain a RTL interface through with requests mes-
sages are sent or received. ThereplyPort attribute of typeReplyPort may contain a RTL interface
through with reply messages are sent or received. ThesharedConnectorInterfaceattributes of type
RtlConnectorInterface may contain a hardware connector which is shared by several hard-
ware component ports like an on-chip or off-chip bus. TheprivateConnectorInterfaceattributes of type
RtlConnectorInterface may contain a hardware connector which is dedicated to a single hard-
ware component port like a point-to-point connection. Themessageattribute of typeMessagePort
may define the kind of messages transferred through the request and reply ports.

The RtlParameterMappingConfiguration class allows designers to configure the map-
ping of operation parameters to shared or dedicated memory element(s) such as register(s), FIFO(s) or
RAM(s). ThesharedMemoryattribute of typeMemory may indicate that a memory element is shared
by one or several parameters in the same operation or in different operations. These operations may be
defined in the same software interface or in different software interfaces. In other words, the designers
can allocate a memory element at the parameter scope, operation scope, interface scope and component
scope. TheprivateMemoryattribute of typeMemory may indicate that a memory element is dedicated
to a single operation parameter.

TheRtlConnectorInterfaceclass describes the RTL interface of hardware connectors such as
on-chip and off-chip bus and point-to-point connection. The connectorKindattribute of typeRtlCon-
nectorKind may indicate the kind of the connector such as AMBA AHB, CoreConnect OPB or an
OCP interface. The optionalIPXACT_SPIRIT_filenameattribute of type string may indicate the absolute
path to the IPXACT_SPIRIT description of the connector interface.

Finally, the abstractIdentifiableElement class contains a string identifier which is used to
identify instances of numerous classes such as RTL mapping configuration classes,Memory classes,
Port classes,RtlInterface classes andMessage classes.

230Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Our proposition can be viewed as an extension and generalization of the OCP-based hardware SCA
component model proposed in [JTR05] to generic software, hardware and system components using the
model-based approach defined by the OMG called MDA.

A UML profile for RTL mapping configuration may be easily derived from this meta-model by
extending the UML profile for CORBA and CCM [OMG08g]. The basic principle to build a UML
profile from a domain-specific meta-model consists in creating a UML stereotype for each concept of
the meta-model like shown in [OMG08g]. Moreover, each UML stereotype must extend the correspond
meta-class in the UML meta-model or in a UML profile. For instance, the Port class from our meta-
model may be defined as a UML stereotype in a UML profile for RTL mapping configuration that may
extends the Port meta-class of the UML meta-model, the Port class from the UML profile for CORBA
and CCM or from the UML profile for Software Radio [OMG07e]. Inthis way, a software component
defined in UML may have LogicalPorts, MessagePorts and RTLPorts and designer may configure the
mapping of these ports using their attributes which appear as UML stereotype tags.

RTL Mapping Configuration Editor

We used Eclipse to automatically generate an editor compliant with the extended CCM meta-model. As
depicted in figure 7.30, we configured the RTL mapping to correspond the configuration presented for
the Filter example 7.16. The XMI file generated by the editor is similar to the XML file proposed in
[GBJV08] as shown in listing 7.8.

<?xml v e r s i o n = " 1 . 0 " encod ing ="ASCII "? >
<ccm : CcmModel xmi : v e r s i o n = " 2 . 0 " xmlns : xmi=" h t t p : / / www. omg . o rg /XMI" xmlns :

x s i =" h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema− i n s t a n c e " xmlns : ccm=" h t t p : / / www.
t h a l e s g r o u p . com / ccm / 1 . 0 " . . . i d e n t i f i e r =" F i l t e r " abso lu teName =" F i l t e r "
modelName=" F i l t e r ">

< c o n t e n t s x s i : t ype ="ccm . b a s e i d l : ModuleDef" i d e n t i f i e r=" Example"
abso lu teName = " : : Example">

4 . . .
< c o n t e n t s x s i : t ype ="ccm . b a s e i d l : Ope ra t i onDe f " i d e n t i fi e r =" s e t C o e f f "

abso lu teName = " : : Example : : Con f ig : : s e t C o e f f " f i leName =" F i l t e r . i d l 3 "
l ineNumber ="11" id lType = " / / @types .2" >

< p a r a m e t e r s id lType = " / / @con ten ts . 0 / @conten ts . 0 / @conten ts . 4 "
i d e n t i f i e r =" c f ">

< r t l M a p p i n g C o n f i g u r a t i o n >
< r t l I n t e r f a c e x s i : t ype ="ccm . R t l M a p p i n g C on f i gu r a t i o n .I n t e r f a c e :

I A d d r e s s a b l eN onB l oc k i ngP u l l ">
9 <addr i d e n t i f i e r =" c f_add r_o " d i r e c t i o n =" ou t " w id th ="7" / >

< d a t a i d e n t i f i e r =" c f _ d a t a _ i " w id th ="16" / >
< p u l l i d e n t i f i e r =" c f _ p u l l _ o " d i r e c t i o n =" ou t " w id th ="−1"/ >

</ r t l I n t e r f a c e >
<memory x s i : t ype ="ccm . HwMappingConf igurat ion . S t o r a g e:RAM"

i d e n t i f i e r =" cf_dpram " wid th ="16" / >
14 </ r t l M a p p i n g C o n f i g u r a t i o n >

</ pa rame te rs >
. . .

Listing 7.8: RTL Mapping Configuration XML file

7.3. Mapping OO component-based specification to system, SWand HW components 231

Figure 7.30: RTL Mapping Configuration Editor

232Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

CCM meta-classes VHDL meta-classes
ModuleDef PackageDef
InterfaceDef EntityDef
ParameterDef PortDef
PrimitiveDef Std_logic,Std_logic_vector
ConstantDef ConstantDef
StructDef RecordDef
EnumDef EnumDef
FieldDef FieldDef
IDLType VHDLType
ParameterMode PortMode

Table 7.3: Mapping between CCM meta-classes and VHDL meta-classes

VHDL meta-model

Instead of defining a VHDL meta-model from scratch as in the literature, we decided to leverage the
experience used to build the CCM meta-model and to keep a similar architecture and naming conventions
to ease the definition of model transformations between the extended CCM meta-model and the VHDL
meta-model. To specify the VHDL meta-model, we started fromthe standard UML model of the CCM
meta-model which is available as an XMI file on the OMG website. After some minor modifications, the
UML model has been modified in the free and open source PapyrusUML modeler, which is available as
an Eclipse plugin, to build the VHDL meta-model in UML. Table7.3 illustrates the mapping between
CCM meta-classes and VHDL meta-classes. From the UML model of the VHDL data model depicted
in figure 7.31, we generated the corresponding Ecore meta-model to automatically produce the java
code of the VHDL meta-model. This code is further used by the model-to-model and model-to-text
transformation tools described below.

Figure 7.31: VHDL meta-model in UML

7.3. Mapping OO component-based specification to system, SWand HW components 233

Model-to-Model Transformation

We have written Model-to-Model Transformations from the extended CCM meta-model to the VHDL
meta-model using a free and open-source implementation of the OMG MOF Query/View/Transform
(QVT) model-to-model transformation language [OMG08e] called SmartQVT70. SmartQVT is devel-
oped by France Telecom and is available as an Eclipse plugin.Listing 7.9 illustrate the mapping between
a CCM component and a VHDL entity in QVT.

mapping CCM_MM: : Component Id l : : ComponentDef : : c o m p o n e nt 2en t i t y () : VHDL_MM: :
I n t e r f a c e : : E n t i t y D e f {

i d e n t i f i e r := s e l f . i d e n t i f i e r;
absolu teName := s e l f . abso lu teName . s u b s t r i n g A f t e r (" : : ") . r e p l a c e (" : : " , " _ ");

4 f i leName := s e l f . f i l eName . r e p l a c e (" . i d l 3 " , " . vhd ");
va r c l k P o r t := o b j e c t VHDL_MM: : I n t e r f a c e : : Po r tDe f {
i d e n t i f i e r := " c l k " ;

d i r e c t i o n := VHDL_MM: : I n t e r f a c e : : PortMode : : i n_;
vhdlType := vhdlModel . o b j e c t s () [VHDL_MM: : I n t e r f a c e : : St d _ l o g i c]−>

a s O r d e r e d S e t ()−> f i r s t () ;
9 comment := " Synchronous c l o c k ";

} ;
c o n t e n t s := c l k P o r t;
va r r s t P o r t := o b j e c t VHDL_MM: : I n t e r f a c e : : Po r tDe f {
i d e n t i f i e r := " r s t _ n ";

14 d i r e c t i o n := VHDL_MM: : I n t e r f a c e : : PortMode : : i n_;
vhdlType := vhdlModel . o b j e c t s () [VHDL_MM: : I n t e r f a c e : : St d _ l o g i c]−>

a s O r d e r e d S e t ()−> f i r s t () ;
comment := " Ac t i ve low asynch ronous r e s e t ";
} ;
c o n t e n t s += r s t P o r t;

19 c o n t e n t s += s e l f . f a c e t−>map f a c e t 2 p o r t s ();
c o n t e n t s += s e l f . r e c e p t a c l e−>map r e c e p t a c l e 2 p o r t s ();
. . .

}

Listing 7.9: Mapping between CCM component and VHDL entity in QVT

Model-to-Text Transformation

We have written Model-to-Text Transformations from the VHDL meta-model to VHDL code source
using a free and open-source implementation of the OMG Model-to-Text transformation language (MTL)
called Acceleo71. Acceleo is developed by Obeo and is available as an Eclipse plugin within the Eclipse
M2T project. Listing 7.10 illustrates the generation of VHDL code from a VHDL model according to a
template written in MTL. Listing 7.11 presents a excerpt of the VHDL code generated by the model-to-
text transformation.

[t e m p l a t e p u b l i c i m p o r t L i b r a r y ()]
l i b r a r y IEEE;

3 use IEEE . s t d _ l o g i c _ 1 1 6 4 . a l l;
[/ t e m p l a t e]

[t e m p l a t e p u b l i c g e n e r a t e E n t i t y D e f (e n t i t y D e f : E n t i t y D ef)]

70http://smartqvt.elibel.tm.fr
71http://www.eclipse.org/modeling/m2t/?project=acceleo

234Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

e n t i t y [e n t i t y D e f . i d e n t i f i e r /] i s
8 p o r t ([f o r (po r tDe f : Po r tDe f | e n t i t y D e f . c o n t e n t s) s e p a r a t o r (’ ; ’)]

[i f (not po r tDe f . comment . o c l I s U n d e f i n e d ())]
[po r tDe f . generateComment () /]

[/ i f]
13 [po r tDe f . g e n e r a t e P o r t D e f () /] [/f o r]

) ;
end [e n t i t y D e f . i d e n t i f i e r /] ;
[/ t e m p l a t e]

18 [t e m p l a t e p u b l i c g e n e r a t e P o r t D e f (po r tDe f : Po r tDe f)]
[po r tDe f . i d e n t i f i e r /] : [po r tDe f . d i r e c t i o n /] [i f po r tDe f . vhd lType . oc l I sTypeOf

(S t d _ l o g i c)] s t d _ l o g i c [e l s e] s t d _ l o g i c _ v e c t o r ([i f po r tDe f . vhd lType .
oclAsType (S t d _ l o g i c _ v e c t o r) . w id th =0] [po r tDe f . vhd lType . oclAsType (
S t d _ l o g i c _ v e c t o r) . w id th /] [e l s e] [po r tDe f . vhd lType . oclAsType (
S t d _ l o g i c _ v e c t o r) . wid th−1 /] [/ i f] downto 0) [/ i f]

[/ t e m p l a t e]

[t e m p l a t e p u b l i c generateComment (po r tDe f : Po r tDe f)]
23 −− [po r tDe f . comment /]

[/ t e m p l a t e]

[t e m p l a t e p u b l i c g e n e r a t e E n t i t y (vhdlModel : VhdlModel)]
[comment @main /]

28 [f o r (packageDef : PackageDef | vhdlModel . c o n t e n t s)]
[f o r (e n t i t y D e f : E n t i t y D e f | packageDef . c o n t e n t s)]
[f i l e (e n t i t y D e f . i d e n t i f i e r . c o n c a t (’ . vhd ’) , f a l s e)]

[f i l e H e a d e r () /]

33 [i m p o r t L i b r a r y () /]

[e n t i t y D e f . g e n e r a t e E n t i t y D e f () /]

[/ f i l e]
38 [/ f o r]

[/ f o r]
[/ t e m p l a t e]

Listing 7.10: Generation of VHDL code from a VHDL model in MTL

l i b r a r y IEEE;
use IEEE . s t d _ l o g i c _ 1 1 6 4 . a l l;

e n t i t y F i l t e r i s
5 p o r t (

−− Synchronous c l o c k
c l k : i n s t d _ l o g i c;
−− Ac t i ve low asynch ronous r e s e t
r s t _ n : i n s t d _ l o g i c;

10 c o n f i g P o r t _ p u s h _ i : i n s t d _ l o g i c;
c o n f i g P o r t _ d a t a _ i : i n s t d _ l o g i c _ v e c t o r (7 downto 0);
c o n f i g P o r t _ a d d r _ i : i n s t d _ l o g i c _ v e c t o r (2 downto 0);
c o n f i g P o r t _ a c c _ o : ou t s t d _ l o g i c;

7.4. Hardware Application of the Software Communications Architecture 235

c o n f i g P o r t _ p u s h _ o : ou t s t d _ l o g i c;
15 c o n f i g P o r t _ d a t a _ o : ou t s t d _ l o g i c _ v e c t o r (7 downto 0);

c o n f i g P o r t _ a c c _ i : i n s t d _ l o g i c;
i n p u t P o r t _ p u s h _ i : i n s t d _ l o g i c;
i n p u t P o r t _ d a t a _ i : i n s t d _ l o g i c _ v e c t o r (7 downto 0);
i n p u t P o r t _ a d d r _ i : i n s t d _ l o g i c _ v e c t o r (0 downto 0);

20 i n p u t P o r t _ a c c _ o : ou t s t d _ l o g i c;
i n p u t P o r t _ p u s h _ o : ou t s t d _ l o g i c;
i n p u t P o r t _ d a t a _ o : ou t s t d _ l o g i c _ v e c t o r (7 downto 0);
i n p u t P o r t _ a c c _ i : i n s t d _ l o g i c;
o u t p u t P o r t _ p u s h _ o : ou t s t d _ l o g i c;

25 o u t p u t P o r t _ d a t a _ o : ou t s t d _ l o g i c _ v e c t o r (7 downto 0);
o u t p u t P o r t _ a d d r _ o : ou t s t d _ l o g i c _ v e c t o r (0 downto 0);
o u t p u t P o r t _ a c c _ i : i n s t d _ l o g i c;
o u t p u t P o r t _ p u s h _ i : i n s t d _ l o g i c;
o u t p u t P o r t _ d a t a _ i : i n s t d _ l o g i c _ v e c t o r (7 downto 0);

30 o u t p u t P o r t _ a c c _ o : ou t s t d _ l o g i c);
end F i l t e r ;

Listing 7.11: Example of generated code for the Filter

7.4 Hardware Application of the Software Communications Architecture

As far we know, the only hardware interface that has been proposed for the JTRS SCAResource
interface has been presented in [JTR05] based on OCP. This mapping proposition uses the specific ca-
pabilities of the OCP model such as Threads. It assumes that control and configuration operations can
be invokes concurrently. Moreover, the resulting mapping is totally customized to the semantics of each
Resource component. To guarantee a consistent behavior and simplifythe hardware mapping, we con-
sider that the invocations on theResource interface are serialized. Indeed, the Core Framework should
sequentiallyinitialize, configure, start, stop, configure... components. The behavior
of this interface protocol could be described as an UML protocol state machine, which only permits a
predefined sequence of invocations to proceed.

7.4.1 Hardware SCA Resources, Device and Services

The main abstractions of the SCA can be divided into application abstraction with the Resources and
platform abstractions with the Devices and Services including the radio devices and radio services.

The hardware implementation of a SCAResource component represents a hardware application
component. Examples of hardware application components include DSP IP cores such as convolutional
en/decoders and Viterbi en/decoders. A hardwareResource component may either contain a new
user-defined IP core developed from scratch, a reused user-defined IP core or a third-party COTS IP
core. The hardware interfaces of the new IP cores directly result from the mapping of software UML
or IDL interfaces (e.g. the SCA Resource interface and the user-defined interfaces) to HDLs, while the
reused and COTS IP cores are encapsulated within a wrapper providing the resulting hardware interfaces.
This top-down design flow is similar to the design of softwareobjects and component with CORBA in
which the software developers performs its implementationagainst the mapped software interfaces.

The hardware implementation of a SCA Device component represents a hardware device component.
Examples of hardware device components include I/O IP coressuch as Ethernet MAC, AC97 chipset,

236Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

RapidIO, I2C. In the same way as software application components access hardware platform compo-
nents via logical devices with standard interfaces to increase application portability, hardware application
components should access these hardware platform components via standard hardware interfaces. For
instance, in the same way as logical Ethernet Devices have a standard software interfaces, all Ethernet
MAC IP core should have the same hardware interfaces. However, these hardware interfaces must have
stronger semantics than the existing hardware interfaces which are proprietary bus protocols such as
CoreConnect for Xilinx IP cores and Avalon for Altera IP cores.

The interfaces of a SCAResource component may be implemented in software, in hardware or in
both. Beyond the custom proxies described in [JTR05], the standardization of a configurable mapping
between software and hardware interfaces for component portability and of lightweight ESIOP(s) for
component interoperability should shift the generation ofproxies from end-users to middlewares.

7.4.2 SCA Operating Environment for FPGA

The Software Communications Architecture defines an Operating Environment (OE) which consists of
a Core Framework (CF), a CORBA middleware, Name and Event middlewares services, a POSIX-based
Operating System (OS), its network stack and Board Support Packages (BSP).

An OE needs to be standardized for non-CORBA capable processing elements such as DSP, FP-
GAs and ASICs. Extensions of the SCA have successively proposed with the Specialized Hardware
Supplement (SHS) [JTR04] in 2004, the extension for component portability for Specialized Hardware
Processors (SHP) [JTR05] in 2005 and the Modem Hardware Abstraction Layer (MHAL) [JTR07] API
in 2007. Furthermore, an OE has been proposed for DSP in the scope of the IST End-to-End Reconfig-
urability (E2R)72 european project for the OMG SWRadio specification which is inspired from the SCA
[LN07]. OEs for GPP, DSP and FPGAs are also investigated in the European Defense Agency (EDA)
European Secure Software Radio (ESSOR) project73.

In this section, we propose an Operating Environment for theSCA in FPGA.
The functionalities required for an OE on FPGA are the following:

1. To guaranty the portability of hardware SCA components from one FPGA platform to another
provided by different providers. This portability requires standard hardware interfaces on which
hardware components may depend without any other dependencies to the FPGA platform. This
functionality is provided by the Application Programming Interfaces of POSIX, CORBA and the
CF.

2. To guaranty the interoperability of hardware SCA components with software SCA components
distributed across the SDR platform. This functionality isprovided by CORBA with message
protocols.

3. To support the deployment of hardware SCA components in FPGA. This deployment correspond
to the loading and unloading of total or partial bitstream inthe FPGA. The partial and dynamic
reconfiguration of FPGAs enables the application of the dynamic deployment approach of the SCA
downto FPGA. This functionality is provided by the interfaces CF

A naive application of the SCA OE in hardware would to proposean substitute for POSIX, CORBA
and CF. An Operating Environment for FPGA must only implement a subset of the required function-
alities of the SCA OE which is specified for General Purpose Processor. Proposing an OE for FPGA

72http://www.ist-world.org
73http://www.eda.europa.eu

7.4. Hardware Application of the Software Communications Architecture 237

basically means proposing a hardware signal-based interface and implementation for the services pro-
vided by POSIX, CORBA and CF. However, hardware resources inFPGA are too expensive and scarce
to allow and want the implementation of all these services inhardware. Only a hardware interface and
implementation for the required services is needed and mustbe proposed. We assume that if a mapping
between a software operation-based interface and a hardware signal-based interface is possible, then the
mapping of POSIX, CORBA and CF interfaces is a particular case. We focus on the selection of the
services which are meaningful and useful in hardware.

POSIX-like Services

In the following, we present the main services standardizedby the POSIX specification and discuss their
utility for hardware components.

1. Process and Thread management for the creation, control,termination, scheduling of processes
and threads. Dynamic and partial reconfiguration of FPGA allows the dynamic configuration of
FPGA logic blocks and routing resources with a partial bitstream. This configuration simulates
the creation and termination of hardware process with a hardware module (VHDL entity). These
processes communicate through signals acting as shared variables. For Xilinx FPGAs, the hard-
ware interface for the creation and termination of hardwarethreads corresponds to the interface
of the Internal Configuration Access Port (ICAP). A vendor-independent standard bitstream inter-
face must be proposed and the proprietary interface like ICAP would be wrapped by this standard
interface.

2. Inter-Process Communication (IPC): signal, pipes, message passing, shared memory. VHDL pro-
cesses and modules primarily communicate via signals representing shared variables. Based on
this signal-based interactions, message passing communications may rely on FIFOs and shared
memory communications may rely on local or system RAM.

3. Time services: clocks and timers. In synchronous digitaldesign, hardware modules are synchro-
nized by a common clock signal within a synchronous domain. Using the clock signal, time delays
may be obtained with counters or timers.

4. File management. Due to scarce hardware resources, a file management service is typically not
implemented in hardware, but in software on a GPP dedicated to control, management and deploy-
ment tasks. File management is required to deploy an application using its deployment plan and
associated (XML) descriptors. In hardware, it is needed to load a total or partial bitstream down
to an FPGA.

5. C library services. The C library provides services such as timers, I/O, memory allocation. The
VHDL library provides basic services such as data types and their conversion. The VHDL library
do not offer services such as storage services with standardFIFOs, RAM and registers. Users must
define their own storage elements based on the available hardware resources.

6. Synchronous and asynchronous I/O management. Hardware modules have typically synchronous
I/O signals. In Globally Asynchronous Locally Synchronous(GALS) system, asynchronous com-
munications take place between synchronous domain. From a hardware interface protocol view-
point, the synchronous i.e. blocking communications are obtained with two-phase and four-phase
handshaking protocol, while asynchronous communicationsare obtained with enable-based pro-
tocol.

238Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

7. Coordination/synchronization services: semaphores, condition variables, barriers. Intra-module
and inter-module coordination is performed using explicitmultiplexer according to the one-writer
/ multiple reader protocol.

Obviously due to the different nature of the hardware and software execution, all these services are not
required in FPGA. No such standardized services exist for hardware implementations. However, hard-
ware implementation of POSIX-like OS services have been proposed in the literature with include Hy-
brid Thread (HThread) [APS+07] for reconfigurable computing from Kansas University andMultiFlex
[PPL+06b] for networking and multimedia from ST.

CORBA-like services

Basically, the SCA relies on the CORBA middleware to providelocation transparency via opaque refer-
ence, a standard middleware API, a remote method invocation(RMI) service, and lightweight Naming,
Event and Log Services. Location transparency may be provided to hardware components by applying
the Proxy design pattern [GHJV95] in hardware. The hardwareproxies provide the same signal-based
interface as the business component for which they act as proxies. The client proxy stores the physical
address of the server component port e.g. in a register whichmay be modified if the server compo-
nent is migrated to another location. These proxies are responsible for the packing and unpacking of
data transferred on the signal based interface to and from request and reply messages to implement a
RMI protocol. If a systematic UML/IDL-to-HDL/SystemC mapping is defined, any software interface
from CORBA services may be refined downto hardware if meaningful. In particular, this is true for the
lightweight Naming, Event and Log Services. The application of CORBA middleware services downto
hardware will be described in the next section.

Application of the Domain Profile

Due to the overhead of XML parsing, this functionality of theSCA CF deployment service will certainly
remain in software on a control general-purpose processor.Nevertheless, the XML descriptors of the
domain profile needs to be adapted to the description of hardware SCA components.

Services provided by the OE for FPGA

The services of an OE for FPGA are listed in the following. These services are conceptually provided
by a hardware container to the hardware business componentsi.e. IP-cores. The portability of hardware
modules relies on the standardized hardware interfaces of these services. An abstract interface in CORBA
IDL may be mapped to each of these services.

• thefunctional configuration interface allows the deployment framework to configure the param-
eters of business components. The abstract interface in UML/CORBA IDL may contain a read-
only, write-only or read/write attributes, explicit getter/setter methods such assetParam(), or
a genericconfiguremethod like in the SCA . The hardware interface for a write-only attribute
or setter method typically consists of an input control signal like enable, write or push, an
optional address signal when the number and size of parameters is relatively big, and an input data
signal per parameter or for all parameters respectively fora small or big number of parameters. An
acknowledge signal is generally not required. Conversely,the hardware interface for a read-only
attribute or getter method typically consists of an input control signal likeread or pull, an op-
tional address signal when the number and size of parametersis relatively big, and a output data
signal per parameter or for all parameters respectively fora small or big number of parameters.

7.4. Hardware Application of the Software Communications Architecture 239

• the hardware reconfiguration interface allows the loading of one or multiple hardware wave-
form components using a dynamic and partial bitstream referenced by the SCA domain profile
and the unloading of hardware components by loading blank bitstream. This interface may be
implemented by a software FPGA Device using software drivers such as the one of the ICAP con-
troller or a hardware FPGA Device wrapping the FPGA-specificreconfiguration interface such as
the ICAP write-only interface. A single FPGA Device instance per FPGA chip may be required
for all reconfigurable areas as the dynamic partial bitstream from Xilinx transparently includes the
addressing information which indicate where the bitstreammust be loaded in the FPGA and which
reconfiguration area must be used. Hence, an FPGA Device per reconfigurable area may not be
needed. A software or hardwareResourceFactorymay also use the physical reconfiguration
service interface to create and release a hardware waveformcomponent. The hardware recon-
figuration service interface should be independent from anyFPGA vendor even if currently only
Xilinx industrially supports dynamic partial reconfiguration of FPGAs in its PlanAhead placement
tool although hardware reconfiguration is an inherent feature of FPGAs.

• the power management interfacemay rely on low-power techniques to reduce the power con-
sumption of hardware modules. The power management interface may be based on a power control
interface and protocol like in AXI [ARM04] and in OCP3.0, andmay use clock gating for FPGAs
to reduce dynamic power consumption [ZRM06]. The objectiveis to reduce the frequency or
switch off the clock signal of idle hardware modules.

• The data stream interface is used to transfer a stream of data between hardware components
such as signal processing blocks. This interface may support burst transfers like OCP [OI06],
packet-oriented transfers and allow data flow control like the Avalon Streaming interface [Alt07a].
Such hardware interface corresponds thepushPacket operation of SCA building blocks or the
pushBBSamples of the Transceiver Facility [NP08].

• The control interface allows the start or stop the processing of a hardware components. This
interface usually consists of anenable signal. Such an interface correspond to thestart and
stop operation of the SCA Resource interface.

• the activation service or clock service provides a periodic clock used to synchronize a set of
hardware modules. It may be provided by a DCM (Device Clock Module) on Xilinx FPGAs. Ad-
vances implementation may support dynamic frequency scaling to reduce the power consumption
of hardware components. This service is typically incarnated by a clock signal in the interface of
hardware modules.

• the initialization service or reset service allows the initialization of hardware modules. This
service is typically incarnated by a reset signal in the interface of hardware modules.

• the storage serviceis used by the hardware module to read and write user-data to standardized
storage elements such as single-port and dual-port RAMs, FIFOs with flow control and registers.
The storage elements store the input and output data of the business components such as RMI
messages and raw data.

7.4.3 Hardware SCA Resource Interface

We propose the following hardware signal-based interface for the SCAResource interface. We choose
an addressable blocking data push interface for requests and a non-blocking data push interface for
replies.

240Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

31 ... 26 27 ... 4 5 ... 0
OP_ID PARAM_ID EXC_ID

PARAM_VALUE

Table 7.4: Memory-Mapped Hardware/Software SCAResource Interface

library ieee;
use ieee.std_logic_1164.all;
library CORBA;
use CORBA.CORBA_types.all;

entity Resource is
generic (
EX_DW : natural := 6;
OP_DW : natural := 4;
DATA_DW : natural := 8;
);
port (

-- common signals
clk : in std_logic;

rst_n : in std_logic;
-- shared Resource interface
-- request
push_i : in std_logic;
data_i : in std_logic_vector(DATA_DW-1 downto 0); -- Operation Id
addr_i : in std_logic_vector(OP_DW-1 downto 0); -- Operation Id
ack_o : out std_logic;
-- reply
push_o : out std_logic;
data_o : out std_logic_vector(DATA_DW-1 downto 0);
exc : out CORBA_exception;
exc_id : out std_logic_vector(EX_DW-1 downto 0)

);
end Resource;

7.4.4 Memory-Mapped Hardware/Software Resource Interface

Depending on the chosen trade-off between performance and area, several alternatives exist to define
a memory-mapped HardwareResource Interface. For instance, one register may be allocated per
operation parameter or one register bank per operation [Frö06]. However, we chose to constrain the
hardware/software interface to only permit one invocationat a time and guarantee the sequentiality of
operation calls to avoid race conditions. We first analyzed the requirements of theResource Interface.
The number of operations in theResource interface is 10 therefore 4 bits are basically required to
indicate the operation to be invoked. In the same way, the number of possible exceptions that may be
raised by theResource operations is 56 hence 6 bits are basically required to indicate an error code. If
we consider a typical data bus width of 32 bits, 21 bits are available to indicate an operation parameter.

Table 7.4 presents the proposed memory-mapped register bank to allow the softwareResource

7.4. Hardware Application of the Software Communications Architecture 241

stubs to invoke theResource operations of hardwareResource or Device components. The
OP_ID field is a binary encoded numerical identifier that indicatesthe hardware operation to be invoked.
ThePARAM_ID field is a binary encoded numerical identifier that indicatesan operation parameter. The
PARAM_VALUE field contains the value of an operation parameter. This hardware/software interface
is generic and requires few hardware resources. Only two writes and reads are required to invoke an
operation without parameter such asinitialize,start andstop.

For instance for theinitialize operation, an invocation request from a software componentto a
hardware component may consist for the software stub in writing "1" in theOP_ID register to indicate
theinitializeoperation and in clearing theEXC_ID register with "1" i.e. by writing "0x3F". For the
invocation reply, the software stub may either be proactiveby polling the value of theEXC_ID register to
know whether the initialization has failed (EXC_ID 6=0), or it may be reactive and wait for an interrupt.
The same mechanism may be applied to all SCA operations with no parameter i.e.initialize,
start andstop. The most difficultResource operations to map are theconfigure andquery
operations, because they use as parameter a variable-length sequence of id-value structures containing a
sequence of bytes (string) and a polymorphic data type (any). We propose that thestring identifier
is transparently replaced in software stubs by a numerical identifier written in thePARAM_ID field. The
data width of this fields allows a comfortable number of parameters (221 i.e. 4+ million). If a parameter
does not fit in thePARAM_VALUE register e.g. along long integer or a sequence of bytes, several
writes are required with the same values for theOP_ID andPARAM_ID fields. In this case, the hardware
skeleton would have a demarshalling FSM to place the contentof the PARAM_VALUE register in its
internal registers, which could then be read by the hardwareapplication component after all parameters
were received. I notably discussed this interface with Bruno Counil, Rémy Chau and Benjamin Turmel.

7.4.5 Extension of the SCA Domain Profile for hardware components

SCA XML descriptors can be extended to take into account the non-functional properties of hardware
SCA components such as memory map like in IPXACT, simulationand synthesis tools used, maximum
frequency, area in gates or logic elements, reference modelin C, transaction-level model in SystemC,
etc.

Software Package Descriptor (SPD)

During application deployment, a SPD is used by the domain manager to load a component and its im-
plementations. The SPD could contain several software and hardware implementations of a component
for respectively different types of processors and OS, and different FPGAs. Like IP-XACT, the SPD
could describe different views of the same component at different abstraction levels for instance func-
tional, transactional, software and hardware component implementations. The SCA domain profile must
be extended to address hardware SCA components on FPGA and ASIC. As opposed to [JTR05], we
propose the following extensions to the SPD file descriptor:

• view: functional, TLM, software and hardware implementations,

• target: FPGA or ASIC,

• family : Xilinx VirtexV, Altera Cyclone II,

• tool: ModelSim, ISE/Quartus, Precision, Catapult and their version,

• language: SystemC, VHDL, Verilog, SystemVerilog, Catapult C,

242Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

• performance: frequency, size,

• hardware/software interface: memory map, device drivers,

• hardware interface e.g. name, direction and size of VHDL entity ports,

• bitstream: total or partial bitstream for reconfiguration

Software Component Descriptor (SCD)

The SCD describes the IDL interfaces supported, provided and required by a software SCA component.
We propose a Hardware Component Descriptor (HCD), which describes the signal-based interfaces sup-
ported, provided and required by hardware SCA component. The signal-based interfaces result from
the mapping of the operation-based interfaces identified byCORBA repository ids of the corresponding
software SCA component. This mapping include the memory mapping of the operation-based interfaces
according to a given alignment constraints. The chosen alignment rule must be the same for the align-
ment of fields in message payload and the alignment in memory.As illustrated in [Frö06], operation
parameters may be aligned on 0, 2 or 4-bytes that describes the relative physical addresses where op-
eration parameters may be read and written according to their direction (in, out, inout parameter) and
access rights (read-only, write-only, read/write attribute). The absolute address of operation parameters
is only known by the proxies like in [Frö06], but these proxies remain as transparent as usual CORBA
proxies unlike [Frö06]. If the implementation of an abstract SCA component is changed from a software
to a hardware implementation and vice versa or if its location is changed, only the reference in the proxy
encapsulated the physical location needs to be updated. Client components will continue to access server
components using the same interface to ensure location and implementation transparency. The SCD and
HCD describe the interfaces of concrete components for the SCA Platform-Specific Model (PSM) that
are derived from the common abstract component in the Platform Independent Model (PIM).

The type of hardware SCA components may be resource, device,resourcefactory, log, namingser-
vice and eventservice. A hardware resource (resp. device) component implements theResource (resp.
Device) interface. A hardware resourcefactory component may be a hardware reconfiguration con-
troller loading partial bitstreams from a memory to a reconfigurable area. A hardware log component
may be a hardware controller writing to a persistent memory like memory card, flash or disk. Hard-
ware implementations of naming service and event service will be presented in the following. Like the
SCD, the HCD describes the component ports via their name, repository id, direction (provides or uses)
and type (data, control (default), responses or test). The SCD and HCD may be extended with other
component type such as event and debug.

Properties Descriptor

The Properties Descriptor defines the value of configurationattributes for components and devices. Ba-
sically, the same Properties Descriptor should be used for the SCD and HCD, but the it may include
additional information for the HCD such as clock frequency.

It contains five types of XML elements:simpleproperty (id, value, data type and min-max range,
read/write mode, units, kind),simplesequence, test, struct or structsequenceelements. These elements
may have id, name, value(s), data type and min-max range, read/write mode, units, kind etc. Thesimple
element is used to define id-value pairs. It correspond to CORBA basic data type such as short. The
Simplesequenceelement is a list ofsimpleelements with different values of the same type. It correspond
to CORBA sequence data type. Thetestelement is a list of input and result values to use with therunTest
operation. Thestruct element is used to aggregate simple element of different types. It correspond to

7.4. Hardware Application of the Software Communications Architecture 243

CORBA struct data type. Thestructsequenceelement is a list ofstructelements with different values. It
correspond to CORBA sequence of structs.

Depending on the property kind (i.e. configure, test, allocation, execparam, factoryparam) and mode
(i.e. readonly, readwrite, writeonly),ApplicationFactory andDeviceManager invokes the ap-
propriate operations of theResource (configureand/orquery, runTest), Device (de/allocateCapacity,
execute) andResourceFactory (createResource) interfaces using these elements as parameters at
application creation during deployment.

Device Package Descriptor (DPD)

A DPD may describe a board on which a waveform application is deployed. A DPD contains an id, name,
version and group of title, author, description and hardware device registration. A hardware device reg-
istration element may describe an FPGA chip such as the manufacturer (e.g. Xilinx), the model number
(e.g. XC4VFX20-FF672), the device class (e.g. Modem) and the description (e.g. Virtex IV FX20).
The FPGA device registration element may have child hardware devices which describe the hardware
devices contained in the FPGA such as processor devices (e.g. PowerPC or MicroBlaze), memory de-
vices (e.g. Block RAM), bus devices (e.g. CoreConnect PLB and OPB), I/O devices (e.g. RocketIO),
etc. Hence, the content of an FPGA device registration element may be similar to the description of the
SoC architecture in design tools such as Xilinx EDK and Altera SoPC Builder.

Device Configuration Descriptor (DCD)

A device manager is associated with a Device Configuration Descriptor (DCD) file. The DCD identifies
all devices and services associated with a device manager byreferencing the associated SPDs. The DCD
also defines properties of a device manager, enumerates the needed connections to services (e.g. file
systems), and provides additional information on how to locate the domain manager.

The DCD may describe the deployment of hardware waveform components to FPGA devices using
the component placement elements, the instantiation of hardware waveform components, the connections
of hardware waveform components to hardware services such as naming, event and log service to retrieve
their object reference i.e. logical address. The device manager may be implemented as a software object
or a hardware object. However, such a CF management entity islikely to be implemented in software to
reduce the hardware overhead.

Software Assembly Descriptor (SAD)

The SAD references all SPDs needed for an application, defines required connections between appli-
cation components (connection of provides and uses ports / interfaces), defines needed connections to
devices and services, provides additional information on how to locate the needed devices and services,
defines any co-location (deployment) dependencies, and identifies a single component within the appli-
cation as the assembly controller.

The SAD indicates the collocation of application components on the same device. If hardware ap-
plication components are colocalized on the same FPGA device, their ports may be interconnected in
point-to-point and communicate with each other via hardware function calls instead of messages. If
hardware and software application components are colocalized on the same FPGA device, they may
communicate through the available on-chip bus using address mapping or message passing.

This descriptor specifies the interconnection and configuration of application components. The SAD
describes an id, name, component SPD files, partitioning information to indicate component placement
(e.g. components collocation on the same device) and component instances (id, name, component prop-
erties, details on how object references are obtained - by a resource factory or by the Name Service),

244Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

an assembly controller that dispatches invocations from the user via a GUI to Resource operations del-
egated by theApplication, connections between component provides and uses ports to exchange
Port object reference, and externally visible ports of the application.

7.4.6 Deployment of Hardware SCA Resource Components

Some works have studied the management of the dynamic and reconfiguration of IP cores i.e their de-
ployment such as run-time 2D placement. The deployment process of the SCA may be built on top of
these works. The deployment and undeployment process of theSCA CF must be adapted to support the
deployment and undeployment of hardware SCA Resource components. The heart of the deployment
process is implemented in theApplicationFactory interface. Concerning the deployment of a
hardware SCA component whose implementation is packaged asa partially and dynamically reconfig-
urable bitstream, the CF must check that the size of the bitstream and the number of required hardware
resources in terms of FPGA Configurable Logic Blocks (CLB) and RAM blocks, DSP blocks etc. are
inferior or equal to the resources available in the reconfiguration areas and their size to authorize the
hardware component instantiation.

We update the deployment process described in [JTR06] and presented in Figure 7.32.

Figure 7.32: SCA deployment process implemented by anApplicationFactory

The deployment process not only needs the filename of the bitstream but also metadata i.e. the
synthesis results after Place and Route on different targetFPGAs to exactly know the required hardware
footprint i.e. the hardware resources needed for the configuration of the chosen FPGA reconfigurable
area with the partial bitstream.

7.5. Hardware Middleware Architecture Framework 245

7.5 Hardware Middleware Architecture Framework

We tried to apply the same design patterns than those typically used to design software middleware
implementations and to identify the same architectural elements. As depicted in figure 7.33, we propose a
hardware middleware architecture framework based on five layers: the application layer, the presentation
layer, the dispatching layer, the messaging layer and the transport layer.

Figure 7.33: Middleware Architecture Framework

The objectives of such a layered architecture is to separatethe functionalities of a hardware commu-
nication middleware into replaceable components. In the chapter 8 presenting our practical experiments,
we will describe three configurations of this middleware architecture framework based on the classical
memory mapping and message passing using SCA MHAL and CORBA GIOP 1.0. The proposed mid-
dleware architecture framework is a generalization of these middleware configurations. This architecture
framework must be seen as a generic configuration or assemblyof middleware platform components.

246Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

7.5.1 Application and Protocol personalities

We reuse the notion of application and protocol personalities proposed for PolyORB [VHPK04]. We
consider the hardware SCA components as part of a SCA application personality. Another application
personality could be based on hardware CCM components or other component models. Two protocol
personalities have been implemented using SCA MHAL and CORBA GIOP 1.0. The request and re-
ply paths may be merged if the message protocol does not perform no distinction between requests and
replies like MHAL. The hardware middleware architecture presented in figure 7.33 is generic enough
to include the studied middleware configurations. However,application and protocol requirements may
require exploration of the middleware architecture to satisfy given QoS constraints. For instance, the
number of buffers and network interfaces and the allocationof physical addresses i.e.network endpoints
to component ports may change from one pair of application and platform to another one. Indeed, the fi-
nal middleware configuration depends on the mapping of connectors, which bind application component
ports, to the platform communication buses. Various application to platform mapping may be possible
according to the communication constraints. For instance,the application information flows like con-
trol, configuration and data stream may be mapped onto sharedor dedicated buses for each or all flows.
Moreover, the platform typically provide proprietary buses for DSP-FPGA, FPGA or GPP-FPGA com-
munications No encapsulation into messages of data streamsmay be required if the real-time constraints
are too stringent to accept the overhead in latency needed for message decoding and encoding. The over-
head of message encapsulations depends on the ratio betweenthe message format and raw user-data.

7.5.2 Application layer

Theapplication layercontains the hardware application components. These components may be for in-
stance hardware SCAResources or CCM components. They implement in hardware the most relevant
operations required by the software component model interfaces. The other operations can be transpar-
ently implemented in software stubs to save hardware resources. The components in the application layer
can be reused independently of the other middleware layers.

7.5.3 Presentation layer

The presentation layerperforms the encoding/decoding of message payloads. It consists of hardware
stubs and skeletons which accomplish the hardware marshalling/demarshalling of message byte streams.
They act as invocation adapters [PRP05] which adapt the generic interface of the middleware and the
specific application components. IDL compilers may automatically produce these stubs/skeletons by
generating dedicated FSMs. Based on the operation signatures defined in CORBA IDL, encoding/de-
coding FSMs may extract a known set of bits from the message byte stream in one or several clock
cycles depending on the mapping configuration (e.g. the databus width). Like proposed by the Packed
Encoding Rules (PER), message payloads may be encoded usingdata alignment like GIOP CDR or not
like SCA MHAL and ZeroC ICE. Stubs decode message payloads into operation parameters which are
stored in memories (registers, FIFOs or RAMs). Stubs may forward the invocation to the application
components via apush interface, or the components can read the parameters valuesvia adata inter-
face or apull interface. The collection of stubs/skeletons that isolatethe application components from
their operating environment can be viewed as a hardwarecontainerwhich provides activation (via writes
for hardware invocations), synchronization (e.g. clock),storage (e.g. registers) services.

We investigate the implementation of theConfig port in VHDL based on both MM and MP transfer
modes. We present some code excerpt in listing 7.12.

−− Package r e s u l t i n g from t h e mapping c o n f i g u r a t i o n

7.5. Hardware Middleware Architecture Framework 247

package F i l t e r _ c o n f i g P o r t _ c f g i s
cons tan t MW: n a t u r a l := 3 ; −− m data t y p e s i z e

4 cons tan t D: n a t u r a l := 5 ; −− paDding f o r p
cons tan t PW: n a t u r a l := 8 ; −− p da ta t y p e s i z e
cons tan t HAW: n a t u r a l := 8 ; −− PUSH_ADDR_WIDTH
cons tan t HDW: n a t u r a l := 16 ;−− PUSH_DATA_WIDTH
cons tan t LAW: n a t u r a l := 7 ; −− PULL_ADDR_WIDTH

9 cons tan t LDW: n a t u r a l := 16 ; −− PULL_DATA_WIDTH
cons tan t M_P_L_ID : s t d _ l o g i c _ v e c t o r (HAW−1 downto 0) := x " 04 " ;
cons tan t CONFIGURE_ID: s t d _ l o g i c _ v e c t o r (HAW−1 downto 0) := x " 05 " ; −− . . .

end ;
−− Hardware Component Por t s t o r i n g method pa rame te rs
use work . F i l t e r _ c o n f i g P o r t _ c f g .a l l ;

14 e n t i t y F i l t e r _ c o n f i g P o r t i s
gene r i c (HAW,HDW,LAW,LDW: n a t u r a l) ;
por t (
−− Component Por t I n v o c a t i o n I n t e r f a c e
push_ i : i n s t d _ l o g i c ;

19 push_add r_ i : i n s t d _ l o g i c _ v e c t o r (HAW−1 downto 0) ;
p u s h _ d a t a _ i : i n s t d _ l o g i c _ v e c t o r (HDW−1 downto 0) ;
ack : out s t d _ l o g i c ;
−− Component Por t I n t e r n a l I n t e r f a c e
push_o : out s t d _ l o g i c ;

24 push_addr_o :out s t d _ l o g i c _ v e c t o r (HAW−1 downto 0) ;
push_da ta_o :out s t d _ l o g i c _ v e c t o r (HDW−1 downto 0) ;
m_data_o : out s t d _ l o g i c _ v e c t o r (MW−1 downto 0) ;
c f _ p u l l _ i : i n s t d _ l o g i c ;
c f _ p u l l _ a d d r _ i : i n s t d _ l o g i c _ v e c t o r (LAW−1 downto 0) ;

29 c f _ p u l l _ d a t a _ i : out s t d _ l o g i c _ v e c t o r (LDW−1 downto 0) ;
−− . . .) ; end ;
−− Memory Map (MM) 1
e l s i f push_addr = M_P_L_IDthen
m_data_o <= push_da ta (MW−1 downto 0) ;

34 p_data_o <= push_da ta (PW+MW+D−1 downto MW+D) ;
−− Message Pass ing (MP) 1
e l s i f push_add r_ in = CONFIGURE_IDthen

n e x t _ s t a t e <= STATE_CONFIGURE_CF;
m_data_o <= push_da ta (MW−1 downto 0) ;

39 p_data_o <= push_da ta (PW+MW+D−1 downto MW+D) ;
−− Memory Map (MM) 2
e l s i f push_addr = SET_M_IDthen
m_data_o <= push_da ta (MW−1 downto 0) ;

−− Message Pass ing (MP) 2 on top o f Memory Map (MM) 2
44 e l s i f push_add r_ in = CONFIGURE_M_P_L_IDthen

n e x t _ s t a t e <= STATE_SET_P ;
ad_push_o <= ’1 ’ ;−− add ress decoder
ad_push_addr_o <= M_ID ;
ad_push_da ta_o <= push_da ta (MW−1 downto 0) ;

49 −− . . .

Listing 7.12: Mapping Illustration in VHDL for the FIR filter

Based on the mapping configuration, theFilter_configPort_cfg package parameterizes theFil-
ter_configPort module with the bit width of the hardware interface signals,the IDL attributes and

248Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

parameters and operation identifiers. In the MM1 and MP1 mode, the skeleton decodes the same mes-
sage containing m,p,l and ten coefficients. MP1 requires more hardware resources notably a DSP48 to
increment the address of coefficients in RAM.

Thanks to logic optimization, the support of both schemes requires fewer resources than the sum of
both. In the second experiment, we develop a generic addressdecoder to allow the separate configuration
of each attribute and parameter on top of which a MP to MM adapter may be implemented. No RAM is
thus required in this adapter. This approach provides more flexibility at the expense of more consumed
resources. Based on these prototypes, more exhaustive investigations are necessary to observe how these
schemes behave in time and space when scaling up. MM or MP or a combination of both could be chosen
transparently and explicitly.

7.5.4 Dispatching layer

Thedispatching layerperforms the routing of incoming messages and the arbitration of outcoming mes-
sages. When the component port provides services and acts asa server port, the incoming messages are
request messages, while the outgoing messages are reply messages. Conversely, when the component
port uses services and acts as a client port, the incoming messages are reply messages, while the outgoing
messages are request messages.

When ingoing messages are received, the input router dispatches incoming invocations to the appro-
priate skeleton according to the logical address in the request or reply message header e.g. an operation
name or request identifier for GIOP or a Command Symbol for MHAL. For hardware object-oriented
middlewares, the router acts as anobject adapter. In memory mapping, the router is implemented as a
classical address decoder that selects a skeleton based on the input physical address. This router shares
the same design trade-offs as its counterpart in buses and NoCs. It may be implemented as a simple
1-to-N multiplexer where N is the number of skeletons, but this is not scalable when the number of com-
ponent ports increases. To increase its scalability, the router can have a distributed implementation for
instance as a tree of 1-to-2 multiplexer that makes a better use of FPGA routing resources. The router
implementation may generic and configured at compile time depending on the number of component
ports.

When outgoing messages are ready to be sent, the output arbiter selects a skeleton for replies or
stub for requests according to some classical arbitration policies e.g. round-robin, priority-based or a
combination of both.

7.5.5 Messaging layer

The messaging layerperforms the encoding and decoding of message headers, encapsulates message
payloads with message headers, and implements the protocolstate machine with FSMs. The more the
message format contains information and the messaging protocol is complex, the more there are states
and the more hardware resources are consumed to implement it. For instance, the implementation of
GIOP 1.0 request-reply messages and MHAL messages showed that GIOP requires 52% of total LUTs in
addition. In memory mapping, this layer is empty since no message processing is necessary. The message
payloads are directly transferred from the transport layerto the dispatching layer. The messaging layer
provides anExtensible Messaging Framework(EMF) in which message plug-ins may be introduced to
support various message protocols. Dynamic and partial hardware reconfiguration of FPGAs [SMC+07]
may be used to dynamically loadable hardware messaging modules as they were dynamically linkable
software libraries.

7.6. Limitations 249

7.5.6 Transport layer

The transport layerprovides a generic hardware interface to the underlying transport mechanisms e.g.
on-chip or off-chip buses, Network Interfaces in NoCs, high-speed serial links, etc. It includestransport
buffers to store the incoming and outcoming messages to be sent and received from the network. In our
experiments, the transport buffers have been implemented as generic hardware FIFOs which have been
mapped to the FIFOs available from the target FPGA library. Transport buffers may be organized as a
bounded pool of buffers with a configurable depth and width defined at compile time. Each transport
buffer represents avirtual channeland may be associated with a predefined priority to avoidpriority
inversionlike in Real-Time CORBA ORBs and NoCs. For instance, a low-priority control/configuration
message should not be blocked by the processing of a high priority data stream message. These virtual
channels allow to provide differentiated services with best-effort or guaranteed quality of services (QoS)
regarding throughput, latency and jitter like in NoCs [RDP+05] [Bje05]. Typically, the transfer of video,
voice and data has different qualities of services. This layer containstransport plug-ins like bus bridges
to adapt the generic interface of the transport buffers and the specific interface of the standard bus. Each
transport plug-in constitutes anetwork interface. Such transport plug-ins require stable hardware in-
terfaces which can be derived from CORBA IDL interfaces according to our mapping proposition. In
our experiments, we evaluate OCP to provide a standard interconnection socket. For instance, an Xil-
inx OPB-to-OCP bridge have been implemented and used in our middleware prototypes. The transport
layer provides anExtensible Transport Framework(ETF) like in Real-Time CORBA in which transport
plug-ins may be introduced to support various transport protocols. Dynamic and partial hardware recon-
figuration of FPGAs [SMC+07] may be used to dynamically loadable hardware transport modules as
they were dynamically linkable software libraries.

7.5.7 Performance Overhead

We consider that the services provided by each of these layers are more or less already implemented by
classical communication buses. Indeed, communication buses need to transfer messages from a commu-
nicating entity to another, route messages to the appropriate entity, which must marshal and unmarshal
commands and parameters to and from messages. These services are simply organized as a set of well-
defined layers. This organization does not necessarily imply an important performance overhead in itself.
The potential performance overhead will primarily depend on the implementation of each layer. The pro-
posed middleware framework is generic and must be tailored to the specific communication requirements
of an application. For instance, a designer may choose memory mapping instead of message passing or
prefer a lightweight message format to reduce communication latency. The increasing overhead of three
configurations of this middleware architecture framework will be illustrated in chapter 8.

7.6 Limitations

As already said previously, the CORBA Interface Definition Language suffers from inherent limitations
to address hardware design. The standard CORBA IDL is a declarative language, which does not ad-
dress behavioral specification. As a number of language mappings to software implementation languages
are already specified, a natural approach was the specification of a IDL-to-HDL and IDL-SystemC TLM
mappings. The other standard use by the SCA which could be used is UML, but no standard mapping ex-
ist between UML and software programming languages. Since astandard mapping exists between UML
and CORBA IDL using the UML for profile CORBA and CCM, definition a mapping from IDL-to-HDL
is similar to defining a mapping from UML-to-HDL. CORBA IDL can be considered as a concrete tex-
tual syntax to the UML graphical language. Nevertheless, UML provides a standard mean to specify

250Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

behavior of abstract components independently of their implementations. It notably provides Action
Language, Sequence Diagram and State Diagram. Another approach would be to include language con-
struct proposed in the academic literature, but these extensions would be not standard. These extensions
include for instance behavioral protocol [PV02]. Moreover, the use of the MDA approach is conceptual
rather than a strict implementation of the OMG approach e.g.using UML.

7.7 Conclusion

In this chapter, we presented a common component approach for system, hardware and software com-
ponents based on the language mappings of a high-level interface specification in CORBA IDL or UML
and a common middleware approach through a hardware middleware architecture framework.

We propose to leverage the conceptual SDR design methodology based on MDA and the compo-
nent/container approach, which existed at Thales Communications in 2005 [GNSV07] , with SystemC
Transaction Level Modeling (TLM) to simulate the platform independent model of waveform applica-
tions (see §7.3.1.0), and the platform specific models of waveform applications and SDR platforms (see
§8.2.2). The component/container approach allows one to transparently integrate functional models in
C as SystemC components in virtual platforms. SystemC TLM allows the simulation and validation of
PIMs and PSMs at different abstraction levels. We propose a common design flow for system, hardware
and software components based on MDA, SystemC TLM, and language mappings from business inter-
faces to simulation and implementation languages at different abstraction levels. The MDA approach is
coherent with the development of the new technology-independent SCA release

To support the systematic refinement of object-oriented component interfaces in CORBA IDL or
UML to system, software, and hardware component interfacesin C/C++, SystemC and VHDL, we pro-
pose to define new language mappings from CORBA IDL to SystemCTLM/RTL and VHDL.

The mapping from IDL3 to functional SystemC extends the IDL-to-C++ mapping with additional
mapping rules to fit specific SystemC language constructs. A SystemC component is asc_module
component with requiredsc_export ports and providedsc_port ports which are associated to
sc_interface interfaces. We illustrate the UML/IDL-to-SystemC mappingat functional level through
the transition from a Platform Independent Model (PIM) in UML of two waveform components to a Plat-
form Specific Model (PSM) in SystemC (see §7.3.1.0).

The mapping from IDL3 to SystemC at Transactional Level is based on transactional connectors
called transactors, which adapt the mapping of user-definedobject-oriented interfaces to standard TLM
interfaces. The cornerstone of this mapping relies on the equivalence between operation signatures and
message definition in the object-oriented approach. Regardless of the abstraction level, the syntax and
semantics of the business interfaces in UML or IDL and the associated transactions are the same, only
the manner of transferring messages changes with the abstraction level. This object-oriented approach to
refinement contrast with the classical ad-hoc refinement in SystemC, where the syntax and semantics of
business interfaces are lost during refinement.

For the mapping from CORBA IDL to Hardware Description Languages (HDLs), we emphasize
the differences between interface mapping between software languages, and interface mapping between
hardware and software languages. Existing CORBA IDL language mappings are generally systematic
and one-to-one mapping, which share a common procedure callabstraction. Software-to-hardware map-
ping require more flexibility due to the inherent hardware trade-off between area, performance and power
consumption. An IDL-to-HDL mapping requires to select and configure non-functional properties such
as hardware interfaces, timing and protocols, and explore the mapping space. We propose the use of a
standardized mapping configuration file to explicitly and finely configure the mapping.

We formulate user and implementation requirements for a standard IDL3-to-HDL mapping. The

7.7. Conclusion 251

most important requirements concern concurrency (e.g. concurrent method invocations and executions
within a component, concurrent accesses to internal attributes and method parameters, concurrent invo-
cations of methods from multiple clients); connectors to adapt different interaction semantics or syn-
chronization schemes; hardware interface and protocol framework to improve the portability and in-
teroperability of HW components; blocking and non-blocking synchronization; message passing with
aligned/unaligned data types encoding rules; stream-oriented Inter-ORB Protocol to pipeline requests
and replies with Time or Space Division Multiplexing (TDM/SDM); Extensible Transport Framework
(ETF) with a generic bus interface like OCP; Extensible Message Framework (EMF) to support domain-
specific message protocols like SCA MHAL, and a subset of IDL data types with bit-accurate types.

In our mapping proposition, a hardware object-oriented component (e.g. SCA, UML, CCM) is rep-
resented by a hardware module, whose implementation (e.g. VHDL architecture may be selected
by a hardware configuration e.g. VHDLconfiguration. An abstract component port is mapped to
a logical hardware component port, which is a set of RTL inputand output ports.

We distinguish three kinds of hardware component interfaces: the business component core interface
or internal component interface to access operation parameters, the invocation interface of component
ports or external component interface to send/receive invocations, and the connector interface to send/re-
ceive messages. By default, methods in the same object interface share the same hardware port and thus
method invocations of the same interface are sequential.

A hardware connector may represent non-functional properties such as synchronization and commu-
nication such as flow control, clock domain crossing, interaction semantics, and protocols of point-to-
point buses, shared buses or NoCs.

A hardware container provide all remaining non-functionalservices such as lifecycle and persistence
to store component state. For instance, the lifecycle service may manage component creation/destruc-
tion e.g. with dynamic partial reconfiguration, component initialization e.g. with a asynchronous or
synchronous reset, parameters configuration with registerbanks, and activation/deactivation e.g. with a
clock or enable signal.

The mapping is based on a common and independent family of hardware interfaces and connectors.
We apply our mapping proposition to the interfaces of a FIR filter, a Transceiver standardized at the
SDRForum, a convcoder and bitinterleaver SCA components and the dining philosopher problem in
CCM and a modulator in [GBSV08].

An IDL3-to-VHDL compiler prototype has been implemented according to a MDA approach. Based
on the LwCCM meta-model, we define a VHDL meta-model. We extended the standard CCM meta-
model and proposed a VHDL meta-model based on the architecture of the first one. The RTL mapping
is finely configured by an editor generated from the CCM meta-model. Model-to-model transforma-
tions rules were defined in the OMG QVT language. Model-to-text transformations were defined by
code templates using OMG MOF2Text language. Our hardware middleware architecture framework al-
lows hardware components to transparently communicate with software and/or hardware components
using either classical memory mapping or message passing with CORBA GIOP or SCA MHAL. The
proposed middleware architecture applies the software middleware design patterns down to hardware.
The hardware middleware architecture framework contains five layers: the application layer consists of
the hardware application components, the presentation layer performs the encoding/decoding of mes-
sage payloads, the dispatching layer deals with the routingof incoming messages and the arbitration of
outcoming messages, the messaging layer takes care of the encoding and decoding of message headers,
encapsulation of message payloads and the protocol state machine, and the transport layer provides a
generic hardware communication interface and transport buffers. The hardware middleware architecture
framework is based on the concepts of application and protocol personalities. An application personality
corresponds to a component model personality e.g. SCA or CCM. A protocol personality corresponds
to a message protocol such as SCA MHAL and CORBA GIOP.

252Chapter 7. Unified Component and Middleware Approach for Hardware/Software Embedded Systems

Our mapping proposition was first dedicated to CORBA IDL, butcan be easily extended to any
object-oriented interface description notably in UML.

Chapter 8

Experiments

Contents
8.1 Introduction 253

8.2 DiMITRI MPSoC for Digital Radio Mondiale (DRM) 254

8.2.1 Application and Platform presentation 254

8.2.2 Executable PSM in SystemC TLM .. . 254

8.2.3 Results Analysis .. . 257

8.3 High-Data Rate OFDM Modem .. . 258

8.3.1 Application and Platform presentation 258

8.3.2 Modeling at Different Abstraction Levels 259

8.3.3 Hardware Middleware Implementations 266

8.3.4 Results on Virtex IV after Place&Route 273

8.3.5 Results Analysis .. . 275

8.4 Conclusion .. . 276

8.1 Introduction

This chapter presents the experiments on which the propositions of the previous chapter are based. These
experiments are part of our contributions. The two studied applications are signal-processing applications
in wireless digital communication systems. These systems are typical products developed by Thales
Communications, where most of our thesis took place. In particular, these experiments focus on the
physical layer of radio modems, which are implemented on FPGA.

This chapter is organized as follows. First, section 8.2 presents the modeling of an existing RTL
IP core component as a reusable SystemC component at Programmer View (PV) level, its integration
and software validation in a virtual platform of a subset of an MPSoC and the refinement of this virtual
platform to be closer to the real platform. Then, section 8.3describes the modeling at different abstraction
levels of a subset of a high-data rate OFDM modem using SystemC FIFO channels, OCP TLM and OCP
RTL, and the implementation of the proposed hardware middleware framework using memory-mapping
and message-passing with CORBA GIOP and SCA MHAL. Finally, section 8.4 concludes this chapter.

253

254 Chapter 8. Experiments

8.2 DiMITRI MPSoC for Digital Radio Mondiale (DRM)

In this section, we present the modeling of a Viterbi decoderin SystemC TLM and the modeling of part
of the DiMITRI MPSoC for Digital Radio Mondiale (DRM) as a virtual platform. This virtual platform
is then refined by replacing the processor model and the Bus Functional Model (BFM), and by using
adapters called transactors.

8.2.1 Application and Platform presentation

The DiMITRI MPSoC [QSC04] implements a digital radio receiver which supports two digital radio
front-ends forAmplitude Modulation(AM) andFrequency Modulation(FM) analog demodulation,Or-
thogonal Frequency-Division Multiplexing(OFDM) digital demodulation and multimedia codecs. DiM-
ITRI consists of two ARM processors, one dedicated to the physical layer and the other to the upper
layers, and hardware accelerators notably a Viterbi decoder and twoDigital Down Converters (DDC)
as depicted in Figure 8.1. Available materials for this application were software code including drivers,
VHDL code and related specifications.

Figure 8.1: DiMITRI MPSoC architecture overview

8.2.2 Executable PSM in SystemC TLM

This sub-section presents the modeling of a business component, a Viterbi decoder, using the compo-
nent/container approach and the refinement of a connector, aBus Functional Model, in SystemC TLM.
We built a virtual platform of a subset of the DiMITRI MPSoC. We consider this virtual platform con-
stitutes an executable Platform Specific Modem (PSM) of the DiMITRI MPSoC. Note that we use the
term "PSM" according to its literal meaning, but not in a strict OMG MDA context. We modeled the
previously validated RTL model of the Viterbi decoder as a SystemC Component and integrated it in the
virtual platform. The business code in C of the Viterbi decoder has been encapsulated in a SystemC TLM

8.2. DiMITRI MPSoC for Digital Radio Mondiale (DRM) 255

container with a register/bit accurate hardware interfaceat Programmer View (PV) level. The resulting
SystemC TLM IP has been reused without any modification during the refinement and exploration of
the virtual platform depicted in Figure 8.2. The first virtual platform is composed of an ARM968-ES
Instruction Set Simulator (ISS), an OCP TL2 channel [OI07],two memories (ROM and RAM) with an
OCP TL2 interface and an OCP TL2-to-PV transactor connectedto the Viterbi model. According to
the taxonomy of connectors proposed in [MMP00] (see 6.5.7),we consider that the OCP TL2 chan-
nel represents an arbitrator/distributor connector, while the OCP TL2-to-PV transactor is a conversion
connector.

Figure 8.2: Generic Virtual Platform at Programmer View (PV) level

Business Component Refinement: From C functional model to SystemC component at PV level

The hardware engineer at Thales, Bertrand Mercier, who developed the Viterbi decoder IP core extracted
from the reference simulation in C a functional model in C of the Viterbi IP. We encapsulated this C
model in a SystemC TLM IP at Programmer View (PV) level. At this abstraction level, SystemC models
are untimed, memory map and register accurate, and can support interrupt handling. We model the
Viterbi registers with the same bit accuracy as in the Viterbi IP core specifications using the SystemC
Modeling Library (SCML) [SCM08]. A register bank and its registers are declared and bound in the
Viterbi module constructor. Bitfields allow one to select a precise set of bits inside a register. A read or
write callback function is associated to each register or bitfield. A read or write access to the register or
bitfield triggers the callback. The register bank is bound toa PV target port, which uses the OSCI TLM
1.0 API [RSPF05].

As shown in Figure 8.3, the C model implements the business logic of the Viterbi decoder and
its services are called by the container through register and bitfield callback functions. These callbacks
functions implement the technical logic such as marshalling/unmarshalling, storage and synchronization.
Indeed, the Viterbi component decodes sequences of octets,which are sent in burst four octets at a
time on the 32bit AHB bus. Hence, read/write callbacks act asmarshalling/unmarshalling procedures,
which unmarshal words as bytes to be decoded and marshal decoded bytes as words. The C code file
is compiled with SystemC files keeping the model intact and constitutes a reusable golden source. The
SystemC container encapsulates the C model. There is a cleanseparation of concerns between business
and technical logic. The resulting SystemC TLM model is untimed and event-driven. The Viterbi model
was validated with the testbench already used to verify the hardware IP core. The ISS executes the
testbench code and accesses to the Viterbi registers thanksto the original driver in C. The modeling

256 Chapter 8. Experiments

Figure 8.3: Encapsulation of a C behavioral model within a SystemC PV container

effort to follow this component/container paradigm from a Cmodel is not really important, but it enables
portability and reuse of business logic.

Transactional Connector Refinement: From OCP TL2 to AHB bus model

The refinement of the first virtual platform was performed, while keeping the same SystemC TLM com-
ponent as depicted in Figure 8.4.

Figure 8.4: Transparent refinement using transactors

The transactional connector refinement consisted in replacing the OCP TL2 bus model by an AHB
bus model, and the virtual hardware component refinement in replacing the ARM968-ES core by an
ARM926-EJS core. Both steps enable us to be closer to the realplatform. Thanks to the use of an
AHB-to-PV transactor and cross-compilation, a true reuse of the Viterbi SystemC TLM component was

8.2. DiMITRI MPSoC for Digital Radio Mondiale (DRM) 257

performed since no modification was necessary. The refinement from one platform to another is thus
highly simplified.

Moreover, a real software application has been executed on this second virtual platform. We success-
fully validated an iterative decoding application previously executed on the real MPSoC, which uses the
Viterbi decoder many consecutive times.

Unlike the OCP-based platform which used polling, the second platform contains an interrupt con-
troller. The Viterbi decoder uses it to inform the ARM processor core that decoded samples are available
and can be read from registers. This represents another stepin the accuracy of the virtual platform.

Thus the contract at PV level - into which waveform software component developers could enter -
has been fulfilled: software validation, interrupt handling and modeling accuracy have been achieved.
This SystemC TLM IP component can be reused to model more quickly and easily other Viterbi-based
virtual SDR platforms.

This test case was not sufficiently complex to perform architecture exploration or obtain significant
profiling results. To be able to go further with exploration and profiling, another hardware engineer at
Thales, Bertrand Caron, continued the modeling of the DiMITRI MPSoC. Using the same modeling
approach, he modeled the DDC and DMA IP cores of the real SoC and integrated more software appli-
cation code onto the ARM core. His results showed that the Instruction Accurate ISSs we used in the
presented virtual platforms significantly increases the simulation speed of an order of magnitude (x10)
in comparison to an Cycle Accurate ISS.

8.2.3 Results Analysis

Compared to the classical approach in which a C functional model is developed when manually translated
into VHDL to build an IP core, a SystemC container allows the reuse of the C functional model to build
a SystemC component, which can be integrated within a virtual platform. A SystemC component at
Programmer View level allows an earlier validation of the hardware/software interface and software
drivers, which are error-prone code to develop. Modeling hardware accelerators in SystemC at lower
abstraction level such as cycle accurate level may be not required if the main purpose of the simulation
is software validation, and since several models of the samecomponent at different abstraction levels
are difficult to maintain and keep synchronized in terms of functionalities. Moreover, the C functional
model may be translated by HLS tools into synthesizable HDL code with some coding rules or after
some code rewriting e.g. using bit-accurate data types. Even if HLS tools offer a direct refinement from
C to HDL, SystemC components may still be required since theyprovide higher simulation speed than
RTL components. Finally, the generation of a SystemC container, which maps the software interface of
the C functional model to the register bank of the SystemC IP at PV level may be automated using a
memory-mapped IDL-to-SystemC mapping. For instance, eachoperation parameter may be explicitly
mapped to a memory-mapped register.

In parallel to the modeling of hardware accelerators as SystemC components at PV level, the commu-
nication architecture of the virtual platform may be explored by analyzing bus contentions and estimating
power consumption using different high-level but accuratebus functional models. This exploration is at
Architect View (AV) level. SystemC transactors are adaptorconnectors which adapt two software in-
terfaces at different abstraction levels e.g. a hardware accelerator at PV level and a BFM at AV level.
These transactional connectors supports SystemC component reuse and are themselves reusable inde-
pendently of the business components themselves. They allows a clean separation between computation
in hardware accelerator models and communication in BFMs.

258 Chapter 8. Experiments

8.3 High-Data Rate OFDM Modem

In this section, we describe the modeling at different abstraction levels of a subset of a high-data rate
OFDM modem using SystemC FIFO channels, OCP TLM and OCP RTL, and the implementation of the
proposed hardware middleware framework using memory-mapping and message-passing with CORBA
GIOP and SCA MHAL.

8.3.1 Application and Platform presentation

Figure 8.5: Example of component-based applications

As depicted in figure 8.5, I selected a subset of a complete High-Data Rate OFDM Modem and
focused on the coder part of the OFDM transmitter. This modemwas designed in 2003 to favor a one-to-
one mapping between a waveform functional component and itssoftware and hardware implementation,
and reuse. The application is a custom OFDM waveform, which was developed according to a traditional
design flow without a software or hardware component-oriented approach in the sense of this work e.g.
without SCA, CCM or SystemC TLM. The sample waveform is composed of four functional compo-
nents: aMedia Access Control(MAC) component, a Convolutional Coder (CC or ConvCoder), a Bit
Interleaver (BI or BitIntrlv) and a bit-to-symbol Mapper (MAP). The first component is part of the MAC
layer, while the three last blocks are part of the modem in thephysical layer. The modem has two main
operational modes. In the mode 1, the MAC layer is hosted on a GPP, the ConvCoder and the BitIntrlv
on an FPGA and the Mapper on a DSP. In the mode 2, the BitIntrlv is on DSP, while the others functional
components remain on the same computation unit than in the mode 1. Within the mode 1, there are four
sub-modes corresponding to different modulation schemes and thus data throughput.

In our experiments, the MAC component is a straightforward bit generator that produces data from
a file according to the mode. The Convolutional Coder introduces redundancy to ease error correction.
For each input bit, it produces two output bits. It is implemented as a shift register in which some
intermediate bits are XORed (eXclusive ORed) with the output of the shift register. The Bit Interleaver
shuffles bits to avoid that errors affect continuous bit of information and spread these errors on several
unrelated bits. The bit-to-symbol mapper establishes a mapping of a number of bits according to the
mode onto a symbol of information to reduce the amount of information to be transmitted. In this test
case, it is a simple observer that stores the data produced bythe bit interleaver and compares them with
the results from the reference simulation.

This application is based onTime-Division Multiplexing Access(TDMA) Radio communications
are divided into timeslots which are temporal windows during which a transmitter can transfer user
application information (voice, video, data, etc.) to a receiver in one direction (half-duplex) or in both
directions (full-duplex). As depicted in figure 8.6, each slot is itself divided into eight sub-slots called
bursts in which data are transmitted at different frequencies. This technique is calledFrequency-Hopping
Spread Spectrum(FHSS). As its name suggests, the total transmission spectrum is spread across multiple
wideband channels having its own carrier frequency. The transmission frequencyhopsfrom one value
to another one according to some predefined schemes. This mechanism allows one to protect commu-
nications from interference e.g. due to multiple communication paths, signal fading due to frequency-

8.3. High-Data Rate OFDM Modem 259

selective channels, jamming and eavesdropping. In figure 8.6, the dwell period is the frequency hopping
period plus the burst period. The slot period includes the propagation period to avoid interferences.

Figure 8.6: Slot Format of the High-Data Rate OFDM Modem

The available materials for this waveform application werethe specifications, the reference simu-
lation in C fixed point for the whole communication chain, thesoftware implementation in C for the
functional blocks hosted on DSP and the hardware implementation in VHDL for the functional blocks
hosted on FPGA.

The initial objectives of this example was to find a concrete and representative example of a waveform
application to study:

• the transition from a traditional design to a SCA-compliant approach;

• the hardware transposition of the SCA Resource interface for FPGA;

• an extremely fine granularity of hardware SCA Resources i.e. an IP component;

• the hardware transposition of component, container, connector approach for FPGA;

• the transparent migration of a waveform functional component, here the BitInterleaver, from DSP
to FPGA and vice versa to represent two mappings of the same waveform.

• distribution transparency for components on GPP, DSP and FPGA: access transparency, commu-
nication transparency and location transparency.

During this work, we implemented these waveform building blocks as SystemC components, CORBA
objects, software SCA Resource components in C++ with the SCA Core Framework from Thales [SMC+07]
and OSSIE74, and hardware SCA Resource components in VHDL.

8.3.2 Modeling at Different Abstraction Levels

Kahn Process Network with SystemC FIFO Channels

In the scope of the ANDRES project [AND08], a hardware engineer at Thales, Frédéric Colon, en-
capsulated the reference model in C of the High-Data Rate OFDM Modem in SystemC at Functional
View (FV). Each functional block of the waveform application was translated into a SystemC module
and each function call between functional blocks was replaced by a SystemC FIFO channel to transfer
data between the consecutive blocks. This model representsa Kahn Process Network (KPN) in which
sequential SystemC processes communicate through asynchronous message passing using unbounded
SystemC FIFO channels.

74http://ossie.wireless.vt.edu

http://ossie.wireless.vt.edu

260 Chapter 8. Experiments

As depicted in figure 8.7, I selected a subset from the complete waveform model for which we had the
RTL implementation of the functional components mapped to FPGA. The sample waveform is composed
of a controller, which broadcasts configuration invocations on the previously mentioned components.
The controller acts as the SCA Assembly Controller [JTR06].Application components are represented
by SystemCsc_module, while connectors correspond tosc_fifo channels. The components follow
a producer/consumer model or Kahn process network in which data source components write data on an
sc_fifo, while data sink components reads data from thesc_fifo. The FIFO connectors implement
theread/write operations of the FIFOsc_interface bound to component ports.

Figure 8.7: Functional modeling with Kahn Process Network (KPN)

SystemC Stub/Skeleton and OCP TLM connectors

First, the controller configures the transmission mode of each business component by invoking the
setTxMode operation. Then, a bit stream is alternatively sent and received to model the half-duplex
transmission from the MAC component up to the Mapper component by calling thepushBit opera-
tion on the component ports. ThesetTxMode operation is a twoway synchronous operation, since the
component must be configured before starting its processing, while thepushBit operation is a oneway
asynchronous operation which "sends and forgets" data. Thebit stream is modelled as aBitSequence
and sent as one burst in parameter of thepushBit operation. TheBitSequencedata type is an imple-
mentation of the OMG IDL sequence type for bits. Synchronousand asynchronous method invocations
are modeled in SystemC by dedicated connectors as illustrated in listing 7.1. For local invocations be-
tween software components deployed on GPP and DSP, functional invocations are based onInterface
Method Calls (IMCs) [GLMS02] on SystemC channels. For local invocations between hardware com-
ponents deployed on FPGA, synchronous and asynchronous invocations are respectively modeled as
non-posted and posted writes in OCP TL2 [OI07] [GBSV08]. Remote invocations between hardware
and software business components are transparently mediated by connectors fragments i.e stub/skeleton.
TheBitSequence parameter is marshalled and unmarshalled by thePushBit connector fragment as
a sequence of words for transmission on 32bit OCP TL3 channels. TheMode parameter is marshalled
and unmarshalled by theConfigure connector fragment in a single word. Thepushandpull models
were also implemented. In the push model, the client connector fragment acting as stub for the MAC

8.3. High-Data Rate OFDM Modem 261

component writes each word of the marshalled bit sequence onthe server connector fragment acting as
skeleton for the Coder component. In the pull model, the BitInterleaver stub generates an interruption
via theIRQ signal depicted in figure 8.8, then the Mapper skeleton acknowledges the interruption via
theACK signal, reads the length of the word sequence and finally eachword of the sequence. The pull
model models the slave role of the FPGA on the data bus and the master role of the GPP. The invocation
messages containing the marshalled operation parameters are encapsulated in theMData field of OCP
TLM messages, while the operations are identified in theMAddr field.

Figure 8.8: Multi-Level modeling using communication channels at different abstraction levels

Hardware SCA components and OCP at Register Transfer Level (RTL)

As depicted in figure 8.9, the Coder and Interleaver SystemC components were refined as hardware SCA
components in VHDL using OCP RTL as a concrete mapping of our interface family. The Coder and In-
terleaver IP cores were reused with their custom interfacesfrom the existing OFDM modem. They were
encapsulated by hardware stubs/skeletons resulting from the application of the IDL-to-VHDL mapping
on OCP interfaces [GBSV08]. These stubs/skeletons as connector fragments. There is a hardware skele-
ton for each provided IDL interface and a hardware stub for each required IDL interface. Theequivalent
IDL interfaces implemented by the hardware SCA components are the following:

interface Control { // from SCA Resource interface

262 Chapter 8. Experiments

void initialize();
void start();
void stop();
Object getPort(in string portname);

};
interface CC_Config {
writeonly attribute short redundancy;
};
interface BI_Config {
void configure(in short mode, in short nbOfLines, in short nbOfColumns,
in short TotalNbOfBits);
};
interface Stream {

typedef sequence<bit> BitStream;
oneway void pushSlot(in BitStream strm);
};
interface ConvCoder: Control, CC_Config, Stream {};
interface BitInterlv: Control, BI_Config, Stream {};

TheControl interface is a subset of theResource interface and is given for illustrative purposes.
In reality, SCA components should provide theResource interface and implement it. Default imple-
mentation ofResource interface operations could be automatically introduced inskeletons even with
a empty implementation for instance for theinitialize, start, stop, runTest operation. The
initialize operation is interpreted as a software reset e.g. a synchronous reset for HW components.
The start/stop operations may be forwarded to hardware components or may beinterpreted as a
clock enable.

As opposed to [JTR05] and in accordance with [HP06], we give designers the choice to implement
or not thegetPort operation to retrieve the physical or logical address of a SCA component. The
portname string parameter may be transparently mapped to a numeric identifier using a look-up table
in the generated stubs. The same information encoded differently may thus be transferred, but more
efficiently to save communication bandwidth and latency. The SCAgetPort operation and its CCM
counterpartgetFacet are normally required by the deployment framework to establish interconnec-
tions between component portsat runtime. For static hardware deployments, such operations are not
necessary as the physical address of hardware components are predefined in the system memory map
and the interconnections between them and the on-chip bus are fixed. For instance, in the AMBA bus
implementation provided with the open source Leon75 soft-processor-based SoC, the physical address of
each peripheral devices is stored in a ROM used by the AMBA busto perform address decoding.

However if we take into account hardware dynamic partial reconfiguration, the address of the recon-
figuration zone or slot into which a hardware component is instantiated is not a priori known in advance as
it depends on the number and location of the previously loaded components. ThegetPortoperation may
thus retrieve the hardware component port identifier and pass these information to all hardware and/or
software components that need to communicate with this component. The port identifier represents a
virtual address which can be mapped to a physical address. During deployment, the component frame-
work could use a hardware reconfiguration service as proposed in [DRB+07] to determine an available
reconfiguration zone within a reconfiguration slot pool, similar to the RT-CORBA thread pool, and load
the partial bitstream of the hardware component in this slot. The address of the control port required by

75http://www.gaisler.com

8.3. High-Data Rate OFDM Modem 263

the component model e.g. the SCAResource or CCMObject interface port would be registered into
a centralized or distributed Naming Service. This hardwarename service can be implemented with few
hardware resources as aContent-Addressable Memory(CAM) also called associative memory [Chu06].
While a RAM or a register file generates a data from an input address, a CAM generates an address,
index or key from the input data. The generated address may bethen used to access the desired data
from a RAM or a register file. As opposed to the sequential search in a RAM, a CAM performs parallel
searches across all addresses. CAM are used for high-speed searches such as network routing, cache
memory management, and data compression. A CAM can be efficiently implemented in hardware using
FPGA/ASIC libraries e.g. the Alteraaltcammegafunction or the Xilinx CAM LogiCORE using Core
Generator. Using CAMs, a hardware/software component framework could obtain the address of each
component port to invoke their provided services e.g. configuration, data stream, etc.

TheCC_Config interface provides awrite-onlyattribute calledredundancy that determines the
encoding rate. The newwrite-only keyword we proposed allows the inference of a setter operation
without apublic getter method. Method implementations can still access thecomponent property using
aprivategetter method.

Instead of using the genericconfigureoperation of theResource interface, we define a business
configuration operation calledconfigure in theBI_Config interface. This operation takes as input
parameters the application mode (mode 1 or 2), the number of lines and columns for the interleavement
and the total number of bits to transfer to save the hardware multiplication of both previous numbers.

TheStream interface defines a new type calledBitStream representing a sequence of bits and a
onewaypushSlot operation to transfer the data of a transmission slot. The oneway property indicates
than no reply is required. Alternatively, the declaration of the Stream interface could be replaced by
a Stream eventtype declaration if one-to-many communications are required inaddition to asyn-
chronous semantics.

eventtype Stream {
public BitStream slot;

};

TheConvCoder andBitIntrlv interfaces specify the encoder and interleaver component ob-
jects. These interfaces are given for illustrative purposes, because they are not required to describe a
SCA component. Indeed, the SCA does not rely on thecomponent construct of CORBA IDL 3, but
on its own XML-based ADL that describes the provided and usedIDL interfaces using XML markups.

The equivalent IDL3 declaration for CCM using the SCA Resource interface would be:

component ConvCoder {
provides Control theControlPort;
provides CC_Config theConfigPort;
provides Stream inputStreamPort;
uses Stream outputStreamPort;
// alternatively with events:
// consumes Stream inputStreamPort;
// publishes Stream outputStreamPort;

};
component BitIntrlv {

provides Control theControlPort;
provides BI_Config theConfigPort;
provides Stream theStreamPort;

264 Chapter 8. Experiments

// alternatively with events:
// consumes Stream inputStreamPort;
// publishes Stream outputStreamPort;

};

Using IDL3, component dependencies are clearly expressed for humandesigners, whereas XML is
more a machine-language than a human-readable language. However, both SCA and CCM use XML-
based ADLs to describe component interconnections. A textual domain specific language would be
more user-friendly as proposed in the ADL literature [MT00]. Moreover well-defined interfaces can be
reused across component declarations as theConfig andStream interfaces in theConvCoder and
BitIntrlv components.

As illustrated on the top and bottom of figure 8.9, theControl andConfig ports implement two
write-only OCP subsets for the request and reply messages. The control and configuration message
payloads are transferred through these OCP ports. On the left and right of the figure 8.9, two input and
output stream data flow ports implement the FIFO write-only OCP subset without theSCmdAccept
signal since no flow control is required.

Figure 8.9: Hardware SCA Encoder and Interleaver components in Application Mode 1

Each component port interface is configured with generics which are defined in a VHDL package
that contains all OCP profile parameters.

The component assembly depicted in figure 8.9 represents theconfiguration in the mode 1 in which
the encoder and interleaver are deployed in FPGA, while the figure 8.10 corresponds to the configuration
of the mode 2 where only the encoder is mapped in FPGA and the interleaver in software.

The introduction of hardware stubs/skeletons acting as proxies at distribution boundaries is transpar-
ent for hardware components. Indeed the hardware interfaces of the Encoder component are not modified
between the mode 1 and 2 depicted in figures 8.9 and 8.10.

The hardware stubs/skeletons make the adaptation between the RTL interfaces from the IDL in-
terfaces and the custom RTL interfaces of the existing IPs. This hardware reuse approach is strictly
similar to the software CORBA wrappers developed to reuse legacy code with automatically generated
stubs/skeletons.

8.3. High-Data Rate OFDM Modem 265

Figure 8.10: Hardware SCA Encoder component in ApplicationMode 2

266 Chapter 8. Experiments

Figure 8.11: Synthesis results for Xilinx VirtexIV FPGAs

Figure 8.11 represents the synthesis results in number of Look-Up Tables (LUTs) for the Xilinx
VirtexIV FPGAs. The initial business IP cores with their custom interfaces use 3.98% of the total number
of LUTs available in the chosen Virtex IV. The encapsulationof these IP cores with OCP interfaces
increases the LUT occupation by 17%.

These results show that the wrapping required by the socket-based approach is quite negligible as
a socket interface such as OCP allows capturing only the communication needs of each IP. Even if
the IP cores used for this example are relatively simple, thewrapping consists in a direct mapping of
signal names between the custom and OCP interfaces. In comparison, the encapsulation of the OCP
components as hardware SCA Resource components shows an increase of 58% without any optimization.
This overhead is due to the standard encoding of IDL string e.g. in theportName parameter if the
getPort operation as a sequence of ASCII characters. We deliberately implemented this encoding to
quantitatively evaluate the overhead of commercial hardware CORBA middlewares. This encoding is
obviously not network and hardware efficient. It is simply not appropriate for embedded systems. .

In addition, we successfully validated the SystemC/VHDL co-simulation of a transactional connector
which converts the software invocation of thepushBit operation from a functional Stream SystemC in-
terface to the hardware invocation of this operation on an OCP RTL component port using the ModelSim
RTL simulator. ModelSim generates code to perform this co-simulation.

8.3.3 Hardware Middleware Implementations

In this section, we present three kinds of hardware middlewares. The first middleware is a hardware
object-oriented middleware with a CORBA GIOP 1.0 protocol personality. It implements in hardware
the encoding and decoding of theRequest andReply messages of CORBA GIOP 1.0. The second
middleware is a hardware message-oriented middleware witha SCA MHAL protocol personality. It

8.3. High-Data Rate OFDM Modem 267

supports the hardware encoding and decoding of SCA MHAL header messages and dispatches the same
message payloads than the GIOP messages to provide transparent communications to application com-
ponents. While the two first middlewares are based on messagepassing, the last hardware middleware
implementation is based on memory-mapping and allows one toevaluate the overhead of the two pre-
vious approaches. We consider these middleware implementations as three configurations of the same
middleware architecture framework which revisits bus and NoC concepts for hardware middlewares.

All hardware middleware implementations have been deployed on the Xilinx ML405 board. The
hardcore PowerPC embedded processor within the VirtexIV FPGA executes a software testbench, which
writes request messages in the middleware FIFOs across the Xilinx OPB bus and read reply messages
to compare them with reference results. Note that the on-chip processor is only used to debug and
validate the middleware prototypes. In a real implementation, instead of sending both message headers
and payloads through the on-chip bus, only message payloadswould be sent to hardware IP components
to reduce bandwidth usage. In this case, addressing information in message headers would be mapped
to bus addresses. In fact, this experiment simulates the reception of GIOP messages from outside the
FPGA. The final combination of the hardware/software application and platform components is defined
by the system engineers according to performance requirements and design trade-offs. For instance,
memory mapping could be chosen for local communications within an FPGA, while message passing
using GIOP or MHAL could be chosen for external communications outside the FPGA. GIOP or MHAL
messages could be received from external high-speed communication links e.g. from the buffers of an
Ethernet MAC IP core or a RapidIO serial link without the needof a embedded processor.

In all these implementations, OCP interfaces have been usedin each middleware layer to evaluate
the hardware socket-based approach which is close to the interface-centric and component-oriented mid-
dleware approach. We think that OCP provides a generic communication model and a common interface
language for hardware designers, who only need to know one interface protocol. However, we also
remark in our experiments that OCP and even its profiles are too large in scope and that our middle-
ware implementation only requires OCP subsets such as write-only FIFO interfaces. We consider that
standardized OCP profiles may address middleware interfaces at transport level for on-chip and off-chip
buses, while the OCP subsets cited as examples in the OCP specification [OI06] may address application
interfaces for business IP core components.

Moreover, OCP has some technical limitations for a standardmapping since it remains a bus-oriented
interface protocol. Indeed, an OCP address is a byte addressaligned on an OCP word whose size refers
to the width of the OCP data bus [OI06]. For instance, if the data bus width is 32 bits, the address must be
incremented by 4 since there are 4 byte addresses for each byte of a 32 bit word. Even if this correlation
between the address and data buses is justified for physical addresses for bus transfers, this is a drawback
when the address bus is used to carry a logical address representing an operation identifier. This logical
address should be incremented by one to save area and remove useless address signals. Of course, other
OCP signals could be used likeMReqInfo, but this is counterintuitive for hardware designers, whereas
the address signal provides a better mapping of semantics between RMI and OCP.

Like the address signal, the burst length signal designatesa number of words. For instance, if we
would like to transfer an IDL array of 16octets as a burst on a 32bit data bus, the burst length would
be 4 words. If we would like to transfer an IDL array of 16octets as a burst on a 8bit data bus, the
burst length would be 16 words. For instance, if we would liketo transfer an IDL sequence of 4longs
as a burst, the burst length would be 4 words on a 32bit data busand 8 words on a 16bit data bus. Hence,
the address and burst length are not related to the payload but to the data bus width. This is required for
bus transfers at the transport level, but useless for methodinvocations at application level.

The OCP interfaces we use help us to define our family of interfaces, which must be independent
from any existingproprietary interface protocol to be used in a standard IDL-to-RTL mapping for the
OMG.

268 Chapter 8. Experiments

Moreover, defining a standard OMG mapping based on OCP requires that commercial and open-
source ORB implementers buy membership to OCP-IP to validate their implementation of the OCP
protocol. In any case, these considerations are out-of-thescope of this thesis. In fine, these OCP inter-
faces can be considered as the mapping of our independent interfaces on the particular OCP protocol.
Other hardware interface mappings could be defined for the deprecated VCI protocol or other interface
protocols in the future.

GIOP RMI-oriented protocol personality

With the help of a trainee I supervised, we prototyped a GIOP message decoder/encoder to evaluate the
overhead of an hardware implementation of the GIOP protocolas proposed by the two leading embedded
ORB vendors PrismTech [HP06] and OIS [OIS08].

Thanks to the open-source network analyzer Wireshark76 (formerly named Ethereal), I recorded the
GIOP messages exchanged between the software SCA components. Then these messages have been sent
to the hardware SCA components by a software testbench executed on the PowerPC embedded processor.

Figure 8.12 depicts the hardware implementation of an Object Request Broker (ORB) with a CORBA
GIOP personality. We tried to apply the same design patternsand to identify the same architectural el-
ements than those typically found in software middleware implementations. The architecture of this
hardware ORB can be divided into five layers: the applicationlayer, the presentation layer, the dispatch-
ing layer, the messaging layer and the transport layer.

Theapplication layer contains the hardware application components i.e. the Convolutional Encoder
and the BitInterleaver in our experiments. These components are SCA Resources. They implement
the most relevant operations required by theResource interface in hardware. The otherResource
operations can be transparently implemented in software stubs.

Thepresentation layerconsists of the manually generated hardware stubs and skeletons. They act
as invocation adapters [PRP05] which perform the decoding and encoding of GIOP message payload.
Stubs decode message payloads encoded with the Common Data Representation (CDR) encoding rules
into operation parameters which are stored in registers. They can either forward the invocation to the
application components via a write-only interface (push interface) to inform them that they can read
parameter values, or the components can continuously read their values via a signal (data interface).
The collection of stubs/skeletons that isolate the application components from their operating environ-
ment can be viewed as a hardwarecontainerwhich provides activation (e.g writes), synchronization (e.g.
clock) and storage (e.g. memories) services.

Thedispatching layer contains a generic request router and a reply arbiter. Therequest routeracts
as an object adapter, which dispatches incoming invocations to the appropriate skeleton according to
the operation identifier transferred in the GIOP request message header. This router is similar to a bus
address decoder or a NoC router. It decodes the internal logical address of the request and routes it
to the appropriate skeleton. The router shares the same design trade-offs as in buses and NoCs. This
operation name is a string of ASCII characters decoded by an FSM which compares it with the manually
generated arrays declared in a VHDL package. Due to the smallnumber of component ports or skeletons,
this router is implemented as a 1-to-N multiplexer which is not scalable. To increase its scalability, the
request router can have a distributed implementation e.g. as a tree of 1-to-2 multiplexer. Thereply arbiter
selects a skeleton according to their priority among those which want to send a reply message. In this test
case, only theControl interface skeletons of the Encoder and Interleaver components return a reply to
thegetPort operation.

Themessaging layerimplements the GIOP protocol state machine. It contains a request decoder,

76http://www.wireshark.org

8.3. High-Data Rate OFDM Modem 269

Figure 8.12: Hardware ORB with a GIOP 1.0 protocol personality

270 Chapter 8. Experiments

a reply encoder and a request encoder. The request decoder decodes GIOP request message of the
initialize,start,stop, andset_redundancyandconfigure operations using a hierarchi-
cal FSM. A first FSM decodes the GIOP message header, then a second FSM continues the decoding de-
pending on the message type (Request or Reply). This modular FSM reduces the required hardware
resources by only implementing the needed types of messagesand can be used for an optimized code gen-
eration. For instance, the following types of GIOP messageswere not implemented:LocateRequest,
LocateReply, CancelRequest, MessageError andCloseConnection. The request de-
coder writes on its output port the fields extracted from the message header. These fields are then used
by the following ORB modules, the request router and the skeletons, to perform their processing based
on the message body. To reduce the footprint of IDLstrings while decoding standard GIOP messages,
this module maps sequences of ASCII characters in the headerinto numerical identifiers. Such a mapping
may be performed by IDL compilers inside the generated stubsat the expense of GIOP interoperability.
The request encoder integrates a generic scheduler like in software middlewares to choose between the
two available reception buffers. There are two reception buffers acting as two virtual input channels.
The scheduling policy is the following: when a request is available, the request decoder selects a buffer
according to its priority and reads a predefined number of message words per buffer to be decoded as
long as there are enough data available otherwise it choosesanother channel buffer. These virtual chan-
nels allow the efficient sharing of the available bandwidth between the virtual channels. A priority is
assigned to each FIFO to avoidpriority inversion. The decoding is performed separately for each vir-
tual channel. The FSM decoding state is saved and restored during virtual channel switch to allow the
decoder to alternatively decode one message from each FIFO buffer. The GIOP request decoder is thus
generic and independent from the number of transport buffers. The request and reply encoders perform
the reverse steps of the request decoder. They produce the message header based on the fields it receives
from the stubs/skeletons. Thereply encoderprepends a GIOP message header and a reply header to the
pushPacket message payload provided by theControl skeletons and writes the resulting message
to a transport buffer. Therequest encoderprepends a GIOP message header and a request header to
thegetPort message payload provided by theStream stubs and writes the resulting message to a
transport buffer. The request encoder uses the numerical identifier generated by the request decoder and
received from the stubs to produce the IDL strings containedin the outcoming request message.

The transport layer includes transport buffers used to send and receive GIOP messages across the
network, here the Xilinx OPB bus for validation purpose. It contains a transport plug-in, which is a an
OPB-to-OCP bridge. The transport buffers areactiveFIFOs. The receiving buffers send write requests
to the request decoder when data from a message are received.The request decoder may immediately
accept the write request or delay its response to process a message from another buffer. In the same
way, the sending buffers send read requests to the reply and request encoders which are free to accept or
not. The active FIFOs reduce the latency required between a read or write request from the messaging
layer and the response from passive FIFOs. In the current implementation, there are two input buffers
for incoming request messages, an output buffer for reply messages and an output buffer for outcoming
request messages. The number and depth of each buffer is chosen according to our particular scenario
and may be adapted for other use cases. A multiplexer is used to demultiplex incoming messages to the
input buffers and outcoming messages from the output buffers.

The transport buffers were implemented as FIFO memories, but they also may be implemented as
addressable memories using RAMs to bypass useless data fromGIOP messages such as padding, re-
questing principal and service context list during their decoding instead of reading these data from the
FIFO buffer.

8.3. High-Data Rate OFDM Modem 271

GIOP message fields OCP signals
object key incl. object id MAddr(31 : 8)
operation name MAddr(7 : 0)
request id MReqInfo(31 : 0)
body length MReqInfo(47 : 32)
response expected MReqInfo(48 : 48)
little endian MReqInfo(49 : 49)

Table 8.1: Mapping of semantics between GIOP message fields and OCP signals

Mapping GIOP message fields to OCP signals As depicted in table 8.1, the message fields written
by the request decoder and read by the request and reply encoder have been mapped onto OCP signals
to provide these information in one clock cycle at the expense of the routing resources.

Therequest id field is generated by the request encoder. The body length parameter is used to
transfer information between layers and does not directly represent a GIOP message field.

Limitations of GIOP As previously discussed in the section concerning middlewares, the CORBA
General Inter-ORB Protocol (GIOP) was not designed for highly embedded and hard real-time appli-
cation domains. For small messages, a GIOP message containsmore information relative to the RMI
protocol itself than to the operation parameters. For instance, a GIOP request message for thevoid
start() operation used by the SCA CF requires at least 48 bytes77 i.e. 12 writes on an on-chip or/and
off-chip 32bit bus, whereas the same functionality can be achieved by a single write in the control register
of an IP core.

The footprint and relative complexity of the GIOP protocol requires more development time and
hardware resources. Indeed, the GIOP decoder requires 21% of the total number of LUTs available in
the VirtexIV FPGA.

Modem Hardware Abstraction Layer (MHAL) message-orientedprotocol personality

The overhead of the GIOP protocol for real-time and embeddedplatforms necessitates lightweight mes-
saging protocols to more efficiently use network and area resources. As our work took place in the SCA
context, we naturally choose the SCA MHAL protocol [JTR07],which was recently specified by the
SCA in order to evaluate its performances compared to the GIOP protocol. The MHAL is a low-level
message passing APIs to abstract hardware waveform components. The GIOP and MHAL protocols
have different natures. The GIOP protocol is a Remote MethodInvocation Protocol, while the MHAL
protocol may be considered as a low-level message passing protocol.

The MHAL specification [JTR07] only defines a message header which is composed of a logical
address calledLogical Destination(LD) and a 16 bit message size, while there is no standard encoding
for the payload apart from the MHAL RF Chain Coordinator API.The MHAL RF Chain Coordinator
API specifies sink and source functions to control the RF resources of a radio channel. The message
payloads for the RF Chain Coordinator consists of one or several commands which includes a command
symbol and command parameters. The format, unit and valid value range of each parameter is also
specified. The command symbols are predefined integer constants like the LD, while parameters are a
variable integer multiple of 16 bits. Hence, there is no delimiters or padding required between com-
mands. For MHAL message sources which need a response from the RF Chain Coordinator, the logical

77with an object key of one byte

272 Chapter 8. Experiments

GIOP concepts MHAL concepts
Object Key incl. Object ID Logical Destination (LD)
Operation name Command symbol
Operation parameter Command parameter
Request ID Reply ID

Table 8.2: Mapping of semantics between GIOP and MHAL concepts

Index Hex Data Comments
0 14 00 Logical Destination (LD) = 0x14
2 02 00 Message size = 2 bytes
4 01 00 Operation ID = "start"

Table 8.3: Example of a MHAL message for thevoid start() operation in little endian

destination of the source is transferred as command parameter like in theRFC_ConnectTxBlock and
RFC_TxBusyStatusRequest sink functions which respectively inform the data source whether the
transmission (TX) is blocked or busy [JTR07].

The sending of a source LD as parameter allows the implementation of GIOP like request-reply
protocols and publish-subscribe communications using thepush-only MHAL communication service.
We consider the MHAL as an Environment-Specific Inter-ORB Protocol (ESIOP) and propose a mapping
of semantics between GIOP and MHAL concepts represented in figure 8.2.

Based in this mapping, we give an example of a MHAL message forthevoid start() operation
from the SCAResource interface in table 8.3. This message only requires 6 bytes compared to the 48
bytes requires for the same operation using the GIOP protocol.

The architecture for the encoding and decoding of MHAL messages is similar to the one of GIOP
messages. We take the same architecture template. The encoding and decoding of the GIOP message
header is replaced by those of the MHAL message header using the same message payload.

However, the MHAL protocol provides a push-only communications service in which data can be
pushed i.e. written to a destination but cannot be pulled or read from this destination [JTR07], and is not
a request-reply protocol like GIOP.

Hence, there is no distinction between the reply and requestencoders of GIOP. The MHAL imple-
mentation is composed of a MHAL header decoder calledMHAL receiverand a MHAL header encoder
calledMHAL sender.

The MHAL encoder and decoder implementation is simpler and uses less hardware resources than
those in GIOP for two main reasons. The MHAL FSM requires muchless states than the GIOP protocol
machine and the encoding and decoding of strings are no longer necessary. The interesting point is that
the change of message protocol is transparent for the hardware application components and the hardware
stubs/skeletons hosted in the hardware container.

Mapping of semantics between MHAL and OCP A MHAL message header contains the logical
destination and the size of the message. The first 16 bits of the payload consist of the operation identifier
and the following 16 bits include the sender identifier to return the reply. To be coherent with the
semantics mapping between GIOP and OCP, the MHAL fields with asimilar meaning than the GIOP
fields have been mapped on the same OCP signals as shown in figure 8.4. Since the MHAL specification

8.3. High-Data Rate OFDM Modem 273

MHAL message fields OCP signals
logical destination (LD) MAddr(30 downto 16)
operation id MAddr(15 downto 0)
logical origin MReqInfo(14 downto 0)
body length MReqInfo(30 downto 15)

Table 8.4: Mapping of semantics between GIOP message fields and OCP signals

recommends that FPGA and DSP uses Little-Endian to avoid marshalling, the endianness indication of
MHAL messages is not required as contrast to GIOP messages.

Memory-mapped middleware

To compare with the GIOP and MHAL message passing based communication model, a traditional
memory-mapped based communication model has also been implemented as presented in figure 8.13.
Each application component property and operation parameter has been assigned a logical address rela-
tive to the physical address of the memory-mapped middleware on the OPB bus. The same middleware
architecture template has been used to ease this comparison. Due to the memory-mapped model, the mes-
saging layer does not contain any message header encoding/decoding logic. The request router has been
replaced by a classical address decoder which routes incoming data to the appropriate interface skeleton.
The set of application component and their stubs/skeletonsforming the hardware container have been
reused without any modification, while the same message content is transferred with the values of oper-
ation parameters. Hence, changing the transport protocol is transparent for hardware components. The
skeletons perform the decoding of the message payload dispatched by the address decoder and store the
values of operation parameters in registers. The same replyarbiter has been reused to select a single reply
among those returned by the skeletons. The outcoming data from the replies and requests are separately
stored in FIFOs. A software testbench hosted on the PowerPC embedded processor consults the register
status to be informed when FIFOs can be read and checks their content against the reference results.
Without surprise, this traditional approach is the simplest to implement and require the least amount of
hardware resources compared to message passing middlewares.

8.3.4 Results on Virtex IV after Place&Route

Figure 8.14 presents the synthesis results for Virtex IV FPGA after Place&Route. The percentage of
the hardware resources required from Xilinx ML405 board arerespectively depicted for memory map-
ping and message passing using SCA MHAL and CORBA GIOP 1.0. These results are expressed in
percentage of Slice Flip Flop, LUTs for logic and LUTs in total. The LUTs in total include the LUTs
for logic, Dual Port RAM and shift registers. All FIFOs have the same size to better compare the mid-
dleware implementations and require 55% of the embedded RAMblocks (RAMB16s). Moreover, the
application and presentation layers are reused. The changeamong the middleware implementations con-
cern the dispatching and messaging layers, and the number ofFIFOs which is 2, 3 and 4 for memory
mapping, MHAL and GIOP. Hence, these results mainly compares the amount of resources required by
the middleware FSM. They have been obtained with default parameters without any optimization for
timing or size. The figure 8.14 shows the increasing consumption of hardware resources. Each middle-
ware implementation adds more functionalities with a message header for MHAL, then a message type
header with an out-of-order request-reply protocol for GIOP, that is why more and more resources are
necessary. The MHAL implementation requires x1.2 more resources than memory mapping in number

274 Chapter 8. Experiments

Figure 8.13: Memory-mapped middlewares

8.3. High-Data Rate OFDM Modem 275

of slices, whereas GIOP needs x2.5. Moreover, GIOP consumesx2.15 resources in addition to MHAL.
As previously mentioned, the overhead of GIOP is notably dueto the relative complexity of its protocol
and the decoding/encoding of data types like IDLstrings.

As a conclusion, we recommend Memory Mapping for local communications within FPGAs and
Message Passing for external communications outside FPGAs. As opposed to commercial hardware
CORBA middlewares, we empirically demonstrated that the hardware implementation of GIOP requires
much more hardware resources than a traditional memory mapping, while memory mapping can also
be used to invoke the same functionalities. We also showed that MHAL messages can be considered as
domain specific message protocol by mapping GIOP concepts toMHAL concepts. Such an ESIOP can
be much more network and hardware efficient while being functionally equivalent

Figure 8.14: Results on Virtex IV after Place&Route

8.3.5 Results Analysis

The feasibility of the previously mentioned concepts have been demonstrated through the physical de-
ployment of each of these types of middlewares on the Xilinx Virtex IV-based ML405 board. Different
configurations have been tested:

• Both the convolutional encoder and the bitinterleaver in hardware with the GIOP implementation,

• the convolutional encoder in hardware and the bitinterleaver in software with the GIOP implemen-
tation,

• Both the convolutional encoder and the bitinterleaver in hardware with the MHAL implementation,

• Both the convolutional encoder and the bitinterleaver in hardware with the memory-mapped im-
plementation.

276 Chapter 8. Experiments

All these different deployments have been transparent for the hardware SCA components thanks to
the hardware stubs/skeletons acting as hardware proxies. The two first configurations demonstrate the
transparent deployment of components in hardware and software. Moreover, the control of the dynamic
and partial reconfiguration of a hardware module has been showed in [SMC+07] using the same board.
Unfortunately, the integration of both approaches has not been performed for space limitations on the
board and for time reasons. Nevertheless, we can envisage the dynamic partial reconfiguration of hard-
ware SCA components under the control of a software SCA CoreFramework and their hardware/software
migration according to some load conditions or waveform application modes.

8.4 Conclusion

In this chapter, we presented two modem applications on which we built our propositions and the experi-
ments on which we validated part of our contributions. We built an executable Platform Specific Model in
SystemC TLM of part of the DiMITRI MPSoC. We recognize the unifying concepts of component, con-
tainer and connector at transactional and register transfer levels. The C reference model of the classical
design flow 2.6 implements the business logic of a RTL IP core componentw, while its services are called
by the enclosing container through register and bitfield callback functions using the SystemC Modeling
Library (SCML) [SCM08]. These callbacks functions implement the technical logic like storage and
synchronization). According to the taxonomy of connectorsin 6.5.7, an OCP TL2 channel represents
an arbitrator/distributor connector, while the OCP TL2-to-PV transactor is a conversion connector. A
SystemC component at Programmer View level allows an earlier validation of the hardware/software
interface and software drivers, which are error-prone codeto develop.

We illustrated our IDL-to-SystemC TLM mapping propositionthrough the encapsulation of invo-
cation messages in OCP TLM connectors. We present the refinement of a business component from a
functional model in C to a SystemC component at Programmer View (PV) level, the refinement of a
transactional connector from an OCP TL2 to an AHB bus functional model, and the refinement at dif-
ferent abstraction levels from SystemC FIFO channels to OCPTLM and OCP RTL. The introduction of
SystemC TLM stubs/skeletons acting as connector fragmentsat distribution boundaries was transparent
for hardware/software SystemC components.

We illustrate our IDL-to-VHDL mapping proposition with twohardware SCA components, a con-
volutional encoder and a bit interleaver. The RTL stubs/skeletons make the adaptation between the RTL
interfaces derived from IDL interfaces and the custom RTL interfaces of the existing IPs, in a similar
way to the software CORBA wrappers developed to reuse legacycode with automatically generated
stubs/skeletons. The collection of stubs/skeletons that isolate the application components from their
operating environment can be viewed as a hardwarecontainer, which provides activation (e.g writes),
synchronization (e.g. clock) and storage (e.g. memories) services. The interesting point is that the
change of message protocol is transparent for the hardware application components and the hardware
stubs/skeletons hosted in the hardware container.

We refined a Coder and Interleaver SystemC components to hardware SCA components in VHDL
using OCP RTL as a concrete mapping of our interface family. Our results showed that the overhead of
the socket-based approach is quite negligible (17%) compared to a socket interface such as OCP, which
only captures the communication needs of each IP core of overhead. Hence in our case, the wrapping
consists in a direct mapping of signal names between the custom and OCP interfaces. We evaluated
the important overhead (58%) of the encapsulation of the OCPcomponents as hardware SCA Resource
components with the standard encoding of IDL string proposed by commercial hardware ORB vendors.
Hence, portability and interoperability of waveform components have a cost without any optimization.

From an industrial viewpoint, the maintenance of multiple models at different abstraction levels is

8.4. Conclusion 277

difficult to manage without dedicated standards like SPIRITIP-XACT. Standard language mappings
from OMG IDL/UML to the standard TLM interfaces may help to generate transactional connectors
from one abstraction level to another, if not already in a library. Moreover, SystemC-based design flows
require to train (dedicated) HW/SW engineers, to buy commercial tools like CoWare Platform Architect
or to develop custom tools for entreprises, which reach a critical mass of complex projects like STMi-
croelectronics. For instance, hardware/software engineers at Thales Communications generally prefer C
rather than SystemC : 1) to increase simulation speed via native execution (w/o ISSs) and direct plaform
integrations, 2) to avoid learning another language, and 3)in reasons of the conceptual gap introduced by
SystemC and its maturity. Since Thales products have long life cycles, SystemC waveform components
and SDR platform models could be a good investment. Moreover, an MDE/MDA approach may allow
one to define future mappings to new Platform Specific Models as the technology rapidly evolves. Even
if HLS tools offer a direct refinement from C to HDL sometimes at the expense of some code rewriting,
we argue that SystemC components may still be required sincethey provide higher simulation speed than
RTL components.

Finally, three different configurations of the proposed hardware middleware architecture framework
were implemented using memory mapping and message passing.We showed how a dedicated message
passing protocol such as MHAL is more hardware efficient thana general purpose message protocol
like CORBA GIOP. We recommend memory mapping for local communications within an FPGA, and
message passing using GIOP or MHAL for external communications outside the FPGA.

Chapter 9

Conclusions and Perspectives

Contents
9.1 Problems .. 279

9.2 Synthesis .. . 279

9.3 Contributions 280

9.4 Limitations 282
9.5 Conclusions 282

9.6 Perspectives 283

In this section, we recap the problems addressed in this workand summarize our contributions. We
also present some limitations of this PhD thesis and draw some perspectives.

9.1 Problems

The SCA specifies an Operating Environment composed of a CoreFramework, a CORBA-compliant
middleware and a POSIX-compliant OS. The Core Framework is aset of UML and CORBA interfaces
to load, deploy and run waveform applications. This OE targets GPPs, but not highly-constrained pro-
cessing units such as DSPs, FPGAs and ASICs. The goal of this thesis was to apply some successful
software engineering concepts used in the SCA down to hardware in FPGA to provide a common and uni-
fied approach of specification, design and implementation ofhardware/software component-based SDR
applications. Moreover, the main requirements of the SCA are portability, interoperability, reuse and
reconfigurability of SCA components. Hence, we had also to address these requirements for hardware
components in HDLs such as VHDL and SystemC RTL, and transactional components in SystemC TLM
to raise the simulation speed. In addition, our second objective was to apply the Lightweight CORBA
Component Model to VHDL/SystemC component to support another common hardware/software com-
ponent model. The ultimate objective of this work is to sharethe same concepts between hardware
and software engineering to define a common component-oriented system architecture and to raise the
abstraction level of hardware components.

9.2 Synthesis

Usually, the integration of hardware modules relies on low-level hardware/software interfaces, which
consists of proprietary bus interfaces, memory-mapped registers and interrupts to synchronize hard-
ware/software modules. As a result, this integration is tedious and error-prone, and the reuse of HW/SW

279

280 Chapter 9. Conclusions and Perspectives

modules is limited. Co-design methodologies have been developed to bridge the conceptual gap between
hardware design and software design. To provide a common hardware/software design approach, the
concepts of the object model has been applied to hardware design. In the object-oriented approach, an
object is a self-contained and identifiable entity, which encloses its own state and behavior in a method-
based interface, and communicates only through message passing. To apply the object model down to
synthesizable hardware, the previous works propose a mapping between a method-based interface to a
signal-based interface. Hardware object-oriented designallows to raise the abstraction level of hardware
module interfaces, to reduce the conceptual and abstraction gap between interface specification and im-
plementation, and to enforce a clean separation between computation and communication through remote
method invocation. Existing works propose a mapping, whichrepresents one solution in the mapping
exploration space. Moreover, the object-oriented approach has some limitations: only one provided
interface (the most derived), implicit dependencies, and no clear separation of concerns between func-
tional and non functional logic like communication and deployment. The software component-oriented
approach is an evolution from the object-oriented approach.

In software architecture, the component-oriented approach relies on four main standard models:
component models defining component structure and behavior,connector models to specify com-
ponent interactions,container model to mediate access to middleware services, andpackaging and
deployment models to deploy distributed component-based applications.

A software component provides and requires services through multiple interfaces that allow an ex-
plicit specification of external dependencies and a separation of concerns between functional interfaces
for business logic and non-functional interfaces for technical logic e.g. regarding configuration, deploy-
ment and activation, packaging, deployment (i.e. installation, connection), life cycle (i.e. initialization,
configuration and activation), administration (e.g. monitoring and reconfiguration). A software compo-
nent has logical ports that provide and require properties,methods and events. A software connector is a
component which binds the required and provided ports of twoor more components.

In the hardware component models, a hardware component has input, output, input/output RTL ports
that provide and require one or several signal-based interfaces. The connection model of hardware com-
ponents is based on standard bus interfaces and communication protocols. An emerging packaging model
for hardware components is the IP-XACT specification, whichdefines XML schema files to describe the
characteristics of IP core components such as hardware interfaces, registers and interconnection. The
deployment model of hardware IP core components can be either statically deployed on an FPGA at
reset-time or dynamically deployed at run-time.

To support the systematic refinement of object-oriented component interfaces in CORBA IDL or
UML to system, software, and hardware component interfacesin C/C++, SystemC and VHDL, we pro-
pose to define new language mappings from CORBA IDL to SystemCTLM/RTL and VHDL.

9.3 Contributions

We investigate the hardware implementation of abstract object-oriented components. While most of the
works on the application of the software concepts to hardware design are based on an object-oriented
approach, we consider in contrast the application of the component-oriented software architecture. We
argue that the component-oriented approach provides better unifying concepts for hardware/software
embedded systems, than the object-oriented approach. We provide a state of the art on the application of
the object, component and middleware concepts to hardware engineering.

Concerning SDR design methodology, we proposed to leveragethe conceptual SDR design method-
ology based on MDA and the component/container approach, which existed at Thales Communications
in 2005, with SystemC Transaction Level Modeling (TLM) to simulate the platform independent model

9.3. Contributions 281

of waveform applications, and the platform specific models of waveform applications and SDR plat-
forms. The component/container approach allows to transparently integrate functional models in C as
SystemC components in virtual platforms.

The mapping from IDL3 to functional SystemC extends the IDL-to-C++ mapping with additional
mapping rules to fit specific SystemC language constructs. A SystemC component is asc_module
component with requiredsc_exportports and providedsc_portports associated tosc_interface
interfaces.

The mapping from IDL3 to SystemC at Transactional Level is based on transactors we calltrans-
actional connectors, which adapt the mapping of the user-defined interfaces in IDL to standard TLM
interfaces.

For the mapping from IDL3 to VHDL and SystemC RTL, we formulate industrial, user and imple-
mentation requirements for a standard IDL3-to-HDL mapping. The most original requirements concern
internal and external concurrency, connectors, hardware interface and protocol framework, blocking
and non-blocking synchronization, aligned/unaligned data types encoding rules, Time or Space Division
Multiplexing (TDM/SDM), Extensible Transport Framework (ETF), Extensible Message Framework
(EMF), and a subset of IDL data types for bit-accurate types in annexe. We tried to address most of these
requirements in the IDL-to-HDL mapping proposition.

In our mapping proposition, a hardware object-oriented component (e.g. SCA, UML, CCM) is rep-
resented by a hardware module, whose implementation (e.g. VHDL architecture may be selected
by a hardware configuration e.g. VHDLconfiguration. An abstract component port is mapped to
a logical hardware component port, which is a set of RTL inputand output ports.

A hardware connector may represent non-functional properties such as synchronization and commu-
nication such as flow control, clock domain crossing, interaction semantics, and protocols of point-to-
point buses, shared buses or NoCs.

A hardware container provide all remaining non-functionalservices such as lifecycle and persistence
to store component state. For instance, the lifecycle service may manage component creation/destruc-
tion e.g. with dynamic partial reconfiguration, component initialization e.g. with a asynchronous or
synchronous reset, parameters configuration with registerbanks, and activation/deactivation e.g. with a
clock or enable signal.

The portability requirement of the SCA is addressed with IDLlanguage mappings. We propose to
generalize and leverage the existing mapping propositionswith an explicit and fine mapping configura-
tion using a named family of hardware interfaces with well-defined semantics. Our mapping approach
gives the user a level of control over the mapped hardware interface never reached by all other fixed
mapping approaches and is similar to what is available for hardware designers in high-level synthesis
e.g. from C-like languages. Our IDL-to-HDL mapping is the allocation of hardware resources such as
memory elements (register, FIFO, RAM/ROM), hardware signals and protocols to software abstractions
such as component, port, interface, operation and parameters and connectors. We also propose an ap-
plication of the SCA Operating Environment for FPGAs to improve the SCA specification for hardware
SCA components.

Concerning the mapping implementation, we manually applied it to four quite representative exam-
ples in the SDR domain: FIR filter, Transceiver, Convolutional Encoder and BitInterleaver. Moreover,
we implemented part of this mapping in an IDL3-to-VHDL compiler prototype using an standard OMG
Model-Driven Architecture approach.

To address the interoperability requirement of the SCA, we proposed a hardware middleware archi-
tecture framework and evaluated the overhead of the standard GIOP message protocol. We demonstrated
that invocations of hardware operations can be performed with less communication overhead by con-
sidering the SCA MHAL message format as an Environment Specific Inter-ORB Protocol (ESIOP) for
remote message passing outside FPGAs and classical memory-mapping for local communications out-

282 Chapter 9. Conclusions and Perspectives

side FPGAs.
Results of these works have served as inputs to european projects, mainly from the European Defence

Agency (EDA) such as RECOPS, WINTSEC, SPICES and ESSOR, which conversely contributed to
improve our proposition.

The concepts of component-oriented hardware/software architecture are general enough to be not
restricted to an application domain such as SDR and component models such as SCA and LwCCM. All
along this thesis, we tried to fill the gap between industrialconstraints and requirements such as industry
standards from the OMG (UML, CORBA, MDA), OCP-IP, and standardization (OMG, ESSOR), and the
state-of-art of the research in the domains such as computerscience and electrical engineering.

9.4 Limitations

The validation of such complex language mappings requires the application of these mappings to various
applications to refine the mapping requirements and improveits implementation. We notably chose a
fine component granularity e.g. by considering a filter as oneCCM or SCA component, which may be
unrealistic. We applied the mapping on part of available application examples.

We focused on the specification of the IDL3-to-VHDL mapping.The implementation of our IDL3-
to-VHDL compiler is still experimental, but remains innovative through the application of OMG MDA
standards. In addition to OMG IDL3, this compiler may also support UML component diagrams as
input. Such a compiler may increase designer productivity by reducing the gap between specification and
implementation through code generation. Unfortunately, this productivity gain could not be measured in
our examples.

Face to the number and complexity of standards, the relativematurity of tools, the required training
of software, hardware and system engineers and the associated costs, a coherent HW/SW co-design flow
is not easy to define and to apply within an enterprise or a set of specialized enterprise departments. The
conceptual design flow we proposed was not applied to real designs, but it is based on current states
of the art and trends. Moreover, the use of the MDA approach from a methodology point-of-view is
conceptual, rather than a strict implementation of the OMG approach e.g. using UML and its various
UML profiles such as MARTE, SysML, IP-XACT and PIM/PSMs for SDR.

Finally, we measured the increasing overhead in terms of area of three configurations of our mid-
dleware architecture framework, but we did not find the time to measure the corresponding overhead in
terms of latency. The latency overhead would certainly alsoincrease like the size overhead, since it also
depends on message size and the complexity of their encodingand decoding.

9.5 Conclusions

After several decades of cross-fertilization between software and hardware engineering, one can ob-
serve a progressive convergence towards common component approach at system level. In this work,
we attended to provide a unified object-oriented component-based approach for software components af
functional level, hardware components at registertranferlevel and system components at transactional
level and register transfer level. Such a common approach may help software, hardware and system
engineers to share a common and unified approach of specification, design and implementation of hard-
ware/software component- embedded systems. We apply the portability and interoperability of software
middlewares to provide a hardware/software middleware approach to mask the heterogeneity of lan-
guages, implementation, environment and abstraction level between hardware and software components.

Due to the complexity of the mapping space and our maturity, it may be better to define hard-
ware application programming interfaces under the form of standardized hardware interfaces like the

9.6. Perspectives 283

Transceiver, to increase portability and reusability rather than defining mappings for business interfaces.
This requires to find a boundary between business interfacesand standard platform services, and that
SDR enterprises find a consensus on these standard interfaces.

In particular, the interfaces of radio services and radio devices may be standardized. An example
is CORBA with business applications and standard CORBA services. However, interfaces of waveform
components may be standardized like in the UML profile for SDR, but they are also part of business
interfaces, know-how and innovation. As the SCA defines standard software interfaces, it may also
define standard hardware interfaces other than low-level MHAL nodes.

It’s only recently, in August 2009, that the JPEO JTRS annonced the development of a technology
independent SCA specification in which CORBA will become optional [JTR09] ! This recent change is
the result of a long maturation process. Even if CORBA becomes optional in the SCA, the needs to map
abstract object-oriented components in technology/platform independent models to concrete components
in technology/platform specific models will subsist.

9.6 Perspectives

Cooperations between our approach and third-party HLS tools may be envisaged to leverage the maturity
of these tools, which are more and more recognized and used inthe industry, to efficiently generate
synthetizable HDL code from a high-level object-oriented component specification in UML or CORBA
IDL. In particular, HLS tools may address the limitation of declarative interface definition languages like
OMG IDL through the synthesis from behavioral/algorithmicspecification in C/C++, domain-specific
languages or UML action languages.

Existing component-oriented languages such as UML2, CORBAIDL3 and D&C XML descriptors
could be extended with SCA and IP-XACT concepts to address the description, configuration and de-
ployment of hardware/software application components onto hardware/software distributed embedded
platforms. These languages could be improved by taking intoaccount description of execution platforms
such as available hardware resources and communication buses to generate optimized integration code.
We defined different hardware interfaces and connector types to finely map the semantics of communi-
cations between components, but interaction semantics could be more formally specified using formal
models of computation and communication, and executable meta-models of components and connectors.
Transformation rules might guarantee the traceability of semantics between system specification and the
resulting hardware, software and system components.

Despite numerous achievements in Model-Driven Engineering (MDE), Transaction-Level Modeling
and High-Level Synthesis (HLS), the design and implementation of heterogeneous real-time distributed
embedded systems remain complex and hard. A lot of work remains to do to seamlessly integrate these
heterogeneous technologies and provide a unified approach to end-users. Numerous standards exist in the
world that provide part of solutions to recurring problems to embedded system design such as mapping
applications to execution platforms. Some languages such as AADL and domain-specific ADLs might
be better than the languages we used in this work for mapping specification and code generation.

We believe that Model-Driven Engineering (MDE), model transformations, interface mapping and
refinement at different abstraction levels and integrationof such heterogeneous technologies are good
candidates to reach such ambitious objectives. Finally, webelieve that the common component-oriented
and middleware approach we proposed for hardware/softwareembedded and real-time systems is promis-
ing and only at its beginning. Further investigations are still required, but such an approach could be
standardized in the future at the OMG.

284 Chapter 9. Conclusions and Perspectives

Appendix A

CORBA IDL3 to VHDL and SystemC
RTL Language Mappings

Contents
A.1 Naming Convention 286

A.2 Common Standard Interfaces and Protocols 287

A.2.1 Control Interface 287

A.2.2 Data Interface .. . 288

A.2.3 Non-Blocking Push Interface 288

A.2.4 Blocking Push Interface 289

A.2.5 Non-Blocking Pull Interface 289

A.2.6 Blocking Pull Interface 290

A.2.7 Flow Control Blocking Push Interface 290

A.2.8 Flow Control Blocking Pull Interface 291

A.2.9 Non-Blocking FIFO Interface 291

A.2.10 Non-Blocking Push Addressable Interface 292

A.2.11 Blocking Addressable Push Interface 292

A.2.12 Non-Blocking Addressable Pull Interface 293

A.2.13 Non-Blocking Single-Port Memory Interface (or Addressable) 293

A.2.14 Non-Blocking Dual-Port Memory Interface (or Addressable) 294

A.2.15 Generic Message Communication Interface 294

A.2.16 Optional Signals 295

A.3 Constant .. 295

A.4 Basic Data Types 295

A.5 Constructed Data Types 297

A.5.1 Enumeration .297

A.5.2 Array . 298

A.5.3 Data Structure .. 300

A.5.4 Union . 303

A.5.5 Sequence . 305

A.5.6 Any . 307

A.5.7 Exception .308

285

286 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

A.5.8 Strings . 309

A.5.9 Float . 310

A.5.10 Fixed . 310

A.6 Attribute .. . 310

A.7 Scoped Name .. 310

A.8 Module .310

A.9 Interface .. . 311

A.9.1 Non-reliable oneway operation 311

A.9.2 One twoway operation .. . 311

A.9.3 Two twoway operation .. . 312

A.9.4 Operation with one input parameter 313

A.9.5 Operation with input/output parameters 313

A.9.6 Asynchronous Method Invocation 314

A.9.7 Pull for output parameter 315

A.9.8 Blocking Pull for output parameter 316

A.9.9 Pull/Push for input/output parameters 317

A.10 Operation Invocation 318

A.10.1 Phases .318

A.10.2 Mapping solutions 318

A.10.3 Operation parameter transfer 319

A.10.4 Operation-level concurrency 321

A.11 Object .. . 321

A.12 Inheritance 321

A.13 Interface Attribute 322

A.14 Component Feature 324

A.14.1 Component .324

A.14.2 Facet . 325

A.14.3 Receptacle .. 325

A.15 Not Supported Features 326

A.16 Mapping Summary .. . 326

In this annexe chapter, we propose the specification of language mappings from OMG IDL3 to
VHDL and SystemC RTL. We improved a first proposition made by Hugues Balp and Christophe Jouvray
in the scope of the ITEA SPICES project. Our improvements notably include the definition of common
standard interfaces and protocols, the illustration of themapping space exploration with these interfaces,

A.1 Naming Convention

To enhance readability, a clock signal is namedclk and a reset signalrst. Moreover, the name of a
signal active on low level ends with the suffix_n. Note that VHDL is a case-insensitive language.

A.2. Common Standard Interfaces and Protocols 287

A.2 Common Standard Interfaces and Protocols

Defining a mapping from IDLs to HDLs is a high-level interfacesynthesis problem. This mapping
requires to be flexible enough in reason of the inherent hardware trade-off between timing, area and
power consumption.

To support portability and interoperability of hardware components and propose a flexible and exten-
sible mapping, we propose common hardware interfaces and protocols to provide the building blocks of
a mapping framework. Such a framework will allow to fit the mapping to the application requirements.

The purpose of this mapping framework is to explicitly associate with one or more operation param-
eters the required hardware interface and protocol that best correspond to the implicit communication
model of the parameter (control or data, continuous or buffered stream, with or without control flow,
memory-mapped access and so on). We propose a bottom-up approach. For each defined hardware in-
terface, we present an example in IDL and how this interface is related to other proposed or standard
interfaces. These interfaces are defined from the client’s or user’s point of view. Server interface signals
other than the clock and reset signals have complementary direction.

These interfaces present the mapping framework approach, but can not be considered as exhaustive.
New interfaces could be added to address unforeseen needs. The names of the presented signals may
be changed by the user. The new names correspond to alias for the real name of the standard interfaces
signals. The only important point is to respect the standardinterface protocol.

The hardware interface generated from an IDL interface is synchronous point-to-point interfaces to
enable transparent access to hardware components. Thanks to a point-to-point interface, client and server
hardware components have the same interface in a local direct connection as well as in a remote ORB
mediated connection thanks to hardware proxies.

We define a clock signal namedclk and an active low asynchronous reset signal namedrst_n.
All signals in an hardware interface other than the clock andthe reset signals are unidirectional and are
synchronous on the rising edge of the clock to simplify hardware implementation.

The standard family of hardware interfaces must include from simple data interface for registered
attributes to addressable blocking interface for sequential synchronous invocations. Each successive
interface adds semantics: blocking or non-blocking, push semantics for write or pull for read, with or
without flow control, addressable or not. These interfaces can be easily mapped onto socket protocol like
OCP. Instead of a raw set of OCP interface and protocol parameters and some OCP subsets, these named
interfaces explicitly specify the invocation semantics and ease mapping configurability.

A.2.1 Control Interface

Note that all hardware interfaces contains in their module definition (e.g. VHDL entity) aclk and
rst_n signals not represented for space reason.

1 e n t i t y n o n _ b l o c k i n g _ c o n t r o l _ i f i s
por t (

push :i n s t d _ l o g i c ; −− . . .
) ; end ;

Listing A.1: Non-blocking control interface

For instance, this interface could correspond to:

interface non_blocking_control_if {
oneway void push();

};

288 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

The push signal is a control signal used to inform hardware component of an event (operation call,
notification). The interaction is non-blocking, no response is returned to the caller. This interface cor-
responds to a "send-and-forget" [SKH98] interaction semantics and to mgc_in_wire [Gra07]. In OCP,
clk corresponds to Clk andpush to MCmd(0)/WR. Other base names for push could be put, request,
write, select and enable.

1 e n t i t y b l o c k i n g _ c o n t r o l _ i f i s
por t (

push : i n s t d _ l o g i c ;
ack : out s t d _ l o g i c ; −− . . .

) ; end ;

Listing A.2: Blocking control interface

For instance, this interface could correspond to:

interface blocking_control_if {
void push();

};

Theack signal is an acknowledge signal used to inform the caller that the request is accepted and can
be processed. Other base names forack may be response, ready, grant, accept, ok, clear. This interface
corresponds to a "strobe-based" [SKH98] interface.In OCP,ack can be mapped toSCmdAccept.

A.2.2 Data Interface

e n t i t y d a t a _ i f i s
gene r i c (

DATA_WIDTH: i n t e g e r : = 8 ; −− . . .
) ;

5 por t (
d a t a : i n s t d _ l o g i c _ v e c t o r (DATA_WIDTH−1 downto 0) ; −− . . .

) ; end ;

Listing A.3: Data interface

For instance, this could correspond to:

interface data_if {
void push(in octet data);

};

In OCP, data correspond toMData andDATA_WIDTH to data_width in OCP configuration file

A.2.3 Non-Blocking Push Interface

entity non_blocking_push_if is
generic (

PUSH_DATA_WIDTH: integer:=8; -- ...
);
port (
push : in std_logic;
push_data : in std_logic_vector(PUSH_DATA_WIDTH-1 downto 0); -- ...

); end;

A.2. Common Standard Interfaces and Protocols 289

For instance, this could correspond to:

interface non_blocking_push_if {
oneway void push(in octet data);
};

The data signal is a data bus used to transport PUSH_DATA_WIDTH bits of user-defined data to
the hardware component. The data is valid when push is active. The callee can store data in an internal
register or process the data during strobe activation. Synonyms for push includewrite,data_valid,
enable or data_strobe (DS). In OCP,clk corresponds toClk, push is MCmd(0) e.g. WR,
push_data is MData andPUSH_DATA_WIDTH is data_wdth. This interface can correspond to
the Worker Streaming Interface in [NK07] and strobe-based interface in [SKH98].

A.2.4 Blocking Push Interface

entity blocking_push_if is
generic (

PUSH_DATA_WIDTH: integer:=8;
);
port (
push : in std_logic;
push_data : in std_logic_vector(PUSH_DATA_WIDTH-1 downto 0);
ack : out std_logic; -- ...

); end;

For instance, this could correspond to:

interface blocking_push_if {
void push(in octet data);

};

This interface corresponds to a "handshaking-based" [SKH98] interaction semantics and its imple-
mentation could be mgc_out_stdreg_en in [Gra07]. Theack signal is an acknowledge signal used to
inform the caller that the request is accepted and can be processed. In OCP,clk corresponds toClk,
push toMCmd(0) e.g. WR,push_data to MData, PUSH_DATA_WIDTH to data_wdth. The data
signal is a data bus used to transportPUSH_DATA_WIDTH bits of user-defined data to the hardware
component.

A.2.5 Non-Blocking Pull Interface

entity non_blocking_pull_data_if is
generic (
PULL_DATA_WIDTH: integer:=8; -- ...

);
port (
pull : in std_logic;
pull_data : out std_logic_vector(PULL_DATA_WIDTH-1 downto 0); -- ...

); end;

For instance, this could correspond to:

290 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

interface non_blocking_pull_if {
oneway void pull(in octet data);

};

For instance in OCP,clk isClk, pull isMCmd(1) i.e. RD,pull_data isSData andPULL_DATA_WIDTH
is data_wdth in OCP configuration file. A synonym for pull is read. Other names forpull_data
could beout_data, dout, data_out.

A.2.6 Blocking Pull Interface

entity non_blocking_pull_data_if is
generic (
PULL_DATA_WIDTH: integer:=8; -- ...

);
port (
pull : in std_logic;
pull_data : out std_logic_vector(PULL_DATA_WIDTH-1 downto 0);
ack : out std_logic; -- ...

); end;

For instance, this could correspond to:

interface blocking_pull_if {
void pull(in octet data);

};

This interface corresponds to mgc_wire_en [Gra07]. For instance in OCP,clk is Clk, pull is
MCmd(1) i.e. RD,pull_data isSData,ack isSCmdAcceptandPULL_DATA_WIDTH isdata_wdth
in OCP configuration file. A synonym for pull is read. Other names forpull_datacould beout_data,
dout, data_out.

A.2.7 Flow Control Blocking Push Interface

entity blocking_push_if is
generic (

PUSH_DATA_WIDTH: integer:=8;
BUFFER_SIZE : integer:=4;
ALMOST_FULL_THRESHOLD: integer:=2; -- ...

);
port (
push : in std_logic;
push_data : in std_logic_vector(PUSH_DATA_WIDTH-1 downto 0);
full : out std_logic;
almost_full : out std_logic; -- ...

); end;

For instance, this could correspond to:

interface blocking_push_if {
void push(in octet data);

};

A.2. Common Standard Interfaces and Protocols 291

This interface corresponds to a "handshaking-based" [SKH98] interaction semantics and its imple-
mentation could be mgc_out_stdreg_en. In OCP,full/almost_fullsignals correspond toSRespInfo
or SFlag.

A.2.8 Flow Control Blocking Pull Interface

entity non_blocking_pull_data_if is
generic (

PUll_DATA_WIDTH: integer:=8; -- ...
);
port (
clk : in std_logic;
pull : in std_logic;
pull_data : out std_logic_vector(PUll_DATA_WIDTH-1 downto 0);
empty : out std_logic;
almost_empty : out std_logic; -- ...

); end;

For instance, this could correspond to:

interface non_blocking_pull_if {
void pull(in octet data);

};

In OCP,empty andalmost_empty correspond toSRespInfo or SFlag.

A.2.9 Non-Blocking FIFO Interface

entity non_blocking_fifo_if is
generic (

DATA_WIDTH : positive:=8; -- FIFO data width
DEPTH_WIDTH : positive:=4; -- bits for coding fifo depth
ALMOST_FULL_THRESHOLD : natural;
ALMOST_EMPTY_THRESHOLD: natural; -- ...

);
port (
-- Push request
push : in std_logic; -- write request
push_data : in std_logic_vector(DATA_WIDTH-1 downto 0);
almost_full : out std_logic;
full : out std_logic;
-- Pull request
pull : in std_logic;
pull_data : out std_logic_vector(DATA_WIDTH-1 downto 0);
empty : out std_logic;
almost_empty : out std_logic; -- ...

); end;

The meta-data required to choose and configure the hardware interface could be explicitly described
by pragma directive like in high-level synthesis tool. However, a separate mapping configuration file is
preferable, because it don’t require IDL modifications. Here is an example:

292 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

#pragma non_blocking_fifo
interface non_blocking_fifo_if {

enum PushFIFOStatusType {
ALMOST_FULL,
FULL

};
enum PullFIFOStatusType {
ALMOST_EMPTY,
EMPTY

};
exception PushFIFOException {
PushFIFOStatusType errorNumber;

};
exception PullFIFOException {
PullFIFOStatusType errorNumber;

};
#pragma depth_width 4
#pragma almost_full_threshold 3
#pragma almost_empty_threshold 1
void push(in octet data) raises(PushFIFOException);
void pull(out octet data) raises(PullFIFOException);

};

A.2.10 Non-Blocking Push Addressable Interface

entity non_blocking_push_mem_if is
generic (

PUSH_ADDR_WIDTH: integer:=8;
PUSH_DATA_WIDTH: integer:=8; -- ...

);
port (
push : in std_logic;
push_addr : in std_logic_vector(PUSH_ADDR_WIDTH-1 downto 0);
push_data : in std_logic_vector(PUSH_DATA_WIDTH-1 downto 0); -- ...

); end;

This interface can correspond to the Worker Memory Interface [NK07]. It could be used for method
invocations or attributes mapped in RAM/ROM.

For instance, this could correspond to:

interface non_blocking_push_mem_if {
oneway void push(in sequence<octet, 256> data);

};

A.2.11 Blocking Addressable Push Interface

entity non_blocking_push_mem_if is
generic (

PUSH_ADDR_WIDTH: integer:=8;

A.2. Common Standard Interfaces and Protocols 293

PUSH_DATA_WIDTH: integer:=8; -- ...
);
port (
clk : in std_logic;
push : in std_logic;
push_addr : in std_logic_vector(PUSH_ADDR_WIDTH-1 downto 0);
push_data : in std_logic_vector(PUSH_DATA_WIDTH-1 downto 0);
ack : out std_logic; -- ...

); end;

For instance, this could correspond to:

interface blocking_push_mem_if {
void push(in sequence<octet, 256> data);

};

This interface corresponds to the write-only OCP subset.

A.2.12 Non-Blocking Addressable Pull Interface

entity non_blocking_pull_mem_if is
generic (

PULL_ADDR_WIDTH: integer:=8;
PULL_DATA_WIDTH: integer:=8; -- ...

);
port (
clk : in std_logic;
pull : in std_logic;
pull_addr : in std_logic_vector(PULL_ADDR_WIDTH-1 downto 0);
pull_data : out std_logic_vector(PULL_DATA_WIDTH-1 downto 0); -- ...

); end;

For instance, this could correspond to:

interface non_blocking_pull_mem_if {
void pull(out sequence<octet, 256> data);

};

This interface corresponds to the read-only OCP subset.

A.2.13 Non-Blocking Single-Port Memory Interface (or Addressable)

entity twoway_if is
generic (

ADDR_WIDTH: integer:=8;
DATA_WIDTH: integer:=8; -- ...

);
port (
clk : in std_logic;
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);

294 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

-- Push request
push : in std_logic;
push_data : in std_logic_vector(DATA_WIDTH-1 downto 0);
-- Pull request
pull : in std_logic;
pull_data : out std_logic_vector(DATA_WIDTH-1 downto 0); -- ...

); end;

For instance, this could correspond to:

interface non_blocking_single_port_mem_if {
void process(in sequence<octet, 4> data_in,

out sequence<octet, 4> data_out);
};

A.2.14 Non-Blocking Dual-Port Memory Interface (or Addressable)

entity non_blocking_dual_port_mem_if is
generic(

ADDR_WIDTH: integer:=8; -- width of the address bus
DATA_WIDTH: integer:=8; -- width of the data bus

);
port(
push_clk : in std_logic; -- input data clock
pull_clk : in std_logic; -- output data clock
-- Push request
push : in std_logic; -- write request
push_addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
push_data : in std_logic_vector(DATA_WIDTH-1 downto 0);

-- Pull request
pull : in std_logic;
pull_addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
pull_data : out std_logic_vector(DATA_WIDTH-1 downto 0));

end;

For instance, this could correspond to:

interface non_blocking_dual_port_mem_if {
void process(inout sequence<octet, 256> data_in);

};

A.2.15 Generic Message Communication Interface

entity non_blocking_dual_port_mem_if is
generic(

ADDR_WIDTH: integer:=8; -- width of address bus
DATA_WIDTH: integer:=8; -- width of data bus

);

A.3. Constant 295

port(
clk : in std_logic;
-- Push request
push : in std_logic; -- write request
pull : in std_logic; -- read request
addr : in std_logic_vector(ADDR_WIDTH-1 downto 0);
push_data : in std_logic_vector(DATA_WIDTH-1 downto 0);
pull_data : out std_logic_vector(DATA_WIDTH-1 downto 0));

end;

For instance, this could correspond to:

interface transport_if {
void pushMessage(in sequence<octet> request_message);
void pullMessage(in sequence<octet> reply_message);

};

This interface may represent the interface of a bus or NoC connector.

A.2.16 Optional Signals

Optional signals can be added when required. For instance, all these interfaces may have an optional
enable signal to activate or not the component, aclear signal to perform a synchronous reset, etc.

A.3 Constant

Constant identifiers are mapped to constants in VHDL and SystemC. For example:

// OMG IDL3
const short my_long_value = 1357;

-- VHDL RTL
constant my_short_value : CORBA_short := "0000010101001101";

// SystemC RTL
const CORBA_short my_long_value = "0000010101001101";

A.4 Basic Data Types

The IDL-to-HDL language mapping uses a subset of all data types defined by the CORBA specification
[OMG08b].

All integer basic data types are supported by the IDL to HDL mapping The following data types
are not deliberately supported by this mapping: wide char, string, wide string. These data types are not
required for embedded and real-type systems. They may be replaced by sequence of octets.

IDL basic data types are mapped to synthesizable logic vectors as shown for VHDL in listing A.4
and for SystemC RTL in listing A.5.

296 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

package CORBA i s
subtype CORBA_boolean i s s t d _ l o g i c ; −− (=1 i f TRUE, 0 i f FALSE)

3 subtype CORBA_octet i s s t d _ l o g i c _ v e c t o r (7downto 0) ;
subtype CORBA_short i s s t d _ l o g i c _ v e c t o r (15downto 0) ;
subtype CORBA_long i s s t d _ l o g i c _ v e c t o r (31downto 0) ;
subtype CORBA_long_long i s s t d _ l o g i c _ v e c t o r (63downto 0) ;
subtype CORBA_unsigned_shorti s s t d _ l o g i c _ v e c t o r (15downto 0) ;

8 subtype CORBA_unsigned_longi s s t d _ l o g i c _ v e c t o r (31downto 0) ;
subtype CORBA_unsigned_long_longi s s t d _ l o g i c _ v e c t o r (63downto 0) ;
−− new data t y p e s
subtype CORBA_small i s s t d _ l o g i c _ v e c t o r (7downto 0) ;
subtype CORBA_int2 i s s t d _ l o g i c _ v e c t o r (1downto 0) ; −− and so on

13 subtype CORBA_bit i s s t d _ l o g i c ;
subtype CORBA_exception i s s t d _ l o g i c ;

end package CORBA;

Listing A.4: Mapping of IDL basic data types to VHDL

As VHDL does not support namespaces, theCORBA_ prefix is added to the mapped IDL data types
as in the C language mapping. Four new IDL data types are introduced. Thesmall data type is
a 8 bit integer type proposed to replace the opaqueoctet data type and theshort type when 16
bit are not required. TheintX data type denotes an integer of X bits to support integers with a var-
ious number of bits. For instance, CORBA_int3 can be defined as: subtype CORBA_int3 is
std_logic_vector(2 downto 0);. On GPPs and DSPs,intX types may be interpreted as
a vector of useful bits in a fixed data type. The remaining bitsof the data type are non-significant and
simply ignored. As in SystemC, these types may be supported by a dedicated library able to properly
marshalled and demarshalled their value. Another notationcould be int<bit_width>. We also introduce a
logic vector in such as CORBA_lv(2 downto 0); Thebit data type only correspond to a standard logic
value. Theexception logic signal is used to indicate that an exception has occurred. Anexc_id
logic vector will be defined in each hardware interface to indicate an exception number, whose size is the
log2 of the maximum number of throwable exceptions.

namespaceCORBA {
t ypede f s c _ l o g i c boo lean ; / / (=1 i f TRUE, 0 i f FALSE)
t ypede f sc_ l v < 8 > o c t e t ;
t ypede f sc_ l v < 16 > sho r t ;

5 t ypede f sc_ l v < 32 > long ;
t ypede f sc_ l v < 64 > long_ long ;
t ypede f sc_ l v < 16 > u n s i g n e d _ s h o r t ;
t ypede f sc_ l v < 32 > uns igned_ long ;
t ypede f sc_ l v < 64 > u n s i g n e d _ l ong_ l ong ;

10 / / new data t y p e s
t ypede f sc_ l v < 8 > s m a l l ;
t ypede f sc_ l v < 2 > i n t 2 ;
t ypede f s c _ l o g i c e x c e p t i o n ;
t ypede f s c _ l o g i c b i t ;

15 } ;

Listing A.5: Mapping of IDL basic data types to SystemC

A.5. Constructed Data Types 297

A.5 Constructed Data Types

The following constructed data types are supported by the IDL-to-HDL mapping: enumeration, fixed-
length structure types, fixed-length union types, fixed-length array of IDL basic types, fixed- or variable-
length sequence of IDL basic types.

A.5.1 Enumeration

The HDL mapping of an OMG IDLenum type is a set of VHDL signals encoding the enum values. For
example:

// OMG IDL3
enum etat1 { idle, active, waiting, end };

The mapping in VHDL depends on a chosen enumeration encoding:
1) symbolic encodingwhich is defined by the synthesis tool e.g.

-- VHDL
package etat1 is
type etat1 is (idle, active, waiting, end);

end etat1;

// SystemC RTL
enum etat1 { idle, active, waiting, end };

2) binary encoding which uses⌈log2(n)⌉ + 1 registers forn states. The enum values are encoded
in increasing order in a logic vector e.g. "00" for idle, "01"for active "10" for waiting and "11" for end.

-- VHDL
package etat1 is
subtype etat1_enum is std_logic_vector(1 downto 0);

end etat1;

// SystemC RTL
typedef sc_lv< 2 > etat1_enum;

3) one hot encodingwhich usesn registers forn states. This encoding is recommended for FPGAs.

-- VHDL
package etat1 is
subtype etat1_enum is std_logic_vector(3 downto 0);

end etat1;

// SystemC RTL
typedef sc_lv< 4 > etat1_enum;

The enum values are encoded as follows: "0001" for idle, "0010" for active, "0100" for waiting and
"1000" for end.

For example suppose the operationoperation1 defined in interfaceintf1 as follows:

298 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

// OMG IDL3
interface intf1 {

void operation1(in etat1 a1);
};

If two non-blocking push interfaces are chosen, this is equivalent to the following declarations in
VHDL:

-- VHDL RTL
use work.etat1.all;
entity intf1 is port (

operation1_push_in : in CORBA_bit;
operation1_push_data_in_a1 : in etat1_enum;
operation1_push_out : out CORBA_bit; -- ...
);

end intf1;

// SystemC RTL
SC_MODULE(intf1) {

sc_in< CORBA::bit > operation1_push_in;
sc_in< etat1_enum > operation1_push_data_in_a1;
sc_in< CORBA::bit > operation1_push_out;
// ...

};

A.5.2 Array

An IDL array can be mapped to registers, FIFO or internal/external RAM/ROM. If the VHDL array
keyword is used, the synthesis tool may infer internal registers or RAMs. We propose a mapping for
arrays independent from the chosen hardware implementation. For each named array type in OMG IDL,
mapping to software languages defines a slice. A slice of an array is another array with all the dimensions
of the original except the first. With the proposed mapping, slices are not required.

// OMG IDL3
typedef long array1[4][5];

-- VHDL RTL
package array1 is

use corba.CORBA.all;
type array1_0_0 is CORBA_long;
-- . . .
type array1_3_4 is CORBA_long;

end array1;

// SystemC RTL
namespace array1 {

typedef CORBA::long[4][5] array;
typedef CORBA::long[5] array_slice;

};

A.5. Constructed Data Types 299

Array used as attributes

For example, suppose the array attribute a1 defined in "intf1" as follows:

// IDL
interface intf1 {
attribute array1 a1;

};

In SystemC, the array is a private class member:

// SystemC RTL
SC_MODULE(intf1) {
private:
array a1;
array_slice a1_slice; // ...

};

Array mapped to register

Since concurrent access to array members may be required, dedicated data bus signals are necessary for
the user interface. The mapping to VHDL is the following:

-- VHDL RTL
entity intf1 is
port (
data_in_a1_0_0 : array1_0_0; -- ...
data_in_a1_3_4 : array1_3_4;

);

Array mapped to internal or external RAM/ROM

If the mapping is based on a single memory port, array items can not be read and write at the same time,
thereforepush_in/outandpull_in/outsignals are merged into the same sharedpush_pull_in/out
signal.

-- VHDL RTL
entity intf1 is
generic (
A1_ADDR_WIDTH : integer:=5;
A1_PUSH_DATA_WIDTH_IN : integer:=32;
A1_PUSH_DATA_WIDTH_OUT : integer:=32; -- ...

);
port (
a1_push_pull_in : in CORBA_bit;
a1_addr : in CORBA_lv(A1_ADDR_WIDTH -1 downto 0);
a1_push_data_in_item : in CORBA_lv(A1_PUSH_DATA_WIDTH_IN-1 downto 0);
a1_push_data_out_item : out CORBA_lv(A1_PUSH_DATA_WIDTH_OUT -1 downto 0);
a1_push_pull_out : out CORBA_bit; -- ...

);

300 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

Array used as operation parameters

In case an array is passed as an operation parameter, the mapping of the array type to VHDL is applied
on the corresponding parameter.

For example suppose the operationoperation1 defined in interfaceintf1 as follows:

// OMG IDL3
interface intf1 {

void operation1(in array1 a1);
};

If two non-blocking push interfaces are chosen, this is equivalent to the following declarations in
HDLs:

-- VHDL RTL
entity intf1 is
generic (

PUSH_DATA_WIDTH_IN : integer:=32; -- ...
);
port (

push_in : in CORBA_bit;
push_data_in_a1_item : in CORBA_lv(PUSH_DATA_WIDTH_IN-1 downto 0);
push_out : out CORBA_bit; -- ...

);

// SystemC RTL
#define PUSH_DATA_WIDTH_IN 8
SC_MODULE(intf1) {

sc_in< CORBA_< CORBA::bit > push_in;
sc_in < CORBA_< CORBA::lv<PUSH_DATA_WIDTH_IN> > push_data_in_a1_item;
sc_out< CORBA_< CORBA::bit > push_out; -- ...

};

A.5.3 Data Structure

OMG IDL struct can be mapped to registers, FIFOs or internal/external RAM/ROM. This mapping
proposition supports fixed-size structures of simple and/or structured types. Each field of the struct is
mapped according to the mapping rule of its type.

For example suppose the following IDL structure:

// OMG IDL3
struct struct1 {
octet x;
short y;
long z;

};
struct struct2 {
octet a;
struct1 b;

};

A.5. Constructed Data Types 301

This is equivalent to the following types in VHDL:

-- VHDL RTL
package struct1 is
use corba.CORBA.all;
subtype struct1_x is CORBA_octet;
subtype struct1_y is CORBA_short;
subtype struct1_z is CORBA_long;

end struct1;

package struct2 is
use corba.CORBA.all;
use work.struct1.all;
subtype struct2_a is CORBA_octet;
subtype struct2_b_x is struct1_x;
subtype struct2_b_y is struct1_y;
subtype struct2_b_z is struct1_z;

end struct2;

// SystemC RTL
using namespace CORBA;
namespace struct1 {
typedef CORBA_octet x;
typedef CORBA_short y;
typedef CORBA_long z;

};

namespace struct2 {
typedef CORBA_octet a;
typedef struct1::x b_x;
typedef struct1::y b_y;
typedef struct1::z b_z;

};

Struct used as attributes

For example, suppose the struct attributes1 defined inintf1 interface as follows:

// IDL
interface intf1 {
attribute struct2 s1;

};

In SystemC, the array is a private class member:

// SystemC RTL
SC_MODULE(intf1) {
private:
struct2 s1;

302 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

// ...
};

Struct mapped to registers

Since concurrent accesses to struct members may be required, dedicated data bus signals are necessary
for the user interface. The mapping to VHDL is the following:

-- VHDL RTL
entity intf1 is
port (

data_in_s1_a : struct2_a;
data_in_s1_b_x : struct2_b_x;
data_in_s1_b_y : struct2_b_y;
data_in_s1_b_z : struct2_b_z; -- ...

);

Struct mapped to internal or external RAM/ROM

The data address offset, data layout and endianness must be explicitly defined in the mapping configura-
tion file. For instance, with the previous example:

-- VHDL RTL
entity intf1 is
generic (

S1_ADDR_WIDTH : integer:=6;
S1_PUSH_DATA_WIDTH_IN : integer:=32;
S1_PUSH_DATA_WIDTH_OUT : integer:=32; -- ...

);
port (

s1_push_pull_in : in CORBA_bit;
s1_addr : in CORBA_lv(S1_ADDR_WIDTH -1 downto 0);
s1_push_data_in_item : in CORBA_lv(S1_PUSH_DATA_WIDTH_IN-1 downto 0);
s1_push_data_out_item : out CORBA_lv(S1_PUSH_DATA_WIDTH_OUT -1 downto 0);
s1_push_pull_out : out CORBA_bit; -- ...

);

Struct used as operation parameters

In case the structure is passed as parameter in an operation,the mapping of the struct parameter to VHDL
result to as many signals as the number of fields of the structure.

For example suppose the operationoperation1 defined in interfaceintf1 as follows:

// IDL
interface intf1 {

void operation1(in struct1 a1);
};

If two non-blocking push interfaces are chosen, this is equivalent to the following entity in VHDL:

A.5. Constructed Data Types 303

-- VHDL RTL
use work.struct1.all;
entity intf1 is port (
operation1_push_in : in CORBA_bit;
operation1_push_data_in_a1_x : in struct1_x;
operation1_push_data_in_a1_y : in struct1_y;
operation1_push_data_in_a1_z : in struct1_z;
operation1_push_out : out CORBA_bit; -- ...

);
end intf1;

This is equivalent in SystemC to:

// SystemC RTL
SC_MODULE(intf1) {
sc_in < CORBA_< CORBA::bit > operation1_push_in;
sc_in< struct1::x > operation1_push_data_in_a1_x;
sc_in< struct1::y > operation1_push_data_in_a1_y;
sc_in< struct1::z > operation1_push_data_in_a1_z;
sc_out< CORBA_< CORBA::bit > operation1_push_out; // ...

};
};

A.5.4 Union

The union type is not really required, nevertheless a mapping is proposed for completeness. This
IDL-to-HDL mapping supports fixed-sizeunions of simple types. Each field of theunion is mapped
according to the mapping rule of its data type.

Consider the following OMG IDL declaration:

// IDL
union union1 switch(octet) {
case 1: octet x;
case 2: short y;
case 3: long z;
default: unsigned short d;

};

This is mapped to the following HDL codes:

-- VHDL RTL
package union1 is
use corba.CORBA.all;
-- union1_width_ is equals to the maximum width of included types
constant union1_width : integer := 32; -- size of a CORBA_long
-- union discriminator
subtype union1_d is CORBA_octet;
-- union subtypes
subtype union1_u is std_logic_vector(union1_width - 1 downto 0);

304 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

subtype union1_u_x is CORBA_octet;
subtype union1_u_y is CORBA_short;
subtype union1_u_z is CORBA_long;
subtype union1_u_d is CORBA_unsigned_short;

end union1;

// SystemC RTL
using namespace CORBA;
namespace union1 {

-- union_width_ is equals to the maximum width of included types
const short union1_width = 32; // size of a CORBA_long
-- union discriminator
typedef CORBA_octet d;
-- union sub-types
typedef sc_lv< union1_width > u;
typedef CORBA_octet u_x;
typedef CORBA_short u_y;
typedef CORBA_long u_z;
typedef CORBA_unsigned_short u_d;

};

The discriminator is referred to as <union_name>_d_, whiletheunion is referred to as <union_name>_u_.
If a union type is passed as parameter of an operation, it is mapped in VHDL to astd_logic_vector

whose width equals to the maximum width of the types of the union and the discriminator signal. For
example, suppose the operationoperation1 defined in interfaceintf1 as follows:

// IDL
interface intf1 {

void operation1(in union1 a1);
};

If two non-blocking push interfaces are chosen, this is equivalent to the following entity in VHDL:

-- VHDL RTL
use work.union1.all;
entity intf1 is port (

operation1_push_in : in CORBA_bit;
operation1_push_data_in_a1_u : in union1_u;
operation1_push_data_in_a1_d : in union1_d;
operation1_push_out : out CORBA_bit; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(comp1) {

// facet1_operation9
sc_in < CORBA_< CORBA::bit > operation1_push;
sc_in< union1::u > operation1_push_data_in_a1_u;

A.5. Constructed Data Types 305

sc_in< union1::d > operation1_push_data_in_a1_d;
sc_out< CORBA_< CORBA::bit > operation1_push_out; // ...

};

Some aliases could be defined to access the union elements as illustrated below :

architecture intf1_impl of intf1 is
-- Access to union1_x
alias operation1_a1_u_x_1 : union1_u_x is operation1_a1_u_(7 downto 0);
alias operation1_a1_u_x_2 : union1_u_x is operation1_a1_u_(15 downto 8);
alias operation1_a1_u_x_3 : union1_u_x is operation1_a1_u_(23 downto 16);
alias operation1_a1_u_x_4 : union1_u_x is operation1_a1_u_(31 downto 24);
-- Access to union1_y
alias operation1_a1_u_y_1 : union1_u_y is operation1_a1_u_(15 downto 0);
alias operation1_a1_u_y_2 : union1_u_y is operation1_a1_u_(31 downto 16);
-- Access to union1_z
alias operation1_a1_u_z_1 : union1_u_z is operation1_a1_u_(31 downto 0);

begin
-- One of the union1 type is used depending on the discriminator

end intf1_impl;

A.5.5 Sequence

An IDL sequence is a bounded or unbounded arrays whose elements have the sametype. Asequence
can be mapped to a register, FIFO or in internal/external RAM/ROM. Consider the following OMG IDL
declaration:

// IDL
typedef sequence<long> sequence1;

-- VHDL RTL
package sequence1 is
use corba.CORBA.all;
constant SEQUENCE1_LENGTH_WIDTH : integer := 16;
constant SEQUENCE1_ITEM_WIDTH : integer := 8;
subtype sequence1_length is CORBA_lv(SEQUENCE1_LENGTH_WIDTH-1 downto 0);
subtype sequence1_sequence is CORBA_lv(SEQUENCE1_ITEM_WIDTH-1 downto 0);

end sequence1;

// SystemC RTL
namespace sequence1 {
const int SEQUENCE1_LENGTH_WIDTH = 16;
const int SEQUENCE1_ITEM_WIDTH = 8;

typedef CORBA::lv<SEQUENCE1_LENGTH_WIDTH>length;
typedef CORBA::lv<SEQUENCE1_ITEM_WIDTH>sequence;

};

306 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

If a sequence is passed as operation parameter, the mapping of the sequence type to VHDL is
applied on the corresponding parameter

For example suppose the operationoperation1 defined in interfaceintf1 as follows:

// IDL
interface intf1 {

void operation1(in sequence1 a1); // ...
};

If two non-blocking push interfaces are chosen, this is equivalent to the following entity in VHDL:

-- VHDL RTL
use work.sequence1.all;
entity intf1 is port (

operation1_push_in : in CORBA_bit;
operation1_push_data_in_a1_length : in sequence1_length;
operation1_push_data_in_a1_item : in sequence1_item;
operation1_push_out : out CORBA_bit; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {

sc_in < CORBA_< CORBA::bit > operation1_push_in;
sc_out< CORBA_< CORBA::bit > operation1_push_out;
sc_in< sequence1::length > operation1_push_data_in_a1_length;
sc_in< sequence1::item > operation1_push_data_in_a1_item; // ...

};

Sequence elements are transmitted sequentially through theoperation1_a1_sequencesignal. The
operation1_a1_length_ signal indicates the number of elements that are still to be transmitted.

When theoperation1_a1_length_signal equals zero, then no more useful bits are available inthe
sequence. In this case, there is no distinction between bounded and unbounded sequences.

For unbounded sequences, a packet-oriented interface may be chosen when the receiver does not
need to know the real length of a sequence for streaming interfaces. A _end of packet signal and an
optinal _start signal replace the _length signal in a similar way to OCP and Avalon.

-- VHDL RTL
use work.sequence1.all;
entity intf1 is port (

operation1_push_in : in CORBA_bit;
operation1_push_data_in_a1_length : in sequence1_length;
operation1_push_data_in_a1_item : in sequence1_item;
operation1_push_out : out CORBA_bit; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {

A.5. Constructed Data Types 307

sc_in < CORBA_< CORBA::bit > operation1_push_in;
sc_out< CORBA_< CORBA::bit > operation1_push_out;
sc_in< sequence1::length > operation1_push_data_in_a1_length;
sc_in< sequence1::item > operation1_push_data_in_a1_item; // ...

};

A.5.6 Any

Any are not really required in hardware, nevertheless a mappingis proposed for completeness and back-
ward compatibility with the JTRS SCA interfaces.Any is mapped in HDLs as a sequence of bits and
could be mapped in register or RAM/ROM like sequence. CORBA 2.3 defines 32 typecodes. The HDL
mapping of theany type is defined as follows:

-- VHDL RTL
package CORBA is
constant CORBA_TYPECODE_WIDTH : integer := 5;
constant ANY_LENGTH_WIDTH : integer := 16;
constant ANY_ITEM_WIDTH : integer := 8;
subtype CORBA_TypeCode is CORBA_lv(CORBA_TYPECODE_WIDTH-1 downto 0);
subtype CORBA_any_typecode is CORBA_TypeCode;
subtype CORBA_any_length is CORBA_lv(ANY_LENGTH_WIDTH-1 downto 0);
subtype CORBA_any_sequence is CORBA_lv(ANY_ITEM_WIDTH-1 downto 0);

end CORBA;

// SystemC RTL
namespace CORBA {
// ...
const int CORBA_TYPECODE_WIDTH = 5;
const int ANY_LENGTH_WIDTH = 16;
const int ANY_ITEM_WIDTH = 8;
typedef TypeCode CORBA_any_typecode;
typedef bv< ANY_LENGTH_WIDTH > CORBA_any_length;
typedef bv< ANY_ITEM_WIDTH > CORBA_any_sequence;

};

If a any is passed as operation parameter, its mapping rules are applied on the corresponding param-
eter. For example, suppose the operationoperation1 defined in the interfaceintf1 as follows:

// IDL
interface intf1 {
void operation1(in any a1); // ...

};

If two non-blocking push interfaces are chosen, this is equivalent to the following entity in VHDL:

-- VHDL RTL
use corba.CORBA.all;
entity intf1 is port (
operation1_push_in : in CORBA_bit;

308 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

operation1_push_data_in_a1_typecode : in CORBA_any_typecode;
operation1_push_data_in_a1_length : in CORBA_any_length;
operation1_push_data_in_a1_sequence : in CORBA_any_sequence;
operation1_push_out : out CORBA_bit;

);
end comp1;

// SystemC RTL
SC_MODULE(comp1) {

sc_in < CORBA_< CORBA::bit > operation1_push_in;
sc_in < CORBA_< CORBA::any_typecode> operation1_in_a1_typecode;
sc_in < CORBA_< CORBA::any_length > operation1_in_a1_length;
sc_in < CORBA_< CORBA::any_sequence > operation1_in_a1_sequence;
sc_out< CORBA_< CORBA::bit > operation1_push_out; // ...

};

Theoperation1_push_data_in_a1_typecodedenotes the type code of the data contained
in theany. Theany value is transferred sequentially through theoperation1_a1_any_signal. The
operation1_a1_length signal indicates the number of data that are still to be transferred.

A.5.7 Exception

IDL exceptions allows developers to indicate to users that an error has occurred and that the interface
contract is broken. CORBA distinguishes two kinds of exceptions. Standard exceptionsare defined by
the CORBA specification itself, whileuser exceptionsare specified by users in IDL.

Standard Exception

CORBA 2.3 defines 33 standard exceptions. This information can be used to specify the maximum width
of the signal that will carry the exception code. For instance:

-- VHDL RTL
package CORBA is

constant CORBA_STANDARD_EXCEPTION_WIDTH : integer := 6;
end CORBA;

User Exception

The IDL to VHDL mapping supports fixed-size exceptions of simple and/or structured types. Each field
of the exception is mapped according to the mapping rule of its associated type. For example suppose
the following IDL exception

// IDL
exception exception1 {

long dummy;
};

This is mapped to the following HDL declarations:

A.5. Constructed Data Types 309

-- VHDL RTL
package exception1 is
use corba.CORBA.all;
subtype exception1_dummy is CORBA_long;

end exception1;

// SystemC RTL
namespace exception1 {
typedef CORBA_long dummy;

};

If an operationoperation1 from the interfaceintf1 can raise the previous exception:

// IDL
interface intf1 {
exception exception1 {
long id;

};
void operation1() raises(exception1);

};

In HDLs, this is mapped to:

use work.exception1.all;
entity intf1 is port (
operation1_push_in : in CORBA_bit;
operation1_push_out : in CORBA_bit;
operation1_exception1 : out exception1_dummy; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {
sc_in < CORBA::bit > operation1_push_in;
sc_out< CORBA::bit> operation1_push_out;
sc_out< exception1::dummy > operation1_exception1; // ...

};

If the operation1_exception signal is null, no exception has been raised. Otherwise, it con-
tains the unique identifier of the raised exception.

A.5.8 Strings

An IDL string corresponds an octet sequence of ASCII characters. This type is not particularly useful
for the DRE systems. Nevertheless, it may be required for backward compatibility with JTRS SCA
interfaces.String are mapped to numeric identifiers.

310 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

A.5.9 Float

Float integers could be temporarily mapped into logic vectors, however a recent Accellera standard called
VHDL-2006-D3.0 already provides VHDL packages for synthesizable floats. Hence, we recommend a
direct mapping from IDL floats to VHDL floats. This standard isready for industry adoption. Synthesis
tools will certainly support it when hardware middlewares will be available and used.

A.5.10 Fixed

Fixed point integers could be temporarily mapped into bitvectors, however a recent Accellera standard
called VHDL-2006-D3.0 already provides a VHDL package calledieee.fixed_pkg.allwith the
synthesizableufixed andsfixed fixed point types. Hence, we recommend a direct mapping from
IDL floats to VHDL floats. This standard is ready for industry adoption. Synthesis tools will certainly
support it when hardware middlewares will be available and used.

A.6 Attribute

In software language mappings, IDLattributes are inferred as a pair of setter and getter operations
to assign and retrieve the value of anattribute. Some possible mapping choices include defining two
operations for each attribute, defining two operations to set or get any attribute, and defining operations
to set or get groups of attributes, and so forth.

A.7 Scoped Name

As HDLs such as VHDL and Verilog do not support scoped names, hardware designers must use the
global name for a type, constant, exception, or operation. The scope symbol:: in OMG IDL is mapped
to an underscore_ in VHDL.

A.8 Module

The module IDL keyword is mapped to package in VHDL and namespace in SystemC as follows:

// OMG IDL3
module module1 {

// ...
};

-- VHDL RTL
package module1 is

-- ...
end module1;

// SystemC RTL
namespace module1 {

// ...
};

A.9. Interface 311

A.9 Interface

In the following, we present mapping configurations for someIDL interfaces based on the previous
family of hardware interfaces. In other words, we try to explore the mapping exploration space and
illustrate its inherent complexity.

A.9.1 Non-blocking control interface for non-reliable oneway operation

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {
// unreliable oneway
oneway void operation1();

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is port (
operation1_push_in : in CORBA_bit; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {
sc_in < CORBA::bit > operation1_push_in; // ...

};

A.9.2 Non-blocking control interfaces for operations without parameters or reliable oneway
operation

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {
void operation1();

};
or
interface intf1 {
// reliable oneway
oneway void operation1();

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is port (
operation1_push_in : in CORBA_bit;
operation1_push_out : out CORBA_bit; -- ...

312 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {

sc_in < CORBA::bit > operation1_push_in;
sc_out< CORBA::bit > operation1_push_out; // ...

};

Theoperation1_push_out indicates the completion of the operation. This interface corresponds
to the mapping proposed in [BRM+06] and the process-level handshake in [Gra].

A.9.3 Addressable non-blocking push interface without data in input and non-blocking
control interface in output for several operations without parameters or reliable
oneway operation

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {

void operation1();
void operation2();

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (

OPERATION_WIDTH: integer:=1; -- ...
);
port (

push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_out : out CORBA_bit; -- ...

);
// SystemC RTL
#define OPERATION_WIDTH 1
SC_MODULE(intf1) {

// operation1
sc_in < CORBA::bit > push_in;
sc_in< CORBA::bv< OPERATION_WIDTH > >addr;
sc_out < CORBA::bit > push_out;
// ...

};

The parameterOPERATION_WIDTH is the numbers of bits required to binary encode the operations
i.e. OPERATION_WIDTH = ⌈log2(#operations)⌉.

A.9. Interface 313

A.9.4 Addressable non-blocking push interface for input and non-blocking control in-
terface for output for several operations with input parameters

For an important number of operations and parameters, hardware I/O ports can be shared to save area.
The width of the data bus for operation parameters have to be specified in a mapping configuration file.
The parameters are serialized on the data bus according to some standard encoding rules.

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {
void operation1();
void operation2(in long a1);

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (
OPERATION_WIDTH : integer:=1;
PUSH_DATA_WIDTH_IN : integer:=32; -- ...

);
port (
push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_data_in : in CORBA_lv(PUSH_DATA_WIDTH_IN-1 downto 0);
push_out : out CORBA_bit; -- ...

);

// SystemC RTL
#define OPERATION_WIDTH 4
#define PUSH_DATA_WIDTH_IN 32
SC_MODULE(intf1) {
sc_in < CORBA::bit > push_in;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > > addr;
sc_in< CORBA::bv< PUSH_DATA_ WIDTH_IN> > push_data_in;
sc_out < CORBA::bit > push_out; // ...

};

Thepush_out indicated the end of the operation and does not acknowledge input parameters re-
ception.

A.9.5 Addressable non-blocking push interface in inputs and Non-blocking push inter-
face in outputs for several operations with parameters

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {
void operation1();

314 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

void operation2(in long a1);
void operation3(out octet a2);

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (

OPERATION_WIDTH : integer :=2;
PUSH_DATA_WIDTH_IN : integer :=32;
PUSH_DATA_WIDTH_OUT : integer :=8; -- ...

);
port (

-- input
push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_data_in : in CORBA_lv(PUSH_DATA_ WIDTH_IN-1 downto 0);
-- output
push_out : out CORBA_bit;
push_data_out : out CORBA_lv(PUSH_DATA_WIDTH_OUT-1 downto 0); -- ...

);

// SystemC RTL
#define OPERATION_WIDTH 2
#define PUSH_DATA_WIDTH_IN 32
#define PUSH_DATA_WIDTH_OUT 8
SC_MODULE(intf1) {

// operation1
sc_in< CORBA::bit > push_in;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > >addr;
sc_in< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_in;
sc_out< CORBA::bit > push_out;
sc_out< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_out;
// ...

};

A.9.6 Addressable blocking push interface in inputs and non-blocking push interface in
outputs for several operations with parameters

This configuration could be used for Asynchronous Method Invocation (AMI) or when invocation relia-
bility is required.

If the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {

void operation1();
void operation2(in long a1);
void operation3(out octet a2);

};

A.9. Interface 315

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (
OPERATION_WIDTH : integer :=2;
PUSH_DATA_WIDTH_IN : integer :=32;
PUSH_DATA_WIDTH_OUT : integer :=8; -- ...
);

port (
-- input
push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_data_in : in CORBA_lv(PUSH_DATA_ WIDTH_IN-1 downto 0);
ack_in : out CORBA_bit;
-- output
push_out : out CORBA_bit;
push_data_out : out CORBA_lv(PUSH_DATA_WIDTH_OUT-1 downto 0); -- ...

);

// SystemC RTL
const int OPERATION_WIDTH = 2;
const int PUSH_DATA_WIDTH_IN = 32;
const int PUSH_DATA_WIDTH_OUT = 8;
SC_MODULE(intf1) {
// operation1
sc_in< CORBA::bit > push_in;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > > addr;
sc_in< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_in;
sc_out< CORBA::bit > ack_in;
sc_out< CORBA::bit > push_out;
sc_out< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_out; // ...

};

Theack_in signal acknowledges the reception of the input parameters.

A.9.7 Addressable non-blocking push interface in input anda non-blocking pull inter-
face in output for several operations with parameters

If the interfaceintf1 is defined as follows:

// OMG IDL3
interface intf1 {
void operation1();
void operation2(in long a1);
void operation3(out octet a2);

};

The mapped hardware interfaces are defined as:

316 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

-- VHDL RTL
entity intf1 is
generic (

OPERATION_WIDTH : integer := 2;
PUSH_DATA_WIDTH_IN : integer := 32;
PULL_DATA_WIDTH_OUT : integer := 8; -- ...

);
port (

-- input
push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_data_in : in CORBA_lv(PUSH_DATA_ WIDTH_IN-1 downto 0);
-- output
pull_out : in CORBA_bit;
pull_data_out : out CORBA_lv(PULL_DATA_WIDTH_OUT-1 downto 0); -- ...

);

// SystemC RTL
const int OPERATION_WIDTH = 2;
const int PUSH_DATA_WIDTH_IN = 32;
const int PULL_DATA_WIDTH_OUT = 8;
SC_MODULE(intf1) {

// operation1
sc_in< CORBA::bit > push_in;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > >addr;
sc_in< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_in;
sc_out< CORBA::bit > pull_out;
sc_out< CORBA::bv< PULL_DATA_WIDTH_IN > > pull_data_out;
// ...

};

A.9.8 Addressable non-blocking push interface in input andblocking pull interface in
output for several operations with parameters

If the interfaceintf1 is defined as follows:

// OMG IDL3
interface intf1 {

void operation1();
void operation2(in long a1);
void operation3(out octet a2);

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (

OPERATION_WIDTH : integer :=2;

A.9. Interface 317

PUSH_DATA_WIDTH_IN : integer :=32;
PULL_DATA_WIDTH_OUT : integer :=8; -- ...

);
port (
-- input
push_in : in CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
push_data_in : in CORBA_lv(PUSH_DATA_ WIDTH_IN-1 downto 0);
-- output
pull_out : in CORBA_bit;
pull_data_out : out CORBA_lv(PULL_DATA_WIDTH_OUT-1 downto 0);
pull_ack : out CORBA_bit;
-- ...

);

// SystemC RTL
const int OPERATION_WIDTH = 2;
const int PUSH_DATA_WIDTH_IN = 32;
const int PULL_DATA_WIDTH_OUT = 8;
SC_MODULE(intf1) {
// operation1
sc_in< CORBA::bit > push_in;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > > addr;
sc_in< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_in;
sc_in< CORBA::bit > pull_out;
sc_out< CORBA::bv< PULL_DATA_WIDTH_IN > > pull_data_out;
sc_out< CORBA::bit > pull_ack; // ...

};

Thepull_ack signal acknowledges the validity of the output parameters.

A.9.9 Addressable non-blocking pull interface in input andnon-blocking push interface
in output for several operations with parameters

// OMG IDL3
interface intf1 {
void operation1();
void operation2(in long a1);
void operation3(out octet a2);

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity intf1 is
generic (
OPERATION_WIDTH : integer :=2;
PULL_DATA_WIDTH_IN : integer :=32;
PUSH_DATA_WIDTH_OUT : integer :=8; -- ...

318 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

);
port (

-- input
pull_out : out CORBA_bit;
addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
pull_data_in : in CORBA_lv(PULL_DATA_WIDTH_IN-1 downto 0);
-- output
push_out : out CORBA_bit;
push_data_out : out CORBA_lv(PUSH_DATA_WIDTH_OUT-1 downto 0); -- ...

);

// SystemC RTL
const int OPERATION_WIDTH = 2;
const int PUSH_DATA_WIDTH_IN = 32;
const int PULL_DATA_WIDTH_OUT = 8;
SC_MODULE(intf1) {

// operation1
sc_out< CORBA::bit > pull_out;
sc_in< CORBA::bv< PUSH_ADDR_WIDTH > > addr;
sc_in< CORBA::bv< PUSH_DATA_WIDTH_IN > > push_data_in;
sc_out< CORBA::bit > push_out;
sc_out< CORBA::bv< PULL_DATA_WIDTH_OUT > > push_data_out;
// ...

};

Thepull_out serves to read input parameters, for instance in the consumer model of communica-
tion.

A.10 Operation Invocation

A.10.1 Phases

We distinguish two phases: request for operation call and input parameters transfer, and response for
operation return, error/exception and output parameters transfer. Each phase should have a two-phase
handshake. An acknowledge is useful in SW for synchronization, but needless most of the time in HW
(e.g. no acknowledge for write to a configuration register).This acknowledge should be configure for
each operation.

A.10.2 Mapping solutions

We identify two main mapping solutions: 1) explicit IDL-to-VHDL mapping configuration file such as
OCP interface configuration files with which hardware interfaces exactly satisfy communication needs,
but more tedious and possible incompatibilities to be handled by adapter connectors, 2) fixed hardware
interface and protocol adapted to specific constraints. This second solution is suitable for the definition
of a fixed API as we will see for the Transceiver component.

A.10. Operation Invocation 319

A.10.3 Operation parameter transfer

A virtual hardware input port is a a set of VHDL entity I/O ports that is associated with one or several
input parameters It implements a standard hardware interface (syntax) and protocol (semantics) e.g.
push or pull, blocking or non-blocking, with/without data or flow control and addressable interface. This
mapping should be flexible and extensible, because the nature of operation parameters is totally implicit
in IDL: control flow, data flow or a mix, continuous or discontinuous, with or without flow control etc.
The association between parameters and input ports is explicitly specified in a mapping configuration
file. The component-oriented nature of CORBA can be used to define dedicated IDL interfaces for
control, configuration or data-oriented aspects. The nature of communication could be expressed by new
IDL keywords to better characterize CORBA component ports such asbuffered, addressable,
stream and infer hardware interfaces based on register, fifo, and RAM. When several input parameters
are associated to an input port, the way input parameters aretransferred on hardware interface signals
should be explicit. The data bus width is specified in the mapping configuration file. It is not required
to be a power of two. The endianness is configured to determineif transfers are LSB or MSB first. The
data layout of parameters transfer shall also be configured.

Different transfer modes can be distinguished in particular: Serial or Time-Division Multiplexing
(TDM), where one parameter (chunk) is transferred at a time, andParallel or Spatial-Division Multi-
plexing (SDM) where (one chunk of) each parameter is transferred at a time[Bje05]. Serial transfers
require less hardware wires therefore less silicium area and power consumption, but are slower. Paral-
lel transfers require more hardware wires therefore more silicium area and power consumption, but are
faster.

Different encoding rules can be distinguished in particular: with paddingwhere non-significant data
are inserted to align parameters on address boundaries as inCORBA CDR [OMG08b], andwithout
paddingwhere no data are inserted to align parameters as in ICE [HS08] [Hen04]. As in ASN.1 Packed
Encoding Rules (PER) [IT02] support both alternatives. Unaligned data are more compact but are slower
for middlewares to encode and decode. Aligned data are easier to encode and decode but use more
bandwidth.

We propose to support all these solutions to best fit each particular application requirements in DRE
systems. Designers should indicate to IDL-to-HDL compilers which one they want to use during map-
ping configuration. For both transfer modes and encoding rules, reusable connectors can be envisaged to
convert parameter data from one configuration to another.

For instance, consider the following interfaceintf1:

// OMG IDL3
interface intf1 {
void operation1(in octet a1, in short a2, in long a3);

};
or similarly:
typedef struct s { octet a1; short a2; long a3; } myStruct;
void operation1(in myStruct s1);

};

Hence, we identify two main solutions to transfer parameters: 1) a dedicated signal for each parame-
ter whose width correspond to the size of the parameter data type. An appropriate naming convention is
required to avoid a name clash. This solution is user-friendly and performant, but requires a lot of area.

interface Example {
exception Err1{};

320 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

exception Err2{};
boolean op1(in boolean p1, out short p2, inout long p3) raises(Err1, Err2);

};

If blocking push interfaces are used, the mapped hardware interface may be:

entity Example is
port (

op1_push_in : in CORBA_bit; -- request
op1_ack_in : out CORBA_bit;
op1_p1 : in CORBA_boolean;
op1_p3_in : in CORBA_long;
op1_push_out : out CORBA_bit; -- response
op1_ack_out : in CORBA_bit; -- optional
op1_p2 : out CORBA_short;
op1_p3_out : out CORBA_long;
op1_return : out CORBA_boolean;
op1_exc : out exception;
op1_exc_id : out CORBA_lv(op1ExcDW-1 downto 0);

);
end entity Example;

2) shared wires for all parameters going in the same direction whose width is fixed by a constant (e.g.
VHDL generic). This may generalized to all parameters of alloperations of an interface. This approach
is the most generic, area-efficient, but less user-friendlyas parameters are serialized.

entity Example is
generic (natural op1InPrmDW := 1);
port (

op1_push_in : in std_logic; -- request \\
op1_acc_in : out std_logic; -- optional}
op1_in : in std_logic_vector(op1InPrmDW-1 downto 0);
op1_push_out : out std_logic; -- response
op1_ack_out : in std_logic; -- optional
op1_out : out std_logic_vector(op1OutPrmDW-1 downto 0);
op1_return : out CORBA_boolean;
op1_exc : out exception;
op1_exc_id : out std_logic_vector(op1ExcDW-1 downto 0);

);
end entity Example;

The data width used to transfer parameters in parallel or serial may be chosen at instantiation time.
The endianness and alignment rules - with or without padding- should be defined. The VHDL data
type e.g. record inferred from UML/IDL definitions could notbe used in entity/component interface,
but within VHDL implementation (architecture) where thesedata types should be serialized in a generic
way on the shared data bus (solution 2). Each approach has itsstrengths and weaknesses. It is a trade-off
between flexibility, complexity to guaranty portability/interoperability and performance (area, timing,
power consumption).

A.11. Object 321

The transfer of parameters should beGlobally Serial Locally Parallel(GSLP). Indeed, request mes-
sages are typically globally serialized on buses, while operation parameters may be locally transferred
in parallel to maximize performance and avoid a bottleneck regardless of the used serial or parallel bus.
Adapter connectors would be in charge of serialization/deserialization between the bus interface and the
hardware invocation interface.

A.10.4 Operation-level concurrency

Operation-level concurrency should be defined in a similar way to UML concurrency constraint, [GMTB04]
and [JS07] for more efficiency. Groups of sequential operations are inferred as shared invocation sig-
nals acting as a virtual address, while parallel operationsare inferred as dedicated invocation signals
to enable independent invocations. For instance, we consider that all operations of the SCA Resource
interface are sequentially invocable to allows consistency between mono-threaded and multi-thread SCA
CoreFramework implementations.

A.11 Object

We assume that the interconnection between client and server objects is entirely handled by the underly-
ing middleware in a transparent manner from the user’s pointof view.

The configuration of the middleware for a given application is made from an OMG D&C component
deployment plan. This deployment plan specifies all object instances, their locations and connections.

To identify object instances, a CORBA::Object is defined by asystem unique identifier encoded in
an enumerated type. The enumerate is fixed thanks to the D&C component deployment plan and takes
into account all component instances.

A.12 Inheritance

OMG IDL supports inheritance of IDL interfaces. An child interface can inherit operations from other
interfaces. For instance:

// OMG IDL3
interface intf1 {
void operation1();

};
interface intf2 : intf1 {
void operation2(in long a2, out octet a3);

};

If four non-blocking push interfaces are chosen with the data bus width corresponding to parameters
size, this is equivalent to the following VHDL declarations:

-- VHDL RTL
entity intf2 is port (
operation1_push_in : in CORBA_bit;
operation1_push_out : out CORBA_bit;
operation2_push_in : in CORBA_bit;
operation2_push_data_in_a2 : in CORBA_long;
operation2_push_data_out_a3 : out CORBA_octet;

322 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

operation2_push_out : out CORBA_bit; -- ...
);
end comp1;

// SystemC RTL
SC_MODULE(comp1) {

sc_in< CORBA_< CORBA::bit > operation1_push_in;
sc_out< CORBA_< CORBA::bit > operation1_push_out;
sc_in < CORBA_< CORBA::bit > operation2_push_in;
sc_in < CORBA_< CORBA::long > operation2_push_data_in_a2;
sc_out< CORBA_< CORBA::octet > operation2_push_data_out_a3;
sc_out< CORBA_< CORBA::bit > operation2_push_out; -- ...

};

If an addressable non-blocking push interface is chosen forthe inputs and a non-blocking push inter-
face for the outputs with 8bits data bus width, this is equivalent to the following VHDL declarations:

-- VHDL RTL
entity intf2 is
generic (

OPERATION_WIDTH : integer := 1;
PUSH_DATA_WIDTH_IN : integer := 8;
PUSH_DATA_WIDTH_OUT : integer := 8; -- ...

);
port (

operation1_push_in : in CORBA_bit;
operation1_addr : in CORBA_lv(OPERATION_WIDTH-1 downto 0);
operation1_push_data_in_a2 : in CORBA_lv(PUSH_DATA_WIDTH_IN-1

downto 0);
operation1_push_data_out_a3 : out CORBA_lv(PUSH_DATA_WIDTH_OUT-1

downto 0);
operation1_push_out : out CORBA_bit; -- ...

); end;

// SystemC RTL
const int OPERATION_WIDTH = 1;
const int PUSH_DATA_WIDTH_IN = 8;
const int PUSH_DATA_WIDTH_OUT = 8;
SC_MODULE(comp1) {

sc_in< CORBA_< CORBA::bit > operation1_push_in;
sc_in < CORBA_< CORBA::lv<PUSH_DATA_WIDTH_IN> > operation1_push_data_in_a2;
sc_out< CORBA_< CORBA::lv<PUSH_DATA_WIDTH_OUT> > operation1_push_data_out_a3;
sc_out< CORBA_< CORBA::bit > operation1_push_out; -- ...

};

A.13 Interface Attribute

Consider the following attribute definitions in the interfaceintf1:

A.13. Interface Attribute 323

// OMG IDL3
interface intf1 {
attribute short radius;
readonly attribute long pos_x;
readonly attribute long pos_y; //....

};

An IDL compiler implicitly transforms this interface into an equivalentinterface [OMG08b]:

// OMG IDL3
interface intf1 {
short _get_radius();
void _set_radius(in short r);
long _get_pos_x();
long _get_pos_y();

};

We do not consider the leading underscore. The language mapping for attributes is then the same as
for the mapping of the equivalent operations. For instance:

-- VHDL RTL
entity intf1 is port (
get_pos_x : in CORBA_bit;
get_pos_x_out_data : out CORBA_long;
get_pos_y : in CORBA_bit;
get_pos_y_out_data : out CORBA_long;
get_radius : in CORBA_bit;
get_radius_out_data : out CORBA_short;
set_radius : in CORBA_bit;
set_radius_r : in CORBA_short;
set_exception : out CORBA_exception; -- ...

);
end comp1;

// SystemC RTL
SC_MODULE(comp1) {
// facet1 intf1 attributes
sc_in< CORBA::bit > get_pos_x;
sc_out< CORBA::long > get_pos_x_out_data;
sc_in< CORBA::bit > get_pos_y;
sc_out< CORBA::long > get_pos_y_out_data;
sc_in< CORBA::bit > get_radius;
sc_out< CORBA::short > get_radius_out_data;
sc_in< CORBA::bit > set_radius;
sc_in< CORBA::short > set_radius_r;
sc_out< CORBA::exception > set_exception;
// ...

};

If an accessor signal fails to set the attribute value, then the entity should return a standard CORBA
exceptions number as defined in [OMG08b] through theset_exception signal.

324 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

A.14 Component Feature

A.14.1 Component

The IDL3 component construct is mapped as an entity in VHDL and as a module in SystemC.

// OMG IDL3
component intf1 {

// ...
};

-- VHDL RTL
entity intf1 is port (

clk : in std_logic;
rst : in std_logic; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(intf1) {

sc_in< sc_logic > clk;
sc_in< sc_logic > rst;

};

As mentioned for objects in [Rad00], a hardware client component needs to identify the server com-
ponent instance with which it wants to communicate. We propose to identify component instances by
a system unique identifier encoded in an enumerated type as itappears in the D&C component deploy-
ment plan. This identifier is a static VHDL generic parameterwhich is configured by the IDL compiler
during hardware component instantiation. During method invocation, the servant component identifier
is transferred onto a signal calledcomponent_id. The width of this signal corresponds to the number
of bits required to binary encode the total number of components in the system. This number is not
expected to be huge. To simplify hardware component implementation, responses to method invocations
are assumed to be strictly ordered.

// PIDL
#define component_nb_width 8
interface Component {

unsigned int<component_nb_width> component_id;
};
-- VHDL RTL
entity hardware_client_component is
generic(

COMPONENT_NB_WIDTH : natural := 8;
);
port(

component_id : out std_logic_vector(COMPONENT_NB_WIDTH-1 downto 0);
);
end;

A.14. Component Feature 325

entity hardware_server_component is
generic(
COMPONENT_NB_WIDTH: natural:= 8;

);
port(
component_id : in std_logic_vector(COMPONENT_NB_WIDTH-1 downto 0);

);
end;

A.14.2 Facet

In the CORBA component model, a facet denotes a provided component port. For instance, the facet
calledfacet1 is defined in the componentcomp1 as follows:

// OMG IDL3
component comp1 {
provides intf1 facet1;

};

In the HDL mapping, the name of the facet is used added at the beginning of the mapped hardware
interface signals. For instance, if the interfaceintf1 is defined as:

// OMG IDL3
interface intf1 {
// unreliable oneway
oneway void operation1();

};

The mapped hardware interfaces are defined as:

-- VHDL RTL
entity comp1 is port (
facet1_operation1_push_in : in CORBA_bit; -- ...

);
end intf1;

// SystemC RTL
SC_MODULE(comp1) {
sc_in < CORBA::bit > facet1_operation1_push_in; // ...

};

A.14.3 Receptacle

In the CORBA component model, a receptacle denotes a uses component port. For instance, the recep-
tacle calledrecep1 is defined in the componentcomp1 as follows.

// OMG IDL3
component comp1 {
uses intf1 recep1; //....

};

326 Appendix A. CORBA IDL3 to VHDL and SystemC RTL Language Mappings

The mapping is the same as for the facets with the inverse signal direction for all interface signals
other than clock and reset.

For instance with a non-blocking control interface for input (void) and a non-blocking control inter-
face for output (void): one operation without parameters inthe IDL interface:

-- VHDL RTL
entity comp1 is port (

recep1_operation1_push_out : out CORBA_bit;
recep1_operation1_push_in : in CORBA_bit; -- ...

);
end comp1;

// SystemC RTL
SC_MODULE(comp1) {

// ...
// recep1_operation1
sc_out< CORBA_< CORBA::bit > recep1_operation1_push_out;
sc_in < CORBA_< CORBA::bit > recep1_operation1_push_in;

};

A.15 Not Supported Features

The following CORBA features are not supported at the momentby our IDL-to-HDL mapping: Pseudo-
objects, Portable Object Adapter, Dynamic Invocation and Skeleton Interfaces and Events. The func-
tionalities of the Portable Object Adapter and its associated interfaces are delegated to the underlying
middleware. The Dynamic Invocation and Skeleton Interfaces are beyond the scope of this preliminary
IDL-to-HDL mapping. For events, the basic idea is to apply the mapping rules corresponding to the
event data type with a "send-and-forget" interaction semantics [SKH98]. Wide string are deliberately not
supported by this IDL-to-HDL mapping.

A.16 Mapping Summary

Table A.1 provides a summary of the proposed IDL3-to-VHDL mapping.

A.16. Mapping Summary 327

IDL3 constructs VHDL constructs
module M { ... }; package M is ... end package M;
interface I { ... }; entity I is ... end entity I;

component I ... end component I;
struct S { ... }; type S is record ... end record S;
enum E { E1; E2 }; type E is (E1; E2);
typedef B D; subtype D is B;
typedef sequence<I>
ISeq;

type ISeq is record

length: ushort;
item : I;

end record ISeq;
const ushort C = 1; constant C : natural := 1;
exception Err; constant ExcDW : natural := 3;

constant Err: std_logic_vector (ExcDW-1 downto 0)
:= "000";

readonly attribute
short ROA; or

ROA: out CORBA_short;

void getROA(in short
ROA);
writeonly78 attribute
long WOA; or

WOA: in CORBA_long;

void setA(in ulong A);
attribute short A; A_in: in CORBA_short;

A_out: out CORBA_short;
component C { entity C is ... end entity C;
provides I1 P1; component I ... end component I;
uses I2 P2; P1_I1_signal1 : in T1; ...
}; P2_I2_signal1 : out T2; ...
exception Err1{}; op1_rq: in std_logic; - request
exception Err2{}; op1_rq_acc: out std_logic; - optional
boolean op1(op1_p1: in CORBA_boolean;
in boolean p1, op1_p3_in: in CORBA_long;
out short p2, or op1_in: in std_logic_vector(op1InPrmDW-1 downto

0);
inout long p3) op1_rp: out std_logic; - response

raises(Err1, Err2); op1_rp_acc: in std_logic; - optional
op1_p2: out CORBA_short;
op1_p3_out: out CORBA_long;
or op1_out: out std_logic_vector(op1OutPrmDW-1
downto 0);
op1_return: out CORBA_boolean;
op1_exc: out exception;
op1_exc_id: out std_logic_vector(op1ExcDW-1 downto
0);

Table A.1: Summary of the proposed IDL3-to-VHDL mapping

Appendix B

Personal Bibliography

This section contains the list of the publications written during this PhD work.

1. Gailliard, G.; Balp, H.; Jouvray, C.; Verdier, F., "Towards a Common HW/SW Interface-Centric
and Component-Oriented Specification and Design Methodology", in Proceedings of the Forum
on Specification and Design Languages (FDL), pp. 31-36, 23-25 September 2008, Stuttgart, Ger-
many.

2. Gailliard, G.; Balp, H.; Sarlotte, M.; Verdier, F., "Mapping Semantics of CORBA IDL and GIOP
to Open Core Protocol for Portability and Interoperabilityof SDR Waveform Components", In-
ternational Conference on Design and Test in Europe (DATE),pp. 330-335, 10-14 March 2008,
Munich, Germany.

3. Manet, P.; Maufroid, D.; Tosi, L.; Gailliard, G.; Mulertt, O.; Di Ciano, M.; Legat, J.; Aulagnier,
D.; Gamrat, C.; Liberati, R.; La Barba, V.; Cuvelier, P.; Rousseau, B.; and Gelineau, P. An evalua-
tion of dynamic partial reconfiguration for signal and imageprocessing in professional electronics
applications. EURASIP Journal on Embedded Systems. 2008 , pp. 1-11., 3 November 2008.

4. Gailliard, G.; Nicollet, E.; Sarlotte, M.; Verdier, F., "Transaction Level modeling of SCA Com-
pliant Software Defined Radio Waveforms and Platforms PIM/PSM", International Conference on
Design and Test in Europe (DATE), pp. 1-6, 16-20 April 2007, Nice, France.

5. Gailliard, G.; Mercier, B.; Sarlotte, M.; Candaele, B.; Verdier, F., "Towards a SystemC TLM
based Methodology for Platform Design and IP reuse: Application to Software Defined Radio",
Second European Workshop on Reconfigurable Communication-Centric SoCs (RECOSOC), 3-5
July 2006, Montpellier, France.

This section contains the list of the project deliverables in which I participated presented during this
PhD work.

1. WINTSEC (Wireless INTeroperability for SECurity), State on the art on hardware component
models, October 2007.

2. Watine, V.; Seignole, V.; Balp, H. and G. Gailliard, "IDL-to-VHDL Mapping Initial Require-
ments", OMG Washington Technical Meeting, March 2008.

3. RECOPS (Reconfiguring Programmable Devices for MilitaryHardware Electronics) The RE-
COPS project is an EDA project no 05/102.016/010

329

330 Appendix B. Personal Bibliography

4. SPICES (Support for Predictable Integration of mission Critical Embedded Systems) . SPICES is
an EUREKA-ITEA project and runs from 01/09/2006 until 31/08/2009.

5. MOSART (Mapping Optimization for Scalable multi-core ARchiTecture) Project (IST-215244)
Website (ITEA)

6. Nicollet, E.; Pothin, S.; Gailliard G.; Caron B.; Ruben, Transceiver Facility Specification, SDRF-
08-S-0008-V1.0.0, January, 2009, SDR Forum.

This section contains the list of the presentations presented during this PhD work.

1. Gailliard, G., "Déclinaison matérielle du canevas logiciel SCA", Poster presented at Ecole d’hiver
Francophone sur les Technologies de Conception des systèmes embarqués Hétérogènes (FETCH’07),
10-12 January 2007, Villard-de-Lans, France.

2. CNRS Groupement de Recherche (GDR) Information, Signal,Images, viSion (ISIS), C theme,
"Outils, méthodes pour les Traitements Du Signal et de l’Image (TDSI)", September 2006

Appendix C

Résumé Etendu

Cette thèse s’intéresse à la déclinaison matérielle des concepts logiciels d’intergiciel et d’architecture
logicielle à base de composants, conteneurs et connecteursdans les réseaux de portes programmables
in situ (Field-Programmable Gate Array- FPGA). Le domaine d’applications ciblé est la radio définie
logiciellement ou plus généralement radio logicielle (Software Defined Radio(SDR)).

Une radio logicielle est une radio reconfigurable dont les fonctionnalités sont définies logiciellement
au plus proche de l’antenne. Elle est capable d’exécuter un ensemble d’applications de forme d’onde
sur la même plateforme radio. Une seule application est exécutée à la fois. Une application de forme
d’onde est une application logicielle à base de composants.Ces composants implémentent notamment
des algorithmes de traitement du signal, qui traitent les données reçues de l’antenne vers l’utilisateur
final et vice versa.

Une plateforme radio est un ensemble de couches logicielleset matérielles fournissant les services
requis par la couche applicative de forme d’onde.

Au delà de la vision idéale d’une radio entièrement logicielle, les traitements numériques du signal de
certaines applications de formes d’onde requièrent néanmoins une forte puissance de calcul, que ne sont
pas capables de fournir les processeurs classiques (ARM, PowerPC, etc). Ils ont donc besoin d’unités
de traitements dédiées telles que les processeurs de traitements du signal (Digital Signal Processors-
DSPs), les FPGAs et les circuits intégrés spécifiques à une application (Application Specific Integrated
Circuits - ASICs).

Nous nous intéressons plus particulièrement aux radios logicielles conformes au canevas d’architecture
logicielle appeléSoftware Communications Architecture(SCA). Le SCA est un standard de-facto de la
radio logicielle militaire, mais il peut tout à fait être utilisé pour des équipements civils. De plus, les
principaux besoins du SCA sontportabilité , interoperabilite , reutilisation et reconfiguration des com-
posants SCA.

Les principaux besoins de la SDR et du SCA sont: laportabilité des applications de forme d’onde
parmi différentes plateformes radios, l’interopérabilité des communications hétérogènes entre ses com-
posants logiciels et matériels, leurréutilisabilité et la reconfigurabilité de la plateforme radio pour
exécuter un ensemble de formes d’ondes, qui peuvent avoir des contraintes, notamment temps-réels,
différentes.

Le SCA spécifie un environnement d’exploitation (ouOperating Environment(OE)) pour gérer les
applications radios et offrir les services extra-fonctionnels de la plateforme radio. Cet OE contient
un ensemble d’interfaces logicielles appeléCore Framework, un intergiciel conforme àCommon Ob-
jet Request Broker Architecture) (CORBA) pour l’embarqué (CORBAeanciennement appeléMinimum
CORBA) et un système d’exploitation (Operating System- OS) conforme avec les interfacesPOSIX
(Portable Operating System Interface). L’OE SCA cible les processeurs généraux, mais n’est pas adapté

331

332 Appendix C. Résumé Etendu

pour les unités de traitement dédiées comme les DSPs, FPGAs et ASICs.
Les besoins de portabilité et de réutilisation des composants SCA requièrent que leurs interfaces ab-

straites définies à un niveau système soient indépendantes d’une implémentation logicielle ou matérielle
et puissent être indifféremment traduites dans un langage de programmation logiciel tel que C/C++, un
langage système tel que SystemC au niveau transaction , ou unlangage de description matériel tel que
VHDL ou SystemC au niveau registre (Register Transfer Level- RTL).

La modélisation au niveau transactionnel (Transaction Level Modeling- TLM) consiste à modéliser
les communications d’un système à différents niveaux d’abstraction en utilisant des appels de fonctions,
plutôt que des signaux matériels comme dans les simulateursau niveau RTL, afin d’augmenter la vitesse
de simulation de systèmes embarqués mêlant logiciel et matériel,

Le but ambitieux poursuivi par cette thèse est de décliner les concepts du génie logiciel, notam-
ment utilisés par le SCA, aux FPGAs afin de proposer une approche commune de spécification et
d’implémentation des applications de radio logicielle à base de composants logiciels/matériels. Ces
concepts sont issus principalement de l’architecture logicielle à base de composants et des intergiciels.

Habituellement, l’intégration de modules matériels dans les FPGAs s’appuie sur des interfaces logi-
cielles et matérielles bas niveau, composées d’interfacesde bus propriétaires, de registres mappés en
mémoire et d’interruption pour la synchronisation entre les modules logiciels et matériels. Cette inté-
gration est fastidieuse et source d’erreurs. De plus, la réutilisabilité de ces modules est limitée. Des
méthodologies de conception conjointe pour le logiciel et le matériel ont donc été proposées pour réduire
le fossé conceptuel entre conception logicielle et conception matérielle, et ainsi faciliter cette intégration.

Etant donné que le SCA est fondamentalement basé sur le modèle objet, nous nous sommes partic-
ulièrement intéressés par l’application des concepts du modèle objet à la conception matérielle.

Dans l’approche orientée objet, un objet est une entité identifiable, qui a un état et un comportement,
qui lui sont propres. Ce comportement n’est accessible qu’au travers d’une interface à base de signatures
d’opérations. L’appel d’une opération déclenche le comportement associé et est équivalent à l’envoi d’un
message contenant l’identifiant et les paramètres de l’opération.

Pour appliquer le modèle objet à du matériel synthétisable dans les FPGAs, les travaux précédents
proposent un mapping d’une interface logicielle à base d’opérations à une interface matérielle à base de
signaux ou "fils". Cependant, ces travaux ne représentent qu’une solution dans l’espace d’exploration du
mapping. De plus, l’approche objet a quelques limitations.Un objet ne présente pas plusieurs, mais une
seule interface fournie, la plus dérivée, même s’il hérite de multiple interfaces. Les dépendances d’un
objet sont implicites car aucune interface n’est requise, et il n’y a pas de séparation claire entre logique
fonctionnelle et non-fonctionnelle telle que la communication entre objets et le déploiement d’objets.

Alors que la plupart des travaux sur l’application des concepts logiciels à la conception matérielle
sont basés sur une approche orientée objet, nous allons plusloin en considérant l’application de l’architecture
logicielle orientée composant, qui est un autre aspect du SCA.

L’approche orientée composant s’appuie sur quatre principaux modèles: les modèles de composants
définissant la structure et le comportement des composants,les modèles de connecteurs pour spécifier
les interactions entre les composants, les modèles de conteneurs pour accéder notamment aux services
d’intergiciels, et les modèles de déploiement et d’archivage pour déployer les applications à base de
composants distribués. Nous avons naturellement décliné ces concepts pour les composants matériels.

Nous avons investigué l’implémentation matérielle de composants abstraits orienté objet. Nous
défendons l’idée que l’approche composant fournit de meilleurs concepts unifiant pour les systèmes
embarqués mêlant logiciel et matériel, que l’approche objet seule. Nous proposons un état de l’art sur
l’application des concepts d’objet, de composant et d’intergiciel à la conception matérielle.

Pour permettre le raffinement systématique d’interfaces decomposants orientés objet définis dans le
langage de définition d’interface (IDL) de l’intergiciel CORBA ou le langage de modélisation unifiée
UML, en interfaces de composants systèmes, logiciels et matériels, nous proposons de définir de nou-

333

veaux mappings de langages de CORBA IDL vers SystemC au niveau transactionnel ou au niveau reg-
istre, et VHDL, lui aussi au niveau registre. L’exigence de portabilité du SCA est adressée par ces map-
pings de langages. Notre mapping d’IDL à SystemC au niveau fonctionnel considère surtout SystemC
comme un langage et non comme une extension du C++ pour le mapping des concepts de composant et
de connecteur. Pour le reste, il s’appuie sur la mapping au niveau RTL (e.g. types de données) et à défaut
sur le mapping existant entre IDL et C++ par héritage des interfaces de la librairie SystemC.

Le mapping d’IDL à SystemC au niveau transactionnel s’appuie sur des adapteurs d’interfaces
appelés transacteurs. Nous considérons ces transacteurs comme des connecteurs transactionnels, qui
adaptent le mapping des interfaces utilisateurs en IDL/UMLaux interfaces standards TLM 1.0/2.0.

Pour le mapping d’IDL à VHDL et SystemC RTL, nous avons formulé des exigences pour un map-
ping standard IDL et les langages de description matériel. Notre mapping IDL/HDL consiste en une al-
location manuelle ou semi-automatique d’éléments mémoire(registre, FIFO, RAM/ROM), d’interfaces
matérielles et de protocoles, à des abstractions logicielles telles que composant, port, interface, opérra-
tion, paramètre et connecteur. Cette approche permet un mapping générique, flexible, configurable, mais
plus complexe à mettre en oeuvre. L’implémentation de composants SCA matériels montre la nécessité
d’une implémentation optimisée d’un modèle de composant logiciel.

De plus, nous avons prototypé un compilateur IDL3-VHDL en utilisant les technologies d’ingénierie
dirigée par les modèles en utilisant des transformationsQuery View Transform(QVT) du meta-modèle
Lightweight CORBA Component Model(LwCCM) étendu pour la mapping RTL, vers un meta-modèle
VHDL, et des transformations modèle à texte pour la génération de code VHDL avecMOF2Text.

Le besoin d’interopérabilité du SCA a été adressé en prototypant un intergiciel matériel utilisant
de façon transparente le mapping mémoire et deux protocolesde messages: CORBAGeneral Inter-
Object Request Broker Protocol(GIOP) et le protocoleModem Hardware Abstraction Layer(MHAL)
du SCA. Nous avons proposé un canevas d’architecture pour les intergiciels matériels en appliquant
les patrons de conception de la littérature sur les intergiciels logicielles. Ce canevas est basé sur cinq
couches. La couche applicative contient les composants applicatifs matériels. La couche présentation de
données réalise l’encodage/décodage des corps de message.La couche de routage route les messages
entrants et arbitre les messages sortants. La couche de messagerie traite de l’encodage/décodage des
entêtes de message, de l’encapsulation des corps de messages, et de la machine d’état du protocole. La
couche transport offre une interface matérielle de communication générique et des tampons mémoires
pour les messages. Ce canevas d’architecture intègre aussiles concepts de personnalités applicatives et
protocolaires. Une personnalité applicative correspond àun modèle de composants e.g. SCA ou CCM,
tandis qu’une personnalité protocolaire correspond à un protocole e.g. SCA MHAL et CORBA GIOP.
Les résultats expérimentaux montrent qu’un adressage mémoire classique et qu’un format de message
spécifique à l’embarqué sont moins coûteux que GIOP, qui n’a pas été conçu pour l’embarqué temps-
réel.

List of Figures

1.1 SDR needs .. 11
1.2 Heterogeneous and Distributed Radio Architecture 12

2.1 Classical HW/SW design flow 26
2.2 Abstraction Levels 28
2.3 Example of this four-layer meta-model hierarchy [OMG07b] 31

3.1 Example of AMBA-based System-On-Chip 36
3.2 CoreConnect Bus Architecture 37
3.3 Wishbone socket interface [Ope02] 38
3.4 AXI write interface 39
3.5 Example of System-On-Chip based on Avalon Memory-Map interface [Alt07a] 40
3.6 Example of System-On-Chip based on Avalon Streaming interface 41
3.7 Open Core Protocol (OCP) socket interface 41
3.8 VSIA Virtual Component Interface (VCI) 43
3.9 Network-On-Chip main components [Bje05] 45
3.10 Example of network topology [Bje05] 46

4.1 Message notation in UML sequence diagrams [RIJ04] 54
4.2 UML class diagram of the abstract ALU and concrete adder and multiplier classes 56
4.3 Illustration of the main relationships in UML 59
4.4 behavioral Interpretation [KRK99][KSKR00] 66
4.5 Structural Interpretation 67
4.6 FSM-based implementation of hardware object [Rad00] 68
4.7 OSSS shared object architecture [BGG+07] . 70
4.8 Hardware Proxy Architecture [BRM+06] . 71
4.9 OO-ASIP Architecture Template [GHM03] (dark grey indicates dedicated parts) 73
4.10 HW/SW mapping of the abstract TTL interface [vdWdKH+04] 74
4.11 Structural mapping between UML class diagrams and VHDLlanguage constructs [Dv04a] 77
4.12 MOCCA Design Methodology [BFS04] 79
4.13 Hardware Component Template [SFB05] 79
4.14 Gaspard2 MDE based design flow 82
4.15 Component interface meta-model 83

5.1 Object Management Architecture (OMA) Reference Architecture 98
5.2 CORBA Overview .. . 99
5.3 TAO Pluggable Protocols Framework [OKS+00] . 114
5.4 Mapping of OO applications to MPSoC platform based on a mixed DSOC-SMP model . 120

335

336 List of Figures

5.5 PrismTech Integrated Circuit ORB (ICO) [Fos07] 124
5.6 OIS ORBexpressFPGA [OIS08] . 125

6.1 XML files from the SCA Domain Profile 147
6.2 SCA Core Framework Base Application Interfaces 149
6.3 SCA Core Framework Base Device Interfaces 150
6.4 Class diagram of two connected Resource components 151
6.5 Sequence diagram for the connection between two Resource component ports 152
6.6 Internal Configuration Access Port (ICAP) [Xil07] 170
6.7 Dynamic partial reconfiguration by a SCA Core Framework [SMC+07] 171

7.1 Existing methodology inspired from MDA and component/container paradigm. 181
7.2 SystemC TLM model of PIMs/PSMs. 183
7.3 Proposed Design Flow 184
7.4 Platform Independent Model (PIM) of a partial waveform application 187
7.5 Executable specification in SystemC at Functional View 189
7.6 Concurrent invocations of methods to enable pipeline ofconfiguration and computation . 193
7.7 Example of concurrent invocations from hardware and software clients 194
7.8 Multiple component instances in the same hardware module 196
7.9 Example of inheritance implementation 196
7.10 Collection of connector ducts supporting different interaction semantics 202
7.11 Different component interface configurations 203
7.12 Two possible mapping configuration for two component ports 203
7.13 Non exhaustive standard interfaces required for invocation and parameters transfer . . . 207
7.14 Data layouts for data structures aligned on 32bits 208
7.15 Transfer of parameters 209
7.16 Hardware object-oriented component architecture of the FIR filter 210
7.17 Position of the transceiver sub-system in a radio chain. 211
7.18 Overview of the Transmit Channel Feature [NP09] 212
7.19 TransmitDataPush VHDL entity signals 214
7.20 BBSamplePacket TransmitDataPush Timing diagram 214
7.21 Simplified UML class diagram of the BaseIDL package of the CCM meta-model 220
7.22 Simplified class diagram of the ComponentIDL package ofthe CCM meta-model 220
7.23 CCM meta-model with RtlMappingConfiguration class 223
7.24 Storage UML package 224
7.25 MessagePort UML package 225
7.26 LogicalPort UML package 226
7.27 RtlPort UML package 227
7.28 InterfaceFamily UML package 228
7.29 HwInterface UML class 228
7.30 RTL Mapping Configuration Editor 231
7.31 VHDL meta-model in UML 232
7.32 SCA deployment process implemented by anApplicationFactory 244
7.33 Middleware Architecture Framework 245

8.1 DiMITRI MPSoC architecture overview 254
8.2 Generic Virtual Platform at Programmer View (PV) level 255
8.3 Encapsulation of a C behavioral model within a SystemC PVcontainer 256

337

8.4 Transparent refinement using transactors 256
8.5 Example of component-based applications 258
8.6 Slot Format of the High-Data Rate OFDM Modem 259
8.7 Functional modeling with Kahn Process Network (KPN) 260
8.8 Multi-Level modeling using communication channels at different abstraction levels . . . 261
8.9 Hardware SCA Encoder and Interleaver components in Application Mode 1 264
8.10 Hardware SCA Encoder component in Application Mode 2 265
8.11 Synthesis results for Xilinx VirtexIV FPGAs 266
8.12 Hardware ORB with a GIOP 1.0 protocol personality 269
8.13 Memory-mapped middlewares 274
8.14 Results on Virtex IV after Place&Route 275

List of Tables

4.1 Synthesis of hardware implementation of object concepts (part 1) 85
4.2 Synthesis of hardware implementation of object concepts (part 2) 86

5.1 Comparison of middleware communication models [Tho97][EFGK03] [LvdADtH05] . 97
5.2 Comparison of some middleware platforms 98
5.3 Example of IOR in little endian 106
5.4 IDL Language mappings to C++, Java, Ada95 and C - N.A.: NotAvailable (part 1) . . . 110
5.5 IDL Language mappings to C++, Java, Ada95 and C - N.A.: NotAvailable (part 2) . . . 111
5.6 Example of GIOP request message in little endian in MICO ORB 113

7.1 Mapping of component ports at different abstraction levels 186
7.2 Summary of the proposed IDL3-to-SystemC mapping at functional level 186
7.3 Mapping between CCM meta-classes and VHDL meta-classes. 232
7.4 Memory-Mapped Hardware/Software SCAResource Interface 240

8.1 Mapping of semantics between GIOP message fields and OCP signals 271
8.2 Mapping of semantics between GIOP and MHAL concepts 272
8.3 Example of a MHAL message for thevoid start() operation in little endian 272
8.4 Mapping of semantics between GIOP message fields and OCP signals 273

A.1 Summary of the proposed IDL3-to-VHDL mapping 327

339

Listings

4.1 Illustration of the polymorphism principle in C++ 56

5.1 example.idl 104

5.2 Server Implementation 104

5.3 Client Implementation 105

6.1 Implementation example for Resource components and ports 151

6.2 A counter in VHDL 163

6.3 A counter in Verilog 165

6.4 Counter in SystemC at Register Transfer Level 173

6.5 Counter in SystemC at Functional Level 173

7.1 Transceiver Modem Example in IDL3 188

7.2 Transceiver Modem Example in SystemC at Functional View. 188

7.3 Interface and component definitions for the FIR filter example 209

7.4 TransmitDataPush interface in CORBA IDL . 212

7.5 HardwareTransmitDataPush interface in VHDL 213

7.6 TransmitControl interface in CORBA IDL . 215

7.7 HardwareTransmitControl interface in VHDL 216

7.8 RTL Mapping Configuration XML file 230

7.9 Mapping between CCM component and VHDL entity in QVT 233

7.10 Generation of VHDL code from a VHDL model in MTL 233

7.11 Example of generated code for the Filter 234

7.12 Mapping Illustration in VHDL for the FIR filter 246

A.1 Non-blocking control interface 287

A.2 Blocking control interface 288

A.3 Data interface 288

A.4 Mapping of IDL basic data types to VHDL 296

A.5 Mapping of IDL basic data types to SystemC 296

341

344 Acronyms

Acronyms

3G Third generation of mobile telecommunications standards
4G Fourth generation of mobile telecommunications standards
ADC Analog-to-Digital Converter
AHB AMBA High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
ANSA Advanced Network Systems Architecture
ANSI American National Standards Institute
AMI Asynchronous Method Invocation
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
ASN.1 Abstract Syntax Notation One
BFM Bus Functional Model
BSP Board Support Package
CBSE Component-Based Software Engineering
CCDR Compact Common Data Representation
CCM CORBA Component Model
CDR Common Data Representation
CF Core Framework
CLB Configurable Logic Block
CORBA Common ORB Architecture
COTS Commercial Off-The-Shelf
DAC Digital-to-Analog Converter
DDC Digital Down Converter
DPR Dynamic Partial Reconfiguration
DRE Distributed Real-time Embedded
DSL Domain-Specific Language
DSML Domain-Specific Modeling Language
DSP Digital Signal Processor or Digital Signal Processing
DTD Document Type Definition
EDA Electronic Design Automation
EJB Enterprise JavaBean
EMF Eclipse Modeling Framework
ESIOP Environment Specific Inter-ORB Protocol
ESL Electronic System Level
FE Front-End
FEC Forward Error Correction
FIFO First In First Out
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
FSM Finite State Machine
FSMD Finite State Machine with Datapath

345

GIOP General Inter-ORB Protocol
HDL Hardware Description Language
ICAP Internal Configuration Access Port
IDL Interface Definition Language
IOP Inter-ORB Protocol
IOR Interoperable Object Reference
IP Intellectual Property or Internet Protocol
IPC Inter-Process Communication
IRQ Interrupt Request
ISS Instruction Set Simulator
JET Java Emitter Templates
JPEO Joint Program Executive Office
JTRS Joint Tactical Radio System
LD Logical Destination
LSB Least Significant Bit
LUT Look-Up Table
MAC Medium Access Control
MDA Model-Driven Architecture ®
MDE Model-Driven Engineering
MHAL Modem Hardware Abstraction Layer
MOF Meta-Object Facility
MOM Message-Oriented Middleware
MPI Message Passing Interface
MPSoC Multi-Processor System-on-Chip
MSB Most Significant Bit
MUX Multiplexers
NoC Network-on-Chip
OCP Open Core Protocol
OCP-IP OCP International Partnership
OE Operating Environment
OFDM Orthogonal Frequency-Division Multiplexing
OMA Object Management Architecture
OMG Object Management Group
OPB On-Chip Peripheral Bus
ORB Object Request Broker
OSCI Open SystemC Initiative
OSI Open Systems Interconnection
P 2SRC PIM & PSM for Software Radio Components
PA Power Amplifier
PDU Protocol Data Unit
PER Packed Encoding Rules
PIM Platform-Independent Model
PLB Processor Local Bus
PSM Platform-Specific Model
POSIX Portable Operating System Interface (for Unix)
QoS Quality of Service
QVT Query / Views / Transformations
RAM Random Access Memory
RMI Remote Method Invocation
RPC Remote Procedure Call
RTOS Real-Time Operating System
SCA Software Communications Architecture

346 Acronyms

SDM Space Division Multiplexing
SDR Software-Defined Radio
SDRP Software-Defined Radio Profile
SLD System-Level Design
SoC System On Chip
SoPC System On Programmable Chip
SPIRIT Structure for Packaging, Integrating and Re-using IP within Tool flows
SysML Systems Modeling Language
TDM Time-Division Multiplexing
TLM Transaction Level Modeling
UML Unified Modeling Language
VC Virtual Channel
VCI Virtual Component Interface
VHDL VHSIC Hardware Description Language
XMI XML Metadata Interchange
XML eXtensible Markup Language

342 Listings

Glossary

Abstract: an abstract class typically cannot be instantiated and delegates the implementation of
methods to concrete classes.

Abstraction: an abstraction is a relative distinction made between relevant and less relevant details
of a problem domain to enhance understanding and reduce complexity.

Access transparency: access transparency masks differences in data representation and invocation
mechanisms to enable interworking between objects.

Aggregation: the aggregation relationship refers to a strong containment by value in UML.
Application Binary Interface (ABI) : an ABI corresponds to the instructions set and calling conven-

tion of real and virtual machines.
Application Programming Interface (API) : an API is a set of operations which are directly called

by developers according to some use rules.
Asynchronous Call: asynchronous calls allow a caller to initiate an invocation that immediately

returns and continues its processing, whereas the invocation is concurrently performed. Caller execution
and callee invocation are thus decoupled, while the latencyof communication and callee computation
are masked.

Class: A class describes the common characteristics shared by a set of objects in term of structure
and behavior [BME+07]. In programming languages, a class defines thetypeof an object.

Client: any entity that requires the services provided by another entity called the server.
Component: "A component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A component can be deployed independently and is subject to com-
position by third parties." [SP96]

Component Model: "A component modeldefines specific interaction and composition standards.
A component model implementation is the dedicated set of executable software elements required to
support the execution of components that conform to the model." [Kra08] The component model imposes
design constraints on component developers, and the component framework enforces these constraints
in addition to providing useful services." [BBB+00]

Composition: the composition relationship refers to weak containment by reference in UML.
Connector: In software architecture, a software connector is a component which binds the required

and provided ports of two or more components. It mediates component interactions and may deal with
non-functional services such as communication, coordination, conversion, synchronization, arbitrating,
routing, and scheduling. While components have ports, the interface access points of connectors are
called roles.

Container: A container allows the isolation of a component from the technical details of its possibly
numerous operating environments. Containers transparently integrate components into their execution
environment. They use middleware services such as persistence, event notification, transactions, load-
balancing and security as proxy of components. Containers also manage component life cycle such as
creation/destruction using component factories, interconnection of component ports, configuration using
configuration files typically in XML and activation e.g. using a timer service.

347

Encapsulation: encapsulation consists in hiding the internal view of an abstraction in order to better
deal with its complexity [BME+07]. It denotes the separation of concerns between an interface and its
implementation.

Exception: An exceptionis an user-defined or system error raised by a method in object-oriented
languages.

Globally Asynchronous Locally Synchronous: systems on chip in which IP cores do not shared a
global clock, but may share a local clock forming "synchronous islands".

Hierarchy establishes an ordering among a set of abstractions [BME+07]. The decomposition of a
system into hierarchical layers of abstraction is a key concept to design complex systems.

Inheritance: the inheritance principle consists in deriving the declaration and possibly implemen-
tation of aderivedor child class from abaseor parentclass. The child class includes by default the data
and behavior of the parent class. The child class can be either based or replace (override) the behavior
of the inherited behavior. The derived class may also declare additional attributes and methods.

Interoperability : Interoperability is the ability of applications to interoperate (i.e. understand each
other) and perform system functionalities although they are executed using different operating environ-
ments.

IP core: an Intellectual Property (IP) core is a reusable hardware module in an ASIC or FPGA.
Location transparency provides a logical view of naming, independent of actual physical location.
Message: A message is equivalent to a method invocation. The transfer of control and data of a

method invocation, which is implicit and local to a computer, can be formally translated into a remote
and explicit transfer of a message between distributed computers and vice versa.

Meta-Model: A meta-model is a model of a modeling language. It specifies the concepts of the
language used to define a model. A meta-model defines the structure, relationships, semantics and con-
straints of these concepts for a family of models conformingto this meta-model. Each model can be
captured by a particular meta-model.

Meta Object Facilities (MOF): MOF is a meta-model and modeling language standardised by the
OMG to describe OMG meta-models such as UML and CCM meta-models.

Method: A method describes the actions to perform depending on the type of invocation message
received by the object. The termmethodoriginates from Smalltalk, whereas the termsoperationand
member functionare respectively employed in Ada and C++ [BME+07]. In UML, a method is an
operation implementation that specifies the algorithm associated with an operation.

Method Dispatching: Method dispatchingis the process of selecting a method based on a request
message.Dynamic dispatchingrefers to the process of determining at run-time which method to invoke.

Method Invocation: A method invocationrequests the execution of a method.
Middleware: A middleware is communication infrastructure which aims at supporting transparent

communications between heterogeneous systems regardlessof their distribution, hardware computing
architecture, programming language, operating system, transport layer and data representation.

Model of Computation (MoC): a model of computation is the formal abstraction of the execution
in a computer. A model of computation defines the behavior andinteraction semantics that govern the
elements in different parts or at different levels of a system.

Modularity : modularity consists in breaking down a complex system intoa set of simple and more
manageable modules [BME+07].

Model: a model represents the key characteristics of a problem andprovides a conceptual framework
to reason about it. A model is a formal specification of the function, structure and/or behavior of an
application or system.

Model-Driven Architecture (MDA) : the Model-Driven Architecture (MDA) [OMG03] [MSUW04]
is the Model-Driven Engineering approach standardized by the OMG. The MDA promotes the separation
between the specification of system functionalities captured in aPlatform Independent Model(PIM)

from the specification of their implementation on a particular platform defined in thePlatform Specific
Model(PSM).

Model transformation : model transformation consists in translating a source model M1 conforming
to the meta-model MM1 into a model M2 conforming to the meta-model MM2 using mapping rules.
Mapping rules are defined at the meta-model level and are not dedicated to a particular model.

Monitor : A monitor protects a shared resource by guarantying that the execution of all operations
accessing the resource are mutually exclusive. Instead of managing explicitly critical sections of code
using locks, monitor declarations are used by compiler to transparently introduce synchronization code.

Object: An object is a self-contained and identifiable entity, which encloses its own state and be-
havior and communicates only through message passing [Arm06] [BME+07]. The state of an object
corresponds to the set of values of all static and dynamic properties orattributesof an object [BME+07].
The behavior of an object takes the form of a set of methods in the object class.

Open Core Protocol(OCP): OCP is a hardware interface specification maintained by the OCP-IP
organization created in 2001 by members such as TI, MIPS, Sonics, Nokia and ST. OCP supports com-
munication protocols ranging from simple acknowledge to multiple out-of-order pipelined concurrent
block transfers. The OCP promotes a socket based layered architecture [OIb].

Operation: In UML and CORBA, an operation declares a service that can beprovided by class
instances.

Operation Call: An operation call is the invocation of a service.
Operation Signature: an operation signature contains the name of the operation,the type and name

of its input, output, input-output parameters, the type of the return value and the name of errors or
exceptions which may be raised.

Persistent object: a persistent object is saved before it is destroyed and restored in another class
instance at its next creation or "reincarnation". Objects that are not persistent are calledtransientobjects.

Platform-Based Design (PBD): Platform-Based Design consists in mapping an applicationmodel
and a platform model successively through various abstraction levels. The result of a mapping of an
application to a platform model at level N is the applicationmodel at the level N+1 that will be mapped
on the platform model at level N+1.

Polymorphism: polymorphism is refers to "the ability to substitute objects of matching interface for
one another at run-time" [GHJV95].

Portability : portability denotes the property of an application, whichcan be migrated or ported from
one operating environment to another one with little efforts in terms of time and cost. There are usually
two kinds of portability: portability atsource codelevel viaApplication Programming Interface(API)
and portability atbinary codelevel viaApplication Binary Interface(ABI).

Programming Model: a programming model defines how parts of an application communicate
with one another and coordinate their activities [CSG98]. The two main programming models which
have been traditionally identified for parallel computing architectures are shared memory and message
passing. Other programming models include data parallel processing i.e. Single Program Multiple Data
(SPMD), dataflow processing and systolic processing [CSG98].

Proxy: middleware interface compilers automatically generateproxies a.k.a. surrogatesto make
local and remote communications indistinguishable from the viewpoint of client and server objects.

Push model: model of interaction in which the transfer of control and/or data is initiated by the
sender e.g. writes from a master to a slave in on-chip bus.

Pull model: model of interaction in which the transfer of control and/or data is initiated by the
receiver e.g. reads from a master to a slave after an interruption in on-chip bus.

Query / Views / Transformations (QVT): MOF QVT is a model transformation language standard-
ized by the OMG [OMG08e].

Remote Method Invocation (RMI): A Remote Method Invocation is a method invocation which
takes place between distributed objects. In distributed systems, the systematic translation between
method invocation and message passing is the cornerstone ofRemote Method Invocation(RMI) used
in object-oriented middlewares such as Sun Java RMI, Microsoft DCOM or OMG CORBA.

Semaphore: A semaphore is a non-negative integer shared variable thatcan be initialized to a value
and then can only be modified by two operations calledwait andsendor P andV by its inventor Di-
jkstra. These operations respectively acquire and releasea lock and decremente and incremente the
semaphore value. If the semaphore value becomes zero, then the calling thread will wait until it acquires
the semaphore. The initialization value is 0 or 1 for binary semaphores to protect a single shared resource
or N for counting semaphores to protect a pool of N resources.

Server: any entity that provides the services required by another entities called the clients.
Skeleton: A server-side proxy calledskeletondecodes a request message payload into the input and

input-output parameters of a local method invocation called on the object implementation and conversely
encodes the output and input-output parameters and the return value into a reply message payload.

Software Component: "A software componentis a software element that conforms to a component
model and can be independently deployed and composed without modification according to a composi-
tion standard." [Kra08]

Software Component Infrastructure: "A software component infrastructureor framework, is a
software system that provides the services needed to develop, deploy, manage and execute applications
built using a specific component model implementation. It may itself be organized as a set of interacting
software components." [Kra08]

Software Interface: The set of operations signatures specifies aninterface between the outside view
of a class provided by its declaration and the inside view incarnated by the object implementation.

Stub: A client-side proxy calledstub encodes the input and input-output parameters of a remote
method invocation into a request message payload and conversely decodes a reply message payload into
the output and input-output parameters and the return value. The request message payload is encapsu-
lated by the request message header of the RMI protocol and the lower protocol layer

Synchronous Call: In synchronous calls, the caller thread of control is blocked until a reply is
returned, while asynchronous RPCs do not block the caller [ATK92]. Synchronous calls are space and
time coupled with partial synchronization decoupling.

Transaction: A transaction is a sequence of operations, which is either totally executed or not at all.
XML Metadata Interchange (XMI) : XMI is an OMG standard for storing orserializingmodels

and meta-models as persistent XML files. XMI is a mapping fromMOF to XML. For instance, it allows
the exportation and importation of UML models from/to UML modeling tools.

Bibliography

[ABC+07] R. Ben Atitallah, P. Boulet, A. Cuccuru, J.-L. Dekeyser,A. Honoré, O. Labbani, S. Le
Beux, P. Marquet, E. Piel, J. Taillard, and H. Yu. Gaspard2 UML profile documentation.
Technical Report 0342, INRIA Futurs, Lille, France, September 2007.

[Acc04a] Accellera. Property Specification Language Reference Manual, v.1.1.
www.eda.org/sv, June 2004.

[Acc04b] Accellera. SystemVerilog 3.1a Language Reference Manual (LRM).
www.eda.org/sv, May 2004.

[AHMMB07] D. Akehurst, G. Howells, K. McDonald-Maier, and B. Bordbar. An Experiment in
Using Model Driven Development : Compiling UML State Diagrams into VHDL. In
Forum on specification and design languages (FDL’07), pages 88–93, Septembre 2007.

[AKL +09] Denis Aulagnier, Ali Koudri, Stéphane Lecomte, Philippe Soulard, Joël Champeau, Jor-
giano Vidal, Gilles Perrouin, and Pierre Leray. SoC/SoPC development using MDD and
MARTE profile. In Model Driven Engineering for Distributed Real-Time Embedded
Systems. Hermes, 2009.

[Alt] Altera. C-to-Hardware.www.altera.com.

[Alt07a] Altera. Avalon Memory-Mapped Interface Specification v3.3. www.altera.org,
May 2007.

[Alt07b] Altera. Nios II C2H Compiler User Guide, v7.2, 2007.

[And00] G. R. Andrews.Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, 2000.

[AND08] ANDRES (Analysis and Design of run-time Reconfigurable, heterogeneous Systems)
IST-FP6 Project, June 2006 - May 2009.andres.offis.de, June 2008.

[APS+07] E. Anderson, W. Peck, J. Stevens, J. Agron, F. Baijot, S. Warn, and D. Andrews. Sup-
porting High Level Language Semantics within Hardware Resident Threads.17th Inter-
national Conference on Field Programmable Logic and Applications (FPL’07), pages
98–103, August 2007.

[AR98] P. J. Ashenden and M. Radetzki. A Comparison of SUAVE and Objective VHDL,
Report for the IEEE DASC Object-Oriented VHDL Study Group, December 1998.

[ARM04] ARM. AMBA AXI Protocol Specification v1.0, March 2004.

351

www.eda.org/sv
www.eda.org/sv
www.altera.com
www.altera.org
andres.offis.de

[Arm06] D. J. Armstrong. The quarks of object-oriented development. Communications of the
ACM, 49(2):123–128, February 2006.

[ATK92] A. L. Ananda, B. H. Tay, and E. K. Koh. A survey of asynchronous remote procedure
calls. SIGOPS Oper. Syst. Rev., 26(2):92–109, 1992.

[AWM98] P. J. Ashenden, P. Wilsey, and D. Martin. SUAVE: Object-Oriented and Genericity
Extensions to VHDL for High-Level Modeling. InIn Proceedings of Forum on Specifi-
cation and Design Languages (FDL’98), pages 109–118, September 1998.

[AWM99] P. J. Ashenden, P. Wilsey, and D. Martin. Principlesfor Language Extensions to VHDL
to Support High-Level Modeling.VLSI Design, 1999.

[B0́2] Dušan Bálek.Connectors in Software Architectures. PhD thesis, Charles University,
Czech Republic, 2002.

[Bal07] P. J. Balister. A Software Defined Radio Implementedusing the OSSIE Core Framework
Deployed on a TI OMAP Processor. Master’s thesis, Virginia Polytechnic Institute and
State University, Dec. 2007.

[BBB+00] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord,
and K. C. Wallnau. Volume II: Technical Concepts of Component-Based Software Engi-
neering, 2nd Edition. Technical Report CMU/SEI-2000-TR-008, Software Engineering
Institute (SEI) Carnegie Mellon University (CMU), May 2000.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling Heterogeneous Real-time
Components in BIP. InProc. of the Fourth IEEE International Conference on Software
Engineering and Formal Methods (SEFM ’06), pages 3–12, Washington, DC, USA,
2006. IEEE Computer Society.

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.Stefani. The FRACTAL
component model and its support in Java: Experiences with Auto-adaptive and Recon-
figurable Systems.Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

[BCS02] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and dynamic software composi-
tion with sharing. InProc. of the 7th ECOOP International Workshop on Component-
Oriented Programming (WCOP’02), Malaga, Spain, 2002.

[BDGC08] P. Bomel, J.-P. Diguet, G. Gogniat, and J. Crenne. Bitstreams Repository Hierarchy for
FPGA Partially Reconfigurable Systems. InParallel and Distributed Computing, 2008.
ISPDC ’08. International Symposium on, pages 228–234, July 2008.

[BDR07] P.J. Balister, C. Dietrich, and J.H. Reed. Memory Usage of a Software Communications
Architecture Waveform. InSDR Forum Technical Conference, Denver, CO, November
2007.

[Beu07] S. Le Beux.Un flot de conception pour applications de traitement du signal systéma-
tique implémentées sur FPGA à base d’Ingénierie Dirigée parles Modèles. PhD thesis,
University of Lille, Laboratoire d’Informatique Fondamentale de Lille (LIFL), France,
December 2007.

[BFS04] T. Beierlein, D. Fröhlich, and B. Steinbach. Model-driven compilation of UML-models
for reconfigurable architectures. InIn Proc. of the Second RTAS Workshop on Model-
Driven Embedded Systems (MoDES’04), 2004.

[BGG+07] C. Brunzema, C. Grabbe, K. Grüttner, P. A. Hartmann, A. Herrholz, H. Kleen, F. Oppen-
heimer, A. Schallenberg, C. Stehno, and T. Schubert.OSSS - A Library for Synthesisable
System Level Models in SystemC(TM) - A tutorial for OSSS 2.0, November 2007.

[BHP06] T. Bures, P. Hnetynka, and F. Plasil. SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model. InSoftware Engineering Research, Management and
Applications, 2006. Fourth International Conference on, pages 40–48, Aug. 2006.

[BHS07] F. Buschmann, K. Henney, and D.C. Schmidt.Pattern-Oriented Software Architecture
(POSA) Vol. 4: A Pattern Language for Distributed Computing. Wiley, May 2007.

[Bic07] J. Bickle. IDL to HDL Mapping Proposal, OMG Burlingame Technical Meeting.
www.omg.org/docs/mars/07-12-20.pdf, December 2007.

[BJ07] John Bard and Vincent J. Kovarik Jr., editors.Software Defined Radio: The Software
Communications Architecture. Wiley, May 2007.

[Bje05] T. Bjerregaard.The MANGO clockless network-on-chip: Concepts and implementation.
PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, 2005.

[BJPW99] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components con-
tract aware.Computer, 32(7):38–45, 1999.

[BKH+07] A.V. Brito, M. Kuhnle, M. Hubner, J. Becker, and E.U.K. Melcher. Modelling and
Simulation of Dynamic and Partially Reconfigurable Systemsusing SystemC. InVLSI,
2007. ISVLSI ’07. IEEE Computer Society Annual Symposium on, pages 35–40, March
2007.

[Blu] Bluespec. Bluespec SystemVerilog (BSV).www.bluespec.com/products/bsv.htm.

[BM02] L. Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm.Computer,
35(1):70–78, January 2002.

[BM06] T. Bjerregaard and S. Mahadevan. A survey of researchand practices of Network-on-
Chip. ACM Comput. Surv., 38(1):1, 2006.

[BMB+04] S. Bailey, E. Marschner, J. Bhasker, J. Lewis, and P. Ashenden. Improving Design and
Verification Productivity with VHDL-200x. InDATE ’04: Proceedings of the confer-
ence on Design, Automation and Test in Europe, Washington, DC, USA, 2004. IEEE
Computer Society.

[BME+07] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and K. A. Hous-
ton. Object-Oriented Analysis and Design with Applications, 3rd Edition. Addison
Wesley, Redwood City, CA, USA, April 2007.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture (POSA) Vol. 1: A System of Patterns. Wiley, July 1996.

www.omg.org/docs/mars/07-12-20.pdf
www.bluespec.com/products/bsv.htm

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementingremote procedure calls.ACM
Trans. Comput. Syst., 2(1):39–59, 1984.

[Bon06] L. Bondé.Transformations de Modèles et Interopérabilité dans la Conception de Sys-
tèmes Hétérogènes sur Puce à Base d’IP. PhD thesis, University of Lille, Laboratoire
d’Informatique Fondamentale de Lille (LIFL), France, December 2006.

[BP04] T. Bures and F. Plasil.Software Engineering Research and Applications, chapter Com-
munication Style Driven Connector Configurations, pages 102–116. Lecture Notes in
Computer Science (LNCS). Springer-Verlag, 2004.

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide
Second Edition. Addison Wesley, May 2005.

[BRM+06] J. Barba, F. Rincón, F. Moya, F. J. Villanueva, D. Villa, and J. C. López. Lightweight
Communication Infrastructure for IP Integration. InIP-Based SoC Design Conference
(IP-SoC), December 2006.

[BRM+07] J. Barba, F. Rincon, F. Moya, F. J. Villanueva, D. Villa, J. Dondo, and J. C. Lopez.
OOCE: Object-Oriented Communication Engine for SoC Design. In Proc. of the 10th
Euromicro Conference on Digital System Design Architectures, Methods and Tools
(DSD’07), pages 296–302, Washington, DC, USA, Aug. 2007. IEEE Computer Society.

[BS05] Bruno Bouyssounouse and Joseph Sifakis.Embedded Systems Design, volume 3436 of
Lecture Notes in Computer Science, chapter Component Models and Integration Plat-
forms: Landscape, pages 160–193. Springer-Verlag New York, LLC, March 2005.

[BW05] G. M. Bierman and A. Wren. First-class relationshipsin an object-oriented language.
In ECOOP 2005 - Object-Oriented Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings, pages 262–286, 2005.

[BW07] A. Burns and A. Wellings.Concurrent and Real-time Programming in Ada 2005. Cam-
bridge University Press, 2007.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. Metropolis: an integrated electronic systemdesign environment.Computer,
36(4):45–52, April 2003.

[Cap03] L. F. Capretz. A brief history of the object-oriented approach.SIGSOFT Softw. Eng.
Notes, 28(2):6, March 2003.

[CCB+06] P. Coussy, E. Casseau, P. Bomel, A. Baganne, and E. Martin. A formal method for hard-
ware IP design and integration under I/O and timing constraints. ACM Trans. Embed.
Comput. Syst., 5(1):29–53, 2006.

[CCSV07] Ivica Crnkovic, Michel Chaudron, Séverine Sentilles, and Aneta Vulgarakis. A clas-
sification framework for component models. InProceedings of the 7th Conference on
Software Engineering and Practice in Sweden, October 2007.

[CDK01] G. F. Coulouris, J. Dollimore, and T. Kindberg.Distributed systems: concepts and
design, 3rd ed.Addison-Wesley, Boston, MA, USA, 2001.

[Che76] P.P.-S. Chen. The entity-relationship model—toward a unified view of data.ACM Trans.
Database Syst., 1(1):9–36, 1976.

[Chu06] Pong P. Chu.RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability. Wiley-IEEE Press, April 2006.

[CLN+02] W. O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A.Jerraya, L. Gau-
thier, and M. Diaz-Nava. Multiprocessor SoC Platforms: A Component-Based Design
Approach.IEEE Design and Test of Computers, 19(6):52–63, 2002.

[CM08] P. Coussy and A. Morawiec, editors.High-Level Synthesis: From Algorithm to Digital
Circuit. Springer, 2008.

[CSG98] David Culler, J. P. Singh, and Anoop Gupta.Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, August 1998.

[CSL+03] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-Vincentelli, and J. Rabaey.
UML for Real: Design of Embedded Real-Time Systems, chapter UML and platform-
based design, pages 107–126. Kluwer Academic Publishers, 2003.

[CT05] F. P. Coyle and M. A. Thornton. From UML to HDL: a Model Driven Architectural
Approach to Hardware-Software Co-Design. InInformation Systems: New Generations
Conference (ISNG), pages 88–93, April 2005.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. Of the 9th
Symposium on Foundations of Software Engineering (FSE), 26(5):109–120, 2001.

[DBDM03] C. Dumoulin, P. Boulet, J.-L. Dekeyser, and P. Marquet. MDA for SoC design, inten-
sive signal processing experiment. InIn Proc. of Forum on Specification and Design
Languages (FDL’03), September 2003.

[DMM +05] J.-L. Dekeyser, P. Marquet, S. Meftali, C. Dumoulin, P. Boulet, and S. Niar. Why to
do without Model Driven Architecture in embedded system codesign? InFirst IEEE
BENELUX/DSP Valley Signal Processing Symposium, 2005.

[DMv03] R. Damaševǐcius, G. Majauskas, and V. Štuikys. Application of design patterns for hard-
ware design. InDAC ’03: Proceedings of the 40th conference on Design automation,
pages 48–53, New York, NY, USA, 2003. ACM.

[DPML07] J.-P. Delahaye, J. Palicot, C. Moy, and P. Leray. Partial Reconfiguration of FPGAs
for Dynamical Reconfiguration of a Software Radio Platform.Mobile and Wireless
Communications Summit, 2007. 16th IST, pages 1–5, July 2007.

[DPSV06] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli. A Platform-Based Taxon-
omy for ESL Design.IEEE Des. Test, 23(5):359–374, 2006.

[DRB+07] J. Dondo, F. Rincon, J. Barba, F. Moya, F.J. Villanueva, D. Villa, and J.C. Lopez.
Dynamic Reconfiguration Management Based on a Distributed Object Model. in
Proc. of 17th International Conference on Field Programmable Logic and Applications
(FPL’07), pages 684–687, August 2007.

[DRS04] V. D’silva, S. Ramesh, and A. Sowmya. Bridge over troubled wrappers: automated
interface synthesis.In Proc. of the 17th International Conference on VLSI Design,
(VLSI Design’04), pages 189–194, 2004.

[Dv04a] R. Damaševičius and V. Štuikys. Application of the object-oriented principles for hard-
ware and embedded system design.Integr. VLSI J., 38(2):309–339, 2004.

[Dv04b] R. Damaševičius and V. Štuikys. Application of UML for hardware design based on
design process model. InASP-DAC ’04: Proceedings of the 2004 conference on Asia
South Pacific design automation, pages 244–249, Piscataway, NJ, USA, 2004. IEEE
Press.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe.ACM Comput. Surv., 35(2):114–131, 2003.

[Emm00] Wolfgang Emmerich. Software engineering and middleware: a roadmap. InICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, pages 117–129,
New York, NY, USA, 2000. ACM.

[ESSL99] Eric Eide, James L. Simister, Tim Stack, and Jay Lepreau. Flexible IDL compilation for
complex communication patterns.Sci. Program., 7(3-4):275–287, 1999.

[FAM05] A. Foster and S. Aslam-Mir. Practical Experiences using the OMG’s Extensible Trans-
port Framework (ETF) under a Real-Time CORBA ORB to Implement QoS Sensitive
Custom Transports for SDR. InProc. of the 2005 Software Defined Radio Technical
Conference (SDR’05), Hyatt Regency - Orange County, California, November 2005.

[FDH08] Luc Fabresse, Christophe Dony, and Marianne Huchard. Foundations of a Simple and
Unified Component-Oriented Language.Journal of Computer Languages, Systems &
Structures, 34/2-3(2-3):130–149, 2008.

[FGL01] Jan Frigo, Maya Gokhale, and Dominique Lavenier. Evaluation of the streams-C C-to-
FPGA compiler: an applications perspective. InFPGA ’01: Proceedings of the 2001
ACM/SIGDA ninth international symposium on Field programmable gate arrays, pages
134–140, New York, NY, USA, 2001. ACM.

[For08] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version
2.1. www.mpi-forum.org, Sept. 2008.

[Fos07] A. Foster. Using a Hardware ORB to Facilitate Seamless Communication with FP-
GAs in DRE Systems, OMG Real-time & Embedded Systems Workshop (RTESW).
www.omg.org/news/meetings/workshops/rt_2007.htm, July 2007.

[Fou08] Eclipse Foundation. Java Emitter Templates (JET).
www.eclipse.org/modeling/m2t/?project=jet, 2008.

[Fra08] The Fractal component model.fractal.ow2.org, 2008.

[Frö06] D. Fröhlich.Object-Oriented Development for Reconfigurable Architectures. PhD the-
sis, Hochschule Mittweida, TU Bergakademie Freiberg, Germany, August 2006.

[FSLM02] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A Software Frame-
work for Component-based Operating System Kernels. InATEC ’02: Proceedings of
the General Track of the annual conference on USENIX Annual Technical Conference,
pages 73–86, Berkeley, CA, USA, 2002. USENIX Association.

www.mpi-forum.org
www.omg.org/news/meetings/workshops/rt_2007.htm
www.eclipse.org/modeling/m2t/?project=jet
fractal.ow2.org

[GBA+07] A. Goderis, C. Brooks, I. Altintas, E.A. Lee, and C. Goble. Heterogeneous Compo-
sition of Models of Computation. Technical Report UCB/EECS-2007-139, EECS De-
partment, University of California, Berkeley, November 2007.

[GBG+06] K. Grüttner, C. Brunzema, C. Grabbe, T. Schubert, and F. Oppenheimer. OSSS-
Channels: Modelling and Synthesis of Communication With SystemC. InForum on
Specification & Design Languages, September 2006.

[GBJV08] G. Gailliard, H. Balp, C. Jouvray, and F. Verdier. Towards a Common HW/SW
Interface-Centric and Component-Oriented Specification and Design Methodology. In
In Proc. of Forum on Specification and Design Languages 2008 (FDL’08), Sept. 2008.

[GBSV08] G. Gailliard, H. Balp, M. Sarlotte, and F. Verdier.Mapping Semantics of CORBA IDL
and GIOP to Open Core Protocol for Portability and Interoperability of SDR Waveform
Components. Design, Automation and Test in Europe (DATE ’08), pages 330–335,
March 2008.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their significance.
Commun. ACM, 35(2):97–107, 1992.

[GCW+02] Thomas Genssler, Alexander Christoph, Michael Winter,Oscar Nierstrasz, Stéphane
Ducasse, Roel Wuyts, Gabriela Arévalo, Bastiaan Schönhage, Peter Müller, and Chris
Stich. Components for embedded software: the PECOS approach. In CASES ’02: Pro-
ceedings of the 2002 international conference on Compilers, architecture, and synthesis
for embedded systems, pages 19–26, New York, NY, USA, 2002. ACM.

[GDGN03] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: ahigh-level synthesis framework
for applying parallelizing compiler transformations.In Proc. of 16th International Con-
ference on VLSI Design, pages 461–466, Jan. 2003.

[GGON07] K. Grüttner, C. Grabbe, F. Oppenheimer, and W. Nebel. Object Oriented Design and
Synthesis of Communication in Hardware-Software Systems with OSSS. InIn Pro-
ceedings of SASIMI 2007, Hokkaido, Japan, October 2007.

[Ghe06] Frank Ghenassia, editor.Transaction-Level Modeling with Systemc: TLM Concepts and
Applications for Embedded Systems. Springer-Verlag, 2006.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

[GHM03] M. Goudarzi, S. Hessabi, and A. Mycroft. Object-oriented ASIP Design and Synthesis.
In Proc. of Forum on Specification and Design Languages (FDL’03), September 2003.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java™Language Specification Third
Edition. Addison-Wesley Professional, 2005.

[GK83] D.D. Gajski and R.H. Kuhn. New VLSI Tools.Computer, 16(12):11–14, Dec. 1983.

[GLMS02] T. Grötker, S. Liao, G. Martin, and S. Swan.System Design with SystemC. Kluwer
Academic Publishers, May 2002.

[GLR06] D. Grisby, S.-L. Lo, and D. Riddoch. The omniORB version 4.1 User’s Guide.
omniorb.sourceforge.net, April 2006.

omniorb.sourceforge.net

[GMN06] Z. Guo, A. Mitra, and W. Najjar. Automation of IP CoreInterface Generation for Re-
configurable Computing. InField Programmable Logic and Applications, 2006. FPL
’06. International Conference on, pages 1–6, Aug. 2006.

[GMS+06] G. Gailliard, B. Mercier, M. Sarlotte, B. Candaele, and F. Verdier. Towards a SystemC
TLM based Methodology for Platform Design and IP reuse: Application to Software
Defined Radio. InSecond European Workshop on Reconfigurable Communication-
Centric SoCs (RECOSOC 2006), Montpellier, France, July 2006.

[GMTB04] S. Gerard, C. Mraidha, F. Terrier, and B. Baudry. A UML-based concept for high con-
currency: the real-time object.In Proc. of the Seventh IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’04), pages 64–67, May
2004.

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors,Founda-
tions of Component-Based Systems, pages 47–68. Cambridge University Press, 2000.

[GNSV07] G. Gailliard, E. Nicollet, M. Sarlotte, and F. Verdier. Transaction Level Modelling of
SCA Compliant Software Defined Radio Waveforms and Platforms PIM/PSM.Design,
Automation & Test in Europe Conference (DATE ’07), pages 1–6, April 2007.

[GO01] S. Gérard and I. Ober. Parallelism/Concurrency specification within UML, white paper,
Workshop on Concurrency Issues in UML, The Unified Modeling Language. Modeling
Languages, Concepts, and Tools UML 2001.wooddes.intranet.gr/uml2001,
October 2001.

[GO03] E. Grimpe and F. Oppenheimer. Extending the SystemC Synthesis Subset by Object
Oriented Features. InCODES + ISSS 2003. CODES + ISSS 2003, October 2003.

[Gou05] M. Goudarzi.The ODYSSEY Methodology: ASIP-Based Design of Embedded Systems
from Object-Oriented System-Level Models. PhD thesis, Sharif University of Technol-
ogy, Iran, June 2005.

[GP08] V. Giddings and D. Paniscotti. IDL to Hardware Response to
Thales/Mercury Presentations, OMG Washington Technical Meeting.
www.omg.org/docs/mars/08-03-18.pdf, March 2008.

[GR83] A. Goldberg and D. Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, May 1983.

[Gra] Mentor Graphics. Catapult.www.mentor.com.

[Gra07] Mentor Graphics. Catapult®synthesis user’s and reference manual, system-level and
block-level products, release 2007a, May 2007.

[GRE95] GRETSI, Groupe d’Etudes du Traitement du Signal et des Images.Array-OL : proposi-
tion d’un formalisme tableau pour le traitement de signal multi-dimensionnel, Septem-
ber 1995.

[GRJ04] A. Grasset, F. Rousseau, and A. A. Jerraya. Network Interface Generation for MPSOC:
From Communication Service Requirements to RTL Implementation. In RSP ’04: Pro-
ceedings of the 15th IEEE International Workshop on Rapid System Prototyping, pages
66–69, Washington, DC, USA, 2004. IEEE Computer Society.

wooddes.intranet.gr/uml2001
www.omg.org/docs/mars/08-03-18.pdf
www.mentor.com

[Gro01] On-Chip Bus Development Working Group. Virtual Component Interface Standard Ver-
sion 2 (OCB 2 2.0). Technical report, VSI Alliance™, April 2001.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture. Technical
Report CMU-CS-94-166, Carnegie Mellon University, January 1994.

[GS98] Aniruddha S. Gokhale and Douglas C. Schmidt. Principles for Optimizing CORBA
Internet Inter-ORB Protocol Performance. InHICSS ’98: Proceedings of the Thirty-
First Annual Hawaii International Conference on System Sciences-Volume 7, page 376,
Washington, DC, USA, 1998. IEEE Computer Society.

[GS99] A.S. Gokhale and D.C. Schmidt. Optimizing a CORBA Internet Inter-ORB protocol
(IIOP) engine for minimal footprint embedded multimedia systems.Selected Areas in
Communications, IEEE Journal on, 17(9):1673–1706, Sep 1999.

[GT03] S. Gérard and F. Terrier.UML for real: design of embedded real-time systems, chapter
UML for Real-Time: Which native concepts to use ?, pages 107–126. Kluwer Academic
Publishers, 2003.

[GTF+02] E. Grimpe, B. Timmermann, T. Fandrey, R. Biniasch, and F.Oppenheimer. SystemC
Object-Oriented Extensions and Synthesis Features. InTagungsband. In Proc. of Forum
on Specification and Design Languages (FDL’02), September 2002.

[GTS+05] C. Grassman, A. Troya, M. Sauermann, U. Ramacher, and M. Richter. Mapping wave-
forms to mobile parallel processor architectures. InProc. of the SDR Forum Technical
Conference (SDR’05), November 2005.

[GZH07] M. Goudarzi, N. Mohammad Zadeh, and S. Hessabi. Using on-chip networks to imple-
ment polymorphism in the co-design of object-oriented embedded systems.J. Comput.
Syst. Sci., 73(8):1221–1231, 2007.

[HA04] J.C. Hoe and Arvind. Operation-centric hardware description and synthesis.Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 23(9):1277–
1288, Sept. 2004.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems.Sci. Comput. Program.,
8(3):231–274, 1987.

[HC01] G. T. Heineman and W. T. Councill.Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, 2001.

[Hen04] M. Henning. A New Approach to Object-Oriented Middleware. IEEE Internet Com-
puting, 8(1):66–75, 2004.

[HK05] S. Hong and T. H. Kim. Resource conscious developmentof middleware for control en-
vironments: a case of CORBA-based middleware for the CAN bussystems.Information
and Software Technology, 47(6):411 – 425, 2005.

[HLEJ06] Seongsoo Hong, Jaesoo Lee, Hyeonsang Eom, and Gwangil Jeon. The robot soft-
ware communications architecture (RSCA): embedded middleware for networked ser-
vice robots.Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 8 pp.–, April 2006.

[HLL +03] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H. Zheng.
Overview of the Ptolemy project. Technical Report UCB/ERL M03/25, University of
California at Berkeley, July 2003.

[HM07] M. Henning and M.Spruiell. Distributed Programmingwith ICE, revision 3.2.
www.zeroc.com, March 2007.

[HO97] R. Helaihel and K. Olukotun. Java as a specification language for hardware-software
systems. InICCAD ’97: Proceedings of the 1997 IEEE/ACM international conference
on Computer-aided design, pages 690–697, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[Hos98] Philipp Hoschka. Compact and efficient presentation conversion code.IEEE/ACM
Trans. Netw., 6(4):389–396, 1998.

[HP06] F. Humcke and D. Paniscotti. Integrated Circuit ORB (ICO) White Paper, v1.1.
www.prismtech.com, 2006.

[HS08] M. Henning and M. Spruiell. Distributed Programmingwith Ice, Revision 3.3.0. ze-
roc.com, May 2008.

[Hug05] J. Hugues.Architecture et Services des Intergiciels Temps Réel. PhD thesis, University
of Paris VI, Pierre et Marie-Curie, France, September 2005.

[Hum06] F. Humcke. Making FPGAs "First Class" SCA Citizens.In Proc. of the SDR Forum
Technical Conference (SDR’06), November 2006.

[Hum07] F. Humcke. Making FPGAs "First Class" SCA Citi-
zens, OMG Software-Based Communications (SBC) Workshop.
www.omg.org/news/meetings/workshops/sbc_2007.htm, March
2007.

[Hur98] Judith Hurwitz. Sorting out middleware.DBMS, 11(1):10–12, 1998.

[HVP+05] J. Hugues, T. Vergnaud, L. Pautet, Y. Thierry-Mieg, S. Baarir, and F. Kordon. On the
Formal Verification of Middleware Behavioral Properties.Electr. Notes Theor. Comput.
Sci., 133:139–157, 2005.

[ICE01] ICECS 2001: the 8th IEEE International Conference on Electronics, Circuits and Sys-
tems.Object-oriented high level synthesis based on SystemC, September 2001.

[ICO08] ICODES (Interface and Communication based Design ofEmbedded Systems) IST-FP6
Project, August 2004-2007.icodes.offis.de, June 2008.

[IEE02] IEEE. IEEE Standard VHDL Language Reference Manual, IEEE Std 1076(TM)-2002,
May 2002.

[IEE04] IEEE. IEEE Standard for Information Technology- Standardized Application Environ-
ment Profile (AEP)-POSIX Realtime and Embedded ApplicationSupport, 2004.

www.zeroc.com
www.prismtech.com
www.omg.org/news/meetings/workshops/sbc_2007.htm
icodes.offis.de

[III00] J. Mitola III, editor. Software Radio Architecture: Object-Oriented Approachesto Wire-
less Systems Engineering. Wiley, November 2000.

[Ini08] Open SystemC Initiative. Systemc.www.systemc.org, June 2008.

[IT02] International Telecommunication Union (ITU)-T. Specification of Packed Encoding
Rules (PER), ITU-T Recommendation X.691.www.itu.int, July 2002.

[Jac08] J. M. Jacob. No Processor Is an Island: Developing Multiple Processor Systems with
the "New" CORBA.www.dsp-fpga.com, Feb. 2008.

[Jan03] A. Jantsch. NoCs: a new contract between hardware and software. InDigital System
Design, 2003. Proceedings. Euromicro Symposium on, pages 10–16, Sept. 2003.

[JBP06] A. A. Jerraya, A. Bouchhima, and F. Pétrot. Programming models and HW-SW inter-
faces abstraction for multi-processor SoC. InDAC ’06: Proceedings of the 43rd annual
conference on Design automation, pages 280–285, New York, NY, USA, 2006. ACM.

[JNH06] S. Jorg, M. Nickl, and G. Hirzinger. Flexible signal-oriented hardware abstraction for
rapid prototyping of robotic systems.IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3755–3760, Oct. 2006.

[JS07] S. Jagadish and R. K. Shyamasundar. UML-based Approach to Specify Secured,
Fine-grained Concurrent Access to Shared Resources.Journal of Object Technology,
6(1):107–119, Jan.-Fev. 2007.

[JTR01] JPEO JTRS. Software Communications Architecture (SCA) Specification v2.2.
sca.jpeojtrs.mil, November 2001.

[JTR02] JPEO JTRS. SCA Developer’s Guide, Rev 1.1, June 2002.

[JTR04] JPEO JTRS. Specialized Hardware Supplement (SHS) to the Software Communication
Architecture (SCA) Specification v3.0, August 2004.

[JTR05] JPEO JTRS. Extension for component portability forSpecialized Hard-
ware Processors (SHP) to the JTRS Software Communication Architec-
ture (SCA) Specification, v3.1x, a.k.a. SCA Change Proposal(CP) 289.
www.mc.com/uploadedFiles/CP289_v1_0_TAG.pdf, March 2005.

[JTR06] JPEO JTRS. Software Communications Architecture (SCA) Specification v2.2.2.
sca.jpeojtrs.mil, May 2006.

[JTR07] JPEO JTRS. Modem Hardware Abstraction Layer (MHAL)API, Version 2.11.1.
sca.jpeojtrs.mil, May 2007.

[JTR09] JPEO JTRS. News Release: JPEO JTRS initiates the develop-
ment of a new Software Communications Architecture (SCA) Release.
sca.jpeojtrs.mil/_downloads/JPEO-NR-2009-005.pdf, August
2009.

[JU08] J. M. Jacob and M. Uhm. CORBA for FPGAs: Tying togetherGPPs, DSPs, and FPGAs.
www.rtcmagazine.com, February 2008.

www.systemc.org
www.itu.int
www.dsp-fpga.com
sca.jpeojtrs.mil
www.mc.com/uploadedFiles/CP289_v1_0_TAG.pdf
sca.jpeojtrs.mil
sca.jpeojtrs.mil
sca.jpeojtrs.mil/_downloads/JPEO-NR-2009-005.pdf
www.rtcmagazine.com

[Kay93] A. C. Kay. The early history of smalltalk. InHOPL-II: The second ACM SIGPLAN
conference on History of programming languages, pages 69–95, New York, NY, USA,
1993. ACM.

[KB05] J. Kulp and M. Bicer. Integrating Specialized Hardware to JTRS/SCA Software Defined
Radios. InMilcom’05, October 2005.

[KBG+08] L. Kriaa, A. Bouchhima, M. Gligor, A.-M. Fouillart, F. Pétrot, and A. A. Jerraya. Par-
allel Programming of Multi-processor SoC: A HW-SW Interface Perspective.Interna-
tional Journal of Parallel Programming, 36(1):68–92, 2008.

[KBY +06] Lobna Kriaa, Aimen Bouchhima, Wassim Youssef, FredericPetrot, Anne-Marie Fouil-
lart, and Ahmed Jerraya. Service Based Component Design Approach for Flexible
Hardware/Software Interface Modeling. InRSP ’06: Proceedings of the Seventeenth
IEEE International Workshop on Rapid System Prototyping, pages 156–162, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case for reflective
middleware.Commun. ACM, 45(6):33–38, 2002.

[Kel07] Stephen Kell. Rethinking software connectors. InFirst International Workshop on
Synthesis and Analysis of Component Connectors, pages 7–19, September 2007.

[KGG06] Wolfgang Klingauf, Hagen Gädke, and Robert Günzel.TRAIN: a virtual transaction
layer architecture for TLM-based HW/SW codesign of synthesizable MPSoC. Inin
Proc. of the conference on Design, Automation and Test in Europe (DATE’06), pages
1318–1323, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation
Association.

[KJH+00a] K. Kim, G. Jeon, S. Hong, S. Kim, and T. Kim. Resource-Conscious Customization
of CORBA for CAN-Based Distributed Embedded Systems. InIn Proc. of the Third
IEEE International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’00), page 34, Washington, DC, USA, 2000. IEEE Computer Society.

[KJH+00b] K. Kim, G. Jeon, S. Hong, T.-H. Kim, and S. Kim. Integrating Subscription-Based
and Connection-Oriented Communications into the EmbeddedCORBA for the CAN
Bus. InIn Proc. of the Sixth IEEE Real Time Technology and Applications Symposium
(RTAS’00), page 178, Washington, DC, USA, 2000. IEEE Computer Society.

[KKS02] R. Klefstad, A. S. Krishna, and D. C. Schmidt. Designand Performance of a Modular
Portable Object Adapter for Distributed, Real-Time, and Embedded CORBA Applica-
tions. InOn the Move to Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE
2002 Confederated International Conferences DOA, CoopIS and ODBASE 2002, pages
549–567, London, UK, 2002. Springer-Verlag.

[KKSC04] A. S. Krishna, R. Klefstad, D. C. Schmidt, and A. Corsaro.Middleware for Communi-
cations, chapter Real-time CORBA Middleware. Wiley, 2004.

[KLM +97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win. Aspect-oriented programming. In Mehmet Akşit and Satoshi Matsuoka, editors,
Proceedings European Conference on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[KMD05] A. Koudri, S. Meftali, and J.-L. Dekeyser. IP integration in embedded systems model-
ing. In In 14th IP Based SoC Design Conference (IP-SoC’05), December 2005.

[KNRSV00] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level
design: orthogonalization of concerns and platform-baseddesign. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, De-
cember 2000.

[KOSK+01] T. Kuhn, T. Oppold, C. Schulz-Key, M. Winterholer, W. Rosenstiel, M. Edwards, and
Y. Kashai. Object oriented hardware synthesis and verification. In ISSS ’01: Proceed-
ings of the 14th international symposium on Systems synthesis, pages 189–194, New
York, NY, USA, 2001. ACM.

[KOW+01] T. Kuhn, T. Oppold, M. Winterholer, W. Rosenstiel, M. Edwards, and Y. Kashai. A
framework for object oriented hardware specification, verification, and synthesis. InIn
Proc. of the 38th conference on Design automation (DAC ’01), pages 413–418, New
York, NY, USA, 2001. ACM.

[KR98] T. Kuhn and W. Rosenstiel. Java Based Modeling And Simulation Of Digital Systems
On Register Transfer Level. InIn Proc. of Workshop on System Design Automation
(SDA), March 1998.

[Kra08] S. Krakowiak. Middleware Architecture with Patterns and Frameworks.
sardes.inrialpes.fr/~krakowia/MW-Book, April 2008.

[KRK99] T. Kuhn, W. Rosenstiel, and U. Kebschull. Description and simulation of hardware/soft-
ware systems with Java. InDAC ’99: Proceedings of the 36th ACM/IEEE conference
on Design automation, pages 790–793, New York, NY, USA, 1999. ACM.

[KRS03] R. Klefstad, S. Rao, and D. C. Schmidt. Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-TimeCORBA. In In Proc.
of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03),
Washington, DC, USA, 2003. IEEE Computer Society.

[KSKR00] T. Kuhn, C. Schulz-Key, and W. Rosenstiel. Object oriented hardware specification
with java. InProceedings of the ninth workshop on Synthesis and System Integration of
Mixed Technologies (SASIMI’2000), 2000.

[Lah04] Vesa Lahtinen.Design and Analysis of Interconnection Architecture in On-Chip Digital
Systems. PhD thesis, Tampere University, 2004.

[Lea99] D. Lea. Concurrent Programming in Java. Second Edition: Design Principles and
Patterns. Addison-Wesley, Boston, MA, USA, 1999.

[Lew07] J. Lewis. What’s Next in VHDL.www.accellera.org, April 2007.

[LJB05] S. Lankes, A. Jabs, and T. Bemmerl. Design and performance of a CAN-based
connection-oriented protocol for real-time CORBA.J. Syst. Softw., 77(1):37–45, 2005.

[LKPH06] Jaesoo Lee, Saehwa Kim, Jiyong Park, and Seongsoo Hong. Q-SCA: Incorporating
QoS support into Software Communications Architecture forSDR waveform process-
ing. Real-Time Syst., 34(1):19–35, 2006.

sardes.inrialpes.fr/~krakowia/MW-Book
www.accellera.org

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, Sept. 1987.

[LN04] Edward A. Lee and Stephen Neuendorffer.Actor-oriented models for codesign: bal-
ancing re-use and performance, pages 33–56. Kluwer Academic Publishers, Norwell,
MA, USA, 2004.

[LN07] F. Lafaye and E. Nicollet. A DSP Micro-Framework (DSPµF) for OMG SWRadio
specification extension.In Proc. of the SDR 07 Technical Conference, pages 1–6, Nov.
2007.

[LPHH05] Jaesoo Lee, Jiyong Park, Seunghyun Han, and Seongsoo Hong. Extending Software
Communications Architecture for QoS support in SDR signal processing. InRTCSA
’05: Proceedings of the 11th IEEE International Conferenceon Embedded and Real-
Time Computing Systems and Applications, pages 117–122, Washington, DC, USA,
2005. IEEE Computer Society.

[LTG97] S. Liao, S. Tjiang, and R. Gupta. An efficient implementation of reactivity for modeling
hardware in the scenic design environment. InDAC ’97: Proceedings of the 34th annual
conference on Design automation, pages 70–75, New York, NY, USA, 1997. ACM.

[LU95] R.I. Lackey and D.W. Upmal. Speakeasy: the military software radio.Communications
Magazine, IEEE, 33(5):56–61, May 1995.

[LvdADtH05] A. Lachlan, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. In Proc. of
the 7th International Symposium on Distributed Objects andApplications (DOA), On
the Move to Meaningful Internet Systems, volume 3761 ofLecture Notes in Computer
Science (LNCS), chapter On the Notion of Coupling in Communication Middleware,
pages 1015–1033. Springer Berlin / Heidelberg, Agia Napa, Cyprus., Oct. 2005.

[LW07] Kung-Kiu Lau and Zheng Wang. Software component models. Software Engineering,
IEEE Transactions on, 33(10):709–724, Oct. 2007.

[LY99] T. Lindholm and F. Yellin.The Java™Language Specification Second Edition. Addison-
Wesley, 1999.

[Man89] Architecture Projects Management. The Advanced Network Systems Architecture
(ANSA) Reference Manual, release 1.1, Castle Hill, Cambridge, UK, July 1989.

[Mar05] Philippe Martin. Design of a virtual component neutral network-on-chip transaction
layer. InDATE ’05: Proceedings of the conference on Design, Automation and Test in
Europe, pages 336–337, 2005.

[Mat08] Mathworks.www.mathworks.com, 2008.

[MB02] S. J. Mellor and M. J. Balcer.Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison Wesley, May 2002.

[MC99] W. E. McUmber and B. H. C. Cheng. UML-Based Analysis ofEmbedded Systems
Using a Mapping to VHDL. Inin the 4th IEEE International Symposium on High-
Assurance Systems Engineering (HASE ’99), pages 56–63, Washington, DC, USA,
1999. IEEE Computer Society.

www.mathworks.com

[McH94] C. McHale. Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance. PhD thesis, University of Dublin, Trinity College,
October 1994.

[McH07] C. McHale. CORBA Explained Simply. www.CiaranMcHale.com, February 2007.

[McI68] M. D. McIlroy. Software Engineering: Report on a conference by the NATO Science
Committee, chapter Mass produced software components, pages 138–150. Scientific
Affairs Division, NATO, 1968.

[MDD+03] A. D. McKinnon, K. E. Dorow, T. R. Damania, O. Haugan, W. E.Lawrence, D. E.
Bakken, and J. C. Shovic. A Configurable Middleware Framework with Multiple Qual-
ity of Service Properties for Small Embedded Systems. InIn Proc. of the Second IEEE
International Symposium on Network Computing and Applications (NCA’03), page 197,
Washington, DC, USA, 2003. IEEE Computer Society.

[Mey92] B. Meyer. Applying "Design by Contract".Computer, 25(10):40–51, 1992.

[Mic97] Sun Microsystems. Javabeans specification v1.0.1-a. java.sun.com/javase, Au-
gust 1997.

[Mic02] Sun Microsystems. Java Message Service (JMS), Version 1.1, JSR 914.
java.sun.com/products/ejb/docs.html, April 2002.

[Mic06] Sun Microsystems. EnterprisejavabeansTM 3.0, java specification request (jsr) 220.
java.sun.com/products/ejb/docs.html, May 2006.

[Mic08] Sun Microsystems. Java remote method invocation.
java.sun.com/javase/6/docs/platform/rmi, November 2008.

[MMP00] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxonomy of
software connectors. InICSE ’00: Proceedings of the 22nd international conferenceon
Software engineering, pages 178–187, New York, NY, USA, 2000. ACM.

[MMT +08] Philippe Manet, Daniel Maufroid, Leonardo Tosi, Gregory Gailliard, Olivier Mulertt,
Marco Di Ciano, Jean-Didier Legat, Denis Aulagnier, Christian Gamrat, Raffaele
Liberati, Vincenzo La Barba, Pol Cuvelier, Bertrand Rousseau, and Paul Gelineau. An
evaluation of dynamic partial reconfiguration for signal and image processing in profes-
sional electronics applications.EURASIP J. Embedded Syst., 2008:1–11, 2008.

[MNT+04] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. The nostrum backbone-a
communication protocol stack for networks on chip. InVLSI Design, 2004. Proceed-
ings. 17th International Conference on, pages 693–696, 2004.

[MNTJ04] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using looped
containers in temporally disjoint networks within the nostrum network on chip. InDe-
sign, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings,
volume 2, pages 890–895, Feb. 2004.

[Moc08] Mocca Project, the Mocca-compiler for run-time reconfigurable architectures.
www.htwm.de/~lec, 2008.

java.sun.com/javase
java.sun.com/products/ejb/docs.html
java.sun.com/products/ejb/docs.html
java.sun.com/javase/6/docs/platform/rmi
www.htwm.de/~lec

[MRC+00] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil: an IDL for
hardware programming. InIn Proc. of the 4th conference on Symposium on Operating
System Design & Implementation (OSDI’00), pages 2–2, Berkeley, CA, USA, 2000.
USENIX Association.

[MS98] G. De Micheli and J. Smith. Automated composition of hardware components.DAC,
00:14–19, 1998.

[MS04] G. Milicia and V. Sassone. The inheritance anomaly: ten years after. InSAC ’04:
Proceedings of the 2004 ACM symposium on Applied computing, pages 1267–1274,
New York, NY, USA, 2004. ACM.

[MSUW04] S. J. Mellor, K. Scott, A. Uhl, and D. Weise.MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, Boston, March 2004.

[MT00] N. Medvidovic and R.N. Taylor. A classification and comparison framework for soft-
ware architecture description languages.Software Engineering, 26(1):70–93, 2000.

[MVS+05] P. Marchal, D. Verkest, A. Shickova, F. Catthoor, F. Robert, and A. Leroy. Spatial di-
vision multiplexing: a novel approach for guaranteed throughput on NoCs.Hardware/-
Software Codesign and System Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/I-
FIP International Conference on, pages 81–86, Sept. 2005.

[MVV +07] F. Moya, D. Villa, F. J. Villanueva, J. Barba, F. Rincón, and J. C. López. Embedding
standard distributed object-oriented middlewares in wireless sensor networks.Wireless
Communications and Mobile Computing, pages 1–10, 2007.

[ND81] K. Nygaard and O.-J. Dahl. The development of the simula languages. InHistory of
programming languages I, pages 439–480, New York, NY, USA, 1981. ACM.

[NH07] Bernhard Niemann and Christian Haubelt. Towards a Unified Execution Model for
Transactions in TLM.In Proc. of the 5th IEEE/ACM International Conference on For-
mal Methods and Models for Codesign (MEMOCODE’07), pages 103–112, June 2007.

[NK07] J. Noseworthy and J. Kulp. Standard Interfaces for FPGA Components. InMilcom’07,
pages 1–5, October 2007.

[NP08] E. Nicollet and L. Pucker. Standardizing Transceiver APIs for Software Defined and
Cognitive Radio, RF Design magazine.www.rfdesign.com, February 2008.

[NP09] E. Nicollet and S. Pothin. Transceiver Facility Specification, SDRF-08-S-0008-V1.0.0,
January 2009.

[NST] Ltd. NEC System Technologies. Cyberworkbench.
www.necst.co.jp/product/cwb/english.

[OIa] OCP-IP. Socket-centric ip core interface maximizes ip applications.
www.ocpip.org/socket/whitepapers.

[OIb] OCP-IP. The Importance of Sockets in SOC Design.
www.ocpip.org/socket/whitepapers.

www.rfdesign.com
www.necst.co.jp/product/cwb/english
www.ocpip.org/socket/whitepapers
www.ocpip.org/socket/whitepapers

[OI04] OCP-IP. The Open SystemC Initiative And The Open CoreProtocol International Part-
nership Join Forces to Target TLM Layer Standardization.www.ocpip.org, May
2004.

[OI06] OCP-IP. Open core protocol specification, v2.2.1.www.ocpip.org, January 2006.

[OI07] OCP-IP. A systemc™ocp transaction level communication channel, v2.2.
www.ocpip.org, February 2007.

[OIS08] Objective interface systems website.www.ois.com, June 2008.

[OKS+00] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons. The design and perfor-
mance of a pluggable protocols framework for real-time distributed object computing
middleware. InIFIP/ACM International Conference on Distributed systemsplatforms,
Middleware’00, pages 372–395, Secaucus, NJ, USA, 2000. Springer-Verlag New York,.

[OMG95] OMG. Object Management Architecture (OMA) Guide, Third Edition, Juin 1995.

[OMG99] OMG. IDL to C Language Mapping, v.1.2, July 1999.

[OMG01] OMG. IDL to Ada Language Mapping, v.1.2, October 2001.

[OMG02] OMG. UML Profile for CORBA Specification, Version 1.0, April 2002.

[OMG03] OMG. MDA Guide V1.0.1, June 2003.

[OMG04] OMG. Extensible Transport Framework (ETF), OMG Final Adopted Specification,
March 2004.

[OMG05a] OMG. Meta Object Facility (MOF) Specification, v 1.4.1, May 2005.

[OMG05b] OMG. Real-time CORBA Specification v.1.2, January2005.

[OMG06a] OMG. CORBA Component Model (CCM) Specification, Version 4.0, April 2006.

[OMG06b] OMG. Deployment and Configuration of Component-based Distributed Applications
Specification, Version 4.0, April 2006.

[OMG06c] OMG. Meta Object Facility (MOF) Core Specification, v2.0, January 2006.

[OMG06d] OMG. Object Constraint Language, v.2.0, May 2006.

[OMG06e] OMG. UML Profile for SoC Specification, v1.0.1, August 2006.

[OMG07a] OMG. Data Distribution Service for Real-time Systems, v1.2, Jan. 2007.

[OMG07b] OMG. Infrastructure UML modeling, v.2.1.1, February 2007.

[OMG07c] OMG. MOF 2.0/XMI Mapping, Version 2.1.1, Dec. 2007.

[OMG07d] OMG. Superstructure UML modeling, v.2.1.1, February 2007.

[OMG07e] OMG. UML Profile for Software Radio (a.k.a. PIM & PSMfor Software Radio Com-
ponents), March 2007.

www.ocpip.org
www.ocpip.org
www.ocpip.org
www.ois.com

[OMG08a] OMG. Common Object Request Broker Architecture (CORBA) for embedded (COR-
BAe), Version 1.0 - Beta 2, Janvier 2008.

[OMG08b] OMG. Common Object Request Broker Architecture (CORBA) Specification, Version
3.1, Janvier 2008.

[OMG08c] OMG. IDL to C++ Language Mapping, v.1.2, January 2008.

[OMG08d] OMG. IDL to Java Language Mapping, v.1.3, January 2008.

[OMG08e] OMG. MOF 2.0 Query/View/Transformation (QVT), v1.0, Apr. 2008.

[OMG08f] OMG. OMG Systems Modeling Language (SysML), v1.1,Nov. 2008.

[OMG08g] OMG. UML profile for CORBA and CORBA Components Specification, Version 1.0,
April 2008.

[OMG08h] OMG. UML profile for Modeling and Analyzis of Real-Time and Embedded Systems
(MARTE), Beta 1, August 2008.

[oOSI04] Synthesis Working Group of Open SystemC Initiative. SystemC Synthesizable Subset,
Draft.1.1.18.www.systemc.org, December 2004.

[Ope02] OpenCores.org. WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores specification, revision B.3.www.opencores.org, September
2002.

[OPM94] Sean O’Malley, Todd Proebsting, and Allen Brady Montz. USC: a universal stub com-
piler. SIGCOMM Comput. Commun. Rev., 24(4):295–306, 1994.

[Opp05] F. Oppenheimer.OOCOSIM - An Object-Oriented Co-design Method for Embedded
HW/SW Systems. PhD thesis, University of Oldenburg, Germany, February 2005.

[Org98] International Standards Organization. Information Technology - Open Distributed Pro-
cessing - Reference Model: Overview, ISO/IEC 10746-1:1998(E), December 1998.

[OS99] I. Ober and I. Stan. On the Concurrent Object Model of UML. In Proc. of the 5th
International Euro-Par Conference on Parallel Processing(Euro-Par ’99), pages 1377–
1384, London, UK, 1999. Springer-Verlag.

[OS07] D. R. Oldham and M. C. Scardelletti. JTRS/SCA and Custom/SDR Waveform Com-
parison. IEEE Military Communications Conference (MILCOM’07), pages 1–5, Oct.
2007.

[OS09] OMG and SDRForum. PIM and PSM for Smart Antenna, Version 1.0, Jan. 2009.

[OSC09] OSCI. TLM-2.0 Language Reference Manual.www.systemc.org, Jul. 2009.

[Pap92] M. Papathomas.Language Design Rationale and Semantic Framework for Concurrent
Object-Oriented Programming. PhD thesis, University of Geneva, January 1992.

[PB07] D. Paniscotti and J. Bickle. SDR Signal Processing Distributive-Development Ap-
proaches. InIn Proc. of the SDR Forum Technical Conference (SDR’07), November
2007.

www.systemc.org
www.opencores.org
www.systemc.org

[Per97] D. E. Perry. Software architecture and its relevance to software engineering, invited
talk. In Second International Conference on Coordination Models and Languages (Co-
ord’97), Berlin, Germany, September 1997.

[PH04] L. Pucker and J. Holt. Extending the SCA core framework inside the modem archi-
tecture of a software defined radio.IEEE Radio Communications, 42:21–25, March
2004.

[PH07] D. A. Patterson and J. L. Hennessy.Computer Organization and Design: the Hard-
ware/Software Interface, 3th edition. Morgan Kaufmann, San Francisco, CA, USA,
2007.

[Pin04] Hennadiy Pinus. Middleware: Past and present a comparison.
www.st.informatik.tu-darmstadt.de, June 2004.

[PPB02] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A System-Level Exploration
Platform for Network Processors.IEEE Des. Test, 19(6):17–26, 2002.

[PPB+04] P. G. Paulin, C. Pilkington, E. Bensoudane, M. Langevin,and D. Lyonnard. Application
of a Multi-Processor SoC Platform to High-Speed Packet Forwarding. InIn Proc. of
the conference on Design, Automation and Test in Europe (DATE ’04), page 30058,
Washington, DC, USA, 2004. IEEE Computer Society.

[PPL+06a] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, O. Benny, D. Lyonnard,
B. Lavigueur, and D. Lo. Distributed object models for multi-processor SoC’s, with
application to low-power multimedia wireless systems. InDATE, pages 482–487, 2006.

[PPL+06b] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O. Benny,
B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, and G. Nicolescu.Parallel program-
ming models for a multiprocessor SoC platform applied to networking and multimedia.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(7):667–680,
July 2006.

[PPL+06c] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, and G. Nico-
lescu.Embedded Systems Handbook, chapter A Multiprocessor SoC Platform and Tools
for Communications Applications. CRC Press, 2006.

[Pri08] Prismtech website.www.prismtech.com, June 2008.

[PRP05] A. Puder, K. Römer, and F. Pilhofer.Distributed Systems Architecture: A Middleware
Approach. Morgan Kaufmann, San Francisco, CA, USA, November 2005.

[PRSV98] R. Passerone, J.A. Rowson, and A. Sangiovanni-Vincentelli. Automatic synthesis of
interfaces between incompatible protocols.In Proc. of the 36th Design Automation
Conference (DAC’98), pages 8–13, Jun 1998.

[PS98] Irfan Pyarali and Douglas C. Schmidt. An overview of the CORBA portable object
adapter.StandardView, 6(1):30–43, 1998.

[PSG+99] Irfan Pyarali, Douglas Schmidt, Aniruddha Gokhale, Nanbor Wang, and Vishal
Kachroo. Applying Optimization Principle Patterns to Real-time ORBs. InProc. 5
th USENIX Conference on O-O Technologies and Systems (COOTS’99, 1999.

www.st.informatik.tu-darmstadt.de
www.prismtech.com

[PT05] D. Pellerin and S. Thibault.Practical FPGA Programming in C. Prentice Hall PTR,
April 2005.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software components.Software
Engineering, IEEE Transactions on, 28(11):1056–1076, Nov 2002.

[QS05] Yang Qu and Juha-Pekka Soininen. SystemC-based Design Methodology for Reconfig-
urable System-on-Chip. InDSD ’05: Proceedings of the 8th Euromicro Conference on
Digital System Design, pages 364–371, Washington, DC, USA, 2005. IEEE Computer
Society.

[QSC04] J. Quévremont, M. Sarlotte, and B. Candaele. Development process of a DRM digital
broadcast SoC receiver platform.Annales des Télécommunications, Sept-Oct 2004.

[Rad00] M. Radetzki.Synthesis of Digital Circuits from Object-Oriented Specifications. PhD
thesis, University of Oldenburg, Germany, April 2000.

[Rat] Rational.www.ibm.com/software/rational.

[RBK00] A. Rajawat, M. Balakrishnan, and A. Kumar. Interface synthesis: issues and approaches.
In Proc. of the 13th International Conference on VLSI Design(VLSI Design’00), pages
92–97, 2000.

[RCP+01] R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross, J. Hammes, W. A. Najjar, and
W. Böhm. An automated process for compiling dataflow graphs into reconfigurable
hardware.IEEE Trans. Very Large Scale Integr. Syst., 9(1):130–139, 2001.

[RDP+05] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal,E. Rijpkema, P. Wielage, and
K. Goossens. An efficient on-chip NI offering guaranteed services, shared-memory
abstraction, and flexible network configuration.Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 24(1):4–17, Jan. 2005.

[Rec07] W3C Recommendation. SOAP Version 1.2 specification.
www.w3.org/TR/soap12, April 2007.

[RGR+03] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J.van Meerbergen, P. Wielage,
and E. Waterlander. Trade-offs in the design of a router withboth guaranteed and best-
effort services for networks on chip.IEEE Proceedings Computers and Digital Tech-
niques, 150(5):294–302, Sept. 2003.

[RIJ04] J. Rumbaugh and G. Booch I. Jacobson.The Unified Modeling Language Reference
Manual Second Edition. Addison Wesley, July 2004.

[Rit98] David Ritter. The middleware muddle.SIGMOD Rec., 27(4):86–93, 1998.

[RKC01] Manuel Roman, Fabio Kon, and Roy H. Campbell. Reflective middleware: From your
desk to your hand.IEEE Distributed Systems Online, 2(5), 2001.

[RL02] John Reekie and Edward A. Lee. Lightweight ComponentModels for Embedded Sys-
tems. Technical Report UCB ERL M02/30, Electronics Research Laboratory, University
of California at Berkeley, October 2002.

www.ibm.com/software/rational
www.w3.org/TR/soap12

[RMB+05] F. Rincón, F. Moya, J. Barba, D. Villa, F. J. Villanueva, and J. C. López. A New
Model for NoC-based Distributed Heterogeneous System Design. In Parallel Com-
puting, ParCo’05, pages 777–784, September 2005.

[RMBL05] F. Rincón, Francisco Moya, Jesús Barba, and Juan Carlos López. Model Reuse through
Hardware Design Patterns. InDATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 324–329, Washington, DC, USA, 2005. IEEE
Computer Society.

[RMKC00] Manuel Roman, M. Dennis Mickunas, Fabio Kon, and Roy Campbell. LegORB and
ubiquitous CORBA. Inin Proc. IFIP/ACM Middleware’2000 Workshop on Reflective
Middleware (RM2000, pages 1–2, 2000.

[RRS+05] Sylvain Robert, Ansgar Radermacher, Vincent Seignole,Sébastien Gérard, Virginie Wa-
tine, and François Terrier. The CORBA connector model. InSEM ’05: Proceedings of
the 5th international workshop on Software engineering andmiddleware, pages 76–82,
New York, NY, USA, 2005. ACM.

[RSB+06] M. Rieder, R. Steiner, C. Berthouzoz, F. Corthay, and T. Sterren. Rapid Integration of
Software Engineering Techniques, volume 3943 ofLecture Notes in Computer Science,
chapter Synthesized UML, a Practical Approach to Map UML to VHDL„ pages 203–
217. Springer Berlin / Heidelberg, May 2006.

[RSH01] Hans Reiser, Martin Steckermeier, and Franz J. Hauck. IDLflex: a flexible and generic
compiler for CORBA IDL. InIn Proc. of the Net.ObjectDays, pages 151–160, Erfurt,
Germany, Sep. 2001.

[RSPF05] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez. Transaction Level Modelling in
SystemC, OSCI whitepaper.www.systemc.org, April 2005.

[RSRB05] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A SoC Design Methodology
Involving a UML 2.0 Profile for SystemC. InDATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 704–709, Washington, DC, USA,
2005. IEEE Computer Society.

[RSV97] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface-based design. InDAC ’97:
Proceedings of the 34th annual conference on Design automation, pages 178–183, New
York, NY, USA, 1997. ACM.

[RTZ] RT Zen.doc.ece.uci.edu/rtzen.

[Rum87] J. Rumbaugh. Relations as semantic constructs in anobject-oriented language. InOOP-
SLA ’87: Conference proceedings on Object-oriented programming systems, languages
and applications, pages 466–481, New York, NY, USA, October 1987. ACM.

[RZP+05] Krishna Raman, Yue Zhang, Mark Panahi, Juan A. Colmenares, Raymond Klefstad,
and Trevor Harmon. RTZen: Highly Predictable, Real-Time Java Middleware for Dis-
tributed and Embedded Systems. InMiddleware, pages 225–248, 2005.

[S.06] Rouxel S.Modélisation et Caractérisation d’une Plate-Forme SOC Hétérogène : Ap-
plication à la Radio Logicielle. PhD thesis, University of South Brittany, France, De-
cember 2006.

www.systemc.org
doc.ece.uci.edu/rtzen

[SB03] D. C. Schmidt and F. Buschmann. Patterns, frameworks, and middleware: their syn-
ergistic relationships. InIn Proc. of the 25th International Conference on Software
Engineering (ICSE ’03), pages 694–704, Washington, DC, USA, 2003. IEEE Computer
Society.

[SBF04] B. Steinbach, T. Beierlein, and D. Fröhlich.Languages for system specification: se-
lected contributions from FDL’03, chapter UML-based co-design for run-time recon-
figurable architectures, pages 5–19. Kluwer Academic Publishers, Norwell, MA, USA,
2004.

[SC99] D.C. Schmidt and C. Cleeland. Applying patterns to develop extensible ORB middle-
ware. IEEE Communications Magazine, 37(4):54–63, Apr 1999.

[SCG05] V. Subramonian and C. Christopher Gill.Embedded Systems Handbook, chapter Mid-
dleware Design and Implementation for Networked Embedded Systems, pages pp. 1–
17. CRC Press, Florida, richard zurawski edition, 2005.

[Sch94] D. C. Schmidt. The adaptive communication environment: Object-oriented network
programming components for developing client/server applications. In12th Sun Users
Group Conference, June 1994.

[Sch98] D. C. Schmidt. Evaluating architectures for multithreaded object request brokers.Com-
mun. ACM Special Issue on CORBA, 41(10):54–60, 1998.

[Sch99] G. Schumacher.Object-oriented hardware specification and design with a language
extension to VHDL. PhD thesis, University of Oldenburg, Germany, April 1999.

[Sch06] D.C. Schmidt. Model-driven engineering.Computer, 39(2):25–31, February 2006.

[SCM08] CoWare SCML (SystemC Modeling Library) source codekit.
www.coware.com/solutions/scml_kit.php, 2008.

[SDG+07] Venkita Subramonian, Gan Deng, Christopher Gill, Jaiganesh Balasubramanian, Liang-
Jui Shen, William Otte, Douglas C. Schmidt, Aniruddha Gokhale, and Nanbor Wang.
The design and performance of component middleware for QoS-enabled deployment
and configuration of DRE systems.J. Syst. Softw., 80(5):668–677, 2007.

[Sel04] B. Selic.Formal Methods for the Design of Real-Time Systems, volume 3185 ofLecture
Notes in Computer Science, chapter On the Semantic Foundations of Standard UML
2.0, pages 181–199. Springer, December 2004.

[SFB05] B. Steinbach, D. Fröhlich, and T. Beierlein.UML for SOC Design, chapter Hard-
ware/Software Codesign of Reconfigurable Architectures Using UML, pages 89–117.
Springer, 2005.

[SG07a] D. Schreiner and K. M. Göschka. Explicit connectorsin component based software
engineering for distributed embedded systems. InSOFSEM, pages 923–934, 2007.

[SG07b] D. Schreiner and K. M. Göschka. Synthesizing communication middleware from ex-
plicit connectors in component based distributed architectures. InSoftware Composi-
tion, pages 160–167, March 2007.

www.coware.com/solutions/scml_kit.php

[Sha86] M. Shapiro. Structure and encapsulation in distributed systems: the proxy principle.
In Proceedings of the 6th Int. Conf. on Distributed Systems (ICDCS), pages 198–204,
Cambridge MA (USA), May 1986.

[Sif05] Joseph Sifakis. A framework for component-based construction extended abstract. In
SEFM ’05: Proceedings of the Third IEEE International Conference on Software En-
gineering and Formal Methods, pages 293–300, Washington, DC, USA, 2005. IEEE
Computer Society.

[SK97] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110–111,
April 1997.

[SKH98] B. Svantesson, S. Kumar, and A. Hemani. A methodology and algorithms for efficient
interprocess communication synthesis from system description in SDL. In In Proc. of
the Eleventh International Conference on VLSI Design, pages 78–84, Erfurt, Germany,
Jan. 1998.

[SKH05] E. Salminen, A. Kulmala, and T.D. Hamalainen. HIBI-based multiprocessor SoC on
FPGA. Circuits and Systems, 2005. ISCAS 2005. IEEE InternationalSymposium on,
4:3351–3354, May 2005.

[SKH07] E. Salminen, A. Kulmala, and T.D. Hamalainen. On network-on-chip comparison. In
Digital System Design Architectures, Methods and Tools, 2007. DSD 2007. 10th Eu-
romicro Conference on, pages 503–510, Aug. 2007.

[SKKR01] C. Schulz-Key, T. Kuhn, and W. Rosenstiel. A Framework for System-Level Partitioning
of Object-Oriented Specifications. InWorkshop on Synthesis and System Integration of
Mixed Technologies (SASIMI), 2001.

[SKWS+04] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and W. Rosenstiel. Object-
oriented modeling and synthesis of SystemC specifications.In In Proc. of the 2004
conference on Asia South Pacific design automation (ASP-DAC’04), pages 238–243,
Piscataway, NJ, USA, 2004. IEEE Press.

[SLM98] D. C. Schmidt, D. L. Levine, and S. Mungee. The Designof the TAO Real-Time Object
Request Broker.Computer Communications, 21(4):294–324, April 1998.

[SMC+07] M. Sarlotte, D. Maufroid, R. Chau, B. Counil, and P. Gelineau. Partial reconfigura-
tion concept in a SCA approach. InIn Proc. of the SDR Forum Technical Conference
(SDR’07), November 2007.

[Smi98] Douglas J. Smith.HDL Chip Design: A Practical Guide for Designing, Synthesizing
and Simulating ASICs and FPGAs Using VHDL or Verilog. Doone Publications, 1998.
Foreword By-Zamfirescu, Alex.

[Sol] Agility Design Solutions. DK Design Suite.www.agilityds.com.

[SON06] A. Schallenberg, F. Oppenheimer, and W. Nebel. OSSS+R: Modelling and Simulating
Self-Reconfigurable Systems. In IEEE, editor,In Proc. of International Conference on
Field Programmable Logic and Applications (FPL’06), pages 177–182, August 2006.

[SP96] C. Szyperski and C. Pfister. First International Workshop on Component-Oriented Pro-
gramming WCOP’96, Workshop Report, July 1996.

www.agilityds.com

[SPI08] SPIRIT. IP-XACT v1.4: a specification for XML meta-data and tool interfaces.
www.spiritconsortium.org, March 2008.

[SR04] T. Schattkowsky and A. Rettberg. UML for FPGA Synthesis. In Proc. of the UML for
SoC Design Workshop, June 2004.

[SS01] S. Sendall and A. Strohmeier.UML 2001 - The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, volume 2185 ofLecture Notes in Computer Science,
chapter Specifying Concurrent System Behavior and Timing Constraints Using OCL
and UML, pages 391–405. Springer, January 2001.

[SSC98] A. Singhai, A. Sane, and R.H. Campbell. Quarterwarefor middleware. Distributed
Computing Systems, 1998. Proceedings. 18th InternationalConference on, pages 192–
201, May 1998.

[SSM+01] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design. InIn Proceedings of the 38th Design Automa-
tion Conference, DAC ’01, June 2001.

[SSRB00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pattern-Oriented Software Ar-
chitecture (POSA) Vol. 2: Patterns for Concurrent and Networked Objects. Wiley, July
2000.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. InPODC ’95: Proceed-
ings of the fourteenth annual ACM symposium on Principles ofdistributed computing,
pages 204–213, New York, NY, USA, 1995. ACM.

[SV01] Douglas C. Schmidt and Steve Vinoski. Using StandardC++ in the OMG C++ Mapping.
Dr. Dobb’s Journal, avril 2001.

[SV02] A. Sangiovanni-Vincentelli. Defining Platform-based Design.EEDesign of EETimes,
February 2002.

[SV07] A. L. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning about Trends and Chal-
lenges of System-Level Design.Proceedings of the IEEE, 95(3):467–506, March 2007.

[SVL01] D. Truscan S. Virtanen and J. Lilius. SystemC Based Object Oriented System Design. In
In Proc. of Forum on Specification and Design Languages 2002 (FDL’01), September
2001.

[SXG+04] V. Subramonian, Guoliang Xing, C. Gill, Chenyang Lu, andR. Cytron. Middleware
specialization for memory-constrained networked embedded systems.Real-Time and
Embedded Technology and Applications Symposium, 2004. Proceedings. RTAS 2004.
10th IEEE, pages 306–313, May 2004.

[Syn] Synfora. Pico express.www.synfora.com.

[Sys] Forte Design Systems. Cynthesizer.www.forteds.com.

[Sys08] Objective Interface Systems. ORBexpress®FPGA Datasheet.www.ois.com, June
2008.

www.spiritconsortium.org
www.synfora.com
www.forteds.com
www.ois.com

[Szy02] C. Szyperski.Component Software - Beyond Object-Oriented Programming,2nd ed.
Addison-Wesley, 2002.

[Tan96] A. S. Tanenbaum.Computer Networks, 3rd ed.Prentice Hall, 1996.

[TAO08] The ACE ORB (TAO).www.cs.wustl.edu/~schmidt/TAO.html, 2008.

[TBR07] T. Tsou, P.J. Balister, and J.H. Reed. Latency Profiling for SCA Software Radio. In
SDR Forum Technical Conference, Denver, CO, November 2007.

[Tec] Impulse Accelerated Technologies. ImpulseC.
www.impulsec.com/C_to_fpga.htm.

[THA05] T.Kogel, A. Haverinen, and J. Altis. OCP TLM for Architectural Modelling, OCP-IP
white-paper.www.ocpip.org, 2005.

[Tho97] J. Thompson. Avoiding a middleware muddle.Software, IEEE, 14(6):92–95, Nov/Dec
1997.

[Tor92] F.M. Torre. Speakeasy - a new direction in tactical communications for the 21st century.
In Proc. of the Tactical Communications Conference, volume 1, pages 139–142 vol.1,
Apr 1992.

[Tut02] W. H.W. Tuttlebee, editor.Software Defined Radio: Origins, Drivers and International
Perspectives. Wiley, January 2002.

[UoT08] Germany University of Tuebingen. OASE (Objektorientierter hArdware/Soft-
ware Entwurf, Object oriented design of hardware/softwaresystems) Project.
www-ti.informatik.uni-tuebingen.de/~oase, June 2008.

[vdWdKH+04] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink. Design
and programming of embedded multiprocessors: an interface-centric approach. In
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pages 206–217, New York, NY,
USA, 2004. ACM.

[vdWdKH+06] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink.Embedded
Systems Handbook, chapter Design and Programming of Embedded Multiprocessors:
An Interface-Centric Approach. CRC Press, 2006.

[VHPK04] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: A Schizophrenic Mid-
dleware to Build Versatile Reliable Distributed Applications. In Reliable Software
Technologies - Ada-Europe 2004, volume 3063 ofLecture Notes in Computer Science
(LNCS), pages 106 — 119, June 2004.

[Vin03] S. Vinoski. It’s just a mapping problem.Internet Computing, IEEE, 7(3):88–90, May-
June 2003.

[VKZ04] M. Voelter, M. Kircher, , and U. Zdun.Remoting Patterns - Foundations of Enterprise,
Internet, and Realtime Distributed Object Middleware. Wiley, October 2004.

[vOvdLKM00] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component
model for consumer electronics software.Computer, 33(3):78–85, Mar 2000.

www.cs.wustl.edu/~schmidt/TAO.html
www.impulsec.com/C_to_fpga.htm
www.ocpip.org
www-ti.informatik.uni-tuebingen.de/~oase

[WAU+08] S.K. Wood, D.H. Akehurst, O. Uzenkov, W.G.J. Howells, and K.D. McDonald-Maier.
A Model-Driven Development Approach to Mapping UML State Diagrams to Synthe-
sizable VHDL.Computers, IEEE Transactions on, 57(10):1357–1371, Oct. 2008.

[WQ05] A. J. A. Wang and K. Qian.Component-Oriented Programming. John Wiley & Sons,
May 2005.

[WSBG08] V. Watine, V. Seignole, H. Balp, and G. Gailliard. IDL-to-VHDL
Mapping Initial Requirements, OMG Washington Technical Meeting.
www.omg.org/docs/mars/08-03-17.pdf, March 2008.

[WT08] LIFL Laboratory West Team, DaRT Project. GASPARD2 (Graphical Array
Specification for Parallel and Distributed Computing) MPSoC co-modeling tool.
www2.lifl.fr/west/gaspard/, 2008.

[WX07] Y. F. Wu and Y. Xu. Model-Driven SoC/SoPC Design via UML to Impulse C. In
Proceedings of the UML for SoC Design Workshop, June 2007.

[WZZ+06] Ying Wang, Xue-Gong Zhou, Bo Zhou, Liang Liang, and Cheng-Lian Peng. A MDA
based SoC Modeling Approach using UML and SystemC. InComputer and Information
Technology, 2006. CIT ’06. The Sixth IEEE International Conference on, pages 245–
245, Sept. 2006.

[Xil07] Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide v.4.2.www.xilinx.com,
Nov. 2007.

[YMS+98] J. S. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, and A. R. Newton.
Design and specification of embedded systems in Java using successive, formal refine-
ment. InDAC ’98: Proceedings of the 35th annual conference on Designautomation,
pages 70–75, New York, NY, USA, 1998. ACM.

[Zim80] H. Zimmermann. OSI Reference Model–The ISO Model ofArchitecture for Open Sys-
tems Interconnection.Communications, IEEE Transactions on, 28(4):425–432, Apr
1980.

[ZRM06] Y. Zhang, J. Roivainen, and A. Mammela. Clock-Gating in FPGAs: A Novel and
Comparative Evaluation. InDigital System Design: Architectures, Methods and Tools,
2006. DSD 2006. 9th EUROMICRO Conference on, pages 584–590, 2006.

www.omg.org/docs/mars/08-03-17.pdf
www2.lifl.fr/west/gaspard/
www.xilinx.com

Abstract

This thesis deals with the hardware application of the software concepts of middleware and software
architecture based on components, containers and connectors within Field-Programmable Gate Arrays
(FPGAs). The target application domain isSoftware Defined Radio(SDR) compliant with theSoftware
Communications Architecture(SCA). With the SCA, software radio applications are broken intofunc-
tional waveform components to be deployed on heterogeneousand distributed hardware/software radio
platforms. These components provide and require abstract software interfaces described using operation
signatures in theUnified Modeling Language(UML) and/or theInterface Definition Language(IDL)
of theCommon Object Request Broker Architecture(CORBA) middleware, both standardized by an in-
ternational software industry consortium calledObject Management Group(OMG). The portability and
reusability needs of these business components require that their abstract interfaces defined at a system
level are independent of a software or hardware implementation and can be indifferently translated into a
software programming language like C/C++, a system language like SystemC at transaction level (Trans-
action Level Modeling- TLM), or a hardware description language like VHDL or SystemC atRegister
Transfer Level(RTL). The interoperability need of SDR components requires transparent communica-
tions regardless of their hardware/software implementation and their distribution. These first needs were
addressed by formalizing mapping rules between abstract components in OMG IDL3 or UML2, signal-
based hardware components described in VHDL or SystemC RTL,and system components in SystemC
TLM. The second requirement was addressed by prototyping a hardware middleware using transparently
memory mapping and two message protocols: CORBAGeneral Inter-Object Request Broker Protocol
(GIOP) and SCAModem Hardware Abstraction Layer(MHAL).

Résumé

Cette thèse s’intéresse à la déclinaison matérielle des concepts logiciels d’intergiciel et d’architecture
logicielle à base de composants, conteneurs et connecteursdans les réseaux de portes programmables in
situ (Field-Programmable Gate Array- FPGA). Le domaine d’applications ciblé est la radio définie logi-
ciellement (Software Defined Radio(SDR)) conforme au standardSoftware Communications Architec-
ture) (SCA). Avec le SCA, les applications radio sont décomposées en composants fonctionnels, qui sont
déployés sur des plateformes radios hétérogènes et distribuées. Ces composants fournissent et requièrent
des interfaces logicielles abstraites décrites sous formede signatures d’opérations dans le langage de
modélisation unifié appeléUnified Modeling Language(UML) et/ou le langage de définition d’interface
(Interface Definition Language- IDL) de l’intergicielCORBA (Common Object Request Broker Archi-
tecture) standardisé par un consortium industriel appeléObject Management Group(OMG). Les besoins
de portabilité et de réutilisation de ces composants requièrent que leurs interfaces abstraites définies au
niveau système soient indépendantes d’une implémentationlogicielle ou matérielle et puissent être in-
différemment traduites dans un langage de programmation logiciel tel que C/C++, un langage système
tel que SystemC au niveau transaction (Transaction Level Modeling- TLM), ou un langage de descrip-
tion matériel tel que VHDL ou SystemC au niveau registre (Register Transfer Level- (RTL)). Le besoin
d’interopérabilité de ces composants requière des communications transparentes quelques soient leur
implémentation logicielle ou matérielle et leur distribution. Ces premiers besoins ont été adressés en for-
malisant des règles de mise en correspondance entre des composants abstraits en OMG IDL3 ou UML2,
des composants matériels à base de signaux en VHDL ou SystemCRTL, et des composants systèmes en
SystemC TLM. Le deuxième besoin a été adressé en prototypantun intergiciel matériel utilisant de façon
transparente le mapping mémoire et deux protocoles messages: CORBAGeneral Inter-Object Request
Broker Protocol(GIOP) et SCAModem Hardware Abstraction Layer(MHAL).

	Acknowledgments
	Introduction
	Context: Real-Time, Heterogeneous and Distributed Hardware/Software Embedded Systems
	Thesis Organization

	Models and Methodologies for Embedded Systems Design
	Introduction
	Languages
	Models of Computation
	Models of Communication
	Parallel Programming Models
	Traditional hardware/software design flow
	System-Level Design (SLD) with Transaction-Level Modeling (TLM)
	Model-Based Design (MBD) and Model-Driven Engineering (MDE)
	Platform-Based Design (PBD)
	Conclusion

	Hardware Communication Infrastructure Architecture
	On-chip buses
	Interconnection Sockets
	Network-On-Chip (NoC) Architecture
	Conclusion

	Object-Oriented Design (OOD)
	Fundamental Concepts
	Object-Oriented Hardware Design
	Synthesis
	Conclusion

	Middlewares
	Middleware Definition
	Middleware Requirements
	Middleware Classification
	OMG Object Management Architecture (OMA)
	CORBA Object Model
	State of the art on hardware implementations of object middlewares
	Conclusion

	Component-Oriented Architecture
	Introduction
	Definitions
	From Object-Oriented to Component-Oriented approach
	Principles
	Technical Concepts
	Software Component Models
	Hardware Component Models for FPGAs and ASICs
	System Component Models
	Conclusion

	Unified Component and Middleware Approach for Hardware/Software Embedded Systems
	Introduction
	Component-Oriented Design Flow
	Mapping OO component-based specification to system, SW and HW components
	Hardware Application of the Software Communications Architecture
	Hardware Middleware Architecture Framework
	Limitations
	Conclusion

	Experiments
	Introduction
	DiMITRI MPSoC for Digital Radio Mondiale (DRM)
	High-Data Rate OFDM Modem
	Conclusion

	Conclusions and Perspectives
	Problems
	Synthesis
	Contributions
	Limitations
	Conclusions
	Perspectives

	CORBA IDL3 to VHDL and SystemC RTL Language Mappings
	Naming Convention
	Common Standard Interfaces and Protocols
	Constant
	Basic Data Types
	Constructed Data Types
	Attribute
	Scoped Name
	Module
	Interface
	Operation Invocation
	Object
	Inheritance
	Interface Attribute
	Component Feature
	Not Supported Features
	Mapping Summary

	Personal Bibliography
	Résumé Etendu
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Glossary
	Bibliography

