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Résumé des Travaux

Aujourd’hui il est possible d’étudier à partir des premier principes la réponse sous excita-
tion de matériaux utilisés dans des applications modernes très variés. En effet, grâce à
de récents développements théoriques, ainsi qu’à l’optimisation des algorithmes de calcul,
les simulations ab initio ne sont plus seulement limitées à des systèmes idéaux simplifiés,
mais elles ont finalement l’ambition de capturer toute la complexité de l’échantillon testé
dans l’expérience.

Dans ce contexte, ce mémoire porte sur l’étude, à l’aide de différentes approches ab ini-

tio, des excitations électroniques dans une gamme de matériaux complexes et nanostruc-
turés. Pour accéder aux excitations électroniques, la connaissance de la densité de l’état
fondamental du système n’est plus suffisante, ce qui signifie que l’on doit trouver le moyen
approprié d’aller au-delà de la théorie de la fonctionnelle de la densité (DFT) standard.
Deux voies ont été intensivement explorées: l’une est basée sur la densité dépendante du
temps et l’autre sur les fonctions de Green.

La théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) a été pro-
posée en 1984 par Runge et Gross, qui ont dérivé un théorème du type Hohenberg-Kohn
pour l’équation de Schrödinger en fonction du temps. Le champ d’application de cette
généralisation de la théorie de la fonctionnelle de la densité inclut le calcul des spectres
de photo-absorption ou, plus généralement, l’étude de l’interaction de la matière avec des
champs électromagnétiques ou des particules qui la perturbent.

À présent, l’application la plus populaire de cette théorie est l’extraction des propriétés
de l’état électronique excité, et en particulier des fréquences d’excitation électroniques.
En appliquant la TDDFT, après avoir déterminé l’état fondamental d’une molécule ou un
agrégat, nous pouvons explorer et comprendre son spectre d’absorption, ayant en même
temps des informations extrêmement détaillées sur le comportement du système excité.

La complexité du problème à plusieurs corps en TDDFT est cachée dans le potentiel
d’échange et de corrélation dépendant du temps qui apparaît dans les équations de Kohn-
Sham et pour lequel il est primordial de trouver une bonne approximation. Beaucoup
d’approximations ont été proposées et testées pour les systèmes finis, où même la très
simple approximation TDLDA a souvent donné de très bons résultats. En général, les
approximations existantes pour la fonctionnelle d’échange et corrélation fonctionnent assez
bien pour certaines propriétés, mais elles se montrent insuffisantes pour d’autres. Dans le
cas des matériaux solides, la TDDLA ne parvient pas à reproduire les spectres d’absorption
optique, qui sont par contre bien décrits par la résolution de l’équation de Bethe-Salpeter
en combinaison avec l’approximation GW pour les états de quasi-électron. D’autre part,
la TDLDA peut déjà conduire à des résultats excellents pour la fonction de perte d’énergie
d’un solide.

La solution de l’équation de Bethe-Salpeter est beaucoup plus onéreuse du point de vue
numérique. Ainsi, on poursuit encore la recherche d’approximations fiables en TDDFT, et
au fil du temps, on espère atteindre la même maturité qu’on trouve maintenant dans la
DFT pour l’état fondamental.
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En particulier, de nouvelles perspectives (et ses limites) ont étés révélées pendant
ces dernières années grâce à la combinaison de deux théories distinctes : la TDDFT
et l’approche des fonctions de Green (dont l’approximation GW et l’équation de Bethe-
Salpeter font partie). Ces deux approches peuvent partager dans la pratique le point de
départ commun de la théorie de la fonctionnelle de la densité pour le calcul de l’état fon-
damental électronique. Leur combinaison permet d’allier la simplicité de l’une (TDDFT)
avec la précision de l’autre (GW et Bethe-Salpeter), afin d’en déduire des noyaux d’échange
et de corrélation pour les solides. À partir de ces noyaux nous avons aussi travaillé sur le
développement de noyaux modèles pour des applications efficaces à des systèmes de grande
taille.

Le présent mémoire contient une vue d’ensemble relativement condensée de la TDDFT
et des approches basées sur la théorie des fonctions de Green, avec des applications aux
domaines des nanotechnologies, aux matériaux photovoltaïques et au stockage de données.
Ces applications ont constitué notre principal sujet de recherche au cours des dernières
années. Ce mémoire est organisée comme suit.

Avant d’entrer dans le domaine des approches pour les états excités, nous donnons dans
le chapitre 1 un bref aperçu des idées de base de la DFT pour l’état fondamental, ce qui
nous permet d’expliquer pourquoi il faut aller au-delà de la DFT standard, d’introduire
quelques concepts-clés et de fixer la notation de base qui sera utilisée dans ce mémoire.

Les chapitres suivants font un point sur la théorie formelle, avec une brève présentation
des approches théoriques utilisées pour étudier les excitations électroniques: le chapitre 2
est dédié aux approches GW et à l’équation de Bethe-Salpeter, tandis que la TDDFT et la
théorie de la réponse linéaire sont décrites dans le chapitre 3. Les noyaux dérivés à partir
de l’équation de Bethe-Salpeter et notre travail sur les noyaux modèles sont discutés dans
le chapitre 4.

Le chapitre 5 contient des applications de la TDDFT dans le domaine de la réponse
linéaire aux nanostructures. L’objectif principal est d’obtenir des spectres fiables (en
général des spectres d’absorption) à partir de calculs de premiers principes. En comparant
ces spectres avec des courbes expérimentales, on peut normalement déduire des informa-
tions importantes qui ne sont pas directement accessibles dans les expériences. D’autre
part, la connaissance détaillée des propriétés d’excitation électronique contribue à une
meilleure compréhension de la physique de ces systèmes dans leur généralité.

Le chapitre 6 présente des applications à des matériaux solides d’intérêt technologique.
En particulier, nous nous sommes intéressé aux propriétés optiques des matériaux à
changement de phase, utilisés dans le DVD re-inscriptibles, ainsi que aux états électron-
iques des absorbeurs et des oxydes transparents conducteurs pour les cellules solaires à
couches minces.

Le chapitre 7 est dédié aux cruciales interactions de van der Waals et au calcul – via la
TDDFT – des paramètres qui les décrivent. Nous discutons à la fois des interactions entre
deux agrégats, et entre un agrégat et une surface semi-conductrice.

Le dernier chapitre 8 fait le point sur les résultats de notre réflexion.



Chapter 1

Introduction

1.1 Preliminary remarks

Most of today’s quantum mechanical theoretical research in condensed matter physics and
chemistry is not aimed at finding new fundamental interactions or basic laws, but it deals
with solving the Schrödinger equation of a well-known Hamiltonian, and extracting useful
information from the solution. This Hamiltonian, however, describes a many-body prob-
lem, and for a number of electrons above 10 it is impossible to even dream of a numerically
exact solution. Moreover the exact solution would yield a wealth of information that could
hardly be understood without further analysis and simplification, and contain many de-
tails that, for a given situation or question, one is probably not interested in [1]. Therefore
it is often more appropriate to reformulate the problem, and work with effective Hamilto-
nians or selected expectation values that are suitable for the solution of a reduced problem.
This procedure will ideally simplify both the calculation and the analysis of the desired
quantities.

Density-Functional Theory (DFT) [2, 3] is a prominent example for such an ap-
proach. It has been designed for the calculation of ground state properties and it is
based on the knowledge of the density n(r) instead of the full many-body wavefunction
Ψ(r1, σ1, r2, σ2, . . . , rN , σN ) of the N -particle system. With the help of the Rayleigh-Ritz
principle, it is possible to prove the following three statements, that constitute the cele-
brated Hohenberg-Kohn theorem [2] and that are the at the basis of DFT:

1. The ground state electronic density of an interacting system of electrons fully and
uniquely determines the external potential, v(r), that these electrons experience and
thus the Hamiltonian, the many-body wave-function, and all observables of the sys-
tem.

2. There exists a functional1 F [n] such that the total energy E[n] can be written in the
form

E[n] = F [n] +

∫

d3r n(r)v(r) . (1.1)

The functional F is universal, in the sense that its functional dependence on the
density is the same for all systems with the same particle-particle interaction.

3. The ground state energy of this system can be obtained byminimizing the total energy
functional E[n] in terms of the density.

1By “[n]” we denote a functional dependence on n.
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The Hohenberg-Kohn theorem is an existence theorem: it proves that the ground-state
of the system can be obtained from the density alone, but, unfortunately, it does not teach
us how to do it in practice. To overcome this impasse, Kohn and Sham [3] proposed the
use of an auxiliary non-interacting system, the Kohn-Sham (KS) system, with the same
density as the interacting system. In the KS scheme, the electrons obey a simple, one-
particle, Schrödinger equation with an effective external potential vKS:

[

−
∇2

2
+ vKS[n](r)

]

ϕi(r) = εiϕi(r) . (1.2)

The KS orbitals ϕi(r) and KS eigenvalues εi do in general not have a direct physical mean-
ing, but the former can be used to construct the true density of the interacting system
according to

n(r) =
∑

i

|ϕi(r)|
2 . (1.3)

As vKS is a functional of the electronic density, the solution of this equation has to be
performed self-consistently. The effective potential vKS is usually decomposed in the form

vKS(r) = vext(r) + vHartree(r) + vxc(r) . (1.4)

The first term is the external potential (normally the Coulomb interaction between the
electrons and the nuclei), whereas the second includes the classical (Hartree) part of the
electron-electron interaction. The complication of the problem is hidden in the – unknown
– exchange and correlation (xc) potential vxc[n](r), which is the functional derivative with
respect to the density of the exchange-correlation energy contribution Exc[n] to the total
energy functional E[n].

Very efficient approximations have been proposed for Exc[n], such as the Local Density
Approximation (LDA) [3] or Generalized Gradient Approximations (GGA) [4], and many
ground state properties of extended systems, like lattice parameters or phonon frequen-
cies [5], are today calculated from first principles with a precision of a few percent. There
exist, however, ground state properties for which standard approximations do less well,
even in simple systems: cohesive energies in particular can easily be off by 10% in LDA
(because of errors in calculating the isolated atoms that enter this total energy difference),
and failures are reported for static response properties, like the dielectric constant ǫ∞,
which is often substantially overestimated [6]. Other problems arise, e.g., in the descrip-
tion of strongly correlated systems [7], or of the van der Waals dispersion attraction [8].
These problems in calculating ground state properties can be traced back to limits of valid-
ity of the employed approximations.

Another problem of static ground state DFT-Kohn-Sham is the fact that excitations,
such as those measured in the optical response to a time-dependent electric field, are in
principle not accessible. This is not a question of the available approximations, but of the
fact that the theory is not meant to describe these phenomena. In fact, even if one could
calculate the exact Kohn-Sham eigenvalues, their differences would not necessarily be close
to measured excitation energies. Neither, by definition, they stand for electron addition or
removal energies [9]. Hence, the fact that the Kohn-Sham gap is in general reported to be
too small with respect to measured gaps does not tell us a priori anything about the quality
of a chosen approximation for the exchange-correlation potential.

If one wants to work with an efficient Hamiltonian that in principle yields eigenvalues
meant to be electron addition or removal energies, or excitation energies, the knowledge of
the static ground state density is not sufficient any more. Such energies can be found in
essentially two ways.
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First, by studying particle propagation and fluctuations in the system. This gives corre-
lation functions that can then be related to response functions yielding, e.g., linear response
for optical absorption. These correlation functions are one-or two body Green’s functions
[10] (or even higher order ones, for problems beyond the scope of this work). The one-
body Green’s function (that can essentially be understood as a time-dependent particle
and hole density matrix) has phase fluctuations [or, in frequency (ω-) space, poles] given
by electron addition and removal energies, measured, e.g., in photoemission or inverse
photoemission experiments. The particle-hole part of the two-particle Green’s function, in
turn, has poles at the energies of neutral excitations. A contraction of the four-point re-
ducible part L(r, r1, r

′, r′1, ω) of the two-particle Green’s function leads to the two-point re-
sponse function χ(r, r′, ω) that determines measurable spectra, like absorption or electron
energy loss spectra (EELS). Many-body perturbation Theory (MBPT) yields a framework
where suitable approximations for those Green’s functions can be found. In particular the
GWapproximation, introduced in 1965 by Lars Hedin [11], has been extremely successful
in describing electron addition and removal energies for metals, semiconductors and in-
sulators, in the bulk as well as at surfaces and for confined structures, and is therefore
one of the methods of choice for the description of direct and inverse photoemission exper-
iments. Restricted self-consistent procedures [12, 13, 14] have been recently proposed and
used with success for transition metal oxides, where standard perturbative GW fails. Con-
cerning neutral excitations, the Bethe-Salpeter Equation (BSE) is a good starting point for
approximations for χ [10, 15, 16, 17]. The price to be paid for a physically intuitive and
in general quite reliable description is however relatively high in terms of computational
cost, because now quantities like L(r, r1, r

′, r′1, ω) appear, instead of the density n(r).

Second, by actually exposing (in the computer) the system to a time-dependent exter-
nal potential and calculating the evolution of the density in time. The response func-
tion χ, for example, can then directly be determined from the linear response relation
n(1)(r, ω) =

∫

d3r′χ(r, r′, ω)v
(1)
ext(r

′, ω) between the variation of the external potential and the
induced density. This route has become accessible thanks to the extension of DFT to its
time-dependent formulation (TDDFT) [18, 19, 20, 21, 22]. Put on a rigorous basis by the
Runge-Gross theorem [19], one can intuitively understand that in TDDFT the quantum-
mechanical “trajectory” of the system under the influence of a time-dependent external
potential is found by searching for the extrema of an action (instead of the minimization of
a total energy, as done for the ground state), by analogy to the case of classical mechanics.
One obtains hence the time-dependent Kohn-Sham equations as generalization of the static
case, and from these, response functions describing neutral excitations of a system [23]. At
this point the difficulty resides in finding suitable approximations for the time-dependent
exchange-correlation potential vxc[n](r, t). Note that now the functional dependence is on
the density in the whole space and at all past times.

Many approximations have been suggested and tested for finite systems. Even the very
simple adiabatic local density approximation (ALDA, also called Time-Dependent LDA,
TDLDA) where vALDA

xc [n](r, t) = vLDA
xc (n(r, t)) has proved to be very successful in many

cases [18, 24], although the lack of a long range (1/r) decay of the potential can lead to
serious problems for questions like Rydberg states [25]. The latter shortcoming of the
LDA potential is not so crucial in solids where the electron density is quite homogeneous
(compared to an atom in empty space); instead, the wrong long-range behavior of the linear
response kernel fxc(r, r

′, t, t′) = δvxc[n](r, t)/δn(r′, t′) can cause large errors [17]. In fact in
the ALDA this kernel is proportional to δ(r−r′), whereas in non-metallic systems it should
decay as 1/|r − r′| [26]. This shortcoming already shows up, e.g., in the calculation of
polarizabilities for molecular chains [27]. In the case of absorption spectra of solids, where
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the imaginary part of the dielectric function ǫ for vanishing wavevector q (corresponding
to a macroscopic average) is calculated, the lack of a 1/q2 divergence (stemming from the
Fourier transform of 1/|r − r′|) can lead to drastic failures. For example, the ALDA is
not able to reproduce bound excitons [17]. On the other hand, for a finite momentum
transfer or when the loss function −Im (ǫ−1) is the quantity of interest (e.g., in Electron
Energy Loss or Inelastic X-ray Scattering spectra) this term is not dominant, and the ALDA
can lead to very good results (see, e.g., [28, 29, 30, 31]). For this reason, and because of
recent successful developments of improved linear response kernels derived from MBPT
[32, 33, 34, 35, 36, 37, 38], TDDFT is today considered to be an alternative to MBPT for the
calculation of electronic spectra, even for solids.

Today, the use of approaches such as GW , BSE and TDDFT is continuously growing, in
all areas where interactions are important but the direct solution of the Schrodinger equa-
tion is unfeasible. The present manuscript contains a fairly condensed overview of MBPT
and TDDFT, and some examples of their applications to complex systems in the fields of
nanotechnology, data storage and photovoltaics. These constitute the main research topics
of the Author for the past years.

The manuscript is organized as follows.
Chapters 2 and 3 deal with fundamentals of theoretical approaches, such as GWand

TDDFT, based on DFT and going beyond its limitations. In particular, we discuss the
available functionals and approximations and the accuracy of results that they give in
typical calculations. In chapter 4 we introduce a class of model kernels, derived from the
BSE, that are successful for the description of optical absorption in some classes of solids,
with a strongly reduced computational impact.

Chapters 5 and 6 deal with applications of GWand TDDFT within linear response. The
main objective is to obtain reliable spectra (usually absorption) from ab initio calculations.
By comparing theoretical spectra with experimental curves, one is usually able to deduce
important information that is not directly available from experiment. Moreover, a better
understanding of the excitation properties of the systems opens the way for the design of
new materials with improved performances.

Chapter 7 is concerned with the important issue of van der Waals interactions, and
how to extract, from TDDFT calculations, relevant parameters to describe them. We will
discuss both the interaction between two finite systems, and between a finite system and a
semiconducting surface.

Hartree atomic units will be used throughout this manuscript, unless explicitly stated.
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Theoretical background





Chapter 2

The GW approximation and the

Bethe-Salpeter equation∗

To go beyond simple density functional theory (DFT) for the calculation of electronic exci-
tations, such as single-electron addition and removal energies measured in photoemission,
the GW approximation by Hedin [11], in the context of many-body perturbation theory
(MBPT), has emerged over the years as an invaluable tool. The key variables are in this
case the one-particle Green’s functions G and the screened Coulomb interaction W . The
one-particle Green’s function can be viewed as a dynamical one-particle density matrix: it
contains more information than a simple density, but of course much less than the many-
body wavefunction. Beside to all relevant physical quantities already accessible through
the density, one-particle Green’s functions give access to the the single-particle excitation
spectrum (i.e., the band structure) and spectral functions. The particle-hole part of the
two-particle Green’s function, in turn, has poles at the energies of neutral excitations. A
contraction of the four-point reducible part of this quantity leads to the two-point response
functions that determine measurable spectra, such as absorption or electron energy loss
spectra (EELS). MBPT and in particular the Bethe-Salpeter equation (BSE) are the frame-
work where suitable approximations for the two-particle Green’s functions can be easily
found.

After introducing the GW approximation, we will discuss the recently developed
schemes to perform self-consistent quasiparticle calculations, in particular the one based
on Hedin’s COHSEX approximation [14] and the quasiparticle self-consistent GW by
Faleev and coauthors [12]. Finally, we will introduce the Bethe-Salpeter equation and
the approximations usually employed to solve it.

A more detailed discussion of the basic physical ideas reviewed in this chapter can be
found in MBPT textbooks (see, e.g., Refs. [10, 39]), in the fundamental reviews of Hedin
and Lundqvist [40] and Strinati [41].

2.1 Hedin’s equations and the GW approximation

The time-ordered one-particle Green’s function is defined as

G(1, 2) = −i〈Ψ0|T
[

ψ̂(1)ψ̂†(2)
]

|Ψ0〉, (2.1)

∗Part of this chapter is based on the article:

• Time-dependent density-functional theory for extended systems, S. Botti, A. Schindlmayr, R. Del Sole,
and L. Reining, Rep. Prog. Phys. 70, 357-407 (2007).
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where |Ψ0〉 is the many-body N-particle ground state, ψ̂(1) [ψ̂†(1)] is the annihilation (cre-
ation) operator of an electron in the Heisenberg picture, T is the time-ordering operator
and 1 stands for the set of the real space and time coordinates plus the spin degree of free-
dom, 1 = {r1, t1, σ1}. The Green’s function G has poles that correspond to electron addition
and removal energies.

The time evolution of G corresponds to the propagation of an electron (or a hole) and
obeys:

[

i
∂

∂t1
+

∇2

2
− Vext

]

G(1, 2) = δ(1, 2) − i

∫

d3 v(1, 3)G2(1, 3, 2, 3+) (2.2)

where v is the bare Coulomb potential and Vext is an external potential. The equation of mo-
tion (2.2) describes how a moving charged particle polarizes the system creating electron-
hole pairs along its way. For this reason also a two-particle quantity, the two-particle
Green’s function G2 (which describes the creation and annihilation of pairs of particles) is
involved in Eq. (2.2). In order to derive the equation of motion for G2, G3, etc., higher order
Green’s functions must be considered. The hierarchy of equations involving Green’s func-
tions of increasing order can be evaluated using diagrammatic expansions based on the
Wick theorem. Alternatively, one can use Schwinger’s functional derivatives to obtain a set
of equations governingG to be further approximated. Here we follow the second line to give
a brief summary of the GW formalism developed in its present form by Lars Hedin [11].

Even though G is still unknown, Eq. (2.2) tells us that its evolution involves a polariza-
tion of the system (i.e., G2). The physical idea at the heart of Schwinger’s formalism is that
the very polarization can be created as a response to a time-dependent perturbing external
potential U . In the spirit of the linear-response theory, the time-dependent part of the po-
tential will be made to vanish at the end of the derivation, so that U → Vext(r) at ±∞. As a
consequence, the one-particle term of the Hamiltonian in Eq. 2.2, namely h0 = −∇2

2 + Vext,
becomes now h0 = −∇2

2 + U .
It is possible to show that the variation of G with respect to U gives:

δG(1, 2)

δU(3)
= G(1, 2)G(3, 3+) −G2(1, 3, 2, 3

+) . (2.3)

By inserting (2.3) in (2.2) one obtains:
[

i
∂

∂t1
− h0(1) + i

∫

d3 v(1, 3)G(3, 3+)

]

G(1, 2) = δ(1, 2) + i

∫

d3 v(1+, 3)
δG(1, 2)

δU(3)
. (2.4)

As −iG(3, 3+) = ρ(3), the term −i
∫

d3 v(1, 3)G(3, 3+) is just the Hartree potential VH(1),
whichmeans that the effects of the perturbation U on the system can be split into a classical
contribution (i.e., the Hartree term) and a contribution that encompasses quantum effects.
The latter term can be cast in the equivalent way, by defining the self-energy Σ as:

i

∫

d3v(1+, 3)
δG(1, 2)

δU(3)
=

∫

d3Σ(1, 3)G(3, 2) . (2.5)

The self-energy therefore turns out to be the effective non-local and dynamical potential
that describes all the effects of exchange and correlation in the system. Physically, it rep-
resent the effective potential that the extra particle feels for the polarization that its prop-
agation induces for exchange effects, due to the fact that it is a fermion. It is now possible
to rewrite (2.2) as:

[

i
∂

∂t1
− h0(1) − VH(1)

]

G(1, 2) = δ(1, 2) +

∫

d3Σ(1, 3)G(3, 2) . (2.6)
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Figure 2.1: Hedin’s pentagon connecting the Green’s function G, the self-energy Σ, the
vertex Γ, the polarizability P and the screened interactionW .

The Hartree Green’s function is defined as the resolvent of the Hartree Hamiltonian
(but calculated with the exact electronic density ρ), where one has Σ = 0:

[

i
∂

∂t1
− h0(1) − VH(1)

]

GH(1, 2) = δ(1, 2) . (2.7)

Combining Eq. (2.6) with Eq. (2.7) one finds the Dyson equation for G:

G(1, 2) = GH(1, 2) +

∫

d34GH(1, 3)Σ(3, 4)G(4, 2) . (2.8)

The self-energy describes a renormalization effect: the difference between the propaga-
tion of an independent (Hartree) particle and the propagation of an interacting fermionic
particle.

From (2.5) one can then extract with a little of algebra:

Σ(1, 2) = i

∫

d34 v(1+, 3)
δG(1, 4)

δU(3)
G−1(4, 2) = −i

∫

d34 v(1+, 3)G(1, 4)
δG−1(4, 2)

δU(3)
, (2.9)

since
δG(1, 2)

δU(3)
= −

∫

d45G(1, 4)
δG−1(4, 5)

δU(3)
G(5, 2) . (2.10)

Equivalently, one can write:

Σ(1, 2) = i

∫

d34G(1, 4)Γ(4, 2; 5)
δV (5)

δU(3)
v(3, 1+) . (2.11)

where V (1) = U(1)+VH(1) is the total classical potential, and having defined the irreducible
vertex function

Γ(1, 2; 3)=−
δG−1(1, 2)

δV (3)
= δ(1, 3)δ(2, 3)+

δΣ(1, 2)

δV (3)
. (2.12)

The derivative δΣ/δV is then usually replaced by the chain rule (δΣ/δG)(δG/δV ). Using
the relation (2.10), Eq. (2.12) is transformed into an integral equation:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫

d4567
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (2.13)
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Following a strictly analogous procedure, one obtains the remaining equations:

Σ(1, 2) = i

∫

d34G(1, 3)Γ(3, 2; 4)W (4, 1) , (2.14)

W (1, 2) = v(1, 2) +

∫

d34 v(1, 3)P (3, 4)W (4, 2) , (2.15)

P (1, 2) = −i

∫

d34G(1, 3)G(4, 1)Γ(3, 4; 2) , (2.16)

in terms of the time-ordered polarization operator P (1, 2), and the dynamical screened
interaction W (1, 2) = δV (1)/δU(3)v(3, 2) = ǫ−1(1, 3)v(3, 2). Eqs. (2.8), (2.13), (2.14), (2.15),
(2.16) are the close set of 5 equations known as Hedin’s equations. They depend on one
another and should be solved iteratively, following the scheme of Fig. 2.1.

Disregarding the second term on the right-hand side of Eq. (2.13) the famous GW ap-
proximation is recovered:

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) =⇒ Σ(1, 2) = iG(1, 2)W (2, 1) (2.17)

To include vertex corrections, Eq. (2.13), or an equivalent form, with its four-point kernel
dominated by δΣ(1, 2)/δG(3, 4), has to be solved in order to get the irreducible polarizability
P = −iGGΓ 1 and an improved self-energy from Eq. (2.14). In view of that, Eq. (2.13) is
the main obstacle on the way to a calculation of polarizabilities or self-energies beyond the
RPA.

We stress that in contrast to the Hartree-Fock approximation, in the GW approach the
existence of polarization effects that screen the propagation of an extra particle is explicitly
taken into account: while in Hartree-Fock there is no polarization and no relaxation of the
system and the self-energy is static, GW is a dynamically screened approximation. Even if
vertex corrections are neglected and the self-energy is evaluated in the GW approximation,
still the Dyson equation is a self-consistent equation in G and should be solved iteratively.
In this sense the starting point is arbitrary. In fact, it is possible to start with the Green’s
function of any non-interacting system and iterate self-consistently (keeping the vertex
Γ = 1). This idea is represented in the scheme of Fig. 2.2. In particular, Hedin obtained
the GW approximation by iterating Hedin’s equations starting from Σ = 0, i.e., from the
Hartree Green’s function. Modern calculations, starting from the works of Strinati, Mat-
tausch and Hanke [42] and then Hybertsen and Louie [43, 44] and Godby, Schlüter and
Sham [9, 45], instead use a “best G, best W ” approach [46]. In this spirit, one dismisses
the idea of a strict iterative solution of Hedin’s equations. Instead, the GW self-energy is
constructed using the best mean-field results that are available, in general the Kohn-Sham
eigenvalues and eigenfunctions. The standard use of this approach, that we will refer to
as one-shot GW , starts from a DFT Kohn-Sham calculation (normally in LDA), and eval-
uates the quasiparticle corrections to the band-structure perturbatively, i.e., ignoring the
self-consistent process.

It is clear that this procedure is justified when the departure wave-functions are already
close to the quasiparticle ones. This is indeed the case in many systems, and therefore

1The irreducible polarizability P defined here is a time-ordered quantity. From the time-ordered P one can
then obtain a physical (causal) response function with the usual conversion rules. It should be noted that in
the following we do not make a distinction between time-ordered and causal quantities. However, one has to be
careful because this apparent “subtlety” could cause severe errors in practice when not properly accounted for.
One possible way is represented by the Keldysh formalism. In this scheme all the quantities are consistently
defined on the Keldysh contour and pseudo-time-ordered. At the end, projecting from the pseudo-time to the
physical time, causal physical response functions are restored.
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Figure 2.2: Schematic representation of the restricted self-consistent scheme.

one-shot GW has been extremely successful in describing electron addition and removal
energies for metals, semiconductors and insulators [47], and is one of the methods of choice
for the description of direct and inverse photoemission experiments. However, one-shotGW
has proved to be insufficient for many transition metal compounds [13, 48, 14, 49, 50]. The
problem in many cases is that the LDA wave-functions are not localized enough, leading
often to a metallic systems. This can be traced back to a wrong hybridization of the d
states of the transition metal with other states (like, e.g., the p states of O, S or Se [49,
50, 51]) close to the Fermi level that leads to a closing of the energy gap. One-shot GW
may improve upon this situation by opening the gap, but usually by a largely insufficient
amount. Several methods appeared in the last couple of years to solve this problem. They
follow two main lines: i) Replacing the simple LDA as starting point and then performing a
single-shotGW calculation. Several different starting points can be found in the literature,
like GGA [52], exact exchange [53], LDA/GGA+U [54, 55] or hybrid functionals [56]. ii)
Performing (restricted) self-consistent GW [12, 13, 14]. This technique has the advantage
of being independent of the starting point at the price of large computational complexity.
Fortunately, there is an alternative procedure that yields wavefunctions that are extremely
close to those obtained in a full sc-GW calculation, namely sc-COHSEX as explained in
Ref. [14]. The dynamical effects that are absent in COHSEX calculations can then be
accounted for by performing a final perturbative GW step. This method, that we will refer
to as sc-GW , has been applied to many oxide compounds, yielding excellent results for the
band gaps and the quasiparticle band structure [48, 14, 49, 50].

2.2 The Bethe-Salpeter equation

Band structures and photoemission experiments need a description in terms of a one-
particle effective Hamiltonian for one-particle excitations: the quasiparticles. In case of
absorption experiments, instead, one has to deal with neutral excitations due to the si-
multaneous creation of a quasielectron and a quasihole which interact in the system. A
one-particle description is no longer adequate. In this section we will therefore introduce
the effective two-particle Hamiltonian capable of dealing with these neutral excitations.

The BSE uses the intuitive quasi-particle picture, which makes the task to identify ef-
ficient approximations easier. However, within MBPT one deals with four-point equations.
In fact, a key quantity is the four-point reducible polarizability L, that can be expressed in
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terms of the two-particle Green’s function G2 describing the propagation of two particles
(for absorption, the relevant part describes the propagation of an electron and a hole):

L(1, 2, 3, 4) = L0(1, 2, 3, 4) −G2(1, 2, 3, 4) . (2.18)

L0 is the disconnected part consisting of two one-particle Green’s functions G:

L0(1, 2, 3, 4) = iG(1, 3)G(4, 2) . (2.19)

The function L satisfies a Dyson-like screening equation, known as the Bethe-Salpeter
equation:

L(1, 2, 3, 4) = L0(1, 2, 3, 4)+

∫

d5678L0(1, 2, 5, 6) [v(5, 7)δ(5, 6)δ(7, 8) + Ξ(5, 6, 7, 8)] L(7, 8, 3, 4) .

(2.20)
In order to solve Eq. (2.20) one has to approximate the many-body interaction kernel

Ξ. The standard approximation consists in using the GW self-energy of Eq. (2.17). In
this way the solution of the Bethe-Salpeter equation corresponds to the inclusion of vertex
corrections in P through a second iteration of Hedin’s cycle of equations. When its kernel
is approximated to first order in the screened Coulomb interactionW it reads:

L = L0 + L0

(

4v −4 W
)

L . (2.21a)

In Eq. (2.20) we have defined the four-point extension of the Coulomb potential
4v(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v(1, 3), whereas 4W = δ(1, 3)δ(2, 4)W (1, 2) is the four-point ex-
tension of the screened Coulomb potential. The first term is the unscreened electron-hole
exchange and is repulsive, while the second is the screened electron-hole Coulomb inter-
action and is attractive. Note that the δ-functions connect different indices in the two
cases; this is due to the fact that the former stems from variations of the Hartree poten-
tial, whereas the latter is due to variations of an exchange-like self-energy contribution.
Because of the way the indices are connected in this second case, the BSE can not be writ-
ten in a two-point form. This issue represents the real bottleneck in practical calculations.
Instead, the measurable χ is obtained via a two-point contraction of L, namely

P red(1, 2) = −L(1, 1, 2, 2) . (2.22)

From the reduced polarizability P red that is understood to be time (or contour) -ordered,
the causal response function χ can be inferred; the relation between the time-ordered and
causal response is in fact χ(ω > 0) = P red(ω > 0). Another useful quantity is the inde-
pendent quasi-particle polarizability, P0(1, 2) = −L0(1, 1, 2, 2). Note that this is not equal to
χKS = −iGKSGKS. The expression looks similar, but the Kohn-Sham states and eigenvalues
in χKS are now replaced by their MBPT counterparts, which are, on this level of approx-
imation, usually determined in the quasi-particle GW approximation [11] (to be precise,
most realistic calculations use GW eigenvalues and Kohn-Sham wavefunctions to buildG).

For simple semiconductors dynamical effects in the electron-hole screening inW and in
the Green’s function G tend to cancel, therefore they are usually neglected in both terms.
This means that, instead of W (1, 2) one uses a statically screened instantaneous inter-
action and for G the Green’s function obtained by a perturbative GW calculation (i.e., G
is built with Kohn-Sham orbitals and quasiparticle eigenvalues with GW corrections in-
cluded). In practice, the Bethe-Salpeter equation (2.20) can be solved by diagonalizing a
two-particle excitonic Hamiltonian which moreover provides information about the exci-
tonic eigenstates and eigenvalues. The solution of the Bethe-Salpeter equations has yield
very successful results in the calculation of optical properties of solids with continuum and
bound excitons, in bulk and nanostructured systems (see Ref. [17] and references therein).



Chapter 3

Time-dependent density functional

theory∗

As the quantum-mechanical treatment of stationary and time-dependent systems differs in
many aspects, it is not straightforward to generalize the mathematical framework of static
density-functional theory. For example, the total energy, which plays a central role in the
original Hohenberg-Kohn theorem [2], is not a conserved quantity in the presence of time-
dependent external fields, and there is hence no variational principle for it on the basis
of the density that can be exploited. In this section we start by discussing the theoretical
foundations of TDDFT with a special emphasis on the linear density-response function and
its connection to the electronic excitation spectrum.

3.1 The Runge-Gross theorem

The evolution of a (non-relativistic) spin-unpolarized interacting many-electron system is
governed by the time-dependent Schrödinger equation

i
∂

∂t
Ψ({r}, t) = Ĥ({r}, t)Ψ({r}, t) , Ψ({r}, t0)given , (3.1)

where Ĥ is the Hamiltonian operator of the system and {r} = {r1, . . . , rN} are the spatial
coordinates of the N electrons. The Hamiltonian can be written in the form

Ĥ({r}, t) =

N
∑

i=1

[

−
1

2
∇2

i + vext(ri, t)

]

+
1

2

N
∑

i6=j

v(ri − rj) , (3.2)

where vext(r, t) is the time-dependent external potential and v(ri − rj) = 1/|ri − rj | the
Coulomb interaction. Being interested in spectroscopy, we consider scenarios where the
system is initially at rest in a static potential vext(r, t) = v0

ext(r), before a time-dependent
perturbation is switched on at t = t0 in order to probe the response of the electron system.
Under these circumstances the initial state at t0 is given by the stationary ground-state
wave function, which is determined up to an irrelevant phase factor for non-degenerate
systems. By virtue of the Hohenberg-Kohn theorem it is also a functional of the static

∗This chapter is based on the articles:

• Time-dependent density-functional theory for extended systems, S. Botti, A. Schindlmayr, R. Del Sole,
and L. Reining, Rep. Prog. Phys. 70, 357-407 (2007).
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ground-state density n(r, t0) = nGS(r). We only admit physical potentials that are finite
everywhere and vary smoothly in time, so that they can be expanded into a Taylor series
about the initial time t0

vext(r, t) =

∞
∑

k=0

ck(r)

k!
(t− t0)

k with ck(r) =
∂k

∂tk
vext(r, t)

∣

∣

∣

∣

t=t0

. (3.3)

The theoretical basis of TDDFT is the Runge-Gross theorem [19], which asserts the one-
to-one correspondence between the external potential and the density, thus playing the
same role as the Hohenberg-Kohn theorem in static density-functional theory. Of course,
for a given external potential it is always possible, in principle, to solve the time-dependent
Schrödinger equation (3.1); the density is then given by

n(r, t) = N

∫

d3r2

∫

d3r3 . . .

∫

d3rN |Ψ(r, r2, . . . , rN , t)|
2 . (3.4)

What remains to be proved, in order to demonstrate the one-to-one correspondence, is that
if two potentials vext(r, t) and v′ext(r, t) differ by more than a purely time-dependent func-
tion, then the associated densities n(r, t) and n′(r, t) must be distinct. The addition of a
purely time-dependent function is exempt because it only changes the phase of the wave
function but not the density. One assumes that both systems evolve from the same ini-
tial ground-state wave function Ψ({r}, t0). The expansion coefficients of the two potentials
around t0 are denoted by ck(r) and c′k(r), and one defines uk(r) = ck(r) − c′k(r). If the po-
tentials differ by more than a purely time-dependent function, then at least one coefficient
uk(r) is not a mere constant but a spatially varying function. For the proof of the Runge-
Gross theorem given in [19] one makes use of the current density

j(r, t) = −
i

2
N

∫

d3r2

∫

d3r3 . . .

∫

d3rN {Ψ∗(r, r2, . . . , rN , t)∇Ψ(r, r2, . . . , rN , t)

−∇Ψ∗(r, r2, . . . , rN , t)Ψ(r, r2, . . . , rN , t)} , (3.5)

which can also be written in a second quantization formalism as

j(r, t) = −
i

2
〈Ψ(t)|ψ̂†(r)

[

∇ψ̂(r)
]

−
[

∇ψ̂†(r)
]

ψ̂(r)|Ψ(t)〉 , (3.6)

The time evolution of the current density can be discussed by means of the equation of
motion

i
d

dt
j(r, t) = 〈Ψ(t)

∣

∣

∣

[

ĵ(r), Ĥ(t)
]
∣

∣

∣
Ψ(t)〉 . (3.7)

Moreover, j(r, t) is related to the density through the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t) . (3.8)

This identity expresses the conservation of the total particle number in a differential form:
the change in the number of electrons within a certain volume equals the flux through its
surface. In the first step one shows that the current densities j(r, t) and j′(r, t) induced by
the two potentials differ. To this effect one examines the time derivative

i
d

dt

{

j(r, t) − j′(r, t)
}

t=t0
= 〈Ψ0

∣

∣

∣

[

ĵ(r), Ĥ(t0) − Ĥ ′(t0)
]
∣

∣

∣
Ψ0〉

= 〈Ψ0

∣

∣

∣

[

ĵ(r), v̂ext(r, t0) − v̂′ext(r, t0)
]∣

∣

∣
Ψ0〉

= in(r, t0)∇
{

vext(r, t0) − v′ext(r, t0)
}

= n(r, t0)∇u0(r) , (3.9)
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which follows from the definition (3.6) together with the known evolution of the current
density (3.7). If u0(r) is not a constant, then the right-hand side is non-zero, and conse-
quently the derivatives of the current densities at t0 must be distinct. The potential might
also differ by a coefficient uk with k 6= 0; in this case one can take an appropriate higher
time derivative

dk+1

dtk+1

{

j(r, t) − j′(r, t)
}

t=t0
= n(r, t0)∇uk(r) , (3.10)

with the non-constant uk(r) establishing hence that at least one term in the Taylor expan-
sions of j(r, t) and j′(r, t) differs. This implies that the current densities themselves deviate
for t > t0. In the second step one proves that the corresponding densities also differ. For
this purpose one takes the (k+1)st time derivative of the continuity equation (3.8) and again
examine the difference

∂k+2

∂tk+2

{

n(r, t) − n′(r, t)
}

t=t0
= −∇ ·

∂k+1

∂tk+1

{

j(r, t) − j′(r, t)
}

t=t0
=

−∇ · {n(r, t0)∇uk(r)} (3.11)

between the two systems. If the quantity on the right-hand side is non-zero, then the
(k+2)nd terms in the Taylor expansions of n(r, t) and n′(r, t) around t0 differ, and the den-
sities themselves must hence deviate for t > t0. The original proof [19] refers only to finite
systems, where both the potential and the density decay to zero at large distances, but for
extended systems it is easy to see that the right-hand side of (3.11) vanishes only if uk(r)
is of the form

uk(r) = uk(0) −

∫ r

0

n(0, t0)

n(r′, t0)
Ek · dr

′ , (3.12)

with an arbitrary but constant vector Ek. As the density is always positive, uk(r) then
grows beyond all bounds as |r| → ∞, which implies that at least one of the potentials
vext(r, t) or v′ext(r, t) becomes infinite. However, this case was explicitly excluded. For all
finite physical potentials the right-hand side of (3.11) is indeed non-zero. This concludes
the proof of the Runge-Gross theorem. Note that potentials of the type (3.12) are also
incompatible with the Hohenberg-Kohn theorem in static density-functional theory: as the
energy of the electrons can always be lowered by a translation in the direction of the field
vector, there is no ground-state solution [57].

The Runge-Gross theorem is, in fact, a very strong statement: From the knowledge
of the density alone it is possible to deduce the external potential and hence the many-
body wave function, which in turn determines every observable of the system. Therefore,
all observables can ultimately be regarded as functionals of the density. We note that, in
contrast to more general cases [58, 59], there is no additional initial-state dependence in
this scenario if one starts from the ground state, because the stationary wave function at
t0 itself is determined by the static ground-state density n0(r) = n(r, t0) of the unperturbed
system.

3.2 The time-dependent Kohn-Sham equations

The Runge-Gross theorem states that all observables are functionals of the density, but it
contains no prescription on how this central quantity can actually be calculated. To over-
come the analogous problem in static density-functional theory, Kohn and Sham [3] sug-
gested to use an auxiliary system of non-interacting electrons moving in an effective local
potential, which is designed in such a way that the densities of the non-interacting system
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and the real interacting electrons coincide. This scheme has the big advantage to include
the exact non-interacting kinetic energy, which represents almost all the true kinetic en-
ergy of theN -electron system. The main task is then to find a good approximation for this a
priori unknown effective potential. This idea was generalized to the time-dependent case,
where the Kohn-Sham electrons obey [19]

i
∂

∂t
ϕj(r, t) =

[

−
1

2
∇2 + vKS[n](r, t)

]

ϕj(r, t) (3.13)

and the density is given by

n(r, t) =

N
∑

j=1

|ϕj(r, t)|
2 . (3.14)

The Kohn-Sham scheme assumes that one can always find a local potential vKS[n](r, t) with
the property that the orbitals obtained from Eq. (3.13) reproduce the given density of an
interacting electron system, but the validity of this assumption, known as “non-interacting
v-representability”, is not obvious and requires a careful examination. If such a potential
exists, however, then by virtue of the Runge-Gross theorem it is unique up to a purely time-
dependent function. Giving a constructive proof, van Leeuwen [60] showed that an effective
local potential with the desired property exists if one can find a stationary wave function
that yields the initial density n(r, t0) and is the ground state of a non-interacting electron
system. The problem is thus reduced to the question of non-interacting v-representability
in static density-functional theory. Despite much progress, the latter is still unresolved.
Examples of well-behaved densities that do not correspond to the ground state of a non-
interacting system are known [61, 62]; the implications of this discovery remain however
unclear. In actual calculations, where the initial Kohn-Sham wave function is obtained
from the constrained minimization of a smooth approximate energy functional, a solution
can always be found [63].

If non-interacting v-representability is assumed, then vKS[n](r, t) is determined com-
pletely by the requirement that Eq. (3.14) equals the density of the real interacting electron
system. As in the case of ground state DFT, one has then to find an explicit expression for
the effective potential that can be exploited to construct useful approximations. For this
purpose it is convenient to employ the same separation

vKS[n](r, t) = vext(r, t) + vH[n](r, t) + vxc[n](r, t) (3.15)

as in static density-functional theory. The first term is the external potential, the second is
the Hartree potential

vH[n](r, t) =

∫

d3r′
n(r′, t)

|r− r′|
(3.16)

and the third incorporates all remaining exchange and correlation effects. In the static
case one can exploit the variational principle and determine the orbitals of the Kohn-Sham
electrons in such a way that the total energy is minimized; all potential terms are then
obtained as functional derivatives of the corresponding energy contributions with respect
to the density. The energy in turn is a well defined physical quantity and amenable to
approximations. In systems driven by time-dependent external fields the total energy is not
a conserved quantity and there cannot be minimization principle. There exists, however, a
quantity analogous to the energy, the quantum-mechanical action functional

A[Φ] =

∫ t1

t0

dt〈Φ(t)|

[

i
∂

∂t
− Ĥ(t)

]

|Φ(t)〉 , (3.17)
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which has the property that its derivative with respect to a N -body function 〈Φ(t)| vanishes
at the true many-body wave function, i.e., the solution of the Schrödinger equation

δA[Φ]

δ〈Φ(t)|

∣

∣

∣

∣

|Φ(t)〉=|Ψ(t)〉

=

[

i
∂

∂t
− Ĥ(t)

]

|Ψ(t)〉 = 0 . (3.18)

Therefore, it is possible to solve the time-dependent problem by searching for the stationary
point of the action. In contrast to the energy in the static case, the stationary point is not
necessarily a minimum, however. Furthermore, the value of the action itself does not
provide any relevant additional information, since for the true many-body wavefunction
A[Ψ] = 0.

By virtue of the Runge-Gross theorem we may consider the action as a functional of
the density. The obvious definition of A[n] is to evaluate Eq. (3.17) at the wave function
Φ[n]({r}, t) that evolves from the given initial state and yields the density n(r, t). In anal-
ogy to the total energy in static density-functional theory, one would expect that the true
density makes this functional stationary and can thus be identified. A suitable decompo-
sition of the action would then define the exchange-correlation potential in terms of the
functional derivative

vxc(r, t) =
δAxc[n]

δn(r, t)
. (3.19)

Unfortunately, this procedure is doomed to failure. A first problem arises because the
density determines the potential only up to a purely time-dependent function. Therefore,
the wave function Φ[n]({r}, t) and the value of the action derived from it are not unique.
Even if the phase of the wave function is fixed by imposing additional constraints, there
is another more fundamental problem, which becomes evident if one examines the second
functional derivative

δvxc(r, t)

δn(r′, t′)
=

δ2Axc[n]

δn(r, t) δn(r′, t′)
. (3.20)

Whereas the expression on the right-hand side of (3.20) is symmetric in (r, t) and (r′, t′),
the exchange-correlation potential can only be influenced by the density at earlier times.
Therefore, causality dictates that the left-hand side must vanish for t < t′ but not for
t > t′. The symmetry and causality requirements contradict each other and cannot be sat-
isfied simultaneously. This observation became known as the causality dilemma [64, 65]
and prompted sophisticated resolutions, the best known of which is the van Leeuwen’s
construction[63] of a “Keldysh action” in pseudotime [66]. More recently Mukamel [67]
showed how to construct causal response functions from symmetrical functional deriva-
tives corresponding to “Liouville space pathways”. The essence of these approaches is that
causality is not violated, but one must resort to more abstract mathematical techniques in
order to connect functional derivatives of the action to causal response functions. In 2008
Vignale solved the causality paradox from a more elementary point of view, by showing
that the variational principle for the time evolution of the wave function, when properly
implemented as a variational principle for the density, yields an expression for the poten-
tial as the sum of two terms: (i) the functional derivative of the Runge-Gross action and (2)
a boundary term, which cannot be expressed as a functional derivative, but is still simple
enough to be included in all the formal proofs. This approach explains why theorems that
were originally proved under the incorrect assumption (3.20), turned out to be true after
all.

We summarize here the procedure of van Leeuwen as we will need it in the following.
In this approach to non-equilibrium dynamics the physical time t is parametrized by an
underlying parameter τ called pseudotime in such a way that t(τ) runs from t0 to t1 and
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Figure 3.1: The Keldysh contour C, starting at t0 and turning back at t1. Pseudotime
values τ on the forward and backward branches are distinct.

back to t0 if τ runs along the contour C illustrated in Fig. 3.1. As pseudotime values on the
forward and backward branches are distinct, the ordering along the contour differs from
that on the physical time axis. The solution of the dilemma hence consists in satisfying the
causality and symmetry requirements in different variable spaces. To this effect the action
is first defined as a functional of the external potential in a form that does not explicitly
contain ∂/∂t

Ã[U ] = i ln〈Ψ(t0)|TC exp

(

−i

∫

C
dτt′(τ)Ĥ(τ)

)

|Ψ(t0)〉 . (3.21)

For the derivation of Eq. (3.21) the reader can see Ref. [63]. The potential U(r, τ) is
contained in the Hamiltonian, and TC sorts the subsequent operators in order of as-
cending pseudotime arguments from right to left. For physical potentials of the form
U(r, τ) = vext(r, t(τ)) the value of the action is zero, because the contributions along the
two time-contour directions cancel each other, but its derivative can be non-zero. In fact,
the action (3.21) is defined in such a way that its functional derivative yields the density

δÃ[U ]

δU(r, τ)
= n(r, τ) . (3.22)

An unambiguous functional of the density can then be constructed by means of a Legendre
transform

A[n] = −Ã[U ] +

∫

C
dτt′(τ)

∫

d3rU(r, τ)n(r, τ) . (3.23)

Finally, for practical purposes the action is decomposed according to

A[n] = AKS[n] −
1

2

∫

C
dτt′(τ)

∫

d3r

∫

d3r′
n(r, τ)n(r′, τ)

|r− r′|
−Axc[n] . (3.24)

The first term is the action of the non-interacting Kohn-Sham system, whose Legendre
transform ÃKS[UKS] is defined in analogy to Eq. (3.21) in terms of the initial Kohn-Sham
wave function and the effective local potential. The second term is related to the Hartree
potential, and the third gives rise to the exchange-correlation potential

vxc(r, t) =
δAxc[n]

δn(r, τ)

∣

∣

∣

∣

n=n(r,t)

. (3.25)

Defining the action in the pseudotime domain instead of the real time axis guarantees
the proper symmetry of the second functional derivative in (r, τ) and (r′, τ ′). On the other
hand, the exchange-correlation potential (3.25), which is obtained by inserting the physical
time argument after performing the functional derivative with respect to n(r, τ), respects
causality on the time axis. From a theoretical point of view, all quantities that enter the
Kohn-Sham scheme are thus well defined, and working approximations can be derived by
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finding a suitable expression for the action functional, for example through an expansion
in powers of the Coulomb interaction. This approach is known as the time-dependent
optimized effective-potential method [68]. Unfortunately, the leading term, which is linear
in the Coulomb interaction and retains only exchange and no correlation [69], has already
a high computational cost. In fact, at present the design of specific approximations for the
exchange-correlation potential in TDDFT is still at an early stage. Today, most calculations
take however a pragmatic point of view and simply use one of the established functionals
of static density-functional theory. The most popular choice is the adiabatic local-density
approximation (ALDA) [18], which is obtained by evaluating the standard LDA potential
with the time-dependent density n(r, t):

vALDA
xc [n](r, t) = vHEG

xc [n](r, t)
∣

∣

n=n(r,t)
. (3.26)

The adiabatic approach is a drastic simplification, however, and a priori only justified
for systems with a weak time-dependence that are always locally close to equilibrium. This
adds to the problems that are related to the spatial locality of the LDA.

3.3 Linear-response theory

If the time-dependent external perturbation in vext(r, t) = v
(0)
ext(r) + v

(1)
ext(r, t) is weak, then

linear-response theory can be exploited to describe the dynamics of a system more effi-
ciently than a full solution of the Kohn-Sham equations (3.13). In this case the density
is expanded in orders of v(1)

ext(r, t) according to n(r, t) = n(0)(r) + n(1)(r, t) + . . ., where the
first-order correction is given by

n(1)(r, t) =

∫ ∞

−∞
dt′
∫

d3r′ χ(r, r′, t− t′)v
(1)
ext(r

′, t′) , (3.27)

in terms of the linear density-response function

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)

∣

∣

∣

∣

vext(r′,t′)=v
(0)
ext(r

′)

. (3.28)

Causality requires χ(r, r′, t − t′) = 0 for t < t′, of course, because the density cannot be
influenced by later variations of the potential. To calculate the linear density-response
function in practice one exploits the fact that the density of the real system is identical
to that of the non-interacting Kohn-Sham electrons. As the latter move in the effective
potential vKS(r

′′, t′′), one starts by applying the chain rule for functional derivatives

χ(r, r′, t− t′) =

∫ ∞

−∞
dt′′
∫

d3r′′
δn(r, t)

δvKS(r′′, t′′)

δvKS(r′′, t′′)

δvext(r′, t′)
. (3.29)

The first term on the right-hand side corresponds to the linear density-response function
χKS(r, r

′′, t − t′′) of the non-interacting Kohn-Sham system, since the effective potential
plays the role of the “external potential”of the Kohn-Sham system. It can be calculated
explicitly from time-dependent perturbation theory and is given by

χKS(r, r
′′, ω) = lim

η→+0

∞
∑

j=1

∞
∑

k=1

(fj − fk)
ϕj

∗(r)ϕk(r)ϕj(r
′′)ϕk

∗(r′′)

ω − εk + εj + iη
(3.30)
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in frequency space. The energies εj appearing in the denominator are the eigenvalues of
the unperturbed stationary Kohn-Sham wave functions ϕj(r). In order to evaluate the
second term in Eq. (3.29) one uses the separation (3.15), which yields

δvKS(r′′, t′′)

δvext(r′, t′)
= δ(r′′ − r′)δ(t′′ − t′) +

δvH(r′′, t′′)

δvext(r′, t′)
+
δvxc(r

′′, t′′)

δvext(r′, t′)
. (3.31)

As both the Hartree potential and the exchange-correlation potential are functionals of the
density, one can apply the chain rule once more and rewrite these two contributions as

δvH(r′′, t′′)

δvext(r′, t′)
=

∫ ∞

−∞
dt′′′

∫

d3r′′′
δvH(r′′, t′′)

δn(r′′′, t′′′)

δn(r′′′, t′′′)

δvext(r′, t′)
(3.32)

and analogously for δvxc(r
′′, t′′)/δvext(r

′, t′). The last term on the right-hand side of
Eq. (3.32) is easily recognized as the linear density-response function χ(r′′′, r′, t′′′ − t′). The
functional derivative of the Hartree potential with respect to the density follows from the
definition (3.16) and simply equals the Coulomb potential

δvH(r′′, t′′)

δn(r′′′, t′′′)
=

1

|r′′ − r′′′|
δ(t′′ − t′′′) . (3.33)

The last term of Eq. (3.31) contains the so-called exchange-correlation kernel

fxc(r
′′, r′′′, t′′ − t′′′) =

δvxc(r
′′, t′′)

δn(r′′′, t′′′)

∣

∣

∣

∣

n(r′′′,t′′′)=n(0)(r′′′)

. (3.34)

After collecting all terms and performing a Fourier transform to frequency space, whereby
convolutions on the time axis turn into simplemultiplications, one obtains the final integral
equation [23]

χ(r, r′, ω) = χKS(r, r
′, ω)

+

∫

d3r′′
∫

d3r′′′ χKS(r, r
′′, ω)

(

1

|r′′ − r′′′|
+ fxc(r

′′, r′′′, ω)

)

χ(r′′′, r′, ω) . (3.35)

The TDDFT equations in the linear-response regime can be cast in numerous different
forms. For solids, in most implementations the integral equation (3.35) is solved routinely
by projecting all quantities onto a suitable set of basis functions. Very often, one uses a
plane wave representation within the pseudopotential approximation (see, e.g., the codes
[70, 71, 72]), but localized basis sets can equally be used to allow for all-electron calcula-
tions (see, e.g., the code [73]). The Dyson equation (3.35) thus turns into a matrix equation
χ(ω) = χKS(ω) + χKS(ω)[v + fxc(ω)]χ(ω) for example in reciprocal lattice vectors in case of
periodic systems where χ = χG,G′(q).

Alternatively, absorption spectra can be calculated by propagating the full TD Kohn-
Sham equations in real-time [74]. This description decreases storage requirements, it al-
lows the entire frequency-dependent dielectric function to be calculated at once, and the
scaling with the number of atoms is quite favorable. However, the prefactor is fairly large
as such calculations typically require ≈ 10000 time-steps with a time-step of ≈ 10−3 fs [75].

Another efficient approach, based on linear-response within Ghosh and Dhara’s time-
dependent density functional formalism [76], was proposed [77]. It uses an iterative
scheme in real-space, in which the density and the potential are updated in each cycle,
thereby avoiding the explicit evaluation of the Kohn-Sham response kernels.

Finally, a method to calculate the dynamical polarizability using only occupied states
has been proposed recently [78]. The dynamical polarizability is represented by a matrix
continued fraction whose coefficients can be obtained from a Lanczos method. Thismethods
scales favorably with system size, and it becomes useful for large scale systems. [78, 79].
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3.4 Excitation energies

In static DFT the interpretation of the one-particle Kohn-Sham eigenvalues εj as quasi-
particle energies is not formally justified and it leads to the well known problem of the
underestimation of transition energies in the independent-particle transition picture. In
the framework of TDDFT the relevant information about the excited states is contained
in the linear density-response function: in fact it can be shown that the true excitation
energies are the poles of χ(r, r′, ω) . In contrast to other attempts to calculate electronic
excitations within a density-functional framework [80, 81, 82], TDDFT has the great ad-
vantage that it is not restricted to a subset of excited states but, in principle, yields the
complete excitation spectrum.

In order to see this, one can calculate the density change due to the external potential
at the first order. The stationary eigenstates of the original unperturbed Hamiltonian
are labeled by Ψj({r}, t) = Ψj({r}) exp(−iEjt), where Ej denotes the corresponding energy
eigenvalues. After the onset of the time-dependent perturbation it is possible to expand the
wave function Ψ({r}, t) that evolves from the ground state Ψ(0)({r}, t) = Ψ0({r}) exp (−iE0t)

in orders of v(1)
ext(r, t). The first-order correction is

Ψ(1)({r}, t) = −i

∞
∑

j=0

Ψj({r}, t)

∫ t

−∞
dt′
∫

d3r′1 . . .

∫

d3r′NΨ∗
j({r

′}, t′)

(

N
∑

i=1

v
(1)
ext(r

′
i, t

′)

)

Ψ0({r
′}, t′) . (3.36)

The corresponding change in the density is

n(1)(r, t) = N

∫

d3r2 . . .

∫

d3rN

{[

Ψ(1)(r, r2, . . . , rN , t)
]∗

Ψ(0)(r, r2, . . . , rN , t)+

[

Ψ(0)(r, r2, . . . , rN , t)
]∗

Ψ(1)(r, r2, . . . , rN , t)
}

. (3.37)

In order to simplify the notation we introduce the overlap functions

nj(r) = N

∫

d3r2 . . .

∫

d3rNΨ∗
0(r, r2, . . . , rN )Ψj(r, r2, . . . , rN ) , (3.38)

and after inserting Eqs. (3.36) and (3.38) into Eq. (3.37) we obtain

n(1)(r, t) =

∫ ∞

−∞
dt′
∫

d3r′



−i
∞
∑

j=0

(

nj(r)n
∗
j (r

′)e−i(Ej−E0)(t−t′)

− n∗j(r)nj(r
′)ei(Ej−E0)(t−t′)

)

Θ(t− t′)
]

v
(1)
ext(r

′, t′) . (3.39)

Comparing this expression with Eq. (3.27), one finds that the term in square brackets
equals the linear density-response function χ(r, r′, t − t′). The Heaveside step function
Θ(t − t′) has been introduced to replace the integral over time

∫ t
−∞ dt′ with

∫∞
−∞ dt′. After

a Fourier transform to frequency space, and using Θ(t) = i/2π limη→0+

∫∞
−∞ dω 1

ω+iηe
−itω one

arrives at the Lehmann representation of the density response function:

χ(r, r′, ω) = lim
η→0+

∞
∑

j=1

(

nj(r)n
∗
j (r

′)

ω − Ej + E0 + iη
−

n∗j(r)nj(r
′)

ω + Ej − E0 + iη

)

, (3.40)
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where η is a positive infinitesimal. From Eq. (3.40) it is evident that the poles of χ(r, r′, ω)
correspond to the exact excitation energies Ej − E0. Furthermore, all quantities on the
right-hand side depend only on the Hamiltonian of the unperturbed stationary system.
By virtue of the Hohenberg-Kohn theorem the linear density-response function is hence a
functional of the static ground-state density n0(r).

The form of Eq. (3.40) is valid for finite systems with discrete eigenvalues. As the en-
ergies Ej of the eigenstates of the many-electron system are real, it appears that the poles
of χ(r, r′, ω) are at real energies. For extended systems, on the other hand, the spectrum
is continuous, and the sum in Eq. (3.40) turns into an integral that gives rise to a branch
cut along the real energy axis. The infinitely close-lying resonances thus merge into broad
structures that can be identified with elementary quasiparticles, such as plasmons or exci-
tons. As these structures have a certain width, they are described by poles in the complex
plane with a real part, which corresponds to the energy of the excitation, and a finite imag-
inary part, whose inverse is proportional to the excitation lifetime.



Chapter 4

Kernels from many-body

perturbation theory∗

4.1 Time-dependent density functional theory in practice

Linear response theory can be applied now to study the response of an extended system to
a small time-dependent perturbation vext(r, t). The linear variation of the density induced
by the perturbation is given by (3.27). As a consequence of the polarization of the system
due to the applied perturbation, the total potential becomes a sum of the external potential
and the induced potential: vtot = vext + vind. The basic quantity that gives information
about the screening of the system in linear response is the microscopic dielectric function
ǫ, that relates the total potential vtot to the applied potential vext:

vtot(r, t) =

∫ ∞

−∞
dt′
∫

d3r′ ǫ−1(r, r′, t− t′)vext(r
′, t′) . (4.1)

The microscopic dielectric function ǫ and the reducible polarizability χ are hence related by

ǫ−1(r, r′, t− t′) = δ(r − r′)δ(t− t′) +

∫

d3r′′v(r − r′′)χ(r′′, r′, t− t′). (4.2)

For periodic systems, the most natural way to deal with spatial periodicity is to apply a
Fourier transform and rewrite Eq. (4.2) in reciprocal space

ǫ−1
GG′(q, ω) = δGG′ + vG(q)χGG′(q, ω) , (4.3)

where G is a vector of the reciprocal lattice, while q is a vector in the first Brillouin zone. In
Eq. (4.3) a Fourier transform has also been applied to move from time to frequency space.

From the microscopic dielectric function one has to obtain measurable quantities. In the
case of absorption spectra, this means to calculate the imaginary part of the macroscopic
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dielectric function [83, 84, 85]

ǫM(ω) = lim
q→0

1
[

ǫ−1
GG′(q, ω)

]

G,G′=0

. (4.4)

We have dealt so far with the response to a potential whose electric field is longitudinal with
respect to the wavevector. Light, instead, is a transverse perturbation, i.e., its electric field
is perpendicular to the wavevector. Hence, it would seem inappropriate to use the present
treatment. However, since the light wavevector is very small, one can think to rotate it
such as to become parallel to the electric field and apply the present formalism [86]. The
validity of this approach has been rigorously demonstrated for cubic crystals in Ref. [16].
Furthermore, we observe that, in general, for anisotropic systems (4.3) and (4.4) depend
on the direction of the vector q (i.e., on the polarization of the incoming radiation), thus
both microscopic and macroscopic responses are described by a dielectric tensor, instead of
simple scalar functions.

The same quantity ǫM is also related to electron energy loss spectra (EELS) for vanish-
ing momentum transfer, through the loss function −Im {1/ǫM}. For non-vanishing momen-
tum transfer Q = q+G, the loss function is −Im

{

ǫ−1
GG(q, ω)

}

. In this case the longitudinal
formulation of the dielectric response is obviously appropriate. From (4.3) it follows that
the loss function can be related to the linear density response function χ:

EEL(q + G, ω) = −vG(q)Im {χGG(q, ω)} , (4.5)

where the GG′-matrix χ can be obtained by solving the Dyson-like screening equation
(3.35). In (3.35) the full response function is expressed in terms of the independent-particle
χKS via a kernel composed by two terms, the bare Coulomb potential and the exchange-
correlation contribution fxc. A similar expression can be written also in the case of the
optical absorption, provided one builds a modified response function χ̄:

Im {ǫM} = − lim
q→0

vG(q)Im {χ̄GG′} , (4.6)

which satisfies the Dyson-like screening equation

χ̄ = χKS + χKS(v̄ + fxc)χ̄ , (4.7)

where the modified Coulomb interaction is defined as

v̄G =

{

vG for G 6= 0
0 for G = 0

. (4.8)

Following [17], the description of both absorption and EELS for q → 0 can be unified by
introducing the generalized spectrum A(ω) and a generalized function XGG′(q, ω). The
functionX stands for the modified response function χ̄ in the case of absorption and for the
reducible response function χ in the case of EEL:

Abs
EEL

}

= A(ω) = −Im

{

lim
q→0

vG=0(q)XG=G′=0(q, ω)

}

. (4.9)

In any formulation, the basic ingredients to obtain either the absorption or the EELS
are the Kohn-Sham eigenfunctions and eigenenergies that enter the expression for the
independent-particle Kohn-Sham response function χKS (3.30). These are usually obtained
through a ground-state DFT calculation using an approximate exchange-correlation poten-
tial. In the total kernel of (3.35) and (4.7) v̄ accounts for classical depolarization effects [also
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known as crystal local field effects (LFE) in a solid]. It reflects the microscopic induced
Hartree potential created by polarizable inhomogeneities in the system. The apparently
subtle difference between absorption and EELS, i.e., the inclusion or the exclusion of the
long-range term v0, is crucial for extended systems - for example, v0 is responsible for the
plasmons - , whereas its contribution in finite systems becomes vanishingly small [87].

We have therefore two key approximations: (i) the ground-state exchange-correlation
potential, and (ii) the exchange-correlation kernel. Of course, these two quantities are
in principle linked, due to the fact that the exchange-correlation kernel is the functional
derivative of the time dependent exchange-correlation potential. The relative importance
of the two approximations depends, as we will see in the following, on the physical system
under study. For example, when dealing with finite systems it is often essential to have
good Kohn-Sham eigenstates – and therefore a good ground-state exchange-correlation po-
tential – while the role of the exchange-correlation kernel is less relevant [88, 25]. The op-
posite is usually true for extended systems, where a good approximation to the exchange-
correlation kernel turns out to be essential, especially when it comes to describe optical
absorption spectra [17].

Searching for approximations several approaches are possible. For the ground-state
exchange-correlation potential, 40 years of development have led to a swarm of functionals
(for more information, see one of the numerous review articles on the subject, e.g., Ref. [89]).
For the exchange-correlation kernel, one can either look for a good approximation for the
time-dependent exchange-correlation potential and then use the definition of fxc (3.34) or
find directly an expression for the exchange-correlation kernel. Either choice has clear
advantages and disadvantages. On the one hand, the exchange-correlation kernel is a sim-
pler object, in the sense that it is a functional of the ground-state density, and is therefore
amenable to more controllable approximations. On the other hand, if we are in posses-
sion of a good time-dependent exchange-correlation functional, we can tackle both linear
and non-linear response properties. Instead, only linear response is accessible through the
knowledge of the exchange-correlation kernel. Most often, the standard approximations
used for vxc(r, t) are adiabatic, and lead to very simple fxc’s.

4.1.1 Basic approximations and problems

The lowest level approximation to perform real calculations consists in setting to zero the
terms in (3.35) and (4.7) coming from the microscopic components of the induced Hartree
potential (v̄ = 0) and the variations of the exchange-correlation potential (fxc = 0). By
comparing (4.4) with (4.6), with vanishing v̄ and fxc, it is possible to see that this is equiv-
alent to neglecting all the off-diagonal components of the matrix ǫ−1

GG′ . We will refer to
this as the independent particle approximation (IPA). The excitation energies in the IPA
are simply given by the differences between the eigenenergies of the unoccupied and oc-
cupied Kohn-Sham states, which are used to build χKS. Independently of the quality of
the states entering in χKS, this usually leads to absorption peaks that are systematically
red-shifted in relation to the experimental spectra [17]. This is a consequence of the well
known gap problem of DFT: the gap between filled and empty states is substantially un-
derestimated [44].

By neglecting only the exchange-correlation kernel we obtain the so-called random-
phase approximation (RPA) [84, 85]:

fRPA
xc = 0 . (4.10)

In this case, the only part of the total kernel in (3.35) and (4.7) which is taken into account
is the classical Coulomb term. This term describes the well known Lindhard theory of
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screening with the addition of LFE [90]. Although very simple, the RPA yields results of
reasonable accuracy for a wide-range of systems, and it is still widely employed in actual
calculations. We will see some examples in the following of this section.

In the next step in the ladder of complexity come the already mentioned adiabatic ap-
proximations. At the level of the time-dependent exchange-correlation potential the adia-
batic approximation implies

vadiabatic
xc [n](r, t) = ṽxc [n(t)] (r, t) , (4.11)

where ṽxc[n] is some given ground-state exchange-correlation functional. Note that, re-
gardless of the choice of ṽxc[n], the resulting kernel is instantaneous: fxc(r, r

′, t, t′) =
δ(t − t′)fxc(r, r

′), i.e., its Fourier transform is frequency independent (it can be of course
non-local in space). If the LDA static potential is inserted in (4.11), one obtains the most
common functional of TDDFT: the ALDA potential. Using definition (3.34), one can then
derive the local and static ALDA (also called TDLDA) exchange-correlation kernel [20, 21]

fTDLDA
xc (r, r′, t, t′) = δ

(

r− r′
)

δ
(

t− t′
) d2eHEG

xc (n)

dn2

∣

∣

∣

∣

n=nGS(r)

, (4.12)

where eHEG is the energy per unit volume of the homogeneous electron gas, and nGS is the
ground-state electron density.

It is clear that the TDLDA retains all the problems already present in the LDA. The
most important of these are perhaps, for neutral finite systems, the incorrect asymptotic
behavior of the LDA potential (instead of decaying as −1/r, the LDA exchange-correlation
potential goes to zero exponentially) and, for infinite systems, its local dependence on the
density. These drawbacks can not be corrected by using in (4.11) most of the GGAs [91],
nor most of the more modern meta-GGAs functionals [92, 93].

Nevertheless, for the calculation of optical response spectra in a large variety of finite
systems, the TDLDA has proved to be able to reproduce low energy peaks with an accuracy
of around 0.1–0.4 eV [94]. For solids, the situation is a bit more complicated. EELS or
X-ray scattering (IXS) spectra are often of good quality, especially when the transferred
momentum q is finite [95, 29, 28]. Instead, the description of Im {ǫM(ω)} for vanishing
momentum transfer, which is the case in optical response, is perhaps the best known failure
of TDLDA. Note that in an extended system the TDLDA kernel for vanishing q yields
always a relatively small correction to the RPA results, because it is constant for q → 0 and
multiplied with χKS that goes to 0 as q2. It can hence only have an effect via the LFE [30].
We will discuss this issue more in detail in the following of this section.

It is clear from the above that the behavior of the different approximations depends
strongly on the spectroscopy and on the dimensionality of the physical system. Therefore,
it is interesting to present some examples of results for finite systems (molecules, clusters)
to be compared to analogous results for infinite systems. In view of that, the following two
subsections handle separately optical absorption in finite (Sec. 4.1.2) and periodic systems
(Sec. 4.1.3). We then turn to EELS and IXS in Sec. 4.1.4. Finally, we try to understand the
failures of the TDLDA (Sec. 4.1.5), and discuss possible routes to overcome them.

4.1.2 Optical absorption of finite systems

The first calculations of excitation energies within TDDFT were performed before the for-
mal demonstration of the Runge-Gross theorem. In 1977 Ando determined intersubband
transitions in semiconductor heterostructures [96]. Shortly after, Zangwill and Soven [18]
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Figure 4.1: Photoabsorption spectrum for a Na8 cluster from Ref. [17]. Dots: experimen-
tal data; dashed line: IPA Kohn-Sham transitions; solid line: RPA; dashed-dotted line:
TDLDA.

applied TDLDA to the calculation of the photo absorption cross section of rare gas atoms,
obtaining a very good agreement with experimental data.

However, it was only in recent years that TDDFT became one of the most popular tools
for the calculation of excitation properties. By now, the TDLDA kernel (4.12) has been suc-
cessfully applied to atoms, organic and biological molecules, metallic and semiconducting
clusters, fullerenes, etc. [97, 98, 99, 94, 100]. Besides some more problematic cases (see
Sec. 4.1.5) the calculated excitation energies and absorption spectra are, in general, in ex-
cellent agreement with available experimental data [101]. As a general feature, present in
both metallic and semiconducting clusters, the RPA peaks are blue-shifted with respect to
the IPA peaks. Adding the TDLDA kernel brings a further correction, this time as a shift
towards lower energies. The resulting transition energies then accurately reproduce the
experiment. It is important to observe that, already in the RPA, absorption at low energies
is correctly suppressed with respect to IP calculations. In fact this suppression of the os-
cillator strength is essentially due to the induced classical depolarization potential. From
(4.4) it can be observed that the LFE come from the off-diagonal terms of the matrix ǫGG′ .
In other words, they express the fact that the electronic response of an inhomogeneous
structure is position-dependent (and not only distance-dependent). It is intuitive that such
an effect has to be the stronger the larger the inhomogeneity of the system. Since a finite
object represents a strong inhomogeneity in the otherwise empty space, it is not surprising
that the LFE are particularly important for this kind of systems.

It should not be forgotten that in some cases TDLDA is not adequate to describe excita-
tions of finite systems: a typical example is the failure in reproducing Rydberg series [25].
Moreover, when the molecules become more extended, this quality in general degrades.
An example is the calculation of optical properties of long conjugated polymers [27, 102].
The problem is related to a non-local dependence of the exchange-correlation potential: In
a system with an applied electric field, the exact exchange-correlation potential develops
a linear part that counteracts the applied field [27, 103]. This term is completely absent
in both the LDA and the GGA. It is present in more non-local functionals, like the exact
exchange functional (see Sec.4.2.1).

In the following we will investigate more closely this problem.
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Figure 4.2: Imaginary part of the macroscopic dielectric function for LiF [104]. Dots: ex-
periment [105]; dotted-line: BSE calculation; dashed line: IPA calculation; solid line: RPA
calculation; dot-dashed line: TDLDA calculation.

4.1.3 Optical absorption of extended systems

The simplest approach to the optical properties of semiconductors or wide-gap insulators
within TDDFT is the TDLDA. In view of the excellent quality of the results obtained for
the photoabsorption of clusters, one could perhaps expect that the same would occur for ex-
tended systems. This is unfortunately not the case. As we can see in Fig. 4.2 for the optical
absorption of a LiF crystal, the TDLDA (dash-dotted line) induces only some minor modi-
fications with respect to the RPA (solid line), and both are very far from the experimental
curve (dots). The largest disagreement concerns the absence of the strong excitonic peak at
about 12.5 eV. Good agreement can be found using the many-body Bethe-Salpeter approach
(dotted line) at the price of a significantly larger computational effort [106, 107, 108, 109]:
in that framework, electron addition and removal energies as well as the electron-hole in-
teraction are explicitly calculated within many-body Green’s function theory (see Sec. 2.2).

This situation is quite general and is found in a wide range of semiconductors (Si – see
also the inset of Fig. 4.3 – Ge, GaAs, etc.) and wide-band gap semiconductors or insulators
(diamond, MgO, SiO2, etc.). It is typical for absorption, as opposed to loss spectroscopies,
even when both techniques are employed to study the same system. A detailed analysis of
the problem will be the subject of Sec. 4.4.

4.1.4 Longitudinal response of extended systems

In Fig. 4.3 we can observe both the absorption and EELS at vanishing q (within RPA) for
bulk silicon [87]. To interpret this picture it is useful to use the generalized spectrum A(ω)
of Eq. (4.9). The modified RPA polarization function X 4.9 can be further generalized as

X(ω) = (1 − χKSγv0 − χKSv̄)
−1 χKS . (4.13)

If γ = 1, A(ω) = EELS, and if γ = 0, A(ω) = Abs. Moreover, it is possible to follow the evo-
lution of the spectrum when γ varies continuously from 1 to 0. In Fig. 4.3 we show how the
EELS turns continuously into the absorption when v0 is switched off. This exemplifies the
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Figure 4.3: Continuous connection between EELS and absorption spectrum of bulk silicon,
via v0 [87]. Experiments from references [110] (absorption) and [111] (EELS).

action of the long-range component v0, that is responsible for the huge difference between
an EELS and an absorption spectrum.

Let us go back to the EELS of bulk silicon: a comparison between the experimental and
the RPA spectrum is shown in the second inset of Fig. 4.3. Olevano and Reining [112, 17]
showed that the TDLDA gives better agreement with experiment than RPA, even though
the difference is small (see Fig. 16 of Ref. [17]). Some improvement can be found when the
BSE approach is used (see again Fig. 16 of Ref. [17]). But since the full BSE calculation
of a valence plasmon is still a computationally involved task, the use of TDLDA (or even
RPA) is often well justified.

When the electron density does not present particular inhomogeneities, it can be enough
to include only v0 in the kernel (3.35) to obtain an accurate calculation of the loss spectra of
extended systems. In the case of layered or low dimensional structures [113], or in presence
of localized states [114, 115], also the contribution of v̄ becomes essential and only a RPA,
or often better TDLDA, calculation can yield a good agreement with the experimental data.
The similarity between RPA and TDLDA is a quite general feature for the loss function at
small transferred momentum q. It holds, e.g., for the loss function of graphite [113], and
for the integrated loss function of TiO2 [114]. A good agreement with experimental spectra
was obtained within RPA also for the EELS of diamond [30] and ZrO2 [115], always at low
momentum transfer. As a general rule, when q gets larger, the contributions of LFE and
of the exchange-correlation kernel within TDLDA become more important. Also in this
case RPA and TDLDA allow a good agreement with experiment, as it is shown by recent
calculations of IXSS at the RPA and TDLDA level for Al [28], rutile TiO2 [95] and various
3d transition metals [29]. In some cases, TDLDA can give a sizable improvement with
respect to RPA [31].

In conclusion, we can state that the TDLDA is often very reliable for EELS and IXSS
(both for small and large momentum transfer), and for photoabsorption in finite systems.
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The LFE often give a sizable contribution to this success. One of the main remaining
problems is the optical absorption in extended systems.

4.1.5 What is missing in the standard approximations?

We can summarize now the situation as it was explored so far:

• For excitation properties of finite systems, in general, RPA and TDLDA work quite
well. There are of course many exceptions, most of which are related to the incorrect
tail of the LDA (or GGA) exchange-correlation potential at large r. Some problems re-
lated to this deficiency are the already mentioned impossibility to reproduce Rydberg
series, the overestimation of polarizabilities in long chain molecules, the large un-
derestimation of ionization energies or the wrong description of any situation where
the electrons are pushed to regions far away from the nuclei (e.g., by a strong laser).
These issues can be solved by the use of functionals with the correct asymptotic be-
havior, like the EXX or the adiabatic LB94. [116].

• For extended systems, EELS and IXSS at small and large momentum transfer are of-
ten well reproduced within TDLDA. Instead, TDLDA fails in the calculation of optical
(q = 0) spectra of non-metallic solids [26]. To explain this failure, the wrong asymp-
totic behavior of the exchange-correlation potential is less relevant, while the wrong
asymptotic limit of the exchange-correlation kernel is crucial. For infinite systems,
the q = 0 component of χKS vanishes as q2. It is then clear from the response Eq. (4.7)
that if fxc has to correct the non-interacting response for q → 0 it will have to contain
a term that behaves asymptotically as 1/q2 when q → 0. This term will be particularly
important in absorption calculations, where the Coulomb part of the kernel does not
contain v0 ∼ 1/q2. This crucial term cannot be found in the local or gradient-corrected
approximations.

Finally, we recall that the TDLDA exchange-correlation potential is local in time. Few
attempts to derive functionals which are nonlocal in time, i.e., that include memory effects,
have been done so far. By analogy with hydrodynamics, Dobson et al. assumed that in the
electron liquid memory resides not with each fixed point r, but rather within each separate
“fluid element” [117]. Thus the element which arrives at location r at time t “remembers”
what happened to it at earlier times when it was at locations different from its present
location r. Using this concept, Dobson et al. proposed a functional that satisfies Galilean
invariance and Ehrenfest’s theorem. Unfortunately, no applications of this functional exist
to date. This approach was further extended by Tokatly within time-dependent current
DFT [118]. Furthermore, the frequency dependence of the exchange-correlation kernel has
been proved to be essential to describe charge transfer between open-shell species [119] and
double excitations[120, 121, 122, 123, 124]. An example of a frequency dependent model
exchange-correlation kernel is presented in Sec. 4.5.1.

Several attempts have been done to correct shortcomings of RPA and TDLDA. In the
next section we will start by considering the case of metallic systems and discuss explicit
density functional beyond the ALDA.

4.2 Orbital-dependent functionals

In contrast to explicit density functionals, orbital-dependent functionals are constructed
from the Kohn-Sham wave functions (of course they still depend implicitly on the electron
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density through the self-consistency condition). Although the computational cost is typi-
cally much higher than the straightforward evaluation of a parametrization in terms of the
density, this approach has the advantage that it offers a systematic route to successively
more accurate approximations. Orbital-dependent functionals can be obtained in various
ways. One can get a potential and kernel from a functional derivative of a suitable ap-
proximation of the action, for example by expanding the latter in powers of the Coulomb
interaction. Alternatively, one can exploit links between many-body perturbation theory
(MBPT) and the density-functional formulation. In the next subsection we briefly show
how known results can be obtained from a linearized version of this link.

4.2.1 Kernels from the linearized Sham-Schlüter equation

The density-functional and the MBPT framework are linked by the requirement that the
former has to yield the correct density given by the one-particle Green’s function G of the
latter, via n(r, t) = −iG(r, r′, t, t+), for the static as well as for the time-dependent case.
(Note that in the latter case it is recommended to use Keldysh Green’s functions in order to
obtain the physical densities via the simple relation above [125]). From the Dyson equation
one obtains hence

0 =

∫

d2 d3GKS(1, 2) (Σ(2, 3) − vxc(2)δ(2, 3))G(3, 1+) , (4.14)

where Σ is the self-energy [11, 41]. This is the so-called Sham-Schlüter equation [126, 125].
If G is replaced by GKS everywhere (including in the construction of Σ, as symbolized by
ΣKS ) the solution of this linearized equation yields for the potential

vxc(1) = −i

∫

d2d3

∫

d4 χ−1
KS(1, 2)GKS(2, 3)ΣKS(3, 4)GKS(4, 2+) . (4.15)

The kernel fxc, the functional derivative with respect to the density of vxc, has a contri-
bution f

(2)
xc that stems from the derivative of ΣKS and other terms f (1)

xc coming from the
derivative of the Green’s functions and the inverse response function [127]. Both are ex-
plicitly orbital-dependent.

As an example, one can use the simplest case where ΣKS is approximated by the (Kohn-
Sham) Fock operator ΣKS

x (1, 2) = iGKS(1, 2)v(2, 1). In that case, Eq. (4.15) yields the so-
called exact-exchange (EXX) OEP potential [128, 129]

vEXX(1) = −i

∫

d2d3

∫

d4 χ−1
KS(1, 2)GKS(2, 3)ΣKS

x (3, 4)GKS(4, 2+) , (4.16)

where all KS quantities are calculated self-consistently using the EXX potential. The con-
tributions to the kernel become

f (2),EXX(1, 2) =

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(3, 4)GKS(5, 3)

× v(4, 5)GKS(4, 6)GKS(6, 5)χ−1
KS(6, 2) , (4.17)

(which is nothing else but the electron-hole attraction term of time-dependent-EXX, TD-
EXX [69, 129, 127]). The rest of the terms – which have the difficult task to open the
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bandgap with respect to the KS one in TD-EXX – reads

f (1),EXX(1, 2) =

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(3, 6)GKS(6, 4)

×
[

ΣKS
x (4, 5) − δ(4, 5)vKS(4)

]

GKS(5, 3)χ−1
KS(6, 2)

+

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(6, 3)GKS(3, 4)

×
[

ΣKS
x (4, 5) − δ(4, 5)vKS(4)

]

GKS(5, 6)χ−1
KS(6, 2) . (4.18)

4.2.2 The time-dependent optimized-potential method from an action
formalism

The TD-OEP potential can also be obtained from the action formalism. In this case, the
time-dependent optimized-potential method [68] treats the Coulomb interaction as a per-
turbation that is switched on adiabatically in the interval (−∞, t0), while a compensating
local potential ensures that the density remains constant and equal to the static ground-
state density nGS(r) throughout the entire switching-on process. In this way it provides
an adiabatic connection between the stationary ground state of the non-interacting Kohn-
Sham system at t→ −∞ and the wave function Ψ0 of the true interacting electrons at t = t0
that enters in the definition of the action (3.21). In order to incorporate the switching-on
process in the theoretical description of the evolution of the system, the beginning and end
of the pseudotime contour C must be extended to −∞. The combination of the adiabatic
connection with the time-contour method makes it possible to apply standard perturba-
tion techniques and expand Axc[n] in terms of the Kohn-Sham orbitals and the Coulomb
interaction [125].

For an orbital-dependent action, two equivalent expressions for δAxc[n]/δvKS(r, τ) can
be derived by applying the chain rule with different intermediate quantities:

∫

C
dτ ′
∫

d3r′
δAxc[n]

δn(r′, τ ′)

δn(r′, τ ′)

δvKS(r, τ)

=

∫

C
dτ ′
∫

d3r′
∞
∑

j=1

(

δAxc[n]

δϕj(r′, τ ′)

δϕj(r
′, τ ′)

δvKS(r, τ)
+

δAxc[ϕj ]

δϕ∗
j (r

′, τ ′)

δϕ∗
j (r

′, τ ′)

δvKS(r, τ)

)

. (4.19)

The first functional derivative on the left-hand side gives rise to the exchange-correlation
potential (3.25), which can be determined from this identity because all other terms are
known: The linear Kohn-Sham density-response function δn(r′, τ ′)/δvKS(r, τ) is obtained
with the help of time-dependent perturbation theory by applying the same techniques as
in Ch. 3 in the pseudotime domain, while the derivatives of Axc[n] on the right-hand side
of Eq. (4.19) can be calculated analytically for a given orbital-dependent functional. The
variations of the orbitals

δϕj(r
′, τ ′)

δvKS(r, τ)
= −iϕj(r, τ)

∞
∑

k=1

ϕ∗
k(r, τ)ϕk(r′, τ ′)Θ(τ ′ − τ) (4.20)

and the corresponding formulas for the conjugate orbitals δϕ∗
j (r

′, τ ′)/δvKS(r, τ) again fol-
low from time-dependent perturbation theory. Finally, an expression for the exchange-
correlation kernel is obtained by manipulating in an analogous way the second functional
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derivative

δ2Axc[n]

δvKS(r, τ) δvKS(r2, τ2)
=

∫

Cdτ
′dτ1

∫

d3r′ d3r1
δ2Axc[n]

δn(r′, τ ′)δn(r1, τ1)

δn(r′, τ ′)

δvKS(r, τ)

δn(r1, τ1)

δvKS(r2, τ2)

+

∫

Cdτ ′
∫

d3r′
δAxc[n]

δn(r′, τ ′)

δ2n(r′, τ ′)

δvKS(r, τ)δvKS(r2, τ2)
; (4.21)

here the term on the right side containing the double derivative of Axc[n] is nothing else
but χKSfxcχKS, which allows one to solve for fxc after evaluation of all other terms.

4.2.3 Exact exchange

The leading term in the expansion of Axc[n] in powers of the Coulomb interaction is the
exchange part, which is of first order and given by

Ax[n] = −
1

2

∫

Cdτ
∞
∑

j=1

fj

∞
∑

k=1

fk

∫

d3r

∫

d3r′
ϕ∗

j (r, τ)ϕk(r, τ)ϕj(r
′, τ)ϕ∗

k(r′, τ)

|r− r′|
, (4.22)

while the correlation part Ac[n] includes all higher-order contributions. Inserting this ex-
pression into (4.19) and evaluating all quantities with the static density nGS(r) on the
physical time axis yields the “exact exchange potential” (4.16) [130, 131]. For the static
ground state potential this yields a relatively simple expression

∫

d3r′ vEXX(r′)χKS(r
′, r;ω = 0)

=

∫

d3r′
∫

d3r′′ Σx(r
′, r′′)

∞
∑

j=1

∞
∑

k=1

(fj − fk)
ϕ∗

j (r
′)ϕk(r′′)ϕj(r)ϕ

∗
k(r)

εj − εk
, (4.23)

with the non-local exchange self-energy

Σx(r
′, r′′) = −

∞
∑

j=1

fj

ϕj(r)ϕ
∗
j (r

′)

|r − r′|
. (4.24)

As pointed out above the latter takes the same form as the Hartree-Fock exchange op-
erator but is here constructed from the Kohn-Sham orbitals. Solving Eq. (4.23) for the
exact exchange potential requires an inversion of the static linear density-response func-
tion χKS(r′, r; 0), which is in practice achieved by a matrix inversion after projection on a
suitable basis set, such as plane waves for extended systems [132, 133]. The matrix el-
ements with reciprocal lattice vectors G = 0 or G′ = 0 and q = 0 must be omitted in
this case [134]. The restriction to this submatrix is necessary to guarantee a one-to-one
correspondence between variations of the density and the effective potential and hence to
obtain an invertible operator; it excludes constant potential shifts that leave the density
unchanged as well as density variations that violate particle-number conservation.

Compared to the evaluation of explicit density functionals, the construction of vEXX(r)
is considerably more expensive, because it requires not only the occupied conduction states
but also a summation over the unoccupied part of the spectrum. In addition, the lin-
ear density-response function must be inverted in each cycle of the self-consistency loop.
Practical calculations were therefore initially restricted to atoms and small molecules, but
the method is now also routinely applied to bulk semiconductors, insulators and metals
[134, 135, 136, 137, 138, 139, 140].



40 Model kernels from many-body perturbation theory

(a) =

−−++=(b) P1

Figure 4.4: Diagrammatic form of (a) the equation for the exact exchange potential and (b)
the first-order irreducible polarizability. A solid line represents the Green function of the
non-interacting Kohn-Sham electrons, a broken line represents the Coulomb interaction,
and the local exchange potential is indicated by a cross.

From a theoretical point of view, the exact exchange potential has definite advantages.
In particular, it is free of self-interaction and exhibits the correct asymptotic behavior for
finite systems [131], where it decays like −1/r, while the LDA and GGA fall off expo-
nentially. The exact exchange potential further features a discontinuity with respect to
a change in the number of electrons [139]. Such a discontinuity is also contained in the
exact functional; it is the difference between the Kohn-Sham eigenvalue gap and the true
quasiparticle band gap in semiconductors [141, 126].

The “exact exchange” kernel is similarly obtained, following the outline of Eq. (4.21),
from the relation

∫

d3r′′
∫

d3r′′′ χKS(r, r
′′;ω)fx(r

′′, r′′′;ω)χKS(r
′′′, r′;ω) = P1(r, r

′;ω) . (4.25)

The right-hand side equals the first-order contribution to the irreducible polarizability in
an expansion in powers of the Coulomb interaction. It consists of five distinct terms, which
can be derived in matrix notation [128] but are more easily summarized in terms of Feyn-
man diagrams [142]. The diagrammatic form of P1(r, r

′;ω) is shown in Fig. 4.4 together
with the representation of Eq. (4.23). The first two terms are the self-energy insertions
with the non-local exchange operator for independent electrons and (contributions due to
Σx in Eq. (4.18)), while the third arises from the attractive electron-hole interaction (4.17).
The last two terms contain the exact local exchange potential (contributions due to vxc in
(4.18)) and must be subtracted in order to avoid double counting.

In contrast to the ALDA, the exact exchange kernel is both non-local and frequency-
dependent. Furthermore, in the case of semiconductors its Fourier transform diverges in
the limit of small wave vectors, as required for the exact functional [128].

As a first practical test of its performance for electronic excitations in extended systems
we display the plasmon dispersion for the homogeneous electron gas at rs = 4 calculated
with the exact exchange kernel in Fig. 4.5. The ALDA and the results obtained with the
parametrization by Richardson and Ashcroft [143] are shown for comparison. The exact
exchange kernel is evidently in very good agreement with the RA reference values in the
entire region outside the electron-hole pair continuum and constitutes a definite improve-
ment over the ALDA. Based on our earlier analysis, we attribute this to a close match
with the wave-vector-dependence of the complete functional and conclude that the exact
exchange kernel is a suitable starting point for the quantitative investigation of collective
excitations in free-electron metals [144].

Early results from the time-dependent exact exchange method for semiconductors in-
dicated a good performance: Kim and Görling [129] calculated the optical absorption spec-
trum of silicon and found good agreement with experimental data. However, it was later
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Figure 4.5: Plasmon dispersion for the homogeneous electron gas at rs = 4 with the exact
exchange kernel (EXX) compared to the ALDA and the reference values obtained with the
parametrization by Richardson and Ashcroft (RA) [143].

observed that those calculations contained a cutoff of the divergent Coulomb potential
at small wave vectors, which actually had a large effect on the results and was in fact
responsible for the good quantitative performance [127]. As the singularity reflects the
long range of the Coulomb interaction in real space, this cutoff means that the kernel
was effectively evaluated with a short-range, screened interaction. If the singularity is
properly taken into account, TD-EXX should indeed be similar to time-dependent Hartree-
Fock [127]. The results change then drastically, which can be understood by consider-
ing the effect on the polarizability P1(r, r

′;ω): The Kohn-Sham eigenvalues obtained from
the exact exchange potential are closer to the experimental band structures than LDA
ones [134], but the self-energy insertion in the first two terms in 4.4 increases the eigen-
value gap close to the Hartree-Fock result, leading to a far too high absorption thresh-
old. In addition, the unscreened electron-hole interaction in the third term gives rise to
a strongly overbound exciton with an incorrect line shape [127]. If the bare Coulomb po-
tential is replaced by a screened interaction, then the self-energy insertion is comparable
to the GWapproximation, which yields generally good quasiparticle band gaps (see e.g.,
Ref. [145]), and the exciton line shape is reproduced correctly by the screened electron-hole
interactionW .

It has also been shown recently [146] that consistent inclusion of screening beyond
EXX in the OEP potential reduces the Kohn-Sham eigenvalue gap and brings its value
close to the LDA one; the discontinuity yields then the correct quasiparticle gap. A proper
treatment of correlation (i.e., here: screening) is hence crucial for semiconductors, and
computational schemes based only on exact exchange are not sufficient in this case. In
addition, the linearization of the equations is problematic for the gap-opening contribution
f(1), because the latter has to simulate a discontinuity [35]. This problem can be overcome
by using the full, non-linearized term.
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4.3 The exchange-correlation kernel from the Sham-

Schlüter equation

In the previous section the Sham-Schlüter equation has been introduced. This equation
makes a link between many-body perturbation theory (MBPT) and the density-functional
framework. Since recent results indicate that exploiting this link can be very fruitful, the
present section is dedicated to the comparison and combination of the two approaches.

Within MBPT one deals with four-point equations. In fact, a key quantity is the four-
point reducible polarizability L, that can be expressed in terms of the two-particle Green’s
function G2 describing the propagation of two particles (for absorption, the relevant part
describes the propagation of an electron and a hole):

L(1, 2, 3, 4) = L0(1, 2, 3, 4) −G2(1, 2, 3, 4) . (4.26)

As we have seen in Sec. 2.2, the BSE can not be written in a two-point form. As the
two sets of equations (3.35), (4.7) and (2.20) have a similar mathematical structure,
it is natural to try to extract information about the TDDFT exchange-correlation ker-
nel through their comparison. Different authors reached very similar expressions for
the exchange-correlation kernel starting from the BSE but using different approaches
[32, 33, 34, 35, 147, 142, 36, 38]. Tested for real materials, these kernels proved to be suc-
cessful in reproducing the quality of the BSE spectra via a TDDFT formalism. In present
implementations their computational cost still remains comparable to the cost of solving
the BSE but memory requirements are significantly reduced, and the expressions can be
rewritten leading to algorithms with better scaling. Moreover, they are a very convenient
starting point for further approximations. In the following we summarize some of these
derivations. We will also briefly outline how the combination BSE-TDDFT can be used to
improve upon current approximations of MBPT, by introducing the TDDFT concept into
MBPT. Some applications are also shown.

Let us first come back to the non-linearized Sham-Schlüter equation. This is equivalent
to the condition n(r, t) = −iG(r, r′, t, t+). In order to obtain an exact expression for fxc,
Bruneval et al. [147] started from this equality and took its functional derivative with
respect to the density. δG/δn = −G(δG−1/δn)G leads to

iG(13)G(41+)
δG−1(34)

δn(2)
= δ(12) . (4.27)

Since the same exact density, and hence the same Hartree potential, should also be ob-
tained from the Kohn-Sham potential vKS = V + vxc one can write

G−1(12)=G−1
0 (12)−δ(12)(vKS(1)−vxc(1))−Σ(12) . (4.28)

As δG−1
0 /δn = 0, Eq. (4.27) becomes

P0(13)χ
−1
KS(32) − iG(13)G(41+)

δΣ(34)

δn(2)
− P0(13)fxc(32) = δ(12) . (4.29)

As in the linearized case, the exact fxc turns out to consist of two terms fxc = f
(1)
xc + f

(2)
xc

[36, 147]. Those read now
f (1)
xc (12) = χ−1

KS(12) − P−1
0 (12) (4.30)

and

f (2)
xc (12) = −iP−1

0 (1, 1′)G(1′3)G(41′+)
δΣ(34)

δn(2)
. (4.31)
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f
(1)
xc exactly changes the Kohn-Sham response function into the independent QP one, in
particular, it solves hence the band gap problem. f (2)

xc accounts for the electron-hole inter-
action. Altogether, TDDFT yields then for the irreducible polarizability

χ = χKS + χKS(v + χ−1
KS − P−1

0 + f (2)
xc )χ = P0 + P0(v + f (2)

xc )χ . (4.32)

After having established the link between TDDFT and QP frameworks, it is now interest-
ing to get an explicit expression for f effxc . To get an explicit approximation for fxc, one has
to choose a starting approximation for the self-energy and the Green’s functions. A sim-
ple choice could be to take Σ, G and P0 as derived from a local and adiabatic exchange-
correlation potential, e.g., the LDA one. This leads of course to the TDLDA and the
GWΓ approach of Ref. [46]. A better choice is to start from the GW approximation for
Σ, taking W as a screened (e.g., static RPA) Coulomb interaction. For the functional
derivative, it is then reasonable to do two further approximations: (i) as is usually done
in the BSE, we neglect the derivative of W as usually done in the BSE; (ii) to approxi-
mate δG/δn = −G(δG−1/δn)G by GP−1

0 G. The latter approximation truncates the chain
of derivatives δΣ/δn that would appear if one continued to calculate all terms of δG−1/δn
(Note that this is equivalent to supposing that G is created by a local potential). Eq. (4.31)
yields then

f (2)
xc (34) =

∫

d5d6d7P−1
0 (36)G(65)G(5′6)W (55′)G(57)G(75′)P−1

0 (74) . (4.33)

Eq. (4.33) is the successful electron-hole exchange-correlation kernel of Refs. [32, 33, 34,
35, 147, 142, 36, 147, 38].

4.4 Comparing and combining different approaches

It is instructive to have a look also at the alternative derivations of this kernel. In fact,
instead of starting from the density it may be more straightforward to start from the obser-
vation that MBPT and TDDFT should yield the same two-point response function. Since
χ can in principle be obtained via P red from Eq. (2.22), one could invert the screening
equation and determine fxc from fxc = χ−1

KS − χ−1 − v [148, 149]. The latter relation is of
course not of practical interest, but can give insight about general features of the kernel,
like its overall frequency behavior, an idea that has been exploited in [150]. Reining et al.

[32, 33] instead used the equality of the response functions in order to obtain an approx-
imate expression for the exchange-correlation kernel of TDDFT by mapping directly the
matrix elements of the BSE (2.20) onto the matrix elements of the TDDFT linear response
equation (3.35). The derivation starts by rewriting the TDDFT Dyson equation (3.35) in a
four-point formalism

4χ̄ = 4χKS + 4χKS(
4v̄ + 4fxc)

4χ̄ , (4.34)

where the four-point Coulomb interaction 4v̄(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v̄(1, 3) and the four-
point kernel 4fxc(1, 2, 3, 4) = δ(1, 2)δ(3, 4)fxc(1, 3) are defined [33]. On the other hand, the
BSE (2.21a) has the same structure as Eq. (4.34), but with 4χKS replaced by its four-point
MBPT counterpart 4L0, and the TDDFT kernel replaced by

4K = δ(1, 2)δ(3, 4)v̄(1, 3) − δ(1, 3)δ(2, 4)W (1, 2) . (4.35)

In [32, 33], an approximation for both f (1)
xc and f (2)

xc were derived; since in practice it is con-
venient to use the exact expression (4.30) for the former contribution, only the derivation
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of f (2)
xc will be discussed in the following. We thus replace χKS by P0 and focus on the second

part of the exchange-correlation kernel. The first term of the total kernel in both TDDFT
and BSE, i.e., the bare Coulomb interaction v̄, is identical. One might hence try to identify
the remaining part of the kernel f (2)

xc with the screened Coulomb interaction of the BSE
kernel (4.35):

δ(1, 2)δ(3, 4)f (2)
xc (1, 3) ↔ −δ(1, 3)δ(2, 4)W (1, 2) . (4.36)

However, as the δ - functions do not contract the same indices expression (4.36) cannot be
an equality.

Different approaches have been proposed to overcome this difficulty and nevertheless
use the similarity of the equations.

1. The assumption that kernels could be similar for a limited number of transitions: For
this approach, it is useful to write Eq. (4.36) on a basis of pairs of Kohn-Sham LDA
states (transition space) [151]

FTDDFT
(vck)(v′c′k′) ↔ FBSE

(vck)(v′c′k′), (4.37)

with the matrix elements

FTDDFT
(vck)(v′c′k′) = 2

∫

d3r d3r′Φ(vkck, r)f (2)
xc (r, r′, ω)Φ∗(v′k′c′k′, r′) (4.38a)

FBSE
(vck)(v′c′k′) = −

∫

d3r d3r′Φ(vkv′k′, r)W (r, r′, 0)Φ∗(ckc′k′, r′) , (4.38b)

where Φ(ikjk′, r) is the product of a pair of Kohn-Sham wavefunctions; The indices
{i,k} stand for the band-index and momentum of the Kohn-Sham state. Only the
resonant contribution is shown (transitions from occupied to empty states) and the
momentum transfer is supposed to be vanishing since the approach has been derived
for optical spectra; both conditions can however easily be generalized. As usual in
calculations based on the Bethe-Salpeter equation, W is moreover supposed to be
static. Note that in practice, the equality in (4.37) is then imposed for transitions
belonging to a a certain frequency range. The TDDFT spectra will match the BSE
spectra only in this region. The quantity FTDDFT

(vck)(v′c′k′) is now a static quantity over that
energy range, as a consequence of the static approximation for W . (However, since
because of (i) a different kernel will be obtained for a different group of transitions,
there is an overall effective frequency dependence). Reining et al. [32] have formally
inverted Eq. (4.37). A Fourier transform to reciprocal space leads then to

f (2)
xc (q → 0,G,G′) =

∑

vck v′c′k′

Φ−1
G (vkck;q → 0)FBSE

(vck)(v′c′k′) (Φ∗)−1
G′ (v′k′c′k′;q → 0).

(4.39)
The TDDFT exchange-correlation kernel derived in this way has correct asymptotic
behavior (see the discussion in Sec. 4.5); it stems from the asymptotic behavior of the
Φ, not from the Coulomb interaction W as one might have suspected. The inversion
of the matrices Φ is purely formal; the kernel (4.39) itself was in fact not evaluated
in Ref. [32], but used to derive a TDDFT-like screening equation. A more direct way
to arrive at the same screening equation along similar lines has been proposed by
Sottile et al. [33]. One starts by writing the TDDFT-like response equation (4.7) in a
symmetrized form (the same can be done with Eq. (3.35)):

χ̄ = P0

(

P0 − P0v̄P0 − P0f
(2)
xc P0

)−1
P0 . (4.40)
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Figure 4.6: Imaginary part of the macroscopic dielectric function for Si from Ref. [33].
Dots: experiment [110]; dash-dot-dot line: RPA calculation; dash-dash-dot line: TDLDA
calculation; dash-dot line: GW -RPA calculation; dash line: BSE calculation; solid line: T2

kernel.

It appears that in order to calculate χ̄ one only needs P0f
(2)
xc P0, and not f (2)

xc explicitly.
This integral contains sums over transitions involving FTDDFT

(vck)(v′c′k′). Enforcing hence
the equality in 4.37 yields

P0f
(2)
xc P0 = T2 , (4.41)

where T2 is calculated as :

T2(G,G
′, ω) =

2

N2
k

∑

vckv′c′k′

Φ∗(vkck;G)

εQP
ck − εQP

vk − ω
FBSE

(vck)(v′c′k′)

Φ(v′k′c′k′;G′)

εQP
c′k′ − εQP

v′k′ − ω
; (4.42)

(here we give again only the expression for the resonant contribution, which is the
dominant term in absorption spectra). This is a result that can be used in practice.
The first calculation has been done for bulk silicon; the result shown in 4.6 obtained
by Sottile et al. shows almost perfect agreement with a result obtained by solving the
BSE. From a computational point of view, one still has to calculate W ; in today’s im-
plementation moreover the two-particle matrix elements W(vck)(v′c′k′) are calculated,
which is often the most expensive part of a BSE calculation. In principle the sum over
transitions could be performed in a different order and the latter calculation avoided.
Moreover by studying Eq. (4.42), one can derive model kernels, which can decrease
drastically the computational cost. The performance of the kernel as well as efficient
approximations will be illustrated in Sec. 4.5.

2. A perturbative approach leading to the same exchange-correlation kernel was pro-
posed by Adragna et al.[34]: Their starting point is again the requirement that the
TDDFT and the BSE two-point response functions should be equal. The polarizabil-
ities are then developed perturbatively to the same order. Truncation to first order
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leads again to Eq. (4.41) with Eq. (4.42). Marini et al. used this kernel for the calcu-
lation of optical absorption of insulators, including a bound exciton, and loss spectra
at non-vanishing momentum transfer [35]. Both cases were in good agreement with
experiments. It was also shown that the inclusion of the second-order term in the
perturbative expansion did not affect significantly the calculated spectra. For more
details see chapters 10 and 20 of Ref. [152]

3. The perturbative approach was also explored in terms of Feynman diagrams [142,
153, 36, 118]: Stubner, Tokatly and Pankratov [36] derived an integral equation which
leads to Eq. (4.42) when non-locality beyond the first order is neglected. Also the
separation of f (1)

xc and f (2)
xc naturally comes out from that derivation.

Finally we mention the work of von Barth et al. [38]: here the kernel is derived
from a functional approach. Again, this yields f (1)

xc in its linearized version as well
as the above approximation for f (2)

xc , when GW diagrams are chosen. The advantage
of deriving a kernel as double derivative of a functional is that the symmetry of the
expression guarantees that important conservation laws are fulfilled.

This kernel is hence the result of the work of several groups.
In order to complete the section about links between MBPT and TDDFT, it is useful

to remind that improved TDDFT response functions and kernels can in turn be inserted
into many-body calculations in order to go beyond existing approximations, in particular
the RPA-based GWapproximation. The kernel of linear-response TDDFT stems from the
variations of the Hartree and exchange-correlation potentials with respect to the density.
Within MBPT, the variations are taken with respect to the one-particle Green’s function.
However, when one is only interested in the self-energy and the Green’s function (and not
in the full four-point response function) also in the case of MBPT these variations can be
created by a local external potential, for which the Runge-Gross theorem holds [19]. As a
consequence, also in the MBPT scheme it is possible to rely on the fact that the density
variations determine the physics of excitations. Starting from this observation, Bruneval
et al. suggested an alternative way to find approximations for the self-energy Σ [147]. This
operator, that accounts for all the many-body effects on the one-particle Green’s function
beyond the Hartree term and is a key quantity of MBPT, is defined as [11, 41]

Σ(1, 2) = i

∫

d3 d4 d5 G(1, 4)Γ(4, 2; 5)
δV (5)

δU(3)
v(3, 1+) , (4.43)

where G is the one-particle Green’s function, U is a local external potential, V (1) =
U(1) + vH(1) is the total classical potential – including also the Hartree contribution vH,
and δV (5)/δU(3) = ǫ−1(5, 3). The irreducible vertex function Γ is defined as

Γ(1, 2, 3) = −
δG−1(1, 2)

δV (3)
= δ(1, 3)δ(2, 3) +

δΣ(1, 2)

δV (3)
. (4.44)

Bruneval et al. proposed to replace the chain rule usually employed to obtain δΣ/δV ,
namely (δΣ/δG)(δG/δV ) [40, 41], with the alternative chain rule (δΣ/δρ)(δρ/δV ). This
step is justified by the one-to-one relation between the time-dependent density and exter-
nal potential, or consequently between the density and the classical potential V . Eq. (4.44)
then becomes

Γ(1, 2; 3) = δ(1, 3)δ(2, 3) +

∫

d4
δΣ(1, 2)

δρ(4)
P (4, 3), (4.45)
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Figure 4.7: Optical absorption spectra of LiF from Ref. [35] calculated within the BSE
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where P = δρ/δV is the irreducible polarizability

P (1, 2) = −i

∫

d3 d4 G(1, 3)G(4, 1)Γ(3, 4, 2) . (4.46)

On the other hand, if one multiplies Eq. (4.45) with two Green’s functionsG and integrates,
the result is

P (1, 2) = P0(1, 2) +

∫

d3 d4 P0(1, 3)f
(2)
xc (3, 4)P (4, 2) (4.47)

with 4.31. This constitutes hence an alternative derivation of the exact kernel. Moreover,
once P is known Eq. (4.45) allows one to calculate the three-point vertex, and hence an
improved self-energy, without solving a four-point integral equation. It has been shown
[147] that, besides the better description of the test-charge–test-charge screened W , a ma-
jor contribution to the correction beyond GW stems from the induced exchange-correlation
potential that acts on an additional particle or hole on top of the induced Hartree potential;
only the latter is contained in GW (moreover, it is approximated in the RPA).

4.4.1 Applications

When coming to actual calculations it should be noted that in general (i) as mentioned
above, only f (2)

xc is explicitly used, whereas the GW correction is included by using P0; (ii)
most calculations are restricted to the resonant contribution; (iii) the diagonal contribution
FBSE

(vck)(vck) is extracted from f
(2)
xc and included in P0. Strictly speaking, this contribution

should be zero in a solid, but for a finite k-point sampling it is non-vanishing. These three
points are important for the quality of the final results. An example of the application
of the BSE-derived kernel (4.42) to real systems can be found in Fig. (4.7) [35], where
the optical absorption spectrum of LiF is shown. One can observe that, as anticipated, the
agreement between the BSE calculation and the TDDFT calculation using the BSE-derived
kernel is excellent. The importance of the matrix character of fxc (i.e., the importance of
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G,G′ 6= 0 terms) in wide-gap insulators is demonstrated by looking at the curve obtained
with a scalar (G = G′ = 0) fxc. Although the kernel is strongly frequency dependent, only
the main peak is reproduced correctly, while some unphysical regions of negative absorp-
tion appear at higher energies. In contrast, when dealing with systems with continuum
exciton effects (Si, diamond, etc.) the use of the head of fxc is often sufficient to recover
the BSE spectrum. This is related to the different degree of inhomogeneity of the induced
density in simple semiconductors and wide-gap insulators. The BSE-derived kernel (4.42)
has also been successfully applied to the study of low-dimensional systems. An example
are conjugated polymers. We have already pointed out in Sec. 4.1.2 that simple adiabatic
local and gradient corrected functionals fail in describing the dielectric response of long
molecular chains [27]. Current density functional approaches can partially solve this prob-
lem [154, 155]. The non-local frequency dependent BSE-derived kernel restores the good
agreement between the calculated and the measured polarizabilities. This can be observed
in Fig 4.8, where the calculated optical absorption spectrum of polyacethylene is compared
with experimental data [156, 157].

In brief, the BSE derived fxc kernel is able to reproduce the optical and energy-loss
spectra of a large class of materials including semiconductors and large band-gap insu-
lators [33, 35], as well as systems of low dimensionality [156]. Although calculations are
today still relatively cumbersome, improved algorithms and/or efficient approximations are
expected to make this approach clearly competitive with respect to a BSE calculation, when
one is interested in an efficient determination of spectra.

4.5 Simple models

In Sec. 4.4 we introduced a class of parameter-free kernels that are particularly success-
ful for the description of optical absorption in solids – the kernels derived from the BSE.
Even though they have a potentially reduced computational effort with respect to the BSE,
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Figure 4.9: Material dependence of αstatic with respect to the inverse of the dielectric con-
stant [37].

calculations using these kernels are however still significantly more involved than those
within the RPA or the TDLDA. Therefore, the question of finding simple and efficient, but
also reliable, models for fxc is still open. In this quest, there are several important lessons
to be learned from the BSE-derived kernels. In the following we discuss some model ker-
nels, inspired by the BSE, that combine simplicity with a reasonably good description of
response properties.

4.5.1 Long-range exchange-correlation kernels

One of the most striking characteristic of the TDLDA kernel is that it is static and local in
space. Therefore, one can expect that the inclusion of either dynamical (memory) effects,
long-range nonlocal terms [24, 142] or both improves, in principle, the results yielded by
the simple TDLDA. In this section, we introduce some model kernels, obtained by approx-
imating the BSE-derived kernel of Eqs. (4.31) and (4.41), that accounts for such further
terms.

The exchange-correlation kernel of Eqs. (4.31) and (4.41) contains a long-range contri-
bution (LRC) of the form 1/q2. This LRC is instead completely absent within the TDLDA,
as the TDLDA kernel goes to a constant in the limit q → 0. The simplest model that
exhibits the correct LRC has the form

f static
xc (q) = −

αstatic

q2
, (4.48)

where αstatic is a material dependent parameter. The use of this particular form can be
motivated starting from the BSE, following the lines of Sec. 4.4 [32]. In fact, the function
ΦG=0 (v k ck;q) in (4.39) goes to zero as Φ ∼q for q → 0. Since in this limit FBSE

(vck)(v′c′k′)

behaves like a constant, this implies that fxc(q,G = 0,G′ = 0) goes as 1/q2 in the optical
limit. Moreover, as it can be seen in Fig. 4.9 the LRC to the exchange-correlation kernel is
inversely proportional to the macroscopic dielectric constant ǫ∞ [37].

Note that there is also a positive long-range contribution to the exchange-correlation
kernel stemming from the QP shift of eigenvalues (as predicted in Ref. [158]), that com-
petes with the negative one resulting from the BSE, i.e., the electron-hole interaction. This
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Figure 4.10: Imaginary part of the macroscopic dielectric function of GaAs [37]. Dots:
experiment [159]; dot-dashed curve: TDLDA; dashed curve: GW -RPA; solid line: TDDFT-
LRC.

contribution is contained in Eq. (4.30). In Refs. [32, 37] it was shown that the LRC alone
is sufficient to reproduce the contribution of the electron-hole interaction f (2)

xc to the optical
spectra of simple semiconductors. The same is not true concerning the the self-energy con-
tribution f (1)

xc , where a LRC approximation does not work. For this reason in the following
discussion we will focus on models for the term f

(2)
xc .

Fig. 4.10 shows the optical absorption spectra of GaAs [37]. As previously discussed
in Sec. 4.1.3, the TDLDA result is close to the RPA curve, and both show the well known
discrepancies with experiment: the peak positions are redshifted, and the intensity of the
first main structure is strongly underestimated. The dashed curve (GW -RPA) is obtained
by replacing the Kohn-Sham eigenvalues with GWquasiparticle energies in the RPA cal-
culation of ǫ. This corresponds to applying the Dyson equation (3.35) for the first part of
the exchange-correlation kernel f (1)

xc . The resulting spectrum is blueshifted and, moreover,
the lineshape has not been corrected. Finally, the curve representing a TDDFT calculation
starting from GWquasiparticle energies to calculate the independent-particle response and
using the LRC kernel (4.48) gives an excellent fit to the experiment. This curve was ob-
tained using αstatic = 0.2.

The simple static LRC model, together with the linear dependence of α on 1/ǫ∞, allows
one to predict the absorption spectrum from the knowledge of the experimental dielectric
constant of the material in question. However, the model f static

xc of Eq. (4.48) has clear limits
that become more and more evident as the band gap increases.

For example, already in diamond [37, 150] the first shoulder and the main peak in the
spectrum cannot be both described with good precision using a single parameter αstatic.
The problem gets even more serious when bound exciton peaks appear in the spectrum, as
e.g., for LiF [104] (see Fig. 4.11) or solid argon [160]. In fact, the only possible action of the
LRC exchange-correlation kernel is to redistribute oscillator strength. In contrast to the
full BSE kernel, this remains true also in cases where poles should appear in the bandgap,
like, e.g., in LiF where bound excitons occur in the experimental spectrum (see Fig. 4.11).
Furthermore, approximations as outlined above are based on a limited range of transitions.
When the spectral range gets larger, e.g., when response beyond the absorption region is
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Figure 4.11: Imaginary part of the macroscopic dielectric function for LiF [104]. Dots:
experiment [105]; dotted curve: BSE; dot-dashed curve: TDLDA; dashed curve: TDDFT
using the static LRC model kernel; solid line: TDDFT using the dynamical LRC model
kernel. In the inset: GW -RPA.

considered, as a consequence of the change of the limited range of transitions also fxc has
to change. In the case of the model kernel (4.48) this introduces an effective ω-dependence
of the parameter αstatic. In order to describe the plasmon of silicon one could for example
still use Eq. (4.48), but with an αstatic that is an order of magnitude larger than the one
that yields a good optical spectrum [37]. This will be further discussed below, after a brief
summary of other approaches leading to a LRC.

The simple static LRC model (4.48) does not in fact represent the first attempt to ac-
count for long-range effects in semiconductors. Already in 1994 Godby and Sham [161]
pointed out that long-range density variations give rise to an effective exchange-correlation
field. It was then proved [26] that the origin of this exchange-correlation field lies in the
macroscopic polarization. Alternatively, one could avoid the use of the macroscopic polar-
ization by introducing a scissor-operator quasiparticle correction to the Kohn-Sham gap.
The LRC stemming from this discussion has hence the task of increasing the gap (like
f

(1)
xc ), and has, consequently, a positive sign.

Aulbur, Jönsson and Wilkins [162] studied the problem of determining static dielectric
constants. They related an effective exchange-correlation field to the difference between
the true and the Kohn-Sham static susceptibilities, and, by using calculated Kohn-Sham
and measured (i.e., “true”) values, fixed the prefactor of a LRC to the kernel for a series
of materials. It resulted a contribution ∆fxc = γ/q2, where γ is of the order of 0.25 for
several small-, and medium-gap semiconductors. According to this work, the LRC correc-
tion should account for both f (1)

xc and f (2)
xc , which is the reason why γ turns out to be small

and positive. However, this model can not be extended to the description of spectra, as the
quasiparticle corrections simulated by f (1)

xc are too complex to be written as a simple LRC
model.

Another approach to the description of the dynamical susceptibility was proposed by
Boeij et al.[154] who obtained a polarization-dependent functional derived from current
density functional theory [163]. This functional involves two parameters: one (material-
dependent) accounting for a positive shift of transition energies (in fact, a scissor operator),
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Figure 4.12: Real part of the LRC component of the exchange-correlation kernel needed to
reproduce the BSE optical spectrum of silicon. The inset shows the same function in an
energy region close to the plasma frequency. Dashed lines: calculation from [150]; solid
line: dynamical LRC model.

and a second (constant) one, chosen to be 0.4, that multiplies a tensor Y containing the
polarization effects. The tensor Y is in principle frequency-dependent, but its static value
is used. This approach yields identical results to the static LRCmodel described here, if one
identifies 0.4Y = −αstatic, and if the scissors are replaced by the quasiparticle corrections.

In consideration of the limits of the static LRC model, it is natural trying to guess
how to further improve the kernel. One can either work along the lines of [32] and add
a more complicated spatial behavior, or one can keep the simple 1/q2 form of the LRC,
but introduce a frequency dependent α [150]. Clearly, this latter choice allows for each
structure of the spectrum to have its own effective correction. Botti et al. [104] proposed a
frequency dependent LRC kernel of the form

fdyn
xc (q, ω) = −

1

q2
(

α+ β ω2
)

. (4.49)

This choice was guided by recent calculations [150] for bulk silicon and diamond, that
yielded the frequency dependence of the LRC term of the exchange-correlation kernel from
the inversion of the BSE. Fig. 4.12 shows, for fxc of silicon, that the dynamical model fdyn

xc

is indeed a good approximation in a large energy range, even including the plasmon region
(see inset of Fig. 4.12).

Starting from (4.42) it is possible to prove that the two parameters α and β of Eq. (4.49)
can be related to physical quantities, namely the dielectric constant and the plasma fre-
quency. For simple semiconductors, this model yields the same result as the static LRC
model [104]. In the case of wide-gap insulators, like diamond or cadmium selenide, or
for the EELS of silicon, the dynamical model heals the shortcomings of the static LRC
kernel [104]. The improvement is significant even in the presence of bound excitons. We
consider again as an example LiF (see Fig. 4.11). Setting αstatic to the value 2.0 gives a
reasonable compromise (dashed line), enhancing slightly the low energy structures with-
out provoking the collapse of the spectrum. The worst disagreement concerns the absence
of the large excitonic peak at about 12.5 eV. On the other hand, the dynamical model (solid
line) is able to describe the strong bound exciton peak. A better agreement can only be
found using the BSE approach (dotted line) or the full kernel derived by the BSE (see
Fig. 4.7), both of which involve a much larger computational effort [106, 164, 108, 109]
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Figure 4.13: Imaginary part of the macroscopic dielectric function for bulk silicon from
Ref. [160]. Dotted curve: BSE; Dot-dashed curve: TDDFT with static LRC (αstatic = 0.2;
Continuous curve: TDDFT contact kernel (A/2 = 15); Dots: experiment [110].

than the application of the simple dynamical LRC model. Note that the objective of these
model kernels is not to provide an ab initio approximation to the exact TDDFT kernel,
but to offer a numerically efficient framework for the calculation of response properties of
complex solids and nanostructures. A key feature is that the model kernels depend on a re-
duced number of parameters, and that these can be related in a straightforward manner to
known physical quantities. The drawback of these models is, of course, the reduced range
of validity of the underlying approximation, which implies that one should carefully check
the applicability of a model to a specific system.

4.5.2 Contact exciton

The contact exciton model was successfully used in the 70’s for the description of continuum
exciton effects in a wide range of systems [165, 166, 167, 168]. Model calculations could also
show that the contact exciton is able to produce one bound state [169, 168]. This simple
model gives rise to the equation

ǫM(ω) − 1 =
ǫRPA
M (ω) − 1

1 + g(ǫRPA
M (ω) − 1)

. (4.50)

Inspection reveals that this is the LRC kernel approximation derived in the previous sec-
tion [150, 160], provided that fxc = −g4π/q2. Moreover, in [165] the parameter g is depen-
dent on ω2, similarly to the parameter β of the dynamical LRC model of Sec. 4.5.1.

A different exchange-correlation kernel can be derived in the same spirit by replacing
the screened electron-hole interaction in the BSE by a local contact potential [160]. When
W in Eq. (4.36) is approximated by δ(12)A, the equality is possible in Eq. (4.37) and one
obtains

f contact
xc (r1, r3) = −

1

2
δ(r1 − r3)A , (4.51)

where A is an adjustable parameter. This is obviously a ultra-short range kernel.
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In Fig. 4.13 we compare optical absorption calculations performed within the different
approximations with the experimental optical spectrum of silicon. The curve obtained for
the ultra-short ranged f contact

xc using A/2 = 15 (continuous curve) turns out to be in very
good agreement with the result of a full BSE calculation (dotted curve) and the long-range
kernel f static

xc = −α/q2 with α = 0.2 (dot-dashed curve). All calculations are also in good
agreement with experiment (circles).

In order to understand how a short-range and a long-range fxc can yield similar spectra
for simple semiconductors, one has to realize that we are talking about effective exchange-
correlation kernels, and not the real one. These kernels are chosen to reproduce a certain
number of properties. It is clear that more than one kernel (even with very different analyt-
ical forms and physical interpretation) can lead to the same optical spectrum. The contact
exciton is a very good illustration of this.

To a certain extent, a short-ranged but strong electron-hole Coulomb interaction can
simulate the effect of the true, screened long-ranged one: continuum exciton effects can be
well reproduced, and even one bound exciton can be created. However, in the latter case
the continuum is not well described, and no higher-order peaks of the series are obtained.

The choice of which model to use should finally depend both on computational conve-
nience and on the possibility to determine the parameters of the model without fitting to
experiment. The stronger are the requirements on the precision of the results, the closer
the chosen model should resemble to the exact fxc and, for example, have a long range com-
ponent when the system is a semiconductor or insulator. We remark that all these methods
discussed above are the result of quite recent investigations, so it is very reasonable to ex-
pect further developments in the near future.
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Applications





Chapter 5

Nanostructures

Electronic excitations in nanostructured materials are nowadays at the heart of many fun-
damental and technological research projects. Much of the progress made in modern tech-
nology is based on a deeper understanding of the properties of materials. Indeed, the
characterization of electronic, structural, and bonding properties of nanosctructures is a
real necessity in order to understand the origin of the unique properties that make them so
appealing for applications. From both experimental and theoretical side, optical, electron
and time-resolved spectroscopies open many possibilities, allowing the study of static and
dynamic electron-electron correlations.

The electronic properties are particularly sensitive to the reduced dimensionality of the
nanostructures: the energy levels evolve as the size of the system decreases, as a conse-
quence of quantum confinement. Also effects due to electron-electron and electron-hole
interactions can be enhanced due to the spacial confinement and anisotropy of the system.
The optical spectra provide important insight into the electronic structure. In particular,
the optical response of a nanostructure depends on its size and also on the atomic arrange-
ment. This is an important feature, since the determination of the geometry is, in general,
a hard task, either for experimental techniques or for sophisticated total energy calcu-
lations, and the comparison of calculated and measured spectra can allow to distinguish
among different possible structures. Of course, this is true only if calculations are accurate
enough to guarantee to be predictive.

In the following sections we show several illustrative examples of how TDDFT or many-
body calculations within linear response can be used to unravel the physics of interesting
nanostructured systems.

5.1 Excitonic effects in the optical spectra of CdSe

nanowires∗

5.1.1 Introduction

Nanowires exhibit a wide range of unique properties [170], including tunable band gaps,
ballistic transport [171], optical anisotropy [172] and strong excitonic effects [173]. It is
therefore not surprising that for the past twenty years nanowires have emerged as one of
the most active fields of research in material science [170]. This growing interest is mainly

∗This section is based on the article:

• Excitonic effects in the optical properties of CdSe nanowires, J. G. Vilhena, S. Botti and M. A. L. Marques,
accepted for publication in Appl. Phys. Lett. (2010).
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due to their short term promising applications [171, 174, 173] and is empowered by a strong
demand from industries for smaller and more effective devices. To a large extent, the novel
properties emerge from the lateral confinement of the electrons in the wire, leading to the
blue shift of the electronic band gap with decreasing diameter.

In this section we focus on the optical properties of CdSe nanowires from a first-
principle perspective, based and going beyond standard DFT. Beside analyzing how optical
properties evolve with the diameter of the wire, we test some approximations that are com-
monly used for bulk materials and discuss their applicability to electronic excitations in
1D systems. Several studies of the optical properties of CdSe wires have appeared in the
past years [175, 176, 177]. Classical [172] and semi-empirical [177] methods have been
quite successful in describing large-diameter wires, but they fail for small and medium
diameters. Furthermore, none of the articles using first-principle methods present in the
literature [175, 176] was capable of capturing the physics of electronic excitations in these
confined systems. This was due to the neglect of at least one of the following physical effects
that are fundamental for an accurate description of nano-scale objects:

(a) Crystal local-field effects. When the polarization of the light is perpendicular to the
long axis there is an accumulation of charges at the wire surface, which in turn is respon-
sible for the attenuation of the electric field inside the nanowire. This leads to a strong
suppression of the absorption for light polarized perpendicular to the nanowire axis, in-
creasing dramatically the optical anisotropy of the system [178, 179]. This huge effect has
already been measured [172] in polarized photo-luminescence experiments, but unfortu-
nately some recent theoretical works [176, 180] still neglect it.

(b) Electron-electron interaction and excitonic effects. These effects are very pro-
nounced in semi-conducting nanowires due to the attenuation of the screening. The strong
electron-hole binding is responsible for a red shift of the fundamental absorption frequency.
Due to this effect, nanowires can be seen as exciton traps, a property that endows them of
great technological interest [173].

5.1.2 Ab initio calculations

To study the importance of local-field corrections, we calculated the absorption spectra
of unpassivated CdSe nanowires of 5 different diameters (0.73, 1.17, 1.59, 1.77, and
2.01nm) starting from DFT Kohn-Sham states and applying the random-phase approxi-
mation (RPA) to obtain the dielectric tensor (for details on this and all the other approx-
imations employed in the following, refer to Ref. [181]). The neglect of local-field effects
is equivalent to applying Fermi’s golden rule, i.e., to treat only independent particle tran-
sitions, and completely ignores the inhomogeneity in the dielectric response due to the
reduced dimensionality of the nano-object.

All CdSe nanowires were assumed to be infinitely long with periodic length 7.01Å and
with their axis parallel to the wurtzite (001) axis. Ground state calculations were per-
formed using the DFT code ABINIT [182], and the core electrons of Cd ([Kr]4d10) and
Se ([Ar]3d10) were described by Hamann norm conserving pseudo-potentials [183]. We
chose the Perdew-Burke-Ernzerhof [4] approximation to the exchange-correlation func-
tional. Converged calculations required a cutoff energy of 20 Ha and a 1×1×8 Monkhorst-
Pack [184] sampling of the Brillouin zone. Atomic positions were relaxed starting from
the bulk wurtzite structure. The converged spacing between the wires in our supercell
approach was at least 7Å.

The optical spectra of the wire with a diameter of 0.73nm, calculated at the RPA level
including or neglecting local fields is shown in Fig. 5.1. Without local fields, there is a
small anisotropy between the absorption perpendicular and parallel to the nanowire axis,
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Figure 5.1: Imaginary part of the dielectric function for the smallest nanowire (d =
0.73nm), calculated in the RPA with (LF) and without (NLF) crystal local fields, for light
polarized parallel (E‖) and perpendicular (E⊥) to the wire axis. Note that the absorption is
zero for NLF : E⊥.

comparable to the anisotropy in bulk CdSe. However, and as expected, turning on local-
field effects suppresses completely the low energy absorption peaks in the perpendicular
direction, rendering the wire almost transparent below 6.5 eV. This optical anisotropy, in
agreement with experimental results [172], clearly decreases with the diameter, but it is
known to be still relevant for nanowires with a diameter of 100nm.

To observe how the optical properties vary with increasing diameter, we plot the RPA
spectrum (including local fields) for five small wires in Fig. 5.2. It is expected that the RPA
gives a poor quantitative result due to the inappropriate treatment of electron-electron and
electron-hole interactions, but it is however possible to extract qualitative trends thanks to
the partial cancellation of these two terms (see below). We see that increasing the diameter,
and thereby decreasing the confinement effect, leads to a red-shift of the spectrum, with
the absorption threshold moving towards the RPA bulk value. There is also a redistribution
of the oscillator strengths, with the first peak loosing intensity.

To go beyond the RPA and to include the relevant missing contributions, we performed
calculations solving the Bethe-Salpeter equation (BSE) [17] and using TDDFT [181] — both
in the adiabatic local density approximation (ALDA) and with the model long range (LRC)
kernels [104, 37] derived from the BSE. The BSE approach is the state-of-the-art method
for calculations of optical absorption and gives results in excellent agreement with exper-
iments [17, 181]. For the LRC and BSE calculations, one requires as a starting point the
quasi-particle band structure, usually obtained within the GW approximation [11]. Note
that the GW approximation predicts accurate band gap energies for CdSe, in contrast to
the systematic underestimation of the gap obtained in DFT. Unfortunately, GW calcula-
tions are computationally demanding, even for the small wires studied here. We therefore
used the following approach to obtain the quasi-particle corrections: we solved the GW
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Figure 5.2: Dependence of the RPA absorption spectrum on the diameter of the nanowire.
For comparison we also show the RPA result for the wurtzite CdSe bulk material.

equations for our smallest nanowire (d = 0.73nm), and then used a simple simple analyti-
cal model [185] that accounts for surface and size effects to interpolate between this result
and the GW gap of the bulk [186].

The GW calculations were performed with ABINIT, applying the standard plasmon-
pole approximation. An energy cutoff for the dielectric matrix of 9Ha and the technique
of Ref. [187] to reduce the number of unoccupied states in the sums over states were em-
ployed. Despite the use of a cylindrical cutoff for the Coulomb interaction [188], a distance
of 10Å between the wires was required to converge the GW corrections to the Kohn-Sham
band structure. These corrections turned out to be quite insensitive to the k-point and
band index, in agreement with other results for Si and Ge nanowires [180, 189], and in
contrast with findings for graphene nanoribbons [190]. The GW gap for the smallest wire
was EGW

gap = 4.84 eV, and the final form of the model relating the quasi-particle gap with the
diameter of the wire (d in nm) turned out to be Emodel

GWgap(d) = 1.91 + 2.14/d (eV). Note that a
simple effective mass approximation, accounting for confinement, would give a 1/d2 scaling.
However, the 1/d law [185, 191] is in better agreement with theoretical and experimental
data, even for small nanowires.

The BSE results (see Fig. 5.3), obtained using the code YAMBO [72], prove the existence
of strong excitonic effects, with the excitonic peaks in the visible energy range. The exci-
tonic binding energy compensates almost entirely for the large blue-shift coming from the
quasi-particle corrections, and leads to a transfer of the oscillator strength from the higher
energy absorption peaks to the first peak. On the other hand, the LRC kernels derived
from the BSE, that yield results comparable to the solution of the BSE for bulk CdSe [104],
fail dramatically for nanowires — in fact, as shown in Fig. 5.3 , even the optical gap result-
ing from DFT+RPA calculation is in better agreement with the BSE result. The attempt
to increase the excitonic effect by modulating the empirical parameters of the LRC kernel
did not lead to improvements. The reason is that the simple LRC approximations are only
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Figure 5.3: Imaginary part of the dielectric constant in the different approximations: RPA,
LRC kernel, and BSE for the d = 0.73nm nanowire. The ALDA results (not shown) are
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valid for delocalized excitons, but fail to reproduce the considerable binding energy of the
very localized excitons existing in nanowires.

The exciton binding energies from BSE calculations, for the nanowire with diameters of
0.73 and 1.17nm are respectively 1.6 and 1.13 eV. These values are much larger than the
binding energy in bulk CdSe [173], 15meV, and almost twice as large as the ones found in
carbon nanotubes [192]. The decrease of the binding energy with the nanowire diameter,
also followed by a transfer of the intensity of the absorption-edge peak to the higher energy
ones (see Fig. 5.3), reflects the weakening of the excitonic effects with the increasing of the
exciton spatial extent. In fact, the exciton radius of bulk CdSe is 5.6nm [173]: A nano-
object where one of its dimensions is smaller than this value will have strongly bound
excitons, due to a large overlap between electron and hole. Furthermore one expects that
the larger the confinement the larger is the excitonic binding energy. Finally, in our BSE
results we also found spin singlet dark excitons throughout the spectra, with the first one
appearing at 3.2 eV for the smallest wire. This dark exciton may play a role in non-radiative
decay processes and thus affect the luminescence properties.

Based on our BSE results for the two smallest wires and on the experimental optical
gap of the bulk [193], we constructed a simple model to interpolate the optical gaps of CdSe
nanowires. The form is the same as the previous model for the GWgaps, and the formula
connecting optical gaps and the diameter of the wire turns out to be Emodel

BSEgap(d in nm) =
1.74 + 1.05/d (eV). We can see, from Fig. 5.4 , that this model describes extremely well
the experimental results [193] not only for large nanowires but also in the intermediate
regime. Finally, from Fig. 5.4 we conclude that although the RPA results are red-shifted
with respect to the latter they still conserve approximately the correct slope.

In conclusion, the first-principle calculations reported here reveal how indispensable
is the inclusion of local-field and excitonic effect to describe quantitatively the optical re-
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Figure 5.4: Optical gaps calculated with the RPA and the BSE compared to experi-
ment [193]. The lines connecting the RPA and the experimental points are a guide to
the eye. The green line is the model interpolation between the smallest nanowires and the
bulk.

sponse of CdSe nanowires. In fact, calculations based on the Fermi’s golden rule will never
be able to catch the physics arising from the low dimensionality of the system, which is
at the heart of the novel properties of nanowires. We have then provided a simple model
for the dependency of the optical gap with diameter, which is in excellent agreement with
available experimental results. Furthermore we have observed the failure of long-range
model kernels of time-dependent density functional theory for these nano-scale systems, in
spite of their success in the calculation of the optical properties of bulk CdSe.

5.2 Identification of fullerene-like CdSe nanostrutures∗

5.2.1 Introduction

Cadmium selenide (CdSe) is a binary compound made of cadmium and selenium, that
crystallizes in the hexagonal closed-packed wurtzite structure. Its optical band gap mea-
sures 1.85 eV at low temperature [194]. Current research on CdSe has focused mostly on
nanoparticles, i.e., small portions cut out from bulk CdSe, with diameters between 1 and
100nm. The interest in these nanosized systems can be understood by their special proper-
ties, significantly different from the properties of the parent bulk compound, that open the

∗This section is based on the article:

• Identification of CdSe fullerene-like nanoparticles from optical spectroscopy calculations, S. Botti and M.
A. L. Marques, Phys. Rev. B 75, 035311 (2007).

• Fullerene-like CdSe nanoparticles, S. Botti, to be published in Handbook of Nanophysics (Klaus D. Sat-
tler, Editor, Taylor&Francis Publisher, CRC Press, May 1, 2010).
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possibility of novel technological applications. Furthermore, the very small size of these
nanoparticles makes them particularly suited for miniaturization purposes. In fact, while
the miniaturization of conventional silicon-based electronics is approaching fundamental
performance limits, researchers are actively working to find new nanosized materials that
are able to overcome these limits.

All nanoparticles exhibit a fundamental property known as “quantum confine-
ment” [195], due to the modification of the energy states of electrons confined in a very
small volume. Quantum confinement is dependent on the confinement volume, i.e., on the
size of the nanoparticle. This means that the electronic properties of CdSe nanoparticles
can be tailored by controlling their size. As a consequence, CdSe nanoparticles have size-
tunable absorption and luminescence spectra. This characteristic makes them particularly
attractive to be employed in optical devices, such as in light-emitting diodes that have to
cover a large part of the visible spectrum [196, 197]. Along the same lines, CdSe nanopar-
ticles have already proved to be excellent components for a variety of applications, such as
in optically pumped lasers [198], photovoltaic cells [199, 200], telecommunications [201],
and in biomedicine as chemical markers [202, 203].

The common requirement that makes possible all these different applications of CdSe
nanoparticles is the high proficiency achieved in the control of a remarkably narrow size
distribution (even lower than 5% [204]) during the synthesis process. In fact, it is the size
distribution that determines the sharpness of the optical peaks. A further advantage of
CdSe nanocrystals is the degree of efficiency attained in their synthesis, the high quality of
the resulting samples, and the fact that the optical gap is in the visible range. In most com-
mon experimental setups, CdSe nanoparticles are formed by kinetically controlled precip-
itation, and are terminated with capping organic ligands, like, e.g., the trioctyl phosphine
oxide (TOPO) molecule, which provide stabilization of the otherwise reactive dangling or-
bitals at the surface [204]. High quality colloidal CdSe nanoparticles have been routinely
synthesized for more than a decade: their sizes range from 1nm to hundreds of nm and
their core displays the same symmetry as wurtzite.

The electronic states of any nano-object are also sensitive to the overall cluster shape,
and more specifically to the deformations due to surface reconstruction, to the presence
of defects, and to the symmetry properties of the arrangement of atoms in the core [205].
These geometrical details are of course more critical when the cluster is very small, i.e.,
when the surface/volume ratio is the largest. In particular, defects and dangling bonds
are essentially localized at the surface. Moreover, for practical uses, further requirements,
such as a high chemical stability of the nanostructure and an enhanced photoluminescence
intensity, are of utmost importance. Unfortunately, these characteristics are inhibited by
the presence of defects. As a consequence, often the quantum yields for very small CdSe
nanoparticles in solution turn out to be below 1% [202, 206]. The reason is that these
colloidal nanoparticles contain a large number of defects, especially at the surface, where
radiationless recombination of the charge carriers can occur. Therefore, controlling the
quality of the growth of small clusters, and in particular controlling the formation of dan-
gling bonds at their surface, is essential for any kind of application.

In this context, the recent synthesis and probable identification of the very small, and
highly stable, (CdSe)33 and (CdSe)34 nanoparticles grown in a solution of toluene [207, 208]
came as a breakthrough. The experimental absorption spectra of these nanoparticles at
low temperature exhibit sharp peaks, similar to the ones that characterize TOPO-capped
clusters of the same size [204]. However, the surfactant molecules employed in the synthe-
sis process are, in this case, removed by laser vaporization. Furthermore, an X-ray analysis
indicates that the coordination number of Se is between 3 (the coordination of a fullerene)
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Figure 5.5: Structures of the (CdSe)n core-cage nanoparticles calculated to be most stable
by Kasuya et al. [207], viewed down a threefold symmetry axis. a) (CdSe)13 has four-
membered and 10 six-membered rings on the cage of 12 Se (dark brown) and 13 Cd (white)
ions with a Se (light brown) ion inside. b) (CdSe)34 has a truncated-octahedral morphology
formed by a (CdSe)28 cage (Se, dark brown; Cd, white) with 6 four-membered and 8 × 3 six-
membered rings. A (CdSe)6 cluster (Se, light brown; Cd, green) encapsulated inside this
cage provides additional network and stability. Reprinted by permission from Macmillan
Publishers Ltd: Nature Materials [207], copyright 2004.

and 4 (the coordination of the bulk crystal). In view of this, and in absence of direct struc-
tural data, the non-passivated compound nanoparticles were predicted to have a core-cage
structure, composed by a puckered fullerene-like (CdSe)28 cage accommodating a (CdSe)n
(n=5,6) wurtzite unit inside (see Fig. 5.5). Further ab initio calculations of structural and
optical properties validated this interpretation [207, 209].

These very small fullerene-like systems, in the size range of 1–2nm, are particularly
interesting, as they have an increased probability to take the form of magic-sized nanocrys-
tals, leading to ultra-stable single sized ensembles, which are in principle characterized by
very sharp absorption peaks. The concept of magic-size has been well known for several
years in the field of metal clusters, but it is less common for semiconductor nanoparticles.

Furthermore, the recent discovery of CdSe and other fullerene-like semiconducting
cluster has renewed the interest for the so-called “cluster-assembled materials”. In fact,
cluster-assembled materials form one of the most promising frontiers in the design of
nano-devices. They are composed by three dimensional arrays of ultrastable size-selected
nanoparticles, organized in a similar way as atoms are organized to form a crystal. Cluster-
assembled materials ideally combine the properties of the single nano-object with novel
collective behaviors arising from the periodic arrangement of the solid. Of course, the
interaction between clusters cannot be too strong, in order not to destroy the discrete na-
ture of the optical transitions. This means that the surface of the cluster has to be well
saturated, with no dangling bonds. Unfortunately, up to now most attempts to design
cluster-assembled matter have lead to metastable materials, which can be stabilized only
by a dielectric matrix that prevents the individual clusters from reacting with their neigh-
bors. Only few cluster materials are known at present, the most famous are made of carbon
fullerenes (C60 and C70). However, the recently synthesized CdSe fullerenes are very small
clusters (1.5 nm of diameter), extremely stable, and which can be produced in macroscopic
quantities: all these characteristics point to the possibility of using them to produce new
cluster-assembled materials.
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5.2.2 Synthesis and spectroscopic characterization

Numerous approaches [210, 211, 212, 213, 214, 205, 215, 216, 217, 218, 219, 220, 221,
222, 221, 223, 224, 225, 226] have been developed to synthesize highly crystalline and
monodisperse II-VI semiconductor nanocrystals, following the path opened by Murray et
al. [204]. However, these approaches are mostly suitable to produce regular-sized nanocrys-
tals (>2nm), but cannot be commonly employed to synthesize magic-size small clusters
(1–2nm). In particular, in the magic size regime, a large percentage of the atoms are at the
surface, which makes the control of dangling bonds much more important.

Very small CdSe nanocrystals have been synthesized by the over-layering method [227],
the etching preparation starting from larger nanocrystals [228], and the reverse-micelle ap-
proach [207]. Peculiar optical properties were obtained by magic-size nanoparticles grown
by hot injection [197]: these ultra-small clusters exhibit broadband emission (420–710nm)
throughout most of the visible light spectrum, while not suffering from self-absorption.
This property makes them ideal materials to produce white-light LED’s. In general, it is
assumed that these clusters are saturated with ligands, even if there is no direct informa-
tion about the reconstruction at the surface.

However, ligand-free fullerene-like core-cage particles were for the first time produced
by Kasuya et al. [207, 208] only in 2004. Since then, other groups tested new reproducible
and controllable methods to grow in solution magic-sized small CdSe clusters. The exact
control of the size of the nanocrystal and the sharpness of the optical peaks are both essen-
tial for any practical application. Of course, also the stability in time of the clusters is an
important parameter to consider.

Kudera et al. [229] reported amethod for controlling the sequential growth of CdSe clus-
ters in solution that yields only magic-size nanocrystals of progressively larger sizes. The
resulting nano-objects are characterized by sharp optical absorption spectra with peaks at
well defined energies, in agreement with the ones reported by Kasuya et al. [207]. Also the
cluster sizes, estimated by X-ray diffraction analysis, are compatible with the findings of
Kasuya et al. [207]. Further transmission electron microscopy analysis revealed that all
clusters are roughly spherical and that they are not aggregated. The mechanism of growth
is determined by the competition between the attachment and detachment of single atoms
at the surface. Once a cluster has grown to a magic size, its structure is so stable that no
atom can detach from it. Therefore, it can only grow further, but it cannot shrink. This
growth mechanism is compatible with the creation of cage-like structures, even if there is
no direct proof of the fact that fullerene-like clusters are actually produced in this exper-
iment. Unfortunately, these clusters have rather weak luminescence properties. Kudera
et al. [229] also proved that the optical properties of their clusters could be improved by
passivating their surfaces with a ZnS shell.

Dai et al. [230] reported an injection approach for the synthesis of nanocrystals with
long existence period, using cheap cadmium oleate as the source of cadmium. The resulting
CdSe clusters are saturated by ligands. They exhibit strong and fixed absorption features
and a narrow red-shifted emission. Higher injections/growth temperatures favor a white
light emission, but also transform the magic-size nanocrystals into regular-size ones. This
same approach was also used by the same authors to synthesize CdTe clusters.

On the other hand, Ouyang et al. [231] used a non-injection one-pot synthetic ap-
proach to achieve colloidal CdSe ensembles consisting of single-sized nanocrystals exhibit-
ing bright bandgap photoluminescence emission. Their systematic study suggests that the
growth of large CdSe clusters is favored by long ligands at high growth temperature, while
the growth of small CdSe magic-size clusters is favored by short ligands at low growth
temperature.
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Finally, Kuçar et al. [232] reported an efficient top-down synthesis in an amine-rich
solution of small stable CdSe nanocrystals. They are produced by decomposition of initial
nanocrystals within several days. The most stable clusters were characterized by spec-
troscopic methods and the comparison of absorption and photoluminescence spectra with
previous studies suggests a predominant cage-like structure. The analysis of the absorp-
tion peaks revealed a preferred synthesis of (CdSe)33,34 clusters. The emission decay rate
of these clusters is comparable with that of organic dyes.

Despite the important contributions coming from all these recent studies, the prepara-
tion and understanding of highly luminescent, thermodynamically stable, small size CdSe
clusters is still at the beginning. We are optimistic, however, that the next few years will
bring new optimized techniques for the production of these clusters, that will open the
way for development of the exciting and innovative applications that have already been
foreseen.

5.2.3 Ab initio calculations

From the theoretical side, it is desirable to obtain from reliable calculations all possible
complementary information on the atomic arrangement and surface deformation of CdSe
clusters, in order to understand and complement experimental evidences. In fact, experi-
mental measurements alone are usually not able to provide conclusive results concerning
the surface reconstruction and the role of passivating ligands. Moreover, theoretical calcu-
lations can give a deeper insight on how surface reconstructions produce modifications of
the electronic states, and consequently of the optical properties at the basis of all techno-
logical applications.

For ligand-terminated small and regular-size CdSe clusters, transmission electron
microscopy data [204, 233], molecular dynamics simulations or first-principles tech-
niques without self-consistency [234, 235], and self-consistent ab initio structural relax-
ations [236, 209] agree on predicting an atomic arrangement of the inner Cd and Se atoms
analogous to the one in the wurtzite CdSe crystal. The extent to which the cluster surface
retains the crystal geometry is more controversial as the surface cannot be easily resolved
experimentally. Generally, if the surface is properly passivated, the reconstruction is as-
sumed to be small and limited to the outermost layer (and eventually the layer just beneath
it), which is in agreement with molecular dynamics simulations [234]. However, Puzder et
al. [236] recently predicted for clusters with diameters up to 1.5 nm a strong surface recon-
struction, remarkably similar in vacuum and in the presence of passivating ligands.

The core-cage structures proposed by Kasuya et al. [207] are significantly different from
all bulk-derived arrangements previously studied. These geometries were found to be par-
ticularly stable by first-principles total energy calculations [207, 209]. Furthermore, cal-
culations of optical spectra [209] have offered a definitive proof for the identification of the
observed nanoparticles with the fullerene-like structures, through the comparison between
measured [207] and simulated spectra. In fact, as the electronic states (and, as a conse-
quence, absorption or emission peaks) are strongly modified by changes of size and shape,
optical spectroscopy can thus be a powerful tool (especially if it can be combined with other
spectroscopic techniques) to probe the atomic arrangement of synthesized nanoparticles.

In the following of this section we will discuss how the well-known DFT [2] has been
applied to access information concerning the structural and electronic properties of CdSe
fullerenes. Moreover, we will see how the comparison between theoretical and experimen-
tal results provides a deeper insight into the properties of complex nanostructured materi-
als.

We chose to restrict our discussion to DFT, as it is the most popular and versatile
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Figure 5.6: Examples of relaxed cages, relaxed filled cages and relaxed wurtzite structures
of (CdSe)n with a diameter smaller than 2nm. Cd atoms are in green and Se atoms are in
beige.

method available in condensed-matter physics, computational physics, and computational
chemistry.

Structures of energetically stable CdSe nanoparticles

The atomic positions of CdSe nanoparticles can be routinely obtained by geometry opti-
mization using any quantum chemistry or solid state physics code. The starting point of
any structural optimization procedure is to consider a series of candidate structures with
different geometries and sizes. Here we consider (CdSe)n aggregates with sizes ranging
up to about 1.5 nm. To build these atomic arrangements it is possible to start from three
different kinds of ideal geometries: (i) bulk fragments cut into the infinite wurtzite crys-
tal, (ii) octahedral fullerene-like cages made of four and six-membered rings and (iii) the
core-cage structures of Ref. [207], composed of puckered CdSe fullerene-type cages which
include (CdSe)n wurtzite units of adequate size to form a three-dimensional network. Fol-
lowing Ref. [209], we can assume that the Cd-Se distance before structural relaxation is the
distance in the CdSe wurtzite crystal, calculated within DFT [237] in the same approxima-
tions used for the nanoparticles: its value (0.257nm) compares well with the experimental
value (0.263nm).

In the following we will analyze as an illustration the structural calculations of
Ref. [209], comparing them with the analogous DFT calculations for wurtzite-like clus-
ters of Ref. [236] and for core-cage clusters of Ref. [207]. We used an implementation of
DFT [237] within the local density approximation (LDA) [238] for the exchange and corre-
lation potential and norm-conserving pseudopotentials [183, 239]. Puzder et al. [236] used
a similar technique, but with another implementation of DFT. Finally, Kasuya et al. [207]
performed DFT calculations [240] using ultrasoft pseudopotentials [241] and the general-
ized gradient approximation (GGA) [4] for the exchange-correlation potential.

Atomic arrangements after optimization using DFT are depicted in Fig. 5.6 (see [209]).
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Figure 5.7: Distance of Cd atoms (circles) and Se atoms (diamonds) from the center of the
cluster after geometry optimization, as a function of their distance before optimization. An
atom that lies on the straight line y = x did not change its position. In panel (a) results of
the analysis for (CdSe)33,34 core-cage clusters, in panel (b) for the (CdSe)33 wurtzite cluster.

All clusters suffer contraction upon geometry minimization. For example, (CdSe)33,34 clus-
ters experience a size reduction of about 1–1.5%. The theoretical results are in agreement
with the X-ray analysis of [207]. However, as the relaxation affects mainly the outermost
atoms, the overall effect is more pronounced in smaller structures, where the average Cd-
Se distance decreases up to 4%. This contraction does not conserve the overall shape, as
Cd atoms are pulled inside the cluster and Se atoms are puckered out. As a consequence,
Cd-Cd average distances can be reduced by 30%, while Se-Se distances remain essentially
unvaried. This is clearly visible in Fig. 5.7, where the relaxed distance of Cd (circles) and
Se (diamonds) atoms from the center of the cluster is plotted for (CdSe)33,34 clusters as a
function of their distance before relaxation. If the atoms remained in their initial position,
all data points would fall on the straight line y = x. The fact that most Cd atoms lie below
the line, while most Se atoms are above it, shows that in our simulation Cd atoms prefer to
move inward and Se atoms outward. That puckering happens independently of the cluster
size [207, 236, 209].

All wurtzite fragments get significantly distorted upon relaxation and break their orig-
inal symmetry. However, the strong modification of bond lengths and angles concerns es-
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Figure 5.8: Left panel: Calculated binding energies per CdSe unit as a function of the
number of CdSe units (data from [207]). The binding energies are calculated per CdSe
molecule of (CdSe)n composed of a cage-like (CdSe)28 with (CdSe)m inside (n = 28 + m,
m = 0, 1, . . . , 7). Right panel: HOMO-LUMO gaps as a function of the number of CdSe
units. The empty (filled) circles refer to cage (core-cage) clusters, while the diamonds refer
to wurtzite-based structures.

sentially the surface layer [236, 209]. In particular, we can see in Fig. 5.7(a) that the
wurtzite-type (CdSe)33 is already large enough to conserve a bulk-like crystalline core. In
fact, the spread of the points from the straight line is pronounced only for the external shell
of atoms. The calculated overall contraction of the cluster is consistent with experimental
data [242]. Also the empty cages [(CdSe)12, (CdSe)28, and (CdSe)48] get puckered, but con-
serve their overall shape. Their binding energies are smaller by about 0.05 eV per CdSe
unit with respect to the binding energies of the corresponding filled cages [see Fig. 5.8(a)],
showing the importance of preserving the three-dimensional sp3 Cd-Se network.

Models based only on the wurtzite structure of bulk CdSe fail to predict the existence
of stable “magic clusters” with well defined sizes and number of atoms. In contrast, the
core-cage structures proposed by Kasuya et al. can appear only for well defined sizes and
number of atoms, as fullerene cages can be built only for 12, 16, 28, 48, 76, etc. atoms and
only some of these cages can be filled conveniently with wurtzite-coordinated CdSe units.
To optimize the core-cage structures [209] [(CdSe)12+1=13,(CdSe)28+5=33, and(CdSe)28+6=34]
we created different starting arrangements assuming different orientations for the encap-
sulated CdSen=1,5,6 units. In the relaxed assemblies the distributions of bond lengths and
angles result very similar despite of the distinct initial configurations. The fact that the
surfaces of core-cage clusters do not show neither strong reconstruction nor deleterious
dangling bonds, in contrast to surfaces of wurtzite-like cluster not cured by passivation,
explains why fullerene-like CdSe clusters are particularly non-reactive and prevent them
from merging together to form larger clusters. This is crucial to have promising building
blocks for three-dimensional cluster solids.

The right panel of Fig. 5.8 shows the DFTKohn-Sham gap between the highest occupied
and lowest unoccupied molecular orbitals (HOMO-LUMO) for a series of clusters of differ-
ent types: wurtzite, cages, and filled cages. Both empty and filled cages exhibit much larger
HOMO-LUMO gaps than their wurtzite counterparts, indicating therefore that there are
no dangling bonds at their surface. In the left panel we show the results from [207] for the
binding energy of the filled cages. The two most stable structures are clearly (CdSe)33 and
(CdSe)34. It is curious that the first is significantly more deformed under optimization than
(CdSe)34, but it turns out to have a very similar binding energy. The filled cage structure
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Figure 5.9: Calculated photoabsorption cross section σ(ω) of the empty cages (CdSe)6,
(CdSe)12, (CdSe)28 and (CdSe)48. The spectra were shifted vertically for visualization pur-
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Figure 5.10: Calculated photoabsorption cross section σ(ω) of the isomers of (CdSe)13.

made of 13 units gives as well a relative minimum in the total energy per pair [209]. In
the case of (CdSe)13 and (CdSe)33 it is possible to compare the total energies of the different
three-dimensional isomers [209]: the core-cage nanoparticles have a slightly higher binding
energy per CdSe unit [0.15 eV for (CdSe)13 and 0.05 eV for (CdSe)33]. However, we should
not forget that the energy differences we are discussing here are all very tiny, sometimes
of the same order of magnitude as the accuracy of the calculations. That fact confirms how
difficult it can be to extract structural information from a single number (the total energy)
and leads to the conclusion that the simple analysis of total energy differences cannot be
considered conclusive to demonstrate the existence of fullerene-like CdSe clusters.

Optical absorption spectra

From the relaxed geometries it is possible to obtain the optical spectra at zero temperature
using TDDFT [19, 20].

For the calculation of the photoabsorption cross section Botti and Marques [209] em-
ployed a real-time TDDFT approach [243, 244], based on the explicit propagation of the
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time-dependent Kohn-Sham equations. In this approach, one first excites the system from
its ground state by applying a delta electric field E0δ(t)em. The unit vector em determines
the polarization direction of the field, and E0 its magnitude, which must be small if one is
interested in linear response. The reaction of the non-interacting Kohn-Sham system to
this sudden perturbation can be readily computed: each ground state Kohn-Sham orbital
ϕGS

i (r) is instantaneously phase-shifted: ϕi(r, t = 0+) = eiE0em·rϕGS
i (r). The Kohn-Sham

equations are then propagated forward in real time, and the time-dependent density n(r, t)
can then be computed. The induced dipole moment variation is an explicit functional of the
density:

δDm(t) = δ〈R̂〉(t) =

∫

d3r [n(r, t) − n(r, t = 0)] r . (5.1)

The superindex m reminds that the perturbation has been applied along the m-th Carte-
sian direction. The components of the dynamical dipole polarizability tensor α(ω) are di-
rectly related to the Fourier transform of the induced dipole moment function:

αmn(ω) =
δDm

n (ω)

E0
. (5.2)

The spatially averaged absorption cross section is trivially obtained from the imaginary
part of the dynamical polarizability:

σ(ω) =
4πω

c
Im [α(ω)] , (5.3)

where α is the spatial average, or trace, of the tensor

α(ω) =
1

3
Tr [α(ω)] . (5.4)

Here we will discuss the results for the excitation energies and the optical spec-
tra [209] that we obtained using TDDFT within the adiabatic local density approximation
(ALDA) [20]. These are the only calculations on CdSe clusters available in literature that
go beyond the simple application of Fermi’s golden rule, i.e. the sum of independent single
particle transitions from occupied to empty states (in this case, Kohn-Sham one-particle
states). It is well known that the simpler approach of taking the differences of eigenvalues
between Kohn-Sham orbitals gives peaks at lower frequencies in disagreement with the
experimental spectra [245]. On the other hand, TDDFT within the ALDA typically repro-
duces the low energy peaks of the optical spectra with an average accuracy below 0.2 eV.
The accuracy in reproducing transitions of intermediate energy is known to be somewhat
deteriorated, due to the wrong asymptotic behavior of the LDA exchange-correlation po-
tential. For this reason, we focus the analysis of the spectra on the lowest energy peaks.

In Fig. 5.9 we display the photoabsorption spectra of the empty cages of different di-
ameters, as calculated by Botti and Marques [209]. It is clear from the figure that the
absorption threshold is systematically blue-shifted with respect to the bulk optical gap
(≃ 1.8 eV). This blue-shift is due to the well-known quantum confinement effects, so it is
not surprising that the shift increases with decreasing cluster size. Second, we can com-
pare the absorption threshold with the Kohn-Sham HOMO-LUMO gap shown in the right
panel of Fig. 5.8: the Kohn-Sham gap is systematically smaller than the TDDFT absorp-
tion threshold. This is a common observation as the Kohn-Sham transition energies are
usually at lower frequencies than the experimental peaks. We note that the TDDFT optical
gaps include both electron-electron and electron-hole corrections to the Kohn-Sham gap at
the level of the adiabatic local density approximation.
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We should keep in mind that the opening of the gap due to confinement can be counter-
balanced by a closing of the gap due to surface reconstruction. This leads to a non trivial
dependence of the absorption gap as a function of the cluster size. This effect is already
present at the Kohn-Sham level [see the right panel of Fig. 5.8(a)] and it persists in TDDFT
spectra. In fact, the calculated absorption curves are strongly dependent not only on the
cluster size but also on the details of its atomic arrangement. This is evident if we com-
pare the optical response of the different isomers of (CdSe)13 in Fig. 5.10 and of (CdSe)33 in
Fig. 5.11 [209].

The absorption threshold is lower in wurtzite-type clusters since the HOMO-LUMO gap
is reduced due to the presence of defect states in the gap as a consequence of the strong
surface deformation. For a similar reason, the larger surface deformation of the core-cage
(CdSe)33 aggregate in comparison with the more stable (CdSe)34 structure explains why the
first starts absorbing at lower energies than the second. Finally, we note that the similar
curves of different colors in Fig. 5.11 correspond to distinct core-cage geometries obtained
in various optimization simulations. We conclude that the dependence of the relevant peak
positions and shapes on the different atomic arrangements is not negligible, but the peak
positions and oscillator strengths are sufficiently defined for the purpose to distinguish
different geometries by comparing photoabsorption spectra.

A comparison between calculated [209] and measured spectra [207] is possible for
nanoparticles made of 33 and 34 CdSe units (see Fig. 5.11). The magenta dots refer to
room temperature absorption data for mass-selected nanoparticles prepared in toluene at
45◦C (sample I), while the orange crosses correspond to analogous data for the solution pre-
pared at 80◦C (sample II). Both samples are characterized by strong absorption at 3 eV. For
sample II the experimental data show the appearance of a broad peak extending to lower
energies. This peak turns out to move to even lower energies when the temperature and
the time in the synthesis process increase. In a simple quantum confinement picture, these
findings suggest that larger particles, possibly reconstructed bulk fragments, are formed
when the temperature increases. Moreover, the sharp peak at about 3 eV, which is always
present, was hypothesized to be the signature of the highly resistant fullerene-like clusters.

The calculated spectra [209] shown in Fig. 5.11 prove the presence of fullerene-like core-
cage structures. The theoretical optical response of all model core-cage (CdSe)34 clusters is
indeed characterized by a well defined absorption peak at 3 eV. Also the core-cage (CdSe)33
cluster and the (CdSe)33 reconstructed bulk fragment can contribute to this peak. How-
ever, they cannot be present in sample I, as that would be signaled by the appearance of a
broader peak at lower energy, which is absent in the experimental spectrum. On the other
hand, a peak at about 2.5 eV, connected to the peak at 3 eV by a region of increasing ab-
sorption, is present in the spectrum for sample II. Our calculations show that the (CdSe)33
wurtzite fragment is responsible for the peak at 2.5 eV, while the broad absorption region
between 2.5 eV and 3 eV can be explained by the presence of (CdSe)33 core-cage structures.
This is in disagreement with the intuition of Ref. [207] that bulk fragments of about 2.0nm
gave rise to the broad absorption below 3 eV.

In summary, by comparing our theoretical spectra [209] with measurements, we could
confirm the existence of the stable core-cage fullerene-like structures hypothesized in the
seminal work of Kasuya et al. [207].

The use of CdSe fullerene-like nanoparticles for technological applications in the field
of cluster-assembled materials is a promising challenge for materials science. To this pur-
pose, there is much work in progress to optimize the production procedures of magic-size
small CdSe clusters. Concerning the characterization and the understanding of electronic
excitations in these novel nanostructured materials, the combination of experimental and
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Figure 5.11: Photoabsorption cross section σ(ω) of the isomers of (CdSe)33,34. The experi-
mental data [207] in arbitrary units (magenta dots: sample I at 45◦C and orange crosses:
sample II at 80◦C) are compared with calculated spectra. The different solid curves corre-
spond to distinct relaxed geometries obtained starting from different filled cages.

theoretical spectroscopic techniques has proved to be essential to extract reliable and con-
clusive information on their structural and optical properties.

5.3 Optical and magnetic properties of boron fullerenes∗

5.3.1 Introduction

The hollow carbon clusters, or “fullerenes”, were only theoretical predictions [246, 247, 248]
for two decades, until their discovery in 1985 [249]. Recently, Gonzalez Szwacki et al. [250]
have predicted the existence of a boron doppelgänger of the C60 fullerene: a B80 cage whose
experimental detection seems quite likely in the near future. Indeed, the nanotubular
boron structures were also suggested by first-principles calculations [251], and later con-

∗This section is based on the article:

• Optical and magnetic properties of boron fullerenes, S. Botti, A. Castro, N. N. Lathiotakis, X. Andrade
and M. A. L. Marques, Phys. Chem. Chem. Phys. 11, 4523 (2009).
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B20(ring) B38 B44

B80 B92

Figure 5.12: Structures of the boron cages studied in this work.

firmed experimentally [252]. In the same vein, we should also refer the new boron sheets
proposed in Ref. [253], and the corresponding nanotubes proposed in Ref. [254], that use
the same fundamental motif as the B80 cluster.

Like C60, B80 has a remarkable stability (as measured, for example, by its cohesive
energy), a relatively large energy gap between the highest occupied and lowest unoccu-
pied molecular orbitals (HOMO and LUMO, respectively), and, like C60, almost Ih sym-
metry; even though the original work of Gonzalez Szwacki et al. reported an icosahedral
shape, they acknowledged the existence of several close local minima at distorted geome-
tries. Later it has been defended that the geometry of the most stable structure seems to
be a slight distortion of the Ih configuration. Both Gopakamur et al. [255, 256] and Baruah
et al. [257] have further investigated the stability of the lowest energy isomers of B80, and
claim that the icosahedral structure is unstable; the ground state configuration is reported
to have, in fact, Th symmetry. However, the recent work of Sadrzadeh et al. [258] has
also investigated the issue, and report very small energy differences (lower than 30 meV)
among the three lowest lying isomers (Ih, Th, and C1), with the icosahedral shape being, in
fact, a close winner.

Unlike C60, B80 accommodates one boron atom in the center of each hexagon, accounting
for the extra 20 atoms; this hexagon reinforcement is necessary to stabilize the otherwise
unstable icosahedral B60 cage. In this manner, the Aufbau principle proposed by Bous-
tani [259] is respected: stable homoatomic boron clusters are constructed with two basic
bricks: hexagonal pyramids, B7 (characteristic of convex and quasiplanar clusters), or pen-
tagonal pyramids, B6 (characteristics of open-spherical clusters, such as the prototypical
B12). Alternatively, B80 can also be viewed as six interwoven B20 double-rings [250]; the in-
clusion of staggered double rings in the structure of boron clusters seems to enhance their
stability (see Fig. 5.12, where, among other structures, both the B20 double-ring cluster and
the B80 are depicted).

The existence of cage-like boron conformations should come as no surprise, given the
rich chemistry of this element: boron nanostructures have been found in very diverse forms
– clusters [260, 261, 262, 263, 264, 265, 266, 267], nanowires [268] or nanotubes [269, 252,
270]. The family of boron nanostructures is unlimited, since boron has the property of
catenation: it can form structures of arbitrary size by linking covalent bonds with itself – a
property only shared with carbon. In fact, a wide variety of polyhedral clusters containing
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boron have been known for a very long time, and have been used for a surprisingly large
number of applications [271]. The rich diversity can be explained in terms of the high
coordination number and the short covalent radius usually exhibited by boron, which leads
to the possibility of creating strong directional bonds with many elements.

Before the work of Gonzalez Szwacki and collaborators [250] on B80 and other possible
hollow structures [260], a significant amount of work had been reported on smaller, ho-
moatomic boron clusters: Experimental work [261, 262, 263, 266] and calculations [261,
263, 266, 272, 273, 274, 275, 259, 276, 277, 278] led to one main conclusion regarding the
structures: small clusters appear typically in either convex, quasi-planar, spherical or nan-
otubular shapes. This is surprising, since bulk boron, in its typical phases, is constructed
from the icosahedral B12 unit. Below 20 atoms, the most stable shapes are planar, whereas
tubular structures start to become more stable above this number [266]. Recently, some of
us [100] contributed to the possible elucidation of the precise planar to tubular transition
by calculating the optical absorption of the main conformers: The spectra show significant
differences among them, possibly enabling the optical characterization of mass selected
sample of boron clusters with unknown geometry.

Until experimentalists find a way to produce boron fullerenes, first-principle calcula-
tions remain the only route to understanding their properties. In this work we report on
the linear response signatures of B80 and some of the other stable fullerenes proposed by
Gonzalez Szwacki et al. : dynamical polarizabilities, static dipole polarizability and mag-
netic susceptibilities.

The importance of the knowledge of the static dipole polarizability is beyond doubt
(e.g. it is a coarse indicator of molecular shape, it determines the long-range interaction
between molecules, etc), as it is the case for its dynamical generalization (e.g. the excitation
energies are determined by the peak positions of this function; the absorption cross section
is trivially related to the imaginary part of the dynamical polarizability, etc).

Furthermore, it is interesting to realize if boron fullerenes share the anomalous mag-
netic properties present in traditional carbon fullerenes. The nature and magnitude of
the electronic ring currents that circulate around the carbon rings is intriguing; Elser and
Haddon [279, 280] calculated the contribution of these ring currents to the magnetic sus-
ceptibility by making use of London’s theory [281]. The finding was surprising since this
contribution was found to be vanishingly small; this result was later backed by the experi-
ment [282]: the measured susceptibility had almost the same value as the estimated local
contributions to the diamagnetism, which implies a small ring current contribution. How-
ever, this fact does not imply that currents do not circulate around the carbon cycles; the
truth is that fullerenes exhibit both diamagnetic and paramagnetic ring currents, which
cancel each other [283]. This result is surprising if we attempt to explain the ring current
induced magnetism with a more naïve approach – such as Pauling’s model [284].

It is then clear how the phenomenon of ring currents – usually linked to the “aromatic”
character of a molecule –, and its effect on the magnetic susceptibility of clusters, can be
subtle. The “spherical aromaticity” of fullerenes [285], in particular, demands for a care-
ful theoretical study of the magnetic response. Boron clusters, including boron fullerenes,
also contain rings of delocalized π orbitals, and its aromatic character has also been dis-
cussed [286, 287]. It is therefore in order to investigate, at an accurate level of theory, the
magnetic properties of the newly proposed B80 and its family of fullerenes.

5.3.2 Methodology

The cluster geometries are those reported by Gonzalez Szwacki et al. [250], the ones
optimized within the DFT framework with the Perdew-Burke-Ernzerhof [4] (PBE)
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Table 5.1: HOMO-LUMO gaps (H-L in eV), ionization potentials calculated through total
energy differences (IP in eV) magnetic susceptibilities (χ in cgs ppm/mol), static dipole po-
larizabilities (α in Å3), and static dipole polarizabilities per number of boron atoms for the
selected boron clusters. For these two latter quantities, we present both average values
(e.g., χ̄ = Trχ/3 ) and anisotropies (e.g., ∆χ =

√

[3Trχ2 − (Trχ)2]/3).

H-L IP χ̄ ∆χ ᾱ ᾱ/N ∆α

B20 (r) 1.45 7.5 -250.2 330.1 44.0 2.20 18.2
B38 0.95 7.4 -468.3 37.7 73.8 1.94 12.3
B44 0.96 7.3 -614.4 156.3 83.1 1.89 15.0
B80 1.01 6.6 219.3 3.9 147.9 1.85 0.5
B92 1.07 6.5 -831.3 0.8 162.6 1.77 0.01

parametrization. The core electrons were frozen thanks to the ultrasoft Vanderbilt pseu-
dopotentials [241]. The minimized geometries, which we used without further relaxation
are depicted in Fig. 5.12. Besides the cage solutions, we include, for completeness, the
prototypical B20 ring.

We then performed density-functional perturbation theory [288] in order to obtain the
static magnetic susceptibilities, finite-differences to calculate the static polarizabilities,
and TDDFT [152] in order to obtain the optical absorption spectra. In all cases we used the
code octopus [243, 244]. The most salient features of this approach are: the relevant func-
tions (Kohn-Sham wave functions, densities) are discretized on a real-space regular mesh;
the ion-electron interaction is modeled with norm-conserving pseudopotentials [239]. The
grid spacing was chosen to be 0.18Å, and the simulation boxes were built large enough to
ensure the convergence of the results – in practice, by placing the box boundaries at least
5Å away from the closest atom. In all calculations, we approximated the exchange and cor-
relation functional by the PBE [4] parametrization. The HOMO-LUMO gaps calculated in
this way are shown in Table 5.1, and are in very good agreement with previously published
results [250].

Regarding the calculation of the dynamical polarizabilities, we employed a real-time
TDDFT approach, based on the explicit propagation of the time-dependent Kohn-Sham
equations. In this approach, one first excites the system from its ground state by applying
a delta electric field E0δ(t)em (the unit vector em determines the polarization direction
of the field, and E0 its magnitude, which must be small to ensure that the response is
linear). The Kohn-Sham equations are then propagated forward in real time [75], and
the time-dependent density n(r, t) readily computed. From this quantity one can then
obtain the absorption cross-section as explained in Refs. [97, 243]. In this work, the total
propagation time was chosen to be 30 ~/eV ≈ 20 fs, and the time step 0.002~/eV ≈ 1.3 as.
This approach has already been used for many cluster and molecular systems: metal and
semiconducting clusters [88, 245, 94, 209], aromatic hydrocarbons [97, 289], or protein
chromophores [99, 290]. The accuracy to be expected from this technique is around 0.1–
0.2 eV for the position of the spectral peaks in the visible and near ultraviolet wavelength
interval.

Regarding the calculation of the magnetic susceptibilities, we have employed density-
functional perturbation theory – the reformulation of Sternheimer’s equation within the
DFT framework [288]. Details of our specific implementation can be found in Ref. [291].
Note that due to the use of non-local pseudopotentials, special care has to be taken in order
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Figure 5.13: Absorption cross section (in Å2) for B20 (ring isomer), B38, B44, B80 (“slightly-
off” Ih), and B92 as predicted by TDDFT. Most of the energy range showed is below the
calculated ionization potential of these clusters (see Table 5.1).

to ensure the gauge invariance of the underlying equations. To solve this problem, we used
the GIPAW approach of Pickard and Mauri [[292]].

5.3.3 Ab initio calculations

We start the discussion of our results by the magnetic susceptibilities (see Table 5.1). With
the exception of B80, all clusters studied are diamagnetic, with the absolute value of the
susceptibility increasing with the number of atoms. Furthermore, the magnetic susceptibil-
ity tensor is quite isotropic for most fullerene-like clusters, reflecting the global symmetry
of these systems. The exception is obviously the ring isomer of B20, and to a lesser extent
B44.

For B80 we find a completely different situation, with the fullerene being now slightly
paramagnetic (χ̄ = 219.3 cgs ppm/mol). The small absolute value for the susceptibility
indicates that there is indeed a strong cancellation between the paramagnetic and diamag-
netic currents. This value should be compared to C60 (which has a susceptibility of about
-260 cgs ppm/mol [282, 283]). In the C60 case, the reason for the small diamagnetism is
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HOMO-5 HOMO

LUMO LUMO+2

Figure 5.14: Kohn-Sham states of the B80 clusters. The states HOMO-1, HOMO-2, HOMO-
3, and HOMO-4 are nearly degenerate with the HOMO, and the very similar to the HOMO.
Also LUMO+1 is similar to LUMO, so it is not displayed here. The magenta (cyan) isosur-
face corresponds to the positive (negative) part of the wave functions.

the negligible value of the ring current susceptibility (the π-electron contribution to the
susceptibility); the paramagnetic and diamagnetic ring currents circulating around the
pentagons and hexagons, respectively, cancel each other. In the case of B80, the geometry
is more complex with boron atoms occupying the center of the hexagons, complicating this
simple picture, and leading to a slightly larger value of the paramagnetic current relatively
to the diamagnetic term.

Note, however, that like for C60 the total value for magnetic susceptibility of B80 depends
strongly on the geometry and in particular on the ratio between different B–B bond lengths.
Changing the bond lengths alters the equilibrium between the diamagnetic and paramag-
netic contributions: as these contributions are both large and with different signs, but more
or less of the same magnitude, their sum depends strongly on small variations of their in-
dividual values. To study this effect, we calculated the magnetic susceptibility for the three
geometries optimized with the B3LYP functional in Ref. [250]. We found 42.8 cgs ppm/mol
for the Ih geometry, 46.2 cgs ppm/mol for the C1, and 29.7 cgs ppm/mol for the Th. The differ-
ences can be explained by looking at the different B–B bond lengths. For all structures the
length of the bonds connecting the atoms in the center of the hexagons to their neighbors
is around 1.70Å (with some dispersion especially in the Th geometry). However, for the
other two bond-lengths, dh measuring the side of the hexagons and dp measuring the side
of the pentagons, we can see how the different exchange-correlation functionals influence
the structure. For the cluster optimized with the PBE we find dh ∼ 1.68Å and dp ∼ 1.73Å,
while the B3LYP yields a small contraction of the side of the hexagon to ∼ 1.67Å and a
small expansion of the pentagons to ∼ 1.74Å. These are very small differences, but due to
the subtle cancellation between the paramagnetic and diamagnetic currents they lead to a
large difference in the susceptibility.
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Looking at the values for the static polarizability we see that they increase essentially
linearly with the number of boron atoms, with a slope of approximately 2Å3 per atom. The
slope, however, decreases slightly with increasing number of atoms. This simple result
reflects the fact that, as all boron atoms in these clusters have a similar chemical environ-
ment, the static polarizability is mainly additive and determined by the overall size of the
cluster.

More insight can be obtained from the dynamical polarizability, in particular from the
optical absorption cross section spectra given in Figs. 5.13. The low energy spectrum of B20

“double ring” isomer [100] is characterized by well defined peaks, and is dominated by one
sharp peak at around 4.8 eV – which originates from electron fluctuations perpendicular to
the cylinder axis. The absorption strength is suppressed below 4eV (with the exception of
a couple of small peaks) as the low energy transitions are dipole forbidden. The spectra of
B38, B44 are not so well defined – there are many peaks whose respective widths overlap,
creating a broad, structureless response whose onset is below 2eV. This fact can also be ra-
tionalized by looking at their geometries: these clusters are not so symmetric (distorted D3

and distorted D3h for B38, B44 respectively), and have a larger distribution of bond lengths.
The most stable of the clusters studied, B80, also has some weak absorption peaks in the
visible, although the strongest peaks are positioned at energies higher than 3 eV. Finally,
the absorption cross section of the largest fullerene studied here, B92, is qualitatively simi-
lar to B80.

It is curious to compare the results for B80 to the known absorption spectrum of its
carbon counterpart C60. The latter is dominated by a π-plasmon at around 6.3 eV [293]
and has a large optical gap of more than 3 eV. This is also the typical absorption spectrum
of the planar polycyclic aromatic hydrocarbons [289]. On the other hand, B80 exhibits a
much smaller optical gap (of around 1.5 eV) and a much less structured spectrum. This
can be explained by two factors. First the HOMO-LUMO gap of C60 (around 1.6 eV) is
larger than the one of B80 (around 1 eV). Looking at the Kohn-Sham states of B80 around
the HOMO-LUMO gap reveals the second factor (see Fig 5.14). The HOMO state (and
the other states immediately below) are located around the three B20 rings and retain a
certain “π-like” character, i.e. the wave-functions change sign going from outside to inside
the cage. The first occupied state of different character is the HOMO-5, that is mainly
located around the pentagons, but spreading considerably to other regions of the cluster.
The situation is considerably more complicated for the LUMO states: they are no longer
of “π-like” symmetry, and extend over considerable regions of the cluster. It is then clear
that the dipole matrix elements between the lowest occupied and unoccupied states will
not vanish (as it happens, e.g., for the B20 ring), and absorption will start shortly after the
HOMO-LUMO gap.

In conclusion, we performed first-principle calculations of electrical and magnetic lin-
ear response properties of the boron fullerenes recently proposed by Gonzalez Szwacki et
al.[250]. In particular, we investigated the signatures of the counterpart of C60, the B80

cage, the most stable of these clusters. Regarding the magnetic response, all clusters ex-
cept B80 turn out to be diamagnetic. On the other hand, B80 turns out to be slightly para-
magnetic. This arises from the presence of a strong cancellation between diamagnetic and
paramagnetic effects, as it is known to happen in the carbon fullerene. The static polar-
izability increases monotonically with the number of boron atoms. More precisely, it is
roughly proportional to the number of atoms, pointing to an additive behavior justified by
the fact that boron atoms in all clusters studied here have a similar chemical environment.
The absorption spectra of the boron cages display similar features, with absorption thresh-
olds close to the HOMO-LUMO gaps and many peaks overlapping in the visible and near
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ultraviolet region. On the other hand, the optical spectrum of the double-ring B20 is domi-
nated by large peaks above 4 eV, while absorption is suppressed at low energies due to the
presence of many dipole forbidden transitions. The physical properties of boron fullerenes,
and in particular of the stable B80 are by now fairly well described and understood through
theoretical calculations. Unfortunately, these clusters have not been produced experimen-
tally yet. It is however our belief that, like for C60 and the carbon nanotubes before, the
experimental ingenuity will lead in the near future to the creation and detection of these
interesting nanostructures.

5.4 Alloying effects on the optical properties of Ge1−xSix
nanocrystals∗

5.4.1 Introduction

The semiconductors silicon and germanium can form a substitutional solid solution of the
form Ge1−xSix covering the whole range of compositions x. Pure Si is the most widely
used material for electronic applications since many years and its fabrication technology
is highly developed. However, the indirect band gap of bulk Si presents a problem for
light-emitting applications. A solution that has been proposed to circumvent this problem
is nanostructurization of Si in structures comprising porous Si [294], nanowires [295], as
well as Si nanocrystals. Moreover, ample use has been made of the fact that Ge can easily
be combined with Si in heterostructures. In addition, Ge nanocrystals in a matrix of SiO2,
SiC, sapphire, or Si have been investigated by many groups [296, 297, 298]. In many of
those cases, intermixing between Ge and Si is found in the nanostructures.

The two materials show different properties upon nanostructurization. While Si retains
its character of an indirect material [299, 300, 301], the work of several groups showed that,
depending on the structure, strain, etc., Ge nanostructures can become quasi-direct, i.e.,
they exhibit very strong transitions at or very close to the HOMO-LUMO transition [299,
300, 301, 302, 303, 304, 305]. The different behavior reflects the different character of
the band gaps in the bulk materials. While both are indirect, the minimum gap in Si
lies between Γ and a point near the X point, and the direct gap is much larger. In Ge,
the minimum gap between Γ and L is energetically very close to the direct gap at Γ. The
effects of confinement and structural relaxation result in a strong contribution of the Γ–Γ
transition to the HOMO-LUMO transition, thus resulting in short radiative lifetimes of Ge
clusters [301, 306].

Therefore, when mixing both materials two questions arise: what is the effect of the in-
termixing on the electronic properties of the nanocrystals, and how are the different char-
acters of the two materials combined. While the answer to these questions is essentially
well known for the bulk alloy, there are still few investigations concerning the mixed nanos-
tructures. Most experimental studies use Stranski-Krastanov growth, (see, e.g., Ref. [307]),
which results in relatively large structures in which it is safe to assume that the effects of
confinement and alloying act independently. However, for smaller structures this cannot
be taken for granted. For small nanocrystals, photoluminescence experiments [308] have
been compared with theoretical results [309]. Furthermore, Ge-Si nanowires have been

∗This section is based on the article:

• Alloying effects on the optical properties of Ge1−xSix nanocrystals from time-dependent density functional

theory and comparison with effective-medium theory , S. Botti, H-Ch. Weissker, and M. A. L. Marques,
Phys. Rev. B 79, 155440 (2009).
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investigated experimentally [310] and theoretically [311].
Previous theoretical studies have focused on the interplay of confinement and al-

loying [309, 311]. However, these ab initio calculations were performed within the
independent-particle approximation based on the Kohn-Sham scheme of static DFT. There-
fore, important many-body effects have been neglected, viz., the self-energy corrections de-
scribing the effect of the excitation of the electrons or holes individually, as well as the
electron-hole interaction. (Nonetheless, these two effects are found to cancel each other
to a large extent for many systems [312]). Furthermore, these calculations miss the very
important depolarization or crystal local-field effects.

The way we choose to improve upon the independent-particle results is provided by
TDDFT [19, 152, 181] in which the many-body effects neglected in static DFT are intro-
duced by the so-called exchange-correlation kernel fxc. With respect to the independent-
particle results, the excitation energies are corrected, and the transitions between the
independent-particle states are mixed. The degree of the mixing indicates the degree to
which the independent-particle approximation fails to provide a good description of the
system.

Within TDDFT, we use the adiabatic local-density approximation (ALDA, also known
as TDLDA) of the exchange-correlation kernel. The choice is motivated by the fact that
TDLDA yields good results for optical spectra of isolated systems [88] as well as for non-
zero momentum transfers [313]. Note, however, that the ALDA is well known to fail in
some cases, the most important of which are perhaps extended systems [17, 181]. Within
TDDFT, the random-phase approximation (RPA) is obtained by neglecting the exchange-
correlation kernel, i.e., by setting fxc = 0. From this, the independent-particle approxi-
mation results from the neglect of the microscopic terms of the variation of the Hartree
potential. In other words, the difference between the independent-particle approximation
and the RPA are the depolarization effects which are due to the inhomogeneity of the sys-
tem.

The simplest way to account for depolarization effects within an approximated classical
picture is to apply the Maxwell-Garnett effective-medium theory to the complex dielectric
function of the bulk alloy crystals. We applied the effective medium theory to our alloy
clusters in order to check if the depolarization effects are dominant with respect to con-
finement effects and further many-body corrections. In fact, if it is the case, the spectra
obtained using the effective-medium theory are in good agreement with full TDLDA re-
sults. These model calculations thus give a good overall description of the optical spectra
at a much lower computational cost than TDLDA.

In the present section we first present TDLDA results for Ge1−xSix nanocrsytals with a
diameter of about 1.8 nm, focusing on alloying effects.

The results are then compared with the previous independent-particle calculations of
Ref. [309], highlighting the effects of the depolarization, as well as of the mixing of tran-
sitions. We will also consider depolarization effects alone, decoupled from confinement
effects, by applying Maxwell-Garnett classical effective-medium theory. Finally, the emis-
sion properties of the nanocrystals are investigated by considering the geometries obtained
after excitation of an electron-hole pair.

5.4.2 Ab initio calculations

We used the same modeling scheme as used in Ref. [309] considering Ge1−xSix nanocrystals
of a fixed size made of 83 Ge and Si atoms. Quasi-spherical nanocrystals were built starting
from one atom and adding nearest neighbors shell by shell, assuming bulk-like tetrahedral
coordination. The outer bonds were saturated by hydrogen atoms. Alloying between Ge
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Figure 5.15: Example of the studied nanocrystal structures: Ge48Si35H108. The colors are:
Si (yellow), Ge (blue), and H (white).

and Si was introduced by randomly exchanging Ge atoms by Si. The surface was then
passivated with H atoms to saturate the remaining dangling bonds.

In Ref. [309], the study of Ge1−xSix nanocrystals with the same number of atoms for ten
different atomic configurations demonstrated that those with nearly uniformly distributed
Ge and Si atoms possess the lowest total energies and nearly equal excitation energies. On
the other hand, nanocrystals with deliberately clustered Si atoms and, hence, rather differ-
ent excitation energies give rise to total energies substantially higher than the average. As
their probability of occurrence is, consequently, small, the configurational average can be
replaced by the study of only one nanocrystal with nearly uniformly distributed Si and Ge
atoms for each composition x. We selected nanocrystals with a total number of 83 atoms of
Ge and Si, having a diameter of about 1.5 nm. This radius corresponds to a sphere of the
volume occupied by 83 atoms in the bulk. These nanocrystals are large enough to exhibit
the characteristics of nanocrystals as opposed to much smaller structures which show a
molecular-like behavior [299, 314, 306]. Moreover, they are small enough to present signif-
icant confinement effects on the electronic states. An example of the atomic arrangement
is shown in Fig. 5.15 for Ge48Si35H108.

To obtain the relaxed geometries of the Ge1−xSix nanocrystals, we used the plane-wave
code VASP [315, 240] within the local-density approximation (LDA) in the parametrization
of Perdew and Zunger [238] and the projector-augmented wave (PAW) method [316]. This
computational set-up is the same as the one employed in Ref. [309].

Starting from the relaxed geometries we obtained the optical spectra at zero tem-
perature using TDDFT as implemented in the computer code octopus [243, 244]. The
LDA [238] is employed in the adiabatic approximation for the xc potential (i.e., we ap-
plied the TDLDA) and the electron-ion interaction is described through norm-conserving
pseudopotentials [239]. To build our pseudopotentials for Si and Ge, we included in each
case 4 electrons in the valence (4s2 and 4p2 for Ge, 3s2 3p2 for Si) and, in the case of Ge,
we employed non-linear core corrections [317]. These pseudopotentials have already been
validated by the calculation of electronic excitations in Si and Ge bulk crystals [37]. The
time-dependent Kohn-Sham equations, in this code, are represented in a real-space regular
grid, using a spacing of 0.275Å at which the calculations are converged. The simulation
box is constructed by joining spheres of radius 4.5Å, centered around each atom.

To calculate the optical response we excite the system from its ground state by applying
a delta electric field E0δ(t). The real-time response to this perturbation is Fourier trans-
formed to get the dynamical polarizability α(ω) in the frequency range of interest. The
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Figure 5.16: Absorption spectra as a function of the Si content of the clusters: Independent-
particle spectra (dashed lines) compared with TDLDA results (solid lines). The green ar-
rows (arrows at lowest energy) mark the HOMO-LUMO gap, while the red arrows (middle
arrows) mark the ∆SCF excitation energies and the blue arrows (arrows at highest en-
ergy) mark the first transitions of the Casida’s analysis. The independent-particle curves
are divided by a factor of 15. Note the different scale in the two panels.
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absorption cross section σ(ω), is then obtained from the relation:

σ(ω) =
4π

c
ω Im α(ω) , (5.5)

where c is the velocity of light in vacuum. For a technical description of this method we
refer to Refs. [243] and [94]. To obtain the RPA spectra in this approach we just kept
the exchange-correlation potential fixed during the propagation (which amounts to making
fxc = 0). The independent-particle spectra were calculated by further fixing the Hartree
potential to its initial value. A time step of 0.0055~/eV and a total propagation time of
37.5~/eV were sufficient to ensure a stable propagation. We estimate our numerical preci-
sion in the spectra to be better than 0.05 eV. The mixing of independent-particle transitions
in the spectra has subsequently been investigated using the Casida’s formulation of linear-
response TDDFT [151, 318].

In order to test the coherence of our calculations, we compared independent-particle
spectra computed using matrix elements calculated with the VASP code [319, 320, 299]
to spectra obtained by time propagation by means of the octopus code. No substantial
differences were found between the results.

Due to the interest in the luminescence of this kind of systems, the lowest excitation
energies are of particular importance. As a consequence, we decided to compare three
different quantities. Besides the lowest excitations of the TDLDA absorption spectra, we
present the Kohn-Sham HOMO-LUMO gap of the ground state and the ∆SCF excitation
energies calculated as the difference E∆SCF = E(N, e–h) − E(N), where E(N) is the total
energy of the ground-state and E(N, e–h) is the total energy of the excited-state configura-
tion where one electron has been promoted from the HOMO into the LUMO. In this way,
an excited configuration is modeled and the electron-hole interaction is partially taken
into account. This approach enables also a subsequent ionic relaxation with the electron-
hole pair present, which yields the description of the excited-state geometries. Using the
excited-state geometries we were also able to evaluate emission spectra.

Results for the photoabsorption of the Ge1−xSix nanocrystallites are presented in
Fig. 5.16. In the figure we compare the independent-particle response (dashed lines) with
full TDLDA calculations (solid lines) for the whole range of compositions. The dependence
of the curves on the composition turns out to be quite smooth. When going from Ge-rich
clusters to Si-rich clusters, we observe a shift to higher energies of the onset and a suppres-
sion of the absorption strength of the first peak (note the different scales of both panels).
Moreover, the dependence of the peak position on the composition x is roughly the same
in the independent-particle and the TDLDA schemes. For the clusters studied, the total
intensity of the independent-particle spectra is strongly suppressed in TDLDA (the inde-
pendent particle curves are divided by a factor of 15 in Fig. 5.16). Indeed, this quenching
of the absorption is a well known effect that is due to the inclusion of classical depolar-
ization effects, and not from the exchange-correlation effects accounted for by the TDLDA
kernel. This can be verified by calculating the absorption spectrum within the RPA, which
includes all classical effects due to the variations of the Hartree potential but neglects
quasi-particle and excitonic effects. Indeed, the spectra we calculated within RPA are so
close to the TDLDA spectra shown in Fig. 5.16 that we chose not to show them.

For Ge-rich nanoparticles, both the position and the composition dependence of the
peaks are already well described at the level of the independent-particle approximation.
This perhaps surprising fact can be explained in terms of compensation of quasiparticle
corrections and binding energies of the excitons. previous independent particle calcula-
tions [299] with experimental data [321]. For small x at the absorption edge, the first
peak is strong and appears essentially at the HOMO-LUMO energy gap. The absorption
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edge has a completely different nature in Si-rich clusters. In fact, in this case the peaks
of lowest energy have a vanishing oscillator strength in TDLDA, thereby blue-shifting the
absorption edge with respect to the HOMO-LUMO gap.

In order to analyze the origin of the different peaks in the spectra as a function of
the composition of the Ge1−xSix alloy, we decomposed the excitations in sums of Kohn-
Sham particle-hole transitions through the solution of Casida’s equation [151, 318]. We
found that on the Ge side of the composition range, the lowest peak of the spectra which
defines the absorption edge is produced essentially by a strong, pure transition between
the Kohn-Sham HOMO and LUMO. This is certainly one more reason for the similarity
between the independent-particle and the TDLDA spectra. The large peak with HOMO-
LUMO character decreases in intensity with increasing percentage of Si in the Ge1−xSix
alloy, until the composition of about x = 0.2 when it disappears. For even smaller x the
absorption at the onset is determined by a strong mixture of transitions between states
close to HOMO and LUMO. However, the very lowest transitions are forbidden, producing
a significant blue shift of the absorption edge. In the intermediate energy range and for all
compositions, excitations can be decomposed as a sum of many contributions.

In Fig. 5.16 we also show the HOMO-LUMO gap (green arrows), the lowest excitation
calculated within the ∆SCF approximation (red arrows), and the first excitation within
TDLDA (blue arrows, these excitations are dark on the Si side of the composition). For all
cases we find that the first ∆SCF excitation is, as expected, blue-shifted with respect to the
HOMO-LUMO gap, and that the first TDLDA transition is at slightly higher energies. The
differences are, however, quite small, and of the order of one tenth of an eV. This is known
for this class of systems [322], part of it being due to the cancellation of self-energy and
excitonic effects [312]. However, the differences appear to be slightly larger in the region
of intermediate composition x, i.e., of a greater degree of structural disorder. Similarly,
Degoli et al.found in Si nanocrystals that the differences become larger in cases of stronger
localization [322]. It is also clear from the plot how the first transition becomes forbidden
while going from Ge-rich to Si-rich clusters — this behavior is reminiscent of the different
character of the band gap in the parent bulk Ge and Si.

A much simpler approach to model the absorption cross section of a Ge1−xSix nanocrys-
tal is to start from the complex dielectric function of the corresponding bulk alloy crystal
and to apply the effective-medium theory [323, 324]. This classical approach is based on
Maxwell’s equations and neglects completely the microscopic details, such as atoms and
bonds. Of course, this assumption is better justified when the size of the system is large.
However, it always handles correctly the boundary conditions for the Maxwell’s equations
at the interfaces, which give the very important contributions to the dielectric response
through the classical depolarization effects. Often, these classical contributions are enough
to describe the physics of the dielectric response of a composite system made of objects em-
bedded in some matrix [87, 325, 326]. Our clusters can be considered as a family of spheres
of volume Vobj cut from a Ge1−xSix bulk alloy. The Maxwell-Garnett expression [323] in the
specific case of an isolated spherical object in vacuum yields:

σ(ω) = 9
ω

c
Vobj

Im ǫ(ω)

[Re ǫ(ω) + 2]2 + [Im ǫ(ω)]2
, (5.6)

where ǫ is the experimental complex dielectric function of the bulk alloy. To represent well
the extension of the polarizable nanocrystals, we took an average distance of the further-
most saturating hydrogen atoms to obtain the radius of the cluster, and consequently Vobj.
This results in a radius slightly larger than the one mentioned above which takes into ac-
count only the Ge and Si atoms. We used the value of Robj = 9.1Å, but the results are fairly
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Figure 5.17: Absorption spectra as a function of the Si content of the clusters: Effective-
medium theory (dashed lines) using the dielectric function of bulk Ge1−xSix, compared with
TDLDA results (solid lines).

insensitive to a (reasonable) choice of this value. The experimental dielectric function of
the bulk alloy with precisely the needed composition x was obtained from a discrete set of
measurements [327] using a recently developed interpolation scheme [328]. This scheme
interpolates Im ǫ(ω) making use of the screening sum rule and the positive definiteness of
the spectra. Re ǫ(ω) was subsequently obtained by means of the Kramers-Kronig relations
after fitting appropriate tails to the imaginary parts. The latter procedure was tested on
the input curves to insure the quality of the real part.

In Fig. 5.17 we show spectra calculated using the effective-medium theory for selected
compositions. Comparing to the first-principles TDLDA curves, we can see that, already
for this relatively small size of clusters, the classical theory gives a quite good overall
description of the absorption spectrum. As expected, effective-medium theory is not capable
of describing the peaks of the individual transitions, but it describes correctly the intensity
and the trends of the spectrum. Once again these results confirm that the dependence
on the composition of the optical spectra is smooth and that the confinement and alloying
effects act independently to a large degree. In fact, within this classical scheme, only the
alloying effects determine the variation of the absorption response as a function of x. In
particular, the confinement-induced opening of the HOMO-LUMO gaps and the resulting
blue-shift of the absorption onset are not accounted for. The confinement effects could
be described by introducing a size-dependent nanocrystallite dielectric function which can
then be used to calculate the spectra of the crystallites in a different environment [314]. In
this sense, comparison of the TDLDA results with the present effective-medium approach
gives an idea of the importance of the confinement effects on the overall spectra.

We note that these model calculations can be performed at negligible computational
cost, and therefore provide a simple and fast method to obtain reasonable spectra for
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medium and large nanocrystallites.
Given the strong influence of the depolarization effects, the question arises as to why

the independent-particle spectra have been successfully compared previously with exper-
iment [299]. This agreement is, in fact, not a fortuitous coincidence, but due to the ex-
perimental conditions. The experiment has been done on Ge nanocrystals inside a matrix
of sapphire [321]. This reduces strongly the depolarization effects because it reduces the
inhomogeneity of the system. The calculations, on the other hand, treated nanocrystals
in vacuum but neglected the depolarization effects. Therefore, together with the can-
cellation between self-energy effects and electron-hole interaction mentioned above, the
independent-particle approximation provides in fact a good description of the spectra of
this particular experiment.

In order to calculate the emission properties, we consider the geometry of the relaxed
nanocrystals where the ionic relaxation has been carried out after transferring an electron
from the HOMO to the LUMO Kohn-Sham orbital. As the radiative lifetimes are usually
much longer than the times that the electrons (holes) take to relax to the LUMO (HOMO),
we can assume thermalized electron-hole pairs. As their lifetimes are then determined
by the exponential factor describing their distribution [329, 330], it is the onset of the
emission which reflects the emission properties, while the higher parts of the spectrum are
suppressed.

Stimulated emission spectra can be easily obtained within our formalism by calculating
the absorption cross-section σ̃abs(ω) at the excited-state geometry. Luminescence spectra
can then be calculated from the van Roosbroeck-Shockley model [331]:

σlum(ω) ∼ ω2 1

e~ω/kbT − 1
σ̃abs(ω) , (5.7)

where kb is the Boltzmann constant and T is the temperature.
In Fig. 5.18 we compare the absorption cross sections for the ground-state (solid lines)

and the excited-state (dashed lines) geometries for Ge1−xSix clusters in all the composition
range. The energy difference between the onsets of absorption and emission corresponds
to the structural contribution to the Stokes shift.

thatIn Fig. 5.19 we compare the independent-particle result with the TDLDA for the
absorption σ̃abs(ω) at the excited-state geometry. The conclusions with respect to their
similarity drawn for the ground state remain valid for the excited-state geometries. The
same applies to the transition analysis using Casida’s equation. The character of the emis-
sion onset on the Ge side of the composition range is already well described within the
independent-particle approximation. The decomposition of the excitations as a sum of
Kohn-Sham transitions provides a picture strictly analogous to the one for the absorp-
tion spectra: the lowest transitions of the Ge-rich nanocrystals correspond to almost pure
Kohn-Sham transitions, while for large x and for the higher transitions, independently of
x, strong mixing is found.

However, it is important to note that a very weak peak appears at about 1.95 eV. This is
red-shifted by about 0.5 eV with respect to the ground-state calculation. The peak, which
can be easily seen in Fig. 5.19, is clearly present in both the independent-particle result and
the TDLDA result. It occurs for all compositions on the Ge side of the x range and is almost
composition independent. It appears to be connected with the lowering of the symmetry as
compared to the ground state where the pure Si or Ge nanocrystals without alloying have
Td symmetry and the HOMO-LUMO transition is threefold degenerate. The symmetry
breaking due to the geometry relaxation under excitation has therefore a much stronger
effect than the introduction of the alloying, which at the Ge-rich side splits the degeneracy
only slightly and which does not change the character of the strong absorption onset at
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Figure 5.18: Absorption (solid lines) and emission (dashed lines) spectra as a function of
the Si content of the clusters. Note the different scales.
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Figure 5.19: Absorption (red) and emission (black) spectra of the pure Ge nanocrystal in the
independent-particle approximation (dashed) and the TDLDA (solid). Note the different
scales.

the HOMO-LUMO transition. Due to the argument above [see Eq. 5.7], the appearance of
this weak peak will strongly increase the radiative lifetimes of the systems. We conjecture
that this might be responsible for the fact that even though several theoretical predictions
coincide in that Ge nanostructures should have strong transitions at the absorption onset,
few experiments have been able to detect luminescence from excitons in Ge nanocrystals.

The absorption spectra of free Ge1−xSix nanocrystals with a diameter of about 1.8nm
have been calculated within time-dependent density-functional theory in the adiabatic
local-density approximation. The changes of the spectra upon changing composition x are
smooth. In particular at the absorption onset, the position and the composition dependence
of the spectra is found to be already well represented by independent-particle results. The
analysis of the solutions of Casida’s equation shows that this is due to the fact that the
first transition of Ge-rich nanocrystals corresponds to an almost pure independent-particle
transition. The TDLDA onsets are slightly blue-shifted with respect to their independent-
particle counterpart, their composition dependence at the Ge side of the compositional
range is practically the same. For higher Si contents, a mixing of many independent-
particle transitions is found.

Depolarization effects are strong and their inclusion alone, even within a simplified
classical model, on top of an independent-particle calculation allows to get the correct
physical picture of the optical response. They can be approximately taken into account
at a negligible computational cost using Maxwell-Garnett effective-medium theory. Fur-
ther many-body terms do not modify significantly the spectra due to the cancellation of
opposite contributions given by quasiparticle corrections and excitonic effects.

Emission spectra have been investigated using the geometry of excited nanocrystals. A
Stokes shift of about 0.5 eV is found. Very weak peaks appear at the absorption onset for
all systems on the Ge side which strongly reduce the radiative transition probability and
lead to long radiative lifetimes.

We focused in this work on the effect of alloying in the quasi-spherical model structures
with bulk coordination, saturated by hydrogen. This means that several questions are left
to future work. First, better structural models should be used, possibly obtained using a
combination of ab initio and semi-empirical or empirical methods. [332] This includes the
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question if under certain conditions the quasi-uniform distribution of the alloy atoms might
be replaced by other arrangements. Moreover, possible surface reconstructions or defects
might locally change the situation and therefore the composition dependence of the quanti-
ties that we have studied. Finally, the description of the experiments of alloy nanocrystals
embedded in a matrix of, e.g., SiO2 or sapphire remains a task to be accomplished. While
a rough description of the main features can immediately be done using effective-medium
theory as described above, this neglects the details at the atomistic level. However, these
details, in particular of the nanocrystal-matrix interface, are expected to play an important
role as well.



Chapter 6

Advanced materials: applications

to data storage and photovoltaics

First-principle calculations of electronic excitations can now be applied not only to proto-
type simple crystal, but also to real materials of technological interest. In this chapter
we discuss three illustrative examples of how DFT based calculations that go beyond the
ground state framework of DFT can be used to tackle the problem of electronic excitations
in complex materials for important applications in the field of data storage and photo-
voltaics.

The first example are the so-called Phase-ChangeMaterials (PCM), which exhibit a sig-
nificant optical contrast – a change of optical reflectivity upon the phase transition from
the amorphous to the crystalline state. This property change is fundamental for the appli-
cation of PCM’s in optical data storage, in particular in rewritable storage devices such as
DVD-RW’s or, since recently, rewritable Blue-Ray discs. One of the most interesting ques-
tions is how their optical properties are related to the underlying geometrical structure.

The second example concerns copper indium diselenide/disulfide CuGa(Se,S)2 (CIS)
thin-films. The semiconductors of this family are used as absorbers in the thin film solar
cell technology that shows the highest efficiencies for lab cells (19.9%), as well as for large
modules (13.4%). These materials are doped by native defects. The defects play an impor-
tant role in the definition of the exceptional stability of this material that, together with
the very high absorption coefficient at the absorption edge, make them ideal absorbers.

The third example is again related to photovoltaics. In fact, solar cells, among other
technological applications, require the use of materials that are transparent in the visible
range, but that have fairly high electric conductivity. These normally incompatible prop-
erties can be found together in three different classes of materials: very thin pure metals,
highly doped conjugated organic polymers, and doped wide band gap oxide or nitrite semi-
conductors. During the past years, the latter, commonly referred to as transparent con-
ductive oxide (TCO) materials, have attracted a considerable amount of interest, especially
due to their applications in displays and in solar cells. In particular, the CIS thin film solar
cells, use TCOs as contacts.

There has been a substantial experimental effort to study the properties of advanced
materials, not only to understand them from a fundamental point of view, but also to op-
timize their properties. This is clearly not surprising due to the extremely important ap-
plications that these materials have found in the recent years. However, there is a clear
lack in the literature of consistent theoretical and computational studies that can explain
and describe properties related to electronic excitations. This better understanding is also
essential to help and direct further experimental work.
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The relative scarcity of theoretical, first principles, studies can be explained by two
reasons: the first is practical, and regards the relative complexity of these systems, often
including transition metals with localized d states. One can then be interested in the study
of defects or amorphous phases – usually treated in the supercell approximation. These
issues increase substantially the computational burden, that only became affordable with
the recent advent of powerful supercomputers. The second reason is more fundamental:
the most widespread technique used in computational solid state physics, i.e. density func-
tional theory, fails dramatically in describing both the quasiparticle band structure and
absorption spectra of semiconductors. These, one should remind, are the two most impor-
tant electronic properties for the technological applications discussed in this chapter. In
fact, DFT, in its common implementations, systematically underestimates band gaps and
completely ignores excitonic effects in the spectra. More sophisticated techniques, like the
standard GWmethod, improved the overall calculated properties, but sometimes, like for
some transition metal compounds discussed in the following, these methods yield band
gaps still far from a good agreement with experiment.

Very recently, several new approaches to GW , including finding better starting points
for the perturbative treatment or performing partial self-consistent calculations, appeared
as a solution to these problems.

6.1 Origin of the optical contrast in phase-change materials∗

6.1.1 Introduction

Several chalcogenide alloys exhibit a pronounced contrast between the optical absorption
in the metastable rocksalt and in the amorphous phase. This phenomenon is the basis for
their application in optical data storage.

Here we present ab initio calculations of the optical properties of GeTe and GeSb2Te4

in the two phases. The analysis of our computations and experimental data reveal the
correlation between local structural changes and optical properties as well as the origin of
the optical contrast in these materials. In particular, we find that the change in optical
properties cannot be attributed to a smearing of transition energies as commonly assumed
for amorphous semiconductors.

Tellurides containing Ge and Sb such as GeSb2Te4 and Ge2Sb2Te5 are characterized
by a fast and reversible phase-transition from the metastable, crystalline (c-) phase to the
amorphous (a-) phase. This transformation is accompanied by a profound change of electri-
cal conductivity and optical reflectivity [333, 334, 335]. The pronounced optical contrast in
phase change materials (PCM) such as GeSbTe alloys is employed in optical data storage,
e.g. in rewritable DVD’s. The change in electrical properties –e.g. the resistivity change–
is one of the crucial features that would be used in phase change random access memories,
a very promising candidate for future non-volatile memories [336, 337].

Conventional covalent semiconductors such as Si, Ge or III-V alloys behave very dif-
ferently; in particular they do not exhibit such a strong optical contrast [338]. A recent
remarkable observation provided some clues to the origin of this effect. EXAFS studies of

∗Part of this chapter is based on the article:

• Origin of the optical contrast in phase change materials, W. Welnic, S. Botti, L. Reining, and M. Wuttig,
Phys. Rev. Lett. 98, 236403 (2007).

• Local atomic order and optical properties in amorphous and laser-crystallized GeTe, W. Welnic, M. Wut-
tig, S. Botti, and L. Reining, C.R. Physique 10, 514-527 (2009).
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the local order of Ge2Sb2Te5 as well as GeTe showed a marked change of short range order
upon crystallization of the a-state [339, 340]. Such a finding is not observed for conven-
tional covalent semiconductors, suggesting that the short-range structural rearrangement
could be closely related to the optical contrast.

However, the change in optical properties upon amorphization of the PCM was still far
from being understood. Experiments can show trends, but it is difficult to correlate from
experiment alone a macroscopic measurement, like the optical properties, with microscopic
details, like the local atomic structure. First-principle calculations provide an ideal comple-
mentary tool in this study as structural models with different local order can be explored.
We hence performed a joint experimental and numerical study in order to elucidate several
major questions, in particular (i) can a change in local order explain the strong optical con-
trast in PCM’s? (ii) is this contrast governed by the corresponding change of the electronic
energies (the joint density of states)? (iii) can a simple and general model reproduce this
phenomenon so that the results could be used in the search for improved materials?

6.1.2 Origin of the optical contrast

The experimental data presented here were obtained for magnetron sputtered thin films
(150-250 nm) of GeTe and GeSb2Te4 on glass. The measurements, performed at room tem-
perature, include Fourier Transform Infrared (FTIR) spectroscopy and ellipsometry in the
combined energy range of 0.1–5.4 eV.

Density Functional Theory calculations of the electronic ground state of GeTe and
GeSb2Te4 were performed with the code ABINIT [182], using norm-conserving pseudopo-
tentials [183] and a generalized gradient approximation [4] for the exchange-correlation
potential. The c-phases exhibit a rocksalt structure where Te atoms occupy one sublattice,
while the second one is occupied either by Ge atoms (in GeTe) or by Ge/Sb atoms and 25%
of vacancies (in GeSb2Te4) [341, 342]. The atomic positions in the c-phase were relaxed,
resulting in a rocksalt-like structure with local distortions as reported recently [339, 343].
The a-states were studied in a supercell configuration containing 56 atoms (GeSb2Te4) and
64 atoms (GeTe), respectively. Based on the observation that in a-GeTe a fraction of Ge
atoms occupies tetrahedrally coordinated positions [340] instead of the octahedral environ-
ment in the c-phase, we constructed simple structural models: In a supercell containing
64 atoms (32 Ge and 32 Te atoms) in octahedral coordination 2, 4 and 8 Ge atoms are dis-
placed into tetrahedrally coordinated positions in order to obtain different models for the
a-state. For GeSb2Te4 two simple models were used for the same purpose: in one model all
eight Ge atoms exhibit tetrahedral coordination (am1) in accordance with earlier EXAFS
results [339]. In order to test the possibility of a mixture of short-range order as found
in a-GeTe, in the second model 4 Ge atoms remain octahedrally coordinated and 4 become
tetrahedrally coordinated (am2). The models used here still exhibit long range order, which
should not be present in the a-state. However, in covalent materials the optical properties
are mainly defined by short ranged nearest-neighbor interactions. In order to study the
correlation between the unusual changes in short-range order and the optical properties it
is thus well justified to neglect the change in long-range order upon amorphization. The
chosen structural models are expected to reproduce the experimentally observed density
decrease of 5-10% [344, 345] upon amorphization. Our calculations yield a decrease of
4.8-9.8% for the amorphous models, consistent with these experimental values.

The optical properties were calculated within TDDFT using the code DP [70]. For small-
gap semiconductors like the materials studied here, self-energy and excitonic effects can
be taken into account by replacing Kohn-Sham eigenvalues with quasiparticle energies
calculated within the GW approximation for the self-energy [11], and by using a model
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Figure 6.1: Optical absorption of GeTe and GeSb2Te4 a: experimental, b+c: calculation,
here two amorphous models for GeSb2Te4 are displayed. For both alloys a decrease, a
broadening and a blue-shift of the absorption, is reproduced for the a-state. Lattice dis-
tortions upon structural relaxation and Ge vacancies lead to a better agreement with the
experiment in c-GeTe.

long-range exchange-correlation kernel fxc = −α/q2 simulating the electron-hole interac-
tion [37, 32]. Since the calculated dielectric constant ε0 takes values between 30 and 76 for
the systems considered here, screening is very large and, consequently, the excitonic contri-
bution is negligible, i.e. α = 0. Hence the Random Phase Approximation (RPA, i.e. fxc = 0),
using GW quasiparticle energies instead of Kohn-Sham eigenvalues represents here the
best approximation to simulate many-body effects in GeTe or GeSb2Te4. The GW correc-
tions to the quasiparticle band structure of the c-systems in their primitive unit cells give
a blue shift of the absorption threshold of 0.15 eV for GeTe and of 0.1–0.2 eV for GeSb2Te4.
We take the same shifts for the corresponding amorphous phases, since GW corrections can
be assumed to depend weakly on the local structure (see e.g. [346]).

In Fig. 6.1 our experimental (a) and calculated spectra (b)+(c) are presented. The ex-
perimental data are in line with measurements of PCM’s such as GeSb2Te4, Ge2Sb2Te5 or
Ge1Sb4Te7 found in the literature [347, 348]. The optical contrast between the c- and the
a-state is mainly caused by two features: Primarily, the absorption in the a-state decreases
and broadens significantly in both alloys. Furthermore a blue-shift of the spectra is ob-
served upon amorphization. The experimental spectrum of the c-state of GeTe exhibits a
Drude peak at energies below 0.5 eV. The metallic p-type conductivity inducing this peak,
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stems from unoccupied states at the valence band edge [349], which are due to Ge vacan-
cies. Such vacancies are known to be the dominant point defects in c-GeTe (see e.g. [350]).
For the comparison between theory and experiment it should be kept in mind that calcula-
tions are performed for a bulk single-crystalline solid, and measurements on thin films. In
view of that, quantitative deviations between calculated and experimental spectra of the
c-phases may occur.

Fig. 6.1 (b) shows calculations of the unrelaxed (i.e. the perfect rocksalt phase with six
nearest neighbors) and the relaxed c-GeTe as well as of a relaxed structure containing a
Ge-vacancy. The first spectrum is very different from the experiment, the second one is
considerably improved while the last shows good agreement with the experiment. Most
notably the Drude peak is well reproduced now. Furthermore the intensity of the main
peak decreases and thus approaches the experimental value. If vacancies are considered
in the a-state, a similar decrease of the absorption intensity can be observed (not shown
here). The three employed models for the a-state yield similar spectra. Therefore only
one model (with 4 Ge atoms occupying tetrahedral positions) is shown in Fig. 6.1. The
peak of the absorption spectrum is found at the same energy in the c- and a-state, however
the overall spectral weight exhibits a blue-shift in the a-state. Similarly to experiment,
the spectrum broadens and decreases in intensity upon amorphization. Note that both
effects, the incorporation of vacancies as well as the local order change from octahedral to
tetrahedral coordination reduces the number of Ge-Te bonds.

For GeSb2Te4, as shown in Fig. 6.1 (c), both contributions to the optical contrast – the
decrease and broadening of the spectrum as well as the blue-shift – are reproduced for
the two amorphous models. The absorption spectrum of am1 is more structured than the
experimental spectrum. However, this might be due to the fact that this model still exhibits
long range order, which is obviously not present in the experiment. The lifting of long range
order should result in less well defined transition energies and thus in a smearing of the
absorption spectrum. Since both models successfully describe the optical contrast due to
short-range changes between the c- and the a-state, in the following analysis am2 will be
employed without loss of generality.

Further structural rearrangements, not captured by our simple structural models, cer-
tainly lead to further modifications of the spectra. However, the pronounced change of the
calculated spectra provides an unambiguous answer to question (i): the shift of Ge atoms
to tetrahedral positions, i.e. the change in the local order of the Ge atoms upon amorphiza-
tion, is the dominant effect in the generation of the optical contrast.

In the following discussion we will focus on a deeper study of the origin of this optical
contrast induced by the change in the local order. As we have verified, crystal local field
effects only play a very minor role in the spectra and, as we have pointed out above, self-
energy corrections are small. We can therefore base our analysis of the absorption results
on Fermi’s golden rule in the independent-particle approximation (see e.g. [17]) within the
Kohn-Sham picture. This approach enables us to isolate the contributions to absorption of
matrix elements and energy levels (εi). This separation is essential to answer question (ii).
In this approximation the imaginary part of the macroscopic dielectric function

ǫ2(ω) = 2
4π2

ΩNkω2
lim
q→0

1

q2

∑

v,c,k

|q · mv,c,k|
2δ(εck − εvk − ω) (6.1)

where Ω is the volume of the cell and Nk the number of k-points, is governed by the joint
density of states (JDOS/ω2 ≡ 1

Nkω2

∑

v,c,k δ(εck − εvk − ω)) and by the velocity (v) matrix
elements of the optical transitions mv,c,k ≡ 〈c |v| v〉. Fig. 6.2 (a) presents the JDOS/ω2 for
GeSb2Te4 and (c) presents the JDOS/ω2 for GeTe.
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Figure 6.2: a) JDOS/ω2 of GeSb2Te4 in the c- and the a-state in Number of transitions/eV3

per cell and k-point. Up to 1.4 eV the JDOS in the c-phase is stronger than in the a-state,
while ε2 is stronger in the c-phase up to 1.8 eV. For GeTe (c) up to 1.7 eVmore transitions are
found in the a-state compared to the relaxed c-phase. For both materials the decrease in the
absorption upon amorphization can only be explained taking into account the velocity ma-
trix elements shown in (b) (GeSb2Te4) and (d) (GeTe) withMv,c,k = 24π2

Ω limq→0
1
q2 |mv,c,k|

2.

In GeSb2Te4 up to 1.4 eV the JDOS in the c-phase is stronger than in the a-state, while
above 1.4 eV a larger number of transitions is found in the a-state. On the other side
the absorption spectrum in the c-phase exhibits a higher intensity up to 1.8 eV (Fig. 6.1).
Hence, assuming constant matrix elements the JDOS cannot explain the optical contrast
between the two phases. In GeTe the JDOS is even less suitable to explain the optical
contrast: up to 1.7 eV the JDOS is larger in the a-state, for higher energies it is very similar
in both phases. With constant matrix elements one would therefore expect an absorption
spectrum showing higher intensity in the a-state up to 1.7 eV and very similar spectra for
both phases above this value. However, this is clearly not the case in the measured and
calculated absorption spectra (see Fig. 6.1). Thus in both alloys the optical contrast can
only be understood if the contribution arising from changes in the oscillator strength of
the optical transitions is taken into account. This contribution is shown in Fig. 6.2 (b)
(GeSb2Te4) and (d) (GeTe). For GeSb2Te4 up to about 2 eV stronger matrix elements are
found in the c-phase, for c-GeTe they are significantly stronger in the entire spectral range.
For GeTe we have also included the curves relative to the undistorted phase, where the
oscillator strength is even stronger. As the change in oscillator strength is larger in GeTe
compared to GeSb2Te4, the difference in the intensity of the absorption spectra of the c-
and the a-state is more pronounced for GeTe as well. This result of the calculation is
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∫

|φc(r)||φv(r)|dr.

also present in the experimental spectra in Fig. 6.1. Hence Fig. 6.2 (a)-(d) show that the
optical contrast between the c- and a-state of GeSbTe alloys are dominated by changes of
the matrix elements, providing an unexpected answer to question (ii). In fact, this result
is in striking contrast to the common explanation of the -moderate- changes in the optical
absorption upon amorphization of tetrahedral semiconductors such as Si, Ge or the III-
V compound GaAs. These are explained by a smearing of the JDOS resulting from the
loss of long range order and the formation of defect states in the gap in the a-state [338].
Thus the unusual change in the local order in PCM’s upon amorphization induces another
remarkable effect, namely a significant decrease of the oscillator strength of the optical
transitions.

Further studies reveal that this decrease can be mainly attributed to a change in the
spatial overlap of the wave functions which contribute to the optical transitions. Fig. 6.3
shows the number of matrix elements plotted against the overlap

∫

|φc(r)||φv(r)|dr. For
both alloys the curves show similar behavior, shifting towards lower values in the a-state
and thus indicating a weaker overlap. These results provide a simple model suitable to
answer question (iii). The optical properties in PCM’s are governed by two effects: the
change from octahedral to tetrahedral coordination as well as the inclusion of vacancies
reducing the number of Ge-Te bonds and thus the total oscillator strength. Moreover the
change of the local geometry upon amorphization or distortion leads to a change in the over-
lap of the wave functions, resulting in smaller individual matrix elements. This explains
the decrease of the absorption upon distortion, vacancy inclusion as well as amorphization
thus providing interesting hints for optical data storage applications: As both the change
from octahedral to tetrahedral coordination as well as the inclusion of vacancies reduce
the number of Ge-Te bonds optical properties in PCM’s can be tuned by modifying these
two contributions. In particular the latter property is easily accessible. As has been shown
recently [351] the vacancy concentration in PCM’s can be controlled over a wide range.
Furthermore [351] shows that the absorption in the c-state decreases with the degree of
distortions (which again can be tuned by changing the stoichiometry).

To conclude, we demonstrate for the undistorted rocksalt phase of crystalline GeTe that
the RPA calculations – despite their simplicity – contain all crucial features of the absorp-
tion spectra of GeTe. To do so we have to take into account electron-electron and electron-
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Figure 6.4: Optical spectra of the undistorted rocksalt phase based on many-body pertur-
bation theory compared to the RPA results (red full line: with crystal local fields, red dotted
without crystal local fields). The G0W0 calculation shifts the eigenvalues 0.15 eV to higher
energies, which results in a blue-shift of the absorption peak (blue dot dashed line). Taking
into account excitonic effects leads to a small red-shift with respect to the GW -RPA data
and to an increase of absorption strength (black dashed line). Solving the Bethe-Salpeter
equation yields a negligible exciton binding energy.

hole interactions which are not included in RPA calculations. Therefore for this system
we have performed calculations based on many-body perturbation-theory to account for
the underestimation of the electronic gap in DFT (electron-electron interaction) and for
excitonic contributions in the absorption spectrum (electron-hole interaction). First a cor-
rection of the energies of the excited electronic states is obtained by means of a perturbative
G0W0 calculation. To include the electron-hole interaction the Bethe-Salpeter equation is
then solved (see Section 2.2). In Fig. 6.1.2 we display a comparison of the spectra obtained
with the different methods.

First of all the importance of the crystal local fields, which stem from the off-diagonal el-
ements of thematrix of the dielectric function ǫ and account for the spatial inhomogeneities,
are studied. The RPA spectra obtained by the code dp including local fields (rpa lf) and not
including them (rpa nlf) do not differ substantially (nevertheless crystal local fields are
taken into account in the subsequent spectra presented here). The eigenvalues obtained
from the G0W0 calculated by ABINIT are shifted to higher energies by 0.15 eV compared
to the GGA eigenvalues. Thus the G0W0 calculation results in a minor correction of the
electronic structure (gw-rpa) towards the experimental value. The electron-hole interac-
tion in the Bethe-Salpeter absorption spectrum cancels the G0W0 blue shift and moves the
absorption peak back to the RPA position. This is due to a redistribution of the oscillator
strength of the optical transitions. Therefore, the net result of the many body effects is only
a modest increase of the peak height. However, no significant features which are absent
in the RPA spectrum additionally appear if we include excitonic effects in our simulations.
Therefore one can conclude that many body contributions are rather small and that the
RPA spectra include all crucial features in the absorption spectrum of GeTe. This is due to
the strong screening present in the system. Experimentally, a value of 36 for the electronic
dielectric constant is obtained for the trigonal ground state. A further reduction of many-
body effects in the system is induced by lattice polarization and the free carriers present
in the experimental probes. Thus we can confirm that it is sufficient to consider the RPA
spectra to study the correlations between the short range order and the optical properties
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as proposed in this section.
In summary we provide an explanation for the change of the optical absorption upon

amorphization in PCM’s and reveal the reason of differences in the optical properties of
GeTe and GeSb2Te4. The changes in the number of bonds and in the local order upon
amorphization result in significant changes of the oscillator strength which in turn result
in the unusually pronounced optical contrast between the c-and the a-state. Thus they dif-
fer significantly from simple tetrahedral semiconductors such as Si or Ge, which retain the
local order in the a-state and therefore exhibit only minor changes in their optical proper-
ties. Besides providing fundamentally new insight in the physics of the optical absorption
of amorphous materials, our results reveal important trends for a systematic material opti-
mization of phase change alloys. As promising future optical data storage techniques such
as the SuperRens-discs [352], will rely on a large optical contrast between the crystalline
and the amorphous phase as well, this result also provides a significant contribution for
the design of alloys employed in these future data storage devices.

6.2 Chalcopyrites thin-film absorbers for photovoltaic appli-

cations∗

6.2.1 Introduction

During the past years, copper indium diselenide Cu(In,Ga)(Se,S)2 (CIGS) thin-film solar
cells have emerged as a technology that could challenge the current hegemony of silicon
solar panels [353]. This is possible thanks to the peculiar optical and structural proper-
ties of CIGS, which possess an extraordinary stability under operating conditions [354]. In
fact, these compounds conserve to a very high degree their electronic properties in a large
non-stoichiometric range and are remarkably insensitive to radiation damage or impuri-
ties. This appears to be a consequence of self-healing mechanisms that compensate for the
creation of defects [355]. The origin of this unusual behavior is currently unknown, but it
is clear that its understanding would pave the way to the tuning of new materials for more
efficient photovoltaic energy conversion. In this context, theoretical calculations that can
predict and analyze the interplay between structural and electronic properties can give a
crucial contribution to the interpretation of numerous experiments which, in this field, is
often far from straightforward.

In this section, we are interested in the electronic properties of two paradigmatic CIGS
materials: CuInSe2 and CuInS2 (commonly referred to as CIS). Like other ternary chal-
copyrites, CIS pure crystals are obtained from the zincblende structure by replacing the Zn
cations alternatively with Cu and In. In this way, each anion (Se or S) is coordinated by two
In and two Cu atoms, while each cation is tetrahedrally coordinated by four anions. How-
ever, the existence of two different cations results in two different bonding lengths RIn−(S,Se)

and RCu−(S,Se), leading to two structural anomalies [356]: i) The tetragonal cell exhibits a
distortion, defined by the parameter η = c/2a 6= 1, the ratio between the lattice constants a
and c. ii) The ideal zincblende site for the anion is perturbed, yielding a deformation of the
anion tetrahedron, which is measured by the anion displacement parameter

u =
1

4
+
[

R2
Cu−(S,Se) − R2

In−(S,Se)

]

/a2 6=
1

4
. (6.2)

∗Part of this chapter is based on the article:

• Strong interplay between structure and electronic properties in CuIn(S,Se)2: a first-principle study, J.
Vidal, S. Botti, P. Olsson, J-F. Guillemoles, and L. Reining, Phys. Rev. Lett. 104, 056401 (2010).
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Both structural anomalies are small, but not negligible. The precise experimental deter-
mination of the anion displacement u is more difficult than the measurement of the lattice
constants a and c due to inhomogeneity of the samples. Indeed, the dispersion of the mea-
sured values is very small for the lattice parameters (usually < 1%), while it is significant
for the anion displacement (0.22 < u < 0.235) [356, 357].

Merino et al. [357] reported a relatively narrow spread in the band gap (≈ 10%) as a
function of the dispersion of the anion displacement u. Unfortunately, experiments alone
are not conclusive, due to the lack of information on the composition and uniformity of the
samples. The variation of the band gap as a function of u was also addressed theoretically
using DFT [358], in some cases including empirical corrections to get closer to the exper-
imental gap [356, 359]. An uncommonly large variation was found, in of CIS compounds
apparent contradiction with the experimentally proved stability of the CIS gap with respect
to any kind of damage or perturbation.

However, DFT – the standard tool in modern condensed matter theory – is plagued
by two serious shortcomings when applied to these systems: (i) As it is well known, the
Kohn-Sham (KS) band gaps of DFT underestimates systematically by 50%–100% the ex-
perimental ones. In particular, for CIS compounds the KS band gap is vanishing, in con-
trast to the experimental values of 1.54 eV and 1.05 eV for CuInS2 and CuInSe2 [360],
respectively. On the other hand, ad hoc corrections, like the scissor operator, often used
to adjust the DFT band gap to the experimental value, are too simplistic to analyze the
dependence of the band gap on u. (ii) In spite of this problem, the local density (LDA)
or the generalized gradient (GGA) approximations to the exchange and correlation energy
of DFT usually yield good structural parameters of semiconductors and insulators. Un-
fortunately, for CIS, the theoretical range of anion displacements obtained within these
approximations(0.215 < u < 0.220) lies outside the experimental range. It is clear, thus,
that to understand the paradox of the band gap dependence on the unit cell deformations
in CIS one has to go beyond standard DFT.

In the past years, GW [11] has emerged as an invaluable tool to access the one-electron
addition and removal energies, also called quasiparticle energies [361]. In principle, the
GWequations have to be solved self-consistently, as both G, the one-particle Green’s func-
tion, andW , the screened Coulomb interaction, depend on the quasiparticle wave-functions
and energies. However, the standard use of this theory, that we will refer to as G0W0,
starts from a KS calculation, and evaluates perturbatively the quasiparticle corrections to
the energy levels ignoring the self-consistent process. This procedure is justified when the
KS wave-functions and band structures are already close to the quasiparticle ones. In that
case it gives results in good agreement with experiments [362].

In spite of the success of the G0W0 approach, it has recently been proved that it is
insufficient to describe the physics of many materials containing localized d electrons, such
as transition metal oxides [12, 48, 49]. Several strategies have been proposed to solve
this problem, following two main lines: (i) Replacing the LDA with a better starting point,
e.g. exact exchange [53], LDA+U [54], or hybrid-functional approaches [363]; (ii) Using an
approximate self-consistent approach [13, 48, 14, 49].

6.2.2 Self-consistent GWcalculations

In this work we chose to perform a self-consistent (sc) COHSEX (a static approximation to
GW [11]) calculation, followed by a perturbativeG0W0 step to include the dynamical effects
absent in the COHSEX calculation [14]. This method has given excellent results for several
transition metal compounds, very close to the quasi-particle self-consistent GWmethod of
Refs. [12, 13], retaining however a relative computational efficiency [14]. Furthermore,
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Figure 6.5: Photoemission band gap versus the anion displacement u for CuInS2. The ver-
tical shaded areas give the spread of experimental data for u, while the horizontal shaded
areas give the dispersion of measured band gaps. Left panel: calculations using DFT-LDA,
G0W0, sc-COHSEX, and sc-COHSEX+G0W0. The dotted line refer to the previous work of
Jiang et al. [359]. Right panel: comparison of sc-COHSEX+G0W0 and hybrid functional
calculations, using HSE06 and a modified HSE06 (see the text).

and unlike some of the strategies listed in (i), our choice does not rely on any non-universal
parameter.

In this section we compare calculations of quasiparticle gaps for a range of anion dis-
placements, obtained from state-of-the-art ab initio schemes. We performed standard DFT
and GW calculations within the plane-wave scheme implemented in ABINIT [364], using
norm-conserving pseudopotentials [239] and including semi-core states in the valence. Our
calculated LDA (and GGA) structural parameters and band structures agree with previ-
ous results [365, 358, 366]: the anion displacement u is systematically underestimated by
5-10%, and the bottom conduction band overlaps the top valence band, yielding negative
band gaps. The negative gap is due to the overestimation of the p-d repulsion [367], which
raises the valence band maximum (VBM) beyond the low lying conduction band minimum
(CBM), causing a significant hybridization of the CBM with valence states close in en-
ergy. Values of u and band gaps in agreement with experiments can be obtained using the
Heyd-Scuseria-Ernzerhof (HSE06) [368] hybrid functional as implemented in the Vienna
ab initio simulation package (VASP) [315, 240, 369, 370]. In fact, the structural relaxation
within this scheme yields u=0.226 (u=0.229) for the ideal monocrystal of CuInS2 (CuInSe2).
In real samples, however, there is a dispersion of values of u. As a first step, it is there-
fore interesting to calculate and analyze the evolution of the gaps as a function of u. To
this aim we use ab initio schemes that is designed to describe excited states, namely the
GWapproximation, as well as hybrid functionals which are also known to yield reason-
able band gaps for solids. We varied u in the interval 0.2 < u < 0.25, that encompasses
both experimental and theoretical ranges. After verifying that reasonable variations of the
lattice parameters a and c produce negligible changes on the band structure these param-
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eters were fixed to their experimental values [371]. In the following we will present only
calculations for CuInS2, as we found strictly analogous results for CuInSe2.

The dependence on u of the band gap of CuInS2 is shown in Fig. 6.5. We can see that
our KS LDA curve (magenta with filled circles) has the same slope as the theoretical curve
(dotted line) obtained by Jiang et al. [359] using the LDA corrected by a scissor operator. If
we apply the perturbative G0W0 approach on top of DFT (blue line with crosses), bands are
reordered, reversing the sign of the band gap for u > 0.215. In any case, G0W0 gaps remain
quite small, and the slope of the curve do not change for most of the u-range when compared
to the KS results. The slope of the G0W0 calculation increases when u = 0.25, becoming
comparable to the slope of the curves obtained applying a self-consistent approach. This is
the only case for which the KS gap is already positive and no band reordering occurs.

The sc-COHSEX procedure (yellow lines with stars) leads to a very different result: the
gap enlarges (to values slightly larger than the experimental ones), and also the slope of
the curve significantly increases. This is due to the progressive modification in the self-
consistent iterations of the unsatisfactory LDA starting point.

Finally, when the sc-COHSEX eigenstates are used as a starting point for a perturbative
G0W0 calculation (black dashed lines), the band gap gets reduced by a constant value of
about 0.3 eV, without affecting the slope of the dependence on u. In particular, we find a
band gap in agreement with experimental data for the anion displacement measured for
the monocrystal [372]. The important finding to stress is however that according to to our
sc-GW calculation small displacements of the S (Se) atoms lead to even larger variations of
the gap than those predicted by previous LDA-based calculations.

In order to further investigate this intriguing feature we performed HSE06 calculations
for the gaps (maroon line with filled triangles). The outcome is a curve characterized by an
intermediate slope between DFT-LDA and sc-GW . The effect of the HSE06 functional is
determined by the fixed amount of Hartree-Fock (HF) exchange included:

EHSE06
xc = EGGA

xc +
1

4
EHF,sr

x −
1

4
EGGA,sr

x , (6.3)

where the exchange term 1
4EHF,sr can be seen as an approximated contribution to the self-

energy, whose Coulomb interaction is screened by the mixing parameter 1
4 and the short-

range (sr) screening factor, while 1
4E

GGA,sr
x is a screened GGA exchange. In contrast, in a

GW calculation the exchange part of the self-energy is screened by the inverse dielectric
constant, as a first approximation using the static ε∞; the latter varies for different values
of u. To shed light on this point we performed a series of HSE06 calculations using 1

ε∞
,

computed within sc-COHSEX for each value of u, to replace the mixing parameter in front
of the screened Hartree-Fock exchange. The resulting curve (violet line with open triangles)
has the same slope as the sc-COHSEX curve 1.

Hence, all theoretical results, independently of the level of sophistication, point to large
band gap variations. Considering as an upper limit for ∆u the range where both theoretical
and experimental values are included (∆u . 0.02), we conclude that the gap variation ∆Eg
due to the anion displacement alone would be ∆Eg = 32.2 × ∆u ≈ 0.65 eV. However, CIS
thin films proved to possess stable electronic gaps [357].

1Of course, our argument for the use of 1/ε∞ is purely qualitative. It neglects dynamical effects, lowering of
the screening at finite distances, the underestimate of ε∞ in a sc-COHSEX calculation [13], as well as the fact
that HSE06 functional already contains a part of screening. This affects the absolute value of the calculated
gaps although various contribution being of opposite sign, the final result is in a reasonable range. However it
corrects the most important shortcoming of the hybrid functionals for the comparison of bandgaps namely, the
rigid fixing of the effective screening of the non-local Fock part.
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Figure 6.6: The VBM shift ∆Ev of CuInS2 with respect to the LDA band edge versus the
anion displacement u. We compare results for sc-COHSEX with self-consistency only in
energy (dashed curve) and in both wave functions and energies (continuous curve). The
blue horizontal line represents ∆Ev given by DFT+Ud [373] where U is set to 6 eV.

This apparent paradox of band gap stability can be solved by considering also the effect
on the band gap due to deviations from stoichiometry, which manifest themselves in high
concentrations of defects [354]. Cu vacancies VCu are shallow acceptor defects, which are
known to be present in usual samples, consistently with the observation of p-type conduc-
tivity. In particular, VCu is thought to have very low formation energies [374] compared
to other intrinsic defects. It is known that already at the KS level the presence of VCu

opens up the band gap [374, 375], with a larger effect for increasing [VCu], once again in
contradiction with the observed stability of experimental band gaps against stoichiometry
deviations. We confirmed this trend by performing G0W0 calculations for 16-/32-/64-atom
supercells 2, corresponding to concentrations of VCu in the usual experimental range of
off-stoichiometry [357]. The concentration of VCu is related to the formation energy ∆Ef
through a Boltzmann distribution, whose relevant temperature and chemical potentials
are set by the growth conditions (T ≈ 500 − 600◦C, copper poor samples) at which defect
equilibrium occurs, this equilibrium is moreover assumed to be quenched during the rapid
cool down of the samples. However, previous calculations of formation energies were done
at the level of DFT and suffer from the unsatisfactory description of the localized states
contributing to the VBM. Lany et al. [376] proposed to use LDA+U to correct the formation
energy as follows:

∆Ef = ∆ELDA
f − ∆ELDA+U

v . (6.4)

2In particular, as the starting LDA gap of the system with vacancies is already positive, it is enough to
perform G0W0 calculations to obtain reliable slopes for the variation of the gap versus the concentration of
VCu. This is analogous to what happens in the case of the pure compound when u > 0.215 (see Fig. 6.5) where
a positive Kohn-Sham gap allows for the correct slope as a function of u already at the G0W0 level, despite the
underestimation of the gap value.
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Figure 6.7: Schematic representation of the feedback-loop that stabilizes the band-gap.

We used this idea, evaluating the VBM shift ∆Ev within sc-GW . In Fig. 6.6 we show the
band edge corrections ∆Ev with respect to the KS VBM, calculated using sc-GWand shown
for different levels of self-consistency. In this case, ∆Ev does not correct a shortcoming of
KS theory, but improves on the LDA functional, as the exact exchange-correlation func-
tional would give the exact VBM already within DFT. The VBM shift has a dispersion of
around 1 eV in the considered range of u. This dispersion is totally absent in DFT (+U)
calculations [373] (horizontal blue line). Note that the shifts are significantly different ac-
cording to whether both wave functions and eigenvalues or only eigenvalues are updated
in the self-consistent procedure.

6.2.3 Analysis of the feedback loop which stabilizes the gap

Following the logic of the feedback loop scheme of Fig. 6.7, we can now prove that would a
distortion of the lattice occurs for any reason (e.g. extended defect, axial strain,...) it would
actually have little influence on the gap value because of two canceling effects.

Let assume that the band gap is a functional of u and [VCu] so that Eg = Eg(u, [VCu]).
Any variation of the band gap ∆Eg can be expressed as

∆Eg =
∂Eg

∂u
∆u+

∂Eg

∂[VCu]
∆[VCu], (6.5)

where u is the anion displacement and [VCu] is the concentration of Cu vacancies. The two
variables u and [VCu] are in fact not independent but linked through the variation of the
valence band maximum (VBM) induced by variations of u. As presented in the manuscript,
in the case of a shallow acceptor, its formation energy should be corrected by the correct
position of the VBM as

∆Ef(u) = ∆EDFT
f − ∆EscGW

v (u) . (6.6)

Indeed, shallow acceptors are supposed to behave like the VBM due to their proximity
to it. This has been the common strategy used for the past 20 years in order to correct
formation energies (see, e.g., Ref. [376]). Then, it is possible to relate the concentration of
VCu to the formation energy through a Boltzmann distribution as

[VCu] = NCue
−∆Ef
kBT , (6.7)

with T being the growth temperature for which the diffusion of defects is quenched (T ≈
500− 600◦ C). Moreover, high concentrations of VCu can significantly enlarge the band gap.
Thus, any variation of u can change both the band gap and the formation energy of VCu, and
as a consequence vary the concentration of VCu which will change the band gap accordingly.
Overall the effects of u and VCu seem to cancel each other.

We have identified Cu vacancies as the most likely defect to play a role in the stabi-
lization of the gap. For the neutral defect VCu, the formation energy ∆Ef depends on the
chemical potentials µ:

∆Ef = Etot(VCu) − Etot(CIS) + µsolid
Cu + µCu , (6.8)



Chalcopyrites thin-film absorbers for photovoltaics 105

0

30

60

128 atoms

0

10

20

64 atom

0

75

150

288 atoms

0.21 0.215 0.22 0.225
u

0

150

300

432 atoms

Figure 6.8: Distribution of local u’s depending on the size of the supercell of VCu:CuInS2.
The blue line refers to the value of u for the perfect crystal relaxed in GGA.



106 Advanced materials

where Etot(VCu) and Etot(CIS) are respectively the total energy of the CIS supercell with
and without VCu, µsolid

Cu is the total energy of the ground-state solid Cu and µCu is the
chemical potential of Cu that depends on the growth conditions. The latter is set to -0.6 eV
that corresponds to experimental observations in the case of Cu poor growth conditions.
Moreover, we performed ground-state calculations in DFT-GGA for 432-atom supercells
in order to calculate the difference of total energies. The resulting formation energy of
neutral VCu is 0.1 eV, which yields a concentration [VCu] ≈ 5 1020 cm−3 at T = 600◦ C. This
numerical value matches the size of the supercell used to simulate different concentration
of defects. Therefore, the Boltzmann distribution is valid for the range of concentrations
we are interested in.

The next step consist in asking if the creation of a Cu vacancy does modify the lattice
distortion. Indeed, we assume that u can act on the concentration of Cu vacancies: but
does VCu induce changes in the value of u? Of course, the presence of a Cu vacancy pro-
duces a void in the crystal, that result in the inward relaxation of the neighboring anions.
Besides, the crystal loses all chalcopyrites symmetries, which can ensue long range struc-
tural changes. In order to assess this problem, we extracted the distribution of local u’s
from a relaxed 64-atom supercell with one VCu. The anion displacement is defined as a
local quantity: each anion is surrounded by 4 cations (2 Cu and 2 indium), resulting in
two In-S and two Cu-S bonds. In the case of a perfect crystal, the bond lengths are equal
for each anion-cation pair of the same type, resulting in one unique u. However, in a su-
percell with a defect these bond lengths change. One can then define for each anion, 4
different values of u. Figure 6.8 shows the distribution obtained with a GGA relaxation for
different supercell sizes. The distribution presents a mean value close to the theoretical
u of the perfect crystal, u=0.2184, and the standard deviation decreases with increasing
supercell sizes. Furthermore, additional contributions appear at small and large values of
u (u < 0.216 and u > 0.219). They originate from the region around the vacancy.

We can conclude that [VCu] has only a mild effect on the anion displacement except in
a region localized around the Cu vacancy. We can therefore simplify Eq. (6.5) by assuming
that u is not a function of [VCu] and that [VCu] is an exclusive function of u. Therefore,
Eq. (6.5) can be rewritten as

∆Eg =

{

∂Eg

∂u
+

∂Eg

∂[VCu]

d[VCu]

du

}

∆u

=

{

∂Eg

∂u
+

∂Eg

∂[VCu]

[VCu]

kBT

d∆EscGW
v

du

}

∆u . (6.9)

Let us go back now to the issue of the variation of the band gap as a function of the
concentration of Cu vacancies. For very high doping in standard semiconductors, a shrink-
age of the band gap is usually observed. In the case of CIS, where VCu plays the role of
doping, this trend is not observed theoretically. Instead a large opening of the band gap
occurs, either using DFT or more advanced methods like GW . This has been attributed
to the relaxation of the p-d repulsion forming the top of the valence bands. We performed
G0W0 calculations on supercells whose size ranges between 16 and 64 atoms. These super-
cell sizes correspond to 25% (16 atoms), 12% (32 atoms) and 6% (64 atoms) deviations of
stoichiometry. Polycrystalline thin-film CuIn1−xGaxSe2-based (CIGS) record solar cells re-
cently synthesized present a compositional window in terms of atomic content ratio of the
metals of 0.88 < Cu/(In + Ga) < 0.95 [353]. In [357] this value goes down to Cu/In ≈ 0.77.

The exact relation between Eg and [VCu] is not known. However, using a logarithmic
scale, we found a linear dependence of Eg on [VCu]. We can then perform a linear regression
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as shown in Figure 6.9:

Eg = 0.231 × ln

(

[VCu]

NCu

)

+ 1.67 , (6.10)

∂Eg

∂[VCu]
=

0.231

[VCu]
. (6.11)

This simple formulation of the partial derivative of Eg with respect to [VCu] allows to sim-
plify further Eq. (6.9):

∆Eg =

{

∂Eg

∂u
+

0.231

kBT

d∆EscGW
v

du

}

∆u . (6.12)

In order to evaluate the variation of ∆Eg with and without the feedback, we needed to
evaluate numerically the last two partial derivatives. The variations of respectively Eg and
∆EscGW

v are almost linear with respect to u. To perform the linear regression we chose a
restricted range of values of u that encompasses both the theoretical and the experimental
values, i.e. [0.215-0.235]. In that way we obtained:

∆Eg = 32.2 × ∆u without feedback loop , (6.13)

∆Eg = −1.9 × ∆u with feedback loop at T=600◦C . (6.14)

Considering a variation of ∆u = 0.02, the band gap will change by 0.65 eV without feedback
loop and by only -0.038 eV with the feedback loop (at T=600◦C). It is the opposite sign of the
two interplaying terms of Eq.(6.5) that stabilizes the band gap, making it understandable
why large deviations from stoichiometry can have innocuous effects in CIS materials.

In conclusion, we have analyzed the dependence of the band gap and band edge shifts
∆Ev of In based chalcopyrites on the internal displacement parameter u. We have found
that this dependence, predicted within DFT, was strongly underestimated. Furthermore,
we have demonstrated the necessity of using a self-consistent numerical scheme based on
many-body perturbation theory to fully capture the structural dependence of the band gap.
The HSE06 hybrid functional gives a satisfactory description of the electronic properties of
CIS at a reduced cost. However in order to evaluate important trends correctly, the param-
eter which controls the amount of Fock exchange should be allowed to vary proportionally
to the electronic screening. Finally, we explained the relative stability of the experimental
band gap in realistic conditions through a coupled process between defect formation and
structural relaxation. This suggestion is consistent with both the prediction of very low for-
mation energies for VCu and experimental samples showing p-type conductivity with very
high intrinsic defect concentration.

6.3 Delafossite transparent conductive oxides∗

6.3.1 Introduction

Many high-technology devices, such as flat panel displays, touch screens, or even thin-
film solar cells, require the use of thin transparent contacts. These contacts are usually
built from insulating oxides that, for a certain range of doping, become conductive while

∗Part of this chapter is based on the article:

• Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive

oxides, J. Vidal, F. Trani, F. Bruneval, M. A. L. Marques and S. Botti, Phys. Rev. Lett.(2010).
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retaining transparency in the visible spectrum. The most common examples of these so-
called transparent conductive oxides (TCOs) are electron (n-)doped SnO2, In2O3, and ZnO.
Hole (p-)doping of wide gap semiconductors was for long time very hard to obtain [377, 378].
It is therefore not surprising that the discovery of p-doping in CuAlO2 thin films with a
carrier mobility of about 10 cm2/(V s) attracted great interest [379, 380]. Other members
of the delafossite family, like CuGaO2 [381] and CuInO2 [382], were discovered shortly
after. The latter compound is particularly interesting as it exhibits bipolar (n- and p-
type) conductivity by doping with appropriate impurities and tuning the film-deposition
conditions [382]. This opens the way to the development of transparent p-n junctions, and
therefore fully transparent optoelectronic devices.

CuAlO2 is by far the most studied system of the family of delafossite TCOs, both the-
oretically and experimentally. However, there is still no agreement neither on the ori-
gin of the p-type conductivity, nor on the electronic bands of the pure crystal. Mea-
surements of the direct optical band gap (Edir

g ) of CuAlO2 fall in the range from 2.9 to
3.9 eV [379, 380, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393], with most val-
ues in the interval 3.4–3.7 eV. These experiments also yield a large dispersion of indirect
gaps (Eind

g ), from 1.65 to 2.1 eV, with one experiment measuring 2.99 eV [393]. Unfortu-
nately, there is only one photoemission experiment [383] that gives a value of 3.5 eV for the
quasiparticle band gap. Note that the optical and quasiparticle gaps differ by the exciton
binding energy. Concerning CuInO2, optical experiments measured Edir

g between 3.9 and
4.45 eV [382, 394, 395], with only one estimation of Eind

g at 1.44 eV [395].
From the theoretical perspective, the situation is also quite complex, even if the full

Cu 3d shell should exclude the strongly correlated electron regime. These materials are
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usually studied within DFT, using the standard local density (LDA) or generalized gra-
dient approximations (GGA). However, it is well known that the Kohn-Sham band struc-
tures systematically underestimate the band gaps. For similar compounds, like Cu2O and
CuIn(S,Se)2, Kohn-Sham LDA calculations lead to unreasonable band structures, in par-
ticular due to the misrepresentation of the hybridization between the d electrons of the
metal and p electrons of the anion [48, 50]. To overcome this situation, hybrid functionals
have been recently proposed, with very promising results [396], especially for materials
with small and intermediate band gaps [397, 398]. Other approaches include LDA+U , that
tries to improve the description of electronic correlations through the introduction of a
mean-field Hubbard-like term. This method has been quite successful in the study of the
electronic structure of strongly correlated systems, but it relies on a parameter U , that is
often adjusted to experiments.

Arguably the most reliable and used ab initio technique to obtain quasi-particle band
structures is the many-body GW approach [11]. The common practice within this frame-
work is to start from a DFT calculation, and evaluate perturbatively the GW energy cor-
rections to the band structure. This procedure, which we will refer to as G0W0, is justified
when the departure wave functions and band structure are already close to the quasiparti-
cle ones. This is indeed the case in many systems, explaining whyG0W0 has been extremely
successful in describing electron addition and removal energies for metals, semiconductors
and insulators [361]. However, it has been recently shown that G0W0 fails for many tran-
sition metal oxides [48, 49].

To solve this problem one can perform (restricted) self-consistent (sc) GW [12, 13]. This
technique has the advantage of being independent of the starting point at the price of large
computational complexity. Fortunately, there is an alternative procedure that yields wave-
functions that are extremely close to those obtained in a full sc-GW calculation, namely
sc-COHSEX as explained in Ref. [14]. The dynamical effects that are absent in COHSEX
calculations can then be accounted for by performing a final perturbative GW step. This
method, that we will refer to as sc-GW , has been applied to many oxide compounds, yield-
ing excellent results for the band gaps and the quasiparticle band structure [48, 14, 49, 50].

Note that these theoretical techniques yield quasiparticle bands, and not optical gaps.
To evaluate these latter quantities one mostly resorts to the solution of the Bethe-Salpeter
equation. For the delafossite structures there is one such calculation starting from a
GGA+U band structure [399]. It yields for CuAlO2 a very large exciton binding energy
of about 0.5 eV for the first direct transition. The choice of the parameter U was found to
have significant consequences on the width of the band gap, but it did not affect signifi-
cantly the exciton binding energy. We can thus assume that 0.5 eV is a reasonable estimate
of this latter quantity.

6.3.2 Accurate calculations of band structures

In the following, we present calculations of the band structures of CuAlO2 and CuInO2

using some of the most accurate theoretical tools available in the community. These in-
clude the standard LDA, hybrid functionals (namely B3LYP [400] and two flavors of Heyd-
Scuseria-Ernzerhof, HSE03 and HSE06 [368, 401]), LDA+U , G0W0 and sc-GW . As dis-
cussed above, we expect sc-GW to be the most accurate ab initio approach. When the
comparison was possible, we found our results in excellent agreement with previous cal-
culations (Refs. [383, 392, 393, 402, 403, 404, 405] for LDA, Ref. [405] for B3LYP, and
Ref. [406] for GGA+U ).

The hybrid and LDA+U calculations were performed with VASP [315, 240] and
ABINIT [182] respectively, using the PAW formalism and an energy cutoff of 44Ha. The
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Figure 6.10: (Color online) Band gaps of CuAlO2 using: LDA, LDA+U , hybrid, G0W0, sc-
GW , and sc-GW including model polaronic corrections. The horizontal zones contain data
extracted from various optical experiments (see text).

parameter U was set to 8 eV as in Ref. [399]. Our GW calculations were performed with
ABINIT, starting from LDA band structures and using norm-conserving pseudopotentials
with semicore states (3s and 3p for Cu and 4s and 4p for In) included in the valence. The
energy cutoff was 120Ha for the ground state calculation, and the k-point grid was a 4×4×4
Monkhorst-Pack. Note that it was absolutely essential to use the method of Ref. [187], due
to the extremely slow convergence with respect to the number of conduction states.

In Figs. 6.10 and 6.11 we show direct and indirect photoemission gaps and the band
structures of CuAlO2, obtained using different theoretical approaches. The minimum Edir

g
of CuAlO2 is always found at L, where the dipole transition between the band edge states
is allowed [404]. All calculations, except sc-GW , give a fundamental Eind

g between the con-
duction bandminimum at Γ and the valence bandmaximum along the Γ-F line. The experi-
mental data for optical gaps are also presented with an error bar that reflects the dispersion
of the most likely values found in literature. LDA exhibits, as expected, the smallest gaps.
Basically every approach beyond it opens up the gap by different amounts and modifies the
band dispersions. The direct and indirect gaps have similar behaviors in the different the-
ories, and both increase when going from LDA<G0W0<HSE03<HSE06<B3LYP<sc-GW .
On the other hand, the difference Edir

g − Eind
g seems to decrease with the sophistication of

the method, reaching nearly zero for the sc-GW calculation. This is a consequence of the
drastic change of the conduction band dispersion, which displaces the conduction minimum
from Γ to L when sc-GW is applied (see Fig. 6.11). Only LDA+U does not follow the trend,
as it is the only case in which Edir

g − Eind
g gets significantly larger than in LDA.
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Figure 6.11: (Color online) Band structures for CuAlO2: comparison of LDA (red dashed
lines) with sc-GW (a), HSE03 (b), and LDA+U (c).

Looking at the direct gap, we point out that most of the methods give results that are
within the experimental range, when an exciton binding energy of around 0.5 eV [399] is
considered. This is true for LDA+U , G0W0, the hybrids HSE03 and HSE06. However,
for sc-GW and even for B3LYP, the theoretical gap is larger by about 1–1.5 eV than the
experimental findings. For CuInO2 (see Fig. 6.12) we have to make the comparison with
care, as the smallest Edir

g is located at Γ, where optical transitions are forbidden [404]. A
meaningful comparison with experiments must consider the gap at L. Thus, we find that
both trends and quantitative results are analogous to those for CuAlO2. In particular,
sc-GW yields again Edir

g larger by 1–1.5 eV than the experimental range.
We stress again that, to date, sc-GW is arguably the best method available to estimate

band gaps of wide-gap semiconductors, and that it gives excellent results for compounds
like Cu2O and CuIn(S,Se)2 [48, 50]. It is unlikely that the presence of defects can lead to
such a large shrinkage of Edir

g . However, there is another effect that has been neglected
up to now: the change of screening due to the polarization of the lattice. The polaron
constant defined as αP = (1/ǫ∞−1/ǫ0)(~/2ma

2
BωLO)1/2, where aB is the Bohr radius, ωLO the

longitudinal optical frequency of the highest Eu phonon mode, ǫ∞ and ǫ0 the low frequency
electronic and the static dielectric constants, respectively, measures the strength of the
polaronic effect. According to the experimental data [407], unfortunately available only for
CuAlO2, the polaron constant for this system is large (αp ∼ 1), indicating a non-negligible
contribution of the lattice polarization to the electronic screening. It is known that in other
ionic compounds with similar polaron constants this can lead to a shrinkage to the band
gap by about 1 eV [408]. A full sc-GW calculation including in an ab initio framework
the effects of the lattice polarization is to date beyond reach. However, a reliable estimate
can be obtained using the model proposed by Bechstedt et al. [408], which gives a static
representation of the polaronic effects based on difference of experimental static dielectric
constants. By performing a perturbative GW step including model polaronic effects on
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GW . The horizontal zones contain data extracted from optical experiments (see text).

top of the sc-COHSEX, we found a uniform (k-independent) shrinkage of the band gap by
1.2 eV. As we can see in Fig. 6.10, this correction brings our results for Edir

g well within the
experimental range (once the excitonic correction of about 0.5 eV is also considered). As it is
observed in Ref. [408], the polaronic model employed can only overestimate the correction.
All these results point to the conclusion that the agreement of the other methods with
experiment was fortuitous and due to a cancellation of errors.

Looking now at the indirect gap, we focus on Fig. 6.10 as there are more experimental
data for CuAlO2. All the hybrids and GW calculations yield indirect gaps much larger than
the experimental range 1.65–2.1 eV, even taking into account any possible excitonic and
polaronic effects. Moreover, sc-GW , the best method used in this work, yields the highest
Eind

g at around 5 eV, while the difference Edir
g − Eind

g is in general much smaller than the
experimental value (≈2 eV), and even vanishing for the sc-GW calculation. From Fig. 6.12
we realize that these conclusions are as well valid for CuInO2, where the best estimates for
the indirect band gap is much larger than the experimental value of 1.44 eV [395].

These are very strong arguments in favor of Robertson et al. [405] that suggested that
the experimental “indirect gap” absorption was due to defects, and should not be present in
the defect-free compound. Also Pellicer Porres et al. [393] questioned the interpretation of
the low energy peaks as indirect transitions, as the absorption coefficient is more than two
orders of magnitude larger than in typical indirect absorption edges. The most promising
defects that could be responsible are oxygen interstitials Oi, as DFT calculations within
the LDA predict low formation energies and the introduction of states in the gap at 0.7
and 1.4 eV [409]. However, a full clarification of this issue will require sc-GW or hybrid
calculations for these, and other more complex defects.
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Finally, we analyze more in detail the band structures of CuAlO2 shown in Fig. 6.11.
LDA calculations (red dashed lines) are compared with sc-GW , HSE03, and LDA+U cal-
culations. The main effect of LDA+U is to open the LDA gap by an amount that can be
controlled by the parameter U . The difference Edir

g − Eind
g is in this approximation en-

hanced, due to a change of the character of the lowest conduction band along the symmetry
lines. Hybrid calculations using HSE03 give a comparable Edir

g and a modified dispersion
of both valence and conduction states close to the Fermi energy, which reduces Edir

g − Eind
g .

The conduction band minimum (CBM) within HSE03 is still located at Γ, but the difference
between the CBM at L and Γ gets significantly smaller. For sc-GW , besides the further in-
crease of the band gaps, the dispersion of the bands is strongly affected by the many-body
effects. In fact, the GW corrections exhibit an unusual dispersion of around 1 eV when
looking at the different k-points, displacing the CBM from Γ to L. We note that often in
semiconductor physics one assumes that the quasiparticle corrections can be modeled by a
rigid shift (the so-called scissor operator). From our results it follows that one should re-
frain from using this simple approximation for these important materials. We can also con-
clude that hybrid calculations give a better description of band dispersions than LDA+U ,
even if the two approaches yield similar band gaps.

In conclusion, it is clear that the delafossite family exhibits complex and unusual band
gap physics that can not be captured by standard theoretical approximations. We found
that the direct band gap is well reproduced by the best many-body approaches if polaronic
effects are taken into account. We can expect that this situation, of a large gap that is
reduced substantially by polaronic effects, is quite general and is present in many more
materials that previously expected. In fact, the apparent good agreement between cal-
culated gaps (with hybrid functionals or G0W0) and experimental gaps for materials as
simple and widely studied as LiF can be accidental, as preliminary calculations confirm:
the underestimation of the gap by these methods (the scGW gap is indeed 2 eV larger than
the experimental and G0W0 gap) is compensated by the neglect of large polaronic effects.
Furthermore, the modifications with respect to the LDA Kohn-Sham bands are strongly
k-dependent, which makes questionable the common practice of using a scissor operator.
The band dispersion obtained by hybrid functional calculations is in between the LDA
and sc-GWdispersion, while the LDA+U calculations open up the gap but do not give a
significant improvement of the band dispersion. Finally, our calculations rule out the in-
terpretation of the low energy features in the absorption spectra as arising from a putative
indirect band gap. These structures should rather come from intrinsic defects, as proposed
in Refs. [393, 405]. However, a complete understanding of the electronic and excitation
properties of these systems will only be achieved, in our opinion, by a high-level theoretical
scheme (like sc-GW ) including defects and effects from the lattice polarization in an ab
initio framework. Work along these lines is in progress.





Chapter 7

Van der Waals interactions∗

7.1 Introduction

The van der Waals interaction is a common presence in the worlds of physics, chemistry,
and biology. It is a dispersive force that acts even between neutral bodies at large separa-
tions, and that results from the non-zero dipole-dipole attraction stemming from transient
quantum dipole fluctuations. It is the interplay between the electrostatic and dispersive in-
teractions that determines many interesting phenomena in nature, even in the macroscopic
world. In fact, it is van der Waals interactions that are responsible for the remarkable abil-
ity of geckos to hold to surfaces.

But the realm of van der Waals forces, being quantum in nature, is the world of atoms
and molecules — the nano world. In fact, these forces determine the structure of DNA
molecules and the folding and dynamics of proteins, the orientation of molecules or nanos-
tructures on surfaces, etc. They are also key ingredients in the building and functioning
of many of the systems relevant for the emerging fields of nanotechnology and biotechnol-
ogy. It is therefore not surprising that the number of theoretical studies of van der Waals
interactions in these systems, has been steadily increasing over the past year. At the same
time, the tools used in these studies have increased sophistication and precision.

In this Chapter, we give a step forward and present fully ab-initio calculations of the
van der Waals coefficients for the interaction between nanostructures and between these
nanostructures and surfaces.

The calculation of van der Waals dispersion forces can be a challenging problem [410,
411]. Three regimes have to be distinguished, according to the distance that separates the
interacting molecules:

(i) short distances, such that there is non-negligible overlap of the electronic clouds of
the two molecules. This is the most difficult situation, since it requires, in principle, a
supermolecule calculation, i.e. the treatment of the two molecules combined together as
a single entity. The valid approaches in this overlapping regime (and therefore also valid
in the non-overlapping regime) are sometimes called seamless van der Waals techniques.
Numerous possibilities exist, although none of them entirely satisfactory: full configura-

∗This chapter is based on the articles:

• Efficient calculation of van der Waals dispersion coefficients with time-dependent density functional the-

ory in real time: application to polycyclic aromatic hydrocarbons, M. A. L. Marques, A. Castro, G. Malloci,
G. Mulas, and S. Botti, J. Chem. Phys. 127, 014107 (2007).

• Ab initio calculation and modelling of van der Waals interactions between nanostructures and surfaces,
S. Botti, A. Castro, X. Andrade, A. Rubio, and M. A. L. Marques, Phys. Rev. B 78, 035333 (2008).
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tion interaction for very small molecules [412, 413], Møller-Plesset perturbation theory
[414] or Monte Carlo methods [415, 416]. Attempts to use ground state density func-
tional theory (DFT) are specially challenging [410, 411]; In the realm of time-dependent
density-functional theory (TDDFT), the recent work of Dobson [417] summarizes the cur-
rent research, largely based on the adiabatic connection / fluctuation dissipation theorem.
Dispersive forces can also be added to standard DFT through empirical correction terms.
These, however, require the previous knowledge of the C6 van der Waals coefficients (see
below), often roughly estimated from the atomic C6’s [418]. In the present work we will not
consider this regime.

(ii) long distances, such that we can neglect the overlap. In this case, the electrons
belonging to different molecules are distinguishable, and one can isolate the Coulomb op-
erator that corresponds to interactions between electrons of different molecules, and apply
(second order) perturbation theory for this operator [419]. The first term in the perturba-
tive expansion of the interaction energy decays as −C6/R

6, where R is the intermolecular
distance.

(iii) very long distances, such that retardation effects become important [420]. This
means that the time it takes for the photons that mediate the electromagnetic interaction to
travel between the two molecules is not negligible. Retardation is described by a correction
factor that is equal to unit for small distances and proportional to 1/R for large distances.

The knowledge of the various static and dynamic multipole polarizabilities at imagi-
nary frequencies suffices to compute the van der Waals interaction in the regimes (ii) and
(iii). These response functions can be calculated within a variety of quantum chemical
methods, typically through the evaluation of a wide range of excitation energies and as-
sociated transition matrix elements. Alternatively, at a lower computational cost, we can
use time-dependent density-functional theory (TDDFT). The first calculation of C6 coeffi-
cients using TDDFT was performed in 1995 by van Gisbergen et al. for a variety of small
molecules [421].

7.1.1 Interaction between two finite systems

When both the wave-functions overlap and retardation effects are almost null [situation
(ii)], the application of second order perturbation theory leads to an expansion of the inter-
action energy with respect to the inverse of the intermolecular distance (1/R):

∆E(R) = −

∞
∑

n=6

Cn

Rn
. (7.1)

The coefficients Cn are usually called Hamaker constants [422]. The leading non-null term
C6 is due to the dynamic dipole-dipole polarizability. The odd terms until n = 11 are
also null for spherical molecules (or if an average over relative orientations is taken), if
we neglect retardation effects. In principle, the coefficients also depend on the relative
orientation of the molecules.

The CAB
6 dispersion Hamaker constant for a pair of molecules A and B, averaged over

all possible relative orientations, is related to the dipole molecular polarizability through
the Casimir-Polder relation:

CAB
6 =

3

π

∫ ∞

0
du α(A)(iu) α(B)(iu) , (7.2)

where α(X)(iu) is the average of the dipole polarizability tensor of molecule X, α
(X), evalu-
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ated at the complex frequency iu:

α(X)(iu) =
1

3
Tr[α(X)(iu)] . (7.3)

It should be noted that: (i) If we fix the relative orientation of the molecules, the orientation
dependent Hamaker constant can also be calculated from the α tensors, considering the
appropriate linear combination of their components; (ii) higher order Hamaker constants,
useful for shorter distances, can be obtained through the use of analogous formulae involv-
ing higher order multipole polarizability tensors. The expressions accounting for these two
generalizations can be found, for example, in Ref. [419]. The calculations presented below
are solely concerned with Eq. (7.2); however we wish to stress that the methodology triv-
ially yields full polarizability tensors of arbitrary order, hence providing the possibility to
tackle those general cases, with almost no extra computational cost.

On the other hand, when the distance increases and retardation effects become
important, the van der Waals interaction depends solely on the static polarizability
[420, 423, 424], decaying as ∆E(R) = −KAB/R7, where the constant is

KAB =
23c

8π2
α(A)(0) α(B)(0) , (7.4)

where c is the velocity of light in vacuum.

7.1.2 Interaction between a finite system and a non-metallic surface

In this case, the leading term of the expansion of the van der Waals energy as a function of
the distance between the cluster and a reference plane at a distance Z0 from the atoms on
the surface is given by

∆E(Z) = −
C3

(Z − Z0)3
, (7.5)

where C3 is the Lifshitz coefficient that can be calculated from [425] the dynamical polar-
izability of the cluster and the dielectric function of the bulk material:

C3 =
1

4π

∫ ∞

0
du α(iu)

ǫM(iu) − 1

ǫM(iu) + 1
. (7.6)

It is interesting to remark that C3 is expressed only in terms of quantities calculated for
the bulk crystal. The quantity that depends on the characteristics of the surface is the
position of the reference plane Z0. However, for semiconducting surfaces, it can be shown
[425] that in absence of local field effects Z0 is equal to a/2, where a is the interplanar
distance. Moreover, it is known that even relatively large local field corrections give rise to
rather small shifts of the reference plane [425]. The expression (7.6) for the C3 coefficient
is a general result, also valid for metallic surfaces. However, the position of the reference
plane Z0 is a more delicate issue in the case of a metal, as positioning the reference plane
at a distance of a/2 from the surface can lead to significant errors in the interaction energy
(i.e. about 30% for a noble metal surface [425]).

7.2 Methods

The main ingredients to evaluate the van der Waals coefficients are therefore the electronic
polarizability α of the cluster and the dielectric constant of the bulk material ε, both eval-
uated at imaginary frequencies. The computational methods and the problems involved in
the calculation of these two quantities are quite different, so we will discuss them sepa-
rately.
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7.2.1 Finite systems

One can, in principle, obtain the electronic polarizability by using any quantum-chemistry
theory capable of handling time-dependent perturbations. As the nanostructures we are
interested in can be fairly large, we choose TDDFT, as this approach provides an excellent
compromise between accuracy and feasibility.

Several different numerical approaches can be found in the literature to calculate α at
imaginary frequencies within TDDFT. For example, linear response theory can be employed
to calculate the density-density response function χ, from which α directly follows:

α
(X)
ij (ω) =

∫

d3r

∫

d3r′ ri χ
(X)(r, r′, ω) rj . (7.7)

This approach is quite common and has been used for the calculation of the C6 coefficients
of a wealth of molecules and clusters.

Alternatively, one can work in real time. By propagating the time-dependent Kohn-
Sham equations, we obtain δn(r, t) and the polarizability αij(ω) via Eq. x. In order to obtain
values of α at imaginary frequencies one only has to substitute ω by iu. This computational
framework has been implemented in OCTOPUS.

A slightly different approach, is the polarization propagation technique, whose exten-
sion to imaginary frequencies has been used to compute C6 coefficients [426, 427, 428, 429].
For large molecules, Banerjee and Harbola have also proposed the use of orbital free
TDDFT, providing satisfactory results for large sodium clusters [430, 431].

It is also possible to use an alternative scheme based on the solution of a Sternheimer
equation. Although a perturbative technique, it avoids the use of empty states and has
a quite good scaling (N2) with the number of atoms. This method has already been used
for the calculation of many response properties, like atomic vibrations, electron-phonon
coupling, magnetic response, etc. In the domain of optical response, this method has been
mainly used for static response, although few calculations at finite (real) frequency have
appeared. Beside the excellent scaling, the advantage of this technique is the relatively
small prefactor with respect to the time-propagation. We therefore expect it to be an im-
portant tool for the calculation of van der Waals interactions between large systems, like
nanoclusters or molecules of biological interest.

7.2.2 Extended systems

Concerning extended systems, the electronic band structure of bulk semiconductors and
insulators, which is the starting point to obtain the dielectric functions, is nowadays ac-
curately described by ab initio methods [432]. Much work has been done in the past
years to determine which approximations allow a proper description of electron-electron
and electron-hole interactions, which is essential to obtain optical functions (at real fre-
quencies) in agreement with experimental data.

Within linear response for an extended system, the inverse dielectric function of a peri-
odic system is constructed from

ǫ−1
(

q,G,G′, ω
)

= δG,G′ + v (q,G)χ
(

q,G,G′, ω
)

, (7.8)

where q is a vector in the Brillouin zone, G is a reciprocal lattice vector, v is the bare
Coulomb interaction, and χ obeys the matrix equation . The macroscopic dielectric function
ǫM can be readily obtained form the microscopic ǫ:

ǫM (ω) = lim
q→0

1

ǫ−1 (q,G = 0,G′ = 0, ω)
. (7.9)
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The simplest approximation that yields the dielectric function consists in applying the
Fermi’s golden rule to obtain

ǫM = lim
q→0

ǫ
(

q,G = 0,G′ = 0, ω
)

= lim
q→0

[

1 − v (q,G = 0)χs
(

q,G = 0,G′ = 0, ω
)]

. (7.10)

In this approximation, the optical spectrum is calculated as a sum of independent tran-
sitions between Kohn-Sham or quasiparticle states. Unfortunately, this approximation is
known to exhibit severe shortcomings compared to experiments [433]. The next step is the
so-called random phase approximation (RPA), that includes the effects due to the variation
of the Hartree potential upon excitation while fxc is set to zero. Unfortunately, this approx-
imation does not lead to any significant improvement for most solids, especially if there are
no particularly pronounced polarizable inhomogeneities in the charge density. For a typi-
cal semiconductor, the RPA absorption threshold is too low, the peaks are redshifted with
respect to experiment and the relative intensity of the peaks is also not correctly repro-
duced. Replacing the Kohn-Sham energies with the quasiparticle energies does not solve
the problem: the peak positions are usually overcorrected and the oscillator strength is not
modified.

It is the neglect of variations of the xc potential, which include the effect of the electron-
hole Coulomb interaction, that is responsible for an overall disagreement in the absorption
strength, in particular for the failure to reproduce continuum and bound excitons. The
agreement with experiment can be greatly improved by including the electron-hole interac-
tion through the solution of the Bethe-Salpeter equation (BSE) [16, 17, 181]. It is possible
to obtain as well the same agreement with experiments within TDDFT, provided that a
good approximation is found for the xc-kernel. In fact, this term is essential as its task is
to modify the excitation energies and to redistribute the oscillator strength. The adiabatic
local density approximation for the xc-kernel in the case of solids is not sufficient to yield
good dielectric functions. The reason for this failure can be traced back to the short-range
nature of the TDLDA fxc, while the“exact” fxc is expected to be long-ranged [17], decaying
in momentum space as 1/q2.

A class of kernels that was shown to be very efficient in the description of solids are
those derived from the BSE, used together with the quasiparticle band structure, instead of
the Kohn-Sham states in the construction of χs. A parameter-free expression was obtained
in several different ways as explained in Sec. 4.4. Although involving a potentially reduced
computational effort with respect to the BSE, these calculations are still significantly more
cumbersome than those within the RPA or the TDLDA. To keep the computational cost as
low as possible, in many cases it is enough to use simplified versions of the nanoquanta
kernel. It was shown in Sec. 4.5.1 that the BSE-derived kernel has the asymptotic form of
a long-range contribution (LRC) [32, 37]

f staticxc (q) = −
αstatic

q2
, (7.11)

where αstatic is a material dependent parameter, that can be related to the dielectric con-
stant. This long-range contribution alone is sufficient to simulate the strong continuum
exciton effect in the absorption spectrum and in the refraction index of several simple
semiconductors, like bulk silicon or GaAs, provided that quasiparticle energies are used as
a starting point.

In Sec. 4.5.1 we have seen that a dynamical extension of this LRC model [104] of the
form

fdynxc (q) = −(α+ βω2)/q2 (7.12)
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Figure 7.1: CAB
6 Hamaker constants for all the pairs of PAHs under study, as a function of

the product of the number of Carbon atoms, NA ×NB .

leads to remarkable improvements for optical spectra of large gap systems with respect to
calculations where the kernel is imposed to be static. Moreover, the dynamical approach
has proved to be valid also for energies in the range of plasmons and for the determination
of dielectric constants. Note that the parameters of both the static and the dynamical
model can be related to physical quantities, like the experimental dielectric constant and
the plasmon frequency.

In this work, we calculated the dielectric functions at imaginary frequency using the
computer code DP1, an ab initio linear response TDDFT code that works in reciprocal space
and frequency domain, and is based on a plane waves basis set. Despite the enormous
amount of studies concerning the accuracy of different approximations for the xc kernel
for solids, it is not a priori clear which approximation is more suitable when one wants
to work at imaginary frequency. To this purpose, we tested several approximations for the
exchange-correlation kernel implemented in DP and in the following we discuss their effect
on the quality of the van der Waals coefficient C3.

7.3 Calculations

7.3.1 Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs), a large class of conjugated π-electron systems,
are of great importance in many areas, among which combustion and environmental chem-
istry, materials science, and astrochemistry. PAHs are found in carbonaceous meteorites, in
interplanetary dust particles, and are thought to be the most abundant molecular species
in space after H2 and CO, playing a crucial role in the energy and ionization balance of
interstellar matter in galaxies. Motivated by this astrochemical relevance, there have been
extensive studies of these systems [289, 434, 435, 436]. This research is collected in a
thorough compendium of molecular properties of PAHs [436]. The computation of van der
Waals constants for pairs of PAHs, as a first approach to the analysis of their intermolecular

1http://theory.polytechnique.fr/codes/dp

http://theory.polytechnique.fr/codes/dp
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properties, is therefore a natural extension of this work. In fact, van der Waals parame-
ters are a crucial ingredient to model condensation and evaporation of PAH clusters, which
are another important player in the physics/chemistry of the interstellar medium. In cur-
rent works, people usually employ empirical van der Waals parameters for the relatively
long-range part of the interaction in molecular dynamics simulations, together with some
tight-binding approximation for the short-range part [437, 438].

One previous calculation of dispersion coefficients of PAHs, based on the complex linear
polarization propagator method, was reported in Ref. [428], although limited to benzene,
naphthalene, anthracene, and naphtacene. This fact adds a further motivation to our study,
since it permits to compare the results of the two schemes.

We have computed the CAB
6 Hamaker constants for all possible pairs {A,B} of a set of

41 PAHs using the time propagation technique. The homo-molecular Hamaker constants
CAA

6 for all the PAHs studied are shown in Fig. 7.1 and 7.2; the full set can be consulted in
the database described in Ref. [436]. In this database one can also find the average static
dipole polarizability α(0), the effective London frequency ω1 (see below) and the retarded
van der Walls coefficient K.

It is very difficult to extract Hamaker constants experimentally; to our knowledge, there
are no experimental results reported for any PAH to compare to. For benzene, however,
Kumar and Meith [439] reported a value of 1723a.u., by making use of the dipole oscillator
strength distributions (DOSDs), which are constructed from experimental dipole oscillator
strengths and molar refractivity data. This is in good agreement with our computed value
of 1763a.u.

There are also results, reported in Ref. [428], obtained by means of the complex linear
polarization propagator scheme. This scheme was constructed on top of TDDFT, although
making use of the B3LYP functional. These methodological differences, and further nu-
merical details can explain the very small differences, in all cases below 2% for benzene,
naphthalene, anthracene and tetracene (also known as naphthacene).

In the so-called London approximation, the polarizability at imaginary frequencies is
modeled with the help of only two parameters: the static polarizability, and one effective
frequency ω1:

α(iu) =
α(0)

1 + (u/ω1)2
. (7.13)

Upon substitution on the Casimir-Polder integral, this yields for a homo-molecular
Hamaker constant:

C6 =
3ω1

4
α2(0) . (7.14)

With the knowledge of C6 and α(0), one can obtain ω1 from Eq. (7.14). They are roughly
decreasing with the size of the PAH, from 0.482 Ha for benzene to the 0.156 Ha of pentary-
lene. The decrease is, however, strongly irregular. As it has been pointed out before [39], it
can be related to the ionization potential of the molecules; this is demonstrated in Fig. 7.3,
where we have plotted the ionization potentials of the PAHs (calculated at the DFT/B3LYP
level of theory), versus the effective frequency ω1. The data points approximately accumu-
late around a straight line, proving the correlation.

Equation (7.14) also gives us a hint on the dependency of C6 with the size of the
molecule: it is proportional to the square of the polarizability (the product of polarizabil-
ities, if the molecules are different), which in turn typically grows with the volume, and
therefore, with the number of atoms. Consequently, one should expect a linear depen-
dency of CAB

6 with respect to the product of the number of atoms, NA ×NB. This is indeed
confirmed in Fig. 7.1. Some cases, however, deviate from a straight line. These cases cor-
respond to strongly anisotropic PAHs (with three very different axes). This is captured by
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the dipole anisotropy:

∆α2 =
1

3
[(αxx − αyy)

2 + (αxx − αzz)
2 + (αyy − αzz)

2] . (7.15)

Figure 7.2 shows how the PAHs whose Hamaker constant deviates strongly from the gen-
eral trend are those whose polarizability anisotropy is also stronger: we have overlaid the
values of C6 for all PAHs (divided by the square of the number of Carbon atoms N2), with
the values ∆α2 (also divided by N2). One can see how the two datasets are correlated –
specially in the right side of the graph, which corresponds to the larger PAHs.

The crossover between the non-retarded and retarded regimes is given by the length
scale λ = 2πc/ω̄, where ω̄ is a characteristic frequency of the electronic spectrum of the
molecule. For R/λ & 10 we enter the fully retarded regime, while for R/λ . 0.1 we can still
use Eq. (7.1). Using for ω̄ the values of ω1 obtained through the London approximation, we
reach values in the range of λ ∼ 0.1µm (for benzene) to λ ∼ 0.3µm (for pentarylene).

It is interesting to notice that in the fully retarded regime we can write KAA as a func-
tion solely of the Hamaker CAA

6 coefficient and the effective London frequency ω1. Combin-
ing equations (7.4) and (7.14) we arrive at

KAA =
23c

6π2

C6

ω1
. (7.16)

The values of homomolecular coefficients KAA for the PAHs studied in this work can be
found in the database described in Ref. [436].

7.3.2 Silicon clusters

These clusters were cut from bulk silicon, and then saturated with hydrogens along the
tetrahedral direction of the surface atoms. The geometries were optimized with the com-
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puter code siesta [237], employing a double ζ with polarization basis set, and the PBE
parametrization [4] for the exchange-correlation potential.

From the optimized geometries, we then obtained the electric polarizability within
TDDFT using the Sternheimer equation. Calculations were performed at zero temperature
and fixed geometries. The electron-ion interaction is described through norm-conserving
pseudopotentials [239] and the LDA [238] is employed in the adiabatic approximation for
the exchange-correlation potential. We used a spacing of 0.275Å and the simulation box
was formed from the union of spheres centered around the atoms with radius 4.5Å. The
integrals in Eqs. (7.2) and (7.6) were performed with a Gauss-Legendre quadrature using
6 frequency values. With these parameters, we estimate the accuracy of our numerical
calculations to better than 5%.

In Fig. 7.4 we show our results for the C6 Hamaker constant between silicon clusters.
As the value of C6 scales as the product of the atoms in the cluster A (NA

Si) and in cluster
B (NB

Si), we divided the Hamaker constant by NA
SiN

B
Si to eliminate this dependence. We

show both constants between two identical clusters (homo-molecular – as red squares),
and between different clusters (hetero-molecular – orange dots). We see that the largest
C6 per atom squared comes from the interaction between two SiH4 clusters, and the its
value decreases rapidly until slightly above 220 a.u., where it saturates. The few clusters
that fall far from the line are the most asymmetric, for which a description in terms of the
average of the dipole polarizability tensor is not necessarily as good.

As we have calculated both C6 and α(0) within TDLDA, it is easy to extract ω1 from
Eq. (7.14). The resulting effective frequencies are plotted in Fig. 7.5, together with the
calculated static polarizabilities per number of Si atoms. We can observe that ω1 decreases
with the number of Si atoms, but the dependence on the size of the cluster is rather weak,
except for the singular case of the smallest aggregates. In the following, for our model
calculations we will use a constant effective frequency of 0.343 Ha.
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7.3.3 Cluster-surface interactions

Now, we consider the case of a silicon cluster in proximity of a surface of Si or a SiC in the
zincblende phase. In this case we want to calculate C3 coefficients, that are determined
both by the dynamical polarizability of the cluster and the dielectric function of the bulk
crystal.

The ground state calculations for the bulk crystals were performed using the plane-
wave code ABINIT with norm-conserving Hamman pseudopotentials for Si and C. We used
a cutoff energy for the plane wave basis of 12.5 Ha for Si and 30 Ha for SiC. The unit
cell was relaxed within the LDA approximation, yielding lattice parameters with an error
smaller than 3%. The dielectric function at imaginary frequencies was calculated using the
code DP. For more information about the convergence parameters we refer to Ref. [37].

From previous tests on the effect of different approximations for the xc potential, we
know that the dynamical polarizability of the hydrogenated Si clusters is accurately de-
scribed within TDLDA and the C6 coefficients are not going to change by more than 5%
by using different approximations. We decide thus to focus on the effect of different ap-
proximations for the xc-kernel in the calculation of the dielectric function at imaginary
frequencies of Si and SiC.

In Figs. 7.6 and 7.6 we can compare C3 coefficients for Si clusters on a Si surface and
Si clusters on a SiC surface, respectively. We show here results obtained within the RPA
(violet upright triangles), the TDLDA (beige inverted triangles), using the static LRC ker-
nel (blue diamonds) and the dynamical LRC kernel (green crosses). Note that in the case
of RPA and TDLDA calculations we used the Kohn-Sham band structure to build χs, while
the quasiparticle states calculated in the GW approximation are used when the static or
dynamical LRC kernels are employed (for details see [37, 104]). In Si and SiC the GW cor-
rections to the band structures are essentially equivalent to a rigid shift of the conduction
states, thus replacing Kohn-Sham energies with quasiparticle energies leads to a rigid shift
of the absorption spectrum towards higher energies. We have also plotted in Figs. 7.6 and
7.6 the values of C3 obtained using simple models (red squares) for both the dynamical po-
larizability of the cluster and the dielectric function of the crystal at imaginary frequencies
(see Ref. [440]).

For the interaction of Si clusters on either a Si or a SiC surface, all the approxima-
tions used for the xc kernel give curves with very similar trends and a dispersion of the
values which is smaller than 7–8%. This finding reflects the fact that the dielectric func-
tion at imaginary frequency is a well behaved curve, which gives the dielectric constant at
iu = 0 and then decreases monotonically to the asymptotic limit of one. In Figs. 7.8 and
7.9 we can observe the dielectric functions at imaginary frequencies (RPA: violet dashed
curve, TDLDA: beige long-dashed curve, static LRC: blue continuous curve, dynamical
LRC: green dot-dashed curve). An experimental curve can be obtained through a Kramers-
Kronig transformation

ǫM(iu) = 1 +
2

π

∫ ∞

0
dω

ωIm [ǫM(ω)]

ω2 + u2
(7.17)

if the experimental absorption spectra has been measured on a spectral range large
enough.

In Figs. 7.8 we include for comparison the experimental curve [441]. The curve calcu-
lated with the dynamical LRC approximation for the xc kernel is exactly superposed to the
experimental curve. In fact, this is the only approximation which allows to get both a good
dielectric constant, which fixes the interception with the y axis, and an overall good shape
of the absorption spectrum over a large spectral range (see Ref. [104]). Both these elements
are essential to get close to the data derived from the experiment, as it can be notice by
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inspecting the form of (7.17). It is interesting to notice that the curve calculated using the
static LRC kernel is even worse than the RPA curve, as the starting point at iu = 0 is bad
and the overall spectrum is then similar to the one obtained by the dynamical LRC approx-
imation: there is thus no fortuitous compensation of errors as in the RPA curve, where the
error due to the too high dielectric constant is balance by the shift of the spectral weight
to lower energies. The TDLDA curve is the one that lays further from the dynamical LRC
solution at lower frequencies due to the even higher dielectric constant, but it gets closer
than the static LRC curve for u ≤ 0.1, thanks to the same compensation of errors already
observed for the RPA calculation. In the case of SiC (see Fig. 7.9) the static LRC results is
the worst at any frequency as this approximation also overestimates the most the dielectric
constant. Once again, the RPA curve is the closest to the dynamical LRC result, which is
expected to be the most accurate.

After having analyzed the dielectric functions at imaginary frequencies, it is clear how
to interpret the results for the C3 coefficients. The experimental result is not shown in
Fig. 7.6 as it coincides with the points calculated using the dynamical LRC kernel. Outside
the limits of validity of the dynamical LRC model (large gap insulators, strongly bond
excitons) only a calculation for the bulk crystal based on the solution of the BSE equation
(or equivalently using the fully ab initio Bethe-Salpeter derived kernel) can guarantee the
quality of the C3 coefficients. This implies necessarily larger computational costs. The
RPA and TDLDA results are quite good to evaluate C3, despite the well known deficiencies
of these approximations to calculate optical absorption spectra: they give errors smaller
than 1%. This is not necessarily true for any kind of system, but it is probably true to some
extent each time that the calculated dielectric function is larger than the experimental one.
One should be very careful not to use the static LRC approximation for the kernel, despite
the fact that it gives an absorption spectrum in overall agreement with the experimental
spectrum. This is due to the fact that the van der Waals coefficients are very sensitive to
the value of the dielectric constant.
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Conclusions

The response upon excitation of complex materials used in modern applications can nowa-
days be calculated from first-principles. This was made possible by recent theoretical devel-
opments together with the optimization of computer codes. When dealing with electronic
excitations, the knowledge of the ground state density of the system is no more sufficient,
which means that one has to find appropriate ways to go beyond density functional theory.
Two paths have been intensively explored: one is based on the time-dependent density and
the other one on Green’s functions.

After the pioneering work of Zangwill and Soven [18], time dependent density func-
tional theory (TDDFT) found a rigorous foundation in the work by Runge and Gross [19].
The time-dependent Kohn Sham equations are obtained as a generalization of the static
case and, from these, the response functions describing the neutral excitations of the sys-
tem. The main ingredient is the time dependent exchange-correlation potential vxc[n](r, t),
that depends on the density at all points in space, and at all past times.

Staying within linear response theory, one needs to know, in addition to the static
exchange-correlation (xc) potential vxc[nGS](r), the so called xc kernel fxc[n](r, r′, t, t′) =
δvxc[n](r, t)/δn(r′, t′). If these two quantities are known, TDDFT is an exact theory, yielding
the exact linear response. The problem is, therefore, how to generate suitable approxima-
tions for the potential and the kernel. For finite systems, it is sometimes crucial to have
a good vxc, whereas in extended systems in general the main problem is to find a good
approximation for the kernel fxc.

Neutral excitations can also be calculated in the framework of Many-Body Perturbation
Theory, via the solution of the Bethe-Salpeter equation. However, in that case one has to
deal with two-particle Green’s functions, that are four-point quantities, whereas TDDFT is
based on two-point linear response functions. Therefore TDDFT promises to be computa-
tionally much more efficient, which motivates the search for good approximations.

The simplest approximation is the adiabatic LDA (TDLDA), which often yields good
results for finite systems. Along those lines, we presented here applications of TDLDA
to calculate response properties of different nanoparticles. The main shortcoming of the
TDLDA kernel is to miss the long range part, proportional to 1/|r − r′|, which may be im-
portant in extended systems. Nevertheless, the TDLDA describes well also some properties
of extended systems, in particular the plasmon structures in the loss function or the dy-
namical structure factor. In these cases, indeed, the long range part of the kernel is not
important, either because of cancellations or because of non-vanishing momentum trans-
fer. However, TDLDA does not describe well the optical properties of extended systems,
where the long range part is essential.

Therefore, one of the main challenges of recent years has been to find suitable approx-
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imations to the long range part of fxc. Promising solutions came from a comparison of
TDDFT and the many-body perturbation theory equations for the polarization. Different
groups have suggested different approaches; all approaches have led to one and the same
kernel, that is linear in the screened Coulomb interaction and based on quasi-particle in-
gredients. This kernel allows one to obtain a good description of the optical properties of ex-
tended systems, including bound excitons. It also describes well spectra for non-vanishing
momentum transfer, and it has been demonstrated that it yields very good results for low-
dimensional systems, including clusters, wires and surfaces. However, simple model ap-
proximations of the BSE-derived kernel, very useful to perform fast and reliable calcula-
tions for bulk systems, do not necessarily work well for nanostructured systems, as we have
shown in the case of CdSe nanowires.

Fortunately, much work has been done in the optimization of algorithms and computer
codes, which has led to considerable speedup. Indeed, it is now possible to calculate elec-
tronic excitations using a GW approach and eventually solving the Bethe-Salpeter equa-
tion (BSE) for complex materials of technological interest. We discussed some examples of
applications to materials for data storage and photovoltaics in this manuscript.

At present, although the TDDFT linear response equation is relatively quick to solve
because of its two-point nature, calculations involving the BSE-derived kernel are still
computer-time intensive. In particular, for the calculation of the kernel itself current im-
plementations use ingredients of the BSE approach, so that the performance of the two
methods is comparable. In view of that, the solution of the BSE is still the state-of-the-art
technique to obtain accurate spectra for extended system, whenever one needs to preserve
a predictive power.

The way is open now for many possible applications of the techniques and algorithms
that have been successfully developed for the past years. Indeed, the understanding of
many materials of great complexity and technological interest is still lacking. Neverthe-
less, even if great physics insight can be obtained with the existing methods, the quest
for improved exchange and correlation kernels for TDDFT, as well as the search for novel
theoretical approaches, cannot be abandoned. Hopefully new developments will appear in
the next years.
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