
HAL Id: tel-00519183
https://theses.hal.science/tel-00519183

Submitted on 18 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous semantic grid: middleware for supporting
the interoperability of agents and web services

Maruf Pasha

To cite this version:
Maruf Pasha. Autonomous semantic grid: middleware for supporting the interoperability of agents
and web services. Software Engineering [cs.SE]. Université de Bretagne Sud, 2010. English. �NNT : �.
�tel-00519183�

https://theses.hal.science/tel-00519183
https://hal.archives-ouvertes.fr

THESE / Université de Bretagne-Sud
sous le sceau de L’Université Européenne de Bretagne

pour obtenir le titre de :

DOCTEUR DE L’UNIVERSITE
EUROPEENNE DE BRETAGNE

Mention : Sciences et Technologies de l’Information et de la
Communication

École Doctorale Informatique et Applications

présentée par

Maruf PASHA

Préparée Au laboratoire VALORIA
Université de Bretagne-Sud

Grille sémantique autonome : un
intergiciel pour l’interopérabilité

d’agents et services web

Thèse soutenue le 4 Février 2010
devant le jury composé de :
Richard McCLATCHEY
Professeur, University of the West of England,Royaume Uni /
rapporteur
Hiroki SUGURI
Professeur, Miyagi University, Japon/ rapporteur
Arshad ALI
Professeur, National University of Science and Technology –
SEECS,Pakistan / examinateur
Pierre-François MARTEAU
Professeur Université de Bretagne-Sud / examinateur
Danny WEYNS
Chargé de recherche, Katholieke Universiteit Leuven,
Belgique / examinateur
H.Farooq AHMAD
Professeur associé, National University of Science and
Technology – SEECS, Pakistan (Co-encadrant)
Flavio OQUENDO
Professeur, Université de Bretagne Sud,France (Directeur de
thèse)

 2

 3

Dedicated to my loving parents.

 4

Acknowledgements

First of all I am thankful to Allah almighty for blessing me the courage and spirit to
undertake PhD studies. I would like to express my most sincere gratitude to my supervisors
Professor Flavio Oquendo and Dr. H. Farooq Ahmad. I am indebted to Professor Flavio
Oquendo, whose continuous guidance helped me in achieving my goals and his ideas have
always been a source of inspiration for my research. In spite of his extraordinary workload,
he always managed to spare time for helping me whenever I needed his guidance. Without
his efforts and valuable advice, it would not have been possible to achieve this dream. It has
been a pleasure for me to work under his supervision. I am also thankful to Dr. Hafiz Farooq
Ahmad who helped me clarify my research direction and to overcome the difficulties
occurred during my research. His unlimited support helped me survive the desperate
moments during my studies. This thesis work is an output of his vision and ideas.

I would like to express special thanks to Professor Richard McClatchey, Professor Hiroki

Suguri, Professor Pierre-François Marteu, Professor Arshad Ali and Dr. Danny Weyns for
their detailed reviews and comments that have lead to completion of this thesis.

I express my special gratitude to my parents who kept my spirits high to complete my PhD
studies and were always there for me in my hard times, no matter how far they were. I want
to express my sincere appreciation to my family for believing in me, for their patience, for
their suffering throughout the years, for their love, sacrifices, and continued encouragement
for counting the days and years to have me back. They have comforted me when I was
frustrated, encouraged me when I was doubtful, and supported me throughout everything. I
would also like to thank very special people in my life: my brothers, my sisters who were
with me in every step throughout my journey.

I am highly thankful to all of my teachers who have been guiding me throughout my
academic studies. Their knowledge, guidance and training helped me a lot to carry out this
research work. I would like to offer my appreciation to all the project team, my close
colleagues and all my friends especially Bilal, Haider, Jibran, Nadeem, Zawar, who have
been encouraging me throughout my research work

 5

Table of Contents

RÉSUMÉ ... 12

ABSTRACT .. 13

CHAPTER 1 ... 15

INTRODUCTION .. 16
1.1 SCOPE OF RESEARCH AREA .. 18
1.2 RATIONALE FOR RESEARCH .. 21
1.3 RESEARCH HYPOTHESIS .. 21
1.4 APPROACH TO THE RESEARCH QUESTIONS .. 22
1.5 SUMMARY .. 23
1.6 THESIS ORGANIZATION .. 24

CHAPTER 2 ... 25

PROBLEM DOMAIN ... 26
2.1 SEMANTIC INTEROPERABILITY .. 26
2.2 SEMANTICS FOR GRID COMPUTING ... 30

2.2.1 Enabling semantics in Grid systems .. 30
2.2.2 Amalgamation of Information .. 31

2.3 RESEARCH QUESTIONS ... 32
2.4 SYNERGY OF TECHNOLOGIES .. 33
2.5 SUMMARY ... 35

CHAPTER 3 ... 37

LITERATURE REVIEW ... 38
3.1 SOFTWARE AGENTS ... 39

3.1.1 Personalizing Web Services through Agents ... 39
3.2 MULTI‐AGENT SYSTEMS (MAS) ... 40
3.3 AGENT PLATFORM .. 41
3.4 FIPA (FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS) .. 42

3.4.1. Agent Management System (AMS) .. 43
3.4.2 Message Transport Service (MTS) ... 43
3.4.3. Agent Communication Language (ACL) .. 44
3.4.4 FIPA Semantic Language (FIPA SL) .. 44
3.4.5 Directory Facilitator .. 45
3.4.6 Visual Management Agent (VMA) .. 45

3.5 GRID COMPUTING .. 46
3.6 SEMANTIC WEB ... 48
3.7 SEMANTIC GRID ... 50
3.8 WEB SERVICES ... 51
3.9 ROLE OF ONTOLOGIES .. 52
3.10 NEGOTIATIONS BETWEEN AGENTS AND WEB SERVICES .. 52
3.11 Π‐ADL (ARCHITECTURE DESCRIPTION LANGUAGE) .. 53
3.12 STATE OF THE ART SOLUTIONS ... 54

 6

3.12.1 Web Services Integration Gateway (WSIG) ... 54
3.12.2 WS2JADE ... 55
3.12.3 OWL ‐P... 56
3.12.4 Middleware Ontology Service (MOS) .. 56

3.13 COMPARISON OF STATE OF ART SOLUTIONS ... 57
3.14 SUMMARY .. 57

CHAPTER 4 ... 59

PROPOSED SOLUTION .. 60
4.1 ONTOLOGY GATEWAY .. 60
4.2 ISSUES IN SEMANTIC INTEROPERABILITY .. 61
4.3 EXPRESSIVENESS OF OWL AND FIPA SL .. 62
4.4 REPRESENTING AGENT ATTITUDES .. 63
4.5 COMPARISON BASED ON LOGIC .. 64
4.6 PROPOSED SYSTEM ARCHITECTURE OF ONTOLOGY GATEWAY .. 66

4.6.1 Agents Communicating with OWL Based Services ... 68
4.6.2 OWL Based Service Communicating with Agent .. 69

4.7 DETAILS OF ARCHITECTURE COMPONENTS ... 70
4.7.1 Control Unit ... 72
4.7.2 Ontology Agent ... 73
4.7.3 OWL to FIPA SL Module ... 75
4.7.4 FIPA SL to OWL Module ... 75
4.7.5 SOAP to ACL Module ... 75
4.7.6 ACL to SOAP Module ... 75
4.7.7 Transformation Component: ... 76
4.7.8 Negotiation Module: ... 78
4.7.9 Decision Engine ... 81

4.8 SUMMARY .. 82

CHAPTER 5 ... 83

IMPLEMENTATION AND VALIDATION ... 84
5.1 COMPARATIVE ANALYSIS OF SERVICE DISCOVERY AND COMMUNICATION PROTOCOLS ... 85

5.1.1 Analysis of service registry and discovery ... 85
5.1.2 Analysis of communication protocols .. 86

5.2 IMPLEMENTATION DETAILS OF THE PROPOSED SYSTEM .. 88
5.3 AGENTS INTERACTING WITH THE SEMANTICALLY ENABLED SERVICES ... 88
5.4 SEMANTICALLY ENABLED SERVICES/GRID CLIENT COMMUNICATING WITH THE AGENTS .. 90
5.5 NEGOTIATION BETWEEN AGENTS AND WEB SERVICES ... 92
5.6. VALIDATION ... 94

5.6.1 FIPA to OWL Translation .. 96
5.6.2 OWL to FIPA Translation ... 97

5.7. PERFORMANCE EVALUATION .. 99
5.7.1 FIPA SL to OWL Translation Analysis ... 99
5.7.2 OWL to FIPA SL Translation Analysis ... 100
5.7.3 Ontology Translation Comparison between OWL and FIPA .. 101

5.8 CLASSES OF APPLICATIONS .. 102
5.8.1 Flight reservation using Ontology Gateway .. 103
5.8.2 Semantically Enriched Agent Application using Ontology Gateway ... 105

5.9 SUMMARY .. 108

 7

CHAPTER 6 ... 109

CONCLUSION ... 110
6.1 CONCLUSIONS .. 110

6.1.1. Road map towards addressing the Research Questions .. 111
6.1.2. Contribution ... 114

6.2 FUTURE WORK... 115
6.2.1 Short‐term objectives .. 116
6.2.2 Mid‐term objectives .. 117
6.2.3 Long‐term objectives ... 117

6.3. CONCLUDING REMARKS ... 118

APPENDIX A ... 128

APPENDIX B .. 133

APPENDIX C .. 138

APPENDIX D ... 141

APPENDIX E .. 143

APPENDIX F .. 153

 8

List of Figures

FIGURE 1.1: AUTONOMOUS SEMANTIC GRID CLASSIFICATION AMONG OTHER TECHNOLOGIES. .. 20
FIGURE 1.2: INTEGRATION OF AGENTS AND WEB SERVICES, A MIDDLEWARE BASED APPROACH .. 22
FIGURE 2.1: AUTONOMOUS SEMANTIC GRID ... 33
FIGURE 2.2: SYNERGY OF SOFTWARE AGENTS WITH WEB SERVICES AND GRID COMPUTING ... 35
FIGURE 3.1: FIPA ARCHITECTURE MODEL (FIPA, 2002) .. 42
FIGURE 3.2: COMPONENTS OF FIPA COMPLIANT AGENT FRAMEWORK ... 43
FIGURE 3.3: AGENT COMMUNICATION LANGUAGE ... 44
FIGURE 3.4: STACK VIEW FOR SERVICE ORIENTED GRIDS ... 47
FIGURE 3.5: THE SEMANTIC WEB STACK... 49
FIGURE 3.6: NEGOTIATION PROCESS SPECIFIED BY FIPA .. 53
FIGURE 4.2: AGENTS COMMUNICATING WITH OWL BASED SERVICES ... 68
FIGURE 4.3: OWL BASED SERVICES INTERACTING WITH AGENTS .. 69
FIGURE 4.4: THE Π‐ADL MODEL OF THE OVERALL ARCHITECTURE .. 71
FIGURE 4.5: CONTROL UNIT SPECIFICATIONS IN Π‐ADL ... 73
FIGURE 4.6: ONTOLOGY AGENT SPECIFICATIONS IN Π ‐ADL .. 75
FIGURE 4.7: TRANSFORMATION COMPONENT .. 76
FIGURE 4.8: NEGOTIATION AMONG AGENTS AND WEB SERVICES ... 78
FIGURE 4.9: NEGOTIATION MODULE.. 79
FIGURE 4.10: RUNTIME AGENT .. 80
FIGURE 4.11: DECISION ENGINE ... 82
FIGURE 5.1: ACL TO SOAP CONVERSION STEPS ... 87
FIGURE 5.2: SOAP TO ACL CONVERSION STEPS ... 88
FIGURE 5.3: AGENTS INTERACTING WITH THE SEMANTICALLY ENABLED WEB SERVICES ... 89
FIGURE 5.4: SEMANTICALLY ENABLED SERVICES/GRID CLIENT COMMUNICATING WITH THE AGENTS .. 90
FIGURE 5.5: NEGOTIATION BETWEEN AGENTS AND WEB SERVICES. .. 92
FIGURE 5.6: FIPA TO OWL CONVERSION STEPS ... 96
FIGURE 5.8: FIPA TO OWL CONVERSION STEPS ... 98
FIGURE 5.9: UNIVERSITY ONTOLOGY IN PROTÉGÉ .. 98
FIGURE 5.10: ACL QUERY TO RETRIEVE INFORMATION FOR A PARTICULAR ENTITY. .. 99
FIGURE 5.11: FIPA SL TO OWL TRANSLATION .. 100
FIGURE 5.12: OWL TO FIPA SL TRANSLATION .. 101
FIGURE 5.13: ONTOLOGY TRANSLATION COMPARISON BETWEEN OWL AND FIPA ... 102
FIGURE 5.14: FLIGHT RESERVATION USING ONTOLOGY GATEWAY .. 103
FIGURE 5.15: Π‐ADL CODE FOR A SIMPLE WEB SERVICE .. 105
FIGURE 5.16: SUPPLY CHAIN MANAGEMENT SYSTEM USING ONTOLOGY GATEWAY. .. 106
FIGURE 6.1: FUTURE RESEARCH DIRECTIONS .. 116

 9

List of Tables

TABLE 3.1 COMPARISON OF STATE OF THE ART SOLUTIONS ... 57
TABLE4.1. COMPARISON OF OWL AND FIPA‐SL AS CONTENT LANGUAGE ... 63
TABLE 4.2. OWL CLASS MAPPINGS ... 65
TABLE 4.3. OWL PROPERTY MAPPINGS .. 66
TABLE 5.1. COMPARISON BETWEEN DIRECTORY FACILITATOR AND UDDI SERVICE DESCRIPTIONS .. 85
TABLE 5.2. COMPARISON BETWEEN COMMUNICATION PROTOCOLS .. 86
TABLE 5.3. EXTENDED MAPPINGS BETWEEN FIPA ONTOLOGY AND OWL ONTOLOGY TAGS .. 95
TABLE 6.1 CONTRIBUTION TO STATE OF ART .. 114

 10

List of Abbreviations

MAS Multi-agent Systems
FIPA Foundation for Intelligent Physical Agents
AI Artificial Intelligence
AMS Agent Management System
MTS Message Transport Service
ACC Agent Communication Channel
MTP Message Transport Protocol
DF Directory Facilitator
ACL Agent Communication Language (ACL)
SL0 Semantic Language 0
SL1 Semantic Language 1
SL2 Semantic Language 2
OWL Ontology Web Language
XML Extensible Markup Language
HTTP Hyper Text Transfer Protocol
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
UDDI Universal Description and Discovery Integration
RDF Resource Description Framework
OWL-S Ontology Web Language for Services
API Application Programming Interface
DAML DARPA Agent Markup Language
DAML-S DARPA Agent Markup Language for Services
OIL Ontology Inference Layer
OGSA Open Grid Service Architecture
WSRT Web service Resource transfer
WSRF Web Service Resource Framework
ASG Autonomous Semantic Grid
OG Ontology Gateway

 11

 12

Résumé

Le développement des nouveaux paradigmes et technologies comme le Web sémantique, le
calcul sur grille et les services Web ouvrent de nouvelles perspectives et défis pour la
conception d’une nouvelle génération d’applications. Cette nouvelle génération peut être
conçue comme des systèmes multi-agents opérant sur les grilles de calcul tout en s’appuyant
sur les services offerts par les services Web sémantiques.

D’une part, les avancées dans la standardisation des langages et technologies des services
Web ont permis un déploiement rapide d’applications fondées sur l’invocation dynamique de
services découverts à la volée. Ainsi, grâce aux services Web, les applications peuvent être
vues comme un ensemble de services logiciels, explicitement décrits, découverts et invoqués
à l’aide des standards internationaux définis par le W3C (World Wide Web Consortium).

D’autre part, le Web sémantique vise à rendre le contenu des ressources du Web accessible et
utilisable par les agents logiciels, grâce à un système de métadonnées. Ces métadonnées sont
notamment exprimées à l’aide d’ontologies définies en OWL – Web Ontology Language, un
langage standardisé par le W3C. L’extension du Web sémantique aux services Web donne
ainsi lieu à des services Web sémantiques.

Le Web sémantique est également à la base des grilles sémantiques fournissant une
infrastructure virtuelle constituée d’un ensemble de ressources potentiellement partagées,
distribuées, hétérogènes, délocalisées et autonomes. Ces ressources sont abstraites en tant que
services grille.

La conjonction des services Web et des systèmes multi-agents déployés sur les grilles
sémantiques donne naissance aux grilles sémantiques autonomes. Dans cette vision, des
agents logiciels exploitent les services des grilles de calcul mais également utilisent des
services Web au-delà de la grille, permettant un usage à très large échelle. Ces systèmes
multi-agents sont construits en se reposant souvent sur les standards IEEE de la FIPA
(Foundation of Intelligent Physical Agents).

Néanmoins, un problème se pose : celui de l’interopérabilité des agents logiciels, de nature
sémantique, avec les services Web sémantiques, tout en respectant les standards définis par la
FIPA et le W3C.

Cette thèse s’attaque à cette problématique. L’approche développée dans la thèse est fondée
sur la conception d’un intergiciel permettant l’interopérabilité entre agents logiciels et
services Web de manière transparente tout en s’appuyant sur les standards actuels promus par
la FIPA pour les systèmes multi-agents et pour le W3C pour les services Web sémantiques.
Elle définit l’architecture logicielle et implémente en intergiciel pour la médiation entre
agents logiciels et services Web sémantiques, en prenant en compte la dimension
ontologique. La solution proposée est validée par des études de cas et utilise π-ADL, un
langage formel basé sur le π-calcul, pour spécifier l’application des mécanismes développés.

 13

Abstract

Technological advancements in Web services standards have lead to the development and

deployment of a large number of applications in open and dynamic environments. These
standards enable the services to be discovered and invoked dynamically. The current Web
however lacks the ability to specify the complete semantic annotations and is thus limited, to
be utilized by intelligent applications. Semantics can therefore play a vital role in the
automation and enhancement of Web services. Agents are intelligent entities that can be
integrated with the current infrastructure thus influencing the negotiation, coordination and
cooperation among the heterogeneous environments. We believe that the vision of the
Semantic Web can be realized if the agents are intelligent enough to process and interpret
semantic content based on the understanding which they have developed about the contents
through the use of ontologies, since the agents have well defined reasoning, decision making,
and interaction mechanisms. Our objective is to propose a new middleware based approach
for interactions among Semantic Web services and software agents.

The Semantic Web is an extension of the current World Wide Web aimed at marking web

contents with richer metadata so that they can be processed by machines without human
intervention. The Semantic grid is a new initiative to apply Semantic Web technologies to
traditional Grid computing for automating the registration, discovery, composition and
orchestration of grid services and resources. Ontologies can play an essential role for
providing semantics in the Semantic Web and the Semantic grid and to lay down the
foundation for interoperability among heterogeneous distributed systems. Semantics is thus a
key component for achieving autonomy in the process of efficient service provision and
utilization. Software agents can play an important role in the Semantic grid based on their
capabilities to realize virtual organizations and virtual services that are a part of any Grid
based system.

The main focus of this research is to propose a middleware based approach for the

communication of agents and Web Services and to clearly specify the sequence of steps
involved in this communication process and how ontologies can play a role in assisting this
communication process. These issues have not previously been addressed all together as a
single solution. The issues of heterogeneity among these technologies are managed by
providing architectural specifications and a prototype implementation in a middleware to
achieve semantic interoperability between these technologies without violating the standards
for both these technologies (i.e. FIPA and W3C respectively). As the development and
implementation of such a complex system is cumbersome, π-ADL a formal language has
been used to develop the specifications and formal verification of the overall system at an
abstract level using a π-ADL.NET compiler.

 14

Reading Guidelines

Guidelines for Reading

The use of this symbol within the margin represents additional
information on a concept, and that the understanding of this concept
is not compulsory.

The use of this symbol within the margin represents a precise
definition.

Guidelines for Reading

 15

Chapter 1

 16

Introduction

The aim of the first chapter is to introduce the reader to the domain of agents and Web

Services. A brief introduction to the domain is given by highlighting the facts that agents and
Web services are different technologies but can lead to useful applications in the future by
the convergence of their interest. The research domain has been explored among the various
existing technologies and how the other technologies can affect the scope of this project. The
aim is to highlight the limitations of the existing system’s need of a solution that can bridge
the gap between agents and Web service communication. A hypothesis has been presented
with the overview of the questions that need to be resolved to investigate the hypothesis. A
middleware based approach is adopted as solution to provide meaningful communication and
interaction between agents and Web services.

Information and knowledge are becoming the focus of economic activity for the entire

world. Global information systems, such as the Internet and World Wide Web, are no longer
just pathways for digital data; rather they generate new information and knowledge for
commercial activity, education, business and research. Since the advent of mankind this is
the first time that resources such as services and information have become an integral and
key component of the information based society. For the first time, in the history of human
kind, non-material resources such as software and information services have become the real
wealth of the knowledge-based society. This poses a great challenge to processing this
extremely large set of data and to extract new knowledge autonomously. A number of new
technologies such as Grid computing, the Semantic Web and software agents are emerging
that can help to cope with this challenge through the synergies of their integration (Ahmad et
al.,2003)(Foster et al.,2004). Our aim is to focus on these technologies step by step and to
design a new system through the integration of these technologies in order to cope with this
new challenge.

The World Wide Web provides an infrastructure for deploying Web services for providing

useful applications to the end users. However, their usefulness and popularity have posed a
number of challenges. The static and human understandable contents in its underlying
architecture limit its capability to cope with the scale of information in the near future. The
World Wide Web community has responded to find the solutions to these challenges in its
Semantic Web initiative. The Semantic Web concept is to create computer understandable
information by marking the contents with richer meta-data so that Web contents can be

CHAPTER 1

 17

consumed and processed by intelligent software. Grid computing provides virtualization of
computation and resources to create dynamic virtual organizations by extending Web
services to Web Services Resource Framework (WSRF,2004), (Shafiq et al.,2005) and Web
Services Resource Transfer (WSRT,2006). It attempts to provide a single image of
networked computers to users. However, the problems of the current Web as described above
are inherited in Grid computing. The Semantic Grid is a new initiative aimed at applying
Semantic Web on Grid computing and provides a platform where contents and services are
exploited on the basis of their semantics rather than syntax.

Computer networks today provide a transparent access to the resources or services, but the

main aim from the beginning has always been the same, that is to extract information from
distributed locations and represent it in the desired form no matter what heterogeneities exist
among the sources or where they are located. Typical examples of these networks can be
mobile networks, factory networks and home networks. Therefore, if a person is connected to
a network through his personal computer or a mobile device from a remote location, the
whole scenario will be considered under the umbrella of distributed computing.

At this point it is important to define and highlight the importance of distributed computing
in compliance with the research that is being done. A distributed system can be explained as
a networked environment where the resources (software or hardware) can coordinate by
messages passing to one another, but these resources can be located anywhere on the globe
i.e. they can be in the same room or on a different continent. A distributed system is usually
responsible for sharing heterogeneous resources like information repositories, hardware
components or software services in a transparent manner and independently from each
other’s failure. Despite its heterogeneous nature the aim is to offer continuous services to the
users of Internet with high performance. The solutions that exist to form a distributed system
are comprised of policies to spread out its components over a network and hardware/software
technology to implement it. These solutions for the distributed technologies that are well
know and popular among the users have come a long way in becoming ubiquitous as the
distributed systems have faced a lot of serious challenges since their origin.

Originally the Internet was designed to share information between a limited numbers of

users without taking into consideration the quality of service. In addition to quality of
service, we identify that users have two more basic views of customization and situation
regarding information services utilization but these do not exist on the current information
service systems as well. However, due to technological advancements and the evolution of
real time applications and the emergence of the electronic commerce, there is a dire need to
alter the fundamental viewpoint of the underlying infrastructure. Therefore, using
information services on the Internet is a provoking experience for most of the users.

 18

It is therefore, a vital task to develop new models in accordance with the information
services for the real time applications and electronic commerce on the internet, the delay in
providing the necessary technology and framework can lead to the decline of the electronic
commerce or its growth may even become dubious. This fosters an immediate requirement
for designing a system that can provide the necessary information to culminate the
requirements that have been mentioned above. The next section explains the scope of
research and which other technologies will come together for achieving the ultimate Goal of
Autonomous Semantic Grid.

1.1 Scope of Research Area

This research can be categorized as part of distributed computing systems. Distributed
systems encompass in itself, very popular and promising technologies like Web services,
Grid systems and Multi-agent Systems. The aim of the Web services endeavor is laid on the
dogma of Service Oriented Computing as to provide an implementation neutral environment
and support for accessing heterogeneous resources. However, the goal of Grid systems is to
provide focus on sharing resources in a coordinated way between virtual organizations.

The Semantic Web is an idea presented by World Wide Web inventor Tim Berners-Lee to
make the current Web intelligent enough to provide the results to end users an accurate and
efficient way. According to Berners-Lee the search engines maintain the capability of
indexing most of the content that is present on the Web, but lacks the ability to retrieve the
results or information required by the user in a precise manner. Therefore, he proposes
techniques by which the developers can associate self-descriptive semantic annotations so
that the context for a particular query is well understood and as a result only relevant
information is retrieved.

The foremost endeavor of current research in Semantic Web (Lee, 2001) aims at

incorporating comprehensive semantic descriptions so that the software entities like agents
can understand them and can eventually perform registration, discovery, invocation and
composition of services (Foster et al.,2004). Web services are a loosely coupled, self-
governing computational body that enables the development and deployment of services in
distributed environments. According to the World Wide Web Consortium (W3C) working
group software “agents play a key role for the Web services implementation and in retrieval
of resources (hardware or software) according to the preferences/requirements of the user”
(Foster et al.,2004). In Semantic Grid, Web services further combines with Semantic Web
technologies to enable dynamic Web service discovery, invocation, composition,
interoperation and execution monitoring.

 19

The Web has provided common grounds to share the information all around the globe. The
Grid technologies (Foster et al.,1999) build on this by facilitating the global sharing of not
just information, but also of physical resources (that are in terms of computational and data
storage resources) to be used at a distance. E-mail and the Web provide vital means that
allow communities that cover different states, countries and continents to work together in
collaboration. Visualize a scenario if everyone could link their data, computers and other
resources into a single virtual office. Grid technology provides the basic support in terms of
protocols, services and development environment to make it possible to share resources on a
broader level.

At the core of the Grid is the concept of virtual organization. It is a dynamic collection of
individuals, institutions and resources bundled together in order to share resources as they
tackle common goals. This resource sharing is not only providing the facility of file
exchange, but rather direct, controlled (i.e. within the authorization, security, copyright, etc.
restrictions) access to resources which can be computational resources, storage or data
resources and can be utilized for solving complex problems by collaborative efforts of
different industry partners.

The goal while developing Multi-agent Systems (Wooldridge et al., 2002) is the

interaction and communication of software agents with one another and the focus is on the
maturity of the languages used for communication, protocols used for interaction etc. Agents
possess properties, like autonomy, and thus can maintain their own state in order to cope with
the situation that is being faced. It is not compulsory that one agent has to perform only one
goal, but a number of agents can follow the same goal and can interact with each other for its
fulfillment. The agents utilize the semantic representation provided in terms of ontologies for
providing meaningful communication between the agent groups. The agent technology
provides the autonomy and intelligence capabilities that could facilitate the development of
electronic commerce and business applications, where the requirement is to introduce
independent entities to handle the communication as the environment is dynamic in nature.
Incorporating such entities will reduce human intervention, increase production, minimize
the chances of errors and ambiguities, and, last but not the least, will enable the handling of
the scalability issue on a large scale (Negri et al., 2006).

 20

Figure 1.1: Autonomous Semantic Grid classification among other technologies.

Figure 1.1 refers to the categorization of Autonomous Semantic Grid and how it evolved

from the existing technologies. The ultimate aim of Autonomous Semantic Grid is to develop
a framework that could provide solution for integrating technologies Web services, Grid
Computing and Multi-agent Systems. The development of such a framework will require the
integration of capabilities of all three of these technologies without making any changes to
the existing standard formats. Once the building blocks of this framework are in place the
agents will be able to discover the resources in grid, identified by their semantic annotations
and will enable the semantic interoperability between the technologies. The next section
highlights the rational for developing such a system that can solve the issues that are not
considered by the current technology vendors.

 21

1.2 Rationale for Research

The goal of the Autonomous Semantic Grid is that software agents would be able to

autonomously and dynamically discover, compose and invoke some particular Web services.
Information retrieval in the current Web is very difficult as it is based on conventional
information processing in which just the text of the documents is processed and there are no
semantics. Foundation of Intelligent Physical Agents (FIPA, 2003) is responsible for
developing the specifications of agents and Multi-agent Systems, whereas the standard
governing body for the Web services is World Wide Web Consortium (W3C, 2001). The
differences in structure and specifications of both technologies act as an obstacle between the
communication of software agents and the Web services.

We assume that software agents will play a significant role in the automation of managing

Web services and will thus reduce complexity. Therefore, the aim is to integrate both
technologies, i.e. agents and Web services. Keeping into consideration the aspect that both
these technologies are based on distinct standards and have specified their own vocabulary,
thus there are chances of misinterpretation while one technology wants to retrieve
information from the repository of the other. We believe that associating semantics can
facilitate the interoperability between agents and Web services. Since this interoperability
requires the integration of several technologies and raises a number of challenges. Based on
these challenges a research hypothesis has been stated with a summary of associated research
questions.

1.3 Research Hypothesis

The research hypothesis stated in this thesis is:

“It is possible to develop system architecture for interoperability between agents with the

Web services without changing existing specification of both the governing bodies i.e. FIPA
and W3C?”

 To address the research hypothesis we need to answer a number of research questions

which are summarized as follows:
What is the role of ontologies in the communication between agents and Web services?

How will the task delegation be performed once a certain piece of information is requested?
How can the agents negotiate to a Web service once it is invoked? A detailed list of questions
and sub questions is explicitly mentioned in the next chapter. In order to answer these sub
questions and achieve this interoperability we have proposed the design of a middleware
based approach, referred to as Ontology Gateway, as a solution, that will enable

 22

communication between agents and Web services without tampering or altering the existing
standards and will facilitate in service registration its discovery and invocation. Designing
and implementing such a system is a complex, time consuming and cumbersome task,
therefore clear and unambiguous specifications are required for the architectural components.
To provide the architectural specifications of all the participants, a formal language called π-
ADL (Oquendo, 2004) has been used and these specifications are validated by using π-
ADL.NET compiler (Qayyum, 2008). Keeping into consideration the varying technologies, a
middleware based solution is suggested which is highlighted in the next section.

1.4 Approach to the Research Questions

To develop a system architecture for interoperability between agents with the Web
services without changing the existing specification of both the governing bodies of FIPA
and W3C. This transformation will facilitate the autonomous agents to dynamically discover
and translate the Web services. The approach proposed in this thesis is to design and develop
an Ontology Gateway (middleware based approach) as a solution that could act as a bridge
for eliminating the gap between Multi-agent System and Web services communication and
without any changes to standards specified by Foundation of Intelligent Physical Agents
(FIPA) and World Wide Web Consortium (W3C) (agents and Web services) respectively.
The middleware based approach is the most optimal as there are currently a lot of systems
that have been implemented and deployed already.

Figure 1.2: Integration of agents and Web services, a middleware based approach

Taking into consideration the existing systems, it is not feasible to deploy them as
services or to use some other alternative for rebuilding them. Therefore, the proposal is to use
a middleware based approach for such systems as depicted in Figure 1.2.

 23

It is important to have some insight of the limitations in the current systems and how
different researchers are trying to cope with them. The data retrieved from the current Web as
a result of certain query is usually unstructured and is based on the processing of the text
layout without keeping into consideration the real meaning of data that is being processed.
Incorporating semantics with the published services can enhance their better understanding
by the machines, and entities like agents can fully utilize them thereby eliminating human
involvement. Associating semantics with the services not only make them meaningful, but
also improve the chances of acquired knowledge through the application of simple tools and
techniques. Three different methodologies have been identified by (Shafiq et al.,2006) for
developing effective communication between the agents and Web services that are:

• Compliance of one technology with the other.
• Introducing a middleware between technologies
• Integration that will result in least changes.

Web Services Integration Gateway Service (WSIGS) (Greenwood et al.,2004) is an

example of integration with least changes and is almost in accordance with the gateway that
was adapted by the AgentCities (Agentcities,2003).

We have already proposed AgentWeb Gateway (Shafiq et al.,2005) and Middleware

Ontology Service (Khalid et al.,2007) for reducing the communication gap between
technologies like software agents and Web services. The goal of this research is to integrate
technologies like software agents, Web services and Grid without altering the specifications
that have been defined by the governing bodies in their respected areas by developing system
architecture, i.e. middleware based approach, to enable the communication of agents and
Web services that have the capabilities of registration, searching, translation, and querying
for a particular service.

1.5 Summary

This chapter outlines the necessary details that act as a prelude to the chapters yet to
appear. An overview of the current technologies is presented, but despite all the
advancements that have been made in these domains, no one has formulated a precise
solution that can address the issues raised during agent and Web services communication.
The objective in this thesis is to provide a transparent integration of FIPA compliant Agents
with Web services as specified by W3C by developing a middleware “Ontology Gateway”.
The middleware based approach facilitates the required integration without changing existing
specifications. By integration, I mean enabling two way service discovery, service publishing

 24

and service invocation. A brief discussion has also been done on the state of the art solutions
and their limitations that have lead to the proposed investigation in this thesis.

1.6 Thesis Organization

The thesis is organized as follows: Chapter 2 gives an overview of the problem domain
and the precise research questions that are dealt with in this thesis. Chapter 3 presents a
detailed overview of the involved technologies including Agents, Grid computing and
Semantic Grid. Chapter 4 discusses the semantic interoperability and issues involved along
with the proposed system architecture of Ontology Gateway in detail and also its formal
representation in π-ADL. Chapter 5 discusses the implementation and evaluation of the
proposed architecture along with the case studies as a proof of concept for the proposed
architecture. Finally, contribution and future directions are presented in chapter 6.

 25

Chapter 2

 26

Problem Domain

The introduction presented in the first chapter highlighted the concepts that have been used

throughout the thesis and the categorization of this research to fit the existing technologies
along with the necessity for developing a solution to overcome the limitations in the current
systems. Based on the research questions, a middleware based approach has been suggested
to tailor the existing technologies for overcoming the limitations in existing systems. This
chapter explains the problem domain in depth. The first section of this chapter presents in
detail the semantic interoperability from the perspective of various researchers. The second
section illustrates the need of semantics in systems like Grids. A precise list of research
questions and sub questions have been discussed that needs to be addressed in this thesis. The
last section pinpoints the technology mergers that are required to realize the Autonomous
Semantic Grid vision.

2.1 Semantic Interoperability

Interoperability has been an important research area since the advent of computing.
Initially growth of user needs and advancements in networking and computing technology
gave rise to network interoperability issues. According to (Heiler, 1995) interoperability
among components of large scale distributed systems is the “ability to exchange services and
data among one another”. Interoperability among distributed applications is an active
research area to develop large scale distributed applications. Different forms of
interoperability have been defined in information systems and are categorized as syntactic
interoperability, structural interoperability, and semantic interoperability.

Semantic Interoperability

Semantic interoperability is an enterprise capability derived from the
application of special technologies that infer, relate, interpret, and
classify the implicit meanings of digital content, which in turn drive
business processes, enterprise knowledge, business rules and
software application interoperability.

CHAPTER 2

 27

Syntactic interoperability is required to deal with application level differences in data

representation and is provided by standards such as XML, SOAP, UDDI, WSDL, etc.
Structural interoperability involves schematic heterogeneity among information sources
(Heiler,1995). Significant research and progress has been carried out to achieve syntactic and
structural interoperability but comprehensive solutions to semantic interoperability, remain
an active research area.

Semantic interoperability can be achieved by resolving the ambiguities and heterogeneities

in terms and concepts thereby providing more useful information (Park,2004). Ontology and
Taxonomy Coordinating Working Group defines semantic interoperability as the ability of
two independent programs with reasoning capability to come to the same conclusions from
the same data (SI,2005). This is a more relevant definition in the context of Autonomous
Semantic Grid. Semantic interoperability ensures that communicating individuals or
organizations share common understanding of meanings of requested service and data
(Heiler,1995).

XML provides syntax for exchanging data among entities. It separates contents from

presentation so it is easier to reformat the data. The explosion of industry and organization
specific Document Type Definition (DTD) poses great challenges for integration of
heterogeneous resources. To overcome these challenges, the Semantic Web tries to address
these issues by incorporating semantic annotations so that the intelligent agents can utilize
them to their full potential.

Ontologies provide semantic descriptions for Web services related concepts and can enable
diverse business entities to be integrated with software agents and will lead to automation
(Pasha et al.,2006).

Ontology

Ontology is a formal, explicit specification of a shared
conceptualization.

Web Services

W3C defines Web services as a software system designed to support
the machine to machine interaction over a network, with its
interface defined in WSDL and other system interacts with it using
SOAP messages.

 28

It is important to have a standardized communication mechanisms or language that can be

reused for information sharing on the Web.

 Web Ontology Language is a World Wide Web Consortium recommendation for

representing knowledge on the Semantic Web (Dean et al.,2004). The foundation stone of
Web Ontology Language is based on Description Logic which explains the constructs for
defining restrictions, expressions and constraints on properties. FIPA Semantic Language is
the standard content language used in conjunction with FIPA Agent Communication
Language, specified by IEEE FIPA based on modal logic.

Researchers in agent and Grid domains are trying to address the issues that are raised in
developing open systems, by their own perspectives. Distributed computing gives rise to
concerns like complexity, dynamism and the characterization of entities that can play vital
roles in the development of open distributed systems (Park,2004). Both Grid computing and
Multi-agent Systems are emerging technologies and each of them can benefit each other to
overcome issues like scalability in Grid applications and the limitation of the agents to be
implemented as part of distributed systems. The main objective of the Grid community is to
provide resource sharing and solving problems through coordinated behaviour in virtual
organizations (VOs). Middleware for the Grid systems provides the necessary protocols and
specification in order to utilize the basic characteristics of services like registration,
discovery, invocation etc. The progression of the Grid system includes:

• Earlier ad-hoc solutions were provided
• Standards and specifications depending on Globus Toolkit (GT)
• Open Grid Services Architecture (OGSA)

Semantic Web

The Semantic Web is the extension of the World Wide Web that
provides a common framework in order to allow data to be shared
and reused across application, enterprise, and community
boundaries.

 29

Ope

The Grid Services Architecture is adopting the standards of Web services to integrate

service descriptions with the Grid systems and the invocation would be done by their
interface. The ever growing research in the field of Grid technology has led to the evolution
of Web Service Resource Transfer, that specifies a uniform way for defining, monitoring and
accessing Grid services which can be available anywhere around the globe and thus is a
crucial task most of the time. Most of the Grid technology research communities are trying to
define the standards for Grids that can support open systems like Globus Toolkit.

The latest trends in Web technologies and continuous research in the field of distributed

systems is getting attention by most of the organization to use electronic commerce and
improve their businesses (Fensel,2003).The role of agents can be of great importance for
such systems as they provide a well defined communication infrastructure, prone to changes
and able to take immediate actions. It is very important to take into consideration that
whenever an application for e-commerce is developed it must have the mechanism to provide
a shared knowledge for a particular domain; this idea could be supported through the use of
ontologies for adding semantic descriptions and can be of great importance in many ways:

• Utilizing ontologies for incorporating semantics in agents will have a large
effect on how the information can be used by enterprises in a more
meaningful way.

• Semantic descriptions can be used for defining the service interfaces and can
make the services easily discoverable and interoperable without much effort.

• Agents can utilize the ontologies for semantically based interaction with one
another.

Semantic interoperability between agents and Grid services leads to a number of tangible

advantages. Agents will be able to perform search or consume grid services. It will also result
in agents being more robust and integrating information from multiple heterogeneous
semantic services (Negri et al.,2006). For example, a travel-planning agent might need to

Virtual Organizations (VOs)

Virtual Organizations are a dynamic collection of individuals,
institutes, resources that have well defined, flexible, secure,
coordinated resource sharing mechanisms.

 30

access data from airlines, hostels, rental car companies, weather sites and tourist sites, each
of which may have different ways of representing the relevant semantic information. Such an
agent would face problems of translating different vocabularies and representations for this
data into a common format. Ontologies, therefore, provides means for overcoming
heterogeneities in vocabularies of these independent domains and can facilitate the
interoperability.

Though the Grid and the Semantic Web are considered to be disparate domains, at points
both of these technologies have some shared interests. The purpose of these technologies is
to operate at a global level, with multiple players and heterogeneous technologies and thus

they both need to have readily accessible resources and shared knowledge for the service
provisioning. The Semantic Web can support the Grid services for describing meta-data for
its base and high level services and for the representation of knowledge that can be used by
its applications.

The aim of the Autonomous Semantic Grid endeavor is to take an initiative in order to
develop effective methods for enabling such complex resource sharing. The key to this is an
infrastructure where all resources, including services, are adequately described in a form that
is machine-processable, i.e. knowledge is explicit - in other words, the goal is to provide
semantic interoperability, based on the technologies of the Semantic Web. The next section
highlights the importance of semantics in a system like the Grid.

2.2 Semantics for Grid Computing

2.2.1 Enabling semantics in Grid systems

It is of great importance that a service should be properly described by using the proper
meta-data so that it is accessible to requesting entities and can be invoked without much
effort and is interoperable if required. UDDI is a very well known solution in the current
systems for searching the appropriate services by users, and the services are classified on the
basis of the functionality that they provide. Reasoning capabilities play a vital role when
services are classified into hierarchies or a particular Web service is retrieved.

Semantic Grid

The Semantic Grid is an extension of the current Grid in which
information and services are given well‐defined meaning, better
enabling computers and people to work in cooperation.

 31

Currently the semantics can be associated with the grid services by adding naming

conventions to a WSDL document for the port, service type field respectively and then
linking it to a specification document afterwards. Bridging the gap between the Semantic
Web and Web services have already attracted attention, for instance DAML+OIL, which is a
predecessor of Web Ontology Language has been explored in myGrid (myGrid,2007). The
Grid services contain the provision for the service instances to be formed and destroyed and
maintain their configurations over a period of time. However, this is currently a challenge for
the Web services as they do not have this provision. Ontologies can provide a great support
in addressing these issues.

2.2.2 Amalgamation of Information

During the scientific experiments, it is sometimes a necessary issue to integrate
information from distributed, autonomous resources in order to respond to a particular query
posed by some scientist. In the field of genomics, for example there are thousands of data
stores containing the details and structures of genes which might need to be checked for a
particular gene based on the information that has been retrieved from these diverse data
stores. The access and retrieval of data is currently supported by the Web and the services for
data retrieval in Grid technology but the next milestone to overcome is the semantics of the
data that is being processed and not just the availability of data. The semantics annotations
will resolve the differences in semantics between diverse technologies and can enable the
automation of information integration.

Integration of information is not just restricted to the experiments that are being conducted

by the research community. Due to the current technological advancements in distributed
systems like the Web and grids, the resources that are available on the Web can be retrieved
and accessed by users transparently without knowing that a number of services were
composed in order to obtain those results. Resource Description Framework (RDF) provides
the support to store data from disparate sources and combine them in a uniform way so that it
can later be used by some applications. Various research communities have been focusing on
these issues as individual problems and solutions for them.

Sometimes shared knowledge for a particular domain through the use of ontologies can be

used to overcome the interoperability issues that are present in the form of structural
differences in databases or conflicts in the input and output parameters of services. Services
utilize reasoning capabilities in order to ensure that the composition process is valid or not.
Therefore, the semantically enabled services can be used for the following reasons:

• categorization of resources which can be computation intensive or storage
resources etc.

 32

• mapping set of parameters i.e. input or output associated with a service.
• choosing appropriate problem solving techniques.
• providing access to resources and monitoring their usage.

The aim of this research is to provide a mechanism for providing the interoperability in

distributed systems through the use of semantics and keeping into account the fact that the
existing standards are not violated during this transformation. Our earlier work in this context
is the AgentWeb Gateway (Suguri et al.,2004) (Shafiq et al.,2005) that addresses the
interoperability issues between these technologies at structural and syntactical levels. The
limitation of our earlier work was the focus on structural and syntactical interoperability. To
do so, in this thesis I try to address the issues raised in developing system architecture for
semantic interoperability between agents and Web services for the translation, registration
and querying of translated ontology.

2.3 Research Questions

The research questions that will be addressed in this thesis to address the hypothesis are as

follows:

Is it possible to integrate agents and Web services without modifications to their standards?

What will the role of ontologies be in integration of these technologies? These questions have
been further divided in to sub-questions that need to be answered as well:

• How will the agents communicate with the Web services?
• Can the agents and Web services communicate without violating standards?
• Who will be responsible for registering the services in agents and Web

services?
• How will FIPA ACL and OWL translations take place?
• How will the delegation of work take place when a query comes in?
• What are the steps involved from user request to service retrieval?

Resource Description Framework (RDF)

Resource Description Framework (RDF) is a standard, developed by
(W3C), for representing information about resources. In RDF, a pair of
resources (nodes) connected by a property (edge) forms a statement:
(resource, property, value), often called an RDF triple.

In ord
are invol

2.4 Syn

The W

humans,
systems t
systems
offer in
dynamic
conversa
at run-tim

• How
once a

• How w
enable

• Why u

der to answer
ved and are,

nergy of Te

eb is evolvin
as well as

that harness
have been t
overcoming
environmen

ational comp
me which res

Autonomou

A
ca
G

will the neg
a particular s
will the use
ed communi
use a formal

r these ques
, thus, briefly

echnologie

ng toward m
s machines,
Web service

tackling for
g some of
nts. As poi

ponents and a
sources and/

Figur

us Semantic

utonomous
apabilities o
rids thus ach

gotiations ta
service has b
of ontologie

ication?
l language fo

stions it is im
y described

es

machine-read
 as previou
es are facing
more than
the inheren

inted out, s
agents can o
/or service to

re 2.1: Auto

Web
Services

Aut
Sem

Grid

Semantic
of agents an
hieving auto

33

ake place be
been invoked
es provide a

or system sp

mportant to h
in the next s

dable infrastr
usly discuss
g many of th
30 years. W

nt difficultie
uch an env

offer these c
o use for a pa

onomous Sem

Agents

tonomous
mantic Grid

Gri

Grid is th
nd the Sem
onomous and

etween the a
d?
solution so

ecification?

have an idea
section.

ructure for sh
sed. Applica
he same issu

We believe th
es when dea
vironment re
apabilities. A
articular task

mantic Grid

id

he effort f
mantic Web
d self regula

agents and W

as to have a

a of the tech

haring know
ation design
es that desig
hat agents h
aling with c
equires auto
Agents are a
k.

for integra
in the conv
ting systems

Web service

a semanticall

hnologies tha

wledge amon
ners buildin
gners of agen
have much t
complex an
onomous an
able to decid

ting the
ventional
s.

es

ly

at

ng
ng
nt
to
nd
nd
de

 34

In open systems, the structure of the system itself can dynamically change. The

characteristics of such a system are that its components and resources are not known in
advance, can change over time, and may be highly heterogeneous. The best-known example
of a highly open software environment is the Internet. The functionality is almost certain to
require techniques based on negotiation and cooperation, which lie very firmly in the domain
of agent systems. The machine should not just act as a dumb receptor of task descriptions,
but should cooperate with the users to achieve their goal.

These considerations give rise to the idea of an agent acting as an expert assistant or

delegate with respect to some applications, knowledgeable about both the application itself
and the user, and capable of acting with the user in order to achieve the user’s goals. The
Grid community has previously focused on interoperable infrastructure and tools for secure
and reliable resource sharing within dynamic and geographically distributed organizations.

In contrast, those working on agents have focused on the development of concepts,

methodologies, and algorithms for autonomous problem solvers that can act flexibly in
uncertain and dynamic environments in order to achieve their goals (Ferber,1999). In (Foster
et al,2004), the authors explicitly identify the requirements for the integration of software
agents with the Grid environment. Pioneer work has been carried out at our research group
in this area; we have proposed the same requirements in our work as early as 2003 (Ahmad et
al., 2003).

Our vision of the integration of agents with Semantic Web and Grid computing is to lay

foundation for self-regulating system, namely Autonomous Semantic Grid as shown in Fig.
2.1. In the proposed system higher level interaction is pivotal for the creation of virtual
organization that exhibits characteristics of Autonomous Decentralized System (Mori, 1993).
Theoretical foundations of Autonomous Decentralized systems rely on the principles of
autonomous controllability and autonomous coordinate-ability. These two properties assure
online expansion, fault tolerance and online maintenance of the systems. Autonomous
Decentralized system can be realized through software agents, which are autonomous,
proactive, and goal-oriented problem solving entities with social ability for high level
interaction.

 35

Figure 2.2: Synergy of software agents with Web services and Grid computing

Revised from: Norman Paton (SG, 2005)

The European Union project “From Grids to Service-Oriented Knowledge Utilities: A

critical infrastructure for business and the citizen in the knowledge society” (SOKU) has very
similar requirements and goals as envisioned in Autonomous Semantic Grid. The Service
Oriented Knowledge Utilities vision highlights three key concepts, i.e. Services, Knowledge
and Utility. Services orientation is about instantiating and composing services dynamically.
Knowledge will be assisted by semantics while utility is directly and immediately useable
service with established functionality. IBM’s Autonomic Computing is another example of
similar project inspired by biological systems (Baresi et al, 2006). Ian Foster et al use Virtual
Managed system terminology close to the Autonomous Semantic Grid vision (Keahey,
2006).

Figure 2.2 illustrates the role of the Autonomous Semantic Grid with the other

technologies; the technologies vary in terms of interoperability and diversity along the Y-axis
and in terms of data along the X-axis and the Autonomous Semantic Grid lies at the top of
them sharing almost all the capabilities of these technologies. In order to realize Autonomous
Semantic Grid vision, it is important to understand these technologies that will play a vital
role and can benefit from this vision in the long run.

2.5 Summary

This chapter specifies that the semantic interoperability between agents and Web services
is the key to the vision of Autonomous Semantic Grid. In order to have a clear understanding

 36

of the problem domain the first step is to understand the context of semantic interoperability
and how different researchers have perceived it. Although a number of interoperability issues
have been defined in the information systems from structural, syntactic and semantic aspects
but the nature of the problem addressed in this thesis is closely related to the semantic
interoperability issues. Since the ongoing discussion is about different technologies like Grid
computing, agents and Web services therefore the importance of semantics cannot be
overlooked in all of these domains. All of these technologies consider the semantic aspects in
their own way, which has been discussed in this chapter. Based on the hypothesis presented
in chapter 1 an overall discussion of the problem domain and list of research questions has
been explicitly stated in this chapter. By addressing the research questions step by step the
proposed solution has been devised and is presented in the later chapters of this thesis.
Although the main concerns addressed in this thesis are related to achieving successful
interactions and communications among agents and Web services. The next chapter will
present the overview and ongoing research in the relevant domains.

 37

Chapter 3

 38

Literature Review

This chapter will examine the core technologies and the research undertaken in the thesis
and will illustrate how it is related to the research performed by others. This will be achieved
by understanding the background knowledge. The aim is to focus on the technologies that
work together in a synergic way for dealing with the issues that are unveiled in the previous
chapter. This chapter presents the concept of agents, which are the key entities in the
proposed solution and how these agents communicate when working in a Multi-agent
system. FIPA compliant Multi-agent systems will be explained in more detail with their
architectural details as they are integrated in our solution. As the study is to achieve the
vision of Autonomous Semantic Grid, research progress in technologies like Grid computing,
Semantic Web and Web Services is also presented in general. However, the focus has been
the convergence of interest in these technologies where each of them can benefit from one
another. An overview of the state of the art solution has also been discussed that focuses on
the most relevant advances to address the communication concerns between agents and Web
services with a focus on limitations of technologies to cope with the problems identified in
this thesis.

Information and knowledge are becoming the focus of the economic activity of the entire

world. Global information systems, such as the Internet and the World Wide Web, are no
longer just pathways for digital data rather they generate new information and knowledge for
commercial activity, education, business and research. For the first time, in the history of
human kind, non-material resources such as software and information services have become
the real wealth of a knowledge-based society. It poses a great challenge to process this
extremely large set of data and extract new knowledge autonomously. A number of new
technologies such as Grid computing, Semantic Web and software agents are emerging that
can help to cope with this challenge through the synergies of their integration (Ahmad et
al.,2003) (Foster et al.,2004) .

CHAPTER 3

Agents can be defined as a piece of software that is an autonomous
problem‐solver and is capable of effective operations in dynamic and
open environments.

Software Agents

 39

3.1 Software Agents

Agents can be defined as a piece of software that is autonomous problem-solver and is

capable of effective operation in dynamic and open environments (Wooldrige.,2002) (Singh
et al.,2005). Moreover an agent can be considered as a smart software system that has the
capability of performing autonomous actions on behalf of its user or owner. Agents in a
Multi-agent System will be coordinating or acting on behalf of users or owners with very
difficult goals or motivations. Agents embody a stronger notion of autonomy than objects,
and in particular, they decide for themselves whether or not to perform an action upon the
request of other agents.

The agent is the fundamental cell of the distributed intelligent. Hence, its artificial
intelligence (AI) can be built by using all AI implementation technology currently known
and it can compute regardless of its current location. Another property of the agent is to
switch their locations by means of migration. In this manner, they are able to do their
computing in an environment, which provides more computing power.

However, the primary feature of agent technology is the agent’s ability to communicate
with each other. This enables the agents to unite their efforts to become a collective of
working individuals, who are aware of each other’s goals and intentions (Ferber,1999).
Moreover for communication a mechanism, is required that can serve as shared vocabulary
between communicating agents and the ontologies. Software agents today have a vast
number of applications varying on the type of functionality and services they offer ranging
from e-mail, auctions, to distributed systems etc. As the main focus in this thesis is to deal
with technologies like Web services and Grid computing as principal candidates for agent
application, the importance of agents in these technologies is mentioned next.

3.1.1 Personalizing Web Services through Agents

In (Baader et al.,2003), the authors answer the commonly raised issue of how agent

technology can be used to personalize Web services. They have highlighted a number of
critical issues that web service and agent platforms must address in order for two paradigms
to work together, and propose an automated component that can be integrated with existing
web service infrastructures. Particularly, they are trying to address the challenge of how a
consumer can assign a particular job that will be delegated programmatically and will
autonomously be interacting with the Web services according to context when acting on the
behalf of a consumer.

 40

At present, the Web services are used to define the behavior of the service. The arguments
to utilize the service must be known in advance, and should be explicitly registered before
enactment. Furthermore, the protocol must be defined to precisely match the Web services
Description Language definition of the Web service. It will, thus, reduce the restrictions, and
allow a more extensible coordination, of web service discovery and invocation. They intend
to semantically annotate web services, on which one can reason about the behavior of the
services.

Whereas (Walton et al.,2004) explores the option of utilizing software agents for the

construction and enactment of e-Science applications. The agent capabilities are explored for
the immediate construction and verification of experimental data. Moreover, they try to
address the issues of service discovery.

3.2 Multi-agent Systems (MAS)

Software agents can work independently as well as in the form of groups forming

communities of multiple agents for achieving particular goals. These agents can then
cooperate with one another, normally by exchanging messages through some computer
network infrastructure and are known to be Multi-agent systems. Multi-agent Systems are
one of the appealing technologies in software-based framework that offer a friendly
environment in support of agents for providing constant services. Multi-agent Systems
provide proper execution environment to agents so that they can assure the provision of
services to other agents by cooperating, coordinating, and negotiating.

Multi-agent Systems are a relatively new sub-field of distributed systems. Since the

beginning of study on Multi-agent Systems in 1980, they have gained a lot of popularity and
recognition. The idea of Multi-agent Systems is not tied to a single application domain rather
they can be adopted to host different application domains. One of the reasons behind the
popularity of Multi-agent Systems is the fact that agents can exploit the opportunities

Multi-agent Systems (MASs)

A Multi‐agent system is a collection of several interacting agents in
which each agent has incomplete information or capabilities for
solving the problem.

 41

presented by massive distributed systems such as the internet. Multi-agent Systems represent
virtual societies where software entities (agents) acting on behalf of their owners or
controllers (people or organizations) can meet and interact for various reasons (e.g.,
exchanging goods, combining services, etc.) and in various ways (e.g., creating virtual
organizations, participating into auctions, etc.)

3.3 Agent Platform

Software agents provide multiple services to its users. For the provision of these services,

software agents require a proper execution environment in which they can execute
themselves and keep themselves ready for service provision. Such an execution environment
in which software agents can be created and can behave according to their specification is
called “Agent Platform”. Many Agent Platforms provide an environment for the community
of agents for the provision of dynamic services. Figure 3.1 depicts the FIPA reference
architecture model of a typical agent platform and the required components.

FIPA Architecture Reference Model

The FIPA Architecture Reference Model is a standardized view of an
Agent Platform specified by FIPA along with the required components
for its execution.

 42

Figure 3.1: FIPA Architecture Model (FIPA, 2002)

3.4 FIPA (Foundation for Intelligent Physical Agents)

This research mainly focuses on the involvement of standards; therefore, we keep

FIPA as a standard governing body and reference model, which will provide rules of an
abstract architecture for Multi-agent Systems developers to follow in order to be coherent
with the solution proposed in this thesis. The main objective of FIPA is to develop software
standards for heterogeneous and interacting agents and agent-based systems. FIPA focuses
on the interpretability issues of Multi-agent Systems. FIPA has standardized a few
components within Multi-agent Systems. In order to be called FIPA compliant,
implementation of some of those components is mandatory. Figure 3.2 depicts the
architecture of a platform according to FIPA specifications. A typical agent platform requires
several other components along with the basic building blocks previously mentioned in the
FIPA reference model and are as follows:.

• Agent Management System (AMS)
• Directory Facilitator (DF)

 43

• Message Transport Service (MTS)
• Agent Communication Channel (ACC)
• Agent Communication Language (ACL)
• Encoding Services
• Visual Management Agent (VMA)

Figure 3.2: Components of FIPA compliant Agent Framework

3.4.1. Agent Management System (AMS)

Expected growth of Multi-agent Systems (MAS) with a community of social agents in
heterogeneous applications has made it focal point for research. The Agent Management
System (AMS) (Ghafoor et al, 2004) (Khan et al, 2005) is responsible for managing all the
agents within a Multi-agent Systems and is considered to be the governing authority for any
agent system. A single agent platform can be distributed over several machines which
provide scalability and load balancing etc.

One of the major reasons for not deploying Multi-agent systems frequently is the absence

of fault tolerance. If the Agent Management System fails then the whole distributed system
will exhibit abnormal behavior. Failure of Agent Management System leads towards
abnormal behavior in the distributed platform.

3.4.2 Message Transport Service (MTS)

Message Transport Service is the backbone of any Multi-agent System and is more related
to the research in this thesis. MTS embodies the communication at the three levels that is
communicative acts, interaction protocols and content languages. It supports the sending and
receiving of Agent Communication Language messages between agents. The agents involved

may be
represent

Two m

•
•

3.4.3. Ag

The A
that is u
package
will be s
decision

Agent

and know
The resul
and defin
the agent
with each
agent has

3.4.4 FIP

The F
FIPA SL
in the ag
agents de

local to a
ts the variou
modes of com

Intra-platfo
Inter-platfo

gent Commu

Agent Comm
understandab
all agents w

sent to the r
based on the

t Communic
wledge, whic
lting languag
ning descrip
ts. Furtherm
h other. FIP
s common se

PA Semanti

FIPA SL lan
L is a string)
gent research
eveloped by

single Age
us layers of A
mmunication

orm Commu
orm Commu

Figure

unication L

munication La
ble by all e
will create a
required des
e Agent Com

ation Langu
ch is really th
ge is FIPA A
tions of thei

more, FIPA a
PA published
emantics to t

ic Language

nguage is a h
 content lan

h community
different co

ent Platform
Agent comm
n are involve

unication
unication

3.3: Agent C

Language (A

anguage pac
entities invo
message th

stination. At
mmunication

uages provide
he essence o
ACL. FIPA A
ir pragmatic
also define s
d Semantic L
talk to each

e (FIPA SL)

human-reada
nguage and i
y. FIPA SL

ommunities e

44

m or on diff
munication lan

ed for messa

Communicat

ACL)

ckage is resp
olved in the
rough some
t the recepti
n Language m

e agents with
of all forms o
ACL is a pro

cs that is the
semantic lan
Language w
other based

)

able string e
is probably t
is principall

executing in

fferent Agen
nguage.

age transport

tion Languag

ponsible for t
e Multi-agen
 pre defined
ion end, the
message.

h a means of
of interaction
otocol for sp
 communica

nguages to su
which provid

on shared on

encoded (i.e
the mostly d
ly designate
heterogeneo

nt Platforms

tation.

ge

the creation
nt system. T
d rules. And
e agent will

f exchanging
n in Multi-a
pecifying me
ative acts or
uccessfully

des rich sem
ntology.

. a content e
diffused cont
d in open sy
ous environm

A
Comm

Lan

s. Figure 3.

of a messag
Through thi

d the messag
take its ow

g informatio
gent system
essage forma
intentions o

communicat
mantics. Ever

expression i
tent languag
ystems wher
ments want t

Agent
munication
nguage

.3

ge
is

ge
wn

on
s.
at
of
te
ry

in
ge
re
to

 45

collaborate with one another. Therefore it is important that FIPA SL should support the
following requirements:

1. It should be able to represent propositions;
2. It should be able to represent actions;
3. It should be able to represent objects, including identifying expressions to describe

objects.

To allow agents, or a group of agents to perform some tasks, with minimal computational
burden, semantic and syntactic subsets of the full FIPA SL content language have been
proposed. These subsets are defined by the use of profiles, that is, statements of restriction
over the full expressive power of FIPA SL. These profiles are FIPA SL0, FIPA SL1 and
FIPA SL2 in increasing order of expressivities.

3.4.5 Directory Facilitator

Directory Facilitator (DF) is another component of a Multi-agent system. It is accountable
for providing a yellow-pages directory service to other agents. Agents may register their
services to the DF or query the DF to find out what services are offered by other agents. An
agent is responsible for providing information related to the service, i.e. service_type,
service_name etc. FIPA imposes that each Agent Platform has its own DF that is known as
default DF. Other DFs may also register with default DF to create a federation.

3.4.6 Visual Management Agent (VMA)

VMA is not a component specified by FIPA however a typical agent platform should be
able to support the handling of agents by defining them. VMA is an agent that offers a
graphical interface to platform administration and platform monitoring. The agent offers
many services that show the state of the Agent Platform and it also offers various tools that
are used to perform administrative interaction with the AMS agent, the DF agent and are also
used to debug and test applications.

The state of the agent platform also shows the details of the agents that reside inside the
platform. The VMA itself offers some internal agents for platform management and
monitoring that can be used to perform different tasks such as:

• Examination of the message exchanges among different agents;
• Create or compose ACL messages and send them to other agents;

 46

• Display the list of all the ACL messages sent or received by the agent;• Read and
save ACL messages from/to file;
• Create ontologies graphically.

VMA also provides graphical interface for the administration of the Directory Facilitator
and Agent Management System. Because VMA is an agent, therefore it would communicate
with an AMS agent and DF agent through passing ACL messages. For the creation of ACL
messages a VMA package will use an ACL package and will compose an ACL message.
After that the ACL message will be sent to the Message Transport Service that will forward
that message to the respective agent.

3.5 Grid Computing

The Grid is an infrastructure that permits flexible, safe, and harmonized sharing of

resources between dynamic groups of entities and organizations which are referred to as
Virtual Organizations (VO) (Foster,2001). VO can be defined as a group of individuals or
institutions who share the computing resources of a "grid" for a common goal. Grid
middleware provides the basic guidelines for the mediation among various layers of Grid in
order to make use of service registration, retrieval and invocation and utilize the shared
resources. It is analogous to the electric power grid in that it can potentially provide a
universal source of IT resources. Grid is envisioned to provide a universal source of
computing power as utility and this can potentially have a huge impact on human capabilities
and on the entire society.

Figure 3.4 depicts the next generation Grid applications from their inception and how they

are evolving to service orientation. Open Grid Forum has been continuously doing research
in defining standards and specifications to amalgamate Grid systems and Web services so
that they can be deployed at a broader level and are trying to utilize the W3C standards like
WSDL (WSDL,2001), SOAP (SOAP,2007) and UDDI (UDDI,2005) for interoperability.
Open Grid Service Architecture (OGSA) specifications are the result of their continuous

Grid Computing

Grid Computing is a technology that enables resource sharing and
coordinated problem solving in dynamic multi‐institutional virtual
organizations.

 47

efforts. OGSA supports creation, termination, management, and invocation of transient
services as named managed entities with dynamic, managed lifetime via standard interfaces
and conventions. Web Services Resource Framework (WSRF) has been proposed to
implement OGSA (OGSA,2003). WSRF provides a set of operations that Web services
implement in order to become stateful (Tuecke et al.,2003). Web Service Resource Transfer
(WSRT) is further enhancement in WSRF to cope with WS-Management (IBM,2007).
WSRT not only entails the definition of the resources but also provides access mechanism to
them along with the functionality that was previously provided by WSRF.

Figure 3.4: Stack view for service oriented Grids

Moore’s law of integrated circuits (Moore,2005) and Edholm’s law of bandwidth (IEEE,

2004) are well known. Moore’s law gave rise to extremely high capacity circuits, such as
large storage and powerful processors. Regardless of all these efforts, making
supercomputers to meet increasing demand of data processing have been infeasible mainly
due to cost factor. According to Edholm’s law increase in communication bandwidth
facilitates efficient transmission of bulk data. The major focus of all research in Grid
computing is to exploit these two factors for pooling resources and realization of alternate to
costly supercomputers for handling huge amount of data processing demand globally.

Obviously, great disparity exists between the growth rate of information generation and its

processing and effective management. Grid systems are complex in nature and require
continuous involvement of human input in order to perform the specified tasks. It cannot
handle these emerging data-intensive applications effectively. Therefore, a fundamental
requirement to process such a scale of data is to redesign Grid so that it can process these
kinds of information autonomously without human intervention. This autonomous
information processing should lead to new information and knowledge generation. In the

 48

next section, we summarize the Semantic Web, which is a foundational effort for such
autonomous processing of data and information.

Grid services should be able to provide novel means composed of distributed services in a

transparent way. The aim of the future services in Grid systems is to reuse the on hand
components and services in a way that they can coordinate with one another in a flexible
way. Keeping this trend in view, the Grid community is gradually moving toward the service
centric approach in the form of specifications by Open Grid Service Architecture
(OGSA,2003), this will integrate the service based systems with the requirements and
methodologies of Grid systems, but this integration will require a significant extension of
Web services with the grid services as the Grid services have the following properties:

• distributed and changing;
• there is no central governing body;
• services can be composed of other services and might spawn hundreds of other
services;
• an experiment or simulation can take a huge amount of time for processing.

These issues greatly require addressing factors like availability, correctness and security

concerns. Till now Web services are most of the time available and do not maintain their
state whereas grid services are stateful and are short lived.

3.6 Semantic Web

Web services have emerged as a standard for Web-based technology for exchanging

information on the Internet (Nassuni,2003). These are modular, self-describing, self-
contained applications that are accessible over the Internet. By definition, a Web Service is
an executable program function that can discover and invoke any service on the Web
(Martin,2007). Web services utilize Internet protocols for the registration, discovery and
invocation and are language neutral and support heterogeneous platforms by providing
transparent access to users.

Web services architecture defines three major roles consisting of service provider, service

requester, and service broker (Papazoglou et al.,2006). The Semantic Web is the extension of
the current Web (Lee,2001) that aims at marking web contents with richer metadata so that
they can be processed by machines without human intervention. Resource Description
Framework (RDF) and Web Ontology Language (OWL) are some of the languages to
represent the contents with semantics (Nassuni et al.,2003). The technology stack of
Semantic Web is shown in Figure 3.5. The development of ontologies could be the key to

 49

overcoming the semantic heterogeneities by explicitly defining machine processable
semantics.

Semantic Web Services (SWS) can be defined as Web service with the semantic language

representation of services for efficient discovery, composition and execution in an open and
distributed environment (Paolucci et al.,2003). Many research groups have put forward
efforts to automate and standardize Semantic Web Services. DAML-S (DAML-S, 2002) and
OWL-S(OWL-S, 2003) are well known initial efforts for the creation of Semantic Web
Services. Current notable ongoing projects for Semantic Web Services (Martin,2007)
realization are Semantic annotations for WSDL (SAWSDL, 2007), Semantic Web Services
Framework (SWSF, 2005), and Web Service Modelling Ontology (WSMO, 2006). A great
deal of research has been carried out for semantic web services and many challenges are
ahead (Papazoglou et al.,2006). It is important to highlight that semantic technologies
provide partial solutions to the information explosion problem. It gives well defined meaning
but to process such scale of data we need to have appropriate Grid system architecture. SWS
are the basic building blocks for realizing Semantic Grid vision.

Figure 3.5: The Semantic Web Stack (Lassila, 2005)

 50

The Semantic Web initiative (Lee,2001), (W3C,2004) that addresses the problem of XML,
lack of semantics by creating a set of XML based languages, also relies on ontologies that
explicitly specify the content of the tags. The Web Ontology Language (OWL 2.0) is a W3C
recommendation for such a language that supersedes the earlier DARPA Agent Markup
language (DAML+OIL) (DAML,2001). OWL is an extension to XML and the Resource
Description Framework (RDF) enabling the creation of ontologies for any domain and the
instantiation of these ontologies in the description of resources. The OWL-Services language
(OWL-S,2003) is a set of language features arranged in these ontologies to establish a
framework within which the Web services may be described in this semantic web context.

The OWL-S ontology is conceptually divided into three sub-ontologies for specifying
what a service does, how the service works and how the service is implemented. The Profile
describes what the service does so that it can be discovered at matchmaking time. It contains
the contact information of providers, an extensible set of features that specify characteristics
of the service and a functionality description by specifying the inputs, outputs, preconditions
and effects (IOPE s) of the service. The Process presents the internal working of the service
in terms of the internal processes, their process model and the internal dataflow; whether
each service is either an atomic process that is executed directly or a composite process that
is a combination of other sub-processes. The Grounding specifies the operational level
details of the service by linking the conceptual level descriptions to the WSDL description of
the service.

3.7 Semantic Grid

The Semantic Grid community is trying to resolve the issues regarding automation and

ability of dealing with dynamic requirements in Grid services. Autonomy can be
incorporated into Grid systems somehow by associating semantics, which will facilitate
machines to comprehend the information and produce more useful knowledge while
processing enormously huge data. The Semantic Grid is considered to be built on existing
Grid systems where the services are defined in a well understandable way, better machines
and people can collaborate with one another through sharing resources, and the available
services (SG,2007). For this kind of environment, it is a key aspect to provide necessary
information for the user requirements and applications. Moreover, there should be a proper
mechanism for representing the providers and the resources they offer which can be software
or hardware. These resources can then be used by the advanced services to efficiently utilize
the Grid systems to their full potential.

It is very important to describe a service in a way that can facilitate automated discovery,

selection, matching, composition and interoperation, invocation and execution. To find a
service according to the requirements of the user it is an important consideration that the
services should be characterized by the type of functionality they provide and this approach

 51

is widely accepted till now i.e. UDDI. It is also important that an associated semantic
description with a service should be consulted when making service matches between the
two services. Condor (Condor,2007) provides a search facility in order to find the
computation specific resources, which is used to choose computational resources where the
environment is dynamic and the services are continuously changing.

Moreover, the creation of virtual organizations requires higher level abstraction with

conversation and interaction characteristics provided by software agents.

3.8 Web Services

A Web service is a self-describing, self-contained application logic that provides some
kinds of business functionality to other applications through an Internet connection. Other
applications can access Web services through standardized web protocols and data formats,
such as HTTP, SOAP and XML. A Web service is language independent and its
implementation is not visible to the user or application that calls the service, since all the
interaction happens through standard web protocols. Any program that can process XML and
communicate via HTTP is capable of calling a Web service.

The aim of the Web services endeavor is to obtain an environment where service

customers and service providers can locate one another, connect with each other
dynamically, set the terms and conditions of service invocation automatically and then
execute the necessary actions according to the prevailing contract. To date, Web services
architecture has been developed that consists of five layers for supporting service
descriptions, publishing service descriptions and discovering services. The key advantages of
these and related standards include interoperability between distributed applications
regardless of the underlying platform, implementation language and operating system.

Given these advantages, it is clear that Web services have much to offer. Web services
have promised to change the Web from a database of static documents to an e-business
marketplace. The Semantic Web promises to make information understandable to a
computer and Web services promise to provide smooth and painless integration of
disparate applications. Web services offer a new potential of automation in e-Work and
e-Commerce, where fully open and flexible cooperation can be achieved on-the-fly, with
low programming costs. However, there are a number of shortcomings which prevent
realizing the goal of smooth cooperation among heterogeneous service oriented systems.

 52

3.9 Role of Ontologies

To have a meaningful conversation between two entities it is very important to have a joint
and clearly defined set of vocabulary. An ontology can simply be considered as a taxonomy
for defining terms, their relationships, the set of actions to be performed on them or maybe a
combination of all these. Each Ontological schema is itself a complete structure of any
concept, action, predicate or all of them and other schemas can be added into it. There could
be schemas of primitive data types as well.

Different people have defined ontologies in different ways. One of them is considered to be

very well known and was anticipated by Gruber, (Gruber,1993): though it is a general
definition and according to him ontologies can be defined in specific contexts. As an
example take agent technology into consideration. (Russell et al.,1995) ascertain that
ontology is a formal depiction of the terms and relationships that can exist between the
groups of agents. The significance of the ontologies is apparent from the subsequent
definition: ontology is a hierarchically structured set of terms to describe a domain that can
be used as a skeletal foundation for a knowledge base (Swartout et al.,1996).

According to (Fensel,2003) Ontology is a formal, explicit specification of a shared

conceptualization. From this definition four main concepts are identified: an abstract model
of a phenomenon termed "conceptualization", a precise mathematical description provides
the word "formal", the precision of concepts and their relationships clearly defined are
expressed by the term "explicit" and the existence of an agreement between ontology users is
hinted at by the term “shared”. Keep into account the above mentioned descriptions of
Ontologies we can characterize some of the important facts about them:

• A particular domain can be specified utilizing the capabilities of Ontologies;
• Through the use of ontologies we can define the concepts and their relationship with

one another;
• A taxonomy based ideology is used to classify the concepts.

3.10 Negotiations between agents and Web services

Keeping in mind our long-term objective of interoperability between agents and web
services the overview of OWL-S as a potential language for semantic Web services has been
observed (Mcilraith et al.,2001), (Martin et al.,2004). With OWL-S markup of services, the
information necessary for Web service discovery can be specified as computer-interpretable
semantic markup at the service Web sites, and a service registry or ontology-enhanced search
engine could be used to locate the services automatically (Sycara et al.,2004). Execution of a

 53

Web service can be thought of as a collection of remote procedure calls. OWL-S markup of
Web Service provides a declarative, computer-interpretable API that enables automated Web
service execution. Figure 3.6 depicts the steps laid out by FIPA for negotiation entities when
volunteering to engage in negotiations.

 Given a high-level description of the task by the user, automated composition and

interoperation of Web service to perform the task is of particular interest to us. With OWL-S,
the information necessary to select and compose services would be encoded at the service
Web sites (Laukkanen et al.,2003). Software agents can be written to manipulate and
interpret this markup, together with a specification of the task and thus can be bestowed with
the ability to perform the task automatically (Sirin et al.,2003). Web Service Conversation
Language (WSCL,2002) can be used to implement Contract Net Protocol (CNP,2002) for
negotiation among Web Services. The flexibility of negotiation is far-off from that prevalent
in the agent infrastructure. FIPA (FIPA,2003) provides detail specifications of Request
protocol, Request/ Response protocol, CNP, English Auction, Dutch Auction, Brokering
protocol, etc.

3.11 π-ADL (Architecture Description Language)

π-ADL (Architecture Description Language) (Oquendo,2004) (Oquendo,2005) is a formal

language, with its primary focus on the software architecture description at the mathematical
sense and the ability to reason about its behaviour. π-ADL formal foundations are based on
higher-order typed π-calculus (Sangiorgi,1992) (Milner,1993).π-ADL encompasses the
architecture centric constructs for representing the structure, as well as behaviour details.

Figure 3.6: Negotiation Process specified by FIPA

 54

Behaviours and abstractions are considered to be top level constructs in a π-ADL program.

Each behaviour defines a concurrent thread in execution, which means if multiple behaviours
have been defined then there will be multiple threads in execution for each behaviour.
However, an abstraction is a reusable behaviour template that can be invoked by other
behaviours and abstractions. Variable and connection declaration are present in the body of
behaviour or an abstraction. Connections are the bridging entities for connecting behaviours
with abstractions and also to connect an abstraction with another one. Connections have the
same functionality as that of channels in π-calculus. Connections are typed, and can send and
receive any of the existing variable types, as well as connections themselves. Constructs like
compose, choose and replicate are also existent in the language to support parallel
processing.

In order to execute these π-ADL specifications a compiler is required that can support this

execution. π-ADL.NET compiler (Qayyum et al.,2006)(Qayyum,2008) is a unique effort for
the implementation of π-ADL on a .NET platform. π-ADL.NET is a domain independent
compiler that provides the complete benefit of modelling and refinement of the software
architectures.

3.12 State of the Art Solutions

The previous sections of this chapter highlight the technologies, the ongoing research in

respective technologies that will aid in the realization of Autonomous Semantic Grid in one
way or the other. Taking into account the degree of flexibility and autonomy that can be
achieved by integration of these technologies and that the long-term goal of this research is to
propose architecture to establish communication among software agents and Web services
for problem solving on a large scale. If an agent can read and interpret the semantic content,
apply the logic or understand the mechanics of an entity on the Web through its attached
ontology, then it may reason about, interact or modify its behaviour. Different research
communities are trying to solve this problem from different perspectives. Based on this
challenge a literature survey is presented to discuss the state of the art solutions that are the
relevant for the problems identified in the first chapter.

3.12.1 Web Services Integration Gateway (WSIG)

An integration gateway known as Web Services Integration Gateway (Greenwood et al.,
2004) has been proposed that provides the basic constructs for providing two way
communications between the agents and Web services. It is an add-on that has been
developed for the JADE (JADE,2006), (Spanoudakis et al.,2007) platform specifically.

 55

WSIGS for Jade is an example of the integration where very fewer changes take place. JADE
is a framework that is used to develop FIPA compliant Multi-agents system and is
completely implemented using Java.

It is quite obvious that agents and Web services are different in terms of their

technological structures. Therefore, WSIG proposes to add a specialized service entity that
will resolve the issues of difference between the two and will then help to connect both
domains. As the add-on is specifically developed for the agent system it is compliant to the
FIPA specification and provides support for the communication constructs provided within
the agent systems. However the vocabulary sets that are the ontologies and their role in the
communication of agents with the Web services has not been considered. For the negotiation
process the assumption has been taken that it is possible. However there is not much work
done to address the negotiation process. WSIG is specifically built to support the JADE
system and the agent can invoke a particular Web service by sending messages through the
intermediary service. The main objective of this research was to target JADE as a software
agent platform that can facilitate its agents to invoke Web service and vice versa in a
transparent way and without much human intervention.

3.12.2 WS2JADE

WS2JADE is a toolkit (Nguyen,2005) that has been developed for JADE agents to find

services and utilize them. The key focus of the WS2JADE is to deal with the concerns more
related to service description and interaction etc. In this approach the proxy agents that are
residing in WS2JADE system are responsible for making the services visible to the agents
and have many to many relationships with agents. The JADE agents are single threaded most
of the times and can therefore allow the same web service to be accessed on different proxy
agents, achieving a parallel access leads to the composition of relevant services. Searching in
WS2JADE is performed by the proxy agents of the UDDI. This methodology uses the agents
to capture the behaviour of the services and then these services are deployed and exposed as
agents and can thus be discovered by other agents by using the conventional message passing
techniques. This mechanism requires that all the existing services should be captured and
deployed again in the form of agents from scratch.

This work, however, captures the details of the service descriptions and their interaction
with one another using the proxy agents. How these services will be utilized by the agents in
a more intelligent way rather than just processing the service descriptions is still an open
issue. Though WS2JADE has demonstrated some good work while interacting with various
Web services, still it requires a lot of improvement as it provides the integration in single
mode (fulfilling one requirement at a time) and the issues for resolving the gap between the

 56

stateful communications of agents with stateless communication of Web services is still
unaddressed.WS2JADE look forward to resolving it using ontologies.

3.12.3 OWL -P

OWL-P (Smith et al.,2002) is a proposed technology for providing the communication

between the agents and the Web service standards. OWL-P is responsible for the
specification and integration of commitment based protocols and has various components
including the ontologies for the protocol specification, rule based representation and an
algorithm for integration of the protocols and last but not the least a runtime environment.
The aim of a runtime environment is to facilitate the registration and searching of the
services and the execution of the protocol by sending and retrieving messages.

OWL-P can be considered not only as language but as a runtime environment that can

support the agent and the Web services interaction keeping into account the agent
preferences and can integrate various protocols. But the work has been done considering the
standards of the Web services and follows the protocol combination scheme for the inter-
communications of processes. Semantic Web Rule Language has been used for defining the
rules and the software designer is responsible for defining the axioms, but how different
protocol combinations and the heterogeneity issues raised have not been considered in their
work.

3.12.4 Middleware Ontology Service (MOS)

 MOS (Khalid et al.,2007) is a solution provided to cater for the continuous support for
ontologies in Multi-agent Systems. A dedicated agent is responsible for handling the
incoming request for some information from a particular ontology within the agent platform.
The work highlights the description of ontological representation, storage and querying and
supports these operations to some extent. The system provides the support for agent
communication systems using ontologies in an agent platforms but the work does not
highlight the potential need of combining agents and Web services and how the translations
will take place when the agents want to communicate with the Web services. Similarly the
fact that agents can sometime engage themselves in a negotiation process in order to achieve
a particular goal has also been overlooked. No proper mechanism has been devised as how to
communicate with the outside world that is the Web services. Due to this limitation the
agents cannot engage themselves in any sort of negotiations.

 57

3.13 Comparison of State of Art solutions

Table 3.1 summarizes a comparison of related work across a number of criteria including

that the extent to which these solutions adheres to the standards of FIPA and W3C. Similarly
the protocol translation between agents and Web services that is: communication protocol
translation is considered by only a few. Similarly the factors like ontological translations,
negotiation support and decision support is overlooked among almost all of these solutions.

Solutions FIPA

Compliant
W3C

Compliant
Protocol

Translation
Ontological
Translation

Negotiation
Support

WSIGS Yes Partial
support

Partial
Support

No Partial
Support

WS2JADE Yes No Yes No No

OWL‐P No Yes No No Yes

MOS Yes Yes No Yes No

Table 3.1 Comparison of state of the art solutions

It is very clear that none of the solutions that have been provided up to now consider all of

these aspects as a single solution, therefore this thesis considers a number of these aspects as
a single solution. The solution focuses on a standardized solution that considers not only
protocol translation but also resolves the semantic aspect by providing ontological
translation. Similarly the negotiation process is another open issue, though FIPA has
provided the basic guidelines for the negotiation process in the agent technologies but most
of the solution providers are unable to incorporate them to engage in Web service
negotiation.

3.14 Summary

Through this chapter it has been made clear that the component technologies exist but they
are not well integrated with one other to address the interoperability issues between agents
and Web services. It is obvious from the state of the art solutions that efforts were made to
personalize the Web services through the use of agents but none of them provide a complete
detailed solution to cope with the interoperability issues between the domains of agents and

 58

Web services. The perspective of various research communities has been explored which are
the most relevant to the problems identified in the earlier chapters. The technologies like
agents have been highlighted as to benefit the other related technologies. A survey of
ongoing research in technologies like Grid computing, Semantic Web and Web services has
been presented that depicts that these technologies have limitations, but if integrated with one
another can enable these technologies to perform more meaningful tasks and can lead to
revolutionary future applications for the Web. However the development of such a large
application is a challenging task, therefore an introduction to π-ADL language is presented as
it has been used in the subsequent chapters to specify the system and execute those
specifications using the π-ADL.NET compiler.

 59

Chapter 4

 60

Proposed Solution

Chapter 3 provides the overview of the ongoing research and the limitations that have

lead to the development of solution for the indentified problems in this thesis. To address
these problems there is a strong need to develop system architecture for the interoperability
between agents with the Web services without changing existing specifications of both FIPA
and W3C. This transformation will facilitate the autonomous agents to dynamically discover,
translate, invoke and negotiate with the Web services. In order to have a comprehensive
solution it is important to address certain questions like how agents and Web services
communicate with one another and how the use of ontologies can resolve the semantic issues
in the communication between agents and Web services. How the task delegation will be
performed once a certain service is requested? What are the components required and how
the agents can negotiate with a Web service once it is invoked? How the information is
exchanged between agents and web services? Who will be responsible for task delegation?
How the system components will be integrated with one another to have a successful
interaction between agents and Web services? The complexity of the proposed architecture is
a merger of multiple technologies and, does not permit the complete implementation of the
complete architecture; therefore component level details have been specified and validated
by executing them in π-ADL.Net compiler to provide the early implementation of the overall
system.

4.1 Ontology Gateway

Ontology gateway is a middleware-based integration that facilitates the communication

between agents and Web services with a special focus on the interoperability of W3C and
FIPA ontological representations by defining translations between FIPA Semantic Language
and OWL (Pasha et al, 2006) (Sabih et al, 2007). The devised architecture aims to address
the issues for providing semantically enabled communication in distributed environments
where capabilities of agents and grid systems can be united and reused to accomplish the
realization of autonomous semantic grid and utilizing a service based framework. To obtain
this integration, we use the properties of Semantic Web that allows the conceptual
representation for the distributed knowledge through the use of ontologies. The terms are
defined by the use of open ontologies which can be made available by using the standard
protocols.

CHAPTER 4

 61

FIPA has defined a criterion to be followed by every language that has to be considered as

a FIPA compliant language. The communication framework developed by FIPA allows the
agents to communicate with one another using a language that fulfils the minimal criteria to
be considered as a FIPA compliant language. The aim is to give a general idea of how the
agents can communicate with the OWL-based Web Services by bringing the semantic
interoperability. Another key characteristic of the proposed architecture is that it is not
restructuring the standards of FIPA and W3C. Our focus is the interoperability of both
technologies with a specific focus on the content language translation so that the agents are
able to communicate with the Web Services. The Ontology Gateway acts as a translator that
will facilitate the protocol transformation along with the language interoperability.

4.2 Issues in Semantic Interoperability

In order to specify the semantics of the distributed services explicitly, W3C recommends
the OWL (Web Ontology Language). This will enable the applications to utilize the
semantics associated with distributed services and to invoke the service that has been
specified in OWL. The foundation of the Web Ontology language is based on description
logic and, therefore, makes it the most appropriate language for describing terms, concepts,
relationships and their properties in the form of hierarchies. OWL is considered to be built on
Resource description Framework (RDF), which stores the data in the form of triples and
provides supplementary vocabulary and semantics. OWL as content language guarantees that
the semantics of the messages exchanged is explicit and unambiguous between the sender

Ontology Gateway

Ontology Gateway is a middleware based approach for the
communication of software agents and Web Services without
violating existing standards.

Web Ontology Language (OWL)

OWL is a W3C specified Web Ontology Language and supports
greater interpretability by providing additional vocabulary and formal
semantics.

 62

and receiver. OWL has all the features needed to describe rich knowledge structures by
agreeing on how meaning is conveyed. It is simpler for applications to share meaningful
content. OWL provides the provision of describing classes with their sibling as sub classes
and attributes, properties to be defined in a simple way. FIPA SL fulfills the minimal criteria
specified by FIPA to be considered as content language that is most suitable for agent
communication and is human readable. Moreover various flavors of FIPA SL not only enable
it to describe predicates and propositions, but it can also express actions and objects. Table
4.1 represents the comparison of OWL and FIPA SL as content languages.

 Table 4.2 and 4.3 present the direct and extended mappings for subsets of FIPA SL2 and
OWL Full. These mapping can enable the two languages to specify the logical behaviour and
the contextual details in which the data/information is being transferred between the sender
and receiver in an independent way. These devised mappings will allow the applications to
use any language without adapting to a particular data standard. Various applications for the
Grid system will enable these translations to solve the semantic constraints between the
ontological description of a term and the user query. Comparison of the two languages in
terms of expressive power and interoperability is performed and pros, cons for using FIPA
SL or OWL as a content language are also discussed.

4.3 Expressiveness of OWL and FIPA SL

FIPA Content Languages, including SL, should be expressive enough to satisfy the

following requirements:

• They are capable of representing objects, including identifying expressions to

describe objects.
• Proposition should be completely represented.
• They are capable of representing actions.

In FIPA SL, an action expression defines an action that can be performed. An action may

be a single action or a composite action built using the sequencing and alternative operators.

FIPA Semantic Language (FIPA SL)

FIPA SL is a content language. It provides the constructs for defining
Propositions, objects, actions.

 63

An action is used as a content expression when the act is requested and other communicative
acts can be derived from it. The propositions may involve explicit or implicit quantification,
logical connectives like NOT, AND, OR and modal operators like BELIEF,
UNCERTAINTY and INTENTION.

 OWL as a content language guarantees that the semantics of the messages exchanged is
explicit and unambiguous between the sender and receiver. OWL provides almost all the
capabilities that are required to express the knowledge that is to be exchanged, thus making it
simpler for applications to exchange meaningful data. But as OWL comes in three sub
languages (OWL-Lite, OWL-DL and OWL-Full) the layering structure of these three subsets
causes the interoperability issues between them. OWL’s expressive power as a knowledge
representation language seems to be adequate for most needs of current agent based systems.
OWL is also able to represent proposition, actions and objects. OWL has rich class, property,
and axiom to model the world. It can also express the logical connective like AND, OR,
NOT and IntersectionOf, UnionOf and ComplementOf.

* Ref. Please see APPENDIX C and D for detailed constructs that have been used from FIPA SL and OWL
respectively.

Table4.1. Comparison of OWL and FIPA-SL as content language

4.4 Representing Agent Attitudes

The internal state of an agent is an intentional description making reference to beliefs,

desires, intentions and other modalities that agents may have. In the agent domain, it is

 64

necessary to describe the internal state of an agent before sending a message and after
receiving it. Therefore, it results in useful assignment of meaning to communication
primitives. The main challenge in this context is to provide a clear formalism for expressing
the semantics in an unambiguous way for human developers. It should also ensure that the
agent’s process of interpreting the meaning of the message is compliant to the given
semantics. Pre-conditions and post-conditions are expressed in modal logic. The semantics of
a communicative act is specified as a set of FIPA SL formula. FIPA SL is a quantified, multi-
modal logic language, with modal operators represented as follows:

 Belief: (B <agent> <expression>)
 Agent believes that expression is true

 Uncertainty: (U <agent> <expression>)
 Agent believes that expression is more likely true than false

 Intention: (I <agent> <expression>)
 Agent intends that expression will becomes true and will plan to bring it about

 Persistent Goal: (PG <agent> <expression>)
Agent holds a persistent goal that expression becomes true, but will not necessarily
plan for it.

But the problem is that we cannot express modalities like Belief, Uncertainty and

Intention in OWL as OWL is not based on modal logic. The mental attitudes about the state
of the world cannot be expressed when OWL is used as the content language. Only FIPA SL
is able to express these modalities. This is where SL distinguishes its expressive power from
OWL. The solution proposed in this thesis explicitly considers two types of mapping that are
direct and extended mappings. In direct mappings, one language constructs are mapped with
the other language in a one to one relationship. In extended mappings the constructs provided
by one language have been extended to map the constructs of other language which cannot
be directly mapped. Since we are deploying agents and Web services as they have been
standardized by their governing bodies, therefore in this solution we do not consider the
modalities of agents unless, the entities at Web services have used agents as a solution also.

4.5 Comparison based on Logic

SL is based on modal extension of first-order predicate logic. Therefore, the expressive

power of SL includes a rich set of operators and constructs, but as the expressive power
increases the complexity of reasoning also increases. Description logics represent a subset of
first-order predicate logic aimed at being tractable and decidable while maintaining a
richness of semantic expressiveness.

 65

Table 4.2. OWL Class Mappings

It has declarative formalism for the representation and expression of knowledge and

sound, tractable reasoning methods. OWL is based on description logic and is distinguished
by its decidable characteristic and formally defined semantics, which enables the
subsumption relationship to be computed by suitable algorithms.

Compared with many of its predecessors, description logics provide a formal, logic-based
semantics to make it a useful knowledge representation framework for different application
domains. A comparative analysis of both the languages was performed in depth and certain

 66

mappings were devised in order for both the entities to communicate in an efficient way.
Table 4.2 and Table 4.3 represent these mappings.

Table 4.3. OWL property mappings

4.6 Proposed System Architecture of Ontology Gateway

The idea behind the proposed architecture of Ontology Gateway is how the software agents
will communicate with OWL based Web Services and vice versa. The objective of Ontology
Gateway is to translate the OWL to FIPA ontologies with minimum semantic loss because
while translation from OWL to FIPA SL we can directly map the constructs provided,
whereas when translating from FIPA SL to OWL we have to make a trade off on concepts
like belief, desire, intention, as they cannot be directly mapped. The proposed architecture

 67

does not require any change in the standard specifications and implementation of the existing
technologies. Open systems like Grid are still working on hiding resource heterogeneity and
making a scalable and robust infrastructure, while software agents act as key entities of these
systems to semantically interoperate and negotiate with each other. Figure 4.1. depicts the
abstract architecture of the proposed system.

Figure 4.1: Initial architecture of Ontology Gateway

The main issues in designing the proposed system are how agents will communicate with

OWL based Web Services, how an agent can understand an OWL based Web Service, and
how OWL Web Services can communicate with agents to obtain services required to
accomplish a task. Since both OWL and FIPA SL have different principles in terms of
syntax, semantics and implementation, devising transformations for such a system is quite
demanding and challenging. It is very important to highlight the aspect that the ontologies
that need to be transformed need to share the same vocabulary set and a uniform structure. In
the future, however, dynamic support for ontologies can be provided. Second key concern is
to design a system that need not change the underlying specification and implementations of
both technologies, which is not a trivial task.

 68

The proposed architecture reuses components in our earlier work i.e. AgentWeb Gateway
(Shafiq et al., 2005). Major reused components are ACL to SOAP and SOAP to ACL
converters. The proposed architecture shown in Figure 4.1 outlines main subsystems and
their interaction. The brief description of the subsystems and the interaction is highlighted in
the next sections.

4.6.1 Agents Communicating with OWL Based Services

Consider a case of an agent that needs to establish communication with OWL based Web
Service for service utilization. Figure 4.2 shows the scenario where an agent initiates a search
request for a particular service. This search requires a number of steps starting from the
transformation of the ACL search query into SOAP search query using ACL to SOAP
converter and forwarding it to UDDI where the required service is registered. Once the
software agent obtains a reference to the required service, it retrieves the service, and extracts
associated parameters necessary for service consumption.

Figure 4.2: Agents Communicating with OWL based services

It is important for the agent to be aware of the ontology being used, Agent-Action

Schema, Predicate Schema and Concept Schema. For this reason the web service is
processed through the Ontology Gateway that generates the FIPA compliant equivalent

 69

message of the content that was previously described in Web Ontology Language. The
Agent-Action schema contains the list of actions that the Agent can perform, whereas the
Predicate schema in the Agent’s ontology contains a list of outcomes/responses of the Agent,
and finally the Concept schema defines the entities and their properties.

4.6.2 OWL Based Service Communicating with Agent

Figure 4.3 depicts a scenario where a web client requests information about a service that
was published in a Multi-agent Systems environment. As the query was transferred through
SOAP protocol and was carrying XML based data therefore was routed to SOAP to ACL
module.

Figure 4.3: OWL based services interacting with Agents

This module retrieves the service name and additional parameters, whereas initiating a

valid ACL-based Directory Facilitator search query to the agent platform. Directory
Facilitator of the agent platform then carries out a search and if requested service is retrieved,
then the service name is passed to the agent who initiated the request through Ontology
Gateway.

 70

In this process, Ontology Gateway converts FIPA SL content into an equivalent OWL

content, and service parameters are embedded into the SOAP message, which is forwarded to
the web client that initiated the search requested for the service. This enables the web clients
to utilize the Ontology Gateway for retrieving information from a Multi-gent System.

The Ontology Gateway enables bidirectional semantic communication between OWL

based services and FIPA compliant agent system. The process of translation from OWL to
FIPA ontology is complete but numerous tasks are required. For instance, in the Ontology
Gateway, parsing of each and every concept in a given ontology is performed, which requires
recompilation of the ontology upon the addition of new concept.

4.7 Details of Architecture Components

 This section provides a detailed view of each component of Ontology Gateway along
with its π-ADL specifications each module in detail. The objective of using π-ADL
(Architecture Description Language) is its primary focus on the software architecture
description at the mathematical sense and the ability to reason about it. π-ADL encompasses
the architecture centric constructs for representing the structure, as well as behavioural
details of any system. The constructs provided by the π-ADL provide the complete freedom
of defining the dynamic behaviour, interactions among various entities, and constraints for
any architectural model. Also tool support is provided in the form of π-ADL.NET compiler
to formally validate these specifications.

The Ontology Gateway proposed in this thesis addresses the issues of communication

between agents and Web service. However, it is difficult to develop a complete executable
system due to the broad scope of the project and the technologies involved. Therefore, the
formalization of the architectural components is provided through the use of π-ADL that
provides all the necessary constructs for describing dynamic architectures. The benefit of
these π-ADL specifications is the early executable model of the system that is technology

Π-ADL

π‐ADL (Architecture Description Language) is a formal language and
its primary focus is on software architecture description in a
mathematical way and the ability to reason about it. Formal
foundations of π‐ADL are based on higher‐order typed π‐calculus.

neutral. A
clear and

Diffe

required
communi
compone
Figure 4.
is made
playing
communi

Another imp
d unambiguo

erent compon
to overco

ication. Bas
ents, inputs,
.4 depicts th
by the acto
their roles
icate through

F

portant facto
ous specifica

nents have b
ome the co
ed on the fu
outputs hav

he π-ADL m
or represente

in the co
h shared con

igure 4.4: T

or for the fo
ations of the

been introdu
ommunicatio

unctionality o
ve been clea
odel of the o

ed as a beha
ommunicatio
nnections for

The π-ADL m

71

ormal specif
system.

uced as a pa
on gap be
of these com
arly specifie
overall syste
aviour and t
on process
r communica

model of the

fications usi

art of Ontolo
etween agen
mponents, th
ed and exec
em where th
the other co

described
ation.

overall arch

ing π-ADL

ogy Gateway
nts and W

heir interactio
cuted using
he communic
omponents p

as an abs

hitecture

is to provid

y that will b
Web service
on with othe
π-ADL.NET

cation reques
participate b
straction an

de

be
es
er
T.
st

by
nd

 72

4.7.1 Control Unit

First of all, the requesting agent initiates the communication process with the services
exposed by Ontology Gateway and sends its reference and query. This query is received by
the Control Unit. The query received contains a number of parameters i.e. if it is a request or
a response, who is the sender, reference of the receiver, content, language used and reference
ontology, from which the Control Unit identifies the necessary actions to be taken. Figure 4.5
presents the π-ADL specifications of the control unit where first the agent is validated to
check if the agent is registered. If the agent, is registered only then the communication
initiates, otherwise the request is discarded. Agent authenticity is described in terms of true
and false hence the connection receives either of these values if the agent is recognized. Once
the authenticity of the agent is checked then the requested service parameters are sent to the
ontology agent for further processing. During the communication or negotiation process it
sometimes becomes necessary to take additional information from the user agent therefore
the Control Unit is also responsible for sending out the additional parameters that are
required in order to make a service binding.

The bold words in the code show the keywords provided by π-ADL. Lines 1 to 4 in figure

4.5 presents the CU as an abstraction with cuQuery as parameter which is composed of
certain parameters used in communication. Line 3 presents the content field which is a view
of multiple values. Line 18 declares a connection vConn between the Control Unit and the
Ontology agent to check the agents authenticity, isAgentValidated is the field of the Boolean
type which means it is true if the agent is authentic and false if it is not. Line 23 shows that
response is received from the ontology agent specifying if the agent is registered or not. If the
agent is registered then the query is sent to the negotiation module for further processing as
shown in line 35, if it is not a registered agent then a response is sent with a message
unrecognized request as highlighted in line 28.

1. value CU is abstraction (cuQuery : view[request : String, sender : String, receiver : String,
2. content : view[service_id : String, service_name : String,
3. params : sequence[view[name : String, val : String]], numOfParams : Integer],
4. language : String, ontology : String, reply_with : String])
5. {
6. aConn : Connection[view[request : String, sender : String, receiver : String,
7. content : view[service_id : String, service_name : String,
8. params : sequence[view[name : String, val : String]], numOfParams : Integer],
9. language : String, ontology : String, reply_with : String]];
10. qConn : Connection[view[request : String, sender : String, receiver : String,
11. content : view[service_id : String, service_name : String,
12. params : sequence[view[name : String, val : String]], numOfParams : Integer],
13. language : String, ontology : String, reply_with : String]];
14.
15. via qConn receive query;
16. unobservable;
17. isAgentValidated : Boolean;
18. vConn : Connection[Boolean];
19.

 73

20. //this is where we invoke ontology agent
21. via out send "*** CU ***\n\n--Validating Agent Authenticity--\n";
22. via OA send cuQuery where {vConn renames vConn};
23. via vConn receive isAgentValidated;
24. via out send "*** CU ***\n\n";
25. if (!isAgentValidated) do
26. {
27. via out send "--Unrecognized Agent--\n";
28. cuQuery::reply_with = "Unrecognized request";
29. via qConn send cuQuery where{qConn renames qConn};
30. done;
31. }
32. else do
33. {
34. via out send "--Forwarding service profile parameters to NM--\n";
35. via NM send cuQuery where {aConn renames cConn};
36. }
37. }

Figure 4.5: Control Unit specifications in π-ADL

4.7.2 Ontology Agent

As soon as the control unit delegates the information to the ontology agent it is then the
responsibility of this agent to propagate the different messages that are being received or sent
from either the Web services or the web client to route them to the appropriate module for
further processing. The Ontology Agent will be receiving a query from agents in the form of
ACL messages. It will then reply to the agents by executing those queries on the registered
ontologies and sending an ACL message as a reply. Whereas the web clients will be sending
the queries using SOAP as a protocol therefore it will route that message to the SOAP to
ACL converter which will extract the contents in message and will then send an ACL
message to the Ontology agent with the parameters that were received by the web client.

 In Figure 4.6 Ontology agent specifications are written in π-ADL, where OA is viewed as

an abstraction and declared in lines 1 to 4 that receives an input and delegates the task to
appropriate module based on the type of request/response that is to be performed. Line 6
defines the connection vConn established between the Control Unit and the Ontology Agent
with the result as a Boolean value declared in line 7 in order to determine that the agent is
registered or not as this value has to be utilized by the CU. Once the agent is validated to be
registered with the agent platform then the message is forwarded to the transformation
module for the conversion which through a connection between the transformation module
that is oaQueryConn and is declared from lines 8 to 11. The transformation processes the
message based on its type which can be a SOAP message, an ACL message or it could be
content in the form of OWL or FIPA SL. It is clear from the π-ADL specification of the
ontology agent that the structure of the query that is forwarded from the Control Unit
abstraction is compatible with the Ontology agent and is composed of the following fields.

 74

A typical message contains the following fields:

request: a performative which has data type string and used for requesting or
 sending information.
sender: address of the entity sending the query.
receiver: receiver parameter defines the address of the entity going to receive the
 message.
content: contains the services with their name and number of parameters
 associated with that service.
language: the type of language used which could be SL or OWL.

 ontology: this field is the name of the ontology used
 reply-with: this field highlights the expression used by the entities to identify the
 message.

1. value OA is abstraction (oaQuery : view[request : String, sender : String, receiver : String,
2. content : view[service_id : String, service_name : String,
3. params : sequence[view[name : String, val : String]], numOfParams : Integer],
4. language : String, ontology : String, reply_with : String])
5. {
6. vConn : Connection[Boolean];
7. result : Boolean;
8. oaQueryConn : Connection[view[request : String, sender : String, receiver : String,
9. content : view[service_id : String, service_name : String,
10. params : sequence[view[name : String, val : String]], numOfParams : Integer],
11. language : String, ontology : String, reply_with : String]];
12.
13. result = true; //default initialization
14. via out send "**** OA ****\n\n";
15. //lookup service availability from different transformation components, and update the value of result
16. via OwlToSl send oaQuery where {oaQueryConn renames convQueryConn};
17.
18. unobservable;
19.
20. via SlToOwl send oaQuery where {oaQueryConn renames convQueryConn};
21.
22. unobservable;
23.
24. via AclToSoap send oaQuery where {oaQueryConn renames convQueryConn};
25.
26. unobservable;
27.
28. via SoapToAcl send oaQuery where {oaQueryConn renames convQueryConn};
29.
30. unobservable;
31.
32.
33. via out send "--Communicating service availability to CU--\n";
34. compose
35. {
36. via vConn send result;
37. and
38. done;
39. }

 75

40. }
41. }

Figure 4.6: Ontology Agent specifications in π -ADL

4.7.3 OWL to FIPA SL Module

When the Ontology agent receives the information in the form of OWL from the web

client it requires translating it into equivalent FIPA content language that is FIPA SL. The
transformation takes place based on the mappings provided in Table 4.2 and Table 4.3.

4.7.4 FIPA SL to OWL Module

 When the information is propagated from the agent platforms to the web clients the
content languages that is FIPA SL has to be translated into equivalent web understandable
content that is OWL. In this case, therefore, this module will perform the translation based on
Table 4.2 and Table 4.3.

4.7.5 SOAP to ACL Module

For an agent to understand the content that is sent by a web client it is necessary that the

protocol that is carrying information from web client should be in compliance with the
agent’s protocols. Therefore, SOAP to ACL will generate an equivalent ACL message in
correspondence to every SOAP message that was sent.

4.7.6 ACL to SOAP Module

ACL to SOAP module is utilized when an agent is sending the information through the

agent platform to the web client and as the web recommends only the use of SOAP therefore
the ACL component will transform the sent information into the form that is compatible with
the SOAP.

1. value OwlToSl is abstraction (convQuery : view[request : String, sender : String, receiver : String,
2. content : view[service_id : String, service_name : String,
3. params : sequence[view[name : String, val : String]], numOfParams : Integer],
4. language : String, ontology : String, reply_with : String])
5. {
6. convQueryConn : Connection[view[request : String, sender : String, receiver : String,
7. content : view[service_id : String, service_name : String,
8. params : sequence[view[name : String, val : String]], numOfParams : Integer],
9. language : String, ontology : String, reply_with : String]];
10. unobservable;
11. }

 76

12.
13. value SlToOwl is abstraction (convQuery : view[request : String, sender : String, receiver : String,
14. content : view[service_id : String, service_name : String,
15. params : sequence[view[name : String, val : String]], numOfParams : Integer],
16. language : String, ontology : String, reply_with : String])
17.
18. {
19. convQueryConn : Connection[view[request : String, sender : String, receiver : String,
20. content : view[service_id : String, service_name : String,
21. params : sequence[view[name : String, val : String]], numOfParams : Integer],
22. language : String, ontology : String, reply_with : String]];
23. unobservable;
24. }
25.
26. value AclToSoap is abstraction (convQuery : view[request : String, sender : String, receiver : String,
27. content : view[service_id : String, service_name : String,
28. params : sequence[view[name : String, val : String]], numOfParams : Integer],
29. language : String, ontology : String, reply_with : String])
30. {
31. convQueryConn : Connection[view[request : String, sender : String, receiver : String,
32. content : view[service_id : String, service_name : String,
33. params : sequence[view[name : String, val : String]], numOfParams : Integer],
34. language : String, ontology : String, reply_with : String]];
35. unobservable;
36. }
37.
38. value SoapToAcl is abstraction (convQuery : view[request : String, from : String, to : String,
39. body : view[class : String, fields : sequence[view[name : String, val : String]],
40. properties : sequence[any], subclasses : sequence[any], restrictions : sequence[any]],
41. fault : String, reply_with : String])
42. {
43. convQueryConn : Connection[view[request : String, sender : String, receiver : String,
44. content : view[service_id : String, service_name : String,
45. params : sequence[view[name : String, val : String]], numOfParams : Integer],
46. language : String, ontology : String, reply_with : String]];
47. soapView : view [encoding_style : String, from_http : String, to_http : String, body : String,
48. fault : String];
49. aclView : view [encoding : String, sender : String, receiver : String, content : String,
50. performative : String,
51. reply_to : String, ontology : String, protocol : String,
52. conversation_identifier : String,
53. reply_with : String, in_reply_to : String, reply_by : String];
54. unobservable;
55. }

Figure 4.7: Transformation Component

4.7.7 Transformation Component:

Since this ontology is written in OWL for a Semantic Web service, although it is
considered as a valid content language by FIPA, but it is not as expressive as SL, so there is a
need to translate this ontology from OWL to SL. The Control Unit feeds this ontology to the
OWL to FIPA ontology translator through Ontology agent, which returns the FIPA Ontology
equivalent of the OWL ontology fed as an input. This is done with the help of a matchmaking
service that returns a reference or handle of that service to the Ontology agent and then to

 77

Control Unit. This handle enables the Control Unit to fetch the service profile of the service
and its ontology, without which semantic understanding is unattainable.

Figure 4.7 presents the π-ADL specifications for the transformation modules i.e. OWL to

SL, SL to OWL, ACL to SOAP, SOAP to ACL based on the type. If it is content
transformation it will be forwarded to SL to OWL/OWL to SL modules or if it is the protocol
transformation it will be forwarded to ACL to SOAP/SOAP to ACL respectively. These four
modules accommodate one request at a time as requested by the Ontology Agent. The
transformation module takes an input query from the Ontology agent and then converts the
query into the format required by the ontology agent. Lines 1 to 4 present the OWLtoSL
abstraction. The message is sent by the ontology agent to the transformation module by the
connection convQueryConn so the message format is consistent to the one used by the
agents. However, within the content field the view keyword is used which depicts a service
name identified by the identifier and the conversion is done based on mappings provided in
the earlier section of this chapter and requires parsing of the query, therefore these low level
details were simply replaced by the unobservable keyword.

An important aspect to be noted in the π-ADL specifications of Figure 4.7 is the

abstraction SOAPToAcl presented in lines 38 to 41. The parameters of the convQuery are
different from that of the previous abstractions of the transformation modules. The from field
is presented by the type string and contains the address of the web client and to field
represents the entity to which the web client will be communicating in the agent platform.
The body of the message, however, contains classes, fields, properties, subclasses,
restrictions etc. The body field in line 39 contains the various classes with the fields
associated. The properties, subclasses and restrictions are defined as sequence[any].Line 47
and 49 depict the soapView and aclView containing how the parameters are represented from
SOAP to ACL when the translation takes place.

Directory Facilitator (DF)

Directory Facilitator is a registry that exists in the agent platforms
where the agents can register themselves along with their service
descriptions and the other agents can discover them.

 78

4.7.8 Negotiation Module:

Negotiation can be referred as an iterative process for communication and taking decisions
between the participating parties (Bichler, 2003) who: (i) are unable to achieve their goals
through simple communication (ii) share information between one another based on some
arguments and relevant responses (iii) cooperate with one another on interdependent tasks;
and (iv) finally look for a decision which leads to consensus of the participating bodies. The
result of a negotiation process is not guaranteed to be an agreement because sometimes the
participating bodies might not come to an agreement thus resulting in a disagreement. A rule
set or a decision engine is required in order to opt from a set of alternatives that what actions
should be performed.

In order to conduct meaningful negotiation between agent and Semantic Web Service, a

negotiation module also known as a Mediator, needs the reference of the requesting agent, its
FIPA ontology and service profile of the Semantic web service. Handles to all of these
resources are passed to this module at the time of transfer of control to it by Control Unit.
This module shall create an agent at runtime referred to as Runtime Agent (RA), in which
shall be used to query the web service ontology. The Runtime agent is responsible for

Figure 4.8: Negotiation among agents and Web Services

 79

requesting parameters from the service provider and the requesting agent once the binding
has been done between agent and service. Moreover, the Runtime agent extracts all
negotiable parameters from the profile of the Semantic web service with the help of
understanding its ontology.

1. value NM is abstraction(nmQuery : view[request : String, sender : String, receiver : String,
2. content : view[service_id : String, service_name : String,
3. params : sequence[view[name : String, val : String]], numOfParams : Integer],
4. language : String, ontology : String, reply_with : String])
5. {
6. cConn : Connection[view[request : String, sender : String, receiver : String,
7. content : view[service_id : String, service_name : String,
8. params : sequence[view[name : String, val : String]], numOfParams : Integer],
9. language : String, ontology : String, reply_with : String]];
10. nConn : Connection[view[request : String, sender : String, receiver : String,
11. content : view[service_id : String, service_name : String,
12. params : sequence[view[name : String, val : String]], numOfParams : Integer],
13. language : String, ontology : String, reply_with : String]];
14.
15. via CU send nmQuery where {cConn renames aConn};
16. via cConn receive cuQuery;
17. via out send "**** NM ****\n\n";
18. if (nmQuery::content::service_name == "service") do
19. {
20. via out send "--Runtime Reservation initiated for processing user request--\n";
21. via rt_Reserve send nmQuery where {nConn renames rtConn};
22. }
23. }

Figure 4.9: Negotiation Module

Figure 4.9 presents the π-ADL specification of the negotiation module where two

connections have been established, that is the cConn and nConn with the CU and rt_Reserve
abstraction respectively from lines 6-14. As discussed in the Control Unit, the additional
parameters can be requested in order to have a service binding between the service provider
and the agent, hence the nmQuery is forwarded to the CU abstraction for the parameters
request. If the value for the service_name is equivalent to the service then the nmquery is
forwarded to the rt_Reserve abstraction, as presented in the line 21, for further processing.

1. value rt_Reserve is abstraction(nmQuery : view[request : String, sender : String, receiver : String,
2. content : view[service_id : String, service_name : String,
3. params : sequence[view[name : String, val : String]], numOfParams : Integer],
4. language : String, ontology : String, reply_with : String])
5. {
6. rtConn : Connection[view[request : String, sender : String, receiver : String,
7. content : view[service_id : String, service_name : String,
8. params : sequence[view[name : String, val : String]], numOfParams : Integer],
9. language : String, ontology : String, reply_with : String]];
10.
11. uddiResp : sequence[String];
12. uddiRespConn : Connection[sequence[String]];
13.
14. serviceInfo : view[service_name : String,
15. params : sequence[view[name : String, val : String]], numOfParams : Integer, message : String];
16. serviceInfoConn : Connection[view[service_name : String,

 80

17. params : sequence[view[name : String, val : String]], numOfParams : Integer, message : String]];
18.
19. via out send "***rtService***\n\n";
20.
21. serviceInfo::service_name = "Service Name";
22. serviceInfo::params = nmQuery::content::params;
23. serviceInfo::numOfParams = nmQuery::content::numOfParams;
24.
25. via out send "--Sending request to UDDI--\n";
26. via UDDI send serviceInfo where {uddiRespConn renames respConn};
27. via uddiRespConn receive uddiResp;
28.
29. via out send "***rtService***\n\n--Service proposals from UDDI--\n";
30. via out send uddiResp;
31. via out send "\n\n";
32.
33. via DE send serviceInfo where {serviceInfoConn renames reqServiceConn};
34. via serviceInfoConn receive serviceInfo;
35. via out send "***rtService***\n\n--Optimal service returned by DE--\n";
36. via out send serviceInfo;
37. via out send "\n\n";
38.
39. via dynamic(serviceInfo::service_name) send serviceInfo
40. where {serviceInfoConn renames reqServiceConn};
41. via serviceInfoConn receive serviceInfo; //serviceInfo now contains additional parameters request
42.
43. nmQuery::request = serviceInfo::service_name;
44. nmQuery::sender = "";
45. nmQuery::receiver = "";
46. nmQuery::content::service_id = "";
47. nmQuery::content::service_name = "";
48. nmQuery::content::params = serviceInfo::params;
49. nmQuery::content::numOfParams = serviceInfo::numOfParams;
50. nmQuery::language = "";
51. nmQuery::ontology = "";
52. nmQuery::reply_with = "";
53.
54. via rtConn send nmQuery; //sent to Actor
55. via rtConn receive nmQuery; //received from Actor
56.
57. serviceInfo::service_name = "service";
58. serviceInfo::params = nmQuery::content::params;
59. via serviceInfoConn send serviceInfo; //sent to service provider
60. via serviceInfoConn receive serviceInfo; //received from service provider
61.
62. nmQuery::reply_with = serviceInfo::message;
63. via out send "\n\n***rtService***\n\n--Service invocation successful--\n";
64. via rtConn send nmQuery;
65. }

Figure 4.10: Runtime Agent

Figure 4.10 presents the π-ADL specifications of the Runtime agent declared as

rt_Reserve abstraction which takes nmQuery as an argument received from the NM
abstraction as shown in lines 1 to 4. The rtConn connection is established with the NM
abstraction for communication as presented in line 6. The uddiResp is the value retrieved
from the UDDI by establishing a connection uddiRespConn with it as shown in line 12 of
figure 4.10. Lines 25-27 depict the request sent to the UDDI and the uddiResponse received

 81

as a result. There can be a number of services available in the UDDI that will be returned to
the Runtime agent which will then forward it to the DE abstraction as shown in lines 33 to 37
which retrieve the most relevant service based on a threshold value. Lines 43 to 52 present
the parameters that are required to identify the communication agent with the Web service.
The service retrieved from the DE abstraction might request the additional parameters,
therefore the request is sent back to the negotiation module which forwards that request back
to the CU abstraction as shown in lines 54 and 55 that the nmQuery is sent through rtConn
and the response is received. A message is sent back through rtConn to NM abstraction on
the successful invocation of the service shown in line 64.

4.7.9 Decision Engine

Once a number of services are available, then the decision engine selects the most

appropriate service among the retrieved service based on a particular threshold value, which
specifies the extent of similarity in the parameters of the service that was requested and the
one that was retrieved. Based on this selection a particular service is retrieved which is then
invoked by the run time agent.

The π-ADL specifications shown in figure 4.11 present the DE abstraction. The

reqServiceConn is a connection declared in line 4 with a number of parameters including the
service_name, params, numOfParams and a message. The service parameters are matched to
the parameters of the query generated by the agent as shown in lines 20 to 38. Then the most
appropriate service is selected based on a threshold value shown in line 40 to select the most
appropriate service based on the extent to which a service matches the requested service.

1. value DE is abstraction (reqService : view[service_name : String,
2. params : sequence[view[name : String, val : String]], numOfParams : Integer, message : String])
3. {
4. reqServiceConn : Connection[view[service_name : String,
5. params : sequence[view[name : String, val : String]],
6. numOfParams : Integer, message : String]];
7.
8. services : sequence[view[service_name : String,
9. params : sequence[view[name : String, val : String]],
10. numOfParams : Integer, message : String]];
11. numOfServices : Integer;
12. i : Integer;
13. j : Integer;
14. paramMatchCount : Integer;
15. fractionMatch : Float;
16. numOfServices = n;
17. i = 0;
18.
19. via out send "***DE***\n\n";
20. while (i < numOfServices) do
21. {
22. j = 0;
23. paramMatchCount = 0;

 82

24. while (j < reqService::numOfParams) do
25. {
26. if (reqService::params(j)::val == services(i)::params(j)::val) do
27. paramMatchCount = paramMatchCount + 1;
28. j = j + 1;
29. }
30. fractionMatch = paramMatchCount / reqService::numOfParams;
31.
32. if (fractionMatch >= threshold) do
33. {
34. reqService = services(i);
35. i = numOfServices;
36. }
37. i = i + 1;
38. }
39.
40. if (fractionMatch >= threshold) do
41. {
42. compose
43. {
44. via out send "--";
45. via out send reqService::service_name;
46. via out send " Service Selected--\n";
47. via reqServiceConn send reqService;
48. and
49. done;
50. }
51. }
52. else do
53. {
54. done;
55. }
56. }

Figure 4.11: Decision Engine

4.8 Summary

This chapter gave an overview of the proposed solution and addresses the questions that
were presented in chapter 2 of this thesis. The chapter presented the architectural view of the
system from structural and design view. The first section gave the overview of the Ontology
Gateway as a solution to overcome the semantic interoperability issues and to fulfill the
requirements of agent and Web services communication. Based on the facts that agents
utilize FIPA SL and Web services utilize the OWL as a content language, based on
comparative analysis mappings were devised to preserve the semantics of both technologies
when they communicate with one another. The last section of this chapter comprised of
details about the architectural components of the Ontology Gateway. As was discussed in the
previous chapter, the implementation of this whole system is a challenging and time
consuming task therefore we use π-ADL for specifying the architectural components that will
give the reader clearer and less unambiguous specifications, but will enable a better
understanding of the architectural components. The next chapter will highlight the proposed
architecture from a deployment view.

 83

Chapter 5

 84

Implementation and Validation

The aim of the previous chapter was to define the proposed solution from the

structural and design perspective. This chapter provides insight about the details from the
behavioural and deployment perspective of the proposed architecture. The functionality of
each component is highlighted through use cases and their interactions in the form of
sequence diagrams. Each component’s functionality is explicitly stated with the type of input
messages it receives and how it processes the input information and forwards it the
collaborating module. Different scenarios have been discussed where agents and Web
services request information for a particular service and then engage in a negotiation process.
The applicability of this work can be beneficial for all the stake holders that want to integrate
agents and the Web services and the work proposed is beneficial to a number of applications.
Two case studies have been introduced as a proof of concept.

The various components of the Ontology Gateway comprise of a Control Unit which

receives the input query from the initiating agent and then forward it to another component
referred to as the Ontology agent. The Ontology agent on receiving the message takes further
required steps to process the query if it is generated by the agent. The query can be submitted
to either of these modules that is SL to OWL or ACL to SOAP. The SL to OWL converter
converts the content of the query from FIPA Semantic Language to Web Ontology Language
because this information has to be sent over the web. But once the content is transformed
then it is also important to convert the protocols that are from ACL to SOAP. Similarly if the
request is generated by the Web client or the Grid client then OWL to SL and SOAP to ACL
are used for the conversion.

These steps are basically required for the communication process. However, when the

agent has once retrieved a service through this communication then it will engage itself using
a Negotiation Module that will then be further responsible for handling the negotiation
process through the Runtime agent. In case additional parameters are requested the Control
Unit will provide the additional parameters to the run time agent for service binding between
the provider and the consumer. This chapter discusses the details of these components from
the implementation specific perspective based on different scenarios.

CHAPTER 5

 85

5.1 Comparative Analysis of Service Discovery and Communication
Protocols
!

This section provides details on service discovery and communication protocol translation.
To understand these translations it is important to understand the resemblance in the structure
of both technologies. The comparisons specifications of both Web Services Framework and
Multi-agent Systems are presented in Table 5.1.

!
Table 5.1. Comparison between Directory Facilitator and UDDI Service Descriptions!

5.1.1 Analysis of service registry and discovery

!!!!!According to the W3C clients have to perform the service discovery in a global
registry called UDDI, whereas Multi-agents Systems provide the same service for discovery
through its directory facilitator or the yellow pages for the service. Both the technologies
have a different mechanism for storing information and how the discovery is performed.
UDDI maintains some business related information along with the service description
language that is WSDL. Whereas in the agent platforms the Directory Facilitator particularly
stores the service description language and does not maintain any other information as the
DF-AgentDescription is quite comprehensive.

The mechanism through which the services are retrieved varies between both technologies

also. While performing a search in the UDDI, a web service client invokes a method that is
specific to the WSDL related description or the other business related information stored by
the UDDI. Whereas, it is somewhat different in the case of Multi-agent Systems as the agent
has to initially substitute the required service parameters for the DF-AgentDescription object
that is used for service description. As soon as the Directory Facilitator receives the search

 86

request it performs the comparison between the request that was sent and the service related
information that was stored with it.
!

5.1.2 Analysis of communication protocols

This section addresses the translation difference between the communication protocols that
are used as a medium while communicating between the technologies, which are agents and
Web services. In FIPA compliant Multi-agent Systems, agents use Agent Communication
Language (ACL) whereas in Web services Simple Object Access Protocol (SOAP) is used as
the communication protocol.

!

Table 5.2. Comparison between communication protocols!!

Table 5.2 provides a comparative analysis of both protocols that are used by both these

technologies. Web services use simple object access protocol as a mode of communication
whereas the agents use the agent communication language for communication. !

The SOAP message contains the encoding details according to the specifications that are

provided by W3C. Whereas, the ACL message contains in itself the parameters that are
required according to the specifications of FIPA. The sender and receiver information is
contained in the underlying HTTP protocol header that is used by SOAP whenever it is
required. Figure 5.1 shows the conversion steps that are involved while converting ACL to
SOAP communication protocol.

While dealing with ACL, the sender field contains the information about the agent that
propagated the message and the receiver field contains the information of the recipients.

 87

Figure 5.1: ACL to SOAP conversion steps
!

The content of the message and operations are to be invoked and what were the inputs and
output are contained within the body of the SOAP message. SOAP contains a section named
‘Fault’ in its body to inform the client about any errors/exceptions that occurred at server
side, whereas in the case of ACL, it supports a number of performatives. List of features of
SOAP ends here, but ACL does not. ACL is very comprehensive as compared to SOAP. It
supports many other features as well which are given below.
!

There is an attributed named ‘Reply-to’ which is helpful during negotiation in which
messages are to be directed to the agent named in the reply-to parameter, instead of to the
agent named in the sender parameter. The ontology attribute contains the name of the
ontology which is used to give meanings to symbols used in message content. The protocol
attribute indicates the name of Interaction Protocol for negotiation being employed. There
can be multiple negotiations going on among multiple agents therefore the conversation-
identifier is used to identify individual conversation with multiple Agents. The Responding
Agent uses reply-with attribute to reply this message. To perform the SOAP to ACL
communication protocol translations it is necessary to understand the data contained in above
mentioned fields and to retrieve this data the conversion steps are depicted in Figure 5.2.

!

 88

!

Figure 5.2: SOAP to ACL conversion steps

5.2 Implementation details of the proposed system

This section specifies the implementation details of the proposed system middleware; the
aim is to solve the technical challenges that were faced during the translation between agents
and OWL based Web services. A number of scenarios have been devised in order to
understand the complete functionality of the system. The goal is to define the sequence of
steps that have to be followed and what are the participating components required to perform
a particular task. There are two main scenarios that are further bifurcated into a number of
scenarios to understand the functionality at a fine grain level.

5.3 Agents interacting with the semantically enabled Services

This section highlights the detailed design of the scenario where FIPA compliant agents
can interact with the semantically enabled Web services. The Ontology Gateway has been
designed in a way to facilitate the agents to discover the services that have been specified in
OWL. Figure 5.3 depicts a generic scenario where the agent initiates the communication with
the OWL based Web services. In order to perform a search or discover the services that are
available, the agent needs to have the basic vocabulary in terms of ontologies to carry out
further processing.

 89

 The agent can perform a local search in its own directory facilitator in order to retrieve

the services that are registered with it. These services can be limited and may not contain the
data that was required by the agent. Therefore the agent’s request is forwarded to the control
unit for further processing. As soon as the control unit receives the request it forwards it to
the Ontology Agent for further processing after validating that the request is from an
authentic agent (an authentic agent is the one registered with in the platform).

Figure 5.3: Agents interacting with the semantically enabled Web Services

In order for an agent to retrieve the web service the protocol transformation is necessary as

agents use ACL for communicating with one another whereas the Web services use SOAP as
a protocol. Therefore as soon as the ontology agent receives a request from the control unit
which is in ACL it forwards that request to ACL to SOAP converter that generates the
equivalent SOAP message that can be forwarded to the web service.

Moreover, the contents can be transformed from SL to OWL and appended in the message

that is forwarded. After retrieving the results from the UDDI the ontology agent is
responsible for translating the data from OWL to SL and also for resolving the protocol
transformation that is SOAP to ACL. As the ontology agent is now aware of the existence of

 90

the service and can access the published service, the WSDL service descriptions are then
retrieved through the ontology agent to access and bind with the service.

The Ontology Agent is then responsible for saving the ontology to the ontology server .The

agent can access these ontologies to resolve the semantic issues and can use them for
updating their information regarding the different types of schemas, i.e. concept, predicate
and aggregate schema. The whole ontology can be translated from OWL to FIPA ontology
based on the mappings provided in Table 4.1 and Table 4.2.

FIPA Agent Control Unit Ontology Agent FIPA SL to OWL OWL to FIPA SL SOAP to ACL ACL to SOAP Ontology Management Ontology Server
W3C Web Service
 Framework

Forward (P1,P2,....Pn)

translate from OWL to SL

Register Ontology(ontology)
Save Ontology

SOAP MSG(search S1)

Convert SOAP to ACL(S1)

Converted ACL MSG(S1)

Search DF(S1)

DF Search for S1

Send service agent ref (ref)

Service Agent ref(ref)

Convert FIPA SL content to OWL(S1)

Coverted content Message(S1)

Convert ACL to SOAP(ref)

Equivalent SOAP Msg(ref)

SOAP Reply(Service Agent ref)

Invoke service(Service Agent Ref)

Request Additional Parmaeters(P1...Pn)

Invoke Service agent(ref)

Inoke(ref)

Forward Parameters(P1...Pn)

Service binding

OA ref for service(s1)

translated content

Figure 5.4: Semantically Enabled Services/Grid Client Communicating with the Agents

5.4 Semantically Enabled Services/Grid Client Communicating with the
Agents

There are certain occasions when a service wants to know about the services available on

the agent platform. According to the vision of the Autonomous Semantic Grid the services
can be provided by anyone throughout the globe and the standards like OGSA and OGSI will

 91

facilitate the identifying and consuming of the services that are present even on someone’s
desktop. Keeping this context in mind a detailed description of a scenario is given where a
semantically enabled service or even a grid client can consume a service that is hosted on any
Multi-agent Systems.

 A scenario is presented in figure 5.4 where some Service or Grid client wants to retrieve

a service that is hosted on Multi-agent Systems. In Multi-agent Systems the services are
published in Directory Facilitator through which they can be discovered easily. In order for a
web entity to discover services from an agent platform a SOAP request is sent to the
Ontology Gateway where it is received by the Ontology Agent who continuously monitors
the incoming request and forwards them to the appropriate module for further processing. As
this request is coming from an outside entity that uses SOAP as a protocol, this request is
forwarded to the SOAP to ACL modules which converts and generate it in an equivalent
ACL message that is interpretable by the agents. The Ontology Agent then forwards this
information to the Directory Facilitator.

 If the service is found then the Directory Facilitator will generate an ACL message with

the reference of the agents that maintain the service. This content is then forwarded to the
Ontology Agent, that forwards it to the FIPA SL to OWL converter where different schemas,
like concept, aggregate and action schemas, are mapped into equivalent OWL classes and
forwarded back to the Ontology Agent which then sends it to ACL to SOAP for the protocol
transformation so that the query can be forwarded to the client that requested the information
about the service.

A single exchange of message might not be sufficient and therefore, a number of

messages can be exchanged. For example the agent hosting the service might request
additional parameters from the service which will be in OWL format in that case, they are
forwarded to the Ontology Agent that forwards it to OWL to SL converter to process it and
the translated ontology is stored by utilizing the ontology management module and is saved
for future use and the binding is established between service provider and consumer.

 92

Figure 5.5: Negotiation between agents and Web services.

5.5 Negotiation between agents and Web services

 In order to have a meaningful conversation between the agents and Web services, the

negotiation module plays a vital role in carrying on this process as depicted in figure 5.5. The
Ontology Agent needs to know the reference to the service and the ontology that has to be
used and by whom the request has been made. After processing the request through the
transformation module which can be either the content translation or the protocol
transformation the information is sent to the Negotiation module to initiate the negotiation
process.

Once the prerequisites for the implementation of negotiation protocol are set by the

Ontology Agent, it is now time for the negotiation module to initiate the negotiation process
according to a formalized protocol i.e. Contract Net Protocol. The runtime agent acts as the
initiator of the protocol and sends a service request/proposal with the requested agent

 93

preferences. These user preferences were retrieved with the help of the requesting agent
reference that was initially passed to the negotiation module by the Ontology Agent.

Along with getting these parameters from the requesting agent, the negotiation module

needs to have the agent’s ontology as well, so as to get a semantic understanding of what
these parameters mean based upon a common vocabulary. It can also be accessed with the
help of the agent’s reference that this module has. Such an understanding of the semantics
will help the negotiation module to map the information that the requesting agent possesses
to the information required by the service method that is going to be invoked as a result of
sending a service request. As a response to this, the participant would return all possible
services (proposals) to the Runtime agent. Each of these responses is the handle of a
Semantic web service that closely matches the requested service description i.e. if a request
was made for retrieving flight reservation services then the services providing flight
reservation will be retrieved according to the search criteria, which can be based on date, cost
of the ticket etc.

These responses are passed to a decision engine. We assume that the decision engine is an

independent component that uses artificial intelligence and semantic deduction rules to
choose the best possible option out of many as for the closest match with user preferences.
The decision engine sends the chosen option back to runtime agent which invokes the
corresponding service. The service is executed as a result of this invocation and a response is
sent to the runtime agent indicating whether the service has succeeded or failed. The runtime
agent forwards this response to the negotiation module which stores the results in its
knowledge base and returns control to the Ontology Agent. Finally, the requesting agent is
informed of the results of negotiation along with all associated details through the control
unit and this is how the negotiation process is carried out.

!

!

!

!

!

Contract Net Protocol

The Contract Net Protocol is an interaction protocol, where one
agent initiates the request and acts as a central body and wishes to
perform some task whereas the other agents submit proposals for
cooperation to perform that task, while some refuse. Negotiation
process is carried out by the agents who proposed for cooperation.

 94

5.6. Validation

The previous section provides the behavioural aspect of the system. However, this section

gives the validation results of the Ontology Gateway when tested for the translation of
sample ontologies. A prototype implementation of some components has been proposed and
developed at NUST-Comtec lab. A test bed composed of a machine having a Tomcat web
server, Protégé OWL installed in it and Jena 2.4 to enable the web server to create and
deploy OWL Web services. On the second machine, the proposed Ontology Gateway was
installed to provide the required translation, registration and querying of translated ontologies
which is a part of FIPA compliant agent platform SAGE (Ahmad et al., 2004), (Ghafoor et
al., 2004), (Khan et al., 2005), on which an agent providing some services was deployed. For
testing purposes, the Ontology Gateway was integrated with the SAGE platform and all the
requests for communication were routed through this single machine. The ontology gateway
converted the semantic annotations into a comprehendible form that was understood by
agents and web services. In this test bed the machines used were Pentium IV core 2 duo with
Windows XP and 4 GB RAM. The current version of the Ontology Gateway was tested to
explore communication process and to demonstrate the performance of the Ontology
Gateway itself.

 95

Table 5.3. Extended mappings between FIPA Ontology and OWL Ontology tags

The ontologies are composed of classes, relationships, properties and constraints which

are translated from FIPA SL to OWL and from OWL to SL based on mappings provided in
the previous chapter. However, Table 5.3 shows some of these translations of people
ontology defined in FIPA to OWL ontology and vice versa. To represent any concept, we use
the concept schema clause in the FIPA ontologies definition. Similarly for defining
relationships between two concepts, the predicate concept is used. If the agent can perform

 96

any particular actions then the Agent-action schema can be defined. Aggregate schemas are
defined for groups of individual classes which inherit their capabilities from a parent class.
The Concept schema, Predicate schema, Agent-action schema and Aggregate schema are
translated to construct the equivalent OWL ontology and vice versa.

5.6.1 FIPA to OWL Translation

Figure 5.6 shows the algorithmic steps that are performed while the concepts from FIPA
Ontology have to be translated into equivalent OWL ontology concepts and then the
messages are propagated to the Ontology Agent.

Figure 5.6: FIPA to OWL conversion steps

The People Ontology shown in figure 5.7, defined in FIPA SL is used to validate our

system component, i.e. FIPA SL to OWL Component. In order to make translations between
FIPA SL to OWL, there were certain challenging tasks that were catered.

 97

Figure 5.7: People Ontology in Protégé
* Ref. Please see APPENDIX A for Detailed Ontology

FIPA SL implementation of SAGE provides explicit support for defining concepts,
relationships, aggregate classes and agent actions through the use of Concept Schema,
Predicate Schema, Aggregate Schema and Agent-action Schema, that is not supported in
OWL as it was not designed keeping the agent systems in view. The implementation
component of FIPA SL to OWL translates these expressions into their equivalent OWL
mappings in terms of classes, restrictions and attributes by preserving the semantics of
mappings provided in this thesis. Figure 5.7 shows the snapshot of Protégé where certain
concepts and their properties were shown.

5.6.2 OWL to FIPA Translation

Figure 5.8 illustrates the algorithmic steps that are involved while translating from the

OWL concepts that are being sent by the SOAP message into their equivalent FIPA concepts.

Similarly, the other components, of Ontology Gateway were also checked by translating

other sample ontologies containing different classes, and subclasses; their properties and
restriction on them, and their details are given based on their relationships with each other,
which were converted to the equivalent ontology in FIPA SL. Figure 5.9 shows a sample
ontology with concepts and their relationship with each other in Protégé.

 98

Figure 5.8: FIPA to OWL conversion steps

Figure 5.9: University Ontology in Protégé

* Ref. Please see APPENDIX B for Detailed Ontology

 99

(query‐ref
:sender (agent‐identifier :name i)
:receiver (set (agent‐identifier :name j))
:content "((all ?X (STUDENT_OF :student (:STUDENT :age
"24" :name “Pierre" :country France :city Vannes))))"
:language fipa‐sl2
:ontology University
:reply‐with query1)

Figure 5.10: ACL Query to retrieve information for a particular entity.

Figure 5.10 represents the ACL messages that are generated by the agents to query the

information regarding a particular entity from a translated ontology.

5.7. Performance Evaluation

This section contains the results of the prototypic implementation of the ontological
conversion modules in terms of the amount of time for ontology to be converted into its
equivalent OWL or FIPA. The evaluation was done on the basis of the number of concepts
that were used in the ontologies and the amount of time taken in the conversion of these
ontologies. Both of the graphs show the linear behaviour in translation, which indicates that
the conversion modules works satisfactorily for a limited scale of ontology conversion. The
ontologies that were tested for now have a uniform structure and common vocabulary and
range from 1000 to 2000 lines.

5.7.1 FIPA SL to OWL Translation Analysis

Figure 5.11 shows the ontology translation time for the conversion of FIPA Semantic
Language to the Web Ontology Language. When discussing the FIPA ontologies it should be
clear that the information is in the form of java objects and is binary based. The ontology size
varies on the basis of the concepts that it contains and the time taken in order to convert these
concepts into equivalent OWL contents. The translation time as shown in figure 5.11 shows
that increasing the classes or their properties does not affect the performance of the overall
system. Therefore, if the Ontology Gateway is integrated with any FIPA compliant Multi-
agent system will not cause an overhead to the system. One important aspect to be mentioned
is that while translating from FIPA SL to OWL the accuracy of the translations was 94

 100

percent. The rest of the 6 percent is the content that is relevant to agent behaviour and is not
required as we are using the web services for communication on the other end.

Figure 5.11: FIPA SL to OWL Translation

5.7.2 OWL to FIPA SL Translation Analysis

The section explores the time consumed in translation of the OWL ontology received

from the web entity into its equivalent FIPA ontology. OWL ontologies are plain text based
files and not in the form of objects or binary information therefore there parsing takes a little
more time than the FIPA ontologies. The ontological translation time varies on the basis of
the number of tags that the ontology contains. Figure 5.12 shows the ontological translation
time for the conversion of OWL to FIPA SL ontologies.

SL to OWL

0
100
200
300
400
500
600
700

15 30 45 60 75 90 105 120 135 150

Fields(expressions)

Ti
m

e(
m

ill
is

ec
on

ds
)

SL to OWL

 101

Figure 5.12: OWL to FIPA SL Translation

The time taken from OWL to FIPA SL is not only a little more but the accuracy is almost 90
percent somewhat less than that of FIPA SL to OWL translation this is because OWL is
based on description logic and has comparatively less expressivity as discussed in the
precious sections.

5.7.3 Ontology Translation Comparison between OWL and FIPA

Figure 51.3 shows the comparative analysis of time taken while converting the OWL to
FIPA ontology and vice versa. As previously discussed, the information in the FIPA
ontology is in the form of objects and is binary information, thus it takes comparatively less
time in translation than that of OWL. OWL, however, contains the information in the form of
plain text. Moreover, another factor involved in the overhead time is the delay caused by
translating extending the query for checking the parent of a particular concept.

OWL to SL

100

200

300

400

500

600

700

15 30 45 60 75 90 105 120 135 150

Fields(Tags)

Ti
m

e(
m

ill
is

ec
on

ds
)

OWL to SL

 102

Figure 5.13: Ontology Translation comparison between OWL and FIPA

The results have shown that increasing size of the ontology does not affect the performance
of system and has proven to be very effective. Therefore, when the Ontology Gateway is
integrated with the Multi-agent Systems or Web/Grid clients it will not affect the
performance of the system. Moreover, the scalability issue has not been considered in this
implementation of the system and is left for exploration in our future work.

5.8 Classes of Applications

The previous section highlights the implementation specific details of the proposed

architecture discussing the details regarding the scenarios analyzed for the communication
between the agents and the Web services. Principally the Ontology Gateway can be used in a
number of applications which can vary from, but are not limited to:

• Grid Systems
• E-Science
• E-Business
• E-Health
• E-Markets
• Information based systems

The current implementation of the Ontology Gateway has been implemented as a

standalone application but in future we aim to integrate Ontology Gateway with the Grid
middleware’s like Globus toolkit for the categorization of data and storage intensive
resources. As shown by the results in the previous section that capabilities of the Ontology
gateway will not only apply the agent capabilities in the discovery and accessing process of

Ontology Conversion Comparison

0
100
200
300
400
500
600
700

15 30 45 60 75 90 105 120 135 150

Fields

Ti
m

e(
m

ill
is

ec
on

ds
)

OWL to SL
SL To OWL

 103

services located in the Grids but will also provide the monitoring and utilization of resources
with minimum human intervention.

 Based on our interest in this section we have presented two case studies as principal

candidates for implementation of the proposed architecture and its verification. The first one
is about the business to consumer (B2C) and has been formally specified using the π-
ADL.Net. Whereas, the second case study gives an overall view of the Ontology Gateway
working in a business to business (B2B) environment.

5.8.1 Flight reservation using Ontology Gateway

In this section, a flight reservation service case study has been discussed from a business
to consumer perspective. The case study is shown in figure 5.14 and is explained based on
the architectural components of Ontology Gateway and the functionality they will perform.
An agent wants to retrieve a flight reservation service based on different criteria. The flight
reservation service provides the services for online flight reservation. While choosing one of
the available flights, factors such as time, fare, and date are negotiable parameters. We aim to
carry out this negotiation between the requesting agent and the flight service. Given below is
a sequence of how control shall be exchanged among various modules of an Ontology
Gateway and what actions shall take place in between.

Figure 5.14: Flight reservation using Ontology Gateway

 104

First of all, the meeting requesting agent sends a message to Ontology Gateway
expressing its desire to engage in negotiation. The message is received by the Control Unit.
The content of the message contains the description of a flight service. The Control Unit
forwards this information to the Ontology agent which after translating the requested query
sends a search request for the UDDI. The handle of the service is returned to Control Unit
with the help of which the Control Unit fetches the profile of the service and its ontology.

The Control Unit feeds this ontology to its OWL to FIPA ontology translator, thus

acquiring the FIPA Ontology equivalent of the OWL ontology. Then, the Control Unit passes
the reference of the meeting scheduler agent and its FIPA ontology along with the profile of
the semantic web service to the Negotiation Module. Negotiation Module creates a Runtime
agent which extracts all negotiable parameters of the web service profile. Next, Negotiation
Module acquires the user preferences for all the negotiable parameters with the help of the
meeting scheduler reference that was sent to it by the Control Unit.

It is now required to invoke the web service’s method that takes user requirements as input

parameters and returns a list of matching flights. These parameters shall be passed in a
format and sequence expressed in the service profile. The Runtime agent invokes the Web
service. As a result, the Runtime agent shall receive a list of flights, closely matching user
criteria. These responses are equivalent to the “proposals”. The Runtime agent forwards these
responses to the decision engine to choose a particular flight and respond to the Runtime
agent. Runtime agent then invokes the chosen service. A response is sent to the Runtime
agent indicating that the service has succeeded which in turn informs the Negotiation
module. The Negotiation module returns control back to the Control Unit after storing results
permanently for future use. The Control Unit informs the meeting scheduler agent of the
reserved flight and all the associated details and the negotiation session comes to an end.

1.
2. value service is abstraction (reqService : view[service_name : String,
3. params : sequence[view[name : String, val : String]],
4. numOfParams : Integer, message : String])
5. {
6. reqServiceConn : Connection[view[service_name : String,
7. params : sequence[view[name : String, val : String]],

Business to Consumer (B2C)

Business to Consumer is a way of doing business that aims at
providing products and services to the consumers in a marketplace.

 105

8. numOfParams : Integer, message : String]];
9.
10.
11. //register service request
12. unobservable;
13.
14. reqService = view (service_name : "Additional Parameters Request",
15. params : sequence (view (name : "Name", val : ""),
16. view (name : "Address", val : ""),
17. view (name : "Phone", val : "")),
18. numOfParams : 3, message : "");
19.
20. via out send "***service***\n\n";
21.
22.
23. compose
24. {
25. via out send "--Sending additional parameters request--\n";
26. via reqServiceConn send reqService;
27. and
28. via reqServiceConn receive reqService;
29. via out send "***service***\n\n";
30. via out send "--Recieving additional parameters--\n";
31. //process service request
32. unobservable;
33. via out send "--Initiating service--\n";
34. reqService::message = "Service successfully initiated";
35. via reqServiceConn send reqService;
36. }
37.} //end service

Figure 5.15: π-ADL code for a simple Web service

Figure 5.15 depicts the π-ADL specification of a Web service which has a name and

certain other parameters. Service has been defined as an abstraction and a view is created for
the service description and number of parameters as there could be multiple parameters
associated with the services retrieved, therefore each service name and its value have been
defined as a view. The number of parameters defines the fields required to bind to this
service. For example, the number of parameters in the above example is three containing
name, address and phone as the required fields. Similarly, some additional parameters can
also be requested once the service has been invoked by the Runtime agent.

5.8.2 Semantically Enriched Agent Application using Ontology Gateway

An agent based application has also been analyzed as an example to show the working and

significance of the proposed architecture from a business to business perspective. It has been
named “Semantically Enriched Supply Chain Management” and is depicted in Figure 5.16. It

uses the o
interoper
Different
services t

Supply

the opera
effective
inventory
The supp
distributi
delivered

ontology gat
rability betw
t agents com
to plan and c

Figure 5.1

y chain mana
ations of the

manner. SC
y, and finish
ply chain c
ion centres,
d to custome

Business to

Bu
so
se

teway for its
ween FIPA-co
mmunicate w
coordinate th

6: Supply C

agement (SC
e supply cha
CM spans al
hed goods fro
consists of

and retailer
ers.

Business (B

usiness to Bu
me of the
rvices provid

s interaction
ompliant sof
with each o
heir actions.

Chain Manag

CM) is the pr
ain to satisfy
ll movemen
om point-of-
a worldwid
rs through w

B2B)

usiness is a w
business e
ded by anot

106

with the OW
ftware agent
ther and us

gement Syste

rocess of plan
y customer r
nt and storag
-origin to po

de network
which mater

way of busin
ntities that
her business

WL Web serv
ts and the O
e informatio

em Using On

nning, imple
requirements
ge of raw m
oint-of-consu
of factories
rials are acq

ness where t
benefit fro

s.

vices. It dem
OWL-based W
on provided

ntology Gate

ementing, an
s in an effic

materials, wo
umption (Ma
s, suppliers,
quired, tran

the stake ho
om the pro

monstrates th
Web service
d by the We

eway.

nd controllin
cient and cos
ork-in-proces
aherzi, 1997

warehouse
sformed, an

olders are
oducts or

he
s.

eb

ng
st
ss
).
s,

nd

 107

The software architecture is developed for managing supply chains at different levels. The

architecture proposes that software agent technology should be used, and in such an
application various agents will interact with one another to perform the planning and
execution responsibilities assigned to them. Using Ontology Gateway, these agents can
acquire data that is not available in their default Directory Facilitator or remote platforms.
We developed a nontrivial agent-based supply-chain architecture which supports simple
cooperative work and management.

This agent-based Supply Chain Management system only covers just the B2B (business-to-

business) aspect of the supply chain. The main activities of buyer agents in B2B are to avail
the economical offer in the market, for that it has to communicate with various agents around
and on remote platforms. In this application, the buyer agent is able to find the lowest cost of
products/services it wants to buy. A supplier agent aims to attract a buyer agent and then sell
its goods to it. For this purpose it interacts with various buyer agents and submits its rates. If
the buyer agent feels that this is the lowest bid, then the appropriate supplier agent is
contacted.

In detail, the buyer agent checks the stocks of a company in a warehouse, and if it feels

that the stock is below a certain level, then it decides to place an order for the required
product. Each participating agent has its own ontology which manages the information in its
own way and can have semantic heterogeneity. To place an order, it contacts various supplier
agents and asks them to submit their bids. Web services are also contacted through Ontology
Gateway. They are sent a message in which they are asked to submit their bids. At the end of
the day, all supplier agents and Web services submit their bids. The agent or web service
with the lowest price is requested to dispatch the product to its customer. Supplier agents,
when receiving a message concerning the issues of submitting the rates, contact the sender
agent and send them their rates and bids. At the end of the day, all the bids are checked and
the agent that has submitted the best bid will be contacted and the order will be placed.

The OWL based Web services are registered in UDDI. The buyer agent will send its

request to the Control Unit which will contact the Ontology Agent to search for OWL Web
services with the lowest inventory price. The Ontology Agent will translate the request to the
SOAP message with the help of ACL to SOAP component and forwards it to UDDI. The
search results are returned to ontology agents after translation from the SOAP to ACL
component. The Ontology Agent accesses the OWL web service, translates the ontology
from OWL to FIPA with the help of the OWL to SL component and then saves the translated
ontology on the local web server. The Ontology Agent sends the reference of the translated
ontology to the agent which generated the request. Thus, ontologies are translated from OWL

 108

to FIPA and used with the same semantics in the FIPA compliant Agents as they are defined
in OWL.

Once the buyer agent has acquired the reference of the supplier agent hosting the service it

will then engage itself in the negotiation process through the use of the negotiation module
which will define a run time agent for the process of communicating with the supplier and
additional information.

5.9 Summary

In this chapter the results of the current thesis research were presented in the form of
three main scenarios. The prototypic implementation of semantic translations between agents
and the Web services domain is provided based on which it can be concluded that the
successful translation between agent and Web services content language is possible without
losing the information required to discover and utilize the services. The important aspect that
is worth mentioning is that the formal specification and validation of the overall system is
done using π-ADL.NET to understand the architectural details and have a technology neutral
solution. The middleware based approach comprises of a number of modules, but from an
implementation specific point only those modules have been implemented that are required
to perform the service discovery and translation. Modules, like negotiation component, are
presented in detail in the form of π-ADL specifications for further development and
deployment in the future. The middleware based approach can be integrated in the future
with Grid technologies, since the Grid community is focusing on service orienting the Grid
services and can use the agent capabilities for service discovery and translation. However,
the ontological translations will provide the necessary information in order to overcome the
semantic gap.

 109

Chapter 6

 110

Conclusion

This chapter summarizes and concludes the whole thesis by presenting the overview of issues
and approaches that have been explained throughout this thesis. Section 6.1.1 revisits the
research questions and the need for developing a system that could provide the solution to
identified problems in this thesis. Section 6.1.2 highlights the contribution and significance
of the proposed work and how it can contribute in resolving the issues that were previously
unaddressed by other technologies. Section 6.2 provides the overview of future directions
that emerged during the thesis; although some of them are relevant, they are beyond the
scope of this research. The future directions are then divided into short-term objectives,
medium-term objectives and long-term objectives. In the end, section 6.3 presents the
concluding remarks of the thesis and how this work is relevant to achieving the vision of an
Autonomous Semantic Grid.

6.1 Conclusions

The research objective in this thesis was to propose a new paradigm for interactions

among Web services and software agents for communication. The previously provided
solutions between agents and Web services (such as AgentWeb Gateway and Web Service
Integration Gateway Service (Greenwood et al., 2004) are insufficient because it is on a
structural and syntactic level. Semantic interoperability has not been addressed in these
solutions. The aim of this thesis is to overcome the communication issues between agents
and web services as a single solution preserving the semantics of the content exchanged
between these entities. The key concern while developing the solution was to provide a
middleware based approach for enabling communication without violating the standards for
these technologies. To address these issues, architecture has been devised with various
components at an abstract level that work together to achieve the ultimate goal. To enable the
semantic communication between these two technologies, ontologies have been used for
defining semantic annotations, and mappings have been devised between the two languages
that are adopted by the agent community and the Web services community.

 A prototypic implementation has been done to validate the ontological translations

between the agents and the Web services. Moreover, the steps involved in the negotiation
process between agents and Web services have been highlighted. Providing a complete
implementation of such a large scale system is a complex task, therefore π-ADL, a formal
language, has been used in order to provide the specification details of the architecture so that
it can be implemented as a complete solution in the future.

CHAPTER 6

 111

6.1.1. Road map towards addressing the Research Questions

The research hypothesis addressed in this thesis is:

“It is possible to develop system architecture for interoperability between agents with the

Web services without changing the existing specifications of both the governing bodies i.e.
FIPA and W3C.”

The rational of research is the belief that software agents can play a significant role in

automation of managing Web services and will thus reduce complexity. Therefore, the aim is
to integrate both technologies, i.e. agents and Web services. Since both of these technologies
are based on distinct standards and have specified their own vocabulary, there are chances of
misinterpretation while one technology wants to retrieve exchanged information with the
other technology.

The following research questions have been addressed in this thesis to explore the

hypothesis:

• Is it possible to integrate agents and Web services without modifications to their
standards?

 A middleware based approach has been proposed in the thesis which acts as

mediator between the agents and Web services. The key aspect of the proposed solution is
that it will take into account the existing standards of agents and Web services. The stake
holders can benefit from the proposed solution by introducing this middleware with their
previously deployed technological solutions.

• What will be the role of ontologies in the integration of these technologies?

 In order to have a meaningful conversation between two entities it is important that

they share the same understanding of the knowledge. Ontologies are, therefore, an integral
part of the proposed solution as they provide the means to solve the semantic interoperability
issues, when agents and Web services want to communicate with one another. Another
important point that is worth mentioning is that although a lot of efforts have been made in
standardizing ontologies, all of these efforts were useless since there is no standardized
ontology, nor complete semantic description of the web sources. However, in this thesis the
ontological translations have been provided as a solution to solve semantic differences and
use the agent capabilities to communicate with the Web services.

 112

These questions have been further divided into sub-questions for complete understanding:

• How will the agents communicate with the Web services?

This thesis answers the question of agents and Web services

communication by defining different architectural components, each having
its own specialized functionality to enable successful communication between
agents and Web services.

• Can the agents and Web services communicate without standards violation?

 The middleware based approach ensures that the solution takes the
standards that are specified by FIPA and W3C into account. The services that
have been deployed previously on agent platforms or the Web will not be
modified, however the stakeholders will introduce the middleware with their
existing solutions to solve the semantic interoperability issues and can,
therefore, benefit from the agents’ intelligence by utilizing their characteristics
for service discovery, translation, and invocation.

• Who will be responsible for registering the services in agents and Web
services?

 The agents and Web services have their own distinct directories for
maintaining service references. In the agent domain, the directory that keeps
records of service descriptions is known as a Directory Facilitator, all the
agents register their services in Directory Facilitator. Similarly, for the Web
Services, the service references are stored in the UDDI. The middleware
introduces an agent for every service request, which is responsible for
determining the actions to be taken for registering and discovering the
services in the Directory Facilitator or UDDI.

• How will FIPA Semantic language (FIPA SL) and Web Ontology language
(OWL) translation take place and what is the role of ontologies?

 FIPA Semantic language and Web Ontology language are the languages
proposed by FIPA and W3C as content description languages and defining the
ontologies in agents and the Web services domain, respectively. In order to
have meaningful communication and interactions between agents and Web
services, it is important that their semantic representations of domain
knowledge are interoperable with one another. These semantic representations

 113

are defined in terms of ontologies; therefore, semantic mappings have been
devised in this thesis to overcome the heterogeneity issues between FIPA SL
and OWL ontologies. From an architectural point of view, two independent
components have been introduced to perform this translation process based on
the mappings devised between the FIPA SL and OWL and the type of
translation required in a particular scenario.

• How will the delegation of work take place when a query is posed and what
are the steps involved from user request to service retrieval?

 In order to answer this question, the behavioural aspect of the architecture,
which defines the various steps involved, starting from the service request
generation to its discovery, translation and invocation, is modelled. Each
component is explained based on its functionality, inputs it receives, and type
of results generated etc.

• How will the negotiation take place between the agents and Web services
once a particular service has been invoked?

 The negotiation module has been explicitly introduced as a part of the
middleware in order to deal with the negotiation process. The negotiation
process invokes when the service is discovered, and is being invoked for
utility. The negotiation process is different from the other two scenarios based
on the functionality. The first two scenarios discuss the type of steps involved
when agents or Web services want to retrieve information about a particular
service, whereas the negotiation process initiates after the service has been
discovered and establishes a binding between the consumer and provider.
Similarly, if additional information is required by the agents or Web services
during the service binding, then the negotiation module is responsible for
handling such information.

• How can we have clear and unambiguous specifications of the proposed
architecture?

Designing and implementing such a system is a complex, time
consuming, and cumbersome task, therefore to obtain an early executable
system the architectural specifications of all the components are formulated
using a formal language called π-ADL in order to provide clear and
unambiguous specifications. These formal specifications have been validated
using π-ADL.NET compiler and exhibit the successful communication of

 114

agents and Web services. Moreover, these formal descriptions can provide the
behavioral details of the overall system.

6.1.2. Contribution

Despite all the efforts in the domain of agents, all the previous efforts of Web services
and the Semantic web have failed to standardize a concrete ontology or to annotate every
single web resource with metadata. Taking this problem into consideration, it is believed that
exploiting the agent capabilities with the current systems can lead to future applications that
will support features like autonomy and self regulation. To integrate agents into the existing
services, it is important to address the issues concerning interactions and communication.
These issues have raised the need of developing a solution that could clearly address the
interaction and communication process among agents and Web services. Therefore, in this
thesis we propose the details of Ontology Gateway from structural, behavioural, and
deployment aspects. The work described in this thesis is built on top of the existing protocol
translator and reuses it as a module of Ontology Gateway. Table 6.1 depicts the contribution
of the Ontology Gateway in state of the art solution that try to address the communication
problem between agents and web services in the context of Autonomous Semantic Grid.

Solutions
FIPA

Compliant
W3C

Compliant
Protocol

Translation
Ontological
Translation

Negotiation
Support

WSIGS Yes
Partial
support

Partial
Support

No
Partial

Support

WS2JADE Yes No Yes No No

OWL-P No Yes No No Yes

MOS Yes Yes No Yes No

Ontology
Gateway

Yes Yes Yes Yes Yes

Table 6.1 Contribution to state of art

Ontology Gateway enables flexible and autonomous interaction between agents and

Web services. Moreover, the translation process of Web Ontology Language and FIPA

 115

Semantic Language and vice versa have been explained without semantic loss, and how the
various components of Ontology Gateway are integrated with one another to achieve
successful interactions and communication. The use of ontological translations between
FIPA Semantic Language and Web Ontology Language supports the interaction and
communication process by resolving the differences that are faced during agent and Web
services communication. The middleware based approach ensures that the standards are not
violated and the existing applications can adapt to this approach. The thesis overcomes the
issues raised during agent and Web services communication and clearly presents the
architectural components, ontological mappings, and the behaviour of the overall system. To
provide unambiguous specifications of the overall system behaviour of the architectural
components was formulated using π-ADL and validated by executing them in π-ADL.NET.

 The summary of contribution in this thesis is presented as follows:

• Specifications of Ontology Gateway to enable agents and Web services
communication and interactions.

• Ability to cope with two distinct technologies each having its own standard, i.e. FIPA
and W3C. (Standards are not violated during the communication process.)

• Detailed ontological translations that will support the communication process.
• Support for the negotiation process by creating runtime agents.
• Clear and unambiguous specification of the system using a formal language that will

facilitate the system implementation and will provide an early view of the
implementable solution.

6.2 Future Work

Figure 6.1 presents the various aspects which we will consider in future work with

further research possibilities in subsequent development of the Ontology Gateway. The work
presented here highlights the improvements and enhancement categorized into short-term,
mid-term, and long-term objectives, taking into consideration the current state of research
proposed in this thesis.

6.2.1 Sho

• Im

h
to
sy
d
A
th

• A

ca
st
co
B
b

ort-term ob

mplementati

The thesis
aving succe
o the nature
ystem is a c
omains to co

ADL specific
he system.

Applications

 The potent
ase studies a
trength of r
onsidered as

Business and
e considered

Figu

jectives

ion of the m

highlights
ssful commu
 of the tech
cumbersome
ome togethe
cations of the

and Case St

tial working
and develop
rich data so
s the princip

d Business to
d for experim

ure 6.1: Futu

modules:

the module
unication be
hnologies inv
e and time
er in order to
e system are

tudies:

g of the Ont
ping applicat
ources prese
ple candidate
o Consumer.
mentation wi

116

ure research

s and their
etween the a
volved, the
consuming
o completely
e provided th

ology Gatew
tions that int
ent on the
es based on
. However, a
ith Ontology

directions

specificatio
agents and th

complete im
task and req
y implement
hat can lead

way can be
tegrate the a
Web. Two
two perspec

a number of
y Gateway.

ons that are
he Web serv
mplementati
quires peop
t the system
to the imple

validated by
agent capabi

case studie
ctives that i
f other appli

e involved i
vices, but du
ion of such
le of variou

m, therefore π
ementation o

y using mor
ilities and th
es have bee
s Business t
cations coul

in
ue

a
us
π-
of

re
he
en
to
ld

 117

6.2.2 Mid-term objectives

• Scalability and Distribution:

The partial implementation of the Ontology Gateway provided in this thesis does

not keep into account the scalability issue. One of the mid-term objectives is the
deployment of the Ontology Gateway at a large scale. One other important aspect is
to deal with distribution when Ontology Gateway is integrated into the Multi-agent
systems running on a mesh of machines and thus giving complete autonomy and how
it will affect the communication process to be carried between the agents and the Web
Services. What will the tradeoffs be and how will this integration affect the
performance of the overall system?

6.2.3 Long-term objectives

• Integrating Ontology Gateway with Grid Middleware

 One of the long term objectives is the integration of the Ontology Gateway with
Grid Middleware’s for example Globus Toolkit. This integration will enable service
descriptions and their discovery through the use of ontologies. Moreover, the flexible
negotiation mechanisms from agent’s domain can be applied to the current grids by
using Ontology Gateway. This will facilitate the process of service description
discovery and negotiation for resources that exist in Grid systems.

• Ontology Management:

The assumption in the current system regarding ontologies is that the participating

data sources should have a consensus on the structure of the information presented in
the form of ontologies, i.e. all the concepts and their relationships have to be
determined before the communication takes place. Whereas, the Web is an enormous
collection of data from very disparate sources, therefore one of the long term
objectives is the integration of standardized ontologies from various sources and its
utilization in a way so that useful hierarchies can be extracted and there should be no
redundancy. Similarly, the versioning control of ontologies and the dynamic changes
of the ontologies are other aspects that are still open issues.

 118

• Decision engine:

For now, we assume that a third party decision engine is required in order to select

the most optimal Web service, whereas one of the long term objectives is the
development of a decision engine which will be integrated as a part of the Ontology
Gateway and will utilize some artificial intelligence techniques, like Bayesian
classification, for improved result retrieval, and will thus reduce the communication
overhead required to communicate.

• Additional Features:

Moreover, some other additional features that can be added to Ontology Gateway

that can enhance its potential capability are discussed as follows:

• Facilitating interoperability between FIPA and Web Services Modelling
Ontologies respectively.

• Conversion of FIPA ACL query into SPARQL (SPARQL, 2007) query for
execution on the Web sources.

• Support for multiple content languages.

6.3. Concluding Remarks

 The thesis clearly states the issues that are raised during the interoperability and

Web services. To overcome these issues, a middleware based solution “Ontology
Gateway” is proposed that facilitates service discovery, translation, and invocation. The
ontologies play a vital role in the interaction and communication process by overcoming
the semantic differences that hinder the meaningful communication between agents and
Web services. The middleware based approach ensures that the standards are not violated
while the agents and Web services communicate with one another. The solution provided
in this thesis aims to provide a successful communication and interaction mechanism.
The proposed solution can be integrated with the existing systems and can overcome the
interoperability issues. Since the standards considered in this thesis are only FIPA and
W3C therefore the stake holder should be compliant to these standards which can also be
considered as a limitation of the system. The current implementation of the system is
done on a limited scale; therefore, issues like scalability and distribution are open issues
and can be considered in the future. Finally, all the efforts presented in this thesis are
aimed at the realization of the Autonomous Semantic Grid vision.

 119

 120

 121

References:

(Agentcities, 2003) Integrating Web services into agentcities, November, 2003.

 http://www.mtakpa.hu/kpa/download/1174907.pdf

(Ahmad et al., 2003) H. F. Ahmad, H. Suguri, K. Iqbal, N. Baqir, A. Ali “Integration of Agents with

Web Service and Grid Computing Environment”, 9th Assurance Symposium, Tokyo, Japan,
2003.

(Ahmad et al., 2004) H. F. Ahmad, A. Ali, H. Suguri, Z. Abbas , M. Rehman, “Decentralized Multi

Agent System: Basic Thoughts”, 11th Assurance System Symposium, Miyagi University, Sendai,
Japan, 2004.

(Baader et al.,2003) F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

eds. The Description Logic Handbook. Cambridge University Press, 2003.

(Baresi et al.,2006) L. Baresi, E.Nitto, C. Ghezzi “Toward Open-World Software: Issues and

Challenges”, Special Issue Introduction: The IEEE Computer Society's 60th
Anniversary," Computer, vol. 39, 2006.

(Bichler et al., 2003) M. Bichler, G. Kersten, S. Strecker , “Towards a Structured Design of

Electronic Negotiations”, Group Decision and Negotiation, 2003.

(Condor, 2007) Condor, 2007.

http://www.cs.wisc.edu/condor/

(CNP, 2002) FIPA Contract Net Interaction Protocol, December, 2002.
 http://www.fipa.org/specs/fipa00029/SC00029H.pdf

(DAML, 2001) DAML Joint Committee, March, 2001.
 http://www.daml.org/2001/03/daml+oil-index.html

(DAML-S, 2002) DAML-S, October, 2002.
 http://www.ai.sri.com/daml/services/daml-s/0.7/

(Dean et al, 2004)M. Dean and G. Schreiber, “OWL Web Ontology Language Reference”, W3C

Recommendation, 2004.

 (Fensel, 2003)D. Fensel, “Ontologies: Silver Bullet for Knowledge Management and Electronic

Commerce”, 2nd edition. Springer-Verlag, Berlin, 2003.

(Ferber, 1999)J. Ferber. Multi Agent Systems, Addeson Wesley, Reading MA, 1999.

(FIPA, 2002) FIPA Abstract Architecture Specification, December, 2002.

 122

 http://www.fipa.org/specs/fipa00001/SC00001L.html

(FIPA, 2003) Foundation for Intelligent Physical Agents, March, 2003.

http://www.fipa.org/

(Foster et al., 1999) I. Foster and C. Kesselman (editors), The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

(Foster, 2001) I. Foster, C. Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of Supercomputer Applications, 2001.

(Foster et al., 2004) I. Foster, N. Jennings, C. Kesselman , “Brain meets brawn: Why Grid and agents

need each other”, Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems, New York, USA, 2004.

(Ghafoor et al., 2004) A. Ghafoor, M. Rehman, Z. Abbas , H. F. Ahmad, A. Ali, “SAGE: Next

Generation Multi-Agent System”, Proc. of IEEE International Conference on Parallel and
Distributed Processing Techniques and Applications, 2004.

(Greenwood et al., 2004) D. Greenwood, M. Calisti, S. Zurich., “Engineering web services – Agent

Integration”, IEEE International Conference on Systems, Man and Cybernetics, 2004.

(Gruber, 2004) T. R. Gruber “Toward principles for the design of ontologies used for knowledge

sharing”, International Workshop on Formal Ontology, Padova, Italy, 1993.

(Heiler, 1995) S. Heiler, Semantic Interoperability, GTE Laboratories Incorporated, Waltham,

Massachusetts, ACM Computing Surveys, Vol. 27, No 2, June 1995.

(IBM, 2007) Web Service Resource Transfer, 2007.

http://www.ibm.com/developerworks/grid/library/gr-wsrfwsrt/index.html

(IEEE, 2004) IEEE Spectrum, July, 2004.

 http://www.spectrum.ieee.org/jul04/3922

(JADE, 2006) Java Agent Development Environment, April, 2006.
 http://jade.tilab.com/

(Jena, 2007) Jena,2007.

http://jena.sourceforge.net/

 (Keahey, 2006) K. Keahey, J. S. Chase, I. Foster: Virtual playgrounds: managing virtual resources in

the grid, IEEE International Parallel & Distributed Processing Symposium,2006.

 123

(Khalid et al, 2007) N. Khalid, M. Pasha, S. Rehman: “Ontology Services between Agents and OWL
Based Web Services” the 3rd International Conference on Semantics, Knowledge and Grid. IEEE
Computer Society, 2007.

(Khan et al, 2005) Z. A. Khan, H. F. Ahmad, A. Ali, H. Suguri, “Decentralized Architecture for Fault

Tolerant Multi Agent System”, International Symposium on Autonomous Decentralized Systems,
2005.

(Lassila, 2005) Semantic Web Blog, June, 2005.

http://www.lassila.org/blog/archive/2005/06/

(Lee, 2001) T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific American,

2001.

(Laukkanen et al., 2003) M. Laukkanen, H. Helin, Composing workflows of Semantic web services.

In Proc. of the 1st International Workshop on Web Services and Agent Based Engineering,
Sydney, Australia, 2003.

(Martin , 2007) D. Martin, Semantic Web Services, IEEE Intelligent Systems, 2007.

(Martin, 2004) D. Martin, M. Burstein, O. Lassila, Describing Web Services using OWL-S and

WSDL, 2004.
 http://www.daml.org/services/owl- s/1.1/owl-s-wsdl.html

(Mcilraith et al., 2001) S. Mcilraith , T. Son, H. Zeng , Semantic Web Service, IEEE Intelligent

Systems, 2001.

(Maherzi, 1997) L. Maherzi, “World Communication Report: The media and the challenge of new

technologies”, UNESCO Publishing, 1997.

(Milner, 1993) R. Milner, “The Polyadic π-Calculus: A Tutorial,” Logic and Algebra of Specification,

Springer-Verlag, 1993.

(Mori, 1993) K. Mori, "Autonomous Decentralized Systems: Concept, Data Field Architecture and

Future Trends", Proc. of the first International Symposium on Autonomous Decentralized
Systems, IEEE, Kawasaki, Japan, 1993.

(Moore, 2005) Moores’s Law
 http://www.intel.com/technology/mooreslaw/index.htm

(myGrid, 2007) myGrid Project, May, 2007.

www.ebi.ac.uk/mygrid/

(Nassuni et al, 2003) P. Nassuni and S. Katia ,“Autonomous Semantic Web Services”, IEEE Internet

 124

Computing, 2003.

(Negri et al., 2006) A. Negri, A. Poggi, M Tomaiuolo, “Agents for e-Busniess applications”,

Proceedings of the fifth international joint conference on Autonomous Agents and Multi-Agent
System, Japan, 2006.

(Nguyen, 2005) X. T. Nguyen. Demonstration of WS2JADE. In Proceedings of the Fourth

International Joint Conference on Autonomous Agents and Multi-agent Systems, Utrecht, The
Netherlands, 2005.

(OGSA, 2003) Open Grid Service Architecture, June, 2003.

http://www.globus.org/ogsa/

(Oquendo, 2004) F. Oquendo, “π-ADL: An Architecture Description Language based on the Higher

Order Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures,” ACM
Software Engineering Notes, 2004.

(Oquendo, 2005) F. Oquendo, “Tutorial on ArchWare ADL – Version 2 (π-ADL Tutorial),”

ArchWare European RTD Project IST-2001-32360, 2005.

(OWL-S, 2003) OWL-S, October, 2003 .
 www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc

(Paolucci et al, 2003) M. Paolucci, K. Sycara, Autonomous Web Services, IEEE, 2003.

(Papazoglou et al, 2006) M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann,” Service-Oriented
Computing:State of the Art and Research Challenges”, IEEE Computer Society, 2006.

(Park, 2004) Park, J., Ram S., “Information Systems Interoperability: What lies beneath". ACM

Transactions on Information systems, Vol. 22, No. 4, 2004.

(Pasha et al, 2006) M. Pasha, S. Rehman, F. Ahmad, A. Ali, H. Suguri, “Middleware between OWL

and FIPA Ontologies in the Semantic Grid Environment”, The 2006 International Conference on
Semantic Web and Web Services, USA, 2006.

(Pasha et al, 2006) M. Pasha, F. Ahmad, H. Suguri, A. Ali, “Ontological Translations in Semantic

Grid”, 4th International workshop on Multi– Agent Systems and Semantic Grid, Pakistan, 2006.

(Qayyum, 2006) Z. Qayyum and F. Oquendo, “π-ADL Visual Notation and its Application to

Formally Modeling the High Level Architecture,” 19th International Conference on Software and
Systems Engineering and their Applications, Paris, France, 2006.

 125

(Qayyum , 2008) Z. Qayyum. "π.NET: A High Level Architecture Description Language Compiler
for the .NET Platform". 7th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed
Systems, 2008.

(Russell, 1995) S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1995.

(Sabih et al, 2007) R. Sabih, M. Pasha, F. Ahmad, A. Ali, H. Suguri, “Ontology Gateway: Enabling

Interoperability between FIPA complaint Agents and OWL Web Services”, 9th International
Conference on Enterprise Information Systems, Funchal-Madeira/Portugal, 2007.

(Sangiorgi, 1992) D. Sangiorgi, "Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms". PhD Thesis, University of Edinburgh, 1992.

(SAWSDL, 2007) Semantic Annotations for WSDL, January, 2007.
 http://www.w3.org/2002/ws/sawsdl/

(SG, 2005) Semantic Grid, May, 2005.

http://www.semanticgrid.org/brief/

(SI, 2005) Semantic Interoperability, February, 2005.
 http://colab.cim3.net/file/work/SICoP/WhitePaper/SICoP.WhitePaper.Module1.v5.4.kf.021605.doc

(Semantic Grid,2001) Semanti Grid, November, 2001.
 http://www.semanticgrid.org/vision.html

 (Shafiq et al., 2005) O. Shafiq , F. Ahmad ,H. Suguri , A. Ali , “Autonomous Semantic Grid:
Principles of Autonomous Decentralized Systems for Grid Computing” IEICE/IEEE TRANS.,
VOL. E85-A/B/C/D, 2005.

(Shafiq et al., 2006) O. Shafiq , Y. Ding , D. Fensel, "Bridging Multi Agent Systems and Web

Services: towards interoperability between Software Agents and Semantic Web Services," 10th
IEEE International Enterprise Distributed Object Computing Conference, 2006.

(Sirin et al., 2003) E. Sirin, J. Hendler ,B. Parsia, Semiautomatic composition of web services using

semantic description. Web Services: Modeling, Architecture and Infrastructure Workshop in
Conjunction with ICEIS, 2003.

(Singh et al., 2005) M. P. Singh and M. N. Huhns, Service-Oriented Computing, Wiley, 2005.

(Smith et al., 2002) M. K. Smith, D. McGuinness, R. Volz, and C. Welty. Web Ontology Language

(OWL) Guide version 1.0, 2002.

(SOAP, 2007) Simple Object Access Protocol, March, 2007.
 http://www.w3.org/TR/soap/

 126

(Spanoudakis et al.,2007) N. Spanoudakis, P. Moraitis, “An Ambient Intelligence
Application Integrating Agent and Service-Oriented Technologies”, 27th SGAI International
Conference on Artificial Intelligence (AI2007), UK, 2007.

(SPARQL, 2007) SPARQL, January, 2007

http://www.w3.org/TR/rdf-sparql-query/

(Suguri et al., 2004) H. Suguri, H. F. Ahmad, M. O. Shafiq and A. Ali, “Agent Web Gateway -

Enabling Service Discovery and Communication among Software Agents and Web Services”,
Proc. of Third Joint Agent Workshop and Symposium, Japan, 2004.

(Swartout et al., 1996) B. Swartout, R. Patil, K. Knight and T. Russ, “Toward Distributed Use of
Large-Scale Ontologies”, Proc. of the 10th Knowledge Acquisition Workshop,1996.

(SWSF,2005) Semantic Web Services Framework, September, 2005.
 http://www.w3.org/Submission/SWSF/

(Sycara et al., 2004) K. Sycara, M. Paolucci, J. Soundary, N. Srinivasan, Dynamic discovery and

coordination of agent-based semantic web services. IEEE Internet Computing, 2004.

(Tuecke et al., 2003) S. Tuecke, K. Czajkowski, I. Foster,J. Frey, S.Graham, C. Kesselman, ,T.

Maquire,T. Sandholm, D.Snelling, P. Vanderbilt "Open Grid Services Infrastructure (OGSI)
Version 1.0", 2003.

(UDDI, 2005) Universal Description, Discovery and Integration, February, 2005.
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

(Walton et al., 2004) C. Walton and A. Barker, "An Agent-based e-Science Experiment Builder", 1st

International Workshop on Semantic Intelligent Middleware for the Web and the Grid, Valencia,
Spain, 2004.

(W3C, 2001) W3C, The Semantic Web, May, 2001.

http://www.w3.org/2001/sw/

(Wooldridge, 2002) M. Wooldridge, “An Introduction to Multi-Agent Systems”, John Wiley & Sons,

2002.

(WS, 2002) Web Services Architecture Working Group, October, 2002.

http://www.w3.org/2002/ws/arch/

(WSCL,2002) Web Services Conversation Language, March, 2002.
 http://www.w3.org/TR/wscl10/

(WSDL, 2001) Web Services Description Language, March, 2001.

 127

 http://www.w3.org/TR/wsdl

(WSMO, 2006) Web service Modeling Ontology, October, 2006.
 http://www.wsmo.org/TR/d2/v1.3/

(WSRF, 2004)Web Service Resource Framework, March, 2004.
 http://www.globus.org/wsrf/faq.asp, March 2004

(WSRT, 2006)Web Service Resource Transfer, August, 2006.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rt/ws-rt-spec.pdf,August 2006.

143

APPENDIX E

π-ADL code for Flight reservation service example

Actor names behaviour

{

 qConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 query : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String];

 query::request = "Flight Information";

 query::sender = "771@cern1-7";

 query::receiver = "624@cern1-7";

 query::content = view(service_id : "1", service_name : "Flight reservation", params :

 sequence (view(name : "date", val : "15/09/2008"), view(name : "time", val :

"12h00"),

 view(name : "price", val : "Rs. 40,000"),

 view(name : "source", val : "CDG"), view(name : "destination", val :

"LHR")), numOfParams : 5);

 via out send "**** Actor ****\n\n--User input--\n";

 via out send query;

 via out send "\n\n";

 compose

 {

 via out send "--Send user input to CU--\n";

 via CU send query where {qConn renames aConn};

 and

 via qConn receive query;

 via out send "**** Actor ****\n\n--Response recieved--\n";

 via out send query;

 via out send "\n\n";

 query::content::params(0)::val = "Maruf";

 query::content::params(1)::val = "Appt. 34, 7 Sqr. Montagne, Vannes";

144

 query::content::params(2)::val = "+33-2-97639764";

 via qConn send query;

 via qConn receive query;

 via out send "**** Actor ****\n\n--";

 via out send query::reply_with;

 via out send "--\n";

 }

}

//CU = Control Unit

value CU is abstraction (cuQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String])

{

 aConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 isAgentValidated : Boolean;

 vConn : Connection[Boolean];

 //validate sender, service_id and serviceName

 unobservable;

 //this is where we invoke ontology agent

 via out send "*** CU ***\n\n--Validating Agent Authenticity--\n";

 via OA send cuQuery where {vConn renames vConn};

 via vConn receive isAgentValidated;

 via out send "*** CU ***\n\n";

 if (!isAgentValidated) do

 {

 via out send "--Unrecognized Agent--\n";

 cuQuery::reply_with = "Unrecognized request";

 via aConn send cuQuery;

 done;

 }

 else do

 {

 via out send "--Forwarding service profile parameters to NM--\n";

145

 via NM send cuQuery where {aConn renames cConn};

 }

} //end CU

//OA = Ontology Agent

value OA is abstraction (oaQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String])

{

 vConn : Connection[Boolean];

 result : Boolean;

 oaQueryConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 result = true; //default initialization

 via out send "**** OA ****\n\n";

 //lookup service availability from different transformation components, and update the value

of result

 via OwlToSl send oaQuery where {oaQueryConn renames convQueryConn};

 unobservable;

 via SlToOwl send oaQuery where {oaQueryConn renames convQueryConn};

 unobservable;

 via AclToSoap send oaQuery where {oaQueryConn renames convQueryConn};

 unobservable;

 via out send "--Communicating service availability to CU--\n";

 compose

 {

 via vConn send result;

 and

 done;

 }

} //end OA

146

//*** transformation components

value OwlToSl is abstraction (convQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer],

 language : String, ontology : String, reply_with : String])

{

 convQueryConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 unobservable;

}

value SlToOwl is abstraction (convQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer],

 language : String, ontology : String, reply_with : String])

{

 convQueryConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 unobservable;

}

value AclToSoap is abstraction (convQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer],

 language : String, ontology : String, reply_with : String])

{

 convQueryConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 unobservable;

}

value SoapToAcl is abstraction (convQuery : view[request : String, from : String, to : String,

 body : view[class : String, fields : sequence[view[name : String, val : String]],

 properties : sequence[any], subclasses : sequence[any], restrictions : sequence[any]],

147

 fault : String, reply_with : String])

{

 convQueryConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 soapView : view [encoding_style : String, from_http : String, to_http : String, body : String,

fault : String];

 aclView : view [encoding : String, sender : String, receiver : String, content : String,

performative : String,

 reply_to : String, ontology : String, protocol : String, conversation_identifier

: String,

 reply_with : String, in_reply_to : String, reply_by : String];

 unobservable;

}

//*** transformation components end

//NM = Negotiation Module

value NM is abstraction(nmQuery : view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String])

{

 cConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 nConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 via cConn receive cuQuery;

 via out send "**** NM ****\n\n";

 if (nmQuery::content::service_name == "Flight reservation") do

 {

 via out send "--Runtime Reservation initiated for processing user request--\n";

 via rtFlight_Reservation send nmQuery where {nConn renames rtConn};

 }

148

}

//***runtime agents***

value rtFlight_Reservation is abstraction(nmQuery : view[request : String, sender : String, receiver :

String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String])

{

 rtConn : Connection[view[request : String, sender : String, receiver : String,

 content : view[service_id : String, service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams :

Integer],

 language : String, ontology : String, reply_with : String]];

 uddiResp : sequence[String];

 uddiRespConn : Connection[sequence[String]];

 serviceInfo : view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String];

 serviceInfoConn : Connection[view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String]];

 via out send "***rtFlight Reservation***\n\n";

 serviceInfo::service_name = "Flight Reservation";

 serviceInfo::params = nmQuery::content::params;

 serviceInfo::numOfParams = nmQuery::content::numOfParams;

 via out send "--Sending request to UDDI--\n";

 via UDDI send serviceInfo where {uddiRespConn renames respConn};

 via uddiRespConn receive uddiResp;

 via out send "***rtFlight Reservation***\n\n--Service proposals from UDDI--\n";

 via out send uddiResp;

 via out send "\n\n";

 via DE send serviceInfo where {serviceInfoConn renames reqServiceConn};

 via serviceInfoConn receive serviceInfo;

 via out send "***rtFlight Reservation***\n\n--Optimal service returned by DE--\n";

 via out send serviceInfo;

149

 via out send "\n\n";

 via dynamic(serviceInfo::service_name) send serviceInfo where {serviceInfoConn renames

reqServiceConn};

 via serviceInfoConn receive serviceInfo; //serviceInfo now contains additional parameters

request

 nmQuery::request = serviceInfo::service_name;

 nmQuery::sender = "";

 nmQuery::receiver = "";

 nmQuery::content::service_id = "";

 nmQuery::content::service_name = "";

 nmQuery::content::params = serviceInfo::params;

 nmQuery::content::numOfParams = serviceInfo::numOfParams;

 nmQuery::language = "";

 nmQuery::ontology = "";

 nmQuery::reply_with = "";

 via rtConn send nmQuery; //sent to Actor

 via rtConn receive nmQuery; //received from Actor

 serviceInfo::service_name = "Flight Reservation";

 serviceInfo::params = nmQuery::content::params;

 via serviceInfoConn send serviceInfo; //sent to sp_norvegian

 via serviceInfoConn receive serviceInfo; //received from sp_norvegian

 nmQuery::reply_with = serviceInfo::message;

 via out send "\n\n***rtFlight Reservation***\n\n--Service invocation successful--\n";

 via rtConn send nmQuery;

}

value UDDI is abstraction (serviceQuery : view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String])

{

 resp : sequence[String];

 respConn : Connection[sequence[String]];

 via out send "***UDDI***\n\n";

 if (serviceQuery::service_name == "Flight Reservation") do

 {

 unobservable; //search UDDI database on parameters criteria

 via out send "--Returning service proposals to runtime agent--\n";

150

 compose

 {

 via respConn send sequence("sp_easyJet", "sp_norvegian", "sp_qatar");

 and

 done;

 }

 }

}

value DE is abstraction (reqService : view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String])

{

 reqServiceConn : Connection[view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String]];

 services : sequence[view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String]];

 numOfServices : Integer;

 i : Integer;

 j : Integer;

 paramMatchCount : Integer;

 fractionMatch : Float;

 services = sequence(view(service_name : "sp_easyJet",

 params : sequence(view(name : "date", val : "20/09/2008"), view(name :

"time", val : "12h00"),

 view(name : "price", val : "Rs. 60,000"),

 view(name : "source", val : "CDG"), view(name : "destination", val :

"LHR")), numOfParams : 5, message : ""),

 view(service_name : "sp_norvegian",

 params : sequence(view(name : "date", val : "15/09/2008"), view(name :

"time", val : "15h00"),

 view(name : "price", val : "Rs. 40,000"),

 view(name : "source", val : "CDG"), view(name : "destination", val :

"LHR")), numOfParams : 5, message : ""),

 view(service_name : "sp_qatar",

 params : sequence(view(name : "date", val : "20/09/2008"), view(name :

"time", val : "12h00"),

 view(name : "price", val : "Rs. 60,000"),

 view(name : "source", val : "ORY"), view(name : "destination", val :

"LHR")), numOfParams : 5, message : ""));

151

 numOfServices = 3;

 i = 0;

 via out send "***DE***\n\n";

 while (i < numOfServices) do

 {

 j = 0;

 paramMatchCount = 0;

 while (j < reqService::numOfParams) do

 {

 if (reqService::params(j)::val == services(i)::params(j)::val) do

 paramMatchCount = paramMatchCount + 1;

 j = j + 1;

 }

 fractionMatch = paramMatchCount / reqService::numOfParams;

 if (fractionMatch >= 0.8) do

 {

 reqService = services(i);

 i = numOfServices;

 }

 i = i + 1;

 }

 if (fractionMatch >= 0.8) do

 {

 compose

 {

 via out send "--";

 via out send reqService::service_name;

 via out send " Service Selected--\n";

 via reqServiceConn send reqService;

 and

 done;

 }

 }

 else do

 {

 done;

 }

} //end DE

value sp_norvegian is abstraction (reqService : view[service_name : String,

152

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String])

{

 reqServiceConn : Connection[view[service_name : String,

 params : sequence[view[name : String, val : String]], numOfParams : Integer,

message : String]];

 //register service request

 unobservable;

 reqService = view (service_name : "Additional Parameters Request",

 params : sequence (view (name : "Name", val : ""), view (name : "Address",

val : ""),

 view (name : "Phone", val : "")), numOfParams : 3, message : "");

 via out send "***sp_norvegian***\n\n";

 compose

 {

 via out send "--Sending additional parameters request--\n";

 via reqServiceConn send reqService;

 and

 via reqServiceConn receive reqService;

 via out send "***sp_norvegian***\n\n";

 via out send "--Recieving additional parameters--\n";

 //process service request

 unobservable;

 via out send "--Initiating service--\n";

 reqService::message = "Service successfully initiated";

 via reqServiceConn send reqService;

 }

} //end sp_norvegian

153

APPENDIX F

List of Publications

• Ontology-based Semantic Interoperability Facilitator among Task Group, The 4
th

International IEEE conference on Intelligent Systems, September 2008, Varna, Bulgaria.

• Agents Negotiating with Semantic Web Services, International Conference on Education

and Information Technology, October 2008, San Francisco, USA.

• Autonomous Semantic Grid: Architecture and Implementation, Open Grid Forum 19,

February2007, Charlotte, USA.

• Ontology Services between Agents and OWL Based Web Services, The 3rd IEEE

International Conference on Semantics, Knowledge and Grid (SKG), October 2007, China.

• Pushing Semantic Web Service Profiles to Subscribers for Efficient Service Discovery, the

3rd IEEE International Conference on Semantics, Knowledge and Grid (SKG), October2007,

China.

• Ontology Gateway: Enabling Interoperability between FIPA complaint Agents and OWL

Web Services, 9th International Conference on Enterprise Information Systems, Funchal-

Madeira Portugal, 2007.

• Policy Based Migration of Mobile Agents in Disaster Management Systems, 2nd IEEE

International Conference on Emerging Technologies, November 2006, Pakistan.

• An Ontology Gateway for efficient communication of Agents with Web services, IASTED

International Conference on Artificial Intelligence and Soft Computing, August 2006, Palma

De Mallorca, Spain.

• Ontological Translations in Semantic Grid, 4th International workshop on Multi–Agent

Systems and Semantic Grid, December 2006, Pakistan.

• Semantic Interoperability between Agents and Web Services Communication, 18
th

Assurance Systems Symposium, 2006, Hyogo Prefecture University, Japan.

• Middleware between OWL and FIPA Ontologies in the Semantic Grid Environment,

International Conference on Semantic Web and Web Services (SWWS'06), June 2006,

LasVegas, USA.

154

• Semantic Grid: Interoperability between OWL and FIPA SL, Lecture Notes in Computer

Science, ISBN 978-3-540-36707-9, Volume 4088/2006.

• Efficient architecture for Content Language coding in Autonomous Decentralized

Systems.(submitted).

• Formal Specification and Verification of Agent and Web services Communication using

π-ADL.(to be submitted)

Book Chapter

• Foundation for Autonomous Semantic Grid, Nova Publishers, 2008.

	Final.pdf
	Appendix.pdf
	Binder2.pdf
	APPENDIX A1.jpg
	APPENDIX A2.jpg
	APPENDIX A3.jpg
	APPENDIX A4.jpg
	APPENDIX A5.jpg
	APPENDIX A6.jpg
	APPENDIX A7.jpg
	APPENDIX A8.jpg
	APPENDIX A9.jpg
	APPENDIX A10.jpg

	Binder1.pdf
	2ndAppendix1.jpg
	2ndAppendix2.jpg
	2ndAppendix3.jpg
	2ndAppendix4.jpg
	2ndAppendix5.jpg

	2ndAppendixx.pdf

