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Abstract

In this thesis I present the work I did during my PhD at the Institute of Theoretical Physical
(IPhT), CEA Saclay, under the supervision of Iosif Bena. The framework I have been working in
is string theory, and more precisely supergravities in ten and eleven dimensions, as low energy
limits of string theory. The first part of the thesis deals with the study of supersymmetric
three-charge black holes and black hole microstates: Using supersymmetric D-branes called
supertubes, we have performed a probe analysis of supergravity solutions, and showed how
this approach exactly captures, in all known cases, the physical properties of the complete
supergravity solution. We also found that when the supertube is in a magnetically charged
background, it sees its entropy enhanced with respect to its flat space one. The supergravity
solutions sourced by supertubes are regular and horizonless, and hence can be seen, in the
“fuzzball proposal”, as black hole microstates. This enhanced entropy could therefore contribute
for a large part in a microscopic counting of the black hole entropy. In the second part of the
thesis, I present a new class of five-dimensional non-supersymmetric solutions, called “floating
brane” solutions. The equations giving these new solutions generalize the BPS equations and
have the key property to still be partially first order and linear. The BPS equations, and
thus all the known supersymmetric solutions, are recovered as a subcase of the floating brane
equations. Some of the new solutions have a horizon and are thus black holes – with different
horizon topologies – but some are completely regular and horizonless and should correspond to
microstates of non extremal black holes.



Résumé

Dans cette thèse je présente les travaux effectués lors de mon doctorat à l’Institut de Physique
Théorique (IPhT) du CEA de Saclay, sous la direction de Iosif Bena. Ceux-ci ont pour cadre
la théorie des cordes, et plus précisément la supergravité à dix et onze dimensions, comme
limite de basse énergie de la théorie des cordes. La première partie concerne l’étude des trous
noirs et microétats de trous noirs supersymétriques à trois charges. En utilisant une D-brane
supersymétrique appelée supertube, nous avons effectué une approche test et montré que cette
approche capture dans tous les cas connus les propriétés physiques de la solution complête de
supergravité. Nous avons aussi prouvé que le supertube, quand il est placé dans un fond ayant
des charges magnétiques, voit son entropie augmentée par rapport à celle qu’il a en espace
plat. Les solutions de supergravité sourcées par des supertubes étant régulières et sans hori-
zon, elles peuvent être vues, dans le contexte du “fuzzball proposal”, comme des microétats
de trous noirs. Cette entropie augmentée pourrait donc contribuer pour une large part dans
le cadre d’un comptage microscopique de l’entropie de trou noir, . Dans la deuxième partie
de la thèse, je présente une nouvelle classe de solutions non supersymétriques de supergravité
à onze dimensions, appelées solutions “à branes flottantes”. Les équations donnant ces nou-
velles solutions généralisent les équations BPS, et ont, comme ces dernières, l’énorme avantage
d’être partiellement du premier ordre et linéaires. Les équations BPS, et donc toutes les solu-
tions supersymétriques, se retrouvent comme une sous-famille des équations à branes flottantes.
Certaines de ces nouvelles solutions ont un horizon et sont donc des trous noirs – avec des to-
pologies d’horizon variées – mais certaines sont complètement régulières et sans horizons et
correspondraient à des microétats de trous noirs non extrémaux.
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Introduction générale
en français

Vous avez entre les mains ma thèse de doctorat, qui traite des trous noirs, de théorie des
cordes et de gravité quantique. Comme tout travail de recherche, le contenu est assez pointu
et technique par endroit, ce qui le rend difficile d’accès aux néophytes. Malgré cela, le sujet
est à mon avis très intéressant, et pas uniquement pour les spécialistes. J’aimerais donc en
présenter les enjeux et motivations à tous ceux qui pourraient être intéressés. C’est le but de
cette première introduction : (essayer d’) expliquer simplement, quoiqu’un peu rapidement1,
de manière accessible, le contexte et les motivations de mes travaux de thèse. Si vous êtes
déjà familier avec la physique des trous noirs et les problèmes liés à la gravité quantique, vous
pouvez directement aller à la deuxième introduction, où les motivations sont plus précises et
plus ancrées directement en théorie des cordes, ou au corps de la thèse proprement dit.

Pour expliquer mes motivations à travailler sur ce sujet, de nombreuses questions se bous-
culent : “Qu’est ce qu’un trou noir ?”, “Qu’est ce que la gravité quantique ?”, “Pourquoi faire
de la gravité quantique, puisque les expériences qu’on peut faire n’en ont pas besoin ?”, “Quel
est le lien entre trou noir et gravité quantique ?”, “Et le lien avec la théorie des cordes, dans
tout ça ?”, ... Si plusieurs angles d’attaque sont possibles pour parler de toutes ces questions, il
faut bien en choisir un. Commençons donc par les trous noirs :

Petite histoire des trous noirs

La première idée des trous noirs remonte au XVIIIème siècle. Partant de l’idée qu’à tout
astre est associée une vitesse d’échappement (expliquée sur la figure 1), l’anglais John Michell
en 1783 et le français Pierre-Simon Laplace en 1796 intuitent de façon indépendante l’idée
qu’un astre puisse être tellement lourd que même la lumière ne puisse pas s’en échapper. “Si
le demi-diamètre d’une sphère de la même densité que le soleil et qui excéderait celui du soleil
d’une proportion de 500 à 1, un corps tombant depuis une hauteur infinie vers elle aurait acquis
à sa surface une vitesse plus grande que celle de la lumière. En conséquence, supposant que la
lumière est attirée par la même force en proportion de sa “vis inertiae” [masse d’inertie], comme
les autres corps, toute lumière émise depuis ce corps reviendrait sur elle-même par sa propre
gravité.” dit Michell. Ils comprennent que, bien qu’invisibles – car n’émettant pas de lumière –
de tels astres auraient de forts effets gravitationnels sur leur entourage. Physiquement, on peut

1Cette thèse n’étant pas vouée à un réel travail de vulgarisation, les explications que je donne dans cette
introduction sont un peu trop rapides et imprécises. J’espère toutefois donner l’idée de ce que je fais dans cette
thèse de manière simple.
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Fig. 1 – La vitesse d’échappement d’un astre est la vitesse minimale qu’il faut donner à un objet pour que celui-
ci puisse s’échapper de l’attraction de l’astre (en négligeant les frottements dus à une éventuelle atmosphère).
A titre d’exemple, on peut voir sur ce schéma un canon situé au pôle nord de la terre tirer des projectiles à
differentes vitesses. Les deux premiers n’ont pas une vitesse suffisante pour s’échapper de l’attraction terrestre.
Le troisième est envoyé exactement à la vitesse d’échappement, et effectue donc le tour de la terre. Le dernier
projectile est envoyé plus vite que la vitesse d’échappement, et arrive donc à sortir de l’attraction terrestre.

voir cela näıvement de la façon suivante : de la surface de la terre, pour réussir à envoyer un
objet assez fort pour qu’il sorte de l’attraction terrestre, il faut lui donner une certaine vitesse
initiale. Pour fixer les idées, cette vitesse est d’environ 11 m/s pour la terre. Si on imagine un
astre beaucoup plus lourd, cette vitesse de libération pourrait devenir plus grande que la vitesse
de la lumière, et donc les rayons lumineux ne pouraient pas s’échapper de l’attraction de cet
astre. Celui-ci deviendrait donc noir et ne pourrait pas émettre de lumière.

Les savants de l’époque ne prirent pas cette observation au sérieux, la trouvèrent au plus
intéressante et sans sens physique réel ; il fallut attendre 1915 et la célèbre théorie de la relati-
vité générale d’Einstein pour voir les trous noirs revenir. La relativité générale explique, entre
autre, que le temps et l’espace, contrairement à notre intuition, ne sont pas statiques et im-
muables, mais qu’ils sont tout d’abord un seul et même objet, l’espace-temps, et que cet objet
est dynamique, c’est à dire qu’il évolue comme toute autre quantité physique. Cette évolution
est liée à son contenu en matière et en énergie par les fameuses équations d’Einstein. Malgré la
complexité de ces équations, à peine quelques mois après la publication des travaux d’Einstein,
Karl Schwarzschild fut le premier à en trouver une solution. Cette solution correspond à une
masse ponctuelle immobile au centre de l’espace. Loin de cette masse ponctuelle, cela décrit
en très bonne approximation l’espace-temps créé par un astre, le soleil par exemple. Et loin de
cet astre, on retrouve la physique Newtonienne. Mais si l’on s’approche de la masse ponctuelle,
on arrive dans un régime où la gravitation de Newton n’est plus valide et le comportement
de l’espace-temps devient alors bien étrange. À partir d’un rayon particulier, appelé rayon de
Schwarzschild et proportionnel à la masse ponctuelle qu’on a placé au centre de l’espace, on
peut dire de manière un peu grossière que le temps prend la place de l’espace et l’espace celle du
temps. En analysant plus finement la solution, les physiciens ont pu démontrer, dans ce cadre
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Oh non ! !

Ouf ! !

Fig. 2 – Deux vaisseaux spatiaux à proximité d’un trou noir. Le premier, en rouge, arrive à rester à l’extérieur
de l’horizon des évènements et donc à échapper à l’attraction du trou noir. Le vaisseau bleu a lui passé l’horizon
du trou noir. Malgré tous ses efforts, il ne pourra donc jamais ressortir.

précis, que tout ce qui tombait à l’intérieur de ce rayon ne pouvait jamais ressortir. Jamais au
sens strict du terme : ressortir est théoriquement impossible (voir figure 2). Et ceci est vrai tant
pour de la matière que pour la lumière. Autrement dit, cette solution a les propriétés de ces
fameux astres noirs de Laplace et Michell. On appelle la surface délimitant l’endroit d’où plus
rien ne peut s’échapper l’horizon des évènements, ou simplement horizon, du trou noir.

Il est important de s’arrêter un instant pour bien comprendre les différents ordres de gran-
deur. Pour cela, prenons l’exemple du soleil. La masse de celui-ci est d’environ 1030 kg, pour un
rayon de 500 000 km. Le rayon de Schwarzschild associé à la masse du soleil est, lui, d’environ
3 km. L’approximation de masse ponctuelle est valide pour le soleil pour des distances plus
grande que son rayon. Pour des distances plus petites, en dessous de 500 000 km, la solution de
Schwarzschild ne décrit plus du tout le soleil, qui ne peut plus être considéré comme ponctuel.
Pour envisager que les comportements étranges dont nous avons parlé puissent avoir un sens
physique, il faut imaginer l’existence d’un objet qui aurait toute la masse du soleil dans une
boule de moins de trois km de rayon ! Ce doit donc être un objet extrèmement compact.

Pendant longtemps, la grande majorité des physiciens a pensé que des objets aussi compacts
ne pouvaient pas exister, et que ce fameux rayon de Schwarzschild n’était en fait qu’un artefact
mathématique sans réel sens physique. Faisons alors un nouveau saut pour arriver directement
dans les années 60. A cette époque, les améliorations des techniques d’astrophysique observa-
tionnelle ont assez avancé pour que les physiciens commencent à penser sérieusement que de
tels objets pourraient exister réellement. L’un des plus ardents défenseurs de la possibilité de
l’existence des astres noirs fut John Wheeler. Il est d’ailleurs l’inventeur du nom de “trou noir”,
“trou” car si on tombe dedans on ne peut pas ressortir, et “noir” car la lumière elle-même ne
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Fig. 3 – La relativité générale explique que la présence d’une masse en un point de l’espace-temps le courbe,
et c’est cette courbure qui crée l’attraction gravitationnelle. Sur ce schéma est représenté la courbure de l’espace-
temps en présence de différentes masses. Dans le premier cas, la masse est faible, et la courbure n’est donc pas
très importante. Dans le deuxième cas, la masse est plus importante, et l’espace-temps est fortement courbé.
Dans le dernier cas, la masse est si compacte qu’un trou noir apparâıt : la courbure devient infinie en son centre.
Sur le schéma n’est représenté l’espace-temps qu’en dehors de l’horizon des évènements.

pouvant pas sortir, cet astre de l’extérieur doit être complètement noir. A partir des années 60,
les physiciens comprirent qu’un trou noir pouvait se former à la fin de la vie de certaines étoiles.
Je ne m’étendrai pas ici sur les techniques observationnelles permettant d’observer (indirecte-
ment) les astres pouvant possiblement être des trous noirs, et dans la suite, je m’intéresserai
uniquement à leurs propriétés théoriques.

Après Wheeler, de nombreux physiciens commencèrent à travailler pour comprendre ces
objets étranges, à commencer par Stephen Hawking. Leurs travaux ont permis une meilleure
compréhension des trous noirs, mais ont aussi montré qu’un certain nombre de problèmes res-
taient très difficile, voire impossible à comprendre dans le cadre de la relativité générale. Es-
sayons de résumer tout cela :

– La singularité centrale. Le premier problème concerne ce qui se passe au centre du trou
noir. Un trou noir se forme à la fin de la vie d’une étoile si rien n’arrive à s’opposer à l’ef-
fondrement gravitationnel. Tous les autres astres ou objets astrophysiques sont maintenus
d’une part par l’attraction gravitationnelle et d’autre part par une autre force permettant
de lutter contre cette attraction, et donc de les stabiliser à une taille fixe. Par exemple,
pour la terre, cette deuxième force est créée par les interactions électromagnétiques alors
que pour le soleil, elle est due aux réactions de fusion du coeur. Dans un trou noir,
au contraire, rien ne s’oppose à la force de gravitation, celui-ci s’effondre donc sur lui-
même jusqu’à ce que la masse se retrouve entièrement concentrée au milieu, formant une
“singularité”, une explosion de l’espace-temps où de nombreuses quantitées mesurables
deviennent infinies (voir figure 3). Cette singularité indique que nous arrivons aux limites
de notre modèle théorique (la relativité générale), et qu’un autre phénomène physique qui
n’est pas pris en compte dans notre théorie apparâıt. Le premier point à comprendre est
donc ce qu’est ce nouvel élément, ce nouveau phénomène physique qui vient corriger la
singularité.

– L’entropie du trou noir. En 1967, Werner Israel et Brandon Carter démontrèrent le
“théorème d’unicité des trous noirs”. Celui-ci nous dit qu’un trou noir stationnaire est
déterminé de manière unique par un petit nombre de quantités : sa masse, sa charge
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Fig. 4 – Ce schéma représente la “vie” d’un trou noir. Au départ, de la matière s’effondre sur elle-même er
forme le trou noir. Celui-ci émet alors un peu de lumière sous forme de radiation de Hawking. Ce faisant, il perd
peu à peu son énergie, donc sa masse, et réduit. Si le phénomène ne s’arrête pas, le trou noir finit par disparâıtre
complètement. La radiation émise par le trou noir étant thermale, elle n’a pas pu emporter d’information sur
la matière qui constituait le trou noir. On a donc à la fin perdu l’information sur la façon dont il a été formé.

éléctrique et son moment cinétique (qui traduit comment il tourne sur lui-même). Ce
théorème est un résultat très important, mais, comme souvent en physique, il pose en fait
plus de nouveaux problèmes qu’il ne donne de réponses. En effet, il stipule entre autres
que vous pouvez former un trou noir avec n’importe quoi, la seule chose qui importe au
final est la valeur de ces quantités, qui le déterminerons de manière unique : prenez un
trou noir et rajoutez y un vélo ou votre petite soeur, pourvu qu’ils aient la même masse, le
trou noir résultant sera le même. Cela, en plus d’être conceptuellement troublant, pose un
problème à cause d’une quantité physique appelée l’entropie. L’entropie est une quantité
thermodynamique qui traduit grossièrement le désordre d’un système. Plus elle est grande,
plus le système est désordonné. En particulier, l’entropie d’un système isolé ne peut que
crôıtre (on ne peut pas ranger chez soi sans aucun apport extérieur d’énergie). D’un point
de vue microscopique, l’entropie d’un système est directement relié au nombre de façons
qu’on a de réaliser ce système microscopiquement, de “microétats” du système. Pour cla-
rifier, prenons un exemple usuel : l’air dans une pièce est principalement déterminé par
sa température et sa pression. Cela suffit à le décrire macroscopiquement, globalement.
Mais il est microscopiquement constitué de particules, et il y a de très nombreuses façons
d’organiser ces particules qui donnent globalement le même gaz. Ce sont les “microétats”.
C’est une notion très importante sur laquelle nous reviendrons plus tard. Si on applique
tout cela aux trous noirs, on peut facilement montrer qu’en y jetant deux choses différentes
mais de même masse, on a moins d’états à la fin qu’au début. Beckenstein et Hawking
introduisirent alors une nouvelle entropie, associée à un trou noir. Celle-ci est propor-
tionnelle à l’aire de son horizon. Si on prend en compte cette entropie supplémentaire, on
retrouve bien le fait que, même en présence d’un trou noir, l’entropie d’un système isolé ne
peut que grandir. La théorie physique “habituelle” est donc retrouvée, au prix de l’intro-
duction de cette nouvelle entropie. Le problème, encore ouvert à l’heure actuelle, est alors
de comprendre cette entropie de manière microscopique, autrement dit, de comprendre
ce que sont les “microétats de trou noir”.

– Le paradoxe de perte d’information. Qu’en est-il de l’information sur la façon dont
on a formé le trou noir ? Quand on forme un trou noir en compactant de la matière,
on ne peut plus, de l’extérieur, avoir d’informations sur ce qui constitue le trou noir à
cause de l’horizon des évènements. En effet, comme rien ne peut ressortir, ni matière ni
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radiation ne peuvent sortir pour nous dire ce qu’il y a à l’intérieur. De dehors, à cause
du théorème d’unicité, on ne peut avoir accès qu’à la masse, au moment cinétique et à la
charge du trou noir, et aucunement aux détails de ce qui le constitue. Autrement dit une
partie de l’information est cachée à l’intérieur de l’horizon, mais on peut penser qu’elle n’a
pas disparu. Le problème vient alors de la suite de l’histoire : Hawking, poursuivant ces
travaux, se demanda comment les propriétés quantiques de la matière pouvaient modifier
la compréhension des trous noirs. Il réussit à montrer que si la matière est quantique,
le trou noir n’est en fait pas complètement noir mais émet un peu de lumière. Cette
émission, appelée radiation de Hawking, est émise à partir de l’horizon, et ne dépend
que de la température du trou noir, liée à sa masse, et aucunement de ce qu’on a pu y
mettre au départ. En d’autre termes, elle ne donne aucune information sur les détails de
son intérieur. Cette émission ayant un peu d’énergie, en l’émettant cette radiation, le trou
noir perd peu à peu de énergie, jusqu’à sa disparition complète. Or si le trou noir s’évapore
en émettant de la lumière qui ne contient pas d’information sur sa formation, on a au
total perdu de l’information à jamais. Ce phénomène est illustré schématiquement sur la
figure 4. Dans un tel scénario, on ne peut après évaporation jamais remonter à la façon
dont le trou noir avait été formé. Cette perte d’information va contre tous les principes
connus de la mécanique quantique. Il est donc important de comprendre s’il y a vraiment
perte d’information – et dans ce cas comment allier cela avec le reste de la physique – ou
si l’une des étapes du raisonnement est fausse – et dans ce cas laquelle et qu’est ce qui la
remplace.

Gravitation quantique et théorie des cordes

Les trois problèmes que sont la singularité, l’entropie et la perte d’information, différents
bien que reliés, ne sont actuellement toujours pas clairement compris. Il est clair qu’on ne pourra
pas leur donner une réponse satisfaisante dans la cadre de la relativité générale, et ceci pour la
raison suivante : comme nous l’avons déjà dit, rien, classiquement, ne s’oppose à l’effondrement
gravitationnel dans un trou noir, et cela conduit à une singularité. Or, dans un modèle physique,
les singularités et l’apparition de l’infini dans les calculs sont très souvent le signe que quelque
chose de nouveau apparâıt, de nouveaux phénomènes physiques qui ne sont pas prise en compte
dans notre description. Qu’est ce que cette nouvelle physique dans le cas qui nous intéresse ici ?
Pour comprendre cela, faisons un petit détour théorique, illustré sur la figure 5 : la relativité
générale décrit les grandes masses, les forts champs gravitationnels, et ceci de manière classique
(par opposition à la mécanique quantique). La physique quantique s’intéresse quant à elle à la
physique à petite échelle. Ces deux théories, bien que parfaitement vérifiées expérimentalement
chacune de leur côté, ne décrivent pas la même chose et sont incompatibles dans leur forme
actuelle. Si on veut décrire de grandes masses dans de petits volumes – autrement dit des trous
noirs –, il nous faut une nouvelle théorie, qui arrive à allier la relativité générale et la mécanique
quantique : la gravité quantique.

Depuis maintenant plus de trente ans, plusieurs théories candidates se sont développées.
Celle dans laquelle je travaille, la théorie des cordes, est l’une des plus connues et des plus
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Mécanique Newtonienne

classique

Relativité restreinte
c

Mécanique quantique
~

Mécanique quantique relativiste
Théorie quantique des champs

c,~

Relativité générale

c,G

Gravité quantique

c,~, G

Fig. 5 – Représentation simplifiée des liens entre les différentes théories physiques : la mécanique Newtonienne
décrit très bien la physique classique, à notre échelle. Il existe alors deux limites différentes dans lesquelles elle
n’est plus pertinente : la première quand il s’agit d’expliquer des phénomènes à très petite échelle, auquel cas
elle doit être remplacée par la mécanique quantique (liée à la constante fondamentale ~, appelée constante de
Planck). Le deuxième limite est prise si les vitesses en jeu ne sont plus négligeables devant le vitesse de la
lumière c ; la relativité restreinte doit alors être introduite. On peut ensuite réunifier la mécanique quantique et
la relativité restreinte, pour prendre en compte à la fois les vitesses importantes et les petites échelles, et cela
forme la théorie des champs. D’autre part, pour décrire les interactions d’objets très massifs, générant de forts
champs gravitationnels (liés à la constante de gravitation G), la relativité restreinte doit être généralisée, ce qui
donne la relativité générale. Enfin, il nous reste encore à trouver la théorie de gravité quantique, qui permettra
d’unifier relativité générale et théorie des champs.

développées1. Bien qu’étant née dans un autre contexte, elle peut naturellement être vue
comme une théorie de gravitation quantique. Dans le cadre de cette théorie, il a été possible de
développer des outils précis pour s’attaquer aux problèmes relatifs aux trous noirs :

En utilisant une dualité de la théorie, c.à.d. une façon de décrire le même système de deux
façons différentes, Strominger et Vafa ont, en 1997, réussi à compter, dans un certain régime,
les configurations microscopiques d’un système dual à un trou noir. Et ce comptage microsco-
pique donne au final exactement l’entropie de Beckenstein-Hawking associée. Autrement dit,
ils ont effectué le premier comptage microscopique de l’entropie d’un trou noir. Ce résultat,
bien que valable uniquement pour une classe de trous noirs assez particulière est un résultat
très important, qui donne des éléments de compréhension nouveaux. Il ne résout toutefois pas
tout. En effet, le comptage est fait dans un régime où le trou noir n’existe pas vraiment, et
utilise un argument extérieur – cette dualité – pour expliquer que le comptage correspond bien
à l’entropie de Beckenstein-Hawking. Il n’explique donc pas vraiment ce qu’est un microétat de
trou noir, ni comment le problème de perte d’information peut être résolu.

Pour répondre à ces questions, Samir Mathur, au début des années 2000, fit une proposition

1La deuxième autre principale théorie candidate est la gravité quantique à boucles, basée sur ue quantification
directe de la théorie d’Einstein, mais exprimée en termes de variables plus appropriées. On peut également citer
la géométrie non-commutative ou encore la gravité asymptotiquement régulière.
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Espace vide Matière,
Effets de

gravité quantique

Matière,
Effets de

gravité quantique

Horizon

Fig. 6 – Sur ce schéma sont représentées deux possibilités quant à l’intérieur d’un trou noir. Le point de vue
classique est représenté à gauche : toute la masse constituant le trou noir est concentrée dans un petit volume de
la taille de Planck en son centre, et le reste est complètement vide. En particulier l’espace est vide aux alentours
de l’horizon. À droite, on voit l’intérieur du trou noir dans l’hypothèse du “fuzzball proposal”. Ici, les effets
quantiques ne se limitent pas au centre du trou noir, mais s’étendent jusqu’à son horizon. Dans cette image,
l’ensemble du trou noir est donc contitué de matière.

intéressante1, connue sous le nom de conjecture de Mathur, ou “fuzzball proposal”. Les idées
physiques soutendant cette conjecture ne sont pas fondamentalement liées à la théorie des
cordes, je vais donc essayer de les expliquer simplement :

À quel ordre de grandeur peut-on s’attendre à avoir des effets de gravité quantique ? Un
raisonnement dimensionnel nous dit qu’à l’aide des trois constantes fondamentales que sont
la vitesse de la lumière c, la constante de gravitation G et la constante de Planck ~, la seule
quantité homogène à une longueur qu’on peut fabriquer est lP =

√
~G/c3 ≈ 10−35m, qu’on

appelle la longueur de Planck. Cela nous dit donc qu’on s’attend naturellement à voir apparâıtre
les effets de gravité quantique à cette faramineusement petite échelle. Pour comparer, la taille
d’un proton par exemple est d’environ 10−15m. La longueur de Planck est donc 100 000 fois
plus petite qu’un objet qui serait aussi petit pour le proton qu’un proton pour nous. Bref,
c’est petit, bien plus que le rayon de Schwarzschild d’un trou noir. Näıvement, on s’attend
donc à ce qu’à l’intérieur d’un trou noir, les effets de gravité quantique corrigent la singularité
centrale sur une cellule de la taille de Planck, bien plus petite que la taille du trou noir. Mais un
deuxième cas est possible : comme au trou noir est associé un certain nombre N de microétats,
cette taille lP peut être multipliée par un facteur adimensionnel dépendant de N . Comme
N peut être très grand, cela pourrait faire grandir les effets quantiques jusqu’à des tailles
macroscopiques, typiquement jusqu’au rayon de Schwarzschild. C’est l’essence de la conjecture
de Mathur, représentée sur le schéma 6. Remarquons que ce genre de comportement n’est
pas nouveau : dans les naines blanches et les étoiles à neutrons, l’effondrement gravitationnel
est contré par un effet purement quantique, la pression de Fermi, qui s’étend grâce au grand
nombre de particules jusqu’à la taille de l’étoile, bien plus grande que les échelles habituelles
de physique quantique. Si l’on suppose que la proposition de Mathur est vraie, et que les effets
quantiques s’étendent jusqu’à la taille de l’horizon, cela veut dire que la description donnée
par la relativité générale, qui ne prend pas en compte ces phénomènes quantiques, n’est plus
valide dès l’horizon, et non pas seulement au centre du trou noir. Un bon moyen de comprendre

1La conjecture de Mathur n’est évidemment pas la seule proposition de réponse. Je ne m’intéresserais ici
toutefois qu’à elle.
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Fig. 7 – Ce schéma reprend les deux images possibles pour l’intérieur des trous noirs, présentés figure 6,
et illustre en quoi le paradoxe de perte d’information pourrâıt être résolu dans le cadre de la conjecture de
Mathur. La radiation de Hawking (en violet sur le dessin) émise par le trou noir prend son départ à l’horizon
des évènements. Dans la vision classique, à gauche, on voit en zoomant que cette radiation part donc d’un
endroit où l’espace est vide ; elle ne peut donc pas emporter d’information sur la matière contenue loin au centre
du trou noir. Dans le cadre du fuzzball proposal, à droite, la matière s’étend au contraire jusqu’à l’horizon. La
radiation partant de là est donc bien émise par la matière elle-même, et porte donc une certaine information
sur celle-ci.

cela est de faire un parallèle avec la thermodynamique usuelle. A grande échelle, on décrit
extrèmement bien un gaz en supposant que c’est un fluide continu, déterminé par quelques
quantités macroscopiques, comme sa température et sa pression. Mais si l’on zoome, à partir
d’une certaine échelle on s’aperçoit que ce n’est en fait pas un fluide continu mais un ensemble
de particules, qui ont chacune une vitesse et une position. Si l’on veut décrire des effets à grande
échelle, la description en terme de fluide est très bonne, mais elle ne marche plus pour étudier
la physique microscopique du gaz. L’idée est la même pour le trou noir : pour des effets plus
grands que l’horizon, comme le lentillage gravitationnel ou le mouvement d’un astre loin du
trou noir, la description classique de la relativité générale est parfaitement valide. Mais si l’on
étudie la physique à l’échelle de l’horizon, comme la radiation de Hawking, alors la relativité
générale n’est plus valable et il est nécéssaire d’avoir une description en terme des microétats.

Si l’on suit cette conjecture, on peut comprendre comment ces corrections quantiques
répondent aux trois problèmes des trous noirs, sans se poser la question, plus technique, de
ce que sont exactement ces microétats :

– La singularité centrale. La singularité, premièrement, est corrigée par la gravité quan-
tique. Ceci marche que les effets soit de la taille de lP ou de celle de l’horizon, il est certain
que les effets de gravité quantique vont à un moment contrer l’attraction gravitationnelle
pour empêcher toute la masse de se concentrer en un point.

– L’entropie du trou noir. Si la conjecture de Mathur est vraie, cela veut qu’il existe
des microétats de trou noir, des configurations quantiques, qui par construction – ou par
hypothèse – fournissent une description microscopique des trous noirs. Si on a assez de
microétats, on retrouvera l’entropie du trou noir macroscopique. De même qu’un gaz en
thermodynamique doit être compris comme une approximation, une “moyenne” sur les
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configurations microscopiques, le trou noir relativiste est une “moyenne” de ces microétats,
une approximation, qui est valable à l’extérieur du rayon de Schwarzschild.

– Le paradoxe de perte d’information. La dernière question est celle de l’information.
Comme on l’a vu, le problème est que, dans une description classique, la radiation de
Hawking émise par le trou noir est uniquement thermale, et ne porte donc aucune info-
mation sur la façon dont il a été formé. Ce résultat est basé sur le fait que l’émission se
fait au niveau de l’horizon, où classiquement il n’y a pas de matière, puisque celle-ci est
uniquement au centre du trou noir. Dans le cadre la conjecture de Mathur, la matière
s’étend jusqu’à la taille de l’horizon, la radiation partant de l’horizon est donc bien émise
par la matière et non par l’espace vide (voir figure 7). Elle va donc en s’en allant em-
porter un peu d’information sur le contenu. De cette manière, contrairement à la vision
classique de la radiation de Hawking, si le trou noir s’évapore on peut savoir de quoi il
était constitué en regardant précisément la radiation qui s’en échappe. L’information sur
le contenu du trou noir est donc encodée dans ce qui est émis, et non pas perdue.

Toutes les idées présentées ainsi sont élégantes, mais ne resteraient que des mots en l’air si
l’on ne pouvait pas les tester explicitement, les comprendre dans un cadre précis. En théorie des
cordes, il est possible de les implémenter réellement dans un contexte technique bien compris,
et ultimement de démontrer ou d’infirmer la conjecture de Mathur. Depuis bientôt dix ans, de
nombreux physiciens ont travaillé sur cette question, et les travaux que de ma thèse s’inscrivent
principalement dans ce contexte. Je réexplique ce contexte plus précisément dans la deuxième
introduction. Je tiens tout de même à dire avant de finir cette présentation générale que la
conjecture a été prouvée dans le cas d’une certaine classe de trous noirs, mais cette classe
est d’une certaine manière “dégénérée”, et il n’est pas encore certain qu’elle soit valide dans
le cas général. Toutefois, ce réultat est déjà très important, car il a tout d’abord permis de
comprendre quels étaient, dans cette classe, réellement les microétats, et il donne deuxièmement
une motivation très nette en faveur de la conjecture, qui montre que même si elle se trouve être
au final infirmée, elle n’est absolument pas dénuée de sens et nous apprendra beaucoup sur la
physique microscopique des trous noirs.



Introduction

With general relativity on one side and quantum mechanics on the other side, physics provides
today an extremely good description of our world, that has been perfectly verified experimen-
tally. But from a theoretical point of view, we know that these two theories are incompatible,
and finding a complete theory of quantum gravity is one of the major challenges of the physics
of the twenty first century. Very generally, one expects to have gravity effects for large masses,
and quantum effects for small sizes. Quantum gravity therefore should appear when one has
a very large mass in a small regions, in other words for compact objects. And what is more
compact than a black hole? One thus naturally expects black holes to be the first place for
quantum gravity to reveal itself, and understanding quantum gravity begins with understand-
ing black hole physics. Reversing the point of view, in an astrophysical picture a black hole
is what one obtains when nothing (classically) forbids gravitational collapse to go on: matter
shrinks to zero size and creates a singularity. But we know that generically singularities reflect
the limits of a given theory: a new physics is appearing. Namely here, quantum gravity. But
singularities are not the only problem of black holes. The three, different albeit related, main
problems in black hole physics are

• resolving the central singularity,

• having a microscopic understanding of the Beckenstein-Hawking entropy, and

• solving the information paradox.

One strongly expects that these three issues will be correctly understood only in a proper theory
of quantum gravity.The other way around, understanding these problems will be an enormous
step towards understanding quantum gravity.

In order to address this issues, one needs a precise framework. String theory, being naturally
a theory of quantum gravity, provides such a framework. More than that, within string theory,
a lot of results have already been found: first of all, using the duality between the weakly
coupled, open string picture and the strongly coupled, closed string one, Sen, in 1995, has
first been able to perform a microscopic counting of the states of supersymmetric two-charge
systems [1]: the idea is that at zero string coupling constant, the F1-P two-charge system is in
an open string regime and thus described by a conformal field theory (CFT). In this CFT, one
can use Cardy’s formula to show that the number of configurations is e2π

√
N1NP . Turning on

gs, the two-charge system backreacts to form a black hole, and since supersymmetry protects
the number of states as gs is changing, this number should match the exponential of the black
hole entropy. However, the story is more complicated than that: indeed, two-charge black holes
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have vanishing horizon area in supergravity, their entropy is therefore given by the first stringy
corrections. But these corrections were not known in 1995, so even if Sen could already argue
that the two-charge black hole entropy scales like

√
N1NP , he could not finish the proof. It

is only in 2004 that Dabholkar, using results on stringy corrections to supergravity [2], finally
showed that the black hole entropy, in the two-charge case, was exactly 4π

√
N1NP and thus

matched Sen’s microscopic counting [3].
Because the two-charge system is degenerate, in the sense that it does not correspond to

a large black hole, one cannot completely claim victory. Indeed, it was not clear that the mi-
croscopic counting will still hold in the case of black holes with macroscopic horizons. But in
a now famous paper [4], Strominger and Vafa extended Sen’s result to the case of the super-
symmetric three-charge D1-D5-P black hole, that has a non-vanishing entropy 2π

√
QD1QD5QP .

Strominger and Vafa proved that in this case, the open string CFT counting exactly matches the
Beckenstein-Hawking one. One can note that this major result has now a natural understanding
in the AdS/CFT correspondence.

Despite its importance, this result is not the end of the game because it does not, for exam-
ple, address the information paradox question. The problematic point is that the microscopic
counting is done in the open string regime, where the black hole does not exist. One can
therefore go one step further and ask “How does a black hole microscopic degree of freedom
look like in the gravity regime?”, or in other words “How does a black hole microstate look
like?”. There has been different proposal to answer this question. In a first one [5], Horowitz
and Polchinski conjectured that every black hole microstates should be corrected from the black
hole geometry only on a Planck-sized scale, and would still have a horizon. A different approach
is the one of Samir Mathur, now known as “Mathur’s conjecture” or the “fuzzball proposal”
(see [6] for reviews). There are now different variants, different points of view, since the original
proposal was done, but the common physical idea is the following: by dimensionality, the only
length one can construct out of the fundamental constants c; G and ~ is the Planck length
lP =

√
~G/c3 ≈ 10−35m. One thus naturally expects quantum gravity effects to become impor-

tant at this very small scale. But to a black hole entropy S should correspond N = eS degrees
of freedom, N microstates, it could thus be possible for quantum gravity effects to occur not at
an lP scale but at NαlP , α being some positive constant to determine. Since N is very large,
NαlP could be much larger than lP itself, and eventually extend to the second natural scale
associated to the black hole, namely its Schwarzschild radius rS. Thinking for a second, one
can remark that this phenomenon already occurs in other contexts: in white dwarfs or neutron
stars, the gravitational collapse is forbidden by quantum effects that extend, because of the
very large number of particles, not only to macroscopic scales but to astrophysical ones. In
string theory, it is also well-known that the timelike singularities are in some systems resolved
by modifying the solution on a large scale, like in Polchinski-Strassler [7], Klebanov-Strassler
[8], giant gravitons and the LLM geometries [9, 10].

If quantum gravity effects extend to the horizon size, one should in this picture understand
the classical black hole as a thermodynamical, statistical description, valid on scales larger than
rS. Inside the horizon, this statistical description should not be relevant anymore, one would
see the details of the “black hole microstate”, exactly as usual thermodynamics breaks down
at the scale of particle’s mean free path. Replacing the black hole with one of its microstates,
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it is important to understand what generic features such states should have. What do we
expect of such a microstate? Generically one knows that, by construction, it is a pure state
microscopic configuration, and should thus not carry any entropy and consequently not have
any horizon. In addition, it should have the same asymptotic behavior as the classical black
hole, in particular the same mass and charges. This leaves a large freedom to the details of the
states, and it is still an open question to know if a generic, typical microstates is a complicated
non-geometrical stringy configuration, a “fuzzball”, or not. Even if the generic states are very
stringy, some of the microstates could also be well-described in supergravity, very much like
quantum mechanics coherent states. Because this states are, technically speaking, easier to
find, the natural question that rises is “Is there enough of such coherent states to accurately
sample the phase space?”. If the answer is yes, then counting the entropy corresponding to
this supergravity microstates would be enough to have the leading order entropy, and could
therefore give a positive answer to Mathur’s conjecture, at least for supersymmetric back holes.

An important effort to prove this proposal, initiated by Lunin and Mathur, has been done in
the last ten years, and in the two-charge case a large family of smooth, horizonless supergravity
states has been constructed [11, 12, 13, 14, 15]. Counting these solutions has been done in
[12, 16, 17, 18], where it has been shown that they were enough to account for the black hole
entropy. It is interesting to mention that the key ingredient for this construction has been
particular D-brane configurations called supertubes [19, 20, 21], carrying two electric and one
magnetic dipole charge. This objects can have classically an arbitrary shape while still being
BPS, and their entropy comes from the quantization of the corresponding infinite dimensional
moduli space.

We could here claim that the fuzzball proposal has been proved for supersymmetric two-
charge black holes, but, despite the very strong hints it gives in favor of the Mathur’s proposal,
things are not that clear. Indeed, in a recent paper [22] argue that one cannot find in the
same duality frame both smooth configurations and small black holes. Thus, the two pictures
– one single black hole or many horizonless configurations – may not be seen as two alternative
descriptions of the same physics, but should be added in order to match the microscopic CFT
counting. While this remark is very pertinent, it is still unclear which of the two descriptions
is the correct one.

In the three-charge case, an impressive body of work has already been done (see [6] for recent
reviews, and references therein). Although a very large class of smooth, horizonless solutions,
of microstates, have already been constructed, they are still too few to account for the entropy
of the three-charge black hole. One of the reason for this is that most of the known solutions
assume, for tractability, a U(1) isometry. Relaxing this condition has been, in the two-charge
case, crucial to obtain an infinite dimensional moduli space and get the black hole entropy.
It is therefore very important to find and understand more general three-charge microstates
solutions. The work presented in the first part of this thesis is a step towards more general
supersymmetric three-charge solutions. The precise results and motivations are presented at
the beginning of the first part.

It is important to note that all of this results have been obtained for supersymmetric (BPS)
black holes. Because our world is not supersymmetric, one should ultimately address the same
questions for non-BPS ones. In the latter case, we also expect to see new features appearing. In
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particular, supersymmetric black holes being extremal, they do not emit any radiation, and do
not evaporate. Therefore, in order to study advanced questions like “How does one understand
Hawking radiation in the fuzzball proposal context?”, or “What does Mathur’s conjecture tell
us about the information paradox?”, one has to look at non-BPS black holes and black hole
microstates. Because of technical difficulties, very few non-BPS black hole microstates are
known, and even fewer non-extremal ones. The first one has been found in [23] (see also
[24, 25]). This solution is known to be non-generic, but is still very interesting to understand.
In [26] it was proved that this solutions were unstable. After that, Mathur and collaborators,
in [27], made a careful analysis of the solution and have been able to study the emission created
by the this instability. They could showed that this emission agreed perfectly with what one
can compute on the CFT side. Because CFT states are the one that have been counted to
find the microscopic entropy of the black hole, it is a strong hint that this smooth, horizonless
geometries have really to be understood as “black hole microstates”, and consequently that the
fuzzball proposal does make sense.

Because very few non-BPS solutions are known, it is very important to find more of them,
both black holes and smooth solutions, and then to understand the structure of the solution
space. This will give us some insight and will allow to study them in details. The work presented
in the second part of the thesis takes place into this effort to find and understand new non-
BPS class of supergravity solutions. The precise results and motivations are presented at the
beginning of the second part.

Presentation of the results

The work I did over the three years of my PhD is part of the common global context explained
before, but are organized in two different parts. The first one deals with the study and detailed
analysis of supersymmetric solutions of supergravity, corresponding either to black rings –
five-dimensional black holes whose horizon topology is S1 × S2 – or to regular horizonless
solutions, in other words black hole microstates. This analysis is done via a probe D-brane
approach and uses supertubes [19, 20, 21]. These supertubes are very interesting because they
preserve the same supersymmetries as the background they are testing. This allows us to test
many physical background properties, such as the fact that the entropy of a black ring does
increase when merged with a supertube. In parallel, when the complete supergravity solution
corresponding to the probe experiment is known, this allowed us to check that in all known
cases, the physics is essentially completely captured by the probe analysis. Finally, this probe
computation leads us to the “entropy enhancement mechanism”, which reflects the fact that
supertubes in magnetically charged backgrounds see their entropy enhanced by the dipole dipole
interactions with the background. In certain configurations, this entropy can be much larger
than what one would naively expect. Since supertubes source smooth supergravity solutions,
this results is particularly interesting in the context of the fuzzball proposal, where this entropy
can possibly account for a significant part of the corresponding black hole entropy.

The second part of my work concerns the search of new non-supersymmetric supergravity
solutions. Supersymmetry simplifying greatly the Einstein equations, finding and analyzing
BPS solutions has been very fruitful and a lot of efforts have been done in this direction in the
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last decade. Without supersymmetry, solving Einstein equations becomes in general much more
complicated. However, different groups found new ways to try to factorize Einstein equations
into an easier first order system (see [28, 29, 30, 31, 32, 33, 34] for a small part of the references),
and consequently discovered more and more non-BPS solutions. In this context, I have tried,
with my collaborators, not only to go on in the search of new solutions, but also the structure
classifying them. This allowed us to find a new system of equation generalizing the BPS one,
and having the crucial property to still be of first order and also solvable in a linear way. We
then solved this system in numerous different physically interesting cases.

In order to avoid having a too long introduction, I postpone the detailed presentation of the
motivations and results of my works to the beginning of each of the two parts of the thesis.

Organization of the thesis

This thesis is organized in eight chapters and five additional appendices.

In the first chapter, I introduce all the tools that will be necessary for the following work.
I first introduce the type IIA, type IIB and eleven-dimensional supergravities and then present
the different dualities relating them. The rest of the chapter contains an in-depth review of
supersymmetric 3-charge solutions of these theories, given in all the contexts that will be needed
in the following.

The rest of the thesis is organized into two parts. The following chapters use the results of
the first one, but are presented, for the reader’s convenience, as two independent parts. The
first one, constituted by the chapters 2, three and 4, deals with the detailed analysis of known
supersymmetric black holes and black hole microstates. The second one contains the chapters
5 to 8 and concerns new non-BPS supergravity solutions.

In chapters 2 and 3, I present the result of a probe analysis, using a supertube, for different
supergravity backgrounds. After having precisely introduced the tools and formalism in chapter
2, I first show how the probe approach essentially captures all the physics of the backreacted
solution. I study more precisely in chapter 3 magnetically charged backgrounds, and particularly
the dipole-dipole interaction between the probe and the background. In chapter 4, I show how
this new interactions effectively “enhanced” the electric charges of the tube and that this one
consequently sees his entropy being “enhanced” way more than what one would naively think.
Supertubes backreacting into smooth, regular supergravity solutions, this enhanced entropy
could account for a large part in a microscopic counting of the corresponding black hole entropy.

The fifth chapter contains the first class of non-supersymmetric black holes. These solutions,
the “almost BPS black holes” are solutions of five-dimensional supergravity with a Taub-NUT
Euclidean space. Although being composed of BPS objects, supersymmetry is broken by the
relative orientation of the D-branes. The “almost BPS equations” giving these solutions are
very similar to the BPS ones, given in chapter 1, and the new class of solutions is very large,
describing rotating black holes as well as black rings or multicentered solutions.

Chapter 6 presents a generalization of the approach that lead to the almost BPS equations
of chapter 5. It consists in a complete derivation of the equations of motion assuming a “floating
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brane Ansatz”. This hypothesis translates the fact that a probe M2-brane does not feel any
force in such a “floating brane” supergravity background. Roughly speaking, it corresponds to
an extremality requirement – even if , as we will see in chapter 8, one can find non extremal
solutions within this Ansatz. With an extra simple hypothesis, the final equations are finally
partially first order and linear if solved in the correct way. They generalize the known BPS and
almost BPS equations of chapter 1 and 5.

The seventh chapter is about new solutions based on an Israel-Wilson four-dimensional
space. These solutions, in addition to their intrinsic value, are particularly interesting because
they interpolate between the BPS and almost BPS solutions. They thus allow us to have a
better understanding of the global structure of the new solution space.

Finally, in chapter 8, I present the “Bolt solutions”. These solutions to the system of
equation of chapter 6, are built using an Euclideanized four-dimensional black hole as a base.
They are horizonless and completely regular and consequently correspond, in the context of
the “fuzzball proposal” to possible black hole microstates. Furthermore, the black holes corre-
sponding to these solutions are non-extremal.

Appendix A contains details of the dualizations of the BPS solutions of chapter 1. Appendix
B gives all the conventions we used in the first part of the thesis. Appendix C presents the
details of the angular momentum computation for the probe supertubes. Finally, one can find
in Appendix D and E some details and limits of the Bolt solutions presented in chapter 8.



Chapter 1

Framework and review of three charge
solutions

The aim of this first chapter is to introduce, in a selfconsistent way, all the necessary tools and
material needed for the work presented in this thesis. Except for a few additions, it is a review of
known results. We first present, in section 1.1 the supergravity theories that we will use and the
different dualities relating them. In section 1.2, we show how to obtain supersymmetric (BPS)
solutions of eleven-dimensional supergravity, and present a simple example corresponding to
the background sourced by a single family of M2-branes. We then present in section 1.3 and 1.4
a detailed review of three-charge BPS solutions, corresponding to eleven-dimensional solutions
reduced on a six-torus. The notations and conventions introduced in this chapter will be
followed throughout the thesis. We want to remind the reader that the two parts of the thesis
are independent, but both are intensively using the material of this chapter. Indeed, in the first
part we will probe the introduced supergravity backgrounds while in the second part, we will
present new non-supersymmetric solutions, howevwe that have a structure comparable to the
supersymmetric ones presented here, and are best understood when compared to them.

1.1 Supergravity actions and dualities

1.1.1 Supergravity actions

Supersymmetric string theory can present itself under different aspects, leading to different low
energy supergravities, which are related by dualities. The two framework that we will need
here are type IIA and type IIB supergravities, in ten dimensions [35]. Their bosonic content is

• a gravitational field Gµν ,

• an antisymmetric field1 B(2). We will denote H(3) = dB(2),

• The dilaton Φ, which is a scalar field. These three fields are called Neveu-Schwarz Neveu-
Schwarz (NS-NS) fields,

1More generally, we will denote M (n) an n-form
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• Ramond-Ramond (R-R) fields C(p), with p = 1, 3, 5, 7 for type IIA and p = 0, 2, 4, 6, 8 for
type IIB. We will denote F (p+1) = dC(p).

The gravitational field encodes for the dynamics of the spacetime, while B(2) is the Maxwell
gauge field coupling electrically to F1 fundamental strings and magnetically to NS5-branes.
The dilaton is related to the string coupling gs giving the interaction strength between stringy
objects through eΦ∞ = gs, Φ∞ being the value of the dilaton at spatial infinity. Ramond-
Ramond fields C(p+1) are gauge fields coupling electrically to p-dimensional D-branes, or Dp-
branes, and magnetically to D(6 − p)-branes.

The bosonic part of the type IIA action can be written as [35]:

SIIA = SNS + SR + SCS, (1.1.1)

with

SNS =
1

2κ2
10

∫
d10x

√
−G e−2Φ (R + 4∂µΦ∂

µΦ) − 1

4κ2
10

∫
e−2ΦH(3) ∧ ⋆H(3) , (1.1.2)

SR = − 1

4κ2
10

∫
F (2) ∧ ⋆F (2) + F̃ (4) ∧ ⋆F̃ (4) (1.1.3)

and

SCS = − 1

4κ2
10

∫
B(2) ∧ F (4) ∧ F (4) , (1.1.4)

where

F̃ (p) = F (p) +H(3) ∧ C(p−3) (1.1.5)

. The constant in front of the action is

2κ2
10 = 16πG10 = (2π)7g2

s l
8
s , (1.1.6)

with G10 the Newton constant in ten dimensions, gs the string coupling and ls the string length.

In SNS, the first term is a generalization of the purely gravitational action
∫ √−gR, then we

have the kinetic terms for the dilaton and B(2). One can remark that the metric couples to the
dilaton through the

√
−Ge−2ΦR. This metric is called the string frame metric. It is possible

to redefine the gravitational field in order to recover a more conventional kinetic term for the
metric

∫ √
−GR, and this redefinition is

GEµν = eΦ/2Gµν . (1.1.7)
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GEµν is called the Einstein frame metric. The SR action gives us the kinetic terms for the
Ramond Ramond fields and finally the Chern-Simons term SCS gives us an interaction term
required by supersymmetry.

The action for type IIB supergravity has the same form (1.1.1), only the Ramond-Ramond
field contents are different of type IIA, and thus SNS is identical to (1.1.2). SR and SCS are
given by:

SR = − 1

4κ2
10

∫
F (1) ∧ ⋆F (1) + F̃ (3) ∧ ⋆F̃ (3) +

1

2
F̃ (5) ∧ ⋆F̃ (5) (1.1.8)

and

SCS = − 1

4κ2
10

∫
C(4) ∧H(3) ∧ F (3) , (1.1.9)

where F̃ (3) and F̃ (5) are given by (1.1.5). It is important to note that in addition to the
equation of motion following from this action, one has to impose, as an additional constraint
on the solutions, that the five-form field strength F̃ (5) has to be self-dual

F̃ (5) = ⋆F̃ (5) (1.1.10)

Type IIA supergravity action can be naturally seen as the dimensional reduction, or Kaluza-
Klein (KK) reduction of an eleven-dimensional action describing 2- and 5-dimensional mem-
branes, called M2 and M5-branes. The fields appearing in this action are the metric Gµν and
a three-form A(3) (we still note F (4) =dA(3)):

S11 =
1

2κ2
11

(∫
d11x

√
−GR−

∫
1

2
F (4) ∧ ⋆F (4) +

1

6
A(3) ∧ F (4) ∧ F (4)

)
, (1.1.11)

with

2κ2
11 = 16πG11 = (2π)8l9P , (1.1.12)

G11 being the Newton constant and lP the Planck length in eleven dimension. lP (G11) is related
to the string length (G10) by1

lP = g1/3
s ls , G11 = 2πR11G10 = 2πgslsG10 . (1.1.13)

This action is easier to work with than the precedent ones, because it only involves two different
fields and thus permits, as we will see in the following, to treat the black hole charges in a more
symmetric way. We will therefore in this thesis mostly work with this 11D-action, and then, if
needed, reduce the solutions to IIA solutions by a KK reduction, as explained in the following
section.

1All the conventions we are using here are summarized in Appendix B
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1.1.2 Dualities

Finding solutions of supergravity is in general a very difficult task. We will present in the
following section a way to find supersymmetric solutions, and in the second part of this thesis
one approach to find non-supersymmetric solutions. But once one has an explicit solution, it
is possible to “dualize” it to find new solutions, or in other word new descriptions of the same
solution, description that can be explicitly very different, but will describe the same physics.
Depending on what one wants to do with the solutions, as we will see, it will be easier to work
in one framework or another, and it is therefore very important to understand this different
dualities. We present here first of all how to perform a Kaluza-Klein (KK) reduction of an
eleven-dimensional solution with a compact direction to obtain a type IIA solution. Being a
weak coupling - weak coupling duality, this can also be done at the level of the action. The
second type of duality that we present here is the T-duality. It maps a type IIA solution to a
type IIB one, and vice-versa. Finally, S-duality is a weak coupling - strong coupling duality,
mapping a type IIB solution to another type IIB solution.

Dimensional reduction

As we mentioned quickly in section 1.1.1, the type IIA action can be seen as the reduction of an
eleven-dimensional theory along a compact direction. The principal interest of this reduction is
to first find a solution in 11 dimensions, and then reduce it in 10, where the physical problem
is usually easier to understand. Explicitly, one notes ds2

p the metric in p dimensions, and one
reduces along x10, with radius R10 = gsls, one has [36]:

ds2
11 = e4Φ/3

(
(dx10 + C(1)

µ dxµ)2 + e−2Φds2
10

)
. (1.1.14)

This defines the dilaton, the ten-dimensional metric, and the C(1) Ramond Ramond field. The
reduction of A(3) defines C(3) and B(2), depending on the direction of the compactification:

Ã
(3)
ijk

KK→ C
(3)
ijk ∀i, j, k 6= 10 ,

Ã
(3)
ij10

KK→ B
(2)
ij . (1.1.15)

One can remark that this transformation can be easily inverted, and therefore that this is
possible to “oxydize” a IIA solution to eleven dimension.

T-duality

T-duality relates a type IIA solution to a type IIB one and vice-versa, if we have an isometry
along a compact direction. If one want to T-dualizes along y, it is useful to write the fields in
the following way

ds2 = Gyy(dy + Aµdx
µ)2 + ĝµνdx

µdxν ,

B(2) = Bµydx
µ ∧ (dy + Aµdx

µ) + B̂(2) , (1.1.16)

C(p) = C(p−1)
y ∧ (dy + Aµdx

µ) + Ĉ(p) ,



CHAPTER 1. FRAMEWORK 27

where the B̂(2) and Ĉ(p) fields do not have any leg along dy. The transformed fields are then
given by the following transformation rules [37]1:

ds̃2 = G−1
yy (dy +Bµydx

µ)2 + ĝµνdx
µdxν ,

e2eφ = G−1
yy e2φ , (1.1.17)

B̃(2) = Aµdx
µ ∧ dy + B̂(2) ,

C̃(p) = Ĉ(p−1) ∧ (dy +Bµydx
µ) + C(p)

y .

Alternatively one can transform the RR field strengths as follows2: one writes the field strengths
as

F (p) = F (p−1)
y ∧ (dy + Aµdx

µ) + F̂ (p) , (1.1.18)

and the transformed ones are

F̃ (p) = F̂ (p−1) ∧ (dy +Bµydx
µ) + F (p)

y . (1.1.19)

This rules have a clear physical interpretation, and it is worth mentioning it: the exchange of
B

(2)
µy and Gµy corresponds, in the T-duality direction, to the transformation of string modes

into momentum modes and vice-versa. What happens to a Dp-brane? Under T-duality, it
transforms into a D(p− 1)-brane if it is initially wrapping the T-duality compact direction, or
into a D(p+ 1)-brane if not.

As we already said, dualities show us different faces of the same physics. By applying T-
duality many times, one thus understands that the dimension of a brane is not really physically
important, Every brane is equivalent to the other ones. On the other hand, if we have a
system of different branes in different directions, their relative orientation and their dimension
difference will translate their interactions, and be preserved by T-duality.

S-duality

In type IIB theory, there are two different sorts of one-dimensional objects: the fundamental
strings F1 and the D1-branes, or D1-strings. It is thus rather natural to look for their differences,
and if the fundamental strings are really “more fundamental” than D1-branes. It is in fact
possible to interchange them, by what is called S-duality. S-duality (see for example [38]) is a
strong-weak coupling duality that acts on supergravity fields with rather simple rules. It clearly
shows this exchange between D1 and F1 (B(2) ↔ C(2)):

Φ̃ = −Φ ,

G̃µν = e−ΦGµν ,

B̃(2) = C(2) ,

C̃(2) = −B(2) ,

(1.1.20)

1In the T-duality expressions, we adopt the conventions of [37]
2for a detailed derivation of these rules see Appendix A of [14]
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the other fields being invariant. One word on the transformation of the dilaton: the main
difference between D1 and F1 strings is that their tension is different, one has TF1/TD1 = gs =
eΦ. By inverting D1 and F1 strings, one also has to redefine the dilaton into its opposite,
and this gives a better understanding of what is S-duality: it just changes gs in 1/gs. This
is therefore a weak coupling - strong coupling duality. The present knowledge of the theory
being mostly perturbative, one can only see this duality at the level of solutions, and not in the
action. We recall that this is not the case for KK reduction or T-duality, that can be seen at
the level of the solutions or of the actions.

To summarize, S-duality relates F1 and D1 strings and T-duality relates all the D-branes
together. It means that with both, one sees that every Dp-brane is “as fundamental as” F1
strings, they play the same role and are dynamical objects in the same sense. Another way
to understand this is to start from eleven dimensions: the M2-branes can be reduced into
D2-branes or fundamental strings, depending on their directions, and therefore D2 and F1 are
coming from the same object, and have to be considered in the same way1. Note that the
S-duality is a Z2 symmetry. It can in fact be generalized to a more general SL(2,Z) symmetry,
that mixes F1- and D1-strings. We will not need it here, and therefore don’t write it explicitly.
It can be found in [35].

1.2 How to find a supersymmetric solution?

1.2.1 Supersymmetry equations

We now work in the context of eleven-dimensional supergravity, with the action (1.1.11). This
action leads to second order non-linear differential equations of motions, which are in general
very hard to solve. This is why it is interesting to find some easier way to find solutions. In
this context, supersymmetry will be of great help. If we want to find a supersym

δeAµ = ε̄ΓAΨµ , (1.2.1)

δA(3)
µνρ = −3 ε̄Γ[µνΨρ] , (1.2.2)

δΨµ = Dµε+
1

288

(
Γµ

νρστF (4)
νρστ − 8ΓνρσF (4)

µνρσ

)
ε . (1.2.3)

To write this equations, we introduce some new ingredients: we work with the eleven-
dimensional vielbeins eA, defined by

ds2 = Gµν dx
µ dxν = ηAB e

A eB . (1.2.4)

Each eA is a one-form, eA = eAµdx
µ. We denote curved indices with greek letters µ, ν, ... and flat

indices with capital roman letters A,B, .... We recall that the corresponding spin-connection
two-form ωAB is related to the vielbein by

deA + ωAB ∧ eB = 0 . (1.2.5)

1Unfortunately, while the quantization of the fundamental string is at the very beginning of string theory,
we still don’t know how to quantize the action of D-branes.
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It defines the covariant derivative appearing in (1.2.3)

Dµε = ∂µε+
1

4
ωABµΓAB . (1.2.6)

We also introduced the 32 × 32 gamma matrices Γµ in eleven dimensions, and defined

Γµν...ρ = Γ[µΓν . . .Γρ] . (1.2.7)

As usual, greek indices are uppered or lowered with Gµν or its inverse, and flat indices are
uppered or lowered with ηAB. Finally, the ε spinor appearing in (1.2.1), (1.2.2) and (1.2.3) is
called the Killing spinor, has 32 components, and translate the number of supersymmetries of
the solution.

We will only be interested in purely bosonic solutions, this means solutions where the
gravitino Ψµ is turned off. By construction, it automatically implies that the supersymmetric
variations of the bosonic fields, (1.2.1) and (1.2.2), are zero. In order to have a supersymmetric
solution, we will therefore only have to make sure that the variation of the gravitino, (1.2.3),
is zero. We will call this equation, δΨµ = 0, the supersymmetry equation. The interest of
looking at supersymmetric solution is that in order to make sure that Einstein equations are
verified, one only have to satisfy the 00 component of Einstein equations and the supersymmetry
equation [39]. But the supersymmetry equation is a first order equation, and therefore easier
to solve that the full, second order, Einstein equations of motion. This is a crucial point, and
one of the reasons why it has been possible to find large classes of supersymmetric solutions.
Note that one still has to solve the second order Maxwell equation. To summarize, to have a
supersymmetric solution with only bosonic fields turned on, one has to solve

Dµε+
1

288

(
Γµ

νρστF (4)
νρστ − 8ΓνρσF (4)

µνρσ

)
ε = 0 , (1.2.8)

d ⋆ F (4) =
1

2
F (4) ∧ F (4) , (1.2.9)

and the 00 component of Einstein equation. In practice, for the solutions we are interested in
in this thesis, this 00 component will always be implied by (1.2.8)-(1.2.9), and therefore we will
forget this last equation.

1.2.2 An example: one single family of M2-branes

In order to illustrate the previous equations and how one can solve them, the best is to present
a simple example, corresponding to the background created by a single family of M2-branes.
Despite the fact that this solution will be much easier to solve than the ones that we will see
in the next section, and in the rest of the thesis, it is very important to understand, on this
simplest example, the physics of supersymmetric objects. Indeed, this can really be seen as the
building block of every supersymmetric solution, and its physical features will be very generic.
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One first has to make an Ansatz for the fields. We want the brane to be along the direction
x0 = t, x1 and x2, so we expect to have an SO(1, 2) symmetry in the direction of the branes,
and an SO(8) symmetry in the transverse space. The three-form gauge field sourced by the
branes is along dt ∧ dx1 ∧ dx2. The Ansatz that we take is thus

ds2 = Z−2/3(−dt2 + dx2
1 + dx2

2) + Z1/3ds2
8 , (1.2.10)

A(3) = (1 − Z−1)dt ∧ dx1 ∧ dx2 (1.2.11)

with ds2
8 the flat metric on the eight-dimensional space transverse to the branes, and Z an

a priori arbitrary function. In general, we should have three different functions for −Gtt =
G11 = G22, G33 = . . . = G1010 and A

(3)
012 but we will see that our Ansatz is consistent with the

equations of motion. The brane being extended along t = x0, x1 and x2, Z will only depend on
the transverse directions, Z = Z(x3, . . . , x10).

The vielbein corresponding to our Ansatz is

eA = Z−1/3 δAµ dx
µ , for A = 0, 1, 2 , (1.2.12)

eB = Z1/6 δBν dx
ν , for B = 3, . . . , 10 ,

and the corresponding spin connection is given by

ωAB = 0 for A,B = 0, 1, 2 ,

ωAB = −1

3
Z−3/2 δAµ δ

ν
B ∂νZ dx

µ for A = 0, 1, 2 and B = 3, . . . , 10 , (1.2.13)

ωBC = −1

6
Z−1 δBµ δ

ν
C (∂νZ dx

µ − ∂µZ dx
ν) for B,C = 3, . . . , 10 .

We can now write explicitly the supersymmetry equations δΨµ = 0 for this particular ansatz,
and this gives

− 1

6
Z−3/2 δAµ δ

ν
B ∂νZ ΓA

B
(
1 + Γ012

)
ε = 0 for µ = 0, 1, 2 , (1.2.14)

(
∂µ +

1

6
Z−1 ∂µZ

)
ε = 0 for µ = 3, . . . 10 ,

where the indices of Γ012 in the first equation are flat indices. The second equation is solved
by ε = Z1/6ε0, for ε0 a constant spinor. To solve the first equation, one has to impose the
projection

(1 + Γ012) ε = (1 + Γ012) ε0 = 0 . (1.2.15)

This projection has a physical sense: it fixes half of the components of ε0 to be zero, leaving the
other half free. Physically speaking, it means that it breaks half of the supersymmetries of the
action. This is why we will call such a solution a 1/2-supersymmetric, or 1/2-BPS solution. In
the following, we will see more generally 1/N -BPS solutions, solutions preserving 1/N of the
32 supersymmetries of the action. For example, the three charge solutions of the next section
will be 1/8-BPS solutions.
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Let’s now move to Maxwell’s equations. For our particular ansatz, it just gives

d ⋆8 dZ = 0 , (1.2.16)

where ⋆8 is the hodge dual with respect to the eight-dimensional flat metric ds2
8. This means

that Z must be a harmonic function in the transverse space. If we now assume in addition that
the M2-branes are in the center of the transverse space, we have a spherical symmetry in this
space: if ds2

8 = dr2 + r2dΩ2
7, Z = Z(r). In this case, (1.2.16) is solved by

Z = 1 +
α

r6
. (1.2.17)

The constant in Z has been fixed by the requirement that the metric be flat at infinity. The α
constant is related, by Gauss theorem, to the number of M2-branes of the solution

NM2 =
1

(2πlP )3

∫

S7

⋆F (4) =
6αVol(S7)

(2πlP )3
, (1.2.18)

where the integral is performed on the seven-sphere of any radius of R
8. This completely solves

the equations, and we now have the full solution corresponding to a single family of M2-branes.

Before moving to more complicated solutions, it is interesting to discuss a little bit more
the physics of the solution we found, in particular the fact that the metric warp factors and
the 3-form gauge field contain the same function Z. The metric is related to the mass of the
M2-branes, and the gauge field to its charge. Therefore, the fact that they are related states
that the mass and the charge of the brane are equal, as one can also check explicitly. This
property is means that they are saturating the Bogomolny-Prasad-Sommerfeld (BPS). We will
from now on speak indifferently about supersymmetric objects or BPS objects1. Using this
equality of mass and charge, if one puts a probe M2-brane in this background, it will feel a
attractive force because of its mass and a repulsive force because of its charge. If the mass is
equal to the charge, this two forces will compensate and the probe brane will not feel any force:
the objects will be mutually BPS. This will be deeply investigate in the next chapter of the
thesis.

1.3 Three charge BPS solutions

In this section, we present the most general class of supersymmetric three-charge solutions
known up to now. This is mostly a review of previous work, but some of the material is
new. For the rest of this thesis, we will be mostly concern by this three-charge solutions,
which corresponds physically after reduction to five-dimensional black holes, black rings, or
smooth solutions. Each of the charge – each of the family of branes – breaking one half of the
supersymmetries, this solutions are 1/8-BPS, preserve four supersymmetries. We first present
the solutions in a general way, in different duality frames, and in the next section we will detail
a bit the possible particular cases.

1In the second part of the thesis, we will see that one can have non-supersymmetric objects that still have
their mass being equal to their charge, and thu in a sense are also saturating the BPS bound. Despite this
remark, we will call BPS only supersymmetric solutions, in order not to confuse the reader.
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0 1 2 3 4 5 6 7 8 9 10
M2 l • • • • l l ↔ ↔ ↔ ↔
M2 l • • • • ↔ ↔ l l ↔ ↔
M2 l • • • • ↔ ↔ ↔ ↔ l l
M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) ↔ ↔ l l l l
M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) l l ↔ ↔ l l
M5 l yµ(φ) yµ(φ) yµ(φ) yµ(φ) l l l l ↔ ↔

Table 1.1: The configuration of branes in M-theory that preserves the four supersymmetries of
the M2-M2-M2 three-charge black hole [40]. The vertical arrows represent the directions along
which the branes are extended and the horizontal arrows represent smearing directions. The
functions yµ(φ) describe a closed curve which is wrapped by the M5 branes.

1.3.1 Three-charge solutions in the M2-M2-M2 (M-theory) frame

Three-charge solutions with four supercharges are most simply written in the M-theory duality
frame in which the three charges are treated most symmetrically and correspond to three types
of M2 branes wrapping three T 2’s inside T 6 [40], as presented in Table 1.3.1. The metric is:

ds2
11 = − (Z1Z2Z3)

− 2
3 (dt+ k)2 + (Z1Z2Z3)

1
3 ds2

4

+
(
Z2Z3Z

−2
1

) 1
3 (dx2

5 + dx2
6) +

(
Z1Z3Z

−2
2

) 1
3 (dx2

7 + dx2
8) +

(
Z1Z2Z

−2
3

) 1
3 (dx2

9 + dx2
10) , (1.3.1)

where ds2
4 is a four-dimensional hyper-Kähler metric [40, 41, 42]1. The solution has a non-trivial

three-form potential, sourced both by the M2 branes (electrically) and by the M5 dipole branes
(magnetically):

A = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 + A(3) ∧ dx9 ∧ dx10. (1.3.2)

The magnetic contributions can be separated from the electric ones by defining the “magnetic
field strengths:”

Θ(I) ≡ dA(I) + d

(
(dt+ k)

ZI

)
, I = 1, 2, 3. (1.3.3)

Finding supergravity solutions for this system, solutions to (1.2.8)-(1.2.9), then boils down to
solving the following system of BPS equations2:

Θ(I) = ⋆4Θ
(I) ,

∇2ZI =
1

2
CIJK ⋆4 (Θ(J) ∧ Θ(K)) ,

dk + ⋆4dk = ZIΘ
(I) .

(1.3.4)

1This metric can have regions of signature +4 and signature −4 [43, 44, 45, 46, 47], and for this reason we
usually refer to it as ambipolar. We will come back to this point in section 1.4.3

2These equations also give supersymmetric solutions when the T 6 is replaced by a Calabi-Yau three-fold,
and CIJK is replaced by the triple intersection numbers of this three-fold.
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In these equations, ⋆4 is the Hodge dual in the four-dimensional hyper-Kähler base space, ds2
4,

and CIJK = |ǫIJK |. The associated BPS projections, generalizing (1.2.15) are

(1 + Γ056) ε = (1 + Γ078) ε = (1 + Γ0910) ε = 0 , (1.3.5)

so the solutions are 1/8-BPS. Remembering that the Γ matrices have to verify Γ012345678910ε = ε,
this also automatically implies

(1 − Γ1234) ε = 0 , (1.3.6)

which is the requirement for the base to be hyper-Kähler [42]. As we will see below, this means
that we will be able to have an extra KK-monopole charge in the solution, without breaking
more supersymmetries.

In the equations (1.3.4), the Θ(I) are the magnetic field strength, ZI corresponds to the
electric charge and k is the angular momentum of the solution. The first equation tells us that
the magnetic field strengths have to be self-dual. The magnetic-magnetic interaction then acts
as a electric source for ZI , and in the last equation, the electric-magnetic interaction sources
angular momentum, very much like a Pointing vector in electromagnetism. The very important
feature if this equations is that the are linear if solved in the correct order. The nonlinear terms
can always be seen as known sources in a linear equation for an other field. This is a very
important simplification, and this is what allows us to find explicit solutions. We will see in
the second part how it is possible to extend this property to non-supersymmetric solutions.

If the four-dimensional base manifold has a triholomorphic U(1) isometry1 then the metric
on the base can be put in a Gibbons-Hawking (GH) form [49, 50]:

ds2
4 = V −1

(
dψ + A)2 + V d~y · d~y , (1.3.7)

where V is a harmonic function on the R
3 spanned by (y1, y2, y3) and ~∇× ~A = ~∇V . For such

metrics, the BPS equations (1.3.4) can be solved explicitly [51, 52]. The most general solution
can be written in terms of eight harmonic functions (V,KI , LI ,M) on the R

3 base of the GH
space2. It is convenient to introduce the vielbeins on ds2

4:

ê1 = V − 1
2 (dψ + A) , êa+1 = V

1
2 dya , a = 1, 2, 3 , (1.3.8)

then one has

Θ(I) = −
3∑

a=1

(
∂a
(
V −1KI

)) (
ê1 ∧ êa+1 +

1

2
ǫabc ê

b+1 ∧ êc+1

)
. (1.3.9)

The three gauge fields, A(I), can be written as

A(I) = − 1

ZI
(dt+ k) +B(I) , (1.3.10)

1For a discussion on BPS solution with more general U(1) isometries see [48].
2For M-theory compactifications on a generic Calabi-Yau three-fold the number of harmonic functions will

be 2h1,1 + 2. See [53] for a discussion of such solutions.
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where
B(I) = V −1KI (dψ + A) + ~ξ(I) · d~y , ~∇× ~ξ(I) ≡ −~∇KI . (1.3.11)

The functions ZI and the angular momentum one-form k are given by

ZI = LI +
CIJK

2

KJKK

V
, k = µ(dψ + A) + ~ω · d~y , (1.3.12)

where

µ = M +
KILI
2V

+
CIJK

6

KIKJKK

V 2
(1.3.13)

and ~ω satisfies the equation

~∇× ~ω = V ~∇M −M~∇V +
1

2

(
KI ~∇LI − LI ~∇KI

)
. (1.3.14)

This solution can describe five-dimensional black holes, circular black rings and supertubes,
as well as smooth “bubbling solutions” and an arbitrary superposition of these objects. We will
detail this a bit more in the next section. Upon compactifying to four dimensions, by reducing
along the S1 fiber of the transverse space and the T 6 torus, all these reduce to BPS multi-center
black-hole configurations [54, 55] of the type first considered in [56, 57].

The harmonic functions are usually chosen to be sourced by simple poles:

V = ǫ0 +
N∑

j=1

qj
rj
, KI = κI0 +

N∑

j=1

kIj
rj

,

LI = lI0 +
N∑

j=1

lIj
rj
, M = m0 +

N∑

j=1

mj

rj
,

(1.3.15)

where rj = |~y − ~yj|, ~yj the location of each center and N is the number of centers. We
think of the residues of the poles of these functions as defining the Gibbons-Hawking (GH)
charges of the corresponding solution. Explicitly, in the M-theory frame, qj corresponds to the
KK-monopole charge, lIj to the M2-brane charge, kIj to the M5-charge and mj to the angular
momentum charge, each at the center ~yj. The solutions are invariant under the following gauge
transformation:

V → V ,

KI → KI + cIV , (1.3.16)

LI → LI − CIJKc
JKK − 1

2
CIJKc

JcKV ,

M → M − 1

2
cILI +

1

4
CIJKc

IcJKK +
1

12
CIJKc

IcJcKV ,

with cI being three arbitrary constants, and CIJK = |ǫIJK |. As was discussed in [58], such gauge
transformations and spectral flow1 can reshuffle these charges, but this produces physically
equivalent solutions.

1We will explain what is a spectral flow at the end of this section.
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A necessary (but not sufficient) condition for the solutions to be free of closed timelike curves
(CTC’s) is to satisfy the “integrability equations,” or “bubble equations,” [44, 45, 56, 57]:

N∑

j=1,j 6=i

〈Q̂i|Q̂j〉
rij

= 2(ε0mi −m0qi) +
3∑

I=1

(kI0l
I
i − lI0k

I
i ) (1.3.17)

where 〈Q̂i|Q̂j〉 is the symplectic product1 between the eight-vectors of charges at the points i
and j

〈Q̂i|Q̂j〉 ≡ 2(mjqi − qjmi) +
3∑

I=1

(lIjk
I
i − kIj l

I
i ) . (1.3.18)

One can arrange for the global absence of CTC’s by requiring that there is a well-defined,
global time function [45]. This is much more stringent than the bubble equations (which only
eliminate CTC’s in the neighborhood of the GH points) and means that the following inequality
should be satisfied globally [44, 45]:

Z1Z2Z3V − µ2V 2 − |ω|2 ≥ 0 . (1.3.19)

This condition is very hard to check in general and usually has to be checked numerically for
particular solutions.

In the next chapters, we will study two-charge supertubes (presented in the next section)
in backgrounds like those presented here. In order to do this, it is useful to dualize to a frame
in which the two-charge supertube action is simple. One such frame is where the three electric
charges correspond to D0 branes, D4 branes and F1 strings and the supertube carries D0 and F1
electric charges and D2 dipole charge [19]. On the other hand, in order to study the supergravity
solutions describing supertubes in black-ring or bubbling backgrounds, it is useful to work in a
duality frame in which the supergravity solution for the supertubes is smooth. In this frame the
electric charges of the background correspond to D1 branes, D5 branes, and momentum P, and
the supertube carries D1 and D5 charges, with KKM dipole charge. We therefore dualize the
foregoing M-theory solution to these frames and give all the details of the solutions explicitly.

1.3.2 Three-charge solutions in the D0-D4-F1 duality frame

Here we will present the three-charge solutions in the duality frame in which they have electric
charges corresponding to D0 branes, D4 branes, and F1 strings, and dipole charges correspond-
ing to D6, D2 and NS5 branes. We use the T-duality rules (given in Section 1.1.2) to transform
field-strengths. It should be emphasized that our results are correct for any three-charge solu-
tion (including those without a tri-holomorphic U(1) [48]), however, finding the explicit form
of the RR and NS-NS potentials (which is crucial if we want to investigate this solution using
probe supertubes) is straightforward only when the solution can be written in Gibbons-Hawking
form.

1This product is sometimes called the Dirac-Schwinger-Zwanziger product.
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Label the coordinates by (x0, . . . , x8, z)1. The electric charges N1, N2 and N3 of the solution
then correspond to:

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (1.3.20)

where the numbers in the parentheses refer to spatial directions wrapped by the branes and
z ≡ x10. The magnetic dipole moments of the solutions correspond to:

n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) , (1.3.21)

where y denotes the brane profile in the spatial base, (x1, . . . , x4). The metric of the solution
is:

ds2
IIA = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

√
Z1Z2

Z3

dz2+

√
Z1

Z2

(dx2
5+dx2

6+dx2
7+dx2

8) . (1.3.22)

The dilaton and the Kalb-Ramond fields are:

eΦ =

(
Z3

1

Z2Z2
3

)1/4

, B = −dt ∧ dz − A(3) ∧ dz . (1.3.23)

The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) ∧ dz , (1.3.24)

where we define F (I) ≡ dA(I) and ⋆5 is the Hodge dual with respect to the five dimensional
metric:

ds2
5 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 . (1.3.25)

The foregoing results are valid for any three-charge solution with an arbitrary hyper-Kähler
base. As we show in Appendix A, when the base has a Gibbons-Hawking metric one can easily
find the RR 3-form potential:

C(3) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− ∧ dz −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)
∧ dz , (1.3.26)

where ξ
(1)
a and ζa are defined by equations (1.3.11) and (A.31). Thus we have the full three-

charge supergravity solution in the D0-D4-F1 duality frame. In the next chapter we will perform
a probe analysis in this class of backgrounds using the DBI action for supertubes with D0 and
F1 electric and D2 dipole charge.

1.3.3 Three-charge solutions in the D1-D5-P duality frame

One can T-dualize the solution above along z to obtain a solution with D1, D5 and momentum
charges:

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (1.3.27)

1From (1.3.1), we reduce along x10 and call z = x9.
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and dipole moments corresponding to wrapped D1 branes, D5 branes and Kaluza Klein
Monopoles (KKm):

n1 : D5 (y5678) n2 : D1 (y) n3 : KKm (y5678z) . (1.3.28)

The metric is

ds2
IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(dz + A(3))2 (1.3.29)

+

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) (1.3.30)

and the dilaton and the Kalb-Ramond field are:

eΦ =

(
Z1

Z2

)1/2

, B = 0 . (1.3.31)

The only non-zero RR three-form field strength is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) −F (1) ∧ (dz − A(3)) . (1.3.32)

If we specialize our general result to the supersymmetric black ring solution in the D1-D5-P
frame then it agrees (up to conventions) with [59]. It is also elementary to find the RR two-form
potential for a general BPS solution with GH base in D1-D5-P frame. This can be done by
T-dualizing the IIA D0-D4-F1 result (1.3.26), to obtain:

C(2) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)

(1.3.33)

+ A(1) ∧ (A(3) − dz − dt) + dt ∧ (A3 − dz) ,(1.3.34)

where again ξ
(1)
a and ζa are defined in equations (1.3.11) and (A.31). This is the full three-charge

supergravity solution in the D1-D5-P duality frame. As shown in [13], two-charge supertubes
in flat space are regular only in this duality frame, so our general result can be used to analyze
the regularity of two charge supertubes in a general three-charge solution. This will be the
subject of the section 1.4.4.

1.3.4 Spectral flow transformations

The solutions presented here can be transformed using the spectral flow transformations [58].
Spectral flow is a general transformation – or solution generating technique – for solutions having
two different U(1) isometries. We will not be interested here in the general transformation, and
thus we will not present it here; we refer to [58] for a complete discussion. In this section, we
only present how a spectral flow transformation transforms the solutions we just presented, and
discuss its physical interpretation. We will in the second part of this thesis be interested in
more general spectral flow transformations for non-supersymmetric solutions.
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Spectral flow transformations transform one solution of the class presented above in another
solution of this class. A single spectral flow transformation is given by its direction 1, 2 or 3,
related to the charge 1,2 or 3, and a constant γ with the following rules (for a flow along 3):

M → M ,

L1 → L1 , L2 → L2 , L3 → L3 − 2γM , (1.3.35)

K1 → K1 − γL2 , K2 → K2 − γL1 , K3 → K3 ,

V → V + γK3 .

A straightforward generalization is to do a spectral flow along each of the directions, with
parameters γI :

M → M ,

LI → LI − 2γIM , (1.3.36)

KI → KI − CIJKγJLK + CIJKγJγKM ,

V → V + γIK
I − 1

2
CIJKγIγJLK +

1

3
CIJKγIγJγKM ,

with CIJK = CIJK = |ǫIJK |. If one remember that M , LI , K
I and V represents respectively

angular momentum, M2-branes, M5-branes and KK-monopoles, the spectral flow has a clear
physical interpretation: starting from one solution, one obtains the new one by mixing the
charges together, angular momentum becomes M2, M2 becomes M5 and M5 KKm. The fact
that the new solution is in the same class of solutions as the starting one is a consequence of
supersymmetry: supersymmetry imposes the orientation of the branes to be compatible one
with the others, as given by equations (1.3.5)-(1.3.6). Therefore, when one mixes the brane
content with a spectral flow, the relative orientation of the branes does not change, and (1.3.5)-
(1.3.6) are still verified. We will see in the second part of the thesis that is will not be the case
for non-supersymmetric solutions.

1.4 Particular interesting cases

1.4.1 Single-center black hole

First of all, it is important to see that BMPV black hole [60] – a single-center five-dimensional
supersymmetric rotating black hole – is in the class of solution that we have. To do so, we first
have to remind that flat R

4 is a Hyper-Kähler metric: if we denote (u, ϕ1, v, ϕ2) the usual R
4

coordinates, have the Gibbons-Hawking form (1.3.7)

ds2
R4 = du2 + u2dϕ2

1 + dv2 + v2dϕ2
2 , (1.4.1)

and define new coordinates (ψ, r, χ, φ) by

r =
1

4
(u2 + v2) , χ = 2 arctan

u

v
, ψ = 2ϕ1 , φ = −(ϕ2 + ϕ1) , (1.4.2)
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the four-dimensional metric becomes

ds2
R4 = r(dψ + (cosχ+ 1)dφ)2 +

1

r
(dr2 + r2dχ2 + r2 sin2 χdφ2) . (1.4.3)

This is exactly of the form (1.3.7) with V = 1/r and R
3 being described by the spherical

coordinates (r, χ, φ). We will in the following also work in spherical coordinates for R
4

ds2
R4 = dρ2 + ρ2(dϑ2 + sin2 ϑdϕ2

1 + cos2 ϑdϕ2
2) , (1.4.4)

with u = ρ sinϑ and v = ρ cosϑ.
We can now describe the BMPV black hole. This is a solution without any magnetic charges:

KI = Θ(I) = 0. This means that there are no sources in (1.3.4), and thus the solution simplifies:

ZI = LI , µ = M (1.4.5)

We want a single-center solution and thus take the functions ZI and the one-form k to be

ZI = 1 +
QI

4r
= 1 +

QI

ρ2
, (1.4.6)

M =
J

8r
=

J

2ρ2
or equivalently k = k1dϕ1 + k2dϕ2 =

J

ρ2
(sin2 ϑdϕ1 − cos2 ϑdϕ2) . ,

where J is the angular momentum of the black hole and Q1, Q2 and Q3 its charges. In the
type IIA framework presented in section 1.3.2, these charges correspond respectively to the
D0-brane, D4-brane and F1-string charges of the black hole. We will study this black hole in
the next chapter.

We finally recall that this is a black hole solution, and therefore has an horizon, at r = 0.
Its entropy is given by

SBMPV = 2π
√
Q1Q2Q3 − J2 . (1.4.7)

For J2 > Q1Q2Q3 the solution has closed time-like curves and is unphysical.

1.4.2 Black rings

The black-ring solution

The three-charge, three-dipole charge black ring solution [40, 59, 61, 62, 52] is in the class of
solutions described in the previous section. It is an important solution, that we will study in
detail in chapter 3, and thus it is worth writing the solution completely here. We give it in the
D0-D4-F1 IIA duality frame, this is the one that we will be using in the probe analysis.

In this frame, the ring has D0, D4 and F1 electric charges and D6, D2 and NS5 dipole
charges and its solution is given by

ds2 = −(Z2Z1)
−1/2Z−1

3 (dt+ k)2 + (Z2Z1)
1/2ds2

R4 + (Z2Z1)
1/2Z−1

3 dz2 + Z
−1/2
2 Z

1/2
1 ds2

T 4 ,

e2Φ = Z
−1/2
2 Z

3/2
1 Z−1

3 , (1.4.8)

B = (Z−1
3 − 1)dt ∧ dz + Z−1

3 k ∧ dz −B(3) ∧ dz ,
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for the NS-NS fields, and

C(1) = (Z−1
1 − 1)dt+ Z−1

1 k −B(1), (1.4.9)

C(3) = Z−1
3 dt ∧ k ∧ dz − Z−1

3 (dt+ k) ∧B(1) ∧ dz +B(3) ∧ dt ∧ dz − γ1 ∧ dz ,(1.4.10)

for the R-R fields. The one-forms, B(I), are the potentials defined in section 1.3.1 with dB(I) =
Θ(I). These fields are sourced by the magnetic charges of the ring. The two-form, γ1, must
satisfy

dγ1 = ⋆4dZ2 −B(1) ∧ Θ(3) . (1.4.11)

We use the canonical coordinates that are adapted to the symmetries of the black ring in
the flat metric of the R

4 base [61]:

ds2
R4 = gµνdy

µdyν =
R2

(x− y)2

(
dy2

y2 − 1
+ (y2 − 1)dϕ2

1 +
dx2

1 − x2
+ (1 − x2)dϕ2

2

)
. (1.4.12)

We will also use the orientation: ǫyxϕ1ϕ2 = 1. In these coordinates, the black ring horizon is
located at y → −∞. It is useful to recall that the change of coordinates:

x = − u2 + v2 −R2

√
((u−R)2 + v2)((u+R)2 + v2)

, y = − u2 + v2 +R2

√
((u−R)2 + v2)((u+R)2 + v2)

(1.4.13)
takes one back to the standard flat metric on R

2 × R
2 (1.4.1). In this coordinates, the ring

horizon is at u = R, v = 0.
The warp factors ZI are

ZI = 1 +
QI

2R2
(x− y) − CIJK

2

qJqK

4R2
(x2 − y2), (1.4.14)

where QI are what we refer to as “constituent charges” of the black ring, and differ from the
charges measured at infinity. The angular momentum vector is given by

k = k1dϕ1 + k2dϕ2

= −
(
(y2− 1) (C(x+ y) +D)−A(y + 1)

)
dϕ1−

(
(x2− 1) (C(x+ y) +D)

)
dϕ2 (1.4.15)

with A = (q1 + q2 + q3)/2, D = (q1Q1 + q2Q2 + q3Q3)/8R
2 and C = −q1q2q3/8R2. The vector

fields, B(I), are given by

B(I) =
qI

2
((y + d)dϕ1 − (x+ c)dϕ2) . (1.4.16)

The constants c and d are locally pure gauge and are not fixed by the equations of motion.
Indeed, because the ring carries a magnetic current there will Dirac strings in any attempt at
a global definition of B(I). In the (u, v, ϕ1, ϕ2) coordinate patch, defined by (1.4.13), the vector
fields, B(I), are potentially singular at either u = 0, or v = 0. To remove these singularities
we must have (y + d) = 0 at u = 0 and (x + c) = 0 at v = 0. From (1.4.13) we see that this
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unambiguously requires d = +1 but that one has x = +1 for v = 0, u < R and x = −1 for
v = 0, u > R and so to remove the Dirac strings we must take:

d = +1 , c = −1 inside the ring ; d = +1 , c = +1 outside the ring . (1.4.17)

The coordinates (x, ϕ2) in fact define a Gaussian two-sphere around the ring and the choices
(1.4.17) represent the familiar gauge field patches surrounding a magnetic monopole. In the
following we will set d = 1 and retain c with the understanding that it is to be chosen as in
(1.4.17).

The two-form γ1 in C(3) has the form γ1 = f(x, y)dϕ1 ∧ dϕ2 where

f(x, y) = −Q2

2

1 − xy

x− y
+
q1q3
4

[
(1 − xy)(x+ y)

x− y
+ cy − dx

]
+ f0. (1.4.18)

where f0 is another integration constant. It is shown in Appendix A that γ1 satisfies (1.4.11).
We want to stress that our conventions, given in Appendix B, are such that

QI = N I and qI = nI (1.4.19)

where N I and nI are integers and specify the number of “electric” and “dipole” D-branes
comprising the black ring. It is also useful to note that the angular momentum of the black
ring is related to its dipole charges by

J = 4(q1 + q2 + q3)R . (1.4.20)

The entropy of the ring is given by the Beckenstein-Hawking formula

S =
A

4G11

= π
√
M (1.4.21)

with

M = 2n1n2N1N2 + 2n1n3N1N3 + 2n2n3N2N3 − n2
1N

2

1 − n2
2N

2

2 − n2
3N

2

3 − 4n1n2n3J .(1.4.22)

The black ring as a solution with a Gibbons-Hawking base.

As for the black hole, it is useful to rewrite the solution in the Gibbons-Hawking form (1.3.7).
The four-dimensional base metric is still only R

4, and the change of coordinates is (1.4.2) (with
(1.4.13)).

The black ring solution is written in terms of eight harmonic functions V , LI , K
I and

M [51, 65, 52, 63, 64]. However, as we noted in the last subsection, the black ring has a
monopolar magnetic field and so we need two patches that are related by a gauge transformation.
Remembering that the vector potentials in solutions with a GH base are given by

B(I) = V −1KI(dψ + A) + ξI , (1.4.23)
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one can easily identify the KI that give these fields, and observe that changing the patch from
c=−1 to c=+1 corresponds, in the GH solution, to the gauge transformation:

KI → KI + cIV , LI → LI − CIJKc
JKK − 1

2
CIJKc

JcKV, (1.4.24)

M → M − 1

2
cI LI +

1

12
CIJK

(
V cI cJ cK + 3 cI cJ KK

)
,

with cI = qI/2. Thus, we can now completely specify the eight harmonic functions, once we
choose a patch. For c = −1, we have

V =
1

r
, KI = − qI

2|~r − ~rBR|
,

LI = 1 +
QI

4|~r − ~rBR|
, M = − J

16|~r − ~rBR|
+

J

16R
, (1.4.25)

and for c = +1 they become

V =
1

r
, KI = − qI

2|~r − ~rBR|
+
qI
2r

, (1.4.26)

LI = 1 +
QI + CIJKq

JqK

4|~r − ~rBR|
− CIJKq

JqK

8r
, M = −J + qIQI + 3q1q2q3

16|~r − ~rBR|
− q1q2q3

16r
.

As noted earlier, these formulae define the GH charges of the black ring and these, in turn,
define the electric charges of the four-dimensional black hole corresponding to the ring. The
electric GH charges QGH

I are four times the coefficients of the pole at the location of the ring
in the LI functions, the GH dipole charges qGHI are minus two times the coefficients of the pole
in the KI functions, and the GH angular momentum JGH is minus sixteen times the coefficient
of the pole in M (we use the conventions of [51]). Thus, we have:

QGH
I = QI , qGHI = qI , JGH = J (1.4.27)

for c = −1 and

QGH
I = QI + CIJKq

JqK , qGHI = qI JGH = J + qIQI + 3q1q2q3 (1.4.28)

for c = +1.
The dipole charges are patch-independent, but the GH electric charges and the GH angular

momentum are gauge dependent notions, and are different in different patches. This will be
important in the following discussion.

1.4.3 Smooth solutions

The solutions of (1.3.4)-(1.3.7), given by the harmonic functions (1.3.15) are generically a
multicenter configuration of four-charge black objects. In the harmonic functions, one has a
pole at each center and therefore a lot of singularities. However, if one chooses the residues of
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the poles at each center in a very particular way, one can manage to cancel all the singularities
and end up with a completely regular solution [43, 44, 45, 66]. This solution will be smooth
and horizonless everywhere, without any region with a high curvature that would break the
supergravity approximation. This is a very non-trivial behavior. Indeed, in order to do so,
remembering that the harmonic functions are

V = ǫ0 +
N∑

j=1

qj
rj
, KI = κI0 +

N∑

j=1

kIj
rj

,

LI = lI0 +
N∑

j=1

lIj
rj
, M = m0 +

N∑

j=1

mj

rj
,

(1.4.29)

one has to have, to begin with, the qj to have positive or negative sign. It implies that the
four-dimensional base will switch from regions of (+,+,+,+) to regions of (−,−,−,−) signature.
We call this an ambipolar base, and the corresponding solution an ambipolar solution. This
gives a very singular behavior to the metric (1.3.7) but the important point to understand is
that the base is not directly a physical quantity; the only metric that has to be regular is the
eleven-dimensional one (1.3.1). For it to be regular, one first need the ZI functions to remain
finite everywhere. Recalling that

ZI = LI +
CIJK

2

KJKK

V
, (1.4.30)

one can cancel the singularities at each pole by assuming

lIj = −CIJK
2

kJj k
K
j

qj
, (1.4.31)

for each center ~yj. One then also have to assume that the µ function does not have any pole,

µ = M +
1

2

KILI
V

+
CIJK

6

KIKJKK

V 2
, (1.4.32)

and this happens if

mj =
k1
jk

2
jk

3
j

2q2
j

. (1.4.33)

With these choices the integrability equations (1.3.17) reduce to the bubble equations consid-
ered in [44, 45]. We refer to [44] for a complete analysis of this case and the discussion of closed
timelike curves (CTCs). The very important point to understand is that with the constraints
(1.4.31)-(1.4.33) together with the bubble equations (1.3.17), the solution ends up being com-
pletely regular, without any singularities nor horizons. And we want to emphasize that the
solution is never Planck-sized and its curvature remains always small enough such that super-
gravity is a valid approximation of string theory. In the context of the fuzzball proposal, these
solutions can be seen as black hole microstates: they carry the same mass and charges that the
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Figure 1.1: On this graph, we present a schematic picture of the multi center Taub-NUT space.
The space has Gibbons-Hawking centers with positive (in blue) or negative (in red) topological
charges. The fiber of the space reduces to zero size at the location of each center, and has a
finite size in between. It therefore forms two-spheres between every pair of centers, and this
two-spheres are the one supporting the magnetic fluxes of the solution.

ones of an extremal black hole, but when one gets close to what would be the horizon, one sees
that there is no horizon, or singular charge distribution. The solutions does not contain any
localized sources. So what sources this charges? As it is clear from the BPS equations (1.3.4),
the charges comes from magnetic-magnetic interactions. Physically, we replace the singular
sources by a non-trivial topology, a multi-center V function, and magnetic fluxes; if one looks
at the Gibbons-Hawking metric (1.3.7), it is clear that the size of the fiber shrinks when V
blows up, at each center, as pictured on Figure 1.1.

Going from one center to another, the fiber grows up, and reduces size to zero again, and it
forms S2 spheres. These 2-spheres are supporting the magnetic fluxes Θ(I), and the interaction
between the fluxes creates the electric charges, without any need of singular sources. It is
interesting to note that this behavior works with an ambipolar base, a base that changes
signature from (+,+,+,+) to (−,−,−,−) from one region to another. This a priori very
singular, very odd, behavior is the key for a mechanism that allows to construct black hole
microstates. This mechanism – replacing singular sources by fluxes on 2-spheres – is in principle
quite general, and we will see in chapter 8 that it also applies to non-supersymmetric, non-
extremal solutions.

1.4.4 Supertubes

The last particular subcase we want to look at is that of supertubes. First introduced in a
open string picture [19, 20, 21] (that we will review in the next chapter), one now knows the
corresponding supergravity, backreacted, solution. Supertubes are brane bound states carrying
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two electric charges Q1 and Q2 and one dipole magnetic charge d. They are 1/4-BPS objects,
and have an angular momentum J given by

J =
Q1Q2

d
(1.4.34)

for it to be regular. In the first place, they were introduced as D2-branes with a compact
direction, carrying F1 and D0 charges, but they can be dualized to other duality frames. Upon
dualization, this is also possible to add charges to obtain three-charge, two dipole-charge su-
pertubes. Being supersymmetric, this tubes are very interesting in the context of probing
supergravity supersymmetric backgrounds, as we will see in the next two chapters.

As supergravity solutions, supertubes with a U(1) isometry are in the class of solutions we
described, with only some of the charges. Explicitly, a center is a supertube if at this center,
only L1 L2 K

3 and M have poles, while V , K1, K2 and L3 do not (or permutations of 1,2 and
3). If one writes the supergravity solutions corresponding to a supertube in any duality frame,
they will not in general be regular. However, if one dualizes in the duality frame where the
electric charges are D1 and D5 charges (the one presented in 1.3.3), they become completely
regular. We will therefore consider them to be regular solutions, keeping in mind that this is
true only in this particular duality frame. There is also another argument for which supertubes
are regular objects: if one starts from a regular solution of the type considered in section 1.4.3,
verifying (1.4.31)-(1.4.33), and performs a spectral flow transformation (1.3.35), it is possible
to transform one of the center of the solution into a supertube. Conversely, a spectral flow
transforms generically a tube into a smooth center. Spectral flow transforming solutions into
physically equivalent solutions, it is natural to think about the supertubes on the same footing
as the smooth centers, verifying (1.4.31)-(1.4.33). In this section, we study, from a supergravity
point of view, the regularity constraints for a supertube configuration. In addition to its implicit
interest, it will be important to have this constraints to be able to compare them to what we
will obtain in the two following chapters, where we will probe a supergravity background with
a supertube.

Constraints from supertube regularity

Consider the D1-D5-P solutions in which one of the centers has vanishing GH charge, and
non-trivial D1 and D5 electric charges. Generally such a solution is not regular and can have a
horizon or a naked singularity. However, the solution will be regular if one arranges the charges
at this point to be those of a two-charge supertube.

Suppose that at r1 = 0 we have a round two-charge supertube with one dipole charge. We
take the latter to be k3

1 and so we have k1
1 = k2

1 = 0 and l31 = 0. This means that in the
neighborhood of a two-charge supertube at r1 = 0, we must have:

ZI ∼ O(r−1
1 ) , I = 1, 2 ; V, Z3 ∼ finite . (1.4.35)

The six-dimensional metric in IIB frame can be re-written as:

ds2
6 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(dz + A(3))2 . (1.4.36)
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To check regularity along the supertube one must examine potential singularities along the
ψ-fiber by collecting all the (dψ + A)2 terms in (1.4.36):

(Z1Z2)
− 1

2 V −2
[
Z3 (K3)2 − 2µV K3 + Z1Z2V

]
(dψ + A)2 . (1.4.37)

For regularity as r1 → 0, one must have:

lim
r1→0

r2
1

[
Z3 (K3)2 − 2µV K3 + Z1Z2V

]
= 0 . (1.4.38)

Next there is a potential problem with CTC’s coming from Dirac strings in ω. For ω to
have a Dirac string originating at r1 = 0, the source terms in the equation for ~ω must have a
piece that behaves as a constant multiple of ~∇ 1

r1
. To examine this, it is easier to use (1.3.14)

and recall that Z3, K
1, K2 and V are finite as r1 → 0. Thus the only sources of “dangerous

terms” are V ~∇µ and Z3
~∇K3. Since V and Z3 are finite at r1 = 0, there will be no Dirac strings

starting at r1 = 0 if and only if:

lim
r1→0

r1
[
V µ − Z3K

3
]

= 0. (1.4.39)

The two conditions, (1.4.38) and (1.4.39), guarantee that the supertube smoothly caps off
the spatial geometry and are the generalization to three-charge three-dipole backgrounds of the
conditions for smooth cap-off in [13].

One can massage these conditions using (1.4.39) to eliminate all the explicit K3 terms in
(1.4.38). The condition (1.4.38) may then be written as

lim
r1→0

r2
1 Q = 0 . (1.4.40)

where Q is the E7 invariant that determines the four-dimensional horizon area [67, 51]:

Q ≡ Z1Z2Z3V − µ2 V 2 (1.4.41)

= −M2 V 2 − 1

3
M CIJKK

I KJ Kk −M V KI LI −
1

4
(KILI)

2

+
1

6
V CIJKLILJLK +

1

4
CIJKCIMNLJLKK

MKN . (1.4.42)

We will therefore refer to (1.4.40) as the quartic constraint. Note that the right-hand side of
(1.3.14) is the quadratic E7 invariant, and so we may view (1.4.39) as the “quadratic constraint.”
It is, however, convenient to rewrite this constraint by eliminating µ from (1.4.38) using (1.4.39).
One then obtains:

lim
r1→0

r2
1

[
V Z1Z2 − Z3 (K3)2

]
= 0 . (1.4.43)

We will use (1.4.39) and (1.4.43) as the independent constraints because they are simplest to
apply.

In flat space the supertube solution has V =
1

r
, K1 = K2 = 0 and Z3 = 1, and equation

(1.4.43) determines the radius of the supertube in terms of its charges, and (1.4.39) fixes the
parameter m1 of (1.3.15), and thus determines the angular momentum of the supertube in
terms of its radius and charges.
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Supertube regularity and spectral flow

As explained in [58], one can obtain a solution with a supertube inside a general three-charge
solution by spectrally flowing a smooth horizonless bubbling solution. Since spectral flow is
implemented by a coordinate change in six dimensions, it cannot affect the smoothness or
the regularity of the solution. Equivalently, regularity is determined by placing conditions on
quadratic and quartic E7 invariants, and as shown in [58], these are invariant under spectral
flow transformations.

We therefore expect that the equations that determine the smoothness of supertubes,
(1.4.38), (1.4.39) and (1.4.43), should be related by spectral flow to the equations that determine
the smoothness of a usual bubbling solution. Indeed, consider the spectral flow transformation
(see [58] for more detail):

Ṽ = V + γ K3 , K̃1 = K1 − γ L2 , K̃2 = K2 − γ L1 , K̃3 = K3 (1.4.44)

L̃1 = L1 , L̃2 = L2 , L̃3 = L3 − 2 γ M , M̃ = M , (1.4.45)

with
γ = − q1

k3
1

. (1.4.46)

This transformation maps a GH bubbled solution to a GH bubbled solution with a supertube
at r1 = 0. Under this spectral flow one also has:

Z̃1 =

(
V

Ṽ

)
Z1 , Z̃2 =

(
V

Ṽ

)
Z2 , µ̃ =

(
V

Ṽ

) (
µ − γ

Z1Z2

Ṽ

)
, (1.4.47)

Z̃3 =

(
Ṽ

V

)
Z3 + γ2

(
Z1Z2

Ṽ

)
− 2 γµ . (1.4.48)

In the usual bubbling solution, regularity requires that the ZI are finite and µ → 0 as
r1 → 0. In the solution with the supertube one can use this and (1.4.48) to verify that:

lim
r1→0

r1

[
Ṽ µ̃ − Z̃3 K̃

3
]

= −γ lim
r1→0

r1

(
V Z1Z2

Ṽ

) (
1 + γ

K3

V

)
, (1.4.49)

lim
r1→0

r2
1

[
Ṽ Z̃1Z̃2 − Z̃3 (K̃3)2

]
= lim

r1→0
r2
1

(
Z1Z2

Ṽ

) (
V 2 − γ2(K3)2

)
. (1.4.50)

Both of these vanish by virtue of (1.4.46) and the finiteness of the ZI and Ṽ as r1 → 0.
Hence, the equations determining the smoothness and regularity of two-charge supertubes are
related by spectral flow to those determining the smoothness and regularity of usual three
charge bubbling solution.
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Probing supergravity solutions
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Motivations and results

The physics of two-charge supertubes is an essential ingredient in understanding the microstates
of the two-charge D1-D5 system. Indeed, as we already explained in the first chapter, super-
gravity solutions for two charge supertubes with D1 and D5 charges and KKM dipole charge
are smooth in six dimensions. In addition, they can have arbitrary shape. Hence, they have
an infinite dimensional classical moduli space, which, upon quantization, gives the entropy one
expects from counting at weak-coupling: S = 2π

√
2N1N5 [11, 12, 13, 14, 16, 18, 19].

While this entropy is considerable, it is nowhere near the entropy of a black hole with three
charges: S = 2π

√
N1N5NP [4]. Hence, if one’s goal is to prove that in the regime of parameters

where the classical black hole exists one can find a very large number of string/supergravity
configurations that realize enough microstates to account for the Beckenstein-Hawking entropy
of this black hole [6], the entropy coming from two-charge supertubes does not appear to be
large enough.

However, in a scaling supergravity background with large magnetic dipole fluxes, the humble
two-charge supertube has, as we will see in the following, more to it than meets the eye, and
can undergo entropy enhancement. That is, if one uses the Born-Infeld action to compute the
entropy of a probe two-charge supertube placed in a background with three charges and three
dipole charges, one finds that such a supertube can have an entropy that is much larger than
that of the same supertube in empty space. The magnetic dipole-dipole interactions between
the supertube and the background can greatly increase the capacity of the supertube to store
entropy. Hence, the interaction with the supergravity background can enhance (or decrease)
the entropy coming from the fluctuating shape of a supertube.

As yet, the fully back-reacted solution corresponding to a supertube in a non trivial back-
ground has only been constructed in the case of round supertubes with constant charge densities
(see chapter 1), and so the entropy enhancement calculation has only been done in a probe ap-
proximation. Nevertheless, in the absence of the fully back-reacted solutions, one can still
pose a very sharp question, whose answer can tilt the balance one way or another in the quest
to understand whether the black hole is a thermodynamic description of a very large num-
ber of horizonless microstates: “Do two-charge supertubes that are solutions of the Born-Infeld
equations of motion correspond to smooth solutions of supergravity once the back-reaction is
included?”1

If the answer to this question is yes, then all the supertube microstates that were counted in

1In [68], we recently compute the backreaction of a supertube with density modes in a two center background.
We do not include this recent results in the discussion, but just mention that in this case, we were able to show
that the solution is indeed completely smooth.
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this scaling regime give smooth microstate solutions of supergravity, valid in the same regime
of parameters where the classical black hole exists. Since the Born-Infeld counting might give
a macroscopic (black-hole-like) entropy, this would imply that the same entropy could come
from smooth supergravity solutions. Our goal in the first part of this thesis is to show that
the Born-Infeld description of a supertube does indeed capture all the essential physics of the
complete supergravity solution and argue that the corresponding supergravity solution will be
smooth in the D1-D5 duality frame, and to show that the entropy of supertubes in magnetically
charged backgrounds is enhanced.

First, we establish that when one has both a Born-Infeld and a supergravity description of
supertubes in a three-charge, three-dipole-charge background, the two descriptions agree to the
last detail. As we will see, this agreement can be rather subtle. For example, a supertube
that is merging with a black ring appears to merge at an angle that depends on its charges
but when this merger is described in supergravity, the merger appears to be angle-independent.
The resolution of this rests upon the correct identification of constituent charges and the fact
that such charges can depend upon “large” gauge transformations.

Another important fact we establish is that the solutions of the Born-Infeld action are always
such that the corresponding solutions of supergravity are smooth in the duality frame where
the supertube has D1 and D5 charges. Indeed, upon carefully relating the Born-Infeld and the
supergravity charges, we will find that the equations that insure that a supertube is a solution
of the Born-Infeld action are identical to the equations that insure that the corresponding
supergravity solution is smooth.

One could take the position that our analysis here only implies the smoothness of round
supertubes, which have both Born-Infeld and supergravity descriptions. It is possible that the
wiggly supertubes (which, upon entropy enhancement, might give a black-hole-like entropy)
could give rise to singular solutions when brought to the supergravity regime. While such a
possibility cannot be fully excluded before the construction of the fully back-reacted wiggly
supertubes, we have some rather strong reasons to believe it is highly unlikely. Indeed, if one
investigates the conditions for smoothness of the supergravity solution and compares them to
the Born-Infeld conditions, one finds that both the supergravity conditions and the Born-Infeld
conditions are local. Hence, since any curve can be locally approximated as flat, our analysis
indicates that no local properties of wiggly supertubes (like the absence of regions of high
curvature) will differ from the local properties of round or flat supertubes. Thus one has a
very reasonable expectation that supertubes of arbitrary shape will source smooth supergravity
solutions.

In particular, if one considers supertubes of arbitrary shape in flat space, the solutions of
the Born-Infeld action always give smooth supergravity solutions [12, 13]. If one now considers
a three-charge, three-dipole charge solution containing supertubes whose wiggling scale is much
smaller than the variation scale of the gauge fields of the background, one can perform a gauge
transformation that locally removes the gauge fields and transforms a portion of this supertube
into a portion with many wiggles of a supertube in flat space. Since the latter supertube is
smooth, and since gauge transformations do not affect the smoothness of solutions, this implies
that the original wiggly supertube is also giving a smooth solution.

Obviously the foregoing conclusion is restricted to the domain of validity of supergravity. If
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a supertube of arbitrary shape is very choppy, the local curvature will be roughly proportional
to the inverse of the scale of the choppiness, and hence if the choppiness is Planck-sized then
the curvature of the solution will also be Planck-sized. Such solutions are thus outside the
domain of validity of supergravity. The main conclusion of our analysis is that supertubes
whose wiggles are not Planck-sized will give smooth, low-curvature supergravity solutions.

Our analysis does not establish whether the typical microstates of a certain black hole will
have high curvature or will be well described in supergravity. However, it does establish that if
the wiggles of the Born-Infeld supertubes that gave the typical microstates are not Planck-sized,
the corresponding supergravity solutions will not be either.

The second aim of this part is to probe in a very detailed way black ring backgrounds.
It will first clarify several issues related to the embedding of black rings in Taub-NUT, and
to the relation between the electric charges of the ring and those of the corresponding four-
dimensional black hole. We show that when embedding a black ring solution in Taub-NUT one
needs to use at least two coordinate patches. From the perspective of one patch, the electric
charges are the ones found in [51], and the ring “angular” momentum along the Taub-NUT
fiber (corresponding to the D0 charge in four dimensions) is given by the difference of the two
five-dimensional angular momenta. The entropy is given by the E7(7) quartic invariant of these
charges [67], as common for four-dimensional BPS black holes [69].

From the perspective of the other patch, the charges and the Kaluza-Klein angular momen-
tum of the corresponding four-dimensional black hole are shifted, to certain values that have
no obvious five-dimensional interpretation1. The entropy of the black ring is again given by the
E7(7) quartic invariant, but now as a function of the shifted charges. The two four-dimensional
black holes corresponding to the black ring are related by a gauge transformation, which shifts
the Dirac string in the gauge potentials from one side of the ring to another2.

Probing black rings, we will also verify chronology protection when supertubes and black
rings are merged. While chronology protection is expected to be valid for this merger, the way
it works is subtle. We compute the merger condition between a supertube and a black ring, and
find that this condition depends on the position on the S2 of the black ring where the supertube
merges. We also find that neither very large nor very small supertubes can merge with the ring,
for obvious reasons. If one varies the charge of the supertubes we find that mergers happen
when the charge lies in a certain interval: At one extreme the supertube barely merges on the
exterior of the ring while at the other it barely merges on the interior of the ring.

We also discuss a subtlety in identifying the constituent charges carried into the black ring
by a merging supertube. We find that when the S1 of the supertube curves around the S2

of the black ring horizon, the charge brought in by a given supertube must depend on the S2

azimuthal angle at which the supertube merges with the ring. Otherwise chronology is not
protected. It would be most interesting to see how this comes about in the full supergravity
merger solution.

The last, and one of the most important, aim of the first part of this thesis, presented

1The asymptotic five-dimensional electric charge is the average between the four-dimensional electric charges
in the two patches.

2Note that we can also perform a gauge transformation that shifts the four-dimensional electric charges to
the asymptotic five-dimensional charges of the black ring [71]. The corresponding four-dimensional solution has
two Dirac strings in the gauge potentials



52

in chapter 4, is to compute in a detailed way supertube entropy, and to present the entropy
enhancement mechanism: in magnetically charged backgrounds, the entropy of a supertube
does not scale like

√
Q1Q2, but like

√
Q1effQ2eff , the charges of the supertube are replaced by

effective charges that depend on the magnetic-magnetic interaction between the tube and the
background. If there are strong magnetic fluxes in the background, as there are in deep, bubbled
microstate geometries, these effectives charges can be much larger than the asymptotic charges
of the configuration, and can thus lead to a very large entropy enhancement! Indeed, one finds
that if the supertube is put in certain deep scaling solutions, the effective charges can diverge
if the supertube is suitably localized or if the length of the throat goes to infinity. Of course,
this divergence is merely the result of not considering the back-reaction of the wiggly supertube
on its background: Once this back-reaction is taken into account, the supertube will delocalize
and the fine balance needed to create extremely deep scaling solutions might be destroyed if
the tube wiggles too much.

Hence, we expect a huge range of possibilities in the the semi-classical configuration space,
from very shallow solutions to very deep solutions. In very shallow solutions, the supertubes
can oscillate a lot, but they will not have their entropy enhanced and for very deep solutions
the supertube will have vastly enhanced charges but, if the solution is to remain deep, the
supertube will be very limited in its oscillations. One can thus imagine that the solutions with
most of the entropy will be intermediate, neither too shallow (so as to obtain effective charge
enhancement), nor too deep (to allow the supertube to fluctuate significantly).

It is interesting to note that entropy enhancement is not just a red-shift effect: There is
no entropy enhancement unless there are strong background magnetic fluxes. A three-charge
BPS black hole will not enhance the entropy of supertubes: it is only solutions that have
dipole charges, like bubbled black holes or black rings that can generate supertube entropy
enhancement.

A very interesting ingredient that we use is the generalized spectral flow transformation
[58]1, presented in the first chapter. This enables us to start from a simple, bubbled black
hole microstate geometry [44, 45] and generate a bubbled geometry in which one or several
of the Gibbons-Hawking centers are transformed into smooth two-charge supertubes. Indeed,
from a six-dimensional perspective (in a IIB duality frame in which the solution has D1-D5-P
charges) this mapping is simply a coordinate transformation. One can then study the particular
class of fluctuating microstate geometries that result from allowing the supertube component
to oscillate in the deep bubbled geometries. The naive expectation is that one would recover
an entropy of the form

√
Q1Q2 but, as we indicated, the QI are replaced by the enhanced QIeff ,

and the entropy of these supertubes can become “macroscopic” in that it corresponds to the
entropy of a black hole with a macroscopic horizon. One can then undo the spectral flow to
argue that this entropy is present in the BPS fluctuations of three-charge bubbling solutions
in any duality frame. In fact, spectrally flowing configurations with oscillating supertubes into
other duality frames is not strictly speaking necessary for the purpose of illustrating entropy
enhancement and arguing that smooth solutions can give macroscopically large entropy. After
all, one could do the full analysis in the D1-D5-P duality frame and consider smooth black hole
microstates containing both GH centers and supertubes. Nevertheless, since such solutions have

1See [43, 72] for relevant earlier work.
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not been studied in the past in great detail, it is easiest to construct them by spectrally flowing
multi-center GH solutions, which have been studied much more and are better understood.

Our analysis establishes that supertube entropy enhancement can come from supertube
oscillation modes in both the internal space of the solution (T 4 in our calculations) and from
oscillations of supertubes in the transverse spacetime directions. We analyze entropy enhance-
ment in black-ring backgrounds, in which the detailed computation is more straightforward
than in generic solutions with a Gibbons-Hawking base. We find that, despite the presence of
different (large) factors in the mode expansions, the fluctuations in the plane transverse to the
ring give a contribution to the entropy that is identical to that coming from the fluctuations
along the compactification torus.

If, as we expect, the enhanced entropy coming from these fluctuations will be black-hole-like,
and therefore the fluctuating supertubes will give the typical microstates of the corresponding
black hole, our analysis establishes that these microstates will have a non-trivial transverse size.
We believe it important to calculate the amount of entropy enhancement coming from all the
oscillations of the supertube. If the other transverse oscillations are more entropic than the
torus ones, this would suggest that five-dimensional supergravity may be enough to capture the
typical states of the black hole. On the other hand, if the torus and the transverse fluctuations
are equally entropic (as hinted by our partial analysis), the typical states will probably have
a curvature set by the compactification scale. Even if this scale is at the Planck scale, the
microstate geometries constructed in supergravity will give a pretty good approximation of the
rough features of the typical states (like the size, the density profile, the multipole moments).
Hence the smooth microstate geometries will act as representatives of the typical black hole
microstates [70].

It is also interesting to note that a similar conclusion – that deep, scaling, horizonless
configurations can give a macroscopic (black-hole-like) entropy – was also reached in [73] and
[74]. In [73] this was done by considering D0 branes in a background of D6 branes with world-
volume fluxes, in the regime of parameters where the D0 branes do not back-react. In [74], a
similar result was obtained by studying the quiver quantum mechanics of multiple D6 branes,
in the regime where the branes do not back-react, but form a finite-sized configuration. Since
these computations were performed in a regime in which the gravitational back-reaction of all
or some of the branes is neglected, it is not clear how the configurations that give the black hole
entropy will develop in the regime of parameters in which the classical black hole exists, and
all the branes back-react on the geometry. Their size will continue increasing at the same rate
as the would-be black hole horizon, and since they are made from primitive branes, it is very
unlikely they will develop a horizon. Hence these two calculations do suggest that the black
hole entropy comes from horizonless configurations. However, since the D0 branes give rise to
naked singularities, the naive strong-coupling extrapolation of these microstate configurations
will not be reliable when the classical black hole exists.

We begin in chapter 2 by presenting supertubes in the open string picture, and the Dirac-
Born-Infeld (DBI) action for a brane. This ingredients are crucial for the analysis we want
to perform, and we therefore spend some time presenting them in simpler backgrounds corre-
sponding to flat space and a BMPV black hole [60]. It is important to understand that one
can in principle use any type of branes to probe a supergravity backgrounds, but using super-
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tubes is a very interesting choice. Indeed, supertubes are 1/4-BPS objects and can be mutually
BPS with supersymmetric backgrounds, will not feel any force. The flat space analysis will
present supertubes and establishes that they are, as expected, stable by themselves. Probing
the BMPV black hole will allows us to present all the physical features that one can extract
from the probe analysis.

In chapter 3 we study probe two-charge supertubes in general three-charge magnetically
charged solutions: black rings and bubbling solutions with a Gibbons-Hawking base. We
present a detailed analysis of two-charge and three-charge supertube probes in the background
of a supersymmetric three-charge black ring. We also relate the supergravity and Born-Infeld
charges of supertubes, and show that the supergravity smoothness conditions derived in the
first chapter, section 1.4.4, agree with the ones derived from the Born-Infeld action. In the end
of the chapter we study mergers of the supertube with the black ring and discuss chronology
protection and black hole thermodynamics during these mergers.

Chapter 4 contains an in-depth derivation of the entropy coming from oscillations of super-
tubes and present the entropy enhancement mechanism for black rings and general solutions
with a Gibbons-Hawking base.

In Appendix A we give the details of the three-charge three-dipole charge solutions in
various duality frames. We also show how to compute the RR potentials corresponding to
these solutions in various duality frames. In Appendix B we give the units and conventions
used throughout our calculations. In Appendix C we compute the angular momentum of a
supertube in several three-charge backgrounds.



Chapter 2

Probe supertubes

In this chapter, we begin to probe supergravity backgrounds. We first present the action for
a probe brane, and the key ingredients that enters in our supersymmetric probes, namely
supertubes [19, 20, 21], already seen in the first chapter in a backreacted, closed string, picture.
Then, as a warm up for the next chapter, we review how to probe a three-charge BMPV black
hole [75, 76]. We will see through this example what is the physics that one can expect to
extract from such a probe approach.

2.1 Probe brane and DBI action

The action of a Dp-brane can be written as

S = SDBI + SWZ (2.1.1)

with

SDBI = −TDp
∫

dp+1ξ e−Φ

√
− det(G̃+ B̃ + 2πα′F ) (2.1.2)

and

SWZ = −TDp
∫

e
eB(2)+F(2) ∧ ⊕nC̃

(n). (2.1.3)

The worldvolume of the brane is parametrized with the ξa coordinates. The 2-form F (2) lives
only on the brane worldvolume, and not in the full background. The G̃µν , B̃

(2) and C̃(p) fields,
that appear in the action, have also to be understood as the pullbacks on the worldvolume of
the brane of the corresponding background fields:

G̃ab = Gµν
∂xµ

∂ξa
∂xν

∂ξb
, (2.1.4)
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with corresponding expressions for B̃(2) and C̃(p). det(G̃ + B̃ + F) (F = 2πα′F ) is the deter-

minant of the (p + 1) × (p + 1)-sized matrix G̃ab + B̃ab + Fab. Finally, e
eB(2)+F(2) ∧ ⊕nC̃

(n) is a

compact way to denote C̃(p+1) + (B̃(2) + F (2)) ∧ C̃(p−1) + . . ., the selection being made by the
fact that the integrated form must be a (p+1)-form.

Physically, SDBI , or the Dirac-Born-Infeld action, is the intrinsic action of the brane while
SWZ , or the Wess-Zumino action, encodes the coupling to the Ramond-Ramond fields, the
potential energy of the brane. One can remark that in this action, the C̃(n) and B̃(2) fields play
completely different roles, but B̃(2) and F (2) only appear through their sum, and thus play the
same role despite their different origins.

The F (2) field deserves a small explanation, and the simplest way to obtain it is to look at
SWZ . A Dp-brane naturally couples to C(p+1) through the TDp

∫
C̃(p+1) term. When one has a

non-zero F (2) field turned on, it allows for a coupling to smaller forms C(p−1), C(p−3), . . ., that
couple naturally to respectively D(p-2) branes, D(p-4)-branes, etc. One can therefore interpret
the F (2) as the presence of smaller branes, “dissolved” in the big one. We consequently say that
the brane is charged: for example, if one has a D3-brane in the (t, x1, x2, x3) directions, with

F (2)
23 non-zero, this translate into a D1-brane charge along (t, x1). The number ND1 of dissolved

D1-branes is then given by the equality

TD3

∫
F (2) ∧ C̃(1) = ND1TD1

∫
C̃(1).

We will also see in the next subsection that having F (2)
t1 non-zero corresponds to having an

F1-string charge. Finally, the B̃(2) field present in the action cannot have such a clear physical
explanation, but one can still justify its existence. Indeed, there exists a gauge transformation
changing B̃(2) into F (2) and vice versa, and the consequence is that the physical quantity is the
combination B̃(2) +F (2) [35]. This is why B̃(2) and F (2) can only appear through this particular
combination. Because of the physical explanation that we just gave for F (2), and the symmetric
roles played by B̃(2) and F (2), it would be natural to also relate B̃(2) to a dissolved-brane charge.
This is not the case. A more complete study [77] shows that such charges terms coming from

B̃(2) are always compensate by a counterterm in the full supergravity action, cancelling its
contribution.

2.2 Supertubes in flat space

We want to test supergravity backgrounds with a probe brane. If we probe a supersymmetric
background, it is interesting to have a probe that is also supersymmetric and respects the same
supersymmetries. We will therefore always take this probe to be a supertube [19]. Supertubes,
already presented in section 1.4.4, are best understood in an open string picture: in a IIA
duality frame, they can be seen as D2-branes with one compact direction. They carry F1 and
D0 charges, and are 1/4-BPS objects. The fact that the D2-brane wraps a contractible cycle
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makes the D2 charge being dipolar. Such a supertube is thus a 2 charge, one dipole charge
object. As we will see in the following, the shape of the compact direction can be arbitrary.

To present the idea of the probe computations, and how one can extract interesting prop-
erties from it, we start with the easiest possible example: a supertube in flat space. It will be
described by Gµν = ηµν , B

(2) = 0, Φ = 0, C(p) = 0. We take for now the supertube to be a
circular D2-brane with radius r in the (u, ϕ1) plane of R

4, in the coordinates given by (1.4.1). It
is parametrized by (z, θ), and carries two charges. It corresponds to Fzθ 6= 0 for the D0 charge
and Ftz 6= 0 for the F1 charge. As we will see, Ftz is not exactly the F1 charge, but will be
related to that one. We wrap the supertube nD2 times along ϕ1, which corresponds to having
a D2 dipole charge nD2. Therefore θ runs from 0 to 2πnD2. The induced metric on the tube is

G̃ =




−1 0 0
0 1 0
0 0 r2


 . (2.2.1)

In flat, empty, space, SWZ = 0, and therefore S = SDBI ,

S = −TD2

∫
dtdzdθ

√
− det(G̃+ F)

= −TD2

∫
dtdzdθ

√
r2(1 −F2

tz) + F2
zθ. (2.2.2)

For the particular value Ftz = 1, the expression simplifies, and we obtain

S = −TD2

∫
dtdzdθFzθ . (2.2.3)

One now wants to compute the energy density, which is given by

H =
∂L
∂Ftz

Ftz − L . (2.2.4)

Before, this is useful to compute the conjugate momentum of Ftz

Π =
1

TD2

∂L
∂Ftz

=
r2Ftz√

r2(1 −F2
tz) + F2

zθ

. (2.2.5)

This is inverted by

Ftz =
Π

r

√
r2 + F2

zθ

r2 + Π2
. (2.2.6)
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The energy density, in terms of Π and Fzθ is followingly given by

H =
1

r

√
(r2 + F2

zθ)(r
2 + Π2) . (2.2.7)

This energy is minimal when r =
√
|ΠFzθ|, in which case one can see that Ftz = 1, and

∫ 2πnD2

0

dθ dz H⌋Ftz=1 = ND0 +NF1 . (2.2.8)

where we have

ND0 =
TD2

TD0

∫ 2πnD2

0

dθ dzFzθ and NF1 =
1

TF1

∫ 2πnD2

0

dθΠ (2.2.9)

respectively the number of D0-branes and fundamental strings. The units and conventions that
we are using are specified in appendix B. This particular expression of H ensures that we have a
supersymmetric configuration, the energy of the system being equal to the sum of the supertube
charges. This charges being constant, the Hamiltonian as well as the Lagrangian densities are
constant, and the tube does not feel any force. This is expected, because we are in flat space,
but this will be a generic property of a supersymmetric configuration, that will take place in
non trivial background. We will in the following always find the supersymmetric configuration
by choosing Ftz = 1 without explicitly minimizing the Hamiltonian density.

The explicit expression for NF1 gives us an equality:

ND0NF1 = n2
D2r

2 (2.2.10)

This has to be seen as an equation relating the radius of the supertube with its charges, and
can be understood, from a physical point of view, as the fact that the charges are what prevent
the tube to collapse on itself. In the following, more complicated cases, this is also from the
expression of NF1 that we will be able to extract a lot of the physical properties of the probe
analysis.

The last data that we have to compute is the angular momentum of the tube. The angular
momentum along the ϕ circle is very generally given by

Jϕ =

∫
dzdθ

∂Ltot
∂ϕ̇

. (2.2.11)

The details of the angular momentum derivation are given in Appendix C. For our case, finally
gives

J = nD2r
2 . (2.2.12)
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Together with (2.2.10), this implies

J =
ND0NF1

nD2

. (2.2.13)

We will see that in more complicated backgrounds, (2.2.10) and (2.2.12) will be changed into
more complicated expressions, but the relation J = ND0NF1/nD2 will always hold. As we will
see in chapter 4, the entropy of a supertube is

SST ∝
√
ND0NF1 − nD2J . (2.2.14)

The relation (2.2.13) therefore implies that the tube is maximally spinning and has no entropy.

2.3 Second example: probing a black hole background

To continue, we now consider a probe supertube with two charges and one dipole charge in the
background of a three-charge (BMPV) black hole. This example was considered in [75, 76] and
was generalized to a probe supertube with three charges and two dipole charges in [78]. The
full supergravity solution describing a BMPV black hole on the symmetry axis of a black ring
with three charges and three dipole charges was found in [40, 52], and a more general solution
in which the black hole is not at the center of the ring was found in [79].

We probe the black hole background presented in section 1.4.1. As we explained before, in
order to probe it with a supertube that has a D2 dipole charge and D0 and F1 electric charges,
we need this black hole background to be in the D0-D4-F1 frame (see section 1.3.2), so the fields
are given by (1.3.22), (1.3.23), (1.3.24) with the explicit values (1.4.6). The RR potentials in
this case can be rewritten as

C(1) = (Z−1
1 −1)dt+Z−1

1 k , C(3) = −(Z2−1)ρ2 cos2 ϑdϕ1∧dϕ2∧dz+Z−1
3 dt∧k∧dz . (2.3.1)

We will denote the world-volume coordinates on the supertube by ξ0, ξ1 and ξ2 ≡ θ. To make
the supertube wrap z we take ξ1 = z and we will fix a gauge in which ξ0 = t. Note that
z ∈ (0, 2πLz). The profile of the tube, parameterized by θ, lies in the four-dimensional non-
compact R

4 parameterized by (ρ, ϑ, ϕ1, ϕ2) and for a generic profile all four of these coordinates
will depend on θ.

It is convenient to use polar coordinate (u, ϕ1) and (v, ϕ2) in R
4 = R

2 × R
2, where the

R
4 metric takes the form (1.4.1). There is also a gauge field, F , on the world-volume of the

supertube. Supersymmetry requires that F essentially has constant components and we can
then boost the frames so that Ftθ = 0.

In this frame supersymmetry also requires Ftz = 1 [19]. For the present we take

2πα′F ≡ F = Ftzdt ∧ dz + Fzθdz ∧ dθ , (2.3.2)

where the components are constant. Keeping Ftz as a variable will enable us to extract the
charges below.

The supertube action is a sum of the DBI and Wess-Zumino (WZ)actions:

S = −TD2

∫
d3ξe−Φ

√
−det

(
G̃ab + B̃ab + Fab

)
+ TD2

∫
d3ξ[C̃(3) + C̃(1) ∧ (F + B̃)] , (2.3.3)
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where, as before, G̃ab and B̃ab are the induced metric and Kalb-Ramond field. We have also
chosen the orientation such that ǫtzθ = 1. It is also convenient to define the following induced
quantities on the world-volume:

∆µν = ∂µu∂νu+ u2∂µϕ1∂νϕ1 + ∂µv∂νv + v2∂µϕ2∂νϕ2 , γµ = k1∂µϕ1 + k2∂µϕ2 , (2.3.4)

where ∂µ ≡ ∂
∂ξµ .

After some algebra, the DBI part of the action simplifies to:

SDBI = −TD2

∫
dtdzdθ

( 1

Z2
1

(Fzθ − γθ(Ftz − 1))2

+
Z2

Z1

∆θθ[2(1 −Ftz) − Z3(Ftz − 1)2]
)1/2

, (2.3.5)

while the WZ piece of the action takes the form

SWZ = TD2

∫
dtdzdθ

[
(1 −Ftz)

γθ
Z1

+ Fzθ

(
1

Z1

− 1

)]
. (2.3.6)

For a supersymmetric configuration (Ftz = 1) we have

SFtz=1 = SDBI + SWZ = −TD2

∫
dtdzdθFzθ (2.3.7)

The foregoing supertube carries D0 and F1 “electric” charges, given by

NST
1 =

TD2

TD0

∫
dzdθ Fzθ, NST

3 =
1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

. (2.3.8)

The Hamiltonian density is:

H|Ftz=1 =

[
∂L
∂Ftz

Ftz − L
]

Ftz=1

= TD2Fzθ +
∂L
∂Ftz

∣∣∣∣
Ftz=1

. (2.3.9)

One can easily integrate this to get the total Hamiltonian of the supertube1 (we assume constant
charge density Fzθ) ∫

dzdθ H|Ftz=1 = NST
1 +NST

3 . (2.3.10)

Thus the energy of the supertube is the sum of its conserved charges which shows that the
supertube is indeed a BPS object.

Now choose a static round supertube profile u′ = v′ = ϕ′
2 = 0, ϕ1 = θ. One then has:

γθ = k1 = J
u2

(u2 + v2)2
, ∆θθ = u2 (2.3.11)

1See Appendix B for details about our units and conventions.
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Figure 2.1: Two different black hole and supertube configurations, for different values of the
supertube charges. On the first one, the supertube charges are large, and the tube cannot merge
with the black hole. On the second one, the size of the tube is small enough for the merger to
be possible. The angle α of the merger depends on the tube charges.

and the supertube “electric” charges are:

NST
1 = nST2 Fzθ , NST

3 = nST2

Z2u
2

Fzθ

. (2.3.12)

So we find
NST

1 NST
3 = (nST2 )2u2 Z2 . (2.3.13)

This is an important relation, generalizing (2.2.10), in that it fixes the location of the supertube
in terms of its intrinsic charges.

As for the flat space case, one can compute the angular momentum od the tube, given in
Appendix C. This gives in this case

JST = nST2 Z2u
2 (2.3.14)

and, using (2.3.13), one gets again

JST =
NST

1 NST
3

nST2

. (2.3.15)

As we explain for the flat space case, the relation giving the charges of the supertube and
its angular momentum have changed because of the non-trivial background, but the relation
between them has not.

This computation was used in [75] to study the merger of a supertube and a black hole.
Using the explicit expression (1.4.6) for Z2, (2.3.13) becomes

NST
1 NST

3 = (nST2 )2ρ2 sin2 ϑ+ (nST2 )2N2 sin2 , (2.3.16)
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where N2 is the number of D4 branes in the black hole. In particular, as presented in figure
2.1, a supertube can merge with a black hole if and only if NST

1 NST
3 ≤ (nST2 )2N2. Moreover,

the supertube will “crown” the black hole at “latitude”, ϑ = α, given by:

sinα =

√
NST

1 NST
3

(nST2 )2N2

. (2.3.17)

The conditions that we obtained here allow us to verify that the chronology protection condition
is preserved during the merger, and that the entropy of the black hole increases. As we saw in
section 1.4.1, the entropy of the black hole is given by

S ∝
√
M ≡

√
N1N2N3 − J2 , (2.3.18)

Note that the absence of CTCs being given by the inequality J2 ≤ N0N1N4, verifying that the
black hole entropy increases is enough to ensure chronology protection. And this is equivalent
to ∆M ≥ 0.

The supertube verifies JST = NST
1 NST

3 /nST2 and JST ≤ NST
1 NST

3 . Thus one can write
(NST

I = ∆NI)

(N1 + ∆N1)N2(N3 + ∆N3) − (J + ∆J)2

= M + (N1∆N3 +N3∆N1)N2 + ∆N1∆N3N2 − 2J∆J − ∆J2

≥ M + 2N2

√
N1∆N3N3∆N1 + ∆J(N2 − ∆J) − 2J∆J (2.3.19)

≥ M + ∆J(N2 − ∆J) + 2
√
N1N2N3

√
N2∆N1∆N3 − 2J∆J

≥ M + ∆J(N2 − ∆J) + 2J(
√
N2∆J − ∆J),

where we used the arithmetico-geometric inequality for the first inequality and the initial
chronology protection for the third. The entry condition of the tube in the black hole be-
ing ∆J ≤ N4, and thus

√
N4∆J ≥ ∆J , this is enough to verify that S + ∆S ≥ S.



Chapter 3

Probing a magnetically charged
background

We are now ready to get in the real core of this part: in this chapter, we will extend the black
hole probe analysis of the previous chapter to black rings and general Gibbons-Hawking smooth
backgrounds, presented in the first chapter. The presence of magnetic dipole charges in the
background will change the physical analysis in a very interesting way. This will also lead to
the “entropy enhancement mechanism”, presented in the following chapter.

3.1 Probing a black ring background, a full analysis

3.1.1 Probing the black ring with a two-charge supertube

We now probe the black ring background with a two-charge supertube [19, 21]. The calculation
proceeds in much the same way as for the supertube in a black hole background. As before, we
parameterize the tube by (t, z, θ), and define an a priori arbitrary supertube profile in R

4 by
~y(θ). Since we are ultimately going to consider a supertube that winds multiple times around
the ring direction it will be convenient to take θ ∈ (0, 2πnST2 ) where nST2 will become this
winding number. Thus the supertube will have a dipole charge proportional to nST2 , and two
net charges proportional to NST

1 and NST
3 . Its action is a sum of a DBI and a WZ term

S = SDBI + SWZ = −TD2

∫
dtdzdθe−Φ

√
− det(G̃ab + B̃ab + Fab)

+ TD2

∫
dtdzdθ

(
C̃

(3)
tzθ + C̃

(1)
t (B̃zθ + Fzθ) + C̃

(1)
θ (B̃tz + Ftz)

)
(3.1.1)

For the supersymmetric configuration one once again finds that Ftz = 1 and if one imposes
this ab initio then one again obtains (2.3.7), (2.3.8) and (2.3.9) and hence the BPS relation for
the supertube. The expression for the derivative of the action with respect to Ftz evaluated at
Ftz = 1 can be most convenient expressed as:
(
∂L
∂Ftz

∣∣∣∣
Ftz=1

+ TD2(B
(1)
ϕ1
ϕ′

1 +B(1)
ϕ2
ϕ′

2)

)(
Fzθ + (B(3)

ϕ1
ϕ′

1 +B(3)
ϕ2
ϕ′

2)
)

= TD2Z2gµνy
′µy′ν , (3.1.2)

63
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where ′ denotes the derivative with respect to θ. As for the black hole [75, 76], one can reinterpret
this in terms of charge densities and arrive at a generalization of the constraint (2.3.13) that
relates the charges to the radius of the supertube. Note that the condition (3.1.2) is local
and to get a relation similar to (2.3.13) on has to integrate over the profile of the supertube.
There is an important new feature here in that there is a contribution from the interactions
of the dipole charges of the supertube and background. This appears through the pull-back of
the B(I) to the world-volume of the supertube and it gives an added contribution to the basic
supertube charges to yield what we will refer to as the local effective charges of the supertube.
We will show in section 3.1.3 that this also happens when supertubes are placed in three-charge
solutions with a GH base.

It is also important to remember that the Wess-Zumino action of the supertube is only
invariant under local small gauge transformations, but is not necessarily invariant under large
gauge transformations. Indeed, the black ring is a magnetic object, and as such the gauge fields,
B(I) are not defined globally but on patches. Their values, and the value of the supertube
action, differ from patch to patch by what can be thought of as the effect of a large gauge
transformation.

More explicitly, the action depends on the Wilson lines of these gauge fields taken around
latitudes of the two-sphere that surrounds the black ring (which is the equivalent of the sphere
that contains a monopole charge). The value of these Wilson loops may then be defined using
Stokes theorem as the integral of the magnetic flux coming from the black ring through the
section of the sphere surrounded by the Wilson line. There is, however, an obvious ambiguity:
does one integrate the flux over the upper or the lower cap of the sphere? The difference
is, of course, the monopole charge inside the sphere multiplied by the number of times the
Wilson loop winds around the latitude circle. These ambiguities will manifest themselves in
the definitions of the constituent charges of the supertube.

To analyze the physics of the merger, we consider a supertube embedded in spacetime along
the curve ~y(θ) given by:

ϕ1 = −θ , ϕ2 = −ν θ (3.1.3)

x and y being at fixed values. The projections of the supertube in the (y, ϕ1) and (x, ϕ2)
planes are circular, with winding numbers nST2 and νnST2 respectively. For ν = 0, the supertube
is circular and simply winds around the plane of the ring nST2 times. For ν 6= 0, the details
of the winding depend upon the equilibrium position of the supertube. We also assume, for
simplicity, that the charge densities of the tube are independent of θ. Under these assumptions
the condition (3.1.2) becomes:

[
NST

1 − 1

2
nST2 n3(y + 1 − ν(x+ c))

] [
NST

3 − 1

2
nST2 n1(y + 1 − ν(x+ c))

]
=

(nST2 )2Z2
R2

(x− y)2
((y2 − 1) + ν2(1 − x2)) . (3.1.4)

We will call this equation the radius relation. Note that this equation is invariant under the
exchange of N1, n1 with N3, n3, as expected by U-duality. Comparing this constraint to the one
for a black hole background (2.3.13), we see that the charges of the supertube are enhanced to
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Figure 3.1: Different black ring and supertube configurations for different values of the supertube
charges. In the first picture, the charges of the tube are too small, and hence the tube it is too
small, and passes inside the ring. In the second one, the tube is too large and passes on the
outside of the ring. In the third picture, the size of the tube is in the correct range for the merger
to be possible. The angle α of the merger depends on the tube charges according to (3.1.10).

their effective charges via the interactions of the dipole charges. This is an important result
that we will discuss further in the subsequent sections.

To get a better idea of the supertube configuration in the black-ring geometry it is instructive
to examine the supertube as it approaches the horizon (y → −∞). In this limit, the physical
metric along the horizon becomes:

ds2
3 =

(
C2R4

)1/3
[ (

64C2R4
)−1 M dϕ2

1 + (dα2 + sin2 α (dϕ1 + dϕ2)
2)

]
, (3.1.5)

where we have set x = cosα, and the parameter, M, is proportional to the square of the
black-ring entropy

S = π
√
M, (3.1.6)

and is given by

M = 2n1n2N1N2 + 2n1n3N1N3 + 2n2n3N2N3 − (n1N1)
2 − (n2N2)

2 − (n3N3)
2 − 4n1n2n3J ,

(3.1.7)
where J is the “intrinsic” angular momentum of the ring, and is given by the difference between
the two angular momenta of the five-dimensional solution:

J = J1 − J2 = 4(n1 + n2 + n3)R . (3.1.8)

The topology of the horizon is S2×S1, but observe that for a supertube that winds according
to (3.1.3), the winding around the horizon is determined by

ϕ1 = −θ , ϕ1 + ϕ2 = −(ν + 1) θ . (3.1.9)

The supertube thus enters the horizon by winding around the S1 but enters at a point on the
S2 if and only if ν = −1. Otherwise it winds around the S1 and “crowns” the S2 by winding
(ν + 1) times around a latitude determined by x.

If we now examine the constraint (3.1.4) and send y → −∞ the supertube will merge with
the black ring and the constraint (3.1.4) will become the merger condition:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST2 n1n3((1 + c) − (ν + 1)(x+ c)) . (3.1.10)
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More explicitly, this condition be written as:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST2 n1n3 (ν + 1)(1 − x) for c = −1 . (3.1.11)

NST
1 n1 +NST

3 n3 −N2n
ST
2 = nST2 n1n3 (2 − (ν + 1)(1 + x)) for c = +1 . (3.1.12)

The relation (3.1.10) is simply the analogue of the equation giving the merging angle for the
supertube in a black-hole background (2.3.17). In particular, as depicted in Figure 3.1, it
determines the value of x (which corresponds to an angular variable on the horizon) at which
a supertube with a given set of charges enters the black ring horizon. Since −1 ≤ x ≤ +1, this
restricts the permissible charges of supertubes that merge with a given black ring.

We can see that the radius relation (3.1.4) and the merger condition (3.1.10) depend both
on the gauge choice (by an x-independent factor) and also on ν + 1. We can understand this
gauge dependance in a physical way: the gauge choice corresponds to a choice for the location
of the Dirac string. In other words, the gauge dependance comes from the fact that the tube
feels the presence of the Dirac string of the background. Increasing x then corresponds to the
supertube wrapping, for c = −1, or not wrapping, for c = +1 the Dirac string, as can be seen
in figure 3.2.

More precisely, if we choose c = −1, that is if we choose the Dirac string to extend from
the ring location to infinity, then we can put the tube everywhere except on the Dirac string.
If we put it at x = 1, the φ circle becomes degenerate and indeed in (3.1.11) the ν dependance
disappears. This is expected, because ν + 1 is the winding number of the tube around a
contractible circle. When the size of this circle is zero, the winding should be irrelevant, which
is indeed what happens.

If we now change the location of the ring to approach x = −1 without changing the gauge,
the tube winds ν + 1 times around the Dirac string; this winding is physically-relevant, and
hence, as expected, equation (3.1.11) depends on ν when x → 1. However, if we change the
gauge to move the Dirac string to the inside of the ring, we can see that when the tube is at
x = 1, where the φ circle is degenerate, the winding number is again irrelevant; as expected the
merger formula is again independent of ν. We should also note that for the particular value
ν = −1, the supertube never wraps the Dirac string, and hence the merger condition does not
depend upon x.

In Section 3.1.4 we will examine the details of such a merger and discuss chronology pro-
tection and black hole thermodynamics during mergers.

3.1.2 The black ring background: comparing the DBI analysis with
supergravity.

We now turn to the main purpose in this section: the relation between the merger conditions
obtained from supergravity and from the DBI analysis, and the relation between the GH and
the DBI charges of the supertube.

Let begin with the supergravity side. The supergravity solution corresponding to one black
ring and one supertube is given as usual the eight harmonic functions V , LI , K

I and M . The
poles of this functions at the location of the ring and of the tube are
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φ

x=+1 BR x=−1 x=+1 BR x=−1

Figure 3.2: The black ring (in blue) with supertubes (in green) at various positions in the R
3

base of the Gibbons-Hawking space. The black ring is point-like but the tube is point-like only
if it lies on the axis x = ±1. Otherwise, it winds ν + 1 times the φ circle. On the left, the
Dirac string starts from the ring and extends to infinity. On the right, the Dirac string extends
between the center of the space and the ring location.

K1 = − q1
2|~r − ~rBR|

, K2 = − q2
2|~r − ~rBR|

− qST2

2|~r − ~rST |
, K3 = − q3

2|~r − ~rBR|
,

L1 =
QGH

1

4|~r − ~rBR|
+

QGH,ST
1

4|~r − ~rST |
, L2 =

QGH
2

4|~r − ~rBR|
, L3 =

QGH
3

4|~r − ~rBR|
+

QGH,ST
3

4|~r − ~rST |
,

2M = − JGH

8|~r − ~rBR|
− JGH,ST

8|~r − ~rST |
(3.1.13)

where QGH are the GH charges of the black ring defined in Section 1.4.2, and QGH,ST are the
GH charges of the supertube defined in the same way. Recall once again that the GH charges
depend upon the choice of patch, as in (1.4.27) and (1.4.28), and the GH charges of both the
ring and the tube transform consistently between the patches.

To obtain the merger condition from supergravity observe that the bubble (or integrability)
equations (1.3.17) contain a term in which the E7(7) symplectic product of the supertube and
black ring GH charge vectors is divided by their separation. Hence, these objects only merge if
this symplectic product is zero1. Explicitly, this gives2

NGH,ST
1 n1 +NGH,ST

3 n3 −NGH
2 nST2 = 0. (3.1.14)

Note that the GH charges of the ring and of the tube are gauge dependent, but the symplectic
product is invariant.

To compare the GH merger conditions (3.1.14) to the merger conditions obtained in the
previous section using the DBI action, one should recall that this condition describes only
those supertubes that correspond to point sources on the R

3 of the GH base. That is, the

1One could also imagine in principle the existence of a scaling solution, where the distances in R
3 between

the ring, supertube and the center of Taub-NUT go together to zero. In such a solution the ring and the
supertube would be spinning very rapidly in opposite directions, which is likely to introduce closed timelike
curves. We leave its exploration for future work.

2As noted in (1.4.19), we have adopted a set of conventions in which the supergravity charges, QST , are the
same as the integer charges.
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supertubes are embedded into R
4 so as to wind around the GH fiber, and thus preserve the

same triholomorphic U(1) isometry as the black ring. From (3.1.3) and (1.4.2) we see that the
winding numbers of the supertube in the GH patch are given by (1, ν + 1). (Remember that ψ
has period 4π.) Thus a supertube is point-like in the R

3 if and only if it has either ν = −1 or
it lies on the polar axis with x = ±1. We therefore restrict ourselves to mergers with x = ±1
for any value of ν, or mergers with ν = −1.

For x = 1, we need to be on the patch c = −1, and (3.1.10) gives:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 0 . (3.1.15)

For x = −1, we need to be on the patch c = +1, and thus have:

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 2nST2 n1n3 . (3.1.16)

But using the relation (1.4.28), we can rewrite it as

NST
1 n1 +NST

3 n3 −NGH
2 nST2 = 0 (3.1.17)

on both patches. The extra term in (3.1.16) is simply the shift in NGH induced by changing
patches. Thus, if we identify the DBI charge of the supertube with the GH charge of the
corresponding supergravity solution,

NST
I = NGH,ST

I , (3.1.18)

we have a perfect agreement between the supergravity approach (3.1.14) and the DBI approach
(3.1.17).

The supertubes with ν = −1 do not wrap the φ circle of the R
3 base of the GH space, and

thus are point-like in this base for any value of x, and they source a supergravity solution with
a GH base for any location. Moreover, since these tubes do not wrap the Dirac string, the
merger relations become x independent. Equations (3.1.11) and (3.1.12) then become

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 0 for c = −1 , (3.1.19)

NST
1 n1 +NST

3 n3 −N2n
ST
2 = 2nST2 n1n3 for c = +1 , (3.1.20)

which once again can be re-written as

NST
1 n1 +NST

3 n3 −NGH
2 nST2 = 0 . (3.1.21)

Hence we arrive at the same conclusion as for supertubes at x = ±1: the DBI charges of the
supertube give the GH charges of the corresponding supergravity solution:

NST
I ≡ NGH,ST

I . (3.1.22)
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3.1.3 Black rings and three-charge two-dipole-charge supertubes

One can generalize the foregoing discussion of mergers to examine a three-charge, two dipole
charge supertube [75] merging with a generic black ring. This can be done both in the probe
approximation, using the DBI action, and in the exact supergravity solution. This supertube
is more general than the two-charge supertube, and although it does not source a smooth
supergravity solution in any duality frame, it can be used to study rather more general classes
of mergers.

The best duality frame to study this merger is that in which the three-charge supertube
is a dipolar D6-brane carrying electric D4, D0 and F1 charges. We take our tube to be along
the (x1, x2, x3, x4, z, ~y(θ))), where ~y(θ) describes a closed curve in the non-compact space. As
before, we take θ ∈ (0,2πnST1 ) with nST1 being the winding number of the supertube which is
also its D6 dipole charge. We introduce world-volume electric fields: Fzθ, Ftz, F12 and F34.
where Ftz and Fzθ generate the F1 and D4 charges respectively and F12 and F34 are needed
for the D0 charge. The integer charges are given by

NST
1 = ND0 =

1

2π

∫
dθFzθF12F34 , (3.1.23)

NST
2 = ND4 =

1

2π

∫
dθFzθ , (3.1.24)

NST
3 = NF1 =

1

2π

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

, (3.1.25)

nST2 = nD2 = nST1 F12F34 . (3.1.26)

Note that we can take the D4 dipole moments and D2 charges of the tube to be zero by taking
F12 and F34 to be traceless. Supersymmetry requires that Ftz = 1 and F12 = F34 [75], and
then one can show that

H|Ftz=1,F12=F34 = TD6FzθF12F34 + TD6Fzθ +
∂L
∂Ftz

∣∣∣∣
Ftz=1,F12=F34

, (3.1.27)

or equivalently

∫
d4xdzdθH|Ftz=1,F12=F34 = NST

1 +NST
2 +NST

3 , (3.1.28)

where H is the energy per unit five-dimensional volume.
As before, we will assume constant charge densities on the supertube worldvolume and the

interesting physical condition that generalizes (3.1.4) comes from the variation that define the
F1-charge, NST

3 :

[
NST

3 − 1

2
(nST1 n2 + nST2 n1)(y + 1 − ν(x+ c))

] [
NST

2 − 1

2
nST1 n3(y + 1 − ν(x+ c))

]
=

nST1

(
nST1 Z1 + nST2 Z2

) R2

(x− y)2
((y2 − 1) + ν2(1 − x2)) . (3.1.29)
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Note that, using nST1 NST
1 = nST2 NST

2 , there is a symmetry between (D0,D6) and (D4,D2)
charges and dipole moments, as expected from U-duality. However since the tube has no NS5
dipole moment, there is no exchange symmetry between the F1 charge and other charges.

One can extract the merger condition from this as before and one finds that, for a merger
with a black ring, (3.1.10) generalizes to:

n1N
ST
1 +n2N

ST
2 +n3N

ST
3 −nST1 N1 −nST2 N2 = n3(n1n

ST
2 +n2n

ST
1 )((1+ c)− (ν+1)(x+ c)).

(3.1.30)

When the three-charge supertube respects the GH isometry (x = ±1 for any ν or ν = −1
for any x), one can also describe this merger in supergravity. The solution is given by the same
harmonic functions as in (3.1.13), except that now K1 and L2 also have poles at the supertube
location:

K1 → − qGH1

2|~r − ~rBR|
− qGH,ST1

2|~r − ~rST |
, L2 →

QGH
2

4|~r − ~rBR|
+

QGH,ST
2

4|~r − ~rST |
. (3.1.31)

One can see that equation (3.1.30) is equivalent to the vanishing of the E7(7) symplectic product
of the GH charges of the black ring and those of the three-charge supertube, and hence the
merger conditions obtained from supergravity and from the Born-Infeld analysis of the three-
charge supertube are the same. The subtleties associated to the dependence of the charges
upon the patch are identical to those for the two-charge supertube, and we will not discuss
them again.

3.1.4 Chronology protection

Having obtained the condition under which a supertube and a black ring can merge, both using
the Born-Infeld description of supertubes, and (where appropriate) also using the supergravity
solution corresponding to the merger, we now turn to verifying that supertube mergers preserve
the physical properties of the black ring. For simplicity, and because it is sufficient for capturing
all the relevant physics of the merger, we will primarily focus on circular embeddings for the
tube (3.1.3).

Mergers of black rings with two-charge supertubes

We begin by considering the merger of a black ring with a two-charge supertube of arbitrary
shape. To do this one must first establish what shape can the supertube have when it crosses
the black ring horizon. Based on our intuition from supertubes merging with black holes [75]
we expect that the supertube will be parallel to the horizon, and that it should not be possible
to have a part of the supertube inside the black ring horizon and a part of it is outside.

To see this we can analyze equation (3.1.2) and change variables to w = 1
y
; the merger then

happens at w → 0. After some algebra one can see that for w → 0 the leading divergent term
in (3.1.2) imposes the constraint ∂w

∂θ
= 0, which implies that the supertube is always tangent

to the horizon when it merges to a black ring.
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It is particularly important to examine the thermodynamics of mergers and see whether
by “throwing in” supertubes one could decrease the entropy of a black ring, or overspin it
and introduce closed timelike curves (violating chronology protection). To do this one must
determine what are the charges that a supertube brings into a ring. As we saw in the section
3.1.2, there are some subtleties in this determination and we cannot always add the DBI charges
of the supertube to the constituent charges, the N ’s, of the ring. We have learned that the DBI
charges have to be identified with the GH charges of the supertube, which are patch-dependent,
and are not the same as the constituent ones. We have seen this explicitly from the supergravity
solution for concentric mergers (when x = ±1) or alternatively when we take ν = −1 so that
the supertube does not wind around latitude circles and crosses the ring horizon at a point on
the S2 of the horizon. We will first focus on mergers where the supertube merges at a point on
the S2, and discuss the other ones at the end of this subsection.

The entropy of the black ring is given by S = π
√
M where M is defined in (3.1.7)

M = 2n1n2N1N2 + 2n1n3N1N3 + 2n2n3N2N3 − (n1N1)
2 − (n2N2)

2 − (n3N3)
2 − 4n1n2n3J .

(3.1.32)
Note that M is in fact the E7(7) quartic invariant and is therefore invariant under a gauge
transformation (1.4.24). In terms of GH charges of the ring, we have

M = 2n1n2N
GH
1 NGH

2 + 2n1n3N
GH
1 NGH

3 + 2n2n3N
GH
2 NGH

3

−(n1N
GH
1 )2 − (n2N

GH
2 )2 − (n3N

GH
3 )2 − 4n1n2n3J

GH . (3.1.33)

From the analysis in the previous subsections, we know that the supertube DBI charges
correspond to GH charges, and thus should be directly added to the GH charges of the ring.

To keep the expressions simple we will take the three electric and the three dipole charges
of the black ring charges to be equal, we will also assume that the two electric charges of the
supertube are equal, namely:

NGH
1 = NGH

2 = NGH
3 ≡ N , n1 = n2 = n3 ≡ n , NST

1 = NST
3 ≡ ∆N . (3.1.34)

Then we have
M = n2(3N2 − 4nJ) (3.1.35)

and the charges of physical black rings satisfy: 3N2 ≥ 4nJ .
Let ∆n denote the dipole charge of the tube and ∆J its angular momentum. The new

horizon area parameter, M̃, after the merger is then

M̃ = 4nN (n+ ∆n)(N + ∆N) + 2n2(N + ∆N)2 − (n+ ∆n)2N2

−2n2(N + ∆N)2 − 4n2(n+ ∆n)(J + ∆J)

= M + n∆n(3N2 − 4nJ) (3.1.36)

− (n+ ∆n)

∆n

[
(2n∆N −N∆n)2 + 4n2∆n

(
∆J − (∆N)2

∆n

)]
.

We now need to remember that the angular momentum of the tube is given by (C.38)

∆J =
(∆N)2

∆n
, (3.1.37)
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and also that that for the charges we consider the merger condition (3.1.17) becomes

2n∆N = ∆nN . (3.1.38)

Using these two equations, we finally have

∆M ≡ M̃−M = n∆n(3N2 − 4nJ) ≥ 0 , (3.1.39)

with equality if and only if the original black ring has vanishing horizon area. Hence, for mergers
with ν = −1 or x = ±1, we have proved that chronology is protected, and that the second
law of black hole thermodynamics holds. This conclusion is similar to that of [75, 76, 79] for
supertube-black hole mergers.

However for ν 6= −1 the situation is rather more subtle. First, the complete supergravity
solution is not known for mergers in which the supertube winds around an S1 in the S2 of the
horizon. As a result we cannot identify the supertube DBI charges with simple supergravity
charges. In addition it is not clear how to identify directly the charges carried across the
horizon during the merger. If one simply chooses one of the patches discussed above and
assumes that the supertube carries its constituent DBI or GH charges across the horizon then
the x-dependence in the merger condition (3.1.11) can lead to mergers in which the horizon
area of the black ring decreases, thus contradicting black hole thermodynamics.

The most likely solution to this conundrum is that the charges carried by the supertube

across the horizon are not the same as the constituent supertube charges N
ST
, J

ST
, but are

modified in an x-dependent way, so as not to decrease the horizon area. This would imply that
in ν 6= −1, x 6= ±1 mergers the supertube brings in not only its intrinsic charges, but also
some of the charge and angular momentum dissolved in supergravity fluxes. Since it is unclear
how the dynamics of this charge can be captured via a Born-Infeld analysis, we believe that
the understanding of this phenomenon and a resolution of this puzzle will probably come from
finding the fully back-reacted supergravity solution corresponding to the ν 6= −1 mergers1.

Mergers of black rings with three-charge two-dipole-charge supertubes

Another interesting example for illustrating chronology protection is the merger of a three-
charge two-dipole charge supertube with another supertube of the same kind, that can also be
thought of as a singular black ring that has one zero dipole charge nBR3 = 0. Such a singular
black ring must have vanishing horizon area, and to avoid closed timelike curves it must satisfy
the charge condition [62]:

nBR1 NBR
1 = nBR2 NBR

2 . (3.1.40)

Similarly, the three-charge supertube considered above has no NS5 dipole charge (n3 = 0) and
also satisfies

nST1 NST
1 = nST2 NST

2 . (3.1.41)

1Such mergers do not have a tri-holomorphic U(1) invariance and hence the supergravity solution will be
more complicated than the solutions with a Gibbons-Hawking base presented here.
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Since the merger produces another two-dipole three-charge tube, it must also satisfy the regu-
larity condition:

(nBR1 + nST1 )(NBR
1 +NST

1 ) − (nBR2 + nST2 )(NBR
2 +NST

2 ) = 0 , (3.1.42)

which is equivalent to

nBR1 NST
1 + nST1 NBR

1 − (nBR2 NST
2 + nST2 NBR

2 ) = 0 . (3.1.43)

On the other hand, the merger condition (3.1.30) for nBR3 = 0 yields:

(nBR1 NST
1 + nBR2 NST

2 ) − (nST1 NBR
1 + nST2 NBR

2 ) = 0 . (3.1.44)

To establish chronology protection one must show that (3.1.44) implies (3.1.43).
However, one also knows that the two merging objects obey (3.1.40) and (3.1.41). Multi-

plying (3.1.44) by nBR2 nST2 and using (3.1.40) and (3.1.41) one obtains:

(nBR2 NST
1 − nST2 NBR

1 ) (nST1 nBR2 + nST2 nBR1 ) = 0 . (3.1.45)

Similarly, one finds that (3.1.43) is equivalent to

(nBR2 NST
1 − nST2 NBR

1 ) (nST1 nBR2 − nST2 nBR1 ) = 0 . (3.1.46)

Since all the n’s are positive, we see that (3.1.45) implies (3.1.46) and so the merger condition
(3.1.44) implies that the regularity condition (3.1.43) is satisfied. Hence, the merger of two
three-charge two-dipole charge supertubes always respects chronology protection.

We can also consider a merger of a three-charge two-dipole charge supertube with a fully
fledged black ring, we take for simplicity equal charges and dipoles: nBR1 = nBR2 = nBR3 = n,
NBR

1 = NBR
2 = NBR

3 = N , NST
1 = NST

2 = NST
3 = ∆N and nST1 = nST2 = ∆n. The non-

negativity of the initial black ring entropy implies that 3N2 ≥ 4nJ and the merger condition1

becomes 3n∆N = 2∆nN . Also remembering that angular momentum of the three-charge
supertube is given by

JST =
NST

1 NST
3

nST2

=
NST

2 NST
3

nST1

(3.1.47)

and hence ∆J = ∆N2/∆n, we obtain

∆M ≡ M̃−M =
4

9
(7N2 − 9nJ) (2n∆n+ ∆n2) . (3.1.48)

Since N2 ≥ 4
3
nJ this merger is always irreversible, and does not violate chronology protection.

1We consider ν = −1 tubes in the c = −1 patch; all the subtleties having to do with changing patches are
the same as for two-charge supertubes.
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3.2 DBI action for a bubbling background

3.2.1 Probing a general Gibbons-Hawking solution

We finally consider two-charge supertubes probing a general three-charge BPS solution with a
Gibbons-Hawking base and we will again work in the D0-D4-F1 duality frame. The general
BPS solution with three charges and three dipole charges and a GH base is given in Sections
1.3.1 and 1.3.2 and we proceed as we did for the black-hole and black-ring backgrounds. We
denote the supertube coordinates as ξ0, ξ1 and ξ2 ≡ θ and consider the simplified case of a
circular supertube along the U(1) fiber of the GH base:

ξ0 = t , ξ1 = z , θ = ψ . (3.2.1)

The supertube action (3.1.1) takes the explicit form

S = TD2

∫
d3ξ

{[(
1

Z1

− 1

)
Fzθ +

K3

Z1V
+

(
µ

Z1

− K1

V

)
(Ftz − 1)

]

−
[

1

V 2Z2
1

[
(K3 − V (µ(1 −Ftz) −Fzθ))

2 + V Z1Z2(1 −Ftz)(2 − Z3(1 −Ftz))
]]1/2}

. (3.2.2)

For Ftz = 1 the tube is supersymmetric and, as before, the Hamiltonian density is the sum of
the charge densities (2.3.9). Due to the supersymmetry there is a constraint similar to (3.1.4),
which determines the location of the supertube in terms of its charges

[
NST

1 + nST2

K3

V

] [
NST

3 +
K1

V

]
= (nST2 )2Z2

V
, (3.2.3)

where the charges are still defined by (2.3.8).

3.2.2 Gibbons-Hawking backgrounds: comparing the DBI analysis
with supergravity.

Equation (3.2.3) determines the position of a supertube in an arbitrary three-charge background
with a triholomorphic U(1) isometry. Since both the supertube and the background preserve
this isometry, their fully back-reacted supergravity solution will have a Gibbons-Hawking base,
and its form is well-known. Hence, one can compare (3.2.3) to the corresponding condition
coming from the supergravity analysis of the supertube, and confirm that supertubes that are
solutions of the Born-Infeld action always give rise to smooth supergravity solutions.

To do this, it is useful to remember that in any Gibbons-Hawking solution the singularities
in the harmonic functions K2, L1, L3 and M at the supertube location are given by (3.1.13). If
one now takes equation (1.4.43) for a supertube with charges QGH,ST

1 , QGH,ST
3 and qST2 and uses

the asymptotic behavior of these harmonic functions near the supertube one obtains:

[
QGH,ST

1 − 2qST2

K3

V

] [
QGH,ST

3 − 2qST2

K1

V

]
= (qST2 )2Z2

V
. (3.2.4)
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Since the supergravity GH charges, QGH,ST
1 , QGH,ST

3 , qST2 , are the same as the integer charges
NGH,ST

1 , NGH,ST
3 , nST2 , one sees that this agrees exactly with the DBI calculation.

It is interesting to observe that the DBI action only gives one equation of motion for the
supertube, (3.2.3), while the supergravity analysis of the supertube gives two independent
equations, that can be chosen to be any two of (1.4.38), (1.4.39) and (1.4.43). This is because
in the Born-Infeld analysis the inputs are the supertube charges and dipole charge, which one
first uses to find the embedding, and then one derives the angular momentum of the supertube,
JST , from that solution.

By contrast, in the supergravity analysis the angular momentum of the supertube along the
Gibbons-Hawking fiber appears as the coefficient of the singular part in the harmonic function
M , and is one of the inputs of the calculation. Indeed, in supergravity one can build “supertube”
solutions for any value of JT . However most of these solutions will be singular: if JT is too large
the solutions will have closed timelike curves, and if JT is too small the solutions will have a
naked singularity1. Only one specific value of JT gives a supergravity solution that is smooth
and horizonless in the duality frame in which the supertube charges correspond to D1 and D5
branes.

To find this value it is most convenient to use equation (1.4.38), and the expansion of
the harmonic functions (3.1.13) near the supertube location to find the supertube angular
momentum as a function of the supertube charges QGH,ST

1 , QGH,ST
3 and dipole charge qST2 :

JGH,ST =
NGH,ST

1 NGH,ST
3

nST2

(3.2.5)

To obtain this equation from the DBI analysis one needs to calculate the angular momentum
of the supertube along the Gibbons-Hawking fiber. This calculation is partially shown in
Appendix C and gives

JST =
NST

1 NST
3

nST2

. (3.2.6)

This indicates that when supertubes are embedded in a solution with a Gibbons-Hawking
base, respecting the triholomorphic U(1) isometry of this solution, their Born-Infeld analysis
gives the equations needed for the fully back-reacted supergravity solution of these supertubes
to be smooth and free of closed timelike curves.

1Such a singularity might be cloaked by a Planck-sized horizon [80].



Chapter 4

Entropy counting, and the entropy
enhancement mechanism

This chapter is devoted to an in-depth review of the Born-Infeld calculation of the entropy
coming from the shape modes of supertubes, as well as to an extension of this calculation to a
supertube in a black-ring background. As we have shown in the previous chapters of this thesis,
we expect the latter supertube fluctuations to give rise to smooth horizonless solutions. Hence,
our analysis strongly supports the existence of smooth horizonless three-charge solutions that
depend on arbitrary continuous functions, and whose entropy is much larger than their typical
charge, and might even be as large as the square root of the cube of their charge. That is, it
might be black-hole-like.

Our goal is to quantize the small oscillations about round two-charge supertubes in flat
space, black-hole, black-ring, and generic three-charge backgrounds, and to examine the entropy
coming from these fluctuations. We find it convenient to work in the D0-D4-F1 duality frame,
and our approach follows that of [16] (see also [17]).

We begin by reviewing the Marolf-Palmer entropy calculation for a supertube in flat space,
and in the following subsections extend this calculation for a supertube in a 3-charge black hole
background, in a black ring background and in the background of a general solution with a
Gibbons-Hawking base space. In the latter two backgrounds we find a non-trivial enhancement
of the entropy of a supertube when the dipole magnetic fields are large. This is what we present
in the second section of this chapter. This enhancement arises because the entropy that can be
stored in a supertube is governed not by the electric charges of the supertube (as in flat space
or in a black hole background) but by its locally-defined effective charges, that can get large
contributions from the interactions of the dipole moment of the supertube with the magnetic
fluxes of the background.

76
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4.1 How to count the entropy of a supertube?

4.1.1 Flat space

In the absence of background fluxes, the WZ action of the supertube is zero, and the DBI action
(2.3.3) reduces to

S = −TD2

∫
dtdzdθ

√
r2(1 −F2

tz) + F2
zθ , (4.1.1)

where r is the radius of the supertube and its embedding is

t = ξ0 , z = ξ1 , ϕ1 = θ . (4.1.2)

We recall that the charges of the tube are given by (2.2.9):

NST
1 = nST2 Fzθ , NST

3 = nST2

r2

Fzθ

, (4.1.3)

where the factors of nST2 come from multiple windings in θ. Similarly the radius relation (2.2.10)
is

NST
1 NST

3 =
(
nST2

)2
R2 . (4.1.4)

The angular momentum of the supertube is (2.2.12)-(2.2.13):

J =
NST

1 NST
3

nST2

= nST2 R2 . (4.1.5)

The foregoing results apply to round (maximally spinning) supertubes. Supertubes of arbitrary
shape will have more complicated expressions for their conserved quantities and will generically
have smaller angular momentum.

In this subsection we will perform a simplified version of the analysis in [16], which will be
enough to give us the correct dependence of the entropy on the supertube charges. We consider
small fluctuations of the supertube in the six directions transverse to its world-volume:

xi → xi + ηi(t, θ) , i = 1, . . . , 6 , (4.1.6)

where four of these fluctuations take place on the compact T 4 and the other two are radial coor-
dinates in the non-compact space. In general there are eight independent fluctuation modes for
the supertube, consisting of seven transverse coordinate motions and a charge density fluctua-
tion (which also affects the shape). To keep the computations simple here, we have restricted to
a representative sample of oscillations in both the compactification space and in the space-time.
Since we are only interested in BPS fluctuations we will also restrict ηi to depend only upon t
and θ [16]1.

The effective Lagrangian for the fluctuations is obtained by expanding the DBI Lagrangian
of the supertube

Lη = −TD2

[
(1 −F2

tz − η̇iη̇i)(R
2 + η′iη

′
i) − 2FtzFzθη̇iη

′
i + F2

zθ(1 − η̇iη̇i) + (η̇iη
′
i)

2
]1/2

, (4.1.7)

1The time dependent modes will break supersymmetry. Hence, we will retain the time dependence of ηi to
compute momenta and quantize the system but then we will set ∂tηi ≡ η̇i = 0.
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where the repeated index i is summed over. The canonical momenta conjugate to ηi are:

Πi =

∫ 2πLz

0

dz
∂Lη
∂η̇i

∣∣∣∣
η̇i=0 ,Ftz=1

=
1

2π
η′i , (4.1.8)

and the canonical commutation relations are:

[ηj(t, θ),Πk(t, θ
′)] = iδjkδ(θ − θ′) . (4.1.9)

The BPS modes ηi then can be expanded as:

ηi =
1√
2

[∑

k>0

eikθ/n
ST
2

(aik)
†

√
|k|

+ h.c.

]
(4.1.10)

where (aik)
† and aik are creation and annihilation operators for the kth harmonic. The normal-

ization has been chosen such that1:

[(aik)
†, ajk′ ] = δijδk,k′ (4.1.11)

It is not hard to see that the fluctuations do not change NST
1 and the angular momentum J .

The charge NST
3 becomes:

NST
3 =

1

TF1

∫ 2πnST
2

0

dθ
∂L
∂Ftz

∣∣∣∣
Ftz=1

=
TD2

TF1

∫ 2πnST
2

0

dθ
(R2 + η′iη

′
i)

Fzθ

, (4.1.12)

from which one finds

6∑

i=1

∑

k>0

k(aik)
†aik = LzTD2

∫ 2πnST
2

0

dθ

∫ 2πnST
2

0

dθ′
6∑

i=1

η′iη
′
i (4.1.13)

= NST
1 NST

3 − (nST2 )2R2 = NST
1 NST

3 − nST2 J . (4.1.14)

The left hand side of this expression can be thought of as the energy of a system of six
massless bosons in (1+1) dimensions. Due to supersymmetry there will also be six corresponding
fermionic degrees of freedom. The total central charge of the system is thus c = 9, and so the
entropy of this system is given by the Cardy formula:

S = 2π

√
c

6

√
NST

1 NST
3 − nST2 J = 2π

√
3

2

√
NST

1 NST
3 − nST2 J . (4.1.15)

If we had included all eight bosonic fluctuation modes then we would have had eight bosons
and eight fermions and hence a theory with c = 12 and with the entropy:

SST = 2π
√

2
√
NST

1 NST
3 − nST2 J . (4.1.16)

1Technically, to get this normalization correct we need to include the mode expansion of the non-BPS modes
in (4.1.10). Ignoring the non-BPS modes gives an incorrect factor of

√
2 in the normalization of the ηi. Here

we have given the correctly normalized expressions that one would obtain if one included the non-BPS modes.
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This is the correct central charge and it yields the correct supertube entropy [16]. By restricting
our analysis to six of the shape modes and ignoring the other supersymmetric modes we have
obtained a finite, but well understood, fraction of the supertube entropy. Since our purpose
here is to analyze when entropy enhancement happens, and when it does not, we will only
be interested on the dependence of the supertube entropy on the macroscopic charges, and
not pay particular attention to numerical coefficients. Restricting our analysis in more general
backgrounds to transverse BPS fluctuations and counting the entropy coming from these modes
will therefore be enough to illustrate the physics of entropy enhancement.

4.1.2 The three-charge black hole

A two-charge round supertube in the background of a three-charge BPS rotating (BMPV) black
hole was discussed in section 2.3. Here we will use the metric and background fields presented
in sections 1.3.2 and 1.4.1 and consider small shape fluctuations in the directions transverse
to the world-volume of the supertube. We are again interested only in BPS excitations, which
have the following form

xi → xi + ηi(t, θ) , i = 1, 2, 3, 4 , u→ u+ η5(t, θ) , v → v + η6(t, θ) , (4.1.17)

where we have defined the metric on the four-torus to be

ds2
T 4 = dx2

1 + dx2
2 + dx2

3 + dx2
4 . (4.1.18)

and the supertube embedding is the same as (4.1.2). One can use the sum of the DBI and
WZ actions, find an effective action for the supertube fluctuations and compute the momenta
conjugate to η5, η6 and ηi:

Πη5 =

∫
dz

(
∂L
∂η̇5

)∣∣∣∣
BPS

=
Z2

2π
η′5 , (4.1.19)

Πη6 =

∫
dz

(
∂L
∂η̇6

)∣∣∣∣
BPS

=
Z2

2π
η′6 , (4.1.20)

Πηi
=

∫
dz

(
∂L
∂η̇i

)∣∣∣∣
BPS

=
1

2π
η′i , (4.1.21)

where the subscript “BPS” means that we have evaluated everything “on shell,” which means
we have imposed the BPS conditions of no time dependence and Ftz = 1.

The BPS modes ηi, η5 and η6 then can be expanded as

ηi =
1√
2

[ ∑

k>0

eikθ/n
ST
2

(aik)
†

√
|k|

+ h.c.

]
,

η5 =
1√
2

[ ∑

k>0

eikθ/n
ST
2

(a5
k)

†
√
|k|

+ h.c.

]
,

η6 =
1√
2

[ ∑

k>0

eikθ/n
ST
2

(a6
k)

†
√
|k|

+ h.c.

]
.

(4.1.22)
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At first glance, the physics of the ηi fluctuations along the torus appears very different from
that of the fluctuations in the spacetime direction, η5 and η6; indeed the latter have a factor
of Z2 in the denominator, and this factor becomes arbitrarily large when the supertube is near
the horizon of a black hole.

The charge NST
1 is the same as that of the round supertube, but the charge NST

3 is modified
to:

NST
3 =

1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
BPS

=
TD2

TF1Fzθ

∫
dθ

(
Z2u

2 + Z2[(η
′
5)

2 + (η′6)
2] +

4∑

i=1

(η′i)
2

)
. (4.1.23)

Using similar arguments to those given for the flat space background one finds the entropy of
the BPS shape modes to be:

S = 2π

√
3

2

√
NST

1 NST
3 − (nST2 )2Z2u2 . (4.1.24)

Hence, despite the presence of the warp factor Z2 in the radius relation and in the mode
expansions (4.1.22), the entropy of the supertube depends on its charges in exactly the same
way as in flat space, and hence there is no entropy enhancement. Recalling that the angular
momentum of the tube is given by (2.3.14) J = nST2 Z2u

2, we can rewrite the entropy as

S = 2π

√
3

2

√
NST

1 NST
3 − nST2 J . (4.1.25)

4.2 Fluctuating supertubes and entropy enhancement

4.2.1 The three-charge black ring background

We now consider small shape fluctuations around the round supertube in a black ring back-
ground presented in section 1.4.2, that we already probed in section 3.1. The important new
element, in comparison to the black hole background, is that this background has non-zero
magnetic dipole charges and these will enter the calculation in some very non-trivial ways.

Again we consider the fluctuations (4.1.17) and use the DBI and WZ actions to find an
effective action for the fluctuations. After straightforward calculations on can compute the
momenta conjugate to η5, η6 and ηi:

Πη5 =

∫
dz

(
∂L
∂η̇5

)∣∣∣∣
BPS

=
Z2

2π

R2

(y2 − 1)(x− y)2
η′5 , (4.2.1)

Πη6 =

∫
dz

(
∂L
∂η̇6

)∣∣∣∣
BPS

=
Z2

2π

R2

(1 − x2)(x− y)2
η′6 , (4.2.2)

Πηi
=

∫
dz

(
∂L
∂η̇i

)∣∣∣∣
BPS

=
1

2π
η′i , (4.2.3)
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The BPS modes ηi, η5 and η6 can be expanded as:

ηi =
1√
2

[ ∑

k>0

eikθ/n
ST
2

(aik)
†

√
|k|

+ h.c.

]
,

η5 =

√
(y2 − 1)(x− y)2

2Z2R2

[ ∑

k>0

eikθ/n
ST
2

(a5
k)

†
√

|k|
+ h.c.

]
,

η6 =

√
(1 − x2)(x− y)2

2Z2R2

[ ∑

k>0

eikθ/n
ST
2

(a6
k)

†
√
|k|

+ h.c.

]
.

(4.2.4)

Suppose that we have a round supertube parallel to the ring (t = ξ0, z = ξ1, ϕ1 = −θ), then
for the F1 charge of the supertube one finds

NST
3 =

1

TF1

∫ 2πnST
2

0

(
∂L
∂Ftz

)∣∣∣∣
BPS

(4.2.5)

=
TD2

TF1

nST2 n1(1 + y) +
TD2

TF1(Fzθ − n3

2
(1 + y))

[
Z2R

2(y2 − 1)

(x− y)2
(4.2.6)

+ Z2
R2

(y2 − 1)(x− y)2
(η′5)

2 + Z4
R2

(1 − x2)(x− y)2
(η′6)

2 + (η′iη
′
i)

]
. (4.2.7)

The expression for the entropy coming from the shape oscillations now becomes:

S = 2π

√
3

2

{[
NST

1 − 1

2
nST2 n3(1 + y)

] [
NST

3 − 1

2
nST2 n1(1 + y)

]
− (nST2 )2Z2R

2(y2 − 1)

(x− y)2

} 1
2

(4.2.8)

Note that for a supertube located near the black ring (y → −∞) one has a huge entropy
enhancement due to the dipole-dipole interaction.

For completeness, it is equally easy to consider a round supertube orthogonal to the black
ring (t = ξ0, z = ξ1, ϕ2 = −θ). One then finds that the entropy of the shape modes is:

S = 2π

√
3

2

√
[
NST

1 +
1

2
nST2 n3(x+ c)

][
NST

3 +
1

2
nST2 n1(x+ c)

]
− (nST2 )2Z2R

2(1 − x2)

(x− y)2
(4.2.9)

While there is still a dipole-dipole interaction, the entropy enhancement does not grow arbi-
trarily large because the coordinate x has a finite range (x ∈ [−1, 1]).

4.2.2 Solution with a general Gibbons-Hawking base

We now make a final generalisation, and study in details the entropy enhancement for a su-
pertube in a three-charge background with a Gibbons-Hawking base. For this background, one
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can only calculate easily the entropy coming from the internal fluctuations of the supertube.
The entropy coming from fluctuations of the supertube in the spacetime directions is more
complicated than for the black ring background.

For this background the supertube action becomes:

S = TD2

∫
d3ξ

{[(
1

Z1

− 1

)
Fzθ +

K3

Z1V
+

(
µ

Z1

− K1

V

)
(Ftz − 1)

]

−
[

1

V 2Z2
1

[
(K3 − V (µ(1 −Ftz) −Fzθ))

2 + V Z1Z2(1 −Ftz)(2 − Z3(1 −Ftz))
]]1/2}

. (4.2.10)

Because of the complexity of this background, we consider small shape oscillations in the com-
pactification manifold, T 4, around a round supertube along the GH fiber :

t = ξ0 , z = ξ1 , ψ = θ , xi → xi + ηi(t, θ) i = 1, 2, 3, 4 . (4.2.11)

The quantization proceeds exactly as before and the conserved electric charges are now:

NST
1 =

TD2

TD0

∫ 2πLz

0

dz

∫ 2πnST
2

0

dθFzθ = nST2 Fzθ , (4.2.12)

NST
3 =

TD2

TF1

∫ 2πnST
2

0

dθ

[
−K

1

V
+

1

Fzθ + V −1K3

(
Z2

V
+

4∑

i

(η′i)
2

)]
. (4.2.13)

Substituting (4.2.4) into (4.2.13) and rearranging using (4.2.12) leads to:

4∑

i=1

∑

k>0

k(aik)
†aik = LzTD2

∫ 2πnST
2

0

dθ

∫ 2πnST
2

0

dθ

4∑

i=1

η′iη
′
i

=

[
NST

1 + nST2

K3

V

] [
NST

3 + nST2

K1

V

]
− (nST2 )2Z2

V
. (4.2.14)

This is the result we have been seeking. As we already explained, the left hand side of
(4.2.14) can be thought of as the total energy L0 of a set of four harmonic oscillators in 1 + 1
dimensions. For large L0, the entropy coming from the different ways of distributing this energy
to various modes of these oscillators is given by the Cardy formula:

S = 2π

√
cL0

6
. (4.2.15)

Since we count BPS excitations, there will be also 4 fermionic degrees of freedom, and the
central charge associated to the torus oscillations will be c = 4 + 2 = 6, giving the entropy:

S = 2π

√[
NST

1 + nST2

K3

V

] [
NST

3 + nST2

K1

V

]
− (nST2 )2

Z2

V
= 2π

√
NST eff

1 NST eff
3 − nST2

2Z2

V
.

(4.2.16)
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4.2.3 The entropy enhancement mechanism

Equation (4.2.14) has two important consequences. The first one has been explained extensively
in the previous chapter: for a supertube with a given set of BPS modes, this equation is nothing
but a “radius formula” that determines its size by fixing, in the spatial base, the location of the
U(1) fiber that it wraps. When the supertube is maximally spinning, and has no BPS modes,
this equation simply becomes the radius formula of the maximally spinning supertube. The
second consequence is the following: this formula determines the capacity of the supertube to
store entropy: In flat space, this capacity is determined by the asymptotic charges1, N1 and
N3, whereas, in a more general background, the capacity to store entropy is determined by N eff

1

and N eff
3 . In certain backgrounds, the latter can be made much larger than the former and so

a supertube of given asymptotic charges can have a lot more modes and thus store a lot more
entropy by the simple expedient of migrating to a location where the effective charges are very
large. We will discuss this further below.

For bubbling backgrounds, presented in 1.4.3, and even for black ring backgrounds, the
right hand side of (4.2.14) can diverge, and one naively gets an infinite value for the entropy.
Nevertheless, as we mentioned in the introduction, this calculation is done in the approximation
that the supertube does not back-react on the background, and taking this back-reaction into
account will modify this naive conclusion. We will not study this backreaction here, but this
has been done in [68].

It is also useful to consider this from the perspective of the intrinsic charges of the supertube.
If one rewrites (4.2.16) in terms of the angular momentum of the supertube, J (from the results
of Appendix C), one finds the usual formula: S = 2π

√
N1N3 − n2J and it appears that the

entropy enhancement has disappeared. It has not: The important point is that in a deep
scaling solution it is possible for J to become extremely large and negative as the number of
BPS modes on the tube increases. If |J | exceeds |N1N3| in flat space one has CTC’s near the
supertube, but the dipole-dipole interaction of the deep scaling solution allows the supertube to
exceed this bound on the asymptotic charges so long as one respects the bound on the effective
charges.

It is interesting to ask how much entropy can equation (4.2.14) accommodate. The answer
is not so simple. At first glance one might say that the both terms in the right hand side of
(4.2.14) can be divergent, and hence the entropy of the fluctuating tube is infinite. Nevertheless,
one can see that the leading order divergent terms in N eff

1 N eff
3 and in n2

2Z2/V come entirely
from bulk supergravity fields, and exactly cancel, both for a supertube in a GH background
and for a supertube near a black ring.

It is likely that this partial cancelation is an artefact of the extremely symmetric form of
the solution, and that in a more general solution such cancellation may not take place. In
particular, both N eff

1 and N eff
3 are integrals of “effective charge” densities on the supertube

world-volume, and the right hand side of equation (4.2.14) should be written as

N eff
1 N eff

3 − n2
2Z2

V
=

∫
ρeff

1 dθ

∫
ρeff

3 dθ −
∫
ρeff

1 ρeff
3 dθ (4.2.17)

1For simplicity, and because we will here only speak about the supertube, we will from now on drop the ST
superscript for the supertube charges
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If this generalized formula is correct, certain density and shape modes will disturb the balance
between the product of integrals and the integral of the product, and the leading behavior of
the entropy will still be of the order

S ∼
√
N eff

1 N eff
2 . (4.2.18)

Regardless of this, the next-to-leading divergent terms in (4.2.16) are a combination of
supertube world-volume terms and bulk supergravity fields. In a scaling solution, or when the
tube is close to the black ring, these terms can diverge, giving naively an infinite entropy. As
we discussed above, we expect the back-reaction of the supertubes to render this entropy finite.

The idea of entropy enhancement is that one can find backgrounds in which the effective
charges of a two-charge supertube can be made far larger than the asymptotic charges of the
solution, and that, in the right circumstances, the oscillations of this humble supertube could
give rise to an entropy that grows with the asymptotic charges much faster than

√
N2 (as

typical for supertubes), and might even grow as fast as
√
N3, as typical for black holes in five

dimensions.
To achieve such a vast enhancement requires a very strong magnetic dipole-dipole interaction

and this means that multiple magnetic fluxes must be present in the solution. It is not sufficient
to have a large red-shift: BMPV black holes have infinitely long throats and arbitrarily large
red-shifts but have no magnetic dipole moments to enhance the effective charges and thus
increase the entropy that may be stored on a given supertube.

Hence, the obvious places to obtain entropy enhancement are solutions with large dipole
magnetic fields, such as black ring or bubbling microstate solutions. Since we are focussing on
trying to obtain the entropy of black holes from horizonless configurations, we will focus on the
latter. These bubbling solutions are constructed using an ambi-polar base GH metric, and near
the “critical surfaces,” where V vanishes, the term KI

V
in the effective charge diverges. It is

therefore natural to expect entropy enhancement for supertubes that localize near the critical
(V = 0) surfaces.

We also believe that placing supertubes in deep scaling solutions [57, 82] will prove to be an
equally crucial ingredient. Indeed, as we will see below, in a deep microstate geometry the KI

at the location of the tube can also become large, and hence there will be a double enhancement
of the effective charge, both because of the vanishing V in the denominator and because of the
very large KI in the numerator. There is another obvious reason for this: It is only the scaling
microstate geometries that have the same quantum numbers as black holes with macroscopic
horizons.

This must mean that the simple entropy enhancement one gets from the presence of critical
surfaces is not sufficient for matching the black hole entropy. The fundamental reason for this
may well be the following: Even if the round supertube can be brought very close to the V = 0
surface, once the supertube starts oscillating it will necessarily sample the region around this
surface, and the charge enhancement will correspond to the average N eff

I in that region. For this
to be very large the entire region where the supertube oscillates must have a very significant
charge enhancement. The only such region in a horizonless solution is the bottom of a deep or
scaling throat, where the average of the KI is indeed very large.
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All the issues we have raised here have to do with the details of the entropy enhancement
mechanism, and involve some very long and complex calculations that we have pursued in more
recent work [68]1. Our goals here are not to have the full backreacted solution, but rather
to argue that the supertube, through this enhancement, can store much more entropy that
one would naively expect, and possibly enough to account for a large part of the black hole
entropy. In the probe computation we just performed, this entropy can even become infinite.
We surely expect that the backreaction will regularize this and put a bound on the entropy
enhancement. But the important point is that, the effective charges of the supertube depending
on the complete background, especially on the total magnetic charges, we expect the bound
to come from a condition involving the complete background and not only the local charges of
the tube, as for the flat space case. As we already explained, a complementary point of view
on the entropy enhancement is to understand it as the possibility for the supertube to spin
backward very fast, much faster than the |N1N3| bound that exists without the enhancement.
If the bound comes from a global requirement, the angular momeentum of the tube will not be
bounded by the charges of the supertubes but from some combination of the charges of the all
background. Therefore, even after taking into account the backreaction of the supertube on the
background, it seems pretty reasonable to think that the enhancement will still be there and
that the supertube will be able to store much more entropy than the one it has in a background
without any magnetic charges.

Before finishing this discussion, one can try to understand physically how this bound on the
enhancement will come from: as we have seen, the supertube sees its entropy enhanced if it is
at the bottom of a very long throat, for example near a black ring horizon or in a scaling region.
Without any backreaction, the supertube in this throat has very large effective charges, and
thus can have a very large angular momentum. Taking into account the backreaction, one will
have a frame dragging phenomenon at the bottom of the throat. But if the momentum, and
followingly the frame dragging is too large, it will create CTCs upper in the throat, where the
effective charges are not very large anymore and do not allow for a large angular momentum.
The bound may thus come, after backreaction, from a global causality condition, and it will be
related to the global charges of the background, and not on the local charges of the supertube.

This argument finally shows that, even after taking the backreaction of the supertube on
the background into account, one can still expect the entripy enhancement to occur, and the
suepertube to store a very large entropy. Since supertubes source smooth supergravity solutions,
the entropy enhancement mechanism we have discovered in this letter may well provide the key
to understanding how fluctuating microstate geometries can provide a semi-classical description
of black-hole entropy in the regime of parameters where the classical black hole exists.

1In [68], we have been able to show that, taking into account the backreaction of the supertube on the
background puts a bound on the enhancement, and that this bound comes from a global requirement of cancelling
CTCs. In particular, we confirmed the validity of the following discussion. This has been done only in the
particular case of a two-center solution, and a study of the general case still remains to be done. However,
it seems pretty unlikely for the results to present some new unwanted behaviours completely absent from the
two-center case.
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Motivations and results

The understanding and classification of supergravity solutions is an important program that
has yielded an amazing amount of new physics and, in particular, has greatly enhanced our
understanding of the AdS-CFT correspondence, the non-perturbative dynamics of string theory,
and the physics of black holes. In pure gravity, there has been extensive work on classifying
four-dimensional solutions with horizons and, in higher dimensions, there has been extensive
work on systems with enough Killing symmetries to reduce to a two-dimensional problem that
can be solved using integrability (see, for example, [83]).

In supergravity and string theory most of the classification work has focused on supersym-
metric solutions, and is done essentially by using Killing spinors or G-structures to reduce the
second-order supergravity equations of motion to first-order equations (see, for example, [84]).
It is clearly important to extend this work to non-supersymmetric solutions, not only because
we would like to better understand non-supersymmetric physics, but also because we expect
(from the dynamics of string theory probes) to find rather large classes of non-supersymmetric
solutions, with very interesting properties.

The aim of the second part of this thesis is to present new non-supersymmetric solutions
of eleven-dimensional supergravity on a six-torus1, and embed them into a general, guiding
framework to help us understand not only their structure, but also how these new solutions
relate to the BPS ones. Our point of view all along this part is to understand which BPS
ingredients one can recycle in the non-supersymmetric case to find a tractable way to attack
the resolution while trying to go further and further away from the BPS class of solution to
find new interesting non-supersymmetric physics.

Almost BPS solutions

The motivation for the first class of non-BPS solution we present, in chapter 5, is related to
the following remark: The supersymmetric solutions presented in the first chapter are well
understood in terms of three self-dual two-forms describing magnetic fluxes on a hyper-Kähler
four-dimensional base. Implicit in the construction of the supersymmetric solutions is the
choice of an orientation for the hyper-Kähler four-dimensional base: The curvature tensor can
be arranged to be either self-dual or anti-self dual. For supersymmetry it is crucial that the
Riemann curvature of this base has the same duality as the three magnetic two-forms: They
must all be self-dual or anti-self-dual. The difference in choice merely amounts to an overall
reversal of orientation and is usually neglected. However, there has been a very nice recent

1They can equally be seen as solutions of five-dimensional U(1)3 ungauged supergravity.
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observation [85] that one can obtain extremal non-supersymmetric solutions of the supergravity
equations of motion by flipping the relative dualities of the hyper-Kähler base and the magnetic
two-forms. This means that supersymmetries are “locally preserved” by the sources but globally
broken.

The supersymmetry breaking is also easily understood in terms of the underlying brane
construction. For example, an asymptotically five-dimensional black ring solution (with a flat
R

4 base) preserves the four supersymmetries respected by its three constituent electric M2
branes. When one replaces the R

4 base by a Taub-NUT space and considers the solution from
the IIA perspective, the M2 branes descend to D2 branes while the tip of Taub-NUT descends
to a D6 brane. In the BPS embedding, the four Killing spinors preserved by the three sets of
D2 branes are the same as those of the D6 brane, and thus the solution is supersymmetric. In
the non-BPS embedding the D6 brane has opposite orientation, and hence it does not preserve
any of the four Killing spinors of the D2 branes.

An interesting corollary of this D-brane picture is that five-dimensional objects that preserve
the same eight Killing spinors as two sets of D2 branes, will still be supersymmetric when
embedded in self-dual or anti-self-dual Taub-NUT. Indeed, if only two sets of D2 branes are
present, the D6 brane will be mutually BPS with them irrespective of its orientation. Hence,
a two-charge supertube embedded in Taub-NUT in the “duality-matched” embedding [54] or
in the “duality-flipped” embedding [85] will still be supersymmetric. We will see the rather
unexpected fashion in which this is realized.

In this chapter 5, our purpose is to give a general algorithm for constructing the most general
solution to the “almost BPS equations” presented in [85]. If the location for the D2 and D6-
branes are different, we know that the solutions “locally preserve” supersymmetry but break it
globally. We consequently expect that local properties should be the same as those of the BPS
counterparts. Indeed, we find that the near-horizon geometry of the non-BPS extremal ring is
identical to that of its BPS cousin, and its entropy is given by the E7(7) quartic invariant as
a function of its charges [67]. On the other hand, the global properties, such as the location,
or “radius” of the non-BPS ring in Taub-NUT is a more global property and is generically
different for BPS and non-BPS solutions.

As observed in [85], the almost BPS equations can be used to re-derive the non-rotating
extremal non-BPS four-dimensional single-center black hole obtained in [29, 86]. However their
power is much greater, even for single-center solutions: by adding to the angular momentum
harmonic function a “dipole” piece of the form cos θ/r2 centered at the black hole location,
we can give this black hole rotation. The resulting solution is a new rotating extremal non-
BPS solution in four dimensions. This solution has five (four-dimensional) quantized charges
(corresponding to D6, D0 and three sets of D2 branes) as well as angular momentum1.

For particular values of the charges and moduli one can show that this black hole can
be related by dualities to the “slowly-rotating” or “ergo-free” extremal limit2 of the D6-D0
(Rasheed-Larsen) black hole [87] or its D6-D2-D2-D0 dual [24]. However, our solution is much
more general, as it can have arbitrary D6-D2-D2-D2-D0 charges. Hence this solution is the

1It is also trivial to introduce Wilson lines for the magnetic gauge fields, because they do not affect the rest
of the solution in any way (unlike for BPS solutions).

2See, for example, [88] or [89] for a discussion of the two extremal limits of this black hole.



89

seed solution for the most generic extremal under-rotating black hole of the STU model and of
N = 8 supergravity in four dimensions.

In this chapter, a technical but important part is the case of multi-center solutions. BPS
multi-center solutions exhibit a very interesting structure, and have played a crucial role in
several ares of research aimed at understanding the quantum structure of black holes in string
theory [56, 57, 42, 52, 44, 45, 66]. In the almost-BPS case, one can also find a very rich structure
of such multi-center solutions. Just as for BPS solutions, the locations of the centers are not
arbitrary, but the absence of closed time-like curves and of Dirac strings imposes certain “bub-
ble” or “integrability” equations that these locations must satisfy. The multi-center solutions
also admit scaling solutions. It is believed that these BPS scaling solutions play an important
role in the microscopic black hole entropy counting, and it is therefore very important to try
to understand how the non-BPS scaling solutions differ/parallel the BPS ones.

Before going on, it is important to mention that there exists a rather large body of work
on constructing extremal black holes in four-dimensional supergravity, that started from the
observation of [28] that the second-order equations underlying these solutions can be factorized
as products of easier-to-solve first-order equations1. So far, the single-center solutions obtained
in this way appear to be captured in the Ansatz in [85], so one can really understand these
different methods as different point of views of the same physics of non-BPS extremal black
holes.

Equations of motion in the “floating brane” Ansatz

The almost BPS Ansatz tells us that in some cases, even without supersymmetry, the equations
of motions are still as simple as the BPS equations, in particular partially first order and linear
if solved in the correct order. The natural question that arise is then: when is it possible to
have such a factorization of Einstein’s equations? What can more generally lead us to a rich
but tractable structure? In full generality, finding non-BPS solutions implies solving a set of
non-linear partial differential equations. If the system has enough symmetry to reduce it to
an effective two-dimensional system then the equations of motion often become those of an
integrable system and thus substantial progress can be, and has been, made (see, for example,
[91, 92, 93, 94, 95]). But finding a general guiding structure for non-supersymmetric solutions is
a priori very complicated. To make progress more generally one must incorporate some of the
physics that one wishes to solve so as to provide a guiding structure that enables one to solve
the equations. Hopefully, in our case, one can gain some insight by looking trying to analyze
the almost BPS class of solutions: we will use an Ansatz where the warp factors and the electric
potentials are equal and hence any probe M2-brane that have the same charge vector as the
solution will not feel any force. Therefore, we will call this the “floating brane” Ansatz.

This Ansatz naturally incorporates the known BPS [42, 41, 40] and almost BPS solutions of
five-dimensional ungauged supergravity, but, as we will see, the equations governing the general
floating-brane solutions are much more general. The mass of these solutions depends linearly on
their M2 charges (this comes from the equality of the warp factors and electric potential) and
thus many of the floating-brane solutions will be extremal, but there are also some interesting

1See, for example, [29, 30, 86, 31, 32, 33, 34].
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(but rather restrictive) classes of non-extremal floating-brane solutions.
The purpose of chapter 6 is to examine the full supergravity equations of motion using the

floating-brane Ansatz. We first show how to obtain the usual BPS and almost-BPS solutions
and find in addition that the linear equations governing these solutions lead to solutions to
the supergravity equations of motion not only when the base space is hyper-Kähler, but also
when the base space is merely an arbitrary four-dimensional Ricci-flat manifold. We secondly
find, within the floating-brane Ansatz and after a few simplifying assumptions, a new class
of solutions that solve the five-dimensional supergravity equations of motion. The equations
governing these simplified-floating-brane solutions can still be solved in a linear fashion, but
they are more general than both the BPS and the almost-BPS equations, and reduce to these in
certain limits. In particular, the four-dimensional base space of these solutions does not need to
be Ricci-flat but rather an Euclidean “electrovac” solution of the Einstein-Maxwell equations.

Solutions on an Israel-Wilson base space

The purpose of chapter 7 is to illustrate the equations found above to construct simplified-
floating-brane solutions using Israel-Wilson geometries as base spaces. These geometries are a
special class of non-Ricci-flat electrovac solutions that have a U(1) isometry. The new equations
imply that the functions determining the magnetic field strengths are no longer harmonic in the
R

3 base of the Israel-Wilson space, but satisfy a linear system of coupled differential equations
that relate them to some of the warp factors. We solve this system for the particular example
of a double-center Israel-Wilson base whose fiber degenerates at two locations, and obtain a
solution that, in a certain limit, reduces to a BPS black hole in Taub-NUT, and in a different
limit reduces to a non-BPS black ring in Taub-NUT. This is an important remark, because it
tells us that the Israel-Wilson metrics, in addition to their intrinsic interest, give us a way to
interpolate between BPS and almost BPS solutions. Naively, BPS and almost BPS are related
by the change of orientation of the constituent D6-branes and thus seem to be disconnected
(it corresponds to a Z2 transformation). With the Israel-Wilson metrics, one is able to relate
them in continuous way, but the price to pay is to have the base space not to be Hyper-Kähler,
except at the two ends, but electrovac.

The second aim of this chapter is also to relate the solutions in our new class that are
constructed using an asymptotically R

3 × S1 Israel-Wilson base space to the known multi-
center almost-BPS solutions. We find that the two classes of solutions can be transformed into
each other upon applying the “spectral flow” transformation of supergravity solutions with a
U(1) isometry discussed in [58]. From the perspective of six-dimensional supergravity (or of
the full solution written in a IIB duality frame where the M2 charges correspond to D1, D5,
and P charges) this transformation mixes the Kaluza-Klein1 U(1) and the U(1) of the base.
For BPS solutions, this spectral flow transformation re-shuffles the D6, D4, D2 and D0 charges
and moduli, but the resulting solution is still BPS and hence remains in the class of solutions
of [42, 41, 40]. However, when applying this spectral flow transformation to an almost-BPS
solution, the resulting solution is no longer an almost-BPS solution, but is a simplified-floating-
brane solution with an Israel-Wilson base space.

1That is, the U(1) common to the D1 and D5 branes.
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An immediate corollary of this observation is that among the floating-brane solutions there
exist not only multiple black holes, but also new smooth horizonless bubbling solutions, that
have non-trivial magnetic fluxes on the two-cycles of the Israel-Wilson base. Recall that this
was not possible for the almost-BPS solutions: The anti-self-dual flux on the two-cycles of
a multi-center Taub-NUT space is non-normalizable, and does not lead to asymptotically-
flat solutions. Given that solutions in our new class can be obtained by spectral flow from
almost-BPS solutions, it is straightforward to obtain smooth solutions with non-trivial fluxes
by spectrally-flowing multiple supertubes.

Bolt solutions

It is now time to go back to the “fuzzball proposal”. As we have seen in the introduction and first
part of the thesis, there is now growing evidence (see [6] for reviews) that this proposal might
well be realized for BPS black holes. In hind-sight, this may not appear so strange: extremal
BPS black holes have a timelike singularity, and, as is fairly well known, string theory oftentimes
resolves such singularities in terms of configurations that contain extra brane dipole moments,
and that have a size that is parametrically much larger than the “size” of the original region of
high curvature. The BPS microstate geometries constructed thus far [82, 96] indicate that the
timelike singularity of extremal BPS black holes is resolved in a similar manner and that the
size of the configurations that resolve the singularity is of the same order as the size of the black-
hole horizon. This means that one can no longer trust the “classical” space-time description of
the region between the timelike singularity and the horizon of the extremal black hole. If the
fuzzball proposal also applies for non-extremal black holes, the would-be singularity resolution
mechanism would be even more remarkable: The singularity of a non-extremal black hole is in
the future of the horizon and if the classical black hole is to be replaced by a superposition of
horizon-sized horizonless configurations this would imply that the resolution of non-extremal
black hole singularities will affect the spacetime for a macroscopically-large distance in the past
of the singularity! It is clearly important to understand this singularity-resolution mechanism,
not only because there is, as yet, no rigorous example in string theory of how one might expect
a space-like singularity to be resolved, but also because we live in a universe in which such
singularities appear to be ubiquitous.

To establish that the singularity of non-extremal black holes is resolved by horizon-sized
horizonless geometries that have the same mass and charges as the black hole, one first needs
to construct such geometries, which is no easy task – only three such geometries are known
at present [23, 24, 25] and some of their properties are studied in [97]. One then needs to see
whether the physical properties of these geometries support thinking about them as microstates
of the non-extremal black hole (and thus as examples of resolution of the black hole singularity).
For example, the geometry constructed in [23], which has an ergosphere but no horizon was
found to be unstable in [26] but the decay time was then computed in the dual CFT [27],
and found to match exactly the decay time computed in gravity. This remarkable agreement
strongly supports thinking about the geometries of [23] as microstates of non-extremal black
holes, and brings hope that the fuzzball proposal will equally apply to such black holes.

Our purpose in this last chapter is to show that, within the class of solutions solving the
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4D base

Ricci-flat

BPS Almost BPS

Electrovac

IW

Hyper-Kähler

Bolt Dyonic Bolt

Figure 4.1: In this Figure, we schematically summarize the different results. On it, one sees how all
the the new “floating brane” solutions organize in a general framework. In term of the four-dimensional
base space, the well-known BPS solutions are only a small part of the solution space, having their
base restricted to be Hyper-Kähler. The almost BPS solutions have also a Hyper-Kähler base, but
whose orientation breaks supersymmetry. In the middle, the Israel-Wilson class of solutions, that can
still be understood in terms of underlying branes, interpolates between the first two classes. Finally,
one obtains smooth solutions starting from Euclideanized four-dimensional black holes with either a
Ricci-flat or an electrovac base.

simplified-floating-brane system of equations of chapter 6, one can construct a family of such
smooth, horizonless solutions that have the same charges and mass as non-extremal black holes,
and that exist in the same regime of parameters where the black hole exists. To do so, one only
has to remark that the simplest, most interesting Ricci-flat – or solutions to electrovac Einstein-
Maxwell equations – metrics arise from the Euclideanization of various four-dimensional black-
hole metrics. Such solutions have a periodic “imaginary time” coordinate and are thus as-
ymptotic to R

3 × S1. The very interesting point of these solutions is that they come with a
“bolt”. That is, the center of these solutions is topologically R

2 × S2 where the S2 remains of
finite size. This is because the Euclideanized geometry closes off smoothly where the (outer)
horizon of the original Lorentzian black hole used to be and the S2 at the center is the same
size as the original black-hole horizon. Using these Euclideanized black holes as base space,
one can built completely regular five-dimensional solutions by putting some fluxes on the bolt.
In chapter 8, we build such regular solutions starting in the easiest case from the Euclidean
Schwarzschild black hole, with only a mass m, and then generalizing to the Euclidean dyonic
Kerr-Newman-Bolt metric that has a mass m, electric and magnetic charges q and p, a NUT
charge N and angular momentum α.

All the results are schematically summarized on the Figure 4.1.



Chapter 5

The “almost-BPS” approach

In this chapter we study our first class of non-BPS solutions by working with an Hyper-Kähler
base whose orientation does not preserve supersymmetry. In terms of type IIA D-brane con-
struction, this corresponds to choosing the orientation of the D6-brane to be incompatible with
the ones of the three families of D2s. We built and analyze different solutions corresponding to
rotating black holes (single-center solutions), black rings in Taub-NUT (double-center solution)
and multi-center configurations.

5.1 Idea and equations of motions

As explain in the first chapter of this thesis, section 1.3.1, BPS solutions of eleven-dimensional
supergravity carrying M2 and M5 charges are of the form

ds2 = −(Z1Z2Z3)
−2/3(dt+ k)2 + (Z1Z2Z3)

1/3ds2
4

+
(Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +
(Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +
(Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6)(5.1.1)

C(3) =
(
−dt+ k

Z1

+B(1)
)
∧dx1∧dx2 +

(
−dt+ k

Z2

+B(2)
)
∧dx3∧dx4

+
(
−dt+ k

Z3

+B(3)
)
∧dx5∧dx6 , (5.1.2)

where ds2
4 is a hyper-Kähler four-dimensional metric. Defining the “dipole” field strengths as

Θ(I) = dB(I) , I = 1, 2, 3 , (5.1.3)

the equations following from supersymmetry for a self-dual hyper-Kähler base metric are1

(1.3.4):

Θ(I) = ⋆4Θ
(I) , (5.1.4)

d ⋆4 dZI =
CIJK

2
Θ(J) ∧ Θ(K) , (5.1.5)

dk + ⋆4dk = ZIΘ
(I) , (5.1.6)

1If one uses a hyper-Kähler base with an anti-self-dual curvature then the dualities in (5.1.4)–(5.1.6) are
flipped to the form (5.1.7)–(5.1.9).
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where ⋆4 is the Hodge duality operation performed with the metric ds2
4, and CIJK = |ǫIJK |.

The foregoing equations also govern the solutions of arbitrary U(1)N ungauged supergravities
in five dimensions [41], with CIJK the corresponding triple intersection number .

It was observed in [85] that a class of extremal solutions of the equations of motion is
obtained by reversing the duality of the Θ(I) and of k relative to the duality of the curvature
of the four-dimensional base. That is, one preserves the metric, ds2

4, and the duality of its
Riemann tensor but flips ⋆4 → −⋆4 in (5.1.4)–(5.1.6):

Θ(I) = − ⋆4 Θ(I) (5.1.7)

d ⋆4 dZI = −CIJK
2

Θ(J) ∧ Θ(K) (5.1.8)

dk − ⋆4dk = ZIΘ
(I) . (5.1.9)

When the base metric ds2
4 is flat R

4, the flip of orientation can be re-written as a change of
coordinates, and solutions to equations (5.1.7)–(5.1.9) are still BPS. When ds2

4 is not flat, as in
Taub-NUT space, equations (5.1.7)–(5.1.9) define, in general, non-BPS solutions, which were
named “almost BPS” in [85].

Before going further on with explicit equations, it is worth trying to understand the physics
of this “almost BPS” Ansatz. How can we physically interpret the flip of signs from (5.1.4)–
(5.1.6) to (5.1.7)–(5.1.9) ? In flat space, we already said that both orientations give super-
symmetric solutions. But when the space is not flat anymore, but hyper-Kähler, then the
orientation of the four-dimensional space has to be compatible with the one of the system of
equation, (5.1.4)–(5.1.6) or (5.1.7)–(5.1.9). This is directly related to the orientation of the
branes. As we saw in the first chapter of this thesis, a family of M2-branes has an orienta-
tion, encoded mathematically in the projection condition for the Killing spinor. A family of
M2-branes along 0, 5, 6 with positive orientation implies

(1 + Γ056) ε = 0 , (5.1.10)

while a negative orientation implies

(1 − Γ056) ε = 0 , (5.1.11)

For a three-charge solution, we therefore have

(1 + Γ056) ε = (1 + Γ078) ε = (1 + Γ0910) ε = 0 (5.1.12)

for so the (5.1.4)–(5.1.6) system, and

(1 − Γ056) ε = (1 − Γ078) ε = (1 − Γ0910) ε = 0 (5.1.13)

for the (5.1.7)–(5.1.9) system of equations. If the space is flat, the choice of orientation is a
simple convention. But remembering that the Γ matrices have to verify Γ012345678910ε = ε, this
also automatically implies

(1 ∓ Γ1234) ε = 0 , (5.1.14)
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depending on the convention. In other words, taking the space not to be flat corresponds to
add a D6-brane in the system. If the orientation of the D6 is compatible with the ones of
the three D2s, this doesn’t brake more supersymmetries and gives a 1/8 BPS solution. But
if the orientation of the D6-brane is not compatible with the ones of the D2s, it will brake
supersymmetry. This is exactly what happens here for the “almost BPS” Ansatz: we choose
the orientation of the D2s and of the D6 to be non-compatible. One can remark that this is
a very strange way to break supersymmetry. Indeed, the solution built in the Ansatz are all
made out of supersymmetric objects, but put in a non-BPS configuration. While this seems to
be rather restrictive, we will see in the rest of this chapter that this will lead to a very large
class of interesting solutions.

5.1.1 Gibbons-Hawking base

As with the BPS solutions, equations (5.1.7)–(5.1.9) are easier to solve if one specializes to
Gibbons-Hawking base metrics:

ds2
4 = V −1(dψ + ~A)2 + V ds2

3 , ⋆3d ~A = dV . (5.1.15)

We will also only look for solutions that are invariant under ψ-translations.
The four-dimensional geometry is encoded in the function V , which is harmonic with respect

to the flat three-dimensional euclidean metric ds2
3. The Hodge star operation in R

3 is denoted
by ⋆3 and one-forms on R

3 are denoted by a vector superscript. In general, for a GH base one
can take ⋆3d ~A = ±dV and this leads to self-dual or anti-self-dual Riemann tensors. The choice
in (5.1.15) means we are choosing a self-dual curvature.

The one-form potentials for the anti-self dual field strengths have the form:

B(I) = KI(dψ + ~A) + ~aI , ⋆3d~a
I = V dKI −KIdV , (5.1.16)

where KI is a harmonic function on R
3. Such B(I)’s thus provide the general solution to eq.

(5.1.7).
Using this result in eq. (5.1.8), one finds that the warp factors ZI must satisfy

d ⋆3 dZI =
1

2
CIJK V d ⋆3 d (KJKK) . (5.1.17)

Unlike the BPS solution, this equation does not, in general, admit a closed form solution
written solely in terms of the functions V and KI . However, in practice, it is still relatively
straightforward to obtain exact solutions for ZI .

Expanding k along the fiber and base of the Gibbons-Hawking space:

k = µ (dψ + ~A) + ~ω , (5.1.18)

one can reduce (5.1.9) to:
d(V µ) + ⋆3d~ω = V ZIdK

I . (5.1.19)

Acting with d⋆3 one obtains the following equation for µ:

d ⋆3 d(V µ) = d(V ZI) ∧ ⋆3dK
I . (5.1.20)
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This equation is the integrability condition for (5.1.19). Again, one does not seem to be able to
find a simple, general solution to this equation, but we will obtain particular solutions in later
sections.

5.2 Single-center solution: non-BPS rotating black hole

In this section we present a solution corresponding to a rotating five-charge extremal non-BPS
black hole in four dimensions. Because this is a single-center solution, we will see that it will
be relatively easy to find. In the following sections, we will also present more complicated,
multi-center solutions.

This black hole can serve as the seed solution for the most generic under-rotating non-BPS
extremal black hole in the STU model and in N = 8 supergravity in four dimensions, and
can be thought of as coming from the non-BPS extension of the five-dimensional BPS rotating
(BMPV) black hole to an asymptotically Taub-NUT solution1.

We first construct and analyze this black hole, and then show that for special values of the
charges it can be dualized to the under-rotating D0-D6 extremal black hole [87].

5.2.1 The solution

The harmonic functions associated with the KK-monopole and electric (M2) charges have the
usual form

V = h+
Q6

r
, LI = 1 +

QI

r
, (5.2.1)

where for simplicity we have set to one the constants lI in the LI harmonic functions. The
solution with arbitrary moduli is presented in Section 5.3.5.

The dipole charges vanish, and hence KI = 0. The harmonic function, M , which encodes
the angular momentum of the solution is taken to have the form:

M = m0 +
m

r
+ α

cos θ

r2
. (5.2.2)

The term proportional to α is the harmonic potential is sourced by a dipole at the origin of
Taub-NUT space and, as we will see, is needed to generate the angular momentum of the black
hole.

With this choice of harmonic functions, the “almost BPS” equations (5.1.7-5.1.9) are solved
by2

Θ(I) = 0 , ZI = LI , µ =
M

V
=
m0

V
+

m

V r
+ α

cos θ

V r2
, ~ω = −m cos θdφ+ α

sin2 θ

r
dφ .(5.2.3)

1For a recent discussion of the BPS extension of this black hole to Taub-NUT see [90].
2The vector potential ~ω dual to the dipole field cos θ

r2
follows from the identity

⋆3 d
( sin2 θ

r
dφ
)

= −d
(cos θ

r2

)
.
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Absence of Dirac-Misner strings requires that ~ω vanish both at θ = 0 and θ = π, and hence
we must take

m = 0 . (5.2.4)

Nevertheless, α remains as a free parameter of the solution and it encodes the angular momen-
tum. To see this more explicitly we compute the conserved charges. As shown in section 5.3.4,
the four-dimensional Lorentzian metric, after reduction along the ψ fiber, is:

ds2
E = −I−1/2

4 (dt+ ~ω)2 + I
1/2
4 ds2

3 , I4 = Z1Z2Z3V − µ2V 2 , (5.2.5)

and the electric component of the KK gauge field coming from the reduction along the Taub-
NUT fiber is

AKK = −µV
2

I4
. (5.2.6)

We want the four-dimensional metric to be flat at infinity, this requires the normalization
condition I4 → 1 for large r. It imposes

h−m2
0 = 1 . (5.2.7)

The KK momentum along ψ, found from the asymptotic expansion of AKK , is

P = m0(h
2(Q1 +Q2 +Q3) +m2

0Q6) , (5.2.8)

and the R
3 angular momentum, encoded in ~ω, is

J = α . (5.2.9)

One can also show that this solution has a regular horizon of finite area. In the near-horizon
(r → 0) limit, one has

I4 →
Q1Q2Q3Q6 − α2 cos2 θ

r4
, ωφ → α

sin2 θ

r
, (5.2.10)

and thus the volume element of the metric induced on the horizon is

√
gH = r(I4r

2 sin2 θ − ω2
φ)

1/2 ≈ sin θ(Q1Q2Q3Q6 − α2)1/2 . (5.2.11)

The horizon area is
AH = (4πQ6)(4π)

√
Q1Q2Q3Q6 − α2 , (5.2.12)

which coincides with the area of the corresponding BMPV black hole.

5.2.2 The extremal rotating D0-D6 black hole

We now discuss the relationship between the solution presented above to the one of Rasheed
and Larsen [87]. First of all, the solution of Rasheed and Larsen can be compared to ours only
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in the “slowly rotating” or “ergo-free” extremal limit: a → 0, m → 0, keeping a/m = J fixed.
In this limit the metric of [87] can be recast in a form similar to the one of (5.2.5):

ds2 = − r2

√
H1H2

(dt+ B)2 +

√
H1H2

r2
ds2

3, (5.2.13)

where

B =
(pq)3/2

2(p+ q)
J

sin2 θ

r
dφ, (5.2.14)

H1 = r2 + rp+
p2q

2(p+ q)
− p2q

2(p+ q)
J cos θ, (5.2.15)

H2 = r2 + rq +
q2p

2(p+ q)
+

q2p

2(p+ q)
J cos θ. (5.2.16)

This solution has a single scalar field running

z = i

√
H2

H1

(5.2.17)

and a vanishing axion. The physical D0 and D6 charges Q and P are related to p and q by

Q2 =
q3

4(p+ q)
, P 2 =

p3

4(p+ q)
. (5.2.18)

This solution is related, by a U-duality transformation, to the solution presented above. We
will establish this by applying an appropriate transformation to the scalar field (5.2.17) and
showing that the resulting fields and charges fall in a special subset of those presented above.
Since we are starting from a special configuration with only two charges turned on and no
axion, we do not expect to be able to generate the most general solution, but we will obviously
obtain some constraints on the allowed values for the moduli at infinity.

In order to simplify computations, we consider the N = 2 truncation of the M-theory
description used earlier. Hence we will look at compactifications on T 6/(Z2 × Z2) × S1, where
the last S1 is parametrized by ψ and the orbifold action is the trivial one preserving the 2-forms
dx1 ∧ dx2, dx3 ∧ dx4 and dx5 ∧ dx6. The resulting N = 2 effective theory is described by an
STU model, with scalar fields in the vector multiplets parametrizing:

[
SU(1, 1)

U(1)

]3

≃ SU(1, 1)

U(1)
× SO(2, 2)

SO(2) × SO(2)
. (5.2.19)

The three complex moduli for our solution are given by

tI =
4M

V ZI
+ 4i e−φBI , (5.2.20)

where

BI =
(1

2
CIJKZJZK)1/3

Z
2/3
I

, (5.2.21)
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and the dilaton is

e−2φ =
I4

(Z1Z2Z3)2/3V 2
. (5.2.22)

The duality action on the three scalar fields then acts as follows:

tI →
aItI + bI
cItI + dI

(no sum) (5.2.23)

where

MI =

(
aI bI
cI dI

)
, (5.2.24)

are SL(2,R) matrices.
Without rotation one can immediately check that our solution reduces to

tI =
4

V ZI
(m0 + i e−2U), (5.2.25)

with e−2U =
√
I4, which is the one presented in Equation (4.34) of [29]. This is easily dualized

to the generating solution by [86] by taking

MI =

(
0 1
−1 0

)
(5.2.26)

which yields

tI =
1

2CIJKZJZK
(m0 − i e−2U). (5.2.27)

At this point one can further dualize to D0-D6 charges by following the duality rotations
described in [86]. The complete duality transformation mapping the D6-D2-D2-D2 system into
the D0-D6 is then given by

MI = − 1√
2λρI

(
−ρI 1
−ρIλ −λ

)
, (5.2.28)

where

λ =

(
P

Q

)1/3

, ρI =

√
p0qI

1
2
CIJKqJqK

, (5.2.29)

with 16p0 = Q6, qI = QI and (PQ)2 = 4p0q1q2q3.
Following the inverse route, we can start from (5.2.13)–(5.2.17) and apply the inverse trans-

formation:

MI = − 1√
2λρI

(
−λ −1
ρIλ −ρI

)
. (5.2.30)

The four-dimensional dilaton can be identified to the diagonal scalar t1 = t2 = t3 = z. After
applying the duality transformation we obtain

tI = − 1

ρI

λz + 1

λz − 1
(5.2.31)
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which we expect to match the moduli of our metric (5.2.20), which become1

tI =
4

V ZI

(
µV + i

√
I4

)
. (5.2.32)

Using the explicit expression for z given in (5.2.17) we can see that one needs to identify

V ZI =
2ρI
λ

H1 + λ2H2

r2
(5.2.33)

and

V µ =
1

2λ

H1 − λ2H2

r2
. (5.2.34)

This can be achieved for

λ =

√
p

q
, ρI =

p+ q

2(pq)3/2
Q6qI , (5.2.35)

which is equivalent to (5.2.29) and

h =
p+ q

pq
Q6, lI =

p+ q

pq
qI , m0 =

q − p

2
√
pq
, α = − (pq)3/2

2(p+ q)
J, (5.2.36)

where the lI are the constants in the harmonic functions LI , which, for simplicity, we have set
to one in equation (5.2.1), but which we will explicitly include in the next section (see equation
(5.3.64)) when discussing the general black-hole-black-ring solution.

Hence for special values of the charges and of the moduli, our solution can be dualized to the
under-rotating extremal limit of the D0-D6 Rasheed-Larsen black hole. However, our solution
has generic charges and moduli and hence it is more general; its duality orbit includes all the
under-rotating extremal black hole solutions of the STU model or of N = 8 supergravity in
four dimensions.

5.3 Two-center solutions: non-BPS black ring in Taub-

NUT

In this section we derive two-center solution representing a non-BPS extremal regular black
ring in Taub-NUT space. This space is described by the Gibbons-Hawking potential

V = h +
Q6

r
⇒ ~A = Q6 cos θdφ . (5.3.1)

We have introduced a generic constant h in V to facilitate comparison with the flat space (R4)
limit, which corresponds to taking h = 0. Taking Q6 = 0 corresponds to the infinite radius limit
of the black ring, in which the base reduces to R

3 × S1. In both of these limits the non-BPS
solution must reduce to the known BPS black ring solution.

1As in [86], we use conventions in which |tI | = 1
ρI

at infinity.
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5.3.1 Solving the equations

We take the position of the black ring in R
3 to be along the positive z axis at a distance R

from the origin of Taub-NUT. We denote polar coordinates centered at the black ring position
by (Σ, θΣ). Their relation to the polar coordinates (r, θ) centered at the origin is:

Σ =
√
r2 +R2 − 2rR cos θ , cos θΣ =

r cos θ −R

Σ
. (5.3.2)

The black ring carries dipole charges associated with the harmonic functions1

KI =
dI

Σ
, I = 1, 2, 3 . (5.3.3)

According to eq. (5.1.16), the corresponding dipole gauge fields are given by:

B(I) =
dI

Σ
(dψ + ~A) + ~aI , ~aI = h dI

r cos θ −R

Σ
dφ+Q6d

I r −R cos θ

RΣ
dφ . (5.3.4)

The warp factors ZI are determined by the equation:

d ⋆3 dZI =
CIJK

2
V d ⋆3 d(K

JKK) =
CIJK

2

(
h+

Q6

r

)
d ⋆3 d

(dJdK
Σ2

)
. (5.3.5)

The solution ZI can be written as the linear combination of two terms. The first term satisfies
the equation:

d ⋆3 dZ
(1)
I =

CIJK
2

h d ⋆3 d
(dJdK

Σ2

)
, (5.3.6)

which is trivially solved by:

Z
(1)
I =

CIJK
2

h
dJdK

Σ2
. (5.3.7)

The second term is found by solving

d ⋆3 dZ
(2)
I =

CIJK
2

Q6

r
d ⋆3 d

(dJdK
Σ2

)
. (5.3.8)

This is the same equation as the one in a flat R
4 base and BPS and “almost BPS” solutions are

related by simple change of coordinates (essentially, the exchange of the coordinates ψ and φ).
One can therefore borrow the known BPS solution and see that the equation above is solved
by:

Z
(2)
I =

CIJK
2

Q6 d
JdK

R2

r

Σ2
. (5.3.9)

Moreover we can add to ZI a harmonic function LI , which has a pole at the location of the
ring:

LI = lI +
QI

Σ
. (5.3.10)

1As one can see from (5.1.16), adding a constant κI to KI has the only effect of shifting the dipole potential
B(I) by the constant one-form kIdψ. Hence a constant in KI is physically irrelevant.
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It is not much more difficult to add a pole in LI at the center of the TN space, which corresponds
to placing a black hole inside the black ring. We will construct this more general solution in
section 5.3.5. The total solution for ZI is then

ZI = lI +
QI

Σ
+
CIJK

2

dJdK

Σ2

(
h+

Q6r

R2

)
. (5.3.11)

The equation for k = µ (dψ + ~A) + ~ω is now:

d(V µ) + ⋆3d~ω = V ZIdK
I (5.3.12)

=
[(
h+

Q6

r

)(
lI +

QI

Σ

)
+
(
h2 +

Q2
6

R2
+Q6h

(1

r
+

r

R2

))CIJK
2

dJdK

Σ2

]
d
(dI

Σ

)
,

and we then expand the source term on the right-hand side into simpler component pieces. It
is then straightforward to find a solution for each piece. We list in the following the solutions
for the various terms:

d(V µ1) + ⋆3d ~ω1 =
(
h+

Q6

r

)
lId
(dI

Σ

)
(5.3.13)

⇒ µ1 =
lId

I

2Σ
, ~ω1 =

h lId
I

2

r cos θ −R

Σ
dφ+

Q6lId
I

2

r −R cos θ

RΣ
dφ .

d(V µ2) + ⋆3d ~ω2 = h
QI

Σ
d
(dI

Σ

)
⇒ µ2 = h

QId
I

2V Σ2
, ~ω2 = 0 . (5.3.14)

d(V µ3) + ⋆3d ~ω3 =
Q6

r

QI

Σ
d
(dI

Σ

)
. (5.3.15)

d(V µ4) + ⋆3d~ω4 =
(
h2 +

Q2
6

R2

)CIJK
2

dJdK

Σ2
d
(dI

Σ

)
. (5.3.16)

d(V µ5) + ⋆3d~ω5 = Q6h
(1

r
+

r

R2

)CIJK
2

dJdK

Σ2
d
(dI

Σ

)
. (5.3.17)

To find a solution to the third equation it is useful to reinterpret it as the equation for a
one-form k̃ ≡ rV µ3(dψ + ~A) + ~ω3 in a flat R

4 base, and use the fact that BPS and almost
BPS solutions are related by a ψ ↔ φ exchange, in flat space. In this way one arrives at the
following solutions

µ3 = Q6QId
I cos θ

2RV Σ2
, ~ω3 = Q6QId

I r sin2 θ

2RΣ2
dφ . (5.3.18)

For the fourth equation one can easily verify that the following expressions

µ
(1)
4 =

(
h2 +

Q2
6

R2

)CIJK
6

dIdJdK

V Σ3
, ~ω4

(1) = 0 , (5.3.19)

and

µ
(2)
4 =

(
h2 +

Q2
6

R2

)CIJK
6

dIdJdK
r cos θ

RV Σ3
, ~ω4

(2) =
(
h2 +

Q2
6

R2

)CIJK
6

dIdJdK
r2 sin2 θ

RΣ3
dφ. (5.3.20)
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both solve the equation. Hence we will take

µ4 = µ
(2)
4 + α(µ

(2)
4 − µ

(1)
4 ) , ~ω4 = (1 + α)~ω

(2)
4 , (5.3.21)

and, for the moment, we will keep the parameter, α, arbitrary.
The fifth equation is the only one whose solution cannot be found by simply recycling pieces

of the black ring solutions in R
4 or R

3 ×S1, because the right hand side vanishes in both limits
(Q6 → 0 or h→ 0). However, it is possible to think about the right hand side as coming from
a fake solution in R

4 whose warp factor is

Zfake ∼ r2 +R2

Σ2
. (5.3.22)

One can then express Zfake in the x-y coordinate system used to find the black ring in R
4 [61],

solve the corresponding equations1 for k1 and k2, and express the R
4 solution as a solution of

the almost BPS equations to read off µ5V and ~ω5. This gives

µ5 = Q6h
CIJK

6
dIdJdK

3r2 +R2

2R2V rΣ3
, (5.3.23)

~ω5 = Q6h
CIJK

6
dIdJdK

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3
dφ , (5.3.24)

which one can also verify directly to be a solution of (5.3.17).
Finally one has the freedom to add a solution of the homogeneous equation, that is, a

one-form in TN space with self-dual field strength. Such a one-form has the general form

k =
M

V
(dψ + ~A) + ~ω , ⋆3d~ω = −dM , (5.3.25)

with M any harmonic form on R
3. We take M of the form

M = m0 +
m

Σ
+
m̃

r
. (5.3.26)

We will see that, unlike the BPS solution, a pole in M at r = 0 is necessary to produce a
regular solution. Hence the final possible contributions to µ and ~ω are

µ6 =
m0

V
+

m

V Σ
+

m̃

V r
, ~ω6 = −mr cos θ −R

Σ
dφ− m̃ cos θdφ . (5.3.27)

We should also note that one should think of the term proportional to α in µ4 and ~ω4 as
coming from an extra harmonic term in M. Thus, the harmonic function M that determines
the black ring solution is really

M = m0 +
m

Σ
+
m̃

r
+ α

CIJK
6R

dIdJdK
(
h2 +

Q2
6

R2

)cos θΣ

Σ2
, (5.3.28)

1Equations (46) and (47) in [40].
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where θΣ was defined in (5.3.2). In the next section we will show that the coefficient of the
dipole term, cos θΣ

Σ2 , is fixed by requiring regularity at the black ring horizon. We will see in
Section (5.2) that such a term is not fixed by regularity at black-hole horizons, and in fact is
required for allowing the black hole to rotate.

Adding all the terms together, we arrive at the final answer

µ =
m0

V
+

m

V Σ
+

m̃

V r
+
lId

I

2Σ
+
hQId

I

2V Σ2
+Q6QId

I cos θ

2RV Σ2

+
CIJK

6
dIdJdK

[(
h2 +

Q2
6

R2

)( r cos θ

RV Σ3
+ α

r cos θ −R

RV Σ3

)
+Q6h

3r2 +R2

2R2V rΣ3

]
,

~ω =
[
κ−m

r cos θ −R

Σ
− m̃ cos θ +

hlId
I

2

r cos θ −R

Σ
+
Q6lId

I

2

r −R cos θ

RΣ

+Q6QId
I r sin2 θ

2RΣ2
+
(
h2 +

Q2
6

R2

)CIJK
6

dIdJdK(1 + α)
r2 sin2 θ

RΣ3

+Q6h
CIJK

6
dIdJdK

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3

]
dφ . (5.3.29)

We have included a constant term κdφ in ~ω and this will be needed to cancel Dirac-Misner
strings.

5.3.2 Regularity

The angular coordinates ψ and φ both shrink to zero size at the center of Taub-NUT space,
r = 0. Hence regularity of the one-form k requires that µ and ~ω vanish at r = 0 and imposes
the following constraints on the parameters of the solution:

µr=0 = 0 ⇒ m̃

Q6

+
lId

I

2R
+
CIJK

6

h dIdJdK

2R3
= 0 , (5.3.30)

~ωr=0 = 0 ⇒ κ+m− hlId
I

2
−
(
m̃+

Q6lId
I

2R
+
CIJK

6

Q6h d
IdJdK

2R3

)
cos θ = 0 .(5.3.31)

Moreover the coordinate φ degenerates on the z axis (i.e. for θ = 0 or π): one should thus
require that ~ω vanishes on this axis. The constraint one obtains for θ = π is

~ωθ=π = 0 ⇒ κ+m− hlId
I

2
+
(
m̃+

Q6lId
I

2R
+
CIJK

6

Q6h d
IdJdK

2R3

)
= 0 , (5.3.32)

and is thus already implied by the two previous constraints (5.3.30) and (5.3.31). Vanishing of
~ω at θ = 0 imposes the further condition

~ωθ=0 = 0 ⇒ κ−m̃+sign(r−R)
(
−m+

hlId
I

2
+
Q6lId

I

2R
+
CIJK

6

Q6h d
IdJdK

2R3

)
= 0 . (5.3.33)

All the regularity conditions are solved by taking

m =
(
h+

Q6

R

) lIdI
2

+
CIJK

6

Q6h d
IdJdK

2R3
,

m̃ = κ = −Q6

( lIdI
2R

+
CIJK

6

h dIdJdK

2R3

)
. (5.3.34)
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The parameter m̃ determines the value of µ at the center of Taub-NUT, and the second
equation determines the value of this parameter that gives regular geometries (much like for
BPS solutions). As we will see later, the parameter m gives the D0 charge of the ring, and
hence the first equation determines the distance between the two centers, R, as a function of the
charges. This equation is the generalization of the bubble equations (1.3.17) [56, 57, 44, 45, 66]
to non-BPS black holes, and reduces to these equations in the BPS limits (h → 0 or Q6 → 0).
For BPS solutions this equation is a simple, linear equation for R, but for the non-BPS solutions
this equation is cubic in R, and its structure is much richer. Since the charges of the black ring
are quantized, for given values of the moduli this equation quantizes the possible values of R.

Note that the foregoing conditions do not depend upon the parameter α that governs the
“dipole” piece, proportional to cos θΣ

Σ2 , in µ. We will see in the next subsection that a careful
analysis of regularity near the horizon fixes α to a non-zero value.

We should note that the authors of [85] conjectured some expressions for the harmonic
functions that underlie the non-BPS black ring solution. The proposed solutions for KI , LI
and M had poles at the black ring location (much like for BPS black rings) but our analysis
here shows that such a solution will always be pathological. Regular solutions must have a
source in M at the center of Taub-NUT, with coefficient m̃ given by (5.3.34). Similarly, there
must also be very specific, non-zero “dipole” pieces, proportional to α, in µ and ~ω.

5.3.3 Near-horizon geometry

We now examine the metric in the vicinity of the horizon, which is located at Σ = 0. We will
work in the coordinates (Σ, θΣ) defined in (5.3.2). Neglecting the torus directions xi, the horizon
is spanned by the coordinates ψ, φ and θΣ, and its induced metric (in the eleven-dimensional
Einstein frame) is

ds2
H =

I4
(Z1Z2Z3)2/3V 2

(dψ + ~A)2 − 2
µωφ

(Z1Z2Z2)2/3
(dψ + ~A)dφ

+(Z1Z2Z3)
1/3
(
V Σ2 sin2 θΣ −

ω2
φ

Z1Z2Z3

)
dφ2 + (Z1Z2Z3)

1/3V Σ2dθ2
Σ , (5.3.35)

where
I4 = Z1Z2Z3V − µ2V 2 . (5.3.36)

The volume element of this metric is

√
gH = Σ(I4Σ

2 sin2 θΣ − ω2
φ)

1/2 . (5.3.37)

For generic values of the parameter α one has

I4 ∼ Σ−5 , ωφ ∼ Σ−1 , (5.3.38)

and thus
√
gH ∼ Σ−1/2. So for generic α the geometry does not have a regular horizon of finite

area. However the term of order Σ−5 in I4 can be canceled by taking

α = − h2R2

h2R2 +Q2
6

. (5.3.39)
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One can think about α as the coefficient of a harmonic function that determines a momentum
one-form whose field strength is self-dual, and hence lies in the kernel of the (1−⋆)d operator in
equation (5.1.9). Adding this self-dual piece with the right coefficient is crucial for the regularity
of the solution.

For this value of α, the metric coefficients have the following near-horizon expansions:

I4 =
J4

Σ4
+
(CIJK

6
d̂I d̂J d̂K

)2 Q2
6

R4 V 4
R Σ4

sin2 θΣ +O
( 1

Σ3

)
(5.3.40)

ZI =
CIJK

2

d̂J d̂K

VR Σ2
+O

( 1

Σ

)
(5.3.41)

µ =
CIJK

6

d̂I d̂J d̂K

V 2
R Σ3

+O
( 1

Σ2

)
(5.3.42)

ωφ =
CIJK

6

Q2
6 d̂

I d̂J d̂K

R2 V 2
R Σ

sin2 θΣ +O(Σ0) , (5.3.43)

where J4 is the usual quartic invariant:

J4(QI , d̂
I , m̂) =

1

2

∑

I<J

d̂I d̂J QIQJ −
1

4

∑

I

(d̂I QI)
2 − CIJK

3
m̂ d̂I d̂J d̂K . (5.3.44)

We have also defined the “effective” dipole and angular momentum parameters of the ring, d̂I ,
m̂, via:

d̂I = VR d
I , m̂ = V −1

R m, VR =
(
h+

Q6

R

)
. (5.3.45)

One can see from these expressions that the horizon volume element has a finite limit for Σ → 0:

√
gH → J

1/2
4 sin θΣ , (5.3.46)

and that the five-dimensional horizon area is given by

AH = (4πQ6)(4π)J
1/2
4 . (5.3.47)

To compare this area to that of the BPS black ring in Taub-NUT, it is easier to choose
moduli so that the five-dimensional Newton’s constant is given by G5 = π

4
and the three tori

have equal volume. When Q6 = 1 one can compare the singular parts of the harmonic functions
to those of [51], and observe that the integer M2, M5 and KK momentum charges are:

nI = −d
IVR
2

= − d̂
I

2
, NI =

QI

4
, JKK = − m

8VR
= −m̂

8
. (5.3.48)

The entropy of the ring is then

SBR = 2π
√
J4(NI , nI , JKK) , (5.3.49)

which is exactly the same as for BPS black rings of identical integer charges [67].
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Furthermore, one can use (5.3.35) and the limiting values (5.3.40)–(5.3.43) to obtain the
metric induced on the horizon:

ds2
H = ℓ−4/3J4(dψ +Q6dφ)2 + ℓ2/3

[
dθ2

Σ + sin2 θΣ

(
dφ− Q6

R2V 2
R

(dψ +Q6dφ)
)2]

, (5.3.50)

where

ℓ =
CIJK

6
d̂I d̂J d̂K . (5.3.51)

The factor of Q6

R2V 2
R

in (5.3.50) appears naively to imply that the metric induced on the horizon

has conical singularities at θΣ = 0 and θΣ = π. Nevertheless, by carefully investigating the
periodicity of ψ and φ one can show that the angle that becomes degenerate1 has periodicity
2π and hence no such singularities exist.

5.3.4 Asymptotic charges

To obtain the reduction to four dimensions of the eleven-dimensional metric (5.1.1) one must
recast the Gibbons-Hawking U(1) fibration according to:

ds2 =
I4

(Z1Z2Z3)2/3V 2

[
dψ + ~A− µV 2

I4
(dt+ ~ω)

]2
+
V (Z1Z2Z3)

1/3

I
1/2
4

ds2
E (5.3.52)

+
(Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +
(Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +
(Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6) ,

where
ds2

E = −I−1/2
4 (dt+ ~ω)2 + I

1/2
4 ds2

3 (5.3.53)

is the four-dimensional Lorentzian metric. In order for this metric to have the canonical nor-
malization at infinity one needs that I4 → 1 at large r. This is achieved if one takes

CIJK
6

h lI lJ lK −m2
0 = 1 . (5.3.54)

One could also impose that the ψ coordinate be canonically normalized (i.e. that gψψ → 1
asymptotically) and this requires that

CIJK
6

h3 lI lJ lK = 1 . (5.3.55)

One can also see that, if m0 6= 0, µ does not vanish at infinity, producing a non-vanishing gtψ.
This means that one is in a rotating frame at infinity, which can be undone by a re-definition
of the coordinate ψ, as

ψ̃ = ψ + hm0 t . (5.3.56)

1More explicitly, this angle is ψ
2Q6

− φ
2 .
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In terms of ψ̃ the metric is explicitly asymptotically flat and it is straightforward to compute
the associated asymptotic charges. The M2 charges are:

Q̂I = QI +
Q6

R2

CIJK
2

dJdK , (5.3.57)

while the KK-monopole charge is simply given by Q6 and the M5 charges by dI . The mass is
given by the BPS-like formula:

M =
CIJK

6

lI lJ lK
4

Q6 +
h

4

CIJK
2

Q̂I lJ lK − m0 h

2
lId

I . (5.3.58)

Note that here Q6 and Q̂I denote the absolute values of the charges.
The momentum along the KK direction ψ̃ is:

P = h2
(CIJK

6
h lI lJ lK +m2

0

)
lId

I −m0 h
2 CIJK

2
Q̂I lJ lK −m3

0Q6 , (5.3.59)

and the angular momentum in the non-compact R
3 is:

J = R
(
m− h

lId
I

2

)
+
Q6

2R
dIQI +

Q2
6

R3

CIJK
6

dIdJdK

=
Q6

2
lId

I +
Q6

2R
dIQI +

Q6

2R2

(
h+

2Q6

R

)CIJK
6

dIdJdK . (5.3.60)

If m0 = 0 and the lI and h are equal to 1, the mass formula takes a more familiar form, as
a sum of absolute values of charges:

M =
Q6

4
+

1

4

∑

I

Q̂I , (5.3.61)

and the KK momentum along the GH fiber is just the sum of the dipole charges (much like for
BPS black rings):

P =
∑

I

dI =
∑

I

d̂I

1 +Q6/R
. (5.3.62)

Moreover, the four-dimensional angular momentum becomes

J =
Q6P

2
+
Q6

2R
dIQI +

Q6

2R2

(
1 +

2Q6

R

)CIJK
6

dIdJdK , (5.3.63)

where now we can identify the first piece as coming from the Poynting vector caused by the KK
electric and magnetic charges and the other pieces as coming from the interactions between the
electric M2 charges and the magnetic M5 charges. When the black ring becomes a supertube
(d1 = d2 = Q3 = 0), the latter interactions are zero, and the KK Poynting term Q6P

2
is the only

one that survives.
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5.3.5 Non-BPS black ring in a black-hole background

Making use of the linear structure underlying the equations (5.1.7)–(5.1.9), it is possible to
superimpose the solutions constructed in the previous sections to generate the metric describing
a non-BPS black ring with a rotating black hole at the origin of Taub-NUT space. Starting
from the black ring solution of section 5.3, adding the rotating black hole corresponds to adding
a 1/r term to the harmonic functions LI , which therefore becomes

LI = lI +
QI

Σ
+
Q̃I

r
, (5.3.64)

and a “dipole” source centered at r = 0 to the harmonic function M :

M = m0 +
m

Σ
+
m̃

r
+ α̃

cos θΣ

Σ2
+ β

cos θ

r2
. (5.3.65)

The dipole potentials B(I) are left untouched, and are still given by the expressions in (5.3.4).
The warp factors ZI are obtained by replacing the old functions LI with the new ones given in
(5.3.64):

ZI = lI +
QI

Σ
+
Q̃I

r
+
CIJK

2

dJdK

Σ2

(
h+

Q6r

R2

)
. (5.3.66)

The new 1/r term in ZI adds the contribution

(
h+

Q̃6

r

)Q̃I

r
d
(dI

Σ

)
(5.3.67)

to the r.h.s. of the equation for k (5.3.12). Hence k receives two new contributions. The first
one is given by the solution of

d(V µ7) + ⋆3d~ω7 = h
Q̃I

r
d
(dI

Σ

)
. (5.3.68)

This equation is easily solved by

µ7 =
h Q̃Id

I

2V rΣ
, ~ω7 =

h Q̃Id
I

2

r −R cos θ

RΣ
dφ . (5.3.69)

The other new term in k is found by solving

d(V µ8) + ⋆3d~ω8 =
Q6 Q̃I

r2
d
(dI

Σ

)
. (5.3.70)

Again one can find the solution by using the corresponding solution for a flat base. The result
is

µ8 =
Q6 Q̃Id

I

RV rΣ
cos θ , ~ω8 =

Q6 Q̃Id
I

RΣ
sin2 θ dφ . (5.3.71)

Furthermore the term proportional to β in M generates an extra contribution given by

µ9 = β
cos θ

V r2
, ~ω9 = β

sin2 θ

r
dφ . (5.3.72)
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Adding the new terms to the previous black ring result, one finds the full solution for k:

µ =
m0

V
+

m

V Σ
+

m̃

V r
+ β

cos θ

V r2
+
lId

I

2Σ
+
hQId

I

2V Σ2
+Q6QId

I cos θ

2RV Σ2
+
h Q̃Id

I

2V rΣ
+
Q6 Q̃Id

I

RV rΣ

+
CIJK

6
dIdJdK

[(
h2 +

Q2
6

R2

)( r cos θ

RV Σ3
+ α

r cos θ −R

RV Σ3

)
+Q6h

3r2 +R2

2R2V rΣ3

]
, (5.3.73)

~ω =
{
κ−m

r cos θ −R

Σ
− m̃ cos θ + β

sin2 θ

r
dφ+

hlId
I

2

r cos θ −R

Σ
+
Q6lId

I

2

r −R cos θ

RΣ

+Q6QId
I r sin2 θ

2RΣ2
+
h Q̃Id

I

2

r −R cos θ

RΣ
+
Q6 Q̃Id

I

RΣ
sin2 θ

+
CIJK

6
dIdJdK

[(
h2 +

Q2
6

R2

)
(1 + α)

r2 sin2 θ

RΣ3
+Q6h

r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3

]}
dφ .

The absence of Dirac-Misner strings requires that ~ω vanishes on the z axis. This imposes
the following constraints, which are the generalization of (5.3.34)

m =
(
h+

Q6

R

) lIdI
2

+
CIJK

6

Q6hd
IdJdK

2R3
+

h

2R
Q̃Id

I

m̃ = κ = −Q6

( lIdI
2R

+
CIJK

6

hdIdJdK

2R3

)
− h

2R
Q̃Id

I . (5.3.74)

The first equation can again be thought of as the generalization of the bubble equations (1.3.17)
[56, 57, 44, 45, 66] to the most generic two-center non-BPS extremal solution.

The topology of the black ring horizon at Σ = 0 is not affected by the black hole. As above,
if α is chosen as in (5.3.39), this solution has horizon of finite area at Σ = 0 with an S2 × S1

geometry. The area of this horizon is:

AH = 16π2Q6 J̃
1/2
4 , (5.3.75)

where

J̃
1/2
4 =

1

2

∑

I<J

d̂I d̂J QIQJ −
1

4

∑

I

(d̂I QI)
2 − CIJK

6
d̂I d̂J d̂K

(
2m̂ +

Q6

R2 V 2
R

Q̃I d̂
I
)
. (5.3.76)

As for BPS black rings in black-hole backgrounds [79], the integer D0 charge of the ring is
no longer proportional to m̂ but rather to the combination that appears in equation (5.3.76):

m̂ +
Q6

2R2 V 2
R

Q̃I d̂
I . (5.3.77)

The black hole at the center of the Taub-NUT space has five-dimensional horizon area equal
to:

ABH = (4πQ6)(4π)

√
Q6
CIJK

6
Q̃IQ̃JQ̃K − β2 . (5.3.78)

This black hole carries electric D6 and D2 charges (Q6 and Q̃I), and angular momentum β.



CHAPTER 5. THE “ALMOST-BPS” APPROACH 111

5.4 Almost BPS supertubes

5.4.1 The supertube solution

We already presented supertubes in the first part of this thesis, and used them intensively to
probe BPS background. In section 1.4.4, we also presented their BPS backreacted version. We
recall it here quickly to compare the known BPS supertubes with “almost BPS” ones, and will
show that “almost BPS” supertubes are in fact BPS.

From a supergravity perspective, a supertube can be thought of as a particular black ring
with only two charges and one dipole charge. One can thus trivially obtain an “almost BPS”
supertube from the non-BPS solution above taking the following harmonic functions

K1 = K2 = 0 , K3 =
d3

Σ
V = 1 +

Q6

r
(5.4.1)

L1 = 1 +
Q1

Σ
, L2 = 1 +

Q2

Σ
, L3 = 1 , (5.4.2)

M = m0 +
m

Σ
+
m̃

r
. (5.4.3)

The solution simplifies considerably, and one finds

B(1) = B(2) = 0 , B(3) = K3(dψ + ~A) + ~a3 , ⋆3d~a
3 = V dK3 −K3dV

⇒ ~a3 = d3 r cos θ −R

Σ
dφ+Q6d

3 r −R cos θ

RΣ
dφ ,

ZI = LI (5.4.4)

µ =
M

V
+

1

2
K3 , ⋆3d~ω = −dM +

1

2
(V dK3 −K3dV )

⇒ ~ω =
(
−m+

d3

2

)r cos θ −R

Σ
dφ− m̃ cos θ dφ+

Q6d
3

2

r −R cos θ

RΣ
dφ .

The supertube is smooth in a duality frame in which the electric (M2) charges correspond
to D1 and D5 branes and the magnetic (M5) dipole moment corresponds to a KK-monopole
wrapped around the Taub-NUT direction (see section 1.4.4). In this frame, we recall that the
ten-dimensional string metric is:

ds2 = − 1√
Z1Z2Z3

(dt+k)2+
Z3√
Z1Z2

(
dz+B(3)− dt+ k

Z3

)2

+
√
Z1Z2ds

2
4+

√
Z2

Z1

4∑

a=1

dx2
a , (5.4.5)

where z the common D1-D5 direction. Standard BPS supertubes are regular in this frame and
so we now consider the regularity of the metric of the “almost BPS” supertubes. The coefficient
of dψ2 in the metric is:

gψψ =
1√
Z1Z2

(Z3B
(3)
ψ

2 − 2µB
(3)
ψ + Z1Z2V

−1)

=
1

V
√
L1L2

(L1L2 − 2MK3) , (5.4.6)
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where in the second line we have used the expressions for ZI , B
(3)a3 and µ given in (5.4.4). We

have already seen in section 1.4.4 that the requirement for gψψ to be finite for Σ → 0 implies

m =
Q1Q2

2d3
. (5.4.7)

In order for ~ω not to have any Dirac-Misner string pathologies around the point Σ = 0 it is
necessary that ~ω vanish for θ = 0 and r greater or smaller than R. These conditions imply:

m =
VRd

3

2
with VR = 1 +

Q6

R
. (5.4.8)

Combining these two relations for m one obtains an equation that determines the supertube
location R:

VR =
Q1Q2

d32 . (5.4.9)

Finally one should look at regularity at the Taub-NUT center r = 0. As the coordinate ψ
degenerates at r = 0, µ must vanish to prevent CTC’s, which implies

m̃ = −d
3Q6

2R
. (5.4.10)

5.4.2 Comparing BPS and “almost BPS” supertubes

Having found a smooth supertube metric that solves the “almost BPS” equations (5.1.7)–
(5.1.9), we can compare it to that of a BPS supertube, and show that despite their rather
different appearance, the two solutions are identical.

Denoting with a “hat” the quantities associated with the BPS solution, we recall that the
BPS supertube solution is given by:

B̂(3) =
K̂3

V
(dψ + ~A) + ~̂a3 , ⋆3d~̂a

3 = −dK̂3 , ẐI = L̂I ,

k̂ =
(
M̂ +

K̂3

2V

)
(dψ + ~Adφ) + ~̂ω , ⋆3d~̂ω = V dM̂ − M̂dV − 1

2
dK̂3 . (5.4.11)

Since the supertube solution has Z3 = 1, one can absorb the term −dt/Z3 in equation (5.4.5)
by the coordinate shift z → z + t. Thus the dipole potential B(3) only enters in the metric
via the combination (dz +B(3) − k)2. Comparing the BPS expressions (5.4.11) to the “almost
BPS” ones (5.4.4), one sees that, under the identifications

K̂3 = 2M , M̂ =
K3

2
, L̂I = LI (5.4.12)

one has
B̂(3) − k̂ = −(B(3) − k) , ẐI = ZI , k̂ = k . (5.4.13)

Hence, the BPS and “almost BPS” supertube solutions can be related to each other by flipping
the sign of z and interchanging harmonic functions. In other words, the “almost BPS” supertube
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is in some hidden way still supersymmetric. As we discussed at the beginning of this chapter,
this was expected. Let us quickly reexplain why: in the “almost BPS” class of solutions, all the
objects that we put to build the solution are BPS, but sypersymmetry is broken because they
are put such that their orientations are not compatible. If one puts three families of M2-branes,
like explained in section 1.3.1, the projection condition on the Killing spinor ε are

(1 + Γ056) ε = (1 + Γ078) ε = (1 + Γ0910) ε = 0 . (5.4.14)

This is only compatible with an hyper-Kähler base with the orientation verifying

(1 − Γ1234) ε = 0 . (5.4.15)

This is what is done in the BPS case. In the “almost BPS” case, we choose the same base, but
we explicitly reverse the orientations of the M2-branes

(1 − Γ056) ε = (1 − Γ078) ε = (1 − Γ0910) ε = 0 . (5.4.16)

and therefore break supersymmetry. But this breaking comes from a four-object interaction;
if one take out either one of the M2-charges, or the KKm charge, supersymmetry is restored.
Killing the KKm charge is just assuming the base space to be flat, and it is well-known that
the two orientations are supersymmetric. This was the original motivation for introducing the
almost BPS class [85]. But one can also have the KKm charge to be non-zero and one of the
M2-charges to vanish, this has the same effect of restoring supersymmetry. This is exactly
what happens for supertubes: one of the charge being zero, both orientations for the supertube
preserve supersymmetry.

5.5 Multicenter solutions

5.5.1 The Solution with a Taub-NUT base

We finally construct in this section general multi-center solutions with a Taub-NUT base:

ds2
4 = V −1(dψ + A) + V ds2

3 (5.5.1)

with
V = h+

q

r
, A = q cos θdφ , ds2

3 = dr2 + r2dθ2 + r2 sin2 θdφ2 . (5.5.2)

Let ai, i = 1, . . . , N denote a succession of points along the z axis in R
3, distinct from the

Taub-NUT origin (ai 6= 0). In the R
3 base of the Taub-NUT space, the distance from a given

point (r, θ, φ) to any one of these points is

Σi =
√
r2 + a2

i − 2rai cos θ , (5.5.3)

and the polar angle of that point with respect to the point i is

cos θi =
r cos θ − ai

Σi

. (5.5.4)
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The M5 (magnetic) charges are determined by harmonic functions KI , and we assume that
they have generic poles at the points ai

1

KI =
N∑

i=1

d
(I)
i

Σi

. (5.5.5)

The harmonic functions LI associated with the M2 (electric) charges can have poles both at
the points, ai, and at the Taub-NUT center:

LI = ℓI +
Q

(I)
0

r
+
∑

i

Q
(I)
i

Σi

= ℓI +
N∑

i=0

Q
(I)
i

Σi

, (5.5.6)

where Σ0 ≡ r. We slightly changed notation in this section for the Q
(I)
i and d

I)
i , in order nit to

mix center indices with charges (I = 1, 2, 3) indices. A solution of the almost-BPS equations
(5.1.7), (5.1.8) and (5.1.9) can now be constructed from these harmonic functions.

Dipole field strengths

The two-form field strengths, Θ(I), are closed and anti-self dual in the Taub-NUT space and
have the form:

Θ(I) = d[KI(dψ + A) + ~aI ] , (5.5.7)

where KI is given in (5.5.5) and ~aI is given by

⋆3 d~a
I = V dKI −KIdV ⇒ ~aI =

∑

i

d
(I)
i

Σi

(
h(r cos θ − ai) + q

r − ai cos θ

ai

)
dφ . (5.5.8)

Warp factors

The warp factors, ZI , which encode the M2 charges, are determined by (5.1.8), and for the
dipole field strengths in (5.5.7) this equation becomes:

d ⋆3 dZI = V
CIJK

2
d ⋆3 d (KJKK) =

(
h+

q

r

)∑

j,k

CIJK
2

d ⋆3 d
(d(J)

j d
(K)
k

ΣjΣk

)
, (5.5.9)

where sums over repeated J,K indices are implicit (as they will be throughout this paper). It
is completely trivial to solve this equation for the terms proportional to h and for the term
proportional to q we use the identity:

d ⋆3 d
[ r

aiaj

1

ΣiΣj

]
=

1

r
d ⋆3 d

[ 1

ΣiΣj

]
. (5.5.10)

If one also includes the freedom to add to ZI a generic harmonic function, LI , given in (5.5.6),
the complete solution for ZI is

ZI = LI +
CIJK

2

∑

j,k

(
h+

qr

ajak

)d(J)
j d

(K)
k

ΣjΣk

. (5.5.11)

1Allowing KI to have poles at r = 0 appears to lead to singular solutions.
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The angular momentum one-form

We again decompose the angular momentum one-form, k as

k = µ(dψ + A) + ω , (5.5.12)

where ω is a one-form on R
3. Equation (5.1.9) then becomes1:

d(V µ) + ⋆3dω = V ZIdK
I

= V
∑

i

ℓId
(I)
i d

1

Σi

+
(
h+

q

r

)∑

i,i′

Q
(I)
i d

(I)
i′

1

Σi

d
1

Σi′

+
CIJK

2

∑

i,j,k

d
(I)
i d

(J)
j d

(K)
k

[
h2 +

q2

ajak
+ hq

(1

r
+

r

ajak

)] 1

ΣjΣk

d
1

Σi

. (5.5.13)

It is convenient to rewrite the term cubic in d
(I)
i as

CIJK
2

∑

i,j,k

d
(I)
i d

(J)
j d

(K)
k

[
h2 +

q2

ajak
+ hq

(1

r
+

r

ajak

)] 1

ΣjΣk

d
1

Σi

=
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2 T

(1)
ijk + q2 T

(2)
ijk + hq T

(3)
ijk ) , (5.5.14)

where

T
(1)
ijk ≡ 1

ΣjΣk

d
1

Σi

+
1

ΣiΣk

d
1

Σj

+
1

ΣiΣj

d
1

Σk

T
(2)
ijk ≡ 1

ajak

1

ΣjΣk

d
1

Σi

+
1

aiak

1

ΣiΣk

d
1

Σj

+
1

aiaj

1

ΣiΣj

d
1

Σk

T
(3)
ijk ≡

(1

r
+

r

ajak

) 1

ΣjΣk

d
1

Σi

+
(1

r
+

r

aiak

) 1

ΣiΣk

d
1

Σj

+
(1

r
+

r

aiaj

) 1

ΣiΣj

d
1

Σk

,(5.5.15)

with ai, aj, ak any three, possibly coincident, non-vanishing points. Note that in (5.5.15) we
have explicitly symmetrized over the three source points and so there is an associated factor of
1/3 but this is canceled in (5.5.14) by the explicit replacement of 1

2
CIJK .

One can thus reduce the complete solution for µ and ω to the solution of the following
equations:

d(V µ
(1)
i ) + ⋆3dω

(1)
i = V d

1

Σi

d(V µ
(2)
i ) + ⋆3dω

(2)
i =

1

Σi

d
1

Σi

(i 6= 0)

d(V µ
(3)
ij ) + ⋆3dω

(3)
ij =

1

Σi

d
1

Σj

(i 6= j)

d(V µ
(4)
i ) + ⋆3dω

(4)
i =

1

rΣi

d
1

Σi

(i 6= 0)

(5.5.16)

1All sums over i, i′, j, k are from 0 to N , with the convention that d
(I)
0 = 0.
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d(V µ
(5)
ij ) + ⋆3dω

(5)
ij =

1

rΣi

d
1

Σj

(i 6= j, j 6= 0)

d(V µ
(6)
ijk) + ⋆3dω

(6)
ijk = T

(1)
ijk (i, j, k 6= 0)

d(V µ
(7)
ijk) + ⋆3dω

(7)
ijk = T

(2)
ijk (i, j, k 6= 0)

d(V µ
(8)
ijk) + ⋆3dω

(8)
ijk = T

(3)
ijk (i, j, k 6= 0) . (5.5.17)

A solution to this is:

V µ
(1)
i =

V

2Σi

, ω
(1)
i =

h

2

r cos θ − ai
Σi

dφ+
q

2

r − ai cos θ

aiΣi

dφ

V µ
(2)
i =

1

2Σ2
i

, ω
(2)
i = 0

V µ
(3)
ij =

1

2

1

ΣiΣj

ω
(3)
ij =

r2 + aiaj − (ai + aj)r cos θ

2(aj − ai)ΣiΣj

dφ

V µ
(4)
i =

cos θ

2aiΣ2
i

, ω
(4)
i =

r sin2 θ

2aiΣ2
i

dφ

V µ
(5)
ij =

r2 + aiaj − 2ajr cos θ

2aj(ai − aj)rΣiΣj

, ω
(5)
ij =

r(ai + aj cos 2θ) − (r2 + aiaj) cos θ

2aj(ai − aj)ΣiΣj

dφ

V µ
(6)
ijk =

1

ΣiΣjΣk

, ω
(6)
ijk = 0

V µ
(7)
ijk =

r cos θ

aiajakΣiΣjΣk

, ω
(7)
ijk =

r2 sin2 θ

aiajakΣiΣjΣk

dφ

V µ
(8)
ijk =

r2(ai + aj + ak) + aiajak
2aiajakrΣiΣjΣk

ω
(8)
ijk =

r3 + r(aiaj + aiak + ajak) − (r2(ai + aj + ak) + aiajak) cos θ

2aiajakΣiΣjΣk

dφ . (5.5.18)

One can also add to k a solution of the homogeneous equation dk − ⋆4dk = 0, and we
consider a such solution with components:

V µ(9) = M , ⋆3dω
(9) = −dM , (5.5.19)

where M is a harmonic function that generically can be of the form:

M = m+
N∑

i=0

mi

Σi

+
N∑

i=0

αi
cos θi
Σ2
i

. (5.5.20)

Note that we have allowed for the possibility of dipole harmonic functions in M because we
know, from the two-center solution (from section 5.3, that these are necessary to obtain a
rotating black hole at the Taub-NUT center. The corresponding ω(9) is:

ω(9) = κdφ−
N∑

i=0

mi cos θidφ+
N∑

i=0

αi
r2 sin2 θ

Σ3
i

dφ . (5.5.21)
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The complete expression for µ and ω is then

µ =
∑

i

ℓId
(I)
i µ

(1)
i +

∑

i

Q
(I)
i d

(I)
i (hµ

(2)
i + qµ

(4)
i ) +

∑

i6=i′
Q

(I)
i d

(I)
i′ (hµ

(3)
ii′ + qµ

(5)
ii′ )

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2µ

(6)
ijk + q2µ

(7)
ijk + hqµ

(8)
ijk) + µ(9) (5.5.22)

ω =
∑

i

ℓId
(I)
i ω

(1)
i +

∑

i

Q
(I)
i d

(I)
i (hω

(2)
i + qω

(4)
i ) +

∑

i6=i′
Q

(I)
i d

(I)
i′ (hω

(3)
ii′ + qω

(5)
ii′ )

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k (h2ω

(6)
ijk + q2ω

(7)
ijk + hqω

(8)
ijk) + ω(9) , (5.5.23)

or, more explicitly,

µ =
∑

i

ℓId
(I)
i

2Σi

+
∑

i

Q
(I)
i d

(I)
i

2V Σ2
i

(
h+

q cos θ

ai

)
+
∑

i6=i′

Q
(I)
i d

(I)
i′

2V ΣiΣi′

(
h+ q

r2 + aiai′ − 2ai′r cos θ

ai′(ai − ai′)

)

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

V ΣiΣJΣk

(
h2 + q2 r cos θ

aiajak
+ hq

r2(ai + aj + ak) + aiajak
2aiajakr

)
+
M

V
, (5.5.24)

ω =
∑

i

ℓId
(I)
i

2Σi

(
h(r cos θ − ai) + q

r − ai cos θ

ai

)
dφ+

∑

i

Q
(I)
i d

(I)
i

qr sin2 θ

2aiΣ2
i

dφ

+
∑

i6=i′

Q
(I)
i d

(I)
i′

2(ai′ − ai)ΣiΣi′

(
h(r2 + aiai′ − (ai + ai′)r cos θ)

−q r(ai + ai′ cos 2θ) − (r2 + aiai′) cos θ

ai′

)
dφ

+
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

aiajakΣiΣJΣk

(
q2r2 sin2 θ

+hq
r3 + r(aiaj + aiak + ajak) − (r2(ai + aj + ak) + aiajak) cos θ

2

)
dφ

+κdφ−
N∑

i=0

mi cos θidφ+
N∑

i=0

αi
r2 sin2 θ

Σ3
i

dφ . (5.5.25)

5.5.2 Regularity of the solutions

As for the two center case, done in section 5.3, the solutions constructed above satisfy the
equations of motion, but are not necessarily regular. Indeed, the angular momentum one-form
ω is proportional to dφ, and can have Dirac-Misner string singularities, and these would lead to
closed time-like curves (CTC’s). One must therefore require ω to vanish on the z-axis (where
the φ coordinate degenerates). Furthermore, near the poles of the harmonic functions the warp
factor and rotation one-form blow up, and this can also lead to CTC’s. We now find the
conditions that guarantee the absence of CTC’s in these two obvious places.
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The conditions we will obtain are necessary but not sufficient; to be absolutely sure of
regularity and absence of CTC’s one must usually check each solution globally and in practice
this is usually done individually and numerically. Nevertheless, in our experience (and that of
others [63]), when the charges and dipole charges of the rings have the same signs, and there
are no Dirac-Misner strings or CTC’s at the horizons, the multi-center black ring solution is
regular.

Removing closed time-like curves

We require ωφ to vanish for θ = 0 or π. Looking at the various terms contributing to ω we see
that only ω(1), ω(3), ω(5), ω(8) and ω(9) are non-vanishing on the z-axis. Their values are:

ω
(1)
i =

s
(−)
i

2

(
h+

q

ai

)
dφ , ω

(3)
ij =

s
(−)
i s

(−)
j

2(aj − ai)
dφ , ω

(5)
ij =

s
(−)
i s

(−)
j

2aj(aj − ai)
dφ ,

ω
(8)
ijk =

s
(−)
i s

(−)
j s

(−)
k

2aiajak
dφ , ω(9) = (κ−m0 −

∑

i6=0

s
(−)
i )dφ , (5.5.26)

at θ = 0, while for θ = π one has:

ω
(1)
i =

s
(+)
i

2

(
−h+

q

ai

)
dφ , ω

(3)
ij =

s
(+)
i s

(+)
j

2(aj − ai)
dφ , ω

(5)
ij = −

s
(+)
i s

(+)
j

2aj(aj − ai)
dφ ,

ω
(8)
ijk =

s
(+)
i s

(+)
j s

(+)
k

2aiajak
dφ , ω(9) = (κ+m0 +

∑

i6=0

s
(+)
i )dφ , (5.5.27)

where we have defined
s±i ≡ sign(r ± ai) . (5.5.28)

Hence the absence of Dirac-Misner strings imposes the constraints

∑

i

ℓId
(I)
i

s
(−)
i

2

(
h+

q

ai

)
+
∑

i6=i′
Q

(I)
i d

(I)
i′

s
(−)
i s

(−)
i′

2(ai′ − ai)

(
h+

q

ai′

)

+hq
∑

ijk

d
(1)
i d

(2)
j d

(3)
k

s
(−)
i s

(−)
j s

(−)
k

2aiajak
+ κ−m0 −

∑

i6=0

s
(−)
i mi = 0 , (5.5.29)

−
∑

i

ℓId
(I)
i

s
(+)
i

2

(
h− q

ai

)
+
∑

i6=i′
Q

(I)
i d

(I)
i′

s
(+)
i s

(+)
i′

2(ai′ − ai)

(
h− q

ai′

)

+hq
∑

ijk

d
(1)
i d

(2)
j d

(3)
k

s
(+)
i s

(+)
j s

(+)
k

2aiajak
+ κ+m0 +

∑

i6=0

s
(+)
i mi = 0 . (5.5.30)

Note that, taking into account the possible values of the signs s
(±)
i , the conditions above

imply N +2 independent constraints. One can make these constraints explicit, for example, by



CHAPTER 5. THE “ALMOST-BPS” APPROACH 119

solving them with respect to the N+2 variables κ, m0 and mi for i = 1, . . . , N . If one considers,
for definiteness, a configuration in which all the poles ai lie to the right of the Taub-NUT center
(0 < a1 < . . . < aN), then the regularity constraints are:

κ = −q
∑

i

ℓId
(I)
i

2ai
− h

∑

i6=i′

Q
(I)
i d

(I)
i′

2(ai′ − ai)
− hq

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
, (5.5.31)

m0 = −q
∑

i

ℓId
(I)
i

2ai
− h

∑

i

Q
(I)
0 d

(I)
i

2ai
+ q

∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2ai′(ai′ − ai)
− hq

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
,(5.5.32)

mi =
ℓId

(I)
i

2

(
h+

q

ai

)
+
∑

j

1

2|ai − aj|
[
Q

(I)
j d

(I)
i

(
h+

q

ai

)
−Q

(I)
i d

(I)
j

(
h+

q

aj

)]

+
hq

2

[d(1)
i d

(2)
i d

(3)
i

a3
i

+
CIJK

2

d
(I)
i

ai

∑

j,k

sign(aj − ai)sign(ak − ai)
d

(J)
j d

(K)
k

ajak

]
(i ≥ 1) ,(5.5.33)

where we have used the convention sign(0) = 0.

When there is no black hole and no rotation at the center of Taub-NUT (Q
(I)
0 = 0 and

α0 = 0), the metric around r = 0 is expected to describe empty space, and hence be completely
regular. As both coordinates ψ and φ degenerate at r = 0, regularity requires that µ and ω
vanish. From (5.5.22) and (5.5.23) and the regularity relations (5.5.31), (5.5.32) and (5.5.33),
one indeed finds that µ and ω must satisfy:

µ|r=0 =
∑

i

ℓId
(I)
i

2ai
−
∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2ai′(ai′ − ai)
+ h

∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k

2aiajak
+
m0

q
= 0 ,

ω|r=0 =
[
−
∑

i

ℓId
(I)
i

2

(
h+

q cos θ

ai

)
+
∑

i6=i′,i6=0

Q
(I)
i d

(I)
i′

2(ai′ − ai)

(
h+

q cos θ

ai′

)

−hq
∑

i,j,k

d
(1)
i d

(2)
j d

(3)
k cos θ

2aiajak
+ κ−m0 cos θ +

∑

i6=0

mi

]
dφ = 0 , (5.5.34)

which are automatically implied by (5.5.31), (5.5.32) and (5.5.33). Hence, these relations are
enough to guarantee the regularity of the solution at the center of Taub-NUT space.

Regularity at the horizons

It is also important to study the geometry in the vicinity of the poles Σi = 0, where, for
generic charges and not-too-large angular momenta, we expect to find regular horizons. For
this purpose it is convenient to define

I4 = Z1Z2Z3V − µ2V 2 . (5.5.35)
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The volume element of the horizon around Σi = 0 is

√
gH,i = Σi(I4Σ

2
i sin2 θi − ω2

φ)
1/2 . (5.5.36)

Consider first the black hole horizon at Σ0 ≡ r = 0. The near-horizon expansion gives

I4 ≈
Q

(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0 cos2 θ

r4
, ωφ ≈ α0

sin2 θ

r
, (5.5.37)

and hence √
gH,0 ≈ (Q

(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0)
1/2 sin θ . (5.5.38)

Thus we find a horizon of finite area1 given by:

AH,0 = (4πq)(4π)(Q
(1)
0 Q

(2)
0 Q

(3)
0 q − α2

0)
1/2 . (5.5.39)

As expected, the black hole at the center is the four-charge rotating black hole constructed in
the previous sections, and the parameter α0 encodes its four-dimensional angular momentum.

Consider now the limiting form of the metric near the ith point (around Σi = 0). After
several highly non-trivial cancelations one obtains:

I4 = −2αid
(1)
i d

(2)
i d

(3)
i

(
h+

q

ai

)2 cos θi
Σ5
i

+O(Σ−4
i ) (5.5.40)

and
ωφ ∼ Σ−1

i . (5.5.41)

This would lead to closed timelike curves outside the horizon unless the term of order Σ−5
i in

I4 vanishes, which requires2:
αi = 0 (i ≥ 1). (5.5.42)

When this condition is imposed, each point Σi = 0 is a black ring horizon of area

AH = 16π2qJ
1/2
4 , (5.5.43)

where J4 is the usual E7(7) quartic invariant that appears in the black ring horizon area [67]:

J4 =
1

2

∑

I<J

d̂
(I)
i d̂

(J)
i Q

(I)
i Q

(J)
i − 1

4

∑

I

(d̂
(I)
i )2(Q

(I)
i )2 − 2d̂

(1)
i d̂

(2)
i d̂

(3)
i m̂i . (5.5.44)

1As usual, area means the spatial measure of the three-dimensional horizon of the five-dimensional black
hole.

2In the two-center solution of section 5.3 a non-zero value for αi was required for regularity at the black ring
horizon. However, the parameter αi in section 5.3 differs from the one used here by a constant coming from the
gauge choice for µ(6), and the two results are consistent.
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In order to bring J4 to its canonical form, we have defined the “effective” dipole and angular
momentum parameters;1

d̂
(I)
i =

(
h+

q

ai

)
d

(I)
i , m̂i =

(
h+

q

ai

)−1

mi . (5.5.46)

Note that the result (5.5.43) and (5.5.44) coincides with the one for an isolated BPS black ring

carrying charges d̂
(I)
i , QI

i and m̂i: the area of the ith horizon is not affected by the presence of
the other horizons nor by the switch of orientation of the base space that is characteristic of
our non-BPS solutions.

If one chooses units such that the five-dimensional Newton’s constant is G5 = π
4

and the
three tori have equal sizes, the integer M2, M5 and KK momentum charges carried by the ith

center are:

n
(I)
i = − d̂

(I)
i

2
, N

(I)
i =

Q
(I)
i

4
, J

(KK)
i = −m̂i

8
. (5.5.47)

One can also construct solutions in which some of the centers do not have three M2 charges
and three M5 charges, but only two M2 charges and one M5 charge. These solutions describe
now two-charge round supertubes, and the geometry near an individual supertube is expected
to be smooth in the duality frame in which the dipole charge of the tube corresponds to KK-
monopoles, and the electric charges correspond to D1 and D5 branes ( see section 1.4.4 or
[11, 13]).

For the supertube with dipole charge corresponding to, say, K3, this regularity condition is
(1.4.38):

lim
Σi→0

Σ2
i (Z3V (K3)2 − 2µV K(3) + Z1Z2) = 0 . (5.5.48)

Just as for black rings, this requires that the “dipole” harmonic term in M vanish (otherwise
µV K3

i ∼ Σ−3
i ):

αi = 0 . (5.5.49)

Furthermore, equation (5.5.48) implies the usual supertube regularity condition:

2d
(3)
i mi = Q

(2)
i Q

(1)
i . (5.5.50)

Scaling solutions

Consider the limit in which the positions of the centers are scaled to zero (ai ≪ q
h
). In this

limit the regularity conditions (5.5.32) and (5.5.33), when written in terms of the quantized

1The “effective angular momentum” that appears in the J4 parameter of the non-BPS black ring in Taub-
NUT constructed in section 5.3 is not m̂i but

m̂BDGRW
i ≡ m̂i −

q

2a2
i

(
h+

q

ai

)
−2

Q
(I)
0 d̂

(I)
i ⇔ mhere

i = mBDGRW
i +

q

2a2
i

Q
(I)
0 d

(I)
i . (5.5.45)

We find here, instead, that J4 simply depends on m̂i. The two results are consistent because here we are using

a different (and more natural) gauge choice originating from a different definition of µ
(5)
0i and reflected in the

equation for mhere
i .
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charge parameters d̂
(I)
i , QI

i and m̂i, reduce to:

m0 = −
∑

i

ℓI d̂
(I)
i

2
− h

q

∑

i

Q
(I)
0 d̂

(I)
i

2
+
∑

i6=i′,i6=0

Q
(I)
i d̂

(I)
i′

2(ai′ − ai)
− h

q2

∑

i,j,k

d̂
(1)
i d̂

(2)
j d̂

(3)
k

2
, (5.5.51)

q
m̂i

ai
=

ℓI d̂
(I)
i

2
+
∑

j

1

2|ai − aj|
[
Q

(I)
j d̂

(I)
i −Q

(I)
i d̂

(I)
j

]

+
h

2q2

[
d̂

(1)
i d̂

(2)
i d̂

(3)
i +

CIJK
2

d̂
(I)
i

∑

j,k

sign(aj − ai)sign(ak − ai)d̂
(J)
j d̂

(K)
k

]
(i ≥ 1) .(5.5.52)

These equations are now linear in the inverse of the inter-center distance, much as they are for
BPS solutions.

As the parameters d̂
(I)
i , QI

i and m̂i with i > 0 are associated to quantized charges, their
value is to be kept finite while the ai’s are scaled to zero. Note however that m0 does not
correspond to any quantized charge, but is a parameter needed for regularity, as indicated by
(5.5.31). Hence, one should think about equation (5.5.51) (or (5.5.32) in the full solution)
as determining the value of a parameter of the solution as a function of the charges and the
positions of the centers, and about equations (5.5.52) (or (5.5.52) in the full solution) as the
“bubble equations” of the system, that determine the inter-center distances as a function of the
charges and the moduli.

In the small ai limit, the non-BPS bubble equations become:

∑

j

1

2|ai − aj|
[
Q

(I)
j d̂

(I)
i −Q

(I)
i d̂

(I)
j

]
= q

m̂i

ai
, (5.5.53)

which coincides with the scaling limit of the BPS bubble equations.



Chapter 6

The floating brane equations

This chapter is devoted to a complete analysis of the equations of motions, inside the “floating
brane” Ansatz. This Ansatz relates warp factors of the metric with the electric part of the
Ramond-Ramond potentials. It physically implies that a probe M2-brane with the same charge
vector as the background will not feel any force, and thus will be “floating”. With some simple
additionnal assumptions, we are able to find a system of equation where Einstein’s equations
factorize into first order equations, and where the system can ultimately be solved in a linear
way. We found as sub-cases of our system the BPS and almost BPS equations.

6.1 Equations of motion

6.1.1 Conventions and the floating-brane Ansatz

We consider eleven-dimensional supergravity presented in the first chapter of this thesis,
(1.1.11), with the ansatz (1.3.1)-(1.3.2). Upon redusing along the T 6 directions, it is inter-
esting to note that this is equivalent to N = 2, five-dimensional supergravity with three U(1)
gauged fields1, whose bosonic action is2

S =
1

2κ5

∫ √−g d5x
(
R− 1

2
QIJF

I
µνF

Jµν −QIJ∂µX
I∂µXJ − 1

24
CIJKF

I
µνF

J
ρσA

K
λ ǭ

µνρσλ
)
,(6.1.1)

with I, J = 1, 2, 3, and the scalar kinetic term being

QIJ =
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (6.1.2)

The XI ’s are related to the ZI functions introduced in (1.3.1) by

X1 =

(
Z2 Z3

Z2
1

)1/3

, X2 =

(
Z1 Z3

Z2
2

)1/3

, X3 =

(
Z1 Z2

Z2
3

)1/3

. (6.1.3)

1We use the conventions of [85].
2We take

√−g ǭ01234 = −1.

123
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They correspond to the volumes of the three T 2 tori. The ansatz that we choose imposes that
the volume of the T 6 is constant, and set to 1,

X1X2X3 = 1 . (6.1.4)

From a five-dimensional point of view, this constraint comes from the fact that one of the
photons lies in the gravity multiplet and so there are only two vector multiplets and hence only
two independent scalars.

We denote Z the third independant scalar

Z ≡
(
Z1 Z2 Z3

)1/3
. (6.1.5)

Eq (1.3.1) reduces in five dimension to the ansatz

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4 . (6.1.6)

The powers guarantee that Z becomes an independent scalar from the four-dimensional per-
spective. We will denote the frames for (6.1.6) by eA, A = 0, 1, . . . , 4 and let êa, a = 1, . . . , 4
denote frames for ds2

4. That is, we take:

e0 ≡ −Z−1 (dt+ k) , ea ≡ Z1/2 êa . (6.1.7)

The heart of the “floating brane” Ansatz is to relate the metric coefficients and the scalars
to the electrostatic potentials. The Maxwell Ansatz is thus:

A(I) = −εZ−1
I (dt+ k) +B(I) , (6.1.8)

where B(I) is a one-form on the base (with metric ds2
4). The parameter, ε, will be related to the

self-duality or anti-self-duality of the fields in the solution and is fixed to have ε2 = 1. Except
for the ε orientation, this is the exactly the reduction of (1.3.1)-(1.3.2) to five dimensions. In
eleven-dimensional supergravity, or M-theory, this Ansatz implies that M2 brane probes that
have the same charge vector as the M2 charge vector of the solution will have equal and opposite
Wess-Zumino and Born-Infeld terms in the Lagrangian and hence will feel no force. Such brane
probes may be placed anywhere in the base and may thus be viewed as “floating”. We will
see that the ε factor is mostly a question of conventions, but it will be interesting to keep it.
In particular, it will be useful to make the link between the BPS and almost-BPS classes of
solutions.

As before, we define the field strengths:

Θ(I) ≡ dB(I) = 1
2
Z−1 Θ

(I)
ab e

a ∧ eb = 1
2
Θ

(I)
ab ê

a ∧ êb . (6.1.9)

We also introduce

K ≡ dk = 1
2
(∂µ kν − ∂ν kµ) dx

µ ∧ dxµ = 1
2
Kab ê

a ∧ êb . (6.1.10)

Note that the frame components are defined relative to the frames on ds2
4.
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Another consequence of the fact that we have used the same function, Z, in both the
metric and the electric potential in (6.1.8) is that the mass of our solutions will always be
linear in the electric (M2) charges, much like the mass of extremal solutions (although for some
orientations the mass may also decrease linearly with the charges, as we will see in chapter 8).
This also suggests that our solutions should be essentially extremal, however we have made no
assumptions about the base metric, ds2

4, and the choices for this will lead to a very large class
of non-BPS solutions that include non-extremal solutions, as we will see in the following.

6.1.2 Einstein’s equations

The time (00) components of Einstein’s equations give:

∑

I

Z−1
I ∇̂2ZI = −1

4
Z−3

∑

I

ZI Θ
(I)
ab

(
ZI Θ

(I)
ab − 2 εKab

)
, (6.1.11)

where ∇̂ is the covariant derivative in the base metric, ds2
4.

The off-diagonal (0a components) of Einstein’s equations give:

∇̂bKba = ε
∑

I

(
∇̂bZI

)
Θ

(I)
ba , (6.1.12)

or, equivalently,

d ⋆4 K = ε
∑

I

dZI ∧ ⋆4Θ
(I) . (6.1.13)

To give the remaining Einstein’s equations it is convenient to define the two-form:

P ≡ K − 1
2
ε

3∑

I=1

ZI Θ(I) . (6.1.14)

The components of Einstein’s equations on the four-dimensional base are:

R̂ab − 1
2
R̂ δab = Z−3

[
PacPbc − 1

4
δabPcdPcd

+ 1
4

(
2
∑

I

Z2
I Θ(I)

ac Θ
(I)
bc −

∑

I,J

ZIZJ Θ(I)
ac Θ

(J)
bc

)

− 1
16
δab

(
2
∑

I

Z2
I Θ

(I)
cd Θ

(I)
cd −

∑

I,J

ZIZJ Θ
(I)
cd Θ

(J)
cd

)]
,(6.1.15)

where R̂ab and R̂ are the Ricci tensor and Ricci scalar of the base metric, ds2
4. Note that these

equations imply that the Ricci scalar of the base must vanish:

R̂ = 0 . (6.1.16)
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6.1.3 Scalar equations

The scalar equations of motion yield equations for the ratios of the ZI . For example:

Z−1
1 ∇̂2Z1 − Z−1

3 ∇̂2Z3 = 1
2
Z−3

[
Z1 Θ

(1)
ab

(
Z1 Θ

(1)
ab − 2 εKab

)
(6.1.17)

− Z3 Θ
(3)
ab

(
Z3 Θ

(3)
ab − 2 εKab

)]
. (6.1.18)

When combined with (6.1.11) one gets:

∇̂2ZI = −1
4
Z−1
J Z−1

K

[
ZJ Θ

(J)
ab

(
ZJ Θ

(J)
ab − 2 εKab

)
(6.1.19)

+ ZK Θ
(K)
ab

(
ZK Θ

(K)
ab − 2 εKab

)
− ZI Θ

(I)
ab

(
ZI Θ

(I)
ab − 2 εKab

)]
, (6.1.20)

where {I, J,K} = {1, 2, 3} are all distinct and these indices are not summed.

6.1.4 Maxwell equations

To give the Maxwell equations it is convenient to define:

R(I)
± ≡ 1

2
εZI

(
Θ(I) ± ε ⋆4 Θ(I)

)
, P± ≡ 1

2

(
K ± ε ⋆4 K

)
− 1

2

3∑

M=1

R(M)
± (6.1.21)

with no sum on I. Note that P = P++P−. The parameter, ε, satisfies ε2 = 1 and so determines
whether these combinations are self-dual or anti-self-dual.

The Maxwell equations are:

d ⋆5

(
QIJ F

J
)

= 1
4
CIJK F

J ∧ FK , (6.1.22)

with F I = dAI . Using the Ansatz (6.1.8) one obtains two types of terms: (i) a four form on
the four-dimensional base and (ii) e0 wedged into a three form on the four-dimensional base.
The former generates the following equations for ∇̂2ZI :

∇̂2ZI = ε ⋆4

[
Θ(J) ∧ Θ(K) + Z−3ZI K ∧

(
K + ε ⋆4 K + 2R(I)

− − ε
3∑

M=1

ZMΘ(M)
)]

. (6.1.23)

Combining this with (6.1.20) one obtains three algebraic constraints on the forms P+ and R(M)
± :

P+ ∧ P+ + P+ ∧R(I)
+ + 1

4

(
R(I)

− −R(J)
− + R(K)

−
)
∧
(
R(I)

− + R(J)
− −R(K)

−
)

= 0 , (6.1.24)

where, once again, {I, J,K} = {1, 2, 3} are all distinct and these indices are not summed.
The second set of Maxwell equations can be written as:

d
(
Z−3ZI

(
K + ε ⋆4 K + 2R(I)

− − ε

3∑

M=1

ZMΘ(M)
))

= 0 , (6.1.25)

where the index I isn’t summed.
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6.2 Analysis and subcases

6.2.1 General results on the equations

Using the equations of motion one can easily show that:

d
(
(Z1Z2Z3)

−1P+

)
= 0 , (6.2.1)

and hence one may write
P+ = (Z1Z2Z3)ω

(0)
+ , (6.2.2)

where ω
(0)
+ is harmonic.

One can simplify some of the Maxwell equations by introducing some additional forms, ω
(I)
−

defined by:
1
2
ε
(
Θ(I) − ε ⋆4 Θ(I)

)
≡ CIJK ZJ ω

(K)
− . (6.2.3)

Since Z1Z2Z3 6= 0, this transformation is invertible and so we have made no additional assump-
tions. In terms of these new ε-anti-self-dual forms, the Maxwell equations (6.1.25) become:

d ⋆4 ω
(I)
− = (Z1Z2Z3)

−1dZI ∧ P+ . (6.2.4)

and (6.1.24) becomes:

P+ ∧ P+ + P+ ∧R(I)
+ + (Z1Z2Z3)ZI ω

(J)
− ∧ ω(K)

− = 0 , (6.2.5)

where {I, J,K} = {1, 2, 3} are all distinct and these indices are not summed.
To simplify Einstein’s equations, introduce the function, Tab, of a pair of two forms that is

defined by:
Tab(X,Y ) ≡ 1

2

(
Xac Ybc + Xbc Yac

)
− 1

4
δabXcd Ycd . (6.2.6)

In particular, Tab(F, F ) is the energy momentum tensor associated with the Maxwell field, F .
Note that if X± and Y± are the self-dual and anti-self dual parts of X and Y , then

Tab(X±, Y±) = 0 , Tab(X,Y ) = Tab(X+, Y−) + Tab(X−, Y+) . (6.2.7)

Using this in the Einstein equations (6.1.15), one obtains:

R̂ab = 2Z−3 Tab(P+,P−) −
3∑

I=1

Tab
(

1
2
ε
(
Θ(I) + ε ⋆4 Θ(I)

)
, ω

(I)
−
)
. (6.2.8)

Thus far we have made no assumptions other than our floating brane Ansatz.

6.2.2 A simple assumption

The equations of motion dramatically simplify if one takes:

P+ ≡ 0 , (6.2.9)
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which is, of course, consistent with (6.2.1) and thus with the equations of motion. We will
henceforth assume that (6.2.9) is true.

One then finds from (6.2.4) and (6.2.5) that the forms ω
(I)
− must be harmonic and satisfy

ω
(I)
− ∧ ω(J)

− = 0 , I 6= J . (6.2.10)

There are two obvious ways to satisfy this condition:
• (i) Take ω

(1)
− = ω

(2)
− = 0 and ω

(3)
− to be an arbitrary ε-anti-self-dual harmonic form.

• (ii) Take the manifold to be hyper-Kähler and let each of the ω
(I)
− be a constant multiple of

one the three harmonic two forms associated with the three complex structures1.
Continuing with the implications of (6.2.9), one finds that the equations for the scalars

(6.1.23) reduce to:

∇̂2ZI = ε ⋆4

[
Θ(J) ∧ Θ(K) − ω

(I)
− ∧ (K − ε ⋆4 K)

]
, (6.2.11)

and Einstein’s equations collapse to

R̂ab = −1
2
ε

3∑

I=1

Tab
((

Θ(I) + ε ⋆4 Θ(I)
)
, ω

(I)
−
)
. (6.2.12)

Note that the Ricci tensor depends only upon the four-dimensional electromagnetic fluxes.

6.2.3 A first linear system

If one assumes that all the ω(I)’s are set to zero,

ω(I) = 0 , I = 1, 2, 3 , (6.2.13)

the system of equations reduces to

R̂ab = 0 , (6.2.14)

Θ(I) = ε ⋆4 Θ(I) , (6.2.15)

∇̂2ZI = ε
CIJK

2
⋆4 Θ(J) ∧ Θ(K) , (6.2.16)

P+ = 0 . (6.2.17)

For ε = 1, (6.2.15)-(6.2.17) are just the BPS equations (1.3.4) [40, 41]. For ε = −1 they
become the almost-BPS equations of the previous chapter2 [85]. Nevertheless, the known BPS
and almost BPS classes of solutions have an hyper-Kähler base space, while here the equations
of motion impose only the base to be Ricci-flat (6.2.14). So this system of equations not only
encodes all the BPS solutions presented in the first chapter of this thesis, and the new almost

1There might be an interesting generalization of (ii) to quaternionic-Kähler spaces.
2The global sign of he last equation (6.2.17) is different from the one of the previous chapter (5.1.9), but

this sign is not physical but convention dependent.
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BPS solutions of the previous chapter, but also allows in general many possible new solutions.
We will present some new solutions to this system in chapter 8. The fact that the base only
needs to be Ricci-flat is not so strange: The hyper-Kähler condition originally arose because
one wanted to preserve supersymmetry, however, Einstein’s equations, (6.2.8), only care about
the Ricci tensor of the base. As we already discussed in detail in the first chapter of this thesis,
one of the key properties of this system of equations is that it is linear if solved in the correct
order; the non-linear terms only appear as known sources in the equations. Linearity is what
allows one to perform explicit computations, and to find interesting solutions.

6.2.4 A second linear system

We now generalize the case of the previous subsection and make a less restrictive assumption:
we impose that condition (i) above is satisfied: ω

(1)
− = ω

(2)
− = 0 and take ω

(3)
− to be an arbitrary

ε-anti-self-dual harmonic form. Then the equations become

(
Θ(1) − ε ⋆4 Θ(1)

)
= 2 εZ2 ω

(3)
− ,

(
Θ(2) − ε ⋆4 Θ(2)

)
= 2 εZ1 ω

(3)
− ,

(
Θ(3) − ε ⋆4 Θ(3)

)
= 0 . (6.2.18)

Thus Θ(3) is a harmonic, ε-self-dual two form.
The background geometry must be chosen so that

R̂ab = −ε Tab
(
Θ(3) , ω

(3)
−
)

≡ 1
2

(
FacFbc − 1

4
δabFcdFcd

)
, (6.2.19)

where F is defined by
F ≡ Θ(3) − ε ω

(3)
− . (6.2.20)

Note that this Maxwell field must be harmonic.
To find a full solution of the supergravity equations of motion one must start from a four-

dimensional Euclidean “electrovac” solution to U(1) Einstein-Maxwell theory. The metric of
this solution will be the base metric of the full five-dimensional geometry, and the self- and anti-
self-dual parts of the electrovac Maxwell field determine Θ(3) and ω

(3)
− . Note that both these

forms must be closed, as a consequence of the Maxwell equations and Bianchi identities for F .
They will therefore automatically satisfy equations (6.2.18) and (6.2.4) under assumption (i).

Conversely, given any solution to our equations, one can always repackage Θ(3) and ω
(3)
− into a

Maxwell field that satisfies (6.2.19), and obtain an electrovac solution.

Given Θ(3) and ω
(3)
− , we then need to solve the following pairs of equations:

∇̂2Z1 = ε ⋆4

[
Θ(2) ∧ Θ(3)

]
,

(
Θ(2) − ε ⋆4 Θ(2)

)
= 2 εZ1 ω

(3)
− ; (6.2.21)

∇̂2Z2 = ε ⋆4

[
Θ(1) ∧ Θ(3)

]
,

(
Θ(1) − ε ⋆4 Θ(1)

)
= 2 εZ2 ω

(3)
− . (6.2.22)

Since Θ(3) and ω
(3)
− are already known, (6.2.21) represents a coupled linear system for Θ(2) and

Z1 and (6.2.22) represents a coupled linear system for Θ(1) and Z2. In solving these systems
one should, of course, remember that the Θ(I) should also satisfy the (linear) Bianchi identities
dΘ(1) = 0.
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Once one knows the solutions of the equations above, one must solve the equations for Z3

and K = dk, which, amazingly enough, are also linear:

K + ε ⋆4 K = 1
2
ε
∑

I

ZI
(
Θ(I) + ε ⋆4 Θ(I)

)
, (6.2.23)

∇̂2Z3 = ε ⋆4

[
Θ(1) ∧ Θ(2) − ω

(3)
− ∧ (K − ε ⋆4 K)

]
. (6.2.24)

Hence, starting from an Euclidean electrovac solution one can build a full solution of five-
dimensional U(1)3 ungauged supergravity by following a linear procedure. Note that this class of
solutions is much larger, and, as we just explained, includes the BPS and almost-BPS solutions.



Chapter 7

Solutions with an Israel-Wilson base,
or how to interpolate between BPS and
almost BPS solutions

In this chapter, we examine in more details the linear system of equations found in section
6.2.4 of the previous chapter, and solve it for a special class of electrovac base spaces that have
a translational U(1) isometry: the Israel-Wilson spaces. From a four-dimensional perspective,
the particular solution we find describes a non-BPS two-centered solution where one of the
centers is a locally-BPS D6-D4-D2-D0 black hole and the other center is a D6 brane. We show
that this new Israel-Wilson solutions interpolates between the BPS and almost BPS class of
solutions, and therefore help us understanding the global structure of the solution space.

7.1 Israel-Wilson solutions

7.1.1 The Israel-Wilson background

The starting ingredient for constructing non-trivial solutions using the procedure outlined above
is an Euclidean electrovac solution that satisfies (6.2.19) and that has a non-trivial harmonic

form, ω
(3)
− . An interesting choice for such a background is an Israel-Wilson (IW) metric [98, 99,

100, 101]:

ds2
4 = (V+ V−)−1(dψ + ~A · d~y)2 + (V+ V−)(dy2

1 + dy2
2 + dy2

3) , (7.1.1)

where
~∇× ~A = V−~∇V+ − V+

~∇V− , (7.1.2)

and the functions V± are required to be harmonic on the R
3 base. Introducing the frames:

ê1 = (V+ V−)−
1
2 (dψ + ~A · d~y) , êa+1 = (V+ V−)

1
2 dya , a = 1, 2, 3 , (7.1.3)

the associated background Maxwell field is given by [101]:

F ≡ 1
2
Fabê

a ∧ êb

=
[
∂a
(
V −1

+ − V −1
−
)]
e1 ∧ êa+1 + 1

2
ǫabc
[
∂a
(
V −1

+ + V −1
−
)]
eb+1 ∧ êc+1 . (7.1.4)

131
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This background then satisfies equation (6.2.19), where we choose for the rest of this section
the convention ε = +1.

7.1.2 Harmonic forms

Define the sets of two-forms:

Ω
(a)
± ≡ ê1 ∧ êa+1 ± 1

2
ǫabc ê

b+1 ∧ êc+1 , a = 1, 2, 3 . (7.1.5)

The Maxwell field of the Israel-Wilson solution is then:

F =
(
∂a
(
V −1

+

))
Ω

(a)
+ −

(
∂a
(
V −1
−
))

Ω
(a)
− , (7.1.6)

from which one can read off (up to an irrelevant, overall sign) the harmonic forms, Θ(3) and

ω
(3)
− , using (6.2.20). However, it is easy to see that (7.1.4) is not the most general Maxwell

field one can have for this base. Introducing two arbitrary harmonic functions K± on R
3, the

two-forms:

Θ± ≡ −
3∑

a=1

(
∂a
(
V −1
± K±

))
Ω

(a)
± (7.1.7)

are also harmonic and self-dual, or anti-self-dual respectively. These forms have (local) poten-
tials:

B± =
K±

V±
(dψ + ~A · d~y) + ~a± · d~y , ~∇× ~a± = ±

(
K±~∇V∓ − V∓~∇K±

)
. (7.1.8)

From now on we choose ε = 1. The equations for (ε = −1) can be simply obtained by

exchanging V+ and V−. The two-form, Θ(3), is then self-dual while ω
(3)
− is anti-self-dual.

One can try to obtain a more general solution for Θ(3) and ω
(3)
− by taking:

Θ(3) = d
(K+

V+

(dψ + ~A) + ~a+

)
, ω

(3)
− = d

(K−

V−
(dψ + ~A) + ~a−

)
. (7.1.9)

The Einstein-Maxwell electrovac equations (6.2.19) are then solved if, and only if

∂i

(K+

V+

)
∂j

(K−

V−

)
=
(
∂iV

−1
+

) (
∂jV

−1
−
)

(7.1.10)

for i, j = 1, 2, 3. Hence, one can apparently obtain a more general electrovac Israel-Wilson base
by using the solutions to this equation:

K− = β V− − α , K+ = δ V+ − γ , (7.1.11)

with α, β, γ, δ constants satisfying the constraint αγ = 1. However, one can easily see that β
and δ are “pure gauge” constants, since they make no contribution to the Maxwell fields (7.1.7).
We therefore set β = 0, which implies that K− is constant. We could, of course, do the same
with K+, however, we will find it useful in the next sub-section to keep δ 6= 0.

We should also note that the foregoing discussion no longer applies if either V− or V+ are
constant, because the solutions to (7.1.10) are then different from those in (7.1.11). We will
partially address this situation later in the paper, and we leave a more general analysis for
further investigation. Given that K− = −α, the two-form ω

(3)
− is a constant multiple of the

natural anti-self-dual two-form on the Israel-Wilson base space,
(
∂a
(
V −1
−
))

Ω
(a)
− .
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7.1.3 The linear system

We now solve the linear system for the other fields. We write Θ(1) and Θ(2) in the form:

Θ(1) = d

(
K1

V+

(dψ + A) + a1

)
, Θ(2) = d

(
K2

V+

(dψ + A) + a2

)
(7.1.12)

where K1, K2, a1 and a2 are unknown functions and one-forms on the R
3 base and determine

the dipole charges of the solution1. Writing the equations (6.2.21) in the IW base, we obtain

∇2K2 =
2α

V−
~∇ ·
(
V+

V−
Z1
~∇V−

)
, (7.1.13)

∇2Z1 = V−∇2
(K2K+

V+

)
− 2α ~∇ ·

(Z1K+

V−
~∇V−

)
, (7.1.14)

with a2 given by

~∇× ~a2 = −V−~∇K2 +K2
~∇V− + 2α

V+

V−
Z1
~∇V− . (7.1.15)

The corresponding system for Z2 and Θ(1) is:

∇2K1 =
2α

V−
~∇ ·
(
V+

V−
Z2
~∇V−

)
, (7.1.16)

∇2Z2 = V−∇2
(K1K+

V+

)
− 2α ~∇ ·

(Z2K+

V−
~∇V−

)
, (7.1.17)

~∇× ~a1 = −V−~∇K1 +K1
~∇V− + 2α

V+

V−
Z2
~∇V− . (7.1.18)

We also need the equation for the last warp factor Z3 and the angular momentum k. We
decompose k as usual:

k = µ(dψ + A) + ω . (7.1.19)

Equations (6.2.23) and (6.2.24) for µ and Z3 then give

∇2Z3 = V−∇2
(K1K2

V+

)
− 2α ~∇ ·

(Z1K1 + Z2K2

V−
~∇V−

)
(7.1.20)

+ 4α
V+

V−
~∇ ·
(
µ~∇V−

)
− 2α

V+ZI
V−

~∇ ·
(KI

V+

~∇V−
)

+ 2α2V+Z1Z2 ∇2
( 1

V−

)
,

∇2(V−µ) =
1

V+

~∇ ·
(
V−V+ZI ~∇

(KI

V+

))
− 2α

V+

~∇ ·
(V+Z1Z2

V−
~∇V−

)
(7.1.21)

where ω is given by:

~∇× ~ω = V 2
+
~∇
(V−
V+

µ
)
− V+V−ZI ~∇

(KI

V+

)
+ 2α

V+Z1Z2

V−
~∇V− . (7.1.22)

As usual, (7.1.21) is the integrability equation for (7.1.22).

1We slightly change notation here from KI to KI because, having specified Θ1, Θ2 and Θ3 differently, we
will often write K2 and want to avoid possible confusions with (K)2.
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7.1.4 An explicit example: a non-BPS black hole in an Israel-Wilson
metric

We now have all the tools to find explicit solutions with an Israel-Wilson base space. Here we
will present an M-theory solution that corresponds, in type IIA string theory, to a D6D43D23D0
black hole in a D6 background. We parameterize the flat, three-dimensional R

3 base space using
spherical coordinates (r, θ, φ) and put the D6 brane at the origin of the space and the black
hole at a distance R from the origin. We denote polar coordinates centered at the black hole
position by (Σ, θΣ). Their relation to the polar coordinates (r, θ) centered at the origin is:

Σ =
√
r2 +R2 − 2rR cos θ , cos θΣ =

r cos θ −R

Σ
. (7.1.23)

For V+ = 1, we want the space to be Taub-NUT, and thus we take V− to be

V− = 1 +
Q6̄

r
. (7.1.24)

The parameter, Q6̄, is D6 or the KK-monopole charge of the space1. The function, K+, is
harmonic and corresponds to one of the M5 charges of the solution:

K+ = K3 =
d3

Σ
. (7.1.25)

For convenience, we will change notation throughout the rest of the chapter, and refer to K−
as K3. The relation (7.1.11) then forces V+ to have a pole at the black hole location. Assuming
the space to be asymptotically flat (asymptotic to R

3 × S1) means that the constant in V+ to
be finite, and we set it to 1 for convenience. Hence,

V+ = 1 + αK+ = 1 +
α d3

Σ
≡ 1 +

Q6

Σ
, (7.1.26)

where α was introduced in (7.1.11), and we have defined Q6 ≡ αd3. Thus, the black hole has a
finite D6 (or KKm) charge. The associated vector fields are

A = Q6
r cos θ −R

Σ
dφ+Q6Q6̄

r −R cos θ

Σ
dφ−Q6̄ cos θdφ , (7.1.27)

a3 = −d3
r cos θ −R

Σ
dφ−Q6̄ d3

r −R cos θ

Σ
dφ (7.1.28)

The system (7.1.13) and (7.1.14) is not completely straightforward to solve, but, as explained
in the previous section, it is linear in the unknowns K2 and Z1. We find the following solution:

Z1 =
1

V+

(
1 +

Q1

Σ
+
d2d3

Σ2

(
1 +

Q6̄r

R2

))
, (7.1.29)

K2 = V+

(
d2

Σ
− α

Z1

V−

)
, (7.1.30)

1We will explain below why we refer to this as D6 and not as D6 charge.
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and similarly for Z2 and K1. Here we have also introduced the dipole charge d2 associated to
K2, and the electric charge Q1 of the hole, associated to Z1. The vector field a2 is then given
by

a2 = −(d2 − αQ1)
r cos θ −R

Σ
dφ−Q6̄ d2

r −R cos θ

Σ
dφ+ d2Q6Q6̄

cos θ

Σ2
dφ , (7.1.31)

with a similar expression for a1.
The solution to the last system of equations, (7.1.20) and (7.1.21), is:

µ =
1

V+V−

(m
Σ

+
m̃

r
+
V−(d1 + d2 + d3)

2Σ
+
QIdI
2Σ2

+Q6̄QIdI
cos θ

2RΣ2

+
CIJK

6
dIdJdK

[(
1 +

Q2
6̄

R2

)(r cos θ

RΣ3
+ λ

r cos θ −R

RΣ3

)
+Q6̄

3r2 +R2

2R2rΣ3

])

−αZ1Z2

V−
, (7.1.32)

Z3 = V+

(
1 +

Q3

Σ
+
d1d2

Σ2

(
1 +

Q6̄r

R2

))
− 2αV+µ− α2V+Z1Z2

V−
, (7.1.33)

and

ω = −
[
κ−m

r cos θ −R

Σ
− m̃ cos θ +

d1 + d2 + d3

2

r cos θ −R

Σ
+Q6̄

d1 + d2 + d3

2

r −R cos θ

RΣ

+Q6̄QIdI
r sin2 θ

2RΣ2
+
(
1 +

Q2
6̄

R2

)CIJK
6

dIdJdK(1 + λ)
r2 sin2 θ

RΣ3

+Q6̄

CIJK
6

dIdJdK
r(3R2 + r2) −R(3r2 +R2) cos θ

2R3 Σ3

]
dφ . (7.1.34)

The constants m, m̃, κ and λ represent homogeneous solutions that are fixed by regularity:

m =
(
1 +

Q6̄

R

)d1 + d2 + d3

2
+
CIJK

6

Q6̄ dIdJdK
2R3

,

m̃ = κ = −Q6̄

(d1 + d2 + d3

2R
+
CIJK

6

dIdJdK
2R3

)
. (7.1.35)

λ = − R2

R2 +Q2
6̄

.

The reason for this regularity conditions will become clear in the section 7.2.2.

7.1.5 The BPS and almost-BPS limits of solutions with an Israel-
Wilson base

The solution presented here seems to be somewhat complicated, but its physical interpretation
is rather straightforward. Take first V+ to be 1 (by setting the parameter α to zero). As
we already remarked, the metric then becomes the usual Taub-NUT metric, with negative
orientation. Looking at the complete solution, we see that it becomes the non-BPS black ring
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Figure 7.1: This diagram represents four classes of solutions that can be obtained from our solution
for various values of the Israel-Wilson harmonic functions. When both V+ and V− are constant, the
solution describes a BPS black string in R

3 ×S1. Turning on a KKm charge at the center of the space
(V− 6= 1) the space becomes Taub-NUT, the black ring is non-BPS and the solution belongs to the
almost-BPS Ansatz. Turning on a KKm charge at the location of the ring, we obtain a BPS D6-D4-
D2-D0 black hole. Turning on both types of KKm charges (V+ 6= 1,V− 6= 1), we obtain the more general
non-BPS solution constructed here: a D6-D4-D2-D0 four-charge black hole in a D6 background.

in Taub-NUT solution presented in chapter 51. From a four-dimensional perspective this is a
two-center solution where one center is a D4-D2-D0 black hole located at z = R and the other
is a pure D6 brane located at r = 0. Despite the fact that both objects are locally-BPS, the
relative orientation of the D6 and the three D2 branes (which determine, locally, the Killing
spinors of the D4-D2-D0 black hole) makes the full configuration non-BPS.

On the other hand, setting Q6̄ to zero, and hence V− = 1, one can see that the solution
becomes one of the BPS solution presented in the first chapter of the thesis, section 1.3, and
describes a four-dimensional black hole with D6, D4, D2 and D0 charges. The singular part in
the D4 harmonic function can be traded, via the gauge transformation (1.3.16) [44, 58] for a
non-trivial Wilson line at infinity, and thus this black hole is in fact a BMPV black hole located
at the tip of Taub-NUT (which is now located at at z = R because we set Q6̄ = 0), or a single-
center D6-D2-D0 black hole from a four-dimensional perspective. For this solution the relative
orientation of the D6 and D2 branes match, and the solution preserves four supercharges. These
two limits are summarized in the Figure 7.1. If one now takes both the D6 and the D6 charges
to zero, the solution becomes a BPS D4-D2-D0 four-dimensional black hole, which lifts to a
BPS three-charge three-dipole-charge black string in R

3,1 × S1 [62].
Having taken these limits, it is now clear that the general solution with an Israel-Wilson base

describes a two-center configuration, where one of the centers has D6,D4,D2, and D0 charges
and is locally-BPS, and the other has D6 charge. Of course, an Israel-Wilson solution with

1In chapter 5, the solution is written in the ε = −1 convention, ie V = V+ and not the ε = +1 one we use
here. One can rewrite the solution in the new convention by taking V = V−, and changing the signs of the
base-space vectors.
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multiple D6 branes of opposite orientations is only possible when other charges and fluxes are
turned on (6.2.19). Indeed, the D6 and D6 charges attract each other and in the absence of
other branes, there is nothing to balance this attraction. Introducing D4, D2 and D0 branes
creates new interactions: the D4 branes are also attracted, the D2’s feel no force, and the D0’s
are repelled, and thus balance becomes possible.

Note that upon flipping the sign of ε one could also obtain a solution where the D6 charge
becomes anti-D6 charge and vice versa; this solution should describe an intrinsically non-BPS
D6-D2-D0 black hole in a background of a D6 brane that is mutually-BPS with respect to the
three sets of D2 branes. When the D6 charge is zero the solution should become a BPS black
ring in Taub-NUT [64, 65, 51] and when the D6 charge is zero it should becomes the almost-BPS
non-rotating D6-D2-D0 black hole [29, 86, 106]. When both the D6 and the D6 charges are
zero, this solution should reduce again to the D4-D2-D0 BPS black hole whose five-dimensional
lift is the M5-M2-P black string (or the infinite black ring) of [62].

7.2 Spectral Flow and the Israel-Wilson metric

In this section we study the action of a spectral flow transformation [58] on the solution de-
scribing an almost-BPS black ring in Taub-NUT given in chapter 5, and show that it yields the
ε = 1 solution with the Israel-Wilson base found in the previous section. We also argue that
all the solutions that are constructed starting from a Euclidean electrovac solution given by the
Israel-Wilson metric can be generated by the spectral flow of a more-standard “almost-BPS”
solution.

7.2.1 The D1-D5-P duality frame

We already presented the spectral flow transformation in the particular case of the BPS class
of solutions of section 1.3. But this transformtion is much more general [58]. It is a very useful
tool for generating new asymptotically R

3,1 × S1 solutions of five-dimensional U(1)3 ungauged
supergravity (or of the STU model in four dimensions) by starting from other such solutions. In
asymptotically AdS3 × S3 spaces this transformation is the gravity counterpart of a symmetry
of the dual CFT, and it is most naturally performed upon dualizing the solution to the D1-D5-P
duality frame [102, 103], presented in section 1.3.3. In this frame the solution, which is invariant
along the four internal directions wrapped by the D5 branes, corresponds to a solution of six-
dimensional ungauged supergravity [104, 105]. The spatial section of the metric can be written
as a T 2 fibration over an R

3 base, where the T 2 is made up by the fiber of the Taub-NUT base
space and by the (internal) direction common to the D1 and the D5 branes. Spectral flows can
then be recast as simply a subgroup of the group, SL(2,Z), of global diffeomorphisms on this
T 2. Thus, from a six-dimensional point of view, spectral flow is just a change of coordinates,
mixing two different U(1)’s. However, upon dualizing back to the duality frame where the
charges correspond to three sets of M2 branes, the resulting solution, which is again a solution
of U(1)3 supergravity, differs rather non-trivially from the original one1.

1Note that to go from a six-dimensional supergravity solution to the final solution of five-dimensional
supergravity one does not KK reduce the six-dimensional solution; rather one trivially uplifts it to a solution
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To perform a spectral flow we need to find the metric and RR gauge-field of the solution
dualized to the D1-D5-P duality frame. This was presented in section 1.3.3. For completeness,
we remaind that this yields

ds2 = − 1√
Z1Z2Z3

(dt+ k)2 +
Z3√
Z1Z2

(dy + A3)2 +
√
Z1Z2ds

2
4 +

√
Z2

Z1

4∑

a=1

dx2
a , (7.2.1)

C(2) = A1 ∧ (dy + A3) +B(1) ∧ dt+ k

Z3

+ γ2 , (7.2.2)

where

AI = −dt+ k

ZI
+B(I) , (7.2.3)

and
dγ2 = ⋆4dZ2 −B(1) ∧ Θ(3) . (7.2.4)

For convenience we take ε = 1; the result for the other sign is equally straightforward to obtain.

7.2.2 The action of spectral flow

We start from the solution of the “almost BPS” equation presented in sectionringsec, corre-
sponding to a non-BPS black ring and thus we assume that the base metric ds2

4 has GH form:

ds2
4 = V −1

− (dψ + ~A.d~y)2 + V−ds
2
3 , ~∇× ~A = −~∇V− . (7.2.5)

The one-form potentials are:

B(I) = KI(dψ + A) + aI , k = µ(dψ + A) + ω , (7.2.6)

where I = 1, 2, 3, the KI are harmonic and the aI satisfy the equation:

~∇× ~aI = −V−~∇KI +KI
~∇V− . (7.2.7)

In order to perform the spectral flow, we also need to decompose the two-form, γ2, as

γ2 = (dψ + A) ∧ γ(ψ)
2 + γ

(b)
2 , (7.2.8)

where γ
(b)
2 is a two form on the three-dimensional space defined by ds2

3.
Note that the equation for Z2,

d ⋆4 dZ2 = Θ(1) ∧ Θ(3) , (7.2.9)

implies

∇2Z2 = V−∇2(K1K3) = ~∇.(V−~∇(K1K3)) − ~∇V−.~∇(K1K3)

= ~∇.(V−~∇(K1K3) + ~A× ~∇(K1K3)) (7.2.10)

of type IIB supergravity, performs three T-dualities, then uplifts the resulting solution to M-theory, and then
reads off the new solution of five-dimensional ungauged supergravity
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and hence
~∇Z2 = V−~∇(K1K3) + ~A× ~∇(K1K3) + ~∇L2 . (7.2.11)

The equation satisfied by γ2

~∇× ~γ
(ψ)
2 = ~∇Z2 − V−K1

~∇K3 + ~a1 × ~∇K3 = ~∇L2 − ~∇× (K3~a1 +K1K3
~A) , (7.2.12)

implies
γ

(ψ)
2 = −K3a1 −K1K3A+ γ̂

(ψ)
2 with ~∇× ~̂γ

(ψ)
2 = ~∇L2 . (7.2.13)

Similarly one can define a two-form

γ1 = (dψ + A) ∧ γ(ψ)
1 + γ

(b)
1 , (7.2.14)

that satisfies
dγ1 = ⋆4dZ1 −B(2) ∧ Θ(3) . (7.2.15)

One has

~∇× ~γ
(ψ)
1 = ~∇Z1 − V−K2

~∇K3 + a2 × ~∇K3 = ~∇L1 − ~∇× (K3~a2 +K2K3
~A) (7.2.16)

which implies
γ

(ψ)
1 = −K3a2 −K2K3A+ γ̂

(ψ)
1 with ~∇× ~̂γ

(ψ)
1 = ~∇L1 . (7.2.17)

Spectral flow mixes the internal U(1) coordinate y, associated with the momentum charge,
with the GH fiber, ψ. Explicitly, this is just the change of coordinates

ψ → ψ + α y . (7.2.18)

To find the transformation of the metric coefficients, one performs the change of coordinates
(7.2.18) and rewrites the metric and gauge field in the exact same form as (7.2.2). Defining the
harmonic function V+ by

V+ = 1 + αK3, (7.2.19)

the transformed metric is

ds2
4 = (V+V−)−1(dψ +

~̃
A.d~y)2 + V+V−ds

2
3 , Ã = A− αa3. (7.2.20)

Note that Ã now satisfies:
~∇× ~̃

A = V−~∇V+ − V+
~∇V−. (7.2.21)

The rest of the fields can be recast in the exact same form as before, with the new coefficients
(obtained after a fair amount of of algebra) given by:

K̃1 = K1 − α
Z2

V+V−
, K̃2 = K2 − α

Z1

V+V−
, K̃3 =

K3

V+

, (7.2.22)

ã1 = V+ a1 + α γ
(ψ)
2 , ã2 = V+ a2 + α γ

(ψ)
1 , ã3 = a3 (7.2.23)

Z̃1 =
Z1

V+

, Z̃2 =
Z2

V+

, Z̃3 = V+Z3 − 2αµ+ α2 Z1Z2

V+V−
(7.2.24)

µ̃ =
1

V+

(
µ− α

Z1Z2

V+V−

)
, ω̃ = ω . (7.2.25)
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This is exactly the solution with an Israel-Wilson base constructed in Section 7.1. In par-
ticular, the relation (7.2.19), which is the same as (7.1.26), between the harmonic function V+

corresponding to the D6 charge and one of the harmonic functions corresponding to D4 charge
emerges directly from the spectral flow transformation.

While this approach to obtaining solutions is rather different from the one outlined in Section
7.1 in that it does not involve starting from a non-trivial Einstein-Maxwell electrovac solution
but from a Ricci-flat metric, the resulting solution is the same. This greatly simplifies the reg-
ularity analysis, as we know that spectral flow always transforms regular solutions into regular
solutions. Hence the regularity of the D6-D4-D2-D0 black hole is ensured by the regularity of
the non-BPS black ring in Taub-NUT, which yields the regularity conditions outlined in the
previous section (7.1.35).

7.2.3 Spectral flow and smooth horizonless multi-center solutions.

One of the driving forces in our effort to construct large classes of multi-center non-BPS solutions
is to obtain smooth horizonless solutions that have the same charges and mass as non-BPS black
holes with a macroscopically-large horizon area. For BPS black holes, the existence of large
classes of such solutions brings considerable support to the fact that these black holes should
be thought of as statistical ensembles of horizonless configurations, thus realizing the fuzzball
proposal (see [6] for reviews) for this class of black holes. We would like to extend this to
non-BPS black holes.

The most obvious way to look for such non-BPS multi-center horizonless solutions is to use
the almost-BPS Ansatz. However, in this Ansatz the anti-self-dual two-forms that one can turn
on (for example the harmonic forms dual to the two-cycles of a multi-center Taub-NUT space)
source strongly singular solutions to the equations of motion. Hence, at least at first glance, no
smooth horizonless solutions exist.

Another way to obtain smooth horizonless solutions is to use spectral flow. It is well known
that in the appropriate IIB frame a two-charge supertube with D1 and D5 charges corresponds
to a completely regular geometry. Furthermore, using spectral flow, we can change coordinates
and then dualize a BPS solution containing such a supertube in a multi-Taub-NUT space
into a completely regular multi-Taub-NUT five-dimensional solution with fluxes supported on
bubbles [58]. On the other hand, a solution with multiple supertubes of different types (with
different dipole charges) cannot simultaneously be dualized via one spectral flow to a smooth
geometry. This needs to be done by three subsequent spectral flows, which transform every
type of supertube into a Taub-NUT center. Since the near-tube geometry is the same in a BPS
and in an almost-BPS solution, we expect the spectral flow to transform multiple supertubes
in an almost-BPS solution into a smooth non-BPS horizonless solution with multiple distinct
fluxes supported on bubbles.

To illustrate this, consider a single supertube in a Taub-NUT geometry of “opposite orien-
tation.” That is, the base space is of the form (7.2.5) while the supertube magnetic dipoles
are given by (7.2.6). If K1 = K2 = 0 this supertube has only one dipole charge, and it can be
arranged to give a completely regular geometry in six dimensions. However, as explained in the
previous chapter, section 5.4, even if this solution is written as an almost-BPS solution, it still
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preserves four supersymmetries1. One can now perform a spectral flow on this solution exactly
as in Section 7.2.2 and obtain a floating-brane solution with an Israel-Wilson base that has V−
unchanged and V+ given by (7.2.19). The spectral flow transformation preserves the regularity
of the solution and replaces the supertube by a fluxed D6 brane, which is also perfectly regular
considered either as either a six-dimensional or as a five-dimensional bubbled geometry. Hence,
one obtains the smooth D6-D6 solution with non-trivial flux described above2.

One can take this procedure further, and consider two or three different types of supertube
in a GH geometry of the opposite orientation. Unlike the single supertube, this solution is
no longer BPS, as the holonomy of the base metric is inconsistent with the supersymmetry
projections associated with all the supertubes (the solution has three D2 and one D6 charge).

If one now makes several spectral flows to convert each species of supertube to fluxes sup-
ported by geometry, the result must be regular for exactly the same reason that the BPS
supertubes produce regular five-dimensional geometries after spectral flow: The almost-BPS
supertubes are locally identical to BPS supertubes and so the spectral flow cannot generate
singularities. The result of such a multiple spectral flow must therefore be a completely regu-
lar, non-BPS geometry with fluxes in five dimensions. We expect that these solutions will go
well beyond the Israel-Wilson class: Indeed, the metric coefficients of the base will generically
involve products of more than two functions. We also expect this method to yield large classes
of smooth horizonless non-BPS scaling solutions, which will be instrumental in extending the
fuzball proposal to non-BPS extremal black holes.

1Essentially because the supertube only has two D2 charges, that are mutually-BPS with respect to a D6
brane irrespective of its orientation.

2It is worth commenting on how much supersymmetry this solution preserves. On one hand, we have
obtained this solution by spectral flow from a supersymmetric solution. Since spectral flow is a combination of
coordinate transformations and dualities, one would expect the resulting solution to still be supersymmetric. On
the other hand, the resulting solution has an Israel-Wilson base, and, as proved in [42, 41], such solutions should
not be supersymmetric, since all supersymmetric solutions must have a Hyper-Kähler base. The resolution of
the puzzle is a generalization of that described in [101]: For these very special solutions the warp factors and
angular momentum vector are such that if one makes a coordinate transformation of the type ψ → ψ+αt, and
rewrites the metric as a time fibration over a four-dimensional base, this base space can be made hyper-Kähler.
Hence this particular floating-brane solution is secretly BPS.



Chapter 8

Bolt solutions

In this last chapter, we present new smooth, horizonless solutions of the floating brane equations
of chapter 6. The starting point of these solutions is a four-dimensional base space that,
instead of being hyper-Kähler, is a Euclidean four-dimensional black hole. Euclideanizing a
black hole transforms the event horizon into a regular bolt, an S2 at the center of the space.
One can then put some magnetic fluxes on this bolt and use it as a base to construct our
five-dimensional solution. We use this method to produce five-dimensional smooth solutions
starting from the Euclidean Schwarzschild, Kerr-Taub-Bolt, dyonic Reissner-Nordström and
Dyonic Kerr-Newman black hole. While the first two are Ricci-flat, the others are solutions to
the electrovac Einstein-Maxwell equations. We finally show that if the Euclidean black hole
is rotating, one can assume the base space to be ambipolar and still get a completely regular
solution.

8.1 Solution with a Ricci-flat base: Euclidean Schwarz-

schild and Kerr-Taub-Bolt

Both the BPS and the almost-BPS solutions are given by taking the base to be hyper-Kähler
with a self-dual curvature and then solving the linear system presented in chapter 6 [40, 85]:

Θ(I) = ε ⋆4 Θ(I) , (8.1.1)

∇̂2ZI = 1
2
εCIJK ⋆4 [Θ(J) ∧ Θ(K)] , (8.1.2)

dk + ε ⋆4 dk = εZIΘ
(I) . (8.1.3)

As we explained in chapter 6, one can obtain solutions to the equations of motion simply by
solving the BPS system (8.1.1)–(8.1.2) with any Ricci-flat base metric on ds2

4:

R̂ab = 0 . (8.1.4)

The most obvious such base is the Euclidean Schwarzschild metric, which we use in the
next subsection to generate new solutions. In subsection 8.1.2, we will extend this to the more
general Kerr-Taub-bolt solution.

142
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8.1.1 Adding fluxes to Euclidean Schwarzschild

The Euclidean Schwarzschild metric is given by:

ds2
4 =

(
1 − 2m

r

)
dτ 2 +

(
1 − 2m

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 . (8.1.5)

It is, of course, Ricci flat, and if one restricts to the region r ≥ 2m then the metric is globally
regular provided one periodically identifies the Euclidean time by:

τ ≡ τ + 8πm . (8.1.6)

Near r = 2m the manifold is then locally R
2 × S2 and at infinity it is asymptotic to R

3 × S1.
The “bolt” at the origin can be given a magnetic flux and we can take the ε-self-dual harmonic
two-forms to be:

Θ(I) = qI

( 1

r2
dτ ∧ dr + ε sin θ dθ ∧ dφ

)
, (8.1.7)

for some magnetic charges, qI . The B(I)’s associated potentials, verifying Θ(I) = dB(I), are

B(I) = qI

(1

r
dτ − ε cos θ dφ

)
. (8.1.8)

With this flux it is trivial to solve the second equation (8.1.2) and one finds

ZI = 1 − 1
2
CIJK

qJqK
m

1

r
. (8.1.9)

We have chosen the homogeneous solution so as to exclude all other electric sources for ZI and
to arrange that ZI → 1 as r → ∞.

The last equation (8.1.3) is equally elementary, and setting

k = µ dτ + ν dφ (8.1.10)

we find

µ = (ε+ α) (q1 + q2 + q3)
1

r
− 3ε

2m
q1q2q3

1

r2
+ γ , (8.1.11)

ν = α(q1 + q2 + q3)(β + cos θ) , (8.1.12)

where α, β and γ parameterize homogeneous solutions. These parameters must be chosen to
remove closed time-like curves (CTC’s) in (6.1.6). First, to avoid CTC’s on φ-circles one must
make sure that there are no Dirac strings in k, and hence α = β = 0. Similarly, there are
potential CTC’s around the small τ circles near r = 2m unless we choose γ so that µ = 0 at
r = 2m. Thus we must take ν = 0 and

µ = ε(q1 + q2 + q3)
(1

r
− 1

2m

)
− 3ε

2m
q1q2q3

( 1

r2
− 1

4m2

)
. (8.1.13)

The solution is now completely determined but it still remains to verify the absence of
CTC’s elsewhere. On the constant time slices the metric in the τ direction is M dτ 2 where
M ≡ Z−2r−4Q and

Q ≡ r4Z1Z2Z3

(
1 − 2m

r

)
− µ2r4 . (8.1.14)
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Figure 8.1: Plot of the scale,
√
M, of the compactification circle as a function of r/m. The three

plots, from top to bottom, correspond to q/m of 1/4, 1/2 and 3/4. Note that as one approaches the
upper bound (8.1.17) the circle does not grow uniformly but attains a maximum scale before decreasing
asymptotically.

This is a quartic function of r and must remain non-negative for 2m ≤ r < ∞ and this places
constraints on m and the qI . In addition, the ZI should remain positive definite for r > 2m.

To examine these conditions in more detail we simplify the analysis by taking qI = q > 0,
I = 1, 2, 3. The positivity of the ZI for r > 2m means that one must have:

q <
√

2m. (8.1.15)

To analyze the positivity of M, we first look at the behavior at infinity, where one has

M ∼ r−4Q ∼
(
1 − 3q

8m3
(q2 − 4m2)

)(
1 +

3q

8m3
(q2 − 4m2)

)
. (8.1.16)

For this to be positive, the two cubics in q must be positive and this implies the stronger
condition:

0 <
q

m
<

4√
3

sin
π

9
≈ 0.78986 . (8.1.17)

Note that the function M, and hence the condition above, do not depend on ε. More generally,
the quartic that sets the scale of the τ -circle is:

Q ≡ (r − 2m)
[(
r − q2

m

)3

− 9q2

64m6
(r − 2m)

(
(q2 − 4m2)r + 2mq2

)2]
. (8.1.18)

One can verify that this is indeed positive definite for 2m < r <∞ for q in the range (8.1.17).
It is interesting to note that (8.1.13) shows that µ asymptotes to a finite value as r → ∞.

One can undo the rotation of this frame by shifting τ → τ + at and the condition (8.1.17)
simply reflects the fact that this rotation is sub-luminal.

We have thus created a “magnetized bolt” solution in which fluxes have been added to
a pre-existing two-cycle. It is interesting to note that in the BPS “bubbled” solutions of
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[44, 45, 66, 55], presented in 1.4.3, the fluxes were an essential part of blowing up the two-
cycles and these bubbles would collapse without the fluxes. Another element of the BPS
bubbled solutions was the presence of an ambi-polar base metric where the metric on the four-
dimensional base changes sign but this sign change is canceled in the five-dimensional metric
by a simultaneous sign change in warp factor, Z. In more physical terms, there is also a direct
D-brane interpretation of the bubbling transition [44, 55].

The solution constructed here does not appear to have such a D-brane interpretation and
does not involve an ambi-polar base. One could try to see whether the ranges of parameters or
the range of r might be extended to give an ambi-polar four-dimensional base that still yields a
smooth Lorentzian five-dimensional solution. There are obvious possibilities, like taking m < 0
and trying to extend to r < 0 but such extensions do not lead to an overall sign change in
(8.1.5) and so cannot be canceled by the warp-factor Z. Thus, at least for this solution, the
standard Euclidean Bolt is simply decorated by fluxes to give a running Bolt solution with
electric and magnetic charges. We shall see later that there are richer possibilities once angular
momentum and a NUT charge are included.

Some Remarks on the Mass of the Running Bolt

The computation of the asymptotic charges, mass and angular momentum is resented in Ap-
pendix E. In this Appendix, we show that the mass M0 and the charges QI of this bolt solution
are related through

M0 ≡ (1 − γ2)−1/2(M − γQe) =
π

4G5

(
16m2 +

ε

4π2
(Q1 +Q2 +Q3)

)
. (8.1.19)

As we argued in chapter 6, the solutions in the floating brane ansatz have their mass being
linear with the charges. Nevertheless, the bolt in the middle of the space gives a new contribu-
tion to the mass, which becomes an affine function of the charges. This extra contribution has
really to be seen as a solitonic contribution, and is important for the following reason: if one
sees the running bolt solution as a microstate geometry corresponding to a black hole, the mass
of this black hole is not equal to the sum of the charges, and therefore will not be extremal. In
this sense, this new bolt solution is a non extremal solution.

More precisely, for ε = 1, equation (8.1.19) indicates that the total rest mass is simply the
sum of the mass of the uncharged bolt and the masses corresponding to the M2 branes. Hence,
if one could ascribe a putative solitonic charge to the uncharged bolt, this formula would look
very much like the mass of a BPS object. Furthermore, the fact that the M2 brane charge
enters linearly in the total mass is also consistent with the fact that a probe M2 brane feels no
force in this background.

For ε = −1 the situation is even more interesting. The mass now decreases linearly with
increasing the M2 charge. Hence, the mass formula is still linear, but the sign in front of the
M2 charges is negative! We are not aware of any other such mass formula in the literature.
One might object to this by noting that one can always flip the sign of M2 charges by reversing
some orientations; however, by flipping the signs of some of the qI one can change the sign of
some of the M2 charges. Hence the total mass can either decrease or increase with increasing
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the mass corresponding to the M2 charges. Alternatively, if one absorbes ε by an orientation
change, then the mass formula (3.29) is linear in the charges, and not in their absolute values
as for BPS systems.

The fact that the mass of the solutions can decrease with increasing charge and the fact
that M2 brane probes feel no force may lead one to believe naively that one could violate
energy conservation: one can bring an M2 brane adiabatically from the infinity to the core of
a solution, and the resulting solution will have a lower mass than the sum of the masses of the
two pre-merger components. However, this does not happen. The charge of the M2 brane probe
that feels no force is oriented oppositely to the M2 brane charge of this solution! Bringing in
this probe brane actually decreases the total M2 charge and therefore increases the mass of the
solution to the mass of the soliton plus the mass of the probe M2 one brought in adiabatically,
as expected.

Our analysis thus indicates that the uncharged bolt is the middle point of a family of
magnetized solutions that can have both larger and smaller rest masses, and that moreover
these masses can grow or decrease linearly with the M2 charges of the solution.

8.1.2 Adding fluxes to the Kerr-Taub-Bolt solution

The Euclidean Schwarzschild solution admits a very interesting generalization with additional
quantum numbers: The Euclidean Kerr-Taub-Bolt solution [107]. In this section we add fluxes
to the bolt and get a more general regular five-dimensional running Bolt solution. We will for
convenience fix the convention ε = +1 in the rest of the chapter.

8.1.3 The Euclidean Kerr-Taub-Bolt Solution

The four-dimensional metric is

ds2
4 = Ξ

(dr2

∆
+ dθ2

)
+

sin2 θ

Ξ
(αdτ + Prdφ)2 +

∆

Ξ
(dτ + Pθdφ)2 , (8.1.20)

where

∆ ≡ r2 − 2mr − α2 +N2 , Ξ ≡ Pr − αPθ = r2 − (N + α cos θ)2 ,

Pr ≡ r2 − α2 − N4

N2 − α2
, Pθ ≡ −α sin2 θ + 2N cos θ − αN2

N2 − α2
. (8.1.21)

This is a Ricci-flat metric where m is the mass, α is the angular momentum and N is the NUT
charge. If the metric is to be regular then these parameters are not independent, as we will see
in the following. At infinity the metric behaves as

ds2
4 ∼ dr2 + r2(dθ2 + sin2 θ dφ2) +

(
dτ̃ − (α sin2 θ + 2N(1 − cos θ)) dφ

)2
, (8.1.22)

with

τ̃ ≡ τ + 2Nφ − αN2

N2 − α2
φ . (8.1.23)
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Thus the metric is asymptotic to R
3 × S1 provided that φ has period 2π and the fibration of τ

over the two-sphere in R
3 is regular if τ is identified under shifts:

τ ≡ τ + 8Nπ . (8.1.24)

We now need to examine regularity at the points where some of the metric coefficients
vanish. First, at θ = 0, π, the circle with dτ = −Pθdφ pinches off. Substituting dτ = −Pθdφ
into the metric and ignoring the radial terms gives a metric:

Ξ
[
dθ2 +

1

Ξ2
sin2 θ

(
(Pr − αPθ) dφ

)2]
= Ξ

[
dθ2 + sin2 θ dφ2

]
, (8.1.25)

which is perfectly regular.
The second degeneracy appears at ∆ = 0. Define r± by ∆ = (r− r+)(r− r−) with r+ > r−:

r± = m ±
√
m2 −N2 + α2 . (8.1.26)

Since we are interested in Euclidean black-hole solutions with non-trivial bolts, we will consider
the situation where these roots are real:

m2 + α2 ≥ N2 . (8.1.27)

We have to arrange that the metric is regular at r → r+ and then restrict to r ≥ r+. As
usual, this will lead to a periodic identification in the τ coordinate. Before proceeding with the
analysis here, it is worth noting that in the usual analysis of the Kerr-Taub-Bolt metric [107],
one requires the metric to be positive definite and hence one requires Ξ > 0 and hence m > |N |.

However, if one’s purpose is to construct five-dimensional solutions, the four-dimensional
base can be ambi-polar and hence Ξ can be allowed to change sign. We will indeed find that
the warp factors also change sign to compensate for this and give a regular five-dimensional
solution. Thus we will not impose that m > |N |, but only (8.1.27).

To explore regularity at r = r+ it is useful to define:

Pr+ ≡ Pr|r=r+ = r2
+ − α2 − N4

N2 − α2
, κ ≡

∣∣∣r+ − r−
2Pr+

∣∣∣ . (8.1.28)

The circle that pinches off at r = r+ has dφ = −αdτ/Pr+. Substituting this into the metric
and expanding in x = (r − r+)1/2 one obtains:

4 Ξ

r+ − r−

[
dx2 + κ2x2dτ 2 + 1

4
(r+ − r−) dθ2

]
. (8.1.29)

This is regular as x→ 0 provided that τ is periodically identified according to:

τ ≡ τ +
2π

κ
, (8.1.30)

and hence the base space is smooth if

κ =
1

4|N | . (8.1.31)
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Figure 8.2: The three graphs are plots of m versus α, in units in which N = 1 (this choice can

always be made because the equations are homogeneous). The first shows the regions where Pr+ is

either positive (R1, in white) or negative (R2, in green). The grey area, No, is forbidden by the reality

condition, (8.1.27). The second and the third graph show the solutions of (8.1.32) and (8.1.33). In

the shaded (blue) areas the square root in equation (8.1.31) is equal to a negative expression. Hence,

the solutions that belong to these regions, or to the regions of the first graph where Pr+ has the wrong

sign, do not obey (8.1.31) and are “wrong branch” solutions. These solutions are represented using

dotted lines, while the physical solutions, that obey (8.1.31), are represented using continuous lines

and belong to the white areas.

This condition, together with (8.1.27) are the two necessary condition for absence of conical
singularities in the base. Hence, the ambi-polar Kerr-Taub-Bolt metrics that we will use to
generate running Bolt solutions depend on only two independent parameters.

We now explore the implications of equation (8.1.31) for the allowed range of N,m and α.
Since this equation only involves |N |, one can use the definition of κ to see that the sign of N
is irrelevant; hence we will assume in the following that N is positive.

One can now square the square roots in (8.1.31), and obtain a constraint that is cubic in
m. This constraint depends on the sign of Pr+: if Pr+ is positive, we have

16N(N2 − α2)2m3 − 4(5N6 − 8α2N4 + 2α4N2 + α6)m2

−16N(N2 − α2)3m+ 20N8 − 52α2N6 + 49α4N4 − 16α6N2 = 0 , (8.1.32)

while if Pr+ is negative equation (8.1.31) implies:

−16N(N2 − α2)2m3 − 4(5N6 − 8α2N4 + 2α4N2 + α6)m2

+16N(N2 − α2)3m+ 20N8 − 52α2N6 + 49α4N4 − 16α6N2 = 0 , (8.1.33)

which is the same as (8.1.32) but with m→ −m. Note that a solution to (8.1.32) or (8.1.33) is
not automatically a solution to (8.1.31). This only happens when two conditions are satisfied:
first, Pr+ must be respectively positive or negative; second, before squaring the square root in
(8.1.31) one has to insure that the expression to which this square root is equal is positive.
Hence, the cubic equations (8.1.32) and (8.1.33) contain “wrong branch” solutions, that do not
solve (8.1.31).

The details of the parameter ranges are shown in Figure 8.2. The first graph depicts the
regions in which Pr+ is positive or negative, and thus where we have to solve, respectively,
(8.1.32) or (8.1.33). For α < 1, each cubic has three real roots; for (8.1.32) two of them are
solutions to (8.1.31), and one lies on the “wrong branch;” for (8.1.33) two of them lie on the
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Figure 8.3: Plot of the values of m that give physical solutions of (8.1.31) for a given α, in units in

which N = 1. The solution has four disconnected branches: Branches I ,II and III go from α = 0 to

α = 1, diverging as α approaches 1. Branch IV starts from −∞ as α→ 1+ and approaches m = 2 as

α→ ∞. The intercepts, C and D, correspond, respectively, to the Taub-NUT and Taub-Bolt metrics.

“wrong branch.” For α > 1, there is one real root to the cubics, and the only physical solution
is the one with Pr+ > 0.

The complete solution to (8.1.31) is shown on Figure 8.3.
We would like to note that our analysis does not completely agree with the discussion in

[107]. Indeed [107] only analyzes solutions with positive Pr+, and thus misses some of the ambi-
polar branches of the five-dimensional solution. Furthermore, for α < 1 the solutions found
and plotted in [107] do not have quite the same shape as the ones in Figure 8.31.

At α = 0 one obtains two interesting particular solutions: the Taub-NUT solution, for
m = |N |, and the Taub-Bolt solution of [108] for m = 5/4N . It is worth noting that allowing
the metric to be ambi-polar (see section 8.3) extends the range of parameters significantly.
Indeed, forcing the four-dimensional metric to have a signature (+,+,+,+) imposes m > |N |,
and thus would forbid the complete branch II, and part of branches III and IV (see Figure 8.3).

Maxwell Fields on the Kerr-Taub-Bolt space

Introduce frames:

ê1 =
(Ξ

∆

) 1
2
dr , ê2 = Ξ

1
2dθ ,

ê3 =
sin θ

Ξ
1
2

(αdτ + Prdφ) , ê4 =
(∆

Ξ

) 1
2
(dτ + Pθdφ) , (8.1.34)

and define the self-dual and anti-self-dual two-forms by:

Ω± =
1

(r ∓ (N + α cos θ))2

[
ê1 ∧ ê4 ± ê2 ∧ ê3

]
. (8.1.35)

1We believe this discrepancy can be most easily explained by evolving Moore’s law backwards in time.
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These forms are harmonic and have potentials satisfying dA± = Ω±, of the form [109]:

A± = ∓ cos θ dφ − 1

(r ∓ (N + α cos θ))
(dτ + Pθdφ) . (8.1.36)

In the rest of this section we we will focus on the self-dual Maxwell fields and take:

Θ(I) = qI Ω+ . (8.1.37)

The extension to anti-self-dual Maxwell fields is rather straightforward.
Solving the second equation (8.1.2) yields:

ZI = 1 − 1
2
CIJK

qJqK
(m−N)

1

(r − (N + α cos θ))
. (8.1.38)

We have, once again, chosen the homogeneous solution so as to exclude all singular electric
sources for ZI and to arrange that ZI → 1 as r → ∞. Notice that the denominator of ZI is
one of the factors of Ξ and, if N ≥ 0, both this denominator and Ξ will change sign when r is
small1. This suggests that the five-dimensional metric could be regular when the base space is
ambi-polar.

The angular momentum vector

Solving the last equation (8.1.3) is a little non-trivial and we find it convenient to make the
Ansatz:

k = µ (dτ + Pθ dφ) + ν dφ , (8.1.39)

and solve the system for µ and ν. We find that this system may be recast in terms of a single
function, F , for which:

Ξµ − α ν = ∆∂rF , ν = sin θ ∂θF . (8.1.40)

The equation satisfied by F is:

∂r(∆∂rF ) +
1

sin θ
∂θ(sin θ ∂θF ) − 2

(r − (N + α cos θ))
(∆∂rF + α sin θ ∂θF ) (8.1.41)

= (q1 + q2 + q3)
(r +N + α cos θ)

(r − (N + α cos θ))
− 3 q1q2q3

(m−N)

(r +N + α cos θ)

(r − (N + α cos θ))2
.

Upon solving this equation we find the following solution for the angular momentum vector:

µ = γ

[
1 − 2N

(r +N + α cos θ)

]
− (q1 + q2 + q3)

r

Ξ
(8.1.42)

+
q1q2q3

2(m−N)2

[
m−N − 2α cos θ

Ξ
+

2(m−N)

(r − (N + α cos θ))2

]
, (8.1.43)

ν = γ α sin2 θ − α q1q2q3
(m−N)2

sin2 θ

(r − (N + α cos θ))
, (8.1.44)

1We will see later that the other factor in Ξ never vanishes for N > 0. If N < 0 one can produce a similar
result by starting with an anti-self-dual flux.
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where γ is an arbitrary constant that multiplies terms coming from the homogeneous solution
of (8.1.42). As with the Schwarzschild solution, we suppress homogeneous solutions that lead
to Dirac strings (and hence CTC’s) in the φ direction.

The parameter, γ, is now fixed by making sure that there are no CTC’s near r = r+. Since
∆ vanishes at r = r+, one can make the spatial part of the metric vanish by moving on the
circle with dφ = −αP−1

r dτ . It follows that, to avoid CTC’s, the angular momentum vector, k,
must vanish on this circle at r = r+ This means that we must impose Ξµ− αν = 0 at r = r+,
for any value of θ. This would follow from the first equation in (8.1.40) provided that F has
no singularity at ∆ = 0. However, F generically has terms proportional to log ∆. On the other
hand, the homogeneous solution to (8.1.42) (that yields the terms proportional to γ in (8.1.44))
also contains such terms:

Fhom = γ(r − α cos θ) +
(m−N)√

m2 −N2 + α2
(r+ log(r − r+) − r− log(r − r−)) . (8.1.45)

Hence, we can cancel the singular behavior at r = r+ by choosing the coefficient of the homo-
geneous solution:

γ =
(q1 + q2 + q3)

2 (m−N)
+

q1q2q3
4 (m−N)3

[m+N

r+
− 2

]
. (8.1.46)

The full non-singular solution than has:

µ = (∆ + α2 sin2 θ)

[
(q1 + q2 + q3)

2 (m−N) Ξ
+

3 q1q2q3
2 (m−N)3Ξ

(N
r+

− m−N

2 r
− 1
)

− q1q2q3
2 (m−N)2

1

r (r − (N + α cos θ))2

]

− 3 q1q2q3
4 (m−N)2

(
1 +

2N

(r − (N + α cos θ))

)(1

r
− 1

r+

)
(8.1.47)

ν = α

[
(q1 + q2 + q3)

2 (m−N)
− q1q2q3

(m−N)

(
1

(r − (N + α cos θ))

+
1

4 (m−N)2

(m+N

r+
− 2

))]
sin2 θ . (8.1.48)

Note that at r = r+, this solution is proportional to sin2 θ.

The asymptotic charges of the solution are computed in appendix E. As for the non-rotating
case, one can see that the mass is an affine function of the four charges (with the NUT charge),
the extra part being a solitonic contribution from the bolt.

M0 ≡ (1 − γ2)−1/2(M − γQe) =
4πN

G5

(m+N) +Qm +
1

16πG5

(Q1 +Q2 +Q3) . (8.1.49)

8.2 Solution with an Einstein-Maxwell base: Euclidean

Reissner-Nordström and Kerr-Newman

In the previous section we constructed five-dimensional solutions using Ricci-flat four-
dimensional Euclidean black holes: the Schwarzschild and Kerr-Taub-Bolt black holes. It is
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rather natural to try to extend this construction to black holes with electric charges, such as
the Euclidean Reissner-Nordström, and ultimately dyonic Kerr-Newman black holes. However
in this case, the base is not Ricci-flat anymore, but a solution of the Einstein-Maxwell “elec-
trovac” equations. Fortunately, the analysis of the equations of motion that we performed in
chapter 6 gave us a the generalisation of the equations (6.2.14)-(6.2.17) in the case of an elec-
trovac bases, (6.2.19)-(6.2.24). We already solved this system in the case of an Israel-Wilson
metric, in chapter 7, but we can use it here in the case of charges Euclidean black holes.

We first quickly recall the useful definitions and relevant equations derived in chapter 6: the
two-forms ω

(I)
− are defined from the magnetic field strength by

1

2

(
Θ(I) − ⋆4Θ

(I)
)
≡ CIJKZJω

(K)
− , (8.2.1)

and we assume

dk + ⋆4dk =
1

2

∑

I

ZI
(
Θ(I) + ⋆4Θ

(I)
)
, and ω

(1)
− = ω

(2)
− = 0 . (8.2.2)

The four-dimensional base space has to be a solution of Euclidean Einstein-Maxwell theory1

with (symbols with aˆlive on the four-dimensional base)

R̂µν =
1

2

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
, (8.2.3)

and
F = Θ(3) − ω

(3)
− . (8.2.4)

The rest of the equations of motion reduce to

∇̂2Z1 = ⋆4(Θ
(2) ∧ Θ(3)) , (Θ(2) − ⋆4Θ

(2)) = 2Z1 ω
(3)
− , (8.2.5)

∇̂2Z2 = ⋆4(Θ
(1) ∧ Θ(3)) , (Θ(1) − ⋆4Θ

(1)) = 2Z2 ω
(3)
− , (8.2.6)

∇̂2Z3 = ⋆4[Θ
(1) ∧ Θ(2) − ω

(3)
− ∧ (dk − ⋆4dk)] , (8.2.7)

dk + ⋆4dk =
1

2

3∑

I=1

ZI(Θ
(I) + ⋆4Θ

I) . (8.2.8)

We remind the reader that we fixed the convention to ε = +1. An important point about this
system of equations is that it can be solved in a linear fashion. In order to do that, one has
to solve the equations in the right order. The starting point is to choose a four-dimensional
metric and its associated two-form field strength that solve (8.2.3). Then using (8.2.4) one can

read off Θ(3) and ω
(3)
− from the field strength. Knowing these fields, (8.2.5) and (8.2.6) become

systems of two linear coupled equations for Z1 and Θ(2) and Z2 and Θ(1) respectively. Finally, k
and Z3 are solutions to the system of linear equations (8.2.7) and (8.2.8). We will show in the
next subsections how to solve these equations starting from the Euclidean Reisner-Nordström
and Euclidean Kerr-Newman-NUT backgrounds.

1The normalization of the flux in this equation is the one of chapter 6, but note that it differs from the
standard convention of the general relativity community.
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8.2.1 Solutions with Euclidean Reissner-Nordström base

The four-dimensional background

Our starting point in this section will be the Euclidean dyonic Reissner-Nordström background
[110]

ds2
4 =

(
1 − 2m

r
+
p2 − q2

r2

)
dτ 2 +

(
1 − 2m

r
+
p2 − q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2) , (8.2.9)

F =
2q

r2
dτ ∧ dr + 2p sin θ dθ ∧ dφ , (8.2.10)

where m corresponds to the mass, q to the electric charge and p to the magnetic charge of the
solution. This background solves the four-dimensional Einstein equations (8.2.3). It is useful
to rewrite the metric as

ds2
4 =

(r − r+)(r − r−)

r2
dτ 2 +

r2

(r − r+)(r − r−)
dr2 + r2(dθ2 + sin2 θdφ2) . (8.2.11)

The constants r± are the Euclidean analogs of the inner and outer horizon of the Reissner-
Nordström black hole

r± = m±
√
m2 − p2 + q2 . (8.2.12)

To render r± real we restrict to the range of parameters1 m2 > p2 − q2. Near the outer horizon
one can set

r = r+ +
r+ − r−

4r2
+

ρ2 , χ =
r+ − r−

2r2
+

τ , (8.2.13)

and rewrite the metric as

ds2
NH = dρ2 + ρ2dχ2 + r2

+(dθ2 + sin2 θdφ2) , (8.2.14)

which means that for a regular solution we should restrict to r ≥ r+ and the coordinate τ
should be made periodic

τ ∼ τ +
4πr2

+

r+ − r−
. (8.2.15)

With this identification the metric is asymptotic to R
2 × S2 for r → r+ (i.e. we have a bolt of

radius r+ [111]) and to R
3 × S1 for r → ∞. The angles θ and φ are the coordinates on S2. In

the next section we will solve the equations of motion of N = 2 five-dimensional supergravity
with this Euclidean metric as a base space.

1The case m2 = p2 − q2 corresponds to the extremal Euclidean Reissner-Nordström black hole. We discuss
this case in Appendix D.
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The five-dimensional supergravity solution

A convenient set of frames on the four-dimensional base is given by

ê1 =

(
1 − 2m

r
+
p2 − q2

r2

)1/2

dτ . ê2 =

(
1 − 2m

r
+
p2 − q2

r2

)−1/2

dr , (8.2.16)

ê3 = r dθ , ê4 = r sin θ dφ , (8.2.17)

and the usual self-dual and anti-self-dual two-forms are

Ω± = ê1 ∧ ê2 ± ê3 ∧ ê4 . (8.2.18)

With this in hand it is easy to show that

Θ(3) =
p+ q

r2
Ω+ , ω

(3)
− =

p− q

r2
Ω− . (8.2.19)

It will be useful to have the explicit expression for the potential B(3) satisfying Θ(3) = dB(3)

B(3) =
(p+ q)

r
dτ − (p+ q) cos θ dφ . (8.2.20)

The solution to equations (8.2.5) and (8.2.6) is

Z1 = 1 − 2q2(p+ q)

m

1

r
, Z2 = 1 − 2q1(p+ q)

m

1

r
, (8.2.21)

Θ(1) = f1(r)Ω+ + g1(r)Ω− , Θ(2) = f2(r)Ω+ + g2(r)Ω− , (8.2.22)

where

f1 =
2q1
r2

− 2q1(p
2 − q2)

mr3
, f2 =

2q2
r2

− 2q2(p
2 − q2)

mr3
, (8.2.23)

g1 =
(p− q)

r2
− 2q1(p

2 − q2)

mr3
, g2 =

(p− q)

r2
− 2q2(p

2 − q2)

mr3
. (8.2.24)

Note that with these functions fI(r) and gI(r) one can show that dΘ(I) = 0, which means that
locally one can express Θ(1) and Θ(2) in terms of potential one-forms, Θ(I) = dB(I). Explicitly,
these one-forms are

B(I) = KI dτ + aI , (8.2.25)

with

K1 =
2q1 + p− q

r
− 2q1(p

2 − q2)

mr2
, a1 = (−2q1 + p− q) cos θ dφ , (8.2.26)

K2 =
2q2 + p− q

r
− 2q2(p

2 − q2)

mr2
, a2 = (−2q2 + p− q) cos θ dφ . (8.2.27)
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To solve (8.2.7) and (8.2.8), we will use the Ansatz

k = µ(r)dτ + ν(θ)dφ . (8.2.28)

One can then show that
ν(θ) = ν0 + ξ cos θ , (8.2.29)

with ν0 and ξ constants. Then the problem reduces to a system of two coupled linear ordinary
differential equatons for µ(r) and Z3(r)

dµ

dr
= −

(
ξ

r2
+ Z1f1 + Z2f2 +

p+ q

r2
Z3

)
, (8.2.30)

∇̂2Z3 = 2

(
f1f2 − g1g2 +

ξ(p− q)

r4
− (p− q)

r2

dµ

dr

)
. (8.2.31)

A solution to these equations is given by

Z3 = 1−
(

4q1q2(m
2 − p2 + q2)

m3
+

2(p− q)(q + q1 + q2)

m

)
1

r
+

4q1q2(p
2 − q2)

m2

1

r2
, (8.2.32)

µ = (p+ q + 2(q1 + q2))

(
1

r
− 1

r+

)

−
(

2q1q2(p+ q)(3m2 − p2 + q2)

m3
+

(p2 − q2)(q + 2q1 + 2q2)

m

)(
1

r2
− 1

r2
+

)

+
4q1q2(p

2 − q2)(p+ q)

m2

(
1

r3
− 1

r3
+

)
. (8.2.33)

To arrive at this particular solution we have chosen

ν0 = ξ = 0 , → ν = 0 , (8.2.34)

which ensures that there are no closed time-like curves (CTCs) coming from the dφ2 term in the
five-dimensional metric, at θ = 0, π. We have also chosen the additive constant in the solution
for µ such that µ(r+) = 0, which ensures the absence of CTCs near the bolt. This implies that
µ has a non vanishing value γ at infinity,

lim
r→∞

µ = γ ≡ − 1

r+
(p+ q + 2(q1 + q2)) (8.2.35)

+
1

r2
+

(
2q1q2(p+ q)(3m2 − p2 + q2)

m3
+

(p2 − q2)(q + 2q1 + 2q2)

m

)

− 1

r3
+

4q1q2(p
2 − q2)(p+ q)

m2
,

this will be important in the calculation of the asymptotic charges of the five-dimensional
solution. Note also that we have set the constants terms in ZI to 1 by which we fix the
asymptotic values of the scalar fields1.

1In an eleven-dimensional uplift of our solution this choice will fix the asymptotic volumes of the two-cycles
of T 6.
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Figure 8.4: M as a function of ρ = r/r+ for four different values of Q/m. The curves correspond to
Q/m = (0.1, 0.2, 0.3, 0.4) from top to bottom.

An important difference between this solution and the magnetized Euclidean Schwarzschild
solution of the previous section is that the fluxes here are not self-dual. It is clear that if we set

q = p =
q̃3
2
, q1 =

q̃1
2
, q2 =

q̃2
2
, (8.2.36)

we will recover the five-dimensional solution based on the Euclidean Schwarzschild black hole1.
An important step in the analysis of the five-dimensional solution constructed above is to

ensure the global absence of CTCs. This means that for constant time slices one should make
sure that the coefficient of dτ 2 in the five-dimensional metric is non-negative and all ZI are
positive definite. To analyze this condition in an explicit example we will take

q = q1 = q2 = Q > 0 , p =
Q

2
. (8.2.37)

Then we have

r± = m±
√
m2 +

3Q2

4
, (8.2.38)

and the condition that Z1 and Z2 are positive for r ≥ r+ imposes

0 <
Q

m
<

√
3

2
≈ 0.8660 . (8.2.39)

Requiring that Z3 is positive for r > r+ leads to

0 <
Q

m
/ 0.7783 , (8.2.40)

1Note that all qI of the previous section should be identified with q̃I , this is due to the different conventions
in the normalization of the fluxes.
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which is clearly a stronger constraint. Finally we have to make sure that the coefficient of dτ 2

is non-negative

M ≡ 1

r2(Z1Z2Z3)2/3
[Z1Z2Z3(r − r+)(r − r−) − µ2r2] ≥ 0 . (8.2.41)

Expanding this expression for r → ∞ we find a sextic algebraic inequality in Q/m, which can
be solved numerically. The allowed range of parameters coming from this constraint is

0 <
Q

m
/ 0.4118 , 0.8811 /

Q

m
/ 1.2587 . (8.2.42)

The bottom line is that for the choice of parameters (8.2.37) the five-dimensional solution is
completely regular and there are no CTCs (globally) if

0 <
Q

m
/ 0.4118 . (8.2.43)

Some plots of M for different values of Q/m are presented in figure 8.4. We have performed
a detailed numerical analysis for a number of other choices for the parameters (p, q, q1, q2) and
the conclusions are qualitatively the same. Namely, there is a region in parameter space in
which the five-dimensional solution is regular and has no global CTCs.

The relation between the mass and the charges of the solution, as shown in appendix E, is

M0 =
1

16πG5

(
32π2r2

+m

r+ − r−
+Q1 +Q2 +Q3

)
. (8.2.44)

It is again linear in the charges, with an extra solitonic contribution.

8.2.2 Adding rotation and NUT charge

The four-dimensional background

We finally make a last generalization to include an angular momentum parameter α and a NUT
charge N . The metric and the two-form flux are

ds2
4 =

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ
(αdτ + Prdφ)2 +

∆

Σ
(dτ + Pθdφ)2 , (8.2.45)

F =
p+ q

[r − (N + α cos θ)]2
Ω+ − p− q

[r + (N + α cos θ)]2
Ω− , (8.2.46)

where we defined the functions

Pr = r2 − α2 − N4

N2 − α2
, Pθ = 2N cos θ − α sin2 θ − αN2

N2 − α2
, (8.2.47)

∆ = r2 − 2mr +N2 − α2 + p2 − q2 Σ = Pr − αPθ = r2 − (N + α cos θ)2 . (8.2.48)
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The (anti-)self-dual two-forms Ω± are

Ω± = ê1 ∧ ê4 ± ê2 ∧ ê3 , (8.2.49)

with the four-dimensional vielbeins

ê1 =

(
Σ

∆

)1/2

dr , ê2 = (Σ)1/2 dθ , (8.2.50)

ê3 =
sin θ

(Σ)1/2
(αdτ + Prdφ) , ê4 =

(
∆

Σ

)1/2

(dτ + Pθdφ) . (8.2.51)

The four-dimensional metric (8.2.45) and gauge field (8.2.46) are solutions to the Einstein-
Maxwell equations (8.2.3). The parameters m, q and p still correspond respectively to the
mass, electric charge and magnetic charge of the four-dimensional Euclidean solution. The
new parameters are the NUT charge, N , and the angular momentum parameter, α. This
background is a generalization of the familiar Kerr-Newman solution [112] to which we have
added magnetic and NUT charges. Note also that the Kerr-Newman-NUT metric (8.2.45) has
exactly the same form as the uncharged Kerr-Taub-Bolt metric [107], the only difference is in
the function ∆. One can recover the Kerr-Taub-Bolt metric of the previous section by taking
p = q. The Euclidean analogs of the inner and outer horizon of the black hole are given by the
zeroes of ∆

∆ = (r − r+)(r − r−) , r± = m±
√
m2 −N2 + α2 − p2 + q2 . (8.2.52)

The analysis of the regularity of this four-dimensional background is exactly the same as the
one performed before for the Kerr-Taub-Bolt solution. We will not reproduce it here and will
present only the conclusions. We are interested in the case where the roots r± of ∆ are real, in
order to have a non-trivial bolt. This imposes

m2 ≥ N2 − α2 + (p2 − q2) . (8.2.53)

Then, the metric is regular provided that

r ≥ r+ , φ ∼ φ+ 2π , τ ∼ τ + 8πN ∼ τ +
2π

κ
, (8.2.54)

where we defined

Pr+ ≡ Pr(r = r+) = r2
+ − α2 − N4

N2 − α2
, κ ≡

∣∣∣r+ − r−
2Pr+

∣∣∣ . (8.2.55)

Regularity imposes two a priori independent periodicities for the coordinate τ : τ ∼ τ + 8πN
comes from imposing regularity for r → ∞ and τ ∼ τ + 2π

κ
is a regularity condition at r = r+.

To have a globally regular four-dimensional base with no conical singularities we have to impose
the following constraint

κ =
1

4|N | . (8.2.56)
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Figure 8.5: The two graphs represented here are plots of m as a function of α, in units in which N = 1

(this choice can always be made because the equations are homogeneous). They show the solutions to

(8.2.56) for p2 − q2 = 2 (left) and p2 − q2 = −3/4 (right). As the value of p2 − q2 changes, the

different branches of the solution evolve and some non trivial differences can be seen. For example,

for p2 − q2 = 2, one can see that there is only one possible value of m for α = 0, in contrast with the

three different possibilities for p2 − q2 = −3/4. The important feature is that for any given value of

p2 − q2, there will always be a solution to (8.2.56).

It is imporant to mention that if we want this metric to have signature (+,+,+,+), in order for
it to be a regular Euclidean four-dimensional metric, one has to impose that Σ remains positive,
and this will restrict the allowed range of parameters. However, since we are interested here in
constructing a regular five-dimensional solution starting from a four-dimensional base, we do
not have to impose that the four-dimensional signature stays positive. The only requirement is
that we end up with a regular Lorentzian five-dimensional solution, we will discuss this point in
section 8.3. Therefore, the physical constraints on the parameters of the solutions are (8.2.53)
and (8.2.56). Before constructing the five-dimensional solution, it is worth analyzing what
(8.2.56) imposes on the parameters m, N , α, p and q.

One can easily see, using the definition of κ, that (8.2.56) only involves |N | and |α|. We will
therefore assume N and α to be positive to study this constraint. Note also that p and q only
appear in the combination p2 − q2. In order to solve (8.2.56), the simplest approach is to get
rid of the square roots in (8.2.56), and this gives a constraint that is cubic in m, and quadratic
in p2 − q2. This constraint depends on the sign of Pr+: if Pr+ is positive, we have

16N(N2 − α2)2m3 − 4(N2 − α2)(5N4 − 3N2α2 − α4)m2

−16N(N2 − α2)2(N2 − α2 + p2 − q2)m+ 20N8 − 52N6α2 + 49N4α4 − 16N2α6

+2N2(p2 − q2)(N2 − α2)(10N2 − 9α2) + (p2 − q2)2(N2 − α2)2 = 0 , (8.2.57)

if Pr+ is negative equation (8.2.56) implies

−16N(N2 − α2)2m3 − 4(N2 − α2)(5N4 − 3N2α2 − α4)m2

+16N(N2 − α2)2(N2 − α2 + p2 − q2)m+ 20N8 − 52N6α2 + 49N4α4 − 16N2α6

+2N2(p2 − q2)(N2 − α2)(10N2 − 9α2) + (p2 − q2)2(N2 − α2)2 = 0 , (8.2.58)
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which is the same as (8.2.57) but with m → −m. Note that a solution to (8.2.57) or (8.2.58)
is not automatically a solution to (8.2.56). Indeed, one has first to make sure to solve either
(8.2.57) or (8.2.58) in the domains where Pr+ is respectively positive or negative; secondly, by
squaring the square roots, one has to insure that the expression to which this square root is
equal is positive. We performed a detailed analysis of these relations for many different values
of the parameters, including p2 − q2. Our analysis shows that, even if the explicit form of the
branches of the solutions can differ quite a lot, there are solutions to (8.2.56) for any value of
p2−q2. For illustration, we present in Figure 8.5 the solution to (8.2.56) for two different values
of p2 − q2.

The five-dimensional supergravity solution

We can use the regular four-dimensional electrovac solution from the previous section to con-
struct a five-dimensional supergravity solution by solving the equations from Section 2.2. From
the four-dimensional solution one can read off

Θ(3) =
p+ q

[r − (N + α cos θ)]2
Ω+ , ω

(3)
− =

p− q

[r + (N + α cos θ)]2
Ω− . (8.2.59)

These two-forms are d-closed, and thus (at least locally) have corresponding one-form potentials

Θ(3) = (p+ q) dA+ , ω
(3)
− = (p− q) dA− , (8.2.60)

which are given by

A± = − 1

r ∓ (N + α cos θ)
(dτ + Pθdφ) ∓ cos θ dφ . (8.2.61)

We now want to solve (8.2.5) and (8.2.6). As noted above, once we know the four-dimensional

base space, Θ(3) and ω
(3)
− , (8.2.5) is a coupled system of two linear equations for Z1 and Θ(2).

Defining

Θ(2) = f2(r, θ) Ω+ + g2(r, θ) Ω− , (8.2.62)

(8.2.5) can be rewritten as

∇̂2Z1 =
2f2(p+ q)

[r − (N + α cos θ)]2
, (8.2.63)

g2 =
p− q

[r + (N + α cos θ)]2
Z1 .

The solution to this system is given by

Z1 = 1 − 2q2(p+ q)

m−N

1

r − (N + α cos θ)
, (8.2.64)

f2 =
2q2

[r − (N + α cos θ)]2
− 2q2(p

2 − q2)

m−N

1

[r−(N + α cos θ)]2[r+(N + α cos θ)]
,(8.2.65)

g2 =
p− q

[r + (N + α cos θ)]2
− 2q2(p

2 − q2)

m−N

1

[r−(N + α cos θ)][r+(N + α cos θ)]2
. (8.2.66)
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Similarly, (8.2.6) is solved by

Z2 = 1 − 2q1(p+ q)

m−N

1

r − (N + α cos θ)
, (8.2.67)

f1 =
2q1

[r − (N + α cos θ)]2
− 2q1(p

2 − q2)

m−N

1

[r−(N + α cos θ)]2[r+(N + α cos θ)]
,(8.2.68)

g1 =
p− q

[r + (N + α cos θ)]2
− 2q1(p

2 − q2)

m−N

1

[r−(N + α cos θ)][r+(N + α cos θ)]2
, (8.2.69)

and q1 and q2 are constants related to the electric charges of the solution1.
One can show that the 2-forms Θ(I), I = 1, 2, are d-closed, and the corresponding one form

potentials, B(I), are given by

B(I) = 2qI A+ + (p− q)A− +
2qI(p

2 − q2)

m−N

1

Σ
(dτ + Pθ dφ) . (8.2.70)

We now have to solve the last system of equations (8.2.7), (8.2.8), to find Z3 and the angular
momentum, k, of the solution. We choose the following Ansatz for k

k = µ(r, θ) (dτ + Pθdφ) + ν(r, θ) dφ . (8.2.71)

After some work one finds

dk =
(
∂rµ− α

Σ
∂rν
)
ê1 ∧ ê4 +

∆1/2

Σ sin θ
∂rν ê

1 ∧ ê3

+
1

Σ sin θ
(µ ∂θPθ + ∂θν) ê

2 ∧ ê3 +
∂θ(Σµ− αν)

Σ ∆1/2
ê2 ∧ ê4 . (8.2.72)

Equation (8.2.8) imposes a relation between the functions µ and ν

∆∂rν = sin θ ∂θ(Σµ− αν) . (8.2.73)

Using this constraint one can express µ and ν in terms of a single function F (r, θ) as

µ =
∆ ∂rF + α sin θ ∂θF

Σ
, ν = sin θ ∂θF . (8.2.74)

With this in mind one can rewrite (8.2.7) and (8.2.8) as

D+F = Z1f1 + Z2f2 +
(q + p)Z3

[r − (N + α cos θ)]2
, (8.2.75)

∇̂2Z3 = 2(f1f2 − g1g2) +
2(p− q)

[r + (N + α cos θ)]2
D−F , (8.2.76)

1Note that, as in the Reissner-Nordström solution, our qI differ from the ones of the previous section by a
factor of 2.
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where we have defined

D±F =
1

Σ

[
∂r(∆∂rF ) ± ∂θ(sin θ ∂θF )

sin θ
− 2

r ∓ (N + α cos θ)
(∆∂rF + α sin θ ∂θF )

]
. (8.2.77)

These equations may look complicated, but one can still find an analytic solution. The following
is a solution to (8.2.75)

Z3 = 1 − 4q1q2
(m−N)

1

r − (N + α cos θ)
+

4q1q2(p
2 − q2)

(m−N)2

1

Σ

+

(
4q1q2(p

2 − q2)

(m−N)3
− 2(q + q1 + q2)(p− q)

m−N
+ λ(m−N)

)
1

r + (N + α cos θ)
, (8.2.78)

F = Fnonhom + Fhom , (8.2.79)

where

Fnonhom =
2q1q2(p+ q)

(m−N)2
log

[
∆1/2 sin θ

[r − (N + α cos θ)]2

]

− 2q1 + 2q2 + p+ q

r+ − r−
[r+ log(r − r+) − r− log(r − r−)]

− p2 − q2

r+ − r−

(
2q1q2(p+ q)

(m−N)3
− q + 2q1 + 2q2

m−N

)
log

[
r − r+
r − r−

]
− λ

p+ q

2
log

(
sin θ

∆1/2

)
, (8.2.80)

and

Fhom = γ

(
[r − (N + α cos θ)] +

2(m−N)

r+ − r−
(r+ log(r − r+) − r− log(r − r−))

− p2 − q2

r+ − r−
log

r − r+
r − r−

)
+ κ

(
1

2
log(∆) − log(sin θ) +

m−N

r+ − r−
log

r − r+
r − r−

)
. (8.2.81)

The function Fhom satisfies the equation

D+Fhom = 0 . (8.2.82)

In the expressions above λ, γ and κ are three constants. The functions Z3 and F presented
above are also solutions to the inhomogeneous Laplace equation for Z3, (8.2.76), if one imposes
the following relation between the constants

2Nγ − κ = −λ
2

(
m2 −N2

p− q
− (p+ q)

)
− 2q1q2(p+ q)(m+N)

(m−N)3
+

2N(q + q1 + q2)

m−N
. (8.2.83)

We now have to make sure that there are no CTCs in the solution. First we rewrite k as

k =
1

Σ
((Σµ− αν)(dτ + Pθ dφ) + ν(αdτ + Pr dφ)) . (8.2.84)
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To avoid CTCs, one has to make sure that ν vanishes for θ → 0, π and that Σµ− αν vanishes
for r → r+. Using (8.2.74), these conditions lead to the following constraints

κ = −λ p+ q

2
+

2q1q2(p+ q)

(m−N)2
, (8.2.85)

λ =
4N(p− q)

p2−q2−2(m+N) r+

(
2q1q2(p+ q)(m+N)

(m−N)4
− (q1 + q2)(p

2 − q2)

(m−N)3
+

(p− q) r+
(m−N)2

)
.(8.2.86)

These relations, together with (8.2.83), allow to solve for the constants (λ, κ, γ) in terms of the
parameters of the four-dimensional base. The explicit form of µ and ν is

µ = γ − 2Nγ

r + (N + α cos θ)
− 4q1q2(p+ q)

(m−N)2

∆ + α2 sin2 θ

[r − (N + α cos θ)]2[r − (N + α cos θ)]

−
(

2q1q2(p+ q)

(m−N)3
(m2 −N2 + p2 − q2) − (p2 − q2)

q + 2q1 + 2q2
m−N

+ λ
p+ q

2
(m−N)

)
1

Σ

+

(
4q1q2(p+ q)

(m−N)2
− (2q1 + 2q2 + p+ q)

)
r

Σ
, (8.2.87)

ν =

(
γ − 4q1q2(p+ q)

(m−N)2

1

r − (N + α cos θ)

)
α sin2 θ , (8.2.88)

with λ given by (8.2.86) and γ by

γ =
q + q1 + q2
m−N

− 2q1q2(p+ q)

(m−N)3
− λ

m2 −N2

4N(p− q)
. (8.2.89)

Note that the sign of γ and µ in the Kerr-Newman-NUT solution is different from the one for the
Reissner-Nordström solution due to the different choice of orientation of the four-dimensional
base.

The parameters of the five-dimensional solution should be chosen such that there are no
global CTCs. This analysis is rather lengthy and unilluminating, but it suffices to say that one
can always find a choice (or range) of parameters for which the solution is regular and free of
global CTCs. As we will see in the next subsection, this range of parameters is even bigger
than one could naively expect, because the four-dimensional metric can change signature while
the complete five-dimensional solution remains regular and free of CTCs.

The relation between the mass and the charges of the solution, as shown in appendix E, is

M0 ≡ (1 − γ2)−1/2(M − γQe) =
π

G5κ
(m+N) +Qm +

1

16πG5

(Q1 +Q2 +Q3) . (8.2.90)

One can verify that it is still linear in the four charges, with an solitonic contribution.

8.3 Bolt solutions and ambipolar bases

In this final section, we show how the Kerr-Taub-Bolt can be made ambipolar while keeping the
five-dimensional solution completely regular. This also happens for the Kerr-Newman metric,
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that we just presented, but the story for the Kerr-Newman metric almost exactly parallels the
one for the Kerr-Taub-Bolt metric, and we therefore choose not to present it here, but will only
explain how it differs from the Kerr-Taub-Bolt case.

The Kerr-Taub-Bolt metric (8.1.20) can be recast in the form

ds2
4 = V −1(dτ + P ′

θdφ)2 + V
(∆θ

∆
dr2 + ∆θdθ

2 + ∆ sin2 θdφ2
)
, (8.3.1)

with

∆θ = ∆ + α2 sin2 θ , V =
Ξ

∆θ

, P ′
θ = Pθ + α

Ξ

∆θ

sin2 θ . (8.3.2)

In this form, we see that if Ξ becomes negative, the signature changes from (+,+,+,+) to
(−,−,−,−). If one is interested in four-dimensional Euclidean metrics, one must require Ξ > 0
and thus, keeping in mind that one always has r ≥ r+, imposes m > |N |. However, we are
interested in regular solutions of five-dimensional supergravity, and as it is well-established, such
solutions can be obtained from four-dimensional base spaces that have such signature changes
[43, 44, 45, 66]. We already discussed such ambipolar BPS solutions in the first chapter, section
1.4.3, of this thesis. We now investigate this possibility in more detail for our non-BPS solutions,
and for simplicity we will assume N > 0.

The five-dimensional metric is

ds2 = −Z−2(dt+ k)2 + Z V −1(dτ + P ′
θdφ)2 + Z V ds2

3 , (8.3.3)

with ds2
3 = ∆θ

∆
dr2 + ∆θdθ

2 + ∆ sin2 θdφ2. The only factor in V that can change sign is Ξ:

Ξ ≡ r2 − (N + α cos θ)2 = (r − (N + α cos θ))(r + (N + α cos θ)) . (8.3.4)

It is easy to see that because N > 0, the inequality (8.1.27) implies that the second factor,
(r+ (N + α cos θ)), is always positive1 and so Ξ changes sign when (r− (N + α cos θ)) changes
sign. We therefore define

η ≡ (r − (N + α cos θ)) . (8.3.5)

As η → 0, we have

Ξ = 2(N + α cos θ) η (1 +
1

2(N + α cos θ
η) +O(η3) , (8.3.6)

∆θ = 2(N −m)(N + α cos θ)(1 +
N + α cos θ −m

(N −m)(N + α cos θ)
η) +O(η2) ,

ZI =
CIJK

2

qJqk

N −m

1

η
(1 − CIJK

2

N −m

qJqK
η) +O(η) ,

µ = − q1q2q3

N −m

1

η2

(
1 +

(
− m−N − 2α cos θ

4(N −m)(N + α cos θ)
+

(q1 + q2 + q3)(N −m)

2q1q2q3

)
η

)
+O(1) .

1It might appear that when α > N this term can also become negative. However, the range of r is r ≥ r+,
and one can check straightforwardly using the regularity constraints that this implies (r + (N + α cos θ)) > 0.
For the Kerr-Newman black hole, this will however not be the case anymore, because of the new p2 − q2

contribution in ∆. In this generalised case, one will therefore have to restrict the regime of parameters to forbid
(r + (N + α cos θ)) to vanish.
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The first possible divergences can come from the coefficient in front of the three-dimensional
metric, ZV . But as η → 0,

ZV =
(q1q2q3)2/3

(N −m)2
+O(η) (8.3.7)

which is perfectly regular. The factor of Z/V ∼ η−2 in front of the fiber metric is potentially
more troublesome:

Z

V
=

(q1q2q3)2/3

η2
(8.3.8)

+

(
(N −m)(q1 + q2 + q3)

3(q1q2q3)1/3
− (q1q2q3)2/3

2(N + α cos θ)

(
1 +

2(N −m+ α cos θ)

(N −m)

)) 1

η
+O(1) ,

and thus gττ appears to blow up at η = 0. However, there is a similar set of terms coming from
−Z−2(dt+ k)2 and we find that these cancel both the leading and the subleading divergences,
and gττ has a finite value as η = 0. Finally, one can also verify that the off-diagonal terms gtτ
and gtφ are finite at η = 0.

This cancellation of singular terms and the ultimate regularity of the metric exactly parallels
the story for the bubbled BPS solutions [43, 44, 45, 66]. Thus, when Ξ changes sign, the
ambi-polar base metric leads to a regular five-dimensional metric and therefore, as described
earlier, one can allow a wider range of parameters than merely m > |N | and still get a regular,
Lorentzian metric in five dimensions.

The analysis that we performed so far ensures that the five-dimensional solution is regular
near the η = 0 surface despite the fact that the four-dimensional base changes signature and
seems to be very pathological. We have not presented a detailed analysis of the conditions
imposed by global absence of CTCs. Once we have checked that all the coefficients remain
regular as one crossed the η = 0 surface, one still has to verify the positivity of the spacelike
metric coeficients, to ensure the absence of CTCs. We do not perform this complete analysis
here, but only verify that the ZI ’s remain always positive. They are given by

ZI = 1 − CIJK
2

qJqK
m−N

1

η
. (8.3.9)

We assume for simplicity the all the qI ’s are positive. Ifm > N , then the second term is negative,
but η cannot go to zero. One can therefore find parameters such that ZI always stays positive
(and finite). If however m < N , then η can diverge. But in this case −CIJKqJqK/2(m−N) is
a positive quantity, and thus ZI diverges but has the sign of η. From the previous singularity
analysis, it follows that the physical quantities like the volume of the T 2 tori or ZV will stay
finite and positive, and the solution will be causal.



Appendices

Appendix A. Three charge solutions and T-duality

In this Appendix we give the details of the T-duality transformations leading to the solutions
presented in section 1.3. The T-duality rules, presented in 1.1.2, are derived in [113] and can
be considered a generalization of the Buscher rules [114].

Compactification along x9

The first step is to compactify the eleven-dimensional solution, presented in Section 2, along
x9, in this way we obtain the following combination of “electric”1

N1 : D2 (56) N2 : D2 (78) N3 : F1 (z) (A.1)

and “dipole” branes

n1 : D4 (y78z) n2 : D4 (y56z) n3 : NS5 (y5678) (A.2)

in Type IIA. From now on we will denote x10 = z. The ten-dimensional string frame metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

√
Z1Z2

Z3

dz2+

√
Z2

Z1

(dx2
5+dx

2
6)+

√
Z1

Z2

(dx2
7+dx

2
8) (A.3)

The dilaton and the Kalb-Ramond field are

eΦ =

(
Z1Z2

Z2
3

)1/4

, B = −A(3) ∧ dz . (A.4)

The RR (“electric”) forms are

C(1) = 0 , C(3) = A(1) ∧ dx5 ∧ dx6 + A(2) ∧ dx7 ∧ dx8 , (A.5)

and the four-form field strength is2

F̃ (4) = dC(3) + dB ∧ C(1) = A(1) ∧ dx5 ∧ dx6 + dA(2) ∧ dx7 ∧ dx8 (A.6)

= dF (1) ∧ dx5 ∧ dx6 + F (2) ∧ dx7 ∧ dx8 , (A.7)

1We are choosing x9 to be the M-theory circle in order to match the conventions in the literature for the
global signs of the B-field and the RR potentials for the BMPV black hole [60] and the supersymmetric black
ring solutions [59].

2Note that we are using the notation of [35] F̃ (4) = dC(3) + dB ∧ C(1).
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where we have used the notation F (I) = dA(I). Now we will perform a chain of T-dualities in
order to arrive at the desired frame.

T-duality along x5

A T-duality along the x5 direction brings us to Type IIB with the following sets of “electric”

N1 : D1 (6) N2 : D (578) N3 : F1 (z) (A.8)

and “dipole” branes

n1 : D5 (y578z) n2 : D3 (y6z) n3 : NS5 (y5678) . (A.9)

The metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+k)2+
√
Z1Z2ds

2
4+

√
Z1Z2

Z3

dz2+

√
Z2

Z1

dx2
6+

√
Z1

Z2

(dx2
5+dx

2
7+dx

2
8) . (A.10)

The other NS-NS fields are

eΦ =

(
Z2

1

Z2
3

)1/4

, B = −A(3) ∧ dz . (A.11)

The RR field strengths are

F (3) = −F (1) ∧ dx6 ,

F̃ (5) = F (2) ∧ dx5 ∧ dx7 ∧ dx8 + ⋆10(F (2) ∧ dx5 ∧ dx7 ∧ dx8) ,

(A.12)

where in the expression for F̃ (5) we have added the Hodge dual piece by hand to ensure self-
duality [115]. Note that if one is working in the “democratic formalism” (i.e. with both electric

and magnetic field strengths) F̃ (5) will be automatically self-dual, however since we have chosen
to T-dualize explicitly only the electric field strengths we have to add the self-dual piece by hand
whenever we encounter a five-form field strength after T-dualizing a four-form field strength.

Using the form of the ten-dimensional metric (A.10) one can show that

⋆10 (dA(2) ∧ dx5 ∧ dx7 ∧ dx8) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (dA(2) ∧ dz ∧ dx6) , (A.13)

where ⋆5 is the Hodge dual on the five-dimensional subspace given by the metric

ds2
5 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 . (A.14)

T-duality along x6
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Now perform T-duality along x6 to get

N1 : D0 N2 : D4 (5678) N3 : F1 (z) (A.15)

“electric”
n1 : D6 (y5678z) n2 : D2 (yz) n3 : NS5 (y5678) (A.16)

and “dipole” branes in Type IIA. The metric is

ds2
10 = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3

dz2 +

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) . (A.17)

The dilaton and the Kalb-Ramond fields are

eΦ =

(
Z3

1

Z2Z2
3

)1/4

, B = −A(3) ∧ dz . (A.18)

The RR field strengths are

F (2) = −F (1) , F̃ (4) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) ∧ dz . (A.19)

Since we are interested in studying probe two charge supertubes in this background, we will
also need the RR potentials since they enter the Wess-Zumino action of the supertube.

Finding the RR and NS-NS potentials in the D0-D4-F1 frame

If everything is consistent, then the Bianchi identities for the field strengths should be
satisfied. For the solution given by (1.3.22)–(1.3.24), the non-trivial Bianchi identity is:1

dF̃ (4) = −F (2) ∧ dB . (A.20)

Indeed we can use the BPS equations to show that

dF̃ (4) = −d
((

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2))

)
∧ dz

(A.21)

= −
[
d

(
1

Z1Z3

)
∧ dk ∧ (dt+ k) − d

(
(dt+ k)

Z1

)
∧ Θ(3) (A.22)

−d
(

(dt+ k)

Z3

)
∧ Θ(1) + Θ(3) ∧ Θ(1)

]
∧ dz .

On the other hand

F (2) ∧ dB = dA(1) ∧ dA(3) ∧ dz
(A.23)

=

[
d

(
1

Z1Z3

)
∧ dk ∧ (dt+ k) − d

(
(dt+ k)

Z1

)
∧ Θ(3) (A.24)

−d
(

(dt+ k)

Z3

)
∧ Θ(1) + Θ(3) ∧ Θ(1)

]
∧ dz .

1See [35] p. 86.
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So the Bianchi identity is obeyed and it can be checked in a similar manner that the equations of
motion of type IIA supergravity are obeyed. Thus confirms the consistency of our calculations.

We will now find the RR three-form potential C(3) in the same duality frame. It satisfies
the following differential equation

dC(3) ≡ F̃ (4) + C(1) ∧H(3) . (A.25)

Note that this depends upon a gauge choice for C(1), we choose a gauge in which C(1) is vanishing
at asymptotic infinity, namely1

C(1) = −A(1) − dt . (A.26)

Computing explicitly one finds

dC(3) =
[(

− ⋆4dZ2 + B(1) ∧ Θ(3)
)

− d
(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)]

∧ dx5 , (A.27)

and hence
C(3) = −

(
γ + Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)
∧ dx5 , (A.28)

where
dγ =

(
⋆4 dZ2 − B(1) ∧ Θ(3)

)
. (A.29)

So the calculation boils down to integrating for the 2-form γ. Up to this stage we have not
assumed any particular form of the four-dimensional base space. If this space is Gibbons-
Hawking then the equation for γ can be integrated explicitly. Using the BPS supergravity
solutions presented in section 1.4.3 it is not hard to show that

⋆4dZ2 − B(1) ∧ Θ(3) =
(
−∂aZ2 +K1∂a(V

−1K3)
) 1

2
ǫabc(dψ + A) ∧ dyb ∧ dyc

− ξ(1)
a

(
∂b(V

−1K3)
)
(dψ + A) ∧ dya ∧ dyb

+ V
(
~ξ(1) · ~∇(V −1K3)

)
dy1 ∧ dy2 ∧ dy3 . (A.30)

Recall that Z2 = L2 + V −1K1K3 and define ~ζ by:

~∇× ~ζ ≡ −~∇L2 , (A.31)

then using

Ω
(a)
± = ê1 ∧ êa+1 ± 1

2
ǫabcê

b+1 ∧ êc+1 , (A.32)

one can show that:

⋆4dZ2 − B(1) ∧ Θ(3) = d
[(

− ζa − V −1K3ξ(1)
a

)
Ω

(a)
−
]

−
(
V ~∇ · ~ζ + K3 ~∇ · ~ξ(1)

)
dy1 ∧ dy2 ∧ dy3 . (A.33)

The last term is a multiple of the volume form on R
3 and so is necessarily exact, however, it

can be simplified if we chose a gauge for ~ξ(1) and ~ζ:

~∇ · ~ζ = ~∇ · ~ξ(1) = 0 . (A.34)

1We have fixed ZI ∼ 1 + O(r−1).
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Then one has:
γ = −

[(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
−
]
. (A.35)

Finally, let ~ri = (y1 − ai, y2 − bi, y3 − ci) and let F ≡ 1
ri

and then define ~w by ~∇× ~w ≡ −~∇F ,
then the standard solution for ~w is:

w = −y3 − ci
ri

(y1 − ai) dy2 − (y2 − bi) dy1

((y1 − ai)2 + (y2 − bi)2)
. (A.36)

It is elementary to verify that ~∇ · ~w = 0 and so this is the requisite gauge. Finally the explicit
form of the RR three-form potential for a solution with GH base in the D0-D4-F1 frame is

C(3) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− ∧ dz −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)
∧ dz . (A.37)

T-duality along z

Another T-duality along z transforms the system into D1-D5-P frame with

N1 : D1 (z) N2 : D5 (5678z) N3 : P (z) (A.38)

“electric”
n1 : D5 (y5678) n2 : D1 (y) n3 : kkm (y5678z) (A.39)

and “dipole” branes. The metric is

ds2
IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

Z3√
Z1Z2

(dz+A3)2 +

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) .

(A.40)
The dilaton and the Kalb-Ramond field are:

eΦ =

(
Z1

Z2

)1/2

, B = 0 . (A.41)

The RR three-form field strength (it is the only non-zero field strength) is:

F (3) = −
(

Z5
2

Z3
1Z

2
3

)1/4

⋆5 (F (2)) −F (1) ∧ (dz − A(3)) . (A.42)

For the supersymmetric black ring solution in D1-D5-P frame then our general result agrees
(up to conventions) with [59]. We can also easily find the RR 2-form potential by T-dualizing
(A.37)

C(2) =
(
ζa + V −1K3ξ(1)

a

)
Ω

(a)
− −

(
Z−1

3 (dt+ k) ∧B(1) + dt ∧ A(3)
)

+ A(1) ∧ (A(3) − dz − dt) + dt ∧ (A(3) − dz) . (A.43)
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Appendix B. Units and conventions

Here we summarize some of the conventions we use in this paper (see [35, 36] for more details).
The tensions of the extended objects in string and M-theory are:

TF1 =
1

2πα′ , TDp =
1

gs(2π)p(ls)p+1
, TNS5 =

1

g2
s(2π)5(ls)6

, (B.1)

TM2 =
1

(2π)2(l11)3
, TM5 =

1

(2π)5(l11)6
(B.2)

where α′ = l2s , ls is the string length, gs is the string coupling constant (in the particular duality
frame in which one works) and lD is the D-dimensional Planck length. The Newton’s constant
in different dimensions is

16πG11 = (2π)8(l11)
9 , 16πG10 = (2π)7(gs)

2(ls)
8 , 16πGD = (2π)D−3(lD)D−2 . (B.3)

One can show that
l11 = g1/3

s ls = g1/3
s (α′)1/2 . (B.4)

T-duality along a circle of radius R changes the coupling constants to:

R̃ =
α′

R
, g̃s =

ls
R
gs , l̃s = ls . (B.5)

where R̃ is the radius after T-duality:
When one compactifies M-theory on a circle of radius L9, the coupling constants of the

resulting type IIA string theory satisfy:

L9 = gsls . (B.6)

If one compactifies M-theory on a T 6 (along the directions 5, 6, 7, 8, 9, 10) and the radius of
each circle is Li (i = {5, 6, 7, 8, 9, 10}), the five-dimensional Newton’s constant is

G5 =
G11

vol(T 6)
=

G11

(2π)6L5L6L7L8L9L10

=
π

4

(l11)
9

L5L6L7L8L9L10

. (B.7)

The relations between the number of M2 and M5 branes, NI and nI , and the physical charges
of the five-dimensional solution obtained by compactifying M-theory on a T 6, QI and qI , are

Q1 =
(l11)

6

L7L8L9L10

N1 , Q2 =
(l11)

6

L5L6L9L10

N2 , Q3 =
(l11)

6

L5L6L7L8

N3 , (B.8)

q1 =
(l11)

3

L5L6

n1 , q2 =
(l11)

3

L7L8

n2 , q3 =
(l11)

3

L9L10

n3 . (B.9)

We will choose a system of units in which all three T 2 are of equal volume

L5L6 = L7L8 = L9L10 = (l11)
3 ≡ gsl

3
s , (B.10)
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note that this is a numerical identity and is not dimensionally correct since gs is dimensionless.
With this choice we will have

G5 =
π

4
, QI = NI , qI = nI . (B.11)

and these identities hold in every duality frame we use in the paper. Furthermore we will choose

gsls = 1 . (B.12)

Since we are compactifying M-theory on L9 we will have L9 = gsls = 1 and L10 = l2s , this
implies (note that throughout the paper we put L10 ≡ Lz)

TD0 = 1 , 2πTF1L10 = 1 , and
2πTD2

TF1

= 1 . (B.13)

We have fixed ls = g−1
s so that a lot of the various brane tension factors, appearing in the probe

supertube calculations throughout the paper, cancel. Note that with our choices gs is still a
free parameter but we have fixed the volume of the compactification torii.

Appendix C. The angular momentum of the supertube

Generalities

Our goal in this Appendix is to compute the angular momentum of a supertube in the back-
ground of three-charge black holes and black rings. Because that’s the framework we are using
in chapter 2 and 3, we work in the D0-D4-F1 duality frame, presented in section 1.3.2:

ds2
IIA = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√
Z1Z2ds

2
4 +

√
Z1Z2

Z3

dz2 +

√
Z1

Z2

(dx2
5 + dx2

6 + dx2
7 + dx2

8) . (C.1)

For the purpose of our calculations we can restrict without loss of generality to a (non-generic)
U(1) × U(1) invariant base metric of the form:

ds2
4 = g1(u, v)du

2 + g2(u, v)dϕ
2
1 + h1(u, v)dv

2 + h2(u, v)dϕ
2
2 , (C.2)

in which the angular momentum vector has the form

k = k1(u, v)dϕ1 + k2(u, v)dϕ2 . (C.3)

This is general enough to describe all the matric that we will study, in particular the Gibbons-
Hawking metrics with a flat R

3 base. The solutions we consider also have RR and NS-NS fields,
which have the general form

B = (Z−1
3 − 1)dt ∧ dz + Z−1

3 k ∧ dz −B(3) ∧ dz (C.4)

C(1) = (Z−1
1 − 1)dt+ Z−1

1 k −B(1) (C.5)
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C(3) = Z−1
3 dt∧ k ∧ dz−Z−1

3 (dt+ k)∧B(1) ∧ dz+B(3) ∧ dt∧ dz− f(u, v)dϕ1 ∧ dϕ2 ∧ dz (C.6)

where the self-dual harmonic two-forms are Θ(I) = dB(I), I = 1, 2, 3 and

B(I) = B(I)
ϕ1
dϕ1 +B(I)

ϕ2
dϕ2 . (C.7)

Consider a probe supertube with world-volume coordinates ξ = {ξ0, ξ1, ξ2 ≡ θ} in the above
background and suppose that the supertube is embedded as follows:

t = ξ0 , z = ξ1 , ϕ1 = ν1θ , ϕ2 = ν2θ (C.8)

where 0 ≤ θ ≤ 2πnST2 and 0 ≤ z ≤ 2πLz. We remaind the reader of the importance of the
different embeddings in the case of the black ring solutnio, see section 3.1. The supertube
“electric” charges are:

NST
1 =

TD2

TD0

∫
dzdθFzθ = nST2 Fzθ (C.9)

NST
3 =

1

TF1

∫
dθ

(
∂Ltot
∂Ftz

) ∣∣∣∣
BPS

= nST2

[
Z2

(
ν2

1g2(u, v) + ν2
2h2(u, v)

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)
− (ν1B

(1)
ϕ1

+ ν2B
(1)
ϕ2

)

]

(C.10)

Since the background is independent of ϕ1 and ϕ2, the supertube has two conserved angular
momenta:

JSTϕ1
=

∫
dzdθ

∂Ltot
∂ϕ̇1

, JSTϕ2
=

∫
dzdθ

∂Ltot
∂ϕ̇2

. (C.11)

One can compute them explicitly and find

JSTϕ1
= nST2

[
ν1Z2g2 − FzθB

(1)
ϕ1

− Z2B
(3)
ϕ1

(
ν2

1g2 + ν2
2h2

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)

+ ν2(B
(1)
ϕ2
B(3)
ϕ1

−B(1)
ϕ1
B(3)
ϕ2

) + ν2f(u, v)

]
, (C.12)

JSTϕ2
= nST2

[
ν2Z2h2 − FzθB

(1)
ϕ2

− Z2B
(3)
ϕ2

(
ν2

1g2 + ν2
2h2

Fzθ + ν1B
(3)
ϕ1 + ν2B

(3)
ϕ2

)

+ ν1(B
(1)
ϕ1
B(3)
ϕ2

−B(1)
ϕ2
B(3)
ϕ1

) − ν1f(u, v)

]
. (C.13)

One can also define a “total” angular momentum of the supertube, as the angular momentum
along the direction of the supertube

JSTTOT = ν1J
ST
ϕ1

+ ν2J
ST
ϕ2

(C.14)

and one can show that

JSTTOT = ν1J
ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST2

. (C.15)
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Flat Space

For flat space we have

ZI = 1 , B(I)
ϕ1

= B(I)
ϕ2

= 0 , k1(u, v) = k2(u, v) = 0 , f(u, v) = 0 , (C.16)

and using the change of variables u = ρ sinϑ, v = ρ cosϑ one has:

g1(u, v) = h1(u, v) = 1 , g2 = ρ2 sin2 ϑ , h2 = ρ2 cos2 ϑ . (C.17)

The conserved “electric” charges of the supertube are

NST
1 = nST2 Fzθ (C.18)

NST
3 = nST2

(
ν2

1ρ
2 sin2 ϑ+ ν2

2ρ
2 cos2 ϑ

Fzθ

)
(C.19)

From these expressions one recovers the familiar radius relation of the supertube

NST
1 NST

3

(nST2 )2
= ρ2(ν2

1 sin2 ϑ+ ν2
2 cos2 ϑ) . (C.20)

The components of the supertube angular momentum are

JSTϕ1
= ν1n

ST
2 ρ2 sin2 ϑ , (C.21)

JSTϕ2
= ν2n

ST
2 ρ2 cos2 ϑ . (C.22)

Of course we again have

JSTTOT = ν1J
ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST2

. (C.23)

BMPV Black Hole

For a BMPV black hole we have

ZI = 1 +
QI

ρ2
, B(I)

ϕ1
= B(I)

ϕ2
= 0 , k1 =

J sin2 ϑ

ρ2
, k2 = −J cos2 ϑ

ρ2
, (C.24)

f = (Z2 − 1)ρ2 cos2 ϑ , g1(u, v) = h1(u, v) = 1 , (C.25)

g2 = ρ2 sin2 ϑ , h2 = ρ2 cos2 ϑ . (C.26)

The conserved “electric” charges of the supertube are

NST
1 = nST2 Fzθ , (C.27)

NST
3 = nST2

(
1 +

Q2

ρ2

)(
ν2

1ρ
2 sin2 ϑ+ ν2

2ρ
2 cos2 ϑ

Fzθ

)
. (C.28)



APPENDIX C. THE ANGULAR MOMENTUM OF THE SUPERTUBE 175

These again lead to a radius relation for the supertube in the background of the BMPV black
hole

NST
1 NST

3

(nST2 )2
=

(
1 +

Q2

ρ2

)
ρ2(ν2

1 sin2 ϑ+ ν2
2 cos2 ϑ) . (C.29)

The components of the supertube angular momentum are

JSTϕ1
= nST2

[
ν1

(
1 +

Q2

ρ2

)
ρ2 sin2 ϑ+ ν2Q2 cos2 ϑ

]
, (C.30)

JSTϕ2
= nST2

[
ν2

(
1 +

Q2

ρ2

)
ρ2 cos2 ϑ− ν1Q2 cos2 ϑ

]
. (C.31)

One can compare this result to the one obtained in [76] where the special case ν1 = nST2 = 1,
ν2 = 0 was considered. For these special values (C.30) and (C.31) are identical to (4.4) and
(4.5) in [76].

Three-charge BPS Black Ring

For a three-charge BPS black ring we have :

g1 =
R2

(x− y)2(y2 − 1)
, g2 =

R2(y2 − 1)

(x− y)2
, h1 =

R2

(x− y)2(1 − x2)
, h2 =

R2(1 − x2)

(x− y)2
.

(C.32)
The functions, ZI , appearing in the ten-dimensional metric, the one-forms B(I) and the function
f(x, y) are given by (1.4.14), (1.4.16) and (1.4.18) respectively. The explicit form of the angular
momentum components of the black ring, k1(x, y) and k2(x, y), is not needed here.

The conserved “electric” charges of the supertube are

NST
1 = nST2 Fzθ , (C.33)

NST
3 = nST2

[
n1

2
(−ν1(d+ y) + ν2(c+ x))

+
Z2

Fzθ + n3

2
(−ν2(c+ x) + ν1(d+ y))

(
ν2

1R
2 (y2 − 1)

(x− y)2
+ ν2

2R
2 (1 − x2)

(x− y)2

)]
, (C.34)

which leads to the radius relation

[
NST

1 +
1

2
nST2 n3(ν1(y + d) − ν2(x+ c))

][
NST

3 +
1

2
nST2 n1(ν1(y + d) − ν2(x+ c))

]
=

(nST2 )2Z2
R2

(x− y)2
(ν2

1(y
2 − 1) + ν2

2(1 − x2)) (C.35)
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The components of the supertube angular momentum are

JSTϕ1
= nST2

[
−Fzθ

n1

2
(d+ y) + ν1Z2R

2 (y2 − 1)

(x− y)2
+ ν2f(x, y)

− Z2
n3(d+ y)

2

(
ν2

1R
2 (y2−1)

(x−y)2 + ν2
2R

2 (1−x2)
(x−y)2

Fzθ + n3

2
(−ν2(c+ x) + ν1(d+ y))

)]
(C.36)

JSTϕ2
= nST2

[
Fzθ

n1

2
(c+ x) + ν2Z2R

2 (1 − x2)

(x− y)2
− ν1f(x, y)

+ Z2
n3(c+ x)

2

(
ν2

1R
2 (y2−1)

(x−y)2 + ν2
2R

2 (1−x2)
(x−y)2

Fzθ + n3

2
(−ν2(c+ x) + ν1(d+ y))

)]
(C.37)

And we again have

JSTTOT = ν1J
ST
ϕ1

+ ν2J
ST
ϕ2

=
NST

1 NST
3

nST2

. (C.38)

Appendix D. Extremal Reissner-Nordström

An interesting limiting case of the solution presented in Section 8.2.1 is when the two horizons of
the four-dimensional base coincide. This is the extremal Euclidean dyonic Reissner-Nordström
background

ds2
4 =

(
1 − m

r

)2

dτ 2 +
(
1 − m

r

)−2

dr2 + r2(dθ2 + sin2 θdφ2) , (D.1)

F =
2q

r2
dτ ∧ dr + 2p sin θ dθ ∧ dφ . (D.2)

This background is a limit of the dyonic Reissner-Nordström black hole which is obtained by
taking m2 = p2 − q2. The two horizons degenerate and we have

r+ = r− = m. (D.3)

The near horizon limit of the Lorentzian extremal Reissner-Nordström black hole is the Bertoti-
Robinson solution which is AdS2 × S2 with electric and magnetic flux [116]. In the Euclidean
solution of interest the horizon has become a bolt of radius m and near the bolt we can set

r = m+
m2

ρ2
, (D.4)

and rewrite the metric as

ds2
NH = m2

(
dρ2 + dτ 2

ρ2
+ dθ2 + sin2 θdφ2

)
. (D.5)

This is the metric on H+
2 × S2, where H+

2 is the Poincaré half plane and we have the following
range of coordinates τ ∈ (−∞,∞) and ρ ∈ (0,∞). Note that we still have a finite size bolt
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(S2) at r = m on which we can put flux. At asymptotic infinity the metric approaches the flat
metric on R

4. This should be contrasted with the case of the non-extremal Euclidean Reissner-
Nordström black hole of Section 8.2.1, where we had to periodically identify the coordinate τ to
get a regular metric near the outer horizon. The five-dimensional supegravity solution based on
this four-dimensional base has the same warp factors and fluxes as the solution in Section 8.2.1,
however one should remember to set m2 = p2 − q2. The coordinate τ is non-compact but it is
still an isometry of the five-dimensional solution. This means that we have the electric charges
corresponding to the three U(1) gauge fields smeared along τ . What happens effectively is
that in the extremal limit the coordinate τ decompactifies and the five-dimensional solution is
asymptotic to R

1,4 and corresponds to a smeared distribution of charges along τ . With this in
mind one can proceed in the same way as in Section 8.2.1 and compute the asymptotic charges
and mass densities of the five-dimensional solution1

Q1 = −4π

(
2(p+ q)q2

m
+ γ(q + q2)

)
,

Q2 = −4π

(
2(p+ q)q1

m
+ γ(q + q1)

)
, (D.6)

Q3 = −4π

(
4q1q2
m

+ γ(q1 + q2 + p− q) +
2(p− q)(q + q1 + q2)

m
− 4q1q2(p

2 − q2)

m3

)
,

M0 =
1

16πG5

(8πm+Q1 +Q2 +Q3) .

It is clear from the dependence of the mass on the charges that we again have a non-BPS
five-dimensional solution that has the same asymptotic charges as a non-extremal black hole.
This may seem somewhat strange because we have started with an extremal four-dimensional
solution, which is also known to be BPS2. There is nothing puzzling going on here, to get the
five-dimensional solution we have added fluxes to the four-dimensional base which break the
supersymmetry completely. In addition the difference between the mass and the sum of the
electric charges corresponds to the “solitonic” contribution of the bolt, and therefore one should
not expect to have a solution with the same charges as an extremal black hole.

Finally we will provide some comments on the extremal limit of the Kerr-Newmann-NUT
solution of Section 8.2.2. This limit arises when we have m2 = N2 − α2 + p2 − q2. There is
no need to compactify the coordinate τ near r = r+ = m, however we still have to compactify
τ to ensure regularity at spatial infinity. Since we will have an unique identification of τ ,
τ ∼ τ + 8πN , we will not have to impose the constraint (8.2.56). The five-dimensional solution
will be the same as in Section 8.2.2 and will still be asymptotic to R

1,3 × S1.

1Note that, since the τ coordinate is not compact anymore, we are now computing charge and mass densities.
2The Lorentzian extremal Reissner-Nordström solution is a BPS background interpolating betweenAdS2×S2

and R
1,3. Going to the Euclidean regime does not spoil the supersymmetry of the solution which now interpolates

between H+
2 × S2 and R

4, see for example [117].
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Appendix E. Asymptotic charges of Bolt Solutions

In this appendix we compute the asymptotic mass and charges of the different bolt solutions.
Even if each of the solution can be seen as the general dyonic Kerr-Newman solutnio, with some
of the parameters being null, we think this is worse giving the mass and charges for each of the
solution.

In general, in the M-theory frame, the solutions carries M5 charges, which are encoded in the
magnetic part of the gauge field, B(I), and are essentially equal to qI , up to some conventional
factor. The solution also carries M2 charges. Note that the gauge field equations involve
Chern-Simons terms:

d((XI)−2 ⋆5 dA
I) = 1

2
CIJKdA

J ∧ dAK . (E.1)

In the presence of such terms, the proper definition of the conserved electric charge associated
with AI is

QI =

∫

S1×S2

[
(XI)−2 ⋆5 dA

I − 1
2
CIJKA

J ∧ dAK
]
, (E.2)

where the integral is computed over the S1 circle parameterized by τ and the S2 sphere at
spatial infinity. The Chern-Simons term gives a non-vanishing contribution to the charge, due
to the fact that the one-form k goes to a constant non-zero value at infinity:

k → γdτ , (E.3)

For all the solutions, one has the identity

(XI)−2 ⋆5 dA
I − 1

2
CIJKA

J ∧ dAK (E.4)

= ε ⋆4 dZI − 1
2
CIJKB

(J) ∧ Θ(K) +
ε

2
CIJKd

[
(dt+ k) ∧ B(J)

ZK

]
.

To compute the mass and the KK electric charge of the solution one has to analyze the
asymptotic form of the metric. The fact that the one-form, k, does not vanish at infinity
implies that the coordinates (τ, t) define a frame which is not asymptotically at rest, much like
for the black ring in Taub-NUT constructed in [64]. One can go to an asymptotically static
frame by re-writing the large r limit of the metric in the form

ds2 ≈ (1 − γ2)
(
dτ − γ

1 − γ2
dt
)2

− dt2(1 − γ2)−1 + dr2 + r2(dθ2 + sin2 θdφ2) , (E.5)

and redefining the coordinates as

τ̂ = (1 − γ2)1/2
(
τ − γ

1 − γ2
t
)
, t̂ = (1 − γ2)−1/2t . (E.6)

The condition for the absence of CTCs reflects the fact that the rotation is sub-luminal (γ < 1)
and hence this change of coordinates is well-defined.

In order to read off the mass and electric charge of the solution, on have to reduce to four
dimension, along the τ̂ :

ds2
5 = gτ̂ τ̂

[
dτ̂ + AKK

]2
+ g

−1/2
τ̂ τ̂ ds2

E . (E.7)
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ds2
E is the four-dimensional Einstein metric, and AKK the Kalza-Klein gauge field. From the

coefficients of dt̂2 and dt̂dφ in the Einstein metric ds2
E one can read off the mass of the solution:

− gt̂t̂ = 1 − 2G4M

r
+ o

(
1

r

)
,

gt̂φ

gt̂t̂
=

2G4J sin2 θ

r
+ o

(
1

r

)
. (E.8)

Here G4 is the four-dimensional Newton’s constant, whose relation with the five-dimensional
Newton’s constant G5 is

G4 =
G5

Vol(τ̂)
, (E.9)

vol(τ) being the length of the S1 parametrized by τ̂ . The KK electric Qe and magnetic Qm

charges are encoded in the KK gauge field1

AKKt =
4G4Qe

r
+ o

(
1

r

)
, AKKφ = −4G4Qm cos θ + o(1) . (E.10)

Asymptotic charges for the Schwarzschild solution

The M5 charges are here exactly equal to qI . The angular momentum one-form k goes to a
constant non-zero value at infinity

k → γdτ , γ = −εq1 + q2 + q3
2m

+ 3ε
q1q2q3
8m3

. (E.11)

From (E.4), one finds

QI = −(8πm)(4π)1
2
CIJK

[
ε
qJqK
m

+
γ

2
(qJ + qK)

]
. (E.12)

One computes the mass and electric charge of the solutions by reducing it to four dimension,
in the (t̂, τ̂) variables (E.6). It yields

ds2
5 =

(
1 − 2m

r

)2

Z−2Î4

[
dτ̂ −

(
1 − 2m

r

)−2

µÎ−1
4 dt̂+ γdt̂

]2
+
(
1 − 2m

r

)−1

ZÎ
−1/2
4 ds2

E , (E.13)

where

Î4 = (1 − γ2)−1
[
Z3
(
1 − 2m

r

)−1

− µ2
(
1 − 2m

r

)−2]
, (E.14)

and

ds2
E = −Î−1/2

4 dt̂2 + Î
1/2
4

[
dr2 +

(
1 − 2m

r

)
(r2dθ2 + r2 sin2 θdφ2)

]
. (E.15)

From (E.8) and (E.10), and obtains

G4M =
1

(1 − γ2)

(m
2
− q1q2 + q1q3 + q2q3

4m
− 3

8

γ

ε

q1q2q3
m2

)
, (E.16)

G4Qe = − 1

4(1 − γ2)

(3ε

4

q1q2q3
m2

+ γ
q1q2 + q1q3 + q2q3

m
+ εγ2(q1 + q2 + q3)

)
. (E.17)

1We use the conventions of [64].
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Here the four-dimensional Newton’s constant G4 is related to the five-dimensional Newton’s
constant G5 by

G4 =
G5

(1 − γ2)1/2(8πm)
. (E.18)

If one now computes the rest-mass, M0, of the solution (i.e. the mass with respect to the (t, τ)
frame) one obtains:

M0 ≡ (1 − γ2)−1/2(M − γQe) =
π

4G5

(
16m2 +

ε

4π2
(Q1 +Q2 +Q3)

)
. (E.19)

It is clear from this expression that if we set the mass of the four-dimensional black hole to
zero we will recover the usual relation between the mass and the charges of a BPS black hole
solution.

Asymptotic charges for the Kerr-Taub-Bolt solution

When one add rotation and a NUT charge, the magnetic charges do not change. The M2
charges, given by (E.4), are

QI = −(8πN)(4π)1
2
CIJK

[ qJqK
m−N

+
γ

2
(qJ + qK)

]
, (E.20)

with the parameter γ given in (8.1.46).
As for the previous case, µ goes to a finite non-zero value, γ, at infinity. To find the mass

of the solution one must then introduce coordinates τ̂ and t̂ as in (E.6). It is also convenient
to use the form (8.3.1) for the Kerr-Taub-Bolt metric and to rewrite the one-form k as

k = µ(dτ + P ′
θdφ) + ν ′dφ , (E.21)

with

ν ′ = ν − α
Ξ

∆θ

sin2 θµ = α
q1q2q3(m+N)

2(m−N)2∆θ

(
1 − r

r+

)
sin2 θ . (E.22)

One can then rewrite the five-dimensional metric in a form ready for Kaluza-Klein reduction
along τ̂ :

ds2 =
Î4

(ZV )2

(
dτ̂ + P̂θdφ− µV 2

Î4
(dt̂+ ν̂dφ)

)2

+
V Z

Î
1/2
4

ds2
E , (E.23)

where

ds2
E = −Î−1/2

4 (dt̂+ ν̂dφ)2 + Î
1/2
4

(∆θ

∆
dr2 + ∆θdθ

2 + ∆ sin2 θdφ2
)

(E.24)

and

Î4 = (1 − γ2)−1(Z1Z2Z3V − µ2V 2) , P̂θ = (1 − γ2)1/2P ′
θ , ν̂ = (1 − γ2)−1/2ν ′ . (E.25)
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From this and (E.8), one can read off the mass, M and the four-dimensional angular momentum,
J :

G4M =
1

4(1 − γ2)

[
2m− q1q2 + q1q3 + q2q3

m−N

+
q1q2q3(q1 + q2 + q3)

2(m−N)3

(
2 − m+N

r+

)
− (q1q2q3)

2

4(m−N)5

(
2 − m+N

r+

)2]
,(E.26)

G4J = − 1

(1 − γ2)1/2

αq1q2q3(m+N)

4(m−N)2r+
. (E.27)

The geometry also carries Kaluza-Klein electric charge, Qe, and the Kaluza-Klein magnetic
charge, Qm, given by (E.10)

G4Qe = − 1

8(1 − γ2)(m−N)3

[
q1q2q3

(m
2
− 2N +

N2 −m2

r+

)

+
1

2
(q1q2 + q1q3 + q2q3)(q1 + q2 + q3)(m+ 2N) +

1

2
(q3

1 + q3
2 + q3

3)m

−1

2
q1q2q3(q1q2 + q1q3 + q2q3)

m+ 2N

(m−N)2

(
2 − m+N

r+

)

−1

4
q1q2q3(q

2
1 + q2

2 + q2
3)

2m+N

(m−N)2

(
2 − m+N

r+

)

+
1

8
q2
1q

2
2q

2
3(q1 + q2 + q3)

m+ 2N

(m−N)4

(
2 − m+N

r+

)2

− 1

16
q3
1q

3
2q

3
3

N

(m−N)6

(
2 − m+N

r+

)3]
, (E.28)

G4Qm = (1 − γ2)1/2N

2
, (E.29)

where G4 is the four-dimensional Newton’s constant

G4 =
G5

(1 − γ2)1/2(8πN)
. (E.30)

Finally, the rest mass of the Kerr-Taub-Bolt solution is

M0 ≡ (1 − γ2)−1/2(M − γQe) =
4πN

G5

(m+N) +Qm +
1

16πG5

(Q1 +Q2 +Q3) . (E.31)

The asymptotic charges for the Reissner-Nordström solution

For the solution based on the Reissner-Nordström base, we changed a bit the conventions, and
thus the magnetic charges are given, from (8.2.20), (8.2.26) and (8.2.27), by

d1 = 2q1 − p+ q ,

d2 = 2q2 − p+ q , (E.32)

d3 = p+ q .
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From (E.4), one has

Q1 = − 16π2r2
+

r+ − r−

(
2(p+ q)q2

m
+ γ(q + q2)

)
,

Q2 = − 16π2r2
+

r+ − r−

(
2(p+ q)q1

m
+ γ(q + q1)

)
, (E.33)

Q3 = − 16π2r2
+

r+ − r−

(
4q1q2
m

+ γ(q1 + q2 + p− q) +
2(p− q)(q + q1 + q2)

m
− 4q1q2(p

2 − q2)

m3

)
.

with γ given by (8.2.35). To compute the mass and the Kaluza-Klein (KK) electric charge of
the solution one reduces the solution to four dimensions

ds2
5 =

g2

Z2
Î4

[
dτ̂ +

(
γ − µ

g2Î4

)
dt̂
]2

+
Z

gÎ
1/2
4

ds2
E , (E.34)

where we have defined,

g = 1 − 2m

r
+
p2 − q2

r2
, Î4 =

1

1 − γ2

(
g−1Z3 − g−2µ2

)
, (E.35)

and
ds2

E = −Î−1/2
4 dt̂2 + Î

1/2
4

[
dr2 + gr2(dθ2 + sin2 θdφ2)

]
(E.36)

is the four-dimensional Einstein metric. From (E.8) one can read off the mass of the solution

M =
1

G4(1 − γ2)

[m
2

(1 − 2γ2) − q1q2 + pq1 + pq2 + q(p−q)
2

m
(E.37)

−γ(q1 + q2 +
p+ q

2
) +

q1q2(p
2 − q2)

m3

]
,

with

G4 =
G5

(1 − γ2)1/2

(r+ − r−)

4πr2
+

, (E.38)

The KK electric charge, Qe, given by (E.10) is

Qe = − 1

G4(1 − γ2)

[
γ
m

2
+ γ

q1q2 + pq1 + pq2 + q(p−q)
2

m
+

1 + γ2

2
(q1 + q2 +

p+ q

2
) (E.39)

− γ
q1q2(p

2 − q2)

m3

]
.

Finally it is instructive to compute the rest-mass, M0, of the solution, i.e. the mass with respect
to the (t, τ) frame

M0 ≡ (1 − γ2)−1/2(M − γQe) =
1

16πG5

(
32π2r2

+m

r+ − r−
+Q1 +Q2 +Q3

)
. (E.40)

Note also that despite the fact that we start our construction from a four-dimensionnal black
hole with a magnetic charge p, AKK has a component only along dt̂, which implies that the
final solution does not carry any global magnetic charge.
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The asymptotic charges for the Kerr-Newman-NUT solution

We finally give the asymptotics of the Kerr-Newman solution: first of all, the magnetic charges
are given by the same formulae as for the Reissner-Nordtröm case

d1 = 2q1 − p+ q ,

d2 = 2q2 − p+ q , (E.41)

d3 = p+ q .

We now have to compute the electric charges QI . They are still given by the general formula
(E.4), which yields

Q1 = −8π2

κ

(2(p+ q)q2
m−N

− γ(q + q2)
)
,

Q2 = −8π2

κ

(2(p+ q)q1
m−N

− γ(q + q1)
)
, (E.42)

Q3 = −8π2

κ

( 4q1q2
m−N

− γ(q1 + q2 + p− q)

+2(q + q1 + q2)
p− q

m−N
− 4q1q2(p

2 − q2)

(m−N)3
− λ(m−N)

)
.

As for the non-rotating case, µ goes to a finite non-zero value, γ, at infinity. One therefore
has to introduce the coordinates (t̂, τ̂), given by (E.6) in order to compute the mass, angular
momentum and KK charge of the solution. It is also convenient to use the form (8.3.1) for the
Kerr-Newman-Taub-Bolt metric, with ∆ given by (8.2.47) and to rewrite the one-form k as

k = µ(dτ + P ′
θdφ) + ν ′dφ , (E.43)

with

ν ′ = ν − α
Σ

∆θ

sin2θ µ . (E.44)

One can now rewrite the five-dimensional metric in a form suitable for Kaluza-Klein reduction
along τ̂

ds2
5 =

Î4
(ZV )2

(
dτ̂ +

(
γ − µV 2

Î4

)
dt̂+

(
P̂θ −

ν̂µV 2

Î4

)
dφ
)2

+
ZV

Î
1/2
4

ds2
E , (E.45)

where

ds2
E = −Î−1/2

4 (dt̂+ ν̂dφ)2 + Î
1/2
4

(∆θ

∆
dr2 + ∆θdθ

2 + ∆ sin2 θdφ2
)

(E.46)

is the four-dimensional Einstein metric and

Î4 = (1 − γ2)−1(Z1Z2Z3V − µ2V 2) , P̂θ = (1 − γ2)1/2P ′
θ , ν̂ = (1 − γ2)−1/2ν ′ . (E.47)

From this metric, it is easy to read off the mass, M

M =
1

G4(1 − γ2)

[
m

2
− (m−N)γ2 − q1q2 + pq1 + pq2 + q(p−q)

2

m−N

+γ

(
q1 + q2 +

p+ q

2

)
+ q1q2

p2 − q2

(m−N)3
+
λ

4
(m−N)

]
, (E.48)
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with

G4 =
G5

(1 − γ2)1/2

κ

2π
. (E.49)

From (E.46), one can also read off the angular momentum of the solution

J =
α

G4(1 − γ2)1/2

(
−2q1q2(p+ q)

(m−N)2
+

(
q1 + q2 +

p+ q

2

)
− γ(m−N)

)
. (E.50)

We finally need the Kaluza-Klein electric and magnetic charges Qe and Qm, encoded in the
one-form

AKK =

(
γ − µV 2

Î4

)
dt̂+

(
P̂θ −

ν̂µV 2

Î4

)
dφ . (E.51)

This gives

Qe =
1

G4(1 − γ2)

[
− γ

m

2
+ γ(1 + γ2)

N

2
− γ

q1q2 + pq1 + pq2 + q(p−q)
2

m−N

+
1 + γ2

2

(
q1 + q2 +

p+ q

2

)
+ γq1q2

p2 − q2

(m−N)3
+ γ

λ

4
(m−N)

]
, (E.52)

and

Qm = −(1 − γ2)1/2 N

2G4

. (E.53)

Finally, one can compute the rest mass of the solution

M0 ≡ (1 − γ2)−1/2(M − γQe) =
π

G5κ
(m+N) +Qm +

1

16πG5

(Q1 +Q2 +Q3) . (E.54)

It is clear from this expression that the solution has the same mass and charges as a non-
extremal black hole. The mass of the five-dimensional solution is a sum of the electric charges
and the solitonic charges of the four-dimensional base. The dependence of the mass on the
charges is still linear due to the “floating brane” Ansatz.
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