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Directeur de thèse: George Kariniotakis

Jury :

Prof. Didier Mayer Président

Prof. Lennart Söder Rapporteur
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CHAPTER 1

Introduction : Renewable Energy Sources in a Liberalized

Electricity Sector

Chapter overview

This chapter introduces the research work realized in the frame of this thesis by

starting with a short description of the actual energy context and the development

of renewable energy sources. The issues concerning the large scale integration of

renewable generation in power systems, in a liberalized context, are presented. The

chapter then focuses on the challenges related to the participation of renewable

generation in electricity markets, which is the core of the thesis. Finally, the main

objectives and the contribution of the thesis, as well as an outline of the structure

of the present document, are given.

1.1 General energy context and renewable energy sources

1.1.1 Energy context

In recent energy policies, special attention is given to three main aspects: security

of supply, market efficiency and environmental friendliness. These three dimensions

are specifically covered in the 2007 Energy Package for Europe, which aims at es-

tablishing a new energy policy for the European Union [1]. The three aspects are

explained as follows, and depicted in Figure 1.1:

• In the actual energy context, the security of supply of energy resources is
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a key point which has to be guaranteed. To achieve this goal, the energy supply

has to be diversified, from the geographical source of energy point of view, and

from the nature of the energy product point of view, in order to guarantee long-

term primary energy availability. Focus is given to the reliability and quality

of the energy supply, and the guarantee of the required energy capacity.

• Market efficiency in the energy sector results from the liberalization of this

sector. Competition has been introduced in the sector by significantly re-

ducing the governments’ role in the ownership and management of domestic

energy industries, especially in the gas and electricity sector. Regarding the

European Union, the directive 96/92/CE relative to electricity market rules [2]

confirms the objective of liberalization of the electricity market. This is seen

as a possibility for increasing the efficiency of electric energy production and

distribution, for offering a lower price, as well as a higher quality and secured

supply.

• Reducing the environmental impact consists in limiting the pollution rela-

tive to the energy use and reducing the possible contribution to climate change

and the impact on nature and wildlife. The objective of reducing the environ-

mental impact of human activities, and more particularly greenhouse gases,

was initiated in the United Nation Framework Convention on Climate Change

(UNFCCC) of 1992. Binding limitations were negotiated in Kyoto where more

than 160 nations met in 1997. The outcome of the meeting was the Kyoto

Protocol, in which the developed nations agreed to limit their greenhouse gas

emissions, relative to the levels emitted in 1990.

Figure 1.1 describes the energy policy triangle where the objectives of security

of supply, market efficiency and environmental friendliness are the major policy

competitors 1.

1.1.2 Renewable energy sources as a solution

In the current energy context, where security of supply and environmental aspects

have become major concerns, the development of energy technologies based on re-

newable energies is seen as an indispensable solution for these main issues.

1The three main aspects are often illustrated as the Moscow-Lisbon-Kyoto triangle; Moscow
refers to the concept of security of supply due to the recent gas crisis between some countries of
the European Union and Russia [3]; Lisbon refers to the European Council held in 2000 in this city
during which the objective of liberalization of many sectors in Europe was given; Kyoto refers to
the Kyoto protocol.
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Figure 1.1: Energy context

National and international bodies use a variety of definitions for renewable

energy. The Renewable Energy Working Party (REWP) of the International Energy

Agency set down the following broad definition [4]:

“Renewable Energy is energy that is derived from natural processes that

are replenished constantly. In its various forms, it derives directly or

indirectly from the sun, or from heat generated deep within the earth.

Included in the definition is energy generated from solar, wind, biomass,

geothermal, hydropower and ocean resources, and biofuels and hydrogen

derived from renewable resources”.

In this work, the term Renewable Energy Sources (RES) is by extension used to

denote energy sources based on the conversion of renewable energy. The development

of RES first takes advantage of endogenous resources. It permits to reduce the fossil

fuel consumption, which in turn increases the security of supply of the country where

RES are installed. A consequence of the reduction of fossil fuel consumption is the

reduction of the impact on the environment, namely greenhouse gas emissions and

fossil fuel depletion.

1.2 Renewable energy sources in power generation

This section first presents the electricity generation technologies based on Renewable

energy sources (RES). Then, the characteristics of the RES production, which highly

depend on the converted resource properties, are presented. In particular, the vari-

ability, the limited predictability and the geographical distribution of RES power

3



Introduction : Renewable energy sources in a liberalized electricity sector

generation are characteristics that distinguish RES from conventional generation.

Finally, this section decribes the fast development of RES in Europe.

1.2.1 Electricity generation based on RES

Electricity generation accounts for approximately one third of the world’s primary

energy demand [5]. As a consequence, the energy context is of particular importance

for the current evolution of the electricity sector. Regarding security of supply, ef-

forts are made to promote generation technologies which increase the variety of the

energy mix and the independence of countries on resources used for power genera-

tion. In order to increase economic efficiency, power systems are nowadays operated

within a liberalized electricity sector, under market conditions. Electricity is thus

treated as a tradable product, characterized by its quality and reliability. Finally,

technologies which reduce pollution associated with electricity generation are encou-

raged. Importance is given to the reduction of CO2 emissions and more generally

reduction of greenhouse gases.

This context motivates the development of power generation units based on RES.

An overview of different technologies available for power generation from RES is

proposed in [6]: hydro power, wind power, photovoltäıc power, solar thermodynamic

power, geothermal power and power from biomass. The RES power units are based

on the conversion from primary renewable energy to electrical energy. For instance,

hydro power and wind power convert the mechanical energy from the water and the

wind, respectively, to electrical power. Photovoltäıc cells convert solar irradiation

to electric power using the photoelectric effect.

In this case, the term RES unit does not necessarily refer to only one generation

unit such as a wind turbine or a PV panel, but is extended to a power plant composed

of several RES-based units, such as a wind farm or a PV plant. This extended

definition of the RES unit is kept for the rest of the thesis.

In opposition to RES units, conventional power generation units refer to units

based on non-renewable energy conversion. These units include the nuclear power

plants and the power generation units which are based on energy conversion from

fossil fuel such as coal-fired, gas-fired and oil-fired units.

1.2.2 Characteristics of power generation from RES

Variability and limited predictability of the renewable generation

The electricity generation from RES results from the energy conversion of non-

regulated resources, from existing flows of energy from on-going processes. Depend-

ing on the type of their resource, RES units can generate electricity constantly or
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in a variable way, with fluctuations. In particular, wind, photovoltäıc and wave

power generation are characterized by the natural variability of the energy resource,

whereas biomass and hydro power generation (excepting the run-of-the river hydro)

can be dispatched based on system requirements [6]. Biomass and hydro power units

can thus be considered as conventional units from the power generation management

point of view.

Regarding generation from wind, photovoltäıc, and wave power, this generation

can be more precisely described as intermittent generation. The term intermittent

refers here to the interruption or periodic stopping of the resource, from the definition

in [7]. The intermittency is due to the atmospheric dynamics. The study of the

different effects resulting from atmosphere dynamics is a complex subject which

refers to meteorology.

The intermittency level depends on the RES technology and the natural cycles

of the renewable sources [8]. Details are given below for the photovoltäıc (PV) and

wind power sources.

• Regarding PV power generation, natural cycles have three dimensions. There

is first a seasonal variation in potential electricity production with the peak

in summer, although in principle PV cells operating along the equator have

an almost constant exploitable potential throughout the year. Secondly, pro-

duction varies on a diurnal basis from dawn to dusk peaking during mid day.

Finally, short-term fluctuation of weather conditions, including clouds and rain

fall, impact on the inter-hourly amount of electricity that can be harvested.
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Figure 1.2: Example of power production from a 12.8 MWp photovoltäıc power plant from
03/07/04 00h00 to 09/07/04 23h00, in France.

Figure 1.2 shows an example of the hourly power production from a 12.8 MWp

photovoltäıc power plant located in France for a week from 03/07/04 00h00

to 09/07/04 23h00. The unit MWp stands for MegaWatt peak, which is a

measurement unit for the electrical power delivered by a PV unit for stan-

dard solar irradiance conditions. The figure clearly demonstrates the diurnal
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variations of the production. The variations between the production for the

different days result from variations of meteorological conditions.

• Wind power generation is subject to seasonal variations of peak electricity

production in winter or summer depending on the region, as well as diurnal

and hourly changes. Generally, very short-term fluctuations - in the intra-

minute and inter-minute timeframe - are small relative to installed capacity,

compared to hourly or daily variations. However, it has also to be noted that

wind turbines become unavailable at times of very high wind speed, when

they need to be shut down in order to avoid damage to equipment. This

disconnection leads to an extreme variation of the produced electricity. The

disconnection of wind turbines resulting from voltage dips also leads to a steep

generation drop.
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Figure 1.3: Example of power production from a 18 MW wind power plant from 09/01/03
07h00 to 06/01/03 06h00, in Western Denmark.

Figure 1.3 shows an example of the hourly power production from a 18 MW

wind power plant for a week from 09/01/03 07h00 to 06/01/03 06h00, in

Western Denmark. The figure clearly shows the short-term variations of the

production. An important production drop from nominal power production to

nearly zero production can be noted in the period between hour 132 and 135

in the graph. The production variations illustrated in Figure 1.3 are related

to variations of the meteorological conditions, mainly the wind speed.

In order to analyze the wind power variability, the operational data measured

from the 160 MW Horns Rev I offshore wind farm in Western Denmark were

analyzed in [9]. The authors showed that the power output of the wind farm

was characterized by intense, rapid and repeating fluctuations due to unsteady

wind conditions. In certain wind conditions, the power output from the off-

shore wind farm changes between zero and rated power levels in less than a

quarter of an hour. However, the degree of variability depends on the consi-
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dered geographical scale. The European Wind Energy Association (EWEA)

explains in [10] that the variability of the wind energy resource is important

to consider only in the context of the power system, rather than in the context

of an individual wind farm or turbine. When considering wind energy in the

scale of the power system, individual energy variations may compensate which

results in a less variable production. This phenomenon is denoted as statistical

smoothing and is analyzed into detail in [11].

• In comparison, the biomass natural cycle length varies between several gen-

erations for wood to a single season for purposefully planted biomass crops.

Large hydro systems are based on the conversion of a seasonal resource, the

rain, but the dam makes the hydro unit able to control their energy delivery

and, as a result, limits such seasonality. Run-of-the river units are subject to

variability in precipitation.

In addition to the variability, the production from some RES technologies may

not be completely predictable. This can be the case for wind, photovoltäıc and wave

power. Limited predictability results from the atmosphere dynamics which are not

deterministic. For instance, the wind power will depend on the wind speed, which in

turn depends on the solar radiation, evaporation of water, cloud cover, and surface

roughness among others.

The limited predictability of RES generation leads to some uncertainty about

the production in the next period of time (i.e. minutes, hours or days). The no-

tion of uncertainty here refers to the decision-making science, and is defined as “a

state of having limited knowledge where it is impossible to exactly describe existing

state or future outcome, more than one possible outcome” [12]. Another term for

describing the limited predictability of the RES generation consists in defining it as

a stochastic generation.

The degree of variability and the degree of predictability are the two main aspects

characterizing time series of RES generation. They can be derived from real time

series of RES production in order to be used for generating realistic time series of

RES production when needed, such as in [13].

The variability and limited predictability of the RES generation result to an addi-

tional property: its limited dispatchability. A generation unit is said to be dispatch-

able if it can be controlled at the request of power grid operators. Biomass-based

units and hydro power units may be controlled and be operated as a dispatchable

unit. However, RES generation units, which are based on the conversion of exist-

ing flows of energy from on-going processes, have a limited dispatchability. Wind

power, PV power and wave power are examples of such units. Recent advances in
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RES technologies have enabled some of these units to reduce their power output

when needed. This control is denoted as “down regulation”.

Geographical distribution of the RES units

Some RES technologies are based on the conversion of energy resources which are

found in huge quantities in nature, but geographically distributed and presenting a

low density on each position site. This is the case for wind or photovoltäıc power. In

order to capture this energy and convert it to electricity, small-scale converters are

spread in many sites and connected into the power system. In the case of the power

generation from biomass, the resource cannot be transported long distances without

incurring unreasonable cost, because of its low energy density, and, consequently,

most biomass units are small-scale units [14]. As a result, most geographically spread

RES power units are connected to the distribution network.

A definition of Distributed Generation (DG) is proposed in [15] as “an electric

power source connected directly to the distribution network or on the customer site

of the meter”. Given this definition, most RES power units are DG units. In partic-

ular, the technology or capacity of the RES unit is not considered for characterizing

it as a DG unit, but only its network connection [16]. From this definition, the

distributed generation units are separated from the units which are connected di-

rectly to the transmission network. Different aspects distinguish distribution from

transmission networks. First, distribution networks are operated at medium or low

voltage contrary to transmission networks which are operated at high voltage 2.

Also, the goal of the two networks is different: the transmission network aims at

transporting power generation over long distances, whereas the distribution network

aims at delivering the power generation to the consumers. Finally, the two networks

are distinguished on a legal definition, as explained in [16]: in most competitive

markets, an electricity network is legally defined as a transmission network if it con-

tributes to the electricity market regulation. Any other network can be regarded as

distribution network.

The capacity of the distributed generation units is limited by the connection

to the distribution network, which in turn is limited by the voltage level of this

network. Consequently, the distributed power plants have a capacity limited to

several hundred MW [15]. Regarding RES, large hydro power plants may have a

capacity in the order of GW, and are thus connected to the transmission network.

The same happens for large wind farms.

2In the case of France, the transmission network as it is considered in this thesis, is composed
of the transmission and repartition networks. The voltage limit between the distribution networks
and the repartition and transmission networks is 63 kV.
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When connected to the distribution network, distributed RES units contribute

to the improvement of the voltage level management; they may increase the flex-

ibility of the power systems while reducing transmission losses; they may also be

an alternative to transmission grid reinforcement. More general benefits and issues

resulting from DG deployment are explained in [16].

1.2.3 RES in power systems in Europe

In March 2007, the 27 EU member states adopted a binding target of 20 % renewable

energy from final energy consumption by 2020. This target is associated with a

commitment to increase energy efficiency by 20 % until 2020.

In January 2008, the European Commission presented a draft Directive on the

promotion of the use of energy from Renewable Energy Sources (RES). This sets the

legislative framework that should ensure the increase of the 8.5 % renewable energy

share of final energy consumption in 2005 to 20 % in 2020 [17]. In order to reach this

objective, the European Renewable Energy Council (EREC) proposes in [17] a target

of 40 % of EU electricity coming from RES in 2020. An intermediate target has been

formulated in the Directive 2001/77/EC on the promotion of renewable electricity

aiming at having 21 % of EU electricity coming from RES by 2010. Table 1.1

describes the projections for the installed capacity of RES units till 2020.

Type of energy Inst. capacity (2006) Projection 2010 Projection 2020

Wind 47.7 GW 80 GW 180 GW

Hydro 106.1 GW 111 GW 120 GW

Photovoltäıc 3.2 GWp 18 GWp 150 GWp

Biomass 22.3 GW 30 GW 50 GW

Geothermal 0.7 GW 1 GW 4 GW

Solar thermal elect. - 1 GW 15 GW

Ocean - 0.5 GW 2.5 GW

Table 1.1: Renewable electricity installed capacity projections, from [17].

Among the various RES technologies, wind power benefits from a high reduction

of production costs. The wind power industry is considered as one of the fastest

growing ones. For example in Europe, 57 GW were installed at the end of 2008.

The European Wind Energy Association (EWEA) regularly revises its own target

for the next few years. The projections for 2020 and 2030 are 180 and 300 GW

respectively [18]. However, it has to be noted that EWEA presented an upgraded

target at the EWEC 09 conference which is 230 GW including 40 GW offshore.

This corresponds to 600 TWh per year by 2020, covering 14-18 % of EU electricity

demand. Similar projections are made for the United States by the American Wind
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Energy Association (AWEA) [19].

1.3 Challenges about large scale integration of renewable

energy sources

This section presents the main challenges related to the large scale integration of RES

in power systems. First, an overview of the issues regarding large scale integration

of RES is given and examples are presented. Then, the main impacts of the RES

on the power system management are described. Finally, this section draws the

link between the impact of the RES on the power system management and the

challenges related to the integration of the renewable generation in the electricity

markets, which is the core of the thesis.

1.3.1 Overview of issues regarding large scale integration of RES

The current policy of installing RES has focused on connection rather than integra-

tion. This approach is denoted in [20] as a “fit and forget” approach. In particular,

RES units have been treated as exceptions for the management of the power systems.

For example, the E.ON Netz Grid Code in Germany exempts renewable energy gen-

eration units from providing primary control power [21,22]. These exemptions have

been allowed to encourage the deployment of RES. As a result, several GWs of

RES capacity have been installed in some areas, such as wind power in Northern

Germany.

Figure 1.4: Short-term drop in wind power feed-in in December 2004, from [23].

The variability of the wind power production results in large power variations

in the power system. Figure 1.4 depicts the variation of the wind power production
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in the E.ON control area in Northern Germany during the week from 20th to 26th

December 2004. Whilst wind power output at 9.15 am 24th December reached

its maximum for the year at 6024 MW, it fell to below 2000 MW within only 10

hours, with a difference of over 4000 MW. This reduction corresponds to 58% of

the installed wind capacity in the area. In comparison, this also corresponds to the

capacity of eight 500 MW coal-fired power station blocks. On 26th December, the

wind power output fell to below 40 MW.

Future RES developments are expected to include larger RES units, such as

several hundred MW offshore wind farms. Such large developments on relatively

small areas will generate large output variations. Handling these variations of RES

power output leads to major challenges for managing the power system.

A number of technical factors resulting from specific RES characteristics, detailed

in section 1.2.2, lead to difficulties for a large scale integration of RES generation in

power systems [4]:

• Limited dispatchability: RES generation can only be dispatched down

rather than up;

• Variability: RES generation can exhibit extreme ramp up or down rates;

• Limited predictability: uncertainty associated with RES generation in-

creases the need of ancillary services;

• Geographical distribution: RES units may be located far from demand, in

remote locations.

Handling these combined technical factors introduces several challenges to reliable

operation and may lead to power system control and balancing problems.

An analysis presented in [8] summarizes the issues that are likely to be encoun-

tered as wind power penetration into power systems progressively increases. The

study explains that for low levels of wind penetration, the added variability due to

wind is not significantly noticed on the system, and wind can be treated as nega-

tive load. However, as the penetration level increases, additional operational and

capacity reserve may become necessary. Also, grid reinforcements might become

necessary, depending on wind farm location and demand centers.

1.3.2 Impacts of large scale integration of renewable production on

the power system management

Large scale RES integration is raising a long list of important consequences on the

power system management [24]. For example, the study in [25] lists the impacts of
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wind power on the power system reliability and efficiency and proposes a classifi-

cation of these impacts based on the time and geographical scales. In this section,

focus is given on the impact relative to the operation of the power system, and more

specifically on functions such as unit commitment, grid congestion management and

grid regulation. This limited list of impacts is related to the geographical scale of

the power system and time scales ranging from minutes to days. In particular, lo-

cal issues, such as the ones related to the connection of RES to the grid, are not

considered. Also, very short term impacts referring to as power quality, as well as

long term impacts such as adequacy of power and adequacy of the grid, are not

considered in the present work.

Unit commitment and economic dispatch

The unit commitment problem aims at deciding for an upcoming period which elec-

tricity generation units should be running, and deciding the way the units are oper-

ated so as to satisfy a predictably varying demand for electricity [26]. The economic

dispatch defines the exact level of production of each generator for this upcoming

period, based on economic criteria. The considered upcoming period ranges from

several hours to several days. In the case of large scale integration of RES units, the

unpredicted variations of output power of these RES units may impact the power

system unit commitment.

Moreover, the available deterministic software tools for the optimal scheduling

of conventional power plants are not appropriate when considering an energy mix

with high share of intermittent sources [25]. Current unit commitment or economic

dispatch algorithms consider RES generation as a “negative load” and foresee usu-

ally a fixed margin to account for the variability and uncertainty associated with

RES generation. In cases of high penetration, operators often consider high reserve

margins leading to a less economic operation of the power system.

Grid congestion management

The location of RES units, especially of hydro power plants and of wind farms,

are conditioned by regional conditions. Most of the hydro plants and wind farms

are erected in areas with low population density. This means that the production of

energy by RES is often much higher than the local demand. Therefore the electricity

must be transported via the transmission grid to regions of high demand. Because

the grid was originally designed to cover the relatively low load in these regions, it

has to be extended and reinforced for this new task. Regarding wind power, the

high development of offshore wind and the repowering of old wind farms contribute

to the need of grid extension and reinforcement.
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Again, the variability and the uncertainty associated with RES generation require

special attention. First, these characteristics make it difficult to determine the

optimal grid reinforcement. The standard practice is to enforce the grid by building

new power lines and connectors based on the worst-case scenarios of maximum RES

production. Also, from an operational point of view, high concentration of RES

generation can lead to grid points congestions. Actual load-flow calculations and

daily congestion forecasts do not systematically take into account the uncertainty

associated with RES generation. Consequently, RES generation may be curtailed

on demand to ensure grid stability, and connections of new RES units in areas with

frequent congestions may be restricted. Examples of congestion issues resulting from

a high wind penetration and a limited transmission capability are given in [27], for

the case of Greece. The same article also gives some simple ideas, based on the

control of the generation from the wind farms, which are currently being applied to

the Hellenic Interconnected System, in order to increase the wind-power penetration.

Reserve management

The equilibrium between the power generation and the load is one of the prerequisite

for stable and reliable operation of a power system. This equilibrium can be per-

turbed by an unexpected variation of either the demand or the generation [28]. The

unpredicted variations of output power of these RES units is one example of such

perturbation. The Transmission System Operator (TSO) is responsible for main-

taining the balance between power generation and load and, thereby for keeping

frequency and voltage within acceptable limits.

The power system balance is obtained from two types of control, which are

the primary and secondary control [29, 30]. The primary control results from the

automatic regulation of synchronous generators. From this control, an unpredicted

decrease of the generation from a RES unit, which is similar to an increase of the

demand, leads to a decrease of the rotating speed of the synchronous generators,

which results to a decrease of the grid frequency. Conversely, an unpredicted increase

of the RES generation leads to an increase of the frequency. The time constant

relative to this control is in the order of a few seconds. Such primary control is

possible only if a given amount of power, denoted as primary reserve is available

from the synchronous generators.

Then, the secondary control aims at restoring the grid frequency to its nominal

value. In case the grid frequency is lower than its nominal value, the TSO acti-

vates up-regulation. This consists in sending a signal for increasing the delivered

power to the generators which are involved in the secondary control. Similarly, the

TSO activates down-regulation, which consists in sending signals to decrease the
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delivered energy, when the grid frequency is higher than its nominal value. The

amount of power available from the generator for the secondary reserve is denotes

as secondary reserve. Secondary reserve consists of spinning reserve (e.g. hydro

or thermal plants in part load operation) and standing reserve (e.g. rapidly starting

gas turbine power plants and load shedding). Also, the activation of the secondary

reserve can be done through a real-time market where the participants can propose

bids for up or down-regulation. The details about these markets are given in section

2.1. The time constant relative to this control is in the order of a few minutes. A

third category of reserve is sometimes denoted as “tertiary reserve” or long term

reserve. Such reserve is similar to the secondary reserve, but with a time constant

in the order of 15 minutes.

The large scale integration of RES in a power system leads to unexpected vari-

ations of the overall electricity generation in the region where the RES units are

located, which increases the need of power reserves. This impact of RES units on

power reserves depends on the region size relevant for balancing, the initial load

variations and how concentrated or distributed the RES units are sited [25]. The

costs resulting from the increase of the reserve need will depend on the marginal

costs of the units which provide regulation for the power system. Such cost is some-

times denoted as “intermittency cost”, and is cited as an argument from opponents

to the large scale integration of RES [31]. Also, these additional costs resulting from

the integration of RES generation can lead to a reduction of the competitiveness of

the power producer if the latter is responsible for balancing of its generation. This

important point is discussed in the next section.

1.3.3 Challenges related to the participation of renewable genera-

tion in electricity markets

With the liberalization of the electricity sector, power producers have the possibility

to trade their production in electricity markets. This section presents the main

challenges related to the trading of RES production in these markets. Contrary to

the previous section which focused on the consequences of RES integration on the

management of the power system, this section describes the consequences from the

power producer’s point of view.

When participating in an electricity market, the power producers are economi-

cally responsible for the regulation costs, which result from any imbalance between

the contracted energy in the market and the delivered energy. Such market parti-

cipants are said to be balance responsible parties. For trading in an electricity

market, participants have to make decisions about their energy contracts before the

delivery. Consequently, power producers which include RES units in their genera-

14



Management of uncertainties related to renewable generation in electricity markets

tion portfolio have to consider the specific characteristics of these units for market

participation. In particular, the limited predictability and controllability of RES

units make them particularly sensitive to regulation costs. This issue is the main

driving force of the research work in this thesis.

The regulation costs which are applied to the power producer as a penalty for its

imbalance between the contracted energy and the delivered energy, result from the

costs of the activation of the control mechanisms presented in the previous section

1.3.2. More precisely, an imbalance between the contracted and delivered energy

corresponds to a perturbation of the equilibrium between generation and load, and

the regulation cost is the cost of the power reserve used by the TSO to maintain the

equilibrium. In other words, the balance responsibility of the power producer can

be interpreted as an economic responsibility of some of the technical impacts of the

RES units on the power system management.

Finally, it has to be noted that this main challenge about the competitiveness

of RES in electricity markets arises in the case of full integration of RES generation

in these markets. This means that RES generation is treated on equal terms with

other conventional producers regarding balance responsibility. More details on this

hypothesis are given in the discussion in section 2.2.1.

1.4 Objectives of the thesis

The main purpose of the thesis is related to the challenging participation of re-

newable generation in electricity markets. This can be formulated as the proposi-

tion of methods for the management of uncertainties related to the renewable power

production under electricity markets. Details are given in the three following points:

• The first objective is to list and model the different existing solutions for the

management of renewable generation in electricity market. More precisely,

the list of solutions should consider both physical solutions, which are relative

to the management of the delivered energy by the RES units, and financial

solutions, which are relative to the management of the contracted energy by

the market participant operating the RES units. Each one of these solutions

enables the power producer to reduce its imbalance penalty resulting from an

imbalance between the contracted and delivered energy. Also, the aim is to

develop a model of the imbalance penalty that is generic enough for taking

into account the different solutions.

• The second objective is to propose a decision-making method, which can be

used by a power producer with renewable generation for making decisions

15



Introduction : Renewable energy sources in a liberalized electricity sector

about its optimal participating in electricity markets. Such a decision-making

method has to be generic enough for taking into account the different phys-

ical and financial solutions. From a theoretical point of view, the aim is to

formulate a decision-making problem as an optimization problem, where the

variables of the problem are the decisions to make. The proposed advanced

decision-making approach is applied to the financial solution consisting in a

combined participation in day-ahead and intraday markets. The same method

is also applied to the physical solution which aims at strategically combining

a RES unit with a storage device for managing the imbalance penalties.

• Finally, the third objective is to generalize this decision-making method for

trading renewable generation in electricity markets, so that it can take into

account the uncertainty related to the renewable generation. The general pro-

blem is denoted as a decision-making under uncertainty problem. The

proposed approach is a risk-based method, where the risk is related to the

imbalance penalties. Such risk is derived from the uncertainty related to re-

newable generation and measured with methods taken from the financial do-

main. This risk measure is then integrated in the decision-making method.

The physical and financial imbalance management solutions are seen as hedg-

ing methods which reduce the risk related to the imbalance penalties. The

benefits related to the consideration of the risk in the decision-making method

are evaluated from simulations based on real world data.

It is important to notice that the above objectives are related to the problem-

atic of the power producer, which aims at managing the uncertainty related to its

electricity generation. Also, this objective is only related to the economic challenge

regarding the competitiveness of a renewable portfolio in electricity markets, and not

to other technical challenges related to the large scale integration of RES in power

system, presented in section 1.3.2. However, as it was explained before, this specific

challenge can be related to the economic responsibility for some of the technical

challenges.

1.5 Structure of the thesis

The present thesis is organized as follows:

• Chapter 2 presents the management of renewable generation in electricity mar-

kets. A detailed description of the electricity markets is first provided. This

presentation permits to better understand what “participating in an electri-

city market” means for a given power producer including renewable generation.
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This chapter also defines the key concepts of an independent power producer

(IPP) and balance responsibility, which are used throughout the thesis. Then,

we propose a classification of the different existing solutions for the manage-

ment on renewable generation in electricity markets. This overview of the state

of the art distinguishes the financial and the physical solutions: financial

solutions are related to the contracted energy resulting from the participation

in consecutive electricity markets, while physical solutions are related to the

management of energy delivered by the power producer. The concept of virtual

power plants (VPP) is presented as a framework for the physical solutions.

• In chapter 3, we propose a generic formulation of the imbalance penalty

model δ for an IPP including renewable generation. This formulation is based

on a reference case which is related to the participation of a reference RES

unit in a day-ahead electricity market. Then, the different financial and phys-

ical solutions, which have been classified in the previous chapter, are modeled

from the reference case. In particular, a generic model for a commercial VPP

is proposed for modeling the physical solutions. A discussion about the simi-

larities between the financial and physical solutions is provided. The last part

of this chapter presents the application of the generic formulation of imbalance

penalty to three physical solutions, which are three different configurations of

a generic VPP model. Each one of the configurations is based on a reference

RES unit. A real-world test case is considered for this purpose. Also, for

the coherence of the results, this reference wind farm is the same one which is

used for all the case studies presented in this thesis.

• Chapter 4 focuses on the decision-making problems relative to the management

of renewable generation in electricity markets. Initially, the decisions which

an IPP has to make when using financial or physical solutions are presented:

the financial solutions require bidding decisions, while the physical solutions

require scheduling decisions. Then, a generic decision-making method

which is valid for both types of decision is proposed. This chapter explains

that such method is based on a loss function λ, which is constructed from the

generic imbalance penalty model δ given in the previous chapter. The method

also relies on estimates of renewable generation and market prices given by

forecasting methods. Although these methods are of high importance in the

thesis, they are presented in the appendix sections so that the focus in this

chapter is on the derivation of the decision-making method. Results from the

application of the method for the strategic trading in intraday markets (i.e.

financial solution) and for the strategic operation of the combined wind-hydro

power plant (i.e. physical solution), are presented.
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• Chapter 5 extends the methodology proposed in the previous chapter to ac-

count for the uncertainty associated with the decision-making problem. The

two sources of uncertainties (i.e. renewable generation and market prices)

related to the present problem, are examined. Also, this chapter presents gen-

eral definitions and approaches from the state of the art, for modeling the

uncertainty. Particular attention is paid to the probabilistic models. These

models are used for representing the uncertainty associated with the proba-

bilistic forecasts of renewable generation or market prices. Then, the chapter

proposes an overview of the state-of-the-art methods for decision-making under

uncertainty. Focus is given to risk-based approaches and different risk measures

are explained. Following this review, the chapter proposes a formulation for

a risk-based method adapted to the general problem of participation of

renewable generation in electricity markets. This approach is based on a pro-

babilistic loss function, which is an extension of the loss function given in the

previous chapter. Also, in this approach, the financial and physical solutions

correspond to risk hedging methods. Chapter 5 illustrates this hedging in

the case of a given physical solution (i.e. combination with storage device).

Finally, the chapter gives numerical results relative to the application of the

risk-based decision-making approach for the trading of wind generation in a

day-ahead market. The different results presented in this chapter include sen-

sitivity analysis results, which permit to better understand the coherence of

the proposed methodology.

• Finally, chapter 6 presents the general conclusions of this work as well as some

of the main perspectives for further research resulting from this thesis.
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CHAPTER 2

Solutions for the Management of Renewable Energy

Sources in Electricity Markets

Chapter overview

This chapter presents the challenges related to the management of renewable

generation in electricity markets. First, this chapter gives an overview of the electri-

city markets, and adds some precisions about short-term electricity markets which

are considered in the rest of the thesis. The next section of this chapter presents

the main concepts of independent power producer and balance responsibility. Spe-

cial attention is paid to the imbalance penalization. The chapter finally provides

a state of the art about existing solutions for the management of imbalance penal-

ties. These solutions are classified into two categories: financial solutions are related

to the contracted energy resulting from the participation in consecutive electricity

markets, while physical solutions are related to the management of energy delivered

by the power producer.

2.1 Electricity markets

The main goal of this section is to present the electricity markets which will be con-

sidered for the rest of the thesis. First, the general principles of electricity markets,

resulting from the liberalization of the electricity sector, and the different market

types, are described. The different market structures are then explained, and the

main market clearing processes are detailed. Such general definitions about market
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principles and structures are essential for understanding the challenges related to

the participation of renewable generation in such markets. Finally, the distinction

between the markets which take place before the delivery and the real-time markets

is explained. The operation of these markets is modeled in the next chapter.

2.1.1 Liberalization of the electricity sector

History of the electricity sector

This section first presents a short summary of the history and evolution of electric

power systems for better understanding the actual context. This summary is based

on the analyses presented in [32] and [33].

From, 1870 to 1885, the first electric power systems were small hydropower and

thermal power units under 100 kW. These first units were Direct Current (DC) ones

directly connected to the consumption units. In 1884, Tesla invented the electric

alternator which is an electric generator which produces Alternative Current (AC).

The first transmission line was a 175 km long and 25 kV line and was constructed in

1891. From then, electrical power plants and transmission gradually enlarged under

centralized system. After the second World War, in many countries, for strategic

reasons, the electricity industry was gathered in a single, national company. This

situation was common in Europe and Latin America. The electric industry used to

vertically integrate production, transmission and distribution.

Process of liberalization

A restructuration of the electricity sector has been observed for the past decades

[32]. The sector has been gradually deregulated. Utilities have been unbundled to

introduce competition, and vertical integration has been replaced by competitive

markets comprising multiple players. Under such competition, the interaction of

many buyers and sellers yields a market price which equals the production cost of

the last unit sold. Electricity is treated as a tradable commodity like any other

market commodity. In the European Union, the competition has been introduced

with accordance to the EU directive 96/92/CE relative to electricity market rules [2].

The following points are some of the reasons for restructuring electricity sector:

• New generation technologies, such as combined-cycle gas turbines (CCGT),

have reduced the optimal size of an electricity generator [34]. In particular,

the installation of distributed units, which may be based on renewables or not,

is increasing significantly.

• Information technologies and communication systems make possible the ex-

change of huge volumes of information needed to manage electricity markets.
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• Electricity is a primary input for many industries, and the competitive global

economy requires input cost reduction. In this context, privatization is con-

sidered as a way to increase the efficiency of the response of the sector to

economic and technological change [32].

• Competition is seen as a necessary condition for increasing the efficiency of elec-

tric energy production and distribution, offering a lower price, higher quality

and secured supply. It puts downward pressure on the profit margin of market

participants, which attempts to keep costs and prices down. [35]

However, electricity is a specific commodity which cannot be stored to a large ex-

tent: at any time, the total amount of produced electricity must meet consumption.

Despite the consensus to introduce competition into wholesale and retail markets

by deregulating generation and opening retail, regulation is still needed regarding

network activities. Transmission, distribution and system operation exhibit natural

monopoly characteristics and must be regulated or remain government monopo-

lies [32]. Also, as mentioned in [35], liberalization is more a process than an event,

and governments which started deregulation are continuously revising their regula-

tions.

2.1.2 Electricity market types

With the liberalization of energy markets, generation and supply have become de-

coupled from grid operation. The competitive markets which replace the vertically

integrated systems are related to different functions of the power system manage-

ment. Energy market, ancillary services market and transmission market are the

three main power markets [36].

System ancillary services are services required to ensure that the system opera-

tor meets its responsibilities in relation to the safe, secure and reliable operation of

the interconnected power system. These services are provided by generation, trans-

mission and control equipment [37]. In particular, ancillary services are included in

balancing services which are used to ensure balance between supply and demand in

real time through reserve mechanisms, as detailed in section 1.3.2. In the regulated

industry, ancillary services are bundled with energy and are mandatory services. In

the restructured industry, ancillary services may be procured through market, such

as in some States in the USA.

Transmission markets are markets where the traded commodity is a transmission

right. Such right can be the right to transfer power, the right to inject power into

the network or the right to extract power from the network. The importance of the

transmission right is mostly observed when congestion occurs in the transmission

21



Solutions for the management of renewable energy sources in electricity markets

network. Such markets are already active in the USA for example. However, in most

European countries, transmission networks are managed by a Transmission System

Operator (TSO), responsible for the secure and efficient operation of the network.

The TSO is also responsible for open access to the grid; it ensures that all network

users (generators, traders, suppliers, customers) can have non discriminatory access

and use the network to move their power.

The energy market is where the competitive trading of electricity occurs. It is

a centralized mechanism that facilitates energy trading between buyers and sellers.

The energy market’s prices are reliable prices indicators, not only for market par-

ticipants but for other financial markets and consumers of electricity as well. The

energy market has a neutral and independent clearing and settlement function.

Energy markets can be considered as the main power markets, where the traded

commodity is electricity. Ancillary services and transmission markets are related

to the secure and reliable operation of the power system. In the following sections,

focus is given only to energy markets.

2.1.3 Overview of the electricity markets

Electricity market structures

Two main structures for electricity markets can be found in the literature [36]: pool

markets and bilateral markets. These two structures are illustrated in Figure 2.1,

and described as follows:

Pool 

markets
Seller Buyer

Bilateral 

markets

Figure 2.1: Overview of an electricity market model showing the flow between the market
participants.

• Pool markets: A pool market is defined as a centralized marketplace which

clears the market for buyers and sellers. Sellers and buyers submit bids to the

pool for the amount of power that they are willing to trade in the market, as

shown in Figure 2.1. Sellers compete for the right to supply energy to the grid,

and not for specific customers. If a market participant bids too high, it may
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not be able to sell. On the other hand, buyers compete for the buying power,

and if their bid is too low, they may not be able to purchase.

• Bilateral markets: In bilateral markets, also called Over-The-Counter (OTC)

markets, buyers and sellers trade directly with each other, as shown in Fi-

gure 2.1. Bilateral contracts are negotiable agreements on delivery and receipt

of power between the two traders. The bilateral market structure is very flex-

ible as trading parties specify their desired contract terms, regarding prices,

quantities, duration or quality. However, its main disadvantages are the high

cost of negotiating and writing contracts, and the risk of creditworthiness of

counterparties.

A hybrid structure is mentioned in [36]. It combines various features of the

previous two models.

Physical and financial markets

The value of electricity within a network is a variable depending on the time and the

location. Uncertainty arises from a wide range of contingencies such as equipment

failure, external factors like weather, or behavior of market participants. Electricity

markets are designed according to this uncertainty. In particular, the liberalized

electricity sector uses a combination of physical and financial markets to manage

the short-term uncertainty and network costs [38]. Two kinds of contracts can

be traded on such markets. Contracts which cover the real physical delivery of

electricity are traded in physical markets. These contracts entail physical and cash

delivery on expiry. The hub is the grid. The schedules of all the deliveries relative

to physical contracts must be approved by the Transmission System Operator, to

prevent constraints. Also, the real-time deliveries relative to physical contracts may

lead to differences between feed-ins and take-outs which have to be managed to

ensure the operation of the grid.

Alternatively, some contracts can entail only cash delivery on expiry. These

contracts are denoted as financial contracts and are traded in financial markets. Such

financial products are based on an index which is the price obtained in the physical

power exchange. They were designed for market participants to hedge against the

risk related to high variability of this index. The negotiated products are similar

to those traded in other commodity markets. They include, among others, futures,

forwards, swaps and options. These products can be combined to construct either

contracts at fixed prices, contracts indexed to electricity prices, with cap and floor,

or contracts indexed to other commodity prices. Usually, supplier of these combined

products manages a portfolio including the different available products. Because
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financial products do not entail physical delivery on delivery, the volumes traded

in financial markets can exceed the physical volumes. For example, in the Nordic

countries, the financial volumes traded in the NordPool electricity market reached

150% of the yearly consumption in 2003 [39].

It is important to note that the type of settlement does not predetermine the

aim of the contract. For example, a generator can hedge its production with a

financial contract. The dispatch of the plant is not modified by the contract and

this contract only fixes the incomes of the plant. Also, a trader can speculate with

physical contracts. They only need capacity to deliver power into the grid or to have

signed an additional back up physical contract with a physical agent.

Market clearing processes

For participating in a pool-based market, buyers and sellers propose bids. Sellers

propose bids to sell a given amount of energy at a given price, and buyers propose

bids to purchase a given amount of electricity at a given price. The market settlement

results in contracts for both buyers and sellers. Buy and sell contracts consist in

a given amount of electricity at a given price. Two main mechanisms are used

for market settlement: the single price market clearing process and the pay-as-bid

market clearing process [40, 41].

Single price market clearing process Markets which are based on a single

price clearing process are organized in power exchange sessions. Participants in

such markets have to submit their quantity-price bid during the period between the

gate opening and the gate closure time. The time delivery scope may vary depending

on the considered market. The bid time unit is often denoted as Program Time Unit

(PTU).

For the market settlement, all bids are aggregated to form a curve for purchases

and a curve for sales for each PTU. The point at which the two curves intersect

within each PTU determines the Market Clearing Price (MCP), also called system

price or spot price, which in turn establishes the trading result for each participant

for that PTU. This process is described in Figure 2.2.

Once the market clearing price is determined, all bids to sell with offer prices

lower than or equal to the MCP and all bids to purchase with offer prices greater

than or equal to the MCP are accepted. All bids to sell with higher offer prices or

bids to purchase with lower offer prices are rejected. Regarding contract prices, all

the sellers receive the MCP for their electricity, even if their bid price is lower than

the MCP price and all buyers pay the MCP, even if their bid price is higher than

the MCP price.
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Figure 2.2: Single price market clearing process

Such single price market clearing process is based on marginal pricing of electri-

city. The participation of a generation unit in such market will be beneficial only

if the MCP is higher than its marginal cost. Therefore, the price bid is based on

the marginal cost. Marginal pricing is considered as a way to reach the lowest total

cost to generate a given amount of electricity. For markets including different re-

gions, regional spot market prices are derived from system prices taking into account

transmission bottlenecks [42].

Pay-as-bid market clearing process A second alternative is to design the sys-

tem to pay bidders the price they bid, rather than to pay them the MCP. Such

trading mechanism takes place in a central exchange where standard products are

traded on a “first come first serve” basis: the first matching offer to a bid (or vice

versa) is rewarded and fixed into two bilateral transactions between the seller and

the buyer. Such a pricing mechanism is denoted as pay-as-bid pricing which takes

place in a power exchange continuous mechanism.

Generation units under the pay-as-bid system are remunerated at their bid price.

Consequently, their bid price has to be higher than their marginal cost for the

participation to be beneficial. However, a bid with a price too high will not be

matched by any purchasing bid. The highest price of the matched bids is called

the cut-off price. If all participants could guess the cut-off price perfectly, each

participant whose marginal cost is lower than the cut-off would bid the cut-off price

and each would be paid the cut-off price. The cut-off price would then be the same

as the market-clearing price. However, this analysis is based on a “perfect guessing”

hypothesis.

In real world, the pay-as-bid system may increase the total cost of generating

electricity and can therefore be less efficient than a one-price market-clearing system.

A discussion about the efficiency of the pay-as-bid market clearing process is given
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in [43].

Finally, it is important to note that the decision relative to the bid in an electri-

city market depends on the clearing process of the considered market. The difference

in terms of decision for these two clearing processes will be explained later in this

thesis, more precisely in section 4.5.

2.1.4 Electricity market operation

Most of the electricity markets are organized in a succession of markets that adjust

the balance between production and demand. This section describes the general

time frame for the operation of electricity markets. A main distinction is made

between markets which take place prior to the delivery and real-time markets [44].

Markets prior to delivery

Long term markets The largest energy volume is traded in long-term markets.

In these markets, large blocks of electrical energy are traded for periods ranging

from several days to several years. These periods correspond to the time between

the contract settlement and the real delivery.

Most of these contracts are financial ones. More generally, they are market

derivatives. Derivatives are defined as financial contracts or instruments whose

values are derived from the value of an underlying [45]. An underlying can be

an asset, like a commodity, or index, like a rate, whose value is considered as a basis

for derivatives. In electricity energy markets, the underlying is electrical energy.

Derivatives are mainly used to mitigate the risk of economic loss arising from

changes in the value of the underlying. This activity is known as hedging. In

particular, regarding electricity markets, derivatives are used by market parties as

methods to manage the risk relative to the price variability on the real-time market

[40]. Also, derivatives can be used by investors to increase the profit arising if the

value of the underlying moves in the direction they expect. This activity is known

as speculation, and is not considered in the present work. The interested reader

may refer to [45] for further details. The main derivatives in electricity markets are

forward contracts, future contracts and options:

• Forward contract is an agreement between two parties, e.g. between two

financial institutions or between a financial institution and one of its clients, to

buy or sell electricity at a certain future point in time for a certain price [45].

Forward contracts are bilateral agreements settled in bilateral markets.

• Future contract, also called a future, is a standardized agreement between

two parties on an exchange to buy or sell electricity at a certain price at
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a certain time in the future. Futures contracts are thus similar to forward

contracts, but instead of being traded in bilateral markets, they are traded on

an exchange. This explains why futures are standardized products.

• Options are contracts that give the owner the right, but not the obligation, to

buy (in the case of a call option) or sell (in the case of a put option) electricity.

The price at which the sale takes place is known as the strike price, and is

specified at the time the parties enter into the option. The option contract

also specifies a maturity date. In the case of a European option, the owner

has the right to require the sale to take place on (but not before) the maturity

date; in the case of an American option, the owner can require the sale to

take place at any time up to the maturity date. The buyer (holder) of the

option pays the seller (writer) an option premium for this right. The option

writer’s obligation is to complete the transaction if the holder so demands

(exercises the option). The option writer has received a premium for taking

on the obligation.

Day-ahead markets Most electricity markets include a day-ahead market, which

is a physical market where the bids are submitted and the market is cleared on the

day before the actual delivery. Most day-ahead markets are based on a single price

market clearing process. The resulting spot price is often used as a reference for

financial markets.

Day-ahead market participants (sellers and buyers) have to propose before gate

closure time in the day d their quantity-price bids for the different delivery periods

of the following day d+ 1. Delivery periods are often referred to as Program Time

Unit (PTU). Generally, the PTU is one hour, and the bids can be either hourly bids

or block bids when they cover a number of successive hours. More precisely, block

bids allow the participation of generation units with starting ramp.

Based on a single price market clearing process as described in section 2.1.3, the

bids are all matched through a single auction process for determining the market

clearing price (also referred to as spot price) and the program of the participants for

each PTU, which is the volume being sold or purchased during each PTU, for each

participant.

Each day-ahead market has its own rules, defining the way electricity is to be

sold or purchased, how the prices are settled, and the obligations the participants

are committed to. The specific trading rules regarding European day-ahead markets

can be found in [46,47].
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Intraday markets Due to the long time span between the settlement of contracts

on the day-ahead market and the physical delivery, exchanges sometimes offer an

intra-day market, also referred to as hour-ahead or adjustment market. An intraday

market is defined here as a physical market, which gives the possibility for transac-

tions between market parties between the day-ahead market gate closure time and

the final notification [41]. This notification is the last moment in time where a mar-

ket party is allowed to change the energy program which will form the basis of the

imbalance calculation. Intraday markets gate closure time occurs between half an

hour and two hours before time of delivery.

The participation in intraday markets enables the participants to improve their

balance of physical contracts in the short term. In particular, they can take into

account non-scheduled outages, updated load forecasts and updated forecasts of RES

generation. This justifies why these markets are often called adjustment markets.

These markets can be based on single price or pay-as-bid market clearing pro-

cesses. An overview and a classification of the European intraday markets is given

in [41].

Real-time markets

At gate closure time, all trading for the physical delivery of electrical energy ceases:

at that point, market parties have their final energy schedules fixed. At the same

point, the control over the power system is passed to the Transmission System

Operator (TSO) which is responsible for the continuous balance between supply

and demand, including possible import/export from neighboring grids.

In open electricity markets, the real-time market is the physical market whose

main function is to provide reserve power by market parties to the TSO through a

bidding process. Only the TSO manages the demand of the real-time market and

the actors on the supply side of the real-time market can be both producers and

consumers.

Two kinds of bids can be proposed from a market party in the real-time market.

Bids can first consist in a proposition of a price required to increase its generation

or decrease its consumption for a specific volume immediately. Alternatively, bids

can also consist in a proposition of a price offered to take the opposite action,

which is to decrease its generation or increase its consumption for a specific volume

immediately (i.e. in the following minutes). The first type of bid will be activated

when demand exceeds supply while the second when supply exceeds demand. Such

balancing services are part of ancillary services. The following paragraph describes

the example of the real-time market operated by TenneT in Netherlands [48]: up

to one hour ahead of operation, market parties may offer bids for regulating and
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reserve power to TenneT. TenneT will use as much regulating and reserve power

as is needed in order to maintain or restore the system balance. Units providing

upward or downward power are remunerated at the price of the highest bid used for

balancing the system, with a different price for upward and downward power. This

price is the penalty price that the parties responsible for imbalance have to pay for

their energy imbalance.

The term balancing market generally combines the real-time market with the

imbalance penalty rules [44]:

• Balancing market first refers to the balancing mechanism which defines the

features of the real-time market, such as the bidding rules, the constraints or

the requirements on the balancing market participants, the way of payment to

the bidders or the constraints on the TSO. A market entity providing balancing

power/energy to a TSO is denoted as “balancing market participant”.

• Balancing market may also refers to the rules defining the way the TSO de-

termines the price for the market parties responsible for the imbalance bet-

ween demand and supply. Market parties which are financially responsible for

balancing their injections and withdrawals (including possible purchases and

selling) of energy are denoted as balancing responsible parties.

Imbalance pricing arrangements can be used to encourage market players to max-

imize their efforts to be in balance. Balancing markets therefore form an integral

part of the overall wholesale electricity trading arrangements and timetable. Balanc-

ing markets represent the transition from a rule-based mechanism to a market-based

mechanism. Although the TSO will be a single purchaser in such mechanism, efforts

have been made to base the procurement of capacity required to balance the system

in real-time on market-based actions whenever possible [49]. It is seen as a way

to ensure the transparency and the competitiveness of the mechanism. Some grid

operators in Europe have already started to procure capacity required to balance

the system in real-time via a real-time market, and balancing markets are expected

to become increasingly integrated in the near future.

Summary of the electricity market operation

Figure 2.3 summarizes the electricity market operation considered. The long-term,

day-ahead and intraday markets are illustrated as a possibility for market parties

to trade electricity prior to delivery. The participation in one of these markets is

related to the proposition of a bid. This is illustrated by the vertical line which

precedes the trading period (represented by the rectangle). In opposition to these

markets prior to delivery, the balancing market is a real-time market which occurs
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at delivery. This market is related to the difference between the energy contracted

by the different market parties and the actual delivered energy. The TSO is the

main participant of this later market.

2.2 Description of participation in an electricity market

This section explains in what a participation in an electricity market consists from

the power producer point of view. The regulatory framework of the renewable energy

sources is first recalled, and the hypothesis relative to the participation of renewable

generation in electricity market is discussed. Then, the electricity markets conside-

red in this thesis are specified, and the participation in these markets is presented

through the concept of independent power producer(IPP). The following key

concept which is defined is the one relative to the balance responsibility of the

IPP.

2.2.1 Renewable energy sources and regulatory framework

In the EU Directive (2001/77/EC) on the promotion of electricity produced from

Renewable Energy Sources (RES), each Member State is expected to reach a given

share of its production based on RES in 2010. This specific share is based on the

percentage of each country’s consumption of electricity. In order to achieve these

goals, support mechanisms may be used to promote the large scale integration of RES

in each Member State’s power system. Morthorst in [50] proposes an analysis and an

evaluation of the different mechanisms used in EU to promote RES. Overviews of the

current support schemes to promote RES are given in [28, 51, 52] by the European
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Transmission System Operator (ETSO), the International Energy Agency (IEA),

and the European Wind Energy Association (EWEA), respectively.

The main goal of support schemes is to bring the RES technology development

to a stage in the future where RES no longer support is needed. More precisely,

most of RES technologies (excepting hydropower generation) are recent technologies

compared to conventional generation, and need additional research for decreasing

their generation cost. Also, most of the electricity markets today underestimate the

environmental cost of production related to conventional generation, which leads to

a competitive disadvantage for RES participating in the same markets. The aim

of support mechanisms is to recognize the additional benefits of renewable energies

such as support to rural economies and mitigation of environmental impacts, and

consequently to offset such competitive disadvantages.

Support mechanisms can be divided into two categories, as suggested in [53]:

• quantity-based mechanisms are systems where a quota for the level of renewable

energy that should be produced is set. The regulator defines a reserved market

for a given amount of RES and organizes competition between RES produc-

ers to allocate this amount. Electric utilities are then obliged to purchase

the electricity from the selected power producers. These mechanisms are de-

noted as tendering systems or competitive bidding systems. For example, the

Renewables Obligation (RO) mechanism in UK consists in an obligation on

licensed electricity suppliers to buy a certain percentage of their supply in each

1-year compliance period [54]. Another example of quantity-based mechanism

is the green certificate scheme, where a fixed quota of the electricity sold by

operators on the market has to be generated from RES.

• price-based mechanisms are systems that are relative to the payment of the

RES production. Payment mechanisms can be viewed as compensation for the

lack of internalization of external costs in the production costs of the producing

companies. The level of the payment incentive depends on the RES production

cost compared to other technologies and the market prices for electricity. More

precisely, the market price for electricity settled by conventional technologies

might be too low to make RES competitive. Two main payment mechanisms

are predominant in Europe [50,55]: the feed-in tariffs and the feed-in premium:

– the feed-in tariff scheme involves an obligation for a given electric utility

to purchase the electricity produced by renewable energy producers in

their service area at a tariff determined by the public authorities and

guaranteed for a specified period of time.
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– the feed-in premium is an incentive paid on top of the market price to the

RES producers. This premium can be either independent of the market

price, or limited in case of high market price. The aim of the feed-in

premium is to introduce upper and lower boundaries for the renewable

energy price.

A comparison of the feed-in tariff and the feed-in premium is proposed in [55] for

the wind power in Germany and Spain respectively. Regarding price-based mech-

anisms, feed-in tariff and feed-in premium schemes correspond to two different at-

titudes towards the integration of RES generation in electricity market [51]. The

feed-in tariff mechanism consists in setting special conditions for RES generation and

providing relief from market risks. On the contrary, the feed-in premium mechanism

consists in supporting the costs related to the market integration. Feed-in premiums

can thus be seen as a transition to a full market integration, where support mecha-

nisms are removed. Full market integration would be possible if the RES generation

is competitive with conventional generation. This can be achieved either with a de-

creasing cost of the RES technology or with the integration of additional products

in the current market mechanisms, such as carbon credits regarding environmental

issues.

The present work aims at proposing methods for RES generators for the manage-

ment of their production in electricity markets. More precisely, the proposed method

aims at managing the risk related to the balance responsible RES generators when

they are integrated in electricity markets and responsible for their production. Re-

garding support mechanisms, the proposed method is not valid for RES generators

under feed-in tariffs, but the method would remain valid for RES generators under

feed-in premiums. The hypothesis to consider renewable generation integrated in

electricity markets is justified by the temporary nature of support mechanism: as

stated in their definition, a support mechanism is designed to support a technology

development to a stage in the future where the technology no longer needs support.

Moreover, a number of feed-in tariff mechanisms have been switched to feed-in pre-

mium mechanisms in recent years [52]. This observed trend confirms the transition

to the situation where RES generators are responsible for their generation.

2.2.2 Electricity markets considered in this study

In the present work, the RES production is supposed to be sold in a competitive elec-

tricity market. A relatively high number of participants is supposed to participate

in the market.

The considered RES generation is traded ahead of delivery, via bilateral contracts

or on the power exchange. Focus is given on the day-ahead market, which is most of
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the time the reference market for all forward trades. The participation in intraday

markets is also considered. Day-ahead and intraday markets are denoted as short-

term electricity markets.

The participation in long-term electricity markets is not considered in this work.

Such markets are forward markets, where the transactions relate to distant deliv-

eries which can range from the following month to several years in advance. The

assumption to participate only in markets for which the period between the trans-

action and the delivery does not exceed the one relative to the day-ahead is justified

by the RES generators characteristics: the limited predictability of the renewable

production makes its trading difficult in long term contracts.

Also the participation in real-time market is not considered. Generators partic-

ipating in such markets propose a price required to increase their generation. This

bid can be activated by the TSO to regulate the grid and consequently, must be

reliable. Consequently, the uncertainty associated to the RES generation and its

limited dispatchability limits its participation in real-time markets. However, recent

improvements in very short-term RES power forecasting models could overcome this

limit.

2.2.3 Participation of renewable units in electricity markets as in-

dependent power producers

Definition of an independent power producer

An Independent Power Producer (IPP) is an electricity generator delivering power in

a deregulated structure [40]. The concept of IPP appears as soon as the electricity

generation industry structure is not a vertically integrated monopoly. The IPPs

are indeed competing generators. They can sell their generation either to a single

buyer or a wholesale market. The second case is considered as a fully competitive

generating sector.

IPPs are generating companies, also called GENCOs in the US [36]. They oper-

ate and maintain existing generating plants. An IPP may own a plant or interact on

behalf of plant owners with the short-term market. An IPP can include RES units.

IPPs have the opportunity to sell electricity to entities with which they have

already negotiated sales contracts through bilateral contracts; they may also opt to

sell their generation in short-term electricity markets. IPP may offer electric power

at several locations that will ultimately be delivered through the transmission or

distribution networks. Since an IPP is an entity which exists in the liberalized

framework, its selling price is not regulated. Finally, the IPPs’ objective is to max-

imize profits. To achieve such a goal, IPPs may choose to take part in whatever

market. It is the IPP’s own responsibility to consider possible risks.
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Interaction of an independent power producer with other entities of the

power system

In the context of a fully competitive generating sector, the IPPs have the possibility

to trade their generation in wholesale electricity markets. As explained in section

2.2.2, only the participation in short-term electricity market (i.e. day-ahead and

intraday) is considered.

When participating in such markets, IPPs interact with other market entities.

First, the Independent System Operator (ISO) is the leading entity in a market

and determines the market rules [36]. The ISO administers transmission tariffs,

maintains the system security and coordinates maintenance scheduling. The ISO

should function independently of any market participants, such as generators or

end-users, and should provide non-discriminatory open access to all system users.

Two options can be found regarding the relationship between the system opera-

tor and the transmission owner [40]. A first option is to have an ISO which combines

ownership of the transmission with system operation. The ISO is then called Trans-

mission System Operator (TSO). The TSO is a regulated company. The second

option separates the system operator (ISO) from transmission companies which are

independent entities which own the transmission network. Transmission companies

transmit electricity using a high-voltage transport system from generators to distri-

bution companies for delivery to customers. Transmission companies have the role

of building, owning, maintaining, and operating the transmission system in a certain

geographical region for providing services for maintaining the overall reliability of

the electrical system. A detailed comparison of the two options can be found in [40].

The second option is more common in the US power system while the TSO option

can be found in most of EU countries.

Other market entities include distribution companies, retail companies, aggre-

gators, brokers, marketers and customers [36]. Distribution companies distribute

electricity to the customers in a certain geographical region. These customers are

the end-users of electricity. They can be connected to the distribution system in

the case of small consumers and to the transmission system in case of bulk cus-

tomers. Retail companies are legally able to sell retail electricity. The retailers can

either deal directly with end-user customers or through aggregators, who combine

customers into a buying group. Brokers of electric energy services are entities that

act as middlemen in a marketplace in which these services are priced, purchased and

traded. They facilitate transactions between buyers and sellers. Finally marketers

are entities that buy and re-sell electric power but do not own generating facilities.
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2.2.4 Details of the description of the participation of an indepen-

dent power producer in electricity markets

General definition of the participation of an IPP in electricity markets

In the competitive framework, the IPP is responsible for trading its generation.

More precisely, the IPP has to “decide on the amount of each electricity service that

should be supplied, at which moment it should be produced, at what price it should

be sold, and by which units it should be provided” [56].

The market participation consists in designing hourly offer curves that are sub-

mitted to the auctions relative to the different markets. Quantity-price pairs are

examples of offer curves, where a given amount of energy is proposed at a corre-

sponding price. These offer curves are based on short-term generation scheduling.

More precisely, the decision about the quantity-price bids has to take into account

technical constraints of the generation units such as ramps. These units might be

profitable to operate if they received at least a certain level price for a large period.

The operation of the same unit only for a short period may not be profitable since

the fixed costs of ramping up may be greater than the profits earned during the pe-

riod [43]. In order to take into account these features, market parties can use block

bids, which consists in a series of n bids relative to n consecutive market period

units.

The market participation of the IPP can be interpreted as a shift of the respon-

sibility of the power system management from the central operator to the market

players. This view is defended in [57]. In that book, Rau explains that unit commit-

ment generally done by the central operator for the next days or weeks “contravenes

deregulation philosophy”, in which the power system is managed through the mar-

ket. The dispatch is shifted to the perspective of market players, and becomes a

question of determining the optimal bidding strategies as related to maintenance,

risk of forced outage and loss of revenue, and decision to start and stop generators.

This position assumes a reliable operation of the market.

Price taker versus price maker

In the case of a market with a single price clearing process, as defined in section

2.1.3, two different approaches of bidding can be observed for the IPP:

• The first approach consists in submitting quantity-price bids which indicate

how much electricity the IPP is prepared to deliver at a given price. Then,

the market clearing price and clearing volume for the considered IPP, result

from the aggregation of the offer and demand curves. The IPP is said to be a

price maker.
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• In the approach, the IPP submits price-independent bids. The bid energy

quantity is constant for the whole range of possible prices. The IPP is said

to be price taker. For the market settlement, this bid is taken at zero price

when aggregating the offer curves. The bid quantity is always traded in the

market as a result of the zero price, and the IPP receives, or “takes”, the

market clearing price.

Renewable generation units have low marginal costs, since their production is not

based on a fuel consumption. Consequently, the market participation for a IPP

including renewable power units aims at trading as much as energy as delivered by

the renewable units. Consequently, the considered IPP in the study is taken to be

a price taker.

2.2.5 Balance responsibility

Definition of balance responsible party

Balance responsibility is considered as a way to enable the functioning of the market

while keeping technical integrity of the system in a decentralized way. Under this

mechanism, market parties are economically responsible for their imbalance.

A balance responsible party (BRP) is a market party which is “responsible for

keeping the net balance on all the connections within its control and [which] faces

the liability consequences if this is not achieved. The liability in case of imbalance

involves the payment of an imbalance charge to the operator of the market area who

is responsible for keeping the balance in the area. The imbalance charge consists of an

imbalance price for every MWh of imbalance that has occurred during a predefined

settlement period” [41].

Imbalance is generally defined per balance responsible party per settlement pe-

riod as the difference between net programmed values and metered values of feed-ins

and take-outs on the set of connections the party is responsible for, corrected with net

programmed trade with other program responsible parties. If the set of connections

is empty the imbalance is per definition equal to the net programmed trade [41].

Imbalance settlement for an independent power producer

The imbalance settlement is made a posteriori to production and consumption, and

is based on metered data. It often involves an imbalance penalty which is determined

by multiplying the imbalance energy volumes with the imbalance price. This section

gives the definition of the imbalance volume and price, which are formulated in the

next chapter 3.
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Imbalance volume The imbalance volume of a balance responsible party is the

difference between the metered delivered energy and the net contracted energy. Such

volume can be positive or negative. The contracted energy results from the partici-

pation in electricity markets prior to delivery as described in section 2.2.2.

Positive energy imbalance occurs when the delivered energy is greater than the

contracted energy, while negative energy imbalance occurs when the delivered energy

is lower than the contracted energy and negative energy.

Imbalance price The real-time regulation operated by the TSO results from the

sum of the imbalance volumes from all the BRPs in the TSO control zone. In

order to ensure the equilibrium between production and consumption, the TSO

counterbalances the total real-time imbalance by applying secondary reserve and

tertiary reserve. These secondary and tertiary reserves may be obtained from the

real-time market as described in sections 1.3.2 and 2.1.4. If the real-time imbalance

is positive, production exceeds consumption and down-regulation is activated. If

the real-time imbalance is negative, production is lower than consumption and up-

regulation is activated.

BRPs are responsible for the payment of the energy traded in the real-time mar-

ket by the TSO for adjusting its own energy imbalance. Many options exist for the

design of the imbalance price mechanism. First, the payment of providers of im-

balance service and the charge of users can be done through a fixed regulated price

or a real-time market-based price [40]. Also, when the imbalance price is based on

real-time, the imbalance price can be based either on a dual pricing mechanism,

where a different price is applied to positive and negative imbalance volumes respec-

tively, or on a single pricing mechanism, where a single imbalance price is used for

all imbalance volumes. Finally, imbalance pricing based on real-time market can

consider either the average or the marginal price of energy balancing actions [41].

When a dual pricing mechanism is used, a distinction is made between BRP

imbalance volumes which are in the same direction as the TSO regulation and BRP

imbalance volumes which are in the opposite direction. A BRP has its imbalance

in the same direction as the TSO regulation when its imbalance volume is positive

while the TSO is down-regulating, or negative while the TSO is up-regulating.

The different imbalance pricing options generally lead to a penalization of the

imbalance volumes, which reduces the IPP’s market revenue. More generally, the

imbalance settlement mechanism is designed to encourage market participants to

minimize energy imbalances. This is done through price signals for the imbalance

energy. Figure 2.41 describes the dual price mechanism in the Western Denmark

1Note that, due to editing problems, the currency unit eis denoted as eur. This remark is valid
for all the figures of the present thesis.
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area, with the up regulation, day-ahead market and down regulation prices during

the 24 h of the 5th of October 2003. The up regulation price is the “main” price for

generators being “short” (i.e. which have their production lower than their contract).

Such up regulation price is higher or equal to the day-ahead market price, which is

the “reverse” price. In other words, they are required to pay the “missing” energy

at a price higher than the spot price. Similarly, the down regulation price is the

“main” price for generators being “long”. Such up regulation price is higher or equal

to the day-ahead market price, which is the “reverse” price.
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Figure 2.4: Day-ahead electricity market price in the Elspot market for the Western Den-
mark area, the 05/10/2003, and the associated up and down regulation price for the same
area.

In a dual pricing mechanism, the energy imbalance in the “right” sign for the TSO

are not penalized. For very infrequent periods, the energy imbalance in the “right”

sign for the TSO may even be remunerated. This situation may happen during

down-regulation from the TSO, where negative imbalances are then remunerated

at a price greater than the day-ahead market price. These situations can also be

associated to negative prices for positive imbalance. Electricity in this condition

becomes a “waste good” [58]. This phenomenon happens very infrequently. It is

explained by the “must-run” character of some inflexible generators [59]. For these

power suppliers, the costs of a shutdown period are generally higher than the loss

resulting from negative price, which explains why they accept these negative prices.

More generally, imbalance prices are highly variable and hardly predictable [60].

Such characteristics will be further discussed in section C. The high variability and

low predictability contribute to discourage power producers to plan imbalances and

to prevent from speculation in these markets [61].
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Balance responsibility and renewable generation

The balance responsibility is particularly critical for IPP with RES units in their

generating portfolio. More precisely, when participating in a market, the IPP has to

propose bids prior to the delivery, taking into account the limited predictability of

the RES units. Energy contracts are thus based on an estimation of the future energy

generation. At delivery time, the errors relative to these generation estimations and

the limited dispatchability of the RES units may lead to significant energy imbal-

ance, which in turn make them particularly sensitive to imbalance penalties. This

sensitivity reduces the competitiveness RES-based portfolios in electricity markets

and lead to financial risks [62].

This sensitivity is a reason why RES have benefited from support mechanisms,

which counterbalance the reduction of competitiveness resulting from imbalance

penalties due to the limited predictability of RES generation. The feed-in tariff

mechanism completely eliminates the balance responsibility. The feed-in premium

mechanism modifies the market price perceived by the IPP, which distorts the mar-

ket price seen by the RES units, reducing the influence of the imbalance costs on

the RES units operation [38]. Specific support mechanisms reducing the balance

responsibility for RES have also been settled. In Belgium for example, offshore wind

energy can enjoy specific tolerance margins [63]. If the imbalance volumes are lower

than 30% of their nominal power per PTU, the negative and positive imbalance

prices are levelled out by the TSO at prices of respectively 110 or 90 % of the day-

ahead spot market price [63]. For deviations beyond these margins, the prices are

determined according to the TSO’s imbalance tariff.

The present work considers the participation of an Independent Power Producer

operating RES generation as a balance responsible Party. Under these conditions,

the management of the uncertainty related to renewable generation is a cornerstone

for improving the integration of RES in electricity markets.

2.2.6 Summary

Figure 2.5 summarizes the sequence of the participation of an IPP in an electricity

market, and the interaction with other entities of the power system. In a first step,

the IPP proposes bids in the day-ahead and eventually in the intraday electricity

markets. The bids are submitted to the market operator. They result in energy

contracts for the IPP, which in turn are considered as energy programs by the TSO.

The second step is the real-time operation. At this time, the IPP delivers elec-

tricity to the grid. The TSO operates the real-time market and maintains the equi-

librium of the grid. Regulation is activated by the TSO with electricity available

from the real-time market.
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Figure 2.5: Model of the participation of a balance responsible IPP an electricity market.

Finally, the imbalance penalties are applied to the IPP by the TSO for the

difference between the contracted and delivered energy.

The imbalance penalization will be formulated in the next chapter. The next

section presents the state of the art of existing solutions to manage the imbalance

penalties for an IPP including RES units.

2.3 State of the art of existing solutions for the manage-

ment of renewable generation in electricity markets

The following section proposes to classify the solutions which reduce imbalance

penalties into two categories: the financial solutions which are relative to the man-

agement of the contracted energy, and the physical solutions which are relative to

the management of the delivered energy. It reminded that the imbalance penalties

depend on the difference between the delivered energy and the contracted energy.

2.3.1 Financial solutions for the imbalance management

The aim of this section is to present the financial solutions available from the litera-

ture for the management of imbalance penalties. These solutions are relative to the

management of the contracted energy, which refers to the total amount of energy

which has been traded through different markets or bilateral contracts before deliv-

ery. Energy traded in the real-time market for balancing the position of the IPP is
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not included in the considered contracted energy. The participation in day-ahead

and intraday markets, as well as the trading of market derivatives, are presented.

The particular role of renewable generation forecasting in the financial solutions is

also explained.

Renewable generation trading in short-term electricity markets

Short-term electricity markets include day-ahead and intraday markets. For trading

their generation in these markets, IPPs must propose their energy quantity-price

bids during a period which ends at the gate closure time. The proposed bids are

then settled by the market and result in energy contracts which are notified to the

TSO as expected physical position at real time. The imbalance energy at delivery

time is calculated as the difference between the delivered and the contracted energy

from the IPP. Since most imbalance settlement mechanisms are designed to penalize

imbalance energy, the total contracted energy should be as close as possible to the

delivered energy in order to avoid imbalance penalties. In some systems only, IPPs

are allowed to self-balance after gate closure time [41]. However, this possibility is

normally prohibited or is subject to an information imbalance charge.

The participation in the day-ahead market. A day-ahead market, as its name

implies, operates one day in advance of the delivery. The participation of renewable

units in such market necessitates the use of short-term forecasts of the output of

these units. Numerous studies consider the participation of IPP including wind

power in day-ahead markets in European countries. For example, the participation

of a wind farm in the OMEL day-ahead market in Spain is considered in [64–66].

The participation of a wind farm in the APX day-ahead market in Netherlands is

considered in [67]. In [68], the participation of a wind farm in the NordPool Elspot

day-ahead market in Denmark is described. In United Kingdom, the participation of

a wind farm in the NETA day-ahead market is considered in [62]. The participation

of wind power in the Italian day-ahead market is simulated in [69].

Moreover, the day-ahead market is considered as a reference market for the im-

balance pricing mechanisms. In particular, for dual imbalance pricing regime, the

price for imbalance volumes in the same direction as the TSO regulation measure is

the day-ahead price for many European countries [41]. In other words, imbalance

volumes which help the TSO to guarantee the equilibrium between load and genera-

tion are paid the day-ahead price. If the imbalance volume is relative to a day-ahead

energy contract, this means that the penalty associated to such imbalance volume

is null.
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Additional trading in intraday markets. Intraday markets offer the possibility

for IPPs to get additional trade and a change of position after the day-ahead market

gate closure time. Participation in the intraday market can be done using updated

power forecasts which are generally more accurate than the ones used for trading in

the day-ahead market. This forecasting error reduction is explained by the reduction

of the period between the prediction and the operation time in the case of intraday

market. Consequently, more recent inputs, such as measurements and numerical

weather predictions, can be used for generating updated forecasts.

Participating in an intraday market using updated power forecasts can thus be

considered as a solution for reducing imbalance penalties. The benefits from the

participation in such a market have been verified in [70] for the Spanish market.

For the NordPool market, the possibility to reduce imbalance penalties through the

intraday market participation has been studied in [71].

Trading strategies for managing imbalance penalties. For an IPP, market

participation consists in determining the amount and the price of the bids which it

proposes to the market. This quantity and price will determine the total contracted

energy and the resulting energy imbalance. As a consequence, the strategy adopted

by the IPP for trading in the market is crucial regarding their competitiveness

towards the other market participants.

The problem relative to strategic bidding refers to both decision making about

the quantity-price bid and market clearing models. A wide range of approaches can

be found in the literature. A general framework is proposed in [72] for strategic

bidding in electricity spot markets under uncertainty. This study is based on a wide

review of the state of the art. In particular, the different spot market mechanisms

are described, as well as some approaches used to model bidding strategies, and

different representations of the generation system. Examples of strategic bidding

studies can be found in [73–75].

Management of imbalance penalties with market derivatives: the case of

options

In electricity markets, options are financial market derivatives which give the owner

the right, but not the obligation, to buy (in the case of a call option) or sell (in

the case of a put option) electricity. Regarding IPPs including RES, call options

can be used to manage negative imbalance: call options can be exercised when the

delivered energy is lower than the contracted energy. Similarly, put options can be

used to manage positive imbalance: they can be exercised when the delivered energy

is greater than contracted energy.
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For using options to manage short-term energy imbalance, the IPP has to be able

to trade options which are relative to the delivery of electricity for a short period,

such as several hours. However, the existing option purchasing markets may not

be adequate for managing energy imbalance from wind power. For example, in the

Nordic Power Exchange, the proposed power options are based on season forward

contracts and year forward contracts [76]. No option relative to short-term contracts

is proposed.

As already mentioned, long-term contracts are not considered in this work due to

the limited predictability of RES generation. However, the development of derivative

products aiming at reducing the risk related to the market participation is fast, and

short-term options or similar products could appear rapidly in electricity markets.

Thus, using option for managing imbalance penalties remains theoretical now, but

may soon appear for real cases.

The role of renewable generation forecasting in the financial solutions

The financial solutions are related to the trading of energy volumes in electricity mar-

ket. This participation in markets generally consists in the proposition of quantity-

price bids prior to delivery, as illustrated in Figure 2.5. Due to the limited pre-

dictability of the renewable generation, forecasting methods are often used. In this

case, the forecast of the renewable generation is used as a basis to determine the

energy bid volume. This results in a decrease of the imbalance penalty. This re-

duction of imbalance penalty, and the resulting revenue increase, is thus a measure

of the value of the RES generation forecast. The following paragraphs gives the

example of the value of wind generation forecast in electricity markets.

Usaola and Angarita [65], in a simulation study, used the OMEL Spanish market

example to demonstrate the value of forecasting: he draws a relation between the

accuracy of wind power prediction tools and the resulting revenue. The case of

the Spanish electricity market is also examined in [64] where the authors show

that the prediction error would cost roughly 10% of the wind farm’s revenue from

electricity market when using a wind power forecasting model. The reduction of

imbalance penalties from using short-term forecasting for trading wind energy in

the UK electricity market is shown in [77].

In a study described in [67,78], the authors present the simulation of the partic-

ipation of a wind farm in the Dutch APX electricity market. The authors compare

the imbalance penalties from using an advanced wind power forecasting model with

the ones obtained using persistence. The persistence, in this case, consists in using

the latest available wind power measurement as a forecast for the future production.

When using the persistence model, imbalance penalties represent a reduction of 21 %

43



Solutions for the management of renewable energy sources in electricity markets

of the revenue which could be obtained by using perfectly accurate forecasts, with

null imbalance. Using the advanced wind power forecasting model decreases the im-

balance penalties to 13% of the revenue obtained with perfectly accurate forecasts.

2.3.2 Physical solutions for imbalance management

This section presents the physical solutions available from the literature for the

management of imbalance penalties related to renewable generation. These solutions

concern the management of the delivered energy by the IPP which includes the

considered renewable generation. The first solution is the control of the generation

from the RES unit itself. The three following solutions consist in combining the RES

unit either with other RES units (i.e. aggregation), with energy storage devices

or with conventional units. The general concept of virtual power plant is finally

presented from the literature. This concept corresponds to the framework for the

three power system combinations previously given.

Control of the renewable generation

RES generation based on solar plants and wind farms result from the conversion

of solar irradiation and wind respectively, which are non-controllable resources. As

a result, the dispactchability of RES units is low, as already discussed in section

1.2.2. Such dispatchability has been improved with the development of new RES

technologies.

In this work, the automatic control of electrical machines is distinguished from

the control possibilities which permit to increase the dispatchability of the RES

plant output. This distinction is illustrated with the case of wind power. For modern

wind turbines, the automatic power control can be realized with pitch control, which

gives the possibility to turn the blades out or into the wind as the power output

becomes too high or too low, respectively [79]. Another automatic control is the

active stall control, which consists in pitching the blades slightly into the direction

opposite to the pitch control in order to decrease high power fluctuations, and to

compensate variations in air density. The second control, which permits to increase

the dispatchability of the RES plant output, is denoted as generation control.

Such control includes for example the possibility for a wind farm to reduce its total

generation output. This generation control can be a request from the TSO for

avoiding grid congestion in case of high wind power production. This control is

sometimes denoted as down-regulation. Technically, the output reduction can be

achieved either by shutting down a single wind turbine of the wind farm, or by

limiting the output generation of each wind turbine of the wind farm.
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In the present work, focus is given to the generation control, and the possibil-

ity to use this control for reducing the imbalance penalties. The automatic power

control is more related to the electrical machine functioning, and is thus not consi-

dered in this work. Regarding generation control, the “down-regulation” techniques

presented in the previous paragraph are solutions for reducing the positive energy

imbalance of the IPP. They are described as the generation management concept

in [80]. For negative energy imbalance, two solutions are proposed in [80] for re-

ducing them: reducing the wind power feed-in permanently below the technical

optimum or shutting down a single wind turbine in advance just of being in position

to switch it on in case of negative imbalance. However, a large share of available

wind power is wasted when applying such solutions.

An example of technical implementation of generation management can be found

in the patent description in [81]. This solution is a wind power management system

for monitoring performance of wind turbine generators.

Aggregation of renewable units

The aggregation of RES units consists in combining different RES units. In this

case, the concerned IPP (or other actor that acts as an aggregator) operates the

aggregated RES units as a single unit. The energy imbalance for this IPP is defined

as the difference between the energy delivered by the different generation units of

the IPP and the energy contracted by the IPP in the electricity markets.

Such energy imbalance for aggregated RES units is smaller or equal than the

sum of the energy imbalance relative to the different unit. More precisely, aggregat-

ing RES units offers the possibility to smooth out the energy imbalances from the

different units. For example, a positive energy imbalance from a RES unit taken

individually may be compensated by a negative imbalance from another unit taken

individually, and vice versa. The reduction of energy imbalances has already been

studied from a forecasting problem point of view. For example, the reduction of

the wind power forecasting error resulting from wind farm aggregation is described

in [82]. The imbalance reduction resulting from the aggregation of wind farms that

are spread over a large area is also mentioned in [83]. This compensation results

from the decorrelation of the individual outputs.

One way to consider decorrelated RES outputs is to consider RES units spread

over a large geographical area. The link between the distance between the RES

units and the RES output decorrelation has been analyzed in [11]. However, the

decorrelation of the wind farm outputs is reduced for offshore aggregation: large

ocean fronts regularly stretch for hundreds of kilometres, so a wider geo-spread is

necessary before output correlation reduces. Another way to consider decorrelated
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RES outputs is to consider RES units based on different renewable resources, such

as the combination of wind and photovoltäıc power plants. However, the different

aggregated technologies have to be of the same order of magnitude regarding energy

delivery.

In addition to the compensation of opposite energy imbalances, the RES unit

aggregation permits to decrease the aggregated output variability [84]. This vari-

ability reduction is denoted as the smoothing effect and is quantified and analyzed

in [11]. The reduction of the fluctuations of the output from a wind farm aggre-

gation in time intervals ranging from a few seconds to five minutes are analyzed

in [85]. The smoothing effect relative to the aggregation of RES units based on

different renewable resources is described in [84]. On a seasonal basis, combining

photovoltäıc power plants with wind farms is a way to decrease the aggregated out-

put variability: the wind energy production is generally higher in winter due to high

wind, whereas the photovoltäıc production is higher in summer as a consequence to

higher solar irradiation in summer. In other studies mentioned in [84], in the United

Kingdom for example, wave and wind power time series have been found to have a

low correlation on a daily basis. This combination could be interesting for reducing

short-term variability, for the time periods ranging from around one to four hours

before delivery.

Combination with energy storage devices

The energy delivered by RES unit is hardly predictable and hardly controllable.

These characteristics make them sensitive to imbalance penalties. A solution to

reduce this sensitivity is to combine the RES units with other units which are able

to compensate this lack of controllability. The Energy Storage Devices (ESDs) are an

example of power units which reduce the sensitivity of IPPs including RES towards

imbalance penalties [84].

ESDs are power units which can store a given amount of electrical energy. More

precisely, ESDs can be charged in case of positive imbalance (when RES delivered

energy is greater than the contracted energy) and discharged in case of negative

imbalance (when the delivered energy by the RES units is lower than the contracted

energy). As a result, the energy imbalance from the combined RES and ESD units

can be reduced. From the system operator point of view, ESD can reduce operating

costs and improve the operating flexibility of power systems because they are able

of providing non-spinning reserve to the utility system [84].

Whichever technology is considered, common characteristics can be defined for

the existing storage technologies [86]. In particular, the maximum amount of energy

that can be stored is denoted as the storage capacity. When charging, the ESD
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is converting the electrical energy into another form of energy, such as potential

energy, kinetic energy or chemical energy, which is storable. When discharging,

the stored energy is converted back to electrical energy. Each conversion implies

energy losses; the charging efficiency is defined as the ratio of stored energy over the

absorbed electrical energy and the discharging efficiency is defined as the ratio of

the delivered electrical energy over the consumed energy.

Different ESD technologies are suitable for different applications [86]. The stor-

age time, which is defined as the time to discharge the storage device starting from

full capacity, at nominal rate, is a way to classify the different technologies. A stor-

age time of less than one minute tends to be required for power quality improvement,

and transmission grid stability. Contribution to spinning reserve and frequency and

voltage regulation requires a storage time in the range of minutes, whereas load lev-

eling, peak shaving and imbalance management may require hours to days worth of

energy storage. A complete description of the existing ESD technologies is provided

in [87,88] and the benefits of the combination of ESD with wind power is discussed

in [89]. The present work will only consider technologies suitable for imbalance

management (i.e. storage time from hours to days). Examples are given below.

• Pumped-hydro storage has long been established as the primary type of energy

storage plant for electric utilities, and its operations and economics are well

understood. They offer storage time from hours to days with charging and

discharging rates which can be up to several thousands of MWh/h, depending

on location. Their response time is fast and their operating costs are relatively

low.

• Compressed Air Energy Storage (CAES) systems consist in compressing air in

geologic structures under the ground, such as coal mines or salt domes, and

releasing when necessary. A number of projects have been developed in the

USA and Europe for the purpose of energy management, where the aim is

to store energy during non-peak hours and release during peak hours. The

storage time varies between hours to days.

• Batteries are based on the conversion of electrical to chemical energy. Their

technical feasibility for electric utilities has been demonstrated. However, no

commercially viable solutions for large-scale battery storage has been demon-

strated to the market yet. Till now, batteries used to be operated on small-

scale systems, such as photovoltäıc systems. Using hydrogen obtained from an

electrolyzer to store energy is a promising way [90].

Beyond pumped-hydro storage, there has been very few commercially available

storage technologies that operate on today’s electricity grids [8]. This can be ex-
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plained by their high operating costs. An analysis of the cost per kWh of stored

electricity is proposed in [91]. In this study, the cost added to electricity stored and

discharged is evaluated for various battery technologies and compared with the cost

of conventional pumped-hydro storage. The cost relative to the different batter-

ies considered is between 3 to 12 times the pumped-hydro storage costs. However,

the different storage technology maturation is evolving rapidly. The development

of renewable generation and market liberalization itself acts as powerful incentives

to intensify R&D efforts in this field. For example, batteries which charging and

discharging power rate is in the order of a few MW have been recently installed

in some island systems which include a large share of renewable generation. The

transition to balance responsibility for IPP including RES units could lead to the

development of ESD solutions for reducing the imbalance penalties. Also, the full

pricing of emissions of conventional units providing energy in the balancing market

would improve the relative economics of storage as an alternative.

The combination of a wind farm with an ESD for reducing the imbalance costs

when participating in an electricity market has already been considered. In [90] a

method for scheduling and operating an energy storage system coupled with a wind

power plant under market conditions is proposed. In [92] an algorithm is proposed

for calculating the optimal short-term dispatch of an energy storage facility coupled

with a wind farm with the objective of minimizing the expected imbalance penalties

incurred by the wind farm owner. In [93,94] an optimization approach was proposed

for determining the most probable range of the output production of a wind farm

coupled with a hydro power plant containing a water pump system and a small

reservoir. The main motivation of such works was to use the hydro storage facility

for increasing the controllability of the wind farm and maximize profits. In [95]

some technological aspects of energy storage devices are discussed and the storage

is used to filter the erratic power output of a stochastic power source (e.g.: wind

power generator). In other words, the work developed in [95] aims at increasing the

controllability of the wind power source. The same idea is described in [83]. Finally,

in [66] two methods are proposed for minimizing the penalties due to imbalances of

the wind farm power output. The first one considers the wind farm to bid alone in

the day-ahead market trying to minimize the risk of the bid based on a statistical

analysis of the expected production probability. The second couples a hydro power

plant containing a water reservoir to the wind farm for minimizing the imbalance

costs incurred by the wind farm owner.
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Combination with a conventional generation unit

Another solution to reduce the sensitivity of the IPP including RES units towards

imbalance penalties is to combine the RES units with dispatchable conventional

generation units. When combined with RES units, dispatchable conventional units

can increase or decrease their output for reducing negative or positive imbalance,

respectively.

The case of distributed generation (DG) conventional units have been conside-

red by utilities as a solution for peak shaving [96, 97]. By definition, operating a

unit for peak shaving consists in running it for reducing the system peak demand,

which reduces the stress on the utility network and eases the loading of the utility

generators. Combining a conventional DG unit with a RES unit for reducing imbal-

ance is a similar problem to the peak shaving one: the unit is used by the IPP only

when negative imbalance occurs. The strategic combination of a conventional DG

unit with wind power for reducing balancing costs has already been studied in [98].

The considered units have to be flexible enough to be dispatched according to the

RES imbalance. If a dispatchable source is switched on to counterbalance RES

negative energy imbalance, the time period to get the unit fully operational, also

called start-up time, has to be low enough. Also, the imbalance penalty reduction

resulting from the combination depends on the costs associated to these conven-

tional units. More precisely, the marginal operation costs of these units have to be

lower than the avoided penalties. An overview of the main DG unit characteristics

is given in [96]. The compared DG units are diesel engines, natural gas engines, gas

turbines, microturbines, fuel cells and Stirling engines.

The two commonly used technologies are distributed generation units based on

gas turbines and diesel engines. Gas turbine generators are available in the size

range from 3 to 200 MW, and require about ten minutes to one hour to be brought

online. Diesel generators are generally much smaller than gas turbines, typically in

the size range from 0.05 to 5 MW, and can be connected in less than a minute [97].

Such a low starting time is of particular importance for the imbalance minimization

problem. Diesel engine technology has progressed in the past few years, and has

greatly improved with respect to efficiency and emission standards. A recent deve-

lopment is the option to fuel modern diesel gen-sets on biodiesel, a renewable and

sustainable alternative to fossil diesel.

Concept of a virtual power plant and state of the art of the related

research

Definition of the concept Combining RES with other DG units into a single

independent power producer is a method for reducing the imbalance penalties which
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potentially may improve the competitiveness of the RES units in electricity markets,

as described in the previous section. More generally, the limited size of DG units

makes their individual market participation difficult. For example, most individual

DG units have to use specific bilateral contracts with an energy trader, because their

rated power does not reach the threshold for the electricity pool participation. A

large-scale integration of DG units in electricity markets may thus encourage the

combination of DG units.

In such context, the concept of Virtual Power Plant (VPP) was introduced

by Awerbuch in 1997 [99]. The author uses the term Virtual Utility to describe

the concept. It is defined as “a framework to enhance the visibility and control

of distributed energy resources to system operators and other market actors by

providing an appropriate interface between these system components”. It consists

in a flexible collaboration of independent and market-driven entities which efficient

energy services in a more efficient way.

The concept of Virtual Power Plant (VPP) can be described as a generalization

of the aggregation of DG units. VPPs are described in [100] as the highest level of

aggregation of DG units:

• The reference level is the case without aggregation, where each local generation

plant output power is regulated through bilateral contracts;

• The first level is the simple aggregation of DG plants. Considering RES units,

this level corresponds to the combination described in section 2.3.2. Such

aggregation is a way to reduce the imbalance penalties and the intermittency

of the RES output power.

• The following level is the aggregation of different types of Distributed Energy

Resources (DER) units into VPP. The considered DER can be either genera-

tors or controllable loads connected to the network [15]. In this context, con-

trollable electrical loads, which are combined with generation units, improve

the controllability of the whole system; they are thus viewed as distributed

“energy resources”.

It is important to note that the term of Virtual Power Plant can be used in the

power system area with a different meaning. In particular, it is also used to denote

the access provided by predominant utilities of generation capacity to competitors.

For example, such access to competitors is a measure that was asked to EDF by the

European Union, which judged EDF to be anti-competitive in the French electricity

market. For further details, the interested reader may refer to [101]. Similarly, in

Belgium, antitrust authorities obliged the incumbent to sell financial Virtual Power

Plants, while in the Netherlands regulators have been discussing the use of physical
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Virtual Power Plants [102]. The sense given to the concept of VPP is different from

the one given by [99], which is the one adopted for the present work.

Integration of a virtual power plant in electricity markets From the def-

inition in the previous section, a VPP can be described as an IPP having a port-

folio which includes a number of Distributed Energy Resources (DER). DER can

be DG units and controllable load units. The DER aggregation into VPP takes

place through Information and Communication Technology (ICT). The significant

developments in ICT have led to new forms of DER control and electricity market

interfaces; advanced ICT architectures are now able to cope with the increasing

complexity of interaction required to facilitate decentralized system management

and VPP activity.

Two different aspects of the VPP are considered in [20]. The VPP can first be

used to facilitate DER trading in wholesale energy markets. This activity relative

to market participation is denoted as commercial VPP activity. The VPP can also

facilitate the technical integration of DER in power systems. This activity relative

to system management refers to the technical VPP.

• The general goal of a technical VPP is to manage DER for providing as much

ancillary and network management services as the conventional generators do.

Such services include various types of reserve, frequency and voltage regulation.

The technical VPP activity consists in internally dispatching power and energy

flows from the units included in the VPP, for providing these ancillary services

in an efficient way, and also for managing technical issues which can arise when

integrating DER in power systems. These issues include for example network

congestions and voltage variations.

• A commercial VPP is a representation of a portfolio of DER that can be used

to participate in energy markets as a single IPP, and which thus facilitates the

participation of DG units in the electricity markets. Characteristics from the

combined DER, such as generation schedules, generation limits or operating

costs, are aggregated into a single profile of characteristics. Commercial VPPs

reduce the imbalance risk associated to individual participation in the market

and benefits from diversity of resource and increased capacity achieved through

aggregation. In the framework associated to such VPP, the energy imbalance

has to be considered for the whole portfolio, and not for the individual units.

The energy imbalance of individual units can be internally compensated, which

reduces the imbalance management cost, and thus increases the revenue. Also,

within a commercial VPP, DER units can achieve economies of scale in market

participation and benefit from intelligence on market participation to maximize
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revenue opportunities. An illustration of the concept of commercial VPP is

given in Figure 2.6. In this scheme, the VPP includes several RES units, an

energy storage device and a conventional generation plant.

Electricity 

markets

Virtual 

power plant
Grid

Grid Grid

~~

storage
conventional
unit

WF-1WF-2

Figure 2.6: Description of a commercial VPP which includes RES

A commercial VPP can combine DER from any geographic location in the

system if the contracts do not consider any locational constraints. However,

for locational marginal pricing-based markets or for market where a zonal

approach is considered, the CVPP portfolio will be restricted to include only

DER from the same distribution network area or transmission network node.

The VPP concept fits in with the different solutions relative to the management

of the delivered energy, which have been described in section 2.3.2. The combination

of the RES units with either other RES units, storage units or conventional DG units

can be considered as three distinct VPP configurations.

However, many questions still remain open about the practical business opera-

tion of a VPP: the concept of unit aggregation to participate in a market is described

but there is still some uncertainty about contractual issues. The commercial and

regulatory framework is not clearly defined. Controllability and compulsory ser-

vices offered by VPP needs to be clarified. Most VPP projects are still research or

demonstration projects.

Research and demonstration projects about virtual power plants Several

research and development projects and demonstration projects about VPP have

been carried out in the last years.

The FENIX project is a R&D European collaborative project, partly funded

by the European Union within the 6th Framework Programme for Research [20,

103]2. The aim of this project is to design and demonstrate a technical architecture

2The acronym FENIX stands for Flexible Electricity Networks to Integrate the eXpected energy
evolution.
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and commercial framework which would enable DER based systems to be further

integrated in power systems. The FENIX approach is to fully integrate a large

number of different DER technologies, responsive loads and storage devices using

the concept of a large-scale Virtual Power Plant. A large-scale VPP has a resulting

flexibility and controllability similar to large conventional power plants.

The Imbalance Reduction System (IRS) is a project which was developed to

minimize the energy imbalance of a VPP [104]. The VPP portfolio considered con-

sists of two wind farms combined with DER which are industrial and residential

consumers and producers: Combined Heat and Power (CHP) for district heating,

residential heat pumps, industrial cold store, emergency generators. The two wind

farms operate on the day-ahead market using wind power prediction. Imbalance

energy between the delivered wind energy and the contracted energy are balanced

(when possible) by the DER. IRS uses the PowerMatcher concept, which is a co-

ordination system for supply and demand of electricity. It is a multi-agent system

which combines microeconomic principles [105]. The benefits in terms of reduction

of imbalance are presented in [104].

The Renewable Combi-Plant is a demonstration project carried out by the Ger-

man Renewable Energy Agency [106]. This VPP aggregates and controls the power

generation of distributed wind farms, photovoltäıc plants, biogas-fired CHP and a

pumped-hydro storage device in such a way that the output matches a specified load

at each time. The generation of the different plants is balanced with a typical energy

demand for Germany. The difference between the load and the generation mix of

wind farms and photovoltäıc plants is compensated by fast controllable biogas-fired

CHP plants and the pumped-hydro storage device. The wind farms are controlled

to avoid extreme gradients and generation peaks. The algorithms created for the

concept were verified and a prototype of this VPP is in operation since May 2007.

The scenarios, concepts, algorithms and the results of the pilot phase are described

in [107].

2.4 Conclusions

Physical and financial solutions are two approaches with a common goal: reducing

the imbalance penalty.

The physical solutions impact the real power system and the delivered energy by

the generation units. Each physical solution is related to a technical solution: the

control of the RES output is related to the technology of the RES unit; the RES

aggregation and the combination with storage or with a conventional unit consists

in including additional generation units in the generation portfolio. Also, the virtual

power plant concept offers this possibility to manage a portfolio of renewable units
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as a conventional unit. In the past, renewable generation used to benefit from

exceptions in order to facilitate its development. These exceptions are technical,

such as the exclusion of some requirements regarding grid codes, or economic such as

the establishment of feed-in tariff as a support mechanism. However, the large scale

integration of renewable generation forces the renewable generation to be treated as

conventional power plants [83].

Financial solutions leave the physical system unchanged. These solutions consist

in modifying the contractual position of the IPP. Instead of modifying the power unit

portfolio for providing services to integrate the renewable generation characteristics,

financial solutions consist in buying this service from other market participants

through electricity markets. The investment related to technical solutions is avoided.

A comparison between physical and financial solutions for the management of

imbalance is proposed in [108]. In this study, the solution consisting in combining

a wind farm with pumped-hydro storage is compared to the solution consisting in

using call options. The study demonstrated the similarities between the physical

and the financial solutions for the management of imbalance, from an IPP point of

view.

Following this classification of solutions in this chapter, the aim is then to define

a unified formulation of the imbalance penalty resulting from each of these solutions.

This is proposed in the following chapter.
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CHAPTER 3

Development of a Generic Model for the Participation of

Renewable Generation in Electricity Markets

Chapter overview

This chapter proposes a formulation of the imbalance penalty model for a power

producer including renewable generation. The case of participation in an electricity

market as a balance responsible party is considered. The formulation of the imbal-

ance penalty is first given for the reference case of the participation in a day-ahead

market. The imbalance settlement is modeled as a penalization function. Then,

the financial and physical solutions for managing the imbalances, which have been

presented in the previous chapter, are modeled as a modification of the reference

penalization function in the sections 3.2 and 3.3 respectively. In particular, a generic

model of commercial virtual power plant is proposed for the physical solutions. The

proposed model relies on a generic formulation which is valid for both physical and

financial solutions, and which can be extended to a combination of these solutions.

The imbalance reduction relative to the use of each solution is assessed through a

case study using real-world data.
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3.1 Formulation of the imbalance penalty

3.1.1 Main hypotheses

Hypotheses about the Independent Power Producer

The Independent Power Producer (IPP) considered hereafter includes Renewable

Energy Sources (RES) generation units in its portfolio. More precisely, it is supposed

to include a main RES unit with stochastic output. This unit can be a wind farm

or a PV power plant. This is denoted as “reference unit”. Different generation units

can be combined with the reference unit; each combination results in a specific IPP

configuration.

In the thesis, “the reference unit” which will be used for the evaluation of the

proposed formulations and methods, is taken to be a wind farm. This can be justified

by the fact that wind power has been the fastest growing RES and, consequently,

specific attention is paid to the management of uncertainties related to the power

generation from this specific RES. However, it is important to note that the general

approach followed in this thesis is generic, and can thus be directly applied to other

renewable energy sources, such as PV.

The reference configuration is when the IPP is only composed of the main RES

unit. The IPP is in this case the wind farm or PV plant operator, which partici-

pates in the electricity market for trading its production. When the reference unit

is combined with other units, the resulting unit combination is considered as a com-

mercial Virtual Power Plant (VPP) as described in section 2.3.2. The IPP is then

the operator of such VPP. Three VPP configurations are considered, corresponding

to three proposed physical solutions for the management of imbalances in section

2.3.2. The first VPP configuration is the aggregation of RES units, the second is

the combination of the reference RES unit with an energy storage device, and the

third is the combination of the reference RES unit with a conventional dispatchable

unit.

Hypotheses about electricity markets

The participation of the IPP in the day-ahead market is taken as the reference

participation. In general, the electricity market is assumed to include an intraday

market and market derivative trading. The participation in the intraday market and

the trade of options are considered as two alternatives and correspond to the two

proposed financial solutions for the management of imbalances presented in section

2.3.1. The additional trading in the intraday market or the additional option trading

will be evaluated as a function of the reference case which is the participation only

in the day-ahead market.
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The management of the real-time operation of the power system is ensured by

the Transmission System Operator (TSO). Imbalances on the TSO’s control area are

counterbalanced through a real-time market. The imbalance settlement is assumed

to be based on a dual pricing mechanism, where a different price is applied to positive

imbalance volumes and negative imbalance volumes (as explained in section 2.2.5).

The IPP does not propose any bid for participating in the real-time market. How-

ever, the IPP is a Balance Responsible Party and is thus economically responsible

for the regulation measures taken by the TSO to counterbalance its imbalance.

3.1.2 Formulation of the participation in the day-ahead market

Formulation of the reference penalization function

The revenue of an IPP which participates in an electricity market can be formulated

as the sum of the incomes from the contracts on the day-ahead and intraday mar-

kets, and of the incomes from the real-time market; the contracts are established in

markets which take place prior to the delivery. Such market revenue decomposition

can be found in [62,67,68]. It is important to note that this revenue is related to the

participation in the electricity market, and does not include any other income such

as the ones that could be associated with the supply of ancillary services. Also, the

operating and maintenance costs, as well as the investment costs are not included

in the market revenue.

For a given market time unit Ti, the energy contract resulting from the day-

ahead market participation consists in an energy volume EDA

Ti
traded at a price ΠDA

Ti
.

Also, in the real-time market, the price for positive imbalance for the same time

unit Ti is Π+
Ti

and the price for negative imbalance is Π−
Ti
. The imbalance volume

at the delivery is defined as the difference between the energy ẼTi
delivered during

the period Ti and the contracted energy EC

Ti
. In the reference case, the contracted

energy is the energy contract volume in the day-ahead market EC

Ti
= EDA

Ti
. However,

such contracted energy more generally includes all the contracted volumes prior to

real-time delivery. Consequently, the revenue RDA

Ti
relative to the time period Ti

can be written as the sum of the income which results from the day-ahead trading

of the energy volume EDA

Ti
at the price ΠDA

Ti
and the income which results from the

imbalance volume (ẼTi
− EC

Ti
) in the real-time market.

RDA

Ti
= EDA

Ti
×ΠDA

Ti
+ (ẼTi

− EC

Ti
)×Π

+/−
Ti

(3.1)
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with



Π

+/−
Ti

= Π−
Ti

⇐ ẼTi
< EC

Ti
(negative imbalance)

Π
+/−
Ti

= Π+
Ti

⇐ ẼTi
≥ EC

Ti
(positive imbalance)

(3.2)

In order to simplify the mathematical expressions, the index which refers to the

considered time period Ti is omitted in the following equations. Also, the contracted

energy EC equals the day-ahead energy contract EDA in this case, and the revenue

RDA can be rewritten as:

RDA = EDA ×ΠDA + (Ẽ − EDA)×Π+/− (3.3)

= Ẽ ×ΠDA + (EDA − Ẽ)×ΠDA + (Ẽ − EDA)×Π+/− (3.4)

= Ẽ ×ΠDA

︸ ︷︷ ︸
a

+(Ẽ − EDA)× (Π+/− −ΠDA)︸ ︷︷ ︸
b

(3.5)

In the formulation given in Equation 3.5, the market revenue is formulated as

the sum of the income resulting from the delivered energy Ẽ (part a) and a func-

tion of the imbalance volume (part b). In this second part of the formulation, the

imbalance volume is multiplied by the difference between the imbalance price and

the day-ahead price, also called spot price. The interest of this formulation is re-

lated to the design of the balancing market. In the so called dual-price imbalance

price settlement, a different price is applied to positive and negative imbalance

volumes, and the price for positive imbalance is lower than the spot price while the

price for negative imbalance is higher than the spot price, as explained in section

2.2.5. Consequently, for such balancing market design, when the imbalance volume

is positive, the difference between the imbalance price and the spot price is negative

((Π+ − ΠDA) ≤ 0), and, when imbalance volume is negative, the difference between

the imbalance price and the spot price is positive ((Π−−ΠDA) ≥ 0). Also the part b

of the formulation given in Equation 3.5 is always negative. From this analysis, the

market revenue can be formulated as:

RDA = Ẽ ×ΠDA − δ
DA
(
Ẽ, EDA

)
(3.6)

where δ
DA

is a function of the delivered and contracted energy
(
Ẽ, EDA

)
which

is formulated as:
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δ
DA
(
Ẽ, EDA

)
=





(
Ẽ − EDA

)
× (ΠDA −Π−) ⇐ Ẽ < EDA

(
Ẽ − EDA

)
× (ΠDA −Π+) ⇐ Ẽ ≥ EDA

=
∣∣∣Ẽ − EDA

∣∣∣×∆Π (3.7)

with

∆Π =




∆Π

− = Π− −ΠDA ⇐ Ẽ < EDA

∆Π
+ = ΠDA −Π+ ⇐ Ẽ ≥ EDA

with Π+ ≤ ΠDA ≤ Π− (3.8)

In this formulation, the price ∆Π is positive and, consequently, the function δ
DA

is positive. This can be interpreted as the penalization function of the real-time

imbalance relative the participation in the day-ahead market. This penalization is

coherent with balancing market design aiming at encouraging market participants to

minimize imbalance energy volumes. Also, in case of no imbalance, this penalization

function equals zero and the market revenue equals the contract income.

System down–
regulation:

System up–
regulation:

Π+<ΠDA Π+=ΠDAΠ- =ΠDA Π- >ΠDA

EEDA EEDA ~~

δDA (E , EDA)δDA (E , EDA)

Figure 3.1: Examples of the penalization function δ
DA

in the case of a dual-price imbalance
price settlement.

A graphical example of the function δ
DA

is given in Figure 3.1 in the case of dual-

price imbalance price settlement. The values of the function δ
DA

are represented for

a constant contracted energy EDA and a variable delivered energy Ẽ. Consequently,

the represented function δ
DA

is a function of only one variable Ẽ. A distinction

is made between TSO up-regulation and down-regulation states: when the TSO is

down-regulating, only positive imbalance are penalized. These imbalances are said

to be “in the direction” as the TSO regulation state. Conversely, when the TSO is

up-regulating, the imbalances in the direction as the TSO regulation state, are the

negative ones and are thus penalized.
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Main properties of the penalization function

If the price for negative imbalance is higher than the spot price and the price for

negative imbalance lower than the spot price, the imbalance penalization function

δ
DA

can be written as:

δ
DA

(x, y) =




a× |x− y| ⇐ x < y

b× |x− y| ⇐ x ≥ y
(3.9)

with a, b ≥ 0.

The function δ
DA

: R2 → R is a real-valued function on R2 satisfying the following

properties:

• Non-negativity: for all (x, y) ∈ R2, δ
DA

(x, y) ≥ 0;

• Homogeneity: for all (x, y) ∈ R2, and all λ ≥ 0,

λ · δ
DA

(x, y) = δ
DA

(λ · (x, y)) = δ
DA

(λ · x, λ · y);

• Triangle inequality: for all (x1, y1), (x2, y2) ∈ R2,

δ
DA

((x1, y1) + (x2, y2)) ≤ δ
DA

(x1, y1) + δ
DA

(x2, y2),

where (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

The first two properties are straightforwardly derived from Equation 3.9. The

triangle inequality property is demonstrated by considering all the different possible

values of x1, y1, x2 and y2. These properties characterize the function δ
DA

as an

asymmetric seminorm, as defined in [109]. If a > 0 and b > 0, the function δ
DA

has

the following additional property:

• Positive definiteness:

δ
DA

(x, y) = 0 if and only if x = y.

When this additional property is verified, the function is a norm, while when it

is not verified, the function is a seminorm. The concept of asymmetric norms or

seminorms is a generalization of the concept of a norm.

In addition to being an asymmetric seminorm, the function δ
DA

has also the

following property, denoted as anti-symmetry:

• Anti-symmetry:

for all a ∈ R, δ
DA

(x+ a, y) = δ
DA

(x, y − a).
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3.2 Modeling the imbalance management based on fi-

nancial solutions

3.2.1 Formulation of the sequential participation in day-ahead and

intraday markets

This section proposes a formulation of the market revenue of an IPP who participates

sequentially in the day-ahead market and in the corresponding intraday market. In

this case, the market revenue is the sum of the incomes from the contracts established

in the day-ahead and intraday markets and the incomes from the real-time market.

The additional energy contract in the intraday market consists in an energy volume

EID traded at the price ΠID. Consequently, the energy contract volume is the sum

of the energy volumes from both the day-ahead and the intraday markets: EC =

EDA + EID. The revenue RDA

ID
is formulated as:

RDA

ID
= EDA ×ΠDA + EID ×ΠID + (Ẽ − EC)×Π+/− (3.10)

The revenue can be reformulated as:

RDA

ID
= Ẽ ×ΠDA + EID × (ΠID −ΠDA) + (EDA + EID − Ẽ)×ΠDA

+(Ẽ − EC)×Π+/−

= Ẽ ×ΠDA − EID × (ΠDA −ΠID)

−(Ẽ − EC)×ΠDA + (Ẽ − EC)×Π+/−

= Ẽ ×ΠDA − EID × (ΠDA −ΠID)

−(Ẽ − EDA − EID)× (ΠDA −Π+/−)

= Ẽ ×ΠDA − EID × (ΠDA −ΠID)− δ
DA

(Ẽ, EDA + EID) (3.11)

Finally, the revenue from the combined participation in the day-ahead and in-

traday markets can be written in a similar formulation as Equation 3.6:

RDA

ID
= Ẽ ×ΠDA − δ

DA

ID
(Ẽ, EDA) (3.12)

with

δ
DA

ID
(Ẽ, EDA) = EID × (ΠDA −ΠID) + δ

DA

(Ẽ, EDA + EID) (3.13)
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EEDA+EID Eti

EID × (ΠDA – ΠID)

δDA

~

ID,ti

δD

A ti

δDA (E , EDA)

δDA (E , EDA)

EDA 

Figure 3.2: Imbalance penalization for the combined participation in the day-ahead and
intraday markets, in the case of a dual-price imbalance price settlement, when the TSO is
down-regulating.

From Equation 3.13, the additional participation in the intraday market can

be interpreted as a modification of the reference penalization function δ
DA

. The

modification of the penalization function is illustrated in Figure 3.2. The presented

example corresponds to a dual-price imbalance price settlement, where the TSO is

down-regulating. The functions δ
DA

(Ẽ, EDA) and δ
DA

ID
(Ẽ, EDA) are functions of the

delivered energy Ẽ. In the case of the participation only in the day-ahead market,

only positive imbalance volumes are penalized, as described with the function δ
DA

.

The modification of the penalization function comports two aspects: the first term

EID × (ΠDA −ΠID) is a constant cost added to the function δ
DA

and the second term

δ
DA

(Ẽ, EDA + EID) corresponds to a variable change of the δ
DA

function, which is

represented as a shift by EID. Reducing the imbalance penalty can be graphically

interpreted as getting the function δ
DA

ID
lower than δ

DA

. Such reduction is illustrated

in Equation 3.13 for a delivered energy ẼTi
at a given time Ti. The penalty δ

DA

Ti

obtained when participating only in the day-ahead market is reduced to δ
DA

ID,Ti
with

the intraday participation. It is important to note that the sign of the constant

cost depends on the contracted volume and the price in the intraday market. In

Equation 3.13, the energy contract EID is taken positive, and the intraday market

price is taken lower than the day-ahead market price ΠDA < ΠID, which results to a

positive constant cost.

The figure 3.2 shows a reduction of imbalance for a delivered energy ẼTi
. How-

ever, the combined participation in the intraday market leads to an increase of the

imbalance penalty for negative values of delivered energy, where the red plot is higher

than the pink plot. More generally, Figure 3.3 presents the impact of the participa-

tion in intraday market on the reduction of imbalance as a function of the contracted

volume EID and the price ΠID in the intraday market. This figure aims at deter-

mining the (ΠID, EID) combinations which reduce the imbalance penalty resulting

from the day-ahead market participation. Note that these combinations (ΠID, EID)
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System up–regulationSystem down–regulation

Positive 

imbalance

Negative 

imbalance

Π- =ΠDAΠ+ Π+ =ΠDA Π-
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Figure 3.3: Imbalance penalty reduction resulting from the combined participation in the

day-ahead and intraday markets: δ
DA

− δ
DA

ID
.

result from the intraday bid, and are thus established prior to delivery, when the

IPP does not know if the system will be down or up regulating. The imbalance

reduction is measured through the difference between the imbalance penalty from

the day-ahead participation and the imbalance penalty obtained in the combined

participation in day-ahead and intraday markets: δ
DA

−δ
DA

ID
. The (ΠID, EID) combi-

nations corresponding to a positive reduction (δ
DA

ID
≤ δ

DA

) are represented in green.

Conversely, the combinations corresponding to a negative reduction (i.e. penalty

increase: δ
DA

ID
≥ δ

DA

) are represented in red. A distinction is made between up and

down regulation from the TSO, and also between positive and negative imbalance

between the delivered energy and the day-ahead contract Ẽ − EDA. These distinc-

tions lead to four cases. In each case, the intraday contract volume is taken positive

when energy is sold in the market and negative when energy is bought from the

market.

As a first general comment, it can be observed that the participation in intraday

market can result to either a decrease or an increase of the imbalance penalties.

The volume EID and price ΠID combinations resulting in imbalance penalty increase

correspond to a decrease of revenue, and have to be avoided. The two main positive
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areas are:

• The case of positive imbalance in a down-regulation system state (top left).

In this case, the intraday market offers the possibility to sell energy when the

delivered energy is expected to be higher than the day-ahead energy contract;

• The case of negative imbalance in a up-regulation system state (down right).

In this case, the intraday market offers the possibility to buy energy when the

delivered energy is expected to be lower than the day-ahead energy contract.

3.2.2 Formulation of the trading of electricity market derivatives:

the case of options

As already mentioned in section 2.3.1, options are market derivatives which give the

owner the right to adjust its contractual position. They may be complex derivatives,

but they usually contain the following specifications [45]:

• Options can be call options when the option holder has the right to buy, or

put options when the option holder has the right to sell;

• Options are relative to a quantity of a given underlying. Here, the underlying

is electrical energy, and the quantity is denoted as EOp;

• The strike price ΠK , also denoted as the exercise price, is the price at which

the underlying transaction will occur upon exercise;

• The premium ΠP is the price paid by the holder of an option to get the option.

An option is said to be exercised when the holder uses his right to buy (sell) elec-

tricity in the case of call (put) option. Also, options have an expiration date, or

expiry, which is the last date the option can be exercised. If the option is exercised,

the traded volume EOp,∗ equals the underlying quantity EOp: EOp,∗ = EOp. If the

option is not exercised, the traded volume is zero: EOp,∗ = 0.

Call options can be used to manage negative imbalance: they can be exercised

when the delivered energy is lower than the contracted energy. The underlying

quantity EOp is taken positive when the IPP buys electricity in the option market.

Similarly, put options can be used to manage positive imbalance. The underlying

quantity EOp is then negative.

The benefits from option trading for an IPP are formulated here considering as

reference the day-ahead market participation. The revenue RDA
Op from the combined

option trading and day-ahead trading can be formulated as:

RDA

Op = EDA ×ΠDA −ΠP + EOp,∗ ×ΠK + (Ẽ − EC)×Π+/− (3.14)
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where the energy contract volume is the sum of the energy volumes from both

day-ahead trading and option trading: EC = EDA + EOp,∗. In a similar way as in

Equation 3.11, this revenue can be reformulated as:

RDA

Op = Ẽ ×ΠDA − δ
DA

Op(Ẽ, EDA) (3.15)

with

δ
DA

Op(Ẽ, EDA) = ΠP + EOp,∗ × (ΠDA −ΠK) + δ
DA

(Ẽ, EDA + EOp,∗) (3.16)

EEDA EDA+EOp
Eti

ΠP + EOp×(ΠDA – ΠK)

δDA

~

Op,ti

δDA
ti

δDA
Op,ti

ΠP

Option exercised:

EOp,* = EOp

Option not exercised :

EOp,* = 0

δDA (E , EDA)

δDA (E , EDA)

Figure 3.4: Imbalance penalty for the participation in the day-ahead market with a call
option.

From the last Equation 3.16, the option trading can be also interpreted as a

modification of the penalization function δ
DA

. The additional constant cost equals

ΠP + EOp,∗ × (ΠDA −ΠK) and the function δ
DA

is shifted by EOp,∗.

Figure 3.4 illustrates the modification of the penalization function resulting from

the trading of a call option in a down-regulating system, with a constant contracted

energy EDA. The strike price is taken inferior to the day-ahead price. Two cases

are presented, depending on if the option is exercised or not. In the example, the

delivered energy at a given time Ti is ẼTi
, which is higher than the contracted energy

in the day-ahead market EDA. The resulting imbalance is positive. When the option

is exercised, the resulting imbalance penalty δ
DA

Op,Ti
is reduced. On the contrary, the

imbalance penalty is increased by the premium ΠP if the option is not exercised.

However, in the case of negative imbalance, the penalty is higher when the option is

activated compared to when the option is not activated. The premium is the price

to pay by the IPP for having the possibility to reduce its imbalance penalty just

before delivery.
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The imbalance reduction depends on the energy quantity EOp, the premium ΠP

and the strike price ΠK . The influence of these three parameters on the imbal-

ance penalty reduction could be represented similarly to Figure 3.3 for the intraday

market participation.

The proposed formulation of the option trading for reducing the imbalance penal-

ties is based on the assumption that these derivatives are available in the market.

However, today, the proposed options only refer to long-term contracts, and are con-

sequently not adapted to the short-term imbalance management problem. Conse-

quently, the solution relative to the option trading remain theoretical, which explains

why this solution is not further considered in the present thesis.

However, short-term options or similar products could rapidly appear in elec-

tricity markets as possible tools for the management of stochastic generation in

electricity markets. Also, the general concept of premium, which quantifies the ad-

ditional cost for having the right to activate a solution, can be extended to the

case of physical solutions for reducing the imbalance penalties. These similarities

between financial and physical solutions are further detailed in the next sections.

3.3 Modeling the imbalance management based on phys-

ical solutions

This section proposes a generic formulation of the solutions relative to the man-

agement of the delivered energy which reduce imbalance penalties for an IPP

operating RES units. These solutions are physical solutions, as opposed to the fi-

nancial solutions formulated in the previous section for the contracted energy. As

already detailed in section 2.3.2, they include the control of the RES generation, the

aggregation of RES units as well as the combination of RES units with an energy

storage device or with a dispatchable generation unit.

3.3.1 Formulation of the control of renewable generation

The control of renewable generation consists in the possibility to decrease or increase

the renewable generation and is a solution for reducing the imbalance penalties.

Generation control methods have been presented in section 2.3.2.

The formulation of the imbalance penalty when using the generation control

solution is given for the participation of reference RES unit with a contracted volume

EC and a delivered volume before control Ẽ. The delivered energy Ẽ is considered

as the available output energy which can be obtained from the RES plant given the

meteorological conditions and technical constraints, for a given market time unit.
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Two cases are examined: the decrease and the increase of the renewable gen-

eration. In the case of generation decrease, also called down-regulation, the RES

generation is reduced from Ẽ to Ẽ− Ẽdw, where Ẽdw is positive. Regarding the case

of generation increase, it has been explained in section 2.3.2 that such an increase is

possible only if the production has already been previously decreased. For example,

it is possible to increase the production from a wind farm either if at least one of the

turbines was shut down so that it can be switched on for increasing the production,

or if the generation output from some of the turbines was limited so that it can be

increased. The limited delivered energy is denoted as Ẽl and is lower than the energy

delivered in the reference case Ẽ. Then, the generation increase consists in increas-

ing the generation to Ẽl + Ẽup, where Ẽup is positive. Such increased generation

Ẽl + Ẽup is inferior to Ẽ, which gives:

0 ≤ Ẽup ≤ (Ẽ − Ẽl) (3.17)

In other words, a generation increase of Ẽup in case of limited energy Ẽl is equivalent,

in terms of delivered energy, to a generation decrease Ẽdw,eq given by:

Ẽ − Ẽdw,eq = Ẽl + Ẽup ⇔ Ẽdw,eq = Ẽ − (Ẽl + Ẽup) (3.18)

Consequently, the generation increase is taken as a particular case of down-regulation

for the following formulation.

The revenue from the market participation in the day-ahead market in case of

down-regulation can be written as:

RDA

dw = (Ẽ − Ẽdw)×ΠDA − δ
DA

(Ẽ − Ẽdw, EDA)

= Ẽ ×ΠDA − Ẽdw ×ΠDA − δ
DA

(Ẽ − Ẽdw, EDA)

= Ẽ ×ΠDA − δ
DA

dw(Ẽ, EDA) (3.19)

with

δ
DA

dw(Ẽ, EDA) = Ẽdw ×ΠDA + δ
DA

(Ẽ − Ẽdw, EDA) (3.20)

The RES generation control can thus be formulated as a modification of the

reference penalization function δ
DA

. When replacing the delivered energy Ẽ by the

delivered energy using generation control (Ẽ−Ẽdw) in Equation 3.7, the penalization

function δ
DA

dw can be rewritten as:
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δ
DA

dw (Ẽ, EDA) = Ẽdw ×ΠDA +

{
(Ẽ − Ẽdw − EDA)× (ΠDA −Π−) ⇐ (Ẽ − Ẽdw) < EDA

(Ẽ − Ẽdw − EDA)× (ΠDA −Π+) ⇐ (Ẽ − Ẽdw) ≥ EDA

=

{
(Ẽ − EDA)× (ΠDA −Π−) + Ẽdw ×Π− ⇐ (Ẽ − Ẽdw) < EDA

(Ẽ − EDA)× (ΠDA −Π+) + Ẽdw ×Π+ ⇐ (Ẽ − Ẽdw) ≥ EDA

= δ
DA

(Ẽ, EDA) +

{
Ẽdw ×Π− ⇐ (Ẽ − Ẽdw) < EDA

Ẽdw ×Π+ ⇐ (Ẽ − Ẽdw) ≥ EDA
(3.21)

The energy quantity Ẽdw is taken positive in this formulation, and consequently,

the imbalance with generation control δ
DA

dw will be lower than the reference imbalance

δ
DA

only for negative prices of electricity in the real-time market. Negative values

of price for positive imbalance may occur, as already discussed in section 2.2.5, but

very seldom. Consequently, control of renewable generation in general increases the

imbalance penalties, which explains why this solution is not further considered in

the present thesis.

However, generation control reduces the imbalance energy volumes, which can

be a solution for other issues related to large scale integration of RES units in power

systems described in section 1.3.2.

3.3.2 Generic model of a Virtual Power Plant

The other three physical solutions, which are the aggregation of RES units and

the combination of RES units with an energy storage device or with a dispatchable

generation unit, are modeled in the frame of a Virtual Power Plant (VPP), defined

in section 2.3.2. The VPP is a framework for enhancing the visibility and control

of distributed energy resources to system operators and other market actors by

providing an appropriate interface between the involved system components. This

concept is thus well suited to physical solutions. More precisely, focus is given to

the Commercial activity of the VPP (CVPP). The CVPP is defined in section 2.3.2

as a representation of a portfolio of DER that can be used to participate in energy

markets as a single IPP.

In the present work, different configurations of a VPP are considered, with each

configuration corresponding to a specific physical solution. First, the reference con-

figuration of the VPP includes only one reference RES unit. This unit has a stochas-

tic output, and can be a wind farm or a PV plant for example. Then, three config-

urations are defined based on the combination of the reference RES unit (1) with

other RES units in the case of aggregation, (2) with an energy storage device and
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finally (3) with a dispatchable generation unit.

EEDA 

δDA

vpp vpp

~

Day-ahead market

Reference 

wind farm

1) aggregated 

wind farms 

2) energy

storage device

3) conventional 

generation unit

~

~

Virtual power plant (vpp)

Figure 3.5: The proposed VPP model: three VPP configurations for participating in the
day-ahead market.

In order to evaluate the benefits of each solution in terms of imbalance penalty

reduction, all the VPP configurations are assumed to participate only in a day-

ahead electricity. Figure 3.5 describes the three configurations of the VPP which

participate in the day-ahead electricity market. Thus, similarly to section 3.2, the

day-ahead market is taken here too as a reference. It is important to note that each

configuration considers only one combination, in order to evaluate the imbalance

reduction relative to each combination. Also, for each combination, a single-node

model is used and the different generation units are assumed to be in the same bus.

This model is also known as an HL1 (i.e.: Hierarchical Level 1) model [110] where

the power system is analyzed from the generation facilities viewpoint.

In the frame of the VPP, there is only one day-ahead contract volume EDA

VPP
for

all the units included in the VPP. The energy ẼVPP delivered is the sum of the

delivered energy by each generation unit. The aim of the next paragraphs is to

model the physical solutions corresponding to the three VPP configurations as a

modification of the reference penalization, as this has already been done for the

financial solutions. These three configurations correspond to:

• The aggregation of RES unit;

• The combination of a RES unit with an energy storage device;

• The combination of a RES unit with a conventional unit.

3.3.3 Formulation of the imbalance penalty resulting from aggre-

gation of RES units

The aggregation of RES units is the first VPP configuration considered in this thesis.

In this case, the VPP is composed in total of n RES units, including the reference
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RES unit. The energy ẼVPP delivered by the VPP is the sum of the energy Ẽi which

would be individualy delivered by the RES units. Also, the VPP energy contract

EDA

VPP
of the aggregation is assumed to be the equal to the sum of the contracts EDA

i

that the RES units would establish if they participated individually in the day-ahead

market.

ẼVPP =
n∑

i=1

Ẽi, and EDA

VPP
=

n∑

i=1

EDA

i (3.22)

The following formulation demonstrates the reduction of imbalance penalties

when the aggregated RES units participate as a single VPP in the day-ahead market,

compared to the case where each RES unit participates individually. Then, this

comparison will be used to derive the reduction of imbalance relative to only one of

the RES unit (the reference one) which is included in the aggregation.

The revenue from the VPP is denoted as RDA

VPP
while the sum of the revenues

from individual units is denoted as RDA

ind.

RDA

VPP
= ẼVPP ×ΠDA − δ

DA

(ẼVPP, EDA

VPP
) (3.23)

RDA

ind =

n∑

i=1

(
Ẽi ×ΠDA − δ

DA

(Ẽi, EDA

i )
)

(3.24)

Consequently, the difference between the revenue from the aggregation and the

one obtained when each RES unit participates individually in the market is given

from Equation 3.23 and Equation 3.24 and from the definition of ẼVPP and EDA

VPP
in

Equation 3.22.

RDA

VPP
−RDA

ind =

n∑

i=1

δ
DA

(Ẽi, EDA

i )− δ
DA

(ẼVPP, EDA

VPP
) (3.25)

=

n∑

i=1

(
δ

DA

(Ẽi, EDA

i )
)
− δ

DA

(
n∑

i=1

Ẽi,

n∑

i=1

EDA

i

)
(3.26)

Equation 3.26 shows that the revenue improvement in the case of aggregation is

the difference between the sum of the penalties related to each RES unit imbalance

and the penalty related to the sum of the imbalance. The sign of this difference

depends on the penalization function properties. In section 3.1.2, the penalization

δ
DA

has been characterized as an asymmetric seminorm. One of the properties of a

70



Management of uncertainties related to renewable generation in electricity markets

asymmetric seminorm is the triangle inequality. Consequently, the quantity derived

in Equation 3.26 is always positive, which means that the imbalance penalty in the

case of aggregated units is always lower than the imbalance penalty relative to each

unit taken individually.

The aim of the formulation is to derive the reduction of imbalance penalty for

a given unit j when this unit is aggregated in the VPP. First, the part of the VPP

revenue which is relative to the generation of the unit j is denoted as RDA

j,agg. Note

that this revenue could be more generally written as RDA

j,VPP
, but the VPP is in

this case an aggregation, which explains why the index V PP is changed to agg. In

the present formulation, the revenue from the aggregated units is allocated to the

different units with respect to their delivered energy volume:

RDA

j,agg = αj ×RDA

VPP
, with αj =

Ẽj

ẼVPP

,
∑

αj = 1 (3.27)

Consequently, the revenue relative to the generation of the unit j is formulated

as:

RDA

j,agg = αj ×
(
ẼVPP ×ΠDA − δ

DA

(ẼVPP, EDA

VPP
)
)

= αj × ẼVPP ×ΠDA −αj × δ
DA

(ẼVPP, EDA

VPP
)

= Ẽj ×ΠDA −αj × δ
DA

(ẼVPP, EDA

VPP
) (3.28)

In the considered VPP, only generation units are aggregated; consequently, the

delivered volume Ẽj is positive for each unit j andαj is positive for all j. Considering

the homogeneity property of the function δ
DA

detailed in section 3.1.2, the second

term in Equation 3.28, which is relative to the imbalance penalty, can be written as

follows:

αj × δ
DA

(ẼVPP, EDA

VPP
) = δ

DA

(αj ×
(
ẼVPP, EDA

VPP

)
)

= δ
DA

(αj × ẼVPP, αj × EDA

VPP
)

= δ
DA

(Ẽj , αj × EDA

VPP
) (3.29)

Finally, the revenue RDA

ref,agg from the participation of a reference unit aggregated

in a VPP is derived by combining Equation 3.28 and Equation 3.29, for the case of

the reference unit : (j : ref):

RDA

ref,agg = Ẽref ×ΠDA − δ
DA
(
Ẽref,αref × EDA

VPP

)
(3.30)
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with αref = Ẽref/ẼVPP.

In comparison, the revenue from the individual participation of the reference

unit is denoted as RDA

ref and is formulated as follows:

RDA

ref = Ẽref ×ΠDA − δ
DA
(
Ẽref, E

DA

ref

)
(3.31)

By comparing Equation 3.30 and Equation 3.31, the aggregation solution for a

reference RES unit is formulated as a modification of the contracted energy from EDA

ref

to αref ·E
DA

VPP
. However, the aggregation of RES units has been presented in section

2.3.2 as a physical solution which gives the possibility to internally compensate the

delivered energy. Consequently, it is more logical to model the aggregation solution

as a modification of the delivered energy. From Equation 3.29, and by considering the

anti-symmetry property of the function δ
DA

explained in section 3.1.2, the imbalance

penalty relative to the reference unit can be reformulated as follows:

δ
DA
(
Ẽref,αref × EDA

VPP

)
= δ

DA
(
Ẽref, E

DA

ref + (αref · E
DA

VPP
− EDA

ref )
)

= δ
DA
(
Ẽref − (αref · E

DA

VPP
− EDA

ref ), E
DA

ref

)

= δ
DA

(Ẽref + (EDA

ref −αref · E
DA

VPP
)︸ ︷︷ ︸

eagg,ref

, EDA

ref ) (3.32)

This energy eagg,ref, which can be positive or negative, quantifies the energy

compensation volume relative to the reference unit. Also, the volume (Ẽref+eagg,ref)

is the equivalent production of the reference unit when this unit is aggregated.

It is important to note that this equivalent generation is not the real generation,

which still equals Ẽref. The equivalent generation models the repartition of the

imbalance reduction between the several wind farms included in the aggregation. It

is important to note that this proposed repartition model based on the delivered

energy by each unit is one possibility for modeling the equivalent generation. Other

possibilities, such as the distribution the VPP revenue based on the nominal power

of each unit, are possible, but they are not considered in this work.

The proposed repartition model is illustrated in the following example where

two wind farms, WF1 and WF2, are aggregated. The aggregated wind farms are

denoted as (WF1 + WF2). For each of the wind farms taken individually and for

the aggregation, Table 3.1 presents an example of the contracted energy EDA, the

delivered energy Ẽ, the resulting imbalance volume d and the imbalance penalty δ.
In the example, only negative imbalances are penalized, and the penalty price for

negative price is set to 2 e/MWh.
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EDA (MWh) Ẽ (MWh) d (MWh) δ (e)

WF1 14 10 -4 8

WF2 8 10 2 0

(WF1 + WF2) 22 20 -2 4

Table 3.1: Example of the aggregation of two wind farms WF1 and WF2 and resulting
imbalance penalties.

In the example given in Table 3.1, the sum of the imbalance penalties relative

to WF1 and WF2 equals 8 e. In the case of aggregation, the resulting imbalance

penalty is reduced to 4 e, since the surplus production from WF2 compensates the

shortage from WF1.

EDA (MWh) α eagg (MWh) Ẽ + eagg (MWh) d (MWh) δ (e)

WF1agg 14 0.5 3 13 1 2

WF2agg 8 0.5 -3 7 1 2

Table 3.2: Example of the repartition of the imbalance volume and imbalance penalty bet-
ween the two aggregated wind farms, derived from the previous formulation.

Then, Table 3.2 shows the parameter α, defined in Equation 3.27, and the bal-

ancing volume eagg for each of the two aggregated wind farms WF1agg and WF1agg.

The resulting imbalance volume d and imbalance penalty δ are also presented. In

this case, both wind farms produce the same amount of energy and, consequently,

the α ratio which models the revenue repartition equals 0.5 for both wind farms. It

is interesting to note that the same ratio models the repartition of the imbalance

penalty. In this example, the 4 e penalty is distributed equally between the two

wind farms. This is actually a more general result. If we consider a given unit j,

this unit is responsible for the proportion αj of the VPP imbalance:

Ẽj + eagg,j − EDA

j = αj ×
(
ẼVPP − EDA

VPP

)
(3.33)

Also, it has to be noted that, although the total imbalance penalty is always

lower in the case of aggregation compared to the case of individual participation,

the imbalance penalty for a given unit is not always reduced. In the example,

the imbalance penalty for the WF2 is increased from 0 to 2 e. Further numerical

examples of the reduction of imbalance penalties in the case of aggregation are given

in section 3.5.

Finally, by combining Equation 3.30 and Equation 3.32, the revenue RDA

ref,agg from
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the participation of a reference unit aggregated in a VPP is formulated as follows:

RDA

ref,agg = Ẽref ×ΠDA − δ
DA
(
Ẽref + eagg,ref, EDA

ref

)
(3.34)

By comparing Equation 3.31 and Equation 3.34, the aggregation solution can be

modeled as a modification of the penalization function δ
DA

; the resulting penaliza-

tion function is δ
DA

agg.

δ
DA

agg

(
Ẽref, EDA

ref

)
= δ

DA
(
Ẽref + eagg,ref, EDA

ref

)
(3.35)

3.3.4 Formulation of the imbalance penalty resulting from the com-

bination of renewable generation with energy storage

This section formulates the imbalance penalty function related to the second VPP

configuration considered here. In this case, the reference RES unit is combined with

an Energy Storage Device (ESD).

For modeling the combination of the ESD with the renewable units, the following

assumptions are made:

• The energy delivered by the ESD is denoted as Ẽst. This variable is taken

positive when energy is delivered by the ESD (i.e. discharging), and negative

when energy is delivered by the ESD (i.e. charging);

• The storage capacity Capst is the maximum amount of energy that can be

stored in the device. The state-of-charge SOC is defined as the proportion

of energy charged in the device to the maximum storage capacity. At any

time of the operation the SOC is bounded by its minimum and maximum

levels, respectively SOCmin and SOCmax. These two levels correspond to the

minimum and maximum amount and energy which can be stored in the storage

device.

• The charging and discharging efficiencies are denoted as ηch and ηdis, respec-

tively. The round trip efficiency is denoted as η and defined as η = ηch × ηdis;

• The energy delivered or absorbed by the ESD is bounded by the storage nomi-

nal charging and discharging rates, respectively rnomch and rnomdis . Because Ẽst is

positive when discharging and negative when charging, rnomch ≤ 0 and rnomdis ≥ 0.

The ESD technologies considered for the present work have to be suitable for

imbalance management. This means that the storage time constant, defined in

section 2.3.2 as the time to completely discharge at nominal rate the storage device
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starting from full capacity, is taken in the range of several hours. Also, the storage

nominal discharging rate is taken as non negligible compared to the nominal power

of the RES unit. A storage nominal discharging rate ranging approximately from

5 to 50% of the RES nominal power is reasonable for the management of energy

imbalances. The storage time, which is defined as the time to discharge the storage

device starting from full capacity, at nominal rate, has to be in the order of several

hours. For example, for wind farms with nominal power in the order of several tens

of MW, the combined storage unit will have a nominal discharging rate in the order

of several MWh/h and a storage capacity in the order of several tens of MWh. Such

storage units can be pumped-storage hydro or compressed air units, as described in

section 2.3.2. Further considerations about the choice of the storage technology are

out of the scope of the present work.

In the present work, the fixed costs of the storage unit, such as the investment

costs, are not taken into account in the formulation of the revenue from the partici-

pation of the combined RES and storage units in electricity market. This is coherent

with the reference formulation of the revenue from the reference RES unit in Equa-

tion 3.1 which does not consider the fixed costs relative to the reference unit. Also,

the operation of the storage unit is not based on the use of fuel, and the operation

costs are thus relatively low compared to the operation costs of a fuel-based con-

ventional generation. Consequently, the operation costs of the storage unit are not

considered in the proposed formulation. A possibility to consider these costs in the

formulation is to integrate them through a reduction of the charging and discharging

efficiencies, which increases the energy losses relative to the storage device.

When the reference RES unit, which delivers the energy quantity Ẽref, is com-

bined with an energy storage device which delivers the energy quantity Ẽst, the VPP

composed of the combined RES and storage units is considered as a unique entity

delivering the quantity (Ẽref+ Ẽst). Also, the storage unit is considered in this work

to be entirely devoted to the reduction of imbalance penalties, and as a consequence,

the storage device is not considered for the day-ahead trading. In other words, the

day-ahead energy contract for the VPP equals the one relative to the reference unit.

Then, the delivered energy ẼVPP by the VPP and the day-ahead energy contract

EDA

VPP
are written as:

ẼVPP = Ẽref + Ẽst, and EDA

VPP
= EDA

ref (3.36)

The VPP revenue RDA

VPP
is formulated from the generic formulation of the day-

ahead revenue in Equation 3.6, where the delivered energy is ẼVPP and the contracted
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energy is EDA

VPP
:

RDA

VPP
= ẼVPP ×ΠDA − δ

DA
(
ẼVPP, EDA

VPP

)
(3.37)

Such revenue can be reformulated as:

RDA

VPP
= (Ẽref + Ẽst)×ΠDA − δ

DA
(
Ẽref + Ẽst, EDA

ref

)

= Ẽref ×ΠDA + Ẽst ×ΠDA − δ
DA
(
Ẽref + Ẽst, EDA

ref

)
(3.38)

= Ẽref ×ΠDA − δ
DA

st

(
Ẽref, EDA

ref

)
(3.39)

with

δ
DA

st

(
Ẽref, EDA

ref

)
= −Ẽst ×ΠDA + δ

DA
(
Ẽref + Ẽst, EDA

ref

)
(3.40)

From Equation 3.40, the influence of the combination of a storage unit with

a reference RES unit can be modeled as a modification of the reference penaliza-

tion function δ
DA

. The second term of Equation 3.40 corresponds to a shift of the

δ
DA

by the quantity Ẽst which can be positive or negative. The additional cost is

C = − Ẽst × ΠDA. Based on a positive day-ahead market price ΠDA, the cost

C is positive when the storage energy Ẽst is negative (i.e. charging), and the cost

is negative for negative values of storage energy (i.e. discharging). This cost has a

cyclic value and depends on the storage unit operation cycles.

In order to assess the real cost relative to the operation of the storage unit,

regardless of the charging cycles, the proposed model consists in considering the

total storage cost Ctot over a large period τ including several storage cycles.

Ctot =
n∑

i=1

(−Ẽst,Ti
×ΠDA

Ti
) (3.41)

where n is the number of market time units included in the considered operation

period τ .

Such total cost Ctot is then distributed for each market time unit Ti, based on

the use of the energy storage during the market time unit Ti. Such storage unit use

relative to the market time unit Ti is quantified by the absolute value of the storage

output energy |Ẽst,Ti
|. The resulting storage cost Ci relative to the market time unit
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Ti is derived as follows:

Ci =
|Ẽst,Ti

|
∑n

i=1 |Ẽst,Ti
|
/× Ctot = |Ẽst,Ti

| ×ΠDA

Ti
× Γst (3.42)

where Γst is a dimensionless quantity defined by:

Γst =
Ctot∑n

i=1 |Ẽst,Ti
| ×ΠDA

Ti

=

∑n
i=1 (−Ẽst,Ti

×ΠDA

Ti
)

∑n
i=1 |Ẽst,Ti

| ×ΠDA

Ti

(3.43)

In order to better understand the structure of the cost Ctot, this cost is calculated

for a cycle period including a charging phase during the market time unit Tch and

a discharging phase during the market time unit Tdis. The cost Ctot is then defined

as follows:

Ctot = −Ẽst,Tch
×ΠDA

Tch
− Ẽst,Tdis

×ΠDA

Tdis
(3.44)

= −(Ẽst,Tch
+ Ẽst,Tdis

)×ΠDA

Tch
− Ẽst,Tdis

× (ΠDA

Tdis
−ΠDA

Tch
) (3.45)

The energy delivered by the storage Ẽst,Tdis
when discharging is the result from

the conversion of the energy which is stored when charging Ẽst,Tch
. The energy losses

during charge and discharge result to:

Ẽst,Tdis
= −η · Ẽst,Tch

(3.46)

Consequently, the total cost can finally be written as:

Ctot = −(1− η)× Ẽst,Tch
×ΠDA

Tch
+ Ẽst,Tdis

× (ΠDA

Tch
−ΠDA

Tdis
) (3.47)

Equation 3.47 is a sum of two terms. The first term is positive because Ẽst,Tch
is

negative, and the round-trip efficiency η is lower than 1. This term corresponds to

the penalty due to energy losses. The second term is a function of the difference of

day-ahead market price between the charging and discharging phases. This term is

positive if the day-ahead market price is higher when charging than when discharg-

ing. This term formulates the benefits from using the storage unit to store energy

when the market price is low in order to sell it when the market price is high.

When the day-ahead market price during the charging phase equals the one

during the discharging phase ΠDA

Tdis
= ΠDA

Tch
= ΠDA, the cost Ctot is simplified to the
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following expression:

Ctot = −(1− η)× Ẽst,Tch
×ΠDA =

(1− η)

η
× Ẽst,Tdis

×ΠDA (3.48)

The cost relative to the charging period is then derived from combining Equa-

tion 3.42 with Equation 3.48 and Equation 3.46:

Cch = −
|Ẽst,Tch

|

|Ẽst,Tch
|+ |Ẽst,Tdis

|
× (1− η)× Ẽst,Tch

×ΠDA (3.49)

=
1− η

1 + η
×ΠDA × |Ẽst,Tch

| (3.50)

Similarly, the cost relative to the charging period is derived from combining Equa-

tion 3.42 with Equation 3.48 and Equation 3.46:

Cdis =
|Ẽst,Tdis

|

|Ẽst,Tch
|+ |Ẽst,Tdis

|
×

(1− η)

η
× Ẽst,Tdis

×ΠDA (3.51)

=
1− η

1 + η
×ΠDA × |Ẽst,Tdis

| (3.52)

When considering Equation 3.50 and Equation 3.52, the formulations of the cost are

identical for the charging or discharging state of the storage. For both cases, the

quantity Γst defined in Equation 3.42 can be written as:

Γst =
1− η

1 + η
(3.53)

and the imbalance penalty resulting from the storage combination can be written

as:

δ
DA

st

(
Ẽref, EDA

ref

)
= Γst ×ΠDA × |Ẽst|+ δ

DA
(
Ẽref + Ẽst, EDA

ref

)
(3.54)

The final discussion is related to the comparison between the imbalance penalty

resulting from the storage combination δ
DA

st and the reference imbalance penalty

δ
DA

. For analyzing the difference between these two quantities, the example of

a negative imbalance energy from the reference RES unit is taken, with an up-

regulation state regarding the TSO. The delivered energy by the storage Ẽst is

taken as positive in this example. This energy storage reduces the absolute value of

the reference imbalance energy. The resulting imbalance energy when considering

the storage combination is considered to be still negative or zero. In this situation,

the reference imbalance penalty δ
DA

and the imbalance penalty in the case of the
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storage combination δ
DA

st are formulated from Equation 3.7 as:

δ
DA
(
Ẽref, EDA

ref

)
= −(Ẽref − EDA

ref )×∆Π
− (3.55)

δ
DA

st

(
Ẽref, EDA

ref

)
= Γst ×ΠDA × Ẽst −

(
Ẽref + Ẽst − EDA

ref

)
×∆Π

− (3.56)

The difference between the imbalance penalty resulting from the storage combi-

nation and the reference imbalance penalty is given by :

δ
DA

st (Ẽref, EDA

ref )− δ
DA

(Ẽref, EDA

ref ) =
(
Γst ×ΠDA −∆Π

−

)
× Ẽst (3.57)

Because Ẽst is positive, the sign of this difference depends on the difference between

Γst×ΠDA and ∆Π
−. More precisely, this difference will be negative (i.e. the imbalance

penalty will be reduced) if:

Γst ×ΠDA ≤ ∆Π
− (3.58)

In order to compare Γst × ΠDA and ∆Π
−, the formulation of Γst is simplified. Γst

is written as a function of u = (1 − η). The efficiency η is considered to be close

to 1, and consequently, u is closed to 0. The simplification of Γst then consists in

neglecting the orders of u greater than 1:

Γst(u) =
u

2− u
=

u

2
×

1

1− u/2
(3.59)

≈
u

2
× (1 +

u

2
) ≈

u

2
(3.60)

which gives Γst ≈ (1−η)/2. Finally, from the previous assumptions, the combination

with the storage device will reduce the imbalance penalty only if:

1− η

2
×ΠDA ≤ ∆Π

− (3.61)

η ≥ 1− 2 ·
∆Π

−

ΠDA
(3.62)

A similar analysis can be done in the case of positive imbalance in down-regulation

TSO state. Consequently, the condition on the storage efficiency can generally be

written as:

η ≥ 1− 2 ·
∆Π

ΠDA
(3.63)

This condition states that the combination of the RES unit with the storage de-

vice will reduce the imbalance penalties only if the price for positive (respectively

negative) imbalance is low (respectively high) compared to the day-ahead price.
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3.3.5 Formulation of the imbalance penalty resulting from the com-

bination of renewable with conventional generation

This section formulates the imbalance penalty related to the third VPP configura-

tion, where the reference RES unit is combined with a conventional dispatchable

unit. In order to formulate the impact of the combination for the reference RES

unit, the market revenue obtained when the units are combined is compared to the

market revenue which would be obtained without combination. It is important to

note that, in this case, the operation of the conventional unit is not entirely devoted

to the reduction of imbalance penalty from the reference unit, as opposed to the

storage device in the previous section. The part of the conventional unit devoted

to the reduction of imbalance is an adjustment delivered energy, which is possible

given the dispatchability of the unit.

If the RES and conventional units are considered as participating individually

in the day-ahead market, the revenue from the market participation of the reference

unit is denoted as RDA

ref,ind, and the one relative to the conventional unit as RDA

cv,ind.

The participation of the conventional unit is supposed to be based on its variable

costs. The market price ΠDA is thus the cost per unit of the contracted generation

EDA

cv . Since the unit is dispatchable, the delivered energy Ẽcv is assumed to be equal

to the contracted energy EDA

cv and the imbalance penalty is zero. In particular,

the possible limits regarding the availability and the reliability of the unit are not

considered.

RDA

ref,ind = Ẽref ×ΠDA − δ
DA
(
Ẽref, EDA

ref

)

RDA

cv,ind = EDA

cv ×ΠDA (3.64)

Also, when the RES and conventional units are combined in a VPP, the dis-

patchable generation may be adjusted to reduce the imbalance volume of the VPP.

The adjustment energy volume delivered by the conventional unit is ecv, and the

total energy delivered by the conventional unit is then (Ẽcv + ecv). The marginal

operation cost of the conventional unit for the adjustment volume ecv is denoted as

Πcv. This quantity represents the operation costs for the generation of the energy

volume ecv, and its dimension is a cost per unit of energy, which is similar to a price.

This is why the notation Π is used.

The following equations first formulate the market revenue of the VPP, and then

distribute such revenue between the RES unit and the conventional unit. Even if

the methodology followed for deriving these equations is similar to the one proposed

in the previous sections, the derivation of the equations is detailed for clarity and

80



Management of uncertainties related to renewable generation in electricity markets

precision. Considering the market participation of the VPP as a single entity, the

delivered and contracted energy is the sum of the energy delivered and contracted

by RES and conventional units :

ẼVPP = Ẽref + Ẽcv + ecv (3.65)

EDA

VPP
= EDA

ref + EDA

cv (3.66)

Consequently, the revenue relative to the participation of the VPP in the day-

ahead market is written as:

RDA

VPP
= ẼVPP ×ΠDA − δ

DA
(
ẼVPP, EDA

VPP

)
(3.67)

=
(
Ẽref + Ẽcv + ecv

)
×ΠDA − δ

DA
(
Ẽref + ẼDA

cv + ecv, EDA

ref + EDA

cv

)

Regarding the conventional unit, the day-ahead energy contract equals the delivered

energy EDA

cv = Ẽcv, and the imbalance penalization in Equation 3.67 can be simplified

by using the anti-symmetry property of the δ
DA

function explained in section 3.1.2:

δ
DA
(
Ẽref + ẼDA

cv + ecv, EDA

ref + EDA

cv

)
= δ

DA
(
Ẽref + ecv, EDA

ref + EDA

cv − ẼDA

cv

)

= δ
DA
(
Ẽref + ecv, EDA

ref

)
(3.68)

and consequently, the market revenue formulation is simplified as:

RDA

VPP
=
(
Ẽref + Ẽcv + ecv

)
×ΠDA − δ

DA
(
Ẽref + ecv, EDA

ref

)
(3.69)

Then, the aim is to model the repartition of the VPP revenue between the

reference and the conventional units. For this, the VPP revenue RDA

VPP
is reformulated

as follows:

RDA

VPP
= A+B (3.70)

with

A = Ẽcv ×ΠDA + ecv ×Πcv (3.71)

B = Ẽref ×ΠDA + ecv × (ΠDA −Πcv)− δ
DA
(
Ẽref + ecv, EDA

ref

)

The quantity A corresponds to the costs of the conventional unit associated with

the delivered energy Ẽcv + ecv. This quantity can thus be considered as the equiv-

alent conventional unit revenue A = RDA

cv,V PP . The second quantity B is then the
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equivalent reference unit revenue, which is rewritten as:

RDA

ref,VPP
= Ẽref ×ΠDA + ecv × (ΠDA −Πcv)− δ

DA
(
Ẽref + ecv, EDA

ref

)

= Ẽref ×ΠDA − δ
DA

cv

(
Ẽref, EDA

ref

)
(3.72)

with

δ
DA

cv

(
Ẽref, EDA

ref

)
= ecv × (Πcv −ΠDA)− δ

DA
(
Ẽref + ecv, EDA

ref

)
(3.73)

From Equation 3.73, the combination of a conventional dispatchable unit with a

reference RES unit can be modeled as a modification of the reference penalization

function δ
DA

. The additional cost ecv × (Πcv −ΠDA) depends on the energy volume

adjustment and on the difference between the marginal cost of the conventional unit

and the day-ahead market price. The second term of Equation 3.73 corresponds to

a shift of the δ
DA

by the quantity ecv which can be either positive or negative.

The quantity ecv is bounded by the technical limits of the unit. The operation

of most conventional units can be represented by two states, depending if the unit

is switched on or off. As a result, the operating constraints of the unit can be

formulated as follows:



Ẽcv = 0 and ecv = 0 ⇐ State: OFF

Ecv,min ≤ Ẽcv + ecv ≤ Ecv,max ⇐ State: ON
(3.74)

where Ecv,min and Ecv,max are the minimum and maximum energy output of the

conventional unit during a market time step. These limits correspond to the mini-

mum and maximum capacity the unit is authorized to operate (i.e. in order to be

in economically or technically acceptable limits). For example, some units can be

either switched off or operated between 50 % and 100 % of their nominal power.

The above formulation is valid for the combination of a RES unit with a large

conventional unit which can decrease or increase its production to reduce positive

or negative imbalances. In this case, the conventional unit is not entirely devoted

to the reduction of imbalance penalties. This unit participates in the day-ahead

market and the resulting day-ahead energy contract is EDA

cv > 0. The adjustment

energy volume ecv can take positive or negative values.

The formulation is also valid for the combination of a RES unit with an conven-

tional unit which would be switched on only to reduce negative imbalances. In this

case, EDA

cv = 0, and the total output of the conventional output is devoted to the

reduction of imbalance penalties. This corresponds to Ẽcv = 0 and ecv = Ẽcv in the

previous formulation. In the proposed model, the starting costs of the conventional
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unit are supposed to be integrated in the marginal costs and are not considered as

separate costs. If the starting costs were separated, the formulation should consider

a whole running cycle of the conventional unit from the time it is started to the

time it is switched off. Such formulation is not considered in the present work. An

alternative for taking into account these starting costs can be the settlement of a

minimum period duration during which the unit has to remain switched on. Such

minimum period is then taken as a constraint for the scheduling of the conventional

unit.

A final discussion is related to the comparison between the imbalance penalty

δ
DA

cv resulting from the combination with the conventional unit and the reference

imbalance penalty δ
DA

. This analysis is similar to the one proposed for the imbal-

ance penalty reduction resulting from the storage combination. For analyzing the

difference between δ
DA

cv and δ
DA

, the example of a negative imbalance energy from

the reference RES unit is taken, with an up-regulation state regarding the TSO. The

adjustment energy volume ecv is taken positive in this example, which reduces the

absolute value of the reference imbalance energy. The energy imbalance when con-

sidering the conventional unit combination is considered to be still negative or zero.

In this situation, the reference imbalance penalty δ
DA

and the imbalance penalty in

the case of the conventional unit combination δ
DA

cv are formulated from Equation 3.7

as:

δ
DA
(
Ẽref, EDA

ref

)
= −(Ẽref − EDA

ref )×∆Π
− (3.75)

δ
DA

cv

(
Ẽref, EDA

ref

)
= ecv × (Πcv −ΠDA)−

(
Ẽref + ecv − EDA

ref

)
×∆Π

− (3.76)

where ∆Π
− is the difference between the price for negative imbalance and the day-

ahead price: ∆Π
− = Π− −ΠDA.

The difference between the imbalance penalty resulting from the conventional

unit combination and the reference imbalance penalty is given by :

δ
DA

cv (Ẽref, EDA

ref )− δ
DA

(Ẽref, EDA

ref ) = ecv × (Πcv −Π−) (3.77)

In this case where ecv is taken positive, this difference will be negative if the marginal

cost of the conventional unit is lower than the price for negative imbalance. In other

words, in this situation, the combination with the conventional unit will reduce the

imbalance penalty only if (Πcv < Π−). Similarly, in the case of a down regulation

TSO state and a negative energy adjustment volume ecv, the combination with the

conventional unit will reduce the imbalance penalty only if (Πcv > Π+).
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3.3.6 Similarities between the formulations of the different physical

solutions for managing the imbalance penalties

In the previous sections, four different physical solutions for reducing the imbal-

ance penalty of a generation portfolio including RES, have been described. These

solutions are:

• the control of the RES generation;

• the aggregation of RES units;

• the combination of a RES unit with a storage device;

• the combination of a RES unit with a conventional dispatchable unit.

They have been modeled as a modification of the reference penalization function δ
DA

.

In all cases, this modification can be expressed by the following generic relation:

δ
DA

Sy

(
Ẽ, EDA

)
= Y + δ

DA
(
Ẽ + y,EDA

)
(3.78)

where Sy indicates the considered physical solution. Y is the additional cost and

y is the energy volume associated with the physical solution. The energy volume

corresponds to the internal balancing volume. To summarize:





y = −Ẽdw and Y = Ẽdw ×ΠDA ⇐ generation control

y = eagg and Y = 0 ⇐ RES aggregation

y = Ẽst and Y = |Ẽst| ×ΠDA × Γst ⇐ combination with a storage unit

y = ecv and Y = ecv × (ΠDA −Πcv) ⇐ combination with a conventional unit

(3.79)

Figure 3.6: Imbalance penalization when a physical solution is used.
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Further details about Equation 3.79 can be obtained by considering Equation 3.20,

Equation 3.35, Equation 3.40 and Equation 3.73. The modification of the penaliza-

tion function derived in Equation 3.78 is illustrated in Figure 3.6. In the given

example, the system is down regulating and only positive imbalance are penalized.

In this case, only negative internal balancing volumes y can reduce the imbalance

penalty.

3.4 Generalization of the imbalance penalty model to

the combination of solutions for the management of

imbalance penalties

In section 3.1.2, the penalization of the imbalance related to the participation of

a RES unit has been formulated by the function δ
DA
(
Ẽ, EDA

)
, where Ẽ is the

delivered energy and EDA the energy contracted in the day-ahead market. This

imbalance penalty is taken as a reference for modeling the reduction of imbalance

penalty which results from the use of financial or physical solutions.

In section 3.2, the financial solutions for the management of imbalance have been

modeled as a modification of the reference penalization function δ
DA

. If Sx is a given

financial solution, which can be either the participation in the intraday market or

the use of option in trading, the imbalance penalty reduction related to the use of

Sx can be written as:

δ
DA

Sx

(
Ẽ, EDA

)
= X + δ

DA
(
Ẽ, EDA + x

)
(3.80)

where X and x are the additional cost and energy contract volume relative to the

financial solution Sx, which are given in Equation 3.13 and Equation 3.16 for the

participation in the intraday market and the option trading, respectively.

It is interesting to note that the reference penalty function relative to the partic-

ipation in the day-ahead market can be considered as a particular case of financial

decision, where the day-ahead energy contract is zero EDA = 0, the additional cost

is zero X = 0 and the energy contract volume equals the day-ahead contract energy

x = EDA. In this case, the financial solution is denoted as Sx : DA:

δ
DA
(
Ẽ, EDA

)
= δ

DA

DA

(
Ẽ, 0

)
= 0 + δ

DA
(
Ẽ, 0 + EDA

)
(3.81)

Similarly, the physical solutions modify the penalization function as already sum-

marized in section 3.3.6. For a given physical solution Sy, the imbalance penalty
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function can be written as:

δ
DA

Sy

(
Ẽ, EDA

)
= Y + δ

DA
(
Ẽ + y,EDA

)
(3.82)

where Y and y are respectively the additional cost and the energy volume associated

with the physical solution Sy.

Consequently, both financial and physical solutions can be modeled as a func-

tion composition of the reference penalty function δ
DA

made of two steps: either a

translation of the contracted volume by x followed by the addition of the constant

X (i.e. financial solutions), or a translation of the delivered volume by y followed

by the addition of the constant Y (i.e. physical solutions).

From the anti-symmetry property of the function δ
DA

explained in 3.1.2, Equa-

tion 3.82 can be rewritten as:

δ
DA

Sy

(
Ẽ, EDA

)
= Y + δ

DA
(
Ẽ, EDA − y

)
(3.83)

Equation 3.83 demonstrates that a physical solution Sy with an energy volume y and

a fixed cost Y is equivalent to a financial solution with an energy volume −y and

a fixed cost Y . More generally, the financial and physical have a similar impact on

the reference imbalance penalty: they offer the possibility to reduce the imbalance

volume by x or −y with a fixed cost X or Y respectively.

Finally, all the solutions have been modeled by considering the use of only one

solution associated with the reference case. If we consider the use of two solutions

S = {Sx, Sy}, the resulting imbalance penalty is modeled by a composition of the

reference function relative to the solution Sx followed by a composition relative to the

solution Sy. The resulting function for the two solutions S consists in a translation

of the contracted volume by x followed by an addition by X, and a translation of the

delivered volume by y followed by an addition by Y . Finally, the resulting function

δ
DA

S for the two solutions Sx, Sy is formulated as:

δ
DA

Sx,Sy

(
Ẽ, EDA

)
= X + Y + δ

DA
(
Ẽ + y,EDA + x

)
(3.84)

Consequently, the proposed model of the different solutions is valid when con-

sidering the combination of different solutions. The model can be generalized for

the use of m financial solutions SX = {Sxi
} , i = 1..m and n physical solutions
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SY =
{
Syj

}
, j = 1..n:

δ
DA

SX ,SY

(
Ẽ, EDA

)
=

m∑

i=1

Xi +

n∑

j=1

Yj + δ
DA


Ẽ +

n∑

j=1

yj , E
DA +

m∑

i=1

xi


 (3.85)

For example, the combination of the participation in an intraday market Sx : ID

and the coupling with a conventional generation unit Sy : cv results to the following

imbalance penalization function:

δ
DA

ID,cv

(
Ẽref, EDA

ref

)
= XID + Ycv + δ

DA
(
Ẽref + ycv, EDA

ref + xID

)

= EID × (ΠDA −ΠID) + ecv × (ΠDA −Πcv)

+ δ
DA
(
Ẽref + ecv, EDA

ref + EID

)
(3.86)

To conclude, the proposed generic formulation of the imbalance penalty is valid

for a combination of both physical and financial solutions. The next section gives

numerical results of this formulation for the physical solutions. Results of this for-

mulation for financial solutions are given in the next chapter, in the case of the

participation in the intraday market. Also, the generic imbalance penalty formula-

tion will be used for the definition of a generic decision-making method relative to

the management of RES generation in electricity market, in the next chapter.
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3.5 Application: Evaluation of the imbalance reduction

related to RES generation in the frame of virtual

power plant

This section presents the results obtained from the simulation of the participation

in a day-ahead electricity market of a reference RES unit which uses the physical

solutions for the management of the imbalance penalty. Three physical solutions

are presented: the aggregation of the reference unit with other RES units, the

combination of the reference unit with an energy storage device and the combination

of the reference unit with a conventional generation unit. These three physical

solutions are considered in the frame of a virtual power plant, described in section

2.3.2 and modeled in section 3.3. The results obtained are based on real world data.

They evaluate the reduction of imbalance penalty relative to each solution.

3.5.1 Presentation of the study

Simulation methodology

The simulation methodology is presented in Figure 3.7. The reference RES unit is in

this case a wind farm. The wind farm power generation is traded in the day-ahead

market, and the wind farm operator is considered to be a balance responsible party.

This participation is based on available wind power forecasts, and results to the

contracted energy EDA. The aggregation case consists in combining other wind farms

for participating in the day-ahead market as virtual power plant (VPP). Similarly,

the reference wind farm can be combined with a storage unit or a conventional

generation unit for participating as a single entity (VPP). The energy ẼVPP delivered

by the VPP results from the operation of the units in the VPP.

Description of the case study

In the present study, the reference RES unit is a 18 MW wind farm located in

Western Denmark. The wind farm generation is traded in the NordPool market

during the period between the 01/10/2003 and the 31/06/2004. In NordPool, the

contracts for the coming day are traded on the day-ahead market, named Elspot [42].

The market time step equals 1 h. The Elspot gate closure time is at 12:00 pm (local

time) of the preceding day. Hence, we used the last available wind power forecasts

(11:00 am of the same day) as input to day-ahead market participation module.

Forecast horizons are selected in order to get the forecasts for 24 hours of the next

day.
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Figure 3.7: Schematic representation of the overall simulation scheme of the participation
of the virtual power plant in the day-ahead electricity market.

The wind power forecasts are obtained from a statistical forecasting method,

denoted as the “Regressive Power Curve (RPC)” model [111]. This method uses

Hirlam Numerical Weather Predictions, as well as measured wind power as inputs.

The tuning of the model is done on the first nine months of the year 2003. Details

about the wind power forecasting model are given in the next chapter in section

B.2, and the trading approach in day-ahead market from power forecasts is further

detailed in section 4.4.

The reference case corresponds to the participation of only the reference wind

farm in the day-ahead market.

For the aggregation case, 20 wind farms are considered, including the reference

one. These wind farms are also located in Western Denmark and their nominal

power ranges between 1.6 and 23.4 MW. Consequently, the reference wind farm can

be combined with n other wind farms, with n varying between 0 (reference case)

and 19. This corresponds to 524288 potential cases of aggregation.

The storage unit considered in this study is a pumped-hydro storage. In order to

evaluate the impact of the storage energy capacity and storage round-trip efficiency

on the results, different values of these two characteristics are considered. The

energy capacity ranges between 0 and 30 MWh, and the efficiency ranges between

70 and 95 %. The nominal charging rate is determined so that the time period for

charging the storage from the empty state to full capacity at nominal charging rate

equals 5 hours. Storage units with this time constant are appropriate for imbalance

management, as explained in section 2.3.2. Similarly, the nominal discharging rate

is determined so that the time period for discharging the storage from full capacity

to empty state at nominal discharging rate equals 5 hours. This corresponds to
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nominal charging and discharging rates ranging from 0 to 1/3 of the reference wind

farm nominal power.

The conventional generation unit considered in this study can be a diesel gener-

ator or a small gas turbine unit. This unit is completely devoted to the reduction

of the energy imbalance relative to the trading of the generation from the reference

unit in the day-ahead market. Consequently, this unit does not participate in the

day-ahead market by itself. In order to evaluate the impact of the nominal power

and the marginal operation cost of the unit on the results, different values of these

two characteristics are considered. The nominal power ranges between 0 and 3 MW,

and the marginal cost at nominal power ranges from 25 to 30 e/MWh.

3.5.2 Description of the VPP operation

This section presents the operation relative to the three proposed VPP configura-

tions. Each configuration gives the possibility to balance internally the VPP. More

precisely, the delivered energy by the reference unit is Ẽref in the reference case,

while it is Ẽref,Sy
= Ẽref + y when a physical solution Sy is used. The quantity

y depends on the solution and is detailed in the following paragraphs. Note from

the fourth graph that, for this example, the day-ahead market price equals the

down-regulation price, which corresponds to an up-regulation state for the TSO, as

explained in section 2.2.5.

Internal balancing in the case of aggregation

This paragraph describes the internal energy balancing for the first VPP con-

figuration (i.e. RES aggregation). In section 3.3.3, the aggregation of n wind farms,

including the reference wind farm, has been modeled as an additional internal energy

balance quantity from the point of view of the reference wind farm, denoted as

eagg,ref:

Ẽref,agg = Ẽref + eagg,ref (3.87)

with eagg,ref = EDA

ref −αref × EDA

VPP
and αref = Ẽref/ẼVPP.

The energy ẼVPP is the energy delivered by the aggregated wind farms and equals

the sum of the delivered energy by each aggregated wind farm. Also, EDA

VPP
is the

energy contract relative to the aggregated wind farms, and equals the sum of the

energy contracts relative to each aggregated wind farm.

Figure 3.8 illustrates the internal balancing in the case of two aggregated wind

farms during the 24 hours of the day 29/10/2003. The reference wind farm is

denoted as WF1 and the aggregated wind farm is denoted as wind farm WF2. The
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nominal power of WF1 and WF2 is respectively 18 and 16.5 MW. The distance

between the two wind farms is 84 km. From the first two graphs on the left, we

can observe that during the period between hour 9 and 12, the delivered energy is

greater than the contracted energy for WF1, whereas it is the contrary for WF2.

The period between hour 9 and 12 is illustrated in Figure 3.8 as the period between

the two vertical dashed lines. Consequently, during this period, the imbalance for

the aggregated wind farms (WF1+WF2) is close to 0, as shown in the bottom left

plot. During this period, the energy balance volume for WF1 denoted as eagg,1 is

negative. This corresponds to the equivalent production of WF1 when aggregated

with WF2 lower than the WF1 production, as shown in the top right plot.

The imbalance penalty for WF1 is not always reduced when WF1 is aggregated

with WF2. For example during the period between hour 1 and hour 4, the energy

imbalance after aggregation is greater than before aggregation, as shown in the top

right plot. This increase of imbalance energy results from the repartition model of

aggregated imbalance, which distributes the aggregated energy imbalance according

to the delivered energy.
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Figure 3.8: Energy imbalance resulting from the aggregation of wind farms
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Operation model of the combination with a storage device

The energy delivered by the reference wind farm combined with a storage unit, for

a market time unit Ti, is written as:

Ẽref,st,Ti
= Ẽref,Ti

+ Ẽst,Ti
(3.88)

In this example, the operation mode applied to the storage unit consists in a “filter”

mode, where the role of the storage device is to reduce the instantaneous absolute

energy imbalance between the delivered energy Ẽref,Ti
+ Ẽst,Ti

and the contracted

energy EDA

Ti
. Consequently, the energy delivered by the storage during the period Ti

is formulated as the following optimization problem:

Ẽst,Ti
= argmin

Est

∣∣∣Ẽref,Ti
+ Est − EDA

Ti

∣∣∣ , subject to Cst,Ti
(3.89)

where Cst,Ti
are the technical constraints related to the operation of the storage for

the period Ti and are expressed as:

Cst,Ti
:




rnomdis ×∆t ≤ Ẽst,Ti

≤ rnomch ×∆t

SOCmin ≤ SOCTi
≤ SOCmax

(3.90)

where ∆t is the time duration of the market time unit. rnomdis and rnomch are the

nominal discharging and charging rates respectively. SOCmin and SOCmax are the

minimum and maximum state-of-charge respectively. The state-of-charge SOCTi

at the end of the period Ti is derived from the state-of-charge at the end of the

previous time period Ti−1 and the energy delivered by the storage unit during Ti.

The charging and discharging cases are distinguished as follows:

SOCTi
= SOCTi−1

+




1/ηdis × Ẽst,Ti

/CapESD (discharging : Ẽst,Ti
< 0 )

ηch × Ẽst,Ti
/CapESD (charging : Ẽst,Ti

≥ 0)
(3.91)

where CapESD is the nominal energy capacity of the storage unit; ηdis and ηch
are the storage discharging and charging efficiencies, respectively. The round trip

efficiency η is defined by η = ηdis × ηch.

Figure 3.10(a) illustrates the operation of the combination of the reference wind

farm with a storage unit during the 24 hours of the day 29/10/2003. The round-trip

efficiency of the considered storage unit is 75 %; the storage capacity is 15 MWh

and the charge and discharge rate equal respectively −3 and 3 MWh/h. The initial
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state-of-charge is close to 20 %, and is the result from the operation of the storage

unit the day before. The limited capacity of the storage is illustrated in the operation

of the unit between hour 2 and hour 10. Between hour 2 and hour 7, the storage

unit is discharged for reducing the negative imbalance, until it is completely empty.

Between hour 7 and hour 10 the storage unit is completely empty and cannot reduce

the negative imbalance anymore.

Note that the operation defined by Equation 3.89 corresponds to an optimization

per timestep. More advanced operation strategies, where the temporal correlation

on the decisions can be taken into account, can be envisaged .

Operation model of the combination with a conventional unit

In this example, the conventional considered unit is operated only for reducing the

energy imbalance relative to the reference unit. As explained in section 3.3.5, this

corresponds to ecv = Ẽcv in the formulation of the imbalance penalty given in

Equation 3.73. Then, the energy delivered by the reference wind farm combined

with a conventional generation unit, for a market time unit Ti, is written as:

Ẽref,cv,Ti
= Ẽref,Ti

+ Ẽcv,Ti
(3.92)

In this study, the conventional unit is operated for reducing the absolute energy

imbalance between the delivered energy Ẽref,Ti
+ Ẽcv,Ti

and the contracted energy

EDA,Ti , similarly to the storage device operation. Consequently, the energy delivered

by the conventional unit during the period Ti is formulated as :

Ẽcv,Ti
= argmin

Ecv

∣∣∣Ẽref,Ti
+ Ecv − EDA

Ti

∣∣∣ , subject to Ccv,Ti
(3.93)

where Ccv,Ti
are the technical constraints related to the operation of the conven-

tional unit for the period Ti. In this study, the conventional unit is supposed to be

switched on permanently, and its output power can vary between a minimum output

power and the nominal power Pnom
cv . The minimum output power is defined as the

proportion αcv of the nominal power. Consequently, the technical constraints of the

unit are formulated as follows:

Ccv,Ti
: αcv × Pnom

cv ×∆t ≤ Ecv,Ti
≤ Pnom

cv ×∆t (3.94)

where ∆t is the time duration of the market time unit.

Also, we propose to model the marginal cost of the conventional unit as the

function of the delivered energy by this unit. Such marginal cost will be used in the

evaluation of the imbalance penalty given in Equation 3.73. The aim of the cost
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model is to take into account the increase of the marginal cost when the conventional

unit is operated at partial load, which reduces the unit efficiency. The simplest

approach is to consider a linear variation of the marginal cost for any variation of

delivered energy Ẽcv. The marginal cost Πcv for a given delivered energy Ẽcv is then

given by :

Πcv = Π∗
cv ×

(
1 + βcv ×

(
1−

Ecv

Pnom
cv ×∆t

))
(3.95)

where Π∗
cv is the marginal cost at nominal power and βcv is a price parameter which

is greater than zero for accounting the unit efficiency reduction when operating at

partial load. Such model is illustrated in Figure 3.9, with αcv = 0.5 and βcv = 0.5.

Ecv

Π

0 PnomxΔtα xPnomxΔt

Π

Π(1+β )

~

Figure 3.9: Proposed model for the conventional unit marginal cost.

Figure 3.10(b) describes the operation of the combination of the reference wind

farm with a conventional unit during the 24 hours of the day 29/10/2003. The

nominal power of the considered conventional unit is Pnom
cv = 2 MW; the marginal

cost at nominal power is Π∗
cv = 25 e/MWh. The coefficient αcv defining the output

power range of the unit is set to 0.5. Also the marginal cost coefficient is taken equal

to 0.5.

Between hour 3 and hour 10, the negative energy imbalance relative to the trad-

ing of the wind farm generation is reduced by the output energy of the conventional

generation. Similarly, the negative imbalance is reduced between hour 14 and hour

17. However, the output generation from the conventional unit cannot be reduced

lower than 1 MWh for each hour, and consequently, the VPP energy imbalance is

increased when the generation from the wind farm is greater than the contracted

energy. This happens for example between hour 1 and 2 and between hour 10 and

13. Also, in the bottom figure, two levels of conventional unit marginal cost can

be observed. The marginal cost equals 25 e/MWh when the unit is generating at

nominal power (2 MWh/h) whereas the marginal cost equals 31.25 e/MWh when

the unit is generating 1 MWh/h. This later level of generation corresponds to the

minimum generation given by αcv = 0.5, and the corresponding marginal cost results
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from the price model given by Equation 3.95.

3.5.3 Imbalance penalty results and sensitivity analysis

The imbalance penalty δ
DA

Sy
resulting from the participation of the reference unit in

the day-ahead electricity market with a physical solution Sy has been generically

formulated in Equation 3.78 and Equation 3.79 as follows :

δ
DA

Sy

(
Ẽref, E

DA

)
= Y + δ

DA
(
Ẽref + y,EDA

)
(3.96)

where Y and y are the additional cost and the energy volume associated with each

physical solution given by:





y = 0 and Y = 0 ⇐ reference case

y = eagg and Y = 0 ⇐ wind farm aggregation

y = Ẽst and Y = |Ẽst| ×ΠDA × Γst ⇐ combination with a storage unit

y = Ẽcv and Y = Ẽcv × (ΠDA −Πcv) ⇐ combination with a conventional unit

(3.97)

The function δ
DA

models the penalization of the energy imbalance between the

delivered and contracted energy. Such penalization is based on the difference bet-

ween the day-ahead market price and the up or down regulation price. The function

is formulated in Equation 3.7.

Figure 3.11 illustrates the energy volume y, the additional cost Y and the imbal-

ance penalty δ for the reference case, and for the three considered physical solutions

for reducing imbalance penalties. The same day used for the illustration of the op-

eration of the VPP in the previous figures is also considered, that is the 29/10/2003.

• For the aggregation case, the additional cost Y is zero. The imbalance penalty

is reduced when the energy imbalance is reduced, for example between hour

14 and hour 17.

• In the case of the combination with a storage unit, the additional cost Y cor-

responds to the penalization of the energy losses during the storage operation

and the difference of day-ahead market price between charging and discharging

phases, as already explained in subsection 3.3.4. The results for the storage

case illustrate the difference between the energy imbalances and the imbalance

penalties. First, the energy imbalance resulting from the storage combination

is always lower than the one without storage. However, from the third plot, it
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Figure 3.10: Operation of the combination of the reference wind farm with an energy
storage device (top) or with a conventional generation unit (bottom) during the day of
29/10/2003.
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Figure 3.11: Analysis of the imbalance penalty in the cases of aggregation, combination
with a storage unit and combination with a conventional unit, during the day of 29/10/2003.
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can be observed that the imbalance penalty is most of the time increased com-

pared to the reference case, for these 24 hours. This is particularly true in the

two periods between hour 10 and hour 14 and between hour 17 and hour 22.

This is explained by the fact that during these periods, the TSO is only penal-

izing negative energy imbalances. This can be deduced from the fourth graph

where the up regulation price is greater than the day-ahead market price and

the down regulation price equals the day-ahead market price. During these two

periods, the storage is operated for reducing the positive imbalances, but these

imbalances are not penalized by the TSO. Consequently, the operation of the

storage increases the resulting imbalance penalty due to the energy losses (i.e.

additional cost Y ). Such a situation could be avoided if the storage unit was

operated from an advanced schedule which takes into account the regulation

state of the TSO. Actually, in the later case, the storage would be operated

only for reducing the energy imbalances which are penalized by the TSO. Such

strategic operation of the storage device is described in the next chapter.

• Finally, in the case of combination with a conventional unit, the additional cost

Y is positive during the first 6 hours and negative during the following hours.

This is explained by the sign of the difference between the day-ahead market

price and the conventional unit marginal cost. During the first 6 hours, the

day-ahead price is lower than the marginal cost, as described in the bottom

graph of figure 3.10(b), and conversely for the following hours. The dashed

red curve in the second plot of Figure 3.11 shows that the additional cost

Y is further lower during the period when the unit is generating at nominal

power, since its marginal cost is lower during these periods. These periods are

between hour 6 and 9 and between hour 14 and 17.

The results of the imbalance penalty presented in Figure 3.11 refer to only one

day of simulation. Consequently, these results are highly dependent on the specific

conditions during that day, such as the regulation state of the TSO and the day-

ahead market prices. In order to evaluate in the long term the imbalance penalty

reduction, the operation of the three VPP configurations has been simulated for a

period of 274 days between the 01/10/2003 and the 30/06/2004. The results are

presented in Figure 3.12. The three plots give the total imbalance penalty obtained

during the simulation period, normalized by the imbalance penalty obtained in the

reference case (i.e. of the reference wind farm trading by itself). The total reference

imbalance penalty relative to this period equals 45.370 ke and represents 6.98 % of

the revenue which would have been obtained without imbalance penalty.

The first graph 3.12(a) is relative to the aggregation case. This graph describes

the influence of the number of aggregated wind farms on the total normalized imbal-
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ance penalty. For a given number of aggregated wind farms n > 1, all the possible

combinations of the reference wind farm with n− 1 wind farms among the 19 other

wind farms are simulated. For example, the case of aggregating 9 wind farms with

the reference one gives
(
19
9

)
= 92378 possibilities. Totally, 524288 simulations are

represented on the graph. In addition to all the combinations described as green

points, the black squares give the mean imbalance penalty obtained for all the possi-

ble combinations with the same number of aggregated wind farms. From the results

in the figure, it is firstly concluded that the imbalance penalty resulting from ag-

gregation is in general lower than the reference one. However, when aggregating

2, 3 or 4 wind farms, there are some cases when the resulting imbalance penalty

is greater than the reference one. Also, the range of normalized imbalance penalty

decreases when the number of aggregated wind farms increases. The mean imbal-

ance penalty is reduced when the number of aggregated wind farms increases. It

rapidly decreases from 100 % of the reference penalty to 81 % when 5 wind farms are

aggregated. Then, it slowly decreases till 75 % when 20 wind farms are aggregated.

The lowest imbalance penalty is obtained when aggregating a given combination of

7 wind farms with the reference one, and the resulting imbalance penalty is then

reduced to 68 % of the reference one.

The second graph 3.12(b) is relative to the combination with an energy storage

unit. This graph is the result of a parametric analysis and describes the combined

influence of the storage energy capacity and of the round-trip efficiency η on the

total normalized imbalance penalty. The graph shows that, in this case study, the

imbalance penalty is highly dependent on the storage round-trip efficiency. More

precisely, for efficiencies lower than 0.8, the storage combination increases the im-

balance penalty, whatever the storage capacity is. This increase of penalty is due

to the high additional cost Y related to the energy losses for the storage operation.

In these cases, this additional cost Y is higher than the benefits related to the re-

duction of the energy imbalance from the storage energy y. When the efficiency is

greater than 0.8, the additional cost is reduced and the imbalance penalty δ
DA

st is

thus reduced. This reduction increases as the storage capacity increases. For the

simulation η = 0.8, the resulting imbalance penalty is higher than the reference one

for storage capacity lower than 20 MWh, and lower than the reference one for storage

capacity greater than 20 MWh. In section 3.3.4, a condition has been formulated

on the storage efficiency for the reduction of imbalance penalties:

η ≥ 1− 2 ·
∆Π

ΠDA
(3.98)

This condition is based on hypotheses which are detailed in section 3.3.4. The mean

penalization factor ∆Π/ΠDA during the simulation period is 7.51 %. Consequently,

99



Generic model of imbalance penalty

the efficiency condition for reducing the imbalance penalty gives η ≥ 85 %, which is

coherent with the observations from the graph 3.12(b).

The third graph 3.12(c) is relative to the combination of the reference wind farm

with a conventional unit. This graph describes the combined influence of the

conventional unit nominal power and of the marginal cost at nominal power Π∗
cv on

the total normalized imbalance penalty. These results have been obtained with a

coefficient αcv defining the output power range equal to 0.5. Also the βcv coefficient

referring to the marginal cost model equals 0.5. Similarly to the efficiency for the

storage case, this graph shows that, in this case study, the imbalance penalty is highly

dependent on the conventional unit marginal cost. The imbalance penalty increases

as the marginal cost increases. For the simulation with Π∗
cv = 30 e/MWh, the im-

balance penalty is greater than the reference one whatever the nominal power is. For

marginal cost lower than 30 e/MWh, the imbalance penalty decreases as the nomi-

nal power increases till a minimum imbalance penalty is reached, and then increases

as the nominal power increases. For example, the minimum imbalance penalty ob-

tained when combining the reference wind farm with a conventional unit having a

25 e/MWh marginal cost is reached for a nominal power equal to 1.35 MW. This

minimum imbalance penalty equals 70 % of the reference penalty. These simulation

results depend on the day-ahead market and regulation prices over the simulation

period. In particular, the relative position of the conventional unit marginal cost

compared to the day-ahead market price highly influences the resulting penalty, as

already observed in Figure 3.11. Also, in section 3.3.5, it has been demonstrated that

a condition for the conventional unit combination to reduce the imbalance penalty

is to have the marginal cost lower than the price for negative imbalance: Πcv < Π−.

During the simulation, the mean price for negative imbalance equals 31.08 e/MWh.

However, this theoretical condition is derived from considering only up-regulation

situations, where negative imbalance are penalized. Also, during down-regulation,

the conventional unit combination may increase the imbalance penalty. This ex-

plains why the presented results show a decrease of the imbalance penalty only for

marginal costs lower than approximately 29 e/MWh.

Finally, the combination of the three graphs in Figure 3.12 enables to compare

the imbalance penalty resulting from the different virtual power plant configura-

tions. For example, the mean imbalance penalty in the case of aggregating the

reference wind farm with 5 other wind farms equals 80 % of the reference imbal-

ance penalty. From the simulation results, the same imbalance reduction can be

obtained by combining the reference wind farm with a 26 MWh energy capacity and

0.9 round-trip efficiency storage unit. The same imbalance reduction can also be

obtained by combining the reference wind farm with a 1.3 MW nominal power and

26 e/MWh marginal cost conventional unit.
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This parametric analysis may even be used as a basis for comparing different

dimensioning options of a given VPP configuration. For example, regarding the

combination with storage, the reduction of imbalance penalty resulting from the

combination with a storage device having a 26 MWh energy capacity and 0.9 round-

trip efficiency, is equivalent to the one obtained from the combination with a storage

device having a 15 MWh energy capacity and 0.95 round-trip efficiency.
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Figure 3.12: Imbalance penalty resulting from the simulation of the participation of the VPP in the day-ahead market during the period
between the 01/10/2003 and the 30/06/2004.
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3.6 Conclusions

• In this chapter, we proposed a generic imbalance penalty model, which is valid

for both physical and financial solutions for reducing the imbalance penalty.

The physical and financial solutions are modeled as a modification of the refer-

ence imbalance penalty model. This reference model refers to the participation

of a reference RES unit in a day-ahead electricity market.

• For each solution, the modification of the reference imbalance penalty model

consists in an additional cost and an adjustment of either the delivered or the

contracted energy volume. Both the additional cost Y and the adjustment

energy volume y are formulated as as a function of the main quantities which

model each solution. For example, the values of the price and of the volume

for the intraday contract determine Y and y in the case of the participation in

intraday market. Similarly, the energy delivered by the storage unit determines

Y and y in the case of the combination with storage. These quantities may

be the results of a decision-making process, and the decision-making problem

relative to the use of these physical or financial solutions is the object of the

following chapter.

• Results relative to the physical solutions in the frame of the virtual power plant

have been presented. The models used for the operation of the storage unit and

the conventional unit are presented, and illustrated using real world data. The

results from a 9 month simulation of the participation in a day-ahead market

are presented. The imbalance penalties resulting from the different solutions

were compared. Finally it was illustrated how, through a parametric analysis,

the approach can be used for the general problem of unit dimensioning in the

context of virtual power plants.
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CHAPTER 4

Management of Renewable Generation in Electricity

Markets: a Decision-Making Problem

Chapter overview

The participation in an electricity market consists in proposing bids to the market

prior to the delivery, with imperfect knowledge about future energy and prices. In

case physical or financial solutions are applied for reducing imbalances, they have to

be activated before delivery. Regarding physical solutions, the strategic operation

of the virtual power plant is based on a schedule which aims to optimally operate

the virtual power plant for minimizing the imbalance penalties. This schedule is

determined before the operation of the virtual power plant. Also, the financial

solutions are based on the participation in additional markets, and also require to

propose bids prior to delivery.

This chapter presents the different types of decisions associated with both phys-

ical and financial decisions. A generic decision-making model, which is suited to the

different types of decisions, is proposed. This method is based on a cost function

which is derived from the generic penalization function model given in the previous

chapter.

The benefits from the decision-making method are demonstrated through the

example of the strategic participation in the intraday market, and the example of

strategic operation of the combination of a wind farm with a pumped hydro storage

unit.
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4.1 Description of the decisions relative to the trading

of renewable generation in electricity markets

4.1.1 General presentation of decision-making problems

A decision-making problem consists in choosing a single alternative among a set of

identified alternatives [112]. In complex decision-making problems, the first step

is to model the decision problem. The second step is the definition of a decision

process, which aims at determining the decision to make. The decision process is

based on a decision criterion, defined by the decision maker.

The decision criterion is a term defined in [112] as the “measures, rules, and stan-

dards that guide decision-making” and is composed of the attributes, the objectives

and the goals of the decision-making problem. An explanation and a distinction

between these three concepts are also given in [112]:

• The attributes are perceived as characteristics of concepts relative to the deci-

sion. The amount of energy imbalance or the imbalance penalty are examples

of attributes relative to a given participation in the electricity market.

• The objectives are a specification of the attributes to maximize or to minimize.

Objectives are not themselves attributes but they derive from one or more

attributes. Minimizing the imbalance penalties is an example of objective.

• The goal refers to the decision maker’s needs and desires. A goal can be

for example a specific level of the objective relative to the decision-making

problem.

Also, a distinction can be made between decision-aid problems and decision-

making problems [113]. In decision-aid problems, the decision process results in a

set of alternatives which are the ones which respond at best to the set of decision

criteria. Conversely, decision-making consists in determining a single best alternative

corresponding to the criteria. The choice between decision-aid or decision-making

approaches depends on the specificities and complexity of the decision problem, as

well as on the nature of the decisions to make.

The following sections describe the attributes of the decision-making problem

relative to the participation of renewable generation in short-term electricity mar-

kets.

4.1.2 The reference participation in the day-ahead market

In this section, the term “reference” refers to the participation of a reference RES

unit with stochastic generation in the day-ahead market. This reference case is taken
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as a basis for comparing the benefits in terms of imbalance penalty reduction related

to the physical and financial solutions, as already proposed in the previous chapter.

For participating in day-ahead electricity markets, an Independent Power Pro-

ducer (IPP) has to propose a bid during the period between the gate opening time

and the gate closure time at a day d for a period covering the whole following day

d+ 1. The bids covering the period of the day d+ 1 are given for each market time

unit of the period. Usually, the length of a market time unit is one hour.

Most day-ahead markets have a single price market clearing process, which is

explained in section 2.1.3. In this process, a generation bid consists of a set of

non-decreasing blocks of energy-price for each market time unit [26]. For a given

market time, the bid involves a decision-making problem since a decision has to be

made by the IPP on both the energy quantity to propose to the market and the

price at which this quantity is proposed. The participation in a day-ahead market

is in turn a decision-making problem about the quantity-price values to propose for

consecutive bids of the market periods of the next day.

A single market price is calculated from the aggregation of all the offer and buy

bids. Then, the contracted energy quantity following a bid depends on the position

of the bid price relatively to the market price.

4.1.3 Decisions associated with the physical solutions for imbalance

management

This section presents the decisions which are necessary for the operation of the three

physical solutions for reducing the imbalance penalty, which were presented in the

generic model of the virtual power plant. These three solutions are the aggregation

of RES units and the combination with either a storage unit or a conventional unit.

In order to obtain the maximum possible reduction of imbalance penalty, the

operation of the physical solutions has to be based on decisions such as scheduling

or economic dispatch, which are provided prior to the operation. These decisions

are then used as setpoints during operation. This advanced operation mode is said

to be “strategic”.

First, the reduction of imbalance penalties related to the aggregation of RES

units is based on the combination of units which are supposed to be non-dispatchable.

The imbalance reduction results from the compensation of individual imbalances, as

already presented in the previous chapter. No operating decision is thus considered

for this solution.

In contrast, storage units and conventional units are dispatchable units. Their

limited characteristics force the VPP operator to manage their operation for reducing

imbalance penalties. Two main kinds of decision-making problems are associated
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with this management:

• The unit commitment problem consists in determining, for a given generation

portfolio, which unit will be in operation at each time step of a given period.

This decision has to take into account the technical constraints, such as possible

ramps for increasing the production, or the minimum time each unit has to be

off.

• The economic dispatch consists in determining the level at which each unit has

to be operated for each time step of a given period. The decision is made with

the objective to maximize an economic benefit or minimize an economic cost.

An example of the economic dispatch problem relative to the participation of a

generation portfolio including renewable and conventional units in the NETA

market is given in [34].

In the solution based on energy storage, the energy delivered or absorbed by the

storage unit for a given time step depends on the amount of energy already stored in

the device which, in turn, depends on the delivered energy at the previous time steps.

In this case, the decision associated with the strategic combination of storage and

renewable units consists in determining the delivered energy by the storage unit or

the state-of-charge of the unit for the consecutive time steps of a given period, where

the objective is to minimize the imbalance penalties. When no strategic decision

is available, the reference operation mode for the storage unit consists in a “filter”

mode, where the storage energy output is set for reducing the instantaneous energy

imbalance of the RES unit. Such an approach was used for modeling the storage

operation in the previous section 3.5.

In the solution based on conventional generation, the ability to increase or de-

crease the conventional unit output, for reducing the imbalance penalty relative to a

RES unit, depends on the operating state of the conventional unit. If the considered

unit can be switched off, the decision to switch it on is a unit commitment problem.

Also, scheduling the output energy from the conventional unit enables the VPP op-

erator to dispatch the delivered energy with the objective of having operating costs

of the conventional unit lower than the avoided imbalance penalties. When no unit

commitment method is used, the reference operating mode consists in maintaining

the unit as a “must-run” unit, always switched on. The unit output then ranges

between the minimum and maximum power output. This reference operating mode

is the one which has been used for modeling the conventional unit operation in the

previous section 3.5. However, the operating costs associated with this reference

operating mode may be higher than the avoided imbalance penalties.
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4.1.4 Decisions associated with the financial solutions for imbalance

management

In section 3.2, the solution based on option trading has been formulated. In the

same section, it has been explained that this solution is still theoretical and is thus

not further considered in this thesis.

Regarding the participation in an intraday market, this solution consists in trad-

ing its generation in an additional electricity market. This market takes place after

the day-ahead one, and offers the possibility to adjust the IPP’s contractual position

relative to the day-ahead trading.

Intraday markets can be based either on a single price market clearing process,

as is the case in Spain where the intraday market consists in six sessions, or on a

continuous trading mechanism with pay-as-bid market clearing process, as is the

case for the Elbas market in the Nordic countries. If the intraday market is based

on a single price market clearing process, the decision-making problem is similar to

the one relative to the participation in the day-ahead market, already detailed in

section 4.1.2. In the case of the pay-as-bid process, the bid also consists in a set of

quantity-price values for each market time of the intraday market, and the decision

is therefore similar to the case of single price market clearing process.

4.2 Generic formulation of the decision-making problem

related to the management of renewable generation

in electricity markets

4.2.1 Formulation of the optimization problem

The reference participation in the day-ahead market and the use of financial solutions

refer to a decision-making problem, where the operator has to decide the quantity

and the price of the electricity bid it proposes to the markets. Also, the strategic

operation of the physical solutions is based on a schedule which is a decision about

the operation setpoints relative to the combined units.

The proposed physical and financial solutions are in general used by the inde-

pendent power producer for reducing the imbalance penalties. Consequently, in this

work, we consider that the decisions relative to these solutions are made with such

objective of reducing the imbalance penalties. Such objective is purely economic,

and is related only to the independent power producers’ point of view. Nevertheless,

the same physical and financial solutions, proposed here for reducing the imbalance

penalties, may be used as solutions for other issues related to the integration of re-

newable generation in power systems. For example, the combination of a wind farm
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with a storage unit can be used as a solution for both reducing the imbalance penal-

ties and managing the grid congestions which could be caused by the wind power

generation, as described in [114]. In this case, the scheduling of the storage unit could

be done with a combined economic objective of reducing imbalance penalties and

a technical objective of managing grid congestion. However, such multi-objective

decision-making process is out of the scope of the present work. Focus is given only

on the imbalance penalty management.

The decision variables of the considered problem are divided into two categories.

First, decisions related to the use of financial solutions have a decision variable, u,

which is related to the market participation. Similarly, decisions related to the use

of physical solutions have a decision variable v related to scheduling. Note that the

reference participation in the day-ahead market can be considered as a particular

case of financial solution, as explained in section 3.4, and the associated decision

variable is also denoted as u. For a given time period Ti, the decision variable uTi
can

be for example the quantity-price bid in a day-ahead market uTi
= (EBDA

Ti
, ΠBDA

Ti
),

or in an intraday market uTi
= (EBID

Ti
, ΠBID

Ti
). The decision variable vTi

can be the

scheduled state-of-charge of the storage unit vTi
= SOCsch

Ti
or the scheduled energy

from the conventional unit vTi
= Esch

cv,Ti
.

In a general way, the independent power producer may have to make a combined

decision at time td about market and scheduling variables (uTi
, vTi

). Also, the

decisions may not be for a single time period Ti but rather for n consecutive time

periods [T1, T2, ...Tn]. Such problems are defined in [115] as sequential or multistage

decision problems. For these problems, the interdependence between the consecutive

decisions has to be taken into account. The multistage decision approach proposed

in this thesis is presented in the case of the combination with storage in section 4.6.

The time td when the decision is made is taken prior to the beginning of the first

period T1. The decision vectors U and V , relative to the n consecutive periods, are

denoted as:

U = [uTi
]ni=1 = [uT1

, uT2
, ...uTn ]

V = [vTi
]ni=1 = [vT1

, vT2
, ...vTn ] (4.1)

Note that in the proposed formulation, the symbol t is used to represent a position

in time, while the symbol T is used to represent a period of time.

Figure 4.1 illustrates the decision vectors U and V . The vertical red lines repre-

sent the time td when the decision is made.

The imbalance penalty cost resulting from the decisions (U, V ) is derived through

a function Φ which gives a real number associated with the decisions. Finally,

the decision-making problem is formulated as an optimization problem, which
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d d+1 d+2

T1 T2 …       Tntd

: U = [uT1, uT2, … uTn] = [uTi]

:  V = [vT1, vT2, … vTn ] = [vTi]i =1

n

i =1

n

Figure 4.1: Description of the generic decision problem relative to the variables U and V .
d stands for the day.

consists in determining the decision variables values which minimize the imbalance

penalty cost:

(U∗, V ∗) = argmin
(U, V )

Φ (U, V ) , subject to CU,V (4.2)

where CU,V are the constraints related to the variables U and V . The constraints

relative to the decisions U for the use of financial solutions model the limits im-

posed by the market rules. Such constraints include for example the minimum and

maximum energy bid that a given IPP can propose for each time unit. Similarly,

the constraints relative to the decisions V for the use of physical solutions model

the technical limits imposed by the power units which are combined with the ref-

erence unit. The lower and upper bounds for the state-of-charge of a storage unit

is an example of technical constraints in the case of combination with storage. The

details of the constraints CU,V in the case of (1) the reference participation in the

day-ahead market, (2) the additional participation in the intraday market and (3)

the combination with a storage device, are given in the next sections.

Finally, the decision variables U and V considered in this thesis are supposed to

be continuous. In other words, they are allowed to take on any values permitted

by the constraints CU,V . By contrast, the decisions which are related to discrete

variables are not treated in this thesis. This discrete decision could be, for exam-

ple, the unit commitment decision concerning a conventional unit combined with

renewable generation, where two states ar possible: on or off. Consequently, the

general resolution of the optimization problem given in Equation 4.2 is solved with

coutinuous optimization methods.

4.2.2 Decision-making under uncertainty

The general decision-making problem presented in Equation 4.2 consists for the IPP

in determining alternatives which minimize the imbalance penalty cost. However,
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this cost depends on factors which are determined only after the decision, such as

the amount of delivered energy by the renewable power units and the market prices.

Consequently, at the decision time td, the IPP has make a decision about the

variables (U, V ) in order to minimize a cost which is not perfectly known at td. Such

decision-making problems are denoted as decision-making under uncertainty

problems [116], because the outcomes of each decision alternative are uncertain. At

the decision time td, the amount of delivered energy by the renewable power units

and the market prices are considered as random variables or stochastic variables,

and consequently introduce some amount of uncertainty associated with how the

future will be.

Decision-making problems under uncertainty are based on estimation of the fu-

ture outcomes. Such estimations are forecasts which are available at the decision

time. Generally, the term of deterministic forecast is used to describe a forecast

which simply consists in an estimation of the future value of the forecasted variable.

Conversely, the term probabilistic forecast is used to describe a forecast which in-

cludes uncertainty information of the future variable in addition to the estimation

of the future value.

Decision-making problems under uncertainty may disregard or consider the un-

certainty associated with the forecasts. In a first step of the present work, the

uncertainty associated with the forecasts is disregarded and the estimation of the

future value only is considered. The consideration of the uncertainty information

will be the focus of the next chapter 5.

4.3 Proposition of an approach based on a loss function

for the decision-making problem

This section focuses on the derivation of the objective function Φ from the optimiza-

tion problem given in Equation 4.2, which gives a real number associated with the

decisions [uTi
]ni=1 and [vTi

]ni=1. This function Φ models the objective of the decision

as defined in section 4.1.1. It maps a given alternative onto a real number repre-

senting the economic penalty associated with the alternative. The next paragraph

presents the general considerations used to develop the objective function Φ based

on the loss function concept.

4.3.1 Concept of loss function: relation between loss, utility and

regret

This paragraph presents the general concept of the loss function, and describes the

distinctions between this concept and two others related to decision-making, which
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are the utility theory and the regret theory.

The concept of loss function is closely linked to the concept of utility. The utility

theory has been proposed by Bernoulli in [117] as a decision method for considering

the satisfaction of the decision maker relatively to an alternative. A utility function

is thus a measure of such satisfaction which integrates the preferences of the decision

maker. Under this principle, the best decision is taken as the one that maximizes

the utility of the decision maker [116]. Further details about the utility theory are

given in the next chapter, more precisely in section 5.2.2.

Contrary to the utility function which is maximized for a given decision, the

loss function inversely models the dissatisfaction associated with a decision and is

minimized for a given decision. A possibility to derive a loss function is to consider

the opposite of the utility function; however, the determination of the utility theory

for a given decision maker is usually a hard task [118].

Finally, regret theory is a particular case of the concept of the loss function [119].

In this case, the decision process is modeled as the minimization of a function of a

regret vector. This regret vector is a particular case of loss, and is defined as the

difference between the outcome yielded by a given choice and the best outcome that

could have been achieved in that state of nature.

In this thesis, the proposed method for the derivation of the loss function λ is

based on the modeling of the cost related to the decisions. The objective function

Φ is then derived from the loss function λ. The distinction between the objective

function Φ and the loss function λ is described in the formulation of the problem in

the next section.

4.3.2 Formulation of the proposed loss function

In order to formulate the loss function, the general cases of a financial solution Sx and

a physical solution Sy are considered. The decision relative to the financial solution

Sx is the vector U = [uTi
]ni=1 and the decision relative to the physical solution Sy is

the vector V = [vTi
]ni=1.

In chapter 3, and more precisely in Equation 3.84, the imbalance penalty pTi
,

for a given time period Ti, has been formulated as a function of the delivered energy

by the IPP ẼTi
and the contracted energy in the day-ahead market EDA

Ti
:

pTi
= δ

DA

Sx,Sy ,Ti

(
ẼTi

, EDA

Ti

)
(4.3)

where δ
DA

Sx,Sy ,Ti
is the imbalance penalty function relative to the solutions Sx and

Sy, derived in section 3.4, for the market time unit Ti. This function is given from
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the generic imbalance penalty model in Equation 3.84:

δ
DA

Sx,Sy ,Ti

(
ẼTi

, EDA

Ti

)
= XTi

+ YTi
+ δ

DA

Ti

(
ẼTi

+ yTi
, EDA

Ti
+ xTi

)
(4.4)

The proposed decision-making approach is based on a loss function λ which gives

the imbalance penalty cost c relative to a given alternative (u, v). For a given time

period Ti, the cost cTi
is formulated as:

cTi
= λTi

(uTi
, vTi

) (4.5)

The given formulation consists in defining the cost cTi
relative to the loss function

λTi
, from the penalty pTi

relative to the imbalance penalty function δ
DA

Sx,Sy ,Ti
. At

the decision time td, the penalty pTi
, which is based on the delivered energy volumes

and the observed market prices, is not perfectly known. The estimated penalty at

the decision time is denoted as p̂Ti
, and is derived from the estimated penalization

function δ̂
DA

Ti
and the estimated delivered energy ÊTi|td as follows:

p̂Ti
= δ̂

DA

Sx,Sy ,Ti

(
ÊTi|td , E

DA

Ti

)
(4.6)

Then, the cost cTi
is defined as the estimated penalty p̂Ti

: cTi
= p̂Ti

. By com-

bining Equation 4.5 with Equation 4.6 and Equation 4.4, this gives:

λTi
(uTi

, vTi
) = δ̂

DA

Sx,Sy ,Ti

(
ÊTi|td , E

DA

Ti

)
(4.7)

= X(hSx,Ti
(uTi

)) + Y (hSy ,Ti
(vTi

))

+ δ̂
DA

Ti

(
ÊTi|td + y(hSy ,Ti

(vTi
)), EDA

Ti
+ x(hSx,Ti

(uTi
))
)

(4.8)

The details about the functions hSx,Ti
and hSy ,Ti

which model the consequences of the

decisions uTi
and vTi

on the energy volumes (xTi
, yTi

) and additional cost (XTi
, YTi

),

are explained in the section 4.3.4. Also, the derivation of the estimated imbalance

penalty function δ̂
DA

Ti
and the estimated delivered energy ÊTi|td are detailed in the

next section.

Then, the proposed objective function Φ relative to the decision vectors (U, V )

is a norm N of the cost cTi
associated with each time period Ti:

Φ (U, V ) = N
(
[cTi

]ni=1

)
= N

([
λTi

(uTi
, vTi

)
]n
i=1

)
(4.9)

A discussion about the norm N is also given in the following section 4.3.5.

Finally, the decision-making problem is modeled through the following optimization
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problem:

[(
u∗Ti

, v∗Ti

)]n
i=1

= argmin
[(uTi

, vTi)]
n

i=1

N
([
λTi

(uTi
, vTi

)
]n
i=1

)
, subject to CU,V (4.10)

The following paragraphs give some details for the derivation of the loss function

λ.

4.3.3 Estimation of the future imbalance penalty and energy pro-

duction

The penalization function δ
DA

Sx,Sy ,Ti
in Equation 4.3 models the evaluation of the

imbalance penalty after delivery. At this time, the market prices which define the

quantity ∆Π
Ti

are known. Such market price difference is defined in Equation 3.8

and is used for the definition of the δ
DA

function. Also the delivered energy ẼTi
is

measured and the contracted energy EDA

Ti
is already settled. In contrast, the loss

function is designed for the decision-making problem prior to delivery. The decision

time is anterior to the beginning of the time period Ti and consequently, the delivered

energy and market prices for Ti are not perfectly known and are estimated through

forecasting methods. The hat operator ̂ is used to describe the different forecasts:

• ÊTi|td is the estimated value of the delivered energy during the period Ti; this

estimation is available at the decision time td. The considered IPP includes

renewable generation units and the estimation of future energy delivery is

obtained through forecasting models described in the appendix B.

• ∆̂Π
Ti|td

is similarly the estimation of the value of ∆Π for the time period Ti

available at the decision time td. Such estimation is based on the estimation of

the difference between the day-ahead market price and the regulation prices.

A discussion about the price forecasting problem is proposed in the appendix

C.

The estimated reference imbalance penalty function δ̂
DA

Ti
used in Equation 4.8 is

obtained from the definition of δ
DA

Ti
in Equation 3.7 by replacing Ẽ and ∆Π by the

estimations ÊTi|td and ∆̂Π
Ti|td

:

δ̂
DA

Ti

(
ÊTi|td , E

DA

)
= |ÊTi|td − EDA| × ∆̂Π

Ti|td
(4.11)
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4.3.4 Formulation of the consequences of the decisions on the im-

balance penalty

For any financial or physical solution, a distinction has to be made between the deci-

sion and the realization associated with such decision. Such distinction is described

for both financial and physical solutions:

• In the case of a financial solution Sx, the decision u is relative to market

participation and is a bid proposed to the market. The quantity-price contract

is a function hSx of the such bid u, where the function hSx models the market

settlement. The quantity-price contracts are denoted as ũ = hSx(u). Also, the

impact of a financial solution on the imbalance penalty has been modeled in

section 3.4 through the quantities (x,X), and these quantities depend on the

realization ũ. In other words, the quantities (x,X) do not directly depend on

the bid u, but on the contract ũ.

x = x (ũ) = x (hSx(u)) (4.12)

X = X (ũ) = X (hSx(u)) (4.13)

• In the case of a physical solution Sy, the decision v is relative to the scheduling

of either a storage unit or a conventional unit. The operation variables are

the real outputs from units, and result from the application of the schedule.

In particular, additional technical constraints or a temporary modification of

the operation rules, may lead to a difference between the schedule v and the

resulting energy output denoted ṽ. The relation between the schedule and the

real output is modeled through a function hSy and so, ṽ = hSy(v). Also, the

impact of a physical solution on the imbalance penalty is modeled through the

quantities (y, Y ), as explained in section 3.4, which depend on the realization

ṽ of the solution. In other words, the quantities (y, Y ) do not directly depend

on the schedule v, but on the real energy output ṽ.

y = y (ṽ) = y
(
hSy(v)

)
(4.14)

Y = Y (ṽ) = Y
(
hSy(v)

)
(4.15)

Figure 4.2 summarizes the differences between the loss function λ and the pe-

nalization function δ. First, the loss function is based on an estimation of the future

energy delivery and price whereas the penalization function evaluates the realiza-

tions. Also, the loss function is a function of the decision variables whereas the

penalization function only considers the results of these decisions.
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Loss function λ: 

Estimation of the cost related

to the decision

• E , Δ : estimation of the future 

energy delivery and market prices; 

parameters of the loss function

• (u,v): decision variables

Penalization function δ: 

Evaluation of the imbalance penalty 

related to the real-time delivery

• E, Δ : measured delivered energy 

and market prices; 

variables of the penalization function

• ( u, v )  = (hSx(u), hSy(v)): parameters 

of the evaluation

~

~ ππ^

Ti
td

^

~

Figure 4.2: Comparison between the loss and penalization functions, in terms of parameters
and variables

4.3.5 Discussion about the norm relative to the optimization pro-

blem

The decision-making problem is formulated for n consecutive time periods in Equa-

tion 4.1. The proposed objective function is formulated in Equation 4.9 as a norm

N of the vector of the cost cTi
relative to each time period Ti.

The considered norm here is a real-valued function on Rn satisfying the set of

properties which defines a function as a norm [109]. Using such norm, the objective

function Φ of the optimization problem becomes a real-valued function.

Some of the most frequently used norms are the p-norms [109,112]. For p ≤ 1 a

given real number, the p-norm Np of a vector [cTi
]ni=1 is defined as:

Np

(
[cTi

]ni=1

)
=

(
n∑

i=1

|cTi
|p

)1/p

(4.16)

The most well-known p-norms are the so-called Manhattan norm, the Euclidian

norm and the Maximum norm which are obtained with p = 1, p = 2 and p → ∞

respectively:

N1

(
[cTi

]ni=1

)
= |cT1

|+ |cT2
|+ ...+ |cTn | (4.17)

N2

(
[cTi

]ni=1

)
=

√
|cT1

|2 + |cT2
|2 + ...+ |cTn |

2 (4.18)

N∞

(
[cTi

]ni=1

)
= max(|cT1

|, |cT2
|, ..., |cTn |) (4.19)

The choice of the norm depends on the objective of the decision-making problem.
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For example, the norm N1 focuses on the total cost for the period [T1, T2, ..., Tn]

and is related to expectancy choice, as defined in [120]. Conversely, the last norm

N∞ is relative to robust choice. This norm is used in Robust Programming [121]

since it aims at selecting the alternative that better behaves in worst-case situations

or scenarios as shown in [122,123]. This norm is especially well-suited for single-shot

decision situations in which eventual bad outcomes of present decisions cannot be

overcome by good outcomes of further decisions.

In the present work, the influence of the different norms on the resulting decisions

is illustrated in the case study relative to the strategic combination of a RES unit

with storage, in section 4.6.

The following sections present the application of the generic decision-making

proposed in section 4.3.2 to three different cases: the reference participation in the

day-ahead market, the participation in the intraday market as a financial solution

and the combination with a storage unit as a physical solution.

4.4 Application of the decision-making method for trad-

ing renewable generation in the day-ahead market

This section focuses on the participation of an IPP in a day-ahead electricity market.

The generation units of the IPP are considered to be only renewable power sources.

The participation in the day-ahead market can be considered as a particular case

of financial solution where the decision UDA consists in a quantity-price bid for

each time period of the next day. For a given period Ti, the decision uDA

Ti
is the

combination of the quantity bid EBDA

Ti
and the price bid ΠBDA

Ti

uDA

Ti
=
(
EBDA

Ti
, ΠBDA

Ti

)
, and UDA =

[(
EBDA

Ti
, ΠBDA

Ti

)]n
i=1

(4.20)

In most day-ahead markets, the time period Ti is one hour and the number of time

periods is thus 24.

4.4.1 Main hypotheses

Price-taker hypothesis

The day-ahead market is supposed to be based on a single price market mecha-

nism, where the market clearing price and traded volumes are determined through

marginal pricing. Also, the IPP is supposed to be “price-taker”. This notion has

been defined in section 2.2.4. When the IPP is a price taker, the bid is price-
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independent and the decision only deals with the energy quantity to propose:

UDA

price taker =
[
EBDA

Ti

]n
i=1

(4.21)

Independence of the decisions

Also, the IPP is supposed to propose n consecutive energy bids relative to the n time

periods of the following day, where n is the number of time periods. In this case, the

IPP includes only RES units, whose generation is supposed to be non-dispatchable.

Also the generation ramps are not considered. Consequently, the energy bid for

a given time period Ti is supposed to be independent from the other energy bids

relative to the time periods Tj , j 6= i. In other words, the day-ahead market bidding

is supposed to be done independently for each market-time unit. Note that

the consideration of the temporal dependence between consecutive decisions will be

the main focus of section 4.6 relative to the operation of a storage unit combined

with RES unit.

Based on these hypotheses, the general decision problem relative to the quantity-

price bid for the nmarket times can be simplified to n independent decision problems

relative to the energy bid for one market time. For a given market time unit Ti, this

decision is denoted as UDA

Ti
and is derived as:

UDA

Ti
= uDA

Ti
= EBDA

Ti
(4.22)

d d+1 d+212h00 00h00 24h00

Ti td

UTi = uTi =  ETi

BDA
DA DA

Figure 4.3: Example of the participation in the Elspot day-ahead market (NordPool).

Figure 4.3 presents the decision relative to the trading in the Elspot day-ahead

market, in the Nordic countries. This decision takes into account the price taker

hypothesis and the independence of the decisions. The gate closure time is the time

td when the decision is made. This time is at 12h00 the day d in the example. The

market time unit is one hour. The vertical red line represents the instant when the

decision is made.
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4.4.2 Formulation of the specific problem

The participation in the day-ahead market is considered as a particular case of

financial solution in the generic decision-making method. The loss function specific

to the day-ahead trading for a market time unit Ti is denoted as λ
DA

Ti
and is derived

from the generic loss function λ given in Equation 4.8. In this case, the day-ahead

market participation is considered as a financial solution (i.e. Sx : DA) and no

physical solution is considered (i.e. Sy : {}), which leads to YTi
= 0 and yTi

= 0.

Also, in the particular case of the day-ahead market participation, the quantity

EDA

Ti
is taken as zero in Equation 4.8, in a similar way as already demonstrated in

Equation 3.81 for the derivation of the generic imbalance penalty function. Still

from Equation 3.81, the energy volume x and the additional cost X are set to:

XTi
= 0, and xTi

= ECDA

Ti
(4.23)

where ECDA

Ti
is the energy contract in the day-ahead market for the market time Ti.

This contract is a function of the energy bid EBDA

Ti
. This function is denoted as hDA

and models the day-ahead market settlement. Also, in the case of price taker IPP,

the quantity bid is always traded and accepted in the market and consequently, the

day-ahead energy contract equals the day-ahead quantity bid:

ECDA

Ti
= hDA,Ti

(
EBDA

Ti

)
= EBDA

Ti
(4.24)

Consequently, the loss functionλ
DA

Ti
is derived from Equation 4.8, with uTi

= EBDA

Ti
,

vTi
= 0, and the hDA,Ti

function defined in Equation 4.24, as follows:

λ
DA

Ti
(uTi

, vTi
) = λ

DA

Ti
(EBDA

Ti
, 0) (4.25)

= δ̂
DA

Ti

(
ÊTi|td , ECDA(hDA(E

BDA))
)

(4.26)

= δ̂
DA

Ti

(
ÊTi|td , EBDA

Ti

)
(4.27)

Then, the optimal day-ahead energy bid EBDA,∗
Ti

for the period Ti is given by the

optimization problem formulated in Equation 4.10. The decision problem is for only

one time unit (i.e. n = 1) and thus the norm in Equation 4.10 N is the identity

function: N (x) = x:

EBDA,∗
Ti

= argmin
E

BDA
Ti

λ
DA

Ti
(EBDA

Ti
, 0), subject to CDA (4.28)

with λ
DA

Ti
(EBDA

Ti
, 0) = δ̂

DA

Ti

(
ÊTi|td , E

BDA

Ti

)
. The constraints CDA on the day-ahead
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market energy bid are given by the market rules. These constraints depend on

the considered day-ahead market. The main bidding constraints for day-ahead bids

refer to price-dependent bids. However, in this application, the price-taker IPP is

proposing a price-independent bid. Consequently, these constraints do not apply to

the decision EBDA . The optimization problem in this formulation is thus taken as

an unconstrained one: CDA = ∅.

Also, by considering Equation 4.11, the loss function given in the previous equa-

tion can be rewritten as:

λ
DA

Ti
(EBDA

Ti
, 0) =

∣∣∣ÊTi|td − EBDA

Ti

∣∣∣× ∆̂Π
Ti|td

(4.29)

The energy forecast ÊTi|td and price forecast ∆̂Π
Ti|td

taken in this decision-making

problem are the latest available forecasts at decision time td. The short-term gen-

eration forecasting methods for obtaining the energy forecast ÊTi|td are detailed in

section B.2. Similarly, the price forecast ∆̂Π
Ti|td

is obtained from approaches which

are described in section C.4.

4.4.3 Illustration of the loss function of the problem

The expression of the loss function λ
DA

given in Equation 4.29 can be developed by

taking into account the definition of the market price ∆̂Π given in Equation 3.8. In

the present example, the IPP is supposed to participate in the day-ahead market

only for selling energy and consequently, EBDA ≥ 0. Consequently, the loss function

λ
DA

is a piecewise linear function defined as follows:

λ
DA

(EBDA , 0) =




∆̂Π

+ × Ê − ∆̂Π
+ × EBDA ⇐ 0 ≤ EBDA ≤ Ê

−∆̂Π
− × Ê + ∆̂Π

− × EBDA ⇐ Ê ≤ EBDA

(4.30)

EE
~

δDA (E , E )

δDA(E, E ) 

Ê

~

^

λDA (E ,0)

Ê

BDA

BDA

^ BDA

BDAE

BDA^

0
0

0

0

E
BDA

0

λDA (E ,0)
BDA

0

Figure 4.4: Relation between the functions λ
DA

and δ̂
DA

.
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Such λ
DA

function is represented in Figure 4.4. This figure also illustrates the

relation between the loss function λ
DA

and the corresponding estimated penalization

function δ̂
DA

, given in Equation 4.27. More precisely, the figure illustrates that, for

a given energy bid EBDA

0 :

δ̂
DA

(Ê, EBDA

0 ) = λ
DA

(EBDA

0 , 0) (4.31)

Note that the previous plots of the function δ
DA

in the preceding chapter take EDA

as reference value, and not EBDA as shown in Figure 4.4. Actually, the quantity EDA

used in the previous chapter corresponds to the contracted volume EDA = ECDA ,

and in this example, ECDA = EBDA as a result of the price-taker hypothesis. This

explains why the volume EBDA is taken as the reference value for the estimated

penalization function δ̂
DA

in this figure. Also, in the example taken for the figure,

the estimated penalization of negative imbalance is lower than the one for positive

imbalance: 0 < ∆̂Π
− < ∆̂Π

+, which explains why the absolute value of the slope of the

δ̂
DA

function is lower for negative imbalances than the one for positive imbalances.

4.4.4 Resolution of the specific problem

This paragraph presents the resolution of the optimization problem given in Equa-

tion 4.28, by considering the formulation of the loss function in Equation 4.30.

The generation forecast Ê is assumed to be positive. Also, the price forecasts

∆̂Π
− and ∆̂Π

+ for negative and positive imbalance, respectively, are positive. Then,

the analysis of the loss function λ
DA

from Equation 4.30 shows that this function is

positive, and reaches its minimum for EBDA = Ê. The function λ
DA

is zero at this

minimum.

Consequently, the optimal day-ahead energy bid EBDA,∗ given by the decision-

making problem formulated in Equation 4.28 equals the estimation Ê of the delivered

energy: EBDA,∗ = Ê. This optimal energy bid is in this case independent from the

forecast of the price for imbalance.

4.4.5 Case study

Description of the case study

This section presents the simulation results obtained for the participation of a wind

farm as a balance responsible party in the day-ahead market. The methodology

followed is described in Figure 4.5. It is similar to Figure 3.7 presented in the case

study relative to the evaluation of the solutions for reducing the imbalance penalties,

in section 3.5.
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Day–ahead trading

Day–ahead

tradingWind power 

forecasts:

Wind power 

measurements
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price

Market price
Imbalance penalty 

price forecast :

Market

settlement
quantity-bid: 

E
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module:

DECISION
BDA

δDA
Imbalance 

penalty: 

E , ΠDA

Ewf
^

Imbalance penalty 

price forecast : Δ̂Π

Wind power 

forecasts: Ewf
^

Δ̂Π

CDA

CDA

Figure 4.5: Schematic representation of the overall simulation, including the decision-
making method relative to the trading in the day-ahead market.

In Figure 4.5, the day-ahead energy bid EBDA is presented as the result of a

decision-making method which takes into account the latest available wind power

forecast Êwf and imbalance penalty price forecast ∆̂Π. The energy bid is derived

from the optimization problem formulated in Equation 4.28. In this particular case,

the analysis of the loss function for the specific problem in the previous paragraph

has demonstrated that the energy bid is actually independent from the penalty price

forecast ∆̂Π. However, this conclusion is specific to this particular simplification of

the day-ahead trading problem and is not true in the general case. Consequently,

the penalty price forecast ∆̂Π is maintained as an input for the general problem of

day-ahead trading.

The contracted energy ECDA and price ΠDA result from the market settlement.

Because the wind farm is participating as a “price-taker”, the contracted energy

equals the energy bid. The imbalance penalty δ
DA

results from the penalization of

the energy imbalance.

Results

The case study is based on the same wind farm as the reference wind farm taken in

section 3.5. This wind farm is a 18 MWwind farm located in Western Denmark. The
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Figure 4.6: Normalized Mean Absolute Error for five wind power forecasting models (i.e.
persistence, constant prediction, RPC, QRF and perfect prediction models) and resulting

imbalance penalties δ
DA

.

wind farm production is traded on the NordPool Elspot day-ahead market during

the period between the 01/10/2003 and the 30/06/2004. In NordPool, the contracts

for the coming day are traded on the day-ahead market, named Elspot [42]. The

market time step equals 1 h. The Elspot gate closure time is at 12:00 pm (local

time) of the preceding day.

Figure 4.6 presents the influence of the forecasting performance, described here

through the Normalized Mean Absolute Error (NMAE), on the total imbalance

penalty obtained using five different wind power forecasting approaches. These

approaches are the same as the ones presented in section B.2, where the NMAEs re-

sulting from each of these models are compared. The imbalance penalty and NMAE

are naturally zero in the case of perfect prediction. Regarding the advanced statis-

tical approaches “Regressive Power Curve (RPC)” and “Quantile Regression Forest

(QRF)”, the resulting forecasts are based on Hirlam Numerical Weather Predictions.

The training data set covers the first nine months of the year 2003. Figure 4.6(a)

shows that the relation between the NMAE and the imbalance penalty is nearly

linear. The numerical values of the NMAE and imbalance penalty relative to the

figure 4.6(a) are given in the table 4.6(b). In particular, the imbalance penalty when

using “RPC” is similar to the one obtained when using “QRF”, and is close to 55 %

of the one obtained when using the persistence approach for wind power forecasting.

Figure 4.7 also describes the influence of the NMAE on the imbalance penalty.

The results presented in this graph are taken from the aggregation case study al-

ready presented in 3.5. The wind farm selected for the previous results in Figure 4.6
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Figure 4.7: Normalized Mean Absolute Error and normalized imbalance penalty relative to
the aggregation of n wind farms, with n = 1 ... 20..

is taken as the reference wind farm. Each point corresponds to a given combina-

tion of the reference wind farm with n other wind farms which are also located in

Western Denmark. The number n of wind farms varies between 0 and 19, which

gives a total of 524288 cases. Generally, the wind farm aggregation reduces the

power forecasting errors since the errors relative to the aggregated wind farms may

compensate each other. This forecasting error reduction depends for example on

the number of aggregated wind farms, and also on the geographical dispersion of

the wind farms. Consequently, the NMAE relative to the reference wind farm in the

case of aggregation varies according to the aggregation combinations, and ranges

from 6.2 % to 12.1 % of the nominal power of the reference wind farm. From these

simulations, we conclude that the imbalance penalty is highly correlated with the

NMAE, with a correlation coefficient equal to 0.92. In other words, these results

confirm that using wind power forecasting methods with low NMAE for day-ahead

trading generally reduces the resulting imbalance penalty.

4.4.6 Conclusions

In this section, the generic decision method proposed in the previous section 4.3

has been applied to the reference case of trading renewable generation in the day-

ahead market. When considering the given market rules, the optimization approach

demonstrated that the day-ahead energy bid which minimizes the imbalance penalty

coincides with the value of the wind energy forecast.

Consequently, the participation in the day-ahead market can be considered as

a specific evaluation of the performance of the wind power forecasting tools. The

results obtained from the simulation of the participation of a given wind farm with

five different forecasting models clearly demonstrate the value of the wind power

125



Formulation of the decision-making problem

forecasting, in terms of imbalance penalty reduction.

Finally, these results have been obtained without considering any information

about the uncertainty related to the wind power forecasts. Such information, com-

bined with information about the imbalance penalty price, could be useful for further

improving the strategic participation of renewable generation in day-ahead electri-

city market. This approach is developed in the next chapter.
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4.5 Application of the decision-making method for the

combined participation in the day-ahead and intra-

day markets

This section focuses on the strategic participation of an IPP in an intraday market for

reducing the imbalance penalty related to the trading in the day-ahead market. The

generation portfolio of the IPP is supposed to include only RES units. The strategic

additional participation in the intraday market is one of the financial solutions

which has been described in section 2.3.1 and formulated in section 3.2.1. This

section presents the application of the generic decision-making method proposed in

section 4.3 to this specific financial solution.

4.5.1 Main hypotheses

Day-ahead market

The considered day-ahead market is based on a single market price clearing pro-

cess. Also, similarly to the previous example, the IPP participates in the day-ahead

market as a price taker entity, and the quantity bid is proposed based on the latest

available estimations of RES generation for the different market time periods.

Intraday market

The considered intraday market is based on a pay-as-bid market clearing process,

which is a continuous trading mechanism. Trading takes place in a central exchange

where standard products are traded on a “first-come-first-serve” basis: the first

matching offer to a bid (or vice versa) is rewarded and fixed into two bilateral

transactions between the seller and the buyer. Such a pricing mechanism is denoted

as pay-as-bid pricing. Contrary to single price market mechanism, where the IPP

can participate as a price taker entity, the intraday bid price is part of the decision

in the pay-as-bid mechanism since it will influence the amount of traded energy.

Figure 4.8 describes the proposed decision scheme relative to the combined par-

ticipation in day-ahead and intraday markets. The instants when decisions relative

to the intraday participation are made, are represented by the vertical red lines.

The possibility to trade electricity in the continuous market is offered after the day-

ahead gate closure time, and lasts till one hour before delivery. These periods are

represented by the horizontal light-red lines. The bids are proposed independently

for each market time period Ti.

The method is illustrated with the Elspot day-ahead market and the Elbas in-

traday market, in the Nordic countries. The Elspot market is based on a single price
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Figure 4.8: Example of a combined participation in the Elspot day-ahead and Elbas intraday
markets (NordPool). Bids in the Elbas market are proposed 6 hours before the delivery time.

clearing process while the Elbas is based on continuous trading with pay-as-bid pro-

cess. In the example, the bids in the Elbas are proposed 6 hours before delivery.

The instant when bids are proposed is also strategic: early bids offer more trading

possibilities while late bids offer the possibility to benefit from updated RES gen-

eration forecasts for proposing a bid which can reduce the exposition of the IPP to

imbalance penalties.

In the present study, the bids proposed by the IPP for the intraday markets are

only selling, and not buying bids. The proposition of selling bids is a solution to

reduce the positive energy imbalance resulting from the day-ahead market participa-

tion, but not the negative imbalances. The reduction of negative imbalances would

be possible if the trading of buying bids was considered.

4.5.2 Formulation and proposal of a solution for the specific pro-

blem

Formulation of the optimization problem

The formulation of the participation in the day-ahead market is similar to the one

given in the previous section: the quantity bid for a given time period equals the

estimate of the energy delivered for the same period, which is available at the day-

ahead closure time. The resulting day-ahead energy contract ECDA

Ti
and price ΠDA

Ti

are settled before trading in the intraday market, and are thus considered as known

in the following decision-making problem relative to the intraday trading.

The participation in the intraday market consists in determining, for a given
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market time period Ti, the quantity price bid uID

Ti
=
(
EBID

Ti
, ΠBID

Ti

)
. Also, the

decision uID

Ti
is made independently for each time period Ti, and similarly to the

day-ahead bid, the intraday bid decision is given by:

U ID

Ti
= uID

Ti
=
(
EBID

Ti
, ΠBID

Ti

)
(4.32)

The optimal participation in the intraday market is then determined from the

generic optimization problem given in Equation 4.10, for the case of the financial

solution. More precisely, the loss function in the case of intraday trading, for a

given market time unit Ti, is denoted as λ
DA

ID,Ti
and is derived from the generic loss

function λ given in Equation 4.8.

In this case, the financial solution is the intraday trading (i.e. Sx : ID) and no

physical solution is considered (i.e. Sy : {}), which leads to YTi
= 0 and yTi

= 0.

Also, in this case, the energy volume x and the additional cost X are given by

Equation 3.13. The intraday energy volume EID and intraday price ΠID mentioned

in the latter equation are implicitly the intraday contract volume ECID and intra-

day contract price ΠCID , since Equation 3.13 is derived for the evaluation of the

penalty based on these contracts, and does not focus on the decision relative to

these contracts. Then, Equation 3.13 can be written as:




XTi

= ECID

Ti
×
(
ΠDA

Ti
−ΠCID

Ti

)

xTi
= ECID

Ti

(4.33)

Moreover, the intraday contract energy ECID and price ΠCID are given from the

intraday bid (EBID

Ti
,ΠBID

Ti
) by the functions hE

ID,Ti
and hΠ

ID,Ti
:




ECID

Ti
= hE

ID,Ti
(EBID

Ti
,ΠBID

Ti
)

ΠCID

Ti
= hΠ

ID,Ti
(EBID

Ti
,ΠBID

Ti
)

(4.34)

These functions model the intraday market settlement, and are presented in the

next paragraph.

Finally, the loss function λ
DA

ID,Ti
is derived from the considerations given above

in Equation 4.8. In particular, the quantities x and X are obtained by combining

Equation 4.34 with Equation 4.33:

λ
DA

ID,Ti
(uTi

, vTi
) = λ

DA

ID,Ti
((EBID

Ti
, ΠBID

Ti
), 0) (4.35)

= hE
ID,Ti

(EBID

Ti
,ΠBID

Ti
)×

(
ΠDA

Ti
− hΠ

ID,Ti
(EBID

Ti
,ΠBID

Ti
)
)

(4.36)

+ δ̂
DA

Ti

(
ÊTi|td , ECDA + hE

ID,Ti
(EBID

Ti
,ΠBID

Ti
)
)
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Then, the optimal intraday bid
(
EBID

Ti
, ΠBID

Ti

)∗
for the period Ti is given by the

optimization problem formulated in Equation 4.10. Similarly to the decision for the

day-ahead trading, the decision problem is for only one time unit (i.e. n = 1) and

thus the norm in Equation 4.10 N is the identity function: N (x) = x:

(
EBID

Ti
, ΠBID

Ti

)∗
= argmin(

E
BID
Ti

, Π
BID
Ti

) λ
DA

ID,Ti

(
EBID

Ti
, ΠBID

Ti

)
, subject to CID (4.37)

where λ
DA

ID,Ti
is given in Equation 4.36. The constraints CID on the intraday bid are

given by the market rules. They are similar to the constraints CDA relative to the

day-ahead market, and the impact of these constraints on the proposed solutions is

explained in the next paragraph.

The generation forecast ÊTi|td and the price forecsat ∆̂Π
Ti|td

which is used for the

derivation of the δ̂
DA

function are the latest available forecasts.

Model of the intraday market settlement

In the pay-as-bid market process, a trade occurs when the selling and buying bids

match. The contract price then equals the bid price:

ΠCID = ΠBID (4.38)

In other words, the function hΠ
ID

given in Equation 4.34 is the identity function.

The intraday energy contract ECID depends on the buying bids of the other

participants. This contract has been modeled as a function hE
ID

of the quantity-price

bid (ΠBID , EBID) in Equation 4.34. In this work, we propose to model the energy

contract ECID as a proportion of the bid energy quantity EBID . This proportion

models the bid acceptance and is expressed by a coefficient α which depends on the

bid price ΠBID :

ECID = hID(
(
EBID , ΠBID

)
= α(ΠBID)× EBID (4.39)

For a given delivery period, the price of the energy transactions in the intra-

day market is not fixed and depends on the proposed bids. The available public

information from the market operator for the intraday trading prices consists of

the minimum, the maximum and the mean of the intraday trading price ΠID of the

energy traded for each delivery time period. These values inform about the distribu-

tion of this trading price for each delivery period. Here, the intraday trading price

ΠID is modeled as a random variable which follows a triangular distribution. This
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distribution is completely defined by the minimum, mean and maximum prices. An

example of such a distribution is shown in the upper plot of Figure 4.9.

The proposed market settlement model consists in modeling the proportion α of

accepted energy by the probability of having the bid accepted for a given bid price.

Since a trade occurs when the selling and buying bids match, this probability can

be estimated through the probability of having the bid price ΠBID inferior to the

trading price ΠID:

α = prob(ΠBID < ΠID)

= 1− prob(ΠID ≤ ΠBID)

= 1− FΠID(ΠBID) (4.40)

where FΠID is the cumulated distribution function (cdf) of the trading price ΠID.

This model is illustrated in the lower part of Figure 4.9. In the example, the pro-

posed bid price (38.5 e/MWh) leads to a proportion α = 0.25 of accepted bid.

Consequently, in for example, the energy bid EBID equals 4 MWh, the resulting

energy contract ECID will be of 1 MWh.

Finally, this model only considers the bid price to determine whether the bid is

accepted or not, and does not consider either the market liquidity or the time when

the intraday bid is proposed.
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0

1

2

mean : 38.2pd
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Figure 4.9: Upper: Example of modeling the intraday trading price through a triangular
distribution. Lower: Resulting estimation of the α proportion. This example correspond to
the data from the Elbas intraday market (NordPool) the 27/10/2003 at 18h00.

By considering the proposed market settlement model from Equation 4.39 and

Equation 4.38, the formulation of the loss function λ
DA

ID
given in Equation 4.36 can

be simplified as:

λ
DA

ID

(
(EBID ,ΠBID), 0

)
= α·EBID×

(
ΠDA −ΠBID

)
+δ̂

DA (
Ê, ECDA + α · EBID

)
(4.41)
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where α is the proportion of accepted bid given in Equation 4.40. In this formulation,

the loss is given as the sum of a cost α ·EBID ×
(
ΠDA −ΠBID

)
, which represents the

cost related to the participation in the intraday market, and the estimation of the

imbalance penalties.

4.5.3 Illustration of the loss function of the problem

This section gives an illustration of the loss function λ
DA

ID
for a given market time unit

Ti for better understanding its structure. If we combine the definition of the function

δ̂
DA

given in Equation 4.11 with the previous loss formulation in Equation 4.41, the
loss function can further be expressed as follows:

λ
DA

ID

(
(EBID ,ΠBID), 0

)
= (4.42)

{
∆̂Π

+ × (Ê − ECDA)− (∆̂Π
+ − (ΠDA −ΠBID))× α · EBID ⇐ 0 ≤ EBID ≤ Ê−ECDA

α

−∆̂Π
−

× (Ê − ECDA) + (∆̂Π
−

+ (ΠDA −ΠBID))× α · EBID ⇐ Ê−ECDA

α ≤ EBID

The specific value Ê−ECDA

α is obtained when α · EBID = Ê − ECDA which cor-

responds to ECID = Ê − ECDA . For this specific value, the total contract energy

EC = ECDA+ECID equals the generation forecast Ê, and consequently the estimated

energy imbalance is null.
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Figure 4.10: Relation between λ
DA

ID
and δ̂

DA

ID

The formulation of the loss function λ
DA

ID
given in is Equation 4.42 is illustrated in

the right part of Figure 4.10. This plot is made with a fixed value of bid price ΠBID ,

and consequently, the loss function λ
DA

ID
is a piecewise linear function of the quantity

bid EBID . Figure 4.10 more generally illustrates the relation between the estimated

penalization function δ̂
DA

ID
and the loss function λ

DA

ID
, which is the application of the

general relation given in Equation 4.7 for the specific problem of intraday trading.
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For a given energy bid EBID

0 , such relation is given by:

δ̂
DA

ID |(EBID=E
BID
0 )(Ê, ECDA) = λ

DA

ID

(
(EBID

0 ,ΠBID), 0
)

(4.43)

This figure 4.10 shows how the penalization function δ̂
DA

ID
which was proposed for

evaluating the imbalance penalty from the delivered energy Ẽ, is used for the defini-

tion of the loss function λ
DA

ID
, which is used for the decision of the bid (EBID ,ΠBID).

This figure is the follow-up of the example illustrated in Figure 4.4. The same values

of regulation prices are taken: the penalization of negative imbalance is lower than

the penalization of positive imbalance: 0 < ∆̂Π
− < ∆̂Π

+. Also for this example, the

intraday price is taken lower than the day-ahead price ΠBID < ΠDA.

Proposal of a simplified solution of the decision-making problem

In general, the resolution of the optimization problem given in Equation 4.37, where

the objective function is the cost function λ
DA

ID
given in Equation 4.42, is based

on the generation forecast Ê, the forecast of the price for positive and negative

imbalance ∆̂Π
+ and ∆̂Π

−, and also on estimations of the distribution of the intraday

price for the market settlement α-model. In this work, the generation forecasts

are given by short-term forecasting methods which are presented in section B.1.

However, forecasting the distribution of the intraday price is not a trivial task, and

is out of the scope of the present work. Also the results from the resolution of this

decision-making problem might be sensitive to the price forecast errors.

Consequently, the proposed approach is not based on a resolution of the gen-

eral problem described through the loss function is Equation 4.37, but is based on

particular values of the loss function, which are determined from the analysis of

the loss function. The proposed simplified approach consists in bidding in

the intraday market in order to adjust the contracted production using

updated wind power forecasts. Consequently, the intraday bid quantity for a

delivery period Ti equals the difference between the forecasted energy ÊTi|td for the

period Ti available at time td, and the energy contracted in the day-ahead market

ECDA

Ti
for the same period. Also, the quantity bid is positive since the wind power

producer is assumed to participate in the electricity market only with selling (offer)

bid.

EBID

Ti
=




ÊTi|td − ECDA

Ti
, ÊTi|td > EDA

Ti

0, ÊTi|td ≤ ECDA

Ti

(4.44)
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td is the decision time relative to the participation in the intraday market for the

delivery period Ti. The proposed energy bid given by Equation 4.44 is supposed to

be in accordance with the constraints CID associated with the intraday trading.

If the α parameter which models the proportion of accepted bid equals 1, then

EBID

Ti
= ECID

Ti
, and the proposed bid in Equation 4.44 corresponds to the specific

value Ê−ECDA

α described in the analysis of the loss function in the previous para-

graph. Also, in the proposed model, α depends on the bid price ΠBID , and thus, we

consider different values of bid price ΠBID for analyzing the influence of this price

on the decision. Two specific values of ΠBID have to be noted:

• ΠBID = ΠDA: in this case, the additional cost α ·EBID ×
(
ΠDA −ΠBID

)
is zero.

Also, in the case of perfect prediction of the RES generation, the loss λ
DA

ID

is reduced to 0 after the intraday market participation if the intraday energy

contract equals the difference between the estimated energy and the day-ahead

energy contract: ECID = Ê − ECDA .

• ΠBID = Π̂+, where Π̂+ is the forecast regulation price for positive imbalance.

In the case of positive imbalance, the energy imbalance is penalized through

the function δ̂
DA

by the price difference ∆̂DA,+
Π = ΠDA − Π̂+. If ΠBID = Π̂+,

Equation 4.42 shows that the loss λ
DA

ID
is independent from the intraday quan-

tity bid. In other words, the loss is unchanged by the participation in the

intraday market: λ
DA

ID
= λ

DA

.

Finally, the intraday bid price is formulated from the two prices ΠDA and Π̂+ as

follows:

ΠBID = Π̂+ + β ×
(
ΠDA − Π̂+

)
, β ∈ [−0.2, 2.2] (4.45)

In this bid decision, the parameter β enables to get different values of bid price. The

proposed bid prices given by Equation 4.45 are supposed to be in accordance with

the constraints CID associated with the intraday trading. More precisely, ΠDA ≥ Π̂+

and thus the bid price increases as β increases. Also, the two specific prices Π̂+ and

ΠDA are obtained for β = 0 and β = 1 respectively. The lower and upper bounds for

the β values are determined so that the variations of β are symmetric around ΠDA.

Finally, the different proposed values for β permit to perform a sensitivity analysis

on the bid price ΠBID in order to evaluate the influence of the bid price value on the

reduction of imbalance penalty.
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Figure 4.11: Schematic representation of the overall simulation, including the trading in
the day-ahead market and the decision-making method relative to the trading in the intraday
market.
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4.5.4 Case study

Description of the case study

This section presents the results obtained from simulation of the participation of

a wind farm in a day-ahead market, and in the corresponding intraday market.

The simulation methodology followed for obtaining these results is described in Fi-

gure 4.11. This figure is similar to the scheme presented in the reference participation

in the day-ahead market in section 4.4, or the evaluation of the solutions for reducing

the imbalance penalties, in section 3.5.

In Figure 4.11, the intraday quantity-price bid results from the decision given in

Equation 4.44 for the energy quantity EBID and in Equation 4.45 for the price ΠBID .

The intraday market settlement results from the model proposed in section 4.5.2.

The imbalance penalty δ
DA

ID
results from the penalization of the energy imbalance

between the delivered energy Ẽwf and the total contracted energy EC = ECDA + ECID .

The case study is based on the same wind farm as the one taken for the case study

corresponding to the reference participation in the day-ahead market in section 4.4.

This wind farm is a 18 MW wind farm located in Western Denmark. The wind farm

generation is traded in the NordPool Elspot day-ahead market and in the Elbas

intraday market during the period between the 01/10/2003 and the 31/06/2004.

The Elbas market is a contract based market, with a pay-as-bid market settlement

mechanism. The intraday market closes one hour before the delivery period. In the

present case, the wind farm operator is supposed to propose the intraday bids 6

hours before the delivery period.

The wind power forecasting approach used for this case study is a power curve

modeling approach, denoted as “regressive power curve”(RPC) model. This model

is one of the models which have been used in the previous case study, referring to

the day-ahead trading. Details about this model are given in appendix B.2.

Regarding the forecast of the regulation price for positive imbalance (also called

down regulation price) Π̂+, two methods are considered. The first one is a realistic

and basic approach where Π̂+ equals a constant ratio of the day-ahead price. This

ratio is lower than one because regulation price for positive imbalance is lower than

the day-ahead price, and this ratio is calculated as the mean value of the ratio

between the regulation price for positive imbalance and the day-ahead price, for a

learning period during the first 9 months of 2003. Such constant equals 0.79. The

second approach assumes a perfect prediction for Π̂+.
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Figure 4.12: Example of the reduction of energy imbalance resulting from the combined
participation in the day-ahead and intraday market.

Results and discussion

This section gives the results from the simulation of the combined participation

in the day-ahead and intraday markets. First, Figure 4.12 illustrates the intraday

energy bid and contract for a given day of the simulation, the 27/10/2003. The

intraday energy bid aims at reducing the energy imbalance between the day-ahead

contract and the wind farm energy delivery. This bid is determined based on the

latest available wind power forecast. The wind power forecast used for the intraday

bid may have an error greater than the one used for the day-ahead trading. In this

case, the energy imbalance resulting from the combined day-ahead and intraday

trading is greater than the one relative to the trading only in the day-ahead market.

This phenomenon can be observed in the first graph of Figure 4.12 between hour 8

and hour 11. However, the wind power forecast used for trading in intraday market,

which is obtained 6 hours before delivery, is generally more accurate than the one

used for trading in day-ahead, which is obtained between 14 and 37 hours before

the delivery. This results from the fact that the forecasting error increases as the

forecasting horizon increases, as described in Figure B.2. The reduction of energy

imbalance is particularly clear in the first graph, between hour 12 and hour 19.

Also, still in Figure 4.12, the second graph illustrates the intraday market settle-
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Figure 4.13: Results from the simulation of the combined participation in the day-ahead
and intraday market during the period between the 01/10/2003 and the 30/06/2004.

ment model proposed in section 4.5.2. This graph plots the intraday energy bid and

the resulting contract. The difference between the bid and the contract is explained

by the relative position of the intraday bid price compared to the distribution of the

intraday price proposed by all the market participants for the same time step (third

plot). When the proposed intraday bid price is lower than the minimum intraday

price, the whole energy bid is accepted. In other words, the coefficient α equals one.

However, when the proposed price ranges between the minimum and maximum in-

traday price, only a proportion 0 ≤ α ≤ 1 is accepted. This can be observed for

hours 14− 16.

The next results focuses on the influence of the decision-making parameter β

on the imbalance penalties. The results are presented for both the constant and

perfect prediction methods regarding the forecast of the regulation price for positive

imbalance Π̂+. The reference results are the one obtained when trading only in the

day-ahead market.

The graph at the top of figure 4.13(a) describes the influence of the intraday bid

price parameter β on the intraday contract energy. The horizontal line shows the

intraday bid energy which is independent of the parameter β. The ratio between the

contracted energy and the bid energy represents the α proportion. The simulation

shows that increasing the bid price (through the β parameter) decreases the α pro-
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Figure 4.14: Results from the simulation of the combined participation in the day-ahead
and intraday market during the period between the 01/10/2003 and the 30/06/2004.

portion of contracted energy, for both the realistic and the perfect prediction cases.

The second plot shows the influence of the β parameter on the surplus energy. First,

this graph illustrates the reduction of surplus energy imbalance (also called positive

imbalance) resulting from the energy selling in the intraday market. This reduction

is influenced by β. Low values of β lead to high values of intraday contracts and,

consequently, high reduction of surplus energy. Conversely, high values of β lead to a

lower reduction of surplus energy. Generally, the results using the perfect prediction

for Π̂+ are less sensitive to the β parameter, but the main analyses are valid for

both constant and perfect prediction approaches.

Figure 4.13(b) describes the influence of the β parameter on the constant cost

EID × (ΠDA − ΠID), and on the positive imbalance penalties. When the β parame-

ter increases, the intraday bid price increases and the intraday contracted energy

decreases, which decreases the intraday cost as shown with figure 4.13(a). The in-

traday cost markedly decreases for the β ≤ 0, and is zero for β = 0. The lower graph

of figure 4.13(b) corresponds to the equivalent in terms of imbalance penalty of the

second graph of figure 4.13(a) on the left, which plots the positive imbalance energy.

For low values of β, the surplus cost, which is the penalty for positive imbalance

energy, is reduced to nearly 50 % of the reference surplus cost. The surplus cost

rapidly increases for β values around 1, and reaches more than 90 % of the reference

surplus cost for β ≥ 2.

Finally, Figure 4.14 describes the consequences of the decision parameter β vari-

ation on the imbalance penalties. The imbalance penalty results from the intraday
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cost, in addition to the surplus and shortage costs. It is thus the combination of the

two graphs of figure 4.13(b). The left figure 4.14(a) describes the imbalance penalty

normalized by the reference one. For both constant and perfect prediction of Π̂+,

the imbalance penalty is reduced as β increases, for β ≤ 1 and β ≤ 0.9 respec-

tively. A minimum imbalance penalty is reached for β = 1 and β = 0.9, respectively

for the constant and perfect prediction. Then the imbalance penalty increases for

greater values of β. The minimum imbalance penalty represents 91 and 94 % of the

reference penalty for the perfect and constant prediction of Π̂+, respectively. The

reference imbalance penalty equals 45370 e in this case study, and the imbalance re-

duction thus represents approximately 2800 and 4000 e for the constant and perfect

prediction of Π̂+.

The figure 4.14(b) shows how reproducible the obtained results are. Instead

of considering the whole 9 month period as the simulation period, this period is

split into 9 one-month periods. For each of these one-month periods, the minimum

obtained imbalance penalty is plotted, as well as the β value corresponding to this

minimum. The graph demonstrates that most of the simulations show a reduction of

the imbalance penalty. Also, most of the minimum imbalance penalties are obtained

with a β parameter close to 1. The three cases with β = 2.2 correspond to a decreas-

ing function of the imbalance penalty, where no minimum is reached. The results

tend to confirm that the β values which gives the minimum imbalance penalty are

slightly lower in the case of perfect prediction of Π̂+ than for the constant prediction

case. This is explained by the fact that the average bias of the constant prediction

of Π̂+ is slightly positive, and consequently, the constant prediction approach is

overestimating Π̂+.

4.5.5 Conclusions

This case study presents the imbalance energy and penalty results related to the

strategic participation in the day-ahead and intraday market. They illustrate the

reduction of imbalance penalties relative the intraday market participation. They

confirm that the participation in an intraday market can be considered as a financial

solution for reducing the imbalance penalty, as proposed in section 2.3.1. More

precisely, the imbalance penalty reduction for the present case study reaches 9%

of the reference imbalance penalty obtained when participating only in the day-

ahead market. Also, the obtained results demonstrate a low sensibility of the results

regarding the regulation price forecasting approach.

In order to obtain these results, a model for the settlement of continuous trading

market is proposed. This model is based on the available data of market prices;

further work should consider the market liquidity. The influence of the time when
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the intraday bid is proposed should be considered as well.
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4.6 Application of the decision-making method for the

strategic operation of a Virtual Power Plant com-

posed of a renewables combined with storage

This section presents the application of the generic decision-making method pro-

posed in section 4.3 to the case of the strategic operation of a virtual power plant

composed of a RES unit combined with a storage unit. This combination is one

example of the proposed physical solutions for reducing the imbalance penalty, and

has been described in section 2.3.2 and formulated in section 3.3.4. This example

aims at demonstrating the benefits that might be obtained from the application of

an advanced intraday scheduling of the virtual power plant operation. This is done

by performing a rolling-window approach for dispatching the energy storage device

with the objective of minimizing the imbalance penalty risks associated with the

RES power forecast uncertainty.

4.6.1 Main hypotheses

2) Pumped-

Hydro Plant
1) Wind 

Farm

Electricity 

markets

Virtual power plant

~

Figure 4.15: Commercial VPP composed of a combination of a wind farm and a pumped-
hydro plant

As already stated, commercial Virtual Power Plants (CVPPs) consist in an ag-

gregation of different generation units in order to participate in the electricity market

as single entity. The Independent Power Producer (IPP) considered for this section

is the operator of a CVPP composed of a wind farm combined with a pumped-hydro

storage unit, as shown in Figure 4.15.

The priority in the management and operation of the storage is given to the

reduction of energy imbalances. As a consequence, the energy storage device is not

used either for buying energy in periods where the market price is considered to be

low enough, or for selling it back in periods where the market price is estimated

to be sufficiently high. Such a possibility is considered in [124] for example. More

generally, in the present study, the CVPP operator is considered to be only an
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energy producer, and not an energy consumer. In other words, the operator is not

able to buy energy from the market for charging the storage device. The storage is

solely charged by the RES power production when produced RES generation exceeds

contracted energy.

Finally, in this work the virtual power plant is supposed to participate only in

the day-ahead market and the CVPP operator is considered to be a price taker.

Description of the intraday scheduling and operation of the VPP

d d+1 d+2

Day-ahead 

market 

participation

Intraday 

scheduling

Operation

T1td
…       TnT2

V = [SOCTi   ] i =1
nSch.

T3

st

Figure 4.16: Coordination of the day-ahead market participation, intraday scheduling and
operation of the VPP. The vertical black lines indicate the instants when decisions are made.

The formulation of the participation in the day-ahead market is similar to the

one given for the day-ahead trading in section 4.4: the quantity bid for a given time

period equals the estimation of the energy delivered for the same period, which is

available at the day-ahead closure time. The resulting day-ahead energy contract

ECDA

Ti
and price ΠDA

Ti
are settled before the intraday scheduling, and are thus consi-

dered as known in the following decision-making problem. Note that in the present

study, the storage device is combined with the RES power unit only for reducing the

imbalance penalty, and, consequently, is not considered for the day-ahead market

participation. The first blue line in Figure 4.16 illustrates the day-ahead bid with a

gate closure time at 12h00.

Energy imbalance results from errors of the energy estimation used for the day-
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ahead market participation, and the storage unit is used for reducing such an imbal-

ance. During the operation stage, the limited capacity of the device implies that the

possibility to store or to deliver energy depends on the state-of-charge (SOC) level

of the device. The SOC level depends on the previous operation of the device. The

temporal dependence of the storage operation leads to the need of an anticipation

of the management of the storage device. For example, if the VPP operator wants

to avoid extreme energy imbalances, the intraday storage management will permit

to adapt the SOC level so that the storage device has the ability to store or inject

power at that critical point of time. For achieving this goal, updated wind power

forecasts are used to estimate the expected imbalance between the energy contracted

in the day-ahead market and the future delivery. The resulting storage schedule is

continuously updated for anticipating these imbalances.

The scheduling method is dynamic and based on a rolling-window approach as

shown in Figure 4.16. In other words, the method is carried out for a period of time

(i.e. window) which is then moved forward by an increment. The window width

is denoted as Tw. The increment time is denoted as Tinc. The example illustrates

the rolling-window approach with Tw = 12 h and Tinc = 3 h. The length of the

rolling-window is of particular importance for integrating the temporal dependence

of the storage operation into the decision.

Each schedule consists in deciding the future state-of-charge (SOC) of the storage

unit. In the present rolling-window approach, one schedule is calculated at every

increment and each schedule covers the n time periods of the window width Tw. The

instant when a scheduling decision is made is represented by a vertical red line in

Figure 4.16. The decision V st is formulated as the following vector:

V st =
[
vstTi

]n
i=1

, with vstTi
= SOCSch

Ti
(4.46)

where SOCSch
Ti

is the scheduled SOC at the end of the market time unit Ti.

The operation of the VPP is then based on the storage SOC schedule. More

precisely, the latest available storage intraday schedule is considered as a series of

storage SOC setpoints for the operation of the VPP. These setpoints correspond to

the first 3 hours of each schedule and are represented in dark red in Figure 4.16.

The operation points are represented as the last grey line.

4.6.2 Formulation of the specific decision-making problem

Formulation of the optimization problem

This paragraph presents the formulation of the decision-making problem relative to

the scheduling of an energy storage device for minimizing the imbalance penalty.
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The aim of the decision-making approach is to determine the value of the storage

SOC setpoints for the period of the rolling-window Tw. The formulation of this

decision-making problem is a particular case of the generic optimization problem

derived in Equation 4.2, with U = 0 and V = V st =
[
SOCSch

Ti

]n
i=1

:

([
SOCSch

Ti

]n
i=1

)∗
= argmin[

SOCSch
Ti

]n
i=1

Φst

([
SOCSch

Ti

]n
i=1

)
, subject to Cst (4.47)

where Cst is the set of constraints associated with the storage technical limits, and

the objective function Φst is derived from Equation 4.9 with uTi
= 0 and vTi

= vstTi
=

SOCSch
Ti

:

Φst

([
SOCSch

Ti

]n
i=1

)
= N

(
λ

DA

st,Ti

(
0, SOCSch

Ti

))
(4.48)

N is the norm associated with the decision-making problem, discussed in section

4.3.5 and λ
DA

st,Ti
is the loss function associated with the storage scheduling for the

time period Ti.

Formulation of the loss function λ
DA

st

The loss function associated with the present problem is derived from the generic

loss function derived in Equation 4.8 for the case of the physical solution Sy : st,

and no financial solution: Sx : {}.

The generic hSy ,Ti
function considered in Equation 4.8 corresponds in this case

to the function hst,Ti
which models the relation between the observed state-of-charge

S̃OCTi
and the scheduled one SOCSch

Ti
. In this example, the storage SOC schedule

is directly considered as setpoints for the operation, and consequently, the observed

storage SOC equals the scheduled SOC, which gives:

SOCTi
= hst,Ti

(SOCSch
Ti

) = SOCSch
Ti

(4.49)

Regarding the energy volume y and the cost Y relative to the loss formulation

in Equation 4.8, these quantities are given for the case of the storage combination

by Equation 3.40. The energy volume y is the energy delivered by the storage unit

Est, which gives, by considering Equation 4.49:

y(hst,Ti
(SOCSch

Ti
)) = Est,Ti

(SOCSch
Ti

) (4.50)

The cost Y is the additional cost associated with the storage solution. The

structure of this cost is discussed in section 3.3.4. In this discussion, it has been
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demonstrated that, if the day-ahead market prices during the charging and the

discharging phases are equal, the cost Y can be simplified to the following expression:

Y (hst,Ti
(SOCSch

Ti
)) = |Est,Ti

(SOCSch
Ti

)| × Γst ×ΠDA

Ti
(4.51)

with Γst =
1− η

1 + η

where η is the round-trip efficiency of the storage unit, which is defined from the

charging and discharging efficiencies ηch and ηdis by η = ηch × ηdis. Also the hy-

pothesis of equal day-ahead prices when charging and discharging is coherent with

the objective of not using the storage for charging energy when the price is low and

discharging when the price is high.

Finally, by combining Equation 4.51 and Equation 4.50 in the loss definition

from Equation 4.8, the loss function λ
DA

st,Ti
can be written as:

λ
DA

st,Ti
(0, SOCSch

Ti
) = |Est,Ti

(SOCSch
Ti

)| × Γst ×ΠDA

Ti
(4.52)

+δ̂
DA

Ti

(
ÊTi|td + Est,Ti

(SOCSch
Ti

), ECDA

Ti

)

Similarly to the previous application relative to the intraday trading, the generation

forecast ÊTi|td and the price forecsat ∆̂Π
Ti|td

which is used for the derivation of the

δ̂
DA

function are the latest available forecasts.

Norm relative to the optimization problem

The optimization problem given is Equation 4.47 is based on a norm N . In this

study, two norm are considered: the Manhattan norm N1 and the Maximum norm

N∞.

• The norm N1

(
[cTi

]ni=1

)
= |cT1

| + |cT2
| + ... + |cTn | defined in Equation 4.17

focuses on the total cost for the period [T1, T2, ..., Tn] and refers to an ex-

pectancy choice.

• The norm N∞

(
[cTi

]ni=1

)
= max(|cT1

|, |cT2
|, ..., |cTn |) focuses on extreme

values of imbalance penalties and refers to a robust choice.

4.6.3 Illustration of the loss function

This section focuses on the loss function λ
DA

st , and more precisely gives an illustration

of this function for a given market time unit Ti to better understand its structure. In

order to simplify the mathematical expressions, the loss function λ
DA

st is represented

as a function of the energy delivered by the storage Est = Est(SOCSch). The
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combination of loss function formulation given in Equation 4.52, with the definition

of the function δ̂
DA

given in Equation 4.11 gives:

λ
DA

st (0, Est) = (4.53)



−∆̂Π
− × (Ê − ECDA)− (∆̂Π

− + Γst ×ΠDA)× Est ⇐ Est ≤ Est ≤ −(Ê − ECDA)

∆̂Π
+ × (Ê − ECDA) + (∆̂Π

+ − Γst ×ΠDA)× Est ⇐ −(Ê − ECDA) ≤ Est ≤ 0

∆̂Π
+ × (Ê − ECDA) + (∆̂Π

+ + Γst ×ΠDA)× Est ⇐ 0 ≤ Est ≤ Est

where Est and Est are the lower and upper bounds for the energy delivered by

the storage unit. These limits are related to the constraints Cst, and a discussion

about these constraints is given in the next paragraph. The expanded formulation

EE
~

δ (E , E )

δ (E, E    )

Ê

~

^

λ (0, Est)

^-(E-E )

^

Est

(E     - Est0)

^

Y(Est0)

0 Est
Est

~

~

CDACDACDA

CDA

CDA

|Est=Est0

|Est=Est0

Est0

λ (0, Est0)

Figure 4.17: Definition of the function λ
DA

St from δ̂
DA

St

of the loss function in Equation 4.53 shows that this function λ
DA

st is a piecewise

linear function of the storage output energy Est. This function is represented in the

right part of Figure 4.17. In this example relative to the plot, the expected energy

imbalance relative to the trading in the day-ahead market (Ê − ECDA) is taken

positive. This figure more generally illustrates the relation between the estimated

penalization function δ̂
DA

st and the loss function λ
DA

st , which is the application of the

general relation given in Equation 4.7 for the specific problem of the scheduling of

the storage unit. For a given energy storage Est0, this relation is:

δ̂
DA

st |(Est=Est0)(Ê, ECDA) = λ
DA

st (0, Est0) (4.54)

This figure is the follow-up of the example illustrated in Figure 4.4. The same values

of regulation prices are taken: the penalization of negative imbalance is lower than

the penalization of positive imbalance: 0 < ∆̂Π
− < ∆̂Π

+.
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4.6.4 Formulation of the technical constraints and temporal depen-

dence of the storage management

The constraints Cst on the vector
[
SOCSch

Ti

]n
i=1

, in the optimization problem given

in Equation 4.47, are related to the storage unit characteristics presented in the

formulation of the imbalance penalty reduction in section 3.3.4.

The SOC at the end of the period Ti (i.e. SOCSch
Ti

) is bounded by the minimum

and maximum SOC levels, respectively SOCmin and SOCmax. Also, the storage

output energy Est,Ti
is bounded by the storage nominal charging and discharging

rates, respectively rnomch and rnomdis . These two technical limits define the constraint

set Cst,Ti
relative to the market time unit Ti:

Cst,Ti
:




SOCmin ≤ SOCSch

Ti
≤ SOCmax

rnomch ×∆t ≤ Est,Ti
≤ rnomdis ×∆t

(4.55)

where ∆t is the constant time length of the market time period Ti. The storage out-
put energy is assumed to be positive when discharging and negative when charging.
Consequently, rnomch ≤ 0 and rnomdis ≥ 0. Regarding the second constraint relative
to the delivered energy, this energy is derived from the difference between the SOC
level SOCSch

Ti
at the end of the period Ti and SOCSch

Ti−1
which is the one at the end

of the period Ti−1. Charging and discharging modes are considered separately:

Est,Ti
= (4.56)

{
−(SOCSch

Ti
− SOCSch

Ti−1
)× Capst × ηdis, SOCSch

Ti
< SOCSch

Ti−1
(discharging)

−(SOCSch
Ti

− SOCSch
Ti−1

)× Capst × 1/ηch, SOCSch
Ti

≥ SOCSch
Ti−1

(charging)

By considering this equation in the constraint set given in Equation 4.55, it appears

that the second constraint on the Est,Ti
is actually a constraint on both SOCSch

Ti

and SOCSch
Ti−1

. Recursively, the constraint on Est,Ti
is thus a constraint on the

vector
[
SOCSch

Tj

]i
j=1

. Such constraint demonstrates the temporal dependence of

the decisions.

Also, the two cases considered in the derivation of the delivered energy Est,Ti

in Equation 4.57 make its general expression from
[
SOCSch

Tj

]i
j=1

quite complex.

However, if the storage charging and discharging efficiencies are assumed to be 100 %,

the distinction between charging and discharging cases in the derivation of Est,Ti
is

not needed anymore, and the delivered energy is given by:
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Est,Ti
= −(SOCSch

Ti
− SOCSch

Ti−1
)× Capst, i ≥ 2 (4.57)

Est,T1
= −(SOCSch

T1
− SOCt0)× Capst (4.58)

where SOCt0 is the value of the state-of-charge at the time step t0, which is the

beginning of the first market period T1. SOCt0 is considered as a given value for

the present decision-making problem.

By combining the constraint definition in Equation 4.55 and the derivation of

the delivered energy in Equation 4.58, the constraints can be formulated as linear

constraints on the vector V st =
[
SOCSch

Ti

]n
i=1

as follows:

C′
st :




SOCmin · ✶ ≤ V st ≤ SOCmax · ✶

❜ ≤ A · V st ≤ ❜

(4.59)

where ❜ and ❜ are n× 1 vectors defined by:

❜ =




rnomch ×∆t/Capst − SOCt0

rnomch ×∆t/Capst

rnomch ×∆t/Capst
...

rnomch ×∆t/Capst



, ❜ =




rnomdis ×∆t/Capst − SOCt0

rnomdis ×∆t/Capst

rnomdis ×∆t/Capst
...

rnomdis ×∆t/Capst




(4.60)

A is a n× n matrix and ✶ is the n× 1 unity vector defined by:

✶ =




1

1
...

1



, A =




−1 0 0 . . . 0

1 −1 0 . . . 0
...

...
...

...
...

0 0 . . . 1 −1




(4.61)

Finally, the simplified decision-making problem can thus be formulated as the

following linear optimization problem:

([
SOCSch

Ti

]n
i=1

)∗
= argmin[

SOCSch
Ti

]n
i=1

N
([
λ

DA

st,Ti
(0, SOCSch

Ti
)
]n
i=1

)
, subject to C′

st

(4.62)

where λ
DA

st,Ti
(0, SOCSch

Ti
) is formulated in Equation 4.52.
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It is important to note that the hypothesis about the 100 % round-trip effi-

ciency is only used in the formulation of the constraints relative to the optimization

problem. The real efficiency is still taken into account in the loss function for the

definition of the Γst factor in λ
DA

st,Ti
, as described in Equation 4.52, and also in the

operation model, which is presented in the next paragraph. The 100 % round-trip

efficiency hypothesis used in the constraints formulation may lead to SOC setpoints

which are slightly different to the operation SOC which takes into account the energy

losses due to the real efficiency lower than 100 %.

4.6.5 Modeling the real time operation

This section formulates a real-time operation model of the VPP, for a given time unit

Top. This operation is based on the schedule available for period Ti, with Ti = Top.

During this time period, the energy delivered by the VPP ẼV PP,Top is the sum of

the energy Ẽwf,Top
delivered by the wind farm and the energy Ẽst,Top delivered by

the energy storage device :

ẼV PP,Top = Ẽwf,Top
+ Ẽst,Top (4.63)

In the scope of this study, the output energy from the wind farm is assumed to be

non-dispatchable. The output power delivered by the storage device is assumed to

be dispatchable with respect to the technical constraints Cst,Top , which are obtained

by transforming Equation 4.55 into Equation 4.64. The measured SOC at the end

of the period Top is denoted as S̃OCTop .

Cst,Top :




SOCmin ≤ S̃OCTop ≤ SOCmax

rnomdis ×∆t ≤ Ẽst,Top ≤ rnomch ×∆t
(4.64)

The delivered energy Ẽst,Top is derived from the SOC, similarly to Equation 4.57.

However, for the real-time operation of the VPP, the SOC values for the time periods

prior to the current time period Top are known. More precisely, S̃OCTop−∆t is known,

and the delivered energy Ẽst,Top only depends on S̃OCTop :

Ẽst,Top(S̃OCTop) = (4.65)


−(S̃OCTop − S̃OCTop−∆t)× Capst × ηdis, S̃OCTop < S̃OCTop−∆t (dis.)

−(S̃OCTop − S̃OCTop−∆t)× Capst × 1/ηch, S̃OCTop ≥ S̃OCTop−∆t (ch.)

Furthermore, the operation model distinguishes two cases: the reference opera-
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tion and the strategic operation:

Reference Operation

The reference case is the case without strategic intraday storage schedule. In this

case, the operation mode for the storage unit consists in a “filter” mode, where the

storage energy output is so as to reduce the instantaneous absolute energy imbalance

between the delivered energy Ẽwf + Ẽst and the contracted energy ECDA . This

approach is the one which has already been used in the evaluation of the reduction

of imbalance penalties in section 3.5. In this case, the storage energy is given by:

Ẽst,Top = argmin
Est

∣∣∣(Ẽwf,Top
+ Est)− ECDA

Top

∣∣∣ , subject to Cst,Top (4.66)

Strategic Operation

Conversely, the strategic coordination of the energy storage with the wind farm

considers the latest available storage SOC schedule SOCSch,∗
Top

resulting from the op-

timization in Equation 4.62. In this case, the storage unit is operated by considering

the SOC schedule as setpoints. In other words, the storage unit is operated in or-

der to have its SOC as close as possible to the SOC schedule, while respecting the

technical constraints:

Ẽst,Top = argmin
Est

∣∣∣S̃OCTop(Est)− SOCSch,∗
Top

∣∣∣ , subject to Cst,Top (4.67)

where

S̃OCTop(Est) = S̃OCTop−∆t +




1/ηdis × Est/CapESD (Est < 0)

ηch × Est/CapESD (Est ≥ 0)
(4.68)

4.6.6 Case study

Description of the case study

This section presents the followed methodology evaluating the strategic combina-

tion of a pumped-hydro storage unit with a wind farm, for the participation in a

day-ahead market. The methodology for obtaining these results is described in Fi-

gure 4.18. More precisely, this consists in an improvement of the storage case study

in section 3.5, where the only operation mode was the reference mode. In this case,

the benefits from the strategic combination are compared to this reference approach.

The data necessary for the scheduling approach are presented as inputs of the

storage scheduling and operation module. The day-ahead contract directly results
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Figure 4.18: Schematic representation of the overall simulation, including the scheduling
and the operation of the storage unit.
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from the available wind power forecasts, as already explained in the previous case

study in section 4.4. The storage SOC setpoints are determined using the decision-

making method formulated in Equation 4.62, and the delivered energy is derived

from the strategic or reference operation mode described in section 4.6.5. The im-

balance penalty δ
DA

st results from the penalization of the energy imbalance between

the delivered energy Ẽwf + Ẽst and the contracted energy EC = ECDA .

The case study is based on the same wind farm as the one taken for the case study

corresponding to the reference participation in the day-ahead market in section 4.4.

This wind farm is a 18 MW wind farm located in Western Denmark. The wind farm

generation is traded in the NordPool Elspot day-ahead market during the period

between the 01/04/2004 and the 31/06/2004. The pumped-hydro storage unit is a

30 MWh capacity unit, with a 80 % round-trip efficiency. The nominal charge and

discharge rates are taken respectively equal to −6 and 6 MWh/h.

Wind power forecasts are used as input for both the trading in day-ahead mar-

ket and the storage scheduling. The wind power forecasting approach used for

this case study is a power curve modeling approach, denoted as “regressive power

curve”(RPC) model. This model is the same one as the one used in the previous

case study, referring to the intraday trading. Details about this model are given in

appendix B.2.

The derivation of the loss function λ
DA

st in Equation 4.53 demonstrates that this

function is based on forecasts of the imbalance penalty price ∆̂Π. In this study, two

approaches are considered for the forecasting of this price: the perfect and constant

prediction approaches.

• In the case of perfect prediction, the forecasts of the imbalance penalty price

∆̂Π correspond to the observed values, and are used as such for deriving the

loss function given in Equation 4.52.

• In the case of the constant prediction approach, the forecasts of the penalty

price for negative and positive imbalance (∆̂Π
− and ∆̂Π

+ respectively) are equal

and constant for all the different forecasting runs and horizons. In this case,

the definition of the reference penalization function δ̂
DA

in Equation 4.11 shows

that such function is proportional to the absolute value of the energy imbal-

ance. This function corresponds to the second term of the loss function λ
DA

st

given Equation 4.52. Also, for this price prediction approach, the first term

of the loss function is neglected in order to focus only on the minimization of

energy imbalance. This simplification is coherent with the hypothesis about

constant and equal predictions of the penalty price, which considers that no

information is available about the price for positive and negative imbalance.
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Consequently, the imbalance penalty minimization problem is simplified to an

imbalance energy minimization problem.

Finally, the results obtained from both approaches are compared and discussed in

the following paragraphs.

Results and discussion

The results are obtained using a simulation tool developed in Matlab®. In par-

ticular, the linear optimization problem is solved using a sequential quadratic pro-

gramming (SQP) method already implemented in Matlab®. The presented results

have been obtained considering a rolling-window width Tw equal to 12 h and the

increment time Tinc equal to 1 h. The results are computed for the two different

norms N1 and N∞. The reference case where the storage is operated with a “filter”

approach is denoted N0.
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Figure 4.19: Influence of the strategy on the operation of the combined wind-hydro plant,
during the 04/04/04.
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Figure 4.19 shows the operation of the virtual power plant during the 24 hours of

the 4 April 2004. The results presented in this figure are obtained using the constant

approach for the forecast of the imbalance penalty price, and consequently, focus is

given to the energy imbalance. On the top graph, the blue line represents the energy

contract related to the day-ahead market participation and the dashed black line

represents the energy output of the wind farm. The area between the black line and

the blue line represents the energy imbalance without considering the storage. The

imbalance energy is relatively low for the first 11 hours. From hour 12 to hour 24,

the wind farm output is greater than the contracted energy, which leads to positive

energy imbalance for that period.

On the second graph, back line represents the energy output from the combined

plant energy output for the reference case N0. Similarly, the orange line marked

with circles and the red line marked with squares represent the energy output from

the combined plant for the strategies N1 and N∞, respectively. The two last graphs

plot the storage energy output and SOC level for the various cases.

The second graph first shows that the combination of the storage device with

the wind farm reduces the (positive) energy imbalance for the period from hour 12

to hour 24, for all the three cases. However, for this period, the storage operation

highly depends on the strategy:

• In the reference case N0, the surplus energy is stored till the energy stor-

age device is completely loaded, at hour 16. Note that, from hour 13 to

hour 17, the storage charge is limited by its nominal charging rate equal to

rnomch = −6 MWh/h. For hours 18 to 24, the storage device is completely

loaded (the SOC level is equal to 1). Consequently, no more energy can be

stored and the storage output power is null.

• In the N1 case, the storage charging power remains approximately constant

for the period between hour 12 and hour 22. The storage charging power is

then reduced for hour 23 and hour 24 since the energy imbalance is reduced

for the same hours.

• In the N∞ case, the second graph shows that the difference between the red

line and the blue line remains approximately constant from hour 13 to hour

20. In other words, the charging energy is set so that the imbalance is kept

constant and as small as possible. This analysis is in line with the objective

of this N∞ strategy which is to minimize the maximum imbalance energy.

Figure 4.20 describes the operation of the combined wind-hydro unit for the same

period as the one described in the previous figure. However, in this case, focus is

given to the influence of the approach regarding imbalance penalty price forecasting.
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Figure 4.20: Management of the storage unit with perfect knowledge of the imbalance
penalty price, during the 04/04/04.

Figure 4.20 compares the results obtained in the N1 case, using either the “constant

prediction” approach or the “perfect prediction” approach for imbalance price fore-

casting. Figure 4.20 shows that the operation resulting from the two approaches is

completely different. Contrary to the constant prediction case, where the absorbed

energy is rather constant between hour 13 and 22, the operation in case of perfect

prediction varies according to the imbalance penalty price. From the third graph,

we can observe only negative energy imbalance are penalized for hours 12 and 13,

because the up-regulation price is higher than the day-ahead price, which equals the

down-regulation price. Then, the storage is not charged during this period in the

perfect prediction case. The empty storage capacity is kept for the period between

hour 19 and 24 where positive imbalance are penalized.

Figure 4.21 presents results about the distribution of the hourly absolute energy

imbalances |d| and the hourly imbalance penalty δ obtained from the simulation

of the participation of the combined wind/pumped-hydro plant in the day-ahead

market for the period between the 01/04/2004 and the 31/06/2004. The results from

the strategiesN1 andN∞ are compared to the reference caseN0. Also both basic and

perfect prediction approaches for the imbalance penalty price are represented. The

mean gives the average of the value for each hour of operation. The q99 presents the

99%−quantile of the distributions of the hourly energy imbalance |d| or imbalance

penalties δ. This quantity gives an estimate of extreme values. It is defined as the

value q99(x) for which the number of occurrences of x greater than q99(x) is equal
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Figure 4.21: Analysis of the distribution of the imbalance energy and the imbalance penalty.

to 99% of the total number of occurrences:

n(x < q99(x)) = 99%× ntot (4.69)

The mean criterion is rather related to the evaluation of the N1 strategy, while

the 99%−quantile is related to extreme events and is thus more appropriate for

evaluating the N∞ strategy.

The plot 4.21(a) focuses on the absolute energy imbalance, while 4.21(b) focuses

on the imbalance penalty. The two figures show that the strategy N∞ decreases

extreme values of absolute energy imbalance by 31 % in the case of constant pre-

diction of imbalance penalty price, and extreme values of imbalance penalty in the

case of perfect prediction by 16 %. Regarding the N1 strategy, the mean absolute

energy imbalance is slightly increased by 11 % in the case of constant prediction of

imbalance penalty price, but the mean imbalance penalty is highly reduced by 38 %

in the case of perfect prediction.

Finally, the results illustrate the difference of objectives relative to the two pro-

posed norms N1 and N∞. For example, the results obtained with the N1 strategy

and perfect prediction approach highly reduces the mean imbalance penalty, but

increases the extreme values of absolute energy imbalance. Conversely, the results

obtained with the N∞ strategy and constant prediction approach highly reduces

the extreme values of absolute energy imbalance, but increases the mean imbalance

penalty.
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4.6.7 Conclusions

In this section, a novel method is proposed for the management of a combined

wind/pumped-hydro power plant under electricity market. The method focuses on

the intraday management of the energy storage device in order to reduce the penalty

risk associated with energy imbalances, for the combined power plant operator.

The method was presented in detail and applied to a realistic test case, where

real-world measured data and forecasts obtained by a state-of-the-art wind power

forecasting model are used.

The results clearly show that a strategic coordination of the energy storage device

is a way to manage the energy imbalances as well as the penalties associated with

these imbalances. The results also demonstrate the strong influence of the scheduling

strategies on the risk associated with the imbalance penalties.

4.7 Conclusions

In this chapter, different decision-making problems relative to the management of

renewable energy sources in electricity markets have been described. Similarly to

the previous chapter 3, the decision-making problems have been classified into two

categories: the first one is related to decisions relative to financial decisions and the

second one is related to decisions relative to physical decisions.

A generic formulation of the decision-making problem, valid for the two kinds

of decisions, has been proposed. Such formulation is based on the minimization of

a norm of a loss function. This loss function is specific to the physical or financial

solution and is derived from the penalization function proposed in the previous

chapter 3. Also, this loss function is based on estimations of delivered energy by the

RES units, combined with estimations of market prices and regulation prices. The

decision-making approach has been evaluated for three specific problems:

• The participation in the day-ahead market has been considered as an approach

for evaluating the forecasting performance of renewable power forecasting me-

thods. More precisely, the presented case study demonstrated that the imbal-

ance penalties could be reduced by nearly a half when advanced forecasting

models were used, compared to the imbalance penalties obtained when using

basic forecasting approaches.

• The decision-making method has also been applied to the strategic sequential

trading in day-ahead and intraday markets. The influence of the intraday bid

decision on the resulting imbalance penalty has been analyzed. Results from
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a case study demonstrated than the strategic trading in intraday market can

reduce the imbalance penalty by up to 9 %.

• Finally, the decision-making method was applied to the management of the

combination of a wind farm with a hydro storage device. This management

based on a rolling-window approach. The study analyzed the influence of the

decision strategy on the distribution of the imbalance energy volumes and im-

balance penalties. The results obtained with a strategy which aims at reducing

the sum of the imbalance penalty during the period of the rolling-window, lead

to a reduction of 38 % of the total imbalance penalty as well as a reduction

by 14 % of the extreme values of imbalance penalties.
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CHAPTER 5

A Risk-Based Approach for the Management of

Uncertainty associated with Renewable Generation in

Electricity Markets

Chapter overview

This chapter extends the methodology proposed in the previous chapter to ac-

count for the uncertainty associated with the decision-making problem related to

the participation of renewable generation in electricity markets.

First, the uncertainties associated with the present decision-making problem

are described. General definitions and approaches for modeling the uncertainty

are given from the state of the art. Special attention is paid to the estimation of

the uncertainty related to renewable generation forecasts and to the market price

forecasts, given by probabilistic forecasting methods. An overview of the state of

the art of the methods for decision-making under uncertainty is presented in the

second section. Focus is given to risk-based approaches and different risk measures

are explained.

Then, the third section of this chapter gives the formulation of the risk-based

decision-making method. This method is an extension of the one which has been

formulated in the previous chapter in the case of deterministic forecasts (i.e. point

forecasts)) of future variables, to the case of probabilistic forecasts.

Finally, the two last sections present illustrations and application results of the

risk-based methodology. The fourth section illustrates the hedging resulting from
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the combination of a storage unit with a wind farm, and the fifth section gives the

benefits from the application of the method to the participation of wind generation

in electricity markets.

5.1 Estimation of uncertainties associated with the par-

ticipation of renewable generation in electricity mar-

ket

This section first presents the main sources of uncertainties in our decision-making

problem, which are renewable generation and market prices. Then, an overview of

the existing methods for representing the uncertainty, in a general way, is given.

These representations are used in the case of probabilistic forecasting models which

are able to provide information about the uncertainty associated with the forecasts.

Finally, the last part of this section gives examples of probabilistic forecasting models

for wind power and market prices which are available from the literature.

5.1.1 Sources of uncertainties

In general, the management of power systems has to take into account a wide range

of factors and parameters which may be uncertain. For example, the study in [125]

presents the main sources of uncertainty for a utility regarding operational-planning;

more precisely, the uncertainties about the load, the operating costs, the power

transmission are discussed.

In the present work, only the uncertainties relative to the participation of re-

newable generation in electricity markets are considered. From this point of view,

the two main sources of uncertainty are the electricity market prices and the re-

newable generation. Note that these two sources of uncertainties correspond to the

two forecasted quantities in the decision-making problem formulated in chapter 4.

• Renewable generation: the limited predictability of the generation from

some RES units has already been presented as one of the main properties

of renewable generation in section 1.2.2. This is mainly the result of the

dependence of this production on weather conditions, which in turn have a

limited predictability. This characteristic results to some uncertainty about

the future renewable generation.

• Electricity market prices: they are determined according to the fundamen-

tal economic rule of supply and demand, which makes them highly sensitive

to demand and supply variations. Such sensitivity results to a very high vari-

ability and volatility of the market prices. Also market prices may exhibit
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spikes, which are extreme variations during a very short time period. The

brief characterization of market price time series from the literature in section

C.1 gives further details about such volatility. Moreover, market prices depend

on a wide range of factors, which can be technical, meteorological or psycho-

logical. Such complex structure makes price forecasting a difficult problem.

The uncertainty associated with a given price forecast is consequently high.

5.1.2 State of the art of the approaches for modeling uncertainty

This section presents the different existing approaches to model and represent the

uncertainty related to a random variable. The classification into three main cate-

gories for representing uncertainty, which are scenarios, fuzzy sets and probabilistic

models, is taken from [121]. Special attention is paid to probabilistic models, which

will be used for the development of the decision-making approach proposed in this

chapter.

Scenarios

Scenarios are possible future instances of data. Representing the uncertainty with

scenarios is considered as a “natural” approach, where the main uncertain variables

are globally estimated and different possible futures are constructed. A possible way

to generate scenarios for the output of a process is to consider slight variations of

the value of one of the input parameters. The resulting scenarios are said to be

equi-probable when all the scenarios have the same probability to occur.

An important characteristic of the scenario approach is the “outside-in” aspect.

This means that the possible future course of a scenario is determined by outside

influences. Hence, the function of scenarios is not to predict the future but to explore

it. Since scenario approaches can become too exhaustive, work has been done about

the optimization of scenario building. Scenario reduction algorithms for determining

a subset of the initial scenario set, and assigning new probabilities to the preserved

scenarios, are proposed in [126]. In these methods, the scenario tree construction

algorithms successively reduce the number of nodes for a fan of individual scenarios,

by modifying the tree structure and by bundling similar scenarios.

Intervals and fuzzy sets

Using intervals is another “natural” way of dealing with uncertainty, where the data

are described by intervals instead of a single real number. In their basic formulation,

intervals are not linked to a probabilistic distribution but only try to capture every

possible future value of the relevant data [121].

163



Risk-based approach for renewable generation in electricity markets

Fuzzy sets is another way to model the uncertainty with qualitative descriptions

corresponding to expert declarations about the data or the impact of the alterna-

tives. Fuzzy sets can thus be described as extension of intervals, where additional

information besides the range of possible values is given. The general fuzzy number

can be seen as a set of nested intervals, with increasing degrees of membership, also

called possibility values. The fuzzy set theory is fully described in [127].

Probabilistic models

Probabilistic models include information about the probability relative to each out-

come of the uncertain variable. The most complete information about uncertainty

is the probability distribution which is given by the probability density function. In

the case of a continuous random variable X, the probability density function of X is

denoted as fX . This function gives the probability for the variable X to be included

in the interval [x, x+ dx]:

fX(x) = prob(X ∈ [x, x+ dx]) (5.1)

The cumulative distribution function FX of a random variable X gives the prob-

ability for the variable X to be lower or equal than a given value x. Such function

is sometimes denoted as “cdf”. It can be derived as the integral of the probability

density function fX :

FX(x) = prob(X ≤ x) =

∫ x

−∞
fX(u)du (5.2)

The probability density function fX is positive, and consequently, FX is an increasing

function. If fX is strictly positive, FX is a strictly increasing function and is thus

invertible.

Several quantities can be derived from the probability distribution of the random

variable X. In particular, a α-quantile qαX , where 0 ≤ α ≤ 1 is defined as the

minimum value such that the probability for the variable X to be lower or equal to

this value equals α.

qαX = min(x|prob(X ≤ x) = α) (5.3)

If FX is invertible, the α-quantile qαX can also be written as qαX = F−1
X (α).

The mean outcome µ of the random variable X with the probability density

function fX , is the defined as the expected value of X, and is calculated as follows:

µ = E(X) =

∫ ∞

−∞
xfX(x)dx (5.4)
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where E is the expectation operator. The expected value is sometimes referred to

as the first moment of X. More generally, the kth central moment µk of the variable

X is defined as:

µk(X) = E

(
(X − E(X))k

)
=

∫ ∞

−∞
(x− µ)kfX(x)dx (5.5)

where k is a positive integer. For k = 0, the central moment is one µ0 = 1; the first

central moment is zero µ1 = 0. The second central moment µ2 is called the variance

and is usually denoted as µ2 = σ2, where σ is the standard deviation. The variance

or standard deviation measures the dispersion of the variable X, and represents the

amount by which X tends to deviate from its expected value. Details about higher

moments can be found in [128].

5.1.3 Estimation of the uncertainty related to a forecasted variable

Deterministic versus probabilistic forecasting

A deterministic forecast of a stochastic variable for a given time in the future is

an estimation of the value of this variable for the given time. The deterministic

forecasts are also called point forecasts or spot forecasts, and provide a single value

for each forecast horizon. Most of the deterministic forecasting tools are based on

minimum least square estimation. For example, let consider xTi
the estimation of

a random variable X for the period Ti, and x̂Ti
the point forecast issued at time

td for the period Ti, based on the model M , the model parameters φtd , and the

information set Ωtd gathering the available information on the process up to time

td. The point forecast x̂Ti
based on minimum least squares is formulated in [78] as:

x̂Ti
= E [XTi

|M, φtd , Ωtd ] (5.6)

Such deterministic forecasting models provide a single predicted value related

to a given random variable. Conversely, probabilistic forecasting methods consist in

providing the future probability related to the same random variable [129]. This

additional information about uncertainty may take the form of quantile, interval or

probability density function forecasts. These different representation models have

been presented in the previous section 5.1.2.

A distinction is made between parametric probabilistic forecasting methods which

are based on an underlying assumption about the shape of the forecasted distribu-

tion, and non-parametric probabilistic forecasting methods which do not rely on such

assumption [78]. Non-parametric methods are also called distribution-free methods.

They permit to obtain a more precise description of the uncertainty, compared to
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parametric methods.

Quantile forecasting is an example of non-parametric probabilistic forecasting

methods. For a given stochastic variable X, the α-quantile forecast for the period

Ti, issued at time td, is denoted as q̂αXTi|td
. Such quantile forecast can be obtained

using the quantile regression method, described in [130]. In particular, this method

is based on a minimization of a check function ρα, which is a piecewise linear and

asymmetric function given by:

ρα(x) =




(1− α) · |x| , x < 0

α · |x| , x ≥ 0
(5.7)

A discussion about the similarities between this check function ρα and the reference

loss function λ
DA

given in Equation 4.27 is proposed in the last section 5.5.4 of this

chapter.

Then, the non-parametric forecast f̂XTi|td
of the density function of the variable

of interest during the period Ti can then be produced by gathering a set ofm quantile

forecasts:

f̂XTi|td
=
[
q̂

αj

XTi|td

]
with 0 ≤ α1 < ... < αj < ... < αm ≤ 1 (5.8)

where the nominal proportions αj are spread on the unit interval. This type of pro-

babilistic forecasts are denoted as predictive distribution. Other statistical methods

such as kernel density estimation directly provide the uncertainty in the form of a

predictive distribution. Further details on kernel density estimation can be found

in [131]. A prediction interval forecast, such as reported in [78], corresponds to

the specific case for which only two quantiles are quoted with nominal proportions

chosen to be symmetric around the median.

Finally, probabilistic forecasts may be very useful in decision-making applica-

tions. Consequently, probabilistic forecasting has been developed in several fields.

Meteorology and economics are the two domains that have been most active. Pro-

babilistic forecasting has spread from these fields into other fields such as power

system management (i.e. wind power or load forecasting).

Probabilistic forecasting of the renewable generation: the example of

wind power

In this thesis, the proposed decision-making methods have been applied to the case

of wind generation only, and consequently only probabilistic models relative to wind

generation are requested. However, as already mentioned in the introduction of

chapter 3, it is important to note that the general approach followed in this thesis
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could be directly applied to photovoltäıc or other renewable energy sources.

The general methods which can be found in the literature for the general problem

of probabilistic forecasting of wind generation are presented given in the appendix

B.3. An example of forecasts obtained with one of these methods is described in

Figure 5.1. This figure illustrates the typical probabilistic wind generation forecasts

which are requested for the decision-making methods. In this example, the method is

based on Kernel Density Estimators (KDE), and provides a predictive distribution

for each forecast horizon. The time step between two consecutive horizons is 3

hours, and the wind power production is forecasted for the next 60 hours. The

corresponding measurement is represented by the black line.

measures

KDE forecasts
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Figure 5.1: Example of probabilistic wind power forecasts obtained with the KDE method,
from [132].

Finally, the methods which are used for the two case studies of this chapter, are

presented in the sections relative to the description of these case studies (i.e. in

section 5.4 and 5.5).

Probabilistic forecasting of electricity market price

In the decision problem relative to the participation of renewable generation in

electricity market, the price quantity which is considered by the IPP is the penalty

price for positive or negative energy imbalance ∆Π, as explained in section 4.3.3.

The definition of ∆Π in Equation 3.8 shows that this price quantity depends on the

sign of the energy imbalance, which makes it more difficult to forecast.

In the hypothesis of a dual price imbalance settlement mechanism, the forecas-

ting of ∆Π can be simplified to the forecasting of the price quantity Π∆, which is
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independent from the energy imbalance, and only depends on the regulation state

of the TSO. Π∆ is defined by

Π∆ = ΠDA −Πs (5.9)

where Πs = Π+ if only positive imbalances are penalized (i.e. TSO is down-

regulating), Πs = Π− if only negative imbalances are penalized (i.e. TSO is up-

regulating), and Πs = ΠDA if no regulation is needed by the TSO. The details of the

definition of Π∆, as well as the relation between ∆Π and Π∆, are given in section

subsection C.3.2.

Then, for the work presented in this thesis, we propose to represent of the uncer-

tainty related to Π∆ through a discrete probabilistic forecast based on three possible

outcomes. Each outcome is associated with a TSO regulation state : up-regulation,

no regulation, and down-regulation. These three regulation states correspond to

negative, null and positive values for Π̂∆, respectively. Each state is assigned a

probability α:

Π̂∆ =





(
Π̂∆

− < 0, α−

)
(
Π̂∆

o = 0, αo

)
(
Π̂∆

+ > 0, α+

) (5.10)

This discrete probabilistic forecast can be obtained from advanced price fore-

casting methods, as described in section C.2. However, given the difficulty of price

forecasting, a method for simulating the price forecast Π̂∆ is proposed. This method

permits to obtain different levels of forecasting error, and to evaluate their impact

on the decision-making. The details of this simulation approach are detailed in the

appendix C.4.1. In particular, the level of forecasting error is based on two param-

eters which are a phase error τ and a parameter ǫ related to the uncertainty about

the regulation state of the TSO.

5.2 Overview of the state of the art of decision-making

methods under uncertainty with focus on risk-based

approaches

This section first gives examples of decision-making problems related to the man-

agement of power systems. Then, an overview of the existing approaches for the

general problem of decision-making under uncertainty is presented. These general

decision-making approaches are formulated for the case of our problem. Special
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attention is paid to the risk-based methods. In particular, different risk measures,

taken from the financial area, are defined.

5.2.1 Examples of decision-making methods under uncertainty in

power system management

The management of a power system involves several decision-making problems un-

der uncertainty. Generation planning and scheduling are two examples of such prob-

lems. Generation planning is a decision-making problem relative to the long-term

investment for new generation facilities, while generation scheduling refers to unit

commitment and economic dispatch problems, which are related to the power system

operation as introduced in section 4.1.3. The following paragraphs present exam-

ples, taken from the literature, of different approaches used for the management of

the uncertainty in these planning and scheduling problems.

A literature survey of the methodologies for accounting for uncertainty in power

system management is proposed in [133]. Although the survey is related to the

problem of planning electricity generation, the described methods are general and

could be used for more general power system management problems. A first method

is denoted as the deterministic equivalent method; in this method, the uncertainty

information is reduced to a deterministic value which is used in the decision-making

problem. The robustness analysis is a second method particularly adapted to the

problem relative to power system reliability. This method aims at finding a so

called robust decision with a trade-off analysis among conflicting objectives. Also,

the stochastic optimization is a method adapted from mathematical programming

which is frequently applied in multi-stage planning problems under uncertainty.

Using scenarios for representing the uncertainty related to future variables is

widely used in planning decision-making problems [133, 134]. These scenario-based

approaches have been extended to the operation problems. For example, in [135],

a multistage stochastic model is proposed for the optimal operation of a wind farm

combined with a pumped storage unit and thermal power plants. The wind farm

output generation and the electrical demand are considered as two independent

stochastic processes, which evolution is modeled with a scenario tree. Also, in [136],

an operation scheduling and contract management method is described, in which the

uncertainty related to market price is described using scenarios. The operating tool

described in the patent [137] is another example of stochastic generation scheduling

tool, where the uncertainty related to the load is described through scenarios.

Scenario-based models which consider all possible realizations of the stochastic

process lead to a huge set of scenarios. Consequently, scenario reduction methods are

often used. A scenario reduction algorithm based on a particle swarm optimization is
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used in [135]. More generally, in [138], the scenario reduction problem is formulated

as the determination a subset of preserved scenarios which is the “closest” to the

original set of scenarios using a given probability metric. The distance defined by

this metric takes into account the scenario probabilities and the distances between

scenario values.

Another alternative to scenarios for representing uncertainty is the considera-

tion of probabilistic forecasts. Historically, probabilistic methods relative to power

systems have been first developed to analyze the reliability of the systems and the

problem of reserve setting. In this context, the uncertainty is associated with the

possibility of a default in the generation portfolio. The distribution of the value of

the system margin, which is the difference between the available generation power

and the load, is derived from the default distribution. Then, the loss of load proba-

bility (LOLP) is one reliability measure, which is defined by the probability to have

a negative margin of the system. The amount of reserve is then settled in order to

have the LOLP lower than a given threshold. In [139], a method for quantifying

the reserve needed for a power system including wind generation, is proposed. In

this advanced method, the uncertainty related to the wind generation is estimated

through probabilistic forecasts.

5.2.2 Formulation of the state-of-the-art probabilistic methods for

decision-making under uncertainty

The decision-making methods, which are based on probabilistic forecasts are denoted

as probabilistic methods. These methods are distinguished from scenario-based me-

thods, which are not considered in this work. The general principle about decision-

making under uncertainty refers to the class of decision-making problems in which

the imperfect knowledge of the future is incorporated in the decision process [116].

In addition to this reference, the probabilistic methods for decision-making under

uncertainty presented hereafter are based on the state of the art of these methods

in [121], which proposes a unified view over the issue, as well as on [112]. The pro-

posed classification of the methods for decision-making under uncertainty is inspired

from the one proposed in [120].

In this section, we propose to formulate the general decision-making methods

which are presented from the literature, for our specific problem. The formulation

of the decision-making methods is valid for both financial and physical decisions

presented in section 4.1.1. In this section, the formulation is proposed for a decision

v related to a physical solution, but would be similar for a decision u related to a

financial solution. The alternative v is supposed to be continuous. The attribute of

the decision (the concept of attribute is explained in section 4.1.1) is the associated
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loss is λ(0, v), where λ is the loss function defined in Equation 4.8. In order to sim-

plify the mathematical expressions, the notation of the loss is simplified as follows:

λ(0, v) = λ(v).

In this case, this loss is a random variable, and its distribution is estimated by its

probability density function fλ(v). In this section, this probability density function

is supposed to be known. The derivation of this function is detailed in the next

section 5.3. For a given decision-making method, the chosen alternative is denoted

as v∗. The constraints on the decision v are denoted as Cv. Finally, note that this

decision v is relative to a given market time unit Ti, but the index Ti
is omitted for

simplifying the mathematical expressions.

Note that similarly to section 5.2.2, the considered decision vTi
is relative to

a physical hedging solution, but the formulation would be similar in the case of a

financial decision uTi
.

Expected value method

The expected value method consists in choosing the alternative which maximizes (or

minimizes, according to the type of problem) the expected value of the attribute.

The chosen alternative v∗ is derived as follows:

v∗ = argmin
v

∫ ∞

−∞
x · fλ(v)(x)dx, subject to Cv (5.11)

This method assumes implicitly that a number of similar decision situations will be

repeated over time. Also, the expected value method does not integrate the decision

maker needs and desires in the decision-making process [112]. The method is rather

prescriptive disregarding any subjectivity or judgment that the decision maker might

have [140]. In particular, it does not take into account the risk related to extreme

events.

Expected utility theory

The concept of utility has already been presented in section 4.3.1. In this section,

the concept is reminded, and is presented more precisely in the context of decision

under uncertainty.

Utility theory was first proposed in 1738 by Bernoulli [140] as a response to

the critic of the expected value decision method which does not incorporate the

preferences of the decision maker in the decision process. Later, a set of axioms

have been proposed in 1944 by von Neumann and Morgenstern in [141] for defining

the expected utility theory. In particular, these axioms can be used as a base for
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constructing a cardinal utility function [116]. A utility function is a function of the

attribute of the decision-making problem, such as the benefits or the loss.

The utility function of the loss λ(v) is denoted as U(λ(v)). In the expected utility

theory, the chosen alternative v∗ is the one which maximizes the expected utility

U(λ(v)). The distribution of the utility is assumed to be known for each possible

alternative value v. This distribution is modeled by the probability density function

fU(λ(v)), and the chosen alternative v∗ is derived as follows:

v∗ = argmax
v

E (U(λ(v))) = argmin
v

∫ ∞

−∞
x · fU(λ(v))(x)dx (5.12)

subject to Cv (5.13)

The risk related to the attribute λ(v) is implicitly integrated in the utility func-

tion, and consequently, in the decision process. Three main risk attitudes exist and

correspond to three types of utility functions [120,121].

• A decision maker is said to be risk prone if the corresponding utility function

translates a willingness to give a premium to higher risk situations. The risk

proneness attitude of a decision maker corresponds to convex utility functions.

• A decision maker is said to be risk neutral if the corresponding utility function

does not present any risk premium or penalty associated with any possible

outcome. This corresponds to a linear utility function. In this case, the deci-

sion alternative selected by the expected utility theory is the same as the one

determined via the expected value decision method.

• A decision maker is said to be risk averse if the corresponding utility function

translates a willingness to penalize higher risk situations whilst favoring lower

risk ones. The risk aversion attitude of a decision maker corresponds to concave

utility functions.

Decision-making methods based on the utility theory result in a somewhat nor-

mative procedure for making decision. Once the decision maker risk attitude is

modeled in the utility function, decision can be made without further interference

of the decision maker. However, the determination of the utility function for a given

decision maker might be a time-consuming and hard task [112].

Spot-risk model

Alternative decision-making methods based on explicit risk measures have been pro-

posed in the literature for overcoming the difficulty of deriving a specific utility
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function. One of the most generic approaches is the spot-risk approach. The de-

nomination of the approach is taken from [120]. The spot-risk methods formulate

the expected utility as a function of the spot value (SV), which is an estimation

of the outcome of the alternative, and a risk measure R, which quantifies the risk

related to the distribution of outcomes associated with every alternative. The risk

attitude of the decision maker is modeled through a risk parameter β. Also, the

expected utility theory is based on the maximization of the expected utility and

consequently, the opposite spot value is considered when low values of the attribute

are preferred. This is the case when the attribute is the loss. In that case, we pro-

pose to formulate the expected utility E(U(λ(v))) associated with the alternative v

as:

E(U(λ(v))) = −SV (λ(v))− β · R(λ(v)) (5.14)

where SV (λ(v)) and R(λ(v)) are respectively the spot value and the risk measure

associated with the alternative v. The spot value can be the mean or the median of a

beneficial outcome of a given alternative. The risk measure R used in this spot-risk

model is generic and can be adapted to the needs and desires of the decision maker.

On overview of the main risk measures found in the literature is given in the next

section.

For simplifying the mathematical expressions in the rest of the work, the spot-

risk measure ρ is defined as follows:

ρ(λ(v)) = SV (λ(v)) + β · R (λ(v)) (5.15)

The alternative v∗, which is determined in the expected utility theory, is the one

which minimizes the spot-risk measure ρ:

v∗ = argmin
v

ρ(λ(v)), subject to Cv (5.16)

Stochastic dominance approach

Stochastic dominance is a term referring to a comparison technique between the dis-

tributions of the decision attributes which are relative to different alternatives [116].

This method is an alternative way for ranking the decision maker’s preferences, but is

not itself a decision principle such as, for instance, utility theory. More precisely, the

stochastic dominance method relies on an axiomatic model of risk-averse preferences.

The decision attributes are compared using performance functions constructed from

their distribution functions [142]. Technically, the stochastic dominance between

decision alternatives is determined in increasing orders. In particular, the Second-
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order Stochastic Dominance (SSD) is based on the comparison between the double

integral of the probability density functions of the attributes.

The relation between SSD and risk measures is explained in [143]. In particular,

the concept of consistency between a risk measure and the SSD approach is defined

as follows: a risk measure is said to be consistent with SSD if, in the case of two

alternatives, the alternative which is chosen by minimizing the risk measure is the

same as the one which is dominated under SSD. Further details about consistency

between stochastic dominance and risk measures can be found in [143].

However, the main limit regarding stochastic dominance is the absence of con-

sideration of the decision maker risk preferences in the method. More precisely, this

method assumes that the decision maker is risk averse [116], and this method does

not permit to analyze the influence of the risk attitude of the decision maker on the

resulting decisions. Consequently, this decision method is not further considered in

the rest of the present work.

5.2.3 Focus on risk-based methods

This section focuses on the definition of the risk which is considered in the spot-

risk approach formulated in Equation 5.15 and Equation 5.16. Initially, a general

definition of the concept of risk is given. Then this definition is used to derive

the definition of the risk considered in this work related to the participation of

renewable generation in electricity markets. The second part of this section presents

an overview of the state of the art of risk measures.

Concept of risk

The concept of risk is widely used in many fields such as finance, mathematics,

psychology or decision sciences. This concept highly depends on the discipline. In

a general way, the notion of risk is associated with the possibility of an unfavorable

outcome [118,144]. This definition shows the close relation between uncertainty and

risk. In order to define more precisely the risk, a distinction between uncertainty

and risk is proposed in [145]:

• The notion of uncertainty refers to the decision-making science, and is de-

fined as “a state of having limited knowledge where it is impossible to exactly

describe future outcome” [12]. Uncertainty is also described as the existence

of more than one possibilities. A probabilistic measure of uncertainty is a set

of possibilities, to which is assigned a set of probabilities.

• The Risk is then defined as a state of uncertainty where some of the pos-

sibilities involve a loss, catastrophe, or other undesirable outcome. A risk
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measurement is a set of possibilities each with quantified probabilities and

quantified losses.

From these definitions, we conclude that uncertainty without risk is possible if

none of the possibilities involves a loss, but risk without uncertainty is impossible.

The uncertainty measure only refers to the probabilities assigned to outcomes, while

the risk measure requires both probabilities for outcomes and quantified losses for

each outcome.

Risk measures

Variance The first historic risk measure was the variance or standard deviation,

which was introduced by Markowitz in portfolio selection [146]. Portfolio selection

discusses the general problem of the capital allocation to a large number of securi-

ties so that the investment can bring a most profitable return. Before introducing

any risk measure, investors used to talk about risk, but there was no measurable

term to define it. In 1952, Markowitz stated that variance could be regarded as

risk. Since Markowitz, mathematical analysis on portfolio management has greatly

developed, and variance has become the most popular mathematical definition of

risk for portfolio selection [121, 147]. In order to obtain a risk measure which is

homogeneous in terms of unity to the spot value in the spot-risk decision method,

the standard deviation σ is often preferred to the variance. For a given random loss

λ(v) associated with a decision v, the risk measure R based on standard deviation

σ is formulated as:

R(λ(v)) = σ (λ(v)) (5.17)

The use of variance or standard deviation for estimating the risk is quite sim-

ple. However, this risk approximation has several limitations [148]. The standard

deviation risk measure is based on a normal distribution hypothesis for the loss. In

this case, the loss is assumed to be symmetric and the risk measure penalizes the

possibility of obtaining extremely high losses as much as the possibility of obtaining

extremely low losses. However, in many practical cases, the loss distributions are

asymmetrical and the variance of the loss distribution becomes rather insufficient

for measuring the risk associated with the loss for a given alternative.

Value at Risk

Definition Since the definition of Markowitz in 1952, advanced risk measures

based on the knowledge of the possible losses have been proposed. In particular, the

Value at Risk (VaR) is a measure of the risk of loss for a given portfolio of financial
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assets, widely used in financial mathematics and financial risk management [149].

The Value at Risk (VaR) is defined as the minimum value of loss that will not be

exceeded with an α confidence level. In other words, with respect to a specified

confidence level α, the α-VaR of a portfolio is the lowest loss value l such that the

probability that the loss λ(v) exceeds l is lower than (1− α):

Rα(λ(v)) = α-VaR(λ(v)) (5.18)

= inf {l ∈ R : prob(λ(v) > l) ≤ 1− α} (5.19)

= inf {l ∈ R : prob(λ(v) ≤ l) ≥ α} (5.20)

= inf
{
l ∈ R : Fλ(v)(l) ≥ α

}
(5.21)

The cumulated density function Fλ(v) is an increasing function and consequently,

Equation 5.21 is equivalent to

inf {l ∈ R : prob(λ(v) ≤ l) = α} (5.22)

which is the definition of the α-quantile of the loss distribution.

For a given loss distribution, the α-VaR depends on the confidence level α which

is a parameter of the risk measure. The α-VaR is a level of loss. In a symmetric way,

Roy in [150] defined a risk measure called Probability of an Adverse Outcome (PAO),

which is based on a level of loss l0 as a parameter, and measures the probability to

have a loss equal or greater than the accepted level:

PAOl0 = prob(λ(v) ≥ l0) = 1− prob(λ(v) ≤ l0) (5.23)

PAOl0 = 1− Fλ(v)(l0) (5.24)

where Fλ(v) is the cumulated density function of the loss λ(v) associated with the

decision v.

The VaR is a popular risk measure which is widely used in finance. However,

the large use of this measure demonstrated that it has undesirable mathematical

characteristics [151]. In particular, the VaR measure does not inform about the

extent of the losses that might be suffered beyond the amount indicated by this

measure. Indeed, the VaR measure provides a lowest bound for losses in the tail of

the loss distribution and has a bias towards optimism instead of the conservatism

that ought to prevail in risk management.

From a theoretical point of view, a risk measure can be considered as a function

which gives a real number from a probability space. Such a function has to satisfy
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two conditions which are monotonicity and translation invariance. The interested

reader may refer to [152] for obtaining furher information about these conditions.

In addition to these two properties, when considering two portfolios A and B, the

subadditivity property states that the risk of the sum of the portfolios A+B is smaller

than or equal to the sum of their individual risks. This property is important when

different business units calculate their risks independently and when an estimation

of the total risk is required. More generally, a risk measure which satisfies the four

conditions of monotonicity, translation invariance, convexity and subadditivity is

defined as a coherent risk measure [153].

The VaR measure has a lack of subadditivity. More precisely, it is subadditive

only in the case of normal distributions, when the VaR is a multiple of the standard

deviation [154]. The VaR has also a lack of convexity, which can be a major handicap

when trying to determine the VaR of a mix of portfolios. These limits relative to

the VaR measure justify the proposition of alternative risk measures.

Conditional Value at Risk

Considering the limits of the VaR as a risk measure, Rockafellar in [151, 154] pro-

poses the Conditional Value at Risk (CVaR). The CVaR is also denoted as expected

shortfall or average VaR. For a given probability level α, the α-CVaR is defined as

the conditional expectation of losses above the α-VaR:

Rα(λ(v)) = α-CVaR(λ(v)) (5.25)

= E(λ(v) : λ(v) ≥ α-VaR) (5.26)
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Figure 5.2: Illustration of the α-VaR and α-CVaR for a given loss distribution.

The definition of the α-VaR and α-CVaR is illustrated in Figure 5.2. The prob-
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ability density function fλ of a given random loss λ is plotted in plain line and the

corresponding cumulative density function Fλ is plotted in dash line. The α-VaR

value is determined from the Fλ function and the α-CVaR is derived as the measure

of the grey area under the fλ function.

Other formulas for CVaR may be operationally more convenient in some situa-

tions [151]. For example, the CVaR can be formulated as follows:

α-CVaR(λ(v)) =
1

1− α

∫ 1

α
β-VaR(λ(v)) dβ (5.27)

The CVaR may also be formulated a the result from a minimization:

α-CVaR(λ(v)) = argmin
l∈R

{
l + (1− α)−1

E [max {0, λ(v)− l}]
}
, (5.28)

More precisely, Equation 5.28 show that the CVaR calculation can be formulated as

an expectation-based problem with additional variables. As a consequence, several

properties of expectation-based stochastic programs remain valid when the CVaR

risk measure is used. Most of these results are essentially based on the linearity of

the expected value operator E. From a more theoretical point of view, the CVaR is

an example of a polyhedral risk measure, where polyhedral risk measures are defined

as optimal values of linear stochastic programs [155].

Also, for a given loss λ(v), α-CVaR is a continuous function of α ∈ [0, 1], with:

lim
α→1

α-CVaR(λ(v)) = sup(λ(v)) (5.29)

lim
α→0

α-CVaR(λ(v)) = E(λ(v)) (5.30)

Multistage Risk measures

The different risk measures described in the previous paragraphs consider the risk

associated with a loss λ(v) relative to a single decision v. The loss λ(v) is a random

variable itself. However, for multistage stochastic problems, the above definitions

might not be sufficient. For such problems, it is necessary to define multistage or

multiperiod risk measures, which evaluate the risk relative to consecutive decisions.

The n consecutive decisions are denoted as [vT1
, vT2

, ...vTn ] = [vTi
]ni=1 and the

multistage risk measure Rα gives the risk relative to the loss associated with the n

decisions [λT1
(vT1

), λT2
(vT2

), ...λTn(vTn)] = [λTi
(vTi

)]ni=1

The polyhedral risk measure class is extended to the multistage case in [155]. An

example of a multistage polyhedral risk measure is the weighted sum of the CVaR
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values relative to each period:

Rα([λTi
(vTi

)]ni=1) =

n∑

i=1

γ(i) α-CVaR(λTi
(vTi

)) (5.31)

where γ(i) is a positive weight relative to the period Ti, and α is the confidence level

associated with the risk measure Rα. A first basic approach is to consider a constant

weight for all periods: γ(i) = 1
n . More advanced approaches for the determination

of the weight γ(i) are proposed in [156].

5.3 Formulation of a risk-based approach for the man-

agement of renewable generation in electricity mar-

kets

The aim here is to apply the general risk-based approach presented in the previous

section, to the management of the uncertainties related to the renewable power

generation and to the market prices, which have been described in the first section

of the chapter. The methodology proposed in this section is presented through the

concept of risk management, which is explained into detail for our specific problem.

5.3.1 Concept of risk management

The concept of risk management, relative to a given entity, comes from the finance

area and defines a process which can be divided into four different general steps,

as proposed in [157]. Each of these steps is presented below while reference to our

specific problem is made.

• The first step is the definition of the risks incurred by a given actor. This def-

inition also determines which loss is considered for the given risk, and also the

time frame relative to the risk management process. In our specific problem,

the risk is related to the imbalance penalty for an Independent Power Producer

(IPP) including RES power units, who participates as a balance responsible

party in short-term electricity markets. Further details about the definition

of the risk associated with imbalance penalty, the considered time frame, and

the associated loss, are given in the next section.

• The second step of the general risk management process focuses on the quan-

tification of the risk. Also, at this stage, the different solutions for reducing

this risk are reviewed. The reduction of risk relative to each solution is quan-
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tified, based on a specific risk measure. The existing solutions for reducing the

risk are called hedging solutions.

In our problem, the risk is modeled using the generic loss function λ derived in

the previous chapter 4. Based on this loss function, a probabilistic prediction of

the loss is derived using probabilistic forecasts of both the delivered energy and

the market prices. Such loss also depends on the financial or physical solutions

which are used. These solutions are considered as the hedging solutions of the

problem. Then, the risk is measured from the loss distribution using explicit

risk measures, defined in section 5.2.3.

• The next step in risk management is the decision step about the hedging

solutions. The decisions (U, V ) relative to the use of a physical or financial so-

lutions are made using a spot-risk approach, where the attitude of the decision

maker towards risk is considered through a risk parameter β.

• Finally, the last step is the evaluation of the risk management approach. This

corresponds to the two last sections of the chapter. The risk management is

illustrated in the case of the physical solution which consists in the storage

combination. The benefits from the application of the risk-based approach for

the participation of wind generation in a day-ahead market are also presented.

The term of “hedging solution” is taken from the financial domain, where it

designates generic contracts which are designed for transferring the financial risks

between participants [158–160]. They can be sophisticated financial products, and

are mainly based on forward contracts, swap contracts or options. In this work, the

concept of hedging is extended to both the physical and financial solutions, which

have been formulated in chapter 3. Such generalization is justified by the conclusion

given in chapter 3 that the impact of both physical and financial solutions can be

modeled in a similar way when considering the imbalance penalty model given by

the function δ. Similar considerations can also be found in the literature, such as

in [160] or [108].

5.3.2 Details about the considered risk

Focus on the quantity-price risk

The concept of risk considered is the one defined in section 5.2.3 where the risk is

defined as a state of uncertainty where some of the possibilities involve a loss. In

section 5.1.1, two main sources of uncertainty have been described: the renewable

generation and the electricity market prices. Consequently, these two sources of

uncertainty result in two types of risk:
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• The quantity risk results from the penalization of the uncertainty associated

with the renewable generation output. The quantity risk is also called volu-

metric risk [161]. The same concept of volumetric risk for a conventional power

producer is presented in [162], and is related to plant outage or fuel shortages.

In [163], the quantity risk is related the uncertain wind power generation, and

is estimated through a measure called “WindGen at Risk”, which is based on

the concept of the Value at Risk measure. In the example, this risk is used for

the integration of the wind resource capacity into unit commitment scheduling.

• The price risk results from the uncertainty related to the market prices. In

general, fluctuating market prices in electricity pools lead to financial risks

for power producers [158, 164]. In the particular case of the risk related to

imbalance penalties, the IPP is sensitive to the uncertainty related to the

penalty price Π∆, which is defined in Equation 5.9. Such price is the difference

between two volatile prices, and can reach extreme values, the occurrence of

which is hard to forecast. Also, the sign of Π∆ depends on the regulation state

of the TSO, which is also hard to forecast. These characteristics lead to a high

uncertainty about Π∆, which in turn leads to a high price risk.

Finally, the risk considered in the present work can be denoted as a “quantity-

price” risk, which is a combination between the quantity risk and price risk concepts.

However, it is important to note that many other kinds of risk are related to the

participation in an electricity market. These risks include counter-party credit risks,

transaction risks, regulatory risks, operational risks and liquidity risks [157, 165].

Also, for renewable power producers, the income from energy trading in electricity

markets may vary as a result of the varying resource. Such variation, which is mainly

seasonal, could represent a risk for the renewable power unit operator in terms of

cash flow. However, this risk is not considered in this work. The only risk we

consider here is the one associated with the imbalance penalties in the case of direct

participation of renewable generation in liberalized electricity markets.

Discussion about the relation between the risk and the time frame

The risk considered in the proposed decision-making approach is related to the

extreme imbalance penalties for a given market time unit. If the market time unit is

one hour, the risk thus focuses on extreme values of hourly imbalance penalties. Also,

such extreme penalties are partly due to “spike” occurrences in market price time

series, which are steep increases shortly followed by steep decreases. The resulting

extreme imbalance penalties may thus occur for very short periods, in the order of

a few hours.
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period mean(δ) (e) q95(δ) (e) q95(δ)/mean(δ)
1 hour 7 34 5.0

1 day 166 637 3.8

1 week 1162 2960 2.5

Table 5.1: Analysis of the extreme imbalance penalty time series, for various temporal
resolutions. In this example, the imbalance penalties result from the participation of a wind
farm in a day-ahead market for the period between 01/10/2003 and 30/06/2004.

As a consequence, the extreme imbalance penalties will be smoothed out when

a longer time period is taken for the quantification of extreme penalties. Table 5.1

presents the analysis of extreme imbalance penalty values obtained during the sim-

ulation period between 01/10/2003 and 30/06/2004. These imbalance penalties are

the ones obtained for the reference case of all the examples of this thesis, which

is the participation of a 18 MW wind farm in the Elspot day-ahead market. The

q95 presents the 95%−quantile of the distributions of the hourly, daily and weekly

imbalance penalty δ. This quantity gives an estimate of extreme values. Table 5.1

shows that the extreme penalty values, relatively to the mean values, decrease as

the temporal resolution decreases.

The relation between risk and time frame is important for the definition of the

risk sensitivity factor β relative to the spot-risk approach in Equation 5.15. In the

present thesis, the IPP is supposed to be sensitive to the risk relative to hourly

imbalance. However, the market bidding decisions are hourly decisions, which are

repeated a large number of times, and this high number of decisions may reduce to

risk sensitivity of the IPP.

5.3.3 Modeling of the quantity-price risk

The risk definition in section 5.2.3 highlights the fact that the concept of risk is based

on a given loss. In this section, we formulate the risk related to a given decision vTi

for the market time unit Ti. The associated loss is modeled through the generic loss

function λTi
derived in the previous chapter. Note that similarly to section 5.2.2, the

decision vTi
considered is relative to a physical hedging solution, but the formulation

would be similar in the case of a financial decision uTi
. Also, similarly to section

5.2.2, the formulation of the loss is simplified by setting λTi
(0, vTi

) = λTi
(vTi

). This

loss is given by considering only the case of physical solution in the generic loss

formulation given in Equation 4.8:

λTi
(vTi

) = δ̂
DA

Sy,Ti
(ÊTi|td , E

DA

Ti
) = Y (ṽTi

) + δ̂
DA

Ti

(
ÊTi|td + y(ṽTi

), EDA

Ti

)
(5.32)
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where ṽTi
is the realization associated with the decision vTi

. ÊTi|td is the forecast of

the energy delivered for the period Ti, available at the decision time td. EDA

Ti
is the

day-ahead energy contract relative to the period Ti. Y (ṽTi
) is the additional cost

associated with the physical solution and y(ṽTi
) is the energy balance provided by

the physical solution.

By considering the definition of the price Π∆ given in Equation 5.9, the estimated

reference imbalance penalty function δ̂DA can be reformulated as:

δ̂
DA

Ti

(
ÊTi|td , E

DA

Ti

)
= max

(
0, (ÊTi|td − EDA

Ti
)× Π̂∆

Ti|td

)
(5.33)

The details about such reformulation are given in section C.3.1. Also, based on this

reformulation, Equation 5.32 can be rewritten as:

λTi
(vTi

) = Y (ṽTi
) + max

(
0,
(
ÊTi|td + y(ṽTi

)− EDA

Ti

)
× Π̂∆

Ti|td

)
(5.34)

This formulation shows that the loss λTi
(vTi

) associated with the decision vTi
de-

pends on both the energy forecast ÊTi|td and the price forecast Π̂∆
Ti|td

. In a similar

way, in the case of a financial decision uTi
, the loss would be:

λTi
(uTi

) = Y (ũTi
) + max

(
0,
(
ÊTi|td − (EDA

Ti
+ y(ũTi

)
)
× Π̂∆

Ti|td

)
(5.35)

In the case of deterministic power and price forecasts, the quantities ÊTi|td and

Π̂∆
Ti|td

are real numbers estimating the value of the delivered energy and market

price for the given period Ti. Consequently, the estimated loss λTi
(vTi

) is also a

real value. However, in the case of probabilistic power and price forecasts, the

quantities ÊTi|td and Π̂∆
Ti|td

include additional information about uncertainty. In the

present formulation, these two quantities are random values, and their distribution

is supposed to be given by probability density function (pdf), namely f̂E and f̂Π∆ .

These pdfs are in this work predictive pdfs which are obtained using probabilistic

forecasting method.

Then, in the probabilistic case, the loss λTi
(vTi

) is a function of two random vari-

ables ÊTi|td and Π̂∆
Ti|td

, and is consequently also a random variable. The technique

developed in the frame of this thesis for deriving the loss pdf fλ(v) from the two pdf

f̂E and f̂Π∆ is presented in appendix D.

Then, the risk associated with the decision vTi
can be estimated by considering

one of the risk measures presented in section 5.2.3. For example, if we consider the

conditional value at risk (CVaR), the risk is given by:

Rα(λTi
(vTi

)) = α-CVaR(λTi
(vTi

)) (5.36)
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5.3.4 Formulation of the spot-risk decision-making method

In the previous chapter, the general decision-making problem has been formulated

as an optimization problem in Equation 4.10. In particular, the decision-making

problem relative to n consecutive physical decisions V = [vT1
, vT2

, ...vTn ] is for-

mulated on the basis of Equation 4.10 as following:

V ∗ = argmin
V

N
([
λTi

(0, vTi
)
]n
i=1

)
, subject to CV (5.37)

where N is the norm associated with the decision-making problem, as detailed in

section 4.3.5, and λTi
(0, vTi

) is the estimated loss for the decision vTi
. Hereafter, for

sake of simplicity, it will be set λTi
(0, vTi

) = λTi
(vTi

). This formulation is valid

if the loss λTi
(vTi

) is a real value. However, in the probabilistic case, this loss is

a random variable which is estimated through its pdf, as explained in the previous

section.

From the overview of the state of the art of decision-making methods under

uncertainty proposed in section 5.2.2, it appears that the spot-risk approach which is

the most appropriated one to our problem. In fact, this method is a generalization of

the expected value method, which corresponds to a neutral risk attitude (i.e. β = 0)

in the spot risk approach. Also, the spot-risk method does not rely on a complex

utility function which is hard to derive. Moreover, this approach considers as input

a probabilistic representation of the loss associated with a given decision, which is

consistent with the available renewable generation probabilistic forecast. Finally, the

justification of the choice of this approach will become even more evident later in

the discussion. Based on this analysis, we propose to use a spot-risk approach for

considering the uncertainty relative to the loss in the decision-making problem. This

approach has been presented in section 5.2.2, and is based on a spot-risk function ρ
given from Equation 5.15:

ρ(λTi
(vTi

)) = SV
(
λTi

(vTi
)
)
+ β · R

(
λTi

(vTi
)
)

(5.38)

In the present formulation, the “spot” estimation (SV ) of the loss is taken to be the

expected value E. Also, the considered risk measure (R) is the Conditional Value

at Risk relative to the confidence level α (α-CVaR). The parameter β models the

decision maker attitude towards risk. It is assumed that the risk attitude is the same

for consecutive decisions, thus, β is taken to be constant. Consequently, the generic

decision-making problem formulated in Equation 5.37 can be rewritten as following,
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for a physical solution:

V ∗ = argmin
V

N
([

E
(
λTi

(vTi
)
)
+ β · α-CVaR

(
λTi

(vTi
)
)]n

i=1

)
(5.39)

subject to CV

and straightforwardly, it can be written as following for a financial solution:

U∗ = argmin
U

N
([

E
(
λTi

(uTi
)
)
+ β · α-CVaR

(
λTi

(uTi
)
)]n

i=1

)
(5.40)

subject to CU

This formulation relies on the risk management concept, which is illustrated in

the next section, for the physical solution based on storage combination. Finally,

the last section of this chapter illustrates the benefits from this risk-based method

for the participation of wind generation in a day-ahead market.

5.4 Hedging imbalance penalty risk through combina-

tion of renewables with storage

This section analyzes the risk hedging in the case of the combination of a wind farm

with a storage device. Such combination is considered as a physical solution for

the management of the imbalance penalties related to the participation of the wind

farm itself in the day-ahead electricity market. This specific physical solution has

already been modeled in section 4.6, where the decision-making problem relative to

the strategic scheduling of the storage unit was presented. The loss relative to the

scheduling decision was estimated from deterministic forecasts; no information on

uncertainty was considered and consequently, the risk was not taken into account.

Here, the distribution of the loss relative to the scheduling decision is estimated

from probabilistic forecasts of the wind generation and market prices. Initially,

the general method for the derivation of the loss function given in section 5.3.3 is

applied to the specific physical solution. Then the influence of the risk attitude of

the decision-maker on the resulting decisions is analyzed.

5.4.1 Derivation of the specific loss function relative to the storage

combination

In the study presented in section 4.6, the scheduling decision consisted in n consec-

utive setpoints for the storage state-of-charge (SOC) level. However, here we focus

on the scheduling decision for a given single market time unit, and consequently, the

decision v is relative to the energy output Est from the storage device during this
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market time unit: v = Est. The index Ti
for the time unit is omitted hereafter for

sake of simplicity. Also, the actual energy delivered by the storage device, which is

the realization ṽ associated with the decision v, is supposed to be equal to the deci-

sion. This consists in considering the scheduling decision about the storage energy

output Est directly as a setpoint for the operation of the storage device, which gives:

ṽ = Ẽst = Est = v (5.41)

where Ẽst is the energy which is really delivered by the storage unit. Then, the loss

λ(Est) is derived from Equation 5.34:

λ(v) = λ(Est) = Y (Est) + max
(
0,
(
Êwf + y(Est)− EDA)

)
× Π̂∆

)
(5.42)

The quantities Y (Est) and y(Est) have been defined in section 4.6.2, and more

precisely from Equation 4.50 and Equation 4.51, as:

Y (Est) = |Est| ×
1− η

1 + η
×ΠDA (5.43)

y(Est) = Est (5.44)

where η is the round trip efficiency of the storage unit. In this application, the deci-

sion about the storage schedule is determined after the day-ahead trading decision,

similarly to section 4.6, and consequently, the day-ahead market price ΠDA and the

energy volume EDA are known values in this problem since .

The probabilistic forecast of the wind generation Êwf is given in the form of a

predictive probability density function (pdf), which is denoted as f̂Ewf
. Also, the

price forecast Π̂∆ is taken as a discrete distribution as explained in Equation 5.10.

The price forecast is supposed to be independent from wind generation forecast.

Then, the pdf of the loss λ(Est) is denoted as fλ(Est), and is obtained from the

technique proposed in the appendix section D.3. The formulation of fλ(Est) is more

precisely obtained from the application of the general solution given in Equation D.17

with a = Y (Est) and b = EDA − Est, which gives:

fλ(Est)(z) = A · d(z − Y (Est)) +B · f̂E(γ
−,−1

Π̂∆
−

(z)) + C · f̂E(γ
+,−1

Π̂∆
+

(z)) (5.45)

The quantities A, B and C are detailed in section D.3. The functions γ−

Π̂∆
−

and γ+

Π̂∆
+
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are defined on the intervals I−wf and I+wf respectively, with:

I−wf = [0, EDA − Est] and I+wf =
[
EDA − Est, Emax

wf

]
(5.46)

This formulation of the loss pdf given in Equation 5.45 is valid for every storage

output energy Est lower than the maximum storage output energy Emax
st and greater

than the minimum one Emin
st . These boundaries are determined by the technical

constraints of the storage device. Finally, the results of the application of this

formulation for the case study considered in this thesis are illustrated in the next

section.

5.4.2 Results: Analysis of the influence of the risk attitude on the

decisions

The wind farm considered in this case study is the reference wind farm taken for all

the previous case studies. It is a 18 MW wind farm located in Western Denmark.

It is assumed to be combined with a 30 MWh capacity pumped-hydro storage unit.

The storage charging and discharging nominal rate rnomch and rnomdis are taken equal to

−6 MWh/h and 6 MWh/h respectively. The storage round-trip efficiency is taken

equal to 75 %.

The results are obtained using real world data. The considered time period is

between 11h00 and 12h00 the 22/12/2003. The wind farm operator is supposed

to have participated the day before, the 21/12/2003, in the Elspot day-ahead mar-

ket, and the resulting contract for this period is a 10.7 MWh energy contract at

29.84 e/MWh. Such contract results from the day-ahead bid established the day

before using wind power forecasts available at that time.
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Figure 5.3: Probabilistic wind power forecast obtained from a KDE method, for the period
between 11h00 and 12h00 the 22/12/2003.

In the example, the storage operation is scheduled from updated wind power

probabilistic forecasts, which are obtained from a method based on kernel density

estimator (KDE). This method aims at directly estimating the future conditional
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Figure 5.4: Estimation of the loss distribution from the delivered energy distribution.

probability density functions of the variable to be predicted based on a kernel den-

sity estimator. Such estimator computes a smooth density estimation from data

samples by placing on a each sample point a function representing its contribution

to the density. The distribution is then obtained by summing all these contributions.

The model is presented in detail in [129, 166]. Figure 5.3 illustrates the forecasted

probability density function and the cumulated density function for the time period

is between 11h00 and 12h00 the 22/12/2003. This forecast was issued at 06h00 the

22/12/2003. From the pdf curve, it can be observed that the obtained probabilistic

forecast is non-symmetric. The mean wind power generation forecast is 5.77 MWh.

The price forecasts Π̂∆ are obtained by considering the reference constant fore-

casting approach proposed in section C.4.1. In this application, we assume equal

positive and negative imbalance penalization:

Π̂∆ =





(
Π̂∆

− = −10 e/MWh, α− = 0.40
)

(
Π̂∆

o = 0 e/MWh, αo = 0.20
)

(
Π̂∆

+ = 10 e/MWh, α+ = 0.40
) (5.47)

Figure 5.4 illustrates the application of Equation 5.45 to estimate the loss distri-

bution. This figure more precisely shows the “transfer” from the energy distribution

represented by its pdf f̂E , to the loss distribution represented by its pdf fλ(Est).

The energy delivered by the storage is in this example 4 MWh. The left graph

describes the predictive pdf of the wind generation, which is identical to the one

presented in Figure 5.3. A distinction is made between the part of the distribution

that corresponds to wind energy values lower than b = (EDA-Est) = 6.7 MWh, in

green, and higher, in red. The green values coincides with the interval I−wf , defined

in Equation 5.46, and correspond cases of negative energy imbalance. By contrast,
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Figure 5.5: Influence of the delivered energy from storage Est on the loss distribution.
(left) situations when storage is charging. (right) situations when storage is discharging.

the red values coincides with the interval I+wf , also defined in Equation 5.46, and

correspond cases of positive energy imbalance.

The center graph represents the loss function based on its formulation given in

Equation 5.42. As shown in the figure, it has the role of a transfer function. The

wind generation forecast is the input. The energy imbalance between the forecasted

energy and the energy quantity b is penalized by the price α− · Π̂∆
− or α− · Π̂∆

+

depending on the sign of the imbalance. The constant cost a = Y (Est) corresponding

to the storage energy losses is also represented.

Finally, the right graph represents the loss distribution, derived from Equa-

tion 5.45. The three terms of Equation 5.45 are represented: the Dirac correspond-

ing to the loss value a = Y (Est) is illustrated by the “jump” of the distribution.

This term is the first one of Equation 5.45. The penalty for negative energy imbal-

ance, corresponding to the interval I−wf for the wind generation forecast, is plotted

in green. This term is the second one of Equation 5.45. The penalty for positive

energy imbalance, corresponding to the interval I+wf for the wind generation forecast,

corresponds to the third term of Equation 5.45 and is plotted in red. Finally, the

loss distribution is the sum of these three terms, and is plotted in black.

It is of interest to assess the influence of the energy delivered by the storage

device Est on the loss distribution. In Figure 5.5, the left graph describes cases

when the storage device is charged and the right one describes discharge cases, for

the same time unit of simulation. The grey plot on both graphs corresponds to the

reference case where no energy is delivered or absorbed by the storage unit. From

cases when storage is charging, it is observed that the loss distribution is shifted

to higher values, without any modification of its shape. In the discharging case,
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Figure 5.6: Mean and 0.90-CVaR of the loss distribution resulting from the delivered energy
by the storage Est.

the loss distribution is shifted to higher values of loss, but the resulting distribution

width is reduced. For both cases, such shift is the illustration of the constant cost

added by the storage operation. This cost is derived in Equation 5.43; it is a linear

function of the absolute value of the storage energy Est, which explains the shift to

higher values of loss for high charging or discharging values. The width reduction of

the loss distribution illustrates the reduction of imbalance penalties, which results

from the energy imbalance decrease. In the example, the day-ahead contract energy

is 10.7 MWh, and the mean of the forecast of the energy delivered by the wind farm

is 5.77 MWh. The storage energy which minimizes the mean energy imbalance is

denoted by the reference storage energy Est,ref , and is given by:

Est,ref = EDA − E(Êwf ) = 4.93 MWh (5.48)

If for that time unit, the storage device is charging, then the absolute energy im-

balance, and consequently the loss, will increase. Conversely, if the storage device is

discharging, then the absolute energy imbalance will be reduced, and the loss width

distribution will be reduced as well. The mean and the risk measure relative the

loss distributions shown in Figure 5.5 are detailed in the next figure.

Figure 5.6(a) describes the variation of the mean of the loss distribution for

different values of energy Est delivered by the storage device. In order to better

understand the impact of the storage round-trip efficiency η, three different values

of round-trip efficiency are considered η = 0.75, 0.85 and 0.95. For negative values

of Est, the shift to higher values of loss observed in Figure 5.5 corresponds to an

increase of the mean loss, for the three cases of efficiency. However, for positive
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Figure 5.7: Influence of the consideration of the risk in the decision relative to the energy
delivered by the storage device.

storage energy, the variation of the mean loss depends on the efficiency value. In

the case of low efficiency (η = 0.75), the cost resulting from the storage energy

losses, modeled in the quantity Y (Est), is higher than the reduction of imbalance

penalty. Consequently, the mean loss increases as the storage energy increases and

the minimum mean loss is reached when no energy is delivered from the storage

unit. As the storage efficiency increases, the mean loss is reduced. Also, the value

of storage energy which leads to the minimum mean loss gets higher as the storage

efficiency gets higher, and is bounded by Est,ref defined in Equation 5.48. Most of

the analyses regarding the mean loss remain valid for the risk measure, in figure

5.6(b). The α-CVaR is the risk measure; it is evaluated from each distribution by

applying Equation 5.26, with α = 0.90. The main point to notice is that the value

of Est which minimizes the CVaR gets higher as the storage efficiency increases. For

example, the storage value Est which minimizes the CVaR is close to 0 MWh when

η = 0.75, this value is close to Est,ref when η = 0.95.

Figure 5.7 describes the impact of the consideration of the risk on the decision

relative to the energy delivered by the storage device. The decision is made using

a spot-risk approach already described in section 5.2.2. More precisely, the storage

energy is determined as follows:

E∗
st = argmin

Est

ρ(λ(Est)), subject to Cst (5.49)
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with

ρ(λ(Est)) = E
(
λ(Est)

)
+ β · α-CVaR

(
λ(Est)

)
(5.50)

and Cst is the set of constraints modeling the technical limits of the storage device.

In this example, we assume that there are no limits imposed by the minimum or

maximum SOC for this given market time unit. The only constraints thus come

from the charging and discharging nominal rates, which gives:

Cst : rnomch ≤ Est ≤ rnomdis (5.51)

−6 MWh/h ≤ Est ≤ 6 MWh/h (5.52)

In this example, the parameter α for the risk measure is taken equal to 0.90. β

is the parameter which models the importance which is given to the risk in the

decision-making. The range of value for β is determined so that the two terms of

Equation 5.50 are of the same order. The risk is not considered when β = 0.

Figure 5.7(a) gives one example of the function ρ(Est) with β = 20. This figure

results from the combination of the two plots from Figure 5.6. In this example,

for η = 0.85, the minimum spot-risk value is reached for E∗
st = 3.84 MWh. Figure

5.7(b) gives the influence of β on the quantity E∗
st. The three cases of efficiency lead

to three different decisions. For low value of efficiency η = 0.75, the energy storage

value which minimizes the spot-risk is nearly independent from the risk parameter

β and is close to 0 MWh. It can be explained from Figure 5.6 where the storage

energy which minimizes both mean value and CVaR is close to 0 MWh. Also,

for high efficiency (η = 0.95), the value which minimizes the spot-risk measure is

nearly independent from the risk parameter β and is close to Est,ref . However, for

η = 0.85, the optimal storage value E∗
st highly depends on β. E∗

st is close to 2.7 MWh

for β = 0, and rapidly increases as β increases. In other words, the consideration

of the risk in the decision-making method leads to a higher storage energy schedule

Est. In this example, the energy delivered by the storage is considered as a method

for preventing from extreme values of loss.

Finally, three main concluding remarks can be formulated from this example

based on the combination of a wind farm with a storage unit: first, this example

permits to understand the formulation of the loss, which has been proposed in a

generic way in the previous section, especially with the graphical illustration given

in Figure 5.4. Also, this example clearly demonstrates the risk hedging provided

by the storage device: the energy delivered by the storage unit reduces the risk

related to imbalance penalties. Finally, the influence of the risk parameter β on the

resulting decision has been analyzed. In this case, a risk averse attitude (i.e. high
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values of β) leads to higher values of energy delivered by the storage for reducing

the risk of imbalance penalty.

5.5 Application: risk-based trading of wind generation

in day-ahead electricity markets

This section presents the benefits from the application of the generic risk-based

method formulated in Equation 5.40 to the particular case of trading wind genera-

tion in a day-ahead electricity market. More precisely, the spot-risk approach is used

to determine the optimal energy bid from probabilistic wind power forecasts. The

imbalance penalties resulting from such advanced method are compared to the im-

balance penalties obtained when no information about uncertainty associated with

the wind generation is available.

5.5.1 Main hypotheses

This case study is the follow-up of the case study presented in section 4.4.5. We

recall that the independent power producer (IPP) is assumed to be operating a wind

farm and to trade the whole electricity production to the day-ahead market. The

IPP is also assumed to participate as a price taker party, which means that the bids

proposed by the IPP are price independent bids, with a zero price. Consequently,

the bidding decision only consists in the quantity bid. Further details about the

price taker hypothesis are given in section 2.2.4.

The quantity bid the IPP proposes to the market for a given market period Ti

is denoted as EBDA

Ti
. Also, similarly to the case study in section 4.4.5, the general

bidding decision for the n consecutive market periods covering the following day is

simplified to n independent decision-making problems relative to a single market

period. The following formulation is valid for any market time unit Ti of the trad-

ing period. However, for simplifying the mathematical expressions, the index Ti
is

omitted.

5.5.2 Formulation of the risk-based decision-making method in the

case of day-ahead trading

Similarly to the approach followed in section 4.4, the derivation of the specific spot-

risk approach from the generic formulation is based on the specificities of the present

decision-making problem. The decision in the case of day-ahead trading is a finan-

cial decision u = EBDA . Then, the spot-risk approach for the day-ahead trading

is a particular case of the generic formulation relative to financial decisions V in
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Equation 5.40. Also, the decision is relative to only one market time unit, which

corresponds to n = 1 in Equation 5.40. The norm N is the identity function. Based

on these hypotheses, the optimal bid quantity EBDA,∗ is derived from Equation 5.40:

EBDA,∗ = argmin
EBDA

(
E
(
λ(EBDA)

)
+ β · α-CVaR

(
λ(EBDA)

))
(5.53)

subject to CEBDA

where β is the risk parameter which models the importance which is given to risk

in the decision-making. CEBDA is the constraint associated with the energy bid. In

this example, the energy bid is supposed to be positive and lower or equal to the

maximum energy delivered by the wind farm during the period of a market time

unit. This maximum is denoted as Emax
wf , and corresponds to the energy delivered

by the wind farm generating at nominal power P nom
wf during the duration ∆t of the

market time unit: Emax
wf = P nom

wf × ∆t. Then, the constraints are written as:

CEBDA : 0 ≤ EBDA ≤ Emax
wf (5.54)

5.5.3 Estimation of the loss distribution from probabilistic forecasts

of wind energy and market prices

The loss distribution λ(EBDA) relative to the imbalance penalty for a given day-

ahead energy bid EBDA is derived from the generic loss formulation in Equation 5.35.

The realization associated with the energy bid decision is the energy contract. This

energy contract equals the energy bid as a result of the price-taker hypothesis.

Consequently, u = ũ = EBDA . Also, in the particular case of day-ahead trading,

the quantity EDA is taken null, as already explained in section 4.4.2. Consequently,

Equation 5.35 becomes:

λ(EBDA) = Y (EBDA) + max
(
0,
(
Êwf − y(EBDA)

)
× Π̂∆

)
(5.55)

As already explained in section 4.4.2, the cost Y (EBDA) is null and the energy volume

y(EBDA) equals the energy bid EBDA , which gives:

λ(EBDA) = max
(
0,
(
Êwf − EBDA

)
× Π̂∆

)
(5.56)

In this case, the forecast of the wind generation Êwf is supposed to be a pro-

babilistic forecast, represented by a predictive pdf f̂Ewf
. The price forecast Π̂∆ is

assumed to be a discrete probabilistic forecast, similarly to the previous example

in section 5.4. Then, the pdf of the loss for a given energy bid EBDA is denoted as

fλ(EBDA ). The derivation of this loss pdf is a particular case of the generic formula-
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tion given in Equation D.17. The derivation of fλ(EBDA ) is similar to the one which

has been detailed in the previous section, with Y (EBDA) = 0. More precisely, this

gives:

fλ(EBDA )(z) = A · d(z) +B · f̂E(γ
−,−1

Π̂∆
−

(z)) + C · f̂E(γ
+,−1

Π̂∆
+

(z)) (5.57)

The quantities A, B and C are detailed in section D.3. The functions γ−

Π̂∆
−

and γ+

Π̂∆
+

are defined on the intervals I−wf and I+wf respectively, with:

I−wf = [0, EDA] and I+wf =
[
EDA, Emax

wf

]
(5.58)

5.5.4 Discussion about the expected value of the loss distribution

The optimal energy bid EBDA,∗ obtained from the spot-risk method is formulated

as the result of the optimization problem given in Equation 5.53. However, in the

particular case of β = 0, the spot-risk approach is similar to the expected value

approach:

EBDA,∗ = argmin
EBDA

E
(
λ(EBDA)

)
(5.59)

subject to CEBDA

The formulation of the loss λ(EBDA in Equation 5.56 shows that this loss is a

function of the two random variables Êwf and Π̂∆. The discrete distribution of Π̂∆

is given by Equation 5.10. Using Bayes’ theorem, the expected value E
(
λ(EBDA)

)

can be written as:

E
(
λ(EBDA)

)
=

∑

s={−,o,+}

αs · E
(
λ(EBDA)

Π̂∆=Π̂∆
s

)
(5.60)

By considering the formulation of the loss given in Equation 5.56, Equation 5.60

can be simplified to:

E
(
λ(EBDA)

)
=




α− · Π̂∆

− × |Êwf − EBDA | , (Êwf − EBDA) < 0

α+ · Π̂∆
+ × |Êwf − EBDA | , (Êwf − EBDA) ≥ 0

(5.61)

which leads to:

E
(
λ(EBDA)

)
∝




(1− µ)× |Êwf − EBDA | , (Êwf − EBDA) < 0

µ× |Êwf − EBDA | , (Êwf − EBDA) ≥ 0
(5.62)
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with µ =
α+·Π̂∆

+

α+·Π̂∆
++α−·Π̂∆

−

.

It is then interesting to note that Equation 5.62 corresponds to the check function

ρµ(Êwf − EBDA) defined in Equation 5.7. Such function is used to derive the µ-

quantile of a random value in the quantile regression method, as explained in section

5.1.3. More precisely, the minimum of this function is reached for the µ-quantile of

(Êwf −EBDA). Consequently, the optimal energy bid EBDA,∗ given by Equation 5.59

is in this particular case of β = 0, the µ-quantile of the distribution of the wind

generation forecast Êwf :

EBDA,∗
|β=0 = q̂µEwf

(5.63)

This result is coherent with the one obtained in [60]. In other words, the trading

strategy based on quantile regression, as it is proposed in [60], is a particular case

of the more general decision-making method proposed in this work.

5.5.5 Case study

This section gives the results from the application of the risk-based decision-making

approach given in Equation 5.53 for the participation of a wind farm in a day-ahead

market. The considered wind farm is the reference wind farm taken for all the

previous case studies. It is a 18 MW wind farm located in Western Denmark. The

results are related to the trading of the wind farm generation in the Elspot day-

ahead market during the period between the 01/10/2003 to the 30/06/2004. These

results are obtained using real world data. The forecasting approaches for both the

wind energy and the market price are detailed in the following paragraphs.

Forecasting of the wind generation

In this example, the wind power probabilistic forecasts are obtained from a statistical
model based on quantile regression forest (QRF). This method is a particular case
of quantile regression models, which includes a random input selection phase. It is
specially designed to manage large input dimensionality [167]. More precisely, this is
an extension of Random Forests methods, which rely on classification and regression
trees (CARTs). The application of the QRF method for probabilistic wind power
forecasting is detailed in [132]. For each forecast horizon, a forecast in the form of
a set of quantiles is provided. In this case study, the set includes 21 α-quantiles,
where α is:

α = [0.01, 0.02, ..., 0.05, 0.10, 0.15, 0.20, 0.30, ..., 0.80, 0.85, 0.90, 0.95, 0.96, ..., 0.99]
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Such set of quantiles permits to focus on the tails of the distribution (i.e. quantiles

close to 0 and close to 1)for evaluating more precisely the risk related to these tails.
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Figure 5.8: Step probability density function obtained from the quantiles.

The predictive cumulated density function (cdf) is derived as a piecewise linear

function from the quantiles, which corresponds to given points of this cdf. The exam-

ple of the forecast for a one-hour period of the case study is described in Figure 5.8.

The forecast is relative to the delivered energy the 04/11/2003 between 03h00 and

04h00. The forecast was obtained 28 hours before, that is on the 03/11/2003 at

00h00. In this figure, the quantiles are represented by the circles and the cfd is the

dashed line. Then, the predictive pdf of the wind power production f̂EWF
is com-

puted as a step function from the cdf. For each interval between two consecutive

quantiles, the step value equals the constant value of the derivative of the cdf, as

shown in Figure 5.8.

Forecasting of the imbalance penalty price

Given the difficulty of price forecasting, a method for simulating the price forecast

Π̂∆ is proposed. This method permits to obtain different levels of forecasting error,

and to evaluate their impact on the decision-making. The details of this simulation

approach are developed in section C.4.1.

First, two reference model are considered: the “constant prediction” model,

which gives a constant forecast for all the horizons, and the “perfect prediction”

model which gives the observed price for each horizon. These two models define

the lower and upper bounds, respectively, of the price forecasting errors. Then the

simulated price forecast are based on two parameters which model the forecasting

error, and which are applied to the “perfect prediction” model. The first parameter

is a phase error τ , and the second one is a parameter ǫ which is related to the

uncertainty about the regulation state of the TSO. The “perfect prediction” model

is a particular case of such (ǫ, τ)-model, with (ǫ, τ) = (0, 0). An increase of τ or ǫ
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leads to an increase of the forecasting error, and the “constant prediction” model

corresponds to (ǫ, τ) = (0.5, 0). Further details about this simulation approach,

as well as the performance associated with these models, are given in section C.4.

Here, three different simulated price forecasts are used from the (ǫ, τ)-model with

(ǫ, τ) = (0.75, 0), (0.75, 3), (0.6, 3).

In total, five approaches are considered, including the constant and prefect pre-

diction together with the above three (ǫ, τ)-models, while the imbalance penalty

price Π̂∆ is given as a discrete probabilistic forecast, given by Equation 5.10.

5.5.6 Results

The results are obtained using a simulation tool developed in Matlab®. In partic-

ular, the optimization problem given in Equation 5.53 is solved using a sequential

quadratic programming (SQP) method already implemented in Matlab®.

The first results of this case study focus on the relation between the risk and

the observed imbalance penalties. The aim is to demonstrate that the risk mea-

sured from the loss distribution gives some information about the extreme imbalance

penalties. For this analysis (and only for this one), the day-ahead energy bid does

not take into account the risk related to imbalance penalties, and is taken equal to

the mean of the probabilistic forecast. Then, the risk associated with this specific

decision is calculated from the distribution of the loss, which in turn is derived from

the probabilistic forecast of the wind power production.
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Figure 5.9: Relation between the risk, measured through the VaR or the CVaR, and the
obtained imbalance penalty δ. The results are obtained from the trading simulation period
from the 01/10/2003 to the 30/06/2004.

Figure 5.9 describes the relation between the risk level and the obtained imbal-

ance penalty. The α-VaR and α-CVaR were calculated with the confidence level α
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equal to 0.90. The price model for calculating the loss distribution was the (ǫ, τ)-

model with (ǫ, τ) = (0.75, 0). For better analyzing the influence of the risk level on

the imbalance penalty, the distribution of the imbalance penalty is represented for

different risk levels. A risk level is in this case an interval of risk so that all the lev-

els have the same number of observations. For each risk level, a distribution of the

penalty values is produced. Such distribution is represented through five α-quantiles

with α = [0.1, 0.3, 0.5, 0.7, 0.9]. The first two quantiles α = [0.1, 0.3] equal 0 for all

the different risk level values. This is explained by the dual imbalance pricing mech-

anism, which penalizes only positive or negative imbalances. Consequently, a high

proportion (i.e. 30 %) of the hourly imbalance penalties are null.

For both the VaR and the CVaR measures, Figure 5.9 shows an increase of the

dispersion of the imbalance penalty as the risk measure increases. More precisely, the

extreme imbalance penalties, which are represented by the 0.90-quantile, increase as

the risk measure increases. This analysis confirms that both the VaR and the CVaR

measures inform about extreme penalties, and are thus acceptable risk measures.

Regarding the VaR, this risk measure has been defined in section 5.2.3 as the α-

quantile of the loss distribution, where α is the confidence level. In case of perfect

estimation of the loss distribution, the 0.90-quantile of the imbalance penalty should

be equal to the 0.90-VaR measure. Graphically, this means that the dark red line

would be superposed on the black dashed line, which gives the identity function.

However, figure 5.9(a) shows that the 0.90-quantile of the imbalance penalty is higher

than the 0.90-VaR measure. In other words, the VaR is slightly underestimated.

This is the result from a combined underestimation of the extreme wind power

production and of the imbalance price penalty. This underestimation more generally

refers to the problem of reliability of probabilistic forecasts, which aims at evaluating

how close to the reality the probabilistic forecasts are. The interested reader can

refer to [78] for further details about reliability.

Based on the analysis that the proposed risk is an acceptable measure of extreme

imbalance penalty, the following results focus on the influence of such risk on the

decision-making results for day-ahead trading. The results below are obtained by

applying the spot-risk decision-making method given in Equation 5.53 for determin-

ing the optimal energy bid. Figure 5.10 presents the influence of the risk parameter

β on the distribution of the imbalance penalties. The graph on the left gives the

histograms of the penalty distributions in the reference case and for three different β

values: β = 0, 15, 75. The reference case does not consider any risk. This case con-

sists in setting the energy bid as the mean of the probabilistic forecast of the wind

generation. The results from the risk-based method have been obtained taking the

(ǫ, τ)-model with (ǫ, τ) = (0.60, 3) as price prediction approach. The influence of the

(ǫ, τ) parameters is discussed in further results. From the histograms of Figure 5.10,
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Figure 5.10: Analysis of the distribution of the imbalance penalties resulting from the
risk-based trading method.

it can be observed that the number of occurrences of extreme imbalance penalties is

reduced by using the risk-based approach, compared to the reference case. Also, this

reduction gets higher when high β values are taken. The right graph of Figure 5.10

also describes the impact of the risk-based approach on the imbalance penalty distri-

bution. This graph plots the hourly imbalance penalty resulting from the risk-based

approach, with blue points, against the one obtained in the reference case. The grey

line represents the reference imbalance penalties against themselves, and is thus the

identity function. The reduction of extreme imbalance penalties is illustrated by the

fact that most of the blue points for high values of imbalance penalties are under

the grey line. Consequently, the results presented in Figure 5.10 show the benefits

of the risk-based method in terms of reduction of extreme penalty values.

Figure 5.10 completes the analysis of the influence of the risk parameter on the

imbalance penalty distribution. This figure gives the mean and 0.95-quantile of the

penalty distribution obtained with various β values. First the two graphs show

that both the mean and the 0.95-quantile are reduced by the risk-based approach

compared to the reference approach, and this for all the considered β values. For

values of β lower than 40, the mean and the 0.95-quantile have similar trends. This

signifies that both the average and the extreme values of the imbalance penalty are

reduced with the risk-based approach. They reach of minimum value when β is

close to 10. For β values greater than 40, the 0.95-quantile of the penalty slightly

decreases as the risk parameter increases, whereas the mean penalty increases. This

is coherent with the definition of the risk parameter β, which models the risk aversion

of the decision maker. High values of β mean that the decision maker is highly

sensitive to the extreme penalties, and the consideration of this risk aversion in the
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Figure 5.11: Mean and 0.95-quantile of the imbalance penalty distribution obtained from
the risk-based trading method.

decision-making leads to decisions which reduce the extreme penalties. However,

this risk hedging increases the average value of the penalty. This example is a

particularly clear illustration of the difference of objective between the minimization

of the average or the extreme penalty. The spot-risk approach can thus be considered

as a multi-objective approach, and the risk parameter β corresponds to the weight

given to the objective relative to the minimization of extreme penalties.
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Figure 5.12: Influence of the imbalance price prediction approach on the mean and 0.95-
quantile of the imbalance penalty distribution obtained from the risk-based trading method.

The results presented in figures 5.10 and 5.11 have been obtained with the (ǫ, τ)-

model with (ǫ, τ) = (0.60, 3) as price prediction approach. The last figure 5.12 shows

the mean and 0.95-quantile of the imbalance penalty, obtained with five different
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price prediction approaches. These two plots clearly demonstrate the high sensi-

tivity of the results towards the price prediction approach considered. The perfect

prediction of the imbalance penalty price reduces practically to zero the imbalance

penalty, even without perfect prediction of the wind generation. This results from

the dual-price mechanism for the imbalance penalty settlement. When the penalty

prices are perfectly known, the energy bid equals the maximum bid when the TSO

is down-regulating so that the IPP has only negative energy imbalances which are

not penalized. Similarly, the energy bid equals zero when the TSO is up-regulating

so that the IPP has only positive energy imbalances which are not penalized. Sim-

ilar analysis was made in the study in [68]. Contrary to the perfect prediction, the

constant prediction leads to an increase of both the mean and the 0.95-quantile of

the imbalance penalty for β greater than 7. Also, for the different values of (ǫ, τ)

shown in Figure 5.12, the reduction of the mean and 0.95-quantile increases as the

accuracy of the price prediction approach increases. Finally, Figure 5.12 shows that

the influence of the β parameter on the mean and 0.95-quantile of the penalty, is

higher for more accurate price prediction model (e.g. the case (ǫ, τ) = (0.75, 0))

than for less accurate model (e.g. the case (ǫ, τ) = (0.60, 3)).

To conclude, the application of the risk-based approach for the participation

of wind generation in a day-ahead market permits to illustrate to benefits of the

method, compared to the reference approach which consists in bidding the energy

quantity corresponding to the deterministic forecast of the wind power production.

In this application, the role of the VaR and CVaR measures for informing about

extreme values of imbalance penalty has been confirmed. Also, the integration

of such information in the decision-making process through a spot-risk approach,

demonstrated a reduction of the average and extreme imbalance penalty. Finally, the

results have demonstrated that the proposed risk-based approach can be considered

as a multi-objective approach, where the first objective is to reduce the average

penalty and the second one is to reduce the extreme penalties.

5.6 Conclusions

In this chapter, a method for better accounting for the uncertainty related to the

participation of renewable generation in electricity markets has been proposed and

evaluated. The proposed approach is an extension of the general decision-making

method proposed in the previous chapter.

An overview of the state of the art of the uncertainty models, as well as of

the general methods for decision-making under uncertainty, has been carried out.

The method which has been selected for this work is a risk-based approach, which

permits to explicitly measure the risk related to the imbalance penalty from the
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available probabilistic forecasts of renewable power production.

Then, the different physical and financial solutions for reducing the imbalance

penalties, which have been described and modeled in the previous chapters, are

integrated in the general risk management problem as hedging methods. These

solutions aim at reducing the risk associated with a given decision. The example of

the combination with a storage device as a physical hedging method is presented.

Finally, the proposed risk-based decision-making method has been applied for the

participation of wind generation in a day-ahead electricity market, and the results

obtained demonstrate a reduction of both the average and the extreme values of

imbalance penalties in general. The results also illustrate the compromise between

the reduction of the average penalty, and the reduction of the extreme penalties.
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CHAPTER 6

General Conclusions and Perspectives

This chapter summarizes the main partial conclusions which have been given at

the end of each chapter, and also adds some general conclusions about the whole

research work. In addition, some perspectives for further research related to this

Ph.D. thesis are also suggested.

6.1 General Conclusions

The work presented in this thesis has proposed methods for the management of

the uncertainty related to the participation of renewable generation in electricity

markets. This work has been carried out in the context of an increasing share of

electricity generation coming from renewables, in an electricity sector which evolves

from a centralized to a liberalized system. This new environment leads to the need

of tools and methods for the management of the large scale integration of renewable

generation in power systems. The problem considered in this thesis is taken from the

power producer’s point of view, which aims at minimizing the imbalance penalties

relative to its participation in short-term electricity markets.

The first objective was to understand in depth the challenges related to the par-

ticipation of a power producer including RES units in its generation portfolio, in a

short-term electricity market. This was done in chapter 2, where a detailed presen-

tation of the structure of the electricity markets has been proposed. This description

permitted to point out the specificities related to the short-term electricity markets,

which are the main focus of this work. Also, the definitions of the concepts of “inde-
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pendent power producer” (IPP) and balance responsible parties were given, and

used as a base for the formulation of the imbalance penalties given in the following

chapter. A last contribution of chapter 2 was the overview provided on the state of

the art of existing solutions that an IPP can use for reducing its imbalance penalties.

The presented solutions have been classified into two main categories: the financial

solutions, which are relative to the management of the contracted energy by the

market participant operating the RES units, and the physical solutions which are

relative to the management of the delivered energy by the RES units. Despite their

distinctions coming from their definition, the similarities between these solutions

have been discussed all along the thesis.

In chapter 3, models for the imbalance penalty resulting from the partici-

pation of an IPP in electricity markets have been proposed for different physical and

financial solutions. The reference imbalance penalty for each solution corresponds to

the case of the participation of a reference renewable unit in a day-ahead electricity

market. Then, the different physical and financial solutions have been modeled as

a modification of this reference imbalance penalty. Three physical solutions, each

corresponding to a given technical solution, have been modeled. Namely, these solu-

tions are the aggregation of RES units and the combination of RES units with either

a storage device or with a conventional unit. These solutions have been modeled in

the framework of the concept of commercial virtual power plants, which offers

the possibility for combined units to participate in the market as a single entity.

Regarding financial solutions, the case of the additional participation in the intra-

day market has been modeled. The trading of market derivatives (options) has been

discussed.

Having followed a common framework for the above formulations, we made evi-

dent the similarity between the financial and physical solutions about their impact

on the imbalance penalty. Both financial and physical solutions have been modeled

by two parameters which modify the reference imbalance penalty: an additional

cost and a balance energy volume. The additional cost can be interpreted as the

cost to pay to benefit from the balance energy volume, which permits to reduce the

imbalance penalty. In the case of a financial solution, this balance service is bought

from other market participants through electricity markets, whereas this service is

provided by the combined units in the case of the physical solutions. In other words,

for the operator of a RES unit, an adjustment participation in an intraday market is

similar, from the imbalance penalty point of view, to the combination with a storage

unit. Based on this, we developed a generic formulation of the imbalance penalty

that integrates both physical and financial solutions. This unified formulation

permits to generalize the model for a combination of solutions. In fact, in an indus-

trial context, physical solutions may be combined with financial solutions, and the
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generic formulation permits to develop the necessary simulation tools for evaluating,

dimensioning and operating these solutions. Finally, the application given in section

3.5 has illustrated how a parametric analysis based on this unified model can be

used for the general problem of unit dimensioning in the context of virtual power

plants.

In the following chapter, the different problems related to the participation of an

IPP in an electricity market, and more generally the activation of financial and phys-

ical solutions, have been formulated as decision-making problems under uncer-

tainty. A generic method has been proposed for solving these problems based on a

loss function, which is defined from the estimation of the generic imbalance penalty

model previously detailed. In other words, the generic aspect of the decision-making

method is based on the generic aspect of the imbalance penalty model itself. It is

important to note that if the formulation of the imbalance penalty was specific to

each considered solution (i.e. not generic), it would have been necessary to derive

different decision-making methods which would be appropriate to each different so-

lution. In the present work, the generic decision-making method is applied to the

reference case of day-ahead trading, to the case of intraday trading (i.e. financial

solution) and to the case of a storage combination (i.e. physical solution). Also,

the application of the advanced decision-making method for the strategic operation

of a combined wind-hydro plant has demonstrated the importance of the decision

approach on the obtained results. This example has illustrated the difference bet-

ween the two paradigms: the minimization of the average imbalance penalty for a

period, and the minimization of the extreme values of imbalance penalty for the

same period. In particular, a solution which is acceptable for one paradigm is not

always acceptable for the second paradigm, and vice versa.

The consideration of this compromise between the average and extreme values

in a decision-making problem is the core of the risk-based approach proposed in

this thesis. In this method, the risk associated with a given decision is modeled

from the statistical distribution of the imbalance penalty obtained for this decision.

Such imbalance penalty distribution is derived from the probabilistic forecasts of

the energy delivered by the RES unit, as well as from market price forecasts. Since

advanced price forecasting is not a trivial task, we proposed to simulate the price

forecast uncertainty. The resulting price forecasts have a level of forecasting error

which can be adjusted by the simulation, which permit to analyze the influence of

the accuracy of the price forecasts on the decision results. The risk associated with a

decision is then evaluated from risk measures taken from the financial literature, and

integrated in the decision-making problem. The sensitivity of the IPP to extreme

imbalance penalties is modeled in the proposed approach through a risk parameter.

In this context, the physical and financial imbalance management solutions are seen
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as hedging methods, which reduce the risk related to the imbalance penalties.

The risk hedging is illustrated for the case of the combination with storage, which is

an example of physical solution. Also, the benefits from the risk-based approach, in

terms of reduction of the average and extreme imbalance penalties, are demonstrated

from simulations based on real world data.

Finally, the main contribution of the thesis relies on the proposed general metho-

dology, which can be seen as a roadmap for step-by-step building a generic decision-

making method adapted to the considered problem. The first step consists in mod-

eling the outcome of the decision; then a generic decision-making is proposed based

on this model, and finally the method is extended for taking into account the uncer-

tainty related to the decisions. Finally, a number of results on selected real-world

cases demonstrate the applicability and the usefulness of this methodology.

6.2 Perspectives

The first and obvious perspective of this research work consists in applying the

proposed decision-making method to other case studies for obtaining further results

about the benefits of the method. In particular, these additional case studies could

consist in considering either different simulation time periods, different reference

RES units, or different electricity markets for the case study. These additional

results could be given in the form of a sensitivity analysis of the main parameters

which define the case studies. Another extension of this work consists in applying

the risk-based decision-making method in the case of a financial solution other than

day-ahead trading, such as intraday trading, or in the case of physical solutions,

such as strategic operation of a combined wind-hydro plant. Finnaly another direct

application of this work would be to consider different risk measures in the spot-risk

approach.

Another more technical perspective of this present work is related to the opti-

mization algorithms used for solving the decision-making problem. In this thesis,

the optimization problems have been simplified so that they could be solved by clas-

sic continuous optimization techniques already implemented in several numerical

solvers. For example, in the application of the management of a combined wind-

hydro plant in section 4.6, the constraints of the optimization problem have been

simplified so that the problem becomes a linear optimization problem. It would be

interesting to develop adapted optimization techniques which could be used for solv-

ing the problem without having to simplify it. Moreover, only continuous decision

problems have been taken into account in this work. The extension of this decision

approach to discrete decision problems is an interesting perspective of this work.

Technically, optimization techniques such as dynamic programming, used in [120],
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could be considered.

Regarding the uncertainty management, the proposed approach for the deriva-

tion of the loss distribution used in the risk-based approach, assumes that both

renewable generation and market prices are independent. However, in areas with a

high share of electricity generation coming from renewables, such as in Denmark,

renewable generation really impacts the electricity market prices. Furthermore,

the correlation between these two stochastic quantities may increase the imbalance

penalty risk for the IPP. For considering such dependence, a possibility consists in

using conditional forecasts of the renewable generation which are respective to given

levels of market prices.

The generic decision-making method which has been proposed in this work is

based on the concept of virtual power plant (VPP) which combine different genera-

tion units. A perspective concerns the possibility of integrating controllable loads

in the VPP. In this case, the VPP includes loads in addition to the generation units,

and consequently, the participation in the market does not consist only in selling

power production, but may also consist in buying electricity for some market time

units. The VPP operator is then denoted as an aggregator. Indeed, controllable

loads are loads which can be displaced in time, or curtailed. They consequently rep-

resent another possibility for the VPP operator to manage its imbalance penalties.

For instance, a controllable load can be adjusted so that the period of this load cor-

responds to the period when the renewable generation exceeds the contract volume.

In other words, a controllable load can be considered as an additional physical solu-

tion which can reduce the positive energy imbalance. In this case, this corresponds

to an extension of the VPP model.

Regarding the financial solutions, the case of option trading has been dis-

regarded, based on the analysis that specific options adapted to the short-term

management of energy imbalance are not available products in today’s markets.

However, the evolution of the regulatory framework for renewable generation, from

feed-in tariffs to full market integration, leads to the need of new solutions to be

proposed to IPPs for managing their renewable generation. In this context, new ac-

tors, which propose hedging solutions specifically designed for IPPs to manage their

imbalance penalty risk, are emerging. One example is “virtual storage”, which takes

the form of a limited amount of energy available during a given period, and usable

by the IPP when needed. Such virtual storage can be delivered by a real operator

of hydro power units. The possibility to consider the management of these inno-

vative hedging solutions in the proposed generic decision-making method would be

an interesting perspective of the work. Another interesting extension of the method

would be the possibility to take into account long-term contracts in the decision,

which have been excluded in the case of the present formulation.
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A more general perspective of this work is related to the objective of the deci-

sions made by the VPP. In this thesis, the only objective considered for the decisions

is an economic one which consists in minimizing the imbalance penalty. However,

in general, the decisions may be relative to several objectives, which are not only

economic but also technical. This is explained by the fact that the solutions pro-

posed for the management of imbalance penalties can be simultaneously used for

different purposes. For example, the decision about the storage scheduling could be

a multi-objective decision which aims at reducing both the imbalance penalty of the

IPP and the risk of grid congestion.
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APPENDIX B

Renewable Generation Forecasting Methods

This section gives details about the forecasting of renewable generation. The first

section presents an overview of the state of the art of renewable generation forecas-

ting. Such overview is general and is valid for any stochastic renewable source, such

as photovoltäıc or wind generation. The second section gives some illustrations in

the particular case of wind generation forecasting. Finally, the third section focuses

on probabilistic forecasting of wind generation. The information about uncertainty,

provided by these probabilistic methods, is used in chapter 5 for estimating the risk

associated to decision-making problems.

B.1 Overview of the state of the art of renewable gen-

eration forecasting

Renewable generation forecasting aims at providing end-users with estimates of the

likely energy output of a RES unit at a given time in the future. The considered

RES unit can be a wind farm, a photovoltäıc plant or another RES unit. In general,

forecasting tools provide an estimation of the future generation based on Numerical

Weather Predictions (NWP), on onsite measurements and on power unit charac-

teristics. Either power or energy can be forecasted as a function of the end-user

requirements.

The two mainstream approaches for RES power forecasting are the so-called

physical and the statistical approaches [78].

• In the physical approach, the model chain includes two steps: in a first step, the
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NWP data available at the nodes of the meteorological model are extrapolated

to the location of the RES unit. Such step is denoted as “downscaling”. In

the case of wind genration forecasting, this can be done by modeling the wind

profile at the location of the RES unit and by using a Computational Fluid

Dynamic code which considers the full description of the terrain close to the

wind farm. The second step consists in converting the downscaled NWP to

power.

• Statistical approaches are based on models which try to establish the relation

between historical values of explanatory variables and historical values of RES

production. The same relation is then used to forecast the expected RES

production from the new explanatory variables. The physical phenomena are

not modeled in this approach. However, one of the main challenges related to

these approaches is the selection of the explanatory variables.

The most common output of RES generation forecasting models are spot fore-

casts, also called point forecasts, where a single power value is provided for each

time step in the future. However, probabilistic forecasting models are being devel-

oped. Such models provide additional information on the expected distribution of

RES production, and will be discussed in the next section B.3. The reference model

used for assessing the performance of advanced power forecasting models is often

the persistence. Such approach consists in using the last measured power value as a

constant prediction for the next period.

Renewable production forecasts time scales

The forecast horizon is the period between the time when the prediction is done

and the given time in future to which the prediction refers. Power forecasting can

be done for different time scales of horizons. A classification of power forecasting

time scales is proposed in [78,168]. This classification has been established for wind

generation forecasting, but remains valid for other variable RES:

• Very short-term power forecasts estimate the future power from seconds up to

a few minutes. These forecasts can be used for the power unit active control.

• Short-term power forecasts are available for the following 48-72 hours. Such

forecasts are used for various power system management functions such as

unit commitment, economic dispatch, reserve estimation or network congestion

management. These forecasts are also used for trading generation in short-

term electricity markets. Regarding day-ahead markets for example, power

forecasts are necessary at day d for the whole duration of the day d+ 1.
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• Medium-term power forecasts estimate the future power for longer time scales,

up to 5-7 days ahead. These forecasts can be used for maintenance planning

for example.

The present thesis focuses on the imbalance penalties related to the participation

in short-term electricity markets, and, thus, only short-term power forecasts are

considered in this work.

A forecasting run is defined as a time series of the estimated variable (i.e.

RES production), for consecutive horizons separated by a constant timestep. This

timestep, or temporal resolution, is often imposed by the timestep of the NWP, since

they are used as direct input. Temporal resolution for short-term power forecasts is

generally between 1 and 3 hours. If the temporal resolution of RES forecasts is lower

than the one requested for the application (e.g. trading), simple interpolation can

be an acceptable solution to increase the temporal resolution. The update time is

defined as the period between two forecasting runs. Similarly, the power forecasting

update time is generally imposed by the NWP update time, which is generally 6,

12 or 24 hours. However, statistical models which use the measurements of RES

generation as input can be updated more frequently (i.e. every 30 or 60 min). Con-

sequently, power forecasts can be described as rolling windows, where the window

length is determined by the series of horizons and the shift between two windows is

the update time.

B.2 Example of approaches for wind generation fore-

casting

This section focuses on approaches from the state of the art regarding wind gen-

eration forecasting. This specific RES is of particular importance, since its fast

development has lead to major issues for the management of electricity networks

including a large share of wind generation. These issues are related to the high

variations of the wind power generation, as well as the difficulty to forecast them.

In this context, wind generation forecasting methods have been considered as a use-

ful solution for the management of such variations, and short-term wind generation

forecasting tools have been in use for more than 15 years [169]. A state of the art of

the wind generation forecasting methods can be found in [168,170]. Also, a compar-

ison between various wind generation forecasting methods, based on statistical or

physical approaches, can be found in [171]. The objective of this section is double:

the first one is to give an illustration of typical forecasts of wind generation obtai-

ned by state-of-the-art forecasting methods. The second objectives is to present and

compare the level of forecast errors obtained with these methods.
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Figure B.1: Consecutive forecasting runs and related measurements for the power genera-
tion of a 18 MW wind farm in Western Denmark the 16 and 17 February 2004.

Figure B.1 presents the results of four consecutive forecasting runs for the power

generation from a wind farm located in Western Denmark. The first run is produced

the 16/02/04 at 00 h and the forecast is then updated every 12 h. The measured

wind generation is illustrated with the black curve. The forecasting runs give the

estimation of the wind generation for the next 48 h. The wind generation forecasts

are produced using an advanced statistical power forecasting model described in

[11, 111]. This model is denoted as the ”Regressive Power Curve” (RPC) model,

and aims at modeling the relationship between the wind speed forecasts and the

power outputs of the wind farm. Such kind of approaches are often referred as

power curve modeling. In this model, the power curve is modeled using a piecewise

least square linear fitting of the wind-speed to power relation.

The different existing forecasting models are usually evaluated based on the

“distance” between the provided forecast value and the measured value. Generally,

these forecast performances are evaluated on a sample of NT forecast values which

have the same horizon index j but with different run time tk. The wind generation

forecasting error ej,k for a given horizon j and a run time tk is the difference between

the measured and forecasted values : ej,k = P̃j,k − P̂j,k.

Two main performance evaluation criteria are commonly used [11,78]. The Nor-

malized Mean Absolute Error (NMAE) is the average of the errors in their absolute

values, normalized by the energy delivered by the wind farm at nominal power dur-

ing a market time unit. Such energy volume is denoted as Enom. The Normalized

Root Mean Square Error (NRMSE) is the square root of the average of the squared

errors, normalized by Enom:

NMAEj =
1

Enom

1

NT

NT∑

k=1

|ej,k| , and NRMSE(j) =
1

Enom

√√√√ 1

NT

NT∑

k=1

(ej,k)
2 (B.1)
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The choice of the NMAE or NRMSE as a main evaluation criterion depends on

the sensitivity of the end-users to the errors. The RMSE measure will be preferred

for applications sensible to quadratic penalization of the errors whereas the NMAE

measure will be preferred for applications sensible to linear penalization of the error.

Note that the NMAE for a period is equivalent to the normalized mean of the

absolute energy imbalance for this period.
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Figure B.2: Mean Absolute Error per horizon for five wind generation forecasting models:
perfect prediction, persistence, constant prediction, RPC and QRF models.

Figure B.2 compares the performance of five wind generation forecasting ap-

proaches. These results corresponds to a 9 month period from 01/10/2003 to

30/06/2004. During this period, a forecasting run is calculated every 12 hours,

for the 48 coming hours. Figure B.2 shows the Normalized Mean Absolute Error

(NMAE) defined in Equation B.1 for the 48 horizons. First, the NMAE relative

to perfect prediction is always null, since the error is always null. Also, the model

denoted as “constant prediction” which NMAE is plotted with the blue curve in

Figure B.2 is an second basic reference model which consists in delivering a con-

stant value for all the different horizons for all the runs. Such constant value is

in the presented example the mean of the wind generation measurements during

a period in the past (often denoted as “climatology”). Here it is calculated based

on the training period which corresponds to the first 9 months of the available

data (01/01/2003-30/09/2003). The RPC model is the power curve modeling ap-

proach already presented in Figure B.1 [11,111], and its NMAE is described with the

green curve. Finally, the “QRF” model corresponds to a second advanced statistical

model based on quantile regression forest. Such approach provides an estimation of

the distribution of the future wind power production, through quantiles [167]. A

further discussion on this kind of probabilistic models which inform on the uncer-

tainty related to the forecast is given in the following chapter 5. In this example,

the considered forecast is the median of the distribution.
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From Figure B.2, it can be observed that the constant prediction method results

to a nearly constant NMAE slightly varying around 19 % of the nominal power of

the considered wind farm. The persistence NMAE is lower than the one resulting

from the constant prediction for the first 12 horizons, and greater for the follow-

ing horizons. Also, the “RPC” and “QRF” models have a very close NMAE for

the considered period. This NMAE is close to the persistence NMAE for the first

3 horizons and is highly reduced for the further horizons. Finally, Figure B.2 de-

scribed the forecasting period relative to the trading in day-ahead markets, where

the bidding decision has to be made at 12h00 the day before for the 24 hours of the

following day. The NMAE relative to this period varies between 8 and 10 % of the

Enom for the two advanced models.

B.3 Probabilistic forecasting of wind generation

B.3.1 Overview of the state of the art of the methods for probabi-

listic forecasting of wind generation

The previous section has presented deterministic forecast of the wind generation.

The present section aims at completing the presentation with probabilistic methods.

Focus is given only to methods developed for the forecasting of wind generation.

The incertainty provided by probabilistic wind generation methods is a useful

information for decision-making applications related to the large scale integration of

wind power. For example, the uncertainty information can be used for estimating

the optimal level of reserves that needs to be allocated to compensate wind vari-

ability [139]. Energy bidding in a day-ahead electricity market is another emerging

application. It has been shown that, when trading future production on an elec-

tricity market, the use of probabilistic wind generation forecasts can lead to higher

benefits than those obtained by only using deterministic forecasts [67]. Finally, wind

generation probabilistic forecasts can be used for the optimal operation of combined

wind-hydro power plants [94].

Two main approaches have been used for probabilistic wind generation forecas-

ting: the prediction error approach and the direct approach. Such classification is

taken from the state of the art of probabilistic forecast methods presented in [129].

• The prediction error approach consists in providing probabilistic forecasts of

the errors of an existing deterministic forecasting model. An example of this

approach is given in [78] where the proposed method estimates the distribution

of the errors depending on the weather situations. The fuzzy set theory is used

to overcome the problem of class discontinuity, and the error distributions
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associated to different fuzzy sets are then combined using one of two methods:

linear opinion pool or adapted resampling. Another example of prediction error

approach is proposed in [172]. Such method is based on quantile regression

based on cubic spline regression and provides quantiles of the prediction error

using various explanatory variables.

• The second approach is denoted as the direct approach, and aims at directly

providing probabilistic forecasts of the considered variable. The following ex-

amples of direct approaches are recent studies and demonstrate the active

research activity in this field. First, a method where probabilistic forecasts

can be derived from meteorological ensembles is provided in [173]. In [174],

the probabilistic forecasts are based on physical considerations. Local quantile

regression is use in [175] to compute specific quantiles of the power production.

A comparison of three quantile approaches, namely local quantile regression,

local Gaussian modeling and, the Nadaraya-Watson estimator, is performed

in [176]. Also, a method based on kernel density estimation (KDE) is pro-

posed in [129,166]. Such method provides predictions in the form of probabil-

ity density functions, which can be used as such or transformed into different

sub-products depending on the application (e.g. point prediction, variance,

prediction intervals or quantiles).

The two probabilistic methods which are used in the present thesis for the fore-

casting of wind generation are the KDE and the QRF methods. They are presented

in section 5.1.3.

Based on these probabilistic forecasts, statistical measures have been developed

for informing on the confidence one may have about the point forecast associated

to the considered probabilistic forecasts. Such numerical value is called Prediction

Risk Index (PRI) in [177]. In this article, the PRI is calculated from wind power

ensemble forecasts. Also, in [174], indicators of weather dynamics are defined using

methods from synoptic climatology. These indicators are used for classifying the

local weather conditions and for relating them to different levels of forecast uncer-

tainty. Such classification is based on measurements of wind speed, wind direction

and atmospheric pressure.

Finally, it is important to note that the resulting probabilistic forecasts from

these two approaches are generated on a per look-ahead time basis, and, conse-

quently, do not inform about the temporal dependence between consecutive fore-

casts. Also, such forecast are obtained from a given RES unit. Consequently, they

do not inform about the spatial dependence between forecasts relative to different

units located at different locations, which is useful in the case of aggregation. Ex-

amples of existing methods for considering these temporal and spatial dependences
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are presented in the next section.

B.3.2 Discussion about spatial and temporal dependence of the

probabilistic wind generation forecast

This section focuses on the information relative to the spatial and temporal depen-

dence included in probabilistic forecasts of wind generation.

Temporal dependence of the probabilistic forecast of wind generation

Scenarios based forecasts provide a possible future course of the forecasted vari-

able. However, the other probabilistic forecasting methods presented in the previ-

ous paragraphs are generated on a per look-ahead time basis. They consequently

do not inform on the development of the prediction errors through prediction se-

ries, since they neglect their temporal interdependence structure. Moreover, such

information is of particular importance for many time-dependent and multi-stage

decision-making processes such as the strategic operation of a combined wind-hydro

storage unit.

Based on this need for temporal dependence information, a method is proposed

in [178] for generating statistical scenarios of wind generation from non-parametric

probabilistic forecasts. The resulting scenarios respect the predictive densities and

account for the interdependence structure of prediction errors. Consequently, they

can be used in time-dependent processes. For deriving these scenarios, the set of

random variables composing probabilistic series is transformed into a single multi-

variate normal variable. The normal property for the new variable is the simplest

assumption one can make, and this assumption is analyzed in the study as well.

Then, the multivariate normal variable covariance matrix is tracked with recursive

estimation. Finally, the scenarios are constructed using the covariance matrix and

the normal variable.

Spatial dependence of the probabilistic forecast of wind generation This

paragraph focus on the dependence between stochastic variables in the case of aggre-

gated wind power sources. Spatial interdependence of stochastic variables is often

underestimated in literature, where stochastic variables are assumed to be inde-

pendent. Such independence assumption can lead to a severe underestimation of

the system risk, corresponding to the case of minimum variability of the aggregate

stochastic generation. In [179], a method is proposed for considering the spatial

interdependence structure in the case of aggregated power sources.

The modeling approach is based on the distinction between the one-dimensional

marginal distribution which represents the output spectrum of each stochastic input,
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and the multi-dimensional stochastic dependence structure which determines the

mutual interaction between the stochastic inputs and the direct impact on their

aggregate. The approach is generally referred to as copula theory. In particular,

the method enables to define uncertainty bounds of the stochastic model and to

define worst-case scenario for the aggregated stochastic variables. This uncertainty

analysis and model is used for considering various problems related to aggregated

stochastic power generation, ranging from stability issues to generation expansion

studies [180].
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APPENDIX C

Market Price Forecasting Methods

This appendix gives some additional details about market price forecasting. First,

the main characteristics of the electricity market are presented. These characteristics

are explained from the literature. Then, a second section gives an overview of the

state of the art of existing market price forecasting methods. Due to the complexity

relative to market price forecasting, an approach for simulating forecasts of the

market price is proposed. The price quantity which is necessary for making the

decisions relative to the trading of renewable generation in electricity market is

identified from the model of the imbalance penalty given in chapter 3. Then, the

simulated prices permits to obtain a disrete probabilistic forecast of the market price

with different levels of forecasting error.

C.1 Characterization of electricity market prices

Before the liberalization of the electricity sector, electricity prices were set by reg-

ulators on the basis of the costs of generation, transmission and distribution. In

that setting, power prices used to change rarely, and in an essentially deterministic

manner. Over the last ten years, several countries have been experiencing deregu-

lation in generation and supply activities, as described in section 2.1.1. One of the

important consequences of this restructuring is that prices for electricity are now

determined, like any other commodity, according to the fundamental economic rule

of supply and demand [181,182].

However, electricity is a commodity which has the particularity of a very lim-
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ited storability; the main storage units are now the hydro power units. Another

characteristic of electricity is the high inelasticity of the demand in the short-term

markets. Consequently, the electricity prices are highly sensitive to demand and

supply variations [183].

An analysis of the structure of electricity prices is proposed in [182], and identifies

three main characteristics:

• A first characteristic of electricity prices is the mean reversion towards a level

that represents a marginal cost and may be constant, periodic or periodic with

a trend. A variable is said to be characterized by mean reversion when high

and low values of this variable are temporary, and are expected to tend to an

average trend. When the current market price is less than the average price,

the commodity is considered attractive for purchase, and price is expected to

increase. Similarly, when the current market price is above the average price,

the market price is expected to decrease.

• A second feature of the price process is the existence of small random moves

around the average trend, which represent the temporary imbalances between

supply and demand in the network.

• A third and intrinsic feature of price process is the presence of so-called

“spikes”, which are steep price increases shortly followed by a steep decrease.

Such spikes may occur as a result of a generation unit outage, when a large gen-

eration unit is disconnected. Figure C.1 describes the hourly time series of the

day-ahead market price for the period between 01/10/2003 and 30/06/2004.

The average price during this period is 29.14 e/MWh. However, this price can

reach extreme values during very short periods, such as on the 21/06/2004 at

14h00 when the day-ahead price reaches 89.67 e/MWh.

Without considering the spike effects, the main parameters which influence the

market price can be classified into three categories [183]:

• Influence relative to the electricity demand: The electricity demand first de-

pends on the considered period (i.e. season, day, hour) and also on meteo-

rological conditions such as cloudiness and temperature, which are stochastic

variables.

• Influence relative to the power supply: The power supply first depends on the

characteristics and operation of the generation units involved in the considered

electricity markets. Power supply also depends on stochastic factors such as

unit outages, variations of delivered energy by renewable units or meteorolo-

gical conditions.
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Figure C.1: Day-ahead electricity market price in the Elspot market for the Western Den-
mark area, from 01/10/2003 to 30/06/2004.

• More general factors influence the energy prices which in turn impact the

electricity prices: such factors are for example the geopolitical context or the

regulation framework.

C.2 Overview of the state of the art of electricity mar-

ket price forecasting

The main characteristics of the structure of the electricity market prices which have

been described above make them hardly predictable. Three main reasons of the

difficulties relative to price forecasting are given in [181,184]:

• Firstly, the seasonality regarding daily, weekly and annual timescales, is low.

• Secondly, many quantifiable exogenous variables may be considered for price

forecasting. Loads and network constraints are two examples of such exogenous

variables.

• Psychological and sociological factors can cause an unexpected and irrational

buyout of certain contracts leading to price spikes.

However, several recent studies propose forecasting models for electricity prices.

The paper [185] gives a review of some of the main methodological issues and tech-

niques relative to price forecasting in the new competitive power markets. Also

the review paper [184] documents the main issues and recent research on modeling

and forecasting electricity prices. In the same article, the special microstructure of

electricity market is described as an explanation stochastic properties of electricity

price time series.
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Many approaches for modeling electricity price time series are based on autore-

gressive moving average (ARMA) models. Such models are also called Box-Jenkins

models after the iterative Box-Jenkins methodology usually used to estimate the

considered time series [186]. ARMA models generally consist of two parts, an

autoregressive (AR) part and a moving average (MA) part. Autoregressive inte-

grated moving average (ARIMA) models consist in a generalization of the ARMA

model. Such models may be applied in some cases where data show evidence of non-

stationarity. An initial differencing step (corresponding to the ”integrated” part of

the model) can be applied to remove the non-stationarity. An example of price sce-

nario generation method based on ARIMA models in presented in [187]. Also, the

autoregressive moving average model with exogenous inputs model (ARMAX) is an

extension of ARMA models including exogenous inputs terms. An example of elec-

tricity price forecasting method based on ARMAX model is given in [188,189], with

system load considered as the exogenous variable. Finally, many stochastic models

are inspired by the financial literature and consist in adaptations of well known and

widely applied in practice approaches. Such adaptations involve the addition of some

of the electricity price characteristics, like price spikes or mean-reversion [181,184].

These price forecasting techniques are methods related to electricity market price

in general and are not specific to any given market. In the proposed decision-making

formulation, the loss function is based on a forecast of the price quantity ∆Π which

is defined as the difference between the day-ahead price and the regulation price.

Consequently, specific attention is paid in the following paragraph to these two

categories of electricity price.

C.2.1 Day-ahead market price forecasting

A wide survey about of electricity price forecasting techniques developed over the

last fifteen years is given in [190]. The main focus of this survey is given to the

methods for forecasting electricity prices on a pool-style energy market including

day-ahead market. Most of the presented approaches for forecasting day-ahead

market prices are based on time series models as described in the previous paragraph.

A specific example is presented in [191]. In this study, different time series models

are explained and compared from real-world case studies based on the electricity

markets of mainland Spain and California.

A conditional parametric model of the day-ahead market price as a function of

external variables is proposed in [192]. The considered external variable is the wind

power forecasted production converted into a forecasted wind power penetration.

Conditional parametric models of two different dimensions are constructed. One

models the price as a function of time of day and wind power penetration and the
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other one has an additional input variable, indicating the weekday. For the dynamic

part, Recursive Pseudo Linear Regression is used. Results based on the NordPool

day-ahead market price in the Western Denmark area are presented.

C.2.2 Regulation price forecasting

Regulation prices are settled in the real-time market, where the transmission system

operator (TSO) takes regulation measures for ensuring the overall equilibrium bet-

ween production and consumption in the considered regulation area. Consequently,

the regulation prices are used for the calculation of the penalty that an Independent

Power Producers (IPP) has to pay as a result from its energy imbalance.

Regulation markets are closely linked to the reliable operation of the grid, and

thus precaution is taken regarding the design of such markets. More precisely,

regulation markets are designed for preventing gaming in these markets, which could

jeopardize the grid reliability [61]. The extremely high volatility of regulation market

prices and the resulting hard predictability is a consequence of such anti-gaming

design [60, 61, 193]. If regulation prices were easily predictable, gaming methods

could lead the IPP to intend energy imbalance. Conversely, regulation markets are

designed for encouraging the IPP to reduce their energy imbalance.

Recent models have been proposed for better understanding the regulation price

structure. In [187], a method for generating time series of real-time balancing market

price is described. Such method combines a seasonal auto regressive integrated

moving average (SARIMA) approach with discrete Markov processes. The resulting

scenario trees aim at representing possible realization of the stochastic prices. Such

scenario trees can be used in planning models based on stochastic optimization to

generate bid sequences to the balancing market. The application of such approach

to the real-time Nordic power market example demonstrates the consistency of the

approach used to model real-time balancing power prices. In a previous paper, the

same authors proposed a method based on autoregressive integrated moving average

(ARIMA) for generating regulating power price scenarios [194].

C.3 Simplification of the price forecasting problem and

formulation of a discrete probabilistic forecast

C.3.1 Reformulation of the requested price forecast

The decision-making method proposed in the previous section is based on a forecast

of the price quantity ∆Π, which is derived from the difference between the day-

ahead price and the regulation price, and the sign of the IPP energy imbalance in
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Equation 3.8:

∆Π
(
Ẽ, EC

)
=




∆Π

− = Π− −ΠDA ⇐ Ẽ < EC

∆Π
+ = ΠDA −Π+ ⇐ Ẽ ≥ EC

(C.1)

where Ẽ and EC are the delivered and contracted energy volumes respectively. ΠDA

is the day-ahead market price, and Π+ and Π− are the regulation prices for positive

and negative imbalance respectively. From such formulation, it appears that the

requested forecast ∆̂Π depends on the sign of the forecast of the energy imbalance

(Ẽ −EC), which increases the difficulty relative to the forecasting. However, in the

case of dual price imbalance settlement mechanism, the problem can be simplified

as follows.

The dual price imbalance settlement mechanism has already been explained in

section 2.2.5. In this mechanism, the regulation prices for positive and negative

imbalance depend on the regulation state of the TSO, and three main states can be

determined, from the overall energy imbalance in the balancing area:

1. The overall energy imbalance is negative and the TSO is up-regulating. In

that case, only negative energy imbalances are penalized. In other words,

Π− > ΠDA and Π+ = ΠDA.

2. The overall energy imbalance is small enough so that no regulation is needed.

Because the regulation need is defined from the overall imbalance in the system,

the occurrence of no regulation need is not negligible [195]. In that case,

Π− = ΠDA and Π+ = ΠDA.

3. The overall energy imbalance is positive and the TSO is down-regulating. In

that case, only positive energy imbalances are penalized. In other words,

Π− = ΠDA and Π+ < ΠDA.

An additional fourth state consists in a simultaneous need, in the same market time

period, of up-regulation and down-regulation. Such situations may happen [195],

but remain infrequent.

An example of the repartition of the TSO regulation states in the Western Den-

mark area, for the period from 01/10/2003 to 30/06/2004 is given in Table C.1.

This example shows that the two main states are the up and down regulation states,

which correspond to a non null overall energy imbalance. The frequency of absence

of regulation need reaches 21.70 %. Also, the frequency of simultaneous up and

down regulation state is less than 1 %. Finally, it can be verified from the same

example that the four states cover all the possibilities of regulation states, since the

sum of the four relative frequencies equals one.

228



Management of uncertainties related to renewable generation in electricity markets

TSO regulation state frequency

up regulation 42.69 %

down regulation 35.69 %

no regulation 21.70 %

up and down regulation 0.08 %

Table C.1: Repartition of the TSO regulation states in the Western Denmark area, for the
period from 01/10/2003 to 30/06/2004.

Based on the three main TSO regulation states, we define the price quantity Π∆

as the price time series given by:

Π∆ =





ΠDA −Π− , up-regulation

ΠDA −Π+ , down-regulation

0 , no regulation

sign(|ΠDA −Π+| − |ΠDA −Π−|) ·max (|ΠDA −Π+|, |ΠDA −Π−|)

, both up and down regulation

(C.2)

In the fourth case corresponding to both up and down regulation, only the regulation

price which deviates from the day-ahead price with the greatest extent is taken.

This corresponds to considering only the main regulation state. This assumption is

necessary for representing the quantity Π∆ as a time series, otherwise the variable

Π∆ would have two possible values for the same time step.

The price quantity ∆Π is then formulated from the price time series Π∆ as

follows:

∆Π
(
Ê, EC

)
=




|Π∆| , sign(Π∆) = sign(Ê − EC)

0 else
(C.3)

Also, given such time series Π∆, the estimated reference imbalance penalty func-

tion δ̂
DA

derived in Equation 4.11 can be rewritten as follows:

δ̂
DA (

Ê, EDA

)
=

∣∣∣Ê − EDA

∣∣∣× ∆̂Π (C.4)

= max
(
0,
(
Ê − EDA

)
× Π̂∆

)
(C.5)

To conclude, the forecasting of the combined price quantity ∆Π, based on three

market prices, can be reformulated as the forecasting of only one time series Π∆.

The main advantage of this formulation is the consideration of only one price value,

but the forecasting of such quantity remains a hard task.
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C.3.2 Formulation of a discrete probabilistic forecast for imbalance

penalty price

Forecasting the sign of Π∆ consists in forecasting the TSO regulation state, which

is a difficult task [60]. Moreover, the estimated imbalance penalty derived in Equa-

tion C.5 is highly sensitive to the sign of Π̂∆: if Π̂∆ has the same sign as the

estimated energy imbalance (Ê − EDA), the imbalance penalty equals the product

of these two quantities. If these two quantities have an opposite sign, the penalty

is null. Consequently, the decision relative to the day-ahead quantity bid is highly

sensible to such price forecast. In other words, an error about the sign of this price

forecast may lead to bidding or scheduling decisions which increase the imbalance

penalty, instead of reducing it.

In order to manage the high uncertainty related to this price forecast, a discrete

probabilistic forecast respresentation with three possible outcomes is proposed. Each

outcome is associated to a TSO regulation state : up-regulation, no regulation, and

down-regulation. These three regulation states respectively correspond to negative,

null and positive values for Π̂∆, from Equation C.2. Each state is assigned a prob-

ability α, and the sum of the three probabilities equals one.

Π̂∆ =





(
Π̂∆

− < 0, α−

)
(
Π̂∆

o = 0, αo

)
(
Π̂∆

+ > 0, α+

) , with α− + αo + α+ = 1 (C.6)

The determination forecasts in the form of Equation C.6 is a difficul task. How-

ever, for the purposes of our study, we need realistic price forecasts in the decision-

making methods. In the work presented in this thesis, instead of using a specific price

forecasting method, we propose to simulate different levels of price forecasting

error. These different levels permit to evaluate the influence of the accuracy of the

price forecasts on the results of the decision-making. As a starting point, we define

two reference approaches, which are the perfect prediction forecasting method, and

the constant prediction forecasting method. Also, we propose a third method which

permits to simulate different levels of forecasting errors. The obtained levels of er-

ror are bounded by the performance of the two reference approaches. These three

methods are presented and evaluated in the next section.

Before explaining the details of these approaches, it is interesting to derive the

relation between the price Π̂∆ formulated in Equation C.6 and the original price

∆̂Π. This relation is obtained as follows:
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δ̂
DA (

Ê, EDA

)
=

∑

s={−,o,+}

αs · δ̂
DA (

Ê, EDA

)
|Π̂∆=Π̂∆

s

(C.7)

=
∑

s={−,o,+}

αs ·max
(
0,
(
Ê − EDA

)
× Π̂∆

s

)
(C.8)

=




|Ê − EDA| ×

(
α− · |Π̂∆

− |
)

Ê < EDA

|Ê − EDA| ×
(
α+ · |Π̂∆

+ |
)

Ê ≥ EDA
(C.9)

By comparing the later equation with the formulation of δ̂
DA

given in Equa-

tion 4.11, we obtain ∆̂Π
− = α− · |Π̂∆

− | and ∆̂Π
+ = α+ · |Π̂∆

+ |.

C.4 Proposition of a simulation approach for market

price forecasts and errors

C.4.1 Formulation of the considered simulation approaches

The perfect prediction approach

In the perfect prediction approach, the TSO regulation state is perfectly known and

either α− or αo or α+ equals one. The corresponding price quantity Π̂∆
s , where s is

the state so that αs = 1, is equal to the observed imbalance penalty price Π∆. For

example, in the case of TSO up-regulation, the perfect prediction forecast for the

market time unit Ti is:

(
Π̂∆

−, Ti
= Π∆

Ti
< 0, α−, Ti

= 1
)

(C.10)

The constant prediction approach

In the constant prediction approach, the discrete probabilistic forecast is constant

for all the different runs and horizons. This approach is similar to the constant

approach relative to wind generation forecasting, described in section B.2. The ap-

proach also consists in assuming equal positive and negative imbalance penalization.

Consequently, for any market time unit Ti, the constant forecast Π̂∆
Ti

is given by:

Π̂∆
Ti

=





(
Π̂∆

− = −10, α− = 0.40
)

(
Π̂∆

o = 0, αo = 0.20
)

(
Π̂∆

+ = 10, α+ = 0.40
) (C.11)
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The probabilities α and prices Π̂∆
+/− proposed here are obtained by considering the

observed prices in the NordPool market during the years 2003 and 2004.

With this constant price forecast, the estimated imbalance penalty δ̂
DA

is pro-

portional to the estimated absolute energy imbalance, as can be straightforwardly

obtained from Equation C.9:

δ̂
DA

∝ |Ê − EDA| (C.12)

In other words, the decision-making methods which aim at minimizing the expected

imbalance penalty δ̂
DA

based on this constant price forecast, are actually methods

which aim at minimizing the expected absolute energy imbalance |Ê − EDA|. This

point is discussed in the section 4.6 relative to the strategic combination of a storage

unit with a winf farm. Finally, the performance of this baseline approach is evaluated

in the next section C.4.2.

Proposal of a method for simulating imbalance penalty price forecasting

errors

The two forecasting approaches presented above correspond to the upper and lower

bounds of the forecasting problem: in the perfect prediction approach, all the infor-

mation about future price is available in the forecast whereas the constant prediction

provides the minimal information about the future price. This section gives a method

for simulating price forecasts with a level of error between these two references. The

simulated forecast is derived from the perfect prediction forecast based on two error

parameters :

• A first parameter ǫ is a constant which is related to the uncertainty about the

TSO regulation state. For example, in the case of up-regulation, instead of

having a probability α− = 1 and α+ = 0 in the perfect prediction case, the

proposed ǫ-model will give α− = ǫ and α+ = (1 − ǫ). Similarly, in the case

of down-regulation, instead of having a probability α− = 0 and α+ = 1 in

the perfect prediction case, the proposed ǫ-model will give α− = (1 − ǫ) and

α+ = ǫ. The constant parameter ǫ models the uncertainty about the TSO

regulation state. The perfect prediction approach is a particular case of the

model with ǫ = 1. The ǫ-model does not affect the situations where there is

no regulation (i.e. αo = 1). Also, the price forecast values Π̂∆
+ and Π̂∆

− are

equal in the proposed model.

• The second parameter τ models a phase error. Such parameter is a time

period duration and corresponds to a delay. It is also a constant for a given
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τ -model. For example, instead of considering the perfect prediction for a given

market time Ti, the τ -model gives the perfect prediction relative to the market

time Ti − τ . Such approach corresponds to the so-called persistence model,

already described in the wind power forecasting section. The perfect prediction

approach is a particular case of the τ -model with τ = 0.

The (ǫ, τ)-model combines the two parameters. For example, if the regulation

state corresponding to the market time Ti− τ is up-regulation, the (ǫ, τ) forecast for

the market time Ti is given by:

Π̂∆
Ti

=





Π̂∆
−, Ti

= Π̂∆
−, Ti−τ , α− = ǫ

Π̂∆
o, Ti

= 0 , αo = 0

Π̂∆
+, Ti

= Π̂∆
−, Ti−τ , α+ = 1− ǫ

(C.13)
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Figure C.2: Example of results of simulated forecasts of the imbalance penalty price ∆Π
+/−,

based on an uncertainty parameter ǫ = 0.75 and the phase error τ = 3 h. Note that the real
value of the prices coincides to the perfect prediction.

Figure C.3 illustrates the imbalance penalty price resulting from the (ǫ, τ)-model.

The prices ∆̂Π
+ ∆̂Π

−
1 described in the figure are obtained from the distribution of Π̂∆

from the relation given in section C.3.2:

∆̂Π
+ = α+ · |Π̂∆

+ | and ∆̂Π
− = α− · |Π̂∆

− | (C.14)

and t he perfect predictions are illustrated with plain lines while the (ǫ, τ)-forecasts

are illustrated with dashed lines. Regarding the prefect prediction, either the price

for positive imbalance ∆Π
+, or the price for negative imbalance ∆Π

−, is non null. In

1Note that, due to editing problems, the price forecast ∆̂Π
− is denoted as ∆Π

− in the figure;

similarly, the price forecast ∆̂Π
+ is denoted as ∆Π

+. This comment is also valid for the next figure
C.3.
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the case of the (ǫ, τ)-forecast, the non null price ∆Π
+/− is reduced to ǫ = 75 % of the

non null price. Also, the price which was null in the case of perfect prediction equals

(1− ǫ) = 25 % of the non null price. Also the (ǫ, τ)-forecast is delayed by τ = 2 h.

C.4.2 Evaluation of the considered simulation approaches
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Figure C.3: Mean absolute error of the (ǫ, τ)-price forecasting model, and comparison with
the constant prediction and the perfect prediction.

Figure C.3 presents the performance of the different imbalance penalty price

forecasting models. The forecasting performance is evaluated through the Mean

Absolute Error, as a fraction of the mean imbalance penalty price ∆̂Π
+/−. The

constant and perfect prediction approaches are represented as the upper and lower

bounds: the perfect prediction has a null error, while the constant prediction has a

high MAE, reaching 200 % of the mean imbalance penalty price. Figure C.3 also

shows that, regarding the (ǫ, τ)-model, the MAE increases as ǫ increases, and that,

similarly, the MAE increases as τ increases.

Finally, Figure C.3 demonstrates the interest of the proposed method for simu-

lating imbalance penalty price forecasts. More precisely, the resulting forecasts have

a level of performance which can be adjusted in order to reach a given level of error.

Such a method is particularly useful for evaluating the influence of the price fore-

casting performance on the decision relative to the trading of renewable generation

in short-term electricity market, such as in section 5.5.
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APPENDIX D

Estimation of the Loss Distribution from the Predictive

Energy and Price Distribution

The aim of this section is to explain the derivation of loss distribution from the

energy and price distributions. In a first step, the loss is formulated as a function of

the energy and market price. Then, the general formulation of the loss distribution

is given in the case of continuous probabilistic distribution for both the energy and

the market price. The simplified formulation in the case of discrete probabilistic

forecast of the market price is presented in the last section.

D.1 Formulation of the loss

For a decision v, the loss λ(v) associated to this decision is formulated in Equa-

tion 5.34 as:

λ(v) = Y (ṽ) + max
(
0,
(
Ê + y(ṽ)− EDA

)
× Π̂∆

)
(D.1)

where Ê and Π̂∆ are the energy and price forecasts. ṽ is the realization associated

to v. Y (ṽ) and y(ṽ) are the additional cost and balance energy volume associated

to the realization ṽ, respectively. The quantities ṽ, Y (ṽ) and y(ṽ) depend on the

decision v. In the present formulation, the decision v is supposed to be given (i.e.

to have a fixed value), and consequently, the loss can be rewritten as:

λ(v) = a+max
(
0, (Ê − b)× Π̂∆

)
(D.2)
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with the parameters a and b defined by a = Y (ṽ) and b = EDA − y(ṽ). In Equa-

tion D.3, the loss is a function of the energy forecast Ê and price forecast Π̂∆. Such

function is denoted as γ, which is defined by:

γ
(
Ê, Π̂∆

)
= a+max

(
0, (Ê − b)× Π̂∆

)
(D.3)

The function γ does not aim at modeling a different loss, but rather at reformulating

the loss as a function of the energy forecast Ê and price forecast Π̂∆.

D.2 General solution of the problem

The loss λ is formulated in Equation D.3 as a function of the energy forecast Ê

and the price forecast Π̂∆. For simplifying the mathematical expressions, the price

quantity Π∆ is simplified to Π. In the general case, the energy and price forecasts are

considered to be probabilistic forecasts in the form of predictive probability density

function (pdf). The pdf associated to the energy forecast is denoted as f̂E and the

one for the price forecast as f̂Π.

The determination of the distribution of a random variable λ then consists in de-

termining the its pdf denoted as fλ. The formulation of the loss given Equation D.3,

combined with Bayes’ theorem for continuous distributions, gives:

fλ(z) = fγ(E,Π)(z) =

∫

AΠ

fγ(E,Π)|Π=y(z) · f̂Π(y)dy (D.4)

where AΠ is the set of possible price Π. Then, the main objective is to obtain the

pdf fγ(E,Π)|(Π=y). For a given price Π set to Π = y, the function γ(E,Π)|(Π=y) is

a function of only one variable: the energy E. For simplifying the mathematical

expressions, the function γ(E,Π)|(Π=y) is denoted as γy:

γ(E,Π)|(Π=y) = γy (D.5)

fγ(E,Π)|(Π=y) = fγ
y
(E) (D.6)

The derivation of the pdf fγ(E,Π)|(Π=y) can thus be interpreted as a variable

substitution problem, from the variable E to the variable γ(E,Π)|(Π = y). Then,

the new variable γ(E,Π)|(Π=y) is simplified by considering three cases: y < 0, y = 0

and y > 0.
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y < 0 : γ(E,Π)|(Π=y) = γy(E) =




a+ (E − b)× y , E < b

a , E ≥ b
(D.7)

y = 0 : γ(E,Π)|(Π=y) = γy(E) = a (D.8)

y > 0 : γ(E,Π)|(Π=y) = γy(E) =




a , E < b

a+ (E − b)× y , E ≥ b
(D.9)

E is the energy delivered by the RES unit and is positive; the maximum delivered

energy is denoted as Emax. Consequently, the function γy is defined on the interval

I = [0, Emax]. Also, the interval I is divided into two interval I− and I+ defined as

follows:

I = I− ∪ I+ , with




I− = [0, b]

I+ = [b, Emax]
(D.10)

Such decomposition is valid for 0 ≤ b ≤ Emax. If b < 0, I− = ∅ and I+ = I. If

b > Emax, I− = I and I+ = ∅.

D.2.1 Formulation of the variable substitution problem

The following equations give the derivation of the pdf fγ
y
(E) for the three cases:

y > 0, y > 0 and y = 0. For each case, the derivation of the pdf fγ
y
(E) is then

based on the decomposition of the definition interval I = I− ∪ I+. For each one

of these two sub intervals, the variable substitution problem is simplified.

• y > 0

– I− = [0, b]: the function γy on the interval I−, is a constant function equal

to a. The image of the interval I− by the function γy is the singleton

{a};

– I+ = [b, Emax]: the function γy is an affine function, which is derivable

and invertible;

The restriction of γy on I+ is denoted as γ+
y ;

The inverse function of γy on I+ is denoted as γ+,−1
y ;

The derivative function of γy is denoted as γ+
y ′;

The image of the interval I+ is the interval γy(I
+) = [a, a+ (Emax − b) · y].
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The resulting pdf fγ
y
(E) is defined for z ∈ γy(I

+) as:

fγ
y
(E)(z) =

∫ b

0
f̂E|Π=y(x)dx ·d(z−a)+

1

|γ+
y ′(z)|

· f̂E|Π=y(γ
+,−1
y (z)) (D.11)

where d is the Dirac delta function, defined by:

d(z − a) =




1 if z = a

0 if z 6= a

The first term of Equation D.11 is relative to the variable substitution for

the interval I−, while the second term is relative to the interval I+. Also, in

the present case, γ+
y ′ = y. The function fγ

y
(E) is considered to be null for

z /∈ γy(I
+).

• y < 0

Similarly to the case y > 0, the pdf fγ
y
(E) is defined for z ∈ γy(I

−) as:

fγ
y
(E)(z) =

∫ Emax

b
f̂E|Π=y(x)dx·d(z−a)+

1

|γ−
y ′(z)|

·f̂E|Π=y(γ
−,−1
y (z)) (D.12)

where γ−
y is the restriction of γy on I−. Also the function fγ

y
(E) is considered

to be null for z /∈ γy(I
−).

• y = 0

The function γy is a constant function equal to a on both intervals I− and

I+. Consequenlty,

fγ
y
(E)(z) = d(z − a) (D.13)

D.2.2 Summary

Finally, the pdf fγ(E,Π)|Π=y has been formulated for the different possible values

of y as a function of the conditional distribution of the delivered energy: f̂E|Π∆=y.

Then, the final loss pdf fλ can be obtained from Equation D.4 by decomposing the

set AΠ into three domains where Π < 0, Π = 0 and Π > 0. For each domain,

the conditional loss pdf fγ(E,Π)|Π=y is given from Equation D.11, Equation D.12,

Equation D.13.

The loss pdf fλ is not explicitly formulated here. However, the explicit formula-

tion is given in the simplified case of discrete probabilistic forecast of the price.
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D.3 Solution of the simplified problem

The general problem discussed in the previous paragraph is simplified when consi-

dering a discrete probabilistic forecast of the market price. Also, the forecast of the

delivered energy is supposed to be independent from the price Π∆, and consequently,

for all y ∈ AΠ, f̂E|Π∆=y = f̂E .

The discrete distribution of the market price Π = Π∆ is the one given in Equa-

tion C.6:

Π̂∆ =





(
Π̂∆

− < 0, α−

)
(
Π̂∆

o = 0, αo

)
(
Π̂∆

+ > 0, α+

) (D.14)

Based on this discrete price distribution, the loss pdf can be rewritten from

Equation D.4 as:

fγ(E,Π)(z) =
∑

s={−,o,+}

αs · fγ(E,Π)|Π=Π∆
s
(z) (D.15)

with Π∆
− < 0, Π∆

+ > 0 and Π∆
o < 0

The expressions of fγ(E,Π)|Π=Π∆
s
are given from the previous paragraph, accord-

ing to the sign of the price Π = Π∆
s :

• fγ(E,Π)|Π=Π∆
+
is determined using Equation D.11;

• fγ(E,Π)|Π=Π∆
−
is determined using Equation D.12;

• fγ(E,Π)|Π=Π∆
o
is determined using Equation D.13.

Equation D.11 and Equation D.12 are simplified by using cumulated density

function F̂E of the delivered energy Ê:

∫ b

0
f̂E(x)dx = F̂E(b) and

∫ Emax

b
f̂E(x)dx = 1− F̂E(b) (D.16)

which gives:

fλ(z) = A · d(z − a) +B · f̂E(γ
−,−1

Π̂∆
−

(z)) + C · f̂E(γ
+,−1

Π̂∆
+

(z)) (D.17)
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with

A = α− · (1− F̂E(b)) + α0 + α+ · F̂E(b) (D.18)

B = α− ·
1

|Π̂∆
− |

(D.19)

C = α+ ·
1

|Π̂∆
+ |

(D.20)

The functions γ−

Π̂∆
−

and γ+

Π̂∆
+

are affine functions defined by:

γ−

Π̂∆
−

: [0, b] 7→
[
a, a− b · Π̂∆

−

]
(D.21)

z 7→ γ−

Π̂∆
−

(z) = a+ Π̂∆
− × (z − b) (D.22)

and

γ+

Π̂∆
+

: [b, Emax] 7→
[
a, a+ (Emax − b) · Π̂∆

+

]
(D.23)

z 7→ γ+

Π̂∆
+

(z) = a+ Π̂∆
+ × (z − b) (D.24)

The first term of the loss pdf in the first line of Equation D.17 is the weighted

dirac function d(z − a). The last two terms correspond to the penalization of the

negative and positive imbalance energy.

Consequently, in the case of the simplified problem based on discrete distribution

of the market price Π̂∆, and independent from the energy forecast Ê, the pdf of the

loss can be explicitly derived from the predictive pdf of the delivered energy and

the function γ. The predictive pdf for delivered energy E is given from RES power

forecasting methods. Example of loss pdf are given in section 5.4, where the risk

management related to the storage combination is analyzed.
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GESTION DES INCERTITUDES LIÉES À LA PRODUCTION RENOUVELABLE DANS LE
CADRE DES MARCHÉS D’ÉLECTRICITÉ

Résumé

L’intégration de production d’électricité renouvelable dans les réseaux d’électricité est rendue
difficile à cause du caractère variable et aléatoire de cette production. Le travail de cette thèse se
penche sur la participation des producteurs d’énergie renouvelable aux marchés d’électricité, et plus
précisément sur les coûts de régulation imputés à ces producteurs pour tout écart entre la production
délivrée et la production contractée sur ces marchés. Dans ce contexte, l’objectif de cette thèse est
de modéliser et d’évaluer les différentes méthodes de gestion de ces pénalisations d’écarts liées à la
participation de producteurs d’énergie renouvelable dans les marchés court-terme d’électricité. Ce
travail propose d’abord une classification des méthodes existantes pour la diminution de ces pénalités.
Les solutions dites physiques, liées au portefeuille de production, sont distinguées par rapport aux
solutions dites financières, qui sont basées sur des produits de marché tels que les options. Les
solutions physiques sont abordées dans le cadre des centrales virtuelles. Un modèle générique de la
pénalisation des écarts d’énergie est proposé. Le problème de prise de décision relatif à ces diverses
solutions est ensuite formulé en tant que problème d’optimisation sous incertitude. Cette approche
est basée sur une fonction de coût qui est exprimée à partir du modèle générique de pénalités. Enfin,
l’incertitude liée à la production renouvelable est considérée à travers une méthode basée sur le
risque, qui est mesuré à partir d’outils financiers. Les différentes méthodes sont illustrées avec des
cas d’étude basés sur des données réelles.

Mot clés : Energies Renouvelables, Marché d’Électricité, Mécanisme d’Ajustement, Centrale Virtuelle,

Gestion des Systèmes Électriques, Prise de Décision, Incertitude, Risque.

MANAGEMENT OF UNERTAINTIES RELATED TO RENEWABLE GENERATION PAR-
TICIPATING IN ELECTRICITY MARKETS

Synopsis

The operation of Renewable Energy Sources (RES) units, such as wind or solar plants, is intrin-
sically dependent on the variability of the wind or solar resource. This makes large scale integration
of RES into power systems particularly challenging. The research work in the frame of this thesis fo-
cuses on the participation of renewable power producers in liberalized electricity markets, and more
precisely on the management of the regulation costs incurred by the producer for any imbalance
between the contracted and delivered energy. In such context, the main objective of the thesis is
to model and evaluate different methods for the management of imbalance penalties related to the
participation of renewable power producers in short-term electricity markets. First, the thesis gives
a classification of the existing solutions for the management of these imbalance penalties. A distinc-
tion is made between physical solutions which are related to the generation portfolio, and financial
solutions which are based on market products. The physical solutions are considered in the frame of
a Virtual Power Plant. A generic model of the imbalance penalty resulting from the use of physical
or financial solutions is formulated, based on a market rule model. Then, the decision-making prob-
lem relative to both physical and financial solutions is formulated as an optimization problem under
uncertainty. The approach is based on a loss function derived from the generic imbalance penalty
model. Finally, the uncertainty related to the RES production is considered in the risk-based decision
making process. The methods are illustrated using case studies based on real world data.

Keywords : Renewable Energies, Electricity Market, Balancing Mechnism, Virtual Power Plant, Power

System Management, Decision-Making, Uncertainty, Risk.
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Ecole Doctorale : ED No432: “Sciences des Métiers de l’Ingénieur”
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