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Abstract

Nowadays, charge-exchange excitations in nuclei become one of the central topics in nuclear physics

and astrophysics. Basically, a systematic pattern of the energy and collectivity of these excitations

could provide direct information on the spin and isospin properties of the in-medium nuclear inter-

action, and the equation of state of asymmetric nuclear matter. Furthermore, a basic and critical

quantity in nuclear structure, neutron skin thickness, can be determined indirectly by the sum rule

of spin-dipole resonances (SDR) or the excitation energy spacing between the isobaric analog states

(IAS) and Gamow-Teller resonances (GTR). More generally, charge-exchange excitations allow one

to attack other kinds of problems outside the realm of nuclear structure, like the description of

neutron star and supernova evolutions, the β-decay of nuclei which lie on the r-process path of

stellar nucleosynthesis, and the neutrino-nucleus cross sections. They also play an essential role

in extracting the value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vud via the

nuclear 0+ → 0+ superallowed Fermi β decays. For all these reasons, it is important to develop the

microscopic theories of charge-exchange excitations and it is the main motivation of the present

work.

In this work, a fully self-consistent charge-exchange relativistic random phase approximation

(RPA) based on the relativistic Hartree-Fock (RHF) approach is established. Its self-consistency

is verified by the so-called IAS check. This approach is then applied to investigate the nuclear

spin-isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and

the charged-current neutrino-nucleus cross sections.

For two important spin-isospin resonances, GTR and SDR, it is shown that a very satisfactory

agreement with the experimental data can be obtained without any readjustment of the energy

functional. Furthermore, the isoscalar mesons are found to play an essential role in spin-isospin

resonances via the exchange terms, which leads to a profound effect in the nuclear isovector prop-

erties, e.g., the density dependence of the symmetry energy in nuclear matter.

In the investigation of the isospin symmetry-breaking corrections for the superallowed β decays,

it is found that the corrections δc are sensitive to the proper treatments of the Coulomb mean

field, but not so much to specific effective interactions. With these corrections δc, the nucleus-

independent Ft values are obtained in combination with the experimental ft values in the most

recent survey and the improved radiative corrections. The values of Cabibbo-Kobayashi-Maskawa

matrix element |Vud| thus obtained well agree with those obtained in neutron decay, pion decay,

and nuclear mirror transitions, while the sum of squared top-row elements somehow deviates from
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the unitarity condition.

Expressing the weak lepton-hadron interaction in the standard current-current form, the rele-

vant transitions from the nuclear ground state to the excited states are calculated with RHF+RPA

approach. In this way, the semileptonic weak interaction processes, e.g., neutrino reactions, charged-

lepton capture, β-decays, can be investigated microscopically and self-consistently. First illustrative

calculations of the inclusive neutrino-nucleus cross section are performed for the 16O(νe,e
−)16F re-

action, and a good agreement with the previous theoretical studies is obtained. The main effort is

dedicated to discussing the substantial influence of different recipes for the axial vector coupling

strength and the theoretical low-lying excited states of the daughter nucleus.
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Résumé de la thèse de M. Haozhao Liang:

Excitations d’échange de charge dans les noyaux atomiques:

une approche covariante et self-consistante

Les excitations d’échange de charge dans les noyaux constituent l’un des sujets importants et

actuels en physique nucléaire et en astrophysique. En principe, une connaissance systématique de

l’évolution du comportement de ces excitations à travers la table des éléments fournirait des infor-

mations directes sur les propriétés en spin et isospin de l’interaction entre nucléons dans le milieu

nucléaire, et sur l’équation d’état de la matière nucléaire. Par ailleurs, une quantité d’importance

essentielle pour la structure des noyaux, l’épaisseur de la peau de neutrons, peut être déterminée

par la règle de somme de la résonance spin-dipolaire (RSD) ou par la séparation en énergie en-

tre l’état isobarique analogue (EIA) et la résonance de Gamow-Teller (RGT). Plus généralement,

les excitations d’échange de charge permettent d’aborder des problèmes d’intérêt général tels que

l’étude de l’évolution des étoiles à neutrons et des supernovae, la décroissance β des noyaux le long

du processus r dans la nucléosynthèse stellaire, ou les interactions neutrino-noyau. Elles jouent

aussi un rôle essentiel pour extraire la valeur de l’élément Vud de la matrice de Cabibbo-Kobayashi-

Maskawa par le biais de la réaction de décroissance β super-permise 0+ → 0+ dans les noyaux.

Pour toutes ces raisons, il est important de développer des théories microscopiques des excitations

d’échange de charge, et ceci constitue la principale motivation de notre recherche.

Dans ce travail, nous établissons le formalisme et les méthodes numériques pour décrire les

excitations d’échange de charge dans le cadre de la Random Phase Approximation (RPA) self-

consistante construite sur l’approximation de Hartree-Fock relativiste (RHF). Un test important

de précision numérique est réalisé sur l’état isobarique analogue. La méthode est ensuite utilisée

pour mener des applications numériques réalistes sur un certain nombre de questions physiques:

les résonances de spin-isospin dans les noyaux proches des noyaux magiques, les corrections dûes

aux mélanges d’isospin dans les transitions β super-permises, les interactions neutrino-noyau dans

les voies de courants chargés.

Pour les deux modes importants de spin-isospin que sont la RGT et la RSD nous trouvons

qu’un excellent accord avec l’expérience est obtenu sans aucun réajustement des paramètres du

modèle. De plus, les termes d’échange de l’interaction induite par les mésons isoscalaires jouent

un rôle essentiel dans les excitations de spin-isospin, à la différence de la RPA construite sur

l’approximation de Hartree relativiste.

En ce qui concerne notre étude des transitions β 0+ → 0+ super-permises l’une des conclusions

est que les corrections δc dûes aux violations de la symétrie d’isospin dépendent sensiblement

du champ moyen d’échange produit par les interactions coulombiennes, mais ne changent pas

sensiblement avec le modèle de Lagrangien utilisé. Nous utilisons ces valeurs de δc pour déduire

des plus récentes valeurs expérimentales de ft dans les noyaux T = 1, et en tenant compte des

corrections radiatives, les valeurs de Ft ”indépendantes de noyaux”. Nous obtenons ainsi des
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valeurs de l’élément de matrice |Vud| de Cabbibo-Kobayashi-Maskawa en bon accord avec les valeurs

déduites des décroissances neutronique et pionique, et les transitions dans les noyaux miroirs,

tandis que la somme des carrés des éléments de la première ligne dévie légèrement de la condition

d’unitarité.

Nous avons également utilisé nos fonctions d’onde RPA pour évaluer les amplitudes de transition

correspondant à l’interaction faible lepton-hadron sous la forme standard courant-courant. Ainsi,

les processus faibles semi-leptoniques tels que les réactions neutrino-noyau, capture leptonique

chargée, désintégration β, peuvent être étudiés. Nos premières applications concernent la réaction

16O(νe, e
−)16F pour laquelle nous comparons nos prédictions avec celles d’autres auteurs. Dans

la discussion des résultats nous nous efforçons en particulier de clarifier l’influence appréciable des

différentes prescriptions que l’on peut adopter pour le choix de la constante de couplage vecteur

axiale et l’inclusion ou non des états excités de basse énergie dans le noyau final.
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Chapter 1

Introduction

The nuclear charge-exchange excitations correspond to the transitions from the ground-state of the

nucleus (N ,Z) to the final states in the neighbouring nuclei (N∓1, Z±1) in the isospin lowering T−

and raising T+ channels, respectively. These excitations can take place spontaneously, like in the

well-known case of β decays, or be induced by external fields, like the charge-exchange reactions,

e.g., (p, n), (3He, t), and so on. These excitations are categorized into different modes according

to the nucleons with spin up and spin down oscillating either in phase, the non-spin-flip modes

with S = 0, or out of phase, the spin-flip modes with S = 1. The important modes which have

attracted an extensive attention experimentally and theoretically include the isobaric analog state

(IAS) with S = 0, ∆Jπ = 0+, Gamow-Teller resonance (GTR) with S = 1, ∆Jπ = 1+, and

spin-dipole resonance (SDR) with S = 1, ∆Jπ = 0−, 1−, 2− (Osterfeld, 1992; Ichimura et al., 2006;

Krasznahorkay et al., 1999; Yako et al., 2006).

At present, the charge-exchange excitations in nuclei become one of the central topics in nuclear

physics, because a systematic pattern of the excitation energy and collectivity of these resonances

could provide direct information on the spin and isospin properties of the in-medium nuclear in-

teraction, and the symmetry term of the nuclear equation of state (EOS). Furthermore, a basic

and critical quantity in nuclear structure, the neutron skin thickness, can be determined indi-

rectly by the SD non-energy weighted sum rule (Krasznahorkay et al., 1999; Yako et al., 2006) or

the excitation energy spacing between the IAS and GTR (Vretenar et al., 2003). The neutron

skin thickness in heavy nuclei has been shown to be a unique measure of the density dependence

of the neutron EOS (Alex Brown, 2000; Centelles et al., 2009), which, as a step forward, have a

strong impact on the properties of neutron stars (Horowitz and Piekarewicz, 2001a,b, 2002). More

generally, the charge-exchange excitations allow us to attack other kinds of problems outside the

realm of nuclear structure. For example, these excitations are important for the charged current

weak interaction processes in nuclear astrophysics and neutrino physics, e.g., the description of

neutron star and supernova evolutions, the β decays of nuclei which lie on the r-process path of

stellar nucleosynthesis (Engel et al., 1999; Borzov, 2006), and the neutrino-nucleus cross sections

(Kolbe et al., 2003; Vogel, 2006). They also play an essential role in extracting the value of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi and Maskawa, 1973) ele-

13



14 CHAPTER 1. INTRODUCTION

ment Vud via the nuclear 0+ → 0+ superallowed Fermi β decays (Hardy and Towner, 2009). For

all these reasons, it is important to develop the microscopic theories of charge-exchange excitations

and it is the main motivation of the present work.

For the theoretical description of charge-exchange excitations in nuclei, the two main approaches

are the shell model calculations and the linear response in density functional theory (DFT), i.e.,

the random phase approximation (RPA) based on the self-consistent mean field. In a recent review

(Caurier et al., 2005), it is shown that the experimental data on the charge-exchange excitations

and the related β decay rates in light and medium-mass nuclei can be well reproduced by the shell

model calculations. The development of the shell model Monte Carlo and large-scale shell-model

techniques allows nowadays the calculations of the GT strength distributions in the complete pf

shell with the mass number A ∼ 60 (Radha et al., 1997; Caurier et al., 1999). However, as the

number of valence nucleons increases, the dimension of shell-model configuration space becomes

too large to perform practical applications.

Meanwhile, the RPA calculations based on the self-consistent mean field can be, in principle,

implemented for the whole nuclear chart, except for a small amount of very light nuclei. Further-

more, the relatively large particle-hole (p-h) configuration space allows for the description of the

high-lying excitations up to ∼ 100 MeV, which is essential for the charge-exchange monopole res-

onances, and other high-J excitations. In the RPA framework, the model self-consistency requires

that the same density functional is used for describing both the nuclear ground-state and the ex-

cited states. Its importance has been extensively discussed, e.g., in Refs. (Engelbrecht and Lemmer,

1970; Ring and Schuck, 1980). It is crucial for restoring the symmetries which are broken by the

mean field approximation, and for separating the spurious states from the physical states. It is also

an important requirement for extrapolating the theoretical analysis towards the nucleon drip lines.

On the non-relativistic side, the charge-exchange RPA, also known as proton-neutron RPA in

some literature, was first established on the self-consistent Skyrme Hartree-Fock (SHF) scheme

about 30 years ago (Auerbach et al., 1981). This approach was then used to explore various non-

spin-flip and spin-flip excitations (Auerbach and Klein, 1983, 1984), and also extended to inves-

tigate the escape and spreading properties of the giant resonances (Colò et al., 1994), the GT β

decays of the so-call waiting-point nuclei in r-process path (Engel et al., 1999), and the effects of

the spin-isospin channel of the Skyrme energy functional on predictions for GT distributions and

superdeformed rotational bands (Bender et al., 2002). Very recently, a fully self-consistent charge-

exchange quasiparticle RPA (QRPA) beyond the SHF mean field with Bardeen-Cooper-Schrieffer

(BCS) pairing correlations has been developed (Fracasso and Colò, 2005).

On the relativistic side, even though limited to the Hartree approximation, the relativistic

mean field (RMF) theory (Walecka, 1974) has received wide attention due to its successful descrip-

tion of a large variety of nuclear phenomena during the past 25 years (Serot and Walecka, 1986;

Reinhard, 1989; Ring, 1996; Vretenar et al., 2005; Meng et al., 2006). In this thesis, we refer to it

as the relativistic Hartree (RH) theory in order to distinguish it from the relativistic Hartree-Fock

(RHF) theory. In this covariant density functional framework, the nucleons are described as Dirac
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spinors interacting via the exchange of mesons and photons. Comparing with the non-relativistic

approaches, the combination of the scalar and vector fields, which are of the order of a few hundred

MeV, provide a natural and more efficient description of both the nuclear mean field central and

spin-orbit potentials. Other successful features include the nuclear saturation properties in nuclear

matter (Brockmann and Machleidt, 1990; Brockmann and Toki, 1992), binding energies and den-

sities of nuclei throughout the nuclear chart (Ring, 1996), the isotopic shifts in the Pb isotopes

(Sharma et al., 1993), halos and giant halos in exotic nuclei (Meng and Ring, 1996, 1998), possible

explanation of pseudospin symmetry in single-particle spectra (Ginocchio, 2005), spin symmetry

in anti-nucleon spectrum (Zhou et al., 2003), and so on.

The RPA approach based on the RH theory (RH+RPA) was firstly extended to charge-exchange

channel in Ref. (De Conti et al., 1998). Then, the relation between the zero-range counter-term

and the ρ-nucleon (ρ-N) tensor coupling was investigated (De Conti et al., 2000). Based on the

relativistic description, a new kind of Gamow-Teller quenching mechanism due to the effects of the

Dirac sea states was pointed out (Kurasawa et al., 2003). Later, relativistic QRPA was formulated

in the canonical basis of relativistic Hartree-Bogoliubov (RHB) model (Paar et al., 2003) and ap-

plied to analyze IAS and GTR of 48Ca, 90Zr, 208Pb and Sn isotopes (Paar et al., 2004), to suggest a

new method for extracting the neutron-skin thickness with the energy spacings between GTR and

IAS (Vretenar et al., 2003), to calculate the β decay half-lives of neutron-rich nuclei (Nikšić et al.,

2005), the muon capture rates (Marketin et al., 2009), and the inclusive neutrino-nucleus cross

sections (Paar et al., 2008).

However, the self-consistency of this charge-exchange RH+RPA approach is not completely

fulfilled for the following reason. First, the isovector pion plays an important role in the relativistic

description of spin-isospin resonances. Because of the parity conservation this degree of freedom is

absent in the ground-state description under the Hartree approximation. Thus, the pion is out of

control in this best-fitting effective field theory. Second, to cancel the contact interaction coming

from the pseudovector pion-nucleon (π-N) coupling, a zero-range counter-term is needed with the

strength g′ = 1/3 exactly (Bouyssy et al., 1987). However, in order to reproduce the excitation

energies of the GTR, g′ must be treated as an adjustable parameter in the RH+RPA model with

the value g′ ≈ 0.6 (De Conti et al., 1998; Paar et al., 2004). In other words, additional parameters

are needed for the description of the nuclear charge-exchange excitations within the RH+RPA

framework.

One of the possibilities for curing the above defect is to extend the relativistic framework to the

Hartree-Fock level. Indeed, within the newly developed density-dependent RHF theory (Long, 2005;

Long et al., 2006), the importance of the Fock terms has been evidenced by the improvement on the

description of the nuclear shell structures (Long et al., 2007) and their evolution (Long et al., 2008;

Tarpanov et al., 2008) due to the π-N and ρ-N tensor interactions, and the influence on isovector

properties of nuclear matter and neutron stars at high densities (Sun et al., 2008). We will show in

this thesis that, contrary to the RH+RPA approach, the RHF+RPA does not need to readjust the

value of g′ = 1/3 and that full self-consistency is insured. At this point, we must mention that RHF
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with form factors for meson-nucleon couplings can also be envisaged (Hu et al., 2010a,b), in which

case the question of contact interaction and its zero-range counter-term is eliminated. However,

such a theory has still to be developed for finite nuclei. It also can be seen that the proper inclusion

of the Coulomb exchange terms is essential for specific issues, e.g., the isospin symmetry-breaking

corrections for superallowed β decays (Liang et al., 2009).

Within the charge-exchange RHF+RPA framework, it is expected that 1) the p-h residual in-

teraction induced by the pion can be derived self-consistently, since the π-N interaction contributes

to the total energy of the system via the exchange (Fock) terms; 2) the isoscalar σ- and ω-mesons

can contribute to the nuclear isovector properties of both ground-state and excited state also via

the exchange terms. These two points might lead to a profound effect in the theoretical description

of nuclear charge-exchange excitations.

In this thesis, a fully self-consistent relativistic RPA based on the RHF approach is established.

The general formalism is shown in Chapter 2. In Chapter 3, the numerical details are explained,

and the numerical checks for restoring the translational and isospin symmetries are presented.

The formalism will then be applied to investigate the nuclear spin-isospin resonances, the isospin

symmetry-breaking corrections for the superallowed β decays, and the charged-current neutrino-

nucleus cross sections. In Chapter 4, the properties of the IAS, GTR, SDR, and spin-quadrupole

resonances (SQR) in doubly magic nuclei 48Ca, 90Zr, 208Pb, and the effects of the Dirac sea in

their non-energy weighted sum rules are investigated. In Chapter 5, in combination with the

isospin symmetry-breaking corrections, the radiative corrections and the experimental data on

superallowed β decays, we finally extract the value of the matrix element Vud and discuss the

unitarity of the CKM matrix. In Chapter 6, the illustrative calculations are performed for the

16O(νe,e
−)16F reaction, especially, the different recipes for the axial vector coupling strength and

the theoretical low-lying excited states of the daughter nucleus are discussed. In the end, the

summary and perspectives are given in Chapter 7.



Chapter 2

General Theory of Covariant

Hartree-Fock and Random Phase

Approximation

In this chapter, we briefly recall the theoretical framework of the relativistic Hartree-Fock (RHF)

approach in Section 2.1, and the general formalism of the random phase approximation (RPA) in

Section 2.2. The most challenging work is to establish the fullly self-consistent RPA based on the

RHF approach. The density-dependent meson-nucleon couplings in the Lagrangians used in this

thesis, in particular, lead to complicated rearrangement terms. The main ideas for the derivation

and the key formulas will be shown in Section 2.3, while all the details are given in Appendix A.

2.1 Relativistic Hartree-Fock theory

The basic starting point of the RHF theory is a Lagrangian density L, in which nucleons are

described as Dirac spinors that interact each other via the exchanges of σ-, ω-, ρ-, π-mesons and

photons. The effective Hamiltonian Ĥ is then obtained with the general Legendre transformation.

In the Hartree-Fock approximation, the total energy E of the system is the expectation value of

the Hamiltonian Ĥ on the trial ground-state (Slater determinant), where both direct (Hartree)

and exchange (Fock) terms are kept. Finally, the Dirac equations, i.e., the equations of motion of

nucleons, can be obtained via the variation of the total energy E with respect to the single-particle

wave functions, or equivalently to the densities and currents. Details can be found in W. H. Long’s

Ph.D. thesis (Long, 2005).

17
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2.1.1 Effective Lagrangian and Hamiltonian

The starting point of the RHF approach is an effective Lagrangian density (Bouyssy et al., 1987;

Long, 2005; Long et al., 2006),

L = ψ̄

[

iγµ∂µ −M − gσσ − gωγ
µωµ − gργ

µ~τ · ~ρµ − fπ

mπ
γ5γ

µ∂µ~π · ~τ − eγµ 1 − τ3
2

Aµ

]

ψ

+
1

2
∂µσ∂µσ − 1

2
m2

σσ
2 − 1

4
ΩµνΩµν +

1

2
m2

ωω
µωµ − 1

4
~Rµν · ~Rµν +

1

2
m2

ρ~ρ
µ · ~ρµ

+
1

2
∂µ~π · ∂µ~π − 1

2
m2

π~π · ~π − 1

4
FµνFµν , (2.1)

where the tensor quantities for the vector fields are defined as follows,

Ωµν ≡ ∂µων − ∂νωµ, (2.2a)

~Rµν ≡ ∂µ~ρν − ∂ν~ρµ, (2.2b)

Fµν ≡ ∂µAν − ∂νAµ. (2.2c)

In this thesis, we use arrows to denote the isospin vectors and bold type for the space vectors.

It is well known that the π-N pseudo-scalar coupling is not suitable for the HF approximation

(Bouyssy et al., 1987), thus we adopt its pseudo-vector coupling in this work. Furthermore, the

ρ-N tensor interaction is not included in all parametrizations used in the present work.

The Hamiltonian density can be formally obtained via the general Legendre transformation,

H = T 00 =
∂L
∂φ̇i

φ̇i − L, (2.3)

where φi represent the nucleon, meson and photon field operators. With the compact notations for

the interaction matrix,

Γσ(1, 2) ≡ −gσ(1)gσ(2), (2.4a)

Γω(1, 2) ≡ gω(1)γµ(1)gω(2)γµ(2), (2.4b)

Γρ(1, 2) ≡ gρ(1)γµ(1)~τ (1) · gρ(2)γ
µ(2)~τ (2), (2.4c)

Γπ(1, 2) ≡ −
[

fπ

mπ
~τγ5γµ∂

µ

]

1

·
[

fπ

mπ
~τγ5γν∂

ν

]

2

, (2.4d)

ΓA(1, 2) ≡ e2

4
[γµ(1 − τ3)]1[γ

µ(1 − τ3)]2, (2.4e)

the Hamiltonian in the nucleon space can be expressed as

Ĥ =

∫

d3x
[

ψ̄[−iγ · ∇ +M ]ψ
]

+
1

2

∫

d3xd4y
∑

i=σ,ω,ρ,π,A

ψ̄(x)ψ̄(y)Γi(x, y)Di(x, y)ψ(y)ψ(x), (2.5)

where Di(x, y) is the retarded Green function of the Klein-Gordon equation for each meson. Ne-

glecting the retardation effects, the meson propagator has the usual Yukawa form,

Di(x,y) =
1

4π

e−mi|x−y|

|x − y| . (2.6)
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2.1.2 Hartree-Fock approximation

To quantize the Hamiltonian Ĥ in Eq. (2.5), the nucleon field operators ψ and ψ† are expanded

on the set of creation and annihilation operators defined by the stationary solutions of the Dirac

equation (Bouyssy et al., 1987),

ψ(x) =
∑

i

(

fi(x)e−iεitci + gi(x)eiε
′

itd†i

)

, (2.7a)

ψ†(x) =
∑

i

(

f †i (x)eiεitc†i + g†i (x)e−iε′itdi

)

. (2.7b)

Here, fi(x) and gi(x) are Dirac spinors, ci and c†i represent annihilation and creation operators for

nucleons in a positive energy state i, while di and d†i are the corresponding operators for negative

energy states. Within the so-called no-sea approximation, the summation of the densities and

currents is restricted to positive energy states, i.e., the di and d†i terms are omitted in the above

expansions. The related vacuum polarization effects are supposed to be effectively contained in the

parameters of the model.

Thus, the Hamiltonian Ĥ is composed of the one-body and two-body interactions,

Ĥ = T̂ +
∑

i

V̂i (2.8)

with

T̂ =

∫

dx
∑

αβ

f̄α(iγ · ∇ +M)fβc
†
αcβ, (2.9a)

V̂i =
1

2

∫

dx1dx2

∑

αβ;α′β′

c†αc
†
βcβ′cα′ f̄α(1)f̄β(2)Γi(1, 2)Di(1, 2)fβ′(2)fα′(1). (2.9b)

In the Hartree-Fock approximation, the trial ground-state is chosen as a Slater determinant,

i.e.,

|Φ0〉 =
∏

a

c†a |0〉 (2.10)

with the physical vacuum |0〉. The total energy can thus be written as

E = 〈Φ0| Ĥ |Φ0〉 = 〈Φ0| T̂ |Φ0〉 +
∑

i

〈Φ0| V̂i |Φ0〉

=
∑

a

〈a| −iα · ∇ + βM |a〉 +
1

2

∑

ab

〈ab|V (1, 2) |ba〉 − 1

2

∑

ab

〈ab|V (1, 2) |ab〉 , (2.11)

where the first term is the kinetic energy, the second and the last terms are the direct (Hartree)

and exchange (Fock) energies, respectively.

The equations of motion of nucleons are derived by requiring that the total energy of the system

E is stationary with respect to norm-conserving variations of the Dirac spinors fa,

δ

[

E −
∑

a

Ea

∫

f †afadr

]

= 0 (2.12)

with Lagrange multipliers Ea. It turns out that Ea are the single-particle energies including the

nucleon mass.
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2.1.3 Density-dependent meson-nucleon couplings

In this work, the relativistic Hartree-Fock approach with density-dependent meson-nucleon cou-

plings (DDRHF) will be applied to the investigations. In these effective interactions, the meson-

nucleon coupling strengths gσ, gω, gρ, fπ are functions of the baryonic density ρb. Therefore, in the

variational procedure in Eq. (2.12), the density-dependence in meson-nucleon couplings will lead

to an additional term Σµ
R, the so-called rearrangement term, in the self-energy Σ,

Σ = Σ′ + γµΣµ
R. (2.13)

It has been shown that the rearrangement terms are necessary for the energy-momentum conserva-

tion (Fuchs et al., 1995). In Section 2.3, we will see the profound effects of these rearrangement

terms on the RPA matrix elements.

2.1.4 DDRHF approach for spherical nuclei

Within spherical symmetry, the single-particle state with energy Ea is specified by the set of

quantum numbers a = (qa, na, la, ja,ma), with qa = 1 for neutron and qa = −1 for proton. κa =

(la − ja)(2ja + 1) is another convenient good quantum number. The single-particle wave function

is explicitly expressed as

fa(r) =
1

r

{

iGa(r)

Fa(r)σ̂ · r̂

}

Ya(r̂)χ 1

2

(qa), (2.14)

where χ 1

2

(qa) is an isospinor, and Ya is a spherical spinor defined as

Ya =
∑

µa,sa

Cjama

laµa
1

2
sa
Ylaµa(r̂)χ 1

2

(sa), (2.15)

where Ylaµa(r̂) are spherical harmonics. In the following, a short-hand notation

Ya′(r̂) = −σ̂ · r̂Ya(r̂) (2.16)

will be used for the angular part of the lower component, where a = (qa, na, la, ja) and a′ =

(qa, na, l
′
a, ja) with l′a = 2ja − la. The corresponding normalization of the Dirac spinor reads

∫

f †a(r)fa(r)dr =

∫

[

G2
a(r) + F 2

a (r)
]

dr = 1. (2.17)

The densities can then be expressed as,

ρ
(n or p)
s ≡ 1

4πr2

n or p
∑

a

ĵ2a
[

G2
a(r) − F 2

a (r)
]

, ρs ≡ ρ(n)
s + ρ(p)

s , ρ(3)
s ≡ ρ(n)

s − ρ(p)
s , (2.18a)

ρ
(n or p)
b ≡ 1

4πr2

n or p
∑

a

ĵ2a
[

G2
a(r) + F 2

a (r)
]

, ρb ≡ ρ
(n)
b + ρ

(p)
b , ρ

(3)
b ≡ ρ

(n)
b − ρ

(p)
b , (2.18b)

ρ
(n or p)
T ≡ 1

4πr2

n or p
∑

a

ĵ2a [2Ga(r)Fa(r)] , ρT ≡ ρ
(n)
T + ρ

(p)
T , ρ

(3)
T ≡ ρ

(n)
T − ρ

(p)
T , (2.18c)
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where ĵ2a = 2ja + 1 represents the degeneracy of state (qa, na, la, ja).

In the spherical case, the Yukawa-type meson propagators in Eq. (2.6) can be also expanded in

terms of Bessel functions and spherical harmonics,

Di(r1, r2) =
∞
∑

L=0

RLL(mi; r1, r2)Y L(r̂1) · Y L(r̂2). (2.19)

The definition of RLL(mi; r1, r2) and the gradients of Di(r1, r2) with respect to r1 and r2 can be

found in Remark 10.

The total energy of the system in Eq. (2.11) is the sum of the kinetic energy and the direct and

exchange contributions from mesons and photon,

E = Ek + ED
σ + EE

σ + ED
ω + EE

ω + ED
ρ + EE

ρ + EE
π +ED

A + EE
A , (2.20)

where the direct term of pion vanishes because of the parity conservation. For spherical nuclei, each

term can be expressed as one- or two-dimensional radial integrals over the products of the radial

wave functions G(r) and F (r), and the radial multipoles of the Yukawa propagator RLL(mi; r1, r2).

These integrals are carried out numerically, whereas the angular integrals can be calculated ana-

lytically using the angular momentum algebra. The explicit expressions are listed in Section A.1.

The variational procedure (Eq. (2.12)) with respect to the single-particle wave functions G(r)

and F (r) leads to the radial integro-differential Dirac equations,

Ea

(

Ga(r)

Fa(r)

)

=

(

M + Σs(r) + Σ0(r) − d
dr + κa

r
d
dr + κa

r −M − Σs(r) + Σ0(r)

)(

Ga(r)

Fa(r)

)

+

(

Ya(r)

Xa(r)

)

.

(2.21)

In these equations, ΣS and Σ0 represent the contributions from the direct terms and the rearrange-

ment term. They can be expressed in terms of the mean fields,

ΣS = gσσ, Σ0 = gωω + gρρτ3 + eA
1 − τ3

2
+ ΣR. (2.22)

While, the X and Y functions, which contain the non-local exchange contributions, are defined as

Xa ≡ 1

2ĵ2a

δ

δFa
E, Ya ≡ 1

2ĵ2a

δ

δGa
E. (2.23)

They are in fact integrals involving the unknown functions {Ga(r), Fa(r)}. This is the reason why

the RHF equations are integro-differential equations.

For the case of density-dependent meson-nucleon couplings, there is a so-called rearrangement

term contributing to the self-energies. In the effective interactions used in this work, the density-

dependence is chosen with respect to the baryonic density ρb. Then, the rearrangement term in

Eq. (2.13) has only a time component ΣR. It can be obtained by taking the variation of the energy

functional with respect to ρb. Taking the σ-meson as an example, the rearrangement self-energy is

expressed as

Σ
(σ)
R (r) =

∂gσ

∂ρv

1

gσ

[

ρs(r)σ(r) +
∑

a

ĵ2a

(

Ga(r)Y
(σ)
a (r) + Fa(r)X

(σ)
a (r)

)

/r2

]

. (2.24)
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The contributions of other mesons to ΣR can be obtained in an analogous way.

The trick for solving the radial Dirac equations (Eq. (2.21)) should be emphasized before ending

this subsection. One can formally rewrite the inhomogeneous terms as

Xa(r) =
Ga(r)Xa(r)

G2
a(r) + F 2

a (r)
Ga(r) +

Fa(r)Xa(r)

G2
a(r) + F 2

a (r)
Fa(r) ≡ Xa,Ga(r)Ga(r) +Xa,Fa(r)Fa(r),

(2.25a)

Ya(r) =
Ga(r)Ya(r)

G2
a(r) + F 2

a (r)
Ga(r) +

Fa(r)Ya(r)

G2
a(r) + F 2

a (r)
Fa(r) ≡ Ya,Ga(r)Ga(r) + Ya,Fa(r)Fa(r).

(2.25b)

The radial Dirac equations can then be cast in the form

Ea

(

Ga(r)

Fa(r)

)

=

(

M + Σs(r) + Σ0(r) + Ya,Ga(r) − d
dr + κa

r + Ya,Fa(r)
d
dr + κa

r +Xa,Ga(r) −M − Σs(r) + Σ0(r) +Xa,Fa(r)

)(

Ga(r)

Fa(r)

)

.

(2.26)

The equations (2.26) are formally coupled differential equations which can be solved numerically

like in RH by the shooting method, with the auxiliary potential terms X and Y to be determined

iteratively until convergency.

2.1.5 Effective interactions in DDRHF approach

According to the spirit of effective field theory (EFT), the masses and the couplings strengths in

the effective Lagrangian in Eq. (2.1) must be determined by some best fitting processes.

For the density-dependence of the meson-nucleon couplings, gσ, gω, gρ and fπ are taken as

functions of the baryonic density ρb following the experience and success in the density-dependent

RH theory. For σ- and ω-mesons, the density-dependent behaviors of the coupling constants gσ

and gω are chosen as

gi(ρb) = gi(ρsat.)fi(ξ), (2.27)

where

fi(ξ) = ai
1 + bi(ξ + di)

2

1 + ci(ξ + di)2
, (2.28)

is a function of ξ = ρb/ρsat.. For the functions fi(ξ), five constraint conditions fi(1) = 1, f ′′σ (1) =

f ′′ω(1) and f ′′i (0) = 0 are introduced. For the coupling strengths gρ and fπ of ρ-meson and pion, an

exponential density-dependence is adopted

gρ(ρb) = gρ(0)e
−aρξ, fπ(ρb) = fπ(0)e−aπξ. (2.29)

Three sets of effective interactions in DDRHF approach have been developed by fitting the

masses of the nuclei 16O, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 116Sn, 132Sn, 182Pb, 194Pb, 208Pb and

214Pb, and the values of the baryonic saturation density ρsat., the compression modulus K and the

symmetry energy J of nuclear matter at the saturation point (Long, 2005).

The results for the parameterizations PKO1 (Long et al., 2006), PKO2 (Long et al., 2008), and

PKO3 (Long et al., 2008) are shown in Table 2.1. In particular, the pion is excluded in the

effective interaction PKO2.
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Table 2.1: Effective interactions PKO1, PKO2 and PKO3 for the relativistic Hartree-Fock approach

with density-dependent meson-nucleon couplings, with M = 938.9 MeV, mω = 783.0 MeV, mρ =

769.0 MeV and mπ = 138.0 MeV (Long et al., 2006, 2008).

mσ (MeV) gσ gω gρ(0) fπ(0) aρ aπ ρsat. (fm−3)

PKO1 525.769084 8.833239 10.729933 2.629000 1.000000 0.076760 1.231976 0.151989

PKO2 534.461766 8.920597 10.550553 4.068299 ——– 0.631605 ——– 0.151021

PKO3 525.667686 8.895635 10.802690 3.832480 1.000000 0.635336 0.934122 0.153006

aσ bσ cσ dσ aω bω cω dω

PKO1 1.384494 1.513190 2.296615 0.380974 1.403347 2.008719 3.046686 0.330770

PKO2 1.375772 2.064391 3.052417 0.330459 1.451420 3.574373 5.478373 0.246668

PKO3 1.244635 1.566659 2.074581 0.400843 1.245714 1.645754 2.177077 0.391293

2.2 Random Phase Approximation

The derivations of the RPA equations are well explained in many standard textbooks, for example,

P. Ring and P. Schuck’s The Nuclear Many-Body Problem (Ring and Schuck, 1980). In this section,

the RPA equations will be derived via the linear response of the time-dependent external field in

the small amplitude limit. In contrast to the equation of motion method, the present method can

be applied to the effective interaction with density-dependent couplings as well (Ring and Schuck,

1980).

In this thesis, we use the letters a, b, · · · to denote the occupied (hole) states, capital letters

A,B, · · · to denote the unoccupied (particle) states, Greek letters α, β, · · · to denote the states in

the empty Dirac sea (also particle states), and letters i, j, · · · for general cases.

2.2.1 RPA equations

As shown in the previous section, starting from an effective Hamiltonian Ĥ (Eq. (2.8)) of the system

and the trial ground-state |Φ0〉 (Eq. (2.10)), one can first obtain the total energy E,

E =
〈

Φ0

∣

∣

∣
Ĥ
∣

∣

∣
Φ0

〉

=
∑

a

〈a|T |a〉 +
1

2

∑

ab

[〈ab|V (1, 2)|ba〉 − 〈ab|V (1, 2)|ab〉] . (2.30)

The static Hartree-Fock equation is derived via the variational principle (Eq. (2.12)), i.e.,

(H0[f ] − Ea)fa = 0, (2.31)

where

H0[f ]fa(1) = Tfa(1) +
∑

b

〈b(2)|V (1, 2)|b(2)〉fa(1) −
∑

b

〈b(2)|V (1, 2)|a(2)〉fb(1). (2.32)

H0[f ] is the so-called Hartree-Fock Hamiltonian, which is a one-body Hamiltonian, and a functional

with respect to the single-particle wave functions.
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Adding a time-dependent external field W(t)

W(t) = W (r)e−iωt +W †(r)eiωt, (2.33)

the system Hamiltonian becomes

H → H + W(t). (2.34)

This leads to changes in the single-particle wave functions and in the HF Hamiltonian,

fa → ϕa = fa +
∑

A

βAa(t)fA +
∑

α

βαa(t)gα, (2.35a)

H0[f ] → H0[ϕ] + W. (2.35b)

Thus, the time-dependent Hartree-Fock (TDHF) equation becomes

i
∂

∂t
ϕa = (H0[ϕ] + W − Ea)ϕa. (2.36)

In the small amplitude limit, only the linear response to the external field is taken into account,

i.e., just the the linear terms of βAa, βαa are kept.

Supposing that the expansion coefficients β have the same time-dependent behaviors as W(t),

they can be expressed as

βAa(t) = XAae
−iωt − Y ∗

Aae
iωt, (2.37a)

βαa(t) = Xαae
−iωt − Y ∗

αae
iωt. (2.37b)

Using 〈fA| to act on the TDHF equation (2.36), one can obtain that

lhs = 〈fA|i
∂

∂t
|ϕa〉 = iβ̇Aa = ω(XAae

−iωt + Y ∗
Aae

iωt), (2.38)

and

rhs = 〈fA|H0[ϕ] + W − Ea|fa +
∑

A′

βA′a(t)fA′ +
∑

α

βαa(t)gα〉. (2.39)

Nine terms appearing in the rhs are shown explicitly in the following. For the first term,

〈fA|H0[ϕ]|fa〉 = 〈fA|H0[f ] + δH0|fa〉. (2.40)

Its zeroth-order term 〈fA|H0[f ]|fa〉 vanishes because of the orthogonality of the single-particle wave

functions, and its first-order term reads

〈fA|δH0|fa〉 =
∑

Bb

{β∗Bb〈AB|V (1, 2)|ba − ab〉 + βBb〈Ab|V (1, 2)|Ba − aB〉}

+
∑

βb

{

β∗βb〈Aβ|V (1, 2)|ba − ab〉 + ββb〈Ab|V (1, 2)|βa − aβ〉
}

. (2.41)

The other eight terms are simpler. The non-vanishing terms are

〈fA|W|fa〉 = 〈fA|We−iωt +W †eiωt|fa〉, (2.42a)

〈fA|H0[ϕ]|
∑

A′

βA′afA′〉 = EAβAa, (2.42b)

〈fA| − Ea|
∑

A′

βA′afA′〉 = −EaβAa. (2.42c)
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Separating the coefficients of the non-vanishing eiωt and e−iωt terms, one has

− 〈A|W |a〉 = [(EA − Ea) − ω]XAa

+
∑

Bb

[〈Ab|V |Ba− aB〉XBb − 〈AB|V |ba− ab〉YBb]

+
∑

βb

[〈Ab|V |βa− aβ〉Xβb − 〈Aβ|V |ba− ab〉Yβb], (2.43a)

−〈A|W †|a〉∗ = [−(EA − Ea) − ω]YAa

+
∑

Bb

[〈AB|V |ba− ab〉XBb − 〈Ab|V |Ba− aB〉YBb]

+
∑

βb

[〈Aβ|V |ba− ab〉Xβb − 〈Ab|V |βa− aβ〉Yβb]. (2.43b)

Analogously, using 〈gα| to act on the TDHF equation (2.36), one can obtain

− 〈α|W |a〉 = [(Eα − Ea) − ω]Xαa

+
∑

Bb

[〈αb|V |Ba− aB〉XBb − 〈αB|V |ba− ab〉YBb]

+
∑

βb

[〈αb|V |βa− aβ〉Xβb − 〈αβ|V |ba− ab〉Yβb], (2.44a)

−〈α|W †|a〉∗ = [−(Eα − Ea) − ω]Yαa

+
∑

Bb

[〈αB|V |ba− ab〉XBb − 〈αb|V |Ba− aB〉YBb]

+
∑

βb

[〈αβ|V |ba− ab〉Xβb − 〈αb|V |βa− aβ〉Yβb]. (2.44b)

With the compact notations,

A12,34 = (E1 − E2)δ12,34 + 〈14|V |32 − 23〉, (2.45a)

B12,34 = −〈13|V |42 − 24〉, (2.45b)

C12,34 = +〈14|V |32 − 23〉, (2.45c)

the RPA equations can be written in the matrix form,














AAa,Bb CAa,βb BAa,Bb BAa,βb

Cαa,Bb Aαa,βb Bαa,Bb Bαa,βb

−BAa,Bb −BAa,βb −AAa,Bb −CAa,βb

−Bαa,Bb −Bαa,βb −Cαa,Bb −Aαa,βb





























XBb

Xβb

YBb

Yβb















− ω















XAa

Xαa

YAa

Yαa















= −















〈A|W |a〉
〈α|W |a〉
〈A|W †|a〉∗

〈α|W †|a〉∗















,

(2.46)

where the repeated indices B, b, β indicate the summations.

RPA equations in angular momentum coupled form

For the spherical case, the basis vectors are given by |jm〉 in the representation according to the

operators Ĵ2, Ĵz . Then, the angular integrals in the RPA matrix elements A, B, and C can be calcu-

lated independently and analytically by the angular momentum algebra (Brink and Satchler, 1968;
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Varshalovich et al., 1987). Therefore, this subsection is dedicated to deriving the RPA equations

in angular momentum coupled form.

Supposing that the external field W (r) has a specific angular momentum and parity, i.e.,

W (r) = WJπM (r), the expectation values in the rhs of the RPA equations (Eq. (2.46)) read

〈A|W |a〉 = (−)jA−mA

(

jA ja J

mA −ma −M

)

〈A||WJ ||a〉, (2.47a)

〈A|W †|a〉∗ = (−)jA−mA+M

(

jA ja J

mA −ma M

)

〈A||W †
J ||a〉∗, (2.47b)

where the Wigner-Eckart theorem is used (see Remark 13) and 〈A||WJ ||a〉 is the reduced matrix

element.

We define the angular momentum coupled X,Y amplitudes as following,

XBmB ,bmb
= Ĵ(−)jB−mB

(

jB jb J

mB −mb −M

)

XJ
Bb, (2.48a)

YBmB ,bmb
= Ĵ(−)jB−mB+M

(

jB jb J

mB −mb M

)

Y J
Bb, (2.48b)

where the minus sign in −mb is due to state b standing for a hole state here.

The angular momentum coupled RPA equations read















AJ
Aa,Bb CJ

Aa,βb BJ
Aa,Bb BJ

Aa,βb

CJ
αa,Bb AJ

αa,βb BJ
αa,Bb BJ

αa,βb

−BJ
Aa,Bb −BJ

Aa,βb −AJ
Aa,Bb −CJ

Aa,βb

−BJ
αa,Bb −BJ

αa,βb −CJ
αa,Bb −AJ

αa,βb





























XJ
Bb

XJ
βb

Y J
Bb

Y J
βb















− ω















XJ
Aa

XJ
αa

Y J
Aa

Y J
αa















= −















〈A||WJ ||a〉
〈α||WJ ||a〉
〈A||W †

J ||a〉∗

〈α||W †
J ||a〉∗















,

(2.49)

with the definitions

AJ
Aa,Bb =

∑

mM

(−)jA−mA+jB−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

AAa,Bb,

(2.50a)

BJ
Aa,Bb =

∑

mM

(−)jA−mA+jB−mB+M

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb M

)

BAa,Bb,

(2.50b)

CJ
Aa,βb =

∑

mM

(−)jA−mA+jβ−mβ

(

jA ja J

mA −ma −M

)(

jβ jb J

mβ −mb −M

)

CAa,βb,

(2.50c)

where
∑

m means
∑

mA,ma,mB,mb
. All other AJ ,BJ , CJs are defined in a similar way by changing

the indices.
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RPA equations in charge-exchange channels

In the charge-exchange channels, the p-h configurations are built by taking pairs of proton-neutron.

Proton particle-neutron hole and neutron particle-proton hole correspond to the isospin lowering

T− and raising T+ channels, respectively. Denoting the unoccupied and occupied proton (neutron)

states as p and p̄ (n and n̄), the angular momentum coupled RPA eigenequations (2.49) are written

explicitly as















AJ
pn̄p′n̄′ AJ

pn̄n′p̄′ BJ
pn̄p′n̄′ BJ

pn̄n′p̄′

AJ
np̄p′n̄′ AJ

np̄n′p̄′ BJ
np̄p′n̄′ BJ

np̄n′p̄′

−BJ
pn̄p′n̄′ −BJ

pn̄n′p̄′ −AJ
pn̄p′n̄′ −AJ

pn̄n′p̄′

−BJ
np̄p′n̄′ −BJ

pn̄n′p̄′ −AJ
np̄p′n̄′ −AJ

np̄n′p̄′





























XJ
p′n̄′

XJ
n′p̄′

Y J
p′n̄′

Y J
n′p̄′















= ω















XJ
p′n̄′

XJ
n′p̄′

Y J
p′n̄′

Y J
n′p̄′















. (2.51)

Due to the charge conservation, the matrix elements AJ
pn̄n′p̄′ , AJ

np̄p′n̄′ , BJ
pn̄p′n̄′ , and BJ

pn̄n′p̄′ vanish,

i.e., the above RPA equations have a form of















AJ
pn̄p′n̄′ 0 0 BJ

pn̄n′p̄′

0 AJ
np̄n′p̄′ BJ

np̄p′n̄′ 0

0 −BJ
pn̄n′p̄′ −AJ

pn̄p′n̄′ 0

−BJ
np̄p′n̄′ 0 0 −AJ

np̄n′p̄′





























XJ
p′n̄′

XJ
n′p̄′

Y J
p′n̄′

Y J
n′p̄′















= ω















XJ
p′n̄′

XJ
n′p̄′

Y J
p′n̄′

Y J
n′p̄′















. (2.52)

Hence, it turns out that one just needs to diagonalize the following matrix,

(

AJ
pn̄p′n̄′ BJ

pn̄n′p̄′

−BJ
np̄p′n̄′ −AJ

np̄n′p̄′

)(

UJ
p′n̄′

V J
n′p̄′

)

= ω

(

UJ
pn̄

V J
np̄

)

, (2.53)

whose dimension is half of that in Eq. (2.51), and the solutions for both T− and T+ channels can be

obtained at the same time. The eigenvectors of the RPA equations (2.53) are separated according

to the following normalization conditions,

{

∑

pn̄(UJ
pn̄)2 −

∑

np̄(V
J
np̄)

2 = +1, for T− channel,
∑

pn̄(UJ
pn̄)2 −∑np̄(V

J
np̄)

2 = −1, for T+ channel.
(2.54)

The excitation energies and X, Y amplitudes in the T− channel read

Ω = +ω, XJ
pn̄ = UJ

pn̄, Y J
np̄ = V J

np̄, (2.55)

whereas the excitation energies and X, Y amplitudes in the T+ channel are

Ω = −ω, XJ
np̄ = V J

np̄, Y J
pn̄ = UJ

pn̄. (2.56)

2.2.2 Transition densities and probabilities

In this subsection, it will be shown that the transition probabilities between the ground-state and

excited states driven by a one-body operator.
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Formally, the excited states |ν〉, which is an eigenstate of the system Hamiltonian Ĥ, can be

constructed via a operator Q† acting on the ground-state |GS〉. In the RPA framework, the operator

Q† can be expressed with the X and Y amplitudes of the RPA equations (Eq. (2.46)),

Q†
ν =

∑

pmphmh

Xν
phc

†
pch +

∑

pmphmh

Y ν
phc

†
hcp, (2.57)

and the ground-state is the so-called RPA ground-state |RPA〉, which satisfies

|ν〉 = Q†
ν |RPA〉 , Qν |RPA〉 = 0. (2.58)

In principle, |RPA〉 is different from the Hartree-Fock ground-state |HF〉 = |Φ0〉 shown in Eq. (2.10).

For a one-body operator F̂ with specific quantum numbers JM , one has

F̂JM =
∑

ij

〈i|FJM |j〉c†i cj (2.59)

in the second-quantized notation. In particular,

〈νJM |c†i cj|RPA〉 = 〈RPA|
[

QJM , c
†
i cj

]

|RPA〉

=
∑

pmphmh

〈RPA|
[

Xν
phc

†
hcp + Y ν

phc
†
pch, c

†
i cj

]

|RPA〉

≈
∑

pmphmh

〈HF|
[

Xν
phc

†
hcp + Y ν

phc
†
pch, c

†
i cj

]

|HF〉

=
∑

pmphmh

{

Xν
phδipδjh − Y ν

phδihδjp
}

. (2.60)

It should be emphasized that in the above derivation firstly the property of the RPA ground-state

Qν |RPA〉 = 0 is used to form the commutator, then the so-called quasi-boson approximation,

|RPA〉 ≈ |HF〉, is used to calculate the commutator.

With the definitions of angular coupled XJ and Y J in Eqs. (2.48), and the Wigner-Eckart

theorem (see Remark 13), the expectation value 〈νJM |F̂JM |RPA〉 can be written in terms of the

(X,Y ) solutions of the angular momentum coupled RPA equations (Eq. (2.49)),

〈νJM |F̂JM |RPA〉 = Ĵ−1
∑

ph

{

XJν
ph 〈p||FJ ||h〉 + (−)jp+jhY Jν

ph 〈h||FJ ||p〉
}

. (2.61)

Finally, the transition probabilities between the ground-state and excited states induced by a one-

body operator reads

Bν =
∣

∣

∣
〈νJM |F̂JM |RPA〉

∣

∣

∣

2
. (2.62)

To obtain a smooth transition strength as a function of the excitation energy, one usually calculates

the Lorentzian-averaged strength distribution

R(E) =
∑

ν

Bν
Γ/2π

(E − Ων)2 + Γ2/4
(2.63)

with the averaging width Γ.
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2.2.3 Non-energy weighted sum rules

In general, the kth energy weighted sum rule related to a one-body operator F̂ is given by

Sk ≡
∑

ν

(Ων − E0)
k|〈ν|F̂ |RPA〉|2, (2.64)

where |ν〉 represent the complete set of eigenstates of the exact Hamiltonian H with the energies

Eν . Using the completeness relation, one has

Sk = 〈RPA|F̂ †(H − E0)
kF̂ |RPA〉. (2.65)

In some cases, this expression can be calculated by the ground-state properties in a rather simple

way.

For the cases of charge-exchange excitations, the IAS, GTR, and SDR operators are

F̂±
IAS =

A
∑

i=1

τ±(i), (2.66a)

F̂±
GTR =

A
∑

i=1

[1 ⊗ ~σ(i)]J=1τ±(i), (2.66b)

F̂±
SDR =

A
∑

i=1

[riY1(i) ⊗ ~σ(i)]J=(0,1,2)τ±(i). (2.66c)

The non-energy weighted sum rule for the IAS reads

S−
IAS − S+

IAS =
∑

ν

B−
ν −

∑

ν

B+
ν

=
∑

ν

〈RPA|
A
∑

i=1

τ+(i)|ν〉〈ν|
A
∑

i=1

τ−(i)|RPA〉 −
∑

ν

〈RPA|
A
∑

i=1

τ−(i)|ν〉〈ν|
A
∑

i=1

τ+(i)|RPA〉

= 〈RPA|
[

A
∑

i=1

τ+(i),
A
∑

i=1

τ−(i)

]

|RPA〉

= 〈RPA|
A
∑

i=1

τz(i)|RPA〉

= N − Z. (2.67)

Analogously, the non-energy weighted sum rule for the GTR, the so-called Ikeda sum rule (Ikeda et al.,

1963), reads

S−
GTR − S+

GTR = 3(N − Z). (2.68)

Since only the numbers of nucleons are concerned, these sum rules are model-independent. Fur-

thermore, the non-energy weighted sum rule for the SDR reads

S−
SDR − S+

SDR =
9

4π
(N
〈

r2
〉

n
− Z

〈

r2
〉

p
). (2.69)
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2.3 Self-consistent RPA based on DDRHF theory

In this section, we will first show the main ideas for establishing the fully self-consistent RPA

based on the RHF theory with explicit density-dependent meson-nucleon couplings. Then the

contributions to the RPA matrix elements AJ , BJ , and CJ induced by each meson and photon will

be summarized. One will see that the present results of the direct contributions are identical to

those of Ref. (Nikšić et al., 2002b), where the self-consistent RPA on top of the density-dependent

RH theory was developed. The detailed derivations are given in Appendix A.

2.3.1 Particle-hole residual interactions with density-dependent couplings

In order to figure out the effects of the explicit density-dependent meson-nucleon couplings, let’s

again start from the total energy of the system (Eq. (2.11)),

E =
∑

a

〈a|T |a〉 +
1

2

∑

ab

[〈ab|V (1, 2)(1 − Pab)|ba〉] , (2.70)

where the operator Pab exchanges all the variables of particles a and b. To separate the density-

dependent part from the density-independent part, the two-body interactions are generally ex-

pressed as

Vi(1, 2) = gi(1)gi(2)Ii(1, 2), (2.71)

where i stands for σ-, ω-, ρ-, π−mesons and photon, and the coupling strengths gi are the functions

of the baryonic density ρb. Following the variational procedure (also see Eq. (2.12)),

δ

[

E −
∑

a

Ea 〈a|a〉
]

= 0, (2.72)

it turns out that the lhs of Eq. (2.72) reads

lhs =

[

〈δi|T |i〉 +
∑

b

〈δib|V (1, 2)(1 − Pib)|bi〉 − Ei 〈δi|i〉
]

+ c.c.

+
1

2

∑

ab

〈ab|δV (1 − Pab)|ba〉, (2.73)

where the last term is the so-called rearrangement term. Thus, the static HF equation reads

(H0[f ] − Ei)fi(1) = 0, (2.74)

with the HF Hamiltonian

H0[f ]fi(1) = Tfi(1) +

∫

dr2

{

∑

b

f †b (2)g(1)g(2)I(1, 2)(1 − Pib)fb(2)

}

fi(1)

+

∫

dr2

{

∑

ab

f †a(1)f †b (2)

[

∂g(1)

∂ρb(1)
g(2)I(1, 2)(1 − Pab)

]

fb(2)fa(1)

}

fi(1).

(2.75)
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Following the derivation of the RPA equations in the previous section, it is found that eight

terms in the expansion of Eq. (2.39) are the same as those in the case without density-dependent

couplings, except the term 〈fA|H0[ϕ]|fa〉. In the present case,

〈fA|H0[ϕ]|fa〉 =
∑

Bb

{β∗Bb〈AB|V(1, 2)|ba〉 + βBb〈Ab|V(1, 2)|Ba〉}

+
∑

βb

{

β∗βb〈Aβ|V(1, 2)|ba〉 + ββb〈Ab|V(1, 2)|βa〉
}

. (2.76)

Here, V(1, 2) denotes the p-h residual interaction in the self-consistent RPA. It contains both the

regular term and several complicated rearrangement terms as follows,

V(1, 2) = g(1)g(2)I(1, 2)(1 − Pab)

+

∫

dr3

∑

d

f †d(3)
∂g(1)

∂ρb(1)
g(3)I(1, 3)(1 − Pad)fd(3)δ(r1 − r2)

+
∑

d

f †d(2)g(1)
∂g(2)

∂ρb(2)
I(1, 2)(1 − Pad)fd(2)

+

∫

dr3

∑

d

f †d(3)
∂g(1)

∂ρb(1)
g(3)I(1, 3)(1 − Pbd)fd(3)δ(r1 − r2)

+
∑

d

f †d(1)
∂g(1)

∂ρb(1)
g(2)I(1, 2)(1 − Pbd)fd(1)

+

∫

dr3

∑

cd

f †c (1)f †d(3)
∂2g(1)

∂ρ2
b (1)

g(3)I(1, 3)(1 − Pcd)fd(3)fc(1)δ(r1 − r2)

+
∑

cd

f †c (1)f †d(2)
∂g(1)

∂ρb(1)

∂g(2)

∂ρb(2)
I(1, 2)(1 − Pcd)fd(2)fc(1), (2.77)

where the derivatives of the coupling strength with respect to the baryonic density are evaluated

at the ground-state density ρ0
b .

Therefore, on one hand, the direct contributions to 〈Ab|V(1, 2)|Ba〉 are composed of 7 terms,

Term1 =

∫

dr1dr2f
†
A(1)f †b (2)g(1)g(2)I(1, 2)fB (2)fa(1), (2.78a)

Term2 =
∑

d

∫

dr1dr2f
†
A(1)f †d(2)

∂g(1)

∂ρb(1)
f †b (1)fB(1)g(2)I(1, 2)fd(2)fa(1), (2.78b)

Term3 =
∑

d

∫

dr1dr2f
†
A(1)f †d(2)g(1)

∂g(2)

∂ρb(2)
f †b (2)fB(2)I(1, 2)fd(2)fa(1), (2.78c)

Term4 =
∑

d

∫

dr1dr2f
†
A(1)f †b (1)f †d(2)

∂g(1)

∂ρb(1)
g(2)I(1, 2)fd(2)fB(1)fa(1), (2.78d)

Term5 =
∑

d

∫

dr1dr2f
†
A(1)f †d(1)f †b (2)

∂g(1)

∂ρb(1)
g(2)I(1, 2)fB (2)fd(1)fa(1), (2.78e)

Term6 =
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)

∂2g(1)

∂ρ2
b (1)

f †b (1)fB(1)g(2)I(1, 2)fd(2)fc(1)fa(1), (2.78f)

Term7 =
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)

∂g(1)

∂ρb(1)

∂g(2)

∂ρb(2)
f †b (2)fB(2)I(1, 2)fd(2)fc(1)fa(1), (2.78g)
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where Term1 is the regular term and Term2 to Term7 are the accompanying rearrangement terms.

These results are exactly the same as those in Ref. (Nikšić et al., 2002b). On the other hand, the

exchange contributions to 〈Ab|V(1, 2)|Ba〉 are also composed of 7 terms,

Term8 = −
∫

dr1dr2f
†
A(1)f †b (2)g(1)g(2)I(1, 2)fa(2)fB(1), (2.79a)

Term9 = −
∑

d

∫

dr1dr2f
†
A(1)f †d(2)

∂g(1)

∂ρb(1)
f †b (1)fB(1)g(2)I(1, 2)fa(2)fd(1), (2.79b)

Term10 = −
∑

d

∫

dr1dr2f
†
A(1)f †d(2)g(1)

∂g(2)

∂ρb(2)
f †b (2)fB(2)I(1, 2)fa(2)fd(1), (2.79c)

Term11 = −
∑

d

∫

dr1dr2f
†
A(1)f †b (1)f †d(2)

∂g(1)

∂ρb(1)
g(2)I(1, 2)fB (2)fd(1)fa(1), (2.79d)

Term12 = −
∑

d

∫

dr1dr2f
†
A(1)f †d(1)f †b (2)

∂g(1)

∂ρb(1)
g(2)I(1, 2)fd(2)fB(1)fa(1), (2.79e)

Term13 = −
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)

∂2g(1)

∂ρ2
b (1)

f †b (1)fB(1)g(2)I(1, 2)fc(2)fd(1)fa(1), (2.79f)

Term14 = −
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)

∂g(1)

∂ρb(1)

∂g(2)

∂ρb(2)
f †b (2)fB(2)I(1, 2)fc(2)fd(1)fa(1), (2.79g)

where Term8 is the regular term and Term9 to Term14 are the accompanying rearrangement terms.

It should be emphasized that, since the rearrangement terms are due to the dependence on isoscalar

ground-state densities, their contributions vanish in the charge-exchange channels.

2.3.2 Direct and exchange contributions

If we write the AJ of Eq. (2.49) as following

AJ
Aa,Bb = (EA − Ea)δAa,Bb +

14
∑

i=1

HJ
i (AaBb), (2.80)

to express the 14 terms of the p-h residual interactions shown in the previous subsection, it is easy

to see that the CJ in Eq. (2.49) can be expressed as

CJ
Aa,βb =

14
∑

i=1

HJ
i (Aaβb), (2.81)

and it is not difficult to prove that the BJ in Eq. (2.49) can be expressed as

BJ
Aa,Bb = (−)jB+jb

14
∑

i=1

HJ
i (AabB). (2.82)

Furthermore, one can derive the following relations among the 14 terms:

HJ
8 (1234) = (−)j2+j3+J+1

∑

J ′

(−)J
′

Ĵ ′
2

{

j2 j1 J

j3 j4 J ′

}

HJ ′

1 (1324), (2.83)
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where the contraction of 3-j symbols to 6-j symbols is used (see Remark 7), and

HJ
4 (1234) = HJ

2 (3412), (2.84a)

HJ
5 (1234) = HJ

3 (3412), (2.84b)

HJ
10(1234) = (−)j1+j2+1HJ

9 (2134), (2.84c)

HJ
11(1234) = (−)j3+j4+1HJ

9 (4312), (2.84d)

HJ
12(1234) = HJ

9 (3412), (2.84e)

due to the symmetries in the p-h residual interactions.

Therefore, the key and challenging task for deriving the RPA matrix elements is to calculate

the quantities

HJ
1 (1234), HJ

2 (1234), HJ
3 (1234), HJ

6 (1234),

HJ
7 (1234), HJ

9 (1234), HJ
13(1234), H

J
14(1234), (2.85)

with the two-body interactions induced by the σ-, ω-, ρ-, π-mesons and the photons.

Particle-hole interaction induced by the σ-meson

For the σ-meson, the two-body interaction reads

V σ(1, 2) = −gσ(1)γ0(1)gσ(2)γ0(2)Dσ(1, 2)

= −
∑

Lν

gσ(1)γ0(1)gσ(2)γ0(2)RLL(mσ; 1, 2)(−)νY ν
L (r̂1)Y

−ν
L (r̂2). (2.86)

With the detailed derivations given in Section A.2, the quantities HJσ
(1234) in Eq. (2.85) are

listed in the following, where the summations over c, d stand for summations over all the occupied

states,

HJ
1

σ
(1234) = − δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(G1G2 − F1F2)]r1
[gσ(G3G4 − F3F4)]r2

, (2.87a)

HJ
2

σ
(1234) = − δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′σ(r)σ(r)(G1G2 − F1F2)(G3G4 + F3F4), (2.87b)

HJ
3

σ
(1234) = − δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(G1G2 − F1F2)]r1
[g′σρs(G3G4 + F3F4)]r2

, (2.87c)

HJ
6

σ
(1234) = − δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′′σ(r)ρs(r)σ(r)(G1G2 + F1F2)(G3G4 + F3F4), (2.87d)
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HJ
7

σ
(1234) = − δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[g
′
σρs(G1G2 + F1F2)]r1

[g′σρs(G3G4 + F3F4)]r2
, (2.87e)

HJ
9

σ
(1234) =δq1q2

δq3q4
(−)j1+j2 Ĵ

−1

√
4π

∑

jdLL′

δqdq2
L̂L̂′

(

J L L′

0 0 0

){

j1 j2 J

L L′ jd

}

× 〈3||YJ ||4〉〈1||YL′ ||d〉〈d||YL||2〉

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(G3G4 + F3F4)(G1Gd − F1Fd)

r2

]

r1

× [gσ(GdG2 − FdF2)]r2
, (2.87f)

HJ
13

σ
(1234) =δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdL

δqcqd
〈c||YL||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′′σ
(G1G2 + F1F2)(G3G4 + F3F4)(GcGd − FcFd)

r4

]

r1

× [gσ(GcGd − FcFd)]r2
, (2.87g)

HJ
14

σ
(1234) =δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′

δqcqd
L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(G1G2 + F1F2)(GcGd − FcFd)

r2

]

r1

×
[

g′σ
(G3G4 + F3F4)(GcGd − FcFd)

r2

]

r2

. (2.87h)

In the above expressions, the short-hand notation for the so-called σ-field

σ(1) =

∫

dr2r
2
2R00(mσ; 1, 2)ρs(2)gσ(2) (2.88)

is employed, in which the scalar density is

ρs(r) =
∑

d

1

4πr2
[G2

d(r) − F 2
d (r)]. (2.89)

The reduced matrix element of the spherical harmonics (see Remark 14) reads

〈a||YL||b〉 = (−)jb−L− 1

2

ĵaĵbL̂√
4π

(

ja jb L
1
2 −1

2 0

)

(2.90)

provided la + lb + L is even, and zero otherwise.

Particle-hole interaction induced by the ω-meson

For the ω-meson, the two-body interaction reads

V ω(1, 2) = gω(1)γ0(1)γ
µ(1)gω(2)γ0(2)γµ(2)Dω(1, 2)

=
∑

Lν

gω(1)γ0(1)γ
µ(1)gω(2)γ0(2)γµ(2)RLL(mω; 1, 2)(−)νY ν

L (r̂1)Y
−ν
L (r̂2). (2.91)
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It is convenient to divide the HJω(1234) into two parts, where the time component with µ = 0 is

denoted as H̄Jω(1234), and the space component with µ = 1, 2, 3 is denoted as ¯̄HJω(1234).

For the time component with µ = 0, the H̄Jω(1234) values in Eq. (2.85) can be derived in

analogy with the derivation of the σ-meson. They are listed in the following, where the summations

over c, d stand for summations over all the occupied states,

H̄Jω
1 (1234) =δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[gω(G1G2 + F1F2)]r1
[gω(G3G4 + F3F4)]r2

, (2.92a)

H̄Jω
2 (1234) =δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′ω(r)ω(r)(G1G2 + F1F2)(G3G4 + F3F4), (2.92b)

H̄Jω
3 (1234) =δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[gω(G1G2 + F1F2)]r1
[g′ωρb(G3G4 + F3F4)]r2

, (2.92c)

H̄Jω
6 (1234) =δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′′ω(r)ρb(r)ω(r)(G1G2 + F1F2)(G3G4 + F3F4), (2.92d)

H̄Jω
7 (1234) =δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[g
′
ωρb(G1G2 + F1F2)]r1

[g′ωρb(G3G4 + F3F4)]r2
, (2.92e)

H̄Jω
9 (1234) =δq1q2

δq3q4
(−)j1+j2+1 Ĵ

−1

√
4π

∑

jdLL′

δqdq2
L̂L̂′

(

J L L′

0 0 0

){

j1 j2 J

L L′ jd

}

× 〈3||YJ ||4〉〈1||YL′ ||d〉〈d||YL||2〉

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(G3G4 + F3F4)(G1Gd + F1Fd)

r2

]

r1

× [gω(GdG2 + FdF2)]r2
, (2.92f)

H̄Jω
13 (1234) = − δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdL

δqcqd
〈c||YL||d〉2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′′ω
(G1G2 + F1F2)(G3G4 + F3F4)(GcGd + FcFd)

r4

]

r1

× [gω(GcGd + FcFd)]r2
, (2.92g)
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H̄Jω
14 (1234) = − δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′

δqcqd
L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(G1G2 + F1F2)(GcGd + FcFd)

r2

]

r1

×
[

g′ω
(G3G4 + F3F4)(GcGd + FcFd)

r2

]

r2

. (2.92h)

In the above expressions, the short-hand notation for the so-called ω-field

ω(1) =

∫

dr2r
2
2R00(mω; 1, 2)ρb(2)gω(2), (2.93)

is employed, in which the baryonic density is

ρb(r) =
∑

d

1

4πr2
[G2

d(r) + F 2
d (r)]. (2.94)

For the space component with µ = 1, 2, 3,

¯̄V ω(1, 2) = −
∑

Lνk

(−)ν+kgω(1)αk(1)gω(2)α−k(2)RLL(mω; 1, 2)Y ν
L (r̂1)Y

−ν
L (r̂2). (2.95)

With the detailed derivations given in Section A.3, the quantities ¯̄HJω(1234) in Eq. (2.85) are

listed in the following, where the summations over c, d stand for summations over all the occupied

states,

¯̄HJω
1 (1234) = − δq1q2

δq3q4
Ĵ−2

×
∑

L

∫

dr1dr2RLL(mω; r1, r2)
[

gω

(

G1F2〈1||TJL||2′〉 − F1G2〈1′||TJL||2〉
)]

r1

×
[

gω

(

G3F4〈3||TJL||4′〉 − F3G4〈3′||TJL||4〉
)]

r2

, (2.96a)

¯̄HJω
i (1234) = 0, for i = 2, 3, · · · , 7, (2.96b)

¯̄HJω
9 (1234) =δq1q2

δq3q4
(−)j1+j2+1 Ĵ

−1

√
4π

∑

jdLL′J ′J ′′

δqdq2
(−)J

′′+LL̂L̂′Ĵ ′Ĵ ′′

×
(

J L L′

0 0 0

){

j2 j1 J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈3||YJ ||4〉

×
∫

dr1dr2RLL(mω; r1, r2)

×
[

g′ω
(G3G4 + F3F4)

r2
(

G1Fd〈1||TJ ′L′ ||d′〉 − F1Gd〈1′||TJ ′L′ ||d〉
)

]

r1

×
[

gω

(

GdF2〈d||TJ ′′L||2′〉 − FdG2〈d′||TJ ′′L||2〉
)]

r2

, (2.96c)

¯̄HJω
13 (1234) =δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLJ ′

δqcqd

∫

dr1dr2RLL(mω; r1, r2)

×
[

g′′ω
(G1G2 + F1F2)(G3G4 + F3F4)

r4
(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)

]

r1

×
[

gω

(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)]

r2

, (2.96d)
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¯̄HJω
14 (1234) =δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′J ′

δqcqd
L̂2

(

J L L′

0 0 0

)2

×
∫

dr1dr2RLL(mω; r1, r2)

×
[

g′ω
(G1G2 + F1F2)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r1

×
[

g′ω
(G3G4 + F3F4)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r2

. (2.96e)

In the above expressions, the vector spherical harmonic T L
JM is defined as

YLνσk =
∑

JM

(−)L−1+M Ĵ

(

L 1 J

ν k −M

)

T
L

JM . (2.97)

Its reduced matrix element (see Remark 14) reads

〈a||TJL||b〉 = (−)la
ĵaĵb√

4π
ZJL(a, b)

(

ja jb J
1
2 −1

2 0

)

, la + lb + L is even, (2.98)

where

ZJL(a, b) =



































(−)jb+lb+
1

2

(la − ja)ĵ
2
a + (lb − jb)ĵ

2
b + L√

L
, for L = J + 1,

−1

2

Ĵ

[J(J + 1)]
1

2

[

ĵ2b + (−)ja+jb+J ĵ2a

]

, for L = J,

(−)jb+lb+
1

2

(la − ja)ĵ
2
a + (lb − jb)ĵ

2
b − L− 1√

L+ 1
, for L = J − 1.

(2.99)

Particle-hole interaction induced by the ρ-meson

For the ρ-meson with vector coupling, the two-body interaction reads

V ρ(1, 2) = [gργ0γ
µ~τ ]1 · [gργ0γµ~τ ]2Dρ(1, 2). (2.100)

The quantities HJρ(1234) in Eq. (2.85) can be derived in analogy with the derivations of the

ω−meson, with the two following replacements. First, one should replace the mass of the meson

and the coupling strength,

gω,mω → gρ,mρ. (2.101)

Second, one should be careful about the isospin factors at the interaction vertices. For example, in

H̄Jρ
1 (1234), the following substitution is needed,

δq1q2
δq4q3

→ 〈q1|~τ |q2〉 · 〈q4|~τ |q3〉. (2.102)

The final results are listed in Section A.4.
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Particle-hole interaction induced by the pion

For the pion with pseudo-vector coupling, the two-body interaction reads

V π(1, 2) = −[
fπ

mπ
~τγ0γ5γ

µ∂µ]1 · [
fπ

mπ
~τγ0γ5γ

ν∂ν ]2Dπ(1, 2). (2.103)

Because the retardation effect is neglected, the meson propagator is time independent. The inter-

action can be expressed as

V π(1, 2) = −[
fπ

mπ
~τγ0γ5γ

k∂k]1 · [
fπ

mπ
~τγ0γ5γ

l∂l]2Dπ(1, 2). (2.104)

With the derivatives of the Yukawa propagator (see Remark 10), the two-body interaction can

be rewritten as

V π(1, 2) = −
∑

Lν

L±1
∑

L1L2

(−)νL̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×
(

fπ~τγ0γ5γ · Y L1

Lν

)

r1

V
L1L2

L (mπ; r1, r2)
(

fπ~τγ0γ5γ · Y L2

L−ν

)

r2

. (2.105)

The detailed derivations are given in Section A.5. Here we just list the final results for the

quantities HJπ(1234) in Eq. (2.85), where summations over c, d stand for summations over all the

occupied states,

HJπ
1 (1234)

= − 〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2

×
J±1
∑

L1L2

L̂1L̂2

(

J 1 L1

0 0 0

)(

J 1 L2

0 0 0

)

×
∫

dr1dr2V
L1L2

J (mπ; r1, r2)
[

fπ

(

G1G2〈1||TJL1
||2〉 + F1F2〈1′||TJL1

||2′〉
)]

r1

×
[

fπ

(

G3G4〈3||TJL2
||4〉 + F3F4〈3′||TJL2

||4′〉
)]

r2

, (2.106a)

HJπ
9 (1234)

=δq1q2
δq3q4
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√
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L 1 L1
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L 1 L2
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J L1 L′
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J ′ J L

L1 1 L′

}{

j2 j1 J

J ′ L jd

}

〈3||YJ ||4〉

×
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dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(G3G4 + F3F4)

r2
(

G1Gd〈1||TJ ′L′ ||d〉 + F1Fd〈1′||TJ ′L′ ||d′〉
)

]

r1

×
[

fπ

(

GdG2〈d||TLL2
||2〉 + FdF2〈d′||TLL2

||2′〉
)]

r2

, (2.106b)
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HJπ
13 (1234)

=δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL1L2
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)L̂1L̂2

(

L 1 L1
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)(

L 1 L2

0 0 0

)

×
∫
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L1L2

L (mπ; r1, r2)

×
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f ′′π
(G1G2 + F1F2)(G3G4 + F3F4)

r4
(

GcGd〈c||TLL1
||d〉 + FcFd〈c′||TLL1

||d′〉
)

]

r1

×
[

fπ

(

GcGd〈c||TLL2
||d〉 + FcFd〈c′||TLL2

||d′〉
)]

r2

, (2.106c)
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2
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(
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)
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(
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)(

J L1 L′
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)(

J L2 L′′

0 0 0

){

J ′ J L

L1 1 L′

}{

J ′ J L

L2 1 L′′

}

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(G1G2 + F1F2)

r2
(

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
)

]

r1

×
[

f ′π
(G3G4 + F3F4)

r2
(

GcGd〈c||TJ ′L′′ ||d〉 + FcFd〈c′||TJ ′L′′ ||d′〉
)

]

r2

. (2.106d)

In order to cancel the contact interaction coming from the pion pseudo-vector coupling, a pionic

zero-range counterterm should be included (Bouyssy et al., 1987), which reads

V πδ(1, 2) =
1

3
[
fπ

mπ
~τγ0γ5γ]1 · [

fπ

mπ
~τγ0γ5γ]2δ(r1 − r2)

=
1

3

∑

Lkν

(−)k+ν [
fπ

mπ
~τγ0γ5γ

kY ν
L ]1 · [

fπ

mπ
~τγ0γ5γ

−kY −ν
L ]2

δ(r1 − r2)

r21
. (2.107)

It has a form similar to ¯̄V ω, so it is not difficult to obtain that

HJπδ
1 (1234) =

1

3m2
π

〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2

×
∑

L

∫

dr
f2

π

r2
[

G1G2〈1||TJL||2〉 + F1F2〈1′||TJL||2′〉
]

×
[

G3G4〈3||TJL||4〉 + F3F4〈3′||TJL||4′〉
]

, (2.108a)
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1
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J L L′
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j2 j1 J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈3||YJ ||4〉

×
∫

dr
f ′πfπ

r4
(G3G4 + F3F4)

(

G1Gd〈1||TJ ′L′ ||d〉 + F1Fd〈1′||TJ ′L′ ||d′〉
)

×
(

GdG2〈d||TJ ′′L||2〉 + FdF2〈d′||TJ ′′L||2′〉
)

. (2.108b)
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HJπδ
13 (1234)

= − 1

3m2
π

δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLJ ′

(2 − δqcqd
)

∫

dr
f ′′πfπ

r6

× (G1G2 + F1F2)(G3G4 + F3F4)
[

GcGd〈c||TJ ′L||d〉 + FcFd〈c′||TJ ′L||d′〉
]2
. (2.108c)

HJπδ
14 (1234)

= − 1

3m2
π

δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′J ′

(2 − δqcqd
)L̂2

(

J L L′

0 0 0

)2
∫

dr
f ′π

2

r6

× (G1G2 + F1F2)(G3G4 + F3F4)
[

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
]2
. (2.108d)

where summations over c, d stand for summations over all the occupied states.

It should be also pointed out that, because of parity conservation the pion does not contribute

to direct rearrangement terms, i.e.,

HJπ,Jπδ
i (1234) = 0, for i = 2, 3, · · · , 7. (2.109)

Particle-hole interaction induced by the photon

Finally, the electro-magnetic field,

VA(1, 2) = e2
[

γ0γ
µ 1 − τ3

2

]

1

[

γ0γµ
1 − τ3

2

]

2

DA(1, 2), (2.110)

has a structure similar to that of the ω-meson, expect the following three properties. First, only

protons take part in this interaction, i.e., all the summations are just over protons. Second, since

the photon has zero mass, the propagator of the electro-magnetic field is

DA(r1, r2) =
1

4π

1

|r1 − r2|
, (2.111)

whose expansion reads

DA(r1, r2) =
∑

L

RLL(photon; r1, r2)Y L(r̂1) · Y L(r̂2), (2.112)

with

RLL(photon; r1, r2) = L̂−2 rL
<

rL+1
>

. (2.113)

Third, since the Coulomb interaction is not density-dependent, there is no rearrangement term for

the Coulomb field.

Therefore, in analogy with the ω-meson, the contributions from the electro-magnetic field read,

H̄JA
1 (1234) = (proton)e2Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(photon; r1, r2)(G1G2 + F1F2)r1
(G3G4 + F3F4)r2

, (2.114)
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and

¯̄HJA
1 (1234) = −(proton)e2Ĵ−2

×
∑

L

∫

dr1dr2RLL(photon; r1, r2)
(

G1F2〈1||TJL||2′〉 − F1G2〈1′||TJL||2〉
)

r1

×
(

G3F4〈3||TJL||4′〉 − F3G4〈3′||TJL||4〉
)

r2

. (2.115)

So far, we have all the theoretical ingredients of the fully self-consistent RHF+RPA approach.

In the next chapter, the numerical tools for realizing the RHF+RPA calculations will be explained.

Then, its applications to the nuclear spin-isospin resonances, the isospin symmetry-breaking cor-

rections for the superallowed β decays, and the charged-current neutrino-nucleus cross sections will

be discussed from Chapter 4 to Chapter 6.
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Chapter 3

Numerical Tools for RHF+RPA

In this chapter, the numerical tools for realizing the RHF+RPA calculations will be explained.

Then, the numerical checks for restoring the translational and isospin symmetries will be presented

to demonstrate correctness of the codes.

3.1 Information on the numerical code

We have developed the numerical code for the RHF+RPA calculations in Fortran90 language. In

Fig. 3.1, the flow diagram for the RHF+RPA code is illustrated.

The code starts by choosing the effective Lagrangian. The inputs include the single-particle

energies and wave functions given by the RHF ground-state calculations, including not only the

single-particle states in the Fermi sea, but also those in the Dirac sea. The single-particle spectra

are calculated by solving the RHF equations in a spherical volume with box boundary conditions

at a chosen radius R, thus, these spectra are entirely discrete. Filling up the single-particle states

in the Fermi sea from the bottom to the Fermi surface, the occupied states are labeled as the hole

states and the ground-state densities can be calculated. The unoccupied states in the Fermi and

Dirac sea inside the single-particle energy truncation [Emin, Emax] are labeled as particle states.

The p-h configurations are built by taking those pairs of the particle and hole states which can

be coupled to a total angular momentum and parity Jπ. Since we are dealing with the density-

dependent meson-nucleon couplings, the coupling strengths are calculated at each mesh point in

the coordinate space. In order to save time, the radial multipoles of the Yukawa propagators in

Eq. (2.19) and the reduced matrix elements in Remark 14 are calculated just once and stored.

In the present code, the most lengthy and time consuming part is to construct the RPA matrix

elements according to the HJ(1234) expressions shown in Section 2.3 and Appendix A. To

take the benefit of modern computers which have multi processors, this part has been parallelized

with OpenMP1. The RPA matrix thus obtained is diagonalized with the Linear Algebra PACKage

(LAPACK)2. Finally, the eigenenergies and transition strengths in Eq. (2.62) and other useful

1www.openmp.org
2www.netlib.org/lapack
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spectroscopic information ,e.g., transition densities, transition amplitudes, can be obtained.

In total, this code has roughly 10,000 lines excluding the standard subroutines, and the typical

time for calculating the GTR in 208Pb with the single-particle energy truncation [−M,M+120 MeV]

is 3 CPU hours. s t a r ti n p u t s : e f f e c t i v e L a g r a n g i a n ,s i n g l e � p a r t i c l e e n e r g i e sa n d w a v e f u n c t i o n sp � h c o n f i g u r a t i o n sp r o p a g a t o r s a n d r e d u c e d m a t r i x e l e m e n t sR P A m a t r i x e l e m e n t sd i a g o n a l i z i n g t h e R P A m a t r i x
e n dt r a n s i t i o n s t r e n g t h so t h e r a p p l i c a t i o n s ( o p t i o n a l )

Figure 3.1: Flow diagram for the RHF+RPA code.

3.2 Numerical checks

We have developed two different RPA codes, the first one for non-charge-exchange excitations

where the configurations are of the neutron particle-neutron hole and proton particle-proton hole

type, and the second one for charge-exchange excitations with neutron particle-proton hole and

proton particle-neutron hole configurations. In this thesis we discuss in full detail the applications

to charge-exchange excitations, but we would like to comment also briefly here the non-charge-

exchange code as far as accuracy checks are concerned.

3.2.1 Restoration of the translational symmetry

A general property of the RPA approach is that, when full self-consistency is preserved, i.e., the HF

mean field and the p-h residual interaction of RPA are derived from the same starting Hamiltonian

H, then any symmetry of H which is broken by the HF approximation must be restored by the

RPA. This restoration is realized by an RPA mode at zero energy, the Goldstone mode. The
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first explicit derivation of this result was given by D. J. Thouless (Thouless, 1961) for the case

of the translational mode which corresponds to ∆Jπ = 1−,∆T = 0. This spurious mode is thus

decoupled from other ∆Jπ = 1−,∆T = 0 physical modes which appear at non-zero excitation

energies (Ring and Schuck, 1980).

We have numerically check this property by performing the following study. Taking the nucleus

16O as an example, the Dirac equations obtained in the RHF approach are solved in coordinate

space by the Runge-Kutta method within a spherical box with a box radius R = 15 fm and a

mesh size dr = 0.1 fm. The single-particle wave functions thus obtained are used to construct

the RPA matrix elements AJ , BJ , and CJ in Eq. (2.49) with the single-particle energy truncation

[−M,M+200 MeV], i.e., the occupied states are the positive energy states below the Fermi surface,

whereas the unoccupied states can be either positive energy states above the Fermi surface or bound

negative energy states. With these numerical inputs, we get the lowest dipole state (Jπ = 1−) at

E = 0.394 MeV.
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Figure 3.2: Strength distributions of ISGDR in 16O calculated by RHF+RPA with PKO1. The

transitions driven by the operators F̂ =
∑

i r
3
i Y1(i) and F̂ =

∑

i(r
3
i − 5/3 〈r0〉2 ri)Y1(i) are shown

with solid and dashed lines, respectively. They can be hardly distinguished on the figure.

Enhancing or reducing the strength of the p-h residual interactions with a overall factor (1+ δ),

one can obtain the exact zero excitation energy. The order of magnitude of δ shows the numerical

accuracy of the code. In the present case, we find δ = 0.00066. This indicates that the numerical

code works well.

Furthermore, it is known that the isoscalar giant dipole resonance (ISGDR) operator can be

written as (Van Giai and Sagawa, 1981)

F̂ =
∑

i

(r3i − 5/3 〈r0〉2 ri)Y1(i), (3.1)

where the second term in the bracket is for decoupling the physical RPA excitations from the

spurious state. In other words, in the fully self-consistent calculations, the transitions driven by
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the operators with and without the term 5/3 〈r0〉2 ri in Eq. (3.1) should be the same. In Fig. 3.2,

the strength distributions of ISGDR in 16O calculated by RHF+RPA with PKO1 are shown. It is

found that these two curves are almost on top of each other, which indicates that in the present

case the physical RPA excitations are well decoupled from the spurious state.

At this point, there is one remark that must be made. In our models of effective Lagrangians,

the meson-nucleon couplings are assumed to depend on the local baryonic density, i.e., the resulting

effective Hamiltonians are not necessarily commuting with the translation operator. Thus, there

is no strict requirement that the translational invariance should be preserved. Then, the question

arises why this invariance seems nevertheless preserved in self-consistent RHF+RPA.

3.2.2 Restoration of the isospin symmetry

It is expected that the IAS defined as T− |parent〉 or T+ |parent〉 would be degenerate with its iso-

baric multiplet partner |parent〉, i.e., EIAS = 0, and it would contain 100% of the model-independent

sum rule shown in Eq. (2.67) if the system Hamiltonian commutes with the isospin lowering T− and

raising T+ operators, which is true when the Coulomb field is switched off in nuclei. Even though

this degeneracy is broken by the mean field approximation, since the single-particle Hamiltonian

no longer commutes with T±, it can be explicitly shown that this isospin symmetry can be restored

by the self-consistent RPA approaches (Engelbrecht and Lemmer, 1970).
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Figure 3.3: IAS transition probabilities of unperturbed excitations (HF) and self-consistent RPA

excitations for 208Pb by RHF+RPA with PKO1.

Taking the nucleus 208Pb as an example, the Dirac equations obtained by the RHF approach

are solved in coordinate space by the Runge-Kutta method within a spherical box with a box

radius R = 20 fm and a mesh size dr = 0.1 fm. We have used the parametrization PKO1 with

the Coulomb interactions switched off. The single-particle wave functions thus obtained are used

to construct the RPA matrix elements AJ and BJ in Eq. (2.53) with the single-particle energy
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truncation [−M,M + 80 MeV].

The IAS transition probabilities of unperturbed single-particle excitations (HF) and self-consistent

RPA excitations are shown in Fig. 3.3. It is found that the unperturbed excitations are located

between -10.46 and -8.96 MeV when the Coulomb interaction is put to zero, thus showing the

isospin symmetry breaking within mean field approximation. While the self-consistent RHF+RPA

calculation leads to EIAS = 4 keV, and the single isobaric analog state contains 99.999% of the

model-independent non-energy weighted sum rule N − Z = 44. This indicates that the present

approach is fully self-consistent and the numerical code works well. This degree of numerical ac-

curacy is certainly well appropriate for specific applications such as the isospin symmetry-breaking

corrections in superallowed Fermi transition presented in Chapter 5.
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Chapter 4

Spin-Isospin Resonances

4.1 Introduction

The charge-exchange experiments using (p, n) reactions have demonstrated the existence of very

collective spin-isospin resonances in nuclei (see (Osterfeld, 1992; Ichimura et al., 2006) and refer-

ences therein). The isobaric analog state (IAS), which was first discovered in the nucleus 51V with

a low incident energy proton beam in 1961 (Anderson and Wong, 1961), is the simplest collective

charge-exchange mode where the excess neutrons coherently change the direction of their isospins

without changing their orbital angular momenta. Since the isospin mixing in nuclei is quite small,

this mode is characterized by a single and rather sharp peak in its transition strength distribution,

in contrast to the fragmented single-particle excitations. Due to the strong energy dependence

of the isospin coupling strength Vτ in the projectile-target interaction, the IAS peak is gradually

swamped by another collective charge-exchange mode, the Gamow-Teller resonance (GTR), when

the (p, n) reactions are performed at incident energies above 100 MeV.

The collective GTR was predicted by Ikeda, Fujii, and Fujita in 1963 (Ikeda et al., 1963) to

explain the absence of spin-isospin strength at low excitation energies and the resulting hindrance of

the allowed GT β decays in medium-mass and heavy nuclei. In this resonance, the excess neutrons

coherently change the direction of their spins and isospins conserving their orbital angular momenta.

The GTR was indeed first detected in the nucleus 90Zr in 1975 (Doering et al., 1975). Later,

systematic experiments providing much better energy resolution have been performed. Since the

1980s, one of the central topics is the quenching problem of the model-independent GT non-energy

weighted sum rule, known as the Ikeda-Fujii-Fujita sum rule. For various medium-mass and heavy

nuclei, only around 60% of the expected GT sum rule value could be detected experimentally in

the giant resonance region (Rapaport et al., 1983; Gaarde, 1985). From a theoretical point of view,

two physical mechanisms have been proposed for this quenching problem: 1) Due to the couplings

between the ∆(1232) isobar-nucleon hole and the proton particle-neutron hole, the missing GT

strength should be found at very high excitation energy (E ≈ 300 MeV); 2) Due to the mixing

with the two particle-two hole (2p-2h) states, the missing GT strength is pushed far beyond the

giant resonance region. For these two points, the reader can consult the references quoted in
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Ref. (Osterfeld, 1992). However, the experimental status has somehow changed recently. 88%±6%

of the GT sum rule value has been detected in recent experiments performed in both 90Zr(p, n)

and 90Zr(n, p) channels with more reliable multipole decomposition analysis of the cross sections

(Yako et al., 2005).

Another spin-isospin mode of interest is the spin-dipole resonances (SDR). It has been proposed

that the neutron skin thickness could be extracted via the SD non-energy weighted sum rule

(Krasznahorkay et al., 1999). Now that experimental data in both 90Zr(p, n) (Wakasa et al., 1997)

and 90Zr(n, p) (Yako et al., 2005) channels and the corresponding multipole decomposition analysis

of the cross sections are available, the SDR becomes another important tool for understanding

nuclear properties. Since the SDR is characterized by the quantum numbers ∆L = 1 and S = 1, this

resonance contains three components with ∆Jπ = 0−, 1−, 2−. A promising tool for experimentally

resolving these different multipolarities is the charge-exchange reactions with polarized beams.

Such experiments have been carried out in 12C(d,2H) reactions (de Huu et al., 2007).

As mentioned in the general introduction, the spin-isospin resonances in nuclei have been ex-

tensively investigated based on the shell model calculations as well as the RPA calculations within

non-relativistic and relativistic frameworks. In this chapter, the RHF+RPA approach will be ap-

plied to describe the IAS, GTR, SDR, and spin-quadrupole resonances (SQR). Comparing the RPA

calculations based on the RH and RHF theories, the different physical mechanisms in determining

the GTR will be investigated. Then, the theoretical descriptions of SDR and SQR will be presented.

In particular, the energy hierarchies of different components in these resonances will be focused on.

Finally, the effects of the Dirac Sea in the non-energy weighted sum rules will be examined.

4.2 Results and discussion

4.2.1 Isobaric analog states

The simplest isospin-flip mode is the isobaric analog states (IAS) with the transition operators

F IAS shown in Eq. (2.66). As discussed in Subsection 3.2.2, when the Coulomb interaction is

switched off, the IAS excitation energy would be zero and this state contains 100% of the non-energy

weighted sum rule as long as the RPA calculations are self-consistent. It is useful to evaluate the

importance of different components of the p-h residual interaction. Switching off these components

piece by piece, deviations of the excitation energy from zero indicate the respective importance of

the missing mesons.

In Fig. 4.1, the IAS transition probabilities obtained by switching off the σ + ω mesons, ρ

meson, pionic zero-range counter-term, and π meson p-h residual interactions are shown. They

are compared with the unperturbed single-particle excitations (HF) and the fully self-consistent

results. First, the calculation without ρ-meson shows that this isovector meson is important as

expected. Second, the calculation without σ- and ω-mesons tells us that the isoscalar mesons can

play a role, even an extremely important role via the exchange terms. This is one of the distinct

points in RHF+RPA approach. Third, it should be emphasized that the pion also plays its role in
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Figure 4.1: IAS energies and transition probabilities in 208Pb by RHF+RPA with PKO1. The

unperturbed excitations (HF), and the calculations excluding σ + ω mesons, ρ meson, pionic zero-

range counter-term, π meson in the p-h residual interaction, as well as the fully self-consistent

result are shown from left to right.

this restoration process. The coefficient g′ of the pionic zero-range counter-term must adopt the

same value as that in the ground-state description, i.e., g′ = 1/3. If the value of g′ is changed,

for example, g′ = 0 leads to EIAS = −801 keV, and the restoration process will be destroyed.

Therefore, it is clearly shown that g′ is not a free parameter.

Table 4.1: IAS excitation energies in MeV and strength in percentage of the N − Z sum rule

within the RHF+RPA framework. Experimental (Anderson et al., 1985; Bainum et al., 1980;

Wakasa et al., 1997; Horen et al., 1980; Akimune et al., 1995) and the RH+RPA (Paar et al., 2004)

results are given for comparison.

48Ca 90Zr 208Pb

energy strength energy strength energy strength

experiment 7.17 ∼ 100 12.0 ± 0.2 ∼ 100 18.83 ± 0.02 ∼ 100

RHF+RPA PKO1 6.86 99.7 11.41 99.3 18.03 95.8

PKO2 6.93 99.7 11.52 99.3 18.30 95.3

PKO3 6.91 99.7 11.49 99.4 18.26 95.8

RH+RPA DD-ME1 7.08 99.6 11.69 99.2 18.44 95.3

In realistic nuclei, the IAS excitations are pushed into higher energy region due to the Coulomb

interaction. In Table 4.1, the IAS excitation energies and their strength in percentage of the

N−Z sum rule obtained by RHF+RPA are compared with the experimental data (Anderson et al.,

1985; Bainum et al., 1980; Wakasa et al., 1997; Horen et al., 1980; Akimune et al., 1995) and the
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RH+RPA (Paar et al., 2004) results. It is found that the calculated IAS excitation energies are

slightly lower than the experimental data, and the single collective state contains almost 100% of

the sum rule value. Furthermore, it is also found that the IAS excitation energies by RHF+RPA are

systematically ∼ 200 keV lower than those by RH+RPA, which is due to the different treatments

of the Coulomb field, and the lack of the exchange Coulomb mean field in RH+RPA.

4.2.2 Gamow-Teller resonances

Table 4.2: GTR excitation energies in MeV, and strength in percentage of the 3(N − Z) sum

rule within the RHF+RPA framework. Experimental (Anderson et al., 1985; Bainum et al., 1980;

Wakasa et al., 1997; Horen et al., 1980; Akimune et al., 1995) and the RH+RPA (Paar et al., 2004)

results are given for comparison.

48Ca 90Zr 208Pb

energy strength energy strength energy strength

experiment ∼ 10.5 15.6 ± 0.3 19.2 ± 0.2 60-70

RHF+RPA PKO1 10.72 69.4 15.80 68.1 18.15 65.6

PKO2 10.83 66.7 15.99 66.3 18.20 60.5

PKO3 10.42 70.7 15.71 68.9 18.14 67.7

RH+RPA DD-ME1 10.28 72.5 15.81 71.0 19.19 70.6
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Figure 4.2: Strength distributions of GTR in 48Ca, 90Zr, and 208Pb calculated by RHF+RPA with

PKO1, where a Lorentzian smearing parameter Γ = 1 MeV is used. The experimental excitation

energies are denoted with arrows.

Taking the doubly magic nuclei 48Ca, 90Zr and 208Pb as examples, the GTR excitation energies
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and strengths calculated with the fully self-consistent RHF+RPA approach using the parametriza-

tions PKO1, PKO2, PKO3 are summarized in Table 4.2. The corresponding Lorentzian-averaged

strength distributions are shown in Fig. 4.2, where a Lorentzian smearing parameter Γ = 1 MeV is

used. It is found that a good agreement with empirical energies is obtained without any re-adjusted

parameter. All calculated strengths correspond to the main peak, and they contain 60-70% of the

Ikeda sum rule (Eq. (2.68)).
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Figure 4.3: Strength distribution of GTR in 208Pb calculated by RH+RPA with DD-ME1

(Nikšić et al., 2002a) (solid line). The unperturbed (Hartree) strength (dotted line), the calcu-

lation with only σ+ω+ ρ p-h residual interaction (dashed line), and the calculation including pion

but g′ = 1/3 (dash-dotted line) are also shown. A Lorentzian smearing parameter Γ = 1 MeV is

used.

We can understand the different physical mechanisms between the present RHF+RPA and other

RH+RPA approaches by the following analysis. On the one hand, the GT strength distribution in
208Pb by RH+RPA with DD-ME1 (Nikšić et al., 2002a) is shown in Fig. 4.3. It is compared with

the unperturbed (Hartree) strength, the calculation with only σ + ω + ρ p-h residual interaction,

and the calculation including pion but g′ = 1/3. It is found that the contribution of the p-h residual

interaction induced by the isoscalar mesons vanishes due to the isospin conservation in the direct

term, and the result with only p-h residual interaction induced by ρ-meson is almost on top of

the unperturbed strength. Adding the pion degree of freedom, the peak energy is pushed to high

energy, and it is further pushed up to the experimental value when g′ is changed from 1/3 to 0.55.

Thus, the π-N interaction and its zero-range counter-term are the dominant ingredients in p-h

residual interaction, and g′ is treated as an adjustable parameter to reproduce the experimental

date. On the other hand, in the present RHF+RPA calculations, three parametrizations PKO1,

PKO2 and PKO3 lead to similar results for the GTR excitation energies. It should be emphasized

that the pion is not included in PKO2, and therefore, there is no g′ term when calculating RPA

with PKO2. This hints to the fact that the pion interaction is not the only dominant ingredient for
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Figure 4.4: Strength distribution of GTR in 208Pb calculated by RHF+RPA with PKO1 (solid

line). The unperturbed (Hartree-Fock) strength (dotted line), the calculation with only σ + ω p-h

residual interaction (dashed line), and the calculation excluding pion (fπ = 0) in the p-h residual

interaction (dash-dotted line) are also shown. A Lorentzian smearing parameter Γ = 1 MeV is

used.

the GT excitations in this framework. The GT strength distribution in 208Pb by RHF+RPA with

PKO1 is shown in Fig. 4.4. It is compared with the calculation in which the pion is excluded in the

p-h channel, the calculation including only σ + ω p-h residual interactions, and the unperturbed

(Hartree-Fock) case. Comparing these theoretical results, one can conclude that the isoscalar σ- and

ω-mesons play an essential role via the exchange terms, whereas the pion just stands on a marginal

position in determining the GTR strength distribution. Thus, this is a fundamental difference with

RH+RPA where σ and ω play no role in the p-h interaction for the GTR.

4.2.3 Spin-dipole and spin-quadrupole resonances

As discussed in the previous subsection, even though different relativistic RPA approaches lead

to similar GTR strength distributions, the physical mechanisms are substantially different, and

these different physical mechanisms can be clearly demonstrated in other charge-exchange spin-flip

modes.

In Fig. 4.5 and Fig. 4.6, the strength distributions in the T− and T+ channels of the SDR in

90Zr calculated by RH+RPA with DD-ME1 and RHF+RPA with PKO3 are shown in left and right

panels, respectively. The dash-dotted, dotted, dashed lines show the 0−, 1−, 2− contributions re-

spectively, and the solid line shows their sum. It is found that the experimental dominant resonance

structure centered at E ≈ 27 MeV in the T− channel (Yako et al., 2006) is well reproduced in the

RHF+RPA calculations, while the RH+RPA calculations present a more fragmented structure.

The difference between the RHF+RPA and RH+RPA approaches can be explicitly distinguished

by examining the 0−, 1−, 2− components separately. For the results obtained by RHF+RPA
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Figure 4.5: Strength distributions in the T− channel of the SDR in 90Zr calculated by RH+RPA

with DD-ME1 (left panel) and RHF+RPA with PKO3 (right panel). The dash-dotted, dotted,

dashed lines show the 0−, 1−, 2− contributions respectively, while the solid line shows their sum.

The arrows indicate the experimental data.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

DD-ME1

 0-

 1-

 2-

 sum

Spin-Dipole

90Zr

R
+  

(fm
2 /M

eV
)

E (MeV)
0 5 10 15 20 25 30

0

5

10

15

20

25

30

PKO3

 0-

 1-

 2-

 sum

Spin-Dipole

90Zr

R
+  

(fm
2 /M

eV
)

E (MeV)

Figure 4.6: Same as Fig. 4.5, but for the T+ channel.
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Table 4.3: Average excitation energies for different components of spin-dipole resonances (SDR) and

spin-quadrupole resonances (SQR) in 90Zr calculated by RH+RPA with DD-ME1, RHF+RPA with

PKO3, as well as SHF+RPA with SLy5 (Fracasso and Colò, 2007) and SIII (Auerbach and Klein,

1984). All values are expressed in MeV.

RH+RPA RHF+RPA SHF+RPA

DD-ME1 PKO3 SLy5 SIII

SDR(T−) 0− 27.1 31.0 30.8 31.8

1− 29.5 27.1 27.5 28.4

2− 22.9 23.5 22.9 23.5

SDR(T+) 0− 11.2 13.3 12.5

1− 11.8 11.2 10.3

2− 8.5 8.9 9.1

SQR(T−) 1+ 37.0 39.8 40.1

2+ 36.3 34.5 35.1

3+ 27.6 29.2 28.5

SQR(T+) 1+ 23.4 24.7 22.9

2+ 22.3 21.4 19.8

3+ 16.6 17.1 14.6
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approach, in the T− channel, both the excitation energies of the dominant peaks shown in Fig. 4.5

and the average excitation energies listed in Table 4.3 follow the energy hierarchy that the 2− is

the lowest and the 0− the highest. This energy hierarchy is also reported in recent investigations

with fully self-consistent SHF+RPA calculations (Fracasso and Colò, 2007), and those with Landau

approximation (Auerbach and Klein, 1984). It is also found that in all these three components the

dominant p-h residual interactions are those due to isoscalar meson exchanges.

Meanwhile, in RH+RPA calculations, the peak and average energies of 1− are found to be

higher than those of 0−. Tracing the effects of the p-h residual interactions, it is found that the

Hartree contribution of the pseudo-vector π-N p-h residual interaction is always attractive, whereas

that of the pionic zero-range counterterm is repulsive, and this balance lead to the correct position

of the GTR excitation energy as shown in the previous subsection. However, for the 1− component

of SDR, the contribution of the pseudo-vector π-N interaction vanishes due to the natural parity,

and such balance is broken. Thus, the pionic zero-range counterterm alone pushes the 1− excitation

energies even higher than those of 0−, which is a result provided by adjusting the g′.

In the T+ channel, it can also be seen that the RHF+RPA and SHF+RPA calculations lead

to the same energy hierarchy, as shown in Table 4.3, whereas the 1− states become the highest

component in RH+RPA calculations.

Separating experimentally the 0−, 1−, 2− components from the total SDR transition strength

would be helpful to evaluate the predictive power of the above theoretical approaches. So far,

such experiment has been carried out in 12C (de Huu et al., 2007). However, the SDR strength

distributions in such light nucleus are too fragmented to pin down the energy hierarchy.

As a further step, the theoretical description of SQR have been examined, and the average

excitation energies for the 1+, 2+, and 3+ components are listed in the second part of Table 4.3,

comparing with those obtained with SHF+RPA calculations. Focusing on the relative position of

these three components, the results obtained by RHF+RPA and SHF+RPA approaches are almost

the same, while the excitation energies in the 2+ component with natural parity are substantially

pushed towards the high energy region in the RH+RPA results.

4.2.4 Effects of the Dirac Sea in non-energy weighted sum rules

The relativistic RPA is equivalent to the time-dependent relativistic mean field in the small am-

plitude limit only if the p-h configuration space includes both the pairs formed from the occupied

and unoccupied Fermi states and the pairs formed from the empty Dirac states and occupied Fermi

states (Ring et al., 2001). Due to the pairs formed from the Dirac states and occupied Fermi states,

the RPA equations have negative eigenvalues (Ων < −1.1 GeV), and the transition probabilities

to these negative energy excitations are not always negligible. Based on this idea, a relativistic

reduction mechanism of the Gamow-Teller strength due to the effects of the Dirac sea states was

pointed out (Kurasawa et al., 2003). This kind of reduction mechanism appears in both nuclear

matter (Kurasawa et al., 2003) and finite nuclei (Ma et al., 2004; Paar et al., 2004).

Taking the GTR in the nucleus 208Pb as an example, the transition probabilities in the T− and
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Figure 4.7: Transition probabilities in the T− (left panel) and T+ (right panel) channels of the GTR

in 208Pb calculated by RHF+RPA with PKO1.
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Figure 4.8: Running sum of transition probabilities of the GTR in 208Pb calculated by RHF+RPA

with PKO1. The corresponding GT sum rule value is shown as the horizontal dashed line.

Table 4.4: Ikeda sum rule values from Fermi (SF) and Dirac (SD) sectors calculated by RHF+RPA

with PKO1. S−, S+ are the sum rule values of the T− and T+ channels, respectively. The reduction

factor, 1 − (S−
F − S+

F )/(S− − S+), is given in the last column.

S−
F S−

D S+
F S+

D S−
F − S+

F S− − S+ reduction

48Ca 22.67 4.23 0.10 2.83 22.57 23.97 5.9%
90Zr 28.22 8.08 0.32 5.99 27.91 29.99 7.0%

208Pb 122.94 21.54 0.51 11.98 122.43 131.99 7.2%
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T+ channels obtained by self-consistent RHF+RPA calculations with PKO1 are shown in the left

and right panels of Fig. 4.7, respectively. It is found that there are plenty of excitations in the

Dirac sector in both channels, and their transition probabilities are one to three orders of magnitude

smaller than the dominant resonance in the Fermi sector. In order to examine their contributions

to the non-energy weighted sum rule, the running sum of transition probabilities, which is defined

by

(S− − S+)E =
∑

Ων<E

(B−
ν −B+

ν ), (4.1)

are shown in Fig. 4.8, where the corresponding GT sum rule value 3(N −Z) = 132 is shown as the

horizontal dashed line. First of all, the big jumps in the curve correspond to the low-lying and giant

resonances shown in Fig. 4.2. It also can be seen that the GT sum rule is fully exhausted when the

running sum is calculated up to E = 50 MeV. One of the most important points from this figure

is that around 7% of the sum rule value is carried by the excitations in the Dirac sector, where

the dominant contributions come from the deeply bound single-particle states in the Dirac sea.

This indicates that the GT non-energy weighted sum rule can be 100% exhausted only when the

strengths of the transition from the occupied positive energy states to the empty negative energy

states are included. The reduction factors, 1− (SF
−−SF

+)/(S− −S+), of GTR in 48Ca, 90Zr, 208Pb,

which are summarized in Table 4.4, indicate to which extent the antinucleon degrees of freedom

play a role in the present self-consistent approach.
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Figure 4.9: Running sum of transition probabilities of the SDR in 90Zr calculated by RHF+RPA

with PKO1. The corresponding SD sum rule value is shown as the horizontal dashed line.

For the case of SDR, the running sum of transition probabilities in 90Zr is shown in Fig. 4.9.

The curve exhibits a dip in the energy region 5 MeV to 15 MeV due to the fact that the excitation

energies of dominant resonances in the T+ channel are smaller than those in the T− channel as

shown in Fig. 4.5 and Fig. 4.6. While the SD sum rule are fully exhausted when the running sum

is calculated up to E = 50 MeV, it is found that 6.4% of the sum rule value is carried by the
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excitations in the Dirac sector. Furthermore, in contrast to the GTR case, these contributions

come from not only the deeply bound but also the weakly bound single-particle states in the Dirac

sea.

In general, a substantial reduction of the non-energy weighted sum rule value due to the effects

of the Dirac sea is found in spin-flip modes. On the other hand, we find that there is practically no

reduction in non-spin-flip modes, for example, IAS, charge-exchange dipole, quadrupole resonances,

and so on.

In summary, in this chapter the RHF+RPA approach is applied to describe the nuclear spin-

isospin resonances. First of all, in the case of IAS without Coulomb interaction, by switching off

the p-h residual interaction piece by piece, it is found that the σ-, ω-, ρ-mesons play important

roles in this mode, and the coefficient g′ of pionic zero-range counter-term must be maintained

as g′ = 1/3, otherwise the restoration of the isospin symmetry would be destroyed. Furthermore,

the experimental data on the IAS and GTR in doubly magic nuclei 48Ca, 90Zr, 208Pb can be well

reproduced by the present RHF+RPA approach without any readjustment of the energy functional.

In comparison with the RH+RPA description, the physical mechanisms in determining the GTR

are investigated by examining the importance of different p-h residual interactions. It is found that

in RH+RPA approach the attractive πNN interaction and its repulsive zero-range counter-term

are the dominant ingredients in p-h residual interaction for the GT mode, while in RHF+RPA

approach the isoscalar σ- and ω-mesons play an essential role via the exchange terms. These

different physical mechanisms can be clearly demonstrated in the other charge-exchange spin-flip

modes, e.g., SDR and SQR. As an example, the energy hierarchies of different components in

these resonances obtained by RHF+RPA approach are the same as those obtained by SHF+RPA

calculations. In contrast, since the the attractive πNN p-h residual interaction vanishes in the

natural parity 1− component of SDR and 2+ component of SDR, the corresponding excitation

energies are substantially pushed towards the high energy region in RH+RPA results. If the energy

hierarchies of the different Jπ components in SDR or SQR could be determined experimentally in

the future, this would be helpful to verify the predictive power of various theoretical approaches.

Finally, by examining the effects of the Dirac Sea in the non-energy weighted sum rules, a substantial

reduction of the sum rule value is found in spin-flip modes, while there is practically no reduction

in non-spin-flip modes.



Chapter 5

Isospin Corrections for Superallowed

β Decays

5.1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi and Maskawa, 1973)

relates the quark eigenstates of the weak interaction with the quark mass eigenstates. The uni-

tarity condition of the CKM matrix provides a rigorous test for the Standard Model description

of electroweak interactions. Its leading matrix element, Vud, only depends on the first genera-

tion quarks and so it is the element that can be determined most precisely. There are three

traditional methods to determine |Vud| experimentally: nuclear 0+ → 0+ superallowed Fermi

β decays (Hardy and Towner, 2005, 2009), neutron decay (Thompson, 1990) and pion β decay

(Počanić et al., 2004). Recently, experiments with nuclear mirror transitions provide another inde-

pendent sensitive source for extracting the value of |Vud| (Naviliat-Cuncic and Severijns, 2009).

Among these methods, the most precise determination of |Vud| comes from the study of nuclear

0+ → 0+ superallowed Fermi β decays (Amsler et al., 2008). These pure Fermi transitions between

nuclear isobaric analog states (IAS) allow for a direct measurement of the vector coupling constant

GV of semileptonic weak interactions by

G2
V =

K

2(1 + ∆V
R)Ft . (5.1)

Together with the Fermi coupling constant GF for purely leptonic decays, the up-down element of

the CKM matrix can be determined, Vud = GV /GF . In Eq. (5.1), K/(~c)6 = 2π3
~ ln 2/(mec

2)5

and ∆V
R is the transition-independent part of radiative corrections caused, for example, by the

processes where the emitted electron may emit a bremsstrahlung photon that goes undetected in

the experiment (Marciano and Sirlin, 2006; Towner and Hardy, 2008). The nucleus-independent

Ft value is duduced from the experimental ft values after correcting them by the radiative effects

as well as effects due to isospin symmetry breaking by Coulomb and charge-dependent nuclear

forces (Hardy and Towner, 2009),

Ft = ft(1 + δ′R)(1 + δNS − δc), (5.2)

61
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where f and t represent the statistical rate function and partial half-life, respectively. These exper-

imental values are obtained through measurements of the Q values, branching ratios, and half-lives

for the superallowed β decays. The correction terms δ′R and δNS represent the transition-dependent

radiative corrections (Marciano and Sirlin, 2006; Towner and Hardy, 2008). The correction term

δc is the isospin symmetry-breaking correction, accounting for the isospin symmetry breaking in

nuclei.

The isospin is not an exact symmetry mainly due to the presence of the Coulomb forces in

nuclei. The non-conservation of isospin symmetry induces a slight reduction of the superallowed

transition strength |MF |2 from its ideal value |M0|2,

|MF |2 = | 〈f |T± |i〉 |2 = |M0|2(1 − δc), (5.3)

where M0 =
√

2 for T = 1 states with the exact isospin symmetry.

Shell model calculations are generally used to determine the isospin symmetry-breaking correc-

tions δc. Recently, by including the core orbitals, an improvement on such corrections has been

achieved and a good agreement among the nucleus-independent Ft values for the 13 well-measured

cases (10C → 10B, 14O → 14N, 22Mg → 22Na, 34Ar → 34Cl, 26Al → 26Mg, 34Cl → 34S, 38K → 38Ar,

42Sc → 42Ca, 46V → 46Ti, 50Mn → 50Cr, 54Co → 54Fe, 62Ga → 62Zn, 74Rb → 74Kr) has been

obtained (Towner and Hardy, 2008).

Alternatively, self-consistent Random Phase Approximation (RPA) based on microscopic mean

field theories is another microscopic approach for the superallowed transition strength MF . Such

calculations have been performed for a few nuclei with the non-relativistic Skyrme Hartree-Fock

approach in the 1990s (Sagawa et al., 1996). Since then no further investigations have been done

even though significant progress in self-consistent RPA in charge-exchange channels have been made

(Engel et al., 1999; Fracasso and Colò, 2005; De Conti et al., 1998; Paar et al., 2004; Liang et al.,

2008).

During the last decade, great efforts have been dedicated to developing the charge-exchange

(Q)RPA within the relativistic framework. From the early model which only contains a rather

small configuration space (De Conti et al., 1998) to the sophisticated model which includes Bogoli-

ubov transformation and proton-neutron pairing (Paar et al., 2004), these approaches are aimed

at describing the spin-isospin resonances, β decay rates, neutrino-nucleus cross sections, etc., in a

systematical, reliable and predictive way. Recently, based on the success of the newly established

density-dependent relativistic Hartree-Fock (RHF) approach, a fully self-consistent charge-exchange

RPA has been established and the first applications were performed for spin-isospin resonances like

Gamow-Teller and spin-dipole resonances (Liang et al., 2008). A very satisfactory agreement with

the experimental data was obtained without any readjustment of the energy functional. Therefore,

it is appropriate now to re-investigate the isospin corrections for superallowed Fermi β decays with

these relativistic models.

In this chapter, the self-consistent RPA approaches in the relativistic framework will be applied

to calculate the isospin symmetry-breaking corrections δc. With the corrections thus obtained,
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the nucleus-independent Ft values will be deduced in combination with the experimental ft val-

ues in the most recent survey (Hardy and Towner, 2009) and the improved radiative corrections

(Marciano and Sirlin, 2006; Towner and Hardy, 2008). The element Vud and the unitarity of the

CKM matrix will then be discussed.

Before ending this section, it is worthwhile to make the following remark about the self-

consistency of the RH+RPA approach when it is applied to the 0+ → 0+ transitions. Within

this approach, it is known that, in order to reproduce the excitation energies of GTR, one has to

adjust the π-N p-h residual interaction and that g′ cannot be kept equal to 1/3 (De Conti et al.,

1998; Paar et al., 2004). However, for the 0+ → 0+ channel, the direct contributions from the pion

vanish. Therefore, in this sense, the self-consistency is also fulfilled in the RH+RPA approach as

far as the superallowed Fermi β decays are concerned.

5.2 Results and discussion

For all the calculations in this section, the spherical symmetry is assumed and the filling approxima-

tion is applied to the last partially occupied orbital. The Dirac equations are solved in coordinate

space within a spherical box with a box radius R = 15 fm and a mesh size dr = 0.1 fm. The single-

particle wave functions thus obtained are used to construct the RPA matrix elements AJ and BJ

in Eq. (2.53) with the single-particle energy truncation [−M,M +120 MeV]. With these numerical

inputs, the IAS non-energy weighted sum rule in Eq. (2.67) can be fulfilled up to 10−5 accuracy,

and the isospin symmetry-breaking corrections δc are stable with respect to these numerical inputs

at the same level of accuracy.

5.2.1 Isospin symmetry-breaking corrections δc

In Table 5.1, the isospin symmetry-breaking corrections δc in Eq. (5.3) for the 0+ → 0+ superal-

lowed transitions are shown. The results are obtained by self-consistent RHF+RPA calculations

with PKO1 (Long et al., 2006), PKO2 (Long et al., 2008), PKO3 (Long et al., 2008) effective in-

teractions, as well as by self-consistent RH+RPA calculations with DD-ME1 (Nikšić et al., 2002a),

DD-ME2 (Lalazissis et al., 2005), NL3 (Lalazissis et al., 1997), TM1 (Sugahara and Toki, 1994)

effective interactions. The results obtained by shell model calculations (T&H) (Towner and Hardy,

2008) are also listed for comparison. The RPA corrections δc range from about 0.1% for the lightest

nucleus 10C to about 1.2% for the heaviest nucleus 74Rb, which are 2 to 3 times smaller than the

T&H results. It is noticed that even smaller values of δc compared to the shell model calculations

have been recently obtained in Ref. (Auerbach, 2009) using perturbation theory. In addition, in Ta-

ble 5.2 the excitation energies Ex for the 0+ → 0+ superallowed transitions corresponding to PKO1

and DD-ME2 are shown as examples. These energies are measured by taking the ground-state of

the corresponding even-even nuclei as reference. In the comparison with the experimental values

taken from the recent survey (Hardy and Towner, 2009), the corrections due to the proton-neutron

mass difference in p-h configurations are included in the calculated results. A good agreement



64 CHAPTER 5. ISOSPIN CORRECTIONS FOR SUPERALLOWED β DECAYS

Table 5.1: Isospin symmetry-breaking corrections δc for the 0+ → 0+ superallowed transi-

tions obtained by self-consistent RHF+RPA calculations with PKO1 (Long et al., 2006), PKO2

(Long et al., 2008), and PKO3 (Long et al., 2008) as well as self-consistent RH+RPA calcula-

tions with DD-ME1 (Nikšić et al., 2002a), DD-ME2 (Lalazissis et al., 2005), NL3 (Lalazissis et al.,

1997), and TM1 (Sugahara and Toki, 1994). The column PKO1* presents the results obtained

with PKO1 without the Coulomb exchange (Fock) term. The results obtained by shell model cal-

culations (Towner and Hardy, 2008) are listed in the column T&H for comparison. All values are

expressed in %.

PKO1 PKO2 PKO3 PKO1* DD-ME1 DD-ME2 NL3 TM1 T&H

10C → 10B 0.082 0.083 0.088 0.148 0.149 0.150 0.124 0.133 0.175(18)

14O → 14N 0.114 0.134 0.110 0.178 0.189 0.197 0.181 0.159 0.330(25)

18Ne → 18F 0.270 0.277 0.288 0.357 0.424 0.430 0.344 0.373 0.565(39)

26Si → 26Al 0.176 0.176 0.184 0.246 0.252 0.252 0.213 0.226 0.435(27)
30S → 30P 0.497 0.550 0.507 0.625 0.612 0.633 0.551 0.648 0.855(28)

34Ar → 34Cl 0.268 0.281 0.267 0.359 0.368 0.376 0.438 0.320 0.665(56)

38Ca → 38K 0.313 0.330 0.313 0.406 0.431 0.441 0.390 0.572 0.765(71)

42Ti → 42Sc 0.384 0.387 0.390 0.460 0.515 0.523 0.436 0.443 0.935(78)

26Al → 26Mg 0.139 0.138 0.144 0.193 0.198 0.198 0.172 0.179 0.310(18)

34Cl → 34S 0.234 0.242 0.231 0.298 0.302 0.307 0.289 0.267 0.650(46)
38K → 38Ar 0.278 0.290 0.276 0.344 0.363 0.371 0.334 0.484 0.655(59)

42Sc → 42Ca 0.333 0.334 0.336 0.395 0.442 0.448 0.377 0.383 0.665(56)

54Co → 54Fe 0.319 0.317 0.321 0.392 0.395 0.393 0.355 0.368 0.770(67)

66As → 66Ge 0.475 0.475 0.469 0.571 0.568 0.572 0.560 0.524 1.56(40)
70Br → 70Se 1.140 1.118 1.107 1.234 1.232 1.268 1.230 1.226 1.60(25)

74Rb → 74Kr 1.088 1.091 1.071 1.230 1.233 1.258 1.191 1.234 1.63(31)
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Table 5.2: Excitation energies Ex for the 0+ → 0+ superallowed transitions measured by taking

the ground-state of the corresponding even-even nuclei as reference. In the comparison with the

experimental values taken from the recent survey (Hardy and Towner, 2009), the corrections due

to the proton-neutron mass difference in p-h configurations are included in the calculated results.

All units are in MeV.

expt. PKO1 PKO1* DD-ME2

10C → 10B -1.908 -1.698 -2.307 -2.236

14O → 14N -2.831 -2.420 -2.989 -3.081

18Ne → 18F -3.402 -3.195 -3.497 -3.451

26Si → 26Al -4.842 -4.531 -5.139 -5.110
30S → 30P -5.460 -4.845 -5.326 -5.395

34Ar → 34Cl -6.063 -5.559 -6.129 -6.278

38Ca → 38K -6.612 -6.035 -6.611 -6.775

42Ti → 42Sc -7.000 -6.661 -6.970 -6.964

26Al → 26Mg 4.233 3.908 4.372 4.350

34Cl → 34S 5.492 5.062 5.428 5.561

38K → 38Ar 6.044 5.557 5.936 6.083

42Sc → 42Ca 6.426 6.118 6.333 6.333

54Co → 54Fe 8.244 7.720 8.221 8.240

66As → 66Ge 9.579 9.044 9.488 9.677
70Br → 70Se 9.970 9.632 9.805 9.852

74Rb → 74Kr 10.417 10.005 10.349 10.437
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between the data and the calculated ones can be seen in Table 5.2.

In Table 5.1, it is found that the present isospin symmetry-breaking corrections δc for each nu-

cleus can be unambiguously divided into two categories, those obtained by RHF+RPA calculations

and those obtained by RH+RPA calculations. Comparing these two categories, it is seen that the

corrections δc of RHF+RPA are systematically smaller than those of RH+RPA. On the other hand,

it is also found that within one category the corrections δc are not sensitive to specific effective

interactions or the structure of the Lagrangian density. For instance, within the RH+RPA frame-

work, both the Lagrangian densities with density-dependent meson-nucleon couplings (DD-ME1,

DD-ME2) or with non-linear meson couplings (NL3, TM1) lead to quite similar results.

To understand this systematic discrepancy between RHF+RPA and RH+RPA, it must be kept

in mind that in RHF+RPA the exchange (Fock) terms of mesons and photon are kept in both the

mean field and RPA levels, whereas they are neglected altogether in RH+RPA. Among all the Fock

terms, we expect, in particular, the exchange terms of the Coulomb field to play an important role

due to the following reason. The IAS would be degenerate with its isobaric multiplet partner, i.e.,

Ex = 0, and it would contain 100% of the model-independent sum rule (2.67), i.e., δc = 0, if the

nuclear Hamiltonian commutes with the isospin raising and lowering operators T±. This would be

the case when the Coulomb field is switched off. While this degeneracy is broken by the mean field

approximation, no matter the exchange terms of mesons are included or not, it can be restored

by the RPA as long as the RPA calculations are fully self-consistent (Engelbrecht and Lemmer,

1970). Therefore, the Coulomb field is essential for the 0+ → 0+ superallowed transitions and

the Coulomb exchange (Fock) term should be responsible for the difference in isospin symmetry-

breaking corrections δc in the RHF+RPA and RH+RPA approaches.

In order to verify the above argument, we have performed the following calculations. Using

PKO1, the Hartree-Fock calculations are performed by switching off the exchange contributions of

the Coulomb field. From the single-particle spectra thus obtained, self-consistent RPA calculations

are then performed. One may notice that in such calculations some nuclear properties including

binding energies and rms radii can no longer be reproduced. However, this does not hinder us from

discussing the physics we are concerned with. The isospin symmetry-breaking corrections δc and the

excitation energies Ex thus obtained are listed in the column denoted as PKO1* in Table 5.1 and

Table 5.2. It is seen that these results are practically the same as those of RH+RPA calculations

with DD-ME1, DD-ME2, NL3, and TM1. Thus, by switching off the exchange contributions

of the Coulomb field, Ex and δc in the RHF+RPA calculations recover the results in RH+RPA

calculations. In other words, although the meson exchange terms can be somehow effectively

included by adjusting the parameters in the direct terms, this has not been done for the Coulomb

part in the usual RH approximation.

Therefore, one can conclude that the proper treatment of the Coulomb field is very important

to extract correctly the isospin symmetry-breaking corrections δc.
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5.2.2 Nucleus-independent Ft values

Among the 0+ → 0+ superallowed transitions listed in Table 5.1, some of their measured ft values

are summarized in a recent survey (Hardy and Towner, 2009). To obtain the nucleus-independent

Ft values from each experimental ft value, apart from the isospin symmetry-breaking corrections

δc in Table 5.1, one still needs the values of the transition-dependent radiative corrections δ′R and

nuclear-structure-dependent radiative corrections δNS.
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Figure 5.1: Corrected Ft values by RHF+RPA with PKO1 (full circle) as a function of the charge

Z for the daughter nucleus. The shaded horizontal band gives one standard deviation around

the average Ft value. The uncorrected experimental ft values (Hardy and Towner, 2009) (open

square) and partially corrected (δc = 0) Ft values (open triangle) are shown for comparison.

Using the δ′R and δNS values from recent calculations (Towner and Hardy, 2008), δc in Ta-

ble 5.1, and measured ft values (Hardy and Towner, 2009), the nucleus-independent Ft values by

RHF+RPA with PKO1 for superallowed Fermi β decays are plotted in full circles as a function of

the charge Z of the daughter nucleus in Fig. 5.1. The shaded horizontal band gives the standard

deviation, which combines the statistical errors and χ2/ν, around the average Ft value. For compar-

ison, the uncorrected experimental ft values (Hardy and Towner, 2009) and the partially corrected

Ft values, only including the radiative corrections, are shown as the open squares and triangles,

respectively. One can find the importance of the radiative and isospin symmetry-breaking correc-

tions by comparing the three sets of data. It can also be seen that the isospin symmetry-breaking

corrections become more important when the charge Z increases.

The Ft values with all effective interactions used are listed in Table 5.3 together with the average

Ft values and the values of chi-square per degree of freedom χ2/ν, in which the uncertainty of δc

is taken as zero. The results of RH+RPA with DD-ME2 are also plotted as a function of the

charge Z for the daughter nucleus in the left panel of Fig. 5.2. It is found that the chi-square per

degree of freedom χ2/ν is 1.0 ∼ 1.1 s for all effective interactions employed. This indicates that

the constancy of the nucleus-independent Ft values is satisfied, even though not as well as in the
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Table 5.3: Nucleus-independent Ft values. The average Ft value and the normalized χ2/ν appear

at the bottom. All units are in s.

PKO1 PKO2 PKO3 DD-ME1 DD-ME2 NL3 TM1

10C → 10B 3079.6(45) 3079.5(45) 3079.4(45) 3077.5(45) 3077.5(45) 3078.3(45) 3078.0(45)

14O → 14N 3078.2(31) 3077.5(31) 3078.3(31) 3075.8(31) 3075.6(31) 3076.1(31) 3076.8(31)

34Ar → 34Cl 3081.9(84) 3081.5(84) 3082.0(84) 3078.8(84) 3078.6(84) 3076.7(83) 3080.3(84)

26Al → 26Mg 3077.7(13) 3077.7(13) 3077.5(13) 3075.8(13) 3075.8(13) 3076.6(13) 3076.4(13)
34Cl → 34S 3083.5(16) 3083.3(16) 3083.6(16) 3081.4(16) 3081.3(16) 3081.8(16) 3082.5(16)

38K → 38Ar 3084.1(16) 3083.8(16) 3084.2(16) 3081.5(16) 3081.3(16) 3082.4(16) 3077.8(16)

42Sc → 42Ca 3082.7(21) 3082.6(21) 3082.6(21) 3079.3(21) 3079.1(21) 3081.3(21) 3081.1(21)

54Co → 54Fe 3083.9(27) 3083.9(27) 3083.8(27) 3081.5(27) 3081.6(27) 3082.7(27) 3082.4(27)

74Rb → 74Kr 3094.8(87) 3094.7(87) 3095.3(87) 3090.2(87) 3089.4(87) 3091.5(87) 3090.2(87)

average 3081.4(7) 3081.3(7) 3081.4(7) 3079.1(7) 3079.0(7) 3080.0(7) 3079.1(7)

χ2/ν 1.1 1.1 1.1 1.0 1.0 1.0 1.0

shell model calculations of Ref. (Hardy and Towner, 2009). It is also found that the Ft values of

RHF+RPA are about 2 s larger than those of RH+RPA, which is larger than the difference due to

the different effective interactions in either RHF or RH approximations.
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Figure 5.2: Nucleus-independent Ft values as a function of the charge Z for the daughter nucleus.

The values of δc are respectively obtained by RH+RPA calculations with DD-ME2 (left panel) and

by SHF+RPA calculations with SGII (Sagawa et al., 1996) (right panel). The shaded horizontal

band gives one standard deviation around the average Ft value.

In order to get a deeper understanding on the treatment of the Coulomb field, the Ft values

from RPA calculations using Skyrme Hartree-Fock (SHF) with SGII effective interaction are shown

in the right panel of Fig. 5.2, in which the isospin symmetry-breaking corrections δc are taken from

the Table I in Ref. (Sagawa et al., 1996). It should be emphasized that in these results the exchange

contributions to the Coulomb mean field are treated in the Slater approximation. Although this



5.2. RESULTS AND DISCUSSION 69

model leads to a similar average Ft value, Ft = 3081.1(7) s, it is found that the chi-square per

degree of freedom χ2/ν = 1.5, i.e., the constancy of the Ft values in this SHF framework is not as

good as that given by the relativistic calculations. In particular, the Ft value deduced from the

nucleus 74Rb is somewhat overestimated.

5.2.3 Unitarity of the CKM matrix

With the nucleus-independent Ft value, the element Vud of the CKM matrix can be calculated by

(see Eq. (5.1))

V 2
ud =

K

2G2
F (1 + ∆V

R)Ft
, (5.4)

whereK/(~c)6 = 8120.2787(11)×10−10 GeV−4s, GF /(~c)
3 = 1.16637(1)×10−5 GeV−2 (Amsler et al.,

2008), and ∆V
R = 2.361(38)% (Towner and Hardy, 2008). Then, in combination with the other two

CKM matrix elements |Vus| = 0.2255(19) and |Vub| = 0.00393(36) (Amsler et al., 2008), one can

test the unitarity of the first line of the matrix.

Table 5.4: The element Vud and the sum of squared top-row elements of the CKM matrix.

|Vud| |Vud|2 + |Vus|2 + |Vub|2

PKO1 0.97273(27) 0.9971(10)

PKO2 0.97275(27) 0.9971(10)

PKO3 0.97273(27) 0.9971(10)

PKO1* 0.97303(26) 0.9977(10)

DD-ME1 0.97309(26) 0.9978(10)

DD-ME2 0.97311(26) 0.9978(10)

NL3 0.97295(26) 0.9975(10)

TM1 0.97309(26) 0.9978(10)

The element Vud as well as the sum of squared top-row elements of the CKM matrix are listed

in Table 5.4. The uncertainties of the present results are underestimated to some extent as the

uncertainty of δc is assumed to be zero and the systematic errors are not taken into account. In

Fig. 5.3, the sum of squared top row elements of the CKM matrix obtained by RHF+RPA calcula-

tions with PKO1 and by RH+RPA calculations with DD-ME2 are shown in comparison with those

in shell model (H&T) (Hardy and Towner, 2009) as well as in neutron decay (Amsler et al., 2008),

pion β decay (Počanić et al., 2004) and nuclear mirror transitions (Naviliat-Cuncic and Severijns,

2009).

It can be clearly seen in Table 5.4 that the matrix element |Vud| determined by the 0+ → 0+

superallowed transitions mainly depends on the treatment of the Coulomb field and it is less sen-

sitive to the particular effective interactions. Switching on or off the exchange contributions of the

Coulomb field, the discrepancy caused by different effective interactions is much smaller than the

statistic deviation. It is interesting to note that the present |Vud| values well agree with those ob-
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Figure 5.3: The sum of squared top row elements of the CKM matrix obtained by RHF+RPA

calculations with PKO1 and by RH+RPA calculations with DD-ME2 in comparison with those in

shell model (H&T) (Hardy and Towner, 2009) as well as in neutron decay (Amsler et al., 2008),

pion β decay (Počanić et al., 2004) and nuclear mirror transitions (Naviliat-Cuncic and Severijns,

2009).

tained in neutron decay, pion β decay and nuclear mirror transitions. However, the sum of squared

top-row elements considerably deviates from the unitarity condition, which is in contradiction with

the conclusion of shell model calculations (H&T) (Hardy and Towner, 2009). This calls for more

intensive investigations in the future. For example, mean field and RPA calculations including the

proper neutron-proton mass difference, isoscalar and isovector pairing, and deformation should be

done. It should also be emphasized that apart from the proper treatment of pairing by either BCS

or Bogoliubov approaches, the particle number projection must be implemented as well in order

to remove the artificial isospin symmetry breaking effects due to the particle number violation.

Finally, the errors due to the filling approximation have to be evaluated.

5.2.4 Effects of the neutron-proton mass difference

In this subsection, we examine the effects of the neutron-proton mass difference on the Vud value.

We repeat the self-consistent relativistic RPA calculations with effective interactions PKO1 and

DD-ME2, but adopting experimental values of neutron and proton masses. The isospin symmetry-

breaking corrections δc thus obtained are listed in the columns PKO1† and DD-ME2† of Table 5.5.

The difference between the results of PKO1† and PKO1, as well as DD-ME2† and DD-ME2 are

presented in the columns ∆δc to show the net effects of the neutron-proton mass difference.

It can be seen that the effects of the neutron-proton mass difference on the corrections δc range

from about 0.01% to about 0.05%, and roughly speaking, larger δc lead to larger ∆δc. With these

effects, the Vud value predicted by RHF+RPA with PKO1 is changed from |Vud| = 0.97273(27)

to |Vud| = 0.97280(27), and the value predicted by RH+RPA with DD-ME2 is changed from

|Vud| = 0.97311(26) to |Vud| = 0.97321(26). This indicates the effects of the neutron-proton mass
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Table 5.5: Isospin symmetry-breaking corrections δc for the 0+ → 0+ superallowed transitions.

The columns PKO1† and DD-ME2† present the results obtained with effective interactions PKO1

and DD-ME2 but adopting experimental values of neutron and proton masses. The columns ∆δc

show the difference between the results of PKO1† and PKO1, as well as DD-ME2† and DD-ME2.

All values are expressed in %.

PKO1† ∆δc DD-ME2† ∆δc
10C → 10B 0.089 0.007 0.161 0.011

14O → 14N 0.127 0.013 0.214 0.017

18Ne → 18F 0.288 0.017 0.454 0.024
26Si → 26Al 0.188 0.012 0.268 0.016

30S → 30P 0.531 0.034 0.672 0.039

34Ar → 34Cl 0.287 0.019 0.400 0.024

38Ca → 38K 0.334 0.021 0.467 0.026
42Ti → 42Sc 0.405 0.020 0.549 0.026

26Al → 26Mg 0.150 0.011 0.212 0.014
34Cl → 34S 0.252 0.018 0.329 0.022

38K → 38Ar 0.299 0.020 0.395 0.024

42Sc → 42Ca 0.352 0.019 0.472 0.024

54Co → 54Fe 0.336 0.017 0.414 0.020

66As → 66Ge 0.500 0.026 0.601 0.028

70Br → 70Se 1.188 0.048 1.320 0.051

74Rb → 74Kr 1.132 0.044 1.308 0.050
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difference are small compared to other kinds of uncertainties, and it is not the main reason why

the present results of the sum of squared top row elements of the CKM matrix deviate from the

unitarity condition.

In summary, in this chapter self-consistent relativistic RPA approaches are applied to calculate

the isospin symmetry-breaking corrections δc for the superallowed β transitions. It is found that the

proper treatment of the Coulomb field is very important to extract the isospin symmetry-breaking

corrections δc. By switching off the exchange contributions of the Coulomb field, the corrections

δc in RHF+RPA calculations recover the results in RH+RPA calculations. In other words, one

cannot effectively take care of the Coulomb exchange term by adjusting the parameters in the direct

terms of mesons as done in the usual RH approximation. With the isospin symmetry-breaking

corrections δc calculated by relativistic RPA approaches, the values of |Vud| thus obtained agree

well with those obtained in neutron decay, pion β decay and nuclear mirror transitions. However,

the sum of squared top-row elements seems to deviate from the unitarity condition. The effects

of the neutron-proton mass difference on the isospin symmetry-breaking corrections δc have been

investigated. It is shown that these effects are small compared to other kinds of uncertainties. The

neutron-proton mass difference is not the main reason why the present results of the sum of squared

top row elements of the CKM matrix deviate from the unitarity condition. For further studies,

more intensive investigations including the proper isoscalar and isovector pairing and deformation

should be done.



Chapter 6

Inclusive Charged-Current

Neutrino-Nucleus Reactions

6.1 Introduction

Neutrino-nucleus reactions at low energies, Eν < 100 MeV, are of particular importance for many

phenomena in nuclear physics, particle physics, and astrophysics (Hayes, 1999; Vogel, 2006). One

of the worldwide focus is the measurements of neutrino masses and their mixing angles, which open

a door to explore the physics beyond the Standard Model. Furthermore, around the core-collapse

supernova explosion, the neutrino flux is so large that significant neutral-current and charged-

current neutrino-nucleus scattering occurs, even though the corresponding cross sections are rather

small. The neutral-current excitations and the subsequent multi-particle breakup determine the

ν-process nucleosynthesis (Woosley et al., 1990), while the competition between neutron capture

and charged-current neutrino scattering is one of the key ingredients for determining the r-process

nucleosynthesis (Langanke and Mart́ınez-Pinedo, 2003), which is responsible for the formation of

half of the elements with A > 70. Concerning the nuclear physics aspect, the neutrino-nucleus cross

sections are found to be very sensitive to the nuclear spin-isospin excitations in such low neutrino

energy region (Kolbe et al., 2003).

So far, inclusive and exclusive charged-current neutrino-nucleus cross sections data for the 12C

(Krakauer et al., 1992; Bodmann et al., 1994; Athanassopoulos et al., 1998; Auerbach et al., 2001,

2002) and 56Fe (Maschuw, 1998) targets have been obtained by the Liquid Scintillator Neutrino

Detector (LSND), and Karlsruhe Rutherford Medium Energy Neutrino (KARMEN) Collaborations.

More ambitious experiments using the neutrinos generated at the spallation sources are under

construction, planning, or study. These facilities include the Spallation Neutron Source (SNS) at

Oak Ridge, the European Spallation Source (ESS) in Lund, the Japanese Spallation Neutron Source

(JSNS) at JPARC, and the China Spallation Neutron Source (CSNS) in Guangdong. Another kind

of promising neutrino experiments would be that using the neutrinos generated with low energy

beta-beams (Zucchelli, 2002; Volpe, 2004, 2007). The beta decays of boosted radioactive ions can

73
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produce pure and collimated beams of electron (anti-)neutrinos, and the average energy of the

neutrino beams can be controlled. Therefore, it is expected that more accurate neutrino-nucleus

scattering data on various targets will be available in the near future.

On the other hand, it has been shown that the theoretical predictions of the neutrino-nucleus

cross sections with sufficiently high accuracy are crucial to calibrate the neutrino detectors and

interpret the neutrino experiments. One example is the reanalysis of the LSND neutrino oscillation

experiment (Samana et al., 2006). Based on the lepton-hadron weak interaction in the standard

current-current form, the pioneering investigations of low energy neutrino-nucleus reactions were

done in the 1970s (O’Connell et al., 1972; Walecka, 1975). At present, a variety of microscopic

approaches for evaluating the charged-current neutrino-nucleus cross sections include the nuclear

shell model (Haxton, 1987; Auerbach and Brown, 2002), the RPA and QRPA (Auerbach et al.,

1997; Volpe et al., 2000, 2002; Sajjad Athar et al., 2006; Lazauskas and Volpe, 2007), continuum

RPA (CRPA) (Jachowicz et al., 2002; Kolbe et al., 2002), projected quasiparticle RPA (PQRPA)

(Krmpotić et al., 2005), and relativistic RPA (RRPA) (Paar et al., 2008). Comparing the above

investigations, apart from the difference in the nuclear models used to describe the transitions from

the parent ground-state to the excited daughter states, there are also important differences in the

choice of recipes for the axial vector coupling strength gA and the theoretical low-lying excited

states of the daughter nucleus. Thus, we find it useful to discuss in this chapter the consequences

of the various choices.

Comparing with the shell model calculations, the RPA calculations based on the mean field

can be, in principle, implemented for the whole nuclear chart, and the relatively large p-h config-

uration space allows for the description of the high-J excitations up to ∼ 100 MeV. Furthermore,

it has been shown that the self-consistency of the RPA approach is an important requirement for

restoring the symmetries which are broken by the mean field approximation, and for separating

the spurious states from the physical states, as well as for extrapolating the theoretical analysis to-

wards the nucleon drip lines. Nevertheless, the present CRPA calculations (Jachowicz et al., 2002;

Kolbe et al., 2002) are not self-consistent since they employ different interactions for the descrip-

tion of the ground-state and excited states, and the (Q)RPA calculations based on the SHF theory

(Lazauskas and Volpe, 2007) still exclude some terms in the p-h residual interaction, e.g., the spin-

orbit term. Only recently, a fully self-consistent SHF+RPA in the charge-exchange channels was

developed (Fracasso and Colò, 2005; Fracasso and Colò, 2007), but not yet used in the analysis

of neutrino-nucleus reactions. On the relativistic side, it has been shown in Chapter 4 that the

nuclear spin-flip responses, e.g., SDR, SQR, and so on, are sensitive to the additional g′ parameter

within the RH+RPA framework. Therefore, it is interesting to investigate the properties of low

energy neutrino-nucleus reactions within the fully self-consistent RHF+RPA framework.

In this chapter, the RHF+RPA approach will be applied to calculate the inclusive charged-

current neutrino-nucleus cross sections, by taking the 16O(νe,e
−)16F reaction as an illustrative

example. Following the prescription given by Walecka (Walecka, 1975), the key expressions for

calculating the cross sections in the extreme relativistic limit will be summarized in the next
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section, and the Coulomb corrections to the inclusive cross section given by the Fermi function

correction and effective momentum approximation (EMA) will be explained in details as well. The

main effort will be dedicated to discussing the substantial influence of different recipes for the

axial vector coupling strength and the choice of theoretical low-lying excited states of the daughter

nucleus. Then, the reason why we favor the value of gA = 1.262 and the inclusion of all RPA

excited states will be explained. Finally, the inclusive cross sections averaged over the Michel flux

and the supernova neutrino flux will be shown, in comparison with the previous theoretical studies

by other authors.

6.2 Inclusive neutrino-nucleus cross sections

In the present study, we consider the charged-current neutrino-nucleus reactions

νl +Z XN →Z+1 X
∗
N−1 + l−, (6.1)

where l denotes the charged lepton, e.g., electron or muon. The charged-current neutrino-nucleus

cross section reads (Walecka, 1975; O’Connell et al., 1972)

dσν

dΩ
=

V 2

(2π)2
plEl

∑

lepton spins

1

2Ji + 1

∑

MiMf

∣

∣

∣〈f |ĤW |i〉
∣

∣

∣

2
, (6.2)

where pl and El are the momentum and energy of the outgoing lepton, respectively. The Hamilto-

nian ĤW of the weak interaction is expressed in the standard current-current form, i.e., in terms

of the nucleon Jλ(x) and lepton jλ(x) currents (Walecka, 1975; O’Connell et al., 1972)

ĤW = − G√
2

∫

dxJ λ(x)jλ(x), (6.3)

Denoting the leptonic matrix current as lλe
−iq·x, the transition matrix elements read

〈f |ĤW |i〉 = − G√
2
lλ

∫

dxe−iq·x〈f |J λ(x)|i〉, (6.4)

with the four-momentum transfer

(q0,q) = (El,pl) − (Eν ,pν), (6.5)

which must be space-like, i.e.,

q2 = q20 − q2
6 0. (6.6)

In the extreme relativistic limit (ERL), in which the energy of the outgoing lepton is consid-

ered much larger than its rest mass, the differential neutrino-nucleus cross section takes the form
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(Walecka, 1975; O’Connell et al., 1972)

(

dσν

dΩ

)

ERL

=
2G2

F cos2 θc

π

E2
l

2Ji + 1







cos2
θ

2

∑

J>0

∣

∣

∣

∣

〈Jf ||M̂J − q0
|q| L̂J ||Ji〉

∣

∣

∣

∣

2

+

(−q2
2q2

cos2
θ

2
+ sin2 θ

2

)

∑

J>1

[

∣

∣

∣〈Jf ||T̂ MAG
J ||Ji〉

∣

∣

∣

2
+
∣

∣

∣〈Jf ||T̂ EL
J ||Ji〉

∣

∣

∣

2
]

− sin
θ

2

√

−q2
q2

cos2
θ

2
+ sin2 θ

2

∑

J>1

2Re〈Jf ||T̂ MAG
J ||Ji〉〈Jf ||T̂ EL

J ||Ji〉∗






(6.7)

with κ = |q|, where GF is the Fermi constant for the weak interaction, θc is the Cabbibo’s angel

(Amsler et al., 2008), and θ denotes the angle between the incoming and outgoing leptons. The

nuclear multipole operators are the Coulomb operator

M̂JM (x) = F V
1 M

M
J (x) − iκ

mN

[

FAΩM
J (x) +

1

2
(FA + q0FP )Σ′′M

J (x)

]

, (6.8)

the longitudinal operator

L̂JM (x) =
q0
κ
F V

1 M
M
J (x) + i

[

FA − 1

2

κ2

mN
FP

]

Σ′′M
J (x), (6.9)

the transverse electric operator

T̂ EL
JM(x) =

κ

mN

[

F V
1 ∆′M

J (x) +
1

2
µV ΣM

J (x)

]

+ iFAΣ′M
J (x), (6.10)

and the transverse magnetic operator

T̂ MAG
JM (x) = − iκ

mN

[

F V
1 ∆M

J (x) − 1

2
µV Σ′M

J (x)

]

+ FAΣM
J (x), (6.11)

where mN is the mass of nucleon. The form factors are the functions of q2 (Kuramoto et al., 1990),

F V
1 (q2) =

(

1 − q2

(840 MeV)2

)−2

, (6.12a)

µV (q2) = 4.706

(

1 − q2

(840 MeV)2

)−2

, (6.12b)

FA(q2) = −gA

(

1 − q2

(1032 MeV)2

)−2

, (6.12c)

FP (q2) =
2mNFA(q2)

−q2 +m2
π

, (6.12d)

where mπ is the mass of pion, and gA = 1.262 is the axial vector coupling strength. To account for

the universal quenching of the Gamow-Teller strength function, the effective axial vector coupling

geff
A = 1 is sometimes proposed (Bohr and Mottelson, 1969). We will come back to this point in
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Section 6.3. The short-hand notations of the fundamental operators read

MM
J (x), (6.13a)

∆M
J (x) ≡ MM

JJ(x) · 1

κ
∇, (6.13b)

∆′M
J (x) ≡ −i

[

1

κ
∇ × MM

JJ(x)

]

· 1

κ
∇

=

[

−
√

J

2J + 1
MM

JJ+1(x) +

√

J + 1

2J + 1
MM

JJ−1(x)

]

· 1

κ
∇, (6.13c)

ΣM
J (x) ≡ MM

JJ(x) · σ, (6.13d)

Σ′M
J (x) ≡ −i

[

1

κ
∇ × MM

JJ(x)

]

· σ

=

[

−
√

J

2J + 1
MM

JJ+1(x) +

√

J + 1

2J + 1
MM

JJ−1(x)

]

· σ, (6.13e)

Σ′′M
J (x) ≡

[

1

κ
∇MM

J (x)

]

· σ

=

[

√

J + 1

2J + 1
MM

JJ+1(x) +

√

J

2J + 1
MM

JJ−1(x)

]

· σ, (6.13f)

ΩM
J (x) ≡ MM

J (x)σ · 1

κ
∇, (6.13g)

where

MM
J (x) ≡ jJ (kx)YJM (x̂), MM

JL(x) ≡ jJ(kx)YM
JL1(x̂) (6.14)

with the spherical Bessel function jJ (kx), the spherical harmonics YJM (x̂), and the vector spherical

harmonics YM
JL1(x̂) defined as

YM
JL1 =

∑

µν

CJM
Lµ1νY1µeν . (6.15)

The reduced matrix elements concerning the above operators read (see Remark 14),

〈n′l′j′||MJ ||nlj〉 = (−)j−J− 1

2

ĵĵ′Ĵ√
4π

(

j′ j J
1
2 −1

2 0

)

〈n′l′|jJ(kr)|nl〉, (6.16)

〈n′l′j′||MJL · σ||nlj〉 = (−)l
′

√
6√
4π
ĵĵ′ l̂l̂′L̂Ĵ

(

l′ L l

0 0 0

)















j′ j J

l′ l L
1
2

1
2 1















〈n′l′|jL(kr)|nl〉,

(6.17)

〈n′l′j′||MJL · ∇||nlj〉 = (−)l
′+ 1

2
+j+J ĵĵ′

{

l′ j′ 1
2

j l J

}

〈n′l′||MJL · ∇||nl〉, (6.18)
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with

〈n′l′||MJL · ∇||nl〉 = (−)J+l l̂
′L̂Ĵ√
4π

×
[

√

(l + 1)(2l + 3)

{

L 1 J

l l′ l + 1

}(

l′ L l + 1

0 0 0

)

×〈n′l′|jL(kr)

(

d

dr
− l

r

)

|nl〉

−
√

l(2l − 1)

{

L 1 J

l l′ l − 1

}(

l′ L l − 1

0 0 0

)

× 〈n′l′|jL(kr)

(

d

dr
+
l + 1

r

)

|nl〉
]

, (6.19)

and

〈n′l′j′||MJ∇ · σ||nlj〉 = (−)l
′ ĵ′ĵ l̂′Ĵ√

4π
×
[

−δj,l+1/2

√
2l + 3

{

J l′ l + 1
1
2 j j′

}(

l′ J l + 1

0 0 0

)

×〈n′l′|jJ (kr)

(

d

dr
− l

r

)

|nl〉

+δj,l−1/2

√
2l − 1

{

J l′ l − 1
1
2 j j′

}(

l′ J l − 1

0 0 0

)

×〈n′l′|jJ (kr)

(

d

dr
+
l + 1

r

)

|nl〉
]

. (6.20)

In the above expressions, the Wigner-Eckart Theorem with composite tensors is used (see Remark

13).

With the definition of four-momentum transfer q = (q0,q) in Eq. (6.5), one has

q0 = El − Eν = Ei − Ef , (6.21)

where Ei and Ef are the energies of the parent and daughter nuclei, respectively. Assuming the

parent nucleus is in the ground-state, and neglecting the kinetic energy of the nuclei,

Ei = mi, and Ef = mf + E∗, (6.22)

where mi and mf are the masses of the parent and daughter nuclei, respectively, and E∗ is the

excitation energy with respect to the ground-state of the daughter nucleus. The excitation energy

E∗ can be obtained with the RPA calculations by

E∗ = ERPA − [(mf −mi) + (mn −mp)] , (6.23)

where ERPA is the excitation energy with respect to the ground-state of the parent nucleus, and

(mn −mp) is the neutron-proton mass difference which is missing when neutron hole and proton

particle configurations are built. In principle, E∗ should be > 0, which indicates the energetically

possible final states in the daughter nucleus. In some literature, the experimental mass data

Qexp
th = (mexp

f −mexp
i ) + (mn −mp) (6.24)
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is taken as the threshold in the theoretical calculations. We will also come back to this point in

Section 6.3. Combining Eqs. (6.21), (6.22), and (6.23), one has

q0 = El − Eν = −ERPA + (mn −mp), (6.25)

i.e., for a given energy of the neutrino, the energy of the outgoing lepton reads

El = Eν − ERPA + (mn −mp). (6.26)

On the other hand, the momenta of the incoming neutrino and the outgoing lepton in Eq. (6.5) are

|pν | = Eν , and |pl| =
√

E2
l −m2

l . (6.27)

Since the angle between the incoming and outgoing leptons is θ, the momentum transfer is

κ = |q| =
√

p2
ν + p2

l − 2|pν ||pl| cos θ. (6.28)

Furthermore, the reduced matrix elements 〈Jf ||ÔJ ||Ji〉 for a given operator can be written in terms

of the (X,Y ) solutions of the angular momentum coupled RPA equations (Eq. (2.49)) as

〈Jf ||ÔJ ||Ji〉 =
∑

ph

{

XJν
ph 〈p||ÔJ ||h〉 + (−)jp+jhY Jν

ph 〈h||ÔJ ||p〉
}

. (6.29)

Therefore, corresponding to a specific excited state, the differential neutrino-nucleus cross section

in Eq. (6.7) is just a function of the neutrino energy Eν and the angle θ. The total cross section is

the integral over the angle θ, which reads

σν =

∫ π

0
2π

(

dσν

dΩ

)

sin θdθ. (6.30)

For charged-current reactions, the cross section in Eq. (6.2) must be corrected for the distortion

of the outgoing lepton wave function by the Coulomb field of the daughter nucleus. In the low

energy region, the cross section can be multiplied by a Fermi function, which reads (Engel, 1998;

Kolbe et al., 2003), (also see Eq. (7.15) in Ref. (Behrens and Bühring, 1982)),

F (Z,El) = 2(1 + γ)(2plRc)
2(γ−1)eπy

∣

∣

∣

∣

Γ(γ + iy)

Γ(2γ + 1)

∣

∣

∣

∣

2

. (6.31)

Here, Z denotes the proton number of the daughter nucleus, Rc =
√

R2
p + 0.64 fm2 is the charge

rms radius calculated with the ground-state density, α is the fine structure constant, and γ and y

are given by

γ =
√

1 − α2Z2, and y = αZ
El

pl
. (6.32)

In the high energy region, the effect of the Coulomb field can be described by the EMA (Engel,

1998), in which all the lepton momentum pl and energy El in Eq. (6.2) are replaced by

peff
l =

√

Eeff
l

2 −m2
l , and Eeff

l = El − V eff
C , (6.33)

where V eff
C = 4VC(0)/5 with VC(0) = −3Zα/(2Rc) being the effective Coulomb potential (Aste and Trautmann,

2007). As discussed in previous investigations (Volpe et al., 2002; Paar et al., 2008), the cross sec-

tion calculated with the Fermi function is taken at low neutrino energies, and the one calculated

with EMA is taken when the latter becomes smaller than the former for each Jπ contribution.
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6.3 Results and discussion

As the first application, we focus on the neutrino-nucleus reaction 16O(νe,e
−)16F in the following

discussion. The Dirac equations for 16O are solved in coordinate space within a spherical box with

a box radius R = 15 fm and a mesh size dr = 0.1 fm. The single-particle wave functions thus

obtained are used to construct the RPA matrix elements AJ and BJ in Eq. (2.53) with the single-

particle energy truncation [−M,M + 150 MeV]. For each given neutrino energy Eν , the angular

integral over cos θ in Eq. (6.30) is performed with the 8-point Gauss-Legendre integration. We have

checked that the final results of neutrino-nucleus cross sections are stable with respect to variations

of the above numerical inputs.
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Figure 6.1: Uncorrected inclusive cross sections of the reactions 16O(νe,e
−)16F, where gA = 1.262

and all the RPA excited states are taken into account. The different curves correspond to cross

sections evaluated by successively increasing the maximal allowed angular momentum Jmax.

First of all, in order to illustrate the contributions of different multipole excitations and check

the convergence with increasing Jmax, the uncorrected inclusive 16O(νe,e
−)16F cross sections are

shown as a function of the neutrino energy Eν in Fig. 6.1. The different curves correspond to

cross sections evaluated by successively increasing the maximal allowed angular momentum Jmax.

It is found that the largest contributions come from the Jπ = 1− and Jπ = 2− excitations,

because any other multipole excitation of 16O requires the energies of at least 2~ω. It is also found

that the contributions of higher multipoles gradually decrease, and it is well converged when the

contributions of up to J = 6 are taken into account.

Due to the distortion of the outgoing lepton wave function by the Coulomb field of the daughter

nucleus, the Coulomb corrections to the inclusive cross sections must be carried out. In Fig. 6.2, we

show the results with Fermi function correction and EMA, comparing with the uncorrected results.

For the daughter nucleus 16F, the value of the Fermi function F (Z,El) is around 1.25 for the whole

energy region considered in the present calculations, while the EMA correction is rather large for
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Figure 6.2: Coulomb corrections to the inclusive cross sections of the reactions 16O(νe,e
−)16F,

where gA = 1.262 and all the RPA excited states are taken into account. The uncorrected result

as well as those with Fermi function correction and effective momentum approximation are shown

with solid, dashed, and dotted lines, respectively.

the small neutrino energy and decreases gradually with increasing neutrino energy. It is shown

that the EMA correction becomes smaller than the Fermi function correction when Eν > 90 MeV.

As mentioned in the previous section, for each Jπ contribution, one takes the smaller results given

either by the Fermi function correction or EMA, then the final corrected inclusive cross sections

can be obtained.

So far, it is still an open question that one should use the empirical value of the axial vector cou-

pling strength, i.e., gA = 1.262 (Amsler et al., 2008), or its effective value geff
A = 1 (Bohr and Mottelson,

1969), in the nuclear weak interaction calculations. Furthermore, as discussed in the previous sec-

tion, the ground-state and all the excited states of daughter nucleus should be included for the in-

clusive neutrino-nucleus cross sections. In some investigations, e.g., in Ref. (Lazauskas and Volpe,

2007), each RPA eigenstate is regarded as a possible excitation, and all of them generate the com-

plete spectrum of the daughter nuclei. On the other hand, in some other investigations, e.g., in

Refs. (Kolbe et al., 2002; Jachowicz et al., 2002), the experimental mass difference is used to de-

fined the ground-state of the daughter nucleus, and only the excited states that satisfy ERPA > Qexp
th

are taken into account, while the others are regarded as the energetically impossible excitations.

In the following, we denote the former case as all ERPA and the later case as ERPA > Qexp
th .

In order to investigate the effects of different recipes for gA and ERPA, we perform the calcu-

lations for these four cases based on the RHF+RPA framework. In Fig. 6.3, the inclusive cross

sections of the reactions 16O(νe,e
−)16F by RHF+RPA with PKO1 are shown in comparison the re-

sults with the SHF+RPA (Lazauskas and Volpe, 2007) and CRPA (Kolbe et al., 2002) calculations.

Different curves represent different recipes for gA and ERPA.
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Figure 6.3: Inclusive cross sections of the reactions 16O(νe,e
−)16F with different recipes for

gA and ERPA. The RHF+RPA results are compared with those obtained by SHF+RPA

(Lazauskas and Volpe, 2007) and CRPA (Kolbe et al., 2002) calculations.

From the structure of the expression (6.7), it can be found that, when the quenching of gA is

considered, the unnatural parity terms of the operators M̂, L̂ and T̂ EL as well as the natural parity

terms of the operator T̂ MAG are quenched with the factor (geff
A /gA)2 = 0.628, and the mixing terms

of the operators T̂ EL and T̂ MAG are quenched with the factor geff
A /gA = 0.792, while the rest terms

are not affected. Therefore, the total quenching effect depends on the dominant contributions to

the cross sections. Comparing the solid and dashed lines or the dotted and dash-dotted lines in

Fig. 6.3, it is found that the quenching effect is slightly larger in the low neutrino energy region.

For example, in the case of all ERPA the ratio between the results with geff
A and gA is 0.637 at

Eν = 20 MeV and 0.721 at Eν = 100 MeV.

Since the difference between the cases of all ERPA and ERPA > Qexp
th is whether the low-lying

states are taken into account or not in the cross sections, it is not surprising that the effect of

different recipes for ERPA is much more visible in the low neutrino energy region than in the high

neutrino energy region. For example, in the case of gA = 1.262 the ratio between the ERPA > Qexp
th

and all ERPA results is 0.063 at Eν = 20 MeV and 0.908 at Eν = 100 MeV. Furthermore, it is shown

that the present RHF+RPA results with gA = 1.262 and all ERPA are in a good agreement with

those obtained with SHF+RPA calculations by Lazauskas and Volpe (Lazauskas and Volpe, 2007),

while the present results with gA = 1.262 and ERPA > Qexp
th are in a good agreement with those

obtained with CRPA calculation by Kolbe et al. (Kolbe et al., 2002). In other words, with the

guidelines provided by the present calculations, it is clearly shown that the discrepancy between the

results in Refs. (Lazauskas and Volpe, 2007) and (Kolbe et al., 2002) is mainly due to the different

recipes for ERPA, rather than the difference of the RPA approaches.

In our opinion, we favor the case of gA = 1.262 and all ERPA due to the following reasons.
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First of all, the effective axial vector coupling geff
A = 1 was proposed to account for the universal

quenching Q ∼ 60% of the Gamow-Teller strength function (Bohr and Mottelson, 1969). However,

recent experiments performed in both 90Zr(p, n) and 90Zr(n, p) channels and more reliably analyzed

by multipole decomposition analysis detected Q = 88%±6% of the 3(N−Z) sum rule (Yako et al.,

2005). As another argument for using geff
A , it was found that the 0~ω ground-state shell model calcu-

lations could reproduce the total µ− capture rate in 16O, the only weak interaction data in 16O, with

an overall reduction factor about 0.64, which corresponds to geff
A /gA ∼ 0.8 (Auerbach and Brown,

2002). However, it was shown that the total µ− capture rate in 16O could be reproduced without

quenching in gA within the mean field plus RPA approaches (Van Giai et al., 1981; Marketin et al.,

2009). Second, from the self-consistent point of view, it is more correct to include contributions

of all the RPA excited states, since every RPA eigenstate stands for a theoretically energetically

possible excitations to the daughter nucleus. If some of these excitations are eliminated, the non-

energy weighted sum rule for each Jπ component is no longer conserved. Furthermore, even though

the spectrum of the daughter odd-odd nucleus might not be well reproduced by RPA calculations,

it is inherent to the limitation of the p-h configurations or the disease of the effective interactions.

Just eliminating the states under the threshold Qexp
th defined with the experimental mass difference

cannot cure this problem. Last but not least, the present density functional theory should be

extended to the exotic nuclei region where no experimental mass data is available. Therefore, we

favor the empirical value of the axial vector coupling strength gA = 1.262, and suggest to include

all the RPA excitation states for the sake of the consistency of the model.
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Figure 6.4: Michel flux from the decay at rest (DAR) of µ+ (solid line) and supernova neutrino

flux for T = 2 MeV (dashed line), T = 6 MeV (dotted line), and T = 10 MeV (dash-dotted line)

with α = 0.

The theoretical results could be compared with the future data by averaging the cross sections
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over the neutrino flux f(Eν) provided by specific neutrino source,

〈σν〉 =

∫

f(Eν)σν(Eν)dEν
∫

f(Eν)dEν
. (6.34)

Two important neutrino sources are the Michel flux from the decay at rest (DAR) of µ+ (Krakauer et al.,

1992) which reads

f(Eν) =
96E2

ν

m4
µ

(mµ − 2Eν), (6.35)

and the supernova neutrino flux usually described by the Fermi-Dirac spectrum,

f(Eν) =
1

T 3

E2
ν

exp[(Eν/T ) − α] + 1
, (6.36)

where T is the temperature and α is the chemical potential. In Fig. 6.4, the Michel flux and the

supernova neutrino flux for T = 2 MeV, T = 6 MeV, and T = 10 MeV with α = 0 are illustrated. It

is shown that the Michel flux is dominant around Eν = 35 MeV and vanishes when Eν > 53 MeV,

and increasing the temperature, the supernova neutrino flux is pushed into higher neutrino energy

region and becomes more spread.

Table 6.1: Inclusive cross sections of the reactions 16O(νe,e
−)16F averaged over Michel flux

from the DAR of µ+ (Krakauer et al., 1992). The RHF+RPA results are compared with those

from Refs. (Paar et al., 2008; Paar, 2010; Auerbach and Brown, 2002; Lazauskas and Volpe, 2007;

Jachowicz et al., 2002; Sajjad Athar et al., 2006). All units are in 10−42 cm2.

gA = 1.262 geff
A = 1.000

all ERPA ERPA > Qexp
th all ERPA ERPA > Qexp

th

PKO1 12.19 8.67 8.31 6.00

PKO2 12.12 8.77 8.24 6.05

DD-ME2 (Paar et al., 2008; Paar, 2010) 12.49 8.76 8.44 6.00

shell model (Auerbach and Brown, 2002) 16.9 10.8

SIII (Lazauskas and Volpe, 2007) 13.1

HFSk (Jachowicz et al., 2002) 9.43

WSSk (Jachowicz et al., 2002) 6.67

RPA (Sajjad Athar et al., 2006) 14.55

In Table 6.1, the inclusive cross sections of the reactions 16O(νe,e
−)16F averaged over Michel

flux by RHF+RPA with PKO1 and PKO2 are listed. First of all, comparing the results by PKO1

and PKO2, it can be found that these two parametrizations lead to almost the same results for all

the cases. Recalling the discussion in Section 4.2, this indicates the isoscalar σ- and ω-mesons

play an essential role, while the pion just stands on a marginal position in determining the neutrino-

nucleus cross sections. It is also found that different recipes for gA and ERPA lead to quite different

results. For example, the values in the last column are just 50% of those with gA = 1.262 and
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all ERPA. For this reason, one must be careful in comparing the results of different authors. The

results from Refs. (Paar et al., 2008; Paar, 2010; Auerbach and Brown, 2002; Auerbach et al., 1997;

Jachowicz et al., 2002; Sajjad Athar et al., 2006) are classified according to the recipes for gA and

ERPA. It is found that the present RHF+RPA results are similar to the RH+RPA results with DD-

ME2 parametrization, and in a good agreement with the SHF+RPA (SIII) and CRPA (HFSk and

WSSk) results, while somewhat smaller than those predicted by shell model and RPA approaches.

2 3 4 5 6 7 8 9 10
1E-3
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1
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100

16O( e,e
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A  = 1.000, all ERPA

 geff
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Figure 6.5: Inclusive cross sections of the reactions 16O(νe,e
−)16F averaged over supernova neutrino

flux. The RHF+RPA results are compared with those obtained by shell model (Haxton, 1987) and

CRPA (Kolbe et al., 2002) calculations.

In Fig. 6.5, the inclusive cross sections of the reactions 16O(νe,e
−)16F averaged over supernova

neutrino flux are shown as a function of the temperature T , where the chemical potential is α = 0.

The difference caused by different recipes can be seen. Since the peak of the supernova neutrino

flux with lower temperature lies in the lower neutrino energy region, the effect of eliminating the

states below Qexp
th is more pronounced with lower temperature. Comparing the present results with

those from shell model by Haxton (Haxton, 1987) and CRPA by Kolbe et al. (Kolbe et al., 2002),

one must be careful about the adopted recipes for gA and ERPA. It is found that the present results

are in a very good agreement with the CRPA results, and consistent with the shell model results

beyond T = 4 MeV, which indicates that the low-lying excitations are somewhat different between

these two models. It should be emphasized again that the results by shell model and CRPA should

not be compared directly to each other.

In summary, in this chapter the RHF+RPA approach is applied to calculate the inclusive

charged-current neutrino-nucleus cross sections. Taking the reaction 16O(νe,e
−)16F as an example,

first of all, the contributions of different multipole excitations are shown, and the total cross section

is found to be well converged when the contributions of up to J = 6 are included for Eν below

100 MeV. Furthermore, the Coulomb corrections to the inclusive cross section given by Fermi
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function correction and EMA are explained in details and illustrated for the daughter nucleus 16F.

The main effort is dedicated to discussing the effects of different recipes for the axial vector coupling

strength and the theoretical low-lying excited states of the daughter nucleus proposed in different

literature. The calculations based on RHF+RPA for all four cases have been performed to examine

their effects, and substantial difference is found in the resulting cross sections. This indicates one

must be careful in comparing the results of different authors. Among these four cases, we favor the

value of gA = 1.262 and the inclusion of all RPA excited states for the sake of the model consistency

and the present status of the GT quenching problem. Finally, the inclusive cross sections averaged

over the Michel flux and the supernova neutrino flux are shown, a good agreement with the previous

theoretical studies is obtained.



Chapter 7

Summary and Perspectives

In the last five years, the success of covariant effective Lagrangians in describing nuclear ground-

states in the RHF theory have opened the way to the study of nuclear excitations within a relativistic

RPA framework. In this work, we have established a fully self-consistent relativistic RPA scheme

based on these effective Lagrangians. This scheme is then applied to charge-exchange excitations

in various nuclei. The complete self-consistency has been demonstrated by the numerical checks

for restoring the translational and isospin symmetries in non-charge-exchange and charge-exchange

channels, respectively. We have focused our investigations on the problems of the nuclear spin-

isospin resonances, isospin symmetry-breaking corrections for the superallowed β decays, and the

charged-current neutrino-nucleus cross sections.

For the nuclear spin-isospin resonances, we have shown that the experimental data on the

IAS and GTR in doubly magic nuclei 48Ca, 90Zr, 208Pb can be well reproduced by the present

RHF+RPA approach without any readjustment of the energy functional. Compared with the

RH+RPA approach, the isoscalar σ- and ω-mesons are found to play an essential role in spin-

isospin resonances via the exchange terms. This physical mechanism is clearly demonstrated in

the properties of other charge-exchange spin-flip modes, e.g., the energy hierarchies of different

components of SDR and SQR. Furthermore, the effects of the negative energy states on the non-

energy weighted sum rules are discussed. It is explicitly shown that for the spin-flip modes the

non-energy weighted sum rules can be 100% exhausted, only when the strengths of the transition

from the occupied positive energy states to the empty negative energy states are included.

In the investigation of the isospin symmetry-breaking corrections for the superallowed β decays,

it is found that the corrections δc are sensitive to the proper treatment of the Coulomb interaction,

especially the Coulomb exchange contributions to the mean field, but not so much to specific

effective nuclear interactions. With these corrections δc, the nucleus-independent Ft values are

obtained in combination with the experimental ft values from the most recent survey and the

improved radiative corrections. The values of the CKM matrix element |Vud| thus obtained agree

well with those obtained in neutron decay, pion β decay, and nuclear mirror transitions, while the

sum of squared top-row elements somehow deviates from the unitarity condition.

Expressing the weak lepton-hadron interaction in the standard current-current form, the rele-
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vant transitions from the nuclear ground state to the excited states are calculated with RHF+RPA

approach. Illustrative calculations of the inclusive neutrino-nucleus cross section are performed for

the 16O(νe,e
−)16F reaction, and a good agreement with the previous theoretical studies is obtained.

The main effort is dedicated to discussing the substantial influence of different recipes for the axial

vector coupling strength and the theoretical low-lying excited states of the daughter nucleus. The

reason why we favor the value of gA = 1.262 and the inclusion of all RPA excited states is explained.

Meanwhile, we emphasize that one must be careful in comparing the results of different authors.

In this work, the applications of the present RHF+RPA approach are mainly focused on the

charge-exchange channels. As a perspective for the future studies, a systematic research in the

non-charge-exchange channel should be performed. Especially, the description of the magnetic

transitions, which contain the spin operators, may be one of the most interesting points.

For the extensions of the present work, the following points could be considered:

• The ρ-N tensor interaction is not present in all DDRHF parametrizations used in the present

work. However, it has been demonstrated that this interaction plays an important role in

the shell structures and their evolution (Long et al., 2007). On the other hand, a satisfactory

description of GTR has not been achieved when the ρ-N tensor interaction is taken into

account in the RH+RPA approach (De Conti et al., 2000). Therefore, it is worthwhile to

investigate its effects on the spin-isospin resonances when the exchange terms are included,

i.e., in the RHF+RPA framework.

• For the open shell nuclei, it is a natural extension to establish the self-consistent QRPA based

on the newly developed relativistic Hartree-Fock-Bogoliubov (RHFB) theory (Long et al.,

2010). The main challenge to fulfill the model self-consistency lies in determining the T = 0

component of the proton-neutron pairing. Since the information on that is quite limited, so

far, the pairing strengths have to be treated as additional parameters in both non-relativistic

and relativistic charge-exchange QRPA approaches (Fracasso and Colò, 2007; Paar et al.,

2004).

• In order to access most nuclei in the nuclear chart, deformation effects should be included.

The main challenge will be the time consuming numerical calculations for constructing the

RPA matrix elements and diagonalizing the relatively large RPA matrix when one deals with

deformed nuclei.

Carrying out such investigations, one could really have microscopic and precise nuclear inputs for

the most interesting issues of nuclear astrophysics: the information on nucleon separation energies,

β decay rates, lepton capture rates, and neutrino-nucleus scattering for the r-process of stellar

nucleosynthesis.

Finally, an alternative route to that adopted here would be to determine new effective La-

grangians where the meson-nucleon couplings would contain form factors (Hu et al., 2010a,b) such

that contact terms would be avoided. These new Lagrangians need to be adjusted to reproduce
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nuclear ground-state properties at the same quantitative level as obtained with the Lagrangians

used here. Then, alternative RHF+RPA studies could be envisaged.
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Appendix A

Detailed Derivations of RHF+RPA

expressions

A.1 RHF energy contributions in spherical nuclei

In this section, the energy contributions in Eq. (2.20) for the case of spherical nuclei are listed. The

detailed derivations are given in W. H. Long’s Ph.D. thesis (Long, 2005).

First, the kinetic energy Ek reads

Ek =

∫

dr
∑

a

ĵ2a

{

Ga

[

− d

dr
Fa +

κa

r
Fa +MGa

]

− Fa

[

− d

dr
Ga −

κa

r
Ga +MFa

]}

. (A.1)

Second, the energy contributions from the Hartree terms read

ED
σ =

1

2
4π

∫

r2gσσ(r)ρs(r)dr, σ(r) = −
∫

r′
2
gσρs(r

′)R00(mσ; r, r′)dr′, (A.2a)

ED
ω =

1

2
4π

∫

r2gωω(r)ρb(r)dr, ω(r) = +

∫

r′
2
gωρb(r

′)R00(mω; r, r′)dr′, (A.2b)

ED
ρ =

1

2
4π

∫

r2gρρ(r)ρ
(3)
b (r)dr, ρ(r) = +

∫

r′
2
gρρ

(3)
b (r′)R00(mρ; r, r

′)dr′, (A.2c)

ED
A =

1

2
4π

∫

r2eA(r)ρc(r)dr, A(r) = +

∫

r′
2
eρc(r

′)
1

r>
dr′, (A.2d)

where the densities appearing in the source terms are given by Eqs. (2.18).

The Fock contributions are more complicated. For the isoscalar σ- and ω-mesons, the exchange
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contributions are

EE
σ = +

1

2

∑

ab

δqaqb

ĵ2a ĵ
2
b

4π

′

∑

L

CL0
ja

1

2
jb−

1

2

CL0
ja

1

2
jb−

1

2

×
∫

dr1dr2[gσ(GaGb − FaFb)]r1
RLL(mσ; r1, r2)[gσ(GaGb − FaFb)]r2

, (A.3a)

ĒE
ω = −1

2

∑

ab

δqaqb

ĵ2a ĵ
2
b

4π

′

∑

L

CL0
ja

1

2
jb−

1

2

CL0
ja

1

2
jb−

1

2

×
∫

dr1dr2[gω(GaGb + FaFb)]r1
RLL(mω; r1, r2)[gω(GaGb + FaFb)]r2

, (A.3b)

¯̄EE
ω = +

∑

ab

δqaqb

ĵ2a ĵ
2
b

4π

′′

∑

L

∫

dr1dr2[gωFaGb]r1
RLL(mω; r1, r2)

×
{

gω

[

(CL0
ja

1

2
jb−

1

2

)2(FbGa −GbFa) + 2(CL0
l′a0lb0

)2GbFa

]}

r2

, (A.3c)

where ĒE
ω represents the contribution from the time component and ¯̄EE

ω that from the space

components. The notation

′

∑

L

(

′′

∑

L

) means that L+ la + lb must be even (odd). For the ρ-meson,

the potential energy of the exchange part can be obtained by making the following replacements:

gω,mω → gρ,mρ, and
∑

ab

δqaqb
→
∑

ab

(2 − δqaqb
). (A.4)

The exchange contribution from the photon field can be obtained in a similar way,

ĒE
A = −1

2
e2

Z
∑

ab

ĵ2a ĵ
2
b

4π

′

∑

L

L̂−2(CL0
ja

1

2
jb−

1

2

)2

×
∫

dr1dr2[(GaGb + FaFb)]r1

rL
<

rL+1
>

[(GaGb + FaFb)]r2
, (A.5a)

¯̄EE
A = +e2

Z
∑

ab

ĵ2a ĵ
2
b

4π

′′

∑

L

L̂−2

∫

dr1dr2[FaGb]r1

rL
<

rL+1
>

×
[

(CL0
ja

1

2
jb−

1

2

)2(FbGa − FaGb) + 2(CL0
l′a0lb0

)2GbFa

]

r2

. (A.5b)

For the π-meson contributions with pseudo-vector coupling, the gradients of the Yukawa propagator

with respect to r1 and r2 are needed (see Remark 10), then

EE
π =

1

2

∑

ab

(2 − δqaqb
)
ĵ2a ĵ

2
b

4π

{

∫

dr
f2

π(GaGb + FaFb)
2

2m2
πr

2
−

′′

∑

L

L̂−4(CL0
ja

1

2
jb−

1

2

)2

×
L±1
∑

L1L2

iL2−L1

∫

dr1dr2

[

fπY
LL1

ab

]

r1

RL1L2
(mπ; r1, r2)

[

fπY
LL2

ab

]

r2

, (A.6)

where

Y
LL1

ab (r) ≡ (κab + βLL1
)GaGb − (κab − βLL1

)FaFb, (A.7)
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with κab and βLL1
defined in Remark 16. The δ(r1 − r2) term which arises in pseudo-vector

coupling can be removed by adding,

EE
πδ = −1

2

∑

ab

(2 − δqaqb
)
ĵ2a ĵ

2
b

4π

∫

dr
f2

π

2m2
πr

2

{

G2
aG

2
b −

2

3
GaGbFaFb + F 2

aF
2
b

}

. (A.8)

Finally, the total energy for spherical nuclei is

E = Ek + ED
σ + EE

σ + ED
ω + EE

ω + ED
ρ + EE

ρ + EE
π +ED

A + EE
A . (A.9)

A.2 σ−meson contribution to the p-h matrix elements

In this section, the derivations for the quantities HJ(1234) in Eq. (2.85) induced by the σ-meson

will be given in details.

For the σ-meson, the two-body interaction reads

V σ(1, 2) = −gσ(1)γ0(1)gσ(2)γ0(2)Dσ(1, 2)

= −
∑

Lν

gσ(1)γ0(1)gσ(2)γ0(2)RLL(mσ; 1, 2)(−)νY ν
L (r̂1)Y

−ν
L (r̂2). (A.10)

In the following, the short-hand notation for the σ-field

σ(1) =

∫

dr2r
2
2R00(mσ; 1, 2)ρs(2)gσ(2) (A.11)

is employed, where the scalar density is

ρs(r) =
∑

d

1

4πr2
[G2

d(r) − F 2
d (r)]. (A.12)

For the Term1 in Eq. (2.78),

Term1 =

∫

dr1dr2f
†
A(1)f †b (2)gσ(1)gσ(2)I(1, 2)fB (2)fa(1)

= −
∫

dr1dr2gσ(1)gσ(2)
∑

Lν

(−)νRLL(mσ; 1, 2)〈fA|γ0YLν |fa〉r1
〈fb|γ0YL−ν |fB〉r2

.

(A.13)

Using the Wigner-Eckart Theorem (see Remark 13) and the symmetry and orthogonality relations

of 3-j Symbols (see Remarks 2 and 3), the summation over mA,ma gives

∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

〈fA|γ0YLν |fa〉

=
1

r21

∑

mAma

(

jA ja J

mA −ma −M

)(

jA L ja

−mA ν ma

)

[GAGa − FAFa]〈A||YL||a〉δqAqa

= δqAqaδJLδMν Ĵ
−2〈A||YL||a〉

(GAGa − FAFa)r1

r21
. (A.14)
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The summation over mB ,mb gives

∑

mBmb

(−)jB−mB

(

jB jb J

mB −mb −M

)

〈fb|γ0YL−ν|fB〉

= δqBqb

∑

mBmb

(−)jB−mB

(

jB jb J

mB −mb −M

)

×(−)jb−mb

(

jb L jB

−mb −ν mB

)

〈b||YL||B〉(GBGb − FBFb)r2

r22

= δqBqb
δJLδMν Ĵ

−2(−)M 〈B||YL||b〉
(GBGb − FBFb)r2

r22
, (A.15)

where 〈a||YL||b〉 = (−)ja−jb〈b||YL||a〉 in Remark 14 is used. Finally, HJ
1

σ
(AaBb) can be expressed

as,

HJ
1

σ
(AaBb) = −δqAqaδqBqb

Ĵ−2〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(GAGa − FAFa)]r1
[gσ(GbGB − FbFB)]r2

.

(A.16)

where
∑

M brings in a factor Ĵ2.

For the Term2 in Eq. (2.78),

Term2 =
∑

d

∫

dr1dr2f
†
A(1)f †d(2)g′σ(1)f †b (1)fB(1)gσ(2)I(1, 2)fd(2)fa(1)

= −
∑

d

∫

dr1dr2dr
′
1g

′
σ(1)gσ(2)

δ(r1 − r′1)

r′21

∑

Lν

∑

L′ν′

(−)ν+ν′

RLL(mσ; 1, 2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|γ0YLνYL′ν′ |fa〉r1

〈fd|γ0YL−ν |fd〉r2
, (A.17)

where the expansion of the Delta function is used (see Remark 11). For the expectation 〈fd|γ0YL−ν |fd〉r2
,

all terms will vanish with the summation over md, except the term with L = 0. So the above quan-

tity can be expressed as,

Term2 = −
∑

L′ν′

∫

dr1dr
′
1(−)ν

′

g′σ(1)
δ(r1 − r′1)

r′21
× 〈fb|YL′−ν′ |fB〉r′

1
〈fA|γ0YL′ν′ |fa〉r1

σ(1). (A.18)

In analogy with HJ
1

σ
(AaBb),

HJ
2

σ
(AaBb) = −δqAqaδqBqb

Ĵ−2〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr
1

r2
g′σ(r)σ(r)(GAGa − FAFa)(GBGb + FBFb). (A.19)

For the Term3 in Eq. (2.78),

Term3 =
∑

d

∫

dr1dr2f
†
A(1)f †d(2)gσ(1)g′σ(2)f †b (2)fB(2)I(1, 2)fd(2)fa(1)

= −
∑

d

∫

dr1dr2dr
′
2gσ(1)g′σ(2)

δ(r2 − r′2)

r′22

∑

Lν

∑

L′ν′

(−)ν+ν′

RLL(mσ; 1, 2)

×〈fA|γ0YLν |fa〉r1
〈fd|γ0YL−νYL′ν′ |fd〉r2

〈fb|YL′−ν′ |fB〉r′
2
. (A.20)
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For the expectation 〈fd|γ0YL−νYL′ν′ |fd〉r2
, the spherical harmonics YL−νYL′ν′ should couple to Y00,

i.e.,

YL−νYL′ν′ = δLL′δνν′(−)ν
1√
4π
Y00, (A.21)

where the relation of the direct product of two spherical harmonics in Remark 12 and the 3-j

symbol value in Remark 4 are used. Hence,

Term3 = −
∫

dr1dr2gσ(1)g′σ(2)ρs(2)
∑

Lν

(−)νRLL(mσ; 1, 2)

×〈fA|γ0YLν |fa〉r1
〈fb|YL−ν |fB〉r2

. (A.22)

Therefore,

HJ
3

σ
(AaBb) = −δqAqaδqBqb

Ĵ−2〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(GAGa − FAFa)]r1
[g′σρs(GBGb + FBFb)]r2

.

(A.23)

For the Term6 in Eq. (2.78),

Term6 =
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)g′′σ(1)f †b (1)fB(1)gσ(2)I(1, 2)fd(2)fc(1)fa(1)

= −
∑

cd

∫

dr1dr
′
1dr

′′
1dr2g

′′
σ(1)gσ(2)

δ(r1 − r′1)

r′21

δ(r1 − r′′1)

r′′21

∑

LL′L′′νν′ν′′

(−)ν+ν′+ν′′

RLL(mσ; 1, 2)

× 〈fA|YL′ν′ |fa〉r′
1
〈fb|YL′−ν′YL′′ν′′ |fB〉r′′

1
〈fc|γ0YL′′−ν′′YLν |fc〉r1

〈fd|γ0YL−ν |fd〉r2
. (A.24)

For the same reason as in the Term2, the spherical harmonics YLν should be Y00, then the spherical

harmonics YL′′ν′′ should be Y00 as well. The Term6 can be rewritten as

Term6 = −
∫

r21dr1dr
′
1dr

′′
1r

2
2dr2g

′′
σ(1)gσ(2)

δ(r1 − r′1)

r′21

δ(r1 − r′′1)

r′′21

∑

L′ν′

(−)ν
′

R00(mσ; 1, 2)

×〈fA|YL′ν′ |fa〉r′
1
〈fb|YL′−ν′ |fB〉r′′

1
ρs(1)ρs(2). (A.25)

Finally,

HJ
6

σ
(AaBb) = −δqAqaδqBqb

Ĵ−2〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr
1

r2
g′′σ(r)ρs(r)σ(r)(GAGa + FAFa)(GBGb + FBFb). (A.26)

For the Term7 in Eq. (2.78),

Term7 =
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)g′σ(1)g′σ(2)f †b (2)fB(2)I(1, 2)fd(2)fc(1)fa(1)

= −
∑

cd

∫

dr1dr
′
1dr2dr

′
2g

′
σ(1)g′σ(2)

δ(r1 − r′1)

r′21

δ(r2 − r′2)

r22

∑

LL′L′′νν′ν′′

(−)ν+ν′+ν′′

RLL(mσ; 1, 2)

× 〈fA|YL′ν′ |fa〉r′
1
〈fc|γ0YL′−ν′YLν |fc〉r1

〈fd|γ0YL−νYL′′ν′′ |fd〉r2
〈fb|YL′′−ν′′ |fB〉r′

2
.

(A.27)
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Using the same trick in calculating HJ
3

σ
(AaBb), we can obtain

HJ
7

σ
(AaBb) = −δqAqaδqBqb

Ĵ−2〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[g
′
σρs(GAGa + FAFa)]r1

[g′σρs(GBGb + FBFb)]r2
.

(A.28)

Next we consider the contributions from the exchange terms. For the Term9 in Eq. (2.79),

Term9 = −
∑

d

∫

dr1dr2f
†
A(1)f †d(2)g′σ(1)f †b (1)fB(1)gσ(2)I(1, 2)fa(2)fd(1)

=
∑

d

∫

dr1dr
′
1dr2g

′
σ(1)gσ(2)

δ(r1 − r′1)

r21

∑

LL′νν′

(−)ν+ν′

RLL(mσ; 1, 2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|γ0YL′ν′YLν |fd〉r1

〈fd|γ0YL−ν |fa〉r2
. (A.29)

Then

HJ
9

σ
(AaBb) =

∑

d

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

×
∫

dr1dr
′
1dr2g

′
σ(1)gσ(2)

δ(r1 − r′1)

r21

∑

LL′νν′

(−)ν+ν′

RLL(mσ; 1, 2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|γ0YL′ν′YLν |fd〉r1

〈fd|γ0YL−ν |fa〉r2
, (A.30)

with

∑

mbmB

(−)jB−mB+ν′

(

jB jb J

mB −mb −M

)

〈fb|YL′−ν′ |fB〉

= δqBqb
δL′Jδν′M Ĵ

−2〈B||YJ ||b〉
(GBGb + FBFb)r′

1

r′1
2 . (A.31)

Using the direct product of the spherical harmonics (see Remark 12)

YJMYLν =
∑

L′ν′

(−)ν
′ Ĵ L̂L̂′

√
4π

(

J L L′

0 0 0

)(

J L L′

M ν ν ′

)

YL′−ν′ , (A.32)

we can obtain that

〈fA|γ0YJMYLν |fd〉 = δqAqd

∑

L′ν′

(−)ν
′+jA−mA

Ĵ L̂L̂′

√
4π

(

J L L′

0 0 0

)(

J L L′

M ν ν ′

)

×
(

jA L′ jd

−mA −ν ′ md

)

〈A||YL′ ||d〉(GAGd − FAFd)r1

r12
. (A.33)
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Therefore HJ
9

σ
(AaBb) can be rewritten as

HJ
9

σ
(AaBb)

=
∑

jdmd

∑

mAmaM

∑

LνL′ν′

δqBqb
δqAqd

δqdqa(−)ν+ν′+jd−md
Ĵ−1L̂L̂′

√
4π

(

J L L′

0 0 0

)

×
(

jA ja J

mA −ma −M

)(

J L L′

M ν ν ′

)(

jA L′ jd

−mA −ν ′ md

)(

jd L ja

−md −ν ma

)

×〈B||YJ ||b〉〈A||YL′ ||d〉〈d||YL||a〉

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(GbGB + FbFB)(GAGd − FAFd)

r2

]

r1

[gσ(GdGa − FdFa)]r2
.

(A.34)

Then we can carry out all the m summations,

∑

mdmAmaMνν′

(−)ν+ν′+jd−md

×
(

jA ja J

mA −ma −M

)(

J L L′

M ν ν ′

)(

jA L′ jd

−mA −ν ′ md

)(

jd L ja

−md −ν ma

)

= (−)jA+ja

{

jA ja J

L L′ jd

}

, (A.35)

where the relation of contracting 3-j symbols to 6-j symbols in Remark 7 is used. Finally,

HJ
9

σ
(AaBb) can be expressed as

HJ
9

σ
(AaBb)

= δqBqb
δqAqa(−)jA+ja

Ĵ−1

√
4π

∑

jdLL′

δqdqaL̂L̂
′

(

J L L′

0 0 0

){

jA ja J

L L′ jd

}

×〈B||YJ ||b〉〈A||YL′ ||d〉〈d||YL||a〉

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(GbGB + FbFB)(GAGd − FAFd)

r2

]

r1

[gσ(GdGa − FdFa)]r2
.

(A.36)

For the Term13 in Eq. (2.79),

Term13 = −
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)g′′σ(1)f †b (1)fB(1)gσ(2)I(1, 2)fc(2)fd(1)fa(1)

=
∑

cd

∫

dr1dr
′
1dr

′′
1dr2g

′′
σ(1)gσ(2)

δ(r1 − r′1)

r21

δ(r1 − r′′1)

r21

∑

LL′L′′νν′ν′′

(−)ν+ν′+ν′′

RLL(mσ; 1, 2)

× 〈fA|YL′ν′ |fa〉r′′
1
〈fb|YL′−ν′YL′′ν′′ |fB〉r′

1
〈fc|γ0YL′′−ν′′YLν |fd〉r1

〈fd|γ0YL−ν|fc〉r2
.

(A.37)

Due to the same argument in the derivation of Term3, it is not difficult to prove that the spherical

harmonics YL′′−ν′′YLν couple to YLν , YL′ν′ is just YJM , and YL′−ν′YL′′ν′′ must couple to YJ−M , then
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YL′′ν′′ is thus Y00. Therefore,

HJ
13

σ
(AaBb) =

∑

cd

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

× 1

4π

∫

dr1dr
′
1dr

′′
1dr2g

′′
σ(1)gσ(2)

δ(r1 − r′1)

r21

δ(r1 − r′′1)

r21

∑

LL′νν′

(−)ν+ν′

RLL(mσ; 1, 2)

× 〈fA|YL′ν′ |fa〉r′′
1
〈fb|YL′−ν′ |fB〉r′

1
〈fc|γ0YLν |fd〉r1

〈fd|γ0YL−ν |fc〉r2

=δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdL

δqcqd
〈c||YL||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′′σ
(GAGa + FAFa)(GBGb + FBFb)(GcGd − FcFd)

r4

]

r1

× [gσ(GcGd − FcFd)]r2
. (A.38)

For the Term14 in Eq. (2.79),

Term14 = −
∑

cd

∫

dr1dr2f
†
A(1)f †c (1)f †d(2)g′σ(1)g′σ(2)f †b (2)fB(2)I(1, 2)fc(2)fd(1)fa(1)

=
∑

cd

∫

dr1dr
′
1dr2dr

′
2g

′
σ(1)g′σ(2)

δ(r1 − r′1)

r21

δ(r2 − r′2)

r22

∑

LL′L′′νν′ν′′

(−)ν+ν′+ν′′

RLL(mσ; 1, 2)

× 〈fA|YL′ν′ |fa〉r′
1
〈fc|γ0YL′−ν′YLν |fd〉r1

〈fd|γ0YL′′ν′′YL−ν |fc〉r2
〈fb|YL′′−ν′′ |fB〉r′

2
.

(A.39)

Then,

HJ
14

σ
(AaBb) =δqAqaδqBqb

Ĵ−4〈A||YJ ||a〉〈B||YJ ||b〉

×
∫

dr1dr2g
′
σ(1)g′σ(2)

∑

LνM

∑

jcmcjdmd

(−)ν+MRLL(mσ; 1, 2)

[

GAGa + FAFa

r2

]

r1

× 〈fc|γ0YJ−MYLν |fd〉r1
〈fd|γ0YJMYL−ν |fc〉r2

[

GBGb + FBFb

r2

]

r2

.

(A.40)

With

〈fc|γ0YJ−MYLν |fd〉r1
=
∑

L′ν′

(−)ν
′ Ĵ L̂L̂′

√
4π

(

J L L′

0 0 0

)(

J L L′

−M ν ν ′

)

× (−)jc−mc

(

jc L′ jd

−mc −ν ′ md

)

〈c||YL′ ||d〉
[

GcGd − FcFd

r2

]

r1

, (A.41)

〈fd|γ0YJMYL−ν |fc〉r2
=
∑

L′′ν′′

(−)−ν′′ Ĵ L̂L̂′′

√
4π

(

J L L′′

0 0 0

)(

J L L′′

M −ν −ν ′′

)

× (−)jd−md

(

jd L′′ jc

−md ν ′′ mc

)

〈d||YL′′ ||c〉
[

GcGd − FcFd

r2

]

r2

, (A.42)
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we can finally obtain that

HJ
14

σ
(AaBb) = δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdLL′

δqcqd
L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(GAGa + FAFa)(GcGd − FcFd)

r2

]

r1

×
[

g′σ
(GBGb + FBFb)(GcGd − FcFd)

r2

]

r2

. (A.43)

In summary,

HJ
1

σ
(1234) = −δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(G1G2 − F1F2)]r1
[gσ(G3G4 − F3F4)]r2

, (A.44)

HJ
2

σ
(1234) = −δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′σ(r)σ(r)(G1G2 − F1F2)(G3G4 + F3F4), (A.45)

HJ
3

σ
(1234) = −δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[gσ(G1G2 − F1F2)]r1
[g′σρs(G3G4 + F3F4)]r2

,(A.46)

HJ
6

σ
(1234) = −δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′′σ(r)ρs(r)σ(r)(G1G2 + F1F2)(G3G4 + F3F4), (A.47)

HJ
7

σ
(1234) = −δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mσ; r1, r2)[g
′
σρs(G1G2 + F1F2)]r1

[g′σρs(G3G4 + F3F4)]r2
,(A.48)

HJ
9

σ
(1234) = δq1q2

δq3q4
(−)j1+j2 Ĵ

−1

√
4π

∑

jdLL′

δqdq2
L̂L̂′

(

J L L′

0 0 0

){

j1 j2 J

L L′ jd

}

×〈3||YJ ||4〉〈1||YL′ ||d〉〈d||YL||2〉

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(G3G4 + F3F4)(G1Gd − F1Fd)

r2

]

r1

×[gσ(GdG2 − FdF2)]r2
, (A.49)

HJ
13

σ
(1234) = δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdL

δqcqd
〈c||YL||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′′σ
(G1G2 + F1F2)(G3G4 + F3F4)(GcGd − FcFd)

r4

]

r1

×[gσ(GcGd − FcFd)]r2
,

(A.50)
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HJ
14

σ
(1234) = δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′

δqcqd
L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mσ; r1, r2)

[

g′σ
(G1G2 + F1F2)(GcGd − FcFd)

r2

]

r1

×
[

g′σ
(G3G4 + F3F4)(GcGd − FcFd)

r2

]

r2

, (A.51)

where summations over c, d stand for summations over all the occupied states.

A.3 ω−meson contribution to the p-h matrix elements

In this section, the derivations for the quantities HJ(1234) in Eq. (2.85) induced by the ω-meson

will be given in details.

For the ω-meson, the two-body interaction reads

V ω(1, 2) = gω(1)γ0(1)γ
µ(1)gω(2)γ0(2)γµ(2)Dω(1, 2)

=
∑

Lν

gω(1)γ0(1)γ
µ(1)gω(2)γ0(2)γµ(2)RLL(mω; 1, 2)(−)νY ν

L (r̂1)Y
−ν
L (r̂2). (A.52)

It is convenient to divide the HJω(1234) into two parts, where the time component with µ = 0 is

denoted as H̄Jω(1234), and the space component with µ = 1, 2, 3 is denoted as ¯̄HJω(1234).

For time component with µ = 0, the H̄Jω(1234) values in Eq. (2.85) can be derived in analogy

with the derivation of the σ-meson in Section A.2.

For the space component with µ = 1, 2, 3, one has

¯̄V ω(1, 2) = −
∑

Lνk

(−)ν+kgω(1)αk(1)gω(2)α−k(2)RLL(mω; 1, 2)Y ν
L (r̂1)Y

−ν
L (r̂2). (A.53)

For the Term1 in Eq. (2.78),

Term1 =

∫

dr1dr2f
†
A(1)f †b (2)gω(1)gω(2)I(1, 2)fB (2)fa(1)

= −
∫

dr1dr2gω(1)gω(2)
∑

Lνk

(−)ν+kRLL(mω; 1, 2)〈fA|YLναk|fa〉r1
〈fb|YL−να−k|fB〉r2

.

(A.54)

The summation over mA,ma gives

∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

〈fA|YLναk|fa〉

=
1

r21
δqAqa

∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

[

iGAFa〈A|YLνσk|a′〉 − iFAGa〈A′|YLνσk|a〉
]

.

(A.55)

With the definition of the vector spherical harmonics

YLνσk =
∑

J ′M ′

(−)L−1+M ′

Ĵ ′

(

L 1 J ′

ν k −M ′

)

TJ ′M ′ , (A.56)
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∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

〈fA|YLναk|fa〉

=
1

r21
δqAqa(−)L−1+M Ĵ−1

(

L 1 J

ν k −M

)

i
[

GAFa〈A||TJL||a′〉 − FAGa〈A′||TJL||a〉
]

,

(A.57)

where the Wigner-Eckart Theorem (see Remark 13) and the symmetry and orthogonality relations

of 3-j Symbols (see Remarks 2 and 3) are used. The summation over mB,mb gives

∑

mBmb

(−)jB−mB

(

jB jb J

mB −mb −M

)

〈fb|YL−να−k|fB〉

=
1

r22
δqBqb

(−)jB+jb+LĴ−1

(

L 1 J

−ν −k M

)

i
[

GbFB〈b||TJL||B′〉 − FbGB〈b′||TJL||B〉
]

.(A.58)

Finally, the quantity ¯̄Hω
J (AaBb) can be expressed as

¯̄HJω
1 (AaBb) = −δqAqaδqBqb

Ĵ−2

×
∑

L

∫

dr1dr2RLL(mω; r1, r2)
[

gω

(

GAFa〈A||TJL||a′〉 − FAGa〈A′||TJL||a〉
)]

r1

×
[

gω

(

GBFb〈B||TJL||b′〉 − FBGb〈B′||TJL||b〉
)]

r2

, (A.59)

where the symmetry property of the reduced matrix element 〈b||TJL||a〉 = (−)ja+jb+J+L〈a||TJL||b〉
in Remark 14 is used.

It is easy to prove that
∑

d

〈fd|YLναk|fd〉 = 0 due to the parity conservation. In fact, this is the

reason why the space components of vector mesons do not contribute to the energy functional in

the spherical RH theory. Therefore,

¯̄HJω
i (AaBb) = 0, for i = 2, 3, · · · , 7. (A.60)

For the exchange rearrangement contributions, the Term9 in Eq. (2.79),

Term9 = −
∑

d

∫

dr1dr2f
†
A(1)f †d(2)g′ω(1)f †b (1)fB(1)gω(2)I(1, 2)fa(2)fd(1)

=
∑

d

∫

dr1dr
′
1dr2g

′
ω(1)gω(2)

δ(r1 − r′1)

r21

∑

LL′νν′k

(−)ν+ν′+kRLL(mω; r1, r2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|YL′ν′YLναk|fd〉r1

〈fd|YL−να−k|fa〉r2
. (A.61)

Then

¯̄HJω
9 (AaBb) =

∑

d

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

×
∫

dr1dr
′
1dr2g

′
ω(1)gω(2)

δ(r1 − r′1)

r21

∑

LL′νν′k

(−)ν+ν′+kRLL(mω; r1, r2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|YL′ν′YLναk|fd〉r1

〈fd|YL−να−k|fa〉r2
, (A.62)
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with

∑

mbmB

(−)jB−mB+ν′

(

jB jb J

mB −mb −M

)

〈fb|YL′−ν′ |fB〉

= δqBqb
δL′Jδν′M (−)jB+jb+1Ĵ−2〈b||YJ ||B〉

(GBGb + FBFb)r′
1

r′1
2 . (A.63)

Using the direct product of the spherical harmonics (see Remark 12)

YJMYLν =
∑

L′ν′

(−)ν
′ Ĵ L̂L̂′

√
4π

(

J L L′

0 0 0

)(

J L L′

M ν ν ′

)

YL′−ν′ , (A.64)

and

YL′−ν′σk =
∑

J ′M ′

(−)L
′−1+M ′

Ĵ ′

(

L′ 1 J ′

−ν ′ k −M ′

)

TJ ′M ′ , (A.65)

we can obtain that

〈fA|YJMYLναk|fd〉r1

= δqAqd

∑

L′ν′J ′M ′

(−)ν
′+jA−mA+L′−1+M ′ Ĵ L̂L̂′Ĵ ′

√
4π

×
(

J L L′

0 0 0

)(

J L L′

M ν ν ′

)(

L′ 1 J ′

−ν ′ k −M ′

)(

jA J ′ jd

−mA M ′ md

)

× 1

r21

[

iGAFd〈A||TJ ′L′ ||d′〉 − iFAGd〈A′||TJ ′L′ ||d〉
]

r1

, (A.66)

as well as

〈fd|YL−να−k|fa〉r2

= δqdqa

∑

J ′′M ′′

(−)L−1+M ′′+jd−md Ĵ ′′

(

L 1 J ′′

−ν −k −M ′′

)

×
(

jd J ′′ ja

−md M ′′ ma

)

1

r22

[

iGdFa〈d||TJ ′′L||a′〉 − iFdGa〈d′||TJ ′′L||a〉
]

r2

. (A.67)

Putting all the angular parts together, i.e., the 3-j symbols and phases, one has

∑

jdLL′J ′J ′′

∑

mdmAmaMνkν′M ′M ′′

(−)jA−mA+ν+k+ν′+jA−mA+L′−1+M ′+L−1+M ′′+jd−md

×δqdqaδqAqa

Ĵ L̂L̂′Ĵ ′Ĵ ′′

√
4π

(

J L L′

0 0 0

)

×
(

jA ja J

mA −ma −M

)(

J L L′

M ν ν ′

)(

L′ 1 J ′

−ν ′ k −M ′

)

×
(

jA J ′ jd

−mA M ′ md

)(

L 1 J ′′

−ν −k −M ′′

)(

jd J ′′ ja

−md M ′′ ma

)

. (A.68)
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With the contraction of 3-j symbols to 6-j symbols (see Remark 7)

∑

νν′k

(−)L+L′+1+ν−ν′−k

(

L L′ J

ν ν ′ M

)(

L′ 1 J ′

−ν ′ k −M ′

)(

1 L J ′′

−k −ν −M ′′

)

=

(

J ′ J ′′ J

−M ′ −M ′′ M

){

J ′ J ′′ J

L L′ 1

}

, (A.69)

and

∑

mAmamdMM ′M ′′

(−)J
′+J ′′+jd−M ′+M ′′+md

(

J ′ J ′′ J

−M ′ −M ′′ M

)

×
(

J ′′ jd ja

M ′′ −md ma

)(

jd J ′ jA

md M ′ −mA

)(

ja jA J

ma −mA M

)

=

{

ja jA J

J ′ J ′′ jd

}

, (A.70)

the expression of angular parts can be rewritten again as,

∑

jdLL′J ′J ′′

(−)J
′′+L+jA+jaδqdqaδqAqa

Ĵ L̂L̂′Ĵ ′Ĵ ′′

√
4π

(

J L L′

0 0 0

){

ja jA J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

.

(A.71)

Finally, one obtains

¯̄HJω
9 (AaBb)

= δqAqaδqBqb
(−)jA+ja+jB+jb

Ĵ−1

√
4π

∑

jdLL′J ′J ′′

δqdqa(−)J
′′+LL̂L̂′Ĵ ′Ĵ ′′

×
(

J L L′

0 0 0

){

ja jA J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈b||YJ ||B〉

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(GBGb + FBFb)

r2
(

GAFd〈A||TJ ′L′ ||d′〉 − FAGd〈A′||TJ ′L′ ||d〉
)

]

r1

×
[

gω

(

GdFa〈d||TJ ′′L||a′〉 − FdGa〈d′||TJ ′′L||a〉
)]

r2

. (A.72)
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For the Term13 in Eq. (2.79), according to the discussion in the previous section,

¯̄HJω
13 (AaBb)

=
∑

cd

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

× 1

4π

∫

dr1dr
′
1dr

′′
1dr2g

′′
ω(1)gω(2)

δ(r1 − r′1)

r21

δ(r1 − r′′1)

r21

∑

LL′νν′k

(−)ν+ν′+kRLL(mω; r1, r2)

×〈fA|YL′ν′ |fa〉r′′
1
〈fb|YL′−ν′ |fB〉r′

1
〈fc|YLναk|fd〉r1

〈fd|YL−να−k|fc〉r2

= δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

cd

∫

dr1dr2g
′′
ω(1)gω(2)

∑

Lνk

(−)ν+kRLL(mω; r1, r2)

×
[

(GAGa + FAFa)(GBGb + FBFb)

r4

]

r1

〈fc|YLναk|fd〉r1
〈fd|YL−να−k|fc〉r2

= δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdLJ ′

δqcqd

∫

dr1dr2RLL(mω; r1, r2)

×
[

g′′ω
(GAGa + FAFa)(GBGb + FBFb)

r4
(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)

]

r1

×
[

gω

(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)]

r2

, (A.73)

where 〈b||TJL||a〉 = (−)ja+jb+J+L〈a||TJL||b〉 in Remark 14 is used.

For the Term14 in Eq. (2.79),

¯̄HJω
14 (AaBb)

=
∑

cd

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

×
∫

dr1dr
′
1dr2dr

′
2g

′
ω(1)g′ω(2)

δ(r1 − r′1)

r21

δ(r2 − r′2)

r22

∑

LL′L′′νν′ν′′k

(−)ν+ν′+ν′′+kRLL(mω; r1, r2)

×〈fA|YL′ν′ |fa〉r′
1
〈fc|YL′−ν′YL−να−k|fd〉r1

〈fd|YL′′ν′′YLναk|fc〉r2
〈fb|YL′′−ν′′ |fB〉r′

2

= δqAqaδqBqb
Ĵ−4〈A||YJ ||a〉〈B||YJ ||b〉

∑

cd

∫

dr1dr2g
′
ω(1)g′ω(2)

∑

LνMk

(−)ν+M+kRLL(mω; r1, r2)

×
[

(GAGa + FAFa)

r2

]

r1

[

(GBGb + FBFb)

r2

]

r2

〈fc|YJ−MYL−να−k|fd〉r1
〈fd|YJMYLναk|fc〉r2

.

(A.74)

As calculated before,

〈fc|YJ−MYL−να−k|fd〉r1

= δqcqd

∑

L′ν′J ′M ′

(−)ν
′+jc−mc+L′−1+M ′ Ĵ L̂L̂′Ĵ ′

√
4π

×
(

J L L′

0 0 0

)(

J L L′

−M −ν ν ′

)(

L′ 1 J ′

−ν ′ −k −M ′

)(

jc J ′ jd

−mc M ′ md

)

× 1

r21

[

iGcFd〈c||TJ ′L′ ||d′〉 − iFcGd〈c′||TJ ′L′ ||d〉
]

r1

, (A.75)
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and

〈fd|YJMYLναk|fc〉r2

= δqcqd

∑

L′′ν′′J ′′M ′′

(−)ν
′′+jd−md+L′′−1+M ′′ Ĵ L̂L̂′′Ĵ ′′

√
4π

×
(

J L L′′

0 0 0

)(

J L L′′

M ν ν ′′

)(

L′′ 1 J ′′

−ν ′′ k −M ′′

)(

jd J ′′ jc

−md M ′′ mc

)

× 1

r22

[

iGdFc〈d||TJ ′′L′′ ||c′〉 − iFdGc〈d′||TJ ′′L′′ ||c〉
]

r2

, (A.76)

the final result reads

¯̄HJω
14 (AaBb)

= δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdLL′J ′

δqcqd
L̂2

(

J L L′

0 0 0

)2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(GAGa + FAFa)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r1

×
[

g′ω
(GBGb + FBFb)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r2

. (A.77)

In summary, the contributions from the time component are

H̄Jω
1 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[gω(G1G2 + F1F2)]r1

×[gω(G3G4 + F3F4)]r2
, (A.78)

H̄Jω
2 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′ω(r)ω(r)(G1G2 + F1F2)(G3G4 + F3F4), (A.79)

H̄Jω
3 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[gω(G1G2 + F1F2)]r1

×[g′ωρv(G3G4 + F3F4)]r2
, (A.80)

H̄Jω
6 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′′ω(r)ρv(r)ω(r)(G1G2 + F1F2)(G3G4 + F3F4), (A.81)

H̄Jω
7 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mω; r1, r2)[g
′
ωρv(G1G2 + F1F2)]r1

×[g′ωρv(G3G4 + F3F4)]r2
, (A.82)
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H̄Jω
9 (1234) = δq1q2

δq3q4
(−)j1+j2+1 Ĵ

−1

√
4π

∑

jdLL′

δqdq2
L̂L̂′

(

J L L′

0 0 0

){

j1 j2 J

L L′ jd

}

×〈3||YJ ||4〉〈1||YL′ ||d〉〈d||YL||2〉

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(G3G4 + F3F4)(G1Gd + F1Fd)

r2

]

r1

×[gω(GdG2 + FdF2)]r2
, (A.83)

H̄Jω
13 (1234) = −δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdL

δqcqd
〈c||YL||d〉2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′′ω
(G1G2 + F1F2)(G3G4 + F3F4)(GcGd + FcFd)

r4

]

r1

×[gω(GcGd + FcFd)]r2
,

(A.84)

H̄Jω
14 (1234) = −δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′

δqcqd
L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(G1G2 + F1F2)(GcGd + FcFd)

r2

]

r1

×
[

g′ω
(G3G4 + F3F4)(GcGd + FcFd)

r2

]

r2

, (A.85)

with the short-hand notation for the ω-field

ω(1) =

∫

dr2r
2
2R00(mω; 1, 2)ρv(2)gω(2), (A.86)

where the baryonic density is

ρv(r) =
∑

d

1

4πr2
[G2

d(r) + F 2
d (r)]. (A.87)

Moreover, the contributions from the space component are

¯̄HJω
1 (1234) = −δq1q2

δq3q4
Ĵ−2

×
∑

L

∫

dr1dr2RLL(mω; r1, r2)
[

gω

(

G1F2〈1||TJL||2′〉 − F1G2〈1′||TJL||2〉
)]

r1

×
[

gω

(

G3F4〈3||TJL||4′〉 − F3G4〈3′||TJL||4〉
)]

r2

, (A.88)

¯̄HJω
i (1234) = 0, for i = 2, 3, · · · , 7, (A.89)
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¯̄HJω
9 (1234)

= δq1q2
δq3q4

(−)j1+j2+1 Ĵ
−1

√
4π

∑

jdLL′J ′J ′′

δqdq2
(−)J

′′+LL̂L̂′Ĵ ′Ĵ ′′

×
(

J L L′

0 0 0

){

j2 j1 J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈3||YJ ||4〉

×
∫

dr1dr2RLL(mω; r1, r2)

×
[

g′ω
(G3G4 + F3F4)

r2
(

G1Fd〈1||TJ ′L′ ||d′〉 − F1Gd〈1′||TJ ′L′ ||d〉
)

]

r1

×
[

gω

(

GdF2〈d||TJ ′′L||2′〉 − FdG2〈d′||TJ ′′L||2〉
)]

r2

, (A.90)

¯̄HJω
13 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLJ ′

δqcqd

∫

dr1dr2RLL(mω; r1, r2)

×
[

g′′ω
(G1G2 + F1F2)(G3G4 + F3F4)

r4
(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)

]

r1

×
[

gω

(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)]

r2

, (A.91)

¯̄HJω
14 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′J ′

δqcqd
L̂2

(

J L L′

0 0 0

)2

×
∫

dr1dr2RLL(mω; r1, r2)

[

g′ω
(G1G2 + F1F2)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r1

×
[

g′ω
(G3G4 + F3F4)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r2

. (A.92)

A.4 ρ-meson contribution to the p-h matrix elements

In this section, the quantities HJ(1234) in Eq. (2.85) induced by the ρ-meson with vector coupling

will be summarized.

For the ρ-meson with vector coupling, the two-body interaction reads

V ρ(1, 2) = [gργ0γ
µ~τ ]1 · [gργ0γµ~τ ]2Dρ(1, 2). (A.93)

The quantities HJρ(1234) in Eq. (2.85) can be derived in analogy with the derivations of the

ω−meson, with the two following replacements are needed. First, one should replace the mass of

the meson and the coupling strength,

gω,mω → gρ,mρ. (A.94)

Second, one should be careful about the isospin properties at the interaction vertices. For example,

in H̄Jρ
1 (1234), the following substitution is needed,

δq1q2
δq4q3

→ 〈q1|~τ |q2〉 · 〈q4|~τ |q3〉. (A.95)
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The final results are summarized as follows,

H̄JρV
1 (1234) = 〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mρ; r1, r2)[gρ(G1G2 + F1F2)]r1

×[gρ(G3G4 + F3F4)]r2
, (A.96)

H̄JρV
2 (1234) = δq1q2

δq3q4
τq1
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′ρ(r)ρ(r)(G1G2 + F1F2)(G3G4 + F3F4), (A.97)

H̄JρV
3 (1234) = δq1q2

δq3q4
τq1
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mρ; r1, r2)[gρ(G1G2 + F1F2)]r1

×[g′ρρ
(3)
v (G3G4 + F3F4)]r2

, (A.98)

H̄JρV
6 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr
1

r2
g′′ρ(r)ρ(3)

v (r)ρ(r)(G1G2 + F1F2)(G3G4 + F3F4), (A.99)

H̄JρV
7 (1234) = δq1q2

δq3q4
Ĵ−2〈1||YJ ||2〉〈3||YJ ||4〉

×
∫

dr1dr2RJJ(mρ; r1, r2)[g
′
ρρ

(3)
v (G1G2 + F1F2)]r1

×[g′ρρ
(3)
v (G3G4 + F3F4)]r2

, (A.100)

H̄JρV
9 (1234) = δq1q2

δq3q4
(−)j1+j2+1 Ĵ

−1

√
4π

∑

jdLL′

(2 − δqdq2
)L̂L̂′

(

J L L′

0 0 0

){

j1 j2 J

L L′ jd

}

×〈3||YJ ||4〉〈1||YL′ ||d〉〈d||YL||2〉

×
∫

dr1dr2RLL(mρ; r1, r2)

[

g′ρ
(G3G4 + F3F4)(G1Gd + F1Fd)

r2

]

r1

×[gρ(GdG2 + FdF2)]r2
, (A.101)

H̄JρV
13 (1234) = −δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdL

(2 − δqcqd
)〈c||YL||d〉2

×
∫

dr1dr2RLL(mρ; r1, r2)

[

g′′ρ
(G1G2 + F1F2)(G3G4 + F3F4)(GcGd + FcFd)

r4

]

r1

×[gρ(GcGd + FcFd)]r2
,

(A.102)

H̄JρV
14 (1234) = −δq1q2

δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′

(2 − δqcqd
)L̂2

(

J L L′

0 0 0

)2

〈c||YL′ ||d〉2

×
∫

dr1dr2RLL(mρ; r1, r2)

[

g′ρ
(G1G2 + F1F2)(GcGd + FcFd)

r2

]

r1

×
[

g′ρ
(G3G4 + F3F4)(GcGd + FcFd)

r2

]

r2

, (A.103)
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with the short-hand notation for the ρ-field

ρ(1) =

∫

dr2r
2
2R00(mρ; 1, 2)ρ

(3)
v (2)gρ(2), (A.104)

where the isovector baryonic density is

ρ(3)
v =

∑

d

τd
4πr2

[G2
d(r) + F 2

d (r)]. (A.105)

Moreover,

¯̄HJρV
1 (1234) = −〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2

×
∑

L

∫

dr1dr2RLL(mρ; r1, r2)
[

gρ

(

G1F2〈1||TJL||2′〉 − F1G2〈1′||TJL||2〉
)]

r1

×
[

gρ

(

G3F4〈3||TJL||4′〉 − F3G4〈3′||TJL||4〉
)]

r2

, (A.106)

¯̄HJρV
i (1234) = 0, for i = 2, 3, · · · , 7, (A.107)

¯̄HJρV
9 (1234)

= δq1q2
δq3q4

(−)j1+j2+1 Ĵ
−1

√
4π

∑

jdLL′J ′J ′′

(2 − δqdq2
)(−)J

′′+LL̂L̂′Ĵ ′Ĵ ′′

×
(

J L L′

0 0 0

){

j2 j1 J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈3||YJ ||4〉

×
∫

dr1dr2RLL(mρ; r1, r2)

×
[

g′ρ
(G3G4 + F3F4)

r2
(

G1Fd〈1||TJ ′L′ ||d′〉 − F1Gd〈1′||TJ ′L′ ||d〉
)

]

r1

×
[

gρ

(

GdF2〈d||TJ ′′L||2′〉 − FdG2〈d′||TJ ′′L||2〉
)]

r2

, (A.108)

¯̄HJρV
13 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLJ ′

(2 − δqcqd
)

∫

dr1dr2RLL(mρ; r1, r2)

×
[

g′′ρ
(G1G2 + F1F2)(G3G4 + F3F4)

r4
(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)

]

r1

×
[

gρ

(

GcFd〈c||TJ ′L||d′〉 − FcGd〈c′||TJ ′L||d〉
)]

r2

, (A.109)

¯̄HJρV
14 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′J ′

(2 − δqcqd
)L̂2

(

J L L′

0 0 0

)2

×
∫

dr1dr2RLL(mρ; r1, r2)

×
[

g′ρ
(G1G2 + F1F2)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r1

×
[

g′ρ
(G3G4 + F3F4)

r2
(

GcFd〈c||TJ ′L′ ||d′〉 − FcGd〈c′||TJ ′L′ ||d〉
)

]

r2

. (A.110)
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A.5 Pion contribution to the p-h matrix elements

In this section, the derivations for the quantities HJ(1234) in Eq. (2.85) induced by the pseudo-

vector pion will be given in details.

The two-body interaction reads

V π(1, 2) = −[
fπ

mπ
~τγ0γ5γ

µ∂µ]1 · [
fπ

mπ
~τγ0γ5γ

ν∂ν ]2Dπ(1, 2). (A.111)

Because the retardation effect is neglected, the meson propagator is time independent. The inter-

action can be expressed as,

V π(1, 2) = −[
fπ

mπ
~τγ0γ5γ

k∂k]1 · [
fπ

mπ
~τγ0γ5γ

l∂l]2Dπ(1, 2). (A.112)

The gradients acting on the propagator give (see Remark 10)

∇2∇1D(µ; r1, r2) = µ2
∑

L

L±1
∑

L1L2

L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×V
L1L2

L (µ; r1, r2)Y LL1
(r̂1) · Y LL2

(r̂2), (A.113)

where

V
L1L2

L (µ; r1, r2) ≡ −RL1L2
(µ; r1, r2) +

1

µ2r21
δ(r1 − r2), (A.114)

and the scalar product of vector spherical harmonics Y L1

LM ≡
∑

M1µ

CLM
L1M11µYL1M1

eµ reads

Y LL1
(r̂1) · Y LL2

(r̂2) =
∑

M

(−)MY L1

LM (r̂1)Y
L2

L−M (r̂2). (A.115)

Therefore, the potential can be expressed as,

V π(1, 2) = −
∑

Lν

L±1
∑

L1L2

(−)νL̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×
(

fπ~τγ0γ5γ · Y L1

Lν

)

r1

V
L1L2

L (mπ; r1, r2)
(

fπ~τγ0γ5γ · Y L2

L−ν

)

r2

. (A.116)

For the Term1 in Eq. (2.78),

Term1 =

∫

dr1dr2f
†
A(1)f †b (2)g(1)g(2)I(1, 2)fB (2)fa(1)

= −
∫

dr1dr2fπ(1)fπ(2)
∑

Lν

L±1
∑

L1L2

(−)ν L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×V
L1L2

L (mπ; r1, r2)〈fA|~τγ0γ5γ · Y L1

Lν |fa〉r1
〈fb|~τγ0γ5γ · Y L2

L−ν |fB〉r2
. (A.117)

The summation over mA,ma gives,

∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

〈fA|~τγ0γ5γ · Y L1

Lν |fa〉

=
∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

1

r21
〈qA|~τ |qa〉

×(−1)
[

GAGa〈A|σ · Y L1

Lν |a〉 + FAFa〈A′|σ · Y L1

Lν |a′〉
]

. (A.118)
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Using the relations

σ · Y L1

Lν =
∑

k′

σk′ek′
∑

µk

CLν
L1µ1kYL1µek, (A.119)

and

eµeν = δµν , (µ, ν = ±1, 0), (A.120)

we can define

T
L1

Lν ≡ σ · Y L1

Lν =
∑

µk

CLν
L1µ1kYL1µσk. (A.121)

Therefore,

∑

mAma

(−)jA−mA

(

jA ja J

mA −ma −M

)

〈fA|~τγ0γ5γ · Y L1

Lν |fa〉

= −〈qA|~τ |qa〉Ĵ−2δJLδMν

[GAGa〈A||TLL1
||a〉 + FAFa〈A′||TLL1

||a′〉]r1

r21
, (A.122)

where the Wigner-Eckart Theorem (see Remark 13) and the symmetry and orthogonality relations

of 3-j Symbols (see Remarks 2 and 3) are used. The summation over mB,mb gives,

∑

mBmb

(−)jB−mB

(

jB jb J

mB −mb −M

)

〈fb|~τγ0γ5γ · Y L2

L−ν |fB〉

= −〈qb|~τ |qB〉(−)jB−jb−M Ĵ−2δJLδMν

[GbGB〈b||TLL2
||B〉 + FbFB〈b′||TLL2

||B′〉]r2

r22
.(A.123)

Finally, Hπ
J (AaBb) can be expressed as,

HJπ
1 (AaBb) = −〈qA|~τ |qa〉 · 〈qb|~τ |qB〉Ĵ−2

×
J±1
∑

L1L2

L̂1L̂2

(

J 1 L1

0 0 0

)(

J 1 L2

0 0 0

)

×
∫

dr1dr2V
L1L2

J (mπ; r1, r2)
[

fπ

(

GAGa〈A||TJL1
||a〉 + FAFa〈A′||TJL1

||a′〉
)]

r1

×
[

fπ

(

GBGb〈B||TJL2
||b〉 + FBFb〈B′||TJL2

||b′〉
)]

r2

, (A.124)

where 〈b||TJL||a〉 = (−)ja+jb+J+L〈a||TJL||b〉 in Remark 14 is used.

Because of parity conservation, the pion does not contribute to direct rearrangement terms,

HJπ
i (1234) = 0, for i = 2, 3, · · · , 7. (A.125)

For the Term9 in Eq. (2.79),

HJπ
9 (AaBb)

=
∑

d

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

×
∫

dr1dr
′
1dr2f

′
π(1)fπ(2)

δ(r1 − r′1)

r21

∑

LL′νν′L1L2

(−)ν+ν′

×L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

V
L1L2

L (mπ; r1, r2)

×〈fb|YL′−ν′ |fB〉r′
1
〈fA|YL′ν′~τγ0γ5γ · Y L1

Lν |fd〉r1
〈fd|~τγ0γ5γ · Y L2

L−ν |fa〉r2
, (A.126)
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with

∑

mbmB

(−)jB−mB+ν′

(

jB jb J

mB −mb −M

)

〈fb|YL′−ν′ |fB〉

= δqBqb
δL′Jδν′M Ĵ

−2〈B||YJ ||b〉
(GBGb + FBFb)r′

1

r′1
2 . (A.127)

Using

σ · Y L1

Lν =
∑

M1k

(−)L1−1+νL̂

(

L1 1 L

M1 k −ν

)

YL1M1
σk, (A.128)

YJMYL1M1
=
∑

L′ν′

(−)ν
′ Ĵ L̂1L̂

′

√
4π

(

J L1 L′

0 0 0

)(

J L1 L′

M M1 ν ′

)

YL′−ν′ , (A.129)

and

YL′−ν′σk =
∑

J ′M ′

(−)L
′−1+M ′

Ĵ ′

(

L′ 1 J ′

−ν ′ k −M ′

)

TJ ′M ′ , (A.130)

we can obtain that

〈fA|YJM~τγ0γ5γ · Y L1

Lν |fd〉r1

= 〈qA|~τ |qd〉
∑

M1kL′ν′J ′M ′

(−)1+L1−1+ν+ν′+L′−1+M ′+jA−mA
L̂ĴL̂1L̂

′Ĵ ′

√
4π

×
(

L1 1 L

M1 k −ν

)(

J L1 L′

0 0 0

)(

J L1 L′

M M1 ν ′

)

×
(

L′ 1 J ′

−ν ′ k −M ′

)(

jA J ′ jd

−mA M ′ md

)

× 1

r21

[

GAGd〈A||TJ ′L′ ||d〉 + FAFd〈A′||TJ ′L′ ||d′〉
]

r1

= 〈qA|~τ |qd〉
∑

L′J ′M ′

(−)M
′+jA−mA

L̂ĴL̂1L̂
′Ĵ ′

√
4π

(

J L1 L′

0 0 0

)(

jA J ′ jd

−mA M ′ md

)(

J ′ J L

M ′ −M −ν

){

J ′ J L

L1 1 L′

}

× 1

r21

[

GAGd〈A||TJ ′L′ ||d〉 + FAFd〈A′||TJ ′L′ ||d′〉
]

r1

. (A.131)

Another component reads,

〈fd|~τγ0γ5γ · Y L2

L−ν |fa〉r2

= 〈qd|~τ |qa〉(−)jd−md+1

(

jd L ja

−md −ν ma

)

× 1

r22

[

GdGa〈d||TLL2
||a〉 + FdFa〈d′||TLL2

||a′〉
]

r2

. (A.132)
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Finally,

HJπ
9 (AaBb)

= δqAqaδqBqb
(−)jA+ja+1 Ĵ

−1

√
4π

∑

jdLL1L2L′J ′

(2 − δqdqa)L̂L̂
2
1L̂2L̂

′Ĵ ′

×
(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)(

J L1 L′

0 0 0

){

J ′ J L

L1 1 L′

}{

jA ja J

L J ′ jd

}

〈B||YJ ||b〉

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(GBGb + FBFb)

r2
(

GAGd〈A||TJ ′L′ ||d〉 + FAFd〈A′||TJ ′L′ ||d′〉
)

]

r1

×
[

fπ

(

GdGa〈d||TLL2
||a〉 + FdFa〈d′||TLL2

||a′〉
)]

r2

. (A.133)

For the Term13 in Eq. (2.79),

HJπ
13 (AaBb)

=
∑

cd

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

× 1

4π

∫

dr1dr
′
1dr

′′
1dr2f

′′
π (1)fπ(2)

δ(r1 − r′1)

r21

δ(r1 − r′′1)

r21

∑

LL′νν′L1L2

(−)ν+ν′

×L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

V
L1L2

L (mπ; r1, r2)

×〈fA|YL′ν′ |fa〉r′′
1
〈fb|YL′−ν′ |fB〉r′

1
〈fc|~τγ0γ5γ · Y L1

Lν |fd〉r1
〈fd|~τγ0γ5γ · Y L2

L−ν |fc〉r2

= δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdLL1L2

(2 − δqcqd
)L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

×
[

f ′′π
(GAGa + FAFa)(GBGb + FBFb)

r4
(

GcGd〈c||TLL1
||d〉 + FcFd〈c′||TLL1

||d′〉
)

]

r1

×
[

fπ

(

GcGd〈c||TLL2
||d〉 + FcFd〈c′||TLL2

||d′〉
)]

r2

. (A.134)
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For the Term14 in Eq. (2.79),

HJπ
14 (AaBb)

=
∑

cd

∑

mM

(−)jA+jB−mA−mB

(

jA ja J

mA −ma −M

)(

jB jb J

mB −mb −M

)

×
∫

dr1dr
′
1dr2dr

′
2f

′
π(1)f ′π(2)

δ(r1 − r′1)

r21

δ(r2 − r′2)

r22

∑

LL′L′′νν′ν′′L1L2

(−)ν+ν′+ν′′

×L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

V
L1L2

L (mπ; r1, r2)

×〈fA|YL′ν′ |fa〉r′
1
〈fc|YL′−ν′~τγ0γ5γ · Y L1

L−ν |fd〉r1
〈fd|YL′′ν′′~τγ0γ5γ · Y L2

Lν |fc〉r2
〈fb|YL′′−ν′′ |fB〉r′

2

= δqAqaδqBqb
Ĵ−4〈A||YJ ||a〉〈B||YJ ||b〉

∑

cd

∫

dr1dr2f
′
π(1)f ′π(2)

∑

LνML1L2

(−)ν+M

×L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

V
L1L2

L (mπ; r1, r2)

[

(GAGa + FAFa)

r2

]

r1

[

(GBGb + FBFb)

r2

]

r2

×〈fc|YJ−M~τγ0γ5γ · Y L1

L−ν |fd〉r1
〈fd|YJM~τγ0γ5γ · Y L2

Lν |fc〉r2
. (A.135)

As calculated before,

〈fc|YJ−M~τγ0γ5γ · Y L1

L−ν |fd〉r1

= 〈qc|~τ |qd〉
∑

L′J ′M ′

(−)M
′+jc−mc

L̂ĴL̂1L̂
′Ĵ ′

√
4π

(

J L1 L′

0 0 0

)(

jc J ′ jd

−mc M ′ md

)(

J ′ J L

M ′ M ν

){

J ′ J L

L1 1 L′

}

× 1

r21

[

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
]

r1

, (A.136)

〈fd|YJM~τγ0γ5γ · Y L2

Lν |fc〉r2

= 〈qd|~τ |qc〉
∑

L′′J ′′M ′′

(−)M
′′+jd−md

L̂ĴL̂2L̂
′′Ĵ ′′

√
4π

(

J L2 L′′

0 0 0

)(

jd J ′′ jc

−md M ′′ mc

)(

J ′′ J L

M ′′ −M −ν

){

J ′′ J L

L2 1 L′′

}

× 1

r22

[

GdGc〈d||TJ ′′L′′ ||c〉 + FdFc〈d′||TJ ′′L′′ ||c′〉
]

r2

. (A.137)
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Finally,

HJπ
14 (AaBb)

= δqAqaδqBqb

Ĵ−2

4π
〈A||YJ ||a〉〈B||YJ ||b〉

∑

jcjdLL1L2L′J ′L′′

(2 − δqcqd
)L̂2L̂2

1L̂
2
2L̂

′L̂′′

(

L 1 L1

0 0 0

)

×
(

L 1 L2

0 0 0

)(

J L1 L′

0 0 0

)(

J L2 L′′

0 0 0

){

J ′ J L

L1 1 L′

}{

J ′ J L

L2 1 L′′

}

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(GAGa + FAFa)

r2
(

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
)

]

r1

×
[

f ′π
(GBGb + FBFb)

r2
(

GcGd〈c||TJ ′L′′ ||d〉 + FcFd〈c′||TJ ′L′′ ||d′〉
)

]

r2

. (A.138)

In conclusion, for the pion with pseudo-vector coupling, one has

HJπ
1 (1234) = −〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2

×
J±1
∑

L1L2

L̂1L̂2

(

J 1 L1

0 0 0

)(

J 1 L2

0 0 0

)

×
∫

dr1dr2V
L1L2

J (mπ; r1, r2)
[

fπ

(

G1G2〈1||TJL1
||2〉 + F1F2〈1′||TJL1

||2′〉
)]

r1

×
[

fπ

(

G3G4〈3||TJL2
||4〉 + F3F4〈3′||TJL2

||4′〉
)]

r2

, (A.139)

¯̄HJπ
i (1234) = 0, for i = 2, 3, · · · , 7, (A.140)

HJπ
9 (1234)

= δq1q2
δq3q4

(−)j1+j2+1 Ĵ
−1

√
4π

∑

jdLL1L2L′J ′

(2 − δqdq2
)L̂L̂2

1L̂2L̂
′Ĵ ′

×
(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)(

J L1 L′

0 0 0

){

J ′ J L

L1 1 L′

}{

j2 j1 J

J ′ L jd

}

〈3||YJ ||4〉

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(G3G4 + F3F4)

r2
(

G1Gd〈1||TJ ′L′ ||d〉 + F1Fd〈1′||TJ ′L′ ||d′〉
)

]

r1

×
[

fπ

(

GdG2〈d||TLL2
||2〉 + FdF2〈d′||TLL2

||2′〉
)]

r2

, (A.141)

HJπ
13 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL1L2

(2 − δqcqd
)L̂1L̂2

(

L 1 L1

0 0 0

)(

L 1 L2

0 0 0

)

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

×
[

f ′′π
(G1G2 + F1F2)(G3G4 + F3F4)

r4
(

GcGd〈c||TLL1
||d〉 + FcFd〈c′||TLL1

||d′〉
)

]

r1

×
[

fπ

(

GcGd〈c||TLL2
||d〉 + FcFd〈c′||TLL2

||d′〉
)]

r2

, (A.142)
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HJπ
14 (1234)

= δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL1L2L′J ′L′′

(2 − δqcqd
)L̂2L̂2

1L̂
2
2L̂

′L̂′′

(

L 1 L1

0 0 0

)

×
(

L 1 L2

0 0 0

)(

J L1 L′

0 0 0

)(

J L2 L′′

0 0 0

){

J ′ J L

L1 1 L′

}{

J ′ J L

L2 1 L′′

}

×
∫

dr1dr2V
L1L2

L (mπ; r1, r2)

[

f ′π
(G1G2 + F1F2)

r2
(

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
)

]

r1

×
[

f ′π
(G3G4 + F3F4)

r2
(

GcGd〈c||TJ ′L′′ ||d〉 + FcFd〈c′||TJ ′L′′ ||d′〉
)

]

r2

. (A.143)

In order to cancel the contact interaction coming from the pion pseudo-vector coupling, a pionic

zero-range counterterm should be included (Bouyssy et al., 1987), which reads

V πδ(1, 2) =
1

3
[
fπ

mπ
~τγ0γ5γ]1 · [

fπ

mπ
~τγ0γ5γ]2δ(r1 − r2)

=
1

3

∑

Lkν

(−)k+ν [
fπ

mπ
~τγ0γ5γ

kY ν
L ]1 · [

fπ

mπ
~τγ0γ5γ

−kY −ν
L ]2

δ(r1 − r2)

r21
. (A.144)

It has a similar form as ¯̄V ω, so we can calculate its p-h matrix elements in a similar way.

Therefore, we can easily obtain that

HJπδ
1 (1234) =

1

3m2
π

〈q1|~τ |q2〉 · 〈q4|~τ |q3〉Ĵ−2

×
∑

L

∫

dr
f2

π

r2
[

G1G2〈1||TJL||2〉 + F1F2〈1′||TJL||2′〉
]

×
[

G3G4〈3||TJL||4〉 + F3F4〈3′||TJL||4′〉
]

, (A.145)

Furthermore, all the terms from Term2 to Term7 vanish due to the parity conservation.

For the Term9 in Eq. (2.79),

HJπδ
9 (1234) =

1

3m2
π

δq1q2
δq3q4

(−)j1+j2+1 Ĵ
−1

√
4π

∑

jdLL′J ′J ′′

(2 − δqdq2
)(−)J

′′+LL̂L̂′Ĵ ′Ĵ ′′

×
(

J L L′

0 0 0

){

j2 j1 J

J ′ J ′′ jd

}{

J ′ J ′′ J

L L′ 1

}

〈3||YJ ||4〉

×
∫

dr
f ′πfπ

r4
(G3G4 + F3F4)

(

G1Gd〈1||TJ ′L′ ||d〉 + F1Fd〈1′||TJ ′L′ ||d′〉
)

×
(

GdG2〈d||TJ ′′L||2〉 + FdF2〈d′||TJ ′′L||2′〉
)

. (A.146)

For the Term13 in Eq. (2.79),

HJπδ
13 (1234)

= − 1

3m2
π

δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLJ ′

(2 − δqcqd
)

∫

dr
f ′′πfπ

r6

× (G1G2 + F1F2)(G3G4 + F3F4)
[

GcGd〈c||TJ ′L||d〉 + FcFd〈c′||TJ ′L||d′〉
]2
. (A.147)
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For the Term14 in Eq. (2.79),

HJπδ
14 (1234)

= − 1

3m2
π

δq1q2
δq3q4

Ĵ−2

4π
〈1||YJ ||2〉〈3||YJ ||4〉

∑

jcjdLL′J ′

(2 − δqcqd
)L̂2

(

J L L′

0 0 0

)2
∫

dr
f ′π

2

r6

× (G1G2 + F1F2)(G3G4 + F3F4)
[

GcGd〈c||TJ ′L′ ||d〉 + FcFd〈c′||TJ ′L′ ||d′〉
]2
. (A.148)
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Appendix B

Remarks

In this appendix, the main results concerning the angular momenta couplings, and the properties

of the Yukawa propagator, as well as the conventional notations used in the thesis are gathered

for reader’s convenience. In particular, we follow the conventions of Wigner-Eckart Theorem and

reduced matrix elements in the textbook (Varshalovich et al., 1987).

Remark 1 Definitions of the 3-j, 6-j, 9-j Symbols (Brink and Satchler, 1968)

The Clebsch-Gordan coefficient is defined by the transformation

|abcγ〉 =
∑

αβ

Ccγ
aαbβ |aα〉 |bβ〉 , (B.1)

and vanishes unless α+ β = γ.

The relation between 3-j symbols and C-G coefficients reads

Cc−γ
aαbβ = (−)a−b−γ ĉ

(

a b c

α β γ

)

, (B.2)

where ĉ means
√

2c+ 1. Note the appearance of γ with a minus sign on the left, so that α+β+γ = 0

for the 3-j symbols.

The 6-j symbol is defined by the transformation

|(ab)e, d; c〉 =
∑

f

(−)a+b+c+dêf̂

{

a b e

d c f

}

|a, (bd)f ; c〉 . (B.3)

The 9-j symbol is defined by the transformation

|(ad)g, (be)h; i〉 =
∑

cf

ĉf̂ ĝĥ















a b c

d e f

g h i















|(ab)c, (de)f ; i〉 . (B.4)

Remark 2 Symmetries of 3-j Symbols (Brink and Satchler, 1968)

119
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The 3-j symbol is invariant under cyclic permutation of its columns and multipied by (−)a+b+c

by non-cyclic ones

(

a b c

α β γ

)

=

(

b c a

β γ α

)

= (−)a+b+c

(

b a c

β α γ

)

, etc. (B.5)

and
(

a b c

−α −β −γ

)

= (−)a+b+c

(

a b c

α β γ

)

. (B.6)

Remark 3 Orthogonality Relations of 3-j Symbols (Brink and Satchler, 1968)

The sums involving products of two 3-j symbols read as

∑

αβ

ĉ2

(

a b c

α β γ

)(

a b c′

α β γ′

)

= δcc′δγγ′ , (B.7)

∑

cγ

ĉ2

(

a b c

α β γ

)(

a b c

α′ β′ γ

)

= δαα′δββ′ . (B.8)

Remark 4 Values of Some Special 3-j Symbols (Brink and Satchler, 1968)

(

L L 0

M −M 0

)

=
(−)L−M

L̂
, (B.9)

(

a b a+ b

0 0 0

)

= (−)a−b (a+ b)!

a!b!

[

(2a)!(2b)!

(2a+ 2b+ 1)!

]1/2

. (B.10)

Remark 5 Triangular Conditions of 6-j Symbols (Brink and Satchler, 1968)

The four triangular conditions which must be satisfied by the six angular momenta in the 6-j

symbol may be illustrated in the following way:

{

© © ©
}

,

{

©
© ©

}

,

{

©
© ©

}

,

{

©
© ©

}

.

Remark 6 Symmetries of 6-j Symbols (Brink and Satchler, 1968)

The 6-j symbol is invariant under the interchange of any two columns, and also under the

interchange of the upper and lower arguments in each of any two columns, e.g.,

{

a b e

d c f

}

=

{

a e b

d f c

}

=

{

e b a

f c d

}

=

{

a c f

d b e

}

=

{

d c e

a b f

}

. (B.11)

Remark 7 Contraction of 3-j Symbols to 6-j Symbols (Brink and Satchler, 1968)
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∑

αβγα′β′

(−)A+B+C+α+β+γ

(

A B c

α −β γ′

)(

B C a

β −γ α′

)(

C A b

γ −α β′

)(

a b c1

α′ β′ γ′1

)

= ĉ−2δcc1δγ′γ′

1

{

a b c

A B C

}

, (B.12)

∑

αβγ

(−)A+B+C+α+β+γ

(

A B c

α −β γ′

)(

B C a

β −γ α′

)(

C A b

γ −α β′

)

=

(

a b c

α′ β′ γ′

){

a b c

A B C

}

, (B.13)

∑

γ

(−)b+B−α′−α

(

a B C

α′ β −γ

)(

b A C

β′ −α γ

)

=
∑

cγ′

ĉ2

{

a b c

A B C

}(

a b c

α′ β′ −γ′

)(

B A c

β −α γ′

)

, (B.14)

Remark 8 Values of Some Special 6-j and 3-j Symbols (Brink and Satchler, 1968)

{

a b a+ b

a+ b+ e e a+ e

}

= (−)2(a+b+e) 1
√

(2a+ 2b+ 1)(2a + 2e+ 1)
. (B.15)

If l + l′ + J is even,

(

l′ l J

0 0 0

){

l′ l J

j j′ 1
2

}

= (−1)l̂′
−1
l̂−1

(

j′ j J
1
2 −1

2 0

)

. (B.16)

Remark 9 Symmetries of 9-j Symbols (Brink and Satchler, 1968)

The 9-j symbol is invariant under cyclic permutations of rows and columns as well as reflection

about a diagonal, and is multiplied by (−)R under non-cyclic permutations of rows and columns,

where R is the sum of all arguments of the 9-j symbol.

Remark 10 Gradient of Propagator

In general, in the meson exchange model, the propagators for mesons are Yukawa functions

v(µ; r1, r2) =
1

4π

e−µ|r1−r2|

|r1 − r2|
, (B.17)

which can be expanded in terms of spherical modified Bessel functions combined with the spherical

harmonics,

v(µ; r1, r2) =

∞
∑

L=0

RLL(µ; r1, r2)Y L(r̂1) · Y L(r̂2), (B.18)
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where

RL1L2
(µ; r1, r2) = µ

√

1

z1z2

[

IL1+
1

2

(z1)KL2+ 1

2

(z2)θ(z2 − z1) +KL1+ 1

2

(z1)IL2+
1

2

(z2)θ(z1 − z2)
]

(B.19)

with z = µr.

The gradient on the propagator with respect to r1 reads

∇1v(µ; r1, r2) = −
∑

LM

∑

L1

CL10
L010µ

[

d

dz1
+
αLL1

z1

]

RLL(µ; r1, r2)Y
L1

LM (r̂1)Y
∗
LM (r̂2)

= −µ
∑

LM

∑

L1

CL10
L010SLL1

(µ; r1, r2)Y
L1

LM (r̂1)Y
∗
LM (r̂2), (B.20)

where

SLL1
(µ; r1, r2) = µ

√

1

z1z2

[

IL1+ 1

2

(z1)KL+ 1

2

(z2)θ(z2 − z1) −KL1+ 1

2

(z1)IL+ 1

2

(z2)θ(z1 − z2)
]

,

(B.21)

and αll1 is defined in Remark 16. Obviously, one has SLL1
(µ; r1, r2) = −SL1L(µ; r2, r1).

The action of ∇2∇1 on v reads

∇2∇1v(µ; r1, r2) = +µ2
∑

LM

∑

L1L2

CL10
L010C

L20
L010

[

d

dz2
+
αLL2

z2

]

SLL1
(µ; r1, r2)(−)MY L1

LM (r̂1)Y
L2

L−M (r̂2)

= µ2
∑

L

∑

L1L2

CL10
L010C

L20
L010 [−RL1L2

+DLL1
δ(z1 − z2)] Y LL1

(r̂1) · Y LL2
(r̂2), (B.22)

where

DLL1
(µ; r1, r2) = µ

√

1

z1z2

[

IL1+ 1

2

(z1)KL+ 1

2

(z2) +KL1+ 1

2

(z1)IL+ 1

2

(z2)
]

, (B.23)

and

Y L1

LM =
∑

M1µ

CLM
L1M11µYL1M1

eµ. (B.24)

For simplicity, one can write ∇2∇1v into a more compact form

∇2∇1v(µ; r1, r2) = µ2
∑

L

∑

L1L2

CL10
L010C

L20
L010V

L1L2

L (µ; r1, r2)Y LL1
(r̂1) · Y LL2

(r̂2), (B.25)

with

V
L1L2

L (µ; r1, r2) = −RL1L2
(µ; r1, r2) +DLL1

(µ; r1, r2)δ(z1 − z2), (B.26)

or

V
L1L2

L (µ; r1, r2) = −RL1L2
(µ; r1, r2) +

1

µ2r21
δ(r1 − r2). (B.27)

Remark 11 Expansion of Delta Function

The delta function δ(r1 − r2) can be expanded in terms of spherical harmonics,

δ(r1 − r2) =
δ(r1 − r2)

r21

∞
∑

L=0

Y L(r̂1) · Y L(r̂2). (B.28)
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Remark 12 Direct Product of Two Spherical Harmonics

A direct product of two spherical harmonics of the same arguments may be expanded as

Y m1

l1
(Ω)Y m2

l2
(Ω) =

l1+l2
∑

L=|l1−l2|

L
∑

M=−L

(−)M
l̂1l̂2L̂√

4π

(

l1 l2 L

0 0 0

)(

l1 l2 L

m1 m2 M

)

Y −M
L (Ω). (B.29)

Remark 13 Wigner-Eckart Theorem

The Wigner-Eckart theorem states that in a representation according to the operators Ĵ2, Ĵz,

where the basis vectors are given by |jm〉, the matrix element 〈jm|Tkq|j′m′〉 of an irreducible

tensor operator is given by the product of a so-called reduced matrix element 〈j||Tk||j′〉, which

does not depend on m, m′ and q, and a Clebsch-Gordan coefficient (or a Wigner 3-j symbol) (see

Ref. (Varshalovich et al., 1987)),

〈jm|Tkq|j′m′〉 = (−)2k ĵ−1Cjm
j′m′kq〈j||Tk ||j′〉

= (−)j−m

(

j k j′

−m q m′

)

〈j||Tk ||j′〉. (B.30)

The reduced matrix of the composite tensor

TKQ(k1k2) =
∑

q

CKQ
k1qk2Q−qRk1qSk2Q−q (B.31)

may be evaluated in terms of the reduced matrix elements of the R and S,

〈J ||TK ||J ′〉 = (−)K+J+J ′

K̂
∑

J ′′

{

J J ′ K

k2 k1 J ′′

}

〈J ||Rk1
||J ′′〉〈J ′′||Sk2

||J ′〉. (B.32)

In a two-component system the tensor Rk1
(1) acts only on the first part and Sk2

(2) only on the

second part. Then, the reduced matrix of the composite tensor

TKQ(k1k2) =
∑

q1q2

CKQ
k1qk2q2

Rk1q1
(1)Sk2q2

(2) (B.33)

may be evaluated in terms of the reduced matrix elements of the R and S,

〈j1j2J ||TK(k1k2)||j′1j′2J ′〉 = ĴK̂Ĵ ′















J J ′ K

j1 j′1 k1

j2 j′2 k2















〈j1||Rk1
||j′1〉〈j2||Sk2

||j′2〉. (B.34)

Remark 14 Some Useful reduced matrix elements

The reduced matrix element of the spherical harmonic operator reads (Varshalovich et al., 1987)

〈a||YL||b〉 = (−)jb−L− 1

2

ĵaĵbL̂√
4π

(

ja jb L
1
2 −1

2 0

)

(B.35)



124 APPENDIX B. REMARKS

provided la + lb + L is even, and zero otherwise. It obeys the symmetry property

〈b||YL||a〉 = (−)ja−jb〈a||YL||b〉. (B.36)

The reduced matrix element of the vector spherical harmonic operator reads (Varshalovich et al.,

1987)

〈a||TJL||b〉 = (−)la
√

6√
4π
ĵaĵbĴ l̂a l̂bL̂

(

la L lb

0 0 0

)















ja jb J

la lb L
1
2

1
2 1















, (B.37)

where

YLνσk =
∑

JM

(−)L−1+M Ĵ

(

L 1 J

ν k −M

)

TJM , (B.38)

or

TJM =
∑

νk

(−)L−1+M Ĵ

(

L 1 J

ν k −M

)

YLνσk. (B.39)

Using the following relations, when c+ d+ e is even,

√
6ĉd̂ê

(

c d e

0 0 0

)















a b c

d e c
1
2

1
2 1















=

(

a b c
1
2

1
2 −1

)

, (B.40)

(

a b c
1
2

1
2 −1

)

= −1

2

(

a b c
1
2 −1

2 0

)

b̂2 + (−)a+b+câ2

√

c(c+ 1)
, (B.41)

when c+ d+ e is odd

(

c+ 1 d e

0 0 0

)















a b c

d e c+ 1
1
2

1
2 1















=
(−)b+e+ 1

2 [(d− a)â2 + (e− b)b̂2 + c+ 1]
√

6(c+ 1)(2c + 3)ĉd̂ê

(

a b c
1
2 −1

2 0

)

,

(B.42)

(

c− 1 d e

0 0 0

)















a b c

d e c− 1
1
2

1
2 1















=
(−)b+e+ 1

2 [(d− a)â2 + (e− b)b̂2 − c]
√

6c(2c − 1)ĉd̂ê

(

a b c
1
2 −1

2 0

)

,

(B.43)

it can be simplified as

〈a||TJL||b〉 = (−)la
ĵaĵb√

4π
ZJL(a, b)

(

ja jb J
1
2 −1

2 0

)

, la + lb + L is even, (B.44)

where

ZJL(a, b) =



































(−)jb+lb+
1

2

(la − ja)ĵ
2
a + (lb − jb)ĵ

2
b + L√

L
, if L = J + 1,

−1

2

Ĵ

[J(J + 1)]
1

2

[

ĵ2b + (−)ja+jb+J ĵ2a

]

, if L = J,

(−)jb+lb+
1

2

(la − ja)ĵ
2
a + (lb − jb)ĵ

2
b − L− 1√

L+ 1
, if L = J − 1.

(B.45)
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And it obeys the symmetry property

〈b||TJL||a〉 = (−)ja+jb+J+L〈a||TJL||b〉. (B.46)

Remark 15 Dirac Matrices

A familiar representation of the Dirac matrices is

γ0 =

(

1 0

0 1

)

, γ =

(

0 σ

−σ 0

)

, (B.47)

where

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (B.48)

Frequently appearing combinations are

σµν =
i

2
[γµ, γν ] , γ5 = iγ0γ1γ2γ3 = γ5. (B.49)

In this representation the components of σµν are

σ0i = i

(

0 σi

σi 0

)

, σij =

(

σk 0

0 σk

)

, (B.50)

with i, j, k = 1, 2, 3 in cyclic order, and

γ5 = γ5 =

(

0 1

1 0

)

. (B.51)

Remark 16 Some Useful Short-hand Notations

Some short-hand notations are often used in the derivations. Here we list them as follows,

ĵ2 = 2j + 1, (B.52)

αll1 =

{

−l l1 = l + 1,

l + 1 l1 = l − 1.
(B.53)

βll1 =

{

−l l1 = l − 1,

l + 1 l1 = l + 1.
(B.54)

κa = (la − ja)(2ja + 1), (B.55)

κab = κa + κb. (B.56)
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Volpe, C., N. Auerbach, G. Colò, and N. Van Giai, 2002, Phys. Rev. C 65, 044603

Vretenar, D., A. Afanasjev, G. Lalazissis, and P. Ring, 2005, Phys. Rep. 409, 101
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