Méthodes Numériques et Outils Logiciels pour la Prise en Compte des Effets Capacitifs dans la Modélisation CEM de Dispositifs d'Électronique de Puissance

Vincent Ardon - le 21 Juin 2010

<u>Direction :</u>

Mme Edith Clavel,

G2Elab

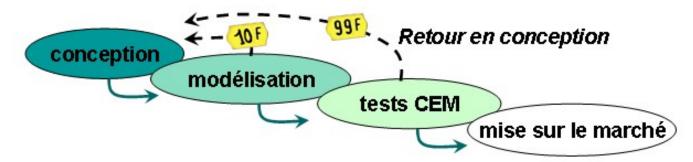
Encadrement:

M. Olivier Chadebec, M. Yann Le Floch, G2Elab CEDRAT

Introduction: Compatibilité ÉlectroMagnétique

- Introduction contexte
- ➤ Définition de la CEM : aptitude d'un système électrique à fonctionner
 - ·sans se perturber lui-même
 - sans perturber l'environnement (normes d'émission)
 - sans être perturbé par l'environnement (normes de susceptibilité)

- ➤ La CEM et le monde du transport
 - Vers le tout électrique !
 - ✓ De plus en plus de composants
 - ✓ Complexité grandissante
 - ✓Environnement confiné (compacité)
 - → Génération d'interférences ElectroMagnétiques
 - → Passage de plus en plus difficile des normes CEM des systèmes électriques industriels



Enjeux de la modélisation CEM en EP (Électronique de Puissance)

- Introduction contexte
- ➤ Challenge : 15% de l'énergie électrique est convertie dans les structures d'électronique de puissance
 - Hacheur, onduleur, redresseur, variateur
- ➤La CEM dans la chaîne de conception d'un produit
 - Actuellement, traitée en aval
 - ✓Difficulté de modélisation → création de prototypes → tests CEM
 - Coût des boucles de retour en conception (non passage des normes)
 - ✓Ex. Schneider-Electric : coût de la CEM estimé à plusieurs millions € par an [étude interne 2008] !

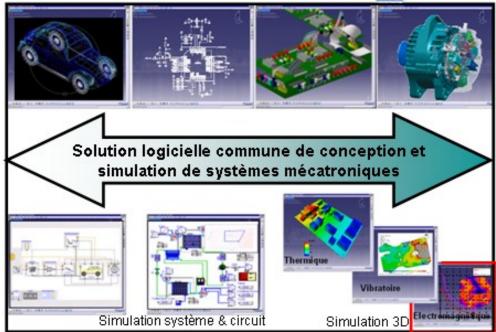
Variateur de vitesse Schneider-Electric

→ Besoin de plateforme logicielle permettant de modéliser en amont les couplages électromagnétiques de structures d'EP industrielles

Projet O2M (Outil de conception et de Modélisation Mécatronique)

- Introduction contexte
- Objectif : développement d'une plateforme collaborative qui réalise un continuum de modélisations multi-métiers
 - · simulation système, circuit, multi-physique 3D
- ➤ Labellisé par 2 pôles de compétitivité

- ➤ Domaine du transport
 - · Automobile, aéronautique, etc.
- ▶8 sous-projets
 - Conception innovante et modélisation 3D
- ➤ Financement (30M€)
 - Dont 12M€ publics



Sous-projet SP4-CEM (Compatibilité ÉlectroMagnétique)

Introduction - contexte

➤Objectifs :

- •Réaliser des modèles CEM de composants discrets d'Électronique de Puissance
 - ✓Semi-conducteurs (transistors, diodes), condensateurs, inductances
- Obtenir des modèles CEM conduits et rayonnés de structures complètes d'EP
 ✓ composants discrets + routage
- Accéder à une simulation CEM système via des solveurs circuits

Motivation de cette thèse

▶Pilotage

▶Partenaires industriels

➤ Partenaires universitaires

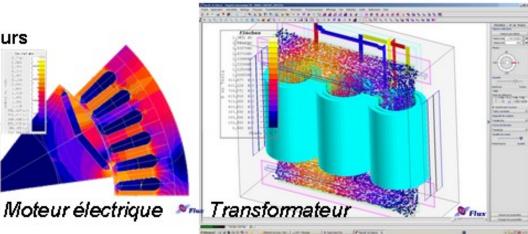
La modélisation CEM en Électronique de Puissance

- Introduction contexte
- ➤ Caractéristiques
 - Électronique de commutation
 - Puissances commutées : du W au GW
 - Forts di/dt et dv/dt
- ▶Phénomènes fortement 3D
 - · Structures planes et multi-couches, prédominance de l'air
 - Compacité des structures en augmentation
- ➤ Diversité des matériaux
 - · Semi-conducteurs, conducteurs, diélectriques, magnétiques
- ▶Phénomènes large bande : 10kHz → 200 MHz (EP)
 - Champ pénétrant dans les matériaux (effet de peau)
 - Fréquences de fonctionnement en augmentation
 - ✓Effets magnétiques et électrique fortement couplés
 - ✓ Champ magnétique / électrique

 tensions / courants

→ Modélisation difficile : de nombreux verrous à lever

Quelle méthode choisir?


- Introduction contexte 000000000
- Méthodes analytiques et Lignes de Transmission
 - Hypothèses trop simplificatrices
- Méthodes éléments finis :
 - Méthodes générales, robustes,

✓ Applications : moteurs, transformateurs, actionneurs

→ mais, peu adaptées pour des structures d'EP

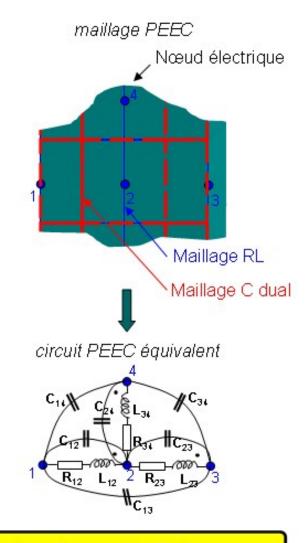
→Principalement à cause du maillage de l'air

- Méthodes intégrales
 - Méthodes légères et précises pour les calculs d'interactions à distance
 - ✓Pas de maillage de l'air
 - Un cas particulier, la méthode PEEC (Partial Element Equivalent Circuit)
 - ✓ Adaptée à l'extraction naturelle de schéma électrique équivalent à constantes localisées

→ Choix d'une méthode intégrale : la méthode PEEC

Méthode PEEC: Partial Element Equivalent Circuit

➤ Principe de la méthode PEEC classique


- Extraction naturelle d'un schéma à constantes localisées RLMC
- · Utilisation d'un maillage dual des matériaux actifs

Utilisation de la méthode en hautes fréquences

Modélisation des microprocesseurs, d'antennes (f > GHz)

➤ Application à l'Électronique de Puissance

- Nécessité de raffiner le maillage pour prendre en compte l'effet de peau
- Phénomènes de propagation négligés
 - √dans le cuivre à 200MHz, λ/10=15cm
- → Possibilité de relâcher le maillage dans la longueur des conducteurs

→ Besoin d'adapter la méthode PEEC aux structures d'Electronique de Puissance

Introduction de solveur EM 3D: InCa3D

➤ Naissance du logiciel InCa3D

Modélisation des amenées de courant

[Schanen 94], [Clavel 96], [Piette 99], [Guichon 01], [Gonnet 05]

✓Armoires électriques, busbarres dans les structures d'EP

➤ Modélisation PEEC inductive

Extraction de matrices d'éléments parasites RLM

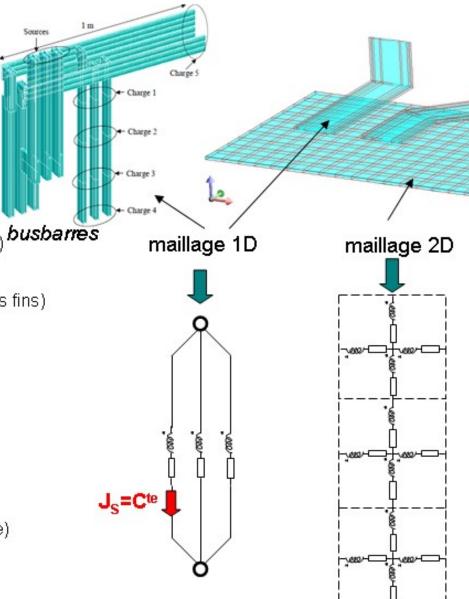
✓résistances (R), inductances (L), mutuelles-inductances (M) busbarres

Maillages:

✓unidirectionnel : adaptés à l'épaisseur de peau (conducteurs fins)

✓ bidirectionnel (plans de masse)

➤ Calcul des éléments parasites

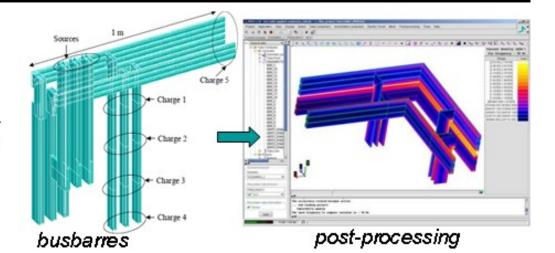

Hypothèses :

✓ densité de courant constante par élément

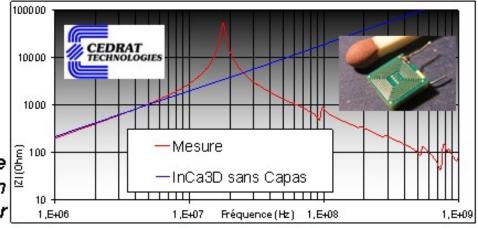
Calculs des éléments :

✓Résistance (formule analytique)

✓Inductance et mutuelle-inductance (formule semi-analytique)



InCa3D: performances et limites pour la modélisation CEM


Introduction - contexte

➤ Applications possibles

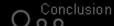
- Modélisation des interconnexions en basse fréquence
- Calculs en post-processing
 - √Répartition de courants, pertes, champ magnétique, forces...
- Export de circuit électrique réduit RLM → solveur circuit

- ➤Inconvénient : pas de modélisation des capacités parasites !
 - →Domaine de validité limité aux basses fréquences

Exemple: spectre d'impédance d'un micro-capteur

→ Nécessité d'ajouter les capacités parasites pour élargir la gamme de fréquences et pour prendre en compte les courants parasites qui circulent dans l'air (CEM)

Plan de la présentation

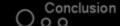


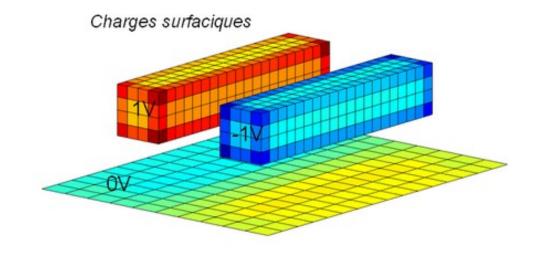
Introduction & Contexte

Résumé

- Forte finalité industrielle des objectifs de la thèse
- Modélisation CEM en Electronique de Puissance = challenge
- Justification du choix de la méthode PEEC dédiée
- Nécessité de prendre en compte les capacités parasites dans le logiciel InCa3D
- Il Calcul des capacités par méthode intégrale
- ➤III Accélération des calculs avec la Fast Multipole Method
- ➤IV Construction d'un circuit électrique équivalent RLM-C
- V Applications : modélisation CEM de structures industrielles
- >VI Valorisation des travaux dans InCa3D
- ➤VII Conclusions & Perspectives

Principe de la méthode intégrale



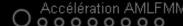

➤ Hypothèses du problème

- Problème électrostatique
- Conducteurs iso-potentiels et diélectriques homogènes
- · Répartition des charges à la surface des matériaux

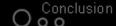
➤ Système matriciel pour extraire les charges

Matrice d'interaction pleine composée de 2 équations
 Potentiel électrique

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\sigma(r')}{\|\mathbf{r} - \mathbf{r'}\|} dS'$$



Principe de la méthode intégrale

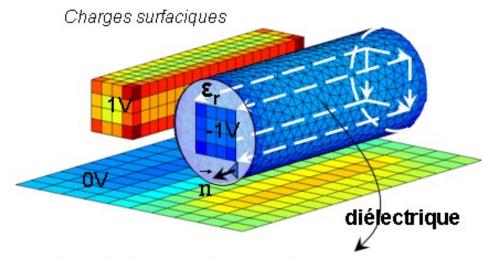


➤ Hypothèses du problème

- · Problème électrostatique
- Conducteurs iso-potentiels et diélectriques homogènes
- Répartition des charges à la surface des matériaux

➤ Système matriciel pour extraire les charges

- Matrice d'interaction pleine composée de 2 équations
 - ✓Potentiel électrique


$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\sigma(r')}{\|\mathbf{r} - \mathbf{r'}\|} dS'$$

✓ Champ normal

$$En(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \sigma(r') \frac{(\mathbf{r} - \mathbf{r'}) \cdot \mathbf{n}}{\|\mathbf{r} - \mathbf{r'}\|^3} dS'$$

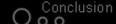
→ Système matriciel

$$\left[\begin{array}{c} P \\ En \end{array}\right] \cdot \left(\begin{array}{c} q_c \\ q_d \end{array}\right) = \left(\begin{array}{c} V \\ 0 \end{array}\right)$$

Saut de la composante normale du champ:

$$\begin{cases} \varepsilon_1 E n_1 = \varepsilon_2 E n_2 \\ E n_1 - E n_2 = -\sigma/\varepsilon_0 \end{cases}$$

Formulations et techniques d'intégration

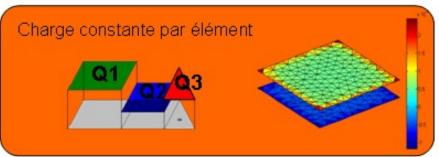


➤ Différentes formulations

Collocation ou Galerkin

Approche discrète :

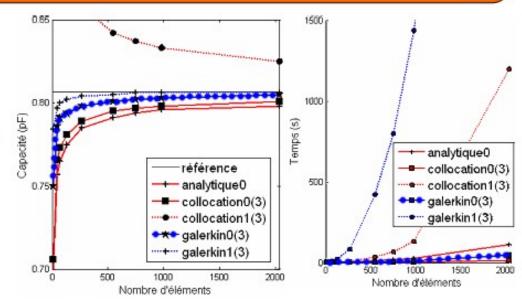
équation valable en un point (au barycentre)


$$\phi(P) = \sum \iint \frac{\odot_i}{r_i} dS_i$$

Approche variationnelle

équation valable : sur une fonction de forme (F)

$$\iint F.\phi(P).dS = \iint F.\left(\sum \iint \frac{O_i}{r_i} dS_i\right).dS$$

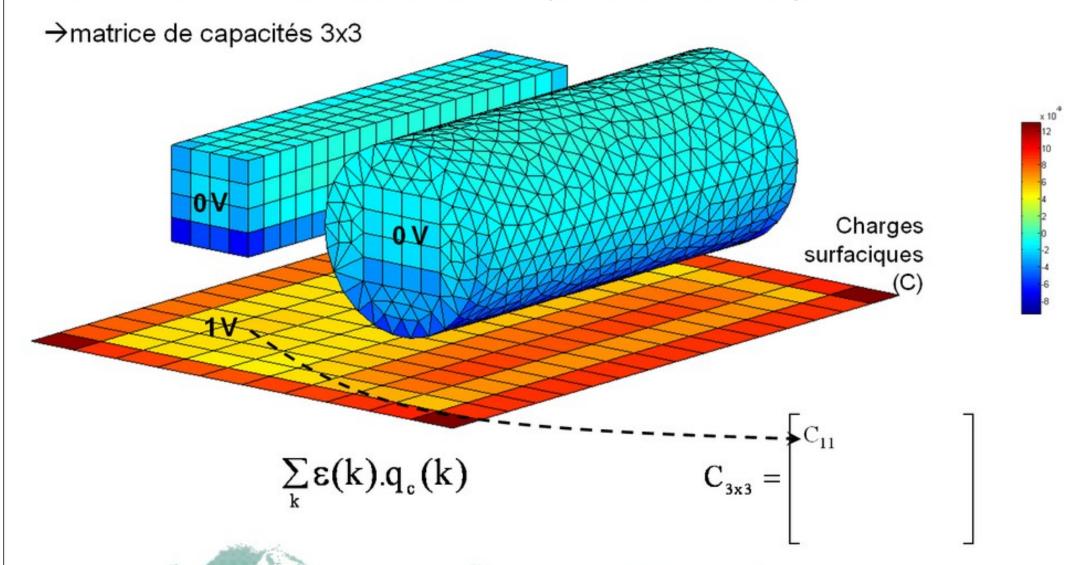

Ordre 0 ou Ordre 1

- ➤ Différentes techniques d'intégration
 - · Analytique ou numérique (points de Gauss)
- ➤Comparaison sur un exemple
 - · Cas de deux plaques parallèles

→Galerkin Ordre 0 = bon compromis temps d'intégration/précision

Calcul des capas

Accélération AMLFMM


O Circuit RLM+C

Ó Études CEM

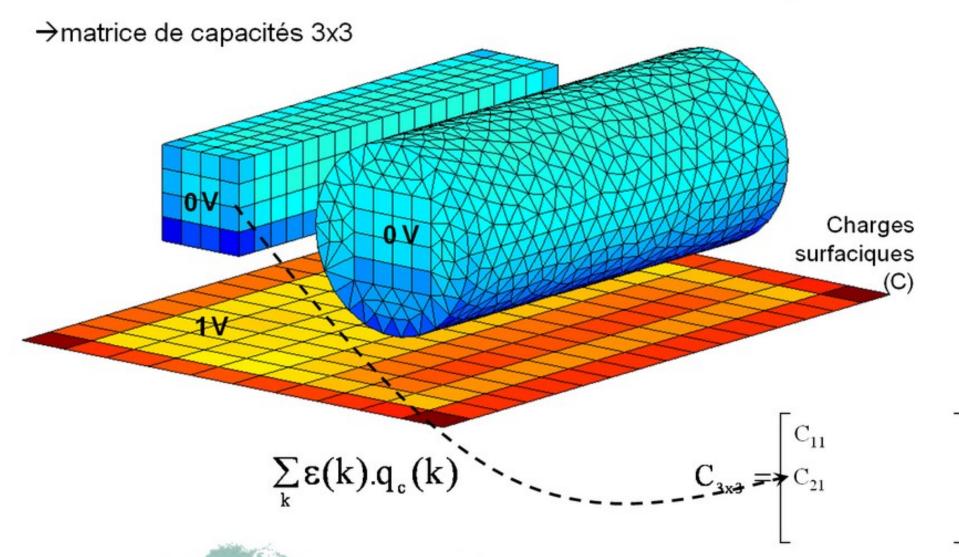
O InCa3[

Conclusion

3 conducteurs → 3 résolutions matricielles pour obtenir les charges



Accélération AMLFMM



Ó Études CEM

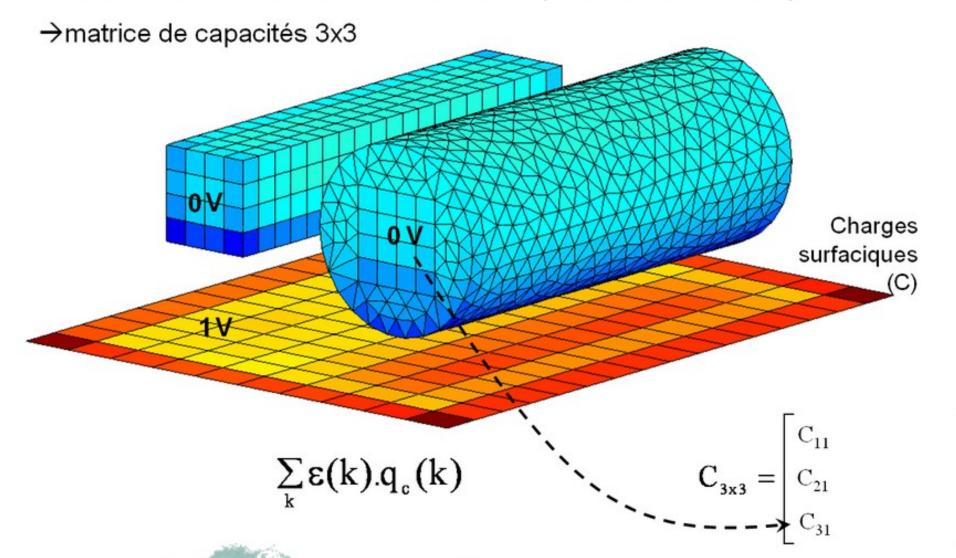
O o o

3 conducteurs → 3 résolutions matricielles pour obtenir les charges

21 juin 2010 Ardon Vincent Soutenance de thèse

Calcul des capas

Accélération AMLFMM

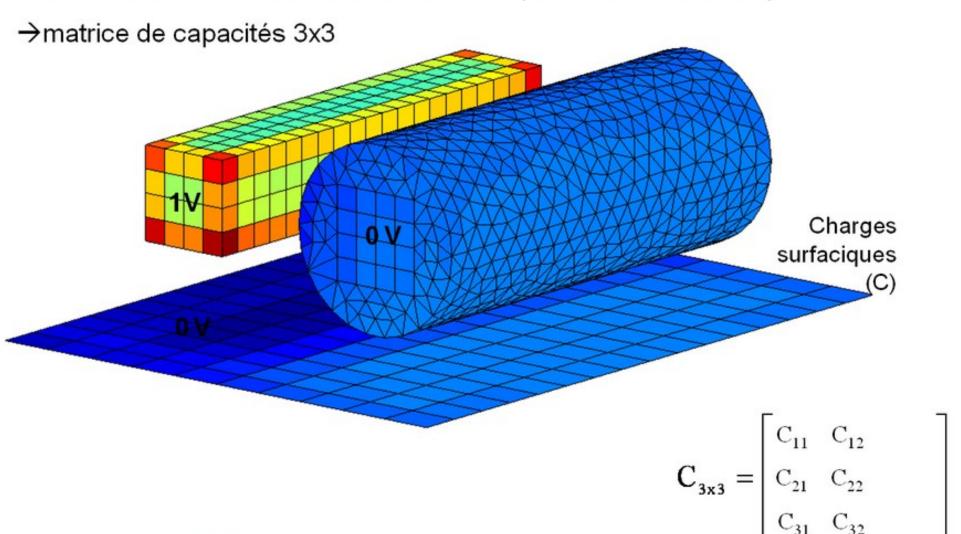

O Circuit RLM+C

Ó Études CEM

O InCa3E

Conclusion

3 conducteurs → 3 résolutions matricielles pour obtenir les charges

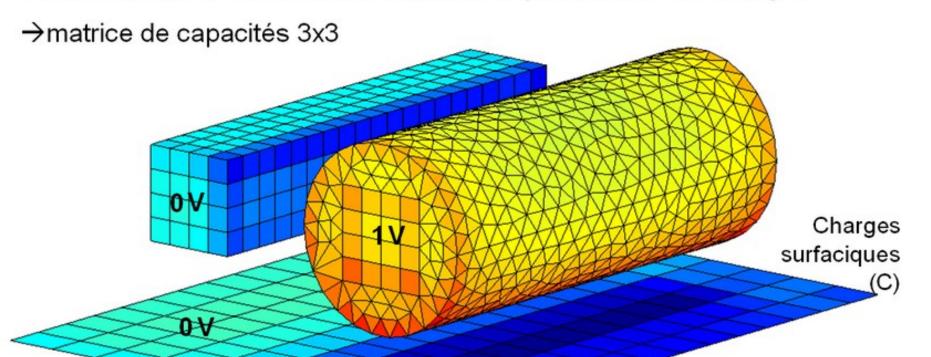


Calcul des capas O O ● O O O

Accélération AMLFMM Circuit RLM+C

Études CEM

3 conducteurs → 3 résolutions matricielles pour obtenir les charges

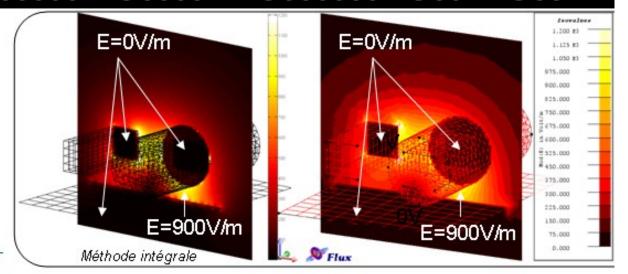


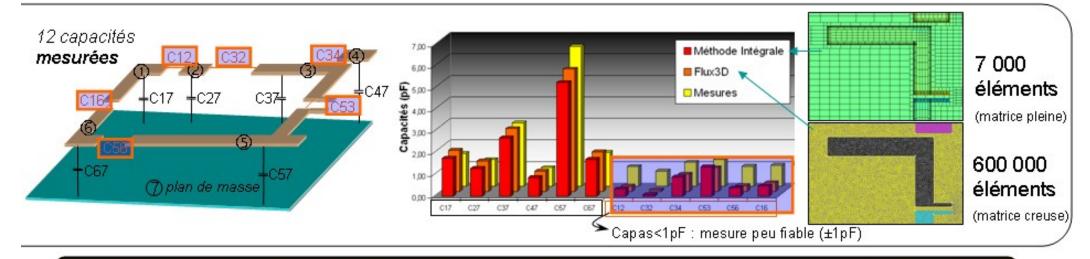
Calcul des capas O O • O O O

O Accélération AMLFMM Circuit RLM+C Études CEM

3 conducteurs → 3 résolutions matricielles pour obtenir les charges

→ matrice symétrique


$$\mathbf{C_{3x3}} = \begin{bmatrix} \mathbf{C_{11}} & \mathbf{C_{12}} & \mathbf{C_{13}} \\ \mathbf{C_{21}} & \mathbf{C_{22}} & \mathbf{C_{23}} \\ \mathbf{C_{31}} & \mathbf{C_{32}} & \mathbf{C_{33}} \end{bmatrix}$$



Validation de la méthode

- O ntroduction contexte
- Calcul des capas
- Accélération AMLFMM
- O Circuit RLM+C
- O Études CEM
- O In Ca3D
- Conclusion

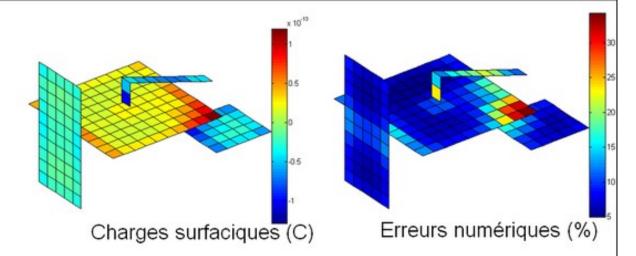
- ➤Comparaison avec la méthode des éléments finis (logiciel Flux)
 - · Différentes formulations validées
 - · Valeurs des charges, capacités
 - · Post-processing en champ ou potentiel
- ➤ Comparaison avec des mesures
 - Mesures de capacités parasites d'un hacheur

- →Méthode de calcul validée par la méthode des éléments finis (Flux) et en mesure
- →Méthode générale, robuste, adaptée pour le calcul des capacités parasites

Nécessité d'utiliser un maillage adapté aux charges

Calcul des capas

Accélération AMLFMM


Circuit RLM+

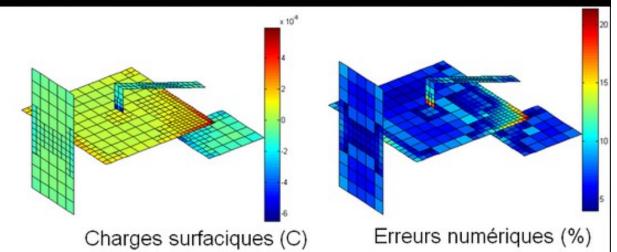
O O O O O O

O InCa3

Conclusion

- ➤ Répartition des charges
 - Localisation en périphérie des conducteurs
 - ✓ Distributions fortement inhomogènes
 - Effets d'ombrage
- Mise en place d'une stratégie de remaillage adaptatif
 - But : remailler les zones de forts gradients
 - · Critère numérique entre 2 formulations :
 - √Calcul des charges (Collocation ordre0)
 - ✓ Calcul du potentiel avec ces charges (Galerkin ordre 0)
 - ✓ Comparaison avec le potentiel théorique
 - → Calcul des erreurs numériques et remaillage

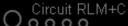
Nécessité d'utiliser un maillage adapté aux charges



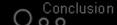
Conclusion

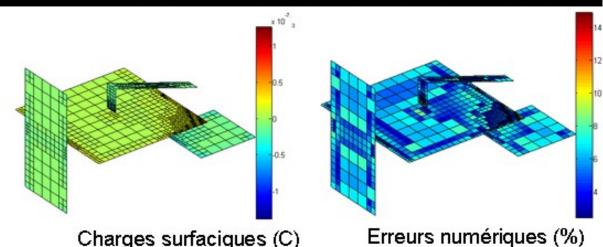
➤ Répartition des charges

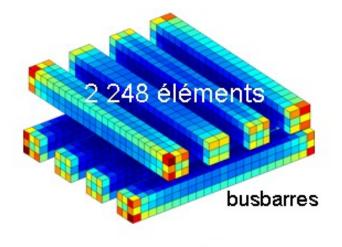
- Localisation en périphérie des conducteurs
 - ✓ Distributions fortement inhomogènes
- · Effets d'ombrage
- Mise en place d'une stratégie de remaillage adaptatif
 - · But : remailler les zones de forts gradients
 - · Critère numérique entre 2 formulations :
 - √Calcul des charges (Collocation ordre0)
 - ✓ Calcul du potentiel avec ces charges (Galerkin ordre 0)
 - √Comparaison avec le potentiel théorique
 - → Calcul des erreurs numériques et remaillage

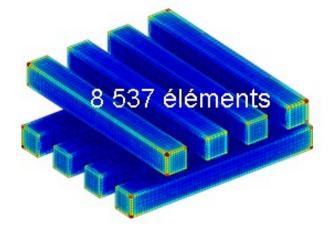


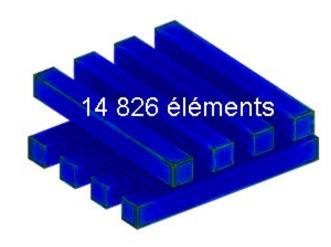
Nécessité d'utiliser un maillage adapté aux charges






➤Répartition des charges

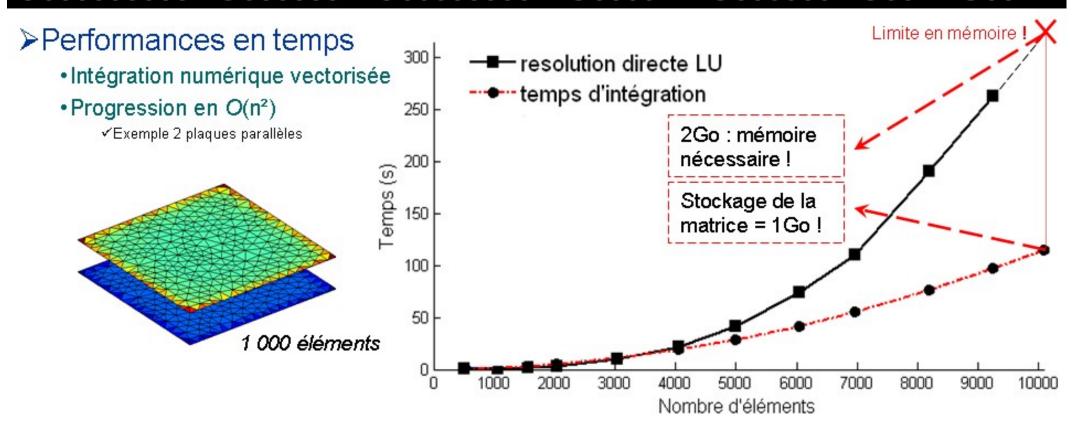

- Localisation en périphérie des conducteurs
- ✓Distributions fortement inhomogènes
- Effets d'ombrage


Mise en place d'une stratégie de remaillage adaptatif

- But : remailler les zones de forts gradients
- · Critère numérique entre 2 formulations :
 - √Calcul des charges (Collocation ordre0)
 - ✓ Calcul du potentiel avec ces charges (Galerkin ordre 0)
 - ✓ Comparaison avec le potentiel théorique
 - → Calcul des erreurs numériques et remaillage

Performances et limites de cette méthode intégrale

Calcul des capas


Accélération AMLFMM

O Circuit RLM+C

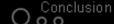
C Études CEM

O In Ca3D

Conclusion

- →Limites de la méthode intégrale en interaction totale
 - · Intégration et stockage d'une matrice d'interaction pleine
 - → Inadaptée pour modéliser des géométries complexes!

Plan de la présentation

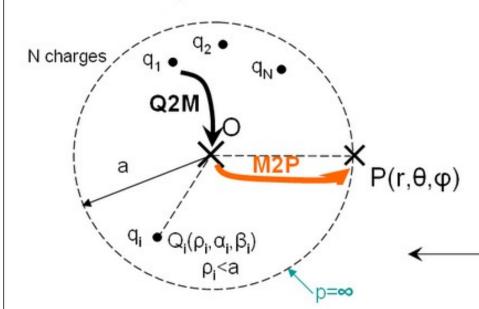


- Introduction & Contexte
- Il Calcul des capacités par méthode intégrale

Résumé

- Développement d'une méthode intégrale pour l'extraction des capacités parasites
- Différentes formulations validées
- →Inconvénient majeur : le stockage de la matrice d'interaction pleine

- III Accélération des calculs avec la Fast Multipole Method
- ➤IV Construction d'un circuit électrique équivalent RLM-C
- V Applications : modélisation CEM de structures industrielles
- ➤VI Valorisation des travaux dans InCa3D
- ➤VII Conclusions & Perspectives



- O Calcul des capas
- Accélération AMLFMM
- Circuit RLM+
- Ó Études CEM
- O o o
- Conclusion

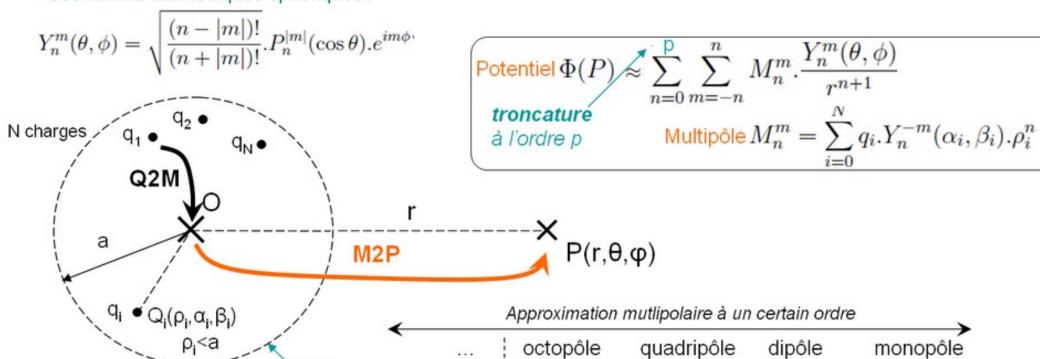
- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

$$Y_n^m(\theta, \phi) = \sqrt{\frac{(n - |m|)!}{(n + |m|)!}} P_n^{|m|}(\cos \theta) e^{im\phi}$$

$$\begin{array}{ll} \text{Potentiel}\,\Phi(P) \approx \sum_{n=0}^{p} \sum_{m=-n}^{n} M_{n}^{m}.\frac{Y_{n}^{m}(\theta,\phi)}{r^{n+1}} \\ & \text{troncature} \\ & \text{à l'ordre p} \end{array} \qquad \text{Multipôle}\,M_{n}^{m} = \sum_{i=0}^{N} q_{i}.Y_{n}^{-m}(\alpha_{i},\beta_{i}).\rho_{i}^{n}$$

Approximation mutlipolaire à un certain ordre

Calcul des capas


Circuit RLM

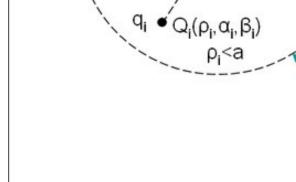
Ó Études CEM

O o o

Conclusion

- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

 $n=\infty$


M₂P

n=∞

- O ntroduction contexte
- Calcul des capas
- Accélération AMLFMM
- Circuit RLM-
- Ó Études CEM
- O o o
- O o o

- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

$$Y_n^m(\theta,\phi) = \sqrt{\frac{(n-|m|)!}{(n+|m|)!}}.P_n^{|m|}(\cos\theta).e^{im\phi}$$

$$\text{Potentiel }\Phi(P) \approx \sum_{n=0}^p \sum_{m=-n}^n M_n^m.\frac{Y_n^m(\theta,\phi)}{r^{n+1}}$$

$$\text{troncature } \text{ à l'ordre }p \qquad \text{Multipôle }M_n^m = \sum_{i=0}^N q_i.Y_n^{-m}(\alpha_i,\beta_i).\rho_i^n$$

Approximation mutlipolaire à un certain ordre quadripôle dipôle monopôle p=2

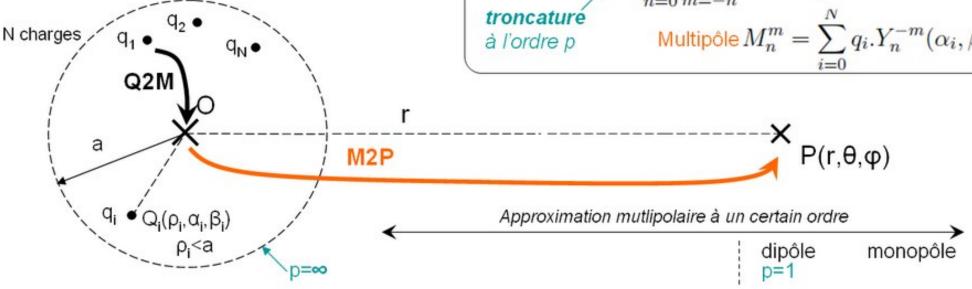
 $P(r,\theta,\phi)$

Calcul des capas

Ó Études CEM

O o o

Conclusion


- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

$$Y_n^m(\theta,\phi) = \sqrt{\frac{(n-|m|)!}{(n+|m|)!}}.P_n^{|m|}(\cos\theta).e^{im\phi}.$$

$$q_1 \bullet \qquad q_2 \bullet \qquad q_N \bullet \qquad \qquad \text{Potential } \Phi(P) \approx \sum_{n=0}^p \sum_{m=-n}^n M_n^m.\frac{Y_n^m(\theta,\phi)}{r^{n+1}}$$

$$\text{troncature}$$

$$\text{à l'ordre } p \qquad \qquad \text{Multipôle } M_n^m = \sum_{i=0}^N q_i.Y_n^{-m}(\alpha_i,\beta_i).\rho_i^n$$

Calcul des capas

O Circuit RLM+C

Ó Études CEM

O o o

Conclusion

- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

$$Y_n^m(\theta, \phi) = \sqrt{\frac{(n - |m|)!}{(n + |m|)!}} P_n^{|m|}(\cos \theta) e^{im\phi}$$

Potentiel
$$\Phi(P) \approx \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m \cdot \frac{Y_n^m(\theta,\phi)}{r^{n+1}}$$

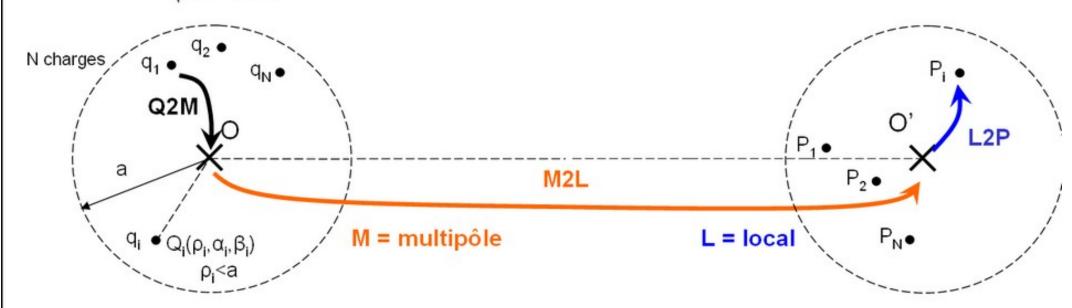
troncaturé

à l'ordre p

$$\operatorname{Multipôle} M_n^m = \sum_{i=0}^N q_i.Y_n^{-m}(\alpha_i,\beta_i).\rho_i^n$$

Approximation mutlipolaire à un certain ordre

monopôle p=0

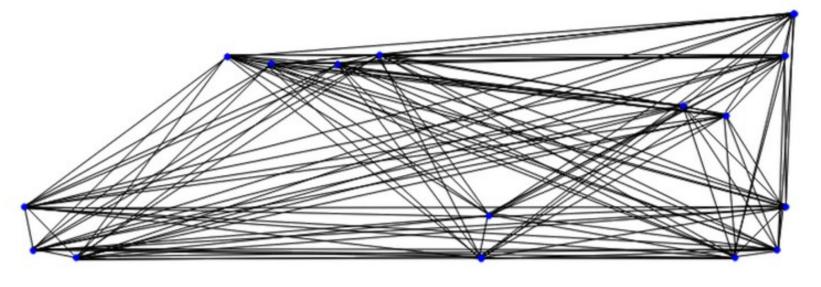

 $P(r,\theta,\phi)$

- O ntroduction contexte
- Calcul des capas
- Accélération AMLFMM
- Circuit RLM
- Ó Études CEM
- O o o
- O o o

- ➤ Harmoniques sphériques : solutions de l'équation de Laplace (ΔΦ=0)
 - · Coefficients harmoniques sphériques :

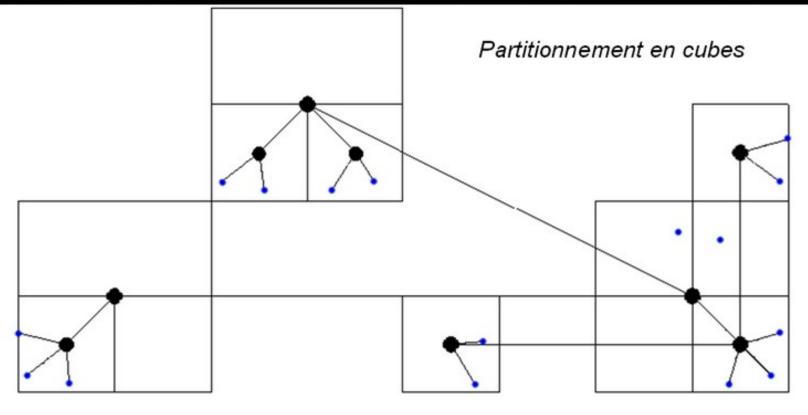
$$Y_n^m(\theta, \phi) = \sqrt{\frac{(n - |m|)!}{(n + |m|)!}} P_n^{|m|}(\cos \theta) e^{im\phi}$$

- → Accélère le calcul du potentiel (un seul vecteur M2L pour l'ensemble des charges et des potentiels)
 - →Besoin d'un algorithme qui contrôle les calculs d'interaction



Interaction totales!

16 éléments



16 éléments

Ó Études CEM

O o o

Vecteurs d'interactions

Q2M

des charges au multipôle

$$O_n^m = \sum_{i=0}^{N} q_i . Y_n^{-m}(\alpha_i, \beta_i) . \rho_i^n$$

M2M

du multipôle au multipôle

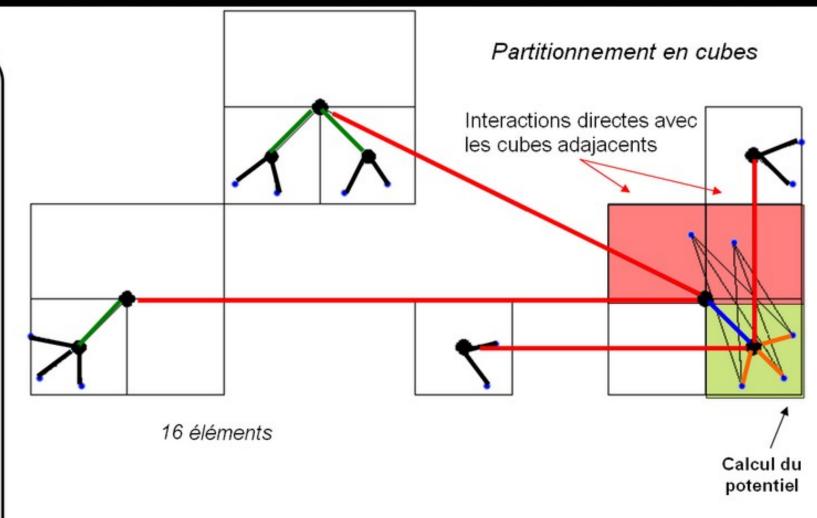
$$M_{j}^{k} = \sum_{n=0}^{j} \sum_{\substack{m=-n,\\|k-m| < j-n}}^{n} K_{jn}^{km}.O_{k-m}^{j-n}.Y_{n}^{-m}(\alpha, \beta).\rho^{n}$$

M₂L

du multipôle au local

$$O_{j}^{k} = \sum_{n=0}^{+\infty} \sum_{m=-n}^{n} K_{jn}^{km}.M_{n}^{m}.\frac{Y_{j+n}^{m-k}(\alpha,\beta)}{r^{j+n+1}}$$

L2L


du local au local

$$L_j^k = \sum_{n=j}^p \sum_{\substack{m=-n,\\|l-k| < n-j}}^n K_{jn}^{km}.O_m^n.Y_{n-j}^{m-k}(\alpha, \beta).\rho^{n-j}$$

L2P

du local au potentiel

$$\Phi(P) = \sum_{j=0}^{+\infty} \sum_{k=-j}^{j} L_{j}^{k} Y_{j}^{k}(\theta, \phi) r^{j}$$

Calcul des capas

Accélération AMLFMM

Circuit RLM+

Ó Études CEM

O InCa3[

Conclusion

Vecteurs d'interactions

Q2M

des charges au multipôle

$$O_n^m = \sum_{i=0}^N q_i Y_n^{-m}(\alpha_i, \beta_i) . \rho_i^n$$

M2M

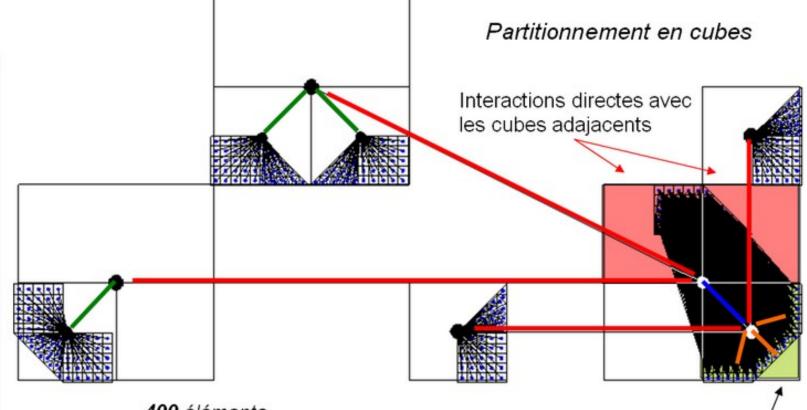
du multipôle au multipôle

$$M_j^k = \sum_{n=0}^{j} \sum_{\substack{m=-n,\\|k-m| < j-n}}^{n} K_{jn}^{km}.O_{k-m}^{j-n}.Y_n^{-m}(\alpha, \beta).\rho^n$$

M₂L

du multipôle au local

$$O_j^k = \sum_{n=0}^{+\infty} \sum_{m=-n}^{n} K_{jn}^{km} . M_n^m . \frac{Y_{j+n}^{m-k}(\alpha, \beta)}{r^{j+n+1}}$$


L₂L

du local au local

$$L_j^k = \sum_{n=j}^p \sum_{\substack{m=-n,\\|l-k| < n-j}}^n K_{jn}^{km}.O_m^n Y_{n-j}^{m-k}(\alpha, \beta).\rho^{n-j}$$

du local au potentiel

$$\Phi(P) = \sum_{j=0}^{+\infty} \sum_{k=-j}^{j} L_{j}^{k} Y_{j}^{k}(\theta, \phi) r^{j}$$

400 éléments

→ Mêmes chemins d'interactions lointaines M2M, M2L, L2L

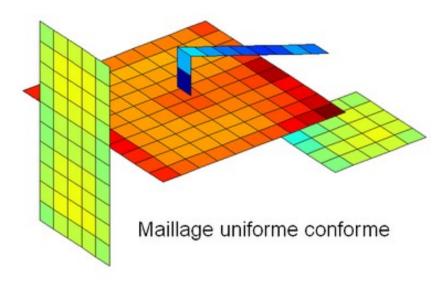
Calcul du potentiel

→ Chemins d'interactions communs pour différents cubes : gain en mémoire

Multi-niveau adaptatif (AMLFMM) et adaptation

Calcul des capas

Accélération AMLFMM


O circuit RLM+C

Ó Études CEM

O InCa3D

Conclusion

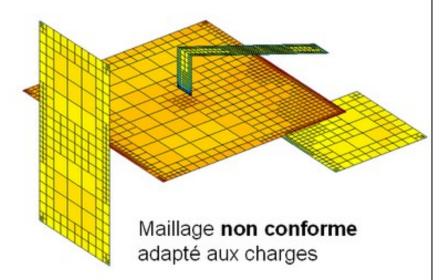
➤ Utilisation d'un multi-niveau adaptatif

Multi-niveau adaptatif (AMLFMM) et adaptation

O ntroduction - contexte

Calcul des capas

Accélération AMLFMM

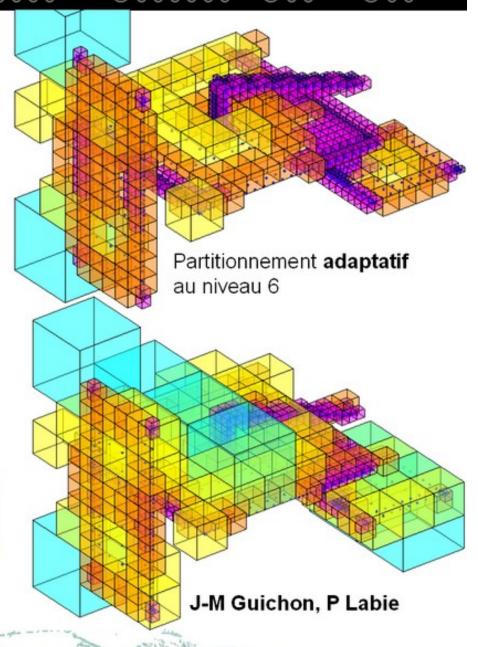

Circuit RLM+C

Études CEM

O InCa3E

Conclusion

➤ Utilisation d'un multi-niveau adaptatif

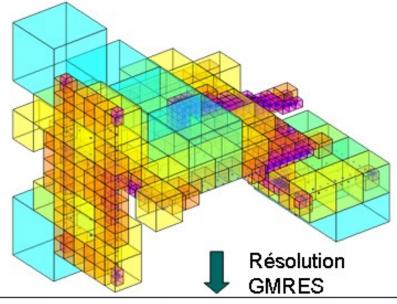

Multi-niveau adaptatif (AMLFMM) et adaptation

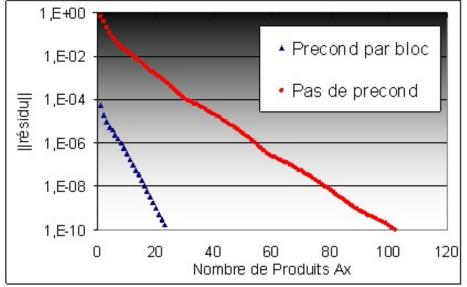
- O ntroduction contexte
- Calcul des capa:
- Accélération AMLFM
- Circuit RLM+0
- O o o o o o
- O InCa3I
- Conclusion

- ➤ Utilisation d'un multi-niveau adaptatif
 - Particulièrement pertinent des répartitions de sources ponctuelles inhomogènes

[Green et al. 88]

- Prise en compte de la taille réelle des éléments
 - Contrôle de l'inclusion des éléments dans les cubes
 - → Nécessite une place mémoire plus importante mais précision assurée !





Résolution avec GMRES(m) : solveur itératif

- O ntroduction contexte
- O Calcul des capas
- Accélération AMLFMM
- Circuit RLM+
- O Études CEM
- O In Ca3E
- Conclusion

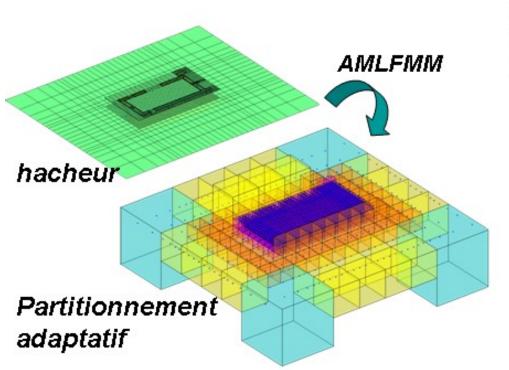
- >La matrice d'interaction n'est plus explicite
 - Seuls les calculs de potentiels et de champs sont possibles à partir de valeur de charges données
- ➤ Utilisation d'un solveur itératif GMRES(m)
 - · Basé sur la méthode de Krylov
 - ✓Robuste
 - ✓Rapide
 - ✓Peu gourmand en mémoire
 - Préconditionné à gauche par blocs
 - (bloc = inverse d'une matrice d'interaction totale)
 - ✓ Amélioration du conditionnement du problème
 - ✓ Accélération du temps de résolution

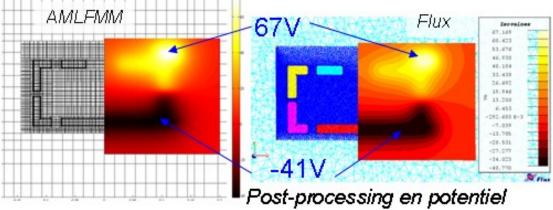
Validation de la méthode AMLFMM

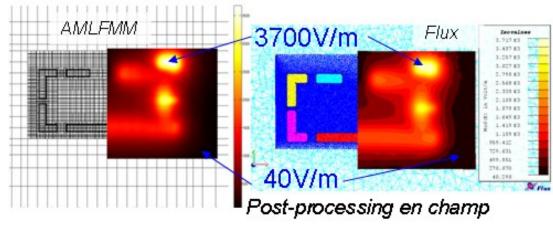
O Calcul des capas

Accélération AMLFMM

Circuit RLM+


O Études CEM


O In Ca3D

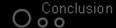

Conclusion

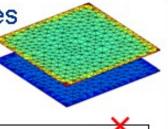
➤ Validation avec la méthode intégrale en interaction totale (référence) et éléments finis (Flux)

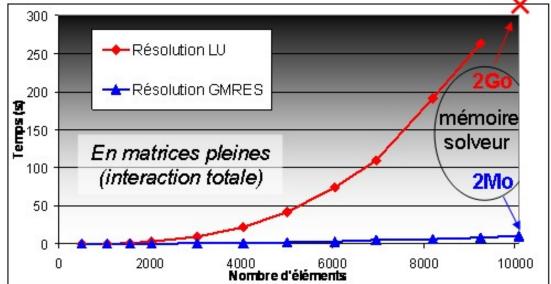
 \rightarrow Écart = Δ < 5% environ

Performances de l'AMLFMM / GMRES(m)

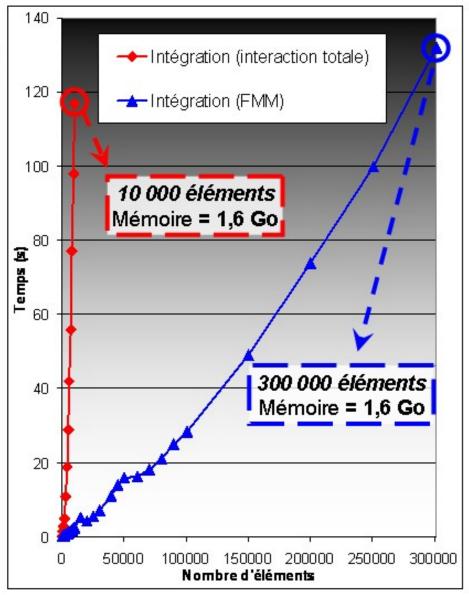
O ntroduction - contexte


O Calcul des capas





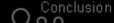
O In Ca3D

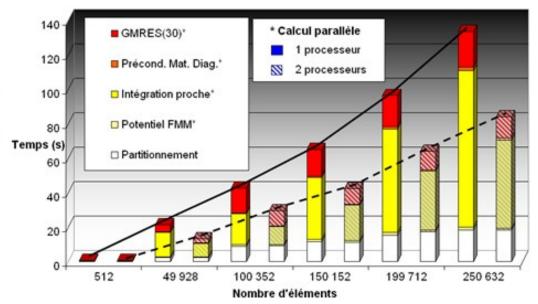


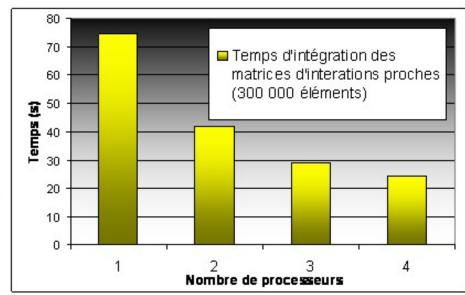
Exemple des 2 plaques parallèles

→Très bonnes performances temps / mémoire / précision !

Calcul parallèle multi-processeurs



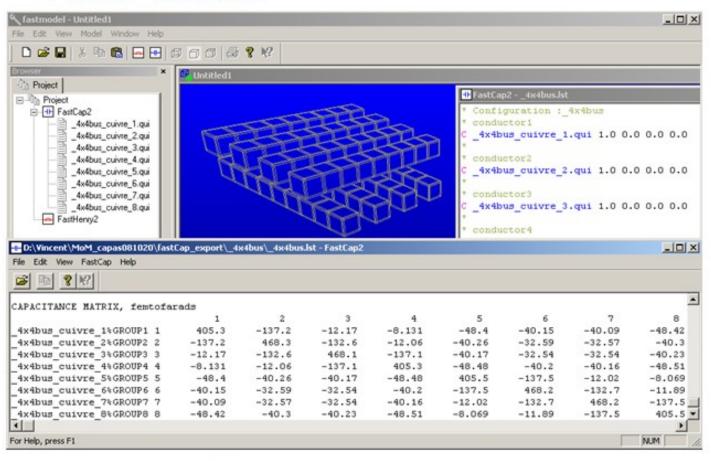


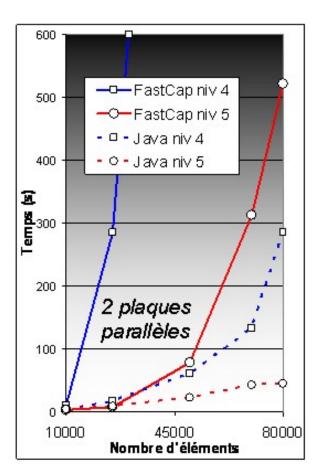

- ➤ Parallélisation des calculs (Intégration&Résolution)
 - Intégration des matrices d'interactions proches
 - Préconditionnement par blocs dans le GMRES
 - Potentiel
 - ✓ lointain avec la FMM
 - ✓ proche (produit matriciel)

➤ Performances avec 4 processeurs

Nombre de Processeurs	2	3	4
Facteur de division en temps	1,8	2,6	3,1

→Gain en temps très important pour peu de complexité supplémentaire



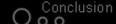

Plus rapide que FastCap! (logiciel libre du MIT)

- O ntroduction contexte
- Calcul des capas
- Accélération AMLFMM
- O Circuit RLM+C
- O Études CEM
- O ln Ca3[
- O Conclusion

➤ Logiciel de calcul de capacités avec la FMM [Nabors & Whites, 1990]

- Temps de calculs plus rapide avec seulement un processeur
 - ✓ FastCap est plus lent pour le calcul des interactions proches
- → ∆capa < 5% environ</p>


Plan de la présentation

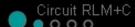

Calcul des capa

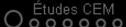
- ➤I Introduction & Contexte
- ➤II Calcul des capacités par méthode intégrale
- ➤III Accélération des calculs avec la Fast Multipole Method

Résumé

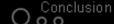
- Développement d'une méthode rapide peu gourmande en mémoire
- Couplage avec GMRES(m): solveur itératif performant
- Mise en œuvre validée et optimisée en vue de traiter des grosses géométries

- ➤IV Construction d'un circuit électrique équivalent RLM-C
- V Applications : modélisation CEM de structures industrielles
- ➤VI Valorisation des travaux dans InCa3D
- ➤VII Conclusions & Perspectives

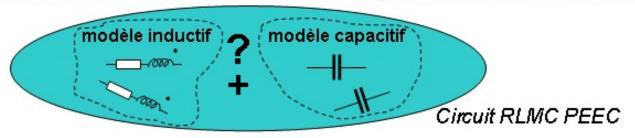


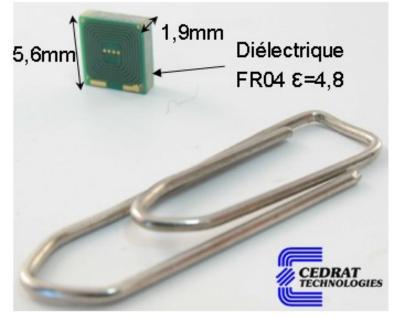

Construction du circuit (RLM-C) d'un microcapteur

O ntroduction - contexte


O Calcul des capas

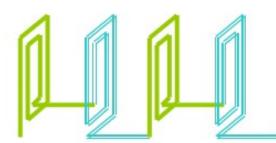
O O O O O O O O




O In Ca3E

➤ Comment connecter les composants RLM et C?

- ➤ Capteur de position à courant de Foucault
 - Microbobine sur PCB
 - → Géométrie confidentielle multi-couches



Discrétisation capacitive arbitraire

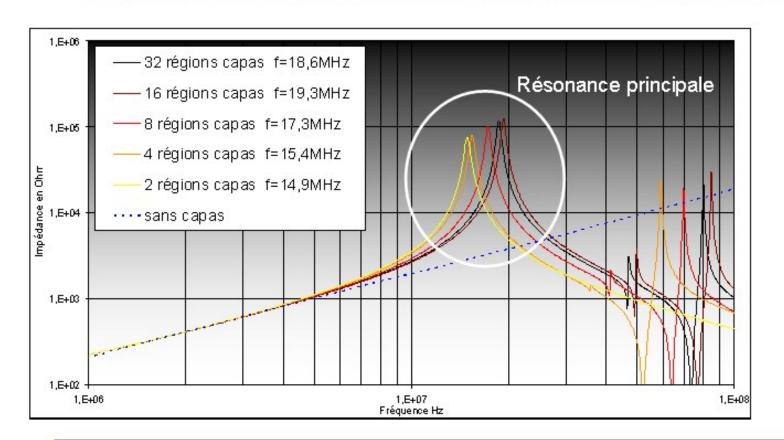
1 région capa entre plusieurs couches ?

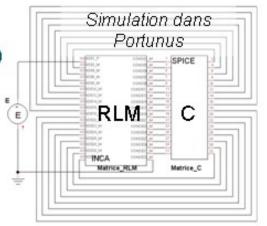
1 région capa par couche ?

Plusieurs régions capas par couche ?

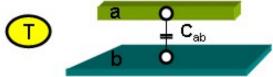
Etude de spectre d'impédance Z(f) du capteur

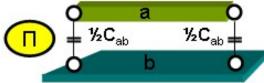
Calcul des capa





Oconclusion


➤ Discrétisation capacitive : de 2 à 32 régions


→ Spectre d'impédance dans Portunus (connexions des capacités en П)

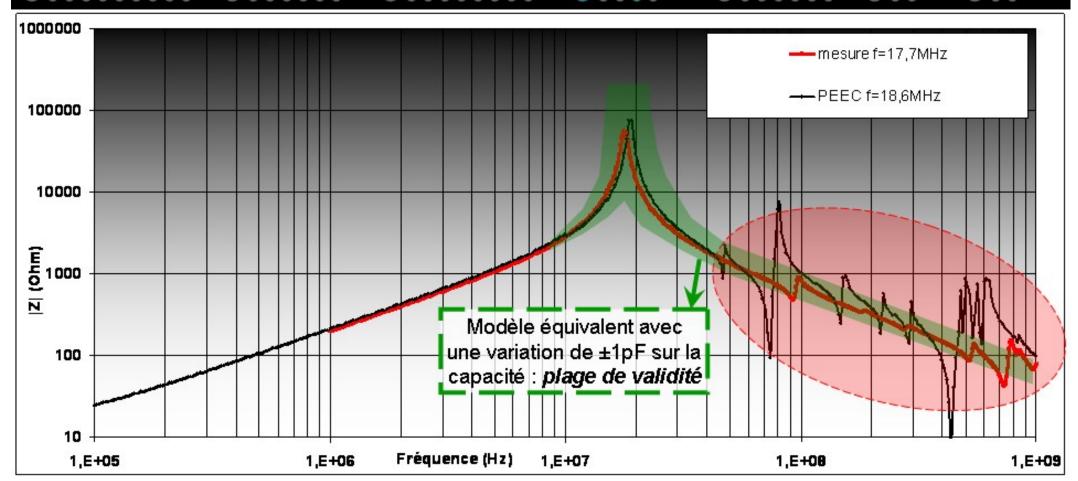
Deux types de connexions :

→ Convergence de la fréquence de résonance principale en fonction de la discrétisation

Comparaison avec mesures à l'impédance-mètre

O ntroduction - contexte

O Calcul des capas

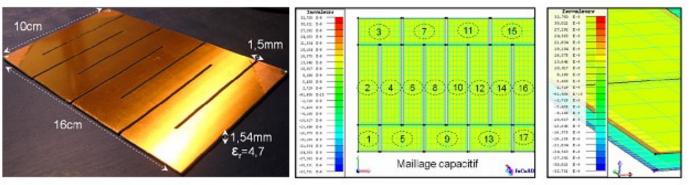

Accélération AMLFMM

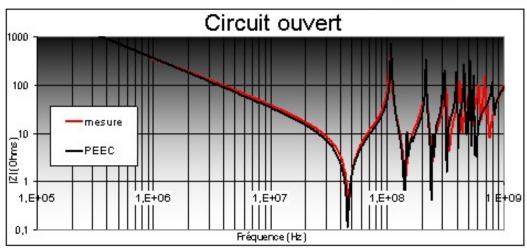
Circuit RLM+C

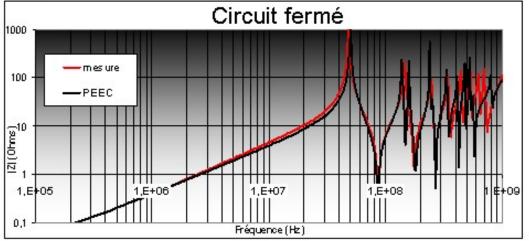
O Études CEM

O In Ca3E

O Conclusion


- ➤ Bonne corrélation avec la mesure jusqu'à 40 MHz
 - Apparition de résonances en plus hautes fréquences (certainement dues à la discrétisation capacitive)




Autre exemple: spectre d'impédance d'un serpentin

- O ntroduction contexte
- Calcul des capas
- Accélération AMLFMI
- Circuit RLM+
- O Études CEM
- O In Ca3E
- Conclusion

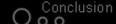
- 2 plaques parallèles séparées par un diélec.
- ▶34 régions capas

- Analyse des comparaisons avec la mesure
 - Bonne corrélation jusqu'à 200 MHz

√λ /10 ≈ 15 cm → limite du modèle statique

→ Validation de l'approche PEEC et de la connexion des modèles inductifs et capacitifs

Plan de la présentation


Calcul des capa

- Introduction & Contexte
- ➤II Calcul des capacités par méthode intégrale
- ➤III Accélération des calculs avec la Fast Multipole Method
- ➤IV Construction d'un circuit électrique équivalent RLM-C

Résumé

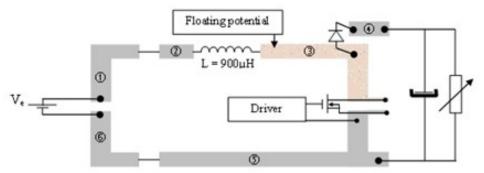
- Choix d'une discrétisation capacitive s'appuyant sur l'expertise
- Différentes stratégies de connexions des schémas RLM-C
- Validation de la méthode par la mesure

- V Applications : modélisation CEM de structures industrielles
- ➤VI Valorisation des travaux dans InCa3D
- ➤VI Conclusions & Perspectives

Etroite collaboration avec Dr. Jérémie Aimé [2009] G2Elab/Schneider-Electric

CEM conduite d'un hacheur boost

O Calcul des capas



сни Э

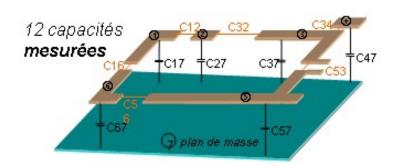
➤ Schéma électrique de principe

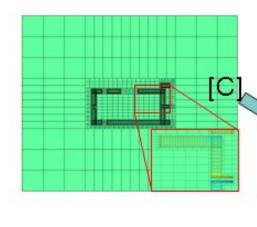
Données

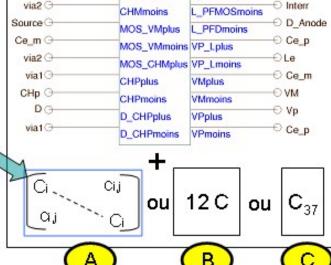
Fréquence	41 kHz
Rapport cyclique	0,445
Tension d'entrée	60 V
Tension de sortie	109 V

InCa3D

[Z]=[R]+jω[L]


_PFMOSplus


➤ 3 Modèles capacitifs étudiés


A 12 capacités mesurées

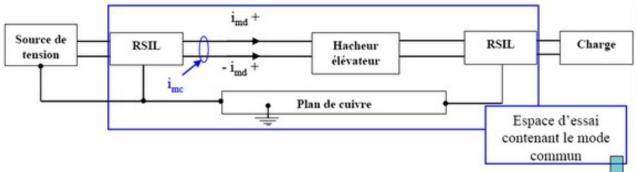
Modèle capacitif complet (28 capas)

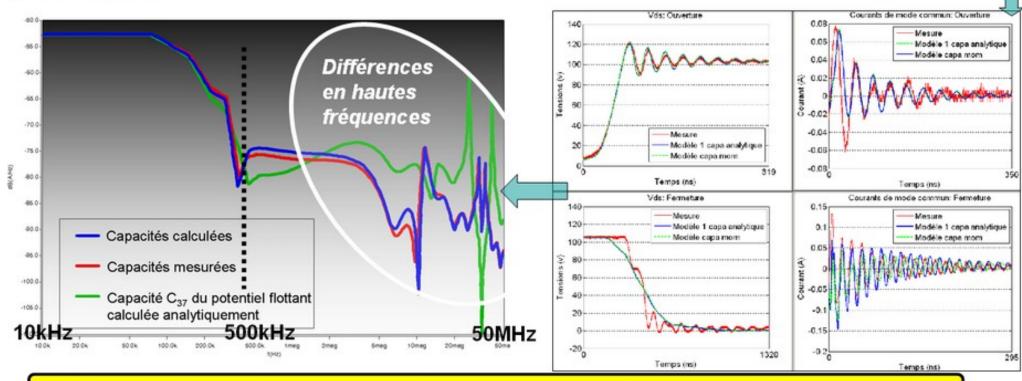
capa entre potentiel flottant et le plan de masse

CHMplus

Étude CEM conduite

Calcul des capas

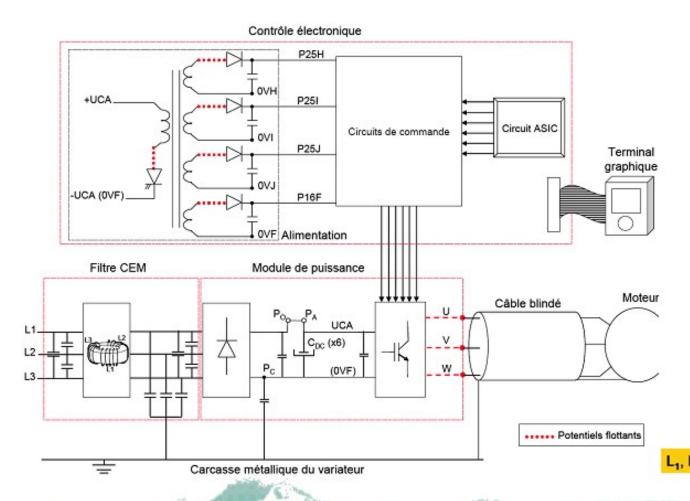



InCa3D

Modélisation des courants de mode commun

 Courant circulant dans l'air par les capacités parasites entre pistes et plan de masse

→ Nécessité de prendre en compte les capacités parasites en haute fréquence (>1MHz)

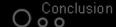

Presentation du variateur de vitesse de STIE

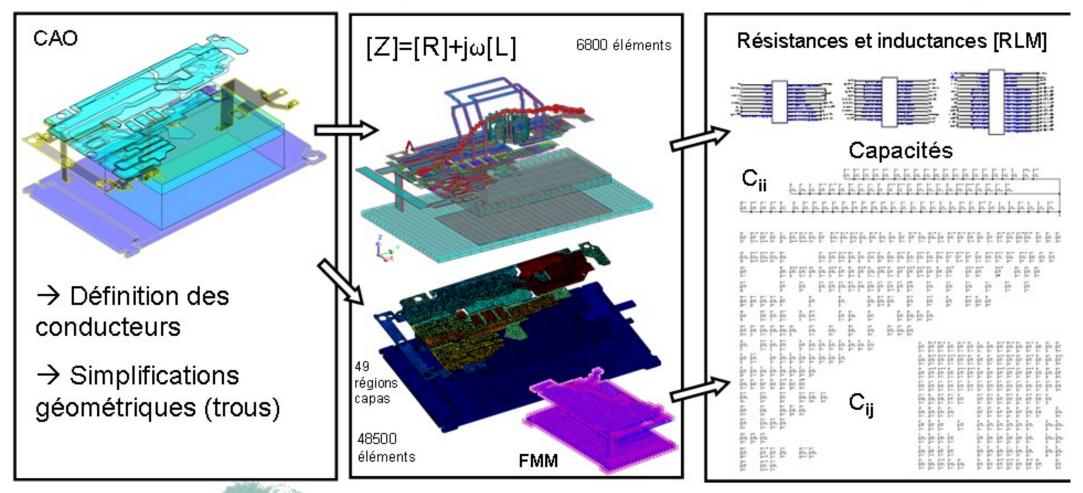
- O ntroduction contexte
- O Calcul des capas
- Accélération AMLFMM
- O Circuit RLM+C
- Études CEMO O O O O
- Oconclusion

➤Structure de convertisseur statique industrielle

- géométrie multi-couches : 4 couches fines de 70µm d'épaisseur
- Schéma électrique de principe

Extraction des éléments parasites RLM-C


O Calcul des capas



Type de plateforme de simulation souhaitée par le projet 2m

Extraction du maillage

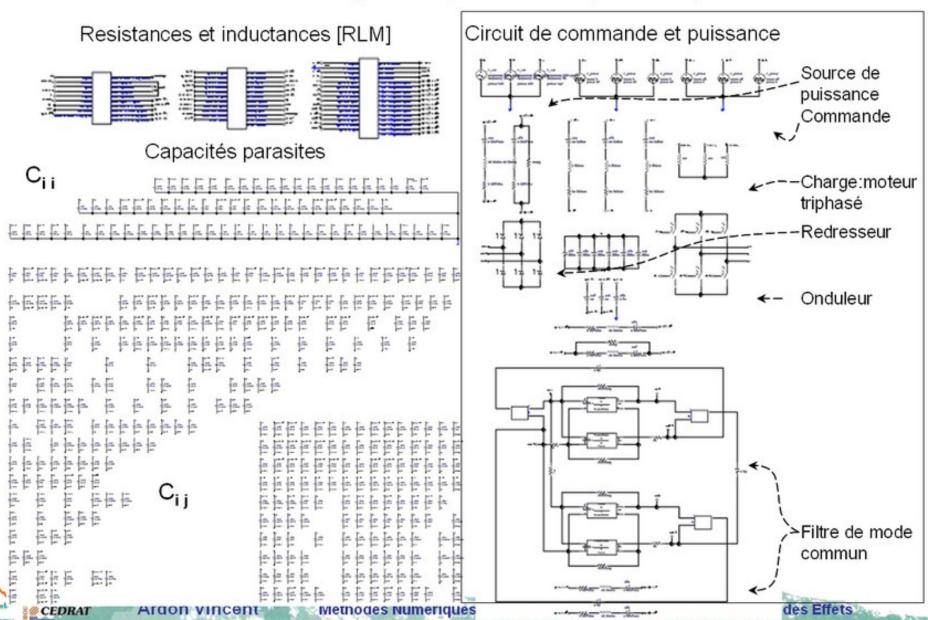
Extraction des éléments parasites RLM et C

Circuit équivalent RLMC PEEC complet

Analyse des résultats de simulation-circuit

Calcul des capas

Accélération AMLFMM



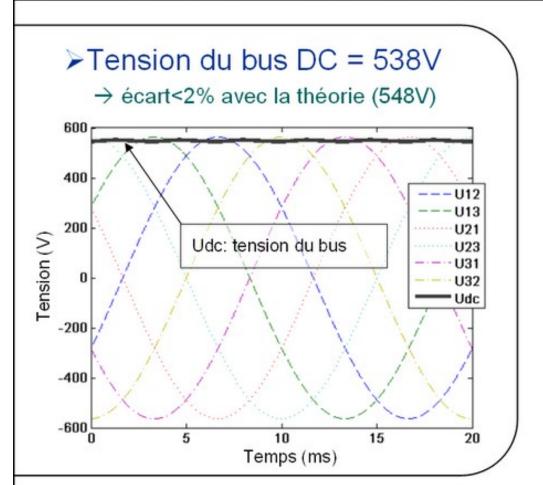
O o o

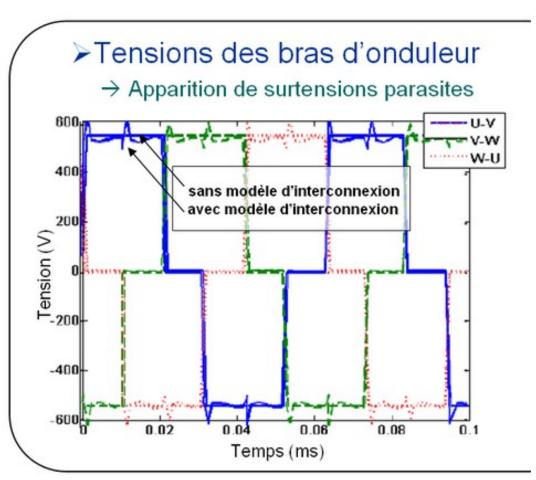
Circuit Électrique Équivalent (Saber)

Analyse des résultats de simulation-circuit

O ntroduction - contexte

Calcul des capas


Accélération AMLFMM

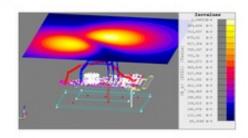

Circuit RLM+

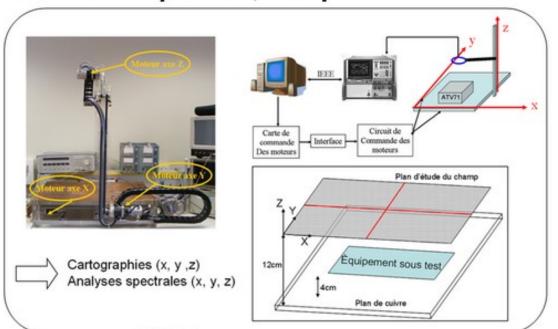
Études CEM

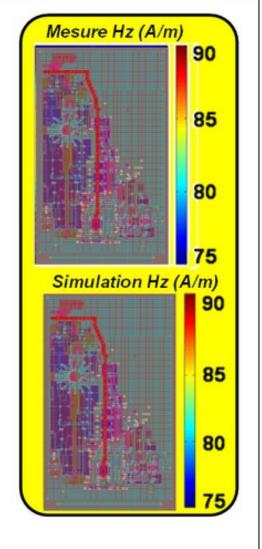
O o o

Conclusion

- → Validation du fonctionnement électrique du variateur
- →Influence non négligeable des interconnexions de puissance

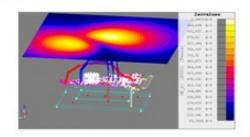


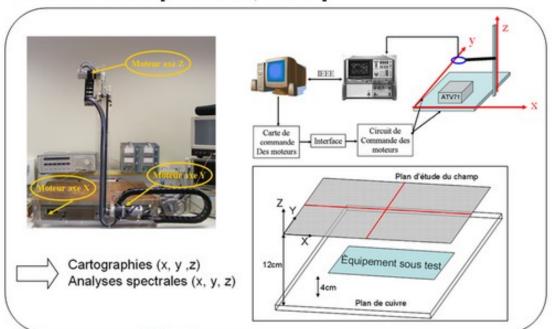

Simulations et mesure du champ H proche

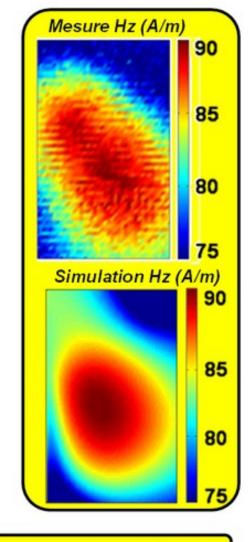


- Calcul des capas
- Accélération AMLFMM
- O O O O
- Études CEM
- O o o
- Conclusion

- FFT des tensions et courants sources (Saber)
- 2. Résolution de la répartition des courants
 - ✓ pour une fréquence donnée dans InCa3D
- Simulation du champ H(f)
 - ✓ Grille au-dessus du variateur
 - ✓ Loi de Biot Savart en post-processing
 - → Comparaison du champ Hz à 32kHz
 - Mesures Mines de Douai [08 O. Aouine, C Labarre]






Simulations et mesure du champ H proche

- O o o o o o o o o
- Calcul des capas
- Accélération AMLFMM
- Circuit RLM+0
- Études CEM
- O o o
- Conclusion

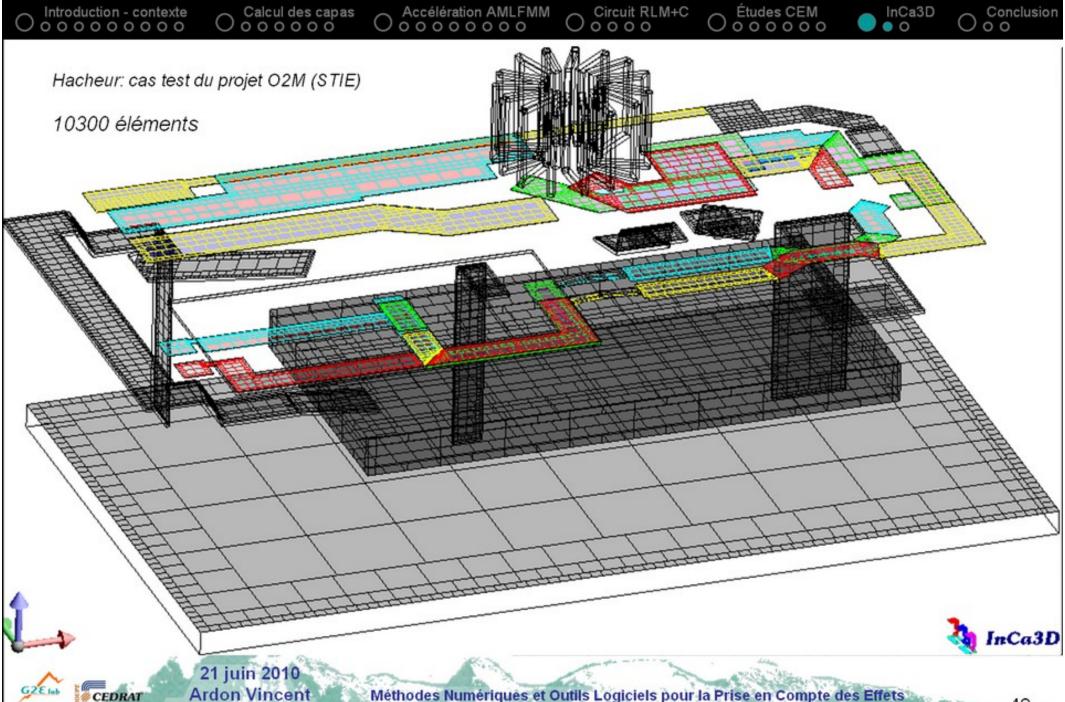
- FFT des tensions et courants sources (Saber)
- 2. Résolution de la répartition des courants
 - ✓ pour une fréquence donnée dans InCa3D
- Simulation du champ H(f)
 - ✓ Grille au-dessus du variateur
 - ✓ Loi de Biot Savart en post-processing
 - → Comparaison du champ Hz à 32kHz
 - Mesures Mines de Douai [08 O. Aouine, C Labarre]

→ Bonne corrélation

Plan de la présentation

Calcul des capa:

- Introduction & Contexte
- ➤II Calcul des capacités par méthode intégrale
- ➤III Accélération des calculs avec la Fast Multipole Method
- ➤IV Construction d'un circuit électrique équivalent RLM-C
- V Applications : modélisation CEM de structures industrielles

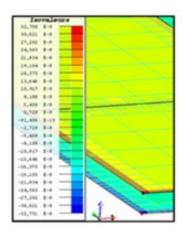

Résumé

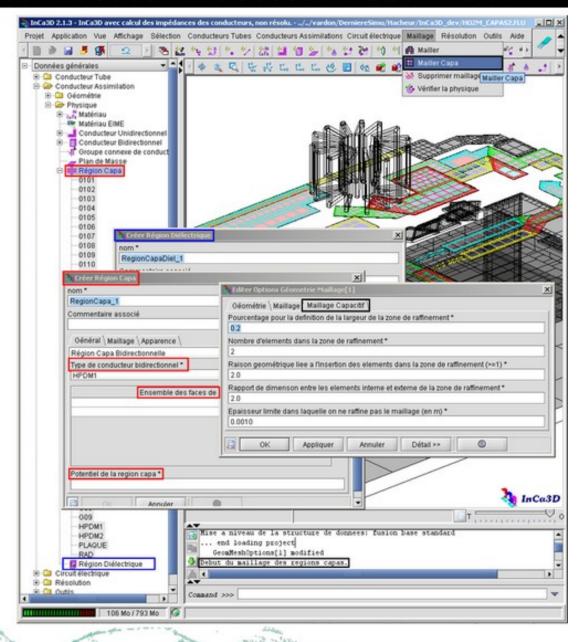
- Application de l'ensemble des méthodes sur des structures industrielles d'EP
- Modélisation CEM conduite et rayonnée
- Résultats de comparaison avec des mesures encourageants
- → Validation de l'approche système
- VI Valorisation des travaux dans InCa3D
- ➤VI Conclusions & Perspectives

Pise en compte des capacités dans InCa3D

Soutenance de thèse

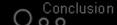
Capacitifs dans la Modélisation CEM de Dispositifs d'Électronique de puissance

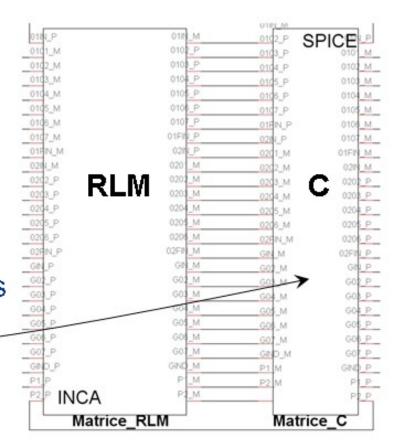

Pise en compte des capacités dans InCa3D


- O o o o o o o o o
- Calcul des capas
- Accélération AMLFMM
- Circuit RLM-
- Études CEM

- Définition des régions capas et diélectriques
- Maillage capacitif automatique
- ➤Interfaçage avec le noyau de calcul AMLFMM
 - · Calculs de charges, de capacités
- ➤ Post-processing
 - Visualisation des charges surfaciques

Automatisation de l'utilisation des capacités

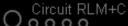

Calcul des capa:



- ➤ Création / modification des capacités parasites dans InCa3D
- Connexion des capacités en fonction des distances entre nœuds électriques
 - Types de connexion en Γ, Τ ou Π
- Export de bloc capacitif pour les solveurs circuits

→ Vers une plateforme de modélisation CEM de structures industrielles complexes

Connexions du bloc résistif-inductif au bloc capacitif dans Portunus



Plan de la présentation

- ➤I Introduction & Contexte
- ➤II Calcul des capacités par méthode intégrale
- ➤III Accélération des calculs avec la Fast Multipole Method
- ➤IV Construction d'un schéma électrique équivalent RLM-C
- V Applications : modélisation CEM de structures industrielles
- VI Valorisation des travaux dans InCa3D
- ➤VI Conclusions & Perspectives

Conclusions des travaux de thèse

> Justification du choix de la méthode PEEC dédiée

- Méthode légère, peu d'hypothèses simplificatrices
- Dédiée à la modélisation CEM des interconnexions de puissance
- Séparation des phénomènes physiques modélisés : résisistif-inductif / capacitif
- Extraction de circuit électrique équivalent à constantes localisées

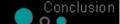
Développement d'une méthode d'extraction des capacités

- Utilisation de deux algorithmes performants : Fast Multipole Method et GMRES(m)
 ✓ Parmi les 10 algorithmes les plus performants du XXème siècle [SIAM]!
- Méthode intégrale générale, légère et rapide

Applications et validations des méthodes et outils logiciels

- Études de spectres d'impédance / validation en mesure
- Études CEM conduites et rayonnées de structures industrielles / validation en mesure
- Amélioration du logiciel InCa3D

Perspectives


O Calcul des capas

➤ Vers une version industrielle de InCa3D avec les capacités parasites

G2Elab : Travaux du groupe MIPSE : Méthodes Intégrales Pour les Systèmes Electrique

- ➤ Utilisation de la FMM dans la méthode PEEC inductive [thèse G2Elab NGuyen 2012] ------
- ➤ Introduire des matériaux magnétiques [thèse G2Elab Le Duc 2011]

La semaine demière :

27 500 éléments 944s avec **2Go** seulement contre **80 Go** nécessaire normalement!

- ➤ Introduction de modèles rayonnés [thèse O2M G2Elab / Ampère Zanghi 2012]
- Réduction de modèle : un seul schéma PEEC pour une gamme de fréquence donnée

Méthodes Numériques et Outils Logiciels pour la Prise en Compte des Effets Capacitifs dans la Modélisation CEM de Dispositifs d'Électronique de puissance

Merci de votre attention

Vincent Ardon - le 21 Juin 2010

Direction :

Mme Edith Clavel,

G2Elab

Encadrement:

M. Olivier Chadebec, M. Yann Le Floch,

G2Elab CEDRAT

