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Abstract

In this thesis we address the problem of image and video segmentation with
a cognitive vision approach. More precisely, we study two major issues of the
segmentation task in vision systems: the selection of an algorithm and the tuning
of its free parameters according to the image contents and the application needs.
We propose a learning-based methodology to easily set up and continuously adapt
the segmentation task.

Our first contribution is a generic optimization procedure to automatically
extract optimal algorithm parameters. The evaluation of the segmentation quality
is done with regards to reference segmentations. In this way, the user task is
reduced to provide reference data of training images, as manual segmentations.

A second contribution is a twofold strategy for the algorithm selection issue.
This strategy relies on a training image set representative of the problem. The
first part uses the results of the optimization stage to perform a global ranking
of algorithm performance values. The second part consists in identifying different
situations from the training image set and then to associate a tuned segmentation
algorithm with each situation.

A third contribution is a semantic approach to image segmentation. In this ap-
proach, we combine the result from the previously (bottom-up) optimized segmen-
tations to a region labelling process. Regions labels are given by region classifiers
which are trained from annotated samples.

A fourth contribution is the implementation of the approach and the develop-
ment of a graphical tool currently able to carry out the learning of segmentation
knowledge (automatic parameter optimization, region annotations, region clas-
sifier training, and algorithm selection) and to use this knowledge to perform
adaptive segmentation.

We have tested our approach on two real-world applications: a biological appli-
cation (detection and counting of pests on rose leaves) for the static segmentation
part, and video surveillance applications for the video figure-ground segmenta-
tion part. Results, quantitative evaluations, and comparisons with non-adaptive
segmentations are presented to show the potential of our approach.

For the segmentation task in the biological application, the proposed adaptive
segmentation approach over performs a non-adaptive segmentation in terms of
segmentation quality and thus allows the vision system to count the pests with a
better precision.
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For the figure-ground video segmentation task, the main contribution of my
approach takes place at the context modelling level. By achieving dynamic back-
ground model selection based on context analysis, my approach allows to enlarge
the scope of surveillance applications to high variable environments.

The main limitation of my approach is its lack of adaptation to unforeseen
situations. An improvement could be to use continuous learning technique to
adapt the segmentation to new situations.

keywords: Image segmentation, video segmentation, cognitive vision, machine
learning, segmentation performance evaluation, optimization techniques.



Résumé

Dans cette thése, nous abordons le probléme de la segmentation d’image dans
le cadre de la vision cognitive. Plus précisément, nous étudions deux problémes
majeurs dans les systémes de vision : la sélection d’un algorithme de segmen-
tation et le réglage de ses paramétres selon le contenu de 1'image et les besoins
de 'application. Nous proposons une méthodologie reposant sur des techniques
d’apprentissage pour faciliter la configuration des algorithmes et adapter en con-
tinu la tache de segmentation.

Notre premiére contribution est une procédure d’optimisation générique pour
I'extraction automatique des paramétres optimaux des algorithmes. L’évaluation
de la qualité de la segmentation est faite suivant une segmentation de référence.
De cette maniére, la tache de 'utilisateur est réduite a fournir des données de
référence pour des images d’apprentissage, comme des segmentations manuelles.

Une seconde contribution est une stratégie pour le probléme de sélection
d’algorithme. Cette stratégie repose sur un jeu d’images d’apprentissage représen-
tatif du probléme. La premiére partie utilise le résultat de I'étape d’optimisation
pour classer les algorithmes selon leurs valeurs de performance pour chaque im-
age. La seconde partie consiste a identifier différentes situations a partir du jeu
d’images d’apprentissage (modélisation du contexte) et a associer un algorithme
paramétré avec chaque situation identifiée.

Une troisiéme contribution est une approche sémantique pour la segmenta-
tion d’image. Dans cette approche, nous combinons le résultat des segmen-
tations optimisées avec un processus d’étiquetage des régions. Les étiquettes
des régions sont données par des classifieurs de régions, eux-mémes entrainés
a partir d’exemples annotés par l'utilisateur. Une quatriéme contribution est
I'implémentation de ’approche et le développement d’un outil graphique dédié
a l'extraction, I'apprentissage, et 1'utilisation de la connaissance pour la segmen-
tation (modélisation et apprentissage du contexte pour la sélection dynamique
d’algorithme de segmentation, optimisation automatique des parameétres, anno-
tations des régions et apprentissage des classifieurs).

Nous avons testé notre approche sur deux applications réelles : une applica-
tion biologique (comptage d’insectes sur des feuilles de rosier) et une application
de vidéo surveillance. Pour la premiére application, la segmentation des insectes
obtenue par notre approche est de meilleure qualité qu’'une segmentation non-
adaptative et permet donc au systéme de vision de compter les insectes avec une



meilleure précision. Pour I'application de vidéo surveillance, la principal contri-
bution de I'approche proposée se situe au niveau de la modélisation du contexte,
permettant d’adapter le choix d’un modéle de fond suivant les caractéristiques
spatio-temporelles de I'image. Notre approche permet ainsi aux applications de
vidéo surveillance d’élargir leur champ d’application aux environnement fortement
variables comme les trés longues séquences (plusieurs heures) en extérieur.

Afin de montrer le potentiel et les limites de notre approche, nous présentons les
résultats, une évaluation quantitative et une comparaison avec des segmentations
non-adaptatvie.

mot-clés : Segmentation d’image, segmentation de vidéos, vision cogni-
tive, techniques d’apprentissage, évaluation de la segmentation, techniques
d’optimisation.
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Chapter 1

Introduction

1.1 Motivations

This thesis deals with image segmentation in vision systems. Image segmentation
consists in grouping pixels sharing some common characteristics. In vision sys-
tems, the segmentation layer typically precedes the semantic analysis of an image.
Thus, to be useful for higher-level tasks, segmentation must be adapted to the
goal, i.e. able to effectively segment objects of interest. The very first problem is
that a unique general method still does not exist: depending on the application,
algorithm performances vary. This is illustrated in Figure C.1 where two different
algorithms are applied on the same image. The first one seems to be visually
more efficient to separate the ladybird from the leaf. The second one produces
too many regions not very meaningful.

f Ty
%Z_D
L]

Figure 1.1: An example of the segmentation of an image with two different algorithms. The first
algorithm forms regions according to a multi-scale color criteria while the second uses a local
color homogeneity criteria.

Basically, two popular approaches exist to set up the image segmentation task
in a vision system. A first approach is to develop a new segmentation algorithm
dedicated to the application task. A second approach is to empirically choose an
existing algorithm, for instance by a trial-and-error procedure. The first approach
leads to develop an ad hoc algorithm, from scratch, and for each new application.
The second approach does not guarantee adapted results and robustness. So, a
need exists for developping a new approach to the algorithm selection issue.
When facing different algorithms, this approach should be able to automatically
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choose the one best suited with a segmentation goal.

When designing a segmentation algorithm, internal parameters (e.g., thresh-
olds or minimal sizes of regions) are set with default values by the algorithm
authors. In practice, it is often up to an image processing expert to supervise the
tuning of these free parameters to get meaningful results. As seen in Figure C.2, it
is not clear how to choose the best parameter set regarding the segmented images:
the first one is quite good but several parts of the insect are missing; the second
one is also good, since the insect is well outlined, but too many meaningless re-
gions are also present. However, complex interactions between free parameters
make the behavior of the algorithm fairly impossible to predict. Moreover, this
awkward task is tedious and time-consumming. Thus, the algorithm parame-
ter tuning is a real challenge. To solve this issue, optimization methods should
be investigated in order to automatically extract optimal parameters.

Figure 1.2: Tllustration of the problem of algorithm parameter tuning. An image is segmented
with the same algorithm (based on color homogeneity) tuned with two different parameter sets.

In real world applications, when the context changes, so does the appearance
of the images. This is particularly true for video applications where lightning
conditions are continuously varying. It can be due to local changes (e.g., shadows,
reflections) and/or global illumination changes (due to meteorological conditions),
as illustrated in Figure C.3 where images are extracted from the same scene at
different hours of the day. The consequences on segmentation results can be
dramatic. This context adaptation issue emphasizes the need of automatic
adaptation capabilities.

Figure 1.3: illustration of the problem of context variations on a video surveillance application.
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1.2 Objectives

My objective is to propose a cognitive vision approach to the image segmentation
problem. More precisely, we aim at introducing learning and adaptability capac-
ities into the segmentation task. Traditionally, explicit knowledge is used to set
up this task in vision systems. This knowledge is mainly composed of image pro-
cessing programs (e.g., specialized segmentation algorithms and post-processings)
and of program usage knowledge to control segmentation (e.g., algorithm selec-
tion and algorithm parameter settings). To this end, three main issues of image
segmentation task in vision systems should be solved:

e The first issue is to extract optimal parameters of segmentation algorithms
in order to obtain a segmentation adapted to the segmentation task, i.e.
a goal-oriented segmentation. The tuning of segmentation algorithm pa-
rameters is known to be a tricky task and often requires image processing
skills. So, our objective is threefold: first, we want to automate this task in
order to alleviate users’ effort and prevent subjective results. Second, the
fitness function used to assess segmentation quality should be generic (i.e.
not application dependent). Third, no a priori knowledge of segmentation
algorithm behaviors is required, only ground truth data should be provided
by users.

e Once all the algorithms have been optimized, a second issue is to select the
best one. The selection strategy should be based on a quantitative evalu-
ation of each algorithm performance. However, when images of the appli-
cation domain are highly variable, it remains quite impossible to achieve a
good segmentation with only one tuned algorithm. In this case, a selection
strategy depending on the image content analysis should be preferred.

e In many computer vision systems at the detection layer, the goal is to sep-
arate the object(s) of interest from the image background. When objects
of interest and/or image background are complex (e.g. composed of several
sub-parts), a low-level algorithm cannot achieve a semantic segmentation,
even if optimized. For this reason, a third issue is to refine the (optimized)
segmentation to provide a semantically meaningful segmentation to higher

vision modules.

Our final objective is to show the potential of our approach through two dif-
ferent segmentation tasks in real-world applications.

e The first segmentation task we focus on is image segmentation in a biologi-
cal application related to early pest detection and counting. This implies to
robustly segment the objects of interest (mature white flies) from the com-
plex background (rose leaves). Our goal is to demonstrate that the cognitive
vision platform coupled with our adaptive segmentation approach achieves a
better detection rate of white flies than tuned with an ad hoc segmentation.
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e The second segmentation task we focus on is figure-ground segmentation
in a video surveillance application. The goal is to detect moving objects
(e.g., walking people) in the field of view of a fixed video camera. Detection
is usually carried out by using background subtraction methods. However,
illumination changes make the background modeling problem difficult. Our
objective is to show that a dynamic selection of background model allows to
enlarge the scope of surveillance applications to high variable environments.

1.3 Context of the Study

This work takes place in the Orion project-team at INRIA Sophia Antipolis
Méditerranée, France. Orion is a leading team in scene understanding at the
frontier of computer vision, knowledge-based systems, and software engineering.
Orion has a cognitive vision approach. It aims to achieve robust, resilient, adapt-
able computer vision functionalities by endowing them with a cognitive faculty.
This means the ability to learn, to adapt, and to weight alternative solutions,
and develop new strategies for detection, recognition, and interpretation. Re-
cently, Hudelot [Hudelot, 2005] proposed a cognitive vision platform for seman-
tic image interpretation. This platform is based on the cooperation of three
knowledge-based systems of which one is dedicated to the intelligent management
of image processing programs. Maillot [Maillot, 2005] has endowed this platform
with learning facilities and ontology-based semantic knowledge representation and
management for object recognition. Currently, the detection layer of the platform
rely on ad hoc segmentation. This means that all the segmentation operators have
been tuned deep in code once and for all. In this context, my work aims to enrich
this cognitive vision platform at the image segmentation level to enable adaptive
segmentation.

1.4 Contributions

My main contribution is to propose a cognitive vision approach to image segmen-
tation by solving the issues listed above:

e [ propose a generic optimization procedure to automatically extract opti-
mal algorithm parameters. This procedure is based on three independent
components: a segmentation algorithm with one or several free parameters
to tune, a performance evaluation metric, and an optimization algorithm.
The evaluation of the segmentation quality is done with regards to a refer-
ence segmentation (e.g. manual segmentation). The performance evaluation
metric is generic, has a low-computational cost, and can be used for a broad
range of segmentation purposes. In this way, the user task is reduced to
provide reference data: manual segmentations of training images.

e [ propose two strategies for the algorithm selection issue. These strategies
use the results of the optimization stage applied on a training image set
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representative of the problem. The first one is based on a global ranking of
algorithm performance values. The second strategy is to identify different
situations, called contexts, from the training image set and to associate a
tuned segmentation algorithm with each context.

e [ also propose an approach to semantic image segmentation. In this ap-
proach, we consider the segmentation refinement problem as a region la-
belling problem. It is hence designed for region-based segmentation algo-
rithms only. The goal is to assess the membership of each region to a
pre-defined set of regions sharing the same label. The assessment relies on
a preliminary supervised learning stage where region-classifiers are trained
with training samples. The role of the user is to label the regions of the
ground truth segmentations. The originality of this approach is twofold.
First, we use the optimized segmentations as input of the region-classifiers.
Second, the sub-tasks of the learning process, namely region feature ex-
traction, region feature selection, and classifier training, are automatically
optimized in a wrapper scheme to get the best classification performances.

In the scope of the two previously described segmentation tasks, my contribu-
tions are the following:

e For the segmentation task in the biological application, the proposed adap-
tive segmentation approach overperforms the ad hoc segmentation in terms
of segmentation quality and thus allows the system to count the pests with
a better precision.

e For the figure-ground segmentation task, my main contribution takes place
at the context modeling level. By achieving dynamic background model
selection based on context analysis, my approach allows to enlarge the scope
of surveillance applications to highly variable environments.

Each step of the proposed approach is tested and evaluated on several image
data sets. This helps us to show the strengths and the limitations of the approach
in terms of performance, computational cost, and sensitivity to key parameters.

1.5 Outline

This manuscript is structured as follows. Chapter 2 introduces the reader to image
segmentation in the context of computer vision systems. We propose an overview
on four topics closely related to our problem: image segmentation in computer
vision systems, segmentation approaches, performance evaluation, and segmen-
tation optimization. Chapter 3 introduces the proposed approach, and gives our
objectives and assumptions for the different segmentation issues. Chapter 4 de-
tails each step of our approach: algorithm parameter optimization, algorithm
selection, and semantic region labelling. Chapter 5 is dedicated to the validation
of the approach for a real world application. In particular, we are interested in
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the segmentation step of a cognitive vision system dedicated to the recognition
of biological organisms. In chapter 6, we present how our approach can be used
for the adaptive figure-ground segmentation in video surveillance applications.
Concluding remarks and suggestions for future work are discussed in chapter 7.



Chapter 2

State of the Art

2.1 The place of the Image Segmentation Task in Vi-
sion Systems

In the beginning of the eighties, Marr [Marr, 1982] proposed a theory of the human
perceptual vision. This theory is the first complete methodology for the design of
information systems. He suggested three levels of abstraction for the analysis of
such complex systems:

The computational level: it describes what is the goal of the system. It has a
more abstract nature than the next two levels and specifies all informational
constraints necessary to map the input data into the desired output.

The algorithmic level: it states how the computational theory can be carried
out in terms of methods. It is related to the specification of algorithms with
their input and output representations.

The implementational level: it describes how an algorithm is embodied as a
“physical” process. It has the lowest description level, e.g. the hardware
implementation and the software code.

An important characteristic of this reconstructive approach of vision is the in-
creasing number of solutions while decreasing the abstraction level. For example,
there are several algorithms to solve the computational task “edge detection”, and
there are many possible ways to implement each of them.

Inspired from the Marr’s theoretical framework, most existing artificial visual
recognition systems, called vision systems, follow the paradigm depicted in Fig-
ure 2.1. An image is first pre-processed in order to highlight information which is
important for the next stages. Classically, it often refers to the segmentation task.
Then, the descriptor mapping module encodes the remaining low-level data into
a symbolic form more appropriate for the recognition and analysis stage, which
finally identifies the image content.

This architecture has yet one drawback: errors in the first stages, e.g., in the
segmentation, will be further propagated into later stages, degrading the quality
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Sensor Image Descriptor } Recognition
Imaging > Segmentation B Mapping and Analysis
1 2 3

Figure 2.1: The three stages of visual processings usually found in vision systems.

of the whole system. Thus, great attention has been directed to the problem of
segmentation. Hundreds of publications in this field appear every year, each trying
to find an optimal solution for one specific application or for general purposes.
However, a unified, generally accepted definition of image segmentation does not
yet exist. Most authors agree on the following facts about segmentation:

e its task is to partition the image into several segments or regions (this point
will be developed in section 2.2.1);

e it is an early processing stage in computer vision systems. Within the
computational model for computer vision (Figure 2.1), it belongs to the
preprocessing module;

e it is one of the most critical tasks in automatic image analysis.

2.1.1 Knowledge-Based Approaches

Early approaches in vision systems use explicit knowledge to define the seg-
mentation task. In [Nazif and Levine, 1984], an expert system for low-level im-
age segmentation is proposed. The system is based on hundreds of production
rules that manipulate combinations of regions and lines obtained from two basic
segmentation algorithms. Another example can be found in the SIGMA sys-
tem [Matsuyama and Hwang, 1990] which uses a low-level vision expert module
dedicated to handle segmentation and feature extraction tasks for aerial image
understanding. One weakness of these systems is their application dependency.
The knowledge acquisition necessary to build the rules is also a big problem.
Then, researchers have tried to conceive more versatile systems by incorpo-
rating verification and knowledge acquisition components. In [Ossola, 1996], an
approach based on the cooperation of two knowledge-based systems (KBS) is pre-
sented. Program supervision techniques [Moisan and Thonnat, 1995] are used to
process images in an intelligent way, e.g. to dynamically set up the segmentation
task with respect to variable conditions. A general program supervision architec-
ture contains three main parts: a library of programs, a knowledge base, and a
reasoning engine. The reasoning engine is in charge of selecting and scheduling the
programs of the library which are best satisfying a user query. The engine iterates
the following loop composed of four steps, until a satisfactory solution is reached:
planning (e.g., selection of programs), execution (e.g., initial parameter setting),
evaluation (e.g., assessment of output results), and repair (e.g., adjustment of
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some parameters). The knowledge base contains a declarative representation (i.e.
frame and production rules) of the programs called operators. These operators
are hierarchically organized in several levels of abstraction and can be primitives
or composites (i.e. combination of several primitives) ones. We can cite the
OCAPI environment in |Clément and Thonnat, 1993| as a general tool for the
development of KBS dedicated to the supervision of programs. The strength of
the program supervision architecture is the ability to reuse programs for various
applications as demonstrated in [Crubézy, 1999| for the supervision of medical
imagery programs or in [Thonnat, 2002 for the recognition of complex objects.

A related approach for the automatic generation of image processing appli-
cations called BORG can be found in [Clouard et al., 1999]. By opposition to
the program supervision approach, the system uses hierarchical and opportunis-
tic behavior in order to construct a solution plan. A plan is represented by an
action graph of five fixed levels: requests, tasks, functionalities, procedure, and
operators. Each level corresponds to a more or less coarse version of the solution.
The system dynamically constructs a parametrized plan from an initial user’s
query. A drawback of this approach is that the action graph is constrained to a
fixed number of levels supposed to cover all the solution space and thus limits the
flexibility for modeling a problem.

One advantage of knowledge-based approaches is the semantic richness which
enables user-friendly interaction with the end-users. Nevertheless, one drawback
is that they are application dependent and thus requires a strong expertise in the
domain to build the knowledge bases: they are thus limited to a close world.

2.1.2 Learning Approaches

This section deals with the use of decision theory as a basis for intelligent image
processing. The main idea is to reduce as much as possible the role of the human
expertise in the building of vision systems by machine learning techniques. This
principle was introduced by Draper [Draper et al., 1996] who argues that KBS are
too ad hoc and too dependent on human expertise during their design. Indeed,
the use of explicit knowledge is not really suited for modeling the variability, the
changes, and the complexity of the world.

Case-Based Reasoning (CBR) is a problem solving approach which solves
new problems by adapting previously successful solutions to similar problems.
In particular, the case based approach has been used for algorithm parameter
learning. Some interesting works can be found in [Ficet-Cauchard et al., 1999]
and [Frucci et al., 2007]. A case contains an image, contextual information (as
image acquisition information) and algorithm parameters. Finding the best seg-
mentation for the current image is done by retrieving similar cases in the case
base. Similarity is computed using non-image and image information. The eval-
uation is done by a measure of dissimilarity between the original image and the
segmented image. If the evaluation is bad, the learning module is activated to
build a new case. The main advantage of case based reasoning systems lies in
the easiness of their reasoning strategies. Nevertheless, the choice of an adequate
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representation of cases is an application dependent problem.

In [Peng and Bahnu, 1998], an adaptive integrated image segmentation and
object recognition system is proposed and applied to recognize cars in outdoor
imagery. The authors stress the importance of the adaptability to real world
changes of the segmentation problem, in order to improve the interpretation pro-
cess. They propose to use the model matching confidence degree as feedback
to influence the segmentation process. A team of stochastic learning automata is
used to represent both global and local image segmentation. Reinforcement learn-
ing is applied to close the loop between model matching and image segmentation.
The main advantage of reinforcement learning is that it only requires knowledge
of the goodness of the system performance rather than details on the algorithm.
As a consequence, their method is independent of any segmentation algorithm
but dependent of the recognition algorithm.

2.1.3 Towards Cognitive Vision

From the previous described approaches, two open problems still remain: first,
knowledge acquisition bottleneck when a large amount of knowledge is needed
and, second, lack of robustness when faced with varying conditions. Thus, classi-
cal vision systems are often brittle. To overcome this brittleness, a new discipline
called cognitive vision has recently emerged; a research road-map can be found
in [ECVISION, 2005]. A cognitive vision system is defined by its ability to rea-
son from a priori knowledge, to learn from perceptual information, and to adapt
its strategy to different problems. This new discipline thus involves several ex-
isting related ones (computer vision, pattern recognition, artificial intelligence,
cognitive science, etc.). Some systems have started to implement cognitive vision
ideas, mainly for human behavior recognition relying on different technologies.
For example, in [Vincze et al., 2006] a cognitive system combining low-level im-
age components and high-level activity reasoning processes has been developed
to recognize human activities. This system integrates various techniques such as
connectionism, Bayesian networks, component framework, and robotics. A cog-
nitive vision platform has been proposed in [Hudelot and Thonnat, 2003] for the
recognition of complex natural objects in images with reusable components. The
authors propose an original distributed architecture based on three KBS for the
interpretation, the anchoring, and the image processing levels. Concerning the
image processing KBS, they propose an image processing ontology which is appli-
cation independent but dependent on the data structures of a library of programs.
Program supervision techniques are used to manage the knowledge of programs.
Finally, in their conclusion, they stress the need of integrating machine learning
techniques for image segmentation to reduce the necessary program supervision
knowledge and to improve the robustness of the semantic image interpretation.
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2.1.4 Discussion

We have presented the segmentation task through computer vision approaches.
We have seen that segmentation is a crucial task and demands strong efforts
to vision system designers in building complex and exhaustive knowledge bases.
However, KBS are not approved unanimously by the computer vision research
community. As Draper said [Draper et al., 1996], we must avoid to build ad
hoc systems, based on close world assumptions. Even if program supervision
techniques gain to be used for enabling control and reuse of vision algorithms, they
still fail to adapt themselves to unknown situations. The cognitive vision approach
has been recently introduced to achieve more robust, reusable, and adaptable
computer vision systems. This approach aims at endowing vision systems mostly
with learning and adaptability facilities. In this context, the segmentation task
has several challenges to be tackled: starting from a generic solution (e.g., from
a default parametrization), algorithms can be dynamically tuned by means of
learning techniques to reach the specific goal defined by the user.

To fully understand the segmentation problem, a first and essential task is to
draw a state-of-the-art on existing approaches. This is the role of the next section.

2.2 Segmentation Approaches

Many segmentation methods are based on two basic properties of the pixels in
relation to their local neighborhood: discontinuity and similarity. Methods based
on some discontinuity property of the pixels are called boundary-based meth-
ods, whereas methods based on some similarity property are called region-based
methods. Before it can be properly stated, some fundamental concepts have to
be specified.

2.2.1 Definition of Image Segmentation

Image segmentation can be formalized through its region-based definition as fol-
lows:

Definition 1 (Image region) An image region R is a non-empty subset of the
image I, such that R C I, R # 0

A region does not need to be topologically connected. The existence of an unbro-
ken path from one region element (i.e. a pixel) to another one inside the region
is sufficient.

Definition 2 (Image partition) A partition of I is a set of n regions R;,i =
L,...,n such that \J! { Ri =1 and RyNR; =0, Yi# j

This definition states that the partition has to cover the whole image and two
regions cannot overlap.
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Definition 3 (Image segmentation) For a certain defined homogeneity predi-
cate H, a segmentation S of I is a partition of I which satisfies: H(R;) = 1,Vi
and H(R; N'R)) = 0 for R; and R; adjacent, i # j.

The first condition states that each region has to be homogeneous with respect
to the predicate H. The second condition states that two adjacent regions cannot
be merged into a single region that satisfies the predicate H.

The nature of the predicate H is the key-element of the definition of segmenta-
tion. It can be based only on pixel values, or it can judge the high-level relevance
of the partition. Since the solution is not unique, this makes the segmentation
an ill-posed problem in the sense of Hadamard. Then, to solve the problem, a
solution consists in defining the segmentation, i.e. defining a predicate H, for
each level of abstraction. Figure 2.2 depicts possible segmentation results at each
level of Marr’s computational model. At the image-based level, pixels are grouped
according to their feature values (e.g., their gray value). The surface-based level
detects surfaces, but not objects; for example the background keeps its patches.
The object-based level detects a region per object.

Figure 2.2: Ideal segmentation results at different levels of Marr’s vision computational model.
From left to right: original image, image-based level, surface-based level, and object-based level.

2.2.2 Static Image Segmentation

Several surveys of segmentation techniques have been published. Three of
them [Pal and Pal, 1993, Skarbek and Koschan, 1994, Lucchese and Mitra, 2001]
review about 300 publications giving a fair overview of the state-of-the-art in seg-
mentation at the image-based processing level. Pal and Pal [Pal and Pal, 1993]
mainly evaluate algorithms for gray-valued images and introduce three of the first
attempts to exploit color information.

Skarbek and Koschan [Skarbek and Koschan, 1994| concentrate their survey
on color image segmentation. They classify the algorithms according to the un-
derlying concepts of the homogeneity predicate H and identify four categories:
pixel-based, area-based, edge-based and physics-based approaches. Pixel-based
approaches consider a region as homogeneous, if the features of its elements be-
long to the same cluster in the feature-space. Area-based techniques define a
region as a set of connected pixels obtained for instance by growing from seeds,
by joining smaller pixel blocks or by splitting non-uniform regions. The third,
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edge-based group, defines regions as those sets of pixels delimited by inhomo-
geneities or discontinuities. This is the complementary concept to area-based seg-
mentation. Physics-based methods include knowledge about physical properties
of the image formation process to improve the detection of regions corresponding
to object surfaces. Physics-based methods are categorized in the current work as
surface-based techniques. They do not belong to the image-based stage, since all
additional knowledge about physical properties of object surfaces cannot be re-
garded as part of a low-level homogeneity predicate, but rather as external higher
level information about the analyzed scene.

Lucchese and Mitra [Lucchese and Mitra, 2001] also review exclusively color
segmentation approaches and use a similar categorization: feature space based,
image domain based and physics based techniques. The combination of area and
edge-based methods into one image domain class makes more sense nowadays,
since many modern approaches try to satisfy both concepts simultaneously.

2.2.2.1 Feature-Space Based Approaches

Feature-space approaches generally neglect spatial relationships between image
pixels and analyze exclusively the configuration of their feature values. Algorithms
in this category delimit sections in the feature space and assign the same region
label to all image pixels falling into the same section. Two principles are common.
The first one finds sections detecting peaks in unidimensional or multidimensional
feature histograms. The second one uses traditional clustering algorithms.

Histogram thresholding

Historically, histogram thresholding is one of the first used technique for segment-
ing images. Gray-level images histograms can be commonly decomposed into
peaks and valleys which characterize objects and backgrounds. A good survey
on these techniques can be found in [Sahoo et al., 1988]. Early methods for color
segmentation work with several one-dimensional histograms, which implies that
the correlation between different dimensions is ignored. More recent algorithms
work in two or three dimensional color spaces and are characterized by different
techniques to robustly detect peaks and their corresponding boundaries in the
feature space. The choice of the color representation often plays a major part.
An additional problem of this approach is the usually required smoothing of the
feature space in order to keep the size of data structures tractable. Many al-
gorithms search for peaks by approximating the histograms with a mixture of
Gaussian, and fail if this assumption does not hold (a fact that, in real images, is
almost always the case).

Clustering techniques

Clustering approaches can be interpreted as unsupervised classification methods.
Several concepts are based on the k-means and fuzzy c-means clustering algo-
rithms applied on different color and texture spaces. One of the major drawbacks
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of the original clustering methods is that the number of clusters (k) must be known
a priori. Several heuristics have been suggested to compute k automatically based
on some image statistics. A well-known clustering-based segmentation algorithm
is the meanshift [Comaniciu and Meer, 2002] approach which introduces a method
to automatically detect different bandwidths from the data for each section of the
feature space. The major drawback of this concept is its computational cost com-
pared to simple k-means approaches. The generalization of the k-means algorithm
for color images including spatial constraints is introduced in [Chang et al., 1994].
This algorithm considers the segmentation as a maximum a posteriori probability
estimation problem. The algorithm starts with global estimates and progressively
adapts the cluster centers to the local characteristics of each region.

2.2.2.2 Image-Domain Based Approaches

Another way to cope with the image-based segmentation problem is to compare
the feature values of each pixel in the image-domain, i.e. pixels are compared
within predefined spatial neighborhoods. Two major groups of algorithms can
be identified: the first one defines regions through the feature similarity between
their elements (area-based approaches). The second one identifies feature discon-
tinuities as boundaries between homogeneous regions (edge-based approaches).
Many modern segmentation strategies try to satisfy both concepts simultane-
ously [Munoz et al., 2003].

Region Growing techniques

Traditional area-based techniques utilize one of two principles: region growing
or split-and-merge. Region growing methods assume the existence of some seed-
points, to which adjacent pixels will be added if they fulfill a homogeneity crite-
rion. An extensive review is detailed in [Fan et al., 2005]. The main advantage of
these methods is the creation of spatially connected and compact regions, which
contrast with the usually noisy image partition obtained with pure feature-based
segmentation approaches. They are frequently applied to separate one single ho-
mogeneous object (e.g., background) from the rest of the image, but using several
seeds positioned at different objects it is also possible to perform more sophisti-
cated segmentations. The required seed selection is a subtask of this approach,
which can be solved by taking advantage of clustering methods or morphological
operations, among others.

Split-and-Merge techniques

Split-and-merge algorithms proceed to successively divide an image into smaller
non-overlapping regions while some similarity criterion is not met. A
common data structure used to implement this procedure is the quadtree
representation which is a multi-resolution scheme. Delauney triangula-
tion [Gevers and Smeulders, 1997] or Voronoi diagrams [Itoh and Matsuda, 1996]
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are also employed as an alternative technique to the rigid rectilinear nature of the
quadtree structure. The end result of the splitting is an over-segmented image. A
merging procedure is then applied to join neighboring regions under the same ho-
mogeneity predicate that was used for splitting. The comparison between adjacent
regions can use simple statistics or can be based on more elaborated mathematical
models, like Markov Random Fields (MRF), which also permit merging regions
of similar texture |Panjwani and Healey, 1995].

Edge based techniques

Edges are discontinuities in the feature characteristics (e.g., intensity) of adjacent
pixels. The magnitude of the gradient of a gray-valued image has been typically
employed, since it is a relatively robust edgeness representation form. Its ap-
proximation for discrete digital images has been analyzed in detail in the past.
Most methods involve the use of well-known convolution kernels, like the Roberts,
Robinson, Prewitt, Kirsch, or Sobel operators. The detection of edge pixels is just
the first stage of any edge-based segmentation approach. Further processing is
necessary in order to provide a valid segmentation as stated by Definition 3. Since
standard detectors like Canny’s [Canny, 1986] or SUSAN [Smith and Brady, 1997|
usually leave some gaps between object boundaries, some mechanisms are required

the Earth Mover’s Distance have been proposed [Ruzon and Tomasi, 2001]|. They
show a better performance due to their capability to detect junctions and cor-
ners. However, their computational cost is very high compared to traditional
techniques. A classified and comparative study of edge detection algorithms can
be found in [Sharifi et al., 2002].

Morphological watershed segmentations [Vincent and Soille, 1991] can also be
categorized as an edge-based approach. They work on a topographical edgeness
map, where the probability of a pixel to be an edge is modeled by its altitude. A
“flooding” step begins which fills the valleys with water. The watershed lines are
detected when the water of two different valleys encounters. The principal advan-
tage of the watershed segmentation scheme over other edge based techniques is
that it generates closed boundaries. The regions defined by the closed boundaries
represent an over-segmentation of the image, since the algorithm is sensitive to
noise. If the gradients are computed at successively higher scales, the number of
local minima (i.e. flood basins) in the gradient magnitude image will decrease.
The available techniques work on gray-valued images obtained usually as the gra-
dient of the intensity.

Active contour models, also known as “snakes”, is another family of edge-based
algorithms [Kass et al., 1988, Ronfard, 1994]|. An interesting and powerful prop-
erty of an active contour model is its ability to find subjective contours and inter-
polate across gaps in edge chains. An active contour model represents an object
boundary or some other salient one dimensional image feature as a parametric
curve that is allowed to deform from some arbitrary initial positions towards the
desired final contour. The problem of finding this initial contour is cast as an
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energy minimization problem with the intention that it yields a local minimum
of the associated energy functional. The original model incorporates two inter-
nal energy terms related to contour smoothness and regularity. Active contour
models are well-adapted for segmenting objects in noisy images but they require
a priori knowledge of the object shapes. Good illustrations of such algorithms
are frequently found in medical applications such as in [Jehan-Besson et al., 2004|
and in optical flow segmentation as in [Herbulot et al., 2006].

Hybrid Approaches

All previous methods have intrinsic drawbacks that can be partially compensated
by combining different techniques. For instance, clustering methods detect ho-
mogeneous regions in the feature space. However, since spatial relationships are
ignored, the region boundaries in the image-domain are highly irregular. In re-
cent years, numerous techniques for integrating region and boundary information
have been proposed. A detailed review of techniques to combine area-based and
edge-based approaches can be found in [Munoz et al., 2003]. One of the main
features of the hybrid approaches is the timing of the integration: embedded in
the region detection, or after both processes are completed. The most common
way to perform integration in the embedded strategy consists of incorporating
edge. Region growing and split-and-merge are the typical region-based segmenta-
tion algorithms |[Zugaj and Lattuati, 1998|. Post-processing integration is based
on fusing results from single segmentation methods, attempting to combine the
map of regions (generally with thick and inaccurate boundaries) and the map of
edge outputs (generally with fine and sharp lines, but dislocated) with the aim
of providing an accurate and meaningful segmentation. Another example of hy-
brid approach can be found in [Chen and Wang, 2004| which combines color and
texture-based segmentations using border refinement.

2.2.2.3 Object Based Approaches

While the image-based approach has been dealt with a relative success, the chal-
lenge of aggregating pixels into segments representing meaningful parts of objects
is much difficult. In fact, segmentation is also closely related to the problem
of extracting object from images. One of the oldest approaches to object-based
segmentation is template matching. The idea of template matching is to create
a model of an object of interest (the template, or kernel) and then to search
over the image of interest for objects that match the template. The simplest
methods, based on correlation or comparable matching operators, can only de-
termine the position of the template. The main difficulty in this technique stems
from the large variability in the shape and appearance of objects within a given
class. Consequently, the segmentation may not accurately delineate the object’s
boundary.

A recent development in this area is presented
in [Borenstein and Ullman, 2004| then updated in [Borenstein and Malik, 2006].
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The proposed approach relies on learnt patches from training image samples
and a bottom-up process used to derive a segmentation graph. Partial templates
are used to detect object parts of a given class (horses in the experiment) by
matching to the segmentation graph, even though the global appearance of
the objects in the test images slightly differs from the learnt material. The
methods become more complex and time consuming if further parameters like
orientation or scale need to be estimated. Since the number of objects and their
orientation in an image are unknown in the current application, the search space
for matching approaches becomes intractable.

In [Schnitman et al., 2006], an approach inducing semantic segmentation from
examples is described. They argue that determining whether an entity belongs
to a particular semantic part is easier done at the fragment level than on a pixel-
by-pixel basis. Starting from an example, patch sets representing a collection
of homogeneous fragments are built. Then, a test image is first over-segmented
and the labelling of each fragment is induced from the minimization of a global
labelling cost. They apply the graph-cuts multi-label optimization technique for
finding the globally optimal labelling. Since this example-based approach allows
to use a non-parametric model of the object’s parts, they assume that the learnt
fragment-label pairs are representative of the possible image variations, i.e. illu-
mination, resolution, and scale characteristics. Finally, they concede that their
approach is only appropriate for images depicting closely similar scenes. A simi-
lar approach is described in [He et al., 2006] where a probabilistic model assigns
labels to each region of an over-segmented image based on local, global, and pair-
wise features. As depicted by the author, their model accuracy is limited by the
reliance and the amount on training data.

2.2.2.4 Summary

In this section, we have presented a didactic survey on image segmentation tech-
niques. The goal of this review was to familiarize the reader with classical tech-
niques rather than to give an extended review of all existing algorithms. To give
an overall view, a summary is drawn up in Table 2.1, inspired by the one presented
in [Alvarado Moya, 2004a).

Finally, we can conclude this study by making some important remarks, closely
akin to the conclusions of [Skarbek and Koschan, 1994] in their survey:

1. General purpose algorithms are not robust and usually not algorithmically
efficient.

2. All techniques are dependent on parameters, constants and thresholds which
are usually fixed on the basis of few experiments. Tuning and adapting
parameters is rarely performed.

3. As a rule, authors ignore comparing their novel ideas with existing ones.

4. As arule, authors do not estimate the algorithmic complexity of their meth-
ods.
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+ Detection of homogeneity in a global context.
— Spatial relationship between pixels is ignored.
+ Multiple 1D histogram methods are computationally inexpensive
— Noise sensitive.
g g — 1D approaches ignore correlation between different feature space
:C%- éﬂ dimensions.
© | £ | — Models used to fit histograms (e.g., multi-gaussians) usually do not
% correctly match the real distributions.
- — Limited to binary segmentation problems.
o0 | + Simultaneous consideration of all dimensions of the feature space.
'S | + Suitable for color and texture segmentation.
E + Relatively efficient algorithms exist.
“ | _ Size or number of clusters must be known a Priori.
+ Produce smoother and more accurate region boundaries than feature
space-based approaches.
— Edge detectors falls into the edge linking problem.
+ Creation of connected compact regions.
+ Fast algorithms available.
— Key-parameters tuning can be a tricky task.
+ Suitable for segmentation of complex objects having
= g homogeneous background.
g '{?} Region growing | — Prior information on optimal number and position of seeds
?J é’ may be needed.
X — Result depends on order in which pixels are examined
£ + Fast and flexible implementation.
Split & Merge | — Traditional tessellation mechanisms produce too coarse
spatial quantization artifacts.
Edge detectors + Accu.r:?)te local .discontinuity detection
3 — Sensitive to noise and parameter changes.
_% Watershed + Detecti.on of closed contours.
&0 — Image is often over-segmented.
w + Robust to noise.
Snakes . o
— Difficult automatic initialization of the contour.
< | + Combination of several methods can be appropriately adapted to the needs of
-é, each application.
S High computational cost.
— | + Combine top-down and bottom-up approaches to achieve semantically
_;:"’; meaningful segmentation.
2 | — Robustness relies on the learning capacities from examples or patches.
§ — Applicability is restricted by appearance constraints on objects such shape and

scale.

Table 2.1: Comparison between different image segmentation techniques.
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5. It seems that separating processes for region segmentation and for object
recognition is the reason of failure of general purpose segmentation algo-
rithms.

6. Several different color spaces are employed for image segmentation. Never-
theless, no general advantage of one of the color spaces with regard to the
other color spaces has been found yet.

2.2.3 Image Sequence Segmentation

Identifying moving objects from a video sequence is a fundamental and critical
task in video applications such as video surveillance, traffic monitoring and analy-
sis, human detection, tracking, and gesture recognition. We have seen in previous
sections that segmenting semantically meaningful components of a static image
is fairly impossible with conventional approaches based on primitive grouping.
In image sequences, it is more practical to segment moving objects from dy-
namic scene with the aid of motion information contained in it. The goal of this
section is to give an overview of existing techniques devoted to the segmenta-
tion of moving objects in image sequences. We limit our review on techniques
devoted to segment video frames captured from a single static camera. A more
detailed review of segmentation of moving objects in image sequence can be found
in [Zhang and Lu, 2001] and [Cheung and Kamath, 2004].

Optical Flow

The displacement or optical flow of a pixel is a vector representing the mo-
tion between a pixel in one frame and its correspondent pixel in the following
frame [Barron et al., 1994|. Traditionally, the motion calculation is pixel-based,
exploiting the gradient cues [Horn and Schunck, 1992, Nagel and Gehrke, 1998,
Stiller and Konrad, 1999]. An advantage of this technique is that it can be used
even in presence of camera motion. A drawback of this technique is that the com-
putation of derivatives for each pixel is often required, thus making the method
computationally expensive. First-order motion sensors also suffer from the aper-
ture problem, which means that they can detect motion only perpendicular to the
orientation of the contour that is moving. While segmentation based on finding
flow discontinuities is straightforward, it is unlikely to achieve expected results
without combination with a spatial segmentation technique. However, alterna-
tives to this pixel-based approach exist. For instance, in [Coimbra et al., 2003]
the authors propose to use MPEG-2 motion vectors as a basis for obtaining the
motion field. Then, they apply specific rules and filters to obtain a smooth motion
field. In consequence, this alternative is able to work in real-time conditions and
to achieve region-based segmentation.
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Background Modeling

A common approach for identifying the moving objects is background subtraction,
where each video frame is compared against a reference or a background model.
Pixels in the current frame that deviate significantly from the background are
considered to be moving objects. These “foreground” pixels are further processed
for object localization and tracking. In order to distinguish between relevant
changes due to motion of objects or brightness changes, and irrelevant temporal
changes due to noise, the frame difference has to be compared to a threshold
T. The reliable decision, that a spatial position (x,y) belongs to a changed
region, is only possible if the frame difference exceeds this threshold. Basically,
the background model at each pixel location is based on the pixel’s recent history.
In many work, such history is just the previous n frames, or a weighted average
where recent frames have higher weight. The background model is computed as
a chronological average from the pixels history.

Basic methods consider background as the average or the me-
dian [Prati et al., 2003] of the previous n frames. If this method is rather
fast, the memory requirement is n x size(frame). Without no more memory
requirements, background is often modeled as the running average:

Bt—l—l(xvy) :a*ﬂ(a:,y)—l—(l—a)*Bt(az,y) (2'1)

where « is the learning rate typically equals to 0.005, Bi(x,y) is the background
model value at the position (z,y) and at the time ¢, and Fy(z,y) is the current
pixel value at the same position. In order to prevent the background model to
be polluted by foreground pixels, the running average can be achieved with a
selectivity criteria:

ax Fy(x,y) + (1 — a)Bi(x,y) ifFi(x,y)background

Bi(z,y) otherwise (2:2)

Ben(e) = {

Based on a single value, the previous techniques fail to model multiple modal
background distributions. To cope with this issue, probability density functions
(pdf) of the background model can be estimated by fitting one Gaussian distribu-
tion G(u,0) over the histogram [Wren et al., 1997|. In that way, the background
pdf is updated by the running average on p and o. This technique has been
extended to deal with multimodal background histograms by using generalized
Mixture of Gaussians (MoG) [Stauffer and Grimson, 1999] where the number of
modes is arbitrarily pre-defined (usually from three to five). An incremental
expectation-minimization (EM) algorithm is used to learn and update the param-
eters (i ¢, 04 ¢, wiy) of the model, where w;; is the portion of the data accounted
for by the i-th component. If MoG are widely used, the tuning of initial pa-
rameters remains a difficult task. Moreover, depending on the learning rate and
the number of gaussians, MoG faces problems to find the best trade-off between
adaptability to fast variations versus robustness.

To overcome the weaknesses of MoG-based approaches, a non-
parametric approach based on kernel density estimators (KDE) is proposed
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in [Elgammal et al., 2000] and updated in [Mittal and Paragios, 2004]. The
background pdf is given by the histogram of the n most recent pixel values, each
smoothed with a Gaussian kernel. This technique is able to adapt very quickly
to changes in the background model and to detect targets with high sensitivity.
However, this non-parametric approach cannot be used when long-time peri-
ods are needed to sufficiently sample the background due mostly to memory
constraints.

Among the widely-used techniques, we can also cite those based on Kalman
filtering [Wren et al., 1997] and Meanshift estimation [Han et al., 2004]. Another
interesting background subtraction approach is proposed in [Kim et al., 2005]. In
this paper, inspired by Kohonen [Kohonen, 1989| Self-Organizing Map (SOM),
sample background values at each pixel are quantized into codebooks which rep-
resent a compressed form of background model for a long image sequence. The
quantification criteria is based on a color distortion metric together with bright-
ness bounds. The clusters represented by quantized values (called codewords) do
not necessarily correspond to a single Gaussian or other parametric distributions.
The codebook representation has the advantage to be efficient in memory and
speed compared with the previously described approaches. The major problem of
these techniques is that no explicit method is provided to choose the foreground
threshold or to tune the initial parameters. Moreover, no spatial correlation is
used between different (neighboring) pixel locations.

Spatio-temporal Approaches

To address this issue, an integrated region and pixel-based information approach
to background modeling is discussed in [Cristani et al., 2002]. The goal is to com-
bine a region-based static segmentation to a pixel-based motion segmentation in
an adaptive manner in order to better manage sudden changes in background.
In [Seki et al., 2003], the authors exploit the strong correlation of image varia-
tions at neighboring image blocks to narrowly construct their background model.
In [Toyama et al., 1999] a three level background maintenance system is proposed.
The pixel level component performs Wiener filtering to make probabilistic pre-
dictions of the expected background; the region-level component fills in homo-
geneous regions of foreground objects; and the frame-level component detects
sudden, global changes in the image and swaps in better approximations of the
background. If spatio-temporal approaches overperform motion-based approaches
in difficult situations, they are much slower due to the computation time needed
by their spatial segmentation components and are sensitive to key-parameters
tuning.

2.2.4 Discussion

We have reviewed the different families of image sequence segmentation algo-
rithms. A summary with performance comparison is given in Table 2.2. It can
be seen from this table that all robust segmentation algorithms are achieved at
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the cost of high computation complexities. The codebook approach seems to be
well-adapted to cope with both mixture of gaussians and kernel density estima-
tors issues but require a tedious parameter tuning stage to obtain optimal results.
Combining spatial and temporal features is the key-element for improving image
sequence segmentation. However, more research is needed to improve robustness
against environment noise with an acceptable computational cost.

Computation
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0 moti i t blem
i otion detection aperture problem, .
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. simple to
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o0 & 8 implement, fast P P
< able to model parameters tuning,
§ MoG complex fail to model fast medium
= backgrounds variations
= high sensitivity, .
e i e limited by memor .
b KDE quick adaption, yn y high
v . constraints
= non-parametric
an) -
non-parametric, .
Codebooks P parameters tuning low
fast, robust
. meaningful .
Spatio-temporal & slow high

segmented regions

Table 2.2: Comparison between different image sequence segmentation techniques.

2.3 Segmentation Performance Evaluation

Considering the increasing number of segmentation algorithms, the problem of
performance segmentation evaluation becomes a primordial task. Two reasons
motivate this statement: researchers must be able to compare their algorithm
to another ones, and end-users must be able to choose an algorithm depending
on the problem to solve. Usually, segmentation results are visually assessed by
the algorithm’s designer, which only allows subjective and qualitative conclusions
on the algorithm performance. A generic method for the segmentation evaluation
task does not exist, but many approaches have been proposed and can be classified
into two principal classes: unsupervised methods and supervised methods (see
Figure 2.3). The first class gathers the methods which do not require any a
priori knowledge of segmentation results to evaluate. Their principle consists in
estimating empirical criteria based on image statistics. The second class groups
together evaluation methods based on a priori knowledge as a reference segmented
image, usually named a ground truth (GT). A good survey of all these methods
can be found in [Zhang, 1996 and in [Rosenberger et al., 2005].
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Figure 2.3: Segmentation evaluation diagram starting from an input image and returning a
segmentation assessment value.

The first goal of this section is to give a non-exhaustive overview of classical and
popular methods in order to draw their advantages and drawbacks. The ultimate
goal is to show that among the vast number of proposed approaches, some of them
could be applied to reach both a good level of genericity for algorithm performance
comparison and a good level of flexibility to fit the user’s requirements.

2.3.1 Unsupervised Methods
2.3.1.1 Empirical Methods

Empirical methods rely on quantitative criteria from segmented images. Most of
these criteria are established in accordance with the definition of (a good) region-
based segmentation which is based on the inter-region variability and the intra-
region homogeneity. Among the most used and cited methods in the literature,
we present hereafter some of them.

In [Weszka and Rosenfeld, 1978|, the authors proposed an intra-region uni-
formity criterion that quantify the effect of noise to evaluate thresholded images.
Based on the same idea, Levine and Nazif also defined in [Levine and Nazif, 1985|
a criterion that calculates the uniformity of a region characteristic (e.g., gray-level,
color, etc.) based on the variance of this characteristic. Another criterion to mea-
sure the intra-region uniformity was developed by Pal and Pal [Pal and Pal, 1989].
It is based on a thresholding that maximizes the local second-order entropy of re-
gions in the segmentation result. In the case of slightly textured images, these
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criteria of intra-region uniformity prove to be effective and very simple to use.
However, the presence of textures in an image often generates improper results due
to the overinfluence of small regions. Complementary to the intra-region unifor-
mity, Levine and Nazif [Levine and Nazif, 1985| defined a disparity measurement
between two regions to evaluate the dissimilarity of regions in a segmentation
result. Borsotti et al. [Borsotti et al., 1998] identified this limitation of Liu and
Yang’s evaluation criterion |Liu and Yang, 1994| and modified it, so as to more
strictly penalize the segmentation results presenting many small regions as well
as heterogeneous ones. These modifications permit to make the criterion more
sensitive to small variations of the segmentation result. Zeboudj [Zeboudj, 1988|
proposed a measure based on the combined principles of maximum inter-regions
disparity and minimal intra-region disparity measured on a pixel neighborhood.
This criterion has the drawback of not correctly taking into account strongly
textured regions. Considering the types of regions (textured or uniform) in the
segmentation result, Rosenberger presented in [Rosenberger, 1999| a criterion that
enables to estimate the intra-region homogeneity and the inter-regions disparity.
Recently, [Zhang et al., 2004| proposed an objective evaluation metric based on
information theory. The method uses the entropy as the basis for measuring the
uniformity of pixel characteristics (the luminance in the paper) within a segmen-
tation region. However, since entropy is a global measure, it does not consider
local information or incorporate any measure about the shapes of the regions
themselves.

2.3.1.2 Summary

The major advantage of unsupervised methods is that they do not require the
intervention of an expert, just the definition of a metric of quality measure by
the user is needed. Thus, these methods are totally automatic. However, defining
a metric that could match all the segmentation objectives defined by the user
is not a tricky task. Hence, quality measures are at best heuristic, since no
specific knowledge of object(s) to segment is available. In general, the authors
note that such methods are not well-adapted for textured images because the
texture properties and the application are closely linked. Authors also point out
that a bias exists when using these methods for the assessment of algorithms based
on the same technique: for instance, the evaluation of a segmentation algorithm
relying on a criterion of intra-region uniformity with an evaluation metric based
on the same criterion will inevitably produces biased measures. This tends to
consider unsupervised performance evaluation method not very pertinent.

2.3.2 Supervised Methods

Reference segmentations are achieved generally by hand or by generating synthetic
images. In the last case, the ground truth data are objective and precise, in the
contrary of subjective and imprecise hand-made expert drawing. These methods
try to determine how far the actually segmented image is from the reference image
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in a quantitative manner.

2.3.2.1 Region-based Methods

Yasnoff et al. proposed in |Yasnoff et al., 1977| an intuitive set of classification
error measures computed from the pixel-wise class confusion matrix and based on
comparison of both pixel class proportions and spatial distributions. The Vinet’s
distance |[Vinet, 1991] is also a well-known measure. This distance computes a
dissimilarity measure between two segmentations based on the maximal covering
of regions. However, it does not take into account all the information (among oth-
ers the spatial dispersion of pixels). It assumes that two regions can be matched
if they have a maximal number of common pixels. This hypothesis is restrictive
and favors big regions.

2.3.2.2 Edge-based Methods

For edge-based methods, there are three discrepancy measures (under-detection,
over-detection, and localization error) between edge pixels of the segmented im-
age and edge pixels of the ground truth. One of the most used method is
the empirical measure proposed by Pratt |[Pratt et al., 1978] based on the dis-
tance between an edge pixel in the segmented image and the closest one in
the ground truth. This measure is not sensible to under-detection errors and
to erroneous shape but is sensible to over-detection and localization errors.
Odet [Odet and Benoit-Cattin, 2002| proposes an interesting scalable divergence
measure for a multi-scale error evaluation of binary segmentation by using a spa-
tial notion.

2.3.2.3 Multi-objective Methods

[Correia and Pereira, 2000| proposed a method which relies on the evaluation of
each region by verifying several similarity conditions relating to shape, geometric,
edge pixel, and region content statistics. All theses measures are weighted in order
to match with human evaluation results. In the same way, [Mezaris et al., 2003]
proposed an objective evaluation metric which takes into account not only the
accuracy of the boundary localization but also the under and over-segmentation
effects. In [Martin et al., 2004], the authors define an interesting metric based on
global and local consistency between segmentation of different granularity (i.e.
refinement). The correspondence procedure is tolerant to small localization er-
rors and achieve good results in the collection of the Berkeley image database.
In the same way, Cardoso [Cardoso and Corte-Real, 2005] introduces, in a strong
theoretical study, two metrics based on symmetric and asymmetric distances. Ev-
eringham [Everingham et al., 2002], more than defining a new measure, attempts
to aggregate fitness functions using the Pareto front. A solution is said to be
Pareto optimal if it is not dominated by any other solution in the search space.
In complex search spaces wherein an exhaustive search is infeasible, it is very diffi-
cult to guarantee Pareto’s optimality. Therefore, instead of the true set of optimal
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solutions (Pareto Set), one usually aims to derive a set of non-dominated solutions
as possible (Pareto Front) of the Pareto Set. More recently, [Zhang et al., 2006|
proposed a meta-evaluation framework in which any set of base evaluation meth-
ods are combined by a machine learning algorithm that coalesces their evaluations
based on learnt weighted decision trees. The learning component tailors its perfor-
mance to a particular set of images through the training data, which is composed
of a set of examples, each of which includes a raw image, two segmentations, and
a label, provided by a human, indicating which of the segmentations is the best
one. After the labelling of each training image, a decision tree is computed for
each base evaluator. Each internal node in a decision tree is set by considering
different partitions of global image features (e.g., based on the LUV color space,
wavelet coefficient) and segmentation attributes (e.g., number of regions, texture
features, etc.). This method improves the evaluation accuracy compared to the
stand-alone evaluators but it also requires heuristic knowledge of global image
features to extract (which color space, which texture features, etc.?) and thresh-
olds for the tree partitioning. Finally, objective evaluation of video segmentation
quality has also been studied. The main difference with static image segmentation
evaluation is the use of temporal accuracy and stability measures. A good review
can be found in [Correia and Pereira, 2003].

2.3.2.4 Summary

The use of a ground truth is double-edged: it makes this class of methods po-
tentially the most general and the less biased but this also supposes that ground
truth are easily available. From this study, it also clearly appears that multi-
objective methods yield better results than stand-alone methods (edge-based or
region-based). However, the manner to combine measures remains an issue.

2.3.3 Discussion

If we take a look at the number of publications around the segmentation eval-
uation problem, we can see that at present, this number is about one thousand
concerning the segmentation algorithms, one hundred concerning the evaluation
methods, and does not raise ten concerning the comparison of evaluation meth-
ods. If more efforts have been recently put on segmentation evaluation, it is still
difficult to define wide-ranging performance metrics and statistics. Several ex-
planations justify this limitation: (1) no common mathematical model or general
strategy for evaluation is available especially for analytic methods, (2) no sin-
gle evaluation can cover all aspects of segmentation algorithms, (3) appropriate
ground truths are hard to determine objectively. Then, to overcome such lim-
itations, potential research directions may explore methods combining multiple
metrics in an effective manner (e.g., using learning) and methods considering the
final goal of the segmentation.

Research is currently underway in terms of using these metrics as a mean
to optimize parameters within a segmentation algorithm or to select the best
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adapted algorithm. This involves to use an optimization procedure which is also
a challenge in the context of image segmentation. The next section discusses this
issue.

2.4 Segmentation Optimization

In this section, we address the problem of segmentation optimization by means
of algorithm parameter tuning and algorithm selection. We first draw up a back-
ground on optimization techniques, then relate some optimization approaches
used to optimize the segmentation by parameter tuning and algorithm selection.

2.4.1 Background on Optimization Techniques

The basic goal of an optimization process is to systematically find the values of
real or integer variables that minimize or maximize an objective function (see an
example on Figure 2.4). This result is called an optimal solution. There are many
optimization algorithms available (more than four thousands). However, some
methods are only appropriate for certain types of problems. It is important to be
able to recognize the characteristics of a problem and identify an appropriate so-
lution technique. Within each class of problems, there are different minimization
methods, which vary in computational requirements, convergence properties, and
so on. Optimization problems are classified according to the mathematical char-
acteristics of the objective function, the constraints, and the decision variables.
Interesting surveys on optimization techniques can be found in [Fletcher, 1987|
and more recently in [C. A. and P. M., 1996 and [Bliek et al., 2001]. In this sub-
section, we do not intend to draw up a complete review on optimization techniques
but rather to summarize methods with special emphasis on the ones compatible
with our segmentation optimization purpose.

1)

Global minimum

Figure 2.4: Simple unconstrained optimization

The main elements of any optimization problem are:

Variable(s): The variables usually represent tunable free parameters of the prob-
lem. They are not known when the problem starts.
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Objective function: This is the mathematical expression that combines the
variables to express the goal. The objective function will be either maxi-
mized or minimized in order to find the best solution of the problem (see
Figure 2.4).

Constraint(s): In the case of a constrained problem, the constraints are math-
ematical expressions that combine the variables to express limits on the
possible solutions. For example, they may express that the value of the
variable x1 should always be smaller than the variable xs.

Formally, an optimization problem can be described by:
min /max f(z), f:R"—=R, XCR"
zeX

where X = x1,...,2, is a n-dimensional variable and f is the objective smooth
function to minimize/maximize.

The search of function extrema is equivalent to solve a system of n equations
with n variables, linear or not:

of

8;1?(3?1;”';3:”):0 (2.3)

A linear function subject to linear constraints defines a linear programming * (LP)
optimization problem stated in the form:
min{c’z: Az =b, x> 0} (2.4)
zeX
where ¢ € R™ is the cost vector and A € R™™ is the constraint matrix. The
feasible region described by the constraints is a polytope, or Simplex, and at
least one member of the solution set lies at a vertex of this polytope. If the
objective function is not linear, it is a nonlinear programming (NLP) optimization
problem. From the large literature on this subject, we can cite two recent surveys
on LP [Ignizio and Cavalier, 1994| and NLP [Vasaru and Hong, 1996].

Beyond these mathematical considerations, optimization methods are also clas-
sified within some computing restrictions. When users are faced with problems for
which function evaluations are very expensive (i.e. results of complex computer
simulations), and/or it is not appropriate to determine derivatives directly (e.g.,
results from physical measurements), and/or data are noisy (e.g., the calculated
value of f depends on discretization or sampling on a grid) the following strategies
can be considered.

Direct Search Methods

The first, and maybe simplest, is to apply direct search optimization methods.
This term appears in the paper |[Hooke and Jeeves, 1961] but since then, has

'The word “Programming” is used here in the sense of “planning”: the necessary relationship
to computer programming was incidental to the choice of name.
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become a catch-all phrase that is often applied to any optimization method that
does not require an explicit representation of the gradient. Direct search methods
are characterized by the absence of the construction of a model of the objective. In
one hand, when the function to be optimized is smooth and its calculated values
have full precision, a standard option is to use finite-differences (with a small
interval) to obtain derivative estimates that are accurate enough to be treated as
exact gradients in a quasi-Newton method [Gill et al., 1981]. In the other hand,
this brings us to the problems of noise and nonsmoothness. The term non-smooth
optimization is typically used in connection with functions that are discontinuous,
for example, in simulating a system that undergoes a discrete change of state. The
basic logic of the method is depicted in Figure 2.5.

bfs = basic Compute initial
feasable solution bfs solution

Compute a better
adjacent bfs

Figure 2.5: The basic Direct-search logic

The most known and widely used derivative free optimization method is the
Simplex reflection algorithm of Nedler and Mead [Nelder and Mead, 1965] or its
modern variants [Lewis et al., 2000]. The algorithm starts with an initial basic
feasible solution (bfs) and tests its optimality. If some optimality condition is
verified, then the algorithm terminates. Otherwise, the algorithm identifies an
adjacent bfs, with a better objective value. The optimality of this new solution
is tested again, and the entire scheme is repeated, until an optimal bfs is found.
Since every time a new bfs is identified the objective value is improved and the
set of bfs’s is finite, it follows that the algorithm will terminate in a finite number
of steps (iterations).

In the N-dimensional space, a Simplex is a polyhedron with N + 1 vertices.
Starting with an initial Simplex, the method iteratively updates the worst point
by four operations: reflection, expansion, contraction, and shrinkage. Figure 2.6
illustrates these operations in a three-dimensional variable space. Reflection in-
volves moving the worst point (vertice) of the Simplex (where the value of the
objective function is the highest) to a point reflected through the remaining N
points. If this point is better than the best point, then the method attempts to
expand the Simplex along this line. This operation is called expansion. On the
contrary, if the new point is not much better than the previous point, then the
Simplex is contracted along one dimension from the highest point. This proce-
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Xh  highest point
X1 lowest point
Xg centroid of N points

expansion

b

Figure 2.6: Four basic operations in the Simplex method

dure is called contraction. Moreover, if the new point is worse than the previous
points, the Simplex is contracted along all dimensions toward the best point and
steps down the valley. This procedure is called shrinkage. By repeating this series
of operations, the method finds the optimal solution.

We give the notation used to describe formally the algorithm: Let g, be a

starting point in segmentation algorithm parameter space, and let \;;2 =1,...,n
be a set of scales. Let e;,7 = 1,...,n be n orthogonal unit vectors in n-dimensional
variable space, let po,...,p, be (n+ 1) ordered points in n-dimensional variable
space such that their corresponding function values satisfy f, < f1 < ... < [,
let p = >0 01 B he the centroid of the n best (smallest) points, let [p;p;] be
the n-dimensional Euclidean distance from p; to pj, let o = [[ﬁrfj g = % <

1,v = [[ﬁe;]] > 1,0 € [0, 1] be the reflection, contraction, expansion and shrinkage
coefficient, respectively, and let T" be the threshold for the stopping criterion. For
a problem with n control variables, the Nelder-Mead algorithm works as indicated
in Figure 2.7.

Direct search methods and particularly the Simplex algorithm remain popular
because of their simplicity, flexibility, and reliability. That is why they have been
widely applied in contemporary techno-socio-economic applications. The main
weakness of the Simplex algorithm is the requirement of initial parameter values
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‘ Vi=l,...,n,q,=q,+,¢

>/ (p)<f (p)<..<f(p,)

p.=p+a(p—p,)

(Contraction)

(Shrinkage)
= (pi+py)o

Figure 2.7: The Simplex algorithm, with its four operations of reflection, contraction, expansion,
and shrinkage.

for search exploration.

Evolutionary Algorithms

Evolutionary algorithms (EAs) are adaptive heuristic search methods that take
their inspiration from natural selection and survival of the fittest in the biological
world. A good introduction to this area is given in [Aschlock, 2006]. EAs differ
from more traditional optimization techniques in that they involve a search from
a population (called chromosomes or the genotype or the genome) of solutions
(called individuals or phenotypes), not from a single point. Each iteration of an
EA involves a competitive selection that weeds out poor solutions. The solutions
with high fitness are stochastically recombined with other solutions by swapping
parts of a solution with another. Solutions are also mutated by making a small
change to a single element of the solution. Recombination and mutation are used
to generate new solutions that are biased towards regions of the space for which
good solutions have already been seen. Pseudo-code for a genetic algorithm (GA),
which is the most popular type of EA is presented in algorithm 1.

An effective GA representation and meaningful fitness evaluation are the keys
of the success in GA applications. A standard representation of the solution is an
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Algorithm 1: Genetic Algorithm pseudo-code

1: Initialize the population

2: Evaluate the fitness of the initial population members
3: repeat

Select pairs from the population to be parents, with a fitness bias
Copy the parents to make children

Perform cross-over on the children (optional)
Mutate the resulting children (probabilistic)

Place the children in the population

Apply genetic operators to generate new solutions
10:  Evaluate the fitness of the children

11: until some convergence criteria are satisfied

array of bits as string of Os and 1s. The main property that makes these genetic
representations convenient is that they facilitates simple crossover operation. Tra-
ditionally, the initial population is generated randomly, covering the entire range
of possible solutions (the search space). The next operations as selection and
reproduction can be more specific, depending on the nature of the application.
For instance, certain selection methods rate the fitness of each solution and pref-
erentially select the best solutions. Other methods rate only a random sample
of the population, as this process may be very time-consuming. Popular and
well-studied selection methods include roulette wheel selection and tournament
selection. The processes of selection and reproduction ultimately result in the
next generation population of chromosomes that is different from the initial one.
Generally the average fitness will have increased by this procedure, since only the
best organisms from the first generation are selected for breeding, along with a
small proportion of less fit solutions to keep the diversity of the population large,
preventing premature convergence on poor solutions. This generational process
is repeated until a termination condition has been reached. It can be based on
a fixed number of generations, the highest ranking solution’s fitness value or a
combination of the above.

In many problems, GAs may have a tendency to converge towards local optima
or even arbitrary points rather than the global optimum of the problem. This
means that it does not "know how" to sacrifice short-term fitness to gain longer-
term fitness. Obviously, it depends on the shape of the fitness landscape: certain
problems may provide an easy ascent towards a global optimum, others may make
it easier for the function to find the local optima. To alleviate this problem, a
solution is to use different fitness functions, increasing the rate of mutation, or to
apply selection techniques that maintain a diverse population of solutions. To this
end, it can be also quite effective to combine GA with other optimization methods.
For instance, simple hill climbing techniques are quite efficient at finding absolute
optimum in a limited region. Thus, alternating GA and hill climbing can improve
the efficiency of GA while overcoming the lack of robustness of hill climbing.



2.4 Segmentation Optimization 33

Simulated Annealing

Simulated annealing (SA) is a generalization of a Monte Carlo approach for min-
imizing multivariate functions. Monte Carlo approaches are based on random
walks in reference to the Monte Carlo casinos. Simulated annealing is a stochas-
tic search method modeled according to the physical annealing process which
is found in the field of thermodynamics. Annealing refers to the process of a
thermal system initially melting at high temperature and then cooling slowly by
lowering the temperature until it reaches a stable state (ground state), in which
the system has its lowest energy. The sequence of temperatures and the number
of iterations applied to thermalize the system at each temperature comprise an
annealing schedule. |Kirkpatrick et al., 1983 initially proposed an effective con-
nection between simulated annealing and combinatorial optimization, based on
original work by [Metropolis et al., 1953].

To apply simulated annealing, the system is initialized with a particular config-
uration. A new configuration is constructed by imposing a random displacement.
If the energy of this new state is lower than that of the previous one, the change is
accepted unconditionally and the system is updated. If the energy is greater, the
new configuration is accepted probabilistically. This is the Metropolis step, the
fundamental procedure of simulated annealing. This procedure allows the system
to move consistently towards lower energy states, yet still ‘jump’ out of local min-
ima due to the probabilistic acceptance of some upward moves. If the temperature
is decreased logarithmically, simulated annealing guarantees an optimal solution.
A pseudo-code is given in Algorithm 2.

SA’s major advantage over other methods is an ability to avoid becoming
trapped at local minima. The algorithm uses a random search which not only
accepts changes that decrease objective function f, but also some changes that
increase it. The downside to SA is the need to set multiple parameters before
execution: initial temperature, cooling schedule, and halting criteria. Choosing
good parameters is a search task in itself. The initial temperature must be large
enough to allow some freedom to make backward moves, but not too large as to
become totally random exploration of the search space. An exponential cooling
schedule is standard, but by no means necessary. The halting criteria is just as
arbitrary as the initial temperature. Most of these settings require domain-specific
knowledge about the problem to choose appropriate values.

Reinforcement Learning

Reinforcement learning (RL) is the problem faced by an agent that must
learn behavior through trial-and-error interactions with a dynamic environ-
ment [Kaelbling et al., 1996]. There are two main strategies for solving
reinforcement-learning problems. The first is to search in the space of behav-
iors in order to find one that performs well in the environment. The second is to
use statistical techniques and dynamic programming (DP) methods to estimate
the utility of taking actions in states of the world. In the standard reinforce-
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Algorithm 2: Simulated Annealing pseudo-code

1: Select an initial state ¢ € S {S is the search space}

2: Select an initial temperature 7" > 0
3: Set the best state i* <
4: Set temperature change counter ¢ < 0
5: repeat
6:  Set Repetition counter n < 0
T repeat
8: Generate state j = random(S)
9: Calculate 0 f «— f(j) — f(¢) {f is the energy function}
10: if 6f <0 then
11: 1]
12: if (f(¢) < f(i*) then
13: 17—
14: end if
15: else if random(0,1) < exp (—%) then
16: 1]
17: end if
18: n«—n+1
19:  until n = S(t) {S is the cooling schedule function}
20: t—1t+1
21: T« T(t) {T is the temperature decrease function}
22: until stopping criteria true

. return best found solution ¢*

[N}
w

ment learning model (i.e. when RL can be formulated as class of Markov decision
problems), an agent is connected to its environment via perception and action.
This model is schematized in Figure 2.8, on each step of interaction the agent re-
ceives as input some indication of the current state, s, of the environment 7'; the
agent then chooses an action, a, to generate as output. The action changes the
state of the environment, and the value of this state transition is communicated
to the agent through a scalar reinforcement signal, . The agent’s behavior, B,
should choose actions that tend to maximize the long-run sum of values of the
reinforcement signal. It can learn to do this over time by systematic trial and
error, guided by a wide variety of algorithms. The most classical model-free al-
gorithms are temporal-difference learning (T'D) and Q-learning. TD learning is a
combination of Monte Carlo ideas and dynamic programming ideas. Like Monte
Carlo methods, TD methods can learn directly from raw experience without a
model of the environment’s dynamics. Like DP, TD methods update estimates
based in part on other learnt estimates, without waiting for a final outcome (they
bootstrap). The relationship between TD, DP, and Monte Carlo methods is a
recurring theme in the theory of reinforcement learning. A good study of these
approaches can be found in [Sutton and Barto, 1998] and |Kaelbling et al., 1996].

Reinforcement learning differs from the more widely studied problem of
supervised learning in several ways. The most important difference is that there
is no presentation of input/output pairs. Instead, after choosing an action the
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T: environment

B: agent behaviour

R: reinforcement policy
r: reinforcement signal
a: action

s: state

Figure 2.8: The standard reinforcement learning model.

agent is told the immediate reward and the subsequent state, but is not told
which action would has been in its best long-term interests. It is necessary for
the agent to gather useful experience about the possible system states, actions,
transitions and rewards actively to act optimally. Another difference from
supervised learning is that on-line performance is important: the evaluation of
the system is often concurrent with learning.

This section has reviewed several famous optimization methods. Although
this study is non-exhaustive, it will serve to appreciate the following sub-sections
where a state-of-the-art on segmentation optimization is drawn up.

2.4.2 Algorithm Parameter Optimization

In this sub-section, we relate some work dealing with segmentation algorithm
parameter optimization. All the following approaches rely on three independent
components: a segmentation algorithm with its free-parameters to tune, a seg-
mentation quality assessment function and a global optimization algorithm as
seen in Figure 2.9.

Ground Truth*
. yes .
. Segmentation Optimal
Image — Segmentation > Evaluation Parameters
‘ no
Global
Optimization
Updated Segmentation Algorithm
Parameters +
: ised evaluati Algorithm Parameter
in supervised evaluation Space

Figure 2.9: The segmentation parameter optimization framework.

In [Bahnu et al., 1995], an adaptive image segmentation system using genetic
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and hybrid search (GA plus hill climbing) methods for optimal parameter ex-
traction and learning is presented. The system incorporates a feedback loop
consisting of a machine learning subsystem, a segmentation algorithm with two
free-parameters, and an evaluation component which is a weighted combination
of different global and local criteria. Experimental results on outdoor TV imagery
are presented. The main advantage of the approach is that image features and ex-
ternal image variables are represented and manipulated using both numerical and
symbolic forms within the generic knowledge structure. For example, this allows
to construct a multiobjective evaluation function based on image color features
(i.e. numerical values) and environmental factors such as the presence of rain or
fog (symbolic values). Although this interesting approach is described as being
very fundamental in nature, it deserves deeper experiences, i.e. to be tested on
other algorithms and image databases, to fully demonstrate its potential.

Another attempt to control parameter of segmentation algorithms was con-
ducted in [Peng and Bahnu, 1998|. The presented system applies delayed re-
inforcement learning to induce a mapping from input images to corresponding
segmentation parameters. This is accomplished by using the confidence level of
model matching as a reinforcement signal for a set of learning agents to search
the optimal parameters during training. The model is a polygonal representa-
tion of the object of interest and the evaluation process is not achieved at the
segmentation level but at the object recognition level.

In [Mao and Kanungo, 2000], the authors poses the automatic training of a
page segmentation algorithm as an optimization problem. A textline-based per-
formance metric is defined to construct a multivariate non-smooth function to be
minimized with the Simplex algorithm. Starting from randomized initial parame-
ters, the method founds optimal values in accordance with the objective function.
The optimization is performed for the four parameters simultaneously with a num-
ber of function evaluations of 100 in mean. This makes the method suitable for
other applications. Actually, this framework has been successfully applied for the
parameter optimization of a video segmentation algorithm in [Gelasca et al., 2003]
with a different evaluation metric based on objective spatial accuracy of regions.

In [Pignalberi et al., 2003], a genetic algorithm is used to optimize the
parametrization of two range image segmentation. The objective fitness function
is supervised and takes into account two levels of errors (pixel level and surface
level). The tested algorithms have up to ten parameters to tune. Results ob-
tained with the method over-performs the segmentation quality for one algorithm
against default parameters, and reaches similar quality for the other one but with-
out having any knowledge about the nature of the parameters. They have also
proposed an interesting extension of the approach in [Cinque et al., 2002] where
the search strategy combines two techniques in cascade: a genetic algorithm to
obtain a rough seed point set and a simulated annealing to have a more precise
refinement of suitable solutions. They achieve quite similar results but above all
shorten the required number of iterations. However, this implies to finely tune
the SA’s parameters which is a tricky task.
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In [Abdul-Karim et al., 2005], an automated method is presented for selecting
optimal parameter settings for vessel /neurite segmentation algorithms using the
minimum description length principle and a recursive random search (RRS) al-
gorithm. It trades off a probabilistic measure of image-content coverage against
its conciseness. The method is applied to 223 images of human retinas and cul-
tured neurons, using a single algorithm with eight free parameters. Most of the
improvement in segmentation quality occurs in the first hundred iterations of the
RRS. However, the method is not fully automated since the user have to set a
parameter which controls the trade-off between coverage and conciseness.

2.4.3 Algorithm Selection

In this section, we focus on the algorithm selection problem. Here, the goal is not
to find the best parameter setting but rather to find the most suitable algorithm
among several ones for a given segmentation task. Due to the still increasing
number of algorithms, this problem has taken a big interest during the last decade.
Basically, researchers tackle the problem with two different philosophies: model
representation approach versus expert system approach.

In [Xia et al., 2005], Xia et al. make the assumption that the choice of a
segmentation algorithm can be predicted from a global feature vector. In other
words, this means that a relationship between algorithm behaviors and global
image characteristic variations can be easily established. More precisely, they at-
tempt to directly find the best adapted algorithm from image features by means
of learning techniques. Given a training image set and a set of algorithms, seg-
mentation results are evaluated by users within four classes (from worst to best)
used to rank the algorithms. Then a predictor (a support vector machine, SVM)
is trained using as input a feature vector (a gray-level histogram) for each train-
ing image and as output the best ranked segmentation algorithm identifier. In
use mode, the feature vector is computed on the test image then the SVM re-
turns the assessment value for each tested algorithm. This approach is tested
on a synthetic image base (1000 images with various noise levels) and with four
classical unsupervised thresholding algorithms. Results demonstrates the accu-
racy of the proposed algorithm selection model with 85% of correct classifications.
The principal advantage is that this approach does not require (in using mode)
any segmentation evaluation process as in trial-and-errors methods and thus, is
computationally much more efficient. The principal drawback is that the training
process is imitated by the user assessment reliability. The task of visual algorithm
ranking is time-consumming and then hardly conceivable in the case of large image
and algorithm sets. As depicted by the authors, objective performance evalua-
tion criteria (i.e. automatic) should be investigated to free users from the tedious
training stage.

In [Zhang and Luo, 2000|, the authors propose a framework for automatic al-
gorithm selection based on knowledge driven hypothesis-and-test optimization
model. An expert system is designed to use evaluation knowledge, heuristic
knowledge, and high-level knowledge to segment an image with the best adapted
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segmentation algorithm. The knowledge base is constructed by extracting basic
segmentation assessment criteria from comparison between segmentation results
and synthetic image models. Another type of knowledge, called high-level knowl-
edge is also incorporated into the base. It refers to a priori restrictions about
domain dependent object features (e.g., object’s size, shape, etc.). Based on such
knowledge, three generic frame types are used in a blackboard representation: re-
quest frame for input and output data estimation and measurements, target frame
for control operator choice and evaluation, and operator frame for the parameter
initialization and operator adjustment. Tests are conducted on various simple
biological images with classical thresholding algorithms. However, few details
are given concerning the evaluation metric and the degree of domain dependent
knowledge used for the experimentation. Moreover, the difficulty to model seg-
mentation knowledge into production rules, makes this approach unsuitable for
sophisticated algorithms.

Globally, the two approaches rely on strong hypothesis concerning their field
of applications: variations between images must be easy to model, algorithm be-
haviors within the images must be well-established, and high-level knowledge of
objects to segment must be provided as a key-element of the performance evalua-
tion. Actually, the lack of theory on segmentation rules out these approaches to be
universally applicable. Indeed, application domains with image variations difficult
to model disable the model representation approach, and the expensive knowledge
acquisition task needed to build expert systems limits their applicability.

2.4.4 Discussion

Researchers have experienced many segmentation optimization approaches during
the last decade. Almost all of the free derivative optimization techniques have
been tested. In the worst case, results of optimized segmentations are equivalent
to the ones obtained with default parameters. In most of the cases, segmenta-
tion quality is improved and time spent to tune algorithms is drastically reduced.
The authors present their frameworks as generic by nature and then widely ap-
plicable. This affirmation is well-founded in an analytical point of view since the
three main components are considered separately. Nonetheless, each described
framework has been set up for a particular segmentation task where the fitness
function has been specifically elaborated for the application using implicit do-
main knowledge. Thereby, it has not be proved how the fitness function can
affect the performance of the optimization. Moreover, if authors have often as-
sessed their optimization methods against default segmentations, they did not
make any quantitative evaluation regarding to other optimization techniques. A
comparative study of optimization algorithms has to be done. Concerning the
algorithm selection problem, the model representation approach appears to be
more realistic in a computing point of view as compared to expert systems. How-
ever, the learning framework based on image statistics seems too brittle for the
majority of applications where variations between images are difficult to model.
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2.5 Conclusion

In this chapter, we have reviewed the segmentation task in the field of computer
vision systems. If researchers agree that segmentation is one of the fundamental
problem in computer vision, the efforts devoted to cope with this issue since the
last four decades have still not led to a unified solution. Most of the vision sys-
tems are application dependent and their segmentation step is based on heuristic
rules for, as example, the tuning of algorithm parameters. It is, however, well-
established that such a priori knowledge is determined by domain experts from
the context in which the segmentation takes place. Hence, the generalization to
other domain of application is strongly limited. Nonetheless, it appears that the
recent cognitive vision approach [ECVISION, 2005] has identified some avenues
of researches to cope with these limitations, as integration of machine learning
techniques into the knowledge acquisition task.

The non-uniqueness solution of the segmentation problem has also been ex-
posed through the review of principal existing segmentation techniques (for both
static and sequence of images) drawn in section 2.2. From pure low-level ap-
proaches to elaborated multi-cues object-based frameworks, none of them is able
to provide a complete solution to general segmentation purposes without making
some assumptions. Particularly, we can highlight two recurrent issues: first, the
quality of the final results relies on the tuning of key-parameters, almost all algo-
rithms; and second, the lack of direct algorithm comparison possibilities, like the
availability of source code or generalized standard testbeds makes the problem
even worse.

In section 2.3, a study on the segmentation performance evaluation problem,
as a primordial task for algorithm comparison, is presented. The lack of general
theory on segmentation has also induced a plethora of techniques for assessing
the performance of segmentation algorithms. In one hand, supervised approaches
suffer from the subjectivity of manual segmentations. In the other hand, unsu-
pervised approaches are either designed for a specific application, or too generic
to consider the final goal of the segmentation. The most promising approaches
are propably the co-evaluation frameworks [Zhang et al., 2006| which attempt to
coalesce different basic evaluation methods in order to build a goal-adapted fitness
function.

The section 2.4 has explored the segmentation tuning paradigm. To opti-
mize the segmentation parametrization, researchers have developed several op-
timization frameworks mainly based around three independent components: a
segmentation algorithm, a performance evaluation function, and an optimization
algorithm. All the authors argue that their frameworks are generic and could
be applied to wide range of applications and algorithms. To rule on the generic
nature of the optimization framework, a deeper analysis of the impact of both
the chosen performance evaluation metric and the optimization algorithm on the
results is yet needed.
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Chapter 3

Approach Overview

3.1 Introduction

In this chapter, we present an overview of our cognitive vision approach to image
and video segmentation. We have defined in chapter 1 the expectations of the
segmentation task in computer vision systems (algorithm selection and tuning,
context adaptation). We have seen in chapter 2 that these challenging issues have
been tackled by many different approaches. Our goal is to propose a methodology
that takes the best of each approach.

In the context of cognitive vision, we propose a framework with a reusability
property to ease the set up of the segmentation task in vision systems. More pre-
cisely, our framework does not require image segmentation skills: the complexity
of this tricky task is hidden by means of automatic algorithm parameter tun-
ing and segmentation assessment. Moreover, the acquisition of the segmentation
knowledge is made convenient by user-friendly interactivity.

The second property of cognitive vision we are aiming at is the property of
genericity. In our framework, the different components are not application-
dependent. Consequently, this framework can be used with different segmentation
algorithms and for different real-world applications. In this chapter, we describe
the framework for adaptive image segmentation and adaptive video segmentation.

Another property of our framework is its adaptation faculty to image content
and to application needs. To this end, we use learning techniques for dynamic
algorithm selection and parameter tuning.

The following sections focus on the proposed methodology. The detailed de-
scription and analysis of our solutions will be the topics of the three next chapters.

3.2 The Proposed Approach

Our approach is composed of two modules: a supervised learning module where
knowledge of the segmentation problem is extracted and f from training data, and
a second module where this knowledge is dynamically used to perform an adaptive
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segmentation of new images. This approach can be applied to image segmentation
tasks (section 3.2.2) and to video segmentation tasks (section 3.2.3).

3.2.1 Hypotheses

Our approach makes some hypotheses concerning the segmentation algorithms
and the training data:

e Segmentation algorithms: we suppose that the free parameters of the seg-
mentation algorithms are known as well as their range values.

e Training image set: we suppose that training images are available and rep-
resentative of the expected situations.

e Ground truth data: the supervised learning stage uses two kinds of ground
truth data: manual segmentations and semantic region labels. A manual
segmentation represents the expected final result. We suppose that the
user is able to provide such manual segmentations for all of the training
images. Region labels help to refine a segmented image into a semantically
meaningful result. The user’s task is thus to annotate some training samples
(i.e. regions of the manual segmentations) in accordance with its needs.

3.2.2 A Framework for Adaptive Image Segmentation

Our proposed approach relies on two segmentation frameworks: a parameter op-
timization framework and a region-based classification one. The first framework
aims to optimize bottom-up image segmentation by controlling of the algorithm
selection and parametrization. The second framework relies on high-level seg-
mentation knowledge (i.e. semantic region labels) to refine the segmentation in
a top-down process. The goal is to train region classifiers w.r.t. the annotated
manual segmentations of the training images. The learning module of the frame-
work is sketched in Figure 3.1. It consists in building a segmentation knowledge
base.
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Segmentation Learnt Algo
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(__Algorithms _J
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S e —
Ground Truth : Trained Region
Data Classifiers

Figure 3.1: The learning module schema of the proposed framework for adaptive image segmen-
tation.
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The originality of our approach is to combine these two frameworks in a comple-
mentary manner: in a first step, segmentation is optimized by dynamic algorithm
selection and parameter tuning. Then, the bottom-up segmentation is refined
thanks to region labelling to achieve the expected semantic segmentation. We de-
scribe below the different steps of the learning module: segmentation parameter
tuning, algorithm selection, and semantic image segmentation.

3.2.2.1 Learning for Segmentation Parameter Tuning

Our framework is able to optimize several free parameters of a segmentation
algorithm w.r.t. the parameter space bounds. The optimization procedure is not
embedded into the segmentation algorithm so as to be independent of its internal
mechanisms. Segmentation performance is evaluated using a global measure of
the segmentation quality. To this end, manual segmentation of training images is
used to assess segmentation errors. The definition of the performance evaluation
metric is thus a key-element of the procedure. We use a boundary pixel-based
metric which rates the missed and false detected region boundary pixels against
manual segmentation results. Then, a global optimization algorithm explores
the parameter space of the segmentation algorithm driven by the segmentation
assessment, as sketched in Figure 3.2. At the end of the process, for each training
image and for each segmentation algorithm, an optimal parameter set and the
corresponding final assessment value are returned. The main advantage of this
procedure is that the search process is independent of both the segmentation
algorithm and the application domain. Therefore, it can be systematically applied
to automatically extract optimal segmentation algorithm parameters. To enforce
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* Optimal
Parameters
Training . Segmentation +
—» Segmentation . Final
Image Evaluation segmentation

assessment

value

Global
Updated Segmentation Optlml;atlon
P Algorithm
arameters

Algorithm Parameter
Space

Figure 3.2: Proposed segmentation parameter optimization framework. Input and output are
in bold font.

the relevance of our approach, we have tested it on several configurations including
different optimization algorithms.
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3.2.2.2 Learning to Select a Segmentation Algorithm

In our approach, the selection of a segmentation algorithm is free of a priori knowl-
edge of algorithm properties. The different algorithms are compared according
to the segmentation quality. Obviously, getting a fair comparison involves that
each algorithm has been optimized beforehand. This step thus follows the param-
eter tuning step. Segmentation is very sensitive to image variations. Hence, the
selection (and tuning) of an algorithm must be dynamically fitted to different sit-
uations (e.g., different lighting conditions), that we called contexts. This selection
emphasizes the need of context modelling. We tackle this problem by performing
an unsupervised clustering of the training images based on an analysis of global
image characteristics like color variations. At the end of the clustering process,
each cluster gathers training images sharing similar global features, i.e. images of
the same context. This process is shown in Figure 3.3.

Trainin Global Unsupervised Clusters of
Ima eg Feature —>»  Clustering > Training
Setg Extraction Algorithm Images

Figure 3.3: Training image set clustering based on image-content analysis. Input and output
are in bold font.

Then, by ranking the final performance scores of the different candidate seg-
mentation algorithms, we can select the one which performs the best segmentation
for each cluster. Finally, for each cluster we associate a context identifier with
a segmentation configuration, i.e. the best ranked algorithm tuned with a mean
parameter set computed from optimal values (see Figure 3.4).
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Figure 3.4: Learning schema for algorithm selection. Input and output are in bold font.

In the adaptive segmentation stage, the selection of an algorithm is only based
on the image-content analysis. So, the main advantage of this approach is that
the algorithm selection does not need to perform any segmentation, it is an a
priori decision.
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3.2.2.3 Learning for Semantic Image Segmentation

The last step of our framework consists in learning the mapping between high
level knowledge of the segmentation task (i.e. expected region labels) and region
characteristics (i.e. region features) as sketched in Figure 3.5. The main objec-
tive of this approach is to reach a semantically meaningful segmentation from an
initial optimized pixel-based segmentation. The user first defines a set of classes
according to the segmentation goal (e.g. background, foreground, object of interest
#1, object of interest #2, etc.). This set is used to annotate regions of the manual
segmentations. Then, for each training image, the regions of the previously op-
timized segmentations are automatically annotated according to the annotations
of the manual segmentation. The goal is to train region classifiers in order to
improve the quality of the segmentation by providing a semantic segmentation.
Based on region features (e.g., color distribution, texture features), a region clas-
sifier returns a predicate on the region label with probability estimates. The class
with the best estimated probability is returned.
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Figure 3.5: Proposed region classifier training schema. Input and output are in bold font.
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3.2.2.4 Adaptive Image Segmentation

Segmentating a new image (i.e. not belonging to the training set) is achieved by
the adaptive segmentation module in four steps (see Figure 3.6) using the seg-
mentation knowledge base (learnt clusters of training images, learnt parameters,
and trained region classifiers):

1. Context Identification: a global feature vector is extracted from the im-
age. The feature vector is classified among the previously identified clusters.
The classification is based by assessing the distance of the feature vector to
the cluster centers.

2. Algorithm selection: from the identified context, the corresponding seg-
mentation algorithm with learnt parameters is selected.

3. Segmentation: the image is segmented using the selected algorithm. This
algorithm is tuned with the learnt parameters specific to the identified con-
text.

4. Region labelling: for each region of the segmented image, features are
extracted and given as input to the region classifiers. The most probable
label is assigned to the region. The final labelled partition representing the
semantic segmentation of the image is returned to the user.
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Figure 3.6: Adaptive segmentation of an input image based on algorithm selection, parameter
tuning, and region labelling.

3.2.3 Adaptive Video Segmentation

In this task, the goal is to detect moving objects (e.g. a person) in the field of view
of a fixed video camera. Detection is usually carried out by background modelling
methods. In this situation, annotations of the different classes of foreground
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objects are useless. Only background is modeled. Consequently, the semantic
image segmentation step of our framework described in section 3.2.2.3 is not used.

Video segmentation algorithms can be decomposed into two classes: algorithms
which rely on a training stage for background modelling (e.g., mixture of Gaus-
sians or codebook models) and others (e.g., optical flow, running average). In the
first case, the quality of segmentation mostly depends on the quality of the back-
ground model training. In the second case, it mostly depends on the parametriza-
tion of some key paremeters, such as the detection threshold. The learning step
of our framework for parameter tuning could be used to learn the parametrization
of such algorithms. However, this implies to manually segment a lot of training
samples with foreground objects. We prefer to spare the user this tedious task and
we focus more on the learning-based video segmentation algorithms. In this case,
strong efforts have been done to cope with quick-illumination changes or long
term changes, but coping with both problems altogether remains an open issue.
For this task, we propose an approach for dynamic background model selection
based on context analysis.

Our approach is based on a preliminary weakly supervised learning module (see
Figure 3.7) during which the knowledge about context variations is acquired. The
role of the user is limited to establish a training image set composed of background
samples that point out context variations. The clustering process of the training
image set is the same as the one described in Figure 3.3.
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Knowledge Base
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(background Module
images) —
Background

Models

Figure 3.7: The learning module in video segmentation task.

Here, the goal of clustering is to make the background modelling task more re-
liable by restricting the model parameter space. This approach is particularly
interesting for motion segmentation algorithms relying on a training stage of
models as mixture of Gaussians [Stauffer and Grimson, 1999] or codebook mod-
els [Kim et al., 2005].

For a new input image, global features are first extracted; then, a background
model is selected and figure-ground segmentation is performed. A temporal con-
text filtering step is applied before segmentation to prevent from incoming erro-
neous context identification as sketched in Figure 3.8.
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Figure 3.8: Adaptive figure-ground segmentation schema based on context identification and
background model selection.

3.3 Conclusion

This chapter has given an overview of our cognitive vision approach to image and
video segmentation. We have presented a methodology which aims at endowing
the segmentation task of vision systems with reusability, convenience, gener-
icity, and adaptation faculties. The proposed framework can be applied for both
image and video segmentation tasks. Our approach mainly relies on supervised
learning techniques for segmentation algorithm selection and parameter tuning
according to users’ needs and image contents. Training data, composed of repre-
sentative image samples with their manual segmentation and region annotations
are requested from the users. The main contribution of our approach to adaptive
image segmentation is to combine, in a general scheme, a bottom-up approach for
parameter tuning and algorithm ranking with a top-down approach for semantic
image segmentation. Our framework can also be used for video segmentation.
However, we propose an alternative learning module based on weak supervision,
more appropriate to video segmentation tasks. Our main contribution is at the
level of background model selection. Our approach enables to control the selection
of different background models by image content analysis.



Chapter 4

A Framework for Adaptive Image
Segmentation

4.1 Introduction

In this chapter, we detail our framework for adaptive image segmentation intro-
duced in Chapter 3. The framework is composed of two modules: a learning
module dedicated to extract and learn segmentation knowledge for algorithm se-
lection, parameter tuning, and semantic segmentation; a module for adaptive
image segmentation relying on the learnt segmentation knowledge.

The first section of the chapter focuses on the learning for segmentation param-
eter tuning. We describe our performance evaluation metric for the segmentation
quality assessment and our optimization procedure. We also discuss the choice
of the optimization algorithm. The second section deals with our strategy for
learning to select a segmentation algorithm based on image-content analysis and
algorithm ranking. The third section is devoted to the description of our learning
approach for semantic image segmentation. The goal is to train region classifiers
to improve the segmentation quality and provide a semantic segmentation. The
last section describe the adaptive segmentation of new images based on the learnt
segmentation knowledge.

4.2 Learning for Segmentation Parameter Tuning

In this section, we detail our parameter optimization procedure. The goal is
to optimize the parametrization of segmentation algorithms according to ground
truth segmentations of training images. For this task, the user must provide:

1. Manual segmentations of the training images with closed outlined regions.

2. Segmentation algorithms with their free parameters, i.e. the sensitive pa-
rameters to be tuned, as well as their range values. This kind of knowledge
is often given by the algorithm’s author.
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4.2.1 Formalization of the Optimization Problem

Let I be an image of the training image set Z, G be its ground truth (e.g. manual
segmentation), A be a segmentation algorithm and p# a vector of parameters for
the algorithm A. The segmentation of I with algorithm A is defined as A(I, p?).
We define the segmentation quality E}‘l with the assessment function p as follows:

B = p (A(1,p™), G1) (4.1)

The value Ef‘ is an assessment value of the matching between the segmentation
when using algorithm A and the ground truth. This can be a goodness measure
or a discrepancy measure.

The purpose of our optimization procedure is to determine a set of parameter
values 1?)’14 which minimizes/maximizes p:

p# = argmin / max p (A1, p?), Gr) (4.2)
pA

The final assessment value Ef‘ and the optimal parameter set 15‘;1 make a pair sam-
ple noted (f)jf‘, E’f) This pair forms the segmentation knowledge for the image I
and the algorithm A. The set of all collected pairs constitutes the segmentation
knowledge set S such that:

s=J (p;‘,}«j;‘) (4.3)

IeT

One key-point of this optimization procedure is the definition of the assessment
function p. The quality of the final result varies according to this fitness function.
So the choice of a segmentation performance evaluation metric is fundamental. It
is discussed in the next section.

4.2.2 Definition of the Segmentation Performance Evaluation
Metric

As stated in section 2.3, it is not obvious to select a performance evaluation metric
because no single metric can cover all aspects of segmentation algorithms. We
propose to use a boundary-based metric and evaluates the segmentation in terms
of both localization accuracy and the shape accuracy of the extracted regions.
The biggest advantage of boundary-based metrics against region-based metrics is
their lower computational cost. It is always faster to count and compare some
boundary pixels than a lot of region pixels.

The region boundary set for the ground truth and for the segmentation result
are noted BIG and Bf‘ respectively. Two types of errors are considered: missing

boundary rate eZ and false boundary rate 6}3. The former, eB, specifies the

percentage of the points on BIG that are mistakenly classified as non-boundary
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points; while the latter, e?, indicates the percentage of the points in Bf‘ that are
actually false alarms. Therefore,

5 _ T
" IBF

s |12

and e7 = ———
T B

(4.4)

where
Ty ={x | (x € BY) A (2 ¢ Bf')}

4.5
and T2={$|($€B}4)/\(33¢BIG)} )

and |.| is the cardinal operator. We define the segmentation quality Ef‘ with the
assessment function p as follows:

1
Ef = p(Bf, BY) = 5 (em +ef) (4.6)

with E4t € [0,1]. The value E4 = 0 indicates perfect boundary pixel matching
between the segmentation result and the ground truth when using algorithm A.
The value Ef‘ = 1 indicates that all pixels are misclassified. However, it is easy to
show that this metric comes up against unadapted response to under-segmented
results, as illustrated in Figure 4.1. Segmentation in panel (a) shows two regions
with a quite good ground truth overlap, only three pixels are misclassified. In the
panel (b), the segmentation shows only one region and the quality score is logically
less than in (a). In the last panel (c), two regions are present but the center region
badly overlaps the corresponding ground truth center region. In opposition with
visual assessment, the segmentation quality is worst than in Figure 4.1(c).

The metric is improved by introducing two weighting terms w? and w? which
quantify the average distance between misclassified points to the ground truth
boundary such that:

1

B . SA

W,, = —— g dist (z, % 4.7
with 5:1‘1 the closest pixel to x belonging to B’IA7 and

1 , P
w}g = T3] Z dist (x, £7) (4.8)
z€TH

with 2§ the closest pixel to = belonging to BY. dist(x1,72) is the euclidean
distance between two pixels x;(u,v) and za(u,v) in a 4-neighborhood such that:

dist(z1,22) =/ (21(1) — 22())? + (1 (0) — 22(v))? (4.9)

Since w}B and wﬁ have no fixed upper bounds, the normalization factor is

useless and the segmentation quality measure becomes:

A B B B B
£y = W, X €, wy X ey

+

(4.10)
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Figure 4.1: Limitation of the segmentation evaluation metric when weighting terms (w2 and

w7 are not used.

The search of 55‘14 (resp. i"?) is made easier by the use of a distance

map [Maurer et al., 2003] computed from Bf‘ (resp. BY). This operation is

exemplified in Figure 4.2.
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Figure 4.2: An example of a distance map from a binary contour segmentation.

By taking back the example in Figure 4.1 with the new definition of the eval-
uation metric, the values of E{! for the cases (a), (b), and (c) are respectively
0.168, 0.75, and 0.679, yielding a good correlation with a visual assessment.

Once our performance evaluation metric is defined, the goal is now to minimize
the segmentation error Ef‘ in order to learn optimal segmentation parameters.
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This is the role of our closed-loop global optimization procedure.

4.2.3 Choice of the Optimization Algorithm

Of primary importance in this optimization procedure is finding an optimal seg-
mentation parameter setting 1?)’14 for each I € Z. We also aims at providing a
good evaluation study of the tested optimization techniques in terms of perfor-
mance versus computational cost and parameter setting. In the family of free
derivative techniques, we propose the following criteria to assess the optimization
algorithms:

1. Since the segmentation of an image is the most expensive process in the
optimization loop, the number of maximum segmentation algorithm calls
might be set as a parameter. Indeed, even if the ultimate goal of an op-
timization procedureis to find a global optimum, the computational cost
should remain realistic.

2. The optimization algorithm must be able to converge whatever the evalu-
ation profile, i.e. robust enough to find (quasi-)global optimum of various
non-smooth functions.

3. The final quality of the optimization procedure should no be too depen-
dent of the tuning of the optimization algorithm parameters, whatever the
segmentationalgorithm.

We have seen in our survey (see section 2.4.2) that several optimization techniques
have been applied to tackle the segmentation optimization problem. Although all
of them are suitable with our problem, no comparative study exists to help us in
our choice. Thus, we have decided to focus on two techniques which are worth
being compared. The first one is the Simplex algorithm [Nelder and Mead, 1965]
and the second is a standard genetic algorithm [Goldberg, 1989]| using non-
overlapping populations and optional elitism. In one hand, simplex is easy to use,
fast to converge, but requires to define a initializing strategy (starting point(s) and
starting step) and do not guarantee to find a global optimum. In an other hand,
genetic algorithms are robust but are slower to converge and their parameters
must be set carefully. Table 4.1 summarizes the set up of these two algorithms.

4.2.4 Discussion

In this section, we have presented our approach for learning the parametrization
of segmentation algorithms. Our optimization procedure relies on three indepen-
dent components: a segmentation algorithm, a performance evaluation metric,
and an optimization algorithm. The goal is to find a parameter set to achieve a
segmentation as closed as possible to the ground truth segmentation. We have de-
fined a supervised quantitative evaluation metric assessing the matching between
the segmentation result and the manual segmentation. This metric is broadly
usable since it mainly relies on generic concepts (false and missed boundary pixel
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Most significant parameters to tune

Simplex (see Figure ?7) Genetic Algorithm

starting values: p“(to) initial population size

starting step values: p?(to + 1) initial number of generations

e ending criteria = f(max nb of calls, T e number of generations to convergence
e simplex coefficients («, 3, v, 0) e cross-over probability rate
e maximum number of calls e mutation probability rate

Table 4.1: Optimization algorithm parameters.

rates). The simplex algorithm and a genetic algorithm are preferred to solve the
optimization problem for their ability to optimize a large spectrum of non-smooth
functions. The main difficulty lies in finding the right parametrization of these al-
gorithms to prevent from excessive computation time or weak performance. This
point will be a part of our evaluation study in the next chapter.

After all pair samples (f)?, Ef‘) have been extracted for all segmentation algo-
rithms to test, the next step is to select and tune the one(s) which will be learnt.
The following section discusses our selection strategy.

4.3 Learning to Select a Segmentation Algorithm

The previous parameter optimization step allows us to objectively compare the
segmentation algorithms with regards to their best performance scores E}‘l. A
straightforward strategy for the selection of an algorithm is thus to take the
first best. Nevertheless, the problem becomes more difficult when the training
images are heterogeneous, due for instance to global or local variations in the
background. In this case, one segmentation algorithm could be the best adapted
for the segmentation of a training image subset and another one for another subset.
We propose to tackle this problem by associating one algorithm per subset. More
precisely, we first identify the different subsets from the whole training image
set and then rank the segmentation algorithms for each identified subset. The
next two sections details this twofold strategy based on algorithm ranking and
image-content analysis.

4.3.1 A Selection Strategy Based on Algorithm Ranking

A first strategy to the algorithm selection problem is to perform a global ranking of
the algorithms and to select the best one. Let us illustrate it with a toy example as
in Figure 4.3. The graph on the left represents the performance of three optimized
segmentation algorithms applied on five different images. The best segmentation
quality corresponds to F& = 0. In this example, the best algorithm is the one
performing the best average performance on the image set, i.e. the algorithm 3
with a mean score of 2.6.
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Figure 4.3: Algorithm selection in a toy problem with five images and three segmentation
algorithms. The values of the table correspond to the segmentation quality E7.

For each algorithm, a mean parameter set p” is computed as follows:
1
—A A A
pt = — p (4.11)
Z4| Z 1

where 74 is the set of training images for which the algorithm A has obtained
the best evaluation results among the other algorithms. Then, for each training
image and each algorithm A tuned with p?, the segmentation quality is computed
again. The algorithm having the best average performance on the training image
set is finally selected.

This selection strategy comes to select the robustest algorithm based on ob-
jective comparisons, i.e. the algorithm which can deliver the best results for the
training image set with a globally relevant parameter set. However, this straight-
forward ranking approach has two major drawbacks. First, by selecting only
one algorithm and averaging its parameters, it reduces the previously extracted
segmentation knowledge amount to one mean case. Second, even if the selected
algorithm overperforms the others in most of the cases, the parameter averaging
can have disastrous effects on the algorithm performance. Such a situation is
illustrated in Figure 4.4. Let us consider two images composing 74, i.e. I3 and
I;. On the two graphs, we show their evaluation profiles (i.e. the drawing of the
evaluation fitness functions) with two different possible shapes for I3. For simplic-
ity, we suppose that p“ is reduced to one parameter (i.e. 1D profile). It is easy
to understand that averaging optimized parameters in the left graph will weaken
the algorithm performance for both images I3 and I;. In the graph on the right,
the averaging is less problematic since the profile shapes are more correlated.

Finally, ranking algorithms and computing a mean parameter set is reliable
under the following assumptions:

e The selected algorithm is robust enough to provide good results over the
whole image set.
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Figure 4.4: Consequence of parameter averaging in different evaluation profile cases.

e The evaluation profiles of the images must be quite good correlated to make
the parameter averaging plausible.

Depending on the application and the segmentation algorithms, these assumptions
are more or less reasonable. That is why we also propose to select the algorithm
depending on the image contents.

4.3.2 An Algorithm Selection Approach Based on Image-
Content Analysis

The second part of our strategy for algorithm selection is to tackle the problem
a priori of the segmentation. In this case, the goal is not to directly select the
algorithm depending on its relative performance evaluation but depending on the
image to segment. Usually, variations between images lead to a variability in
the segmentation. As a consequence, similar images should be segmented with
the same algorithm and different images should be segmented with different algo-
rithms or different parameter setting. These variations can be induced by changes
in background appearance, changes in illumination source, changes in imagery de-
vice configuration and so on. The goal is to identify the different situations leading
to different segmentation configurations. To this end, we define the context of an
image as the quantitative representation of its local and global characteristics.
Practically, the context is described by a d-dimensional feature vector v(I) ex-
tracted from the whole image (e.g., a color histograms). The algorithm selection
problem can be formalized as follows:

f:RT— S

4.12
v(I) — (A, p?) 41
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However, it is impossible to continuously predict the algorithm behavior according
to image variations and therefore the function f cannot be seen as a regression
model. Our approach is to tackle this modelling problem by applying an unsu-
pervised clustering of the training images to identify the different contexts, i.e.
clusters of images having similar feature vectors.

In our experiments, we have used a Density-Based Spatial clustering algorithm
called DBScan proposed by Ester et al. [Ester et al., 1996]. This algorithm is well-
adapted for clustering noisy data of arbitrary shape in high-dimensional space as
histograms. Starting from one point, the algorithm searches for similar points in
its neighborhood based on a density criteria to manage noisy data. Non clustered
points are considered as ‘noise’ points. The runtime of the algorithm is of the
order O(nlogn) with n the dimension of the input space. DBSCAN requires only
one critical input parameter, the Eps-neighborhood, and supports the user in
determining an appropriate value for it. A low value will raises to many small
clusters and may also classify a lot of points as noisy points, a high value prevents
from noisy point detection but produces few clusters. A good value would be the
density of the least dense cluster. But it is very hard to get this information on
advance. Normally one does not know the distribution of the points in the space.
If no cluster is found, all points are marked as noise. In our approach, we set
this parameter so as to have at the most 15% of the training images classified as
‘noise’ data.

We denote k a cluster of training images belonging to the same context . The
set of the n clusters is noted K = {k1,...,k,} and the corresponding context set
O ={61,...,0,}. Once the clustering is done, clusters are learnt. Then, for each
cluster (i.e. images of the same context), segmentation algorithms are ranked and
the best one is learnt by following the same strategy as described in section 4.3.1.
We obtain a discrete function f taking a context identifier 6 as input and returning
an algorithm A with a mean parameter setting p* such as:

f:©6—S8

0 (A5 (4.13)

The principal purpose of this strategy is to overcome the drawbacks of the pure
global ranking strategy by dividing the solution space S and by restricting the
ranking process onto each subspace. The main advantage on ranking algorithms
inside a subspace is that evaluation profiles are likely more correlated.

4.3.3 Summary

In this section, we have shown that the algorithm selection problem cannot be
separated from the parameter tuning problem. This statement means that a so-
lution to the algorithm selection issue is composed of both an algorithm and a
parameter setting. We have described our twofold strategy for learning the algo-
rithm selection based on algorithm ranking and image-content analysis. Starting
from a training image set and segmentation algorithms, our approach first iden-
tifies different situations based on image-content analysis, then select the best
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algorithm with a mean parameter set for each identified context based on opti-
mized parameter values. At the end of the learning process, contexts are learnt
with their associated pairs (A4, p™).

The next step is devoted to semantic image segmentation.

4.4 Learning for Semantic Image Segmentation

In this section, we propose an approach for semantic image segmentation based
on high-level knowledge acquisition and learning. Fven if the segmentation is
optimized, low-level segmentation algorithms cannot reach a semantic partition-
ing of the image. Thus, compared to the ground truth, some regions remain
over-segmented, as illustrated in Figure 4.5. If we can assign the right label to
each region, neighboring regions with similar labels are merged and, as a con-
sequence, the residual over-segmentation becomes invisible. This means to be
able to map region features onto a symbolic concept, i.e. a class label. We
use the example-based modelling approach as an implicit representation of the
low-level knowledge. This approach has been applied successfully in many ap-
plications such as detection and segmentation of objects from specific classes
(e.g., [Schnitman et al., 2006, Borenstein and Malik, 2006]). Starting from repre-
sentative patch-based samples of objects (e.g., fragments), modelling techniques
(e.g., mixture of Gaussian, neural networks, naive Bayes classifiers) are imple-
mented to obtain codebooks or class-specific detectors for the segmentation of
images. Our strategy follows this implicit knowledge representation and asso-
ciates it with machine learning techniques to train region classifiers. The following
sub-sections describe this stage in details.

4.4.1 Class Knowledge Acquisition by Region Annotations

In our case, region annotations represent the high-level information. This ap-
proach assumes that the user is able to gather, in a first step, a representative set
of manually segmented training images, i.e. a set that illustrates the variability of
object characteristics which may be found. Then, the user must define a domain
class dictionary composed of k classes as Y = {y1,...,yr}. This dictionary must
be designed according to the problem objectives. For instance, y;— background
class, yo= object class #1, etc. Once ) is defined, the user is invited, in a super-
vised stage, to label the regions of the manually segmented images with respect
to ). From a practical point of view, an annotation is done with the help of a
graphical user interface we have developed. This tool allows to interact with a
region-based segmentation of an image by clicking into a region r and by selecting
the desired class label y (see Figure 4.6).

At the end of the annotation task, we obtain a list of labeled ground truth
regions which belong to classes defined by the user. Since the segmentation result
is not exactly the same than the manual segmentation, the next step is to map,
for each training image, the labels of ground truth regions onto the regions of the
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Figure 4.5: An example of a parameter optimization loop. The final result (d) is not perfect
since some regions are over-segmented with respect to the ground truth (b).
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Figure 4.6: Region annotations with the developed graphical tool.

region map R‘I4 resulting from the segmentation of the image I with the selected
algorithm A tuned with the parameter set p, as described in section 4.3. The
mapping is done by majority overlap such as for each region r € Rf‘,
. . max h(r)
y(r) = yz‘z = argmaxh,., if —7 - > 7T (4.14)
Yo, else

with |r| the number of pixels of the region r, T a threshold, and h(r) =
{h1(r),... hi(r),..., hg(r)} the label histogram of the region r such that for
a pixel u and a label y;, hi(r) = card{u € r | y(u) =y;}, i € 1,... k.

If the ratio of the most represented class in 7 does not reach the threshold T
(here fixed at 0.8), the region label is set to yo ¢ ). This prevents from labeling
badly segmented region as sketched in Figure 4.7.

We also denote the set of all region annotations R.Az such as:

RAz = J U {v() 1y(r) # wo} (4.15)

IE€T repa

and the set of all annotated regions Rz such as:

Rr=J U {rlyt) # w0} (4.16)

IGITER‘I4

For each region, a feature vector x(r) is extracted and makes with the label a pair
sample noted (x(r),y(r)). The set of all collected pair samples from Z constitute
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Figure 4.7: Example of the mapping between a labelled ground truth regions and segmented
regions.

the training data set 77 (see Algorithm 3) such as:

T = U {x).y(r) [9(r) # o) (4.17)

I€T reRp

77 represents the knowledge of the segmentation task and is composed, at this
time, of raw information. In the following section, we address the problem of
knowledge modelling by statistical analysis.

4.4.2 Segmentation Knowledge Modelling

The first step towards learning statistical models from an image partition is to
extract a feature vector from each region. But which low-level features the most
representative for a specific region labeling problem? In more general terms, which
features are useful to build a good model predictor? This fundamental question,
referring to the feature selection problem, is a key issue for most of the class-based
segmentation approaches.

Feature Extraction

When defining a set of features for classification problems, two approaches can
be considered: a first approach aims at building relevant feature sets, while a
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second approach more focus on the usefulness of each feature. In the first case,
the choice of relevant features mostly relies on knowledge of the domain. In
the second case, the goal is clearly to select features useful for building a good
predictor, even if some relevant features may be excluded. We propose a trade-off
approach: starting from heuristically selected features we aim at training robust
region classifiers. To this end, we combine generic features, such as color and
texture and apply a feature selection algorithm.

In our approach, color histograms represent the color information of each seg-
mented region. Two parameters must be set: the color space (cs) as RGB, HSV,
or XYZ, on which the histograming is applied, and the quantization parameter ¢
which defines the number of bins. Each color space has its specificity according
to the color model it is based on. However, it is not obvious to select the best
appropriate color space for a specific problem, and most of the time, several ex-
periments have to be conducted. In our approach, we do not state a priori the
relevance of one color space against others. We rather consider a color space as
a parameter of the feature selection problem. The same statement of fact can be
done for the setting of the quantization parameter: if it is easy to discriminate
data (e.g., two classes represented by respectively red and green objects), ¢ could
be set to a low value (i.e. few bins). On the contrary, if the color distributions of
different object classes are mixed, a higher quantization value might be used.

Texture feature extraction techniques have received considerable attention
during the past decades and numerous approaches and comparative stud-
ies have been presented [Reed and du Buf, 1993]. The most commonly used
are the gray-level coocurence matrices introduced by Haralick [Haralick, 1979],
the Law’s texture energy [Laws, 1980], and the Gabor multi-channel filter-
ing [Jain and Farrokhnia, 1991|. Two surveys on texture feature extraction tech-
niques can be found in [Reed and du Buf, 1993| and [Randen and Husoy, 1999].
For the characterization of texture, we use oriented Gaussian derivatives (OGD)
to generate rotation invariant feature vectors. OGD are equivalent to the Gabor
features but are computationally simpler. The basic idea is to compute the “en-
ergy” of a region as a steerable function. This energy is computed for different
“power” channel, which are the result of convolving the region pixels with OGD
filters of a specific order. In some way, the first order OGD computes some edge
energy while the second order OGD compute some line energy and then produce
a strong correlation with the human vision theory. As color histograms, texture
feature vectors depend on the ¢ parameter.

The final feature vector representing a region is a concatenation of the feature
vectors extracted from each cue. The feature extraction process is applied on each
region of the annotated regions set Rz so as to build the training data set 77, as
depicted in algorithm 3.

Following our cognitive approach of the segmentation problem, we need to
avoid manually selected and tuned algorithms. At the feature selection level,
this means to be able to automatically select and tune the feature extraction
algorithms.
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Algorithm 3: Algorithm pseudo-code for the training data set building
inputs : 7, Rz, RAz, q, cs
outputs: 77

Xz —{};
Tr —{};
foreach I € 7 do
foreach r € R‘f‘ C Rz do
x(r) <« regionFeatureExtractor(/,r,q,cs) ;
L X7 «— XIUX(’I”) ;

= I N

~

T7 — {Xz1,RAz} ;
8 return 77

Feature Selection

The feature selection is used to reduce the number of features, remove
irrelevant, redundant, or noisy data, and it brings the immediate ef-
fects of speeding up and improving the prediction performance of learn-
ing models. Since feature selection is a fertile field of research, we re-
fer the reader to surveys [Guyon and Elisseeff, 2003, Kohavi and John, 1997,
Blum and Langley, 1997] as good starting literatures. The optimality of a fea-
ture subset is measured by an evaluation criterion. Feature selection algorithms
designed with different evaluation criteria broadly fall into two categories: the
filters and the wrappers.

Filters select subsets of features as a pre-processing step, independently of the
chosen predictor. Well-known methods dedicated to this purpose are basic linear
transforms of the input features like Principal Component Analysis (PCA) and
Fisher Linear Discriminant Analysis (LDA). PCA is an unsupervised technique
useful for data set dimensionality reduction. For supervised feature selection,
i.e. when feature samples are labelled, LDA is more appropriated. This tech-
nique selects features that maximize the ratio of the between-class scatter to the
within-class scatter. Techniques based on iterative search are also widespread as
sequential forward /backward algorithms (e.g. SFFS, SBS, ReliefF).

Wrappers utilize the learning machine of interest (e.g., SVM, neural net-
works) as a black box to score subsets of features according to their predictive
power. Consequently, wrappers are remarkably universal and simple. An in-
teresting comparative study of such feature selection algorithms can be found
in [Molina et al., 2002].

The feature selection approach we propose is derived from wrappers. Our goal
is to find the best feature extractor configuration which minimizes the joint clas-
sification errors of the class predictors applied on the training data set 77. Unlike
classical approaches, we act on the feature extractor parameters to generate dif-
ferent feature vectors, instead of reducing the feature vector itself. This approach
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is sketched in Figure 4.8.
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Figure 4.8: Feature selection schema based on tuning of the feature extractor parameters.

The two free parameters of our selected feature extractors are the color space
encoder for color feature extractor, and the quantization level for both color and
texture feature extractors. The goal is to find the best combination able to induce
the minimum region classification errors. The quality estimation is conducted via
a cross-validation procedure which gives, for each region classifier ¢;, the classifi-
cation Mean Square Error (MSE), noted €(¢;) € [0,1]. A global MSE, noted € in
Algorithm 4, is then computed by averaging all the e(c,).

We use an iterative search strategy to cover the value spaces of the two param-
eters ¢ and cs. This technique guarantees to find a global optimal solution but is
computationally expensive: first, it requires to run M x N x O region classifier
training procedures, with M the number of quantization levels (typically equals
to 256), N the number of color spaces, and O the number of classifiers to train;
second, when the value of ¢ increases, so does the size of the feature vector v. So,
to avoid an unreasonable computational time, the choice of the training algorithm
must take into account this computational constraint.
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Algorithm 4: Algorithm pseudo-code for the color feature selection
inputs : Rz, RAz
outputs: ¢ (quantization level), ¢s (color space)

1 €« 1;

2 for q < gmin t0 ¢naz do

3 foreach cs € CS do

4 Tr «trainingDataSetBuilding(Rz,RLz,q,cs);
5 foreach y € ) do

6 ¢y « regionClassifierTraining(y,77) ;
7 €(cy) « crossValidator(cy, 77) ;

8 if € < € then

9 €+ €,
10 q<—q;:
11 CS «— CS ;

12 return (¢, cs)

Training Algorithm for Class modelling

After extracting a feature vector for each region of the training data set, the next
step is to model the knowledge in order to produce region classifiers (one classifier
per class). For a feature vector x(r) and a class y;,

ci(r) =p(y(r) = yi | x(r)) (4.18)

with ¢;(r) € [0,1], is the estimated probability associated with the hypothesis:

“feature vector x(r) extracted from region r is a representative sample of the class
yi". The set of these trained region classifiers is noted C = {c1,..., ¢}

A variety of techniques have been successfully employed to tackle the prob-
lem of knowledge modelling such as naives Bayes networks, decision trees or
support vector machine (SVM). We propose to use SVM [Burges, 1998] as
a template-based approach. SVM are known to be efficient discriminative
strategies for large-scale classification problems such as in image categoriza-
tion |Chen and Wang, 2004] or object categorization [Huang and LeCun, 2006].
SVM yields also state-of-the-art performance at very low computational cost.
SVM training consists of finding an hyper-surface in the space of possible inputs
(i.e. feature vectors labeled by +1 or -1). This hyper-surface will attempt to
split the positive samples from the negative samples. This split will be chosen to
have the largest distance from the hyper-surface to the nearest of the positive and
negative samples.

Given training vectors x; € R",¢ = 1,...,n and a vector y; € —1,+1, a C-
support vector classification [Vapnik, 1995] (C-SVC) solves the following primal
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problem:

!
1
min —wlw+C Z &
i=1

w,b,¢ 2
(4.19)
subject to  yi(w p(xi) +b) > 1 &,
&E>00=1,...,1
Its dual is:
1
min —a’'Qa — el
a 2
subject to yla=0, (4.20)

0<a;<C,i=1,...,1

where e is the vector of unity, C' > 0 is the penalty parameter of the error term,
@ is an [ by [ positive semidefinite matrix, Q;; = y;y; K (x;,%;), and K (x;,%;) =
d(x;)Tp(x;) is the kernel. Here training vectors x; are mapped into a higher
(maybe infinite) dimensional space by the function ¢.

For any testing instance x, the decision function f (predictor) is:

I
f(x) =sgn (Z yioi K (x,%) + b) (4.21)
=1

The most commonly used kernels are the following:

e linear: K(x;,%x;) = X! X;

e polynomial: K(x;,%x;) = y(x!x; + )% v>0

e radial basis function (RBF): K (x;,x;) = exp ( — v [|x; — XjH2 ), v >0
e sigmoid: K(x;,x;) = tanh(yx! x; +r)

Here, 7, r, and d are kernel parameters to be a priori defined.

We adopt a one-vs-rest multiclass scheme with probability informa-
tion [Wu et al., 2004] to train one region evaluator ¢ per class y. We use SVM with
radial basis function as region classifiers. There are two parameters while using
RBF kernels: C (penalty parameter of the error term) and ~y (kernel parameter).
It is not known beforehand which C and ~ are the best for one problem; conse-
quently some kind of model selection (parameter search) must be done. To fit the
C and ~ parameters, we adopt a grid-search method using 5-fold cross-validation
on training data. Basically, pairs of (C, v) are tried and the one with the best
cross-validation accuracy is picked (see algorithm 5). This straightforward model
selection efficiently prevents overfitting problems. As seen in Figure 4.9, the
model selection is wrapped in the feature selection schema with whom it shares
the cross-validation step.

The training stage ends up when all combinations of {(q, ¢s), (C,~)} have been
tested. The one giving the lowest global classification error is picked and the
region classifiers are trained a last time with this configuration.
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Figure 4.9: Model selection schema based on tuning of the predictor parameters.
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Algorithm 5: Model selection algorithm pseudo-code
inputs :y; €)Y, Tz
outputs: ¢,,é

1 T —T7

2 foreach (x(r),y(r)) € 7} do

3 if y(r) = y; then

4 ‘ y(r) — +1;

5 else

6 L y(r) «— —1

7 €—1;

8 for C' — C)in to Chue do

9 for v «— Ymin t0 Yimee do

10 ¢y < predictorTraining(7/,C,7) ;
11 €(cy) < crossValidation(cy, 7)) ;
12 if €(cy) < € then

13 C—C;

14 Y=

15 €«—€;

16 ¢, < predictorTraining(77',C,5) ;
17 return cy ¢

4.5 Adaptive Image Segmentation

For a new incoming image I not belonging to the training set, a feature vector
is first extracted then classified into a cluster. The classification is based on the
minimization of the distance between the feature vector and the cluster set {r;}
as follows:

Ieb,ev(l)ek|i=arg ‘Ir[llin]dist (v(I), ki) (4.22)
e|l,n

The pair (A, }_)A) associated with the detected context 6;, is returned.
Once the algorithm is selected and tuned, the image is segmented. For each
region, a feature vector is extracted using the (§, ¢s) parameter set and given as

input to each trained region classifiers ¢;. Classes are scored according to the
classifier responses {¢;(r)} and finally, the returned label y(r) is such as:

y(r) = arg max ¢;(r) (4.23)
7
When all regions are labelled, neighboring regions with the same label are merged

to form a semantic partitioning of the image. This final segmentation is returned
to the user, as described in Algorithm 6.
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Algorithm 6: Algorithm pseudo-code for adaptive image segmentation
inputs: I ¢ 7, C, ¢s, ¢

v([) < GlobalFeatureExtractor (/) ;

f; « ContextClassification(v(I)) ;

(A, pA) — 0; ;

R — A(I,p?) ;

foreach r ¢ Rf do

x(r) « regionFeatureExtractor(r,cs,q) ;
y(r) < RegionClassification(x(r),C) ;

N O o W N =

forall (r;,7;) € R,i# j do
9 if (rj IsNextTor;) A (y(r;) =y(r;)) then
10 L RegionMerger (r;,r;) ;

o]

11 return semantic segmentation of 1

4.6 Framework Conclusion

In this chapter, we have presented our framework for adaptive image segmenta-
tion. We have detailed each step of the learning module for algorithm parameter
tuning, algorithm selection, and semantic image segmentation. The algorithm
parametrization issue is tackled with a generic optimization procedure based on
three independent components. We have designed our performance evaluation
metric to be broadly applicable and with a low computational cost. It allows
to assess a large variety of segmentation algorithms and only relies on manual
segmentations. However, further experiments need to be done to assess the per-
formances and the accuracy of the two optimization algorithms (the Simplex
algorithm and a Genetic Algorithm). Our strategy for algorithm selection can be
summarized as follows:

e The user is assumed to provide a training image set representative of the
different situations.

e The training image set is clustered in order to divide the algorithm selection
problem into sub-problems more tractable, each sub-problem representing
an image context. To this end, an unsupervised clustering algorithm is
used to cluster feature vectors extracted from the training image set. This
strategy assumes, in a way, the existence of a link between a quantitative
image representation and a tuned segmentation algorithm.

e For each identified cluster, one algorithm is selected based on performance
ranking. A mean parameter set is computed. This ranking strategy reduces
the number of acceptable solutions to one mean solution.

The final step of the learning module is to train region classifiers to refine the
segmentation according to semantic region labelling. In this task, the user must
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annotate the regions of the manually segmented images with class labels. Our
approach is based on the discriminative power of the SVM Classifiers to ground
low-level region features into symbolic classes. We have also proposed an unsu-
pervised method for the learning of SVM and region feature extractor parameters.
The goal is to optimize the performance of the classifiers without the help of the
user.

The module for adaptive image segmentation makes use of the learnt segmenta-
tion knowledge. For a new image, the algorithm selection and tuning is fast since
it only relies on the computation of a global feature vector. Then, each region is
labelled according to the region classifiers responses and the final semantic image
is returned to the user.

The next two chapters are dedicated to the validation of this framework on
real-world applications.



Chapter 5

Experiment and Evaluation for
Image Segmentation

This chapter is dedicated to the validation of the framework presented in the pre-
vious chapter for image segmentation in real world applications. In particular, we
are interested in the segmentation step of a cognitive vision system dedicated to
the recognition of biological organisms. We first present the biological problem
and the experimental protocol. Then we give a brief description of the cognitive
vision system used to solve the biological problem. The last section is dedicated
to the detailed assessment of the vision system with a particular focus on the seg-
mentation level. We also give some evaluation results on a public image database
at the end of the chapter.

5.1 A Major Biological Challenge: the Early Detection
of Plant Diseases

5.1.1 A Major Challenge for Integrated Pest Management

Integrated Pest Management (IPM) is a knowledge-based approach to crop pro-
tection. It is an important tool for the management of insects, pathogens, weeds,
and cultural problems in greenhouse. The goal of IPM is to integrate cultural,
physical, biological, and chemical practices to grow crops with minimal use of pes-
ticides. This approach is particularly promising in the context of ornamental crops
in greenhouses because of the high level of control needed in such agrosystem. In-
deed, early detection of plant diseases makes it possible to operate efficiently at
the beginning of an infection to limit the plant damage. Thereby, it can reduce
the amount of pesticide applications and thus reduce the control cost. However,
no automatic methods are available to precisely and periodically evaluate the bi-
otic status of plants. In fact, the detection of biological objects as small as such
insects (dimensions are about 2 mm) is a real challenge, especially when consider-
ing greenhouses dimensions (10 to 100 meters long). Traditionally in production
conditions, visual observations are made each week by human experts (greenhouse
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staff), often on colored sticky traps. Since this technique does not allow to pre-
cisely study the epidemic spatial model, observations on natural support (i.e. on
leaves) are preferred. But it is difficult or even not possible to perform a continu-
ous (typically daily) human control and to examine every leaf in the greenhouse.
Moreover the accuracy of the observations depends on the human eye resolution,
even if magnification tools are used.

5.1.2 Context of the Experiment

This part of the work consists in a research cooperation between the Orion team
of INRIA Sophia Antipolis and the Integrated Research in Horticulture Unit
(URIH) of INRA Sophia Antipolis (National Institute for Agricultural Research).
The context of this work is also the region PACA (Provence Alpes Cote d’Azur)
which is the leading horticultural region of France'.

5.1.3 Choosing a crop and a bioagressor as a model study

For this study, we first chose a model “crop x bioagressor”. On the one hand,
rose, an ornamental crop, was chosen because it attracts various bioagressors and
it requires high level standard quality for flowers as well as leaves. On the other
hand, white fly Trialeurodes Vaporariorum was chosen because this bioagressor
requires early detection and treatment to prevent durable infestation. Eggs and
larvae identification and counting by vision techniques are difficult because of
critical dimension (eggs) and weak contrast between object and image background
(larvae). For these reasons we decided to focus first on adults. Eggs, larvae and
adults are present on back faces of leaves.

5.2 Experimental Protocol

5.2.1 Greenhouse experiment

The agrosystem was a 256 m? plastic twin-tunnel greenhouse planted with roses.
The management of climate, fertilization and irrigation was carried out by a con-
trol/command computer system designed at INRA. Two rose cultivars (Suella™,
a yellow one, and Miss ParisT™, a red one) were planted. They are known for
their different resistance to powdery mildew and attractive powers to insects. The
total cultivation corresponds to 1200 plants. A map of the greenhouse is shown
on Figure 5.1.

5.2.2 Sampling strategy

We chose our sampling strategy based on the following requirements:

'"Roses are widely produced in PACA and early disease detection is classified as a major
challenge.
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Figure 5.1: Greenhouse map showing two chapels of 128 m? each.

e Spatially, data should be uniformly distributed, thus samples were random-
ized (according to a grid) over the whole greenhouse.

e Temporal sampling should be realistic, i.e. provide a good ratio data rele-
vance versus sampling duration.

The spatial sampling strategy consists in a randomized sampling in the hori-
zontal plane and optimized sampling along the vertical axis. Since it is convenient
to consider 12 plants or 2 m rock wool slab as a standard visual observation unit,
it was decided to take a leaf sample (5 or 7 leaflets) every second meter along
plantation lines. We have done a pre-study on sample cuts at various heights of
plant canopy to decide the optimal localization of samples: for early detection of
mature white flies, growing stems have been preferred. Hence, 100 samples were
taken corresponding to 1200 plants. Samples are rose leaves, each leaf being made
up of 5 or 7 leaflets, cut in the central part of the canopy where growing stems
are the most numerous. Both sides of leaves were scanned individually and 200
images were recorded (see Figure 5.2 for an example). If we assume a LAI (Leaf
Area Index) of 3 for rose crop [Raviv and Blom, 2001], and with an effective crop
surface of 100 m?, it means that around 0.36% of LAT (for one face) is analyzed
at each survey by using the above sampling strategy?.

Concerning the temporal sampling strategy, the time required to perform an
automatic survey is of the same order of magnitude as the time necessary to make
a chemical treatment on an equivalent surface. Thus, this quick delivery of results,
i.e. within half a day, is compatible with rapid decision.

the survey ratio (SR) is computed as follows: SR = (Nscan*Sscan)/(LAI*Serop), with Nycan
the number of total scanned leaves (200), Sscqn the effective scanned surface per acquisition
(0.0054 m?) and Serop the effective crop surface (100 m?)
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Figure 5.2: Example of a scanned rose leaf infested by white flies.

For this study, samples were manually cut and scanned directly in the green-
house by using a consumer electronics flathed A4 scanner. This allowed a high
image quality and a short scanning/transfer time. A resolution of 600 dpi was
chosen. This corresponds to theoretical square pixel dimensions of 42 ym x 42
pm. Such a resolution is a good compromise: it is precise enough to digitize ob-
jects as little as mature white flies (500 pixels of area) and compatible with data
acquisition /storage constraints.

Once the data acquisition conditions fixed, the next step is to provide a system
that automatically identifies and counts white flies on the scanned images. This
system is presented in the next section.

5.3 The Cognitive Vision System for Pest Detection
and Counting

Following a cognitive vision approach, we propose to use an automatic image
interpretation system that combines image processing, learning and knowledge-
based techniques for the detection and the counting of mature white flies.
Our approach follows previous work presented in [Hudelot and Thonnat, 2003]
and [Boissard et al., 2003| and enriches it with learning and control abilities at
the segmentation level.

5.3.1 System Overview

As human biologists do, a cognitive vision system has to analyze raw images and
to label interesting regions that correspond to objects of interest (e.g., insects). To
recognize a region as an insect, a human expert relies on (biological and contex-
tual) domain knowledge about insects (e.g., species features, life cycle, host plant)
as well as visual data that can be extracted from images (color, texture, shape,
and size). A software system must take into account both kinds of knowledge. To
separate the different types of knowledge and the different reasoning strategies,
the cognitive vision platform proposes an architecture based on specialized mod-
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ules, as shown in Figure 5.3. It consists of two knowledge-based systems (KBS)
a set of image processing (IP) algorithms, and a learning module.

Y

—
v
Domain Expert .
. Learning
. Knowledge J Domain High-level/ el
< Knowledge Low-level data Descri
[ Formalization Mappin ;scrlptor
Visual Concept pping AN
\Ontology
—
| Visual Learning IP -
Raw Images |—» Annotations of Algorithm Parametrized
Ground Truths Image Regions Configurations IP Algorithms
v
fIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIL
~ z . . z Number of
Crléd lllessetf £ |Classification| v/, : dotected
4 F KBS Descriptor : pests
H Ranges H
E P Numerical E
 request Descriptors =
: of Image Areas =
< I |Program P\_/d E
Raw =3 Supervision aranll;tme :
Image H H
g : |KBS Algorithms H
\/ -

EERRRRRERN RN NN NN RN RNy

Figure 5.3: Cognitive vision system. The top part corresponds to the initial learning module
and the bottom part to the automatic system for routine execution.

Before routine execution, a learning stage (Figure 5.3 top) is performed once
on a training image sub-set. This preliminary stage is used to complement the
knowledge necessary to run the two following KBSs.

The classification KBS (Figure 5.3 bottom) aims at selecting interesting regions
in images. To this end it triggers image processing requests and interprets the
numerical results into higher level concepts, i.e. (parts of) objects of interest. It
only retains the regions corresponding to target insects and returns their number
to the user.

The supervision KBS (Figure 5.3 bottom) is used to monitor the execution of
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the image processing requests. It selects and plans the best programs with the
best parameter values for each image. From raw images provided by the end-user,
the goal is to extract numerical values needed by the classification KBS.

5.3.2 Learning Stage

Learning techniques are used for two purposes: to learn how to map low-level
features to high-level domain concepts and how to tune parameters of image
processing programs.

5.3.2.1 Learning Visual Concepts

The goal is to map object descriptions in the knowledge base of the classification
system to numerical values. Most of real objects can be described in terms of
concepts, such as their shape, color or texture. We call them wvisual concepts.
Visual concepts are an intermediate level that helps mapping low-level numerical
value to a domain class description. For instance, a length in millimeters and/or
a color in RGB values may be mapped to an insect body. Thus, each biological
class description appearing in the classification knowledge base must be precisely
specified in terms of visual concepts.

We refer to a general ontology proposed by N. Maillot et al.
in [Maillot et al., 2004] and in [Maillot, 2005|, which is a hierarchy divided into
three parts: spatio-temporal, color and texture concepts. For instance, spatio-
temporal concepts include shape, size, and spatio-temporal relations. The main
advantage in using this ontology is to provide domain experts with a vocabulary
for describing domain classes in visual terms (as shown in Figure 5.4) by means
of numerical descriptors. The role of these descriptors is to bridge the semantic
gap between low-level numerical values and visual concepts. A descriptor has an
attached numerical value that can be computed by vision programs; for instance,
a program can compute an area length in millimeters. It also corresponds to a vi-
sual feature meaningful for a human expert to describe an object; for instance, an
expert may select the length descriptor of the size concept as relevant to describe
an insect body.

We refer also to [Maillot, 2005| for the learning of visual concept. Based on a
training set of images and for each visual concept used by the expert, the learning
module learns semi-automatically the range of possible values for all the numerical
descriptors necessary to recognize the concept.

5.3.2.2 Learning Image Processing Parameters

Our goal is to provide a meaningful segmentation of white flies for further in-
terpretation purposes. Since no dedicated segmentation algorithm exists for this
specific task, we started with a set of state-of-the-art region-based algorithms and
then, following our approach described in chapter 4, we optimized their free pa-
rameters on a training image sub-set. At the end of the optimization process,
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each algorithm was tuned with its optimal parameter setting. Then, a clustering
decomposition was performed on the training image sub-set to identify the differ-
ent situations. The algorithm achieving the best segmentation results (according
to ground truth) for each identified cluster is retained. Two region-classifiers were
trained to reach a goal-oriented segmentation: one for the mature white fly class
and one for the rose leaf class. This part of the work is more detailed in section 5.4.

5.3.2.3 Learning Issues

At the end of the learning stage, we get image processing algorithm with fine
tuned parameters and descriptor ranges for all relevant numerical descriptors of
the application.

Note that this learning stage is done only once, for one (set of) insect(s) to
detect and one set of programs to run. Provided that the acquisition conditions do
not change drastically, routine execution only involves running the two following
knowledge-based systems, i.e. the classification system and the image processing
supervision system.

5.3.3 Classification System

The role of the classification system is to recognize and to count white flies on
an image. To this end its relies on knowledge about insect descriptions and on
numerical descriptor values provided by image processing programs.

The knowledge in this KBS consists of descriptions of domain classes and class
hierarchies, provided by biologists. We propose a dedicated expert language to
describe these hierarchies. In the case of white fly detection, the knowledge base
mainly contains knowledge of these insects (see Figure 5.4). The WhiteFly domain
class describes how such an insect may be recognized thanks to different visual
concepts selected by the expert, namely its shape, size and color. These concepts
refer to general ones (such as ColorConcept) defined in the general ontology.

Each visual concept is in turn described by a relevant set of numerical de-
scriptors and their associated fuzzy ranges of possible values, as learnt on the
training set with the help of a domain expert during the initial learning stage (see
section 5.3.2.1). For example, some values of the HSV color of image areas are
linked with the white fly color. Experts use the vocabulary defined by the general
visual concept ontology such as the term “circularity” to characterize the shape
of a white fly.

It should be noted that we do not need to manage a complete biological hier-
archy of insects (i.e. with all sub-species), but only the parts that are useful for
the recognition task. Indeed, it is useless (and often impossible with the currently
available vision techniques) to precisely recognize the sub-species of an insect,
because we know that not all sub-species will infest a type of plant.

To summarize, the classification KBS provides class hierarchies and a descrip-
tion of each class in terms of numerical descriptors. To get the real values of
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DomaiN CrAss WhiteFly SUPERCLASS: Bioagressor
SHAPE: ShapeConcept
Descriptors:
circularity [ 005 02 05 06 ]
excentricity [ 0.1 02 04 05 |
rectangularity | 05 0.6 08 085 |
elongation [ 03 035 07 08 ]
convexity [ 0.7 075 1.0 1.1 |
compacity [ 0.1 025 09 1.0 ]
COLOR: ColorConcept
Descriptors:
saturation [ 0.0 00 02 03 ]
lightness [ 120 130 240 260 |
hue [ 80 90 170 180 |
SIZE: SizeConcept
Descriptors:
area [ 05 06 12 13 ]
length [ 06 08 25 35 |
width [ 02 03 1.0 13 ]

Figure 5.4: High-level description of a domain class (white fly). Visual concepts are in SMALL
Caps. learnt fuzzy ranges are shown on the right. They are composed of four numbers, cor-
responding respectively to the minimum admissible value, the minimum and maximum most
probable values, and the maximum admissible value.
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numerical descriptors, the correct image processing algorithms must be launched
and controlled: this is the role of the image processing supervision KBS.

5.3.4 Image Processing Supervision System

The image processing task itself is achieved by a program supervi-
sion [Thonnat et al., 1998] knowledge-based system. Program supervision tech-
niques make it possible to automate the use of complex programs, i.e. to plan and
control processing activities. In cognitive vision systems, the supervision system
controls the use of the image processing sub-tasks, such as image segmentation
and features extraction. It is based on knowledge about the programs, their in-
put /output data, their applicability conditions, their possible combinations, and
the necessary information to run them in various situations. This knowledge is
given by image processing experts in the form of operators and decision rules to
guide the supervision engine reasoning (e.g., to select programs, initialize their
parameters, or assess their results). Suitable parameter initialization values have
been learnt during the previous learning step, but more tuning is possible dynam-
ically depending on the input image specificity. Operators and rules are formally
described in the knowledge base using an expert language (see an example Fig-
ure 5.5).

Composite Operator { name Segmentation
comment ‘“image segmentation operator”
Input Data

Image input_image
Output Data
Image output_image

Body
RegionBased | EdgeBased

Choice Rule { name RegionChoice
If concept == ShapeConcept
Then useOperator RegionBased }

Figure 5.5: An example from the program supervision knowledge base. A composite operator
describes an alternative decomposition (denoted by a |) into two sub-operators: region or edge-
based segmentation, and a rule selects the first one if the concept to recognize (as indicated by
the classification KBS) is Shape.

Once the objects have been extracted, the second step of the image processing
task, feature extraction, computes the attributes corresponding to each region,
according to the domain feature concepts (e.g., color, shape and size descriptors).
Finally, the supervision KBS returns a set of candidate areas to the classification
KBS. Each area has an attached set of computed numerical descriptor values. The
classification KBS can use these descriptors in conjunction with its own knowledge
to select areas corresponding to white flies and to return the number of recognized
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flies to the user.

5.4 Approach Assessment

This section is dedicated to the performance evaluation of the segmentation step
and of the cognitive vision system.

5.4.1 Segmentation Algorithms

In this section, we briefly describe the segmentation algorithms we used for our
experiment. Our set is composed of algorithms reflecting different segmentation
strategies as developed in section 2.2.2 namely region growing, split-and-merge,
watershed, or thresholding techniques.

CSC: The Color Structure Code [Priese and Sturm, 2002] is a method combining
the advantages of local (simplicity and fastness) and global (robustness and
accuracy) techniques. It is a hierarchical region growing method that is
inherently parallel and therefore independent of the choice of the starting
point and the order of processing. The generation of the CSC operates
essentially in three phases. In an initialization phase the image is partitioned
into small, atomic color regions. These small color regions are growing in the
linking phase in a hierarchical manner to complete color segments. Within
the linking phase it is possible to detect that color regions connected by
a chain of smoothly changing colors have to be split again. This is done
in the splitting phase. The most important parameter to set is the linking
threshold based on the quadratic color distance between two pixels.

SRM: The SRM algorithm, for Statistical Region Merg-
ing [Nock and Nielsen, 2004| is a region-based segmentation algorithm
following a particular order in the choice of regions. The merging criteria is
based on an adaptive statistical threshold merging predicate on color chan-
nels that does not require to maintain dynamically the region adjacency
graph. The algorithm is able to cope with hard noise corruption, handle
occlusion, authorize the control of the segmentation scale through a free
parameter Q.

EGBIS: The Efficient Graph-Based Image Segmentation algo-
rithm [Felzenszwalb and Huttenlocher, 2004| is based on the definition of a
predicate for measuring the evidence for a boundary between two regions
using a graph-based representation of the image. The pairwise region com-
parison predicate considers the minimum weight edge between two regions
in measuring the difference between them. An important characteristic of
the method is its ability to preserve detail in low-variability image regions
while ignoring detail in high-variability regions. A function parameter k
controls the degree of difference between two regions with respect to their
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internal differences. The parameter o control the (optional) smoothing of
the input image.

Hysteresis thresholding: This straightforward algorithm considers any pixel
above the upper threshold Tj;e, and under the lower threshold Tj,, as a
background pixel. It does not take into account any spatial coherency.

CWAGM: CWAGM means Color Watershed - Adjacency Graph Merge. The
algorithm [Alvarado Moya, 2004b] computes an over-segmentation with the
watershed transformation and merge the regions to minimize the mean
square error of a piece-wise constant image approximation. To compute
which threshold should be used in the watershed segmentation, the accumu-
lative histogram of gradient values will be used as a probability distribution.
It will be assumed that the probability for a gradient value to be relevant
must be greater than the given value p. The merge threshold m indicates
a square distance between mean values in the color space weighted by the
area of the regions.

The Table 5.1 summarizes these algorithms and gives important information
concerning their free parameter with their ranges and default values provided by
the algorithm’s authors.

Algorithm Free Parameter Range Default Value
CsC t: region merging threshold 5.0-255.0 20.0
SRM Q: coarse-to-fine scale control 1.0-255.0 32.0
EGBIS o: smooth control on input im-  0.0-1.0 0.50
age
k: color space threshold 0.0-2000.0 500.0
Hysteresis thresholding Tiow: low threshold 0.0-1.0 -
Thign: high threshold 0.0-1.0 -
CWAGM m: region merging threshold 0.0-200.0 100.0
n: min. region number 1.0-100.0 10.0
p: min. probability for water- 0.0-1.0 0.45

shed threshold

Table 5.1: Components of the segmentation algorithm bank, their names, parameters to tune with
range and author’s default values.

5.4.2 Parameter optimization Assessment

Before assessing the optimization procedure, we illustrate the optimization prob-
lem with some examples of evaluation profiles. We present 1D and 2D profiles for
the different segmentation algorithms (except the EGBIS which has a parameter
space in R3) for the four training images of the Figure 5.6. The best segmentation
quality correspond to assessment value EZ = 0.
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Concerning the CSC algorithm (see Figure 5.7), the shapes of the curves are
similar for the four images and present a global minimum which falls in the same
part of the parameter space. The global optima for the SRM algorithm (see
Figure 5.8) are found in a very narrow band of the parameter space. Many
local optima characterizes the curves of the EGBIS algorithm (see Figure 5.9).
The thresholding algorithm behavior is more straightforward regarding to the
obtained curves (see Figure 5.10). Globally, two performance levels are revealed
where “good performances” are achieved for a large range of the parameter values.
However, the global optima is more difficult to see since the difference between
the “good” performance level (in blue) and its level is very thin. From these
observations, we can conclude that the evaluation profiles are not always convex
hulls and their granularity can depend on the image.

The set up of the Simplex algorithm and the Genetic algorithm used to find
global minimum are described in Table 5.2.

Simplex Algorithm Genetic Algorithm

e starting step value = 0.5

initial population size = 40
e ending criteria = 0.001

initial number of generations = 20
e simplex coefficients («=0.5, 5=1.0,

nb of generations to convergence = 5
~v=0.5, 0=2.0) e cross-over probability rate = 0.7
e maximum number of calls = 80

mutation probability rate = 0.05

Table 5.2: Set up of the optimization algorithms.

Since the Simplex algorithm does not guarantee to obtain a global optimum,
we divide each parameter space into three sub-spaces and run an optimization on
each sub-space. This means that 3"V optimization loops are run for a segmentation
algorithm with N free-parameters.

Table 5.3, and 5.4 present the optimization results of the five segmentation al-
gorithms in terms of segmentation performance. Globally, all the algorithms reach
a good level except the EGBIS algorithm, as shown in Figure 5.11. This result
is due to the fact that this algorithm is sensitive to small gradient variations. As
expected, the EGBIS has a big standard deviation (due to the presence of many
local optima) whereas the thresholding one is low (due to its straightforward be-
havior). We have also compared the performances of the optimization algorithms
(the Simplex and the GA) with a systematic search method (see Table 5.5. By
systematic, we means an iterative search throughout the whole parameter space
with a fixed sampling rate. The sampling rate depends on the dimensionality of
the parameter space. The global performance of the three methods are similar
with a very little advantage to the Simplex.

To decide between the three different methods, we have compared them by
considering their computational cost as described in Table 5.6. The systematic
search is obviously the most costly method. The Simplex is the fastest method to
converge apart from the CWAGM algorithm. According to the previous perfor-
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(a) img001 (b) gt001

N

(c) img009 (d) gt009

<

(f) gt026

8

IR

(g) img077 (h) gt077

Figure 5.6: Four representative training images and associated ground truth segmentations used
in figure 5.7 to figure 5.10.
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Evaluation Profiles of the C

SC Algorithm

Figure 5.7: Evaluation profiles of the CSC algorithm applied on the four training images presented in Figure 5.6. E' = 0 corresponds to the optimum.



Evaluation Profiles for the SRM Algorithm

0 . \ i ! i ! | ! | i i ! | ! | ! |
0 100 200 300 400 500 600 F00 800 00 1000

@

Figure 5.8: Evaluation profiles of the SRM algorithm applied on the four training images presented in Figure 5.6. F# = 0 corresponds to the optimum.
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Evaluation Profiles for the EGBIS Algorithm on Training Images
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Figure 5.9: Different evaluation profiles of the EGBIS algorithm applied on the four training
images presented in Figure 5.6. Ej = 0 corresponds to the optimum. ¢ and o are the two free
parameters.

Algorithm E7 using the simplex algorithm

min max mean std
CscC 0.000 0.497 0.139 0.110
SRM 0.000 0.522 0.126 0.114
THRESH 0.000 0.351 0.113 0.092
EGBIS 0.0620 0.734 0.366 0.142
CWAGM 0.000 0.436 0.119 0.089

Table 5.3: Statistics on the optimization performances for the training image set using the Simplex
algorithm.
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Evaluation Profiles for the Hysteresis Thresholding
Algorithm on Training Images
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Figure 5.10: Different evaluation profiles of the hysteresis thresholding algorithm applied on the
four training images presented in Figure 5.6. E7' = 0 corresponds to the optimum. T}, and
Thign are the two free parameters.

Algorithm E3 using the genestic algorithm

min max mean std
CsC 0.000 0.462 0.134 0.099
SRM 0.000 0.485 0.123 0.100
THRESH 0.000 0.348 0.114 0.091
EGBIS 0.118 0.708 0.371 0.140
CWAGM 0.000 0.436 0.118 0.090

Table 5.4: Statistics on the optimization performances for the training image set using the genetic
algorithm.
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Figure 5.11: Example of optimization results for the img026 compared to the ground truth with

their performance scores (0 = no difference).

(f) CWAGM
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Algorithm E# using the systematic search

min max mean std
CsC 0.000 0.462 0.129 0.097
SRM 0.000 0.479 0.116 0.099
THRESH 0.000 0.350 0.113 0.092
EGBIS 0.126 0.708 0.392 0.140
CWAGM 0.000 0.456 0.193 0.077

Table 5.5: Statistics on the optimization performances for the training image set using the systematic
search.

mance score tables, the simplex is definitively the best algorithm to optimize low
dimensional parameter spaces in a few number of iterations. For segmentation
algorithms with more than two free-parameters, the Genetic Algorithm should
be preferred, requiring less iterations for the same level of performance. Note
that we have limited the number of iterations — mainly for computational cost
reasons for the systematic search method to 2550 for the EGBIS algorithm
and to 1250 for the CWAGM algorithm, respectively. These two algorithms are
relatively slow comparing to the others and the parameter space to explore is
really huge, particularly for the CWAGM.

Algorithm mean number of iterations

Systematic search GA Simplex
CscC 1000 733 83
SRM 1000 734 82
THRESH 10000 840 404
EGBIS 2550 840 497
CWAGM 1250 840 1821

Table 5.6: Computational cost of each optimization method.

The number of iterations is also dependent of the parametrization of the op-
timization algorithm. For the Simplex algorithm, it mainly depends on the
maxCalls parameters which specifies the maximum allowed number of calls of
the fitness function in an optimization loop. A too low value will cause the al-
gorithm to break before optimization is complete. A too high value will lead to
needless calls of the fitness function. Figure 5.12 shows the influence of this param-
eter on the convergence accuracy. We start the test on the img(01 with maxzCall
set to 3 (minimum allowed by the algorithm) and increase it up to 80. For a
one-dimensional parameter space, this means that the total number of iterations
will be between 9 (3x 3) and 240 (3 x 80), for a two dimensional space between
27 (32 x 3) and 720 (32 x 80), and so on. The study of the graph brings us to
several conclusions. First, for the CSC and SRM algorithms (one free-parameter),
setting maxCalls to 8 (i.e. a total number of iterations equals to 24) suffices to



90 Experiment and Evaluation for Image Segmentation

reach the best performance at the convergence point. For the EGBIS and thresh-
olding algorithms, the convergence points are reached after 45 and 117 iterations,
corresponding to maxCalls = 5 and maxCalls = 13, respectively. 783 iterations
are needed for the CWAGM algorithm (maxCalls = 29). As a consequence, the
dimensionality of the parameter space to explore has to be taken into account for
the setting of maxCalls but excessive values are useless. This study also reveals
that the parameter space is not explored in the same way, depending on the seg-
mentation algorithm. Indeed, some algorithms, have parameter sub-spaces which
induce flat evaluation profiles, as for instance the thresholding algorithm. In these
sub-spaces, the Simplex converges in a few number of iterations. The same study
is done for the GA and the results are graphically reported in Figure 5.13. We
decide to assess the GA sensitivity to the initial population size. The number of
initial points is here independent of the segmentation algorithm and varies be-
tween 20 and 840. The same conclusions can be drawn. We just can add that
the EGBIS algorithm brings some problem to the GA which falls in many local
optima (peaks of the EGBIS curve in Figure 5.13).

Algorithm Performances at the Simplex Convergence Points for img001
03 T T T T T T T | s T T T T T T T

—CsC

: ——sRM
\ —— THRESH

025~ : : : —— CWAGM

—— EGBIS

A
E’OIS

01—

‘ _ » 1

i i
10 IO2 [
Maximum Number of Iterations (marCalls parameter of the simplex)

Figure 5.12: Convergence accuracy of the Simplex algorithm by varying the maxCalls param-
eter.

5.4.3 Algorithm Selection

We applied the DBSCAN [Ester et al., 1996] algorithm to cluster the 20 training
images as described in section 4.3.2. We obtain two clusters of 10 images (see
Figure 5.14 for examples). Visually, the first cluster corresponds to the back side
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Algorithm Performances at the Convergence Points of the Genetic algorithm for #mg001

T T
—csc
—SRM
—— THRESH
—— CWAGM
025 = : : : ——EGBIS

0.05 : : H - —
N

10 I 10
Maximum size of the initial population for the genetic algorithm

Figure 5.13: Convergence accuracy of the GA by varying the initial population size.

images of the scanned rose leaves and the second cluster to the front side im-
ages. For each cluster, mean parameter sets of the five segmentation algorithms

Figure 5.14: Examples of images for the two identified clusters. Left — cluster 1 (front side of
the leaves), right = cluster 2 (back side of the leaves).

are computed w.r.t. their performance scores. The segmentation performances
of the tuned algorithms are evaluated on each training image sub-set. The tuned
algorithm which gets the best mean performance score for each cluster is elected.
Before the last ranking step, the best algorithm for the first cluster was the hys-
teresis thresholding algorithm and the best for the second cluster was the CSC
algorithm. After the last ranking step, the CSC algorithm was found as the best
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one for the two clusters but with different parameter set. This means that even
if the thresholding algorithm performs better in individual cases, the CSC algo-
rithm is more robust than the thresholding algorithm when tuned with a mean
parameter set.

5.4.4 Region-Classifier Performance Assessment

For each identified image cluster, region labels of annotated manual segmentations
are mapped into regions of the segmented image following the method described in
Chapter 4.4.1. Then, for each region class, a region classifier is trained with region
features as input. We used our wrapper scheme detailed in Chapter 4.4.2 to op-
timize the classifier performances. Three color space are used in this experiment:
RGB, HSV, and XYZ. The performances of the classifiers trained respectively on
the whole training set, the cluster 1, and the cluster 2 are plotted in Figure 5.15,
Figure 5.16, and Figure 5.17. The study of these three graphs leads to some
conclusions. First, HSV is the more discriminative color space in this problem
except for the cluster 2 where better results are achieved with the XYZ color
space. The CIE XYZ color space was deliberately designed so that the Y param-
eter was a measure of the brightness or luminance of a color. For the context 2,
the brightnesses of the classes are very different. That’s why the XYZ color space
is here well-adapted. Second, the optimization of the SVM parameters increases
the classifier performances of 5-10%. The best cross-validation rates are reached
with ¢ (quantization level) values superior to 50.

We have also tested texture features but their performances are 10% inferior
in mean than with the color features as shown in Figure 5.18.

Finally, the classifiers are trained a last time with the configurations giving the
best cross-validation rates. The final set up of the different algorithms is then as
follows (Table 5.7):

Context Seg. Alg. Class Feature extractor param. SVM param.
(param) Color space q C ¥
context 1 CSsC rose leaf HSV 112 4 1
(light green leaves) (41.9) white fly HSV 112 1 4
context 2 CSC rose leaf XYZ 21 64 4
(dark green leaves) (48.74) white fly XYZ 21 256 0.25

Table 5.7: Set up of the segmentation, the feature extractors, and the classifiers.

5.4.5 Final Segmentation Quality Assessment

In this section, we present the segmentation results on the test set. We compare
six different methods, comprising (parts of) our approach and a pure top-down
segmentation.
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Figure 5.15: Performances of the region classifiers trained on the whole training set and different

color features.
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Figure 5.16: Performances of the region classifiers trained with the ten images of the cluster 1
(light green rose leaves) and different color features.



5.4 Approach Assessment 95
Classification Performance without SVM Parameter Optimization
100, T T
—HSV
95 XYZ|
—RGB
90
Cross- 85 ‘
Validation
Rate (%) 80 V\\ |
‘| i ‘w‘
| ||
751 bk
3
Lo
70 \J/\ ‘v\/\
651~ 3
60 .
0 50 100 150 200 250
q (quantization level)
Classification Performance with SVM Parameter Optimization
100,
95
Mwin ‘
o MY W —— = —
LYY J P -
90!
L VAl VS AN T O~
Cross- 8 \ [ h
Validation /WWWV\ W\WW
Rate (%) 801+ |
75
70
—HSV
65 XYZ
—RGB
60 i I i
0 50 100 150 200 250

q (quantization level)

Figure 5.17: Performances of the region classifiers trained with the ten images of the cluster 2
(dark green rose leaves) and different color features.
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Classification Performance with and without SVM Parameter Optimization
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Figure 5.18: Performances of the region classifiers trained with the whole training set and texture
features.

e method 1: ad hoc segmentation, with the Hysteresis thresholding algorithm
tuned with Tj,, = 0.45 and T}, = 1.0.

e method 2: algorithm selection and tuning based on the learnt parameters
from the whole training set (CSC is the best algorithm),

e method 3: method 2 + semantic segmentation (region labelling),

e method 4: algorithm selection and tuning based on image content analysis
(one algorithm with learnt parameters per context),

e method 5: method 4 + semantic segmentation,

e method 6: over-segmentation + semantic segmentation

The over-segmentation used in method 6 is performed with the CWAGM algo-
rithm manually tuned with a very low region merging threshold (see Figure 5.19).

Performance scores of the test set are summarized in Table 5.8 and some ex-
amples of results for four test images are presented in Figure 5.20, Figure 5.21,
Figure 5.22, and Figure 5.23. Methods 3 and 5 gives the best result. This result
is predictable since the segmentation algorithm used for the method 5 is the same
(CSC) and the parameter settings for the context 1 is close to the one for the
context 2. The small difference between the performance scores of methods 3 and
5 is at the method 3 advantage. The white fly region classifier for the context 2
has been trained on few samples since there are not many white flies on the front
side of rose leaves. Consequently, the classification errors for the white fly class
are higher for the method 5 context 2 than for the method 3. In a biological point
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Figure 5.19: Example of an initial over-segmented image used in method 6.

of view, insects prefer to live hided on the back side of the leaves, where they are
better camouflaged (low contrast, not visible, etc.). Method 6 does not perform
better results even if its initial over-segmentation is more precise (i.e. less missed
boundary pixels) than with the CSC algorithm in methods 2 to 5.

method Performance scores of the segmentation
min max mean std

1 0.000 0.351 0.095 0.080
2 0.000 0.779 0.213 0.164
3 0.000 0.654 0.122 0.139
4 0.000 0.832 0.234 0.170
5 0.058 0.617 0.123 0.140
6 0.000 0.668 0.153 0.144

Table 5.8: Statistics on the segmentation performances for the test set using different segmentation
strategies.

5.4.6 Overall System Assessment

To assess the quality of the cognitive system, the results have been compared
with ground truth. Three human operators (one expert in agronomy, one expert in
image processing and one non-expert neither in agronomy nor in image processing)
have manually counted the white flies on 180 images. Each operator has a different
point of view when counting. The expert in image processing focuses on pure
visual characteristics while the expert in agronomy focuses more on the semantic
meaning of images. This can lead to different counting results as illustrated in
Figure 5.24: the expert in agronomy counts three white flies, the expert in image
processing only one (because only one object matches the visual criteria), and the
non-expert two. This explains the size of some error bars on ground truths in
Figure 5.25 (e.g., samples 142 and 148).
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Figure 5.20: Examples of results on a test image for different segmentation configurations (1).
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Figure 5.22: Examples of results on a test image for different segmentation configurations (3).
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Figure 5.23: Examples of results on a test image for different segmentation configurations (4).
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Figure 5.24: Example of an ambiguous image sample for ground truth estimation. The two
white flies on the top have moved during the scanning. This leads to color flickering which do
not correspond to the normal white fly color.

We detail hereafter the result evaluation for early detection of mature white
flies. From the 180 images composing the test set, 162 contain between zero and
five white flies. Figure 5.25 presents the detailed results for the whole test set.
For each image the average ground truth value (blue circle) is reported with its
associated error bar. Red crosses represent the values found by the system. To
prove the reliability of our learning approach, we have tested it against an ad
hoc segmentation (i.e. a manually tuned algorithm): a hysteresis thresholding
segmentation on gray-scaled normalized image (i.e. pixel values in [0,1]) with
low threshold (7j,,) fixed to 0.45 and high threshold (7}4s) fixed to 1.0. The
two graphs present the results of mature white fly counting. The top graph
corresponds to the system configured with ad hoc segmentation and the bottom
graph corresponds to the system configured with our learning approach.

Globally, the detection rate is satisfactory. To fully make use of the results,
we can separate the test samples into two classes depicting the most relevant
situations. The first class (C) represents images without any mature white fly
(i.e. images for which the ground truth error bar maximum is strictly inferior
to 1.0) and the second class (C9) represents images with at least one white fly
detected (i.e. images for which the ground truth error bar maximum is equal or
superior to 1.0). We define the False Positive Rate (FPR) as the rate of over-
detection (i.e. images for which the number of detected white flies is greater than
the ground truth error bar) and the False Negative Rate (FNR) as the rate of
under-detection (i.e. images for which the number of detected white flies is less
than the ground truth error bar). Table 5.9 summarizes the detection results.
The figures represent the mean values of FNR and FPR for class Cy, Cs, and for
the whole image test set.

The FNRs are roughly similar for the two configurations. In fact, this reveals
confusing situations as the one presented in Figure 5.26: two overlapping white
flies have been segmented into one region which has obviously not the shape of
a single white fly. Hence, the system counts one white fly instead of three. This
highlights the scale issue of our problem for which highly variable small objects
are expected to be detected in a complex natural environment. Concerning the
FPRs, they are up to four times smaller with the learnt segmentation than with
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Figure 5.25: Evaluation of mature white fly counting results in early detection cases (i.e. between
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with an ad hoc segmentation.
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Results for early detection of mature white flies

With ad hoc segmentation With learnt segmentation
Samples FNR (%) FPR (%) FNR (%) FPR (%)
C1 (102) - 9.6 - 3.1
Cs (60) 24.7 9.0 29.6 2.0
Whole set (162) 9.1 9.4 11.0 2.7

Table 5.9: False Negative Rate (FNR) and False Positive Rate (FPR) for test images with no
white flies (class C1), at least one white fly (class C3) and for the whole test set.

the ad hoc one. This is due to our adaptive segmentation approach that allows to
efficiently tune algorithm parameters with respect to variations in leaf color and
contrast.

2mm

fr—r
48 pixels

Figure 5.26: Example of an ambiguous situation leading to a wrong interpretation result.

5.5 Evaluation on a Public Image Database

In this section, we present evaluation results of the parameter optimization step
on a public image database.

The goal of the Berkeley Segmentation Dataset and Benchmark (BSDB) image
database [Fowlkes and Martin, 2007 is to provide an empirical basis for research
on image segmentation and boundary detection. To this end, the authors have
collected 6000 hand-labeled segmentations of 500 Corel dataset color images from
30 human subjects. The images depictes natural scenes with at least one fore-
ground objet (e.g., an animal, a plant, a person, etc.). The public benchmark
based on this data consists of all of the segmentations for 300 images. The images
are divided into a training set of 200 images, and a test set of 100 images. The
ground truth are not labelled and the possible semantic classes are too numerous.
Consequently, we do not assess the semantic segmentation part of our framework
on this image database.

The evaluation metric proposed in this image database for the benchmarking
cannot be used with region-based segmentation algorithms since it relies on soft
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boundary maps of edge-based segmentation results (e.g. maps of gradient mag-
nitude). We thus prefer our segmentation performance metric. For each image,
several human segmentation exists (from three to eight) with different levels of
refinements. We have decided to take into account the finest ones. Then, for each
segmentation algorithm of our algorithm bank and for each image, algorithm pa-
rameters are optimized thanks to the manual segmentation. As previously done
in section 5.4.2, we have compared the optimized segmentation achieved with the
three optimization algorithm based on: the Simplex algorithm (Table 5.10), the
Genetic Algorithm (Table 5.11), and a systematic search (Table 5.12). Globally
the three optimization algorithms performs in mean comparable results. This
confirm the reliability of our parameter tuning approach for this image database.

Algorithm E7 using the Simplex algorithm

min max mean std
CscC 0.285 0.768 0.639 0.079
SRM 0.246 0.702 0.529 0.079
THRESH 0.193 0.680 0.510 0.081
EGBIS 0.207 0.632 0.495 0.077
CWAGM 0.224 0.691 0.530 0.081

Table 5.10: Statistics on the optimization performances using the Simplex algorithm.

Algorithm E7 using the genetic algorithm

min max mean std
CsC 0.373 0.756 0.633 0.086
SRM 0.232 0.665 0.532 0.088
THRESH 0.192 0.682 0.514 0.092
EGBIS 0.202 0.618 0.499 0.081
CWAGM 0.224 0.675 0.530 0.090

Table 5.11: Statistics on the optimization performances using the genetic algorithm.

Algorithm FE7# using the systematic search

min max mean std
CsC 0.252 0.762 0.594 0.087
SRM 0.234 0.696 0.528 0.079
THRESH 0.376 0.648 0.521 0.064
EGBIS 0.337 0.600 0.509 0.066
CWAGM 0.496 0.0677 0.589 0.091

Table 5.12: Statistics on the optimization performances using the systematic search.
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5.6 Conclusion

In this chapter, we have presented the validation of our framework for adaptive
image segmentation on a biological application. We have paid a special attention
to the assessment of each step of our learning module. We have seen that our
optimization procedure is able to extract optimal parameters of different segmen-
tation algorithms. The optimization is reasonable in terms of computational cost
and delivers compatible results with the application needs. Then, region classi-
fiers have been trained on a relative small set of training images (50) for which the
user has provided manual segmentations and, regions annotations for two object
classes. The qualitative and quantitative evaluations of the results demonstrate
the potential of our method for this application. On the test image set, our adap-
tive segmentation outperforms an ad hoc segmentation with in mean 50% less
segmentation errors according to our performance evaluation metric.

We have also shown how our framework can be used into a cognitive vision
system dedicated to the detection and counting of insects on rose leaves to enrich
the segmentation task with learning and adaptability faculties. Global perfor-
mance of the system has been improved thanks to our adaptive segmentation and
decrease the false rate detection in a factor three.

We have however limited our experiment to a figure-ground segmentation prob-
lem. Further experiments with more training data (i.e. more semantic classes)
are necessary to fully validate our framework.



Chapter 6

Adaptive Figure-Ground
Segmentation in Video
Surveillance Applications

6.1 Introduction

Figure-ground segmentation of videos consists in separating the foreground pixels
of the background pixels. In video applications, the variability of the two classes
makes the detection of foreground pixels fairly impossible to predict without mo-
tion information. A widely used method to tackle this problem is to model the
background in order to detect only moving pixels. If some techniques (e.g., median
filtering |[Prati et al., 2003], mixture of Gaussian [Stauffer and Grimson, 1999,
kernel density estimator [Elgammal et al., 2000], codebooks [Kim et al., 2005])
have proved to be efficient in specific situations, the maintenance of background
models in long-term videos of changing environment is still a real challenge. More
precisely, these techniques are still not able to cope with both gradual changes
(e.g., due to the change of the location of the sun) and sudden changes (e.g., due to
the passage of clouds in front of the sun). In video surveillance applications, such
situations are common, for instance in outdoor site or building entrance surveil-
lance. Therefore, a need exists in improving the segmentation step to achieve a
robust detection of moving objects of interest in every expected situations.

In this chapter, our objective is to remove the restrictions on the use of video
segmentation algorithms. More precisely, our aim is to show how our algorithm
selection method based on image context analysis can be used for the dynamic
selection of background model. The goal is to divide the background modelling
problem into more tractable sub-problems, each of them being associated with a
specific context.
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6.2 Meta-Learning for video segmentation algorithms

6.2.1 Targeted Applications

We consider the problem of the figure-ground segmentation task in video surveil-
lance applications where both quick-illumination changes and long term changes
are present. In this context, the major difficulty at the segmentation level is to
deliver robust results whatever lighting changes occur in the scene. These lighting
effects can be induced by weather conditions changes in outdoor scenes, by the
switching of an artificial lighting source in indoor scenes, or by a combination
of changes of different natures. The consequences at the pixel level are varia-
tions of intensity, color saturation, or inter-pixel contrast. At the image level,
these changes can affect just a local area or the whole image. Another source
of problems arises from the presence of non-static objects in the background as
swaying trees or mobile objects as chairs. All these background variations make
the foreground detection problem very difficult.

6.2.2 Targeted Algorithms

To estimate the motion, a basic approach is to compute the difference between
a background image, called the reference image, and the current frame. The
result is then thresholded to get a binary image of moving pixels. The result
is obviously very sensitive to the threshold. Most of the time, the user must
tune this threshold in a trial-and-error process. One difficulty arises when the
background pixels are varying along the time. In this case, more elaborated
approaches build a background model for each pixel based on the pixel’s recent
history by using, for instance a chronological average or median of the n previous
frames. More recently, Mixture of Gaussian (MoG), Kernel Density Estimator
(KDE), and codebook models have been proposed to cope with multiple modal
background distributions. These algorithms are based on a training stage to
estimate the Gaussian parameters (for MoG), to compute the probability density
functions (for KDE), or to construct the codebooks. Each of these techniques
can provide acceptable accuracy in specific applications: MoG are adapted to
multi-modal background distributions but fail to provide sensitive detection when
background has fast variations. KDE overcomes this problem but are limited to
short-term videos due mostly to memory constraints. Codebooks alleviate this
computation limitation by constructing a highly compressed background model
but produce too wide background models when the environment is highly variable
as in long-term videos.

Our approach focuses on algorithms assuming a training stage of the
background model representation on background samples, i.e. a set of
frames without any moving objects of interest. In particular, we focus on
two algorithms of this family: the generalized Mixture of Gaussian (MoG)
model [Stauffer and Grimson, 1999] and the codebook model [Kim et al., 2005].
The training stage of the Mog model consists in estimating k Gaussian parameters
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set (w, u, X) for each pixel using an expectation-minimization algorithm, where &
is the number of gaussians in the mixture. For the codebook model, the learning
stage consists in constructing the set of codewords (i.e. a codebook) for each pixel.
A codework is composed of a vector of mean RGB values and of a five-tuple vector
containing intensity (brightness) minimum and maximum values, the frequency
with which the codeword has occurred with its first and last access time. We
have chosen these two algorithms for the differences they exhibit in their model
representation and their training process, and for their comparable performances
in the targeted applications.

6.2.3 Hypothesis

Our assumptions are the following:

1. We suppose that the user is able to collect a set of background samples for
the training of the background models. In a practical point of view, the
collection can be achieved by a manual selection of frame sequences where
no object of interestis present.

2. We suppose that this set is large enough to illustrate the different variations
of the scene (the contexts), e.g. the different illuminations changes that
could be encountered in real-time use.

These two assumptions fit quite good with the targeted applications where videos
can be acquired continuously, typically 24 hours per day and seven days per week.
The quick availability of data allows to build hence huge training image set.

6.2.4 Experiment

The experimental conditions are the followings: the video data are taken during
a period of 24 hours, at eight frames per second, from a video surveillance camera
fixed above an outdoor cash desk of a car park. The video camera parameters
are set in automatic mode. The size of the images is 352 x 288 pixels and are
stored in JPEG format. For the experiment, we have taken one frame on five
which correspond to 138000 frames in total. Six samples picked from the image
set are shown in Figure 6.1. They have been chosen to illustrate the background
modelling problem. In the learning stage, we have manually defined a training
image set I composed of 5962 background frames (i.e. without foreground objects)
along the sequence. This corresponds to pick one frame every 15 seconds in mean
and represents 4.3% of the whole image set.

6.3 Context Analysis by Image Sequence Clustering

This step slightly differs from the one presented for static image segmentation for
two reasons. First, the training image set is exclusively composed of background
images and second, the features used to characterize the images variations are not
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Figure 6.1: Six frames representative of the background modelling problem.
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the same (color histograms in static segmentation). Here, the field of view of the
video camera is fixed. This configuration allows a more local analysis of the image
variations. To this end, a straightforward approach, based on a global histogram-
ing of pixel intensity as in |Georis, 2006] is not fully adapted. Actually, such
histograms lack spatial information, and images with different appearances can
have similar histograms. To overcome this limitation, we use an histogram-based
method that incorporates spatial information |Pass et al., 1997]. This approach
consists in building a coherent color histogram based on pixel membership to large
similarly-colored regions. For instance, an image presenting red pixels forming a
single coherent region will have a color coherence histogram with a peak at the
level of red color. An image with the same quantity of red pixels but widely scat-
tered, will not have this peak. This is particularly significant for outdoor scene
with changing lighting conditions due to the sun rotation, as in Figure 6.1(a,b).

Figure 6.2 gives a quick overview of the feature distribution along the sequence.
In this figure, each X-Z slice is an histogram which represents the percentage of
the number of pixels (Z axis) belonging to a given color coherent feature (X
axis). The coherent color feature scale has been divided into 3 intervals for the
three HSV channels. Histograms are ordered along the Y axis which represents
the time in the course of a day. Several clusters of histograms can be easily
visually discriminated as notified for cluster number 1, 14 and 2. Others clusters
not represented here are intermediate ones and mainly correspond to transitions
states between the three main clusters. Sixteen clusters are found (see Figure 6.3
for context class distribution). Three major clusters can be identified (number
1, 2 and 14). The order of class representation does not necessary correspond to
consecutive time instants. Cluster 1 corresponds to noon (sunny context), cluster
2 correspond to the morning (lower contrast) and cluster 14 to the night.

Then, for each identified cluster, the corresponding training frames are put
together and used to train a background model (i.e. codebooks). The next step
is the real-time adaptive segmentation of the video using a dynamic selection of
trained background models.

6.4 Real-Time Adaptive Figure-ground Segmentation

This task begins similarly to the one presented for the static segmentation task.
For a new image I, a global feature vector v([), here a coherent color histogram
in the HSV color space, is extracted and classified as a context. We also use a
temporal filtering step to reduce instability of the clustering algorithm. Indeed, in
cluttered scenes, foreground objects can strongly interact with the environment
(e.g. light reflections, projection of shadows) and then add a bias to the context
analysis. So, it is important to smooth the analysis by ponderating the current
result with respect to previous ones. Our temporal filtering criterion is defined as
follows

Let us define € the context cluster identifier (the buffered context), 6y the
cluster identifier for the incoming image I, and pg the square mean of cluster
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Figure 6.2: 3-D histogram of the image sequence used during the experiment (see Figure 6.1 for
samples).

Figure 6.3: Pie chart of the context class distribution for the image sequence used for the
experiments.
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probability computed on a temporal window. « is a ponderating coefficient related
to the width w of the temporal filtering window. To decide if 87 is the adequate
cluster for an incoming image I, we compare it with pg as in Algorithm 7. In this
algorithm, two cases are investigated. If 8; is equal to 6, ug is updated based on
the context probability p(67) and «. Else if 07 is different to 6, the current p(6r)
is tested against ug. The square value of p(fy) is used to raise the sensibility of
the temporal filtering to large variations of p(fr).

Algorithm 7: Context Temporal Filtering Algorithm

inputs : [

outputs: 6 (the buffered context identifier)

/*initializations for the first frame only */
160+—0; /*set current context identifier to ‘noise’*/
2 py «— 0 /*set square mean of  probability to 0%/
3 a—0; /*set weight parameter to 0%/
4 [07,p(f7)] < contextAnalysis(]) ; /*0; = context ident. of %/

5 if 6 =607 or 6 =0 then
6 0«— 05 ;

7 e %ﬁf(m ; /*update the value of ug*/
if a < w then
L a—a+1;
10 else if p?(6;) > pp then
11 0—0r;
12 po «— p*(0r) ; /*update the value of g*/
13 a—1; /*reinitialize the weight ax/

14 return 0

When the context is identified, the corresponding background models are se-
lected and the figure-ground segmentation of I is performed.

6.5 Experimental Results

In this section, we present experimental results of real-time figure-ground segmen-
tation. Since no ground truth are available for the car park video, we are only
able to present qualitative results. We compare the results obtained with different
segmentation settings (with or without the context adaption, etc.) at different
moments of the day and in several difficult situations.

Boundaries of the detected regions (in green) have been dilated for a better
visualization. We remember that we took one frame every five seconds in our
experiment. context ID is the identifier of the detected context and prob is the
estimate probability of the identified context.
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6.5.1 Model Selection Effect

In this section, we show some examples Figure 6.4 where the selection of the
background model helps to improve the segmentation. In this figure, the left
column corresponds to the codebook segmentation when trained on the whole
training image set. The right column corresponds to the codebook segmentation
results thank to our context adaptation method, i.e. with a dynamic selection of

rate without adding false detection.

6.5.2 Temporal Filtering Effects

In this section, we present some situations where the temporal filtering algo-
rithm can help to correct classification mistakes. The columns of Figure 6.5 and
Figure 6.6 corresponds to the segmentation result with the codebook algorithm
based on respectively one background model (left column), dynamic selection of
the background model (middle column), and dynamic selection of the background
plus temporal filtering (right column).

When a foreground object crosses the scene

The presence of a person modify the pixel distribution of the scene and then
perturbs the context classification. Consequentely, a ‘noise’ context (ID:0) is
often detected as shown in Figure 6.5. The temporal filtering algorithm smooths
the context analysis by integrating the results of the previous frames, and then
helps in keeping a correct context classification in such cases. We can also see on
the second row that the man’s shadow is not detected. In fact, context number 1
gathers frames from sunny and shaded illumination conditions of this scene part.
The corresponding background model has thus integrated these values during the
training.

When an unadapted context is detected

When the lighting condition suddenly changes due to incoming reflections on shiny
surfaces for instance, the context classification is biased and returns an unadapted
context identifier. Once more, the used of the temporal filtering is well-adapted
for these -not so rare- situations as seen in Figure 6.6.

6.5.3 Borderline and Bad Results

In this section, we give some examples where the results are not the expected
ones. In particular, we try to exhibit the limits of our approach at both model
selection level and context filtering level.
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frame #111256)

Figure 6.4: Tllustration of the segmentation improvement when a dynamic selection of a back-
ground model is applied (right column).
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Figure 6.5: Illustration of the temporal filtering effect on the context analysis (1). Columns are,
from left to right: without context adaptation, with context adaptation, with filtered context
adaptation. Rows are frame at time ¢ and ¢ + 1, 87s.

Figure 6.6: Illustration of the temporal filtering effect on the context analysis (2). Columns are,
from left to right: without context adaptation, with context adaptation, with filtered context
adaptation.
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Shadow removal

Unlike Figure 6.5, Figure 6.7 shows a case where shadows are not correctly in-
tegrated into the background model. The context number 10 corresponds to
the night and the only possible shadows are coming from people coming out the
pedestrian entrance of the car park. This situation has not been learnt during the
training stage of the codebook models.

Figure 6.7: Illustration of the shadow removal problem when the background model is not
trained to such situations.

Noise sensitivity of poorly trained background models

The problem with intermediate contexts (i.e. representing a short period) is their
brittleness to noise. Their associated background model has not been trained
enough and the detection result has a greater false positive rate then wider clus-
ters. This is the case of the context number 4 as in Figure 6.8.

78

Figure 6.8: Tllustration of the noise sensitivity of a poorly trained background model.

Limitation in the quick adaptation to complex changes

At the end of the night, the street lighting is switched off. If the appearance of
the scene is instantly modified, the video camera needs several couple of seconds
to completely adapt its gain to the new illumination conditions. The modelling
of this event is very difficult because it is a succession of small changes: shadows
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vanish, color changes, and the contrast decreases. At the scale of 24 hours, this
step is shown as a noise context, since it finally involves a short period (about
half a minute). Figure 6.9 shows what is happening at the segmentation level
with or without context adaptation and temporal filtering. When the street light
switches off (second row), many false positive pixels are detected and the context
analysis returns a noise context. The context analysis becomes correct again only
three seconds later (third row). Concerning the temporal filtering of the context,
the necessary time to find back a correct context adaptation is greater (7,5s).
This is due to the time lag added by the temporal window of the filtering.

6.5.4 Comparison with Mixture of Gaussian

In this section, we compare our approach with the MoG approach. We use an
implementation of the algorithm proposed in [Stauffer and Grimson, 1999]. We
use the default parameter setting. A MoG background model is trained for each
identified cluster then dynamically selected during the real-time segmentation.

Figure 6.10 shows that MoG are more sensitive to shadows than codebooks.

Figure 6.11 shows the high sensitivity of Mog to global changes (first row) and
the effects of a too large learning rate: foreground pixels from the first row still
remains on second row. We also see that the same false detection problem occurs
with Mog when models are not enough trained (third row). The last row shows
the difficulty of the model to integrate noisy pixel value induces by the high gain
level of the video camera.

Figure 6.12 shows the same frames than the ones in Figure 6.9. We can see
that the MoG model encounters the same problem than the codebook and fails
to quickly adapt to the background variations.

6.6 Conclusion

In this chapter, we have presented the validation of our adaptive segmentation
approach for video surveillance applications. We have focused on a difficult long-
term video surveillance application (outdoor car park entrance surveillance) where
both gradual and sudden changes occur. In this application, a huge amount of
data are easily available since images can be acquired continuously. In a weakly
supervised learning stage, the user’s task is to collect background samples il-
lustrating the different situations. The unsupervised clustering algorithm has
successfully identified meaningful clusters of training images like sunny context,
night context, or dawn context. For each identified image cluster, a background
model has been trained using the codebook model |[Kim et al., 2005]. This ap-
proach, consisting in generating sub-goals and training learning-based algorithms
on each sub-goal is similar to a meta-learning approach. In real-time figure-
ground segmentation, the different contexts are successfully retrieved thanks to
the temporal filtering algorithm. However, some problems remain in the context
adaptation especially when unforeseen changes occur.
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Figure 6.9: Illustration of the limitation to quick adaptation of the context adaptation and
temporal filtering. Columns are, from left to right: without context adaptation, with context
adaptation, with filtered context adaptation. Rows are frame at time ¢, t +0.62s, ¢t + 3.12s, and
t+ 7.5s.
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Figure 6.10: Comparison between the proposed approach (left column) with the codebook
model [Kim et al., 2005] and the MoG model [Stauffer and Grimson, 1999] (right column) (1).
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Figure 6.11: Comparison between the proposed approach (left column) with the codebook
model [Kim et al., 2005] and the MoG model [Stauffer and Grimson, 1999] (right column) (2).
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Figure 6.12: Comparison between the proposed approach (left column) with the codebook
model [Kim et al., 2005] and the MoG model [Stauffer and Grimson, 1999| (right column) on
the sequence of Figure 6.9.
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In this problem, our context analysis uses pixel values in the HSV color space.
The transformation of the pixel values into this color space is costly and then
degrades the frame-rate in real-time segmentation. Nevertheless, the motivation
in using this color space to discriminate image context is based on the fact that
illumination changes are more visible in the HSV space than in the RGB space.
Indeed, the saturation channel is very sensitive to changes induced by shadows or
sun illumination.

If the temporal filtering of the context has the expected smoothing effects when
spurious contexts are detected, the algorithm mainly relies on the a parameter
setting. A too large value will add a time lag in the context adaptation whereas a
too small value will make the algorithm too sensitive to spurious context detection.
So, depending on the application needs and the frame rate, a trade-off value might
be set.

The codebook model has shown to be well-adapted to deal with this experi-
ment. Comparisons with the MoG model reveal its robustness in different situa-
tions as quick illuminations changes variations or shadows removal. Nevertheless,
a quantitative evaluation study remains to be done to objectively assess our ap-
proach against other algorithms.
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Chapter 7

Conclusion and Perspectives

In this thesis, I address the problem of image and video segmentation with a
cognitive vision approach. More precisely, I study two major issues of the seg-
mentation task in vision systems: selection of an algorithm and tuning of its free
parameters, according to the image content and to the application needs. Most
of the time, this tedious and time-consumming task is achieved by an expert in
image processing using a manual trial-and-error process. Recently, some attempts
at automating the extraction of optimal parameters of segmentation have been
made but they are still too application-dependent. The re-usability of such meth-
ods is still an open problem. We have chosen to handle this issue with a cognitive
vision approach. Cognitive vision is a recent research field which proposes to
enrich computer vision systems with cognitive capabilities, e.g., to reason from a
priori knowledge, to learn from perceptual information, or to adapt its strategy
to different problems.

In this thesis, I propose a supervised learning-based methodology for off-line
configuration and on-line adaptation of the segmentation task in vision systems.
The off-line configuration stage requires minimal knowledge to learn the optimal
selection and tuning of segmentation algorithms. In an on-line stage, the learned
segmentation knowledge is used to perform an adaptive segmentation of images
or videos. This cognitive vision approach to segmentation is thus a contribution
for the research in cognitive vision. Indeed, it enables robustness, adaptation, and
re-usability faculties to be fullfiled.

The proposed approach has been implemented and validated on two types
of real-world applications: adaptive static image segmentation in a biological
application and figure-ground segmentation in a video surveillance application.

The first part of this chapter reviews my approach and discusses its contribu-
tions and its limitations. The second part presents perspectives to improve the
method, in particular concerning the learning topic.
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7.1 Review of the Proposed Approach and Contribu-
tions

7.1.1 A Generic Optimization Procedure

Our optimization procedure automatically extracts the optimal parameters of
segmentation algorithms based on a quantitative evaluation of the segmented
image quality w.r.t. manual segmentations. The method is independent of the
application and of the segmentation algorithms. Only the free parameters to tune
with their range values are required. This kind of knowledge is usually provided
by the algorithms’ authors. The criterion used to evaluate the segmentation
quality makes no assumptions on the application nor on the algorithm behaviors.
It has been applied to assess segmentation tasks in two applications (a biological
application and a video surveillance one). It has also been applied to the Berkeley
public segmentation database [Fowlkes and Martin, 2007]. Two free-derivative
optimization algorithms (a direct search method and a genetic algorithm) have
been successfully used to minimize the criteria. In this field, my contribution is
a comparative study of the two optimization algorithm performances. Thanks to
this study, we have identified two situations: when the number of parameters is
up to two, the Simplex provides good results in a minimal number of iterations.
When the number of parameters is greater than two, the genetic algorithm should
be preferred.

The main difficulty of this supervised learning approach is the manual segmen-
tation of images. This task is tedious, subjective, and time-consumming. User-
friendly annotation tools should be used to alleviate users’ efforts. The strength of
this approach is also dependent on the intrinsic performance of the segmentation
algorithms. As a consequence, this approach supposes that at least one algorithm
is able to perform good results for the target segmentation purpose.

7.1.2 A Strategy for the Algorithm Selection

After that several segmentation algorithms have been optimized on a training
image set by using the proposed generic optimization procedure, the next issue
is algorithm selection. The goal of this step is to answer to the user’s question:
“which algorithm is the best adapted to segment my image?”. The first part of my
strategy consists in identifying different situations in the training image set. A
situation, also called a context, is represented by a sub-set of images sharing the
same global characteristics, such as color distributions. First, an unsupervised
clustering algorithm is used to identify these contexts. The second part uses
the results of the previous optimization stage to perform a local ranking of the
optimized algorithms for each context according to their performance values.
This strategy allows a dynamic control of the segmentation task (i.e. algorithm
selection plus optimal parameter setting) without the need of explicit a priori
knowledge of the application domain or the segmentation algorithms themselves.
It should be noted that this strategy makes several assumptions. First, it sup-
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poses that all possible contexts are illustrated in the training image set. Second,
this strategy argues that for each identified context, a mean parameter set of the
best ranked algorithm exists to deliver good segmentation results.

7.1.3 A Semantic Approach to Image Segmentation

Most of the time, segmentation results provided by bottom-up algorithms are
semantically meaningless. I propose a semantic approach to image segmentation
where high level region labels help to validate region segmentation results. The
region labelling algorithm relies on three steps and makes use of the results of
the previous stages (parameter optimization and algorithm selection). In a first
step, for each training image, the user is invited to affect semantic labels to
regions of manual segmentations according to the application needs. Then, an
automatic region label matching is achieved between the regions of the manual
segmentation and the regions of the optimized segmentation. Finally, a set of
classifiers (SVMs) are trained for each label based on numerical features of regions.
The originality of the approach is that each step of the learning process, i.e.
feature extraction and SVM training, is optimized in a wrapper scheme so as to
maximize the classification performance of the algorithm.

Currently, region features are limited to color and texture information. The
method could be improved by also taking into account spatial information, such
as the relationships between the different semantic classes of regions.

7.1.4 A Software Implementation of the Methodology

A software implementing this methodology for off-line configuration and on-line
adaptation of the segmentation is proposed. Starting from a training image set
with the corresponding manual segmentations, the system, via a graphical user
interface, is able to:

e extract optimal parameters for six segmentation algorithms (four for static
image segmentation and two for video segmentation),

perform the image cluster decomposition,

select the best performing algorithm for each identified context,

annotate the regions with respect to predefined class labels,

train region classifiers,

control the segmentation of new images with respect to the learned segmen-
tation knowledge,
e visualize segmentation results.

More development on the implementation in C++ code is given in appendix B.

Finally, by addressing the problem of adaptive image segmentation, we have
also addressed underlying problems, such as feature extraction and selection, and
segmentation evaluation and mapping between low-level and high-level knowledge.
Each of these well-known challenging problems is not easily tractable and still
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demands to be intensively considered. We have designed our approach (and our
software) to be modular and upgradable so as to take advantage of new progresses
in these topics.

7.1.5 Contributions for the Cognitive Vision Platform

My approach has enriched the platform by enabling learning faculties at the seg-
mentation level. Previously, segmentation algorithms were manually tuned by an
expert in image processing and the dynamic selection relied on a knowledge base
written by hand. The same algorithms are now automatically tuned and thus
allow an adaptive segmentation of different images, thanks to a training stage.
The gain obtained at the segmentation level benefits to the higher level modules
of the platform.

7.1.6 Contributions for the Biological Application

Despite the appearance, robust segmentation of mature white flies on rose leaves
is not a trivial task. The variability of leaves color and texture combined with
the semi-transparent nature of the white fly wings and the presence of number of
other objects (e.g., white fly eggs, larvae, chemical treatments traces, water drop,
etc.) makes the segmentation not so easy. Compared to an ad hoc segmentation
tuned by hand, our adaptive segmentation achieves better results and thus leads
to a better counting precision. Moreover, the semantic segmentation drastically
reduces the number of regions by merging the subparts of objects. This tech-
nique decreases the computational cost of the system since less regions have to be
processed at the interpretation level.

At present, the platform is able to manage the detection and the counting of
only one biological object. Other bioagressors (e.g., greenfly, aphids, etc.) or
other stages of development of white flies (e.g., larvae, eggs) should be treated in
order to assess both our adaptive segmentation approach and the platform to a
multi-class problem (more than two). To this end, we need to acquire new data
(i.e. images with manual segmentations and region annotations) as well as high
level knowledge (i.e. descriptions of the objects in terms of visual concepts) for
the correct descriptions of the new objects.

Finally, the platform is currently also limited by its acquisition system (a
flatbed scanner). We plan to overcome such a limitation by using video cameras.
Another advantage of video cameras is that they provide temporal information
which is of great interest to disambiguate occlusion situations, for instance.

7.1.7 Contributions for Video Surveillance Applications

In this application, my main contribution is the dynamic background model selec-
tion based on context analysis. This approach fits particularly well to applications
where both short-term and long-term illumination changes may occur. The unsu-
pervised clustering algorithm uses image global characteristics integrating spatial
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information so as to take into account not only global changes but also local ones.
We have also proposed an algorithm for temporal context filtering.

The first experiments have proved that the dynamic selection of background
models is a good approach to deal with adaptation facilities. Nevertheless, it is
clear that our approach is still unable to manage unforeseen situations, i.e. new
contexts. An extension of this approach to enable continuous learning facility is
thus actively needed.

Finally, in this application, we do not completely follow up our strategy for
algorithm selection. It should be interesting to see how different figure-ground
segmentation approaches could cooperate together.

7.2 Future Work

7.2.1 Short-Term Perspectives
Incremental learning for unforeseen situations

The brittleness of our approach to unknown situations is currently its major
drawback. This concerns the context analysis level as well as the segmentation
level. The concerned algorithms are the DBSCAN algorithm for image-content
clustering and the SVMs for the semantic segmentation. Currently, neither the
clustering algorithm nor the SVMS are able to adapt dynamically to new training
data: the learning process must be run again on the whole training data set.
The use of incremental machine learning techniques should be useful to fulfill
the property of continuous learning. The main idea of incremental learning for
unforeseen situations is to dynamically adapt the clustering/classification method
w.r.t. to the classification error of new input data. In our problem, unexpected
situations can be identified thanks to the estimates of the context probability
and the estimates of the SVM classification probabilities. For instance, in video
surveillance, when the ‘noise context’ is detected during several frames, an alarm
could raise and the concerned frames could be considered as new training images.
In a supervised process, a user could be asked to validate the new training images
by checking whether each frame is a background frame or not. In an unsupervised
process, the validation of the new training images could be based on a spatial
analysis of the detected moving pixels. Usually, when a ‘noise context’ is detected,
many meaningless moving pixels are detected all over the image. The use of an
adaptive classification algorithm using robust incremental clustering as proposed
in [Prehn and Sommer, 2006] will then allow to dynamically update the cluster
and create new ones if necessary.

Meta-Evaluation of Image Segmentation

The assessment function for the evaluation of segmentation results we have pro-
posed in chapter 4 is based on two fundamental criteria (counting of miss- and
over-detected boundary pixels). It makes the metric re-usable for a large set of
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segmentation tasks. Nevertheless, the way of weighting each criteria is a key-point
element of the metric. For instance, in some applications, it should be better to
give more weight to the miss-detection rate than to the over-detection rate. It
should be also more adequate to use or to combine n different base evaluators p,
e.g., boundary-based and region-based evaluators, depending on the application
needs such as: Ej4 = a1p1+agp2+...+aup,. We believe that in general it is dif-
ficult to specify and exact form of the fitness function since this requires defining
exact trade-offs to be done between the different measures. To this end, meta-
heuristic for the weighting of functions as the Pareto front could be investigated as
in [Everingham et al., 2002]. For each segmentation algorithm and for all training
images, the parameter space is explored and gives a fitness function graph for each
base evaluator and for each training image. The goal is then to estimate the com-
bination of the different base evaluators which gives globally the best performance
scores (i.e. the Pareto front). To this end, a global optimization algorithm, as a
genetic algorithm is used to find the optimal configuration. Another possibility is
to use machine learning meta-algorithms as in [Zhang et al., 2006]. The idea is to
train a learning algorithm (e.g. a decision tree) that determines how to coalesce
the results from the different base evaluators applied on the training image set.
The main advantage is to obtain a tuned evaluation metric for the type of images
upon which it is trained.

Local Tuning of the Parameters of Video Segmentation Algorithms

The goal of video segmentation algorithms as mixture of Gaussian, kernel density
estimators, and codebooks is to learn the possible range values of background
models for each pixel. During the learning process, some thresholds are set to
define the bounds of the models. Usually, the values of these sensitive parameters
are the same for all the pixels. In the case of video surveillance applications
with a fixed video camera, the parameters should be optimized for each pixel.
For instance, the detection thresholds for pixels in a zone where a moving object
never passes through should be set to produce a low false detection rate. In the
contrary, the detection thresholds for the pixels of zone(s) of interest should be
set to produce sensitive models. This is examplified in Figure B.1 where 27 is
the zone where objects of interest (people) never comes and zo where they are
expected to be visible. The detection thresholds for each pixel in z; should be set
to a lower value to the ones for zs.

Spatio-Temporal Video Segmentation

The major problem of pixel-based approaches for video segmentation is that no
spatial coherency is taken into account. To overcome this limitation, a solution
is to compute in parallel a region-based image segmentation. The objective is to
refine the segmentation obtained with a pixel-based motion segmentation. This
technique is illustrated in Figure 7.2. An input image (a) is segmented using a
region-based segmentation algorithm. The result is presented in (b). In paral-
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Figure 7.1: Example of a local tuning based on a priori knowledge of the scene. The tuning of
the detection thresholds for pixels in z; should be less sensitive to variations than for zs.

lel, a figure-ground segmentation (c¢) is computed using the codebook model for
instance. The final result (d) is a combination of the two segmentations with
respect to a majority overlap criteria. In this example, the region-based segmen-

Figure 7.2: Tllustration of a spatio-temporal segmentation (d) combining the results of a back-
ground subtraction algorithm (c) with a region-based algorithm (b).

tation algorithm has been manually tuned to produce an over-segmentation.
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7.2.2 Long-Term Perspectives
Use of a Visual Concept Ontology for Semantic Segmentation

Currently, the semantic segmentation is based on numerical features describing
independently each region. Complex objects like a person have several meaning-
ful subparts (e.g., head, legs) which cannot be described with the same low-level
features as color or texture. Moreover, some of these subparts can have an infinite
space of color variations, depending on the clothes for instance. These subparts,
belonging to the same semantic object, can yet be linked together by spatial re-
lations and hierarchical decompositions. Hence, several different visual concepts
should be used to achieve a semantic segmentation even if the object is difficult
to model. To this end, we could take advantage of the visual concept ontology
proposed by Maillot et al. in [Maillot and Thonnat, 2008 by mixing, in a struc-
tured way, a priori knowledge of different concepts (e.g., color, texture, geometric,
and spatial relation features). The goal should be to assess the membership of
each segmented region to a semantic object according to trained visual concept
detectors.

Use of Shared Visual Feature

For very difficult cases where intra-class information (i.e. object appearance) is
very heterogeneous and/or inter-class information is poorly discriminative, the
selection of representative features is tricky and leads to poor performances. In
this case, approaches based on shared visual features [Torralba and Murphy, 2007]
across the classes as boosted decision stumps should be more appropriated and
effective. Boosted decision stumps reduce the computational and the sample
complexity by finding common features that can be shared across the classes.
The detectors for each class are trained jointly, rather than independently. This
approach is then particularly efficient for multi-class problems with few training
examples.

Video Segmentation Benchmarking

Databases of videos for vision systems benchmarking exist but rarely refers to
the detection level. Most of the ground truth data consists in bounding box
surrounding the moving object(s). The building of bounding box relies on
merging blobs and thus requires some a prior: knowledge of the object to de-
tect. Moroever, common metrics for segmentation performance evaluation are
based on true and false detection rates and/or boundary pixel accuracy. Hence,
bounding box are definitively not suited to evaluate detection level results such
as region-based segmentations. The best solution consists in drawing, for ex-
ample, the silhouette of a person in each frame of a video sequence. Obvi-
ously, this task requires a huge effort and cannot be achieved by only one user
since videos are usually composed of several thousand of frames. This problem
has yet been tackled for static image databases as the Berkeley Segmentation
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Dataset and Benchmark [Fowlkes and Martin, 2007] (6000 hand-labeled segmen-
tations of 500 Corel dataset images from 30 human subjects) and the MIT La-
belMe database [Russell et al., 2005] (more than 41300 annotated images). The
strengths of these databases are their open access to the scientific community and
the tools they provide to facilitate the manual segmentations and annotations
of images. We believe that such a strategy should be extended to annotate the
content of video sequences.
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Appendix B

Implementation

B.1 A Library for Adaptive Image and Video Segmen-
tation

The goal of this appendix is not to provide a fully documented class description
of our implementation but rather to describe the main components and to give
pointers to the different libraries which have been used.

B.1.1 Main Class Descriptions

The architecture of our library (see Figure B.1) relies on the LTI-Lib (http://
1tilib.sourceforge.net/doc/html/index.shtml) which is an object oriented
library written in C++ with algorithms and data structures frequently used in
image processing and computer vision

Environment Linux Fedora Core 5 (kernel v2.6.18)

Compiler g++ v3.4.6

Graphical library QT v3

Hardware system Intel Xeon bi-processor double core at 2.33GHz with 4 Go of RAM

Table B.1: Configuration set up for the implementation and the tests.

B.1.1.1 Segmentation Algorithms

The implementations of EGBIS, SRM, CSC, JSEG, SMG, KDE and MoG are
provided from their authors. Some of the algorithms (hysteresis thresholding,
CWAGM, region growing, meanshift, edge segmentation) are implemented in LTI-
Lib. The Codebook Model algorithm has been re-implemented.
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Figure B.1: Simplified UML diagram of the developped segmentation library.
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B.1.1.2 Learning Algorithms

We have used LIBSVM (http://www.csie.ntu.edu.tw/"cjlin/libsvm/), a LI-
Brary for Support Vector Machines developed by Chih-Chung Chang and Chih-
Jen Lin. We also used some classifiers implemented in LTI-Lib as the DBScan
algorithm for unsupervised clustering.

B.1.1.3 Optimization Algorithms

We have used the C++ Direct Searches library developped by Liz Dolan et al.
(http://www.cs.wm.edu/ va/software/DirectSearch/direct_code/).

For the genetic algorithm, we have used GALib (http://lancet.mit.edu/
ga/), a C++ Library of Genetic Algorithm Components developped by Matthew
Wall.

B.1.1.4 Data manipulation

Pixel data (e.g. segmentation results) are stored into DataStore objects. We
mainly used the LTI-Lib matrix format to manipulate pixel data. Other data (e.g.
segmentation knowledge) are stored into binary files for faster I/O manipulations.

B.2 A Graphical Tool for Adaptive Image and Video
Segmentation

The developped graphical tool has the following functionnalities, based on our
library for adaptive segmentation:

e display an image or a sequence of image, with ground truth if available
e label regions of ground truth with different colors (one color per class),
e select a segmentation algorithm and change the parameter setting

e display the result of the segmentation in different manners (e.g., region
boundaries, colored regions, and so on.)

e optimize the parameterization of a segmentation algorithm w.r.t. a manual
segmentation,

e automate some actions for image sequences as segmentation, parameter op-
timization, feature extraction, region labelling,

e train classifiers as SVM and DBScan,
e store and use segmentation knowledge which has been extracted,

e I/0 actions (e.g., loading, saving) on images and segmentation knowledge.
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The tool relies on a parameter file which gather all the information concerning
data paths and settings for the main algoritms (e.g., choice of the optimization
algorithm, features to extract, etc.).

We invite the reader to contact us if interested in using this implementation.
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French Introduction

C.1 Motivations

Cette thése traite de la segmentation d’images dans les systémes de vision. La
segmentation d’image consiste & grouper des pixels partageant des caractéris-
tiques communes. Dans les systémes de vision, la couche de segmentation précede
habituellement I’analyse sémantique d’une image. Ainsi, afin d’étre utile pour les
taches de haut-niveau, la segmentation doit étre adaptée au but, c’est-a-dire étre
capable de segmenter efficacement les objets d'intérét. Le tout premier probléme
est qu'une méthode générale et unique n’existe pas : en fonction de ’application,
les performances de I'algorithme de segmentation varient. Ceci est illustré dans
la Figure C.1 ou deux algorithmes différents sont appliqués sur la méme image.
Le premier semble étre visuellement plus efficace pour séparer la coccinelle de la
feuille. Le second produit trop de régions faiblement significatives.

!
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i

Figure C.1: Un exemple de la segmentation d'une image avec deux algorithmes différents. Le
premier algorithme construit les régions en fonction d’un critére couleur multi-échelle alors que

le second utilise un critére local d’homogénéité couleur.

De maniére générale, il existe deux approches populaires pour configurer la
tache de segmentation dans un systéme de vision. La premiére approche est
de développer un nouvel algorithme de segmentation dédié a ’application. Une
seconde approche est de choisir de maniére empirique un algorithme existant,
par exemple dans un processus d’essai-erreur. La premiére approche conduit a
développer un algorithme ad hoc & partir de rien et pour chaque nouvelle applica-
tion. La deuxiéme approche ne garantie pas des résultats adaptés et la robustesse.
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Ainsi, un besoin existe pour le développement d’une nouvelle approche du prob-
léeme de la sélection d’algorithme. Face a différents algorithmes, cette approche
doit étre capable de choisir automatiquement le plus adapté a un but donné de
segmentation.

Lors de I’élaboration d'un algorithme de segmentation, des paramétres internes
(par exemple des seuils de tolérance couleur ou des tailles minimales de région)
sont réglés avec des valeurs par défaut fournies par les auteurs de I'algorithme.
En pratique, il revient souvent a I’expert en traitement d’images de superviser le
réglage de ces parameétres libres afin d’obtenir des résultats cohérents. Comme il
est montré en Figure C.2, il n’est pas évident de choisir le bon jeu de paramétres
au regard des images segmentées : la premiére est assez bien segmentée mais
de nombreuses parties de I'insecte sont manquantes; la seconde est Algalement
correcte avec une bonne délimitation de l'insecte bien que trop de régions insignifi-
antes soient présentes. Cependant, les interactions complexes entre les paramétres
libres rendent le comportement de 1’algorithme presque impossible & prédire. De
plus, cette tache délicate est fastidieuse et longue pour l'utilisateur. De ce fait, le
réglage des paramétres des algorithmes est un réel défi. Pour résoudre ce prob-
leme, des méthodes d’optimisation doivent étre examinées dans le but d’extraire
automatiquement les valeurs de paramétres optimales.

Figure C.2: Illustration du probléme de réglage des parameétres. Une image est segmentée
avec un méme algorithme (basé sur un critére d’homogénéité couleur) réglé avec deux jeux de
paramétres différents.

Dans les applications du monde réel, ’apparence des images change lorsque le
contexte change. Ceci est particuliérement vrai pour les applications vidéo ou les
conditions d’éclairage sont continuellement en train de varier. Cela peut étre di
a des changements locaux (projections d’ombres, réflections) et/ou des change-
ments globaux de l'illumination due aux conditions météorologiques, comme illus-
tré dans la Figure C.3 ou les images sont extraites de la méme scéne a différents
moments de la journée. Les conséquences au niveau de la segmentation peuvent
étre dramatiques. Ce probléme de 'adaptation au contexte souligne le besoin
d’automatismes pour l'adaptation.

C.2 Objectifs

Mon objectif est de proposer une approche de la segmentation d’image dans le
cadre de la vision cognitive. Plus précisément, nous visons & introduire la capac-
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Figure C.3: Illustration du probléme de variations du contexte pour une application de vidéo-
surveillance

ité d’apprentissage et d’adaptation dans la tache de segmentation. Traditionnelle-
ment, la connaissance explicite est utilisée pour configurer cette tache dans les sys-
témes de vision. Cette connaissance est principalement composée de programmes
en traitement d'images (par exemple des algorithmes de segmentation spécialisés
et des post-traitements) et de programmes sur 'utilisation des algorithmes afin
de controler la segmentation (sélection et réglage d’algorithmes). Pour ce faire,
trois problémes majeurs de la tache de segmentation dans les systémes de vision
doivent étre résolus :

e Le premier point est d’extraire les paramétres optimaux des algorithmes de
segmentation dans le but d’obtenir une segmentation adaptée a la tache de
segmentation; c’est-a-dire une segmentation orientée par le but. Le réglage
des paramétres est connu pour étre une tache délicate qui requiert souvent
des compétences en traitement d’images. Ainsi, notre objectif est triple :
premiérement nous voulons automatiser cette tiche dans le but de dimin-
uer l'effort demandé a D'utilisateur et d’éviter des résultats trop subjectifs.
Deuxiémement, la fonction de cotit utilisée pour évaluer la qualité de la seg-
mentation doit étre générique; c’est-a-dire non dépendante de ’application.
Troisiemement, aucune connaissance a priori sur le comportement des algo-
rithmes n’est requise, uniquement des vérités terrain doivent étre fournies
par l'utilisateur.

e Une fois que les algorithmes ont été optimisés, un second point est de sélec-
tionner le meilleur. La stratégie de sélection doit étre basée sur une éval-
uation quantitative de la performance de chaque algorithme. Cependant,
quand les images de I'application sont fortement variables, il est pratique-
ment impossible d’obtenir de bons résultats de segmentation avec un seul
et unique algorithme. Dans ce cas, une stratégie de sélection dépendante
du contenu de 'image doit étre préférée.

e Dans de nombreux systémes de vision, & I’étape de détection, le but est de
séparer les objets d’intérét du fond de I'image. Quand les objets d’intérét
et/ou le fond de I'image sont complexes (par exemple composeés de plusieurs
sous-parties), un algorithme de bas niveau ne peut pas produire une segmen-
tation sémantique, méme si il est optimisé. Pour cette raison, un troisiéme
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point est de raffiner la segmentation (optimisée) pour fournir une segmen-
tation sémantiquement significative aux modules de vision de plus haut
niveaul.

Notre objectif final est de montrer le potentiel de notre approche au travers de
deux taches de segmentation différentes dans des applications du monde réel.

e La premiére tache de segmentation a laquelle nous nous intéressons est la
segmentation d’images statiques dans une application biologique pour la
détection précoce et le comptage d’insectes nuisibles. Cela implique de
séparer de maniére robuste les objets d’intérét (mouches blanches adultes)
du fond de l'image (feuilles de rose). Notre but est de démontrer que la
plate-forme de vision cognitive développée dans I’équipe couplée avec notre
approche de segmentation adaptative permet d’obtenir un meilleur taux de
détection des mouches blanches que lorsque la plate-forme est configurée
avec une segmentation ad hoc.

e La deuxieme tache de segmentation & laquelle nous nous intéressons est la
segmentation d’objets en mouvement dans une application de vidéosurveil-
lance. Le but est de détecter des objets tels que des personnes marchant
dans la rue dans le champ de vue d'une caméra fixe. La détection est
habituellement effectuée en utilisant des méthodes de soustraction de fond.
Notre objectif est de montrer qu'une sélection dynamique du modele de
fond permet d’élargir la portée des applications de vidéosurveillance aux
environnements fortement variables.

C.3 Contexte de I’étude

Ce travail prend place au sein de 'équipe-projet INRIA ORION a Sophia An-
tipolis. Orion est une équipe phare dans le domaine de I'analyse de scénes, a la
frontiére entre la vision par ordinateur, les systémes a base de connaissance et
Iingénierie des connaissances. Orion a une approche cognitive de la vision. Cette
approche vise & concevoir des systémes de vision robustes et adaptables en les
dotant d’une faculté cognitive. Cela signifie la capacité d’apprendre, d’adapter
et de pondérer des solutions alternatives, et également de développer de nou-
velles stratégies pour la détection, la reconnaissance et l'interprétation. Récem-
ment, Hudelot [Hudelot, 2005] a proposé une plate-forme de vision cognitive pour
Iinterprétation sémantique d’images statiques. Cette plate-forme est basée sur la
coopération de trois systémes & base de connaissance dont un est dédié a la ges-
tion intelligente des programmes de traitement d’images. Maillot [Maillot, 2005]
a enrichi cette plate-forme avec des facultés d’apprentissage et une représentation
sémantique de la connaissance basée sur une ontologie. Actuellement, la couche de
détection de la plate-forme repose sur une segmentation ad hoc. Cela signifie que
tous les opérateurs de segmentation on été configurés dans le code une fois pour
toute. Dans ce contexte, mon travail vise & enrichir cette plate-forme de vision
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cognitive au niveau de la segmentation d’image pour permettre une segmentation
plus adaptative.

C.4 Contributions

Ma principale contribution est de proposer une approche cognitive du probléme
de la segmentation en résolvant les problémes cités ci-dessous :

e Je propose une procédure d’optimisation générique afin d’extraire automa-
tiquement les parameétres optimaux des algorithmes de segmentation. Cette
procédure est basée sur trois composantes indépendantes : un algorithme de
segmentation avec un ou plusieurs paramétres libres a régler, une métrique
d’évaluation de la performance et un algorithme d’optimisation globale.
L’évaluation de la qualité de la segmentation est faite selon une segmen-
tation de référence (par exemple une segmentation manuelle). La métrique
d’évaluation est générique, a un faible cotlit de calcul et peut étre utilisée
pour de nombreux problémes de segmentation. De cette facon, la tache
de T'utilisateur est réduite a fournir des données de référence comme des
segmentations manuelles d’images d’apprentissage.

e Je propose deux stratégies pour le probléme de sélection de 1’algorithme
de segmentation.  Ces stratégies utilisent les résultats de la phase
d’optimisation appliquée sur un ensemble d’images d’apprentissage
représentatif du probléeme. La premiére est basée sur le classement
des valeurs de performance des algorithmes. La deuxiéme stratégie est
d’identifier les différentes situations, appelées contextes, & partir du jeu
d’apprentissage, et d’associer un algorithme de segmentation configuré pour
chaque contexte.

e Je propose également une approche sémantique pour la segmentation
d’'images. Dans cette approche, nous abordons le probléeme du rafinement
de la segmentation comme un probléme d’étiquetage de régions. Cette ap-
proche est par conséquent élaborée pour les algorithmes de segmentation
basés sur les régions uniquement. Le but est d’évaluer l'appartenance de
chaque région a un ensemble prédéfini de régions partageant la méme éti-
quette. L’évaluation repose sur une étape préliminaire d’apprentissage su-
pervisé durant laquelle des classifieurs de régions sont entrainés sur des
échantillons. Le role de l'utilisateur est d’étiqueter les régions des segmen-
tations manuelles. L’originalité de cette approche est double. Premiére-
ment, nous utilisons les segmentations optimisées comme données d’entrée
des classifieurs de régions. Deuxiémement, les taches sous-jacentes du pro-
cessus d’apprentissage, a savoir ’extraction de caractéristiques des régions,
la sélection de ces caractéristiques et ’apprentissage des classifieurs sont au-
tomatiquement optimisées dans un schéma de type wrapper afin d’obtenir
les meilleures performances de classification.
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Concernant les deux taches de segmentation précédemment décrites, mes con-
tributions sont les suivantes :

e Pour la tache de segmentation dans 'application biologique, I’approche pro-
posée dépasse la segmentation ad hoc en termes de qualité de la segmenta-
tion et permet ainsi au systéme de compter les insectes avec une meilleure
précision.

e Pour la tache de segmentation vidéo, ma principale contribution se situe
au niveau de la modélisation du contexte. En accomplissant une sélection
dynamique du modeéle de fond basée sur I'analyse du contexte, mon approche
permet d’élargir le champ d’application des systémes de vidéosurveillance
aux environnements fortement variables.

Chaque étape de 'approche proposée a été testée et évaluée sur plusieurs jeux
de données. Ceci nous aide a montre les forces et les limitations de notre approche
en terme de performance, de cofit de calcul et de sensibilité aux paramétres clés.

C.5 Plan

Ce manuscrit est structuré comme suit. Le chapitre 2 présente au lecteur la seg-
mentation d’images dans le cadre des systémes de vision par ordinateur. Nous
proposons une vue d’ensemble autour de quatre thémes reliés a notre probléme :
la segmentation d’image dans les systémes de vision, les différentes approches
de segmentation d’images et de vidéos, les techniques d’évaluation de la perfor-
mance de la segmentation et les techniques d’optimisation. Le chapitre 3 in-
troduit 'approche proposée et donne nos objectifs et nos hypothéses pour les
différents problémes de la segmentation. Le chapitre 4 détaille chaque étape de
notre approche : 'optimisation des paramétres des algorithmes, la sélection de
l'algorithme et I'étiquetage sémantique des régions. Le chapitre 5 est dédié a
la validation de I’approche pour une application réelle. En particulier, nous nous
sommes intéressés a I’étape de segmentation d’un systéme de vision cognitive dédié
a la reconnaissance d’organismes biologiques. Dans le chapitre 6, nous présentons
comment notre approche peut étre utilisée pour la segmentation adaptative dans
des applications de vidéosurveillance. Une conclusion ainsi que des discussions
sur les travaux futurs sont exposées dans le chapitre 7.
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Dans cette thése, j'aborde le probléme de la segmentation d’image et de vidéo avec
une approche cognitive de la vision par ordinateur. Plus précisément, j'étudie
deux problémes majeurs de la tache de segmentation dans les systéemes de vision :
la sélection d'un algorithme et le réglage de ses paramétres libres, suivant le

tache longue et fastidieuse est réalisée par un expert en traitement d’image dans un
processus d’essais successifs. Récemment, quelques tentatives pour automatiser
I'extraction des paramétres optimaux de segmentation ont été faites mais sont
toujours trop dépendantes de 'application. La réutilisabilité de telles méthodes
reste un probléme ouvert. Nous avons choisi de gérer ce probléme dans le cadre
de la vision cognitive. La vision cognitive est un récent champ de recherche qui
propose d’enrichir les systémes de vision avec des capacités cognitives, c’est-a-dire
de raisonner a partir de connaissances a priori, d’apprendre & partir d’information
perceptuelles ou d’adapter leurs stratégies aux différents problémes.

Dans cette these, je propose une méthodologie d’apprentissage supervisé pour
la configuration hors ligne et I'adaptation en ligne de la tache de segmentation
dans les systémes de vision. L’étape de configuration hors ligne requiert une
connaissance minimale pour apprendre la sélection et le réglage optimal des al-
gorithmes de segmentation. Cette connaissance est ensuite utilisée en temps-réel
pour la segmentation adaptative d’images et de vidéos. Cette approche cognitive
de la segmentation est donc une contribution pour la recherche en vision cogni-
tive. En effet, cette approche satisfait les critéres de robustesse, d’adaptation et
de réutilisabilité qui définissent un systéme de vision cognitif.

L’approche proposée a été implémentée et validée sur deux types d’applications
du monde réel : la segmentation adaptative d’image statique dans une application
biologique et la segmentation vidéo dans une application de vidéo surveillance.

La premiére partie de ce chapitre dresse le bilan de mon approche et discute de
ses contributions et de ses limitations. La seconde partie présente les perspectives
pour améliorer la méthode, en particulier au sujet de 'apprentissage.
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D.1 Bilan de ’approche proposée et de ses contribu-
tions

D.1.1 Une procédure d’optimisation générique

Notre procédure d’optimisation extrait automatiquement les paramétres opti-
maux des algorithmes de segmentation en se basant sur une évaluation quantita-
tive de la qualité de I'image segmentée en fonction des segmentations manuelles.
La méthode est indépendante de I’application et des algorithmes de segmenta-
tion testés. Seuls les paramétres libres a régler avec leur fourchettes de variations
sont requis. Ce type de connaissance est habituellement fourni par les auteurs
des algorithmes de segmentation. Le critére utilisé pour évaluer la qualité de
la segmentation ne fait aucune hypothése sur 'application ni sur les comporte-
ments des algorithmes. Il a été utilisé pour juger la tache de segmentation dans
deux applications. Il a aussi été appliqué pour I'évaluation de la segmentation de
la banque d’images de Berkeley [Fowlkes and Martin, 2007]. Deux algorithmes
d’optimisation globale sans calcul de dérivée (une méthode de recherche directe
un algorithme génétique) ont été utilisé avec succes afin de minimiser ce critére.
Dans ce domaine, ma contribution est une étude comparative des performances
des deux algorithmes d’optimisation. Grace & cette étude, nous avons identifié
deux situations : quand le nombre de paramétres libres & optimiser est inférieur
ou égale & deux, l'algorithme du Simplex donne de bons résultats avec un nom-
bre minimal d’itérations. Quand le nombre de paramétres est supérieur a deux,
I’algorithme génétique doit étre préféré.

La principale difficulté de cette approche d’apprentissage supervisé de la seg-
mentation est la segmentation manuelle des images d’apprentissage. Cette tache
est longue, fastidieuse et subjective. Des outils d’aide a ’annotation doivent étre
utilisés afin d’alléger la charge des utilisateurs. La force de cette appoche est aussi
dépendante de la performance intrinséque des algorithmes de segmentation. En
conséquent, cette approche suppose qu’'au moins un algorithme soit capable de
fournir de bons résultats pour le probléme de segmentation en question.

D.1.2 Une stratégie pour la sélection d’algorithme

Apres 'optimisation de plusieurs algorithmes de segmentation sur un jeu d'images
d’apprentissage, le probléme qui se pose est la sélection d'un d’entre eux. Le
but de cette étape est de répondre a la question de 'utilisateur : "Quel algo-
rithme est le plus adaptée pour segmenter mon image ?". La premiére partie
de ma stratégie consiste a identifier différentes situations dans le jeu d’images
d’apprentissage. Une situation, appelée contexte, est représentée par un sous-
ensemble d’images partageant les mémes caractéristiques globales, comme la dis-
tributions des couleurs. Premiérement, un algorithme de classification non super-
visé est utilisé pour identifier ces contextes. La seconde partie utilise les résultats
de la phase d’optimisation pour accomplir un classement local (pour chaque con-
texte) des algorithmes optimisés en fonction de leurs performances moyennes.
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Cette stratégie donne la possibilité de controler dynamiquement la segmenta-
tion (sélection et paramétrage d’'un algorithme) sans la nécessité d'une connais-
sance a prior: explicite du domaine d’application ou des algorithme de segmenta-
tion eux-mémes.

Il faut noter que cette stratégie fait plusieurs hypothéses. Premiérement,
cela suppose que tous les contextes possibles sont illustrés dans le jeu d’images
d’apprentissage. Deuxiémement, cette stratégie soutient que pour chaque con-
texte identifié un jeu de paramétres moyens de ’algorithme le mieux classé existe
et permet de fournir des bons résultats de segmentation.

D.1.3 Une approche sémantique de la segmentation d’image

La pluspart du temps, les résultats de segmentation issus d’algorithmes bas
niveau sont dénués de sens sémantique. .Je propose une approche sémantique
de la segmentation d’image ou 'étiquetage des régions aide a valider les résul-
tats de segmentation d'un point de vue sémantique. L’algorithme d’étiquetage
sémantique des régions repose sur trois étapes et utilise les résultats de segmen-
tation précédemment optimisés. Dans un premier temps, pour chaque image
d’apprentissage, 'utilisateur est invité a affecter des étiquettes sémantiques aux
régions des segmentations manuelles en fonction des besoins de 'application. En-
suite, une correspondance entre les régions étiquetées des segmentations manuelles
et les régions issues des segmentations optimisées est réalisée automatiquement.
Enfin, des classifieurs (SVM) sont entrainés pour chaque étiquette en se basant sur
des caractéristiques numeériques extraites des régions. L’originalité de cette ap-
proche est que chaque étape du processus d’apprentissage, c’est-a-dire extraction
de caractéristiques, et entrainement des SVM, est optimisée dans une schéma de
wrapper de maniére & maximiser la performance de classification de ’algorithme.

Actuellement, les caractéristiques des régions sont limitées a de 'information
couleur et texture. La méthode pourrait étre améliorée en prenant aussi en compte
I'information spatiale comme celle spécifique aux relations entre les différentes
classes sémantiques de régions.

D.1.4 Une implémentation logicielle de la méthodologie

Une implémentation logicielle de la méthodologie pour la configuration hors
ligne et la segmentation adaptative temps-réel est proposée. Disposant d'un
jeu d’images d’apprentissage avec leurs segmentations manuelles, le systéme, au
travers une interface utilisateur graphique est capable de :

e extraire les parameétres optimaux pour six algorithmes de segmentation
(quatre statique et deux vidéo),

e identifier les différents contextes du jeu d’apprentissage,

e sélectionner 'algorithme le plus performant pour chaque contexte identifié,

e entrainer les classifieurs de régions,
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e controler la segmentation de nouvelles images en fonction de la connaissance
apprise (identification du contexte, choix et paramétrage de ’algorithme),

e visualiser les résultats sous différentes formes.

Plus de détails sur l'implémentation C++ de l'approche sont donnée en
annexe B.

Finalement, en adressant le probléme de 'adaptation de la segmentation, nous
avons aussi soulevé d’autres problémes sous-jacents tels I’évaluation de la seg-
mentation, la sélection et ’extraction de caractéristiques et la mise en correspon-
dance entre connaissance bas niveau (numérique) et connaissance haut niveau
(symbolique). Chacun de ces problémes bien connus n’est pas facilement soluble
et demande toujours a étre considéré a part entiére. Nous avons concu notre
approche (et notre logiciel) de maniére modulaire de maniére a prendre avantage

des nouveaux progrés dans chacun de ces sujets de recherche.

D.1.5 Contributions pour la plate-forme de vision cognitive

Mon approche a enrichi la plate-forme en lui ajoutant une couche d’apprentissage
pour la segmentation. Précédemment, les algorithmes de segmentation étaient
réglés manuellement par un expert en traitements d’image et la sélection dy-
namique reposée sur une base de connaissance écrite a la main. Les mémes
algorithmes sont, aprés une phase d’apprentissage, automatiquement réglés ce
qui permet une segmentation adaptée de différentes images. Le gain obtenu au
niveau de la segmentation est bénéfique pour les modules de haut niveau de la
plate-forme.

D.1.6 Contributions pour I’application biologique

Malgré les apparences, la segmentation robuste des mouches blanches adultes sur
des feuilles de rosier n’est pas une tache aisée. La variabilité de la couleur et de la
texture des feuilles combinée avec la semi-transparence des ailes des mouches ainsi
que la présence d'un grand nombre d’autres objets (ceufs de mouches blanches,
larves, traces de traitement chimiques, goutte d’eau, etc.) font que la segmenta-
tion n’est pas si facile. Comparée & une segmentation ad hoc réglée a la main, notre
segmentation adaptative obtient de meilleurs résultats et permet ainsi d’obtenir
une meilleure précision de comptage des mouches. De plus, la segmentation sé-
mantique réduit drastiquement le nombre de région en fusionnant les sous-parties
des classes d’objets. Cette technique diminue le coiit de calcul du systéme puisque
moins de régions doivent étre traitées au niveau de la couche d’interprétation.
Actuellement, la plate-forme est capable de gérer la détection et le comptage
de seulement un objet biologique (les mouches blanches adultes). D’autres bio-
agresseurs (par exemple les pucerons, les aphids, etc.) ou d’autres stades de
développement des mouches blanches (larves, ceufs), devraient étre traités dans
le but de pouvoir évaluer notre segmentation adaptative et la plate-forme sur un
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probléme multi-classes (supérieur & deux). Pour cela, nous devons acquérir de
nouvelles données (images et segmentations manuelles annotées) ainsi que de la
connaissance haut niveau (description des objets en termes de concepts visuels).

En fin de compte, la plate-forme est actuellement aussi limitée par le systéme
d’acquisition (un scanner a plat). Nous envisageons de maitriser ce probléme en
utilisant des caméras vidéo. Un autre avantage des caméras vidéo est qu’elles
fournissent une information temporelle de grand intérét pour désambiguiser, par
exemple, les situations d’occultations.

D.1.7 Contributions pour I’application vidéo

Dans cette application, ma contribution principale est la sélection du modéle de
fond dynamique basée sur I'analyse du contexte. Cette approche est particuliére-
ment bien adaptée aux applications ou des changements court et long termes se
produisent. L’algorithme de partionnement non-supervisé utilise des caractéris-
tiques globales de I'image intégrant une information spatiale de maniére & prendre
en compte non seulement les changements globaux mais aussi les changements lo-
caux. Nous avons proposé une algorithme de filtrage temporel du contexte.

Les premiéres expérimentations ont prouvé que la sélection dynamique de mod-
éle de fond est une bonne approche pour traiter les problémes d’adaptation de la
segmentation. Néanmoins, il est clair que notre approche est toujours incapable
de gérer les situations inconnues ou imprévues comme des nouveaux contextes.
Une extension de cette approche pour permettre d’apprendre en continu est donc
nécessaire.

Enfin, dans cette application, nous n’avons pas complétement suivi notre
stratégie pour la sélection d’algorithme. Il pourrait étre intéressant de voir com-
ment différents algorithmes de segmentation vidéo pourraient coopérer entre eux.

D.2 Perspectives

D.2.1 Perspectives a court terme
Apprentissage incrémental pour les situations inconnues

La fragilité de notre approche face a des situations inconnues est actuellement
son défaut majeur. Cela joue aussi bien sur 'analyse du contexte que sur la seg-
mentation elle-méme. Les algorithmes concernés sont ’algorithme DBScan pour
I’analyse du contexte et les SVMs pour la segmentation sémantique. Actuellement,
aucun de ces deux algorithmes n’est capable de s’adapter dynamiquement & de
nouvelles données d’apprentissage : le processus doit étre lancé de nouveau sur le
jeu entier de données d’apprentissage. L’utilisation de techniques d’apprentissage
incrémental pourrait étre utile pour satisfaire a la propriété d’apprentissage con-
tinu. L’idée principale de 'apprentissage incrémental pour les situations incon-
nues est d’adapter dynamiquement la méthode de partionnement/classification en
fonction de 'erreur de classification des nouvelles données d’entrée. Dans notre
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probléme, les situations inattendues peuvent étre identifiées avec 'aide des es-
timations de la probabilité du contexte et de la probabilité de classification des
rAlgions. Par exemple, dans I’application de vidéosurveillance, quand le contexte
de bruit est détecté durant plusieurs images, une alarme pourrait étre levée et les
images concernées pourraient étre considérées comme étant de nouvelles images
d’apprentissage. Dans un processus supervisé, 'utilisateur aurait alors a décider
si chaque image est une image de fond (scéne vide) ou non. Habituellement,
losqu’un contexte de bruit est détecté, de nombreux pixels de mouvement sont
détectés partout dans I'image. Dans un processus non-supervisé, la validation des
nouvelles images d’apprentissage pourrait donc aussi étre basée sur une analyse
spatiale des pixels en mouvement. L’utilisation d’'un algorithme de classifica-
tion adaptative utilisant un partionnement incrémental robuste comme proposé
dans [Prehn and Sommer, 2006] permettrait ainsi de mettre a jour dynamique-
ment les partitions et d’en créer de nouvelles si nécessaire.

Méta évaluation de la segmentation d’image

La fonction d’évaluation des résultats de segmentation que nous avons proposée
dans le chapitre 4 est basé sur deux critéres fondamentaux (comptage des pix-
els de contour sur- et sous-détectés). Cela permet de rendre la métrique ré-
utilisable pour un large ensemble de problémes de segmentation. Cependant,
la maniére de pondérer chaque critére est un élément clé de la métrique. Par
exemple, pour certaines applications, il est préférable de donner plus de poids
au taux de sous-détection qu’au taux de sur-détection. Il serait aussi plus
adéquat d’utiliser ou de combiner n critéres p différents selon les besoins de
I'application, par exemple des critéres basés sur les régions et sur les contours
tel que : Ef‘ = a1p1 + aop2 + ... + app,. Nous pensons qu’en général il est diffi-
cile de spécifier une forme exacte de la fonction de cotit car cela requiert de définir
précisément la part de chaque critére. Pour cela, des méta heuristiques pour la
pondération de fonctions, comme le front de Pareto, pourraient étre utilisées,
comme dans [Everingham et al., 2002|. Pour chaque algorithme de segmentation
et pour toutes les images d’apprentissage, I’espace des paramétres est exploré et
produit un graphe de la fonction de cotit pour chaque critére et pour chaque image
d’apprentissage. Le but est alors d’estimer la combinaison des différents critéres
d’évaluation qui donne globalement les meilleurs scores de performance (i.e. le
front de Pareto). Pour ce faire, un algorithme d’optimisation globale, comme
un algorithme génétique est utilisé afin de trouver la configuration optimale.
Une autre possibilité est d’utiliser des algorithmes de méta apprentissage comme
dans [Zhang et al., 2006]. L’idée est d’entrainer un algorithme d’apprentissage
(par exemple un arbre de décision) qui détermine comment unir les résultats des
différents critéres d’évaluation appliqués au jeu d’images d’apprentissage. Le prin-
cipal avantage est d’obtenir une métrique d’évaluation adaptée au type d’images
a traiter.
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Paramétrage local des algorithmes de segmentation vidéo

Le but des algorithmes de segmentation vidéo comme ceux basés sur les mix-
tures de gaussiennes, des estimateurs de densité & noyau et les codebooks est
d’apprendre les fourchettes de valeurs possibles des modeéles de fond pour chaque
pixel. Durant le processus d’apprentissage, quelques seuils sont définis pour fixer
ces fourchettes de valeurs. Généralement, les valeurs de ces paramétres sensibles
sont les méme pour tous les pixels. Dans le cas des applications de vidéo surveil-
lance avec une caméra fixe, les parameétres devraient étre optimisés pour chaque
pixel. Par exemple, les seuils de détection pour les pixels des zones d’intérét de-
vraient étre réglés de maniére & produire des modeéles de fond sensibles aux vari-
ations. Ceci est illustré & la Figure D.1 ol z; est la zone ot les objets d’intérét
(personnes) ne passe jamais et zy la zone ou ils sont attendus. Les seuils de dé-
tection pour chaque pixel dans z; devraient ainsi étre plus faibles que ceux de z5.

Figure D.1: Exemple de réglage local des paramétres basé sur une connaissance a priori de la
scéne filmée. La valeur du seuil de détection pour les pixels dans z; devrait étre plus faible que
celle pour les pixels dans z2.

Segmentation vidéo spatio-temporelle

Le principale défaut des approches basées sur le pixel en segmentation vidéo est
qu’aucune cohérence spatiale de détection de mouvement n’est prise en compte.
Pour s’affranchir de ce probléme, une solution est de calculer en paralléle une seg-
mentation d’image basée région. L’objectif est de rafiner la segmentation obtenue
avec l'algorithme de détection du mouvement. Cette technique est illustrée dans
la Figure D.2. Une image d’entrée (a) est segmentée en utilisant un algorithme
de segmentation basé région. Le résultat est présenté en (b). En paralléle, une
segmentation basé mouvement (c) est calculé en utilisant le modeéle de codebook
par exemple. Le résultat final (d) est une combinaison des deux segmentations
en respectant un critére de recouvrement. Dans cette exemple, la segmentation
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basée région a été manuellement paramétrée pour produire une sur-segmentation.

Figure D.2: Illustration d’une segmentation spatio-temporelle (d) combinant les résultats d’un
algorithme de soustraction de fond (c) et d’un algorithme basé région (b) pour I'image d’entrée

().

D.2.2 Perspectives a long terme

Utilisation d’une ontologie de concepts visuels pour la segmentation
sémantique

Actuellement, la segmentation sémantique est basée sur des caractéristiques
numeériques décrivant indépendamment chaque région. Des objets complexes,
comme une personne, sont composés de plusieurs sous-parties (téte, jambes, etc.)
qui ne peuvent pas étre décrites avec les méme caractéristiques bas niveau comme
la couleur ou la texture. De plus, certaines de ces sous-parties peuvent avoir
une infinité de variations dans leur couleur selon les habits de la personne par
exemple. Ces sous-parties, se rapportant au méme objet sémantique peuvent
cependant étre liées entre elles par des relations spatiales et des décompositions
hiérarchiques. Par conséquent, plusieurs concepts visuels différents devraient étre
utilisés pour atteindre une segmentation sémantique méme si 'objet est difficile
a modéliser. Pour ce faire, nous pourrions faire usage de l'ontologie de con-
cepts visuels proposée par Maillot et al. [Maillot and Thonnat, 2008] en mixant,
d’une maniére structurée, la connaissance a priori des différents concepts (carac-
téristiques de couleur, de texture, géométriques et de relations spatiales). Le but
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serait d’évaluer ’appartenance de chaque région segmentée a un objet sémantique
selon les détecteurs de concepts visuels entrainés.

Utilisation de caractéristiques partagée

Pour les cas vraiment difficiles ot 'information intraclasses (i.e. Papparence d'un
objet) est vraiment hétérogéne et/ou I'information interclasses est faiblement dis-
criminative, la sélection de caractéristiques représentatives est délicate et méne a
de faibles performances de classification. Dans ce cas, les approches basées sur des
caractéristiques visuelles partagées [Torralba and Murphy, 2007] entre les classes
comme les boosted decision stumps seraient plus appropriées et efficaces. Les
bossted decision stumps réduisent la complexité de calcul et d’échantillonnage en
trouvant des caractéristiques qui peuvent étre partagées parmi les classes. Cette
approche est particulierement efficace pour les problémes de classification multi-
classes avec peu d’exemple d’apprentissage.

Benchmarking de la segmentation vidéo

Des bases de données vidéos pour I’évaluation des systémes de vision existent
mais sont rarement adaptées a I’évaluation de la couche de détection. La plu-
part des vérités terrain fournies avec les vidéos sont des boites englobantes autour
des objets d’intérét mobiles. Le tragé des boites englobantes repose sur la fusion
de blobs et requiert ainsi une certaine connaissance a priori sur les objets a dé-
tecter. De plus, les métriques usuelles pour I’évaluation de la performance de la
segmentation sont basées sur les taux de vraie et fausse détection et/ou sur la
précision des pixels de contours détectés. Par conséquent, les boites englobantes
ne sont vraiment pas adaptées pour ’évaluation des résultats au niveau de la dé-
tection. La meilleure solution consiste a tracer, par exemple, la silhouette d'une
personne pour chaque image d’une séquence vidéo. Evidemment, cette tache re-
quiert un énorme effort et ne peut pas étre accomplie par une seul utilisateur
puisque les vidéos sont composées de plusieurs milliers d'images. Ce probléme a
déja été abordé pour les banques d’images statiques comme la banque de Berke-
ley [Fowlkes and Martin, 2007| pour I’évaluation de la segmentation basée contour
(6000 segmentations manuelles de 500 images couleur de la collection Corel faites
par 30 sujets humains) et la base du MIT LabelMe |Russell et al., 2005] (plus de
41300 images segmentées manuellement et annotées). La force de ces banques de
données est leur libre acces a la communauté scientifique et les outils fournis pour
faciliter la segmentation manuelle et les annotations des images. Nous pensons
qu’une telle stratégie devrait étre étendue pour I’annotation de contenu vidéo.
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