Evaluation ultrasonore des réparations de structures métalliques par collage de patchs composites

Bénédicte LE CROM Sous la direction de **Michel CASTAINGS** Correspondant scientifique DGA : **Gilles Raimondi**

Type de défauts / dommages cohésifs ou adhésifs

Techniques de détection des défauts

Les vibrations soniques

Evaluation de la raideur d'une structure par vibration/impact (un défaut modifie la raideur locale)

P. Cawley et al., Mater. Eval. 47, 1989

Les techniques optiques

Evaluation de la déformation de la surface d'une structure par la mesure des franges d'interférences

- Détection de défaut cohésif et de décollement
- Sans contact

Pas de localisation dans l'épaisseur

Valable pour des matériaux aux propriétés optiques adaptées

F.W.Y. Chan et al., J. Nondestruct. Eval. 27,2008

Techniques de détection des défauts

La radiographie

Utilisation de rayons X et observation du rayonnement transmis

Les techniques thermiques

Chauffage de la structure et mesure du champ de température

- Détection de défaut cohésif et de décollement
- Accès uni latéral et sans contact
- Inspection globale et rapide de la structure
- Localisation difficile des défauts
- Identification difficile des défauts

M. Genest et al., Compos. Struct. 88, 2009

Techniques de détection des défauts par ultrasons (contact / immersion)

En incidence normale

Génération et détection d'une onde ultrasonore (longitudinale) perpendiculairement à la surface

Détection de tout défaut de type cohésif
Evaluation de la géométrie du défaut
Accès uni latéral possible
Insensible aux défauts adhésifs
Difficultés pour analyser les signaux car nombreux échos
Nécessité d'un produit de couplage

C.C.H. Guyott et al., NDT&E Int. 21, 1988

A. Baltazar et al., J. Acoust. Soc. Am. 114, 2003

En incidence oblique

Génération et détection d'une onde ultrasonore (transverse / longitudinale) avec un angle d'incidence

- Détection de tout défaut de type cohésif
- Détection des « kissing bonds »
- Evaluation de la géométrie du défaut
- Accès uni latéral possible
- Difficultés pour analyser les signaux car nombreux échos
 Nécessité d'un produit de couplage

7/50 A. Baltazar et al., J. Acoust. Soc. Am. 114, 2003

Evaluation non destructive d'un collage par ondes guidées

Propagation sur de grandes distances

Détection des défauts cohésifs

Sollicitation mécanique de la structure dans son épaisseur

→ accumulation d'informations sur le milieu

→ évaluation des propriétés mécaniques

Accès uni latéral / sans contact possible

	Matériaux	Géométrie	Principal résultat
Santos et al. , J. Adhes 84, 2008	Alu./Colle/Alu.	Lap joint	Détection de trous
Duflo et al. , <i>Compos. Struct.</i> 79, 2007	Compos./Colle/Compos.	Tricouche	Idem + dimensionnement
Heller et al. , <i>NDT&E Int. 33, 2000</i>	Alu./Colle/Alu.	Tricouche	Sensibilité au vieillissement chimique
Lowe et al. , J. Acoust. Soc. Am. 107, 2000	Alu./Colle/Alu.	Lap joint	Dimensionnement de la zone de recouvrement
Castaings et al. , <i>Ultrasonics 42</i> , 2004	Compos./Colle/Béton	Tricouche	Corrélation essai US / traction uni axiale
Lanz di Scalea et al., J. Acoust. Soc. Am. 115, 2004	Alu./Colle/Alu.	Lap joint	Variation du coeff. de transm. en fonction de 3 niv. de cohésion
Koreck et al., J. Nondestruct. Eval. 26, 2007	Alu./Colle	Bicouche	Résolution d'un pb. inverse

Evaluation non destructive d'un collage de patch par ondes guidées

Evaluation non destructive d'un collage de patch par ondes guidées

Plan de la présentation

I. Contexte de l'étude

II. Les ondes SH pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ Dispositif expérimental / Mesures
- ✓ Problème inverse

III. Les ondes de Lamb pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ *Transmission d'une onde par une zone collée : simulations, mesures*
- ✓ Vers la résolution d'un problème inverse

IV. Essais non destructifs / Essais mécaniques

V. Conclusions et perspectives

La géométrie et les propriétés matériaux

On considère un déplacement de la forme :

$$I(x_1, x_2, x_3, t) = \begin{pmatrix} 0 \\ 0 \\ u_3(x_2)e^{I(\omega t - kx_1)} \end{pmatrix}, \quad I^2 = -1$$

 $T_3 = \sigma_{23}n_2 = C_{44}\frac{\partial u_3}{\partial x_2}n_2$

Le problème aux valeurs propres dans le domaine s'écrit :

$$C_{44} \frac{\partial^2 u_3}{\partial x_2^2} - k^2 C_{55} u_3 + \rho \omega^2 u_3 = 0$$

et la condition aux frontières du domaine s'écrit :

Solutions :
$$(\omega, k)$$

13/50

P.J. Shorter JASA 115, 2004 J.P. Jones et al., J. Appl. Mech. 34, 1967

Etude de sensibilité – Principe de la démarche

- substrats modifiés (au sein de leur intervalle de confiance)
 - avec des propriétés modifiées de l'adhésif ou de l'interface 14/50

Sensibilité des ondes SH aux densités

Le mode SH₂ est relativement sensible aux densités de l'aluminium ou du patch Même conclusion pour le mode SH₁ au dessus de F^c_{SH1} Les 3 modes sont très peu sensibles à la densité de l'adhésif

Sensibilité des ondes SH aux épaisseurs

Exploitation de l'étude de sensibilité pour l'évaluation du G de la colle

Objectif \rightarrow Mesurer Vph des modes **SH**₀ et **SH**₁ pour $0 < f \le F^{c}_{SH1}$

et utiliser ces mesures dans un problème inverse => module de *Coulomb (G)* de la colle

Dispositif expérimental

Résultat des mesures

La couche de colle est épaisse de 0,1 mm

Comprendre les mesures

Pourquoi les modes SH₀ et SH₁ ne sont-ils pas toujours détectés tous les deux ?

M.J.S. Lowe et al., J. Acoust. Soc. Am. 107, 2000

Comprendre les mesures

Pourquoi les modes SH_0 et SH_1 ne sont-ils pas tous les deux détectés dans toute la gamme de fréquences quand l'adhésif est réticulé ?

B. Le Crom et al., J. Acoust. Soc. Am. 127, 2010

B. Le Crom et al., actes du CFA, 2010

23/50

Plan de la présentation

I. Contexte de l'étude

II. Les ondes SH pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ Dispositif expérimental / Mesures
- ✓ Problème inverse

III. Les ondes de Lamb pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ *Transmission d'une onde par une zone collée : simulations, mesures*
- ✓ Vers la résolution d'un problème inverse
- IV. Essais non destructifs / Essais mécaniques
- V. Conclusions et perspectives

Dans ce cas le problème aux valeurs propres dans le domaine s'écrit :

$$C_{i2j2}\frac{\partial^2 u_j}{\partial x_2^2} + I(C_{i1j2} + C_{i2j1})\frac{\partial(ku_j)}{\partial x_2} - kC_{i1j1}(ku_j) + \rho\omega^2 u_j\delta_{ij} = 0 \quad \text{où } i=1, 2 \text{ et avec sommation sur } j=1, 2$$

et la condition aux frontières du domaine s'écrit :

$$T_i = C_{i2\,j2} \frac{\partial u_j}{\partial x_2} n_2 + IC_{2kj1} (ku_j) n_2 \qquad \text{où } i=1, 2 \text{ et avec sommation sur } j=1, 2$$

M.V. Predoi et al., J.Acoust. Soc. Am. 121, 2007 J.P. Jones et al., J. Appl. Mech. 34, 1967

Solutions :
$$(\omega, k)$$

Etude de la sensibilité des ondes de Lamb aux propriétés d'un collage

Etude de la sensibilité des ondes de Lamb aux propriétés d'un collage

29/50

Comment exploiter cette sensibilité de l'atténuation ?

M.J.S. Lowe et al., J. Acoust. Soc. Am. 107, 2000

Principe des simulations numériques / Dispositif expérimental

Les mesures

Les propriétés de la colle pendant le processus de réticulation

M. Castaings, sous dir. M. Bruneau et C. Potel, Matériaux et acoustique vol. 3, 2006

34/50

Mesures du coefficient de transmission (cas du patch en PLEXIGLAS)

Importance de la viscoélasticité (cas du patch en PLEXIGLAS) Mode A₀ incident -0.6 -1.4 t_{A0} -0.5 LA₀ 1.5 -1.2 0.8 -0.4 0.6 0.4 0.8 0.3 0.5 0.2 0.6 0.2 0 0 yo Temps de réticulation (min) 1500 Temps de réticulation (min) 0.4 1500 0.4 0.5 0.6 Fréquence (MHz) 0.1 0.5 0.6 Fréquence (MHz) 0.7 0.7 0.2 0.4

Mode S_0 incident

Vers la résolution du problème inverse (patch en PLEXIGLAS)

Joint de colle de 0,2 mm

aluminium sablé Mode S₀ incident Mode A_0 incident 0.7 0.7 0 Coefficient de transmission du mode A 0 Coefficient de transmission de S $e_c = 0,175 mm$ $C_{66} = C_{66}^{Nom} \times 90\%$ $\frac{C_{66}''}{C_{66}'} = \frac{C_{11}''}{C_{11}'} = 5\%$ $e_c = 0,175 mm$ $C_{11} = C_{11}^{Nom} \times 90\%$ 0 0 Temps de réticulation (min) 1300 1300 0 Temps de réticulation (min) 0 mesures

simulations avec des propriétés initiales

simulations avec des propriétés ajustées

Mesures du coefficient de transmission (patch en COMPOSITE)

Ralentissement du processus de réticulation **→** Imprégnation de la colle dans le composite ?

Plan de la présentation

I. Contexte de l'étude

II. Les ondes SH pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ Dispositif expérimental / Mesures
- ✓ Problème inverse

III. Les ondes de Lamb pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ *Transmission d'une onde par une zone collée : simulations, mesures*
- ✓ Vers la résolution d'un problème inverse

IV. Essais non destructifs / Essais mécaniques

V. Conclusions et perspectives

Présentation des éprouvettes de traction uni axiale

Confrontation essai US / traction (patch en PLEXIGLAS) 0.5 1200 0 Coefficient de transmission du mode A 1000 800 2 Force (N) Confrontation 400 200 400 600 200800 1000 1200 Temps de réticulation (min) Temps de réticulation (min) 1200 0 1200 Faible variation de t_{A0} • t=1200 Forte variation de t_{A0} pour une forte variation t=800 . mais pas de la force de la force d'arrachement d'arrachement **t**=600 Force (N) • t=500 • t=400 Si t_{A0} est déterminé à $\pm 5\%$ t=200 Si t_{A0} est déterminé à $\pm 5\%$ près alors F peut est t=100 estimée à \pm 30% près! près alors F peut est t=300 estimée à $\pm 6\%$ près! t=15 43/50 0

0.1 Coefficient de transmission du mode A 0 0.5

Confrontation essai US / traction (patch en COMPOSITE)

Plan de la présentation

I. Contexte de l'étude

II. Les ondes SH pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ Dispositif expérimental / Mesures
- ✓ Problème inverse

III. Les ondes de Lamb pour tester le collage

- ✓ Géométrie et propriétés matériaux
- ✓ Calcul des courbes de dispersion et des champs des modes
- ✓ Etude de sensibilité
- ✓ *Transmission d'une onde par une zone collée : simulations, mesures*
- ✓ Vers la résolution d'un problème inverse

IV. Essais non destructifs / Essais mécaniques

V. Conclusions et perspectives

Corrélation essais US / traction uni axiale $\rightarrow F$ évolue linéairement en fonction de t_{A0} (assemblage aluminium/colle/composite)

Perspectives

En ce qui concerne l'évaluation des propriétés cohésives de la colle :

Confrontation des résultats obtenus avec les ondes guidées SH avec ceux obtenus par l'intermédiaire d'un « wedge test »

Energie critique de fracture G_c en fonction de la vitesse v de propagation du front de fissure

Les premiers résultats confirment une évolution des propriétés du joint pendant ~11 jours

M. Budzik et al., J. Adhes. Sci. Technol. (in press)

Perspectives

En ce qui concerne l'évaluation des propriétés cohésives de la colle :

Comprendre pourquoi la colle réticule plus lentement lorsque le patch est en composite plutôt qu'en plexiglas

Etablir dans quelle mesure l'étude est transposable à d'autres types d'assemblage

- autre colle (par exemple de type Redux)
- autre patch
- autres matériaux
- autre géométrie de patch
- autre géométrie de collage

etc.

Perspectives

En ce qui concerne l'évaluation des propriétés adhésives de la colle :

Exploiter la réponse non linéaire de l'interface aluminium/colle lorsqu'elle est soumise à une excitation ultrasonore de forte amplitude pour tenter de différencier plusieurs niveaux d'adhésion

Merci

Annexes

Confrontation essai US / « wedge test »

Energie critique de fracture G_c en fonction de la vitesse v de propagation du front de fissure

énergie nécessaire pour créer une unité de surface de fracture

Réaliser 1 test à différents moments de la réticulation pour une confrontation avec les essais US

Les premiers résultats confirment une évolution des propriétés du joint pendant ~11 jours

M. Budzik et al., J. Adhes. Sci. Technol. (in press)

Le calcul d'erreur pour l'évaluation des C_{ii}

Finalement \rightarrow $\mathbf{r} = \mathbf{Ie}$ et $\max_{i=1}^{n} (r_i) \le \sum_{k=1}^{m} |I_{ik}e_k|$

S. Baudouin et al., J. Acoust. Soc. Am. 102, 1997

Etude de la sensibilité des ondes de Lamb aux propriétés d'un collage

Choix du mode incident à 400 kHz

M.J.S. Lowe et al., J. Acoust. Soc. Am. 107, 2000