Modélisation numérique d'écoulements de mousse

Ibrahim Cheddadi

Laboratoire Jean Kuntzmann, Grenoble

le 22 juin 2010

I. Cheddadi (LJK)

< ∃ > <

ELE DOG

Domaine de recherche : Rhéologie

• Fluides non-newtoniens : entre solide et fluide

Visco-Plasticité (VP)

Argile humide

contrainte seuil modèle de Bingham Visco-Élasticité (VE)

Suspension de maïzena

temps caractéristique modèle d'Oldroyd

• Applications : industrie, géophysique, matériaux biologiques

Rhéologie de la mousse

mousse = gaz + liquide + surfactant

[P. Cloetens]

-

- ∢ ∃ ▶

Rhéologie de la mousse

mousse = gaz + liquide + surfactant

solide

fluide

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

[P. Cloetens]

I. Cheddadi (LJK)

▶ < 토 ▶ 토 = ∽ < < 22 juin 2010 3 / 42

Rhéologie de la mousse

mousse = gaz + liquide + surfactant

solide

fluide

< ロ > < 同 > < 三 > < 三

La mousse est non-newtonienne

[P. Cloetens]

Mousses 2D : tout est visible (ou presque)

• visualisation facile/comportement complexe

[Asipauskas, Dollet, Raufaste]

Mousses 2D : tout est visible (ou presque)

• visualisation facile/comportement complexe

• Analyse d'images : informations quantitatives

élasticité (anisotropie) plastic

plasticité (échanges de voisins)

[Asipauskas, Dollet, Raufaste]

Mousses 2D : tout est visible (ou presque)

• visualisation facile/comportement complexe

• Analyse d'images : informations quantitatives

élasticité (anisotropie)

plasticité (échanges de voisins)

Comportement Visco-Élasto-Plastique (VEP)

[Asipauskas, Dollet, Raufaste]

Plan de l'exposé

Objectif : **comprendre** et **prédire** le comportement des matériaux VEP *Méthode* : **modélisation continue** et **comparaison** à des expériences

Modèle VEP

- 2 Résolution numérique
- 3 Écoulements de cisaillement
- 4 Écoulements autour d'un obstacle
- 5 Conclusions & perspectives

Plan de l'exposé

Modèle VEP

- Équation constitutive
- Formalisme tensoriel

2 Résolution numérique

- 3 Écoulements de cisaillement
- 4 Écoulements autour d'un obstacle
- 5 Conclusions & perspectives

Équation constitutive VEP [Saramito JNNFM 07]

Équation constitutive VP : Bingham

[Saramito JNNFM 07]

$$\lambda \frac{\mathcal{D}\tau}{\mathcal{D}t} + \max\left(0, \frac{|\tau| - \tau_{Y}}{|\tau|}\right) \tau = 2\eta_2 D(\mathbf{v})$$

$$\sigma_{tot} = -pI + \tau$$

où $D(\mathbf{v}) = \frac{1}{2} \left(\nabla \mathbf{v} + \nabla \mathbf{v}^{T} \right)$, au : contrainte élastique

Équation constitutive VE : Oldroyd

[Saramito JNNFM 07]

Équation constitutive VEP [Saramito JNNFM 07]

Formalisme tensoriel

•
$$\tau = \begin{pmatrix} \tau_{xx} & \tau_{xy} \\ \tau_{xy} & \tau_{yy} \end{pmatrix}$$
 est un tenseur symétrique.

 Évolution d'un tenseur ⇒ dérivée objective (indépendante de l'observateur) :

$$\frac{\mathcal{D}\tau}{\mathcal{D}t} = \frac{\partial\tau}{\partial t} + (\mathbf{v}\cdot\nabla)\tau + \beta_{a}(\tau,\nabla\mathbf{v}),$$

où

$$\begin{split} \beta_{a}(\tau,\nabla\mathbf{v}) &= \tau \cdot \mathbf{W}(\mathbf{v}) - \mathbf{W}(\mathbf{v}) \cdot \tau - a(D(\mathbf{v}) \cdot \tau + \tau \cdot D(\mathbf{v})), \\ \text{avec } a \in [-1,1], \text{ et } W(\mathbf{v}) &= \frac{1}{2} \left(\nabla \mathbf{v} - \nabla \mathbf{v}^{T} \right). \end{split}$$

15

Ingrédients simples, cadre général

- Modèle **simple**
 - Élasticité linéaire
 - Critère de plasticité de Von Mises : $|\tau| = \tau_Y$
 - Dissipation plastique = visqueuse, newtonienne
- Cadre général : formalisme tensoriel valide en 2D/3D
- Intérêt de cette approche
 - non linéarités les moins complexes possible
 - modèle basé sur Oldroyd et Bingham
 - η_2 , μ , τ_Y pour décrire un matériau V, E, P
 - couplage VEP

Plan de l'exposé

1 Modèle VEP

Résolution numérique

- Position du problème
- Discrétisation en temps
- Discrétisation spatiale
- Mise en oeuvre des calculs

3 Écoulements de cisaillement

- 4 Écoulements autour d'un obstacle
- 5 Conclusions & perspectives

Position du problème

Équations sans dimension

À partir de la condition initiale (au^0, \mathbf{v}^0), trouver $au, \mathbf{v}, \mathbf{p}$ tel que

$$We \frac{D\tau}{Dt} + \kappa (|\tau|)\tau = 2\alpha D(\mathbf{v}) \operatorname{dans} \Omega, \qquad (1)$$

-(1-\alpha)\Delta\mathbf{v} - \div\tau + \nabla p = -C_F\mathbf{v} \dans \Omega, \quad (2)
div\mathbf{v} = 0 \dans \Omega, \quad (3)

où

$$\kappa(z) = \max\left(0, \frac{z - \mathsf{Bi}}{z}\right),$$
$$\mathsf{Bi} = \frac{\tau_Y}{(\eta_1 + \eta_2)V/L}, \qquad \mathsf{We} = \frac{\eta_2}{\mu}V/L, \qquad \alpha = \frac{\eta_2}{\eta_1 + \eta_2},$$
$$C_F = \frac{\beta L^2}{\eta_1 + \eta_2}$$

I. Cheddadi (LJK)

ELE SOC

A B K A B K

 $\Gamma^{G} \mathbf{v} \cdot \mathbf{n} = 0$

Conditions aux limites

$\mathbf{v} = \mathbf{v}^D$	sur	Γ^D : Dirichlet
$\tau = \tau^{-}$	sur	Γ ⁻ : contrainte rentrante
$\frac{\partial \mathbf{v}}{\partial \mathbf{n}} = 0$ et $\sigma \cdot \mathbf{n} = 0$	sur	Γ ^N : Neumann homogène
$\mathbf{v} \cdot \mathbf{n} = 0$ et $\mathbf{n} \cdot \sigma \cdot \mathbf{t} = 0$	sur	Γ ^G : glissement

 ${f n},{f t}$: vecteurs normal et tangent ; ${f v}^D$ and au^- sont donnés.

Difficultés

- problème couplé à trois champs (τ, \mathbf{v}, p)
- non linéarité liée au transport des contraintes
- non-linéarité liée à la plasticité
- conditions de glissement sur bords courbes
- modèle nouveau ⇒ comportement inconnu

Discrétisation en temps : θ -schéma

Problème d'évolution en temps :

$$m\partial_t X + A(X) = 0$$

Idée : diviser chaque pas de temps en trois

Décomposition d'opérateur : $A = A_1 + A_2$.

$$m \frac{\mathbf{X}^{\mathbf{n}+\theta} - X^{n}}{\theta \Delta t} + \mathbf{A}_{1}(\mathbf{X}^{\mathbf{n}+\theta}) + A_{2}(X^{n}) = 0 \quad (S),$$

$$m \frac{\mathbf{X}^{\mathbf{n}+1-\theta} - X^{n+\theta}}{(1-2\theta)\Delta t} + A_{1}(X^{n+\theta}) + \mathbf{A}_{2}(\mathbf{X}^{\mathbf{n}+1-\theta}) = 0 \quad (T),$$

$$m \frac{\mathbf{X}^{\mathbf{n}+1} - X^{n+1-\theta}}{\theta \Delta t} + \mathbf{A}_{1}(\mathbf{X}^{\mathbf{n}+1}) + A_{2}(X^{n+1-\theta}) = 0 \quad (S).$$

I. Cheddadi (LJK)

EL OQA

Séparation des non-linéarités

$$\begin{aligned} X &= {}^{t}(\tau, \mathbf{v}, p), \ m = \operatorname{diag}(We, 0, 0). \\ A_{1}(X) &= \begin{pmatrix} \kappa(|\tau|)\tau - 2\alpha D(\mathbf{v}) \\ -(1-\alpha)\Delta\mathbf{v} - \operatorname{div}\tau + \nabla p + C_{F}\mathbf{v} \\ \operatorname{div}\mathbf{v} \end{pmatrix}, \end{aligned}$$

et

$$A_2(X) = \begin{pmatrix} We(\mathbf{v}.\nabla \tau + \beta_a(\tau, \nabla \mathbf{v})) \\ 0 \\ 0 \end{pmatrix}.$$

- A₁ : problème de **Stokes non-linéaire à trois champs**, linéarisé avec une méthode de **point-fixe**
- *A*₂ : problème de **transport de la contrainte**, résolu avec la méthode de **Galerkin discontinu**

Problème de Stokes à trois champs

Trouver (τ, \mathbf{v}, p) vérifiant les CL et tel que

$$\left(\frac{We}{\theta\Delta t} + \kappa(|\tilde{\tau}|)\right)\tau - 2\alpha D(\mathbf{v}) = T^n, \qquad (4)$$

$$-(1-\alpha)\Delta\mathbf{v} - \operatorname{div}\tau + \nabla p + C_F\mathbf{v} = 0, \qquad (5)$$

$$\operatorname{div} \mathbf{v} = \mathbf{0}, \qquad (6)$$

 T^n : second membre venant de l'itération n.

Éléments finis mixtes :

- contrainte : P1d, permet de résoudre (4) facilement
- vitesse : P2, incorpore les conditions de glissement
- pression : P₁

L'approximation vitesse-pression vérifie les conditions inf-sup.

Problème de transport : Méthode de Galerkin discontinu

Calcul explicite de la vitesse : $\mathbf{v}^{n+1-\theta} = \frac{1-\theta}{\theta} \mathbf{v}^{n+\theta} - \frac{1-2\theta}{\theta} \mathbf{v}^{n}$. \Rightarrow on se ramène à un **transport pur** : trouver τ tel que

$$\nu\tau + (\mathbf{v}\cdot\nabla)\tau = f,$$

où \mathbf{v} et f sont connus.

Décentrage du schéma sur les arêtes où il y a flux rentrant.

$$\sum_{K} \left\{ \int_{K} (\nu \tau_{h} + (\mathbf{v}_{h} \cdot \nabla) \tau_{h} - f_{h}) : \gamma_{h} dx - \int_{\partial K} \frac{\mathbf{v}_{h} \cdot \mathbf{n} - |\mathbf{v}_{h} \cdot \mathbf{n}|}{2} [\tau_{h}] : \gamma_{h} ds \right\} = 0,$$

où $[\tau_{h}] = \tau_{h}^{int} - \tau_{h}^{ext}.$

Possible car les contraintes sont P_1d .

Calculs

- Librairie RHEOLEF (C++)
- Validation de l'algorithme : convergence vers des solutions connues des modèles VE (Oldroyd) et VP (Bingham)
- Convergence en fonction du pas de maillage : 1102 et 6053 triangles

Décroissance du résidu

- critère d'arrêt pour la solution stationnaire : résidus à 10⁻⁷
- ullet pprox 5h de calculs pour le maillage 1

Plan de l'exposé

1 Modèle VEP

2 Résolution numérique

Écoulements de cisaillement

- Présentation de l'expérience
- Choix des paramètres
- Résultats

3

Conclusions & perspectives

Expérience de G. Debrégeas

[Debrégeas et al., PRL 2001]

- [Debrégeas et al., PRL 2001] : expériences + mesure de la vitesse ⇒ localisation de la vitesse
- [Janiaud, Graner, JFM 2005] : contrainte élastique transitoire et stationnaire ⇒ données
- **1er test** du modèle ; résolution **1D** Exploration des paramètres

[Janiaud, Graner, JFM 2005]

(日) (周) (日) (日) (日) (日) (000)

Choix des paramètres

• paramètres géométriques et cinématiques :

$$V_{cylindre} = 0.25 \, {
m mm} \cdot {
m s}^{-1}$$
 ${
m r}_0 = 71 \, {
m mm}$ ${
m r}_{
m e} = 122 \, {
m mm}$

paramètres physiques : obtenus après exploration systématique

$$\mu = 10.9 \text{ N} \cdot \text{m}^{-2}$$
 $\tau_{Y} = 5.2 \text{ N} \cdot \text{m}^{-2}$ $\eta_{1} = 0$

$$\eta_2 = 13.1 \, \mathrm{Pa} \cdot \mathrm{s} \qquad \beta = 613 \, \mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m}^{-1}$$

• condition initiale : $\tau = 0$ et $\mathbf{v} = 0$, puis rotation jusqu'au stationnaire

(日) (周) (日) (日) (日) (日) (000)

Transitoire : comportement élastique

Propagation du seuil

[IC et al., EPJE 2008]

- ne dépend que de $C_F We \propto \beta/\mu$
- ⇒ compétition
 friction/élasticité
- contraignant pour $C_F We$

Stationnaire : localisation de la vitesse

- friction = effet secondaire
- r_c dépend principalement de Bigéométrie cylindrique $\Rightarrow \tau$ non homogène \Rightarrow localisation

Contraintes normales résiduelles

- contrainte de cisaillement : imposée par la géométrie
- contraintes normales : dépendent des conditions initiales dans la zone "rigide"

Rupture de pente de la vitesse : effet des conditions initiales

⇒ lié au caractère VEP tensoriel de la mousse : contraintes normales résiduelles dans la zone en-dessous du seuil
 Explication possible pour observations expérimentales
 [Rodts et al., Eur. Phys. 2005]

Rupture de pente de la vitesse : effet des conditions initiales

⇒ lié au caractère VEP tensoriel de la mousse : contraintes normales résiduelles dans la zone en-dessous du seuil Explication possible pour observations expérimentales [Rodts et al., Eur. Phys. 2005]

Bilan cisaillement

- 1ère résolution du modèle avec dépendance spatiale : comportement inattendu
- Bon accord avec toutes les données de cette expérience
- Jeu de paramètres unique avec valeurs réalistes
- Contributions à des débats en cours :
 - Propagation du seuil
 - Localisation
 - Contraintes résiduelles : VEP
 - Rupture de pente de la vitesse : VEP
- Expérience peu discriminante

Plan de l'exposé

1 Modèle VEP

- 2 Résolution numérique
- 3 Écoulements de cisaillement

4 Écoulements autour d'un obstacle

- Présentation des expériences
- Choix des paramètres
- Résultats

5 Conclusions & perspectives

Écoulements autour d'un obstacle

mousse humide

mousse sèche

Expérience **contraignante** : hétérogène, anisotrope, VEP Objectif : **ajuster** le modèle sur la mousse humide et **prédire** la mousse sèche

[Dollet, Graner, JFM 07, Marmottant, Raufaste, Graner, EPJE 08]

I. Cheddadi (LJK)

(日) (周) (日) (日) (日) (日) (000)

Choix des paramètres

- Exploration systématique des paramètres : $\varepsilon_{\mathbf{Y}} = \tau_{\mathbf{Y}}/(2\mu)$ est le paramètre dominant
- ε_Y est directement mesurable : 0.15 pour l'expérience humide 0.3 pour l'expérience sèche
- β est estimée pour l'expérience humide, mais pas d'effet visible $\Rightarrow \beta = 0$
- η₁, η₂, et μ sont ajustés pour l'expérience humide à partir de l'expérience de cisaillement :

$$\eta_1 = 0.26 \text{ Pa} \cdot \text{s}$$
 $\eta_2 = 2.6 \text{ Pa} \cdot \text{s}$ $\mu = 13.1 \text{ N} \cdot \text{m}^{-2}$

- ⇒ très bon accord avec l'expérience humide
- **Prédiction** de l'expérience sèche avec $\varepsilon_Y = 0.3$

Excellent accord : $\mathbf{v} - \mathbf{V}_{in}$

calculs numériques

expérience sèche

amplitude et orientation du vecteur vitesse, zones de recirculation, points d'arrêt

Excellent accord : contrainte élastique

calculs numériques

expérience sèche

Représentation : direction de plus grande élongation et amplitude

Lignes de courant décorrélées de l'orientation

I. Cheddadi (LJK)

Ecoulements de mousse

Accord quantitatif : coupes de $\mathbf{v} - \mathbf{V}_{in}$

Accord sur la position et l'amplitude des extrema locaux

Accord quantitatif : coupes de τ

Accord sur la position et l'amplitude des extrema locaux

I. Cheddadi (LJK)

22 juin 2010 35 / 42

Sursaut de la vitesse : VE ou VEP?

Observé pour fluides VE à haute vitesse ; ici basse vitesse

Spécificité VEP : réponse élastique à basse vitesse

I. Cheddadi (LJK)

= 200

Bilan écoulement autour d'un obstacle

- Excellent accord avec l'expérience
- Prédiction sans paramètre ajustable
- Paramètre dominant : déformation seuil
- Effet dominant : élasticité
- Sursaut : $VEP \gg VE + VP$
- Expérience discriminante

Plan de l'exposé

1 Modèle VEP

- 2 Résolution numérique
- 3 Écoulements de cisaillement
- 4 Écoulements autour d'un obstacle
- 5 Conclusions & perspectives
 - Conclusions
 - Perspectives

ъ

Conclusions

- Algorithme efficace pour toute géométrie 2D
- Première comparaison d'un modèle avec un écoulement VEP complexe
- Modèle prédictif
- Ingrédients simples mais comportement complexe : prise en compte simultanée d'effets VEP
- Approche continue validée

Perspectives

[Dollet et al. PRE 2005]

- Autres géométries

[Dollet 2009, preprint]

[Dollet et al. PRL 2005]

[P. Cloetens]

I. Cheddadi (LJK)

22 juin 2010 40 / 42

-

= 990

Perspectives

- Améliorations du modèle
 - Haute vitesse : dissipation plastique en loi de puissance [Saramito JNNFM 2009], et friction des plaques en loi de puissance
 - Très basse vitesse : Plasticité progressive [Marmottant Graner EPJE 2008]

Autres matériaux

émulsions

gels de polymères

systèmes biologiques

[Pierre-Luc Bardet]

Merci de votre attention !

Calcul numérique : tenseur de "texture" $exp(\varepsilon^e)$, advecté par la vitesse le long des lignes de courant

Résultat du modèle en écoulement de cisaillement plan

[Wang et al., PRE 2006]

I. Cheddadi (LJK)

_ ▶ 들⊫ ∽ < ⊂ 22 juin 2010 1 / 4

Expérience mousse humide

calculs numériques

expérience humide

▶ < ∃ ▶ < ∃ ▶</p>

Expérience mousse humide : coupes de $\mathbf{v} - \mathbf{V}_{in}$

Accord sur la position et l'amplitude des extrema locaux

Expérience mousse humide : coupes de au

Accord sur la position et l'amplitude des extrema locaux