String theory flux vacua on twisted tori and Generalized Complex Geometry

David ANDRIOT

PhD defence, in presence of
Iosif BENA, Michela PETRINI, Henning SAMTLEBEN, Dimitrios TSIMPIS, Daniel WALDRAM, Jean-Bernard ZUBER

arXiv:0804.1769 by D. A.
arXiv:0903.0633 by D. A., R. Minasian, M. Petrini arXiv:1003.3774 by D. A., E. Goi, R. Minasian, M. Petrini
01/07/2010, LPTHE, UPMC Univ Paris 6, France

Introduction

- String theory considers extended objects: strings, of typical length l_{s}.

Introduction

- String theory considers extended objects:

Introduction

 strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity.
Introduction

- String theory considers extended objects:

Introduction

 strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...
Introduction

- String theory considers extended objects:

Introduction

 strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...Quantum gravity effects are expected to play a role at very high energy/tiny length scale
$L \stackrel{\text { SM, Cl. Grav. }}{ } \quad \mathrm{C}$

Introduction

- String theory considers extended objects:

Introduction

 strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...Quantum gravity effects are expected to play a role at very high energy/tiny length scale

Introduction

- String theory considers extended objects:

Introduction

 strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...Quantum gravity effects are expected to play a role at very high energy/tiny length scale

- LHC \approx giant microscope

Zoom on particles we know, and even tinier things.

Introduction

- String theory considers extended objects: strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...
Quantum gravity effects are expected to play a role at very high energy/tiny length scale

- LHC \approx giant microscope

Zoom on particles we know, and even tinier things. But quantum gravity effects are still at smaller length.

Introduction

Introduction

- String theory considers extended objects: strings, of typical length l_{s}. String theory is a perturbative theory of quantum gravity. Only few candidates...
Quantum gravity effects are expected to play a role at very high energy/tiny length scale

- LHC \approx giant microscope

Zoom on particles we know, and even tinier things. But quantum gravity effects are still at smaller length.

By "zooming-out" from string theory, can we recover particle physics, or predict things to be discovered at the LHC?

- Problem

Introduction

SUSY solutions
Twist and GCG
De Sitter
Conclusion

- Problem : superstring theory has several characteristic features not observed

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

??
$\hookrightarrow 6$ space dimensions more!

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more!

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed.

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed.

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).

Introduction

SUSY solutions

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold). We don't observe \mathcal{M}

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed.
Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold). We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY)

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons.

Introduction

SUSY solutions

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons. Not observed

Introduction

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons. Not observed \Rightarrow SUSY broken at a length $l_{\text {SUSY }}$.

Introduction

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons.

Not observed \Rightarrow SUSY broken at a length $l_{\text {SUSY }}$. Hypothesis: $l_{S U S Y}>R$

Introduction

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons.

Not observed \Rightarrow SUSY broken at a length $l_{\text {SUSY }}$. Hypothesis: $l_{\text {SUSY }}>R$ ($4 d$ extensions of SM, Higgs hierarchy problem, GUT...). Discovered at the LHC?

Introduction

- Problem : superstring theory has several characteristic features not observed
- Dimensions of space-time: $1+9$

$\hookrightarrow 6$ space dimensions more! Not extended, but closed. Several possibilities, a simple example:

Torus: T^{2}

In general: compact six-dimensional space \mathcal{M} (manifold).
We don't observe $\mathcal{M} \Rightarrow$ size too small to be detected:

- Supersymmetry (SUSY): exchanges fermions/bosons. Not observed \Rightarrow SUSY broken at a length $l_{\text {SUSY }}$. Hypothesis: $l_{\text {SUSY }}>R$ ($4 d$ extensions of SM, Higgs hierarchy problem, GUT...). Discovered at the LHC? Technical simplification.
"Zooming-out"

Introduction

SUSY solutions

Twist and GCG
De Sitter
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity. - To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity. - To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
(2) consider small fluctuations around it (determine light modes, truncate the spectrum to them)
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
(2) consider small fluctuations around it (determine light modes, truncate the spectrum to them)
(3) "zoom-out" (integrate the lagrangian over $6 d$ dim.) \hookrightarrow get a $4 d$ theory.
"Zooming-out"

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
(2) consider small fluctuations around it (determine light modes, truncate the spectrum to them)
8 "zoom-out" (integrate the lagrangian over $6 d$ dim.) \hookrightarrow get a $4 d$ theory.

- In this thesis: only the $1^{\text {st }}$ step:
"Zooming-out"

Introduction

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
(2) consider small fluctuations around it (determine light modes, truncate the spectrum to them)
8 "zoom-out" (integrate the lagrangian over $6 d \mathrm{dim}$.) \hookrightarrow get a $4 d$ theory.

- In this thesis: only the $1^{\text {st }}$ step:
"Zooming-out"

Introduction

- "Zoom-out" from superstring theory: below l_{s}, consider its low energy effective theory: supergravity (SUGRA). SUGRA: $10 d$ supersymmetric theory, including gravity.
- To lower further the energy: $10 d \rightarrow 4 d$. Go through $R \ldots$

Technical procedure: Kaluza-Klein (KK) reduction:
(a) find a background (a solution to $10 d$ equations of motion, a vacuum of SUGRA)
(2) consider small fluctuations around it (determine light modes, truncate the spectrum to them)
8 "zoom-out" (integrate the lagrangian over $6 d \mathrm{dim}$.) \hookrightarrow get a $4 d$ theory.

- In this thesis: only the $1^{\text {st }}$ step:

Find $10 d$ solutions of SUGRA on $4 d+6 d$, and preserve some SUSY...

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$
$10 d$ solutions on a max. symmetric $4 d$ space-time $\otimes \mathcal{M}$ \hookrightarrow ansatz for the fields, preserve the $4 d$ max. symmetry

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$
$10 d$ solutions on a max. symmetric $4 d$ space-time $\otimes \mathcal{M}$ \hookrightarrow ansatz for the fields, preserve the $4 d$ max. symmetry
- Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} g_{\mu \nu} d x^{\mu} d x^{\nu}+g_{m n}(y) d y^{m} d y^{n}$

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$
$10 d$ solutions on a max. symmetric $4 d$ space-time $\otimes \mathcal{M}$ \hookrightarrow ansatz for the fields, preserve the $4 d$ max. symmetry
- Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} g_{\mu \nu} d x^{\mu} d x^{\nu}+g_{m n}(y) d y^{m} d y^{n}$
- Fluxes: non-trivial only on \mathcal{M}.

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$
$10 d$ solutions on a max. symmetric $4 d$ space-time $\otimes \mathcal{M}$ \hookrightarrow ansatz for the fields, preserve the $4 d$ max. symmetry
- Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} g_{\mu \nu} d x^{\mu} d x^{\nu}+g_{m n}(y) d y^{m} d y^{n}$
- Fluxes: non-trivial only on \mathcal{M}.
- No fermions in the vacuum.

$10 d$ solutions of SUGRA

Introduction

Type IIA/B SUGRA: $\mathcal{N}_{10 d}=2$ SUSY

Spectrum:

- bosons of NSNS sector: $g_{M N}, \phi, B_{(2)}, M=0 \ldots 9$, $H=\mathrm{d} B$ flux
- bosons of RR sector: C_{p-1}, p even/odd in IIA/B, $F_{p} \sim \mathrm{~d} C_{p-1}$ flux
- fermions: doublets $\psi_{M}^{1,2}, \tilde{\lambda}^{1,2}$
$10 d$ solutions on a max. symmetric $4 d$ space-time $\otimes \mathcal{M}$ \hookrightarrow ansatz for the fields, preserve the $4 d$ max. symmetry
- Metric Ansatz : $d s_{(10)}^{2}=e^{2 A(y)} g_{\mu \nu} d x^{\mu} d x^{\nu}+g_{m n}(y) d y^{m} d y^{n}$
- Fluxes: non-trivial only on \mathcal{M}.
- No fermions in the vacuum.

To get a solution:

- solve equations of motion: Einstein, ϕ, fluxes (F, H).
- solve the Bianchi identities (BI) of the fluxes (sources...).

Introduction

Supersymmetric solutions and choice of \mathcal{M} Preserve SUSY in the vacuum \Rightarrow SUSY conditions.

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Introduction

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order.

Introduction

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions

Introduction

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

\hookrightarrow constraints on \mathcal{M}

Supersymmetric solutions and choice of \mathcal{M}
Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

\hookrightarrow constraints on \mathcal{M}, depends if fluxes are present.

Supersymmetric solutions and choice of \mathcal{M}

Introduction
SUSY solutions
Twist and GCG
De Sitter
Conclusion

Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

\hookrightarrow constraints on \mathcal{M}, depends if fluxes are present.
10d SUSY solutions on $4 d$ Mink. $+6 d \mathcal{M}$

Supersymmetric solutions and choice of \mathcal{M}

Introduction
SUSY solutions
Twist and GCG
De Sitter
Conclusion

Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

\hookrightarrow constraints on \mathcal{M}, depends if fluxes are present.
10d SUSY solutions on $4 d$ Mink. $+6 d \mathcal{M}$ Without fluxes $\Rightarrow \mathcal{M}$: CY.

Supersymmetric solutions and choice of \mathcal{M}

Introduction
SUSY solutions
Twist and GCG
De Sitter
Conclusion

Preserve SUSY in the vacuum \Rightarrow SUSY conditions. For $4 d$ Minkowski space-time, one can show:

SUSY conditions $+\mathrm{BI} \Rightarrow$ e.o.m.

Simpler because $1^{\text {st }}$ order equations instead of $2^{\text {nd }}$ order. SUSY conditions: annihilation of the fermionic SUSY variations:

$$
0=\delta \psi_{M} \quad, \quad 0=\delta \tilde{\lambda}
$$

\hookrightarrow constraints on \mathcal{M}, depends if fluxes are present.

> 10d SUSY solutions on $4 d$ Mink. $+6 d \mathcal{M}$ Without fluxes $\Rightarrow \mathcal{M}$: CY. With fluxes $\Rightarrow \mathcal{M}$: GCY.

Choice of the internal manifold \mathcal{M}

 CY is Ricci flat.
Introduction

Choice of the internal manifold \mathcal{M} CY is Ricci flat.

Introduction

Choice of the internal manifold \mathcal{M}

 CY is Ricci flat.In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

Choice of the internal manifold \mathcal{M}

CY is Ricci flat. In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

Introduction

SUSY solutions

Twist and GCG
De Sitter
Conclusion

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology...

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology... Example: a twist

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology... Example: a twist

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology... Example: a twist

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology... Example: a twist

Twisted torus

Choice of the internal manifold \mathcal{M}

CY is Ricci flat.
In absence of fluxes, $\mathbb{R}^{3,1} \times T^{6}$ is a simple solution.

In presence of fluxes: they backreact on \mathcal{M}
\hookrightarrow a priori \mathcal{M} not flat anymore... GCY!

The backreaction can be more dramatic: change of topology... Example: a twist

Twisted torus
Some are proved to be GCY.

Fluxes $\neq 0$: they are necessary, for the moduli problem.

Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

SUSY solutions

 Twist and GCG De Sitter Conclusion \Rightarrow moduli: massless scalar fields... Not observed!Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

 \Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass).Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

 \Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

 \Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...
SUSY solutions of $10 d$ SUGRA

Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

SUSY solutions

 \Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...
SUSY solutions of $10 d$ SUGRA

 with fluxes, on $\mathcal{M}=\mathrm{GCY}$Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

 \Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...
SUSY solutions of $10 d$ SUGRA with fluxes, on $\mathcal{M}=\mathrm{GCY}$

- SUSY conditions. SUSY solutions on twisted tori.

Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

\Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...

SUSY solutions of $10 d$ SUGRA with fluxes, on $\mathcal{M}=\mathrm{GCY}$

- SUSY conditions. SUSY solutions on twisted tori.
- Twisted tori as solvmanifolds. Twist transformation \hookrightarrow can relate and generate solutions.
Generalized Complex Geometry (GCG).

Fluxes $\neq 0$: they are necessary, for the moduli problem. KK reduction on a CY

Introduction

\Rightarrow moduli: massless scalar fields... Not observed! Need a potential to fix them (give them a mass). Fluxes generate a potential...

SUSY solutions of $10 d$ SUGRA with fluxes, on $\mathcal{M}=\mathrm{GCY}$

- SUSY conditions.

SUSY solutions on twisted tori.

- Twisted tori as solvmanifolds. Twist transformation
\hookrightarrow can relate and generate solutions.
Generalized Complex Geometry (GCG).
- De Sitter solutions: cosmology.

SUSY solutions of IIA/B SUGRA

Introduction

The SUSY conditions

SUSY solutions of IIA/B SUGRA

Introduction

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions:

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions:

$$
0=\delta \psi_{M}
$$

$$
0=\delta \tilde{\lambda}
$$

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions:

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not \mathscr{F}_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not F_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions:

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not म_{2 n}^{\prime} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.
Fluxes in the SUSY conditions

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
0=\delta \psi_{M}=D_{M} \epsilon
$$

$$
0=\delta \tilde{\lambda}=(\not \partial \phi \quad) \epsilon
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)$.
Fluxes in the SUSY conditions

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions:

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \mathscr{H}_{2 n}^{\prime} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not म_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not म_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$. \hookrightarrow SUSY conditions on \mathcal{M}.

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$.
\hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$$
\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}
$$

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not / 2 n \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not \mathscr{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$ $10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$.
\hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$, spinors on $T M \oplus T^{*} M(\mathrm{GCG})$

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$ $10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$. \hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$$
\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}, \text { spinors on } T M \oplus T^{*} M(\mathrm{GCG}) \Rightarrow \mathcal{M}: \mathrm{GCY}
$$

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$ $10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$.
\hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$, spinors on $T M \oplus T^{*} M(\mathrm{GCG}) \Rightarrow \mathcal{M}: \mathrm{GCY}$.
$\Phi_{ \pm}$are also polyforms.

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$ $10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$.
\hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$, spinors on $T M \oplus T^{*} M(\mathrm{GCG}) \Rightarrow \mathcal{M}: \mathrm{GCY}$. $\Phi_{ \pm}$are also polyforms. For an $S U(3)$ structure $\left(\eta_{+}^{1}=\eta_{+}^{2}\right)$:

$$
\begin{aligned}
& \Phi_{+} / N_{+}=e^{i \theta}\left(1-i J-\frac{1}{2} J \wedge J+\frac{i}{3!} J \wedge J \wedge J\right) \\
& \Phi_{-} / N_{-}=-i \Omega_{3}
\end{aligned}
$$

SUSY solutions of IIA/B SUGRA

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} \not H_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\not \partial \phi+\frac{1}{2} H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$ $10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.

Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$.
\hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$, spinors on $T M \oplus T^{*} M(\mathrm{GCG}) \Rightarrow \mathcal{M}: \mathrm{GCY}$. $\Phi_{ \pm}$are also polyforms. For an $S U(3)$ structure $\left(\eta_{+}^{1}=\eta_{+}^{2}\right)$:

$$
\begin{aligned}
& \Phi_{+} / N_{+}=e^{i \theta} e^{-i /} \\
& \Phi_{-} / N_{-}=-i \Omega_{3}
\end{aligned}
$$

SUSY solutions of IIA/B SUGRA

Introduction SUSY solutions SUSY conditions Solutions
Twist and GCG De Sitter Conclusion

The SUSY conditions

- For $\mathbb{R}^{3,1} \times \mathcal{M}$, SUSY conditions: CY condition: $D_{m} \eta=0$.

$$
\begin{aligned}
& 0=\delta \psi_{M}=D_{M} \epsilon+\frac{1}{4} H_{M} \mathcal{P} \epsilon+\frac{1}{16} e^{\phi} \sum_{n} म_{2 n} \gamma_{M} \mathcal{P}_{n} \epsilon \\
& 0=\delta \tilde{\lambda}=\left(\partial \phi \phi+\frac{1}{2} \not H \mathcal{P}\right) \epsilon+\frac{1}{8} e^{\phi} \sum_{n}(-1)^{2 n}(5-2 n) \not H_{2 n} \mathcal{P}_{n} \epsilon
\end{aligned}
$$

$10 d$ SUSY parameters: $\epsilon=\left(\epsilon^{1}, \epsilon^{2}\right)^{n}$.
Fluxes in the SUSY conditions \Rightarrow GCG rewriting.

- Decompose according to $S O(1,3) \times S O(6): \epsilon^{i=1,2} \rightarrow \eta_{ \pm}^{i=1,2}$. \hookrightarrow SUSY conditions on \mathcal{M}. GCG rewriting:

$$
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=\frac{e^{4 A}}{8} * \lambda\left(\sum_{p} F_{p}\right)
\end{aligned}
$$

$\Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$, spinors on $T M \oplus T^{*} M(\mathrm{GCG}) \Rightarrow \mathcal{M}: \mathrm{GCY}$. $\Phi_{ \pm}$are also polyforms. For an $S U(3)$ structure $\left(\eta_{+}^{1}=\eta_{+}^{2}\right)$:

$$
\begin{aligned}
& \Phi_{+} / N_{+}=e^{i \theta} e^{-i /} \\
& \Phi_{-} / N_{-}=-i \Omega_{3}
\end{aligned}
$$

SUSY conditions rewritten with polyforms, $\mathcal{M}=\mathrm{GCY}$.

SUSY solutions

- Explicit flux solutions on non-CY?

Introduction

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality...

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .} \quad \begin{aligned}
& \downarrow \\
& T^{4}
\end{aligned}
$$

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4} SUSY conditions are more tractable in terms of GCG.

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4} SUSY conditions are more tractable in terms of GCG. \hookrightarrow systematic resolution method to get solutions.

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4} SUSY conditions are more tractable in terms of GCG. \hookrightarrow systematic resolution method to get solutions.
- \Rightarrow a whole list of solutions: ex. in IIB with O5:

	Algebras	O5	
		$S U(3)$	$\perp S U(2)$
$n 3.14$	$(0,0,0,12,23,14-35)$	$45+26$	
$n 4.4$	$(0,0,0,0,12,14+23)$	56	56
$n 4.5$	$(0,0,0,0,12,34)$	56	56
$n 4.6$	$(0,0,0,0,12,13)$	56	56
$n 4.7$	$(0,0,0,0,13+42,14+23)$	56	56
$n 5.1$	$(0,0,0,0,0,12+34)$	56	56
$s 2.5$	$(25,-15, r 45,-r 35,0,0)$	$13+24$	$13+24$

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4}
SUSY conditions are more tractable in terms of GCG.
\hookrightarrow systematic resolution method to get solutions.
- \Rightarrow a whole list of solutions: ex. in IIB with O5:

	Algebras	O5	
		$S U(3)$	$\perp S U(2)$
$n 3.14$	$(0,0,0,12,23,14-35)$	$45+26$	56
$n 4.4$	$(0,0,0,0,12,14+23)$	56	56
$n 4.5$	$(0,0,0,0,12,34)$	56	56
$n 4.6$	$(0,0,0,0,12,13)$	56	56
$n 4.7$	$(0,0,0,0,13+42,14+23)$	56	56
$n 5.1$	$(0,0,0,0,0,12+34)$	56	56
$s 2.5$	$(25,-15, r 45,-r 35,0,0)$	$13+24$	$13+24$

Some solutions are T-dual to T^{6}, others are not T-dual!

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$ Two T-dualities along $T^{2} \rightarrow$ flux solution on twisted torus.

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4}

SUSY conditions are more tractable in terms of GCG.
\hookrightarrow systematic resolution method to get solutions.

- \Rightarrow a whole list of solutions: ex. in IIB with O5:

	Algebras	O5	
		$S U(3)$	$\perp S U(2)$
$n 3.14$	$(0,0,0,12,23,14-35)$	$45+26$	56
$n 4.4$	$(0,0,0,0,12,14+23)$	56	56
$n 4.5$	$(0,0,0,0,12,34)$	56	56
$n 4.6$	$(0,0,0,0,12,13)$	56	56
$n 4.7$	$(0,0,0,0,13+42,14+23)$	56	56
$n 5.1$	$(0,0,0,0,0,12+34)$	56	56
$s 2.5$	$(25,-15, r 45,-r 35,0,0)$	$13+24$	$13+24$

Some solutions are T-dual to T^{6}, others are not T-dual! Find non T-dual intermediate SU(2) str. solutions.

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4} SUSY conditions are more tractable in terms of GCG.
\hookrightarrow systematic resolution method to get solutions.
- \Rightarrow a whole list of solutions: ex. in IIB with O5:

	Algebras	O5	
		$S U(3)$	$\perp S U(2)$
$n 3.14$	$(0,0,0,12,23,14-35)$	$45+26$	56
$n 4.4$	$(0,0,0,0,12,14+23)$	56	56
$n 4.5$	$(0,0,0,0,12,34)$	56	56
$n 4.6$	$(0,0,0,0,12,13)$	56	56
$n 4.7$	$(0,0,0,0,13+42,14+23)$	56	56
$n 5.1$	$(0,0,0,0,0,12+34)$	56	56
$s 2.5$	$(25,-15, r 45,-r 35,0,0)$	$13+24$	$13+24$

Some solutions are T-dual to T^{6}, others are not T-dual! Find non T-dual intermediate $S U(2)$ str. solutions.

- Can all solutions be related a transformation? (no isolated solution)

SUSY solutions

- Explicit flux solutions on non-CY? Via T-duality... IIB solution: warped $T^{6}+$ O3-plane + fluxes $\left(H, F_{3}, F_{5}\right)$

$$
T^{2} \hookrightarrow \mathcal{M}
$$

$$
T^{6}=T^{2} \times T^{4} \quad \xrightarrow{T-d .}
$$

- SUSY conditions + BI \Rightarrow e.o.m. T^{4} SUSY conditions are more tractable in terms of GCG.
\hookrightarrow systematic resolution method to get solutions.
- \Rightarrow a whole list of solutions: ex. in IIB with O5:

	Algebras	O5	
		$S U(3)$	$\perp S U(2)$
$n 3.14$	$(0,0,0,12,23,14-35)$	$45+26$	56
$n 4.4$	$(0,0,0,0,12,14+23)$	56	56
$n 4.5$	$(0,0,0,0,12,34)$	56	56
$n 4.6$	$(0,0,0,0,12,13)$	56	56
$n 4.7$	$(0,0,0,0,13+42,14+23)$	56	56
$n 5.1$	$(0,0,0,0,0,12+34)$	56	56
$s 2.5$	$(25,-15, r 45,-r 35,0,0)$	$13+24$	$13+24$

Some solutions are T-dual to T^{6}, others are not T-dual! Find non T-dual intermediate SU(2) str. solutions.

- Can all solutions be related a transformation? (no isolated solution)
\hookrightarrow Twist transf: relate/generate solutions on twisted tori.

Twist transformation

Introduction
SUSY solutions
GCG
Solutions
De Sitter

Twist transformation

Introduction
GCG

- Built out of Lie groups G nilpotent or solvable.

Twist transformation

Introduction

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable).

Twist transformation

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}.

Twist transformation

Introduction

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}. General nilmanifold :

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
\mathcal{F}^{1} & & \vdots \\
& & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right)=N / \Gamma_{N}
$$

Twist transformation

Introduction

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}. General solvmanifold:

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & - & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right) \quad=N / \Gamma_{N} \quad \hookrightarrow \quad \mathcal{M}=G / \Gamma
$$

Twist transformation

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}. General solvmanifold:

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & \hookrightarrow & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & \hookrightarrow & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right) \quad=N / \Gamma_{N} \quad \hookrightarrow \quad \mathcal{M}=G / \Gamma
$$

- The algebra gives the Maurer-Cartan (MC) equation:

$$
\left[E_{i}, E_{j}\right]=f^{k}{ }_{i j} E_{k} \Leftrightarrow \mathrm{~d} e^{k}=-\sum_{i<j} f^{k}{ }_{i j} e^{i} \wedge e^{j}
$$

$E_{i} \in \mathfrak{g}$: vector, $e^{i} \in \mathfrak{g}^{*}$: dual 1-form, $f^{k}{ }_{i j}$: struct. constants.

Twist transformation

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}. General solvmanifold:

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & \ddots & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & \ddots & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right)=N / \Gamma_{N} \quad \hookrightarrow \quad \mathcal{M}=G / \Gamma
$$

- The algebra gives the Maurer-Cartan (MC) equation:

$$
\left[E_{i}, E_{j}\right]=f^{k}{ }_{i j} E_{k} \Leftrightarrow \mathrm{~d} e^{k}=-\sum_{i<j} f_{i j}^{k} e^{i} \wedge e^{j}
$$

$E_{i} \in \mathfrak{g}$: vector, $e^{i} \in \mathfrak{g}^{*}$: dual 1-form, $f^{k}{ }_{i j}$: struct. constants.
Out of the MC equation, one can read the topology. Topological properties encoded in the MC 1-forms.

Twist transformation

Twisted tori: nil- and solvmanifolds

- Built out of Lie groups G nilpotent or solvable. Nilmanifolds \subset solvmanifolds (nilpotent \subset solvable). All nilmanifolds are GCY \Rightarrow interesting candidates for \mathcal{M}. General solvmanifold:

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & \ddots & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & \ddots & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right)=N / \Gamma_{N} \quad \hookrightarrow \quad \mathcal{M}=G / \Gamma
$$

- The algebra gives the Maurer-Cartan (MC) equation:

$$
\left[E_{i}, E_{j}\right]=f^{k}{ }_{i j} E_{k} \Leftrightarrow \mathrm{~d} e^{k}=-\sum_{i<j} f^{k}{ }_{i j} e^{i} \wedge e^{j} .
$$

$E_{i} \in \mathfrak{g}$: vector, $e^{i} \in \mathfrak{g}^{*}$: dual 1-form, $f^{k}{ }_{i j}$: struct. constants.
Out of the MC equation, one can read the topology. Topological properties encoded in the MC 1-forms.
\hookrightarrow twist transformation uses this idea.

Twist transformation
Introduction
SUSY solutions
Twist and GCG

To reproduce a change of topology, we transform the 1-forms.

Twist transformation

Introduction

SUSY solutions

Twist and GCG

 Twisted toriTwist
GCG
Solutions
De Sitter

Conclusion

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

Twist transformation

Introduction

SUSY solutions

Twist and GCG

 Twisted toriTwist
GCG
Solutions
De Sitter

Conclusion

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology.

Twist transformation

Introduction

SUSY solutions

Twist and GCG

 Twisted tori Twist GCG Solutions

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle

$$
\left(\begin{array}{ccc}
\mathcal{F}^{p} & \ddots & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & \ddots & \mathcal{M}^{1} \\
& & \mathcal{B}^{1}
\end{array}\right)=N / \Gamma_{N} \quad \hookrightarrow \quad \mathcal{M}=G / \Gamma
$$

Twist transformation

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle, we take

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & - & \mathcal{M}^{1} \\
& & \\
\mathcal{B}^{1}
\end{array}\right)=N / \Gamma_{N} \\
& \\
& A=\left(\begin{array}{c|c|c}
A_{N} & 0 \\
\hline 0 & 1_{k}
\end{array}\right)\left(\begin{array}{cc}
A_{M} & 0 \\
\hline 0 & 1_{k}
\end{array}\right), A_{N}=A_{p} \ldots A_{1} .
\end{aligned}
$$

Twist transformation

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle, we take

$$
\begin{aligned}
& \left.\left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & - & \mathcal{M}^{1}
\end{array}\right) \quad \begin{array}{ccc}
& & \\
& & \\
\mathcal{B}^{1}
\end{array}\right) \\
& A=\left(\begin{array}{c|c|c}
A_{N} & 0 \\
\hline 0 & 1_{k}
\end{array}\right)\left(\begin{array}{ccc}
A_{M} & 0 \\
\hline 0 & 1_{k}
\end{array}\right), A_{N}=A_{p} \ldots A_{1} .
\end{aligned}
$$

Twist transformation

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle, we take

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
& & \vdots \\
\mathcal{F}^{1} & - & \mathcal{M}^{1} \\
& & \\
\mathcal{B}^{1}
\end{array}\right) \\
& A=\left(\begin{array}{ccc}
A_{N} & 0 \\
\hline 0 & 1_{k}
\end{array}\right)\left(\begin{array}{c|c}
A_{M} & 0 \\
\hline 0 & 1_{k}
\end{array}\right), A_{N}=A_{p} \ldots A_{1} .
\end{aligned}
$$

Twist transformation

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle, we take

$$
\left.\begin{array}{c}
\left(\begin{array}{ccc}
\mathcal{F}^{p} & \ddots & \mathcal{M}^{p} \\
& & \vdots \\
\mathcal{F}^{1} & & \\
\mathcal{M}^{1}
\end{array}\right) \quad=N / \Gamma_{N} \\
\\
A=\left(\begin{array}{c|c|c}
\mathcal{B}^{1}
\end{array}\right) \\
\hline A_{N} \\
\hline 0
\end{array} 1_{1}\right)\left(\begin{array}{cc}
A_{M} & 0 \\
\hline 0 & 1_{k}
\end{array}\right), A_{N}=A_{p} \ldots A_{1} .
$$

Twist transformation

To reproduce a change of topology, we transform the 1-forms. Here: obtain 1 -forms of the solvmanifold out of those of T^{6} :

$$
A\left(\begin{array}{c}
\mathrm{d} x^{1} \\
\vdots \\
\mathrm{~d} x^{6}
\end{array}\right)=\left(\begin{array}{c}
e^{1} \\
\vdots \\
e^{6}
\end{array}\right)
$$

A encodes the topology. Given the Mostow bundle, we take

$$
\begin{gathered}
\left(\begin{array}{ccc}
\mathcal{F}^{p} & - & \mathcal{M}^{p} \\
& & \vdots \\
\mathcal{F}^{1} & & \vdots \\
\mathcal{M}^{1}
\end{array}\right) \quad=N / \Gamma_{N} \quad \hookrightarrow \\
\mathcal{M}=G / \Gamma \\
A=\left(\begin{array}{c|c|c}
A_{N} & 0 \\
\hline 0 & \mathcal{B}_{k}^{1}
\end{array}\right)\left(\begin{array}{c|c}
A_{M} & 0 \\
\hline 0 & 1_{k}
\end{array}\right), A_{N}=A_{p} \ldots A_{1} . \\
A_{i}=\left(\begin{array}{cc}
1 & 0 \\
\mathcal{A}_{i}\left(x_{\mathcal{B}^{i}}\right) & 1
\end{array}\right), A_{M}=\text { rotation. }
\end{gathered}
$$

A_{i}, A_{M} are given by adjoint actions...

Twist and GCG

Introduction
GCG
Solutions
De Sitter
Conclusion

- Transformation relating 1 -forms of T^{6} to 1 -forms of a twisted torus, reproduces the change of topology.

Twist and GCG

Introduction
GCG
Solutions
De Sitter
Conclusion

- Transformation relating 1 -forms of T^{6} to 1 -forms of a twisted torus, reproduces the change of topology. \Rightarrow extend the twist in GCG...

Twist and GCG

Introduction

- Transformation relating 1 -forms of T^{6} to 1 -forms of a twisted torus, reproduces the change of topology. \Rightarrow extend the twist in GCG...
- GCG considers the fibration:

$$
T^{*} M \quad \begin{gathered}
E \\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{gathered} \quad \text { E: the generalized tangent bundle. }
$$

Twist and GCG

```
Introduction
SUSY solutions
Twist and GCG
Twisted tori
Twist
GCG
Solutions
De Sitter
Conclusion
```

- Transformation relating 1 -forms of T^{6} to 1 -forms of a twisted torus, reproduces the change of topology. \Rightarrow extend the twist in GCG...
- GCG considers the fibration:

$$
\begin{array}{ll}
T^{*} M & \hookrightarrow \\
\\
& \stackrel{E}{\downarrow} \quad E \text { : the generalized tangent bundle. } \\
\text { Locally: } & T M \oplus T^{*} M .
\end{array}
$$

Twist and GCG

```
Introduction
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration: \(T^{*} M \hookrightarrow \begin{gathered}E \\ \vdots \\ T M\end{gathered} \quad E\) : the generalized tangent bundle.
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M
\]

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration: \(T^{*} M \quad \hookrightarrow \quad E\) \(\downarrow \quad E:\) the generalized tangent bundle. TM
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\).

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\(T^{*} M \quad \hookrightarrow \quad E\)
\(\downarrow \quad E\) : the generalized tangent bundle.
TM
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\(T^{*} M \quad \hookrightarrow \quad E\)
\(\downarrow \quad E\) : the generalized tangent bundle.
TM
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\).

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\[
T^{*} M \quad \hookrightarrow \quad E
\]
\(\downarrow \quad\) E: the generalized tangent bundle.
TM
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\).

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\[
T^{*} M \quad \hookrightarrow \quad E
\]
\(E\) : the generalized tangent bundle.
TM
Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\). Extend it with other \(O(d, d)\) elements...

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\[
T^{*} M \quad \hookrightarrow \quad E \quad . \quad E \text { : the generalized tangent bundle. }
\]

Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\). Extend it with other \(O(d, d)\) elements...
\(\hookrightarrow\) Twist transformation: local \(O(d, d)\) changing topology.

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:

Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\). Extend it with other \(O(d, d)\) elements...
\(\hookrightarrow\) Twist transformation: local \(O(d, d)\) changing topology.
- Spinorial representation of \(O(d, d):(S) p i n(d, d)\) \(\Rightarrow\) Majorana-Weyl spinors on \(T M \oplus T^{*} M\)

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\[
\begin{array}{cccc}
T^{*} M & \hookrightarrow & E \\
& & \\
& \\
& & \\
\hline
\end{array} \quad E \text { : the generalized tangent bundle. }
\]

Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\). Extend it with other \(O(d, d)\) elements...
\(\hookrightarrow\) Twist transformation: local \(O(d, d)\) changing topology.
- Spinorial representation of \(O(d, d):(S) \operatorname{pin}(d, d)\) \(\Rightarrow\) Majorana-Weyl spinors on \(T M \oplus T^{*} M: \Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}\).

\section*{Twist and GCG}
- Transformation relating 1 -forms of \(T^{6}\) to 1 -forms of a twisted torus, reproduces the change of topology. \(\Rightarrow\) extend the twist in GCG...
- GCG considers the fibration:
\[
T^{*} M \quad \begin{gathered}
E \\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{gathered} \quad \text { E: the generalized tangent bundle. }
\]

Locally: \(T M \oplus T^{*} M\). Sections: generalized vectors:
\[
X=v+\xi=\binom{v}{\xi}, v \in T M, \xi \in T^{*} M .
\]

Natural \(O(d, d)\) action on \(T M \oplus T^{*} M\). One element:
\[
\left(\begin{array}{c|c}
A & 0_{d} \\
\hline 0_{d} & A^{-T}
\end{array}\right)
\]
\(G L(d)\) transf: on vectors and 1-forms of \(T M \oplus T^{*} M\). Twist acting on 1 -forms \(\Rightarrow\) embed it in \(O(d, d)\). Extend it with other \(O(d, d)\) elements...
\(\hookrightarrow\) Twist transformation: local \(O(d, d)\) changing topology.
- Spinorial representation of \(O(d, d):(S) \operatorname{pin}(d, d)\) \(\Rightarrow\) Majorana-Weyl spinors on \(T M \oplus T^{*} M: \Phi_{ \pm}=\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}\). They transform: \(\Phi \mapsto \Phi^{\prime}=O \cdot \Phi\).
- Solutions on torus and on twisted tori.

\section*{Introduction}

SUSY solutions
Twist and GCG
Twisted tori
Twist
GCG
Solutions
De Sitter
- Solutions on torus and on twisted tori.

\section*{Introduction}

SUSY solutions
- Solutions on torus and on twisted tori.

\section*{Introduction}

\section*{SUSY solutions}

\section*{Twist and GCG} Twisted tori
Twist
GCG
Solutions
De Sitter

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY)
Introduction
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY) \(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
Introduction
SUSY solutions
Twist and GCG
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY) \(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY) \(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Consider a solution of the SUSY conditions.
\[
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=R
\end{aligned}
\]
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY)
\(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Consider a solution of the SUSY conditions.

Perform a Twist: \(\Phi_{ \pm}^{\prime}=O \cdot \Phi_{ \pm}\)
\[
\begin{aligned}
& (\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
& (\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=R
\end{aligned}
\]
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY) \(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Consider a solution of the SUSY conditions.

Perform a Twist: \(\Phi_{ \pm}^{\prime}=O \cdot \Phi_{ \pm} \Rightarrow\) Get a new solution?
\[
\begin{array}{ll}
(\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 & \left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{2 A-\phi} \Phi_{1}^{\prime}\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=R
\end{array} \quad \Rightarrow \quad\left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}^{\prime}\right)\right)=0 .
\]
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY) \(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Consider a solution of the SUSY conditions.

Perform a Twist: \(\Phi_{ \pm}^{\prime}=O \cdot \Phi_{ \pm} \Rightarrow\) Get a new solution?
\[
\begin{array}{ll}
(\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=R
\end{array} \quad \Rightarrow \quad\left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{2 A-\phi} \Phi_{1}^{\prime}\right)=0, ~\left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}^{\prime}\right)\right)=0 .
\]

Expand in terms of \(\Phi_{1,2}, R, O \Rightarrow\) constraints on the twist with respect to the first solution.
- Solutions on torus and on twisted tori.

Our solutions are given in terms of the polyforms \(\Phi_{ \pm}\). \(\Phi_{ \pm}\)can encode a solution (NSNS, RR via SUSY)
\(\hookrightarrow\) a transformation (T-duality, Twist...) could lead to another solution...
\(\hookrightarrow\) relate solutions with the twist?
- Consider a solution of the SUSY conditions.

Perform a Twist: \(\Phi_{ \pm}^{\prime}=O \cdot \Phi_{ \pm} \Rightarrow\) Get a new solution?
\[
\begin{array}{ll}
(\mathrm{d}-H \wedge)\left(e^{2 A-\phi} \Phi_{1}\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}\right)\right)=0 \\
(\mathrm{~d}-H \wedge)\left(e^{3 A-\phi} \operatorname{Im}\left(\Phi_{2}\right)\right)=R
\end{array} \quad \Rightarrow \quad\left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{2 A-\phi} \Phi_{1}^{\prime}\right)=0, ~\left(\mathrm{~d}-H^{\prime} \wedge\right)\left(e^{A-\phi} \operatorname{Re}\left(\Phi_{2}^{\prime}\right)\right)=0 .
\]

Expand in terms of \(\Phi_{1,2}, R, O \Rightarrow\) constraints on the twist with respect to the first solution. For instance:
\[
\mathrm{d}(O) \cdot \Phi_{1}=0 .
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3} .
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
T^{6}=T^{2} \times T^{4} \quad \Rightarrow
\]


Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3} .
\]
- Nilmanifolds
\[
\begin{array}{ccc}
T^{6}=T^{2} \times T^{4} & \Rightarrow & \downarrow \\
(\mathrm{~d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} & & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{ccc}
T^{6}=T^{2} \times T^{4} & \Rightarrow & \downarrow \\
(\mathrm{~d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} & & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]

Constraint on the twist of parameter \(\alpha\) : \(\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0\).

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
T^{2} \quad \hookrightarrow \quad \mathcal{M}
\]
\[
T^{6}=T^{2} \times T^{4} \quad \Rightarrow \quad \begin{array}{|}
T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology.

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
T^{2} \quad \hookrightarrow \quad \mathcal{M}
\]
\[
T^{6}=T^{2} \times T^{4} \quad \Rightarrow \quad \begin{array}{|}
T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\).

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{cccc}
\Rightarrow & T^{2} & \hookrightarrow & \mathcal{M} \\
& & \downarrow \\
& & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]
\[
T^{6}=T^{2} \times T^{4} \quad \Rightarrow \quad \downarrow
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{cccc} 
& T^{2} & \hookrightarrow & \mathcal{M} \\
& & \downarrow \\
& & T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & 56 \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 4.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \\
\hline
\end{tabular}

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\Rightarrow \begin{array}{ccc} 
& T^{2} & \hookrightarrow \\
& & \mathcal{M} \\
& & T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|l|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & 56 & 56 \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \(13+24\) & \(13+24\) \\
\hline
\end{tabular}

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\Rightarrow \begin{array}{ccc} 
& T^{2} & \hookrightarrow \\
& & \mathcal{M} \\
& & T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{O} \\
\hline & & \(S U(3)\) & \(\perp S(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & & \\
\hline
\end{tabular}
- Solvmanifolds (no \(T^{6}\) T-dual)
s 2.5

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\Rightarrow \begin{array}{ccc} 
& T^{2} & \hookrightarrow \\
& & \mathcal{M} \\
& & T^{4}
\end{array}
\]
\[
(\mathrm{d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} \quad(\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0 .
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & 56 \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \\
\hline
\end{tabular}
- Solvmanifolds (no \(T^{6}\) T-dual)
\[
\begin{gathered}
s 2.5 \\
\mathrm{~d} J=0 \\
\mathrm{~d}\left(\operatorname{Im} \Omega_{3}\right)=0
\end{gathered}
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{ccc}
T^{6}=T^{2} \times T^{4} & \Rightarrow & \downarrow \\
(\mathrm{~d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} & & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & 56 \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \\
\hline
\end{tabular}
- Solvmanifolds (no \(T^{6}\) T-dual)
\[
\begin{aligned}
& \quad s 2.5 \\
& \quad \mathrm{~d} J=0 \\
& \mathrm{~d}\left(\operatorname{Im} \Omega_{3}\right)=0
\end{aligned}
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{ccc}
T^{6}=T^{2} \times T^{4} & \Rightarrow & \downarrow \\
(\mathrm{~d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} & & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & 56 \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \\
\hline
\end{tabular}
- Solvmanifolds (no \(T^{6}\) T-dual)
\[
\begin{array}{ccc}
s 2.5 & \Rightarrow & \mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1} \\
\mathrm{~d} J=0 & & \mathrm{~d} J^{\prime}=p(\lambda-1) \ldots \text { forms } \\
\mathrm{d}\left(\operatorname{Im} \Omega_{3}\right)=0 & & \mathrm{~d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms }
\end{array}
\]

Examples of constraints and solutions, with \(S U(3)\) structure:
\[
\Phi_{+}=N_{+} e^{i \theta} e^{-i J} \quad, \quad \Phi_{-}=-N_{-} i \Omega_{3}
\]
- Nilmanifolds
\[
\begin{array}{ccc}
T^{6}=T^{2} \times T^{4} & \Rightarrow & \downarrow \\
(\mathrm{~d} z, \mathrm{~d} \bar{z}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4} & & (\mathrm{~d} z+\alpha, \mathrm{d} \bar{z}+\bar{\alpha}), \mathrm{d} x_{\mathcal{B}}^{i=1 \ldots 4}
\end{array}
\]

Constraint on the twist of parameter \(\alpha\) :
\[
\mathrm{d} \alpha \wedge J_{\mathcal{B}}=0, \quad \mathrm{~d} \alpha \wedge \Omega_{\mathcal{B}}=0
\]

Among the 34 nilmanifolds, 5 have this topology. \(\mathrm{d} \alpha\) is the curvature, precisely defined, related to \(f^{k}{ }_{i j}\). Constraints can be satisfied on all these \(\mathcal{M} \Rightarrow\) solutions!
\begin{tabular}{|c|l|c|c|}
\hline & Algebras & \multicolumn{2}{|c|}{ O5 } \\
\hline & & \(S U(3)\) & \(\perp S U(2)\) \\
\hline\(n 3.14\) & \((0,0,0,12,23,14-35)\) & \(45+26\) & 56 \\
\(n 4.4\) & \((0,0,0,0,12,14+23)\) & 56 & 56 \\
\(n 4.5\) & \((0,0,0,0,12,34)\) & 56 & 56 \\
\(n 4.6\) & \((0,0,0,0,12,13)\) & 56 & 56 \\
\(n 4.7\) & \((0,0,0,0,13+42,14+23)\) & 56 & 56 \\
\(n 5.1\) & \((0,0,0,0,0,12+34)\) & \(13+24\) & \(13+24\) \\
\hline\(s 2.5\) & \((25,-15, r 45,-r 35,0,0)\) & \\
\hline
\end{tabular}
- Solvmanifolds (no \(T^{6}\) T-dual)
\[
\begin{array}{ccc}
s 2.5 & \Rightarrow & \mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1} \\
\mathrm{~d} J=0 & \mathrm{~d} J^{\prime}=p(\lambda-1) \ldots \text { forms } \\
\mathrm{d}\left(\operatorname{Im} \Omega_{3}\right)=0 & \mathrm{~d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms } \\
\text { New SUSY solution on } \mathfrak{g}_{5.17}^{p,-p, r} \text { for } \lambda=1 .
\end{array}
\]

\section*{De Sitter solutions and SUSY breaking sources}

Finding de Sitter solutions \(4 d=\) de Sitter, cosmological interest.

\section*{De Sitter solutions and SUSY breaking sources}

Finding de Sitter solutions
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult!

\section*{De Sitter solutions and SUSY breaking sources}

Finding de Sitter solutions
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...

\section*{De Sitter solutions and SUSY breaking sources}

Finding de Sitter solutions
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
& \(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular}

\section*{De Sitter solutions and SUSY breaking sources}

Finding de Sitter solutions
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{22^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
& \(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular}

\section*{De Sitter solutions and SUSY breaking sources}

\section*{Finding de Sitter solutions}
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
& \(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular}
(1) \(10 d\) : without SUSY, technically difficult! \(4 d\) : coupled equations \(\Rightarrow\) numerics...

\section*{De Sitter solutions and SUSY breaking sources}

\section*{Finding de Sitter solutions}
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) \\
\(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular}\(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)}\)
(1) \(10 d\) : without SUSY, technically difficult!
\(4 d\) : coupled equations \(\Rightarrow\) numerics...

\section*{De Sitter solutions and SUSY breaking sources}

\section*{Finding de Sitter solutions}
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) \\
\(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular}\(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)}\)
(1) \(10 d\) : without SUSY, technically difficult!
\(4 d\) : coupled equations \(\Rightarrow\) numerics...
(2) \(\Lambda>0\) : difficult for classical SUGRA backgrounds...

\section*{De Sitter solutions and SUSY breaking sources}

\section*{Finding de Sitter solutions}
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\(\left.\begin{array}{c|c|c} & 10 d & 4 d \\ \hline S & \frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10} \\ +4 e^{-2 \phi}|\nabla \phi|^{2}+\text { fluxes }+ \text { sources }\end{array}\right)\)
(1) \(10 d\) : without SUSY, technically difficult!
\(4 d\) : coupled equations \(\Rightarrow\) numerics...
(2) \(\Lambda>0\) : difficult for classical SUGRA backgrounds...

\section*{De Sitter solutions and SUSY breaking sources}

\section*{Finding de Sitter solutions}
\(4 d=\) de Sitter, cosmological interest. Get solutions: difficult! Technical difficulty: non-SUSY vacua \(\hookrightarrow\) no use of the previous methods...
\(\left.\begin{array}{c|c|c} & 10 d & 4 d \\ \hline S & \frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10} \\ +4 e^{-2 \phi}|\nabla \phi|^{2}+\text { fluxes }+ \text { sources }\end{array}\right)\)
(1) \(10 d\) : without SUSY, technically difficult!
\(4 d\) : coupled equations \(\Rightarrow\) numerics...
(2) \(\Lambda>0\) : difficult for classical SUGRA backgrounds...
© Difficult! Up to date: no stable dS solution with classical 10 d SUGRA ingredients.

\section*{Introduction}

\section*{SUSY solutions} Twist and GCG De Sitter Solutions Sources
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
\(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources & \\
\hline 1. & Solve e.o.m. & \(\partial_{\varphi} V=0\) \\
\hline 2. & \(\Lambda=\frac{1}{4} R_{4}>0\) & \(\Lambda=\left.\frac{1}{2 M_{p}^{2}} V\right|_{0}>0\) \\
\hline 3. & \(\ldots\) & \(4 d\) stability: \(\left.\partial_{\varphi} V\right|_{0}>0\) \\
\hline
\end{tabular}

\section*{Introduction}

SUSY solutions Twist and GCG

\section*{De Sitter}

\section*{Solutions}

Sources
Conclusion
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
\(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources & \\
\hline 1. & Solve e.o.m. & \(\partial_{\varphi} V=0\) \\
\hline 2. & \(\Lambda=\frac{1}{4} R_{4}>0\) & \(\Lambda=\left.\frac{1}{2 M_{p}^{2}} V\right|_{0}>0\) \\
\hline 3. & \(\ldots\) & \(4 d\) stability: \(\left.\partial_{\varphi} V\right|_{0}>0\) \\
\hline
\end{tabular}


\section*{Introduction}

SUSY solutions Twist and GCG De Sitter Solutions Sources
Conclusion
\begin{tabular}{c|c|c} 
& \(10 d\) & \(4 d\) \\
\hline\(S\) & \begin{tabular}{c}
\(\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{\left|g_{10}\right|} e^{-2 \phi} R_{10}\) \\
\(+4 e^{-2 \phi}|\nabla \phi|^{2}+\) fluxes + sources
\end{tabular} & \(M_{p}^{2} \int \mathrm{~d}^{4} x \sqrt{\left|g_{4}\right|}\left(R_{4}+\ldots-\frac{1}{M_{p}^{2}} V\right)\) \\
\hline 1. & Solve e.o.m. & \(\partial_{\varphi} V=0\) \\
\hline 2. & \(\Lambda=\frac{1}{4} R_{4}>0\) & \(\Lambda=\left.\frac{1}{2 M_{\nu}^{2}} V\right|_{0}>0\) \\
\hline 3. & \(\ldots\) & \(4 d\) stability: \(\left.\partial_{\varphi} V\right|_{0}>0\) \\
\hline
\end{tabular}


Several no-go theorems and ways of circumventing them:

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.

\section*{Introduction}

\section*{SUSY solutions}

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).

\section*{Introduction}

\section*{SUSY solutions}

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]
\(\hookrightarrow F_{0} \neq 0, R_{6}<0\).

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]
\(\hookrightarrow F_{0} \neq 0, R_{6}<0\).
\(F_{0}\) alone to balance \(H \ldots\)

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]
\(\hookrightarrow F_{0} \neq 0, R_{6}<0\).
\(F_{0}\) alone to balance \(H \ldots\) More RR fluxes does not help.

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]
\(\hookrightarrow F_{0} \neq 0, R_{6}<0\).
\(F_{0}\) alone to balance \(H \ldots\) More RR fluxes does not help.
\(\hookrightarrow\) classical \(10 d\) SUGRA dS vacuum is difficult!

Several no-go theorems and ways of circumventing them:
- need O-planes (negatively charged RR sources) \(\Rightarrow\) we take O6/D6 in IIA.
Intersecting sources \(\Rightarrow\) smeared sources and constant dilaton \(e^{\phi}=g_{s}\).
- With O6, \(\mathcal{M}\) must have \(R_{6}<0\) and \(F_{0} \neq 0\) \(\hookrightarrow\) we consider \(F_{0}, F_{2}\) and \(H\).
In presence of SUSY (calibrated) sources, combine e.o.m.:
\[
\begin{aligned}
& R_{4}=\frac{2}{3}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right) \\
& R_{6}+\frac{1}{2} g_{s}^{2}\left|F_{2}\right|^{2}+\frac{3}{2}\left(g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)=0
\end{aligned}
\]
\(\hookrightarrow F_{0} \neq 0, R_{6}<0\).
\(F_{0}\) alone to balance \(H \ldots\)... More RR fluxes does not help.
\(\hookrightarrow\) classical \(10 d\) SUGRA dS vacuum is difficult! Additional ingredients: KK monopoles and Wilson lines, non-geometric fluxes, \(\alpha^{\prime}\) corrections...

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua. \(S_{\text {sources }}\) ? \(\Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

\section*{SUSY breaking sources}
Introduction
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA).

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY.

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }}\) ? \(\Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]
- Non-SUSY case: consider a general expansion:
\[
\eta_{+}, \eta_{-}, \gamma^{m} \eta_{+}, \gamma^{m} \eta_{-} \Rightarrow \Phi_{-}, \gamma^{m} \Phi_{+}, \Phi_{+} \gamma^{m}, \gamma^{m} \Phi_{-} \gamma^{n}, \ldots
\]

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]
- Non-SUSY case: consider a general expansion:
\[
\begin{aligned}
& \eta_{+}, \eta_{-}, \gamma^{m} \eta_{+}, \gamma^{m} \eta_{-} \Rightarrow \Phi_{-}, \gamma^{m} \Phi_{+}, \Phi_{+} \gamma^{m}, \gamma^{m} \Phi_{-} \gamma^{n}, \ldots \\
& X_{-}=\frac{8}{\left\|\Phi_{-}\right\|}\left(\alpha_{0} \Phi_{-}+\widetilde{\alpha}_{0} \bar{\Phi}_{-}+\alpha_{m n} \gamma^{m} \Phi_{-} \gamma^{n}+\widetilde{\alpha}_{m n} \gamma^{m} \bar{\Phi}_{-} \gamma^{n}\right. \\
& \left.\quad+\alpha_{m}^{L} \gamma^{m} \Phi_{+}+\widetilde{\alpha}_{m}^{L} \gamma^{m} \bar{\Phi}_{+}+\alpha_{n}^{R} \Phi_{+} \gamma^{n}+\widetilde{\alpha}_{n}^{R} \bar{\Phi}_{+} \gamma^{n}\right)
\end{aligned}
\]

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]
- Non-SUSY case: consider a general expansion:
\[
\begin{aligned}
& \eta_{+}, \eta_{-}, \gamma^{m} \eta_{+}, \gamma^{m} \eta_{-} \Rightarrow \Phi_{-}, \gamma^{m} \Phi_{+}, \Phi_{+} \gamma^{m}, \gamma^{m} \Phi_{-} \gamma^{n}, \ldots \\
& X_{-}=\frac{8}{\left\|\Phi_{-}\right\|}\left(\alpha_{0} \Phi_{-}+\widetilde{\alpha}_{0} \bar{\Phi}_{-}+\alpha_{m n} \gamma^{m} \Phi_{-} \gamma^{n}+\widetilde{\alpha}_{m n} \gamma^{m} \bar{\Phi}_{-} \gamma^{n}\right. \\
& \left.\quad+\alpha_{m}^{L} \gamma^{m} \Phi_{+}+\widetilde{\alpha}_{m}^{L} \gamma^{m} \bar{\Phi}_{+}+\alpha_{n}^{R} \Phi_{+} \gamma^{n}+\widetilde{\alpha}_{n}^{R} \bar{\Phi}_{+} \gamma^{n}\right)
\end{aligned}
\]

Proposal : \(\left(i^{*}\left[X_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=i \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma\)

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]
- Non-SUSY case: consider a general expansion:
\[
\begin{aligned}
& \eta_{+}, \eta_{-}, \gamma^{m} \eta_{+}, \gamma^{m} \eta_{-} \Rightarrow \Phi_{-}, \gamma^{m} \Phi_{+}, \Phi_{+} \gamma^{m}, \gamma^{m} \Phi_{-} \gamma^{n}, \ldots \\
& X_{-}=\frac{8}{\left\|\Phi_{-}\right\|}\left(\alpha_{0} \Phi_{-}+\widetilde{\alpha}_{0} \bar{\Phi}_{-}+\alpha_{m n} \gamma^{m} \Phi_{-} \gamma^{n}+\widetilde{\alpha}_{m n} \gamma^{m} \bar{\Phi}_{-} \gamma^{n}\right. \\
& \left.\quad+\alpha_{m}^{L} \gamma^{m} \Phi_{+}+\widetilde{\alpha}_{m}^{L} \gamma^{m} \bar{\Phi}_{+}+\alpha_{n}^{R} \Phi_{+} \gamma^{n}+\widetilde{\alpha}_{n}^{R} \bar{\Phi}_{+} \gamma^{n}\right)
\end{aligned}
\]

Proposal : \(\left(i^{*}\left[X_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=i \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow S_{\mathrm{DBI}}\left(X_{-}\right) \ldots\)

\section*{SUSY breaking sources}
- Proposal: ansatz for SUSY breaking sources. Non-SUSY vacua.
\(S_{\text {sources }} ? \Rightarrow T_{M N}\), Einstein equations.
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- SUSY case: \(p\)-dimensional source space-filling (IIA). Internal \(\kappa\)-sym. cond. \(\left(\eta_{ \pm}^{1,2}\right)\) : brane preserves bulk SUSY. Rewritten in terms of GCG ( \(\Phi_{-}\)) as
\[
\left(i^{*}\left[\Phi_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=\frac{i\left\|\Phi_{-}\right\|}{8} \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow \mathrm{S}_{\mathrm{DBI}}\left(\Phi_{-}\right) \ldots
\]
- Non-SUSY case: consider a general expansion:
\[
\begin{aligned}
& \eta_{+}, \eta_{-}, \gamma^{m} \eta_{+}, \gamma^{m} \eta_{-} \Rightarrow \Phi_{-}, \gamma^{m} \Phi_{+}, \Phi_{+} \gamma^{m}, \gamma^{m} \Phi_{-} \gamma^{n}, \ldots \\
& X_{-}=\frac{8}{\left\|\Phi_{-}\right\|}\left(\alpha_{0} \Phi_{-}+\widetilde{\alpha}_{0} \bar{\Phi}_{-}+\alpha_{m n} \gamma^{m} \Phi_{-} \gamma^{n}+\widetilde{\alpha}_{m n} \gamma^{m} \bar{\Phi}_{-} \gamma^{n}\right. \\
& \left.\quad+\alpha_{m}^{L} \gamma^{m} \Phi_{+}+\widetilde{\alpha}_{m}^{L} \gamma^{m} \bar{\Phi}_{+}+\alpha_{n}^{R} \Phi_{+} \gamma^{n}+\widetilde{\alpha}_{n}^{R} \bar{\Phi}_{+} \gamma^{n}\right)
\end{aligned}
\]

Proposal : \(\left(i^{*}\left[X_{-}\right] \wedge e^{\mathcal{F}}\right)_{\Sigma}=i \sqrt{\left|i^{*}[g]+\mathcal{F}\right|} \mathrm{d}^{\Sigma} \sigma \Rightarrow S_{\mathrm{DBI}}\left(X_{-}\right) \ldots\)
- Go further: replace \(\Phi_{-}\)with \(X_{-}\)in the SUSY conditions. \(\hookrightarrow\) first order formalism...
- Consequences:
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace.
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\).
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\).
- De Sitter solution
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\).
- De Sitter solution, on \(\mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1}\)
\[
\mathrm{d} J^{\prime}=p(\lambda-1) \ldots \text { forms }, \mathrm{d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms }
\]
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\).
- De Sitter solution, on \(\mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1}\)
\[
\mathrm{d} J^{\prime}=p(\lambda-1) \ldots \text { forms }, \mathrm{d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms }
\]
\(p \neq 0, \lambda \neq 1\) : deviation from SUSY case.
Starting ansatz for our solution. \(F_{0}, F_{2}, H, \mathrm{O} 6 / \mathrm{D} 6\) sources.
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\).
- De Sitter solution, on \(\mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1}\)
\[
\mathrm{d} J^{\prime}=p(\lambda-1) \ldots \text { forms }, \mathrm{d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms }
\]
\(p \neq 0, \lambda \neq 1\) : deviation from SUSY case. Starting ansatz for our solution. \(F_{0}, F_{2}, H\), O6/D6 sources. Initial intuition: \(R_{6} \ll 0\) for \(p \nearrow\) or \((\lambda-1)^{2} \nearrow\).
- Consequences: \(\neq\) metric dependence, new \(T_{M N}\)
\[
\frac{1}{\sqrt{\left|g_{10}\right|}} \frac{\delta S_{\text {sources }}}{\delta g^{M N}}=-\frac{e^{-\phi}}{4 \kappa^{2}} T_{M N}
\]

Einstein equations easier to solve, and new term in \(R_{4}\) :
\[
R_{4}=\frac{2}{3}\left(\frac{g_{s}}{2}\left(T_{0}-T\right)+g_{s}^{2}\left|F_{0}\right|^{2}-|H|^{2}\right)
\]
\(T=g^{M N} T_{M N}, T_{0}\) SUSY trace. \(T_{0}>0\). For us: \(T_{0}-T>0\)
- De Sitter solution, on \(\mathfrak{g}_{5.17}^{p,-p, r} \approx s 2.5+p \mathfrak{g}_{5.7}^{1,-1,-1}\)
\[
\mathrm{d} J^{\prime}=p(\lambda-1) \ldots \text { forms }, \mathrm{d}\left(\operatorname{Im} \Omega_{3}^{\prime}\right)=p(\lambda-1) \ldots \text { forms }
\]
\(p \neq 0, \lambda \neq 1\) : deviation from SUSY case. Starting ansatz for our solution. \(F_{0}, F_{2}, H, \mathrm{O} 6 / \mathrm{D} 6\) sources. Initial intuition: \(R_{6} \ll 0\) for \(p \nearrow\) or \((\lambda-1)^{2} \nearrow\).
\(4 d\) stability: in dilaton \(\sigma\) and volume \(\rho\) :

\(\frac{1}{M_{p}^{2}} V(\sigma, \rho=1)\)

\[
\frac{1}{M_{p}^{2}} V(\sigma=1, \rho)
\]

\section*{Conclusion}

\section*{Conclusion}

\section*{Introduction}
- SUSY \(10 d\) solutions of SUGRA, on \(4 d\) Minkowski and \(\mathcal{M}=\) solvmanifold.
Twist transformation: relates and generates such solutions, local \(O(d, d)\) transformation in GCG. De Sitter solutions, proposal for SUSY breaking sources.

\section*{Conclusion}
- SUSY \(10 d\) solutions of SUGRA, on \(4 d\) Minkowski and \(\mathcal{M}=\) solvmanifold.
Twist transformation: relates and generates such solutions, local \(O(d, d)\) transformation in GCG.
De Sitter solutions, proposal for SUSY breaking sources.
- Understand the twist transformation...

Better justification for sources ansatz. Calibration, stability? \(1^{\text {st }}\) order formalism.
- Heterotic string: twist transformation and GCG there. Dualities relating flux vacua of het. to those of type II.
- Non-geometry.
- KK reduction: effective actions, model building.```

