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String theory is a perturbative theory of quantum gravity.
Only few candidates...

Quantum gravity effects are expected to play a role at very
high energy/tiny length scale

- E�L
SM, Cl. Grav.

�
ls

string theory

LHC ≈ giant microscope

Zoom on particles we know, and even tinier things.
But quantum gravity effects are still at smaller length.

By “zooming-out” from string theory, can we recover particle
physics, or predict things to be discovered at the LHC?
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Supersymmetry (SUSY): exchanges fermions/bosons.
Not observed ⇒ SUSY broken at a length lSUSY .
Hypothesis: lSUSY > R (4d extensions of SM, Higgs
hierarchy problem, GUT...). Discovered at the LHC?
Technical simplification.
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Technical procedure: Kaluza-Klein (KK) reduction:
1 find a background (a solution to 10d equations of motion,
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2 consider small fluctuations around it (determine light

modes, truncate the spectrum to them)
3 “zoom-out” (integrate the lagrangian over 6d dim.)
→֒ get a 4d theory.

In this thesis: only the 1st step:

Find 10d solutions of SUGRA
on 4d + 6d, and preserve some SUSY...
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Type IIA/B SUGRA: N10d = 2 SUSY
Spectrum:

bosons of NSNS sector: gMN , φ,B(2), M = 0 . . . 9,
H = dB flux

bosons of RR sector: Cp−1, p even/odd in IIA/B,
Fp ∼ dCp−1 flux

fermions: doublets ψ1,2
M , λ̃1,2

10d solutions on a max. symmetric 4d space-time ⊗ M
→֒ ansatz for the fields, preserve the 4d max. symmetry

Metric Ansatz : ds2
(10) = e2A(y) gµνdxµdxν + gmn(y)dymdyn

Fluxes: non-trivial only onM.

No fermions in the vacuum.

To get a solution:
- solve equations of motion: Einstein, φ, fluxes (F , H ).
- solve the Bianchi identities (BI) of the fluxes (sources...).
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Simpler because 1st order equations instead of 2nd order.
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10d SUSY solutions on 4d Mink. + 6d M
Without fluxes ⇒ M: CY.
With fluxes ⇒M: GCY.
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need O-planes (negatively charged RR sources)
⇒ we take O6/D6 in IIA.
Intersecting sources ⇒ smeared sources and constant
dilaton eφ = gs.

With O6,M must have R6 < 0 and F0 6= 0
→֒ we consider F0, F2 and H .

In presence of SUSY (calibrated) sources, combine e.o.m.:
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R6 +
1
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s |F2|
2 +

3

2
(g2

s |F0|
2 − |H |2) = 0

→֒ F0 6= 0, R6 < 0.
F0 alone to balance H ... More RR fluxes does not help.
→֒ classical 10d SUGRA dS vacuum is difficult!
Additional ingredients: KK monopoles and Wilson lines,
non-geometric fluxes, α′ corrections...
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Go further: replace Φ− with X− in the SUSY conditions.
→֒ first order formalism...
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p 6= 0, λ 6= 1: deviation from SUSY case.
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SUSY 10d solutions of SUGRA,
on 4d Minkowski andM = solvmanifold.
Twist transformation: relates and generates such solutions,
local O(d, d) transformation in GCG.
De Sitter solutions, proposal for SUSY breaking sources.

Understand the twist transformation...
Better justification for sources ansatz.
Calibration, stability?
1st order formalism.

Heterotic string: twist transformation and GCG there.
Dualities relating flux vacua of het. to those of type II.

Non-geometry.

KK reduction: effective actions, model building.
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