
HAL Id: tel-00492515
https://theses.hal.science/tel-00492515

Submitted on 16 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformation of Orbits in Minimal Sheets
Jonas Budmiger

To cite this version:
Jonas Budmiger. Deformation of Orbits in Minimal Sheets. Mathematics [math]. University of Basel,
2010. English. �NNT : �. �tel-00492515�

https://theses.hal.science/tel-00492515
https://hal.archives-ouvertes.fr


Deformation of Orbits
in Minimal Sheets

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Jonas Budmiger

aus
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CHAPTER I

Introduction

In this introductory part we start by fixing some notation and re-
calling some notions used throughout this Thesis. Then we proceed by
giving a rough survey of the contents of this Thesis.

We work over an algebraically closed field k of characteristic zero,
and all schemes and rings are supposed to be Noetherian. In this intro-
ductory chapter, G is a connected reductive linear algebraic group. In
the other chapters, G is a semisimple linear algebraic group. As refer-
ences for the structure of semisimple groups and their representations,
we use [Hu75] and [Bo81]. We fix once and for all a maximal torus
T ⊂ G, a Borel subgroup B ⊂ G containing T , and we let U ⊂ B
be the corresponding unipotent radical. Further, Λ denotes the weight
lattice of (G,B, T ), and Λ+ ⊂ Λ denotes the monoid of dominant
weights. For a dominant weight λ ∈ Λ+ denote by V (λ) an irreducible
G-module with highest weight λ. Let w0 be the longest element of the
Weyl group, and let λ∗ = −w0λ for λ ∈ Λ+. Then the dual G-module
V (λ)∗ is isomorphic to V (λ∗) (see e.g. [Hu75], Exercise 21.6).

If V is a rational G-module, and if λ ∈ Λ+ is a dominant weight, then
V(λ) :=

∑{W ⊂ V | W ∼= V (λ) as G-module} denotes the isotypic
component of V of type λ. Then V(λ)

∼= V U
λ ⊗ V (λ), where Vλ denotes

the weight space of V to the weight λ. If X = Spec(R) is an affine
G-scheme, then X is called multiplicity-finite if dimk R(λ) < ∞ for all
λ ∈ Λ+ (or equivalently, if dimk R

G <∞), and X is called multiplicity-
free if dimk R

U
(λ) ≤ 1 for all λ. If X is multiplicity-finite, we define the

Hilbert function hX ≡ hR of X (or of R) to be the function hX : Λ+ →
N assigning dimk R

U
(λ) (which is the multiplicity of V (λ) in R) to λ

(background information can be found e.g. in [Kr85]).
The notions of isotypic components and Hilbert functions can be

extended to families. These constructions are crucial for this work,
and they can be found in [AB05]. If S is a scheme, and if X is a G-
scheme with an affine G-invariant morphism π : X → S of finite type,
then the sheaf of OS-modules R := π∗OX comes with a G-action, and
R(λ) denotes the isotypic component of R of type λ. In this situa-
tion π : X → S is called a family of affine G-schemes. If each isotypic
component (R(λ))

U is a locally free sheaf of OS-modules of constant fi-
nite rank, then we say that the family is multiplicity-finite with Hilbert
function h, where h : Λ+ → N is the function assigning to λ the rank

7



8 Introduction

of (R(λ))
U as OS-module. In this case, the morphism π : X → S is

flat. Let vice versa π : X → S be a flat family of affine G-schemes
over a connected scheme S with the property that RG is finitely gen-
erated OS-module, where R := π∗OX. Then π is a multiplicity-finite
family of affine G-schemes with Hilbert function h, where h is the
Hilbert function of the fiber of π over the general point of S. (To
see this, one has to verify that each (R(λ))

U is a locally free sheaf of
OS-modules of constant rank h(λ): First, RG is a finitely generated
OS-module. Moreover, each (R(λ))

U is a finitely generated RG-module
(see [Kr85] II.3.2), and hence a finitely generated OS-module. Local-
izing in s ∈ S and taking U -invariants, it follows that (R(λ))

U
s is a

finitely generated OS,s-module. Now, OS,s is Noetherian by assump-
tion, and a finitely generated module over a Noetherian ring is finitely
presented ([Ma86], Exercise 3.7). Furthermore, (R(λ))

U
s is a flat OS,s-

module because π : X → S is flat. A flat and finitely presented module
is projective ([Ma86], Corollary to Theorem 7.12). Finally, a finitely
generated projective module over a local ring is free ([Ma86] Theo-
rem 2.5). This shows that (R(λ))

U
s is a free OS,s-module. Since S is

connected, the rank does not depend on s ∈ S.)
In particular, the Hilbert function of a multiplicity-finite affine G-

variety X is the same as the Hilbert function of the corresponding
family X → Spec(k).

If X is an affine G-scheme, and if h : Λ+ → N is any function, we
can consider the (contravariant) functor HilbGh (X) from the category
of schemes to the category of sets assigning to a scheme S the set of
all multiplicity-finite families X

π−→ S of affine G-schemes with Hilbert
function h, where X ⊂ S × X is a closed G-stable subscheme, and
where π : X → S is the restriction to X of the projection of S×X onto
S. Then Theorem 1.7 in [AB05] states that the functor HilbGh (X)
is represented by a quasi-projective scheme HilbGh (X), called invariant
Hilbert scheme to the data (G, h,X).

The main object of study of this work are orbits in so-called minimal
sheets in irreducible representations. The notion of sheets goes back to
Dixmier, cf. [Di75]: Given a G-module V , the union of all orbits in V of
a fixed dimension is a locally closed subset. Its irreducible components
are called sheets of V . We call a sheet minimal if it contains an orbit
in V of minimal strictly positive dimension among all orbits in V .
In Chapter II, we describe minimal sheets in simple G-modules, and
study G-stable deformations of orbits in minimal sheets by means of an
invariant Hilbert scheme. This is closely related to the work of Jansou
(cf. [Ja05]) in the following way: Choose once and for all a non-zero
vector vλ ∈ V (λ)U for each λ ∈ Λ+, and let Xλ = Gvλ ⊂ V (λ) be
the closure of the orbit Gvλ of vλ in V (λ). Since each G-module V (λ)
contains a unique B-stable line, vλ is determined uniquely up to scalar
multiples, and Xλ is determined independently of the choice of vλ.
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In [Ja05], Jansou investigates G-stable deformations of Xλ in V (λ).
If hλ denotes the Hilbert function of Xλ, then Jansou proves that the
invariant Hilbert scheme HilbGhλ

(V (λ)) is, depending on G and λ, either
isomorphic to A0 or to A1. Furthermore, he gives a complete list of all
pairs (G, λ) such that HilbGhλ

(V (λ)) ∼= A1 (Théorème 1.1 in [Ja05]).
In the sequel, we call these weights Jansou-weights.

The orbit Gvλ is of minimal strictly positive dimension among all
G-orbits in V (λ) (cf. Lemma II.1.4). If λ is a Jansou-weight of G, then
there exist other orbits of the same dimension as Gvλ. Here, we start
with a general orbit X of minimal strictly positive dimension in a fixed
simple G-module V (λ), and we study G-stable deformations of X. In
particular, we conjecture that the invariant Hilbert scheme parametriz-
ing the G-stable deformations of X in the closure of the sheet of X is ei-
ther A0 or A1. This will stand in contrast to the fact that the invariant
Hilbert scheme parametrizing the G-stable deformations of X in V (λ)
can look much more complicated. This is the content of Chapter III, in
which we will focus on the group SL2, and compute some correspond-
ing invariant Hilbert schemes. In particular, we study deformations of
orbits of the form SL2 ·xd/2yd/2 in the space k[x, y]d = V (d) of binary
forms of degree d. It turns out that easiest accessible case is when d is a
multiple of 4, and even in this case the corresponding invariant Hilbert
scheme can become very complicated. This reflects the principle that
even in ‘simple’ cases for invariant Hilbert schemes all possible sort
of ‘bad’ things (different irreducible components, non-reduced points,
singularities) occur. (This ‘bad’ behavior is also encountered in the
case of the classical Grothendieck Hilbert scheme parametrizing closed
subschemes of projective space with a given Hilbert polynomial — see
e.g. [Mu66]).

Finally, we turn our attention to not necessarily simple modules. In
the multiplicity-free case important work has been done by Bravi and
Cupit-Foutou (cf. [BC08] and [Cu08]). We translate some of their
results to the case of not necessarily multiplicity-free modules. A cor-
responding (but wrongly formulated) result can be found in [AB05], so
this fourth chapter can be seen as a (minor) erratum to the formulation
in [AB05]. Chapter IV is independent from the preceding chapters.

In the two following sections, we state two results — one concerning
flat quotients of G-schemes and one concerning closed subschemes of
invariant Hilbert schemes. These results should not be over-estimated
as part of this work: On the one hand, they both fit naturally in the
context of the theory, and on the other hand, they have been around
as folklore in the community (clearly, the second result and at least up
to some minor degree also the first one). However, since both results
are quite useful and since they are not stated or proven explicitly in
the literature, we prove both of them here.
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I.1. Invariant Hilbert schemes and flat quotients

Let X = Spec(R) be an irreducible affine G-variety. If the quotient
π : X → X//G is flat, then π is a family of affine G-schemes with
Hilbert function h′X , where h′X is the Hilbert function of the general
fiber of π. After identifying X with its graph Γ(X) ⊂ X//G×X, one
obtains a morphism X//G → HilbGh′

X
(X). This morphism is in fact an

isomorphism:

Theorem I.1.1. Suppose that the quotient morphism π : X → X//G is
flat, and let h′X be the Hilbert function of the general fiber of π. Then
the invariant Hilbert scheme HilbGh′

X
(X) is isomorphic to X//G, and

the quotient π : X → X//G is G-isomorphic to the universal family
UnivGh′

X
(X) → HilbGh′

X
(X).

This result was found independently by M. Brion (cf. Remark 2.7
in [JR09]) and by the author. This section is devoted to the proof of
Theorem I.1.1.

Lemma I.1.2. Let A be a (Noetherian) ring, and let ϕ : A → B be a
ring homomorphism. If B is locally free of rank 1 as A-module, then
ϕ is an isomorphism.

Remark I.1.3. It is important that B is an A-algebra and not only an
A-module: Consider T−1Z[T ], which is a Z[T ]-module via the inclusion
Z[T ] → T−1Z[T ]. Clearly, T−1Z[T ] is free of rank 1, but the inclusion
Z[T ] → T−1Z[T ] is no isomorphism.

Proof of Lemma I.1.2. First, suppose that A = (A,m) is a local ring.
Let ψ : B → A be an isomorphism of A-modules. Then (ψ ◦ ϕ : A →
A) ∈ HomA(A,A) ∼= A; hence ψ◦ϕ is multiplication with some a0 ∈ A.
Since ψ(ϕ(A)) = a0 · A, we see that ϕ(A) = ψ−1(a0 · A) = ϕ(a0) · B.
Now ϕ(1A) = 1B ∈ ϕ(A); hence 1B ∈ ϕ(a0) · B. This shows that

ϕ(a0) is a unit in B, and ϕ(A) = B. Because ψ ◦ ϕ : A → B
∼=→ A

is surjective, it is multiplication with a unit, and hence injective and
finally an isomorphism.

Let now A be arbitrary. Localizing the exact sequence of A-modules

0 → ker(ϕ) → A→ B → B/ϕ(A) → 0

in p ∈ Spec(A), yields the exact sequence

0 → ker(ϕp) → Ap

ϕp−→ Bp → (B/ϕ(A))p → 0.

From the first part we know that ϕp is an isomorphism, and hence
ker(ϕp) = 0 and (B/ϕ(A))p = 0. Since this holds for all p, we conclude
that ker(ϕ) = 0 and that coker(ϕ) = 0, and the claim follows. �

Using the fact that h′X(0) = 1, we obtain the following corollary:
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Corollary I.1.4. Let S be a scheme, and let S × X ⊃ X → S be a
closed G-stable subscheme with Hilbert function h′X . Then the natural
morphism X//G→ S is an isomorphism.

Lemma I.1.5. Let h : Λ+ → N be a function, let S be a scheme and
let π : X → S be a family of affine G-schemes with Hilbert function h.
Let X′ ⊂ X be a closed G-stable subscheme such that also π′ : X′ → S
is a family of affine G-schemes with Hilbert function h, where π′ is the
restriction of π to X′. Then X′ = X.

Proof. Let J ⊂ OX be the ideal sheaf defining X′ as subscheme of X.
Let λ ∈ Λ+, and let s ∈ S. Then we obtain the following short exact
sequence of OS,s-modules:

0 → (((π∗J )(λ))
U)s → (((π∗OX)(λ))

U)s → (((π∗OX′)(λ))
U)s → 0.

Both (((π∗OX)(λ))
U)s and (((π∗OX′)(λ))

U)s are free OS,s-modules, thus
the sequence splits. This implies that

(((π∗OX)(λ))
U)s ∼= (((π∗J )(λ))

U)s ⊕ (((π∗OX′)(λ))
U)s.

This shows that (((π∗J )(λ))
U)s is a summand of a free OS,s-module,

and hence is projective. Since a projective module over a local ring is
free, we conclude that (((π∗J )(λ))

U)s is free. But both (((π∗OX)(λ))
U)s

and (((π∗OX′)(λ))
U)s are free of the same rank (namely h(λ)). Thus,

it follows that (((π∗J )(λ))
U)s is free of rank 0. Since this holds for all

λ ∈ Λ+ and for all s ∈ S, we conclude that π∗J is zero. Hence also
J = 0, and X′ = X. �

Remark I.1.6. Suppose that X = Spec(R) and X′ = Spec(R′) are
affine G-varieties with G-invariant flat morphisms to a third affine va-
riety S = Spec(A), making X → S and X′ → S into families of affine
G-schemes with Hilbert functions h and h′, respectively. Assume fur-
ther that there exists a dominant G-equivariant morphism ϕ : X → X′

of varieties over S. It can happen that the Hilbert functions h and h′

coincide, but that ϕ is no isomorphism (or in other words that R′ ( R
is a strict sub-S-module), nevertheless. An example shall be provided
in Lemma II.2.7 and in Remark II.2.8. Indeed, if one tries to imitate
the proof of Lemma I.1.5 in this situation, one sees the following: Go-
ing over to an isotypic component λ and localising in a ∈ Spec(A), we
get a short exact sequence of Aa-modules

0 → (((R′)(λ))
U)a → (((R)(λ))

U)a → (((R/R′)(λ))
U)a → 0.

Even if both (((R′)(λ))
U)a and (((R)(λ))

U)a are free of equal rank h(λ),

it does not follow that (((R/R′)(λ))
U)a = 0 (as e.g. 0 → Z

·2−→ Z →
Z/(2) → 0 is an exact sequence of Z-modules.)

Proof of Theorem I.1.1. In order to show that π : X → X//G repre-
sents the Hilbert functor HilbGh′

X
(X), one needs to verify that given a
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scheme S, each family of affine multiplicity-finite G-schemes S ×X ⊃
X

π′

→ S with Hilbert function h′X is isomorphic to the pull-back of
π : X → X//G via a suitable morphism ϕ : S → X//G. Let J ⊂ OS×X

be the ideal sheaf defining X as closed subscheme of S × X. Let
Φ: X → X be the composition of the inclusion X → S × X followed
by the projection of S × X onto X. Now, Φ is G-equivariant, and
by functoriality we obtain a morphism ϕ : X//G → X//G such that
π ◦Φ = ϕ ◦ π′. If we identify X//G with S (which is possible according
to Corollary I.1.4), we obtain the required morphism ϕ : S → X//G.
By the universal property of a pull-back there is a unique morphism
ψ : X → S ×X//G X of schemes over X//G making the diagram

(I.1.1) X
Φ

''

ψ

$$J

J

J

J

J

J

J

J

J

J

π′

��

S ×X//G X //

��

X

π

��

X//G ∼= S
ϕ

// X//G

commutative. The pull-back S×X//GX is the closed subscheme of S×X
defined by the ideal sheaf J G · OS×X ⊂ OS×X . Since J G · OS×X ⊂ J ,
we see that X is a closed subscheme of S ×X//GX. It now follows from
Lemma I.1.5 that ψ is an isomorphism. �

I.2. Closed subschemes

Let X = Spec(R) be an affine G-variety, and let h : Λ+ → N be a
function. In this section we prove the following result:

Proposition I.2.1. If X ′ ⊂ X is a closed G-stable subscheme, then
HilbGh (X ′) is a closed subscheme of HilbGh (X).

A particular case of this result is already stated in [AB05], Lemma
1.6; and the proof given there can be carried over to our situation. We
only state a proof here for the sake of completeness.

Proof. For simplicity, we write Hilb instead of HilbGh (X) and Univ in-
stead of UnivGh (X). Let f : S → Hilb be a morphism, let S×HilbUniv =:

X
p→ S be the family corresponding to X, and let π : Univ → Hilb be

the projection. Then X can be seen as closed subscheme of S×X. We
now investigate conditions on f guaranteeing that X is already a closed
subscheme of S ×X ′. Let I ⊂ R be the ideal defining X ′ ⊂ X.

The natural morphism

S ×Hilb Univ → S ×Hilb (Hilb×X) ∼= S ×X

of schemes over S yields a morphism of sheaves of OS-modules

(I.2.1) OS ⊗R → p∗OS×HilbUniv,
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and X is a closed subscheme of S × X ′ if and only if OS ⊗ I is in
the kernel of this morphism. Denoting f ′ : S ×Hilb Univ → Univ the
morphism induced by f and using the isomorphism

f∗p∗OS×HilbUniv = π∗f
′
∗OS×HilbUniv

∼= f∗OS ⊗OHilb
π∗OUniv

of sheaves of OHilb-modules, we can write (I.2.1) as morphism of sheaves
of OHilb-modules

ϕ : f∗OS ⊗R → f∗OS ⊗OHilb
π∗OUniv.

Now, X is a closed subscheme of S×X ′ if and only if f∗OS⊗I ⊂ ker(ϕ).
The image sheaf of f∗OS ⊗ I under ϕ equals f∗OS ⊗OHilb

π∗J , where
J ⊂ OUniv is the ideal sheaf defining the scheme-theoretic intersection
Univ∩(Hilb×X ′) as closed subscheme of Univ, and hence X is a closed
subscheme of S ×X ′ if and only if

(I.2.2) f∗OS ⊗OHilb
π∗J = 0.

We need to construct a closed subscheme Hilb′ ⊂ Hilb with the prop-
erty that (I.2.2) holds if and only if f : S → Hilb factors via Hilb′.
Going over to isotypic components, we see that (I.2.2) holds if and
only if

(I.2.3) f∗OS ⊗OHilb
((π∗J )(λ))

U = 0

for all λ ∈ Λ+. For λ ∈ Λ+ consider the morphism

Φ(λ) : HomOHilb
(((π∗OUniv)(λ))

U ,OHilb) × ((π∗J )(λ))
U → OHilb,

(ψ, r) 7→ ψ(r)

of sheaves of OHilb-modules. We claim that the image sheaf I(λ) of
Φ(λ) is a sheaf of ideals in OHilb, and that (I.2.3) holds if and only if
I(λ) ⊂ ker(f#) for all λ, or equivalently if and only if I :=

⋃

λ∈Λ+ I(λ) ⊂
ker(f#). Then Hilb′ is the closed subscheme of Hilb defined by I.

We verify the claim locally and denote ((π∗OUniv)(λ))
U by M and

((π∗J )(λ))
U by N . First, (I.2.3) holds if and only if

(I.2.4) (f∗OS)p ⊗OHilb,p
Np = 0

for all λ ∈ Λ+ and for all p ∈ Hilb. For p ∈ Hilb the stalk of (Φ(λ))p is
the homomorphism of OHilb,p-modules

(Φ(λ))p : HomOHilb,p
(Mp,OHilb,p) ×Np → OHilb,p,

(ψ, r) 7→ ψ(r).

Fix an isomorphism Mp
∼= (OHilb,p)

h(λ). If we identify Np ⊂ Mp with
its image in (OHilb,p)

h(λ) under the chosen isomorphism, then Np is
generated by elements of the form (mi,1, . . . ,mi,h(λ))i where i runs over
some index set and where each mi,j ∈ OHilb,p. Then the image (I(λ))p
of (Φ(λ))p is the ideal of OHilb,p generated by all mi,j. This shows that
I(λ) is a sheaf of ideals in OHilb.
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Using the above isomorphism Mp
∼= (OHilb,p)

h(λ), we see that (I.2.4)
holds if and only if mi,j ∈ ker(f#

p ) for all i and j. This in turn

is equivalent to say that
∑

i,j µijmi,j ∈ ker(f#
p ) for all µij ∈ OHilb,p.

But
∑

i,j µijmi,j equals (I(λ))p, and hence (I.2.4) holds if and only

if (I(λ))p ⊂ ker(f#
p ). This shows that (I.2.3) holds if and only if

I(λ) ⊂ ker(f#), and this completes the proof. �



CHAPTER II

Deformations of orbits in minimal sheets

II.1. Minimal sheets

Let G be semisimple, and let V be a finite-dimensional G-module.
For n ∈ N let V (n) ⊂ V be the union of all n-dimensional orbits
in V . Each V (n) is a locally closed subset of V , and the irreducible
components of the V (n) are called sheets of V (cf. [Di75] or [BK79]).
We say that a sheet S ⊂ V is minimal if S ⊂ V (n) for some n such
that V (m) is empty for all m with 0 < m < n.

Recall that we introduced the following notation: We fixed in each
simple G-module V (λ) a non-zero U -invariant vector vλ. Moreover, Xλ

denotes the closure of the orbit of vλ in V (λ), and hλ := hXλ
: Λ+ → N

is the Hilbert function of Xλ. Then hλ(µ) = 1 if and only if µ ∈ Nλ∗,
and hλ(µ) = 0 otherwise. Finally, we call a weight λ ∈ Λ+ a Jansou-
weight if HilbGhλ

(V (λ)) ∼= A1. In [Ja05] Jansou proves that if λ is no

Jansou-weight, then HilbGhλ
(V (λ)) ∼= A0, and he gives a complete list

of all pairs (G, λ) with G semisimple and with λ a Jansou-weight of G.
The main result of this section is the following description of minimal
sheets in irreducible representations.

Proposition II.1.1. Let 0 6= λ ∈ Λ+.

a) The simple G-module V (λ) contains a unique minimal sheet S.
b) The orbit Gvλ lies in S.
c) The sheet S contains an orbit Gv different from Gvλ if and only

if λ is an integral multiple of a Jansou-weight. In this case, the
orbit Gv is closed in V (λ).

This justifies the following definition:

Definition II.1.2. Let λ ∈ Λ+. Then S(λ) denotes the closure of the
unique minimal sheet in V (λ). By abuse of notation, we sometimes
call S(λ) also the minimal sheet of V (λ).

Corollary II.1.3. Suppose that λ is an integral multiple of a Jansou-
weight and that Gv ⊂ S(λ) is a closed orbit. Then S(λ) consists of
Gvλ ∪ {0} and the orbits γ · Gv for γ ∈ k \ {0}. Moreover, S(λ) is a
cone in V (λ), and its quotient S(λ)//G is an irreducible curve.

The proof of Proposition II.1.1 and of Corollary II.1.3 follow at the
end of this section.

15
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In the sequel we make frequently use of the (asymptotic) cone CX
associated to a subscheme X of a vector space V . We now explain
how it is defined. If f =

∑N
n=0 fn ∈ Sym(V ∗) with fn homogeneous

of degree n and with fN 6= 0, then gr(f) := fN . If X ⊂ V is defined
by the ideal I ⊂ Sym(V ∗), then CX ⊂ V is the subscheme defined by
the ideal generated by gr(I) := {gr(f) | f ∈ I}. We refer to [BK79]
or [Kr85] for properties of the associated cone. (In contrast to the
definitions stated there, the associated cone CX needs not be reduced
here).

Lemma II.1.4. Let 0 6= λ ∈ Λ+.

a) If 0 6= X ⊂ V (λ) is a reduced closed G-stable cone with dimX ≤
dimGvλ, then X = Xλ.

b) A sheet containing vλ is minimal.
c) Let v ∈ V (λ) be a closed point with dimGv = dimGvλ. Then

either Gv = Gvλ or the orbit Gv is closed in V (λ).
d) Let v ∈ V (λ) be a closed point such that dimGv = dimGvλ and

such that Gv is closed in V . Then the cone C(Gv) associated to
Gv is irreducible, and its underlying variety is Xλ.

e) A minimal sheet contains vλ.

Proof. a) Let I be the ideal of X ⊂ V (λ). Since X is reduced and
X 6= 0, it follows that Symn(V (λ)∗)(nλ) 6⊂ I for all n ≥ 0. But then I is
strictly contained in the ideal I(Xλ) =

⊕

n≥0

⊕

µ<nλ∗ Symn(V (λ)∗)(µ)

of Xλ ⊂ V (λ). Hence Xλ is a closed subscheme of X. Since dimX ≤
dimGvλ, the claim now follows.

b) Let S ⊂ V (λ) be a minimal sheet, and let v0 ∈ S be a closed
point. Let X := Gv0 ⊂ V (λ) be the closure of the orbit of v0, and let
Y ⊂ V (λ) be an irreducible component of maximal dimension of the
cone CX associated to X. Then dimX = dimY , and since Y 6= 0, part
a) implies that dimY ≥ dimXλ. This proves that dimXλ ≤ dimX,
and hence a sheet containing vλ is minimal.

c) Suppose that Gv is not closed in V (λ), and choose v0 ∈ Gv\Gv ⊂
V (λ). Let X := Gv0 ⊂ V (λ) be the closure of the orbit of v0, and let
Y ⊂ V (λ) be an irreducible component of maximal dimension of the
cone CX associated to X. If Y 6= 0, then dimY ≥ dimXλ according
to a). On the other hand, dimY = dimX < dimGv = dimXλ. This
shows that Y = 0, and hence CX = 0. Hence dimX = 0, and because
G is connected it follows that v0 is a fixed point, which in turn implies
that v0 = 0. This shows that 0 ∈ Gv. Since vλ ∈ Gv for all v 6= 0 with
0 ∈ Gv (cf. [Kr85] III.3.6 Bemerkung 2), it follows that Xλ ⊂ Gv.
Since dimGv = dimXλ and since both Gv and Xλ are irreducible, it
follows that Gv = Gvλ.

d) The variety C(Gv)red underlying the cone C(Gv) is a reduced
closed G-stable cone in V (λ) with 0 < dim C(Gv)red ≤ dimGvλ. It
follows with a) that C(Gv)red = Xλ, and hence C(Gv) is irreducible.
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e) Let S be a minimal sheet, and let Gv be an orbit in S. Because
of b) and since S is minimal, we see that dimGv = dimGvλ. Hence c)
implies that Gv = Gvλ or that Gv is closed in V (λ). In the first case,
we are done. Otherwise, observe that γ · Gv ⊂ S for all γ ∈ k \ {0}.
It follows from [Kr85] II.4.2 Satz 2 that C(Gv)red ⊂ S. Moreover,
d) implies that C(Gv)red = Xλ, and hence Gvλ ⊂ S. The claim now
follows. �

Definition II.1.5. Let 0 6= µ ∈ Λ+. A reductive subgroup H of G
is called Jansou-subgroup of type µ if there is an isomorphism of G-
modules

O(G/H) = O(G)H ∼=
⊕

k≥0

V (kµ∗).

Remark II.1.6. A reductive subgroup H of G is a Jansou-subgroup
if and only if the algebra O(G/H)U has (Krull) dimension 1.

Let λ ∈ Λ+ be a Jansou-weight. Then there exists a Jansou-subgroup
H ⊂ G of type λ. To see this, observe that there exists a closed
subscheme V (λ) ⊃ X 6= Xλ with O(X) =

⊕

k≥0 V (kλ∗). If v ∈ X is a
closed point, then the stabilizer Gv of v is a Jansou-subgroup of type
λ. (Since X 6= Xλ, it follows from Lemma II.1.4 c) that X is a closed
orbit in V (λ). Thanks to Matsushima’s Theorem (cf. [Ma’s60], or see
[Lu73] p. 5), it now follows that Gv is reductive.)

Lemma II.1.7. Let 0 6= µ ∈ Λ+, and let X be an irreducible affine
G-variety with O(X) ∼=

⊕

k≥0 V (kµ∗) as G-module.

a) There exists a closed G-equivariant embedding X → V (µ).
b) Either X ∼= Xµ as G-variety or there exists a Jansou-subgroup

H ⊂ G of type µ such that X ∼= G/H as G-variety.

Proof. a) Observe that dimk HomG(V (µ)∗,O(X)) = 1 according to
Schur’s lemma. Any non-zero G-equivariant morphism V (µ)∗ → O(X)
of G-modules extends to a G-equivariant epimorphism Sym(V (µ)∗) →
O(X) of k-G-algebras, which gives the desired closed G-embedding
X → V (µ).

b) Consider the cone CX associated to X. Since hCX = hX = hXµ
, it

follows either from Lemma II.1.4 or from the discussion in [Ja05] that
CX = Xµ. Lemma II.1.4 c) implies that either X = Xµ, or that G
acts transitively on X. In the second case, it follows that HilbGhµ

(V (µ))

contains at least two closed points (one point corresponding to Xµ and
one point corresponding to X), and hence that µ is a Jansou-weight.
Let v ∈ X be a closed point with stabilizer Gv ⊂ G. Then X ∼= G/Gv

as G-scheme, and hence Gv is a Jansou-subgroup of type µ. �

Lemma II.1.8. Two Jansou-subgroups H and H ′ of G of the same
type µ are conjugate.
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Proof. With Lemma II.1.7 it follows that there are closed G-equivariant
embeddings ϕ : G/H → V (µ) and ϕ′ : G/H ′ → V (µ). Let X =
ϕ(G/H) and X ′ = ϕ(G/H ′). The proof of Lemma II.1.7 and the fact
that HilbGhµ

(V (µ)) = A1 according to [Ja05] imply that X = γX ′ for

some γ ∈ k \ {0}. The stabilizer of v := ϕ(1H) ∈ V (µ) equals H, and
the stabilizer of v′ := ϕ(1H ′) ∈ V (µ) equals H ′. Moreover, v′ = tgv
for some g ∈ G. It now follows that H ′ = gHg−1. �

For a G-module A we let ΛA := {λ ∈ Λ+ | HomG(A, V (λ)) 6= 0}. For
an affine G-scheme X = Spec(A), we let ΛX := ΛA. The proof of the
following result was wrongly stated in a first version of this Thesis. I am
most grateful to M. Brion who pointed out the necessary corrections.

Lemma II.1.9. Let A be a (Noetherian) G-algebra, and let I ⊂ A be
a G-stable nilpotent ideal. Then the following hold:

a) If ΛA is a monoid, then ΛA ⊂ QΛA/I .
b) If A/I is multiplicity-free, then A is multiplicity-bounded, i.e.

there exists n0 ∈ N such that dimk HomG(A, V (λ)) ≤ n0 for all
λ ∈ Λ+.

Proof. a) Let R be a G-algebra, let M be a finitely generated R-G-
module, and let µ ∈ ΛM be a weight with µ 6∈ QΛR. We claim that
mµ 6∈ ΛM for all m suitably large. To see this, suppose that M is
generated as R-module by a finite-dimensional G-module N ⊂ M . If
µ1, . . . , µn are the weights of N , then

(II.1.1) ΛM ⊂
n
⋃

i=1

(ΛR + µi).

(Because M is generated as R-module by N , there is a surjective
homomorphism of G-modules R ⊗ N → M . The weights of the U -
invariants in V (λ) ⊗ V (µ) are of the form λ + ν, where ν is a weight
of V (µ) (see e.g. [FH00], Ex. 25.33), and (II.1.1) follows.) If the
claim is false, there exist n+ 1 different integers k1, . . . , kn+1 > 0 with
kjµ ∈ ΛM . But then there exist 0 < j1 < j2 ≤ n + 1 and i such that
kj1µ = λ1 +µi and kj2µ = λ2 +µi for some λ1, λ2 ∈ ΛR. It follows that
0 6= (kj1 − kj2)µ = λ2 − λ1 ∈ ZΛR, and hence that µ ∈ QΛR. This
proves the claim.

Consider grI(A) :=
⊕∞

n=0 I
n/In+1, which is a finitely generated A/I-

algebra. If I ⊂ A is nilpotent, then grI(A) is finitely generated as A/I-
module. Applying the above with R = A/I and with M = grI(A),
and observing that ΛgrI(A) = ΛA, it follows that mµ 6∈ ΛA for all m
suitably large if µ ∈ ΛA \ QΛA/I . On the other hand, since ΛA is a
monoid, mµ ∈ ΛA for all m ≥ 0 whenever µ ∈ ΛA. This implies that
ΛA ⊂ QΛA/I .
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b) Using the above notation, suppose that R is multiplicity-free, and
let λ ∈ Λ+. Then

dimk HomG(M,V (λ)) ≤ dimk HomG(R⊗N, V (λ))

= dimk HomG(R,N∗ ⊗ V (λ)). �

Lemma II.1.10. Let 0 6= λ ∈ Λ+, and let S ⊂ V (λ) be a minimal
sheet. Suppose that v ∈ S is a closed point such that the orbit Gv is
closed in V (λ). Then there exists an integer n ∈ N such that λ/n is a
Jansou-weight and such that Gv ∼= G/H, where H ⊂ G is a Jansou-
subgroup of type λ/n.

Proof. Let X := Gv ⊂ V (λ) be the (closed) orbit of v, and let CX be
the cone associated to X. It follows from Lemma II.1.4 d) that CX
is irreducible and that the reduced variety underlying CX equals Xλ.
Hence there are the following isomorphisms of G-modules:

O(X) ∼= O(CX) ∼= O(Xλ) ⊕
√

(0),

where
√

(0) is the nilradical of the O(CX). It follows from Lemma
II.1.9 a) that ΛX ⊂ QΛXλ

= Qλ∗. SinceXλ is multiplicity-free, Lemma
II.1.9 b) implies that there exists N ∈ N such that N ≥ hX(µ)(=
hCX(µ)) for all µ ∈ Λ+. If hX(µ) ≥ 2 for some µ, then we find two
linearly independent U -invariants f1, f2 ∈ (O(X)(µ))

U . Since O(X) is a

domain, it follows that fN1 , f
N−1
1 f2, . . . , f

N
2 ∈ (O(X)(Nµ))

U are linearly
independent. But then hX(Nµ) ≥ N + 1, a contradiction. This shows
that X is multiplicity-free. Moreover, ΛX ⊂ Qλ∗ is a monoid. This
shows that there exists n ∈ N and f ∈ k(X)U of weight λ∗/n such that

O(X)U = k[fn1 , . . . , fnk ]

for some integers n1, . . . , nk with gcd(n1, . . . , nk) = 1. Since X = Gv
is smooth and in particular normal, O(X)U is integrally closed in its
field of fractions k(f). This shows that O(X)U = k[f ], or that O(X) =
⊕

k≥0 V (kλ∗/n). Lemma II.1.7 b) now implies that Gv = X ∼= G/H,
where H is a Jansou-subgroup of type λ/n. �

Lemma II.1.11. a) If H ⊂ G is a Jansou-subgroup, then H0 is a
maximal proper connected reductive subgroup of G.

b) If H,H ′ ⊂ G are two non-conjugate Jansou-subgroups with H0 =
H ′0, then either H = H0 and H ′ = NG(H), or vice versa.

c) If H ⊂ G is a Jansou-subgroup that is not self-normalizing (i.e.
H 6= NG(H)), then [NG(H) : H] = 2.

Proof. a) Let H ⊂ G be a Jansou-subgroup of type µ. Then H0 is a
connected Jansou-subgroup of G. If µ0 denotes its type, then µ ∈ Nµ0.
Let G ) H ′ ⊃ H0 with H ′ connected and reductive. Then H ′ is a
Jansou-subgroup of G of type mµ0 for some m > 1. It follows that
the natural morphism G/H0 → G/H ′ is finite, and hence dimG/H ′ =
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dimG/H0. Since both H0 and H ′ are connected, it follows that H =
H ′.

b) Let H,H ′ ⊂ G be two Jansou-subgroups with H0 = H ′0. Then
all H, H ′, and H0 are Jansou-subgroups of type µ, µ′, and µ0; and
both µ and µ′ are rational multiples of µ0. Using the list in Théorème
1.1 in [Ja05], we find that two of the three weights coincide. Since
µ 6= µ′, we can assume that µ = µ0, and hence that H = H0. Since
the normalizer of a Jansou-subgroup is also a Jansou-subgroup, we
conclude that H ′ = NG(H).

c) Suppose that H is of type µ. Now, NG(H) is a Jansou-subgroup
of type µ/n for some n. Using Jansou’s list, we see that n = 2. Hence
the natural morphism G/H → G/NG(H) is finite of degree 2, and the
claim follows. �

Remark II.1.12. Let H ⊂ G be a Jansou-subgroup of type µ, and
let λ ∈ Λ+ be a dominant weight. Then dimV (λ)H = 1 whenever λ ∈
Nµ, and dimV (λ)H = 0 for all other λ. This follows from Frobenius
reciprocity; see [Jant87], [KP96] 5.5, or also [Kr85] III.3.4 Satz.

We conclude this section with the proof of Proposition II.1.1.

Proof of Proposition II.1.1. a) By definition, V (λ) contains at least one
minimal sheet S. Suppose that V (λ) contains a further minimal sheet
S ′. Since each minimal sheet contains Xλ according to Lemma II.1.4
e), we can assume that both S and S ′ contain an orbit different from
Xλ (if e.g. S = Xλ, then S ⊂ S ′, and S would not be a sheet). Call
these orbits Gv and Gv′. Lemma II.1.4 c) implies that Gv and Gv′

are closed in V (λ). According to Lemma II.1.10 there exist integers
n, n′ ∈ N such that Gv ∼= G/H and Gv′ ∼= G/H ′ with H and H ′

Jansou-subgroups of type λ/n and λ/n′, respectively. After replacing
H by a suitable conjugate subgroup, we can now assume thatH0 = H ′0,
and hence H ′ = H or H ′ = NG(H) (or vice-versa) according to Lemma
II.1.11. Remark II.1.12 implies that 1 = dimV (λ)H = dimV (λ)H

′

,
and it follows that the two vector-spaces coincide: V (λ)H

′

= V (λ)H .
It follows that S ′ = G · V (λ)H

′

= G · V (λ)H = S.
b) It follows from Lemma II.1.4 b) that Gvλ ⊂ S.
c) Suppose that X := Gv ⊂ S is an orbit different from Xλ. Then

Lemma II.1.10 implies that there exists a Jansou-subgroup H ⊂ G of
type λ/n for an integer n ∈ N such that X ∼= G/H. This proves the
‘only if’ part of c).

For the other direction, suppose that λ/n is a Jansou-weight. Let
w ∈ V (λ/n) be a closed point such that H := Gw is a Jansou-subgroup
of type λ/n. Then Gw ∼= G/H, and O(G/H) ∼=

⊕

k V (kλ/n)∗. Using
the fact that hG/H(V (λ∗)) = 1, we obtain a finite morphism ϕ : G/H →
V (λ). Hence the image Y of G/H in V (λ) is a closed multiplicity-free
orbit of dimension dimG/H. Because dimGvλ/n = dimGvλ, it follows
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that dimY = dimG/H = dimGvλ/n = dimGvλ, which proves with a)
and b) that Y ⊂ S. �

Proof of Corollary II.1.3. The statement is now a consequence of the
proof of Proposition II.1.1 (and of Schur’s lemma). �

II.2. Invariant Hilbert schemes for minimal sheets in simple
modules

In this section we use the following notation: A closed G-stable cone
X = Spec(A) in a G-module V is regarded as a Gm×G-variety, where
the Gm-action comes from the scalar multiplication of Gm on V . For
n ∈ N and λ ∈ Λ+, we denote by A(n,λ) the isotypic component of the
Gm×G-algebra A of type (n, λ); which is the same as the intersection
of the homogeneous component of A of degree n (with respect to the
grading induced by the Gm-action) and the isotypic component A(λ) of
the G-algebra A.

Recall from Definition II.1.2 that S(λ) denotes the closure of the
unique minimal sheet in V (λ). In the sequel, h′λ : Λ+ → N is the
Hilbert function of a general orbit of S(λ), whereas hλ : Λ+ → N still
denotes the Hilbert function of Xλ = Gvλ ⊂ V (λ). In this section we
are interested in describing HilbGh′

λ
(S(λ)).

Lemma II.2.1. a) If λ is a Jansou-weight, then h′λ = hλ. Further-
more, dimS(λ)//G = 1, and HilbGh′

λ
(S(λ)) = A1.

b) If λ is not an integral multiple of a Jansou-weight, then h′λ = hλ.
Furthermore, S(λ) = Xλ, and HilbGh′

λ
(S(λ)) = A0.

The goal of this section is to prove that under some assumptions
HilbGh′

λ
(S(λ)) = A1 when λ is an integral multiple of a Jansou-weight.

Proof of Lemma II.2.1. a) Note that HilbGh′
λ
(S(λ))(= HilbGhλ

(S(λ))) is

a closed subscheme of HilbGhλ
(V (λ)) = A1 according to Proposition

I.2.1. On the other hand, the G-orbits in V (λ) with Hilbert function
hλ that are parametrized by HilbGhλ

(V (λ)) are closed subschemes of

S(λ). This shows that the universal family UnivGhλ
(V (λ)) ⊂ A1×V (λ)

is in fact a closed subscheme of A1 × S(λ). The claim now follows.
b) Also here, HilbGh′

λ
(S(λ)) = HilbGhλ

(S(λ)) is a closed subscheme of

HilbGhλ
(V (λ)) = A0. Since Xλ ⊂ S(λ) has Hilbert function hXλ

= hλ =

h′λ, the invariant Hilbert scheme HilbGh′
λ
(S(λ)) has a closed point, and

hence equals A0. (Or, one could observe that the quotient morphism
S(λ) → S(λ)//G = A0 is flat, and hence according to Theorem I.1.1
HilbGh′

λ
(S(λ)) = S(λ)//G = A0.) �

However, if λ is an integral multiple of a Jansou-weight but not a
Jansou-weight itself, then h′λ 6= hλ. (To see this, the discussion of the
previous section is useful: If λ is an integral multiple of a Jansou-weight,
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then the minimal sheet contains a family of orbits different from Xλ.
These other orbits are all isomorphic, and their Hilbert function is h′λ.
In particular, HilbGh′

λ
(V (λ)) contains more than one closed point. On

the other hand, if λ is not a Jansou-weight itself, then HilbGhλ
(V (λ)) ∼=

A0. Thus, h′λ cannot be equal to hλ.) In this situation, we only know
from Proposition II.1.1 that dimS(λ)//G = 1. If S(λ)//G ∼= A1, then it
follows from Theorem I.1.1 (and from [Ha77], Proposition III.9.7) that
HilbGh′

λ
(Sλ) ∼= S(λ)//G ∼= A1. However, if S(λ)//G is not smooth, then

the situation is more delicate. Anyway, we now construct a morphism
A1 → HilbGh′

λ
(S(λ)).

Since S(λ) ⊂ V (λ) is a cone, the action of Gm on V (λ) by scalar
multiplication restricts to a Gm-action on S(λ). The Borel subgroup
Gm × B of Gm ×G has a dense orbit in S(λ), hence R := O(S(λ)) is
multiplicity-free as k-(Gm×G)-algebra. Using once more that S(λ) is
a cone in V (λ), we see that there exist G-invariants f1, . . . , fs ∈ RG,
each fi homogeneous of degree ni, such that RG = k[f1, . . . , fs].

Definition II.2.2. Let

n0 := gcd{n1, . . . , ns}
= gcd{n ∈ N | there exists 0 6= f ∈ RG of degree n}.

Since the normalization of S(λ)//G is isomorphic to A1, there exists
an invariant rational function f ∈ Quot(R), homogeneous of degree n0,
such that each fi equals fmi for some mi ∈ N, up to some non-zero
scalar factor. (Here, Quot(R) denotes the quotient field of R.) Then
RG = k[fm1 , . . . , fms ].

Let v ∈ S(λ) be a closed point such that the orbit Gv is closed. Let
H ⊂ G be its stabilizer (which is a Jansou-subgroup). Recall from
Lemma II.1.11 that H is either self-normalizing or that [NG(H) : H] =
2.

Lemma II.2.3. Let n0 be as above.

a) If H = NG(H), then n0 = 1; and if H 6= NG(H), then n0 = 2.
b) Suppose that the only Jansou-weight in Qλ is µ = λ/n. Then

n0 = 1.
c) Suppose that the Jansou-weights in Qλ are µ = λ/n and 2µ. If n

is odd, then n0 = 2. If n is even, then n0 = 1.

Proof. a) Suppose that n0 6= 1, and let ζ ∈ k be a primitive n0-th root
of 1. Then there exists g ∈ G such that gv = ζv. If h ∈ H, then
g−1hgv = g−1hζv = g−1ζhv = g−1ζv = g−1gv = v, which shows that
g−1Hg ⊂ H. Since g 6∈ H, it follows that H 6= NG(H). According to
Lemma II.1.11, we see that NG(H) = H ∪ gH. It is now easy to see
that ζ2 = 1, and hence n0 = 2.

On the other hand, suppose that n0 = 1. If H 6= NG(H), then there
exists g ∈ G \H with NG(H) = H ∪ gH. Then gv 6= v, but g2v = v.
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Then v + gv ∈ V (λ)NG(H) ⊂ V (λ)H = k · v. It follows that gv = −v.
However, if n0 = 1, then v and −v are separated by some invariant
function of odd degree, which shows that v and −v cannot lie in the
same G-orbit. This contradiction shows that H = NG(H).

b) Under the present assumptions, neither µ/2 nor 2µ are Jansou-
weights. It then follows that each Jansou-subgroup of type µ is self-
normalizing. Since H is such a Jansou-subgroup, the claim follows with
a).

c) If n is odd, then λ is not an integral multiple of 2µ. Lemma II.1.10
implies that H is a Jansou-subgroup of type µ (and not of type 2µ).
But a Jansou-subgroup of type µ is not self-normalizing, and a) implies
that n0 = 2.

Let X = Gv ⊂ S(λ). If n is even, then λ is an integral multiple of 2µ.
Let H ′ ⊂ G be a Jansou-subgroup of type 2µ. Then H ′ = NG(H ′), and
(H ′)0 is a Jansou-subgroup ofG of type µ. As in the proof of Lemma ??,
there is a finite G-morphism G/H ′ → X ∼= G/H. Moreover, H ∼= H ′

or H ∼= (H ′)0. As there is no non-zero G-morphism G/H ′ → G/(H ′)0,
we conclude that H ∼= H ′, and hence H = NG(H). �

Let J := {∑k rkt
k | ∑k rkf

k = 0 in Quot(R)} ⊂ R[t], and let
S(λ)′ := Spec(R[t]/J) ⊂ S(λ) × A1.

Proposition II.2.4. The morphism p : A1 × S(λ) ⊃ S(λ)′ → A1 in-
duced by the composition of the natural homomorphisms k[t] → R[t] →
R[t]/J defines a family in HilbGh′

λ
(S(λ))(A1).

Proof. The ideal J is the kernel of the homomorphism of k-algebras
R[t] → Quot(R) mapping t to f . This implies that R[t]/J is a domain,
since it can be regarded as a subring of Quot(R). In particular, the
morphism p, mapping an irreducible variety onto A1, is flat. It now
suffices to verify that one fiber of p has h′λ as Hilbert function. To see
this, we compute the fiber of p : S(λ)′ → A1 over the generic point of
A1. This fiber equals Spec((R[t]/J) ⊗k[t] k(t)) ∼= Spec(R(f)), where
f ∈ Quot(R) is as above. On the other hand, the fiber of π : S(λ) →
S(λ)//G over the generic point of S(λ)//G equals Spec(R⊗RG k(f)) =
Spec(R(f)). Thus, the two fibers are isomorphic and hence have the
same Hilbert function. Since the fiber over the generic point of the
quotient morphism π has Hilbert function h′λ, the claim follows. �

Since R is multiplicity-free as k-(Gm ×G)-algebra, we have

R =
⊕

µ∈ΛR

⊕

n≥0

R(n,µ)

with R(n,µ) either 0 or G-isomorphic to V (µ).

Remark II.2.5. The following observation turns out to be useful. If
R(n,µ)

∼= V (µ) and R(n+n0,µ)
∼= V (µ), then R(n+n0,µ) = f · R(n,µ): If

0 6= r ∈ RU
(n,µ) and if 0 6= r′ ∈ RU

(n+n0,µ), it suffices to show that up to a
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non-zero scalar multiple r′ = f · r. Because R is a domain, it is enough
to show that up to a non-zero scalar multiple (r′)m = fm · rm for some
m ≥ 1. For m ≫ 0, the invariant fm is a regular function, and thus
both (r′)m and fmrm are invariant regular functions of the same degree
for m ≫ 0. Because R is multiplicity-free as Gm × G-algebra, we see
that (r′)m = fmrm up to some non-zero scalar multiple, and the claim
follows.

Remark II.2.6. There is the following description of S(λ)′. Consider
the variety (A1 ×S(λ)//G S(λ))red. It is the pull-back of S(λ) and A1

over S(λ)//G in the category of varieties. It is not hard to see that
(A1 ×S(λ)//G S(λ))red is irreducible: First,

(A1×S(λ)//GS(λ))red = {(t, v) ∈ A1×S(λ) | η(t) = π(v)} ⊂ A1×S(λ),

where η : A1 → S(λ)//G is the normalization morphism. From this de-
scription one sees that the (reduced) fibers of p′ : (A1×S(λ)//GS(λ))red →
A1 coincide with the (reduced) fibers of π : S(λ) → S(λ)//G. Thus,
(A1 ×S(λ)//G S(λ))red is irreducible, and hence p′ is flat. Since both are
subschemes of A1×S(λ), it follows that (A1×S(λ)//GS(λ))red isomorphic
to S(λ)′.

Lemma II.2.7. a) In general, S(λ)′ is not isomorphic to the (sche-
me-theoretic) pull-back S(λ) ×S(λ)//G A1.

b) In general, S(λ)′ is not isomorphic to the normalization S̃(λ).

Proof. a) In view of Remark II.2.6, this amounts to show that in gen-
eral A1 ×S(λ)//G S(λ) is not reduced. If A1 ×S(λ)//G S(λ) is reduced,
the schematic fiber S(λ)′0 of p : S(λ)′ → A1 would coincide with the
schematic fiber S(λ)0 of π : S(λ) → S(λ)//G. But this would imply
that π is flat. This is not the case in general, and an example is given
in Section III.3 (cf. Remark III.3.8).

b) Recall that S(λ)′ = Spec(R[f ]), where f ∈ Quot(R) is as above.

On the other hand, S̃(λ) = Spec(R̃), where R̃ ⊂ Quot(R) is the integral
closure of R in Quot(R). We now give an example in which R[f ] ( R̃.
Let G = SL2, and let λ = d ≥ 8 be a multiple of 4. Then R(2,4) 6= 0, and
R(2,8) 6= 0, as well as f 2 ∈ R(2,0), but R(1,4) = 0 (as we shall see in detail
in Section III.3). Let 0 6= r ∈ RU

(2,4), and consider r/f , which is a U -

invariant rational function of degree 1 and of weight 4. Now r2 ∈ RU
(4,8).

Choose further 0 6= r′ ∈ RU
(2,8). Because f 2 ∈ R(2,0) and because R is

multiplicity-free as Gm × SL2-algebra, it follows that r2 = f 2r′ up to
some non-zero scalar multiple. But now (r/f)2 = r′ ∈ R, and thus
r/f ∈ R̃. This shows that R̃(1,4) 6= 0. However, clearly R[f ](1,4) = 0,
because the only SL2-submodules of R[f ] of degree 1 are k · f ∼= V (0)
and R(1,d)

∼= V (d). Thus, R[f ] ( R̃.
�



II.2 Invariant Hilbert schemes for minimal sheets in simple modules 25

Remark II.2.8. The inclusion R[f ] ( R̃ corresponds to the Gm ×G-

equivariant morphism ϕ : S̃(λ) → (A1×S(λ)//GS(λ))red (that is obtained
by the universal property of the pull-back):

S̃(λ)

**

ϕ

''P

P

P

P

P

P

P

P

P

P

P

P

P

P

π̃

$$

(S(λ) ×S(λ)//G A1)red
//

π′

��

S(λ)

π

��

A1 // S(λ)//G.

Both π′ and π̃ are flat families of G-schemes whose fibers have the
same Hilbert function, and both families are isomorphic over A1 \ {0}.
Nevertheless, in general ϕ is no isomorphism according to Lemma
II.2.7 b). This does not contradict the representability of the functor

HilbGh′
λ
(S(λ)) since there is no reason why S̃(λ) should be a subscheme

of S(λ)×A1. (Compare this to Remark I.1.6 in the introductory part.)

From the definition of S(λ)′, we see that the schematic fiber S(λ)′0
of π′ : S(λ)′ → A1 over 0 equals Spec(R/I ′0), where I ′0 ⊂ R is the ideal
defined by

I ′0 = {r0 ∈ R | ∃r1, . . . , rl ∈ R :
l
∑

k=0

rkf
k = 0 ∈ Quot(R)}.

For µ ∈ ΛR let nµ := min{n ∈ N>0 | R(n,µ) 6= 0}. Then

I ′0 =
⊕

µ∈ΛR

⊕

n>nµ

R(n,µ).

To see this, let 0 6= r0 ∈ RU
(n,µ) with n > nµ, and let 0 6= r ∈ RU

(nµ,µ).

Then (after multiplying r0 with a suitable scalar) r0 − rfn−n
µ

= 0 ∈
Quot(R), and the claim follows.

Proposition II.2.9. Let n0 be as in Definition II.2.2, and suppose that
R(1+n0,λ∗)

∼= V (λ∗). Then

HilbGh′
λ
(S(λ)) = A1,

and p : S(λ)′ → A1 from Proposition II.2.4 is the universal family.

Proof. Step 1. Let µ ∈ Λ+. We claim that R(n,µ) 6= 0 if and only if
n = nµ + ln0 for some l ≥ 0 or if (n, µ) = (0, 0). Assume first that
R(n,µ) 6= 0, and let 0 6= rn ∈ RU

(n,µ) and 0 6= rnµ ∈ RU
(nµ,µ). Then rn/rnµ

is a rational invariant function of degree n−nµ. By definition of n0, it
follows that n− nµ ∈ n0N.

On the other hand, let n = nµ + ln0. Then we need to show that
R(n,µ) 6= 0. If (n, µ) = (1, λ∗) or if (n, µ) = (1 + n0, λ

∗), then R(n,µ) 6= 0
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by assumption. Otherwise, we proceed by induction on l. If l = 0, the
claim is true by definition of nµ. So, we assume that R(nµ+ln0,µ) 6= 0.
Now, there exists µ′ ∈ Λ+ such that

R(nµ+ln0,µ) ⊂ R(nµ+ln0−1,µ′) ·R(1,λ∗).

Multiplying this with f and using Remark II.2.5, we find:

f ·R(nµ+ln0,µ) ⊂ R(nµ+ln0−1,µ′) · f ·R(1,λ∗)

= R(nµ+ln0−1,µ′) ·R(1+n0,λ∗) ⊂ R.

This shows that R(nµ+(l+1)n0,µ) 6= 0.
Step 2. The preceding step shows that R(nµ+ln0,µ) is contained in

the G-stable ideal generated by R(1+n0,λ∗) for all µ and for all l > 0.
This shows that the ideal I ′0 is the smallest G-stable ideal containing
R(1+n0,λ∗) and R(n0,0).

Step 3. Let I ⊂ R be a G-stable ideal with hR/I = h′λ and with

Spec(R/
√
I) = Spec(R/I)red = Xλ. Then I = I ′0. To see this, first

observe that the condition Spec(R/
√
I) = Xλ implies that R(1+n0,λ∗) ⊂

I. Consider R(n0,0) = kfn
0/n0 . Suppose that R(n0,0) 6⊂ I. Then there

exists 0 6= γ ∈ k such that γ−fn0/n0 ∈ I (because hR/I(0) = 1). Hence

f · (γ − fn
0/n0) = fγ − fn

0/n0+1 ∈ I. According to Step 2, we know

that fn
0/n0+1 is in the G-stable ideal generated by R(1+n0,λ∗), and hence

fn
0/n0+1 ∈ I. This in turn implies that f ∈ I, which is a contradiction

to fn
0/n0 6∈ I. We conclude that R(n0,0) ⊂ I. But then I ′0 ⊂ I according

to Step 2, and hence I = I ′0 because hR/I = h′λ = hR/I′0 .

Step 4. We claim that dimk HomG
R(I ′0, R/I

′
0) ≤ 1. Since I ′0 is gener-

ated as R-G-module by R(1+n0,λ∗) and by R(n0,0), it follows that

dimk HomG
R(I ′0, R/I

′
0) ≤ dimk HomG

R(R(1+n0,λ∗), R/I
′
0)

+ dimk HomG
R(R(n0,0), R/I

′
0)

= 1 + 1 = 2

according to Schur’s Lemma. Let ϕ ∈ HomG
R(I ′0, R/I

′
0). We now show

that the restriction of ϕ to R(1+n0,λ∗) already determines ϕ(fn
0/n0). Let

r ∈ RU
(1,λ∗). Now ϕ(r · fn0/n0) = rϕ(fn

0/n0) ∈ R/I ′0. Since r · fn0/n0 ∈
R(1+n0,λ∗), we see that rϕ(fn

0/n0) is determined by ϕ|R(1+n0,λ∗)
. But

then also ϕ(fn
0/n0) is determined by ϕ|R(1+n0,λ∗)

, and the claim follows.

Step 5. Consider the family p : S(λ)′ → A1. Step 3 shows that
the induced morphism ψ : A1 → HilbGh′

λ
(S(λ)) is bijective. Because

S(λ) → S(λ)//G is flat in the complement of the zero-fiber, we see
that ψ is an isomorphism in the complement of 0. To show that ψ is
an isomorphism, it suffices to show that TS(λ)′0

HilbGh′
λ
(S(λ)) is at most

one-dimensional. According to [AB05], Proposition 1.13, the tangent
space is isomorphic to HomG

R(I ′0, R/I
′
0), and now the claim follows with

Step 4. �
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Let λ ∈ Λ+, and let v ∈ S(λ) be a closed point such that the orbit
Gv is closed. Let H = Gv be the stabilizer of v. Then H is a Jansou-
subgroup of type λ/n for some n. Let n0 be as in Lemma II.2.3

Corollary II.2.10. Suppose that

(1) n0 = 1, and that one of the following conditions hold:
(a) R(2,λ∗) 6= 0, or:
(b) R(3,0) 6= 0, or:
(c) if

·G/H :
⊕

k≥0

V (kλ∗/n) ×
⊕

k≥0

V (kλ∗/n) →
⊕

k≥0

V (kλ∗/n)

is the multiplication on O(G/H), then V (λ∗) ⊂ V (λ∗) ·G/H
V (λ∗);

or that
(2) n0 = 2, and that one of the following conditions hold:

(a) S(λ)//G ∼= A1, or:
(b) R(3,λ∗) 6= 0, or:
(c) if

·G/H :
⊕

k≥0

V (kλ∗/n) ×
⊕

k≥0

V (kλ∗/n) →
⊕

k≥0

V (kλ∗/n)

is the multiplication on O(G/H), then V (λ∗) ⊂ V (λ∗) ·G/H
V (λ∗) ·G/H V (λ∗).

Then

HilbGh′
λ
(S(λ)) = A1,

and p : S(λ)′ → A1 is the universal family.

Observe that in the case n0 = 1 the quotient S(λ)//G cannot be an
affine line. Otherwise, RG = k[f ], where f is an invariant function of
degree 1 (since n0 = 1). Since R is a quotient of Sym(V (λ∗)), it would
follow that Sym1(V (λ∗))G 6= 0, a contradiction.

Proof. (1) (a). This follows from Proposition II.2.9.
(1) (b). Clearly, R(3,0) ⊂ ⊕

µ∈ΛR
R(2,µ) ·

⊕

µ∈ΛR
R(1,µ). However,

R(1,µ) = 0 if µ 6= λ∗, hence R(3,0) ⊂
⊕

µ∈ΛR
R(2,µ) · R(1,λ∗). But R(2,µ) ·

R(1,λ∗) can contain V (0) only if µ = λ∗. This shows that R(3,0) ⊂
R(2,λ∗) · R(1,λ∗). If R(3,0) 6= 0, then also R(2,λ∗) 6= 0, and the claim
follows with (1) (a).

(1) (c). The orbit Gv ⊂ S(λ) is G-isomorphic to G/H. Let J ⊂ R
be the ideal of Gv, and let µ ∈ Λ+ be a dominant weight. The isotypic
component (R/J)(µ) is isomorphic to R(µ)/J(µ) (see [Kr85], II.3.2). If
V (λ∗) ⊂ V (λ∗) ·G/H V (λ∗), then (R/J)(λ∗) ⊂ (R/J)(λ∗) · (R/J)(λ∗).
Since R(1,λ∗) 6⊂ J , we find that

R(1,λ∗) ⊂ R(1,λ∗) ·R(1,λ∗) + J(λ∗).
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Using once more that R(1,λ∗) 6= 0, we find that (R(1,λ∗) · R(1,λ∗))(λ∗) =
R(2,λ∗) 6= 0. The claim now follows with (1) (a).

(2) (a) If S(λ)//G ∼= A1, then the quotient morphism π : S(λ) →
S(λ)//G is flat, and the claim follows from Theorem I.1.1.

(2) (b) This follows from Proposition II.2.9.
(2) (c) The proof of (1) (c) can be carried over to this situation using

2 (b). �

We will show in the next chapter that for G = SL2 either condition
(1) (a) or condition (2) (a) holds for every integral multiple of a Jansou-
weight.

Example II.2.11. Consider SL3. The only Jansou-weight of SL3 is
λ := ω1 + ω3, and V (λ) can be identified with the Lie algebra sl3, on
which SL3 acts with the adjoint representation. We claim that

HilbSL3

h′2λ
(S(2λ)) = A1.

Let X := SL3 · diag(1, 1,−2) ⊂ S(λ) ⊂ sl3. Then hX = h′λ, and
O(X) ∼=

⊕

k≥0 V (kλ∗) ∼=
⊕

k≥0 V (kλ). In view of Corollary II.2.10 1
(c) the claim is true once we have shown that V (2λ) ⊂ V (2λ) · V (2λ),
where · is the multiplication on O(X).

Step 1. For a 3 × 3-matrix matrix A = (aij) ∈ Mat3(k) the assign-
ment yij(A) := aij defines elements in Mat3(k)

∗. Because ((sl3)
∗)U =

k · y31, we see that

V (2λ) = spank{(gy31 · gy31) | g ∈ SL3} ⊂ Sym2((sl3)
∗).

If we identify (sl3)
∗ with sl3, then SL3 ·y31 consists of all traceless matri-

ces Y of rank 1 with Y 2 = 0. Every such matrix is of the form w1 ·(w2)
τ ,

where w1, w2 ∈ k3 are two vectors that are orthogonal with respect to
the standard inner product on k3. We now compute some of these ma-
trices. Always assume now that i 6= j 6= k 6= i. For w1 = ei + ej + ek
and w2 = ei − ej we see that yii + yji + yki − yij − yjj − ykj ∈ SL3 ·y31.
Hence (yii + yji + yki − yij − yjj − ykj)

2 ∈ V (2λ). The maximal torus
T ⊂ SL3 acts with different weights on the summands of this sum.
Because the sum of all summands of the same weight also belongs to
V (2λ), we see that

y2
ij ∈ V (2λ),(II.2.1)

ykiykj ∈ V (2λ),(II.2.2)

yij(yii − yjj) ∈ V (2λ),(II.2.3)

yki(yii − yjj) − ykjyji ∈ V (2λ).(II.2.4)

Step 2. From (II.2.3) it follows that

y2
ij(yii − yjj)

2 ∈ V (2λ) · V (2λ).

From (II.2.4) it follows (after permutating the indices cyclically) that

y2
ij(yjj − ykk)

2 + y2
iky

2
kj − 2yij(yjj − ykk)yikykj ∈ V (2λ) · V (2λ).
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From (II.2.1) it follows that y2
iky

2
kj ∈ V (2λ) · V (2λ). From (II.2.2) and

(II.2.3) it follows that

yij(yjj − ykk)yikykj = yijyik · ykj(yjj − ykk) ∈ V (2λ) · V (2λ).

We conclude that

(II.2.5) y2
ij(yjj − ykk)

2 ∈ V (2λ) · V (2λ).

Starting with w1 = ei−ej and with w2 = ei+ej +ek, one sees similarly
that

(II.2.6) y2
ij(ykk − yii)

2 ∈ V (2λ) · V (2λ).

Now (II.2.5) and (II.2.6) imply that

y2
ij

∑

k 6=l

(ykk − yll)
2 ∈ V (2λ) · V (2λ).

But
∑

k 6=l(ykk−yll)2 is a symmetric polynomial in the ykk, and hence it

is constant on X. Since
∑

k 6=l(ykk − yll)
2(diag(1, 1,−2)) = 36 6= 0, we

conclude that y2
ij ∈ V (2λ) · V (2λ). In particular, y2

31 ∈ V (2λ) · V (2λ),
and hence V (2λ) ⊂ V (2λ) · V (2λ).

Conjecture II.2.12. Let G be a semisimple group, and let λ be an
integral multiple of a Jansou-weight of G. We conjecture that

HilbGh′
λ
(S(λ)) = A1.

The conjecture is only known to be true if λ is a Jansou-weight (cf.
[Ja05]) and for G = SL2, as well as for G = SL3 with λ = 2(ω1 +ω3).

II.3. Deformations and the null-cone

Definition II.3.1. The schematic null-cone N (λ) of V (λ) is the closed
subscheme of V (λ) defined by the ideal (

⊕

n>0 Symn(V (λ)∗)G) of all
non-constant homogeneous invariant functions on V (λ).

Lemma II.3.2. Let X ⊂ V (λ) be a closed G-stable subscheme with
Hilbert function hX = h′λ.

a) If Xred = Xλ = Gvλ, then X is a closed subscheme of N (λ).
b) If Xred 6= Xλ, then X is a closed subvariety of S(λ).

Proof. a) Suppose that Xred = Xλ, and that f =
∑

n fn ∈ I(X)G ⊂
Sym(V (λ∗))G is an invariant function in the ideal I(X) of X ⊂ V (λ),
where each fn is homogeneous of degree n. Then f ∈ I(Xred)

G =
⊕

n>0 Symn(V (λ∗))G. Hence f0 = 0. Since hX(0) = h′λ(0) = 1, it
follows that I(X)G =

⊕

n>0 Symn(V (λ∗))G. Hence I(X) ⊃ I(N (λ)).
b) If Xred 6= Xλ, then Xred is an orbit in S(λ) (since dimX = dimXλ

thanks to hX = h′λ). The claim follows from the discussion in Section
II.1. �
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Remark II.3.3. Let N (λ)red denote the reduced null-cone, which is
the subvariety of V (λ) of those closed points v ∈ V (λ) having 0 in
the closure of their orbit Gv. It is not known whether one can replace
N (λ) in Lemma II.3.2 by N (λ)red.

Suppose that λ ∈ Λ+ is an integral multiple of a Jansou-weight. In
Section II.2 we have constructed a family p : S(λ)′ → A1 giving an
injective morphism A1 → HilbGh′

λ
(S(λ))red. Its image is an irreducible

component of HilbGh′
λ
(S(λ))red, which we will denote by HilbGh′

λ
(S(λ))0

red.

Corollary II.3.4. Suppose that λ ∈ Λ+ is an integral multiple of a
Jansou-weight.

a) Then

HilbGh′
λ
(V (λ))red = HilbGh′

λ
(S(λ))0

red ∪ HilbGh′
λ
(N (λ))red,

and the two latter intersect in exactly one closed point.
b) The natural morphism η : HilbGh′

λ
(N (λ)) → Spec(k) is proper. In

particular, HilbGh′
λ
(N (λ)) is projective.

Proof. Statement a) follows from Lemma II.3.2. For b) note that the
morphism η is the Nakamura-morphism

η : HilbGh′
λ
(N (λ)) → Hilbh′

λ
(0)(N (λ)//G) = Hilb1(A

0) = A0,

which is proper (cf. [AB05] p. 92). (Here Hilbn(X) is the punctual
Hilbert scheme parametrizing the closed subschemes of X of length
n.) Moreover, HilbGh′

λ
(N (λ)) is quasi-projective according to the con-

struction of invariant Hilbert schemes, cf. [HS04]. The claim now
follows. �



CHAPTER III

Examples for SL2

In this chapter, we focus on the group SL2 and discuss some examples
in detail.

III.1. Statement of the results

The group SL2 of 2 × 2-matrices with determinant 1 is semi-simple
of type A1. We fix as maximal torus T the diagonal matrices in SL2,
and as Borel-subgroup B the upper triangular matrices in SL2. After
this choice we can identify the monoid of dominant weights Λ+ with
N and the weight lattice Λ with Z, and the unipotent radical U equals
the subgroup of upper triangular matrices with diagonal coefficients 1.

For each d ∈ N the simple SL2-module V (d) can be realized as the
space of binary forms k[x, y]d of degree d, on which SL2 acts by

(

a b
c d

)

· xiyd−i = (dx− by)i(−cx+ ay)d−i,

where we accept the ambiguity that d stands for both a matrix entry
and the degree of the form. Note that V (d)U = k · yd.

Recall that S(d) denotes the closure of the minimal sheet in V (d),
and that h′d is the Hilbert function of the closure of a general orbit in
S(d). The function h′d is described in Section III.3. In this chapter we
are interested in HilbSL2

h′
d

(S(d)) and HilbSL2

h′
d

(V (d)). Since the Jansou-

weights of SL2 are 2 and 4, the above Hilbert schemes equal A0 if d is
odd, and only the cases with even d are of interest (cf. Lemma II.2.1
b). The starting point is Corollary II.3.4, which states in the case of
SL2 that

(III.1.1) HilbSL2

h′
d

(V (d))red = HilbSL2

h′
d

(S(d))0
red ∪ HilbSL2

h′
d

(N (d))red,

and that these two subvarieties intersect in exactly one closed point.
In Section III.2 we settle some notation and study some (well-known)

Classical Invariant Theory. In Section III.3 we focus on HilbSL2

h′
d

(S(d)).

In particular, Theorem III.3.2 states that:

Theorem 1. Let d ∈ N be even. Then

HilbSL2

h′
d

(S(d)) ∼= A1.

Hence (III.1.1) simplifies to

HilbSL2

h′
d

(V (d))red
∼= A1 ∪ HilbSL2

h′
d

(N (d))red.

31
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The group GLG(V (d)) ∼= Gm acts in a natural way on HilbSL2

h′
d

(V (d)).

The description of this action can be found in [AB05], in [Ja05], or in
Section IV.1. In particular, closed Gm-fixed points on HilbSL2

h′
d

(V (d))

correspond to homogeneous SL2-stable subschemes of V (d) with Hilbert
function h′d.

We shall concentrate on the cases where d = 4, 8, 12, and 16. Starting
with the known case d = 4, one has

HilbSL2

h′4
(V (4)) ∼= HilbSL2

h′4
(S(4)) ∼= A1.

Carrying on with d = 8, one finds (Theorem III.6.5):

Theorem 2.

HilbSL2

h′8
(V (8)) ∼= HilbSL2

h′8
(S(8)) ∼= A1.

The closed Gm-fixed point of HilbSL2

h′8
(V (8)) is corresponds to a non-

reduced subscheme of V (8) with SL2 ·y8 as underlying variety.

The situation is more involved for d = 12 (Theorem III.6.6):

Theorem 3.

HilbSL2

h′12
(V (12))red

∼= HilbSL2

h′12
(S(12)) ∼= A1.

If p denotes the unique closed Gm-fixed point of HilbSL2

h′12
(V (12)) (which

corresponds to a non-reduced subscheme of S(12) ⊂ V (12) with SL2 ·y12

as underlying variety), then

a) the invariant Hilbert scheme HilbSL2

h′12
(V (12)) is smooth in the com-

plement of p, and
b) the invariant Hilbert scheme HilbSL2

h′12
(V (12)) is not reduced in p.

Finally, for d = 16 one has (Theorem III.6.11):

Theorem 4. a) There are isomorphisms

HilbSL2

h′16
(V (16))red

∼= HilbSL2

h′16
(S(16)) ∪ HilbSL2

h′16
(N (16)red)red

∼= A1 ∪ P1 ∪ P1,

and the three irreducible components intersect in one closed point
p.

b) The invariant Hilbert scheme HilbSL2

h′16
(V (16)) is smooth in the

complement of p.
c) The action of Gm on HilbSL2

h′16
(V (16)) has three closed fixed points:

The point p, and on each copy of P1 one further closed fixed point.
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III.2. Classical Invariant Theory

Before studying deformations of SL2-orbits, we collect some well-
known facts on the representation theory of SL2 and on Classical In-
variant Theory. This section does not contain any new results, but is
important for the following calculations and is useful to settle some
notation. The contents of this section can be found in [Cl1872], or in
a contemporary language in [KW99] or in [Ol99]. This section closely
follows [Ol99].

Invariants and Covariants. A covariant of V (d) of order k is an
SL2-equivariant morphism V (d) → V (k). A covariant of order 0 is an
invariant. We identify Sym(V (d)∗) with k[a0, a1, . . . , ad], where

(III.2.1) ai(
d
∑

j=0

(

d

j

)

λjx
jyd−j) := λi.

The group SL2 acts on Sym(V (d)∗) via the contragredient action:

g · ai(
d
∑

j=0

(

d

j

)

λjx
jyd−j) = ai(g

−1 · (
d
∑

j=0

(

d

j

)

λjx
jyd−j)).

Consider a covariant ϕ : V (d) → V (k). Then ϕ can be written

as ϕ =
∑k

i=0 ϕi(a0, . . . , ad)x
iyk−i with ϕi ∈ k[a0, . . . , ad]. The SL2-

equivariance implies that
∑

i

g−1ϕi(f)xiyk−i =
∑

i

ϕi(gf)xiyk−i = ϕ(gf)

= gϕ(f) =
∑

i

ϕi(f)gxiyk−i.

Taking g =

(

t
t−1

)

, we see that

(

t
t−1

)

ϕi = t2i−kϕi. It is now

easy to see that V := spank(ϕ0, . . . , ϕk) ⊂ Sym(V (d)∗) is a simple SL2-
submodule with V U = k · ϕk, and that

∑

i ϕix
iyk−i is an SL2-invariant

expression. Summarizing, to give a covariant ϕ : V (d) → V (k) up to
a non-zero scalar multiple is the same as to give a simple submodule
V (k) ⊂ Sym(V (d)∗), which in turn is the same as to give an SL2-
invariant expression

(III.2.2) ϕ0(a0, . . . , ad)y
k+ϕ1(a0, . . . , ad)xy

k−1+. . .+ϕk(a0, . . . , ad)x
k,

where each ϕi ∈ Sym(V (d)∗) = k[a0, . . . , ad]. The expression (III.2.2)
is unique up to a non-zero scalar multiple.

Remark III.2.1. If
∑k

i=0 ϕi(a0, . . . , ad)x
iyk−i is a covariant of V (d) of

order k, then ϕk(a0, . . . , ad) is U -invariant.

A covariant ϕ =
∑k

i=0 ϕi(a0, . . . , ad)x
iyk−i is called homogeneous of

degree n if each ϕi is homogeneous of degree n.
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Definition III.2.2. Every representation of SL2 is self-dual. Thus,
Sym1(V (d)∗) = V (d)∗ is a covariant of V (d) of degree 1 and of order d.

This covariant can also be written as
∑d

i=0 ai
(

d
i

)

xiyd−i, and we denote

it by Q(d).

Definition III.2.3. For a homogeneous covariant of V (d) of degree n
and of order k we define its co-order to be (nd− k)/2.

Example III.2.4. [[Ol99], p. 26] A cubic binary form possesses an
invariant of degree 4 called discriminant :

∆ = a2
0a

2
3 − 6a0a1a2a3 + 4a0a

3
2 − 3a2

1a
2
2 + 4a3

1a3,

and a covariant of degree 2, of order 2, and of co-order 2 called Hessian:

H = (a1a3 − a2
2)x

2 + (a0a3 − a1a2)xy + (a0a2 − a2
1)y

2.

Example III.2.5. More generally, we can define the Hessian of a bi-
nary form of degree d by derivating Q(d) as follows:

H =
(d− 2)!2

d!2
[Q(d)

xxQ
(d)
yy − (Q(d)

xy )2].

We shall see in Example III.2.6 that the Hessian is a covariant. Its
order equals 2d − 4, and its co-order equals 2. It has the following
significance: The Hessian of a binary form vanishes if and only if the
form is the power of a linear form (αx+ βy).

Similarly, for a binary form of degree d there is an invariant ∆ called
its discriminant with the property that it vanishes if and only if the
form has a multiple root.

Transvections and transvectants. Given two covariants V1 and V2

of V (d) of respective orders k1 and k2, we consider the SL2-submodule
V1 ·V2 ⊂ Sym(V (d)∗). Since V (k1)⊗V (k2) ∼= V (k1 + k2)⊕V (k1 + k2 −
2) ⊕ . . .⊕ V (|k1 − k2|), we see that

V1 · V2 = Wk1+k2 ⊕Wk1+k2−2 ⊕ . . .⊕W|k1−k2| ⊂ Sym(V (d)∗)

withWi either 0 or isomorphic to V (i). NowWk1+k2−2r is called the r-th
transvectant of V1 and V2, and the projection of V1 · V2 onto Wk1+k2−2r

is called the r-th transvection of V1 and V2. We write (V1, V2)
r for

Wk1+k2−2r. If both V1 and V2 are homogeneous of degree n1 and n2, of
order k1 and k2, and of co-order l1 and l2, respectively, then (V1, V2)

r is
homogeneous of degree n1 + n2, of order k1 + k2 − 2r, and of co-order
l1 + l2 + r.

If the covariants V1 and V2 are written in the form (III.2.2), then their
transvectants can be computed by means of the following formula (cf.
[Ol99], p. 88):

(III.2.3) (V1, V2)
r =

(d− r)!2

d!2

r
∑

s=0

(−1)s
(

r

s

)

∂rV1

∂xr−s∂ys
∂rV2

∂xs∂yr−s
.
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The factor (d−r)!2

d!2
turns out to be useful for computations and appears

already in the ancient literature.

Example III.2.6. The Hessian of a binary form now can be expressed
as

H =
1

2
(Q(d), Q(d))2.

For a binary quadratic form (Q(2) = a0y
2 + 2a1xy + a2x

2) this yields

H =
1

2
(Q(2), Q(2))2 =

1

4

[

∂2Q(2)

∂x2

∂2Q(2)

∂y2
−
(

∂2Q(2)

∂x∂y

)2
]

= a0a2 − a2
1.

Since a quadratic binary form has a multiple root if and only if it is the
power of a linear form, we see that its Hessian H equals its discriminant
∆ (up to some non-zero factor).

Example III.2.7. We introduce two fundamental invariants for binary
forms, which will be used later: For a form of degree d, we define the
apolar to be the invariant i(d) = (Q(d), Q(d))d of degree 2, and we define
j(d) to be the invariant ((Q(d), Q(d))d/2, Q(d))d of degree 3. We shall
see later that i(d) is non-zero if and only if d is even, and that j(d) is
non-zero if and only if d is a multiple of 4.

If e.g. d = 4, then we find

i(4) =2(3a2
2 − 4a1a3 + a0a4), and

j(4) =6(−a3
2 + 2a1a2a3 − a0a

2
3 − a2

1a4 + a0a2a4) = 6 det





a0 a1 a2

a1 a2 a3

a2 a3 a4



 .

The invariant j(4) of a quartic binary form is called its Hankelsche
Determinante.

Covariants and the symbolic method. The symbolic method pro-
vides an elegant and effective tool to compute transvectants. The pri-
mary goal is to assign to each covariant a symbolic expression. Given
a monomial

∏

j aij ∈ k[a0, . . . , ad]n of degree n, we obtain its sym-
bolic expression by replacing each aij by a so-called symbolic variable

ξ
ij
j η

d−ij
j . This transition rule is now extended linearly to k[a0, . . . , ad]n.

To avoid confusion one usually indexes the ξj and ηj with greek letters
rather than with integers, so we replace ξ1 by ξα, η1 by ηα, ξ2 by ξβ, etc.
To give an example, start with a quadratic binary form and consider
a0a2 − a2

1. One replaces a0a2 by η2
αξ

2
β and a2

1 by ξαηαξβηβ. We denote
the resulting polynomial by ϕ̃. Given a covariant of V (d) of degree n
and of order k, written as

(III.2.4) ϕ0(a0, . . . , ad)y
k+ϕ1(a0, . . . , ad)xy

k−1+. . .+ϕk(a0, . . . , ad)x
k,
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first replace each ϕi by the corresponding expression ϕ̃i according to
the above rules. One obtains an expression

ϕ̃0y
k + ϕ̃1xy

k−1 + . . .+ ϕ̃kx
k,

which however depends on the arrangement of the ai in (III.2.4): Con-
sider once more ∆ = a0a2 − a2

1. Its symbolic expression is

(III.2.5) η2
αξ

2
β − ξαηαξβηβ.

On the other hand, we can clearly write ∆ = a2a0 − a2
1, which yields

the symbolic expression

ξ2
αη

2
β − ξαηαξβηβ

different from (III.2.5). In order to bypass this problem, one sym-
metrizes the symbolic expression and considers ∆ = 1

2
((a0a2 − a2

1) +
(a2a0 − a2

1)) with the symbolic expression

1

2
(η2
αξ

2
β − ξαηαξβηβ) +

1

2
(ξ2
αη

2
β − ξαηαξβηβ) =

1

2
(ξαηβ − ηαξβ)

2.

A symbolic expression is called symmetric if it is invariant under any
permutation of the indices α, β, . . .. One then finds:

Lemma III.2.8 (Theorem 6.5. in [Ol99]). Every covariant of V (d)
possesses a unique symmetric symbolic expression.

Note that not every symmetric symbolic expression comes from a
covariant. If we are given, however, a symmetric symbolic expression
coming from a covariant, we can easily reconstruct the covariant.

Definition III.2.9 (Definitions 6.10 and 6.12 in [Ol99]). (1) A bra-
cket factor of the first kind is a symbolic expression

(αx) = ξαx+ ηαy.

(2) A bracket factor of the second kind is a symbolic expression

[αβ] = ξαηβ − ηαξβ.

(3) A bracket polynomial is a symbolic expression that can be written
as a polynomial in the bracket factors of the first and second kinds.

Example III.2.10. Consider once more the invariant ∆ = a0a2 − a2
1

of a quadratic binary form. Its symbolic expression 1
2
(ξαηβ − ηαξβ)

2

can now be written as bracket polynomial 1
2
[αβ]2.

One then has the following fundamental result:

Theorem III.2.11 (First Fundamental Theorem, Theorem 6.14 in
[Ol99]). Every symmetric symbolic expression coming from a covari-
ant can be written as a bracket polynomial. Vice versa, every bracket
polynomial is the symmetric symbolic expression of a covariant.
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Even though the symmetric symbolic expression of a covariant is
unique, it is not clear whether the same holds for bracket polynomials.
Indeed, there are relations between the bracket factors, like e.g. [αβ] =
−[β α]. One has the following relations called syzygies:

(III.2.6) [αβ] = −[β α],

[αβ](γ x) + [γ α](β x) + [β γ](αx) = 0,

[αβ][γ δ] + [γ α][β δ] + [β γ][α δ] = 0.

The Second Fundamental Theorem now states that these are all iden-
tities:

Theorem III.2.12 (Second Fundamental Theorem, Theorem 6.19 in
[Ol99]). Every polynomial identity among the different bracket factors
is obtained as a linear combination of the above syzygies.

Remark III.2.13. Consider a homogeneous covariant of V (d) of de-
gree n, of order k, and of co-order l. Its bracket polynomial is a sum
∑

iMi of monomials Mi sharing the following properties: Each mono-
mial Mi contains n symbolic letters that all occur exactly d times in
Mi. Moreover, each Mi consists of k brackets of the first kind and of l
brackets of the second kind.

Transvectants of bracket polynomials. The discussion below is
motivated by this example:

Example III.2.14. Given a quadratic binary form, consider both its
discriminant ∆ = a0a2 − a2

1 and the square of the discriminant ∆2 =
a2

0a
2
2 − 2a0a

2
1a2 + a4

1. We already found that 1
2
[αβ]2 is the bracket

polynomial of ∆. What about ∆2? We first calculate the symbolic
expression belonging to ∆2 and find:

η2
αη

2
βξ

2
γξ

2
δ − 2η2

αξβηβξγηγξ
2
δ + oξαηαξβηβξγηγξδηδ.

After symmetrizing the expression one finds

1

4
(ξαηβ − ηαξβ)

2(ξγηδ − ηγξδ)
2,

which can be written as bracket polynomial

1

4
[αβ]2[γ δ]2.

This is clearly not the same as 1
4
[αβ]4.

This example shows the need for a adequate definition of the multi-
plication of two bracket polynomials. Let ϕ1 and ϕ2 be two covariants
of a form of degree d with respective bracket polynomials

∏

j,k
finite

[αij αik ]
L
∏

l=1

(αil x) and
∏

u,v
finite

[βiu βiv ]
W
∏

w=1

(βiw x)
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in symbolic letters αi and βi in two different alphabets. Then the
bracket polynomial belonging to the covariant (ϕ1, ϕ2)

r equals

(d− r)!2

d!2

∑

σ∈Perm{1,...,L}
τ∈Perm{1,...,W}

(

∏

j,k

[αij αik ]
∏

u,v

[βiu βiv ]
r
∏

l=1

[αiσ(l)
βiτ(l)

] . . .

. . .
L
∏

l=r+1

(αiσ(l)
x)

W
∏

w=r+1

(βiτ(w)
x)

)

.

Example III.2.15. Let ϕ1 = ϕ2 = 1
2
[αβ]. Then

(ϕ1, ϕ2)
0 =

1

4
[α1 β1][α2 β2] or =

1

4
[αβ][γ δ],

and (ϕ1, ϕ2)
r = 0 for r > 0.

The following example shows that it is much easier to compute
transvectants of bracket polynomials than transvectants of the covari-
ants.

Example III.2.16. Consider a binary form of degree 3. Its Hessian
has been computed in Example III.2.4 to be

H = (a1a3 − a2
2)x

2 + (a0a3 − a1a2)xy + (a0a2 − a2
1)y

2.

Consider (a1a3 − a2
2). We replace a1 by ξαη

2
α, a3 by ξ3

β, and a2
2 by

ξ2
αηαξ

2
βηβ. After symmetrizing we find its symbolic expression

1

2
(ξ3
αξβη

2
β − 2ξ2

αηαξ
2
βηβ + ξαη

2
αξ

3
β) =

1

2
ξαξβ(ξαηβ − ηαξβ)

2.

Similarly, we replace (a0a3 − a1a2) by

1

2
(η3
αξ

3
β − ξαη

2
αξ

2
βηβ − ξ2

αηαξβη
2
β + ξαη

3
β) =

1

2
(ξαηβ − ηαξβ)

2(ξαηβ + ηαξβ),

and finally (a0a2 − a2
1) by

1

2
(η3
αξ

2
βηβ − 2ξαη

2
αξβη

2
β + ξ2

αηαη
3
β) =

1

2
ηαηβ(ξαηβ − ηαξβ)

2.

Hence the symmetric symbolic expression corresponding to H is

1

2
(ξαξβ(ξαηβ − ηαξβ)

2x2

+ (ξαηβ − ηαξβ)
2(ξαηβ + ηαξβ)xy + ηαηβ(ξαηβ − ηαξβ)

2y2).
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Bearing in mind that [αβ] = ξαηβ − ηαξβ and that (αx) = ξαx + ηαy
we find

1

2
(ξαξβ(ξαηβ − ηαξβ)

2x2+

(ξαηβ − ηαξβ)
2(ξαηβ + ηαξβ)xy + ηαηβ(ξαηβ − ηαξβ)

2y2)

=
1

2
[αβ]2(ξαξβx

2 + (ξαηβ + ηαξβ)xy + ηαηβy
2)

=
1

2
[αβ]2(αx)(β x)

We see that each symbolic letter occurs exactly trice (we started
with a binary form of degree 3). There occur two symbolic letters.
This corresponds to the fact that the Hessian is a covariant of degree
2. There occur two brackets of the first kind and two brackets of
the second kind. This corresponds to the fact that the Hessian is a
covariant of order 2 and of co-order 2.

On the other hand, H = 1
2
(Q(3), Q(3))2. Computing the transvectant

1
2
((αx)3, (αx)3)2 of the bracket polynomials (αx)3 corresponding to

Q(3) yields:

1

2
((αx)3, (αx)3)2 =

1

2
· 1

36

∑

σ∈Perm{1,2,3}
τ∈Perm{1,2,3}

2
∏

l=1

[α(1) α(2)]
3
∏

l=3

(α(1)
x)(α(2)

x)

=
1

2
· [α(1) α(2)]2(α(1)

x)(α(2)
x),

which equals the bracket polynomial of the Hessian (written in α(1), α(2)

instead of α, β).

The algebra of digraphs. We closely follow the treatment in [OS89].
Bracket polynomials can be visualized in a very nice manner with di-
rected graphs, or short digraphs. An atom of valence d is a vertex ◦
with d (unlabelled) bond sites, drawn like this:

.

A d-digraph (or by abuse of notation simply digraph) is a finite set
of atoms of valence d, together with a set of directed edges or arrows
between the bond sites of the atoms. One bond site can be the source
or target of at most one arrow. A bond site is called free if it is neither
the source nor the target of any arrow.

To a bracket monomial P of the form

P =
s
∏

i,j=1

[αi αj]
µij

s
∏

k=1

(αk x)νk

we assign the following d-digraph: For each symbolic letter αi occurring
in P draw one atom vi of valence d. Draw µij arrows from vi to vj
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(obeying the rule that each bond site can be used only for one arrow).
In the end, the atom vk has νk free bond sites. Since the degree d is
fixed the number of free bond sites of each atom can always be obtained
by subtracting the number of arrows having the atom as source or
target from d. This is why the free bond sites are often omitted in the
drawings.

Example III.2.17. Consider a cubic binary form. The bracket poly-
nomial corresponding to twice its Hessian is [αβ]2(αx)(β x). The 3-
digraph associated to this bracket monomial is

= .❡ ❡ ❡✲✲ ✲2❡

(If there are l > 1 arrows connecting two fixed vertices, we usually only
draw one arrow, which we superscribe with l.)

Formal linear combinations of d-digraphs are called d-digraphs, too.
The assignment (bracket monomials)  (d-digraphs) can now be ex-
tended linearly to an assignment (bracket polynomials)  ((formal
linear combinations of) d-digraphs). It is obvious that one can recon-
struct the bracket polynomial from its d-digraph.

Transvectants can easily be computed with digraphs. Suppose that
the r-th transvectant of two d-digraphs D1 and D2 is searched. For
each atom of each digraph label its ν free bond sites with the integers
1, 2, . . . , ν. Now draw r arrows with a free bond site in D2 as source and
a free bond site in D1 as target and label these arrows with the integers
1, 2, . . . , r. Generally, there are plenty of possibilities to form a new
digraph as described. Now form the sum over all different (partially
labelled) digraphs obtained in the above way, and finally forget all
the labels. The resulting sum multiplied with (d− r)!2/d!2 is now the
digraph belonging to the transvectant (D1, D2)

r.

Example III.2.18. We sketch an example of the first transvectant of
two forms of degree 3:

2

2

2

2

+2 · 3 ).

( , )1 = 1
9
(1 · 3 + 0 · 3

The multplicities have the following meaning: The first summand is
multiplied by 1 · 3 since the upper left atom has one free bond side,
whereas the lower atom has three free bond sides. The second summand
is multiplied with zero, since the upper middle atom has valence three
and therefore cannot be source and target of four atoms. Similarly, the
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third summand is multiplied with 2 · 3 since the upper right atom has
two free bond sites, whereas the lower atom has three free bond sites.

The syzygies in (III.2.6) can be translated into the following rela-
tions:

(I)

❡

❡ ❡

❡

❡ ❡

❡

❡

❡ ❡ ❡ ❡

❡

❡ ❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.✴
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

❪
✲

✛ ✲

✲

✲ ❄ ❄
�

��✠
❅

❅❅❘

= − ,

+ + = 0,

= + .(III)

(II)

❡

This is to be understood as follows. Consider the first relation. If we
are given two digraphs D1 and D2 that are equal except that in D1 one
particular arrow points in the reverse direction than the corresponding
arrow in D2, then D1 can be identified with −D2. The other relations
are to be applied in the same way.

Remark III.2.19. From relation (I) it follows that

= 0,

and more generally that

= 0
k

for all odd k. This relation will be used frequently in the sequel.

The results obtained so far can be summarized in the following form:
The algebra Dd of (formal linear combinations) of d-digraphs (endowed
with the multiplication given by the zeroth transvection) modulo the
ideal generated by the above relations is canonically isomorphic to
the algebra of U -invariants of a binary form of degree d, and the U -
invariants can in turn be identified with the covariants of the form.

III.3. Deformations of orbits in minimal sheets, Part I

Let d ∈ N be a dominant weight of SL2. Recall that S(d) denotes
the closure of the minimal sheet in V (d), and that h′d : N → N is
the Hilbert function of the closure of a general orbit in S(d). Using
Proposition II.2.9, we show in this section that HilbSL2

h′
d

(S(d)) = A1 for

all even d.

Description of the minimal sheet in the space of binary forms
of degree d. We start by collecting a few well-known facts (see e.g.
[Kr85]). A one-dimensional subgroup of SL2 is either conjugated to T ,
to the normalizer N = NSL2(T ) of T in SL2, or to Un for some n ∈ N,
where Un = U⋊Cn is the semidirect product of U with the cyclic group
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Cn = {diag(ζ, ζ−1) | ζn = 1}. A two-dimensional subgroup of SL2 is a
Borel-subgroup and hence conjugated to B.

If X is an affine SL2-variety and if x ∈ X is B-stable, then x is
fixed under the SL2-action. This implies that an SL2-variety contains
no one-dimensional orbits. The stabilizer of yd ∈ V (d) equals Ud, and
hence dim SL2 ·yd = 2. Therefore, the minimal sheet S ⊂ V (d) consists
of the two-dimensional orbits in V (d). Recall that the Jansou-weights
of SL2 are 2 and 4. Bearing this in mind, the discussion in Section II.2
yields the following picture:

a) Suppose that d is odd. Then S(d) = Xd = SL2 ·yd, and

h′d = hXd
: N → N, k 7→

{

1 if d|k, and
0 otherwise.

Moreover, HilbSL2

h′
d

(S(d)) = A0.

b) If d is even, then the minimal sheet consists of SL2 ·yd and the
orbits SL2 ·γxd/2yd/2 for 0 6= γ ∈ k. The quotient S(d)//SL2 is
one-dimensional.

i) If d ≡ 0 mod 4, the stabilizer of xd/2yd/2 equals NSL2(T ). In
this case

h′d = hSL2 /NSL2
(T ) : N → N, k 7→

{

1 if 4|k, and
0 otherwise.

ii) If d ≡ 2 mod 4, the stabilizer of xd/2yd/2 equals T . In this
case

h′d = hSL2 /T : N → N, k 7→
{

1 if 2|k, and
0 otherwise.

In particular, the Hilbert function of the general fiber of S(d) →
S(d)//SL2 coincides with the Hilbert function of Xd if and only if d
is odd or if d = 2 or if d = 4, which are the Jansou-weights of SL2.

Recall that we have introduced the invariants i(d) = (Q(d), Q(d))d

and j(d) = ((Q(d), Q(d))d/2, Q(d))d of degree 2 and 3 in Example III.2.7,

where Q(d) is the covariant
∑d

i=0 ai
(

d
i

)

xiyd−i.

Proposition III.3.1.

S(d)//SL2 =

{

Spec(k[i(d)]) ∼= A1 if d ≡ 2 mod 4,
Spec(k[i(d), j(d)]) ∼= Spec(k[t2, t3]) if d ≡ 0 mod 4.

The proof of this proposition will be stated later in this section. The
proposition shows that the quotient morphism S(d) → S(d)//SL2 is flat
if d ≡ 2 mod 4, and hence Theorem I.1.1 implies that HilbSL2

h′
d

(S(d)) ∼=
A1 if d ≡ 2 mod 4. Even though the quotient morphism S(d) →
S(d)//SL2 is not flat for d ≡ 0 mod 4 (as will be shown in Remark
III.3.8), the corresponding invariant Hilbert scheme still equals A1:

Theorem III.3.2. If d is even, then HilbSL2

h′
d

(S(d)) ∼= A1.
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The proof follows later in this section.

Definition III.3.3. Let X0
d be the schematic zero-fiber of the mor-

phism UnivSL2

h′
d

(S(d)) → HilbSL2

h′
d

(S(d)) ∼= A1. Theorem III.3.2 im-

plies that X0
d is the unique closed subscheme X0

d ⊂ S(d) with Hilbert
function hX0

d
= h′d and with (X0

d)red = Xd. Equivalently, X0
d is the

unique homogeneous SL2-stable subscheme of S(d) with Hilbert func-
tion hX0

d
= h′d.

Remark III.3.4. Let I0 ⊂ Sym(V (d∗)) be the SL2-stable ideal defin-
ing X0

d as closed subscheme of V (d), and let I ′0 ⊂ O(S(d)) be the
SL2-stable ideal defining X0

d as closed subscheme of S(d). Then I ′0
coincides with I ′0 from Section II.2, and I0 is the inverse image of I ′0
under the projection Sym(V (d)∗) → O(S(d)).

Non-vanishing results for covariants. From Remark III.2.19 we
know that (Q(d), Q(d))l = 0 if l is odd. However, we claim that:

Lemma III.3.5. a) Let d be even, and let l ∈ {0, 2, . . . , d}. Then
the covariant (Q(d), Q(d))l is not in the ideal I(S(d)) of S(d).

b) If 4|d, then j(d) = ((Q(d), Q(d))d/2), Q(d))d 6∈ I(S(d)).

Remark III.3.6. Because Symn(V (d)∗) is multiplicity-free as SL2-
module for n ≤ 2, it follows from Lemma III.3.5 a) that the ideal
I(S(d)) is generated by covariants of degree ≥ 3.

Remark III.3.7. Lemma III.3.5 a) and the proof of Proposition II.2.9
show that O(S(d))(n,k) 6= 0 for all n ≥ 2 and for all k ≤ nd with 4|k.

Using the notation of Remark III.3.4, the statement of Lemma III.3.5
a) and the proof of Proposition II.2.9 show in addition that I ′0 ⊂
O(S(d)) is the smallest SL2-stable ideal containing O(S(d))(2,d) and
O(S(d))(2,0).

Proof of Lemma III.3.5. Fix d, and let Q = Q(d).
a) Since

(

d
d/2

)

xd/2yd/2 ∈ S(d) it suffices to verify that the covari-

ants (Q,Q)l don’t vanish identically on
(

d
d/2

)

xd/2yd/2. We compute the

transvectant (Q,Q)l:

(Q,Q)l =
(d− l)!2

d!2

l
∑

i=0

(−1)i
(

l

i

)

∂lQ

∂xl−i∂yi
∂lQ

∂xi∂yl−i

=
(d− l)!2

d!2

l
∑

i=0

d
∑

j,j′=0

(−1)i
(

l

i

)(

d

j

)(

d

j′

)

ajaj′
∂lxjyd−j

∂xl−i∂yi
∂lxj

′

yd−j
′

∂xi∂yl−i
.

(III.3.1)

This can be written in the form of (III.2.2) in Section III.2:

(III.3.2) (Q,Q)l =
2d−2l
∑

e=0

ϕle(a0, . . . , ad)x
ey2d−2l−e,
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where

ϕle(a0, . . . , ad) =
∑

j+j′−l=e

γlj,j′aja
′
j

for suitable γlj,j′ ∈ k. Now

ϕld−l(a0, . . . , ad)(

(

d

d/2

)

xd/2yd/2) = γld/2,d/2,

and this is non-zero if and only if γld/2,d/2 6= 0. We compute γld/2,d/2 by

means of (III.3.1):

γld/2,d/2x
d−lyd−l =

(d− l)!2

d!2

l
∑

i=0

(−1)i
(

l

i

)(

d

d/2

)2
∂lxd/2yd/2

∂xl−i∂yi
∂lxd/2yd/2

∂xi∂yl−i

=
l
∑

i=0

(−1)i
(

l

i

)(

d− l

d/2 − i

)2

xd−lyd−l

=
2dΓ(1/2 + d/2 − l/2)Γ(1 + d− l/2)

Γ(1 + d/2)2Γ(1/2 − l/2)Γ(1 + d/2 − l/2)
xd−lyd−l,

where Γ is the Gamma function, and where the last expression was
computed with Mathematica. We can read off that γld/2,d/2 6= 0 for all

even d and for all even l ∈ {0, 2, . . . , d}. Thus, ϕld−l 6∈ I(S(d)), and
hence (Q,Q)l 6⊂ I(S(d)).

b) The invariant j(d) = ((Q,Q)d/2, Q)d can be written as

j(d) = ((Q,Q)d/2, Q)d =
∑

j+k+l=3d/2
j≥k≥l

δjklajakal

for suitable δjkl ∈ k. In order to show that j(d) 6∈ I(S(d)), it suffices to

show that j(d)(
(

d
d/2

)

xd/2yd/2) = δd/2,d/2,d/2 6= 0:

((Q,Q)d/2, Q)d =
1

d!2

d
∑

i=0

(−1)i
(

d

i

)

∂d(Q,Q)d/2

∂xd−i∂yi
∂dQ

∂xi∂yd−i

=
1

d!2

d
∑

i=0

(−1)i
(

d

i

)

∂d

∂xd−i∂yi

[

d
∑

e=0

ϕd/2e xeyd−e

]

· . . .

. . . · ∂d

∂xi∂yd−i

[

d
∑

l=0

al

(

d

l

)

xlyd−l

]

,

where we have written (Q,Q)d/2 in the form of (III.3.2). Recall that

the monomial a2
d/2 doesn’t occur in ϕ

d/2
e unless e = d/2, and ϕ

d/2
d/2 =
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∑d/2
f=0 γ

d/2
f,d−fafad−f . Now a) implies that γ

d/2
d/2,d/2 6= 0 if 4|d. Hence

δd/2,d/2,d/2 =
1

d!2

d
∑

i=0

(−1)i
(

d

i

)

∂d

∂xd−i∂yi
γ
d/2
d/2,d/2x

d/2yd/2 · . . .

. . . · ∂d

∂xi∂yd−i

[(

d

d/2

)

xd/2yd/2
]

=
1

d!2
(−1)d/2

(

d

d/2

)

γ
d/2
d/2,d/2(d/2)!2

(

d

d/2

)

(d/2)!2

= (−1)d/2γ
d/2
d/2,d/2 6= 0. �

Proof of Proposition III.3.1. Recall from Section II.2 that S(d) is a
multiplicity-free Gm×SL2-variety. Hence in each degree there is up to
scalar multiples at most one invariant function on S(d).

Let first d ≡ 0 mod 4. According to Lemma III.3.5 the invariants
i(d) and j(d) do not vanish on S(d). For this reason, O(S(d))SL2 contains
functions of degree 2 and 3, and hence of each degree n ≥ 2. Since
Sym1(V (d)∗) ∼= V (d), there are no invariant functions of degree 1 on
V (d) and hence neither on S(d). Thus, O(S(d))SL2 = k[i(d), j(d)].

Let now d ≡ 2 mod 4. According to Lemma III.3.5 the invariant i(d)

does not vanish on S(d), whereas all invariants of odd degree vanish on
S(d) according to Lemma II.2.3 (or as one verifies directly). Therefore,
O(S(d))SL2 = k[i(d)], and the claim follows. �

Remark III.3.8. If d ≡ 0 mod 4, then the quotient map π : S(d) →
S(d)//SL2 = Spec(k[i(d), j(d)]) is not flat: Consider the schematic zero-
fiber (S(d))0 of π. It equals Spec(Sym(V (d)∗)/(I(S(d)), i(d), j(d)), where
I(S(d)) is the ideal of S(d) ⊂ V (d). Denote its Hilbert function by h.
We claim that

(III.3.3) (Q(d) ⊕ (Q(d), Q(d))d/2)/(I(S(d)), i(d), j(d)) ∼= V (d) ⊕ V (d)

as SL2-module. If this is true, then h(d) = 2 > 1 = h′d(d). Because h′d
is the Hilbert function of a general fiber of π, it follows that π cannot
be flat. We are left to prove (III.3.3). From Remark III.3.6 it follows
that I(S(d)) contains only covariants of degree ≥ 3. Hence, the ideal
(I(S(d)), i(d), j(d)) contains no covariants of order < 2, and the only
covariant of order 2 in (I(S(d)), i(d), j(d)) is k · i(d). In particular, nei-
ther Q(d) nor (Q(d), Q(d))d/2 is contained in (I(S(d)), i(d), j(d)). Because
(I(S(d)), i(d), j(d)) is homogeneous, (III.3.3) follows.

Proof of Theorem III.3.2. If d ≡ 2 mod 4, then Proposition III.3.1 im-
plies that S(d)//SL2

∼= A1. In this situation, the quotient morphism
S(d) → A1 is flat (see [Ha77], Proposition III.9.7), and the claim
follows from Theorem I.1.1.
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If d ≡ 0 mod 4, then the Gm×SL2-isotypic component O(S(d))(2,d)

of type (2, d) is isomorphic to V (d) according to Lemma III.3.5 a). Now,
Proposition II.2.9 applies (with n0 = 1), and the claim follows. �

Let N (d) ⊂ V (d) be the (schematic) null-cone as defined in Defini-
tion II.3.1. It is well-known that a form 0 6= v ∈ V (d) is contained in
the reduced null-cone N (d)red if and only if v contains a linear factor
with multiplicity at least d/2+1 (see e.g. [Kr85], I.5). Using Theorem
III.5.10 (whose proof is independent from the following lemma), we can
show the following:

Lemma III.3.9. Let X0
d ⊂ S(d) be as in Definition III.3.3. Then X0

d

is a closed subscheme of N (d)red.

Proof. Let I0 ⊂ Rd be the ideal of X0
d , and let J ⊂ Rd be the ideal

of N (d)red. We need to show that J ⊂ I0. In (III.5.2) in Theorem
III.5.10 we shall see that Rd

(n,k) ⊂ I0 if n ≥ 3 and if k ≤ nd − d and

that Rd
(2,0) ⊂ I0. Since N (d)red is a cone, its ideal J is homogeneous.

In order to verify that J ⊂ I0, it therefore suffices to show that

(III.3.4) J(n,k) = {0} if

{

n ≥ 3 and k > nd− d, or
n = 2 and k > 0.

Recall that in (III.2.1) we identified Rd with k[a0, . . . , ad], where ai was
defined by ai(

∑

λj
(

d
j

)

xjyd−j) = λi.

To see (III.3.4), let first n ≥ 3 and choose k even with (n−1)d < k ≤
nd. Let 0 6= f ∈ (Rd

(n,k))
U . For i ∈ {0, 1, . . . , d}n there exist constants

γi ∈ k such that

f =
∑

i

γiai1 · · · ain ,

and
∑

s is = nd − l, where l := (nd − k)/2 < d/2 is the co-order
of f . This is only possible if each is > d/2. Evaluating f on the

nullform
∑d

j=d/2+1 λj
(

d
j

)

xjyd−j yields
∑

i γiλi1 · · ·λin . This is non-zero

for suitable values for λd/2+1, . . . , λd, and hence f 6∈ J .

Let now n = 2, let k > 0, and let Q = Q(d). If k is not divisible by
4, then Rd

(2,k) = 0 anyway, and there is nothing to show. We assume

now that k is divisible by 4. Let l := (2d− k)/2; then Rd
(2,k) = (Q,Q)l.

Writing (Q,Q)l in the form of (III.3.1), we see that

(Q,Q)l =
(d− l)!2

d!2

l
∑

i=0

d
∑

j,j′=0

(−1)i
(

l

i

)(

d

j

)(

d

j′

)

ajaj′
∂lxjyd−j

∂xl−i∂yi
∂lxj

′

yd−j
′

∂xi∂yl−i

=
2d−2l
∑

s=0

ϕls(a0, . . . , ad)x
sy2d−2l−s,

(III.3.5)
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where ϕls is of the form

ϕl2d−2l(a0, . . . , as) =
∑

j+j′−l=2d−2l

γlj,j′ajaj′

for constants γlj,j′ ∈ k. Since
(

d
l/2

)

xd−l/2yl/2 is a nullform, it now suffices

to show that ϕl2d−2l(a0, . . . , as)(
(

d
l/2

)

xd−l/2yl/2) 6= 0. We see that

ϕl2d−2l(a0, . . . , as)(

(

d

l/2

)

xd−l/2yl/2) = γld−l/2,d−l/2.

Using (III.3.5) we can compute γld−l/2,d−l/2:

γld−l/2,d−l/2x
k

=
(d− l)!2

d!2

l
∑

i=0

(−1)i
(

l

i

)(

d

d− l/2

)2
∂lxd−l/2yl/2

∂xl−i∂yi
∂lxd−l/2yl/2

∂xi∂yl−i

=
(d− l)!2

d!2
(−1)l/2

(

l

l/2

)(

d

d− l/2

)2
∂lxd−l/2yl/2

∂xl/2∂yl/2
∂lxd−l/2yl/2

∂xl/2∂yl/2

= (−1)l/2
(

l

l/2

)

xk.

This shows that γd−l/2 = (−1)l/2
(

l
l/2

)

6= 0, and proves (III.3.4). �

III.4. Multiplicities and Stability

For n ∈ N and l ∈ N with 0 ≤ l ≤ nd/2, we define

multdn;l := dimk{f ∈ Symn(V (d))U | f is of co-order l}
={dimk Symn(V (d))(nd−2l)}/(nd− 2l + 1),

which is the multiplicity of the isotypic component of type nd − 2l in
Symn(V (d)). Let further Dd

n;l be the space of d-digraphs with n vertices

and l arrows modulo relations. In view of Section III.2 the space Dd
n;l

is isomorphic to the space of covariants of V (d) of degree n and of
co-order l, and hence multdn;l = dimk(Dd

n;l).
The computation of these multiplicities goes back to Cayley and

Sylvester (cf. [Cl1872]); a modern approach can be found in [Br94].
Let

(n; d, l) := {(j0, j1, . . . , jd) ∈ Nd+1 |
d
∑

i=0

ji = n and
d
∑

i=0

iji = l}.

The Cayley-Sylvester formula states that

(III.4.1) multdn;l = #(n; d, l) − #(n; d, l − 1).

This implies in particular that

(III.4.2) multdn;l = multdn+1;l for all l ≤ n provided that d ≥ 2.



48 Examples for SL2

(To see this, suppose first that l < n. Then the map (n; d, l) →
(n+ 1; d, l) mapping (j0, . . . , jd) to (j0 + 1, j1, . . . , jd) is a bijection.
Hence #(n; d, l) = #(n+1; d, l). On the other hand, if l = n, then one
sees similarly that #(n; d, l) = #(n+1; d, l)−1. Now the claim follows
readily.)

Remark III.4.1. The map Dd
n;l → Dd

n+1;l assigning ◦ ⊔D to D ∈ Dd
n;l

is an injective homomorphism of k-vector spaces. If further l ≤ n, then
(III.4.2) implies that this map is even an isomorphism.

In Proposition III.4.3 bases of the vector spaces Dd
n;l with n ≥ l are

given. Constructions of such bases might be known, but for lack of
references in the literature and for further use we treat the subject in
detail.

Consider the following family of d-digraphs indexed by the integers
0 ≤ s ≤ d:

s = ds = 0 s = 2s = 1 s = 3

. . .

A member of this family with s arrows is denoted ⋆ds. Similarly, we
introduce a second family:

2

s = 0

. . .

s = ds = 2 s = 3 s = 4

2 2 2

A member of this family with s arrows is denoted ⋆̃ds.

Remark III.4.2. Remark III.2.19 states that ⋆d1 = 0. This will be
used frequently.

Given ω ∈ N and s = (s1, . . . , sω) ∈ {0, 2, 3, . . . , d}ω, we write

⋆ds :=
ω
⊔

i=1

⋆dsi
and ⋆̃ds :=

ω
⊔

i=1

⋆̃dsi

for the disjoint union of the corresponding digraphs. If P ∈ Perm(ω)
is a permutation, then ⋆dP (s) = ⋆ds and ⋆̃dP (s) = ⋆̃ds. This motivates the
following definition:

Σd
n;l := {s ∈ {0, 2, 3, . . . , d}n−l | |s| = l}/ ∼,
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where s ∼ t if s and t are in the same Perm(n − l)-orbit, and where
|s| =

∑

i si. If now [s] ∈ Σd
n;l, then ⋆ds ∈ Dd

n;l. Similarly, with |s|0 :=
∑

i max{1, si}, we let

Σ̃d
n;l :=

⋃

ω∈N

({s ∈ {0, 2, 3, . . . , d}ω | |s| = l, |s|0 = n}/ ∼),

where s ∼ t if t = P (s) for a permuation P . If [s] ∈ Σ̃d
n;l, then ⋆̃ds ∈ Dd

n;l.

From now on we write ⋆d[s] and ⋆̃d[s] instead of ⋆ds and ⋆̃ds if s is a vector
of length > 1.

Proposition III.4.3. If ⌊3
2
l⌋ ≤ n, then spank(⋆

d
[s] | [s] ∈ Σd

n;l) = Dd
n;l.

If l ≤ n, then spank(⋆̃
d
[s] | [s] ∈ Σ̃d

n;l) = Dd
n;l.

Proof. Step 1. Let D ∈ Dd
n;l. We show that there exists N ∈ N such

that D ⊔ ⊔N
i=1 ◦ ∈ spank(⋆

d
[s] | [s] ∈ Σd

n+N ;l). We can always assume

that there are as many ◦ as connected components of D as we wish (if
necessary enlarge N).

To start with, we use the relation

+
s s − 1 s − 1

=

to write D as a sum of digraphs in which two vertices are joint by at
most one arrow. One sees inductively that this is always possible —
maybe at the cost of augmenting N .

Secondly, the same relation can be used to break up cycles: Applying
the relation

+=

,

one can write D as a sum of digraphs with a fundamental group of
smaller rank. This yields a digraph whose underlying graph has trees
as connected components.

Finally, we show that trees can be written as sums of stars. Suppose
that D′ is a tree with n vertices and with l arrows. We proceed by
induction on l. If l ≤ 2, the digraph D′ is a star and we are done.
Otherwise, if D′ is not yet a star, it has at least two vertices v1 and v2

being the source or target of at least two arrows. Since D′ is connected,
there is a path of arrows from v1 and v2. Applying the relation
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= v1

+ v1

v1

v2

v2v2

(recall that ⋆d1 = 0) yields a sum of trees, and each of the summands
has less than l arrows. This completes the induction step.

Step 2. If D1 and D2 be two digraphs with the property that

D1 ⊔
N
⊔

i=1

◦ = D2 ⊔
N
⊔

i=1

◦

in the algebra Dd of d-digraphs, then D1 = D2 in Dd (cf. Remark
III.4.1).

Step 3. If [s] ∈ Σd
n;l with n ≥ ⌊3

2
l⌋, then ⋆d[s] contains at least n−⌊3

2
l⌋

times ◦ as connected component. (To see this, it suffices to note that
the ratio between the number of vertices and the number of arrows in
⋆ds equals (s + 1)/s ≤ 3/2 for all s ≥ 2.) This, together with Steps 1
and 2 shows that spank(⋆

d
[s] | [s] ∈ Σd

n;l) = Dd
n;l whenever n ≥ ⌊3

2
l⌋.

Step 4. Let s0 ∈ N, and consider the relations

⋆̃ds0 ⊔ ◦ ⊔ ◦ = ⋆ds0 ⊔ ◦ + ⋆ds0−2 ⊔ ⋆d2 if s0 ≥ 2, and

⋆̃d0 = ⋆d0.

This, together with the above steps, shows that spank(⋆̃
d
[s] | [s] ∈ Σ̃d

n;l) =

Dd
n;l whenever n is sufficiently large compared to l. If [s] ∈ Σ̃d

n;l with

n ≥ l, then ⋆̃d[s] contains at least n− l times ◦ as connected component.

It now follows that spank(⋆̃
d
[s] | [s] ∈ Σ̃d

n;l) = Dd
n;l whenever n ≥ l. �

Remark III.4.4. If ⌊3
2
l⌋ ≤ n, then the set {⋆d[s] | [s] ∈ Σd

n;l} is a

basis of Dd
n;l. If l ≤ n, then the set {⋆̃d[s] | [s] ∈ Σ̃d

n;l} is a basis of

Dd
n;l. In view of (III.4.1) and Proposition III.4.3 it suffices to verify

that #Σd
n;l = #(n; d, l) − #(n; d, l − 1) = multdn;l for all (d, n, l) as in

the proposition.
Alternatively, one can directly verify that the sets {⋆ds | [s] ∈ Σd

n;l}
and {⋆̃d[s] | [s] ∈ Σd

n;l} are linearly independent. This can be done by
computing and comparing their U -invariants.

Example III.4.5. For an integer 0 ≤ s ≤ d, we calculate the U -
invariant belonging to ⋆ds. The bracket polynomial corresponding to ⋆ds
is

[α, β1][α, β2] . . . [α, βs](αx)d−s(β1x)d−1 . . . (βsx)d−1.
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Its symbolic expression equals

s
∏

i=1

(ξαηβi
− ηαξβi

)(ξαx− ηαy)
d−s

s
∏

i=1

(ξβi
x− ηβi

y)d−1

= ξd−sα

s
∏

i=1

(ξαηβi
− ηαξβi

)
s
∏

i=1

ξd−1
βi

x(s+1)d−2s + y · . . .

= (ξdα

s
∏

i=1

ξd−1
βi

ηβi
− ξd−1

α ηα

s
∑

j=1

ξdβj

∏

i6=j

ξd−1
βi

ηβi
± . . .

. . .± ξd−sα ηsα

s
∏

i=1

ξdβi
)x(s+1)d−2s + y · . . .

The U -invariant in the covariant corresponding to this symbolic ex-
pressions can now be read off to be

s
∑

k=0

(−1)k
(

s

k

)

ad−ka
k
da

s−k
d−1.

Given [s] = [(s1, . . . , sn−l)] ∈ Σd
n;l, the U -invariant corresponding to ⋆d[s]

is the product of the U -invariants of the ⋆dsi
.

Example III.4.6. Let l ≥ 2. Consider the digraph

.l

l

. . .

One finds that it can be written as
∑l

i=0(−1)i
(

l
i

)

⋆di ⊔⋆dl−i.
Remark III.4.7. Proposition III.4.3 gives an effective tool to com-
pute covariants of small co-order. For many applications it is more
important to know covariants of small order, like invariants. To com-
pute these, Proposition III.4.3 yields the following algorithm, which
however is numerically very ineffective: If one wants to know all in-
variants of degree n of a form of even degree d, one writes down a
basis (D1, . . . , Dm) of Dd

nd/2;nd/2 (fast) and computes the corresponding

U -invariants f1, . . . , fm (fast). For each invariant f of degree n, the U -

invariant f ·and/2−nd can be written as linear combination of the fi. The

goal is now to find linear combinations of the fi which contain a
nd/2−n
d

as factor. This is linear algebra, but the matrices involved become very
large.

III.5. Structure of SL2-stable ideals

In Section III.3 the main object of interest was the invariant Hilbert
scheme HilbSL2

h′
d

(S(d)), which turned out to be isomorphic to A1 for all
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even d. Next, we focus on HilbSL2

h′
d

(V (d)). We have already stated in

Corollary II.3.4 that

HilbSL2

h′
d

(V (d))red = HilbSL2

h′
d

(S(d))0
red ∪ HilbSL2

h′
d

(N (d))red.

We now know HilbSL2

h′
d

(S(d)) and turn our attention to HilbSL2

h′
d

(N (d)).

Let Rd := Sym(V (d)∗), let Rd
(k) := Sym(V (d)∗)(k) be the isotypic

component of type k, and let Rd
(n,k) := Symn(V (d)∗)(k) be the Gm ×

SL2-isotypic component of type (n, k). For an SL2-stable ideal J ⊂
Rd let J(k) := J ∩ Rd

(k) and J(n,k) := J ∩ Rd
(n,k). Now the closed

points of HilbSL2

h′
d

(N (d)) correspond to SL2-stable ideals I ⊂ Rd with

Spec(Rd/I)red = Xd(= SL2 ·yd) and with Hilbert function hRd/I = h′d.

Definition III.5.1. Let Jdodd ⊂ Rd be the smallest SL2-stable ideal
containing all covariants of odd co-order, or equivalently all covariants
of order ≡ 2 mod 4. Let Jdodd,+ ⊂ Rd be the smallest SL2-stable ideal

containing Jdodd and Rd
(2,d).

Let d be a multiple of 4, and let I be as above. We claim that
Jdodd,+ ⊂ I: First, hRd/I(k) = h′d(k) = 0 if k ≡ 2 mod 4. Hence

Jdodd ⊂ I. Moreover, I(d) ⊂
√
I(d) =

⊕

n≥2R
d
(2,d) (since Xred = Xd).

Because hRd/I(d) = 1, it follows that I(d) =
√
I(d) =

⊕

n≥2R
d
(2,d), and

hence Rd
(2,d) ⊂ I. It now follows that Jdodd,+ ⊂ I, and hence that

hRd/Jd
odd,+

(k) ≥ hRd/I(k) = h′d(k) for all k. We shall see in Theorem

III.5.10 that I is in fact almost determined by Jdodd,+. This opens the
possibility for computations, and this is why we assume from now on
that d is a multiple of 4.

The main result of this section is Theorem III.5.10.

Caveat III.5.2. We have encountered Rd
(n,k), I

d
(n,k), Dd

n;l, and similar
objects. Whereas the upper index d always refers to the degree of the
corresponding form and the first index n out of two lower indices always
refers to the degree of a homogeneous object, the second lower index
can refer either to the order or to the co-order. We use a comma when
dealing with orders (and usually denote the order by k), whereas we
use a semi-colon when dealing with co-orders (and usually denote the
co-order by l).

The space of d-digraphs Dd is a k-algebra with multiplication D1 ·
D2 = (D1, D2)

0 = D1 ⊔ D2. An ideal I ⊂ Dd is called transvection-
stable if (D1, D2)

r ∈ I for all r ≥ 0, for all D1 ∈ I, and for all
D2 ∈ Dd. Recall further that if D1 ∈ Dd

n1;l1
and if D2 ∈ Dd

n2;l2
, then

(D1, D2)
r ∈ Dd

n1+n2;l1+l2+r. In view of Section III.2 working with SL2-

stable ideals in Rd is equivalent to working with transvection-stable
ideals in Dd.
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Proposition III.5.3. Suppose that n ≥ l.

a) The homomorphism of k-vector spaces

Φ: Dd
n;l ⊕Dd

n+1;l+1 −→ Dd
n+2;l+2, D +D′ 7−→ (D ⊔ ◦=◦) + (D′, ◦)1

is surjective.
b) If a transvection-stable ideal J ⊂ Dd contains Dd

n;l⊕Dd
n+1;l+1, then

there exists an integer N such that Dd
n′;l′ ⊂ J whenever n′ ≥ N

and l′ ≥ l.

Proof. a) Step 1. Assume that n is so large compared to l that {⋆d[s] |
[s] ∈ Σd

n+2;l+2} spans Dd
n+2;l+2 (cf. Proposition III.4.3). Then it suffices

to verify that ⋆d[s] is in the image of Φ for each [s] ∈ Σd
n+2;l+2.

Let s = (s1, . . . , sn−l) with [s] ∈ Σd
n+2;l+2, and let min(s) := min{si |

si > 0, 1 ≤ i ≤ n − l}. If si = 1 for some i, then ⋆[s] = 0 (cf.
Remarks III.4.2 and III.2.19). Hence we can assume that min(s) ≥ 2.
We proceed by induction on min(s). If min(s) = 2, then the claim is
true. Otherwise, let sǫ = min(s), and suppose that s is of the form
s = (s1, . . . , sǫ, 0, . . . , 0). Consider

s′ = (s1, . . . , sǫ−1, sǫ − 1, 0, . . . , 0).

Then [s′] ∈ Σd
n+1;l+1. Now (⋆d0, ◦)1 = 0, and

(⋆ds0 , ◦)1 =
1

d
(−(d− s0)(⋆

d
s0+1) + s0(d− 1)(⋆ds0−1 ⊔ ⋆d2))

for s0 ≥ 2. Hence (⋆d[s′], ◦)1 is a linear combination of the type

(⋆d[s′], ◦)1 = λ0 ⋆
d
[s] +

∑

i

λi⋆
d
[si]

with λ0 6= 0 and with min(si) < min(s) for all i. The claim now follows
from the induction hypothesis.

Step 2. Until now we have assumed that n is very large compared
to l. For general n ≥ l the claim is now a consequence of Step 1, of the
fact that (D, ◦)1⊔⊔N

i=1 ◦ = (D⊔⊔N
i=1 ◦, ◦)1, and of Proposition III.4.3.

b) Remark III.4.1 and a) imply that Dd
n′;l′ ⊂ J for all (n′, l′) with

n′− l′ ≥ n− l and with l ≤ l′ ≤ l+d−1. According to [Ja05], proof of
Proposition 1.3, there exists N ∈ N such that all covariants of degree
n′ ≥ N are in the transvection-stable ideal J ′ generated by

⊔d+n
i=1 ◦.

Let n′ ≥ N , and let l′ ≥ l. We claim that Dd
n′;l′ ⊂ J . To see this,

let D ∈ Dd
n′;l′ . Since D ∈ J ′, we can write D as linear combination of

transvectants

(((
n+d
⊔

i=1

◦, ◦)α1 , ◦)α2 , . . . , ◦)αs

with 0 ≤ αi ≤ d and with
∑s

j=1 αj = l′. Thus, it suffices to show

that each digraph of this form is in J . First,
⊔n+d
i=1 ◦ has co-order



54 Examples for SL2

0, whereas (((
⊔n+d
i=1 ◦, ◦)α1 , ◦)α2 , . . . , ◦)αs has co-order l′ ≥ l. Observe

that if D is a digraph of co-order m, then (D, ◦)α is zero if α > d, or
of co-order m + α ≤ m + d if α ≤ d. Hence, there exists j such that
(((
⊔n+d
i=1 ◦, ◦)α1 , ◦)α2 , . . . , ◦)αj is of co-order l′ with l ≤ l′ ≤ l + d − 1.

According to the observation above, this digraph is in J . This implies
that also (((

⊔n+d
i=1 ◦, ◦)α1 , ◦)α2 , . . . , ◦)αs ∈ J , and the claim follows. �

The next lemma is formulated for an arbitrary semisimple group G.

Lemma III.5.4. Let A be an N-graded k-G-algebra such that each
isotypic component A(λ) ⊂ A is homogeneous. Let J ⊂ A be a G-
stable ideal. Let λ1, λ2 ∈ Λ+, and let λ = λ1 + λ2. Suppose that
hA/J(λ1) = hA/J(λ) = 1, and that J(λ) = J ∩ A(λ) is homogeneous.
If there exist homogenous elements a1 ∈ (A(λ1))

U and a2 ∈ (A(λ2))
U

such that a1 · a2 6∈ J(λ), then J(λ1) = µ−1
a2

(J(λ)), where µa2 : A → A is
multiplication with a2. In particular, J(λ1) is homogeneous.

Proof. First note that (J(λ1))
U ⊂ µ−1

a2
((J(λ))

U). Since (J(λ1))
U has codi-

mension 1 in (A(λ1))
U , it follows µ−1

a2
((J(λ))

U) has codimension at most
1 in (J(λ1))

U . On the other hand, µ−1
a2

((J(λ))
U) ( A(λ1) (otherwise

a1 · a2 ∈ J(λ)). This shows that (J(λ1))
U = µ−1

a2
((J(λ))

U), and the latter
space is homogeneous since J(λ) is homogeneous. �

Definition III.5.5. For n ≥ 2 and l ∈ {0, 1, . . . , d} define Cd
n;l :=

(Q(d), Q(d))l · (Q(d))n−2, which is a covariant of degree n and of co-order
l. In addition, we let Cd

1;0 := Q(d).

If l is odd, then Cd
n;l = 0, since (Q(d), Q(d))l = 0 according to Remark

III.2.19. On the other hand, if l ∈ {0, 2, . . . , d}, then (Q(d), Q(d))l 6= 0
according to Lemma III.3.5; and using Remark III.4.1, we see that
Cd
n;l 6= 0 for l ∈ {0, 2, . . . , d}.
Let I(S(d)) ⊂ Rd be the ideal of the minimal sheet S(d) ⊂ V (d).

Lemma III.5.6. a) Jdodd ⊂ I(S(d)).
b) Cd

n;l 6⊂ I(S(d)) for all n ≥ 2 and for all l ∈ {0, 2, . . . , d}.
Proof. a) This follows either from the discussion in Section II.2 or di-
rectly: Suppose that Jdodd 6⊂ I(S(d)). Then there exists a homogeneous
covariant V ⊂ Rd of degree n and of odd co-order l that does not vanish
on S(d). Now V is of order k = nd − 2l ≡ 2 mod 4. This covariant
yields a non-zero SL2-equivariant morphism ϕ : S(d) → V (k). Now
xd/2yd/2 is stable underNSL2(T ), hence so is its image ϕ(xd/2yd/2). How-
ever, the only NSL2(T )-stable point of V (k) is 0 because k ≡ 2 mod 4.
This shows that ϕ(S(d)) = {0}, a contradiction. Hence Jdodd ⊂ I(S(d)).

b) Suppose that (Q(d), Q(d))l · (Q(d))n−2 = Cd
n;l ⊂ I(S(d)). Let 0 6=

f ∈ ((Q(d), Q(d))l)U . Then f · (ad)n−2 ∈ (Cd
n;l)

U , and hence f · (ad)n−2 ∈
I(S(d)). Since S(d) is irreducible, the ideal I(S(d)) is prime, and it
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follows that either ad ∈ I(S(d)) or f ∈ I(S(d)). First, ad(x
d) = 1, and

so ad 6∈ I(S(d)). Moreover, f 6∈ I(S(d)) according to Lemma III.3.5.
This is a contradiction, and thus Cd

n;l 6⊂ I(S(d)). �

Lemma III.5.7. Let n ≥ l. Then

(III.5.1) Rd
(n,nd−2l) =

{

(Jdodd)(n,nd−2l) if l is odd,
(Jdodd)(n,nd−2l) ⊕ Cd

n;l if l ∈ {0, 2, . . . , d}.

Proof. Let J d
odd ⊂ Dd be the transvection-stable ideal corresponding

to Jdodd, and let n ∈ N. By definition of Jdodd, we see that (J d
odd ∩

Dd
n;0) = {0}. Since dimk(Dd

n;0) = 1, it follows that J d
odd ∩ Dd

n;0 has

codimension 1 in Dd
n;0. By definition, Dd

n+1;1 ⊂ J d
odd. Since Φ from

Proposition III.5.3 maps homogeneous elements in J d
odd∩(Dd

n;0⊕Dd
n+1;1)

to elements in J d
odd ∩ Dd

n+2;2, Proposition III.5.3 implies that J d
odd ∩

Dd
n+2;2 has codimension at most 1 in Dd

n+2;2. Going on inductively,

we find that J d
odd ∩ Dd

n+l;l has codimension at most 1 in Dd
n+l;l. With

Lemma III.5.6 b) the claim now follows if n ≥ 2. For n < 2 the claim
is obviously also true. �

The d-digraph corresponding to Cd
n;l is (◦, ◦)l⊔⊔n−2

i=1 ◦. For later use,
the following can readily be deduced from the proof of the preceding
lemma:

Remark III.5.8. Let l be an even integer, and let l′ ∈ {0, 2, . . . , d}.
Let n ≥ l′, and let

D = (◦, ◦)l′ ⊔ ((◦, ◦)2 ⊔ (◦, ◦)2 ⊔ . . . ⊔ (◦, ◦)2) ⊔
n′

⊔

i=1

◦,

where the number of (◦, ◦)2 and n′ are chosen such that D ∈ Dd
n;l.

Using Lemma III.5.7 and using Proposition III.5.3 as in the proof of
Lemma III.5.7, one sees that for n large enough either (J d

odd)n;l = Dd
n;l,

or D+ (J d
odd)n;l spans Dd

n;l/(J d
odd)n;l. In particular, it follows that for a

given D′ ∈ Dd
n;l we have

D′ + J d
odd = γD + J d

odd

for some γ ∈ k, provided that n ∈ N is large enough.

Lemma III.5.9. There exists N ∈ N such that for all n ≥ N the
following hold:

Rd
(n,nd−2l) =

{

(Jdodd,+)(n,nd−2l) if l 6∈ {0, 2, . . . , d/2 − 2}
(Jdodd,+)(n,nd−2l) ⊕ Cd

n;l if l ∈ {0, 2, . . . , d/2 − 2}.

Proof. Let J d
odd,+ ⊂ Dd be the ideal corresponding to Jdodd,+. Lemma

III.5.7 and the fact that Cd
n;d/2 ⊂ Jdodd,+ imply that Dd

n+d/2−1,d/2−1 ⊕
Dd
n+d/2,d/2 ⊂ J d

odd,+ for all n ≥ 2. Proposition III.5.3 b) implies that
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there exists N ∈ N such that Dd
n;l ⊂ J d

odd,+ for all n ≥ N and for all
l ≥ d/2.

Suppose that Cd
n;l ⊂ Jdodd,+ for some n ≥ 2 and for some even l <

d/2. As in the proof of Lemma III.5.7, this implies that there exists
N ′ ∈ N such that Dd

n′;l′ ⊂ Jdodd,+ for all n′ ≥ N ′ and for all l′ ≥ l. Let

k := N ′d − 2l. Then Rd
(k) =

⊕

n≥N ′ Rd
(n,k) ⊂ Jdodd,+. This implies that

hRd/Jd
odd,+

(k) = 0. On the other hand, hRd/Jd
odd,+

(k) ≥ h′d(k) = 1, as

noted after Definition III.5.1. This is a contradiction and implies that
Cd
n;l 6⊂ Jdodd,+ for all n ≥ N ′ and for all even l < d/2. The claim now

follows. �

Theorem III.5.10. a) Let I0 ⊂ Rd be the ideal defining X0
d ⊂ V (d)

(as defined in Definition III.3.3 and Remark III.3.4). Then I0 is
homogeneous, and

(III.5.2)

Rd
(0,0) ⊕Rd

(1,d) ⊕
(

Rd
(2,4) ⊕ . . .⊕Rd

(2,d−4)

)

⊕
⊕

n≥2

(

Cd
n;0 ⊕ Cd

n;2 ⊕ Cd
n;d/2−2

)

is an SL2-stable homogeneous complement of I0 in Rd.
b) Let I ⊂ Rd be an SL2-stable ideal with hRd/I = h′d that defines a a

closed subscheme of V (d) having Xd as underlying variety. Then
I(k) = I0

(k) for all k 6= {4, 8, . . . , d− 4}.
c) The ideal Jdodd,+ is contained in both I0 and I, and has finite

codimension in both I0 and I. Moreover, (ad)
nI ⊂ Jdodd,+ and

(ad)
nI0 ⊂ Jdodd,+ for all n large enough.

Proof. c) We have already noted right after Definition III.5.1 that
Jdodd,+ ⊂ I. Combining Lemma III.5.9 with the facts that Jdodd,+ ⊂ I

and that hRd/I = h′d, one sees that I(n,k) = (Jdodd,+)(n,k) for all k and
for all n ≥ N (with N as in Lemma III.5.9). If now i ∈ I, then
(ad)

N i ∈ ⊕

n≥N,k∈N
I(n,k) =

⊕

n≥N,k∈N
(Jdodd,+)(n,k) ⊂ Jdodd,+, and the

claim follows. (Since this holds for any I as above, it holds in particu-
lar for I = I0.)

b) Consider (III.5.2). Clearly Rd
(0,0) 6⊂ I(S(d)) and Rd

(1,d) 6⊂ I(S(d)).

From Lemma III.3.5 a) it follows that also Rd
(2,4), . . . , Rd

(2,d−4) don’t

vanish on S(d). Finally, Lemma III.5.6 shows that the covariants Cd
n;l

are not in I(S(d)).
Let k be a multiple of 4. Then there exists a unique covariant V of

order k in the sum (III.5.2). Let n be its degree. Since V (d) possesses
no covariants of degree n′ < n and of order k, since V 6⊂ I(S(d)), and
since S(d) is multiplicity-free as Gm × SL2-variety, it follows that

O(S(d))(k) = (V + I(S(d)) ⊕
⊕

n′>n

O(S(d))(n′,k).
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Let I ′0 ⊂ O(S(d)) be the ideal defining X0
d as closed subscheme of S(d)

(cf. Remark III.3.4). The description of I ′0 in Section II.2 shows that
V +I(S(d) 6⊂ I ′0, or that (I ′0)(k) =

⊕

n′>nO(S(d))(n′,k). Hence it follows
that V 6⊂ I0. This shows that the sum (III.5.2) is contained in an SL2-
stable complement of I0 in Rd. Since hRd/I0 = h′d and since the sum
(III.5.2) is isomorphic to

⊕

k≥0 V (4k) as SL2-module, it follows that

(III.5.2) is an SL2-stable complement of I0 in Rd.
b) If k is not a multiple of 4, then I(k) = I0

(k) = Rd
(k) anyway, and

there is nothing to show. So let k ≥ d be a multiple of 4. According to
c) there exists K ∈ N such that I0

(k′) = (Jdodd,+)(k′) = I(k′) for all k′ ≥ K.

We now apply Lemma III.5.4: Let Cd
n;l be the covariant of order k in

the sum (III.5.2), and choose 0 6= r ∈ (Cd
n;l)

U ⊂ (Rd
(n,k))

U . Choose

n0 ∈ N such that k + n0d ≥ K. Now hRd/I(k) = hRd/I(k + n0d) = 1.

Furthermore, I(k+n0d) = I0
(k+n0d)

= (Jdodd,+)(k+n0d), and this is homo-

geneous in Rd
(k+n0d)

. Finally, r ∈ (Rd
(n,k))

U and (ad)
n0 ∈ (Rd

(n0,n0d)
)U

are both homogeneous, but r · (ad)
n0 ∈ (Cd

n+n0;l)
U 6⊂ I, and hence

r · (ad)
n0 6∈ I. Now Lemma III.5.4 implies that I(k) = {f ∈ R(k) |

f · (ad)n0 ∈ I(k+n0d)} = I0
(k). �

Remark III.5.11. From (III.5.2) it follows immediately that I0
(k) =

⊕

n≥3R
d
(n,k) for all k ∈ {4, 8, . . . , d− 4}.

Remark III.5.12. Let I ⊂ Rd be as in Theorem III.5.10. From Theo-
rem III.5.10 it follows that all homogeneous covariants of V (d) of degree
large enough and of co-order l ≥ d/2 are contained in I.

In order to describe I, it thus suffices to study the isotypic compo-
nents of 4, 8, . . . , d−4. (The philosophy of reducing the moduli-problem
to finitely many isotypic components can already be encountered in
[HS04].)

III.6. Deformations of orbits in minimal sheets, Part II

Let Rd still be Sym(V (d)∗), and let Rd
(k) and Rd

(n,k) be as in the
preceding section. In this section many computations have been per-
formed with aid of a computer. These computations can be found in
Appendix A. Let d still be a multiple of 4.

Lemma III.6.1. Let X = SL2 ·γxd/2yd/2 ⊂ V (d) for some 0 6= γ ∈ k
(with reduced structure). Then

dimk(TX HilbSL2

h′
d

(V (d))) = 1.

Proof. It is no restriction to assume that γ = 1. Proposition 1.15 in
[AB05] applies and states that:

TX HilbSL2

h′
d

(V (d)) ∼= [V (d)/sl2 · xd/2yd/2]NSL2
(T ).



58 Examples for SL2

To compute sl2 · xd/2yd/2 observe that
(

1 + ǫh ǫe
ǫf 1 − ǫh

)

· xd/2yd/2 =xd/2yd/2−

ǫ
d

2
(exd/2−1yd/2+1 + fxd/2+1yd/2−1)

(with ǫ2 = 0). Hence sl2 · xd/2yd/2 = k · xd/2−1yd/2+1 ⊕ k · xd/2+1yd/2−1.
Now

V (d) = kxd/2yd/2 ⊕
d/2−1
⊕

i=0

(kxiyd/2−i ⊕ kxd/2−iyi)

is a decomposition into NSL2(T )-stable subspaces. Hence

[V (d)/sl2 · xd/2yd/2]NSL2
(T ) ∼= (kxd/2yd/2)NSL2

(T )⊕
d/2−2
⊕

i=0

(kxiyd/2−i ⊕ kxd/2−iyi)NSL2
(T )

= kxd/2yd/2. �

Proposition III.6.2. There is an isomorphism

HilbSL2

h′
d

(V (d))red
∼= A1 ∪ HilbSL2

h′
d

(N (d))red,

and A1 and HilbSL2

h′
d

(N (d)) intersect in exactly one point p, correspond-

ing to X0
d . Furthermore, HilbSL2

h′
d

(V (d)) is smooth in A1 \ {p}.

Proof. First, Corollary II.3.4 states that

HilbSL2

h′
d

(V (d))red = HilbSL2

h′
d

(S(d))0
red ∪ HilbSL2

h′
d

(N (d))red

for an irreducible component HilbSL2

h′
d

(S(d))0
red of HilbSL2

h′
d

(S(d))red. Us-

ing Theorem III.3.2, we see that HilbSL2

h′
d

(S(d))0
red

∼= A1, and we find

that
HilbSL2

h′
d

(V (d))red
∼= A1 ∪ HilbSL2

h′
d

(N (d))red.

Further, the two components intersect in p. The last statement can
finally be deduced from Lemma III.6.1. �

The point p corresponds to X0
d , which is non-reduced for d > 4.

This makes matters slightly more complicated, because we cannot use
[AB05], Proposition 1.15, to determine the dimension of the Zariski
tangent-space Tp HilbSL2

h′
d

(V (d)). Instead, we use [AB05], Proposition

1.13, which states that

TI HilbSL2

h′
d

(V (d)) ∼= HomSL2

Rd (I, Rd/I)

for an SL2-stable I ⊂ Rd with hRd/I = h′d.

Before investigating HilbSL2

h′
d

(V (d)) for some values of d, we state

another auxiliary result:
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Lemma III.6.3. Let I ⊂ Rd be an SL2-stable ideal with hRd/I = h′d and

with Spec(Rd/I)red = Xd. Further, let ϕ ∈ HomSL2

Rd (I, Rd/I). Then the
restriction ϕ|I(k)

is determined by ϕ|Rd
(2,d)

for all k 6∈ {4, 8, . . . , d− 4}.

Proof. Step 1. Let k ∈ N \ {4, 8, . . . , d− 4}. If k is not a multiple of 4,
then (Rd/I)(k) = 0 and ϕ|I(k)

= 0.
Suppose now that k ≥ d is a multiple of 4, let n ∈ N such that

(n − 1)d < k ≤ nd, and let l := (nd − k)/2. Recall from Theorem
III.5.10 that

(Rd/I)(k) = Cd
n;l.

In particular, this shows that the map µk : (Rd/I)U(k) → (Rd/I)U(k+d)
defined by µk(r + I(k)) = adr + I(k+d) is an isomorphism. For r ∈ I(k),
there exists n0 ∈ N such that r(ad)

n0 ∈ Jdodd,+, thanks to Theorem
III.5.10 c). Hence ϕ(r(ad)

n0) is determined by ϕ|Jd
odd,+

. But

ϕ(r(ad)
n0) = (ad)

n0ϕ(r) = (µk+(n0−1)d ◦ . . . ◦ µk)(ϕ(r)).

Because each µk+md is an isomorphism, it follows that

ϕ(r) = (µk+(n0−1)d ◦ . . . ◦ µk)−1(ϕ(r(ad)
n0)),

which is determined by ϕ|Jd
odd,+

.

Now, Jdodd,+ is generated as Rd-SL2-module by covariants of odd co-

orders and by Rd
(2,d). Since any covariant of odd co-order is in the kernel

of ϕ anyway, we conclude that ϕ|Jd
odd,+

is determined by ϕ|Rd
(2,d)

. The

claim now follows. �

Forms of degree 4. As a warm-up exercise, we start with a well-
known example, which can be found in [AB05] Example 1 on page 99,
or in [Ja05], Théorème 1.1. Let d = 4.

Proposition III.6.4. The inclusion ι : HilbSL2

h′4
(S(4)) → HilbSL2

h′4
(V (4))

is an isomorphism.

Proof. Let I ⊂ R4 be an SL2-stable ideal with Hilbert function hRd/I =
h′4 and with Spec(R4/I)red = X4. Then Theorem III.5.10 c) implies
that I = I0. Hence ι is bijective.

In view of Proposition III.6.2 the proof is completed once we have
shown that dimk TI0 HilbSL 2

h4
(V (4)) = dimk(HomSL2

R4 (I0, R4/I0)) ≤ 1.
Instead of computing the tangent space directly with [AB05], Propo-
sition 1.15, we make use of Lemma III.6.3. Applied with I = I0 it
states that ϕ ∈ HomSL2

R4 (I0, R4/I0) is determined by ϕ|R4
(2,4)

. Hence

dimk(HomSL2

R4 (I0, R4/I0)) ≤ dimk(HomSL2

R4 (R4
(2,d), R

4/I0)).

With Schur’s Lemma it follows that

dimk(HomSL2

R4 (R4
(2,4), R

4/I0)) = 1. �
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Forms of degree 8.

Theorem III.6.5. The inclusion HilbSL2

h′8
(S(8)) → HilbSL2

h′8
(V (8)) is an

isomorphism.

Proof. Let I ⊂ R8 be an SL2-stable ideal with Hilbert function hRd/I =
h′8 and with Spec(R8/I)red = X8. In view of Proposition III.6.2 it
suffices to show that (a) I = I0 and that (b) dimk TI0 HilbSL 2

h8
(V (8)) ≤

1.
a) Theorem III.5.10 c) implies that I(k) = I0

(k) for all k 6= 4. There-

fore, it suffices to verify that I(4) = I0
(4) (which equals

⊕

n≥3R
8
(n,4)

according to Remark III.5.11). Theorem III.5.10 b) and c) imply that
R8

(n,k) ⊂ I for all (n, k) with n ≥ 3 and k ∈ {κ | 0 ≤ κ ≤ 8n− 6} \ {4}.
A computer-based calculation (see Appendix A) shows that R8

(3,4) is in

the SL2-stable ideal generated by R8
(2,8) ⊂ I. Hence

⊕18
k=0R

8
(3,k) ⊂ I.

Since R8
(n+1,4) is in the SL2-stable ideal generated by

⊕12
k=0R

8
(n,k), it

follows inductively that R8
(n,4) ⊂ I for all n ≥ 4, which shows that

I(4) =
⊕

n≥3

R8
(n,4) = I0

(4).

b) Lemma III.6.3 implies that

dimk(HomSL2

R8 (I0, R8/I0)) ≤ dimk(HomSL2

R8 (R8
(2,8), R

8/I0))

+ dimk(HomSL2

R8 (I0
(4), R

8/I0)).
(III.6.1)

The proof of a) reveals that I0
(4) is contained in the SL2-stable ideal

generated by the covariants in I0 of order 6= 4. Hence (III.6.1) simplifies
to

dimk(HomSL2

R8 (I0, R8/I0)) ≤ dimk(HomSL2

R8 (R8
(2,8), R

8/I0)) = 1,

where we used Schur’s lemma for the equality. �

Forms of degree 12.

Theorem III.6.6. Let p ∈ HilbSL2

h′12
(S(12)) be the point corresponding

to X0
12. The natural morphism HilbSL2

h′12
(S(12)) → HilbSL2

h′12
(V (12))red is

an isomorphism, and HilbSL2

h′12
(V (12)) is smooth in the complement of

p. The invariant Hilbert scheme HilbSL2

h′12
(V (12)) is not reduced in p.

Proposition III.6.7. Let I ⊂ R12 be an SL2-stable ideal with Hilbert
function hR12/I = h′12 and with Spec(R12/I)red = X12. Then I = I0.

Proof. Theorem III.5.10 implies that I(k) = I0
(k) for all k 6∈ {4, 8}.

Therefore, it suffices to verify that I(4) = I0
(4) (=

⊕

n≥3R
12
(n,4) according

to Remark III.5.11) and that I(8) = I0
(8) (=

⊕

n≥3R
12
(n,8) according to

Remark III.5.11).
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Step 1. We prove by induction on n that

(III.6.2)
12n−10
⊕

k=0

R12
(n,k) ⊂ I

for all n ≥ 4. Recall from Theorem III.5.10 that R12
(n,k) ⊂ I for all (n, k)

with n ≥ 2 and k ∈ {κ | 0 ≤ κ ≤ 12n − 10} \ {4, 8}. A computer-
based calculation shows that R12

(4,4) ⊕R12
(4,8) is in the ideal generated by

R12
(3,0) ⊕R12

(3,2) ⊕R12
(3,6) ⊕R12

(3,10) ⊕R12
(3,12) ⊕R12

(3,14) ⊕R12
(3,16) ⊕R12

(3,18) ⊂ I.

This shows that
⊕38

k=0R
12
(4,k) ⊂ I. Since R12

(n+1,4)⊕R12
(n+1,8) is in the ideal

generated by
⊕20

k=0R
12
(n,k), it follows inductively that R12

(n,4)⊕R12
(n,8) ⊂ I

for all n ≥ 4, which proves (III.6.2).
Step 2. A computer-based calculation shows that R12

(3,4) is in the ideal

generated by R12
(2,12). This, together with R12

(0,4) ⊕R12
(1,4) = {0} and with

R12
(3,4)

∼= V (4), shows that I(4) =
⊕

n≥3R
12
(n,4).

Step 3. We claim that

I(8) =
⊕

n≥3

R12
(n,8).

What do we know on R12
(8) (see Appendix A)?

a) First, R12
(0,8) = R12

(1,8) = {0}, R12
(2,8)

∼= V (8) and R12
(3,8)

∼= V (8) ⊕
V (8).

b) Step 1 implies that R12
(n,8) ⊂ I for n ≥ 4.

c) Finally, R12
(3,8) is in the ideal generated by R12

(2,8) ⊕R12
(2,12).

Since R12
(2,12) ⊂ I, it follows that C := (R12

(2,12), R
12
(1,12))

8 ⊂ I. Let further

C ′ := (R12
(2,8), R

12
(1,12))

6. Then R12
(3,8) = C ⊕ C ′, and both C 6= 0 and

C ′ 6= 0 thanks to a) and c).
We claim that C ′ ⊂ I. There exists a covariant C ′′ ⊂ R12

(2,8) ⊕ C ′

contained in I. Then (C ′′, R12
(1,12))

6 ⊂ I ∩ (R12
(3,8) ⊕ R12

(4,8)). Let 0 6=
r3 + r4 ∈ ((C ′′, R12

(1,12))
6)U with r3 homogeneous of degree 3 and r4

homogeneous of degree 4. Because r4 ∈ R12
(4,8) ⊂ I anyway, it follows

that r3 ∈ I. If C ′′ = C ′, then C ′ ⊂ I. Otherwise, if C ′′ 6= C ′, then 0 6=
r3 ∈ I. But r3 ∈ (C ′)U , and it follows that C ′ ⊂ I. In any case C ′ ⊂ I,
and hence R12

(3,8) = C ⊕ C ′ ⊂ I. We see that I(8) =
⊕

n≥3R
12
(n,8). �

Proposition III.6.8. dimk TI0 HilbSL2

h′12
(V (12)) ≤ 2.

Proof. The proof of Proposition III.6.7 shows that I0 is the SL2-stable
ideal generated by the covariant C ′ = (R12

(2,8), R
12
(1,12))

6 ⊂ R12
(3,8) and by

all covariants in I0 of order different from 4 and 8. Hence Lemma
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III.6.3 implies that

dimk(HomSL2

R12(I
0, R12/I0)) ≤ dimk(HomSL2

R12(R
12
(2,12), R

12/I0))

+ dimk(HomSL2

R12(C
′, R12/I0)) = 2,

(III.6.3)

where we used again Schur’s Lemma for the equality. �

Proposition III.6.9. dimk TI0 HilbSL2
hS12

(V (12)) ≥ 2.

Proof. Step 1. We have seen in the proof of Proposition III.6.8 that the
covariants of order 8 play a special role. Recall that R12

(3,8) = C ⊕ C ′

with C = (R12
(2,12), R

12
(1,12))

8 and C ′ = (R12
(2,8), R

12
(1,12))

6. Decompose I0 as

I0 = I ′⊕C ′, where I ′ is the SL2-stable ideal generated by all covariants
of order 6= 4, 8. We claim that there is a homomorphism 0 6= ϕ ∈
HomSL2

R12(I
0, R12/I0) with ϕ|I′ = 0. Let 0 6= ϕ0 ∈ HomSL2(C ′, R12/I0),

and define

ϕ : I0 = C ′ ⊕ I ′ → R12/I0, c′ + i′ 7→ ϕ0(c
′).

Then ϕ is SL2-equivariant. To see that ϕ is a homomorphism of R12-
modules, let i = c′ + i′ ∈ I with c′ ∈ C ′ and with i′ ∈ I ′, and let
r =

∑

n∈N
rn ∈ R12 with rn homogeneous of degree n. Then

ϕ(ri) = ϕ(r0c
′ +
∑

n>0

rnc
′ + ri′) = ϕ(r0c

′) = r0ϕ(c′).

On the other hand,

rϕ(i) = rϕ(c′ + i′) = rϕ(c′) = r0ϕ(c′) +
∑

n>0

rnϕ(c′) = r0ϕ(c′).

This shows that ϕ is a homomorphism of R12-modules.
Step 2. We construct a second tangent vector in HomSL2

R12(I
0, R12/I0)

that is linearly independent from ϕ constructed above. Whereas ϕ de-
scribes an infinitesimal deformation that cannot be seen on the variety
underlying the Hilbert scheme, we now construct ‘the’ tangent vector
coming from the closed subscheme HilbSL2

h′12
(S(12)) of HilbSL2

h′12
(V (12)).

Let D = k[t]/(t2). Recall that TI0(HilbSL2

h′12
(V (12))) consists of those

SL2-stable ideals J0 ⊂ D ⊗R12 with the property that

a) (D ⊗R12)/(J0, t) = I0, and that
b) (D ⊗R12)/J0 is flat over D.

If J0 is such an ideal and if u + tv ∈ J0, then the corresponding
homomorphism in HomSL2

R12(I
0, R12/I0) maps u to v + I0.

We now construct such an ideal J0. Let J̃0 ⊂ k[t]⊗R12 be the ideal
of UnivSL2

h′12
(S(12)) ⊂ A1 × V (12). Then J0 := J̃0/(t2) satisfies a) and

b). We claim that

5a0t+ 5082 · (−10a2
9 + 15a10a8 − 6a11a7 + a12a6) ∈ J̃0.
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Even though this can be verified with the help of a computer, we give a
proof here. Consider the covariant Q(12) =

∑12
i=0 ai

(

12
i

)

xiy12−i and the
transvectant

(Q(12), Q(12))6 = 2(−10a2
9 + 15a10a8 − 6a11a7 + a12a6)x

12

+
12
∑

j=1

ϕj(ai)x
jy12−j.

This shows that −10a2
9 + 15a10a8 − 6a11a7 + a12a6 is a U -invariant T -

eigenvector to the weight 12. The same holds for a12. For (σ, τ) ∈ k2

consider the binary form

vσ,τ = τx6(σx+ y)6

= τ(x6y6 + 6σx7y5 + 15σ2x8y4 + 20σ3x9y3 + 15σ4x10y2 + 6σ5x11y + σ6x12)

∈ SL2 ·τx6y6

Now a12(vσ,τ ) = τσ6, a11(vσ,τ ) = 6
12
τσ5, a10(vσ,τ ) = 15

66
τσ4, a9(vσ,τ ) =

20
220
τσ3, a8(vσ,τ ) = 15

495
τσ2, a7(vσ,τ ) = 6

792
τσ, and a6(vσ,τ ) = 1

924
τ . Hence

(−10a2
9 + 15a10a8 − 6a11a7 + a12a6)(vσ,τ )

=

(

−10
202

2202
+ 15

152

66 · 495
− 6

62

12 · 792
+

1

924

)

τ 2σ6 = − 5

5082
τ 2σ6.

Since (τ, τx6y6) ∈ UnivSL2

h′12
(S(12)) ⊂ A1 × V (12), we conclude that

f(vσ,τ ) = 0 for all (σ, τ) ∈ k2 for

f = 5ta12 + 5082(−10a2
9 + 15a10a8 − 6a11a7 + a12a6).

Because f is a U -invariant T -eigenvector and f(gτx6y6) = 0 for all g ∈
U− =

{(

1
s 1

)}

, we find that f(gτx6y6) = 0 for all g ∈ UTU− and

for all τ ∈ k. Since UTU− is dense in SL2 (as one readily verifies), the
set {(τ, gτx6y6) | g ∈ UTU−, τ ∈ k} is dense in UnivSL2

h′12
(S(12)), and we

conclude that f ∈ J̃0. Now f corresponds to a ψ ∈ HomSL2

R12(I
0, R12/I0)

which maps

5082 · (−10a2
9 + 15a10a8 − 6a11a7 + a12a6) ∈ R12

(2,12)

to 0 6= 5a16 + I0 ∈ R12/I0. Since ϕ and ψ are linearly independent
(ϕ|R12

(2,12)
= 0 6= ψ|R12

(2,12)
), this shows that dimk(HomSL2

R12(I
0, R12/I0)) ≥

2. �

Proof of Theorem III.6.6. Lemma II.3.2 and Propositon III.6.7 imply
that the inclusion morphism HilbSL2

h′12
(S(12)) → HilbSL2

h′12
(V (12)) is bijec-

tive. Thanks to Proposition I.2.1 we now see that HilbSL2

h′12
(S(12)) =

HilbSL2

h′12
(V (12))red.
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Moreover, HilbSL2

h′12
(V (12)) cannot be reduced since its Zariski-tangent

space at the ideal I0 is two-dimensional. At all other closed points
HilbSL2

h′12
(V (12)) is smooth according to Lemma III.6.1. �

Forms of degree 16. There is the following description for the part
of the invariant Hilbert scheme coming from the nullcone:

Proposition III.6.10. There are isomorphisms

HilbSL2

h′16
(N (16))red

∼= P1 ∪ P1,

and the two copies of P1 intersect in a closed point p corresponding to
X0

16.

The ultimate goal of this section consists in proving the following
result:

Theorem III.6.11. a) There are isomorphisms

HilbSL2

h′16
(V (16))red

∼= HilbSL2

h′16
(S(16)) ∪ HilbSL2

h′16
(N (16))red

∼= A1 ∪ P1 ∪ P1,

and the three irreducible components intersect in one closed point
p corresponding to X0

16.
b) The invariant Hilbert scheme HilbSL2

h′16
(V (16)) is smooth in the

complement of p.
c) The action of Gm on HilbSL2

h′16
(V (16)) induced by the Gm-action

on V (16) has three closed fixed points: The point p, and on each
copy of P1 one further closed fixed point.

Let I ′ be the intersection of all SL2-stable ideals I ⊂ R16 with
Hilbert function hR16/I = h′16 and with Spec(R16/I)red = X16. De-

fine Y := Spec(R/I ′). Then the induced morphism HilbSL2

h′16
(Y ) →

HilbSL2

h′16
(N (16)) is bijective.

Lemma III.6.12. a) The SL2-scheme Y is multiplicity-finite. Its
Hilbert function is given by hY (k) = h′16(k) for all k 6= 8, 12, and
hY (8) = hY (12) = 2.

b) Let further Y8 be the closed SL2-stable subscheme of Y defined by
the ideal I ′8 := I ′ ∪⊕n≥3R

16
(n,8) ⊂ R16. Similarly, let Y12 be the closed

SL2-stable subscheme of Y defined by the ideal I ′12 := I ′∪⊕n≥3R
16
(n,12).

Then HilbSL2

h′16
(Y )red = HilbSL2

h′16
(Y8)red ∪HilbSL2

h′16
(Y12)red is the decomposi-

tion into irreducible components, and the components intersect in one
closed point.

c) There are isomorphisms HilbSL2

h′16
(Y8) ∼= HilbSL2

h′16
(Y12) ∼= P1.

Proof of Proposition III.6.10. Lemma III.6.12 implies that

HilbSL2

h′16
(N (16))red

∼= P1 ∪ P1
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and that the two projective lines intersect in one closed point. �

Proof of Lemma III.6.12. Let I ⊂ R16 be any SL2-stable ideal such
that Spec(R16/I)red = X16 and with Hilbert function hR16/I = h′16.
Theorem III.5.10 implies that I(k) = I0

(k) for all k 6∈ {4, 8, 12}. There-
fore, it suffices to examine I(4), I(8), and I(12).

Step 1. We prove by induction on n that

(III.6.4)
16n−14
⊕

k=0

R16
(n,k) ⊂ I

for all n ≥ 4. For the proof recall from Theorem III.5.10 that R16
(n,k) ⊂ I

for all n ≥ 3 and for all k ∈ {κ | 0 ≤ κ ≤ 16n − 14} \ {4, 8, 12}. A
computer-based calculation shows that R16

(4,4) ⊕R16
(4,8) ⊕R16

(4,12) is in the

ideal generated by R16
(3,14) ⊕R16

(3,16) ⊕R16
(3,18) ⊕R16

(3,20) ⊕R16
(3,22) ⊂ I. This

shows that
⊕50

k=0R
16
(4,k) ⊂ I. Since R16

(n+1,4) ⊕ R16
(n+1,8) ⊕ R16

(n+1,12) is

in the SL2-stable ideal generated by
⊕28

k=0R
16
(n,k) it follows inductively

that R16
(n,4) ⊕R16

(n,8) ⊕R16
(n,12) ⊂ I for all n ≥ 4, which proves (III.6.4).

Step 2. A computer-based calculation shows that R16
(3,4) is in the ideal

generated by R16
(2,16). This, together with R16

(0,4) ⊕R16
(1,4) = {0} and with

R16
(3,4)

∼= V (4), shows that I(4) =
⊕

n≥3R
16
(n,4). This is the same as I0

(4)

according to Remark III.5.11.
Step 3. We are left to examine I(8) and I(12), which turn out to be

weirdly entangled. We claim that
(III.6.5)

I(8) = I0
(8)

(

=
⊕

n≥3

R16
(n,8)

)

or I(12) = I0
(12)

(

=
⊕

n≥3

R16
(n,12)

)

.

What do we know on R16
(8) (see Appendix A)?

(1) First, R16
(0,8) = R16

(1,8) = {0}, R16
(2,8)

∼= V (8) and R(3,8)
∼= V (8) ⊕

V (8).
(2) According to the first step, R16

(n,8) ⊂ I for n ≥ 4.

(3) A computer-based computation shows that the two covariants
(R16

(2,8), R
16
(1,16))

8 and (R16
(2,16), R

16
(1,16))

12 coincide. Denote this co-
variant by C.

(4) Let C ′ = (R16
(2,12), R

16
(1,16))

10. A computer-based computation shows

that R16
(3,8) = C ⊕ C ′.

Hence there are two covariants V (8) ∼= C8
1 ⊂ R16

(2,8) ⊕R16
(3,8) and V (8) ∼=

C8
2 ⊂ R16

(2,8) ⊕ R16
(3,8) such that I(8) = C8

1 ⊕ C8
2 ⊕⊕n≥4R

16
(n,8). Because

C ⊂ I, this yields:

(8): There exists a unique covariant

V (8) ∼= C8 ⊂ R16
(2,8) ⊕ C ′
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such that C8 ⊂ I. Further, the choice of C8 determines I(8).

This proves in particular that hY (8) ≤ 2.
Bearing this in mind, we proceed with R16

(12). Similarly as above, one
has:

(1) First, R16
(0,12) = R16

(1,12) = {0}, R16
(2,12)

∼= V (12) and R16
(3,12)

∼=
V (12) ⊕ V (12) ⊕ V (12).

(2) According to the first step R16
(n,12) ⊂ I for n ≥ 4.

(3) Consider C ′′ = (R16
(2,8), R

16
(1,16))

6, C ′′′ = (R16
(2,12), R

16
(1,16))

8, and C ′′′′ =

(R16
(2,16), R

16
(1,16))

10. Then R16
(3,12) = C ′′ ⊕ C ′′′ ⊕ C ′′′′.

Since C ′′′′ ⊂ I, it follows that there is are two covariants V (12) ∼=
C12

1 ⊂ R(2,12) ⊕ C ′′ ⊕ C ′′′ and V (12) ∼= C12
2 ⊂ R16

(2,12) ⊕ C ′′ ⊕ C ′′′ such
that

I(12) = C12
1 ⊕ C12

2 ⊕ C ′′′′ ⊕
⊕

n≥4

R16
(n,12).

If C12
1 ⊕ C12

2 ⊂ R16
(3,12), then I(12) =

⊕

n≥3R
16
(n,12), and clearly C ′′′ ⊂ I.

On the other hand, if C12
1 6⊂ R16

(3,12), then consider (C12
1 , R

16
(1,16))

8, which

is a covariant in C ′′′ ⊕R16
(4,12) not contained in R16

(4,12). Since R16
(4,12) ⊂ I

according to (2), we conclude that C ′′′ ⊂ I. In any of these cases
C ′′′ ⊂ I, and hence:

(12): There exists a unique covariant

C12 ⊂ R16
(2,12) ⊕ C ′′

such that C12 ⊂ I. Further, the choice of C12 determines I(12).

This proves in particular that hR16/I′(12) ≤ 2.
We now shall make use of the narrow relations between I(8) and I(12).

Suppose that C8 6⊂ C ′, and consider I ⊃ (C8, R16
(1,16))

6 ⊂ C ′′ ⊕ R16
(4,12).

Since R16
(4,12) ⊂ I and since (C8, R16

(1,16))
6 6⊂ R16

(4,12) by assumption, this

implies that C ′′ ⊂ I, which in turn implies that C12 = C ′′ or that
I(12) =

⊕

n≥3R
16
(n,12).

Vice versa, one sees in exactly the same manner that
⊕

n≥3R
16
(n,8) if

C12 6⊂ C ′′. This proves (III.6.5), that

(III.6.6) HilbSL2

h′16
(Y )red = HilbSL2

h′16
(Y8)red ∪ HilbSL2

h′16
(Y12)red,

and that the two latter intersect in the closed point given by the ideal
I0 with I0

(8) =
⊕

n≥3R
16
(n,8) and with I0

(12) =
⊕

n≥3R
16
(n,12). This point is

the point p of Theorem III.6.11 corresponding to X0
16.

Step 4. We still have to show c), that hR16/I′(8) = hR16/I′(12) = 2,
and that the decomposition in (III.6.6) is a decomposition into irre-
ducible components.

Suppose first that C12 = C ′′ or that I(12) =
⊕

n≥3R
16
(n,12). Then it is

easy to see that each choice of a covariant C8 ⊂ R16
(2,8)⊕C ′ yields an SL2-

stable ideal with Hilbert function h′16. Therefore hR16/I′(8) = 2 (recall
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that we already have proved that hR16/I′(8) ≤ 2) and HilbSL2

h′16
(Y12)red 6⊂

HilbSL2

h′16
(Y8)red.

Now Y8 is a multiplicity-finite SL2-scheme with hY8(k) = h′16(k) for
all k 6= 12, and with hY8(12) = 2. To give a family (X → S) ∈
HilbSL2

h′16
(Y8)(S) is the same as to give a locally free OS-submodule F

of OS ⊗ k2 of rank 1, because each choice of a covariant C8 ⊂ R(2,8) ⊕
C ′ yields an SL2-stable ideal with Hilbert function h′16. But for this
problem it is well-known that the corresponding moduli-scheme is a
projective line. (One can see this also as follows: Let v8

2 and v8
3 be

fixed non-zero U -invariant vectors in R16
(2,8) and C ′, respectively. Then

the choice of (λ : µ) ∈ P1(k) amounts to the choice of the covariant
C8 ⊂ R16

(2,8) ⊕ C ′ containing λv8
2 ⊕ µv8

3 as U -invariant vector.)

The case I(8) =
⊕

n≥3R
16
(n,8) is treated similarly. This completes the

proof of the lemma. �

Remark III.6.13. The proof of Lemma III.6.12 shows that the action
of Gm on HilbSL2

h′16
(N (16)) has exactly two closed fixed points on each

irreducible component P1 (corresponding to the homogeneous ideals)
and that p is such a fixed point.

The next object of interest is the Zariski tangent-space to the invari-
ant Hilbert scheme. Before it is computed in Lemma III.6.14, we start
with an observation. We write Q for Q(16), and we let C16

n;l be as above.

For all l ∈ {0, 2, . . . , 16} fix 0 6= u2;l ∈ (C16
2;l)

U . Remark III.5.8 implies
that for all n large enough

(III.6.7) (a16)
n · u2;12 + J16

odd = γ · (a16)
n−4 · u2;8 · (u2;2)

2 + J16
odd

for some 0 6= γ ∈ k. Further, Remark III.5.8 implies that for all n large
enough

(III.6.8) (a16)
n(((Q,Q)10, Q)10)U+J16

odd ⊂ k ·(a16)
n−11u2;8(u2;2)

6+J16
odd.

Lemma III.6.14. Let I ⊂ R16 be an SL2-stable ideal with Hilbert
function hR16/I = h′16 and with Spec(R16/I)red = X16.

a) If I 6= I0, then

dimk(TI HilbSL2

h′16
(V (16))) = 1.

b) Otherwise,

dimk(TI0 HilbSL2

h′16
(V (16))) = 3.

Proof. The ideal I is generated as SL2-stable ideal of R16 by covariants
of orders different from 4, 8, and 12 and by the covariants C8 and C12
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introduced above. Lemma III.6.3 implies that

dimk(TI HilbSL2

h′16
(V16)) ≤ dimk(HomSL2

R16(R
16
(2,16), R

16/I))

+ dimk(HomSL2

R16(C
8, R16/I))

+ dimk(HomSL2

R16(C
12, R16/I)) = 3.

(III.6.9)

Recall from Remark III.5.12 that all covariants of degree n of co-order
≥ 8 are contained in I if n is large enough. This will be used frequently
in the sequel.

a) The proof of Lemma III.6.12 showed that C8 = ((Q,Q)10, Q)10 or
C12 = ((Q,Q)12, Q)6. Suppose first that C12 = ((Q,Q)12, Q)6 and that
C8 6= ((Q,Q)10, Q)10. Then C12 is in the ideal generated by C8 and by
J16
odd,+. In this case, (III.6.9) simplifies to

dimk(TI HilbSL2

h′16
(V16)) ≤ dimk(HomSL2

R16(R
16
(2,16), R

16/I))

+ dimk(HomSL2

R16(C
8, R16/I)) = 2.

(III.6.10)

We show that for this choice of C8 and C12, one has

(III.6.11) ϕ(R16
(2,16)) = 0 for all ϕ ∈ HomSL2

R16(I, R
16/I).

Let 0 6= v = v2
8 +v3

8 ∈ (C8)U with v2
8 of degree 2 and v3

8 of degree 3. We
now assume that (III.6.11) is wrong and choose ϕ ∈ HomSL2

R16(I, R
16/I)

with ϕ(R16
(2,16)) 6= 0. This will lead to the following contradiction:

(III.6.12) 0 = ϕ((a16)
n · v) = ϕ((a16)

n · v2
8) + ϕ((a16)

n · v3
8) 6= 0.

Because C8 6= ((Q,Q)10, Q)10, it follows that v2
8 6= 0 and that

(R16/I)(8) = Q3
8 + I for a covariant Q3

8 ⊂ R16
(3,8). Hence there exists

w3
8 ∈ Q3

8 such that ϕ(v) = w3
8 + I. This implies that

ϕ((a16)
n · v) = (a16)

n · w3
8 + I.

Because (a16)
nw3

8 has co-order 20 it is contained in I if n is large enough.
We conclude that

(III.6.13) ϕ((a16)
n · v) = 0

for all n large enough.
The assumption that ϕ(R16

(2,16)) 6= 0 implies that ϕ(C16
2;8) = Q+ I, or

equivalently that

(III.6.14) ϕ(u2;8) = γa16 + I

for some 0 6= γ ∈ k. With (III.6.7), we find that for all n large enough
there exists 0 6= γ ∈ k such that

ϕ((a16)
n · u2;12) = ϕ(γ(a16)

n−4u2;8u2;2u2;2)

= γ(a16)
n−4u2;2u2;2ϕ(u2;8)

= γ(a16)
n−3u2;2u2;2 + I.
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Using Remark III.5.8 and the proof of Lemma III.5.7, it is now easy to
see that (a16)

n−3u2;2u2;2 6∈ I for all n ≥ 3. Since v2
8 is a non-zero scalar

multiple of u2;12, it follows that

(III.6.15) ϕ(an16 · v2
8) 6= 0

for all n large enough.
On the other hand, (a16)

n · v3
8 has co-order 20. Therefore, it is con-

tained in I for n large enough. Now v3
8 ∈ ((Q,Q)10, Q)10, and using

(III.6.8) and (III.6.14) we see that

ϕ((a16)
n · v3

8) ⊂ k · ϕ((a16)
n−11u2;8(u2;2)

6)

= k · (a16)
n−11(u2;2)

6ϕ(u2;8)

= k · γ(a16)
n−10(u2;2)

6 + I.

Since (a16)
n−10(u2;2)

6 is a U -invariant of co-order 12, it is contained in
I if n is large enough. This implies that

(III.6.16) ϕ(an16 · v3
8) = 0.

Combining (III.6.13), (III.6.15), and (III.6.16) establishes the contra-
diction (III.6.12). Thus, ϕ(R16

(2,16)) = 0, and (III.6.11) follows, and

(III.6.10) simplifies to

(III.6.17) dimk(TI HilbSL2

h′16
(V16)) ≤ dimk(HomSL2

R16(C
8, R16/I)) = 1

if C12 = ((Q,Q)12, Q)6 and if C8 6= ((Q,Q)10, Q)10. However, since
HilbSL2

h′16
(V (16))red

∼= A1 ∪ P1 ∪ P1, the tangent space in I is at least

one-dimensional, so there is equality in (III.6.17).
Suppose now that C12 6= ((Q,Q)12, Q)6 and C8 = ((Q,Q)10, Q)10.

Arguing in a similar way, we find that R16
(2,16) ⊂ ker(ϕ) for all ϕ ∈

HomSL2

R16(I, R
16/I). Thus, dimk(TI HilbSL2

h′16
(V16)) = 1 also in this case.

b) To see that equality holds in (III.6.9) one shows that the tangent
vectors coming from the three irreducible components A1, P1, and
P1 are linearly independent. This is done similarly as in the proof of
Proposition III.6.9. �

Proof of Theorem III.6.11. Lemma II.3.2 and Propositon III.6.10 prove
a) and c). It therefore suffices to show that HilbSL2

h′16
(V (16)) is reduced in

the complement of p, which follows from Lemmata III.6.1 and III.6.14.
�





CHAPTER IV

Multiplicities

Let s ∈ N, and let (λ1, . . . , λs) ∈ (Λ+)s with λi 6= λj for i 6= j.
For r = (r1, . . . , rs) ∈ Ns let V r :=

⊕s
i=1 V (λi)

ri . In addition, we let
V :=

⊕s
i=1 V (λi). We fix a function h : Λ+ → N with h(λ∗i ) = 1 for all

i (here λ∗ = −w0λ, where w0 is the longest word in the Weyl group).
Recall that a subscheme of V r is non-degenerate if it is not a subscheme
of
⊕

i∈I V (λi)
ri ⊂ V r for any I ( {1, . . . , s}. Then HilbGh (V r)0 is

defined to be the open subscheme of HilbGh (V r) parametrizing the non-
degenrate subschemes of V r (see [AB05], Definition 1.14). The goal is
to describe HilbGh (V r)0 in terms of HilbGh (V )0. In particular, we state
a correct version of Corollary 1.17 in [AB05].

M. Brion pointed out to me a much shorter and more elegant way to
correct his statement. We sketch this argument at the end of Section
IV.1.

IV.1. Invariant Hilbert schemes for multiplicity-finite
modules

Given two (finite-dimensional) G-modules W and W ′, we denote
by HomG(W,W ′) the (vector space or variety of) G-equivariant lin-
ear maps from W to W ′. For r, r′ ∈ Ns with ri ≤ r′i for all i, let
HomG(V r, V r′)0 be the open dense subset of HomG(V r, V r′) consisting
of the injective G-equivariant homomorphisms. In Theorem IV.1.5 we
show that

HilbGh (V r)0
∼= (HomG(V, V r)0 × HilbGh (V )0)/GLG(V ).

To start with, we investigate the GLG(V )-action on HilbGh (V )0. Ob-
serve that GLG(V ) ∼= Gr

m. This action is well-known, but a concrete
description is useful — in particular for the proof of Lemma IV.1.4.
For a scheme S we define

Rr,r′

S : HomG(V r, V r′)0 × S × V r → HomG(V r, V r′)0 × S × V r′ ,

mapping (u, s, v) to (u, s, h(v)). It is immediate from the definition that

Rr,r′

S maps HomG(V r, V r′)0 × S × V r isomorphically onto its image.

Remark IV.1.1. Let S and T be two schemes with a morphism S →
T , and let XT ⊂ T×V r be a closed G-stable subscheme. For simplicity,
we write Hom instead of HomG(V r, V r′)0. Then

(Hom×S) ×Hom×T R
r,r′

T (Hom×XT ) = Rr,r′

S (Hom×S ×T XT ).

71
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This follows from the definition of Rr,r′

S and Rr,r′

T .

Given a morphism S → HilbGh (V r)0 corresponding to a family S ×
V r ⊃ X → S, we obtain a morphism HomG(V r, V r′)0×S → HilbGh (V r′)0

in the following way: The projection

Rr,r′

S (HomG(V r, V r′)0 × X) → HomG(V r, V r′)0 × S

defines a family in HilbGh (V r′)0(HomG(V r, V r′)0×S), giving the desired
morphism HomG(V r, V r′)0×S → HilbGh (V r′)0. As a special case, start-
ing with UnivGh (V r)0 → HilbGh (V r)0 for X → S, we obtain a morphism

Φr,r′ : HomG(V r, V r′)0 × HilbGh (V r)0 → HilbGh (V r′)0.

If r = r′, then Φr,r defines an action of GLG(V r) on HilbGh (V r)0. The
case where r = 1 := (1, . . . , 1) is of importance for the sequel. For this
reason, we write Φ instead of Φ1,r′ .

Let S×V r ⊃ X → S be a family in HilbGh (V r)0(S) corresponding to
a morphism ϕX : S → HilbGh (V r)0, and let ψ : S → HomG(V r, V r′)0 be
a morphism. Consider the following two ways to construct a morphism
S → HilbGh (V r′)0:

First, consider the family

Rr,r′

S (HomG(V r, V r′)0 × X) → HomG(V r, V r′)0 × S

in

HilbGh (V r′)(HomG(V r, V r′)0 × S);

and let X1 be the pull-back of this family with respect to the morphism
(ψ × idS) : S → HomG(V r, V r′) × S.

On the other hand, one can define a morphism ϕ2 : S → HilbGh (V r′)0

corresponding to a family X2 → S as follows:

ϕ2 : S
(ψ,ϕX)−→ HomG(V r, V r′)0 × HilbGh (V r)0

Φr,r′

−→ HilbGh (V r′)0.

If s ∈ S is a closed point, then the fibers (X1)s and (X2)s both equal
ψ(s)(Xs) ⊂ V r′ . Indeed, as a formal consequence of Remark IV.1.1 one
obtains:

Lemma IV.1.2. In the above notation, ϕ1 = ϕ2, or X1 = X2.

Proof. For simplicity, we denote HomG(V r, V r′)0 by Hom, as well as

HilbGh (V r)0 by Hilbr, and UnivGh (V r′)0 by Hilbr
′

. By definition,

X1 = S ×Hom×S R
r,r′

S (Hom×X),

and

X2 = S ×Hom×Hilbr Rr,r′

Hilbr(Hom×Univr).

Using Remark IV.1.1, we see that

(Hom×S) ×Hom×Hilbr Rr,r′

Hilbr(Hom×Univr) = Rr,r′

S (Hom×X)
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as schemes over Hom×S. Therefore,

X2 = S ×Hom×Hilbr Rr,r′

Hilbr(Hom×Univr)

= (Hom×S) ×Hom×S (S ×Hilbr ×Hom Rr,r′

Hilbr(Hom×Univr))

= S ×Hom×S R
r,r′

S (Hom×X) = X1. �

Consider the (contragredient) action

Σr,r′ : GLG(V r) × HomG(V r, V r′)0 → HomG(V r, V r′)0

of GLG(V r) on HomG(V r, V r′) (defined by (t · ϕ)(v) = ϕ(t−1v)). Us-
ing this action, we obtain a GLG(V )-action σr on HomG(V, V r)0 ×
HilbGh (V )0, defined by

t · (ϕ, x) = (Σ1,r(t, ϕ),Φ1,1(t, x)).

The morphism Φ is GLG(V )-invariant with respect to this action. We
shall see in Lemma IV.1.3 that HomG(V, V r)0 ×HilbGh (V )0 possesses a
geometric quotient by GLG(V ) and in Theorem IV.1.5 that Φ is the
quotient morphism.

For ji ∈ {1, . . . , ri}, let V (λi) ∼= Vji ⊂ V (λi)
ri be the ji-th summand.

For j = {j1, . . . , js}, let Vj ⊂ V r be the sum of the corresponding Vji .
Let Hj := {ϕ ∈ HomG(V, V r) | pj ◦ ϕ ∈ GLG(V )}, where pj : V

r →
Vj ∼= V is the projection (the definition of Hj is independent of the
choice of the G-isomorphism Vj ∼= V ). The Hj cover HomG(V, V r)0.

Lemma IV.1.3. a) First, HomG(V, V r)0 × HilbGh (V )0 possesses a
geometric quotient by GLG(V ).

b) If r = 1, then Φ is the quotient morphism.

Proof. One can adapt the proof of Theorem 1.10 in [MFK94]. We
start with an elementary observation: Let H be a group, let X be a
H-scheme, and endow H ×X with a H-action defined by g · (h, x) =
(hg−1, gx). Then the morphism H ×X → X mapping (g, x) to gx is a
geometric quotient.

Consider the GLG(V )-stable subset

Hj × HilbGh (V )0 ⊂ HomG(V, V r)0 × HilbGh (V )0.

Now, Hj
∼= GLG(V ) × HomG(V, V r−1). With H = GLG(V ) and with

X = HomG(V, V r−1) × HilbGh (V )0, the action σr|Hj×HilbG
h (V )0

is of the

above kind. Thus, there exists a geometric quotient of Hj ×HilbGh (V )0

by GLG(V ). In this situation, one can proceed as in the proof of The-
orem 1.10 in [MFK94] and glue these quotients together, which com-
pletes the proof.

b) With H = GLG(V ) and with X = HilbGh (V )0, the statement
follows from the above observation. �
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Let

π : HomG(V, V r)0×HilbGh (V )0 → (HomG(V, V r)0×HilbGh (V )0)/GLG(V )

be the quotient morphism. Then Φ factors as Φ/GLG(V ) ◦ π for some
morphism

Φ/GLG(V ) : (HomG(V, V r)0 × HilbGh (V )0)/GLG(V ) → HilbGh (V r)0.

We shall see in Theorem IV.1.5 that Φ/GLG(V ) is an isomorphism.

Lemma IV.1.4. Let S be a scheme, and let η : S → HilbGh (V r)0 be a
morphism corresponding to a family S × V r ⊃ X → S.

a) The scheme S can be covered by open subschemes (Sj)j=(j1,...,js)

such that for each j there exists a morphism ηj : Sj → Hj ×
HilbGh (V )0 with ϕ|Sj

= Φ ◦ ηj.
b) If µ and µ′ are morphisms from S to HomG(V, V r)0 × HilbGh (V )0

such that Φ ◦ µ = Φ ◦ µ′, then π ◦ µ = π ◦ µ′.

Proof. To keep the notation simple, we assume that s = 1 (and hence
that V = V (λ) and that V r = V (λ)r). The general case can be derived
similarly.

a) We first define the subsets Sj. Let (ei1, . . . , e
i
p) be a basis of Vi ⊂

V r, and let (xi1, . . . , x
i
p) be the dual basis of (Vi)

∗ ⊂ (V r)∗. Let M :=

((V r)∗)U , and suppose that (x1
p, . . . , x

r
p) is a basis of M . Let further

I ⊂ OS×V r be the ideal-sheaf defining X ⊂ S × V r, let p : S × V r → S
be the projection, and let

J := (p∗(I) ∩ OS ⊗M) ⊂ OS ⊗M.

Then J is a locally free OS-submodule of OS ⊗M of rank r− 1 (recall
that h(λ∗) = 1). For j ∈ {1, . . . , r}, define the open subset Sj ⊂ S by

Sj := {s ∈ S | 1OS,s
⊗ xjp 6∈ Js} ⊂ S.

Let Xj = Sj ×S X. With the OSj
-module Jj := J |Sj

, we have

OSj
⊗M = Jj ⊕ (OSj

⊗ xjp),

and hence Jj is a free OSj
-module of rank r − 1. We now define a

morphism ψj : Sj → GLG(V r). For simplicity we assume that j = 1.
Let A := OS1(S1). Then J := J1(S1) is a free A-submodule of A⊗M
of rank r − 1, beacuse A⊗M = J ⊕ (A⊗ x1

p). Let J be generated as
A-module by

(IV.1.1)
r
∑

k=1

ψ2,k ⊗ xjp, . . . ,
r
∑

k=1

ψr,k ⊗ xjp,

where ψi,k ∈ A. Let ψ1,1 := 1A, and let ψ1,k := 0A if k > 1. We obtain
the desired morphism ψ1 = (ψi,k)i,k : S1 → GLr ∼= GLG(V r), where the
isomorphism GLr ∼= GLG(V r) maps (aij)i,j to (aij idV )i,j.
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Let
ϕj : Sj × V r → Sj × V r

be the G-equivariant isomorphism of schemes over Sj mapping (s, v)
to (s, ψj(s)v). We claim that there exists a family Yj ⊂ Sj × Vj of
G-schemes over Sj with Hilbert function h such that ϕj maps Yj iso-
morphically onto Xj. To see this, suppose once more that j = 1, and
let A be as above. Consider Z := S1 × V1 ⊂ S1 × V r. The ideal of Z
in A⊗ Sym((V r)∗) is the G-stable ideal of A-algebras generated by

{1 ⊗ xji | j = 2, . . . , r, i = 1, . . . , p}.
Since ϕ1 is given by the homomorphism of A-G-algebras

A⊗ Sym((V r)∗) → A⊗ Sym((V r)∗), 1 ⊗ xji 7→
r
∑

k=1

ψj,k ⊗ xki ,

we see that ϕ1(Z) ⊂ S1 × V r is defined by the G-stable ideal I of
A-algebras generated by

(IV.1.2) {
r
∑

k=1

ψj,k ⊗ xki | j = 2, . . . , r, i = 1, . . . , p}.

Comparing (IV.1.2) to (IV.1.1), we see that

I ∩ (A⊗M) = J.

Since I is the smallest G-stable ideal of A ⊗ Sym((V r)∗) containing
I∩(A⊗M), it follows that I ⊂ J , or that X1 ⊂ ϕ1(Z). More generally,
we see that

Xj ⊂ ϕj(Sj × Vj) ⊂ Sj × V r

for all j. Since ϕj is an isomorphism of G-schemes over Sj, we can take
Yj := ϕ−1

j (Xj).

Let ϕ′
j : Sj → HilbGh (Vj) be the morphism corresponding to the fam-

ily Yj. Then ϕ′
j(Sj) ⊂ HilbGh (Vj)0 ⊂ HilbGh (V r)0.

On the other hand, let qj : GLG(V r) → HomG(Vj, V
r) be the natural

map. By construction of ψj, the composition qj ◦ ψj factors as

qj ◦ ψj : Sj → Hj ⊂ HomG(Vj, V
r).

Using Lemma IV.1.2, we see that η|Sj
factors as

η|Sj
: Sj

(qj◦ψj ,ϕ
′
j)−→ Hj × HilbGh (Vj)

Φ−→ HilbGh (V r).

After identifying Vj with V via a G-isomorphism, the claim follows.
b) Let s ∈ S be a closed point. It suffices to verify that π◦µ = π◦µ′ in

a neighbourhood of s. In particular, we can assume that µ(S) and µ′(S)
are both contained in Hj ×HilbGh (V )0 for some suitable j. Composing
µ and µ′ with the morphim Hj × HilbGh (V )0 → GLG(V ) × HilbGh (V )0

mapping (ϕ, x) to (pj ◦ ϕ, x) gives two morphisms µ̃ and µ̃′ from S to
GLG(V )×HilbGh (V )0 with Φ1,1 ◦ µ̃ = Φ1,1 ◦ µ̃′. Now, Lemma IV.1.3 b)
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yields a morphism ψ : S → GLG(V ) such that µ̃′ = σ1 ◦ (ψ, µ̃). One
readily sees that µ′ = σr ◦ (ψ, µ). The claim now follows. �

Theorem IV.1.5. The morphism Φ/GLG(V ) is an isomorphism. In
particular,

HilbGh (V r)0
∼= (HomG(V, V r)0 × HilbGh (V )0)/GLG(V ).

Proof. Every morphism ψ : S → (HomG(V, V r)0×HilbGh (V )0)/GLG(V )
gives a morphism (Φ/GLG(V )) ◦ ψ : S → HilbGh (V r)0. On the other
hand, every ϕ : S → HilbGh (V r)0 gives morphisms ηj : Sj → Hj ×
HilbGh (V )0 such that ϕ|Sj

= Φ◦ηj according to Lemma IV.1.4 a). Since
π ◦ ηj|Sj∩Sj′

= π ◦ ηj′|Sj∩Sj′
for all j and j′ according to Lemma IV.1.4

b), the morphism ϕ factors via (HomG(V, V r)0 ×HilbGh (V )0)/GLG(V ),
and hence gives a map ψ : S → (HomG(V, V r)0×HilbGh (V )0)/GLG(V ).
The two assignments are clearly inverse to each other, and we ob-
tain two inverse natural transformations between the functors of points
of HilbGh (V r)0 and of (HomG(V, V r)0 × HilbGh (V )0)/GLG(V ), and the
claim follows. �

Remark IV.1.6 (Brion). We sketch here M. Brion’s way to prove
Theorem IV.1.5. The statement of Theorem IV.1.5 is equivalent to the
existence of a GLG(V r)-equivariant morphism

ϕ : HilbGh (V r)0 → HomG(V, V r)0/GLG(V ) ∼=
s
∏

i=1

Pri−1

with fiber HilbGh (V )0 at the base point, where the right-hand side is
viewed as a homogeneous space under GLG(V r) ∼=

∏s
i=1 GLri .

To construct this morphism, proceed as follows: From

HilbGh (V r) × V r ⊃ UnivGh (V r)
π→ HilbGh (V r)

we obtain a surjective morphism of OHilbG
h (V r)-modules

OHilbG
h (V r) ⊗ k[V r] → OUnivG

h (V r),

and thus for all i a surjective morphism

OHilbG
h (V r) ⊗ HomG(V (λ∗i ), k[V

r]) → HomG(V (λ∗i ),OUnivG
h (V r)).

This yields for all i a morphism

OHilbG
h (V r) ⊗ HomG(V (λ∗i ), V (λ∗i )

ri) → HomG(V (λ∗i ),OUnivG
h (V r)),

which is surjective at all closed points of HilbGh (V r)0 by the definition
of non-degeneracy. This yields a surjection

OHilbG
h (V r)0

⊗ kri → HomG(V (λ∗i ),OUnivG
h (V r)0

),

where the latter is locally free of rank 1 because h(λ∗i ) = 1. This yields
a morphism

ϕi : HilbGh (V r)0 → Pri ,
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and finally ϕ can be defined as the product of the ϕi.

IV.2. Examples

In this section we apply Theorem IV.1.5 to some situations.
Let λ ∈ Λ+ be a dominant weight of G, and let r ∈ N. Consider

V (λ)r =
⊕r

i=1 V (λ), and let hλ : Λ+ → N be the Hilbert function of

Xλ = Gvλ ⊂ V (λ). By Blx(X) we denote the blow-up of a variety X
in a point x.

Theorem IV.2.1. In the above notation, one has:

a) If both λ and 2λ are Jansou-weights, then

HilbGhλ
(V (λ)r) ∼= Bl0(A

r/C2),

where C2 = {1,−1} is a cyclic group of order 2 acting on Ak by
−1 · x = −x.

b) If λ is a Jansou-weight, but 2λ is no Jansou-weight, then

HilbGhλ
(V (λ)r) ∼= Bl0(A

r).

c) If finally λ is no Jansou-weight, then

HilbGhλ
(V (λ)r) ∼= Pr−1.

Remark IV.2.2. This remark is due to M. Brion. The isomorphism

HilbGhλ
(V r) = (HomG(V, V r) \ {0} × HilbGhλ

(V ))/GLG(V )

from Theorem IV.1.5 induces a morphism

ϕ : HilbGhλ
(V r) → HomG(V, V r) \ {0}/GLG(V ) ∼= Pr−1.

Now HilbGhλ
(V r) is the total space of the line bundle OPr−1(−2) in case

a), of OPr−1(−1) in case b), and is just Pr−1 in case c).

For the proof a small observation turns out to be useful. Recall
that for a weight λ ∈ Λ+ we have defined n0 in Definition II.2.2. In
particular, if λ is a Jansou-weight, then n0 = 2 if 2λ is also a Jansou-
weight, and n0 = 1 otherwise.

Lemma IV.2.3. Let λ be a Jansou-weight of G. Then GLG(V (λ)) ∼=
Gm acts on HilbGhλ

(V (λ)) ∼= A1 (via the GLG(V )-action Φ1,1 from
Section IV.1) with weight n0.

Proof. Let Xλ 6= X ⊂ V (λ) be a closed G-stable subscheme corre-
sponding to a closed point p ∈ A1 ∼= HilbGhλ

(V (λ)). By definition of
the action Φ1,1, the point γ ·p corresponds to the scheme γ ·X. If γ ∈ k,
then γ · X = X if and only if γn0 = 1. Hence γ · p = p if and only if
γn0 = 1, and so GLG(V (λ)) acts with weight n0 on HilbGhλ

(V (λ)). �
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Proof of Theorem IV.2.1. Let V := V (λ), and let V r := V (λ)r. If λ
is no Jansou-weight, then HilbGhλ

(V ) = A0. Applying Theorem IV.1.5,
we find:

HilbGhλ
(V r) = (HomG(V, V r) \ {0} × HilbGhλ

(V ))/GLG(V )

∼= (Ar \ {0} × A0)/Gm

∼= Pr−1.

Suppose now that λ is a Jansou-weight, but that 2λ is no Jansou-
weight. Then HilbGhλ

(V ) ∼= A1, and GLG(V ) ∼= Gm acts on HilbGhλ
(V )

with weight 1 according to Lemma IV.2.3. Consider the morphism

(Ar \ {0}) × A1 → Ar × Pr−1

(t1, . . . , tr, x) 7→ ((t1x, . . . , trx), (t1 : . . . : tr)).

If Gm acts on Ar with weight (−1, . . . ,−1) and on A1 with weight
1, then the restriction of this morphism onto its image, which equals
Bl0(A

r), is the quotient morphism. So,

HilbGhλ
(V r) = (HomG(V, V r) \ {0} × HilbGhλ

(V ))/GLG(V )

∼= (Ar \ {0} × A1)/Gm

∼= Bl0(A
r).

If finally both λ and 2λ are Jansou-weights, then GLG(V ) ∼= Gm acts
on HilbGhλ

(V ) ∼= A1 with weight 2 according to Lemma IV.2.3, and the
morphism

(Ar \ {0}) × A1 → Bl0(A
r/C2) ⊂ Ar × Pr−1

(t1, . . . , tr, x) 7→ ((t21x, . . . , t
2
rx), (t1 : . . . : tr))

is the quotient morphism. Thus

HilbGhλ
(V r) = (HomG(V, V r) \ {0} × HilbGhλ

(V ))/GLG(V )

∼= (Ar \ {0} × A1)/Gm

∼= Bl0(A
r/C2). �

Example IV.2.4. Let G = SL2. We use the same conventions and
notation as in Chapter III. Recall that the Jansou-weights of SL2 are
2 and 4, and the simple SL2-modules V (2) and V (4) can be identified
with the space of binary forms of degree 2 and 4.

Let λ = 2. Now, O(V (2))SL2 = k[∆], where ∆ is the discriminant.
Since ∆ is an invariant of degree 2, the forms v and −v lie in the same
SL2-orbit for each v ∈ V (2). However, going over to multiple (say 2)
copies V (2)2, the discriminants ∆11 and ∆22 (defined by ∆ii(v1, v2) =
∆(vi)) don’t generate the ring of invariants O(V (2)2)SL2 . There exists
an additional invariant ∆12 defined by

∆12(a0x
2 + 2a1xy + a2y

2, b0x
2 + 2b1xy + b2y

2) = a1b1 − a0b2.
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One has

V (2)2//SL2 = Spec(k[∆11,∆12,∆22]) ∼= A2/C2.

The fact that one has to blow up A2/C2 instead of A2 in this case is
due to this phenomenon.

So far we have discussed examples for modules of the form V r =
V (λ)r. To finish, we turn our attention to the case where V = V (λ1)⊕
. . . ⊕ V (λs). Once one knows HilbGh (V )0 and its GLG(V )-structure,
one can compute HilbGh (V r)0. One situation in which HilbGh (V )0 is
known is the one investigated in [BC08] and [Cu08]): Let λ1, . . . , λs ⊂
Λ+ be linearly independent weights that are saturated in the sense
that ZΓ ∩ Λ+ = Γ (see [Pa97] for more information on the saturation
hypothesis). Let Γ = 〈λ∗1, . . . , λ∗s〉N, and let h : Λ+ → N be the function
with h(λ) = 1 if λ ∈ Γ and with h(λ) = 0 else. Let further vλ =
(vλ1 , . . . , vλs

), where each vλi
is a non-zero highest weight vector in

V (λi). Then the closure Xλ := Gvλ ⊂ V has Hilbert function h, and
it is known that the G-stable non-degenerate deformations of Xλ are
parametrized by an affine space, i.e. HilbGh (V )0 is an affine space (cf.
[BC08] and [Cu08]).

Let α1, . . . , αm be the set of simple roots of (G,B, T ). Then the
adjoint torus Tad = T/Z(G) (where Z(G) is the center of G) can be
identified with Spec(k[α±1

1 , . . . , α±1
m ]). Now Tad acts on V (λi) by tZ(G)·

v = λi(t)t
−1v. This gives a Tad-action on V . If V and h are as above,

then Tad acts on HilbGh (V )0, and it is known (cf. [BC08] or [Cu08]) that
HilbGh (V )0 is a multiplicity-free Tad-module isomorphic to [V/g · vλ]Gvλ .
This action is called normalized action of Tad on HilbGh (V )0.

Once one knows the Tad-weights of HilbGh (V )0, one can recover the
GLG(V )-weights ω1, . . . , ωp on HilbGh (V )0: First note that each Tad-
weight ωt lies in the monoid 〈α1, . . . , αm〉N. Now each ωt is also in
〈λ1, . . . , λs〉Z. If ωt =

∑

νitλi, then GLG(V ) ∼= Gs
m acts with weights

(ν1t, . . . , νst)t on HilbGh (V )0.

Example IV.2.5. Let G = SL2, and let n = 2 or 4. Then one sees
that [V (n)/sl2 · yn]SL2yn = k · yn−2x2 + sl2 · yn. One finds that Tad acts
in both cases with weight 4 on k · yn−2x2. If n = 2, then 4 = 2 · 2, and
hence GLSL2(V (2)) acts with weight 2 on HilbSL2

h (V (2)). On the other
hand, if n = 4, then 4 = 1 · 4, and hence GLSL2(V (4)) acts with weight
1 on HilbSL2

h (V (4)).

Remark IV.2.6. From [AB05], Lemma 2.1 it follows that the action
of Tad on HilbGh (V )0 extends to an action of Spec(k[α1, . . . , αm]) on
HilbGh (V )0. On the other hand, the action of the i-th factor Gm of
GLG(V ) ∼= Gs

m extends to an action of A1 (with respect to the usual
embedding Gm → A1) if and only if νit ≥ 0 for all t. The following
examples show that this can but need not hold in particular cases.
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(However, recall from [Ja05] Proposition 1.3 that the action of Gm on
HilbGh (V (λ)) always extends to an action of A1.)

We now provide two examples for G = SL4. Let B ⊂ SL4 be the
Borel subgroup of upper triangular matrices, containing the maximal
torus T consisting of diagonal matrices in SL4.

Example IV.2.7. This resumes Example 2 from p. 100 in [AB05]. Let
G = SL4 act on V := V (ω1)⊕V (ω2)⊕V (ω3) ∼= k4⊕∧2 k4⊕(k4)∗, where
the action of SL4 on k4 is the standard representation on k4. Then one
finds that Tad acts with weights α1 + α2 and α2 + α3 on HilbGh (V )0.
Further, ω1 = 1/4(3α1 + 2α2 + α3), ω2 = 1/2(α1 + 2α2 + α3), and
ω3 = 1/4(α1 + 2α2 + 3α3).

Now α1+α2 = ω1+ω2−ω3, and α2+α3 = −ω1+ω2+ω3. This shows
that G3

m acts with weights (1, 1,−1) and (−1, 1, 1) on HilbGh (V )0. (One
now sees that the action of G3

m on HilbGh (V )0 extends to an action of
Gm × A1 × Gm, but not to an action of A3.) So

HilbGh (V r)0
∼= (Ar1 \ {0} × Ar2 \ {0} × Ar3 \ {0} × A2)/G3

m,

where G3
m acts on Ar1 \ {0} with weight (−1, 0, 0), on Ar2 \ {0} with

weight (0,−1, 0), on Ar3 \ {0} with weight (0, 0,−1), and on A2 with
weights (1, 1,−1) and (−1, 1, 1). Consider the morphism

Ar1 \ {0} × Ar2 \ {0} × Ar3 \ {0} × A2 → Pr1r2+r3−1 × Pr1+r2r3−1

mapping
(x1, . . . , xr1 , y1, . . . , yr2 , z1, . . . , zr3 , u, v)

to

((. . . : xiyju : . . . : z1 : . . . : zr3), (x1 : . . . : xr1 : . . . : yizjv : . . .)).

This morphism is G3
m-invariant and separates the G3

m-orbits. Its im-
age is the invariant Hilbert scheme HilbGh (V r)0 and has the following
geometric description: The projection of the image onto Pr1r2+r3−1 is
covered by the open sets where zi 6= 0. Such an open set is isomorphic
to C(V (r1, r2)) × Ar3−1, where C(V (r1, r2)) is the affine cone over the
Segre embedding Pr1−1 × Pr2−1 → Pr1r2−1. A similar description can
be given for the projection onto the second factor Pr1+r2r3−1.

Similarly as in Remark IV.2.2, one can show here that HilbGh (V r)0 is
the total space of O(−1, 1, 1)⊕O(1, 1,−1) over Pr1−1 ×Pr2−1 ×Pr3−1.

Example IV.2.8. Take once more G = SL4, now acting on V :=
V (ω1 + ω3) ⊕ V (ω2) ∼= sl4 ⊕ ∧2 k4, where SL4 acts on sl4 with the
adjoint representation, and where the action on

∧2 k4 is induced by
the standard representation on k4.

Denote by Eij the 4 × 4-matrix with a 1 as unique non-zero en-
try at position (i, j). Choose the highest weight vectors vω1+ω3 =
E14 ∈ sl4, and vω2 = e1 ∧ e2 ∈ ∧2 k4. One verifies that [V/g ·
(vω1+ω3 , vω2)]

G(vω1+ω3
,vω2 ) is spanned by (E23, 0) + g · (vω1+ω3 , vω2), and
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hence dimk TCΓ
HilbGh (V )0 = 1. Since 〈ω1 + ω3, ω2〉N is saturated, it

follows that HilbGh (V )0
∼= A1.

Now, Tad acts on HilbGh (V )0 with weight 2(α1+α3) = 2(ω1+ω3)−2ω2,
and so GLG(V ) ∼= G2

m acts on HilbGh (V )0 with weight (2,−2); and the
G2
m-action on HilbGh (V )0 extends to an action of A1 ×Gm, but not to

an action of A2.
Indeed, if X(t) is the closure of the orbit of (E14 + tE23, e1∧e2), then

one verifies that hX(t) = h for each t ∈ k, and that X(t1) = X(t2) if and
only if t1 = t2. Furthermore, (s1(E14 + tE23), s2e1 ∧ e2) ∈ X(s2

1s
−2
2 t).

This shows that

HilbGh (V r)0
∼= (Ar1 \ {0} × Ar2 \ {0} × A1)/G2

m,

where G2
m acts on Ar1\{0} with weight (−1, 0), on Ar2\{0} with weight

(0,−1), and on A1 with weight (2,−2). Consider the morphism

π : Ar1 \ {0} × Ar2 \ {0} × A1 → Pr1+r2−1

((x1, . . . , xr1), (y1, . . . , yr2), z) 7→ (x2
1z : . . . : x2

r1
z : y2

1 : . . . : y2
r2

).

One sees that this morphism is G2
m-invariant and separates the G2

m-
orbits. Its image equals Pr1+r2−1 \ Pr1 , where Pr1+r2−1 ⊃ Pr1−1 =
{(a1 : . . . : ar1 : 0 : . . . : 0)}. Hence

HilbGh (V r)0
∼= Pr1+r2−1 \ Pr1−1.
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Computations

A.1. The technique

In Section III.6 many computer-based calculations were used. Here
we explain how they have been performed. Recall that SL2 acts on
V (d) = k[x, y]d by

(

a b
c d

)

· xiyd−i = (dx− by)i(−cx+ ay)d−1.

Then V (d)U = k · yd. Moreover, in (III.2.1) we identified Sym(V (d)∗)
with k[a0, a1, . . . , ad], where

ai(
d
∑

j=0

(

d

j

)

λjx
jyd−j) = λi.

For instance, one readily sees that (V (d)∗)U = k · ad. Recall that in
(III.2.3) we have seen that the r-th transvectant of P and P ′ can be
computed by means of

(V1, V2)
r =

(d− r)!2

d!2

r
∑

s=0

(−1)s
(

r

s

)

∂rV1

∂xr−s∂ys
∂rV2

∂xs∂yr−s
.

This has been implemented in Mathematica by Popoviciu-Draisma
([Po07]) as follows:
<< "Combinatorica‘";

l1[n_] := Table[Binomial[n, i]*a[n - i], {i, 0, n}];

w1[n_] := Table[y^(n - i)*x^i, {i, 0, n}];

w2[m_] := Table[t^(m - i)*z^i, {i, 0, m}];

Transvect[l1_, l2_, r_] :=

CoefficientList[

Expand[((Length[l1] - 1 - r)!*(Length[l2] - 1 - r)!*

Sum[(-1)^i*Binomial[r, i]*

D[D[l1.w1[Length[l1] - 1], {x, r - i}], {y, i}]*

D[D[l2.w2[Length[l2] - 1], {t, r - i}], {z, i}], {i, 0,

r}])/((Length[l1] - 1)!*(Length[l2] - 1)!) /. {z -> x,

t -> y}] /. {y -> 1}, x];

Example A.1.1. Let Q := Q(4) =
∑4

i=0 ai
(

4
i

)

xiy4−i. Then we can
compute (Q,Q)0, (Q,Q)1, (Q,Q)2, (Q,Q)3, and (Q,Q)4 as follows:
Transvect[l1[4], l1[4], 0]

-> {a[4]^2, 8 a[3] a[4], 16 a[3]^2 + 12 a[2] a[4],

48 a[2] a[3] + 8 a[1] a[4], 36 a[2]^2 + 32 a[1] a[3] + 2 a[0] a[4],

48 a[1] a[2] + 8 a[0] a[3], 16 a[1]^2 + 12 a[0] a[2], 8 a[0] a[1],

a[0]^2}
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This means that (Q,Q)0 =
∑8

i=0 ϕix
iy8−i with ϕ0 = a2

4, ϕ1 = 8a3a4,
ϕ2 = 16a2

3 + 12a2a4, ϕ3 = 48a2a3 + 8a1a4, ϕ4 = 36a2
2 + 32a1a3 + 2a0a4,

ϕ5 = 48a1a2 + 8a0a3, ϕ6 = 16a2
1 + 12a0a2, ϕ7 = 8a0a1, and ϕ8 = a2

0. In
particular, it follows that

(Sym2(V (4)∗)(8))
U = k · ϕ0(a0, . . . , a4) = k · a2

4.

Proceeding with (Q,Q)1, we have:
Transvect[l1[4], l1[4], 1]

-> {}

This reflects the fact that (Q,Q)l = 0 if l is odd. Continuing, we find:
Transvect[l1[4], l1[4], 2]

-> {-2 a[3]^2 + 2 a[2] a[4], -4 a[2] a[3] + 4 a[1] a[4], -6 a[2]^2 +

4 a[1] a[3] + 2 a[0] a[4], -4 a[1] a[2] + 4 a[0] a[3], -2 a[1]^2 +

2 a[0] a[2]}

Transvect[l1[4], l1[4], 3]

-> {}

Transvect[l1[4], l1[4], 4]

-> {6 a[2]^2 - 8 a[1] a[3] + 2 a[0] a[4]}

Hence

(Sym2(V (4)∗)(4))
U = k · (−2a2

3 + 2a2a4),

and

(Sym2(V (4)∗)(0))
U = k · (6a2

2 − 8a1a3 + 2a0a4).

Example A.1.2. We wish to find all covariants of degree 4 and of order
4 of a form of degree 4. Using either the Cayley-Sylvester-formula or
using [LiE] we compute the decomposition of Sym4(V (4)∗) into isotypic
components:
sym_tensor(4,[4],A1)

-> 1X[ 0] +2X[ 4] +2X[ 8] +1X[10] +1X[12] +1X[16]

This shows that Sym4(V (4)∗) ∼= V (0)⊕V (4)2⊕V (8)2⊕V (10)⊕V (12)⊕
V (16). In particular, dimk(Sym4(V (4)∗)(4))

U = 2. Let Q := Q(4) =
∑4

i=0 ai
(

4
i

)

xiy4−i. We claim that

Sym4(V (4)∗)(4) = spank((((Q,Q)2, Q)4, Q)0, (((Q,Q)2, Q)0), Q)4).

It suffices to check that the U -invariants of these two covariants are
linearly independent:
C4 = Transvect[Transvect[ Transvect[l1[4], l1[4], 2], l1[4], 4],

l1[4], 0][[1]]

-> -6 a[2]^3 a[4] + 12 a[1] a[2] a[3] a[4] - 6 a[0] a[3]^2 a[4] -

6 a[1]^2 a[4]^2 + 6 a[0] a[2] a[4]^2

and
D4 = Transvect[Transvect[ Transvect[l1[4], l1[4], 2], l1[4], 0],

l1[4], 4][[1]]

-> -(18/7) a[2]^2 a[3]^2 + 24/7 a[1] a[3]^3 + 27/35 a[2]^3 a[4] +

6/35 a[1] a[2] a[3] a[4] - 93/35 a[0] a[3]^2 a[4] -

9/5 a[1]^2 a[4]^2 + 93/35 a[0] a[2] a[4]^2

One immediately sees that these two U -invariants are linearly inde-
pendent. In order to be able to verify this with the help of the com-
puter, we proceed as follows: Consider the function Coefficient[f
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,CoefficientVector[d,k,n]] that writes the coefficients of a U -in-
variant function f of degree n and order k of a form of degree d in a
vector:

VerifyList[l_, deg_, sum_, n_] := (

If[Length[l] < deg,

For[i = l[[Length[l]]], i < n + 1, i = i + 1,

VerifyList[Append[l, i], deg, sum, n]];

If[l[[Length[l]]] < n, last = l[[Length[l]]];

VerifyList[Append[Drop[l, -1], last + 1], deg, sum, n]],

If[Sum[l[[j]], {j, 1, Length[l]}] == sum,

next = Product[a[l[[j]]], {j, 1, Length[l]}];

Coeff = Append[Coeff, next] ]];

)

CoefficientVector[deg_, ord_, n_] := (

Coeff = {}; l = {0}; sum = n*deg - (n*deg - ord)/2;

VerifyList[l, deg, sum, n]; Return[Coeff] )

Now

Coefficient[C4, CoefficientVector[4, 4, 4]]

-> {6, -6, -6, 12, 0, -6, 0}

Coefficient[D4, CoefficientVector[4, 4, 4]]

-> {93/35, -(93/35), -(9/5), 6/35, 24/7, 27/35, -(18/7)}

MatrixRank[{Coefficient[C4, CoefficientVector[4, 4, 4]],

Coefficient[D4, CoefficientVector[4, 4, 4]]}]

-> 2

shows that the two U -invariants are linearly independent.

A.2. Forms of degree 8

Let Q := Q(8) =
∑8

i=0 ai
(

8
i

)

xiy8−i. In the proof of Theorem III.6.5 we

claimed that Sym3(V (8)∗)(4) is contained in the SL2-stable ideal gener-

ated by Sym2(V (8)∗)(8). This can be verified as follows: Using [LiE] we

compute the decomposition of Sym3(V (8)∗) into isotypic components:

sym_tensor(3,[8],A1)

-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +2X[12] +1X[14] +1X[16] +

1X[18] +1X[20] +1X[24]

This shows that

Sym3(V (8)∗) ∼=V (0) ⊕ V (4) ⊕ V (6) ⊕ V (8)2 ⊕ V (10) ⊕ V (12)2

⊕ V (14) ⊕ V (16) ⊕ V (18) ⊕ V (20) ⊕ V (24).

In particular, Sym3(V (8)∗)(4)
∼= V (4). Moreover, Sym2(V (8)∗)(8) =

(Q,Q)4 according to the Clebsh-Gordan decomposition. In order to
verfiy the claim, it thus suffices to show that

((Q,Q)4, Q)6 6= 0.

This can be done using Mathematica: The command

Transvect[Transvect[l1[8], l1[8], 4], l1[8], 6][[1]]

yields
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-> -30/7 a[4]^2 a[6] + 48/7 a[3] a[5] a[6] - 24/7 a[2] a[6]^2 +

12/7 a[3] a[4] a[7] - 24/7 a[2] a[5] a[7] + 24/7 a[1] a[6] a[7] -

6/7 a[0] a[7]^2 - 30/7 a[3]^2 a[8] + 48/7 a[2] a[4] a[8] -

24/7 a[1] a[5] a[8] + 6/7 a[0] a[6] a[8],

which is a non-zero U -invariant in ((Q,Q)4, Q)6. Hence ((Q,Q)4, Q)6 6=
0.

A.3. Forms of degree 12

Let Q := Q(12) =
∑12

i=0 ai
(

12
i

)

xiy12−i. In the proof of Proposition

III.6.7 we claimed that Sym4(V (12)∗)(4) ⊕ Sym4(V (12)∗)(8) is in the
SL2-stable ideal generated by

⊕

0≤k≤18,k 6=4,8

Sym3(V (12)∗)(k).

To see this, we first compute the multiplicities of V (4) and V (8) in
Sym4(V (12)∗) using [LiE]:
sym_tensor(4,[12],A1)

-> 3X[ 0] +4X[ 4] +2X[ 6] +6X[ 8] +3X[10] +7X[12] +4X[14] +7X[16] +

5X[18] +7X[20] +4X[22] +7X[24] +4X[26] +5X[28] +3X[30] +4X[32] +

2X[34] +3X[36] +1X[38] +2X[40] +1X[42] +1X[44] +1X[48]

Hence V (4) and V (8) have multiplicity 4 and 6 in Sym4(V (12)∗).
In a first step we compute covariants of degree 2 and 3. The covari-

ants of degree 2 are computed by means of
A0 = Transvect[l1[12], l1[12], 12];

A4 = Transvect[l1[12], l1[12], 10];

A8 = Transvect[l1[12], l1[12], 8];

A12 = Transvect[l1[12], l1[12], 6];

A16 = Transvect[l1[12], l1[12], 4];

A20 = Transvect[l1[12], l1[12], 2];

A24 = Transvect[l1[12], l1[12], 0];

With these, we compute a series of covariants of degree 3:
B10 = Transvect[A12, l1[12], 7];

B12 = Transvect[A12, l1[12], 6];

B14 = Transvect[A12, l1[12], 5];

B16 = Transvect[A12, l1[12], 4];

B18 = Transvect[A12, l1[12], 3];

C12 = Transvect[A16, l1[12], 8];

D12 = Transvect[A20, l1[12], 10];

We now proceed with covariants of degree 4:
E41 = Transvect[B10, l1[12], 9];

E42 = Transvect[B12, l1[12], 10];

E43 = Transvect[B14, l1[12], 11];

E44 = Transvect[C12, l1[12], 10];

MatrixRank[{Coefficient[E41[[1]], CoefficientVector[4, 4, 12]],

Coefficient[E42[[1]], CoefficientVector[4, 4, 12]],

Coefficient[E43[[1]], CoefficientVector[4, 4, 12]],

Coefficient[E44[[1]], CoefficientVector[4, 4, 12]] }]

-> 4

shows that the transvectants E41, E42, E43, and E4 are linearly inde-
pendent and hence span Sym4(V (12)∗)(4)

∼= V (4)4. Similarly,
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E81 = Transvect[B10, l1[12], 7];

E82 = Transvect[B12, l1[12], 8];

E83 = Transvect[B14, l1[12], 9];

E84 = Transvect[B16, l1[12], 10];

E85 = Transvect[B18, l1[12], 11];

E86 = Transvect[C12, l1[12], 8];

MatrixRank[{Coefficient[E81[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E82[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E83[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E84[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E85[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E86[[1]], CoefficientVector[4, 8, 12]]}]

-> 6

shows that the transvectants E81, E82, E83, E84, E85, and E86 are
linearly independent and hence span Sym4(V (12)∗)(8)

∼= V (8)6.
Moreover, in the proof of Proposition III.6.7 we claim both that

Sym3(V (12)∗)(4) is contained in the SL2-stable ideal generated by the

covariant Sym2(V (12)∗)(12), and that Sym3(V (12)∗)(8) is in the SL2-

stable ideal generated by Sym2(V (12)∗)(8) ⊕ Sym2(V (12)∗)(12). This
now can be verified as follows:
MatrixRank[{Coefficient[Transvect[A12, l1[12], 10][[1]],

CoefficientVector[3, 4, 12]]}]

-> 1

MatrixRank[{Coefficient[Transvect[A8, l1[12], 6][[1]],

CoefficientVector[3, 8, 12]],

Coefficient[Transvect[A12, l1[12], 8][[1]],

CoefficientVector[3, 8, 12]]}]

-> 2

Comparing this with the decomposition of Sym3(V (12)∗),
sym_tensor(3,[12],A1)

-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +3X[12] +2X[14] +2X[16] +

2X[18] +2X[20] +1X[22] +2X[24] +1X[26] +1X[28] +1X[30] +1X[32] +

1X[36]

the claim now follows.
Finally, in the proof of Proposition III.6.9 the U -invariant -2(−10a2

9+
15a10a8 − 6a11a7 + a12a6) ∈ (Q,Q)6 enters the play. Indeed:
A12[[1]]

-> -20 a[9]^2 + 30 a[8] a[10] - 12 a[7] a[11] + 2 a[6] a[12]

is the searched U -invariant.

A.4. Forms of degree 16

LetQ := Q(16) =
∑16

i=0 ai
(

16
i

)

xiy16−i. In Step 1 of the proof of Lemma
III.6.12 we claimed that

Sym4(V (16)∗)(4) ⊕ Sym4(V (16)∗)(8) ⊕ Sym4(V (16)∗)(12)

is in the SL2-stable ideal generated by
⊕

0≤k≤22,k 6=4,8,12

Sym3(V (12)∗)(k).
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To see this, we first compute the multiplicities of V (4), V (8), and V (12)
in Sym4(V (16)∗) using [LiE]:
sym_tensor(4,[16],A1)

-> 3X[ 0] + 6X[ 4] + 2X[ 6] + 8X[ 8] + 5X[10] + 9X[12] + 6X[14] +

11X[16] + 7X[18] +11X[20] + 8X[22] +11X[24] + 8X[26] +11X[28] +

7X[30] +10X[32] + 7X[34] + 8X[36] + 5X[38] + 7X[40] + 4X[42] +

5X[44] + 3X[46] + 4X[48] + 2X[50] + 3X[52] + 1X[54] + 2X[56] +

1X[58] + 1X[60] + 1X[64]

Hence V (4), V (8) and V (12) have multiplicity 6, 8 and 9, respectively,
in Sym4(V (16)∗).

In a first step we compute covariants of degree 2 and 3. The covari-
ants of degree 2 are computed by means of
A0 = Transvect[l1[16], l1[16], 16];

A4 = Transvect[l1[16], l1[16], 14];

A8 = Transvect[l1[16], l1[16], 12];

A12 = Transvect[l1[16], l1[16], 10];

A16 = Transvect[l1[16], l1[16], 8];

A20 = Transvect[l1[16], l1[16], 6];

A24 = Transvect[l1[16], l1[16], 4];

A28 = Transvect[l1[16], l1[16], 2];

A32 = Transvect[l1[16], l1[16], 0];

With these, we compute a series of covariants of degree 3:
B16 = Transvect[A12, l1[16], 6];

B18 = Transvect[A12, l1[16], 5];

B20 = Transvect[A12, l1[16], 4];

B22 = Transvect[A12, l1[16], 3];

C14 = Transvect[A16, l1[16], 9];

C16 = Transvect[A16, l1[16], 8];

C18 = Transvect[A16, l1[16], 7];

C20 = Transvect[A16, l1[16], 6];

D14 = Transvect[A20, l1[16], 11];

D18 = Transvect[A20, l1[16], 9];

Proceeding with covariants of degree 4,
F41 = Transvect[B16, l1[16], 14];

F42 = Transvect[C14, l1[16], 13];

F43 = Transvect[C16, l1[16], 14];

F44 = Transvect[C18, l1[16], 15];

F45 = Transvect[D14, l1[16], 13];

F46 = Transvect[D18, l1[16], 15];

MatrixRank[{Coefficient[F41[[1]], CoefficientVector[4, 4, 16]],

Coefficient[F42[[1]], CoefficientVector[4, 4, 16]],

Coefficient[F43[[1]], CoefficientVector[4, 4, 16]],

Coefficient[F44[[1]], CoefficientVector[4, 4, 16]],

Coefficient[F45[[1]], CoefficientVector[4, 4, 16]],

Coefficient[F46[[1]], CoefficientVector[4, 4, 16]]}]

-> 6

shows that the transvectants F41, F42, F43, F44, F45, and F46 are lin-
early independent and hence span Sym4(V (16)∗)(4)

∼= V (4)6. Similarly,
F81 = Transvect[B16, l1[16], 12];

F82 = Transvect[B18, l1[16], 13];

F83 = Transvect[B20, l1[16], 14];

F84 = Transvect[C14, l1[16], 11];

F85 = Transvect[C16, l1[16], 12];

F86 = Transvect[C18, l1[16], 13];
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F87 = Transvect[D14, l1[16], 11];

F88 = Transvect[D18, l1[16], 13];

MatrixRank[{Coefficient[F81[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F82[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F83[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F84[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F85[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F86[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F87[[1]], CoefficientVector[4, 8, 16]],

Coefficient[F88[[1]], CoefficientVector[4, 8, 16]]}]

-> 8

shows that the transvectants F81, ..., F88 are linearly independent and
hence span Sym4(V (16)∗)(8)

∼= V (8)8. Finally,
F121 = Transvect[B16, l1[16], 10];

F122 = Transvect[B20, l1[16], 12];

F123 = Transvect[B22, l1[16], 13];

F124 = Transvect[C14, l1[16], 9];

F125 = Transvect[C16, l1[16], 10];

F126 = Transvect[C18, l1[16], 11];

F127 = Transvect[C20, l1[16], 12];

F128 = Transvect[D14, l1[16], 9];

F129 = Transvect[D18, l1[16], 11];

MatrixRank[{Coefficient[F121[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F122[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F123[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F124[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F125[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F126[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F127[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F128[[1]], CoefficientVector[4, 12, 16]],

Coefficient[F129[[1]], CoefficientVector[4, 12, 16]]}]

-> 9

shows that the transvectants F121, ..., F129 are linearly independent
and hence span Sym4(V (16)∗)(12)

∼= V (12)9.
In Step 2 of the proof of Lemma III.6.12 we claimed that the covari-

ant Sym3(V (16)∗)(4) is contained in the SL2-stable ideal generated by

Sym2(V (16)∗)(16). First
sym_tensor(3,[16],A1)

-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +3X[12] +2X[14] +3X[16] +

3X[18] +3X[20] +2X[22] +3X[24] +2X[26] +2X[28] +2X[30] +2X[32] +

1X[34] +2X[36] +1X[38] +1X[40] +1X[42] +1X[44] +1X[48]

shows that Sym3(V (16)∗)(4)
∼= V (4). Now with

MatrixRank[{Coefficient[Transvect[A16, l1[16], 14][[1]],

CoefficientVector[3, 4, 16]]}]

-> 1

the claim follows.
In Step 3 of the proof of Lemma III.6.12 we claimed that C :=

((Q,Q)12, Q)8 = ((Q,Q)8, Q)12), and that V (8)2 ∼= Sym3(V (16)∗)(8) =

C ⊕ ((Q,Q)10, Q)10, where Q =
∑16

i=0 ai
(

16
i

)

xiy16−i. First
MatrixRank[{Coefficient[Transvect[A8, l1[16], 8][[1]],

CoefficientVector[3, 8, 16]],

Coefficient[Transvect[A16, l1[16], 12][[1]],

CoefficientVector[3, 8, 16]]}]
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-> 1

shows that ((Q,Q)12, Q)8 = ((Q,Q)8, Q)12). Now
MatrixRank[{Coefficient[Transvect[A8, l1[16], 8][[1]],

CoefficientVector[3, 8, 16]],

Coefficient[Transvect[A12, l1[16], 10][[1]],

CoefficientVector[3, 8, 16]]}]

-> 2

and the fact that V (8)2 ∼= Sym3(V (16)∗)(8) prove the claim.

Moreover, we need to show that V (12)3 ∼= Sym3(V (16)∗)(12) = C ′′ ⊕
C ′′′ ⊕ C ′′′′ with C ′′ = ((Q,Q)12, Q)6, with C ′′′ = ((Q,Q)10, Q)8, and
with C ′′′′ = ((Q,Q)8, Q)10. This follows from
MatrixRank[{Coefficient[Transvect[A8, l1[16], 6][[1]],

CoefficientVector[3, 12, 16]],

Coefficient[Transvect[A12, l1[16], 8][[1]],

CoefficientVector[3, 12, 16]],

Coefficient[Transvect[A16, l1[16], 10][[1]],

CoefficientVector[3, 12, 16]]}]

-> 3.
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Glossary

The following notation is used throughout this thesis:

G a semisimple group
B a (fixed) Borel subgroup of G
T a (fixed) maximal torus of G contained in B
U the maximal unipotent subgroup of G determined by B

and T
Λ+ monoid of dominant weights (with respect to (G,B, T ))
λ dominant weight (of a fixed group G)
λ∗ −w0λ, where w0 is the longest word in the Weyl group

of (G,B, T )
V (λ) simple G-module with highest weight λ
S(λ) closure of the unique minimal sheet of V (λ)
N (λ) (schematic) nullcone of V (λ), i.e. schematic fiber V (λ)0

of the quotient morphism V (λ) → V (λ)//G
vλ a (fixed) non-zero highest weight vector in V (λ)
Xλ closure of the orbit Gvλ in V (λ)
hλ Hilbert function of Xλ

h′λ Hilbert function of a general orbit of S(λ)
R the ring of regular functions of S(λ), regarded as k-G-

algebra (Caveat: R has another meaning in Chapter
III.)

R(λ) the G-isotypic component of R of type λ
R(n,λ) the Gm ×G-isotypic component of R of type (n, λ)
n0 gcd{n | R(n,0) 6= 0} (cf. Definition II.2.2). The integer

n0 equals 1 or 2, cf. Lemma II.2.3
O(X) if X is an affine variety, we denote by O(X) its ring of

regular functions
HilbGh (X) invariant Hilbert scheme to the data (G, h,X)
HilbGh (X) invariant Hilbert functor to the data (G, h,X)
UnivGh (X) universal family for HilbGh (X)

In Chapter III we have in addition:

B the Borel subgroup of SL2 consisting of upper triangular
matrices in SL2

T the maximal torus of SL2 consisting of all diagonal ma-
trices in SL2

93
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U the maximal unipotent subgroup of SL2 consisting of all
strict upper triangular matrices in SL2

V (d) the simple SL2-module V (d) is realized as the space of

binary forms
⊕d

i=0 kx
iyd−i

yd is fixed as highest weight vector in V (d)
S(d) equals the closure of SL2 ·yd in V (d) if d is odd, and the

closure of {SL2 ·γxd/2yd/2 | γ ∈ k} in V (d) if d is even
hd hd : N → N is defined by hd(k) = 1 if k is divisible by

d, and hd(k) = 0 otherwise
h′d If d is odd, then h′d = hd.

If d is even, but not divisible by 4, then h′d : N → N is
defined by h′d(k) = 1 if k is even, and h′d(k) = 0 if k is
odd.
If d is divisible by 4, then h′d : N → N is defined by
hd(k) = 1 if k is divisible by 4, and hd(k) = 0 otherwise
(cf. Section III.3).

Q(d) Q(d) =
∑d

i=0 ai
(

d
i

)

xiyd−i is the unique covariant of V (d)
of degree 1 (cf. Definition III.2.2)

(Q(d), Q(d))l the l-th transvectant (Q(d), Q(d))l is zero if l is odd, and
non-zero if l ∈ {0, 2, . . . , d} (cf. Remark III.2.19 and
Lemma III.3.5 a))

i(d) the invariant (Q(d), Q(d))d of degree 2, non-zero if and
only if d is even

j(d) the invariant ((Q(d), Q(d))d/2, Q(d))d of degree 3, non-zero
if and only if d is a multiple of 4

n usually denotes the degree of a covariant or of a digraph
k usually denotes the order of a covariant or of a digraph
l usually denotes the co-order of a homogeneous covari-

ant or digraph: a covariant or digraph homogeneous of
degree n and of order k has co-order l := (nd− k)/2

Dd algebra of d-digraphs
Dd
n;l vector space of d-digraphs of degree n and co-order l (cf.

Section III.4
Rd in contrast to the other chapters, Rd stands for

Sym(V (d)∗) in Chapter III (cf. Section III.5)
Rd

(k) is the SL2-isotypic component ofRd of type k (cf. Section
III.5)

Rd
(n,k) is the Gm×SL2-isotypic component of Rd of type (n, k)

(cf. Section III.5)
Jdodd is the intersection of all SL2-stable ideals of Rd contain-

ing all covariants of odd co-order (cf. Definition III.5.1)
Jdodd,+ is the intersection of all SL2-stable ideals of Rd contain-

ing Jdodd and Rd
(2,d) (cf. Definition III.5.1)
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Cd
n;l the covariant (Q(d), Q(d))l · (Q(d))n−2 if n ≥ 2, or the

covariant Q(d) if (n; l) = (1; 0). This covariant is of
degree n and of co-order l. It is zero for all odd l (cf.
Definition III.5.5).

X0
d the unique homogeneous SL2-stable subscheme of S(d)

with Hilbert function hX0
d

= h′d (cf. Definition III.3.3)

I0 the SL2-stable ideal of Rd defining X0
d as closed sub-

scheme of V (d) (cf. Remark III.3.4)
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