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CHAPTER 1

Introduction

In this introductory part we start by fixing some notation and re-
calling some notions used throughout this Thesis. Then we proceed by
giving a rough survey of the contents of this Thesis.

We work over an algebraically closed field k of characteristic zero,
and all schemes and rings are supposed to be Noetherian. In this intro-
ductory chapter, GG is a connected reductive linear algebraic group. In
the other chapters, G is a semisimple linear algebraic group. As refer-
ences for the structure of semisimple groups and their representations,
we use [Hu75] and [Bo81|. We fix once and for all a maximal torus
T C G, a Borel subgroup B C G containing 7', and we let U C B
be the corresponding unipotent radical. Further, A denotes the weight
lattice of (G, B,T), and AT C A denotes the monoid of dominant
weights. For a dominant weight A € A™ denote by V() an irreducible
G-module with highest weight A. Let wy be the longest element of the
Weyl group, and let \* = —wgA for A € AT. Then the dual G-module
V(A)* is isomorphic to V/(A*) (see e.g. [Hu75|, Exercise 21.6).

If V is a rational G-module, and if A € AT is a dominant weight, then
Viy =2 AW Cc V | W =2 V()A) as G-module} denotes the isotypic
component of V' of type A. Then V) = VIV ® V(\), where V denotes
the weight space of V' to the weight A\. If X = Spec(R) is an affine
G-scheme, then X is called multiplicity-finite if dimy, R,y < oo for all
A € A* (or equivalently, if dimy, RY < 00), and X is called multiplicity-
free if dimy, R(L;) <1 for all A\. If X is multiplicity-finite, we define the
Hilbert function hx = hgr of X (or of R) to be the function hy: AT —
N assigning dimy, Rf)) (which is the multiplicity of V() in R) to A
(background information can be found e.g. in [Kr85]).

The notions of isotypic components and Hilbert functions can be
extended to families. These constructions are crucial for this work,
and they can be found in [ABO05]. If S is a scheme, and if X is a G-
scheme with an affine G-invariant morphism 7: X — S of finite type,
then the sheaf of Og-modules R := m,Ox comes with a G-action, and
Ry denotes the isotypic component of R of type A. In this situa-
tion m: X — S is called a family of affine G-schemes. If each isotypic
component (Ry))V is a locally free sheaf of Og-modules of constant fi-
nite rank, then we say that the family is multiplicity-finite with Hilbert
function h, where h: AT — N is the function assigning to A the rank
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of (Riy)Y as Og-module. In this case, the morphism 7: X — S is
flat. Let vice versa m: X — S be a flat family of affine G-schemes
over a connected scheme S with the property that R¢ is finitely gen-
erated Og-module, where R := m,0O%. Then 7 is a multiplicity-finite
family of affine G-schemes with Hilbert function A, where h is the
Hilbert function of the fiber of 7 over the general point of S. (To
see this, one has to verify that each (R(y))V is a locally free sheaf of
Ogs-modules of constant rank h(\): First, R is a finitely generated
Og-module. Moreover, each (R ,\))U is a finitely generated R%-module
(see [Kr85] I1.3.2), and hence a finitely generated Og-module. Local-
izing in s € S and taking U-invariants, it follows that (Ry))Y is a
finitely generated Ogs-module. Now, Ogg is Noetherian by assump-
tion, and a finitely generated module over a Noetherian ring is finitely
presented ([Ma86], Exercise 3.7). Furthermore, (Ry))Y is a flat Og s
module because 7: X — S is flat. A flat and finitely presented module
is projective ([Ma86|, Corollary to Theorem 7.12). Finally, a finitely
generated projective module over a local ring is free ([Ma86] Theo-
rem 2.5). This shows that (R(y))Y is a free Ogs-module. Since S is
connected, the rank does not depend on s € S.)

In particular, the Hilbert function of a multiplicity-finite affine G-
variety X is the same as the Hilbert function of the corresponding
family X — Spec(k).

If X is an affine G-scheme, and if h: AT — N is any function, we
can consider the (contravariant) functor Hilb$ (X) from the category
of schemes to the category of sets assigning to a scheme S the set of
all multiplicity-finite families X —— S of affine G-schemes with Hilbert
function h, where X C S x X is a closed G-stable subscheme, and
where m: X — S is the restriction to X of the projection of S x X onto
S. Then Theorem 1.7 in [ABO5] states that the functor Hilb§ (X)
is represented by a quasi-projective scheme Hilb$ (X), called invariant
Hilbert scheme to the data (G, h, X).

The main object of study of this work are orbits in so-called minimal
sheets in irreducible representations. The notion of sheets goes back to
Dixmier, cf. [Di75]: Given a G-module V', the union of all orbits in V" of
a fixed dimension is a locally closed subset. Its irreducible components
are called sheets of V. We call a sheet minimal if it contains an orbit
in V' of minimal strictly positive dimension among all orbits in V.
In Chapter II, we describe minimal sheets in simple G-modules, and
study G-stable deformations of orbits in minimal sheets by means of an
invariant Hilbert scheme. This is closely related to the work of Jansou
(cf. [Ja05]) in the following way: Choose once and for all a non-zero
vector vy € V(AN for each A € AT, and let Xy = Guy C V()) be
the closure of the orbit Guy of vy in V(). Since each G-module V()
contains a unique B-stable line, vy is determined uniquely up to scalar
multiples, and X, is determined independently of the choice of v,.
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In [Ja05], Jansou investigates G-stable deformations of X in V/(A).
If hy denotes the Hilbert function of X, then Jansou proves that the
invariant Hilbert scheme Hilb% (V(X)) is, depending on G and A, either
isomorphic to A° or to A!. Furthermore, he gives a complete list of all
pairs (G, ) such that Hilbf (V(X)) = A' (Théoréme 1.1 in [Ja05]).
In the sequel, we call these weights Jansou-weights.

The orbit Guy is of minimal strictly positive dimension among all
G-orbits in V/(A) (cf. Lemma I1.1.4). If X is a Jansou-weight of G, then
there exist other orbits of the same dimension as Gvy. Here, we start
with a general orbit X of minimal strictly positive dimension in a fixed
simple G-module V' (\), and we study G-stable deformations of X. In
particular, we conjecture that the invariant Hilbert scheme parametriz-
ing the G-stable deformations of X in the closure of the sheet of X is ei-
ther A° or A!. This will stand in contrast to the fact that the invariant
Hilbert scheme parametrizing the G-stable deformations of X in V()
can look much more complicated. This is the content of Chapter III, in
which we will focus on the group SLs, and compute some correspond-
ing invariant Hilbert schemes. In particular, we study deformations of
orbits of the form SL,-z%2y%? in the space k[z,y]qs = V(d) of binary
forms of degree d. It turns out that easiest accessible case is when d is a
multiple of 4, and even in this case the corresponding invariant Hilbert
scheme can become very complicated. This reflects the principle that
even in ‘simple’ cases for invariant Hilbert schemes all possible sort
of ‘bad’ things (different irreducible components, non-reduced points,
singularities) occur. (This ‘bad’ behavior is also encountered in the
case of the classical Grothendieck Hilbert scheme parametrizing closed
subschemes of projective space with a given Hilbert polynomial — see
e.g. [Mu66)).

Finally, we turn our attention to not necessarily simple modules. In
the multiplicity-free case important work has been done by Bravi and
Cupit-Foutou (cf. [BCO8| and [Cu08]). We translate some of their
results to the case of not necessarily multiplicity-free modules. A cor-
responding (but wrongly formulated) result can be found in [ABO5], so
this fourth chapter can be seen as a (minor) erratum to the formulation
in [ABO5]. Chapter IV is independent from the preceding chapters.

In the two following sections, we state two results — one concerning
flat quotients of G-schemes and one concerning closed subschemes of
invariant Hilbert schemes. These results should not be over-estimated
as part of this work: On the one hand, they both fit naturally in the
context of the theory, and on the other hand, they have been around
as folklore in the community (clearly, the second result and at least up
to some minor degree also the first one). However, since both results
are quite useful and since they are not stated or proven explicitly in
the literature, we prove both of them here.
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I.1. Invariant Hilbert schemes and flat quotients

Let X = Spec(R) be an irreducible affine G-variety. If the quotient
m: X — X/G is flat, then 7 is a family of affine G-schemes with
Hilbert function h'y, where h'y is the Hilbert function of the general
fiber of 7. After identifying X with its graph I'(X) C X /G x X, one
obtains a morphism X /G — Hilbflx (X). This morphism is in fact an
isomorphism:

Theorem 1.1.1. Suppose that the quotient morphism w: X — X /G is
flat, and let 1y be the Hilbert function of the general fiber of m. Then
the invariant Hilbert scheme Hilb,cflx (X) is isomorphic to X /G, and
the quotient m: X — X )/G is G-isomorphic to the universal family
Univy (X) — Hilbg (X).

This result was found independently by M. Brion (cf. Remark 2.7
in [JRO9]) and by the author. This section is devoted to the proof of
Theorem 1.1.1.

Lemma 1.1.2. Let A be a (Noetherian) ring, and let ¢: A — B be a
ring homomorphism. If B s locally free of rank 1 as A-module, then
@ 1S an isomorphism.

Remark 1.1.3. It is important that B is an A-algebra and not only an
A-module: Consider T'Z[T], which is a Z[T]-module via the inclusion
Z[T] — T'Z[T]. Clearly, T~*Z[T] is free of rank 1, but the inclusion
Z[T) — T~1Z[T] is no isomorphism.

Proof of Lemma 1.1.2. First, suppose that A = (A, m) is a local ring.
Let ¢: B — A be an isomorphism of A-modules. Then () o p: A —
A) € Homy (A, A) = A; hence ¥ oy is multiplication with some ag € A.
Since ¥ (p(A)) = ag - A, we see that p(A) = v (ag - A) = ¢(ay) - B.
Now ¢(14) = 1 € p(A); hence 15 € ¢(ap) - B. This shows that
©(ap) is a unit in B, and p(4) = B. Because ) o p: A — B = A
is surjective, it is multiplication with a unit, and hence injective and
finally an isomorphism.

Let now A be arbitrary. Localizing the exact sequence of A-modules

0 — ker(p) = A— B — B/p(A) — 0
in p € Spec(A), yields the exact sequence
0 — ker(py) — A, AN By, — (B/yp(A)), — 0.

From the first part we know that ¢, is an isomorphism, and hence
ker(yy) = 0 and (B/¢(A)), = 0. Since this holds for all p, we conclude
that ker(p) = 0 and that coker(y) = 0, and the claim follows. O

Using the fact that A’y (0) = 1, we obtain the following corollary:
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Corollary 1.1.4. Let S be a scheme, and let S x X D X — S be a
closed G-stable subscheme with Hilbert function h'y. Then the natural
morphism X |G — S is an isomorphism.

Lemma 1.1.5. Let h: AT — N be a function, let S be a scheme and
let m: X — S be a family of affine G-schemes with Hilbert function h.
Let X' C X be a closed G-stable subscheme such that also ©': X' — S
is a family of affine G-schemes with Hilbert function h, where ' is the
restriction of m to X'. Then X' = X.

Proof. Let J C Ox be the ideal sheaf defining X’ as subscheme of X.
Let A € AT, and let s € S. Then we obtain the following short exact
sequence of Og s-modules:

0= (M T))")s = (1 Ox))")s = (1.0x)x)")s — 0.

Both (((1.O0x)(»)Y)s and (((1.O0x)(x))Y)s are free Og-modules, thus
the sequence splits. This implies that

(M. 02))")s = (1T ) 2)T)s @ (O ) 1)) s-

This shows that (((m.J)))Y)s is a summand of a free Og,-module,
and hence is projective. Since a projective module over a local ring is
free, we conclude that (((m.J)()Y)s is free. But both (((7.Ox)x)Y)s
and (((m.Ox)\)Y)s are free of the same rank (namely h(\)). Thus,
it follows that (((m.J)x))Y)s is free of rank 0. Since this holds for all
A € AT and for all s € S, we conclude that 7,7 is zero. Hence also
J =0,and ¥ = X. O

Remark I.1.6. Suppose that X = Spec(R) and X' = Spec(R’) are
affine G-varieties with G-invariant flat morphisms to a third affine va-
riety S = Spec(A), making X — S and X’ — S into families of affine
G-schemes with Hilbert functions h and A/, respectively. Assume fur-
ther that there exists a dominant G-equivariant morphism ¢: X — X’
of varieties over S. It can happen that the Hilbert functions h and A’
coincide, but that ¢ is no isomorphism (or in other words that ' C R
is a strict sub-S-module), nevertheless. An example shall be provided
in Lemma I1.2.7 and in Remark I.2.8. Indeed, if one tries to imitate
the proof of Lemma I.1.5 in this situation, one sees the following: Go-
ing over to an isotypic component A and localising in a € Spec(A), we
get a short exact sequence of Ag-modules

0 — (B))")a = (B))")a = (R/R)x)")a = 0.
Even if both (((R')(x))Y)a and (((R)(x)Y)a are free of equal rank h(X),
it does not follow that (((R/R')(\)Y)a =0 (as e.g. 0 — Z 27—
Z/(2) — 0 is an exact sequence of Z-modules.)

Proof of Theorem 1.1.1. In order to show that 7: X — X /G repre-
sents the Hilbert functor Hz’lng (X), one needs to verify that given a
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scheme S, each family of affine multiplicity-finite G-schemes S x X D

X ™ S with Hilbert function By is isomorphic to the pull-back of
m: X — X /G via a suitable morphism ¢: S — X /G. Let J C Ogxx
be the ideal sheaf defining X as closed subscheme of S x X. Let
®: X — X be the composition of the inclusion X — S x X followed
by the projection of S x X onto X. Now, ® is G-equivariant, and
by functoriality we obtain a morphism ¢: X/G — X /G such that
mo®d = pon'. If weidentify X /G with S (which is possible according
to Corollary 1.1.4), we obtain the required morphism ¢: S — X /G.
By the universal property of a pull-back there is a unique morphism
: X — S xxya X of schemes over X /G making the diagram

(I.1.1) X

¥ P

SXX//GX4>X

X)G~2S 2= X)G
commutative. The pull-back Sx x5 X is the closed subscheme of Sx X
defined by the ideal sheaf J¢ - Ogyxx C Ogxx. Since J¢ - Ogxx C T,

we see that X is a closed subscheme of S’ x x ¢ X. It now follows from
Lemma I.1.5 that ¢ is an isomorphism. U

I1.2. Closed subschemes

Let X = Spec(R) be an affine G-variety, and let h: AT — N be a
function. In this section we prove the following result:

Proposition 1.2.1. If X' C X is a closed G-stable subscheme, then
Hilb{ (X") is a closed subscheme of HilbS (X).

A particular case of this result is already stated in [ABO05], Lemma
1.6; and the proof given there can be carried over to our situation. We
only state a proof here for the sake of completeness.

Proof. For simplicity, we write Hilb instead of Hilb{ (X) and Univ in-
stead of Univg(X). Let f: S — Hilb be a morphism, let .S X, Univ =:
X 2 S be the family corresponding to X, and let 7: Univ — Hilb be
the projection. Then X can be seen as closed subscheme of S x X. We
now investigate conditions on f guaranteeing that X is already a closed

subscheme of S x X’. Let I C R be the ideal defining X' C X.
The natural morphism

S X Hilb Univ — S X Hilb (Hllb XX) = 9xX
of schemes over S yields a morphism of sheaves of Og-modules

(IQl) OS ® R - p*OSXHHbUniV7
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and X is a closed subscheme of S x X’ if and only if Og ® I is in
the kernel of this morphism. Denoting f’: S Xy, Univ — Univ the
morphism induced by f and using the isomorphism

/
f*p* OSX HilbUniV = ﬂ-* f* OSX HilbUniV g f* OS ®OHilb 7T* OUniv

of sheaves of Op,-modules, we can write (1.2.1) as morphism of sheaves
of Ouip,-modules

(p: f*OS ® R - f*OS ®OHilb W*OUniv-

Now, X is a closed subscheme of S x X" if and only if f,Os®1 C ker(y).
The image sheaf of f,.Ogs ® I under ¢ equals f.Ogs ®o,,, T=J, Where
J C Ovyniy is the ideal sheaf defining the scheme-theoretic intersection
Univ N(Hilb x X’) as closed subscheme of Univ, and hence X is a closed
subscheme of S x X' if and only if

(122) f*OS ®OHilb 7T*j = O

We need to construct a closed subscheme Hilb' C Hilb with the prop-
erty that (1.2.2) holds if and only if f: S — Hilb factors via Hilb'.
Going over to isotypic components, we see that (1.2.2) holds if and
only if
(1'2'3) [<Os QO ((W*j)()\)>U =0
for all A € A*. For A € A" consider the morphism

D ()1 Homoyy, (7 Ouniv) )Y s Oin) X (1T )0)Y — O,

(1, 7) = 1b(r)

of sheaves of Oyjp-modules. We claim that the image sheaf Zy) of
®(y is a sheaf of ideals in O, and that (1.2.3) holds if and only if
Z(» C ker(f#) for all A, or equivalently if and only if 7 := | J, .+ Z(n) C
ker(f#). Then Hilb' is the closed subscheme of Hilb defined by Z.

We verify the claim locally and denote ((m.Ouniv)(n))Y by M and
((mT) )Y by N. First, (1.2.3) holds if and only if

(1'2'4) (f*OS)p ®0Hilb,p NP =0

for all A € A* and for all p € Hilb. For p € Hilb the stalk of (®(y)), is
the homomorphism of Oy, ,-modules

(Py)p: Homoy,, (M, Oni p) X Ny — Ot p,
(¥, 1) — ¥(r).

Fix an isomorphism M, = (OHﬂb’p)h(A). If we identify N, C M, with
its image in (OHﬂb’p)h(A) under the chosen isomorphism, then N, is
generated by elements of the form (m;, ... ,mivh(A))i where ¢ runs over
some index set and where each m; ; € O p. Then the image (Z(y)),
of (®(y))p is the ideal of Oy, generated by all m; ;. This shows that
Z(») is a sheaf of ideals in Opyy,.
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Using the above isomorphism M, & (O, )", we see that (1.2.4)
holds if and only if m;; € ker( ff ) for all 4 and j. This in turn
is equivalent to say that Z” iy € ker(ff) for all p;; € Owi,p-
But >, ; piymi; equals (Z(y)),, and hence (1.2.4) holds if and only
if (Zn)p C ker(ff). This shows that (1.2.3) holds if and only if
Z(» C ker(f#), and this completes the proof. O
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Deformations of orbits in minimal sheets

I1.1. Minimal sheets

Let G be semisimple, and let V' be a finite-dimensional G-module.
For n € N let V™ C V be the union of all n-dimensional orbits
in V. Each V™ is a locally closed subset of V', and the irreducible
components of the V™ are called sheets of V (cf. [Di75] or [BK79)]).
We say that a sheet S C V is minimal if S C V™ for some n such
that V(™ is empty for all m with 0 < m < n.

Recall that we introduced the following notation: We fixed in each
simple G-module V() a non-zero U-invariant vector v,. Moreover, X
denotes the closure of the orbit of vy in V(A), and hy := hx,: AT = N
is the Hilbert function of X,. Then hy(u) = 1 if and only if € NA*,
and hy(u) = 0 otherwise. Finally, we call a weight A € A" a Jansou-
weight if HilbfA(V()\)) ~ A!. In [Ja05] Jansou proves that if A is no
Jansou-weight, then Hilb,i(V()\)) >~ A% and he gives a complete list
of all pairs (G, A) with G semisimple and with A a Jansou-weight of G.
The main result of this section is the following description of minimal
sheets in irreducible representations.

Proposition I1.1.1. Let 0 # X € AT,

a) The simple G-module V(X\) contains a unique minimal sheet S.

b) The orbit Guy lies in S.

c) The sheet S contains an orbit Gu different from Guy if and only
if A is an integral multiple of a Jansou-weight. In this case, the
orbit Gv is closed in V().

This justifies the following definition:

Definition I1.1.2. Let A € A*. Then S(\) denotes the closure of the
unique minimal sheet in V(\). By abuse of notation, we sometimes
call S(\) also the minimal sheet of V().

Corollary 11.1.3. Suppose that \ is an integral multiple of a Jansou-
weight and that Gv C S(X) is a closed orbit. Then S(\) consists of
Guvy U {0} and the orbits v - Gv for v € k\ {0}. Moreover, S(\) is a
cone in V(X), and its quotient S(N) J/G is an irreducible curve.

The proof of Proposition I1.1.1 and of Corollary I1.1.3 follow at the
end of this section.

15
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In the sequel we make frequently use of the (asymptotic) cone CX
associated to a subscheme X of a vector space V. We now explain
how it is defined. If f = Zg:o fn € Sym(V*) with f,, homogeneous
of degree n and with fy # 0, then gr(f) := fn. If X C V is defined
by the ideal I C Sym(V*), then CX C V is the subscheme defined by
the ideal generated by gr(I) := {gr(f) | f € I}. We refer to [BK79]
or [Kr85] for properties of the associated cone. (In contrast to the
definitions stated there, the associated cone CX needs not be reduced
here).

Lemma I1.1.4. Let 0 £ X € AT,

a) If 0 # X C V(A) is a reduced closed G-stable cone with dim X <
dim Gv,, then X = X,.

b) A sheet containing vy is minimal.

c) Let v € V(N) be a closed point with dim Gv = dim Gvy. Then
either Gv = Gy or the orbit Guv is closed in V(X).

d) Let v € V(A) be a closed point such that dim Gv = dim Gv, and
such that Gv is closed in V. Then the cone C(Gv) associated to
Gu is wrreducible, and its underlying variety is X.

e) A minimal sheet contains vy.

Proof. a) Let I be the ideal of X C V(A). Since X is reduced and
X # 0, it follows that Sym™(V (A)*)may € 1 for all n > 0. But then I is
strictly contained in the ideal 1(X)) = €D,50 D, <pa- Sym"(V(A)*) )
of X, € V(N). Hence X, is a closed subscheme of X. Since dim X <
dim Gy, the claim now follows.

b) Let S C V(A) be a minimal sheet, and let vy € S be a closed
point. Let X := Guvy C V()) be the closure of the orbit of vy, and let
Y C V(A) be an irreducible component of maximal dimension of the
cone CX associated to X. Then dim X = dimY, and since Y # 0, part
a) implies that dimY > dim X,. This proves that dim X, < dim X,
and hence a sheet containing v, is minimal.

¢) Suppose that Guv is not closed in V (), and choose vy € Gv\ Gv C
V(A). Let X := Guvy C V()) be the closure of the orbit of vy, and let
Y C V(A) be an irreducible component of maximal dimension of the
cone CX associated to X. If Y # 0, then dimY > dim X, according
to a). On the other hand, dimY = dim X < dim Gv = dim X,. This
shows that Y = 0, and hence CX = 0. Hence dim X = 0, and because
G is connected it follows that vy is a fixed point, which in turn implies
that vy = 0. This shows that 0 € Gv. Since vy € G for all v # 0 with
0 € Gv (cf. [Kr85] I11.3.6 Bemerkung 2), it follows that X, C Gw.
Since dim Gv = dim X, and since both Gv and X, are irreducible, it
follows that Gv = Gu,.

d) The variety C(Gv)yeqa underlying the cone C(Gv) is a reduced
closed G-stable cone in V(\) with 0 < dimC(Gv)req < dim Guy. It
follows with a) that C(Gv)eq = X, and hence C(Gw) is irreducible.
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e) Let S be a minimal sheet, and let Gv be an orbit in S. Because
of b) and since S is minimal, we see that dim Gv = dim Gv,. Hence c)
implies that Gv = Gu,, or that Gv is closed in V(A). In the first case,
we are done. Otherwise, observe that v - Gv C S for all v € k\ {0}.
It follows from [Kr85] 11.4.2 Satz 2 that C(Gv)wa C S. Moreover,
d) implies that C(Gv)wq = Xy, and hence Gvy C S. The claim now
follows. U

Definition IT1.1.5. Let 0 # u € AT. A reductive subgroup H of G
is called Jansou-subgroup of type p if there is an isomorphism of G-
modules

O(G/H) = O(G)" = PV (k).

k>0

Remark II.1.6. A reductive subgroup H of G is a Jansou-subgroup
if and only if the algebra O(G/H)Y has (Krull) dimension 1.

Let A € AT be a Jansou-weight. Then there exists a Jansou-subgroup
H C G of type A\. To see this, observe that there exists a closed
subscheme V(X)) D X # X, with O(X) = @, V(kX*). Ifve X isa
closed point, then the stabilizer G, of v is a Jansou-subgroup of type
A. (Since X # X, it follows from Lemma II.1.4 ¢) that X is a closed
orbit in V' (X). Thanks to Matsushima’s Theorem (cf. [Ma’s60], or see
[Lu73| p. 5), it now follows that G, is reductive.)

Lemma I1.1.7. Let 0 # u € A", and let X be an irreducible affine
G-variety with O(X) = @5,V (ku*) as G-module.

a) There exists a closed G-equivariant embedding X — V().
b) Either X = X, as G-variety or there exists a Jansou-subgroup
H C G of type p such that X = G/H as G-variety.

Proof. a) Observe that dimj, Hom®(V ()", O(X)) = 1 according to
Schur’s lemma. Any non-zero G-equivariant morphism V(u)* — O(X)
of G-modules extends to a G-equivariant epimorphism Sym(V (u)*) —
O(X) of k-G-algebras, which gives the desired closed G-embedding
X = V(p).

b) Consider the cone CX associated to X. Since hex = hy = hx,, it
follows either from Lemma I1.1.4 or from the discussion in [Ja05] that
CX = X,. Lemma II.1.4 ¢) implies that either X = X, or that G
acts transitively on X. In the second case, it follows that HilbgH (V(w))
contains at least two closed points (one point corresponding to X, and
one point corresponding to X)), and hence that y is a Jansou-weight.
Let v € X be a closed point with stabilizer G, C G. Then X = G/G,
as G-scheme, and hence G, is a Jansou-subgroup of type pu. O

Lemma I1.1.8. Two Jansou-subgroups H and H' of G of the same
type pu are conjugate.
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Proof. With Lemma I1.1.7 it follows that there are closed G-equivariant
embeddings ¢: G/H — V(u) and ¢': G/H' — V(u). Let X =
©(G/H) and X' = ¢(G/H'). The proof of Lemma II.1.7 and the fact
that Hilbfﬂ(V(,u)) = A! according to [Ja05] imply that X = yX’ for
some v € k \ {0}. The stabilizer of v := p(1H) € V(u) equals H, and
the stabilizer of v := p(1H') € V(u) equals H'. Moreover, v/ = tgv
for some g € G. It now follows that H' = gHg . O

For a G-module A we let A4 := {\ € A* | Hom®(4,V()\)) # 0}. For
an affine G-scheme X = Spec(A), we let Ay := Ay. The proof of the
following result was wrongly stated in a first version of this Thesis. I am
most grateful to M. Brion who pointed out the necessary corrections.

Lemma I1.1.9. Let A be a (Noetherian) G-algebra, and let I C A be
a G-stable nilpotent ideal. Then the following hold:

a) If A is a monoid, then Ay C QAayy.

b) If A/I is multiplicity-free, then A is multiplicity-bounded, i.e.
there exists ng € N such that dim, Hom®(A, V(X)) < ng for all
AeAT.

Proof. a) Let R be a G-algebra, let M be a finitely generated R-G-
module, and let y € Ay, be a weight with u € QAgr. We claim that
mu & Ay for all m suitably large. To see this, suppose that M is
generated as R-module by a finite-dimensional G-module N C M. If
W1, .., by are the weights of N, then

(I1.1.1) Ay € AR+ ).
=1

(Because M is generated as R-module by N, there is a surjective
homomorphism of G-modules R ® N — M. The weights of the U-
invariants in V(\) ® V(u) are of the form A\ + v, where v is a weight
of V(u) (see e.g. [FHOO]|, Ex. 25.33), and (II.1.1) follows.) If the
claim is false, there exist n + 1 different integers kq, ..., k,+1 > 0 with
kijp € Apr. But then there exist 0 < 73 < j» < n + 1 and ¢ such that
kit = A+ p; and kj, i = Ao + p; for some A\j, Ay € Ag. It follows that
0 # (kj, — kj,)p = Ao — A\ € ZApg, and hence that © € QAg. This
proves the claim.

Consider gr;(A) := @,-, " /1", which is a finitely generated A/I-
algebra. If I C A is nilpotent, then gr;(A) is finitely generated as A/I-
module. Applying the above with R = A/I and with M = gr;(A),
and observing that Ag a) = A4, it follows that mu & Ay for all m
suitably large if € Ay \ QA4s/r. On the other hand, since Ay is a
monoid, mu € Ay for all m > 0 whenever o € Ay. This implies that

Aa CQAyr



1I.1 Minimal sheets 19

b) Using the above notation, suppose that R is multiplicity-free, and
let A € AT. Then

dim Hom®(M, V())) < dimy Hom%(R® N, V(\))
= dimy, HomG(R, N* @ V()N)). U

Lemma I1.1.10. Let 0 # X\ € A", and let S C V(X\) be a minimal
sheet. Suppose that v € S is a closed point such that the orbit Guv is
closed in V(X). Then there exists an integer n € N such that A\/n is a
Jansou-weight and such that Gv = G/H, where H C G is a Jansou-
subgroup of type A/n.

Proof. Let X := Gv C V() be the (closed) orbit of v, and let CX be
the cone associated to X. It follows from Lemma II.1.4 d) that CX
is irreducible and that the reduced variety underlying CX equals X,.
Hence there are the following isomorphisms of G-modules:

O(X) = 0(CX) = O(X,) & /(0),

where /(0) is the nilradical of the O(CX). It follows from Lemma
I1.1.9 a) that Ax C QAx, = QA*. Since X, is multiplicity-free, Lemma
I1.1.9 b) implies that there exists N € N such that N > hx(u)(=
hex(p)) for all p € AT, If hx(u) > 2 for some p, then we find two
linearly independent U-invariants fi, f> € (O(X)(,))Y. Since O(X) is a
domain, it follows that f¥, f1¥ "' fo, ..., fIV € (O(X)nw)Y are linearly
independent. But then hx(Nu) > N + 1, a contradiction. This shows
that X is multiplicity-free. Moreover, Ax C QA* is a monoid. This
shows that there exists n € N and f € k(X)V of weight A\*/n such that

OX)WY =k[f™, ..., f™]

for some integers nq,...,n; with ged(ny,...,n;) = 1. Since X = Gv
is smooth and in particular normal, O(X)Y is integrally closed in its
field of fractions k(f). This shows that O(X)Y = k[f], or that O(X) =
D,~o V(kX*/n). Lemma II.1.7 b) now implies that Gv = X = G/H,
where H is a Jansou-subgroup of type \/n. O

Lemma I1.1.11. a) If H C G is a Jansou-subgroup, then H° is a
maximal proper connected reductive subgroup of G.
b) If H, H' C G are two non-conjugate Jansou-subgroups with H® =
H", then either H= H" and H' = Ng(H), or vice versa.
c) If H C G is a Jansou-subgroup that is not self-normalizing (i.e.
H # Ng(H)), then [Ng(H) : H| = 2.

Proof. a) Let H C G be a Jansou-subgroup of type p. Then H? is a
connected Jansou-subgroup of G. If 1° denotes its type, then u € Npu°.
Let G 2 H' D H° with H' connected and reductive. Then H’ is a
Jansou-subgroup of G of type mu® for some m > 1. It follows that
the natural morphism G/H® — G/H’ is finite, and hence dim G/H' =
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dim G/H°. Since both H® and H' are connected, it follows that H =
H'.

b) Let H, H C G be two Jansou-subgroups with H® = H". Then
all H, H', and H° are Jansou-subgroups of type u, p/, and po; and
both p and p’ are rational multiples of jo. Using the list in Théoreme
1.1 in [Ja05], we find that two of the three weights coincide. Since
p # ', we can assume that g = pg, and hence that H = H°. Since
the normalizer of a Jansou-subgroup is also a Jansou-subgroup, we
conclude that H' = Ng(H).

¢) Suppose that H is of type u. Now, Ng(H) is a Jansou-subgroup
of type u/n for some n. Using Jansou’s list, we see that n = 2. Hence
the natural morphism G/H — G/Ng(H) is finite of degree 2, and the
claim follows. 0

Remark I1.1.12. Let H C G be a Jansou-subgroup of type u, and
let A € AT be a dominant weight. Then dim V(A = 1 whenever \ €
Ny, and dim V(M) = 0 for all other A. This follows from Frobenius
reciprocity; see [Jant87], [KP96] 5.5, or also [Kr85] I11.3.4 Satz.

We conclude this section with the proof of Proposition I1.1.1.

Proof of Proposition I1.1.1. a) By definition, V' (\) contains at least one
minimal sheet S. Suppose that V' (\) contains a further minimal sheet
S’. Since each minimal sheet contains X according to Lemma I1.1.4
e), we can assume that both S and S” contain an orbit different from
X, (if e.g. S = X, then S C ', and S would not be a sheet). Call
these orbits Gv and Gv'. Lemma II.1.4 ¢) implies that Gv and Gv’
are closed in V(\). According to Lemma II.1.10 there exist integers
n,n’ € N such that Gv =2 G/H and Gv' = G/H' with H and H'
Jansou-subgroups of type A/n and A/n/, respectively. After replacing
H by a suitable conjugate subgroup, we can now assume that H° = H",
and hence H' = H or H' = Ng(H) (or vice-versa) according to Lemma
I1.1.11. Remark II1.1.12 implies that 1 = dim V(\)¥ = dim V/(\)#',
and it follows that the two vector-spaces coincide: V(A" = V(\)H.
It follows that S’ =G - V()T =G - V()P = S.

b) It follows from Lemma I1.1.4 b) that Gv, C S.

¢) Suppose that X := Gv C S is an orbit different from X,. Then
Lemma II.1.10 implies that there exists a Jansou-subgroup H C G of
type A/n for an integer n € N such that X = G/H. This proves the
‘only if” part of ¢).

For the other direction, suppose that A/n is a Jansou-weight. Let
w € V(A/n) be a closed point such that H := G, is a Jansou-subgroup
of type A/n. Then Gw = G/H, and O(G/H) = @, V(kA/n)*. Using
the fact that hg/p(V(X*)) = 1, we obtain a finite morphism ¢: G/H —
V(XA). Hence the image Y of G/H in V() is a closed multiplicity-free
orbit of dimension dim G/ H. Because dim Gvy/, = dim Gy, it follows
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that dimY = dim G/H = dim Gvy,, = dim Gw,, which proves with a)
and b) that Y C S. O

Proof of Corollary I1.1.3. The statement is now a consequence of the
proof of Proposition II.1.1 (and of Schur’s lemma). O

I1.2. Invariant Hilbert schemes for minimal sheets in simple
modules

In this section we use the following notation: A closed G-stable cone
X = Spec(A) in a G-module V is regarded as a G,,, X G-variety, where
the G,,-action comes from the scalar multiplication of G,, on V. For
n € N and A € AT, we denote by A, ») the isotypic component of the
G, X G-algebra A of type (n, A); which is the same as the intersection
of the homogeneous component of A of degree n (with respect to the
grading induced by the G,,-action) and the isotypic component A,y of
the G-algebra A.

Recall from Definition II.1.2 that S(\) denotes the closure of the
unique minimal sheet in V/(\). In the sequel, h\: AT — N is the
Hilbert function of a general orbit of S(\), whereas hy: AT — N still
denotes the Hilbert function of Xy = Gvy C V(A). In this section we
are interested in describing Hilbg,A (S(N).

Lemma I1.2.1. a) If A is a Jansou-weight, then b, = hy. Further-
more, dimS(\) /G =1, and Hilbf/A (S(\)) = AL
b) If \ is not an integral multiple of a Jansou-weight, then b = hy.
Furthermore, S(\) = Xy, and HilbgA (S(\) = A°.

The goal of this section is to prove that under some assumptions
Hilb,?,A (S(N\)) = A! when ) is an integral multiple of a Jansou-weight.

Proof of Lemma I1.2.1. a) Note that Hilb: (S(\))(= Hilby, (S(A))) is
a closed subscheme of Hilb%(‘/()\)) = A! according to Proposition
[.2.1. On the other hand, the G-orbits in V' (\) with Hilbert function
hy that are parametrized by HilbfA(V()\)) are closed subschemes of
S(A). This shows that the universal family Univf} (V(A)) C A x V(})
is in fact a closed subscheme of A! x S(\). The claim now follows.

b) Also here, Hilb% (S(\)) = HilbfA (S(A)) is a closed subscheme of
Hilb%(V()\)) = A% Since X C 8(A) has Hilbert function hx, = hy =
h', the invariant Hilbert scheme Hilbf/A (S(X)) has a closed point, and
hence equals A%, (Or, one could observe that the quotient morphism
S(\) — S(\)JG = A is flat, and hence according to Theorem I.1.1
Hilby; (S(A)) = S(V) /G = A".) O

However, if A is an integral multiple of a Jansou-weight but not a

Jansou-weight itself, then A} # h,. (To see this, the discussion of the
previous section is useful: If A is an integral multiple of a Jansou-weight,
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then the minimal sheet contains a family of orbits different from X,.
These other orbits are all isomorphic, and their Hilbert function is h).
In particular, Hilb%(V()\)) contains more than one closed point. On

the other hand, if A is not a Jansou-weight itself, then HilbfA(V()\)) =
A", Thus, h) cannot be equal to hy.) In this situation, we only know
from Proposition I1.1.1 that dimS(\) /G = 1. If S(\) /G = A then it
follows from Theorem I.1.1 (and from [Ha77], Proposition I11.9.7) that
HilbgA (Sy) 2 S(\) /G = A'. However, if S(\)/G is not smooth, then
the situation is more delicate. Anyway, we now construct a morphism
A' — Hilby (S(V)).

Since S(A) € V(A) is a cone, the action of G,, on V(A) by scalar
multiplication restricts to a G,,-action on S(A). The Borel subgroup
G, X B of G,,, x G has a dense orbit in S(A), hence R := O(S(N)) is
multiplicity-free as k-(G,, x G)-algebra. Using once more that S(\) is
a cone in V()\), we see that there exist G-invariants f1,..., fs € R,
each f; homogeneous of degree n;, such that R = k[fy,..., fJ].

Definition I1.2.2. Let
ng :=ged{ny,...,ns}
=gcd{n € N | there exists 0 # f € R of degree n}.

Since the normalization of S(\)/G is isomorphic to A, there exists
an invariant rational function f € Quot(R), homogeneous of degree ny,
such that each f; equals f™ for some m; € N, up to some non-zero
scalar factor. (Here, Quot(R) denotes the quotient field of R.) Then
RY = k[fm, ..., fm].

Let v € S(A) be a closed point such that the orbit Guv is closed. Let
H C G be its stabilizer (which is a Jansou-subgroup). Recall from
Lemma I1.1.11 that H is either self-normalizing or that [Ng(H) : H] =
2.

Lemma I1.2.3. Let ng be as abowve.
a) If H= Ng(H), then ng = 1; and if H # Ng(H), then ng = 2.
b) Suppose that the only Jansou-weight in QX is p = \/n. Then
Ng = 1.
c) Suppose that the Jansou-weights in QX are p = \/n and 2u. If n
s odd, then ng = 2. If n is even, then ng = 1.

Proof. a) Suppose that ng # 1, and let ¢ € k be a primitive ng-th root
of 1. Then there exists g € G such that gv = (v. If h € H, then
g thgv = g7 'h¢v = g 'Chv = g '(v = g 'gv = v, which shows that
g 'Hg C H. Since g € H, it follows that H # Ng(H). According to
Lemma I1.1.11, we see that Ng(H) = H U gH. It is now easy to see
that ¢2 = 1, and hence ng = 2.

On the other hand, suppose that ng = 1. If H # Ng(H), then there
exists g € G\ H with Ng(H) = HU gH. Then gv # v, but ¢*v = v.
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Then v + gv € V(\)NeH) ¢ V(N = k- v. Tt follows that gv = —v.
However, if ng = 1, then v and —v are separated by some invariant
function of odd degree, which shows that v and —v cannot lie in the
same G-orbit. This contradiction shows that H = Ng(H).

b) Under the present assumptions, neither ;/2 nor 2u are Jansou-
weights. It then follows that each Jansou-subgroup of type p is self-
normalizing. Since H is such a Jansou-subgroup, the claim follows with
a).

¢) If n is odd, then X is not an integral multiple of 2u. Lemma I1.1.10
implies that H is a Jansou-subgroup of type p (and not of type 2u).
But a Jansou-subgroup of type p is not self-normalizing, and a) implies
that ng = 2.

Let X = Gv C S()). If nis even, then A is an integral multiple of 2.
Let H' C G be a Jansou-subgroup of type 2u. Then H' = Ng(H'), and
(H")? is a Jansou-subgroup of G of type p. As in the proof of Lemma 77,
there is a finite G-morphism G/H’' — X = G/H. Moreover, H = H'
or H 2 (H')?. As there is no non-zero G-morphism G/H' — G/(H')°,
we conclude that H = H', and hence H = Ng(H). O

Let J := {3, mt* | S mef* = 0in Quot(R)} C RJt], and let
S(\) := Spec(R[t]/J) C S(A) x AL,

Proposition I1.2.4. The morphism p: A! x S(A\) D S(\) — Al in-
duced by the composition of the natural homomorphisms k[t] — R[t] —
R[t)/J defines a family in Hilby, (S(A))(A").

Proof. The ideal J is the kernel of the homomorphism of k-algebras
R[t] — Quot(R) mapping ¢ to f. This implies that R[t]/.J is a domain,
since it can be regarded as a subring of Quot(R). In particular, the
morphism p, mapping an irreducible variety onto A', is flat. It now
suffices to verify that one fiber of p has k), as Hilbert function. To see
this, we compute the fiber of p: S(\)’ — A! over the generic point of
A'. This fiber equals Spec((R[t]/J) @y k(t)) = Spec(R(f)), where
f € Quot(R) is as above. On the other hand, the fiber of 7: S(\) —
S(N) /G over the generic point of S(\)/G equals Spec(R ®re k(f)) =
Spec(R(f)). Thus, the two fibers are isomorphic and hence have the
same Hilbert function. Since the fiber over the generic point of the
quotient morphism 7 has Hilbert function A/, the claim follows. O

Since R is multiplicity-free as k-(G,, x G)-algebra, we have

R= @ @ R,

pEAR n>0
with R, either 0 or G-isomorphic to V(u).

Remark I1.2.5. The following observation turns out to be useful. If
R(n#) = V(M) and R(n_,_nmu) = V(,u), then R(n+n07M) = f . R(n#)i If

0#7re¢ ng) and if 0 # 1" € ngnw), it suffices to show that up to a
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non-zero scalar multiple ' = f-r. Because R is a domain, it is enough
to show that up to a non-zero scalar multiple (/)™ = f™.r™ for some
m > 1. For m > 0, the invariant f™ is a regular function, and thus
both (r')™ and f™r™ are invariant regular functions of the same degree
for m > 0. Because R is multiplicity-free as G,, x G-algebra, we see
that (7)™ = f™r™ up to some non-zero scalar multiple, and the claim
follows.

Remark I1.2.6. There is the following description of S(\)’. Consider
the variety (A' Xs(n)jG S(A))rea- It is the pull-back of S(\) and A'
over S(A)/G in the category of varieties. It is not hard to see that
(A' X503)/G S(N))rea Is irreducible: First,

(A x 50006 SN ))red = {(t,v) € AL x S(N) | n(t) = w(v)} € A x S(\),

where n: A’ — §()\)//G is the normalization morphism. From this de-
scription one sees that the (reduced) fibers of p': (A' X500 /GS(A))red —
A' coincide with the (reduced) fibers of m: S(A\) — S(\)/G. Thus,
(Al Xs(2) )G S(A))red is irreducible, and hence p’ is flat. Since both are
subschemes of A'xS()), it follows that (A X s(x)jGS(A))rea iSomorphic
to S(A).

Lemma I1.2.7. a) In general, S(\)" is not isomorphic to the (sche-
me-theoretic) pull-back S(X) X sy Al

b) In general, S(N\) is not isomorphic to the normalization S(\).

—_~—

Proof. a) In view of Remark I1.2.6, this amounts to show that in gen-
eral A' Xgsn) e S(A) is not reduced. If A xg0)/¢ S(A) is reduced,
the schematic fiber S(\)j of p: S(A\) — A! would coincide with the
schematic fiber S(A)g of 7: S(A\) — S(A\)/G. But this would imply
that 7 is flat. This is not the case in general, and an example is given
in Section IIL.3 (cf. Remark II1.3.8).

b) Recall that S(\)" = Spec(R[f]), where f € Quot(R) is as above.

P

On the other hand, S(\) = Spec(R), where R C Quot(R) is the integral
closure of R in Quot(R). We now give an example in which R[f] C R.
Let G = SLy, and let A = d > 8 be a multiple of 4. Then R, 4) # 0, and
R # 0, as well as fre R(2,0), but R(1.4) = 0 (as we shall see in detail
in Section II1.3). Let 0 # r € REJM)’ and consider r/f, which is a U-
invariant rational function of degree 1 and of weight 4. Now r? € RE{LS)‘
Choose further 0 # ' € Rg’g). Because f? € Ry and because R is
multiplicity-free as G,, x SLs-algebra, it follows that 2 = f2r' up to
some non-zero scalar multiple. But now (r/f)? = v’ € R, and thus
r/f € R. This shows that R(M) # 0. However, clearly R[f]1.4) = 0,
because the only SLy-submodules of R[f] of degree 1 are k- f = V(0)
and R ,q) = V(d). Thus, R[f] C R.

U
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Remark I1.2.8. The inclusion R[f] € R corresponds to the G,, x G-

equivariant morphism ¢: S(A) — (A X g(n)jaS(A))rea (that is obtained
by the universal property of the pull-back):

T
Al SN/G.

Both 7" and 7 are flat families of G-schemes whose fibers have the
same Hilbert function, and both families are isomorphic over A\ {0}.
Nevertheless, in general ¢ is no isomorphism according to Lemma
I1.2.7 b). This does not contradict the representability of the functor

—_—~—

’Hz’lbgA (S(A)) since there is no reason why S(A) should be a subscheme
of S(A\) x A'. (Compare this to Remark I.1.6 in the introductory part.)

From the definition of S(\)’, we see that the schematic fiber S(\);
of 7'+ S(\) — A over 0 equals Spec(R/I}), where I} C R is the ideal
defined by

I
IL={ro € R|3r,....,n GR:Zrkfk =0 € Quot(R)}.
k=0

For p1 € Ag let n* := min{n € N+o | R, # 0}. Then

Ii= P Ruw-

#GAR n>nk

To see this, let 0 # rg € ng) with n > n,, and let 0 # r € RZMM).
Then (after multiplying 7o with a suitable scalar) ro — rf"™ =0 €
Quot(R), and the claim follows.

Proposition I1.2.9. Let ng be as in Definition I1.2.2, and suppose that
Riinopary £ V(XY). Then

Hilbj (S())) = A,
and p: S(\) — A from Proposition II.2./ is the universal family.

Proof. Step 1. Let € A*. We claim that R, ,) # 0 if and only if
n = nt + Ing for some [ > 0 or if (n,u) = (0,0). Assume first that
Ry # 0, and let 0 # ry, € R(Un,u) and 0 # ru € R(UMM. Then 7, /ru
is a rational invariant function of degree n — n*. By definition of ny, it
follows that n — n* € ngN.

On the other hand, let n = n* + Ing. Then we need to show that

R(n,,u) 7& 0. If (na ,u) = (17 )‘*) or if (TL, :u) = (1 + No, )‘*)7 then R(n,,u) 7é 0
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by assumption. Otherwise, we proceed by induction on [. If [ = 0, the
claim is true by definition of n*. So, we assume that Ruuqing.) 7 0.
Now, there exists y/ € AT such that

R(n“+lno,u) C R(n”Jrlnofl,,u’) : R(l,)\*)-
Multiplying this with f and using Remark I1.2.5, we find:
[ Ripsing ) C Rnsging—1) * f - Rane
= Rnusing—1,0) - By C R.
This shows that Ry 41)ng,u) 7 0-

Step 2. The preceding step shows that R(,xyin, ) is contained in
the G-stable ideal generated by R(i4p,a+) for all 4 and for all [ > 0.
This shows that the ideal I is the smallest G-stable ideal containing
R(1+no,)\*) and R(nO,O)-

Step 3. Let I C R be a G-stable ideal with hg,; = h) and with
Spec(R/VI) = Spec(R/I)ea = Xx. Then I = I). To sce this, first
observe that the condition Spec(R/v/T) = X, implies that R, C
I. Consider R0y = k f"o/ "0, Suppose that R0 ¢ I. Then there
exists 0 # v € k such that vy — f7"/" € I (because hr/r(0) = 1). Hence
f(v= f"o/no) = fv— fro/motl e [ According to Step 2, we know
that f°/m0+1 is in the G-stable ideal generated by R(14ny,x+), and hence
fr°/mot1l ¢ [ This in turn implies that f € I, which is a contradiction
to f*'/m0 & I. We conclude that Rno ) C I. But then Ij C I according
to Step 2, and hence I = Ij because hg/r = b = hg/1;.

Step 4. We claim that dimj Hom$(1), R/I}) < 1. Since I} is gener-
ated as R-G-module by R(14,,,x+) and by R0 ), it follows that

dimy, Hom% (I, R/1}) < dimy, Hom$ (R (14ng ), B/ 1))
+ dimy, Hom% (R0 ), R/ 1)
=1+1=2

according to Schur’s Lemma. Let ¢ € Hom%(Ij, R/I}). We now show
that the restriction of ¢ to R(14n, \+) already determines ¢( fr/mo) Let
re R%)/\*). Now o(r - /") = rp(f*"/™) € R/I}. Since r - f*'/"
R(1450 5%y, we see that ro(f7°/m) is determined by PlRs0g ey But
then also ¢(f"°/™) is determined by ¢| R 4ng e+ 20 the claim follows.

Step 5. Consider the family p: S(A\)) — A'. Step 3 shows that
the induced morphism ¢: A — Hilbg,A (S(X)) is bijective. Because
S(A) — S(N\)/G is flat in the complement of the zero-fiber, we see
that 1 is an isomorphism in the complement of 0. To show that ¢ is
an isomorphism, it suffices to show that Ty, Hilbg,A (S(X)) is at most
one-dimensional. According to [ABO5], Proposition 1.13, the tangent

space is isomorphic to Hom% (1}, R/1}), and now the claim follows with
Step 4. O
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Let A € AT, and let v € S(\) be a closed point such that the orbit
Gwv is closed. Let H = (G, be the stabilizer of v. Then H is a Jansou-
subgroup of type A/n for some n. Let ng be as in Lemma 11.2.3

Corollary 11.2.10. Suppose that

(1) ng = 1, and that one of the following conditions hold:
(a) Ry # 0, or:
(b) 3(3’0) 7A O, or:

(c) if
o @ VEN/n) x PV (EX/n) — @V (kX /n)
k>0 k>0 k>0
is the multiplication on O(G/H), then V(X*) C V(X*) -c/u
V(A");
or that

(2) no = 2, and that one of the following conditions hold:
(a) S(\)JG = Al or:
(b) R #0, or:
(c) if

o @ VENn) x PV (kX /n) — @V (kX /n)
k>0 k>0 k>0
is the multiplication on O(G/H), then V(X*) C V(X*) -¢/u
V(X)) -a/u V(N).
Then
Hilbj (S())) = A,

and p: S(\) — Al is the universal family.

Observe that in the case ng = 1 the quotient S(\)/G cannot be an
affine line. Otherwise, R = k[f], where f is an invariant function of
degree 1 (since ng = 1). Since R is a quotient of Sym(V (\*)), it would
follow that Sym'(V(A\*))¢ # 0, a contradiction.

Proof. (1) (a). This follows from Proposition I1.2.9.

(1) (b) Clearly, R(3,0) C @NEAR R(ZM) : @MGAR R(Lu)' However,
R(LM) =0if ) 7& >\*, hence R(gp) C ®H€AR R(gw) . R(L)\*). But R(ZM) .
R(1y+) can contain V(0) only if 4 = A*. This shows that R C
Ry - Raasy. If Rgoy # 0, then also Ry # 0, and the claim
follows with (1) (a).

(1) (c). The orbit Gv C S(X) is G-isomorphic to G/H. Let J C R
be the ideal of Gv, and let € AT be a dominant weight. The isotypic
component (R/J), is isomorphic to R,)/J,) (see [Kr85], 11.3.2). If
V(AY) € V(A) -gyu V(X"), then (R/J)ov C (R/J)ovy - (B/T)ne)-
Since R x+y ¢ J, we find that

Raay C Ravy - Raasy + Jon.
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Using once more that R ) # 0, we find that (R - Raas))os) =
R(35+) # 0. The claim now follows with (1) (a).

(2) (a) If S(\)J/G = A, then the quotient morphism 7: S(\) —
S(N\) /G is flat, and the claim follows from Theorem 1.1.1.

(2) (b) This follows from Proposition I1.2.9.

(2) (c¢) The proof of (1) (c) can be carried over to this situation using
2 (b). O

We will show in the next chapter that for G = SL, either condition
(1) (a) or condition (2) (a) holds for every integral multiple of a Jansou-
weight.

Example 11.2.11. Consider SL3. The only Jansou-weight of SL3 is
A = wy + wsg, and V(\) can be identified with the Lie algebra sl3, on
which SLj acts with the adjoint representation. We claim that

Hﬂbigj (S(2\) = AL

Let X := SLj3-diag(1,1,—2) C S(A) C sl;. Then hx = h), and
O(X) =P, V(EXN) = D,~0V(kN). In view of Corollary 11.2.10 1
(c¢) the claim is true once we have shown that V(2\) C V(2)) - V(2)),
where - is the multiplication on O(X).

Step 1. For a 3 x 3-matrix matrix A = (a;;) € Mats(k) the assign-
ment y;;(A) := a;; defines elements in Mat(k)*. Because ((sl3)*)V =
k - ys1, we see that

V(2X) = spany{(gys1 - gys1) | g € SLs} C Sym*((sl3)*).
If we identify (sl3)* with sl3, then SLj -y3; consists of all traceless matri-
ces Y of rank 1 with Y2 = 0. Every such matrix is of the form w; - (w)7,
where w;, w, € k% are two vectors that are orthogonal with respect to
the standard inner product on k*. We now compute some of these ma-
trices. Always assume now that i # j # k # i. For wy = e, +¢; + ¢,
and wy = e; — e; we see that yi; + yji + Yri — Yij — Y5 — Yrj € Sz -ys1.
Hence (Yii + Yji + Yki — Yij — Yj; — Yk;)? € V(2X). The maximal torus
T C SLj acts with different weights on the summands of this sum.

Because the sum of all summands of the same weight also belongs to
V(2)), we see that

(11.2.1) i € VI(2)),
(I1.2.2) Yk € V(2X),
(11.2.3) Yij(Wi —y55) € V(2X),
(I1.2.4) Uk (i — Vjj) — Yki¥si € V(2A).

Step 2. From (I1.2.3) it follows that
Y2 (v — y5)? € V(2X) - V(2)).
From (I1.2.4) it follows (after permutating the indices cyclically) that
Vi (Ysi = )+ Yibis — 2955 (Y35 — Y )Yinyis € V(2X) - V(2)).
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From (I1.2.1) it follows that y7y7; € V(2)A) - V(2X). From (I1.2.2) and
(I1.2.3) it follows that
Yij (Yis — Yrr)YikYj = Yij¥ir - Y (Yj5 — Ykk) € V(2A) - V(2A).
We conclude that
(I1.2.5) yfj(yjj —yek)? € V(2X) - V(2)).
Starting with w; = e; —e; and with ws = e; +¢€; + e, one sees similarly
that
(I1.2.6) yfj(ykk — )2 € V(2)) - V(2)).
Now (I.2.5) and (I1.2.6) imply that
?J?j Z(ykk —yn)? € V(2X) - V(2)).
k#l
But ), 7él(ykk —yyu)? is a symmetric polynomial in the y, and hence it
is constant on X. Since Y7, (s — yu)*(diag(1, 1, —2)) = 36 # 0, we
conclude that g7 € V/(2X) - V/(2X). In particular, y3, € V/(2X) - V(2X),
and hence V(2X\) C V(2A) - V(2)).
Conjecture 11.2.12. Let G be a semisimple group, and let X be an
integral multiple of a Jansou-weight of G. We conjecture that

Hilby} (S(A)) = A,

The conjecture is only known to be true if A is a Jansou-weight (cf.
[Ja05]) and for G = SLy, as well as for G = SL3 with A\ = 2(w; + wj3).

I1.3. Deformations and the null-cone

Definition I1.3.1. The schematic null-cone N'(\) of V()) is the closed
subscheme of V(\) defined by the ideal (€,,.,Sym"(V(A)*)%) of all

non-constant homogeneous invariant functions on V().

Lemma I1.3.2. Let X C V(X) be a closed G-stable subscheme with
Hilbert function hx = h,.

a) If Xyea = X\ = Guy, then X is a closed subscheme of N'()).

b) If Xiea # X», then X is a closed subvariety of S()\).

Proof. a) Suppose that X,e.a = X, and that f = f, € I(X)“
)

= N

Sym(V (\*))¢ is an invariant function in the ideal I(X) of X C V(A
where each f, is homogeneous of degree n. Then f € I(X,eq)®
@D, Sym”™(V (X)), Hence fo = 0. Since hx(0) = R,(0) = 1, it
follows that I(X)% =, ., Sym™(V(X*))¢. Hence I(X) D> I(N(N)).
b) If Xieq # X, then X eq is an orbit in S(A) (since dim X = dim X,
thanks to hx = h/). The claim follows from the discussion in Section
II.1. 0
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Remark I1.3.3. Let N()\),q denote the reduced null-cone, which is
the subvariety of V(\) of those closed points v € V() having 0 in
the closure of their orbit Gv. It is not known whether one can replace
N (A) in Lemma I1.3.2 by N'(\)eq-

Suppose that A € AT is an integral multiple of a Jansou-weight. In
Section I1.2 we have constructed a family p: S(\) — A! giving an
injective morphism A — Hilb% (S(A))rea. Its image is an irreducible

component of HilbgA (S8(A))red, which we will denote by Hilb,(l;,A (S(N)° .

Corollary I1.3.4. Suppose that A € AT is an integral multiple of a
Jansou-weight.

a) Then
el T e 0 e
Hilb;: (V(A))rea = Hilby) (S(A))rea U Hilby) (N(A))rea,
and the two latter intersect in exactly one closed point.
b) The natural morphism n: Hilbf& (N (X)) — Spec(k) is proper. In
particular, Hilbg& (N(N)) is projective.

Proof. Statement a) follows from Lemma I1.3.2. For b) note that the
morphism 7 is the Nakamura-morphism

n: Hilbj, (V(A)) — Hilby o) (N (V) /G) = Hilby (A%) = A”,

which is proper (cf. [ABO5] p. 92). (Here Hilb, (X) is the punctual
Hilbert scheme parametrizing the closed subschemes of X of length
n.) Moreover, Hilbf/A (N(N)) is quasi-projective according to the con-
struction of invariant Hilbert schemes, cf. [HS04]. The claim now
follows. O



CHAPTER III

Examples for SL,

In this chapter, we focus on the group SLy and discuss some examples
in detail.

III.1. Statement of the results

The group SLy of 2 x 2-matrices with determinant 1 is semi-simple
of type A;. We fix as maximal torus 7T the diagonal matrices in SLo,
and as Borel-subgroup B the upper triangular matrices in SLy. After
this choice we can identify the monoid of dominant weights AT with
N and the weight lattice A with Z, and the unipotent radical U equals
the subgroup of upper triangular matrices with diagonal coefficients 1.

For each d € N the simple SLy-module V' (d) can be realized as the
space of binary forms k[x, y]; of degree d, on which SL, acts by

(ch Z) atydTl = (dx — by)i(—cx + ay)d’i,

where we accept the ambiguity that d stands for both a matrix entry
and the degree of the form. Note that V(d)V = k - y?.

Recall that S(d) denotes the closure of the minimal sheet in V' (d),
and that A/, is the Hilbert function of the closure of a general orbit in
S(d). The function A}, is described in Section II1.3. In this chapter we
are interested in Hilb}sjc:2 (S(d)) and Hilbfjf(V(d}). Since the Jansou-

weights of SLy are 2 and 4, the above Hilbert schemes equal A if d is
odd, and only the cases with even d are of interest (cf. Lemma I1.2.1
b). The starting point is Corollary 11.3.4, which states in the case of
SLQ that

(I11.1.1) Hﬂbi{f(V(d))red = Hﬂbilf (S(d))%, U Hﬂbilf (N(d))red;
and that these two subvarieties intersect in exactly one closed point.

In Section I11.2 we settle some notation and study some (well-known)
Classical Invariant Theory. In Section III.3 we focus on Hilbi{;2 (S(d)).

In particular, Theorem III.3.2 states that:
Theorem 1. Let d € N be even. Then
Hilbj,*(S(d)) = A",
Hence (III.1.1) simplifies to
Hﬂbi?(V(d))md ~ A'U Hﬂbilj (N(d))red-
31
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The group GL®(V(d)) = G, acts in a natural way on Hilbi? (V(d)).
The description of this action can be found in [ABO5], in [Ja05], or in
Section IV.1. In particular, closed G,,-fixed points on Hilb?)*(V (d))

correspond to homogeneous SLa-stable subschemes of V (d) with Hilbert
function h),.

We shall concentrate on the cases where d = 4, 8,12, and 16. Starting
with the known case d = 4, one has

Hilb,2(V/(4)) & Hilb,(S(4)) = A",
Carrying on with d = 8, one finds (Theorem II1.6.5):
Theorem 2.

Hilbj,(V/(8)) = Hilb;,*(S(8)) = A,

The closed G,-fized point of Hilb}SL?(V(S)) is corresponds to a non-
reduced subscheme of V(8) with SLy -y® as underlying variety.

The situation is more involved for d = 12 (Theorem II1.6.6):

Theorem 3.
HilbSE (V(12))rea 2 Hilb§H(S(12)) = A,

If p denotes the unique closed G,,-fixed point of Hilbi?j(V(lQ)) (which

corresponds to a non-reduced subscheme of S(12) C V(12) with SLg -y'?
as underlying variety), then

a) the invariant Hilbert scheme Hilbi{;j(‘/(m)) is smooth in the com-
plement of p, and
b) the invariant Hilbert scheme Hilbi?;(‘/(m)) is not reduced in p.
Finally, for d = 16 one has (Theorem II1.6.11):
Theorem 4. a) There are isomorphisms

Hilbi?j(V(m))red o Hilb%j (S(16)) U Hilbi?; (N (16)1ed)red
~ A'UP'UP!,
and the three irreducible components intersect in one closed point

p.
b) The invariant Hilbert scheme Hilb,sj;;(V(M)) is smooth in the

complement of p.
c) The action of G,,, on Hilbi{;j(V(lG)) has three closed fized points:

The point p, and on each copy of P* one further closed fized point.
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II1.2. Classical Invariant Theory

Before studying deformations of SlLs-orbits, we collect some well-
known facts on the representation theory of SL, and on Classical In-
variant Theory. This section does not contain any new results, but is
important for the following calculations and is useful to settle some
notation. The contents of this section can be found in [C11872], or in
a contemporary language in [KW99] or in [0199]. This section closely
follows [O199].

Invariants and Covariants. A covariant of V(d) of order k is an
SLy-equivariant morphism V(d) — V(k). A covariant of order 0 is an
invariant. We identify Sym(V(d)*) with k[ag, a1, ..., aq], where

d

(I11.2.1) ai(z:; (j) Aziyd =) =\,

The group SLs acts on Sym(V'(d)*) via the contragredient action:

L (d N

TR D] () P R ol (o P
—\j — \j
J J
Consider a covariant ¢: V(d) — V(k). Then ¢ can be written

as ¢ = S wi(ao, ..., aa)r'y" " with ¢; € kfag,...,as). The SLy-
equivariance implies that

Z g i f)aty" T = Z ei(gf)z'y" " = (gf)
= go(f) = Z i f)ga'y".

Taking g = (t tl)’ we see that (t t1> 0; = ¥ %, Tt is now

easy to see that V := span,(¢o, . .., ¢r) C Sym(V(d)*) is a simple SLo-
submodule with VY = k - ¢, and that Y, p;2'y*~" is an SLy-invariant
expression. Summarizing, to give a covariant ¢: V(d) — V(k) up to
a non-zero scalar multiple is the same as to give a simple submodule
V(k) € Sym(V(d)*), which in turn is the same as to give an SLo-
invariant expression

(I11.2.2) o(ag, ..., aq)y"+ei(ao, ..., aq)zy" .. +pi(a, ..., aq)z",
where each ¢; € Sym(V (d)*) = klaq, . .., aq]. The expression (I11.2.2)
is unique up to a non-zero scalar multiple.
Remark TT1.2.1. If °F  o,(ag, . . ., ag)z'y* " is a covariant of V(d) of
order k, then @i (ao, ..., aq) is U-invariant.

A covariant ¢ = S i(ag, . .., aq)r'y" " is called homogeneous of
degree n if each p; is homogeneous of degree n.
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Definition III1.2.2. Every representation of SLs is self-dual. Thus,
Sym*(V(d)*) = V(d)* is a covariant of V (d) of degree 1 and of order d.
This covariant can also be written as >0 a;(%)z'y?
it by Q.

, and we denote

Definition III.2.3. For a homogeneous covariant of V' (d) of degree n
and of order k we define its co-order to be (nd — k) /2.

Example III1.2.4. [[O199], p. 26] A cubic binary form possesses an
invariant of degree 4 called discriminant:

2 2 3 2 2 3
A = aja; — 6apaiasas + 4apay, — 3aja; + 4ajas,

and a covariant of degree 2, of order 2, and of co-order 2 called Hessian:

H = (a1a3 — a3)2* + (apas — ara)zy + (agag — ai)y>.
Example II1.2.5. More generally, we can define the Hessian of a bi-
nary form of degree d by derivating Q@ as follows:

d—2)P?
H = %[@&?Q% - (@)

We shall see in Example I11.2.6 that the Hessian is a covariant. Its
order equals 2d — 4, and its co-order equals 2. It has the following
significance: The Hessian of a binary form vanishes if and only if the
form is the power of a linear form (ax + fy).

Similarly, for a binary form of degree d there is an invariant A called
its discriminant with the property that it vanishes if and only if the
form has a multiple root.

Transvections and transvectants. Given two covariants V; and V,
of V(d) of respective orders ky and ks, we consider the SLy-submodule
2)D... 0V (k1 — kal), we see that

Vi Vo= Wik, @ Weiihy—2 @ ... @ Wik —iy) C Sym(V (d)")

with W; either 0 or isomorphic to V(7). Now Wy, 1,2, is called the r-th
transvectant of Vi and Vs, and the projection of V; - V5, onto Wy, 1, —or
is called the r-th transvection of Vi and V. We write (Vi, V,)" for
Wiy +ky—2r- If both V; and V5 are homogeneous of degree n; and ng, of
order ky and ko, and of co-order [; and [y, respectively, then (Vi, V5)" is
homogeneous of degree ny + no, of order k; + ky — 27, and of co-order
L+l +r.

If the covariants V; and V5 are written in the form (I11.2.2), then their
transvectants can be computed by means of the following formula (cf.
[0199], p. 88):

c_d=n)P S, (T Vi O
(IIL.2.3) (4, Ve)" = >_(=1) s/ Oxm=2Qy* Qxsdy" ==
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The factor “;{2’2 turns out to be useful for computations and appears

already in the ancient literature.

Example IT1.2.6. The Hessian of a binary form now can be expressed
as

_ Lo p@
H=3(Q7.Q ).

For a binary quadratic form (Q® = agy? + 2a17y + as2?) this yields

1 1 [a20@ 20 2,(2)\ 2
H = E(Q(Q)aQ(Q))2: - [3 ©CTow - (8 ¢ ) ] :aoaz—a%.

4 | 0x2  Oy? 0xdy

Since a quadratic binary form has a multiple root if and only if it is the
power of a linear form, we see that its Hessian H equals its discriminant
A (up to some non-zero factor).

Example I11.2.7. We introduce two fundamental invariants for binary
forms, which will be used later: For a form of degree d, we define the
apolar to be the invariant i = (Q@, Q¥)? of degree 2, and we define
7@ to be the invariant ((QY, Q)42 Q@) of degree 3. We shall
see later that (Y is non-zero if and only if d is even, and that j(@ is
non-zero if and only if d is a multiple of 4.

If e.g. d = 4, then we find

i =2(3a2 — 4ayas + apay), and

apg a1 as
4@ =6(—al + 2a,aza3 — a0a§ — a’ay + agagay) = 6det [ a1 ay as
Az ag G4

The invariant j® of a quartic binary form is called its Hankelsche
Determinante.

Covariants and the symbolic method. The symbolic method pro-
vides an elegant and effective tool to compute transvectants. The pri-
mary goal is to assign to each covariant a symbolic expression. Given
a monomial ] jai; € klag, ..., aq], of degree n, we obtain its sym-
bolic expression by replacing each a;; by a so-called symbolic variable

13 nj_” . This transition rule is now extended linearly to k[ag, . . ., agl,-
To avoid confusion one usually indexes the §; and n; with greek letters
rather than with integers, so we replace &; by &q, 71 by 14, 2 by €3, etc.
To give an example, start with a quadratic binary form and consider
apaz — ai. One replaces agay by 12&5 and af by Eanaésns. We denote
the resulting polynomial by ¢. Given a covariant of V(d) of degree n

and of order k, written as

(II1.2.4) @o(ag, ... ,ad)yk—l—gpl(ao, o ,ad)xyk_1+. Foer(ag, ... ,ad)ask,
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first replace each ¢; by the corresponding expression ¢; according to
the above rules. One obtains an expression

oy + ey 4+ Grat,

which however depends on the arrangement of the a; in (I11.2.4): Con-
sider once more A = agay — a?. Its symbolic expression is

(111.2.5) a5 — Eatlalpns-

On the other hand, we can clearly write A = asag — a?, which yields
the symbolic expression

5377% - ganagﬁnﬁ

different from (II1.2.5). In order to bypass this problem, one sym-
metrizes the symbolic expression and considers A = 1((agaz — af) +
(asag — a?)) with the symbolic expression

1 1 1
§(TIZ€§ — &atlabanp) + = (8215 — Eanalanp) = 5(5@% — na&p)>.

2
A symbolic expression is called symmetric if it is invariant under any
permutation of the indices a, 3, .... One then finds:

Lemma II1.2.8 (Theorem 6.5. in [0199]). Every covariant of V(d)
possesses a unique symmetric symbolic expression.

Note that not every symmetric symbolic expression comes from a
covariant. If we are given, however, a symmetric symbolic expression
coming from a covariant, we can easily reconstruct the covariant.

Definition IT1.2.9 (Definitions 6.10 and 6.12 in [O199]). (1) A bra-
cket factor of the first kind is a symbolic expression
(a w) = &l + 1ay-

(2) A bracket factor of the second kind is a symbolic expression

[Oz B] = ganﬁ - nagﬂ‘

(3) A bracket polynomial is a symbolic expression that can be written
as a polynomial in the bracket factors of the first and second kinds.

Example II1.2.10. Consider once more the invariant A = agay — a3
of a quadratic binary form. Its symbolic expression %(fanﬁ — 1aép)?
can now be written as bracket polynomial $[a 3]2.

One then has the following fundamental result:

Theorem III.2.11 (First Fundamental Theorem, Theorem 6.14 in
[0199]). Every symmetric symbolic expression coming from a covari-
ant can be written as a bracket polynomial. Vice versa, every bracket
polynomial is the symmetric symbolic expression of a covariant.
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Even though the symmetric symbolic expression of a covariant is
unique, it is not clear whether the same holds for bracket polynomials.
Indeed, there are relations between the bracket factors, like e.g. [a 3] =
—[B a]. One has the following relations called syzygies:

(I11.2.6) o8] = ~[3a,
afi(va) + yal(Ba) + [B7)(az) =0,
o Bl74) + [y all88] + [87)[erd) = 0.

The Second Fundamental Theorem now states that these are all iden-
tities:
Theorem II1.2.12 (Second Fundamental Theorem, Theorem 6.19 in

[0199]). Every polynomial identity among the different bracket factors
1s obtained as a linear combination of the above syzygies.

Remark II1.2.13. Consider a homogeneous covariant of V(d) of de-
gree n, of order k, and of co-order [. Its bracket polynomial is a sum
>: M; of monomials M; sharing the following properties: Each mono-
mial M; contains n symbolic letters that all occur exactly d times in
M;. Moreover, each M; consists of k brackets of the first kind and of [
brackets of the second kind.

Transvectants of bracket polynomials. The discussion below is
motivated by this example:

Example I11.2.14. Given a quadratic binary form, consider both its
discriminant A = agas — a? and the square of the discriminant A% =
aja3 — 2apaias + af. We already found that 1[a3]* is the bracket
polynomial of A. What about A%? We first calculate the symbolic
expression belonging to A? and find:

56565 — 2Na&ana&ThEs + 08alladaM58, 18875

After symmetrizing the expression one finds

i(ﬁaﬁﬁ — 1a&8)* (&5 — 1hEs)%,

which can be written as bracket polynomial

HEne

This is clearly not the same as §[o ]*.

This example shows the need for a adequate definition of the multi-
plication of two bracket polynomials. Let ¢; and ¢ be two covariants
of a form of degree d with respective bracket polynomials

[T, e, H agz) and ][ 8] H Biw @
gk =1 v w=1

ﬁrflte ﬁnlte
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in symbolic letters «; and 3; in two different alphabets. Then the
bracket polynomial belonging to the covariant (@1, ¢2)" equals

(d;—!;)! Z (H[Oéij Oéik] H[ﬁzu ﬁiu] H[Oéio(l) @T(Z)] e

oc€Perm{1,...,L} 7,k u,v =1
T€Perm{1,....W}

: H (@i ) H (Bi, () :U))

l:r+1 w=r+1

Example III1.2.15. Let ¢ = ¢ = £ §]. Then

(pro2)’ = 1l 0?31 or = {laflly o]
and (¢1,p2)" =0 for r > 0.

The following example shows that it is much easier to compute
transvectants of bracket polynomials than transvectants of the covari-
ants.

Example II1.2.16. Consider a binary form of degree 3. Its Hessian
has been computed in Example II1.2.4 to be
H = (a1a3 — a3)2* + (apas — ara)wy + (apay — al)y>.

Consider (ajas — a3). We replace a; by &2, as by &}, and a3 by
2na&3ns. After symmetrizing we find its symbolic expression

1 1

5(525/377% - 253”7(152775 + faﬁifg) = Efafﬁ(fanﬁ - 77a§ﬂ>2'
Similarly, we replace (apaz — ajaz) by
Lo 3.3 22 2 2 3y 1 2
5 Ua€s = Eatla&3ms — Ealla€pms + Eatl) = 5 (&anls = Ma&s)” (§anls + 11ads).

and finally (agay — a?) by

1 1
5 (12858 — 28ama€ams + Eam73) = 51ans(€alls — Nads)”

Hence the symmetric symbolic expression corresponding to H is

S€ats(6aty — s

+ (£anp — 1a€8)*(Eanp + 1a8s)TY + 1anp(Eans — 1a8s)Y?).
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Bearing in mind that [a ] = £.1s — Naép and that (@ x) = {ax + 10y
we find

%(gagﬁ(ganﬁ - 77a£5>2$2+
(&ans — 1a€s)* (Eams + Nalp)y + Nans(Eans — Nalp)*y?)

= [0 B (€ + (€ao + ms)ry + mnoy?)

1 2
—la B am)(3a)

We see that each symbolic letter occurs exactly trice (we started
with a binary form of degree 3). There occur two symbolic letters.
This corresponds to the fact that the Hessian is a covariant of degree
2. There occur two brackets of the first kind and two brackets of
the second kind. This corresponds to the fact that the Hessian is a
covariant of order 2 and of co-order 2.

On the other hand, H = £(Q®,Q®)2. Computing the transvectant

1((ax)?, (ax)®)? of the bracket polynomials (awx)? corresponding to
QB yields:
2 3
1 . . 1 1
Nt eer=t kY [a®a® [0V )0 )

oc€Perm{1,2,3} I=1 =3
T€Perm{1,2,3}

_ % 0D 4@ (0 2)(a? 2),

which equals the bracket polynomial of the Hessian (written in "), o)
instead of a, 3).

The algebra of digraphs. We closely follow the treatment in [OS89].
Bracket polynomials can be visualized in a very nice manner with di-
rected graphs, or short digraphs. An atom of valence d is a vertex o
with d (unlabelled) bond sites, drawn like this:

A d-digraph (or by abuse of notation simply digraph) is a finite set
of atoms of valence d, together with a set of directed edges or arrows
between the bond sites of the atoms. One bond site can be the source
or target of at most one arrow. A bond site is called free if it is neither
the source nor the target of any arrow.

To a bracket monomial P of the form

P = ] (i) ] J (e )™
ij=1 k=1
we assign the following d-digraph: For each symbolic letter a; occurring
in P draw one atom v; of valence d. Draw p,; arrows from v; to v;
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(obeying the rule that each bond site can be used only for one arrow).
In the end, the atom v, has v free bond sites. Since the degree d is
fixed the number of free bond sites of each atom can always be obtained
by subtracting the number of arrows having the atom as source or
target from d. This is why the free bond sites are often omitted in the
drawings.

Example I11.2.17. Consider a cubic binary form. The bracket poly-
nomial corresponding to twice its Hessian is [ 8]*(ax)(Bx). The 3-
digraph associated to this bracket monomial is

O0—=0 = O0—0O.

(If there are [ > 1 arrows connecting two fixed vertices, we usually only
draw one arrow, which we superscribe with [.)

Formal linear combinations of d-digraphs are called d-digraphs, too.
The assignment (bracket monomials) ~» (d-digraphs) can now be ex-
tended linearly to an assignment (bracket polynomials) ~» ((formal
linear combinations of) d-digraphs). It is obvious that one can recon-
struct the bracket polynomial from its d-digraph.

Transvectants can easily be computed with digraphs. Suppose that
the r-th transvectant of two d-digraphs D; and D, is searched. For
each atom of each digraph label its v free bond sites with the integers

1,2,...,v. Now draw r arrows with a free bond site in D5 as source and
a free bond site in D, as target and label these arrows with the integers
1,2,...,r. Generally, there are plenty of possibilities to form a new

digraph as described. Now form the sum over all different (partially
labelled) digraphs obtained in the above way, and finally forget all
the labels. The resulting sum multiplied with (d — r)!?/d!? is now the
digraph belonging to the transvectant (D, Dy)".

Example 111.2.18. We sketch an example of the first transvectant of
two forms of degree 3:

(0<*—0—>0,0 )1 = 1(1.3 Z +0-3
12.3 J )

The multplicities have the following meaning: The first summand is
multiplied by 1 -3 since the upper left atom has one free bond side,
whereas the lower atom has three free bond sides. The second summand
is multiplied with zero, since the upper middle atom has valence three
and therefore cannot be source and target of four atoms. Similarly, the
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third summand is multiplied with 2 - 3 since the upper right atom has
two free bond sites, whereas the lower atom has three free bond sites.

The syzygies in (II1.2.6) can be translated into the following rela-
tions:

(I) O+—0 = —-0—0 ,
R

Sen e

This is to be understood as follows. Consider the first relation. If we
are given two digraphs D, and D, that are equal except that in D, one
particular arrow points in the reverse direction than the corresponding
arrow in Dy, then D; can be identified with —D,. The other relations
are to be applied in the same way.

Remark II1.2.19. From relation (I) it follows that

o—>0 =0,
and more generally that
o—tr0 =0

for all odd k. This relation will be used frequently in the sequel.

The results obtained so far can be summarized in the following form:
The algebra D? of (formal linear combinations) of d-digraphs (endowed
with the multiplication given by the zeroth transvection) modulo the
ideal generated by the above relations is canonically isomorphic to
the algebra of U-invariants of a binary form of degree d, and the U-
invariants can in turn be identified with the covariants of the form.

I11.3. Deformations of orbits in minimal sheets, Part 1

Let d € N be a dominant weight of SLy. Recall that S(d) denotes
the closure of the minimal sheet in V(d), and that h/: N — N is
the Hilbert function of the closure of a general orbit in S(d). Using
Proposition I1.2.9, we show in this section that Hilbi{;‘" (8(d)) = A for

all even d.

Description of the minimal sheet in the space of binary forms
of degree d. We start by collecting a few well-known facts (see e.g.
[Kr85]). A one-dimensional subgroup of SLj is either conjugated to T,
to the normalizer N = Ngp,,(T") of T" in SLs, or to U, for some n € N,
where U,, = U x (), is the semidirect product of U with the cyclic group
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C, = {diag(¢,¢™") | ¢" = 1}. A two-dimensional subgroup of SL; is a
Borel-subgroup and hence conjugated to B.

If X is an affine SLo-variety and if x € X is B-stable, then x is
fixed under the SLs-action. This implies that an SLy-variety contains
no one-dimensional orbits. The stabilizer of y? € V(d) equals U, and
hence dim SLy -y? = 2. Therefore, the minimal sheet S C V/(d) consists
of the two-dimensional orbits in V'(d). Recall that the Jansou-weights
of SLy are 2 and 4. Bearing this in mind, the discussion in Section 1.2
yields the following picture:

a) Suppose that d is odd. Then S(d) = X; = SLy -y?, and

1 if d|k, and

r_ )
a=hx,s N= N, ke { 0 otherwise.

Moreover, Hilb;?;? (S(d)) = A°.

b) If d is even, then the minimal sheet consists of SLy-y? and the
orbits SLy -yx?/2y%? for 0 # v € k. The quotient S(d)/SLy is
one-dimensional.

i) If d = 0 mod 4, the stabilizer of 2%2y%? equals Ng,(T). In
this case

, ‘ 1 if 4|k, and
hd = hsL2 /NsLy (T) * N — Nv ko { 0 otherwise.

ii) If d = 2 mod 4, the stabilizer of 2%/2y%? equals T. In this
case
1 if 2|k, and

r .
hg=hsL,yr: N—=N, k— { 0 otherwise.

In particular, the Hilbert function of the general fiber of S(d) —
S(d)/SLy coincides with the Hilbert function of X, if and only if d
is odd or if d = 2 or if d = 4, which are the Jansou-weights of SLs.
Recall that we have introduced the invariants i(¥ = (Q@ Q)4
and j@ = ((QD, Q)42 QD)4 of degree 2 and 3 in Example I11.2.7,
where Q@ is the covariant 3¢ a, (4)atyd.
Proposition II11.3.1.
[ Spec(k[i'V]) = A* ifd=2 mod 4,
S(d) /St = { Spec(k[i@, jD]) 2 Spec(k[t?, 7)) ifd=0 mod 4.
The proof of this proposition will be stated later in this section. The

proposition shows that the quotient morphism S(d) — S(d)/SLy is flat
if d =2 mod 4, and hence Theorem I.1.1 implies that Hilbig"’ (S(d)) =

Al if d = 2 mod 4. Even though the quotient morphism S(d) —
S(d)/SLy is not flat for d = 0 mod 4 (as will be shown in Remark
I11.3.8), the corresponding invariant Hilbert scheme still equals A':

Theorem I11.3.2. If d is even, then Hﬂb?jf (S(d)) = A
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The proof follows later in this section.

Definition III.3.3. Let X be the schematic zero-fiber of the mor-

phism tJnjv§52@5(d)) — I{ﬂbEEQQS(d)) >~ A'. Theorem II1.3.2 im-

plies that X7 is the unique closed subscheme X9 C S(d) with Hilbert

function hyo = hj and with (X§)ea = X4. Equivalently, XJ is the

unique homogeneous SLs-stable subscheme of S(d) with Hilbert func-
q &

tiOIl th = hlzl

Remark I11.3.4. Let I° C Sym(V/(d*)) be the SLy-stable ideal defin-
ing X9 as closed subscheme of V(d), and let I, C O(S(d)) be the
SLs-stable ideal defining X as closed subscheme of S(d). Then I}
coincides with [}y from Section I1.2, and I is the inverse image of I
under the projection Sym(V(d)*) — O(S(d)).

Non-vanishing results for covariants. From Remark I11.2.19 we
know that (Q@, Q@) = 0 if [ is odd. However, we claim that:

Lemma II1.3.5. a) Let d be even, and let | € {0,2,...,d}. Then
the covariant (QY, QW) is not in the ideal I(S(d)) of S(d).
b) Ifdld, then j'9 = ((Q'V,QW)¥?), QW) ¢ 1(S(d)).
Remark III.3.6. Because Sym"(V(d)*) is multiplicity-free as SLso-

module for n < 2, it follows from Lemma II[.3.5 a) that the ideal
I(S8(d)) is generated by covariants of degree > 3.

Remark IT1.3.7. Lemma I11.3.5 a) and the proof of Proposition 11.2.9
show that O(S(d)) k) # 0 for all n > 2 and for all k < nd with 4|k.
Using the notation of Remark I11.3.4, the statement of Lemma I11.3.5
a) and the proof of Proposition I1.2.9 show in addition that I, C
O(S(d)) is the smallest SLy-stable ideal containing O(S(d))2,q) and

O(S(d))2.0)-
Proof of Lemma II11.3.5. Fix d, and let Q = Q¥.

a) Since ( dc/lz)a:d/ 2?2 ¢ S(d) it suffices to verify that the covari-
ants (Q, Q)" don’t vanish identically on ( dljZ) z%2y?2 . We compute the
transvectant (Q, Q)"

(II1.3.1)

L (d=D)2 SN 0Q  0Q
(Q,Q) = 0(_1> (z) 8xl—i3yi ax@yl—z‘

%

(d=DP2 & (1N (d\ (d Ol yd=3 Pl a3’
= —1) Qi ——— 4 —,
a2 2 U AN AR e

=0 j,j'=0

This can be written in the form of (II1.2.2) in Section III.2:
2d—21

(I11.3.2) (Q,Q) = Z oL ag, . . ., ag)atyX2e,
e=0
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where

l _ l /
v (ag, ... aq) = E Y}, 0
g —l=e

for suitable vjl-’j, € k. Now

d

wh_i(ao, . .. ’ad)((d/2

)xdﬂyd/z) = ’ycll/Z,d/Qa

and this is non-zero if and only if 72/2@/2 # 0. We compute 72/2@/2 by
means of (I11.3.1):

B I 2 o1 df2, d/2 gl,.d/2,d/2

I at a—t _ (d—DP (N (4 Iy oy
_ 1 —

Yas2,a/2t Y 12 Z( ) i) \d/2) O0z'=i0y" Oxidy'~!

-2en () (i)

22+ d 210X +d—1/2) 4 4l
T T d/22Ta/2— 1201 v di2—1/2)" Y

where I' is the Gamma function, and where the last expression was
computed with Mathematica. We can read off that +/, /2.4/2 # 0 for all

even d and for all even [ € {0,2,...,d}. Thus, ¢, ; ¢ I(S(d)), and

hence (Q, Q)" ¢ I(S(d)).
b) The invariant 9 = ((Q, Q)¥?,Q)? can be written as

i =((Q,Q)"* Q) = Z djkia;aka;

j+k+1=3d/2
Jj=k>l

for suitable §;,; € k. In order to show that j@ & I(S(d)), it suffices to
show that j(d)((d‘/iQ)xd/de/Q) = 0a/2,4/2,4/2 # O:

L~ (d)04Q.Q)7 9Q
d/2 d__ _— _1)¢
(@™ Q' =g S (7) 2 g
1L a0 d . e
=T Z(—l) (Z')aa:diayi LZ;SD?/%’ y? ] .

=0

4 Ld\ .
W [Zal(l).flyd l] s

=0

where we have written (Q,Q)%? in the form of (II1.3.2). Recall that

the monomial a? /9 doesn’t occur in gog/ ? unless e = d/2, and gojg =
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Zd/2 7fd sayaq—y. Now a) implies that 73/@@/2 # 0 if 4]|d. Hence

d
S _ 1 1) d 0" d/2 d/2, d/2
wpapzarz = 75 2 (V' ) 5o igyi lf2.a/2t Y

=0

d
. .8 ' d 24212
Oxioyd—t | \d/2

1 NEAN 7 d 2
B W<_1)d/ (d/2>75;2,d/2(d/2)! <d/2> (d/2)!
= (= 1)d 273;2251/2 # 0. 0

Proof of Proposition I111.53.1. Recall from Section I1.2 that S(d) is a
multiplicity-free G,, x SLao-variety. Hence in each degree there is up to
scalar multiples at most one invariant function on S(d).

Let first d = 0 mod 4. According to Lemma II1.3.5 the invariants
i@ and j@ do not vanish on S(d). For this reason, O(S(d))5" contains
functions of degree 2 and 3, and hence of each degree n > 2. Since
Sym*(V(d)*) = V(d), there are no invariant functions of degree 1 on
V(d) and hence neither on S(d). Thus, O(S(d))%"2 = k[i(®, j(4)].

Let now d = 2 mod 4. According to Lemma II1.3.5 the invariant i
does not vanish on §(d), whereas all invariants of odd degree vanish on
S(d) according to Lemma I1.2.3 (or as one verifies directly). Therefore,

O(S(d))5"2 = k[iD], and the claim follows. d

d)

Remark II1.3.8. If d =0 mod 4, then the quotient map 7: S(d) —
S(d)//SLy = Spec(k[i?, j(9]) is not flat: Consider the schematic zero-
fiber (S(d))o of w. It equals Spec(Sym(V (d)*)/(1(S(d)),i?, j¥), where
I(S8(d)) is the ideal of S(d) C V(d). Denote its Hilbert function by h.
We claim that

(1.3.3)  (QY @ (QW,Q)*)/(1(8(d)),i'?, j) = V(d) & V(d)

as SLo-module. If this is true, then h(d) =2 > 1 = h/,(d). Because h)
is the Hilbert function of a general fiber of m, it follows that 7 cannot
be flat. We are left to prove (I11.3.3). From Remark II1.3.6 it follows
that 1(S(d)) contains only covariants of degree > 3. Hence, the ideal
(I(S(d)),i¥, D) contains no covariants of order < 2, and the only
covariant of order 2 in (1(S(d)),i?, @) is k-i@. In partlcular nei-
ther Q@ nor (Q@, Q)%? is contained in (I(S(d)), (@ (@), Because
(I(S(d)),i¥, ) is homogeneous, (I11.3.3) follows.

Proof of Theorem II1.3.2. If d =2 mod 4, then Proposition II1.3.1 im-
plies that S(d)/SLy = A'. In this situation, the quotient morphism
S(d) — A' is flat (see [Ha77|, Proposition I11.9.7), and the claim
follows from Theorem I.1.1.
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If d =0 mod 4, then the G, x SLy-isotypic component O(S(d))(2,q)
of type (2, d) is isomorphic to V' (d) according to Lemma I11.3.5 a). Now,
Proposition 11.2.9 applies (with ng = 1), and the claim follows. O

Let NV(d) C V(d) be the (schematic) null-cone as defined in Defini-
tion I1.3.1. Tt is well-known that a form 0 # v € V(d) is contained in
the reduced null-cone N (d),eq if and only if v contains a linear factor
with multiplicity at least d/2+1 (see e.g. [Kr85], I.5). Using Theorem
I11.5.10 (whose proof is independent from the following lemma), we can
show the following:

Lemma II1.3.9. Let X9 C S(d) be as in Definition I11.3.3. Then X§
is a closed subscheme of N (d)eq-

Proof. Let 1° C R? be the ideal of X3, and let J C R be the ideal
of N(d)rea- We need to show that J C I° In (II1.5.2) in Theorem
I11.5.10 we shall see that R?mk) c I°ifn >3 and if £k < nd — d and

that R?zo) C I°. Since N(d),eq is a cone, its ideal J is homogeneous.
In order to verify that J C I°, it therefore suffices to show that

] n>3and k> nd—d, or
(II1.3.4) Jn k) = {0} lf{ n=2and k > 0.

Recall that in (I11.2.1) we identified R? with klay, . . ., a4], where a; was
defined by a; (3 A;(§)a7y"7) = A,.

To see (I11.3.4), let first n > 3 and choose k even with (n—1)d < k <
nd. Let 0 # f € (Rfln’k))U. For i € {0,1,...,d}" there exist constants

v; € k such that
f= Z%’Gz’l C gy

and ) i, = nd — I, where | := (nd — k)/2 < d/2 is the co-order
of f. This is only possible if each iy > d/2. Evaluating f on the
nullform Z;l: d/241 N (j) 2Iy?7 yields >, i\, -+ Ai,,. This is non-zero
for suitable values for A\j/a41,...,Aq, and hence f & J.

Let now n = 2, let k > 0, and let Q = Q?. If k is not divisible by
4, then Ré,k) = ( anyway, and there is nothing to show. We assume

now that k is divisible by 4. Let [ := (2d — k)/2; then R‘é’k) = (Q,Q)".
Writing (Q, Q)" in the form of (II1.3.1), we see that

(I11.3.5)
p o,
, (d=Dr T AN AV A AT R e T
(Q,Q) = pE Z( 1) AVIAN! aﬂajlaml—iayi Ozidy—

i=0 4,j'=0

- l s 2d—2l—s
- § st(ao,...,ad)x Yy )



111.4 Multiplicities and Stability 47

where ¢ is of the form
2021 )= .0
(p2d72l CL(), .. ,CLS — P)/j’j/aja/‘yl
4’ —1=2d—2l

for constants %l‘,j’ € k. Since (l72) x@71/241/2 is a nullform, it now suffices

to show that b, o (aq, ... ,as)((l%)xd_l/zylﬁ) # 0. We see that

d _
SOlzd—zz(aOa s a)( (l/2> ! l/z?/l/z) = ’Yiz—l/2,d—l/2-

Using (II1.3.5) we can compute 'yfl_l/Z’d_l/Q:

! k
Yd—1/2,d—1/27

_ (d— D)2 Zl:(_l)i I d 2 L d=1/2yl/2 lapd=1/21/2
dl? - i)\d—1/2) Oz=0y* Ozidy'~?

B (d— l)!Q(_l)l/z( l )( d )23lxd_l/2yl/2 3lxd_l/2yl/2
[

=

d!? J2)\d—1/2) 0xl/20y!/? Oxl/20y!/?
l
= (=1 /2 k:.
()
This shows that g2 = (—1)"? (1/12) # 0, and proves (II1.3.4). O

111.4. Multiplicities and Stability
For n € N and [ € N with 0 <[ < nd/2, we define
mult‘fL;l :=dimg{f € Sym™(V(d))V | f is of co-order I}
={dimy, Sym"(V(d)) na—2)}/(nd — 21 + 1),
which is the multiplicity of the isotypic component of type nd — 2[ in
Sym"(V(d)). Let further DZ;Z be the space of d-digraphs with n vertices
and [ arrows modulo relations. In view of Section ITI.2 the space DY,

is isomorphic to the space of covariants of V(d) of degree n and of
co-order 1, and hence mult? dimy (D).

nil —
The computation of these multiplicities goes back to Cayley and
Sylvester (cf. [C11872]); a modern approach can be found in [Br94|.

Let
d d
(n;d,1) := {(jo, ji, . . ., ja) € N | Zji =n and Zzgl =1}.
i=0 i=0

The Cayley-Sylvester formula states that
(I11.4.1) mult?, = #(n;d, 1) — #(n;d, 1 —1).

nl
This implies in particular that

(I11.4.2)  mult? mult‘iﬂ;l for all [ < n provided that d > 2.

nl —
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(To see this, suppose first that [ < n. Then the map (n;d,l) —
(n+ 1;d,1) mapping (jo,...,ja) to (jo + 1,71,...,7a) is a bijection.
Hence #(n;d,l) = #(n+1;d,1). On the other hand, if [ = n, then one
sees similarly that #(n;d,l) = #(n+1;d,l) — 1. Now the claim follows
readily.)

Remark II1.4.1. The map Dg;l — foﬂ;l assigning oLl D to D € Dg;l
is an injective homomorphism of k-vector spaces. If further [ < n, then
(II1.4.2) implies that this map is even an isomorphism.

In Proposition II1.4.3 bases of the vector spaces Di;z with n > [ are
given. Constructions of such bases might be known, but for lack of
references in the literature and for further use we treat the subject in
detail.

Consider the following family of d-digraphs indexed by the integers
0<s<d:

.

s=0 s=1 s=2 s=3 s=d

A member of this family with s arrows is denoted x¢. Similarly, we
introduce a second family:

IQ 2 2
©)

s=0 §=2 s=3 s=4 s=d

A member of this family with s arrows is denoted *7.

Remark II1.4.2. Remark I11.2.19 states that x¢ = 0. This will be
used frequently.

Given w € N and s = (s1,...,5,) € {0,2,3,...,d}¥, we write

w w
d._ d zd .| |z
* = |_|*Si and % = |_|*Si
i=1 i=1

for the disjoint union of the corresponding digraphs. If P € Perm(w)
is a permutation, then *jlg(s) = %% and %dp(s) — %% This motivates the

following definition:
Sho={se€{0,2,3,....d&}" " | |s| =1}/ ~,
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where s ~ t if s and ¢ are in the same Perm(n — [)-orbit, and where
|s| = >, 5. If now [s] € X4, then «¢ € D4, Similarly, with |[s|o :=
> ;max{l,s;}, we let

S= (s €40.23, ) | Is]| = L Ish = n)/ ~),

weN

where s ~ t if t = P(s) for a permuation P. If [s] € ii;l, then ¥ € DY,
From now on we write *‘[is} and ;([15} instead of «¢ and *? if s is a vector
of length > 1.

Proposition II1.4.3. If [ 3| <n, then spany,(xfy | [s] € i) = Dy
Ifl <n, then spank(%‘[is} | [s] € X¢,) =DL,.

Proof. Step 1. Let D € DZ;. We show that there exists N € N such
that DU |Y, 0 € Spank(*d} | [s] € ¥¢, n,). We can always assume

[s
that there are as many o as connected components of D as we wish (if
necessary enlarge N).

To start with, we use the relation

to write D as a sum of digraphs in which two vertices are joint by at
most one arrow. One sees inductively that this is always possible —
maybe at the cost of augmenting N.

Secondly, the same relation can be used to break up cycles: Applying
the relation

one can write D as a sum of digraphs with a fundamental group of
smaller rank. This yields a digraph whose underlying graph has trees
as connected components.

Finally, we show that trees can be written as sums of stars. Suppose
that D’ is a tree with n vertices and with [ arrows. We proceed by
induction on [. If [ < 2, the digraph D’ is a star and we are done.
Otherwise, if D’ is not yet a star, it has at least two vertices v; and v
being the source or target of at least two arrows. Since D’ is connected,
there is a path of arrows from v; and vy. Applying the relation
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O

AY 7 AY 7
AN 7/ AN 7/
N 7/ N 7/

v o—>O0<€«—0—>Qu, = U1 O«—0—>Quy

7/ AN
N 7/ N

s N
s
N s
N s
N Cx s
+  no O—O0—>Qu
s N

7 N

(recall that x{ = 0) yields a sum of trees, and each of the summands
has less than [ arrows. This completes the induction step.
Step 2. If Dy and D, be two digraphs with the property that

N N
D1|_||_|O:D2L||_|O
=1 i=1

in the algebra D¢ of d-digraphs, then D; = Dy in D¢ (cf. Remark
111.4.1).

Step 3. If [s] € X%, with n > | 3], then *fls] contains at least n— |31
times o as connected component. (To see this, it suffices to note that
the ratio between the number of vertices and the number of arrows in
*? equals (s +1)/s < 3/2 for all s > 2.) This, together with Steps 1
and 2 shows that spany (+{; | [s] € 3¢)) = Dif, whenever n > [31].

Step 4. Let so € N, and consider the relations

;go Llolo :*ffo uo+*§072u*§ if sp > 2, and
~d
x4 = %d,
This, together with the above steps, shows that span, (;fi,] | [s] € iful) =
D¢, whenever n is sufficiently large compared to [. If [s] € ZNIZ;I with
n > [, then ;fi] contains at least n — [ times o as connected component.
It now follows that spank(%fls] | [s] € iz;l) = D4, whenever n > 1. O

Remark III.4.4. If [3]| < n, then the set {*ﬁs] | [s] € ¥4} is a
basis of D4, If I < n, then the set {J{ﬂ | [s] € i(i;l} is a basis of
D¢, In view of (IIL4.1) and Proposition II1.4.3 it suffices to verify
that #Ei;z = #(n;d,l) — #(n;d,l — 1) = multi;l for all (d,n,l) as in
the proposition.

Alternatively, one can directly verify that the sets {«¢ | [s] € 2}

and {;fls] | [s] € E‘f“l} are linearly independent. This can be done by
computing and comparing their U-invariants.

Example II1.4.5. For an integer 0 < s < d, we calculate the U-
invariant belonging to x%. The bracket polynomial corresponding to %%
is

la, Bi]]ev, Ba] - . [y, ﬁs](am)d_s(ﬁlm)d_l . (ﬁsa:)d_l.
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Its symbolic expression equals

[T ans, = m0és) (Eax = naw)*= T [ (€. — nsp)*!
=1 =1
= & H(fan@ Naés,) H€ (sH1)d=2s 4y
=1
= <£§Hf ng, — €& 1%25@H£ s,
=1 j=1 1#£]

g [Tg) e
=1

The U-invariant in the covariant corresponding to this symbolic ex-
pressions can now be read off to be

: S
Z(—l)k(k) ag-pagay’h.
k=0

Given [s] = [(s1,...,80,1)] € X2
is the product of the U-invariants of the xZ .

n» the U-invariant corresponding to *ﬁg}

Example I11.4.6. Let [ > 2. Consider the digraph

One finds that it can be written as Zi:o<_1)i(i) x4 Uk

Remark III1.4.7. Proposition I11.4.3 gives an effective tool to com-
pute covariants of small co-order. For many applications it is more
important to know covariants of small order, like invariants. To com-
pute these, Proposition I11.4.3 yields the following algorithm, which
however is numerically very ineffective: If one wants to know all in-
variants of degree n of a form of even degree d, one writes down a
basis (Dy, ..., Dy,) of Dzd/de/Q (fast) and computes the corresponding

U-invariants fi, ..., fn, (fast). For each invariant f of degree n, the U-

nd/2=1 can be written as linear combination of the fi- The

goal is now to find linear combinations of the f; which contain aZd/ 2
as factor. This is linear algebra, but the matrices involved become very

large.

invariant f-a);

ITI1.5. Structure of SLs-stable ideals

In Section III.3 the main object of interest was the invariant Hilbert
scheme Hilbiil;2 (8(d)), which turned out to be isomorphic to A for all
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even d. Next, we focus on Hilb,SJ;2 (V(d)). We have already stated in
Corollary I1.3.4 that

Hilby (V' (d))rea = Hilbj,?(S(d))eq U Hilby? (V(d))rea-

We now know Hilbig2 (S(d)) and turn our attention to Hilbisé;2 (N(d)).

Let R? := Sym(V(d)"), let R, := Sym(V(d)*)x) be the isotypic
component of type k, and let REln,k) = Sym"(V(d)*)x be the G,, x
SLy-isotypic component of type (n, k). For an SLs-stable ideal J C
RY let Jay = J N Rfk) and Jypp = J N R‘(in’k). Now the closed
points of Hilbz{f (N(d)) correspond to SLy-stable ideals I C R¢ with

Spec(R?/T)iea = Xa(= SL; -y?) and with Hilbert function hga,; = hj.

Definition II1.5.1. Let J%, C R? be the smallest SLy-stable ideal
containing all covariants of odd co-order, or equivalently all covariants
of order = 2 mod 4. Let ded’ L C R? be the smallest SLy-stable ideal

containing J¢,, and Ré -

Let d be a multiple of 4, and let I be as above. We claim that
J8a C I: First, hpa/(k) = hjy(k) = 0 if k = 2 mod 4. Hence
Jd,, C I. Moreover, I C \/7([1) = @nzz Rle’d) (since Xyeq = Xg).
Because hra/r(d) = 1, it follows that (g = Vig = D,.>- R‘(izyd), and
hence Ré’ o C 1. It now follows that J&4. C I, and hence that
hRd/Jgdd’Jr(k) > hpgasr(k) = hy(k) for all k. We shall see in Theorem

I11.5.10 that [ is in fact almost determined by Jgdd, +- This opens the
possibility for computations, and this is why we assume from now on
that d is a multiple of 4.

The main result of this section is Theorem II1.5.10.

n» and similar
objects. Whereas the upper index d always refers to the degree of the
corresponding form and the first index n out of two lower indices always
refers to the degree of a homogeneous object, the second lower index
can refer either to the order or to the co-order. We use a comma when
dealing with orders (and usually denote the order by k), whereas we
use a semi-colon when dealing with co-orders (and usually denote the
co-order by [).

Caveat III.5.2. We have encountered Rfln,k), Iéimk), D

The space of d-digraphs D? is a k-algebra with multiplication D; -
Dy = (Dy,D5)° = Dy U Dy. An ideal T C D? is called transvection-
stable if (D1, D9)" € Z for all r > 0, for all D; € Z, and for all
Dy € D Recall further that if D, € Dﬁl;ll and if Dy € D¢ then

na;la?

(D1, Dy)" € Dg1+n2;ll+l2+r- In view of Section II1.2 working with SLo-

stable ideals in R? is equivalent to working with transvection-stable
ideals in D,
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Proposition II1.5.3. Suppose that n > 1.

a) The homomorphism of k-vector spaces
®: Ddl ® Dn+1 A1 T Dn+2 1420 D+ D'+ (DUo=0) + (D, 0)!

1S surjective.

b) If a transvection-stable ideal J C D? contains D2, l@DnH - then
there exists an integer N such that DY, C J whenever n' > N
and I > 1.

Proof. a) Step 1. Assume that n is so large compared to [ that {*‘[is} |
[s] € 24,500} spans D2, (cf. Proposition II1.4.3). Then it suffices
to verify that *fs] is in the image of ® for each [s] € X¢ ., .

Let s = (s1,...,8,—) with [s] € ¢, », and let min(s) := min{s; |
si > 0,1 <i <n—1}. Ifs; =1 for some i, then xq = 0 (cf.
Remarks I11.4.2 and I11.2.19). Hence we can assume that min(s) > 2.
We proceed by induction on min(s). If min(s) = 2, then the claim is
true. Otherwise, let s, = min(s), and suppose that s is of the form
s=1(81,.--,50,...,0). Consider

s'=(s1,...,81,8 —1,0,...,0).
Then [s'] € £¢, 1. Now (x3,0)' =0, and

(580" = S~ (d — s0) (¥ 1) + sold — 1) (s, y <))

for s9 > 2. Hence (x{,},0)" is a linear combination of the type
(g 0)' = doxfy + D A

with A\g # 0 and with min(s’) < min(s) for all i. The claim now follows
from the induction hypothesis.

Step 2. Until now we have assumed that n is very large compared
to . For general n 2 [ the claim is now a consequence of Step 1, of the
fact that (D, o)UY, 0 = (DU[JY, 0,0)!, and of Proposition I11.4.3.

b) Remark III.4.1 and a) imply that DI, C J for all (n/,1') with
n'—1'">n—1land with [ <" <l+d—1. According to [Ja05], proof of
Proposition 1.3, there exists N € N such that all covariants of degree
n’ > N are in the transvection-stable ideal J’ generated by |_|d+n .
Let n' > N, and let I’ > I. We claim that DZ,,, C J. To see this,

let D € DZ/;Z/- Since D € J', we can write D as linear combination of

transvectants
n+d

(] os0),0), .. o)

i=1
with 0 < a; < d and with > a; = . Thus, it suffices to show

that each digraph of this form is in J. First, |_|n+do has co-order
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0, whereas (((|_|?:+1do, 0)*,0)* ..., 0)% has co-order I’ > [. Observe
that if D is a digraph of co-order m, then (D,0)* is zero if a > d, or
of co-order m + a < m + d if a < d. Hence, there exists j such that
(LM 0, 0)1,0)%2, ..., 0) is of co-order I with | < I' <1 +d — 1.
According to the observation above, this digraph is in 7. This implies

that also (((U?:ld 0,0) 0)* ... 0)*% € 7, and the claim follows. O

The next lemma is formulated for an arbitrary semisimple group G.

Lemma III1.5.4. Let A be an N-graded k-G-algebra such that each
isotypic component Ay C A is homogeneous. Let J C A be a G-
stable ideal. Let M,y € AT, and let A\ = X\ + Xo. Suppose that
hajs(M) = hasg(A) = 1, and that Jy = J N Ay is homogeneous.
If there exist homogenous elements a1 € (Ap,))Y and as € (Apy))Y
such that ay - ay & Jo, then Ji) = u;;(J(,\)), where fiq,: A — A is
multiplication with ay. In particular, Jiy,) is homogeneous.

Proof. First note that (Jx,))Y C pg ((Joy)Y). Since (Ji,))Y has codi-
mension 1 in (An))Y, it follows p ! ((Jir))Y) has codimension at most
1 in (Ju,))Y. On the other hand, p.'((Ji)Y) € A, (otherwise

a1 - az € Jony). This shows that (Jin,))Y = pg' ((Jy)Y), and the latter
space is homogeneous since J() is homogeneous. U

Definition III.5.5. For n > 2 and [ € {0,1,...,d} define Cff;l =

(QYD, QY. (QD)"=2 which is a covariant of degree n and of co-order
I. In addition, we let Cfy := Q.

If [ is odd, then Cg;l = 0, since (Q¥, Q) = 0 according to Remark
I11.2.19. On the other hand, if [ € {0,2,...,d}, then (Q¥, QW) #£ 0
according to Lemma II1.3.5; and using Remark I1I1.4.1, we see that
Cd, #0for 1 €{0,2,...,d}.

Let 1(S(d)) € R? be the ideal of the minimal sheet S(d) C V(d).

Lemma I11.5.6. a) J%, C I(S(d)).
b) CL, ¢ 1(S(d)) for alln > 2 and for alll € {0,2,...,d}.

Proof. a) This follows either from the discussion in Section I1.2 or di-
rectly: Suppose that J%,, ¢ I(S(d)). Then there exists a homogeneous
covariant V' C R? of degree n and of odd co-order [ that does not vanish
on §(d). Now V is of order k = nd — 2l = 2 mod 4. This covariant
yields a non-zero SLs-equivariant morphism ¢: S(d) — V(k). Now
x%2y%? is stable under Ngr,,(T'), hence so is its image o(z%?y%?). How-
ever, the only Ngp,(T')-stable point of V (k) is 0 because k =2 mod 4.
This shows that ¢(S(d)) = {0}, a contradiction. Hence J%,, C 1(S(d)).

b) Suppose that (Q?D, Q). (QW)"=2 = €4, C I(S(d)). Let 0 #
fe(QD,QUNNHY . Then f-(ag)" 2% € (CL)Y, and hence f - (aq)"? €
I(8(d)). Since S(d) is irreducible, the ideal I(S(d)) is prime, and it
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follows that either aq € I(S(d)) or f € I(S(d)). First, aq(z?) = 1, and
so ag & I(S(d)). Moreover, f ¢ I(S(d)) according to Lemma II1.3.5.
This is a contradiction, and thus C%, ¢ I(S(d)). O

Lemma II1.5.7. Let n > 1. Then

Jora) (nnd— if 1 is odd
15.1) RS _ | oga)nna-2) . :
( ) Blona-a { (Ja) a2y ® ClLy if 1€{0,2,...,d}.

Proof. Let J%, C D% be the transvection-stable ideal corresponding
to J4,,, and let n € N. By definition of J%,,, we see that (J4,; N
Diy) = {0}. Since dimy(DL,) = 1, it follows that J%, N D&, has
codimension 1 in DZ,. By definition, D, ., C J&,. Since @ from
Proposition IT1.5.3 maps homogeneous elements in J%,N (DL &D4, ., )
to elements in J%; N D, ,,, Proposition I11.5.3 implies that J%, N
D 429 has codimension at most 1 in D 42.0- Going on inductively,
we find that J4, N DY 1, has codimension at most 1 in D4 41 With
Lemma II1.5.6 b) the claim now follows if n > 2. For n < 2 the claim
is obviously also true. U

The d-digraph corresponding to C’ff;l is (0,0)'l |_|;:12 o. For later use,
the following can readily be deduced from the proof of the preceding
lemma:

Remark II1.5.8. Let [ be an even integer, and let I’ € {0,2,...,d}.
Let n > ', and let

D = (0,0)" U ((0,0)> U (0,0)> ... U(0,0)}) L |_| o,

where the number of (o,0)? and n’ are chosen such that D € DI,
Using Lemma I11.5.7 and using Proposition I11.5.3 as in the proof of
Lemma II1.5.7, one sees that for n large enough either (J2,),, = D2,

or D+ (T fhg)ny spans DL, /(T dy)ng. In particular, it follows that for a

O
given D' € D¢, we have

D'+ Tgpq =D + T
for some v € k, provided that n € N is large enough.

Lemma II1.5.9. There exists N € N such that for all n > N the
following hold:

R? _ (Jgdd,—&-)(n,nd*?l) if1¢10,2,...,d/2 =2}
(n,nd—21) (S nma—on ® CLyif1€40,2,...,d/2 -2},

Proof. Let «Zfﬁzd, + C D? be the ideal corresponding to J&, . Lemma
II1.5.7 and the fact that Cg;d/2 C Jq, imply that Dz+d/2—1,d/2—1 S5
Di yjsas2 C Jogas for all m > 2. Proposition 111.5.3 b) implies that
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there exists N € N such that DY, C J%, . for all n > N and for all
[ >d)2.

Suppose that C%, C J&, . for some n > 2 and for some even | <
d/2. As in the proof of Lemma II1.5.7, this implies that there exists
N'" € N such that DZ,, C J&, , for all n’ > N’ and for all I > . Let
k:= N'd — 2l. Then Rzik) D> Rdn,k) C J& o This implies that
hRd/Jgdd&(k) = 0. On the other hand, hRd/Jng(k;) > hl(k) =1, as
noted after Definition III1.5.1. This is a contradiction and implies that
Cly & J&q for all m > N’ and for all even [ < d/2. The claim now
follows. [

Theorem I11.5.10. a) Let I° C R? be the ideal defining X3 C V(d)
(as defined in Definition II1.3.3 and Remark II1.3.4). Then I° is

homogeneous, and
(II1.5.2)

Rdo (0,00 P R(l d) D (R(z 1) 2 d— 4 EB 2 D Cg;d/Q—Q)

n>2

is an SLoy-stable homogeneous complement of 1° in R.

b) Let I C R? be an SLo-stable ideal with hga/r = hy that defines a a
closed subscheme of V(d) having X, as underlying variety. Then
Iy = Iy for all k #{4,8,...,d — 4}.

c) The zdeal S8 i contamed in both I° and I, and has finite
codimension in both I° and I. Moreover, (aq)"] C Ji, . and
(ag)"I° C 4 for all n large enough.

Pmof. c¢) We have already noted right after Definition II1.5.1 that
Jdd+ C I. Combining Lemma I11.5.9 with the facts that J2,, at+ C 1

and that hpaj; = hly, one sees that I = (&g, ) for all k and
for all n > N (with N as in Lemma II.5.9). If now i € I, then
(ad)"i € Bz pen o) = Brsvren(Toaa k) C oa i and the
claim follows. (Since this holds for any I as above, it holds in particu-
lar for [ = I°.)

b) Consider (II1.5.2). Clearly R (00) Z 1(S(d)) and R‘(ild Z 1(S(d)).
From Lemma II1.3.5 a) it follows that also R(2,4)’ e R(2d 1) don’t

vanish on §(d). Finally, Lemma II1.5.6 shows that the covariants Cff;
are not in /(S(d)).

Let k£ be a multiple of 4. Then there exists a unique covariant V' of
order k in the sum (II1.5.2). Let n be its degree. Since V' (d) possesses
no covariants of degree n’ < n and of order k, since V' ¢ I(S(d)), and
since S(d) is multiplicity-free as G,,, X SLo-variety, it follows that

O(S(d)w = (V +1(8(d)) & D O(S(d) o py-

n'>n
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Let I}, C O(S(d)) be the ideal defining X9 as closed subscheme of S(d)
(cf. Remark II1.3.4). The description of I) in Section II.2 shows that
V+I(S(d) ¢ 1j, or that (1g) ) = €B,,~,, O(S(d))(n' k). Hence it follows
that V' ¢ I°. This shows that the sum (II1.5.2) is contained in an SLy-
stable complement of 1% in RY. Since hga 10 = hjy and since the sum
(II1.5.2) is isomorphic to @,V (4k) as SLy-module, it follows that
(I11.5.2) is an SLy-stable complement of I° in R<.

b) If k is not a multiple of 4, then [ = ](Ok) = Rfk) anyway, and
there is nothing to show. So let k& > d be a multiple of 4. According to
c) there exists K € N such that I(Ok,) = (Jha )y = Ly forall & > K.
We now apply Lemma II1.5.4: Let Cff;l be the covariant of order k in
the sum (IT1.5.2), and choose 0 # r € (CL,)V C (R?mk))U. Choose
no € N such that k 4+ nod > K. Now hga, (k) = hga;r(k 4+ nod) = 1.
Furthermore, [(inoa) = I(Ok nod) = (J&14.4) (knod)» and this is homo-
geneous in R?k o). Finally, r € (R?mk))U and (ag)™ € (R?no,nod))U
are both homogeneous, but 7 - (aq)" € (CZ,, )V ¢ I, and hence
r - (ag)™ ¢ I. Now Lemma II1.5.4 implies that Iy = {f € Ry, |

f(aa)"™ € Inoa)} = 10y O

Remark III.5.11. From (II1.5.2) it follows immediately that [?k) =
Do By for all k€ {4,8,....d —4}.

Remark IT1.5.12. Let I C R? be as in Theorem I11.5.10. From Theo-
rem II1.5.10 it follows that all homogeneous covariants of V' (d) of degree
large enough and of co-order [ > d/2 are contained in I.

In order to describe I, it thus suffices to study the isotypic compo-
nents of 4,8, ..., d—4. (The philosophy of reducing the moduli-problem
to finitely many isotypic components can already be encountered in

[HS04].)

II1.6. Deformations of orbits in minimal sheets, Part II

Let R still be Sym(V (d)*), and let R?k) and an’k) be as in the
preceding section. In this section many computations have been per-
formed with aid of a computer. These computations can be found in
Appendix A. Let d still be a multiple of 4.

Lemma II1.6.1. Let X = SLy-y2%?y%? C V(d) for some 0 # v € k
(with reduced structure). Then

dimy,(Tx Hﬂbi{f(V(d))) = 1.

Proof. 1t is no restriction to assume that v = 1. Proposition 1.15 in
[ABO5] applies and states that:

T Hilby? (V(d)) 2 [V(d) /sl - /") Nora ),
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To compute sl - 2%%y%2 observe that
1+eh ee d/2. d/2 /2. dJ2
( ef 1—eh)'$ yoo=ry T

d
E§<6$d/2—1yd/2+1 4 /2Lyt
(with €2 = 0). Hence sl - 29/2y%/? = | . /271y /241 @ | . g@/2+1yd/271

Now
d/2-1
V(d) — kId/2yd/2 ® @ (kxiyd/2—i D kId/2_iyi)
i=0
is a decomposition into Ngp,(T)-stable subspaces. Hence
[V(d)/5[2 . xd/de/2]NSL2(T) ~ (k:xd/de/z)NSL2(T)@

dj2—2

i, dj2—i d/2—i, i\Nst, (T)
(kz'y @ kx y')
i=0
= ka2, g
Proposition II1.6.2. There is an isomorphism

Hilby (V(d))rea = A" U Hilby* (N (d))rea,

and A' and Hilbi,L2 (N(d)) intersect in exactly one point p, correspond-
d
ing to X3. Furthermore, Hilb%g(V(d)) is smooth in A'\ {p}.

Proof. First, Corollary 11.3.4 states that
Hﬂbi{f(wd))red = Hilbigz (S(d))%, U Hﬂbi? (N(d))rea

for an irreducible component Hilb%};2 (8(d))% 4 of Hilbi{;z (S(d))rea. Us-
ing Theorem I11.3.2, we see that Hilbislz;2 (8(d))°, = A', and we find
that

Hilbfj;%V(d))red ~ AU Hﬂbfjj (N(d))req-

Further, the two components intersect in p. The last statement can
finally be deduced from Lemma III1.6.1. U

The point p corresponds to X9, which is non-reduced for d > 4.
This makes matters slightly more complicated, because we cannot use
[ABO5], Proposition 1.15, to determine the dimension of the Zariski
tangent-space 1), Hilbf’é:"’ (V(d)). Instead, we use [ABO5], Proposition
1.13, which states that

Ty Hﬂbi{f (V(d)) = Hom%2(I, R*/T)

for an SLy-stable I C R? with hrijr = hy.
Before investigating Hilb%Q(V(d)) for some values of d, we state
another auxiliary result:
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Lemma I11.6.3. Let I C R be an SLy-stable ideal with hga/r = hy and

with Spec(R?/1)ea = Xq. Further, let ¢ € HomSL2 (1, Rd/I) Then the
restriction |1, is determined by go]Ré Y for all ke{4,8,...,d—4}.

Proof. Step 1. Let k € N\ {4,8,...,d—4}. If k is not a multiple of 4,
then (R?/I)x = 0 and ¢|;,, =0

Suppose now that k& > d is a multiple of 4, let n € N such that
(n—1)d < k < nd, and let | := (nd — k)/2. Recall from Theorem
IT1.5.10 that

(R/T) ) = Cry-

In particular, this shows that the map uy: (RY/I)Gy — (RY/1){ )
defined by p(r + Ix)) = aqr + I(x4+aq) is an isomorphism. For r € Iy,
there exists ng € N such that r(aq)™ € J%, 4, thanks to Theorem
I11.5.10 ¢). Hence p(r(aq)™) is determined by <p|Jgdd+. But

p(r(aq)™) = (aa)"p(r) = (Prtmg-1)a © - - 0 ) (@(r)).

Because each pixy,q is an isomorphism, it follows that

p(r) = (et (mo-1)a © - - © i)~ (p(r(aa)™)),
which is determined by ¢| ;4

odd

Now, Jodd7 + s generated as+R -SLo-module by covariants of odd co-
orders and by Ré’ d)- Since any covariant of odd co-order is in the kernel
of ¢ anyway, we conclude that ¢ T is determined by ¢| R, The
claim now follows.

Forms of degree 4. As a warm-up exercise, we start with a well-
known example, which can be found in [ABO05] Example 1 on page 99,
or in [Ja05], Théoreme 1.1. Let d = 4.

Proposition IT1.6.4. The inclusion ¢: Hilb%{:2 (S(4)) — Hilbi{:2 (V(4))
18 an isomorphism.

Proof. Let I C R* be an SLy-stable ideal with Hilbert function hga/; =
hl, and with Spec(R*/I),eq = X4. Then Theorem II1.5.10 c) implies
that I = I°. Hence ¢ is bijective.

In view of Proposition II1.6.2 the proof is completed once we have
shown that dimy Tpo Hilbj?(V(4)) = dimg(Hom}?(1°, RY/I°) < 1
Instead of computing the tangent space directly with [ABO5], Propo-
sition 1.15, we make use of Lemma II1.6.3. Applied with I = I° it
states that ¢ € Hom3? (1%, R1/I°) is determined by ¢| Rt - Hence

dimy,(Hom{2(1°, R*/1°)) < dimy(Hom3? (R, 4, R*/1°)).
With Schur’s Lemma it follows that
dimy,(Hom$2 (Rfy 4, R*/1°)) = O
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Forms of degree 8.

Theorem II1.6.5. The inclusion Hilb},?(S(8)) — Hilb}2(V(8)) is an
8 8

1somorphism.
Proof. Let I C R® be an SLy-stable ideal with Hilbert function hga/r =
hy and with Spec(R®/I);.a = Xg. In view of Proposition I11.6.2 it
suffices to show that (a) I = I° and that (b) dimy T}o Hilb%Q(V@)) <
1.

a) Theorem III.5.10 c) implies that I() = IO for all k& # 4. There-

fore, it suffices to verify that Iy = 1(4) (Whlch equals €P,,~5 R(m4
according to Remark II1.5.11). Theorem II1.5.10 b) and c) imply that
R?mk) C I for all (n,k) withn >3 and k€ {k |0 <k <8n—6}\{4}.
A computer-based calculation (see Appendix A) shows that R?& g Isin
the SLs-stable ideal generated by R?zs) C I. Hence @,lfzo R?&k) c 1.
Since R (nt1.4) 18 1D the SLs-stable ideal generated by @12 R?n By it
follows 1nduct1vely that R8 y 1 for all n > 4, which shows that
Iy = D Rinsy = Iy,
n>3
b) Lemma I11.6.3 implies that
(1116.1) dimy,(Hom$? (1%, R*/1°)) < dlmk(HomSL2(R(28 R¥/1°))
- + dimy,(Hom'} 22 ( (4),R8/IO)).

The proof of a) reveals that [ (04) is contained in the SLs-stable ideal

generated by the covariants in I° of order # 4. Hence (II1.6.1) simplifies
to

dimy,(Hom32 (1%, R®/1°)) < dimy(Hom3? (R, ), R®/1°)) =
where we used Schur’s lemma for the equality. O

Forms of degree 12.

Theorem II1.6.6. Let p € Hilbg;; (S8(12)) be the point corresponding
to X7,. The natural morphism Hilbi{;j (8(12)) — Hilbi{;j(V(lQ})red is
an isomorphism, and HileLQ(V(12)) is smooth in the complement of
p. The invariant Hilbert scheme HlleLQ(V(12)) is not reduced in p.

Proposition II1.6.7. Let I C R'? be an SLy-stable ideal with Hilbert
function hpr2;p = by, and with Spec(R/1)eq = X12. Then I = I°.

Proof. Theorem II1.5.10 implies that I = I(Ok) for all £ ¢ {4,8}.
Therefore, it suffices to verify that Iy = I ?4) (= Dnss R%Z 4 according

to Remark IT1.5.11) and that Iy = Iy (= @,53 (7 g accordmg to
Remark I11.5.11).
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Step 1. We prove by induction on n that

12n—10

(I11.6.2) P Ryl
k=0

for all n > 4. Recall from Theorem I11.5.10 that R%ﬁ}k) C [ for all (n, k)
withn > 2and k € {x | 0 < k < 12n — 10} \ {4,8}. A computer-
based calculation shows that R%i 5@ R%Z,S) is in the ideal generated by
Ri30) © Ri3a) @ Ri3e) @ B3 10) ® B3 10) © Ri310) @ B3 16) ® B35y C 1.
This shows that @ lek C I. Since R(?,, 2) ®R? (nt1,8) 18 in the ideal
generated by @7, Rlik), it follows inductively that R12 ry® R12 ney C 1

for all n > 4, which proves (I11.6.2).
Step 2. A computer-based calculation shows that Rg 2) is in the ideal

generated by R%22,12)' This, together with R%SA) ® R%12,4) = {0} and with
R34 = V(4), shows that Iy = D, 53 R(% -
Step 3. We claim that

=D Rizs).

n>3

What do we know on R(§ (see Appendix A)?

)
a) First, Rijg = Rt = {0}, RiFg = V(8) and Ri3, = V(8) @
V(8).
b) Step 1 implies that R12 ) C I forn>4.
c) Finally, Rig is in the 1deal generated by RiJ ¢ @ R(3 ).

Since R(3 5 C 1, it follows that C' 1= (R3 5, R(T15)" C 1. Let further
¢ = (Rg’g),R%iu))G. Then R%g’g) = C @ (', and both C' # 0 and
C" # 0 thanks to a) and c).

We claim that ¢’ C I. There exists a covariant C” C R12278) ®C
contained in I. Then (C", R ,)° C I N (Ri3q @ Riig). Let 0 #
rs + 14 € ((C", Rif15)%)Y with r3 homogeneous of degree 3 and ry
homogeneous of degree 4. Because ry; € R%fﬁ) C I anyway, it follows
that r3 € I. If C” = C’, then C’" C I. Otherwise, if C” # C’, then 0 #
r3 € I. But 73 € (C")Y, and it follows that ¢’ C I. In any case C" C I,
and hence Ry = C ® C" C I. We see that Is) = @,-5 R g)- O

Proposition I11.6.8. dimy, Tjo Hilbj,?(V(12)) < 2.
Proof. The proof of Proposition II1.6.7 shows that I° is the SLy-stable

ideal generated by the covariant C" = (R{3g), R(f15)° C R(34) and by
all covariants in 19 of order different from 4 and 8. Hence Lemma
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I11.6.3 implies that

(111.6.3)
dimy,(Hom{y3 (1%, R*?/1°)) < dimg(Hom33 (R[5 15, R'?/1°))

R12
+ dimy,(Hom$32(C”, R /1°)) = 2

where we used again Schur’s Lemma for the equality. U
Proposition IT1.6.9. dimy, T Hilb,slg; (V(12)) > 2.

Proof. Step 1. We have seen in the proof of Proposition II1.6.8 that the
covariants of order 8 play a special role. Recall that R%:i& =CaoC
with C' = (B3 1), R} 15)° and C" = (R34, R 15))°. Decompose I° as
I = I'® ', where I' is the SLo-stable ideal generated by all covariants
of order # 4,8. We claim that there is a homomorphism 0 # ¢ €
Hom?333 (1%, R2/1°) with ¢|p = 0. Let 0 # ¢y € Hom®™2(C", R'2/1°),
and define

0: I°=C"oI — RZ/I°,  +i — py(c).
Then ¢ is SLy-equivariant. To see that ¢ is a homomorphism of R'2-

modules, let i = ¢ +4' € I with ¢ € C" and with i € I’, and let
=3 cx"n € R with 7, homogeneous of degree n. Then

p(ri) = @(rod + Y _rad +1i') = @(roc’) = rop(c).

n>0

On the other hand,

ro(i) = ro(d +14') = ro(d) = rop(c) + Z rp(c) = rop(c).
n>0
This shows that ¢ is a homomorphism of R'?-modules.

Step 2. We construct a second tangent vector in Hom$3(1°, R'2/1°)
that is linearly independent from ¢ constructed above. Whereas ¢ de-
scribes an infinitesimal deformation that cannot be seen on the variety
underlying the Hilbert scheme, we now construct ‘the’ tangent vector

coming from the closed subscheme Hilb}s;;; (8(12)) of Hilb%{;j(V(lQ}).
Let D = k[t]/(t*). Recall that Tm(Hﬂbi?j(V(lQ))) consists of those
SLs-stable ideals J° C D ® R'? with the property that
a) (D® R'%)/(J°t) =1I° and that
b) (D ® R'?)/J° is flat over D.
If J% is such an ideal and if v + tv € J° then the corresponding

homomorphism in Hom$3(1°, R'2/1°) maps u to v + I°.

We now construct such an ideal .JO. Let J° C~k‘[t] ® R be the ideal
of UmvSL2(8(12)) C A' x V(12). Then J° := J°/(t?) satisfies a) and
b). We claim that

Sagt + 5082 - (—10a2 + 15a0as — 6a11a7 + araae) € JO.
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Even though this can be verified with the help of a computer, we give a
proof here. Consider the covariant QU2 = 317 a;(*?)x'y'?~" and the
transvectant

(Q(12), Q(m))G = 2(—10@3 —I— 15@10&8 — 6&11&7 + algag)xn
12
+ Y pjla)aly .
7j=1

This shows that —10a3 + 15ai9as — 6ai1a7 + ajzag is a U-invariant T-
eigenvector to the weight 12. The same holds for aj5. For (o,7) € k?
consider the binary form

Vor = 2% (00 + 7)°

= 7(2%° + 602"y® + 15022%y* + 200° 2%y + 150" 2'%* + 60°z'y + 0%2'?)

€ SL, -725¢°
Now a12(vy,) = 705, a11(vy,) = 1%705, a10(Vyr) = %7‘0’4, ag(Vor) =
%7’03, as(vyr) = 417557'02, a7(Vpr) = %TU, and ag(v,,r) = 9%7'. Hence
(-10@3 + 15@10@8 — 6@11@7 + CL126L6>(U077—)
20?2 152 62 1 5
= (-10 15 —6 L D 2,6,
( 2202 °66-495  C12-792 | 924) T T TR 7

Since (1, 72%y%) € Univ%j(S(lQ)) C A' x V(12), we conclude that
f(vyr) =0 for all (o,7) € k?* for

f = Btays + 5082(—10ag + 15a19as — 6ai1a7 + ai2as).
Because f is a U-invariant T-eigenvector and f(grx5y%) = 0 for all g €

U- = {(i 1) }, we find that f(g72%°®) = 0 for all g € UTU~ and

for all 7 € k. Since UTU ™ is dense in SLy (as one readily verifies), the
set {(7,972%%) | g € UTU ™, 7 € k} is dense in Univi?j (8(12)), and we

conclude that f € JO. Now f corresponds to a 1) € Hom%é([o, R2/1°)
which maps

5082 - (—]_OCL?) + 15aqp9as — 6aj1a7 + a12a6> c R(122’12)

to 0 # Hae + I° € R¥/IY. Since ¢ and 1 are linearly independent

((,0|R(122,12) =0 # @/}|R%22’12)), this shows that dimy(Hom$3(1°, R'2/1°)) >
. U

Proof of Theorem II1.6.6. Lemma [1.3.2 and Propositon I11.6.7 imply
that the inclusion morphism Hilb,,(S(12)) — Hilbj,?(V(12)) is bijec-

tive. Thanks to Proposition 1.2.1 we now see that Hilb,sli)2 (8(12)) =
Hilbi?;(V(lQ))red.
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Moreover, Hilbii2 (V(12)) cannot be reduced since its Zariski-tangent

space at the ideal I° is two-dimensional. At all other closed points
Hilb,sl,lL;(V(12)) is smooth according to Lemma II1.6.1. O

Forms of degree 16. There is the following description for the part
of the invariant Hilbert scheme coming from the nullcone:

Proposition II1.6.10. There are isomorphisms
Hilb,sfj (N(16))seq = P UPY,
1
and the two copies of P! intersect in a closed point p corresponding to
XlOG-

The ultimate goal of this section consists in proving the following
result:

Theorem I11.6.11. a) There are isomorphisms
Hilby (V' (16))rea = Hilby*(S(16)) U Hilb}* (A (16) ) rea
=~ AlUPlUPY,

and the three irreducible components intersect in one closed point
p corresponding to X7.

b) The invariant Hilbert scheme Hilbi{;j(V(lG)) is smooth in the
complement of p.

c) The action of G, on Hilb%;(V(lG)) induced by the Gy,-action
on V(16) has three closed fized points: The point p, and on each
copy of P! one further closed fized point.

Let I' be the intersection of all SLs-stable ideals I C R'% with
Hilbert function hgis;; = hjg and with Spec(R'®/I)ea = Xi6. De-
fine Y := Spec(R/I'). Then the induced morphism Hilbff;j Y) —
Hilby,* (V(16)) s bijective.

Lemma II1.6.12. a) The Sly-scheme Y is multiplicity-finite. Its
Hilbert function is given by hy (k) = hiz(k) for all k # 8,12, and
hy (8) = hy(12) = 2.

b) Let further Yg be the closed SLy-stable subscheme of Y defined by
the ideal If := I' U@D, -3 Ry 5 C R'°. Similarly, let Y15 be the closed
SLy-stable subscheme of Y defined by the ideal I, := I'U@D, -4 R%S,u)-
Then Hilb,sl/lL; (Y)iea = Hilb%;(Y};)red U Hilb:?;(Ylg)red is the decomposi-
tion into wrreducible components, and the components intersect in one
closed point.

c¢) There are isomorphisms Hilb}sl?(j(}/g) &~ Hilbi{;j(ym) ~ pl.

Proof of Proposition I11.6.10. Lemma I11.6.12 implies that
Hilbj2 (N (16))rea = P U P!
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and that the two projective lines intersect in one closed point. U

Proof of Lemma II1.6.12. Let I C R be any SLs-stable ideal such
that Spec(RY/I)ea = Xi6 and with Hilbert function hgie;r = hig.
Theorem II1.5.10 implies that () = I(Ok) for all k& & {4,8,12}. There-
fore, it suffices to examine I(4), I(s), and I(19).

Step 1. We prove by induction on n that

16n—14

(I11.6.4) P Ryl
k=0

for all n > 4. For the proof recall from Theorem II1.5.10 that R%S,k) cl

foralln > 3 and for all k € {k | 0 < k < 16n — 14} \ {4,8,12}. A
computer-based calculation shows that R(4 5 ® RIS (18 D R%f,m) is in the

ideal generated by RIS 314 D R(3 16) P R(3 18) @ ng 20) ® ng 99) C I. This
shows that @) lek C I. Since RS (1 ngﬂ g P R(nJrl 1) 18
in the SLy-stable ideal generated by @~ R(l6 » it follows inductively
that Rlﬁ na) P R 5 @ R (n12) C I forall n >4, Whlch proves (I11.6.4).

Step 2. A computer based calculation shows that R1367 (3.4) is in the ideal
generated by RS (2.16)- Lhis, together with R16 0.4) @ R16 = {0} and with
Rl =V (4), shows that 14y = @,,55 R(ln 2" ThlS is the same as [{)
according to Remark II1.5.11.

Step 3. We are left to examine I(g) and /(12), which turn out to be
weirdly entangled. We claim that

(I11.6.5)
- (- @RM) . ( D).

n>3 n>3
What do we know on R16 (see Appendix A)?
V(8).

(2) According to the first step, Rl6 ) C I forn>4.

(3) A computer-based computatlon shows that the two covariants
(R%gg),R%ﬁlG))g and (R%S’m),R%fw))u coincide. Denote this co-
variant by C.

(4) Let C" = (R%gu), R%ﬁm))lo. A computer-based computation shows
that Ri§ o =C o C".

Hence there are two covariants V/(8) = CF C R(5 g @ R5g and V(8) =
C3 C Ri5g ® R(§g such that Ig) = CF & C5 @ @n>4 RS . Because
C C I, this yields:

(8): There exists a unique covariant

V(8) 2 C¥ C RSy @ C'
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such that C® C I. Further, the choice of C® determines Ig).

This proves in particular that hy (8) < 2.
Bearing this in mind, we proceed with R%f’z). Similarly as above, one
has:
(1) First, R%g,lz) leu = {0}, R (212) = V(12) and R%36,12) =
V(12) e V(12) @ V(12)
(2) According to the first step R 1) C L forn > 4.
(3) Consider C" = (ng,s Rl?,lfi ) " = (Rl§,12)7 R%ﬁlﬁ))g, and C"" =
1 1 1 1
(R(26,16)7 R(16,16)> °. Then R(??,u) =C"e "o ™.
Since C"" C I, it follows that there is are two covariants V' (12) =
C? C Rigi2) @ C" @ C" and V(12) = C3%2 C R%gﬂ) ® C" @ C" such
that
Inpy =Ci* @ G0 C" @ EB Rip1)-
n>4
If C1? ® C3* C R(§,), then [(12 @D,.>5 By 12), and clearly C" C I.
On the other hand, if C{? ¢ R/S (3.12), then con51der (C}3, R%f 16) )®, which
is a covariant in C"" @ RJ |, not contamed in R($,,. Since R w12 C 1
according to (2), we conclude that C"” C I. In any of these cases
C" cC I, and hence:

(12): There exists a unique covariant
such that C'? C I. Further, the choice of C''*? determines I, (12)-

This proves in particular that hpis,;(12) < 2.

We now shall make use of the narrow relations between () and I (12
Suppose that C® ¢ C’, and consider I D (CS,R%IGJG ¥ CcC” e R (412)-
Since R(f 5 C I and since (C% R} 4))° ¢ R(f 5 by assumption, thls
implies that C” C I, which in turn implies that C'? = C” or that
Iz = @nZS R%S,m)-

Vice versa, one sees in exactly the same manner that P, -, R%S g if
C'2 ¢ C”. This proves (I11.6.5), that
(I11.6.6) Hﬂb,i,lL; (Y )ied = Hilb%@?(Yg)md U Hilb%;(}/lz)red,

and that the two latter intersect in the closed point given by the ideal
I° with Ity = @,53 B(S g and with If,) = @,-5 (5 5. This point is
the point p of Theorem I11.6.11 corresponding to X .

Step 4. We still have to show c), that hgis;;(8) = hgis;p(12) = 2,
and that the decomposition in (I11.6.6) is a decomposition into irre-
ducible components.

Suppose first that C'* = C” or that I(12) = €D,,>4 R(n 19 Then it is
easy to see that each choice of a covariant C® C R%2678) ®eC’ ylelds an Sly-
stable ideal with Hilbert function h}g. Therefore hgis,p(8) = 2 (recall
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that we already have proved that hgie,;(8) < 2) and Hilbi?;(Ylg)red 7
Hilbj (Y5 rea-

Now Y; is a multiplicity-finite SLy-scheme with hy, (k) = h/4(k) for
all k # 12, and with hy,(12) = 2. To give a family (X — S) €
Hz’lb%{f(Yg)(S) is the same as to give a locally free Og-submodule F
of Og ® k? of rank 1, because each choice of a covariant C® C Rz 5) &
(' yields an SLy-stable ideal with Hilbert function h)y. But for this
problem it is well-known that the corresponding moduli-scheme is a
projective line. (One can see this also as follows: Let v3 and v§ be
fixed non-zero U-invariant vectors in R%gg) and C’, respectively. Then

the choice of (A : u) € P(k) amounts to the choice of the covariant
C® C R34 @ C" containing A\v§ @ pvf as U-invariant vector.)

The case I(g) = €D, >3 (5 is treated similarly. This completes the
proof of the lemma. O

Remark IT1.6.13. The proof of Lemma I11.6.12 shows that the action
of G, on Hilbi?; (NV(16)) has exactly two closed fixed points on each

irreducible component P! (corresponding to the homogeneous ideals)
and that p is such a fixed point.

The next object of interest is the Zariski tangent-space to the invari-
ant Hilbert scheme. Before it is computed in Lemma II1.6.14, we start
with an observation. We write Q for Q*9, and we let Cy5 be as above.

For all I € {0,2,...,16} fix 0 # ugy € (C35)Y. Remark II1.5.8 implies
that for all n large enough

(L6.7)  (a16)" - uana + Jogg = 7+ (a16)" ™" - uas - (u20)” + Jogy

for some 0 # v € k. Further, Remark I11.5.8 implies that for all n large
enough

(I11.6.8) (a16)"(((Q, Q)™ Q)" +J, C k-(a16)"™ Muns(uga)®+J1S,.

Lemma II1.6.14. Let I C R'S be an SLs-stable ideal with Hilbert
function hpie;; = hlg and with Spec(R'"/T)eq = Xis.

a) If I #1°, then

dimy,(T; Hilb%j(V(lG))) = 1.
b) Otherwise,

dimy, (T Hilbi,lL;(V(m))) = 3.

Proof. The ideal I is generated as SLy-stable ideal of R'® by covariants
of orders different from 4, 8, and 12 and by the covariants C® and C*?
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introduced above. Lemma III.6.3 implies that

dimy (T} Hﬂbi?; (Vi) < dimy(Hom$3 (RS 1), R/ 1))

(I11.6.9) + dimy (Hom$:2 (C®, R /1))

R16

+ dimy (Hom$:2 (C'2, RY /1)) = 3.

R16

Recall from Remark II1.5.12 that all covariants of degree n of co-order
> 8 are contained in [ if n is large enough. This will be used frequently
in the sequel.

a) The proof of Lemma I11.6.12 showed that C® = ((Q, Q)*, Q) or
C? = ((Q,Q)", Q)5 Suppose first that C? = ((Q, Q)", Q)® and that
C® £ ((Q,Q)", Q). Then C'? is in the ideal generated by C® and by
Jogs. In this case, (IIL.6.9) simplifies to

dimy,(T; Hﬂbg,f; (Vig)) < dimy(Hom3 (RS 1), R/ 1))

(I11.6.10) o

+ dimy (Hom},2(C®, R'/T)) = 2.
We show that for this choice of C® and C'2, one has
(I11.6.11) p(Ri315) =0 for all p € Hom}(1, R'°/T).

Let 0 # v = v +v3 € (C®)Y with v? of degree 2 and v3 of degree 3. We
now assume that (I11.6.11) is wrong and choose ¢ € Hom?2(I, R'S /1)

R16
with (R[5 ) # 0. This will lead to the following contradiction:

(IL6.12) 0= p((a1)" - v) = p((a16)" - v3) + ((a15)" - vg) # 0.
Because C® # ((Q,Q)",Q)', it follows that vZ # 0 and that
(R'/I)s) = Q¢ + I for a covariant QF C R/3g). Hence there exists
wi € Q3F such that p(v) = w§ + I. This implies that
p((ase)" - v) = (ae)" - wg + 1.

Because (a16)"wg has co-order 20 it is contained in [ if n is large enough.
We conclude that

(I11.6.13) p((as)" -v) =0

for all n large enough.

The assumption that ¢(R(g ) # 0 implies that ¢(C3%) = Q + 1, or
equivalently that
(I11.6.14) o(ugg) = yaws + 1

for some 0 # v € k. With (I11.6.7), we find that for all n large enough
there exists 0 # v € k such that

@((a16)" - us12) = o(Y(a16)" usguanus;)
(a16)" unpuznp(Usg)

=7
= 7(@16)"*3u2;2u2;2 + 1.
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Using Remark I11.5.8 and the proof of Lemma I11.5.7, it is now easy to
see that (alﬁ)”_?’ug;ng;Q ¢ I for all n > 3. Since v? is a non-zero scalar
multiple of g1, it follows that

(I11.6.15) olaly - v3) #0

for all n large enough.

On the other hand, (a6)" - v3 has co-order 20. Therefore, it is con-
tained in I for n large enough. Now v3 € ((Q,Q)'°, Q)'°, and using
(I11.6.8) and (II1.6.14) we see that

p((ase)" - v) C k- p((a16)" Muzs(uz2)”)
=k (a16)" " (u22) " p(u2s)
=k y(a16)" " (ug2)° + I
Since (a16)" % (ug2)% is a U-invariant of co-order 12, it is contained in
I if n is large enough. This implies that
(I11.6.16) olals - v3) = 0.
Combining (I11.6.13), (II1.6.15), and (II1.6.16) establishes the contra-

diction (II1.6.12). Thus, SO(R%SJG)) = 0, and (III.6.11) follows, and
(I11.6.10) simplifies to

(I1.6.17)  dimy (77 Hilb)? (Vi) < dimy (Hom3i(C%, RY/1)) = 1

R16

it 1?2 = ((Q,Q)'%,Q)°% and if C® # ((Q,Q)'°,Q)'°. However, since
Hilbi?j(V(lG))md >~ A!' UP! UP!, the tangent space in I is at least

one-dimensional, so there is equality in (II1.6.17).

Suppose now that C'? # ((Q,Q)"*,Q)° and C* = ((Q.Q)", Q)"
Arguing in a similar way, we find that R%QGJG) C ker(yp) for all ¢ €

HomS2 (1, R1/1). Thus, dimy(T; Hilbj}? (Vi) = 1 also in this case.

b) To see that equality holds in (II1.6.9) one shows that the tangent
vectors coming from the three irreducible components A', P!, and
P! are linearly independent. This is done similarly as in the proof of

Proposition I11.6.9. U
Proof of Theorem I11.6.11. Lemma I1.3.2 and Propositon I11.6.10 prove
a) and c). It therefore suffices to show that Hilb,slij2 (V(16)) is reduced in

the complement of p, which follows from Lemmata II1.6.1 and I11.6.14.
O






CHAPTER 1V
Multiplicities

Let s € N, and let (Ar,...,As) € (AT)® with \; # A; for i # j.
For r = (ry,...,rs) € N* let V7 := @;_, V(X\)". In addition, we let
Vi=@;_, V(\). We fix a function h: AT — N with h(\;) =1 for all
i (here \* = —wpA, where wy is the longest word in the Weyl group).
Recall that a subscheme of V" is non-degenerate if it is not a subscheme
of @,.;V(N) C V" for any I ¢ {1,...,s}. Then Hilby (V"), is
defined to be the open subscheme of Hilbf(VT) parametrizing the non-
degenrate subschemes of V" (see [ABO5], Definition 1.14). The goal is
to describe Hilb§ (V") in terms of Hilb§ (V)o. In particular, we state
a correct version of Corollary 1.17 in [ABO5].

M. Brion pointed out to me a much shorter and more elegant way to

correct his statement. We sketch this argument at the end of Section
IV.1.

IV.1. Invariant Hilbert schemes for multiplicity-finite
modules

Given two (finite-dimensional) G-modules W and W', we denote
by Hom® (W, W’) the (vector space or variety of) G-equivariant lin-
ear maps from W to W’. For r,v’ € N° with r; < r! for all i, let
Hom®(V", V") be the open dense subset of Hom®(V", V") consisting
of the injective G-equivariant homomorphisms. In Theorem IV.1.5 we
show that

Hilb§ (V") = (Hom®(V, V"), x Hilb (V)o)/ GLE (V).
To start with, we investigate the GLY(V)-action on Hilb (V). Ob-
serve that GLY(V) = G’ . This action is well-known, but a concrete

description is useful — in particular for the proof of Lemma IV.1.4.
For a scheme S we define

RE: Hom®(V", V" )y x 8 x V" — Hom®(V", V" )y x § x V"',
mapping (u, s,v) to (u, s, h(v)). It is immediate from the definition that
Rg’rl maps Hom®(V", V™" )g x S x V" isomorphically onto its image.

Remark IV.1.1. Let S and T be two schemes with a morphism S —
T, and let X7 C T x V" be a closed G-stable subscheme. For simplicity,
we write Hom instead of Hom®(V", V"™)y. Then

(Hom XS) X tiom x7 By (Hom xX7) = RY" (Hom xS x1 X7).
71
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This follows from the definition of Ry and Ry .

Given a morphism S — Hilb{ (V")y corresponding to a family S x
V" D X — S, we obtain a morphism Hom®(V", V™)yxS — Hilb§ (V™)
in the following way: The projection

RE (Hom®(V", V™ )g x X) — Hom®(V", V")y x S
defines a family in Hilb$ (V™")o(Hom® (V" V") x S), giving the desired
morphism Hom®(V", V™) x S — Hilb{ (V""),. As a special case, start-
ing with Univ{ (V")y — Hilb (V"), for X — S, we obtain a morphism
™. Hom®(V", V™) x HilbS (V") — Hilb{ (V™).

If 7 = 7/, then ®"" defines an action of GLY(V") on Hilby (V")o. The
case where r = 1 := (1,...,1) is of importance for the sequel. For this
reason, we write ® instead of &'

Let Sx V" D % — S be a family in Hilb§ (V")(S) corresponding to
a morphism @zx: S — Hilb{ (V")o, and let ¥: S — Hom®(V", V"), be
a morphism. Consider the following two ways to construct a morphism
S — Hilb$ (V"),:

First, consider the family

R (Hom®(V", V™) x X) — Hom®(V", V"™ )y x S
in
Hilbs, (V") (Hom® (V" V"™)y x S);

and let X; be the pull-back of this family with respect to the morphism
(¢ x idg): S — Hom®(V", V") x S.

On the other hand, one can define a morphism y: S — Hilb§ (V"™)g
corresponding to a family X, — S as follows:

021 5 U7 Hom® (V7 V™Yo x HilbS (V7)o 25 HilbS (V™).

If s € S is a closed point, then the fibers (%), and (¥X5)s both equal
Y(s)(%,) € V. Indeed, as a formal consequence of Remark IV.1.1 one
obtains:

Lemma IV.1.2. In the above notation, 1 = @, or X1 = Xs.

Proof. For simplicity, we denote Hom®(V", V"), by Hom, as well as
Hilb{ (V")e by Hilb", and Univ§ (V"o by Hilb". By definition,

X1 = S Xtom xs Ry (Hom x %),

and
%2 =S X Hom x Hilb" Rﬁﬁbr (HOII] X UIlin).
Using Remark IV.1.1, we see that

(Hom X .S) X Hom x Hilb" Rﬁgbr(Hom x Univ") = Rgr/(Hom xX)
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as schemes over Hom x.S. Therefore,
rr! .
%2 =5 X Hom x Hilb" RHile (HOHI x Univ )
r,r! -7
= (HOII] XS) X Hom xS (S X Hilb"™ x Hom RHﬂbr (HOII] x Univ ))

— S Xtom xs Ry (Hom xX) = X,. O
Consider the (contragredient) action
e GLE (V™) x Hom® (V7 V™ )y — Hom® (V" V™),

of GLY(V") on Hom®(V", V™) (defined by (- p)(v) = p(t~'v)). Us-
ing this action, we obtain a GL%(V)-action ¢" on Hom®(V, V"), x
Hilb{ (V), defined by

te (g, x) = BV (L, @), @V (L, ).

The morphism ® is GLE(V)-invariant with respect to this action. We
shall see in Lemma IV.1.3 that Hom®(V, V"), x Hilb$ (V) possesses a
geometric quotient by GLY(V) and in Theorem IV.1.5 that ® is the
quotient morphism.

For j; e {1,...,m}, let V(\;) 2V}, C V(\)™ be the j;-th summand.
For j = {j1,...,Js}, let V; C V" be the sum of the corresponding V.
Let H; := {p € Hom“(V,V") | p; o p € GLE(V)}, where p;: V' —
V; =2 V is the projection (the definition of H; is independent of the
choice of the G-isomorphism V; = V). The H; cover Hom“(V, V7).

Lemma IV.1.3. a) First, Hom®(V, V"), x Hilb$ (V) possesses a
geometric quotient by GLE (V).
b) If r =1, then ® is the quotient morphism.

Proof. One can adapt the proof of Theorem 1.10 in [MFK94]. We
start with an elementary observation: Let H be a group, let X be a
H-scheme, and endow H x X with a H-action defined by g - (h,z) =
(hg™', gx). Then the morphism H x X — X mapping (g, z) to gz is a
geometric quotient.

Consider the GLY(V)-stable subset

H; x Hilb§ (V)y € Hom®(V, V")y x Hilbg (V).

Now, H; = GLE(V) x Hom®(V,V"~1). With H = GLY(V) and with
X = Hom®(V,V"=1) x Hilby (V)o, the action 0" |y, ging (v, is of the
above kind. Thus, there exists a geometric quotient of H; X Hilbf(V)o
by GLY(V). In this situation, one can proceed as in the proof of The-
orem 1.10 in [MFK94]| and glue these quotients together, which com-

pletes the proof.
b) With H = GLE(V) and with X = Hilb{(V)o, the statement
follows from the above observation. O
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Let
m: Hom%(V,V")oxHilb$ (V) — (Hom®(V, V") xHilb§ (V)o)/ GLE (V)

be the quotient morphism. Then & factors as ®/ GLY(V) o 7 for some
morphism

®/GLE(V): (Hom(V,V")y x Hilby (V)o)/ GLY (V) — Hilby (V7)o
We shall see in Theorem IV.1.5 that ®/ GLY(V) is an isomorphism.

Lemma IV.1.4. Let S be a scheme, and let n: S — Hilb$ (V")y be a
morphism corresponding to a family S x V' O X — §.

-----

such that for each j there exists a morphism n;: S; H; x
Hilb (V)o with ¢ls, = @ on;.

b) If u and i’ are morphisms from S to Hom®(V,V")y x Hilb{ (V)
such that ®opu = ®oy/, then mou=mo .

Proof. To keep the notation simple, we assume that s = 1 (and hence
that V' = V() and that V" = V(A)"). The general case can be derived
similarly.

a) We first define the subsets S;. Let (ef,...,el) be a basis of V; C
V", and let (xf,...,x.) be the dual basis of (V;)* C (V")*. Let M :=
((V")*)Y, and suppose that (x,,...,2}) is a basis of M. Let further

7P

7 C Ogyxyr be the ideal-sheaf defining X C S x V", let p: S x V" — §
be the projection, and let

T =p(IT)NO0s®@ M) C Os® M.

Then J is a locally free Og-submodule of Og ® M of rank r — 1 (recall
that h(A\*) =1). For j € {1,...,r}, define the open subset S; C S by
S;={seS|lo,, ®x) &J,} CS.

Let X; = S; xs X. With the Og,-module J; := J|s,, we have
Os; ® M = J; ® (Os, ® ),

and hence J; is a free Og,-module of rank r — 1. We now define a
morphism ¢;: S; — GLY(V"). For simplicity we assume that j = 1.
Let A := Og,(S1). Then J := J1(5;) is a free A-submodule of A ® M
of rank 7 — 1, beacuse A®@ M = J @ (A®x,). Let J be generated as
A-module by

(IVll) Zwlk@xiv”'azlpﬁk@xg”
k=1 k=1

where 1; ;, € A. Let 111 1= 14, and let ¢y, := 04 if £ > 1. We obtain
the desired morphism ¢; = (¢ x)ix: S1 — GL, = GLE(V"), where the
isomorphism GLT = GLG(VT) maps (a/ij)i,j to ((Zij idV)i,j'
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Let
ngZSjXVTHSjXVr
be the G-equivariant isomorphism of schemes over S; mapping (s, v)
to (s,1;(s)v). We claim that there exists a family 9); C S; x V; of
G-schemes over S; with Hilbert function h such that ¢; maps 9); iso-
morphically onto X;. To see this, suppose once more that j = 1, and
let A be as above. Consider Z := 57 x V; € S; x V". The ideal of Z
in A® Sym((V")*) is the G-stable ideal of A-algebras generated by

{1« |j=2,....,ri=1,...,p}h
Since ¢y is given by the homomorphism of A-G-algebras

A Sym((V)) = A Sym((V')), 1@a]— ) ek,
k=1

we see that ¢1(Z) C 51 x V" is defined by the G-stable ideal I of
A-algebras generated by

(IV.1.2) O el |j=2,...,ri=1,.p}
k=1

Comparing (IV.1.2) to (IV.1.1), we see that
INA® M) =J.

Since [ is the smallest G-stable ideal of A ® Sym((V")*) containing
IN(A® M), it follows that I C J, or that X; C ¢1(Z). More generally,
we see that
.’fj C (,Oj(Sj X V]) C Sj x V"

for all 5. Since ; is an isomorphism of G-schemes over S;, we can take
;= ¢; (X))

Let ¢}: Sj — Hilb{ (V;) be the morphism corresponding to the fam-
ily 9);. Then ¢/(S;) C Hilby(V;)o C Hilby (V7)o

On the other hand, let ¢;: GL®(V") — Hom®(V}, V") be the natural
map. By construction of 9;, the composition ¢; o ¢, factors as

g o;: S; — H; € Hom®(V;, V™).
Using Lemma IV.1.2, we see that 7|s, factors as

nls, - S5 T 1y HiIbG (V) % HilbG (V7).

After identifying V; with V' via a G-isomorphism, the claim follows.

b) Let s € S be a closed point. It suffices to verify that oy = wop/ in
a neighbourhood of s. In particular, we can assume that p(S) and p/(S)
are both contained in H; x Hilb§ (V), for some suitable j. Composing
p and g with the morphim H; x Hilb§ (V) — GLE (V) x Hilb{ (V)
mapping (¢, z) to (p; o ¢, x) gives two morphisms i and £’ from S to
CGLE (V) x Hilb (V) with @4 o i = &1 o ji’. Now, Lemma IV.1.3 b)
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yields a morphism 1: S — GLY(V) such that i/ = ' o (¢, 1). One
readily sees that p/ = o” o (¢, ). The claim now follows. O

Theorem IV.1.5. The morphism ®/ GLY(V) is an isomorphism. In
particular,

Hilb§ (V")o = (Hom%(V, V") x Hilb{ (V)g)/ GLE (V).
Proof. Every morphism t: S — (Hom®(V, V7)o x Hilb$ (V))/ GLE(V)
gives a morphism (®/GLE(V)) o 4: S — Hilby(V"),. On the other
hand, every ¢: S — Hilb{ (V") gives morphisms nj: S; — H; X
Hilb{/ (V) such that ¢|s, = ®on; according to Lemma IV.1.4 a). Since
To 77j|Sijj/ =Tmo ’I]j/|gjmsj, for all j and j" according to Lemma IV.1.4
b), the morphism ¢ factors via (Hom®(V, V")o x Hilb{ (V)e)/ GLY(V),
and hence gives a map ¢: S — (Hom®(V, V"), x Hilb§ (V)o)/ GLY(V).
The two assignments are clearly inverse to each other, and we ob-
tain two inverse natural transformations between the functors of points

of Hilb§ (V7)o and of (Hom®(V, V"), x HilbY (V),)/ GLE(V), and the
O

claim follows.

Remark IV.1.6 (Brion). We sketch here M. Brion’s way to prove
Theorem IV.1.5. The statement of Theorem IV.1.5 is equivalent to the
existence of a GLY(V")-equivariant morphism

p: Hilbf/ (V")g — Hom%(V,V")o/ GLY(V) = [ P
=1

with fiber Hilb(V)o at the base point, where the right-hand side is
viewed as a homogeneous space under GL (V") 2 [[;_, GL,,.
To construct this morphism, proceed as follows: From

Hilb{ (V") x V" D Univ§ (V") 5 Hilb$ (V")
we obtain a surjective morphism of OHﬂbg(W)—modules
Oning vy @ k[V'] = Ougivovms
and thus for all ¢ a surjective morphism
OHﬂbf(Vr) ® HomG(V()‘;k)a kV']) — HomG(V()\;“), OUnivf(V’“))'
This yields for all ¢ a morphism
OHilbf(vr) ® HomG(V()\;f‘), V(A)") — HomG(V()\f), OUnivg(VT))a
which is surjective at all closed points of Hilb (V"), by the definition
of non-degeneracy. This yields a surjection
OHﬂbg(vr)o QK" — HomG(V(A;‘), OUnivf(VT')0)7

where the latter is locally free of rank 1 because h(Af) = 1. This yields
a morphism
;1 Hilby (V7)o — P,
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and finally ¢ can be defined as the product of the ;.

1V.2. Examples

In this section we apply Theorem IV.1.5 to some situations.

Let A € AT be a dominant weight of GG, and let » € N. Consider
V(A" = @,_,V()N), and let hy: AT — N be the Hilbert function of
X, = Guy C V()\). By BL,(X) we denote the blow-up of a variety X
in a point x.

Theorem IV.2.1. In the above notation, one has:
a) If both A and 2\ are Jansou-weights, then
Hilbg, (V(A)") 2 Blo(A”/Cs),

where Cy = {1,—1} is a cyclic group of order 2 acting on A* by
—1-z=—ux.
b) If A is a Jansou-weight, but 2) is no Jansou-weight, then

Hilb, (V(A)") = Blo(A").
c¢) If finally A is no Jansou-weight, then
Hilb (V(A)") =P,
Remark 1V.2.2. This remark is due to M. Brion. The isomorphism
Hilbf} (V") = (Hom®(V, V") \ {0} x Hilby (V))/ GLY(V)
from Theorem IV.1.5 induces a morphism
¢: Hilby (V") — Hom%(V, V") \ {0}/ GL(V) = P,

Now HilbfA (V") is the total space of the line bundle Opr-1(—2) in case
a), of Opr-1(—1) in case b), and is just P"~! in case c).

For the proof a small observation turns out to be useful. Recall
that for a weight A € AT we have defined ng in Definition I1.2.2. In
particular, if A is a Jansou-weight, then ng = 2 if 2\ is also a Jansou-
weight, and ng = 1 otherwise.

Lemma IV.2.3. Let \ be a Jansou-weight of G. Then GL%(V()\)) =
G, acts on HilbgA(V()\)) >~ A' (via the GLY(V)-action ®Y' from
Section IV.1) with weight ng.

Proof. Let X\ # X C V()\) be a closed G-stable subscheme corre-
sponding to a closed point p € Al = HilbgA(V()\)). By definition of
the action @, the point v-p corresponds to the scheme v-X. If v € k,
then v - X = X if and only if v™ = 1. Hence v -p = p if and only if
7" =1, and so GL®(V(\)) acts with weight ng on Hilb%(V()\)). O
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Proof of Theorem IV.2.1. Let V := V(A), and let V" := V(A)". If A
is no Jansou-weight, then HilbgA(V) = A’ Applying Theorem IV.1.5,
we find:

Hilbf} (V") = (Hom®(V, V") \ {0} x Hilby (V))/ GLY(V)
> (A"\ {0} x A%)/G,,
~prl,

Suppose now that \ is a Jansou-weight, but that 2\ is no Jansou-
weight. Then Hilby (V) 2 A, and GLY(V) 2 G, acts on Hilby (V)
with weight 1 according to Lemma IV.2.3. Consider the morphism

(A"\ {0}) x A = A" x P!
(t1, ... tr,x) — (i, .. tx), (B . o ty).
If G,, acts on A" with weight (—1,...,—1) and on A! with weight

1, then the restriction of this morphism onto its image, which equals
Bly(A"), is the quotient morphism. So,

Hilby} (V") = (Hom®(V, V") \ {0} x Hilby (V))/ GLY(V)
> (A7\ {0} x AY)/G,
= Bly(A").

If finally both A and 2 are Jansou-weights, then GL (V) & G,,, acts
on Hilb%(V) =~ A' with weight 2 according to Lemma IV.2.3, and the
morphism

(A"\ {0}) x A' = Bly(A"/Cy) C A" x P!
(t1, .t x) = (.. 22), (o 1))
is the quotient morphism. Thus
Hilbf} (V") = (Hom®(V, V") \ {0} x Hilby (V))/ GLY(V)

= (A"\ {0} x A1)/Gy,

= Bly(A"/Cy). O
Example 1V.2.4. Let G = SL,. We use the same conventions and
notation as in Chapter III. Recall that the Jansou-weights of SLy are
2 and 4, and the simple SLy-modules V'(2) and V' (4) can be identified
with the space of binary forms of degree 2 and 4.

Let A = 2. Now, O(V(2))%2 = k[A], where A is the discriminant.
Since A is an invariant of degree 2, the forms v and —v lie in the same
SLy-orbit for each v € V(2). However, going over to multiple (say 2)
copies V(2)?, the discriminants Ay and Agy (defined by Ay(vi, v2) =

A(v;)) don’t generate the ring of invariants O(V(2)2)5"2. There exists
an additional invariant Aj, defined by

A12<(Z0.T2 + 2a12y + asy?, box® + 2byxy + b2y2) = a1b; — agpbs.
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One has
V(Q)Q//SLQ = Spec(k’[AH, A127 Agg]) = AQ/CQ.

The fact that one has to blow up A%/C; instead of A? in this case is
due to this phenomenon.

So far we have discussed examples for modules of the form V" =
V(M\)". To finish, we turn our attention to the case where V.=V (\) ®
... @ V(\). Once one knows Hilb{(V), and its GL®(V)-structure,
one can compute Hilby (V7). One situation in which Hilb{(V), is
known is the one investigated in [BCO8] and [Cu08]): Let Ay,..., As C
AT be linearly independent weights that are saturated in the sense
that ZI' N AT =T (see [Pa97] for more information on the saturation
hypothesis). Let I' = (A}, ..., A*)n, and let h: AT — N be the function
with h(A) = 1 if A € " and with h(A) = 0 else. Let further vy =
(Unys.-.,0x,), where each vy, is a non-zero highest weight vector in
V(A;). Then the closure Xy := Guvy C V has Hilbert function h, and
it is known that the G-stable non-degenerate deformations of X, are
parametrized by an affine space, i.e. Hilb$' (V) is an affine space (cf.
[BCO8|] and [Cu08]).

Let aq,...,q, be the set of simple roots of (G, B,T). Then the
adjoint torus Toa = T/Z(G) (where Z(G) is the center of G) can be
identified with Spec(k[a5™, ..., atl]). Now Thq acts on V(\;) by tZ(G)-
v = \(t)t 'v. This gives a T,q-action on V. If V and h are as above,
then Thq acts on Hilby (V)o, and it is known (cf. [BCO8] or [Cu08]) that
Hilb{ (V) is a multiplicity-free T,q-module isomorphic to [V/g-v,]¢
This action is called normalized action of Thq on Hilb$ (V).

Once one knows the Tyg-weights of Hilb§(V)o, one can recover the
GLY(V)-weights wy, ... , Wy ol Hilbg(V)O: First note that each T,4-
weight w; lies in the monoid (ay,...,an)N. Now each w; is also in
(A, Az Ifwe = > v\, then GLG(V) = G2, acts with weights
(V1gy -+, Vgt)p ON Hilbf(V)O.

Example IV.2.5. Let G = SLy, and let n = 2 or 4. Then one sees
that [V (n)/sly - y"]Pt2" = k- y" 222 + sy - y™. One finds that T,q acts
in both cases with weight 4 on k- y" 222, If n = 2, then 4 = 2-2, and
hence GL32(V(2)) acts with weight 2 on Hilb{"2(V/(2)). On the other
hand, if n = 4, then 4 = 1-4, and hence GL2(V/(4)) acts with weight
1 on Hilby™>(V (4)).

Remark IV.2.6. From [ABO5|, Lemma 2.1 it follows that the action
of Thq on Hilb{(V)y extends to an action of Spec(k[ay, ..., amn]) on
Hilb{ (V). On the other hand, the action of the i-th factor G, of
GLE(V) = G2, extends to an action of A' (with respect to the usual
embedding G,, — A!) if and only if v;; > 0 for all t. The following
examples show that this can but need not hold in particular cases.

UX
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(However, recall from [Ja05] Proposition 1.3 that the action of G, on
Hilb{ (V(\)) always extends to an action of Al.)

We now provide two examples for G = SLy. Let B C SLj4 be the
Borel subgroup of upper triangular matrices, containing the maximal
torus T consisting of diagonal matrices in SLy.

Example IV.2.7. This resumes Example 2 from p. 100 in [ABO5]. Let
G =SLsactonV :=V(w)®V (w)®V (ws) = k'@ A\* k* @& (k*)*, where
the action of SL, on k* is the standard representation on k*. Then one
finds that T,q acts with weights a; + as and as + a3 on Hilbf(V)O.
Further, w1 = 1/4(3a + 22 + a3), wa = 1/2(a1 + 209 + a3), and
w3 = 1/4(0[1 + 20[2 + 3043).

Now a1+ @y = wy+wy —ws3, and as+a3 = —w; +wy+ws. This shows
that G3, acts with weights (1,1, —1) and (—1,1,1) on Hilb$ (V),. (One
now sees that the action of G2, on Hilb§ (V), extends to an action of
G,, x A! x G,,, but not to an action of A3.) So

Hilby (V7)o =2 (A™ \ {0} x A™\ {0} x A™\ {0} x A?)/G3
where G3 acts on A™ \ {0} with weight (—1,0,0), on A™ \ {0} with
weight (0,—1,0), on A"\ {0} with weight (0,0, —1), and on A? with
weights (1,1, —1) and (—1,1,1). Consider the morphism

A" \ {O} x A" \ {O} x A" \ {0} X A2 N Pr1r2+r3—1 « PT1+T2T3_1

mapping
(1o ooy T YLy o v oy Yrgy 21y v oy Zgy Uy V)
to

((oormyjue iz oz, (o e otz ).
This morphism is G3 -invariant and separates the G3 -orbits. Its im-
age is the invariant Hilbert scheme Hilb$ (V")y and has the following
geometric description: The projection of the image onto Prir2+73=1 ig
covered by the open sets where z; # 0. Such an open set is isomorphic
to C(V(ry,m2)) x A7 where C'(V (ry,75)) is the affine cone over the
Segre embedding P! x P27t — P21 A gimilar description can
be given for the projection onto the second factor P1Fm2rs—1,

Similarly as in Remark IV.2.2, one can show here that Hilb§ (V") is
the total space of O(—1,1,1) & O(1,1, —1) over P71 x Pr271 x Prs—1,

Example IV.2.8. Take once more G = SL,, now acting on V :=
Viw + ws) @ V(ws) = sly ® Ak, where SLy acts on sly with the
adjoint representation, and where the action on /\2 k* is induced by
the standard representation on k*.

Denote by Ej;; the 4 x 4-matrix with a 1 as unique non-zero en-
try at position (i,j). Choose the highest weight vectors v, 1w, =
Eyy € sly, and v,, = e Aey € /\2 k*.  One verifies that [V/g -
(Vry s va)]G<”w1+w3’““2) is spanned by (Ea3,0) + g+ (Vi +ws, Vusy ), and
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hence dimy Te, Hilb (V) = 1. Since (w; + ws, ws)N is saturated, it
follows that Hilby (V) = A'.

Now, Thq acts on Hilb{ (V') with weight 2(a +as) = 2(w; +ws) —2ws,
and so GLE (V) 2 G2, acts on Hilb{ (V), with weight (2, —2); and the
G2 -action on Hilb{ (V )y extends to an action of A' x G,,, but not to
an action of A2

Indeed, if X (t) is the closure of the orbit of (E14+tEs3,e1 Aey), then
one verifies that hy ) = h for each t € k, and that X (t;) = X(t,) if and
only if t; = ty. Furthermore, (s1(Ey4 + tEa3), 5061 A ey) € X (5255 °t).
This shows that

HIILG(V7)o = (A7 {0} x A7\, {0} x A1)/G,
where G2, acts on A™\{0} with weight (—1,0), on A2\ {0} with weight
(0,—1), and on A with weight (2, —2). Consider the morphism
m: A\ {0} x A\ {0} x Al — Pt
(@1, @ry)y W1y Upy)y2) = (@2t xl 2y oyl

One sees that this morphism is G2 -invariant and separates the G
orbits. Its image equals P71 *7271 \ P" where Pr1¥72-1 5 pri—!
{(ay:...:a, :0:...:0)}. Hence

Hilb$ (V7)o = Pritrz=1\ pri-t,

2_

m
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Computations

A.1. The technique

In Section III.6 many computer-based calculations were used. Here
we explain how they have been performed. Recall that SLy acts on
V(d) = k[z, yla by

(& 0) o = o = by (o )™

Then V(d)V = k- y%. Moreover, in (II1.2.1) we identified Sym(V (d)*)

with klag, aq, . .., aq4], where

ai(zd: (?) Ny Iy = )\,

j=0

For instance, one readily sees that (V(d)*)Y = k- ag. Recall that in
(II1.2.3) we have seen that the r-th transvectant of P and P’ can be
computed by means of

oy =Sy () oo,

port s T saysé)xsayr—s'

This has been implemented in Mathematica by Popoviciu-Draisma
([Po07]) as follows:

<< "Combinatorica‘";

11[n_] := Table[Binomialln, il*a[n - i], {i, 0, n}];
wiln_] := Tablel[y“(n - i)*x"i, {i, 0, n}];
w2[m_] := Table[t"(m - i)*z"i, {i, 0, m}];

Transvect[11_, 12_, r_] :=
CoefficientList[
Expand[((Length[11] - 1 - r)!*(Length[12] - 1 - r)!*
Sum[(-1) “i*Binomial[r, i]*
D[D[11.wi[Length[11] - 1], {x, r - i}], {y, i}1*
D[D[12.w2[Length[12] - 1], {t, r - i}], {z, i}], {i, O,
r}])/((Length[11] - 1)!*(Length[12] - 1)!) /. {z —> x,
t ->yH /. {y > 1}, x];

Example A.1.1. Let Q = QW = a;(})a'y*=". Then we can

'l 7

compute (@,Q)°, (Q,Q)", (@, Q)* (@, ) ,and( Q)" as follows:

Transvect [11[4], 11[4], 0]

-> {a[4]1"2, 8 a[3] al4], 16 al[3]1"2 + 12 a[2] a[4],
48 a[2] al[3] + 8 al1] al4], 36 a[2]"2 + 32 al[1] al3] + 2 al[0] al4],
48 a[1] al2] + 8 a[0] al3], 16 al1]"2 + 12 a[0] al[2], 8 a[0] alll,
al[0]~2}

83
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This means that (Q,Q)° = 325, wir'y® ™ with o = a2, v1 = Sasay,
0y = 1643 + 12asa4, p3 = 48asas + 8ajay, w4 = 36a3 + 32a1a3 + 2apay,
5 = 48ajay + 8agas, ps = 16a3 + 12agas, p7 = 8agar, and pg = a3. In
particular, it follows that

(Symz(V(él)*)(g))U =k (po(do, . ,CL4) =k- CLi.

Proceeding with (Q, Q)!, we have:

Transvect[11[4], 11[4]1, 1]
-> {3

This reflects the fact that (Q,Q)! = 0 if [ is odd. Continuing, we find:

Transvect [11[4], 11[4], 2]

-> {-2 a[3]"2 + 2 a[2] al4], -4 al2] al3] + 4 a[1] al4], -6 al[2]"2 +
4 a[1] a[3] + 2 a[0] a[4], -4 al[1] a[2] + 4 a[0] a[3], -2 al[1]"2 +
2 a[0] al2]}

Transvect[11[4], 11[4], 3]

-> {3
Transvect[11[4], 11[4], 4]
-> {6 al[2]"2 - 8 a[1] a[3] + 2 al[0] al4l}
Hence
(Sym*(V(4)") )" = k- (—2a3 + 2a2a4),
and

(Sym*(V (4)*)0))Y =k - (6a3 — 8ayaz + 2agay).

Example A.1.2. We wish to find all covariants of degree 4 and of order
4 of a form of degree 4. Using either the Cayley-Sylvester-formula or
using [LiE] we compute the decomposition of Sym*(V/(4)*) into isotypic
components:

sym_tensor (4, [4] ,A1)
-> 1X[ 0] +2X[ 4] +2X[ 8] +1X[10] +1X[12] +1X[16]

This shows that Sym*(V (4)*) = V(0)@V (4)2@V (8)2aV (10)eV (12)@
V(16). In particular, dimg(Sym*(V(4)*)4)Y = 2. Let Q == QW =
Z?:o a; (f) xiy*~%. We claim that

Sym*(V(4)") ) = span,,(((Q, @)% @)%, Q)°, (2, @)%, Q)°). @)").

It suffices to check that the U-invariants of these two covariants are
linearly independent:

C4 = Transvect[Transvect[ Transvect[11[4], 11[4], 2], 11[4], 4],
11[4]1, 0]1[[1]1]
-> -6 a[2]°3 a[4] + 12 a[1] a[2] a[3] al4] - 6 al[0] a[3]"2 al4] -
6 a[1]1°2 a[4]"2 + 6 a[0] a[2] a[4]"2

and

D4 = Transvect[Transvect[ Transvect[11([4], 11[4], 2], 11[4], 0],
11[4], 41([[1]1]
-> -(18/7) al2]1°2 a[3]1"2 + 24/7 a[1] a[3]1"3 + 27/35 a[2]"3 al[4] +
6/35 al[1] a[2] a[3] a[4] - 93/35 a[0] a[3]1"2 al4] -
9/5 al1]"2 a[4]"2 + 93/35 a[0] al2] a[4]"2

One immediately sees that these two U-invariants are linearly inde-
pendent. In order to be able to verify this with the help of the com-
puter, we proceed as follows: Consider the function Coefficient [f
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,CoefficientVector([d,k,n]] that writes the coefficients of a U-in-
variant function f of degree n and order k£ of a form of degree d in a
vector:
VerifyList[1_, deg_, sum_, n_] := (
If [Length[1] < deg,
For[i = 1[[Length[1]]], i <n + 1, i =i + 1,
VerifyList [Append[1l, i], deg, sum, n]];
If[1[[Length[1]1]] < n, last = 1l[[Length[1]]];
VerifyList [Append [Drop[l, -1], last + 1], deg, sum, n]l],
If[Sum[1[[j]1], {j, 1, Length[1]}] == sum,
next = Product[a[1[[j]]1], {j, 1, Length[1]13}];
Coeff = Append[Coeff, next] 11;
)

CoefficientVector[deg_, ord_, n_] := (
Coeff = {}; 1 = {0}; sum = n*deg - (n*deg - ord)/2;
VerifyList[1l, deg, sum, n]; Return[Coeff] )

Now

Coefficient[C4, CoefficientVector[4, 4, 4]]

-> {6, -6, -6, 12, 0, -6, 0%}

Coefficient[D4, CoefficientVector[4, 4, 4]]

-> {93/35, -(93/35), -(9/5), 6/35, 24/7, 27/35, -(18/7)%}

MatrixRank[{Coefficient[C4, CoefficientVector[4, 4, 4]],
Coefficient [D4, CoefficientVector[4, 4, 4]1]1}]

-> 2

shows that the two U-invariants are linearly independent.

A.2. Forms of degree 8
Let Q := Q® = Z?:o a; (5) x'y®~. In the proof of Theorem I11.6.5 we

claimed that Sym®(V/(8)*) ) is contained in the SLy-stable ideal gener-
ated by Sym®(V/(8)*)(s). This can be verified as follows: Using [LiE] we
compute the decomposition of Sym®(V(8)*) into isotypic components:

sym_tensor (3, [8] ,A1)
-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +2X[12] +1X[14] +1X[16] +
1X[18] +1X[20] +1X[24]

This shows that
Sym®(V(8)*) =V (0) & V(4) @ V(6) @ V(8)* @ V(10) & V(12)°
e V(14) eV (16) & V(18) @ V(20) & V(24).
In particular, Sym®(V(8)*)u = V(4). Moreover, Sym®(V(8)*)s =

(Q,Q)* according to the Clebsh-Gordan decomposition. In order to
verfiy the claim, it thus suffices to show that

(Q.Q)",Q)° #0.

This can be done using Mathematica: The command
Transvect [Transvect [11[8], 11[8], 41, 11[8], 6]1[[1]]
yields
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-> -30/7 al4]"2 al[6] + 48/7 al[3] al5] al6] - 24/7 a[2] al6]"2 +
12/7 al3] al4] al7] - 24/7 al2] al5] al7] + 24/7 a[1] al6] al[7] -
6/7 al0] al[7]1°2 - 30/7 al3]1"2 a[8] + 48/7 a[2] al4] al[8] -
24/7 al1] a[5] a[8] + 6/7 a[0] a[6] al8],

which is a non-zero U-invariant in ((Q, Q)*, Q)%. Hence ((Q,Q)*, Q)% #
0.

A.3. Forms of degree 12

Let Q := QU2 = Zio ai(lf)xi 12=¢ " In the proof of Proposition
I11.6.7 we claimed that Sym*(V(12)*)u4) & Sym*(V(12)*)(s) is in the
SLy-stable ideal generated by

B sym*(v(12)) .

0<k<18,k#4,8

To see this, we first compute the multiplicities of V(4) and V(8) in
Sym*(V/(12)*) using [LiE]:
sym_tensor (4, [12] ,A1)
-> 3X[ 0] +4X[ 4] +2X[ 6] +6X[ 8] +3X[10] +7X[12] +4X[14] +7X[16] +
5X[18] +7X[20] +4X[22] +7X[24] +4X[26] +5X[28] +3X[30] +4X[32] +
2X[34] +3X[36] +1X[38] +2X[40] +1X[42] +1X[44] +1X[48]

Hence V(4) and V(8) have multiplicity 4 and 6 in Sym*(V (12)*).
In a first step we compute covariants of degree 2 and 3. The covari-
ants of degree 2 are computed by means of

A0 = Tramsvect[11[12], 11[12], 12];
A4 = Transvect[11[12], 11[12], 10];
A8 = Transvect[11[12], 11[12], 8];
A12 = Transvect[11[12], 11[12], 6];
Al16 Transvect[11[12], 11[12], 4];
A20 = Tramsvect[11[12], 11[12], 2];
A24 = Transvect[11[12], 11[12], 0];

With these, we compute a series of covariants of degree 3:

B10 = Transvect[A12, 11[12], 7];
B12 = Transvect[A12, 11[12], 6];
B14 = Transvect[A12, 11[12], 5];
B16 = Transvect[A12, 11[12], 4];
B18 = Transvect[A12, 11[12], 3];
C12 = Transvect[A16, 11[12], 81;
D12 = Transvect[A20, 11[12], 10];

We now proceed with covariants of degree 4:

E41 = Transvect[B10, 11[12], 9];

E42 = Transvect[B12, 11[12], 10];

E43 = Transvect[B14, 11[12], 11];

E44 = Transvect[C12, 11[12], 10];

MatrixRank[{Coefficient[E41[[1]], CoefficientVector[4, 4, 12]],
Coefficient[E42[[1]], CoefficientVector[4, 4, 12]],
Coefficient [E43[[1]], CoefficientVector[4, 4, 12]],
Coefficient[E44[[1]], CoefficientVector[4, 4, 12]] }]

-> 4

shows that the transvectants E41, E42, E43, and E4 are linearly inde-
pendent and hence span Sym4(V(12)*)(4) >~ 1/(4)*. Similarly,
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E81 = Tramsvect[B10, 11[12], 7];
E82 = Transvect[B12, 11[12], 8];
E83 = Transvect[B14, 11[12], 9];
E84 = Transvect[B16, 11[12], 10];
E85 = Transvect[B18, 11[12], 11];
E86 = Transvect[C12, 11[12], 8];

MatrixRank[{Coefficient[E81[[1]], CoefficientVector[4, 8, 12]],

Coefficient [E82[[1]], CoefficientVector[4, 8, 12]],

Coefficient [E83[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E84[[1]], CoefficientVector([4, 8, 1211,

Coefficient [E85[[1]], CoefficientVector[4, 8, 12]],

Coefficient[E86[[1]], CoefficientVector[4, 8, 12]1}]
- 6
shows that the transvectants E81, E82, E83, E84, E85, and E86 are
linearly independent and hence span Sym*(V (12)*)(s) = V/(8)°.

Moreover, in the proof of Proposition I11.6.7 we claim both that
Sym?®(V/(12)*)4) is contained in the SLy-stable ideal generated by the
covariant Sym*(V (12)*)(12), and that Sym®(V(12)*)) is in the SLo-
stable ideal generated by Sym®(V(12)*)w) @ Sym®(V(12)*)9). This
now can be verified as follows:

MatrixRank[{Coefficient [Transvect[A12, 11[12], 10][[1]],
CoefficientVector[3, 4, 12]]1}]
-> 1
MatrixRank[{Coefficient [Transvect[A8, 11[12], 6][[1]],
CoefficientVector[3, 8, 12]1],
Coefficient [Transvect[A12, 11[12], 81[[11]1,
CoefficientVector[3, 8, 12]]}]
-> 2
Comparing this with the decomposition of Sym?®(V/(12)*),
sym_tensor(3, [12] ,A1)
-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +3X[12] +2X[14] +2X[16] +
2X[18] +2X[20] +1X[22] +2X[24] +1X[26] +1X[28] +1X[30] +1X[32] +
1X[36]

the claim now follows.
Finally, in the proof of Proposition II1.6.9 the U-invariant -2(—10a3+

15a19as — 6ai1a7 + asas) € (Q, Q)8 enters the play. Indeed:

A12[[1]]
-> -20 a[9]"2 + 30 a[8] al10] - 12 a[7] al[11] + 2 a[6] al12]

is the searched U-invariant.

A.4. Forms of degree 16

Let Q := QU9 = Zilio ai(lf) 2yt~ In Step 1 of the proof of Lemma
I11.6.12 we claimed that

Sym*(V/(16)*) 4y ® Sym*(V(16)*) g) ® Sym*(V (16)") 12)
is in the SLg-stable ideal generated by

P sy )w.

0<k<22,k#4,8,12
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Computations

To see this, we first compute the multiplicities of V'(4), V(8), and V' (12)

in Sym*(V(16)*) using [LiE]:

sym_tensor (4, [16],A1)
3X[ 0] + 6Xx[ 4]
11X[16] + 7X[18]
7X[30] +10X[32]
5X[44] + 3X[46]
1X[568] + 1X[60]

Hence V' (4), V(8) and V' (12) have multiplicity 6, 8 and 9, respectively,

->

in Sym*(V (16)*).

In a first step we compute covariants of degree 2 and 3. The covari-

+ 2X[ 6]
+11X[20]
+ 7X[34]
+ 4X[48]

+ o+ o+ o+

+ 1X[64]

8X[ 8] + 5X[10]
8X[22] +11X[24]
8X[36] + 5X[38]
2X[50] + 3X[52]

ants of degree 2 are computed by means of

Transvect[11[16], 11[16], 16];
Transvect[11[16], 11[16], 14];
Transvect[11[16], 11[16], 12];
= Transvect[11[16], 11[16], 10];
Transvect[11[16], 11[16], 8];
Transvect[11[16], 11[16], 6];
Transvect[11[16], 11[16]1, 4];
Transvect[11[16], 11[16], 2];
Transvect[11[16], 11[16], 0];

With these, we compute a series of covariants of degree 3:
Transvect[A12, 11[16], 6];

A0
A4
A8
A12
A16
A20
A24
A28
A32

B16
B18
B20
B22
C14
C16
C18
C20
D14
D18

F41
F42
F43
F44
F45
F46

Coefficient [F42[[1]], CoefficientVector[4,

Transvect [A12,
Transvect[A12,
Transvect [A12,
Transvect [A16,
Transvect[A16,
Transvect [A16,
Transvect [A16,
Transvect [A20,

11[16],
11[16],
11[16],
11[16],
11[16],
11[16],
11[16],
11[16],

5]1;
4];
3];
9];
8];
71;
6];
117;

Transvect [A20, 11[16], 9];
Proceeding with covariants of degree 4,
Transvect[B16, 11[16], 14];

Transvect[C14,
Transvect [C16,
Transvect [C18,
Transvect [D14,

11[16],
11[16],
11[16],
11[16],

131;
147;
151 ;
131;

Transvect[D18, 11[16], 15];
MatrixRank[{Coefficient [F41[[1]], CoefficientVector[4, 4, 16]],

Coefficient [F43[[1]], CoefficientVector[4, 4,
Coefficient[F44[[1]], CoefficientVector[4, 4,
Coefficient [F4A5[[1]], CoefficientVector[4, 4,
Coefficient [F46[[1]], CoefficientVector[4, 4,

->

6

shows that the transvectants F41, F42, F43,

F81
F82
F83
F84
F85
F86

= Transvect[B16, 11[16], 12];

Transvect [B18,
Transvect [B20,
Transvect[C14,
Transvect [C16,
Transvect [C18,

11[16],
11[16],
11[16],
11[16],
11[16],

13];
147;
1171;
12];
13]1;

+ o+ o+ o+

9X[12] + 6X[14]
8X[26] +11X[28]
7X[40] + 4x[42]
1X[54] + 2X[56]

4, 1611,
1611,
1611,
1611,
16]113}]

+ o+ o+ o+

F44, FA5, and F46 are lin-
early independent and hence span Sym4(V(16)*)(4) =~ 1/(4)%. Similarly,
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89

F87 =
F88 =

8

shows that the transvectants F81,

Transvect[D14, 11[16], 11];
Transvect[D18, 11[16], 13];
MatrixRank[{Coefficient[F81[[1]], CoefficientVector[4, 8, 16]1],

Coefficient[F82[[1]], CoefficientVector[4, 8, 16]],
Coefficient[F83[[1]], CoefficientVector[4, 8, 1611,
Coefficient [F84[[1]], CoefficientVector[4, 8, 16]],
Coefficient[F85[[1]], CoefficientVector[4, 8, 16]],
Coefficient[F86[[1]], CoefficientVector[4, 8, 1611,
Coefficient [F87[[1]], CoefficientVector[4, 8, 16]],
Coefficient[F88[[1]], CoefficientVector[4, 8, 16]]1}]

., F88 are linearly independent and

hence o V(8)8. Finally,
10]
12];
13];
9];
10];
11];

12];

span Sym*(V (16)* )(8)
F121 = Transvect[B16, 11[16],
F122 = Transvect[B20, 11[16],
F123 = Transvect[B22, 11[16],
F124 = Transvect[C14, 11[16],
F125 = Transvect[C16, 11[16],
F126 = Transvect[C18, 11[16],
F127 = Transvect[C20, 11[16],
F128 = Transvect[D14, 11[16], 9];
F129 = Transvect[D18, 11[16], 11];
MatrixRank[{Coefficient[F121[[1]],
Coefficient[F122[[1]], CoefficientVector[4,
Coefficient[F123[[1]], CoefficientVector[4,
Coefficient[F124[[1]], CoefficientVector[4,
Coefficient[F125[[1]], CoefficientVector[4,
Coefficient[F126[[1]], CoefficientVector[4,
Coefficient[F127[[1]], CoefficientVector[4,
Coefficient[F128[[1]], CoefficientVector[4,
Coefficient[F129[[1]], CoefficientVector[4,
-> 9

shows that the transvectants F121, ..., F129 are linearly independent
and hence span Sym*(V (16)*)12) = V(12)°.

In Step 2 of the proof of Lemma II1.6.12 we claimed that the covari-
ant Sym®(V(16)*)4) is contained in the SLo-stable ideal generated by
Sym?*(V (16)*)(16). First
sym_tensor (3, [16],A1)

-> 1X[ 0] +1X[ 4] +1X[ 6] +2X[ 8] +1X[10] +3X[12] +2X[14] +3X[16] +

3x[18] +3X[20] +2X[22] +3X[24] +2X[26] +2X[28] +2X[30] +2X[32] +
1X[34] +2X[36] +1X[38] +1X[40] +1X[42] +1X[44] +1X[48]

shows that Sym®(V(16)*)4) = V(4). Now with
MatrixRank[{Coefficient[Transvect[AlG 11[16]1, 141[[111,

CoefficientVector[3, 4, 16]]}]
-> 1

CoefficientVector[4,
12, 1611,
12, 1611,
12, 1611,
12, 1611,
12, 1611,
12, 1611,
12, 1611,
12, 1611}]

12, 1611,

the claim follows.
In Step 3 of the proof of Lemma II1.6.12 we claimed that C' :

(Q.Q)"%.Q)° = ((Q,Q)*,Q)"), and that V(8)* = Sym*(V(16)")s)
D ((Q,Q)",Q)™°, where Q = ;% a;("?)2'y'%~". First

MatrixRank [{Coefficient [Transvect[AS, 11[16], 8][[1]],
CoefficientVector([3, 8, 16]],
Coefficient [Transvect[A16, 11[16], 12][[1]],

CoefficientVector[3, 8, 16]1]1}]
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-> 1

shows that ((Q, Q)" Q)° = (@, Q)*, Q)"). Now

MatrixRank[{Coefficient [Transvect[A8, 11[16], 8][[1]],

CoefficientVector[3, 8, 16]1],

Coefficient [Transvect[A12, 11[16], 10]1[[1]1],

CoefficientVector[3, 8, 16]]}]

-> 2
and the fact that V(8)* = Sym®(V(16)*)(s) prove the claim.

Moreover, we need to show that V(12)? & Sym*(V(16)*) 12 = C” &
o oy C" with " = ((Q,Q)H,Q)G, with C"" = ((Q,Q)lO,Q)87 and
with C"" = ((Q, Q)®, Q)*°. This follows from
MatrixRank[{Coefficient [Transvect[A8, 11[16], 6][[1]],

CoefficientVector[3, 12, 16]],

Coefficient [Transvect[A12, 11[16], 81[[1]1]1,

CoefficientVector[3, 12, 16]1],

Coefficient [Transvect[A16, 11[16], 10][[1]],

CoefficientVector[3, 12, 16]1]1}]
-> 3.
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Glossary

The following notation is used throughout this thesis:

THTIQ

> > s
+

*

Hilb$ (X)
Hilb (X)
Univ (X)

In Chapter
B

T

a semisimple group

a (fixed) Borel subgroup of G

a (fixed) maximal torus of G contained in B

the maximal unipotent subgroup of G determined by B
and T’

monoid of dominant weights (with respect to (G, B, T))
dominant weight (of a fixed group G)

—wpA, where wy is the longest word in the Weyl group
of (G,B,T)

simple G-module with highest weight A

closure of the unique minimal sheet of V()
(schematic) nullcone of V' (), i.e. schematic fiber V' (\)g
of the quotient morphism V(\) — V() /G

a (fixed) non-zero highest weight vector in V()
closure of the orbit Guy in V()

Hilbert function of X

Hilbert function of a general orbit of S(\)

the ring of regular functions of S(\), regarded as k-G-
algebra (Caveat: R has another meaning in Chapter
1L

the G-isotypic component of R of type A

the G,,, x G-isotypic component of R of type (n, \)
ged{n | R0 # 0} (cf. Definition 11.2.2). The integer
ng equals 1 or 2, cf. Lemma I1.2.3

if X is an affine variety, we denote by O(X) its ring of
regular functions

invariant Hilbert scheme to the data (G, h, X)
invariant Hilbert functor to the data (G, h, X)
universal family for Hilb$ (X)

IIT we have in addition:

the Borel subgroup of SLy consisting of upper triangular
matrices in SLo

the maximal torus of SLy consisting of all diagonal ma-
trices in SLs
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Glossary

d
R, k)
Joddd

d
Jodd -+

the maximal unipotent subgroup of SLy consisting of all
strict upper triangular matrices in SLo

the simple SLo-module V(d) is realized as the space of
binary forms @7, ka'y®

is fixed as highest weight vector in V(d)

equals the closure of SLy -y? in V/(d) if d is odd, and the
closure of {SLy -yx#?y/? | v € k} in V(d) if d is even
hqg: N — N is defined by hy(k) = 1 if k is divisible by
d, and hy(k) = 0 otherwise

If d is odd, then A/, = hy.

If d is even, but not divisible by 4, then A);: N — N is
defined by R/, (k) = 1 if k is even, and h)(k) = 0 if k is
odd.

If d is divisible by 4, then h/: N — N is defined by
hq(k) = 1 if k is divisible by 4, and hg(k) = 0 otherwise
(cf. Section IIL.3).

QWD =30 a;(Y)a'y?" is the unique covariant of V(d)
of degree 1 (cf. Definition I11.2.2)

the I-th transvectant (Q@, Q@) is zero if [ is odd, and
non-zero if € {0,2,...,d} (cf. Remark II1.2.19 and
Lemma II1.3.5 a))

the invariant (Q@,Q®)? of degree 2, non-zero if and
only if d is even

the invariant ((Q?, Q®)4/2 Q@)? of degree 3, non-zero
if and only if d is a multiple of 4

usually denotes the degree of a covariant or of a digraph
usually denotes the order of a covariant or of a digraph
usually denotes the co-order of a homogeneous covari-
ant or digraph: a covariant or digraph homogeneous of
degree n and of order k has co-order [ := (nd — k)/2
algebra of d-digraphs

vector space of d-digraphs of degree n and co-order [ (cf.
Section I11.4

in contrast to the other chapters, R? stands for
Sym(V(d)*) in Chapter III (cf. Section III.5)

is the SLy-isotypic component of R of type k (cf. Section
I11.5)

is the G,,, x SLy-isotypic component of R? of type (n, k)
(cf. Section IIL.5)

is the intersection of all SLy-stable ideals of R? contain-
ing all covariants of odd co-order (cf. Definition II1.5.1)
is the intersection of all SLy-stable ideals of R¢ contain-
ing J5, and Rf, ;) (cf. Definition I11.5.1)
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Cd

n;

IO

l

the covariant (Q@, QW) . (Q)"=2 if n > 2, or the
covariant Q@ if (n;l) = (1;0). This covariant is of
degree n and of co-order [. It is zero for all odd [ (cf.
Definition I11.5.5).

the unique homogeneous SLa-stable subscheme of S(d)
with Hilbert function hyo = hy (cf. Definition I11.3.3)
the SLy-stable ideal of R? defining X9 as closed sub-
scheme of V(d) (cf. Remark 111.3.4)
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