
HAL Id: tel-00491041
https://theses.hal.science/tel-00491041

Submitted on 10 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Reconfiguration of Service-oriented
Architectures

Manel Fredj

To cite this version:
Manel Fredj. Dynamic Reconfiguration of Service-oriented Architectures. Computer Science [cs].
Université Pierre et Marie Curie - Paris VI, 2009. English. �NNT : �. �tel-00491041�

https://theses.hal.science/tel-00491041
https://hal.archives-ouvertes.fr

No Ordre
de la thèse

:

THÈSE

présentée

DEVANT L’UNIVERSITÉ DE PARIS VI

pour obtenir le grade de:

DOCTEUR DE L’UNIVERSITÉ DE PARIS VI

Mention: Informatique

PAR

Manel FREDJ

Équipe d’accueil: INRIA Paris-Rocquencourt, Équipe-Projet ARLES

École Doctorale: Informatique, Télécommunications et Électronique de Paris

TITRE DE LA THÈSE:

Reconfiguration dynamique des architectures orientées services

SOUTENUE LE 10 / 12 / 2009 devant la commission d’examen

COMPOSITION DU JURY

Pierre SENS Pr, Université de Pierre et Marie Curie - Paris VI, France Président du jury

Nicole LEVY Pr, Université de Versailles Saint-Quentin-en-Yvelines, France Rapporteur

Apostolos ZARRAS Pr, Université de Ioannina, Grèce Rapporteur

Samir TATA Pr, Telecom SudParis Evry, France Examinateur

Valérie ISSARNY DR, INRIA Paris-Rocquencourt, France Directrice de thèse

Nikolaos GEORGANTAS CR, INRIA Paris-Rocquencourt, France Co-Directeur de thèse

❚♦ ▼② P❛r❡♥ts

Doctor of Philosophy Dissertation of Manel FREDJ ARLES/INRIA/Paris VI

Dynamic Reconfiguration of Service-oriented Architectures

Abstract

Runtime service reconfiguration is put forward as one of the means by which we may provide de-
pendable service-oriented architectures (SOA), and more precisely, continuity in service provisioning, and
robustness in the presence of change. Indeed, with the advent of wireless networks, computing environ-
ments are becoming highly dynamic. From a user-oriented point of view, this dynamics comes at the
price of dependability, due to runtime variations in terms of (1) service availability, and (2) network
connection/infrastructure availability, according to user/service mobility. In this context, the main focus
of this thesis is to incorporate support for dynamic reconfiguration in SOA systems, in order to tolerate
runtime variations and ensure continuity in service provisioning for the users. In particular, we focus
on middleware support for runtime service reconfiguration. Our main contribution consists in enabling
service continuity by (1) substituting a service that becomes unavailable at runtime with a semantically
similar one, and (2) translating and transferring the current state of interaction to the substitute service
in order to resume the execution after its interruption. The need for state translation is due to the
environments’ heterogeneity, since the unavailable and substitute services are not assumed to be identi-
cally implemented, nor are they identically described. However, state translation may not be sufficient to
guarantee state compatibility between the substitute service and the unavailable one: in some cases, the
substitute service may be compatible with an earlier state of interaction, instead of the last one. Hence,
we need to invalidate a set of results performed by the unavailable service, in order to synchronize the
state of the substitute service.

Indeed, the execution of the substitute service may provide different results from those provided
by the execution of the unavailable service. In the case of service composition, still-available services
–involved in the SOA system– may be affected by the substitution due to their data dependencies with
the substituted service. Thus, the middleware synchronizes the state of still-available services according
to the state transferred to the substitute service.

The outcome of our contribution is SIROCCO (ServIce Reconfiguration upOn serviCe unavailability
and Connectivity lOss), a middleware infrastructure that enables transparent runtime reconfiguration of
SOA systems upon service unavailability. The middleware discovers candidate substitute services that
can be used in the place of the service that becomes unavailable. It then tries to identify the best service
amongst these candidates that can be used as an actual substitute. In the best case, the selected sub-
stitute service must be such that its current state can be synchronized with the last state of the service
that is substituted. In the case of service composition, the middleware also checks data dependencies
with the still-available services and synchronizes their state with respect to the transferred state. The
above concepts of SIROCCO are discussed along with an experimental evaluation of our prototype. Our
findings show that SIROCCO provides the necessary means for achieving dynamic service reconfigura-
tion, where the gain in close-to-seamless continuity in service provisioning outweighs the computing and
communication overhead on the execution of the SOA system.

Keywords: Dependability, Middleware, Service Unavailability, Dynamic Substitution, Service-oriented

Architecture.

Preface

This thesis describes the work carried out in the Project-Team ARLES at the French National
Institute for Research in Computer Science and Control / Research Centre INRIA
Paris-Rocquencourt, between October 2005 and January 2009.

INRIA Paris - Rocquencourt Research Centre
Domaine de Voluceau
BP 105, 78153 Le Chesnay Cedex - France

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to complete this
thesis. First of all I would like to begin with my advisors Valérie Issarny and Nikolaos Georgan-
tas, who always provided me with right guidance and support. It has been a great pleasure to
work with them, both from a professional and a personal points of view. I am deeply indebted
to Valérie whose help, suggestions and advices helped me in all the time of research and writing
of this thesis. Valérie, thank you for welcoming me in your project-team, giving me the op-
portunity to develop this experience abroad and challenging me every day to make me a better
researcher. Your writing skills and diligence for the corrections of my manuscript made it a
better document. Nikolaos, it was always a pleasure to share with you new ideas and results and
your constant patience, interest and wisdom allowed me to push through and complete this thesis.

Many thanks go to my reviewers and examiners of my PhD defense: Nicole Lévy, Apostolos
Zarras, Pierre Sens and Samir Tata. It is a great honor to have you all as part of the examina-
tion committee.

During those 3 years of PhD, I have met a lot of people outside and inside the work sphere that
contributed to make this adventure possible and enjoyable, warm thanks go to all of them. In
particular, I would like to thank the people with whom I shared the office room: Sonia Ben
Mokhtar that I first met when I entered the INRIA, and Sandrine Beauche. We have had some
great time together, and I am sure that there is still a lot more to come. A special thank goes
to Roberto as we shared both hard and nice experiences of doing a PhD. I have enjoyed work-
ing with many colleagues, members of the project-team Arles, in particular, my colleague and
friend Amel Bennaceur for the various discussions we had during daily travel to work and back
home. Among the people I met there, I would like to thank Emmanuelle Grousset for easing the
administrative tasks, and also for the running training we enjoyed during the sunny days.

My warmest thanks naturally go to my family, my parents Dalenda and Abdelmajid for having
always stood behind me through the good and bad times. I would probably not have gone so far
in my studies without their encouragements and the education that they gave me. My last –but
not least– thanks go to Salem Rabiaa for his steady support during the last two years. Doing this
PhD has required some sacrifices and I am deeply grateful to him not only because he accepted
them, but because he fully and wholeheartedly endorsed them.

Contents

List of Figures xv

1 Introduction 1

1.1 Supporting Dynamic Reconfiguration in SOA Systems 2

1.1.1 Illustrating Scenario . 2

1.1.2 Current Solutions and Challenges . 4

1.2 Contributions . 6

1.3 Thesis Structure . 7

I Fundamentals and State of the Art 9

2 Service-oriented Architectures 11

2.1 Basics of Service-oriented Architectures . 11

2.2 Service-oriented Middleware . 12

2.3 Basic Service Model . 13

2.4 Web Service Description Languages . 18

2.4.1 OWL . 19

2.4.2 Matching Service Capabilities . 20

2.4.3 SAWSDL . 23

2.4.4 BPEL . 26

2.4.5 WS-Resource Framework . 30

2.4.6 SWRL . 33

2.5 Integrating Web Service Concepts in our Basic Service Model 35

2.6 Concluding Remarks . 36

3 Dependability in SOA Systems 37

3.1 Basic Concepts of Dependability . 38

3.2 Tolerating System Unavailability in Closed Distributed Systems 40

3.2.1 Basic Concepts of Replication . 41

3.2.2 Reconfiguring Closed Distributed Systems 43

3.3 Discussing the Limits of Applicability of FT Techniques for Closed Distributed
Systems in SOA Systems . 45

3.3.1 Service Substitution . 45

3.3.2 Applicability of Traditional Replication Techniques 46

3.3.3 Applicability of Traditional Checkpoint-based Rollback Recovery 46

3.3.4 Need for Middleware Support for Fault Tolerant SOA systems 47

3.4 Existing Approaches to Support Service Substitution in SOA Systems 48

3.5 Requirements for Runtime Reconfiguration of SOA Systems 50

3.6 Concluding Remarks . 52

xi

II Formalization 53

4 Revisiting the Service Model 55

4.1 Modeling Service Behavior . 55

4.2 Service State . 59

4.2.1 Overview . 59

4.2.2 Service State Description . 60

4.2.3 Checkpoint Definition . 62

4.2.4 Service State Access and Manipulation . 63

4.3 Advanced Service Model . 65

4.4 Concluding Remarks . 67

5 Formalizing Service Substitution 69

5.1 Formal Definition of Service Substitution . 69

5.1.1 Principles of Subtyping in Object-oriented Design 70

5.1.2 Mapping Subtyping Definition to Services 72

5.1.3 Enhancing Subtyping with Dynamics: Runtime Service Substitution . . . 78

5.2 Execution Resumption by the Substitute Service 80

5.2.1 Sequential Decomposition of the Unavailable Service Behavior 80

5.2.2 Matching between the Behaviors of the Unavailable and Substitute Services 83

5.2.3 Sequential Decomposition of the Substitute Service Behavior 84

5.3 Algorithm for Runtime Service Substitution . 85

6 Compatibility Check and Semantic-based Service Classification 87

6.1 Compatibility Degree . 87

6.2 Complying with Supertype Signature . 89

6.2.1 Signatures Semantic Matching . 89

6.2.2 Signatures Syntactic Mapping . 90

6.3 Complying with Supertype Pre- and Post-conditions 93

6.4 Complying with Rules for Runtime Execution Resumption 95

6.4.1 State Description Compatibility . 96

6.4.2 Compatibility Degree Computing for Runtime Execution Resumption . . 97

6.5 Complying with Subtype Invariants and Constraints 97

6.6 Semantic-based Service Selection . 98

6.7 Concluding Remarks . 99

7 Reconfiguring SOA Systems 101

7.1 Client Reconfiguration . 101

7.2 Reconfiguration of Service Orchestrations . 102

7.2.1 Data Dependency Between Services . 103

7.2.2 Rollback Propagation for Service Orchestrations 107

7.2.3 Integrating the Substitute Service in a Running Service Orchestration . . 109

7.3 Concluding Remarks . 110

III Realization 111

8 SIROCCO: ServIce Reconfiguration upOn serviCe unavailability and Connec-

tivity lOss 113

8.1 Middleware Architecture Overview . 113
8.1.1 PLASTIC Multi-radio Communication Middleware 115
8.1.2 iCOCOA Service Discovery and Composition 117
8.1.3 Execution Life Cycle . 118

8.2 SIROCCO Service Registry . 120
8.2.1 Architecture . 120
8.2.2 Prototype Implementation . 121

8.3 Execution Engine . 122
8.3.1 Architecture . 122
8.3.2 Prototype Implementation . 123

8.4 Service Reconfiguration . 125
8.4.1 Architecture . 125
8.4.2 Prototype Implementation . 128
8.4.3 Evaluation: Dynamic Reconfiguration Assessment for Stateful Web Services137

8.5 Concluding Remarks . 142

9 Conclusions and Future Research Directions 143

9.1 Overview of the Proposed Approach . 143
9.2 Learned Lessons . 144
9.3 Future Research Directions . 145

A BPEL Execution Engines 147

B XSL Transformations and Code Generation 149

B.1 XSL Transformations performed by the Monitoring Manager 149
B.2 EPR XML Schema . 149
B.3 BPEL Transformation Component of the Service Replacement 150
B.4 Generating “Proxy” Service for Globus Web Services 152
B.5 Adding the PartnerlinkType to the WSDL Description of the “Proxy” Service . . 154

C Scientific Contributions 157

Bibliography 159

List of Figures

1.1 Pervasive scenario . 3

2.1 Service-oriented architectures . 12
2.2 Service-oriented middleware . 12
2.3 Service model . 14
2.4 Service interface . 15
2.5 Modeling a capability . 15
2.6 Modeling a service behavior . 16
2.7 Integrating capability and behavior concepts in the service model 18
2.8 Ontology for train ticket booking . 20
2.9 Semantic annotations in SAWSDL . 24
2.10 Web service (Service A) for train ticket booking 24
2.11 XML schema of the concept ‘Seat’ . 25
2.12 Schema mapping . 27
2.13 Graphical representation of a composite behavior 29
2.14 BPEL interactions with Web services . 29
2.15 WS-Resource description . 32
2.16 OWL ontology for distinguishing the SAWSDL operations with respect to their

impact on the resource state . 33
2.17 Distinguishing between state access and manipulation operations and functional

ones . 34
2.18 Enriching the basic service model with Web services concepts 35

3.1 Dependability tree . 38
3.2 System execution life cycle . 51

4.1 Basic workflow patterns . 56
4.2 Graphical representation the aFSA for the train ticket booking behavior 58
4.3 OWL ontology for distinguishing the recovery operations 64
4.4 Modeling checkpoints in the train ticket booking behavior 65
4.5 Service Class diagram of the advanced service model 66
4.6 Relating capabilities and behaviors descriptions 67

5.1 Type specification . 74
5.2 Sequence conflict . 81
5.3 AND-split conflict . 82
5.4 Flow serialization . 82

6.1 Recursive mapping between semantic concepts . 90
6.2 Decision graph for computing the compatibility degree 99

7.1 Client reconfiguration . 102
7.2 Data dependency between two checkpoints in a service orchestration 103
7.3 Case of cycle in the dependency graph . 106

8.1 SIROCCO middleware architecture . 114

xv

8.2 Multi-radio communication . 115
8.3 PLASTIC Multi-radio Communication Middleware 116
8.4 iCOCOA service discovery and composition . 117
8.5 Sequence diagram of the collaboration between SIROCCO components 119
8.6 SIROCCO service registry . 120
8.7 Retrieving services from the service discovery . 121
8.8 Execution engine . 123
8.9 ODE and Globus integration issues . 124
8.10 Overcoming integration issues . 125
8.11 Service reconfiguration . 126
8.12 Activity failure and recovery in ODE . 126
8.13 Adaptation manager . 128
8.14 Checkpoints integration in the BPEL process . 129
8.15 Fault handler support in BPEL processes . 130
8.16 State access and manipulation module . 130
8.17 First set of BPEL transformations performed by the state access and manipulation

module . 131
8.18 Second set of BPEL transformations performed by the state access and manipu-

lation module . 132
8.19 Service replacement . 133
8.20 Defining a reference to the EPRFactory service 134
8.21 Replacing the value of the partner link . 135
8.22 Workflow transformation and management . 135
8.23 Sequence diagram of the train ticket booking scenario 138
8.24 Impact of the checkpointing overhead on the orchestration execution time 140
8.25 Impact of the recovery overhead on the orchestration execution time 141

Our computers should be like

an invisible foundation that is

quickly forgotten but always

with us, and effortlessly used

throughout our lives.

Mark, Weiser 1
Introduction

Nowadays, user-centric computing envisions to ease the use of computing facilities in order to
help users achieving their daily tasks. This vision was first articulated by Mark Weiser in 1988
at the Computer Science Lab at Xerox PARC. He envisioned ubiquitous computing (UbiCom)
environments, where humans are surrounded by computing and networking technologies unobtru-
sively embedded in their surroundings. Twenty years later, a trend towards computing ubiquity
is being realized through pervasive computing (PerCom) [Satyanarayanan, 2001], which focuses
on integrating computing facilities in dynamic environments brought about by the convergence of
mobile and tiny devices. With more than 2 billion terminals in commercial operation world-wide
in 2005 [Buckley, 2006], wireless and mobile technologies have enabled a first wave of pervasive
systems and applications. The Ambient Intelligence (AmI) paradigm goes even a step beyond
computing ubiquity, focusing on adding smart behaviors to computing devices so that they can
adapt themselves to the user’s context.

The underlying feature of the above vision is freedom; the freedom of mobility, accessibil-
ity and interaction. The freedom of mobility is enabled with the advent of numerous handheld
devices and new Radio Access Technologies (RATs) such as 3G, WiFi, that interconnect mo-
bile and stationary devices. The freedom of accessibility is enabled with the cohabitation of
infrastructure-based and infrastructure-less (wireless ad hoc) networks; new combined networks
such as Beyond-3G (B3G), enable users to access networked resources (e.g., data and compu-
tation) on demand, anywhere, and from various devices supporting different communication
capabilities. The freedom of interaction with the networked resources is enabled by overcoming
the heterogeneity of the underlying technologies such as, hardware platforms, operating systems,
programming languages, interaction protocols.

Contributing to the realization of the above freedom, service-oriented architectures (SOA)
[Papazoglou and Georgakopoulos, 2003] abstract heterogeneous networked resources and com-
puting facilities as services. Service-oriented applications are built on top of services which
have well defined interfaces, composing them into loosely-coupled structures. The advantage of
loose coupling is that services can be made generally accessible to a large community of clients,
as opposed to being specifically developed for a limited group of clients, as it was the case in
conventional, CORBA-style integration.

Still, the SOA abstraction contributes, but is not sufficient to realize the above freedom.
Indeed, from a user-oriented point of view, this freedom comes at the price of dependability, due to
runtime variations in terms of (1) services availability, and (2) network connection/infrastructure
availability according to the user/services mobility. The main focus of this thesis is to incorporate
support for runtime reconfiguration into SOA systems in order to tolerate runtime variations and
contribute to ensuring dependability.

2 CHAPTER 1. INTRODUCTION

The rest of this chapter is organized as follows. In Section 1.1, we elaborate on the motivation
of our work for supporting dynamic reconfiguration in service-oriented architectures. Then,
Section 1.2 outlines our contributions, and Section 1.3 presents the structure of this document.

1.1 Supporting Dynamic Reconfiguration in SOA Systems

Due to the advantages provided by the SOA paradigm, SOA systems have proliferated and
evolved in the last few years. Functionalities provided by services are becoming more sophis-
ticated; they support complex interactions with the client with sequences of message exchange
(conversations), as opposed to a simple request/response interaction. Across these interactions,
the service may hold a state in order to avoid data redundancy in the exchanged messages.
Furthermore, depending on the services available in the user environment, a single service func-
tionality may not be sufficient to serve an advanced client request. In such a case, it is required
to compose multiple service functionalities to provide a full response to a client request.

To this aim, an SOA realization should support:

1. Discovering the service functionalities available in the user environment,

2. Providing access to the service providers,

3. Potentially composing the service functionalities to serve an advanced user request, and

4. Enabling the correct consumption of these functionalities according to the service-supported
conversations.

The above listed facilities should further account for stateful services and complex interactions
with clients. Service discovery and composition may be based on either (1) syntactic matching
between the descriptions of the user request and the service functionality, assuming that users and
services use a common syntax for denoting their respective requests and functionalities and their
semantics, or (2) semantic matching [Paolucci et al., 2002], introducing thereby more openness
that overtakes syntactic heterogeneity.

Handling the above facilities using middleware technologies appears to be the right approach
that provides transparent, reusable functionalities for both services and clients. However, a
service-oriented middleware (SOM) is not sufficient to overcome all the issues that todays’ com-
puting environments present. Indeed, while performing their daily tasks, users frequently move
from one environment to another, which provides them with various, independent resources/-
computing facilities. These facilities are deployed over heterogeneous networks (e.g., 3G, WiFi,
wireless ad hoc). However, since users and services join and leave the networked environment at
their convenience, services may easily become unavailable in an unpredictable way; it is hence
difficult to guarantee the reliability (i.e., continuity in service provisioning) of applications en-
gaging these services. Therefore, the environment’s dynamics raises several issues illustrated
through the following scenario.

1.1.1 Illustrating Scenario

Richard goes five days a week to his work using public transportation. In the train station (Fig-
ure 1.1-Env1), in addition to paid Internet access, certain free services are provided via the
wireless LAN 1. Free services enable end-users to (1) check train timetables, and (2) easily book
train tickets for a specific destination.

1Local Area Network

1.1. SUPPORTING DYNAMIC RECONFIGURATION IN SOA SYSTEMS 3

On Friday morning, waiting for the city train to depart, Richard is thinking about visiting his
parents for the weekend; he decides to use the free service for train ticket reservation in order to
book a ticket to his parents’ city.

Figure 1.1: Pervasive scenario

However, as Richard’s train is leaving the station, the wireless network connection enabling
the interaction with the “train ticket reservation” service is interrupted. To save the connection
cost of the 3G communication, Richard decides to book his train ticket at his office, using his
enterprise-provided Internet access (Figure 1.1-Env2). However, the enterprise firewall restricts
the access to specific Internet services, including the ticket reservation service that Richard was
using in the train station. As, Richard does not have a particular benefit from using the same
service instance for ticket reservation as the one in the train station, he decides to book his tickets
using another service. Some subcontracted Web services for train ticket reservation are reachable
via the restricted Internet connection, enabling Richard to resume and complete his train ticket
reservation.

Later on the same day, Richard hears a sudden rail strike announcement, thus he finally
decides to drive to his parents’ city. After work, he gets back to his place (Figure 1.1-Env3) to
take some clothes, and he also connects –in an ad hoc way– his smartphone to his home server
– which is connected to the Internet– in order to download information about the highway traffic
and the weather forecast for the weekend. Once he is ready to go, he leaves his house without
completing the entire information download.

In his car (Figure 1.1-Env4), Richard activates the 3G network interface of his smartphone to

4 CHAPTER 1. INTRODUCTION

resume the information download, in the absence of any alternative free communication means.
He also turns on his GPS 2. According to the traffic information and the current GPS coordinates
of the car, Richard has launched on his smartphone a service (called “route optimization”) that
selects the shortest way to his parents’ city, avoiding at the same time the traffic jams. “Route
optimization” is a composite service that dynamically integrates the functionalities of (1) the
GPS, (2) the traffic information service, and (3) a service (called “route provision”) that is de-
ployed on Richard’s smartphone, and which graphically provides the directions to reach a specific
destination.

On the way to his parents’ place, Richard stops at a gas station to refuel his car (Figure 1.1-
Env5). He first goes to the nearby store to buy a sandwich. In the store, Richard discovers a set of
free services. Among them, there is a service that provides information about the highway traffic,
which is similar to the one participating in the “route optimization” service composition. “Route
optimization” integrates that service in order to update the traffic information, and consequently
the directions in case of traffic jam. Richard’s smartphone shifts from the 3G network radio
interface to the WIFI one in order to reduce the charges induced by the 3G connection use.
Hence, Richard enjoys eating his sandwich while updating the directions to his parents’ place.
He then refuels the car, and gets to his destination using the directions provided by the “route
optimization” service.

The above scenario points out two main challenges:

• First, in various situations, Richard had to use a new service replacing the one he was
using due to network disconnection, as it was the case for the disconnection from his home
server. In other situations, the substitution was voluntary to reduce the cost of using the
3G connection, as it was the case when Richard entered the gas station store. In these
situations, the networked environment provided Richard with a connection to a new service
instance that could replace the disconnected one. Two requirements emerge: (1) the service
substitute has to provide similar functionalities to the unavailable service, and (2) it should
resume, if possible, the interaction with Richard from the point it was interrupted, taking
over all the computation performed before the disconnection, and trying to synchronize
accordingly, even in case that the two services are not identical.

• Second, some of the services available in Richard’s networked environment (traffic infor-
mation, GPS and “route provision”) are composed and integrated dynamically to perform
an advanced functionality (“route optimization”). However, substituting the traffic infor-
mation service with a similar service (accessible via the wireless network of the store) may
have an impact on the other services execution state (e.g., route provision service). The
issue here is to identify the affected services involved in the service composition and restore
their state according to their data dependencies with the state of the substituted service.

Section 1.1.2 discusses briefly the limits of existing solutions in dealing with the above two
challenges and elaborates further on these challenges to set the goals of the present thesis.

1.1.2 Current Solutions and Challenges

As illustrated in the above scenario, in open, dynamic and heterogeneous environments as those
of ubiquitous computing, several incidents may interrupt the interaction between the user and
SOA systems, disrupting thereby the service continuity: networked services may become unavail-
able at runtime without beforehand notification due to (1) network problems (e.g., connectivity

2Global Positioning System

1.1. SUPPORTING DYNAMIC RECONFIGURATION IN SOA SYSTEMS 5

loss), or (2) service problems (e.g., service undeployment, or service failure). In such cases, the
computation performed by the now unavailable service is left incomplete, and is lost.

Regarding the network problems, the connection with networked services cannot be gua-
ranteed over time due to users and services mobility. To deal with connectivity loss, relevant
network-based and nomadic solutions have been introduced to maintain the interaction with the
same service provider despite the disconnection.

Traditionally, (network-based) mobility management solutions [Rappaport, 2001] rely on the
core network to apply handoff [Ruggaber and Seitz, 2001] (vertical or horizontal), multi-homing 3

and mobility prediction [Rosa et al., 2005] solutions. In such solutions, users are able to conti-
nuously access the same service instance through methods such as access-point switching within
the same network and data traffic redirection between different networks. However, these so-
lutions are not suitable for infrastructure-less networks where mobile nodes communicate in an
impromptu manner and networks are established on the fly.

Nomadic computing systems, such as Rover [Joseph et al., 1995], deal with intermittent con-
nection between the client and a remote service provider due to insufficient wireless network
coverage or limited bandwidth shared between multiple users. Specifically, they manage the
disconnection time using caching and offline working techniques. The key assumption in these
solutions is that the client will probably reconnect to the same server or some replica of the server.
Then, the objective is to enable users to use their mobile devices even during periods of low or
non-connectivity. The distinctive feature that differentiates todays’ ubiquitous SOA systems
from nomadic ones is that services available in the user environment do not have a beforehand
knowledge of each other. Bindings with/between services are ad hoc and temporary. Thus, after
a disconnection, a client is unlikely to reconnect to the same service provider or even a replica
of it. It will rather connect to another provider that provides him/her with the required func-
tionalities. Nevertheless, disconnection has been deeply studied in nomadic computing systems,
which makes the experience gained from the nomadic system solutions useful.

Similarly for service problems, services may be undeployed at anytime, without beforehand
notification according to their providers’ decision. Services may also fail. To deal with ser-
vice unavailability, replication-based approaches (passive 4 or active 5) enable to substitute an
unavailable service with an exact replica of it. By definition, an exact replica is able to in-
terpret and use the state of the unavailable service in order to resume the execution from
the point it was interrupted, ensuring thereby service continuity. For instance, several ap-
proaches [Salatge and Fabre, 2007, Maamar et al., 2008] rely on the construction of fault tol-
erant service groups out of unreliable services. The formulation of fault-tolerant groups of ser-
vices [Salatge and Fabre, 2007] seems difficult in practice when considering that the constituent
services may be offered by independent or even competitive organizations or businesses. In a real-
istic scenario, an agreement between independent businesses is required in order to register their
online services in a group that realizes active replication, knowing that this will involve devoting
precious resources to the group without any actual direct benefit (e.g., many instances of the same
ticket reservation made by the same user to the active replicas, while only one of them will be val-
idated at the end by the protocol that realizes the reservation process through active replication).
Other approaches tackled the issue by substituting an entity with another dedicated backup entity

3Multi-homing allows a mobile node to set up at the same time multiple radio interfaces and multiple IP ad-
dresses, and therefore allows applications to perform switchovers between different radio interfaces during vertical
handoffs without interrupting data transfer.

4In passive replication, each single request is processed on a single replica, and then its state is transferred to the
other replicas

5Active replication is performed by processing the same request at every replica

6 CHAPTER 1. INTRODUCTION

using, e.g., built-in replication. However, the availability of such backup entities is not guaran-
teed in open and heterogeneous environments as the ones we are interested in. To overcome the
heterogeneity of the environment, recent approaches [Calore et al., 2007, Mokhtar et al., 2008b]
rely on computing the semantic similarities between a user request and a provided service. These
efforts enable dynamic service provisioning and composition in heterogeneous environment, but
do not ensure the runtime service continuity, as they do not consider state transfer. In the case
that a service becomes unavailable, a semantic-similar service substitute is discovered and the
interaction with the client is restarted from the beginning, even in the case of service composition.

The problem that we are considering is too complex to be solved by directly applying the
above solutions. The difficulty lies in the runtime substitution of the now unavailable service,
and particularly, in saving the computation performed up to the time of execution interruption.
More specifically, an approach that accomplishes service continuity in dynamic, open and hete-
rogeneous environments is faced with the following challenges. Firstly, it should be suitable for
deployment in infrastructure-less (e.g., wireless ad hoc) networks and thus, cannot rely on any
network infrastructure as handoff-based solutions do. Secondly, it should be flexible enough in
selecting the candidate substitute service, without being restrictive to exact replicas, but only
providing similar functionality to the unavailable service’s one. This induces a third challenge
of ensuring a correct substitution of the unavailable service, including (1) the provision and
(2) the correct interpretation and use of the unavailable service state by the substitute service
in order to resume the interaction with the client from the point at which it was interrupted.
In the case of impossibility of interpreting or using the transferred state, a mechanism should
be set for replaying, and potentially adapting, the sequence of exchanged messages and the
messages content according to the substitute service logic. A fourth challenge emerges in the
case of service composition: a mechanism should identify the impact of service unavailability and
substitution on the services participating in the service composition, and if required, it restores
their state consistency according to the data dependencies between them. Finally, an approach
that complies with the above challenges should also be re-usable and application-independent;
it should be adaptable according to the user requests and the services that are available in the
user environments.

1.2 Contributions

As discussed in the previous section, existing solutions that enable continuity in service provi-
sioning either rely on the network infrastructure, or constrain the services by requiring an exact
replica as substitute service. Other more flexible solutions enable semantic service substitution
to ensure service provisioning, but not runtime service continuity, as they do not deal with state
transfer and state interpretation. In this thesis, we take advantage of the above solutions while
restricting the least the user environments. We neither rely on the network infrastructure, nor
assume the availability of an exact replica. We perform semantic service substitution while pre-
serving the service continuity. Our main contribution consists in enabling service continuity by
(1) substituting a service that becomes unavailable at runtime with a semantically similar one,
and (2) transferring and translating the state of interaction to the substitute service in order to
resume the execution from the point it was interrupted. The unavailable and substitute services
are neither identically implemented, nor identically described. We propose a user-transparent 6

middleware approach that tolerates runtime service unavailability and reconfigures the client
and the service(s) to ensure service continuity. The reconfiguration process supported by the

6to the degree possible

1.3. THESIS STRUCTURE 7

middleware consists in:

1. Proactively storing the service state in order to provide it to a substitute service if the
service becomes unavailable.

2. Filtering the candidate substitute services out of a set of available services providing a
functionality that can be used in the place of the functionality of the now unavailable
service. This filtering is based on comparing the semantics of the provided functionality of
the candidate service, with the one of the unavailable service.

3. Selecting amongst the candidate services the one that can be used as an actual substitute; in
the best case, the selected substitute service will be such that its state can be synchronized
with the last state stored of the service that is substituted. The decision is made by
computing a compatibility degree between the candidate services and the service being
substituted, i.e., the ability of the former services to interpret and use a state provided by
the latter. In some cases, a candidate service may not be able to fully synchronize with
the latest state of the unavailable service; the synchronization is then tried using an earlier
state than the last stored one.

4. Alternatively, in the case of impossibility of state synchronization, adapting and replaying
the sequence of messages that have been exchanged between the unavailable service and
the client in order to reproduce the effect of the computation –this time– with the sub-
stitute service, transparently to the user to the degree possible (avoiding thereby the user
intervention).

5. Finally, in case of service composition, limiting the side effects of service unavailability.
This includes to restore the state consistency of the still-available services involved in the
service composition with respect to data dependencies with the transferred state of the
substituted service, and between their respective states.

Satisfying the above features, our contribution is SIROCCO (ServIce Reconfiguration upOn
serviCe unavailability and Connectivity lOss), a middleware that enables runtime reconfiguration
of SOA systems upon service unavailability.

1.3 Thesis Structure

This thesis is organized in three parts. Part I presents the fundamental concepts of SOA and
dependability. It also presents a set of relevant approaches for runtime reconfiguration of SOA
systems. Part II formalizes our approach for runtime reconfiguration of SOA systems. Part III
presents the architecture that realizes our approach as well as the performance assessment of the
runtime reconfiguration.

Part I includes two chapters: Chapter 2 presents the necessary background on service-oriented
architectures (SOA), including an overview of SOA, the definition of their basic concepts, and the
middleware solutions that enable the deployment of such architectures. Furthermore, it provides
an overview of Web service technologies, which are the most commonly-used realization of SOA
systems. Chapter 3 presents the basic concepts of dependability along with the type of failure
we are interested in (i.e., service unavailability). We detail the existing techniques to deal with
component unavailability in closed distributed systems and their limits of applicability in open,
dynamic SOA systems. This stresses the need for providing a middleware solution that ensures

8 CHAPTER 1. INTRODUCTION

dependability in SOA-based environments. In the same chapter, we present a study of the state
of the art of the existing solutions that target continuity in service provisioning, focusing more
specifically on service substitution.

Part II includes four chapters: Chapter 4 presents an advanced service model that integrates
the necessary concepts for supporting dependability. Based on this service model, Chapter 5
provides a formal definition of service substitution and the constraints under which a service is
able to serve as a substitute for another one. To select a service substitute, Chapter 6 provides
the rules for checking the compatibility between a candidate service and the unavailable one.
The compatibility check is based on the definition of a compatibility degree, the value of which
determines whether a service candidate is able to serve as a substitute for the unavailable one,
or not. In the case of multiple candidates for substitution, the value of the compatibility degree
associated with each candidate service enables classifying the set of candidates. This classifica-
tion enables to select the service that best reduces the reconfiguration time and/or the loss of
computation. To deal with the case that the substituted service makes part of a service com-
position, Chapter 7 presents the strategies and rules that enable to preserve the data coherence
between the states of all the services participating in the service composition.

Part III includes two chapters: Chapter 8 details the architecture and the implementation
of our middleware approach. It then assesses the use of our runtime reconfiguration through
the means of a Web service implemented scenario and by measuring the performance of the
runtime reconfiguration. Chapter 9 summarizes the work achieved in this thesis. It provides our
conclusions and our future research directions as a continuity of, and beyond, this thesis.

Part I

Fundamentals and State of the Art

Architecture starts when you

carefully put two bricks to-

gether. There it begins.

Ludwig Mies van der Rohe

2
Service-oriented Architectures

Traditional application design depends upon a tight interconnection of all its components, often
running in the same process [Papazoglou and Dubray, 2004]. The complexity of these connections
requires that the developers thoroughly understand and have the control over both ends of a
connection. Moreover, once established, it is very difficult to extract one element and replace
it with another. Service-oriented architecture (SOA) is an evolution of distributed computing
based on the request/reply design paradigm for synchronous and asynchronous applications.
Components’ functions are modularized and presented as services for client applications. A key
characteristic of these services is their loosely coupled nature. The service interface is defined
independently of the technology implementing the service. Consequently, loosely coupled systems
enable a simpler level of coordination and allow more flexible reconfiguration as opposed to
tightly coupled systems that require agreement and shared context between the communicating
components.

This chapter presents an overview of service-oriented architectures and introduces their key
concepts. Section 2.1 first presents the basic roles within service-oriented architectures and
an overview of their interactions with each other. To support these interactions, Section 2.2
stresses the need for a service-oriented middleware which enables easier and more effective (1)
creation, (2) deployment, and (3) management of services across distributed infrastructures.
Section 2.3 focuses more in detail on the notion of service. We propose a basic service model
that integrates the basic concepts of a service along with their dependencies. One of the most
popular realization of SOA systems is provided by Web services. In particular, Web services have
standardized languages enabling to describe service concepts. Section 2.4 provides a background
on the languages that enable to describe Web service functionalities. Section 2.5 integrates some
of the concepts that are defined in the WS domain in our basic service model. Finally, Section 2.6
summarizes this chapter.

2.1 Basics of Service-oriented Architectures

Service-oriented architectures rely on three important roles, namely, the service provider, the
service consumer and the service registry [Papazoglou, 2003].

A service provider is the entity that owns and implements the business logic that underlies
the service. From an architectural perspective, it is the platform that hosts and controls the
access to one or several services. A service consumer (or client) is the entity that requires a
function to be executed. From an architectural perspective, it is the application that is looking
for, and subsequently invoking a service. As illustrated in Figure 2.1, a service registry puts the
two above roles in contact. It is a “searchable” directory where services publish their descriptions,

12 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.1: Service-oriented architectures

and clients find these descriptions, select services, and obtain binding information. In particular,
the service selection is complicated when numerous services from various providers exist, all
claiming to fulfill users’ needs, or when each of the services uses a different naming taxonomy.
To solve these problems, a service basically has to use expressive semantic means for describing
its functional properties and non-functional ones such as quality of service (QoS). Then, clients
provided with semantic search capabilities are able to search distributed registries for services
with certain functional and QoS specifics.

Furthermore, an advanced request of a client may not be served by a single service, but
requires to compose service functionalities. The service composition may be coordinated by the
client, involving services that are not aware of each other. In such case, the service composition
is called an orchestration. Alternatively, the service composition may be set up and performed
seamlessly to the client, in peer-to-peer way, coordinated by the services involved in the compo-
sition. In this case, the composition is called choreography. Both orchestration and choreography
specify the coordination of the services participating in the service composition. However, com-
pared to orchestration, choreography requires an additional effort in order to distribute the
interaction over the participating services [Su et al., 2008]. In our study, we essentially consider
the case of service orchestration as it represents the most widely-used pattern. Extending our
study to choreographies is one of our future research directions.

2.2 Service-oriented Middleware

Middleware is the most common solution widely used to facilitate interoperability and coordina-
tion in the presence of dynamics and heterogeneity. As illustrated in Figure 2.2, middleware is a
software layer that stands between the networked operating system and the application and pro-
vides well known reusable solutions to frequently encountered problems like heterogeneity, inter-
operability, security and dependability [Issarny et al., 2007]. The authors in [Issarny et al., 2007]
present a survey of the different families of middleware according to their coordination model.
Among them, service-oriented middleware (SOM) supports the abstraction related to SOA sys-
tems. A SOM implements a set of functionalities that are essential to enable (1) discovering

Figure 2.2: Service-oriented middleware

2.3. BASIC SERVICE MODEL 13

services, and (2) integrating them to serve users needs. Service discovery dynamically finds ser-
vices that are available in the user environment and accesses them in order to consume their
functionalities. Service composition enables to serve a user request by composing the function-
alities of the available services.

Both service discovery and composition can be carried out by syntactically matching between
the client request and the service functionality, assuming that clients and providers use a com-
mon service description syntax for denoting the service access protocols and service semantics
such as in WSAMI [Issarny et al., 2005]. However, assuming that service developers and clients
describe, respectively, services and service requests with identical terms cannot hold in open and
heterogeneous environments such as the ones that we are considering. To cope with syntac-
tic heterogeneity, clients and services may provide a semantic description, respectively, of their
functionalities and requests. The semantic description can provided through the use of, e.g., on-
tologies [Singh and Huhns, 2005], which have their origins in the domain of artificial intelligence
(AI). In this way, combining semantics and service-orientation, semantic-based SOM presents
an efficient way to automatically and unambiguously discover, compose and consume services in
heterogeneous environments, such as pervasive computing ones [Mokhtar et al., 2007].

2.3 Basic Service Model

In this section, we detail the notion of service and introduce a basic model that integrates the
main concepts making up a service. These concepts are retrieved from the most common elements
that we find in the related literature [Bell, 2008]. Using the service model, we aim at providing
an accurate definition of its concepts as well as the dependencies among them, in order to depict
a global view of our understanding of a service along with its constituents.

Online dictionaries give various definitions for the term service including “useful labor that
does not produce a tangible commodity” 1 and “a facility providing the public with the use of
something” 2. In line with dictionary definitions, the authors in [Krafzig et al., 2004] underline
in their definition the autonomy and reusability properties of the service functionality. They
state that a service is “a meaningful activity (of a certain complexity) that a computer program
performs on request for another computer program (...), i.e., a remotely accessible, self-contained
application module (...) that is not designed for one specific customer, but instead (...) provides
a functionality that is reusable in different applications”.

Other definitions emphasize the collaboration and interoperability facilities provided by a ser-
vice. For instance, the authors in [Papazoglou and Georgakopoulos, 2003] state that “services
perform encapsulated business functions. Functions can be from simple request-reply to full busi-
ness process interactions (...). They can be mixed and matched to create complete enterprise
processes (...). They enable dynamic integration of applications across diverse technologies and
between organizations”. Furthermore, this definition stresses that a service may perform complex
functionalities requiring multiple interactions with the client as well as with other services.

In this thesis, the term service follows the above definitions, emphasizing more specifically
the consumption facilities that a service provides to its clients. Inspired from [Papazoglou, 2003],
we define a service as follows:

Definition 1. Service

A service is an autonomous entity that performs a single or a set of functionalities that can be
consumed independently of each other. It is implemented by a software program. It is wrapped

1Merriam Webster’s Dictionary: http://www.merriam-webster.com
2Dictionary.com: http://dictionary.reference.com

http://www.merriam-webster.com
http://dictionary.reference.com

14 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

within a formal service description that is well known, and known how to be used not only by the
service designers, but also by entities (i.e., other services and clients) that do not know about
how the service has been designed and implemented, and yet want to access and use it.

In the above definition, the service description is a fundamental concept making up a service.
It is used to advertise the description of (1) the service interface, (2) the service capabilities, (3)
their expected behaviors, and (4) the service quality. Figure 2.3 represents a class diagram for the
service model, highlighting the basic concepts of a service along with their inter-dependencies.
This model serves as a basis that will be enriched all along this document as new concepts
definitions are required.

Figure 2.3: Service model

Service interface The description of the service interface publishes the service signature, which
consists of the available operations, their input/output/error parameters, the data-types and the
access protocols, in a way that other software entities (i.e., clients or services) can determine
what the service does, how to invoke its operation(s), and what results to expect in return. In
addition, the service interface may be enriched with a semantic description of its operations as
well as their in/out parameters in order to provide them with richer description that goes beyond
the limits of the syntactic description.

In this way, the service interface can be modeled as illustrated in Figure 2.4. It essentially
includes the descriptions of the operations that the service provides, where an operation de-
scription is composed out of two elements: a semantic description and a signature. The service
interface includes other concepts, including the binding and transport protocols; these concepts
are oriented to the access and communication issues, and are not relevant to the issue of modeling
the service interface.

Service functionality The service interface is able to describe only simple functionalities that
are described using a single operation, and which require a single request/response exchange
to perform a unit of work. Complex functionalities that require multi-step exchange (i.e., a
conversation) between the service and the client, and which involve the invocation of multiple
operations, cannot be described in the service interface. Hence, the service description is extended

2.3. BASIC SERVICE MODEL 15

Figure 2.4: Service interface

in two ways to represent both complex and simple service functionalities: service capability and
service behavior.

Service capability The first way provides the description of a service capability which states
the conceptual purpose of a service functionality, its required data and its expected results, by
using terms or concepts defined in an application-specific or commonly agreed upon taxonomy,
using, e.g., WordNet 3. Using such taxonomy, services such as “Voyages-SNCF” 4 may be defined
as instances of concepts that represent their capabilities. In its simplest form, a capability may
be realized by a single operation of the service interface.

Inspired from the OWL-S specification [W3C, 2004a], we model a capability description (in
Figure 2.5) as a composition of three concepts: the functional purpose, (0..*) required inputs and
(0..*) provided outputs, where the functional purpose of the service functionality represents the
transformation that the service produces, which results in the production of outputs from a set
of inputs.

Figure 2.5: Modeling a capability

Service behavior The second way to represent a functionality is to describe its behavior. The
behavior defines how a system entity changes over time [OMG, 2001]. It represents the business
logic that realizes the functionality. As in the Model Driven Architecture (MDA [OMG, 2001])
defined by the OMG 5, we model the service behavior as a workflow/process that defines the set
of operations realizing the functionality, their order of execution (i.e., the control flow), along
with their data dependencies (i.e., the data flow). For example, the behavior associated with

3http://wordnet.princeton.edu/
4Voyages-SNCF is a French online travel agency, http://www.voyages-sncf.com/
5Object Management Group.

http://wordnet.princeton.edu/
http://www.voyages-sncf.com/

16 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

the “train ticket booking” capability can be set as follows. It includes a first operation that
requests for the departure and destination places, and the departure and arrival dates. Then, a
number of possibilities are proposed to the user, from which s/he selects a train that fits her/his
schedule. Afterwards, another operation requests for a valid credit card number, and produces a
state transition where (1) the train ticket will be edited, then (2) the credit card will be charged.
We introduce in Figure 2.6 a model for service behaviors that integrates its basic concepts.

We distinguish in our service model three features for the service behaviors that have impact
on the behavior execution. These features are: (a) the structure of the behavior, (b) its pre-
and post-conditions, which have to be satisfied respectively by the user inputs and the service
outputs, and (c) potentially the service state maintained during the behavior execution.

Figure 2.6: Modeling a service behavior

Using the terminology of the OWL-S [W3C, 2004a] specification, behaviors that are composed
of a single operation are atomic, and those that compose more than one operation are composite.
We model composite behaviors as an aggregation of (2..*) atomic behaviors.

In addition, a behavior may define (0..*) of pre- and post-conditions (Figure 2.6), which
are set to ensure the consistency of the behavior execution. Pre-conditions are logical formulæ
that need to be satisfied (ensured to be true) by a client before the execution of the behavior.
Examples of pre-conditions are that a credit card should be valid, or that the account should not
be overdrawn, and so forth. The execution of a behavior may also result in changes of the state
of the world, which are called post-conditions or effects. Post-conditions are logical formulæ that
state what will be true upon successful execution of the behavior. An example of post-condition
is the process/behavior that charges a credit card. As a result of the execution of the process, a
credit card is charged and the money in the account reduced.

Finally, the behavior execution of a functionality can be stateless or stateful. A service
provides a stateless behavior, if the behavior can be performed without requiring that the service
maintains a context or state; the service does not hold any state across or after the interaction
with a client when executing the behavior. Each message sent by the client to the service must
contain all necessary information for the latter to process it.

In contrast to stateless behaviors, if the execution of a behavior requires its context to be
preserved, then the behavior is called stateful. A service that provides a stateful behavior main-
tains a state before, during, and/or after the behavior execution. A composite behavior is a
typical example of a stateful behavior. It involves the exchange of the messages with the client
in order to execute the operations the behavior composes. Hereafter, we define the service state
associated to a given service instance that executes a stateful behavior.

Definition 2. Service state

Assuming that the execution of the service behavior has started at a time t, the service state at a

2.3. BASIC SERVICE MODEL 17

time (t+∆t) includes all the data that the behavior execution generates and/or uses during ∆t.
In the case that multiple instances of the service are running for multiple clients, we consider
the state of each instance separately from the rest of other instances. We define the state of a
service executing a stateful behavior into three parts, which may overlap:

1. The data related to the interaction with the specific client of the running instance, i.e., all
the data that are included in the exchanged messages with the client as well as interme-
diate data used in the workflow. We call this part, the workflow or observable state of the
service.

2. The data that are maintained internally by the service implementation, such as program
counters and alike. This part includes all the temporary data the behavior execution
generates in the time interval [t, t + ∆t], and which are required in order to achieve the
behavior execution from (t + ∆t) till its completion. We call this part, the implementation
state of the service.

3. The external data that are used and/or manipulated during the behavior execution. This
part includes all the data that are potentially shared with the running instances of the
behavior, as well as, with external entities to the service (i.e., other services and clients).
As in shared databases, using and manipulating these data are governed by the service
internal logic using specific rules, such as mutual exclusion (mutex) and locks. We call
this part the resources state of the service as the shared data can be considered as external
resources that the implementation manipulates. As each service instance is concerned
with a subpart of the external resources, we consider that the resources state as a limited
view of the overall shared resources of the service, which includes only the information
required by the running instance.

At the instantiation of the service, the observable and implementation states are initialized
with the user inputs. The resources state is included in the service state only when external
(potentially shared) data are required and used at runtime.

Service model The two ways of modeling functionalities (i.e., using capabilities and behaviors)
are complementary. The description of a capability helps to select a service provider that complies
with a user request. It facilitates the discovery process since the matching process between a user
request and a capability description is reduced to comparing concepts of a given taxonomy. The
description of a behavior shows how a service produces its results. It enables to foster the correct
consumption of the service functionalities by invoking the service operations in the correct order
with respect to data dependencies between invocations.

Taking advantage of the two representations of the service functionalities, we integrate both
of them in our service model using the concepts “capability” and “behavior ” in order to provide a
complete description of the service functionalities. A capability is associated with the behavior
through the dependency ‘related to’, to denote that the two representations are related to the
same functionality (as modeled in Figure 2.7).

The service model integrates the concepts that are included in the capability and behavior
descriptions, presented respectively in Figures 2.5 and 2.6. In particular, the behavior description
can be of two types: a workflow description in the case of composite behavior, or an operation in
the case of atomic behavior. The semantic description of an operation represents aspecification
of its capability. The behavior includes (0..*) pre- and post-conditions, and a state description
in the case of stateful behavior.

18 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.7: Integrating capability and behavior concepts in the service model

Finally, the service description may be extended with a Quality of Service (QoS) description,
which publishes important non-functional service quality attributes, such as service cost, per-
formance metrics (e.g., response time), security attributes, transactional properties, reliability,
scalability, and availability [Glinz, 2007].

2.4 Web Service Description Languages

Web services (WS) is the de facto realization of the SOA paradigm. They define a model for
service-oriented distributed computing, in which services are described with and interact by
exchanging XML documents. In addition, Web service standards are evolving rapidly to pro-
vide a foundation for interoperation between Web services. Web service description is based
on a number of standardized languages, each of them focusing on a specific concept of the
service model introduced in the previous section. It typically includes the interface defini-
tion and the transport-level properties, both specified in the Web Service Description Lan-
guage (WSDL [W3C, 2007c]). It further includes the behavior description [Bultan et al., 2003,
Benatallah et al., 2004, Benatallah et al., 2003]. Behaviors can be specified using the Web Ser-
vices Business Process Execution Language (WS-BPEL [OASIS, 2007]) or any of the many
other formalisms developed for this purpose, such as the Web Service Conversation Language
(WSCL 6). In particular, WS-BPEL is an industrial standard that is supported by a significant
number of tools in the domain of Web services. As service behaviors become more complex,
maintaining and manipulating a state across multiple message exchanges with external entities
(i.e., clients and services), the Web Service Resource Framework (WSRF [OASIS, 2006b]) has
been standardized in order to describe the service state when services require to maintain a
state across multiple interactions with a client. WSRF further provides standardized means to
manipulate the whole or a part of the service state.

6WSCL: http://www.w3.org/TR/wscl10/

http://www.w3.org/TR/wscl10/

2.4. WEB SERVICE DESCRIPTION LANGUAGES 19

Coupled with WS description languages, Semantic Web technologies [Berners-Lee et al., 2001]
proliferate, as the need for rich semantic specifications of Web services grows. They enable fuller
automation of service provision and use, based on well-founded semantic reasoning about ser-
vices. The Web Ontology Language (OWL [W3C, 2004b]) is considered as one of the fundamental
technologies underpinning the Semantic Web. In order to ensure correct consumption of service
functionalities, Semantic Web Rule Language (SWRL [W3C, 2004c]) enable to describe the ser-
vice rules such as the pre- and post conditions of the service behaviors. In this way, combined
with the syntactic Web service description languages, the semantic description of Web services
enables automated service selection, and the translation of message content between heteroge-
neous interoperating services. It also makes easier service composition, service monitoring and
recovery from failures.

In the following sections, we present the current background on a set of Web service lan-
guages that serve the purpose of this thesis. Section 2.4.1 briefly presents OWL, and illustrates
its use through a train ticket booking example. Section 2.4.2 presents the use of OWL seman-
tic relationships between the semantic concepts, in representing and matching between a user
request and service capabilities. Section 2.4.3 presents WSDL and its extension with semantic
annotations. Section 2.4.4 provides an overview of WS-BPEL and its use to describe service be-
haviors as well as service compositions. Section 2.4.5 presents WSRF in order to illustrate how a
service state can be described, and our extension of WSRF with semantic annotations. Finally,
Section 2.4.6 briefly presents SWRL for semantically describing the pre-and post-conditions of
service behaviors.

2.4.1 OWL

The semantic Web paradigm adds a machine-interpretable semantics to the current Web by
referring to hierarchically structured vocabularies of terms, i.e., ontologies, representing a spe-
cific area of knowledge. Since the 1990s, a number of research efforts have explored how the
knowledge representation (KR) from AI 7 could be made useful on the World Wide Web. These
included languages based on HTML (called SHOE), XML (called XOL, later OIL), and vari-
ous frame-based KR languages (e.g., FLogic, OKBC, and KM) and knowledge acquisition ap-
proaches [Corcho and Gómez-Pérez, 2000, Gómez-Pérez and Corcho, 2002]. Ontology languages
such as the W3C-recommended Web Ontology Language (OWL [W3C, 2004b]) support formal
descriptions and machine reasoning on concept hierarchies. OWL is a language for making onto-
logical statements, developed as a follow-on of (1) RDF and RDF Schema (RDF-S) by providing
richer vocabulary along with a formal semantics, as well as, (2) earlier ontology language projects
including OIL, DAML and DAML+OIL. An OWL ontology comprises classes, individuals and
properties, where a class represents a concept, an individual represents an instance of a class,
and a property represents a relation between classes or individuals.

To illustrate the use of ontologies in a service description using WS languages, we employ in
the rest of this chapter the service for train ticket booking, picked from the scenario presented
in the previous chapter.

A train ticket booking service enables users to book a train ticket according to their preferences
such as, journey type (i.e., one-way or round-trip), seat class (i.e., business or economy) and
side (i.e., window or aisle), and alike. Let’s suppose that a user tries to book a round-trip train
ticket using a service providing train tickets to his/her specific destination. S/he would like an
economy class seat, located at the window side.

7Artificial Intelligence.

20 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.8: Ontology for train ticket booking

We consider an ontology for train ticket booking that takes into consideration the users’
preferences. Figure 2.8 depicts the hierarchy of the train ticket booking ontology 8 and the
properties connecting its classes. The ‘Train’ class is connected to ‘Preference_Selection’ by
the object property ‘hasOperation’ in order to declare the operations that enable users to select
their preferences. The ‘Train’ class is also connected to the ‘Seat’ and ‘JourneyType’ classes
by the object properties ‘hasSeat’ and ‘hasJourneyType’. The ‘Seat’ class is connected to the
‘Class’, ‘Side’ and ‘Reservation’ classes by using, respectively, the properties ‘hasClass’, ‘hasSide’
and ‘hasReservation’. The property ‘hasReservation’ associates to a ‘Seat’ a ‘Reservation’ that
includes a ‘SeatNumber’ and ‘SeatStatus’ using, respectively, the properties ‘hasNumber’ and
‘hasStatus’. The instance of the seat status determines whether the seat is booked or not.

OWL is used by almost all the WS description languages that we present in the following in
order to provide, in addition to the syntactic description, a semantic description of the concepts
to which they are dedicated. Among their several benefits, OWL ontologies can be used to
describe service capabilities. Hereafter, we illustrate how we use OWL ontologies to describe
service capabilities. This representation serves as a basis for matching between a user request
and a service capability.

2.4.2 Matching Service Capabilities

As mentioned in Section 2.3, a capability describes the conceptual purpose of a service func-
tionality, its required data as input and its expected results as outputs. These elements can be
described using semantic concepts included in OWL ontologies. For example, the inputs of a
functionality that enables to select user preferences for a train seat should include an instance
of the class ‘Side’ and an instance of the class ‘Class’ that are in a relationship with the train
ticket being booked (hasSeat). The outputs should be an instance of the class ‘Reservation’. The
functional description of a functionality that enables to select user preferences for a seat should

8Created using Protégé, a tool enabling to create, edit and export OWL ontologies. For more details visit http:
//protege.stanford.edu/

http://protege.stanford.edu/
http://protege.stanford.edu/

2.4. WEB SERVICE DESCRIPTION LANGUAGES 21

be an instance of the class ‘Preference_Selection’ included in the ‘Train’ ontology. Hence, the
capability description of a functionality that enables to select user preferences for a seat includes
three elements:

1. Functional purpose: ‘Preference_Selection’

2. Inputs: ‘Side’ and ‘Class’

3. Output: ‘Reservation’

Capability matching then compares the capabilities advertised by services with the capabili-
ties needed by the requester. The goal is to find the advertiser that produces the results required
for the client. In general, it hardly happens that capability offered will exactly match the client
request. Several algorithms [Guo et al., 2005b, Paolucci et al., 2002] have been proposed in order
to compute the degree of matching between a requested capability and a provided one. Different
degrees of match are detected depending on whether the advertised capability and the requested
one describe the same capability or whether one subsumes the other [Ben Mokhtar, 2007]. Go-
ing one step further, other efforts have been focusing on matching capabilities expressed using
heterogeneous ontologies [Guo et al., 2005a].

In the present document, we take advantage of the existing efforts that enable to match
between a user-requested capability and a service-provided one. We concentrate on the rela-
tionships that define similarities between the capabilities in order to enlarge the scope of search
for the services that may serve a user request. In the following, we briefly present the different
semantic relationships supported by OWL [W3C, 2004b]. We then gather these relationships
into a single relation denoting the semantic inclusion between semantic concepts.

Background on OWL-supported relationships

To serve a user request, the service’s provided capability has to be semantically similar to the
user’s requested one. To denote similarities over semantic concepts, OWL supports a set of
relationships that are presented in the following section.

To present the relationships over semantic concepts, we consider a finite set of semantic
concepts ζ across a finite set of ontologies θ. In the present thesis, we will consider the case
where θ is reduced to a single ontology. Nevertheless, relevant efforts have been investigated
to connect and merge the concepts of multiple ontologies. These efforts can be integrated in
our work in order to enlarge the scope of the semantic relationships between semantic concepts.
Furthermore, we assume that both ζ and θ are described using OWL [W3C, 2004b].

• Instance-concept relationship.
In OWL, a concept C ∈ ζ is represented as a class. The instances of a class (i.e., objects)
are represented as individuals. The instance-concept relationship (denoted I-C) associates
the individuals with the class they instantiate. For instance, a ‘Train seat’ is an instance of

the class ‘Seat’. We denote the relation Cτ
I-C
−−−→ C : ζ × ζ between two semantic concepts,

defining that Cτ is an instance of C. In practice, the instance-concept relationship is
described in the class of the concept Cτ using the built-in OWL property owl:oneOf.

• Equivalence relationship.
A concept Cτ is equivalent to a concept Cσ (denoted ≃) if and only if each instance of
the concept Cτ is an instance of the concept Cσ and vice versa. In practice, the built-
in OWL property owl:equivalentClass between two semantic concepts Cτ and Cσ denotes

22 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

their semantic equivalence. A special case of equivalence is the identity. The built-in OWL
property owl:sameAs (denoted =) links two individuals, denoting that they are identical.

• Hierarchical or subsumption relationship.
A hierarchical relationship, also known as subsumption or subtyping relationship, takes
place between classes corresponding to two concepts, when the classes of the two concepts
are linked using a set of properties, such as ‘is a’, ‘can be’, ‘type of’. In OWL, its meaning
is exactly the same: if the class description Cσ is defined as a superclass of class description
Cτ , then the set of individuals in the class extension of Cτ should be a subset of the set of
individuals in the class extension of Cσ. A class is by definition a subclass of itself (as the

subset may be the complete set). We denote the relation Cτ
SuperClass
−−−−−−−→ Cσ : ζ× ζ between

two semantic concepts, defining that Cσ is a superclass of Cτ . In practice, the hierarchical
relationship is described in the class of the concept Cτ using the construct rdfs:subClassOf.

• Compositional relationship.
A composition relationship, also known as a part-whole relation 9, occurs between two
distinct concepts when one is a part, or component, of the other. For instance, considering
the ‘Train’ ontology, a seat is composed of ‘reservation’, ‘class’ and ‘side’. We denote

Cτ
Comp
−−−→ Cσ : ζ× ζ, defining that Cτ is a component of Cσ. In practice, the compositional

relationship is described in the class of the concept Cτ using the built-in OWL property
owl:unionOf.

Other relationships may be defined between two concepts such as the complement relation-
ship, where each instance of the one is not an instance of the other and vice versa, and the
union of the two concepts constitutes the universe. Also, the intersection relationship defines
the common properties between two concepts, but it does not guarantee that all the properties
are preserved by the included concept. These relationships do not serve our need for identifying
similarities between semantic concepts, and thus are out of the scope of our interest.

Semantic inclusion

Several efforts have been focusing on semantic service discovery and selection, where the service
selection is based on discovering a service that offers a capability with the same OWL class as the
requested one, or an equivalent OWL class. In addition to the equivalence over semantic concepts
of the required and provided capabilities, some effort (e.g., [Ben Mokhtar, 2007]) support the
subsumption relationship between the provided and required capabilities. However, extending
discovery to other relationships than equivalence or subsumption increases the chances to find a
substitute service.

Following this direction, we go one step further by allowing more flexible semantic relation-
ships than the semantic equivalence and subsumption between the concepts of the user-requested
and service-provided capabilities. In order to take fully advantage of the richness of the environ-
ment in terms of available capabilities, we allow semantic inclusion between semantic concepts
(denoted ⊆s). The semantic inclusion is realized when a capability is ‘a part of ’ a more generic
capability. For instance, considering the train ticket booking scenario, the semantic inclusion
enables to select for a ‘train ticket reservation’ user requested capability, a richer capability such
as, ‘TrainTicketReservation&Weather’ capability that enables to book a seat in a train while pro-
viding information details on the weather forecast. Indeed, we assume that if a service provides

9Simple part-whole relations in OWL Ontologies. W3C Editor’s Draft 11 Aug 2005, available at http://www.
w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

2.4. WEB SERVICE DESCRIPTION LANGUAGES 23

more than required, its candidacy for service selection is worth to be considered in case that no
equivalent capability is available. Hereafter, we define the semantic inclusion relationship that
we consider over semantic concepts.

Definition 3. Semantic inclusion over semantic concepts Cτ and Cσ (denoted Cτ ⊆s Cσ) if
for each property or attribute of the class Cτ , Cσ defines the same or equivalent property or
attribute.

The instance-concept, hierarchical, compositional and equivalence relationships are examples

of a semantic inclusion. We have: ∀R ∈ {I-C , SuperClass, Comp,≃,=}, Cτ
R
−→ Cσ ⇒ Cτ ⊆s Cσ.

Note that the semantic inclusion relation over semantic concepts is a partial order.

⊆s is a partial order

A partial order is a binary relation over the set of concepts ζ. ∀Cτ , Cσ, Cγ three distinct semantic
concepts or instances of semantic concepts included in ζ, ⊆s is

1. reflexive: Cτ = Cτ ⇒ Cτ ⊆s Cτ .

2. antisymmetric: if (Cτ ⊆s Cσ) ∧ (Cσ ⊆s Cτ), then Cτ is equivalent to Cσ, as (Cτ ⊆s Cσ)
implies that Cσ defines all the properties and attributes of Cτ , and (Cσ ⊆s Cτ) implies
that Cτ defines all the properties and attributes of Cσ. Hence, Cτ and Cσ define the same
properties and attributes, thus they are equivalent.

3. transitive: if (Cτ ⊆s Cσ) ∧ (Cσ ⊆s Cγ), then Cτ ⊆s Cγ , as
(Cτ ⊆s Cσ) implies that Cσ defines all the properties and attributes of Cτ , and (Cσ ⊆s Cγ)
implies that Cγ defines all the properties and attributes of Cσ, and thus all the properties
and attributes of Cτ .

The advantage of the partial order relation is to infer semantic inclusion between concepts
that are not necessarily in direct relationship, increasing thereby the chances to serve a user
request.

2.4.3 SAWSDL

Web services are described using the Web Service Description Language [W3C, 2007c] (WSDL).
WSDL is an XML-based document describing a service that offers a set of operations through
the exchange of messages. The operations and messages are described syntactically, and then
bound to a concrete network protocol and message format to define an endpoint. However,
as the WSDL description is purely syntactic, two services may have similar descriptions while
meaning totally different things, or they may have very different descriptions, and yet similar
meaning. To resolve such ambiguities, the W3C has standardized the Semantic Annotations for
WSDL and XML 10 Schema (SAWSDL) [W3C, 2007a]. A semantic annotation in a document
(e.g., WSDL or XML schema) is additional information that identifies an OWL concept in an
ontology (i.e., semantic model, to use SAWSDL taxonomy) in order to describe a part of that
document. Semantic annotations are of two kinds: (1) explicit identifiers of OWL concepts, and
(2) identifiers of mappings from WSDL to concepts or vice versa.

The former enables to describe XML elements with a reference to a semantic concept. The
latter relates the data defined by an instance of an XML schema document with semantic data
defined by a semantic model. A graphical representation of the types of annotations is provided
in Figure 2.9. We detail these two types in the following.

10XML schema: http://www.w3.org/XML/Schema

http://www.w3.org/XML/Schema

24 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.9: Semantic annotations in SAWSDL

Explicit identifiers

Explicit identifiers specify the association of a concept in some semantic model with WSDL
elements, such as operations, in/out parameters, and in/out messages. This association is useful
when considering the operations as functionalities with atomic behaviors; the explicit identifiers
then enable to describe the capability of each operation.

The association is specified using an additional attribute to the syntactic description of WSDL
elements, denoted < sawsdl : modelReference... >. This attribute makes reference to the
semantic concept related to the WSDL element. The reference is made explicit through a URI 11,
which is a concatenation of (1) the URI of the ontology, (2) the ‘#’ character, and (3) the name
of the concept in the ontology.

1 <wsdl:definitions of a service A enabling train ticket booking...>
...

3 <xs:element name=”SeatPreferences”>
<xs:complexType>

<xs:all>
6 <xs:element name=”class” type=”integer”
7 sawsdl:modelReference=”http://URI_Train_Ontology/Seat#Class”/>
8 <xs:element name=”side” type=”integer”
9 sawsdl:modelReference=”http://URI_Train_Ontology/Seat#Side”/> ...

</xs:all>
</xs:complexType>

</xs:element>
...

14 <wsdl:message name=”Input”>
15 <wsdl:part name=”body” element=”xsd:SeatPreferences”
16 sawsdl:modelReference=”http://URI_Train_Ontology/Train#Seat”/>

</wsdl:message>
...

19 <wsdl:operation name=”SelectTypeOfSeat”
20 sawsdl:modelReference= ”http://URI_Train_Ontology/Train#Preference_Selection”>
21 <wsdl:input message=”tns:SeatPreferences”/>

<wsdl:output message=.../>
</wsdl:operation>
... </wsdl:definitions>

Figure 2.10: Web service (Service A) for train ticket booking

For example, consider a Web service (denoted Service A) for train ticket booking. Service A
provides –among others– an operation that enables to select the clients’ preferences, advertised
in Service A’s SAWSDL. The listing in Figure 2.10 describes the related part of the SAWSDL

11Uniform Resource Identifier.

2.4. WEB SERVICE DESCRIPTION LANGUAGES 25

description of Service A. Service A declares the operation ‘SelectTypeOfSeat’ (Line 19) that
enables a client to select his/her seat class and side. Using the train ticket booking ontology
(described in Section 2.4.1), the ‘SelectTypeOfSeat’ operation is annotated with the semantic
concept ‘Train#Preference_Selection’ (Line 20). Furthermore, the operation input, i.e., ‘Seat-
Preferences’ (Line 15) is annotated with ‘Train#Seat’ (Line 16). The XML element ‘SeatPref-
erences’ is composed out of two parameters namely, class (Line 6) and side (Line 8), respectively
annotated with the concepts ‘Seat#Class’ and ‘Seat#Side’ (Lines 7, 9).

These annotations are useful for understanding and reasoning on the elements described in
the WSDL. They enable, for instance, to match between the semantics of the user-provided data
and the service-required ones. However, in case of syntactic mismatch, transformations in data
representation are required. They are enabled using schema mappings.

Schema mappings

Explicit identifiers can be used to help determining if a service meets the requirements of a
client. Still, there may be mismatches between the semantic concept representation and the
structural representation of the in/out parameters. To resolve these mismatches, the idea is to
map between the representations of the in/out parameters and their related semantic concepts.
The mapping should transform the syntactic representation of any in/out parameter into a rep-
resentation of its related semantic concept. As in/out parameters are represented using XML
schemas, semantic concepts should also be represented using the same standard, so as to ease
the mapping mechanism. In this way, when in/out parameters and semantic concepts are repre-
sented using XML schemas, the mapping can be realized using XML Style Sheet Transformation
(XSLT) [W3C, 1999], which is a language for transforming XML documents into other XML
documents.

To enable this mapping, SAWSDL provides means to make reference to XSLT documents that
transform XML schemas of the operations’ parameters into an instance of the semantic concept
to which they correspond and vice versa, using schema mappings. There are two mechanisms
for schema mappings, namely, lifting and lowering. Lifting schema mapping transforms XML
data into instances of a semantic concept, and lowering schema mapping does the opposite; it
transforms instances of a semantic concept into an instance of an XML schema. To illustrate
the schema mapping mechanisms, we employ our train ticket booking scenario.

As explained above, semantic concepts need to be represented using XML schemas in order
to enable lifting and lowering mechanisms. Hence, after having introduced the ontology in
Section 2.4.1, we describe each class using an XML schema.

Figure 2.11: XML schema of the concept ‘Seat’

For instance, we consider the concept ‘Seat’ as a complex element composed out of three

26 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

elements ‘Class’, ‘Side’ and ‘Reservation’, as represented in Figure 2.11. For each individual of
the class ‘Seat’, these simple elements have to be specified at most once, in a random order. The
‘Class’ and ‘Side’ are complex XML elements that include a choice between two elements. The
element ‘Class’ includes either a ‘Business Class’ simple element, or an ‘Economy Class’ one.
Similarly, the element ‘Side’ includes either a ‘Window’ simple element, or an ‘Aisle’ one. The
values type of the simple elements is set to ‘boolean’, as they can be either the one or the other
but not both at the same time. The ‘Reservation’ complex element is composed of a sequence
of two simple elements: ‘Status’ and ‘Number’. The value type of these simple elements can be
‘anySimpleType’ in order to not restrict the class instantiation.

In this way, using lifting mechanism, we can transform the input parameter ‘SeatPrefer-
ences’ of the operation ‘SelectTypeOfSeat’ (described in Figure 2.10) into an instance of the
XML schema of the ‘Seat’ concept described (described in Figure 2.11). This mapping is use-
ful, for example, when targeting to replace the invocation of the operation ‘SelectTypeOfSeat’
(provided by Service A) by a semantically equivalent operation provided by another service.
By semantically equivalent, we mean that the operations are annotated with the same semantic
concept picked from the same ontology. We explain hereafter the details of lifting an lowering
mechanisms.

Figure 2.12 depicts the SAWSDL descriptions of two services that enable train ticket book-
ing namely, Service A and Service B. Service A and Service B respectively declare the op-
erations ‘SelectTypeOfSeat’ and ‘SelectSeatType’, both referencing the same semantic concept
‘Preference_Selection’ from the ontology for the train ticket booking, presented in Figure 2.8.
However, the respective operations of Service A and Service B require different types of input
parameters, while both of them make reference the same semantic concept (i.e., ‘Seat’).

Mapping from the inputs of the operation ‘SelectTypeOfSeat’ to the ones of ‘SelectSeat-
Type’ is possible by applying XSLT transformations defined and provided by the developers of
(Service A) and (Service B), respectively through the XSLT scripts: A2Seat and Seat2B. As
illustrated in Figure 2.12, the schema mapping includes a structure transformation and a type
conversion between the input of Service A’s operation and the XML schema of the concept
‘Seat’, and inversely for the input of Service B. The input of Service A’s operation is a list of
integers, while Service B’s one is a string concatenating the two parameters. The transformation
is performed as follows.

The lifting technique consists in associating each attribute of the input parameter ‘SeatPref-
erences’ of the operation ‘SelectTypeOfSeat’, with the corresponding XML element in the schema
of the semantic concept ‘Seat’ (Figure 2.11). The lowering technique consists in concatenating
the values of the attributes of ‘SeatPreferences’ within a same string.

In addition, we notice that Service A does not require as input the parameter ‘Reservation’ of
the semantic concept Seat’, neither does Service B. Therefore, the mapping does not introduce
any further complexity than the structure transformation and the type conversion. However,
considering the case that the operation ‘SelectSeatType’ of Service B requires an extra parame-
ter, lifting and lowering are not sufficient to perform an automated mapping. This can be solved
by assigning default values to the attributes of a semantic concept, or by a third party (e.g., the
user) intervention.

2.4.4 BPEL

The Business Process Execution Language for Web Services [OASIS, 2007] (WS-BPEL 2.0 or
BPEL for short) is an OASIS standard that has emerged from the earlier proposed XLANG [Microsoft, 2001]
and Web Service Flow Language (WSFL) [Group, 2001]. It enables the construction of complex

2.4. WEB SERVICE DESCRIPTION LANGUAGES 27

Figure 2.12: Schema mapping

28 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Web services (implementing composite behaviors) by composing the operations of one or more
Web services, which act as the basic activities in the process of the newly constructed service.

BPEL is commonly used for describing workflows of composite services, and can be executed
by a process execution engine in order to provide the functionality of the composite service to
a client. In BPEL, all entities orchestrated in a workflow are seen as “partners”. At runtime,
partners are mapped to actual service instances by the workflow-enactment engine. Access to
the process is exposed by the execution engine through a Web service interface (e.g., SAWSDL
description), allowing such processes to be accessed by the clients, or to act as basic activities in
other process specifications. BPEL features several basic activities which allow interacting with
the services being arranged in the workflow. These activities are: (1) < invoke > activity, which
allows the business process to invoke a one-way or request-response operation, (2) < receive >
activity, which allows the business process to wait for a matching message to arrive , and (3)
< reply > activity, which allows the business process to send a message in reply to a message
that was received by a < receive > activity. Furthermore, it is possible to wait for some time
(< wait >), terminate the execution of the workflow instance (< terminate > activity), copy
data (< assign >) from one message to another using variables, which enables to define the data
flow, announce errors (< throw >), or just to do noting (< empty > activity).

To allow the composition of operations, a variety of structured activities exists. The <
sequence > activity offers the ability to define ordered sequences of activities, the < flow >
activity executes a collection of activities in parallel. The < switch > activity allows branching,
< pick > allows to execute one of several alternative paths, and loops can be defined using the
< while > activity. Furthermore, BPEL includes the feature of < scoping > activities and
specifying fault handlers and compensation handlers for scopes. Faults handlers get executed
when exceptions occur, for instance, through the execution of the mentioned < throw > activity.
With a compensation handler, BPEL enable to define a set of activities that have to be executed
when there is a problem in the process. The compensation handler can be started from the
process itself to undo certain activities (included in a scope) that have already been completed.

In the present thesis, we use BPEL for describing the workflows of composite behaviors as
well as the ones of composite services. To illustrate the use of BPEL process, we employ first the
the previously-introduced train ticket booking service to describe its composite behavior, then
we present how it can be combined with a hotel booking service in order to realize a service
composition for travel booking arrangements.

Use of BPEL for describing composite behaviors

As aforementioned, service functionalities implement composite behaviors. Using BPEL pro-
cesses, a service advertises the description of its composite behaviors to foster the correct con-
sumption of its functionalities.

For example, consider the train ticket booking Service A, the SAWSDL of which is described
in Section 2.4.3. Service A enables the clients to book their train tickets according to their pref-
erences. Besides providing the operation ‘SelectTypeOfSeat’, Service A offers a more complex
functionality for train ticket booking, which enables a client to select, confirm and then pay for
his/her train tickets. This functionality is implemented using a composite behavior that includes
three operations, namely ‘SelectTypeOfSeat’, ‘Confirm’ and ‘Pay’. These operations have to be
performed in a specific order. A graphical representation of the ‘train ticket booking’ behavior
is presented in Figure 2.13.

First, a client requesting for a train ticket booking triggers the process execution by providing
his/her inputs. Then, after selecting the client preferences using the operation ‘SelectTypeOf-

2.4. WEB SERVICE DESCRIPTION LANGUAGES 29

Figure 2.13: Graphical representation of a composite behavior

Seat’, the service books a seat on a specific train according to the seats availability. This is
enabled using the operation ‘Confirm’. The seats status are centralized and stored within a
database managing the concurrent client bookings. Finally, the service enables the client (1) to
pay for the booking and returns an ‘eTicket’, or (2) to save the booking and pay later on. In the
later case, the client is provided with a confirmation number that makes reference to the seat
reservation.

Use of BPEL for describing composite services

As aforementioned, the train ticket booking functionality can be composed with a hotel book-
ing one in order to provide a travel booking functionality. An overview of the travel booking
orchestration is illustrated in Figure 2.14.

Figure 2.14: BPEL interactions with Web services

As mentioned in the beginning of this section, BPEL process combines the operations of
Web services in a workflow structure. The newly created process is exposed to the external
environment as a Web service by advertising its SAWSDL description. A client that would like
to organize its travel would invoke the process using the operation described in the SAWSDL

30 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

description of the process. S/he invokes the ‘Travel’ BPEL process using an ‘InitTravel’ operation,
and provides the process with the required inputs. The ‘Travel’ process first checks the available
hotel rooms located in the destination city (‘Hotel booking’ functionality in Figure 2.14). Then,
the ‘Travel’ process books the train tickets according to the user inputs (‘Train Ticket booking’
functionality). Finally, the BPEL process returns the travel plan to the client as a response to
the ‘InitTravel’ request. The bindings with the ‘Hotel booking’ , the ‘Train Ticket booking’ and
the ‘Travel’ service itself are declared using a list of Partnerlinks in the ‘Travel’ process, where
each partnerlink is related to a specific Web service.

2.4.5 WS-Resource Framework

State management has always been an underlying issue for behavior execution, but only recently
it has been brought to the forefront with the introduction of the Web Services Resource Frame-
work (WSRF) [OASIS, 2006b]. WSRF is an OASIS standard, which defines a framework for
modeling and accessing stateful resources through Web services. This includes mechanisms that
describe views of the resource state and support its manipulation.

Representing service state

At their beginnings, Web services have been assumed to process incoming messages regardless
of earlier invocations, or the time of message arrival. As mentioned earlier, this is commonly
called stateless service behavior. However, as they gain in popularity, Web services provide more
advanced functionalities, requiring to maintain a state across multiple interactions with their
clients, implementing in most cases stateful behaviors.

In such cases, Web services and clients form a joint session during interaction, where the ser-
vices responses depend not only on the input parameters, but also on the current session state. To
differentiate their clients and maintain data related to the client during interaction, existing real
world services store a session state at the client side, such as RESTful services [Fielding, 2000].
One example is services with authentication, which requires handling some proprietary user ses-
sion such as with payment services. Another example is cart management in shopping services.

In general, to deal with this, proprietary implementations of session identification are in-
cluded, e.g., in the form of the SOAP-body data [W3C, 2007b], or transport-protocol dependent
methods such as HTTP cookies [Netscape, 1999, IETF, 2000].

Technically, cookies are arbitrary pieces of data chosen by the Web service and sent to the
client. The client returns them unchanged to the server, introducing a state (memory of previous
events) into otherwise stateless HTTP interactions. Without cookies, each interaction with the
service is an isolated event, mostly unrelated to all other interactions of the client with the
same service. By returning a cookie to a Web service, the client provides the service a means of
relating the current interactions to prior ones. Other than being set by a Web service, cookies
can also be set by a script in a language such as JavaScript, if supported and enabled by the
client application. The client is then in charge of performing session-related operations, such
as saving and sending back cookies to the service, which are specific for each particular kind of
service.

While this solution might be feasible for pre-defined client applications, such as Web browser,
dynamic service consumption and composition are not able to perform specialized state opera-
tions for each service. Instead, dynamic service consumption and composition facilities demand
a unified and interoperable way of interacting with all services, regardless of their technical
varieties or stateful behaviors.

2.4. WEB SERVICE DESCRIPTION LANGUAGES 31

Based on the above requirements, the idea behind WSRF is to provide a dynamic service
hosting environment with a unified service interface. Instead of putting the state in the Web
service, WSRF keeps it in a separate entity called a resource or stateful resource, which stores
all the state information. The description of the resource is integrated in the unified service
interface, providing thereby external entities (i.e., clients and other services) with a view of the
state that the service manipulates in order to access and manipulate it in a standardized way.

In particular, the WS-Resource specification [OASIS, 2006a] defines a stateful service as a
service that acts upon stateful resources. This definition assumes that a service/behavior acting
upon stateful resources is described “statelessly”, delegating the responsibility for the management
of the state to another component such as a database or a file system.

The way that WSRF models services is interesting, but it does not cover all the existing
cases of stateful behaviors. WSRF assumes that the service implementation is stateless, and
all manipulated data are stored in an external resource, which is not common to all stateful
behaviors. As mentioned in our service model, services implementing stateful behaviors may
maintain an external resources state, besides the implementation state at runtime. Hence, in
order to cover all cases of stateful behaviors, we deviate the use of WSRF from its initial definition
of service state. Herein, we maintain our definition that service implementing stateful behaviors
hold a state internally at runtime, and we use the WSRF standard to externalize a copy of the
data maintained at runtime, in order to provide the external entities with the ability to access
and manipulate a part of the service state.

Overview of WSRF

A WS-Resource [OASIS, 2006a] is an association of a stateful resource with a Web service through
which the resource can be accessed.

To understand the concept of WS-Resources, we use the example of Service A, enabling train
ticket booking. Such a Web service requires manipulating a database (denoted SeatDataBase)
that manages the seat bookings per user and per train. As depicted in Figure 2.15, the association
between Service A and the ‘SeatDataBase’ is a WS-Resource, where the service is described using
its SAWSDL and the resource is defined using a resource properties document.

A WS-Resource Properties [OASIS, 2006c] (or resource properties) document is an XML
schema, which defines how the data associated with a stateful resource can be queried and
changed using Web service technologies. The WS-Resource Properties document also serves to
define the structure of the resource. For instance in the ‘SeatDataBase’ (Figure 2.15, the element
‘SeatResource’ has two attributes, namely ‘SeatNumber’ and ‘SeatStatus’ (which can be booked,
paid or empty). ‘SeatStatus’ element enables to store the status of a specific seat in a train in
order to prevent from, e.g., over-booking the train seats.

The association between the Web service and the resource is expressed by annotating the
SAWSDL port type 12 (portType) with the type definition 13 of the resource properties document,
using the attribute < wsrp : ResourceProperties... >.

Furthermore, based on the WSRF standard, a stateful resource supports a set of operations
enabling external entities (e.g, Web services or clients) to access and manipulate the state of its
elements. As presented in Figure 2.15, these operations are integrated in the SAWSDL descrip-
tion of the service in order to be advertised to, and used by, the external entities. According
to the WSRF standard, the service supports the GetResourceProperty operation and may sup-
port a set of SetResourceProperty operations. The GetResourceProperty operation provides the

12The ‘portType’ element includes a supported set of operations in the (SA)WSDL description.
13The target name space of the XML schema that defines the resource.

32 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.15: WS-Resource description

current state (i.e., XML data) of the XML element of the stateful resource at the request time.
SetResourceProperty operations allow performing changes on the state of the resource. There are
three types of change that may be applied on the state of the resource elements: insert, update
and delete.

Extending the WS-Resource Framework with Semantic Annotations

We extend the WS-Resource Framework with two semantic annotations: the first for the WS-
Resource Properties document and the second for the SAWSDL description.

On the one hand, in order to understand the semantic meaning of the data stored in the
resource elements, we extend the elements description of the resource properties document with
semantic annotations. The semantic annotations are enabled by the standard SAWSDL, as it
supports the annotations of both, WSDL and XML schemas.

For example, consider the train ticket booking ontology described in Section 2.4.1. Using
the train ticket ontology in the resource properties document of the ‘SeatDataBase’, the element
‘SeatResource’ is annotated with its corresponding semantic concept (i.e., Seat#Reservation),
as follows:

On the other hand, in order to differentiate WSRF-enabled operations for state access and
manipulation from the other service operations, we introduce an ontology that captures the
impact of the operations on the service state, which we call ‘OperationImpact’ ontology.

The ‘OperationImpact’ ontology (illustrated in Figure 2.16) is retrieved from the different
operations enabled by WSRF standard. An operation that queries the resource, such as GetRe-
sourceProperty, then is annotated with the ‘QueryState’ concept from the ‘OperationImpact’

2.4. WEB SERVICE DESCRIPTION LANGUAGES 33

<xsd:schema tns:”http//.../SeatDataBase ...>
...
<element name=”SeatResource”>

sawsdl:modelReference=”http://URI_Train_Ontology/Seat#Reservation”>
<complexType>

<element name=”SeatNumber” type=”intger”
sawsdl:modelReference=”http://URI_Train_Ontology/Reservation#SeatNumber”/>
<element name=”SeatStatus” type=”string”
sawsdl:modelReference=”http://URI_Train_Ontology/Reservation#SeatStatus”/>

</complexType>
</element>
...
</xsd:schema>

Figure 2.16: OWL ontology for distinguishing the SAWSDL operations with respect to their
impact on the resource state

ontology. An operation that updates the resource, such as SetResourceProperty operations
(delete, update, insert), is annotated with the ‘UpdateState’ concept from ‘OperationImpact’
ontology. The operations annotations are enabled by the SAWSDL standard, using the attribute
modelReference. In this way, the SAWSDL of Service A (partly presented in Figure 2.15)
includes, the WSRF-enabled operations and their semantic annotations. For example, GetRe-
sourceProperty operation is described in the listing below.

<wsdl:portType name=”SeatPortType” ... >
...
<wsdl:operation name=”GetResourceProperty”>

sawsdl:modelReference=”http://URI_of_the_Ontology/OperationImpact#QueryState”>
<wsdl:input name=”GetResourcePropertyRequest” message=”GetResourcePropertyRequest”>
<wsdl:output name=”GetResourcePropertyResponse” message=”GetResourcePropertyResponse”>

</wsdl:operation>
...
</wsdl:portType>

Using the semantic annotations, we are able to distinguish the “state access and manipulation”
operations (i.e., Get/SetResourceProperty) in the service interface, from the other operations
that the service provides, which we call “functional” operations. We model this distinction in
Figure 2.17.

2.4.6 SWRL

To express the pre- and post-conditions in WS, there is currently a main candidate: the Semantic
Web Rules Language (SWRL) [W3C, 2004c], which is a proposal for standardization at W3C.
Besides SWRL, many logic languages allow pre- and post-conditions to be expressed, including

34 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

Figure 2.17: Distinguishing between state access and manipulation operations and functional
ones

e.g., DRS 14, RDQL, SPARQL, and KIF. In SWRL and DRS the input parameters and local
parameters involved in the formulæ can be mentioned by their URI, but this is not the case for
SPARQL, RDQL, and KIF: when one of those languages is used, a mapping is needed to explic-
itly show the correspondence between variables involved in the formulæ and the corresponding
variables in the behavior description.

SWRL combines the OWL Web Ontology Language [W3C, 2004b] with the Rule Markup
Language (RuleML) [Boley et al., 2001]. SWRL allows users to write Horn-like rules 15 expressed
in terms of OWL concepts to reason about OWL individuals, primarily in terms of OWL classes
and properties.

In common with many other rule languages, SWRL rules are written as antecedent-consequent
pairs. The intended meaning can be read as: whenever the conditions specified in the antecedent
hold, then the conditions specified in the consequent must also hold. In SWRL terminology, the
antecedent is referred to as the rule body, and the consequent is referred to as the head. The
general form for these rules is expressed as follows [W3C, 2004c]:

body ⇒ head

where body and head are a set conjunctions of atoms, which are unary or binary predicates, i.e.,
properties that assigns truth values to combinations of k individuals (k ∈ {1, 2}). A general form
of the body and head of a rule can be expressed as follows.

a(x, y) ∧ b(y, z) ∧ c(x) ∧ . . .⇒ n(x, z) where
a, b, n : binary predicates(roles).
c : unary predicate (atomic concept).
x, y, z : variables, instances or literals.

At the current stage of specification, SWRL does not support more complex logical combinations
of atoms than implications and conjunctions.

To illustrate the use of SWRL for describing service rules, we employ the train ticket booking
scenario. For instance, a SWRL rule expressing that the seat number should not change after
confirming the reservation requires capturing the concept of ‘SeatNumber’ in OWL. Intuitively,
the relationships for confirming and changing the value of a seat number can be expressed using
OWL properties ‘hasValue’, ‘hasConfirmed’ and ‘hasChanged’, which are attached to ‘SeatNum-
ber’. The rule in SWRL would then be:

14DRS is described by Drew McDermott in an appendix of the OWL-S 1.0 release [W3C, 2004a].
15a Horn clause is a clause (a disjunction of literals) with at most one positive literal, e.g., ¬p1 ∨ ¬p2 ∨ ... ∨ pn. A

Horn formula is a conjunction of Horn clauses.

2.5. INTEGRATING WEB SERVICE CONCEPTS IN OUR BASIC SERVICE MODEL 35

SeatNumber(?SN)∧hasV alue(?SN, ?CltId)∧hasConfirmed(?SN, ?CltId) ⇒ ¬hasChanged(?SN, ?CltId)

where SN and CltId are the variables, such that SN represents the the seat number, and CltId
represents the identifier of the client requesting for train ticket booking, and for whom the seat
number SN has been assigned. A question mark (?) is put before the variable name to denote
that the rule is applied on a specific value of the variable.

Applying this rule would verify that if a value of the variable SN is correlated to a client
provided with a specific client identifier CltId, and the client has confirmed his reservation, then
the correlation should be kept till the end of the behavior execution.

2.5 Integrating Web Service Concepts in our Basic Service Model

Figure 2.18: Enriching the basic service model with Web services concepts

In the previous section, we presented the most commonly used Web service standards that
enable the description of the concepts of our basic service model. However, the presented Web
service standards introduce a set of concepts that have to be related to the concepts of our service
model. We further integrate them in our service model (presented in Figure 2.7), which becomes

36 CHAPTER 2. SERVICE-ORIENTED ARCHITECTURES

a specialization of SOA paradigm using Web service technologies. The result of enriching the
service model is presented in Figure 2.18.

In SAWSDL, we presented the “semantic annotation” concept, which corresponds to the
concept “semantic description” of the operations in the service model introduced in Section 2.3.
Integrating the semantic annotations model (introduced in Figure 2.9), the semantic description
of the operations in the service model (Figure 2.18) becomes of two types: “explicit identifier” and
“schema mapping”. As the “explicit identifiers” represent the semantic concepts that describe the
operations and their in/out parameters, they represent a specification of the concept “capability
description”.

In WSRF, we distinguished two kinds of operations: “functional” operations and “state access
and manipulation” ones. Hence, in our service model, we enrich the concept “operation descrip-
tion” with two sub-types, retrieved from the operation model, introduced in Figure 2.17. Get
and SetResourceProperty operations are modeled as a sub-type of the “state access and manip-
ulation” operations. Their semantic description includes the explicit identifiers that take their
value from the ‘OperationImpact’ ontology. Other (functional) operations can be described with
a richer semantic description that includes schema mappings.

WSRF models a state as a set of “resource elements”. Integrating this concept in our service
model, we model a state description as a composition of (1..*) “resource elements”.

2.6 Concluding Remarks

Service-oriented architectures (SOA) have proliferated in the few last years, due the facilities
they provide to both users and software developers. They enable to cope with the computer
environments’ heterogeneity. In this chapter, we presented the basic concepts of SOA, focusing
more specifically on the service model. We established a basic service model that integrates the
main concepts that define a service as well as their inter-dependencies.

We further emphasized the importance of the SOA paradigm through one of its major real-
ization: Web services. Web services do not only support the concepts introduced in our service
model, but they also provide means to describe them through a set of Web service languages.
Among these languages, we used OWL ontologies for describing the service capabilities, SAWSDL
for describing the service interfaces, BPEL for describing composite behaviors and services,
WSRF for describing the service state, and SWRL for describing pre- and post-conditions. In
addition, we extended WSRF with semantic annotations in order to provide the description of
the state and the operations that manipulate it with a richer semantic description. Finally, we
integrated the WS-introduced concepts in our service model which becomes a specialization of
SOA concepts using WS technologies.

Still, the SOA abstraction contributes, but is not sufficient, to cope with all pervasive envi-
ronments’ characteristics, such as openness and dynamics. In particular, SOA systems do not
support service continuity in face of runtime variations of services availability. In the following
chapter, we present the necessary background on dependability in SOA systems.

There is a tremendous differen-

ce between a computing system

that works and one that works

well

[Birman et al., 2004]

3
Dependability in SOA Systems

Since SOA systems are collections of interacting services implemented on multiple interconnected
machines, they inherit all the classical challenges associated with building distributed systems,
including dependability requirements in order to ensure continuity in service provisioning for the
users.

Ensuring service continuity in traditional closed distributed systems has been the focus of
several research activities; accurate and relevant solutions exist, each of them enhancing a spe-
cific facet of dependability, including system reconfiguration to deal with failure during system
execution. However, these solutions are not applicable as they are in SOA systems. Indeed, in
traditional distributed systems, components are implemented to work together, where a main
authority has knowledge of the changes that should take place, and its main responsibility is to
perform them, whilst not jeopardizing the overall system integrity [Kramer and Magee, 1990]. In
SOA systems, such authority lacks. Services are autonomous entities that are not implemented
to work together. Hence, their data dependencies cannot be predicted at design time. Ensuring
dependability in SOA systems should take into account these dynamic data dependencies. Also,
the knowledge about services is limited to their description. The service description has thus to
advertise the dependability means the service supports, in order to use them when a reconfig-
uration is required. Thus, ensuring dependability in SOA systems requires to (1) identify the
individual dependability means of the SOA system components, i.e., services, and (2) coordinate
them according to their data dependencies, while (3) respecting services autonomy and loose
coupling.

This chapter points out the need for adapting traditional techniques in order to ensure de-
pendability in SOA systems. Section 3.1 presents the fundamental concepts of dependability,
focusing, in particular, on service unavailability as a type of failure that threatens dependability
of SOA systems. More specifically, we envision to replace an unavailable service with another
one, in order to take over the execution of the unavailable service. To this aim, Section 3.2
presents the existing dependability techniques that are used to face component unavailability in
closed distributed systems, as opposed to open dynamic SOA systems. In Section 3.3, we define
the concept of service substitution, and present the limits of applicability of these techniques
in SOA systems. In particular, we stress the need for adapting the dependability techniques of
closed systems to fit SOA systems specifics, as well as, the need for a middleware support for
dependability in SOA systems. Some of these techniques have been adapted and widely used
in SOA systems. Still, their adaptation does not completely serve our need for runtime service
substitution; Section 3.4 reviews a set of existing approaches for service substitution in SOA
systems in order to propose an approach that deals with their limits while taking advantage of
their strong points. Such an approach is faced with several issues; Section 3.5 points out these

38 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

issues. Finally, Section 3.6 presents our concluding remarks.

3.1 Basic Concepts of Dependability

Dependability of a computing system is the ability to deliver a service that can justifiably be
trusted [Laprie et al., 1992, Avizienis et al., 2001]. The main goal of dependability is to conceive
and specify systems in which a fault is natural, predictable and tolerable. It is a global concept
that includes various notions that can be grouped into three classes: threats, means and attributes.
[Laprie et al., 1992] organizes these classes along with their subclasses as a ‘Dependability Tree’,
which is represented graphically in Figure 3.1.

Figure 3.1: Dependability tree

The threats against dependability are:

• Errors : are the parts of the system state that may cause a subsequent failure;

• Failures : occur when errors reach the service interface and alter the service;

• Faults: are the hypothesized causes of an error. A fault is active when it produces an error;
otherwise it is dormant.

They are undesired –in several cases, unexpected– circumstances causing or resulting in
undependability. The means to attain dependability are:

• Fault prevention: how to prevent the occurrence or introduction of faults;

• Fault tolerance: how to deliver correct service in the presence of faults;

• Fault removal : how to reduce the number or severity of faults;

• Fault forecasting (or prediction): how to estimate the present number, the future incidence,
and the likely consequences of faults.

which are techniques enabling to deliver a service on which reliance can be placed, and to reach
confidence in this ability. The attributes of dependability [Laprie et al., 1992] are:

• Availability : readiness for correct service;

3.1. BASIC CONCEPTS OF DEPENDABILITY 39

• Reliability : continuity of correct service;

• Safety : absence of catastrophic consequences on the users and their environment;

• Confidentiality : absence of unauthorized disclosure of information;

• Integrity : absence of improper system state alterations;

• Maintainability : ability to undergo repairs and modifications.

Service failure

In the system dependability domain, the lifetime of a system is perceived by its users as an
alternation between two states of the delivered service namely correct and incorrect, which are
relative to the accomplishment of the system function:

• Correct service, where the delivered service accomplishes the system function;

• Incorrect service, where the delivered service does not accomplish the system function.

A service failure is an event that occurs when the delivered service deviates from the correct
service. A service failure is thus a transition from a state of correct service to incorrect service.
In contrast, the transition from incorrect to correct service is a restoration [Laprie et al., 1992].

Due to computing environments dynamics, service availability cannot be guaranteed. In this
thesis, we aim at dealing with service unavailability by ensuring continuity in service provisioning
for the user, i.e., reliability of SOA systems. In our study, we concentrate on service unavail-
ability as a type of failure that threatens reliability. We study more in details the causes that
induce service unavailability, and we focus on dependability means that enable the SOA system
restoration.

Causes of failure

In distributed systems, service availability is based on the presence of a network connection
between the client and the service. [CHANDRA et al., 2001] proposes a failure classification
based on location, in which we can distinguish three types of failures: 1) “near-user ”, 2) “in-
middle” and 3) “near-host”. “Near-user” failures represent failures that disconnect a user device
from the rest of the networked environment. Similarly, “near-host” failures make the service
provider unreachable from the other networked environment constituents due to, e.g., crashes,
overloads. “In-middle” failures refer to the break of the network connection that links the user
device and the specific service providers, but the user may still connect to a significant number
of the remaining networked services. Most notably, these failures represent an interruption of
connectivity to a single device that does not affect any other device to communicate. In our
study, we focus specifically on dealing with “in-middle” and “near-host” failures to ensure the
continuity of service provisioning for the user. Indeed, “near-user” failures make the user isolated
from any other networked device, which makes the realization of service continuity possible only
with local services that are deployed on the user device.

Dealing with service failure

To deal with service unavailability, the dependability means of Figure 3.1 may be grouped into
the two following type of solutions:

40 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

• Prevent or forecast service unavailability either by eliminating, or by predicting all cases
that induce “in-middle” or “near-host” failures. However, this is not achievable in dynamic
environments where independent entities (i.e., clients and services) autonomously join and
leave the networked environment without beforehand notification.

• Tolerate service unavailability and remove the failure by reconfiguring the SOA system
according to the user environment.

Both fault prevention and forecasting means have the same purpose of fault avoidance. However,
fault avoidance can be applicable only at the price of user freedom (i.e., mobility) or environ-
ment dynamics. In our study, we mainly concentrate on the fault tolerance (FT) techniques in
order to respect the environment dynamics and entities autonomy when restoring SOA systems
function [Fredj et al., 2006].

As presented in the previous chapter, SOA systems implement either stateless or stateful be-
haviors. The restoration of a SOA system is more or less straightforward of stateless behaviors.
Indeed, from a client-oriented perspective, the unavailability of a stateless behavior before pro-
ducing the required results amounts to re-sending the same request to another service instance
that provides the required functionality. In addition, since a service that implements a stateless
behavior does not maintain any state for the interaction with a specific client, its recovery from
a network disconnection or other failure consists in interrupting the execution processing of the
received request and getting back to a failure-free situation, i.e., before receiving the client re-
quest. Therefore, stateless behaviors are by definition fault tolerant and actually do not require
any extra effort other than redirecting the client request to another networked service, and can-
celing the request processing in order to leave the service in a consistent state. The restoration
of SOA systems that involve stateful behaviors may require a significant effort for maintaining
and transferring the state of the service that becomes unavailable. State durability is an optional
attribute of dependability that focuses on maintaining the state availability after service fail-
ure. In our study, a part of our focus includes the study of the techniques that preserve state
durability in SOA systems.

However, before going more in details in the study of the FT techniques for open and dynamic
SOA systems, we first study existing techniques that deal with system unavailability in closed
distributed systems in order to discuss the limits of their applicability in SOA systems, and
elaborate on their adaptation in order to fit SOA systems specifics.

3.2 Tolerating System Unavailability in Closed Distributed Systems

Tolerating systems unavailability have been the focus of tremendous efforts in closed distributed
systems, where all the system components that –actually, or possibly– participate in the dis-
tributed system are known, and in most of the cases designed and implemented by the same
team. The specifics of closed distributed systems are different from the ones of open, dynamic
SOA systems, however, the issue remains the same: How to enable continuity of the system
execution when a system component becomes unavailable at runtime.

The abundant resources of similar software systems that are available in the networked envi-
ronment makes fault tolerance by design diversity [Bishop, 1995] a natural choice for distributed
systems to ensure reliability. Replacing the unavailable software component with another one
available in the networked environment enables to fulfill the distributed system objectives.

Runtime system replacement recalls naturally the well-known replication technique. Sec-
tion 3.2.1 presents the basic concepts and the different strategies of replication that have been

3.2. TOLERATING SYSTEM UNAVAILABILITY IN CLOSED DISTRIBUTED SYSTEMS 41

introduced and used in closed distributed systems. Then, we present in Section 3.2.2 the impact
of the replacement of a system component on the other system components that are participating
in the distributed system. We also present the techniques that enable restoring the distributed
system consistency after component replacement.

3.2.1 Basic Concepts of Replication

From the review of the state of the art, replication is the de facto solution for systems reliability.
Replication consists in distributing replicas of data or a software application over a network, in
order to back up the data or the functioning of the system in the case of failure. In the case
of software application replication, the functioning of the original application with its replicas
are regulated with strategies that indicate, e.g., the right number of replicas, their appropriate
locations, and the way they interact with the original software application, and also among
them. However, strategies for replicating distributed systems face a trade-off: they should be (1)
efficient (low latency), while (2) ensuring consistency of the replicas. The replication strategies
can be of three types: active, passive or replay [Helal et al., 1996].

• Active replication: replicas run simultaneously with a constraint of total order in sending
and receiving messages, i.e., clients send requests to all replicas, and replicas have to
process the clients’ requests in the same order. In this way, all replicas maintain the same
data as a state, which are updated in the same way according to the clients requests.
The state coherence among the set of replicas is made implicitly: replicas have to provide
deterministic code in order to reach the same state after processing each request, i.e., given
the same message as input, all the replicas produce the same output message as a result of
processing the input message. In this way, at any time of execution, all replicas hold the
same data internally, which represent their state.

To overcome the constraint in messages order, active replication is usually implemented us-
ing the Atomic Broadcast algorithm [Birman et al., 1991, Kaashoek and Tanenbaum, 1991].
The algorithm is set as follows. Consider a group G of replicas, and a client issuing an
atomic broadcast of a message m to G. First, the message m is sent to all the replicas
in G. Then, one of the replicas in G, called the sequencer, assigns sequence numbers to
the request messages and sends these numbers to G, to inform them of the order of ex-
ecuting the clients’ requests: when a replica receives a client’s request, the replica does
not execute the request until it has received the message order from the sequencer. Then,
each replica in G delivers the response messages according to the sequence numbers of
the related requests. Several efforts have been proposed in the literature in order to make
atomic broadcast efficient (i.e, with low latency), while ensuring consistency of the replicas.
A comprehensive survey of a set of these efforts is presented in [Défago et al., 2004].

The main advantage of active replication resides in its simplicity and failure transparency.
However, the determinism constraint 1 is the major limit of this strategy. To support
non-determinism in active replication, existing approaches rely on synchronization or semi
active replication [Poledna, 1996].

Synchronization consists in applying an agreement protocol (i.e., consensus) that rules out
dynamic scheduling decisions and task preemption. The concensus problem is stated as
follows [Wolf, 1998]: Given a set of replicas, each replica proposes a value vi. They then
have to decide on a one common value V of the values vi.

1Starting from the same state, all the replicas have to reach to a same different state after processing the same
requests in the same order.

42 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

Semi active replication [Powell et al., 1991] relies on the selection of a “leader” (a central
replica) that is in charge of executing non-deterministic operations. The other replicas
(called “followers”) have to be informed of the leader’s decision. In this case, it is not neces-
sary to keep message order consistent for the replicas group. Rather the leader selects the
message to process next, and communicates his selection to the followers. Deterministic op-
eration sequence can be executed by the leader and the followers concurrently. Compared to
synchronization method, the advantage of semi active method is that non-deterministic op-
erations are allowed without the need to carry out a consensus prototcol which induces low
complexity of the communication protocol. An information dissemination protocol, such
as reliable broadcast, is sufficient for semi-active replication to handle non-determinism.
Still, the communication overhead for non-deterministic decisions may be unacceptable for
many application areas.

• Passive (primary-backup) replication [Budhiraja et al., 1993] where a replica is designated
as a primary and all the others as backups. Compared to active replication, for passive
replication, only one replica (i.e., the primary) among the group is active . Clients make
requests only to the primary. If the primary fails, then one of the backups takes over
the interaction with the clients. Two main variants of the passive replication are cold
and warm, where the difference lies mainly in the synchronization between the primary
and the backups. In cold passive replication, each request processed by the primary is
checkpointed (i.e., the state of the replicas is stored after processing the request) into a
predefined secondary storage. In case the primary fails, the logged information in the
secondary storage is retrieved and used to start a new primary. Hence, the backup replica
synchronizes its state only when a failure occurs. The warm passive replication requires
that all state updates generated by the primary are propagated periodically (i.e., after a
pre-fixed period of time) to the backups. As a special case of the warm approach, hot
passive replication propagates the state updates at the end of each request that updates
the state of the replica.

The difference between active and passive replication lies in the determinism constraint.
In passive replication, the requirement is related to the synchronization of the replicas,
whatever the state of the primary replica is, the secondary has to synchronize its state
accordingly. There is no constraint on the processing of the requests. All the secondary
have only to be able to synchronize according to the state of the primary, and resume the
execution from the last state stored.

In comparison with active replication, a main advantage of passive replication is the low
consumption in terms of computing and networking resources, as the requests are not
processed by the replicas, and the client interacts with a replica using unicasts. However,
passive replication suffers from a high recovery time when failures arise, specially, in cold
passive replication.

• Another type of replication is replay [Strom and Yemini, 1985] or log-based replication,
which consists in reconstructing the state of the primary on a new replica. The reconstruc-
tion of the state is based on logging all the message exchanged between the client and the
primary. The execution is restarted from the beginning with the backup replica, in order
to reconstruct the state of the primary.

As for active replication, the replicas have to be deterministic in order to provide the same
processing results as the primary. We consider the replay as a middle strategy between
active and passive replications: as for passive replication, it relies on stored data (i.e.,the

3.2. TOLERATING SYSTEM UNAVAILABILITY IN CLOSED DISTRIBUTED SYSTEMS 43

logged messages) to put the secondary replica in the same state as the primary, at the dif-
ference that the stored data represent the logged messages and not the state of the primary.
On the other hand, as for the active replication, the state of the replica is reconstructed as
a result of processing the set of requests, and not as a result of synchronization with the
state of the primary. In this way, replay reduces network consumption by avoiding requests
broadcast. It involves the secondary replica only when a failure occurs as for passive repli-
cation. However, unlike active replication, replay saves computational resources since only
a single replica processes the requests, and not all the replicas, and only when a failure
occurs. However, upon a failure that affects a long-lived conversation, the response time of
the replay turns to be high, since the backup service replays the sequence of all messages
that have been exchanged from the beginning of the conversation.

3.2.2 Reconfiguring Closed Distributed Systems

Using passive replication, the secondary replica synchronizes its state with the last state stored
(or checkpointed) of the primary replica. However, the system unavailability may occur between
two state storages. In such cases, some computation performed by the now unavailable system
is lost, as it is not taken into account in the state transferred to the secondary. In the case that
the distributed system involves a set of component systems, besides the unavailable component,
these components may be affected by the loss of computation due to data dependencies with
the now unavailable system. In this case, it is required to reconfigure these systems in order to
restore the distributed system consistency before resuming its execution, and notify the client
about the reconfiguration.

This issue has been thoroughly studied in the fault tolerance domain, leading to checkpoint-
based rollback recovery technique. Hereafter, we present a brief background on the basic concepts
of such a technique, along with the existing protocols that realize it.

Basic concepts of checkpoint-based rollback recovery

Rollback recovery has been one of the most widely used means for system recovery in the case of
failure. The basic idea behind it is to consider the system execution as a succession of valid system
states, and when a failure occurs between two valid states, to roll the system back to a previously
reached valid state and resume the execution from that state. Commonly used techniques for
rollback recovery are based on checkpoints : the system saves in a stable storage some of the valid
states it reaches during its execution. The saved state of a single process is called local checkpoint,
the one of a system that includes multiple processes is called global checkpoint, which is a set
of local checkpoints of the processes participating in the system. The action of saving the state
is called checkpointing or taking a checkpoint. In rollback recovery, the dependencies between
processes may force some of the processes that did not fail to roll back, creating thus a rollback
propagation. For example, consider the situation where a sender of a message m rolls back to
a state that precedes the sending of m. The receiver of m must also roll back to a state that
precedes m’s receipt; otherwise, the states of the two processes would be inconsistent because
they would show that message m was received without being sent, which is impossible in any
correct failure-free execution [Elnozahy et al., 2002]. Rollback propagation helps the system to
resume its execution from a consistent global checkpoint [Chandy and Lamport, 1985], also called
recovery line [Randell, 1975]. Under some scenarios, rollback propagation may extend back to
the initial state of the computation, causing the loss of all the work performed before a failure.
This situation is known as domino effect.

44 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

The checkpoint-based techniques for system recovery which restore the system state from
the checkpoints previously taken, are qualified as checkpoint-based rollback recovery. Different
protocols of checkpoint-based rollback recovery are presented in the following.

Protocols for checkpoint-based rollback recovery

In checkpoint-based rollback recovery [Elnozahy et al., 2002], there are three types of check-
pointing protocols that distinguish themselves according to the tradeoffs achieved between the
overhead of checkpointing and the effectiveness in reducing the extent of the domino effect:
coordinated, communication-induced and uncoordinated.

Coordinated or synchronized checkpointing protocols require processes to synchronize their
checkpoints in order to form a consistent global state of the system at each checkpointing deci-
sion. During the global synchronization phases, synchronization messages are exchanged between
processes. There exist both blocking and non-blocking checkpointing methods. In the blocking
approach, processes block their normal execution during checkpointing and exchange only syn-
chronization messages. While in the non-blocking one, processes overlap their normal execution
with the synchronization phase. Generally, the non-blocking approach is preferred due to its
lower latency. Coordinated checkpointing ensures recovery without domino effect, since, after a
failure, each process will restart from its most recent checkpoint.

Alternatively, Communication-Induced Checkpointing (CIC) [Alvisi et al., 1999] protocols enab-
le processes autonomy in deciding when to take checkpoints while avoiding domino effect. Pro-
cesses take two kinds of checkpoints, local and forced. A process can take a local checkpoint at
runtime, when the checkpointing is most convenient [Li and Fuchs, 1990]. In addition to local
checkpoints, CIC protocols forces processes to take checkpoints, i.e., forced checkpoints, in order
to guarantee the eventual progress of the recovery line. As opposed to coordinated checkpoint-
ing, CIC protocols do not exchange any special coordination messages to determine when forced
checkpoints should be taken. To guard against the domino effect, the CIC protocols piggyback
protocol-specific information to application messages that the processes exchange. The receiver
then examines the information and occasionally is forced to take a checkpoint. Thus, processes
have to pay the overhead of piggybacking information on top of the application messages.

Similarly to CIC, uncoordinated checkpointing allows each process to decide autonomously
when to take checkpoints. The distinctive feature of this kind of protocol compared to the previ-
ous ones is that it neither synchronizes nor enforces checkpoints, maximizing thereby processes
autonomy. The main advantage is that each process may take a checkpoint whenever it is most
convenient and locally appropriate. However, uncoordinated checkpointing may suffer from the
domino effect. In this context, many approaches have been proposed to remedy to the domino
effect in independent checkpointing. Among them, log-based uncoordinated rollback recovery uses
both checkpointing and message logging techniques, such as in [Sens, 1995]: instead of relying
solely on checkpoints for recovering from a failure, each process logs the messages that have been
received from and sent to other processes between successive checkpoints. After a failure, the
system uses checkpoints to recover to a recent error-free state and replays the logged messages
to move its execution to a point as close as possible to the occurrence of the failure. The system
determinism ensures the state consistency after recovery.

3.3. DISCUSSING THE LIMITS OF APPLICABILITY OF FT TECHNIQUES FOR CLOSED

DISTRIBUTED SYSTEMS IN SOA SYSTEMS 45

3.3 Discussing the Limits of Applicability of FT Techniques for
Closed Distributed Systems in SOA Systems

As described in the previous chapter, SOA systems present an evolution of the traditional closed
distributed systems. In closed distributed systems, fault tolerance is designed and implemented
in accordance with the system components. However in SOA, application components (i.e.,
services) are independent entities that are not necessarily designed to work together. Thus, even
though each service may implement its own FT mechanism, services are not aware of possible data
dependencies with other services involved in the SOA system. In case of service unavailability,
a mechanism that ensures the whole SOA system consistency is required [Zarras et al., 2006].
Consequently, an automated integration of FT mechanisms to SOA systems is highly desirable,
as it allows making a system –composed of independent services– fault tolerant with regard to the
individual FT mechanisms of the services. Furthermore, the FT mechanism should be reusable
for different SOA systems, as SOA systems can be composed dynamically and their composition
is mutable over time.

In this section, we point out the limits of applicability of the above presented FT techniques in
SOA systems. We first define the notion of service replacement or substitution in SOA systems.
Then, we consider the applicability of replication techniques on services in order to substitute a
service with another one. Finally, we consider the case that the service substitution is performed
on a running orchestration in order to point out the limits of applicability of checkpoint-based
rollback recovery protocols. We finally stress the need of a middleware support for handling the
adaptation of replication and checkpoint-based rollback recovery in order to ensure SOA systems
reliability.

3.3.1 Service Substitution

When considering the issue of service substitution, it is first necessary to clearly define what is
the exact meaning of a substitute service in open, dynamic SOA systems.

Definition 4. Service Substitution

A service A is a substitute for a service B if the service A offers a functionality FA that is able to
replace at runtime a functionality FB provided by the service B, i.e., the two following require-
ments have to be met.

1. Respect of the requested capability: if FB complies with a user-requested capability, then FA
should also.

2. Functionalities conformance: FA has to conform to FB in order to ensure the runtime sub-
stitution. Functionality conformance comprises both capability and behavioral confor-
mance. The former ensures that the functionality FA preserves the meaning of FB , which
is guaranteed if the first requirement is satisfied. The latter guarantees that the runtime
replacement of the FB’s behavior by FA’s one can be correctly performed and does not
lead to incoherent results.

Note that the service substitution is defined essentially with respect to the functionalities
provided by the services. Indeed, it is more accurate to call it “functionalities substitution”,
instead of “service substitution”, as services may provided multiple independent functionalities.
Also, in the above definition, we do not impose any constraint on services implementation. The
unavailable service and its substitute can be independently designed and implemented, which
gives to service substitution a flexibility that fits SOA systems autonomy and loose coupling.

46 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

3.3.2 Applicability of Traditional Replication Techniques

Active replication strategies provide short recovery time. However, they require determinism for
the replicas, while in general services in SOA systems are not necessarily deterministic.

Passive replication reduces network utilization by activating redundant replicas only in case
of failures. It requires replica synchronization after a failure, which requires that the secondary
replica is able to understand and correctly use the state transferred from the primary. However,
services are not assumed to be identically realized.

Similarly to passive replication, replay is activated only upon a failure, with the difference
that it does not synchronize the state of the replica but reconstructs the state of the primary
in the secondary replica. Thus, the replay may induce a higher recovery time than passive
replication in the case that the failure occurs at an advanced stage of the execution. Also replay,
requires determinism in order to enable the secondary to use the exchanged messages with the
primary. However, SOA systems are not deterministic.

Hence, the above techniques need to be adapted to meet SOA systems specifics.

1. In active replication, we may broadcast each client request to all service candidates and
tolerate that the state of the candidates may be different. At substitution time, the client
has to be updated according to the current state of the substitute service. Still, this is
applicable only when the service responses are not governed by the client interactions, but
only by the state they maintain. This heavily restricts the service internal logic. Hence, in
our study, we essentially focus on passive and replay techniques.

2. In passive replication, the synchronization requires a state mapping between the state
provided by the now unavailable service and the one required by the substitute service.

3. The replay should adapt the sequence of messages as well as their content according to the
substitute service requirements.

In Section 3.4, we survey and discuss how some existing replication strategies (particularly
passive and replay ones) need to be adjusted because of the intrinsic features of services, and
how substitution cannot fit into other strategies (particularly active ones).

3.3.3 Applicability of Traditional Checkpoint-based Rollback Recovery

Using passive replication, the substitute service should be able to synchronize with the last state
stored of the unavailable service.

However, as the synchronization is based on a state mapping between the unavailable service
state and the substitute one, in some cases, the mapping is not possible with last stored state of
the unavailable service, but only with a previous one. In other cases, the last state stored of the
unavailable service does not correspond to the most recent state stored before the unavailability
occurs. In both cases, some computation performed by the now unavailable service is not taken
into account by the state transferred to the substitute service, and thus is lost. In the case that
the service participates in a composition, and more particularly in a service orchestration, not
only the client but also the other (still-available) services participating in the orchestration may
be affected by the loss of computation due to data dependencies with the now unavailable service.
The service orchestration has then to be reconfigured in order to restore its consistency before
its execution resumption, and notify the client of the reconfiguration. This recalls all naturally
the issue tackled in checkpoint-based rollback recovery. Hereafter, we consider the applicability
of the previously presented checkpoint-based rollback protocols.

3.3. DISCUSSING THE LIMITS OF APPLICABILITY OF FT TECHNIQUES FOR CLOSED

DISTRIBUTED SYSTEMS IN SOA SYSTEMS 47

• In coordinated checkpointing, the replacement of the unavailable is heavily constrained,
i.e., the substitute component should have the same implementation as the old one and
should be able to synchronize it state with any given checkpoint. While, we target open, dy-
namic SOA-based distributed systems without restricting the implementation of the service
substitute. Thus, we cannot expect from the substitute service to be able to synchronize
its state according to any checkpoint, which is provided as a black box from the unavail-
able service. Hence, coordinated checkpointing is not appropriate for services populating
todays’ open SOA environments.

• The CIC protocols are restrictive for SOA systems, as they expect from services to be able
to interpret protocol-dependent information. Also, services have to allow forced checkpoints
at any time of their execution regardless of the logic of their implementation. Similarly
to coordinated checkpointing, CIC protocols expect that substitute services are able to
synchronize with any data included in a checkpoint at any time of the execution of the
behavior. These constraints make CIC protocols hardly applicable in autonomous SOA
systems.

• Regarding uncoordinated checkpoint-based rollback protocol, the main advantage lies in
allowing each component system to take a checkpoint whenever it is most convenient and
locally appropriate, which respects the loose coupling and autonomy of SOA systems.

Among the discussed protocols, uncoordinated checkpointing best meets the specific charac-
teristics and requirements of open, dynamic SOA systems. However, it is not directly applicable
in SOA systems. First of all, the notion of checkpoint is not explicitly defined in SOA systems.
Thus, we should extend the execution of SOA systems with checkpoints. Also, services involved
in service orchestrations are not aware of each other, and thus, they are not aware of their
data dependencies. Maintaining orchestrations consistency after service unavailability requires
managing the service checkpoints by a party that is aware of the data dependencies between
services, i.e., the client. Hence, we should make the client fault tolerant in order to manage the
reconfiguration of the orchestrated services.

For reusability purposes, we stress in the next section the need for a middleware support to
embed the approach that adapts FT techniques to specifics of SOA systems.

3.3.4 Need for Middleware Support for Fault Tolerant SOA systems

In the current study, we focus on middleware architectural support for fault tolerance, not because
application-level or network-level approaches are uninteresting or less promising, but because the
middleware-level seems to provide the required level of abstraction, genericity and reusability to
deal with service unavailability [Bernard, 2006]. Indeed, applications solutions are very often not
reusable for multiple SOA systems, and network ones require the support of network infrastruc-
tures to achieve seamless mobility. Hence, FT mechanisms should be supported by appropriate
middleware. They need to have access to relevant information from the application layer (e.g.,
current state of service), but also from the lower layers (e.g., availability of network connections)
in order to allow the middleware (possibly with some user intervention) to decide when to handle
of, and how to change, the configuration of the system in order to maintain service continuity.
To avoid dependence on network infrastructures, a promising solution should try to substitute
the service that becomes unavailable with another service that can resume the execution previ-
ously started by the now unavailable service [Rong et al., 2007a]. The following section presents
relevant efforts that have been proposed to deal with service substitution in SOA systems.

48 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

3.4 Existing Approaches to Support Service Substitution in SOA
Systems

Aiming at enhancing dependability through replication [Helal et al., 1996], there exist a plethora
of replication middleware for distributed systems. However, few solutions exist in the specific case
of service-oriented systems [Osrael et al., 2006]. This section reviews the research approaches
undertaken in the field of fault tolerant middleware for SOA systems. In particular, it focuses
on some pragmatic issues in dealing with service substitution and service state restoration.

WS-DREAM [Zheng and Lyu, 2008] proposes an approach to evaluate the performance of
different replication strategies and assist developers to select the most suitable strategy amongst
nine recovery strategies, including active replication, passive replication, replay, and a combina-
tion of replay and active replication strategies. Other recovery strategies, such as retrying the
same service instance, are not applicable in case of service unavailability. With WS-DREAM,
users in different locations evolve in a collaborative environment, helping each other to carry
out their requests, and share some results under the coordination of a centralized server. WS-
DREAM server serves as a coordinator for the users. It is in charge of receiving requests, schedul-
ing the users’ tasks, and analyzing the results. Similar to service orchestrations, WS-DREAM
has a coordinator server that generates, runs and coordinates a composite behavior (test plan)
over Web services. The tests enable assessing the reliability of Web services in order to make
service-oriented applications reliable. They also enable to select the optimal replication strategy
for applications according to the reliability of individual services [Salatge and Fabre, 2007]. This
complies with our purpose of adapting the replication strategy to the runtime system configura-
tion.

Considering the issue of service unavailability from the service side, [Zhang et al., 2006] pro-
poses a service-transparent approach to handle service replication and state reconstruction tech-
niques. Zhang et al. propose an architecture that allows service developers to protect service
state flexibly and transparently using durability attributes. The state is stored in one or more
state objects, where the durability –that is, the likelihood that the state can survive failures– is
an explicit attribute associated with each object. Services may persent different types of state,
each of them with specific durability requirements. For example, an e-commerce service main-
tains inventory information, information about the regular customers (e.g., address, credit card
number, preferences), and a state about on-going customer interactions (“shopping carts”). The
inventory information is most valuable for the service because its loss would prevent the service
from operating, and thus it is provided with a high durability attribute, while the loss of the
information about ongoing customer interactions would be a nuisance for the users, but would
not stop the service. Thus, it is provided with a lower durability attribute. The authors focus
on optimizing the tradeoff between cost and the risk of losing the state. For example, some part
of the service state can be stored in a database, while another part is replicated in-memory on
two or more computers. The idea that governs this approach is to transform the service code in
order to create a new Web service with the associated state object. Obviously, contrary to our
main focus, this cannot be applied on services in general as the approach requires to have the
service code in order to make services fault tolerant. However, what can be learned from this
approach is that the state objects composing the state of a service can be provided with priority
attributes, e.g., mandatory or optional, in order to be able to transfer the state of the service
with missing (optional) data to the substitute service, while the substitution remains correct.

Similarly to [Zhang et al., 2006], the main issue considered by Tempest [Marian et al., 2008]
is to store the soft state of a service (i.e., data that do not have to be stored durably and can be
reconstructed at some cost, such as short-lived user sessions). It replicates the service’s soft state

3.4. EXISTING APPROACHES TO SUPPORT SERVICE SUBSTITUTION IN SOA SYSTEMS49

in order to make the recovery more efficient in time and resources rather than reconstructing
it through user interaction or third-tier reaccess (i.e., database, file). Tempest provides the
developer with a Java runtime library that enables to store in memory the soft state of a service as
TempestCollections (i.e., data structures similar to Java collections) in order to decrease resource
consumption when accessing the service state at recovery time. The data stored is automatically
and transparently replicated across multiple machines, providing fail-over and load balancing of
soft state. Based on active replication, Tempest multi-casts all the requests to the networked
replicas (which are multiple instances of the same service that execute across different servers).
To maintain replicas consistency, it relies on the possibility that all replicas converge to the
same set of objects [DeCandia et al., 2007] using gossip-based reconciliation . The process of
reconfiguration is set as follows. Each request is uniquely identified using a hash function over
the front-end’s IP address and port pair (called wsiid). This identifier serves essentially for
selecting the replicas that first answer to a request, and for the reconciliation process, in order
to identify the objects that are added and/or removed. For an update request, a request is sent
to all replicas and a hashing mechanism is employed to select which instance is responsible for
replaying the update on the state. For a read request, the front end entity selects the k instances
that respond first to the request; this ensures load balancing over replicas. TempestCollections
are automatically and periodically checkpointed on a disk. A process fail is detected by time out.
When a node crashes and reboots, upon starting the Tempest server, the services are brought
up-to-date with the state that was last written to disk before the crash. When a server is newly
spawned, or when a server that has been unavailable for a period of time missed many updates,
Tempest employs a bulk transfer mechanism to bring the server up-to-date. In such cases, a
source server is selected and the contents of the relevant TempestCollections are transmitted
over a TCP connection.An implication of this model is that the programmer is not provided
with ACID 2 transactions, which may lead to inconsistencies. To cope with the lack of atomic
execution, the authors rely on the assumptions that (1) the soft state is not critical for the system
functioning, and (2) data stored within soft state structures are naturally immutable (e.g., a list
of items). Thus, manipulating it with arbitrary operations may not have impact on the soft
state. For instance, a user is always asked to verify the contents of a shopping cart or the final
itinerary of a travel plan before committing to it. Nevertheless, when considering a solution for
service unavailability in SOA system, the above issue can be avoided using passive replication.
Hence, this approach remains interesting as it differentiates between read and update requests,
not only on the entire service state, but more specifically on “pieces” of the service state, i.e.,
data stored in Tempestcollections. Indeed, even though in the environment that we consider, we
may not have multiple replicas, this differentiation enables to ease drastically the reconfiguration,
meaning that only update requests have to be synchronized with the substitute service state.
However, as services are not identical, and neither are the results of their read request, the client
information has to be synchronized according to the service results. For instance, in case of a
hotel booking service, a read request consists in providing the client with the room cost; thus
substituting a hotel with another requires providing the client with the cost of the room in the
substitute hotel.

In [Maamar et al., 2008], the authors consider the substitution of a service with another
one that provides semantically similar functionalities, both belonging to the same community 3.
Communities are dynamic, where a master is elected and monitors the activities of the members of
the community in terms of, e.g., joining and leaving the group. The master is further responsible
for attracting and retaining services in a community using rewards [Bentahar et al., 2007]. When

2ACID: Atomicity, Consistency, Isolation, Durability.
3Group of similar services.

50 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

a candidate Web service provides a functionality that characterizes a community, the master
Web service engages its provider in interactions. Some arguments are used during interactions,
including high rate of participation of the existing Web services in compositions, and efficiency
of these Web services in handling users’ requests. Furthermore, retaining Web services in a
community for a long period of time is a good indicator for the community: although the Web
services in a community are in competition, they expose a cooperative attitude as they aim
at participating as much as possible to service compositions. The service selection is directed
with respect to the contract Net (CN) protocol, which is set as follows. The master sends to
all slaves (i.e., the other Web services) of a community a call for bids, the slaves assess their
status (i.e., whether they are busy in responding others users’ requests), only services that are
interested in the bidding contact the master. The latter considers the bids, identifies the best
one, and notifies the interested services that are not selected that they play a role in backing-up
the functionality of the selected slave. The back-up is defined as follows. At runtime, services
maintain an operational flow, besides their control flow, which provides status information, i.e.,
whether they are activated, suspended, and alike. For a given functionality, services belonging
to the related community support the same operational flow, but may differ in terms of control
flow. The proposed approach synchronizes only the operational flow, and not the control flow.
It follows an active replication relaxing the determinism constraint by accepting that backups
can return similar results, i.e., partially different (overlapping), or totally different results. This
approach is interesting in terms of managing and selecting the service substitutes according to
their functionalities, which serves our need to efficiently find a substitute service for the one
that becomes unavailable. However, as synchronization does not consider the control flow of the
services, this approach is limited to services which state is not updated by the client requests.
This approach assumes that any active operational state of the primary can be synchronized
with a backup replica state even though they do not present the same control flow. However,
services that change their state according to the control flow execution have to consider the
synchronization of the control flows, besides the operational flows.

From the review of the existing approaches that deal with service unavailability, we see
that traditional solutions that rely on replication could be used to a certain extent, and each
solution has its pros and cons. Because of the existence of services offering similar functionalities
in SOA-based environments, reliability of services-based applications could be achieved in a
non-traditional way, using semantic-based service substitution. In Section 3.5, we present the
requirements that have to be satisfied to order to achieve reliability in SOA systems.

3.5 Requirements for Runtime Reconfiguration of SOA Systems

Based on the review of the state of the art, we identify (1) the basic steps that have to be
performed, and (2) the requirements that have to be satisfied, during the execution life cycle of
a SOA system to realize runtime service substitution. Figure 3.2 illustrates a generic schema of
runtime service substitution.

First, the SOA system –whether it is a simple client/service interaction or a service orchestration–
starts its execution (Figure 3.2-a). At runtime, a service involved in the running SOA system
may become unavailable (e.g., the hotel booking service) while executing the behavior that im-
plements a specific functionality (Figure 3.2-b). The runtime reconfiguration then consists in
finding a substitute service that provides a functionality semantically similar to the one of the
substituted service. The behavior of the substitute service may be different from the one of the
now unavailable service (Figure 3.2-c). The difficulty lies in :

3.5. REQUIREMENTS FOR RUNTIME RECONFIGURATION OF SOA SYSTEMS 51

(a) System configuration before starting the behavior execution (b) Service for “Hotel” booking becomes unavailable

(c) Execution resumption after system reconfiguration (d) Execution completed

Figure 3.2: System execution life cycle

1. Checkpointing the state of the now unavailable service before becoming unavailable. The
checkpoints should be managed by the client’s middleware to ensure state durability after
service unavailability.

2. Clearly reasoning about whether a functionality may serve as a substitute for the one of
the unavailable service.

3. Finding the point of execution of the substitute behavior where the execution resumption
is possible and correct.

4. Translating and transferring the checkpointed state of the unavailable service to the sub-
stitute service in order to synchronize accordingly; if this fails then, a replay may be
alternatively performed on the substitute service, which should be adapted with respect to
the substitute service behavior.

5. In the case of service orchestration, identifying the impact of the substitution on the services

52 CHAPTER 3. DEPENDABILITY IN SOA SYSTEMS

that are involved in the service orchestration, and restoring the orchestration consistency
according to their data dependencies. Note that in the illustrative scenario in Figure 3.2,
the workflows of the services “Hotel”, “Train ticket” and “Restaurant” are integrated in
a sequential structure to form the orchestration workflow. However, in the general case,
services’ workflows may interleave in the orchestration workflow.

Once the above steps are carried out, the SOA system execution can be resumed in order
to terminate normally (Figure 3.2-d). Part II of the present thesis details how our approach
overcomes the above listed difficulties.

3.6 Concluding Remarks

Our objective is to ensure continuity in service provisioning in SOA systems when a service be-
comes unavailable at runtime. To this aim, our main focus consists in substituting the unavailable
service with another service that provides semantically similar functionality to the unavailable
one, instead of aborting the execution of the SOA system.

In this chapter, we presented the basic concepts of dependability, focusing more specifically
on service unavailability as a type of failure. We studied the existing techniques to tolerate such
a failure in closed distributed systems, in order to emphasize their limits of applicability in SOA
systems. The study of the existing techniques for closed distributed systems lead us to point out
a need for a middleware-based approach that realizes runtime service substitution, with respect
to services autonomy and environment dynamics and heterogeneity. We then reviewed a part
of the existing efforts on service substitution in SOA systems, each of them focusing on specific
facets of the issue. We pointed out the advantages of the existing efforts for dealing with service
substitution as well as their limits of serving completely our needs. Finally, we established a set
of requirements that have to be satisfied in order to realize semantic-based service substitution
in SOA system, while restricting the least service autonomy and loose coupling.

In Part II, we define the constraints/rules under which the substitution between services is
correct.

Part II

Formalization

Reliability can be purchased

only at the cost of simplicity

Hoare [Hoare, 1969]

4
Revisiting the Service Model

As stated in the previous chapters, service unavailability occurs more frequently as the computing
environments gain in openness and dynamics. In this thesis, we target runtime service substitu-
tion in order to face service unavailability. However, in heterogeneous SOA-based environments,
it hardly happens that the unavailable and substitute services are identically implemented or
described. Runtime service substitution becomes then a complex task, specifically, when services
implement composite behaviors and/or maintain a state at runtime. The substitution requires
matching between the respective behaviors and states of the unavailable and substitute services.

To make this matching possible, we propose in this chapter a formal representation for com-
posite behaviors, and service states. We then integrate this formalization into our advanced
service model that enriches the basic one, introduced in Chapter 2.

The rest of this chapter is organized as follows. In Section 4.1, we provide a formal modeling
for composite behaviors in order to enable reasoning and matching between the service behaviors.
In Section 4.2, we detail the definition and the description of the service state. We also specify
the set of requirements that have to be satisfied in order to enable state translation and transfer
to the substitute service. In Section 4.3, we integrate the concepts introduced in Sections 4.1
and 4.2 into the basic service model presented in Chapter 2. The advanced service model serves
the formalization of the service substitution in the next chapter.

4.1 Modeling Service Behavior

As discussed in Chapter 2, a composite behavior can be modeled as a workflow. The authors
in [Van Der Aalst et al., 2003] provide thorough description and classification of the twenty most
used workflow patterns, classified in six groups, namely, basic control flow, advanced branch-
ing and synchronization, structural, multiple instances, state-based, and cancellation patterns.
Several efforts have been proposed to formally describe these workflow patterns using, e.g., π-
calculus [Cicekli and Yildirim, 2000], Petri-Nets, flowcharts or statecharts. In this thesis, based
on the efforts of Ben Mokhtar [Ben Mokhtar, 2007] and Wombacher et al. [Wombacher et al., 2005],
we use the annotated finite state automata (aFSA) formalism to model a service behavior, as it
serves our need for formalization and it is less complex than the above mentioned formalisms.
Nevertheless, we can be easily apply any another formalism enabling workflows description. As
specified in the first part of this thesis, we assume that services describe their composite behavior
using a BPEL process. [Wombacher et al., 2005] presents how to transform a BPEL process into
an aFSA to enable reasoning on and, potentially, transforming their workflows. It also presents
the inverse transformation, in order to get back to an executable BPEL process. The definition
of an aFSA [Wombacher et al., 2004] is described below.

56 CHAPTER 4. REVISITING THE SERVICE MODEL

Annotated Finite State Automata

An aFSA is a six-tuple (Q, σ, δ, s0, F,QA), where

• Q = {si, i ∈ [0..n]} is a finite set of nodes (or states),

• s0 ∈ Q is the initial node,

• F ⊆ Q is a set of final nodes,

• σ is the alphabet annotating the transitions,

• δ : Q× σ ×Q represent the labeled transitions, and

• QA is a finite set of relations between nodes of Q.

A behavior is modeled as an aFSA, where the nodes (graphically presented using circles) denote
the operations to be performed, and the transitions (arrows) denote the order of their execution,
i.e., the control flow. Each transition is labeled with the related workflow pattern that links
the two nodes. For instance, the transition that links two operations that have to be executed
sequentially is labeled using the keyword Sequence. Hereafter, we describe the basic workflow
patterns that we support in this thesis. Furthermore, final nodes are represented by double circles
(with different diameters) within the automaton. The initial node is pointed out with an input
arc. This initial node is connected using a Sequence-labeled transition to the first operation that
triggers the behavior execution. This representation enables only to model the control flow. To
include the data flow, the nodes of the aFSA are annotated with data dependencies (detailed
below).

Workflow patterns

Figure 4.1 presents graphically the five basic control flow patterns [Van Der Aalst et al., 2003]
among the 20 most used workflow patterns, and Table 4.1 provides a brief description for each
of them.

(a) Sequence (b) AND-split (c) AND-join (d) XOR-split (e) Merge

Figure 4.1: Basic workflow patterns

In the present thesis, we support only these basic control flow patterns when matching be-
tween the behavior of the unavailable service and the substitute service’s one. Extending the
matching to the others advanced workflow patterns can be performed by expressing them through
the basic ones. For instance, the multi-choice pattern 1 can be constructed by combining the
exclusive choice and parallel split patterns. Arbitrary cycles (i.e., loops) can be constructed as a

1A set of transitions where, based on a decision, a number of branches are chosen.

4.1. MODELING SERVICE BEHAVIOR 57

Basic Workflow patterns Descriptions

Sequence It is represented by a transition that links two nodes: a pre-
decessor and a successor. At runtime, the transition acti-
vates the execution of its successor node after the comple-
tion of the execution of its predecessor in the same work-
flow (Figure 4.1 - (a)).

Parallel split (also called
AND-split)

It is represented by a set of transitions where a single se-
quence of control splits into multiple sequences of control
(branches) which can be executed in parallel, thus allowing
nodes (on the different branches) to be executed simultane-
ously or in any order. (Figure 4.1 - (b)).

Synchronization (also called
AND-join)

It is represented by a set of transitions in the workflow
where multiple parallel sequences of control synchronize
and converge into one single sequence of control (Figure 4.1
- (c)).

Exclusive choice (also called
XOR-split)

It is represented by a set of transitions where, based on
a decision or data, one of several sequences of control
(branches) is chosen (Figure 4.1 - (d)).

Simple merge It is represented by a set of transitions where two or more
alternative sequences of control (branches) come together
without synchronization (Figure 4.1 - (e)).

Table 4.1: Description of the five basic control flow patterns

repeated sequence of the sub-workflow pattern included in the cycle as long as the condition that
direct the loop is satisfied. The verification of the condition can be realized using an XOR-split
structure.

Representing data flow

A data dependency appears when an output of an operation is an input of another. Assuming
that workflow includes N operation invocations, and each operation Opi, i ∈ [1..N], has a finite
set of input parameters Ii, and a finite set of output parameters Oi. Both sets are included in
P , which is a finite set of the overall parameters of the operations in a workflow. We have:

P = ∪i∈[1..N](Ii ∪Oi)

Thus, each node si ∈ Q representing the invocation of the operation Opi is modeled using a
three-tuple included in P ×OpId× P , where OpId is the finite set of the N operations’ names.
A data dependency between two nodes si = (Ii, Opi, Oi) and sj = (Ij , Opj , Oj) is expressed using
the following rule:

Opi depends upon Opj ⇒ ∃o ∈ Oj ,∃k ∈ Ii such that o = k

The data dependency is denoted (sj , {o}) → (si, {k}). In the case that the node sj presents
multiple data dependencies with the same or other nodes, we model them using a conjunction
and disjunction of data dependencies. A conjunction (denoted ∧) is used when the forward path
(in the control flow) of a node sj includes, e.g., an “AND-split” pattern, where one or multiple
nodes in the parallel branches of the “AND-split” consume one of the outputs of sj . A disjunction

58 CHAPTER 4. REVISITING THE SERVICE MODEL

(denoted ∨) is used in the case of multiple alternatives in the forward path of the node sj , for
example, in the case of an “XOR-split” pattern, when multiple nodes in the parallel branches of
the “XOR-split” consume one of the outputs of sj . We model the data dependencies in QA using
a generative grammar, formalized by Noam Chomsky [Chomsky, 1956]. Let G be the grammar
that generates correct representation of data dependencies, G is modeled as 4-tuple (N,Σ, P, S)
where

• N is the non-terminal symbols, such that N = {D,R}, where D ∈ (Q × P) → (Q × P)
represents a data dependency between two nodes in Q, and R ∈ {∨,∧} represents the
relation of disjunctions or conjunction between data dependencies.

• Σ is the set of terminal symbols, which is reduced to the empty string, denoted ε.

• A symbol S ∈ N that is the start symbol.

• P represents the generation rules:

S → D
D → D R D
D → ǫ

Hence, QA is a sub-set of all the expressions generated by the grammar G. Graphically, the
data annotations are represented using dashed transitions between the dependent nodes. The
transitions are labeled with the set of parameters that are involved in the data dependency.

Illustrating example

Figure 4.2: Graphical representation the aFSA for the train ticket booking behavior

Considering the example of the train ticket booking described in Section 2.4.4, we model
its behavior as an aFSA (graphically represented in Figure 4.2). The aFSA includes besides
the initial and final nodes, three other nodes: S1, S2 and S3, corresponding respectively to
the operations: ‘SelectTypeOfSeat’, ‘Confirm’ and ‘Pay’ (underlined terms in Figure 4.2). As
presented in Chapter 2, the operation ‘SelectTypeOfSeat’ takes as input the seat preferences and
returns a seat number, we denote S1 = (SeatPreferences, SelectTypeOfSeat, SeatNumber).
This seat number is taken as input by the operation ‘Confirm’ which returns a reservation
number. The user can then decide whether to pay for the reservation using the operation ‘Pay’
and be provided with an ‘eTicket’, or to pay his/her reservation later. In the latter case, s/he
will be provided with her/his reservation number.

4.2. SERVICE STATE 59

4.2 Service State

Respecting service autonomy in implementing its functionalities, we assume, in the present thesis,
that the functionality of the substitute service may implement a different behavior from the
unavailable service’s one. In the previous section, we formalized the modeling of composite
behaviors in order to enable reasoning and matching between service behaviors. Still, behavior
matching is not sufficient to ensure reliability of SOA systems. To enable state transfer, a
state translation may be required. In this section, we formalize the notion of service state. In
Section 4.2.1, we provide an overview of the service state. In Section 4.2.2, we present how we
generate the service state description. The generation of the service state description requires
the definition of checkpoints in SOA. In Section 4.2.3, we present the specifics and different types
of checkpoints that a service may define. As the state of the service requires to be translated and
transferred to the substitute service, in Section 4.2.4, we present the required operations that
enable the state access and manipulation.

4.2.1 Overview

In this thesis, we share the same point of view as the WS-Resource standard regarding advertising
the service state to the external environment. In Section 2.3, we defined the service state when
executing a given behavior using 3 parts:

1. The workflow or observable state: represents the data observable by the client, which are
included in the data flow of the behavior.

2. The implementation state: represents the data that are manipulated by the service imple-
mentation, at runtime.

3. The resources state: represents the external data, which can potentially be shared among
multiple running instances.

We gather the two last parts of the state (i.e., implementation and resources) into a single
part, which we call “internal state”, as opposed to the workflow/observable state that can be
accessed and manipulated by external entities.

More generally, looking beyond the Web services domain, several efforts have been investigat-
ing the concept of a state for computer systems. A comprehensive literature review [Peti, 2002]
has compared the notion of state from a diverse range of engineering disciplines. Among them,
the conceptual model of Dependable System of Systems (DSoS) [Gaudel et al., 2003] proposes
two styles for the ‘state definition’ namely, backward-looking and forward-looking styles.

In the backward-looking style, the state of a system at a given time t is the total data explicitly
stored by the system in the time interval 2 [0..t]. This definition corresponds to the view of a
system as an entity that stores information about its interaction with the environment, and
uses the stored information to influence its future results. This concept of state is therefore
often called “internal state” 3. This style can be used to define the state of the service when a
rollback can be perfomed. Indeed, the state of the service then includes all data generated and
manipulated at specific steps of its execution, which are required to synchronize the state of the
service with one of its previously reached states.

2Assuming that the system execution has started at t = 0.
3In DSoS, the internal state of a system consists of the values explicitly stored in state variables (i.e., variables

related to the environment or to the computer system, which value may change as the execution progresses).

60 CHAPTER 4. REVISITING THE SERVICE MODEL

In the forward-looking style, the state of a system at a given time t includes the sufficient
data that enable determining the system possible behavior after the given instant, including the
responses to possible future invocations of the service operations. The forward-looking defined
state is thus a sub-part of the backward-looking defined state, from which it removes the con-
sumed data that will not be used after the time t. This style can be used to define the state
of the service when a state transfer has to performed. Using this style enables to transfer the
part of the state that is sufficient for the substitute to resume the execution. This is relevant
only when the substitute and unavailable services are identical. However, as services may not
identical, the substitute service may require data that are not included in the forward-looking
defined state. Hence, to avoid removing data that may be useful for subtitute services, we use
in all cases the backward-looking style in order to define the state that has to be transferred to
the substitute service.

4.2.2 Service State Description

Following the WS-Resource representation of the service state (Section 2.4.5), we model the
service state as a set of tuples state =< V alue, V ariable >, where each variable has a predefined
name, type and semantic concept.

In this section, we target to provide the means to generate the description of the service
state. We envision to associate (before runtime) a state description with each specific step of
execution. In the aFSA that models a composite behavior, an execution step corresponds to a
specific node n of the aFSA. We denote SD(n) the state description at the node n.

In the following, we use the term executing node n to denote the execution of the operation
that is related to the node n, which is by definition an atomic unit of execution. Thus, the
state of the service does not change, but after completing the execution of the node n. While
processing the node n, the state description at n corresponds to the state of the service before
performing the node n, i.e., the state of the service from the initial node, till the node n (n
excluded).

Generating the description of the workflow state

To describe the workflow state (denoted SDwkf) at a node n, we consider all the required inputs
of the workflow operations that are included in the path from the node n and onwards (including
n’s inputs). In case of multiple paths leading from n to a final node in the workflow, we consider
all the paths that may be executed, since we cannot predict, before runtime, which path will be
actually executed.

Using the notation presented in Section 4.1, let b = (Q, σ, δ, s0, F,QA) be the behavior of a
service s. Let N = {nk = (Ik, Opk, Ok)}k be the set of nodes located on all the path linking the
node n ∈ Q (n included) to the final nodes in F . In case of multiple paths leading from n to
a final node in the workflow, we consider all the paths that may be executed, since we cannot
predict, before runtime, which path will be actually executed. Ik represents the set of required
inputs of the operation Opk, and Ok, the set of provided outputs. Let N−1 be the set of nodes
located on the path that links the initial node s0 of b to the node n (n excluded).

We use the backward-looking style for describing the workflow state. We define the description
of the workflow state SDwkf at n includes all the in/out parameters of the operations Opk
available at n (i.e., Opk ∈ N−1). By available parameters, we mean the parameters that are
resulting from the outputs of the previously performed operations, the user inputs and the
environment context. The forward-looking style requires to remove all the parameters that are
consumed by the nodes of N−1, and which will not be used by the nodes included in N . This

4.2. SERVICE STATE 61

is not performed when defining SDwkf (n) in order to avoid removing data that may be required
by the substitute service.

We propose to generate the description of the workflow state automatically at each node.
Algorithm 1 presents the high level instructions that generate this description.

Algorithm 1: Generating the description of the workflow state at a node n

Data: b and n.
Result: SDwkf (n).
begin

/* Initialization phase */

SDwkf (n) =empty
s = s0

/* j is a variable that counts the jth successor of s */

j = 1
while True do

forall si ∈ jth successor of s such that si = (Ii, Opi, Oi) ∈ N−1 do
/* Verifying that n is not reached */

if si 6= n then
SDwkf (n) = SDwkf (n) ∪ {si.Oi}
foreach k ∈ Ii do

/* Taking only the inputs that are not included in SDwkf (n) */

if (k 6∈ SDwkf (n)) then
SDwkf (n) = SDwkf (n) ∪ {k}

else
Return SDwkf (n)

j++;

end

Algorithm 1 takes as inputs: the aFSA description of the behavior, and the node at which the
description of the workflow state is required. It initializes the description of the workflow state
SDwkf (n) to empty, and the temporary variable s to s0, in order to start the aFSA traversal
with the initial node of the workflow. Then, for all the nodes si which are successors of s and
which are included in N−1, Algorithm 1 adds the output parameters of si to the SDwkf (n). To
avoid redundancy in SDwkf (n), Algorithm 1 verifies first whether the input parameters of si
have been previously added to SDwkf (n), or not. In the latter case, it adds them to SDwkf (n).
Note that we use a variable j (initialized to 1) to count the jth successor of s, which denotes that
there are (j − 1) nodes that separate the node s from its jth successor. The set of instructions
of Algorithm 1 are put in a loop with a guarding condition that enables to reach the end of the
algorithm only when all the nodes in N−1 are processed, i.e., when si reaches the node n.

Internal state description

The internal state is tightly coupled with the service implementation. Thus, it is hardly re-usable
by the substitute service. Indeed, finding an exact replica (i.e., identical implementation) of the
unavailable service is too optimistic, and poses a real constraint on substitute discovery. It is then
useless to transfer such a state to the substitute service. However, as mentioned in Chapter 3, a
service may be forced to rollback to a previous state to restore the whole SOA system consistency
(i.e., the client and the service(s)). Therefore, storing the internal state locally at the service
side enables to get back to a previous state of the service and invalidate a set of results of the
behavior execution.

62 CHAPTER 4. REVISITING THE SERVICE MODEL

Based on the above, in our work, we only need to externalize the description of the workflow
state at a node n, which corresponds to the observable part of the state. This description of
the workflow state should be sufficient to a substitute service to “understand” the transferred
state, and the data transferred should be sufficient to synchronize its internal and observable
states in order to resume the interaction with the client from the point it was interrupted. These
constraints recall naturally the notion of checkpoint, presented in the previous chapter, and lead
us to define the notion of checkpoint for services.

4.2.3 Checkpoint Definition

To define the notion of checkpoint in the domain of services, we require to structure the composite
behaviors in terms of atomic actions [Campbell and Randell, 1986]. An atomic action is an
indivisible part of the workflow (i.e., one or a structured set of operations) that performs an
integral piece of computation atomically, meaning that, the effects of an atomic action execution
are “committed” only when it terminates normally, reflecting an “all-or-nothing” execution.

The atomicity property is necessary in order to make the substitution consistent. Indeed, as
explained in Chapter 3, we cannot expect that services can resume their execution at any point
of their workflow, regardless the workflow structure and the execution progress. Structuring the
workflow into atomic actions argues the fact that the state of the service has to be checkpointed
at the end of the execution of atomic actions. The semantic meaning of a checkpoint represents
then the state of a service at which the middle results are committed, and which can be reused by
other services, notably substitute services. The execution of an atomic action is then delimited
by two checkpoints (at its beginning and its end).

Illustrating example

The use of atomic actions can be illustrated in the case of the train ticket booking functional-
ity, the behavior of which includes three operations, namely, ‘SelectTypeOfSeat’, ‘Confirm’ and
‘Pay’. Consider the case that the user has entered his/her seat preferences and confirmed his/her
reservation, but the ‘eTicket’ has not been edited yet. If a problem occurs (e.g., a user discon-
nection due to the train departure) at this stage of execution, then the ticket booking cannot be
transferred to another service, because the substitute service may not access the same data base
(SeatDataBase) as the service that becomes unavailable. However, the seat preferences can be
transferred to a substitute service in order to spare the user of entering again his/her preferences.
Hence, the workflow of the train ticket booking functionality can be decomposed into two atomic
actions: (1) one atomic action that includes the selection of the user preferences, and (2) another
atomic action that includes the operations for confirming and paying the reservation.

However, considering the case that Service A 4 is involved in a service composition, and that
another service participating in the service composition becomes unavailable, Service A may be
forced to roll a set of operations back to a previous checkpoint due to data dependencies with
the unavailable service. In this case, the checkpoint does not serve to synchronize a substitute
service, but it used by the same service instance that generated the checkpoint. Hence, in such
a case, the checkpoint must include, besides the workflow state, the internal state of the service,
to enable the service getting back to one of its previous states.

Based on the above, we distinguish two different types of checkpoints: state transfer and
rollback checkpoints.

4The service that has been introduced in Chapter 2, and which provides the train ticket booking functionality.

4.2. SERVICE STATE 63

Types of checkpoints

• State transfer checkpoint: This type of checkpoints serves to synchronize the state of
the substitute service (i.e., internal and observable) according to the data included in the
checkpoint. These checkpoints should be provided with a description of the workflow state.
At runtime, these checkpoints store a copy of the data that are included in the workflow
state in order to be used when a state transfer is required.

• Rollback checkpoint: This type of checkpoints is applied on, and used by, the same
service instance that generates the checkpoints, in order to invalidate a set of middle results
and get back to a previously reached state of the execution. Thus, they do not require a
state description to be externalized. At runtime, these checkpoints store a copy of all
the data maintained and manipulated by the service till the time of performing the given
checkpoint; they include both the workflow and the internal states of the service. Regarding
the resources that are shared among multiple instances, the rollback checkpoint does not
include the whole resources data, but only the data manipulated from the beginning of the
execution till the time of taking the rollback checkpoint.

In general, we find more rollback checkpoints in a behavior definition than state transfer ones.
State transfer checkpoints can be performed at the end of atomic actions. Rollback checkpoints
can be performed within atomic actions, e.g., using split-transactions [Kaiser and Pu, 1992].
More specifically, we notice that state transfer checkpoints represent a sub-set of rollback check-
points where the service externalizes a copy of the workflow state to the external environment,
in addition to storing its complete state internally.

4.2.4 Service State Access and Manipulation

To enable state transfer, we require that composite stateful behaviors enrich their description
with special nodes that correspond to state transfer and rollback checkpoints. We then generate
automatically, for each state transfer checkpoint, the corresponding description of the workflow,
using a wsrp document (presented in Section 2.4.5). Also, we require that services implementing
stateful behaviors support and advertise a set of operations that enable to manipulate the service
state. In particular, we require three recovery operations: GetState, SetState and Rollback.

• GetState recovery operation enables to get a copy of the workflow state and store it on a
persistent storage. Based on the WSRF standard, when reaching a state transfer check-
point, the client can send a GetResourceProperty query to the service, with the description
of the workflow state, and the client identifier as input parameters. The service response
provides a copy of the workflow state at the invocation time.

• SetState recovery operation can be performed at state transfer checkpoints. SetState
recovery operation synchronizes the state of the service with a given workflow state.

After invoking a SetState operation, the substitute service replies to the requester (in our
approach, the client middleware) with an acknowledgment denoting a successful synchro-
nization of the service state according the transferred state. Otherwise, it replies with an
error message.

• Rollback recovery operation can be performed at rollback checkpoints. Rollback checkpoints
do not require a client request in order to be performed. They are performed autonomously
by the service. The client is able to invoke Rollback recovery operation in order to get back
to a pervious rollback checkpoint.

64 CHAPTER 4. REVISITING THE SERVICE MODEL

Modeling checkpoints and recovery operations

GetState and SetState operations have the same semantic meaning as the concepts ‘QueryState’
and ‘UpdateState’ defined in the ‘OperationImpact’ ontology (Figure 2.16). We further enrich
the ‘OperationImpact’ ontology with a ‘Rollback’ concept, that serves for semantic annotations
of Rollback recovery operations, as presented in Figure 4.3. Thus, to avoid naming restrictions,
services providing recovery operations that enable state access and manipulation, may annotate
them with ‘QueryState’, ‘UpdateState’ and ‘Rollback’ concepts.

Figure 4.3: OWL ontology for distinguishing the recovery operations

Furthermore, we enrich the aFSA definition with a set of state transfer checkpoints and roll-
back ones. The behavior is the modeled as an eight-tuple aFSA = (Q, σ, δ, s0, F,QA, STCkpt,RCkpt)
which maintains the same definition for Q, σ, s0, F , and QA as in Section 4.1, and enriches or
redefines the others as follows:

• STCkpt includes the set of state transfer checkpoints that are modeled as nodes that enable
to invoke either GetState or SetState recovery operation, or both of them.

• RCkpt includes the set of rollback checkpoints that are modeled as nodes that enables to
invoke a Rollback operation.

• The nodes representing checkpoints, which are included in STCkpt and RCkpt, are con-
nected to Q’s nodes using the transitions defined in δ. In this way, δ is redefined as follows.

δ : (Q ∪ STCkpt ∪RCkpt) × σ × (Q ∪ STCkpt ∪RCkpt)

Graphically, the recovery nodes are integrated in the aFSA using symbols different from the
ones used for Q’s nodes:

• A square is placed on the transition that links two circles representing two Q’s nodes, to
denote a rollback checkpoint.

• A tick (checkmark) is placed on the transition that links two Q’s nodes, to denote a state
transfer checkpoint.

• A square with tick is placed on the transition that links two Q’s nodes, to denote a rollback
and a state transfer checkpoints.

In order to leave the choice to the client whether handling service reliability or not, the set of
state transfer -supported checkpoints are connected to the other nodes of the aFSA using “XOR-
split” and “Merge” workflow patterns. In this way, the client may choose to perform a sub-set
of the possible state transfer checkpoints enabled by the service, all of them, or none of them.
Also, the set of supported-rollback checkpoints are connected to all their successors using an
“XOR-split” transition in order to allow getting back from any node to a previously performed
rollback checkpoint.

4.3. ADVANCED SERVICE MODEL 65

Illustrating example

To illustrate the integration of the recovery operations within the behavior modeling, we employ
the train ticket booking functionality, the workflow of which is described in Figure 4.2.

Figure 4.4: Modeling checkpoints in the train ticket booking behavior

As presented earlier, the workflow of the train ticket booking is composed of two atomic
actions. As depicted in Figure 4.4, the first atomic action is delimited with a state transfer
checkpoint, which is provided with a description of the workflow state SDwkf (ckpt1) that includes
the user preferences. The state transfer checkpoint represents also a rollback checkpoint. Other
rollback checkpoints within the second atomic action are defined in order to store the seat
selection and the reservation number.

As the behaviors may differ from one service to another, the recovery operations of the un-
available and substitute service may not coincide. In our approach, we tolerate such heterogeneity
in terms of recovery operations, allowing services to define their checkpoints at their convenience.
This requires to match between recovery operations when matching between service behaviors.

4.3 Advanced Service Model

In this section, we propose to enrich the basic service model introduced in Chapter 2 with new
concepts necessary for handling runtime service substitution. These concepts are retrieved from
the behavior and state modeling, presented in the previous sections.

In the class diagram of the advanced service model (Figure 4.5), a workflow is represented
as a composition of (1..*) atomic action(s), which can be atomic or composite behaviors. In this
way, atomic actions is a sub-type of the concept behavior. Furthermore, based on the behavior
modeling presented in Section 4.1, the workflow description is modeled as an aFSA that is
composed of (2..*) nodes, including the initial and final nodes. As presented in Section 4.2.4,
these nodes can be associated with functional operations or checkpoints. The checkpoints can be
of two types: state transfer or rollback, respectively invoking Get/SetState recovery operations

66 CHAPTER 4. REVISITING THE SERVICE MODEL

Figure 4.5: Service Class diagram of the advanced service model

4.4. CONCLUDING REMARKS 67

or a Rollback one. We further associate a description of the workflow state with state transfer
checkpoints. Consequently, a stateful behavior does not have a single description of the workflow
state, but as many descriptions as state transfer checkpoints.

In Chapter 2, we presented the concept of signature for atomic behaviors (i.e., operations),
herein we extend it to composite behaviors. A behavior signature comprises the behavior name
along with the name and data types of the in/out and error parameters of the behavior.

Also, a capability is associated with a behavior description through the relation ‘related
to’. In particular, this relation associates the behavior signature’s concepts with the semantic
concepts that are included in the capability (as presented in Figure 4.6).

Figure 4.6: Relating capabilities and behaviors descriptions

4.4 Concluding Remarks

As the substitution of stateful composite behaviors poses a real challenge for runtime service
substitution, in this chapter, we essentially focused on modeling the basic concepts that the
stateful composite behaviors include, namely, the behavior and the state. The behavior is mod-
eled using aFSA in order to provide means to reason on, and potentially, transform the workflow
structure at runtime. We also concentrate on the definition of the service state. We defined the
service state as a two-part state: workflow and internal states. The workflow state represents
all the data that are observable and accessible by external entities to the service. The internal
state is related to the internal logic of the service implementation and resources, and thus it is
not accessible by the external entities. More important, it cannot be reused by the substitute
service in the case of state transfer. To enable state transfer, we use the notion of atomic actions
that split the workflow into parts that have to be executed integrally and atomically. Between
two atomic actions, the observable state of the behavior can be used to synchronize a substitute
service, which we call state transfer checkpoint. In addition, services may provide the opportu-
nity to rollback a set of results, by defining a set of rollback checkpoints. To take benefit from
the checkpoints definition in performing the runtime service substitution, we introduce a set
of recovery operations that enable to access and manipulate the state maintained by a service,
synchronize the substitute service, and in case of service composition, restore the consistency of
still-connected services. All the newly introduced concepts are integrated in our service model,
to form an advanced service model, in order to provide a complete view of the service concepts
and their relation with each other.

In Chapter 5, we use the advanced service model to formally define the relation of service
substitution between services.

68 CHAPTER 4. REVISITING THE SERVICE MODEL

While FORMAL schooling is an

important advantage, it is not a

guarantee of success, nor is its

absence a fatal handicap.

Ray, Kroc 5
Formalizing Service Substitution

In this chapter we target to provide the set of rules that have to be satisfied in order to perform
correct service substitution at runtime. To this aim, we split the issue into three parts:

1. The first one includes the rules that ensure the ability of a service to service as a substitute
for another.

2. The second ensures the ability of a service to take over the computation performed by the
unavailable service at runtime.

3. The third includes finding a matching between the behaviors of the substitute service and
the unavailable service’s one, that complies with the above rules. The matching enables to
find a state transfer checkpoint at which the substitute service can synchronize its state
and resume the execution initially started by the unavailable service.

Using the concepts included in the advanced service model of the previous chapter, we deal
in Section 5.1 with the two first parts of the issue. We provide the rules that have to be satisfied
in order to perform a correct runtime service substitution. Then, in Section 5.2, we deal with
the third part of the issue. We present the strategies that identify at runtime the point at which
the service state can be transferred to the substitute service. Finally, Section 5.3 summarizes
the results established in this chapter, and organizes them into an algorithm for runtime service
substitution.

5.1 Formal Definition of Service Substitution

The use of hierarchy is important when considering the issue of substitution. It allows the
use of service groups as type families, in which a group of services (subtype) may serve as
substitute candidate for a service included in another group (supertype) that is higher in the
hierarchy. In this section, we first present the basic principles of subtyping that have been
formalized for object-oriented systems (Section 5.1.1), emphasizing the need for adapting the
formalization to SOA systems in order to serve the substitution purpose. In our adaptation
(Section 5.1.2), we map the specification of subtyping issued from object-oriented design (OOD)
to SOA systems specifics using the concepts introduced in our advanced service model. The
adaptation of subtyping enables to classify services according to the functionalities they offer.
Nevertheless, this is not sufficient to ensure correct runtime substitution of services. Indeed,
as behaviors of the substitute and unavailable services are not identical, a need for matching
between these behaviors is additionally required: the issue consists in identifying the rules under
which a matching can be defined. Hence, in the third part of this section (Section 5.1.3), we

70 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

use Hoare’s logic [Hoare, 1969] in order to introduce additional constraints that ensure correct
runtime substitution.

5.1.1 Principles of Subtyping in Object-oriented Design

One feature is almost universally present in object-oriented systems [Cardelli and Wegner, 1985]:
subtyping. Subtyping captures the intuitive notion of inclusion between types. Subtyping is
independently specified, and a single rule, called subsumption [Cardelli, 1997], is added to connect
the type to the subtype. The subsumption rule states that if an object has a type σ, such that
σ is a subtype of τ (denoted σ < τ), then the object also has a type τ . This allows an object
to be used flexibly in many different typed contexts. Subtyping thus behaves as set inclusion,
where type membership is seen as set membership.

The subtype relation between functions, where a function is a program that consumes a set of
inputs A in order to produce a set of outputs B, says that F : A→ B is a subtype of F ′ : A′ → B′

if A′ is a subtype of A (A′ < A), and B is a subtype of B′ (B < B′). Note that the inclusion is
inverted (contravariant) for function arguments, while it goes in the same direction (covariant) for
function results. More generally, within the type system of a programming language, an operator
from types to types is covariant if it preserves the ordering (<) of types, which orders types from
more specific ones to more generic ones; it is contravariant if it reverses this ordering. If neither of
these apply, the operator is invariant. This distinction is important when considering argument
and return types of methods in class hierarchies. The definition of covariance and contravariance
in the case of classes is set as follows. In OOD, if class B is a subtype of class A, then all the
methods of B must return the same or narrower set of types as A. The return type is said to be
covariant. On the other hand, the methods of B must take the same or broader set of arguments
compared with the methods of A; the argument type is said to be contravariant. The problem
for instances of B is how to be substitutable for instances of A. The only way to guarantee type
safety and substitutability is to be equally or more liberal than A on inputs, and to be equally or
more strict than A on outputs. In this context, Liskov and Wing in [Liskov and Wing, 1994] have
introduced a behavioral notion of subtyping. Hereafter, we present the important definitions and
theorems that have been proved for subtyping in order to apply them in SOA systems.

Subtyping formalization in OOD

Liskov and Wing [Liskov and Wing, 1994] define a type as follows. Let Obj a set of all potentially
existing objects, partitioned into disjoint typed sets. Each object has a unique identity. A type
defines a set of values for an object and a set of methods that provide the only means to
manipulate that object. Obj represents a set of unique identifiers for all objects that can contain
values. A state defines a value for each existing object. It is a pair of mappings, an environment
and a store. An environment maps program variables to objects; a store maps objects to values.

• State = Env x Store

• Env = Var → Obj

• Store = Obj → Val

Given a variable x and a state ρ with an environment (ρ.e) and store (ρ.s), the notation xρ
denotes the value of x in the state ρ.

A type is modeled as a triple < O, V,M >, where O ⊆ Obj is a set of objects, V ⊆ V al
is a set of values, and M is a set of methods. The type specifications includes the following
information:

5.1. FORMAL DEFINITION OF SERVICE SUBSTITUTION 71

• The type’s name;

• A description of the type’s value space from which the variables take their value;

• For each of the type’s methods:

– Its name;

– Its signature (including signaled exceptions);

– Its behavior in terms of pre-conditions and post-conditions,

The relation of subtyping requires that any property proved about the supertype service
holds for its subtype service, which is formalized as follows. Let ϕ(Oτ) be a property provable
about objects Oτ of type τ . Then, ϕ(Oσ) should hold for objects Oσ of type σ, where σ is a
subtype of τ , denoted σ < τ .

Liskov and Wing are interested only in safety properties (i.e., “nothing bad happens"). First,
the authors define properties that preserve object’s behavior in specific program: these properties
ensure that a program continues to work as expected, i.e., calls of methods made in the program
that assume the object belongs to a supertype must have the same behavior when the object
actually belongs to a subtype. These properties are called behavioral properties. In addition, the
authors define independent properties which have to be preserved when independent programs
share the same objects. The authors focus on two kinds of such properties: invariants, which are
properties true over all states, and history properties, which are properties true for all sequences
of states. Invariants are formulated as predicates over single states and history properties, over
pairs of states.

The definition of the subtyping rule < is then set as follows. σ =< Oσ, Vσ,Mσ > is a subtype
of τ =< Oτ , Vτ ,Mτ > if there exists an abstraction function, A : Vσ → Vτ , and a renaming map,
R : Mσ →Mτ , such that:

1. The abstraction function complies with the invariants.

• Invariant Rule:
Let Iσ and Iτ be respectively, the invariants of the types σ and τ , ∀s : Vσ, the rule
Iσ(s) ⇒ Iτ (A(s)) must hold, where A may be partial, need not be onto, but can be
many-to-one.

2. Subtype methods preserve the behavior of the supertype ones. If mτ of τ is the corre-
sponding renamed method mσ of σ, the following rules must hold:

• Signature’s rules:

– Contravariance of arguments.
mτ and mσ have the same number of arguments. If the list of argument types of
mτ is αi, and the list of argument types of mσ is βi, then ∀i, αi < βi.

– Covariance of results.
Either both mτ and mσ have a result or neither has. If there is a result, let mτ ’s
result type be α, and mσ’s be β. Then β < α.

– Exception rule.
The exceptions signaled by mσ are contained in the set of exceptions signaled by
mτ .

72 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

• Methods’ rules:

For all x of type σ:

– Pre-condition rule.
mτ .pre[A(xpre)/xpre] ⇒ mσ.pre

where xpre is the initial state of x, and mτ .pre (resp., mσ.pre) are the pre-
conditions of the method mτ (resp., mσ).

– Post-condition rule.

mσ.post⇒ mτ .post[A(xpre)/xpre, A(xpost)/xpost]

where xpost is the final state of x, and mτ .post (resp., mσ.post) are the post-
conditions of the method mτ (resp., mσ).

3. Subtype constraints ensure supertype constraints.

• Constraint Rule.
For all x of type σ, for all computation performed by x, and all states ρ and ψ of x
such that ρ precedes ψ, the following rule must hold:

Cσ ⇒ Cτ [A(xρ)/xρ, A(xψ)/xψ]

where the notation P [a/a′] stands for the predicate P with every occurrence of a′ replaced
by a [Thompson, 1991].

Discussion

In SOA domain, most of the difficulty in service substitution resides in saving the computation
preformed by the unavailable service. Thus, the subtype relation should ensure that the state of
the unavailable service (of supertype) is correctly used by the substitute service (of subtype) in
order to ensure continuity in service provisioning without introducing inconsistencies. Hereafter,
we map the subtyping relation to services in order to serve the substitution purpose. Also, the
above formalization supports only service substitution, and not runtime service substitution.
The execution progress of the unavailable service is not considered, neither is the execution
resumption by the substitute service. Hence, the mapping would only enable to formalize the
rules for correct service substitution. After adapting the subtyping rules, we have to consider
the case of runtime replacement by defining rules that ensure the correct runtime substitution
of services.

5.1.2 Mapping Subtyping Definition to Services

In SOA, we use type with respect to a service functionality. A service that belongs to a
specific type has to provide the same functionality as the one the type specifies. In SOA, services
may belong to multiple types as they are able to provide various functionalities. For instance,
a travel agency service may provide two functionalities that instantiate different types, where
one type specifies a train ticket booking functionality, and the other type, a functionality for
organized sport activities. Hereafter, we map the type specification to SOA domain. We then
map the requirements a subtype has to satisfy. Based on these requirements, we finally provide
a mapping for subtype specification in SOA systems.

5.1. FORMAL DEFINITION OF SERVICE SUBSTITUTION 73

Type specification

Let Ser be all potentially existing services partitioned into typed sets (not necessarily disjoint).
Each service in Ser instantiates the advanced service model (presented in Section 4.3) and has
a unique identity. A type defines a set of states for a service, and a single functionality (F)
that provides the only means to manipulate the state of the service. As defined in the previous
chapter, a state associates a set of variables with their related values (i.e., < V alue, V ariable >)
for each existing service. V alue ∈ V al, where V al is the set of all possible values that a variable
may have. V ariable ∈ V ar, where V ar is the set that defines all the variables the service may
use.

Based on Liskov and Wing’s specification of a type, we model a type for SOA systems as
a triplet T =< S, V, F > such that S ⊆ Ser, V ⊆ V al and F ∈ Func, where Func is the
set of all functionalities that services in Ser may provide. Each service defines the types to
which it belongs according to the functionalities it offers. As presented in the advanced service
model (Figure 4.5), a functionality is an abstract concept which is concretely described using a
capability (capa) and implements a behavior (b). We formalize the concepts of capability and
behavior as follows:

• A capability (capa) is modeled as a triplet capa = (CF , CInputs, COutputs), where CF is the
conceptual purpose of the functionality, CInputs and COutputs are respectively the semantic
concepts of its required parameters, and provided results.

• A behavior (b) that implements the functionality is modeled using its signature, its pre- and
post-conditions. In the case of composite behavior, the behavior is modeled as an aFSA
and split into (1..*) atomic actions bi. A behavior execution is modeled as a sequence
of alternating states ρi and transitions Tri starting from an initial state ρ0 such that
ρ0 Tr1 ... ρn−1 Trn ρn, where each transition Tri corresponds to the execution of an
atomic action bi.

Figure 5.1 represents the class diagram of a type, including a functionality description that
is composed of:

1. The capability description of the functionality, denoted capa = (CF , CInputs, COutputs).

2. The description of the behavior of the functionality (denoted b), which includes:

a) The behavior signature.

b) The description of the pre- and post-conditions of the behavior, denoted respectively,
b.pre and b.post.

c) In case that the behavior b is composite, b is split into (1..*) atomic actions bi that
have atomic execution, and items (2.a) and (2.b) are retrieved for each atomic action
bi composing the behavior of the functionality F .

Note that the concepts that define a type are retrieved from the advanced service model
presented in Section 4.3.

Type specifications need explicit invariant

The invariant defines the legal data values of the type [Liskov and Wing, 1994] (denoted as a
predicate Φ over a single state) such that for any behavior execution, for any service s of type
τ , the invariant of τ holds. For instance, an invariant property of a hotel booking functionality

74 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

Figure 5.1: Type specification

ensures that the size of a bounded number of booked rooms never exceeds its bound, i.e., the total
number of rooms of the hotel. The invariant related to the number of rooms can be expressed
as follows:

invariant Nb.ReservedRooms < Nb.TotalRooms

In this way, using the invariants, the property that preserves the behavior post-conditions can
be formalized as follows. Let Is be the invariant in the type τ that preserves the post-conditions
of the service behavior. For each service s of a type τ , having b as a behavior, and b.post as
post-conditions of the behavior b, the following property must hold.

Is[b.post/sρ]

where sρ is the state of the service after b’s execution.
Recursively, in the case that b is a composite behavior, all its atomic actions bi must preserve

the invariant. For each atomic action bi, the execution of which leads to the state sρ,i of the
service s (of type τ), the following property must hold.

Is[bi.post/sρ,i]

where bi.post are the post-conditions of the atomic action bi.

Subtype requirement

As presented in Section 5.1.1, Liskov and Wing introduced two kinds of properties for the objects:
behavioral and independent.

• The behavioral properties ensure that the methods of the subtype preserve the behavior
of the supertype ones. Mapped to services, the behavioral properties require that the
substitute service should support the behavior of the unavailable service, in order to perform

5.1. FORMAL DEFINITION OF SERVICE SUBSTITUTION 75

seamless service substitution. However, as aforementioned, it is unlikely to find an exact
replica of the service that becomes unavailable in the user environment. Hence, in our case,
we do not constrain the behaviors implementing the functionalities of the unavailable and
substitute services. Instead, we extend and reason on the other kind of properties, i.e.,
independent properties, as detailed in the next item.

• The independent properties were introduced to preserve objects consistency when more
than one program share the same objects. Independent properties are of two kinds: invari-
ants and history properties. As mentioned in the previous section, invariants must hold for
all states of execution of the behavior. History properties are formulated as predicates over
a pair of states, they must hold for a sequence of states between two specific states. The
subtyping relation is then defined with respect to the history properties; this is called con-
straint definition of subtyping [Liskov and Wing, 1994]. This constraint captures exactly
those history properties of a type that must be preserved by all of its subtypes. Showing
that a type σ is a subtype of τ requires showing that σ’s constraint implies τ ’s ones. In
addition, the type σ has to satisfy the invariants of τ . Hereafter, we present the way to
define the constraints for a type.

History constraint definition

The history properties are formulated as predicates over pairs of states [Liskov and Wing, 1994].
For instance, in the behavior of a hotel booking functionality, the history rule related to the
room charges should be:

constraint ∀i : integer, such that i 6= 0, if sρ.cost = i then sψ.cost ≤ i

where sk.cost (k ∈ {ρ, ψ}) denotes the value of the variable cost denoting the room charges in
the state k of the service s, and ρ is state that precedes ψ. The above rule means that if the
hotel room is booked to a specific user at a specific cost i (i 6= 0), in a state ρ of the service
s, then for any state ψ succeeding ρ, the room charges should be less or equal to the first price
the user has selected. This enables, in case of substitution, to comply with the price that has
been proposed to the user by the service that becomes unavailable. More generally, a history
constraint is a predicate that defines a constraint for a type τ over a pair of states ρ and ψ of s
(of type τ), such that ρ precedes ψ. The specification of the constraint is made over the nodes
that produce the states ρ and ψ.

Subtype rules

Let σ =< Sσ, Vσ, Fσ > and τ =< Sτ , Vτ , Fτ > be two types.

σ is a subtype of τ , denoted σ < τ , if:

1. There exists a mapping between the capability of the supertype capaτ and the one of the
subtype capaσ, and the subtype behavior bσ preserves the supertype behavior bτ in terms
of signature (i.e., covariance, contravariance).

2. The transferred state of the supertype has to preserve the invariants and constraints of the
subtype.

3. The subtype behavior bσ preserves the rules of the supertype behavior bτ in terms of pre-
and post-conditions.

76 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

Hereafter, we detail each of the rules enumerated above, which define the subtype relation be-
tween services.

1. Complying with supertype signature requires a mapping between the capabilities of the
supertype and the subtype, respectively, capaτ , capaσ. In our approach, we introduce flexibility
in capabilities matching, by allowing semantic inclusion between the semantic concepts of their
functional purpose. In this way, the subtype functionality realizes the functional purpose of the
supertype, and potentially, a richer purpose that includes the one of the supertype.

Let capaτ = (Cτ,F , Cτ,Inputs, Cτ,Outputs) and capaσ = (Cσ,F , Cσ,Inputs, Cσ,Outputs) be the re-
spective capabilities of the supertype and subtype services. Mapping between the capabilities
implies that:

Cτ,F ⊆s Cσ,F (5.1)

In addition, we have to map between the arguments and the results, respectively, required
and provided by the services of supertype and subtype. To this aim, we have to preserve the
contravariance of arguments and covariance of results, which are detailed in the following.

1. Contravariance of arguments preserves the number of arguments, meaning that σ’s behav-
ior has to require the same number of arguments as τ ’s behavior. In our approach, we relax
the contravariance condition to the relation ≤ (less or equal) instead of strict equality when
comparing the number of arguments of σ’s and τ ’s behaviors, meaning that σ’s behavior
has to require at most the same number of arguments as τ ’s behavior. Furthermore, the
contravariance requires that the list of the argument types βi of σ’s behavior are supertypes
of αi, of τ ’s ones, i.e., αi < βi. The mapping is performed using the semantic concepts of
the behavior inputs.

Let card be the function that returns the cardinality of the set provided in argument. We
preserve the contravariance of arguments using the two following rules:

card(Cσ,Inputs) ≤ card(Cτ,Inputs)
and
for each i ∈ Cσ,Inputs, ∃j ∈ Cτ,Inputs such that Cσ,Inputs(i) ⊆s Cτ,Inputs(j)

(5.2)

2. Covariance of results ensures that the number of outputs of bσ is equal to the number of
outputs of bτ . Here also, we relax the covariance rule to the relation ≥ (greater or equal
instead of strict equality), as providing extra results does not prevent the substitution
from being correct. If the behaviors of the supertype and subtype define a set of outputs,
respectively, typed βi and αi . The covariance of results is mapped to services using
semantic inclusion between the semantic concepts of the outputs. In this way, we preserve
the covariance of results using the following rules:

card(Cσ,Outputs) ≥ card(Cτ,Outputs)
and
for each i ∈ Cτ,Outputs, ∃j ∈ Cσ,Outputs such that Cτ,Outputs(i) ⊆s Cσ,Outputs(j)

(5.3)

5.1. FORMAL DEFINITION OF SERVICE SUBSTITUTION 77

2. Complying with subtype invariants and constraints enables to correct synchronize the
substitute service.

Let A : Vτ → Vσ be the abstraction function that maps the state variables of τ (to which
belong the unavailable service) to the state variables of σ (to which belongs the substitute
service). A is partial, need not be onto, but can be many-to-one.

Note that A in SOA is inversely defined compared to the abstraction function defined by
Liskov and Wing, as in our issue, we need to map from the unavailable service variables to the
substitute service’s ones.

1. Subtype invariant has to be preserved by the transferred state.
Let ω be the state of the the unavailable service, that has to be transferred to the substitute
service. Let ω′ be the state required by the substitute service, such that A(ω) = ω′. s has
to preserve the invariant of the substitute service (denoted Iσ).

Iσ[A(ω)/ω] must hold. (5.4)

2. Subtype constraints have to be preserved by the transferred state.
Let φ be a history constraint over two states ρ and ψ of the substitute service, respectively
produced by the execution of the nodes nρ and nψ that are included in the behavior of the
substitute service. If the checkpoint at which the substitute service has to be synchronized
is included between nρ and nψ then the transferred state has to preserve the constraint φ.
If the state that has to be transferred is ω, and A(ω) = ω′, then:

Cσ[A(ω)/ω] must hold. (5.5)

3. Complying with supertype pre- and post-conditions amounts to satisfy the following rules,
which are related to the pre-conditions and the post-conditions.

1. Pre-conditions of the supertype’s behavior imply the subtype’s ones. Let spre be the initial
state of the unavailable service, before starting bτ execution. The behavior pre-conditions
of the unavailable service (of type τ) must imply those of the substitute service’s behavior
(of type σ).

bτ .pre[A(spre)/spre] ⇒ bσ.pre (5.6)

2. Post-conditions of the subtype’s behavior imply those of the supertype. Let spost be the
final state of the unavailable service, after bτ execution. The behavior post-conditions of
the substitute service (of type σ) must imply those of the unavailable service’s behavior
(of type τ).

bσ.post⇒ bτ .post[A(spre)/spre, A(spost)/spost] (5.7)

Discussion

Behaviors of the supertype and subtype may be composed of different atomic actions. Also, their
respective workflows can be structured differently. This does not prevent the substitution from

78 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

being correct, but makes the service substitution more complex. The substitution mechanism
has to find a mapping between the behavior of the service being substituted and the substitute
service’s one, in order to detect from which point the substitute service has to resume the
execution.

At this stage of formalization, we have essentially focused on the semantic meaning of the
substitution and the constraints under which a service functionality may serve as a substitute
for another. This is necessary but not sufficient to achieve the continuity in service provisioning.
Rules from 5.1 to 5.7 ensure that the substitute service is capable to provide the client with the
required results, but it does ensure the ability of the substitute service to resume the execution
that has been interrupted. Going one step further, we aim at saving the computation performed
by the unavailable service, sparing thereby the client from restarting the interaction with the
substitute service from the beginning. In the following section, we use the work introduced by
C.A.R Hoare for runtime program replacement, in order to set the rules that ensure correct
execution resumption by the substitute service.

5.1.3 Enhancing Subtyping with Dynamics: Runtime Service Substitution

Rules for formal substitution of programs have been deeply studied and proved by C.A.R Hoare’s
work on providing an axiomatic semantics for computer programming. “An axiomatic Basis
for Computer Programming" [Hoare, 1969] introduced the now well known notation for partial
correctness P{Q}R, where P and R are predicates specifying respectively the pre-conditions
and the desired result, for the program Q. That is, if the assertion P is true before initiation of
the program Q, then the assertion R will be true when Q completes execution. This paper is
based on an earlier work of Floyd [Floyd, 1967], where the technique was applied to flowcharts
rather than to programs. In his theory, Hoare presented the necessary axioms and inference rules
for reasoning about programs written in a simple language. This language includes assignment,
sequential composition, consequence and iteration. In particular, the inference rule associated
with sequential composition states that if the proven result of the first part of a program is
identical with the pre-condition under which the second part of the program produces its intended
result, then the whole program will produce the intended result, provided that the pre-condition
of the first part is satisfied. In more formal terms:
Rule of composition [Hoare, 1971]

If P{Q1}R1 and R1{Q2}R then P{Q1;Q2}R (5.8)

where (Q1;Q2) denotes that the programs Q1 and Q2 are executed sequentially, starting with
Q1 execution. Mapping this rule to our type specification means that:

• Q1 corresponds to the part of the behavior of the supertype that has been performed before
service unavailability, and

• Q2 corresponds to the part of the behavior of the subtype that has to be performed to
achieve the required functionality.

Let sτ be a service instance of type τ , sτ provides a functionality F sτ , instance of the type
functionality Fτ . Let bsτ be the behavior of the functionality F sτ , which is decomposed into
bs,1τ and bs,2τ in sequence, respectively corresponding to the part of the behavior that has been
executed before the service unavailability, and the non-executed part that remains to be executed
in order to achieve the full execution of the behavior. We denote bsτ .pre and bsτ .post, respectively
the pre- and post-conditions of the behavior bsτ . Thus, we have:

bsτ .pre{b
s,1
τ ; bs,2τ }bsτ .post (5.9)

5.1. FORMAL DEFINITION OF SERVICE SUBSTITUTION 79

Let bs,1τ .post be the post-conditions of the execution of bs,1τ such that:

bsτ .pre{b
s,1
τ }bs,1τ .post (5.10)

Let sσ be a service instance of type σ subtype of τ (σ < τ); sσ provides a functionality F sσ . In
order to be able to substitute bτ at runtime, the behavior bsσ that implements the functionality
F sσ , has to be provide a sequential decomposition into bs,1σ and bs,2σ , denoted bsσ = {bs,1σ ; bs,2σ } such
that:

bsσ.pre{b
s,1
σ ; bs,2σ }bsσ.post (5.11)

where bsσ.pre and bsσ.post are respectively the pre- and post-conditions of the behavior bsσ. The
decomposition of bsσ must be such that bs,2σ performs the remaining part of execution to achieve
Fτ . We denote bs,2σ .pre the pre-conditions of bs,2σ such that:

bs,2σ .pre{bs,2σ }bsσ.post (5.12)

Using Rule 5.8, the rule of substitution that has to be proved is stated as follows:

Rule for service substitution

If bsτ .pre{b
s,1
τ }bs,1τ .post and bs,2σ .pre{bs,2σ }bsσ.post then, the following rule must hold

bsτ .pre{b
s,1
τ ; bs,2σ }bsσ.post (5.13)

Rule 5.13 is relaxed using Hoare’s rules of consequences, which state that if the execution of a
program Q ensures the truth of the assertion R, then it also ensures the truth of every assertion
logically implied by R. Also, if P is known to be a pre-condition for a program Q to produce
the result R, then any other assertion which logically implies P can be a pre-condition for the
program Q. These rules are expressed formally as follows:
Rules of consequence [Hoare, 1971]

If P{Q}R and (R⇒ S) then P{Q}S (5.14)

If P{Q}R and (S ⇒ P) then S{Q}R (5.15)

Furthermore, as σ is a subtype of τ , Rules 5.6 and 5.7 imply

bsτ .pre⇒ bsσ.pre (5.16)

bsσ.post⇒ bsτ .post (5.17)

Rule 5.9 defines a correct execution of the behavior when no service unavailability occurs.
Starting from the Rule 5.9, we follow a deductive reasoning to prove that Rule 5.13 holds under
specific constraints. Using Rules 5.11, 5.14 and 5.16, we have:

bsσ.pre{b
s,1
σ ; bs,2σ }bsτ .post (5.18)

Using Rules 5.15, 5.17 and 5.18, we have:

bsτ .pre{b
s,1
σ ; bs,2σ }bsτ .post (5.19)

Hence, the issue is reduced to replace bs,1σ by bs,1τ in Rule 5.19.

80 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

Assumption

bs,1τ .post⇒ bs,2σ .pre (5.20)

Assume that the constraint 5.20 holds. Thus, using the rule of consequence 5.14 and Rule 5.10,
the constraint 5.20 implies:

bsτ .pre{b
s,1
τ }bs,2σ .pre (5.21)

Integrating Rule 5.21 in the rule of composition 5.8, we have

bsτ .pre{b
s,1
τ }bs,2σ .pre and bs,2σ .pre{bs,2σ }bsσ.post then bsτ .pre{b

s,1
τ ; bs,2σ }bsσ.post (5.22)

Hence, Rule 5.22 makes the replacement of bs,1σ by bs,1τ in Rule 5.19 correct. Consequently,
the combination of Rules 5.10 and 5.22 makes the rule for service substitution 5.13 satisfied.
Therefore, a new constraint (Rule 5.20) is added in the subtyping relation between two services,
which takes into account the runtime progress of the execution. The constraint consists in finding
a decomposition in the behavior of the subtype bsσ, the pre-conditions of which are deduced from
the post-conditions of the last atomic action of bs,1τ of the supertype’s behavior bsτ , which has
been executed before sτ unavailability.

In the following section, we detail the matching between the behaviors of the unavailable
service and the substitute one, which complies with the rules for runtime service substitution.

5.2 Execution Resumption by the Substitute Service

The main constraint for substitution (Rule 5.20) is to find an atomic action bs,jσ in the subtype’s
behavior for which the pre-conditions are implied by the post-conditions bs,iτ .post, where bs,iτ is
the last atomic action executed of the type’s behavior bsτ .

Based on the previous section, three main requirements regarding the workflow structure
emerge. First is to use the behavior composition in terms of atomic actions in order to decompose
the behavior of the unavailable service into a sequence of two parts: one part of the behavior that
has been executed, and another part that has to be executed. The point of split should coincide
with the end of the last completed atomic action (Section 5.2.1). Second is to find an atomic
action in the workflow of the substitute service, the pre-conditions of which are implied by the
post-conditions of the last atomic action performed by the unavailable service (Section 5.2.2).
Third is to sequentially decompose the substitute service behavior, and select the point at which
the execution of the behavior of the substitute service can be resumed (Section 5.2.3).

5.2.1 Sequential Decomposition of the Unavailable Service Behavior

As presented in Chapter 4, we model a composite behavior using an aFSA. Let Node be the
function that tracks at each time t, the executing node n in the aFSA with respect to the
progress of the behavior execution. The function Node may return more than one node, e.g.,
when executing an AND-split structure of the workflow. If the service unavailability occurs at
the time t, then the simplest way to decompose the workflow into two parts is to consider all
the nodes that have been executed in the time interval [0..t] (n excluded) as the first part of the
workflow, and all the other nodes that remain to be executed, as the second part of the workflow.
However, the problem is far more complex. Indeed, many issues have to be considered, including:

• n may not be the initial node of an atomic action. The last state transfer checkpoint
may have been performed several nodes before the node n. Therefore, at the client side, a
rollback to the last state transfer checkpoint has to be considered.

5.2. EXECUTION RESUMPTION BY THE SUBSTITUTE SERVICE 81

• The rollback may be extended in the case that the function Node returns more than one
node. Hence, the rollback may be performed on multiple state transfer checkpoints.

• These state transfer checkpoints may be positioned on different branches of the AND-
split structure, which requires reasoning on a consistent split with respect to the workflow
structure.

To deal with the above issues, we consider the workflow patterns presented in Section 4.1
in order to identify the ones that may induce a conflict when decomposing the workflow. In
particular, the issue of decomposition turns to be complex when managing multiple branches in
the workflow. This is detailed hereafter, considering each pattern independently.

Conflicts in workflow decomposition and their related strategies

The case of the sequence pattern is the simplest case. As represented in Figure 5.2, considering
the case that the execution interruption occurs when executing a sequence of nodes, a first step
consists in rolling back to the last state transfer checkpoint that has been performed before
the execution interruption, i.e., which corresponds to the end of an atomic action execution.
Then, the decomposition is easy: the first part of the behavior (i.e., bs,1τ) is delimited by the the

Figure 5.2: Sequence conflict

initial node of the aFSA and the last state transfer checkpoint performed before the execution
interruption, the second part of the behavior (i.e., bs,2τ) includes the nodes succeeding that state
transfer checkpoint till the final node.

The case of the AND-split pattern is more complex. As represented in Figure 5.3, considering
the case that the execution interruption occurs when executing multiple branches of an AND-
split structure, the main issue concerns the rollback to the last state transfer checkpoint: there
may be multiple, independently performed state transfer checkpoints. In such case:

• Shall we rollback each branch independently of the others? And then, what would be
the post-conditions of the execution performed by the unavailable service? This case is
illustrated in Figure 5.3 by two rollbacks annotated with ❶.

• Or, shall we rollback to the last state transfer checkpoint preceding the AND-split pattern?
This case is illustrated in Figure 5.3 by one rollback annotated with ❷.

The first case saves more computation than the second one. However, the consistency of the
first decomposition is not guaranteed. Indeed, the set of checkpoints on different branches has
to form a consistent and complete state of the service. In the absence of any data dependency
between the nodes on different branches, this can be considered. Nevertheless, in a more general

82 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

Figure 5.3: AND-split conflict

case, we cannot restrict dependency between parallel branches. Hence, even though the second
case wastes more computation than the first one, it serves better our need for sequential split of
the behavior. In this way, the behavior of the unavailable service is split into two parts: One
part starting from the initial node of the workflow, till reaching the last state transfer checkpoint
that precedes the AND-split pattern (corresponding to bs,1τ), and the other part starts from the
beginning of the AND-split, till reaching the final node (corresponding to bs,2τ).

The case of the AND-join pattern is considered when the execution is interrupted at the
node where the AND-join is performed. We consider AND-join as a specific case of AND-split,
as the last checkpoint performed is distributed on serveral branches, while the union of the last
checkpoints performed may not form a consistent and complete state of the service.

As for the AND-split structure, we restart from the beginning of the last state transfer check-
point performed before the AND-split structure, ensuring thereby a sequential decomposition of
the workflow.

Figure 5.4: Flow serialization

Nevertheless, an optimization of the extent of the rollback can be realized by restructuring
the workflow of the unavailable service. Research efforts [Flé and Roucairol, 1985] have been
proposed to sequenctially serialize concurrent computation. More recently, in [König et al., 2008],
the authors focus on reasonning on BPEL processes compatibility. They propose to serialize the
nodes included between an AND-split and an AND-join structures (which they call a parallel
flow), applying a set of rules on activities that have to be concurrently executed in a parallel flow.
These activities can be executed in any sequential order without having impact on the process
results. Obviously this can be performed only in case of absence of any data dependencies between
the activities. Mapping the serialization to our need for sequential decomposition, a parallel flow
execution can be restructured into the execution of sequences of nodes, such as in the example

5.2. EXECUTION RESUMPTION BY THE SUBSTITUTE SERVICE 83

of Figure 5.4. Considering the example of Figure 5.4, the nodes 2 and 3 can be modeled, after
serialization, in sequence (1− 2− 3− 4) or (1− 3− 2− 4) according to their execution. However,
this serialization does not comply with our modeling of composite behaviors as a workflow of
atomic actions. Indeed, restructuring the workflow may mix the nodes of multiple atomic actions
together, which makes the matching between pre- and post-conditions hardly achievable.

Regarding the other workflow patterns (i.e., XOR-split and Merge), they can be considered
as a specific case of the sequence structure as one single branch is chosen and executed.

As a result of this decomposition, we find the state transfer checkpoint, at which the previ-
ously stored state of the unavailable service has to be transferred to the substitute service.

5.2.2 Matching between the Behaviors of the Unavailable and Substitute Services

The issue consists in finding a state transfer checkpoint in the workflow of the substitute service,
at which the substitute service can synchronize its state with the transferred state of the un-
available service. We also aim to ensure that the execution of substitute service’s behavior would
satisfy the user required results. However, the behavior of the substitute service may include a
set of final nodes, where only a subset of these nodes actually satisfies the user requested results.
Hence, we consider only this subset of final nodes, then we use backward chaining, originated
from artificial intelligence (AI) planning techniques [Hendler et al., 1990, Yang, 1997], in order
to find the checkpoint at which of the substitute service can be performed.

Formalization

In Chapter 2, we proposed to represent the user requested capability using the same schema as
service capabilities. Let RequiredCapa be the user requested capability such that

RequiredCapa = (CRequiredFunc, CProvidedInputs, CRequiredResults)

where CRequiredFunc denotes the semantic concept of the required functionality, CProvidedInputs
denotes the set of the semantic concepts of the user inputs, and CRequiredResults denotes the set
of the semantic concepts of the expected results.

Let bsτ = (Qτ , σ, δ, s0, Fτ , QA, STCkptτ , RCkptτ) be the behavior that the unavailable service
has been executing before the execution interruption. Let ckptτ ∈ STCkptτ be the state transfer
checkpoint resulting from bτ ’s sequential decomposition. Let sσ be a candidate service for substi-
tution that complies with the supertype signature and pre- and post-conditions rules. sσ provides
a functionality F sσ implemented through the behavior bsσ = (Qσ, σ

′, δ′, s′0, Fσ, QA
′, STCkptσ, RCkptσ).

Matching between bsτ and bsσ is twofold.

1. First, we have to find in bsσ a final node (denoted NF,σ) that provides as outputs the
user requested results. The existence of such a node is guaranteed when complying with
the covariance of results between the substitute and unavailable service. In the case of
the existence of multiple final nodes that satisfy the user needs, we iterate our matching
algorithm for each of them, till finding a state transfer checkpoint (ckptσ) in the workflow
of the substitute service (bsσ) that is on the backward path of NF,σ.

2. Second, for each state transfer checkpoint ckptσ in bsσ, in the backward path of final node
NF,σ, such that:

• ckptσ should be compatible with ckptτ , i.e, ckptσ should be provided with (1) a de-
scription of the workflow state SDwkf (ckptσ) such that SDwkf (ckptσ) ⊆

s SDwkf (ckptτ)
in order to comply with the abstraction function A required in the subtyping rule.

84 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

• The transferred state should comply with bsσ’s invariants (in the case that bsσ defines
invariants).

• The transferred state should comply with the constraints of bsσ, in the case that there
exists a constraint on two nodes of bsσ, such that ckptσ is included between these two
nodes.

• The post-condition of the atomic action that ckptτ completes should imply the pre-
conditions of the atomic action initiated by ckptσ.

In the case that one of the above conditions are not satisfied, we iterate the verification of
the rules with the state transfer checkpoint that precedes ckptσ. In the case that we reach
the initial node of bsσ, we process another final node in the list of final nodes that satisfy
the user request.

In the case that the structure of the behavior bsσ of the substitute service sσ is not sequential,
we detail hereafter the strategies that enable to select the point in bsσ at which the execution
should be resumed.

5.2.3 Sequential Decomposition of the Substitute Service Behavior

Where the execution should be resumed in the substitute service behavior? In this section, we
mainly focus on this issue. Indeed, in the previous section, we presented how to find in the
behavior bsσ an atomic action bs,jσ (initiated by ckptσ), from which the execution can be resumed.
An issue emerges in the case that bs,jσ is included, e.g., in one of the branches of an AND-split
structure. Hereafter, we consider each workflow structure independently in order to distinguish
the cases that may cause a conflict.

In the case that bs,jσ is included in a sequence structure, the problem is greatly simplified.
After synchronization of the state of bsσ with the state transfer checkpoint issued from the bsτ
decomposition, we start executing bs,jσ . After its completion the following atomic action (i.e., the
successor of bs,jσ) is executed, and so forth.

In the case that bs,jσ is included in a branch of a AND-split structure, the issue becomes more
complex. In such cases, for each other branch included in the same parallel split pattern, we
have to find the state transfer checkpoint at which the execution should be resumed, i.e., we
have to find the atomic actions for which the pre-conditions are implied by bs,1τ .post. Still, the
set of resuting checkpoints does not guarantee the consistency of the service state, as nodes may
present data dependencies. Hence , to avoid inconsistency risks, we find out the state transfer
checkpoint that initiates the atomic action preceding the parallel split workflow pattern. If the
resulting state transfer checkpoint is included between two nodes on which the substitute service
defines a constraint, then the transferred state should comply with the constraint rule of the
substitute service. Otherwise, we should find a state transfer checkpoint that precedes the one
that has been selected and retry to decompose the workflow.

In the case that bs,jσ starts at a synchronization node (AND-join), there is no conflict that
may emerge, as long as the pre-conditions of bs,jσ are satisfied. Indeed, the pre-conditions include
implicitly that all the converging branches of the AND-join structure are executed and their
results are relevant to be used in the rest of the workflow. The cases of the exclusive choice
(XOR-split) and simple Merge are considered as a particular case of the sequence structure.
Indeed, we only consider the branch that includes bs,jσ .

5.3. ALGORITHM FOR RUNTIME SERVICE SUBSTITUTION 85

5.3 Algorithm for Runtime Service Substitution

In this chapter, we mapped the definition of the subtyping relation from OOD to SOA systems.
In Section 5.1, we established seven rules that are issued from the mapping of subtyping of
OOD to SOA systems (Rules 5.1 to 5.7), and another rule that is deduced from Hoare’s logic
(Rule 5.13). We organize these rules into four groups:

1. Rules for complying with supertype signature (Rules from 5.1 to 5.3).

2. Rules for complying with subtype invariants and constraints (Rules 5.4 and 5.5).

3. Rules for complying with supertype pre-conditions and post-conditions (Rules 5.6 and 5.7).

4. Rule for runtime execution resumption (Rule 5.13).

Then, in Section 5.2, we presented the strategies that enable to:

1. sequentially decompose the workflow of the unavailable service in order to find the check-
point at which the state of the unavailable service should be transferred.

2. match between the workflow of the unavailable service and the substitute service’s one,
in order to find the state transfer checkpoint that complies with the rule for runtime
substitution.

3. sequentially decompose the workflow of the substitute service, according to the checkpoint
resulting from the previous step and the workflow structure in which it is included. As
a result of this step, we have a state transfer checkpoint, at which the substitute service
should synchronize its state according to the transferred state.

Before proceeding to state transfer, the state that has to be transferred should comply with
the invariant, and potentially, the constraints of the substitute service. The compliance with
the constraints is checked only when the state transfer checkpoint of the substitute service is
included between two nodes on which a constraint is defined. The high level steps of runtime
service substitution are summarized in Algorithm 2.

In Chapter 6, we propose the methods for checking the compliance of Web services with
the rules for runtime service substitution. We also present a way for classifying services in the
presence of multiple candidates for substitution.

86 CHAPTER 5. FORMALIZING SERVICE SUBSTITUTION

Algorithm 2: High level instructions for runtime service substitution

Data: Service descriptions of the unavailable service and a candidate for substitution.
Result: A state transfer checkpoint (ckptσ) at which the candidate service should resume its execution.
begin

Check the compliance with the rules for supertype signature.
if not then

Return ckptσ = ⊘.

Check the compliance with supertype pre-conditions and post-conditions.
if not then

Return ckptσ = ⊘.

Starting from the node at which the service unavailability occurs:
Find in the backward path the preceding state transfer checkpoint using sequential decomposition of the
unavailable service’s workflow.
if such checkpoint exists then

Find a final node NF,σ in the behavior of the substitute service that satisfies the user requested
results.
Find in the backward path the state transfer checkpoint in the workflow of the candidate service that13

complies with the rule for runtime substitution.
From previous step-resulting checkpoint, sequentially decompose the candidate service’s15

workflow, in order to find the checkpoint (ckptσ) from which the candidate service should resume
its execution.
Check whether the checkpoint ckptσ is located between two nodes on which the candidate service
defines a constraint.
if it is the case then

Check whether the state that has to be transferred complies with the constraint.
if not then

/* We repeat the processing with the predecessor of ckptσ */

ckptσ = predessor of ckptσ

Repeat from Step 13.

Check whether the state that has to be transferred complies with the invariant of the candidate
service.
if not then

/* We repeat the processing with the predecessor of ckptσ */

ckptσ = predessor of ckptσ

Repeat from Step 13.

else
Return the checkpoint (ckptσ) resulting from Step 15.

else
Return empty set.

end

Science is a collection of success-

ful recipes.

Paul, Valery

6
Compatibility Check and Semantic-based Service

Classification

The focus of this chapter concerns checking the compatibility between the functionality of un-
available service and the substitute service’s one, that is the ability of a service to be a substitute
for the now unavailable service. The compatibility with the unavailable service is determined
and measured on the basis of the advanced service model and the runtime service substitution
rules presented respectively in Chapters 4 and 5.

To evaluate the compatibility, we define a compatibility degree between the unavailable service
functionality and the one of the candidate service for substitution. In the case of multiple
candidate services for substitution, comparing the compatibility degree of the candidates enables
to classify them into catalogs, and select the substitute service that matches the best with the
unavailable service. The more the substitute service saves the computation performed by the
unavailable service, the better is the compatibility. The key idea behind our approach for service
substitution is to find all the candidates that may substitute the unavailable service, and then to
refine the selection till finding the substitute service that matches the best with the unavailable
service.

The rest of this chapter is organized as follows. In Section 6.1, we define the compatibility
degree over service functionalities, according to the compliance with the four groups of rules for
runtime substitution, established in the previous chapter. In Section 6.2, we check the compat-
ibility with respect to the rules related to the supertype signature (i.e., unavailable service). In
Section 6.3, we check the compatibility with respect to the supertype pre- and post-conditions.
In Section 6.4, we check the compatibility with respect to the rule for runtime execution resump-
tion. In Section 6.5, we check the compatibility with respect to the invariants and constraints of
the candidate service. Once the compatibility degree is evaluated, we present in Section 6.6 the
decision graph that enables to select the service that will act as an actual substitute service for
the unavailable service. Finally, Section 6.7 wraps up this chapter by presenting our concluding
remarks.

6.1 Compatibility Degree

In this section, we define the compatibility degree between the functionalities provided by the
unavailable service and its substitute. Based on the four groups of rules established in the
previous chapter, the compatibility over services has to be satisfied in four aspects:

• Signature compatibility includes matching between the capability of the unavailable service
and the one of the substitute service, and if required, the syntactic mapping of the in/out

88

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

parameters according to the signature of the substitute service behavior.

• Supertype pre- and post-conditions compatibility includes matching between the predicates
used in defining pre- and post-conditions of the unavailable service and the ones of the
substitute service. It also includes ensuring that the pre-conditions of the unavailable
service imply those of the substitute service, and inversely for the post-conditions.

• Compatibility with respect to the runtime execution resumption includes (1) the structural
compatibility between the behavior of the unavailable service and the substitute service’s
one, in order to find a checkpoint in the behavior of the substitute service from which
the execution can be resumed. Also, (2) the state of the unavailable service has to be
compatible with the one required by the substitute service, i.e, the transferred state should
provide all the data required by the substitute service in order to synchronize its state
accordingly.

• Invariants and constraints compatibility includes checking whether the state issued from the
state compatibility complies with the invariants and constraints of the substitute service.

Hereafter, we define the compatibility degree between two functionalities, taking into account
the compatibility over the above aspects, in order to determine whether a candidates service is
able to substitute the unavailable service, or not.

Definition 5. Compatibility degree (CD) between the unavailable service’s functionality F sτ
and a candidate service’s functionality F sσ includes four aspects namely: (1) the compatibil-
ity degree over their signatures (CDSignature), (2) the compatibility degree over their pre- and
post-conditions (CDPre−Post), (3) their structural/state compatibility for runtime substitution
(CDRuntimeExeRes), and (4) the compatibility with respect to the invariants and constraints of
the substitute service (CDInv−Const). The greater the compatibility degree is, the greater are the
chances to achieve a successful substitution.

Based on the above definition, we establish an equation that determines the compatibility
degree between an unavailable functionality F sτ and a candidate functionality for substitution F sσ
provided respectively by the service sτ (of type τ) and sσ (of type σ).

CD(F sτ , F
s
σ) =

{ ∑

i ωi · CDi if CDSignature · CDPre−Post 6= 0
0 otherwise

where i ∈ {Signature, Pre − Post,RuntimeExeRes, Inv − Const} and, ωi is the weight
related to CDi.

The compatibility degree is the product of the weighted compatibility degrees related to each
of the aspects that have impact of the compatibility between functionalities. If the product
CDSignature · CDPre−Post is null, it invalidates the compatibility between two functionalities,
as it means that the signature or the pre- and post-conditions of the unavailable service are
not followed by the substitute service; the compatibility degree is then null. However, in the
case that the state transfer is not possible due to state or workflow structure incompatibilities,
or due to the non compliance with the invariants and constraints, the service can still serve
the substitution. In the absence of any other alternative to save the computation previously
performed, we select a substitute candidate with which the state transfer is not possible, and
restart the interaction from the beginning with the selected substitute service.

The weights enable to emphasize the importance that we give to a specific aspect with respect
to the others. In case that no preference is provided, the weights can be removed, making all the
aspects equally important.

6.2. COMPLYING WITH SUPERTYPE SIGNATURE 89

6.2 Complying with Supertype Signature

In this section, we focus on mapping between the supertype and subtype signatures. Section 6.2.1
checks the compatibility over the semantic descriptions of the capabilities, and Section 6.2.2
checks the compatibility with respect to the required syntactic mappings between the signature
of the unavailable service and the substitute service’s one.

6.2.1 Signatures Semantic Matching

As presented in Chapter 2, we support 4 semantic relationships when matching between capa-
bilities, namely instance-concept, hierarchical, compositional and equivalence relationships. To
establish an order for classifying the services, several efforts [Zhong et al., 2002, Hau et al., 2005,
Ben Mokhtar, 2007] have proposed to compute the semantic distance between two semantic con-
cepts to which they make reference. In our approach, we do not restrict the algorithm for
computing the semantic distance between semantic concepts. We only need that the semantic
distance between two semantic concepts Cτ and Cσ (denoted SemanticDist) should be normal-
ized, according to their semantic relationship, as follows:

SemanticDist(Cτ , Cσ) =























α |1 ≤ α if Cτ
Comp
−−−→ Cσ

β |α < β if Cτ
SuperClass
−−−−−−−→ Cσ

χ |β < χ if Cτ = Cσ or Cτ ≃ Cσ or ∃C|Cτ , Cσ
I−C
−−−→ C

0 if none of the above

To compute the compatibility degree CDSignature over signatures, we first compute the compati-
bility degree over the capabilities of the unavailable and substitute services, denoted CapabilityMatching.

Let F sτ be the functionality provided by the unavailable service, which is described us-
ing the capability capasτ = (Cτ,F , Cτ,Inputs, Cτ,Outputs), and F sσ the functionality provided by
a candidate service for substitution, which is described using the capability and Capasσ =
(Cσ,F , Cσ,Inputs, Cσ,Outputs). The compatibility degree has to ensure the compliance with the
contravariance and covariance between the in/out parameters of the two functionalities, in ad-
dition the semantic inclusion between the concepts that represent their functional purposes.
Meaning that

1. Cσ,F ⊆s Cτ,F

2. the cardinality of Cσ,Inputs (denoted n) has to be less than, or equal to, the cardinality of
Cτ,Inputs,

3. the cardinality of Cσ,Outputs (denoted m) has to be greater than, or equal to, the cardinality
of Cτ,Outputs,

4. for each i ∈ Cσ,Inputs, ∃j ∈ Cτ,Inputs such that Cσ,Inputs(i) ⊆s Cτ,Inputs(j), in order to
satisfy the covariance rule, and

5. for each i ∈ Cτ,Outputs, ∃j ∈ Cσ,Outputs such that Cτ,Outputs(i) ⊆s Cσ,Outputs(j), in order to
satisfy the contravariance rule.

90

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

If one of the above conditions is not satisfied the CapabilityMatching(F sτ , F
s
σ) is then null,

otherwise, the compatibility degree CapabilityMatching is computed as follows:

CapabilityMatching(capasτ , capa
s
σ) =







SemanticDist(Cτ,F , Cσ,F)+
∑n

i,j=0 SemanticDist(Cτ,Inputs(i), Cσ,Inputs(j))+
∑m

i,j=0 SemanticDist(Cσ,Outputs(j), Cτ,Outputs(i))

This enables only to match between the semantic descriptions of the unavailable service and
a candidate service for substitution. A syntactic mapping is also required to enable the actual
use of the substitute service in place of the unavailable one.

6.2.2 Signatures Syntactic Mapping

Once the semantic matching between capabilities is established, we concentrate on syntactic map-
ping of the input parameters in order to correctly perform the mapping between the unavailable
service signature and the one of the substitute service. In Chapter 2, we presented how SAWSDL
enables syntactic data mapping using lifting and lowering mechanisms, when two XML elements
are annotated with the same semantic concept. An issue emerges when the XML elements are
annotated with different semantic concepts. For example, they are annotated respectively with
Cσ and Cτ , where Cσ semantically includes Cτ , or the inverse. Hereafter, we follow an iterative
reasoning to deal with this issue. The idea is to find a set of semantic concepts that are in

Figure 6.1: Recursive mapping between semantic concepts

relation with Cτ and Cσ, and that serve as a “bridge” in order to link Cτ to Cσ. These semantic
concepts needs to be provided with XSL transformations that enable transforming an instance
of XML schema representing Cτ into an instance of XML schema that represents Cσ. Hereafter,
we present an example of how the mapping should be performed in a single semantic concept
that puts Cτ and Cσ in relationship, called “proxy”.

Illustrating example

As presented in Section 2.4.3, the representation of OWL semantic concepts can be mapped to
XML schemas. Hence, lifting and lowering mechanisms can be also applied to semantic concepts
using their XML representation. In this case, we introduce the notion of “proxy” semantic concept

6.2. COMPLYING WITH SUPERTYPE SIGNATURE 91

that enables to make the mapping between the XML representation of semantic concepts. The
mapping can be fulfilled in four steps:

• First, we consider that the XML element A makes reference to the semantic concept Cτ ,
and B to the semantic concept Cσ. The XML representation of A can be transformed into
an instance of Cτ ’s representation, using lifting mechanism. The lifting is enabled through
the XSL transformation, denoted A2Cτ in Figure 6.1. This step is annotated with ❶ in
Figure 6.1.

• In the second step (Step ❷ in Figure 6.1), the result of the first step is transformed into an
instance of the XML representation of the concept Cproxy−τ−σ, using lifting mechanism.
Here, also, the lifting is enabled through the XSL transformation, denoted Cτ2Cproxy−τ−σ
in Figure 6.1.

• In the third step (Step ❸ in Figure 6.1), the result of the previous step is then transformed
into an instance of the XML representation of Cσ using lowering mechanism. The lowering
is enabled through an XSL transformation, denoted Cproxy−τ−σ2Cσ in Figure 6.1.

• The fourth and final step (Step ❹ in Figure 6.1) transforms the instance of Cσ to the XML
element B, using a lowering technique. As in previous steps, the lowering is enabled using
an XSL transformation, denoted Cσ2B in Figure 6.1.

The syntactic mapping cannot be performed without the definition of the “proxy” semantic
concepts (e.g., Cτ2Cproxy−τ−σ), as well as the provision of XSL transformations. In the case
that Cτ2Cproxy−τ−σ or the XSL transformations are not available, the degree of compatibility
CDSignature is null.

To check the feasibility of syntactic mapping, we introduce a new factor in computing the
compatibility degree over signatures, which we denote SyntacticMapping. SyntacticMapping
ensures that the syntactic mapping between the in/out parameters can be performed, and all
the required XSL transformations are beforehand available.

Let bsτ and bsσ be respectively the behaviors of the unavailable and the substitute service. Let
Ib

s
τ and Ob

s
τ be respectively the required inputs and provided outputs of bsτ , and Ib

s
σ and Ob

s
σ ,

bsσ’s ones.
For each iσ ∈ Ib

s
σ , the syntactic mapping has to transform the corresponding input iτ ∈ Ib

s
τ

into an instance of iσ. The existence of iτ is ensured through the semantic matching of the
capabilities, which we evaluated in the previous section. Also, for each oτ ∈ 0b

s
τ , the syntactic

mapping has to transform output oτ ∈ Ob
s
τ into an instance of oσ, which matches semantically

with oτ . The syntactic mapping is evaluated as follows

SyntacticMapping(bsτ , b
s
σ) =























1 if ∀iσ ∈ Ib
s
σ ,∃iτ ∈ Ib

s
τ , such that

the mapping from iτ to iσ is possible, and
∀oτ ∈ Ib

s
τ ,∃oσ ∈ Ob

s
σ , such that

the mapping from oτ to oσ is possible.
0 otherwise.

Note that the syntactic mapping is defined only with respect to the behaviors inputs. In-
deed, the purpose behind the syntactic mapping is to ensure that the data transferred from the
unavailable service to the substitute one can be transformed in the form required by the substi-
tute service. Thus, there is no need to transform the outputs of the behavior of the unavailable
service.

92

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

The compatibility degree CDSignature between the functionality of the unavailable service
and the one of the candidate service is defined as the product of the compatibility degree over
their semantic descriptions (i.e., their respective capabilities) and the one over their syntactic
descriptions (i.e., their behaviors’ signatures).

CDSignature(F
s
τ , F

s
σ) = CapabilityMatching(capasτ , capa

s
σ) · SyntacticMapping(bsτ , b

s
σ)

In the case that the compatibility degree is the same for two candidate services, then we take
into account the required number of syntactic mappings for each candidate. As the number of
mappings have impact on the recovery time when substituting a service with another one, we
target to reduce it as possible.

Number of syntactic mappings

In the above mapping, we considered the case of semantic inclusion between Cτ and Cσ, instead
of strict identity. Then, we present that the syntactic mapping is performed in 4 steps. However,
as the semantic inclusion is transitive, the relationship between Cτ and Cσ may not be directly
defined. Instead, it may be inferred by a number of relationships with intermediary semantic
concepts. In such cases, the number of mappings is proportional to the number of intermediary
concepts. More specifically, if N is the number of intermediary concepts that are necessary to
infer the semantic inclusion between the concepts Cτ and Cσ, the number of required mappings,
denoted NbofMappings(Cτ , Cσ), is equal to (2 · N) + 4. In the case that the XML schemas
of A and B are identical, and there is no need for syntactic mappings the number of required
mappings is set to 1.

In order to replace the service sτ with a service sσ, the required number of XML transfor-
mations is computed as the sum of all required mappings over the semantic concepts of their
respective inputs. Hence, we have:

NbofMappings(bsτ , b
s
σ) =

n
∑

i,j=0

NbofMappings(Cτ,Inputs(j), Cσ,Inputs(i))

such that n is the number of inputs required by bsσ, and the input i corresponds to the semantic
matching of the input j.

Hence, we compute NbofMappings when two candidate services have the same compatibility
degree with the unavailable service. We then integrate NbofMappings in the compatibility
degree with respect of the supertype signature (CDSignature): the less NbofMappings is, the
higher is the CDSignature. Hence, CDSignature is inversely proportional to NbofMappings. The
equation that evaluates CDSignature is computed following the equation below:

CDSignature(F
s
τ , F

s
σ) =

CapabilityMatching(capasτ , capa
s
σ) · SyntacticMapping(bsτ , b

s
σ)

NbofMappings(capasτ , capa
s
σ)

)

6.3. COMPLYING WITH SUPERTYPE PRE- AND POST-CONDITIONS 93

6.3 Complying with Supertype Pre- and Post-conditions

Besides the compliance with the supertype signature, the substitute service has to respect the
pre- and post-conditions, of the unavailable services.

As presented in Chapter 2, the pre- and post-conditions rules are expressed using SWRL.
SWRL allows users to write Horn-like rules expressed in terms of OWL concepts. We also use
SWRL to express invariants and constraints that a service may define. The general form for
these rules is expressed as follows [W3C, 2004c]:

Body ⇒ Head

where body and head are a set of conjunctions of atoms, which are unary or binary predicates,
i.e., properties that assigns truth values to combinations of k individuals/variables (k ∈ {1, 2}).

Let P = {pi, i = 0..n} be the set of predicates used in the service pre- and post-conditions and
V = {vi, i = 0..n} the set of variables. A rule represents the implication (Body,Head), where
both Head and Body are functions that associate a set of predicates with a set of variables, and
are expressed using a conjunction of these functions. We denote Body(P, V) ⇒ Head(P, V)

As the unavailable service and the substitute one may not define the same set of rules,
complying with the supertype pre- and post-conditions requires matching the predicates and
variables used by the service candidates, with the ones defined by the now unavailable service.
This means that for each pre-condition defined by the candidate service, there exists a pre-
condition defined by the unavailable, which implies the candidate service’s one, and inversely for
the post-conditions.

Let Rτ = (Bodyτ (Pτ , Vτ) ⇒ Headτ (Pτ , Vτ)) be a pre-condition of the unavailable service, and
let Rσ = (Bodyσ(Pσ, Vσ) ⇒ Headσ(Pσ, Vσ)) be the corresponding pre-condition of a candidate
service for substitution. Verifying Rule 1 5.6 established in the previous chapter, amounts to
verify that the following rule holds.

(Bodyτ (Pτ , Vτ) ⇒ Headτ (Pτ , Vτ)) ⇒ (Bodyσ(Pσ, Vσ) ⇒ Headσ(Pσ, Vσ)) (6.1)

However, the right and left parts of the implication are expressed using different set of pred-
icates and variables. Thus, we have first to find a matching between the set of predicates and
variables (Pτ , Vτ) with (Pσ, Vσ) in order to make uniform Rule 6.1, and then verify whether the
rule holds.

The matching raises two main issues:

1. We have to use of the predicates Pσ in the rule Rτ , while Rτ is originally defined using a
set of predicates Pτ . This requires to find a matching between Pτ and Pσ.

2. Also, we have to find a matching between Vτ and Vσ.

Herein, we assume that services employ a commonly-used ontology for expressing the semantic
concepts of the predicates they use. For each predicate pi ∈ Pτ used in the rule Rτ , we check
the predicate pj ∈ Pσ, such that the semantic concept of pi is equivalent to the one of pj ,
i.e., SemanticDist(pi, pj) = χ. Several efforts have been focusing on integrating the concepts of
heterogeneous ontologies, these efforts can be integrated in our approach to enlarge the matching
to other relationships, rather than equivalence only.

Regarding the set of variables, we take advantage of SWRL, which enables to make reference
to the URI of the variables involved in the rule. In this way, any variable can be considered as an

1bτ .pre[A(spre)/spre]⇒ bσ.pre

94

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

instance of an XML schema defined in the associated URI. These schemas can be semantically
annotated using SAWSDL standard. Then, matching between variables Vτ and Vσ is performed
in the same way as matching between super and subtype signatures defined in the previous
subsection.

Besides semantic matching, we have to perform a syntactic mapping between the variables
in Vτ to variables in Vσ. The syntactic mapping between vi ∈ Vτ to vj ∈ Vσ is possible if:

• There exists a finite set of semantic concepts C0, .., Ck, (k > 0) where C0 is the semantic
concept of vi, and Ck is vj ’s one.

• There exist a semantic concept Cl, 0 < l < k, such that:

– for each concept Ci, i ∈ [0..l − 1], there exist a lifting XSL transformation that
transforms Ci to Ci+1, and

– for each concept Ci, i ∈ [l..k − 1], there exist a lowering XSL transformation that
transforms Ci to Ci+1.

The syntactic mapping SyntacticMapping between each variable vi in Vτ that is involved in
Rτ and the corresponding variable vj in Vσ is computed as follows:

SyntacticMapping(Vτ , Vσ) =







1 if ∀i, vi ∈ Vτ ,∃vj ∈ Vσ, such that
the mapping from vi to vj is possible.

0 otherwise.

Let Apre be the abstraction function that corresponds predicates of Pτ with the ones of Pσ,
using semantic matching between their semantic concepts. Let Avar be the abstraction function
that corresponds variables of Vτ with the ones of Vσ, using semantic matching and syntactic
mapping. Rule 6.1 can then be expressed as follows.

(Bodyτ [Apre(Pτ)/Pτ , Avar(Vτ)/Vτ] ⇒ Headτ [Apre(Pτ)/Pτ , Avar(Vτ)/Vτ]) ⇒ (Bodyσ(Pσ, Vσ) ⇒ Headσ(Pσ, Vσ))
(6.2)

Based on the above, if SyntacticMapping(Vτ , Vσ) 6= 0, then complying with the supertype
pre- and post-conditions consists in verifying rules that follow the same model as Rule 6.2.
However, as aforementioned in Chapter 2, SWRL supports only the operators conjunctions and
implications. Hence, every rule in the form of Rule 6.2 has to be transformed in a set of con-
junctions and implications.

Using Morgan’s laws in traditional logic, which state that A⇒ B ≡ ¬A ∨B, we have

(Bodyτ ⇒ Headτ) ≡ (¬Bodyτ ∨Headτ) , and

(Bodyσ ⇒ Headσ) ≡ (¬Bodyσ ∨Headσ)

Hence, Rule 6.1 can be written as follows:

(Bodyτ (Pτ , Vτ) ∧ ¬Headτ (Pτ , Vτ)) ∨ (¬Bodyσ(Pσ, Vσ)) ∨ (Headσ(Pσ, Vσ))

Therefore, the verification of the rule 6.1 is split into 3 rule verifications, where one of the
following rules has to be true:

Bodyτ [Apre(Pτ)/Pτ , Avar(Vτ)/Vτ] ∧ ¬Headτ [Apre(Pτ)/Pτ , Avar(Vτ)/Vτ])
¬Bodyσ(Pσ, Vσ)
Headσ(Pσ, Vσ)

6.4. COMPLYING WITH RULES FOR RUNTIME EXECUTION RESUMPTION 95

such that Apre(Pτ) ⊆ Pσ, and Avar(Vτ) ⊆ Vσ.
If one of the pre- and post-conditions is not verified, then the substitution candidacy of the

service does not hold. To this aim, the equation that computes CDPre−Post is defined as follows.

CDPre−Post(b
s
τ , b

s
σ) =



















































1 if ∀Rjσ in the pre-conditions of bsσ,
∃Rjτ in the pre-conditions of sτ , such that:

Rjτ ⇒ Riσ
and
∀Riτ in the post-conditions of bsτ ,
∃Rjσ in the post-conditions of sσ, such that:

Rjσ ⇒ Riτ
0 otherwise.

To verify SWRL rules, we reply on the ongoing efforts that focus on implementing reasoner
suporting SWRL.

Amon them, we list

1. Hoolet 2 is an implementation of an OWL-DL reasoner that uses a first order prover.
Verifying SWRL rule amounts to translate SWRL into First Order Logic and demonstrate
reasoning tasks with Hoolet theorem prover;

2. Bossam 3 is a forward-chaining rule engine for the semantic web, that supports OWL
inferencing, query processing, SWRL reasoning, etc. Verifying SWRL rule amounts to
translate OWL-DL into rules and gives the rules to the Bossam forward chaining engine.

3. RacerPro 4 provides a first implementation that supports processing of rules in a SWRL-
based syntax.

6.4 Complying with Rules for Runtime Execution Resumption

In the previous chapter, we established the algorithm that finds (if not null) the checkpoint
(denoted ckptσ) from which the execution of the substitute service can be resumed, and which
leads to a final node that serves the user required results. The structural/state compatibility
degree is computed according to the three following steps:

1. Matching between the final nodes of the substitute service and user requested results.

2. The post-conditions of the unavailable service comply with the pre-conditions of the sub-
stitute service checkpoint.

3. Matching between the state description of the state that has to transferred and the one of
the checkpoint ckptσ.

Let RequiredCapa be the user requested capability such that

RequiredCapa = (CRequiredFunc, CProvidedInputs, CRequiredResults)

2Hoolet: http://owl.man.ac.uk/hoolet/
3Bossam:http://projects.semwebcentral.org/projects/bossam/
4RacerPro:http://www.racer-systems.com/products/racerpro/index.phtml

http://owl.man.ac.uk/hoolet/
http://projects.semwebcentral.org/projects/bossam/
http://www.racer-systems.com/products/racerpro/index.phtml

96

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

Let bsτ be the behavior of the unavailable service, the execution of which has been interrupted
at the node Ninterrupt. Let ckptτ the state transfer checkpoint a predecessor of Ninterrupt, issued
from the sequential decomposition of bsτ . Let bs,iτ is the actomic action that ckptτ terminates. Let
sσ be a candidate service for substitution implementing the behavior bsσ. To realize the above
steps, bsσ should provide

1. a final node NF,σ that matches with CRequiredResults.

2. a state transfer checkpoints ckptσ that initiates an atomic action, the pre-conditions of
which are implied by the post-conditions of the atomic action that ckptτ completes.

3. the description of the workflow state of the checkpoint ckptσ matches with ckptτ ’s one.

Checking the compliance of the post-conditions with the pre-conditions of atomic actions
amounts to check iteratively in the backward path of the final node NF,σ whether the post-
conditions of bs,iτ imply the pre-conditions of an atomic action bs,jσ . If bs,jσ exists then, ckptσ
is computed after sequentially decomposing bsσ. The compatibility degree associated with the
second step consists in computing

CDPre−Post(b
s,i
τ , b

s,j
σ) =







1 if ∃bs,jσ ∈ bsσ, such that:
bs,iτ .post⇒ bs,jσ .pre

0 otherwise.

Also, computing the structural/state compatibility degree includes matching between the state
descriptions. Hereafter, we define the degree of matching between state descriptions (Sec-
tion 6.4.1). Then, we compute the compatibility degree with respect to the rule for runtime
execution resumption (Section 6.4.2).

6.4.1 State Description Compatibility

The key idea that governs the definition of the compatibility over states is to achieve a user-
transparent or near transparent service substitution. To this aim, the substitute service has
to require less data than (or the same as) the data provided by the last state stored of the
unavailable service. Hence, as for the inputs, the state descriptions of the unavailable service
and its substitute should be contravariant.

In Chapter 2, we presented our extension of WSFR standard with semantic annotations,
which we generate automatically (Chapter 4). Checking the compatibility between state de-
scriptions consists in matching between their respective XML elements. Matching between state
descriptions is performed in the same way as matching between the in/out parameters of the
signature. We first compute the semantic distance between the semantic description of the XML
elements included in the state description ckptσ with those included in the state description of
ckptτ . Then, we check whether the syntactic mapping is possible.

Let SDwkf (ckptσ) be modeled as a set of XML element Eσ,i making reference to the semantic
concept Cσ,i, where i ∈ [1..n], and n is the cardinality of SDwkf (ckptσ). Let SDwkf (ckptτ) be
modeled as a set of XML element Eτ,j making reference to the semantic concept Cτ,j , where
j ∈ [1..m] and m is the cardinality of SDwkf (ckptτ), such that for each Cσ,i, ∃Cτ,j | Cσ,i ⊆s Cτ,j ,
in order to comply with the contravariance constraint. We denote DM the degree of matching
between state descriptions, which is computed as follows.

DM(SDwkf (ckptτ), SDwkf (ckptσ)) =

n,m
∏

i,j=0

SemanticDist(Cσ,i, Cτ,j)·

n,m
∏

i,j=0

SyntacticMapping(Eτ,i, Eσ,j)

6.5. COMPLYING WITH SUBTYPE INVARIANTS AND CONSTRAINTS 97

Note that if ∃i, j, such that one of the terms SemanticDist(Cσ,i, Cτ,j) or SyntacticMapping(Eτ,j , Eσ,j)
is null then DM(SDwkf (ckptτ), SDwkf (ckptσ)) would be null.

6.4.2 Compatibility Degree Computing for Runtime Execution Resumption

According to the degree of matching DM between the state descriptions, we define the compat-
ibility degree for the structural/state compatibility (i.e., CDRuntimeExeRes).

The structural/state compatibility degree is computed according to the above-stated steps,
namely,

1. The degree of matching between the final nodes, denotedDM(NF,σ, CRequiredResults), which
is a boolean parameter ∈ {0, 1}, that equals to 1 only when all the required results of the
user are included in SDwkf (NF,σ).

2. CDPre−Post(b
s,i
τ , b

s,j
σ) which is a boolean parameter in {0, 1}, enabling to check the existence

of an atomic action bs,jσ ∈ bsσ, the pre-condition of which are implied by the post-conditions
of bs,iτ .

3. The degree of matching, denoted DM(SDwkf (ckptτ), SDwkf (ckptσ)) between the state
descriptions of ckptτ and ckptσ.

Thus, the structural/state compatibility degree is set as follows.

CDRuntimeExeRes(F
s
τ , F

s
σ) =

∏







DM(NF,σ, CRequiredResults)

CDPre−Post(b
s,i
τ , b

s,j
σ)

DM(SDwkf (ckptτ), SDwkf (ckptσ))

where

DM(NF,σ, CRequiredResults) =







1 if (∀p ∈ CRequiredResults),∃q ∈ SDwkf (NF,σ)
such that the semantic concept of p ⊆s q’s one.

0 otherwise.

Note that similarly to the compatibility degree over signatures, the structural/state compat-
ibility degree is the product of the parameters that have impact on it, if one of them is null, then
CDRuntimeExeRes is also null.

6.5 Complying with Subtype Invariants and Constraints

The transferred state of the substitute service should comply with the invariants and constraints
of the substitute service. To check the compliance with invariants and constraints, we have to
check that the following rules hold: Iσ[A(ω)/ω] and Constrtσ[A(ω)/ω], where ω is the state of
the unavaialbels ervice that has to be transferred to the substitute service, A is the abstrac-
tion function that associates to each variable in the state of the substitute service, with the
corresponding variable in the state of the unavailable service. The association is guaranted if
DM(SDwkf (ckptτ), SDwkf (ckptσ)) is not null. Furthermore, A assigns variables values to the
state of the unavailable service using syntactic mapping between state variables. Hence, com-
plying with invariants requires that the state resulting from semantic matching and syntactic
mapping, i.e., A(ω) complies with the invariant of the candiadte service. This is reduced to

98

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

transform that the rule Iσ(A(ω) into a set of rule that include only conjunctions and implication
as in the case of pre- and post conditions and to verify the resulting rule.

Regarding the constraints, we check the compliance only in the case that the checkpoint
ckptσ is included between two nodes, on which there is a constraint. In this case, similarily to
the invariants, we transform Constrtσ[A(ω)/ω] into a set of rule that include only conjunctions
and implications, and verify the resulting rule. Hence, the compatibility degree with respect to
the substitute service invariants and constraints is expressed as follows:

CDInv−Const(b
s
τ , b

s
σ) =











































1 if ∀Ijσ invariant of bsσ,
Ijσ[A(ω)/ω] holds
and
if ∃nρ, nψ ∈ bsσ, and a constraint Constrt(nρ, nψ), such that:
ckptσ is included in the path that links nρ to nψ
then Constrtσ[A(ω)/ω] must hold.

0 otherwise.

6.6 Semantic-based Service Selection

In this section, we put the different compatibility degrees computed in the previous section to-
gether in order to check whether a candidate service is able to substitue the unavailable service or
not. In the case of multiple candidates, we classify the candidates for substituting the unavailable
service in order to increase the chances to proceed a successful service substitution.

First, coarse-grained classification puts services into catalogs where each catalog is related to
a user requested capability. We then refine the classification within the same catalog according to
their compatibility degree. When a failure occurs, the candidate service that presents the greatest
compatibility degree is selected. At runtime, the service catalogs are continuously enriched with
new services that join the networked environment.

Upon service unavailability, the services belonging to the related catalog are processed by
computing their compatibility degree with the unavailable functionality in order to select the
service that is best compatible with the unavailable service. Figure 6.2 presents a graphical
representation, as a decision graph, of the mechanism that computes the compatibility degree
with the unavailable service’s functionality.

The decision graph is set as follows. The compatibility degree (CD) is initially null. In order
to determine its value, the computation of the compatibility degree over signatures (CDSignature)
is first computed with respect to the semantic and syntactic descriptions. In case that CDSignature

is null, the candidacy of the service is not considered. Otherwise, the value of CD is set to
CDSignature, and the conformance with the unavailable service’s pre- and post-conditions is
checked. At the end of the compatibility check over pre- and post-conditions, CD is set to the
weighted sum of CDSignature and CDPre−Post, or it is null, in the case that CDPre−Post is null.
If CD is null, then the candidacy of the service is not considered. Otherwise, the structural/state
compatibility is checked.

Regarding structural/state compatibility, the compatibility degree includes (1) matching be-
tween the final nodes’ state descriptions and the user required results, (2) checking that the
runtime rule for execution resumption is satisfied, and (3) matching between state descriptions.

As specified in Section 6.4, the compatibility between the user request and the final nodes is

6.7. CONCLUDING REMARKS 99

Figure 6.2: Decision graph for computing the compatibility degree

first checked. The existence of such a node is guaranteed through the compliance of the substitute
service’s signature with the covariance of results. Once a final state NF,sigma that satisfies the
user request is found, the compatibility is checked with respect to the pre- and post conditions
of atomic actions and state descriptions. This enables to find (if exists) in the backward path
of NF,sigma, a state transfer checkpoint ckptσ in the workflow of the candidate service, at which
the state can be transferred.

In case of incompatibility with ckptσ, the backward path is expanded to the predecessor of
ckptσ. In case that the backward path reaches the initial state, then CDRuntimeExeRes = 0 and
CD is equal to the weighted sum of CDSignature and CDPre−Post.

Otherwise, we check whether the state that should be transferred complies with the invariants
and constraints of the candidate service. If it is the case then the compatibility degree also
includes the weighted sum of CDRuntimeExeRes and CDInv−Const. Otherwise, it includes none of
them, as the state transfer cannot be performed if one of them is null.

Once the compatibility degrees with the services listed in the catalog are computed, the
service providing the greatest value of the compatibility degree is selected as a candidate for
substitution, and a ‘SetState’ query is sent to the selected service.

6.7 Concluding Remarks

In this chapter, we defined our algorithms to check and evaluate the compatibility between the
unavailable service and a set of candidate services for substitution. Once the compatibility is
checked and evaluated, a service is selected in order to proceed to the actual substitution of
the unavailable service. This requires first to reconfigure all the parties (i.e., the client, and
possibly, other services) that have been interacting with the unavailable service, in order to use
the substitute service in the place of the unavailable service. The integration of the substitute
service in the running SOA systems is elaborated in the next chapter.

100

CHAPTER 6. COMPATIBILITY CHECK AND SEMANTIC-BASED SERVICE

CLASSIFICATION

An error doesn’t become a mis-

take until you refuse to correct

it.

Orlando A., Battista

7
Reconfiguring SOA Systems

In the previous chapters, we focused on service substitution: Chapter 5 defines the rules that
ensure correct service substitution and, Chapter 6 defines our technique for verifying these rules
on networked services. Assuming that a service substitute has been selected among a set of
candidate services, we investigate, in this chapter, the impact of the service substitution on the
client, and potentially, the other services involved in the SOA systems, which are affected by the
service unavailability.

More specifically, the runtime reconfiguration consists in substituting the unavailable service
with a similar service available in the networked environment, and transferring the state of the
unavailable service to its service substitute. Since it is not always possible to find an exact replica
of the unavailable service, the behaviors of the unavailable and substitute services may differ.
In such cases, the client reconfiguration consists in adapting the client interactions according to
the behavior description of the substitute service. Also, in the case of service orchestration, the
other still-available services –involved in the orchestration– may have data dependencies with the
unavailable service. These services have to be reconfigured according to their data dependency.

The rest of this chapter is structured as follows. In Section 7.1, we focus on the client
reconfiguration after service substitution, and in Section 7.2, we investigate the reconfiguration of
service orchestrations in the presence of data dependencies with the substituted service. Finally,
Section 7.3 provides a summary of our approach, and points out the need for realizing the solution
that we propose for runtime service substitution.

7.1 Client Reconfiguration

The substitution that we propose allows the substitute service to have a behavior different
from the one of the unavailable service. As presented in the previous chapter, we check the
structural/state compatibility between the behaviors of the unavailable and substitute services.
As a result, if the behaviors are compatible, we find a checkpoint in the behavior of the substitute
service at which the state synchronization is possible. As illustrated in Figure 7.1, Figure (a) is
a graphical representation of the behavior (denoted bτ) of the unavailable service (denoted sτ),
and Figure (b) represents a substitute service’s one (denoted bσ).

Before service unavailability, the client starts interacting with the service sτ with respect to
its behavior description. A set of operations are invoked and a set of checkpoints are performed.
When sτ becomes unavailable and a substitute service sσ is found, the compatibility between
bτ and bσ is checked. Once, we find two state transfer checkpoints, ckptτ and ckptσ, that have
compatible states, the client reconfiguration is performed in three steps:

1. In a first step (❶ in Figure 7.1), a roll back is performed at the client side in order to invali-

102 CHAPTER 7. RECONFIGURING SOA SYSTEMS

Figure 7.1: Client reconfiguration

date the set of interactions performed from ckptτ till the service unavailability, represented
using a cross in the Figure 7.1.

2. The second step (❷ in Figure 7.1) consists in sending a ‘SetState’ request to the substitute
service sσ.

3. Finally (step ❸ in Figure 7.1), the client adapts its interactions according to the behavior
bσ, starting from the checkpoint ckptσ till reaching a final node.

Note that case that the services are structural/state incompatible, a replay is necessary to
put the substitute in an advanced stage of execution. The replay consists in executing the
behavior bσ of the substitute service seamlessly to the client, as if the execution has not been
interrupted.The replay stops when a user intervention is necessary. The client reconfiguration
then includes adapting the workflow with respect to bσ, starting from the last node at which
the replay has been stopped. In such cases, the interaction with the client does not start with a
rolled back state, but with a new state reflecting the state of execution of the substitute service.
The client has to be updated according to the replay results.

7.2 Reconfiguration of Service Orchestrations

State transfer may invalidate a set of results that are not taken into account into the transferred
state. In the case that the unavailable service has been participating in an orchestration may
affect still-connected services due to data dependencies. Services that are dependent upon these
results should be forced to rollback to a previous checkpoint in order to put the orchestration
in global consistent state. As mentioned in Section 3.2.2, the set of these checkpoints is called
consistent recovery line.

Because services are autonomous, their checkpoints are not a priori coordinated to form a
consistent recovery line. Thus, the reconfiguration should be figured out on the basis of the

7.2. RECONFIGURATION OF SERVICE ORCHESTRATIONS 103

analysis of their data dependencies. Hence, in this section, we first model the data dependency
between services as a direct acyclic graph (Section 7.2.1). The resulting representation of data
dependency enables to easily detect the data dependency between services at reconfiguration
time. Then, we propose our algorithm for rollback propagation, which adapts checkpoint-based
recovery to SOA systems (Section 7.2.2). Then, in Section 7.2.3, we integrate the behavior of the
substitute service in the orchestration workflow, and update the data flow of the orchestration
according to the substitute service behavior in order to resume the execution from a coherent
orchestration description.

7.2.1 Data Dependency Between Services

In order to model the data dependencies between services participating in a service orchestration,
we use a dependency graph that links service checkpoints according to their data dependencies.
The dependency is considered between rollback checkpoints defined in the service workflows,
because they present the checkpoints at which the state can be stored and synchronized.

Principles of dependency between checkpoints

To illustrate the data dependency between two checkpoints, we use the example presented in
Figure 7.2.

Figure 7.2: Data dependency between two checkpoints in a service orchestration

The service orchestration that we consider integrates two services, namely, S1 and S2. It
integrates their behaviors (represented respectively, in Figure 7.2- (a) and (b)) in an AND-split
structure. As represented in the orchestration data flow (Figure 7.2- (c)), the value of the
parameter X is provided as an output by the service S1, and used as an input by the service S2.
Before data passing, the services S1 and S2 have performed respectively the checkpoints C11 and
C21. We define the data dependency between two rollback checkpoints as follows.

Definition 6. A rollback checkpoint (denoted C21) depends upon another rollback checkpoint
(denoted C11) means that rolling back to C11 implies necessarily rolling back to C21.

104 CHAPTER 7. RECONFIGURING SOA SYSTEMS

In the example presented in Figure 7.2, rolling back the service S1 to the checkpoint C11

invalidates the previously provided value of X, let Vpre be this value. Re-executing the nodes
after the checkpoint C11 may provide a new value of X, , let Vpre be this value. Vpost may different
from Vpre. The service S2 must also roll back to a state that precedes the use of X’s value (i.e.,
Vpre) as input for its operations; otherwise, the states of the two services would be inconsistent.

Building the dependency graph

A dependency graph is an oriented graph where the nodes represent the individual rollback check-
points of constituent services. The edges represent data dependencies between these checkpoints.
An arrow goes from a checkpoint C1 to another C2 to denote that if we rollback to the checkpoint
C1, we have to rollback to C2. Dependency detection is based on the orchestration data flow.
As defined in Chapter 4, the data flow shows how the data is passed from a node to another
as in/out parameters. Since the client middleware is the central entity that sends, receives and
manipulates these parameters, tracking data flow at the client side allows determining checkpoint
dependencies.

Algorithm 3 presents the set steps that enable the automatic building of the dependency
graph for a service orchestration (O). Let O.wkf be the aFSA that models the workflow
of the service orchestration, which integrates the behaviors of the N services Si, i ∈ [1..N].
Each service Si’s behavior is also modeled using an aFSA (denoted wkfi), such that wkfi =
(Qi, σi, δi, si0, Fi, QAi, STCkpti, RCkpti).

After creating a new dependency graph (denoted O.DG) that is associated with the orches-
tration O, the second step consists in identifying the set of parameters used in the orchestration
(denoted Param). As modeled in Chapter 4, the set of parameters for each aFSA wkfi is mod-
eled as a set Pi = ∪j(Oij ∪ Iij), where Iij and Oij are the in/out parameters of the nodes nij ,
such that nij ∈ Qi of the workflow wkfi. In this way, we have Param = ∪Ni=0Pi.

Afterwards (in Step 3), Algorithm 3 checks for each parameter P ∈ Param, the data de-
pendencies that result from changing P ’s value and enriches the dependency graph accordingly.
This step is split into 5 steps: from 3.1 to 3.5.

Let CkpIntPk = [C1Pk ..C2Pk] be a checkpoint interval 1 in wkfPk , which holds between the
checkpoint C1Pk and its immediate successor C2Pk , where P ’s value is changed (i.e., where P is
an out or in/out parameter of a node nkj ∈ CkpIntPk of the workflow of the service Sk).

Between two changes of P ’s value, Algorithm 3 checks the checkpoint intervals CkpInti of the
other services Si, i ∈ [0..N]\{k} of the orchestration, which consume P without changing its value
(i.e., P is an input parameter of a node nij ∈ Qi). As we focus on inter-service dependencies,
Si should necessarily be different from Sk. We denote CkpInt the set of checkpoint intervals
CkpInti, i ∈ [0..N]\{k} that consume P ’s value without changing it (P is an input only). This
is performed in Steps 3.1 to 3.4.

Then, Step 3.5 adds nodes and their corresponding links to the dependency graph. For each
checkpoint interval CkpInti = [Ci..C

′
i] included in CkpInt, an arrow that goes from C1Pk to Ci

is added to the orchestration dependency graph (O.DG), denoted C1Pk → Ci, which means that
a roll back of the service Sk to the checkpointC1Pk implies the roll back of the service Si to Ci.
Furthermore, in order to reduce the number of nodes in the dependency graph as well as the
links among them, adding a link among two checkpoints (C1Pk → Ci) depends on the existing
dependencies in the graph. More specifically, Step 3.5.3 checks whether a predecessor (denoted
C”i) of a checkpoint Ci (of a same service Si) depends upon the checkpoint C1Pk , then there is

1A checkpoint interval is a set of nodes that are included between two successive checkpoints.

7.2. RECONFIGURATION OF SERVICE ORCHESTRATIONS 105

Algorithm 3: Constructing Dependency Graph

/* Constructs an oriented dependency graph according to the orchestration workflow */

Data: Orchestration description O.wkf .
Result: Orchestration dependency graph O.DG.
begin

/* Step 1: Initialization */

Initialize O.DG= new Graph
/* Step 2: Identifying the in/out parameters in the orchestrations */

Param = ∪N
i=0Pi

/* Step 3: A loop that parses the orchestration and checks the data dependencies generated by each parameter

*/

foreach P ∈ Param do
/* Initialize a marker (Mark) to parse the orchestration description by parts */

Mark ← First node nkj where P is output parameter of the service Sk

/* Parse the orchestration description */

while Mark 6= the final node of O.wkf do
Step 3.1) Start parsing from Mark
Step 3.2) Detect the checkpoint interval CkpIntP

k = [C1P
k ..C2P

k] of the service Sk where P ’s
value is first changed
Step 3.3) Track CkpInt, which is the set of checkpoint intervals CkpInti in wkfi of the service
Si, such that Si 6= Sk, in which the parameter P is taken as input of a node nki ∈ Qi

This step is stopped either when changing P ’s value, or at the end of O.wkf
Step 3.4) Mark ← the point of O.wkf where the previous step stopped
Step 3.5) foreach CkpInti = [Ci..C

′

i] ∈ CkpInt do
3.5.1) Add Ci to O.DG
3.5.2) Create an arrow going from C1P

k to Ci, denoted C1P
k −→ Ci in O.DG

/* Optimizing O.DG */

3.5.3) if ∃C”i ∈ Predecessor(Ci) such that (C1P
k −→ C”i) ∈ O.DG||C1P

k is annotated with
C”i then

Delete C1P
k −→ Ci

else if ∃ cycle between C1P
k and Ci then

/* Checking cycles between Cp and Ci */

Annotate C1P
k with Ci

Delete C1P
k −→ Ci

Return Orchestration Dependency Graph O.DG
end

106 CHAPTER 7. RECONFIGURING SOA SYSTEMS

no need to add a dependency between Ci and C1Pk since rolling back to C1Pk will imply rolling
back to C”i, thus, implicitly rolling back to Ci.

However, the above built dependency graph may include cycles. Here below, we focus on
freeing the dependency graph from cycles in order to be a DAG (Direct Acyclic Graph), and
thus take benefit of the DAG properties in term of graph-traversal and complexity.

Cycle free dependency graph

The logic behind the dependency graph is based on the precedence relation (relation before)
introduced by Leslie and Lamport [Lamport, 1978] over the checkpoints of the services involved
in the orchestration. Data are generated and/or parameters’ values are changed, and exchanged
between nodes included in the preceding or simultaneous checkpoint intervals, producing thereby
a data dependency between checkpoints. As presented above, we model these dependencies using
a dependency graph. Under certain circumstances, the checkpoint intervals of different services
include nodes that present in/out dependencies in inverse directions, introducing dependency
cycles between checkpoints.

A cycle is formed when a number of checkpoints in the dependency graph are connected
in a closed chain, i.e., when there is a direct path that goes from one checkpoint to the same
checkpoint. For instance, consider the case where the values of two parameters, e.g., X and
Y , are changed within two checkpoint intervals, e.g., respectively CkpInt1 = [C11..C12] in the
service S1, and CkpInt2 = [C21..C22] in the service S2. Then X is provided as input of a node
in the checkpoint interval CkpInt2, and Y , in CkpInt1 (as illustrated Figure 7.3 -left).

Figure 7.3: Case of cycle in the dependency graph

The dependency graph thus includes a 2-vertice cycle formed by the checkpoints C11 and C21

(Figure 7.3 -right). The cycle means that in case of rolling back to C11, this implies rolling back
the service S2 to C21 and vice versa. Hence, in both cases of rollback, the rollback propagation will
include the checkpoints C11 and C21. If the dependency C11 → C21 has been first detected and
an arrow that goes from C11 to C21 is created, then when detecting the dependency C21 → C11,
we annotate C21 with C11 without introducing an extra arrow between the checkpoints. The
meaning of the annotation is that when rolling back the service S2 to the checkpoint C21, the
rollback should be necessarily be propagated to the checkpoint C11 of the service S1. In this way
we avoid the creation of cycles in the dependency graph, which facilitates the graph traversal at
runtime. This is performed in Step 3.5.3 in Algorithm 3.

Complexity of the dependency graph

Let N be the number of services involved in the orchestration, each service Si has Ki checkpoints
included in its behavior. Let’s call C = max1≤i≤N (Ki). Therefore, in the worst case, the

7.2. RECONFIGURATION OF SERVICE ORCHESTRATIONS 107

dependency graph will have (C · N) nodes. Let M be the maximum number of nodes in the
dependency graph, M = C ·N .

As the dependency graph does not include cycles, the maximum number of dependencies of
a given checkpoint is equal to (M − 1). More specifically, the number of data dependencies can
be modeled as the sum of M first terms of an arithmetic sequence (Un) having as step r = 1
where the general term is expressed as follows:

Un+1 = Un + 1 for 0 ≤ n ≤ (M − 1) and U0 = 0
The maximum number of transitions (E) of the dependency graph is thus the sum of M first
terms of Un

E =
M−1
∑

i=0

Ui =
M · (M − 1)

2

Based on the above, the number of transitions of the dependency graph is O(n2), for n number
of nodes. Taking advantage of the existing algorithms for graph traversal, the dependencies of a
given checkpoint C are extracted after finding the checkpoint C in the dependency graph using
Breadth First Search 2 (BFS) and its tree. In the worst case breadth-first search has to traverse
all paths to all possible nodes, the time complexity of breadth-first search can be expressed as
O(n+n2) since every node and every transition will be explored. Hence, the time complexity of
the dependency graph is polynomial.

7.2.2 Rollback Propagation for Service Orchestrations

Based on the above built dependency graph, we present our strategy for rollback propagation in
service orchestrations. The strategy that we propose takes its origins from the existing protocols
for rollback recovery (presented in Section 3.2.2). It derives from the uncoordinated checkpointing
protocol as its the most flexible one: it respects service autonomy in deciding when taking
checkpoints. We adapt the rollback propagation according to our definitions of checkpoints and
the data dependencies between checkpoints. Here after, we present the high level steps of our
rollback propagation algorithm.

The rollback propagation performed by Algorithm 4 takes as inputs (1) the checkpoint (de-
noted C) in the behavior of the unavailable service, at which the synchronization has been per-
formed with the substitute service, (2) the orchestration workflow (O.wkf) and the associated
dependency graph (O.DG). Then, Algorithm 4 recursively computes the recovery line (denoted
RecoveryLine) of the orchestration, according to the orchestration’s dependency graph.

More specifically, the recovery line is first initialized with the checkpoint C in order to inval-
idate the computation that has been performed by the unavailable service. Then, the rollback
is propagated according to the dependencies of C, i.e., the checkpoints C ′ of the still-connected
services involved in the running orchestration, which depend upon C (i.e., C → C ′ in O.DG, or
C is annotated with C ′). These checkpoints are thus added to the recovery line. Recursively,
the propagation is extended to the checkpoints that depend upon the newly added checkpoints
(i.e., the set of checkpoints C ′) based on the same dependency graph.

To reduce the number of the checkpoints included in the recovery line, Algorithm 4 further
checks if a successor of C ′ (denoted C”) has been previously included in the recovery line in
order to remove it, since rolling back to C ′ includes implicitly rolling back all its successors in
the same service behavior. Furthermore, in order to avoid checking the dependencies twice for

2In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores
all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and
so on, until it finds the goal.

108 CHAPTER 7. RECONFIGURING SOA SYSTEMS

Algorithm 4: Rollback_Propagate(C)

/* Computes a recovery line according to the dependency graph */

Data: Rolled back checkpoint C, O.wkf and O.DG.
Result: Orchestration recovery line RecoveryLine.
begin

/* Initialization */

RecoveryLine=new set
RecoveryLine.Add(C)
/* Temporary variables */

Checkpoint Temp =new Checkpoint
/* Checking dependencies with C */

Temp = C
Label: Propagate7

/* If Temp has dependencies */

if Temp ∈ O.DG & ∃ Checkpoint C′: (Temp→ C′) ∈ O.DG then
/* Rolling back only services that are dependent on Temp */

foreach Checkpoint C′:(Temp→ C′) ∈ O.DG do
/* Removing the successors of C’ */

if ∃C” ∈ Successor(C′): C” ∈ RecoveryLine then
RecoveryLine.Remove(C”)

RecoveryLine.Add(C′)
/* Mark Temp with which the dependency is checked */

Mark Temp

else
Return RecoveryLine

End Propagate17

if ∃ non marked Checkpoint C′ ∈ RecoveryLine then
/* Checking dependencies with newly added checkpoints */

foreach non marked Checkpoint C′ ∈ RecoveryLine do
Temp = C′

/* Recursive Propagation */

Goto Propagate (7→ 17)

Return RecoveryLine
end

7.2. RECONFIGURATION OF SERVICE ORCHESTRATIONS 109

a same checkpoint, Algorithm 4 marks each checkpoint for which the propagation is computed
according to its dependencies. At the end, Algorithm 4 verifies whether there are checkpoints
included in the recovery line, and for which the dependencies have not been checked. In such a
case, Algorithm 4 calls back the instructions in the block “Propagate" (from 7 to 17) in order to
include in the recovery line the dependencies of non-marked checkpoints. Once Algorithm 4 is
performed, the computed recovery line comprises all the checkpoints of the component services
that present data dependency with the checkpoint C.

Our rollback recovery distinguishes itself from the traditional protocols by flexibility in com-
puting the recovery time. since it significantly simplifies the existing rollback techniques. Indeed,
it does not rely on any service synchronization or forced checkpoints. It further respects service
autonomy while preserving orchestration consistency. However, as individual checkpoints are not
coordinated, the risks for domino effect are the same as in uncoordinated checkpointing proto-
cols. The domino effect is mainly caused by the dependencies among constituent services. The
less the data dependencies are, the more unlikely is the domino effect. Therefore, the domino
effect likelihood is conditioned by the dependencies between the constituent services of an or-
chestration. It thus relies essentially upon the orchestration design to limit the extent of the
rollback propagation.

7.2.3 Integrating the Substitute Service in a Running Service Orchestration

The target of the previous section is to put the orchestration in a consistent state after service
unavailability. Once the recovery line is computed and the orchestration is put in a consistent
state, we have to integrate the behavior (bσ) of the substitute service sσ in the workflow of the
orchestration in order to resume its execution. The integration of the behavior of the substitute
service is similar to the client reconfiguration, presented in Section 7.1: the non-executed part of
the behavior of the unavailable service is replaced with the part of the behavior of the substitute
service, resulting from the matching algorithms. In the recovery line, the checkpoint C is replaced
by the corresponding checkpoint included in the behavior of the substitute service, which results
from behaviors matching.

However, as there may be data dependencies between services, we have to re-establish the
data flow of the orchestration according to the behavior of the substitute service.

Integrating substitute service data flow

The data flow is defined on the basis of the previously defined orchestration. We parse the data
annotations of the nodes that are included in the non-performed part of the behavior bτ of the
unavailable service, and:

1. For each output (P) provided by the unavailable service as input to a node ni in the
behavior of another service si in the orchestration, we find the node nσ = (Iσ, Opσ, Oσ) in
the aFSA of the substitute service, which provides this output, i.e., P ∈ Oσ. We create
an annotation in nσ to denote the data dependency between sσ and si. As presented in
Section 4.1, the data dependency is formalized here below:

(nσ, {P}) → (ni, {P})

2. For each input (P) required by the unavailable service from a node nj in the behavior of
another service sj in the orchestration, we find the node n′σ = (I ′σ, Op

′
σ, O

′
σ) in the aFSA of

the substitute service, which requires P as input, i.e., P ∈ I ′σ. We update the annotation of

110 CHAPTER 7. RECONFIGURING SOA SYSTEMS

nj to denote the data dependency between sj and sσ. The data dependency is formalized
through the update of nj ’s annotation as follows:

(nj , {P}) → (n′σ, {P})

The case that we cannot find a node n′σ that requires P as input does not introduce incoherence
in the orchestration. This only means that the unavailable service requires more inputs than the
substitute service, which is accordance with the contravariance of arguments in the subtyping
rules. Similarly, the covariance of results in the subtyping rules guarantees that P is provided
as output by the substitute service, and thus guarantees the existence of the node nσ.

Integrating substitute service control flow

Starting from the checkpoint of the unavailable service (denoted C) at which the state transfer
has been performed, we remove, from the orchestration workflow, all the nodes successors of C
that are included in the unavailable service behavior. Then, from C, we integrate the part of
the control flow of the substitute service that has to be executed, in parallel with the workflows
of the other services participating in the orchestration. This is performed using an AND-split
workflow pattern. We link C with an AND-split labelled transition, to the checkpoint of the
substitute service (denoted ckptσ) of the substitute service, resulting from matching between
substitute and unavailable services’ behaviors.

Verifying deadlock freedom of the orchestration workflow

After updating the workflow of the orchestration, we have verify that the resuming the execution
from the transformed workflow would not lead to deadlocks. A deadlock is a situation where the
execution of a node is infinitely blocked without being able to reach a final node. This would
occur when a node provides an output that is required as input by one of its predecessors in the
orchestration workflow. If this situation is likely to happen, then a workflow transformation is
required in order to free the orchestration from deadlocks. Several efforts have been performed
in the domain of workflow transformation and verification [Aalst, 1997, Grossmann et al., 2006,
Derbel et al., 2008, Verbeek, 2001]. To verify deadlock freedom after integrating of the substitute
service workflow, we re-use the work proposed in [Grossmann et al., 2006].

Once deadlock freedom is verified, the execution can be resumed. While the orchestration
execution is progressing, the dependency graph can be re-built, as a background task, according
to the new structure of the orchestration workflow in order to anticipate in case of occurrence of
another service unavailability.

7.3 Concluding Remarks

In this chapter, we figured out the impact of service substitution on the entities participating
in the SOA system, particularly, the client and still-available services. We proposed the way to
reconfigure the client and the service orchestration in order to resume the execution without intro-
ducing inconsistencies. The client reconfiguration consists of updating its interactions according
to the substitute service behavior. The orchestration reconfiguration consists of (1) detecting the
data dependencies between the services it composes, (2) reconfiguring the still-connected service
according to the state synchronization of the substitute service, and (3) integrating the behavior
of the substitute service in the orchestration workflow. The realization of our approach along
with its experimental study are reported in Part III.

Part III

Realization

A theory is something nobody

believes, except the person who

made it. An experiment is

something everybody believes,

except the person who made it.

Albert, Einstein 8
SIROCCO: ServIce Reconfiguration upOn serviCe

unavailability and Connectivity lOss

As presented in Chapter 3, service provisioning can be interrupted as a result of a network
disconnection (i.e., “in-middle” failure), and/or a service unavailability (i.e., “near-host” failure)
such as service undeployment. In the case of “in-middle” failure, the service continuity can
be ensured through network-based solutions, such as handoff or multi-homing. In the case of
“near-host” failure, service reconfiguration is necessary to substitute the unavailable service with
another one. Combined with network-based solutions [Rong et al., 2007a, Rong et al., 2007b],
service reconfiguration can be also an alternative solution to “in-middle” failures when no network
connection is available between a client and its service provider.

To this aim, we propose SIROCCO (ServIce Reconfiguration fOr serviCe unavailability and
Connectivity lOss) middleware that (1) integrates existing network-based solutions to enable
seamless mobility, (2) integrates existing solutions for service discovery and composition, and (3)
enhances these functionalities with a support for runtime service reconfiguration in the case of
service unavailability. Actually, the main contribution of SIROCCO lies in the support of the
runtime service reconfiguration that enables service substitution. In Section 8.1, we present an
overview of SIROCCO Architecture components, and provide the basic background on the exist-
ing middlewares that we use for handling network-based solutions, and service composition and
discovery. We then present a collaboration scenario of the middleware components at runtime,
in order to emphasize the role of each of them in runtime service reconfiguration. Furthemore,
we detail and integrate into SIROCCO middleware the SIROCCO service registry (Section 8.2),
and further enhance the middleware with a support for runtime service management. Runtime
service management includes an execution engine (presented in Section 8.3), and our realization
of the service reconfiguration. In Section 8.4, we concentrate on the details of our prototype that
implements the runtime service reconfiguration, realizing the theoretical solution established in
Chapters 4 to 7. We also assess the use of SIROCCO service reconfiguration through an imple-
mentation of our train ticket booking scenario, along with a set of experimental results. Finally,
Section 8.5 provides the concluding remarks of this chapter.

8.1 Middleware Architecture Overview

As illustrated in Figure 8.1, the middleware architecture is layered on top of a legacy networked
software platform, and decomposes into two main layers to enable the deployment and the use
of distributed applications. Applications include a set of services that have been independently
developed and deployed in certain sites over the network. They are invoked when required, to

114

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

Figure 8.1: SIROCCO middleware architecture

respond to users’ requests. A number of these services may potentially serve as candidate service
substitutes for a service that becomes unavailable at runtime.

The lower middleware layer deals with service communication in the user environment. It
offers the abstraction of an integrated multi-radio network, which comprehensively composes
several networks in reach via the embedded radio interfaces (e.g., GPRS, WiFi, Bluetooth).
As a result, the communication middleware offers the abstraction of an integrated multi-radio
interface to the software services of the upper layer, in order to use the various networks in reach
to communicate with the services and improve their availability.

The upper middleware layer embeds advanced services related to the consumption of the
distributed resources.

• Service discovery enables to dynamically find the networked services in the changing net-
working environment.

• Service registry classifies services resulting from the service discovery into catalogs accord-
ing the functionalities they offer. These services are further enhanced with semantic capa-
bilities description to overcome the restrictions of the syntactic description conformance.
Additionally, stateful services may provide a description of their state as well as their re-
covery capabilities in order to enable reliable service interactions. The service registry is
periodically updated according to the service availability.

• Service composition enables the composition of networked services in order to provide
sophisticated service functionalities that serve a user request.

• Runtime service management is responsible for correctly interacting with services. It in-
cludes an execution engine that follows the description of the service behavior in order to
foster correct consumption of the service functionality. The execution engine is further in
charge of coordinating the service orchestrations that result from the service composition.

We propose to enrich the advanced middleware functionalities with a service reconfiguration
that enables to perform runtime service substitution in the case of “near-host” or “in-middle”
failures. Service reconfiguration replaces the unavailable service with a similar service available
in the client’s networked environment, and synchronizes its state according to the interrupted
execution using either state transfer or replay. More specifically, it includes:

8.1. MIDDLEWARE ARCHITECTURE OVERVIEW 115

• A monitoring manager that inspects the execution of the services involved in an interaction
with the user, and notifies of service unavailability.

• An adaptation manager that dynamically reconfigures services, and potentially, orchestra-
tions that are affected by a service unavailability.

• A state storage and management that proactively stores –when possible– the service states,
and organizes them by date, so that to ease state selection, and thus, transfer to the
substitute service.

At runtime, the service registry is involved in the runtime service management in order to be
provided with a substitute service for a service that becomes unavailable. Hence, we also integrate
the service registry (in a dashed box in Figure 8.1) to the runtime service management.

In the current realization of SIROCCO middleware, we integrate existing middlewares:

• PLASTIC middleware that realizes the communication middleware, and

• iCOCOA middleware that realizes semantic service discovery and composition.

In the following, we provide basic presentations of Plastic middleware 8.1.1 and iCOCOA 8.1.2.
Then, we describe the interactions between the different modules that are included in SIROCCO
middleware architecture 8.1.3.

8.1.1 PLASTIC Multi-radio Communication Middleware

B3G networks combine multiple wireless networking technologies in order to benefit from their
respective advantages and specificities. In multi-networks environments, B3G-capable devices
(e.g., laptops and PDAs) hold several radio interfaces, such as GPRS 1, WiFi and Bluetooth,
and the possibility to switch from one radio interface to another, as illustrated in Figure 8.2.
Switching from one radio interface to another increases the possibilities to connect two devices

Figure 8.2: Multi-radio communication

using two or more network paths, and thus makes network disconnection recoverable in the case

1General Packet Radio Service (GPRS)

116

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

of existence of an alternative network connection. In addition, in the case of impossibility of
reaching the same device, switching from one radio interface to another increases the perimeter
of reachable service providers, and thus the possibilities to find a substitute service on reachable
networks.

In this context, PLASTIC 2 (Providing Lightweight and Adaptable Service Technology for
Information and Communication) is a platform that develops a design framework for mobile B3G
services. PLASTIC-enabled devices then benefit from such a pervasive network by increasing
the perimeter of reachable service providers. As presented in Figure 8.3, PLASTIC Middle-

Figure 8.3: PLASTIC Multi-radio Communication Middleware

ware [Caporuscio et al., 2008] integrates a Multi-radio Communication Middleware, which copes
with the complexity induced by the heterogeneity of the wireless technologies and makes it trans-
parent to the users. It exploits B3G network abstraction by capturing the various networks and
observing their status (e.g., connectivity and QoS). Multi-radio Communication Middleware is
designed as a 2-layered architecture: (1) the lower layer integrates the PLASTIC Multi-Radio
Device Management component, and (2) the higher layer integrates the PLASTIC Multi-Radio
Network layer.

The Multi-Radio Device Management layer [Rong and Caporuscio, 2008] abstracts the B3G
network to the upper layer. It manages the low-level characteristics of the perceived networks in
terms of functionalities and QoS properties. It is in charge of:

1. Sensing the available networks and retrieving their characteristics (attributes and offered
services),

2. Monitoring their status proactively, and

3. Accessing them to exploit the offered services.

The Multi-Radio Device Management layer can be utilized by the upper layers (e.g., Multi-Radio
Network) in order to switch between different types of networks during network selection. It can
be also exploited directly by the runtime service management, or even the application layer. It
implements the Multi-radio Network Layer library, which is in charge of managing the entire
communication between two devices, as well as the selection of the most appropriate underlying
radio network through which carrying on the communication. It supports the following main
functionalities:

1. IP address management according to the multiple network radio interfaces of the devices.

2. Radio interface activation and network selection with respect to the required QoS.

2IST FP6 STREP Plastic: http://www-c.inria.fr/plastic/the-plastic-middleware

http://www-c.inria.fr/plastic/the-plastic-middleware

8.1. MIDDLEWARE ARCHITECTURE OVERVIEW 117

3. Communication facilities, including synchronous unicast 3, and asynchronous multicast 4.

8.1.2 iCOCOA Service Discovery and Composition

iCOCOA [Mokhtar et al., 2008a] is a distributed system middleware, particularly targeting open,
decentralized, dynamic computing environments, realized by mobile computing systems, in par-
ticular, pervasive or ambient intelligence systems, or the Web itself. iCOCOA has been developed
and tested in the context of ambient intelligence for the home environment 5 and Systems of Sys-
tems (SoS). iCOCOA extends base Web Services middleware by featuring awareness of service
semantics, besides plain syntactic service descriptions. As presented in Figure 8.4, iCOCOA

Figure 8.4: iCOCOA service discovery and composition

supports semantic service discovery and composition.
In more detail, iCOCOA supports the three following main functionalities:

1. Semantic service discovery

iCOCOA offers an API 6 that allows user applications to dynamically discover semantic
services by specifying user requested capabilities. Based on this specification, services can
be discovered, providing the users with the required service capabilities. iCOCOA supports
two semantic relationships between the semantic concepts of the required and provided
capabilities, namely, equivalence and subsumption. The discovery performs a semantically
match of the requested capabilities with those of the networked services based on service
functional and non-functional properties.

2. Semantic service composition

Based on the set of discovered services, iCOCOA attempts to weave a workflow of requested
capabilities (without binding information) from the behaviors of the services. iCOCOA tries
to compose networked services to fit the workflow specification. It performs a matching
between the workflow of requested capabilities and services’ descriptions. iCOCOA service
composition is particularly flexible by featuring partial integration of service behaviors and
service behaviors interleaving, while at the same time taking care that services are correctly
consumed.

3. Generating executable orchestrations

Once an abstract workflow is composed, iCOCOA generates a WS-BPEL executable de-

3Synchronous unicast is used to read/write packets to be exchanged during the interaction between client and
server user applications

4Asynchronous multicast allows user applications to send multicast packets to the members of a given group
5Project FP6 IST Amigo, http://www.hitech-projects.com/euprojects/amigo
6Application Programming Interface

http://www.hitech-projects.com/euprojects/amigo

118

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

scription of the composition workflow, which includes bindings to the selected networked
services.

8.1.3 Execution Life Cycle

We present in this section the inter- and intra-layer collaborations of SIROCCO middleware.
These collaborations are performed through message passing between the different modules em-
bedded in the SIROCCO middleware, as modeled in the sequence diagram in Figure 8.5.

SIROCCO middleware functionalities are triggered when receiving a user requested capability,
which is first processed by SIROCCO service registry. SIROCCO service registry calls iCOCOA
service discovery in order to retrieve all the networked services that semantically match with
the required functionality. In the case of multiple radio networks, the service discovery switches
from one radio interface to another to find all network reachable services that may serve the user
request. It then provides the service registry with the descriptions of the available WS.

In order to classify the service descriptions into catalogs, the service registry calls the service
reconfiguration in order to check the compatibility of the service descriptions with the user
requested capability. In the case of service orchestration, the service registry sends to iCOCOA
service composition the firstly listed service description of each required capability in order to
compose the workflow of capabilities and generate an executable BPEL. In the case of a single
service consumption, the last step is omitted. In both cases, the BPEL process is sent to the
service reconfiguration, along with the description of the checkpoint positions.

The service reconfiguration performs the necessary transformations on the BPEL process in
order to enhance it with checkpoint management, fault handling, state access and management
and dynamic bindings. It also creates the associated aFSA and data dependency graph. Then,
the service reconfiguration sends the process to the execution engine in order to be executed.
Typically, at this stage, the BPEL execution engine instantiates the set of services defined as
partner links in the process and starts the process execution. During the interaction, the service
reconfiguration is involved in order to store the state of the services that are interacting with the
BPEL process.

When a service becomes unavailable the Execution Engine receives a fault message from
the Plastic Multi-Radio Communication layer. It then triggers a reconfiguration process in the
service reconfiguration, which is set as follows.

The service reconfiguration tries first to switch from the current radio-interface to another
one to reach the same service instance. If the service provider device is reachable on another
network, then the execution is resumed without a particular service reconfiguration. In the case
that the device is not found, then the service reconfiguration proceeds to a service substitution,
which is performed through the sequence of messages: 24 till 35, in Figure 8.5.

The service reconfiguration first calls the service registry for the catalog related to the capa-
bility of the unavailable service. The service registry performs the last updates of the catalog
using the service descriptions resulting from the service discovery, and provides the service recon-
figuration with the list of service descriptions. The service reconfiguration computes or updates
the compatibility degree of the services in the catalog and selects the service that is best compat-
ible with the substituted service. It potentially performs the necessary syntactic mappings and
transfers the state of the substituted service to the selected one in order to synchronize its state
accordingly. The service reconfiguration transforms the aFSA in the case that the substitute
service defines a behavior different from the substituted service.

In the case of service orchestration, the service reconfiguration checks the data dependencies
according to the checkpoint at which the state transfer has been performed, computes a recovery

8.1. MIDDLEWARE ARCHITECTURE OVERVIEW 119

Figure 8.5: Sequence diagram of the collaboration between SIROCCO components

120

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

line and rolls back the services that are affected by the substitution. Finally, the execution can
be resumed with the substitute service.

8.2 SIROCCO Service Registry

Starting from a set of user requested capabilities, SIROCCO service registry stores the list of
services that can be used to serve a user request, and which are resulting from the service
discovery.

8.2.1 Architecture

The service registry maintains a set of service catalogs. Each catalog corresponds to a different
semantic category of services, and therefore it is characterized by an OWL semantic class. The
particular ontology that characterizes a catalog is retrieved from the semantic concept of the
functional purpose of the user requested capability. Each service catalog is progressively popu-
lated (during the lifetime of the orchestration execution) with service descriptions of the available
networked services. The organization into catalogs eases the selection of the service substitute
upon a service unavailability.

Figure 8.6: SIROCCO service registry

As illustrated in Figure 8.6, SIROCCO service registry includes four functional modules, and
a storage support for service descriptions, namely:

1. a module for “processing user requested capabilities”,

2. a module for “filtering available services” module,

3. a module for “organizing the services”,

4. a “semantic reasoner”,and

5. a support for “storing service descriptions”.

To describe the functioning of each module, we go through the processing life cycle of a given
user requested capability, and detail the role of each module.

8.2. SIROCCO SERVICE REGISTRY 121

8.2.2 Prototype Implementation

Let RequiredCapa = (CRequiredFunc, CProvidedInputs, CRequiredResults) be one of the user re-
quested capabilities. To proceed to service classification, SIROCCO service registry first pro-
cesses a user requested capability (as illustrated in Figure 8.6). For each requested capability
referencing a semantic concept, CRequiredFunc, it first checks whether a related catalog is created,
or not. If not, it creates a new catalog using the organizing module (Step ❶ in Figure 8.6).
It then selects the networked services that provide a capability with reference to a semantic
concept Cj such that CRequiredFunc ⊆s Cj . The filtering module retrieves the service descrip-
tions resulting from iCOCOA service discovery (Step ❷ in Figure 8.6). As iCOCOA supports
only equivalence and subsumption semantic relationships, SIROCCO service registry includes a
semantic reasoner module that retrieves the semantic concepts in a given ontology, which se-
mantically include CRequiredFunc (Step ❸ in Figure 8.6). Then, the filtering module uses the set
of semantic concepts provided by the semantic reasoner in order to make requests to iCOCOA
service discovery (Step ❹ in Figure 8.6). In particular, it invokes iCOCOA supported methods,
as described in the listing of Figure 8.7.

/* The repository sets the type of matching as follows: */

1 SIROCCOSereReg.setMatcher(“exact”);
/* Defining a container to include the available services */

vector < String[] > services = new vector < String[] > ();
/* Retrieving services that provide capabilities with a reference to a semantic concept that semantically includes

the one of the required capability */

3 foreach semantic concept Ck retrieved by the semantic reasoner module do
4 String[] ser= SIROCCOSerReg.getServicesWithType(”http : //target_ontology/MyTypes.owl#Ck”);

services.add (ser);

Figure 8.7: Retrieving services from the service discovery

In the listing of Figure 8.7, SIROCCOSerReg represents the instance of iCOCOA service
discovery. We first set the matching parameter to “exact” using the method setMatcher. This
enables to match concepts that are identical, but also concepts that are either explicitly equiv-
alent 7, or implicitly equivalent 8. We then retrieve all the matching services using the method
getServicesWithType, which takes as argument the semantic concept of the functional purpose
of the capability, and returns a list of service names corresponding to the given semantic type.
Using the semantic reasoner, the filtering module then checks for each retrieved service provided
by the service discovery, whether the semantic concepts of its inputs are semantically included
in the ones of the user provided inputs, and inversely for the semantic concepts of the outputs
and the required results. The set of services that comply with the required capability is passed
to the organizing module in order to be classified into catalogs.

The organizing module first locates the catalog related the requested capability (CRequiredFunc).
Then, for each service providing a capability Capaj , it asks the upper layer (i.e., the adaptation
manager) to compute the compatibility degrees with respect to the signature CDSignature, and
the pre- and post-conditions CDPre−Post. If one of them is null, the service is not inserted in
the catalog, otherwise, the organizing module inserts the service description in the related cat-
alog with respect to its compatibility degree, where the catalog is sorted in decreasing order of
compatibility degrees.

7Tagged with the owl : equivalentClass relationship.
8It has similar properties of another class tagged with the owl : equivalentProperty relationship

122

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

To start the execution, the runtime service management selects the first listed service in
the catalog, in order to perform potential syntactic transformations of the user inputs. In the
case of service orchestration, the behavior descriptions of the selected services are passed to
iCOCOA Service Composition module in order to generate an executable BPEL process. Once a
service sk is selected, the other services of the same catalog are reorganized with respect to their
compatibility with the functionality of the service sk, in order to proactively prepare the service
candidates for substituting sk. As the compatibility degree takes into account the semantic
and syntactic matching between signatures, if there are service candidates that have the same
service descriptions as the selected one, they will be listed on the top of the list in the catalog of
RequiredCapa.

In the case that the selected service is stateful, the organizing module divides the CRequiredFunc’s
catalog into two categories. The first category contains descriptions of services that are provided
with WS-Resource Properties descriptions, while the second category contains all the other ser-
vices with matching capabilities only. If the unavailable service is not accompanied with a
WS-Resource Properties description, the first category of services is empty.

8.3 Execution Engine

The runtime service management is in charge of correctly invoking services in order to consume
the service provided functionalities. It includes an Execution Engine that is responsible for
correctly handling the interactions between the client and the services in order to support service
provisioning. The service provisioning is enhanced with reliability through the use of the service
reconfiguration. In this section, we focus on the execution engine that is integrated in SIROCCO
middleware.

8.3.1 Architecture

As presented in Chapter 2, we describe service behaviors using BPEL processes. Tremen-
dous BPEL execution engines are candidates to be integrated in SIROCCO. For maintain-
ability reasons, we essentially focus on the ones that are free and open source. These exe-
cution engines are: ActiveBPEL Community Edition [Act, 2009], BEXEE (BPEL Execution
Engine) [Dubuis et al., 2004], PXE (BPEL Process eXecution Engine) [PXE, 2005], Sliver (A
SOAP and BPEL execution engine for mobile devices) [Hackmann, 2006], Orchestra [Orc, 2005],
and ODE (Orchestration Director Engine) [ODE, 2006], which are all implemented in Java.
ActiveBPEL has been lately commercialized, and the community edition lacks several function-
alities. Since 2004, BEXEE has no longer been actively developed. PXE lacks documenta-
tion. Sliver is dedicated for mobile devices, which can be used when migrating our approach
on lightweight devices. This migration is one of our future work directions. Also, only a part
of listed execution engines are provided with a visual designer for BPEL processes, which are
ODE and Orchestra. We draw up a summary about a set of characteristics of these engines in
Appendix A, where ODE and Orchestra can be equally used. In SIROCCO, we integrate Apache
ODE as execution engine.

The ODE BPEL execution engine cannot interact by itself with the outside world. For this
it relies on an “integration layer” that provides it with communication channels for the runtime
interactions, which can be AXIS 2 libraries 9 or JBI (Java Business Integration) message bus. As
we are interested in Web services interactions, we choose AXIS 2 as a container instead of JBI.

9http://ws.apache.org/axis2/

http://ws.apache.org/axis2/

8.3. EXECUTION ENGINE 123

Figure 8.8: Execution engine

The fundamental function of the AXIS 2 libraries is to allow the execution engine to communicate
via Web Service interactions. Hence, in our realization, we deploy ODE in AXIS 2 Web services
container.

Apache Axis 2 Web services engine requires itself a servlet engine that enable to deploy
web application. In our realization, we use Apache Tomcat 10 as a servlet engine. Thus, AXIS
2 is deployed as a Web application in the Tomcat container, and ODE is deployed as a Web
application in AXIS 2 container.

Still, ODE and all the existing BPEL execution engines lacks flexibility and several func-
tionalities that are required to perform service reconfiguration. For instance, none of the BPEL
execution engines enable to change the BPEL process activities at runtime. Whilst, this func-
tionality is required to assess the feasibility of one of our main contributions, which consists in
enabling the substitute service to implement a different behavior from the one of the substituted
service. Other shortage of the existing execution engines are detailed in the following section. To
overcome this shortage and lack of flexibility, we implemented our prototype for BPEL execution
engine: SIROCCO Execution Engine.

8.3.2 Prototype Implementation

Hereafter, we briefly present the functionalities supported by SIROCCO Execution Engine.

SIROCCO Execution Engine

The objective behind SIROCCO Execution Engine implementation is not to introduce another
tool in the existing tool set, but to study the feasibility of our dynamic reconfiguration approach.
Once this feasibility is assessed, we will migrate our solution on ODE in order to be used outside
our research sphere.

SIROCCO Execution engine takes as input the aFSA that represents the transformation
of BPEL processes. It offers the basic, and yet necessary, functionalities that enable (1) to
suspend an execution when a service becomes unavailable, and (2) to resume the execution with
a transformed aFSA. The main difference between SIROCCO and existing execution engines lies
in the runtime management of the BPEL process: SIROCCO Execution engine uses the graph
traversal technique to execute a BPEL process, while the others use a pre-compiled process
that pre-fixes all its interaction dependencies with the external entities (i.e., WS). Nevertheless,
SIROCCO does not support full-featured BPEL orchestrations e.g., pick activities, switch and
wait activities, are not supported.

At the current stage of implementation, we migrated a set of functionalities of the runtime
service management to ODE execution engine, while others that require to enrich ODE with

10http://tomcat.apache.org/

http://tomcat.apache.org/

124

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

further functionalities, and thus are still tested only on SIROCCO Execution Engine. In order
to test the functionalities that have been migrated to ODE, we realized a set of stateful Web
services using Globus toolkit [gt4, 2005].

Realizing Stateful Web Services

Globus toolkit 4 (GT4) [gt4, 2005] is the most mature, well documented tool that enable to
realize and deploy stateful Web services. It includes “Java WS Core” runtime component that
provides APIs and tools for developing WSRF services and offers a run-time environment capable
of hosting them.

GT4 offers a set of libraries for stateful Web services, so as they can be easily deployed in
the Globus Web applications container, which integrates AXIS 1 SOAP engine. However, the
integration of the Globus application layer on top of SIROCCO middleware raised several issues.
Indeed as ODE is based on AXIS 2 libraries, and Globus is based on a prior version of the SOAP
engine (i.e., AXIS 1), which induces SOAP header heterogeneity.

Hereafter, we detail our solution to resolve software integration issues.

Software integration issues: ODE and GLOBUS

The issue resides in enabling the interaction between ODE processes and Globus stateful services,
as illustrated in ❶ Figure 8.9. On the one hand, ODE is able to invoke services using AXIS 2

Figure 8.9: ODE and Globus integration issues

SOAP engine (❷ in Figure 8.9), and on the other hand, Globus Web service can be invoked from
clients using AXIS 1 libraries (❸ in Figure 8.9).

The solution that comes naturally to overcome the integration issue, consists in creating a
“proxy” service that has the code of the client for Globus Web services, and which is deployed
in AXIS 2 Web service container in order to be invoked by ODE. As illustrated in Figure 8.10,
this includes to integrate AXIS 1 libraries in addition to the ones of AXIS 2, in order to enable
the “proxy” service to interact with the related Globus Web service. To realize this solution, we
integrate an extra layer in the middleware: Software Integration Layer, which is set between the
runtime service management and the application layer that provides stateful services. In the
Software Integration layer, we implement the following functionalities.

First, we generate the Java code of the “proxy” service automatically from the code of the
Globus Web service and its WSDL description (❶ in Figure 8.10). The sources of the service
code generator are provided in Appendix B (Section B.4). We then compile the “proxy” service
and generate its WSDL description using AXIS 2 libraries (❷ in Figure 8.10). We add the
“partnerlinkType” definition to the generated WSDL so as to enable the BPEL execution engine
to recognize it, and invoke it (❸ in Figure 8.10). The “partnerlinkType” is added using XSL

8.4. SERVICE RECONFIGURATION 125

Figure 8.10: Overcoming integration issues

Transformations, the code of which is provided in Appendix B (Section B.5). Finally, we deploy
the “proxy” service in AXIS 2 Web applications container (❹ in Figure 8.10).

Besides the BPEL execution engine, the runtime service management integrates a service
reconfiguration that implements our solution for runtime service substitution. The next section
details the architectural and technical details of the service reconfiguration.

8.4 Service Reconfiguration

In the following section, we first present an architectural overview of the service reconfiguration,
and then present the details of our prototype implementation.

8.4.1 Architecture

The service reconfiguration is divided into three layers, namely, a monitoring manager, an adap-
tation manager and a state management modules, as illustrated in Figure 8.11.

Monitoring manager

The lowest layer includes a monitoring manager which is in charge of detecting the service
unavailability. The objective of the monitoring manager is to make the Execution Engine aware
of a service failure, in order to call the adaptation manager and reconfigure the failed execution.
To this aim, a possible solution consists in making the execution engine retrieving the errors
generated by the lower layers (i.e., AXIS 2 SOAP engine).

It consists of capturing AXIS 2 errors, and alerting the execution engine of the failure in
order to call the adaptation manager. The current version of ODE supports this solution that
we integrate in SIROCCO using the notion of activity failure and recovery, which are detailed in
the following.

126

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

Figure 8.11: Service reconfiguration

• Activity failure

In BPEL specification terminology, a service returns a fault in response to a request it
cannot process. A process may also raise a fault internally when it encounters a terminal
error condition, e.g., a faulty expression or false join condition. failures are non-terminal
error conditions that do not affect the normal flow of the process. ODE enables to keep the
process definition simple and straightforward by delegating failure handling to the execution
engine. For example, when the process is unable to determine the service endpoint, it
generates a failure. Then, the process would either terminate or require fault handling and
recovery logic to proceed past this point of failure.

• From failure to recovery

A failure condition is triggered by AXIS 2 SOAP engine, in the place of a response or fault
message . The < invoke > activity that originated the fault consults its failure handling
and decides how to respond. In order to make the activity throwing a fault on failure, we
set the attribute faultOnFailure to true, as described in the listing of Figure 8.12.

< ext : failureHandlingxmlns : ext =′′ http : //ode.apache.org/activityRecovery′′ >
< ext : faultOnFailure > true < /ext : faultOnFailure >

< /ext : failureHandling >

Figure 8.12: Activity failure and recovery in ODE

The activity that is enriched with the above attribute will throw the activityFailure fault. In
the case that the activity does not specify failure handling using this extensibility element, it
inherits from the failure handling policy of its parent activity, recursively up to the top-level
activity of the process. In this way, we use inheritance to specify the failure handling policy
of all the activities in the process, using a single failureHandling extensibility element.
Hence, we add the script listed in Figure 8.12 in the root activity (i.e., after the first
< sequence > activity) of the BPEL process, so as all the child-activities can inherit from
it.

In practice, the monitoring manager is provided with an XSLT script that adds to the
BPEL process the “activity failure” option as well as the definition of the required namespace
to import. The XSLT transformation is listed in Appendix B, Section B.1.

8.4. SERVICE RECONFIGURATION 127

Adaptation manager

The adaptation manager is the main module of the service reconfiguration. As illustrated in
Figure 8.11, the adaptation manager integrates a set of modules, each of them has a specific role
in performing runtime service reconfiguration.

As illustrated in Figure 8.13, these modules are:

1. Checkpoints management, which is split into 2 modules: the one is responsible for rollback
checkpoints and, the other for state transfer ones.

2. State access and manipulation, which is responsible for communicating with the upper state
storage module.

3. Service replacement, which is responsible for changing the service endpoint in order to
interact with the selected service in the place of the service that becomes unavailable.

4. Compatibility check, which is responsible for checking the compatibility between two service
descriptions, computing the compatibility degree between them, and selecting the service
that is best compatible with the substituted service. At state transfer, it is also in charge
of matching between state descriptions and verifying the compliance with the pre-, post-
conditions, invariants and constraints. As a result, it provides (if exists) the checkpoint in
the substitute service workflow at which the state transfer should be performed.

5. Syntactic transformation, which is responsible for applying syntactic mapping between
XML elements.

6. Replay, which is responsible for executing a part of the substitute behavior seamlessly to
the client when state transfer is not possible.

7. Workflow transformation and management, which is responsible for transforming a BPEL
process into an aFSA in order to reason on it. It is also responsible for updating the client
interactions and the orchestration workflow according to the substitute service workflow.

8. Data dependency management, which is responsible for creating and maintaining consistent
data dependency graph.

9. Rollback management, which is responsible for synchronizing state of the orchestration
according to the recovery line.

State storage

First, as the networked environment may include infrastructure-less communications, service re-
configuration cannot rely on the service provider to seamlessly transfer the state to its substitute.
Therefore, the service state has to be stored at, and transferred by, the client middleware.

The state storage is included in SIROCCO to proactively store –when possible– the service
states, and sort them by date order (using their timestamp and the service end point at which
they have been checkpointed) in order to provide the substitute service with the last state stored
of the unavailable service.

Previous states (to the last one) of the unavailable service can be useful in the case that
the substitute service cannot synchronize with the last state but a prior one. The state storage
module is also in charge of logging the messages exchanged between the client and the executing
services in order to enable the replay with a substitute service.

128

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

8.4.2 Prototype Implementation

In our prototype, the main complexity resides in the implementation of the adaptation manager.
However, as explained in Section 8.3, ODE is not flexible enough to support all the functionalities
required by the adaptation manager modules. Hence, as illustrated in Figure 8.13, we split the
adaptation manager ’s modules into three sets, where:

• Three modules do not require special functionalities from the execution engine,and thus,
have been migrated from SIROCCO execution engine to ODE. These modules are the
state transfer checkpoint management, the state access and management, and the service
replacement modules.

• Four modules require the ability to change the BPEL process structure at runtime. The
change of the process structure at runtime is supported only by SIROCCO execution engine.
These modules are the workflow transformation and management, the data dependency
management, the rollback checkpoint management, and the rollback management.

• The other modules are still at design stage including compatibility check, syntactic trans-
formation and replay modules.

Figure 8.13: Adaptation manager

Checkpoints management

SIROCCO enables to choose between executing a BPEL process with, or without any, reconfigu-
ration handling. In both cases, service developers provide a description of the service behavior us-
ing a BPEL process. For services that are enhanced with checkpointing and recovery operations,
the service developer has to provide an extra description that points out the checkpoints positions
in the BPEL process. The checkpoints positions are provided as a set of XPATH 11[W3C, 2007d]
expressions related to the BPEL process. The XPATH expressions enable to select set of BPEL
activities in a BPEL process that are included within a checkpoint interval, in order to be en-
capsulated in a scope.

11XPATH is a W3C recommendation, which is a syntax for defining parts of an XML document. It uses path
expressions to navigate in XML documents.

8.4. SERVICE RECONFIGURATION 129

Scope activity in BPEL WS-BPEL allows scopes to delimit a part of the process that is meant
to be reversible in a process by specifying compensation or fault handlers. In our realization, we
use the < scope > activity to delimit checkpoint intervals. The checkpoints can be either rollback
or state transfer. The integration of extra < scope > does interfere with the BPEL process logic.
Even though the BPEL process define a number of < scope > activities, these activities can be
nested in our checkpoint intervals without any impact on the process logic the context of a scope
is affected only by the execution of its enclosed activities.

Note that, following BPEL specification, the scopes in a process cannot interleave, they can
be only nested. To deal with this limitation of BPEL specification, we assume that any state
transfer checkpoint is also a rollback checkpoint, while the opposite is not necessary true. This
assumption is realistic enough to be supported by real world services. Indeed, services that
enable to synchronize their state at a given point of their behavior according to a given, can
naturally synchronize their state according to one of their own previously-reached states. The
scopes that correspond to rollback checkpoint intervals are then nested within the scopes that
correspond to state transfer ones. as illustrated in Figure 8.14.

Figure 8.14: Checkpoints integration in the BPEL process

Once the checkpoint intervals are delimited, we need to enhance the BPEL process with
checkpoints. The notion of checkpoint is not explicitly supported by BPEL. Nevertheless, BPEL
enables the definition of fault handling activities, which we use to perform the required activities
associated with a checkpoint.

Adding checkpoints in BPEL As defined in the previous chapters, Also, at these checkpoints,
the client middleware can ask a substitute service for synchronizing its state according to a
given state. the state transfer checkpoint management module enriches the scopes with the
fault handlers that enable to encapsulate the reconfiguration strategy. At each state transfer
checkpoint, a fault handler is added, which catches all faults that may raise in order to perform
the reconfiguration strategy. The listing in Figure 8.15 describes the structure added in the scope
corresponding to each state transfer checkpoint interval.

Note that the BPEL specification does not enable fault handler to point out activities outside
its associated < scope >. This limits the extent of a rollback to a single scope. This limitation
does not enable to perform a rollback propagation on several checkpoint intervals, and in the
case of service composition, we cannot perform a rollback on several services.

These limitations lead us to implement rollback functionalities of SIROCCO middleware in-
dependently of the existing BPEL execution engines and, test them on our SIROCCO Execution
Engine. SIROCCO Execution Engine does not use the notion of scopes for rollback, but it is

130

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

< scope >
< faultHandlers >

< catchAll >
< sequence >
...
< /sequence >

< /catchAll >
< /faultHandlers >
...

< scope >

Figure 8.15: Fault handler support in BPEL processes

capable to interpret the description of the rollback checkpoint in the aFSA.

State access and manipulation

At the end of each scope, the client middleware is enabled to ask the services that provide
recovery operations for their state, and store it in the state storage. The state is queried from
the service using GetState recovery operation. When a service becomes unavailable, the client
middleware retrieves the last state stored of the substituted service, and sends a SetState request
to the substitute service in order be able to synchronize its state according to the transferred
state.

Figure 8.16: State access and manipulation module

The state access and manipulation module includes two entities:

1. A BPEL transformation component that acts before runtime by enriching the BPEL
process with a number of activities, enabling state access and manipulation. It adds
< invoke > activities of the GetState and SetState operations of the services that are
involved in the BPEL process.

2. A state manager Web service acts at runtime by storing the service state in the state storage
and supplying the BPEL process with the service states, when required. To this aim, it
implements two operation, namely, StoreState and SupplyState that can be invoked by
the BPEL process.

The listing in Figure 8.17 describes the XSL transformations that are performed at the end of
each scope. In order to enable the state storage, the BPEL transformation component adds an
< invoke > activity to the GetState operation of the service, to which the scope is associated
(Line 8). It also adds an < invoke > activity to the state manager service in order to store the
last activity returned state in the state storage (Line 11).

8.4. SERVICE RECONFIGURATION 131

1 < repeatUntil xmlns =′′ http : //docs.oasis− open.org/wsbpel/2.0/process/executable′′ >
< scope >
< faultHandlers > ... < /faultHandlers >
....
< xsl : call − template name =′′ add_comment′′ >
< xsl : with−param name =′′ valueComment′′ > Save the state of the service < /xsl : with−param >

< /xsl : call − template >
8 < invoke name =′′ @partnerLink_getState′′ partnerLink =′′ @partnerLink′′

portType =′′ @portType′′ operation =′′ getState′′

outputV ariable =′′ @partnerLink_getState_out′′/ >
11 < invoke name =′′ Invoke_StoreState′′ partnerLink =′′ StateManager′′

portType =′′ nsStateManeger : StateManegerServicePortType′′ operation =′′ StoreState′′

inputV ariable =′′ @partnerLink_getState_out′′/ >
14 < assign >

< copy >
< from > true() < /from >
< to > $scope_done < /to >

< /copy >
19 < /assign >

< /scope >
< condition > $done_invoke < /condition >

22 < /repeatUntil >
23 < assign xmlns =′′ http : //docs.oasis− open.org/wsbpel/2.0/process/executable′′ >

< copy >
< from > false() < /from >
< to > $scope_done < /to >

< /copy >
28 < /assign >

Figure 8.17: First set of BPEL transformations performed by the state access and manipulation
module

132

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

The BPEL transformation component also sets a flag (scope_done) to true, denoting that
the scope has been executed without faults, and that the last state is stored (Line 14). If a fault
occurs right after the flag setting, the scope will not be re-executed. Otherwise, the scope will be
executed again with the new service. The re-execution is ensured using a loop that includes the
entire scope and a guarded condition that enables to terminate the loop execution, only when
the value of scope_done is true (from Line 1 to Line 22). After each loop, the scope_done value
is set to false before starting the next scope (Line 23).

1 < faultHandlers >
< catchAll >
...

< assign >
< copy >
< from > true() < /from >
< to > $update_state < /to >
< /copy >

< /assign >
...
< /catchAll >

12 < /faultHandlers >
< sequence >

< if >
< condition > $update_state < /condition >
< xsl : call − template name =′′ add_comment′′ >

< xsl : with− param name =′′ valueComment′′ >
Transfer the state of the old service to the new one < /xsl : with− param >

< /xsl : call − template >
< sequence >

20 < invoke name =′′ InvokeStoreState′′ partnerLink =′′ StateManager′′

portType =′′ nsStateManeger : StateManegerServicePortType′′ operation =′′ SupplyState′′

inputV ariable =′′ @partnerLink′′

outputV ariable =′′ @partnerLink_SupplyeState_out/ >
< assign >
< copy >

< from > $ < xsl : value− ofselect =′′ StateManager′′/ > _SupplyState_out.parameters <
/from >

< to > $ < xsl : value− ofselect =′′ @partnerLink′′/ > _setState_in.parameters < /to >
< /copy >

< /assign >
< invoke name =′′ @partnerLink_setState′′ partnerLink =′′ @partnerLink′′

portType =′′ @portType′′ operation =′′ setState′′

inputV ariable =′′ @partnerLink_setState_in′′

outputV ariable =′′ @partnerLink_setState_out′′/ >
< /sequence >

< /if >
....

< /sequence >

Figure 8.18: Second set of BPEL transformations performed by the state access and manipula-
tion module

In addition, the BPEL transformation component sets a flag (update_state) to true at the
end of each fault handler, as listed in Figure 8.18 (from Line 1 to Line 12). This flag presents
the condition that must fold in order to invoke a SetState operation after the fault handler.
The < invoke > activity to the SetState operation of the substitute service is put in the scope
outside the fault handler (FH) (Line 20), in order to re-execute the FH if a disconnection occurs

8.4. SERVICE RECONFIGURATION 133

when executing the SetState invoke activity.

Service replacement

The BPEL process defines the set of partner links related to the services it has to interact
with. These partner links are statically declared before runtime, and cannot be modified during
the process execution. However, when one of these services becomes unavailable, we need to
assign a new value to the related partner link. Replacing a service with another one requires
the partner link definition to point out the substitute service in the place of the service that
becomes unavailable. To support dynamic binding, we use the notion of End Point Reference
(EPR) from the WS-Addressing specification [W3C, 2004d]. The definition of EPR enables the
value of partner links to be dynamically assigned, and thus, interacting with partners that were
not known at the time of defining the process. The WS-Addressing standard provides the XML
schema of the endpoint reference type, which is described in Appendix B (Section B.2).

Figure 8.19: Service replacement

The dynamic binding and service replacement are performed using the service replacement
module, which includes two entities:

1. A BPEL transformation component that acts before runtime by transforming the BPEL
process, in order to enhance it with dynamic bindings, and

2. An EPRFactory service is deployed as Web service, and which is responsible for interacting
with the BPEL process at runtime in order to provide it with a reference to the substi-
tute service(s). To this aim, the EPRFactory service implements two operations, namely,
hasReplacementEPR and getAddress.

The BPEL transformation component adds the partner link, the required namespaces, and
the required variables of the EPRFactory service in the BPEL process in order to enable their
interaction, as listed in Figure 8.20.

To enable the service replacement when a service becomes unavailable, the BPEL transfor-
mation component adds a set of BPEL activities in the fault handler of each scope, in order to
provide the running instance of the BPEL process with a reference to the substitute service. The
listing of Figure 8.21 is generated by the BPEL transformation component at the beginning of
each fault handler. The code of the BPEL transformation component that enables these XML
transformations is provided in Appendix B (Section B.3).

The BPEL transformation component first adds an < invoke > activity of the operation
hasReplacementEPR provided by the EPRFactory service to check the availability of candidate
services that are able to replace the unavailable one. This operation takes as input the catalog

134

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

< process...
xmlns : nsFactory =′′ http : //factory.samples/′′

xmlns : nsFactoryXsd =′′ http : //factory.samples/xsd′′ >
...

<!−−import the wsdl of the EPR Factory service−− >
< import location =′′ EPRFactoryService.wsdl′′ namespace =′′ http : //factory.samples/xsd′′

importType =′′ http : //schemas.xmlsoap.org/wsdl/′′/ >
...

<!−−EPR factory partnerLink−− >
< partnerLink name =′′ EPRFactory′′ partnerRole =′′ EPRFactoryServicePortType_provider′′

partnerLinkType =′′ nsFactory : EPRFactoryServicePortType_PL′′

initializePartnerRole =′′ yes′′/ >
< /partnerLinks >
<!−−variables for the EPR Factory−− >
< variable name =′′ partnerLinkType_in′′ messageType =′′ nsFactory : partnerLinkTypeRequest′′/ >
< variable name =′′ invoke_getAddress_out′′ messageType =′′ nsFactory : getAddressResponse′′/ >
< variable name =′′ invoke_notify_error_out′′ messageType =′′ nsFactory : notifyErrorResponse′′/ >
< variable name =′′ invoke_has_EPR_out′′ messageType =′′ nsFactory :
hasReplacementEPRResponse′′/ >

Figure 8.20: Defining a reference to the EPRFactory service

identifier (i.e., the semantic concept) and returns a boolean output, invoke_has_EPR_out
(Line 1). Depending on the result provided by the invocation hasReplacementEPR, it either
replaces the endpoint reference of the unavailable service with the one of the substitute service,
or it re-throws the fault (Line 7). In the case of availability of service candidates, an < invoke >
activity of the operation getAddress is added in the conditional structure to retrieve the end-
point reference of the substitute service (Line 9). The returned value of the endpoint reference
invoke_getAddress_out is then assigned to partner link of the service being substituted (from
Line 15 to Line 20). In this way, the following < invoke > activities in the process will use the
last assigned value of the partner link.

At runtime, a BPEL process invokes the operations hasReplacementEPR and getAddress.
The EPRFactory service inspects the string passed in the input argument by the process. To
enable the search in the service registry, the input string corresponds to the semantic concept
of functional purpose of the requested capability. Then, the EPRFactory service checks in the
catalog storage of the service registry, the catalog corresponding to the requested service, and
returns the EPR that includes the URI, the PortType definition and the service name of the
first-listed service.

One of the limitation of existing BPEL execution engines lies in their incapacity to dy-
namically change the operation name in the process activities. Hence, at the current stage of
implementation, the replacement service module that is migrated to ODE, supports the substi-
tution of services that match syntactically with the substituted service. This limitation joins
the other previously mentioned limitations that lead us to implement our SIROCCO Execution
Engine. The following modules of the adaptation manager modules are tested on SIROCCO
execution engine.

Workflow transformation and management

The workflow transformation and management module takes as input the BPEL executable
process that corresponds to the composite service behavior, or the orchestration that has to
be executed. In the case of the composite service behavior, the workflow transformation and

8.4. SERVICE RECONFIGURATION 135

1 < invoke name =′′ Invoke_notifyError′′ partnerLink =′′ EPRFactory′′

portType =′′ nsFactory : EPRFactoryServicePortType′′

operation =′′ hasReplacementEPR′′

inputV ariable =′′ partnerLinkType_in′′

outputV ariable =′′ invoke_has_EPR_out′′/ >
< if >

7 < condition > $invoke_has_EPR_out.parameters/nsFactoryXsd : return/text() < /condition >
< sequence >

9 < invoke name =′′ Invoke_getAddress′′ partnerLink =′′ EPRFactory′′

portType =′′ nsFactory : EPRFactoryServicePortType′′

operation =′′ getAddress′′

inputV ariable =′′ partnerLinkType_in′′

outputV ariable =′′ invoke_getAddress_out′′/ >
<!−−Update the partnerlink of the service to invoke−− >

15 < assign >
< copy >
< from > $invoke_getAddress_out.parameters/nsFactoryXsd : return < /from >
< to partnerLink =′′ Name of the service partner link′′/ >
< /copy >

20 < /assign >
< /sequence >

< else >
< rethrow/ >

< /else >
< /if >

Figure 8.21: Replacing the value of the partner link

management module also takes as input the description of the checkpoints that are supported
by the service behavior. In the case of service orchestration, it takes as input, besides the
orchestration BPEL process, the individual BPEL descriptions of the involved services as well
as their checkpoint descriptions. As illustrated in Figure 8.22, the workflow transformation and
management module provides as output the transformation of the BPEL process into an aFSA.

Figure 8.22: Workflow transformation and management

The workflow transformation and management performs the following functionalities:

1. Before runtime, it transforms the BPEL process into an aFSA.

2. It integrates the state transfer and rollback checkpoints in the aFSA.

3. At runtime, when a service becomes unavailable and a service substitute is selected, the
workflow transformation and management module integrates in the workflow of the sub-
stitute service, in the aFSA that has not been executed.

136

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

a) It decomposes the behavior of the substituted service into a sequence to two workflows,
where the first corresponds to the executed part and the second the rolled back and
non-performed part of the behavior.

b) It transforms the behavior of the substitute service into an aFSA.

c) Then, it decomposes the behavior of the substitute service into a sequence of two
workflows. The decomposition is performed on the basis of the compatibility check
that returns the compatible checkpoint at which the state transfer can be performed.

4. It establishes the data flow of the substitute service, and integrates it in its aFSA.

5. In the case of service orchestration, it updates the data flow of the orchestration.

Data dependency management

In the case of service orchestration, the data dependency management module checks the data de-
pendencies between checkpoints of the service behaviors that are compositing the orchestration.
More specifically, the data dependency is checked between the state transfer checkpoint of sub-
stituted service at which the state transfer will be performed, and the roll back checkpoints of the
still available services. It takes as input the aFSA that resulted from the workflow transforma-
tion and management module, and establishes the data dependency graph for the orchestration.
As we assume that state transfer checkpoints coincide with a set of rollback checkpoints, the
data dependency graph is set with regard to all the checkpoints of the service behaviors. The
dependency graph is established before starting the execution of the orchestration in order to
anticipate the service unavailability. After service substitution, it updates the data dependency
graph with respect to the transformed aFSA.

Rollback checkpoint management

At runtime, when a service becomes unavailable, the rollback checkpoints management module
is responsible for computing the recovery line on the basis of the data dependency graph. It
takes as input the state transfer checkpoint at which the state transfer has been performed in
the substitute service and the data dependency graph, and checks all the rollback checkpoints
that are dependent on it, and returns the set of checkpoints that forms the recovery line. The
recovery line is an association between services and rollback checkpoints, it associates with each
rollback checkpoint, the service endpoint on which the rollback has to be performed.

Rollback management

The rollback management module puts the orchestration back to a consistent global state with
respect to the recovery line computed by the rollback checkpoint management. The rollback
management module is a generic client that takes as input a service endpoint, and the op-
eration that it has to invoke. Given a service endpoint, the rollback management module
implements an operation GetRollbackOp that parses the service WSDL in order to retrieve
its operations, as well as their related semantic annotation, i.e., the value of the attribute
sawsdl : modelreference. It then retrieves the syntactic name of the operation annotated
with the OperationImpact#Rollback, and invokes it by giving the checkpoint identifier as input
argument.

8.4. SERVICE RECONFIGURATION 137

8.4.3 Evaluation: Dynamic Reconfiguration Assessment for Stateful Web Services

The previous sections detailed how SIROCCO middleware implements runtime service substitu-
tion. We have shown that for tool-support limitation, we implemented our SIROCCO Execution
Engine to assess the feasibility of our solution and perform a set of tests, then we started to mi-
grate our approach on a commonly agreed on BPEL execution engine: ODE. As the migration to
ODE requires enriching ODE with extra features such as rollback and support of BPEL process
transformation, a set of modules of the adaptation manager have not yet been migrated. These
modules are essentially related to service orchestration. In this section, we assess our prototype
implementation into two steps: One step is assessed using ODE, which shows that automatic
runtime service substitution is feasible. The assessment is performed in various scenarios using
an implementation of our train ticket booking service. The other step is assessed using SIROCCO
Execution Engine, which shows the effect of the rollback on reconfiguring service orchestrations.

Assessing state transfer in service substitution

The behavior of train ticket booking service includes two atomic action: one atomic action that
enables the selection of the train ticket, and the other for confirming and paying the selected
tickets. In our scenario, we deployed four replicas of the train ticket booking service, denoted,
train booking service 1 to 4. As illustrated in the sequence diagram of Figure 8.23, we tested
three cases of failures in order to assess the automatic service substitution at runtime.

Starting from a BPEL process and the four stateful replicas of the train ticket booking
service, the integration layer generated and deployed automatically the “proxy” related to the
four replicas, and the service reconfiguration performed the required transformations on the
BPEL process to handle checkpoints, state management and dynamic bindings. Then, we start
the execution and monitor the trace of the execution through the exchanged messages between
ODE execution engine and Globus container where the stateful Web services are deployed. The
3 cases of failures are described in the following.

1. In the first case of failure, the runtime service management tries to interact with a service
that is undeployed and it fails. There is no special reconfiguration is such a case, but calling
for a new EPR provided by the EPRFactory service. The runtime service management
invokes first hasReplacementEPR operation, it then invokes the operation getAddress.
This case of failure assesses the feasibility of the dynamic binding.

2. Then, the runtime service management instantiates the candidate service according to the
result of the getAddress operation. It invokes SelectSeatPreferences operation. Then,
it completes the first atomic action and tries to get the service state. In this case, the
failure occurs at the recovery operation. Runtime service management instantiates the
candidate service after invoking the operation hasReplacementEPR and getAddress of
the EPRFactory service. It re-executes the first atomic action, which includes the oper-
ation SelectSeatPreferences. Then, it gets the service state successfully, and stores it
in the state storage using the operation StoreState. This case of failure emphasizes that
our substitution ensures data consistency: as long as the state has not been stored, the
previously performed computation is not taken in account in the transferred state.

3. Runtime service management asks the user whether s/he would like to confirm and pay,
or only confirm the selected ticket. The user replies with an acceptation for payment. The
runtime service management proceeds then to the confirmation of the train tickets. At

138

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

Figure 8.23: Sequence diagram of the train ticket booking scenario

8.4. SERVICE RECONFIGURATION 139

this stage, the “train booking service 3” becomes unavailable. The runtime service man-
agement retrieves a new service candidate from the EPRFactory and invokes the operation
SupplyState provided by the state access and management module. It invokes the SetState
operation of the newly instantiated candidate service, and restarts executing the second
atomic action execution. As the user choice is included in the second atomic action, the
request for the user choice is re-executed after the state transfer. Then, the “train booking
service 4” completes the execution normally. This case of failure emphasizes the gain in
terms of computation as we resume the execution from the last checkpointed activity.

Evaluating rollback propagation in service orchestration

To evaluate the advanced functionalities of the service reconfiguration when considering service
orchestrations, we used SIROCCO Execution Engine and performed a number of experiments.
The prototype and all our experiments were based on the AXIS 1 SOAP engine 12 and the
Apache Tomcat 13 application server.

The main benefit from using SIROCCO Execution Engine for the executing of service orches-
trations is the ability to dynamically change the orchestration workflow and perform rollback on
still available services, where interleaving service behaviors and checkpoint intervals is possible.
Hereafter, we use the term enhanced-orchestration to refer to an orchestration enriched with
scopes, fault handlers and checkpoints. Respectively, we use the term original-orchestration to
refer to an orchestration that does not include any reliability handling.

We performed two sets of experiments. In the first set, we compared the execution time
of enhanced-orchestrations against the execution time of the original-orchestration in various
scenarios of normal execution (i.e., there were no unavailable services during the orchestrations
execution). In the second set of experiments, we measured the execution time of enhanced
orchestrations in various failure scenarios that can not be handled by the original-orchestrations.

In both sets of experiments we used BPEL orchestrations that combined 5 Web services
(WS1,WS2, . . . ,WS5), each one of which offered 10 operations. These operations perform cal-
culating tasks. They do not store an implementation state, all the required parameters for
processing a calculating task are either provided as input, or retrieved from the WS-resource the
service maintains, or from both of them. The absence of implementation state enables to play
on the checkpoints positions when performing the testing evaluation. In this way, changing a
checkpoint position does not introduce data incoherence in the service behavior execution.

The control flow of the orchestrations was derived from a combination of two well-known
workflow patterns (Sequence and AND-Split). Specifically, each orchestration consists of a flow
activity that comprises 5 sequence activities (SQ1, SQ2, . . . , SQ5) which execute concurrently.
Each sequence SQi consists of 10 basic activities ASQi1 , . . . ASQi10 which invoke the operations of
WSi. The data flow dependencies between the activities were set according to the following pat-
tern: the output messages of the service operations invoked in activities ASQij

, j ∈ [1 . . . 9] have
been used for constructing input messages for the service invocations of the activities ASQ(i+1)(j+1)

,
ASQ(i+2)(j+1)

, ASQ(i+3)(j+1)
. In both sets of experiments, the SIROCCO service reconfiguration

was deployed on an 1.6 GHz Intel Centrino, with 1GB RAM, while the services were deployed
on 1.7 Intel Pentium, with 1 GB RAM, communicating using a WIFI network connection.

Finally, in both sets of experiments, we used 4 different cases of orchestration checkpointing,
where we varied the number of operations of each service that change the state of the service as
follows: 1, 2, 5 and 10 operations per service. Therefore, we varied the number of checkpointing

12http://ws.apache.org/axis/index.html
13http://tomcat.apache.org/

http://ws.apache.org/axis/index.html
http://tomcat.apache.org/

140

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

activities introduced in the orchestrations from 5 to 50. More specifically, in each case, we
increased the number of checkpoints per service WSi, reaching (in the last case) 1 checkpoint
per operation (i.e., 10 checkpoints/service). In the first case, the checkpoints are performed
after executing 5 operations of each service WSi, thus we have 5 checkpoints for the whole
orchestration (referenced in the following as case 1). Then, in the second case (case 2), the
checkpoints are performed every 4 operations of each service WSi, reaching 10 checkpoints for the
whole orchestration. Afterwards, in the third (resp., fourth) case, the checkpoints are performed
after every 2 operations (resp., every operation) of each service WSi, reaching 25 (resp., 50)
checkpoints for the whole orchestration.

Figure 8.24: Impact of the checkpointing overhead on the orchestration execution time

To evaluate the impact of the checkpointing overhead on the orchestration execution, we first
measured the execution time (ET) with and without checkpoints for each of the above described
cases. The impact of checkpointing is then computed as a ratio of the checkpointing-induced
overhead over the orchestration execution time in the best case – noted ET in BC (i.e., without
checkpointing).

Impact of the Checkpointing Overhead =
ET with checkpoints - ET in BC

ET in BC
Figure 8.24 provides the result of the first set of experiments, where each checkpointing overhead
value is measured as an average of 10 measurements of the orchestration execution time. We
compared the checkpointing overhead to the time required to execute one operation of the or-
chestration that represents 12.7% of the ET in BC. We noticed that the checkpointing overhead
is remains reasonable in the 3 first cases where the checkpoints number is less that 50% of the
number of invocations. In the case 3, it takes 14.37% of the EC in BC and it reaches 29.53% in
the worse case tested (1 checkpoint per operation –case 4).

Regarding the recovery overhead, we considered the same orchestration, injecting discon-
nection events for WS1 progressively at different stages of its execution (i.e., at the activities
ASQ1,1−i

where i ∈ [1..10]). To evaluate the recovery overhead, we compared the execution time
of the orchestration (ET ′), which includes the disconnection notification and the recovery time,
to its execution time ET in BC (i.e., without checkpointing and without disconnection).

Impact of the Recovery Overhead =
ET’ - ET in BC

ET in BC

8.4. SERVICE RECONFIGURATION 141

For each disconnection at ASQ1,1−i
, we measured thus the impact of the recovery overhead on

the orchestration execution using two recovery methods: (i) restarting the overall execution of
the orchestration (called "restarting-based recovery"), and (ii) using our proposed rollback-based
recovery. For the latter, the measurements have been made for each of the checkpointed orches-
trations corresponding to the 4 cases described above. The recovery time includes in the case of
"restarting-based recovery" the time to invalidate all the interactions prior to the disconnection,
and to resume the orchestration execution from its beginning till the disconnection point. In the
case of "rollback-based recovery", the recovery time comprises (i) the time to invalidate the set of
interactions performed with the disconnected service, (ii) the time to compute the recovery line,
and (iii) the re-execution time to get the orchestration back to the point at which the execution
has been interrupted. First, we measured the mean time to compute the recovery line at each

Figure 8.25: Impact of the recovery overhead on the orchestration execution time

case of disconnection and for each checkpointed orchestration (represented by the curve "Over-
head of Recovery Line Computation" in Figure 8.25). We noticed that this time represents 0.2%
(in the worse case) of the orchestration ET in BC, deducing thereby that most of the overhead
introduced by the rollback recovery is due to checkpointing and the dependencies between the
orchestrated services. The curves in Figure 8.25 (Cases 1 to 4) illustrate the recovery overhead for
the 4 cases of checkpointed orchestration. The recovery overhead is affected by the checkpoints’
number and positions within the workflow of the orchestrated services. Indeed, it is important
to note that there is a tradeoff between the checkpointing overhead and the time required to
recover from a connectivity loss. The denser the checkpoints are, the less we may have to roll-
back and thus the less the recovery time is. However, as the number of checkpoints increases, the
orchestration execution time increases as well, thus the denser the checkpoints are, the higher the
checkpoint overhead is (see the curve "Checkpointing Overhead" in Fig. 8.24). Furthermore, we
noticed that the checkpoints position plays an important role on the recovery overhead. Indeed,
in the 4 cases of checkpointed orchestration, there is a noticeable difference between the recovery
overhead before and after a checkpoint. Finally, we noticed that when the WS1 becomes unavail-
able at ASQ1,1−i

(i ∈ [1..4]), the recovery overhead is higher for rollback-based recovery compared
to the restarting-based recovery, due to checkpointing overhead. However, as the execution pro-
gresses and WS1 becomes unavailable at ASQ1,1−i

(i ∈ [5..10]), the rollback-based recovery –in
the 4 cases tested– performs better than restarting-based recovery, as the saved computation

142

CHAPTER 8. SIROCCO: SERVICE RECONFIGURATION UPON SERVICE

UNAVAILABILITY AND CONNECTIVITY LOSS

covers the checkpointing overhead, in comparison to the time required to re-execute the whole
orchestration.

8.5 Concluding Remarks

In this Chapter, we presented our SIROCCO middleware implementation for dynamic service
substitution in the domain of WS. Through our realization, we assessed the feasibility of our the-
oretical approach that has been established in the previous parts of this thesis. We introduced a
number of mechanisms that enhance BPEL processes with dynamic binding and state awareness,
at runtime, while respecting the structural logic of the processes. However, as the existing BPEL
execution engines turn quickly to be short in flexibility and runtime management support, we
implemented our own BPEL SIROCCO Execution Engine in order to test the advanced recon-
figuration functionalities such as rollback propagation and workflow dynamic transformation at
runtime. However, SIROCCO Execution Engine supports the basic functionalities related to the
runtime reconfiguration. The objective behind its implementation is not to compete with the
existing BPEL execution engines, but to assess the feasibility our reconfiguration algorithms,
and evaluate them freely without any technological limit. Still, some modules of the adaptation
manager such as the compatibility check and replay have to be implemented to fully assess our
theoretical solution. As a next step to the current implementation, we target to integrate the
full reconfiguration-supported functionalities of SIROCCO Execution Engine into ODE.

When I am working on a prob-

lem I never think about beauty.

I only think about how to solve

the problem. But when I have

finished, if the solution is not

beautiful, I know it is wrong.

Buckminster, Fuller 9
Conclusions and Future Research Directions

With the advent of wireless networks, software computing systems have evolved to reach a di-
mension of pervasiveness. Heterogeneous, open, dynamic software systems populate todays’
computing environments, making computing facilities accessible anywhere, at any time. How-
ever, consuming these computing facilities raises several challenges due to software platforms
heterogeneity, openness and dynamics. Service-oriented architectures (SOA) deal with hetero-
geneity of software systems, by abstracting the computing facilities that populate the environ-
ment as services. Services have well-known, standardized descriptions that enable to consume
their functionalities in a standardized way independently of their software platform. Still, the
environment’s openness and dynamics have to be faced out in order to overcome service unavail-
ability and ensure continuity in service provisioning. In this thesis, we tackled the issue of service
unavailability due to service failures or network disconnection without any insurance of a future
reconnection, in order to enhance todays’ SOA systems with reliability.

In this chapter, we draw up an overview of the approach that we proposed (Section 9.1).
We then emphasize the lessons learned from this approach (Section 9.2). We finally wrap up
this thesis with our future research directions that present the continuity of the herein-presented
work (Section 9.3).

9.1 Overview of the Proposed Approach

As we are interested in enhancing SOA systems with reliability, we first started by focusing
on service-oriented paradigm, and more specifically, on the notion of service. We established a
conceptual model that includes the main concepts that define a service and their dependencies. In
our study, we have taken a user-oriented perspective. From our perspective, the service capability,
behavior and state turn to be the essential concepts that have to be defined when considering
the definition of a service, because of the role they play for enabling service consumption.

On the way to find a solution for reliability in SOA systems, we investigated the depend-
ability basic concepts and the dependability means that cope with service unavailability. In this
investigation, fault tolerance means respect the most the environment dynamics and openness.
The fault tolerance (FT) means have been widely used in closed distributed systems, in par-
ticular, with built-in replication and checkpoint-based rollback recovery to tolerate component
unavailability. Still, FT means applied in closed distributed systems are not applicable as they
are in SOA systems: exact replicas, code determinism, and forced/coordinated checkpointing are
too restrictive for SOA systems as they do not respect service autonomy and loose coupling. We
discussed the limits of applicability of these FT means in open, dynamic SOA system, stressing
thereby the need to adapt them to SOA systems specifics [Fredj et al., 2006, Zarras et al., 2006].

144 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The review of the state of the art showed that existing service substitution approaches in SOA
systems adapt the application of FT means in SOA systems, but they are far to realize dynamic
service substitution without restricting the service environment or service autonomy and loose
coupling.

The approach that we proposed consists in substituting at runtime stateful, composite ser-
vices, while allowing heterogeneity in service capability, service behavior and service state be-
tween the substituted service and its substitute. The matching between capabilities is based on
semantic inclusion relationship, which is more flexible that exact or equivalent matching. The
behavior of substitute service can present different structure than the unavailable service. The
state description of the substitute service also can be differently defined from the one of the un-
available service. To allow such flexibility, the need for formal definition of service substitution
was required in order to establish the set of rules that ensure correct runtime service substitu-
tion. To this aim, we adapted the subtyping notion issued from object oriented design, so as
to establish a hierarchical order between services. Hierarchy allows the use of service groups
as type families, in which a group of services (subtype) may serve as substitute candidate for
a service included in another group (supertype) that is higher in the hierarchy. Still, the rules
issued from the adaptation of subtyping do not take into account runtime behavior execution.
To ensure correct runtime substitution, we applied Hoare’s rules for program composition and
replacement, issued from his axiomatic for computer programming.

The established rules enabled to check whether a service is able to serve as a substitute for
another service, or not. In particular, we defined a compatibility degree between services that,
not only, enables to determine whether a service complies with the substitution rules, but also,
in the case of multiple service candidates for substitution, it enables to classify service according
to their degree of compatibility with the substituted service. This classification enables to select
the service that is best compatible with the substituted service.

Once the compatibility with candidate services is checked and a service is selected, we define
a set of strategies for synchronizing the substitute service either by transferring the state of the
unavailable service or by reconstructing the state of unavailable service in the substitute service
using the replay technique. In the case of service orchestration, we delimit the impact of the
substitution on still-available services, due to their data dependencies, and reconfigure them in
order to restore the orchestration consistency. This is performed by adapting uncoordinated
checkpointing rollback protocol according to our definition of checkpoints for SOA systems.
Once the services of the orchestration are reconfigured, we reconfigure the client by integrating
the behavior of the substitute service in the orchestration workflow. The proposed approach is
assessed through our implementation of SIROCCO middleware.

9.2 Learned Lessons

The novelty of the proposed approach resides essentially in the flexibility it brings in the domain
of dependability in SOA systems. SOA systems are dynamic and open, which makes their
worldwide popularity. However, when it comes to reliability, the existing solutions turns to
be constrainful, or irrealistic to be applied in open, dynamic SOA system environments. For
instance, network-based solutions relies on the support of the core network infrastructure for
ensuring the constant network connection between the clients and their services, which is not
realizable in infrastructure-less networks. Other solutions for SOA systems assume the existence
of exact replica in the networked environment.

In our approach, we take advantage of these solutions, wand enhance them with dynamic
service substitution. We consider that if the network infrastructure provides a possibility to

9.3. FUTURE RESEARCH DIRECTIONS 145

reach the same service instance reachable through an alternative network or path, we would
opt for this solution rather than substituting the service. In the case of absence of network
support, we provide an alternative solution using service reconfiguration [Rong et al., 2007b,
Rong et al., 2007a]. In the case of service substitution, exact replica is not set as a necessary
condition to replace the unavailable service [Fredj et al., 2008]. Nevertheless, if we have the
possibility to find an exact replica, we integrate it as a substitute service instead of any other
candidate service, using the classification of the candidate services. Otherwise, we select the
service that present the most compatible description with the unavailable service, and perform
the substitution [Fredj et al., 2009]. Our approach is founded on the basis of formal theories that
have been widely used and assessed, which ensures the correctness of the runtime substitution,
even when services are not identically implemented or described.

9.3 Future Research Directions

In the continuity of the approach proposed in this thesis, a number of major aspects can be
carried out. We organize them into three categories with accordance to the expected evolutions
of our approach over time: short term, middle term and long term research directions.

Short term directions are essentially related to the realization of our approach. Many aspects
can be followed to evolve the current state of the realization. Among them, we retrieve three
immediate evolutions:

1. Integrating the full functionalities of our service reconfiguration into ODE execution engine,
in order to provide a standalone support for runtime service substitution for Web services.

2. The previous evolution implies naturally to fully implement the compatibility check and
replay modules and evaluate them, in order to be integrated in the SIROCCO service
reconfiguration.

3. Another aspect of evolution consists in migrating the approach on lightweight devices,
where only a part functionalities will be deployed on resource-constrained device, such as
the execution engine, the state access and management, and the rollback modules. While,
the other functionalities of SIROCCO middleware will be deployed on central or distributed
devices in the user’s environment, such as the service composition and the compatibility
check modules.

Middle term directions concern mostly the research aspects that can nicely complement the
aspects that have been investigated in our approach.

In our approach, we essentially considered the case of service orchestration. While, the service
choreography presents many challenging issues that have to be investigated, in order to take into
account its specific aspects and adapt our approach accordingly.

Furthermore, in our approach, we focused in the user request in order to find services that
serve the requested capability. However, besides the request capability, the user request may be
enriched with the definition of the side effects that would affect the user. The definition of side
effects would then be considered when selecting the candidate service for substitution.

Long term directions envision the use of our approach beyond the scope of stateful composite
Web services, to reach the domain of distributed, real time (DRT) systems. These systems present

146 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

strict time constraints that have to be respected, in addition to potentially constrained resources.
For instance, in the railway domain, the services provided to the trains have specific Safety
Integrity Level (SIL) 1. Meaning that, even though a service is provided with a SIL that equals 1
(the lowest level), the reconfiguration has to respect the system constraint otherwise other (non
critical, but still important) systems may be highly damaged. In these systems, the recovery time
is not computed according to an average (mean time to recover MTTR), but with respect to the
worst case of reconfiguration time, as uncertainty is not allowed. The reconfiguration time has
to be provided and respected in all circumstances, in order to check whether the reconfiguration
respects the system constraints, or not. The dynamic reconfiguration that we proposed in this
thesis, has to gain in maturity in order to be applied in DRT systems.

1SIL measures the level of safety that services must satisfy. It is evaluted from 1 to 4, where SIL 4 is the highest
level of safety required.

A
BPEL Execution Engines

BPEL Execution En-
gine and the related
organization

Container Language Visual
de-
signer

Licence

Oracle runs in any standard
servlet container
such as Apache
Tomcat

Java no GNU General Public
License (GPL)

ActiveBPEL from Ac-
tive endpoints

runs in any standard
servlet container
such as Apache
Tomcat

Java no GNU General Public
License (GPL)

Orchestra from
BULL SAS-OW2
consortium

entreprise vesion:
JOnAS, Light ver-
sion:tomcat

Java Zenflow LGPL License

BEXEE at the Berne
University of Ap-
plied Sciences,
School of Engineer-
ing and Information
Technology

AXIS Webapp Java – bexee
is no longer
actively de-
veloped

no GNU General Public
License (GPL)

PXE from FiveSight not mentioned Java no CPL (core) / MIT Li-
cense (extensions)

ODE from Apache tomcat webapp Java eclipse
plugin

Apache License

Sliver from Wash-
ington university St
Louis

implements its SOAP
server

Java no GNU Lesser General
Public License

Table A.1: Summary of BPEL execution engines

148 Appendix A

B
XSL Transformations and Code Generation

B.1 XSL Transformations performed by the Monitoring Manager

< sequencexmlns = ”http : //docs.oasis− open.org/wsbpel/2.0/process/executable” >
< xsl : copy − ofselect = ”@ ∗ ”/ >
< xsl : call − templatename = ”preambule”/ >

< xsl : elementname = ” {name(.)} ” >
< xsl : copy − ofselect = ”@ ∗ ”/ >
< xsl : apply − templates/ >
< /xsl : element >

< /sequence >

< /xsl : template >
< xsl : templatename = ”preambule” >
< xsl : call − templatename = ”lineJump”/ >
< xsl : call − templatename = ”add_comment” >
< xsl : with− paramname = ”valueComment” > EnablingOdetocaptureAxis2errors <

/xsl : with− param >
< /xsl : call − template >
< ext : failureHandlingxmlns : ext = ”http : //ode.apache.org/activityRecovery” >
< ext : faultOnFailure > true < /ext : faultOnFailure >

< /ext : failureHandling >
< xsl : call − templatename = ”lineJump”/ >

< /xsl : template >

B.2 EPR XML Schema

< xs : elementname = ”EndpointReference”type = ”wsa : EndpointReferenceType”/ >
< xs : complexTypename = ”EndpointReferenceType” >

< xs : sequence >
< xs : elementname = ”Address”type = ”wsa : AttributedURI”/ >
< xs : elementname = ”ReferenceProperties”type = ”wsa : ReferencePropertiesType”

minOccurs = ”0”/ >
< xs : elementname = ”PortType”type = ”wsa : AttributedQName”minOccurs =

150 Appendix B

”0”/ >
< xs : elementname = ”ServiceName”type = ”wsa : ServiceNameType”minOccurs =

”0”/ >
< xs : anynamespace = ”##other”processContents = ”lax”minOccurs = ”0”maxOccurs =

”unbounded”/ >
< /xs : sequence >
< xs : anyAttributenamespace = ”##other”processContents = ”lax”/ >

< /xs : complexType >

B.3 BPEL Transformation Component of the Service Replacement

Defining a reference to the EPRFactory service

<! −−Process−− >
< xsl : templatematch = ”bpel : process” >

< processxmlns = ”http : //docs.oasis− open.org/wsbpel/2.0/process/executable”
xmlns : sref = ”http : //docs.oasis− open.org/wsbpel/2.0/serviceref”
xmlns : soap = ”http : //schemas.xmlsoap.org/wsdl/soap/”
xmlns : nsFactory = ”http : //factory.samples/”
xmlns : nsFactoryXsd = ”http : //factory.samples/xsd” >

< xsl : copy − ofselect = ”@ ∗ ”/ >
< xsl : copy − ofselect = ”namespace :: ∗[name()! =′′]”/ >
< xsl : copy − ofselect = ”bpel : import”/ >

< importlocation = ”EPRFactoryService.wsdl”
namespace = ”http : //factory.samples/”
importType = ”http : //schemas.xmlsoap.org/wsdl/”/ >

< importlocation = ”EPRFactoryService.wsdl”
namespace = ”http : //factory.samples/xsd”
importType = ”http : //schemas.xmlsoap.org/wsdl/”/ >

< xsl : apply − templates/ >
< /process >

< /xsl : template >

<! −−PartnerLinks−− >
< xsl : templatematch = ”bpel : partnerLinks” >

< partnerLinksxmlns = ”http : //docs.oasis−open.org/wsbpel/2.0/process/executable” >
< xsl : copy − ofselect = ”bpel : partnerLink”/ >
< xsl : call − templatename = ”add_comment” >
< xsl : with− paramname = ”valueComment” > EPRFactory partnerLink < /xsl :

with− param >
< /xsl : call − template >
< partnerLinkname = ”EPRFactory”
partnerRole = ”EPRFactoryServicePortType_provider”
partnerLinkType = ”nsFactory : EPRFactoryServicePortType_PL”
initializePartnerRole = ”yes”/ > < /partnerLinks >

APPENDIX B. XSL TRANSFORMATIONS AND CODE GENERATION 151

< /xsl : template >

<! −−V ariables−− >
< xsl : templatematch = ”bpel : variables” >

< variablesxmlns = ”http : //docs.oasis− open.org/wsbpel/2.0/process/executable” >
< xsl : copy − ofselect = ”bpel : variable”/ >
< xsl : call − templatename = ”add_comment” >
< xsl : with − paramname = ”valueComment” > variables for theEPR factory <

/xsl : with− param >
< /xsl : call − template >
< variablename = ”partnerLinkType_in”

messageType = ”nsFactory : partnerLinkTypeRequest”/ >
< variablename = ”invoke_getAddress_out”

messageType = ”nsFactory : getAddressResponse”/ >
< variablename = ”invoke_notify_error_out”

messageType = ”nsFactory : notifyErrorResponse”/ >
< variablename = ”invoke_has_EPR_out”

messageType = ”nsFactory : hasReplacementEPRResponse”/ >
< /variables >

< /xsl : template >

Replacing the value of the partner link

< faultHandlers >
< catchAll >
< sequence >
< xsl : call − templatename = ”add_comment” >
< xsl : with − paramname = ”valueComment” > TrytoobtainanewEPR < /xsl :

with− param >
< /xsl : call − template >
< invokename = ”Invoke_notifyError”partnerLink = ”EPRFactory”
portType = ”nsFactory : EPRFactoryServicePortType”operation = ”hasReplacementEPR”
inputV ariable = ”partnerLinkType_in”outputV ariable = ”invoke_has_EPR_out”/ >
< if >
< condition > $invoke_has_EPR_out.parameters/nsFactoryXsd : return/text() <

/condition >
< sequence >
< invokexmlns = ”http : //docs.oasis− open.org/wsbpel/2.0/process/executable”
name = ”Invoke_getAddress”partnerLink = ”UrlFactory”
portType = ”nsFactory : UrlFactoryServicePortType”operation = ”getAddress”

inputV ariable = ”partnerLinkType_in”outputV ariable = ”invoke_getAddress_out”/ >
< xsl : call − templatename = ”add_comment” >
< xsl : with−paramname = ”valueComment” > Update the EPR of the service to invoke <

/xsl : with− param >
< /xsl : call − template >
< assignxmlns = ”http : //docs.oasis− open.org/wsbpel/2.0/process/executable” >

< copy >

152 Appendix B

< from > $invoke_getAddress_out.parameters/nsFactoryXsd : return <
/from >

< topartnerLink = ”@partnerLink”/ >
< /copy >

< /assign >
< /sequence >

< else >
< xsl : call − templatename = ”add_comment” >
< xsl : with− paramname = ”valueComment” > No new EPR longer available,
rethrow the exception < /xsl : with− param >

< /xsl : call − template >
< rethrow/ >

< /else >
< /if >

< /sequence >
< /catchAll >

< /faultHandlers >

B.4 Generating “Proxy” Service for Globus Web Services

<?xmlversion = ”1.0”encoding = ”UTF − 8”? >
< xsl : stylesheetxmlns : xsl = ”http : //www.w3.org/1999/XSL/Transform”version =
”2.0” >

< xsl : outputmethod = ”text”/ >
< xsl : templatematch = ”/” >
< xsl : apply − templatesselect = ”system/service”/ >

< /xsl : template >
< xsl : templatematch = ”system/service” >

package < xsl : value−ofselect = ”concat(translate(generalBase,′ /′,′ .′),′ .′, translate(subBase,
′/′,′ .′),′ .′, translate(package,′ /′,′ .′))”/ > .axis2;
importjavax.xml.namespace.QName;
importorg.apache.axis.message.addressing.Address;
importorg.apache.axis.message.addressing.EndpointReferenceType;
importorg.oasis.wsrf.properties.WSResourcePropertiesServiceAddressingLocator;
importorg.oasis.wsrf.properties.SetResourceProperties_PortType;
importorg.oasis.wsrf.properties.SetResourceProperties_Element;
importorg.oasis.wsrf.properties.GetMultipleResourceProperties_Element;
importorg.oasis.wsrf.properties.GetMultipleResourcePropertiesResponse;
importorg.oasis.wsrf.properties.UpdateType;
importorg.apache.axis.message.MessageElement;
importorg.oasis.wsrf.properties.GetResourcePropertyResponse;
import < xsl : value−ofselect = ”concat(translate(generalBase,′ /′,′ .′),′ .′, translate(subBase,′ /′,
′.′),′ .′, translate(package,′ /′,′ .′))”/ > .globus.impl. < xsl : value − ofselect = ”class”/ >
QNames;
import < xsl : value − ofselect = ”translate(generalBase,′ /′,′ .′)”/ > . < xsl : value −
ofselect = ”translate(subBase,′ /′,
′.′)”/ > .stubs. < xsl : value − ofselect = ”name”/ > .service. < xsl : value − ofselect =

APPENDIX B. XSL TRANSFORMATIONS AND CODE GENERATION 153

”class”/ > Service;
import < xsl : value − ofselect = ”translate(generalBase,′ /′,′ .′)”/ > . < xsl : value −
ofselect = ”translate(subBase, ′/′,′ .′)”/ > .stubs. < xsl : value − ofselect = ”name”/ > . <
xsl : value− ofselect = ”class”/ > PortType;
import < xsl : value − ofselect = ”translate(generalBase,′ /′,′ .′)”/ > . < xsl : value −
ofselect = ”translate(subBase,′ /′,
′.′)”/ > .stubs. < xsl : value − ofselect = ”name”/ > .service. < xsl : value − ofselect =
”class”/ > ServiceAddressingLocator;
< xsl : for − eachselect = ”operations/operation[count(input) = 0]” >
import < xsl : value − ofselect = ”translate(../../generalBase,′ /′,′ .′)”/ > . < xsl : value −
ofselect = ”translate(../../subBase,
′/′,′ .′)”/ > .stubs. < xsl : value − ofselect = ”../../name”/ > . < xsl : value − ofselect =
”name”/ >;
< /xsl : for − each >
importjava.util.∗;
importjava.io.∗;
importjava.beans.XMLEncoder;
importjava.beans.XMLDecoder;
publicclass < xsl : value− ofselect = ”class”/ > Facade {

private < xsl : value− ofselect = ”class”/ > PortTypemethods_port;
privateSetResourceProperties_PortTyperesourceport;
public < xsl : value− ofselect = ”class”/ > Facade()throwsException {
< xsl : value − ofselect = ”class”/ > ServiceAddressingLocatorlocatorPort = new <

xsl : value− ofselect = ”class”/ > ServiceAddressingLocator();
StringserviceURI = ”http : //127.0.0.1 : 8081/wsrf/services/ < xsl : value−ofselect =

”subBase”/ > / < xsl : value − ofselect = ”package”/ > / < xsl : value − ofselect =
”class”/ > Service”;

//Createendpointreferencetoservice
EndpointReferenceTypemethods_endpoint = newEndpointReferenceType();
methods_endpoint.setAddress(newAddress(serviceURI));
this.methods_port = locatorPort.get < xsl : value−ofselect = ”class”/ > PortTypePort

(methods_endpoint);
WSResourcePropertiesServiceAddressingLocatorlocatorResource = newWSResource

PropertiesServiceAddressingLocator();
this.resource_port = locatorResource.getSetResourcePropertiesPort(methods_endpoint);

}
publicStringgetState()throwsException {
HashMapmapState = newHashMap();
< xsl : for − eachselect = ”resources/resource” >
GetResourcePropertyResponse < xsl : value − ofselect = ”lower − case(name)”/ >

RP = this.methods_port.getResourceProperty(< xsl : value − ofselect = ”../../class”/ >
QNames.RP_ < xsl : value− ofselect = ”upper − case(name)”/ >);

String < xsl : value− ofselect = ”lower − case(name)”/ >=< xsl : value− ofselect =
”lower − case(name)”/ > RP.get_any()[0].getV alue();

mapState.put(” < xsl : value − ofselect = ”name”/ > ”, < xsl : value − ofselect =
”lower − case(name)”/ >);

< /xsl : for − each >
ByteArrayOutputStreamarray = newByteArrayOutputStream();

154 Appendix B

XMLEncoderencoder = newXMLEncoder(newBufferedOutputStream(array));
encoder.writeObject(mapState);
encoder.close();
returnarray.toString();

}
publicStringsetState(StringparamState)throwsException {
ByteArrayInputStreamarray = newByteArrayInputStream(paramState.getBytes());
XMLDecoderdecoder = newXMLDecoder(newBufferedInputStream(array));
HashMapmapState = (HashMap)decoder.readObject();
< xsl : for − eachselect = ”resources/resource” >

this.methods_port.set < xsl : value−ofselect = ”name”/ > RP (mapState.get(” < xsl :
value− ofselect = ”name”/ > ”));

< /xsl : for − each >
return”done”;

}
< xsl : for − eachselect = ”resources/resource” >
publicStringget < xsl : value− ofselect = ”name”/ > ()throwsException {
GetResourcePropertyResponse < xsl : value − ofselect = ”lower − case(name)”/ >

RP = this.methods_port.getResourceProperty(< xsl : value − ofselect = ”../../class”/ >
QNames.RP_ < xsl : value− ofselect = ”upper − case(name)”/ >);

String < xsl : value− ofselect = ”lower − case(name)”/ >=< xsl : value− ofselect =
”lower − case(name)”/ > RP.get_any()[0].getV alue();

return < xsl : value− ofselect = ”lower − case(name)”/ >;
}
< /xsl : for − each >
< xsl : for − eachselect = ”operations/operation” >
public < xsl : iftest = ”count(output) = 0” > String < /xsl : if >< xsl : iftest =

”count(output) > 0” >< xsl : value−ofselect = ”output/type”/ >< /xsl : if >< xsl : value−
ofselect = ”concat(’ ’, lower−case(name))”/ > (< xsl : iftest = ”count(input) > 0” >< xsl :
value− ofselect = ”concat(input/type, ’ ’, input/name)”/ >< /xsl : if >)throwsException {

< xsl : iftest = ”count(output) > 0” > return < /xsl : if > this.methods_port. < xsl :
value − ofselect = ”lower − case(name)”/ > (< xsl : iftest = ”count(input) = 0” > new <
xsl : value − ofselect = ”name”/ > () < /xsl : if >< xsl : iftest = ”count(input) = 1” ><
xsl : value− ofselect = ”input/name” >< /xsl : value− of >< /xsl : if >);

< xsl : iftest = ”count(output) = 0” > return”done”;< /xsl : if >
}
< /xsl : for − each >

}
< /xsl : template >

< /xsl : stylesheet >

B.5 Adding the PartnerlinkType to the WSDL Description of the
“Proxy” Service

<?xmlversion = ”1.0”encoding = ”UTF − 8”? >
< xsl : stylesheetxmlns : xsl = ”http : //www.w3.org/1999/XSL/Transform”version =

APPENDIX B. XSL TRANSFORMATIONS AND CODE GENERATION 155

”2.0”
xmlns : wsdl = ”http : //schemas.xmlsoap.org/wsdl/”
xmlns : ns1 = ”http : //org.apache.axis2/xsd”
xmlns : wsaw = ”http : //www.w3.org/2006/05/addressing/wsdl”
xmlns : http = ”http : //schemas.xmlsoap.org/wsdl/http/”
xmlns : xs = ”http : //www.w3.org/2001/XMLSchema”
xmlns : mime = ”http : //schemas.xmlsoap.org/wsdl/mime/”
xmlns : soap = ”http : //schemas.xmlsoap.org/wsdl/soap/”
xmlns : soap12 = ”http : //schemas.xmlsoap.org/wsdl/soap12/”
xmlns : plnk = ”http : //docs.oasis− open.org/wsbpel/2.0/plnktype” >
< xsl : outputmethod = ”xml”indent = ”yes”/ >
< xsl : templatematch = ”/” >
< xsl : apply − templates/ >

< /xsl : template >
< xsl : templatematch = ”wsdl : definitions” >
< wsdl : definitionstargetNamespace = ”@targetNamespace” >
< xsl : namespacename = ”axis2” >< xsl : value−ofselect = ”@targetNamespace”/ ><

/xsl : namespace >
< xsl : namespacename = ”ns” >< xsl : value− ofselect = ”@targetNamespace”/ >

xsd < /xsl : namespace >
< xsl : apply − templates/ >
< xsl : call − templatename = ”buildPartnerLinkType”/ >

< /wsdl : definitions >
< /xsl : template >
< xsl : templatematch = ”wsdl : service” >
< wsdl : servicename = ”@name” >
< xsl : apply − templates/ >

< /wsdl : service >
< /xsl : template >
< xsl : templatematch = ”wsdl : port” >
< wsdl : portname = ”@name”binding = ”@binding” >
< xsl : apply − templates/ >

< /wsdl : port >
< /xsl : template >
< xsl : templatematch = ”soap : address” >
< soap : addresslocation = ”http : //localhost : 8080/ode/processes/../../@name”/ >

< /xsl : template >
< xsl : templatematch = ”soap12 : address” >
< soap12 : addresslocation = ”http : //localhost : 8080/ode/processes/../../@name”/ >

< /xsl : template >
< xsl : templatematch = ”http : address” >
< http : addresslocation = ”http : //localhost : 8080/ode/processes/../../@name”/ >

< /xsl : template >
< xsl : templatematch = ” ∗ ” >
< xsl : copy − ofselect = ”.”/ >

< /xsl : template >
< xsl : templatename = ”buildPartnerLinkType” >
< plnk : partnerLinkTypename = ”/wsdl : definitions/wsdl : service/@namePartnerLinkType” >

156 Appendix B

< plnk : rolename = ”/wsdl : definitions/wsdl : service/@namePortTypeprovider”portType =
”axis2 : /wsdl : definitions/wsdl : service/@namePortType”/ >

< /plnk : partnerLinkType >
< /xsl : template >

< /xsl : stylesheet >

C
Scientific Contributions

Book Chapters/Journals

• SISS 2009: Handbook of Research on Service Intelligence and Service Science: Evolution-
ary Technologies and Challenges. Manel Fredj, Apostolos Zarras, Nikolaos Georgantas,
Valérie Issarny. Dynamic Maintenance of Service Orchestrations. Book Chapter In Service
Intelligence and Service Science. Dickson K.W. Chiu, Patrick C. K. Hung & Ho-fung Leung
Editors. 2009.

• RODIN Project Book 2006 : Rigorous Development of Complex Fault-Tolerant Systems.
Apostolos Zarras, Manel Fredj, Nikolaos Georgantas, Valérie Issarny. Engineering Recon-
figurable Distributed Software Systems: Issues Arising for Pervasive Computing. Book
Chapter In Rigorous engineering of fault tolerant systems. Michael Butler, Cliff Jones,
Alexander Romanovsky & Elena Troubitsina Editors. LNCS. 2006.

International Conference

• 2008 IEEE Congress on Services (SERVICES 2008)
Manel Fredj, Nikolaos Georgantas, ValÃľrie Issarny , Apostolos Zarras. Dynamic Service
Substitution in Service-Oriented Architectures . In Proceedings of the IEEE Services 2008-
SCC 2008, SOA Industry Summit. July 2008, Hawaii, USA.

Demonstration

• Middleware 2007
Letian Rong, Thomas Wallet , Manel Fredj, Nikolaos Georgantas. Mobile Medical Diag-
nosis: an m-Health Initiative through Service Continuity in B3G. Accepted in Middleware
2007 Conference (Demo). November 2007, California, USA.

Workshops

• Engineering of Software Services for Pervasive Environments 2007 (ESSPE’07)
Letian Rong, Manel Fredj, ValÃľrie Issarny, Nikolaos Georgantas. Mobility Management
in B3G Networks: a Middleware-based Approach. In Proceedings of the ESSPE Workshop.
September 2007, Dubrovnik, Croatia.

• 4th Minnema Workshop 2006
Manel Fredj, Apostolos Zarras, Nikolaos Georgantas, ValÃľrie Issarny. Connectivity Loss
in Pervasive Computing Environments. In Proceedings of the 4th MiNEMA Workshop.
July 2006, Sintra, Portugal.

158 Appendix C

Bibliography

[gt4, 2005] (2005). Globus Toolkit 4. Web site, Globus Alliance, Available at http://www.

globus.org/alliance/.

[Orc, 2005] (2005). Ochestra. Technical report, BULL SAS-OW2 consortium, Available at .

[PXE, 2005] (2005). PXE: BPEL Process eXecution Engine. Technical report, FiveSight Tech-

nologies, Available at http://sourceforge.net/projects/pxe.

[ODE, 2006] (2006). ODE: Orchestration Director Engine. Technical report, Apache, Available

at http://ode.apache.org/index.html.

[Act, 2009] (2009). AcriveBpel Community Edition. Technical report, ActiveEndpoints, Avail-

able at http://www.activevos.com/community-open-source.php.

[Aalst, 1997] Aalst, W. M. P. v. d. (1997). Verification of workflow nets. In ICATPN ’97:

Proceedings of the 18th International Conference on Application and Theory of Petri Nets,

pages 407–426, London, UK. Springer-Verlag.

[Alvisi et al., 1999] Alvisi, L., Rao, S., Husain, S. A., de Mel, A., and Elnozahy, E. (1999).

An analysis of communication-induced checkpointing. In FTCS ’99, page 242, USA. IEEE

Computer Society.

[Avizienis et al., 2001] Avizienis, A., Laprie, J., and Randell, B. (2001). Fundamental concepts

of dependability.

[Bell, 2008] Bell, M. (2008). Service-Oriented Modeling: Service Analysis, Design, and Architec-

ture. Wiley & Sons.

[Ben Mokhtar, 2007] Ben Mokhtar, S. (2007). Semantic Middleware for Service-Oriented Per-

vasive Computing. PhD thesis, Paris VI, Université Pierre et Maris Curie, Paris.

[Benatallah et al., 2004] Benatallah, B., Casati, F., and Toumani, F. (2004). Web service con-

versation modeling: A cornerstone for e-business automation. IEEE Internet Computing,

8(1):46–54.

[Benatallah et al., 2003] Benatallah, B., Casati, F., Toumani, F., and Hamadi, R. (2003). Con-

ceptual modeling of web service conversations. CaiSE 03: Proceedings of the international

Conference on Advanced Information Systems Engineering, pages 449–467.

[Bentahar et al., 2007] Bentahar, J., Maamar, Z., Benslimane, D., and Thiran, P. (2007). Using

argumentative agents to manage communities of web services. In AINAW ’07: Proceedings

of the 21st International Conference on Advanced Information Networking and Applications

Workshops, pages 588–593, Washington, DC, USA. IEEE Computer Society.

http://www.globus.org/alliance/
http://www.globus.org/alliance/
http://sourceforge.net/projects/pxe
http://ode.apache.org/index.html
http://www.activevos.com/community-open-source.php

160 Appendix C

[Bernard, 2006] Bernard, G. (2006). Invited paper: Middleware for next generation distributed

systems: Main challenges and perspectives. Database and Expert Systems Applications, Inter-

national Workshop on, 0:237–240.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic

Web. In Scientific American.

[Birman et al., 1991] Birman, K., Schiper, A., and Stephenson, P. (1991). Lightweight causal

and atomic group multicast. ACM Transactions on Computer Systems, 9(3):272–314.

[Birman et al., 2004] Birman, K., van Renesse, R., and Vogels, W. (2004). Adding high availabil-

ity and autonomic behavior to web services. In ICSE ’04: Proceedings of the 26th International

Conference on Software Engineering, pages 17–26, Washington, DC, USA. IEEE Computer

Society.

[Bishop, 1995] Bishop, P. (1995). Software Fault Tolerance. John Wiley & Sons, Inc., New York,

NY, USA.

[Boley et al., 2001] Boley, H., Tabet, S., and Wagner, G. (2001). Design Rationale of RuleML:

A Markup Language for Semantic Web Rules.

[Buckley, 2006] Buckley, J. (2006). Conference: From RFID to the Internet of things, Pervasive

Networked Systems. Final report, Conference organised by DG Information Society and Media,

Networks and Communication Technologies Directorate, CCAB, Brussels.

[Budhiraja et al., 1993] Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. (1993).

The primary-backup approach. pages 199–216.

[Bultan et al., 2003] Bultan, T., Fu, X., Hull, R., and Su, J. (2003). Conversation specification:

a new approach to design and analysis of e-service composition. In WWW ’03: Proceedings of

the 12th international conference on World Wide Web, pages 403–410, New York, NY, USA.

ACM.

[Calore et al., 2007] Calore, F., Lombardi, D., Mussi, E., Plebani, P., and Pernici, B. (2007).

Retrieving substitute services using semantic annotations: A foodshop case study. In ter

Hofstede, A. H. M., Benatallah, B., and Paik, H.-Y., editors, Business Process Management

Workshops, volume 4928 of Lecture Notes in Computer Science, pages 508–513. Springer.

[Campbell and Randell, 1986] Campbell, R. H. and Randell, B. (1986). Error recovery in asyn-

chronous systems. IEEE Trans. Softw. Eng., 12(8):811–826.

[Caporuscio et al., 2008] Caporuscio, M., Eikerling, H.-J., K.Liotopoulos, F., Moungla, H.,

Raverdy, P.-G., Toulis, P., Carughi, G. T., and Xinidis, K. (2008). PLATIC Middleware

Delivrable 3.3: Assessment and Revision. Report, Available at http://www-c.inria.fr/

plastic/dissemination/plastic-reports/public-deliverables.

http://www-c.inria.fr/plastic/dissemination/plastic-reports/public-deliverables
http://www-c.inria.fr/plastic/dissemination/plastic-reports/public-deliverables

BIBLIOGRAPHY 161

[Cardelli, 1997] Cardelli, L. (1997). Type systems. In Tucker, A. B., editor, The Computer

Science and Engineering Handbook, pages 2208–2236. CRC Press.

[Cardelli and Wegner, 1985] Cardelli, L. and Wegner, P. (1985). On understanding types, data

abstraction, and polymorphism. ACM Computing Surveys, 17:471–522.

[CHANDRA et al., 2001] CHANDRA, B., DAHLIN, M., GAO, L., and NAYATE, A. (2001).

End-to-end wan service availability.

[Chandy and Lamport, 1985] Chandy, K. M. and Lamport, L. (1985). Distributed snapshots:

determining global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language. Information

Theory, IEEE Transactions on, 2(3):113–124.

[Cicekli and Yildirim, 2000] Cicekli, N. K. and Yildirim, Y. (2000). Formalizing workflows using

the event calculus. In DEXA ’00: Proceedings of the 11th International Conference on Database

and Expert Systems Applications, pages 222–231, London, UK. Springer-Verlag.

[Corcho and Gómez-Pérez, 2000] Corcho, O. and Gómez-Pérez, A. (2000). A roadmap to on-

tology specification languages. In EKAW ’00: Proceedings of the 12th European Workshop

on Knowledge Acquisition, Modeling and Management, pages 80–96, London, UK. Springer-

Verlag.

[DeCandia et al., 2007] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,

A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dynamo: amazon’s

highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220.

[Défago et al., 2004] Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and

multicast algorithms: Taxonomy and survey. ACM Computing Surveys, 36:2004.

[Derbel et al., 2008] Derbel, B., Mosbah, M., and Gruner, S. (2008). Mobile agents implementing

local computations in graphs. In ICGT ’08: Proceedings of the 4th international conference

on Graph Transformations, pages 99–114, Berlin, Heidelberg. Springer-Verlag.

[Dubuis et al., 2004] Dubuis, E., Fornasler, P., and kowalski, P. (2004). Bexee: BPEL Execution

Engine. Technical report, Berne University of Applied Sciences, School of Engineering and

Information Technology, Available at http://bexee.sourceforge.net/.

[Elnozahy et al., 2002] Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002).

A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,

34(3).

[Fielding, 2000] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine.

http://bexee.sourceforge.net/

162 Appendix C

[Flé and Roucairol, 1985] Flé, M.-P. and Roucairol, G. (1985). A language theoretic approach

to serialization problem in concurrent systems. In FCT ’85: Fundamentals of Computation

Theory, pages 128–145, London, UK. Springer-Verlag.

[Floyd, 1967] Floyd, R. W. (1967). Assigning meanings to programs. In Proc. Sympos. Appl.

Math., Vol. XIX, pages 19–32. Amer. Math. Soc., Providence, R.I.

[Fredj et al., 2008] Fredj, M., Georgantas, N., Issarny, V., and Zarras, A. (2008). Dynamic

service substitution in service-oriented architectures. pages 101–104.

[Fredj et al., 2006] Fredj, M., Zarras, A., Georgantas, N., and Issarny, V. (2006). Adaptation

to connectivity loss in pervasive computing environments. Proceedings of the 4th MiNEMA

Workshop, 20.

[Fredj et al., 2009] Fredj, M., Zarras, A., Georgantas, N., and Issarny, V. (2009). Dynamic

Maintenance of Service Orchestrations.

[Gaudel et al., 2003] Gaudel, M.-C., Issarny, V., Jones, C., Kopetz, H., Marsden, E., Moffat, N.,

Paulitsch, M., Powell, D., Randell, B., Romanovsky, A., Stroud, R., and Taiani, F. (2003).

Final version of the DSoS conceptual model. DSoS Project (IST-1999-11585) Deliverable

CSDA 1.

[Glinz, 2007] Glinz, M. (2007). On non-functional requirements. IEEE International Conference

on Requirements Engineering, 0:21–26.

[Gómez-Pérez and Corcho, 2002] Gómez-Pérez, A. and Corcho, O. (2002). Ontology specifica-

tion languages for the semantic web. IEEE Intelligent Systems, 17(1):54–60.

[Grossmann et al., 2006] Grossmann, G., Schrefl, M., and Stumptner, M. (2006). Verification

of business process integration options. In Dustdar, S., Fiadeiro, J. L., and Sheth, A. P.,

editors, Business Process Management, volume 4102 of Lecture Notes in Computer Science,

pages 432–438. Springer.

[Group, 2001] Group, I. S. (2001). Web Services Flow Language (WSFL 1.0). Technical report.

[Guo et al., 2005a] Guo, R., Chen, D., and Le, J. (2005a). Matching semantic web services

across heterogeneous ontologies. In CIT ’05: Proceedings of the The Fifth International Con-

ference on Computer and Information Technology, pages 264–268, Washington, DC, USA.

IEEE Computer Society.

[Guo et al., 2005b] Guo, R., Le, J., and Xia, X. (2005b). Capability matching of web services

based on owl-s. Database and Expert Systems Applications, 2005. Proceedings. Sixteenth In-

ternational Workshop on, pages 653–657.

[Hackmann, 2006] Hackmann, G. (2006). Sliver. Technical report, Washington university St

Louis, Available at http://mobilab.cse.wustl.edu/projects/sliver/.

http://mobilab.cse.wustl.edu/projects/sliver/

BIBLIOGRAPHY 163

[Hau et al., 2005] Hau, J., Lee, W., and Darlington, J. (2005). A semantic similarity measure

for semantic web services. In Web Service Semantics Workshop at WWW (2005.

[Helal et al., 1996] Helal, A. A., Bhargava, B. K., and Heddaya, A. A. (1996). Replication Tech-

niques in Distributed Systems. Kluwer Academic Publishers, Norwell, MA, USA.

[Hendler et al., 1990] Hendler, J., Tate, A., and Drummond, M. (1990). Service adaptation

through trace inspection. AAAI, pages 61–77.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580.

[Hoare, 1971] Hoare, C. A. R. (1971). Procedures and parameters: An axiomatic approach.

Engeler, E. (Ed.), Lecture Notes in Mathematics, 188:102–116.

[IETF, 2000] IETF (1997,2000). HTTP State Management Mechanism. Rfc 2109 and rfc 2965,

IETF, Available at http://tools.ietf.org/html/rfc2109 and http://tools.

ietf.org/html/rfc2965.

[Issarny et al., 2007] Issarny, V., Caporuscio, M., and Georgantas, N. (2007). A perspective on

the future of middleware-based software engineering. In FOSE ’07: 2007 Future of Software

Engineering, pages 244–258, Washington, DC, USA. IEEE Computer Society.

[Issarny et al., 2005] Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy,

N., and Talamona, A. (2005). Developing ambient intelligence systems: A solution based on

web services. In Automated Software Engineering, 12.

[Joseph et al., 1995] Joseph, A., deLespinasse, A., Tauberand, J., Gifford, D., and Kaashoek,

M. (1995). Rover: a toolkit for mobile information access. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles (SOSP ’95).

[Kaashoek and Tanenbaum, 1991] Kaashoek, M. and Tanenbaum, A. (1991). Group communi-

cation in the amoeba distributed operating system. Distributed Computing Systems, 1991.,

11th International Conference on, pages 222–230.

[Kaiser and Pu, 1992] Kaiser, G. E. and Pu, C. (1992). Dynamic restructuring of transactions.

In Database Transaction Models for Advanced Applications, chapter 8, pages 265–295. Morgan

Kaufmann.

[König et al., 2008] König, D., Lohmann, N., Moser, S., Stahl, C., and Wolf, K. (2008). Ex-

tending the compatibility notion for abstract ws-bpel processes. In WWW ’08: Proceeding of

the 17th international conference on World Wide Web, pages 785–794, New York, NY, USA.

ACM.

[Krafzig et al., 2004] Krafzig, D., Banke, K., and Slama, D. (2004). Enterprise SOA: Service-

Oriented Architecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle

River, NJ, USA.

http://tools.ietf.org/html/rfc2109
http://tools.ietf.org/html/rfc2965
http://tools.ietf.org/html/rfc2965

164 Appendix C

[Kramer and Magee, 1990] Kramer, J. and Magee, J. (1990). The Evolving Philosophers

Problem: Dynamic Change Management. IEEE Transactions on Software Engineering,

16(11):1293–1306.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565.

[Laprie et al., 1992] Laprie, J., Avizienis, A., and Kopetz, H., editors (1992). Dependability:

Basic Concepts and Terminology. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Li and Fuchs, 1990] Li, C.-C. and Fuchs, W. (1990). Catch-compiler-assisted techniques for

checkpointing. Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th Interna-

tional Symposium, pages 74–81.

[Liskov and Wing, 1994] Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping.

ACM Trans. Program. Lang. Syst., 16(6):1811–1841.

[Maamar et al., 2008] Maamar, Z., Sheng, Q. Z., and slimane, D. B. (2008). Sustaining web ser-

vices high-availability using communities. In ARES, pages 834–841. IEEE Computer Society.

[Marian et al., 2008] Marian, T., Balakrishnan, M., Birman, K., and van Renesse, R. (2008).

Tempest: Soft state replication in the service tier. In Proceedings of the 38th Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN’08), Anchorage,

Alaska, USA.

[Microsoft, 2001] Microsoft (2001). XLANG - Web Services for Business Process Design. Tech-

nical report, Available at http://xml.coverpages.org/XLANG-C-200106.html.

[Mokhtar et al., 2008a] Mokhtar, S. B., Bianco, S., Georgantas, N., Issarny, V., and Thomson, G.

(2008a). iCOCOA : Inria’s COnversation-based service COmposition in pervAsive computing

environments. Technical report, Inria, Project-team Arles, Available at http://www-rocq.

inria.fr/arles/download/iCOCOA/index.html.

[Mokhtar et al., 2007] Mokhtar, S. B., Georgantas, N., and Issarny, V. (2007). Cocoa:

Conversation-based service composition in pervasive computing environments with qos sup-

port. J. Syst. Softw., 80(12):1941–1955.

[Mokhtar et al., 2008b] Mokhtar, S. B., Preuveneers, D., Georgantas, N., Issarny, V., and

Berbers, Y. (2008b). Easy: Efficient semantic service discovery in pervasive computing envi-

ronments with qos and context support. J. Syst. Softw., 81(5):785–808.

[Netscape, 1999] Netscape (1999). Persistent client state - HTTP cookies - Preliminary spec-

ification. Technical report, Netscape, Available at http://web.archive.org/web/

20070805052634/http://wp.netscape.com/newsref/std/cookie_spec.html.

http://xml.coverpages.org/XLANG-C-200106.html
http://www-rocq.inria.fr/arles/download/iCOCOA/index.html
http://www-rocq.inria.fr/arles/download/iCOCOA/index.html
http://web.archive.org/web/20070805052634/http://wp.netscape.com/newsref/std/cookie_spec.html
http://web.archive.org/web/20070805052634/http://wp.netscape.com/newsref/std/cookie_spec.html

BIBLIOGRAPHY 165

[OASIS, 2006a] OASIS (2006a). Web Services Resource 1.2 (WS-Resource). Technical report,

OASIS, Available at http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.

2-spec-os.pdf.

[OASIS, 2006b] OASIS (2006b). Web Services Resource Framework (WSRF) v1.2 Specification.

Technical report, OASIS Standard, Available at http://www.globus.org/wsrf/.

[OASIS, 2006c] OASIS (2006c). Web Services Resource Properties 1.2 (WS-ResourceProperties).

Technical report, OASIS, Available at http://docs.oasis-open.org/wsrf/wsrf-ws_

resource_properties-1.2-spec-os.pdf.

[OASIS, 2007] OASIS (2007). Web Services Business Process Execution Language. Techni-

cal report, OASIS Standard, Available at http://docs.oasis-open.org/wsbpel/2.

0/wsbpel-v2.0.html.

[OMG, 2001] OMG (2001). Model Driven Architecture (MDA). Technical report, OMG, Avail-

able at http://www.omg.org/mda/specs.htm.

[Osrael et al., 2006] Osrael, J., Froihofer, L., and Goeschka, K. M. (2006). What service replica-

tion middleware can learn from object replication middleware. In MW4SOC ’06: Proceedings

of the 1st workshop on Middleware for Service Oriented Computing (MW4SOC 2006), pages

18–23, New York, NY, USA. ACM.

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. P. (2002).

Semantic matching of web services capabilities. In Horrocks, I. and Hendler, J. A., editors, 1rst

International Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science,

pages 333–347. Springer.

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service -oriented computing: Concepts, charac-

teristics and directions. In WISE ’03: Proceedings of the Fourth International Conference

on Web Information Systems Engineering, page 3, Washington, DC, USA. IEEE Computer

Society.

[Papazoglou and Dubray, 2004] Papazoglou, M. P. and Dubray, J. J. (2004). A survey of web

service technologies,technical report dit -o4 -058. University of Trento, Department of Infor-

mation and Communication Technology.

[Papazoglou and Georgakopoulos, 2003] Papazoglou, P. and Georgakopoulos, D., editors (2003).

Service-oriented computing, volume 46. In Communications of the ACM.

[Peti, 2002] Peti, P. (2002). The concepts behind time, state, component, and interface - a

literature survey. In Survey, Vienna.

[Poledna, 1996] Poledna, S. (1996). Fault-Tolerant Real-Time Systems: The Problem of Replica

Determinism. Kluwer Academic Publishers, Norwell, MA, USA.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://www.globus.org/wsrf/
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/mda/specs.htm

166 Appendix C

[Powell et al., 1991] Powell, D., Bey, I., and Leuridan, J., editors (1991). Delta Four: A Generic

Architecture for Dependable Distributed Computing. Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

[Randell, 1975] Randell, B. (1975). System structure for software fault tolerance. In Proceedings

of the international conference on Reliable software, pages 437–449, New York, NY, USA.

ACM.

[Rappaport, 2001] Rappaport, T. (2001). Wireless Communications: Principles and Practice

(2nd Edition). Prentice Hall PTR.

[Rong and Caporuscio, 2008] Rong, L. and Caporuscio, M. (2008). Middleware Developer’s

Guide: Multi-Radio Device Management Layer. Technical report, INRIA, Available at

http://gforge.inria.fr/frs/?group_id=699.

[Rong et al., 2007a] Rong, L., Fredj, M., Issarny, V., and Georgantas, N. (2007a). Mobility

management in b3g networks: a middleware-based approach. In ESSPE ’07: International

workshop on Engineering of software services for pervasive environments, pages 41–45, New

York, NY, USA. ACM.

[Rong et al., 2007b] Rong, L., Wallet, T., Fredj, M., and Georgantas, N. (2007b). Mobile med-

ical diagnosis: an m-health initiative through service continuity in b3g. In Middleware ’07:

Proceedings of the 8th ACM/IFIP/USENIX international conference on Middleware, pages

1–2, New York, NY, USA. ACM.

[Rosa et al., 2005] Rosa, F. D., Malizia, A., and Mecella, M. (2005). Disconnection prediction

in mobile ad hoc networks for supporting cooperative work. IEEE Pervasive Computing,

4(3):62–70.

[Ruggaber and Seitz, 2001] Ruggaber, R. and Seitz, J. (2001). A transparent network handover

for nomadic corba users. In ICDCS ’01: Proceedings of the The 21st International Conference

on Distributed Computing Systems, page 499, Washington, DC, USA. IEEE Computer Society.

[Salatge and Fabre, 2007] Salatge, N. and Fabre, J.-C. (2007). Fault Tolerance Connectors for

Unreliable Web Services. In Proceedings of the 37th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks, pages 51–60.

[Satyanarayanan, 2001] Satyanarayanan, M. (2001). Pervasive computing: Vision and chal-

lenges. IEEE Personal Communications, 8:10–17.

[Sens, 1995] Sens, P. (1995). The performance of independent checkpointing in distributed sys-

tems. hicss, 00:525.

[Singh and Huhns, 2005] Singh, M. P. and Huhns, M. N. (2005). Service-Oriented Computing:

Semantics, Processes, Agents. John Wiley and Sons.

http://gforge.inria.fr/frs/?group_id=699

BIBLIOGRAPHY 167

[Strom and Yemini, 1985] Strom, R. and Yemini, S. (1985). Optimistic recovery in distributed

systems. ACM Trans. Comput. Syst., 3(3).

[Su et al., 2008] Su, J., Bultan, T., Fu, X., and Zhao, X. (2008). Towards a theory of web service

choreographies. pages 1–16.

[Thompson, 1991] Thompson, S. (1991). Type Theory and Functional Programming.

[Van Der Aalst et al., 2003] Van Der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., and Barros,

A. (2003). Workflow patterns. Distrib. Parallel Databases, 14(1):5–51.

[Verbeek, 2001] Verbeek, H. M. W. (2001). Diagnosing workflow processes using woflan. The

Computer Journal, 44.

[W3C, 1999] W3C (1999). XSL Transformations (XSLT). Technical report, W3C Standard,

Available at http://www.w3.org/TR/xslt.

[W3C, 2004a] W3C (2004a). OWL-S: Semantic Markup for Web Services. Technical report,

W3C Standard, Available at http://www.w3.org/Submission/OWL-S/.

[W3C, 2004b] W3C (2004b). OWL Web Ontology Language. Technical report, W3C Standard,

Available at http://www.w3c.org/TR/owl-ref.

[W3C, 2004c] W3C (2004c). SWRL: A Semantic Web Rule Language Combining OWL and

RuleML. Technical report, W3C, Available at http://www.w3.org/Submission/SWRL/.

[W3C, 2004d] W3C (2004d). Web Services Addressing (WS-Addressing). Technical report, W3C

standard, Available at http://www.w3.org/Submission/ws-addressing/.

[W3C, 2007a] W3C (2007a). Semantic Annotations for WSDL and XML Schema. Technical

report, W3C Standard, Available at http://www.w3.org/TR/sawsdl/.

[W3C, 2007b] W3C (2007b). Simple Object Access Protocol (SOAP) 1.2. Technical report,

W3C Standard, Available at http://www.w3.org/TR/soap/.

[W3C, 2007c] W3C (2007c). Web Services Description Language (WSDL) Version 2.0. Technical

report, W3C Standard, Available at http://www.w3.org/TR/wsdl20/.

[W3C, 2007d] W3C (2007d). XML Path Language (XPath) 2.0. Technical report, W3C Stan-

dard, Available at http://www.w3.org/TR/xpath20/.

[Wolf, 1998] Wolf, T. (1998). Replication of Non-Deterministic Objects. PhD thesis.

[Wombacher et al., 2004] Wombacher, A., Fankhauser, P., and Neuhold, E. (2004). Transforming

bpel into annotated deterministic finite state automata for service discovery. In ICWS ’04:

Proceedings of the IEEE International Conference on Web Services, page 316, Washington,

DC, USA. IEEE Computer Society.

http://www.w3.org/TR/xslt
http://www.w3.org/Submission/OWL-S/
http://www.w3c.org/TR/owl-ref
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/xpath20/

168 Appendix C

[Wombacher et al., 2005] Wombacher, A., Mahleko, B., and Neuhold, E. J. (2005). Ipsi-pf - a

business process matchmaking engine based on annotated finite state automata. Inf. Syst.

E-Business Management, 3(2):127–150.

[Yang, 1997] Yang, Q. (1997). Intelligent Plannning - A Decomposition and Abstraction Based

Approach.

[Zarras et al., 2006] Zarras, A., Fredj, M., Georgantas, N., and Issarny, V. (2006). Engineering

reconfigurable distributed software systems: Issues arising for pervasive computing. Lecture

Notes in Computer Science. Springer.

[Zhang et al., 2006] Zhang, X., Hiltunen, M. A., Marzullo, K., and Schlichting, R. D. (2006).

Customizable service state durability for service oriented architectures. In EDCC ’06: Pro-

ceedings of the Sixth European Dependable Computing Conference, pages 119–128, Washington,

DC, USA. IEEE Computer Society.

[Zheng and Lyu, 2008] Zheng, Z. and Lyu, M. (2008). Ws-dream: A distributed reliability assess-

ment mechanism for web services. In Proceedings of the 38th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN’08), Anchorage, AK.

[Zhong et al., 2002] Zhong, J., Zhu, H., Li, J., and Yu, Y. (2002). Conceptual Graph Matching

for Semantic Search.

	List of Figures
	Introduction
	Supporting Dynamic Reconfiguration in SOA Systems
	Illustrating Scenario
	Current Solutions and Challenges

	Contributions
	Thesis Structure

	I Fundamentals and State of the Art
	Service-oriented Architectures
	Basics of Service-oriented Architectures
	Service-oriented Middleware
	Basic Service Model
	Web Service Description Languages
	OWL
	Matching Service Capabilities
	SAWSDL
	BPEL
	WS-Resource Framework
	SWRL

	Integrating Web Service Concepts in our Basic Service Model
	Concluding Remarks

	Dependability in SOA Systems
	Basic Concepts of Dependability
	Tolerating System Unavailability in Closed Distributed Systems
	Basic Concepts of Replication
	Reconfiguring Closed Distributed Systems

	Discussing the Limits of Applicability of FT Techniques for Closed Distributed Systems in SOA Systems
	Service Substitution
	Applicability of Traditional Replication Techniques
	Applicability of Traditional Checkpoint-based Rollback Recovery
	Need for Middleware Support for Fault Tolerant SOA systems

	Existing Approaches to Support Service Substitution in SOA Systems
	Requirements for Runtime Reconfiguration of SOA Systems
	Concluding Remarks

	II Formalization
	Revisiting the Service Model
	Modeling Service Behavior
	Service State
	Overview
	Service State Description
	Checkpoint Definition
	Service State Access and Manipulation

	Advanced Service Model
	Concluding Remarks

	Formalizing Service Substitution
	Formal Definition of Service Substitution
	Principles of Subtyping in Object-oriented Design
	Mapping Subtyping Definition to Services
	Enhancing Subtyping with Dynamics: Runtime Service Substitution

	Execution Resumption by the Substitute Service
	Sequential Decomposition of the Unavailable Service Behavior
	Matching between the Behaviors of the Unavailable and Substitute Services
	Sequential Decomposition of the Substitute Service Behavior

	Algorithm for Runtime Service Substitution

	Compatibility Check and Semantic-based Service Classification
	Compatibility Degree
	Complying with Supertype Signature
	Signatures Semantic Matching
	Signatures Syntactic Mapping

	Complying with Supertype Pre- and Post-conditions
	Complying with Rules for Runtime Execution Resumption
	State Description Compatibility
	Compatibility Degree Computing for Runtime Execution Resumption

	Complying with Subtype Invariants and Constraints
	Semantic-based Service Selection
	Concluding Remarks

	Reconfiguring SOA Systems
	Client Reconfiguration
	Reconfiguration of Service Orchestrations
	Data Dependency Between Services
	Rollback Propagation for Service Orchestrations
	Integrating the Substitute Service in a Running Service Orchestration

	Concluding Remarks

	III Realization
	SIROCCO: ServIce Reconfiguration upOn serviCe unavailability and Connectivity lOss
	Middleware Architecture Overview
	PLASTIC Multi-radio Communication Middleware
	iCOCOA Service Discovery and Composition
	Execution Life Cycle

	SIROCCO Service Registry
	Architecture
	Prototype Implementation

	Execution Engine
	Architecture
	Prototype Implementation

	Service Reconfiguration
	Architecture
	Prototype Implementation
	Evaluation: Dynamic Reconfiguration Assessment for Stateful Web Services

	Concluding Remarks

	Conclusions and Future Research Directions
	Overview of the Proposed Approach
	Learned Lessons
	Future Research Directions

	BPEL Execution Engines
	XSL Transformations and Code Generation
	XSL Transformations performed by the Monitoring Manager
	EPR XML Schema
	BPEL Transformation Component of the Service Replacement
	Generating ``Proxy'' Service for Globus Web Services
	Adding the PartnerlinkType to the WSDL Description of the ``Proxy'' Service

	Scientific Contributions
	Bibliography

