Modélisation macroscopique des inondations fluviales et urbaines Prise en compte des écoulements directionnels et des échanges lit mineur - lit majeur

Pascal Finaud-Guyot

Ginger Environnement & Infrastructures, Laboratoire HydroSciences Montpellier

26 Novembre 2009 Financement CIFRE

Institut de recherche pour le développement

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• • • • •	000 00 00000	000 0 00	0 000 0	0 0 00
Problématique				

La modélisation est utilisée pour des zones d'étude présentant des axes d'écoulements préférentiels :

lit mineur de rivière

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• 00 00	000 00 00000	000 0 00	0 000 0	0 0 00
Problématique				

La modélisation est utilisée pour des zones d'étude présentant des axes d'écoulements préférentiels :

lit mineur de rivière

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• • • • •	000 00 00000	000 0 00	0 000 0	0 0 00
Problématique				

- lit mineur de rivière
- canaux d'irrigation et/ou de drainage

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• • • • •	000 00 00000	000 0 00	0 000 0	000
Problématique				

- lit mineur de rivière
- canaux d'irrigation et/ou de drainage

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• • • • •	000 00 00000	000 0 00	0 000 0	000
Problématique				

- lit mineur de rivière
- canaux d'irrigation et/ou de drainage
- axes routiers dans une zone bâtie

Introduction	Modèle	Res. Num.	Résultats	Conclusion
• • • • •	000 00 00000	000 0 00	0 000 0	000
Problématique				

- lit mineur de rivière
- canaux d'irrigation et/ou de drainage
- axes routiers dans une zone bâtie

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 • 0 0 0	000 00 00000	000 0 00	o 000 0	0 0 00
Utilisation de la modélisation				

 Changements de direction non pris en compte pour les calculs

Géométrie réelle

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 • 0 0 0	000 00 00000	000 0 00	0 000 0	0 0 00
Utilisation de la modélisation				

- Changements de direction non pris en compte pour les calculs
- Deux variables (uniformes sur la section) descriptives de l'écoulement : S et Q

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}$$
$$\mathbf{U} = \begin{bmatrix} S \\ Q \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} Q \\ \frac{Q^2}{S} + \frac{P}{\rho} \end{bmatrix}$$
$$\mathbf{S} = \begin{bmatrix} 0 \\ gS(S_0 - S_f) + I_p \end{bmatrix}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
0 00 00	000 00 00000	000 0 00	0 000 0	0 0 00	
Utilisation de la modélisation					
othered ac ru mouchs					

- Changements de direction non pris en compte pour les calculs
- Deux variables (uniformes sur la section) descriptives de l'écoulement : S et Q
- Mauvaise représentation des célérités de propagation d'onde par la majorité des codes commerciaux

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000 00 00000	000 0 00	0 000 0	0 0 00	
Utilisation de la modélisation					

 Trois variables descriptives de l'écoulement : h, q et r

 $\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = \mathbf{S}$

г

~

$$\mathbf{U} = \begin{bmatrix} h \\ q \\ r \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} q^{2} \\ \frac{h}{h} + \frac{1}{2}gh^{2} \\ \frac{qr}{h} \end{bmatrix}$$
$$\mathbf{G} = \begin{bmatrix} r \\ \frac{qr}{h} \\ \frac{r^{2}}{h} + \frac{1}{2}gh^{2} \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 0 \\ gh(S_{0,x} - S_{f,x}) \\ gh(S_{0,y} - S_{f,y}) \end{bmatrix}$$

٦

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00					
00	00000	00		00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00					
00	00000	00		00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie
 - Besoin important en données topographiques

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00					
00	00000	00		00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie
 - Besoin important en données topographiques
 - Besoin important en main d'oeuvre

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00					
00	00000	00		00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie
 - Besoin important en données topographiques
 - Besoin important en main d'oeuvre
 - Durée de simulation importante

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000 00 00000	000 0 00	0 000 0	0 0 00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie
- Variables uniformes sur la verticale

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000 00 00000	000 0 00	0 000 0	0 0 00	
Utilisation de la modélisation					

- Trois variables descriptives de l'écoulement : h, q et r
- Description fine de la topographie
- Variables uniformes sur la verticale
 - Impossibilité de représenter correctement les courts-circuits de méandres

Introduction ○ ○○ ●○	Modèle 000 00 00000	Res. Num. 000 0 00	Résultats 0 000 0	Conclusion 0 0 00
Objectifs & plan				
Objectifs				

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000		0000	
ŏŏ	00000			
Objectifs & plan				
Objectifs				

- > Développer un modèle de représentation des inondations :
 - ne nécessitant pas un maillage fin du lit mineur

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000		0	
õõ	<u>ŏŏooo</u>			
Objectifs & plan				
Objectifs				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 ●0	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres
- Concevoir les méthodes numériques permettant la résolution des équations proposées

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 ●0	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres
- Concevoir les méthodes numériques permettant la résolution des équations proposées
- ► Valider le modèle et le comparer à un modèle bidimensionnel classique

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 ●0	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres
- Concevoir les méthodes numériques permettant la résolution des équations proposées
- ► Valider le modèle et le comparer à un modèle bidimensionnel classique
- Développer un code de calcul opérationnel sur la base de ce modèle

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 ●0	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres
- Concevoir les méthodes numériques permettant la résolution des équations proposées
- ► Valider le modèle et le comparer à un modèle bidimensionnel classique
- Développer un code de calcul opérationnel sur la base de ce modèle
 - Permettre une réduction de la durée de simulation

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 ●0	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

- ne nécessitant pas un maillage fin du lit mineur
- permettant la représentation correcte des phénomènes tels que les courts-circuits de méandres
- Concevoir les méthodes numériques permettant la résolution des équations proposées
- ► Valider le modèle et le comparer à un modèle bidimensionnel classique
- Développer un code de calcul opérationnel sur la base de ce modèle
 - Permettre une réduction de la durée de simulation
 - Obtenir une précision au moins égale à celle du modèle SW2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 0●	000 00 00000	000 0 00	0 000 0	0 0 00
Objectifs & plan				

Plan

Modèle

Méthodologies de couplage employées par les codes de calcul Contraintes

Description du modèle proposé

Résolution numérique

Méthodes numériques Implantation dans le code de calcul Vérification du solveur PorAS

Présentation des résultats

Configuration rectiligne Configuration sinueuse Configuration réelle

Conclusion et perspectives

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Couplage par les extrémités du modèle 1D (Wolf Package, Mike Flood)

 Échange explicite de conditions aux limites

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Couplage latéral (CCHE-Flood, Mike Flood)

 Calcul du débit par une équation de déversoir : Q = f (Δz)

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Couplage latéral (CCHE-Flood, Mike Flood)

- Calcul du débit par une équation de déversoir : Q = f (Δz)
- Transfert de masse uniquement entre les modèles

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Couplage latéral (CCHE-Flood, Mike Flood)

- Calcul du débit par une équation de déversoir : Q = f (Δz)
- Transfert de masse uniquement entre les modèles
 - Ralentissement de l'écoulement dans le modèle aval
 - Accélération de l'écoulement dans le modèle amont

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

- Calcul du débit par une équation de déversoir : Q = f (Δz)
- Transfert de masse uniquement entre les modèles
- Prise en compte impossible des cours-circuits de méandres

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

- Calcul du débit par une équation de déversoir : Q = f (Δz)
- Transfert de masse uniquement entre les modèles
- Prise en compte impossible des cours-circuits de méandres
 - Annulation du débit de transfert en situation de court-circuit

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

- ► Calcul du débit par une équation de déversoir : Q = f (∆z)
- Transfert de masse uniquement entre les modèles
- Prise en compte impossible des cours-circuits de méandres
 - Composante transversale de la vitesse nulle dans les équations 1D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000			
			000	
00	00000	00		00

Couplage 1D-2D complet (Sobek 1D-2D)

 1 équation de conservation de la masse

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		

Couplage 1D-2D complet (Sobek 1D-2D)

- 1 équation de conservation de la masse
- cotes de la surface libre identiques : z_{1D} = z_{2D}

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		

Méthodologies de couplage employées par les codes de calcul

Couplage 1D-2D complet (Sobek 1D-2D)

- 1 équation de conservation de la masse
- cotes de la surface libre identiques : z_{1D} = z_{2D}
- 1 équation de conservation de la quantité de mouvement (QdM) pour chaque modèle

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00

Méthodologies de couplage employées par les codes de calcul

Couplage 1D-2D complet (Sobek 1D-2D)

- 1 équation de conservation de la masse
- cotes de la surface libre identiques : z_{1D} = z_{2D}
- 1 équation de conservation de la quantité de mouvement (QdM) pour chaque modèle
- Pas de référence bibliographique disponible sur les interactions 1D-2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
	00			
00	00000	00		00
Contraintes				

Réduction de la durée de simulation

 \blacktriangleright Contrainte de stabilité et/ou de précision : $\mathrm{Cr}pprox 1$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	0		000	
Contraintes				

Réduction de la durée de simulation

- \blacktriangleright Contrainte de stabilité et/ou de précision : $\mathrm{Cr} pprox 1$
- Détermination du pas de temps de calcul maximal admissible à partir de cette contrainte :

$$\Delta t \leq rac{A_i}{|\lambda|\sum_j L_{i,j}}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
	0			
Contraintes				

Réduction de la durée de simulation

- \blacktriangleright Contrainte de stabilité et/ou de précision : $\mathrm{Cr}pprox 1$
- Détermination du pas de temps de calcul maximal admissible à partir de cette contrainte :

$$\Delta t \leq rac{A_i}{|\lambda|\sum_j L_{i,j}}$$

Limiter la présence de mailles de dimensions réduites qui impliquent un pas de temps faible

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
Contraintes				

Prise en compte des axes d'écoulements

Modélisation 2D classique :

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	00		000	
00	00000	00		00
Contraintes				

Prise en compte des axes d'écoulements

Modélisation 2D classique :

 Maillage fin imposé par la prise en compte de l'axe d'écoulement

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
	00			
00	00000	00		00
Contraintes				

Prise en compte des axes d'écoulements

Modélisation 2D classique :

- Maillage fin imposé par la prise en compte de l'axe d'écoulement
 Objectif :
- Prise en compte de l'axe d'écoulement sans influencer le maillage du champ majeur

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	le proposé			

Hypothèses sur la géométrie

 Chaque maille 1D est incluse dans une maille 2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00		000	
	00000			
Description du modè	e proposé			

Hypothèses sur la géométrie

- Chaque maille 1D est incluse dans une maille 2D
- La cote du fond de la maille 2D est constante

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	le proposé			

Hypothèses sur la géométrie

- Chaque maille 1D est incluse dans une maille 2D
- La cote du fond de la maille 2D est constante

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	0000	00		00
Description du modè	e proposé			

- Hypothèses intrinsèques aux équations de Saint-Venant :
 - Profil de pression hydrostatique

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	0000	00		00	
Description du modèle proposé					

- Hypothèses intrinsèques aux équations de Saint-Venant :
 - Profil de pression hydrostatique
 - L'eau est un fluide incompressible

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	0000	00		00	
Description du modèle proposé					

- Hypothèses intrinsèques aux équations de Saint-Venant :
 - Profil de pression hydrostatique
 - L'eau est un fluide incompressible
- Hypothèses spécifiques au modèle :
 - Cote de la surface libre identique sur les mailles 1D et 2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	0000	00		00	
Description du modèle proposé					

- Hypothèses intrinsèques aux équations de Saint-Venant :
 - Profil de pression hydrostatique
 - L'eau est un fluide incompressible
- Hypothèses spécifiques au modèle :
 - Cote de la surface libre identique sur les mailles 1D et 2D
 - Composante longitudinale u de la vitesse : uniforme sur la verticale

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	0000	00		00	
Description du modèle proposé					

- Hypothèses intrinsèques aux équations de Saint-Venant :
 - Profil de pression hydrostatique
 - L'eau est un fluide incompressible
- Hypothèses spécifiques au modèle :
 - Cote de la surface libre identique sur les mailles 1D et 2D
 - Composante longitudinale u de la vitesse : uniforme sur la verticale
 - Composantes transversales v de la vitesse : identiques en surface

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	le proposé			

 Cisaillement de vitesse au niveau de l'interface intérieure

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- Cisaillement de vitesse au niveau de l'interface intérieure
- ► Formation de tourbillons

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- Cisaillement de vitesse au niveau de l'interface intérieure
- Formation de tourbillons
- Échange de QdM entre l'écoulement 1D et 2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- Cisaillement de vitesse au niveau de l'interface intérieure
- ► Formation de tourbillons
- Échange de QdM entre l'écoulement 1D et 2D
- ▶ Estimation du flux de QdM : *q* = ψ' |V_{1D} − V_{2D}| (Bousmar, 2002 [2] et Bertrand, 1994 [1])

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- Cisaillement de vitesse au niveau de l'interface intérieure
- ► Formation de tourbillons
- Échange de QdM entre l'écoulement 1D et 2D
- ▶ Estimation du flux de QdM : *q* = ψ' |V_{1D} − V_{2D}| (Bousmar, 2002 [2] et Bertrand, 1994 [1])
- Détermination du volume échangé

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- Cisaillement de vitesse au niveau de l'interface intérieure
- ► Formation de tourbillons
- Échange de QdM entre l'écoulement 1D et 2D
- ▶ Estimation du flux de QdM : *q* = ψ' |V_{1D} − V_{2D}| (Bousmar, 2002 [2] et Bertrand, 1994 [1])
- Détermination du volume échangé
- Transport de QdM longitudinale et transversale

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	le proposé			

 La composante transversale de la vitesse est la même pour les deux mailles

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
	00000			
Description du modè	e proposé			

- La composante transversale de la vitesse est la même pour les deux mailles
- Création d'un tourbillon vertical

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
	00000				
Description du modèle proposé					

- La composante transversale de la vitesse est la même pour les deux mailles
- Création d'un tourbillon vertical
- Création de zones d'eau morte

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
	00000				
Description du modèle proposé					

- La composante transversale de la vitesse est la même pour les deux mailles
- Création d'un tourbillon vertical
- Création de zones d'eau morte
- Pertes de charge (non implantées dans SW12D)

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
	00000				
Description du modèle proposé					

Formalisation mathématique

• Écriture sous forme différentielle

$$\frac{\partial \mathbf{U}_{1D}}{\partial t} + \frac{\partial \mathbf{F}_{1D}}{\partial x_{1D}} = \mathbf{S}_{1D} + \mathbf{T}_e$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
	00000				
Description du modèle proposé					

Formalisation mathématique

Écriture sous forme différentielle

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00000	00		00	
Description du modèle proposé					

Formalisation mathématique

Écriture sous forme différentielle $\frac{\partial \mathbf{U}_{1D}}{\partial t} + \frac{\partial \mathbf{F}_{1D}}{\partial \mathbf{x}_{1D}} = \mathbf{S}_{1D} + \mathbf{T}_{e}$ $\frac{\partial \mathsf{U}_{2D}}{\partial t} + \frac{\partial \mathsf{F}_{2D}}{\partial x_{2D}} + \frac{\partial \mathsf{G}_{2D}}{\partial y_{2D}} = \mathsf{S}_{2D} - \mathsf{T}_{e}$ $\mathbf{U} = \begin{bmatrix} \phi h \\ \phi q \\ \phi r \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 0 \\ g\phi h \left(S_{0,x_k} - S_{f,x_k}\right) + \frac{1}{2}gh^2 \frac{\partial \phi}{\partial x_k} \\ g\phi h \left(S_{0,y_k} - S_{f,y_k}\right) + \frac{1}{2}gh^2 \frac{\partial \phi}{\partial y_k} \end{bmatrix}$ $\mathbf{F} = \left[\phi \; \frac{q^2}{h} + \frac{1}{2} g \phi h^2 \right]$ $\mathbf{G} = \begin{vmatrix} \phi \frac{qr}{h} \\ \frac{r^2}{\phi + \frac{1}{\sigma} \phi h^2} \end{vmatrix}$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00

Plan

Modèle

Méthodologies de couplage employées par les codes de calcul Contraintes

Description du modèle proposé

Résolution numérique

Méthodes numériques Implantation dans le code de calcul Vérification du solveur PorAS

Présentation des résultats

Configuration rectiligne Configuration sinueuse Configuration réelle

Conclusion et perspectives

Introduction	Modèle	Res. Num.	Résultats	Conclusion
		000		
00	00000	00		00

Méthodes numériques

Méthode des pas fractionnaires (time splitting)

Méthode numérique fréquemment utilisée :

- pour la prise en compte des termes source
- > pour la résolution de problèmes multidimensionnels

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
NA2-1 1 2.1				

Méthode des pas fractionnaires (time splitting)

Méthode numérique fréquemment utilisée :

- pour la prise en compte des termes source
- pour la résolution de problèmes multidimensionnels Résolution de l'équation représentant un problème global sous forme de plusieurs problèmes plus simples à résoudre :

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = S + T$$

$$U^{n} \longrightarrow U^{n+1}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
NA2-1 1 2.1				

Méthode des pas fractionnaires (time splitting)

Méthode numérique fréquemment utilisée :

- pour la prise en compte des termes source
- pour la résolution de problèmes multidimensionnels Résolution de l'équation représentant un problème global sous forme de plusieurs problèmes plus simples à résoudre :

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = S + T$$

$$\int_{U^{n}}^{U} \frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0$$

$$\bigcup_{n,h}^{n,h} \frac{\partial U}{\partial t} = S$$

$$\bigcup_{n,s}^{n,s} \frac{\partial U}{\partial t} = T$$

$$\bigcup_{n+1}^{t}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	S			

Algorithme de résolution

$$\frac{\partial \mathbf{U}_k}{\partial t} + \frac{\partial \mathbf{F}_k}{\partial x_k} + \frac{\partial \mathbf{G}_k}{\partial y_k} = \mathbf{S}_k \pm \mathbf{T}_e \text{ avec } k = 1D, 2D$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

Algorithme de résolution

$$\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \left[\mathbf{S}_{0,k} + \mathbf{S}_{\rho,k} + \mathbf{S}_{f,k}\right] \pm \left[\mathbf{T}_{I} + \mathbf{T}_{m} + \mathbf{T}_{t}\right]$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

Algorithme de résolution

$$\frac{\partial \mathbf{U}_k}{\partial t} + \frac{\partial \mathbf{F}_k}{\partial x_k} + \frac{\partial \mathbf{G}_k}{\partial y_k} = \left[\mathbf{S}_{0,k} + \mathbf{S}_{p,k} + \mathbf{S}_{f,k}\right] \pm \left[\mathbf{T}_l + \mathbf{T}_m + \mathbf{T}_t\right]$$

Uⁿ

Étapes de calcul :

Conditions initiales

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

$$\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \left[\mathbf{S}_{0,k} + \mathbf{S}_{p,k} + \mathbf{S}_{f,k}\right] \pm \left[\mathbf{T}_{I} + \mathbf{T}_{m} + \mathbf{T}_{t}\right]$$

Étapes de calcul :
Prise en compte des
frottements
$$U^{n} \xrightarrow{\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \mathbf{S}_{0,k} + \mathbf{S}_{p,k}}{\int_{\mathbf{U}^{n,f}}^{\partial \mathbf{U}_{k}} = \mathbf{S}_{f,k}}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

$$\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \left[\mathbf{S}_{0,k} + \mathbf{S}_{p,k} + \mathbf{S}_{f,k}\right] \pm \left[\mathbf{T}_{l} + \mathbf{T}_{m} + \mathbf{T}_{t}\right]$$

Étapes de calcul :
Transfert de QdM
longitudinale
$$\bigcup^{n} \frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \mathbf{S}_{0,k} + \mathbf{S}_{p,k}$$

Phénomènes physiques
$$\bigcup^{n} \frac{\partial \mathbf{U}_{k}}{\partial t} = \mathbf{S}_{f,k}$$

$$\bigcup^{n,f} \frac{\partial \mathbf{U}_{k}}{\partial t} = \mathbf{T}_{l}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Méthodes numérique	s			

$$\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \left[\mathbf{S}_{0,k} + \mathbf{S}_{p,k} + \mathbf{S}_{f,k}\right] \pm \left[\mathbf{T}_{l} + \mathbf{T}_{m} + \mathbf{T}_{t}\right]$$

Étapes de calcul :
• Équilibrage de la QdM
transversale

$$\frac{\partial \mathbf{U}_{k}}{\partial t} + \frac{\partial \mathbf{F}_{k}}{\partial x_{k}} + \frac{\partial \mathbf{G}_{k}}{\partial y_{k}} = \mathbf{S}_{0,k} + \mathbf{S}_{p,k}$$

• Phénomènes physiques

$$\frac{\partial \mathbf{U}_{k}}{\partial t} = \mathbf{S}_{f,k}$$

• Quint
• Quin

Introduction	Modèle	Res. Num.	Résultats	Conclusion
		000		
			000	
00	00000	00		00
Méthodes numérique	e			

Méthodes aux volumes finis

 Discrétisation de la zone d'étude

Introduction	Modèle	Res. Num.	Résultats	Conclusion
		000		
00	00	0	000	0
00	00000	00		00
Méthodes numérique	is in the second se			

Méthodes aux volumes finis

- Discrétisation de la zone d'étude
- Calcul des flux à travers l'interface entre deux éléments de calcul

Introduction	Modèle	Res. Num.	Résultats	Conclusion
		000		
00	00	0	000	0
00	00000	00		00
Méthodes numérique	is in the second se			

Méthodes aux volumes finis

- Discrétisation de la zone d'étude
- Calcul des flux à travers l'interface entre deux éléments de calcul
- Schéma de Godunov : calcul des flux par résolution d'un problème de Riemann à l'interface

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t}{A_{i}} \sum_{j} \left[\mathbf{P}_{i,j} \mathbf{F}_{i,j}^{n+1/2} L_{i,j} \right] + \Delta t \left(\mathbf{S}_{i,j}^{n+1/2} \right)_{i}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
		•		
00	00000	00		00
Implantation dans le	code de calcul			

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{S}$$

Objectif : Estimation du flux à l'interface F^* en tenant compte du terme source

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sous forme non conservative :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} = \mathbf{S}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sous forme non conservative :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} = \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{U} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sous forme non conservative :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} = \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{U} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

Détermination des invariants de Riemann W en fonction de U

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sous forme non conservative :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} = \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{U} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

► Calcul de U* à l'interface

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sous forme non conservative :

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{U}}{\partial x} = \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{U} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

- Détermination des invariants de Riemann W en fonction de U
- ► Calcul de U* à l'interface
- Calcul du flux F (U*) à travers l'interface et de S (U*) à partir de U*

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sur les flux sous forme non conservative (Lhomme et Guinot, 2007 [4]) :

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{F}}{\partial x} = \mathbf{AS}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sur les flux sous forme non conservative (Lhomme et Guinot, 2007 [4]) :

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{F}}{\partial x} = \mathbf{AS}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{F} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sur les flux sous forme non conservative (Lhomme et Guinot, 2007 [4]) :

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{F}}{\partial x} = \mathbf{A} \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{F} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

Détermination des invariants de Riemann W en fonction de F

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sur les flux sous forme non conservative (Lhomme et Guinot, 2007 [4]) :

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{F}}{\partial x} = \mathbf{A} \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{F} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

- Détermination des invariants de Riemann W en fonction de F
- Calcul de F* à l'interface

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
		•			
00	00000	00		00	
Implantation dans le code de calcul					

Utilisation de la méthode des caractéristiques :

 Écriture de l'équation sur les flux sous forme non conservative (Lhomme et Guinot, 2007 [4]) :

$$\frac{\partial \mathbf{F}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{F}}{\partial x} = \mathbf{A} \mathbf{S}$$

Diagonalisation du système :

$$\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}t} = \mathbf{\Lambda}\mathbf{S}' \text{ avec } \begin{cases} \mathrm{d}\mathbf{W} = \mathbf{K}^{-1}\mathrm{d}\mathbf{F} \\ \mathbf{S}' = \mathbf{K}^{-1}\mathbf{S} \end{cases}$$

- Détermination des invariants de Riemann W en fonction de F
- Calcul de F* à l'interface
 Approche implantée dans le solveur de Riemann PorAS (Finaud-Guyot et al., 2009 [3])

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00		000	
		•0		
Vérification du solve	ur PorAS			

Écoulement en régime permanent

Canal avec un rétrécissement et une rehausse du fond 1.2 1.2 1.0 1.0 0.8 0.8 Cote du fond (m) Porosité 0.6 0.6 0.4 0.4 Porosité 0.2 0.2 Cote du fond 0.0 0.0 10 20 0 30 40 Abscisse (m)

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
		•0			
Vérification du calveur DarAS					

Écoulement en régime permanent

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00		000		
		•0			
Vérification du calveur DarAS					

Écoulement en régime permanent

L'erreur de calcul pour le solveur HLLC est expliquée par le fait que les termes source ne sont pas pris en compte dans le calcul des flux

Introduction	Modèle	Res. Num.	Résultats	Conclusion	
	000	000			
00	00000	00		00	
Vérification du solveur PorAS					

Rupture de barrage

 Rupture de barrage circulaire

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Vérification du solver	ur PorAS			

Rupture de barrage

- Rupture de barrage circulaire
- Porosité variable :
 \$\phi(r) = 1/r\$

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00000	00		00
Vérification du solve	ur PorAS			

Rupture de barrage

- Rupture de barrage circulaire
- Porosité variable :
 \$\phi(r) = \frac{1}{r}\$
- Reproduction correcte des hauteurs d'eau et des débits

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00

Plan

Modèle

Méthodologies de couplage employées par les codes de calcul Contraintes

Description du modèle proposé

Résolution numérique

Méthodes numériques Implantation dans le code de calcul Vérification du solveur PorAS

Présentation des résultats

Configuration rectiligne Configuration sinueuse Configuration réelle

Conclusion et perspectives

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00

 Expériences réalisées à l'Ecole Nationale Supérieure d'Agronomie de Montpellier

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00

- Expériences réalisées à l'Ecole Nationale Supérieure d'Agronomie de Montpellier
- Construction de différentes configurations à l'aide de briques et parpaings

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00

- Expériences réalisées à l'Ecole Nationale Supérieure d'Agronomie de Montpellier
- Construction de différentes configurations à l'aide de briques et parpaings
- Mesures de hauteur d'eau et de vitesse d'écoulement

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00000	00		00

- Expériences réalisées à l'Ecole Nationale Supérieure d'Agronomie de Montpellier
- Construction de différentes configurations à l'aide de briques et parpaings
- Mesures de hauteur d'eau et de vitesse d'écoulement
- Comparaison des mesures expérimentales aux résultats produits par SW12D et SW2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00		000	
	00000			

Validation de la structure transversale de l'écoulement

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000	•	
Configuration rectiling				

Dispositif expérimental

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000	•	
00	00000	00		00
Configuration rectilig	ne			

- Dispositif expérimental
- Reproduction correcte des hauteurs d'eau mesurées

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000	•	
00	00000	00		00
Configuration rectilig	ne			

- Dispositif expérimental
- Reproduction correcte des hauteurs d'eau mesurées
- Estimation des vitesses en adéquation avec les mesures

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000	•	
00	00000	00		00
Configuration rectilig	ne			

- Dispositif expérimental
- Reproduction correcte des hauteurs d'eau mesurées
- Estimation des vitesses en adéquation avec les mesures

Réduction de la durée de simulation par rapport à SW2D : un facteur 1.5 à 10
Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Configuration sinuau				

Succession de coudes

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Configuration sinueus				

- Succession de coudes
- SW12D reproduit correctement les hauteurs d'eau mesurées et les pertes de charge

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
Configuration sinueu	se			

- Succession de coudes
- SW12D reproduit correctement les hauteurs d'eau mesurées et les pertes de charge
- Estimation correcte du ratio des vitesses

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
Configuration sinueu	se			

- Succession de coudes
- SW12D reproduit correctement les hauteurs d'eau mesurées et les pertes de charge
- Estimation correcte du ratio des vitesses

Réduction de la durée de simulation par rapport à SW2D : facteur 50 à 80 P. Finaud-Guvot

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Configuration sinueus	5 A			

 Comparaison de SW12D et HEC-RAS

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Configuration sinueus	5 A			

- Comparaison de SW12D et HEC-RAS
 - ► Configuration 1D
 - Écoulement en régime permanent

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00
Configuration sinueur	se			

- Comparaison de SW12D et HEC-RAS
 - ► Configuration 1D
 - Écoulement en régime permanent
 - Coefficient de Strickler identique

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
Configuration sinueus	se			

- Comparaison de SW12D et HEC-RAS
- Modélisation des pertes de charge par SW12D

P. Finaud-Guyot

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
Configuration sinueus	se			

- Comparaison de SW12D et HEC-RAS
- Modélisation des pertes de charge par SW12D
- Même durée de simulation

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Configuration sinueus	5 A			

 Écoulement en régime permanent

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
Configuration sinueu	se			

- Écoulement en régime permanent
- Modélisation 2D classique

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00
Configuration sinus				

- Écoulement en régime permanent
- Modélisation 2D classique
 - Forte influence du lit mineur sur les vitesses

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00
Configuration sinus				

- Écoulement en régime permanent
- Modélisation 2D classique
 - Forte influence du lit mineur sur les vitesses
 - Ralentissement au niveau du lit mineur

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
			000	
00	00000	00		00
Conformation				

- Écoulement en régime permanent
- Modélisation 2D classique
 - Forte influence du lit mineur sur les vitesses
 - Ralentissement au niveau du lit mineur
- Modélisation couplée 1D-2D

Cote de la surface libre (m) 0.53 0.52 0.51 0.5 0.49

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
Configuration sinuau	~ ~			

- Écoulement en régime permanent
- Modélisation 2D classique
 - Forte influence du lit mineur sur les vitesses
 - Ralentissement au niveau du lit mineur

- Modélisation couplée 1D-2D
 - Influence moins importante du lit mineur sur les vitesses
 - Représentation des courts-circuits de méandres

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	
00	00000	00		00
Configuration sinueus	5 A			

- Écoulement en régime permanent
- Modélisation 2D classique
- Modélisation couplée 1D-2D

Réduction du temps de simulation par rapport à SW2D par un facteur 2000

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00000	00	000	00
Configuration réelle				

Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
00	00		000	
			•	
Configuration réalle				

Hauteur d'eau maximale modélisée Hauteur d'eau maximale modélisée avec SW12D avec SW2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			•	
Configuration réelle				

Vitesse maximale modélisée avec SW12D Vitesse maximale modélisée avec SW2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00	000		0000	
00 Configuration réelle	00000		•	

Vitesse maximale modélisée Vitesse maximale modélisée avec SW12D avec SW2D

Réduction de la durée de simulation par rapport à SW2D par 16

Introduction	Modèle	Res. Num.	Résultats	Conclusion
				•
00 00	00 00000	0 00	000	0 00
Conclusion				
Conclusion				

► Le modèle de couplage 1D-2D proposé permet :

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00 00	000 00 00000	000 0 00	0 000 0	0 00
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement

Introduction	Modèle	Res. Num.	Résultats	Conclusion
				•
00	00	0	000	0
	00000			
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement
 - une représentation des phénomènes de court-circuit de méandres

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00	000	000	0 000	0
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement
 - une représentation des phénomènes de court-circuit de méandres
- Les méthodes numériques proposées permettent la résolution des équations mises en jeu

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00	000 00			8
00	00000	00		00
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement
 - une représentation des phénomènes de court-circuit de méandres
- Les méthodes numériques proposées permettent la résolution des équations mises en jeu
- Ces méthodes ont permis le développement d'un code de calcul SW12D :

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000	ဝ္ဝဝ	0	e e e e e e e e e e e e e e e e e e e
00	00000	00	000	00
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement
 - une représentation des phénomènes de court-circuit de méandres
- Les méthodes numériques proposées permettent la résolution des équations mises en jeu
- Ces méthodes ont permis le développement d'un code de calcul SW12D :
 - ▶ 1,5 à 2000 fois plus rapide que SW2D

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0 00	000 00			8
00	00000	00		00
Conclusion				

- ► Le modèle de couplage 1D-2D proposé permet :
 - une prise en compte des axes d'écoulement (lit mineur / axe urbain) sans avoir à les mailler finement
 - une représentation des phénomènes de court-circuit de méandres
- Les méthodes numériques proposées permettent la résolution des équations mises en jeu
- Ces méthodes ont permis le développement d'un code de calcul SW12D :
 - ▶ 1,5 à 2000 fois plus rapide que SW2D
 - Meilleure représentation des phénomènes (Pertes de charge dans les coudes, courts-circuits de méandres)

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000		0000	0
<u>õõ</u>	00000	ŏo	000	00
Perspectives				

> Définition d'un modèle sous maille plus précis :

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000		0000	0
<u>õõ</u>	00000	ŏo	000	00
Perspectives				

- > Définition d'un modèle sous maille plus précis :
 - Cote du fond différente en rive droite et gauche

Introduction	Modèle	Res. Num.	Résultats	Conclusion
0	000		0	0
õõ	00000	ŏo	0	00
Perspectives				

- Définition d'un modèle sous maille plus précis :
 - Cote du fond différente en rive droite et gauche
 - Cote de la surface libre différente en rive droite et gauche

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	•
00	00000	00		00
Perspectives				

- Définition d'un modèle sous maille plus précis :
 - Cote du fond différente en rive droite et gauche
 - Cote de la surface libre différente en rive droite et gauche
- Section d'écoulement 1D non rectangulaire

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	•
00	00000	00		00
Perspectives				

- Définition d'un modèle sous maille plus précis :
 - Cote du fond différente en rive droite et gauche
 - Cote de la surface libre différente en rive droite et gauche
- Section d'écoulement 1D non rectangulaire
- Gestion des confluences

Introduction	Modèle	Res. Num.	Résultats	Conclusion
			000	•
00	00000	00		00
Perspectives				

- Définition d'un modèle sous maille plus précis :
 - Cote du fond différente en rive droite et gauche
 - Cote de la surface libre différente en rive droite et gauche
- Section d'écoulement 1D non rectangulaire
- Gestion des confluences
- Validation en grandeur réelle

Introduction	Modèle	Res. Num.	Résultats	Conclusion
00	00	0	000	0
Remerciements	00000	00		

Remerciements

- Ginger Environnement & Infrastructures pour avoir financé cette thèse dans le cadre d'une bourse Cifre, pour m'avoir fourni les données utilisées pour la modélisation d'une configuration réelle.
- L'Ecole Nationale Supérieure d'Agronomie de Montpellier pour le prêt de ses installations expérimentales.

Merci

Introduction 0 00 00	Modèle 000 00 00000	Res. Num. 000 0 00	Résultats 0 000 0	Conclusion ○ ○
Remerciements				
G. Bertra	and.			

Le calcul d'axes hydrauliques dans les rivières à plaines inondables. Technical report, Ministère Wallon de l'Equipement et des Transports, D. 213, Chatelet, Belgium (in French), 1994.

D. Bousmar.

Flow modelling in compound channels. PhD thesis, Université Catholique de Louvain, 2002.

P. Finaud-Guyot, C. Delenne, J. Lhomme, V. Guinot, and C. Llovel. An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity.

International Journal for Numerical Methods in Fluids, 2009. A paraître.

J. Lhomme and V. Guinot.
Introduction	Modèle	Res. Num.	Résultats	Conclusion
	000	000		
				00

Remerciements

A general approximate-state Riemann solver for hyperbolic systems of conservation laws with source terms.

International Journal for Numerical Methods in Fluids, 53 :1509–1540, 2007.