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M. Francis COMETS Université Paris 7
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Préface

Nous étudions plusieurs modèles de polymères dirigés en milieux aléatoires. Pour
le modèle classique sur Z

d, nous étudions la convergence de l’environnement vu par la
particule dans la région de faible désordre. Nous donnons des résultats très forts pour
de très hautes valeurs de la température.

Nous donnons ensuite un traitement complet de la fonction de partition pour un
modèle de polymères dirigés en milieux aléatoires sur le réseau hiérarchique en diamant.

Finalement, nous étudions l’énergie libre des polymères dirigés en milieux aléa-
toires sur Z

d dans des boites très asymétriques. Nous parvenons à prouver que, dans un
régime approprié, elle cöıncide avec l’énergie libre d’un modèle en temps continu dans
un environnement Brownien. En dimension 1, la valeur exacte de cette énergie libre est
connue. Nous étudions également des polymères dirigés en dimension 1 avec un drift
qui tend vers l’infini. Nous donnons la valeur exacte de l’énergie libre et l’ordre des
fluctuations de la fonction de partition.

We study several models of directed polymers in random environments. For the
classical model on Z

d, we study the convergence of the environments seen by the par-
ticle in the weak disorder region. We prove strong results for very high values of the
temperature.

We then give a complete treatment of the partition function of directed polymers
on the diamond hierarchical lattice.

Finally, we study the free energy of directed polymers in random environments on
Z

d in very asymmetric boxes. We prove that, in a particular regime, it coincides with the
free energy of a continuous time model in a Brownian environment. For d=1, the exact
value of this free energy is known. We also study one-dimensional directed polymers
with a huge drift. We give the exact value of the free energy and compute the order of
fluctuations of the partition function.

v





CHAPITRE 1

Introduction

Dans ce chapitre, nous introduisons le modèle classique des polymères dirigés en
milieu aléatoire. Ce modèle provient de la physique, où il a été introduit pour tenter de
modéliser les interfaces de certains systèmes soumis à des impuretés.

Après une présentation plus détaillée de ces motivations physiques, nous discuterons
les résultats mathématiques fondamentaux que l’on retrouve dans la littérature. Quelques
preuves complètes sont incluses, leur but étant d’illustrer les outils centraux pour l’étude
du modèle : la sous-additivité, la concentration de mesure, le calcul L2 et les calculs de
moments fractionnaires.

Finalement, nous décrivons les résultats originaux qui seront présentés en détail
dans les prochains chapitres.

1.1. Le modèle

Le modèle classique de polymères dirigés en milieu aléatoire se décrit à partir de
deux objets :

– La marche aléatoire : (st)t est la marche aléatoire simple symétrique sur Z
d. Nous

notons sa loi par P . Donc, P (st+1 = x + e|st = x) = 1/2d, pour tout t ≥ 0 et
e ∈ Z

d, |e| = 1.
– L’environnement : {(η(t, x)) : t ∈ Z, x ∈ Z

d} est une famille de nombres réels.
Pour tout N , nous associons ensuite une énergie à chaque chemin s :

HN(s) =
N∑

t=1

η(t, st).(1.1)

La mesure de polymère µN dans l’environnement η, à température inverse β se définit
comme la mesure sur les chemins dont la densité par rapport à P est

dµη,β
N

dP
(s) =

1

ZN
eβHN (s),(1.2)

où ZN est donnée par

Zη,β
N = P

[
eβHN (s)

]
,(1.3)

et est habituellement appelée la fonction de partition.
Nous dotons l’environnement d’une mesure produit Q. Nous étudions les propriétés de
la mesure de polymères pour des environnements typiques, c’est à dire des propriétés

1



2 1. INTRODUCTION

qui sont vraies pour Q-presque tout environnement η. Une question centrale consiste à
étudier la limite

p(β) = lim
N→+∞

1

N
Q logZη,β

N ,(1.4)

(connue comme énergie libre quenched) et décider si elle cöıncide avec l’énergie libre
annealed

λ(β) = lim
N→+∞

1

N
logQZη,β

N = logQ(eβη(0,0)).(1.5)

Il est également possible de prouver que, sous quelques hypothèses sur la loi de l’envi-
ronnement, la limite (1.4) est une limite presque sûre :

p(β) = lim
N→+∞

1

N
logZη,β

N , Q− p.s.(1.6)

Nous reviendrons sur ce point dans la section suivante.

Le modèle de polymères dirigés en milieu aléatoire provient de la physique où
il a été introduit pour tenter de modéliser le comportement des interfaces dans le
modèle d’Ising soumis à des impuretés [49]. Il est en étroite relation avec l’équation
de Kardar-Parisi-Zhang (KPZ), une équation différentielle partielle stochastique qui
modélise des phénomènes de propagation dans un milieu inhomogène. Il a ensuite été
étudié mathématiquement dans [52], et particulièrement dans [12], où l’auteur a intro-
duit des techniques de martingales qui demeurent parmi les outils les plus utilisés dans
l’étude des polymères dirigés. De nombreux progrès ont été réalisés dans le traitement
mathématique rigoureux de ce modèle (voir par exemple [53, 28, 24, 26, 21, 20, 30]
et [25] pour un review récent). On sait à présent qu’il y a une transition de phase depuis
une phase délocalisée à haute température où le comportement du polymère est diffusif,
vers une phase localisée où l’influence de l’environnement devrait être conséquente et
en mesure de produire des phénomènes non triviaux, comme la super-diffusivité. No-
tons qu’une caractérisation simple de cette dichotomie peut être donnée en terme de la
limite d’une martingale positive associée à la fonction de partition du modèle.

On sait qu’en dimension 1 et 2, le polymère est toujours dans la zone de fort désordre,
quelle que soit la température (voir [66], pour des résultats plus précis). Par contre,
pour d ≥ 3, il existe un intervalle non trivial de températures pour lesquelles on a faible
désordre. Une version faible du Théorème Central Limite (TCL) est prouvée dans cette
situation dans [28]. Le TCL presque sûr ou quenched n’est démontré que pour de très
grandes valeurs de la température.

Cependant, la valeur exacte de la température critique qui sépare ces deux régions
est toujours une question ouverte (bien sur, dans les cas où l’on sait qu’elle est finie).
Elle est connue exactement pour le modèle analogue sur l’arbre, cas pour lequel une
analyse complète de la fonction de partition est disponible (voir [15, 41, 60]). Dans le
cas de Z

d, pour d ≥ 3, un simple calcul L2 permet de donner une borne supérieure pour
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la température critique. On sait que cette borne ne cöıncide pas avec la valeur réelle
(voir [9, 8] et [18]).

Dans cette thèse nous nous intéresseront à ce modèle ainsi qu’à quelques variantes :
nous remplaçons, par exemple, la marche aléatoire simple sur Z

d par la mesure uni-
forme sur les chemins dirigés dans le réseau hiérarchique en diamant. Nous considérons
également des marches aléatoires très asymétriques et des modèles en temps continu.

1.2. Motivations physiques

Comme nous l’avons mentionné plus haut, le modèle de polymères dirigés en milieu
aléatoire provient de la physique où il a été introduit pour tenter de modéliser le com-
portement des interfaces dans le modèle d’Ising soumis à des impuretés. Dans l’article
fondateur [49], où le modèle de polymères dirigés est introduit, les auteurs considèrent

le système de spins suivant : l’espace des configurations est donné par {−1, 1}Z
d
. Pour

i, j ∈ Z
d, nous notons i ∼ j si i et j sont voisins dans Z

d. L’énergie d’une configuration
(si)i est donnée par H = H0 +Himp, où

H0 = J
∑

i∼j

sisj , Himp =
∑

i∼j

∆Jijsisj.

Les couplages (∆Jij)ij sont aléatoires (ils traduisent la présence des impuretés) et J > 0
est fixé ; les auteurs supposent que le désordre ne présente que des corrélations de faible
portée et qu’il est suffisamment faible pour ne pas détruire le caractère ferromagnétique
du système : J + ∆Jij ≥ 0.

Le paramètre β introduit précédemment correspond à l’inverse de la température. À
température nulle, le modèle d’Ising se concentre sur les deux configurations d’énergie
optimale : si = 1 pout tout i, et si = −1 pour tout i. À basse température et d ≥ 2, le
modèle admet deux phases pures. Lorsque l’on force la coexistence de phases, il se forme
une interface (d− 1)-dimensionnelle séparant deux phases de magnétisations opposées.
La composante H0 de l’énergie tente de minimiser le volume de cette interface, tandis
que Himp tente de l’accrocher à une zone énergétiquement favorable.

Les auteurs introduisent un modèle continu pour tenter de modéliser le phénomène
précédent : ils supposent que l’interface oscille parallèlement à un hyperplan (d − 1)-
dimensionnel ; soit z(x) la position de l’interface mesurée par rapport à cet hyperplan.

À un niveau macroscopique, l’énergie de l’interface est alors donnée par

Hc(z) =

∫
d(d−1)x

{
−1

2
σ|∇z|2 + V (x, z(x))

}
,

où le potentiel V (x, z) est une fonction locale du désordre et ne présente donc que des
corrélations de faible portée, et σ > 0.

En se basant sur des simulations (et des calculs dans le cas d = 2, [40]), les auteurs
concluent que l’interface présente des fluctuations du type
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z(x) ≃ |x|ζ,

avec ζ = 2/3, tandis que, sur des segments de longueur L, l’énergie Hc présente des
fluctuations de l’ordre Lξ, avec ξ = 1/3.

Pour d = 2, la fonction de partition point-à-point du système peut s’écrire comme

Z(x, y) =

∫

z:(0,0)→(x,y)

eβHc(z),

où l’intégrale porte sur tous les chemins dirigés de l’origine au point (x, y). Cet objet
satisfait l’équation

∂

∂x
Z(x, y) =

1

2βσ
∆yZ(x, y) + βV (x, y)Z(x, y).

Cette équation est liée à l’équation de KPZ (pour Kardar-Parisi-Zhang), introduite
dans [57] pour décrire la dynamique d’une surface h(x, t) :

∂h

∂t
= ν∆xh +

λ

2
|∇xh|2 + V (t, x).

En effet, par une application formelle de la formule d’Itô, h(x, t) = logZ(t, x) satisfait
cette équation avec λ = 2/β et ν = (2σβ)−1. Pour de nombreuses applications de
l’équation de KPZ, voir [46].

Notons que les exposants ζ = 2/3 et ξ = 1/3 introduits plus hauts apparaissent à
de nombreuses reprises dans la littérature : citons, par exemple, [72] dans le cas de la
percolation de premier passage, [53] pour un modèle de type percolation de dernier pas-
sage dans le plan et le travail récent [86] pour des polymères dirigés en environnement
log-Gamma. Ces phénomènes sont étroitement liés aux fluctuations des valeurs propres
de matrices aléatoires Gaussiennes (voir [2] et les nombreuses références incluses dans
cet ouvrage).

1.3. L’énergie libre

Nous démontrons à présent l’existence de l’énergie libre. La preuve consiste en deux
partie : d’abord, nous prouvons l’existence de la limite (1.4) à l’aide de la sous-additivité.
Ensuite, à l’aide d’inégalités de concentration, nous prouvons que la limite (1.6) existe,
et cöıncide avec (1.4).

Pour des entiers positifs N et M ,
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ZN+M = P (eβ
PN+M

t=1 η(t,st))

=
∑

x∈Zd

P (eβ
PN+M

t=1 η(t,st)1sN=x)

=
∑

x∈Zd

P
(
eβ

PN
t=1 η(t,st)1sN=x

)
× Px

(
eβ

PN
t=1 η(t+N,st)

)

=
∑

x∈Zd

P
(
eβ

PN
t=1 η(t,st)1sN=x

)
× ZM ◦ θN,x

= ZN

∑

x∈Zd

µN (sN = x)× ZM ◦ θN,x,

où l’on a utilisé la propriété de Markov pour la marche aléatoire dans la troisième
égalité. Le shift θN,x est défini par θN,xη(·, ·) = η(N + ·, x+ ·). Comme µN(sN = ·) est
une mesure de probabilité, nous pouvons appliquer l’inégalité de Jensen :

logZN+M = logZN + log
∑

x∈Zd

µN (sN = x)× ZM ◦ θN,x

≥ logZN +
∑

x∈Zd

µN (sN = x) logZM ◦ θN,x.

Par construction, µN (sN = x) est indépendant de logZM ◦θN,x, pour tout N et x. Donc,
en intégrant par rapport à Q et en utilisant l’invariance par translations, on obtient

Q logZN+M ≥ Q logZN +Q logZM .

Ceci entrâıne l’existence de la limite :

p(β) = lim
N→+∞

1

N
Q logZN .

En utilisant l’inégalité de Jensen, on remarque que p(β) ≤ λ(β) < +∞. La preuve de
l’existence de la limite (1.6) utilise, dans le cas Gaussien, l’inégalité de concentration
suivante :

Theorème 1.1 (Inégalité de concentration Gaussienne). Soit µ la loi normale
centrée sur R

K . Si f : R
K → R est une fonction Lipschitz-continue de constante L,

alors

µ

(
x : |f(x)−

∫
fdµ| ≥ u

)
≤ 2 exp

{
− u2

2L2

}
.

Il est facile de voir que la fonction f : R
K → R, avec K = N(N + 1)/2, donnée par

f(z) =
1

N
logP

(
eβ

PN
t=1 z(t,st)

)
,



6 1. INTRODUCTION

est Lipschitzienne de constante β/
√
N , et donc

Q

(
x :

∣∣∣∣
1

N
logZN −

1

N
Q logZN

∣∣∣∣ ≥ u

)
≤ 2 exp

{
−Nu

2

2β2

}
.

La limite presque sure

p(β) = lim
N→+∞

1

N
logZN .

découle alors du théorème de Borel-Cantelli. Pour des lois Q plus générales, voir [24] où
les auteurs utilisent des inégalités de concentration pour des martingales, démontrées
dans [71]. Voir aussi [29] pour des résultats plus précis.

1.4. Les techniques de martingales

Nous introduisons à présent la structure de martingale suivante : soitHN = σ(η(t, x) :
t ≤ N). Alors,

WN(β) = ZN(β)e−Nλ(β)

est une HN -martingale positive. En effet,

Q (WN+1(β)|HN) = Q
(
P
(
e

PN+1
t=1 {β η(t,St)−λ(β)}

) ∣∣HN

)

= P
(
e

PN
t=1{βη(t,St)−λ(β)}Q

(
eβ η(N+1,SN+1)−λ(β)

∣∣HN

))

= P
(
e

PN
t=1{β η(t,St)−λ(β)}Q

(
eβ η(N+1,SN+1)−λ(β)

))

= WN(β).

En particulier, WN converge vers une limite W+∞ qui satisfait la loi du zéro-un :

Proposition 1.1. Q(W+∞ > 0) = 0 ou 1.

Cette dichotomie caractérise de fait le comportement de la mesure de polymères. Ceci
motive la définition suivante.

Definition 1.2. Si W+∞ > 0 Q-p.s., nous disons qu’il y a faible désordre. Dans le
cas contraire, il y a désordre fort.

Notons que s’il y a désordre faible, les énergies libres quenched et annealed sont
toujours égales. Cependant l’affirmation réciproque n’est pas immédiate et est en fait
toujours une question ouverte (sauf dans les cas d = 1 et d = 2 où il est prouvé que
les énergies libres quenched et annealed sont différentes pour tout β > 0). Quand les
énergies libres quenched et annealed sont différentes, nous disons qu’il y a désordre très
fort.

Nous pouvons obtenir une équation fonctionnelle pourW+∞ : la récurrence élémentaire
pour la fonction de partition :
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ZN+1(β) =
1

2d

∑

|e|=1

eβη(1,e)ZN(β) ◦ θ1,e,(1.7)

où θt,xη(·, ·) = η(t+ ·, x+ ·), entraine

W+∞(β) =
1

2d

∑

|e|=1

eβη(1,e)−λ(β)W+∞(β) ◦ θ1,e.(1.8)

Les différents termes de la somme ne sont bien sûr pas indépendants.

1.5. Le diagramme de phases

Le passage d’un régime de désordre faible à un régime de fort désordre constitue
une transition de phase qui se produit quand β grandit. Nous avons le résultat suivant :

Proposition 1.3. ([28], Theorem 1.1) Il éxiste une valeur critique βc ∈ [0. +∞]
telle que

– Pour tout β < βc, il y a désordre faible.
– Pour tout β > βc, il y a désordre fort.

Pour d = 1 et d = 2, on sait que βc = 0. La proposition suivante permet de
déterminer des cas pour lesquels βc ∈ (0,+∞) :

Proposition 1.4. (i) Si d ≥ 3 et β est assez petit, alors supN Q(W 2
+∞) < +∞ et

il y a désordre faible.
(ii) Si βλ′(β)− λ(β) > log 2d, alors il y a (très) fort désordre.

Démonstration. Pour démontrer le premier point, on définit

πd = P⊗2
0 [ωt = ω̃t for some t] .

On observe que πd < 1 si et seulement si d ≥ 3. Nous pouvons calculer le second
moment de WN à l’aide de deux copies indépendantes de marches aléatoires :

Q(W 2
N ) = QP⊗2

[
exp

{
β

N∑

t=1

η(t, ωt) + β
N∑

t=1

η(t, ω̃t)− 2Nλ(β)

}]

= e−2NλP⊗2

[
N∏

t=1

Q(e2βη(t,ωt)1ωt=eωt )×Q(eβη(t,eωt)1ωt 6=eωt )2

]

= P⊗2
[
e(λ(2β)−2λ(β))LN (ω,eω)

]
,

oùLN (ω, ω̃) =
∑N

t=1 1(ωt = ω̃t). Observons que L+∞(ω, ω̃) a une distribution géométrique
de paramètre πd, et donc Q(W 2

N ) est uniformément borné en N pour

λ(2β)− 2λ(β) < log(1/πd),(1.9)
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ce qui entrâıne l’uniforme intégrabilité de la martingale (WN )N . Le point (ii) est un
exemple de calcul de moments fractionnaires pour démontrer qu’il y a décroissance
exponentielle. Observons d’abord

p(β)− λ(β) = lim
N→+∞

1

N
Q(logWN ) ≤ lim sup

N→+∞

1

θN
logQ(W θ

N),(1.10)

grâce à l’inégalité de Hölder. Nous montrerons que, si βλ′(β)− λ(β) > log 2d, il existe
une constante c > 0 telle que QW θ

N ≤ e−cN .
La récurrence (1.7) et l’inégalité élémentaire

(
∑

i

xi

)θ

≤
∑

i

xθ
i ,

pour 0 < θ < 1 et xi ≥ 0 pour tout i, nous permettent de conclure

QW θ
N ≤ e(1−θ) log 2d+λ(θβ)−θλ(β)QW θ

N−1,

Posons g(θ) = (1−θ) log 2d+λ(θβ)−θλ(β). Cette fonction est convexe et continuement
différentiable, et satisfait g(0) = log 2d > 0 = g(1). Pour qu’il existe x ∈ (0, 1) tel que
g(x) < 0 il suffit que dg(θ)/dθ|θ=1 > 0, ce qui équivaut à βλ′(β)− λ(β) > log 2d. Ceci
implique (ii).

�

Remarque 1.5. La condition (1.9) est connue comme la condition L2 et détermine
un sous-intervalle de la région de faible désordre connu comme la région L2. Elle garantit
que, pour d ≥ 3, il existe une valeur β2 > 0 telle que, pour β < β2, il y a faible désordre.
C’est donc une borne inférieure pour βc. L’inégalité stricte β2 < βc est une conséquence
des résultats prouvés dans [8].

Remarque 1.6. La deuxième condition est vérifiée pour de nombreuses lois de l’en-
vironnement, pour β assez grand, par exemple, pour des environnements non-bornés
supérieurement ou des environnements bornés supérieurement qui ont une masse suff-
isante sur leur supremum essentiel. Cependant, il existe des environnements pour lesquels
elle n’est jamais vérifiée.

1.6. Répliques et overlaps

Nous avons vu qu’il est possible de prouver qu’il y a faible désordre pour des petites
valeurs de β en contrôlant certains moments exponentiels de marches aléatoires. Il existe
en fait une relation très étroite entre les intersections (les overlaps) de deux polymères
indépendants sur le même environnement et la caractérisation faible désordre / fort
désordre donnée par la Définition (1.2).

Definition 1.7.

It(β) = µ⊗2
t (ωt+1 = ω̃t+1) .(1.11)
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La proposition suivante traduit la dichotomie Q(W+∞ > 0) = 0 ou 1, en terme des
overlaps et donne des informations plus quantitatives dans les cas de fort désordre.

Proposition 1.8. [20, 24]

{W+∞ > 0} =

{
+∞∑

t=1

It < +∞
}
.(1.12)

De plus, quand Q(W+∞ = 0) = 1, il existe des constantes c et C, telles que,

c
N∑

k=1

Ik ≤ − logWN ≤ C
N∑

k=1

Ik.(1.13)

Le phénomène de localisation peut-être quantifié de la façon suivante :

Proposition 1.9. [20, 24] Suposons que d = 1, 2 ou d ≤ 3 et βλ′(β) − λ(β) >
log 2d. Alors, il existe une constante c = c(β, d) telle que

lim sup
N→+∞

IN ≥ c, Q− a.s..(1.14)

Pour plus de résultats concernant la localisation, voir [93].

1.7. Théorème central limite en faible désordre

Pour de très grandes valeurs de la température, et d ≥ 3, il est possible de démontrer
un principe d’invariance quenched ou Q-presque sur :

Theorème 1.2. [1, 12, 52, 88] Dans la région L2, pour Q-presque tout environ-
nement, la suite de processus renormalisés,

ω(N)(·) = ω·N/
√
N,(1.15)

converge, sous la mesure de polymères, vers un mouvement Brownien de variance d−1I,
où I est la matrice identité dans R

d.

Cependant, dans la totalité de la région de faible désordre, seule une version en Q
probabilité de ce résultat a été obtenue :

Theorème 1.3. [28] Dans la région de faible désordre, pour toute fonction F bornée
et continue des trajectoires,

lim
N→+∞

µN(F (ω(N))) = QF (B),

en Q-probabilité, où B est un mouvement Brownien de variance d−1I et ω(N) est donné
par (1.15).
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1.8. Modèles similaires

De nombreux modèles de polymères dirigés ont été étudiés. Nous donnons ici une
liste non-exhaustive et des références. Notons que de nombreuses techniques ou démarches
générales sont communes à tout ces modèles, mais pour chacun d’eux, des méthodes
spécifiques reposant sur la structure particulière du modèle ont pu être développées
pour obtenir des informations additionnelles. Par exemple, l’utilisation de techniques
de concentration pour obtenir la limite presque sûre de la fonction de partition est plus
ou moins récurrente, bien qu’elle découle parfois de principe généraux (dans les modèles
discrets) ou parfois de calcul stochastique, voire de calcul de Malliavin (dans les cas
Gaussiens). Autre exemple, la structure particulière de l’arbre rend le traitement de la
fonction de partition bien plus simple que sur Z

d.

1.8.1. Polymères dirigés sur l’arbre. Ce modèle est défini de façon identique
que sur Z

d. La marche aléatoire simple est remplacée par une marche aléatoire dirigée
sur l’arbre qui, à chaque instant, s’éloigne un pas de la racine. La structure d’arbre
entrâıne l’indépendance de tous les termes de la somme (1.8), où 2d doit être remplacé
par le degré de l’arbre.

Ce modèle a été abordé à plusieurs reprises ([39, 60, 41, 15, 78]). La fonction de
partition est bien connue. Nous exposons plus de résultats dans le Chapitre 3.

1.8.2. Polymères Browniens dans un environnement Poissonnien. Ici, P
est la loi du mouvement Brownien dans R

d et Q, la loi d’un processus de Poisson
d’intensité 1 dans R

d+1 dénoté par η.
Pour x ∈ Z

d, soit V (x) la boule unitaire centrée en x. Pour un environnement η fixé et
toute trajectoire s : [0, T ]→ R

d, nous définissons l’énergie :

Hη
T (s) = η (V (st) : t ∈ [0, T ]) .

Finalement, la mesure de polymères µη
T est définie comme :

dµη
T

dP
(s) =

1

Zη
T

exp {βHη
T (s)} .

où Zη
T est la fonction de partition. Ce modèle est étudié en détail dans [26] et [27].

1.8.3. Polymères en temps continu dans un environnement Gaussien. Ici,
la mesure originelle P sur les chemins est une marche aléatoire en temps continu sur
Z

d, de taux de saut 1. L’environnement est une collection de mouvements Browniens
indépendants {B(·,x) : x ∈ Z

d}. L’énergie d’une trajectoire s est définie comme

HT (s) =

∫ T

0

dB(t, st).

La définition de la mesure de polymère est analogue aux cas précédents. La structure
Markovienne des mouvements Browniens permet d’appliquer les techniques classiques
de polymères dirigés, en particulier, les techniques de martingales.
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La fonction de partition (à un retournement du temps près) satisfait l’équation de
Anderson parabolique

dyt = ∆ytdt+
1

β
ytdB(t, yt),

où ∆ est le Laplacien discret. Ce lien fait que l’étude de ce modèle ait été amorcée tant
du point de vue du modèle de Anderson [32] que des polymères [17, 73].

Nous pouvons citer également les modèles de polymères dirigés Browniens con-
sidérés dans [17], où P est un mouvement Brownien et Q est un processus Gaussien de
corrélations

C(t1,x1; t2,x2) = min(t1, t2)K(|x1 − x2|),
avec K() satisfaisant certaines hypothèses de régularité. Pour des corrélations appro-
priées, il est possible de prouver que le polymère est super-diffusif en dimension 1 (voir
[7]). Pour un modèle similaire, voir aussi [94].

1.8.4. Polymères dirigés en environnement Brownien : Ce modèle sera abor-
dé rigoureusement dans la deuxième partie. Il est introduit dans [79]. Il s’agit, en
quelque sorte, d’une version dirigée de la marche aléatoire en temps continu dans un
environnement Brownien décrite plus haut. L’étude de ce modèle en dimension 1 a été
particulièrement fructueuse (voir [79] et [77]). À l’aide de techniques inspirées des files
d’attentes, les auteurs identifient de façon explicite la fonction de partition. Nous nous
intéresserons particulièrement aux relations entre ce modèle et des modèles discrets et
très asymétriques de polymères dirigés.

1.9. Présentation des résultats de la thèse

Nous résumons à présent les principaux problèmes abordés dans cette thèse. Nous
supposons toujours que les environnement que nous considérons ont au moins des mo-
ments exponentiels finis.

L’environnement vu par la particule :

Dans le Chapitre 2, nous étudions l’environnement vu par la particule pour les
polymères dirigés en milieu aléatoire. Ce type d’objets apparâıt fréquemment dans
l’étude des processus en milieux aléatoires, mais n’avait pas encore été étudié jusqu’ici
dans le cas des polymères.
L’environnement vu par la particule à l’instant N est un champs aléatoire obtenu à
partir de l’environnement initial en se positionnant sur un point précis de la trajectoire
du polymère. Rigoureusement,

ηN,M(t, x) = η(N + t, ωN + x), t ∈ Z, x ∈ Z
d,

est l’environnement vu par la particule depuis sa position ’à l’instant N ’, quand la
trajectoire ω est choisie par rapport à la mesure µN+M . Il s’agit de l’environnement vu
d’une position intermédiaire, ce qui généralise un peu la situation habituelle, où l’on
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considère l’environnement vu du point final. Il est facile de prouver que la densité de
ce champ par rapport à Q est donnée par

dQN

dQ
=
∑

x

µx
−N,0(ωN = 0).(1.16)

Le résultat principal du Chapitre 2 est contenu dans le théorème suivant qui sera prouvé
dans la Section 2.4 :

Theorem 1.10. Considérons des environnement bornés ou Gaussiens. Dans la
région L2 region,

qN,M −→
←−
W+∞ × eβη(0,0)−λ(β) ×W+∞, as M, N → +∞,

où la convergence a lieu dans L1(Q).

Ici,
←−
W+∞ se définit comme W+∞ sur l’environnement réfléchi par rapport à l’hyperplan

t = 0.
←−
W+∞ et W+∞ sont indépendants et de même loi.

Les techniques employées dans notre preuve semblent être restreintes à la région
L2. Cependant, nous discutons un résultat plus faible dans la totalité de la région
de faible désordre, dans la dernière section du Chapitre 2. Ce résultat, qui utilise des
techniques habituelles de marches aléatoires en milieux aléatoires, établit la convergence
des moyennes ergodiques de l’environnement vu par la particule, quand les trajectoires
suivent une loi définie en volume infini.

Les polymères dirigés sur le réseau hiérarchique en diamant :

Les polymères dirigés possèdent une structure de corrélation qui s’exprime de façon
naturelle en terme d’intersections de marches aléatoires indépendantes (voir le calcul
L2 dans la preuve de la Proposition 1.4). Pour cette raison, il est tentant de croire que
les modèles de polymères définis sur des espaces où cette structure est plus simple que
sur Z

d devraient être plus simples à traiter. C’est le cas du modèle sur l’arbre, pour
lequel un traitement complet de la fonction de partition a été donné.
L’arbre est un cas assez lointain de Z

d : deux marches qui se séparent ne se s’intersectent
jamais par la suite. Cette simple observation a des conséquences très importantes sur
le comportement des polymères dirigés : sur Z

d, les réintersections entrainent d’impor-
tantes fluctuations de l’énergie qui, à leur tour impliquent la convexité de l’énergie libre.
Le réseau hiérarchique en diamant est, quant à lui, plus proche de Z

d en ce sens, tout
en conservant une certaine simplicité de par sa structure hiérarchique.

Le réseau hiérarchique en diamant se construit par récurrence de la façon suivante :
– D0 est composé de deux sites A et B unis par une arête.
– Dn+1 s’obtient de Dn en remplaçant chaque arête par b branches de s− 1 arêtes.
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Cette famille de graphes apparâıt naturellement en mécanique statistique dans l’étude
de modèles de spins à l’aide de techniques de renormalisation. Cette procédure donne
lieu à des équations récursives qui peuvent être traitées aisément (consulter les références
du Chapitre 4).

Nous considérons Pn la mesure de probabilité uniforme sur les chemins dirigés de
A à B. Les polymères dirigés sur le réseau hiérarchique en diamant ont été introduits
par Cook et Derrida, dans [31]. Les auteurs considèrent un modèle avec désordre sur
les arêtes : l’énergie d’un chemin donné correspond à la somme des variables d’environ-
nement le long des arêtes visitées par le chemin. Ce modèle permet d’étudier la fonction
de partition (plus particulièrement, son second moment) à l’aide d’équations récursives
très simples. Cependant, il ne permet pas d’appliquer les techniques de martingales
habituelles. C’est pour cette raison que nous avons choisi d’étudier le modèle analogue
avec désordre par site : bien que les équations récursives obtenues soient un peu plus
compliquées, nous récupérons la propriété de martingale pour la fonction de partition
renormalisée.

Nos principaux résultats traitent de
– l’existence de l’énergie libre.
– la convexité stricte de l’énergie libre.
– conditions suffisantes pour l’existence de zones de faible et fort désordre.
– calculs d’exposants dans les cas où il y a fort désordre pour toute température

finie (b ≤ s).

La stricte convexité de l’énergie libre indique d’une certaine façon que le modèle que
nous considérons est plus proche des polymères sur Z

d que les modèles sur l’arbre. En
effet, elle est constante dans toute la région de fort désordre dans le cas de l’arbre mais
strictement convexe pour Z

d. Le comportement particulier des cas b ≤ s quant à lui
rapelle les cas de petite dimension (d = 1 et 2).

Nous présentons brièvement les modèles de polymères dirigés sur l’arbre et sur le
réseau hiérarchique en diamant avec désordre par arête dans le Chapitre 3. Le cas du
désordre par site est traité de façon approfondie dans le Chapitre 4. Il s’agit d’un travail
en collaboration avec Hubert Lacoin [67].

Polymères dirigés dans un environnement Brownien :

La deuxième partie de cette thèse établit des liens entre des modèles discrets très
asymétriques et des modèles continus en environnement Brownien.

D’un côté, nous considérons le modèle habituel de polymères dirigés dans Z
d, mais

nous étudions la fonction de partition point-à-point Zβ(N,x), c’est à dire,

Zβ(N,x) = PN,x (exp βH(S)) ,
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où PN,x est la probabilité uniforme sur les chemins dirigés de l’origine au point (N,x)
et H(S) est l’énergie du chemin S. Nous allons nous intéresser essentiellement au cas
où x = xN est tel que chacune de ses coordonnées croit comme Na avec a ∈ (0, 1). Une
situation similaire a déja été étudiée dans le cas de la percolation de dernier passage
(voir [11]).

D’un autre côté, nous considérons des polymères dirigés en temps continu dans un
environnement Brownien : soit P c

N,x la probabilité uniforme sur les chemins s : [0, N ]→
Z

d tels que :
– s0 = 0 et sN = x,
– s saute exactement |x| fois,
– les sauts de s sont unitaires et s’effectuent selon un des vecteurs coordonnés.

Considérons {B(y) : y ∈ Z
d} une famille de mouvements Browniens unidimensionnels

indépendants. Nous associons à chaque chemin s une énergie :

HBr(s) =

∫ N

0

dBu(su).

Finalement, la fonction de partition de notre modèle Brownien est définie comme

ZBr(N,x) = P c
N,x

(
exp βHBr(s)

)
.

Il est facile de démontrer, en utilisant les techniques habituelles, que l’énergie libre existe
dans le régime x = xN = Nα avec α ∈ Z

d. En particulier, dénotons par f(β) l’énergie
libre pour le cas xN = (N, · · · , N). En dimension 1, et x = N , la valeur explicite de
l’énergie libre est connue.

Nous pouvons maintenant énoncer le résultat principal du Chapitre 5 :

Theorem 1.11. Soit βN,a = βN (a−1)/2 et xN,a = (Na, · · · , Na) avec a ∈ (0, 1).
Alors,

lim
N→+∞

1

βN,aN (1+a)/2
logZβN,a

(N, xN,a) = f(β)/β,(1.17)

où f(β) est l’énergie libre du modèle Brownien.

Nous considérons également une ’Poissonisation’ de la fonction de partition point-à-
point des polymères dirigés en dimension 1. Plus précisément, nous étudions la fonction
génératrice :

Z
(h)
β,N =

∑

1≤n≤N

Zβ(n,N − n)e−h×(N−n),

où, pour chaque n, ZN(n,N − n) est la fonction de partition point-à-point
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Zβ(n,N − n) =
∑

S:(0,0)→(n,N−n)

eβHN (S).

Le rôle de h est de pénaliser les chemins qui s’éloignent de l’axe horizontal et peut donc
être considéré comme un biais. Notre résultat est le suivant :

Theorem 1.12. Prenons h = hN = γN (1−a)/2. Alors,

lim
N→+∞

1

N (1+a)/2
logZ

(hN )
β,N =

β2

γ
.

Nous discutons également les fluctuations autour de cette limite.





Part 1

Discrete Models of Directed Polymers





CHAPTER 2

The environment seen from the particle in the L2 region

We consider the model of Directed Polymers in an i.i.d. gaussian or bounded En-
vironment [52, 20, 25] in the L2 region. We prove the convergence of the law of the
environment seen by the particle.

As a main technical step, we establish a lower tail concentration inequality for
the partition function for bounded environments. Our proof is based on arguments
developed by Talagrand in the context of the Hopfield Model [90]. This improves
in some sense a concentration inequality obtained by Carmona and Hu for gaussian
environments [20]. We use this and a Local Limit Theorem [87, 92] to prove the L1

convergence of the density of the law of the environment seen by the particle with
respect to the product measure.

We discuss weaker results in the whole weak disorder region.

2.1. Introduction

We consider the following model of directed polymers in a random media: let d ≥ 3
and let {η(t, x) : t ∈ Z, x ∈ Z

d} denotes a family of real variables. We call it the
environment. For y ∈ Z

d, let Py be the law of the simple symmetric nearest neighbor
random walk on Z

d starting at y. For L ∈ N, we denote the space of nearest neighbor
paths of length L by ΩL, i.e.

ΩL :=
{
s : {0, 1, 2, ..., L} → Z

d, |st+1 − st| = 1, ∀ t = 0, ..., L− 1
}
,

where |·| is the euclidean norm. Denote by ω the canonical process on ΩL, i.e., ωt(s) = st

for s ∈ ΩL and t = 0, 1, ..., L.
For a fixed configuration η, y ∈ Z

d, M, N ∈ Z, M < N and 0 < β < +∞, we
can define the (quenched) law of the polymer in environment η, inverse temperature β,
based on (M, y) and time horizonN (or simply the polymer measure): for all s ∈ ΩN−M ,

µy
M,N(ω = s) =

1

Zy
M,N

exp

{
β

N−M∑

t=1

η(t+M, st)

}
P y(ω = s),(2.1)

where

Zy
M,N = P y

[
exp

{
β

N∑

t=M+1

η(t+M,ωt)

}]
,(2.2)

19
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is usually called the partition function. µy
M,N can be though as a measure on directed

paths, starting from y at time M and ending at time N . When M = 0 and y = 0, we
will sometimes not write them.

We endow the space E = R
Z

d+1
with the product σ-algebra and a product measure

Q. We can then see η as a random variable with values in E. In the following we
will deal with laws Q which marginals are Gaussian or have bounded support. We are
interested in the properties of the polymer measure for a typical configuration η.

A quantity of special interest is λ(β) = logQ(eβη(0,0)). We can compute it for simple
laws of the environment. For example, in the case of a standard Gaussian law, we have
λ(β) = β2/2.

The model of Directed Polymers in Random Environment as been extensively stud-
ied over the last thirty years [52, 20, 25, 30, 93]. It turns out that the behavior of the
polymer depends strongly on the temperature. Here we will be concerned by a region
of very high temperature, or equivalently, we will focus on very small values of β. Let
state this more precisely: we can define the normalized partition function,

WN = ZN exp{−Nλ(β)},(2.3)

It follows easily that this is a positive martingale with respect to the filtration HN =
σ(η(t, x) : t ≤ N). Then, by classical arguments, we can prove that it converges when
N → +∞ to a non-negative random variable W+∞ that satisfies the following zero-one
law:

Q(W+∞ > 0) = 0 or 1.

In the first situation, we say that strong disorder holds. In the second, we say that weak
disorder holds. The behavior is qualitatively different in each situation [25]. Let recall
an argument showing that the weak disorder region is nontrivial, at least for d ≥ 3
and a wide class of environments. Observe first that in order to prove weak disorder,
it is enough to obtain some uniform integrability condition on the martingale (WN)N .
Indeed, uniform integrability implies that Q(W+∞) = 1, and then the zero-one law
gives us that Q(W+∞ > 0) = 1. The easiest situation occurs when the martingale is
bounded in L2: Define

πd = P⊗2
0 [ωt = ω̃t for some t] .

We see that πd < 1 only for d ≥ 3. Let’s perform the following elementary calculation:

Q(W 2
N ) = QP⊗2

[
exp

{
β

N∑

t=1

η(t, ωt) + β

N∑

t=1

η(t, ω̃t)− 2Nλ(β)

}]
(2.4)

= e−2NλP⊗2

[
N∏

t=1

Q(e2βη(t,ωt)1ωt=eωt )×Q(eβη(t,eωt)1ωt 6=eωt )2

]

= P⊗2
[
e(λ(2β)−2λ(β))LN (ω,eω)

]
,

where LN (ω, ω̃) =
∑N

t=1 1(ωt = ω̃t). We observe that L+∞(ω, ω̃) has a geometric
distribution with parameter πd, so that Q(W 2

N ) is uniformly bounded in N for
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λ(2β)− 2λ(β) < log(1/πd),(2.5)

and uniform integrability follows. We call this the L2 condition. In the general case,
we can prove that, in fact, such a condition holds for sufficiently small values of β (we
can see this directly for Gaussian environments). The range of values for which (2.5)
holds is called the L2 region.

We know [52, 12, 1, 88] that in the L2 region, the polymer is diffusive. Indeed, we
have the following (quenched) invariance principle:

Theorem 2.1. [1, 12, 52, 88] In the L2 region, for Q-almost every environment,
we have that, under the polymer measure,

1√
N
ω(Nt)

converges in law to a Brownian motion with covariance matrix 1/d I, where I is the
identity matrix in dimension d.

More generally, in the full weak disorder region, a slightly weaker result holds ([28]).
The situation is quite different and more subtle in the strong disorder region. In that
case, large values of the medium attract the path of the polymer, so that a localiza-
tion phenomenon arises (for more information, see [20, 28], and also [93] for milder
assumptions).

In this article, we are concerned with another kind of (still related) result, namely
the convergence of the law of the environment viewed by the particle. The environment
viewed by the particle is a process ηN with values in E, defined by

ηN(t, x) = η(N + t, ωN + x), t ∈ Z, x ∈ Z
d.(2.6)

where ω follows the law µ0
0,N . Let’s denote by QN the law of this process at time N .

We can see that

dQN

dQ
=
∑

x

µx
−N,0(ωN = 0).(2.7)

Indeed, take a bounded measurable function f : E → R. Then, by translation invari-
ance,

Q
(
µ0

0,Nf(ηN)
)

= Q

(
∑

x

f(η(N + ·, x+ ·))µ0
0,N(ωN = x)

)

= Q

(
f(η)

∑

x

µx
−N,0(ωN = 0)

)

= QN (f(ω)) .(2.8)
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For a wide variety of models, the convergence of QN has been a powerful tool for
proving invariance theorems. Obviously, it is not the case here because we have already
the invariance principle at hand. However, we can see this result as completing the
picture in the L2 region. In the best of our knowledge, the point of view of the particle
has never been studied before in the literature for directed polymers. We can state the

principal result of this article: let ←−η (t, x) := η(−t, x),←−WN(η) := WN(←−η ) and let
←−
W+∞

be the (almost sure) limit of
←−
WN when N tends to infinity.

2.2. Results

Theorem 2.2. In the L2 region,

(2.9) qN :=
dQN

dQ
−→←−W+∞ × eβη(0,0)−λ(β), as N → +∞,

where the limit is in the L1(Q) sense.
In other words, QN converges in the total variation distance to a probability measure
Q+∞ such that

dQ+∞
dQ

=
←−
W+∞ × eβη(0,0)−λ(β).

Much in the same spirit, we consider the law of the environment seen by the particle
at an intermediate time N under µ0

0,N+M(·). Formally, this new environment is defined
as the field ηN,M ∈ E with

ηN,M(t, x) = η(N + t, ωN + x), t ∈ Z, x ∈ Z
d,

where ω is taken from µ0
0,N+M . Following the argument of (2.8), its density with respect

to Q is easily seen to be

qN,M =
∑

x

µx
−N,M(ωN = 0).(2.10)

Theorem 2.3. In the L2 region, we have

qN,M −→
←−
W+∞ × eβη(0,0)−λ(β) ×W+∞, as M, N → +∞,

where the limit is in the L1(Q) sense.

A statement similar to Theorem 2.3 may be found in Bolthausen and Sznitman [13] for
directed random walks in random environment. In their context, qN is a martingale. In
our case, the denominator in the definition of the polymer measure is quite uncomfort-
able as it depends on the whole past, so no martingale property should be expected for
qN . Let us mention that, we can cancel this denominator by multiplying each term of
the sum in (2.9) by W x

−N,0. This defines a martingale sequence that converges (almost
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surely!) to the same limit as qN . In other terms, let GN = σ(η(t, x) : −N ≤ t). Then,
there exists a unique law Q+∞ on E such that for any A ∈ GN ,

Q+∞(A) = Q(1A

←−
WNe

βη(0,0)−λ(β)).

The density of this law coincides with the limit in Theorem 2.3 but we emphasize that
our strategy of proof here is completely different.

Let us mention that, in the weak disorder region, an infinite time horizon polymer
measure has been introduced in [28]. For each realization of the environment, it defines
a Markov process with (inhomogeneous) transition probabilities given by

µβ
∞(ωN+1 = x+ e|ωN = x) =

1

2d
eβη(N+1,x+e)−λ(β)W+∞(N + 1, x+ e)

W+∞(N, x)
,

for all x ∈ Z
d and |e| = 1, where for k ∈ Z and y ∈ Z

d,

W+∞(k, y)(η) = W+∞(η(k + ·, y + ·)).
We can define the process of the environment seen by the particle for this polymer
measure by means of the formula (2.6), where, this time, ωN is taken from µβ

+∞. A
simple modification of the proof of the Theorem 2.3 suffices to show that the density of
the environment seen by the particle converges, as N tends to +∞, to the same limiting
density as in Theorem 2.3. The additional term W+∞ arises from the very definition of
the infinite time horizon measure.

We will prove the following lower tail concentration inequality. A similar statement
as already been proved by Carmona and Hu [20], Theorem 1.5, in the context of
Gaussian environments. As we will consider bounded environments, there is no loss of
generality if we assume that η(t, x) ∈ [−1, 1] for all t ∈ Z, x ∈ Z

d.

Proposition 2.4. In the L2 region, we can find C > 0 such that,

(2.11) Q (logZN ≤ Nλ− u) ≤ C exp

{
− u2

16Cβ2

}
, ∀N ≥ 1, ∀u > 0.

It would be interesting to extend this result to a larger part of the weak disorder region.
This is indeed a major obstacle to extend our Theorems to larger values of β.

Another cornerstone in the proof of Theorem 2.2 is a Local Limit Theorem [87, 92]
that we will describe later. Again, this result is available in the L2 region only.

We will now introduce some obvious notation that will be useful in what follows:
For x ∈ Z

d and M < N ∈ Z, we write

WM,N(x) = Zx
M,Ne

−(N−M)λ(β).(2.12)

Similarly, we write
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←−
WM,N(x) = e−(N−M)λP x[exp{β

N−M∑

t=1

η(N − t, ωt)}].

for the related backward expression. Another useful notation is the ’conditional’ parti-
tion function: take M < N ∈ Z, x, y ∈ Z

d,

WM,N(x|y) = e−(N−M)λP x[exp{β
N−M∑

t=1

η(M + t, ωt)}|ωN−M = y].

The next section presents an example from random walks in a degenerate random
environment where the limiting measure is no longer absolutely continuous with respect
to the law of the environment. In Section 2.4 we will prove Theorem 2.2 and Theorem
2.3, postponing the proof of Proposition 2.4 to Section 2.5.

2.3. A toy model from RWRE

Before turning to the proofs, we will study a very simple counterexample introduced
by Bolthausen and Sznitman [9] in the context of directed random walks in a random
environment. This example illustrates that, under some degenerate assumptions, the
limit the law of the environment seen from the particle may fail to be absolutely con-
tinuous with respect to the original measure of the environment.

Let us first introduce the model: let {ei : i = 1, · · · , d} denote the coordinate vectors
in R

d. For each y ∈ Z
d, ηy = {ηy(ei) : i = 1, · · · , d} is a probability measure on the

coordinate vectors chosen according to a product measure Q. For a fixed environment
η, the directed random walk in a random environment with starting point x is defined
by:

P η
x [X0 = x] = 1

P η
x [Xt+1 = y + e |Xt = y] = ηy(e), ∀ i = 1, · · · , d.

The term directed comes from the fact that the walk is restricted to jump along the
coordinates vectors. For example, if d = 2, each time, the walk can jump either one
step up or one step to the right (north/east walk). Let us call Edir the set of directed
paths on Z

d, i.e., the paths S = (St)t∈Z such that, ∀ t ∈ Z, St+1 − St = ei for some
i = 1, · · · , d.

The environment seen by the particle (ηN)N is a Markov chain on the space of
environments, with transition operator given by (2.15) below. As in (2.7), the density
of its law at time N with respect to Q is easily seen to be equal to

gN =
∑

x

pη
N(x, 0),

where pη
k(x, y) = P η

x [Xk = y] is the probability to reach y in k steps starting from x.
The following properties are straightforward:
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Proposition 2.5. [9] Let HN = σ{η(x) : x1 + · · ·+ xd ≥ −N}. Then,

• gN is an HN -martingale under Q.
• There is a unique probability measure Q on Edir such that, for all N ≥ 0, the

restriction of Q to HN coincides with gN ·Q.
• The law of ηN under P0 =

∫
P η

0 (·)dQ is gN · Q and it converges weakly to

Q, which is an invariant probability measure for the environment seen by the
particle.

Usually, some ellipticity condition is needed in order to ensure that the invariant law
is equivalent to Q. We will consider instead the following degenerate example where
such hypothesis breaks down: for each i = 1, · · · , d, Q(η(ei) = 1) = 1/d, i.e., for each
site x, we chose uniformly one of the neighbors. Observe that once the environment is
fixed, the walk is deterministic.

Proposition 2.6. [9] In this setting, Q and Q are mutually orthogonal. In fact,
any probability measure that is invariant for the environment seen by the particle is
orthogonal to Q.

Proof. We take a slightly different route compared to [9]. Let us denote by g+∞
the limit when N → +∞ of the positive martingale gN . Observe that here gN just
counts the number of sites x such that 0 is reachable from x in N steps. Then, it is
easy to see that gN can be stochastically dominated by a critical Galton-Watson process
which offspring distribution is the sum of d Bernoulli random variables of parameter d.
This implies that gN vanishes Q-almost surely for N large enough. Then, Q(∩N≥1{gN ≥
1}) = 0.

Now, observe that, by definition, if gN = 0, then gM = 0, ∀M > N . This implies
that

{gN ≥ 1} = ∩k≤N {gk ≥ 1} ,(2.13)

and

{g+∞ ≥ 1} = ∩N≥1 {gk ≥ 1} .(2.14)

Then, by the monotone convergence theorem, Q(∩N≥1{gN ≥ 1}) = 1. This proves the
first point.

Let now Q̃ be invariant for the environment seen by the particle. Define an operator
R on measurable functions by

Rf =
∑

y

pη(0, y)f ◦ θy.(2.15)

In particular,

Q̃(gN ≥ 1) =

∫
RN1gN≥1 dQ̃.
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Now,

RN1gN≥1 =
∑

y

pη
N(0, y)1(

∑

x

pη
N(x, 0) ◦ θy ≥ 1)

=
∑

y

pη
N(0, y)1(

∑

x

pη
N(x, y) ≥ 1)

=
∑

y

pη
N(0, y)

= 1.

Then, Q̃(gN ≥ 1) = 1. By (2.13), (2.14) and monotonicity, this implies that Q̃(g+∞ ≥
1) = 1. But Q(g+∞ = 0) = 1, and then Q and Q̃ are orthogonal. �

2.4. Proof of Theorems 2.2 and 2.3

In this section, we make no specific assumptions on the environment. We just need
Proposition 2.4 and Theorem 2.1 to hold, which is the case for gaussian or bounded
environments in the L2 region. Actually, we will see that we don’t need the whole
strength of the invariance principle, but just an averaged version of it.

In both cases, the proof is a sequence of L2 calculus. Let’s begin describing the
aforementioned Local Limit Theorem as it appears in [92], page 6, Theorem 2.3: take
x, y ∈ Z

d, M ∈ Z, then, for A > 0, N > M and lN = O(Nα) with 0 < α < 1/2,

WM,N(x|y) = WM,M+lN (x)×←−WN−lN ,N(y)× eβη(N,y)−λ(β)(2.16)

+ RM,N(x, y),

where

lim
N→+∞

sup
|x−y|<AN1/2

Q(R2
M,N (x, y)) = 0.(2.17)

Note that by symmetry, this result is still valid when we fix y and take the limit
M → −∞.

Proof of Theorem 2.2: We first restrict the sum in (2.7) to the region of validity of
the local limit theorem. This is done using the quenched central limit theorem averaged
with respect to the disorder:

qN =
∑

|x|<AN1/2

µx
−N,0(ωN = 0) +

∑

|x|≥AN1/2

µx
−N,0(ωN = 0).(2.18)

We compute the L1 norm of the second term of the sum making use of the invariance
by translation under the law Q:
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Q
∑

|x|≥AN1/2

µx
−N,0(ωN = 0) = Qµ0

0,N(|ωN | ≥ AN1/2).(2.19)

By Theorem 2.1, we have that

lim
A→+∞

lim sup
N→+∞

Qµx
0,N(|ωN | ≥ AN1/2) = 0.

We can now concentrate on the first term in (2.18). We denote by p(·, ·) (resp. pN(·, ·)
) the transition probabilities of the simple symmetric random walk on Z

d (resp. its
N -step transition probabilities). Thanks to (2.16),

∑

|x|<AN1/2

µx
−N,0(ωN = 0) =

∑

|x|<AN1/2

W−N,0(x|0)

W−N,0(x)
pN(x, 0)

=
←−
W−lN ,0(0)eβη(0,0)−λ

∑

|x|<AN1/2

W−N,−N+lN (x)

W−N,0(x)
pN(x, 0)(2.20)

+
∑

|x|<AN1/2

R−N,0(x, 0)

W−N,0(x)
pN (x, 0).

We again integrate the second term of the sum (2.20). We use Cauchy-Schwarz
inequality and translation invariance:

Q
∑

|x|<AN1/2

R−N,0(x, 0)

W−N,0(x)
pN(x, 0) ≤ sup

|x|<AN1/2

{Q(R2
−N,0(x, 0))1/2}

× Q(W−2
−N,0(0))1/2

∑

|x|<AN1/2

pN(x, 0).(2.21)

The first term in the right side tends to zero thanks to (2.17), the second one is easily
seen to be bounded thanks to Proposition 2.4 and the third one is less than

∑

x

pN(x, 0) =
∑

x

pN(0, x) = 1,

so the left member of (2.21) tends to zero. We are left to the study of the first summand
in (2.20),



28 2. THE ENVIRONMENT SEEN FROM THE PARTICLE IN THE L
2 REGION

←−
W−lN ,0(0)eβη(0,0)−λ

∑

|x|<AN1/2

W−N,−N+lN (x)

W−N,0(x)
pN(x, 0)

=
←−
W−lN ,0(0)eβη(0,0)−λ

∑

|x|<AN1/2

pN(x, 0)(2.22)

+
←−
W−lN ,0(0)eβη(0,0)−λ

∑

|x|<AN1/2

{
W−N,−N+lN (x)

W−N,0(x)
− 1

}
pN(x, 0).

We see that we are done as long as we can control the convergence of the second
summand in (2.22). It will be enough to prove that it converges to zero in probability.
Let us denote

gN :=
←−
W−lN ,0(0)eβη(0,0)−λ,

hN :=
∑

|x|<AN1/2

{
W−N,−N+lN (x)

W−N,0(x)
− 1

}
pN(x, 0).

We already know that {gN : N ≥ 1} is bounded in L1(Q). It is then enough to prove
that hN tends to zero in L1. Indeed, using translation invariance, Cauchy-Schwarz
inequality and the uniform boundedness of negative moments of W−N,0,

Q(|hN |) ≤
∑

|x|<AN1/2

Q

(∣∣∣∣
W−N,−N+lN (x)

W−N,0(x)
− 1

∣∣∣∣
)
pN(x, 0)

≤ Q

(∣∣∣∣
W−N,−N+lN (0)

W−N,0(0)
− 1

∣∣∣∣
)

≤ Q
(
|W0,lN (0)−W0,N(0)|2

)1/2
Q
(
W−2

−N,0(0)
)1/2

.

This clearly tends to zero. It is now a simple exercise to show that Q(gN |hN | ≥ δ) tends
to zero as N tends to infinity for all δ > 0.
So far, we have proved that qN tends to q+∞ in Q-probability. But, by an elementary
result, we know that, for qn, q+∞ > 0, convergence in probability implies L1 conver-
gence as long as Q(|qN |) → Q(|q+∞|) (which is clearly the case here because all these
expressions are equal to 1). This finishes the proof of Theorem 2.2. �

Proof of Theorem 2.3: The details are very similar to the previous proof. We
split the sum in (2.10) according to |x| ≤ AN1/2 or not. We can apply the central limit
theorem to

Q
∑

|x|>AN1/2

µx
−N,M(ωN = 0) = Qµ0

0,N+M

(
|ωN | > AN1/2

)
.

Now, by the Markov property and the local limit theorem, we have
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∑

|x|≤AN1/2

µx
−N,M (ωN = 0) =

∑

|x|≤AN1/2

W0,M(0)W−N,0(x|0)

W−N,M(x)
pN(x, 0)

= W0,M(0)
←−
W−lN ,0

∑

|x|≤AN1/2

W−N,N+lN (x)

W−N,M(x)
pN(x, 0)

+ W0,M(0)
∑

|x|≤AN1/2

R−N,0(x, 0)

W−N,M(x)
pN(x, 0)

The second summand is again treated using the Cauchy-Schwarz inequality, (2.17) and
the independence of W0,M(0) and W−1

−N,M(x). The first summand as to be written as

. W0,M(0)
←−
W−lN ,0(0)

∑

|x|≤AN1/2

pN(x, 0)

+ W0,M(0)
←−
W−lN ,0(0)

∑

|x|≤AN1/2

{
W−N,N+lN (x)

W−N,M(x)
(0)− 1

}
pN(x, 0).(2.23)

The second summand of (2.23) can be handled like the one in (2.22), and using the

independence of W0,M(0) and
←−
W−lN ,0(0). �

2.5. Concentration inequalities

The proof follows closely [90], Section 2 (see the proof of the lower bound of Theorem
1.1 therein). Recall that we assumed that the environment is bounded by one. In the
L2 region, it is known that QZ2

N ≤ K(QZN)2 (see (2.4)). This implies that

Q

(
ZN ≥

1

2
QZN

)
≥ 1

4

(QZN)2

QZ2
N

≥ 1

4K
,(2.24)

thanks to Paley-Zigmund inequality.
The following is easily proved ([20], proof of Theorem 1.5): Let

A =

{
ZN ≥

1

2
QZN , 〈LN (ω, ω̃)〉(2)N ≤ C

}
.

where the brackets mean expectation with respect to two independent copies of the
polymer measure on the same environment. Then, we can find C > 1 such that, for all
N ≥ 1,

Q(A) ≥ 1/C.(2.25)

It is convenient to see ZN as a function from [−1, 1]TN to R, where TN = {(t, x) :

0 ≤ t ≤ N, |x|1 ≤ t} and |x|1 =
∑d

i=1 |xi| for x = (x1, ..., xd) . For u > 0, let
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B =
{
z ∈ [−1, 1]TN : logZN(z) ≤ λN − log 2− u

}
. This is a convex compact subset of

[−1, 1]TN .

In order to apply theorems for concentration of product measures, we need to in-
troduce some notation. For x ∈ [−1, 1]TN , let

(2.26) UB(x) = {h(x, y) : y ∈ B},
where h(x, y)i = 1xi 6=yi

. Let also VB(x) be the convex envelope UB(x) when we look at
it as a subset of R

TN . Finally, let f(x,B) be the euclidean distance from the origin to
VB(x). Let us state the following result from [89], Theorem 6.1:

Theorem 2.7. ∫
exp

{
1

4
f 2(x,B)

}
dQ(x) ≤ 1

Q(B)
.

On the other hand, for x ∈ [−1, 1]TN , y ∈ B, we have |xi − yi| ≤ 2h(x, y)i. Then
for every finite sequence (y(k))M

k=1 ⊂ B and any sequence of non-negative number such

that
∑M

k=1 αk = 1, we have that

|xi −
M∑

k=1

αky
(k)
i | ≤ 2

M∑

k=1

αkh(x, y
(k))i,

for every i ∈ TN . This yields

||x−
M∑

k=1

αky
(k)|| ≤ 2

(
∑

i∈TN

{
M∑

k=1

αkh(x, y
(k)
i )}2

)1/2

.

We can now optimize over all convex combinations of elements of B (remember that it
is convex), we obtain

d(x,B) ≤ 2f(x,B),

where d(x,B) is the euclidean distance from x to B. We use Theorem 2.7 to conclude
that

∫

A

exp

{
1

16
d2(x,B)

}
dQ(x) ≤ 1

Q(B)
.

We can find x ∈ A such that Q(A) exp{ 1
16
d2(x,B)} ≤ 1/Q(B). Using (2.25), we find

that 1/C exp{ 1
16
d2(x,B)} ≤ 1/Q(B). Let q = Q(B). By compacity and some simple

calculations, we conclude that we can find z ∈ B such that

d(x, z) ≤ 4

√
log

C

q
.(2.27)
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Now,

ZN(z) = ZN(x)

〈
exp

{
β

N∑

t=1

(z(t, ωt)− x(t, ωt))

}〉

x

≥ ZN(x) exp β

〈
N∑

t=1

(z(t, ωt)− x(t, ωt))

〉

x

,

where the brackets mean expectation with respect to the polymer measure in the x
environment. But using successively the Cauchy-Schwarz inequality, (2.27) and the
fact that x ∈ A, we find that

∣∣∣∣∣

〈
N∑

t=1

(z(t, ωt)− x(t, ωt)

〉

x

∣∣∣∣∣ =

∣∣∣∣∣

N∑

t=1

∑

a

(z(t, a)− x(t, a) 〈1ωt=a〉x

∣∣∣∣∣

≤ ||x− z|| 〈LN (ω, ω̃)〉1/2
x

≤ 4

√
log

C

q

√
C.

So, using again the fact that x ∈ A,

logZN(z) ≥ logZN(x)− 4|β|
√

log
C

q

√
C

≥ log

(
1

2
QZN

)
− 4|β|

√
log

C

q

√
C.

Recalling that z ∈ B and after a few calculations, we conclude that

q ≤ C exp

{
− u2

16Cβ2

}
,

which finishes the proof.
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2.6. The empirical distribution of the environment seen by the particle in

the full weak disorder region

We deal here with the whole weak disorder region (cf. Definition 1.2). Recall the
definition of the infinite volume polymer measure µ∞ with transitions

µ∞(ωt+1 = x+ e |ωt = x) =
1

2d
eβη(t+1,x+e)−λ(β)W+∞(t+ 1, x+ e)

W+∞(t, x)
.

(2.28)

For an environment η ∈ E, define the environment seen by the particle as the field
ηt ∈ E given by

ηt(n, x) = η(t+ n, ωn + x), (n, x) ∈ Z× Z
d,

where ωn is chosen according to µ∞. Observe that this is a time homogeneous Markov
chain: denote by R(η, η′) the probability to jump from η to η′ and define

π(η, e) =

{
1
2d
eβη(1,e)−λ(β) W η

∞(1,e)
W η

∞(0,0)
: η ∈ E

1
2d

: η ∈ E c

where E = {η : W η
+∞(1, e) ∈ (0,+∞), ∀ e}. Remark that, in the weak disorder region,

Q(E) = 1. Then,

R(η, η′) =
∑

e∈R
π(η, e) 1η ◦ θ1,e=η′ ,

where R = {e ∈ Z
d : |e| = 1} and η ◦ θt,x(·, ·) = η(t + ·, x + ·) is the shift. Moreover,

we can see that the law

dQ =
←−
W+∞(0, 0)eβη(0,0)−λ(β)W+∞(0, 0) dQ,

is invariant for the environment seen by the particle.

Based on these observations, we can follow an approach that is typical in the field of
random walks in a random environment. We say that a function π̂(·, ·) : E×R → [0, 1]
is an environment kernel if:

(i) π̂(·, e) is measurable for all |e| = 1.
(ii)

∑
|e|=1 π̂(·, e) = 1.

Given an environment kernel, we can define a transition probability on the environment
as:

π(η, η′) =
∑

e∈R
π̂(η, e) 1η ◦ θ1,e=η′ ,
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and we can define the transition probability for the random walk in the environ-

ment η as

µbπ,η(ω0 = 0) = 1

µbπ,η(ωN+1 = x+ e|ωN = x) = π̂(η ◦ θN,x, e), N ≥ 1, e ∈ R.

Moreover, π̂ can be identified as the transition probability of the environment seen by
the particle under the law µbπ,η(·).
For exemple, the function π(·, ·) defined above is an environment kernel. The corre-
sponding transition probability on the environment is R(·, ·) and the law of the walk is
µ∞.

Proposition 2.8. [the Kozlov argument] Let π̂ be an environment kernel and sup-
pose that we have an invariant probability Π for the environment seen by the particle
that is absolutely continuous with respect to Q. Then Q and Π are in fact mutually abso-
lutelly continuous and the environment seen by the particle is ergodic for Π. Moreover,
Π is the unique probability measure satisfying these properties.

A proof of this result can be found in [14], Theorem 1.2. The above definition of a
environment kernel is taken from [96], Definition 1.
In particular, this implies that the law Q is ergodic for the environment seen by the
particle. We use this to prove:

Lemma 2.9. Assume weak disorder. The finite dimensional distributions of the
empirical distribution of the environment seen by the particle

1

n

n−1∑

t=0

δηt
,

converge to Q, in the sense that Q-a.e., for all k ≥ 1, t1 ≤ · · · ≤ tn, x1, · · · , xk ∈ Z
d

and for every bounded continuous and compactly supported function f : R
k → R, we

have

1

n

n−1∑

t=0

f(η(t1, x1)t, · · · , η(tk, xk)t)→ Qf(η(t1, x1), · · · , η(tk, xk)).

(2.29)

Proof. Let us introduce some notation. Let α denote a generic finite collection of
sites:

α = (t1, x1), ..., (tk, xk).
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Note that the collection of all such α is countable, as it is just the family of all finite
subsets of Z

d. Denote by |α| the length of α (in the previous example, |α| = k). For
f : R

k → R, and |α| = k, set

fα(η) = f(η(t1, x1), ..., η(tk, xk)).

The result is a consequence of the Kozlov argument stated in Proposition 2.8. By the
ergodic theorem, for any bounded measurable function f : R

k → R, and any |α| = k
we have, Q-a.s.

1

n

n−1∑

t=0

fα(ηt)→ Qfα(η).

As the space of continuous bounded compactly supported functions f : R
k → R en-

dowed with the topology of uniform convergence is separable, we can find a dense and
countable subfamily (f (k,i))i, such that, Q-a.s., for all i and for all α

1

n

n−1∑

t=0

f
(k,i)
α (ηt)→ Qf

(k,i)
α (η),

Now, take any bounded continuous compactly supported function f : R
k → R. Take

ǫ > 0 small, i such that sup |f − f (k,i)| < ǫ. Then

| 1
n

n−1∑

t=0

fα(ηt)−Q(fα)| ≤ | 1
n

n−1∑

t=0

f
(k,i)
α (ηt)−Q(f

(k,i)
α )|

+ | 1
n

n−1∑

t=0

(fα(ηt)− f (k,i)
α (ηt))|+ |Q(fα)−Q(f

(k,i)
α )|

≤ | 1
n

n−1∑

t=0

f
(k,i)
α (ηt)−Q(f

(k,i)
α )|+ 2ǫ.

This finishes the proof of (2.29). �

Theorem 2.10. For a bounded environment and weak disorder, the empirical dis-
tribution of the environment seen by the particle converges weakly to the law Q.

Proof. The tighness follows by compactness of the state space. The limit has been
identified in the previous lemma. �

Corollary 2.11. The energy of a µ∞-typical path satisfies the law of large numbers:

1

n

n−1∑

t=0

η(t, ωt)→ λ′(β),
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for Q-a.e. η.

Proof. This follows from the last Proposition, with f(η) = η(0, 0). It is straight-
forward to verify that Qf = λ′(β). �

Remark 2.12. Of course, a weaker result holds for all values of β, as a consequence
of the convexity of p(β): at all values of β s.t. p′(β) exists, we have p′n(β) → p′(β),
Q-a.s.. But

p′n(β) = µn,β

(
1

n
Hn(β)

)
,(2.30)

so the quenched mean of the averaged energy along the paths converges to p′(β) even
in the strong disorder region. As the free energy is strictly convex [23], this is an
increasing function of β, in contrast with the case of directed polymers on a tree [78].

Remark 2.13. In the L2 region, it is known that µN(HN) − Nλ(β) converges to
a finite random variable as N tends to +∞. This says that the fluctuations of the
quenched mean of the energy are of order 1. In contrast, it can be shown that under
µN , HN satisfies a CLT for almost every realization of the environment. See [28],
Theorem 6.2 for a proof using complex variables arguments. The improvement of these
results to the whole weak disorder region is still an open question.





CHAPTER 3

Directed polymers on tree-like graphs

The aim of this chapter is to provide an introduction to Chapter 4 which contains
our results on the directed polymers on the hierarchical diamond lattice.

In the first section, we compute explicitly the free energy of the directed polymers on
the tree, following [60] and [15]. The techniques we present make use of the particular
geometry of the tree and cannot be applied in general to the polymers on Z

d. A
noticeable difference is that the shape of the free energy is strictly convex on Z

d but
linear above βc on the tree. Indeed, the convexity of the free energy is related to the
fluctuations of the energy of the paths when we modify them slightly (see Theorem 4.1
in the next chapter). While on Z

d, a typical path can be modified almost all along
its trajectory, leading to small variations of the energy, on the tree, this procedure can
be done only close to the end point of the path, any other modification leading to a
completely different path, with a completely different energy.

The hierarchical lattices are expected to mimic some of the important aspects of the
geometry of Z

d but offer several technical simplifications that make them close to the
tree. They appear very naturally in the study of spin systems through a renormalization
group as they allow for exact recursive computations (see [75, 56] and [10]).

A model of directed polymers on hierarchical lattice with bond disorder has been
introduced in [31]. We discuss it in the second section of this chapter and show some
recursive computations that can be made in this case.

We will see in the next chapter, that we can define directed polymers on the hierar-
chical lattice with site disorder. This model is even closer to the directed polymers on
Z

d. Contrarily to the bond disorder case, it allows a martingale approach, bringing a
better insight, and its free energy is, surprisingly enough, strictly convex, even though
the loop structure of the graph is highly simplified.

3.1. Directed polymers on trees

Let T be a b-ary tree with root 0. For each x ∈ T, let |x| denotes its distance from
the root. If |x| = n, we say that x if of generation n. P will be the law of the directed
random walk on T: initially, S0 = 0, and, for each n ≤ 0, the walk jumps to either of
its b neighbors of generation n + 1 with probability 1/b.
The random environment is represented by a collection of i.i.d. random variables {η(x) :
x ∈ T} such that λ(β) = logQeβη is finite for all non-negative β. The energy of a path
S of length N is

37
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Hη
N(S) =

N∑

t=0

η(St).

The polymer measure at environment η, inverse temperature β and time horizon N , is
defined as usual by

dµN

dP
(S) =

1

Zη
N

exp βHη
N(St),(3.1)

where the partition function Zη
N is

Zη
N = P (exp βHη

N(St)) .

The free energy is defined as the limit

p(β) = lim
N→+∞

1

N
logZη

N .

The martingale WN = ZNe
−Nλ(β) will again play a key role here. It satisfies a zero-one

law, just as in Proposition 1.1, and the following recursion equation:

WN+1 =
1

b

b∑

i=1

eβη(ǫi)WN ◦ θ(ǫi),(3.2)

where θ is a canonical shift and the ǫi’s are the sites of generation 1. Note that the
summands are independent for different indexes, contrarily to the Z

d case, where dif-
ferent summands are strongly correlated. This large amount of independence allows for
very direct second moments computations: for example, if we set xN = QW 2

N , it is easy
to verify that

xN+1 =
1

b
eλ(2β)−2λ(β)xN +

b− 1

b
,

from which we can deduce that, for β small enough, the second moments stay bounded.
This is an analogy with the L2 region exhibited for the directed polymers on Z

d, but
here we do not need to take track of the exponential moments of overlaps.

The following theorem summarizes the principal results concerning the free energy
of this model:

Theorem 3.1. There exists βc ∈ (0,+∞], such that

p(β) =

{
λ(β) : β ≤ βc

λ(βc) : β > βc

Furthermore, βc is the root of the equation
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βλ′(β)− λ(β) = log b(3.3)

if it exists; if not, βc = +∞.

Proof. For β ≤ βc, we use the following (not so) elementary inequality: for (xi)
M
i=1

non-negative integers and 0 < θ < 1,

(
M∑

i=1

xi

)h

≥
M∑

i=1

xh
i − 2(1− h)

∑

i<j

(xixj)
h/2 .(3.4)

For a proof, see [60]. By applying this to the recursion equation (3.2) and integrating
with respect to Q, we obtain

bhQW h
N+1 ≥ beλ(β;h)QW h

N − 2(1− h)d(d− 1)e2λ(β;h/2)Q(W
h/2
N )2.

with λ(β; s) = λ(sβ) − sλ(β). After straightforward manipulations together with the
supermartingale inequality QW h

N+1 ≤ QW h
N , we can take the limit h ↑ 1, leading to

2b−1d(d− 1)Q(W
1/2
N )2 ≥ log b− βλ′(β) + λ(β).

The positivity of the RHS insures that the LHS do not vanish when N → +∞. By the
zero-one law, this implies that W+∞ > 0 a.s., and then the equality p(β) = λ(β).

We now turn to β > βc. The argument presented in Proposition 1.4 in the intro-
duction can be easily adapted to prove that, in this case, the martingale WN vanishes
when N → +∞. The rest of the proof is performed by using convexity arguments.
Define βc as the solution of Equation (3.3) (or +∞ if there is no solution). We need
two easy analytical facts that are proved in Lemma 4 and Lemma 5 of [15] respectively:
First, the function h(β) = λ(β)/β satisfies the following:

• Either βc is finite and h is strictly decreasing in (0, βc) and strictly increasing
in (βc,+∞).
• Either βc = +∞ and h is strictly decreasing in (0,+∞).

We will assume in the following that βc < +∞. The second fact we will use is that, for
any collection of M real numbers x1, · · · , xM , the function

g(β) =
1

β
log

M∑

i=1

eβxi ,

is decreasing and convex in β. Using this second fact, we see that, for any ǫ > 0, β > βc,

1

βN
logZN(β) ≤ 1

(βc − ǫ)N
logZN(βc − ǫ),

and then, using what we already know for β < βc,
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lim sup
N→+∞

1

βN
logZN(β) ≤ h(βc − ǫ).(3.5)

Now, the convexity property stated before, can be used to show that

1

βN
logZN(β) ≥ d

dβ

1

βN
logZN(β)|β=βc−ǫ × (β − βc + ǫ) +

1

(βc − ǫ)N
logZN(βc − ǫ).

Again, the convexity of the function 1/(βN) logZN(β) and its convergence to the dif-
ferentiable function h(β), which together ensure the convergence of the derivatives as
well, imply that

lim inf
N→+∞

1

βN
logZN(β) ≥ h′(βc − ǫ)(β − βc + ǫ) + h(βc − ǫ).

Now, βc is a global minimum for h, and then limǫ↓0 h
′(βc− ǫ) = 0. These facts, together

with (3.5), end the proof.
�

3.2. Directed polymers on the hierarchical diamond lattice

We examine a model of directed polymers in a random environment on a hierarchical
diamond lattice, introduced by Cook and Derrida in [31]. These lattices have been
introduced in the study of spin systems in order to perform some exact calculations
(see [75, 56]). They arise naturally while performing renormalization group analysis.
The reader can consult [61, 62] for a detailed analysis of more general hierarchical
lattices and [10] for an example of recursive computations that can be performed on
such lattices (there, for the Ising model).
The model of Cook and Derrida has the particularity of displaying bond disorder.
This fact is convenient for moment computations, but is problematic when we try to
analyze some deeper properties. For instance, we loose the martingale property for
the normalized partition function that is a cornerstone in the classical approach to
directed polymers. Even worst, the limit of the normalized partition functions is a
constant in the L2 region, a fact that is in disagreement with the basic properties of
the corresponding model on Z

d.
In the next chapter, we will consider a directed polymer model on the diamond

hierarchical lattice with site disorder, a model that is, in our though, closer to the
original model on Z

d.
We will devote the rest of this section to introduce the bond disorder model and

review some easy facts.

The diamond hierarchical lattice Dn can be constructed recursively:

• D0 is one single edge linking two vertices A and B.
• DN+1 is obtained from DN by replacing each edge by b branches of s−1 edges.
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AAA

BB B

D0 D1 D2

(a directed path on D2)

Figure 1. We present here the recursive construction of the first three levels of the
hierarchical lattice DN , for b = 3, s = 2.

We restrict to b ≥ 2 and s ≥ 2. The case b = 1 (resp. s = 1) is not interesting as it
just corresponds to a family of edges in serie (resp. in parallel)

We consider now an i.i.d. family of random variables EN = {η(e) : e ∈ EN} indexed by
EN , the set of edges of DN . For different values of N , we suppose that these families
are independent. Consider ΩN the space of directed paths in DN linking A to B. For
each S ∈ ΩN (to be understood as an ordered sequence of edges in DN), we define the
Hamiltonian

Hη
N(S) :=

sN∑

t=1

η(St).

For β > 0, N ≥ 1, we define the (quenched) polymer measure on ΩN which picks a
path ω at random with law

µη
β,N(ω = S) :=

1

ZN(β)
exp(βHη

N(S)),

where

ZN(β) = ZN(β, ω) :=
∑

S∈Ωn

exp(βHη
N(S)),

is the partition function, and β is the inverse temperature parameter.

It is easy to observe that the partition function satisfies the following recursive equation:
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ZN+1 =
b∑

i=1

s∏

l=1

ZN(i, l),(3.6)

where (ZN(i, l))i,l is a family of i.i.d. copies of ZN . This comes from the fact that we
can view DN+1 as made from sb copies of DN pasted on the edges of D1. From this,
we can infer a recursive relation for the second moments:

Q(Z2
N+1) = bQ(Z2

N )s + b(b − 1)Q(ZN)2s.

We now want to obtain informations on Q(W 2
N ) where WN = ZN/QZN . From (3.6),

QZN+1 = bQ(ZN)s.

Putting this back in the second moment computation, we obtain (recalling that QWN =
1)

Q(W 2
N+1) =

1

b
Q(W 2

N )s +
b− 1

b
.

So, similarly to the tree case, we are reduced to study the behavior of the recursive
equations:

xN+1 =
1

b
xs

N +
b− 1

b
,

with initial condition x0 = Q(W 2
0 ) = exp{λ(2β)− 2λ(β)} ≥ 1.

If b > s, this dynamical system has two fixed-points: 1 and another one x > 1. If
x0 ∈ (1, x], then xN → 1 as N → +∞, but, if x0 ∈ (x,+∞), then xN → +∞. The L2

region, defined as the set of β’s such that QW 2
N stays bounded, is exactly the set of β’s

such that x0 ∈ [1, x]. Observe that in this case, WN → 1, Q-a.s. as N → +∞.
If b ≤ s, there is a single fixed point at 1 and xN → +∞ for all initial conditions x0 > 1.
As a matter of fact, it is possible to show that strong disorder always holds for b ≤ s
(see Section 4.8).



CHAPTER 4

Directed polymers on hierarchical diamond lattices with site

disorder

We study a polymer model on hierarchical lattices very close to the one introduced
and studied in [36, 31]. For this model, we prove the existence of free energy and derive
the necessary and sufficient condition for which very strong disorder holds for all β, and
give some accurate results on the behavior of the free energy at high temperature. We
obtain these results by using a combination of fractional moment method and change of
measure over the environment to obtain an upper bound, and second moment method
to get a lower bound. We also get lower bounds on the fluctuation exponent of logZN ,
and study the infinite polymer measure in the weak disorder phase.

4.1. Introduction and presentation of the model

The model of directed polymers in random environment appeared first in the physics
literature as an attempt to modelize roughening in domain wall in the 2D-Ising model
due to impurities [49]. Then, it reached the mathematical community in [52], and
in [12], where the author applied martingale techniques that have became the major
technical tools in the study of this model since then. A lot of progress has been made
recently in the mathematical understanding of directed polymer model (see for example
[53, 28, 24, 26, 21, 20, 30] and [25] for a recent review). It is known that there is a
phase transition from a delocalized phase at high temperature, where the behavior of the
polymer is diffusive, to a localized phase, where the influence of the medium is relevant
and is expected to produce nontrivial phenomena, such as superdiffusivity. These two
different situations are usually referred to as weak and strong disorder, respectively.
A simple characterization of this dichotomy is given in terms of the limit of a certain
positive martingale related to the partition function of this model.

It is known that in low dimensions (d = 1 or 2), the polymer is in the strong disorder
phase at all temperature (see [30, 66], for more precise results), whereas for d ≥ 3,
there is a nontrivial region of temperatures where weak disorder holds. A weak form of
invariance principle is proved in [28].

However, the exact value of the critical temperature which separates the two regions
(when it is finite) remains an open question. It is known exactly in the case of directed
polymers on the tree, where a complete analysis is available (see [15, 41, 60]). In
the case of Z

d, for d ≥ 3, an L2 computation yields an upper bound on the critical
temperature, which is however known not to coincide with this bound (see [9, 8] and
[18]).

We choose to study the same model of directed polymers on diamond hierarchical
lattices. These lattices present a very simple structure allowing to perform a lot of
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computations together with a richer geometry than the tree (see Remark 4.3 for more
details). They have been introduced in physics in order to perform exact renormal-
ization group computations for spin systems ([75, 56]). A detailed treatment of more
general hierarchical lattices can be found in [61] and [62]. For an overview of the ex-
tensive literature on Ising and Potts models on hierarchical lattices, we refer the reader
to [10, 34] and references therein. Whereas statistical mechanics model on trees have
to be considered as mean-field versions of the original models, the hierarchical lattice
models are in many sense very close to the models on Z

d; they are a very powerful tool
to get an intuition for results and proofs on the more complex Z

d models (for instance,
the work on hierarchical pinning model in [42] lead to a solution of the original model
in [38]. In the same manner, the present work has been a great source of inspiration
for [66]).

Directed polymers on hierarchical lattices (with bond disorder) appeared in [31,

35, 36, 37] (see also [82] for directed first-passage percolation). More recently, these
lattice models raised the interest of mathematicians in the study of random resistor
networks ([95]), pinning/wetting transitions ([42, 65]) and diffusion on a percolation
cluster ([48]).

We can also mention [47] where the authors consider a random analogue of the
hierarchical lattice, where at each step, each bond transforms either into a series of two
bonds or into two bonds in parallel, with probability p and p− 1 respectively.

Our aim in this paper is to describe the properties of the quenched free energy of
directed polymers on hierarchical lattices with site disorder at high temperature:

• First, to be able to decide, in all cases, if the quenched and annealed free energy
differ at low temperature.
• If they do, we want to be able to describe the phase transition and to compute

the critical exponent for the free energy.

We choose to focus on the model with site disorder, whereas [44, 31] focus on the
model with bond disorder where computations are simpler. We do so because we believe
that this model is closer to the model of directed polymer in Z

d (in particular, because
of the inhomogeneity of the Green Function), and because there exists a nice recursive
construction of the partition functions in our case, that leads to a martingale property.
Apart from that, both models are very similar, and we will shortly talk about the bond
disorder model in section 4.8.

The diamond hierarchical lattice DN can be constructed recursively:

• D0 is one single edge linking two vertices A and B.
• DN+1 is obtained from DN by replacing each edge by b branches of s−1 edges.

We can, improperly, consider DN as a set of vertices, and, with the above construction,
we have DN ⊂ DN+1. We set D =

⋃
N≥0DN . The vertices introduced at the N -th

iteration are said to belong to the N -th generation VN = DN \ DN−1. We easily see
that |VN | = (bs)N−1b(s− 1).
We restrict to b ≥ 2 and s ≥ 2. The case b = 1 (resp. s = 1) is not interesting as it
just corresponds to a family of edges in series (resp. in parallel).
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AAA

BB B

D0 D1 D2

(a directed path on D2)

Figure 1. We present here the recursive construction of the first three levels of the
hierarchical lattice DN , for b = 3, s = 2.

We introduce disorder in the system as a set of real numbers η = (ηz)z∈D\{A,B}
associated to the vertices in D \ {A,B}. Consider ΩN the space of directed paths in
DN linking A to B. For each S ∈ ΩN (to be understood as a sequence of connected
vertices in DN , (S0 = A,S1, . . . ,SsN = B)), we define the Hamiltonian

Hη
N(S) :=

sN−1∑

t=1

η(St).(4.1)

For β > 0, N ≥ 1, we define the (quenched) polymer measure µβ,η
N on ΩN which picks

a path ω at random with law

µβ,η
N (ω = S) :=

1

ZN(β)
exp(βHη

N(S)),(4.2)

where

ZN(β) = ZN(β, η) :=
∑

S∈ΩN

exp(βHη
N(S)),(4.3)

is the partition function, and β is the inverse temperature parameter.
In the sequel, we will focus on the case where η = (ηz, z ∈ D\{A,B}) is a collection

of i.i.d. random variables and denote the product measure by Q. Let η0 denote a one
dimensional marginal of Q, we assume that η0 has expectation zero, unit variance, and
that

λ(β) := logQeβη0 <∞ ∀β > 0.(4.4)

As usual, we define the quenched free energy (see Theorem 4.1) by
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p(β) := lim
N→+∞

1

sN
Q logZN(β),(4.5)

and its annealed counterpart by

f(β) := lim
N→+∞

1

sN
logQZN (β).(4.6)

This annealed free energy can be exactly computed. We will prove

f(β) := λ(β) +
log b

s− 1
.(4.7)

This model can also be stated as a random dynamical system: given two integer
parameters b and s larger than 2, β > 0, consider the following recursion

W0
L
= 1

WN+1
L
=

1

b

b∑

i=1

s∏

j=1

W
(i,j)
N

s−1∏

i=1

A
(i,j)
N ,(4.8)

where equalities hold in distribution, W
(i,j)
N are independent copies of WN , and A

(i,j)
N

are i.i.d. random variables, independent of the W
(i,j)
N with law

A
L
= exp(βη − λ(β)).

In the directed polymer setting, WN can be interpreted as the normalized partition
function

WN(β) = WN(β, η) =
ZN(β, η)

QZN (β)
.(4.9)

Then, (4.8) turns out to be an almost sure equality if we interpret W
(i,j)
N as the partition

function of the j-th edge of the i-th branch of D1.
The sequence (WN)N≥0 is a martingale with respect to FN = σ(ηz : z ∈ ∪N

i=1Vi) and
as WN > 0 for all N , we can define the almost sure limit W∞ = limN→+∞WN . Taking
limits in both sides of (4.8), we obtain a functional equation for W∞.

4.2. Results

Our first result is about the existence of the free energy.

Theorem 4.1. For all β, the limit

lim
N→+∞

1

sN
logZN(β),(4.10)



4.2. RESULTS 47

exists a.s. and is a.s. equal to the quenched free energy p(β). In fact for any ε > 0,
one can find N0 = N0(ε, β) such that

Q
(
|logZN −Q logZN | > sNε

)
≤ exp

(
−ε

2/3sN/3

4

)
, for all N ≥ N0(4.11)

Moreover, p(·) is a strictly convex function of β.

Remark 4.2. The inequality (4.11) is the exact equivalent of [24, Proposition 2.5],
and the proof given there can easily be adapted to our case. It applies concentration
results for martingales from [71]. It can be improved in order to obtain the same bound
as for Gaussian environments stated in [20] (see [22] for details). However, it is believed
that it is not of the optimal order, similar to the case of directed polymers on Z

d.

Remark 4.3. The strict convexity of the free energy is an interesting property. It
is known that it holds also for the directed polymer on Z

d but not on the tree. In the
later case, the free energy is strictly convex only for values of β smaller than the critical
value βc (to be defined latter) and it is linear on [βc,+∞). This fact is related to the
particular structure of the tree that leads to major simplifications in the “correlation
structure” of the model (see [15]). The strict convexity, in our setting, arises essentially
from the property that two paths on the hierarchical lattice can re-intersect after being
separated at some step. This underlines once more, that Z

d and the hierarchical lattice
have a lot of features in common, which they do not share with the tree.

Next, we establish the martingale property forWN and the zero-one law for its limit.

Lemma 4.4. (WN)N is a positive FN -martingale. It converges Q-almost surely to a
non-negative limit W∞ that satisfies the following zero-one law:

Q (W∞ > 0) ∈ {0, 1}.(4.12)

Recall that martingales appear when the disorder is displayed on sites, in contrast with
disorder on bonds as in [31, 35].

Observe that

p(β)− f(β) = lim
N→+∞

1

sN
logWN (β),

so, if we are in the situation Q(W∞ > 0) = 1, we have that p(β) = f(β). This motivates
the following definition:

Definition 4.5. If Q(W∞ > 0) = 1, we say that weak disorder holds. In the
opposite situation, we say that strong disorder holds.
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Remark 4.6. Later, we will give a statement(Proposition 4.21) that guarantees
that strong disorder is equivalent to p(β) 6= f(β), a situation that is sometimes called
very strong disorder. This is believed to be true for polymer models on Z

d or R
d but it

remains an unproved and challenging conjecture in dimension d ≥ 3 (see [21]).

The next proposition lists a series of partial results that in some sense clarify the
phase diagram of our model.

Proposition 4.7. (i) There exists β0 ∈ [0,+∞] such that strong disorder holds for
β > β0 and weak disorder holds for β ≤ β0.

(ii) If b > s, β0 > 0. Indeed, there exists β2 ∈ (0,∞] such that for all β < β2,
supN Q(W 2

N (β)) < +∞, and therefore weak disorder holds.

(iii) If βλ′(β)− λ(β) > 2 log b
s−1

, then strong disorder holds.

(iv) In the case where ηz are Gaussian random variables, (iii) can be improved for

b > s: strong disorder holds as soon as β >
√

2(b−s) log b
(b−1)(s−1)

.

(v) If b ≤ s, then strong disorder holds for all β.

Remark 4.8. On can check that the formula in (iii) ensures that β0 <∞ whenever
the distribution of ηz is unbounded.

Remark 4.9. An implicit formula is given for β2 in the proof and this gives a lower
bound for β0. However, when β2 <∞, it never coincides with the upper bound given by
(iii) and (iv), and therefore knowing the exact value of the critical temperature when
b > s remains an open problem.

We now provide more quantitative information for the regime considered in (v):

Theorem 4.10. When s > b, there exists a constant c = cs,b such that for any
β ≤ 1 we have

1

c
β

2
α ≤ f(β)− p(β) ≤ cβ

2
α

where α = log s−log b
log s

.

Theorem 4.11. When s = b, there exists a constant c = cs such that for any β ≤ 1
we have

exp

(
− c

β2

)
≤ f(β)− p(β) ≤ c exp

(
− 1

cβ

)

In the theory of directed polymer in random environment, it is believed that, in
low dimension, the quantity logZN undergoes large fluctuations around its average (as
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opposed to what happens in the weak disorder regime where the fluctuation are of order
1). More precisely: it is believed that there exists an exponent χ > 0 such that

(4.13) logZN −Q logZN ≍M ξ and VarQ logZN ≍ M2χ,

where M is the length of the system (= N on Z
d and sN one our hierarchical lattice). In

the non-hierarchical model this exponent is of major importance as it is closely related
to the volume exponent ξ that gives the spatial fluctuation of the polymer chain (see
e.g. [53] for a discussion on fluctuation exponents). Indeed it is conjectured for the Z

d

models that

(4.14) χ = 2ξ − 1.

This implies that the polymer trajectories are superdiffusive as soon as χ > 0. In our
hierarchical setup, there is no such geometric interpretation but having a lower bound
on the fluctuation allows to get a significant localization result.

Proposition 4.12. When b < s, there exists a constant c such that for all N ≥ 0
we have

(4.15) VarQ (logZN) ≥ c(s/b)Nβ2.

Moreover, for any ε > 0, N ≥ 0, and a ∈ R,

(4.16) Q
{
logZN ∈ [a, a+ ε(s/b)N/2]

}
≤ 8ε

β
.

This implies that if the fluctuation exponent χ exists, χ ≥ log s−log b
2 log s

. We also have the

corresponding result for the case b = s

Proposition 4.13. When b = s, there exists a constant c such that for all N ≥ 0,
we have

(4.17) VarQ (logZN) ≥ cNβ2.

Moreover for any ε > 0, N ≥ 0, and a ∈ R,

(4.18) Q
{

logZN ∈ [a, a + ε
√
N ]
}
≤ 8ε

β
.

From the fluctuations of the free energy we can prove the following: For S ∈ ΩN

and M < N , we define S|M to be the restriction of S to DM .

Corollary 4.14. If b ≤ s and M ∈ N is fixed, we have

(4.19) lim
N→∞

sup
S∈ΩM

µN(ω|M = S) = 1,

where the convergence holds in probability.

Intuitively this result means that if one looks on a large scale, the law of µN is
concentrated in the neighborhood of a single path. Considering ΩN with a natural
metric (two path S and S′ in ΩN are at distance 2−M if and only if S|M 6= S′|M and
S|M−1 = S|M−1) makes this statement rigorous.
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Remark 4.15. With some (very minor) additional effort, one can prove that the
convergence in (4.19) holds almost surely, at least in the case b < s. However, this is just
a consequence of the fact that the size of our system grows very fast (exponentially), so
that Borel-Cantelli Lemma easily works, and has not deep meaning. The result could
also be improved by taking m(N) going to infinity with N , but we are far from being
able to give an optimal rate for the divergence of M(N) with our actual techniques.

Remark 4.16. Proposition 4.7(v) brings the idea that b ≤ s for this hierarchical
model is equivalent to the d ≤ 2 case for the model in Z

d (and that b > s is equivalent
to d > 2). Let us push further the analogy: let ω(1) , ω(2) be two paths chosen uniformly
at random in ΩN (denote the uniform-product law by P⊗2), their expected site overlap
is of order (s/b)N if b < s, of order N if b = s, and of order 1 if b > s. If one denotes
by M = sN the length of the system, one has

(4.20) P⊗2

[
M∑

t=0

1{ω(1)
t =ω

(2)
t }

]
≍





Mα if b < s,

logM if b = s,

1 if b > s,

(where α = (log s − log b)/ log s). Comparing this to the case of random walk on Z
d,

we can infer that the case b = s is just like d = 2 and that the case d = 1 is similar
to b =

√
s (α = 1/2). One can check in comparing [66, Theorem 1.4, 1.5, 1.6] with

Theorem 4.10 and 4.11, that this analogy is relevant.

The paper is organized as follow

• In section 4.3 we prove some basic statements about the free energy, Lemma
4.4 and the first part of Proposition 4.7.
• In section 4.4, we prove (ii) of Proposition 4.7 and the upper-bound inequalities

Theorems 4.10 and 4.11.
• In section 4.5, we prove (iii) and (iv) of Proposition 4.7 and the lower-bound

inequalities for Theorems 4.10 and 4.11.
• In section 4.6 we prove Propositions 4.12 and 4.13 and Corollary 4.14.
• In section 4.7 we define and investigate the properties of the infinite volume

polymer measure in the weak disorder phase.
• In section 4.8 we shortly discuss about the bond disorder model.

4.3. Martingale tricks and free energy

We first look at to the existence of the quenched free energy

p(β) = lim
N→+∞

1

N
Q (logZN(β)) ,

and its relation with the annealed free energy. Much in the same spirit than (4.8), we
can find a recursion for ZN :

ZN+1(β) =
b∑

i=1

Z
(i,1)
N (β) · · ·Z(i,s)

N (β)× eβηi,1 · · · eβηi,s−1 .(4.21)
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The case β = 0 is somehow instructive. It gives the number of paths in ΩN and is
handled by the simple recursion

ZN+1(0) = b (ZN(0))s ,

which follows by taking β = 0 in (4.21).This easily yields

|ΩN | = ZN(β = 0) = b
sN−1
s−1 .(4.22)

The existence of the quenched free energy follows by monotonicity: again from (4.21),
we have

ZN+1 ≥ Z
(1,1)
N Z

(1,2)
N · · ·Z(1,s)

N × eβη1,1 · · · eβη1,s−1 ,

so that (recall the η’s are centered random variables)

1

sN+1
Q logZN+1 ≥

1

sN
Q logZN .

The annealed free energy provides an upper bound

1

sN
Q logZN ≤ 1

sN
logQZN

=
1

sN
log eλ(β)(sN−1)ZN(β = 0)

=

(
1− 1

sN

)(
λ(β) +

log b

s− 1

)

=

(
1− 1

sN

)
f(β).

We now prove the strict convexity of the free energy. The proof is essentially bor-
rowed from [23], but it is remarkably simpler in our case.

Proof of the strict convexity of the free energy. We do our proof in
the simpler case of Bernoulli environment (ηz = ±1 with probability p, 1− p; note that
our assumptions on the variance and expectation for η are violated but centering and
rescaling η does not change the argument). See the remark following this proof for the
generalization to arbitrary environment.
An easy computation yields

∂2

∂β2
Q logZN = QVarµN

HN(ω).

We will prove that for each K > 0, there exists a constant C such that, for all β ∈ [0, K]
and N ≥ 1,

QVarµN
HN (ω) ≥ CsN .(4.23)



52 4. DIRECTED POLYMERS ON HIERARCHICAL DIAMOND LATTICES

For S ∈ ΩN and M < N , we define S|M to be the restriction of S to DM . By the
conditional variance formula,

VarµN
HN = µN

(
VarµN

(HN(ω) |ω|N−1
)
)

+ VarµN

(
µN(HN(ω) |ω|N−1

)
)

≥ µN

(
VarµN

(HN(ω) |ω|N−1
)
)

(4.24)

Now, for l = 0, ..., sN−1 − 1, S ∈ ΩN , define

H
(l)
N (S) =

(l+1)s−1∑

t=ls+1

η(St),

so the right-hand side of (4.24) is equal to

µNVarµN




sN−1−1∑

l=0

H
(l)
N (ω)|ω|N−1


 =

sN−1−1∑

l=0

µNVarµN

(
H

(l)
N (ω)|ω|N−1

)
,

by independence. Summarizing,

(4.25) VarµN
HN ≥

sN−1−1∑

l=1

µNVarµN

(
H

(l)
N (ω)|ω|N−1

)
.

The rest of the proof consists in showing that each term of the sum is bounded from
below by a positive constant, uniformly in l and N . For any x ∈ DN−1 such that
the graph distance between x and A is ls in DN (i.e. x ∈ DN−1), we define the set of
environments

M(N, l, x) =
{
ω :
∣∣∣{H(l)

N (S, η) : S ∈ ΩN ,Sls = x}
∣∣∣ ≥ 2

}
.

These environments provide the fluctuations in the energy needed for the uniform lower
bound we are searching for. One second suffices to convince oneself thatQ(M(N, l, x)) >
0, and does not depend on the parameters N, l or x. Let Q(M) denote improperly the
common value of Q(M(N, l, x)). Now, from (4.25),

Q [VarµN
HN ] ≥ Q

sN−1−1∑

l=1

∑

x∈DN−1

1M(N, l, x)µN

[
VarµN

(
H

(l)
N (ω)|ω|N−1

)
1ωls=x

]
.

(4.26)

On the eventM(N, l, x)∩ {ωls = x} , the variance with respect to µN

(
. . . |ω|N−1

)
only

depends on the environment inside the little diamond based on x, i.e., the isomorphic
embedding of D1 inside DN , where the image of A is x (let us call it D1(N, l, x)).
Based on this observation, it is easy to show that the µN

(
. . . |ω|N−1

)
probability of

{|H(l)
N (ω)− µN(H

(l)
N (ω)|ω|N−1

)| ≥ 1} is at least 1
b
exp(−2β(s− 1)), so that
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VarµN

(
H

(l)
N (ω)|ω|N−1

)
≥ 1

b
exp(−2β(s− 1)).(4.27)

Putting this back to (4.26) yields

Q [VarµN
HN ] ≥ 1

b
exp(−2β(s− 1))Q




sN−1−1∑

l=1

∑

x∈DN−1

1M(N,l,x)µN(ωls = x)


 .

Define now µ
(l,x)
N as the polymer measure in the environment obtained from η by setting

ηy = 0 for all sites y ∈ D1(N, l, x). One can check that for all N , and all path S,

exp(−2β(s− 1))µ
(l,x)
N (ω = S) ≤ µN(ω = S) ≤ exp(2β(s− 1))µ

(l,x)
N (ω = S).

We note that under Q, µ
(l,x)
N (ωls = x) and 1M(N,l,x) are independent random variables,

so that

Q [VarµN
HN ] ≥ 1

b
exp(−4β(s− 1))Q




sN−1−1∑

l=0

∑

x

1M(N,l,x)µ
(l,x)
N (ωls = x)




=
1

b
exp(−4β(s− 1))

sN−1∑

l=1

∑

x∈DN−1

Q(M(N, l, x))Q
[
µ

(l,x)
N (ωls = x)

]

≥ 1

b
exp(−6β(s− 1))

sN−1∑

l=1

∑

x∈DN−1

Q(M(N, l, x))Q [µN(ωls = x)]

=
1

b
exp(−6β(s− 1))Q(M)sN−1.

This lower bound is uniform as long as β stays in a compact. �

Remark 4.17. For arbitrary environments, we can always find K > K ′ and a
positive constant L such that the event

M(N, l, x) =
{
ω : ∃S,S′ withSls = S′

ls = x s.t. H
(l)
N (S, η) ≥ K,

H
(l)
N (S′, η) ≤ K ′, and |ηy| ≤ L, ∀ y ∈ D1(N, l, x)

}
,

has positive Q-probability. The proof can then be achieved with this definition of
M(N, l, x) (with lower bound K−K ′

2b
exp(−6βL(s− 1)) at the end).

We now establish the martingale property for the normalized free energy.

Proof of Lemma 4.4. Set zN = ZN(β = 0). We have already remarked that this
is just the number of (directed) paths in DN , and its value is given by (4.22). Observe
that S ∈ ΩN visits sN(s− 1) sites of N + 1-th generation. The restriction of paths in
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DN+1 to DN is obviously not one-to-one as for each path S′ ∈ ΩN , there are bs
N

paths
in ΩN+1 such that S|N = S′. Now,

Q (ZN+1(β)|FN) =
∑

S∈ΩN+1

Q
(
eβHN+1(S)|FN

)

=
∑

S′∈ΩN

∑

S∈ΩN+1

Q
(
eβHN+1(S)|FN

)
1S|N=S′

=
∑

S′∈ΩN

∑

S∈ΩN+1

eβHN (S′)esN (s−1)λ(β)1S|N=S′

=
∑

S′∈ΩN

eβHN (S′)esN (s−1)λ(β)
∑

S∈ΩN+1

1S|N=S′

= esN (s−1)λ(β)bs
N
∑

S′∈ΩN

eβHN (g′)

= ZN(β)
zN+1e

sN+1λ(β)

zNesNλ(β)
.

This proves the martingale property. For (4.12), let us generalize a little the preceding
restriction procedure. As before, for a path S ∈ ΩN+k, denote by S|N its restriction
to ΩN . Denote by IN,N+k the set of time indexes that have been removed in order to
perform this restriction and by MN,N+k its cardinality. Then

ZN+k =
∑

S∈ΩN

eβHN (S)
∑

S′∈ΩN+k ,S′|N=S

exp



β

∑

t∈IN,N+k

η(S′
t)



 .

Consider the following notation, for S ∈ ΩN ,

W̃N,N+k(S) = c−1
N,N+k

∑

S′∈ΩN+k,S′|N=S

exp



β

∑

t∈IN,N+k

η(S′
t)−MN,N+kλ(β)



 ,

where cN,N+k stands for the number paths in the sum. With this notations, we have,

WN+k =
1

zN

∑

S∈ΩN

eβHN (S)−(sN−1)λ(β)W̃N,N+k(S),(4.28)

and, for all N ,

{W∞ = 0} =
{
W̃N,N+k(S)→ 0, as k → +∞, ∀S ∈ ΩN

}
.(4.29)

The event in the right-hand side is measurable with respect to the disorder of generation
not earlier than N . As N is arbitrary, the left-hand side of (4.29) is in the tail σ-algebra
and its probability is either 0 or 1. �
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This, combined with FKG-type arguments (see [28, Theorem 3.2] for details), proves
part (i) of Proposition 4.7. Roughly speaking, the FKG inequality is used to insure
that there is no reentrance phase.

4.4. Second moment method and lower bounds

This section contains all the proofs concerning coincidence of annealed and quenched
free energy for s > b and lower bounds on the quenched free energy for b ≤ s (i.e. half
of the results from Proposition 4.7 to Theorem 4.11.) First, we discuss briefly the
condition on β that one has to fulfill to have WN bounded in L2(Q). Then for the
cases when strong disorder holds at all temperature (b ≤ s), we present a method that
combines control of the second moment up to some scale N and a percolation argument
to get a lower bound on the free energy.

First, we investigate how to get the variance of WN (under Q). From (4.8) we get
the induction for the variance vN = Q [(WN − 1)2]:

vN+1 =
1

b

(
e(s−1)γ(β)(vN + 1)s − 1

)
,(4.30)

v0 = 0.(4.31)

where γ(β) := λ(2β)− 2λ(β).

4.4.1. The L2 domain: s < b. If b > s, and γ(β) is small, the map

g : x 7→ 1

b

(
e(s−1)γ(β)(x+ 1)s − 1

)

possesses a fixed point. In this case, (4.30) guaranties that vN converges to some finite
limit. Therefore, in this case, WN is a positive martingale bounded in L

2, and therefore
converges almost surely to W∞ ∈ L

2(Q) with QW∞ = 1, so that

p(β)− λ(β) = lim
N→∞

1

sN
logWN = 0,

and weak disorder holds. One can check that g has a fixed point if and only if

γ(β) ≤ s

s− 1
log

s

b
− log

b− 1

s− 1

4.4.2. Control of the variance: s > b. For ǫ > 0, let n0 be the smallest integer
such that vn0 ≥ ε.

Lemma 4.18. For any ε > 0, there exists a constant cε such that for any β ≤ 1

n0 ≥
2| log β|

log s− log b
− cε.

Proof. Expanding (4.30) around β = 0, vN = 0, we find a constant c1 such that,
whenever vN ≤ 1 and β ≤ 1,

vN+1 ≤
s

b
(vN + c1β

2)(1 + c1vN).(4.32)
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Using (4.32), we obtain by induction

vn0 ≤
n0−1∏

i=0

(1 + c1vi)

[
c1β

2

(
n0−1∑

i=0

(s/b)i

)]
.

From (4.30), we see that vi+1 ≥ (s/b)vi. By definition of n0, vn0−1 < ǫ, so that
vi < ε(s/b)i−n0+1. Then

n0−1∏

i=0

(1 + c1vi) ≤
n0−1∏

i=0

(1 + c1ε(s/b)
i−n0+1) ≤

∞∏

k=0

(1 + c1ε(s/b)
−k) ≤ 2,

where the last inequality holds for ε small enough. In that case we have

ε ≤ vn0 ≤ 2c1β
2(s/b)n0,

so that

n0 ≥
log(ε/2c1β

2)

log(s/b)
.

�

4.4.3. Control of the variance: s = b.

Lemma 4.19. There exists a constant c2 such that, for every β ≤ 1,

∀N ≤ c2
β
, vN ≤ β.

Proof. By (4.32) and induction we have, for any N such that vN−1 ≤ 1 and β ≤ 1,

vN ≤ Nβ2
N−1∏

i=0

(1 + c1vi).

Let n0 be the smallest integer such that vn0 > β. By the above formula, we have

vn0 ≤ n0β
2(1 + c1β)n0

Suppose that n0 ≤ (c2/β), then

β ≤ vn0 ≤ c2c1β(1 + c1β)c2/β .

If c2 is chosen small enough, this is impossible. �

4.4.4. Directed percolation on DN . For technical reasons, we need to get some
understanding on directed independent bond percolation on DN . Let p be the proba-
bility that an edge is open. The probability of having an open path from A to B in DN

follows the recursion

p0 = p,

pN = 1− (1− ps
N−1)

b.

On can check that the map x 7→ 1 − (1 − xs)b has a unique unstable fixed point on
(0, 1); we call it pc. Therefore if p > pc, with a probability tending to 1, there will be
an open path linking A and B in DN . If p < pc, A and B will be disconnected in DN

with probability tending to 1. If p = pc, the probability that A and B are linked in
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DN by an open path is stationary. See [48] for a deep investigation of percolation on
hierarchical lattices.

4.4.5. From control of the variance to lower bounds on the free energy.

Given b and s, let pc = pc(b, s) be the critical parameter for directed bond percolation.

Proposition 4.20. Let N be an integer such that vN = Q(WN − 1)2 < 1−pc

4
and β

such that p(β) ≤ (1− log 2). Then

f(β)− p(β) ≤ s−N

Proof. If N is such that Q [(WN − 1)2] < 1−pc

4
, we apply Chebycheff inequality to

see that

Q(WN < 1/2) ≤ 4vN < 1− pc.

Now let be M ≥ N . DM can be seen as the graph DM−N where the edges have
been replaced by i.i.d. copies of DN with its environment (see fig. 2). To each copy of
DN we associate its renormalized partition function; therefore, to each edge e of DM−N

corresponds an independent copy of WN , W
(e)
N . By percolation (see fig. 3), we will

have, with a positive probability not depending on N , a path in DM−N linking A to B,

going only through edges which associated W
(e)
N is larger than 1/2.

DN

DN

DN

DN
DN

DN

DN

DN

DN
DN

DN

DN

DN

DN

DN

DN

A B

Independent copies of system of rank N .

Figure 2. On this figure, we scheme how DN+M with its random environment can
be seen as independent copies of DN arrayed as DM . Here, we have b = s = 2 M = 2,
each diamond corresponds to a copy of DN (we can identify it with an edge and get the
underlying graph D2). Note that we also have to take into account the environment
present on the vertices denoted by circles.

When such paths exist, let ω0 be one of them (chosen in a deterministic manner,
e.g. the lowest such path for some geometric representation of DN ). We look at the
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A B

an open percolation path

Figure 3. We represent here the percolation argument we use. In the previous figure,
we have replaced by an open edge any of the copies of DN which satisfies WN ≥ 1/2.
As it happens with probability larger than pc, it is likely that we can find an open
path linking A to B in DN+M , especially if M is large.

contribution of these family of paths in DM to the partition function. We have

WM ≥ (1/2)sM−N

exp

(
∑

z∈ω0

βηz − λ(β)

)

Again, with positive probability (say larger than 1/3), we have
∑

z∈ω0
ηz ≥ 0 (the ηz

are i.i.d. centered random variable and are independent of the W
(e)
N along the path,

therefore (by the central limit theorem), the probability that
∑

z∈ω0
ηz ≥ 0 can get

arbitrary close to 1/2 if M is large enough). Therefore with positive probability we
have

1

sM
logWM ≥ −

1

sN
(log 2 + λ(β)).

As 1/sM logWM converges in probability to the free energy this proves the result.
�

Proof of the right-inequality in Theorems 4.10 and 4.11. .
The results now follow by combining Lemma 4.18 or 4.19 for β small enough, with

Proposition 4.20.
�

4.5. Fractional moment method, upper bounds and strong disorder

In this section we develop a way to find an upper bound for p(β)− f(β), or just to
find out if strong disorder holds. The main tool we use are fractional moment estimates
and measure changes.
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4.5.1. Fractional moment estimate. In the sequel we will use the following
notation. Given a fixed parameter θ ∈ (0, 1), define

uN := QW θ
N ,(4.33)

aθ := QAθ = exp(λ(θβ)− θλ(β)).(4.34)

Proposition 4.21. The sequence (fN)N defined by

fN := θ−1s−N log
(
aθb

1−θ
s−1uN

)

is decreasing and we have

lim
N→∞

fN ≥ p(β)− f(β).

(i) In particular, if for some N ∈ N, uN < a−1
θ b

θ−1
s−1 , strong disorder holds.

(ii) Strong disorder holds in particular if aθ < b
θ−1
s−1 .

Proof. Applying the inequality (
∑
ai)

θ ≤
∑
aθ

i (which holds for any θ ∈ (0, 1)
and any collection of positive numbers ai) to (4.8) and averaging with respect to Q
gives

uN+1 ≤ b1−θus
Na

s−1
θ .

From this we deduce that the sequence

s−N log
(
aθb

1−θ
s−1uN

)

is decreasing. Moreover we have

p(β)− f(β) = lim
N→∞

1

sN
Q logWN ≤ lim

N→∞

1

θsN
logQW θ

N = lim
N→∞

fN .

As a consequence very strong disorder holds if fN < 0 for any fN . As a consequence,
strong disorder and very strong disorder are equivalent. �

4.5.2. Change of measure and environment tilting. The result of the previ-
ous section assures that we can estimate the free energy if we can bound accurately
some non-integer moment of WN . Now we present a method to estimate non-integer
moment via measure change, it has been introduced to show disorder relevance in the
case of wetting model on a hierarchical lattice [42] and used since in several different
contexts since, in particular for directed polymer models on Z

d [66]. Yet, for the di-
rected polymer on hierarchical lattice, the method is remarkably simple to apply, and

it seems to be the ideal context to present it. Let Q̃ be any probability measure such

that Q and Q̃ are mutually absolutely continuous. Using Hölder inequality we observe
that

(4.35) QW θ
N = Q̃

dQ

dQ̃
W θ

N ≤
[
Q̃

(
dQ

dQ̃

) 1
1−θ

](1−θ) (
Q̃WN

)θ

.
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Our aim is to find a measure Q̃ such that the term

[
Q̃
(

dQ

d eQ

) 1
1−θ

](1−θ)

is not very large

(i.e. of order 1), and which significantly lowers the expected value of WN . To do so

we look for Q̃ which lowers the value of the environment on each site, by exponential
tilting. For b < s it sufficient to lower the value for the environment uniformly of every
site of DN \ {A,B} to get a satisfactory result, whereas for the b = s case, on has
to do an inhomogeneous change of measure. We present the change of measure in a
united framework before going to the details with two separate cases. For a simpler
presentation, we restrict here to the case of Gaussian environment (the ηz are i.i.d.
centered standard Gaussian under the measure Q). The method easily adapt to general
environment as shown at the end of the section.

Recall that Vi denotes the sites of Di \Di−1, and that the number of sites in DN is

|DN \ {A,B}| =
N∑

i=1

|Vi| =
N∑

i=1

(s− 1)bisi−1 =
(s− 1)b((sb)N − 1)

sb− 1
(4.36)

We define Q̃ = Q̃N,s,b to be the measure under which the environment on the site
of the i-th generation for i ∈ {1, . . . , N} are standard Gaussian variables with mean

−δi = −δi,N , where δi,N is to be defined. The density of Q̃ with respect to Q is given
by

dQ̃

dQ
(η) = exp

(
−

N∑

i=1

∑

z∈Vi

(δi,Nηz +
δ2
i,N

2
)

)
.

As each path in DN intersects Vi on si−1(s− 1) sites, this change of measure lowers the

value of the Hamiltonian (4.1) by
∑N

i=1 s
i−1(s − 1)δi,N on any path. Therefore, both

terms can be easily computed,

Q̃

(
dQ

dQ̃

) 1
1−θ

= exp

{
θ

2(1− θ)

N∑

i=1

|Vi|δ2
i,N

}
.(4.37)

(
Q̃WN

)θ

= exp

{
−βθ

N∑

i=1

si−1(s− 1)δi,N

}
.(4.38)

Replacing (4.38) and (4.37) back into (4.35) gives

uN ≤ exp

{
θ

N∑

i=1

( |Vi|δ2
i,N

2(1− θ) − βs
i−1(s− 1)δi,N

)}
.(4.39)

When δi,N = δN (i.e. when the change of measure is homogeneous on every site) the
last expression becomes simply
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uN ≤ exp

{
θ

( |DN \ {A,B}|δ2
N

2(1− θ) − (sN − 1)βδN

)}
.(4.40)

In either case, the rest of the proof consists in finding convenient values for δi,N and N
large enough to ensure that (i) from Proposition 4.21 holds.

4.5.3. Homogeneous shift method: s > b. Proof of the left inequality

in Theorem 4.10 for Gaussian environments:

Let 0 < θ < 1 be fixed (say θ = 1/2) and δi,N = δN := (sb)−N/2. Observe from
(4.36) that |DN \ {A,B}|δ2

N ≤ 1, so that (4.40) implies

uN ≤ exp

(
θ

2(1− θ) − θβ(s/b)N/2s− 1

s

)
.

Taking N = 2(| log β|+log c3)
log s−log b

, we get

uN ≤ exp

(
θ

2(1− θ) −
θc3s

s− 1

)
.

Choosing θ = 1/2 and c3 sufficiently large, we have

fN = s−N log aθb
1−θ
s−1uN ≤ −s−N ,(4.41)

so that Proposition 4.21 gives us the conclusion

p(β)− f(β) ≤ −s−N = −(β/c3)
2 log s

log s−log b .

�

4.5.4. Inhomogeneous shift method: s = b. One can check that the previous
method does not give good enough results for the marginal case b = s. One has to
do a change of measure which is a bit more refined and for which the intensity of the
tilt in proportional to the Green function on each site. This idea was used first for the
marginal case in pinning model on hierarchical lattice (see [65]).

Proof of the left inequality in Theorem 4.11 for Gaussian environ-

ments: This time, we set δi,N := N−1/2s−i. Then (recall (4.36)), (4.39) becomes

uN ≤ exp

(
θ

2(1− θ)
s− 1

s
− θβN−1/2 s− 1

s

)
.

Taking θ = 1/2 and N = (c4/β)2 for a constant c4 large enough, we get that fN ≤ −sN

and applying Proposition 4.21, we obtain

p(β)− f(β) ≤ −s−N = −s−(c4/β)2 = − exp

(
−c

2
4 log s

β2

)
.

�



62 4. DIRECTED POLYMERS ON HIERARCHICAL DIAMOND LATTICES

4.5.5. Bounds for the critical temperature. From Proposition 4.21, we have
that strong disorder holds if aθ < b(1−θ)/(s−1). Taking logarithms, this condition reads

λ(θβ)− θλ(β) < (1− θ) log b

s− 1
.

We divide both sides by 1 − θ and let θ → 1. This proves part (iii) of Proposition
4.7. For the case b > s, this condition can be improved by the inhomogeneous shifting
method; here, we perform it just in the case of Gaussian environment. Recall that

uN ≤ exp

{
θ

N∑

i=1

( |Vi|δ2
i,N

2(1− θ) − βs
i−1(s− 1)δi,N

)}
.(4.42)

We optimize each summand in this expression taking δi,N = δi = (1− θ)β/bi. Recalling
that |Vi| = (bs)i−1b(s− 1), this yields

uN ≤ exp

{
−θ(1− θ)β

2

2

s− 1

s

N∑

i=1

(s
b

)i
}

≤ exp

{
−θ(1− θ)β

2

2

s− 1

s

s/b− (s/b)N+1

1− s/b

}
.

Because N is arbitrary, in order to guaranty strong disorder it is enough to have (cf.
first condition in Proposition 4.21) for some θ ∈ (0, 1)

θ(1− θ)β
2

2

s− 1

s

s/b

1− s/b > (1− θ) log b

s− 1
+ log aθ.

In the case of Gaussian variables log aθ = θ(θ − 1)β2/2. This is equivalent to

β2

2
>

(b− s) log b

(b− 1)(s− 1)
.

This last condition is an improvement of the bound in part (iii) of Proposition 4.7.

4.5.6. Adaptation of the proofs for non-Gaussian variables. Proof of

the left inequality in Theorem 4.10 and 4.11 for general environments:

To adapt the preceding proofs to non-Gaussian variables, we have to investigate the
consequence of exponential tilting on non-Gaussian variables. We sketch the proof in
the inhomogeneous case b = s, we keep δi,N := s−iN−1/2.

Consider Q̃ with density

dQ̃

dQ
(η) := exp

(
−

N∑

i=1

∑

z∈Vi

(δi,Nηz + λ(−δi,N ))

)
,
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(recall that λ(x) := logQ exp(xη)). The term giving cost of the change of measure is,
in this case,

[
Q̃

(
dQ

dQ̃

) 1
1−θ

](1−θ)

= exp

(
(1− θ)

N∑

i=1

|Vi|
[
λ

(
θδi,N
1− θ

)
+

θ

1− θλ(−δi,N )

])

≤ exp

(
θ

(1− θ)

N∑

i=1

|Vi|δ2
i,N

)
≤ exp

(
θ

(1− θ)

)

Where the inequality is obtained by using the fact the λ(x) ∼0 x
2/2 (this is a conse-

quence of the fact that η has unit variance) so that if β is small enough, one can bound
every λ(x) in the formula by x2.

We must be careful when we estimate Q̃WN . We have

Q̃WN = exp

(
N∑

i=1

(s− 1)si−1 [λ(β − δi,N)− λ(β)− λ(−δi,N)]

)
QWN .

By the mean value theorem

λ(β − δi,N)− λ(β)− λ(−δi,N) + λ(0) = −δi,N (λ′(β − t0)− λ′(−t0)) = −δi,Nβλ′′(t1),
for some t0 ∈ (0, δi,N) and some t1 ∈ (β,−δi,N). As we know that limβ→0 λ

′′(β) = 1,
when δi and β are small enough, the right-hand side is less than −βδi,N/2. Hence,

Q̃WN ≤ exp

(
−

N∑

i=1

(s− 1)si−1βδi,N
2

)
.

We get the same inequalities that in the case of Gaussian environment, with different
constants, which do not affect the proof. The case b < s is similar. �

4.6. Fluctuation and localization results

In this section we use the shift method we have developed earlier to prove fluctuation
results

4.6.1. Proof of Proposition 4.12. The statement on the variance is only a con-
sequence of (4.16) as it will be show at the end of the section.

Recall that the random variable ηz here are i.i.d. centered standard Gaussian vari-
ables, and that the product law is denoted by Q. We have to prove

(4.43) Q
{
logZN ∈ [a, a+ βε(s/b)N/2]

}
≤ 4ε ∀ε > 0, N ≥ 0, a ∈ R

Assume there exist real numbers a and ε, and an integer N such that (4.43) does not
hold, i.e.

(4.44) Q
{
logZN ∈ [a, a+ βε(s/b)N/2)

}
> 4ε.

Then one of the following holds
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Q
{
logZN ∈ [a, a + βε(s/b)N/2)

}
∩
{
∑

z∈DN

ηz ≥ 0

}
> 2ε,

Q
{
logZN ∈ [a, a + βε(s/b)N/2)

}
∩
{
∑

z∈DN

ηz ≤ 0

}
> 2ε.

(4.45)

We assume that the first line is true. We consider the events related to Q as sets of
environments (ηz)z∈DN\{A,B}. We define

(4.46) Aε =
{
logZN ∈ [a, a + βε(s/b)N/2)

}
∩
{
∑

z∈DN

ηz ≥ 0

}
,

and

(4.47) A(i)
ε =

{
logZN ∈ [a− iβε(s/b)N/2, a− (i− 1)βε(s/b)N/2)

}
.

Define δ = sN/2

(sN−1)bN/2 . We define the measure Q̃i,ε with its density:

(4.48)
dQ̃i,ε

dQ
(η) := exp

([
iεδ

∑

z∈DN

ηz

]
− i2ε2δ2|DN \ {A,B}|

2

)
.

If the environment (ηz)z∈DN
has law Q then (η̂

(i)
z )z∈DN

defined by

(4.49) η̂(i)
z := ηz + εiδ,

has law Q̃i,ε. Going from η to η̂(i), one increases the value of the Hamiltonian by

εi(s/b)N/2 (each path cross sN − 1 sites). Therefore if (η̂
(i)
z )z∈DN

∈ Aε, then (ηz)z∈DN
∈

A
(i)
ε . From this we have Q̃i,εAε ≤ QA

(i)
ε , and therefore

(4.50) QA(i)
ε ≥

∫

Aε

dQ̃i,ε

dQ
Q( dη) ≥ exp(−(εi)2/2)Q(Aε).

The last inequality is due to the fact that the density is always larger than exp(−(εi)2/2)
on the set Aε (recall its definition and the fact that |DN \ {A,B}|δ2 ≤ 1). Therefore,
in our setup, we have

(4.51) QA(i)
ε > ε, ∀i ∈ [0, ε−1].

As the A
(i)
ε are disjoints, this is impossible. If we are in the second case of (4.45), we

get the same result by shifting the variables in the other direction.

From Chebycheff inequality, we know that for every x > 0

(4.52) Q {| logZN −Q logZN | > x} ≤ VarQ logZN

x2
.

Therefore

(4.53) VarQ logZN ≥ x2(1−Q {| logZN −Q logZN | ≤ x}).
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For x = β(s/b)N/2/10 using (4.43) with ε = 1/5 and a = Q logZN − β(s/b)N/2/10, we
get

(4.54) VarQ logZN ≥
β2(s/b)N

500
.

�

4.6.2. Proof of Proposition 4.13. Let us suppose that there exist N , ε and a
such that

(4.55) Q
{

logZN ∈ [a, a + βε
√
N)
}
> 8ε.

We define δi,N = δi := εs1−i(s−1)−1N−1/2. Then one of the following inequalities holds
(recall the definition of Vi)

Q
{

logZN ∈ [a, a + βε
√
N)
}
∩
{

N∑

i=1

δi
∑

z∈Vi

ηz ≥ 0

}
> 4ε,

Q
{

logZN ∈ [a, a + βε
√
N)
}
∩
{

N∑

i=1

δi
∑

z∈Vi

ηz ≤ 0

}
> 4ε.

(4.56)

We assume that the first line holds and define

(4.57) Aε =
{

logZN ∈ [a, a + βε
√
N)
}
∩
{

N∑

i=1

δi
∑

z∈Vi

ηz ≥ 0

}

And

(4.58) A(j)
ε =

{
logZN ∈ [a− jβε

√
N, a− (j − 1)βε

√
N)
}

(4.59) jβ

N∑

i=1

δi(s− 1)si−1 = jβε
√
N.

Therefore, an environment η ∈ Aε will be transformed in an environment in A
(j)
ε .

We define Q̃j,ε the measure whose Radon-Nikodym derivative with respect to Q is

(4.60)
dQ̃i,ε

dQ
(η) := exp

([
j

N∑

i=1

δi
∑

z∈Vi

ηz

]
−

N∑

i=1

j2δ2
i |Vi|
2

)
.

We can bound the deterministic term.

(4.61)

N∑

i=1

j2δ2
i |Vi|
2

=
j2ε2

N

N∑

i=1

s

2(s− 1)
≤ j2ε2.

For an environment (ηz)z∈DN\{A,B}, define (η̂
(j)
z )z∈DN\{A,B} by

(4.62) η̂(j)
z := ηz + jεδi, ∀z ∈ Vi.
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If (ηz)z∈DN\{A,B} has Q, then (η̂
(j)
z )z∈DN\{A,B} has law Q̃j,ε. When one goes from η to

η̂(j), the value of the Hamiltonian is increased by

N∑

i=1

jδis
i−1(s− 1) = ε

√
N.

Therefore, if η̂(j) ∈ Aε, then η ∈ A(j)
ε , so that

QA(j)
ε ≥ Q̃j,εAε.

Because of the preceding remarks

(4.63) QA(j)
ε ≥ Q̃j,εAε =

∫

Aε

dQ̃i,ε

dQ
Q( dη) ≥ exp

(
−j2ε2

)
QAε.

The last inequality comes from the definition of Aε which gives an easy lower bound

on the Radon-Nikodym derivative. For j ∈ [0, (ε/2)−1], this implies that QA
(j)
ε > 2ε.

As they are disjoint events this is impossible. The second case of (4.56) can be dealt
analogously. The lower bound on the variance is obtained just as in the b < s case. �

4.6.3. Proof of Corollary 4.14. Let S ∈ ΩN be a fixed path. For M ≥ N , define

(4.64) Z
(S)
M :=

∑

{S′∈ΩM :S|N=S}
exp (βHM(S′)) .

With this definition we have

(4.65) µM(ω|N = S) =
Z

(S)
M

ZM
.

To show our result, it is sufficient to show that for any constant K and any distinct
S,S′ ∈ ΩN

(4.66) lim
M→∞

Q

(
µM(ω|N = S)

µM(ω|N = S′)
∈ [K−1, K]

)
= 0.

For S and S′ distinct, it is not hard to see that

(4.67) log

(
µM(ω|N = S)

µM(ω|N = S′)

)
= logZ

(S)
M − logZ

(S′)
M =: logZ

(0)
M−N +X,

where Z
(0)
M−N is a random variable whose distribution is the same as the one of ZM−N ,

and X is independent of Z
(0)
M−N . We have

(4.68) Q

(
log

(
µM(ω|N = S)

µM(ω|N = S′)

)
∈ [− logK, logK]

)

= Q
[
Q
(
logZ

(0)
M−N ∈ [− logK −X, logK −X]

∣∣X
)]

≤ max
a∈R

Q (logZM−N ∈ [a, a+ 2 logK]) .

Proposition 4.12 and 4.13 show that the right–hand side tends to zero. �
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4.7. The weak disorder polymer measure

Comets and Yoshida introduced in [28] an infinite volume Markov chain at weak
disorder that corresponds in some sense to the limit of the polymer measures µN when
N goes to infinity. We perform the same construction here. The notation is more
cumbersome in our setting.

Recall that ΩN is the space of directed paths from A to B in DN . Denote by PN

the uniform probability on ΩN . For S ∈ ΩN , 0 ≤ t ≤ sN − 1, define W∞(St,St+1) by
performing the same construction that leads toW∞, but taking St and St+1 instead of A
and B respectively. On the classical directed polymers on Z

d, this would be equivalent
to take the (t,St) as the initial point of the polymer.

We can now define the weak disorder polymer measure for β < β0. We define Ω
as the projective limit of ΩN (with its natural topology), the set of paths on D :=⋃

N≥1DN . As for finite paths, we can define, for S̄ ∈ Ω, its projection onto ΩN , S̄|N .
We define, for each N ≤ 1 and each S ∈ ΩN ,

µ∞(ω̄|N = S) :=
1

W∞
exp{βHN(S)− (sN − 1)λ(β)}

sN−1∏

i=0

W∞(Si,Si+1)PN(ω̄|N = S).

(4.69)

Let us stress the following:

• Note that the projection on the different ΩN ’s are consistent (so that our
definition makes sense)

µ∞(ω̄|N = S) = µ∞ ((ω̄|N+1)|N = S) .

• Thanks to the martingale convergence for both the numerator and the denom-
inator, for any S ∈ ΩN ,

lim
k→+∞

µk+N(ω|N = S) = µ∞(ω̄|N = S).

Therefore, µ∞ is the only reasonable definition for the limit of µN .

It is an easy task to prove the law of large numbers for the time-averaged quenched
mean of the energy. This follows as a simple consequence of the convexity of p(β).

Proposition 4.22. At each point where β 7→ p(β) admits a derivative,

lim
N→+∞

1

sN
µN(HN(ω))→ p′(β), Q− a.s..

Proof. It is enough to observe that

∂

∂β
logZN = µn(HN(ω)),

then use the convexity to pass to the limit. �
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We can also prove a quenched law of large numbers under our infinite volume mea-
sure µ∞, for almost every environment. The proof is very easy, as it involves just a
second moment computation.

Proposition 4.23. At weak disorder,

lim
N→+∞

1

sN
HN(ω̄|N) = λ′(β), µ∞ − a.s., Q− a.s.

Proof. We will consider the following auxiliary measure (size biased measure) on
the environment

Q(f(η)) = Q(f(η)W∞).

So, Q-a.s. convergence will follow from Q-a.s. convergence. This will be done by a
direct computation of second moments. Let us write ∆ = Q(η2eβη−λ(β)), and let PN

denote the uniform measure on |ΩN |.

Q
(
µ∞(|HN(ω̄|N)|2)

)

= Q


PN


|HN(ω)|2 exp

(
βHN(ω)− (sN − 1)λ(β)

) sN−1∏

i=0

W∞(ωi, ωi+1)






= Q
[
PN

(
|HN(ω)|2 exp

(
βHN(ω)− (sN − 1)λ(β)

))]

= Q


PN


|

sN∑

t=1

η(ωt)|2 exp
(
βHN(ω)− (sN − 1)λ(β)

)





= Q




sN−1∑

t=1

PN

(
|η(ωt)|2 exp

(
βHN(ω)− (sN − 1)λ(β)

))



+Q


 ∑

1≤t1 6=t2≤sN−1

PN

(
η(ωt1)η(ωt2) exp

(
βHN(ω)− (sN − 1)λ(β)

))



= (sN − 1)∆ + (sN − 1)(sN − 2)(λ′(β))2,

where we used independence to pass from line two to line three. So, recalling that
Q(µ∞(HN(ω̄|N))) = (sN − 1)λ′(β), we have

(4.70) Q
(
µ∞(|HN(ω̄|N)− (sN − 1)λ′(β)|2)

)
= (sN − 1)

(
∆− λ′(β)2

)
.

Then

Qµ∞

(∣∣∣∣
HN(ω̄|N)− (sN − 1)λ′(β)

sN

∣∣∣∣
2
)
≤ 1

sN

(
∆− (λ′(β)2)

)
,

so the result follows by Borel-Cantelli. �



4.8. SOME REMARKS ON THE BOND–DISORDER MODEL 69

4.8. Some remarks on the bond–disorder model

In this section, we shortly discuss, without going through the details, how the meth-
ods we used in this paper could be used (or could not be used) for the model of directed
polymer on the same lattice with disorder located on the bonds.

In this model to each bond e of DN we associate i.i.d. random variables ηe. We
consider each set S ∈ ΩN as a set of bonds and define the Hamiltonian as

(4.71) Hω
N(S) =

∑

e∈S

ηe,

The partition function ZN is defined as

(4.72) ZN :=
∑

S∈ΩN

exp(βHN(S)).

One can check that is satisfies the following recursion

Z0
L
= exp(βη)

ZN+1
L
=

b∑

i=1

Z
(i,1)
N Z

(i,2)
N . . . Z

(i,s)
N .

(4.73)

where equalities hold in distribution and Z
(i,j)
N are i.i.d. distributed copies of ZN . Be-

cause of the loss of the martingale structure and the homogeneity of the Green function
in this model (which is equal to b−N on each edge), Lemma 4.4 does not hold, and we
cannot prove part (iv) in Proposition 4.7, Theorem 4.11 and Proposition 4.13 for this
model. Moreover we have to change b ≤ s by b < s in (v) of Proposition 4.7. Moreover,
the method of the control of the variance would give us a result similar to 4.11 in this
case

Proposition 4.24. When b is equal to s, on can find constants c and β0 such that
for all β ≤ β0

(4.74) 0 ≤ f(β)− p(β) ≤ exp

(
− c

β2

)
.

However, we would not be able to prove that the annealed and quenched free energy
differ at high temperature for s = b using our method. The techniques used in [43]
or [66] for dimension 2 are able to tackle this problem, and show marginal disorder
relevance in this case as well.
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The model of Brownian Percolation has been introduced as an approximation of
discrete last-passage percolation models close to the axis. It allowed to compute some
explicit limits and prove fluctuation theorems for these. We review the development
of these ideas, and we outline some proofs. We emphasize the relations between the
Brownian percolation and models exhibiting determinantal structure, like non-colliding
random walks and random matrices.
Next, we establish analogous relations between asymmetric discrete directed polymers
in random environments and a continuous-time directed polymers model in a Brow-
nian environment introduced in [79] and studied in [77] in the one-dimensional case.
The key ingredient is a strong approximation argument developed by Kómlos, Major
and Túsnady. We give a complete treatment of the partition function in the multi-
dimensional case.
Finally, we give an explicit formula for the free energy of a 1 + 1-dimensional directed
polymer in a random environment with a drift tending to infinity and find the exact
order of the fluctuations.



CHAPTER 5

Overview

The Brownian Percolation model was introduced by Glynn and Whitt in [45], where
the authors studied the asymptotic of passage times for customers in an infinite network
of M/M/1 queues in tandem. This continuous model was easier to handle than the
original discrete problem, mostly because of the scaling properties of the Brownian
motion.

Let state the problem more precisely in its original setting: Let ΩN,M be the set of
directed paths from (0, 0) to (N,M), i.e., the paths with steps equal to (0, 1) or (1, 0).
Let {η(x) : x ∈ Z

2} be a collection of (centered) i.i.d. random variables with finite
exponential moments eλ(β) = Q(eβη) < +∞, which will be referred as the environment
variables, or just as the environment.

Define

T (N,M) = max
s∈ΩN,M

H(S).(5.1)

where H(S) =
∑

(t,x)∈S η(t, x) will be called the energy of the path S. This is usually
referred to as a last-passage percolation problem. It can be interpreted as the departure
time of the M-th customer from the N -th queue in a series of queues in tandem. The
variable η(k, n) has then to be understood as the service time of the k-th customer in
the n-th queue.

A regime of special interest occurs when

M = O(Na)

for some a ∈ (0, 1). Glynn and Whitt [45] proved that

lim
N→+∞

T (N, ⌊xNa⌋)
N (1+a)/2

= c
√
x,(5.2)

where the constant is independent of a and of the distribution of the service times, given
that they satisfy some mild integrability conditions. The proof used a strong approxi-
mation of sums of i.i.d. random variables by Brownian motions (see [63, 64]) in order
to approximate T (N, ⌊xNa⌋) by the corresponding maximal energy along continuous-
time paths in a Brownian environment (see below for precise definitions). Then, scaling
arguments lead to (5.2). Based on simulations, they conjectured that c = 2.
The proof of this conjecture was first given by Seppäläinen in [84]. It uses a coupling
between queues in tandem and TASEP. Later proofs used an interesting relation be-
tween the Brownian model and eigenvalues of random matrices. For a shorter proof

73
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using ideas from queueing theory and Gaussian concentration, see [50]. We will review
the ideas of these proofs in the next Chapter.

Let us now state the following as a summary of the previous discussion:

Theorem 5.1.

lim
N→+∞

T (N, ⌊xNa⌋)
N (1+a)/2

= 2
√
x,(5.3)

in probability.

Some fluctuation results are also available (see [4, 11]). The limiting law is identified
as the Tracy-Widom distribution. This is closely related to the link between Brownian
percolation and random matrices we have mentioned. See also [51] for large deviations
results at the Tracy-Widom scale. As usual in this type of models, the upper deviations
are much larger than the lower ones (see [54] for last-passage percolation, [33] and
[85] for the related model of increasing subsequences in the plane and [6] for directed
polymers. See also [69] for a general discussion on the subject, including random
matrices). This can be explained heuristically by noticing that, in order to increase the
values of the max, it is enough to increase the values of the environment along a single
path. Decreasing the value of the max requires to decrease the values of the whole
environment.

We will be mostly concerned with non-zero temperature analogs to the LPP prob-
lem, namely directed polymers in random environment. Let PN,M be the uniform
probability measure on ΩN,M . For a given realization of the environment, we define on
ΩN,M the polymer measure at inverse temperature β as

µβ
N,M(ω = S) =

1

Zβ(N,M)
eβH(S)PN,M(ω = S), ∀S ∈ ΩN,M ,(5.4)

where Zβ(N,M) is a normalizing constant called the (point-to-point) partition function,
given by

Zβ(N,M) = PN,M

(
eβH(ω)

)
.(5.5)

It is easy to show the existence of the limit of the free energy in the regime considered
above for the LPP. Indeed, for M = O(Na) for some a ∈ (0, 1), the following limit holds
for almost every realization of environment:

lim
N→+∞

1

N (1+a)/2
logZβ(N,Na) = 2β.(5.6)

The proof is straightforward as it applies directly the corresponding result for last-
passage percolation. Just note that

− log |ΩN,Na |+ βT (N,Na) ≤ logZβ(N,N
a) ≤ βT (N,Na),(5.7)

observe that log |ΩN,Na | = O(Na logN), divide by N (1+a)/2 and let N goes to +∞.
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To obtain a non trivial regime, we have to ensure that the normalizing term is of
the same order than |ΩN,Na |. This will be done by increasing the temperature with
N (equivalently, decreasing β). Although this is not the usual situation in statistical
mechanics, it allows us to recover a well known model of continuous-time directed
polymer in a Brownian environment (see below for a precise definition). Until now, no
precise relation between discrete models and this Brownian model has been given in
the literature.

Let us introduce more precisely the Brownian setting: let (B
(i)
· )i be an i.i.d. sequence

of one-dimensional Brownian motions. Let Ωc
N,M be the set of increasing sequences

0 = u0 < u1 < · · · < uM < uM+1 = N . This can be identified as the set of piecewise
constant paths withM positive jumps of size 1 in the interval [0, N ]. Note that |Ωc

N,M | =
NM/M !, where | · | stands here for the Lebesgue measure. Denote by P c

N,M the uniform
probability measure on Ωc

N,M . For u ∈ Ωc
M,N , define

Br(N,M)(u) = Br(u) =
M∑

i=0

(B(i)
ui+1
− B(i)

ui
),(5.8)

L(N,M) = max
u∈Ωc

N,M

Br(u),(5.9)

ZBr
β (N,M) = P c

N,M

(
eβBr(u)

)
.(5.10)

The functional (5.9) is the aforementioned Brownian percolation problem from queueing
theory. Observe that it has the interesting property that

L(N,M) =
√
NL(1,M),

in law. This is due to the scaling properties of Brownian motions. It is now a well
known fact that L(1,M) has the same law as the larger eigenvalue of a Gaussian
Unitary random matrix (GUE, see [5, 79] among other proofs). As a consequence,

N1/6
(
L(1, N)− 2N1/2

)
−→ F2,(5.11)

where F2 denotes the Tracy-Widom distribution [91]. It describes the fluctuations of
the top eigenvalue of the GUE and its distribution function can be expressed as

F2(s) = exp

{
−
∫ +∞

s

(x− s)u(s)2dx

}
,

where u is the unique solution of the Painlevé II equation

u′′ = 2u3 + xu,

with asymptotics
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u(x) ∼ 1

2
√
πx1/4

exp

{
−2

3
x3/2

}
.

The distribution function F2 is non-centered and its asymptotics behavior is as follows:

F2(s) ∼ e
1
12

s3

, as s→ −∞, 1− F2(s) ∼ e−
4
3
t3/2

as t→ +∞.

See [2] for more details about the Tracy-Widom distribution and random matrices in
general. In the discrete setting, it is shown in [11] that, for M = Na with 0 < a < 3/7,

T (N,Na)− 2N (1+a)/2

N1/2−a/6
−→ F2.

The proof uses similar approximations than the seminal work of Glynn and Whitt. See
also [4] for similar results.

The third display (5.10) is the partition function of the previously mentioned continuous-
time directed polymer in Brownian environment. The free energy of this polymer model
is explicit. Its exact value was first conjectured in [79] based on a generalized version
of the Burke’s Theorem and detailed heuristics. The proof was then completed in [77]:

Theorem 5.2 (Moriarty-O’Connell). [77]

lim
N→+∞

1

N
logZBr

β (N,N) = f(β),(5.12)

where

f(β) =

{
−(−Ψ)∗(−β2)− 2 log |β| : β 6= 0
0 : β = 0

(5.13)

where Ψ(m) ≡ Γ′(m)/Γ(m) is the restriction of the digamma function to (0,+∞), Γ is
the Gamma function

Γ(m) =

∫ +∞

0

tm−1e−tdt,

and (−Ψ)∗ is the convex dual of the function −Ψ:

(−Ψ)∗(u) = inf
m≥0
{mu+ Ψ(m)} .

We now search for a ’regime’ in which the limiting free energy of the discrete model
is the same as the Brownian one. It turns out that a way to achieve this is to increase
the temperature in the asymmetric discrete model, as N tends to +∞. So the Moriarty-
O’Connell polymer can be viewed as an approximation of a discrete polymer close to
an axis at a very high temperature.
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Theorem 5.3 (The Moriarty-O’Connell regime). Let βN,a = βN (a−1)/2,

lim
N→+∞

1

βN,aN (1+a)/2
logZβN,a

(N,Na) = f(β)/β(5.14)

In Section 8.3, we will give a proof of a d dimensional version of this fact. Unfor-
tunately, we are no longer able to compute explicitly the free energy for the Moriarty-
O’Connell model when d ≥ 2.

The rest of this work is organized as follows:

• In Chapter 6, we review several aspects of queues in tandem and last passage
percolation and give sketches of several proofs of Theorem 5.1. We emphasize
the link with the Brownian percolation problem.
• In Chapter 7, we introduce the generalized Brownian queue and discuss its

relation with the Brownian percolation.
• In Chapter 8 we discuss the links between asymmetric directed polymers and

directed polymers in a Brownian environment. We prove the continuity of the
point-to-point partition function for discrete models in Section 8.1. In Section
8.2, We discuss the existence of the free energy for the directed polymers in
Brownian environments. We give the proof of Theorem 5.3 in Section 8.3 and
discuss a more asymmetric situation in Section 8.4.
• Finally, we study a model of directed polymers with a huge drift in Chapter 9.





CHAPTER 6

Last Passage Percolation and Queues in Tandem

The aim of this chapter is to give a proof of Theorem 5.1 in the context of queueing
theory, following [45]. We then discuss several proofs of the fact that c = 2. We also
discuss briefly the fluctuation results from [11].

6.1. The models

We consider a queueing network consisting of a series ofN single-server queues. Each
queue has an infinite waiting space and follows the first-in-first-out service discipline.
Initially we place M labeled customers in the first queue. We denote by V (i, j) the
service time of the i-th customer at queue j. We assume that these are all i.i.d. with
mean and variance equal to 1. Denote by D(N,M) the departure time of client M from
queue N .

We are interested in the asymptotics of D(N,M) when N → +∞ and M = MN

depends on N . The simpler situation occurs when MN = 1 for all N . Then D(1, N) is
just a sum of i.i.d. random variables and, under our hypothesis, it satisfies the usual
law of large numbers and central limit theorem.

When M = ⌊xN⌋ for some 1 < x < +∞, it is easy to see by subadditivity that

D(N, ⌊xN⌋)
N

→ γ,

as N → +∞ for some γ = γ(x) ∈ (0,+∞]. Some integrability condition has to be
introduced in order to insure that γ(x) < +∞ (see [74]). However, the explicit form
of γ(·) as a function of x depends strongly on the distribution of the service times and
is in general unknown. There are some specific distributions for which this value has
been discovered (see [80] for a review of available results).
We will be concerned by a very specific asymptotics, namely M = O(Na) for some a ∈
(0, 1). This corresponds to early departures from a large number of queues. Contrarily
to the case k = O(N), we will see some universal phenomenons arising. More precisely,
assume that there exists positive constants K and λ such that Q(V (0, 0) > x) ≤ Ke−λx

for all x ≥ 0.

Theorem 6.1. There exists a constant c,

D(M, ⌊xNa⌋)−N
N (1+a)/2

→ c
√
x,

in probability. Moreover the constant c is universal, i.e., it does not depend on the
particular law of the service times as long as it admits some exponential moments.

79
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This queueing system is closely related to the last passage percolation problem.
Observe that

D(N,M) = V (N,M) + max{D(N − 1,M), D(N,M − 1)},
and then, it follows by iteration that

D(N,M) = sup
S∈ΩN,M

∑

(i,j)∈S

V (i, j),(6.1)

where, as before, ΩN,M represents the set of up/right paths from (0, 0) to (N,M). We
then see that Theorem 6.1 is the queueing theoretic equivalent to Theorem 5.1.

6.2. Approximation by Brownian Queues

The key to prove the law of large number forD(N,M) is to couple each row {V (i, j) :
j ≥ 0} with a Brownian motion B(i)(·). Then the original problem reduces to prove
the analogue asymptotics for a Brownian last passage percolation problem for which
we can take advantage of the scaling properties of the Brownian motion.

Recall the following definitions: let (B
(i)
· )i be an i.i.d. sequence of one-dimensional

Brownian motions. Let Ωc
N,M be the set of increasing sequences 0 = u0 < u1 < · · · <

uM < uM+1 = N . This can be identified as the set of piecewise constant paths with
M positive jumps of size 1 in the interval [0, N ]. Note that |Ωc

N,M | = NM/M !, where
| · | stands here for the Lebesgue measure. Denote by P c

N,M the uniform probability
measure on Ωc

N,M . For u ∈ Ωc
M,N , define

Br(N,M)(u) = Br(u) =

M∑

i=0

(B(i)
ui+1
− B(i)

ui
),

L(N,M) = max
u∈Ωc

N,M

Br(u),

The following theorem corresponds to Theorem 4.1 in [45]. It gives the approximation
of D(N,M) in terms of L(1,M). It can be proved using strong embeddings (see Section
8.3). As we use similar techniques in the proof of our Theorem 8.8, we will refer the
reader to the original proof in [45] (see also [11]).

Theorem 6.2. (Glynn-Whitt) If there exists positive constants K and λ such that
Q(V (0, 0) > x) ≤ Ke−λx for all x ≥ 0, then the service times {V (i, j) : i, j ≥ 0} can be
coupled to the Brownian motions {B(i)(·) : i ≥ 0} in such a way that

max
1≤i≤N
1≤j≤Na

{
D(i, j)− i−

√
NL(i/N, j)

}
= O(Na logN).(6.2)

The constant c appears in the following lemma:
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Lemma 6.3. There exists a constant c such that

lim
N→+∞

1

N
L(N, ⌊xN⌋) = c

√
x, a.s.(6.3)

and L(1, ⌊xN⌋)/
√
N converges in probability to c

√
x.

Proof. By subadditivity, we have

lim
N→+∞

1

N
L(N, ⌊xN⌋) = γ(x), a.s.

for some γ(x). The second affirmation is a consequence of the first one and Brownian
scaling, since

1

N
L(N,Nx) =

1√
N
L(1, Nx),

where the equality holds in law. Now, for x > 0, we have

lim
N→+∞

1√
N
L(1, xN) =

√
x lim

N→+∞

1√
xN

L(1, xN) =
√
xγ(1).

The result follows by taking c = γ(1). For more technical details, we refer the reader
to [45], Theorem 7.1. �

We are now ready to complete the proof of Theorem 6.1:

D(N, xNa)−N
N (1+a)/2

=
D(N, xNa)−N −

√
NL(1, ⌊xNa⌋)

N (1+a)/2
+
√
N
L(1, ⌊xNa⌋)
N (1+a)/2

.

The first summand converges to 0 in probability, thanks to (6.2), while the second one
converges to c

√
x, according to Lemma 6.3.

The next subsection is devoted to the proof that c = 2.

6.3. A few proofs of Theorem 5.1

We recall that the first proof of the fact that c = 2 in Theorem 5.1 was given by
Seppäläinen [84]. It uses a link between queues in tandem and particle systems, namely
Totally Asymmetric Exclusion process (TASEP) and zero-range process. This proof is
discussed in the first subsection.

In the second subsection, we present a proof done entirely in the Brownian setting. It
uses a variational formula which is reminiscent of the queueing theoretic interpretation.
We discuss this approach with more details in the third subsection.

Finally, we sketch a proof relating Brownian percolation and random matrices in
the fourth subsection.
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6.3.1. The proof of Seppäläinen. We outline the proof in [84]. Consider the
following representation of queues in tandem: labeled servers are placed in order at
sites of Z. The distance between servers k − 1 and k is interpreted as the number of
clients waiting at server k. Whenever one of those clients (the rightmost!) is served, it
exchanges positions with server k. Forgetting the clients for a while, observe that each
server tries to jump to the left with rate 1. If the left site is occupied by another server,
the jump is suppressed (this situation is equivalent to an empty queue). The dynamics
of these servers is usually known as TASEP, in full, totally asymmetric exclusion process
(with jumps to the left).

On the one hand, we will prove a variational formula relating the position of server
⌊Nax⌋ at time Nt with passage times of customers. This, combined with the result of
Glynn and Whitt will bring the c into the game. On the other hand, we will use well
known equilibrium properties of the TASEP to identify the value of c.

Let us define carefully the TASEP. Let σ(k) ∈ Z denote the initial position of
server k ∈ Z. To each site z ∈ Z, we associate a rate 1 Poisson clock. At each event
time, if there is a server at z and no server at z − 1, the server at z jumps to z − 1.
If the site z − 1 is occupied by another server, the jump is suppressed. Note that
η(k) = σ(k) − σ(k − 1) − 1 is the number of clients waiting at server k. We denote
by σ(k, t) the position of server k at time t under the dynamics defined above. We
restrict ourselves to situations where σ(k) ≤ σ(k+1)+1 for all k ∈ Z. We allow initial
conditions with σ(k) = −∞ for all k < k0 for some k0. This amounts to consider an
infinite number of clients waiting at queue k0.

The fundamental result in [84] is the following: consider a sequence of possibly
random initial conditions σN satisfying the following for some a ∈ (0, 1):

(A1) ∀y ∈ R,

lim
N→+∞

N−(1+a)/2σN (⌊Nay⌋) = v0(y),

in probability for some nondecreasing function v0 : R→ [−∞,+∞).

(A2) ∃ β0 > 0 and C0 > 0 such that

lim
N→+∞

P
(
σN(k) ≤ β0N

(1−a)/2k, ∀ k ≤ −C0N
a
)

= 1.

Theorem 6.4 (Seppäläinen). Under conditions (A1) and (A2), we have

lim
N→+∞

σN (⌊Nax⌋, Nt) +Nt

N (1+a)/2
= v(x, t),(6.4)

in probability, for all x ∈ R and t > 0, where

v(x, t) = sup
y<x

{
v0(y) + 2

√
t(x− y)

}
.(6.5)
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We will sketch the proof of this Theorem, first with c instead of 2 in Formula (6.5).
Then, arguments of a different kind will lead to the exact value by simple comparison.
Observe that it is enough to find a single convenient sequence (σN)N allowing us to
compute c. Let us mention that the one we will use is in fact random, even if the
configuration of interest (equivalent to infinitely many customers waiting at the first
queue and no clients elsewhere) is not.
But first, let us explain how Theorem 6.4 can be used to show that c = 2: σN(⌊Nax⌋)−
σN(⌊Nax⌋, Nt) is the number of customers served by server ⌊Nax⌋ in the time interval
[0, Nt]. By Theorem 6.4, this is roughly

Nt−N (1+a)/2 (v(x, t)− v0(x)) + o(N (1+a)/2).(6.6)

As the service process has rate 1, let us note once and for all that the length of a given
interval and the number of event times in that interval are asymptotically equivalent.
For example, the service available at server ⌊Nax⌋ in the time interval [0, Nt] is asymp-
totically equivalent to Nt, and then, by (6.6) the corresponding idle time is equivalent
to

N (1+a)/2 (v(x, t)− v0(x)) + o(N (1+a)/2).

Now, the initial condition we are interested in corresponds to σN(i) = −∞ for i ≤ 0
and σN (i) = i− 1 for i ≥ 1, i.e., infinitely many customers waiting at queue 1. This in
turn corresponds to the choice

v0(x) =

{
−∞ : x ≤ 0
0 : x > 0

,

which, thanks to (6.5), implies that

v(x, t) =

{
−∞ : x ≤ 0
2
√
tx : x > 0

In conclusion, we have shown that, under the particular situation described above, the
idle time of server ⌊Nax⌋ in the time interval [0, Nt] is asymptotically equivalent to

N (1+a)/22
√
tx+ o(N (1+a)/2),

for x > 0. We need to relate this to a statement on passage times of customers: note
that T (⌊Nax⌋, Nt) is roughly the hitting time of server ⌊Nax⌋ to the site −⌊Nt⌋. Note
that, without the exclusion rule, this time will be of order Nax + Nt ∼ Nt. Then,
T (⌊Nax⌋, Nt) −Nt corresponds to the suppressed jumps of server ⌊Nax⌋, i.e., its idle
time, and we can conclude.

Now let us sketch the proof of Theorem 6.4. The key point is a variational formula
relating the position of servers to the passage times of customers in the queueing system.
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Let ξ(j, t) denote the number of customers that have left server j by time t. With
the passage time notation, ξ(j, t) = min{k ≥ 0 : T (k+1, j) > t}. Using the Glynn and
Whitt’s asymptotic on passage times, we can show that

lim
N→+∞

ξ(⌊Nay⌋, Nt)−Nt
N (1+a)/2

= −c
√
ty.(6.7)

Indeed, for ǫ > 0, the condition

ξ(⌊Nay⌋, Nt)−Nt
N (1+a)/2

≤ −c
√
ty + ǫ,(6.8)

is equivalent to ξ(⌊Nay⌋, Nt) ≤ NsN with sN = t−N (a−1)/2(c
√
yt−ǫ). By construction,

this last condition is satisfied if T (NsN , N
ay) ≥ Nt. We will show that this holds with

probability tending to 1 as N → +∞. The Glynn and Whitt approximation (Theorem
6.2) can be restated in the following convenient way: for each fixed κ ∈ N, there is a
finite random variable Y such that

|T (Nx,Nay)−Nx−
√
κNL(x/κ,Nay)| ≤ Y Na logN,

for all 0 ≤ x ≤ κ and 0 ≤ y ≤ N . In particular,

T (NsN , N
ay) ≥ NsN +

√
κNL(sN/κ,N

ay) + Y Na logN.(6.9)

Now, the scaling properties of the Brownian percolation functional imply that

√
κNL(sN/κ,N

ay) = c
√
ytN (1+a)/2 + o(N (1+a)/2).

This in turn implies that the right-hand-side of 6.9 is larger than Nt with probability
tending to 1 as N → +∞, which proves that (6.8) happens with probability tending to
1. The reverse inequality follows just in the same way.

In order to relate the position of the servers to the quantities ξ(·, ·), we will construct
a special family of initial configurations χl for the TASEP: each site x ≥ l is occupied
by a server and all sites x < l are empty. This means that there is an infinite number of
clients waiting at the server initially at l and no clients elsewhere. Servers are labeled
in such a way that χl(j, 0) = l + j − 1 is the position of server j at time 0. We let
all these processes evolve using the Poisson clocks we have introduced before. χl(j, t)
will denote the position of server j at time t for the TASEP with initial conditions χl.
These are related to passage times through the formula

χl(j, t) = l + j − 1− ξl(j, t).(6.10)

The variational formula we have announced before is stated in the following Lemma,
which corresponds to Lemma 3.1 in [84] and whose proof is deferred. Consider an initial
configuration σ:
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Lemma 6.5.

σ(k, t) = sup
i≤k

χl(k − i+ 1, t).(6.11)

We can now continue with the proof of Theorem 6.4: by the preceding Lemma and
(6.10),

σN (⌊Nax⌋, Nt) +Nt

N (1+a)/2
= sup

i≤Nax

{
σN(i)

N (1+a)/2
+
⌊Nax⌋ − i
N (1+a)/2

− ξσN (i)(⌊Nax⌋ − i, Nt)
N (1+a)/2

}
.

Now, some technical work is needed in order to apply (6.7) to the right hand side of
this equality (see Lemma 5.2 and 5.3 in [84] for details). The assumption (A2) allows
us to restrict conveniently the range of the i’s. Once this is done, we can take the limit
and we obtain

σN (⌊Nax⌋, Nt) +Nt

N (1+a)/2
∼ sup

y≤x

{
v0(y) + c

√
t(x− y)

}
,

which ends the proof of Theorem 6.4, except for the exact value of c. Until here, we
made no additional assumption on the initial conditions other than (A1) and (A2).
We will now consider some convenient sequence of random initial conditions (σN)N :
P (σN(0) = 0) = 1 and each ηN(i) = σN (i) − σN (i − 1) is Geom(1 − νN ) distributed,
with

νN =
N (1−a)/2

1 +N (1−a)/2
.

In this way, E(σN(k)) = N (1−a)/2k, and thanks to large deviations properties of the
geometric distribution, assumptions (A1) and (A2) will hold with v0(y) = y, β0 < 1
and C0 > 0. We can then conclude that

lim
N→+∞

σN(0, Nt) +Nt

N (1+a)/2
= sup

y≤0

{
y + c

√
−ty

}
=
c2t

4
.(6.12)

These initial conditions are in fact invariant probabilities for the process we are con-
sidering (see [3], where this is stated in term of zero-range processes). In the queueing
theoretic language, this means that the number of customers that leave the server 0 is
a rate νN Poisson process (this is the celebrated Burke’s theorem that we will discuss
later), i.e., −σ(0, Nt) is Poisson distributed with intensity NtνN and then, after a few
algebraic computations,

lim
N→+∞

σN(0, Nt) +Nt

N (1+a)/2
= t.

This, together with (6.12) implies that c = 2.
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We are now left with the proof of Lemma 6.5. Take any positive time t. It is easy
to see that we can find Ml << 0 << Mr such that that the clocks at Ml and Mr do
not ring in the interval [0, t]. This means that the dynamics in the box [Ml,Mr] is not
influenced by events occurring outside of it in this time interval. Now, as a.s., there is
finitely many event times in the box [Ml,Mr] during [0, t], we can proceed by induction.

So, suppose that τ is an event time for the clock at M ∈ [Ml,Mr] and that (6.11)
holds for all t < τ for all servers k such that σ(k, t) ∈ [Ml,Mr].
We have to consider a few different cases. If there is no server at M at time τ , nothing
happens and (6.11) still holds.
So, we can suppose that σ(k, τ−) = M for some k, where τ− is the event time prior to
τ (so nothing happens in the interval [τ−, τ ]). Now, either the server k jumps to the
left or not. This depend on whether the site M − 1 is occupied by the server k − 1 or
not.
Suppose that σ(k−1, τ−) = M −1. By the induction hypothesis, (6.11) holds for k−1
and τ−, and the supremum is attained for some i. Then,

M = χσ(i)(k − i, τ−) + 1 ≤ χσ(i)(k − i+ 1, τ−) ≤ σ(k, τ−) = M

This implies that σ(k, τ−) = χσ(i)(k − i+ 1, τ) and χσ(i)(k − i+ 1) cannot jump at τ .
So (6.11) holds for k and τ , and the supremum is attained at i.

Now, suppose that server k does jump to position M − 1 at time τ . We must have
σ(k − 1, τ−) ≤ M − 2. We will prove that χσ(i)(k − i + 1) also jumps for any i such
that χσ(i)(k − i+ 1, τ−) = M .
It is obviously true for k = i because χ(σ(i))(1) is the leftmost server of that process.
For k ≤ i− 1, we can use the induction hypothesis:

χσ(i)(k − i, τ−) ≤ σ(k − 1, τ−) ≤M − 2.

This means that any server χσ(i)(k) at M at time τ will jump at τ because it is not
obstructed. This in turn implies that (6.11) still holds for k and τ and ends the proof.

As a general remark, we would like to notice that this strategy of proof will appear
again in a purely Brownian setting in the proof by Hambly-Martin-O’Connell. More
precisely, the exact value of c is obtained by comparing two expressions, one of them
appearing as a variational formula involving queues in tandem, and the other one as a
consequence of some law of large numbers related to Burke’s theorem. This approach
seems to be very general and is carefully exposed in [80]. This approach is a restatement
in the setting of queueing theory of the ideas appearing in the original proof of Theorem
5.1 by Timo Seppäläinen.

6.3.2. The proof of Hambly-Martin-O’Connell. The starting point of this
proof is a formula given in [79] (Formula 24 on page 294):

sup
t>0
{B(−tN, 0)−mNt + L([−Nt, 0], N)} =

N∑

k=1

qk(0),(6.13)
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where, L([−Nt, 0], N) is defined just as L(Nt,N) but using the Brownian motions B(k)

in the interval [−Nt, 0]. B(−tN, 0) = B−tN − B0 with B a Brownian motion on the
line, independent of {B(k) : k ≥ 1}, and (qk(0))k is an i.i.d. family of exponential
random variables of parameter m. We will discuss this formula with some details in
the following subsection. By the law of the large numbers applied to the right side of
(6.13), we find that

sup
t>0

{
1

N
B(−tN, 0)−mt +

1

N
L([−Nt, 0], N)

}
→ 1

m
,

as N tends to +∞. We are tempted to take the limit inside the sup and claim that

sup
t>0

{
−mt + c

√
t
}

=
1

m
.

Then, it would be enough to find the maximum in the left hand side to conclude that
c = 2. But a little uniformity is needed: the following proposition is the core of the
proof of Theorem 8 in [50].

Proposition 6.6 (Hambly-Martin-O’Connell).

sup
t>0

{
1

N
BtN +

1

N
L([−Nt, 0], N) − c

√
t

}
→ 0,(6.14)

as N → +∞.

Let us sketch this proof: it is easy to see that the first summand inside the sup
tends to 0 uniformly. The difficult part consists in controlling 1

N
L(Nt,N) − c

√
t. The

key is the following concentration inequality which corresponds to Lemma 7 in [50]:

Q

(
sup
t>0

∣∣∣∣
(1/N)L(Nt,N)− c

√
t

1 + t

∣∣∣∣ > y

)
≤ C exp{−CN(y − εN)2},(6.15)

where (εN)N is some sequence tending to 0. Define

VN(t) =
(1/N)L(Nt,N)− cN t

1 + t
,

where cN = QL(Nt,N)/N
√
t ↑ c. The event in the left hand side of (6.15) implies that

sup{VN(t) : t > 0} > x for x = y − (c− cN). Now, we discretize the line in intervals of
length δ, for some well-chosen parameter δ > 0. Then,

Q

(
sup
t>0

VN(t) > x

)
≤ Q

(
sup

j
VN(δj) > x/3

)

+ Q

(
sup

j
VN(δj) ≤ x/3, sup

t>0
VN(t) > x

)
.
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The first summand is easily handled by standard Gaussian concentration arguments
(see Lemma 5 in [50]). The second term says that the function VN(·) performs large
oscillations in some interval [jδ, (j + 1)δ]. But, for t ∈ (t0, t1),

L(Nt0, N) +B
(N)
t −B(N)

t0 ≤ L(Nt,N) ≤ L(Nt1, N)− (B
(N)
t − B(N)

t1 ).

Thus, for h > 0, by standard properties of Brownian motion,

Q (∃t ∈ (t0, t1) : L(Nt,N) /∈ [L(Nt0, N)− h, L(Nt1, N) + h])

≤ Q
(
∃t ∈ (t0, t1) : B

(N)
t −B(N)

t0 < −h, B(N)
t1 − B

(N)
t < −h

)

≤ 2Q (Mt1−t0 ≥ h)

= 4Q (Bt1−t0 ≥ h)

≤ 4

√
t1 − t0
h

exp

{
− h2

2(t1 − t0)

}
,

where Mt = sup{Bs : s ∈ (0, t)}. Up to some technicalities (for instance, the need for
a sequence (εN)), this yields (6.15).

6.3.3. A remark about Brownian queues. The formula (6.13) is reminiscent
of the queueing theoretical interpretation of the last passage percolation problem. It
has been used to compute similar limits in several discrete cases. The interested reader
can consult the review [80] for a detailed bibliography and precise applications.

We introduce first the single Brownian queue: let B and C be independent one-
dimensional Brownian motions indexed by R and m > 0. The arrival and service
processes during the time interval (s, t] are defined respectively by

B(s,t), m(t− s)− C(s,t).

We introduce the queue length and departure process as:

q(t) = sup
−∞<s≤t

{
B(s,t) + C(s,t) −m(t− s)

}
,

d(t) = Bt + q(0)− q(t).
The following theorem is the analogue of the classical Burke’s theorem in our setting:

Theorem 6.7. [79] (1) {d(t) : t ∈ R} is a standard Brownian motion.
(2) For each t ∈ R, {d(s) : s ≤ t} is independent of {q(s) : s ≥ t}.

We omit the proof as it is very similar to the generalized Brownian queue case, a model
that we will discuss in details in the next chapter. See [79] for both results.

Now, consider B, B(k), k ≥ 1 independent one-dimensional Brownian motions in-
dexed by R. We introduce an infinite series of Brownian queues in tandem by defining
the arrival process at the first queue as B and the service time at the k-th queue as
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mt − B(k), for some positive m. The arrival process at the k + 1-th queue is the de-
parture process from the k-th queue, dk. We can define these processes by recursion,
simultaneously with the queue length at queue k, qk:

q1(t) = sup
s≤t

{
B(s, t) +B(1)(s, t)−m(t− s)

}
,

d1(s, t) = B(s, t) + q1(s)− q1(t)

qk+1(t) = sup
s≤t

{
dk(s, t) +B(k+1)(s, t)−m(t− s)

}
,

dk+1(s, t) = dk(s, t) + qk+1(s)− qk+1(t)

Summing q1(0) and q2(0), we obtain

q1(0) + q2(0) = sup
s≤0
{B(s, 0) +ms + L([s, 0], 2)} .

The formula (6.13) follows easily by recurrence. The fact that each qk(0) has an ex-
ponential distribution follows from basic properties of Brownian motion. The indepen-
dence follows from Theorem 6.7.

6.3.4. The proof of O’Connell-Yor. This proof is less self-contained than the
previous one. The key point is to prove that the law of L(1, N) is the same as the law
of the largest eigenvalue of a GUE random matrix. The argument is harder, but as the
eigenvalues of random matrices are well studied objects, this will give a large amount
of information about L(1, N). We will inherit, among other things, the very precise
results on fluctuations and large deviations available for random matrices.

Let (ǫi)i be centered real Gaussian random variables with Q(ǫ2i ) = 2, and let (ǫi,j)i<j

be complex Gaussian random variables such that Qǫi,j = Qǫ2i,j = 0, Q|ǫi,j|2 = 1.
All these random variables are assumed to be independent. Let MN be a hermitian
N × N matrix with entries [MN ]i,i = ǫi and [MN ]i,j = ǫi,j for i < j. This construction
defines a probability law on the space of complex hermitian N × N matrices known

as the Gaussian Unitary Ensemble (GUE). Let λ
(N)
1 < · · · < λ

(N)
N be the N different

eigenvalues of MN taking values in W = {x : x1 < · · · < xN}. It is now a classical
result that, for x ∈ W ,

Q
(
(λ

(N)
1 , · · · , λ(N)

N ) ∈ dx
)

= CNΛ(x)2 exp{−
∑

i

x2
i },(6.16)

where Λ(x) = Πi<j|xj − xi| and CN is an explicit constant. It is known that the
empirical distribution of these eigenvalues converges to the so called semi-circular law,
which support is exactly the interval [−2, 2], and that λ(N)/N → 2 as N → +∞.

The function Λ will be used to construct an h-transform P̂x of a certain family of N
paths starting from x ∈ W . As Λ is strictly positive on W and vanishes on its boundary,
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P̂x will be interpreted as the law of these N paths conditioned on non-colliding. On one

hand, we will show that, as x→ 0, the law P̂x will converge to a law P̂0+ which coincides
with (6.16). On the other hand, we will identify the law of L(1, N) as the law of the

highest path under P̂0+. The first part of the proof uses results on non-colliding paths
relying on their determinantal structure. The second is a piece of queueing theory.

Let Px be the law of a d-dimensional Brownian motion B starting at x ∈ W . Let
(Ft)t be the natural filtration of B. We define the law P̂x as follows: for A ∈ Ft,

P̂x (A) = Px

(
Λ(Bt)

Λ(x)
1A, T>t

)
,(6.17)

where T is the exit time from W . The Karlin-McGregor formula (see, for example,
[2], Lemma 4.2.54) giving the law of non-intersecting Markov processes in terms of

determinants gives the following useful characterization of the law P̂x:

Px (Bt ∈ dy, T > t) = det [pt(xi, yj)]i,j ,

where pt(·, ·) is the transition function of the one-dimensional Brownian motion. Careful
asymptotics (see [58]) allow us to take the limit W ∋ x→ 0:

lim
W∋x→0

P̂x (Bt ∈ dy) = CN(t)Λ(y)2 exp{−
∑

i

y2
i },

with CN(1) = CN . This allows us to define in an appropriate way the law of N non-
colliding random motions starting from a common point (obviously, the non-colliding
condition is restricted to strictly positive instants): for A ∈ σ(Bu : u ≥ t),

P̂0+ (A) = P0

(
CN(t)Λ(Bt)

2P̂Bt(A ◦ θ−t)
)
.(6.18)

At t = 1, this coincides with the expression (6.16) fot the eigenvalues of random matri-
ces.

For the second part of the proof, we need to introduce a family of mappings of
continuous paths following O’Connell and Yor [79]:

(f ⊗ g)(t) = inf
0≤s≤t

[f(s) + g(t)− g(s)],(6.19)

(f ⊙ g)(t) = sup
0≤s≤t

[f(s) + g(t)− g(s)].

Now, define

Γ(f, g) = (f ⊗ g, g ⊙ f) ,

and, by recurrence, Γ2 = Γ
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Γk+1(f1, · · · , fk) = (f1 ⊗ · · · ⊗ fk,

Γk−1(f2 ⊙ f1, f3 ⊙ (f1 ⊗ f2), · · · , fk ⊙ (f1 ⊗ · · · ⊗ fk−1))).

Observe that Γk : D(R+)k → D(R+)k is continuous in the Skorohod topology,
and, if we consider the fi’s as independent one-dimensional Brownian motions, its first
coordinate corresponds to −L(1, N).

We will first work in the context of Poisson processes. Later, careful scaling limits
will lead to analogue results for Brownian motion.

Proposition 6.8. Take 0 < µ1 < · · · < µN < +∞, and for each 1 ≤ i ≤ N , let

N (µi) be a Poisson process on the line with intensity µi and initial condition N
(µi)
0 = i.

We assume that all these processes are independents. Denote by P their joint law and by

P̂ the h-transform with respect to the function Λ. Then, the law of (N (µ1), · · · , N (µN ))

under P̂ coincides with the law of ΓN(N (µ1), · · · , N (µN )) under P .

The key point of the proof is the celebrated Burke theorem stating that, in equilib-
rium, the law of the departure process from a M/M/1 queue coincides with the arrival
process. Let us briefly sketch the proof just in the case N = 2: consider λ < µ and A
and S two Poisson processes of intensity λ and µ respectively. Denote by A(s, t] the
number of event times in the interval (s, t] and At = A(0, t] (and similarly for all the
processes appearing in the following). We interpret A as the arrival process and S as
the service process. Introduce

Qt = sup
s≤t
{A(s, t]− S(s, t]} ,

D(s, t] = A(s, t] +QS −Qt,

the queue length and the departure process respectively. Introduce also

T (s, t] = S(s, t]−Qs +Qt.

Burke’s theorem says that D is a Poisson process with intensity λ. It is possible to
prove, using reversibility, that T is a Poisson process with intensity µ, independent
of D. Moreover, it is possible to prove that {(At, St) : t ≥ 0} conditioned to {At ≤
St, ∀ t ≥ 0} has the same law than {(Dt, Tt) : t ≥ 0} given that Q0 = 0. But, on
the event Q0 = 0, it is easy to see that (Dt, Tt) = Γ(A, S)t and this last expression is
independent of Q0. This leads to the conclusion that the joint law of A and S given
that A ≤ S is the same than the unconditional law of Γ(A, S), which is what we wanted
to prove.

Now, two limits have to be taken in order to recover an analogue of Proposition 6.8
for the Brownian motion: first, we have to take the limit (µ1, · · · , µN) → (µ, · · · , µ)
for any positive and finite µ, and then a diffusive limit in order to recover Brownian
paths from the Poisson ones. We won’t discuss these technical issues here, but we
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would like to mention that, one of the keys of the proof is again a consequence of the
Karlin-McGregor formula, and states that, for N Poisson processes of equal rates,

P̂ (Nt = y) = CN(t)Λ(y)2P (x∗ +Nt = y) ,

where x∗ = (1, · · · , N) (see [59]). Let us now state the result in the Brownian setting:

Proposition 6.9. Let (B(1), · · · , B(N)) be a family of independent one-dimensional

Brownian motions. Let P denote their joint law and P̂ , the h-transform with respect

to the function Λ.Then, the law of (B(1), · · · , B(N)) under P̂0+ coincides with the law
of ΓN(B(1), · · · , B(N)) under P0.

Now, this implies that −L(1, N) has the same law as the lowest path among N

non-colliding Brownian motions with respect to the law P̂0+. By symmetry, the law of
L(1, N) is the same as the highest path. But, by (6.16) and (6.18), we know that, at
t = 1, this law is the same as the law of the larger eigenvalue of a GUE random matrix.

6.4. Fluctuations for the passage times

Recall from Theorem 6.2 that

D(N,Na)−N −
√
NL(1, Na) = O(Na logN).

In particular, if a < 3/7, this last quantity is o(N1/2−a/6). This implies that

D(N,Na)−N − 2N (1+a)/2

N1/2−a/6
= Na/6

(
L(1, Na)− 2Na/2

)
+ o(1).

But we know that,

N1/6
(
L(1, N)− 2N1/2

)
−→ FTW ,

where FTW denotes the Tracy-Widom distribution and the convergence holds in law.
Replacing N by Na, we obtain:

Theorem 6.10. ([9],[11]) If there exist positive constantsK and λ such that Q(V (0, 0) >
x) ≤ Ke−λx for all x ≥ 0, then, for all a < 3/7,

D(N,Na)−N − 2N (1+a)/2

N1/2−a/6
−→ FTW ,

where FTW denotes the Tracy-Widom distribution and the convergence holds in law.

Remark 6.11. The hypothesis on the integrability of the service times can be
considerably relaxed. It is in fact possible to prove the Theorem assuming the existence
of polynomial moments up to order p for some p > 2 (see [11]). The KMT coupling
is weaker under these hypothesis, and we have to restrict to a < 6/7(1/2− p/6). We
recover our bound a < 3/7 by taking p→ +∞.
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Remark 6.12. It is very unlikely that the condition a < 3/7 is optimal. It seems to
be a technical limitation of this method of proof (see the remarks in Section 3 of [11]).





CHAPTER 7

Generalized Brownian queues and DP in Brownian

environments

In this chapter, we discuss an ’exponential’ version of the results presented in Section
6.3.3 and applications to one-dimensional directed polymers in a Brownian environment.
As in the last passage percolation, it is easy to show the existence of the free energy by
subadditivity. We discuss a way to identify exactly the limit, following ideas from [79]
and [77].

7.1. Generalized Brownian Queues

Let B and C be independent Brownian motions indexed by R and let m > 0. Define,
for t > 0,

r(t) = log

∫ t

−∞
ds exp{B(s,t) + C(s,t) −m(t− s)},

f(t) = Bt + r(0)− r(t)
These can be understood as the queue length and the departure process in a general-
ized Brownian queue, where the arrival and service processes in the interval (s, t) are
intended to be B(s,t) and C(s,t) −m(t − s) respectively. A nice feature of this model is
that it shares many interesting properties with the Brownian queue introduced before.
It is naturally related to the model of directed polymers in a Brownian environment,
just as the Brownian queue is related to the Brownian last passage percolation.

Let us also introduce

g(t) = Ct + r(0)− r(t).
The following theorem is Burke’s theorem in this generalized setting:

Theorem 7.1. [79] (1) f and g are independent standard Brownian motions.
(2) For each t ∈ R, {(f(s), g(s)) : −∞ < s ≤ t} is independent of {r(s) : s ≥ t}.
The core of the proof is contained in Proposition 7.2 below. In the following, X

denotes a Brownian motion with a positive drift m and variance σ. First, we introduce
two new quantities:

At =

∫ t

−∞
ds exp{2(Xs −Xt)},

X̂ = Xt + log(At/A0).

95
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Proposition 7.2. (1) X̂ has the same law as X.

(2) For all t ∈ R, {X̂ : s ≤ t} is independent of {As : s ≥ t}.
The proof consists in a series of Lemmas. The first one follows by direct computa-

tions.

Lemma 7.3.

At =

∫ +∞

t

e2(
bXt− bXs)ds,(7.1)

and

Xt =
1

2

∫ t

0

ds

As
+

1

2
log

A0

At
.(7.2)

Note that the second statement of Proposition 7.2 follows from (7.1).

Lemma 7.4. The process At is stationary an reversible.

Proof. The stationarity is an immediate consequence of the definition of A. For
the proof of the reversibility, it will be convenient to specialize to σ =

√
2. Note that,

in this case, exp{r0} has the same law as A0. The general case follows by scaling. We
represent X as X =

√
2bt +mt, with b a standard Brownian motion indexed by R. Let

Yt = A−1
t =

e
√

2bt+mt

∫ t

−∞ e
√

2bs+msds
.

By Itô’s formula, Y satisfies the stochastic differential equation

dYt = Yt(m+ 1− Yt)dt+
√

2Ytdbt.

Its infinitesimal generator is then

Lf(z) = z2f ′′(z) + z(m+ 1− z)f ′(z),

whose adjoint is given by

L∗p(z) =
(
z2p(z)

)′′ − (z(m+ 1− z)p(z))′ .
We obtain the density of the invariant probability measure for Y by solving the ordinary
differential equation L∗p = 0 on (0,+∞). The solution is given by

p(z) = Γ(m)−1zm−1e−z, z > 0.(7.3)

We can check by direct computation that L is self-adjoint with respect to this measure,
and then Y is reversible, as well as A = Y −1. �

Remark 7.5. It follows that exp{−r0} is a Gamma random variable with parameter
m. As a consequence, Q(r0) = −Γ′(m)/Γ(m).
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We can now proceed with the proof of Proposition 7.2. As already noticed, part (2)

follows from formula (7.1). Let us denote by
←−
X the time-reverse of X:

←−
X t = X−t. By

formula (7.2) and stationarity,

←−
X t =

1

2

∫ −t

0

ds

As
+

1

2
log(A0/A−t)

=d
1

2

∫ 0

t

ds

As

+
1

2
log(At/A0)

= −1

2

∫ t

0

ds

As
− 1

2
log(A0/At)

= −Xt,

where the second equality holds in distribution.Then
←−
X = −X in law. On the other

hand, using the reversibility of A, we have

X̂t =
1

2

∫ t

0

ds

As
+

1

2
log(At/A0)

=d
1

2

∫ t

0

ds
←−
A s

+
1

2
log(
←−
A t/
←−
A 0)

=
1

2

∫ t

0

ds

A−s

+
1

2
log(A−t/A0)

= −1

2

∫ −t

0

ds

As
+

1

2
log(A−t/A0)

= −←−X t.

Summarizing, we also have X̂ = −←−X in law, an then X̂ = X in law.

We are now ready to complete the proof of Theorem 7.1: introduce two independent
Brownian motions defined in terms of B and C as

b(1) =
B − C√

2
, b(2) =

B + C√
2

.

Then, we can write

ft =
1√
2
b
(1)
t +

(
1√
2
b
(2)
t − rt + r0

)
,

gt = − 1√
2
b
(1)
t +

(
1√
2
b
(2)
t − rt + r0

)
.

By Proposition 7.2, 1√
2
b(2) − rt + r0 is a Brownian motion independent of {rs : s ≥ t}.

It is also independent of b(1) by definition of rt (it depends only on increments Bs −Bt

and Cs −Ct). Hence, f and g are both Brownian motions independent of {rs : s ≥ t}.
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Furthermore, f and g are independent by orthogonality of the representations in the
last display.

�

Now, consider B, B(k), k ≥ 1 independent one-dimensional Brownian motions in-
dexed by R. We introduce an infinite series of generalized Brownian queues in tandem
by defining the arrival process at the first queue as B and the service time at the k-th
queue as mt−B(k), for some positive m. The arrival process at the k+1-th queue is the
departure process from the k-th queue, dk. We can define these processes by recursion,
simultaneously with the queue length at queue k, qk:

r1(t) = log

∫

s≤t

ds exp
{
B(s, t) +B(1)(s, t)−m(t− s)

}
,

f1(s, t) = B(s, t) + r1(s)− r1(t)

rk+1(t) = log

∫

s≤t

ds exp
{
fk(s, t) +B(k+1)(s, t)−m(t− s)

}
,

fk+1(s, t) = fk(s, t) + rk+1(s)− rk+1(t)

Summing q1(0) and q2(0), we obtain

r1(0) + r2(0) = log

∫

u≤0

du exp(B(u,0)+mu)

∫

u<s<0

ds exp
{
B(1)(u, s) +B(2)(s, 0)

}
.

By recurrence, we obtain the analogue of the formula (6.13):

N∑

k=1

rk(0) = log

∫

u≤0

du exp(B(u,0)+mu)

×
∫

u<s1<···<sN−1<0

ds1 · · · dsN−1 exp
{
B(1)(u, s1) + · · ·+B(N)(sN−1, 0)

}
.

Remark r1(0), r2(0), ... is an i.i.d. sequence, thanks to Theorem 7.1. Their common
distribution is − logGm where Gm is a Gamma random variable with parameter m.
The following is a consequence of the law of large numbers:

Proposition 7.6.

lim
N→+∞

1
N

log

∫

u<s1<···<sN−1<0

duds1 · · · dsN−1 exp{mu+B(1)(u, s1) + · · ·+B(N)(sN−1, 0)}

= −Γ′(m)/Γ(m) =: −Ψ(m),

almost surely.

Proof. We have to get rid of the term B(0,u). By the law of large numbers,
Bu,0/u → 0 when u → −∞, and then, for all ǫ > 0, there exists a finite random
variable K such that |B(u,0)| ≤ ǫu + K for all u < 0. This implies that the lower and
upper limits of the quantity considered above lie in the interval [Ψ(m− ǫ),Ψ(m + ǫ)].
We use the continuity of Ψ to conclude. �
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7.2. The Moriarty-O’Connell-Yor Model

Recall the following definitions: let (B
(i)
· )i be an i.i.d. sequence of one-dimensional

Brownian motions. Let Ωc
N,M be the set of increasing sequences 0 = s0 < s1 < · · · <

sM < sM+1 = N . This can be identified as the set of piecewise constant paths with M
positive jumps of size 1 in the interval [0, N ]. Note that |Ωc

N,M | = NM/M !, where | · |
stands here for the Lebesgue measure. For a path s ∈ Ωc

M,N , define

Br(N,M)(u) = Br(u) =

M∑

i=0

(B(i)
ui+1
− B(i)

ui
),(7.4)

Now, the polymers measure is defined on Ωc
N,M by

dµBr

dP c
N,M

(s) =
1

ZBr
β (N,M)

eβBr(s)

where

ZBr
β (N,M) = P c

N,M

(
eβBr(u)

)
.(7.5)

is the partition function of the model. This model has been introduced in [79]. The
authors predicted the value of the free energy based on precise heuristics. The proof
was then completed in [77]: recall the definition of the Gamma function,

Γ(m) =

∫ +∞

0

xm−1e−x dx.

Theorem 7.7 (Moriarty-O’Connell). [77]

lim
N→+∞

1

N
logZBr

β (N,N) = f(β),

where

f(β) =

{
−(−Ψ)∗(−β2)− 2 log |β| : β 6= 0
0 : β = 0

where Ψ(m) ≡ Γ′(m)/Γ(m) is the restriction of the digamma function to (0,+∞), and
(−Ψ)∗ is the convex dual of the function −Ψ.

We will give a general idea of the proof avoiding technical details. First, for x < 0,
define

γN(x) =
1

N
log

∫

xN<s1<···<sN−1<0

exp{B(1)
(xN,s1)

+ · · ·+B
(N)
(sN−1,0)}.

By subadditivity, there exists a function γ : R+ → R such that, for each x < 0,
γ(x) = limN→+∞ γN(x), Q-a.s.. With these notations, Proposition 7.6 can be restated
as
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lim
N→+∞

1

N
log

∫

x<0

dx expN{mx + γN(x)} = −Ψ(m).

If some ideal hypothesis are satisfied, we can apply Laplace method in order to conclude
that

sup
x<0
{mx+ γ(x)} = −Ψ(m) = (−γ)∗(m).

Inverting the transform, we get γ = −(−Ψ)∗. The Theorem follows by Brownian
scaling, as

f(β) = lim
N→+∞

1

N
logZBr

β (N,N)

= γ(−β2)− 2γ(β).

There are of course some missing details. In particular, we have to be careful while
applying the Laplace method. We would have to prove the two following statements
that can be found in Lemma 8 and 9 from [79] respectively:

(i) Q-a.s., limN→+∞ γN(x) = γ(x), for all x < 0.

(ii) The function γ is concave.

The rigorous proof of the Theorem is then completed in [79].



CHAPTER 8

Asymetric Directed Polymers and the Brownian Model

The central part of this Chapter is the proof of a multidimensional version of Theo-
rem 4.69 (Section 8.3). In Section 8.1, we show a continuity property for the point-to-
point partition function that will be useful in the study of very asymmetric polymers
(Section 8.4). We also show the existence of the free energy for the Brownian model in
Section 8.2.

8.1. Continuity of the point-to-point partition function for the discrete

model

We prove here the continuity of the point-to-point free energy seen as a function
from the octant {x ∈ R

d : xi ≥ 0} to R. Only the continuity at the boundary of the
octant requires a proof, as the continuity in the interior is an easy consequence of the
concavity properties of the free energy (which itself follows from sub-additivity). For
y ∈ R

d
+, define

Zβ
N(y) =

∑

s∈ΩNy

exp βH(s),

where ΩNy is the set of directed paths from the origin toNy, which, by notational abuse,
denotes the point in Z

d which i-th coordinate is ⌊Nyi⌋. Note that the dimension here
is d and not d+ 1 as usual. We will be interested in directions of the form yh = (h,x)
with x ∈ R

d−1
+ (i.e. x ∈ R

d−1, xi > 0), and h ≥ 0. In this case, we just denote the
partition function by ZN(h,x). We also define the point-to-point free energy:

ψβ(y) = lim
N→+∞

1

N
logZβ

N(y),

and we adopt the convenient notation ψ(h,x) for ψ(yh) (we also dropped the depen-
dence in β). ψ is a function from the octant {x ∈ R

d : xi ≥ 0} to R.

Proposition 8.1.

lim
h↓0

ψ(h, x) = ψ(0, x).

Proof. Each path from the origin to N(h,x) can be decomposed into Nh segments
with constant first coordinate: for each path, there is a collection of points (mi)i≤Nh

with mi ∈ Z
d−1
+ and such that for each 0 ≤ i < Nh, there is a segment of the path

linking (i,mi) and (i,mi+1). So the partition function can be decomposed itself as

101
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ZN(h,x) =
∑

(mi)i

ΠiZ(i;mi,mi+1),(8.1)

where, for each i, Z(i;mi,mi+1) is a sum over directed paths linking (i,mi) and
(i,mi+1). The collection of possible points (mi)i runs over a set JN

h,x which cardi-

nality satisfies log |JN
h,x| = Nφ(h,x) + o(N) for some φ(h,x)→ 0 as h→ 0 (see remark

below). We will analyze each summand of the right hand side of (8.1) separately:

Q (log ΠiZ(i;mi,mi+1)) =
∑

i

Q (logZ(i;mi,mi+1))

=
∑

i

Q (logZ(0;mi,mi+1))

≤ Q
(
logZN(0,x) + β

∑
η(i,mi+1)

)

≤ N ψ(0,x).(8.2)

The second equality follows by translation invariance; in the third line, we use the fact
that the partition functions do not consider the environment at the starting point; the
last inequality follows by subadditivity, as

ψ(y) = sup
N

1

N
Q logZN(y),

and the fact that Qη = 0. Now, the concentration inequality implies that

Q (|log ΠiZ(i;mi,mi+1)−Q log ΠiZ(i;mi,mi+1)| ≥ ǫN) ≤ e−cǫ2N .

(8.3)

for ǫ small enough (see [29] Proposition 3.2.1-b). Using (8.1), we can see that, if

logZN(h,x) ≥ N ψ(0,x) + ǫN,

for some ǫ > 0, then, for some (mi)i ∈ JN
h,x, it must happen that

log ΠiZ(i;mi,mi+1) ≥ N ψ(0,x) + ǫN − log |JN
h,x|.

By (8.2), this means that the quantity in the left hand side deviates more than ǫN −
log |JN

h,x| from its mean. By the asymptotics on |JN
h,N |, for h small enough, we will have

that log |JN
h,x| < ǫN/2, and then the inequality (8.3) applies. Then,

Q (logZN(h,x) ≥ N p(0,x) + ǫN) ≤ exp
{
Nφ(h,x)− cǫ2N + o(N)

}
.

By taking h even smaller if necessary, the right hand side of this inequality becomes
summable. By Borel-Cantelli we will then have that
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logZN(h,x) ≤ N ψ(0,x) + ǫN,

Q-almost surely for N large enough. Dividing both sides by N and taking the limit
N → +∞, we conclude that

ψ(h,x) ≤ ψ(0,x) + ǫ,

for h small enough. We now have to check the reverse inequality. But it follows easily
that

logZN(h,x) ≥ logZN(0,x) + β

hN∑

i=0

η(Nx, i).

Integrating with respect to Q, recalling that the η’s are centered, dividing by N and
taking the limit N → +∞ gives that ψ(h,x) ≥ ψ(0,x). �

Remark 8.2. The function φ can be made explicit: as

log |JN
h,x| =

d∏

i=2

(
⌊Nxi⌋+⌊Nh⌋

⌊Nh⌋

)
,

by Stirling formula, we have log |JN
h,x| = Nφ(h,x) + o(N), with

φ(h,x) =
∑

2≤i≤d
xi>0

(
h log

xi + h

h
+ xi log

xi + h

xi

)
.

Theorem 8.3. The point-to-point free energy is continuous on R
d
+.

Proof. The continuity in the interior of Z
d
+ is a consequence of the concavity

properties arising from the subadditivity. See the proof of Theorem 8.6 where this
is explained in the continuous setting. The continuity at the boundary follows from
repeated use of the preceding Proposition. �

Remark 8.4. In the one-dimensional case, a very precise asymptotic for the last-
passage percolation is available. It implies that ψ(1, h) = 2

√
h + o(

√
h) as h ↓ 0 (see

[74], Theorem 2.3).

Remark 8.5. This scheme of proof will reappear later in the proof of a certain
continuity at the borders property for very asymmetric directed polymers, in the regime
where the limit is the Brownian free energy.
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8.2. Directed Polymers in a Brownian Environment

We will now generalize the Brownian setting introduced before to larger dimensions.
Let x ∈ Z

d such xi ≥ 1 for all i = 1, ..., d. Let M =
∑d

i=1 xi. This is basically
the length of a nearest-neighbor path from the origin 0 to x. Let Ωc

t,x be the set of
right-continuous paths s such that:

(i) s0 = 0 and st = x.
(ii) s performs exactly M jumps, according to the coordinate vectors.

So the skeleton of s can be thought of as a discrete nearest-neighbor path form the
origin to x. s itself can be viewed as a directed path in R

+×Z
d starting from the origin

at time 0 and reaching the site (t,x) at time t. Let P c
t,x be the uniform measure on

Ωc
t,x.

Now consider a family {B(y) : y ∈ Λx} of independent Brownian motions, where
Λx = {y ∈ Z

d : 0 ≤ yi ≤ xi, ∀ i = 1, ..., d}. Define the energy of a path s in the following
way: let 0 = t0 < t1 < · · · < tM < t be the jumps times of s and put tM+1 = t, then

Br(s) = Br(t,x)(s) =

M+1∑

k=1

(
Btk(stk)−Btk−1

(stk)
)
.(8.4)

The partition function of the directed polymers in Brownian environment at inverse
temperature β is

ZBr
β (t,x) = P c

t,x (exp βBr(s)) .(8.5)

We first prove the existence of the free energy in the linear regime. Take α ∈ R
d with

strictly positive entries.

Theorem 8.6. Let αN be the point of Z
d whose i-th coordinate is equal to ⌊αiN⌋.

Then the following deterministic limit

p(β, α, d) = lim
N→+∞

1

N
logZBr

β (N,αN)(8.6)

exists Q-a.s.. Moreover, the function α 7→ p(β, α, d) is continuous on its domain.

Proof. First, fix α. The proof uses subadditivity. To lighten notation, denote |ΩN |
for |ΩN,αN |. We consider unnormalized versions of the partition function:

∫

ΩN+M

eβBr(N+M,xN+M )(s) ≥
∫

ΩN+M

eβBr(N+M,xN+M )(s)1sN=αN

=

∫

ΩN

eβBr(N,αN)(s) ×
(∫

ΩM

eβBr(M,αM)(s)

)
◦ θN,αN ,

where the shift θk,x means that we use the Brownian motions

B
(y)

(·) = B(y+x)(·+ k),
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to define Br. By subadditivity, it follows that there exists a deterministic function
p(β, α, d) such that

p(β, α, d) = lim
N→+∞

1

N
log

∫

ΩN

eβBr(N,αN)(s),

Q-almost surely. Apply this with β = 0 and the theorem follows with p(β, α, d) =
p(β, α, d)/p(0, α, d). Now, take α1 and α2 in R

d with strictly positive coordinates, and
λ ∈ (0, 1). Then,

ZBr
β (N,N(λα1 + (1− λ)α2)) ≥ ZBr

β (N, λα1N)× ZBr
β (N, (1− λ)α2N) ◦ θλN,λα1N .

Taking logarithms in both sides, dividing by N and taking limits, leads to,

p (β, λα1 + (1− λ)α2, d) ≥ λp (β, α1, d) + (1− λ)p (β, α2, d)

So α 7→ p(β, α, d) is concave, and then continuous. As p(β, α, d) = p(β, α, d)/p(0, α, d),
it is also continuous. �

Remark 8.7. Note that as we have true subadditivity, we can avoid the use of
concentration. However, we can state the following result:

Q
(∣∣logZBr

β (N,αN)−Q logZBr
β (N,αN)

∣∣ > uN
)
≤ C exp

{
−Nu

2

Cβ2

}
.

(8.7)

This can be proved as Formula (9) in [83], using ideas from Malliavin Calculus.

8.3. Asymmetric Directed Polymers in a Random Environment

In this section, we will study discrete asymmetric models of directed polymers in
random environment. We will show that when there is enough asymmetry and we let
decrease β at the right rate, the free energy of this model will coincide with the free
energy of the continuous-time model in Brownian environment.

Let x ∈ Z
d such xi ≥ 1 for all i = 1, ..., d and N ≥ 1. Let M =

∑d
i=1 xi be the

distance between the origin and x in Z
d. Let ΩN,x be the set of directed paths from the

origin in Z
d+1 to (N, x) that is

ΩN,x = {S : {0, ..., N +M} → Z
d+1 : S0 = 0, SN+M = (N,x),

∀ t, St+1 − St ∈ {ei : i = 1, ..., d}}.
Consider a collection of i.i.d. random variables {η(k,x) : k ∈ Z, x ∈ Z

d}. We will
assume that Q(eβη) < +∞ for all β ≥ 0. For a fixed realization of the environment,
define the energy of a path S ∈ ΩN,x as
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H(S) =
N+M∑

t=1

η(St).(8.8)

The polymer measure at inverse temperature β is now defined as the measure on ΩN,x

such that

dµN,x

dPN,x
(S) =

1

Zβ(N,x)
exp βH(S),

where Zβ(N,x) is the point-to-point partition function

Zβ(N,x) = PN,x (exp βH(S)) .

We will be interested in the limit as N grows to infinity and x = xN , with |xN | →
+∞ with N in an appropriate way. Take α ∈ R

d with strictly positive coordinates.
Let αNa be the point in Z

d which i-th coordinate is equal to ⌊αiN
a⌋. The following

theorem is the generalization to Z
d of Theorem 5.3.

Theorem 8.8. Let βN,a = βN (a−1)/2. Then,

lim
N→+∞

1

βN,aN (1+a)/2
logZβN,a

(N,αNa) = p(β, α, d)/β,(8.9)

Q-almost surely, where p(β, α, d) is the free energy of the continuous-time directed poly-
mer in a Brownian environment as in (8.6).

Remark 8.9. To lighten notation, in the following, C will denote a generic constant
whose value can vary from line to line. Also, we can consider α = (1, · · · , 1) for
simplicity and introduce the notations ΩN,a = ΩN,Na and PN,a = PN,Na , and similarly
for their continuous counterparts.

8.3.1. Proof of Theorem 8.8. The proof is carried on in 4 Steps. Much of the
computations in Steps 1 and 2 are inspired by [11, 51], while the scaling argument in
Step 3 is already present in [45].

8.3.1.1. First Step: approximation by a Gaussian environment. The central ingredi-
ent of this part of the proof is a strong approximation technique by Komlós, Major and
Tusnády: let {ηt : t ≥ 0} denote an i.i.d. family of random variables, with Q(η0) = 0,
Q(η2

0) = 1 and Q(eβη0) < +∞ for all 0 ≤ β ≤ β0 for some β0 > 0. Let {gt : t ≥ 0}
denote an i.i.d. family of standard normal variables. Denote

SN =

N∑

t=0

ηt, TN =

N∑

t=0

gt.
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Theorem 8.10 (KMT approximation). [64] The sequences {ηt : t ≥ 0} and {gt :
t ≥ 0} can be constructed in such a way that, for all x > 0 and every N ,

Q

{
max
k≤N
|Sk − Tk| > K1 logN + x

}
≤ K2e

−K3x,(8.10)

where K1, K2 and K3 depend only on the distribution of η, and K3 can be taken as large
as desired by choosing K1 large enough. Consequently, |SN − TN | = O(logN), Q-a.s..

Now consider our environment variables {η(t,x) : t ∈ Z,x ∈ Z
d}. Use Theorem

8.10 to couple each ’row’ η(·,x) with standard normal variables g(·, x) such that

Q

{
max
k≤N
|S(k,x)− T (k,x)| > C logN + θ

}
≤ K2e

−K2θ, ∀θ > 0,

where S(k,x) =
∑k

t=0 η(t,x) and T (k,x) =
∑k

t=0 g(t,x).

Now, we need to decompose each path S ∈ ΩN,a into its ’jump’ times T = (Ti)i and
its position between jump times L = (Li)i. We say that T is a jump time if one of the
coordinates of S other than the first changes between instants T − 1 and T . We can
order the jump times of S: T0 = 0 < · · · < TdNa < TdNa+1 = N . We can then define Li

as the point y ∈ Z
d such that STi

= (Ti,y). We can rewrite the Hamiltonian (8.8) as

H(S) =
dNa∑

i=0

∆H(S, i),

where

∆H(S, i) =

Ti+1−1∑

k=Ti

η(k, Li).

Define g(S) and ∆g(S, i) just in the same way by replacing the variables η by the
Gaussians g. Then,

|H(S)− g(S)| ≤
dNa∑

i=0

|∆H(S, i)−∆g(S, i)|.

Let θN be an increasing function to be determined later and ΛN,a = {y ∈ Z
d : 0 ≤ yi ≤

⌊Na⌋}:

Q {|H(S)− g(S)| > 2dNaθN , for someS ∈ ΩN,a}

≤ Q

{
dNa∑

i=1

|∆H(S, i)−∆g(S, i)| > 2dNaθN , for some S ∈ ΩN,a

}
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≤ Q

{
max
i≤dNa

|∆H(S, i)−∆g(S, i)| > 2θN , for some S ∈ ΩN,a

}

≤ Q

{
max
k≤N
|S(k,x)− g(k,x)|, for some x ∈ ΛN,a

}

≤ |ΛN,a|Q
{

max
k≤N
|Sk − Tk| > θN

}
,

In order to apply Theorem 8.10, we have to take θN = K1 logN + ǫN , and to apply
Borel-Cantelli, as |ΛN,a| ≤ Nda, it is enough to take ǫN = c logN with c large enough to
make Nae−K3ǫN summable. Then, Q-a.s., |H(S)− g(S)| ≤ CNa logN for all S ∈ ΩN,a,
for N large enough. This shows that

PN,a

(
eβN,aH(S)

)
= PN,a

(
eβN,ag(S)

)
O(eCβN,aNa log N ).

Recall that βN,a = βN (a−1)/2, so that βN,aN
a logN = O(N (3a−1)/2 logN). As 0 < a < 1,

we have βN,aN
a logN << βN,aN

(a+1)/2 = βNa, and then

logZβN,a
(N,αNa) = logZg

βN,a
(N,αNa) + o(βN,aN

(1+a)/2),

where the superscript g means that the environment is Gaussian.
We can conclude that, if the limit free energy exists Q-a.s. for Gaussian environment
variables, it exists for all environment variables having some finite exponential moments,
and the limit is the same.

8.3.1.2. Second Step: approximation by continuous-time polymers in Brownian en-
vironment. Having replaced our original disorder variables by Gaussians, we can take
them as unitary increments of independent one-dimensional Brownian motions. We
then just have to control their fluctuations to replace the discrete paths by continuous
paths in a Brownian environment. This is what will be done in the following paragraphs.

We first need to establish a correspondence between continuous paths an discrete
ones.

Take s ∈ Ωc
N,a, and recall the definition (8.4) for the Brownian Hamiltonian Br(s)

and that 0 = t0 < t1 < · · · < tdNa+1 = N denote the jump times of s. Let li = sti . The
path s can be discretized by defining the following Gaussian Hamiltonian:

Hg(s) =
dNa∑

i=0

(
B

(li)
⌊ti+1⌋ − B

(li)
⌊ti⌋−1

)
.(8.11)

This is equivalent to consider g(S) where S ∈ ΩN,a is defined through its jump times
Ti and successive positions Li by
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Ti = ⌊ti⌋,
Lk = li, ∀Ti ≤ k < Ti+1,

(Recall that the Gaussian variables obtained in the previous step are now embedded in
the Brownian motions). In this way,

P c
N,a

(
exp βHBr(s)

)
= PN,a (exp βg(S)) .

We have now to approximate the previous expression by ZBr
β (N,Na). Take s ∈ Ωc

N,a:

|Hg(s) − Br(s)| =
∣∣∣∣∣

dNa∑

i=0

(
B

(li)
⌊tr+1⌋ − B

(li)
⌊tr⌋−1

)
−

dNa∑

i=0

(
B

(li)
ti+1
− B(li)

ti

)∣∣∣∣∣

≤
dNa∑

i=0

∣∣∣B(li)
⌊tr+1⌋ − B

(r)
tr+1

∣∣∣+
dNa∑

i=0

∣∣∣B(li)
⌊ti⌋ − B

(li)
ti−1

∣∣∣

≤ 2
dNa∑

i=0

sup
0≤s, t≤N+1

|s−t|<2

|B(li)
s − B(li)

t |.

This can be handled with basic properties of Brownian motion: denote by xN an
increasing function to be determined,

Q




dNa∑

i=0

sup
0≤s, t≤N+1

|s−t|<2

|B(li)
s − B(li)

t | > dNaxN , for some s ∈ ΩN,a




≤ Q


 max

1≤i≤dNa
sup

0≤s, t≤N+1
|s−t|<2

|B(li)
s −B(li)

t | > xN for some s ∈ ΩN,a




≤ Q


 max

x∈ΛN,a

sup
0≤s, t≤N+1
|s−t|<2

|B(x)
s −B

(x)
t | > xN




≤ |ΛN,a|Q


 sup

0≤s, t≤N+1
|s−t|<2

|Bs − Bt| > xN




≤ CNda
N−2∑

i=0

Q

(
sup

i≤t≤i+3
Bt − inf

i≤t≤i+3
Bt > xN

)
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≤ CNda+1Q

(
sup

0≤t≤3
|Bt| >

xN

2

)

≤ CNda+1Q
(
B3 >

xN

2

)

≤ CNda+1e−Cx2
N .

With xN = logN and recalling (8.11) from Step 1, we see that Q-a.s., for N large
enough,

PN,a

(
eβN,aH(N,αNa)

)
= P c

N,a

(
eβN,aBr(N,αNa)

)
× O(eβN,aNa log N ).

Again, this will imply that

logZβN,a
(N,αNa) = logZBr

βN,a
(N,αNa) + o(βN,aN

(1+a)/2),(8.12)

8.3.1.3. Third Step: scaling. Observe that, for a fixed path s ∈ ΩN,a,

Br(N,αNa)(s·) =
√
NBr(1, αNa)(s·/N) = N (1−a)/2Br(Na, αNa)(s·×Na−1),

where the equalities hold in law. Note also that s·×Na−1 ∈ ΩNa,αNa . It follows that

ZBr
βN,a

(N,αNa) = P c
N,a (exp βN,aBr(N,αNa)(s))

= P c
Na,αNa

(
exp βN,aN

(1−a)/2Br(Na, αNa)(s·×Na−1)
)

= P c
Na,αNa (exp βBr(Na, αNa)(s·×Na−1)) .

But the last expression is simply ZBr
β (Na, αNa) so that, by Theorem 8.6,

lim
N→+∞

1

Na
logZBr

βN,a
(N,αNa) = p(β, α, d).(8.13)

From (8.12) and (8.13), we can deduce that the limit (8.9) holds in law.
8.3.1.4. Final Step: concentration. So far, we proved convergence in law for the

original problem. But we can write a convenient concentration inequality for the free
energy with respect to his average, in the Gaussian case. So, a.s. convergence holds for
Gaussian, and, according to step 1, for any environment.

The classical concentration inequality for Gaussian random variables can be stated
as follows:

Theorem 8.11. Consider the standard normal distribution µ on R
K. If f : R

K → R

is Lipschitz continuous with Lipschitz constant L, then

µ

(
x : |f(x)−

∫
fdµ| ≥ u

)
≤ 2 exp{− u2

2L2
}.

For a detailed exposition of concentration of measures, see for example, the lecture
notes of Ledoux [68]. We now proceed exactly in the same way as in the proof of
Proposition 1.14 of [20]: define
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F (z) =
1

Na
logPN,a

(
eβN,a

PN+dNa

t=1 z(St)
)
.

It is easy to prove that F is a Lipschitz continuous function with Lipschitz constant
CN−a/2. By Gaussian concentration, this yields

Q

{∣∣∣∣
1

Na
logZβN,a

(N,αNa)− 1

Na
Q logZβN,a

(N,αNa)

∣∣∣∣ > u

}
≤ 2 exp−N

au2

2C2
.

(8.14)

This ends the proof of the theorem. �

8.4. Very asymmetric cases

We now consider an even more asymmetric case: let a = (a1, · · · , ad) with 0 ≤ ai ≤ a
for all i but ai = a for exactly d− l values of i, 1 ≤ l < d, and consider paths from the
origin to points of type αNa with coordinates αiN

ai , αi > 0.

Theorem 8.12. Let α′ be the vector of R
d−l which coordinates are those of α for

the indexes i such that ai = a. Then,

lim
N→+∞

1

βN,aN (1+a)/2
logZβN,a

(N,αNa) = p(β, α′, d− l)/β.

Proof. The idea of the proof is exactly that same than in the proof of Proposition
8.1. We will consider the simple case d = 2 and a final point of type (Na, N b) with
b < a. We then have to prove convergence to p(β, 1, 1)/β. The general case follows
easily. We can think as h as h = hN = N (b−a).
From the proof of Theorem 8.8, we have to remember that

logZβN,a
(N,αNa) = logZBr

β (Na, αNa) + o(Na)

Denote by Z(N,M,L) (resp. Z(N,M,L)) the normalized (resp. non-normalized) par-
tition function over discrete paths from the origin to (N,M,L). We perform the same
decomposition than before:

ZβN,a
(N,Na, N b) =

ZβN,a
(N,Na, N b)

Z0(N,Na, N b)

=
1

Z0(N,Na, N b)

∑

(mi)i

ΠiZ(i;mi,mi+1)

Here, 0 ≤ i ≤ N b − 1 and mNb = Na. Recalling Remark 8.2, the cardinality of the set
JN of the possible configurations of (mi) satisfies |JN | ∼ exp{cN (a+b)/2 logN}. For a
fixed mi, recalling that the environment variables are centered,
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Q
(
log ΠiZβN,a

(i;mi,mi+1)
)

= Q
(
log ΠiZβN,a

(0;mi,mi+1)
)

= logZ0(N,N
a, 0) +Q

(
log

ΠiZβN,a
(0;mi,mi+1)

Z0(N,Na, 0)

)

≤ logZ0(N,N
a, 0) +Q

(
logZβN,a

(N,Na, 0)
)

≤ logZ0(N,N
a, 0) +Q

(
logZBr

β (Na, Na)
)

+ o(Na)

≤ logZ0(N,N
a, 0) +Na p(β, 1, 1) + o(Na).

Now, if

logZβN,a
(N,Na, N b) > Na (p(β, 1, 1) + ǫ) ,

there must exist some (mi)i such that

log ΠiZβN,a
(i;mi,mi+1) > logZ0(N,N

a, N b) +Na (p(β, 1, 1) + ǫ)− log |JN |.
Using the fact that Z0(N,N

a, N b) > Z0(N,N
a, 0), (8.14) and the union bound, we find

that

Q
(
ZβN,a

(N,Na, N b) > Na (p(β, 1, 1) + ǫ)
)
≤ |JN | exp{−cǫ2Na},

for ǫ small enough. As log |JN | = o(Na), the RHS of the last display is summable. The
result follows by Borel-Cantelli. �



CHAPTER 9

One-dimensional directed polymers with a huge drift

We now turn to the problem of computing the free energy of a directed polymers
model with a drift that grows with N . Let

Z
(h)
β,N =

∑

1≤n≤N

Zβ(n,N − n)e−h×(N−n),(9.1)

where, for each n, ZN(n,N−n) is the (non-normalized) point-to-point partition function

Zβ(n,N − n) =
∑

ω∈Ωn,N−n

eβHN (ω).(9.2)

This can also be seen as a generating function or a Poissonization of the point-to-point
partition function. Recall that, when N − n = O(Na), Theorem 5.1 implies that

lim
N→+∞

1√
n(N − n)

logZβ(n,N − n) = 2β,

as, in this regime, log |Ωn,N−n| is of much smaller order than
√
N(N − n) (see also

(5.6)). The role of the drift h in (9.1) is to penalize the paths for which the final point
is far from the horizontal axis. It has to be calibrated in order to favor final points such
that N − n = O(Na).

In the first section, we will compute the free energy. We will study the fluctuations
of the partition function in the second section.

9.1. The free energy

Theorem 9.1. Take h = hN = γN (1−a)/2. Then,

lim
N→+∞

1

N (1+a)/2
logZ

(hN )
β,N =

β2

γ
,

for all environment laws such that Q(eβη) < +∞ for all β > 0.

Let us first sketch the proof:

Sketch of proof:

We parametrize the terminal points conveniently:

N = n(1 + u).

113
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Thus n = N/(1 + u) and N − n = Nu/(1 + u). We can then rewrite (9.1) as

Z
(h)
N =

∑

u

Zβ

(
N

1 + u
,
Nu

1 + u

)
exp

{
−γN (1−a)/2 × Nu

(1 + u)

}
.(9.3)

Now, for u in an interval IN = [Nκ0 , Nκ1 ], we will have

Zβ

(
N

1 + u
,
Nu

1 + u

)
= exp

{
2β
N
√
u

1 + u
+ o(1),

}
(9.4)

uniformly in u. Then,

Z
(h)
β,N ∼

∑

u∈IN

expN

{
2β

√
u

1 + u
− γN (1−a)/2 × u

(1 + u)

}
.(9.5)

Define the function

fN(u) = 2β

√
u

1 + u
− γN (1−a)/2 × u

(1 + u)
.

It attains its global maximum at a point u∗N ∼ (β2/γ2)Na−1 (in short, we will omit the
dependence in N), with fN(u∗) ∼ β2N (a−1)/2/γ. So, by Laplace method, we will have

Z
(h)
β,N = exp {Nf(u∗N) + o(1)} = exp

{
N (1+a)/2β2/γ + o(1)

}
,

which would finish the proof.

Remark 9.2. The proof is split in three steps. The first one gives the lower bound
in the Theorem, minoring the whole sum by one term, given by a u very close to the
minimizer. This is the easy part.
The second step will consist mainly in proving the uniformity in (9.4) (but replacing =
by ≤). This will be done by applying uniformly the KMT approximation in the whole
interval IN , and then applying some deviation inequality for the Brownian percolation.
The third step will be to prove that the u’s outside IN do not contribute to the sum.

Proof of Theorem 9.1: First step: We will now provide the lower bound: recall
the notation in (9.3) and observe that for the value u∗, the asymptotics of n and N −n
fit the situation studied in 5.6. An easy computation yields:

lim inf
N→+∞

1

N (1+a)/2
logZ

(h)
β,N

≥ lim
N→+∞

1

N (1+a)/2
logZβ

(
N

1 + u∗
,
Nu∗

1 + u∗

)
exp

{
−γN (1−a)/2 × Nu∗

(1 + u∗)

}

=
β2

γ
.
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Second step: Let ǫ > 0 and take κ1 = (a − 1)/2 − ǫ in order to define IN =
[Nκ0 , Nκ1]. Here, κ0 > −1 is introduced to discard small values of u that have to be
treated separately. Note that, in this interval, N − n ∼ Nu ≤ N1+κ1o(N (a+1)/2).

We first couple the environment variables {η(t, x) : 1 ≤ t ≤ N, 1 ≤ x ≤ Nκ1} row
by row with Brownian motions as in the proof of Theorem 5.2. This yields

Zβ

(
N

1 + u
,
Nu

1 + u

)
= Z

Br

β

(
N

1 + u
,
Nu

1 + u

)
× O(eN1+κ1 log N),

uniformly for u ∈ IN , where Z
Br

β (N,M) denotes the unnormalized partition function

of the Brownian model. Again, (5.6) holds for Z
Br

β (N,M) with M = O(Na), as |Ωc
N,M |

is small compared to
√
MN :

log |Ωc
N,M | ∼ log

NM

(M)!
= O(Na logN).(9.6)

We now search for a convenient upper bound for the (normalized) Brownian parti-
tion function:

Q

{
ZBr

N

(
N

1 + u
,
Nu

1 + u

)
> exp β

N
√
u

1 + u
(2 + ǫN )

}

≤ Q

{
max

ω
Br

(
N

1 + u
,
Nu

1 + u

)
>
N
√
u

1 + u
(2 + ǫN )

}

≤ Q

{
max

ω
Br

(
1,

Nu

1 + u

)
>

√
Nu

1 + u
(2 + ǫN )

}

≤ C exp

{
− 1

C

N
√
u

1 + u
ǫ
3/2
N

}
.

The last inequality follows from Ledoux [69], Section 2.1. Taking ǫN = N−θ with θ > 0
small enough, and applying Borel-Cantelli, we conclude that, for N large enough,

ZBr
N

(
N

1 + u
,
Nu

1 + u

)
≤ exp

{
2β
N
√
u

1 + u
+ o(1)

}
,

for all u ∈ IN . Now, thanks to (9.6), this is still true with Z
Br

instead of ZBr. We then
get

ZN

(
N

1 + u
,
Nu

1 + u

)
≤ exp

{
2β
N
√
u

1 + u
+ o(1)

}
,

uniformly for u ∈ IN . Once the Third Step is achieved, this uniform bound and Laplace
Method will finish the proof.
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Third Step: We are now interested in values u ≤ Nκ0 and u ≥ Nκ1 . Again we
have to split the proof in three.

Let us first focus on small values of u. Recall that, in this region, by the KMT
coupling, we can work directly with Gaussians. Take θ′ > 0.

Q

{
Z

g
(

N

1 + u
,
Nu

1 + u

)
> eβNθ′

}
≤ Q

{
T g

(
N

1 + u
,
Nu

1 + u

)
> Nθ′

}

≤ Q
{
∃s ∈ Ω N

1+u
, Nu
1+u

: H(s) > Nθ′
}

≤ |Ω N
1+u

, Nu
1+u
| exp{−N2θ′−1}

≤ exp{cN (1+κ0) log N −N2θ′−1}.
So, choosing κ0 small enough and 1 + κ0/2 < θ′ < (1 + a)/2, we get, by Borel-Cantelli
and by a computation analogous to (9.6), that for N large enough,

Z
g
(

N

1 + u
,
Nu

1 + u

)
= o

(
eN(1+a)/2

)
,

for all u ≤ Nκ0.
ForN (a−1)/2−ǫ ≤ u ≤ N (a−1)/2+ǫ, we have to couple the environment row by row with

Gaussians until N − n = N (1+a)/2+ǫ (just conserve the coupling already done in Step 2
and add the missing rows). This will yield an error uniformly of order N (1+a)/2+ǫ logN .
The point is that for ǫ small enough, the drift will be large compared with the point-
to-point partition functions and the error in the approximation. In fact,

h× (N − n) ≥ γN1−ǫ.

Recall that we are working with Gaussians, denote ΩN,u = Ω N
1+u

, Nu
1+u

,

Q

{
max

ω∈ΩN,u

HN(ω) > Nθ′
}
≤ exp(1 + a)N (1+a)/2+ǫ logN −N2θ′−1,

and, by Borel-Cantelli (taking, of course, (1 + a)/2 + ǫ < 2θ′ − 1),

Z
g

β

(
N

1 + u
,
Nu

1 + u

)
eh×(N−n) ≤ exp

{
(1 + a)N (1+a)/2+ǫ logN + βNθ′ − γN1−ǫ

}
,

where, as usual, the overline denotes that the partition function is unnormalized and
the superscript g stands for Gaussian environment. To insure that the drift is larger
than the other terms, we have to take θ′ < 1 − ǫ and (1 + a)/2 + ǫ < 1 − ǫ, both
holding for ǫ < (1− a)/4 and θ small enough. Now, this is also enough to neglect the
error in the approximation as it is of order N (1+a)/2+ǫ too. The first condition we have
encountered, namely (1+ a)/2+ ǫ < 2θ′− 1 is satisfied for ǫ < (1− a)/6 and θ′ < 1− ǫ,
so that, choosing ǫ and θ according to these last restrictions gives that
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Zβ

(
N

1 + u
,
Nu

1 + u

)
e−h×(N−n) → 0,(9.7)

as N → +∞ uniformly for N (1−a)/2−ǫ ≤ u ≤ N (1−a)/2+ǫ.
We are then left to the values u > N (a−1)/2+ǫ. This is an easy task: we can dominate

each point-to-point partition function by the whole partition function (without drift!):

ZN = Zβ,N =
∑

ω∈ΩN

eβH(ω),

where ΩN is the set of directed nearest-neighbor paths of length N . ZN grows at most
as eCN for some constant C > λ(β) + log 2d, as we can see from

Q(ZN ≥ eCN) ≤ e−CNQZN = e(λ(β)+log 2d−C)N

and Borel-Cantelli. Now, for the range of u’s we are considering, the drift satisfies,

h(N − n) > N1+ǫ′ ,

for large N , whenever ǫ′ < ǫ, and then (9.7) holds in this interval as well.
�

9.2. Fluctuations of the partition function

We now discuss the fluctuation of logZ
(hN )
β,N . For technical reasons, we have to

restrict to a < 1/5 for variable with finite exponential moments, and to a < 1/2 for
Gaussian variables (see Remark 9.7 at the end of this section).

9.2.1. Moderate deviations. We start proving the two following deviation in-
equalities:

Proposition 9.3. For all a < 1/5 (a < 1/2 for Gaussian variables), there exists a
constant C > 0 such that, for all N ≥ 1 and ǫ ≥ 0,

Q

{
logZ

(hN )
β,N ≥

β2

γ
N (1+a)/2(1 + ǫ)

}
≤ C exp

{
−N

a

C
ǫ3/2

}
,(9.8)

and for 0 ≤ ǫ ≤ 1,

Q

{
logZ

(hN )
β,N ≤

β2

γ
N (1+a)/2(1− ǫ)

}
≤ C exp

{
− N

2a

C
ǫ3
}
.(9.9)

These are consequences of similar non-asymptotics deviation inequalities for the top
eigenvalue of GUE random matrices that we recall here in the context of Brownian
percolation (see [70], Theorem 1 and [69], Chapter 2, for a complete discussion of this
topic):
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Proposition 9.4. There exists a constant C > 0 such that, for all N ≥ 1 and
ǫ ≥ 0,

Q
{
L(1, N) ≥ 2

√
N(1 + ǫ)

}
≤ C exp

{
−N
C
ǫ3/2

}
,(9.10)

and for 0 ≤ ǫ ≤ 1,

Q
{
L(1, N) ≤ 2

√
N(1− ǫ)

}
≤ C exp

{
−N

2

C
ǫ3
}
.(9.11)

A simple application of the KMT approximation leads to the following lemma:

Lemma 9.5. For M = O(Na) with a < 1/5 (a < 1/2 if the environment is Gauss-
ian), there exists a constant C > 0 such that, for all ǫ ≥ 0,

Q
{
T (N,M) ≥ 2

√
NM(1 + ǫ)

}
≤ C exp{−Mǫ3/2/C},(9.12)

and for 0 ≤ ǫ ≤ 1,

Q
{
T (N,M) ≤ 2

√
NM(1− ǫ)

}
≤ C exp{−M2ǫ3/C}.(9.13)

Proof. Let us prove the inequality for small deviations on the left of the mean:

Q
{
T (N,M) ≤ 2

√
NM (1− ǫ)

}
≤ Q

{
L(N,M) ≤ 2

√
NM(1− ǫ/2)

}

+ Q
{
|T (N,M)− L(N,M)| > ǫ

2

√
NM

}
.

The first summand decreases as C exp{−M2ǫ3/C} thanks to (9.10). By the same
analysis we performed in the two first step of the proof of Theorem 8.8, we see that
the second summand decreases as C exp{−C

√
N/M}, which is of much smaller order

whenever a < 1/5. When the environment is Gaussian, the first step of the proof of
Theorem 8.8 is useless and an inspection of the second step of that proof shows that
the second summand in the preceding display decreases as C exp{−CN1−a}.

The other inequality can be proved following the same lines. �

We turn now to the proof of Proposition 9.3.
Proof of the inequality 9.9: This follows by lowering the partition function by
one term: recall that u∗ ∼ β2/γNa−1, and define n∗ = N/(1 + u∗). Then,

Q

{
logZ

(hN )
β,N ≤

β2

γ
N (1+a)/2(1− ǫ)

}

≤ Q

{
βT (n∗, N − n∗)− hN × (N − n∗) ≤ β2

γ
N (1+a)/2(1− ǫ)

}
,
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Observe that

hN × (N − n∗) =
β2

γ
N (1+a)/2.

We are then reduced to estimate the quantity

Q

{
T (n∗, N − n∗) ≤ 2β

γ
N (1+a)/2(1− ǫ/2)

}
.(9.14)

which can be handled with (9.13). �

Proof of the inequality 9.8: This proof is more involved as it requires to control

all the terms in the sum defining Z
(hN )
β,N . As the result is non-asymptotics, we do not

need to give a special treatment to the terms for which N − n is not of the relevant
order (namely O(Na)). We use the convenient parametrization N − n = vNa for some
v ≥ 0. To lighten notation, let us denote

q(ǫ, v) = Q

{
βT (N, vNa)− γvN (1+a)/2 ≥ β2

γ
N (1+a)/2(1 + ǫ)

}
.

Several cases have to be analyzed separately:

Case v ≤ β2/(2γ)2: We use the fact that, for these values of v, T (N, vNa) is stochas-
tically dominated by T (N, β2/(2γ)2Na). Then, neglecting the term γv,

q(v, ǫ) ≤ Q

{
T (N, β2/(2γ)2Na) ≥ β

γ
N (1+a)/2(1 + ǫ)

}

≤ C exp

{
−β

2Na

4γ2C
ǫ3/2

}
.

Case β2/(2γ)2 ≤ v ≤ 4β2/γ2: We make use of the fact that 2β
√
v− γv ≤ β2/γ for all

β ≥ 0 and that, for these values of v, we have 1/
√
v ≥ γ/(2β). Then,

q(ǫ, v) ≤ Q

{
βT (N, vNa) ≥ 2β

√
vN (1+a)/2 +

β2ǫ

γ
N (1+a)/2

}

≤ Q

{
βT (N, vNa) ≥ 2β

√
vN (1+a)/2

(
1 +

βǫ

2γ
√
v

)}

≤ Q
{
βT (N, vNa) ≥ 2β

√
vN (1+a)/2

(
1 +

ǫ

4

)}

≤ C exp

{
−
√
v
Na

C
ǫ3/2

}

≤ C exp

{
−β

2Na

γ2C
ǫ3/2

}
,

thanks to the lower bound we assumed on v.
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Case v ≥ 4β2/γ2: Let K > 4 be such that Kβ2/γ2 < v ≤ (K + 1)β2/γ2. Then,
recalling that T (N, v1N

a) dominates T (N, v2N
a) stochastically whenever v1 ≥ v2, and

using the simple fact that K + 1 > 2
√
K + 1,

q(ǫ, v) ≤ Q

{
βT (N, vNa) ≥ β2

γ
N (1+a)/2(1 + ǫ) +K

β2

γ
N (1+a)/2

}

= Q

{
T (N, vNa) ≥ β

γ
N (1+a)/2(K + 1 + ǫ)

}

≤ Q

{
T (N, vNa) ≥ 2

√
K + 1β

γ

(
1 +

ǫ

2
√
K + 1

)
N (1+a)/2

}

≤ Q

{
T
(
N, (K + 1)β2/γ2Na

)
≥ 2

√
K + 1β

γ

(
1 +

ǫ

2
√
K + 1

)
N (1+a)/2

}

≤ C exp

{
−(K + 1)β2Na

Cγ2

(
ǫ

2
√
K + 1

)3/2
}

≤ C exp

{
−1

2

β2Na

γ2C
ǫ3/2

}
,

�

9.2.2. Fluctuation bounds. These bounds have a certain flavor of variance bounds
without being exactly such.

Theorem 9.6. For all a < 1/5 (a < 1/2 for a Gaussian environment), there exists
a constant C > 0 such that, for all N ≥ 1,

1

C
N1−a/3 ≤ Q

{(
logZhN

β,N −
β2

γ
N (1+a)/2

)2
}
≤ CN1−a/3.

Proof. To lighten notations, let us denote

XN = logZ
(hN )
β,N , xN =

β2

γ
N (1+a)/2.

The upper bound follows from the previous deviation inequalities by a direct computa-
tion:
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Q(XN − xN )2 =

∫ +∞

0

Q
{
(XN − xN )2 ≥ t

}
dt

≤
∫ +∞

0

Q
{
XN − xN ≥

√
t
}
dt+

∫ xN

0

Q
{
XN − xN ≤ −

√
t
}
dt

= 2N1+a

∫ +∞

0

uQ

{
XN ≥

β2

γ
(1 + u)

}
du

+ 2N1+a

∫ β2/γ

0

uQ

{
XN ≤

β2

γ
(1− u)

}
du

Let us bound the first integral. The second one can be treated in the same way. We
apply (9.8) from Proposition 9.3 and split the interval of integration:

∫ +∞

0

uQ

{
XN ≥

β2

γ
(1 + u)

}
du ≤ C

∫ +∞

0

ue−
Na

C
u3/2

du

= C

∫ 1

0

ue−
Na

C
ǫ3/2

du + C

∫ +∞

1

ue−
Na

C
ǫ3/2

du.(9.15)

The second integral in this last display is easily seen to decrease as exp{−Na}. For the
first integral, observe that the integrand can be bounded by CN−2a/3 in [0, N−2a/3] and
decreases exponentially fast outside this interval. Then,

∫ 1

0

ue−
Na

C
u3/2

du ≤ CN−4a/3.

Putting this back into (9.15), we found

∫ +∞

0

uQ

{
XN ≥

β2

γ
(1 + u)

}
du ≤ CeN1−a/3

.

As we already mentioned, the deviations on the left of the mean can be treated similarly.
This gives the upper bound. For the lower bound, observe that

βT (n∗, N − n∗)− hN × (N − n∗) ∼ βT (N,
β2

γ2
Na)− 2β2

γ
N (1+a)/2.

Then, applying Jensen’s inequality,

Q

{(
logZ

(hN )
β,N −

β2

γ
N (1+a)/2

)2
}
≥
(
Q

{
logZ

(hN )
β,N −

β2

γ
N (1+a)/2

})2

≥
(
Q
{
βT (N, β2/γ2Na)− 2β2/γN (1+a)/2

})2
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Now, recall [11] that

T (N, β2/γ2Na)− 2β2/γN (1+a)/2

N ( 1
2
− a

6
)

converges in law to a Tracy-Widom. Then, recalling that the Tracy-Widom law has a
strictly positive expected value,

(
Q
{
βT (N, β2/γ2Na)− 2β2/γN (1+a)/2

})2 ≥ cN1−a/3,

for some c > 0. This ends the proof. �

Remark 9.7. Again, the condition a < 1/5 seems to be a technical limitation due
to our use of the KMT approximation. For a more extensive discussion on asymptotics
and non-asymptotics small deviations for asymmetric last-passage percolation, see [51].

Remark 9.8. The limit law of the properly centered and rescaled partition function
should be the GUE Tracy-Widom law from random matrix theory. A proof of this fact
would need to refine the analysis performed in the first section of this chapter to reduce
the relevant values of u’s to an interval [cN1−a − ǫN , cN1−a − ǫN ] with c = β2/γ2 and
ǫN → 0 fast enough. This can be done without much effort, but, in order to identify
the limit law as the Tracy-Widom, we also need a joint control of expressions of the
form L(N − cNa− sN2a/3, cNa + sN2a/3) for s ranging over a large interval. The result
we are searching for can be expressed as follows: for s ∈ R

N1/6
{
L(N − sN2/3, N + sN2/3)− 2N

}
→ Ai(s)− s2

where Ai(·) is a continuous version the Airy process. This is a stationary process
which marginals are the Tracy-Widom law. See [55] for a related result and a precise
description of the Airy process.
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Birkhäuser Verlag, Basel
[15] E. Buffet, A. Patrick and J.V. Pule, Directed polymers on trees: a martingale approach, Journal

Of Physics 26 (1993), 1823-1834.
[16] Burke, P. (1956) The output of a queuing system, Oper. Res. 4 6, 699-704.
[17] Cadel, A., Tindel, S., Viens, F. (2008) Sharp asymptotics for the partition function of some

continuous-time directed polymers Potential Analysis 2, 2, 129-166.
[18] A. Camanes and P. Carmona, The critical temperature of a Directed Polymer in a random envi-

ronment, to appear in Markov Proc. Relat. Fields.
[19] Carmona, Ph. (2008) Directed polymers and ρ-percolation, ESAIM Prob. and Stat..
[20] P. Carmona and Y. Hu, On the partition function of a directed polymer in a random Gaussian

environment , Probab. Theor. Relat. Fields 124 3 (2002), 431-457.
[21] P. Carmona and Y. Hu, Strong disorder implies strong localization for directed polymers in a

random environment, ALEA 2 (2006), 217–229.
[22] Comets, F. Unpublished lecture notes, (2008).
[23] F. Comets, S. Popov and M. Vachkovskaia, The number of open paths in an oriented ρ-percolation

model, J. Stat. Phys 131 (2008), 357–379.

123



124 BIBLIOGRAPHY

[24] F. Comets ,T. Shiga and N. Yoshida, Directed Polymers in a random environment: strong disorder

and path localization, Bernouilli 9 4 (2003), 705-723 .
[25] F. Comets, T. Shiga, and N. Yoshida Probabilistic Analysis of Directed Polymers in a Random

Environment: a Review , Adv. Stud. Pure Math. 39 (2004), 115–142 .
[26] F. Comets and N. Yoshida Brownian directed polymers in random environment, Commun. Math.

Phys. 254 2 (2005), 257–287.
[27] Comets, F., Yoshida, N. (2004) Some new results on Brownian Directed Polymers in Random

Environment, RIMS Kokyuroku 1386, 50-66.
[28] Comets, F., Yoshida, N.(2006) Directed polymers in random environment are diffusive at weak

disorder Annals of Probability 34 1746–1770
[29] Comets, F., Yoshida, N. (2009) Branching random walks in a random environment: survival

probability, global and local growth rates, preprint.
[30] Comets, F., Vargas, V. (2006) Majorizing multiplicative cascades for directed polymers in random

media, ALEA Lat. Am. J. Probab. Math. Stat. 2, 267–277.
[31] Cook, J., Derrida, B. (1989) Polymers on Disordered Hierarchical Lattices: A Nonlinear Combi-

nation of Random Variables, J. Stat. Phys. 57 1/2, 89-139.
[32] Cranston, M., Mountford, T., Shiga (2002) Lyapunov exponents for the parabolic Anderson model,

Acta Math. Univ. Comenian. (NS) 71, 2, 163–188.
[33] Dembo, A., Zeitouni, O. (1999) On increasing subsequences of i.i.d. samples, Combin. Comput.

Probab. 8, 247-263.
[34] B. Derrida and H. Flyvbjerg, A new real space renormalization and its Julia set, J. Phys. A:

Math. Gen. 18 (1985), L313-L318
[35] Derrida, B., Gardner, E. (1984) Renormalisation group study of a disordered model, J. Phys. A:

Math. Gen. 17 (1984), 3223–3236.
[36] Derrida, B., Griffith, R. (1989) Directed polymers on disordered hierarchical lattices, Europhys.

Lett. 8 2 (1989), 111–116.
[37] Derrida, B., Hakim, V., Vannimenius, J. (1992) Effect of disorder on two-dimensional wetting, J.

Stat. Phys. 66, 1189–1213.
[38] Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F. (2009) Fractional moment bounds and disorder

relevance for pinning models, Commun. Math. Phys. 287, 867–887.
[39] Derrida, B., Spohn, H. (1988) Polymers on Disordered Trees, Spin Glasses, and Traveling Wave,

J. Stat. Phys. 51, 5/6.
[40] Fischer, D., Huse, D., Henley, C. (1985) Huse, Henley and Fischer respond, Phys. Rev. Lett. 55,

2924.
[41] Franchi, J. Chaos multiplicatif : un traitement simple et complet de la fonction de partition,
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