N
N

N

HAL

open science

Asymmetric current fluctuations and Andreev states
probed with a Josephson junction
Q. Le Masne

» To cite this version:

Q. Le Masne. Asymmetric current fluctuations and Andreev states probed with a Josephson junction.
Condensed Matter [cond-mat]|. Université Pierre et Marie Curie - Paris VI, 2010. English. NNT: .

tel-00482483

HAL Id: tel-00482483
https://theses.hal.science/tel-00482483
Submitted on 10 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00482483
https://hal.archives-ouvertes.fr

I
L)
{

¢

= v ¥ 9 -

ARAil PARIS

THESE DE DOCTORAT DE
L'UNIVERSITE PARIS 6 - PIERRE ET MARIE CURIE

Spécialité :
Physique du solide

Présentée par
Quentin LE MASNE

Pour obtenir le grade de

DOCTEUR de 'UNIVERSITE PIERRE ET MARIE CURIE

Sujet de la thése :

FLUCTUATIONS ASYMETRIQUES DE COURANT
ET ETATS D’ANDREEV
SONDES AVEC UNE JONCTION JOSEPHSON

soutenance le 29 octobre 2009
devant le jury composé de :

Nicolas AGRAIT (Examinateur)
Joachim ANKERHOLD (Examinateur)
Olivier BUISSON (Rapporteur)
Roland COMBESCOT (Président du jury)
Jukka PEKOLA (Rapporteur)
Hugues POTHIER (Directeur de these)

Thése préparée au sein du Service de Physique de I'Etat Condensé,
CEA-Saclay 91191 Gif-sur-Yvette

)






Avant-propos / Remerciements

Comme le financement de theses dans le laboratoire d’électronique molécu-
laire, ou je suis allé en stage de Master, ne s’adressait cette année la qu’aux
étrangers, j'ai été frapper a la porte d’a coté, chez le groupe Quantronique (un
peu par hasard, il faut I'avouer). Avant la premiére rencontre, j’ai voulu me ren-
seigner sur ce qu’on y faisait, en lisant les theses précédentes. Un peu dépassé
par la partie scientifique, je me suis surtout concentré sur les remerciements.
Ils étaient tellement dithyrambiques qu’ils m’ont presque convaincu a eux seuls
de venir en these. Maintenant que vient mon tour d’écrire ces lignes, j’aimerais
vanter moi aussi aux prochains curieux ce qu’ils gagneraient a passer quelque
temps dans le groupe, et profiter de la chance que j’ai eue.

Il faut bien le reconnaitre, tout a déja été dit ou presque sur les qualités de
cette équipe, alors j’ai presque honte de rajouter encore du miel, mais ils le méri-
tent. Oui, les membres du groupe partagent tous un enthousiasme et une bonne
humeur débordante, que ce soit pour la recherche comme pour plein d’autres su-
jets stimulants (sport, cinéma, littérature, macarons,...). Ce que d’aucuns pour-
raient considérer comme une certaine virulence dans leurs débats scientifiques
provient surtout de leur rage de comprendre tout ce que vous serez capable de
leur expliquer. Et oui, cela a été un vrai plaisir de faire partie pendant trois
ans d’une équipe ou l'on est encadré, formé et écouté, par des chercheurs que
I'on estime. C’est indispensable pour mener a bien un projet de recherche qui
promet inévitablement des moments difficiles, des échecs répétés, et des doutes
sérieux avant d’aboutir. Ils m’ont appris 'importance d’'un travail d’équipe, et
j’en retiens que la recherche, c¢’est surtout aider et se faire aider. Enfin, tréve de
science, j’al surtout rencontré des amis amusants, intéressants et attachants.

Maintenant, quoi de mieux que cette section Remerciements pour tous vous
remercier 7 Alors merci Daniel, en premier lieu. Je considere que m’appeler six
heures durant a mon camping depuis tes vacances, pour aller jusqu’a parsemer
ma these de quelques "The" supplémentaires, est représentatif de ton engage-
ment permanent pour le bon déroulement de la these. C’est aussi le signe de ton
attachement aux thésards, tout simplement. Merci a vous, Hugues et Cristian,
vous étes deux formidables exemples de rigueur et d’enthousiasme. Merci de
m’avoir accepté en these alors que je n’étais pas en stage chez vous, et d’avoir
établi un superbe atelier de correction de these grande capacité pendant ma
derniere ligne droite. Que serait une these en électronique sans la blague de
Hugues sur "Cinquante Ohms, priez pour nous" et une rédaction de these con-
cise et efficace sans la blague de Cristian sur le poisson frais ?

Merci a Pief et Pascal, pour m’avoir toujours accueilli et écouté quand je
m’affalais sur une chaise dans leurs bureaux pour raconter mes malheurs (mais
surtout pas pour leurs conseils sur les réparations automobiles, ils s’énerveraient



si je ne les remerciais que pour cela). A Denis, Patrice, Philippe aussi, pour
toutes les discussions partagées, scientifiques ou non, ainsi que pour tous vos
conseils et encouragements.

[’ambiance et le plaisir au travail étaient aussi largement alimentés par les
autres doctorants et post-doctorants que j’ai cotoyés: merci a Hélene pour ses
amusantes bougonnades, a Francgois N. pour ses jolies chemises et son humour
décalé (volontairement 7), ainsi qu’a Frangois M., Charis, Florian, Agustin et
Jean-Damien pour le temps qu’on a passé autour d’un thé le samedi apres-midi,
alors qu’on aurait dii étre ailleurs. Thanks Maciej for the time shared facing
this tough experiment and the long talks at night. Bonne chance a tous, ainsi
qu’aux petits nouveaux : Yui, Max, Landry, Andreas. Bien str, il faut inclure
aussi la-dedans tous les jeunes, du SPEC et d’ailleurs, avec qui j’ai partagé ces
moments agréables et difficiles. Merci en particulier a Eva, pour son agréable
compagnie pendant cette période de rédaction commune. Saluons aussi les
anciens membres du groupe gravitant dans le méme domaine, que 'on croisait
souvent dans nos couloirs: Sophie, Frédéric, Anne, Benjamin, Maria Luisa, et
bien stir Marcelo.

Bien siir, cette these n’aurait pas pu se faire sans le travail efficace des mem-
bres du SPEC : en premier lieu son responsable Eric Vincent et les secrétaires
Sandrine Thunin, Nathalie Royer, Murielle Zyla, et Dijana Samson. Mais aussi
Jean-Michel Richomme et sa sonnerie Panthere Rose, Pierre Janvier et son petit
chauffage des pieds, et tous les membres, méme a mi-temps, de I'atelier: Michel
Juignet, Dominique Duet, Jean-Claude Tack, Jacques Proudowski, Philippe
Forget et Vincent Padilla.

L’activité de recherche est aussi formidablement soutenue par des collegues
et amis du groupe en visite, qui passent pour quelques heures ou quelques
jours. J’aimerais remercier notamment Norman Birge, dont le recul sur les
mesures de bruit (et la vie en général) a été essentiel, mais aussi Hermann
Grabert, Joachim Ankerhold et Alfredo Levy Yeyati, trois théoriciens dont
I'intérét pour les résultats expérimentaux et la possibilité de les décrire étaient
rafraichissants. Ajoutons aussi Daniel Urban, pour son tres gros travail sur
I’expérience de mesure de bruit, et Konstantin Glaum, qui m’a décrit en dé-
tail tout ce qu’il savait sur I’aspect théorique du méme sujet (j’ai fait de mon
mieux pour en retenir quelque chose). De méme, merci a toutes les personnes
qui ont écouté mon histoire avec intérét, qui m’ont parfois accueilli dans leurs
laboratoires, ou avec qui j’ai tout simplement eu des discussions scientifiques
aussi diverses qu’enrichissantes: Hélene Bouchiat, Sebastian Bergeret, Juan Car-
los Cuevas, Michel Devoret, Julien Gabelli, Ronald Hanson, Leo Kouwenhoven,
John Martinis, Fabien Portier, Bertrand Reulet, Christian Schénenberger, Vi-
taly Shumeiko, Lieven Vandersypen et Dominik Zumbiihl.

Finally, I would like to thank very much the members of my thesis committee:
Olivier Buisson, Jukka Pekola, Joachim Ankerhold, Nicolas Agrait and Roland
Combescot.



Dans un autre registre, il m’est arrivé, lors de rares moments passés hors du
labo, d’avoir une vie sociale. C’est dans ces moments la que j’ai pu profiter des
longues discussions tardives avec mon colocataire Pierre et notre hote réguliere
Nais sur la difficulté de la these, autour d’un thé mal sucré, tout en réfléchissant
au prochain article pour le mort-né International Journal of Nothing, le seul
journal a facteur d’impact négatif. Merci & vous pour ces moments de détente,
mais aussi a Laurent, qui a carrément participé a ma these, ainsi qu’a tous mes
amis qui m’ont encouragé pour la soutenance (sauf ceux qui m’ont encouragé a
ne pas y aller).

Bien stir, merci a tous les membres de ma famille, qui ne se sont que mod-
érément moqués de moi durant cette these et qui n’ont pas tous dormi durant
la soutenance, pour ceux qui ont pu y étre.

Enfin, j’aimerais dédier cette thése d’abord a mes grands-parents maternels,
disparus juste avant que j’aie pu leur donner une raison de m’appeler docteur,
mais aussi a Zena, qui m’a littéralement porté jusqu’au bout, jusqu’a ce que
j’aie fini de faire joujou avec la science et qu’on puisse enfin passer aux choses
sérieuses.

Le groupe Quantronique début 2009

Premier rang, de g. a d.: Hugues Pothier, Maciej Zgirski, Francois Nguyen,
Cristian Urbina, Quentin Le Masne. Debout, de g. d d.: Pascal Senat, Denis Vion,
Patrice Bertet, Daniel Esteve, Dijana Samson, Agustin Palacios-Laloy, Matthias
Kende, Philippe Joyez, Jean-Damien Pillet, Landry Bretheau (derriére), Charis Quay
(devant), Florian Ong, Frangois Mallet, Pief Orfila.






Contents

1 Introduction .......... ... .. . 1
1.1 Josephson effect and mesoscopic physics . ...... ... ... ..o L. 1
1.2 Detecting asymmetric noise with a Josephson junction ............. 3
1.3 Towards Andreev states SpectroSCopy ... .....c..oveuveuneeneennon.. 8

I Detecting noise asymmetry using a Josephson junction

2 Escape of a Josephson junction out of the metastable state ..... 15
2.1  The Josephson junction in an electromagnetic environment ......... 15
2.2 Escape rate out of the zero-voltage state ......................... 24
2.3 Escape driven by an asymmetric noise ............ ... ... ... 33
2.4 ConcluSion . ...ttt 48

3 Numerical simulation of the escape ............................. 49
3.1 Simulation algorithm ...... ... ... .. 49
3.2 Rate estimation ....... ... 53
3.3 Results on the escaperate ........ .. .. i 58
3.4 Effect of a low-frequency cutoff. ... .. ... ... .. i 67
3.5 ConcCluSION .. .v it e 72

4 Experimental detection of an asymmetric noise with a Josephson
Junction ... 73
4.1 Introduction ........ ... 73
4.2 Experimental setup ... ..ot 81
4.3 Circuit characterization & measurement techniques ................ 87
4.4 Results on Sample JID1. ... ... o 95
4.5 Results on Sample JID2. ... ... .. . 99
4.6 Perspectives . ... ..o e 124
4.7 ConclusSion . ...t 129

Article reporting the measurement of asymmetric noise using a
Josephson junction ....... ... . . 131

ITI Probing Andreev States in superconducting atomic contacts




11 Contents

5 Josephson effect and Andreev states ............................ 137
5.1 Andreev Bound States ........ ... ... 137
5.2 An experimental test-bed: superconducting atomic contacts......... 144
5.3 Supercurrent in atomic contacts .. ......... .. i 146
5.4 Current-phase relation of well-characterized contacts ............... 148
5.5 Out-of-equilibrium effects.......... ... . 162
5.6 ConCluSIONS . o v vttt e 168

6 Towards Andreev states spectroscopy ............. .. ... .. ... 169
6.1 Predictions for the Andreev transition............................ 170
6.2 Design of an experimental setup .......... ... ... . i . 184
6.3 Probing the new on-chip environment with a standard SQUID circuit 189

IIT Sample Fabrication and Measurement Techniques

7 Sample Fabrication ............ .. ... .. .. ... 207
7.1 Samples JJD for noise detection experiments...................... 207
7.2 Samples AC1 and AC2 for atomic contacts experiments ............ 213
7.3 SQUID sample .. ..ot 216
7.4 Lithography recipes ........ ..ot 221

8 Low-Noise Measurement Techniques ............................ 225
8.1 Sample Holder & Bending Mechanism.............. ... ... ....... 225
8.2 Cryostat Wirlng . ...... .t e e 228
8.3 Room temperature connections and instruments................... 232

IV  Appendix

A Additional measurements ............. .. .. 235
A.1 Back-Bending in the I(V') characteristics of Josephson junctions .... 235
A.2 Heating effects in switching measurements ........................ 240

B  Miscellaneous .......... ... 243
B.1 Approximations for the tilted washboard potential ................. 243
B.2 Resonant activation through the modulation of the critical current... 245
B.3 Moments and Cumulants, and Poisson Process..................... 247
B.4 Details on the simulations ............... ... 256
B.5 The Andreev Levels Qubit ... ... 259
B.6 Critical current of a Josephson junction with electrodes having

different gaps .. ... 262

B.7 Atenuators. .. ... 265
B.8 Correspondence between names .............coviuiiineennenno... 267

Bibliography . .. ... e 269



Chapter

Introduction

1.1 Josephson effect and mesoscopic physics

Experiments on the Josephson effect were initiated in 1963 by the obser-
vation by Anderson and Rowell [1] of "an anomalous dc tunneling current
at or near zero voltage in very thin oxide barriers between superconduct-
ing Sn and Pb", thus confirming the striking predictions that Josephson
had made in 1962 [2]. Various kinds of superconducting weak links were
subsequently explored, but Josephson tunnel junctions, in which the cou-
pling between electrodes proceeds through a large number of electronic
channels with very small transmissions, have played a central role in the
field since then. This is mainly due to the very simple form that the
Josephson Hamiltonian adopts in this case, namely H; = —FE;cos~,
where E; is the Josephson energy proportional to the tunnel conduc-
tance, and v the phase difference between the superconducting order
parameters of both electrodes. The supercurrent-phase relation is given
by the first Josephson relation I = Iysiny where [y = Ej/¢q is the
critical current with g = h/2e, and the phase evolves according to the
second Josephson relation V' = ¢g7.

The Josephson junction is thus a simple system with a single degree
of freedom, and Josephson junctions physics developed in many direc-
tions to investigate a wide range of physical problems [3]. An important
example, thoroughly exploited in this thesis, is the switching out of the
zero-voltage state of a current-biased Josephson junction. After switch-
ing, the voltage is finite, the phase evolves continuously, and the average
supercurrent nearly vanishes. Depending on the parameters, this switch-
ing precisely implements either the celebrated Kramers problem of the
thermally activated escape of a particle out of a metastable state trapped
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in a potential well [4], or the problem of Macroscopic Quantum Tunneling

(MQT) [5].

Josephson junctions also provided a novel electrical element, based on
which many new devices have been implemented [3]. In the SIS mixer, the
non-linearity of the current-voltage characteristic is exploited to mix the
signal collected by an antenna with a local oscillator to produce a signal
at a lower frequency where detection is performed. Another Josephson
device widely used for applications is the famous de-SQUID that consists
of the parallel combination of two junctions forming a superconducting
loop that can enclose a magnetic flux. The Hamiltonian and hence all the
properties of the device are periodically modulated by the flux, with a
period given by the flux quantum @y, = h/2e, which makes the dc-SQUID
the most sensitive flux sensor [6]. Recently, the use of the de-SQUID was
further extended to microwave amplification by feeding the incoming
signal through a microwave coil microfabricated above the SQUID loop
[7, 8].

This thesis goes along this line of exploiting Josephson junctions for
making a new device. In the first part, I describe a new generation of de-
tectors that I have developed for analyzing the fluctuations of the current
flowing through a mesoscopic conductor, a question that has generated
recently a great interest in the mesoscopic physics community. Indeed,
Levitov and Lesovik [9], followed by many others, have demonstrated that
the asymmetry of the current distribution around its mean gives access
to information present neither in the average value of the current, nor in
its quadratic fluctuations. For example, in the simple case of a metallic
diffusive wire, the diffusion time enters the frequency dependence of this
asymmetry, which is related to the third moment of the fluctuations [10].
Our detector exploits the exponential dependence of the switching rate
of a Josephson junction on the bias current for detecting current fluctu-
ations added to it. Elaborating on a previous experiment developed in
the Quantronics group, we have demonstrated in a model case that our
detection scheme allows to access the asymmetry of current fluctuations,
and that recent theories [11, 12] account quantitatively for the data.

The second part of this thesis also makes use of Josephson junctions as
a tool to tackle a fundamental problem in mesoscopic superconductivity.
Beyond the Josephson tunnel junction, there exists an even more elemen-
tary weak-link structure, namely the short single channel contact with
arbitrary transmission. This very simple structure, which can be thought
of as the building block of all short weak-links, can be fully analyzed
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using the concept of Andreev reflection initially developed for describing
normal-superconducting interfaces [13]. The coupling between the elec-
trodes generates a set of two level systems, called the "Andreev bound
states" pairs, which carry the supercurrent [14, 15, 16]. These doublets
have been proposed recently as possible new Qubits [17].

The predictions of this theory can be tested using superconducting
atomic contacts, which are simple systems with a small number of chan-
nels whose transmission can be varied and measured [18, 19]. In partic-
ular, the predictions for the supercurrent in the ground state have been
successfully tested very recently by the Quantronics group, through the
measurement of the switching current of a SQUID-like device consisting
of an atomic contact in parallel with a regular Josephson junction [20].
However, the structure of the Andreev doublets has never been directly
probed. During my thesis, I have designed and run new experiments
aiming at characterizing the expected doublets of Andreev states, and
obtained preliminary results.

The two parts of my thesis, together with the results, are now intro-
duced in more details.

1.2 Detecting asymmetric noise with a Josephson
junction

Noise is the signal...

The current flowing through a conductor always fluctuates around its
mean value. While some of these fluctuations can simply originate on
experimental artifacts or uncontrolled parameters, and can be in princi-
ple avoided by careful and proper design, there are fluctuations that arise
from fundamental and unavoidable causes: the thermal fluctuations of the
populations of the electronic states in the conductor or the randomness
introduced by scattering processes of the charge carriers within the con-
ductor. These fluctuations constitute an important source of information
about the microscopic mechanisms behind charge transport.

Noise conveys useful information...

Working on vacuum diodes, Schottky determined in 1918 a link between
the current fluctuations and the charge of the carriers. When charge
transfer proceeds through independent and rare non-overlapping events,
the spectral density at low frequency of the current noise reduces to:
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Sé) = 2qIN

where ¢ is the "effective charge' transferred at each event, and Iy the
mean current flowing through the conductor. This noise, reminiscent of
the one of the rain on a roof, results from the discreteness of charge
carriers and has been coined shot noise. Shot noise has been widely ex-
ploited to characterize transport mechanisms [21]. Let us mention here
the evidence for fractional charges ¢ = e¢/3 at 1/3 Landau level filling of
a two-dimensional electron gas [22, 23|, the confirmation of shots with
¢ = 2e in Andreev reflection at a normal-superconducting contact [24],
and the observation of large shots ¢ = ne due to Multiple Andreev reflec-
tions in superconducting atomic contacts [25]. In all these experiments,
the noise was probed through its spectrum, which corresponds to the
second-order correlation function of the fluctuations.

Meanwhile, a theoretical breakthrough arose when Levitov and Leso-
vik introduced in mesoscopic physics the concept of Full Counting Statis-
tics [9, 26], giving access to higher order correlators of the noise. In this
framework, one considers the fluctuation of the number N of electrons
having passed across a conductor during a probing time 7,. The random
variable IV is governed by a probability distribution P(N,7,), which pro-
vides a full description of current fluctuations. The second moment of
N is equivalent to the second-order correlator of the current noise, i.e.
to the noise spectrum. The third moment of N, equivalent to measuring
(613;), characterizes the asymmetry of the current fluctuations.

... but few experiments have measured noise asymmetry

Experimentally, accessing directly the probability distribution P of the
current fluctuations remains an unsolved challenge. One can however
access the moments of order p of the current fluctuations (67%), but
measuring high order moments is very challenging because no measurable
physical quantity has been found to directly determine a given moment.

The first experimental determination of a third moment was achieved
for a tunnel junction by Reulet [27] who obtained (6%) using microwave
mixers operated at room temperature in a bandwidth large enough to
obtain a measurable signal. These experiments represent a real tour de
force, requiring very long averaging times and precise calibration of the
microwave circuit. It soon became clear that an on-chip detector, close to
the sample (as compared to the wavelength of the signals), would provide
a better approach to measure the noise asymmetry. In 2004, Tobiska
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and Nazarov precisely proposed to use a Josephson Junction as such an
on-chip detector to access the full counting statistics of the noise [28].
The first experimental realization of such a detector was implemented by
Pekola by adding the shot noise generated by a tunnel junction to the
bias current of the junction [29].

This thesis pursues the experimental effort initiated in the Quantron-
ics group for implementing such a scheme.

A new noise detector

Switching of a Josephson junction ...

The current-voltage characteristic of a Josephson junction measured at
low temperature (kg7 < Ej) is shown in Fig. 1.1(a). Because of fluctu-
ations of the bias current, switching out of the zero voltage state is ob-
served at a current slightly smaller than the critical current Iy at which
the barrier height for switching out of the zero-voltage state vanishes.
The escape process is characterized by the lifetime 7., or conversely by
the escape rate [' = }, which, in the thermal regime, is essentially de-
termined by the ratio of the barrier height to the temperature associated
to the fluctuations and the dissipation. Switching is hysteretic, which
makes the junction a real "sample-and-hold" detector and allows easy
detection of switching by measuring the voltage across the junction. The
exponential sensitivity of the escape rate I" on the bias current makes a
Josephson junction a sensitive current detector. It is also a fast detector
since its response time is determined by the fast phase dynamics in the
zero voltage state.

. can detect noise asymmetry

Although the main effect of an added noise on the escape rate is to in-
crease the effective temperature of the escape process Tog x —In 1, it
was demonstrated theoretically that noise asymmetry also affects switch-
ing [11, 28, 30, 31, 32, 33, 34]. The second moment of the shot noise
increases the switching rate, with a small correction due to the third
moment. Experimentally, this smaller effect is accessed by inverting the
sign of the current flowing through the noise source, thus inverting the
contribution of the added noise to the bias current of the detector. The
rate is measured in both cases (I'y and I), and the rate asymmetry
Rr = F—f, insensitive to even moments of the noise, is a measure of
the third moment. The first experiment performed in the group during
the thesis of Benjamin Huard [35, 36] confirmed the effect of the second
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Fig. 1.1. Detector of asymmetric noise based on the switching of a current biased Josephson
junction. The setup (b) consists of a Josephson junction (I(V') characteristics in (a)) biased
by a dc current to which a non-Gaussian asymmetric current noise is added. The variations
of the escape temperature of the junction with the mean noise current is shown for different
temperatures in (c). The asymmetry of the rate when the noise adds or subtracts to the dc
current is shown in (d), where solid lines are predictions. This rate asymmetry measures the
noise asymmetry.

moment and detected a rate asymmetry, but the data could not be quan-
titatively understood, probably due to spurious experimental artifacts.
Another experiment [37] also demonstrated the sensitivity of switching to
the third moment, and confirmed, by measuring the rate asymmetry for
different noise sources, that a macroscopic resistor produces a symmetric
noise. However, a proper comparison with theory could not be achieved
neither.

A quantitative noise asymmetry detector

During this thesis, we have developed a new generation of experiments for
measuring the rate asymmetry and achieving a quantitative comparison
with theory in the simple case of the noise produced by a tunnel junction.
This benchmark experiment confirms the possibility to use a Josephson
junction as a quantitative detector for the asymmetric part of the noise.
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The setup used in this experiment is represented in Fig. 1.1(b). The
plasma frequency of the detector is designed to ensure that no quantum
correction or quantum tunneling effects enter in the description of the
escape rate. The noise produced by the tunnel junction is added through
an on-chip RC filter to the dc bias of the Josephson junction detector.
The noisy tunnel junction is voltage-biased, and its current Iy can be
inverted.

The dominant effect of the second-moment of the noise on the escape
temperature determined from the switching rate is shown in Fig. 1.1(c).
The observed increase agrees with predictions without adjustable param-
eters. The third moment of the noise, accessed through the rate asym-
metry, was measured at a fixed value of the rate and a given bias current
for each effective temperature, as shown in Fig. 1.1(d). Although the ex-
isting published theory does not apply in principle to our setup, in which
the noise transmission from source to detector and the dissipation expe-
rienced by the detector vary with frequency, we found that, apart from
a scaling factor, the measured rate asymmetry is adequately described
by the predictions [38]. Recently, Urban and Grabert [12] have been able
to extend this theory by treating frequency dependent circuits, and have
obtained a quantitative agreement with our data. This important the-
oretical progress demonstrates that the third moment of current noise
can be quantitatively extracted from rate asymmetry measurements of a
Josephson junction.

Conclusions & perspectives

The experiment described in the first part of this thesis demonstrates
that a Josephson junction can be used to measure the third moment of
current fluctuations. This on-chip detector strategy is versatile and effi-
cient, as it does not require tedious microwave calibrations of the whole
circuit including components and cables at room temperature, and can be
applied to samples presenting arbitrary impedances. However, our exper-
iment also shows that frequency effects are important. Achieving a better
control of the transfer function from the noise source to the detector, so as
to be able to describe the rate asymmetry by the frequency-independent
theory, is a necessary step to consider this detector as a generic "Third-
moment-meter'. With this in hand, the next step would be to investigate
interesting physical systems like quantum point contacts, for which the
third moment is predicted to vary as > 7,,(1 — 7,)(1 — 27,) [39] where
{7} are the transmissions of the channels, or the regime of multiple
Andreev reflections in superconducting atomic point contacts in which
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charge transfer involves a large number of electrons, and where the noise

asymmetry can change sign as a function of the channel transmissions
[40].

It is however important to note that Josephson junction detectors,
initially proposed to extract the Full Counting Statistics of the current
noise from the variations of the switching rate at different bias currents,
face experimental difficulties that prevent from accessing moments be-
yond the third one, at least for a simple Josephson junction [11]. Note
however that particular ranges of detection parameters facilitating such
measurements have been proposed, but the requirements seem hardly
achievable [41].

1.3 Towards Andreev states spectroscopy

Andreev bound states...

The second part of this thesis deals with the general picture of the Joseph-
son effect that arose during the last years of the 20" century within the
framework of mesoscopic superconductivity, and which allows to treat on
the same footing all the different possible weak links (tunnel junctions,
point contacts, bridges of normal metal or of exotic materials like car-
bon nanotubes;...). Within this framework, the elementary Josephson
weak link is a single conduction channel with arbitrary transmission 7
connecting two superconducting electrodes. The central ideas are that
any weak link can be decomposed into a set of such channels, and that
within each channel the supercurrent is carried through a set of localized
quasiparticle states which come in pairs, the "Andreev bound states".

...in a short single channel superconducting contact

An important simplification occurs when the channel is shorter than the
superconducting coherence length because in this case the solution of
the Bogolubov-De Gennes equation [42] consists of just a single pair of
Andreev bound states. These states are described as resonant electron-
hole quasiparticle states spreading slightly in both electrodes around the
weak-link, with energies:

E.(0,7) = :I:AJ 1 — 7sin? (g)

where A is the superconducting gap, and ¢ is the superconducting phase
difference between the order parameters of both reservoirs. The variations
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of these energies with ¢ at different channel transmissions are shown in
Fig. 1.2(a).
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Fig. 1.2. (a) Energies of Andreev states versus the phase difference for a superconducting
short single channel for transmissions 0.7 and 0.97. (b) Schematics of the Atomic SQUID
circuit used for measuring the supercurrent through a superconducting atomic contact. (c)
The variations of the switching current of the Atomic SQUID with the flux through its
loop perfectly reflect the current-phase relation calculated from the independently measured
transmissions of the contact. (d) Scanning electron micrograph of an Atomic SQUID circuit
designed to perform the spectroscopy of the Andreev levels. A coplanar transmission line
(at the bottom)) allows microwave flux excitation of the Atomic SQUID; the long thin wires
(top region) are inductors that isolate the Atomic SQUID from the external circuit at high
frequencies.

A potential qubit ?

The Andreev states in a short single channel Josephson structure con-
stitute a two-level system that has been proposed as the basis for a new
qubit by including it in a superconducting loop [17]. What is particularly
interesting and novel is that, in contrast with all other superconducting
qubits based on Josephson junction circuits [43], an "Andreev qubit' is
a microscopic two level system like spin qubits in semiconducting quan-
tum dots. There are several essential steps that have to be accomplished
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before being able to attempt any quantum manipulation of an Andreev
doublet. First, it is necessary to characterize the states and to be able
to measure the current they carry. Second, it is necessary to perform
the spectroscopy of the doublet. And finally, the relaxation time of the
excited state, and the dephasing time of a quantum superposition of the
two states, have to be measured, understood and controlled if possible.

Supercurrent in atomic contacts

The measurement of the current-phase relation of superconducting atomic
contacts was recently performed in the Quantronics group [20] using a
new circuit with a SQUID-like geometry, as shown in Fig. 1.2(b). This
circuit consists of an atomic contact in parallel with a Josephson junction
and has been nicknamed the "Atomic SQUID". First, the I(V') charac-
teristics of the contact is obtained by subtracting from the (V') of the
Atomic SQUID that of the junction (obtained after completely break-
ing the atomic contact). The channel transmissions, accurately deter-
mined from this I(V'), are then used to calculate the expected current-
phase relation of the contact. Secondly, the switching current of the
Atomic SQUID is measured as a function of the flux through the loop
[20, 36, 44, 45]. If the critical current of the junction is large, and the
phase across the Josephson junction is subject to small fluctuations, this
Atomic SQUID geometry allows an almost perfect phase bias of the con-
tact. As shown in Fig. 1.2(c), the measured variations of the switching
current are perfectly described by theory, if one considers simply the
current-phase relation of the lower Andreev state of each channel.

New experiments to probe the Andreev doublet

During my thesis we carried out several experiments on Atomic SQUIDs
with the aim of performing the microwave spectroscopy of the Andreev
levels of the atomic contact. Although for the moment we have not
reached this goal, several important technical locks have been overcome,
and preliminary results have been obtained.

A spectroscopy experiment requires:

1. A well characterized atomic contact;

2. A phase-biasing circuit under control;

3. The controlled injection of an external excitation matching the An-
dreev frequency v4(9), which must lie in an experimentally accessible
range;

4. A long enough relaxation time of the upper state in order to detect
its population within the time scale of the measurement.
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As mentioned above, we have already shown that the Atomic SQUID
setup can fulfill the first two criteria. However, the last two require further
developments.

Because we access the state of the Atomic SQUID through switching
experiments, the phase across the atomic contact is in fact a dynamical
variable with both thermal and quantum fluctuations. Depending on the
actual design and parameters of the global circuit, there can be significant
departures from an ideal phase-bias situation, and important modifica-
tions of the Andreev frequency as calculated for an isolated contact.

Bias current microwave excitation of an Atomic SQUID in the classical
regime

We first attempted to excite the atomic contact during the measurement
of its supercurrent-phase relation by adding a small microwave current
to the dc bias-current of the Atomic SQUID, for a sample in the classical
regime. Indeed, if a transition occurs from the lower to the upper Andreev
state, which carries an opposite supercurrent, the switching current of the
Atomic SQUID would be significantly modified. Although we have found
that applying microwaves does affect switching of the Atomic SQUID, we
could not relate the observed changes to the expected Andreev transition
frequency. Furthermore, we found that the SQUID shunt capacitance,
which was intentionally fabricated in order to be in the classical escape
regime, prevented us from injecting large enough microwave currents in
the atomic contact. Finally, the dissipation might have been too large to
induce a sufficient population of the upper Andreev state.

Flux microwave excitation of an Atomic SQUID in the quantum regime

In order to both solve this coupling problem and control the lifetime
of the excited state, we have designed and operated a new circuit (see
Fig. 1.2(d)). For the former goal, the microwave excitation is performed
via an on-chip coplanar antenna which couples to the flux threading
the SQUID loop. For the latter, the low capacitance Atomic SQUID is
isolated by nanofabricated inductors from the low impedance connect-
ing lines. In order to test this on-chip electromagnetic environment, we
have performed a preliminary experiment with a two-junctions symmet-
ric SQUID. The plasma resonance of the SQUID could be observed using
the flux excitation line, and the ensemble of the results validates the pa-
rameters of the new design.

An important consequence of these changes is that in this new circuit
the phase across the junction is a quantum variable with sizable quan-
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tum fluctuations, and switching is dominated at low temperatures by
MQT. Moreover, the coupled quantum dynamics of the contact and the
junction could lead, depending on the actual parameters, to very signif-
icant departures of the Andreev frequency from the value expected for
the isolated contact.

Conclusions & perspectives

In the experiments described in the second part of this thesis we used
a Josephson junction to probe the supercurrent of well-characterized
atomic contacts. If the contribution of the Andreev ground state of each
channel to the supercurrent is by now perfectly identified, the role of the
excited states remains elusive. We have identified both practical and fun-
damental issues that have prevented us from performing the spectroscopy
of Andreev doublets, and new experiments are under way.

If the spectroscopy is achieved, one could then envision to create,
using well controlled microwaves pulses, coherent superpositions of the
two Andreev states in one or several channels of an atomic contact. It is
however important to note that, even if the coherence time is found to
be long enough, controlling the possible coupling between the different
channels would present a formidable challenge.
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Detecting noise asymmetry using a
Josephson junction






Chapter

Escape of a Josephson junction out
of the metastable state

In this chapter, we review some results on the escape rate of a Joseph-
son out of its zero-voltage state. Having defined in a first section the
dynamics of the junction in the tilted washboard potential, we present the
expressions for the rate in both the thermal activation regime and the
Macroscopic Quantum Tunneling regime. The case of thermal activation
is extended in the final section, where a non-Gaussian noise is added to
the bias current of the junction. We compare recent theoretical predictions
for the escape rate in this regime.

2.1 The Josephson junction in an electromagnetic
environment

2.1.1 The Josephson junction

A Josephson junction [2] consists of two superconducting electrodes sepa-
rated by a thin insulating layer (see [3] for a review of Josephson junction
physics). It can be modeled as shown in Fig. 2.1 by a pure Josephson el-
ement in parallel with a capacitance C;. The Josephson element allows
the tunneling of Cooper pairs with the characteristic Josephson energy
E; = poly, where I is the critical current of the junction and o = h/2e
the reduced flux quantum. The critical current corresponds to the max-
imal possible supercurrent. The presence of the capacitor introduces an-
other energy scale, the charging energy F¢o = %] of the capacitor, where
e is the elementary charge. In this thesis, one only considers Josephson
junctions in the regime F; > F¢ in which charging effects are negligible.
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The phase difference v between the phase of the order parameters in the
two superconducting electrodes is the relevant variable in this limit, and
the Hamiltonian for the Josephson junction reduces to:

Hj; = —Ej cosy. (2.1)

The phase difference ~ is linked to the voltage drop V' across the junction
by the Josephson relation:

woy = V. (2.2)

Since the number of charges having tunneled through the junction is
the conjugated variable of the phase difference [46], the current operator
is obtained as:

1 OH;,
wo Oy
Hence, in a classical description of an electromagnetic circuit, the current
through a phase-biased Josephson junction is:

I =

(2.3)

= [ysiny. (2.4)

Let us now consider the case where the phase difference ~ is not fixed,
but is oscillating with a small amplitude around (). Using the Josephson
relations (Eq. (2.2) and (2.4)), the voltage across the junction is related
to the derivative of the current flowing through it by:

wo dIf

V ~ N — 2.5
Igcos (y) dt’ (2:5)

which corresponds to the response of an inductor having an effective

inductance
L o

= ) 2.6
1= s () (26)
We defined here the Josephson inductance at zero bias
Ly = %. (2.7)
0

A pure Josephson junction in this regime can thus be thought in electrical
engineering terms as a non-linear inductor.

2.1.2 The RCSJ Model

Practically, the junction is always embedded in an electrical circuit, there-
fore connected to an electromagnetic environment described by its ad-
mittance Y (w) that controls the dynamical properties of the junction.
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SUPERCURRENT
BRANCH

T=0

Fig. 2.1. Top: The Josephson junction is obtained at the overlap of two superconducting
electrodes separated by a thin insulating layer. It is described by the parallel combination of a
pure Josephson element and a capacitor. This association is usually represented by a crossed
box symbol. Bottom: Schematic representation of the I(V') characteristics of a current-
biased Josephson junction within the RCSJ model, at zero temperature. The supercurrent
branch is observed at zero voltage, up to the critical current Iy. For 0 < V < %, the
dc current is zero. Above %, the Josephson junction behaves like a normal metal tunnel
junction of resistance R, related to the critical current by the Ambegaokar-Baratoff relation
[47] (see Appendix B.6).

The simplest model for the electromagnetic environment has been pro-
posed by Stewart and McCumber [48, 49] (see Fig. 2.2). In this model,
the pure Josephson element of critical current I is shunted by a capaci-
tance C'; and a resistance R. It has thus been coined the Resistively and
Capacitively Shunted Junction model (RCSJ). Using this RCSJ model
is the key to describe the I(V') characteristics of a Josephson junction,
and specifically the supercurrent branch at zero voltage represented in
Fig. 2.1. The switching out of the supercurrent branch to a dissipative
state at finite voltage is the subject of this chapter.

Equations of the circuit

The equations describing the behavior of the circuit shown in Fig. 2.2
are obtained from Kirchoft’s laws and Josephson relations:
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Fig. 2.2. Left: Electrical model for a current-biased Josephson junction embedded in an
electromagnetic environment Y (w), biased by a current Ip. Right: The RCSJ model con-
siders a pure Josephson element shunted by a capacitance C'; and a resistance R. To the
resistance R at temperature T" are associated current fluctuations 67, represented here as a
noise source in parallel.

Ly =4
AP 2.9
Croey + By + Ej[siny — s] = podl

where s = [I—’g is the reduced bias current. The Johnson-Nyquist current

fluctuations 67 originate from thermal fluctuations of the energy states
populations in the resistor, and are introduced as a noise source in parallel
with the resistance. The correlation function of the current fluctuations
is obtained from the fluctuation-dissipation theorem as:

wIworw) = et

St —1), (2.9)

where T is the temperature of the resistor. The equilibrium position of
the phase difference v is found for (y) = arcsins when s < 1. Using
Eq. (2.6), the effective inductance of the biased junction is thus:

Lo

Lils) = =2, (2.10)

Mechanical analogy: a particle in a tilted washboard potential

Electrical equations (2.8) are completely similar to the mechanical equa-
tions of motion of a fictitious massive particle evolving in a titled wash-
board potential U(x,s) = —E;[cosz + sx] (see Fig. 2.3). The phase
difference v is equivalent to the position x of the particle, the voltage
éV is equivalent to its velocity v, the mass of the particle corresponds
to m = Cyp2, and the damping term is written as y = %Q. The fluctu-
ating force acting on the particle £(t) = podI(t) is characterized by:
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ey = =355~ o). (211)

This term £(¢) can also be seen as a fluctuation of the tilt of the potential.
This analogy is summarized in Table 2.1.

Element Mechanical Electrical
position T ¥
velocity v V/eo

Q 2
mass m Ciep
damping X (RCy)™*
potential U(x,s) = —Ej[cosz + sx] —Ej[cosy + s7]
noise £ wodl

correlation (E@)EMR)) = MTX(;(t’ —t) (SI(t)SI(t")) = 2EBLS( — )

Table 2.1. Correspondence between the RCSJ model for a Josephson junction and the
dynamics of a fictitious particle in a tilted washboard potential.

Using the notations & = 0z and U'(z) = 0,U, the equivalent equa-
tions are:

{mjc_'+mxo'c+U’(x) =&(1). (2.12)

In the following, the dynamics of the phase difference is often described
with the equivalent mechanical model.

2.1.3 Dynamics of the fictitious particle

Switching out of the zero-voltage state

In order to get some insight of the dynamics of the particle, let us first
consider a case without any fluctuations (i.e. at zero temperature in this
classical model). Two states are possible for the particle (see Fig. 2.3):

e For s < 1, the potential U presents local minima, and the particle
is trapped in one of them. Its position is fixed and the velocity is
zero on average. This corresponds to the dc Josephson effect or the
supercurrent branch, where the phase is constant. The current is given
by Eq. (2.4).

e For s > 1 the local minima disappear and the particle runs down the
potential. This corresponds to a running state with a finite voltage.

Switching between those two states is thus observed exactly at s = 1.



20

2 Escape of a Josephson junction out of the metastable state
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Fig. 2.3. Tilted washboard potential associated to the dynamics of the phase in absence
of fluctuations (zero temperature in this classical model). For s < 1, the potential presents
wells in which the particle is trapped. For s > 1, the wells disappear and the particle gets
into to a running state.

However, in a practical experiment, the fluctuations are always present.

Due to the current fluctuation 0/, the state of the particle trapped in one
of the wells is metastable. The particle oscillates in the well, and it has a
finite probability to escape out of this well. The particle then undergoes
a trajectory that extends over several wells and depends on the damping
(see Fig. 2.4):

If it has a sufficient kinetic energy, the particle is able to overcome
the successive barriers, and it reaches a running state. There is then a
finite voltage across the junction. The switching is thus again observed,
but for a reduced bias current sy, < 1.

If the particle does no gain a sufficient energy from one well to the
next one due to large losses, it can be retrapped in one of the fol-
lowing wells, then escape again, and slowly evolve down the potential
with this succession of escape and retrapping. This situation corre-
sponds to the phase diffusion regime. The voltage across the junction
thus evolves gradually from zero to an extremely small value, with
no sudden change. Since experimentally the dynamics of the junction
is monitored through the voltage across it, the measurement of the
escape of the junction out of the zero-voltage state gets very delicate
when approaching this regime.
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ESCAPE OUT OF
A SINGLE WELL
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Fig. 2.4. Dynamics of the particle in presence of fluctuations (finite temperature in this
classical model). The particle can overcome the barrier and escape out of the single well.
The dynamics of the particle depends on the damping. If the damping is small, the particle
gains enough energy to reach a running state, leading to a finite voltage. Otherwise, the
particle enters a diffusion regime, escaping from one well to be retrapped in a following one,
with a very small average velocity.

In the following, we describe all the different parts of the dynamics
of the junction separately. We first present the response of the junction
when subjected to a small periodic drive, and show the importance of
the environment, which determines the dynamics. We then describe the
escape out of a single well in presence of thermal fluctuations. The escape
is a Poisson process described by a lifetime 7.4, of the metastable state or
an escape rate [' = % We show here how the escape of a particle out of
single well can be used to characterize the properties of the fluctuations
that triggered the escape. In particular, predictions for the behavior of
the escape rate when the noise to which the junction is submitted is
asymmetric are discussed.

Parameters of the dynamics
In order to describe the escape dynamics, we introduce here the relevant

concepts of barrier height, plasma frequency and quality factor.

Barrier height In most of the aspects of theory, only the barrier height
AU (s) enters, and not the complete potential U(~, s). It is given by:

AU(s) = E; [2\/ 1 —s2—s(m— 2arcsin(s))} , (2.13)
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which is well approximated for s close to 1 (see Fig. 2.5(a)) by:

4\/_ )3/2‘

AUpprox(s) = 3 Ey(1— (2.14)
2
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Fig. 2.5. Left: Tilted washboard potential in which the fictitious particle evolves (shown
here for s = 0.7). In the region of the well, the potential can be approximated by a cubic
potential (see Appendix B.1). Right: Barrier height from Eq. (2.13) as a function of the
reduced bias current (solid line) and approximated expression of Eq. (2.14) (dashed line)

Frequency-response at small amplitudes - Plasma frequency = When sub-
mitted to the noise arising from the environment, the phase undergoes
oscillations around the local potential minimum. The characteristic fre-
quency of the oscillations is the plasma angular frequency w,(s), deter-
mined by the curvature of the potential at the minimum:

a U 77 2 1/4
= 1— 2.1
\/CJSOO \/ ) wpo( ’ ) 7 (2.15)

Ywell

where
Iy 1

w = =
7 ©oCy VL jCy

is the bare plasma angular frequency.

The small oscillations of the phase difference around the minimum
value can be approximated by a monochromatic behavior. Under a small
current excitation ds,, = 01, /I at angular frequency w, Eq. (2.8) yields
the phase response 7,,:

(2.16)

1
T 7 S Sw
jWLJY:cot (w>

where Y. is the total admittance of the circuit seen from the bias line.

Voo = (2.17)
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In the RCSJ model One has

1 1
thOt(w) - E + jWLJ

+ iCw. (2.18)

which corresponds to a second order filter. The characteristic frequency
of the circuit is simply w,(s) with a quality factor Q(s) = RC w,(s) for
the resonance. One defines also the quality factor at zero bias

Qo = RCjwyo. (2.19)
Using these two parameters, Eq. (2.8) reduces to:

¥+ CZ;;)W + w2y [siny — 5] = wﬁO(Z. (2.20)

For an arbitrary admittance For a junction shunted by an arbitrary
admittance, the resonances of the circuit correspond to the complex poles
of m, hence the complex zeros of ;o (w), denoted {w;}. The cor-
responding resonant frequencies are found as the real part of the complex
solutions Re(ws), and the plasma frequency is the largest one. The quality

factor of each resonant mode is found as:

Re (ws)

Qfactor - m

(2.21)

This expression simplifies by defining an effective capacitor shunting the
junction by:

CJ = lim KOt(w)

2.22

and an effective admittance Y (w) that excludes the Josephson element
and the effective capacitor by:

Y(w) = Yior(w)

— — 1Cw. 2.23

ijJ JLaw ( )
In this case, the dissipation is described by Re (Y (w,)), and the quality
factor of the mode at w, reduces to:

1

Qfactor = m

Cpr. (224)
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2.2 Escape rate out of the zero-voltage state

The escape out of a single well is simply described in two limits (see
Fig. 2.6):

e When the thermal fluctuations have a characteristic energy much
higher than the energy related to the plasma frequency, kg1 > hw,,
the junction can be treated as a non-linear, classical oscillator. In this
regime, the escape is due to thermal fluctuations of the bias current
that drive the particle over the barrier [50]. This regime is called the
thermal activation regime.

e When the temperature is smaller than the crossover temperature Too
[5] with

Too = (2.25)

277']{73 ’
the energy levels of the anharmonic oscillator formed by the pure
Josephson element and the capacitance in parallel are clearly sepa-
rated. Due to quantum fluctuations arising from the environment, the
escape of the particle is dominated by quantum tunneling from the
ground state through the barrier (for a review, see [51]). Because the
phase is a macroscopic variable, this limit was coined the regime of
Macroscopic Quantum Tunneling (MQT).

Thermal
activation

Unnasc

Uly,s)

Uly,s)
£
T
<
i ¢
—

Unin[—

Fig. 2.6. Due to fluctuations in the environment, the particle can escape from the well. De-
pending on the amplitude of the thermal fluctuations, this escape can be thermally activated
(left), or occur through quantum tunneling of the phase (right) (see text for details). The
plasma frequency wy /27 is the frequency of the small oscillations.

In the following, we shortly review these two escape regimes, while
the crossover between the two regimes is not detailed here [5]. In the two
cases, the escape rate [ is written as an Arrhenius activation law:
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I=Ae". (2.26)

where the terms A and B both depend on the regime.

2.2.1 Thermal activation

Transition State Theory

In the case of thermal activation, a simple but already accurate expression
of the escape rate is obtained with the Transition State Theory (TST)
(see [50] for a review). This theory assumes that Boltzmann equilibrium
is achieved for the particle everywhere in the well (no matter how). This
approximation yields the simple results:

e A is the plasma frequency:
wp($)
A =277 2.27
27 ( )

e B is the ratio between the barrier height and the characteristic energy
of the current fluctuations kgT"

AU (s)
B = : 2.28
T (2.28)
The escape rate out of a single well is thus:
AU(s)
Frgr = 2208) 357 (2.29)

2

Effect of the environment on the prefactor of the escape rate

The TST, which neglects in particular the possibility of recrossings of
the barrier due to friction, only gives an upper bound for the rate. The
exact value of the rate is of the form:

I'=X\(B,Q(s)) e B, (2.30)

where A (B, Q(s)) is a prefactor taking into account dissipation through
the quality factor. One should note here that the effect of the environment
in the thermal activation regime is entirely taken into account by the
prefactor. The prefactor A was first calculated by Kramers in two limiting
regimes [4, 50, 52, 53]:
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e In the underdamped regime (Qo > B), the quality factor is extremely
large and the particle looses only very little energy at each oscillation
in the well. The energy of the particle becomes a slow variable, while
the position and velocity are fast variables. This limit is thus coined
energy diffusion. The escape of particles is a source of depletion of the
high energy trajectories (close to the barrier top), while the coupling
to the heat bath does not allow to repopulate them fast enough. This
gives rise to a rate slightly lower than predicted by the TST. In this
limit the prefactor is:

36 B
5 Q(s)

e In the overdamped regime (Qy < B), the particle slowly evolves by
Brownian motion from the bottom of the well to the top, and has
an energy following almost a Boltzmann equilibrium in the well. This
limit is thus coined spatial diffusion. In this case, when the particle
has crossed the top of the barrier, there is a finite probability that it
comes back in the well instead of running down the potential, thus
giving rise to a rate lower than predicted by the TST. In this limit,
the prefactor is:

A(B,Q(s)) = r1(B,Q(s)) =

. (2.31)

MQU) = Q) = gos(IH AP -1, (@32
However, those two limits do not correspond to the relevant experi-
mental regime, which is typically Qg >~ B. A complete expression of the
escape rate in the thermal activation regime was derived by E. Pollak, P.
Hanggi, H. Grabert and V. Mel'nikov [54, 55, 56], then confirmed in the
range of intermediate quality factor by numerical simulations [57]. The
exact prefactor in this case is:

1 400 d _AE(1+y2)
A = Kaexp {271' Lm 7 +yy2 In (1 —e T (2.33)

where

1 \*(. 60 T ) WA
ap = (14 5g) (14 g1+ g [0 - - 5 - )
(2.34)

is a quantity that, in the limit ()9 — oo, approaches the energy loss during
one oscillation of a particle having an initial energy equal to the barrier
height. 1 is the trigamma function (double derivative of the logarithm of
the gamma function), and x; and k9 are given by Eqgs. (2.31) and (2.32).
In practice, a simple interpolation formula between the two limits:
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Fig. 2.7. Prefactor X\ of the thermally activated escape rate calculated for a reduced barrier
height B = 15. Solid line: Exact result of Eq. (2.33). Dashed line: Kramers’ low (green)
and high (orange) damping limits (Egs. (2.31) and (2.32)). Dashed-dotted line: Simple
interpolation between Kramers’ limits given by Eq. (2.35).

-1
K2 K1
approaches very well the complete expression,as can be seen in Fig. 2.7.
The calculation performed in the thermal activation regime relies
heavily on the separation between the mean escape time and the re-
laxation time of the particle in the well. The theory is valid only when
the mean escape time is much longer that all other time scale in the sys-
tem, hence when the barrier is large enough compared to the amplitude
of the fluctuations, so that B > 1. In order for the rate to represent less
than 1% of the plasma frequency, corresponding in average to an escape
event once every 100 oscillations, this yields a validity range B > 5.

Phase diffusion / Retrapping regime

After having escaped out of a well, the particle gains kinetic energy while
running down the potential. This energy gain is higher when the tilt
of the potential is larger. On the other hand, some energy is lost due
to the work Wy of the friction force, which increases with the velocity
of the particle. The balance between the two energies determines the
separation between running state and phase diffusion regimes [58, 56].
From the determination of the losses, a transition appears at a threshold
in reduced bias current s, given by:
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4
Qo

At s > s., the particle gains on average a sufficient energy to overcome
all the successive barriers. At s < s., the particle is always retrapped
after having escaped out of a single well.

However, this crude average vision is slightly improved by applying
the fluctuation-dissipation theorem along the trajectory of a particle from
one well to the next one. It appears that during this jump, the energy
of the particle spreads over a width 0E = |/2kgT W [56]. Due to this
spreading, retrapping affects the escape rate even for values of s slightly
larger than the threshold s..

The escape rate out of a single well predicted theoretically can thus
only be probed experimentally by the switching out of the zero-voltage
state when the reduced bias current is larger than the threshold s.. The

quality factor of a junction in which switching can be measured is thus
bounded by:

(2.36)

Sc

Qo > : (2.37)

Resonant activation

When an external microwave current Irp coswet is added to the bias
of the Josephson junction, the escape of the particle is enhanced. The
resonant activation phenomenon [59], which occurs at frequencies smaller
than the plasma frequency, peaks at wexe ™~ w,. Experimentally, this
enhancement is accessed through the ratio between the escape rate [ ey
measured with an excitation and the escape rate Iy obtained in the same
conditions without microwaves. This increase in rate has been calculated
in [60], but the result involves a large number of parameters and has to be
evaluated numerically. An approximate expression for this enhancement
within the RCSJ model, valid when the excitation is close to the plasma
frequency, is given in [61] by:

Texe
hl( i ) = c5Qol pp

0

AU Wexc

CJUJI% (]{TBT)2 f(QO; Wpo

where c¢g ~ 5 depends on @y (see [61]) and the resonant activation
response function f(Qo,x) is given by:

1) (2.38)

eI 2 2QpT _ 9 2 22697
f(Qo,2) _ -2 )+ S (1 ) + B e <0
Qo e~ 2w (qi + % ifx>0

(2.39)
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with ¢ = 942Qp and ¢_ = 9—2Q). In Fig. 2.8, the function f(Qy,x) is
drawn for three values of (). This function presents a maximum located
in the range ‘;’f—g € [0.95 — 1], slightly below the plasma frequency. For
excitation frequencies above the plasma frequency, the function drops
sharply to zero. Note that the width of this curve is not simply given by

1/Qo.

f(Q01X)

Fig. 2.8. Resonant activation response function f(Qo,z) in presence of an harmonic exci-
tation on the bias current of the particle for three values of the quality factor Qo.

2.2.2 Macroscopic Quantum Tunneling

We now turn to the MQT regime, where escape arises from tunneling
across the barrier from the different energy levels.

Escape rate at zero temperature in the large quality factor limit

In this quantum tunneling regime, the escape rate at zero temperature
and in the large o limit is obtained using the Wentzel-Kramers-Brillouin
(WKB) approximation (see for example [62]):

I, =Ae (2.40)
where 36 AU (s)
s
B, = — 2.41
? 5 hwy(s) ( )
and

A, = ;’—;,/mqu. (2.42)
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One can define an effective temperature by analogy with the thermal
regime, by writing B, = égé:z ), which yields T;, = %%p However, this
effective temperature now slightly depends on the reduced bias currents
through the the plasma frequency (see [51] for a review on the experi-
mental side).

Around the crossover temperature, the rate crosses from this MQT
regime to a thermal activated regime. At T" 2 2T¢o, the quantum cor-
rections to the escape rate are very small, and the thermal activation

regime is recovered (for the complete description of the crossover, see

[5])-

Effect of the environment

When the junction and the capacitance C'; is connected to an arbitrary
admittance Y (w) as defined from Eq. (2.23), the response of the junction
to quantum fluctuations is modified, resulting in a change of the escape
rate at zero temperature. Moreover, when this environment is at a finite
temperature, even if this temperature is much smaller than the crossover
temperature, the thermal current fluctuations arising from Y (w) affect
the escape rate. The two effects were derived in [51, 63, 64]. In the fol-
lowing, we develop these derivations for two reasons:

1. The method presented in [64] was extended in [65] to treat the effect
of an asymmetric noise on the escape rate of a junction in an hybrid
thermal activation-MQT regime.

2. In Chapter 6, we present an experiment where the escape rate of a
Josephson junction in a MQT regime was measured in presence of an
environment at temperature 7. This environment presented a single
low-frequency mode, and we will restrain the discussion on the effect
of this mode on the escape rate, following the Appendix B of [64].

Escape rate at zero temperature

From tunneling theory In presence of Y (w) at zero temperature, the
escape rate was obtained in [51, 63] through a perturbation theory ap-
proach using the tunneling theory from [66]. Neglecting the effect of the
environment on the prefactor, the escape rate in presence of this admit-
tance could be casted into the form:

e

Iy = A" (2.43)

where Bg = B, + AB,. The correction AB, is obtained from the convo-
lution of two functions:
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AB, T wpt
= | F P dt. 2.44
5 = | FOGEE (2.44)
0
The function G is given by
45 & n 45

(.T) 7T4CJ nz::l (n+x)4 7T4CJ [C( ,iL’) .Z'C( ,.Z')] ( )

(where ((n, x) are the generalized Riemann functions). G (‘;—f:) is a mono-

tonic decaying function with a characteristic time 7, = i—” The function
p

F(t) is the step response function of the environment:

o0
F(t) = / VW) g, (2.46)
—00 Jw
The correction AB, will thus be significant only if the environment has
a response within the time 7;. In the case of an Ohmic environment R,
where the response is instantaneous, this yields a first order correction
AB—? ~ %, which was observed in [67]. For an environment presenting a
low-frequency mode with a slow temporal response, the integral is dom-
inated by the response at t = 0. In this limit, the correction is given as a
function of the characteristic inductance of the environment L. defined

from the expression

L' = lim jwY (w). (2.47)

w—00
In the perturbation approach where AB, < B,, the correction is ob-
tained from the ratio of the Josephson inductance L; over L.:
5Ly
B~ B (1 4 ) |
e 1 2 L,
This expression is valid only if the inductance of the environment is large
compared to the Josephson inductance L, > L.

(2.48)

Simple derivation for a low-frequency mode When the environment
consists of a low-frequency resonant circuit with a characteristic pulsa-
tion w. < w, and a quality factor ). > 1, a simple derivation of the
last expression was given by J. Martinis and H. Grabert in the Appendix
B of [64]. Considering that the quantum fluctuations inducing tunneling
are around the plasma frequency, thus much higher than w,, the response
of the external resonant circuit is taken into account only by the induc-
tance L, defined above. The effect of the environment is understood as a
modification of the equations of the circuit changing the potential U(~, s)
into:
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2
Uy 5) = Ul ) + 00 (2.49)
which yields
. 3L,
AU = AU (1 + 2 ) (2.50)
and I
W = wy (1 + QLJ) . (2.51)

In the limit % < 1, the ratio of the two terms coincides with Eq. (2.48).

Influence of finite temperature and cross-over temperature

In [64], Martinis and Grabert proposed also a simple derivation of the
escape rate in the MQT regime when Y (w) is at a temperature 7" much
lower than the crossover temperatures To. In this limit, the spectrum of
the thermal fluctuations associated with Y (w) extends up to ~ kgT'/h <
wy, hence the fluctuations are slow at the scale of the junction dynamics,
and the particle follows adiabatically the changes of the potential; it is
meaningful to define an escape rate for each realization of the noise.
The mean escape rate at finite temperature is obtained by the temporal
averaging of the instantaneous rates.
The derivation starts by considering the escape rate at zero tempera-
ture
Iy = Age i (2.52)

The argument of the exponential has no reason a priori to be exactly
equal to B, as was demonstrated in the previous paragraph, and we
consider here the most general case. In the following, we neglect the
dependence of the prefactor Ag on the bias current. The thermal current
fluctuations 67 due to Y (w) add to the bias current Iz of the junction.
Each realization of 61 corresponds to a different barrier height, therefore
a different By:

OB
By(Is + 1) = By + 501, (2.53)

The instantaneous rate corresponding to this fluctuation is then:

e

E)Bq
I{(Ip+06I) =TI (I)e a0, (2.54)

The mean rate at a finite temperature 7' obtained by temporal averaging
is:

re(T) = 1T = O)e%(affg) o) (2.55)

q
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where (...) denotes the time averaging, which corresponds also to an
averaging over the realizations of the noise. In this last expression, we
used the fact that §1 presents Gaussian fluctuations with zero mean value.

The noise term (§7?) depends on the environment. It is related by the
fluctuation-dissipation theorem to the real part of the admittance Y (w)
(see [64]). In the case where the environment is a low frequency resonant
circuit with an inductance L. > L, one obtains [64]

. B Ly |5 kgT
I(T)=1, exp{ B, I [2 15 hwp]} (2.56)
where it is recalled that I}, represents the escape rate for infinite quality
factor and zero temperature. In this exponent of the above expression,
the first term is the zero temperature correction due to the modification
of the dissipation by the environment, while the second one arises from
thermal fluctuations in the environment.

2.3 Escape driven by an asymmetric noise

The goal of this section is to explain how the escape out of the zero-
voltage state of a Josephson junction can be used to probe noise, and
in particular the asymmetry of its probability distribution. So far, we
only considered thermal fluctuations arising from macroscopic resistors,
therefore Gaussian noise. In the following, we introduce predictions for
the escape rate when the noise does not arise only from thermal fluctu-
ations, but also from a specific noise source, producing for example shot
noise which is not Gaussian [21]. Predictions have been derived for a
noise presenting a finite second and third moment [11, 31, 32, 33, 65, 68|,
and neglecting higher order moments."

The electrical setup considered in this part is shown in Fig. 2.9. A
Josephson junction is biased by a current Ip flowing through a resistor
Rp. To this resistor is associated a current source in parallel, produc-
ing Gaussian current fluctuations d/g. In addition, a non-Gaussian noise
source with impedance Ry is present. To this noise source is associated
a current fluctuation 6/y. The equation describing this circuit is similar
to Eq. (2.8):

Crpo¥ + %7+EJ [siny — s] = d1p + 0l y. (2.57)

In all cases, the effect of the asymmetry of noise has been assumed to
be weak. In Ref. [31, 32|, the effect of noise on the prefactor was found

! Predictions concerning higher moments of noise like in [34, 69], or other effects of noise
on Josephson junctions like in [70] and [71] are not discussed here.
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8l

Fig. 2.9. Electrical setup considered in the theories addressing the effect of an asymmetric
noise on the escape rate of a JJ out of the zero-voltage state. The junction is biased by a
current Ig through a resistor Rp, which is a source of thermal noise 6/p. A noise source of
impedance Ry produces additional, non-Gaussian fluctuations 1.

to be negligible, and most theoretical works only address the change in
the exponent of the escape rate. Hence, the prediction for the thermal
escape rate driven by an asymmetric noise is of the form:

I = A e [B2(Tem)+Bs] (2.58)
where AU
Bs(Tog) = 2.
() = or (2.59

represents the combined effect of the second moment of the asymmetric
noise and the background thermal noise. The effective temperature thus
accounts for the total power of current fluctuations applied on the bias
of the Josephson junction. The noise asymmetry is expected to lead to a
small corrective term |Bs| < By(T.g) in the exponent. Predictions for Teg
and Bj derived using different techniques are presented in the following.
Before presenting the predictions, we briefly define the frequency scales
of the problem, and the statistical properties of the noise d1y.

2.3.1 Frequency scales

The frequency scales of the problem are defined here from the smallest
to the largest (see also Fig. 2.10):

e The escape rate: typically, escape rates probed experimentally are in
the sub-MHz range, corresponding to a measurement time of 1 us or
more.
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The plasma frequency: the plasma frequency considered in the follow-

ing experiment is around 1 GHz.

o The thermal noise cut-off frequency: At the relevant temperature of
the experiment, which is of the order or 100mK (from 20mK to 500mK,
thermal noise extends to frequencies of the order of % ~ 2GHz [21]).

o The superconducting gap: In the experiments described in this thesis,
all superconductors are aluminum for which the frequency correspond-
ing to the superconducting gap is % ~ 50 GHz.

o Non-Gaussian noise cut-off frequency: In the experimental case of a
tunnel junction biased at a voltage Vi, the maximal frequency of the
shot noise is X [21]. For Viy =~ 400 pV, which is the lowest voltage
probed in the experiment presented in the following, it corresponds to
frequencies higher than 100 GHz. At the scale of the plasma frequency,
non-Gaussian noise thus appears completely frequency-independent.

1 0)
Z=1|\/|Hz AkBT:ZGHZ ‘ A =50 GHz f‘z
| 1 i . [77
I I I ///4//
@0 _1GHz eV, >100 GHz
27

Fig. 2.10. Frequency scales corresponding to the values of the experiment described in the
following chapter [38], where the effect of an asymmetric noise on the escape rate of a JJ out
of the zero-voltage state is measured.

2.3.2 Noise statistical properties

In the framework of Full Counting Statistics (FCS), the properties of
the current fluctuations are treated through the probability distribution
function. Experimentally, this distribution is accessed its the moments or
through its cumulants which are two ways to represent the same infor-
mation (see [72] for details). However, moments and cumulants are equal
up to the third order, as is recalled in Appendix B.3, and since this thesis
only deals with moments up to the third one, it is not necessary here to
make a distinction between moments and cumulants. In the following,
we deal only with the moments.

Second-order correlation function

The second order correlation function or correlator is defined as:
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(SIn()SIn(t)) . (2.60)

If the noise 01x(t) is assumed to be white, as is the case in the following
predictions, this corresponds to:

(SIn()SIxn () = Sa6 (' — 1), (2.61)

where S5 is the second moment, often called the variance. This second
moment corresponds to the mean power of the current fluctu-
ations, the width of the probability distribution.

Considering in the frequency space the fluctuation 07y (w) at angular
frequency w defined by:

+oo .
SIn(w) = [ SIn(t)etdt, (2.62)

one defines the second-order spectral density of the fluctuations as
SP(w) = (SIn(w)SIn(—w)) (2.63)
which is related to the correlation function by the Wiener-Khintchine

theorem:

+o0 .
SP(w) = / (6In(0)8In (7)) e dr. (2.64)
For a white noise (therefore a frequency independent spectral density),
this simplifies to SP(w) = S,. The second-order correlation function and

the second moment are equal for a white noise.

Third-order correlation function

Similarly, one defines the third order correlator:

(OIn()0In(t)0IN(t")) . (2.65)
For a white noise, this simplifies to:
(OIN()0IN(t)oIN(t")) = S30 (' — )0 (1" —1). (2.66)

where S3 is the third moment. This third moment is related to the
asymmetry of the probability function around its mean value.
The third-order spectral density is:

SP (Wi, wa) = (6In(w))dIn(wy — wy)SIn(—ws)) . (2.67)

which is related to the third-order correlation function by:

+00 . .
S (wr, wp) = / /_ (SIn(0)8Ix (1) I (1 + 7)) €1 =327 i iy

(2.68)
which simplifies to S (w,wy) = S5 for a white noise.
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2.3.3 Escape rate in presence of an asymmetric noise

We now turn to the theoretical predictions for the effect of an asymmetric
noise on the escape rate out of a single well.

The first prediction, obtained by J.T. Peltonen et al. [65] considers
the adiabatic response of the junction to the noise. Therefore, it only
deals with the effect of noise at frequencies much smaller than the plasma
frequency. In our experiments, this corresponds to only a small fraction of
the noise spectrum, as shown in Fig. 2.10. The damping in the junction
dynamics, which appears in the following to be of central importance,
does not enter in this approach.

The second prediction was obtained by E. Sukhorukov and A. Jordan
[33] with a stochastic path integral formalism, in the two limits of low and
high damping limits only, which were unfortunately out of the relevant
experimental range.

The third prediction, obtained by J. Ankerhold [31, 32, 35| is based
on a Fokker-Planck equation approach to calculate the escape rate. The
resolution of the Fokker-Planck equation relies on the fact that escape
is only a small perturbation to the Boltzmann equilibrium in the well.
As was already discussed by Kramers, this assumption might not be
appropriate for very large values of the quality factor.

The last prediction that we present, obtained by H. Grabert [11], relies
on the calculation of the action along the escape trajectory using also a
path integral formalism. Its validity range spans over the complete range
of quality factor, and recovers the two limits of E. Sukhorukov and A.
Jordan [33] calculated with a similar method.

All the predictions are compared at the end of the chapter.

Escape rate from an adiabatic model

In Ref. [65], the effect of §Iy on the escape rate is determined assuming
an adiabatic response of the junction dynamics. This derivation is very
similar to the one presented in Sec. 2.2.2 and in [64]. The Gaussian noise
is due to a resistor at finite temperature 7. For a fluctuation 67y, the
rate is expanded into:

or 120, 183r
I(Ip +81y) = (1) + 5 0ly + 5@(% t A

li 1 I 1"
~ I'(Ip) (1—351N+2(B2—B )o1%

513

+é (-B"+3B'B" - B?) 51}3)
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where, in the thermal activation regime where B oc (1 — I /1),

B ' =0B/0Ig ~ —3B/(2(1 - s) I,)
B =0°B/oI} ~ 3B/ (4(1-5)" I?) (2.69)
B" = 9*B/oI}, ~ =3B/ (8(1 )" I).

In practice, B > 1 and the modification of the escape rate (which is
obtained by averaging over the realization of the noise) reduces to two
leading terms:

1, 1
(I'y = I'(Ip) exp {QB 2 <5]12V> - 6B 3 <5I]?§,>} = A exp{—[By + B3|},
(2.70)
where the brackets denote the average over the probability distribution
(the correcting factor has been exponentiated). The two terms account
for the effects of the second” and third moment: By = B — 1B (§1%)

and Bs = B (013,) .

lg()=(Ig)+0dIn(1)

Sly<0-T_

Umax B

U(y.s)

Unin [

Fig. 2.11. In the adiabatic model, the effect of the noise at frequencies lower than rwp /27
with 7 < 1 is calculated by averaging the rates for each realization of the instantaneous
current, therefore for each barrier height.

At that moment, it is important to stress the differences with the
derivation of Ref. [64] performed in the MQT regime where kT < fuv,,
and considering only thermal fluctuations. In the MQT regime and in
presence of only a thermal noise, the cut-off frequency of the thermal
noise, kg7, is much smaller than the plasma frequency, and the assump-
tion of adiabatic response is valid. In contrast, in the thermal activation
regime and in presence of an asymmetric noise 01y, the noise spectrum

2 This result was first obtained in [64].
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extends to frequencies much larger than the plasma frequency. For this
reason, the authors of Ref. [65] introduce a cut-off frequency r32 with
r < 1 on the noise (all the noise above this frequency is neglected, a
possible experimental realization being with a filtering). The results here
only describe the effect of the very low frequency part of the noise. The
integrated average noise is then (013,) = rS»32, and an effective temper-
ature Tog is obtained from By = AU/kpTeq:

3 rhwy Sy
23/271'\/1 — S 6]0 ]{?B.

where we used the fact that, for typical parameters, the second term
is very small compared to the first one. This result is reminiscent to a
conclusion of Ref. [61], where the effect of a white noise irradiating a
junction translates in an increased effective temperature. However, the
result here does not depend on dissipation, and the effective temperature
presented here can only be slightly different from the base temperature
with reasonable parameters, which indicates that the model only grasps
part of the effect. Experimentally, the effective temperature can be very
large, and the authors of Ref. [65] introduce another model, based on
resonant transitions in the MQT regime, to better describe the changes
of Teq, and recover the result of Ref. [61]:

Tog~ T + (2.71)

1.5
Tyg=T+ -R—. 2.72
f + 5 s (2.72)
However, it is only in the adiabatic model that the effect of S3 was

considered in [65], the low frequency cut-off yielding (673%) = S3 (T“}”—(S)Y,

2w
and from [37]:

3
Bg = — </{:0T'> Sgu)f)o jAd(S) (273)
with
23/2
jaa(s) = rQQ\/l +5(1 —8)? ~0.137%(1 — 5)* (2.74)

(the exact s-dependence is slightly different from [37] because we took
into account the dependence of the plasma frequency). As is shown in
what follows, the theoretical results obtained by other authors can all be
cast in a form similar to Eq. (2.74), but with different expressions for the
function j(s).

Overall this prediction has to be considered very carefully. One has to
remember that it is valid only when the noise is filtered over 7“;—; with
r < 1. In [37], it has been used with r = 1 to compare with experiments,
which relies on the questionable assumption that the effect of the low



40 2 Escape of a Josephson junction out of the metastable state

frequency part of the noise grasps a large part of the complete effect. We
show in the end that when comparing with the other predictions, it is
clear that this prediction allows only to grasp the qualitative behavior of
B3 but does not give a proper description of the effect.

Escape rate from a stochastic path integral formalism

A first derivation of the escape rate for an asymmetric noise taking into
account the complete noise spectrum, and in particular the effect at the
plasma frequency, was proposed in [33]. Using a stochastic path inte-
gral formalism, the authors derived the same expression for the effective
temperature as in Eq. (2.72), and a corrective term Bz due to the third
moment in the limits of low and high damping written again

3
By = — (kif]T) Sswig Jspi(Qo, 5) (2.75)
with
0.79 (1 — 5)2 when Qp > 1
%Q%(l — 5)%/%2 when Qy < 1.

An extension of this theory was performed in [34] taking into account
all the moments of noise. It appears however that in the relevant exper-
imental regime and for a Poisson noise (as used so far experimentally),
moments higher than the third one have no significant impact.

Two further predictions addressed the situation of intermediate quality
factors, which is the experimentally relevant range.

Jspr(Qo, 8) =~ { (2.76)

Escape rate from a Fokker-Planck approach

The method described in [31, 32, 35] to determine the escape rate of
a junction submitted to an asymmetric noise closely follows the initial
determination performed by Kramers for the Gaussian case in the limit
of large damping (Qy < B). The dynamics of the phase and of the
velocity v = éV is described in terms of the probability density func-

tion P(v,v,t). Starting from the Langevin equation (2.57), one derives a
Fokker-Planck equation (FPE) for P(v,v,t).”

3 This derivation is done using a Kramers-Moyal expansion. The principle is to link the time
derivative 9, P(vy, v, t) with the spatial derivatives 959, P(v, v, t). Since the phase and the
velocity are given at each time by the random force, they are also random variables as a
function of time. One thus defines the moments of these variables, which are the coefficients
appearing in the FPE.
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For a Gaussian noise In absence of any asymmetric noise, the FPE reads:

OP(v,v,t
(815) = LyppP(7,0,1) (2.77)
with
0 0 | v U’ w3 0?
LY, = —v— — | = PO foT——. 2.78
b= gl e |G ¢ g 2T

and v = éV. A trivial solution of this equation is the equilibrium Boltz-
mann distribution P.,(7,v) = £e #*0%) where H (v, v) = imv*+U (7, s)
is the Hamiltonian corresponding to the Langevin equation (2.57) and
Z is the partition function. In this limit, the escape rate is obtained by
finding the average flux of particle at the barrier top

V(Y = 7)) frux
Nwell

I = (2.79)
where Nyen corresponds to the statistical population of the well. The
average flux is calculated from an out-of-equilibrium solution Py (7, v)
of the equation (see [50] for a description of this calculation). To find
such a solution, Kramers’ ansatz is: Paux(7,v) = Pey(7,v)((7y,v) where
¢(v,v) represents the correction to the equilibrium, accounting both for
the complete equilibrium deep in the well and the depopulation around
the barrier top due to the escape.

With an asymmetric noise Since a translation of the Langevin equation
(2.57) into a FPE would lead only to formal terms, the author of [31, 32]
derives an effective Fokker-Planck equation describing the motion under
an asymmetric noise. This is performed under the assumption that:

e The non-Gaussian character of the noise is weak
e Fluctuations are fast compared to the dynamics of the system, the
noise appears almost white.

This allows to derive an effective FPE operator:

w1 92 Wwh S, 93
Leg =LY W " pg — . 2.80
ff PPt QoE; 2 2 o2 6 Ov? ( )

where the effect of the shot noise is accounted for by two terms. The first
term, due to the second moment of the noise, contains a derivative at the
second order. This term is valid whatever is the power of the asymmetric
noise compared to the thermal noise. The presence of the noise third
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moment is accounted for by the second term, which contains a derivative
at the third order. This term is valid only in a perturbation approach.

The prefactor of g—; is Qﬁ%J {kBT + %RSQ:| in the effective FPE. By
analogy with Eq. (2.78), the overall effect of the second moment is again
captured with an effective temperature given by Eq. (2.72). This calcula-
tion shows, as Refs. [33, 61], that such an expression for the temperature
is valid even if the power of the asymmetric noise is much larger than

the power of the thermal noise. T.g can thus be much larger than T

Resolution The effective FPE is solved by considering the ansatz:
Pﬂux - Pque_G7 (281)

where ( still accounts for the out-of-equilibrium situation, and GG accounts
for the effect of the third moment. In this ansatz, the function G was
expressed as the product of an arbitrary function of v and a polynomial
function of v up to the third order. A perturbation solution Py, of the
effective Fokker-Planck was then found by using the ratio S3/ S;’/ ?as a
small parameter, which allowed to express the escape rate for an arbitrary
quality factor. In a first step [31, 32], the application of an effective FPE
yielded a result at any )y but only for a cubic approximation of the
potential valid for 1 — s < 1:

C8V2 Q3(1-s)F

' ,S) = 2.82
which leads to the limits:
. 0.89 (1 — 5)* when Qp > 1
,8) 2.83
re1(Qo, ) {84“55@8(1 — 5)*2 when Qg < L. (2.83)

This calculation was further improved by K. Glaum and J. Anker-
hold using a polynomial function of v of order four and a better cubic
approximation for the potential (denoted the bilocal approximation, see
Appendix B.1) [73]. This modification, expected to provide only a small
improvement, yielded a similar result for low quality factors, but changed
significantly the result for large quality factors, probably pointing to some
limitation of the theory in this range.? The result was expressed in the
form:

3 1
irpa(Qo, 8) = —aP(s) (71 (s)) Wepy | —F——= 2.84
Jer2(Qo. ) (s) (2" (s)) [@0 &BI(S)] (2:84)

4 This is not completely a surprise since the resolution is based on the assumption of quasi-
equilibrium that is probably not completely valid for large quality factors.
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where”

8 6 60% + 8
1% =——3F>[=-,3,1;, —,6;1 2.85
FP2 [y] 15(1+2Q2)3 2(57 ) 5 s Yy ) ( )

and 3Fy is the hypergeometric function.

Escape rate from a path integral approach

The calculation by H. Grabert in 2008 [11], based on a path integral
formalism like done in [33], yields predictions for all values of the quality
factor. In this formalism [74], the probability p(7p|vwen) for the particle
to go from the minimum of the well y(t = 0) = ~yen to the barrier top at

time ¢ (y(t) = ) is given as a path integral, each path having an action
A:

P(V6|Ywen) o /exp {—%1314}. (2.86)

All paths differ by the fluctuating force 6/ that lead to the barrier top.
The probability is dominated by the path having the minimal action.

For a thermal noise, this path is the time reversal trajectory of the
relaxation of a particle starting at the barrier top and relaxing down to
the bottom of the well. From the time evolution of this trajectory noted
Yesc(t) and the associated fluctuating force, the action for this path is
given as:

2
A==A 2.
- U (2.87)

which recovers the TST expression of the escape rate of Eq. (2.29) (the
prefactor of the escape rate can not be accessed with such a path integral
formalism).

The presence of an asymmetric noise slightly modifies the minimum
action path. In a perturbation approach, when the effect of the third
moment is much smaller than that of the second, the action is written as
a sum of two terms:

A=Ay + Ay (2.88)

where Ay and Aj respectively correspond to the contributions of the
second and third moment of the total noise (the sum of the thermal noise
and the asymmetric noise). The minimal action path in this situation is
first obtained by neglecting the effect of the third moment. In this case,
the term A is found to be:

5 aP’(s) and £ (s) are defined in Appendix B.1, as the terms defining the cubic approxi-
mation of the potential.
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2
Tef‘f

Ay = AU (2.89)
where T,¢ is again given by Eq. (2.72). The main results of [11] is that
the correction As corresponding to the third moment of the asymmetric
noise can be calculated using the trajectory of minimal action obtained
without the third moment, which yields:

o \*
Ay = —2k ( ) SsJ 2.90
’ "\kpTen) ™ (290)
where J is an integral over the trajectory 7es(t) corresponding to the
minimal action path:
1 [t

J = _6 ’ygsc@)dt (291)

The integral depends on the complete dynamics of the particle in the

well, and thus on the reduced bias current and the quality factor. The
final result is of the form of Eq. (2.75) with®

' 21— spw |(2 v 2.92

Jjranq(Qo, s) = g( —5) Kl — S) Qo] (2.92)
where W |[y| is a function tabulated in [11].” Recently, Urban and Grabert
extended this formalism, used here for the RCSJ model, to the non-
Markovian case. This allows to predict T,g and Bs for an arbitrary circuit
and a colored noise. This development, which constitutes a milestone in
escape rate calculation, is thoroughly exploited in the comparison with
the experimental results of [38] presented in Chapter 4.

2.3.4 Summary

All predictions considering the complete noise spectrum agree on the
behavior of the effective temperature, given by:

Ty =T+ 3R> (2.93)

and on the form of the corrective term Bs:

5 Note that a minus sign is missing in Eqs.(78,92) of [11].

" This functions has the two limits W[0] = 1.188... (that corresponds to the analytical
prediction obtained for Qo > 1) and W{y| ~ 1%@%2 for y > 1 (that corresponds to the
analytical prediction obtained for Qo < 1), which corresponds to the results of Ref. [33].
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3
Bg = —Sgu);o (EBA%) j(@o, S). (294)

In this last part, we compare the predictions of the various approaches
through the terms j(Qo, s), which contains all the differences between
them. The result of the adiabatic model has a separate status, since it
gives a function jaq(s) (Eq. 2.74) which does not depend on the quality
factor, but on a cut-off parameter r < 1.

The prediction jpaq(Qo,s) presented by Grabert for the complete
range of quality factor in [11] in the limit 1 — s < 1 recovers the asymp-
totes jspi(Qo, ) calculated by Jordan and Sukhorukov, as can be seen in
Fig. 2.12. Since the typical experimental quality factor of the Josephson
junction is of the order of 10, it is clear from the figure that the pre-
dictions of [11] are necessary for the comparison with the experimental
cases.

As expected, the results of the FPE approach, given by Eqs. (2.82)
and (2.84), agree with the result of Grabert at low quality factor, but
disagree at large quality factors where the resolution of the FPE is less
reliable, as shown in Fig. 2.13.

0.8

j (QOi S) 06

(1 —5)° o4

0.2

2. 5. 10. 20. 50. 100.
Qo

Fig. 2.12. Solid line: Function jrunq(QO0,s) obtained by Grabert in [11] for s = 0.99
normalized by (1 — 3)2. Dashed lines: limits of low and high quality factor obtained by
Sukhorukov & Jordan in [33]. Only the region in between those limits is easily accessed
experimentally.
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Fig. 2.13. Solid line: Grabert’s result valid for all quality factor jrung(Qo,s). Dashed
lines: Results of Ankerhold and Glaum jrp1(Qo, s) (top - orange) and jrp2(Qo, s) (bottom
- green) obtained using a Fokker-Planck Equation.

Altogether, the theory by H. Grabert [11] covers the whole

range of quality factors and coincides with the other predictions
in the limits where they apply. As a consequence, it is taken as

a

reference in the following chapters.
To finish with, we present the different predictions for the parameters

of the two experiments that probed the thermal escape driven by an
asymmetric noise [38, 37]:

In [37], the quality factor of the junction was )y = 2.5, and the escape
rate was measured in the range s € [0.5 — 0.9]. The measured rate
asymmetry was compared to prediction using jaq(s) with r = 1. In
Fig. 2.14, we compare this expression to the predictions obtained by
K. Glaum jrp2(Qo, s) and by H. Grabert jraq(Qo, s). It appears that
the adiabatic model used in [37] yields a result significantly different
from the other existing theories.

In [38], the quality factor of the junction was estimated to be of the
order of 5 and the escape rate was measured in the same range of s as
the previous experiment. The calculation of H. Grabert was extended
at Qo = 5 to arbitrary values of s [38, 75|, yielding numerical results
that are well approximated by:

Jrangs () = 0.81(1 — 5)*%. (2.95)
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The various predictions are compared to this result in Fig. 2.15. The
deviation between jruq,(s) and jraq(5, s), which were calculated us-
ing the same method, confirms that a specific calculation far from the
simple limit 1 — s < 1 was needed in order to achieve a comparison
with the experiment, which is performed in the range of s € [0.5 — 0.9].

0.6

0.5k Q0:2_5
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j (Q01 S)
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0.1

Fig. 2.14. Predictions for j(Qo, s) at Qo = 2.5, which corresponds to the experimental value
in [37]). Solid line: Predictions of H. Grabert jrung(2.5,s) (blue) and K. Glaum jrp2(2.5, s)
(green). Dashed line: Prediction jad(s) from the adiabatic model presented in [65] used to
perform a comparison with the experiment in [37], with r=1.
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Fig. 2.15. Predictions for j(Qo, s) at Qo = 5, which corresponds to the approximate experi-
mental value in [38]. Dashed line: Prediction of H. Grabert jrunqs(s) from [75] valid in the
range s € [0.5 — 0.9], and used in [38] to compare with the experiment. Solid lines: Predic-
tions of H. Grabert jruuq(5,s) (blue), of K. Glaum jrp2(5,s) (green), and of J. Ankerhold
jrp1(5, s) (orange). The behavior in s far from 1 — s < 1 is, as expected, not properly taken
into account by jrp1(5,s) in [31, 32].

2.4 Conclusion

Having described the dynamics of a Josephson junction when it is sub-
mitted to current fluctuations on its bias current in the RCSJ model,
we presented in this chapter the theoretical prediction for the thermal
escape driven by a white asymmetric noise for this model. The effect of
this noise on the escape rate of the junction out of its zero-voltage state
is twofold:

e The effect of the second moment of the noise is captured by an effective
temperature. This effective temperature is predicted to grow linearly
with the second moment of the noise, which reflects the mean power
of the fluctuations reaching the junction.

e The effect of the third moment has been calculated assuming that it
is much weaker than that of the second moment. It is accounted for
by a corrective term in the argument of the exponential in the escape
rate. The different theories agree in their range of validity, only the
one by Grabert [11] applying to the whole range of quality factors.



Chapter

Numerical simulation of the escape

In this chapter, we present numerical simulations, in order to probe the
theoretical predictions for the effect of an asymmetric noise on the escape
out of the zero voltage state of a Josephson junction. The escape rate has
been calculated by a step-by-step integration of the stochastic equations
of motion. Retrapping effects were not taken into account, therefore this
simulation only concerns the escape rate out of a single well, allowing for
direct comparison with theoretical predictions. The simulations presented
in this part extend the previous results obtained by X. Waintal in [35].

3.1 Simulation algorithm

3.1.1 Equations of motion

Dimensionless equation

The setup described by the present simulation is shown in Fig. 3.1. It cor-
responds to the RCSJ model where the resistor R is a source of Johnson-
Nyquist noise d/p, assumed to be white noise with Gaussian behavior.
An asymmetric noise with zero mean value 01y is added to the current
bias of the junction. The simulation is based on Eq. (2.57), rewritten in
dimensionless time units 7 = wpyot. The notation for the time derivative
is kept, so that derivatives are replaced according to:

dry dry
y= L = 4= 3.1
T T T &1)
The equation of motion is:
1
A+ —+siny =s+0sg+ 0sny (3.2)

Qo
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V
¢

oly olg lg

Fig. 3.1. Setup described by the numerical integration. To the resistor R is associated a
Johnson-Nyquist noise 6/p with Gaussian character, shown as a parallel current source. An
asymmetric noise 0/ with zero mean value is added to the bias current of the junction.

with dsp the Gaussian noise, and dsy the asymmetric noise.

Noise

Gaussian Noise The Gaussian term describes the thermal fluctuations
in the resistor. The second order correlation function of this Johnson-
Nyquist white noise is given by (615(t)61p(t")) = 22L5(t' — t) where T
is the temperature of this resistor. From the Gaussian assumption, odd
order correlation functions are zero. Using 6(t) = w,0(7) and defining
the reduced temperature

kT
0=—, 3.3
wolo (3:3)
the dimensionless correlation function is:
20
(0sp(0)dsp(T)) = Q—5(7’). (3.4)
0

Poisson Noise The asymmetric current accounts here for tunneling
events through a tunnel junction. The current in this case follows a Pois-
son process, and the corresponding noise is a Poisson noise. It can be
described in terms of a sum of charge spikes centered at times ¢;:

S ed(t —t;) (3:5)

corresponding to the successive tunneling events. This current has a mean
value (Iy). Since noise terms are considered to have zero mean value in
the theory, the mean current is subtracted to obtain the noise term:
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0y = ed(t —t;) — (In) (3.6)

t;

In dimensionless units, this noise is:

oSy = Z e [0(7 — 75) — ] (3.7)
where 7
e, = 6‘;50 =5 (3.8)
is a reduced charge and
o =40 3.9)

is the reduced tunneling rate. In the experiment, the detector junction is
in a regime E; > F¢, so that e, is small. In all the simulations, we take

e, = 0.005 (3.10)

which is a typical experimental value. The second and third order corre-
lation functions of the Poisson noise (see Appendix B.3) in reduced units

are: (0sn(0)dsy (7)) = e2yno(T)
{ <5SN(0)5SN(T)5SN(7J)> = 62’7]\[(5(7'/ — 7')5(7') (3‘11)

3.1.2 Discrete time equations of motion

Second-order algorithm

Rather than a simple Euler-type algorithm, we have used a second-order
algorithm first implemented in 1992 by S. Linkwitz et al. [76, 57], that
proved to be much more efficient. Due to the stochastic nature of the
equations, standard higher order methods like Runge-Kutta, based on the
continuity of the derivatives, are indeed not well suited. The derivation of
the algorithm follows the work presented in [57], where the second order
differential equation (3.2) is written as a pair of first order equations.
This leads to:

y=v
X . 3.12
v:—é’y—i-F(”y)—i-ésB—i-ésN. (3.12)
with! F(7) = —sinvy+ s . The numerical integration consists in comput-

ing the time evolution of the variables v and v using Eq. (3.12). Time is

! The simulation has been performed using the exact potential while most of the theories
used an approximated cubic potential. It can be shown both for the simulation and for
the theory that this makes no difference for the simulated escape rate.
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sampled in steps of size d7, and the problem is to calculate v and v at
time 7,.1 = (n + 1)d7r from their values at time 7, = ndr. In this aim,
Egs. (3.12) are integrated between 7,, and 7,1, and the resulting time in-
tegrals are expanded in Taylor series. While integrating the first equation
(3.12.a), one encounters the integral f::JFdT v(7")dr" which is expanded at
second order into:

Tn+dT 1
/ v(7)dr = v,dT + §®nd7'2. (3.13)
Hence, the first discrete time equation is:
1
Tn+1 — Tn = UndT + §@nd72 (314)
where 7, is given from (3.12.b) by
: L+ F )+1/5 IERA (3.15)
Qo 7 dr Jar P U dr Jar Y

The instantaneous value of the noise were written as - [, ds. Note that
the integral of the noise over a time step has no dependence on the step
index but only on the step length, therefore [7"*'ds has been simpli-
fied to [, ds. For the second equation (3.12.b), the integral over F' is
approximated using the values of v at 7, and 7,41 by:

/TnJrl F(y(r")dr" ~ Flom) +2F(%H) dr. (3.16)

The set of discrete time equations of motion forming the second order
algorithm is thus:

V1 — Yn = VpdT + %i}nd7—2
{Un+1 — U = =g [Ynt1 — Wl + Fot BOnt) g 4 [, G55 + [, s
(3.17)
By dropping the term in d7? in (3.12.a), one recovers the Euler-type
algorithm. It is however shown in the following that this second order
term allows to perform this very demanding simulation much faster.

Probability laws for discrete noise terms

Numerically, the integrals [, dsp and [, dsy are replaced by random
variables produced by random number generators, for which only the
probability law is specified.

e For the Gaussian noise, the correlation function of Eq. (3.4) yields on
average:
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((Losa)) = [ [, saterpstorae = Zoan. @as

The Gaussian part of the noise is therefore accounted for in the al-
gorithm by picking at each step a random variable X following a
Gaussian law with zero mean value, variance 1, and by setting the
noise integral to:

20

0sp = 1/ —d1X. 3.19

dr B QO ( )
Note the scaling as vdr.

e Integrating the asymmetric noise term expressed with Eq. (3.7) over
a time step dr yields:

; dsN = €4 [AN — yndT]. (3.20)

We defined dN as a random variable corresponding to the number
of charges having passed through the barrier during dr. In a Poisson
process, this variable is governed by a Poisson law of parameter (dN)

such that P(dN = k) = e‘<dN>(<dkL!>)k, where (dN) = yndr is the mean
value of dN.? The integral on the noise is therefore accounted for in
the simulation by picking at each step a random variable Y following
a Poisson law of parameter yydr and setting :
; dsy = e, [Y —yndr]. (3.21)
-
The quality of the noise generator used in the simulations is crucial, since
the effect of the noise asymmetry is tiny. The random numbers used
in the simulations presented no erroneous moments and no correlations
over the time scale of the simulation, for both the Gaussian and Poisson
distributions. Details on the practical implementation are presented in

Appendix B.4.

3.2 Rate estimation

3.2.1 Evaluating escape rate from phase dynamics

Escape out of a single well

The escape rate of the superconducting phase difference out of a single
well can be obtained from the evolution of the variables v and v. The

2 Another possibility to implement a Poisson process is to consider the time intervals 7341 —
7; between successive tunneling events, that are given by an exponential law. After a
tunneling event at 7, the following event is found at 7,+1 = 7 + A7 with a probability
P(Tiy1 — i = AT) = yn ATe”"NA7_ This method yields similar results [35].
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phase is initialized at the bottom of the well, with zero initial velocity.
The algorithm of Eq. (3.17) is iterated until a maximum simulation time
7, is reached. Due to the action of the noise, the phase starts to oscillate
in the well. During the simulation time, it can stay in the well or jump
over the barrier. This jump defines an escape event happening at a time
Tesc- LTheoretically, the escape is defined when the particle overcomes the
barrier top, but in practice, this escape is detected when the phase gets
larger than 4, a simple criterion ensuring the latter requirement with
enough precision and allowing to take recrossings into account.

Over a large number of runs N, escape happens only in a fraction Ny
of the runs. P = Nese/N is thus an estimator of the probability P that
characterizes the escape process. This allows one to define the behavior
of the escape rate out of a single well, which is the aim of this simulation.
After the escape, the phase can be retrapped in a further well, leading
to phase diffusion at a small velocity, or run away if the velocity is large
enough [50]. The complete behavior depends on the amplitude of the
noise, the barrier height and the quality factor, as described in Chapter
2. These effects, which concern the behavior of the phase once it escaped
out of the well, are not addressed in this simulation.

Numerical estimation of the rate

Theoretically, the probability for the particle to escape between a time 7
and 7 + dr is given by: p(7 < Tese < 7 +d7) = I'dre™I™, where I is the
escape rate (see Appendix B.3). Hence, during a simulation time 7,, the
cumulative probability to have escaped is:

P=Plrse<m) = [ Temdr=1-¢T. (3.22)
0

Numerically, the escape is characterized both by the escape times 7y
and the estimator P evaluated from a large number of runs N. The great
advantage of numerical simulations, compared to experiments, is that the
escape times are easily recorded. There are thus two methods to estimate
the escape rate:

e [t can be deduced from the escape probability only, as done experi-
mentally. The rate is then estimated using Eq. (3.22) by
~ 1 ~
I = ——1log(1— P). (3.23)
Tp
This estimation of the rate is however only meaningful when the esti-
mator P is neither 0 nor 1, since no information is obtained when the
particle either always or never escapes. It can be shown (see Appendix
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B.3.6) that the relative error on the rate with this estimation method
depends on P as:

AL 1 P
S VN = . 24
r = log(1— P)1— P (3:24)

As expected, the error on the estimated rate drastically increases when
P approaches 0 or 1, this method thus presents a strong limitation
since the simulation parameters have to be tuned for P to avoid these
limits.

e A second method is to use also the information on the escape times.
To cope with the situation where the particle does not escape, we
define the variable 7; as:

= {Tesc if the particle escapes (3.25)

7, otherwise

so that when the particle does not escape, one considers that the
escape time is 7,. The expected mean value of 7; is obtained as:

<7—i> = /0 P Tescpe—FTeSCdTeSC + Tp/ p(T)dT, (326)
which yields:
1
(r) = (L —e™'™). (3.27)

One defines 7 = Y 7; as the estimator of (7;). The rate should thus be
calculated using 7 and solving Eq. (3.27) which can not be inverted

analytically. However, one can use P as the estimated value of 1 —
e~ Therefore, a simple estimator of the rate is:

A

F3:

\l>‘ N

(3.28)

The calculation of the error performed with this estimator, kindly

performed by L. Tournier [77], is reproduced in Appendix B.3.6. The
error is: R

Al 1

X VN 75 (3.29)

The error on the rate obtained for both methods is plotted in Fig. 3.2,

and compared with the predictions of Eq.(3.24) and (3.29). Overall, the

second method performs with a good precision on a wider range of P,

since the error does not diverge as P approaches 1 but rather reaches

the minimum ﬁ Noting that as long as P > 0.5 the error on the rate
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obtained with the second method is close to this minimum value, one
only ensures in the simulation that 7, is large enough so that the particle
escapes with P > 0.5, and the rate is obtained from Eq. (3.28). In the
most precise simulations on rate asymmetry, 7, is set to a large enough
value to ensure that the particle always escapes, to have a minimum
error.

Fig. 3.2. Symbols: Relative error for the rate estimation over 10000 trajectories. The
two methods to extract the rate are compared (circles for the first method and squares for
the second method). Solid lines: predicted relative error for both methods. Dashed line:
minimum relative error, reached only for P = 1 using the second method.

3.2.2 Simulation parameters

First, the behavior of the algorithm was probed by simple tests. The
quality of the simulation was tested through the thermalization of the
system, especially the energy equipartition. The impact of the time step
on the thermalization and the sensitivity to the initials conditions were
investigated to confirm the advantage of the second order algorithm over
the simple Euler-type method. In those tests, only a Gaussian noise was
used.

Thermalization

Having fixed a reduced temperature 6 for the Gaussian noise, we monitor
the evolution of the potential energy Eyy = — cos(y) — sy and kinetic en-
ergy K = %v2 when the particle oscillates at the bottom of the well (this
was performed for an unbiased junction). The evolution of the kinetic en-
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ergy® Fx, shown in Fig. 3.3(a), is computed using a time step dr = 0.01
until it converges to an asymptotic value E7. For the second-order algo-
rithm, Fx converges to the expected equilibrium value %6’, which is not
the case for the Euler-type algorithm.
Figure 3.3(b) shows the dependence of the asymptotic kinetic energy
% on the time step. For the second-order algorithm, E% = %9 for
time steps up to dr ~ 0.2, which is not the case for the Euler-type
algorithm when dr > 0.002. A systematic correction to the asymptotic
energy is expected because the energy is calculated at discrete time steps,
as discussed in [76, 78], but this correction is expected to be much smaller
at such a small time step. The disagreement observed here rather shows
the failure of the Euler-type algorithm, although it is difficult to explain
why this failure starts at such low threshold.
The improper convergence of the Euler-type algorithm is also visible
on the resulting value of the escape rate, shown in Fig. 3.4(a). The rate
becomes time-step-dependent for dr > 0.005, while the rate calculated

with the second-order algorithm stays constant up to dr ~ 0.2.
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Fig. 3.3. Kinetic energy of the particle at s = 0, for Qo = 5 and a temperature § =
0.04. Left: Variation with time 7 for the Euler-type (orange circles) and the second-order
(blue squares) algorithm for a time step d7 = 0.01. After a thermalization time, the energy
converges to an equilibrium value E% . For the Euler-type algorithm, this equilibrium is not
%0 as expected from energy equipartition, but is 5% above. Right: Average kinetic energy
reached after a time 7 = 5 x 107 as a function of the time step for the Euler-type (orange
circles) and the second-order algorithm (blue squares).

Sensitivity to the initial conditions

During the thermalization time shown in Fig.3.3(a), the escape rate is
slightly dependent on the initial velocity. However, if the barrier is suf-
ficiently large, this thermalization time is small compared to the escape
time and does not affect the evaluation of the rate. This is the case in

3 A similar plot for the potential energy brings similar information.
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Fig. 3.4. Dependence on the simulation parameters for Qo = 5, s = 0.76 and 6 = 0.04.
Left: Escape rate as a function of the time step for the Euler-type (orange circles) and the
second-order (blue squares) algorithm. Dashed line corresponds to the predicted value (see
further in text). Right: Escape rate as a function of the initial velocity (dr = 0.002 for the
Euler-type algorithm (orange circles), dr = 0.02 for the second-order one (blue squares)).
The value vinitial = 0.2 corresponds to the thermal velocity set by the condition of energy
equipartition. The behavior presented here is similar for all values of Qg.

all the simulations, as can be seen in Fig3.4(b) where the rate has been
calculated for various initial velocities viniiia1. In the simulations, the par-
ticle was initialized for convenience at the bottom of the well with zero
velocity.

Conclusion on the algorithms

These simple tests indicate that the use of the second order
algorithm instead of the simplest one considerably reduces the
simulation time, since it stands time steps more than one order
of magnitude larger with a calculation time of each step only
25% longer. In the following, this algorithm was used with dr =
0.02.

3.3 Results on the escape rate

With this reliable algorithm in hands, the behavior of the rate was probed
in two different situations. First, the rate was obtained in the well known
case of a Gaussian noise, where the results could be compared quantita-
tively to the exact existing theory. This allowed to confirm the reliability
of our simulations. Second, the escape rate was evaluated in the case
where the junction was submitted only to a Poisson noise or to a mix-
ture of both sorts of noise. The behavior of the rate in this regime was
then compared with the recent theoretical predictions detailed in the
previous chapter.
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3.3.1 Escape rate for Gaussian noise

Prediction for the rate driven by Gaussian noise

The escape rate for a Josephson junction submitted to Gaussian noise is
given in Eq. (2.30). In dimensionless units, this prediction is:
(1—s2)Y* _ave

I=\(B.Q(s) —5——e 7" (3.30)

where A (B, Q(s)) is the prefactor given in Eq. (2.33), B = AUT(S) and

AU (s) = 2V1 — s? — s(m — 2arcsin(s)). (3.31)

This prediction, and in particular the expression of the prefactor, was
already tested numerically in [57, 76]. As a first step, we recovered these
results.

Rate as a function of 6 and Q)

The rates were simulated for various temperatures and reduced bias
currents s in the range corresponding to a moderate barrier height

B = 4) € [5-9.5] (B¥? € [3—4.5]). The lower bound was chosen
to keep a barrier sufficiently high compared to temperature. Only in this
regime could the results be compared with theory, which is valid only for
B > 5. The higher bound was set to limit the simulation time. Since the
escape rate is predicted to behave as [' = )\;”—7’;6_3 , a common method
to probe if the simulated rate does follow such a behavior is to consider,

instead of the rate, the function:
2/3
B3 — <log {A;"p} ~log [F]> . (3.32)
s

According to theory:

AU 1
BZTOca(l—s)?’/2
where we have considered the dimensionless form of the approximated
expression of Eq. (2.14) for the barrier height. Hence, B%? is expected to
vary as (1 — s), with a slope proportional to #=2/3. The very good agree-
ment in Fig. 3.5(a) between the simulated B?? and the prediction gives
confidence in the correct thermalization of the particle. Using Eq. (3.32)
to calculate B%? however requires some self-consistency since the theo-
retical prefactor is also dependent on B.
A better and simpler way to check the agreement between simulation

: (3.33)
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and prediction is to plot the ratio % of the simulated rate over the
prediction as shown in Fig. 3.5(b). The agreement is excellent consider-
ing the statistical accuracy of 1%. This confirms the correct behavior of
the simulations.
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Fig. 3.5. Escape rate activated by Gaussian noise for Qo = 5 over N = 10* runs, yielding
a statistical error of 1%. Left: B2/ plot for various 6 (0.01, 0.02, 0.04, 0.07, 0.1, 0.16 from
right to left). Points are from simulation and solid lines are predictions using the barrier
height of Eq. (3.31). Right: Ratio between simulated rates and predicted rates for the same
temperatures. With N = 10, 95% of the points are expected to be within 1 £ 0.02.

The rates were also simulated for various quality factors with B = 10.
Dividing this rate by the value predicted from the Transition State The-
ory [50] (Eq. (2.29)) yields a determination of the prefactor. Figure 3.6
compares this estimation to the theoretical prediction. The very good
agreement confirms the quality of the simulation, and extends the vali-
dation of the theory over a wider range of parameters.

3.3.2 Escape rate for Poisson noise

Having confirmed the reliability of the simulation with a Gaussian noise,
we then introduced a Poisson noise source to probe its effect on the escape
rate. Comparison is carried out with the predictions from Ref. [11].

Prediction for the effect of Poisson noise on the escape rate

The effect of Poisson noise can be separated in two contributions, due
respectively to the second and third moment of the noise. The effect of
the second moment of noise is a large increase of the escape rate. In
analogy with the case of a Gaussian noise, the effect is characterized by
an effective temperature that represents the power of the noise, give by
Eq. (3.11). In reduced units, this temperature is:
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Fig. 3.6. Prefactor deduced from the simulations performed for various Qo at s = 0.8 and
0 = 0.017 (such that B = 10). Solid line: prediction for the prefactor of the escape rate
A (B,Q(s)) of Eq.(2.33) [55]. Dashed lines: Kramers limits k1 and k2 of low and high
damping described in Eqgs. (2.32) and (2.31) [4].

1
Oeir = 0 + iQoef’YN (3.34)

where 6 is the temperature corresponding to the Gaussian noise. This
expression is valid whatever is the second moment of Poisson noise com-
pared to that of Gaussian noise; the effective temperature can in partic-
ular be much higher than 6.

The effect of the third moment is much smaller. Since the third mo-
ment is related to the asymmetry of the noise, the escape rate becomes
also asymmetric. It is dependent on the relative sign of the reduced bias
current and of the current giving rise to the noise dsy. Keeping the lat-
est constant, we considered the rates obtained for positive bias s (noted
I'y), and for negative bias —s (noted I'_). In theory (see Eq. (2.58)),
these escape rates are expected to behave as:

Iy o< exp {— [Ba(ber) + Bs]} (3.35)
and

I oc exp{— [Ba(bet) — Bsl} - (3.36)
The term By = ﬁeg corresponds to the effect of the second moment of
Poisson noise, in analogy with B = % for Gaussian noise at a tem-

perature 6. The small corrective term Bjs accounts for the asymmetry of
Poisson noise. It is assumed here that the prefactor is not affected by the

noise asymmetry, which only enters through Bs. From [, and I, one
builds two quantities:
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e The geometric mean of the two rates, or mean rate, defined by
=/ I o exp[—Ba(beg)]- (3.37)

This effective mean rate is only sensitive to the second moment of noise
and is thus expected to behave exactly as the escape rate obtained in
the Gaussian case for a temperature O.q, therefore follow Eq. (3.30).

e The rate asymmetry, defined as:
r
Rp = F+ — exp[2| Bs]]. (3.38)

The departure from one of this quantity is a direct measurement of
the effect of the third moment of the noise. In theory, the corrective
term Bs of Eq. (2.94) is given in reduced units by:

Cx

Bs = —yy (96H>3j(Q0, s) (3.39)

where j(Qo, s) corresponds in this chapter to the function jruq(Qo, s)
of Eq.(2.92), calculated by H. Grabert, that covers the full range of
quality factors.

In order to probe the behavior of the mean rate and the rate asym-
metry, I’y and I were simulated with various sets of parameters (yy,
Qo and s) and N > 10°. The geometric mean rate was compared with
the Gaussian prediction, while the rate asymmetry was compared with
the prediction using the corrective term Bjs.

Rates as functions of vy

The rates were first measured as a function of the noise amplitude. In
the Gaussian case, this corresponds to changing the temperature. In the
case of a Poisson noise, the amplitude was modulated with ~y.

Following the procedure already used in the Gaussian case, the mean
rates I calculated for Qy = 5, which corresponds to the experimental
value of [38], were converted into B?/® functions shown in Fig. 3.7(a).
These functions are compared to the theory for Gaussian noise using the
predicted effective temperature of Eq.(3.34). In Fig. 3.7(b), the mean
rates are divided by the predicted values: they appear to be about 1%
larger. This is only a slight discrepancy at )y = 5, but calculations at
larger values of )y give larger deviations, as discussed below.

The rate asymmetry is shown in Fig. 3.8, and compared with the
prediction of Eq. (2.95) for @y = 5. From this figure, it appears that the
theoretical prediction is larger than the simulation results by 20%, but
the s-dependence is correct.
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Fig. 3.7. Mean rate activated by a Poisson noise for Qo = 5 in absence of extra Gaussian
noise (0 = 0). Left: B2/® plot for various values of vy corresponding to Oz =0.01, 0.02,
0.04, 0.07, 0.1 and 0.16 from right to left. Points are the simulation and solid lines are the
predictions for the Gaussian case using the expected effective temperature. Right: Ratio
between the mean rates and the predicted values, for the same data.

0.12

Fig. 3.8. Rate asymmetry for various effective temperatures, for Qo = 5, computed for the
s range corresponding to B € [5 — 8] (with & = 0.01 and values of yn corresponding to
Oeg = 0.02,0.03,0.05,0.08). Solid line: predictions using the result from Eq. (2.95) that was
calculated for Qo = 5 in the complete range of s. Dashed line: Same predictions scaled
down by 20% to fit the simulation data.

Rates as functions of Q

Another set of simulations was performed to probe the dependence of
the escape rate on ()y. This is similar to the evaluation of the prefactor
performed for the Gaussian case. For each value of )y, the rates were
simulated after having chosen the parameters in two steps:

e y was fixed to yield a given effective temperature;
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e with this temperature, s is picked to yield a given value of B, while
keeping s > 0.99 to be in the limit where Grabert’s simplest results
of Eq. (2.92) are valid [11].

ved

0o
while j(Qo, s) is set with the second. Figure 3.9 represents the mean rate

I’ divided by the prediction from the Transition State Theory as a func-

tion of the quality factor (see Eq. (2.29)). One thus expects to recover the

prefactor prediction already checked in the Gaussian case, as was shown
in Fig. 3.6. However, a slight disagreement is found in the range of inter-
mediate quality factors. A tentative explanation is that this deviation is
due to an effect of the asymmetry of the Poisson noise on the prefactor

of the escape rate, an effect which is either not addressed by theory [11],

or neglected [31, 32].

A similar deviation can be observed on the rate asymmetry, shown in

Fig. 3.10. It should be noted however that, apart from this deviation, the

qualitative behavior of the rate asymmetry, especially the position of the

turnover, is perfectly described by theory.

Hence, the ratio appearing in the theory is set with the first step,

Fig. 3.9. Mean rate I" divided by the prediction from TST (taken at the expected o) [50]
for a Poisson noise source. yn is chosen to yield f.g = 0.00016, with # = 0.00012, s = 0.992
so that By ~ 9. Solid line: Prediction for the prefactor in the Gaussian case. Dashed line:
TST prediction and Kramers’ low and high damping limits.

Rates as functions of s

The last set of simulations was performed to probe the variation of the
escape rate with the reduced bias current s, for various values of ().
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Fig. 3.10. Rate asymmetry. yx is chosen to yield feg = 0.00016, with § = 0.00012, s = 0.992
so that B2 ~ 9. Solid line: theoretical prediction. A discrepancy between simulations and
theory is found for intermediate values of Q)o. Dashed lines: low-damping and high-damping
limits of Eq. (2.76) calculated in [33].

Once Qq, vn, and f.q were fixed, only s was varied, staying in the range
s > 0.99. In Fig.3.11, we plot the ratio between the mean rate I" and
the predicted rate for the Gaussian case. According to theory, this term
should be equal to 1 at all values of )y and s.

Only for low quality factors do the predicted effective temperature agrees
with the simulations. Moreover, the deviation increases when s is reduced
(i.e. when B is increased). Such a behavior is attributed again to a pos-
sible modification of the prefactor that appears at low damping, which
is not considered by theory.

For Qo = 2 where the effective temperature is properly predicted, the
rate asymmetry is compared with theory in Fig.3.12. The good agree-
ment between theory and simulation in this range of s (and Bs) gives
confidence in the validity of the prediction on the s-dependence, at least
for s close to 1.

Conclusion on the effect of Poisson noise

In a nutshell, the simulations show that the effect of Poisson noise on the
escape rate is well accounted for by theory in the limit of high damping.
However, for quality factors larger than 2, both the simulated effective
temperature and the simulated rate asymmetry slightly deviate from the
prediction, even if the qualitative behavior is very well predicted. A ten-
tative explanation is that the third moment of noise not only affects the
exponential part of the rate, but also the prefactor, an effect not taken
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Fig. 3.11. Mean rate obtained for a Poisson noise source for Qo=2, 10, 30 and 60 (dark
blue circle, orange squares, green triangles, and red diamonds). The mean rate is divided by
the prediction for the Gaussian case, so that all points should be on the dashed line, equals
to 1. While the simulated rate equals as expected the predicted one for low Qo, a sizeable
deviation is found for larger values of QQo. For each value of Qo, v and 6 are fixed to have
Ocg = 0.000165 (with ya=1.5, 0.25, 0.2, and 0.2 for increasing quality factors). The range in
s corresponds to Bz € [5 — 12].
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Fig. 3.12. Symbols: Rate asymmetry for Qo = 2. yv=1.5 and 0 is fixed to have
0. = 0.000165. Solid lines: theoretical prediction (the slight jump in the line is due to
a discontinuity between the two limits of Eq. (2.92)).
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into account by the theory. It does not come as a surprise that the dis-
crepancy appears in this turnover region ()g ~ B, where the dynamics
crosses over between spatial-diffusion and energy-diffusion [55, 56]. For
a set of parameters that corresponds to the experiments presented in
the next chapter, where the quality factor is estimated around Qo = 5,
theory appears to overestimate the rate asymmetry obtained with the
simulations by 20%. An extension of the theory tackling the effect of
asymmetric noise on the prefactor might resolve this discrepancy.

3.4 Effect of a low-frequency cutoff

In the experiment, the dc part of the noise is cut by an RC filter [35, 38]
to ensure that the Poisson noise added to the bias current of the junction
has zero mean value. To probe the effect of this cut-off on the rate asym-
metry, we simulated the dynamics of the circuit shown in Fig.3.13. In
this circuit, both the Poisson noise Iy and the Johnson-Nyquist noise
01py are filtered. Only the components of the noise at large enough fre-
quencies reach the Josephson junction, while the low frequency part flows
through the resistor R,. Beware that two resistors are present, each of
them producing a Johnson-Nyquist noise. For simplicity, we consider in
this section that they have different resistances but are at the same tem-
perature.

V
4

Sy | Slg, R, . Slg, lg
SIGEE B %@ %

Fig. 3.13. Setup used to describe the low-frequency cutoff present in the experiment pre-
sented in the following chapter. The capacitor C2 and the resistor R2 play the role of a
high-pass filter for the current fluctuations 6/g2 and 61, while the noise §1p; is unaffected.
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3.4.1 Algorithm

Equations of motion for the RC-filtering circuit

The equations of motion for this circuit of Fig. 3.13 are:

V= o7y
V = _C% + Ry (0o + 01y — q) (3.40)
CJV—F%—I—I()SiH’}/—q':[B—i—(SIBl.

They can be converted into three first-order differential equations for the
three variables {V, v, ¢}, where ¢ is the charge on the coupling capacitor
C5. The dimensionless equations are:

=
g = —@7 — éq* +0spy + sy (3.41)

Oz—&ﬁ—sinv—i-s—i-q.*%—&sm

with Q2 = RyCywy, ¢ = % and ¢" = %}q'

RC-Algorithm

In the following, ¢* is noted ¢ for convenience. With the method pre-

sented in the first section, a Taylor expansion at second order of the time
integrals appearing in the discrete time equations yields:

Tn+1l — Vn = UndT + %i}nd7_2
n+1 — qn = _é [QndT + %Qnd'rﬂ - é [7n+1 - ’Yn] + de 0spa + fdr OsN
Unt+1 — Un = _é (V1 — nl + %Cb— A (g1 — qn] + Jar 08B1
(3.42)
with ' ) . .
n = _@Un - éQH + dr de 0sp2 + dr de OSN (3 43)
U:_&Un‘FF('Yn)_FQH‘i‘éSBI ‘

Probability laws for the noise terms

Both Gaussian noises [;. dsp; and [, dsps are accounted for in this al-
gorithm in a manner similar to the simplest case, with their respective
standard deviation being @/%dT and ,/%dr In the limit ¢ = 0, one
recovers the second-order algorithm presented in the first section for a
RCSJ model, with the Gaussian noise being the sum of two terms. The
mean value of Gaussian noise remains zero while the variance of the over-
all Gaussian noise is the sum of the variances of the two noises, hence

20, 20 _ 26 _ 1
00t o = 0n where we defined Qo L
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3.4.2 Dynamics of the circuit

Cut-off frequency and Plasma frequency

The filter cuts the frequencies lower than i C =< This frequency has

to be compared with the plasma frequency:

4
vp=5-(1- s2)1/4, (3.44)
When the cutoff frequency is much smaller than the plasma frequency, the
filtering of the noise is expected to have a negligible effect on the escape
rate. At the opposite, the escape rate due to Poisson noise should be
strongly diminished when the cutoff is higher than the plasma frequency.

Quality factor

In the circuit of Fig.3.13, the junction can not directly be considered
within a simple RCSJ model. The complete environment has to be taken
into account to calculate the quality factor of the phase dynamics for ar-
bitrary values of c. It appears that in the relevant case of a low-frequency
cutoff, i.e. 5= < 1, the quality factor of the dynamics is well approxi-
mated by Qeg, and the junction is reasonably treated within an effective
RCSJ model.* The effective temperature relevant for the escape rate with
a Poisson noise is then:

1
Qeﬂf = 9 + §Qeff€3’y]\[. (347)

3.4.3 Simulation results

We performed several tests to probe the effect of filtering, from energy
equipartition to rate asymmetry.

4 The admittance seen from the bias line is:

I 1 1
Yiot(w) = 5 TiCw + - +x " (3.45)
2

JC2w

where L is the Josephson inductance. When ¢ < 1, the admittance simplifies to:

1+ jQe(—— — —) (3.46)

Yiot(w) =
tot( ) Reﬂ Wpo Wpo

where ﬁ = R + Rz and Qeg = RegCywpo. The environment thus behaves like a simple

Ohmic environment with two resistors in parallel and a quality factor Qes.
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Energy equipartition

We first monitored the average kinetic energy (FE) of the particle at long
times, when the junction is submitted solely to a Poisson noise at s = 0
(the plasma frequency is thus equal to —) For ¢ = 0, the average kinetic
energy reaches %Heﬁ, since there is no filtering. When ¢ is increased, the
particle decouples from the noise source. Its energy thus decreases, as
shown in Fig.3.14. In the limit Q— > Qﬂ, where all frequencies below the
plasma frequency are cut, the energy of the particle reaches zero.

In another simulation, the Poisson noise was set to zero and the temper-
ature to a finite value 6. In this case, the energy of the particle reaches %9
at all values of ¢, even if the Johnson-Nyquist noise dspgs is completely fil-
tered for = > 1. This is because at equilibrium, the variance of the noise
obeys the Auctuation- dissipation theorem. If part of the fluctuations are
filtered, part of the dissipation also, and both effects compensate each
other.

1.2

2(E)

1 1 1
0.001 0.01 0.1 1. 10. 100.

c/Q2

Fig. 3.14. Kinetic energy of the particle at s = 0 as a function of Q for the two types
of noise. Dots: Only Poisson noise is present (6 = 0), with the parameters Qo = 5, Q2=5,
y~v = 640 yielding 0. = 0.02. Squares: the two sources of Gaussian noise are present
(6 = 0.04, Qo = 5, Q2=5) and Poisson noise is set to zero. For large values of =, the
(non-equilibrium) Poisson noise is filtered so that the kinetic energy of the particle goes to
0, while for the (equilibrium) Gaussian noise, the energy is not affected by the cutoff.

Escape rates

We then probed the behavior of the escape rate when varying Q The
simulated rate is shown in Fig.3.15 when the system is only submitted
to a Poisson noise (7' = 0). The reduced bias current is s = 0.92, yield-
ing a plasma frequency of 0.1. The rates obtained for both signs of the
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bias current are shown, the difference being due to the asymmetry of the
noise. At very low values of é, the rates are not affected by the cutoff.
When é increases and approaches a significant fraction of the plasma

frequency, the rates are reduced since part of the noise is filtered.”
The corresponding rate asymmetry is shown in Fig. 3.16, where it is nor-
malized by its value at ¢ = 0. Up to Qi ~ (0.001, the rate asymmetry
2

R —1 seems to remain unaffected by the low-frequency cutoff. However,
the rate asymmetry starts to diminish when é is further increased. The
general curve depends only slightly on the quality factor (in the small
range of quality factor probed here, which is the relevant experimental
range). This allows to determine a general condition for the maximum
cutoff frequency yielding negligible effects on the observed rate asymme-
try:

— < . (3.48)

Qeff: 2

1 1 1
0
0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1

c/Qz c/Q;

Fig. 3.15. Escape rates activated by Poisson noise for positive and negative bias (circles
and square) as a function of % Left: Escape rates for Q2 = Qo = 4. Rates are obtained
for s = 0.92, 0 = 0 and ~yn is fixed to yield fegq = 0.00625. Dashed vertical line corresponds
to the plasma frequency. Right: Escape rate for Q2 = Qo = 16.

5 Surprisingly, the two rates behave slightly differently. The decrease is not similar for both
bias signs and does not start for the same value of 2. This discrepancy in the behavior
between the two rates is increased for higher values of Qes, and no clear explanation has
been found presently.
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Fig. 3.16. Symbols: Rate asymmetry at s = 0.92 as a function of ¢/Q2 for three values of
effective quality factor (Qeg=2, 5, and 8 (circles, squares, and triangles)). Dashed vertical
line: plasma frequency at this bias current.

3.5 Conclusion

In this chapter, we have performed numerical simulations on the dynam-
ics of a Josephson junction biased with a Poisson noise source.

In a first part, we determined the effect of the asymmetry of the Pois-
son noise on the escape out of the zero-voltage state in the simple
RCSJ model. We obtained the effective temperature and rate asym-
metry, which account respectively for the effects of the second and
the third moment, over a large set of parameters, and compared with
theoretical predictions. While predictions and simulations agree in
the range of low @)y, both for the effective temperature and the rate
asymmetry, a slight deviation appears for larger quality factor. We
attributed this deviation to an effect of the noise asymmetry on the
prefactor of the escape rate.

In a second part, we evaluated the effect of an RC filtering of the
Poisson noise on the rate asymmetry, since this corresponds to the
actual experimental setup. The simulations indicate that the filtering
does not affect the rate asymmetry if the cutoff frequency veyiof is in
the range:

Veutoft SJ %- (349)

where v is the plasma frequency. In our experiment where the plasma
frequency was of the order of 1.5 GHz, the quality factor was 5 and
the cutoff frequency was 5 MHz, this condition was fulfilled.



Chapter

Experimental detection of an
asymmetric noise with a Josephson
junction

In this chapter, we present an experiment accessing the second and third
moment of the noise using a Josephson junction as a detector [38]. This
experiment, which extends the experiments of [35, 30, 37, 65], is mo-
tivated by the need to develop an efficient on-chip detection system of
the third moment of noise, as appeared from the first experiments that
measured this quantity [27, 79, 80, 81]. When the noise under study is
added to the bias current of a Josephson junction, the escape rate out
of the zero-voltage state of this junction can be used to probe the second
and third moments of this noise. A complete analysis of the experimental
circuit and an extension of the present predictions [12] allows to achieve
a quantitative agreement between measurement and theory, which consti-
tutes a significant improvement towards the use of this detector on more
ezxotic conductors.

4.1 Introduction

4.1.1 Direct measurement of the third moment of the
fluctuations

A pioneering experiment

The first measurement of the third moment of shot noise was performed
by Reulet et al. in 2003 [27, 79] on a tunnel junction. In the limit of
large bias (eVy > kgT, where Vy is the voltage across the junction),
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the number of tunneling events through a voltage-biased tunnel junction
during a probing time 7, follows a Poisson distribution and the second
and third moment of the noise are simply:

82:6|IN| (41)

53 == 621 N
where Iy is the mean current through the junction (see Fig. 4.1). The
voltage fluctuations across the junctions were measured with an RF am-
plifier presenting an input impedance Ry = 50 2 (see Fig. 4.2). To avoid
a loss of signal due to impedance mismatches, the impedance R of the
tunnel junction was also close to the 50 2 impedance of the coaxial ca-
bles. In the lumped-element model presented in the top of Fig. 4.2, the
current fluctuations i (due to the noise source) and iy (due to the probe
resistor) both modulate the voltage across the sample, which results in a
modulation of the noise itself. Since R ~ Ry, this "feedback" effect gives
a sizeable contribution to the third moment of the voltage fluctuations
[82, 83].
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Fig. 4.1. Left: The current In through a voltage-biased tunnel junctions presents fluctu-
ations dIn, due to the statistical processes governing the tunneling. In the limit of large
voltage (eVy > kpT), tunnel events through such a junction follow a Poisson process (see
Appendix B.3 for details). Right: Poisson distribution describing the number N of elec-
trons tunneling through the barrier during a given probing time 7, (drawn for (N) = 100).
This distribution is fitted by a (symmetric) Gaussian distribution around the maximum to
highlight the asymmetry of the Poisson distribution on the wings.
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Fig. 4.2. Top Left: Setup used in [27, 79] to measure the third moment of the voltage noise
across a tunnel junction. A bias tee is used to feed a constant dc current through the junction.
Top right: Equivalent model at high frequency : the current fluctuations ¢ emitted by the
tunnel junction of impedance R, and ip emitted by the input impedance of the amplifier Rg
flow through the parallel combination of R and Ry. The output signal of the amplifier is
mixed twice with itself to obtain a dc signal proportional to the third moment of the voltage
fluctuations. Bottom: Measured third moment of the voltage fluctuations. The dash-dotted
line corresponds to the expected result for a perfectly voltage biased sample. The dashed line
fitting the data is the prediction obtained when taking into account "feedback" corrections.

Avoiding feedback effects

In 2005, Bomze et al. [80] performed another experiment on a tunnel
junction, but in a regime where the "feedback" effect of the environment
was negligible. A cryogenic amplifier was used to increase drastically
the sensitivity, and the noise was sampled at room temperature by an
analog-to-digital (A/D) converter. This reduced the constraints on the
impedance of the sample, and allowed to reach the limit Ry > Ry. In
this case, the tunnel junction was almost perfectly voltage biased and
the third moment of the current noise was linear with the mean current,
as shown in Fig. 4.3. This highly sensitive detection scheme was then
used in 2008 to measure the third moment of noise on a Quantum Point
Contact (QPC) for a conductance varying between almost 0 and 2¢?/h
[81]. However, due to the large conductance of the sample in this case,
"feedback" effects could not be avoided anymore. The third moment of
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noise was extracted through the substraction of different contributions,
a process very sensitive to the calibration of the measurements lines (see
details in [81]).

Iy, =10pA <V =0.1mV

-20 -10 0 10 20
(107 A)

Fig. 4.3. Third moment of current fluctuations across a tunnel junction having an impedance
Ry larger than 10 M2 deduced from the voltage fluctuations over a probe resistor Ry =
9 k2 [80]. Different symbols corresponds to different measurement setups. The line is the
theoretical expectation for a Poisson noise.

Sensitivity

In the measurements presented above, the signal-to-noise ratio for the
third moment is determined by the Johnson-Nyquist current noise emit-
ted by the probe resistor Ry. Since the amplitude of this noise scales as
R%)’ the signal-to-noise ratio was considerably increased in the second ex-
periment (Bomze et al.) where Ry was three orders of magnitude larger
than in the case of Reulet et al.

In order to perform a simple comparison between detectors, we intro-
duce the sensitivity o3 as the error obtained on the third moment when
averaging during one second. Noting AS5 the error on the third moment
obtained for a measurement time ¢, this yields:

1
ASg — 03 7 . (42)

mst



4.1 Introduction 7

T //
=1 ¢
i - e
&,
S Y N Y- 1 _/
[0)) 2 ""1'
O G [26%/h] ' ' '
S
3 o | . |
£0.5 T . .
(@] 2 J
O .4-/ o LG [2e7h] 5 s ,
o 0.5 | 1 1.7
13 1.2 1.1 1

Gate voltage [V]

Fig. 4.4. Results obtained in [81]. Main panel: Conductance (in units of Go) of the QPC.
Bottom: Second moment of the noise divided by the Poisson expectation yields the Fano
Factor F». Solid line is the predicted value. Top left: Fano Factor F3 of the third moment
(third moment divided by the Poisson expectation). Solid line is the predicted value.

In the experiment of Reulet et al., a typical error for one point AS; =
2 e?uA was obtained for 10 h averaging', yielding a sensitivity o3 =
370 €2 1A /v/Hz (the value of the error is obtained from Fig. 4.2). In the
following experiment of Bomze et al., the sensitivity was considerably
increased, since the error was typically AS; = 2 e?nA for an integration
time of 250 s (corresponding to 10 samples of 25 ns). This yields a
sensitivity o3 = 30 €® nA/ VvHz, which allowed the measurement of the
third moment in a QPC.

4.1.2 Towards on-chip detection

As appears from the two previous paragraphs, setups measuring the third
moment of the noise by means of microwave signal processing proved to
be efficient in the simplest cases. This technique however presents some
drawbacks:

e The transmission from the noise source to the remote electronics needs
to be carefully calibrated at all frequencies, in particular when "feed-
back" effects are present.

e Even with the best cryogenic amplifiers available nowadays, the sen-
sitivity is barely sufficient.

Another strategy is to circumvent these difficulties by using an on-chip
detector, which converts the properties of the high frequency fluctuations

112 days for the complete curve shown in Fig. 4.2.
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into a simple easy-to-measure low frequency signal. In this spirit, a set of
experiments was performed using a QPC as a detector, but this technique
only applies to probe the slow sequential charging and decharging of a
nearby Quantum Dot (QD) [84]. Looking for a on-chip detection scheme
that could be applied to a large variety of noise sources, Tobiska and
Nazarov [28] proposed to access the FCS of noise using a circuit contain-
ing a Josephson junction. They showed in particular that when the noise
is added to the bias current of the Josephson junction, the difference in
the escape rates out of the zero-voltage state for opposite bias currents
reflects the asymmetry of noise.?

4.1.3 Probing shot noise with a Josephson junction

At the beginning of my work, a simplified version of this strategy, aiming
at measuring only the third moment and not the FCS, had been explored
experimentally by two groups: the group of J. Pekola at Helsinki Uni-
versity of Technology (HUT) [29, 37, 85] and the Quantronics group in
Saclay [36, 35]. In both cases, the shot noise of a tunnel junction was
added to the bias current of the Josephson junction (JJ), in order to
extract the third moment of the noise.

To do so, one option is to have the full current in the noise source
In(t) flowing through the JJ. In this case however, the escape rate is
modified not only by the noise, but also trivially by the dc current (Iy).
To get rid of this contribution, the dc part (I) of the current was either
compensated for or filtered out.

Experiments performed at the Helsinki University of Technology

The first detection of shot noise with a JJ was reported in [29]. The tunnel
junction and the Josephson junction were placed in series but the dc
part of Iy flowing through the JJ was compensated for with an opposite
current on the bias line of the JJ. Large inductances were placed on all
lines to increase their impedances at high frequency (see Fig. 4.5), in
order to ensure that all the noise from the tunnel junction flows through
the detector, which presents the lowest impedance. It was observed that,
by increasing Iy, the noise yields a drastic increase of the escape rate.
This effect could be interpreted as an increase of the effective temperature
of the escape due to the second moment of the noise.

2 Another use of a Josephson junction as a detector of higher order moments had already
been proposed by Lesovik, based on the interplay of the noise with the ac Josephson
supercurrent. [71]
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In subsequent experiments [37, 85|, the third moment of noise was
accessed through the asymmetry in the escape rate for opposite bias
situations. The current in the noise source was changed alternatively
from +1y to —Iy. The second moment Sy being only related to |Iy|, any
difference in the rate between the two configurations is attributed to the
asymmetry of the noise, i.e. essentially to S3. Comparing the effect of the
noise of a tunnel junction and the noise of a macroscopic resistor, which
is symmetric, this experiment indeed demonstrated that a Josephson
junction is sensitive to the third moment of the noise (see Fig. 4.5).
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Fig. 4.5. Left: Setup used in the experiment performed at HUT [37, 85]. Noise source and
detector are placed in series. The fluctuations of Iy add to the bias of the detector Josephson
junction, but the dc component does not contribute (thanks to a compensation). Inductor
on all the lines ensure that the noise flows in the Josephson junction, which presents the
smallest impedance. Top right: Effective temperature of the escape of the JJ detector in
[37] (various symbols correspond to various samples). Solid line is a fit with a model based
on transitions between levels in the MQT regime. Bottom right: Asymmetry in the mean
escape current. This asymmetry is defined as the difference between the mean escape current
of the Josephson junction obtained for opposite signs of In. I¢ is the critical current of the
junction. Full symbols are measured for two tunnel junctions having different resistances,
while open symbols corresponds to a case where the noise source is an ordinary resistor
(with zero third moment of noise). Lines are adjusted comparisons with the adiabatic model
described in [65] and summarized in Chapter 2.
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A quantitative comparison of the results of this experiment with the-
ory cannot be carried out easily, because theory deals with a JJ in the
thermal escape regime and in an environment well described by an RCSJ
model [11, 31, 33], whereas in this experiment, thermal escape was only
obtained in an intermediate range of current, and the environment was
essentially inductive. Moreover, the observation of escape was compli-
cated by retrapping effects that arised because of the low quality factor
of the JJ. In [37], the authors compared their data with the adiabatic
model described in the previous chapter [65]. Using the frequency cutoff
introduced in this theory as an adjustable parameter, it was possible to
find a reasonable agreement with the data.

Experiments performed in the Quantronics Group

The measurement presented by Huard et al. was designed to achieve a
quantitative comparison between theory and experiment, and thus to ex-
tract the third moment of noise from such measurement [35, 36]. This
required to operate in the regime corresponding to the theoretical predic-
tions, in which escape is due to thermal activation, and where the circuit
can be described within the RCSJ model [31].

In this experiment, the dc part of I (t) was removed from the current
bias of the Josephson junction detector by on-chip filtering. The current
through the noise source was separated into a fluctuating part that flew
through the detector, and a dc part that returned through a resistor (see
Fig. 4.6). Numerical simulations presented in Chapter 3 confirm that the
effect of the low frequency cutoff on the statistics of the noise reaching
the Josephson junction detector can be neglected.

Using independently measured parameters, the effect of the second
moment of the noise was well explained. However, the measured asymme-
try in escape rates appeared in strong disagreement with the predictions.
A tentative explanation for this disagreement is a spurious leakage in
the coupling capacitor between noise source and detector, which causes
some dc current to flow through the JJ and hence contribute to the rate
asymmetry.
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Fig. 4.6. Simplified setup used in the first experiment performed in the Quantronics group
[35]. The noise from a tunnel junction (green double box) biased at dc with a current In
couples through a capacitor C' to a Josephson junction detector (orange crossed box), which
is current-biased on its supercurrent branch. The filter formed by Ry and C separates the
signal flowing through the junction into two parts. The low frequency part, in particular the
dc component, flows in the resistor, letting the detector unaffected. In contrast, the high
frequency part of noise adds through the capacitor to the bias current of the JJ detector.

4.2 Experimental setup

We present here a second generation experiment [38] that aims at solv-
ing these difficulties and adress the discrepancies between theory and
experiment that appeared in [35]. The goal is to achieve a reliable under-
standing with the present theories of the effect of the shot noise on the
escape rate of the JJ out of its zero-voltage state, in order to use the JJ
as a detector for the third moment of noise of an arbitrary conductor.

4.2.1 Schematic setup

The setup that we implemented is shown schematically in Fig. 4.7 and
pictures of one of the sample are presented in Fig. 4.8. To strengthen the
decoupling at dc between the noise source and the detector, we fabricated
two coupling capacitors instead of one using a more robust technology
than in [35]. The noise source was again a tunnel junction. The large
capacitor Cy ensures a constant voltage across the noise source at high
frequency. Due to a change in the relative position of the resistor Rg
and the tunnel junction compared to the previous experiment (compare
Fig. 4.6 and Fig.4.7), the fluctuating part of the noise here subtracts
from the bias current of the junction, which inverts the sign of the rate
asymmetry.
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I CHIP AT 20mK

o=

Fig. 4.7. Detailed setup of the experiment presented in this chapter and in [38]. Compared
to the setup presented in Fig.4.6, two coupling capacitors C7 and C2 are used. The voltage V
across the junction monitors the switching to the dissipative state, through the resistor Ra.
Capacitor Cy lowers the JJ plasma frequency % close to 1.5 GHz at zero bias. Capacitors
Cn and Cy shunt the impedance of the external connections lines at wpo, therefore the
admittance shunting the JJ is determined only by on-chip elements. Two large resistors R,
allow to fix the average value of In. Cp is a capacitor placed on the bias line at room
temperature whose role is to avoid spurious offsets arising from thermoelectric voltages (see
text for more details).

4.2.2 Requirements

The design was developed with three goals in mind:

e Place the detecting junction in the thermal activation regime, without
retrapping effects.

e Emnsure a possible independent control on all the parameters charac-
terizing the detection.

e Measure the escape rate with a simple technique and a good signal-
to-noise ratio.

Constraints on the detection

e For the escape to be described by thermal activation, the temperature
has to exceed the crossover temperature Too (see Eq. (2.25)). Consid-
ering that the lowest accessible temperature is approximately 20 mK,
and assuming the measurement is easier at the lowest temperature,
the plasma frequency is limited to:
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Fig. 4.8. Left: Large scale picture of Sample JJD2, presented in this chapter. Large pads
are in aluminum, and capacitors were obtained from parallel aluminum films separated by
SisN4 (see Chapter 7 for more details). Top right: Connections to the two junctions. One
observes the capacitor C'y in parallel of the detector. Bottom right: SEM micrograph of the
detector Josephson junction under an angle of 50°. The junction is formed at the overlap of
the two middle electrodes, while external electrodes result from the shadow mask evaporation
technique.

vpo < 2.5 GHz. (4.3)

e The critical current of the JJ, which sets a scale for measuring the
noise, should be as small as possible. However, the switching signal
of a Josephson junction with too small a critical current is difficult
to detect [86]. In pratice, a critical current of 500 nA yields a good
sensitivity and an easy switching detection (if the critical current is
too large, the bias current flowing through the resistors heats them
excessively, introducing artifacts in the experiments).

e Achieving a plasma frequency below 2.5 GHz with I, = 500 nA im-
poses a capacitance in parallel of the junction of the order of 10 pF,
which is much larger than the intrinsic capacitance of the junction (of
the order of 100 fF for a 1 um? area [87]). An additional capacitor C;
was therefore fabricated in parallel with the junction, with a technic
presented in details in Chapter 7.

e To use the simple RCSJ model, the impedance Z(w) seen from the
junction should be equivalent to a resistance for frequencies close to
the plasma frequency, where the junction is most sensitive. To dimin-
ish the impact of the connections lines on this impedance, we used
shunting capacitors Cy and C,. At the plasma frequency, those ca-
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pacitors are expected to present a very small impedance compared to
that of the lines, typically 50 €2, in order to shunt them. This require-

ment yields:
Cy, Cny > 5 pF. (4.4)

Within this limit, the admittance across the JJ reduces, at the plasma
frequency, to the on-chip elements presented in Fig. 4.9:

1 1 1 1
Y ~ Y, Y; Y- ~N o — + — = —, 4.5
(W) 2 Y1 (w) + Y2 () + Y3 (w) i + i + R, R (4.5)
The circuit fits in the RCSJ model, with a resistance
1 1 1\ !
Ri=l—+—=—+— 4.6
”<m+m+&) (4.6)

shunting the junction at the plasma frequency.
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Fig. 4.9. Equivalent admittance seen in parallel of the junction (see text for conditions).
Capacitors C; and Cny behave as very small impedances around the plasma frequency, and
shunt the external lines. The environment can thus be limited to three on-chip branches
shown here. In this limit, the setup }s properly described by the RCSJ model with an effective

resistance R|| = (}% + %2 + 1%.)

To avoid the retrapping effects presented in the Chapter 2 [56, 58],
which strongly complicate the interpretation of the switching measure-
ment, the quality factor ()y of the junction should be large enough in
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the explored range of reduced bias current s: Qg > Wis. Practically, due
to the very large effect of noise on the rate, s is varied in the range
[0.5 — 1]. The quality factor is thus bounded to:

Qo > 3. (4.7)

Using Qo = R||Cwpyo, this requires 50 Q2 < R < 200€2. The definition
of R) as the parallel combination of all the on-chip resistors implies
that each resistor has a value larger than 50 ). Nevertheless, the re-
sistance values should be kept as small as possible to avoid heating
effects.

e Inthe underdamped regime, the magnitude of the voltage that appears
at switching Vi, is controlled by the mean switching current I, and
the biasing resistor by

Viw = (Ry + 50) Iy, (4.8)

(here Ry + 50 € corresponds to the sum of the on-chip bias resistor
and the impedance of the bias line). If Ry is too large, Vg, ~ % and
a finite current flows after the junction has switched, resulting in the
apparition of quasiparticles in the junction electrodes and heating of
the biasing circuit. It takes then longer for the junction to reset, and

one prefers to choose Ry such that:

Vaw < 2€A. (4.9)

e With the previous requirements fulfilled, other constraints are satis-
fied. Current pulses can be sent through the biasing line with a short
rising time (controlled by R;C}). The response time of the voltage
measurement on-chip RyCy is anyway much shorter than the actual
response time of the measurement line (4 ps), therefore the value of
Ry does not limit the response time of the detector.

Constraints on the noise source and the coupling

e In order to simplify the fabrication process, the noise source and the
detector junction are two tunnel junctions fabricated in the same evap-
oration step with aluminum electrodes, superconducting at low tem-
perature. The noise source is thus also a Josephson junction. However,
when biased at a voltage Vi larger than twice the superconducting
gap, this junction is expected to behave as a normal metal tunnel junc-
tion in terms of the noise moments Sy and S5 [40]. For the experiment
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to be performed in this regime, the current through the tunnel junc-
min __ 2A 3

tion must exceed Iy = Z7-.7 With a large value of the resistance of
the tunnel junction Ry, the minimum current is small and the effect
of the noise can be set to a negligible amplitude. In practice, we chose
Ry of the order of e% ~ 26 k2, which corresponds to the characteristic
resistance of samples of interest like QPCs.

e If the thermal fluctuations associated to the resistor B3 modulate the
voltage across the noise source, it induces the "feedback' effects de-
scribed earlier. In practice, the impedance of the noise source is much
larger than that of the JJ in series with the coupling capacitor in a
broad frequency range, and the current fluctuations associated with
both the resistor and the noise source flow essentially in the detec-
tion branch, leaving the voltage across the noise source unaffected.
Feedback effects can thus be neglected.

e The capacitors C; and C5 in series form an equivalent capacitor Co =

%. The —3 dB point of the first order RC filter formed by R3

and C¢ is at (R;;C’c)_l. The numerical simulations presented in the
previous chapter confirm that this cutoff has no effect on the statistics
of the noise that reaches the detector if:

1 [Z0)
< 2 10 MHz. 4.10
RsCo = 100 z (4.10)

4.2.3 Chip parameters

The experimental results on two samples will be discussed. Many tests
were performed on Sample JJD1, but it turned out that the behavior of
the detector junction was imperfect, as discussed later. Reliable results
could be obtained on Sample JJD2, therefore we first present the results
obtained with Sample JJD1 then those obtained with Sample JJD2. The
parameters of both samples are given in Table4.1, which summarizes the
nominal values of the design and the values measured in-situ, as described
in the following section.

3 As will be presented further, the switching of the detector when the noise source is biased
below the gap is not understood, therefore all the measurements are done for Vi above
2A
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Parameter ~ Sample JJD1 ~ Sample JJD2

Ry 926 2 745
3B 0.340 pA 0.420 pA
Iy 0.358 A 0.437 pA
Cy 13 pF 12.5+0.5 pF
Wpo 1.5 GHz 1.65 GHz
Qo 10 12
Ry 30.8 kQ 22.9 kO
Iﬁin 11 nA 15nA
Cy 250 pF 230 pF
Coy 350 pF 345 pF
Cy 200 pF 190 pF
Cn 150 pF 140 pF
Cr 220 uF 220 puF
Ry 200 §2 215
Ry 500 515
R3 200 2 215
Ry 1.5 MQ 1.5 MQ

Table 4.1. Parameters of the two samples presented in this chapter. R; is the normal re-
sistance of the detector junction, while Ry is the resistance of the tunnel junction, IgZ
corresponds to the prediction of the critical current from the Ambegaokar-Baratoff predic-
tion [47] (see text for details). The critical current is obtained from switching experiments
described further. Plasma frequencies and quality factors were estimated from the others
parameters, based on a RCSJ model. The values of the capacitor were measured indepen-
dently only for Sample JJD2, while the values for Sample JJD1 are estimations from typical
results. The values of the resistances Ri, Re, and Rs differ between the two samples due to
a technological change.

4.3 Circuit characterization & measurement
techniques

The sample was mounted on a small printed circuit board thermally
anchored to the mixing chamber of a dilution fridge with a base temper-
ature of 20 mK. Connections lines were heavily attenuated and filtered
to reduce spurious noise. The description of the connections is given in
Chapter 8.

4.3.1 Junctions

Detector JJ

The I(V') characteristics of the detector junctions of Samples JJD 1 and
JJD 2 are shown in Fig. 4.10(a) and 4.10(b). Using the superconduct-
ing gap voltage A/e ~ 200 4V determined from the (V') characteristics
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and the normal resistance of the junction R;, one predicts the criti-
cal currents in Table 4.1 using the Ambegaokar-Baratoff relation from
Eq. (B.94) [47] (in this section, we considered in a good approximation
that the gap are the same in both electrodes, although they differ be-
cause of different thicknesses. See Appendix B.6 for more details). This
prediction is in good agreement with the values precisely deduced by the
switching measurements described further. On the I(V') characteristics,
two unexpected features are observed:

e Near 100 & 150 ¢V in Sample JJD1, and 100 ¢V in Sample JJD2,
the current is not zero. The observed current peaks are attributed to
inelastic Cooper pair tunneling mediated by resonances in the circuit
at the corresponding frequencies %, although it is difficult to at-
tribute these frequencies (25 & 35 GHz) to specific parts of the circuit
configuration.

o At V; ~ 400 iV, the I(V) characteristics is not vertical, but shows
a slight "back-bending". This effect is often attributed to a reduction
of the gap with heating [36]. Indeed, at that voltage, a dissipative
current starts to flow in the junction and creates a stationary popu-
lation of quasiparticles in the electrodes of the JJ which reduces the
superconducting gap. The higher the current, the smaller the gap,
thus producing a back-bending of the curve. This feature is discussed

in more details in Appendix A.
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Fig. 4.10. Left: I(V) characteristics of the detector of Sample JJD1. We attribute the
resonances near Vy = 100 ¢V and 150 pV to inelastic tunneling mediated by the modes of
the electromagnetic environment. The large dot gives the prediction for the critical current
I$*P using the Ambegaokarr-Baratoff relation. Right: T (V') characteristics of the JJ detector
of Sample JJD2, with similar remarks. The dashed line corresponds to the predicted load
line of the measurement.
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Current calibration The detector junction is neither perfectly current
biased, nor voltage biased (see Fig. 4.11). It is connected to a voltage
source through a heavily attenuated 50 €2 coaxial line and two resistors
Ry and R,, in series. R,, is a probe resistor across which the voltage is
measured, giving access to the current Ig flowing through the dete