Comparaisons de génomes avec gènes dupliqués : étude théorique et algorithmes

Comparative genomics with duplicated genes: theoretical study and algorithms

Angibaud Sébastien
sebastien.angibaud@univ-nantes.fr

Laboratoire d'Informatique de Nantes Atlantique,
UMR CNRS 6241, UFR de Sciences et Techniques de Nantes

October 7th 2009

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes
(2) Theoretical complexity results

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes
(2) Theoretical complexity results
(3) Algorithms
- Exact approach
- Heuristics and hybrid method

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes
(2) Theoretical complexity results
(3) Algorithms
- Exact approach
- Heuristics and hybrid method

4) MATCH\&WATCH application

- Protocol
- Visualization tool

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes
(2) Theoretical complexity results
(3) Algorithms
- Exact approach
- Heuristics and hybrid method

4) MATCH\&WATCH application

- Protocol
- Visualization tool
(5) Conclusion

Outline

(1) Genomes comparison

- Overview
- Genomes representation
- Measures between genomes

2 Theoretical complexity results
(3) Algorithms

- Exact approach
- Heuristics and hybrid method

MATCH\&WATCH application

- Protocol
- Visualization tool
(5) Conclusion

Genomes and genes

Genome:

- Composed of one or several chromosomes

Genomes and genes

Genome:

- Composed of one or several chromosomes

Genomes and genes

Genome:

- Composed of one or several chromosomes
- Sequence(s) of DNA
- Hereditary information

Genomes and genes

Genome:

- Composed of one or several chromosomes
- Sequence(s) of DNA
- Hereditary information

Gene:

- Sequence of DNA
- Coding one or severals proteins

- Gene orientation

Genomes and genes

Genome:

- Composed of one or several chromosomes
- Sequence(s) of DNA
- Hereditary information

Gene:

- Sequence of DNA
- Coding one or severals proteins
- Gene orientation

Comparing genomes

Why?

Comparing genomes

Why?

- Phylogenetic trees construction

Comparing genomes

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences

Comparing genomes

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences
- Help genome annotation

Comparing genomes

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences
- Help genome annotation

How?

- Genome modeled as a sequence of genes

Comparing two genomes: two different points of view

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
- inversion
- duplication
- Find a most parsimonious rearrangement scenario

Comparing two genomes : two different points of view

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
- inversion
- duplication
- Find a most parsimonious rearrangement scenario

Comparison based on the structure of genomes

- Compare the structure (genes order) of the two genomes
- Compute a (dis)similarity measure between genomes
- number of breakpoints/adjacencies
- number of common intervals
- number of conserved intervals
- translocation
-...

Comparing two genomes : two different points of view

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
- inversion
- duplication
- Find a most parsimonious rearrangement scenario

Comparison based on the structure of genomes

- Compare the structure (genes order) of the two genomes
- Compute a (dis)similarity measure between genomes
- number of breakpoints/adjacencies
- number of common intervals
- number of conserved intervals
- translocation
-...

Genomes representation

Representation and notations

(1) Unichromosomal genome: sequence of signed genes

Example

(1) $G_{0}=+1+2-3-7+4+5+7-8+10-9+4-6-4$

Genomes representation

Representation and notations

(1) Unichromosomal genome: sequence of signed genes
(2) Alphabet $\boldsymbol{\Sigma} \Leftrightarrow$ gene families

Example

(1) $G_{0}=+1+2-3-7+4+5+7-8+10-9+4-6-4$
(2) $\Sigma=\{1,2,3 \ldots 10\}$

Genomes representation

Representation and notations

(1) Unichromosomal genome: sequence of signed genes
(2) Alphabet $\boldsymbol{\Sigma} \Leftrightarrow$ gene families
(3) Let $\boldsymbol{G}_{0}[\boldsymbol{k}]$ be the $\boldsymbol{k}^{\boldsymbol{t h}}$ gene (signed integer) of \boldsymbol{G}_{0}

Example

(1) $G_{0}=+1+2-3-7+4+5+7-8+10-9+4-6-4$
(2) $\Sigma=\{1,2,3 \ldots 10\}$
(3) $G_{0}[4]=-7$

Genomes representation

Representation and notations

(1) Unichromosomal genome: sequence of signed genes
(2) Alphabet $\boldsymbol{\Sigma} \Leftrightarrow$ gene families
(3) Let $\boldsymbol{G}_{0}[\boldsymbol{k}]$ be the $\boldsymbol{k}^{\text {th }}$ gene (signed integer) of \boldsymbol{G}_{0}
(4) Let $\boldsymbol{\operatorname { c o c }}\left(\boldsymbol{G}_{0}\right)$ be the maximum number of genes in a gene family

Example

(1) $G_{0}=+1+2-3-7+4+5+7-8+10-9+4-6-4$
(2) $\Sigma=\{1,2,3 \ldots 10\}$
(3) $G_{0}[4]=-7$
(4) $\operatorname{occ}\left(G_{0}\right)=3$

Genomes representation

Representation and notations

(1) Unichromosomal genome: sequence of signed genes
(2) Alphabet $\boldsymbol{\Sigma} \Leftrightarrow$ gene families
(3) Let $\boldsymbol{G}_{0}[\boldsymbol{k}]$ be the $\boldsymbol{k}^{\text {th }}$ gene (signed integer) of \boldsymbol{G}_{0}
(4) Let $\boldsymbol{o c c}\left(G_{0}\right)$ be the maximum number of genes in a gene family
(5) Let $\eta_{G_{0}}$ be the number of genes in \boldsymbol{G}_{0}

Example

(1) $G_{0}=+1+2-3-7+4+5+7-8+10-9+4-6-4$
(2) $\Sigma=\{1,2,3 \ldots 10\}$
(3) $G_{0}[4]=-7$
(4) $\operatorname{occ}\left(G_{0}\right)=3$
(5) $\eta_{G_{0}}=13$

Measures between two genomes

- Input: Two genomes G_{0} and G_{1} with the same gene contents and without duplicates
- Output: A (dis)-similarity measure between \boldsymbol{G}_{0} and \boldsymbol{G}_{1}
- number of breakpoints/adjacencies [Watterson et al. 1982]
- number of common intervals [Uno and Yagiura, 2000]
- number of conserved intervals [Bergeron and Stoye, 2003]

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]
There exists an adjacency between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff $\left(G_{0}[p], G_{0}[p+1]\right)$ or $\left(-G_{0}[p+1],-G_{0}[p]\right)$ appears as a pair of consecutive genes in \boldsymbol{G}_{1}.

$$
\begin{aligned}
& G_{0}=+1+2+3+4+5 \\
& G_{1}=+3+4-5-2-1
\end{aligned}
$$

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]
There exists an adjacency between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff $\left(G_{0}[p], G_{0}[p+1]\right)$ or $\left(-G_{0}[p+1],-G_{0}[p]\right)$ appears as a pair of consecutive genes in G_{1}.

$$
\begin{aligned}
G_{0} & =\overbrace{+1+2}^{\text {Adjacency }}+3+4+5 \\
G_{1} & =-4-3-5+1+2
\end{aligned}
$$

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]
There exists an adjacency between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff $\left(G_{0}[p], G_{0}[p+1]\right)$ or $\left(-G_{0}[p+1],-G_{0}[p]\right)$ appears as a pair of consecutive genes in G_{1}.

$$
\begin{aligned}
& G_{0}=\overbrace{+1+2}^{\text {Adjacency }} \overbrace{+3+4}^{\text {Adjacency }}+5 \\
& G_{1}=-4-3-5+1+2
\end{aligned}
$$

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]
There exists a breakpoint between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff neither $\left(\boldsymbol{G}_{0}[\boldsymbol{p}], \boldsymbol{G}_{0}[\boldsymbol{p}+\mathbf{1}]\right)$ nor $\left(-\boldsymbol{G}_{0}[\boldsymbol{p}+\mathbf{1}],-\boldsymbol{G}_{0}[\boldsymbol{p}]\right)$ appears as a pair of consecutive genes in \boldsymbol{G}_{1}.

$$
\begin{array}{r}
G_{0}=\overbrace{+1+2}^{\text {Adjacency }} \nabla \overbrace{+3+4}^{\text {Adjacency }} \nabla+5 \\
G_{1}=-4-3-5+1+2
\end{array}
$$

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]
There exists a breakpoint between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff neither $\left(G_{0}[p], G_{0}[p+1]\right)$ nor $\left(-G_{0}[p+1],-G_{0}[p]\right)$ appears as a pair of consecutive genes in G_{1}.

$$
\begin{aligned}
& G_{0}=+0^{\nabla} \overbrace{+1+2}^{\text {Adjacency }} \nabla_{+3+4}^{\text {Adjacency }} \overbrace{+3}{ }^{\text {a }}+5^{\nabla}+6 \\
& G_{1}=+0-4-3-5+1+2+6
\end{aligned}
$$

Breakpoint and adjacency

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists a breakpoint between genes $G_{0}[p]$ and $G_{0}[p+1]$ iff neither $\left(G_{0}[p], G_{0}[p+1]\right)$ nor $\left(-G_{0}[p+1],-G_{0}[p]\right)$ appears as a pair of consecutive genes in \boldsymbol{G}_{1}.

$$
\begin{aligned}
& G_{0}=+0^{\nabla} \overbrace{+1+2}^{\text {Adjacency }} \nabla^{\text {}} \overbrace{+3+4}^{\text {Adjacency }} v+5^{\checkmark}+6 \\
& G_{1}=+0-4-3-5+1+2+6
\end{aligned}
$$

Two measures:

- Number of adjacencies: similarity
- Number of breakpoints: dissimilarity

Common interval

Definition: common interval [Uno and Yagiura, 2000]

- A substring \boldsymbol{s}_{0} of \boldsymbol{G}_{0} is a common interval of $\left(G_{0}, \boldsymbol{G}_{1}\right)$ if, in \boldsymbol{G}_{1}, there is a substring \boldsymbol{s}_{1} such that \boldsymbol{s}_{1} is a permutation of \boldsymbol{s}_{0} (without taking signs into account)

$$
G_{0}=+1+2+3+4+5 \quad G_{1}=+2-4+3+5+1
$$

Common interval

Definition: common interval [Uno and Yagiura, 2000]

- A substring \boldsymbol{s}_{0} of \boldsymbol{G}_{0} is a common interval of $\left(\boldsymbol{G}_{0}, \boldsymbol{G}_{1}\right)$ if, in \boldsymbol{G}_{1}, there is a substring $\boldsymbol{s}_{\mathbf{1}}$ such that $\boldsymbol{s}_{\mathbf{1}}$ is a permutation of $\boldsymbol{s}_{\mathbf{0}}$ (without taking signs into account)

$$
\begin{aligned}
& \qquad G_{0}=+1+2+3+4+5 \quad G_{1}=+2-4+3+5+1 \\
& \Rightarrow s_{0}=+3+4+5 s_{1}=-4+3+5 \\
& \text { Substring } s_{0} \text { is a common interval of }\left(G_{0}, G_{1}\right)
\end{aligned}
$$

Common interval

Definition: common interval [Uno and Yagiura, 2000]

- A substring \boldsymbol{s}_{0} of \boldsymbol{G}_{0} is a common interval of $\left(\boldsymbol{G}_{0}, \boldsymbol{G}_{1}\right)$ if, in \boldsymbol{G}_{1}, there is a substring $\boldsymbol{s}_{\mathbf{1}}$ such that $\boldsymbol{s}_{\mathbf{1}}$ is a permutation of $\boldsymbol{s}_{\mathbf{0}}$ (without taking signs into account)

$$
G_{0}=+1+2+3+4+5 \quad G_{1}=+2-4+3+5+1
$$

$\Rightarrow s_{0}=+3+4+5 \quad s_{1}=-4+3+5$
Substring \boldsymbol{s}_{0} is a common interval of $\left(\boldsymbol{G}_{\mathbf{0}}, \boldsymbol{G}_{\mathbf{1}}\right)$.

- Number of common intervals of $\left(G_{0}, G_{1}\right)$: Similarity measure between two genomes

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$
\begin{aligned}
& G_{0}=+0+1+2+3+4+5 \\
& G_{1}=-4-3-5+0-1+2
\end{aligned}
$$

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$
\begin{aligned}
& G_{0}=+0+1+2+3+4+5 \\
& G_{1}=-4-3-5+0-1+2
\end{aligned}
$$

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$
\begin{aligned}
& G_{0}=+0+1+2+3+4+5 \\
& G_{1}=-4-3-5+0-1+2
\end{aligned}
$$

Conserved interval

Definition: conserved interval
Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$
\begin{aligned}
& G_{0}=+0+1+2+3+4+5 \\
& G_{1}=-4-3-5+0-1+2
\end{aligned}
$$

- Number of conserved intervals of $\left(G_{0}, G_{1}\right)$: Similarity measure between two genomes

And with duplicates?

© Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to \mathcal{M}
(0) Compute the (dis)-similarity measure

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to $\boldsymbol{\mathcal { M }}$
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}
$G_{0}=+0+1-2-1-3+4$
$G_{1}=+0-1+2-1-3-1+4$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to $\boldsymbol{\mathcal { M }}$
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}

$$
\begin{aligned}
& G_{0}=+0+1-2-1-3+4 \\
& G_{1}=+0-1+2-1-3-1+4
\end{aligned}
$$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to $\boldsymbol{\mathcal { M }}$
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each
gene family in \mathcal{M}
$G_{0}^{E}=+0+1-2-3+4$
$G_{1}^{E}=+0+2-1-3+4$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to \mathcal{M}
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}
$G_{0}^{E}=+0^{\nabla}+1-2^{\nabla}-3+4$
$G_{1}^{E}=+0+2-1-3+4$
$\operatorname{Bkp}\left(\boldsymbol{G}_{0}^{E}, \boldsymbol{G}_{1}^{E}\right)=\mathbf{2}$

And with duplicates?

© Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to \mathcal{M}
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M} $G_{0}^{E}=+0^{\nabla}+1-2^{\nabla}-3+4$
$G_{1}^{E}=+0+2-1-3+4$
$\operatorname{Bkp}\left(\boldsymbol{G}_{0}^{E}, \boldsymbol{G}_{1}^{E}\right)=\mathbf{2}$
maximum matching model (M)
[Tang \& al, 03] a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{aligned}
& G_{0}=+0+1-2-1-3+4 \\
& G_{1}=+0-1+2-1-3-1+4
\end{aligned}
$$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to $\boldsymbol{\mathcal { M }}$
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}
$G_{0}^{E}=+0^{\nabla}+1-2^{\nabla}-3+4$
$G_{1}^{E}=+0+2-1-3+4$
$\operatorname{Bkp}\left(\boldsymbol{G}_{0}^{E}, \boldsymbol{G}_{1}^{E}\right)=\mathbf{2}$
maximum matching model (M)
[Tang \& al, 03] a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{aligned}
& G_{0}=+0+1-2-1-3+4 \\
& G_{1}=+0-1+2-1-3-1+4
\end{aligned}
$$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to \mathcal{M}
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}
$G_{0}^{E}=+0^{\nabla}+1-2^{\nabla}-3+4$
$G_{1}^{E}=+0+2-1-3+4$
$\operatorname{Bkp}\left(\boldsymbol{G}_{0}^{E}, \boldsymbol{G}_{1}^{E}\right)=\mathbf{2}$
maximum matching model (M)
[Tang \& al, 03] a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{aligned}
& G_{0}^{M}=+0+1^{\prime}-2-1^{\prime \prime}-3+4 \\
& G_{1}^{M}=+0-1^{\prime}+2-1^{\prime \prime}-3+4
\end{aligned}
$$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to \mathcal{M}
(3) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each gene family in \mathcal{M}
$G_{0}^{E}=+0^{\nabla}+1-2^{\nabla}-3+4$
$G_{1}^{E}=+0+2-1-3+4$
$\operatorname{Bkp}\left(\boldsymbol{G}_{0}^{E}, \boldsymbol{G}_{1}^{E}\right)=\mathbf{2}$
maximum matching model (M)
[Tang \& al, 03] a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{aligned}
& G_{0}^{M}=+0^{\nabla}+\mathbf{1}^{\prime \nabla}-2^{\nabla}-\mathbf{1}^{\prime \prime}-\mathbf{3}+\mathbf{4} \\
& G_{1}^{M}=+\mathbf{0}-\mathbf{1}^{\prime}+\mathbf{2}-\mathbf{1}^{\prime \prime}-\mathbf{3}+\mathbf{4} \\
& \operatorname{Bkp}\left(G_{0}^{M}, G_{1}^{M}\right)=\mathbf{3}
\end{aligned}
$$

And with duplicates?

(1) Choose a one-to-one correspondence \mathcal{M} of genes (a matching)
(2) Rename or remove genes according to $\boldsymbol{\mathcal { M }}$
(0) Compute the (dis)-similarity measure
exemplar model (E)
[Sankoff, 99]
one occurrence for each
gene family in \mathcal{M}
maximum matching model (M)
[Tang \& al, 03] a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

Intermediate model (I)

For each gene family, at least one gene is kept in \mathcal{M}

Several possible matchings?

maximum matching model (M)
[Tang \& al, 03]
a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{gathered}
G_{0}=+0+1-2-1-3+4 \\
G_{1}=+0-1+2-1-3-1+4
\end{gathered}
$$

Several possible matchings?

maximum matching model (M)
[Tang \& al, 03]
a maximum number of occurrences in $\boldsymbol{\mathcal { M }}$

$$
\begin{gathered}
G_{0}=+0+1-2-1-3+4 \\
G_{1}=+0-1+2-1-3-1+4
\end{gathered}
$$

Measure between genomes with duplicates

Problem

- Input:
- Two genomes G_{0} and G_{1}
- A model $\boldsymbol{X} \in\{\boldsymbol{E}, \boldsymbol{M}, \boldsymbol{I}\}$
- Output: Find a matching \mathcal{M} which satisfies the model \boldsymbol{X}, and which optimizes the measure between G_{0}^{X} and G_{1}^{X}

Measure between genomes with duplicates

Problem

- Input:
- Two genomes G_{0} and G_{1}
- A model $\boldsymbol{X} \in\{E, M, I\}$
- Output: Find a matching \mathcal{M} which satisfies the model \boldsymbol{X}, and which optimizes the measure between G_{0}^{X} and G_{1}^{X}

measure	problem
common interval	$I C O M_{X}$
conserved interval	$I C O N S_{X}$
breakpoint	$B D_{X}$
adjacency	$A D J_{X}$

Measure between genomes with duplicates

Problem

- Input:
- Two genomes G_{0} and G_{1}
- A model $\boldsymbol{X} \in\{\boldsymbol{E}, \boldsymbol{M}, \boldsymbol{I}\}$
- Question: Are there G_{0}^{X} and G_{1}^{X} which satisfy the model \boldsymbol{X}, and which imply no breakpoint?

measure	problem	
common interval	$I C O M_{X}$	
conserved interval	$I C O N S_{X}$	
breakpoint	$B D_{X}$	$Z B D_{X}$
adjacency	$A D J_{X}$	

Outline

(1) Genomes comparison

(2) Theoretical complexity results
(3) Algorithms

4 MATCH\&WATCH application
(5) Conclusion

What do we know?

	exemplar model	maximum matching model	intermediate model
ICOM			
I_{X}	NP-Complete [Chauve et al.] (instance (1, 2))		

instance $(a, b) \Leftrightarrow \boldsymbol{o c c}\left(G_{0}\right)=a$ and $\operatorname{occ}\left(G_{1}\right)=b$

* only one family contains several occurrences

Definition

α-approximation and PTAS

- Let \boldsymbol{P} be an optimization problem
- Let \boldsymbol{I} be an instance of \boldsymbol{P}
- A polynomial algorithm \boldsymbol{A} is an $\boldsymbol{\alpha}$-approximation iff
- If P is a problem of minimization, then $\boldsymbol{A}(I) \leqslant \alpha \cdot$ optimal (I)
- If P is a problem of maximization, then $\boldsymbol{A}(I) \geqslant \frac{1}{\alpha} \cdot \operatorname{optimal}(I)$

Definition

α-approximation and PTAS

- Let \boldsymbol{P} be an optimization problem
- Let \boldsymbol{I} be an instance of \boldsymbol{P}
- A polynomial algorithm \boldsymbol{A} is an $\boldsymbol{\alpha}$-approximation iff
- If P is a problem of minimization, then $\boldsymbol{A}(I) \leqslant \alpha \cdot$ optimal (I)
- If \boldsymbol{P} is a problem of maximization, then $\boldsymbol{A}(\boldsymbol{I}) \geqslant \frac{1}{\alpha} \cdot \operatorname{optimal}(\boldsymbol{I})$
- A polynomial algorithm \boldsymbol{B} is a Polynomial-Time Approximation Scheme (PTAS) iff $\forall \epsilon>0$
- If P is a problem of minimization, then $B(I) \leqslant(1+\epsilon) \cdot$ optimal (I)
- If P is a problem of maximization, then $B(I) \geqslant \frac{1}{1+\epsilon}$. optimal (I)

Definition

α-approximation and PTAS

- Let \boldsymbol{P} be an optimization problem
- Let \boldsymbol{I} be an instance of \boldsymbol{P}
- A polynomial algorithm \boldsymbol{A} is an $\boldsymbol{\alpha}$-approximation iff
- If P is a problem of minimization, then $\boldsymbol{A}(I) \leqslant \alpha \cdot$ optimal (I)
- If P is a problem of maximization, then $A(I) \geqslant \frac{1}{\alpha} \cdot \operatorname{optimal}(I)$
- A polynomial algorithm \boldsymbol{B} is a Polynomial-Time Approximation Scheme (PTAS) iff $\forall \epsilon>0$
- If P is a problem of minimization, then $B(I) \leqslant(1+\epsilon) \cdot$ optimal($I)$
- If P is a problem of maximization, then $B(I) \geqslant \frac{1}{1+\epsilon}$. optimal (I)

APX-Hard Class

- If a problem \boldsymbol{P} is APX-Hard then \boldsymbol{P} does not admit a PTAS

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \hline \operatorname{ICOM}_{X} \\ & \operatorname{ICONS}_{x} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1, 2)) APX-Hard (instance (1, 2)) *		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance (1, 2) NP-Complete [Blin et al.] instance $(1,2)$)	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(2, k)$) * [Blin et al.] (instance $(\mathbf{2}, \mathbf{2})$)	polynomial *	$\begin{aligned} & Z B D_{l} \equiv \\ & Z B D_{E}{ }^{*} \end{aligned}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}{ }^{*}$	$A D J_{M} \simeq B D_{M}{ }^{*}$	$A D J_{l} \neq B D_{l}{ }^{*}$

* S. Angibaud, G. Fertin, I. Rusu, A. Thévenin et et S. Vialette On the Approximability of Comparing Genomes with Duplicates Journal of Graph Algorithms and Applications, Vol. 13(1), pages 19-53, 2009

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \operatorname{ICOM}_{X} \\ & \operatorname{ICONS}_{X} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1,2)) APX-Hard (instance (1,2))		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance $(1,2)$ NP-Complete [Blin et al.] instance (1, 2))	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(\mathbf{2 , k} \boldsymbol{k})$) [Blin et al.] (instance $(\mathbf{2 , 2})$)	polynomial	$\begin{gathered} Z B D_{I} \equiv \\ Z B D_{E} \end{gathered}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}$	$A D J_{M} \simeq B D_{M}$	$A D J_{1} \neq B D_{1}$

$\boldsymbol{A} \simeq \boldsymbol{B}:$ An optimal solution for \boldsymbol{A} is an optimal solution for \boldsymbol{B}
$\boldsymbol{A} \neq \boldsymbol{B}$: An optimal solution for \boldsymbol{A} is not necessarily an optimal solution for \boldsymbol{B}

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \operatorname{ICOM}_{X} \\ & \operatorname{ICONS}_{X} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1,2)) APX-Hard (instance (1,2))		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance $(1,2)$ NP-Complete [Blin et al.] instance (1, 2))	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(\mathbf{2 , k} \boldsymbol{k})$) [Blin et al.] (instance $(\mathbf{2 , 2})$)	polynomial	$\begin{gathered} Z B D_{I} \equiv \\ Z B D_{E} \end{gathered}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}$	$A D J_{M} \simeq B D_{M}$	$A D J_{1} \neq B D_{1}$

$\boldsymbol{A} \simeq \boldsymbol{B}:$ An optimal solution for \boldsymbol{A} is an optimal solution for \boldsymbol{B} $\boldsymbol{A} \neq \boldsymbol{B}$: An optimal solution for \boldsymbol{A} is not necessarily an optimal solution for B

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \operatorname{ICOM}_{X} \\ & \operatorname{ICONS}_{X} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1,2)) APX-Hard (instance (1,2))		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance $(1,2)$ NP-Complete [Blin et al.] instance (1, 2))	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(\mathbf{2 , k} \boldsymbol{k})$) [Blin et al.] (instance (2, 2))	polynomial	$\begin{gathered} Z B D_{I} \equiv \\ Z B D_{E} \end{gathered}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}$	$A D J_{M} \simeq B D_{M}$	$A D J_{1} \neq B D_{1}$

\Rightarrow Bad news : ICOM, ICONS_{X} and $B D_{X}$ do not admit a polynomial-time approximation scheme (PTAS)

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \hline \operatorname{ICOM}_{x} \\ & \operatorname{ICONS}_{x} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1,2)) APX-Hard (instance (1,2))		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance $(1,2)$ NP-Complete [Blin et al.] (instance (1, 2))	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(\mathbf{2}, \boldsymbol{k})$) [Blin et al.] (instance (2, 2))	polynomial	$\begin{gathered} Z B D_{I} \equiv \\ Z B D_{E} \end{gathered}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}$	$A D J_{M} \simeq B D_{M}$	$A D J_{1} \neq B D_{1}$

\Rightarrow Bad news: $B D_{E}$ and $B D_{l}$ do not admit any α-approximation, unless $\mathbf{P}=\mathbf{N P}$

New results

	exemplar model	maximum matching model	intermediate model
$\begin{aligned} & \hline \operatorname{ICOM}_{x} \\ & \operatorname{ICONS}_{x} \end{aligned}$	NP-Complete [Chauve et al.] (instance (1, 2)) APX-Hard (instance (1, 2))		
$B D_{X}$	NP-Complete APX-Hard	yant] (instance $(1,2)$ NP-Complete [Blin et al.] (instance (1, 2))	
$Z B D_{X}$	NP-Complete [Chen et al.] (instance (3, 3)) (instance $(\mathbf{2}, \boldsymbol{k})$) [Blin et al.] (instance (2, 2))	polynomial	$\begin{gathered} Z B D_{I} \equiv \\ Z B D_{E} \end{gathered}$
$A D J_{X}$	$A D J_{E} \simeq B D_{E}$	$A D J_{M} \simeq B D_{M}$	$A D J_{1} \neq B D_{1}$

\Rightarrow Good news : $B D_{M}$ could admit an α-approximation

Outline

(1) Genomes comparison

(2) Theoretical complexity results

(3) Algorithms

- Exact approach
- Pseudo boolean problem
- Pseudo-boolean transformation for ICOM
- Experimental results
- Heuristics and hybrid method
- IILCS x
- Hybrid method
- Experimental results

Exact algorithm

Problem

- Input:
- Two genomes G_{0} and G_{1}
- A model $\boldsymbol{X} \in\{\boldsymbol{E}, \boldsymbol{M}, \boldsymbol{I}\}$
- Output: Find a matching \mathcal{M} which satisfies the model \boldsymbol{X}, and which optimizes the measure between G_{0}^{X} and G_{1}^{X}

Idea: transformation into a pseudo boolean linear problem

Pseudo-boolean linear problem

Definition

- Variables: domain $=\{0,1\}$
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in\{0,1\}, y \in\{0,1\}, z \in\{0,1\}$
- Constraints:
- $x+2 \cdot y \geqslant 2$
- $z+y \leqslant 1$
- Objective function: maximize $\boldsymbol{x}+2 \cdot \boldsymbol{y}-\boldsymbol{z}$

Pseudo-boolean linear problem

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in\{0,1\}, y \in\{0,1\}, z \in\{0,1\}$
- Constraints:
- $x+2 \cdot y \geqslant 2$
- $z+y \leqslant 1$
- Objective function: maximize $\boldsymbol{x}+2 \cdot \boldsymbol{y}-\boldsymbol{z}$

Pseudo-boolean linear problem

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in\{0,1\}, y \in\{0,1\}, z \in\{0,1\}$
- Constraints:
- $x+2 \cdot y \geqslant 2$
- $z+y \leqslant 1$
- Objective function: maximize $\boldsymbol{x}+2 \cdot \boldsymbol{y}-\boldsymbol{z}$

Pseudo-boolean linear problem

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in\{0,1\}, y \in\{0,1\}, z \in\{0,1\}$
- Constraints:
- $x+2 \cdot y \geqslant 2$
- $z+y \leqslant 1$
- Objective function: maximize $\boldsymbol{x}+2 \cdot \boldsymbol{y}-\boldsymbol{z}$
\Rightarrow Powerful solvers for this type of problem

Transformation for ICOME: variables

- Variables \boldsymbol{x} and \boldsymbol{I} :

Transformation for ICOME: variables

- Variables \boldsymbol{x} and I :

x_{b}^{a} true \Leftrightarrow gene $G_{0}[a]$ and $G_{1}[b]$ are matched

Transformation for $I C O M_{E}$: variables

- Variables \boldsymbol{x} and \boldsymbol{I} :

$\boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{n}}$ true $\Leftrightarrow[\boldsymbol{k}, \boldsymbol{I}]$ in \boldsymbol{G}_{0} is a common interval of $\left(\boldsymbol{G}_{0}, \boldsymbol{G}_{1}\right)$, and [$\boldsymbol{m}, \boldsymbol{n}$] in \boldsymbol{G}_{1} is a permutation of $[\boldsymbol{k}, \boldsymbol{l}]$

Transformation for ICOME: constraints

Exemplar model:

for each genome, only one occurrence of each gene family
$\mathrm{C} 1: \forall \boldsymbol{f} \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \quad \sum_{\substack{1 \leqslant a \leqslant \eta \mathcal{G}_{0} \\ G_{0}[a]=f}} \sum_{\substack{1 \leqslant b \leqslant \eta \mathcal{G}_{1} \\ G_{1}[b]=f}} \boldsymbol{x}_{b}^{a}=\mathbf{1}$

Transformation for $I C O M_{E}$: constraints

Validity of variables $\boldsymbol{I}_{\boldsymbol{k}, \mathbf{I}, \boldsymbol{m}, \boldsymbol{n}}$

$I_{k, \ell, m, n}+x_{2}^{3} \leqslant 1$

Transformation for ICOME

Objective function:

$$
\text { Maximize } \sum_{\boldsymbol{k}, l, \boldsymbol{m}, \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{k}, l, \boldsymbol{m}, \boldsymbol{n}}
$$

Transformation for ICOME

Variables:

$$
\begin{aligned}
& \mathcal{I}=\left\{l_{k, l, m, n}: 1 \leqslant k \leqslant \ell \leqslant \eta_{G_{0}} \wedge 1 \leqslant m \leqslant n \leqslant \eta_{G_{1}}\right\} \\
& \mathcal{X}=\left\{x_{b}^{d}: 1 \leqslant a \leqslant \eta_{G_{0}} \wedge 1 \leqslant b \leqslant \eta_{G_{1}} \wedge G_{0}[a]=G_{1}[b]\right\}
\end{aligned}
$$

Constraints:

$$
\begin{aligned}
& \text { (c.01) } \forall \boldsymbol{f} \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \sum_{1 \leqslant a \leqslant \eta_{G_{0}}} \sum_{1 \leqslant b \leqslant \eta_{G_{1}}} \boldsymbol{x}_{b}^{a}=\mathbf{1} \\
& G_{0}[a]=f \quad G_{1}[b]=f \\
& \text { (c.02) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall 1 \leqslant r<m, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (с.03) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall n<r \leqslant \eta_{G_{1}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.04) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall 1 \leqslant p<k, \quad G_{0}[p]=G_{1}[r], \quad I_{k}, l_{, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.05) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall \ell<p \leqslant \eta_{G_{0}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.06) } \forall I_{k, l, m, n} \in \mathcal{I}, \quad 4 I_{k, l, m, n}-\sum_{m \leqslant r \leqslant n} x_{r}^{k}-\sum_{m \leqslant s \leqslant n} x_{s}^{\ell}-\sum_{k \leqslant p \leqslant \ell} x_{m}^{p}-\sum_{k \leqslant q \leqslant \ell} x_{n}^{q} \leqslant 0 \\
& G_{0}[k]=G_{1}[r] \quad G_{0}[\ell]=G_{1}[s] \quad G_{0}[p]=G_{1}[m] \quad G_{0}[q]=G_{1}[n]
\end{aligned}
$$

Objective function:
Maximize $\sum_{\boldsymbol{k}, l, m, n} \boldsymbol{I}_{\boldsymbol{k}, l, m, n}$

Transformation for ICOME

Variables:

$$
\begin{aligned}
& \mathcal{I}=\left\{l_{k, l, m, n}: 1 \leqslant k \leqslant \ell \leqslant \eta_{G_{0}} \wedge 1 \leqslant m \leqslant n \leqslant \eta_{G_{1}}\right\} \\
& \mathcal{X}=\left\{x_{b}^{d}: 1 \leqslant a \leqslant \eta_{G_{0}} \wedge 1 \leqslant b \leqslant \eta_{G_{1}} \wedge G_{0}[a]=G_{1}[b]\right\}
\end{aligned}
$$

Constraints:

$$
\begin{aligned}
& \text { (c.01) } \forall f \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \sum_{1 \leqslant a \leqslant \eta_{G_{0}}} \sum_{1 \leqslant b \leqslant \eta_{G_{1}}} x_{b}^{a}=1 \\
& G_{0}[a]=f \quad G_{1}[b]=f \\
& \text { (c.02) } \forall \boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}, n} \in \mathcal{I}, \forall \boldsymbol{k}<p<\ell, \forall 1 \leqslant r<m, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (с.03) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall n<r \leqslant \eta_{G_{1}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.04) } \forall I_{\boldsymbol{k}, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall 1 \leqslant p<k, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.05) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall \ell<p \leqslant \eta_{G_{0}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.06) } \forall I_{k, l, m, n} \in \mathcal{I}, \quad 4 I_{k, l, m, n}-\sum_{m \leqslant r \leqslant n} x_{r}^{k}-\sum_{m \leqslant s \leqslant n} x_{s}^{\ell}-\sum_{k \leqslant p \leqslant \ell} x_{m}^{p}-\sum_{k \leqslant q \leqslant \ell} x_{n}^{q} \leqslant 0 \\
& G_{0}[k]=G_{1}[r] \quad G_{0}[\ell]=G_{1}[s] \quad G_{0}[p]=G_{1}[m] \quad G_{0}[q]=G_{1}[n]
\end{aligned}
$$

Objective function:
Maximize $\sum_{\boldsymbol{k}, l, m, n} \boldsymbol{I}_{\boldsymbol{k}, l, m, n}$

Transformation for ICOME

Variables:

$$
\begin{aligned}
& \mathcal{I}=\left\{l_{k, l, m, n}: 1 \leqslant k \leqslant \ell \leqslant \eta_{G_{0}} \wedge 1 \leqslant m \leqslant n \leqslant \eta_{G_{1}}\right\} \\
& \mathcal{X}=\left\{x_{b}^{d}: 1 \leqslant a \leqslant \eta_{G_{0}} \wedge 1 \leqslant b \leqslant \eta_{G_{1}} \wedge G_{0}[a]=G_{1}[b]\right\}
\end{aligned}
$$

Constraints:

(c.01) $\forall \boldsymbol{f} \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \quad \sum_{1 \leqslant a \leqslant \eta_{G_{0}}} \sum_{1 \leqslant b \leqslant \eta_{G_{1}}} \boldsymbol{x}_{b}^{\boldsymbol{a}}=\mathbf{1}$
$G_{0}[a]=f \quad G_{1}[b]=f$
(c.02) $\forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall 1 \leqslant r<m, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1$
(с.03) $\forall \boldsymbol{I}_{\boldsymbol{k}, l, m, n} \in \mathcal{I}, \forall \boldsymbol{k}<\boldsymbol{p}<\ell, \forall \boldsymbol{n}<\boldsymbol{r} \leqslant \eta_{G_{1}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1$
(c.04) $\forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall 1 \leqslant p<k, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1$
(c.05) $\forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall \ell<p \leqslant \eta_{G_{0}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1$
(c.06) $\forall I_{k, l, m, n} \in \mathcal{I}, \quad 4 I_{k, l, m, n}-\sum_{m \leqslant r \leqslant n} x_{r}^{k}-\sum_{m \leqslant s \leqslant n} x_{s}^{\ell}-\sum_{k \leqslant p \leqslant \ell} x_{m}^{p}-\sum_{k \leqslant q \leqslant \ell} x_{n}^{q} \leqslant 0$
$G_{0}[k]=G_{1}[r] \quad G_{0}[\ell]=G_{1}[s] \quad G_{0}[p]=G_{1}[m] \quad G_{0}[q]=G_{1}[n]$

Objective function:
Maximize $\sum_{\boldsymbol{k}, l, m, n} \boldsymbol{I}_{\boldsymbol{k}, l, m, n}$

Transformation for ICOME

Variables:

$$
\begin{aligned}
& \mathcal{I}=\left\{l_{k, l, m, n}: 1 \leqslant k \leqslant \ell \leqslant \eta_{G_{0}} \wedge 1 \leqslant m \leqslant n \leqslant \eta_{G_{1}}\right\} \\
& \mathcal{X}=\left\{x_{b}^{d}: 1 \leqslant a \leqslant \eta_{G_{0}} \wedge 1 \leqslant b \leqslant \eta_{G_{1}} \wedge G_{0}[a]=G_{1}[b]\right\}
\end{aligned}
$$

Constraints:

$$
\begin{aligned}
& \text { (c.01) } \forall \boldsymbol{f} \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \sum_{1 \leqslant a \leqslant \eta_{G_{0}}} \sum_{1 \leqslant b \leqslant \eta_{G_{1}}} \boldsymbol{x}_{b}^{a}=\mathbf{1} \\
& G_{0}[a]=f \quad G_{1}[b]=f \\
& \text { (c.02) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall 1 \leqslant r<m, \quad G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (с.03) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall k<p<\ell, \forall n<r \leqslant \eta_{G_{1}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.04) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall 1 \leqslant p<k, \quad G_{0}[p]=G_{1}[r], \quad I_{k}, l_{, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.05) } \forall I_{k, l, m, n} \in \mathcal{I}, \forall m<r<n, \forall \ell<p \leqslant \eta_{G_{0}}, G_{0}[p]=G_{1}[r], \quad I_{k, l, m, n}+x_{r}^{p} \leqslant 1 \\
& \text { (c.06) } \forall I_{k, l, m, n} \in \mathcal{I}, \quad 4 I_{k, l, m, n}-\sum_{m \leqslant r \leqslant n} x_{r}^{k}-\sum_{m \leqslant s \leqslant n} x_{s}^{\ell}-\sum_{k \leqslant p \leqslant \ell} x_{m}^{p}-\sum_{k \leqslant q \leqslant \ell} x_{n}^{q} \leqslant 0 \\
& G_{0}[k]=G_{1}[r] \quad G_{0}[\ell]=G_{1}[s] \quad G_{0}[p]=G_{1}[m] \quad G_{0}[q]=G_{1}[n]
\end{aligned}
$$

Objective function:
Maximize $\sum_{k, l, m, n} I_{k, l, m, n}$

Pseudo boolean transformation

Other problems?

- other models: modify constraints C1
- conserved intervals: restriction on variables $\boldsymbol{I}_{\boldsymbol{k}, \ell, m, \boldsymbol{n}}$
- breakpoint and adjacency: new variables and constraints

- ICOM ${ }_{X}$ and ICONS $_{X}$

S. Angibaud, G. Fertin, I. Rusu et S. Vialette.

A pseudo-boolean general framework for computing rearrangement distances between genomes with duplicates Journal of Computational Biology, Vol. 14(4), pages 379-393. 2007

- $B D_{X}$ and $A D J_{X}$
S. Angibaud, G. Fertin, I. Rusu, A. Thévenin et S. Vialette.

Efficient Tools for Computing the Number of Breakpoints and the Number of
Adjacencies between two Genomes with Duplicate Genes Journal of Computational Biology, Vol. 15(8), pages 1093-1115. 2008

Experimental results

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]

Name	Genbank identifier	size
Buchnera aphidicola APS	NC_002528	564
Escherichia coli K12	NC_000913	4183
Haemophilus influenzae Rd	NC_000907	1709
Pseudomonas aeruginosa PA01	NC_002516	5540
Pasteurella multocida Pm70	NC_002663	2015
Salmonella typhimurium LT2	NC_003197	4203
Wigglesworthia glossinidia brevipalpis	NC_004344	653
Xanthomonas axonopodis pv. citri 306	NC_003919	4192
Xanthomonas campestris	NC_0 03902	4029
Xylella fastidiosa 9a5c	NC_002488	2680
Yersinia pestis CO_92	NC_003143	3599
Yersinia pestis KIM5 P12	NC_004088	3879

Experimental results

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
$A D J_{X}$	$61 / 66$	$66 / 66$	$63 / 66$
$I C O M_{X}$	$21 / 66$	$40 / 66$	$21 / 66$

Experimental results

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
$A D J_{X}$	$61 / 66$	$66 / 66$	$63 / 66$
$I C O M_{X}$	$21 / 66$	$40 / 66$	$21 / 66$

\Rightarrow Efficient approach for $A D J_{X}$

Experimental results

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
$A D J_{X}$	$61 / 66$	$66 / 66$	$63 / 66$
$I C O M_{X}$	$21 / 66$	$40 / 66$	$21 / 66$

\Rightarrow Efficient approach for $A D J_{X}$
\Rightarrow Limit is attained for ICOMX
\Rightarrow Heuristics

Outline

(1) Genomes comparison

(2) Theoretical complexity results

(3) Algorithms

- Exact approach
- Pseudo boolean problem
- Pseudo-boolean transformation for $/ C O M_{E}$
- Experimental results
- Heuristics and hybrid method
- IILCS x
- Hybrid method
- Experimental results

4 MATCH\&WATCH application

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring \boldsymbol{S}

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
+6-7+4+5+1+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
+6-7+4+5+1+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
+6-7+4+5+1+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
+6-7+4+5+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(- Remove genes that cannot be matched
(1) Iterate the process until saturation

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
+6-7+4+5+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of S accordingly
(3) Remove genes that cannot be matched
(4) Iterate the process until saturation

Example

$$
\begin{array}{r}
+1+2+3+4+5+6+7 \\
+6-7+4+5+6-3-2-1
\end{array}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of S accordingly
(3) Remove genes that cannot be matched
(4) Iterate the process until saturation

Example

$$
\begin{aligned}
& +1+2+3+4+5+6+7 \\
& +6-7+4+5+6-3-2-1
\end{aligned}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of S accordingly
(3) Remove genes that cannot be matched
(4) Iterate the process until saturation

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
-7+4+5+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of S accordingly
(3) Remove genes that cannot be matched
(4) Iterate the process until saturation

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
-7+4+5+6-3-2-1
\end{gathered}
$$

IILCS $_{M}$ heuristic

- Based on ILCS $_{M}$ heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS $_{M}$ heuristic

(1) Compute the Longest Common Substring S
(2) Match all the genes of S accordingly
(3) Remove genes that cannot be matched
(4) Iterate the process until saturation
(5) Compute the measure

Example

$$
\begin{gathered}
+1+2+3+4+5+6+7 \\
-7+4+5+6-3-2-1
\end{gathered}
$$

Hybrid method

Algorithm $\mathrm{HYB}_{\boldsymbol{X}}(\mathrm{k})$

- Idea: Associate exact method and IILCS X heuristic
- Parameter \boldsymbol{k} : Bound on LCS size
(1) Compute an LCS S of $\left(G_{0}, G_{1}\right)$
(2) If $|\boldsymbol{S}| \geqslant \boldsymbol{k}$

Then
Match all the genes of \boldsymbol{S}
Remove genes that cannot be matched
Return to ©
Else Apply the exact method: transformation into a pseudo-boolean linear problem

Experimental results

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

EXACT	model		
	Exemplar	maximum matching	intermediate
$A D J_{X}$	$61 / 66$	$66 / 66$	$63 / 66$
$I C O M_{X}$	$21 / 66$	$40 / 66$	$21 / 66$

Experimental results: $I C O M_{M}$

Experimental results: $A D J_{M}$

Outline

(1) Genomes comparison

(2) Theoretical complexity results
(3) Algorithms

4 MATCH\&WATCH application

- Protocol
- Visualization tool
(5) Conclusion

Goal

Problem

- Input: two circular genomes G_{1} and G_{2}
- Output: List of common intervals between \boldsymbol{G}_{1} and \boldsymbol{G}_{2}

Goal

- Compute common intervals
- Provide a tool to visualize and analyze results
S. Angibaud, D. Éveillard, G. Fertin et I. Rusu

Comparing Bacterial Genomes by Searching Their Common Intervals In Proc. 1st International Conference on Bioinformatics and Computational Biology LNBI Vol. 5462, pages 102-113. 2009

Protocol

Protocol

Homologies computation

Inparanoid [Storm et al. 2001]

- Proposed in 2001 by Storm, Remm and Sonnhammer
- Compute clusters of homologous genes

Step 4: choose a matching

- Exact method: Pseudo boolean transformation
- IILCS x heuristic
- Hybrid method

Step 5: Matching application

Step 6: common intervals computation

Seven steps

Outline

(1) Genomes comparison

(2) Theoretical complexity results
(3) Algorithms
(4) MATCH\&WATCH application
(5) Conclusion

Contributions

- Better knowledge of problems
- APX-Hardness of $B D_{X}, I C O M_{X}$ and $I C O N S_{X}$
- NP-Completeness of $Z B D_{E}$ and $Z B D_{I}$
- Polynomiality of $Z B D_{M}$

Contributions

- Better knowledge of problems
- APX-Hardness of $B D_{X}, I C O M_{X}$ and $I C O N S_{X}$
- NP-Completeness of $Z B D_{E}$ and $Z B D_{I}$
- Polynomiality of $Z B D_{M}$
- Three new algorithms
- An exact approach based on a transformation into a pseudo-boolean problem
- Efficient approach for $B D_{X}$ and $A D J_{X}$
- Limited for ICOMX

Contributions

- Better knowledge of problems
- APX-Hardness of $B D_{X}, I C O M_{X}$ and $I C O N S_{X}$
- NP-Completeness of $Z B D_{E}$ and $Z B D_{I}$
- Polynomiality of $Z B D_{M}$
- Three new algorithms
- An exact approach based on a transformation into a pseudo-boolean problem
- Efficient approach for $B D_{X}$ and $A D J_{X}$
- Limited for ICOMX
- IILCS x heuristic and Hybrid method
- Promising results on a real dataset for each problem

Perspectives

- Work on MATCH\&WATCH
- First experimentation on six chromosomes of γ-Proteobacteria
- Analyze in details the common intervals obtained
- Add functionalities according to biologists

Perspectives

- Work on MATCH\&WATCH
- First experimentation on six chromosomes of γ-Proteobacteria
- Analyze in details the common intervals obtained
- Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison

Perspectives

- Work on MATCH\&WATCH
- First experimentation on six chromosomes of γ-Proteobacteria
- Analyze in details the common intervals obtained
- Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison
- New algorithms
- α-approximation for $B D_{E}$ and $B D_{\text {, }}$ when $\operatorname{occ}\left(G_{0}\right)=1$?
- α-approximation or PTAS for ICOM x on balanced genomes?

Perspectives

- Work on MATCH\&WATCH
- First experimentation on six chromosomes of γ-Proteobacteria
- Analyze in details the common intervals obtained
- Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison
- New algorithms
- α-approximation for $B D_{E}$ and $B D_{\text {, }}$ when $\operatorname{occ}\left(G_{0}\right)=1$?
- α-approximation or PTAS for ICOM x on balanced genomes?
- Partially ordered genomes

Acknowledgement

- Directors
- Irena Rusu
- Guillaume Fertin
- Co-authors
- Damien Éveillard (LINA, Université de Nantes)
- Annelyse Thévenin (LRI, Université Paris-Sud)
- Stéphane Vialette (IGM, Université Paris-Est Marne-la-Vallée)

Pictures

- http://www.mun.ca/biology/scarr/FISH_chromosomes_300dpi.jpg
- http://agaudi.files.wordpress.com/2008/09/dna_overview_es.png
- http://joachimj.club.fr/imagesmada2004bis/PlanchePhylogeniedesprimates.jpg
- http://http://fr.wikipedia.org/wiki/Gene
- http://www.g-language.org/g3/

Acknowledgement

- Directors
- Irena Rusu

Thank you

- Guillaume Fertin

Merci

- Co-authors
- Damien Éveillard (LINA, Université de Nantes)
- Annelyse Thévenin (LRI, Université Paris-Sud)
- Stéphane Vialette (IGM, Université Paris-Est Marne-la-Vallée)

Pictures

- http://www.mun.ca/biology/scarr/FISH_chromosomes_300dpi.jpg
- http://agaudi.files.wordpress.com/2008/09/dna_overview_es.png
- http://joachimj.club.fr/imagesmada2004bis/PlanchePhylogeniedesprimates.jpg
- http://http://fr.wikipedia.org/wiki/Gene
- http://www.g-language.org/g3/

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems
- ILCS $_{x}$ and IILCS X_{X}
- Visualization tool
- Common intervals filtering
- First experimental results

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems
- ILCS x and IILCS x
- Visualization tool
- Common intervals filtering
- First experimental results

Transformation for $I C O M_{E}$: objective function

Objective:

$$
\operatorname{maximize} \sum_{k, I, m, n} I_{k, I, m, n}
$$

Transformation for $I C O M_{E}$: objective function

Objective:

$$
\operatorname{maximize} \sum_{\boldsymbol{k}, l, m, \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{k}, l, m, \boldsymbol{n}}
$$

Improvements:

- Add rules to decrease the size of the instance

If all orange genes are located between the red and green one

We must have at least one orange gene to validate $\boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{I}, \boldsymbol{m}, \boldsymbol{n}}$

Transformation for $I C O M_{E}$: objective function

Objective:

$$
\operatorname{maximize} \sum_{\boldsymbol{k}, l, m, \boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{k}, l, \boldsymbol{m}, \boldsymbol{n}}
$$

Improvements:

- Add rules to decrease the size of the instance

Else, we do not generate variable $\boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{n}}$

Other problems ?

Other models

- C1: (Exemplar model)

$$
\forall f \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \sum_{\substack{1 \leqslant a \leqslant \eta G_{0} \\ G_{0}[a] j f}} \sum_{\substack{\left.1 \leqslant b \leqslant \eta G_{1} \\ G_{1}(b]\right)=f}} x_{b}^{a}=\mathbf{1}
$$

- C1': (Maximal matching model)

$$
\forall f \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \sum_{\substack{1 \leqslant a \leqslant \eta_{G_{0}} \\ G_{0}(a)=f}} \sum_{\substack{1 \leqslant b \leqslant \eta_{G_{1}} \\ G_{1}[b]=f}} x_{b}^{a}=\min \left\{o c c\left(f, G_{0}\right), o c c\left(f, G_{1}\right)\right\}
$$

- C1": (Intermediate matching model)

$$
\forall \boldsymbol{f} \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, \quad \sum_{\substack{1 \leqslant a \leqslant \boldsymbol{q}_{G_{0}} \\ G_{0}[a]=f}} \sum_{\substack{1 \leqslant b \leqslant \eta \mathcal{G}_{1} \\ G_{1}[b]=f}} \boldsymbol{x}_{b}^{a} \geqslant 1
$$

Other models

- $\forall a=1,2, \ldots, \eta_{G_{0}}$,

$$
\sum_{\substack{1 \leqslant b \leqslant \eta_{G_{1}} \\ G_{0}[a]=G_{1}[b]}} x_{b}^{a} \leqslant 1
$$

- $\forall b=1,2, \ldots, \eta_{G_{1}}$,

$$
\sum_{\substack{1 \leqslant a \leqslant \eta G_{0} \\ G_{0}[a]=G_{1}[b]}} x_{b}^{a} \leqslant 1
$$

Other problems ?

Other measures

- ICONSX:

Generate only variables $\boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{n}}$ such that $\left(\left(G_{0}[k]=G_{1}[m] \wedge G_{0}[\ell]=G_{1}[n]\right) \vee\right.$ $\left.\left.\left(G_{0}[k]=-G_{1}[n] \wedge G_{0}[\ell]=-G_{1}[m]\right)\right)\right\}$

Other problems ?

Other measures

- ICONSX:

Generate only variables $\boldsymbol{I}_{\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{n}}$ such that $\left(\left(G_{0}[k]=G_{1}[m] \wedge G_{0}[\ell]=G_{1}[n]\right) \vee\right.$ $\left.\left.\left(G_{0}[k]=-G_{1}[n] \wedge G_{0}[\ell]=-G_{1}[m]\right)\right)\right\}$

- $B D_{X}$ and $A D J_{X}$:

Other transformation

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems
- ILCS $_{\boldsymbol{x}}$ and IILCS \boldsymbol{x}
- Visualization tool
- Common intervals filtering
- First experimental results

ILCS $_{\boldsymbol{M}}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation

ILCS $_{\text {м }}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{\text {M }}$ heuristic
Idea: Match genes of the LCS until saturation
(0) Compute the Longest Common Substring \boldsymbol{S}

ILCS $_{\text {м }}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly

ILCS $_{\boldsymbol{m}}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(Iterate the process until saturation

ILCS $_{\text {м }}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(Iterate the process until saturation

ILCS $_{\text {м }}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

```
    1234567
674516321
```

ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Iterate the process until saturation

ILCS $_{\boldsymbol{m}}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

ILCS $_{M}$ heuristic

Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Iterate the process until saturation
(9) Remove all the genes that have not been matched

ILCS $_{\boldsymbol{m}}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 6745321
\end{aligned}
$$

ILCS $_{M}$ heuristic

Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Iterate the process until saturation
(9) Remove all the genes that have not been matched

ILCS $_{\text {M }}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 6745321
\end{aligned}
$$

ILCS $_{\text {M }}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Iterate the process until saturation
(9) Remove all the genes that have not been matched
(0) Compute the number of common intervals

ILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 6745321
\end{aligned}
$$

\Rightarrow number of common intervals $=19$
ILCS $_{M}$ heuristic
Idea: Match genes of the LCS until saturation
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Iterate the process until saturation
(9) Remove all the genes that have not been matched
(0) Compute the number of common intervals

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

IILCS $_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
674516321
\end{array}
$$

IILCS $_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring S
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
67456321
\end{array}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(0) Remove genes that cannot be matched

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
67456321
\end{array}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched
(1) Iterate the process until saturation

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
67456321
\end{array}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched
(1) Iterate the process until saturation

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{array}{r}
1234567 \\
67456321
\end{array}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(0) Remove genes that cannot be matched
(1) Iterate the process until saturation

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 7456321
\end{aligned}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(0) Remove genes that cannot be matched
(1) Iterate the process until saturation

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 7456321
\end{aligned}
$$

IILCS ${ }_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched
(1) Iterate the process until saturation

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 7456321
\end{aligned}
$$

IILCS ${ }_{M}$ heuristic

Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(0) Remove genes that cannot be matched
(1) Iterate the process until saturation

- Compute the number of common intervals

IILCS $_{M}$ heuristic

LCS: Longest Common Substring [Tichy, 84]

$$
\begin{aligned}
& 1234567 \\
& 7456321
\end{aligned}
$$

\Rightarrow number of common intervals $=20$
IILCS $_{M}$ heuristic
Idea: Remove genes that cannot be matched
(1) Compute the Longest Common Substring \boldsymbol{S}
(2) Match all the genes of \boldsymbol{S} accordingly
(3) Remove genes that cannot be matched
(1) Iterate the process until saturation

- Compute the number of common intervals

Heuristics: adaptation for other models

exemplar model

- For each gene family, we keep only the first occurrence in an LCS
- At each iteration, we remove all genes that cannot be matched

Heuristics: adaptation for other models

exemplar model

- For each gene family, we keep only the first occurrence in an LCS
- At each iteration, we remove all genes that cannot be matched

intermediate model

- We stop if, for each gene family, there exists at least one occurrence in the matching

Experimental results: $I C O M_{M}$

Experimental results: $A D J_{E}$

Experimental results: $A D J_{M}$

Experimental results: $A D J_{l}$

quality of the solution (in percentage compared to the optimum)

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems - ILCS X and IILCS X
- Visualization tool
- Common intervals filtering
- First experimental results

Experience view			- 回 x
Experience Window			
G1: ECOLI			
G2: VCHOLERA1NC002505			
measure: common intervals			
method: IILCS heuristic			
model: maximum matching			
\square	Gene view		- 回 x
id: 16128042 position: 47			
genome: ECOL			
Homologies		Pathways	
ECOLI	VCHOLERAINC002505	eco00670eco00790	
[47]16128042	[434]15640467		

Visualization

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems
- ILCS $_{x}$ and IILCS X_{X}
- Visualization tool
- Common intervals filtering
- First experimental results

Common intervals filtering

- Lots of common intervals
- Relevance of common intervals ?
\Rightarrow Three filters to emphasize the most interresting common intervals

Common intervals filtering

- Lots of common intervals
- Relevance of common intervals ?
\Rightarrow Three filters to emphasize the most interresting common intervals

Filters

(1) Maximal common intervals:

Select only common intervals that are not contained in another one

Common intervals filtering

- Lots of common intervals
- Relevance of common intervals ?
\Rightarrow Three filters to emphasize the most interresting common intervals

Filters

(1) Maximal common intervals:

Select only common intervals that are not contained in another one
(2) Annotated common intervals:

Select maximal common intervals that contain some annotations in the Ecocyc database

Common intervals filtering

- Lots of common intervals
- Relevance of common intervals ?
\Rightarrow Three filters to emphasize the most interresting common intervals

Filters

(1) Maximal common intervals:

Select only common intervals that are not contained in another one
(2) Annotated common intervals:

Select maximal common intervals that contain some annotations in the Ecocyc database
(3) Relevant common intervals:

Select annotated common intervals with good p-value (obtained by GO-TermFinder)

Common intervals filtering

- Lots of common intervals
- Relevance of common intervals ?
\Rightarrow Three filters to emphasize the most interresting common intervals

Filters

(1) Maximal common intervals:

Select only common intervals that are not contained in another one
(2) Annotated common intervals:

Select maximal common intervals that contain some annotations in the Ecocyc database
(3) Relevant common intervals:

Select annotated common intervals with good p-value (obtained by GO-TermFinder)

Appendix

(1) Appendix

- Pseudo boolean transformation for other problems
- ILCS X and IILCS X
- Visualization tool
- Common intervals filtering
- First experimental results

Experimental results

Input : six chromosomes of γ-Proteobacteria

NCBI identifiant	Name
NC_000913	Escherichia coli K12
NC_002505	Vibrio cholerae 01 biovar eltor str. N16961 chromosome I
NC_002506	Vibrio cholerae 01 biovar eltor str. N16961 chromosome II
NC_009456	Vibrio cholerae 0395 chromosome I
NC_009457	Vibrio cholerae 0395 chromosome II
NC_006840	Vibrio fischeri ES114 chromosome I
NC_006841	Vibrio fischeri ES114 chromosome II

Results: common intervals

	genome size			computational time		common intervals	
$\begin{aligned} & \text { © } \\ & \stackrel{\text { ® }}{0} \\ & \text { O } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \bar{\partial} \\ & \text { ن山 } \end{aligned}$	¢					$\stackrel{\text { ¢ }}{\substack{\bar{区} \\ \text { ¢ }}}$
NC002505	4243	2742	IILCS	1144	15	7418	274
NC002506	4243	1093	PSB	638	41	246	50
NC009456	4243	1133	PSB	651	46	264	55
NC009457	4243	2742	IILCS	1199	18	7204	278
NC006840	4243	2586	IILCS	1012	1	3865	255
NC006841	4243	1175	IILCS	715	1	203	62

Experimental results

