Comparaisons de génomes avec gènes dupliqués : étude théorique et algorithmes

Comparative genomics with duplicated genes: theoretical study and algorithms

Angibaud Sébastien

sebastien.angibaud@univ-nantes.fr

Laboratoire d'Informatique de Nantes Atlantique, UMR CNRS 6241, UFR de Sciences et Techniques de Nantes

October 7th 2009

www.cnrs.fr

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes
- 2 Theoretical complexity results

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes
- Theoretical complexity results

Algorithms

- Exact approach
- Heuristics and hybrid method

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes
- Theoretical complexity results
- Algorithms
 - Exact approach
 - Heuristics and hybrid method
- MATCH&WATCH application
 - Protocol
 - Visualization tool

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes
- Theoretical complexity results
- Algorithms
 - Exact approach
 - Heuristics and hybrid method
- MATCH&WATCH application
 - Protocol
 - Visualization tool
- Conclusion

Overview

- Genomes comparison
 - Overview
 - Genomes representation
 - Measures between genomes
- Theoretical complexity results
- 3 Algorithms
 - Exact approach
 - Heuristics and hybrid method
- 4 MATCH&WATCH application
 - Protocol
 - Visualization tool
- Conclusion

Genome:

• Composed of one or several *chromosomes*

Genome:

• Composed of one or several *chromosomes*

Genome:

- Composed of one or several *chromosomes*
- Sequence(s) of DNA
- Hereditary information

Genome:

- Composed of one or several *chromosomes*
- Sequence(s) of DNA
- Hereditary information

Gene:

- Sequence of DNA
- Coding one or severals proteins
- Gene orientation

Genome:

- Composed of one or several *chromosomes*
- Sequence(s) of DNA
- Hereditary information

Gene:

- Sequence of DNA
- Coding one or severals proteins
- Gene orientation

Why?

Why?

• Phylogenetic trees construction

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences
- Help genome annotation

Why?

- Phylogenetic trees construction
- Identification of highly conserved sequences
- Help genome annotation

How?

• Genome modeled as a sequence of genes

Comparing two genomes : two different points of view

. . .

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
 - inversion
 translocation
 - duplication
- Find a most parsimonious rearrangement scenario

Comparing two genomes : two different points of view

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
 - inversion
 translocation
 - duplication

- ▶ ...
- Find a most parsimonious rearrangement scenario

Comparison based on the structure of genomes

- Compare the structure (genes order) of the two genomes
- Compute a (dis)similarity measure between genomes
 - number of breakpoints/adjacencies
 - number of common intervals
 - number of conserved intervals

Sum Adjacency Disruption

. . .

Comparing two genomes : two different points of view

Comparison based on the evolution process

- Infer an evolution process from one genome to another
- Several operations can be considered:
 - inversion
 translocation
 - duplication

- ▶ ...
- Find a most parsimonious rearrangement scenario

Comparison based on the structure of genomes

- Compare the structure (genes order) of the two genomes
- Compute a (dis)similarity measure between genomes
 - number of breakpoints/adjacencies
 - number of common intervals
 - number of conserved intervals

Sum Adjacency Disruption

. . .

Representation and notations

Unichromosomal genome: sequence of signed genes

Representation and notations

- Unichromosomal genome: sequence of signed genes
- 2 Alphabet $\Sigma \Leftrightarrow$ gene families

$$G_0 = +1 + 2 - 3 -7 + 4 + 5 +7 - 8 + 10 - 9 + 4 - 6 - 4 2 \Sigma = \{1, 2, 3 \dots 10\}$$

Representation and notations

- Unichromosomal genome: sequence of signed genes
- 2 Alphabet $\Sigma \Leftrightarrow$ gene families
- 3 Let $G_0[k]$ be the k^{th} gene (signed integer) of G_0

$$\begin{array}{c} \bullet & G_0 = +1 + 2 - 3 \cdot 7 + 4 + 5 + 7 - 8 + 10 - 9 + 4 - 6 - 4 \\ \hline & \bullet & \Sigma = \{1, 2, 3 \dots 10\} \\ \hline & \bullet & G_0[4] = -7 \end{array}$$

Representation and notations

- Unichromosomal genome: sequence of signed genes
- 2 Alphabet $\Sigma \Leftrightarrow$ gene families
- Let G₀[k] be the kth gene (signed integer) of G₀
- Let occ(G₀) be the maximum number of genes in a gene family

Example

Representation and notations

- Unichromosomal genome: sequence of signed genes
- 2 Alphabet $\Sigma \Leftrightarrow$ gene families
- Let G₀[k] be the kth gene (signed integer) of G₀
- Let occ(G₀) be the maximum number of genes in a gene family
- 5 Let η_{G_0} be the number of genes in G_0

Measures between two genomes

- **Input:** Two genomes **G**₀ and **G**₁ with the same gene contents and without duplicates
- Output: A (dis)-similarity measure between G₀ and G₁

- number of breakpoints/adjacencies [Watterson et al. 1982]
- number of common intervals [Uno and Yagiura, 2000]
- number of conserved intervals [Bergeron and Stoye, 2003]

Definition: **adjacency** and **breakpoint** [Watterson et al. 1982] There exists an adjacency between genes $G_0[p]$ and $G_0[p + 1]$ iff $(G_0[p], G_0[p + 1])$ or $(-G_0[p + 1], -G_0[p])$ appears as a pair of consecutive genes in G_1 .

$$G_0 = +1 + 2 + 3 + 4 + 5$$

 $G_1 = +3 + 4 - 5 - 2 - 1$

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists an adjacency between genes $G_0[p]$ and $G_0[p+1]$ iff $(G_0[p], G_0[p+1])$ or $(-G_0[p+1], -G_0[p])$ appears as a pair of consecutive genes in G_1 .

$$G_0 = \overbrace{+1}^{Adjacency} + 3 + 4 + 5$$
$$G_1 = -4 - 3 - 5 + 1 + 2$$

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists an adjacency between genes $G_0[p]$ and $G_0[p+1]$ iff $(G_0[p], G_0[p+1])$ or $(-G_0[p+1], -G_0[p])$ appears as a pair of consecutive genes in G_1 .

$$G_0 = \overbrace{+1}^{Adjacency} \overbrace{+3}^{Adjacency} + 4 + 5$$
$$G_1 = -4 - 3 - 5 + 1 + 2$$

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists a breakpoint between genes $G_0[p]$ and $G_0[p+1]$ iff neither $(G_0[p], G_0[p+1])$ nor $(-G_0[p+1], -G_0[p])$ appears as a pair of consecutive genes in G_1 .

$$G_0 = \overbrace{+1}^{Adjacency} \overbrace{+3}^{Adjacency} + 3$$

$$G_1 = -4 - 3 - 5 + 1 + 2$$

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists a breakpoint between genes $G_0[p]$ and $G_0[p+1]$ iff neither ($G_0[p]$, $G_0[p+1]$) nor ($-G_0[p+1]$, $-G_0[p]$) appears as a pair of consecutive genes in G_1 .

$$G_{0} = +0^{\forall} +1 +2^{\forall} +3 +4^{\forall} +5^{\forall} +6$$
$$G_{1} = +0 -4 -3 -5 +1 +2 +6$$

Definition: adjacency and breakpoint [Watterson et al. 1982]

There exists a breakpoint between genes $G_0[p]$ and $G_0[p+1]$ iff neither $(G_0[p], G_0[p+1])$ nor $(-G_0[p+1], -G_0[p])$ appears as a pair of consecutive genes in G_1 .

$$G_{0} = +0^{\sqrt[4]{+1}} + 2^{\sqrt[4]{+3}} + 4^{\sqrt[4]{+5}} + 5^{\sqrt[4]{+5}} + 6$$

$$G_{1} = +0 - 4 - 3 - 5 + 1 + 2 + 6$$

Two measures:

- Number of adjacencies: similarity
- Number of breakpoints: dissimilarity

Common interval

Definition: common interval [Uno and Yagiura, 2000]

• A substring s_0 of G_0 is a *common interval* of (G_0, G_1) if, in G_1 , there is a substring s_1 such that s_1 is a permutation of s_0 (without taking signs into account)

$$G_0 = +1 + 2 + 3 + 4 + 5$$
 $G_1 = +2 - 4 + 3 + 5 + 1$

Common interval

Definition: common interval [Uno and Yagiura, 2000]

• A substring s_0 of G_0 is a *common interval* of (G_0, G_1) if, in G_1 , there is a substring s_1 such that s_1 is a permutation of s_0 (without taking signs into account)

 $G_0 = +1 + 2 + 3 + 4 + 5$ $G_1 = +2 - 4 + 3 + 5 + 1$

 $\Rightarrow s_0 = +3 + 4 + 5 \quad s_1 = -4 + 3 + 5$ Substring s_0 is a common interval of (G_0, G_1) .

Common interval

Definition: common interval [Uno and Yagiura, 2000]

• A substring s_0 of G_0 is a *common interval* of (G_0, G_1) if, in G_1 , there is a substring s_1 such that s_1 is a permutation of s_0 (without taking signs into account)

 $G_0 = +1 + 2 + 3 + 4 + 5$ $G_1 = +2 - 4 + 3 + 5 + 1$

 $\Rightarrow s_0 = +3 + 4 + 5 \quad s_1 = -4 + 3 + 5$ Substring s_0 is a common interval of (G_0, G_1) .

• Number of common intervals of (*G*₀, *G*₁): Similarity measure between two genomes

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$G_0 = +0 + 1 + 2 + 3 + 4 + 5$$

 $G_1 = -4 - 3 - 5 + 0 - 1 + 2$
Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

common interval

• same extremities OR reversed extremities

$$G_0 = +0 +1 +2 + 3 + 4 + 5$$

$$G_1 = -4 - 3 - 5 + 0 - 1 + 2$$

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

common interval

• same extremities OR reversed extremities

$$G_0 = +0 + 1 + 2 + 3 + 4 + 5$$

 $G_1 = -4 - 3 - 5 + 0 - 1 + 2$

Conserved interval

Definition: conserved interval

Proposed in [Bergeron and Stoye, 2003] for n permutations

- common interval
- same extremities OR reversed extremities

$$G_0 = +0 + 1 + 2 + 3 + 4 + 5$$

$$G_1 = -4 - 3 - 5 + 0 - 1 + 2$$

• Number of conserved intervals of (*G*₀, *G*₁): Similarity measure between two genomes

- Choose a one-to-one correspondence *M* of genes (a matching)
- 2 Rename or remove genes according to \mathcal{M}
- Ompute the (dis)-similarity measure

- Choose a one-to-one correspondence *M* of genes (a matching)
- Prevention of the second se
- Ompute the (dis)-similarity measure

- $G_0 = +0 + 1 2 1 3 + 4$
- $G_1 = +0 1 + 2 1 3 1 + 4$

- Choose a one-to-one correspondence *M* of genes (a matching)
- Prevention of the second se
- Ompute the (dis)-similarity measure

- $G_0 = +0 +1 -2 -1 -3 +4$
- $G_1 = +0 1 + 2 1 3 1 + 4$

- Choose a one-to-one correspondence *M* of genes (a matching)
- Prevention of the second se
- Ompute the (dis)-similarity measure

$$G_0^E = +0 + 1 - 2 - 3 + 4$$

 $G_1^E = +0 + 2 - 1 - 3 + 4$

- Choose a one-to-one correspondence *M* of genes (a matching)
- Rename or remove genes according to M
- Ompute the (dis)-similarity measure

$$G_0^E = +0^{\vee} + 1 - 2^{\vee} - 3 + 4$$
$$G_1^E = +0 + 2 - 1 - 3 + 4$$
$$Bkp(G_0^E, G_1^E) = 2$$

- Choose a one-to-one correspondence *M* of genes (a matching)
- Prevention of the second se
- Ompute the (dis)-similarity measure

exemplar model (**E**) [Sankoff, 99] one occurrence for each gene family in *M*

 $G_0^E = +0^{\vee} + 1 - 2^{\vee} - 3 + 4$ $G_1^E = +0 + 2 - 1 - 3 + 4$

 $\text{Bkp}(\textbf{\textit{G}}_0^{\textbf{\textit{E}}},\textbf{\textit{G}}_1^{\textbf{\textit{E}}})=2$

maximum matching model (**M**) [Tang & al, 03] a maximum number of occurrences in *M*

$$G_0 = +0 + 1 - 2 - 1 - 3 + 4$$

 $G_1 = +0 - 1 + 2 - 1 - 3 - 1 + 4$

Choose a one-to-one correspondence *M* of genes (a matching)

- 2 Rename or remove genes according to \mathcal{M}
- Ompute the (dis)-similarity measure

exemplar model (**E**) [Sankoff, 99] one occurrence for each gene family in *M*

 $G_0^E = +0^{\vee} + 1 - 2^{\vee} - 3 + 4$ $G_1^E = +0 + 2 - 1 - 3 + 4$ $Bkp(G_0^E, G_1^E) = 2$

maximum matching model (**M**) [Tang & al, 03] a maximum number of occurrences in *M*

$$G_0 = +0$$
 +1 -2 -1 -3 +4
 $G_1 = +0$ -1 +2 -1 -3 -1 +4

Choose a one-to-one correspondence *M* of genes (a matching)

- 2 Rename or remove genes according to \mathcal{M}
- Ompute the (dis)-similarity measure

exemplar model (**E**) [Sankoff, 99] one occurrence for each gene family in *M*

$$G_0^E = +0^{\vee} + 1 - 2^{\vee} - 3 + 4$$
$$G_1^E = +0 + 2 - 1 - 3 + 4$$
$$Bkp(G_0^E, G_1^E) = 2$$

maximum matching model (**M**) [Tang & al, 03] a maximum number of occurrences in *M*

$$G_0^M = +0 +1' -2 -1'' -3 +4$$
$$G_1^M = +0 -1' +2 -1'' -3 +4$$

Choose a one-to-one correspondence *M* of genes (a matching)

- In the second secon
- Oompute the (dis)-similarity measure

exemplar model (**E**) [Sankoff, 99] one occurrence for each gene family in *M*

 $G_0^E = +0^{\vee} + 1 - 2^{\vee} - 3 + 4$ $G_1^E = +0 + 2 - 1 - 3 + 4$ $Bkp(G_0^E, G_1^E) = 2$

maximum matching model (**M**) [Tang & al, 03] a maximum number of occurrences in *M*

$$\begin{aligned} G_0^M &= +0^{\triangledown} + 1'^{\triangledown} - 2^{\triangledown} - 1'' - 3 + 4 \\ G_1^M &= +0 - 1' + 2 - 1'' - 3 + 4 \\ \text{Bkp}(G_0^M, G_1^M) &= 3 \end{aligned}$$

Choose a one-to-one correspondence *M* of genes (a matching)

- 2 Rename or remove genes according to \mathcal{M}
- Ompute the (dis)-similarity measure

exemplar model (**E**) [Sankoff, 99] one occurrence for each gene family in *M* maximum matching model (**M**) [Tang & al, 03] a maximum number of occurrences in *M*

Intermediate model (I)

For each gene family, at least one gene is kept in \mathcal{M}

Several possible matchings?

maximum matching model (M) [Tang & al, 03] a maximum number of occurrences in *M*

$$G_0 = +0$$
 +1 -2 -1 -3 +4
 $G_1 = +0$ -1 +2 -1 -3 -1 +4

Several possible matchings?

maximum matching model (M) [Tang & al, 03] a maximum number of occurrences in *M*

$$G_0 = +0$$
 +1 -2 -1 -3 +4
 $G_1 = +0$ -1 +2 -1 -3 -1 +4

Measure between genomes with duplicates

Problem

Input:

- Two genomes G₀ and G₁
- ► A model **X** ∈ {**E**, **M**, **I**}
- Output: Find a matching *M* which satisfies the model *X*, and which optimizes the measure between G₀^X and G₁^X

Measure between genomes with duplicates

Problem

Input:

- Two genomes G₀ and G₁
- ► A model **X** ∈ {**E**, **M**, **I**}
- **Output:** Find a matching \mathcal{M} which satisfies the model X, and which optimizes the measure between G_0^X and G_1^X

measure	problem
common interval	ICOM _X
conserved interval	ICONS _X
breakpoint	BD_X
adjacency	ADJ_X

Measure between genomes with duplicates

Problem

Input:

- Two genomes G₀ and G₁
- ► A model **X** ∈ {**E**, **M**, **I**}

• Question: Are there G_0^X and G_1^X which satisfy the model X, and which imply no breakpoint ?

measure	problem	
common interval	ICOM _X	
conserved interval	ICONS _X	
breakpoint	BD_X	ZBD_X
adjacency	ADJ_X	

Outline

Theoretical complexity results

Algorithms

4 MATCH&WATCH application

5 Conclusion

What do we know?

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X ICONS _X	NP-Complete [Chauve et al.] (instance (1, 2))		
BD _X	NP-Complete [Bryant] (instance (1, 2)) NP-Complete [Blin et al.] *		
ZBD _X	NP-Complete [Chen et al.] (instance (3, 3))	?	?

instance $(a, b) \Leftrightarrow occ(G_0) = a$ and $occ(G_1) = b$

* only one family contains several occurrences

Angibaud Sébastien

Definition

α -approximation and PTAS

- Let **P** be an optimization problem
- Let *I* be an instance of *P*
- A polynomial algorithm **A** is an α -approximation iff
 - ▶ If **P** is a problem of minimization, then $A(I) \leq \alpha \cdot optimal(I)$
 - If **P** is a problem of maximization, then $A(I) \ge \frac{1}{\alpha} \cdot optimal(I)$

Definition

α -approximation and PTAS

- Let **P** be an optimization problem
- Let *I* be an instance of *P*
- A polynomial algorithm **A** is an α -approximation iff
 - If **P** is a problem of minimization, then $A(I) \leq \alpha \cdot optimal(I)$
 - ▶ If **P** is a problem of maximization, then $A(I) \ge \frac{1}{\alpha} \cdot optimal(I)$
- A polynomial algorithm **B** is a *Polynomial-Time Approximation* Scheme (PTAS) iff $\forall \epsilon > 0$
 - ▶ If **P** is a problem of minimization, then $B(I) \leq (1 + \epsilon) \cdot optimal(I)$
 - ▶ If **P** is a problem of maximization, then $B(I) \ge \frac{1}{1+\epsilon} \cdot optimal(I)$

Definition

α -approximation and PTAS

- Let **P** be an optimization problem
- Let *I* be an instance of *P*
- A polynomial algorithm **A** is an α -approximation iff
 - If **P** is a problem of minimization, then $A(I) \leq \alpha \cdot optimal(I)$
 - ▶ If **P** is a problem of maximization, then $A(I) \ge \frac{1}{\alpha} \cdot optimal(I)$
- A polynomial algorithm **B** is a *Polynomial-Time Approximation* Scheme (PTAS) iff $\forall \epsilon > 0$
 - ▶ If **P** is a problem of minimization, then $B(I) \leq (1 + \epsilon) \cdot optimal(I)$
 - ▶ If **P** is a problem of maximization, then $B(I) \ge \frac{1}{1+\epsilon} \cdot optimal(I)$

APX-Hard Class

If a problem P is APX-Hard then P does not admit a PTAS

	exemplar model	maximum matching model	intermediate model
ICOM _X ICONS _X	NP-Complete [Cha APX-Hard	uve et al.] (instance (1, (instance (1,2)) *	, 2))
BD _X	NP-Complete [E APX-Hard	Bryant] (instance (1, 2)) NP-Complete [Blin et al.] (instance (1, 2)) *	
ZBD _X	NP-Complete [Chen et al.] (instance (3, 3)) (instance (2, <i>k</i>)) * [Blin et al.] (instance (2, 2))	polynomial *	$ZBD_l \equiv ZBD_E *$
ADJ _X	$ADJ_E \simeq BD_E$ *	$ADJ_M \simeq BD_M^*$	$ADJ_{l} \neq BD_{l}^{*}$

* S. Angibaud, G. Fertin, I. Rusu, A. Thévenin et et S. Vialette On the Approximability of Comparing Genomes with Duplicates *Journal of Graph Algorithms and Applications*, Vol. 13(1), pages 19-53, 2009

Angibaud Sébastien

Phd Thesis - Defense

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X	NP-Complete [Chau	ve et al.] (instance (1,	2))
ICONS _X	APX-Hard	(instance (1, 2))	
	NP-Complete [Bryant] (instance (1,2))		
חק		NP-Complete	
БОХ		[Blin et al.]	
	APX-Hard (instance (1, 2))		
	NP-Complete		
ZBD _X	[Chen et al.] (instance (3, 3))	nolynomial	$ZBD_{l} \equiv$
	(instance (2, <i>k</i>))	polynollia	ZBD _E
	[Blin et al.] (instance (2, 2))		
ADJ _X	$ADJ_E \simeq BD_E$	$ADJ_M \simeq BD_M$	$ADJ_{l} \neq BD_{l}$

 $A \simeq B$: An optimal solution for A is an optimal solution for B $A \neq B$: An optimal solution for A is not necessarily an optimal solution for B

Angibaud Sébastien

Phd Thesis - Defense

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X	NP-Complete [Chau	ve et al.] (instance (1,	2))
ICONS _X	APX-Hard (instance (1, 2))		
	NP-Complete [B	ryant] (instance (1, 2))	
חק		NP-Complete	
Бυχ		[Blin et al.]	
	APX-Hard (instance (1, 2))		
	NP-Complete		
ZBD _X	[Chen et al.] (instance (3, 3))	nolynomial	$ZBD_{l} \equiv$
	(instance (2, <i>k</i>))	polynollia	ZBD_E
	[Blin et al.] (instance (2, 2))		
ADJ _X	$ADJ_E \simeq BD_E$	$ADJ_M \simeq BD_M$	$ADJ_{l} \neq BD_{l}$

 $A \simeq B$: An optimal solution for A is an optimal solution for B $A \neq B$: An optimal solution for A is not necessarily an optimal solution for B

Angibaud Sébastien

Phd Thesis - Defense

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X	NP-Complete [Chau	ive et al.] (instance (1,	2))
ICONS _X	APX-Hard	(instance (1, 2))	
	NP-Complete [B	ryant] (instance (1, 2))	
חס		NP-Complete	
Бυχ		[Blin et al.]	
	APX-Hard (instance (1, 2))		
	NP-Complete		
ZBD _X	[Chen et al.] (instance (3, 3))	nolynomial	$ZBD_{l} \equiv$
	(instance (2, <i>k</i>))	polynollia	ZBD_E
	[Blin et al.] (instance (2, 2))		
ADJ _X	$ADJ_E \simeq BD_E$	$ADJ_M \simeq BD_M$	$ADJ_l \neq BD_l$

 \Rightarrow Bad news : *ICOM_X*, *ICONS_X* and *BD_X* do not admit a polynomial-time approximation scheme (PTAS)

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X	NP-Complete [Chau	ve et al.] (instance (1,	2))
ICONS _X	APX-Hard	(instance (1, 2))	
	NP-Complete [B	ryant] (instance (1, 2))	
חק		NP-Complete	
БОХ		[Blin et al.]	
	APX-Hard	(instance (1, 2))	
	NP-Complete		
ZBD _X	[Chen et al.] (instance (3, 3))	nolynomial	$ZBD_{l} \equiv$
	(instance (2, <i>k</i>))	polynomia	ZBD _E
	[Blin et al.] (instance (2, 2))		
ADJ _X	$ADJ_E \simeq BD_E$	$ADJ_M \simeq BD_M$	$ADJ_l \neq BD_l$

⇒ Bad news : BD_E and BD_I do not admit any α -approximation, unless **P** = **NP**

Angibaud Sébastien

	exemplar	maximum matching	intermediate
	model	model	model
ICOM _X	NP-Complete [Chau	ive et al.] (instance (1,	2))
ICONS _X	APX-Hard	(instance (1, 2))	
	NP-Complete [Bryant] (instance (1, 2))		
חס		NP-Complete	
Бυχ		[Blin et al.]	
	APX-Hard	(instance (1, 2))	1
	NP-Complete		
ZBD _X	[Chen et al.] (instance (3, 3))	nolynomial	$ZBD_I \equiv$
	(instance (2, <i>k</i>))	polynomia	ZBD_E
	[Blin et al.] (instance (2, 2))		
ADJ _X	$ADJ_E \simeq BD_E$	$ADJ_M \simeq BD_M$	$ADJ_l \neq BD_l$

 \Rightarrow Good news : *BD_M* could admit an α -approximation

```
Angibaud Sébastien
```

Exact approach

Outline

Genomes comparison

2 Theoretical complexity results

Algorithms

- Exact approach
 - Pseudo boolean problem
 - Pseudo-boolean transformation for ICOM_E
 - Experimental results
- Heuristics and hybrid method
 - IILCS_X
 - Hybrid method
 - Experimental results

MATCH&WATCH application

Exact algorithm

Problem

Input:

- Two genomes G₀ and G₁
- ► A model X ∈ {E, M, I}
- Output: Find a matching *M* which satisfies the model *X*, and which optimizes the measure between G₀^X and G₁^X

Idea: transformation into a pseudo boolean linear problem

Definition

- Variables: domain = {0, 1}
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in \{0, 1\}, y \in \{0, 1\}, z \in \{0, 1\}$
- Constraints:
 - $\bullet \ x+2\cdot y \geqslant 2$
 - ► $z + y \leq 1$
- Objective function: maximize x + 2 · y - z

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in \{0, 1\}, y \in \{0, 1\}, z \in \{0, 1\}$
- Constraints:
 - $x + 2 \cdot y \ge 2$
 - *z* + *y* ≤ 1
- Objective function: maximize x + 2 · y - z

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in \{0, 1\}, y \in \{0, 1\}, z \in \{0, 1\}$
- Constraints:
 - $\bullet x + 2 \cdot y \ge 2$
 - ► $z + y \leq 1$
- Objective function: maximize x + 2 · y - z

Definition

- Variables: boolean
- Constraints: inequalities between weighted sum of variables
- Objective function: weighted sum of variables

Example

- Variables: $x \in \{0, 1\}, y \in \{0, 1\}, z \in \{0, 1\}$
- Constraints:
 - $\bullet x + 2 \cdot y \ge 2$
 - ► $z + y \leq 1$
- Objective function: maximize x + 2 · y - z

 \Rightarrow Powerful solvers for this type of problem

Transformation for ICOM_E: variables

• Variables **x** and **I**:

Transformation for ICOM_E: variables

• Variables **x** and **I**:

 x_b^a true \Leftrightarrow gene $G_0[a]$ and $G_1[b]$ are matched

Transformation for *ICOM_E*: variables

• Variables **x** and **I**:

 $I_{k,l,m,n}$ true $\Leftrightarrow [k, l]$ in G_0 is a common interval of (G_0, G_1) , and [m, n] in G_1 is a permutation of [k, l]

Transformation for ICOM_E: constraints

Exemplar model:

for each genome, only one occurrence of each gene family

C1:
$$\forall f \in \mathcal{F}_{G_0} \cup \mathcal{F}_{G_1}, \sum_{\substack{1 \leqslant a \leqslant \eta_{G_0} \\ G_0[a] = f}} \sum_{\substack{1 \leqslant b \leqslant \eta_{G_1} \\ G_1[b] = f}} x_b^a = 1$$

Transformation for ICOM_E: constraints

Validity of variables $I_{k,l,m,n}$

$$I_{k,\ell,m,n} + x_2^3 \leqslant 1$$

Exact approach

Transformation for ICOME

Objective function:

Maximize
$$\sum_{k,l,m,n} I_{k,l,m,n}$$

Transformation for ICOM_E

Variables: $\mathcal{I} = \{I_{k,l,m,n} : 1 \leqslant k \leqslant \ell \leqslant \eta_{G_0} \land 1 \leqslant m \leqslant n \leqslant \eta_{G_1}\}$ $\mathcal{X} = \{x_b^a : 1 \leqslant a \leqslant \eta_{G_0} \land 1 \leqslant b \leqslant \eta_{G_1} \land G_0[a] = G_1[b]\}$

Constraints:

$$\begin{array}{ll} (C.01) \ \forall f \in \mathcal{F}_{G_{0}} \cup \mathcal{F}_{G_{1}}, & \sum_{\substack{1 \leq a \leq \eta_{G_{0}} \\ G_{0}[a] = f \end{array}} \sum_{\substack{1 \leq b \leq \eta_{G_{1}} \\ G_{0}[a] = f \end{array}} x_{b}^{a} = 1 \\ \end{array} \\ (C.02) \ \forall I_{k,l,m,n} \in \mathcal{I}, \ \forall k$$

Objective function:

Maximize $\sum_{k,l,m,n} I_{k,l,m,n}$

Transformation for ICOM_E

Variables:

$$\begin{aligned} \mathcal{I} &= \{ I_{k,l,m,n} : \mathbf{1} \leqslant k \leqslant \ell \leqslant \eta_{G_0} \land \mathbf{1} \leqslant m \leqslant n \leqslant \eta_{G_1} \} \\ \mathcal{X} &= \{ x_b^a : \mathbf{1} \leqslant a \leqslant \eta_{G_0} \land \mathbf{1} \leqslant b \leqslant \eta_{G_1} \land G_0[a] = G_1[b] \} \end{aligned}$$

Constraints:

$$\begin{array}{ll} (\texttt{C.01}) \ \forall f \in \mathcal{F}_{G_0} \cup \mathcal{F}_{G_1}, & \sum\limits_{\substack{1 \leqslant a \leqslant \eta_{G_0} \\ G_0[a] = f}} & \sum\limits_{\substack{1 \leqslant b \leqslant \eta_{G_1} \\ G_1[b] = f}} x_b^a = 1 \end{array}$$

 $\begin{array}{ll} (\text{c.02}) \ \forall I_{k,l,m,n} \in \mathcal{I}, \ \forall k$

Objective function:

Maximize $\sum_{k,l,m,n} I_{k,l,m,n}$

Transformation for ICOM_E

Variables: $\mathcal{I} = \{I_{k,l,m,n} : 1 \leqslant k \leqslant \ell \leqslant \eta_{G_0} \land 1 \leqslant m \leqslant n \leqslant \eta_{G_1}\}$ $\mathcal{X} = \{x_b^a : 1 \leqslant a \leqslant \eta_{G_0} \land 1 \leqslant b \leqslant \eta_{G_1} \land G_0[a] = G_1[b]\}$

Constraints:

$$\begin{array}{ll} (\texttt{C.01}) \ \forall f \in \mathcal{F}_{G_0} \cup \mathcal{F}_{G_1}, & \sum\limits_{\substack{1 \leqslant a \leqslant \eta_{G_0} \\ G_0[a] = f}} & \sum\limits_{\substack{1 \leqslant b \leqslant \eta_{G_1} \\ G_1[b] = f}} x_b^a = 1 \end{array}$$

 $\begin{array}{ll} (C.02) \ \forall I_{k,l,m,n} \in \mathcal{I}, \ \forall k$

Objective function:

Maximize $\sum_{k,l,m,n} I_{k,l,m,n}$

Transformation for $ICOM_F$

Variables: $\mathcal{I} = \{I_{k,l,m,n} : 1 \leq k \leq \ell \leq \eta_{G_0} \land 1 \leq m \leq n \leq \eta_{G_1}\}$ $\mathcal{X} = \{ \mathbf{x}_{\mathbf{b}}^{\mathbf{a}} : \mathbf{1} \leqslant \mathbf{a} \leqslant \eta_{G_{\mathbf{0}}} \land \mathbf{1} \leqslant \mathbf{b} \leqslant \eta_{G_{\mathbf{1}}} \land \mathbf{G}_{\mathbf{0}}[\mathbf{a}] = \mathbf{G}_{\mathbf{1}}[\mathbf{b}] \}$

Constraints:

$$\begin{array}{ll} (\text{C.01}) \ \forall f \in \mathcal{F}_{G_0} \cup \mathcal{F}_{G_1}, & \sum_{\substack{1 \leq a \leq \eta_{G_0} \\ G_0[a] = f}} \sum_{\substack{1 \leq b \leq \eta_{G_1} \\ G_1[b] = f}} x_b^a = 1 \\ (\text{C.02}) \ \forall I_{k,l,m,n} \in \mathcal{I}, \ \forall k$$

$$(C.06) \ \forall I_{k,l,m,n} \in \mathcal{I}, \quad 4 I_{k,l,m,n} - \sum_{\substack{m \leqslant r \leqslant n \\ G_0[k] = G_1[r]}} x_r^k - \sum_{\substack{m \leqslant s \leqslant n \\ G_0[\ell] = G_1[s]}} x_s^{\ell} - \sum_{\substack{k \leqslant p \leqslant \ell \\ G_0[\ell] = G_1[m]}} x_m^p - \sum_{\substack{k \leqslant q \leqslant \ell \\ G_0[q] = G_1[n]}} x_n^q \leqslant 0$$

Objective function:

Maximize $\sum I_{k,l,m,n}$ $k, \overline{l, m}, n$

Angibaud Sébastien

≤ 1 **≼ 1**

Pseudo boolean transformation

Other problems ?

- other models: modify constraints C1
- conserved intervals: restriction on variables $I_{k,\ell,m,n}$
- breakpoint and adjacency: new variables and constraints

ICOM_X and ICONS_X

S. Angibaud, G. Fertin, I. Rusu et S. Vialette.

A pseudo-boolean general framework for computing rearrangement distances between genomes with duplicates

Journal of Computational Biology, Vol. 14(4), pages 379-393. 2007

BD_X and ADJ_X

S. Angibaud, G. Fertin, I. Rusu, A. Thévenin et S. Vialette. Efficient Tools for Computing the Number of Breakpoints and the Number of Adjacencies between two Genomes with Duplicate Genes

Journal of Computational Biology, Vol. 15(8), pages 1093-1115. 2008

Dataset

• Twelve genomes of γ -Proteobacteria [Lerat et al. 2003]

Name	Genbank identifier	size
Buchnera aphidicola APS	NC_002528	564
Escherichia coli K12	NC_000913	4183
Haemophilus influenzae Rd	NC_000907	1709
Pseudomonas aeruginosa PA01	NC_002516	5540
Pasteurella multocida Pm70	NC_002663	2015
Salmonella typhimurium LT2	NC_003197	4203
Wigglesworthia glossinidia brevipalpis	NC_004344	653
Xanthomonas axonopodis pv. citri 306	NC_003919	4192
Xanthomonas campestris	NC_0 03902	4029
Xylella fastidiosa 9a5c	NC_002488	2680
Yersinia pestis CO_92	NC_003143	3599
Yersinia pestis KIM5 P12	NC_004088	3879
	averade.	310/

Dataset

- Twelve genomes of γ-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
ADJ_X	61/66	66/66	63/66
$ICOM_X$	21/66	40/66	21/66

Dataset

- Twelve genomes of *γ*-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
ADJ_X	61/66	66/66	63/66
$ICOM_X$	21/66	40/66	21/66

 \Rightarrow Efficient approach for ADJ_X

Dataset

- Twelve genomes of *γ*-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

Number of results:

	model		
	Exemplar	maximum matching	intermediate
ADJ_X	61/66	66/66	63/66
ICOM _X	21/66	40/66	21/66

- \Rightarrow Efficient approach for ADJ_X
- \Rightarrow Limit is attained for *ICOM*_X
 - ⇒ Heuristics

Outline

Genomes comparison

2) Theoretical complexity results

3

Algorithms

- Exact approach
 - Pseudo boolean problem
 - Pseudo-boolean transformation for ICOME
 - Experimental results

Heuristics and hybrid method

- IILCS_X
- Hybrid method
- Experimental results

MATCH&WATCH application

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

IILCS_M heuristic

Compute the Longest Common Substring S

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- In the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

- Based on ILCS_M heuristic [Tichy, 82]
- Idea: Match genes of a Longest Common Substring (LCS)

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation
- Ompute the measure

Hybrid method

Algorithm HYB_X(k)

Idea: Associate exact method and IILCS_X heuristic

Parameter k: Bound on LCS size

```
• Compute an LCS S of (G_0, G_1)
```

```
If |S| ≥ k
Then
```

Match all the genes of *S* Remove genes that cannot be matched Return to **1**

Else Apply the exact method: transformation into a pseudo-boolean linear problem

Heuristics and hybrid method

Experimental results

Dataset

- Twelve genomes of *γ*-Proteobacteria [Lerat et al. 2003]
- 66 possible pairs of genomes

EXACT	model		
	Exemplar	maximum matching	intermediate
ADJ _X	61/66	66/66	63/66
ICOM _X	21/66	40/66	21/66

Experimental results: ICOM_M

Experimental results: ADJ_M

Outline

2) Theoretical complexity results

3 Algorithms

MATCH&WATCH application

- Protocol
- Visualization tool

Conclusion

Goal

Problem

- Input: two circular genomes G₁ and G₂
- Output: List of common intervals between G₁ and G₂

Goal

- Compute common intervals
- Provide a tool to visualize and analyze results

S. Angibaud, D. Éveillard, G. Fertin et I. Rusu Comparing Bacterial Genomes by Searching Their Common Intervals *In Proc. 1st International Conference on Bioinformatics and Computational Biology* LNBI Vol. 5462, pages 102-113. 2009

Angibaud Sébastien

Protocol

Angibaud Sébastien

Homologies computation

Inparanoid [Storm et al. 2001]

- Proposed in 2001 by Storm, Remm and Sonnhammer
- Compute clusters of homologous genes

Angibaud Sébastien

Step 4: choose a matching

- Exact method: Pseudo boolean transformation
- IILCS_X heuristic
- Hybrid method

Angibaud Sébastien
Step 5: Matching application

Protocol

Step 6: common intervals computation

Seven steps

Angibaud Sébastien

Phd Thesis - Defense

MATCH&WATCH application

Visualization tool

- D	erience view	_ D X
<u>E</u> xperience <u>W</u> indow		
G1: ECOLI		
G2: VCHOLERA1NC002505		
measure: common intervals		
method: IILCS heuristic		
model: maximum matching		
	Gene view	_ • ×
id: 16128042	position: 47	
genome: ECOLI		
Homologies Pathways		
ECOLI	VCHOLERA1NC002505	eco00670
[47]16128042	[434]15640467	eco00790

Phd Thesis - Defense

Outline

- Genomes comparison
- 2 Theoretical complexity results
- 3 Algorithms
- 4 MATCH&WATCH application

Contributions

- Better knowledge of problems
 - APX-Hardness of BD_X, ICOM_X and ICONS_X
 - NP-Completeness of ZBD_E and ZBD_I
 - Polynomiality of ZBD_M

Contributions

- Better knowledge of problems
 - APX-Hardness of BD_X, ICOM_X and ICONS_X
 - NP-Completeness of ZBD_E and ZBD_I
 - Polynomiality of ZBD_M
- Three new algorithms
 - An exact approach based on a transformation into a pseudo-boolean problem
 - Efficient approach for *BD_X* and *ADJ_X*
 - Limited for ICOM_X

Contributions

- Better knowledge of problems
 - APX-Hardness of BD_X, ICOM_X and ICONS_X
 - NP-Completeness of ZBD_E and ZBD_I
 - Polynomiality of ZBD_M
- Three new algorithms
 - An exact approach based on a transformation into a pseudo-boolean problem
 - Efficient approach for *BD_X* and *ADJ_X*
 - Limited for *ICOM_X*
 - IILCS_X heuristic and Hybrid method
 - Promising results on a real dataset for each problem

- Work on MATCH&WATCH
 - First experimentation on six chromosomes of γ -Proteobacteria
 - Analyze in details the common intervals obtained
 - Add functionalities according to biologists

- Work on MATCH&WATCH
 - First experimentation on six chromosomes of γ -Proteobacteria
 - Analyze in details the common intervals obtained
 - Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison

- Work on MATCH&WATCH
 - First experimentation on six chromosomes of γ -Proteobacteria
 - Analyze in details the common intervals obtained
 - Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison
- New algorithms
 - α -approximation for BD_E and BD_I when $occ(G_0) = 1$?
 - α-approximation or PTAS for ICOM_X on balanced genomes?

- Work on MATCH&WATCH
 - First experimentation on six chromosomes of γ -Proteobacteria
 - Analyze in details the common intervals obtained
 - Add functionalities according to biologists
- Multi-chromosomal genome comparison
- Multiple genome comparison
- New algorithms
 - α -approximation for BD_E and BD_I when $occ(G_0) = 1$?
 - α-approximation or PTAS for ICOM_X on balanced genomes?
- Partially ordered genomes

Acknowledgement

- Directors
 - Irena Rusu
 - Guillaume Fertin

- Co-authors
 - Damien Éveillard (LINA, Université de Nantes)
 - Annelyse Thévenin (LRI, Université Paris-Sud)
 - Stéphane Vialette (IGM, Université Paris-Est Marne-la-Vallée)

Pictures

- http://www.mun.ca/biology/scarr/FISH_chromosomes_300dpi.jpg
- http://agaudi.files.wordpress.com/2008/09/dna_overview_es.png
- http://joachimj.club.fr/imagesmada2004bis/PlanchePhylogeniedesprimates.jpg
- http://http://fr.wikipedia.org/wiki/Gene
- http://www.g-language.org/g3/

Acknowledgement

- Directors
 - Irena Rusu
 - Guillaume Fertin

Thank you

Merci

- Co-authors
 - Damien Éveillard (LINA, Université de Nantes)
 - Annelyse Thévenin (LRI, Université Paris-Sud)
 - Stéphane Vialette (IGM, Université Paris-Est Marne-la-Vallée)

Pictures

- http://www.mun.ca/biology/scarr/FISH_chromosomes_300dpi.jpg
- http://agaudi.files.wordpress.com/2008/09/dna_overview_es.png
- http://joachimj.club.fr/imagesmada2004bis/PlanchePhylogeniedesprimates.jpg
- http://http://fr.wikipedia.org/wiki/Gene
- http://www.g-language.org/g3/

Appendix

Appendix

- Pseudo boolean transformation for other problems
- ILCS_X and IILCS_X
- Visualization tool
- Common intervals filtering
- First experimental results

Appendix

Appendix

Pseudo boolean transformation for other problems

- ILCS_X and IILCS_X
- Visualization tool
- Common intervals filtering
- First experimental results

Transformation for ICOM_E: objective function

Objective:

maximize
$$\sum_{k,l,m,n} I_{k,l,m,n}$$

Transformation for ICOM_E: objective function

Objective:

Improvements:

Add rules to decrease the size of the instance

If all orange genes are located between the red and green one

We must have at least one orange gene to validate $I_{k,l,m,n}$

Transformation for ICOM_E: objective function

Other problems ?

Other models

Other models

• $\forall b = 1, 2, \ldots, \eta_{G_1},$

$$\sum_{\substack{1\leqslant b\leqslant \eta_{G_1}\\G_0[a]=G_1[b]\\\sum_{\substack{1\leqslant a\leqslant \eta_{G_0}\\G_0[a]=G_1[b]}}} x_b^a\leqslant 1$$

Other problems ?

Other measures

• ICONS_X:

Generate only variables $I_{k,l,m,n}$ such that (($G_0[k] = G_1[m] \land G_0[\ell] = G_1[n]) \lor$ ($G_0[k] = -G_1[n] \land G_0[\ell] = -G_1[m])$)

Other problems ?

Other measures

• ICONS_X:

Generate only variables $I_{k,l,m,n}$ such that (($G_0[k] = G_1[m] \land G_0[\ell] = G_1[n]$) \lor ($G_0[k] = -G_1[n] \land G_0[\ell] = -G_1[m]$))

Appendix

• *BD_X* and *ADJ_X*: Other transformation

Appendix

• Pseudo boolean transformation for other problems

ILCS_X and IILCS_X

- Visualization tool
- Common intervals filtering
- First experimental results

LCS: Longest Common Substring [Tichy, 84]

<mark>123</mark>4567

674516 321

Angibaud Sébastien

LCS: Longest Common Substring [Tichy, 84]

<u>123</u>4567

674516<mark>321</mark>

ILCS_M heuristic

LCS: Longest Common Substring [Tichy, 84]

123 4567

674516<mark>321</mark>

ILCS_M heuristic

Idea: Match genes of the LCS until saturation

Compute the Longest Common Substring S

LCS: Longest Common Substring [Tichy, 84]

123 4567 674516 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly

LCS: Longest Common Substring [Tichy, 84]

123 4567 674516 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 45 67 67 45 16 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Iterate the process until saturation

ILCS_X and IILCS_X

ILCS_M heuristic

LCS: Longest Common Substring [Tichy, 84]

123 45 67 67 45 16 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 45 67 67 45 16 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Iterate the process until saturation
- Remove all the genes that have not been matched

LCS: Longest Common Substring [Tichy, 84]

123 45 67 67 45 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- Iterate the process until saturation
- Remove all the genes that have not been matched

LCS: Longest Common Substring [Tichy, 84]

123 45 67 67 45 321

ILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- Iterate the process until saturation
- Remove all the genes that have not been matched
- Ompute the number of common intervals

$ILCS_X$ and $IILCS_X$

ILCS_M heuristic

123<mark>45</mark>67

 \Rightarrow number of common intervals = 19

ILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Iterate the process until saturation
- Remove all the genes that have not been matched
- Ompute the number of common intervals

LCS: Longest Common Substring [Tichy, 84]

<u>123</u>4567

674516<mark>321</mark>

IILCS_M heuristic

Idea: Remove genes that cannot be matched

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- 8 Remove genes that cannot be matched
LCS: Longest Common Substring [Tichy, 84]

1234567 6745<mark>1</mark>6321

IILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched

LCS: Longest Common Substring [Tichy, 84]

123 4567 67456 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- 8 Remove genes that cannot be matched

LCS: Longest Common Substring [Tichy, 84]

123 4567 67456 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 456 7 67 456 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- 8 Remove genes that cannot be matched
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 <mark>456</mark> 7

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 <mark>456</mark>7 7 <mark>456</mark> 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 456 <mark>7</mark> 7 456 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- 8 Remove genes that cannot be matched
- Iterate the process until saturation

LCS: Longest Common Substring [Tichy, 84]

123 456 <mark>7</mark> 7 456 321

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- Remove genes that cannot be matched
- Iterate the process until saturation
- Ompute the number of common intervals

LCS: Longest Common Substring [Tichy, 84]

123 456 7

 \Rightarrow number of common intervals = 20

IILCS_M heuristic

- Compute the Longest Common Substring S
- 2 Match all the genes of S accordingly
- 8 Remove genes that cannot be matched
- Iterate the process until saturation
- Ompute the number of common intervals

Heuristics: adaptation for other models

exemplar model

- For each gene family, we keep only the first occurrence in an LCS
- At each iteration, we remove all genes that cannot be matched

Heuristics: adaptation for other models

exemplar model

- For each gene family, we keep only the first occurrence in an LCS
- At each iteration, we remove all genes that cannot be matched

intermediate model

 We stop if, for each gene family, there exists at least one occurrence in the matching

Experimental results: ICOM_M

Experimental results: ADJ_E

ILCS_X and IILCS_X

Experimental results: ADJ_M

quality of the solution (in percentage compared to the optimum)

Experimental results: ADJ_I

Appendix

- Pseudo boolean transformation for other problems
- ILCS_X and IILCS_X

Visualization tool

- Common intervals filtering
- First experimental results

Appendix

Visualization tool

	Experience view					_ D X `	
<u>Experience</u> <u>W</u> indow							
G1: (ECOLI						
G2: (G2: VCHOLERA1NC002505						
measure: common intervals							
method: IILCS heuristic							
model: maximum matching							
Gene view 📃 🗆 🗙							
id: 16	128042		position:	47			
genome: ECOLI							
Homologies							
ECOLI		VCHOLERAINC002505 eco00670					
[47]16128042		[434]15640467 eco0079		eco00790			

Angibaud Sébastien

Defence of Phd Thesis

Visualization

		Interval view		_ _ \ ×
G1: ECOLI		G2:	VCHOLERA395NC009457	
Index: 46		🗹 conserved	Type: reversed	interval
G1:	556 532 536	00 00 00 00 00 00 00 00 00 00 00 00 00	07204=66a4 60382191 dpi4 602	
G2: CRB Lengs=VC0395_A0317	259 200 add/2 117574719 147673792 147673792 147673792 147673792 147673792 147673792 147673792 147673792 147674718 14767478 14767478 14767478 14767478 14767478 14767478 14767478 14767478 14767478 14767478 147678 1476788 147678 147678 1476788 1476788 147678 147678	202 203 204 cH5 CHC 2 cH5 CHC 1 + 757 450 1 + 757 450 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	205 206 207 208 205 206 14767431 14767432 14767436 14767436 1476735_A0325 14767436 1476735_A0325	209 CRG kegg=VC0395_A0328

Appendix

Appendix

- Pseudo boolean transformation for other problems
- ILCS_X and IILCS_X
- Visualization tool

Common intervals filtering

First experimental results

- Lots of common intervals
- Relevance of common intervals ?
- ⇒ Three filters to emphasize the most interresting common intervals

- Lots of common intervals
- Relevance of common intervals ?
- ⇒ Three filters to emphasize the most interresting common intervals

Filters

 Maximal common intervals: Select only common intervals that are not contained in another one

- Lots of common intervals
- Relevance of common intervals ?
- ⇒ Three filters to emphasize the most interresting common intervals

Filters

 Maximal common intervals: Select only common intervals that are not contained in another one

Annotated common intervals:

Select maximal common intervals that contain some annotations in the *Ecocyc database*

- Lots of common intervals
- Relevance of common intervals ?
- ⇒ Three filters to emphasize the most interresting common intervals

Filters

Maximal common intervals:

Select only common intervals that are not contained in another one

Annotated common intervals:

Select maximal common intervals that contain some annotations in the *Ecocyc database*

Relevant common intervals: Select expected examples

Select annotated common intervals with good *p*-value (obtained by GO-TermFinder)

- Lots of common intervals
- Relevance of common intervals ?
- ⇒ Three filters to emphasize the most interresting common intervals

Filters

Maximal common intervals:

Select only common intervals that are not contained in another one

Annotated common intervals:

Select maximal common intervals that contain some annotations in the *Ecocyc database*

Relevant common intervals: Select expected examples

Select annotated common intervals with good *p*-value (obtained by GO-TermFinder)

Appendix

Appendix

- Pseudo boolean transformation for other problems
- $ILCS_X$ and $IILCS_X$ ۲
- Visualization tool
- ۲
- First experimental results

Experimental results

Input : six chromosomes of γ -Proteobacteria

NCBI identifiant	Name
NC_000913	Escherichia coli K12
NC_002505	Vibrio cholerae 01 biovar eltor str. N16961 chromosome I
NC_002506	Vibrio cholerae 01 biovar eltor str. N16961 chromosome II
NC_009456	Vibrio cholerae 0395 chromosome I
NC_009457	Vibrio cholerae 0395 chromosome II
NC_006840	Vibrio fischeri ES114 chromosome I
NC_006841	Vibrio fischeri ES114 chromosome II

Results: common intervals

	genome size			computational time		common	
						intervals	
genome G 2	E. coli	G ₂	method	Inparanoid (s)	matching (s)	number	maximal
NC002505	4243	2742	IILCS	1144	15	7418	274
NC002506	4243	1093	PSB	638	41	246	50
NC009456	4243	1133	PSB	651	46	264	55
NC009457	4243	2742	IILCS	1199	18	7204	278
NC006840	4243	2586	IILCS	1012	1	3865	255
NC006841	4243	1175	IILCS	715	1	203	62

Experimental results

