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Abstract

In the framework of this thesis we develop new data mining models

for knowledge discovery with gene expression pro�les. Data mining is the

science of automatically extracting knowledge hidden in large data sets. Gene

expression technologies are powerful methods for studying biological processes

through a transcriptional point of view. These technologies have produced

vast amounts of data by measuring simultaneously the expression levels of

thousands of genes under di¤erent biological conditions.

One of the great potentials of this technology is that the data generated

contain hidden information about the biological processes that govern cell be-

havior. A main challenge in gene expression analysis is the interpretation of

results via combination of gene expression analysis with associated sources of

biological information. This process may also be referred to as integration of

biological knowledge with gene expression data. Sources of biological informa-

tion are for instance molecular databases, ontologies, taxonomies, semantic

networks or bibliographic databases. Our work focusses on the issue of inte-

grating existing biological knowledge, particularly within non-supervised (or

clustering) and supervised learning algorithms applied to the data.

In this thesis, we �rst present an original point of view for the state of

the art on methods developed for interpreting gene expression results through

corresponding gene annotations. Then, we tackle the non-supervised learn-

ing issue of class discovery among gene expression pro�les, and we propose

two speci�c approaches on this subject: CGGA (Co-expressed Gene Groups

Analysis) and GENMINER (Gene-integrated analysis using association rules

mining). CGGA is a knowledge-based approach which automatically integrates

gene expression pro�les and gene annotations obtained from genome-wide in-

formation databases such as Gene Ontology. GENMINER is a co-clustering

and bi-clustering approach which automatically integrates at once gene anno-

tations and gene expression pro�les to discover intrinsic associations between

these two heterogeneous sources of information.

Finally, we focus on the supervised learning issue of class prediction, and

we propose GENETREE (GENE-integrated analysis for biological sample pre-

diction using decision TREEs), an approach which takes advantage of the well

known decision tree algorithm C5.0 and adapts its entropy splitting principle

with several ontology-based criteria.
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Introduction

In the framework of this thesis we develop novel data mining models for knowledge dis-

covery with gene expression technologies. We understand gene expression technologies as

the ones that intend to measure gene expression such as microarray and Serial Analysis of

Gene Expression (SAGE). A gene is expressed when, through the transcription process, its

DNA coding is transferred to an RNA molecule. Transcription is the process of synthesiz-

ing RNA using genes as template. Indeed, we have two up-to-date, dynamic and complex

topics: data mining and gene expression technologies, and we need to �nd the jointures

between them.

Data mining is the science of automatically extracting knowledge and information

from large data sets or databases. This science can be divided in two main groups: de-

scriptive tasks such as unsupervised learning, clustering, etc., and predictive ones such as

supervised learning, classi�cation, discriminant analysis etc.

Gene expression technologies are powerful methods for studying biological processes

through a transcriptional point of view. Since many years these technologies have produced

vast amounts of data by measuring simultaneously the expression levels of thousands of

genes under tens of di¤erent biological conditions. One of the great promises of this

technology is that the data generated contain hidden but potentially rich information

about the biological processes that govern cell behavior.

One of the main goals of gene expression technology is to discover hidden informa-

tion within the biological experiments to generate biological knowledge. But, what kind of

information is commonly searched within a gene expression biological experience? We can

mention three main issues: identifying the co-expressed genes (genes with common expres-

sion pro�le), �nding the coherent gene expression patterns (collective trend in expression

levels of co-expressed genes groups), and class prediction (predicting the correspondent

class for di¤erent kinds of tumors, diseases, responses etc., via their gene expression pat-

terns).

The �rst two issues are class discovery issues, commonly solved by descriptive or un-

supervised learning models. In contrast, the third one, class prediction, is often recognized

as a typical supervised learning problem. In descriptive methods the classes are unknown

and need to be discovered from the data. In predictive methods, on the other hand, the

classes are prede�ned and the task is to understand the basis of their classi�cation for

predicting the class of future observations.

Nowadays, one of the main challenges in gene expression technologies is the inter-

pretation of results via integration of gene expression measures with associated sources of

biological information. We can divide these sources of information in six main groups:

1. Minimal microarray information (genes and biological conditions characteristics).

2. Molecular databases (GenBank, Embl, Unigene, etc.).

3. Semantic sources as thesaurus, ontologies, taxonomies or semantic networks (UMLS,

GO, taxonomy, etc.).
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4. Gene expression databases (GEO, Arrayexpress, Microarray database, etc.).

5. Bibliographic databases (Medline, Biosis, etc.).

6. Gene/protein related speci�c sources (ONIM, KEGG, etc.).

The analysis of gene expression data consists of �ve steps: data generation, statistical

data treatment, analysis of di¤erentially expressed genes, classi�cation of the genes, and

knowledge discovery via data interpretation. This �eld, as well as the whole bioinformatics

�eld, have several inherent questions and problems to solve:

� The �eld is an ever-increasingly volume of scattered and disordered genomic data,

information and knowledge.

� Existing sources of biological information must be well-structured, up-to-date and

without ambiguities.

� There is no consensus concerning essential information issues as gene name, data

structure, results description, data availability, knowledge acquisition etc.

� Existing tools and computational technical progress have to be enhanced for

manipulating high dimensionality of gene expression data (thousands of genes), low

number of sample experiments (tens of biological conditions) and tons of scattered

biological information and knowledge.

� In order to minimize loss of information when analyzing gene expression data, from

initial noisy data and passing through the �ve-step analysis until the discovery of

knowledge, gene expression technologies and analysis tools have to be improved.

� Analysis tools for each speci�c gene expression technology have to be built speci�cally.

Since approaches to tackle each of the �ve steps are multiple and heterogeneous, a

consensus is needed on speci�c techniques for each step.

In this thesis, we focus on the last analysis step devoted to data interpretation. The

issue is to integrate two elements, the numeric element represented by the gene expression

measures and the biological knowledge element represented by gene annotations (pieces

of biological information related to the gene as relational, syntactical, functional etc.)

issued from di¤erent sources of biological information. In other words, the issue is the

interpretation of gene expression results via integration of gene expression pro�les with

corresponding biological gene annotations extracted from biological knowledge databases.

We have divided our task in two big data mining goals:

1. Highlighting the main co-expressed and co-annotated gene groups (co-annotated

gene groups are groups sharing the same annotation) using at least one source of

biological knowledge. This descriptive issue is generally refered to as class discovery.

2. Building a predictive model for disease-type classi�cation using at once gene

expression measures and at least one source of biological knowledge. This issue is

commonly known as class prediction.
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Currently, these two main goals are achieved manually by domain experts who com-

bine their own knowledge with biological sources of information. Due to the huge com-

plexity of biological processes, experts need automatic or semi-automatic tools to help

them.

History and Previous Work

Concerning the class discovery problem

At the beginning of gene expression technology, researches focused on manipulating only

gene expression measures for identifying groups of co-expressed genes. There were reported

a variety of unsupervised learning approaches which identify groups of co-expressed genes

(class discovery problem) based only on gene expression measures as the only source of in-

formation to study, as [69, 90, 26, 107, 298, 303]. A common characteristic of these purely

numerical approaches is that they determine gene groups (or clusters) of potential inter-

est. However, they leave to the expert the task of discovering and interpreting biological

similarities hidden within these groups. These methods are useful, because they guide the

analysis of the co-expressed gene groups. Nevertheless, their results are often incomplete,

because they do not include biological considerations based on prior biological knowledge.

Currently, one of the major challenges in bioinformatics researches is interpreting

gene expression data via the automatic integration of biological knowledge from di¤er-

ent sources of information with numerical gene expression pro�les [13]. The biological

knowledge comes from several databases, ontologies and scienti�c publications mainly. It

provides textual indications on genes which are referred to as annotations. The interpre-

tation step may be de�ned as the result of the integration of gene expression pro�les and

corresponding gene annotations. In this context, integration means matching co-expressed

and co-annotated genes.

Nowadays, most interpretation approaches are based on gene expression measures

which are often noisy data, thus the results can be severely biased. In contrast, the few

existing knowledge-based interpretation approaches, based on biological information, deal

with the problem of currently scattered, badly structured and incomplete biological sources

of information. So, they often lead to insu¢cient interpretation results.

Co-clustering approaches represent the best compromise in terms of integration be-

tween expression pro�les and biological knowledge. Nevertheless, they have to deal with

the algorithmic issue of integrating these two elements at once. Thus, they often give more

weight to one of these two elements, carrying as well their intrinsic defaults.



Introduction

Concerning the class prediction problem

The prediction problem on gene expression technologies has been targeted mainly in med-

ical applications for predicting the state of an organ (e.g. cancer vs normal), special types

of a disease (e.g. young diabete, diabete, normal) and the e¤ectiveness of a medicament.

Since the beginning of gene expression technologies, a variety of supervised learning

algorithms have been used to solve the prediction problem for disease-type applications.

These algorithms take into account only gene expression pro�les without integrating any

gene annotation in the algorithm itself. Among the most remarquable methods we can

list:

� Linear discriminant analysis (LDA) like in Dudoit [101] for predicting cancer tumors

and in Hakak [137] for predicting schizofrenia types.

� K-nearest neighbor (KNN) method like in Pomeory [242] to predict embryonal

tumors.

� Support Vector Machines (SVM) like in Ramaswamy [250] for classifying tumors and

Furey [119] in predicting organ classes

� Weighted voting techniques like in Golub [133] to predict leukemia classes.

� Decision trees like in Zhang [335] for tumor prediction and Ramanathan [249] for

disease-type prediction.

These methods are useful for predicting the studied class or disease-type at a certain

degree of e¤ectiveness. However, the actual use of predictive algorithms in gene expression

technology �eld present several weaknesses :

� Error Estimation procedures should be applied externally to the gene selection

process, and not internally as it is commonly done [102]. Thus, estimators are biased.

� Dimensionality of gene expression data where the number of objects or sample

experiments is very low (tens of biological conditions) and the number of attributes

is extremly high (thousands of genes). Low number of samples over�ts the solutions.

� Lack of optimisation techniques on data learning parameters. Thus, the classi�er

cannot be robust enough to treat similar gene expression data sets [33].

� Lack of biological knowledge as an inherent part of the classi�er building procedure.

The use of supervised algorithms for solving prediction problems in gene expression

technologies is a relatively new �eld compared to other domains. It is necessary to include

the best avalaible tools of maching learning methods in gene expression technology to close

the gap between machine learning �eld and bioinformatics. The wide research problem of

biological knowledge integration (as the available gene annotations) in any supervised

algorithm remains completely open.
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Contributions

In this thesis we strongly encourage the use of the existing biological knowledge within

non-supervised and supervised algorithms in order to enhance the interpretation of the

results of gene expression technology.

We propose a new framework, interpreting gene expression throughput as the result

of the integration of gene expression pro�les and corresponding gene annotations. As

a basis of our contribution we start by presenting an original point of view on existent

interpretation approaches. The classi�cation we give, consists in three axes: knowledge-

based axis, expression-based axis, and co-clustering axis. Our classi�cation emphasizes the

weight of the integration process scheduling on the �nal interpretation results. A survey, a

description of each remarkable approach, a comparative among them, and a full discussion

are presented in this document (see chapter 5).

Concerning the class discovery problem we have developed two approaches: CGGA

( Co-expressed Gene Groups Analysis ) and GENMINER (Gene-integrated analysis using

association rules discovery) described below.

CGGA is a knowledge-based approach which automatically integrates the results of

gene expression technology, i.e. gene expression pro�les, and the biological annotations of

the genes obtained by the genome-wide information databases such as Gene Ontology.

By applying CGGA to well-known microarray experiments, we identify the main func-

tionally enriched and co-expressed gene groups, and we show that this approach enhances

and optimizes the interpretation of microarray experiments. Conception, implementation1,

experimentation and validation are presented in this document (see chapter 6).

GENMINER is a co-clustering and biclustering (biclustering means �nding subsets

of genes for a subset of biological conditions or viceversa) approach which automatically

integrates at once gene annotations and gene expression pro�les to discover intrinsic asso-

ciations between both data sources based on frequent patterns. Our algorithm is an adap-

tation of traditional association rules mining techniques, that takes advantage of CLOSE

[229] algorithm to generate low support, high con�dence and non redundant rules in an ef-

�cient way.Validation was done using famous gene expression data sets in which genes were

annotated by several sources of information. Automatically extracted associations reveal

signi�cant groups, meaning important biological relationships between gene attributes and

patterns. Many of these relationships are supported by recently reported work. Concep-

tion, implementation, experimentation and validation were done (see chapter 7).

Concerning the class prediction problem we have developed GENETREE (GENE-

integrated analysis for biological sample prediction using decision TREe algorithms ).

GENETREE is decision tree based algorithm which automatically integrates the

information contained on gene expression pro�les with biological knowledge obtained by

genome-wide sources of information. This algorithm takes advantage of the well known

decision tree algorithms ID3, C4.5 and C5.0 proposed by Quinlan [247] and it extends the

1 CGGA program is available at http://www.i3s.unice.fr/~rmartine/CGGA
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entropy splitting criterion to more complex one which takes into account several criteria

obtained from di¤erent sources of gene annotations as ontologies, molecular databases and

gene/protein related sources of information. Main characteristics of this algorithm are

presented in this document (see chapter 8).

In order to answer to the discretization question, an essential requirement in many

supervised algorithms, we have developed a novel algorithm named NORDI (normal dis-

cretization), specially �tted to gene expression technologies. NORDI is based on statistical

detection of outliers and the continuous application of normality tests for transforming the

initial distribution "almost normal" to a "more normal" one. The term "almost" means

that the sample Sj can be normally distributed without the presence of outliers. Concep-

tion, implementation2, and validation are presented in this document (see chapter 8).

In order to answer to relevant biological conditions selection, an essential require-

ment for data pretreatment concerning prediction problem, we have developed a novel

algorithm for sample outliers detection, specially �tted to gene expression technologies.

Our algorithm is based on data mining detection of sample outliers using alternatively two

techniques Principal Componenet Analysis (PCA) and Unweighted Pair Group Method

with Arithmetic mean (UPGMA) hierarchical algorithm. Conception, implementation

and validation are presented in this document (see chapter 4).

Manuscript Layout

This manuscript is divided in three parts. Part I (chapters 1 to 3) is devoted to the ba-

sic genomic, transcriptomic and molecular biology concepts involved in gene expression

technologies.Then, it describes the current technologies, Microarray and SAGE, for mea-

suring the gene expression. Next, it explains the complete multi-step analysis procedure

to handle with gene expression data. Later on, it gives a fully overview of the biological in-

formation sources truly available to deal with the interpretation step. Part II contains two

chapters: a practical one (chapter 4) and a state of the art or theoretical one (chapter 5).

The �rst presents a complete gene expression data analysis for two data sets issued from

di¤erent gene expression technologies: SAGE and Microarray. In the second we develop

our interpretation framework for the knowledge integration step, presenting a complete

overview of remarkable integration approaches. Finally, Part III (chapter 6 to 9) fully

explains the knowledge integration models we propose: CGGA, GENMINER and GEN-

ETREE respectively. Each one of the models is developed in detail: method principles,

algorithm implementation, applications, discussion and an outlook. In the following, a

detailed summary of each chapter is given.

2 NORDI program is available by request, and soon it will be available in bioconductor project:
http://www.bioconductor.org/ .
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Part I : Molecular Biology and Gene Expression Technologies Basics

Chapter 1 Principles of Life in Molecular Biology and Gene Expression
Technologies

This chapter presents the basic concepts of molecular biology and genomics: genes, pro-

teins, nucleic acids, etc. We focus our interest in the information �ow from gene to protein,

emphasizing the transcription of the information contained within the DNA, best known

as gene expression. Then, we describe the most important gene expression measure tech-

nologies: Microarray (spotted cDNA chip, spotted oligos chip, in situ oligos-chip, etc.) and

SAGE. Finally we explore several important applications of these technologies.

Chapter 2 Gene Expression Data Analysis Procedure

This chapter explains the �ve steps for analyzing microarray data technology: data gener-

ation, statistical data treatment, analysis of di¤erentially expressed genes, classi�cation of

genes and knowledge discovery via data interpretation. Each section describes the analysis

step and gives an insight into some methods to deal with it.

Chapter 3 Biological Sources of Information

This chapter gives an overview of the di¤erent biological information sources available for

the microarray data analysis. The chapter starts with a brief description of the minimal

biological information obtained about a microarray experiment. Then it explores the di¤er-

ent sources of biological information: molecular sources (EMBL, GenBank,etc.), semantic

sources (UMLS, GO, Taxonomy, etc.), bibliographic databases (Medline, Biosis, OMIN,

etc.), gene expression databases (GEO, Arrayexpress, Microarray, etc.), and gene-related

or protein-related sources (KEGG, GeneCards, etc.).

Part II: Introductory Works and Knowledge Discovery Interpreta-
tion Approaches

Chapter 4 First Application Works: SAGE and Microarray Data Analysis

In this chapter we have fully analyzed the gene expression throughput data issued from

two di¤erent technologies: SAGE, and Microarray. For each technology, we follow up the

whole data analysis procedure. Each step is detailed with a selection of the currently

available tools and methods. Here, we explains our algorithm OutSample (sample outliers

detection) specially conceived for gene expression technologies.

Chapter 5 Biological Knowledge Interpretation Approaches

This chapter represents the framework of the biological knowledge integration models we

propose. In this chapter we develop three di¤erent knowledge integration axes: prior or
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knowledge-based axis, standard or expression-based axis and co-clustering axis (presented

in Chapter 2). The chapter starts with a brief discussion of the purpose and usefulness

of this classi�cation. Then, every section gives an insight into the basics and remarquable

approaches. At the end of each section we summarize with a comparison of di¤erent ap-

proaches of each axis. Finally, we �nish by a discussion in analyzing three main facets: gene

annotations, gene expression pro�les and gene selection. It ends by a general conclusion

overall interpretation axes.

Part III: Data Mining Models for Knowledge Discovery via
Biological Interpretation

Chapter 6 CGGA: Co-expressed Gene Groups Analysis

This chapter develops entirely the Co-expressed GeneGroup Analysis integration method

we propose. It starts by providing a brief explanation of this knowledge-based approach.

Next, it explains validation data sets and used methods. Then, it gives a full explanation

of CGGA algorithm. This chapter continues with a complete analysis of real microarray

data, showing the e¤ectiveness of the method. It ends by a discussion of the advantages

and drawbacks of CGGA and it gives an outlook for further research

Chapter 7 GENMINER: Gene-integrated analysis using association rules
discovery

In this chapter we completely develop the GENMINER. The chapter starts with a global

view of association rules basics and methods. It continues giving a general survey of asso-

ciation rules applications in bioinformatics.Next, it describes the GENMINER algorithm

foundations and implementation aspects. Afterwards, the viability of this method is tested

by analyzing two cDNA spot data sets. Discussion and an outlook for future research are

given in the last two sections.

Chapter 8 GENETREE: GENE-integrated analysis for biological sample
prediction using decision TREes algorithm

This chapter focuses on the class prediction problem issued in gene expression technologies.

After presenting a global view of supervised methods, it gives an overview of the process

for building prediction models in gene expression technologies. Since discretization is a

key problem for predictive variables, it continues with an assessement of the discretization

approaches used in this �eld, emphasizing in our novel discretization algorithm: NORDI.

Then, it describes the decision trees basics and it explain the principles of GENETREE

algorithm. It ends with a brief discussion and it gives the future expectations of this model.



Glossary of Terms

The reference for the glossary terms are marked with the symbol ? in the text.

Alignment is the process of lining up two or more sequences to achieve maximal levels of
identity (and conservation, in the case of amino acid sequences) for the purpose of assessing
the degree of similarity and the possibility of homology.

Algorithm is a �xed procedure embodied in a computer program.

Apoptosis: A genetically directed process of cell self-destruction that is marked by the
fragmentation of nuclear DNA, called also programmed cell death.

Bagging in machine learning is also called aggregating bootstrap and is an algorithm to
improve classi�cation models in terms of stability, classi�cation accuracy, reducing variance
and avoiding over�tting. Given a standard training set D of size N , we generate L new
training sets Di also of size N � (N �< N) by sampling examples uniformly from D, and with
replacement. The L models are �tted using the above L bootstrap samples and combined
by voting (in case of classi�cation).

Base pairs are two nitrogenous bases (adenine and thymine or guanine and cytosine) or
strands of DNA which are held together in the shape of a double helix by weak hydrogen
bonds. The base pairs number is often used as a measure of length of an organism�s
genome.

Bioinformatics is the merger of biotechnology and information technology with the goal
of revealing new insights and principles in biology.

Bit Score is the value S� is derived from the raw alignment score S in which the statistical
properties of the scoring system used have been taken into account. Because bit scores
have been normalized with respect to the scoring system, they can be used to compare
alignment scores from di¤erent searches.

BLAST (Basic Local Alignment Search Tool): A sequence comparison algorithm opti-
mized for speed used to search sequence databases for optimal local alignments to a query.
For additional details, see one of the BLAST tutorials (Query or BLAST).

Boosting is a machine learning which occurs in stages, by incrementally adding to the
current learned function. At every stage, a weak learner (i.e., one that has an accuracy only
slightly greater than chance) is trained with the data. The output of the weak learner is
then added to the learned function, with some strength (proportional to how accurate the
weak learner is). Then, the data is reweighted: examples that the current learned function
gets wrong are "boosted" in importance, so that future weak learners will attempt to �x
the errors.

Bootstrapping: In statistics, is a modern, computer-intensive, general purpose approach
to statistical inference, falling within a broader class of resampling methods. It is used for
estimating the sampling distribution of an estimator by resampling with replacement from
the original sample, most often with the purpose of deriving estimates of standard errors
and con�dence intervals of a population parameter like a mean, median, proportion, odds
ratio, correlation coe¢cient or regression coe¢cient.

cDNA or Complementary DNA: DNA synthesized from a mature mRNA template.



Glossary of Terms

cDNA are often used as probes of microarray and in cloning.

Co-annotated Gene Group is a group of genes with the same annotation.

Co-expressed Gene Group is a group of genes with a common expression pro�le.

Co-expressed Genes are the genes that exhibit a common expression pro�le.

Coherent Gene Expression Patterns are patterns that characterize the collective trend
of the expression levels of a group of co-expressed genes.

Combination: In mathematics is a combination of r elements of a set is any subset of r
elements from the set without regard to order. If the set has n elements, then the number
of combinations of r elements is denoted by C(n; r).

Concatemer: A DNA segment composed of series of sequences linked end to end.

Concept: An abstract and general idea of something inferred from speci�c instances or
occurrences.

Contingency Tables are tables used in statistics to record and analyse the relationship
between two or more variables, most usually categorical variables.

Data Modeling is the process of structuring and organizing data. The data structures
are often implemented in a database management system.

DNA Replication is the process of copying a double-stranded DNA strand. Since DNA
strands are antiparallel and complementary, each strand can serve as a template for the
reproduction of the opposite strand. The template strand is preserved as a whole piece
and the new strand is assembled from nucleotide triphosphates.

Entropy: In information theory, entropy is a measure of the uncertainty associated with
a random variable introducted by Shannon. It can be interpreted as the average shortest
message length, in bits, that can be sent to communicate the true value of the random
variable to a recipient.

Expressed Gene is a gene which coding is transferred to the RNA molecule during the
transcription process.

Expressed Sequenced Tags (EST) is a short sub-sequence of a transcribed spliced
nucleotide sequence (either protein-coding or not). They are intended as a way to identify
gene transcripts, and are instrumental in gene discovery and gene sequence determination.

Fisher�s Exact Test: A statistical signi�cance test used in the analysis of categorical
data. It�s equivalent to the hypergeometric test. More details in [113].

Fuzzy Set Theory: Fuzzy sets are an extension of classical set theory and are used
in fuzzy logic. In classical set theory the membership of elements in relation to a set is
assessed in binary terms according to a given condition, i.e. an element either belongs
or not to the set. By contrast, fuzzy set theory permits the gradual assessment of the
membership of elements in relation to a set, it is usually described with a membership
function �! [0; 1].

Gene Annotation is a piece of biological information related to the gene that can be
relational, syntactical, functional, etc.

Gene Expression Pro�le is the outline of the sorted (in time, by experimental condition
etc.) expression measures of a gene.

Gene Ontology Level is the position of a gene annotation or GO term in the GO
hierarchie. For example a level of 4 means that it has three high level ancestors.

Gene Product is the biochemical material, either RNA or protein, resulting from expres-
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sion of a gene.

Genetic Map (also called linkage map): A chromosome map of a species or experi-
mental population that shows the position of its known genes and/or markers relative to
each other, rather than as speci�c physical points on each chromosome. A genetic map
is a map based on the frequencies of recombination between markers during crossover of
homologous chromosomes.

Gene Regulatory Network: (also called a GRN or genetic regulatory network) is a
collection of DNA segments in a cell which interact with each other (indirectly through
their RNA and protein expression products) and with other substances in the cell, thereby
governing the rates at which genes in the network are transcribed into mRNA.

Ground Truth: The actual facts of a situation, without errors introduced by sensors or
human perception and judgment.

Heteroduplexes are double-chained nucleic acid molecules (DNA-DNA or DNA-RNA)
which contain regions of nucleotide mismatches (non-complementary). They can be pro-
duced either by hybridization or by mutations.

Hybridization is the process of combining complementary, single-chained nucleic acids
into a single molecule.

Hybridization Probe is a short piece of DNA (on the order of 100-500 bases) that
is denatured (by heating) into single chains and then radioactively labeled, usually with
phosphorus (32P or 33P).

In Situ Synthesis takes place via a covalent reaction between the 5� hydroxyl group of
the sugar of the last nucleotide to be attached to the chip and the phosphate group of the
next nucleotide. Each nucelotide added to the oligonucleotide probe anchored to the glass
chip has a protective group at its 5� position. This protective group is then converted to
an hydroxyl group, using either acid or light [294].

Junk DNA is a region of DNA that usually consists of a repeating DNA sequence, does
not code for protein, and has no known function.

Messenger Ribonucleic Acid or mRNA is a molecule of RNA encoding a chemical
"blueprint" for a protein product. mRNA is transcribed from a DNA template, and carries
coding information to the sites of protein synthesis: the ribosomes.

Metabolic Pathway: In biochemistry, it consists of a series of chemical reactions occur-
ring within a cell, catalyzed by enzymes, resulting in either the formation of a metabolic
product to be used or stored by the cell, or the initiation of another metabolic pathway
(then called a �ux generating step). Many pathways are elaborate, and involve a step
by step modi�cation of the initial substance to shape it into the product with the exact
chemical structure desired.

Neural Networks: In machine learning, parallel distributed processing network, consists
of interconnected processing elements called nodes or neurons that work together to pro-
duce an output function. The output of a neural network relies on the cooperation of the
individual neurons within the network to operate. Processing of information by neural
networks is characteristically done in parallel rather than in series (or sequentially) as in
earlier binary computers.

NP-complete Problems: In Informatics, NP-complete problems are the most di¢cult
problems in NP ("non-deterministic polynomial time ") in the sense that they are the
smallest subclass of NP that could conceivably remain outside of P, the class of deter-



Glossary of Terms

ministic polynomial-time problems. The reason is that a deterministic, polynomial-time
solution to any NP-complete problem would also be a solution to every other problem in
NP. The complexity class consisting of all NP-complete problems is sometimes referred to
as NP-C.

Oligonucleotides are short sequences of nucleotides (RNA or DNA), typically with twenty
or fewer bases. Oligonucleotides are often used as probes for detecting complementary DNA
or RNA because they bind readily to their complements.

Organelle is a specialized substructure of the cell, such as a mitochondrion, Golgi complex,
lysosome, endoplasmic reticulum, ribosome, centriole, chloroplast, cilium, or �agellum.

Over�tting: In machine learning is the problem that occus when a supervised algorithm
adapts to the training samples too exactly, losing su¢cient ability to generalize in the
prediction of new samples.

Physical Maps represent the real arrangement of the sequences of ADN on the chromo-
somes.

Polymerase Chain Reaction (PCR) is a technique for enzymatically replicating DNA
without using a living organism. The technique allows a small amount of DNA to be
augmented exponentially. As PCR is an in vitro technique, it can be performed without
restrictions on the form of DNA, and it can be extensively modi�ed to perform a wide
array of genetic manipulations.

Principal Component Analysis (PCA) is a technique for simplifying a data set, by
reducing multidimensional data sets to lower dimensions for analysis. Technically speaking,
PCA is an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of the data comes to lie on the
�rst coordinate (called the �rst principal component), the second greatest variance on the
second coordinate, and so on. PCA can be used for dimensionality reduction in a data set
while retaining those characteristics of the data set that contribute most to its variance,
by keeping lower-order principal components and ignoring higher-order ones.

Proteomics is the large-scale study of proteins, particularly about their structures and
functions.

Restriction Enzymes are enzymes that catalyze the splitting of DNA at speci�c points
to produce discrete fragments.

RNA Polymerase II is an enzyme that polymerises ribonucleotides in accordance with
the information present in DNA.

RT-PCR is the nomenclature used to indicate the chip that use PCR for augmenting the
probes and reverse transcriptase for converting RNA target into DNA. So, they can be
hybridized on the chip.

Saccharomyces Cerevisiae is also called budding yeast, is the common yeast used in
baking ("baker�s yeast") and brewing ("brewer�s yeast").

Semantic Weight involves an heuristic measure of the interplay of concrete data with
theoretical concepts.

Sequence Tag is a detached fragmentary piece of DNA segment. It�s supposed that 14
bp tags occurs but once in the genome. Indeed, 14 bp was not long enough, and now
scientists use 17bp or even 21bp.

Sequencing is the process of determining the nucleotide order of a given DNA or RNA
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fragment.

Sequencing by Hybridization (SBH) is a class of methods for determining the order
in which nucleotides occur on a strand of DNA.

Signal-to-Noise Ratio (SNR) is an electrical engineering concept de�ned as the ratio
of a signal power to the noise power corrupting the signal. In microarray terms, signal-to-
noise ratio compares the intensity level of one colored dye to the level of its background
noise. The higher the ratio, the less obtrusive the background noise is.

Single-Gene Defects are genetic disorders determined by a single gene (mendelian dis-
orders). It may be autosomal or X-linked, dominant or recessive.

Single Nucleotide Polymorphism or SNP is a DNA sequence variation occurring
when a single nucleotide: A, T , C, or G - in the genome di¤ers between members of a
speciesor between paired chromosomes in an individual.

Target: In microarray speaking, target is a RNA or DNA sequence which represents (in a
transcriptional way) the biological studied issue in a tissue, often modi�ed by an external
stimulus. The implication is that a molecule is "hit" by a signal and its behavior is thereby
changed.

Test and Reference Samples are the two common divisions in epidemiological studies.
In gene expression technologies speaking: test samples are the ones that own the studied
aim (disease tissue, treated tissue, mutated tissue etc.) and the reference sample is the
one that owns the starting point. (normal tissue, non-treated tissue, non-mutated tissue).

Transaction: In data-mining, it refers to the operations made in Market Basket Analysis
MBA domain. MBA extracts associations among products that are frequently sold together
in the same transation (market basket). Thus, data-mining transaction term it�s di¤erent
from the transaction database term.

Transfer RNA or tRNA is a small RNA chain (73-93 nucleotides) that transfers a
speci�c amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis
during translation.

Z-score Test is an statistical test based in the normal distribution using the normal
score as statistic. Normal score statistic is a dimensionless quantity derived by subtracting
the population mean from an individual score and then dividing the di¤erence by the
population standard deviation.
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The reference for the terms containing in this glossary are marked with small caps.

ArrayExpress: http://www.ebi.ac.uk/arrayexpress/

Biobase (bibliographic database of the worldwide biological research):
http://www.elsevier.com/wps/�nd/bibliographic_browse.cws_home

BioConductor is an open source and open development software project for the analysis
and comprehension of genomic data:
http://www.bioconductor.org/

BioGRID: http://www.thebiogrid.org

Biosis (Biology browser): http://www.biologybrowser.org/

BMRB contains data derived from NMR spectroscopic investigations of biological macro-
molecules: http://www.bmrb.wisc.edu/

CCD (The Conserved Domain Database) contains protein domain models from several
databases, such as Smart and Pfam:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd

CGAP (Cancer Genome Anatomy Project):
http://cgap.nci.nih.gov/Chromosomes/Mitelman

CGC (Cancer Gene Census):
http://www.sanger.ac.uk/genetics/CGP/Census/

Clementine (SPSS): http://www.spss.com/clementine

COGs Clusters of Orthologous Groups of proteins:
http://www.ncbi.nlm.nih.gov/COG/

dbEST (Expressed Sequence Tags database):
http://www.ncbi.nlm.nih.gov/dbEST/index.html

DDBJ (DNA data bank of Japan): http://www.ddbj.nig.ac.jp/

EMBL (Nucleotide Sequence Database): http://www.ebi.ac.uk/embl/

Ensembl Project: http://www.ensembl.org/index.html

European Bioinformatics Institute (EBI): http://www.ebi.ac.uk/

Flybase: http://�ybase.bio.indiana.edu/

GenBank: http://www.ncbi.nlm.nih.gov/Genbank/

Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/

Gene Ontology (GO) project: http://www.geneontology.org/

GeneCards: http://www.genecards.org

GenMapp: http://www.genmapp.org

GenomeProject:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj
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Genomes:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genom

GGEG (Global Gene Expression Group):
http://sciencepark.mdanderson.org/ggeg

GO compendium: http://www.geneontology.org/GO.tools.shtml

GO Database: http://www.godatabase.org/dev/database/

HomoloGene:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene

HPI (The human proteome Initiative): http://www.expasy.ch/sprot/hpi/

HUGO Human Nomenclature Committee:
http://www.gene.ucl.ac.uk/nomenclature/HUGO

Human Developmental Anatomy: http://www.ana.ed.ac.uk/anatomy/humat/

Human Genome Database: http://www.gdb.org/

Human Genome Project:
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

Institute de Pharmacologie Moleculaire et Cellulaire (IMPC):
http://www.ipmc.cnrs.fr

Interpro: http://www.ebi.ac.uk/interpro/

IPI (International Protein Index): http://www.ebi.ac.uk/IPI/IPIhelp.html

KEGG: http://www.genome.jp/kegg

LinKBase: http://www.landcglobal.com/pages/linkbase.php

MeSH: http://www.nlm.nih.gov/mesh

MIAME: http://www.nature.com/supplementary_info/

MIPS (Munich Information Center for Protein Sequences):
http://mips.gsf.de/

Mouse Atlas Project: http://genex.hgu.mrc.ac.uk/

Mouse Genome consortium: http://www.sanger.ac.uk/Projects/M_musculus/

MSD-EBI is the european project for the collection, management and distribution of data
about macromolecular structures: http://www.ebi.ac.uk/msd/

National Center for Biotechnology information (NCBI):
http://www.ncbi.nlm.nih.gov/

National Institute of Health (NIH) is the US departement of health and human
services: http://www.nih.gov/

NCBI taxonomy:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy

NCBI-GEO: http://www.ncbi.nlm.nih.gov/projects/SAGE/

NetAFFX: http://www.a¤ymetrix.com/analysis

Nucleotide: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide

Online Mendelian Inheritance in Man is a catalog of human genes and genetic dis-
orders: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

PDB: http://www.pdb.org/pdb/home/home.do

PDBj (Protein Data Bank Japan): http://www.pdbj.org/
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Pfam (Protein families of alignments and HMMs):
http://www.sanger.ac.uk/Software/Pfam/

Pubmed browser:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed

Pubmed/Medline:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed

PubMed: http://www.pubmed.gov

RefSeq (Reference Sequence): http://www.ncbi.nlm.nih.gov/RefSeq/

SAGE libraries: Two sites centralized all libraries:
http://www.ncbi.nlm.nih.gov/SAGE/index.cgi and
http://cgap.nci.nih.gov/SAGE (cancer studies).

SAGE map resources repository:
http://www.ncbi.nlm.nih.gov/projects/SAGE

SAGElyzer: http://www.bioconductor.org/repository/devel/package/
html/SAGElyzer.html

SAGEmap: http://www.ncbi.nlm.nih.gov/projects/SAGE/

SAM (Significance Analysis of Microarrays ):
http://otl.stanford.edu/industry/resources/sam.html

SAM open source program: http://www-stat.stanford.edu/~tibs/SAM

SGD (Saccharomyces Genome Database): http://www.yeastgenome.org/

SGD�s file of phenotype: ftp://genome-ftp.stanford.edu/pub/yeast/
data_download/literature_curation/phenotypes.tab

SGD�s manually curated papers: ftp://genome-ftp.stanford.edu/pub/yeast/
data_download/literature_curation/gene_literature.tab

STACK project hosted and managed by South African National Bioinformatics Institute:
http://ww2.sanbi.ac.za/Dbases.html

Stanford Microarray Database: http://smd.stanford.edu/

Swissprot( Swiss Protein Knowledge): http://expasy.org/sprot/

TIGR (from Institute for Genomic Research): http://www.tigr.org/

Tools to analyze SAGE data: For human and mouse data, tools:
http://cgap.nci.nih.gov/SAGE. For yeast data at:
http://www.yeastgenome.org/help/querySAGE.html, yeast.

UMLS: http://umlsinfo.nlm.nih.gov/

UniGene (An organized view of the transcriptome):
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

Uniprot(Universal Protein Resource):
http://www.ebi.uniprot.org/index.shtml

Woldwide protein data bank: http://www.wwpdb.org/
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Chapter 1

Principles of Life in Molecular Biology

and Gene Expression Technologies

The study of life has been one of the major goals for humanity. Since the earlier times, humans

wanted to solve the mystery of life. Recurrent questions have been asked by human: How do

the living organisms work? What are their components? Before answering this questions they

began to describe the organisms and classify them into complex taxonomies. In the beginning

of the nineteenth century, humans began to study cells and tissues of di¤erent organisms

making possible the functional accounts of physiology. The revolution in biology over the last

three decades resulted from understanding cells in terms of their chemistry [155].

These insights began with descriptions of molecules involved in living processes and

providing an understanding of molecular structures and functions that are the key objects

and actions of all organisms. More and more of the functions of life (e.g. cell division, immune

reaction, neural transmission) are coming to be understood as the interactions of complicated,

self-regulating networks of chemical reactions. The genetic material of the cell, speci�es how

to create proteins, as well as when and how much to create. Despite the complexity of these

functions and components, insights in them are emerging rapidly. One of the reasons for

that progress is the conception of life as a kind of information processing [155]. Thus, living

systems are continuously acting guided by a set of instructions. These instructions are coded

in 4 molecular letters (bases): adenine (A), guanine (G), cytosine (C) and thymine (T ).

The new �eld created by this new conception of life is named bioinformatics. As de-

�ne by the National Institute of Health (NIH), bioinformatics consists of "research,

development, or application of computational tools and approaches for expanding the use of

biological, medical, behavioral or health data, including those to acquire, store, organize, or

visualize such data". Thus, we can summarize bioinformatics as the science that studies

computer databases and data mining algorithms to analyze proteins, genes, and complete

collections of deoxyribonucleic acid (DNA) on a genome-wide level [238].

The last decade has seen a fast development of biological technologies. One of their

huge results is the complete sequencing? of many important organisms. For example: the

�rst sequenced genome of a organism with 1,830,137 base pairs?: Haemophilus in�uenza

[117], the �rst eukaryotic genome with 12,068 kilo bases: Saccharomyces cerevisiae [131], the

fruit �y, Drosophila melanogaster, with 120 mega bases [2] and many more specially microbial

genomes. In 2003, the human genome project was completed obtaining 3 giga base pairs.

Today the goal consists on understanding the functions hidden in the genome sequence, this

period of time is also known as post-genomic era.
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An essential challenge in the post-genomic era is the management and analysis of huge

quantities of sequence data. The purpose of any organizational schema would be to provide

biologists with a full catalog of genes and their functions used to assemble a living creature

[171]. Recently, the advances in gene expression technologies have made it possible to monitor

the expression levels? of thousands of genes in parallel. These technologies o¤er the �rst

promising tool for addressing the challenges of the post-genomic era, by providing a systematic

way to evaluate variations in DNA and RNA.

This chapter is divided in three sections: the �rst one provides a brief introduction to

the salient characteristics of organisms, cells, nucleic acids, genes and their study under the

optics of gene expression technologies in bioinformatics �eld. The second section describes

the gene expression technology principles and it explains the di¤erent types of gene expression

technologies: microarray and SAGE. It concludes with the presentation of several important

applications of these technologies.

1.1 The Molecular Building Blocks of Life

The reader�s understanding of the material discussed in the following chapters needs some

familiarity with the molecular biology fundamentals of life. This section is intended to provide

a basic background of this science; it is not a full explanation of the subject. Here, we explain

some basic concepts knowing that there are few strict rules in this �eld, furthermore, these

rules have exceptions. Therefore, this general presentation will not explore deviations and

variations of the general principles studied here. For a more in-depth examination of molecular

biology, readers can see: Science of Biology [245], Genes [178], Molecular Biology [314] and

Computational Molecular Biology [274].

This section is organized as follows: the �rst sections de�ne the molecular biology

fundamentals of life as cells, proteins, nucleic acids as DNA and RNA, chromosomes, then,

we present the central dogma of molecular biology, �nally, we explain the protein synthesis

process focusing in the information �ow from gene to protein, emphasizing the transcription

process, thus gene expression.

1.1.1Organisms and cells

All organisms are constituted of cells, which can be decomposed into organelles, these organelles?

into molecules, and so downward into smaller structures. The chemical composition of a cell

is constant over his entire life. About 70% of any cell is water. About 4% are sugars and in-

organic ions. Proteins make up from 15% to 20% of the cell. DNA and RNA range from 2%

to 7% of the cell weight. The cell membranes, lipids and other similar molecules make up the

remaining 4% to 7%. [6].

The Cell Theory [292] states three main principles:

1. All living things are composed of one or more cells

2. Cells are basic units of structure and function in an organism.

3. Cells come only from the reproduction of existing cells.
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FIG. 1.1: Structure of a prokaryote cell

There are two types of cells: eukaryotes and prokaryotes, which are distinguished by

their size and the type of internal structures or organelles that they contain, such as a mito-

chondrion, golgi complex, lysosome, endoplasmic reticulum, ribosome, chloroplast, etc. The

structurally simpler prokaryotic cells are represented by bacteria and blue algae. However,

most organisms which we can see as yeast, mushrooms, trees, butter�ies, bats, dogs and hu-

mans consist of structurally more complex eukaryotic cells [162]. The distinction between

these two kinds of cells is rather important, because many of the cellular building blocks and

processes are quite di¤erent between them [162].

The internal structure and functions of eukaryotic cells are much more complex than

those of prokaryotic ones. Figure 1.1 and 1.2 show the internal structures of a prokaryotic

and an eukaryotic cell. Both cells contain a nuclear region which houses the cell�s genetic

material. The genetic material, DNA, of a prokaryotic cell is present in the nucleoid, which

is a poorly-demarcated region of the cell, see Fig. 1.1. In contrast, eukaryotic cells possess

a nucleus, a region bounded by a complex membranous structure called nuclear envelope, see

Fig. 1.2. This di¤erence in nuclear structure is the basis for the cells prokaryotic (pro =

before, karyon = nucleus) and eukaryotic (eu = true, karyon = nucleus [162]. In Fig.

1.3, we shows the structure of an eukaryotic nucleus and some of their main components as

nucleolus and chromosomes. In the body of the nucleus is the chromosome territory and next

to the nuclear lamina is the transcription site, as seen in Fig. 1.3.

Both prokaryotic and eukaryotic cells share a similar molecular chemistry. The most

important molecules in the chemistry of life are proteins and nucleic acids. Speaking roughly,

proteins determine what a living being is and does in a physical sense, while nucleic acids are

responsible for encoding the genetic information and passing it along to subsequent genera-

tions [274].
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FIG. 1.2: Structure of an eukaryotic cell

FIG. 1.3: Structure of a nucleus (Image from http://spectorlab.cshl.edu/index.html
with permission of the author)
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1.1.2Molecules of life

There are four basic types of molecules involved in life: small molecules and macromolecules:

proteins, DNA and RNA. In the following sections, we provide a brief description of these

four kind of molecules.

1.1.2.1 Small molecules

Small molecules as water, sugars, fatty acids, amino acids and nucleotides can play di¤erent

and independent roles. They are responsible for signal transmission, source of energy or ma-

terial for a cell and even can be the building blocks of the three macromolecules mentioned

above. For instance, there are 20 di¤erent amino acids molecules (see Table 1.1) that occur

in nature, these molecules are the building blocks of proteins. Every amino acid is organized

around a central carbon atom or alpha carbon. Other components of an amino acid include a

hydrogen atom, an amino group NH2, a carboxyl group COOH and a side chain R� group
[245]. In Fig. 1.4 we show the structure of an amino acid. All living things (and even viruses,

which do not fully meet "life" criteria) are made of various combinations of the same twenty

amino acids.
# Name One-letter abrev. Three letter abrev
1 Alanine A Ala
2 Cysteine C Cys
3 Aspartic Acid D Asp
4 Glutamic Acid E Glu
5 Phenylalanine F Phe
6 Glycine G Gly
7 Histide H His
8 Isoleucine I Ile
9 Lysine K Lys
10 Leucine L Leu
11 Methionine M Met
12 Asparagine N Asn
13 Proline P Pro
14 Glutamine Q Gln
15 Arginine R Arg
16 Serine S Ser
17 Threonine T Thr
18 Valine V Val
19 Tryptophan W Trp
20 Tyrosine Y Tyr

TABLE 1.1: The twenty amino acids commonly found in proteins.

1.1.2.2 Proteins

According the famous sentence of scientist Russell Doolittle "We are proteins", proteins are

the main building blocks and functional molecules of the cell, taking almost 20% of an eukary-

otic cell�s weight. Structurally, proteins are polypeptidic sequences, that is chain of amino
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FIG. 1.4: General structure of an amino acid

FIG. 1.5: Formation of a peptide bond between two amino acids by the dehydration of
the amino end of one amino acid and the acid end of the other amino acid

acids which are linked together by peptide bonds (chemical bonds formed between the car-

boxyl groups and amino groups of neighboring amino acids). In Fig. 1.5 we show a peptide

bond between two amino acids.

The sequence of molecules in a polypeptide is called the primary structure of a pro-

tein (see Fig. 1.6). This primary structure folds in three dimensions resulting in secondary,

tertiary and quaternary structures. The three-dimensional shape of a protein determines its

function. In Fig. 1.7 we can see three di¤erent tridimensional representations of the structure

a protein. Structural biologists think that currently there are about 1,500 di¤erent represen-

tative protein structures known. Predicting protein structure from the amino acid sequence

is the most important proteomics? problem in bioinformatics. For example, structural pro-

teins, such as collagens, perform a variety of functions in living things as building tendons,

connecting tissues, moving corneas etc.

There are several types of proteins: structural proteins that form part of a cellular

structure, enzymes which catalyze almost all biochemical reactions occurring within a cell,

regulatory proteins that control the expression of genes or the activity of other proteins, and

transport proteins that carry other molecules across the cell membrane or around the body

[10]. Figure 1.7 shows three possible representations of the three-dimensional structure

of the protein triose phosphate isomerase. Left: all-atom representation colored by atom

type. Middle: simpli�ed representation illustrating the backbone conformation, colored by

secondary structure. Right: Solvent-accessible surface representation colored by residue type

(acidic residues red, basic residues blue, polar residues green, nonpolar residues white).
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FIG. 1.6: Primary structure of a protein formed of amino acids chains and bound by
peptide bonds

FIG. 1.7: Di¤erent views of the tridimensional representation of a protein.
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FIG. 1.8: Double helix structure of DNA composed of 4 bases: A, G, C and T.

1.1.2.3Nucleic acids

Nucleic acids encode the information necessary to produce proteins and are responsible for

passing along this "code" to subsequent generations [274]. There are two basic types of nucleic

acid: desoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The polypeptidic sequence

(chains of amino acids joined together by peptide bonds) which forms the primary structure

of a protein is directly related to the sequence of information in the RNA molecule, which,

in turn, is a copy of the information in the DNA molecule, as stated in the central dogma of

molecular biology (explained below).

DNA

DNA is a nucleic acid that carries the main information in a cell. It consists of two long

strands of small molecules called nucleotides twisted into a helical structure and joined by

hydrogen bonds (see Fig. 1.8).

Nucleotides are composed of three functional groups: a base, a sugar and a phosphate,

however there are often referred next to the name of their base component. There are four

di¤erent bases grouped into two types, purines: adenosine (A) and guanine (G) and pyrim-

idines: cytosine (C) and thymine (T ) (see Fig. 1.8). The lector should notice that bases and

nucleotides are not synonymous.

A single DNA strand has an orientation determined by the number of the carbon atoms,

which, by convention starts at the 50 end and �nishes at the 30 end, with the coding strand at

top [274]. Two such strands are called complementary, if one can be obtained from the other
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FIG. 1.9: Pairs of complementary bases form hydrogen bonds that hold the two strands
of the DNA double helix together
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by mutually exchanging A with T and C with G, and changing the direction of the molecule

to the opposite (see Fig. 1.9)

DNA molecules are tied together with bases to the center (like steps on a ladder) and

sugar-phosphate units along the sides of the helix (see Fig. 1.9). This double helix structure

was discovered by Watson and Crick in 1953 (later on they got the Nobel prize for this

discovery). The bases on the two strands are paired according to the complementary base

pairing rules (also called Watson-Crick) base pairing rules): adenine (base A) only pairs with

thymine (base T ), and guanine (base G) only pairs with cytosine (base C) (see Fig. 1.9).

The pairs are called base pairs, they provide the unit of length most frequently used when

referring to DNA molecules and it is abbreviated in bp. Thus, we can state that a certain

piece of DNA is 95,000 bp long, or 95kbp [274]. Although each individual bond is weak, the

cumulative e¤ect of many such bonds is su¢ciently strong to bind the strands tightly together.

So, DNA is chemically inert and is a generally stable carrier of genetic information [10].

As mentioned above, each DNA strand runs in a 50 to 30 orientation, they are antipar-

allel and complementary (see Fig. 1.9). As a consequence, it is possible to infer the sequence

of one strand if we know the sequence of the other through an operation called reverse com-

plementation. For example, given the strand c = AGCTAAC in the 50 to 30 orientation, we

�rst reverse c by ci = CAATCGA, and then we apply the complementary base pairing rules

of Watson-Crick obtaining cp = GTTAGCT , which is the reverse compliment of the strand c

[274].

This reverse complementation is precisely the mechanism that allows DNA in a cell

to replicate. When the structure of DNA was deduced, it was understood that the comple-

mentary structure of the DNA molecule would allow exact self-replication, that means that

information could be passed on from generation to generation [10].

RNA

RNA molecules are similar to DNA molecules, with the following basic compositional and

structural di¤erences [274]:

� The sugar component of RNA is ribose and not deoxyribose.

� In RNA, thymine (T ) is replaced by uracil (U), which also binds with adenine (see Fig.

1.11).

� RNA does not form a double helix. RNA-DNA hybrid helices sometimes occur, or parts

of an RNA molecule may bind to other parts of the same molecule by complementarity.

The three-dimensional structure of RNA is far more varied than that of DNA (see Fig.

1.10).

DNA and RNA also di¤er in that while DNA performs essentially one function (that

of encoding informations), cells contain a variety of RNA types, as mRNA and tRNA, each

performing di¤erent functions [274].

There is a hypothesis that life on earth may have been RNA based. RNA can encode

genetic information, is replicable, forms complex 3D structures (see Fig. 1.10) and can
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FIG. 1.10: Three dimensional representation of RNA

FIG. 1.11: Di¤erences between RNA and DNA.
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also act as a catalyst for certain chemical reactions related to splicing (protein synthesis is

explained below) [49]. The next section will focus on DNA encoding mechanism and genes.

1.1.2.4Genome, genes and genetic code

Each cell of an organism has one or more DNA molecules. Each DNA molecule forms a chro-

mosome (see Fig. 1.12). The complete set of chromosomes in a cell is called a genome.

All organisms have genomes and they are believed to encode almost all the hereditary infor-

mation of the organism. All cells in a organism contain identical genomes (with few rather

special exceptions) as a result of DNA replication? at each cell division. In eukaryotes, chro-

mosomes are in the nucleus, which is not the case of prokaryotes which contain chromosomes

in the cytoplasm (see Fig. 1.3 and Fig. 1.1 respectively). For example, every cell in humans

has 46 chromosomes, in fruit �ies 8 chromosomes and 32 chromosomes in yeast.

A DNA molecule contains certain contiguous stretches which encode information for

building proteins. However, some portions of the DNA molecule do not contain encoded

information but rather are termed junk? DNA. In this thesis3, a gene is a continuous stretch

of a genomic DNA molecule, which contains the information necessary (encoded as a strand

of A, T, G and C bases) to build a particular type of protein or many di¤erent proteins or

even a RNA molecule (see Fig. 1.12) This de�nition is not precise, and to better understand

it we need to describe the molecular machinery making proteins based on the information

encoded in genes. In Fig. 1.12 it is shown the internal DNA structure of a chromosome

contained in the nucleus of a cell, as well as a fragment of DNA which encodes for at least a

protein, this fragment is well known as gene.

The mechanism by which genes specify the sequence of amino acids in a protein is called

genetic code. Speci�cally, a triplet of nucleotides or bases is used to characterize each amino

acid. Such a triplet is called a codon. Given the four base types, the total number of possible

base combination within triplets is 4 � 4 � 4 = 64. However, these 64 combinations can only
refer to the 20 existent amino acids. There is therefore redundancy in coding, and several

di¤erent triplets will correspond to the same amino acid. For example, AAG and AAA code

for lysine. Moreover, the three codon: TGA, TAG and TAA) do not code for any amino acid.

Such redundancy is actually a valuable feature of the genetic code, rendering it more robust

in the event of small errors in the protein synthesis process.

The next section explains the fondamental dogma of molecular biology that describes

the information �ow from DNA via RNA and thus to the proteins, which are the molecules

of life.

1.1.3The central dogma of molecular biology

The Central Dogma of Molecular Biology was �rst described by Crick in 1958, while studying

the DNA molecules functions. As stated by Crick: "DNA is responsible for two basic functions

of every living organism: replication and protein synthesis". The �rst is the basis of the

3 There are many discussions between biologists to �nd a comprehensive unique de�nition of a gene. In
fact, there exist several de�nitions of what a gene is.
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FIG. 1.12: Chromosomes, DNA and genes.
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transmission of information from cell to cell via the cellular reproduction process. The second

is the essence of living, i.e. encoding the information necessary to build each protein found

in an organism.

In 1970 Crick [82] have formalized the so-called central dogma of molecular biology,

which describes the information �ow from DNA via RNA and thus to the protein, this process

includes the following four major points :

1. The information contained in DNA is duplicated via the replication process4.

2. DNA directs the production of encoded messenger RNA? (mRNA) through a process

called transcription.

3. In eukaryotic cells, the mRNA is then processed by splicing and it migrates from the

nucleus to the cytoplasm of the cell.

4. In the �nal stage of the information-transfer process, messenger RNA carries the

encoded information to protein-synthesizing structures called ribosomes. Through a

process called translation, the ribosomes use this coded information to direct protein

synthesis.

The �rst point concerns the replication process that makes possible the transmission of

hereditary information from cell to cell in the reproduction process as seen in Fig. 1.13. The

three last points (2-4) represented by transcription, splicing, translation and protein synthesis

constitute the four major steps for protein synthesis as seen in Fig. 1.13 and Fig. 1.14.

The third point is achieved only by eukaryotic cells, not by prokaryotic cells that pass from

transcription to translation directly.

In Fig. 1.13 we show the general information �ow (with blue arrows) of a living or-

ganism. All the DNA in each cell is reproduced via the replication process and all the living

processes are built via the DNA-RNA-Protein process as stated in the central dogma of mole-

cular biology. In red arrows we show some special information �ow processes accomplished

by viruses only, lower life forms as prokaryotes and laboratory experiences.

The protein synthesis process has four essential stages, as stated in points 2-4 of the

central dogma of molecular biology, which are: transcription, splicing, translation and protein

synthesis (see Fig. 1.14). These steps are discussed in the next sections.

Transcription and Gene Expression

Transcription is the process of copying one DNA strand into a complementary mRNA (m

stands for messenger) by the protein complex RNA polymerase II?. During transcription

process, genes play the role of copy templates and they are expressed, when its

coding is transferred to an RNA molecule (see Fig. 1.14).

To initiate a transcription process, the DNA double helix is opened at the starting point

50. Only one DNA strand serves as a template strand. Then RNA polymerase II enzyme

4 DNA replication or DNA synthesis is the process of copying a double-stranded DNA strand. Since
DNA strands are antiparallel and complementary, each strand can serve as a template for the reproduction
of the opposite strand. The template strand is preserved as a whole piece and the new strand is assembled
from nucleotide triphosphates.
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FIG. 1.13: Central dogma of molecular biology
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FIG. 1.14: Protein synthesis process as stated by the central dogma of molecular biology:
transcription, splicing, translation and protein synthesis

copies from the start point 50 to the �nal point 30 the information contained in the single

DNA strand into an preliminary PmRNA molecule (see Fig. 1.14). This polymerization

process consists in linking together complementary ribonucleotides to the template strand

until the stop signal is reached. The resulting preliminary mRNA molecule contains the same

ribonucleotide sequence as the DNA strand, with the base U substituted by T (see Fig. 1.11).

Transcription as described above is valid for prokaryotes and eukaryotes. Nevertheless,

eukaryotes need an middle step before translation step, named splicing step.

Splicing

In eukaryotes, genomic DNA that corresponds to the coding part of genes is not continuous,

but consists of exons and introns (see Fig. 1.12). Exons are the part of the gene that code

for proteins and they are interspersed with non coding introns. After transcription process,

the introns are removed out from the preliminary mRNA through the splicing process. The

result of splicing is the mRNA molecule (see Fig. 1.14). Alternative splicing occurs when

the same genomic DNA can give rise to two or more di¤erent mRNA molecules on the basis

of alternative selection of introns and exons, generally resulting in the production of di¤erent

proteins (please refer to [178] for details of introns, exons and splicing).

In genetics, genomic DNA is the entire gene or sequence as found in the chromosomes.

The spliced sequence made up exons only is named complementary DNA or cDNA. The

cDNA can be obtained through a reverse transcription process, which transforms mRNA

back into cDNA.
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Translation and Protein Synthesis

Once the transcription process has generated properly-encoded mRNA, the translation process

which synthesizes proteins is initiated. Translation is the process of producing proteins by

joining together amino acids in the order given by the mRNA (see Fig. 1.14). This process

takes place in the cytoplasm where the mRNA interacts with ribosomes, which are large

complexes of proteins and RNA molecules (precise interactions and functions of all proteins

in ribosomes are not yet fully understood).

This process begins by the tRNA? or transfer RNA making possible the connection

between a codon of the mRNA and the corresponding amino acid (contained in the ribosome).

Each tRNA molecule has, on one side, an anticodon that has high a¢nity for a speci�c codon

and, on the other side, an amino acid attachment site that binds easily to the corresponding

amino acid. The attached amino acid falls in place just next to the previous amino acid in

the protein chain being formed. After the translation of information from genetic codons to

amino acids is �nished the protein synthesis process begins (see Fig. 1.14).

In protein synthesis, a suitable enzyme catalyzes the addition of the current translated

amino acid to the protein chain, releasing it from the tRNA. In this way, a protein is con-

structed amino acid by amino acid. When a stop codon appears, no tRNA associates with

it and the synthesis ends. The messenger RNA is released and degrades by cell mechanisms

into ribonucleotides, which will then be recycled to make other RNA [274] (see Fig. 1.14).

Until recently, biologists used to believe in the paradigm "One gene implies one protein".

Now this assertion is known to be false. Due to alternative splicing and post-translational

modi�cations one gene can produce a variety of proteins. There are also genes that do not

encode proteins but RNA (for instance tRNA and ribosomal RNA) [49].

1.2 Gene Expression Technologies: Microarray and SAGE

It is widely believed that genes and their products? in a given living organism work in a

complex and orchestrated way that creates life. One of the main challenges for gene expression

technologies is to discover the hidden information and knowledge contained in the expressed

genes while they are coding for any biological process A gene is expressed when its coding

is transferred to an RNA molecule, through the transcription process (explained in section

1.1.2).

In past years (early nineties) traditional methods in molecular biology generally worked

"on a one gene in one experiment basis", which means that the throughput is very limited

and the "whole picture" of the gene functions and interactions was di¢cult to obtain [208].

The recent development of high-throughput micro-technologies has changed the experimental

limits for gene expression quanti�cation. In this manner, the expression levels of thousands

of genes under tens of biological conditions can be monitored using high throughput gene ex-

pression technologies. Among these technologies we have: Microarray or DNA chips (spotted

cDNA chips or in situ DNA chips) and SAGE (Serial Analysis of Gene Expression).These two

technologies quantify the gene expression while the transcription molecular process. Never-
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theless, microarray is based on hybridization? of DNA complementary strands, whereas SAGE

is based on sequencing? sampling technique.

In this thesis we have mainly focused in microarray technology because of their inherent

advantages over SAGE technology for many biological application (explained in the next

sections).

In this section we brie�y explain the gene expression technologies characteristics, fo-

cusing in the microarray technology5. First, we make a brief introduction to microarray and

we describe the two main groups: spotted cDNA chips and in situ DNA chips. Next, we

explain the four basic steps for microarray experiments: manufacture, sample preparation

and labelling, hybridization, image scanning and processing. Finally, we explain the SAGE

gene expression technology. Since now we will use the generic term of microarray to refer the

sequencing by hybridization technology.

1.2.1Microarray technology

In the most general form, a microarray or DNA chip is a solid support or chip made of

nylon membrane, glass or plastic (or some other material). Usually, the chip is structured

in a regular grid-like pattern. Segments of DNA strands are either deposited or synthesized

within individual grids. These individual grids are normally �xed locations or spots. Each one

of the spots contains a single de�ned species of a nucleic acid strand. Microarray technology

is based on hybridization of nucleic acids [314]. In this technology, sequence complementarity

leads to the hybridization between two single-stranded nucleic acid molecules, one of which

is immobilized on a solid support ([289]). We can see the whole microarray process in Fig.

1.17.

Microarray is a generic term used to any gene expression technology that uses the

sequencing by hybridization technique which contains about 102 � 108 DNA molecules (or

fragments of DNA) by spot and tens to thousands of spots by chip. Microarray term is used

in opposition to the old macroarray technology.[208]. For gene expression studies, each of

these molecules ideally should identify one gene or one exon in the genome. The �rst DNA

chip containing all the genome of an organism was the Saccharomyces cerevisiae? or budding

yeast with about 6000 genes, have been available since 1997. DNA chips are high throughput

technologies that allow scientists to analyze the expression of thousands of genes in a single

experiment. They represent a major advance and a powerful tool to understand organism

processes and many others applications (more details in section 1.3).

Modern microarray technology originated from Southern blot in 1988 (named after E.

Southern british biologist). This technique employs radioactively labeled DNA (or RNA)

hybridization probes? to identify very similar DNA sequences placed on a nitrocellulose �lter

called a blot [289]. Similar techniques are the Northern blot and the Western blot, which,

respectively, employ RNA strands and proteins in place of DNA sequences [334]. McLachlan

[208] brie�y reviewed the history of the microarray technology. In the 1980�s, a group led

by R. P. Ekins was the �rst to use simple microspotting techniques to manufacture chips

5 In this thesis we have mainly used microarray datasets for testing our interpretation models developped
in the last chapters. The principal reason is the advantages presented by these tehnologies.
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for high sensitivity immunoassay studies [108]. Numerous groups of researchers have further

contributed to this technology. In 1987 the �rst patent on sequencing by hybridization? (SBH)

has been done by R. Drmanac. In the late eighties, a patent battle over microarray technology

began. Thus, companies as Southern, A¤ymetrix, HySeq, Ho¤man, LA Roche, Abbot fought

to obtain the microarray patent rights. Since the late nineties, numerous commercial entities

and academic groups have contributed to advancements in microarray [120]. The fruits of

these contributions are several technologies based in the SBH principle, but with technical

di¤erences in the manufacturing process.

One of the most common sources of confusion in microarray technology is the unclear

use of the name because di¤erent types of microarray technologies are referred to with the

same name. Furthermore, particular and general names may be used indistinctly. There are

generic di¤erent names for microarray technology as DNA chips, DNA/RNA arrays, Biochips,

GeneChips, Genome Chips, Gene arrays etc.

More particular names are given according to di¤erent parameters within microarray

technology such as the manufacture process or the type of hybridization probe. If we refer

to the manufacture process, microarray technologies are divided in two main approaches:

spotting and in situ synthesis [270, 187, 271]. The spotting can be done with prefabricated

oligonucleotides? or with PCR? products as probes. The spotting with PCR reaction is known

as: RT-PCR, cDNA chips, spotted chips, spotted arrays. The spotting of oligonucleotides is

known as: oligonucleotides chips, spotted chips, spotted arrays. In situ synthesis technology

is always made with oligonucleotides as probes and it is synthesized by photolithography, ink

jet printing and electrochemical synthesis. In situ synthesis of oligonucleotides is known as

oligonucleotides chips, in situ chips and even by name of the enterprise that manufactures

them: A¤ymetrix chips (that is the most used nowadays), Agilent chips, and so on. [98].

In order to avoid name confusion in this thesis we use the following agreements:

� The term for DNA chip is microarray.

� The term for spotted chip and in situ chip are the two general kinds of microarray.

� The term for spotted chip using PCR products as probes is RT-PCR? chip.

� The term for spotted chip using oligonucleotides as probes is spotted oligos-chip

� The term for in situ chip is in situ oligos-chip. In the case of a particular in situ chip we

refer to as A¤ymetrix chip, Agilent chip etc.

In the next section, we describe the two main approaches to manufacture the microarray

chips: deposition of DNA fragments by robotic spotting and in situ sythesis [172]. We explain

brie�y the characteristics of each of these manufacture technologies. We focus on the two

currently most widely-used chips: the spotted chip and in situ oligos-chip, as examples of the

spotting and in situ manufactures.
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FIG. 1.15: Manufactured DNA chip within thousands of spotted probes in it.

1.2.1.1 Spotted chips manufacture

Manufacturing by robotic spotting may proceed through the deposition of PCR cDNA? clones

or the printing of already synthesized oligonucleotides. Figure 1.15 shows a manufactured

spotted chip with thousands of spotted probes.

The manufacturing of spotted chips involves three steps: selection of DNA probes6,

preparation of the probes, and the printing process (as seen in the �rst column of Fig. 1.17).

Here, we explain this three-step process in the case of RT-PCR chips.

Selection of DNA probes

The choice of probes to be included in the chip depends on their biological application and the

availability of the chosen sequences in the databases. In many cases, they are taken directly

from sequence databases as the GenBank [29], dbEST [40], and UniGene [273], the resource

of the microarray technologies [45, 104] (see Fig. 1.17).

Preparation of the probes

cDNA probes are prepared apart from the chip. Probes are PCR products. PCR technique

creates billions of copies of speci�c fragments of DNA from a single DNA molecule. Then, the

PCR products are partially puri�ed by precipitation to remove salts, detergents and proteins

present in the PCR cocktail [104] (see Fig. 1.17).

6 In this chapter, we use the nomenclature proposed by Duggan [104] and refer to the DNA on the chip
as probes and to the labeled DNA in solution as target.
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Printing Process

Robots collect the cDNA probes and they begin the spotting printing process of the probes

in the chip. Usually, the DNA is spotted onto a number of di¤erent chips, depending on the

number of chips to be made [294].

An analogous three-step process is made to build spotted oligos-chip. The main dif-

ference is in the preparation of probes that are not PCR products, but already synthesized

oligonucleotides. The �rst column of Fig. 1.17 shows us the three steps of spotted chips man-

ufacture: probes selection, preparation and PCR cloning, �nishing with the printing process

on the chip.

1.2.1.2 In situ oligos-chip manufacture

In situ synthesized? chips are fundamentally di¤erent from spotted chips. Figure 1.16 shows

the structure of a manufactured a¤ymetrix GeneChip. Here, we present the three-step process

of in situ oligos-chip manufacture, and the di¤erence with the spotted chips manufacture [98].

Selection of DNA probes

Probe selection is performed based on sequence information alone. Hence, every probe synthe-

sized on the array is known. In contrast on spotted chips which deal with expressed sequenced

tags? (EST), the function of the sequence corresponding to a spot is often unknown.

Additionally, in situ oligos-chip selection approaches avoid duplicating identical se-

quence among gene family members. Thus, it can distinguish and quantitatively monitor

closely-related genes [120]

Preparation of the probes

The probes are photochemically synthesized base-by-base on the surface of the array. There

is no cloning and no PCR process involved.

Printing Process

Since the probes are synthesized on the surface of the chip, no printing process is needed.

The elimination of cloning, ampli�cation, and printing of DNA reduces many sources of

potential noise in the spotted chips system and thus constitutes a great advantage of in situ

oligos-chip technology.

1.2.1.3Microarray experiments procedure

Regardless of the microarray technology employed, a DNA chips experiment consists of �ve

basic steps: manufacture, sample preparation and labelling, hybridization, image scanning,

and image processing. In this section, the RT-PCR chip technology serves as a basis for a

general discussion of these steps. The procedure of a RT-PCR chip experiment is illustrated

in Fig. 1.17.
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FIG. 1.16: Structure of an a¤ymetrix genechip which contains 500,000 cells (in a chip
of size 1.28cm X 1.28cm). Each cells contains millions of DNA chains. Each chain is
built of 25 bases approximately
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FIG. 1.17: Procedure of RT-PCR chip experiment

Manufacture

The manufacture process was explained above as a three-step procedure: selection of DNA

probes, preparation of the probes and printing the probes in the surface of the chip. The goal

of this process is to build the chip with the hybridization probes in it by spotted or synthesized

manufacturing. In a general manner, hybridization probes are the DNA sequences that form

the genes or a fragment of them, which we want to hybridize in the chip.

The manufacture process of an RT-PCR chip was explained above as the three-step

procedure of spotted manufacture section. In the �rst column of Fig. 1.17 we illustrate the

three steps of manufacture process: probe�s selection, probe�s preparation and printing of the

probes in the chip.

Sample preparation and labeling

Biological sample preparation involves extracting and purifying the mRNAs from the tissue

of interest. These extracted mRNAs are named the target? of the microarray experiment.

Due to a number of challenges, the preparation can be quite variable [10, 294]. Among the

problems of sample preparation we have the following:

� The target mRNA typically accounts for only a small fraction (less than 3%) of all

mRNA in a cell.

� The target mRNA is very di¢cult to isolate completely. For example, mRNA comes

from a heterogeneous range of cells, thus diseased tissue contains a mixture of normal

tissue, in�ammatory cells, necrotic tissue etc).
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� The target mRNA degrades very quickly.

In order to avoid the rapid degradation of the mRNA target, in RT-PCR chip prepara-

tion mRNA is usually reverse-transcribed into more stable cDNA immediately after extraction

[10] (see second column of Fig. 1.17 ). Afterwards, to allow detection of these cDNA se-

quences in the hybridization process on the chip, the cDNA goes through a platform-dependent

labelling process.

Detection of cDNA on RT-PCR chips was previously performed using radioactively-

labeled DNA, but actually it is more common to use dyes which �uoresce when exposed to

a speci�c wavelength of light. In most experiments, two samples are hybridized to arrays,

each labeled with Cy3 and Cy5 dye, which are excited by green and red lasers respectively

[10]. This results in a two-channel RT-PCR chip experiment and allows the simultaneous

measurement of both samples: Test? and Reference? (see second column of Fig. 1.17).

Hybridization

Hybridization is the step in which the DNA probes on the microarray and the labeled DNA (or

RNA) target form heteroduplexes? according to the Watson-Crick base-pairing rule (see sec-

tion 1.2) [294]. The biological principle here states that a single-stranded DNA molecule will

bind to another single-stranded DNA molecule with a precisely matching sequence with much

higher a¢nity than that to an imperfectly matching sequence [10]. We can see hybridization

step illustrated in the third column of Fig. 1.17.

In fact, hybridization is a complex process, and a DNA segment may also bind well

to a sequence similar but not identical to its complementary target, a phenomenon called

cross-hybridization. This is in�uenced by many conditions, including temperature, humidity,

salt concentration, target solution volume, and hybridization operator [294].

Hybridization may be performed either manually or by a robot. After hybridization,

the microarray is washed to eliminate any excess labeled sample so that only the DNA com-

plementary to the probes remains hybridized on the chip. Finally, the microarray is dried

using a centrifuge or by blowing clean compressed air [10].

Image scanning

After the hybridization process, the surface of the hybridized chip is scanned to produce a

microarray image. As previously mentioned, samples are labeled with �uorescent dyes that

emit detectable light when stimulated by a laser. The emitted light is captured by the photo-

multiplier tube in a scanner, and the intensity is recorded [294]. We can see the image scanning

step illustrated at the top right of Fig. 1.17.

Although the scanner is only intended to detect light emitted by the target DNA strands,

it also will capture incidental light from various other sources. These other sources may

include labeled DNA samples which have hybridized non-speci�cally to the glass slide, residual

labeled samples, various chemicals used in processing the slide, and even the slide itself. This

incidentally-captured light is called background [10].
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The �nal result is a monochrome image of an in situ oligos-chip or two-color images

in cDNA chips, which are usually stored in a typical image �le format (often TIFF: tagged

image format). We can see in the right middle part of the Fig. 1.17 the image scanning

results of a RT-PCR chip technology experiment.

Image processing

The microarray image generated by the scanner forms the raw data of the experiment. Prior to

data analysis, the image must be converted from image format into the numerical information

that quanti�es gene expression. The manner in which this is accomplished will have a major

impact on the quality of the resulting data and the success of further analysis.

In the case of in situ chips, the commercial brands as A¤ymetrix and Agilent have

integrated image-processing algorithms into their software packages, allowing end-users to

directly generate quanti�ed microarray data.

In contrast the images from cDNA chips consist of spots arranged in regular grid-like

patterns. The processing of these images is done in four basic steps:

1. Spot identi�cation involves locating the position of individual signal spots in an image

and estimating their size.

2. Image segmentation involves decomposing an image into a set of non-overlapping

regions. It consists in the di¤erentiation of those pixels which form the spot and should

be included in the calculation of the signal from those pixels which are background or

noise and should be eliminated.

3. Spot quanti�cation involves calculating the intensity for each spot. Here, pixel intensity

values are combined into a unique value representing the expression level of a gene

deposited in a given spot.

4. Spot quality assessment involves calculating some quality-control measures which

evaluate the quality of both the entire chip and the individual spots on the chip. These

measures can help human inspectors in determination of the data reliability and the

identi�cation of those spots with questionable quality values.

In Fig. 1.17 we can see the raw data of an RT-PCR chip experiment after image

processing. These data are presented like a big matrix of thousands of genes as rows and tens

of biological conditions as columns. Each position (i; j) in the matrix represents the gene

expression measure of gene i under the biological condition j. For example in the bottom

right part of Fig. 1.17 we can see the third row matrix that shows the gene BRCA1. This

gene is not expressed at all (black color) under biological conditions 1 and 2, but is equally

expressed in reference and test sample under the condition n (the quotient reference vs test

is equal to 1).

1.2.2SAGE

The Serial Analysis of Gene Expression (SAGE) method for detection of mRNA transcripts in

eukaryotes is based on the sequencing of concatemers? of short sequence tags? that originate

45



1 Principles of Life in Molecular Biology and Gene Expression Technologies

from a known position (after the 3�-nearest cutting site of a restriction enzyme) to estimate

transcripts abundance [311] (see Fig. 1.18).

The original technique was developed by Dr. Victor Velculescu [311]. Several variants

have been developed since, most notably a more robust version, LongSAGE (developed by

Dr. Saurabh Saha), which enables annotation of existing genes and discovery of new genes

within genomes [265].

1.2.2.1 SAGE basics

SAGE takes advantage of the transcription output, i.e. messenger RNA, which contains

the gene expression information. SAGE technology measures the number of transcripts7 (or

sequences of mRNA) produced in a biological experiment. In order to measure this number, it

uses sequencing techniques8. Sequencing goal is reading all the nucleotide spelling (A, C, G,

U) of a sequence [266]. Sequencing is a complex procedure, and reading the entire sequence

of every RNA in a cell would take decades. So, SAGE scientists have proposed the use of only

fourteen letters or nucleotides of a transcript in order to match an RNA to the precise gene

that produced it [311].

Therefore, SAGE captures the mRNAs transcripts from the cells, then it reverse-

transcribes it into more stable cDNA. Afterwards, it cuts all cDNA sequences into smaller

fourteen-letter tags. Since it would take a long time to load tens of thousands of single tags

into a sequencing machine, the method glues a lot of tags together into long molecules called

concatemers. Later on, a machine called sequencer reads these molecules, counts the tags and

analyses them by computer programs which relates every tag to an existing gene [266].

1.2.2.2 SAGE experiments procedure

We can divide the SAGE process in a general four-step procedure (as seen in Fig. 1.18) :

1. Sample preparation consists in extracting the mRNAs from the tissue of interest, and

then converting these mRNAs into cDNAs by reverse transcription.

2. Building tags and concatemers involves converting the cDNAs sequences into

fourteen-letters tags and gluing a group of tags together into concatemers.

3. Concatemers sequencing is a sequencing sampling technique which counts the number

of times that every tag appears in the concatemers.

4. Tags-Genes correspondence involves matching the sequence of each tag with the gene

that has produced the mRNA

7 Transcript is a fragment of mRNA which contains the encoded information of a gene.
8 Currently, most DNA sequencing is performed using the chain termination method developed by Fred-
erick Sanger. However, there exist other methodologies as 454 sequencing and pyrosequencing.
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FIG. 1.18: Four step procedure of SAGE experiments: sample preparation, building
tags and concatemers, contactemers sequencing and tags quanti�cation and tags-genes
correspondance.
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1.2.2.3Advantages and disadvantages of SAGE

Here we describe some of the advantages and disadvantages of the SAGE technology as stated

in Martinez et al.[199].

Among the advantages of the SAGE technology we have the following:

� SAGE method estimates the expression level of transcripts without prior knowledge

of their sequences and is more sensitive than the sequencing by hybridization (SBH)

technique, but requires knowledge of the complete genome [297].

� SAGE method performs a random sampling of transcripts in a particular tissue, with

little sequencing e¤ort.

In contrast, SAGE presents well-known drawbacks:

� PCR and sequencing errors may be high.

� A single error may lead to non-recognition of a transcript or wrong attribution.

� Some tags may be present in more than one gene (in the case of 14 bp. tags).

� Restriction enzymes? may not cut with 100% e¢ciency. Thus, some tags may be wrong.

1.3 Gene Expression Technologies Applications

Gene expression technologies have already been extensively used in biological research to ad-

dress a wide variety of questions. As stated by Collins [78], when applied to expression analy-

sis, this approach facilitates the measurement of RNA levels for the complete set of transcripts

of an organism. When applied to genotyping, these technologies allow the contemplation of

whole genome-association studies to determine the genetic contribution of complex polygenic

disorders. Moreover, the application of these technologies to mutation detection of disease

genes opens the possibility of genetic testing for disease susceptibility of individuals, or even

entire populations, into the sphere of practical reality.

In these section, we present a few examples of general applications of gene expression

technologies. This overview represents only a fraction of the universe of potential applications.

1.3.1Functional genomics in cells and tissues

Functional genomics is a new �eld of molecular biology that attempts to make use of the

vast wealth of data produced by genomic projects to describe gene (and sometimes protein)

functions and interactions. This science focus on the dynamic aspects of the protein synthesis

process as gene transcription, translation, and protein-protein interactions.

Gene expression patterns provide indirect information about gene function and interac-

tions. It is known that cells from di¤erent tissues perform di¤erent functions. Although they

can be easily distinguished by their phenotypes, a detailed understanding of the mechanisms

of these di¤erent behaviors remains undiscovered [10]. Cell function is determined by indi-
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vidual proteins and protein synthesis is dependent on which genes are expressed or not, the

expression pattern of a gene provides indirect information about cell function.

For example, a gene expressed only in the lung is unlikely to be directly involved in the

pathology of schizophrenia [87]. Gene expression technologies can be used to identify those

genes which are preferentially expressed in various tissues. This would enable scientists to

gain valuable insights into the mechanisms that govern the functioning of genes and cells [10].

1.3.2Gene expression patterns in model systems

Detailed pro�ling of gene expression in model systems (such as Saccharomyces cerevisae,

Drosophila melanogaster, Arabipopsis thaliana etc.) yield valuable insights into the functions

of genes and the mechanisms of important cellular processes, as well as to animal and human

physiology. Such functional knowledge of the biological mechanisms could be critical to the

discovery and validation of therapeutic targets [87].

For example, Spellman and his colleagues [290] used RT-PCR chips to create a compre-

hensive catalog of yeast genes of which the transcript levels vary periodically within the cell

cycle of yeast. They reported 800 genes with the same expression pro�le that participate in

cell cycle regulation.

In another study, Gasch et al. [123] used microarrays to observe genomic expression

in yeast responding to two di¤erent DNA-damaging agents. They found that these are gene

expression responses that are dependent on the Mec1 signaling pathway, which is a signal

transducer required for cell cycle arrest and transcriptional responses prompted by damaged

or unreplicated DNA. In particular a set of genes appeared to represent an Mec1-dependent

expression signature of DNA damage, cell cycle, mutations, and stimulus.

1.3.3Molecular pathology

Molecular Pathology is a new discipline focused on the use of gene expression technologies

for specialised studies of disease in tissues and cells. One of the most attractive applications

of gene expression technologies is the study of the di¤erential gene expression in diseases.

There are many genetic diseases that are the result of mutations in a gene or a set of genes.

The mutations may cause genes to express inappropriately or to fail to express. For example,

cancer could occur when certain regulatory genes, such as the p53 tumor suppressor gene, is

always transcribed regardless of any regulatory factor [10].

Gene expression technology can be used to identify which genes are di¤erentially ex-

pressed in diseased cells (test sample) versus normal cells (reference sample). The opportunity

to compare the expression of thousands of genes between "diseased" and "normal" cells allows

the identi�cation of multiple potential targets [87]. This enables the development of drugs.

Such drugs can be designed to speci�cally target a particular gene, protein or signaling cas-

cade, and they are therefore less likely to cause undesirable side e¤ects [10]. For example,

rheumatoid tissue was analyzed using a microarray with thousands of genes, the results have

shown that about 100 known genes have a role in in�ammation of this kind of tissue, more

details in [143].

49



1 Principles of Life in Molecular Biology and Gene Expression Technologies

1.3.4Pharmacogenomics

Pharmacogenomics is the branch of pharmaceutics which deals with the in�uence of genetic

variation on drug response in patients by correlating gene expression with a drug�s e¢cacy or

toxicity. Gene expression technologies are powerful tools for investigating the mechanism of a

drug action. For example, interferon� � is the most widely prescribed immunomodulatory
therapy for multiple sclerosis (an autoimmune disease of the brain and spinal cord). To de�ne

the mechanism of interferon�� and investigate the partial responsiveness of various patients,
the expression levels of large numbers of genes were monitored for thirteen multiple sclerosis

patients during a ten-point time series [315].

There are other applications for gene expression technologies in examining the e¤ects

of drugs on gene expression of organisms (yeast) as model system. These can lead to the

identi�cation and validation of novel therapeutics [87].

1.3.5Pathogen genomics

Pathogen genomics concerns the study of gene expression patterns in pathogenes such as

bacteria, viruses, parasites etc. For example, the activity in the sequencing of bacterial

genomes is intense, with a new bacterial genome seemingly sequenced entirely every month

[87]. The small size of these genomes allows the easy construction of individual DNA chips

in which every gene from a given microbe is represented. For microbiologists, restricted for

years to studying bacteria one gene at a time in a test tube under arti�cial growth conditions,

the horizons appear unlimited. Gene expression technologies will identify genes that are

turned on in vitro but not at the site of infection in vivo and vice versa. Such genes encode

virulence determinants that are regulated by environmental signals such as transition from

ambient temperature to body temperature [210]. Since traditional genetic techniques used to

identify virulence genes are time consuming, they will be quickly replaced by gene expression

technologies.

A similar approach is used to study viral gene expression during the time course of

acute infection or during latency. These technologies can also be used to study the response

of the host to challenges from the pathogen.

1.3.6Developmental genetics

This branch of genetics primarily concerned with the manner in which genes control or regulate

the organisms development. The genes in an organism�s genome express di¤erentially at

di¤erent stages of the developmental process [10]. Interestingly, it has been found that there

is a subset of genes involved in early development that is used and reused at di¤erent stages

in the development of the organism, generally in di¤erent order in di¤erent tissues, with each

tissue having its own combination. Crucial to these processes are growth factors, which can

also, later in an organism�s development, be involved in causing or promoting cancer (these

genes are known as proto-oncogenes) [10].
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Gene expression technologies can be used to track the changes in the organism�s gene

expression pro�le, tissue by tissue, over the series of stages of the developmental process,

beginning with the embryo and up to the adult. Other applications in the same line of

research include deducing evolutionary relationships among species and assessing the impact

of environmental changes on the developmental process of an organism.

1.3.7Gene mutation detection of complex diseases

Complex diseases are not caused by a few errors in genetic information but by a combination of

small genetic variations (polymorphisms) which predisposes an individual to a serious problem

[10]. The risk of such an individual contracting a complex disease tends to be ampli�ed by

non-genetic factors, such as environmental in�uences, diet and lifestyle. Multiple sclerosis,

diabetes, schizophrenia are complex diseases in which the genetic makeup of the individual

plays a major role in predisposing the individual to the disease. The genetic component

of these disease is responsible for the increased prevalence within certain groups such as

families, ethnic groups, groups of geographic regions, and gender. Gene expression technology

experiments can be used to identify the genetic markers, usually a combination of SNP�s? that

may predispose an individual to a complex disease.

1.3.8Genotypic analysis

Variation in DNA sequences cause most of the di¤erences we observe within and between

species. Locating, identifying and cataloging these genotypic di¤erences represent the �rst

steps in relating genetic variation to phenotypic variation in both normal and diseased states

[182]. Lipshutz et al . [182] described a speci�c type of chip that is designated for this purpose.

Single-nucleotide polymorphisms (SNPs) are the most frequent type of variation in the

human genome and they are recommended for genotypic analysis [182]. For example, the study

of Wang and colleagues [313] identi�ed 3241 candidate SNP�s. Using microarray technology

they have screened for variations among 8 individuals to identify candidate SNP�s and create

a third-generation genetic map for the human genome.

In other application, DNA chips are also be used to scan the genome for new SNP�s,

more details in [182].
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Chapter 2

Gene Expression Data Analysis

Procedure

Gene expression technologies facilitate the monitoring of changes in the expression patterns

of large collections of genes. The analysis of gene expression data has become a computa-

tionally and methodologically intensive task that requires the development of bioinformatics

technology for a number of key stages in the gene expression data analysis procedure. The

goal of this chapter is to explain these key stages.

We suppose that the analysis of any kind of gene expression data regardless to the

technology employed (microarray or SAGE) begins with the physical manufacture of the chip

or experiment and ends with the quanti�cation of the biological experiment. In this chapter,

we summarize the gene expression experiments steps (explained in chapter 1) in the data

generation step (as seen in the �rst row of Fig. 2.1). The output of the data generation step

is the raw gene expression data.

The raw microarray data are real values that represent the light intensity or gene expres-

sion measure of thousands of genes in tens of conditions measured in a biological experiment.

Raw microarray data can be noisy and sensible data because of the data generation proce-

dure. Each step of the data generation procedure may contain several sources of noise. The

following �ve sources of variation, may generate noisy microarray data [31]:

� Variations in the manufacture of the chip: preparing the glass, DNA amount, PCR

yield, the spotting technique etc.

� Variations in the sample preparation of a microarray: culture extraction, RNA

extraction, the reverse transcription, the labelling step etc.

� Variations in the hybridization procedure: di¤erential sensibility of the genes, the

unspeci�c cross-hybridization e¤ect etc.

� Variations in the image scanning procedure: scanning technique, distortion, scanning

manipulation errors, etc.

� Variations in the image processing procedure: methodology for estimating the spot

intensity, adjustments of image parameters, etc.

Microarray data contain important information about several biological processes that

could be crucial for knowledge discovery in any of the applications explained in section 1.3.
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Extracting information and knowledge from gene expression technology is not an easy task

and must be carried out by a series of key stages known as microarray data analysis procedure.

The whole procedure for analyzing gene expression technology data is composed of �ve

steps: data generation, statistical data treatment, analysis of di¤erentially expressed genes,

classi�cation of genes as well as data interpretation and knowledge discovery. Figure 2.1

shows the �ve-step procedure.

Data generation was fully explained in chapter 1 for the two main expression technolo-

gies microarray and SAGE. In microarray experiments, this procedure consists in: manufac-

ture, sample preparation and labeling, hybridization, image scanning and image processing.

In the case of SAGE, it consists in four steps: sample preparation, building tags and con-

catemers, concatemers sequencing and tags-gens correspondence. The output is raw data as

stated in Fig. 2.1.

Statistical data treatment involves statistical manipulations as: data transformation,

missing value estimation and data normalization for cleaning, preprocessing and processing

microarray data. Its output data are well-cleaned and ready to be analyzed (see Fig. 2.1).

Analysis of di¤erentially expressed genes identi�es those genes which demonstrate a

signi�cant change in expression level under the impact of certain experimental conditions,

such as in cancer studies, reference= normal and test=cancer (explained in section 1.2). In

this step, statistical and data mining tools are used to distinguish between the genes that are

over-expressed or under-expressed from the genes that are constant or not expressed over all

the biological experiments, or even only one biological condition. The output at this stage is

a list of genes ordered by rank or a selection of di¤erentially expressed genes (as seen in Fig.

2.1).

Classi�cation of the genes involves using unsupervised learning techniques such as

"clustering" for identi�cation of groups of co-expressed genes? with coherent gene expression

patterns?. The output is a classi�cation of genes by similarity of their expression pro�le?.

Knowledge discovery and interpretation consist in interpreting the microarray data via

integration of gene expression pro�les with corresponding biological knowledge. The output

is knowledge discovery (as seen in Fig. 2.1). This step represents our target in this thesis.

In the following, we focus on microarray data analysis, specially cDNA chips technology.

In fact, this �ve-step analysis procedure is valid for all technologies, including SAGE data.

We use cDNA technology as example because it often contains more inherent noise than other

technologies, so it is the most general procedure.

The next four sections explain in detail the steps of the gene expression data analysis

procedure: statistical data treatment, analysis of di¤erentially expressed genes, class discovery

and data interpretation and knowledge discovery. We do not include the �rst step, data gen-

eration, because it has been fully explained in chapter 1 as an independent �ve-step procedure

of microarray experiments (section 1.2).
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2.1.1 Data transformation

FIG. 2.1: Gene expression data analysis �ve-step procedure

2.1 Second Step: Statistical Data Treatment

All �ve sources of variation on the microarray experimentation process introduce systematic

bias and errors into intensity measurements. The purpose of statistical data treatment is to

remove the e¤ects of any systematic source of variation or bias to the extent possible. In

other words, this step receives raw noisy intensities and intends to return well-cleaned gene

expression data.

Statistical data treatment involves several statistical data manipulations for data clean-

ing and preprocessing for obtaining cleaned data ready to be analyzed in further steps. In

this section, we explain brie�y the four most common issues in microarray data cleaning and

preprocessing: data transformation, missing values treatment, outliers treatment and normal-

ization.

As stated in the introduction, the cDNA chips technology was chosen as representative

example of the gene expression technologies. The explained issues could be generalized for

other gene expression technologies as in-situ oligos chip or SAGE.

2.1.1Data transformation

It is common practice to transform RT-PCR data from the raw intensities into log intensities

before proceeding with data analysis. There are several objectives of this transformation [294]:

� There should be a reasonable even spread of features across the intensity range.
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FIG. 2.2: Histogram of the gene expression intensities a) and d) before; and b) and e)
after the log transformation of an example data set.

� The variability should be constant at all intensity levels

� The distribution of experimental errors should be approximately zero

� The distribution of intensities should be approximately bell-shaped.

Figure 2.2 shows an histogram of intensities of a typical microarray data set before

and after log transformation. We can see that the raw data is very heavily arranged together

at low intensities and sparsely distributed at high levels. By contrast, the data is more evenly

spread over the intensity range after the log transformation. These transformation greatly

reduces the skewness of the distribution and simpli�es visual examination.

Microarray data analysis typically uses logarithms to base 2 [294]. In processing, the

ratio of the raw Cy5 and Cy3 intensities is transformed into the di¤erence between the logs

of the intensities of the Cy5 and Cy3 channels. Figure 2.2 shows histograms of ratios of the

intensity data set before and after log transformation

2.1.2Missing values treatment

Microarray experiments often generate data sets with multiple missing expression values.

Missing values occur for diverse reasons including insu¢cient resolution, image corruption,

or slide contamination by dust, and so on. Missing data may also occur systematically as a

result of the robotic methods employed in generating the microarrays [208]. Unfortunately,

many algorithms for gene expression analysis require a complete data set as input. Therefore,

methods for estimating missing data are needed before these algorithms can be applied.
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Suppose a microarray data set represented by a matrix M where each row corresponds

to one gene and each column represents an experimental condition. A simple approach to

imputing missing values is to replace a missing entry with the average expression over the

rows (row average method). This method is not optimal since it does not take into account

the correlation structure of the entire data set. Troyanskaya et al. in [308] propose two

more complex algorithms based on K-nearest neighbors (KNN impute) and singular value

decomposition (SVDimpute). They also evaluated the performance of theses two algorithms

and the row average method.

Imputation based on K-nearest neighbors (KNN): In simple terms, the KNN

imputation algorithm estimates missing values by selecting K genes with expression pro�les

most similar to the gene of interest. Suppose that, for gene i, the expression value xi;j is

missing in the jth experiment. The algorithm selects the K genes with non-missing values for

experiment j which have closest expression pro�les to gene i in the remaining experiments.

A weighted average of values in experiment j from the K genes is then used as an estimate

for xi;j . In [308], the authors found that the euclidean distance was a su¢ciently accurate

measure for the log-transformed data.

Imputation based on Singular Value Decomposition (SVD): This method �rst

imputes all missing values in matrix M using the row average method in a preliminary

step. The Singular Value Decomposition (SVD) is then applied to produce a set of mutually

orthogonal expression patterns called eigengenes. These eigengenes can be combined linearly

to approximate the gene expressions in a nxm microarray data matrix M , where n and m

are the number of genes and experiments, respectively. The imputation process involves

a regression of the missing value xi;j against the selected k eigengenes (while ignoring all

expression values corresponding to experiment j). That is, the missing xi;j is obtained from

a linear combination of the k eigengenes weighted by the regression coe¢cients. This process

is iterated until the total change in the matrix A converges to a su¢ciently small arbitrary

value.

Troyanskaya et al. [308] compared the performance of KNN imputation, SVD imputa-

tion and the row average method in terms of both computational complexity and estimation

accuracy. They concluded that although row averaging is the fastest method, it does not per-

form well in terms of accuracy. They recommend the KNN imputation method as the most

robust against the increasing fraction of missing data.

However the application of one of these three methodologies, they have to be prac-

ticed with caution, specially when drawing critical biological conclusions from data partially

imputed. Thus, estimated data should be marked where possible, its signi�cance to the formu-

lation of biological conclusions should be assessed in order to avoid unwarranted assumptions.

2.1.3Outliers treatment

Extreme values have been a source of debate among the data analysts community. The pres-

ence of extreme values in a data set can be due to systematic errors, faults in the experimental

conditions, erroneous procedures, areas where a certain theory might not be valid, or it can

simply be the case that some observations happen to be a long way from the center of the
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data. Furthermore, these values can be taken as a source of contamination in data or it can

be seen as a source of interesting information or unusual special events. Thus, it is a cru-

cial data analysis task to interprete and characterize outliers as well as to develop statistical

methods to treat them in order to decrease their impact during statistical data analysis [20].

An outlier can be de�ned in many ways. A statistical de�nition given by Grubbs [135]

is: "An outlier is an observation that appears to deviate markedly from other members of

the sample in which it occurs. Munoz Garcia [218] proposes another de�nition which states

an outlier as an observation that deviates clearly of the general behavior compared to the

criterion on which the analysis is carried out. Barnett and Lewis state that an outlier is an

observation among a set of observations which clashes or is not in harmony with the rest of

observations in the set. What characterizes an outlier is its impact on the observer [20].

Outliers treatment methods

A complete survey for concepts, tendencies and methods for treating outliers has been made

by Planchon [241]. Here, we present the statistical point of view for treating outliers in relation

with a probability model. We de�ne outliers as in Barnett and Lewis and can localize them

as the extremes values of a statistical distribution. However, the outliers for an exponential

model and a normal model can be di¤erent, so they are model dependent.

We will explain the principal methods for treating outliers against a probabilistic model

using the formalization of Barnett and Lewis [20]. They have baptized these methods discor-

dance test methods.

The goal of discordance test methods is to test the outlier value in order to reject outliers

of the whole of the data or to identify them as being a characteristic of a particular interest.

Thus, this test is a procedure of detection that allows to decide in favor of the membership

of an speci�c value to the data set or against it.

Supposing an univariate distribution case where the sample of a random variable X, is

x1, x2,..., xn. The extremes values are x1 and xn, for example, xn is called an outlier if it

is statistically unacceptable, in relation with the distribution of X under any distribution F .

When the result of the test indicates that xn is not acceptable in a statistical way, one can

say that xn is a discordant superior value for the level of the test. In a similar way it can be

shown for the inferior value x1 or even for the couple (x1; xn).

There are several discordance test methods, Barnett and Lewis have distinguished seven

types of tests:

1. The excess and spreading out statistics, Dixon 1950 [94]

2. The amplitude and spreading out tests.

3. The standard deviation and spreading out test, Grubbs [134], Tietjen [306] and Cochran

[77].

4. Extreme values and positions statistics.

5. Least squares statistics.

6. Superior momentums statistics.
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7. Shapiro-Wilkson statistic [278] and [261].

For a more extensive list of discordance tests classi�ed by concerned type of distribution

F we can see: [60] and [20].

As we have seen in the histogram of transformed intensity measurements in Fig. 2.2,

ratio gene expression measures have to be normally distributed, so we are concerned here by

normal distributed discordance tests. Among these approaches, we can cite: Rosner�s [129],

Dixon 1950 [94], Grubbs 1950 [134], Cochran [77] and Tietjen 1972 [306].

2.1.4Data normalization

Any of the �ve sources of variation (as seen in the chapter�s introduction) on the microarray

experimentation process introduce systematic bias into intensity measurements. The purpose

of normalization is to remove the e¤ects of any systematic source of variation to the extent

possible.

For in situ oligo-chips, normalization allows direct comparison of individual gene ex-

pression levels from one chip. For RT-PCR chip, normalization can be applied to adjust the

bias among multiple channels.

In general, normalization microarray methods can be divided into global normaliza-

tion schemes and intensity-dependent normalization approaches. The global normalization

schemes assume that the spot intensities on each pair of chips or channels being normalized

are linearly related. Therefore, they can be corrected by adjusting every single spot inten-

sity on the same chip or channel by an identical amount, called the normalization factor. By

contrast, the intensity-dependent normalization methods determine the normalization factor

for di¤erent spots according to their individual intensities. Normalization therefore relies on

a nonlinear, intensity-dependent normalization function X ! F (X) [10].

The reader is referred to the work of Stoyanova et al [295], Zhao et al [337] for

alternative case-speci�c normalization approaches.

Global normalization approaches,

Standardization: Data sets are standardized to ensure that the mean and the standard

deviation of each data set are equal. The method is simple; from each measurement on the

chip, subtract the mean measurement of the chip and divide by the standard deviation. After

this transformation, the mean of the measurements on each chip will be zero, and the standard

deviation will be one. An alternative to using the mean and standard deviation is to use the

median and median absolute deviation from the median (MAD). This has the advantage of

being more robust to outliers than simply using the mean and standard deviation [334].

Iterative Linear Regression: Essentially, this method iteratively performs a linear

regression on the given pair of data sets x1;i and x2;i. The approach assumes that most genes

in two data sets are unchanged. The variation in the data sets is caused by systematic bias

and can be described by linear correspondence. For more details in the processing steps of

this method see Draghici et al. [99].
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Intensity-dependent normalization

Locally weighted linear regression (Lowess): Several reports have indicated that the

log2(ratio) values can have a systematic dependence on the intensity [327, 329]. This most

common appears as a deviation from zero for low-intensity spots. Locally weighted linear

regression (Lowess) [76] analysis has been proposed as a normalization method that can

remove such intensity-dependent e¤ects in the log2(ratio) values. In essence, lowess divides

the data into a number of overlapping intervals and �ts a polynomial function of the form:

y = a0 + a1x+ a2x
2 + :::

More details about this methodology can be found in [76] and [327, 329]. The e¤ects of

the lowess normalization are illustrated in Fig. 2.3. In this plot (called ratio-intensity plot or

R-I plot), the horizontal axis represents the sum of the log intensities log10(Cy3 �Cy5) which
is the quantity directly proportional to the overall intensity of a given spot. the vertical axis

represents log2(Cy3=Cy5) which is the usual log-ratio of the two samples. Note the strong

non-linear distortion in Fig. 2.3a and how this is corrected by lowess in Fig. 2.3b.

Distribution Normalization: While the purpose of Lowess is to correct the mean

of the data sets, the objective of distribution normalization is to make the distributions

of the transformed spot intensities as similar as possible across the chips. A distribution

normalization algorithm was proposed by Bolstad et al [41]. More detail of this method can

be found in [98, 32].

Distribution normalization is an alternative to lowess normalization. It is useful where

the di¤erent chips have di¤erent distributions of values. The assumption behind this method

is that given a series of chips, a small number of genes may be di¤erentially expressed, however,

the overall distribution of spot intensities should not vary too much.

2.2 Third Step: Di¤erentially Expressed Genes

One basic purpose of gene expression technology is to identify those genes which demonstrate

a signi�cant change in expression level across di¤erent classes of samples or under certain

experimental conditions, for example: �nding the genes a¤ected by a speci�c treatment,

�nding marker genes that discriminate diseased from healthy subjects, or �nding the genes

that are active in a cancerous tissue. In other words, the goal of the third step is to identify

genes that are di¤erentially expressed in one set of samples relative to another9, establishing

potentially meaningful correlations between genes and speci�c biological conditions.

Although simple in principle, the identi�cation of di¤erentially expressed genes can be

complex in practice, as there may be multiple experimental conditions or a lack of biological

replicates. Typically, early attempts to analyze di¤erentially expressed genes simply estab-

lished a �xed cut-o¤ k and selected those genes whose expression went through a k � fold
9 In sample preparation step (section 1.2) we have seen that a microarray experiment explores a set of
samples generally one relative to another i.e. reference vs test. This samples may vary in relation to the
application it can be: disease vs normal state, mutated vs non mutated state, cancer vs. normal or even
with more classes as: treated with this narcotics, treated with herbs, treated with placebo etc
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FIG. 2.3: Lowess correction
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change [71, 90, 320]. However, the speci�cation of k was often arbitrary, and it did not take

into account the overall distribution of the measurements. Several variants of these simple

fold change methods have been proposed to �ne-tune the approach [174, 270, 271, 301].

When replicates of the samples are available, researchers can turn to some common

statistical tests. For instance, the t� test is a standard statistical test for detecting signi�cant
change of a variable between repeated measurements in two groups, this can be generalized

to multiple groups via the ANOV A F statistic [283]. Many variants of the t � statistic for
microarray analysis have been developed [133, 214, 309]. In addition, non-parametric based

statistics are also commonly applied [25, 101, 235, 333].

Regardless of the speci�c approach, the signi�cance of the statistical measure must

be determined. A microarray data set typically consists of thousands of genes, and the

signi�cance test will be carried out for each gene. A drawback of this multiple testing is the

increased probability of observing a false positive, which rises with the number of statistical

test performed [42]. Therefore, when multiple tests are involved, methods should be applied

to correct the signi�cance level of the individual test.

This section assumes an understanding of basic statistical approaches as statistical

inference, hypothesis testing and parametric and non-parametric statistical tests, the reader

can see more details of this statistical issues in [113, 77, 129, 264]. However, we include in

the �rst subsection an overview of the basic statistical de�nitions in these issues, as well as a

general nomenclature framework for applying them in microarray data analysis.

The di¤erent statistical methods for detecting di¤erentially expressed genes - fold change

methods, parametric test, and non parametric test - will be discussed in subsections 2.2.2,

2.2.3 and 2.2.4 respectively. The problems associated with multiple testing and the available

correction methods will be discussed in section 2.2.5. Finally, we introduce ANOVA in section

2.2.6.

2.2.1General framework of statistics in microarray data analysis

In this subsection we will use four sample data sets to illustrate the problems of identifying

di¤erentially-expressed genes under various experimental design conditions.

Example data set A: Samples from human T cells grown at 37�C (control samples)

and 43�C (to explore the in�uence of heat shock). The expression levels of 1,046 genes were

monitored by cDNA chips to identify heat-shock regulated genes in human T cells. This data

set is an example of paired data there are two related measurement for a sample: control and

exposed to the shock. We are interested in the di¤erence between the two measurements, as

expressed by log ration, to determine whether a gene has been up-regulated or down-regulated

by exposure to heat shock.

Example data set B: Samples from 14 multi sclerosis (MS) patients. The expression

levels of 4,132 genes were measured by cDNA chips for each patient prior to and 24 hours after

interferon�� (IFN ��) treatment [222]. This data set is also paired data. However, unlike
example data set A, this data set contains 14 biological replicates. Each replicate presents

two related measurements corresponding to pre and post-treatment conditions. here, we wish

to identify genes that were di¤erentially expressed in multiple sclerosis following treatment.
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Example data set C: Samples from 15 MS patients and 15 age and sex-matched

controls [222]. The expression pro�les of 4,132 genes were measured by cDNA chips. This

data set is an example of unpaired data. it contains two groups of individuals (MS and

Controls), our goal is to observe whether a gene is di¤erentially expressed between the two

groups. Unlike example data set B, there is not inherent relationship between the individuals

in the two groups.

Example data set D: This data set is the union of example data sets B and C and

contains three groups: MS, Controls, and IFN � � treatment individuals. This data set

is an example of multi-group data. Here, we intent to identify genes that are di¤erentially

expressed in one or more of these three groups.

Nomenclature

Let assume gene expression measures are presented as a matrix of m samples or biolog-

ical conditions (columns), each sample contains n genes (rows), where Xi;j is the expression

measure of gene i in sample j. Xi;j 2 R, so it�s continuous in all real numbers.
In statistical context, the term population denotes the entire collection of individuals

or objects about which information is desired [91]. Rather, we can take a subset, called a

sample, of the total population. In the case of example B, this sample contains 14 patients,

which we hope (statistically) will be representative of the entire MS population.

Statistical Inference

The readout of a microarray experiment can be represented by random variables. For

example, the expression level of a speci�c gene i in MS patients before and after IFN � B
treatment can be represented by two random variables xi and yi, respectively. A random

variable does not describe the actual outcome of a particular experiment. Instead, it associates

the possible but undetermined outcomes with a probability distribution. The probability

distribution of a random variable can often be characterized by some parameters. For example,

the mean �i of xi is a parameter of the probability distribution of xi.

Unfortunately, in most cases, the entire population is not available for analysis, so the

actual value of the parameters remains unknown to the experimenter. however we may gain

some insights into a parameter of interest by applying a numerical descriptive measure, called

a statistic, to the sample. For example, we can calculate the average intensity value �xi of gene

i of patients before treatment. We intend to estimate the parameter value �i through the

statistic value �xi. This generalized procedure is called statistical inference. That is, we hope

to generalize our result from the small sample set of 14 patients to the entire population of

MS patients.

Hypothesis Test

The problem of determining whether a gene is di¤erentially expressed can be approached

by a classical statistical procedure called the hypothesis test. The procedure of a hypothesis

test involves the following steps:

1. De�ne the problem

2. Generate the hypotheses

3. Choose an appropriate statistic.
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4. Calculate the statistic value based on the observed data.

5. Calculate the corresponding p� value and specify the signi�cance level..
6. Reject or not reject the null hypothesis based on the calculated p � value and the

pre-speci�ed signi�cance level.

The �rst step is to de�ne the problem. In example B, we may expect that gene i to be

up or down regulated after the patient has been treated and we want to determine whether

the observed data support this hypothesis.

The second step is to generate the hypotheses. These two hypotheses should bemutually

exclusive and all inclusive [97]. One of the postulated hypothesis will be the named null

hypothesis, H0, which is a claim about a population characteristic that is initially assumed

to be true. The other hypothesis will be the alternative hypothesis, HA or H1, which is the

competing claim. We then consider the evidence (observed sample data), and we only reject

the null hypothesis in favor of the competing hypothesis if there is convincing evidence against

the null hypothesis [91].

The third step is to choose an appropriate statistic. Taking the example of testing

whether gene i is di¤erentially expressed, the null hypothesis isH0 : �xi = �yi and the alternative

hypothesis H1 : �xi 6= �yi, where �xi and �yi are the statistics refer to mean expression levels of

two groups of samples, respectively.

The fourth step would be to calculate �xi and �yi based on the observed data of the 14

patients before treatment and after treatment respectively.

In order to answer to the �fth step we need to know the hypothesis testing error-prone

management (illustrated in Table 2.1). A Type I error involves the rejection a null hypothesis

when it is in fact true, its counterpart, the Type II error, refers to not rejecting H0 when is

in fact false. The probability of a Type I error is usually denoted by �, while the probability

of a type II error is denoted by � [91]. Clearly, 1� � corresponds to the probability of "true
negatives", while 1 � � corresponds to the probability of "true positives". All four possible

outcomes of hypothesis testing are summarized in Table 2.1.

Truth

Decision H0 is true H0 is false
H0 was rejected false positive (Type I error) : � true positive (correct decision): �

H0 was not rejected true negative (correct decision): 1� � false negative (Type II error): 1� �

TABLE 2.1: Hypothesis testing errors

The signi�cance level is the probability of a Type I error [91]; simply stated, it is the

quantity of errors we are prepared to accept in our studies. In the other hand the p� value
(sometimes called the observed signi�cance level) is the probability, assuming that H0 is true,

of obtaining a test statistic value at least as contradictory to H0 as what actually resulted

[91]. In other words, it is the observed probability of wrongly rejecting the null hypothesis

when it is actually true. Small p � values suggest that the null hypothesis is unlikely to be
true. In other terms, if the p� value is smaller that the signi�cance level, the null hypothesis
will be rejected.
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FIG. 2.4: Histogram of log ratios and selection of genes with 2-fold change(log22 = 1)

2.2.2Fold change methods

K-fold change

In general, the fold change for a gene is calculated as the average expression over all samples

in a condition divided by the average expression over all samples in another condition. Using

the fold change method, �nding the genes that are di¤erentially expressed can be done by

simply considering those genes which demonstrate a signi�cant change between the experiment

samples of particular interest (as cancerous samples) and controls. this approach is mot

suitable for data sets without biological duplicates (as data set A).

Typically, an arbitrary threshold such as a two or three fold-change is chosen, and the

di¤erence (in log form) is considered to be signi�cant if it is larger than the threshold (e.g.,

[69, 90, 320]). to facilitate the selection process, the ratio between the two expression levels

for each gene is �rst calculated. Since most genes in a typical microarray experiment do not

change, the ratios between experiment samples of particular interest and controls of most

genes will be around one, and their logs will be around zero.

The experiment contained the disease/control ratios can be plotted into a histogram

(as seen in Fig. 2.4). The horizontal axis of Fig. 2.4 represents the log ratio values. Using

this histogram, selecting di¤erentially expressed genes based on fold change corresponds to

setting thresholds(vertical bars) at the desired minimum fold change and selecting the genes

in the tails of the histogram [97].

Unusual ratios

This method considers the distribution of measurements within the data. Instead of blindly

specifying the value of k � fold change, this method involves selecting those genes with

experiment to control ratios at a speci�ed distance from the mean experiment to control ratio
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FIG. 2.5: Histogram of standardized log ratios and selection of genes with unusual ratios
�1:5�

[270, 271, 301]. For example, this distance can be taken to be �1:5� where � is the standard
deviation of the ratio distribution.

In practice, selecting genes �1:5� away from the mean can be accomplished by stan-

dardizing the ratios and plotting them in a histogram (see Fig. 2.5) Since the standardized

data will have a mean of zero and a standard deviation of one a histogram of the standard-

ized values will be centered around zero, and the units on the horizontal axis will represent

the standard deviation. Therefore, setting thresholds at �1:5� will correspond to selecting
those genes outside the vertical bars in Fig. 2.5.

Compared with the k � fold change method, this method has the advantage of auto-
matically adjusting the cut-o¤ threshold. That is the thresholds determined by this method

are dependent on the distribution of all ratios in the given data set, allowing a more tailored

selection than the uniformed choice of a �xed threshold. However, this method also has an

intrinsic drawback, in that the top k� percent of most a¤ected genes will always be selected,
regardless of the number of genes regulated or the extent of regulation[98, 97].

Model-based methods

Here, we will describe brie�y a model based approach [174]. for selecting di¤erentially-

expressed genes. In a model-based approach, two events are considered: Eg represents the

event that gene g is expressed while �Eg represents event that g is unexpressed. Let p denote

the prior probability of Eg, then 1�p is the prior probability of �Eg. The model-based method
assumes that the expressed genes and the unexpressed genes follow two probability distri-

butions, respectively: the expressed genes are associated with pEg, while the unexpressed

genes are associated with 1� p �Eg. An observed expression y may rise from either of the two

distributions.
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The purpose is to determine whether the observed ratio y arises from an expressed gene

of an unexpressed gene. So, we estimate the likelihood that gene g is expressed given that the

observed ratio of g is y; i.e., we calculate the conditional probability Pr(Eg j Yg = y): From

Bayes theorem, the conditional probability can be expressed as:

Pr(Eg j Yg = y) =
p � pEg(y)

p � pEg(y) + (1� p) � p �Eg(y)

To simplify the problem, this method assumes the normality of pEg(y) and p �Eg(y), with

equal variance �. In this case the mixture model can be completely characterized by four

parameters: p; �; �Eg
and � �Eg

. These parameters can be estimated by a maximum likelihood

approach, called the EM algorithm [88]. EM algorithm searches various combinations of the

parameters and converges to a local maximum-likelihood parameter setting.

Draghici [98] noted that the model-based method o¤ers a number of advantages over the

fold change and unusual ratio approaches discussed previously. Here, the maximum-likelihood

estimators (MLE) become unbiased minimum-variance estimators as the sample size increases.

However, the disadvantage of the maximum-likelihood estimate approach is that the results

quickly become unreliable as the sample size decreases. Moreover, MLE estimates can become

unreliable when the data deviate considerably from normality [98].

It should be noted that these three fold change methods: model-based, k-fold change

and unusual ratio approaches are all best suited to data sets without replication (such as

example data set A).For data sets with replication, the test discussed in the following sections

are usually more appropriate.

2.2.3Parametric tests

The usual method for performing an hypothesis test on data of the type exempli�ed by data

sets B and C is t�test. This test was developed by W. S. Gosset [1876-1937] and was originally
termed the "student�s t test". Here, we explain brie�y two versions of this test:paried t-test

and unpaired t-test, that are applicable to data sets B and C respectively. In addition, several

variants on the classical t-statistic have been proposed.

Paired t-test

The paired t� test is applicable to paired data; e.g., data sets in which each data point has
a pair of observations (As in example B). Here the null hypothesis is that the gene is not

di¤erentially expressed, or the mean � of the log ratios, log2(
x1
x2
), equals to 0, denoted by

H0 : � = 0. From the observed log ratios, we can use the following formula to calculate the

t� statistic:
t =

�x

s =
p
n
;

where �x is the average of the log ratios, s is the standard deviation, and n is the number of the

patients in the experiment. A p�value can then be obtained by looking up a t�distribution
with n � 1 degrees of freedom. Finally, the null hypothesis is rejected or not rejected based
on the p� value and a pre-speci�ed signi�cance level.
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The t-test is more sophisticated than the fold change methods. The signi�cance of

di¤erentially expressed genes depends not only on the average log ratio but also on both

the population variability and the number of individuals in the study [294]. In general, the

accuracy of the determination of the di¤erentially-expressed genes increases with the number

of individuals in the experiment.

Unusual ratio method and t-test di¤ers fundamentally. In the ratio method, the entire

set of genes is regarded as the sample set, and the most-changed genes in this sample set are

considered to be di¤erentially expressed. In contrast, the t-test takes the group of all patients

as its sample set. Indeed, a conclusion based on the application of a t-test to multiple patients

(biological replicates) may often be more reliable than the results of the unusual ratio method.

Unpaired t-test

The paired t� test is applicable to unpaired data; e.g., where there are two unrelated groups
of patients (As in example C). Here the null hypothesis states that the means of the expression

levels of a given gene in the two samples will be equal: i.e., H0 : �1 = �2. Unpaired t-test

may be equal � variance and unequal variances. As suggested these names, the �rst t-test
assumes that the two samples are taken from distribution with equal variances, while the

second test assumes that the two distribution have di¤erent variances. Both of these test, use

the following formula to calculate the t� statistic:

t =
�x1 � �x2q
s2
1

n1
+ s2

2

n2

; (2.1)

where �x1 and �x2 are the means, s
2
1 and s

2
2 are the variances, and n1 and n2 are the sizes of

the two groups, respectively. For more details in the di¤erences of the two kinds of unpaired

t-test with equal and unequal variance, the lector can be [332].

To determine whether the variances in the two distributions are equal. This can be

established through the use of another hypothesis test, where the hypotheses are H 0
0 : �

2
1 = �22

and H 0
1 : �

2
1 6= �22. To test the null hypothesis, the F statistic can be used, as follows:

F =
s21
s22
:

A p� value can then be obtained on the basis of F � statistic distribution with respect
to the degrees of freedom, �1 = n1 � 1 and �2 = n2 � 1; this will indicate whether H 0

0 should

be rejected.

Once we have tested for equality or inequality of variances, we applied equation 2.1 to

calculate the t-test, taking into account the equality or inequality of variances to calculate

de degrees of freedom of the distribution. Then, we obtain the correspondent p � value on
the basis of the t � statistic and the corresponding degrees of freedom of the t � student

distribution to determine whether H0 should be rejected or not.
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Variants of t-test

Additionally to the classical t-statistics explained before, several simpli�ed forms are also

available for the identi�cation of di¤erentially-expressed genes.

Golub et al. [133] have proposed a method called neighborhood analysis. In this method,

given the expression levels of gene g over all the experimental conditions, the following score

is calculated:

P (g) =
�1(g)� �2(g)
�1(g) + �2(g)

; (2.2)

where �1(g) and �2(g) are the means of the expression levels of gene g in classes 1 and

2 , respectively, and �1(g) and �2(g) are the standard deviation of g in classes 1 and 2,

respectively. Large values of jP (g)j indicate a strong correlation between gene expression and
class distinction, while a positive or negative P (g) indicates that g is more highly expressed

in class 1 or class 2, respectively.

In another t-test variant, Pavlidis et al. [231] have adapted the Fisher�s discriminant

criterion (FDC) to de�ne a score as:

F (g) =
(�1(g)� �2(g))2�
�21(g) + �

2
2(g)

�2 : (2.3)

Genes with higher score values are selected as di¤erentially expressed genes. Thus,

equations 2.2 and 2.3 are similar to the t� statistic formula and considered to be variants of
that method.

2.2.4Non parametric tests

The t�statistic and its variants start from the assumption that the data will follow a normal
distribution. However, the distribution of intensities of many genes may not be normal in a

real data set [89]. As a result, using p� values obtained from thet� distribution as a test of
gene expression may be meaningless in these instances.

In this subsection, we describe several non-parametric methods which do not place

any assumptions on the observed data. These non-parametric methods do not rely on the

estimation of parameters (such as the mean or the standard deviation) in describing the

distribution of the variable of interest in the population.

Classical non-parametric statistics

There are non-parametric equivalents of both the paired and unpaired t-tests. The Wilcoxon

sigh-rank test is the non-parametric equivalent of the paired t-test, while the Wilcoxon rank-

sum test (also called Mann-Whitney test) is the non-parametric equivalent of the unpaired

t-tests [294]. As we have noted in the previous subsection, the unpaired t-test is actually a

generalization of the paired case. Therefore, we will focus here only on the Wilcoxon rank-sum

test.

The Wilcoxon rank-sum test [318] organizes the observed data in value ascending order.

Each data item is assigned a rank corresponding to its place in the sorted list. These ranks,
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rather than the original observed values, are then used in the subsequent analysis. The major

steps in applying Wilcoxon rank-sum test are as follow:

1. Merge all observations from the two classes and rank them in value-ascending order.

2. Calculate the Wilcoxon statistics by adding all the ranks associated with the observations

from the class with a smaller number of observations.

3. Find the p-value associated with the Wilcoxon statistic from the Wilcoxon rank sum

distribution table [149].

The use of rank-based tests of this type is appropriate when the underlying distribu-

tion is far from normal. Moreover, the rank-sum test is much less sensitive to outliers and

noise, typical characteristics of gene-expression data sets, than are parametric test [89, 294].

Counterbalancing these bene�ts is the relative lack of sensitivity of the rank-sum tests in com-

parison with their parametric counterparts. Rank-sum p�values tend to be higher, increasing
the di¢culty of detecting real di¤erences as statistically signi�cant [10, 294].

Other non-parametric statistics

In addition to the classical rank-sum test, several other non-parametric statistics have also

been proposed. Ben-Dor et al. [25] use a threshold number of misclassi�cation or TNoM

score to select di¤erentially expressed genes. This method assumes that a di¤erentially-

expressed gene will exhibit signi�cantly di¤erent values in the two classes and that the values

can therefore be di¤erentiated by a threshold number. Gene values which are more clearly

separated by this threshold are more likely to arise from an up-down regulated gene. Given

the expression values ~g of gene g over all the experimental conditions, the TNoM score is

de�ned as follows:

TNoM(~g) = min
d;t

X

i

1 fli 6= sign(d � (gi � t))g ; (2.4)

where gi is the expression level of g in the i� th experimental condition, li is the class label
of the ith condition. d 2 f+1;�1g is used to indicate the class label, and t is the threshold to
separate the expression values of g. The term sign(d � (gi � t)) is called a "decision stump"
which indicates the predicted class label based on d, gi and t. The basis is that the sign of

d � (gi � t) is dependent on whether the expression level of gene g in condition i is greater
than the threshold value t.

Equation 2.4 seeks the best decision stump for a given gene and then counts the classi-

�cation errors this decision stump makes in di¤erentiating known class labels. Fewer errors

indicate that the threshold is more successful in di¤erentiating the two classes, and, in turn,

that it is more likely that the gene is up or down-regulated. Like the classical non-parametric

statistics, this method does not rely on any assumptions regarding the observed data.

2.2.5Bootstrap analysis

In a �rst step, bootstrapping analysis is similar to any of the classical parametric tests; for

example, this analysis can begin with a calculation of the t-statistic. In contrast, in a second
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step, rather than determining the p�value on the basis of the standard t-distribution (which is
tabulated under the assumption of normal distribution), bootstrap analysis uses a resampling

strategy to approximate the real distribution of the t-statistic.

In more detail, the bootstrap method constructs a large number of random data sets

by resampling form the original data. That is, each data entry xi;j (measurement of gene

i under experimental condition j) is randomly assigned one of the measurements from the

data set. The resulting data sets resemble the original data in their values. However the

correlation between genes and samples in the original data is completely disturbed through

the randomization procedure.

The next step of the bootstrap method involves calculating the t-statistics for all the

genes in each random data set an using the standard t-distribution to �nd the minimum

p � value among the genes. The outcome of this process is an adjusted p � value for the
original data set.

Bootstrap analysis is based on the concept that, it the H0 is true, then the real (ob-

served) data set would exhibit characteristics similar to any of the randomized data sets. In

other words, the value of the selected statistic T (and thus the p� value) calculated from the

real data would appear as a typical value in the distribution of T (and the p � value) from
the randomized data sets. Conversely, if the value of T (and the p � value) from real data

is "signi�cantly abnormal", then we may be con�dent that the observed data are not formed

by chance, and the null hypothesis should be rejected.

Comparing to other methods discussed before, bootstrap analysis has several signi�cant

advantages. As a non-parametric test, bootstrap analysis does not require that the data be

normally distributed and is robust to noise. Furthermore, bootstrap analysis is more sensitive

and accurate that the classical non-parametric tests, as it is able to take into account the

errors arising from "multiple testing" (discussed in detail in the next subsection) Finally this

method can be used with any statistical measure. That is, we can choose any statistic and

evaluate its p-value using the resampling strategy. Therefore, bootstrap analysis is more

appropriate for use with microarray data than either the t-test or classical non parametric

tests [334].

Multiple testing

To select di¤erentially-expressed genes, we usually apply the hypothesis test gene by gene.

In practice, a microarray experiment typically involves thousands of genes. This means we

have to repeatedly run the test for thousands of times. A problem with doing so many test

is that the number of false positive may be increased, a phenomenon called multiple testing

in statistics. In other words, we could make the Type I error and report false positives due

to random e¤ects. According to the de�nition of signi�cance level (subsection before), the

probability of committing a Type I error is exactly �. So the probability of not making a

Type I error would be 1 � �. Suppose we have N genes in the data set, the probability of

make correct decisions for all genes is:Prob(globally correct) = (1� �)N , and the probability
of making at least one mistake Prob(wrong somewhere) = 1 � (1� �)N . When � is small,
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the expected number of false positives is �N . For a very large N , the number of false positives

may be large.

They exist four axes of approaches that deal with multiple testing: family-wise error

rate (FWER), false discovery rate (FDR), permutation-based and one of the best known in

bioinformatics community signi�cance analysis of microarray data (SAM).

The principal idea in FWER approaches is to control the global signi�cance level and

the error rate of multiple test. However, these methods, are often too conservative and result

in too many false negatives. They exist several FWER methods, we can mention Sidak

correction for multiple comparisons (see [65]), bonferroni correction (see[42, 43]) and Holm�s

step wise correction ([150]).

An alternative approach, FDR, was proposed by Benjami and Hochberg ([28]) to control

the false discovery rate (FDR) instead of the FWER. The basic idea of this approach is to

control the proportion of signi�cant results that are in fact Type I errors. However, FDR

assumes all the genes in the microarray are independent, which is usually not true in reality.

FWER and FDR approaches control the global rate of false positives from di¤erent

perspectives. However, neither of the approaches consider the possible correlation among

data objects. For microarray data analysis this problem is particularly important since genes

are often highly correlated. For example, a group of genes may participate in the same

pathway. Permutation-based approaches take into consideration the possible correlation

among genes by adjusting the p � value based on the resampling theory. In [317], Westfall
and Young propose a step-down correction (W-Y approach) that adjusts the p � value with
the consideration of the possible correlation. More details and an example of applying this

method to microarray data can be found in [103]. Disadvantages of this approach is that is

computationally intensive and thus very slow [98]. Also is founded in an empirical process

lacking the elegance of a more theoretical approach.

Tusher et al [309] reviewed several approaches to adjusting p � values for multiple

testing. To address some of the defaults of the approaches cited before in microarray, they

proposed the Signi�cance Analysis of Microarrays (SAM). Basically, SAM assigns a score

to each gene according to its change in gene expression. Genes with scores greater than a

threshold are considered as "potentially" signi�cant. To control the false positives, SAM uses

permutation measurements to estimate the false discovery rate (pFDR). The score threshold

for genes is then adjusted iteratively according to the pFDR until a set of signi�cant genes

have been identi�ed. SAM method has become very popular method for the identi�cation of

di¤erentially expressed genes in bioinformatics community. More detail of this method [309].

ANOVA (analysis of variance)

In previous sections, we have described methods for analyzing di¤erentially expressed genes

in simple data sets with only two samples. In practice, microarrays are also being used to

perform more complex experiments as in example data set D, which contains three groups of

samples. Thus, the problem is to identify genes that were di¤erentially expressed on one or

more groups relative to the others. There are two possible ways to make these analysis [294]:
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� A straight-forward method is to apply an unpaired t-test three times, to each pair of

groups in turn; genes that are signi�cant in one or more of the t-tests are then selected.

This algorithm was implemented in SAM package.

� An alternative method is to use a statistical test that compare all three groups

simultaneously and reports a single p� value. This method is best known as ANOVA.
Stekel [294] noted that there are two problems with the �rst method: increasing the false

positives (becoming worst when the number of groups increase) and each of the comparisons

is not independent of the other, thus it becomes very di¢cult to interpret the results.

Due to the above problems, we usually adopt the ANOVA strategy for Example data

set D. ANOVA, performs an analysis of the data with multiple groups, and returns a single

p� value which suggest the level of signi�cance whether one or more groups is di¤erent from
others. if we assume the variance in gene expression comes from only one source, i.e., the

di¤erent type of cancers the patients are su¤ering from, we actually perform the one-way

ANOVA. Instead, if we consider the variance from multiple sources, e.g., the cancer type and

the microarray experiment artifacts, we build a more general ANOVA models which include

multiple correlated factors and obtain one p� value for each of the factors separately. Such
analysis is called the multifactor ANOVA.

In general ANOVA method is based on the calculation of the sum of squares, degrees of

freedom, mean square deviation from the mean and F-statistics. As we present only the two

di¤erent approaches of ANOVA method and its implications in microarray technology, the

reader may refer to the work of Zar [332] for a full appreciation and pedagogic explanation of

the two types of ANOVA algorithms.

The one-way ANOVA takes the variance in a given data set from a single source. How-

ever, the variance can be divided into two parts. First, the measurements of each group vary

around their mean, which forms the within-group variance. Second, the means of each group

will vary around the overall mean of the data set, which forms the inter-group variance. The

essential spirit of the one-way ANOVA is to study the relationship between the inter-group

and the within-group variances.

In contrast, the multifactor ANOVA builds an explicit model about the multiple, pos-

sibly correlated sources of variance that a¤ect the measurements, and then use the data to

estimate the variance of each individual variable in the model. The advantage of multifac-

tor ANOVA is that it takes into consideration multiple sources of variance [97]. Thus, it is

possible to distinguish interesting variations, such as gene regulation, from the experiment

artifacts, such as di¤erences caused by di¤erent chips or two-channels of color etc. However,

the application of the multifactor ANOVA requires very careful experimental design. In most

cases this requires repeating several chips with various mRNA samples, duplicating individ-

ual genes on multiple spots of a single chip, etc. In practice, due to the relatively expensive

cost and intensive labor of microarray experiments, replicates are often very limited. Thus,

the bene�t of multifactor ANOVA may only be received in the future when su¢cient repli-

cates are available. This a¢rmation can be extended to all of the methods described before

that needs replicates to be more accurate and high con�dence.
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2.3 Fourth Step: Classi�cation of the Genes

In microarray data analysis, experts commonly said: "The genes that are co-expressed (ex-

hibiting a common expression pro�le) code for the same biological function" and even more:

"We may use the genes with known function to infer the function of other co-expressed genes

for which information has not been previously available" [107, 303]. Furthermore, sometimes

researchers wish to identify groups of biological conditions that have similar expression level

patterns, and genes that are similar across samples. Thus, the need of methods for grouping

data objects - genes or biological conditions - is essential for the genomic science. As seen in

chapter 1, the genes are acting together for coding the cellular functions of an organism, so

in the majors processes of an organism they interact among each other to code for them.

A variety of conventional and newly-developed clustering algorithms have been used to

identify: co-expressed genes, coherent gene expression patterns? and samples with common

patterns in gene expression technology data. Clustering is the data mining process of grouping

objects into a set of disjoint classes, called clusters. The objects within a class have high degree

of similarity, while objects in separate classes are more dissimilar. In this section, we focus on

the classi�cation of the genes by common expression pro�le or by coherent patterns. In this

case, the genes are considered to be data objects, and biological conditions (either samples,

time points, etc.) are seen as attributes10. After a clustering process has been completed,

each cluster can be regarded as a group of co-expressed genes, and the corresponding coherent

pattern is simply the centroid of the cluster.

Previous studies have con�rmed that clustering algorithms are useful in �nding co-

expressed gene groups and coherent patterns [107, 303]. The identi�ed gene groups and

patterns can further help to understand gene function, gene regulation and cellular processes.

Furthermore, co-expressed genes in the same cluster are likely to be involved in the same

cellular processes, and a strong correlation of expression patterns between those genes indi-

cates coregulation. Searching for common DNA sequences at the promoter regions of genes

within the same cluster allows regulatory motifs speci�c to each gene cluster to be identi�ed

and cis-regulatory elements to be proposed [48, 303]. The inference of regulation through the

clustering of gene expression data also gives rise to hypotheses regarding the mechanism of

the transcriptional regulatory network [92].

In general, a clustering algorithm relies on some proximity measurement to evaluate the

distance or similarity between a pair of data objects (genes) and seeks to optimize a speci�c

object function. In this section, we �rst introduce several proximity measures which have been

widely used with microarray data. Then, three categories of clustering algorithms, partition-

based, hierarchical approaches, fuzzy logic approaches and density-based approaches, are

described in sections 3.3.2, 3.3.3, 3.3.4 and 3.3.5 respectively. In the last section we discuss

cluster validation techniques.

10 In this section, we use the terms "objects" and "genes" exchangeably, and the terms "attributes",
"features", and "experimental conditions" exchangeably.
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2.3.1 Proximity measurement for gene expression data

2.3.1Proximity measurement for gene expression data

A proximity measurement measures the similarity (or distance) between two data objects

(genes). A data object or geneXi can be formalized as a numerical vector ~Xi = fxi;j j 1 � j � mg
where xi;j is the value of the jth feature (sample or biological condition) for ~Xi and m is the

number of samples. The proximity between two genes Xi and Xk is measured by a proximity

function of corresponding vectors ~Xi and ~Xk.

Euclidean distance

Euclidean distance is a very common used distance measurement. It�s basically just the sum

of the squared distances of two vector values ~Xi and ~Xk. The distance between genes ~Xi and
~Xk in a m� dimensional space is de�ned as:

Euclidean(Xi; Xk) =

vuut
mX

j=1

(xi;j � xk;j)2: (2.5)

However, for gene expression data, the overall shapes of gene expression pro�les are often

of greater interest than the individual magnitudes of each sample. To solve this problem, a

standardization process (as seen in section 2.2) is usually performed before calculating this

distance.

Manhattan distance

Similar to euclidean distance, the Manhattan distance is the sum of the absolute distances of

two vectors ~Xi and ~Xk. Manhattan distance is given by this formula

Manhattan(Xi; Xk) =
mX

j=1

jxi;j � xk;j j (2.6)

This is a linear version of the Euclidean distance, with similar advantages and disad-

vantages.

Correlation coe¢cient

Pearson�s correlation coe¢cient: In contrast to Euclidean distance, which measures the

distance (dissimilarity) between two patterns, Pearson�s correlation coe¢cient measures the

extent to which two patterns are similar with each other. This measure is the most widely

used measurement of association between two vectors. For two genes Xi and Xk, the linear

correlation coe¢cient Pearson(Xi; Xk) is given by the equation:

Pearson(Xi; Xk) =

Pm
j=1(xi;j � �i)(xk;j � �k)qPm

j=1(xi;j � �i)2
qPm

j=1(xk;j � �k)2
(2.7)

where �i and �k are the means for ~Xi and ~Xk respectively. The pearson measurement have

it higher value at 1 indicating stronger similarity and it ranges: Pearson(Xi; Xk) 2 (�1; 1).
From a statistical view, each data object can be regarded as a random variable with m

75
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observations. Pearson�s correlation coe¢cient measures the similarity between two pro�les

by calculating the linear relationship of the distributions of the two corresponding random

variables. The de�nition indicates that Pearson�s correlation coe¢cient is invariant to linear

transformations.

Pearson�s coe¢cient is widely used and has proved e¤ective as similarity measure for

gene expression data. However, empirical study has shown that Pearson�s correlation coef-

�cient is not robust to outliers [145] and may generate false positives, i.e., assigning a high

similarity score to a pair of dissimilar patterns. Besides, Pearson coe¢cient assumes an ap-

proximately Gaussian distribution of the points and may not be robust for non-gaussian

distributions

Jackknife correlation: This correlation coe¢cient is a slight variation of pearson�s

correlation, specially built for data with outliers. It is de�ned as:

Jackknife(Xi; Xk) = min
n
�
(1)
i;j ; :::; �

(l)
i;j ; :::; �

(m)
i;j

o
; (2.8)

where �
(l)
i;j is the Pearson�s correlation coe¢cient of genes Xi and Xk with the lth sample

deleted. Using the jackknife correlation avoids the "dominant e¤ect" of single outliers. How-

ever, the generalized jackknife correlation, which would involve the enumeration of di¤erent

combinations of features to be deleted, is computationally costly and is rarely used.

Spearman�s rank-order correlation: D�haeseleer [92] has proposed an alternative

coe¢cient to pearson�s correlation measurement, named Spearman�s rank-order correlation.

Spearman coe¢cient does not require the assumption of Gaussian distribution and is also

more robust against outliers that Pearson�s correlation coe¢cient. The rank correlation is

derived by replacing the numerical expression level xi;j with its rank ri;j among all time

points. For example, ri;j = 3 if xi;j is the third highest value among xi;k, where 1 � k � m.
The principal default of Spearman�s rank-order correlation is, as a consequence of rank-

ing, a signi�cant amount of information present in the data is lost. Therefore, on average,

Spearman�s rank-order correlation coe¢cient may no perform as well as Pearson�s correlation

coe¢cient.

Kullback-Leibler divergence

The Kullback-Leibler divergence or relative entropy, is an information-theoretic approach to

measuring the distance between two gene expression pro�les. In general, the relative entropy

between two probability mass functions u(w) and v(w) over the random variable W is de�ned

as:

KL(u k v) =
X

w2W

u(w)log
u(w)

v(w)
: (2.9)

Given a random variableW with a true distribution u, the K-L divergence measures the

ine¢ciency of assuming the distribution of W as v. As with Pearson�s correlation coe¢cient,

the K-L divergence also regards each gene expression pro�le Xi as a random variable with m

observations. To apply the K-L divergence, a pro�le Xi is converted to its probability mass

function by calculating the fractional contribution of the expression level at each experimental
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condition to the sum of expression levels at all conditions; i.e., ui(w) =
Xi;wP
m

j=1
xi;j
. The K-L

divergence always takes non-negative values, an is zero if and only if u = v.

Kasturi et al. [163] have used the K-L divergence in conjunction with an unsupervised

self-organizing map algorithm (explained in the next subsection). The clustering results from

two gene expression data sets were found to be superior to those obtained with the hierarchical

clustering algorithm using the Pearson�s correlation coe¢cient [163].

2.3.2Partition-based approaches

Partition-based algorithms divide a data set into several mutually-exclusive subsets based

on certain clustering assumption (e.g., there are k clusters) and optimization criteria (e.g.,

minimize the sum of distances between objects and their cluster centroids). In other words,

partitioning methods seek to minimize some measure of within-group dissimilarity of a �xed

number of k groups. This is a combinatorial optimization problem, in most problems the

global optimum will not be found, and one of the possibly many local optima will be instead

identi�ed. We can further divide the partition-based methods into �ve sub-categories: the

K-means algorithm and its variations [145, 303, 190, 248, 284], K-medoids and its variations

[164], Self Organizing Maps (SOM) an its extensions [145, 169, 298, 307, 206], model-based

algorithms [118, 126, 209, 331] and graph theoretical algorithms [26, 140, 326, 276]

K-means and its variations

Under this method, one needs to �x the number of clusters K in advance, then the algorithm

partitions the data set into K disjoint subsets which minimize the sum of squared distances

from each observation to its cluster center �i,

O =
KX

k=1

X

xi2Ck

kxi � �kk2 ; (2.10)

where xi is the gene expression measures vector in cluster Ck, �k is the centroid or geometric

center (mean of genes) of Ck . Thus, the objective function O tries to minimize the sum of

the squares distances of objects from their cluster centers [68].

The K-means method is computationally simple and fast. The time complexity of K-

means is O(l; k; n) where l is the number of iterations, k is the number of clusters and n is

the number of genes. However, this algorithm has several known drawbacks as a clustering

algorithm for gene classifying. First, the number of gene clusters in a gene expression data

set is usually unknown in advance. Second, gene expression data typically contain signi�cant

noise. The K-means algorithm forces each gene into a cluster, which may cause the algorithm

to be sensitive to noise [284].

Recently, several new algorithms [145, 248, 284] have been proposed to overcome some

drawbacks of the K-means algorithm. We call the variations of the K-means algorithm, since,

in essence, they also are intended to minimize the overall divergence of objects from their

clusters centers eq. 2.10. One common characteristic of these algorithms is that they use

some thresholds to control the coherence of clusters.
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In Ralf-Hewing et al. [248] introduced two parameters 
 and �, where 
 is the maximal

similarity between two separate centroids, and � corresponds to the minimal similarity between

a data point and its cluster centroid. In Heyer et al. [145] constrained the clusters to have

a diameter no larger than a threshold. Furthermore, Smet et al. [284] proposed a more

e¢cient algorithm in which each gene xi is assigned to cluster Ck if the assignment has a

higher probability than a threshold.

The K�means algorithm and its variations require the initial stipulation of some global
parameters such as the number of cluster or a coherence threshold. The clustering process

is like a "black box"; users input the data set an the parameter values, and the cluster are

generated. There is no intensive interaction between the user and the mining procedures.

While this simpli�es processing, they are not sensitive to the local structures of the data set

and provide no opportunity to exploit user domain knowledge of the data set.

K-medoids and its variations

K � means algorithm takes averages of points assigned to each cluster to de�ne cluster

centroids. Such a centroid may have little interpretative value in some problem such a when

some variables are categorical or discrete. In these situations, it is more meaningful for each

cluster centroid to be a representative object (i.e. the observed data points). The medoid of a

cluster of points is the point with best average dissimilarity to all other points. K �medoids
is equivalent to K � means algorithm, but it uses the dissimilarity matrix instead of data
matrix means [68]. Using the medoid instead of a mean is more robust to missing values and

outliers, but it conserves K �means drawback of �xing a priori the number of clusters.
Kaufman and Rousseeuw have proposed a series of algorithms that solves the same

problem as K � medoids with some calculation di¤erences: partitioning around medoids

(PAM), clustering large Applications (CLARA) and randomized CLARA (CLARANS) [164].

PAM algorithm �rst �nds an initial set of medoids and then exchange points so that no

single switch of an observation with a medoid will decrease the objective function. CLARA

algorithm it draws multiple samples of the data set, applying PAM on each sample, and giving

the best clustering as the output. CLARANS draws sample of neighbors dynamically, when

it founds a local optimum, CLARANS stars with new randomly selected point in search for

a new local optimum. The principal drawbacks of these methods are: PAM is not robust for

microarray large data sets containing thousands of genes; CLARA it depends on the sample

size and is based in the sample that will not necessary represent the whole data set (can be

biased); CLARANS is computationally ine¢cient and has to be improved [110]. Indeed, this

three variations of k-medoids have been used in many microarray studies11.

SOM and its extensions

The Self-Organizing map (SOM) was developed by Kohonen [169] on the basis of a single

layered neural network. The data objects (genes) are presented as input one at a time. The

output neurons are organized with a simple neighborhood structure such as two-dimensional

11 PAM, CLARA, CLARANS are in the clustering package of open source for bioinformatics bioconductor:
http://www.bioconductor.org/
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m � q grid (see [298] for a visual picture of this structure). Each output neuron of the neural
network is associated with a m-dimensional reference vector, where m is the dimensionality

of the input data objects (genes).

In the learning process, each input data point is "mapped" to the output neuron with the

"closest" reference vector. Reference vectors (output nodes), which are in some neighborhood

of the winning node, are updated by moving them toward the input pattern. For SOM learning

each data object acts as a training sample which directs the movement of the reference vectors

towards the denser areas of the input vector space. As a result, reference vectors are trained

to �t the distributions of the input data set. When the training is complete, clusters are

identi�ed by mapping all data points to the output neurons.

One of the remarkable features of SOM is that it allows users to impose a partial

structure on the clusters, and arranges similar patterns as neighbors in the output neuron map.

This feature facilitates easy visualization and interpretation of the clusters and thus partly

supports explorative analysis of gene expression patterns. Tamayo et al. [298] has applied

SOM method in the context of microarray data, with a two-dimensional grid. They propose

a grid-structured summary of the cluster represented by each prototype. Each summary is

typically a plot of expression levels of a prototype gene across the di¤erent experiments.

Recently, several new algorithms [307, 144, 206] have been proposed based on the SOM

algorithm. These algorithms can automatically determine the number of clusters and dynam-

ically adapt the map structure to the data distribution. For example, Herrero et al. [144]

extended the SOM by a binary tree structure. At �rst, the tree only contains a root node

connecting two neurons. After a training process similar to that of the SOM algorithm, the

data set is segregated into two subsets. The neuron with less coherence is then split into two

new neurons. This process is repeated level by level until all neurons in the tree satisfy some

coherence threshold. Other examples of SOM extensions are Fuzzy Adaptive Resonance The-

ory (Fuzzy Art) [307] and supervised Network Self-Organizing Map (sNet SOM) [206]. In

general, they provide some approaches to measuring the coherence of a neuron (vigilance cri-

terion in [307] and grow parameter [206] ). The output map is adjusted by splitting existing

neurons or adding new neurons to the map until the coherence of each neuron in the map

satis�es a user-speci�ed threshold.

SOM is a e¢cient and robust clustering technique. A hierarchical structure can also

be built on the basis of SOM; one example is SOTA (Self Organizing Tree Algorithm) [95].

Moreover, by systematically controlling neuron splitting, SOM can easily adapt to the local

structures of the data set. However, the current versions of SOM require that the splitting

process be controlled by user-speci�ed coherence threshold, something which is di¢cult to

identify with gene expression data. Furthermore, SOM requires a user to prespecify the

number of clusters, something which is typically unknown in gene expression data.

Model-based clustering

Model-based clustering approaches [118, 126, 209, 331] provide a statistical framework to

model the cluster structure of gene expression data. The data is assumed to come from a

�nite mixture of underlying probability distributions, with each component corresponding to
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a di¤erent cluster. Suppose for the ith observation 
ki gives the true, but unknown, k group

level for that observation. Then letting fi (xi j �k) denote the conditional density function for
a typical observation xi from group k, where �k denotes an unknown parameter, the resulting

likelihood of genes with expression pro�les x1; x2; :::; xn is given by

L(
; �) =

nY

i=1

KX

k=1


ki fi (xi j �k) ; (2.11)

where the parameters 
 = f
ki j 1 � k � K; 1 � i � ng and � = f�k j 1 � k � Kg. The
unknown group levels 
ki are obtained by the method of maximum likelihood that is the

method that maximizes the function L jointly in 
 and �. Usually the parameters 
 and �

are estimated by the EM algorithm [88]. See more details in Ban�eld et al. [18].

Several early studies, including [118, 126, 331], impose a model of multivariate Gaussian

distributions on gene expression data. Although the Gaussian model works well for gene-

sample data (where the expression levels of genes are measured under a collection of samples,

it may not be e¤ective for time-series data (where the expression levels of genes are monitored

over a continuous series of time points). Because the Gaussian model treats the time points as

unordered, static samples and ignores the inherent dependency of the gene expression levels

over time.

We can mention at least two models [251, 272] that have been introduced gene expression

dynamics of time-series data into model-based algorithms. In Ramoni et al. [251] assumed

that the time-series follow an autoregressive model, where the value of the series at time t is

linear function of the values at several previous time points. Schliep et al. [272] proposed a

restricted hidden Markov model to account for the dependencies in time-series data.

An important advantage of model-based approaches is that they provide an estimated

probability 
ki that data object xi will belong to cluster Ck. However, gene expression data

are typically "highly-connected"; there may be instances in which a single gene has a high

correlation with two or more di¤erent clusters. Thus, the probabilistic feature of model-based

clustering is particularly suitable for gene expression data. However, model-based clustering

relies on the assumption that the data set �ts a speci�c distribution, which may often not be

the case.

Graph theoretical algorithms

Given a data setD, we can construct a proximity matrix P , where P [i; j] = proximity(Xi; Xj)

and a weighted graph G(V;E), called a proximity graph, where each data point corresponds

to a vertex. For some clustering methods, each pair of genes is connected by an edge, with

weight assigned according to the proximity value between the objects [276, 326]. For other

methods, proximity is mapped only to either 0 or 1 on the basis of some threshold, and edges

only exist between genes i and j, where P [i; j] = 1 [26, 140].

Graph-theoretical clustering techniques are explicitly presented in terms of a graph,

thus converting the problem of clustering a data set into such graph theoretical problems as

�nding the minimum cut or maximal cliques in the proximity graph G.
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We�ll take the algorithms clustering a¢nity search technique (CAST) [26] and clus-

ter Identi�cation via Connectivity Kernels (CLICK) [276] as remarkable examples of graph

theoretical algorithms.

CAST: Cluster a¢nity search technique: Ben-Dor et al. [26] introduced the

concept of a corrupted clique graph data model. The input data set is assumed to come from

the underlying cluster structure by "contamination" by random errors caused by the complex

process of microarray experimentation. Speci�cally, it is assumed that the true clusters of the

data points can be represented by a clique graph H, a disjoint union of complete sub-graphs

in which each clique corresponds to a cluster. The similarity graph G is derived form H by

�ipping each edge/non edge with probability �. Therefore, clustering a data set is equivalent

to identifying the original clique graph H from the corrupted version G with as few �ips

(errors) as possible.

Intuitively CAST speci�es the desired cluster quality through an a¢nity threshold (t),

average similarity between the objects within a cluster, and applies a heuristic searching

process to identify quali�ed cluster one at a time. Therefore, CAST does not depend on a

user-de�ned number of clusters and deals e¤ectively with outliers. Nevertheless, CAST has

the usual di¢culty of determining a "good" value for the global parameter t.

CLICK: Cluster Identi�cation via Connectivity Kernels: Motivated by HCS

(highly connected subgraph) [140], Shamir et al. presented the algorithm CLICK [276].

CLICK makes the probabilistic assumption that, after standardization, pair-wise similar-

ity values between elements (in the same or di¤erent clusters) will be normally distributed.

Under this assumption, the weight wi;j of an edge (i; j) is de�ned as the probability that ver-

tices i and j are in the same cluster. The clustering process of CLICK iteratively �nds the

minimum cut in the proximity graph and splits the data set recursively into a set of connected

components from the minimum cut. CLICK also takes two post-pruning steps to re�ne the

clustering results. The adoption step handles the remaining singletons and updates the cur-

rent clusters, while the merging step iteratively merges two clusters with similarity exceeding

a prede�ned threshold.

In [276] the authors compared the clustering results of CLICK with Genecluster [107] a

SOM approach in two data sets. In both cases, the clusters obtained by CLICK demonstrated

better quality in terms of cluster homogeneity and separation. However CLICK has the

potential of going out and generating highly unbalanced partitions which separate a handful

of outliers from the remaining genes. Furthermore, in gene expression data, two clusters of co-

expressed genes may signi�cantly intersect. In such situations, CLICK is unlikely to properly

split the two clusters, which are likely to be reported as one highly-connected component.

2.3.3Hierarchical approaches

These approaches produce a hierarchy of clusters rather than a set number of clusters �xed in

advance (as partition-based algorithms). The nested sequence of clusters produced by these

approaches makes them appealing when di¤erent levels of detail are of interest because small

clusters are nested inside larger ones. Nested clusters can be graphically represented by a

tree, called dendrogram. The branches of a dendrogram no only record the formation of the
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clusters, but also indicate the similarity between the clusters. Selection of K clusters from

a dendrogram corresponds to cutting the dendrogram with a horizontal line at appropriate

height. Each branch cut by the horizontal line corresponds to a cluster. Hierarchical clustering

algorithms can be further categorized into two kinds: agglomerative approaches and divisive

approaches[68].

Agglomerative approaches

Agglomerative procedures, also called bottom-up methods, initially regard each data object as

a n individual cluster (starting with n clusters) and iteratively reduces the number of clusters

by merging the two most similar or closest objects or clusters, respectively, until only one

"big" cluster is remaining. At the �rst step, when each object represents its own cluster, the

distances between those objects are de�ned by the chosen distance measure (as seen in the

section 2.3.1). However, once several objects have been linked together, a linkage or merging

rule is needed to determine if two clusters are su¢ciently similar to be linked together. There

are numerous linkage rules that have been proposed. here are some of the most common

[100, 164]:

� Simple linkage is determined by the distance of the two closest objects or nearest

neighbors in the di¤erent clusters.

� Average linkage, which uses the average of all distances between points in the two

clusters.

� Complete linkage is determined by the greatest or maximum distance between any two

objects in the di¤erent clusters (i.e., furthest neighbors).

� Unweighted pair-group average linkage, where the distance between two clusters is

calculated as the average distance between all pairs of objects in the two di¤erent

clusters.

Other variations also exist, such as trying to minimize within-cluster distance as weighted

pair-group average linkage, unweighted pair-group centroid linkage, ward�s method, etc. (more

details in [100, 164]).

Eisen et al. [107] applied an agglomerative algorithm called UPGMA (unweighted pair

group method with arithmetic mean) and adopted a method to graphically represent the

clustered microarray data set. In this method, the original input gene expression matrix is

represented by a colored table (see Fig. 2.6), where large contiguous patches of color repre-

sent groups of genes that share similar expression patterns over multiple biological temporal

conditions.

Figure 2.6 An image showing the di¤erent classes of gene expression pro�les. Five

hundred and seventeen genes whose mRNA levels changed in response to serum stimulation

were selected. This subset of genes was clustered hierarchically into groups on the basis of the

similarity of their expression pro�les, using the procedure of Eisen et al. [107]. The expression

pattern of each gene in this set is displayed here as a horizontal line. For each gene, the ratio
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FIG. 2.6: An image showing the di¤erent classes of gene expression pro�les.
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of mRNA levels is represented by a color, according to the color scale at the bottom. The

graphs show the average expression pro�les for the genes in the biological process.

Hierarchical clustering no only groups together genes with similar expression pattern but

also provides a natural way to graphically represent the data set. The graphic representation

gives users a thorough inspection of the whole data set so that the users can obtain an initial

impression of the distribution of data. Eisen�s method is very popular by many biologists and

has become one of the most widely-used tools in gene expression data analysis [107, 237, 8].

However, as pointed out in previous microarray studies [298, 19] traditional agglomera-

tive clustering algorithms may not be robust to noise. They often base merging decisions on

local information and never trace back to ensure that poor decisions made in the initial steps

are corrected later. In addition, hierarchical clustering results in a dendrogram, with no guid-

ance on cutting the dendrogram to derive clusters. Given a typical gene expression data set

with thousands of genes, it is unrealistic to expect users to manually inspect the entire tree

To render the traditional agglomerative method more robust to the noise, Sasik et al [64]

proposed a novel approach called percolation clustering. In essence, these algorithm adopts

a statistical bootstrap method to merge two data objects (or two subsets of data objects)

when they are signi�cantly coherent with each other. In Bar-Joseph et al. [19] replaced

the traditional binary hierarchical tree with a k-array tree. A heuristic algorithm was also

presented to construct the k-array tree, which reduced susceptibility to noise and generated

an optimal order for the leaf nodes. These two approaches increase the robustness of the

derived hierarchical tree. However, neither of them indicates how to cut the dendrogram to

obtain meaningful clusters.

Divisive approaches

Divisive algorithms (i.e., top-down approaches) start with a single cluster which contains all

the data objects. The algorithm splits clusters iteratively until each cluster contains only one

data object or a certain stop criterion is met. The various divisive approaches are primarily

distinguished by the manner in which clusters are split at each step. In this subsection

we explain two divisive algorithms: deterministic annealing (DAA) and super-paramagnetic

clustering (SPC). Another similar divisive algorithms used for microarray data clustering is

Diana (for more details see: [164]).

Deterministic annealing (DAA): Alon et al. [8] used a divisive approach, called the

deterministic-annealing algorithm (DAA) to split genes. First, two initial cluster centroids

Ck; k = 1; 2; :::; were randomly de�ned. The expression pattern of gene i was represented by

a vector ~xi, and the probability of gene i belonging to cluster k was determined according to

a two-component Gaussian model:

Pk(~xi) =
exp(�� j~xi � Ckj2)P

k

exp(�� j~xi � Ckj2)
: (2.12)

The cluster centroids were recalculated by Ck =
P
i ~xiPk(~xi)=

P
i Pk(~xi), and the EM

algorithm [88] was then applied to solve Pk and Ck. Increasing � in small increments to a
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FIG. 2.7: Dendrogram of genes generated by SPC for yeast cell-cycle expression data.
Figure from [125].

threshold resulted in two distinct, converged centroids. The entire data set was recursively

split until each cluster contained only one gene.

Super-paramagnetic clustering (SPC): Super-paramagnetic clustering, proposed

by Blatt et al. in [36] is based on the physical properties of an inhomogeneous ferromagnetic

model. SPC �rst transforms the data set into a distance graph where each vertex corresponds

to a data object. Two vertices Vi and Vj in the graph are connected by an edge if and only if

their corresponding objects Xi and Xj satisfy the K-mutual-neighbor criterion, i.e., Xj is one

of the K � nearest objects to Xi , and vice versa. Moreover, an edge in the distance graph
is associated with a weight Ji;j > 0, with a smaller Euclidean distance between Xi and Xj
associated with a greater weight.

Getz et al. [125] applied SPC to a yeast cell cycle expression data. Figure 2.7 illustrates

the dendrogram generated by SPC. Three out of the eleven identi�ed clusters correspondent

to known phases of the cell cycle, while other clusters revealed features that had not been

previously identi�ed and may serve as the basis of future experimental investigation.

Some of the advantages of SPC are its robustness against noise and initialization, a clear

signature of cluster formation and splitting, and an unsupervised self-organized determination

of the number of cluster at each resolution.

In summary, hierarchical clustering not only groups together genes with similar expres-

sion pattern but also provides a natural means to graphically represent the data set. The

graphic representation allows users to make a throughout inspection of the entire data set

and thus obtain an initial impression of the distribution of the data. Eisen�s method as dis-

cussed before, is favored by many biologists and has become the most widely-used tool in

gene expression data analysis [107, 237, 8]. As noted earlier, the conventional agglomerative

approach su¤ers from a lack of robustness [298], and a small perturbation of the data set

may greatly change the structure of the hierarchical dendrogram. Another drawback of the

hierarchical approach is its high computational complexity. To construct a "complete" den-

85



2 Gene Expression Data Analysis Procedure

drogram, the clustering process should engage in n2�n
2 merging steps. Furthermore, for both

agglomerative and divisive approaches, the "acquisitive" nature of hierarchical clustering pre-

vents the re�nement of the previous clustering steps. Thus, in "bad" decision in the initial

steps, it can never be corrected in the following steps.

2.3.4Fuzzy logic approaches

Fuzzy logic is derived from fuzzy set theory? dealing with reasoning that is approximate

rather than precisely deduced from classical predicate logic. Fuzzy logic, linguistic form

uses imprecise concepts like "slightly", "quite" and "very". Speci�cally, it allows partial

membership in a set and it is related to possibility theory. In this subsection we describe the

Fanny approach [164], which is often in microarray data analysis tools as bioconductor.

Fanny: This algorithm uses fuzzy logic and produces a probability vector for each ob-

servation. A hard cluster is determined by assigning an observation to a group which has the

highest probability. Like distance-based methods, one has a choice of using a general dissimi-

larity measure. Assuming K denote the total number of desired clusters, Fanny computes the

probability vectors (called membership coe¢cients): ux1 ; :::; uxK for all genes x that minimize

the objective function

KX

k=1

P
x;y u

2
xku

2
yKd(x; y)P

x u
2
xk

: (2.13)

After minimizing this equation, hard clusters are then produced, if needed by assigning

genes to the group with the highest probability [164]. Typically, relatively fewer hard clusters

are produced by this method. That is the major drawback of these method, if a speci�c

number of hard clusters is desired, fanny method may not be a suitable algorithm [85].

2.3.5Density-based approaches

Density-based approaches describe the distribution of a given data set by the "density" of

data objects. The clustering process involves a search of the "dense areas" in the object space

[110]. In this subsection we brie�y present three algorithms: DBSCAN [110], OPTICS [11]

and DENCLUE [146].

DBSCAN: The DBSCAN algorithm introduced by Ester et al. [110] is grounded on a

density-based notion of clusters. To measure the "density" of data objects, DBSCAN de�nes

the �-neighborhood of an object p as a set o objects N�(P ) such that the distance between p

and each object q in N�(P ) is smaller than a user-speci�ed threshold �. Intuitively, an object

p has a "high" density if N�(P ) �MinPts, where MinPts is a user-speci�ed threshold.

The clustering process of DBSCAN scans the data set only once and reports all the

clusters and noise. For each data object xi, DBSCAN check the �-neighborhood N�(xi) of xi.

If N�(xi) contains more thanMinPts data objects (i.e., xi is a core object), DBSCAN creates

a new cluster and then iteratively retrieves all data objects which are density-reachable from

xi with respect to � and MinPts. If xi is a border object, no points are density-reachable

from xi, and DBSCAN visits the next point in the data set.
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While DBSCAN is able to discover clusters with arbitrary shape an is quite e¢cient

for large data sets, the algorithm is very sensitive to input parameters. It may generate very

di¤erent clustering results from slightly di¤erences in parameter settings [11].

OPTICS: Inspired in DBSCAN, Ankerst et al. [11] introduced the algorithm OPTICS.

This algorithm does not generate clusters explicitly but instead creates an ordering of the data

objects and illustrates the cluster structure of the data set. in essence, this ordering contains

information that is equivalent to the clustering of DBSCAN, with a wide range of parameters

settings.

OPTICS algorithm generates an ordering of objects by scanning the data set once. The

algorithm maintains a queue in which data objects are sorted in ascending order according

to their reachability-distances. The ordering of objects is simply the sequence in which data

objects are extracted from the queue. Once the ordering of the objects and their reachability-

distances are obtained, clusters can be extracted using this information.

DENCLUE: Unlike the local density measures employed by DBSCAN and OPTICS,

DENCLUE [146] measures object density from a global perspective. Data objects are assumed

to "in�uence" each other, and the density of a data object is the sum of in�uence functions

from all data objects in the data set. The incorporation of a variety of in�uence functions

allow DENCLUE to be a generalization of many partition-based, hierarchical, and density-

based clustering methods. More details in the mathematical foundation of DENCLUE can

be seen in [146].

DENCLUE has a solid statistical foundation and allows a compact mathematical de-

scription of arbitrarily-shaped clusters. Moreover, has good clustering properties for data sets

with high dimensionality and large amounts of noise. The computational e¢ciency of DEN-

CLUE is signi�cantly higher than some in�uential algorithms, such as DBSCAN (by a factor

up to 45) [146]. However, the method requires careful selection of the density parameter �

and the noise threshold �, as the setting of such parameters may signi�cantly in�uence the

quality of the clustering results [11]. Moreover, DENCLUE outputs all clusters at the same

level. Therefore, it cannot support an exploration of hierarchical cluster structures which

exploits user�s domain knowledge.

To our knowledge, the density-based approaches described before have not been directly

applied to gene expression data for cluster analysis.

2.3.6Cluster validation

The previous sections have reviewed a number of clustering algorithms which partition a data

set on the basis of particular clustering criteria. However, di¤erent clustering algorithms, or

even the use of a single clustering algorithm with di¤erent parameters, generally result in

di¤erent sets of clusters. Therefore, it is important to compare various clustering results and

select the one that best �ts the "true" data distribution.

Cluster validity is assessed on at least three general bases. First, the quality of clusters

can be measured in terms of the degree of their homogeneity, separation and consistency. By

de�nition, objects within one cluster are assumed to be similar to each other, while objects

in di¤erent clusters are dissimilar. The second aspect relies on a given ground truth? of
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the clusters. The "ground truth" may come from domain knowledge, such as known function

families of genes. Cluster validation is based on the extent of agreement between the clustering

results and this "ground truth". The third aspect of cluster validity focuses on the reliability

of the clusters or on the likelihood that the cluster structure has not been formed by chance.

In this subsection, we discuss these three aspects of cluster validation.

Homogeneity, separation and consistency

Here we present di¤erent measures for testing the homogeneity, separation and consistency

of the obtained clusters.

The homogeneity of a cluster is de�ned by some measure which quanti�es the similarity

of data objects (genes) in the cluster C. For example,

H1(C) =

P
Xi;Xj2C;Xi 6=Xj

S imilarity(Xi; Xj)

kCk � (kCk � 1) ; (2.14)

where kCk is the cardinality of the cluster C and S imilarity(Xi; Xj) is the any similarity

measure between gene i and gene j.

This de�nition represents the homogeneity of cluster C by the average pairwise object

similarity within C An alternate de�nition evaluates the homogeneity with respect to the

"centroid" of the cluster C, i.e.,

H2(C) =
1

kCk
X

Xi2C

S imilarity(Xi; �X); (2.15)

where �X is the "centroid" of C. Other de�nitions, such as the representation of cluster

homogeneity via maximum or minimum pairwise or centroid-based similarity within C can

also be useful and perform well under certain conditions.

Cluster separation is analogously de�ned from various perspectives to measure the dis-

similarity between two clusters C1; C2. For example,

S1(C1; C2) =

P
Xi2C1;Xj2C2

S imilarity(Xi; Xj)

kC1k � kC2k
(2.16)

and

S2(C1; C2) = S imilarity(�X1; �X2) (2.17)

where �X1 and �X2 are the centroids of C1 and C2, respectively.

Since these de�nitions of homogeneity and separation are based on the similarity be-

tween objects, the quality of C increases with higher homogeneity values within C and

lower separation values between C and other clusters. Once we have de�ned the homo-

geneity of a cluster and the separation between a pair of clusters, for a given clustering result

C = fC1; C2; :::; CKg, we can de�ne the homogeneity and the separation of C. For example,
Sharan et al. [276] used de�nitions of

Have =
1

N

X

Ci2C

kCik �H2(C); (2.18)
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and

Save =
1P

Ci 6=Cj

kCik � kCjk
X

Ci 6=Cj

(kCik � kCjk)S2(C1; C2); (2.19)

to measure the average homogeneity and separation for the set of clustering results C.

Cluster consistency (Cons) is analogously de�ned from various perspectives to measure

the average distance or proportion of elements within one reference cluster Cg;0 and modi�ed

cluster Cg;j . In this particular notation we suppose that for each gene 1 � g � N . The

reference cluster Cg;0 be the cluster in the original data containing gene g and the modi�ed

cluster Cg;j denote the cluster containing gene g in the clustering based on the data set with

biological condition j deleted. The experiment contains N genes andM biological conditions.

For example, Datta et al. [85] used de�nitions of three consistency measures, explained in the

next paragraphs.

The average proportion of non-overlap measure computes the average proportion of

genes that are not put in the same cluster by the clustering method under consideration on

the basis of the full data and the data obtained by deleting the expression levels at one time

point at a time. This measure is de�ned as:

Cons1(K) =
1

NM

NX

g=1

MX

j=1

 

1�


Cg;j \ Cg;0





kCg;0k

!

; (2.20)

where


Cg;0



 is the cardinality of the set Cg;0.
The average distance between means measure computes the (average) distance between

the mean expression ratios (log transformed) of all genes that are put in the same cluster by

the clustering method under consideration on the basis of the full data and the data obtained

by deleting the expression levels at one speci�c biological condition. This measure is de�ned

as:

Cons2(K) =
1

NM

NX

g=1

MX

j=1

S imilarity(�xCg;j ; �xCg;0); (2.21)

where �xCg;0 denotes the average expression pro�le for genes across cluster Cg;0 and �xCg;j

denotes the average expression pro�le for genes across cluster Cg;j .

The average distance measure computes the average distance between the expression

levels of all genes that are put in the same cluster by the clustering method under consideration

on the basis of the full data and the data obtained by deleting the expression levels of one

biological condition each time. This measure is de�ned as:

Cons3(K) =
1

NM

NX

g=1

MX

j=1

1

kCg;jk kCg;0k �
X

g2Cg;0;g02Cg;j

S imilarity(xg; xg0); (2.22)

where S imilarity(xg; xg0) is any similarity measurement between the expression pro�les of

genes g and g0:
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Agreement with reference partition

If the ground truth of the cluster structure of the data set is available, we can test the

performance of a clustering process by comparing the clustering results with the ground

truth. Given the clustering results C = fC1; :::; Ckg, we can construct a n � n binary matrix
C, where n is the number of data objects, Ci;j = 1 if Xi and Xj belong to the same cluster,

and Ci;j = 1 otherwise. Similarly we can build the binary matrix P for the ground truth

P = fP1; :::; Psg. The agreement between C and P can be disclosed via the following values:

� n11 is the number of object pairs (Xi ; Xj ), where Ci;j = 1 and Pi;j = 1.

� n10 is the number of object pairs (Xi ; Xj ), where Ci;j = 1 and Pi;j = 0.

� n01 is the number of object pairs (Xi ; Xj ), where Ci;j = 0 and Pi;j = 1.

� n00 is the number of object pairs (Xi ; Xj ), where Ci;j = 0 and Pi;j = 0.

Some commonly used validation indices [288, 138] have been de�ned to measure the

degree of similarity between C and P :

Rand index : Rand =
n11 + n00

n11 + n10 + n01 + n00
(2.23)

Jaccard coefficient : JC =
n11

n11 + n10 + n01
(2.24)

Minkowski measure :Minkowski =

r
n10 + n01
n11 + n01

(2.25)

The Rand index and the Jaccard coefficient measure the extent of agreement between

C and P , while Minkowski measure illustrates the proportion of disagreements to the total

number of object pairs (Xi; Xj), where Xi; Xj belong to the same set in P . It should be

noted that the Jaccard coefficient and the Minkowski measure do not (directly) involve

the term n00. These two indices may be more e¤ective in classifying genes because a majority

of pairs of objects tend to be separate clusters, and the term n00 would dominate the other

three terms in both accurate and inaccurate solutions. Other methods are also available to

measure the correlation between clustering results and the ground truth [138]. Again, the

optimal measure selection is application-dependent.

Reliability of clusters

While a validation measure can be used to compare di¤erent clustering results, this comparison

will not reveal the reliability of the resulting clusters; that is, the probability that the clusters

are not formed by chance. In the following subsection, we will review some representative

approaches to measuring the signi�cance of the derived clusters.

P-value of a cluster

In order to answer to the probability that the clusters are or not formed by chance, one recur-

rent tool in microarray analysis is the parametric hypothesis testing (as seen in section 2.2.1).
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Here the null hypothesis, H0, states that the cluster of co-expressed genes is associated by

chance and H1 states the contrary, that are not formed by hazard. Many microarray data

analysis approaches [303, 258, 99, 151, 228, 234] have chosen the one-tailed test with hyper-

geometric distribution, with a cumulative probability statistic and an user-de�ned threshold

to answer this hypothesis proof: H0 vs H1 (clear explication of the hypothesis proof and

discussion can be found at [99]. Here we describe the essentials of these hypothesis proof.

We can translate the H0 challenge to this probability problem: We have a microarray

experience with N genes, any given gene is either in the co-expressed group or not. So we

have N genes in two categories: I (in the group) or O out the group. We observe that x

of theses K genes are I and we want to �nd out what is the probability of this happening

by chance. So, our question is: given N genes of which M are I and N � M are O, we

pick randomly K genes and we ask what is the probability of having exactly x genes of type

I. Once we pick a gene from the chip, we cannot pick it again so this is clearly sampling

without replacement. The probability function P that answers exactly to this problem is the

hypergeometric distribution with parameters (N;M;K):

P (X = x j N;M;K) =

�
M
x

��
N �M
K � x

�

�
N
K

� (2.26)

Based on this probability and in the cumulative distribution of X, the p � value for
overrepresented categories can be calculated as:

P (X = x j N;M;K) = 1�
xX

i=0

�
M
i

��
N �M
K � i

�

�
N
K

� ; (2.27)

if the sum is larger than 1=2. Thus, given threshold �, for each cluster C if p � value <
� then H0 is rejected. In this case cluster C is not built by the e¤ect of hazard. A smaller

probability of the p � value indicates a higher signi�cance of the clustering results. If the
number of clusters is "high", p � value approaches have to deal with multi-testing problem
(discussed in section 2.2).

Prediction strength

In [330], Yeung et al. proposed an approach to the validation of gene clusters based on the

idea of "prediction strength". Intuitively, if a cluster of genes formed with respect to a set

of samples (attributes) has possible biological signi�cance, then the expression levels of the

genes within that cluster should also be similar to each other in "test" samples that were not

used to form the cluster.

Yeung et al. proposed a speci�c �gure of merit (FOM) to estimate the predictive power

of a clustering algorithm. Suppose C1; C2; ; :::; Ck are the resulting clusters based on samples

1; 2; :::; (e� 1); (e+ 1); :::;m; and the sample e is left out to test the prediction strength. Let
R(x; e) be the expression level of gene x under sample e in the raw data matrix. Let �Ci(e)
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be the average expression level in sample e in cluster Ci. The �gure of merit with respect to

e ant the number of clusters k is de�ned as

FOM(e; k) =
1

n
�

kX

i=1

X

x2Ci

s�
R(x; e)� �Ci(e)

�2

n
(2.28)

Each of them samples can be left out in turn, and the aggregate �gure of merit is de�ned

as FOM(k) =
Pm
e=1 FOM(e; k). The FOM measures the mean deviation of the expression

levels of genes in e relative to their corresponding cluster means. Thus, a small value of FOM

indicates a strong prediction strength, and therefore a high level reliability of the resulting

clusters.

Levine et al. [177] proposed another �gure of merit M based on a resampling scheme.

This scheme assumes that the cluster structure derived from the entire data set should be

able to "predict" the cluster structure of subsets of the full data. M measures the extent

to which the clustering assignments obtained from resamples (subsets of the full data) agree

with those from the full data. A high value of M against a wide range of resampling indicates

a reliable clustering result.

2.4 Fifth Analysis Step: Knowledge Discovery via Data
Interpretation

The microarray data analysis �fth step is dedicated to knowledge discovery via interpretation

of previous results. The goal of the interpretation step is the confrontation between two kinds

of information: numeric data represented by gene expression pro�les and semi-structured data

represented by gene annotations extracted from di¤erent sources of biological information (the

digital expression of current biological knowledge) as shown in Fig. 5.1.

One of the current challenges in gene expression technologies is to highlight the main

co-expressed and co-annotated gene groups? by using prior biological knowledge [13]. In other

words, the issue is the interpretation of microarray results via integration of gene expression

pro�les with corresponding biological gene annotations extracted from biological knowledge

bases.

This section brie�y introduces the �fth microarray analysis step: knowledge discovery

via data interpretation. Due to the importance of the interpretation step to our research

(specially for our knowledge discovery models described in chapter 6 and 7), we develop it in

full detail in chapter 5.

This section brie�y introduces the �fth data analysis step (elements, history and basics).

Then, it presents a new and original classi�cation in three axes of the gene expression data

analysis interpretation approaches. Finally, it gives a short description of each axis.
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2.4.1Introduction

At the beginning of gene expression technologies, researches were focused on the numeric12

side. So, there have been reported ([69, 90, 107, 298, 303, 26]) a variety of data analysis ap-

proaches which identify groups of co-expressed genes based only on expression pro�les without

taking into account biological knowledge. A common characteristic of purely numerical ap-

proaches is that they determine gene groups (or clusters) of potential interest. However,

they leave to the expert the task of discovering and interpreting biological similarities hid-

den within these groups. These methods are useful, because they guide the analysis of the

co-expressed gene groups. Nevertheless, their results are often incomplete, because they do

not include biological considerations based on prior biologists knowledge.

In order to process the interpretation step in an automatic or semi-automatic way,

the bioinformatics community is facing an ever-increasingly volume of biological information

on gene annotations. Beside minimal microarray information, we have identi�ed �ve di¤er-

ent sources of biological information: general sequence databases (EBI, NCBI, DDBJ, etc.),

semantic databases as thesauri, ontologies, taxonomies or semantic networks (UMLS, GO,

KEGG, etc.), databases of experiments (GEO, Arrayexpress, etc.), bibliographic databases

(Medline, Biosis, etc.), organism-speci�c nomenclature data sets (Human, Mouse, SGD) as

seen in Fig. 5.1. (a more detailed description of biological sources of information will be

given in chapter 3). The exploitation of these di¤erent sources of knowledge, often referred to

as Integration of biological knowledge in gene expression analysis, is quite a complex task, so

scientists developed techniques for integrating them into more complex databases [34], [217].

The interpretation step may be de�ned as the result of the integration between gene

expression pro�les analysis with corresponding gene annotations. This integration process

consists in grouping together co-expressed and co-annotated genes. Based on this de�nition,

we propose a classi�cation of three microarray data interpretation research axes : the prior

or knowledge-based axis, the standard or expression-based axis and the co-clustering axis. Our

classi�cation emphasizes the weight of the integration process scheduling on the �nal results

[175, 112, 186, 139].

In prior or knowledge-based approaches, the co-annotated gene groups are built and

then the gene expression pro�les are integrated. In standard or expression-based approaches,

co-expressed gene groups are built and then gene annotations are integrated. Finally, co-

clustering approaches integrate co-expressed and co-annotated gene groups at the same time.

2.4.2Prior or knowledge-based axis

Prior or knowledge-based approaches initially consider biological knowledge from the �ve

sources explained before. Therefore, �rst they build co-annotated gene groups sharing the

same biological annotations. Then, they integrate the expression pro�les data for each of

the genes classi�ed into co-annotated groups, highlighting those co-expressed. Finally, the

statistical signi�cance of co-annotated and co-expressed gene groups is tested. Four remark-

12 We understand by numeric part the analysis of the gene expression measures only, disregarding the
biological annotations
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able knowledge-based approaches may be mentioned: GSEA [215], iGA [53], PAGE [167] and

CGGA [203].

2.4.3Standard or expression-based axis

This axis follows the most frequently used procedure for microarray data analysis, it has been

followed since the beginning of microarray technology with encouraging interpretation results

[90], [107] and [69]. Expression-based approaches start by building clusters of genes shar-

ing similar expression pro�les. Then, they integrate the biological annotations of each gene

from an expression cluster, building co-expressed and co-annotated subsets of genes. Finally,

a selection of co-expressed and co-annotated gene groups is made by testing its statistical

signi�cance.

The most remarkable expression based approaches which integrate semantic databases

(such as Gene Ontology - GO) are: FunSpec [258], OntoExpress [99], Quality Tool [128],

EASE [151], THEA [228], Graph Theoretic Modeling [175] and GENERATOR [234]. Masys

et al. [205] propose an unique approach using bibliographic databases (Medline, Biosis, MeSH,

etc.).

2.4.4Co-clustering axis

The challenge of co-clustering approaches is to build a clustering algorithm capable of inte-

grating heterogeneous data as numeric gene expression pro�les with textual gene annotations

at once. Each co-clustering approach has its speci�c parameters: biological source of informa-

tion, clustering method and integration algorithm. Few co-clustering approaches have been

reported (Co-Cluster [139], Bicluster [186] and [202]), the main reason being the di¢culty to

build clustering methods �tting heterogeneous sources of information.

We explain more in detail all-three axes, their remarkable approaches, and a discussion

and comparison between them in chapter 5. The lector can also see [200] for a more detailed

description of these approaches and their methodology.
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Chapter 3

Biological Sources of Information

In chapter 2 we have developed the �ve-step procedure (i.e. protocol and image analysis,

statistical data treatment, gene selection, gene classi�cation, and knowledge discovery via

data interpretation) to analyze data issued from gene expression technologies. In fact, we

are interested in the �fth step of this procedure which focuses on knowledge discovery via

interpretation of the gene expression technology results. The goal of the interpretation step

was de�ned as the integration of gene expression pro�les and biological knowledge represented

by gene annotations?.

This chapter gives a complete overview of the sources of biological knowledge available

for accomplishing gene expression technology analysis. It starts with a brief introduction and

a discussion of the two key concepts of our classi�cation: source content and source structure.

Then, a section is devoted to each of the six di¤erent sources of biological information: min-

imal microarray information, molecular sources, semantic sources, bibliographic databases,

experience databases and gene-related sources.

3.1 Introduction

Nowadays, one of the main challenges in gene expression technology is to highlight the main

co-expressed and co-annotated gene groups using at least one of the di¤erent sources of bi-

ological information [13]. In other words, the issue is interpretation of microarray results

via integration of gene expression pro�les with corresponding biological gene annotations

extracted from biological data sources. In order to process the interpretation step in an au-

tomatic or semi-automatic way, the bioinformatics community is faced to an ever-increasing

volume of sources of biological information on gene annotations .

We have classi�ed the information into six sources that are: minimal microarray in-

formation, molecular sources (EMBL, GenBank,etc.), semantic sources (UMLS, GO, Taxon-

omy, etc.), bibliographic databases (Medline, Biosis, OMIN, etc.), gene expression databases

(GEO, Arrayexpress, Microarray, etc.), and gene-related or protein-related sources (KEGG,

GeneCards, etc.), as seen in Fig. 3.1. Our classi�cation is based on two key concepts: the

main content and the structure of these six sources of biological information. Here, we ex-

plain the role of these two concepts in our classi�cation and the conventions that we will take

into account along this chapter.
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FIG. 3.1: Di¤erent kinds of biological sources of knowledge and information.
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3.1 Introduction

Main content of the sources of information

Since the number of gene expression technology applications (presented in section 1.3)

is so vast, the related sources of information are becoming enormous. These sources are

generate by di¤erent gene expression technology related domains of knowledge as: genomics,

transcriptomics, proteomics, physiology, medicine.

Genomics is the study of the entire organism genome. It investigates genes or DNA

regions which code for something (proteins or RNA) that could play a role or functions in the

cell.

Transcriptomics identi�es the expression pro�les and rules of identi�ed genes in a bi-

ological space (e.g. tissue, organ etc.), in time (e.g. while the embryonal development) and

under certain conditions (e.g. cancer vs. normal, drug treatment vs. placebo etc.).

Proteomics studies the same parameters as genomics function and structure but for

proteins. It also researches the interactions between the di¤erent proteins.

Physiology is the study of the mechanical, physical, and biochemical functions of living

organisms.

By combining the three molecular biology sciences (genomics, transcriptomics and pro-

teomics) and physiology we hope to understand how metabolic pathways? work for better

comprehension of the physiology of the living organisms.

As we have explained in gene expression technology applications (section1.3), many of

these applications are medical-related: comprehension of diseases (cancer, diabetes, schizophre-

nia, etc.), drug development and treatment, mutation detection, screening of disease genes,

patterns in pathogens etc. Thus, the need of medical data sources of information is important.

Structure of the sources of information

One key issue in bioinformatics is the way the data and information is structured.

The explosion of data and information issued from gene expression technology and related

sciences in the last decade have revealed the need of structuring data. All six sources of

information mentioned before may present di¤erent structures. In order to avoid the data

structure confusion found in some biological sources of information, in this chapter we take

into account these conventions.

Data consists of propositions that re�ect reality. Such propositions may comprise num-

bers, words, images, measurements or observations of a variable.

Information is the result of processing, manipulating and organizing data in a way that

adds to the knowledge of the person receiving it. In terms of data, it can be de�ned as a

collection of facts from which conclusions may be drawn.

Knowledge is an acquisition (often impulsed by information) that involves complex

cognitive processes: perception, learning, communication, association, and reasoning.

Repository is a central place where data is stored and maintained. This de�nition is

very large it may be: a place where data is stored, a place where multiple databases or �les

are located for distribution over a network, a computer location that is directly accessible to

the user without having to travel across a network etc.

Database is a structured collection of records or data which is stored in a computer so

that a program can consult it to answer queries. The records retrieved in answer to queries

become information that can be used to make decisions.
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3 Biological Sources of Information

Knowledge can be represented by data models? as: taxonomies, thesaurus, ontologies,

semantic networks, ordered respectively to their semantics weight?.

Taxonomies are vocabularies of relationship terms, often presented in a hierarchical

way.

Thesaurus are controlled vocabularies of associative terms. It can be a list of semanti-

cally orthogonal topical terms.

Ontologies are semantic catalogues of the concepts? within a domain and the relation-

ships between those concepts. It is used to reason about the objects within that domain.

Semantic networks are networks that involve semantic associations useful for human

browsing to di¤erent types of biological information and knowledge data. It can be seen as

a directed graph consisting of vertices, which represent concepts, and edges, which represent

semantic relations between the concepts.

3.2 Minimal Experimental Biological Information

Here, we present the Minimum Information about microarray experiments (MIAME), that

describe the minimum information required to ensure that microarray data can be easily in-

terpreted and the results derived from its analysis can be independently veri�ed. MIAME

was proposed by European bioinformatics Institute (EBI) and is fully explained in [46]. The

MIAME states that the minimum information about a published microarray-based gene ex-

pression experiment includes a description of the following six sections (for better compre-

hension of the microarray experiment steps and analysis steps the lector can see Fig. 1.17

and 2.1 respectively):

1. Experimental design: the set of hybridization experiments as a whole.

2. Chip manufacture: each chip used and each element (spot, feature) on the array.

3. Samples: samples used, extract preparation and labeling.

4. Hybridizations: procedures and parameters.

5. Measurements: images, quanti�cation and speci�cations.

6. Normalization controls: types, values and speci�cations.

Each of these sections contains information that can be provided using controlled vocab-

ularies, as well as �elds that use free-text format. Here we discuss only the general information

required in each of these sections, for a full description see the MIAME document.

Experimental design

The minimal information required in this section includes the type of the experiment (such as

normal-versus-diseased comparison, time course, dose response, and so on) and the experimen-

tal variables, including parameters or conditions tested (such as time, dose, genetic variation

or response to a treatment or compound). This section also provides general quality-related

indicators such as usage and types of replicates.
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3.2 Minimal Experimental Biological Information

Finally, this section speci�es the experimental relationships between the chip and sam-

ple entities, that is, which samples and which arrays were used in each hybridization assay.

Each of these will be assigned unique identi�ers that are cross-referenced with the information

provided in the following sections. This information will allow the user to reconstruct un-

ambiguously the experiment design and to relate together information from further MIAME

sections.

Chip manufacture

The aim of this section is to provide a systematic de�nition of all chips used in the experiment,

including the genes represented and their physical layout on the chip. It consists in three parts:

i) a description of the chip as a whole (such as platform type, provider and surface type); ii)

a description of each type of element or spot used (properties that are typically common to

many elements, such as "synthesized oligonucleotides" or "PCR products from cDNA clones")

and iii) a description of the speci�c properties of each element, such as the DNA sequence

and, possibly, quality-control indicators.

The challenge for element de�nition is to achieve a unique and unambiguous description

of the element. Because references to an external gene index may not be stable, it is essential

to physically identify each element�s composition. Thus, where elements are based on cDNA

clones, PCR or composite oligonucleotides, it is necessary that clone IDs are speci�ed.

Samples

The MIAME "sample" concept represents the biological material for which the gene expression

pro�le is being established. This section is divided into three parts which describe the source

of the original sample (such as organism taxonomy and cell type) and any biological in vivo or

in vitro treatments applied, the technical extraction of the nucleic acids, and their subsequent

labeling.

The characteristics to accurately de�ne a biological sample vary greatly from organism

to organism. Currently, the single common feature of all samples is the organism�s taxonomic

de�nition. A list of quali�ers (qualitative sample variables) may accompany the sample de-

scription. For example in the case of humans these variables can be: gender, nationality,

smoking condition, alcoholic condition etc. As for laboratory protocols for sample treat-

ments, sample extraction and labeling, need to be speci�ed initially. It is desirable that

knowledge of these protocols are also presented in the data description for best interpreting

the data.

Hybridizations

This section presents the laboratory conditions under which the hybridizations were carried

out. MIAME requires that a number of critical hybridization parameters are explicitly speci-

�ed: choice of hybridization solution, nature of the blocking agent, wash procedure, quantity

of labeled target used, hybridization time, volume, temperature and descriptions of the hy-

bridization instruments.
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3 Biological Sources of Information

Measurements

It consists in three progressive parts from raw to processed data: a) the original scans of the

array (images), b) the microarray quanti�cation matrices based on image analysis, and c) the

�nal gene expression matrix after normalization and consolidation from possible replicates.

Images represent the primary data form a microarray assay and the image processing

algorithms used for analysis can a¤ect the conclusions that are reached. Thus, MIAME

includes a speci�cation for image deposition, scanning protocols and image analysis methods.

For each experimental image, a microarray quanti�cation matrix contains the complete

image analysis output as directly generated by the image analysis software. These output

should include the information that permits the nature and quality of individual spot mea-

surements to be assessed.

Finally, the gene expression matrix (summarized information) consists of sets of gene

expression levels for each sample. If microarray quanti�cation matrices can be considered

spot/image centric, then the gene expression matrix is gene/sample centric. At this point,

expression values may have been normalized, consolidated and transformed in any number of

ways by the submitter in order to present the data in a tractable form to scienti�c analysis.

Normalization Controls

A typical microarray experiment involves a number of hybridization assays in which the data

from multiple samples are analyzed to identify relative changes in expression levels, identify

di¤erentially expressed genes and, in many cases, discover classes of genes or samples having

similar patterns of expressions. In this typical experiment it exists a "reference design", in

which many samples are compared to a common reference sample so as to facilitate inferences

about relative expression changes between samples. For these comparisons, the reported

hybridization intensities derived from image processing must be normalized (as seen in section

2.2).

In this section, MIAME standard invites to specify the parameters relevant to normal-

ization and control elements as: normalization strategy, normalization and quality control

algorithms used, the identities and location of the chip elements serving as controls and hy-

bridization extract preparation.

The MIAME speci�cations are intended to draft su¢ciently detailed to capture the

information needed to analyze and evaluate microarray data. In e¤ect, these speci�cations

are only partially taken by the existent commercial and public gene expression technologies

laboratories. A general consensus for presenting the information generated in a microarray

experiment does not exist yet. However, is crucial to develop a general agreement among the

microarray laboratories. At the moment, microarray analysts have to adapt to the minimal

information provided by the speci�c data itself.
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3.3.1 Nucleotide databases

3.3 Molecular Databases

The goal of molecular databases is to gather collections of structural or functional or related

data about nucleotides (DNA, RNA, genes) or proteins. These databases allow an easy update

of new compounds or functions and powerful queries about compound annotations. Molecular

databases contain data functions and structures of three molecular biology sciences: genomic,

transcriptomic and proteomic (explained in section 3.1).

We can divide molecular databases in two large groups:

� Nucleotide databases which contain information of the structure and/or functions about

any kind of sequence of nucleotides as: DNA/RNA sequences, genomes, EST, etc.

� Protein databases which contains information of the structure and/or functions and/or

related information about proteins.

Di¤erent nucleotide and protein databases are hosted and maintained by many di¤erent

organisms, laboratories and organizations. The principal molecular databases are hosted and

maintained by a consortium composed of three research world groups: European Bioinfor-

matics Institute (EBI), National Center for Biotechnology information (NCBI)

and DNA data bank of Japan (DDBJ). There are mirror sites which exchange the new

sequences information in real time. One essential goal of this consortium is to receive the in-

formation and to make it public, developing at once annotation tools for manipulating this

information.

In the next sections we explain the contents more in detail and some of the remarkable

nucleotide and protein databases. The databases mentioned above do not intend to be an

exhaustive list of the existent databases, they are cited as examples of existent databases of

each type. We have to take into account that they exists thousands of molecular databases,

regarding the quantity of sequenced organisms or the possible functions of a whole genome

or the possible proteins structure.

3.3.1Nucleotide databases

These databases contain several information about any kind of sequence of nucleotides as:

DNA/RNA sequences, genomes, EST, etc. This information is typically of one of these �ve

types:

1. The sequence of nucleotides.

2. Annotations of these sequences.

3. The physical maps?.

4. The genetic maps?.

5. Links to more specialized databases.

Taking into account the principal source of information provided by nucleotide data-

bases, we divide them into two main groups: sequence databases and genome databases.
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Sequence databases

These databases are focused in all kinds of sequence of nucleotides as: DNA/RNA sequences,

EST, etc. The information that they contain is the sequences of nucleotides and at least one

of the points b)-e) mentioned above.

There exist three main sequence databases hosted and managed by the International

Nucleotide Sequence Database Consortium composed by three organisms: NCBI, EBI and

DDBJ, these databases are GenBank, EMBL and DDBJ respectively. Here, we present a

brief explanation of these sequence databases.

GenBank, the National Institutes of Health (NIH) genetic sequence database, is an

annotated collection of publicly available DNA sequences. The records within GenBank repre-

sent, in most cases, single, contiguous stretches of DNA or RNA with annotations. GenBank

�les are grouped into divisions; some of these divisions are phylogenetically based, whereas

others are based on the technical approach that was used to generate the sequence informa-

tion. Presently, all records in GenBank are generated from direct submissions to the DNA

sequence databases from the original authors, who volunteer their records to make the data

publicly available or do so as part of publication process. For more details see [29].

The EMBL Nucleotide Sequence Database (also known as EMBL-Bank) constitutes

Europe�s primary nucleotide sequence resource. Main sources for DNA and RNA sequences

are direct submissions from individual researchers, genome sequencing projects and patent

applications. More details in [111].

DDBJ (DNA Data Bank of Japan) is a DNA data bank which is o¢cially certi�ed to

collect DNA sequences from researchers and to issue the internationally recognized accession

number to data submitters. It also provides worldwide many tools for data retrieval and

analysis developed by DDBJ and others.

These three databases are enormous, so di¤erent organisms, including the international

consortium cited above, have developed more speci�c sequence databases. These speci�c

sequence databases contain more speci�c information, which aim at special applications or

knowledge domains (including sometimes analysis tools), that can be more easily exploitable

by scientists around the world. We can mention some remarkable databases as examples:

dbEST, Unigene, SAGEmap, STACK, Refseq, HomoloGene, Nucleotide, and there

exist many others. We brie�y explain some of these sequence databases.

dbEST is a division of GenBank that contains sequence data and other information on

"single-pass" cDNA sequences, or Expressed Sequence Tags, from a number of organisms. A

brief account of the history of human ESTs in GenBank is available. For more details see

[40].

UniGene is a NCBI project which contains thousands of sequences of well-characterized

genes from di¤erent living organisms. It provides a set of transcript sequences that appear

to come from the same transcription locus (gene or expressed pseudogene), together with

information on protein similarities, gene expression, cDNA clone reagents, and genomic lo-

cation. In addition, it includes hundreds of thousands novel expressed sequence tag (EST).

More details in [243].

102



3.3.1 Nucleotide databases

SAGEmap is a SAGE data resource for the query and retrieval and analysis of SAGE

data from any organism. This data resource supports the public use and dissemination of

serial analysis of gene expression (SAGE) data. SAGEmap is a NCBI project. For more

details in see [173].

STACK project aims at generating a comprehensive representation of the sequence of

each of the expressed genes in the human genome by extensive processing of gene fragments to

make accurate alignments, highlight diversity and provide a carefully joined set of consensus

sequences for each gene. For more details see at [211]

RefSeq. The Reference Sequence collection aims to provide a comprehensive, inte-

grated, non-redundant set of sequences, including genomic DNA, transcript (RNA), and pro-

tein products, for major research organisms. RefSeq standards serve as the basis for medical,

functional, and diversity studies; they provide a stable reference for gene identi�cation and

characterization, mutation analysis, expression studies, polymorphism discovery, and compar-

ative analyses. RefSeqs are used as a reagent for the functional annotation of some genome

sequencing projects, including those of human and mouse. For more details see in [244].

Genome databases

These databases are focused in the genome of a variety of organisms containing information

as: genomes, complete chromosomes, sequence maps, and integrated genetic and physical

maps.

They exist several important organism-genome databases, among them we can cite:

Genome Project , Genomes, Human Genome Database (GDB), Ensembl project,

Mouse Genome Consortium, Flybase, TIGR, Saccharomyces Genome Database

(SGD) and many others organism genomic databases. In the following, we brie�y explain

these genomic databases.

Genome Project database is intended to be a searchable collection of complete and

incomplete (in-progress) large-scale sequencing, assembly, annotation, and mapping projects

for cellular organisms. The database is organized into organism-speci�c overviews that func-

tion as portals from which all projects in the database belonging to that organism can be

browsed and retrieved. There is also a special set of resources dedicated to Viral Genomes.

The Genome database provides views for a variety of genomes, complete chromo-

somes, sequence maps with contigs, and integrated genetic and physical maps. The database

is organized in six major organism groups: Archaea, Bacteria, Eukaryotae, Viruses, Viroids,

and Plasmids and includes complete chromosomes, organelles and plasmids as well as draft

genome assemblies.

GDB: Human Genome Database is the o¢cial world-wide database for the anno-

tation of the Human Genome. It contains the whole Human Project sequencing results:

approximately 25,000 genes and more than 3 billion of chemical base pairs that make up hu-

man DNA. In 2003, when the human DNA was completely sequenced, the GDB stated to

collect all worldwide generated annotations of DNA human sequences and genes. It receives

direct submissions for gene annotations from scientists who volunteer their records to make
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the data publicly available. It uses HUGO nomenclature and several mirror sites in all around

the world to improve the submission process.

Ensembl is a joint project between European Bioinformatics Institute (EBI) and the

Wellcome Trust Sanger Institute (WTSI) to develop a software system which produces and

maintains automatic annotation on selected eukaryotic genomes[153]. It provides repositories,

for archiving and updating genome data (sequences and annotations).

Mouse Genome Consortium is a joint project between private and public laboratories

including EBI and Sanger Institute for providing the whole Mouse genome sequence, including

gene annotations. It uses the Ensembl trace repository for archiving and updating data

(sequences and annotations).

Flybase is a database for drosophila genes and genomes. This project is carried out

by a consortium of Drosophila researchers at Harvard, Cambridge and Indiana Universities.

More details in [136].

Saccharomyces Genome Database is a database of the molecular biology and ge-

netics of the yeast Saccharomyces cerevisiae, which is commonly known as baker�s or budding

yeast. This project is hosted and managed by Princeton and Stanford Universities. For more

details see in [147].

3.3.2Protein databases

These databases are focused on proteins and contains structural and functional information.

Most of the databases are speci�c and they often contain the expert�s annotations. We can

divide them into protein-sequence and functional databases and macromolecular structural

databases.

Concerning the macromolecular protein data resources it exists the worldwide protein

data bank (wwPDB). It consists of organizations that act as deposition, data processing

and distribution centers for protein database data. The members are PDB13, MSD-EBI,

PDBj and BMRB. The mission of the wwPDB is to maintain a single Protein Data Bank

archive of macromolecular structural data that is freely and publicly available to the global

community. For more details see in [148].

Related to protein-sequence and functional databases we can mention: Uniprot, In-

terpro, IPI , HPI, COGs, CCD, and many others. We brie�y explain some of these

sequence databases.

Universal Protein Resource (Uniprot) is a catalog of information on proteins

It is a central repository of protein sequence and function created by joining the informa-

13 The RCSB PDB provides a variety of tools and resources for studying the structures of biological
macromolecules and their relationships to sequence, function, and disease.
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tion contained in three important databases: Swiss-Prot14, TrEMBL15, and PIR16. For more

details see in [79].

InterPro is a database of protein families, domains and functional sites in which

identi�able features found in known proteins can be applied to unknown protein sequences.

International Protein Index (IPI) provides a top level guide to the main databases

that describe the proteomes of higher eukaryotic organisms. It provides minimally redundant

yet maximally complete sets of proteins for featured species and maintains stable identi�ers.

Human Proteome Initiative (HPI) aims to annotate all known human protein se-

quences, as well as their orthologous sequences in other mammals, according to the quality

standards of UniProtKB/Swiss-Prot. In addition to accurate sequences, it provides, for each

protein, plenty of information that includes the description of its function, domain structure,

subcellular location, similarities to other proteins, etc.

Clusters of Orthologous Groups of proteins (COGs) were delineated by com-

paring protein sequences encoded in complete genomes, representing major phylogenetic lin-

eages. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages

and thus corresponds to an ancient conserved domain. For more details see in [302].

3.4 Gene Expression Databases

In the past years, a myriad of gene expression technologies experiments have been conducted,

and large quantities of microarray and SAGE data have been made available in public data

repositories such as Gene Expression Omnibus [105], Stanford Microarray Database

[132] and ArrayExpress repository [47], among other gene expression databases.

Gene Expression Omnibus is a gene expression/molecular public data repository sup-

porting MIAME compliant data submissions and a curated online resource for gene expression

data browsing, query, and retrieval. It contains gene expressions data issued from microarray

and SAGE technologies. For more details see [105].

Stanford Microarray Database is a gene expression public data repository which

contains microarray data submissions from several laboratories in the world. It acts as an

online resource for browsing, query and retrieval. For more details see in [132].

ArrayExpress is public database of microarray gene expression data at the EBI, which

is a generic gene expression database designed to hold data from all microarray platforms.

ArrayExpress uses the MIAME annotation rules. This database can be queried on parameters

such as author, laboratory, organism, experiment, or array types. For more details see in [47].

14 Swiss-Prot is a curated protein sequence database which strives to provide a high level of annotation
(such as the description of the function of a protein, its domains structure, post-translational modi�cations,
variants, etc.), a minimal level of redundancy and high level of integration with other databases
15 TrEMBL is a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL
nucleotide sequence entries not yet integrated in Swiss-Prot
16 PIR has provided many protein databases and analysis tools freely accessible to the scienti�c community,
including the Protein Sequence Database (PSD), the �rst international database (see PIR-International),
which grew out on Atlas of Protein Sequence and Structure.
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3.5 Bibliographic Databases

The last decade has seen the explosion of millions of biomedical and life sciences literature.

Only in the case of gene expression technology literature output, thousands of articles have

been realized in the last years. These articles contain up-to date data that contain important

insights and information about biological and medical issues. It is now important to be able to

recover as much as possible of this information as it constitutes a precious source of additional

information for helping to understand new genomics data.

Bibliographic databases are databases of bibliographic information containing informa-

tion about books, articles or other written or online literature material. A bibliographic

database is often an electronic index to journal or magazine articles, containing citations,

abstracts and often either the full text of the articles indexed, or links to the full text.

The most ambitious and most used bibliographic database in life science is Med-

line/Pubmed17, developed and managed by NIH�s National Center for Biotechnology In-

formation (NCBI). Pubmed is a free digital archive of biomedical and life sciences journal

literature from Medline, which includes over 16 million citations of medicine and other life

science journals for biomedical articles back to the 1950s 18.

Medline/Pubmed uses the Medical Subject Headings (MeSH) ontology. MeSH is

designed to help quickly locate descriptors of possible interest and to show the hierarchy in

which descriptors of interest appear. Virtually complete MeSH records are available, including

the scope notes, annotations, entry vocabulary, history notes, allowable quali�ers, etc. The

MeSH browser does not link directly to any Medline or other database retrieval system and

thus is not a substitute for the Pubmed system.

Among other life sciences bibliographic databases we can mention: Biology browser

(Biosis), Online Mendelian Inheritance in Man (OMIM), Biobase, etc.

3.6 Gene/Protein-Related speci�c sources

As we have seen in chapter 1 (section 1.3), gene expression technologies are employed in many

life science applications. Among many others, we can mention:

� Medical usage for characterizing diseases, drug fabrication, etc.

� Pathology science for characterizing bacterias and viruses.

� Physiology issues for understanding the complex vital processes in organisms.

� Genetic topics as: mutation screening, genotypic analysis, developmental genetics

Thus, the required information and knowledge to deal with the interpretation issue

(�fth step) should come from many di¤erent life sciences sources, like medicine, physiology,

pharmacology, pathology, anatomy, biology among many others. Gene/protein-related spe-

ci�c sources are all information sources coming from di¤erent domains of knowledge which

are related to gene/protein issues. They are generally databases that contain information

17 Pubmed browser at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
18 Pubmed information in: http://www.pubmedcentral.nih.gov/
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about genes, proteins or even genomes, but they have to include other related information as:

diseases, anatomy, pharmacology, physiology, etc.

There exists a large choice of gene/protein-related speci�c sources, among them we can

mention: KEGG , GeneCards, Human Developmental Anatomy, Cancer Genome

Anatomy Project (CGAP), BioGRID, there exists many other gene/protein-related spe-

ci�c sources. We brie�y explain these databases

KEGG is a "biological systems" database integrating both molecular building block in-

formation and higher-level systemic information. Molecular building blocks are distinguished

between genetic building blocks (KEGG genes) and chemical building blocks (KEGG ligand),

while the systemic information is represented as molecular wiring diagrams (KEGG pathway)

and hierarchies and relationships among biological objects (KEGG brite).

KEGG pathway are manual pathway maps representing our knowledge on the molec-

ular interaction and reaction networks for metabolism, other cellular processes, and human

diseases.

KEGG brite are functional hierarchies and binary relations of KEGG objects, including

genes and proteins, compounds and reactions, drugs and diseases, and cells and organisms.

KEGG genes are gene catalogs of all complete genomes and some partial genomes with

orthologous annotation (KO assignment), enabling KEGG PATHWAY mapping and BRITE

mapping.

KEGG ligand is a composite database of chemical substances and reactions representing

our knowledge of the chemical repertoire of biological systems and environments

More information about the foundations of KEGG can be found at [161].

GeneCards is an integrated database of human genes that includes automatically-

mined genomic, proteomic and transcriptomic information, as well as orthologies, disease

relationships, SNPs, gene expression, gene function, and service links for ordering assays and

antibodies. For more details see [253].

Human Developmental Anatomy is a Human Atlas designed to identify those tis-

sues present in human embryos during the �rst 50 or so days of the development. The Atlas

can be viewed in two formats. The �rst, is the basic anatomical data designed to provide stan-

dards for analyzing normal and congenitally abnormal human embryos. The second is a more

detailed format that includes additional tissue regions. The second format is intended to be

compatible with the anatomical terminology and organization used for storing gene-expression

data in the Mouse Atlas Project. For more details see in [154].

Cancer Genome Anatomy Project (CGAP) is a database of Chromosome Aber-

rations in Cancer relating chromosomal aberrations to tumor characteristics, based either on

individual cases or associations. For more information see in [213].

BioGRID is a database of physical and genetic interactions from Saccharomyces cere-

visiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. For more infor-

mation see in [293].
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3 Biological Sources of Information

3.7 Semantic Sources: Semantic Networks, Ontologies,
Thesaurus and Taxonomies.

In order to fully exploit the enormous accumulated biological knowledge, life sciences as

biology have been forced to structure their information in databases and repositories (as

stated in last �ve sources of information explained in this chapter). The complexity and high

correlated information contained in these databases and repositories revealed the need of a

formal representation of these information based on a well-de�ned semantic [282].

The thirst for knowledge in life sciences have accelerate the creation of several knowl-

edge representation19 sources or semantic sources. The semantic sources are well-de�ned and

structured collections of concepts. As we have de�ned in the introduction of this chapter, they

can be of several types: taxonomies, thesaurus, ontologies and semantic networks. There ex-

ist several biological and medical semantic sources, between the most used in gene expression

technologies are Gene Ontology (GO), UMLS, NCBI Taxonomy , LinKBase, among

others. We�ll brie�y explain some semantic sources.

Gene Ontology (GO) is a collaborative e¤ort developed by a consortium of scientists

to generate a controlled vocabulary of various genomic databases about diverse species in

such a way that it can show the essential features shared by all the organisms. It can be used

to annotate genes by a GO-term, with regard to its molecular functions (GO:MF), cellular

localizations (GO:CL) and biological processes (GO:BP).

GO-terms are organized in structures called directed acyclic graphs (DAGs), which

di¤er from hierarchies in that a child can have many parents, or less specialized, terms. This

structure also allows annotators to assign proper-ties of genes at di¤erent levels, depending

on how much is known about a gene [12].

Unified Medical Language System (UMLS). The purpose of UMLS is to enhance

access to medical literature by facilitating the development of computer systems that un-

derstand biomedical language. This is achieved by overcoming two signi�cant barriers: "the

variety of ways the same concepts are expressed in di¤erent machine-readable sources by sci-

entists" and "the distribution of useful information among many disparate databases and

systems". Three main tools are used to accomplish this: metathesaurus, semantic network,

and specialist lexicon.

The metathesaurus forms the base of the UMLS and is comprised of over 1 million

biomedical concepts and 5 million concept names, all of which are from over 100 controlled

vocabularies and classi�cation systems used in patient records, bibliographic, administrative

health data and full text databases

Semantic networks are knowledge representation schemes involving nodes and links (arcs

or arrows) between nodes. The nodes represent objects or concepts and the links represent

relations between nodes. This graphical representation assists in understanding the relation-

ships of concepts.

19 Knowledge representation is an issue that arises in both cognitive science and arti�cial intelligence. In
cognitive science it is concerned with how people store and process information. In arti�cial intelligence
(AI) the primary aim is to store knowledge so that programs can process it and achieve the capacities of
human intelligence.
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3.7 Semantic Sources

The Specialist lexicon help end users work through the variations in biomedical texts

by relating words by their parts of speech, which can be helpful in web searches or searches

through an electronic medical record. For more details see in [39].

The NCBI taxonomy contains the names of all organisms that are represented in the

genetic databases with at least one nucleotide or protein sequence. It uses a tree for browsing

the taxonomic structure or retrieve sequence data for a particular group of organisms.

LinKBase is one of the largest formal medical ontologies, i.e. a conceptual computer-

understandable representation of medicine. LinKBase contains more than 1,000,000 concepts

and over 7,000,000 knowledge objects. This ontology is a formal conceptual description of the

medical domain and as such is rendered machine-readable by a computer.

Summary

We have fully explained the six sources of available information to achieve the �fth step of

gene expression technology: the knowledge discovery via results interpretation.
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Chapter 4

First Application Works: SAGE

and Microarray Data Analysis

In this chapter, we present a full �ve-step data analysis of gene expression data issued from two

di¤erent technologies: SAGE and Microarray with spotting oligos-chip. For each technology,

we follow the �ve-step data analysis procedure, i.e. data generation, statistical data treatment,

analysis of di¤erentially expressed genes, classi�cation of the genes and knowledge discovery

via data interpretation (as seen in chapter 2) . Each step has been realized by applying a

selection of the currently available tools and methods.

Serial Analysis of Gene Expression (SAGE) data give counts of occurrences of nucleotide

sequence tags in several tissue samples and at di¤erent stages of development. Each tag can

identify a gene, and the SAGE method aims at giving an overview of a cell�s complete gene

activity (as explained in section 1.2.2). Nowadays, SAGE data have been poorly exploited by

clustering analysis due to the lack of appropriate analysis methods that consider their speci�c

properties.

We have participated in the PKDD 2005 Discovery Challenge20 by analyzing a gene

expression data set containing expression levels of 822 SAGE tags in 74 tissue samples (bio-

logical conditions) originating from 10 di¤erent human normal and cancer tissues. We have

shows that cleaning the data set (tags and experiments) is critical and that attribution of a

tag to a gene is not easy.

Using several analysis techniques for the hierarchical clustering of SAGE expression

data set, we con�rm that, if experiments are well conducted, SAGE analyses can provide

insights on understanding which genes are speci�cally expressed according to cell states and

culture conditions. We have concluded that the comparison of cancers from various tissues is

a di¢cult task as tissue samples cluster according to tissue origin and not as cancer versus

normal. Besides many traps lay on the path to these discoveries and a careful selection and

analysis of these data are required. For more details the reader can refer to [199].

Spotted oligos-chip technology measures the gene expression levels of thousands of genes

via the sequencing by hybridization techniques. This technique measures the transcription

of genes under tens of biological conditions (explained in section 1.2.1). However, there are

many sources of variation along the whole experimentation process within this technology

(explained in section 4.2.1).

20 Principles and Practice of Knowledge Discovery in Databases (PKDD) held in Porto, Portugal in October
2005. The Discovery Challenge was the complete analysis of a Cancer SAGE Dataset for obtaining biological
insights.
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4 First Application Works: SAGE and Microarray Data Analysis

We have analyzed the Azerty gene expression data set provided by IPMC laboratory

which contains the gene expression measures of 22739 genes taken over �ve time points. This

experiment was replicated over 6 chips, and the biological process was intentionally hidden

during the data analysis.

Applying several statistical and data mining tools we have discovered signi�cant groups

of co-expressed and co-annotated genes. We have revealed the importance of the data treat-

ment step and showed the lack of tools for manipulating time series data. We have concluded

that the integration of the biological knowledge must be present along all the data analysis

procedure especially in the gene clustering step. In this manner, we can arrive at the last

interpretation and knowledge discovery step with meaningful biological results.

This chapter is divided in two main parts: Discovery Challenge data set, that we named

SAGE Multicancer data set, analysis, and the Azerty data set analysis.

4.1 SAGE Multicancer Data Set Analysis

This section is divided in 8 subsections. The introductory section explains brie�y SAGE

basics, the Multicancer data set characteristics and the Multicancer data analysis di¢culties.

Then, the next �ve sections correspond to each one of the �ve data analysis steps, explained

in chapter 5 (including the data analysis results). The last section discusses each of the data

analysis steps applied to Multicancer data set and gives a general conclusion. The information

contained in this section was obtained from the publication: Exploratory Analysis of Cancer

SAGE Data [199].

4.1.1Introduction

SAGE basics

The SAGE method for detection of mRNA transcripts in eukaryotes is based on the sequenc-

ing of concatemers of short (14 base-pairs; recently 17 bp.) sequence tags? that originate

from a known position (after the 3�-nearest cutting site of a restriction enzyme) to estimate

transcripts abundance [311].

In contrast to microarrays, the SAGE method estimates the expression level of tran-

scripts without prior knowledge of their sequences and is more sensitive than the EST? method

[297], but requires knowledge of the complete genome. The advantage of the SAGE method is

that it performs a random sampling of transcripts in a particular tissue with little sequencing

e¤ort.

The nature of the data enables the creation of large public SAGE data sets for numerous

tissues, both normal and cancerous [265] as well as speci�c tools to analyze SAGE data. SAGE

is perhaps less suitable than DNA chips for high-throughput analyses of multiple samples,

but does not require the expensive equipment required to deal with DNA chips. More details

in the SAGE gene expression technology characteristics were explained in section 1.2.2.
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Multicancer data set description

The multicancer data set21 contains the expression levels of 822 SAGE sequence tags, collected

from 74 SAGE libraries corresponding to di¤erent tissue samples (biological conditions)

originated from 10 di¤erent human normal and cancer tissues. Each of the 74 SAGE libraries

contains the minimal information required for SAGE experiments as stated by the NCBI-

GEO standards. We have extracted three relevant informations from each one of the 74

libraries: the type of tissue the cells come from, the state of the cells: cancer (C) or normal

(N) and the source of the cells: bulk (Bu) or cell line (Ce) as shown in Table 4.1. Bulk

source corresponds to tissue samples taken in vivo, and cell line source identi�es cells that are

inde�nitely reproduced in culture.

Tissue Cancer bulk Cancer cell line Normal bulk Normal cell line Total

Brain 8 7 5 1 21
Breast 6 3 2 0 11
Colon 2 4 2 0 8
Kidney 0 2 0 0 2
Ovary 3 4 0 2 9
Pancreas 0 3 2 2 7
Prostate 3 6 2 0 11
Peritoneum 0 0 1 0 1

Skin 1 0 0 1 2
Vessel 0 0 0 2 2
Total 23 29 14 8 74

TABLE 4.1: Repartition of the 74 SAGE libraries by cell state, kind of tissue and the
cells source.

Multicancer data set di¢culties

The Multicancer data set described before comprise several di¢culties:

1. SAGE tags may not all be signi�cant. PCR and sequencing errors may produce a

number of errors. A single error may lead to non recognition of a transcript or wrong

attribution. Some tags may be present in more than one gene. Finally, since restriction

enzymes may not cut with 100% e¢ciency, some tags may be wrong.

2. Each tissue sample in the data set may originate from two di¤erent sources (see

Table 4.1) that may in�uence gene expression. Cancerous tissue samples are usually

provided after surgery, a �cancer� sample may contain more healthy tissue than cancer,

leading to a �wrong� condition classi�cation.

3. Large scale analyses using DNA chips concluded that cancer cells resemble more to

normal cells of the same tissue than cancer cells from a di¤erent tissue: there are many

more tissue-speci�c genes than genes involved in cancers [259]. Thus, trying to classify

all conditions in two classes, normal or cancer, in order to identify speci�c tags using a

decision tree cannot be successful. Also, cancers may have di¤erent origins (deregulation

21 This dataset was prepared at the Centre de Génétique Moléculaire et Cellulaire, Université Lyon I,
France, using information from the SAGE map resources repository. This dataset is a sample of the
original dataset that contains expression levels of 27,679 sequence tags and 90 SAGE librairies.
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4 First Application Works: SAGE and Microarray Data Analysis

of oncogenes versus breakdowns of chromosomes for example), so searching for two

classes only may be problematic.

Multicancer data set analysis goal and �ve-step procedure

The main goal of our analysis was to determine if a model that is pertinent to distinguish

cancerous and non cancerous biological conditions can be generated. In the next sections, we

apply the �ve-step procedure for the analysis of the Multicancer data set that consists of:

1. Data Generation: pruning of non-signi�cant tags.

2. Statistical Data Treatment: normalization of biological conditions.

3. Selection of di¤erentially expressed genes and selection of biological conditions, i.e.,

taking o¤ the biological conditions which behave as outliers.

4. Clustering biological conditions.

5. Knowledge Discovery via Data interpretation.

4.1.2First step data generation

As explained in section 1.2.2 SAGE experiments consist of four steps: sample preparation,

building tags and concatemers, concatemers sequencing and tags-genes correspondence (see

Fig. 1.18). The �rst three steps are already done by the experimenter (as stated in the 74

SAGE libraries). The last step which involves matching the sequence of each tag with the

gene that has produced the transcript, has to be done by the data analyst.

Tag-transcript attribution

SAGE tags are often annotated based on the SAGE Genie principles [44] and linked to a series

of expression data (often EST sequences). This step is di¢cult to automate and it is often

complicated to understand and appreciate the methods used for tag attribution, we therefore

developed speci�c tools.

In a �rst step, every human ENST sequence22 was downloaded from Ensemble. Tags

present in transcripts of a single gene were labelled as good tags (436), each was assingned

its corresponding ENSG number. Tags present in transcripts originating from several genes

were labeled as bad tags (219) and removed from further analysis.

Next, all EMBL human sequences (including ESTs) were downloaded to search non

attributed tags (167). Every sequence recognized was blasted? for ENSG attribution. This

step led to a further 80 tags attributed to a ENSG number. Reasons for tag non attribution are

likely to be: i) location in a region not yet identi�ed as a gene, ii) location in the mitochondrial

genome (very few protein coding genes), which was not taken into account. and iii) tag

resulting from the partial digestion of a transcript, and therefore not located in the 3� end of

the sequence domain.

22 ENST is Ensembl sequence transcript. The ENST databases can be found at the ensembl site.
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4.1.3 Second step: scaling

At this point we had clearly less tags linked to genes than if we had used a tool such

as SAGE Genie or other tools. For example, we have take the �rst tag on the Multicancer

data set, i.e. AAAACATTCT , it was linked to a mitochondrial sequence by SAGE Genie,

while at the Global Gene Expression Group (GGEG) project it mapped to Unigene

Hs.476965 (G1/S transition control protein-binding protein IEF-8502). There is clearly still a

lack of precision in the procedure of tag attribution. SAGE Genie links this tag to a sequence

of accession number BE874599. Blast? of this sequence provided a hit on the mitochondrial

human genome, but at a position that was identi�ed as �16S ribosomal sequence�. Such

sequence has no polyA tail of any sort, and does not contain a repeat of A anywhere in the

sequence 23. Therefore, we are rather con�dent that every data resulting from large scale

analysis using web based tools should be critically assessed either using two di¤erent public

tools or ad hoc scripts and database.

The output of this �rst step is the recognition of 516 sequence tags as unique genes. From

now, we refer to every tag as it correspondent unique ENST transcript as gene identi�cation.

4.1.3Second step: scaling

One of the advantages of the SAGE technology over the microarray technology is that since

it relies only on a sampling process it is "self-normalized", and therefore it can directly be

used for data analysis purposes. For example, a SAGE library constructed on a brain cell in

France can be compared, without any speci�c normalization process, with a SAGE library

constructed on a brain cell in the US.

However, SAGE libraries contain the expression of the gene by counting the number

of occurrences in a time interval, so every library has di¤erent numbers of total genes that

have been expressed. For comparison purposes, we have to avoid this bias from the data by

applying a scaling procedure.

We suppose that the Multicancer data set is represented as a matrix X with 516 genes

(ENST transcripts) and 74 biological conditions (SAGE libraries), where xi;j represents the

current expression measure of gene i in biological condition j. We apply the following scaling

factor to every gene expression measure (row) and for each biological condition (column) of

the matrix X:

xsi;j = xi;j �
Maxj(xi;j)
516P

i=1
xi;j

; (4.1)

where xsi;j is the scaled expression measure of gene i in biological condition j and Maxj(xi;j)

is the maximum expression measure in the biological condition j.

We have applied equation 4.1 to every one of the 74 columns of the matrix X, obtain-

ing the matrix Xs that corresponds to the matrix with the scaled gene expression measures.

The implementation of 4.1 was made in R language using the SAGElyzer library from bio-

conductor project.

23 This a clear demonstration that large scale tools such as proposed are not exempt of problems.
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4.1.4 Third step: selecting di¤erentially expressed genes and pertinent
biological conditions

Gene selection

The goal of this step is to detect genes that are over-expressed or under-expressed, since the

genes that are constant or low expressed in both conditions (cancer vs. normal) could intro-

duce noise to our main goal. This task is gene selection, where we take out the unexpressed

genes in order to �nd essential information about the state of the tissue (cancerous or not).

The selection step and several methods to solve it was fully explained in section 2.2.

In our Multicancer data set, we have used the Significance Analysis of Microar-

rays (SAM) method to select di¤erentially expressed genes. SAM is based on a modi�ed

t� statistic applied for every gene i. This statistic measures the strength of the relationship
between gene expression and the response variable (cancer bulk, cancer cell line, normal bulk

and normal cell line) using repeated permutations of the data. The signi�cance cuto¤, �, is

determined by a tuning parameter, chosen by the user and based on the false positive rate. A

brief description of this method can be found in section 2.2.5 and a full explanation in Tusher

et al. [309].

We have chosen the cuto¤ of � = 0:21, which implies a false discovery rate of 5%, which

represents the standard cuto¤ of gene expression technologies for gene selection. The output

at this stage was a matrix with 247 di¤erentially expressed genes and 74 biological conditions.

Selection of the pertinent biological conditions

It is critical to take into account biological condition variations and in particular possible

sample outliers which introduce noise in the clustering procedure [188]. In order to avoid

this noise, we developed an algorithm for �nding sample outliers among biological conditions

using two tools: Principal Component Analysis? (PCA) and hierarchical clustering approaches

(explained in section 2.3.3). Our original method can be resumed in four general steps:

1. Using PCA as an exploratory tool to determine the optimal number of clusters.

2. Applying an hierarchical clustering algorithm to identify sample outliers and remove

them.

3. Then, applying again PCA analysis to verify that the variability level is not decreased

when each of these biological conditions is removed.

4. Applying hierarchical clustering algorithm again to verify that the clustering was

improved. In this step we can use di¤erent cluster validation approaches or a clustering

visualization tool (explained in section 2.3.6).

Our algorithm depends on a correct selection of a clustering algorithm and their re-

spective distance measure. In the case of the Multicancer data set we tested �ve clustering

algorithms: K-Means, Fanny, Partial Least Squares, Unweighted Pair Groups Method Aver-

age (UPGMA) and DIvisive ANAlysis (DIANA) and �ve measures of distance: Euclidean,
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FIG. 4.1: Hierarchical clustering of the pancreas conditions

Pearson, Manhattan, Spearman and Tau according to three di¤erent consistency measures:

average proportion of nonoverlap, average distance between clusters and average distance be-

tween cluster-means. These consistency measures were proposed in Datta et al.[85] (more

details on these measures in section 2.3.6 ).

The testing results showed that the hierarchical clustering algorithms UPGMA and

DIANA with Pearson, Euclidean and Spearman distance measures, were more e¢cient in

clustering our Multicancer data set (divided by tissue) in at least two of the three consistency

measures cited above (results not shown).

Thus, we decided to apply our four-step algorithm (described before) with the hier-

archical algorithms UPGMA and DIANA, the average linkage measure and the Spearman,

Euclidean and Pearson distances. We used these algorithms were used on tissue-speci�c sub-

sets of the Multicancer data set, that is, subsets which are composed only of samples of one

tissue: brain, breast, colon, pancreas etc. (see Table 4.1). For the sake of brevity we only

explain the pancreas tissue selection procedure.

The seven pancreas conditions are distributed in 3 classes: cancer cell line (C1Ce, C2Ce

and C3Ce), normal cell line (N1Ce and N2Ce) and normal bulk (N3Bu and N4Bu), see Table

4.1. The PCA analysis shows that the �rst 3 PCA components explain 98.59% of the total

variance, thus indicating that there is little noise in the data. The hierarchical trees obtained

for the di¤erent distance measures (Pearson, Euclidean and Spearman) are shown in Fig. 4.1.

The trees obtained with the UPGMA and the DIANA algorithms were identical, see Fig. 4.1.

When using the Pearson and Euclidean distance measures, condition PancreasC3Ce is

placed in an isolated cluster, and when the spearman measure is used, it is associated with

normal conditions (reducing the accuracy of the clustering). So we take out this condition

and we run PCA analysis again, obtaining that the �rst 3 components now explain 99.03%

of the total variance (improving the total variance). Finally, a clustering on the data set

without this outlier condition was conducted and the hierarchical clustering tree obtained by

consensus for three distance measures as shown in Fig. 4.2.

Results obtained for other tissues are summarized in Table 4.2; the 16 outlier con-

ditions are listed. These results con�rm the natural division of conditions in three classes

corresponding to the �rst 3 components of PCA analysis. Furthermore, in all cases we can

see that the variance explained by the �rst 3 components is always improved, up to 4.31 %

for Ovary conditions, when outlier conditions are removed.
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FIG. 4.2: Hierarchical clustering after outlier pancreas conditions pruning

Organ/Tissue PCA Outliers PCA without Outliers
(�rst 3 components) (�rst 3 components)

Brain 98.46% {N4Ce,C1Bu,C14Bu, C5Bu, C9Ce} 99.02%
Breast 95.57% {C6Bu} 97.38%
Colon 98.56% {} 98.56%
Ovary 93.60% {N1Ce, N2Ce, C4Ce, C6Bu} 97.91%
Prostate 98.02% {N1Bu,C7Bu,C9Bu, C8Ce, C1Ce} 98.70%
Pancreas 98.59% {C3Ce} 99.03%

TABLE 4.2: PCA analysis of conditions by tissues.

We can see that the clustering of conditions gives a partition by cell source �rst, i.e.

bulk and cell line, and then by cell state, i.e. cancerous and normal (as shown in the case

of pancreas Fig. 4.2). This observation therefore con�rms previous analysis that showed cell

source to be of crucial in�uence on gene expression.

This Multicancer data set was further reduced by removing 7 conditions related to

4 di¤erent tissues: SkinC1Bu, SkinN1Ce, VesselN1Ce, VesselN2Ce, PeritoneumN1Bu, Kid-

neyN1Ce and KidneyN2Ce (see Table 4.1). These conditions do not constitute su¢cient

information for analysis among these tissues and thus will be isolated and will act as out-

liers, introducing noise in the fourth analysis step: clustering the entire data set. The

output at this stage is a gene expression matrix Xs with 247 di¤erentially expressed genes

and 74 � 16 � 7 = 51 biological conditions distributed in six tissues: brain, breast, colon,

ovary, pancreas and prostate.

4.1.5Fourth step: clustering of the biological conditions

After cleaning the Multicancer data set as explained in section 4.1.4, we then applied the

UPGMA and DIANA clustering algorithms, obtaining for both algorithms and Pearson and

Spearman distances identical results (shown in Fig. 4.3). However, for Euclidean distance,

the distribution was similar but with longer branches to the leaves.

Comparing clustering trees obtained with the initial data set and Fig. 4.3 clearly showed

that the selection process improved data quality since length of terminal branches were con-

siderably reduced. We can observe a �rst degree classi�cation by tissue that is accurate for

Pancreas, Brain, Breast, Colon and Prostate tissues, but mixes Ovary tissue conditions with

other tissue conditions. We can also see a clear second degree classi�cation, among condi-

tions of the same tissue, by cell source: bulk and cell line. Among Pancreas, Breast, Brain
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and Colon condition clusters, we can observe a third degree classi�cation by state: cancer and

normal.

FIG. 4.3: Hierarchical clustering of conditions on the cleaned Multicancer data set.

In conclusion, clustering clearly separates cell sources corroborating previous results on

SAGE and DNA chips data [221, 259]. We can conclude that there are important di¤erences

between bulk and cell line conditions that should not be ignored. When conducting studies

for �nding �interesting gene cancer knowledge� involving multiple tissues SAGE libraries, the

study must be �rst oriented toward a decomposition of the conditions by tissues and then by

cell sources to �nally focus the analysis on cell states. Hence, two cells of the same tissue
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with di¤erent states (cancerous and normal) are more similar than cells of di¤erent tissues

with the same state (as seen in Fig. 4.3).

To validate our results, we applied the Quinlan�s supervised algorithm C5.0 [247] to pro-

duce classi�cation rules of biological conditions by tissue, cell state and cell type. Algorithm

C5.0 generates a classi�er represented either by a decision tree or a set of �if-then� rules.

Three di¤erent class attributes characterizing each condition were created: tissue type

(Pancreas, Ovary, Brain, Prostate and Breast), cell source (bulk or cell line) and cell state

(cancer and normal). Boosting? and cross validation? options were activated. The numbers of

rules with maximal accuracy generated for each class decomposition of conditions are shown

in Table 4.3.
Class Number of rules Max accuracy

Bulk 5 100%
Cell line 5 100%
Cancer 1 80%
Normal 3 80%

All 6 tissues types 1 60%

TABLE 4.3: Rules by class and their maximal accuracy.

Using the cell source classi�cation, 5 exact rules, i.e. with perfect accuracy, were gen-

erated. For the cell state classi�cation, only 1 and 3 rules respectively, all with only 80% of

accuracy, were generated. Considering tissue classi�cation, only 1 rule with 60% accuracy

was generated. This result is logical since there are 6 di¤erent tissues, thus disturbing the

classi�cation, and cells from di¤erent tissues but originating from cell lines tend to become

more similar from the tag expression levels viewpoint. These results con�rm that in the small

cleaned data set, there is an intrinsic division of conditions by cell source that is more natural

than by cell state.

Implementation

The clustering algorithms were obtained from the cluster library in the bioconductor open

source project, the graphics for hierarchical clustering outputs were obtained by using Genesis

program (more details in [296]). In the �nal step, the classi�cation of biological conditions

was performed using the SPSS Clementine implementation of C5.0.

4.1.6Fifth step: knowledge discovery via data interpretation.

The resulting Multicancer data set containing 247 genes and 51 tissue samples contains an

inherent decomposition �rst by tissue, then by sample source type and �nally by tissue state.

Thus, this data set is not adapted to accomplish our main goal of �nding a pertinent model

for distinguishing cancerous and non cancerous type.

In order to illustrate the �fth step, we have taken the cleaned Multicancer data set

(containing 247 genes and 51 tissue samples) and we established an alternative goal of �nding

at least one co-annotated and co-expressed cluster of genes. We will brie�y explain our

methodology:
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First, we applied the three more consistency clustering algorithms for Multicancer data

set: UPGMA, DIANA and Self Organizing Maps (SOM) with pearson distance (this choice

was explained above in the fourth analysis step). Here, the goal is to �nd clusters of genes

which contains similar expression pro�les. Thus, genes are objects and biological conditions

are attributes (inversely of the four analysis steps realized above).

Then, we have realized several scenarios, varying the possible number of clusters k 2
f1; 2; 3; :::; 20g. For each one of the three algorithms, we have found the optimal number of
clusters k applying the two measures proposed by Sharan et al. [276]: average homogeneity,

Have, and average measure Save (fully explained in section 2.3.6). Hence, the k that gives the

biggest average homogeneity within each cluster Have and the largest average separation Save
among clusters was taken as optimal for each algorithm. In this case: UPGMA was k = 10,

DIANA was k = 8 and SOM k = 13.

The next step concerns �nding the co-expressed hard clusters, that is groups of co-

expressed genes that appear in the intersection of two or three clusters among all the clusters

or each of the three methods. Then, we �x a pruning factor for hard cluster selection of 75%.

Let us look at two clusters: cluster �ve obtained by UPGMA, CUpgma5 , and cluster three

obtained by SOM, CSOM3 , with cardinalities 25 and 37 respectively. If the cardinality of the

intersection
���CUpgma5 \ CSOM3

��� = 20, then calculating the pruning factor as:

Max

0

@

���CUpgma5 \ CSOM3

���

CSOM3

;

���CUpgma5 \ CSOM3

���

CUpgma5

1

A � 100% = 80% � 75%; (4.2)

so the hard cluster
���CUpgma5 \ CSOM3

��� is chosen for further analysis.
The last step is to build the co-annotated gene groups from the selected co-expressed

hard clusters and to test the signi�cance of the co-expressed and co-annotated gene groups.

For building the co-annotated groups, we used the web tool FATIGO [5], which �nds signi�cant

associations of Gene Ontology terms with groups of genes.

As an illustrative example we present one of these selected co-expressed hard clusters:

HC7 = fCUpgma5 \ CSOM3 \ CDiana2 g, which contains 7 human genes. In order to build the
co-annotated gene groups, we run the FATIGO tool with two gene lists: the reference list

containing 247 human genes and the list containing 7 genes of HC7 cluster. We used only

the biological process ontology contained in the semantic source Gene Ontology (explained in

section 3.7). On the �rst list, only 162 genes had a biological process annotation, and only 6

genes in the second list. Taking a signi�cant level � = 9:9X10�02 and a gene ontology level?

of 4 we have chosen all the subsets with p � value smaller or equal than �. The results for
HC7 are resumed in Table 4.4.

The �rst column of Table 4.4 represents the gene ontology level, the second the bio-

logical process GO annotation, the third contains the corresponding subset with the ensembl

identity, the fourth contains the percentage of annotated genes in relation to the cardinality

of the cluster HC7, and the last column shows the p� value of the signi�cant subset.
From Table 4.4 we can extract that the genes ENSG� 111786 and ENSG� 147677

are highly correlated by annotation and by expression pro�le. Also, they are an active set
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GO Annotation Genes % p-value

4
ribonucleoprotein complex
biogenesis and assembly

ENSG-111786 and
ENSG-147677

33.33 6.13E02

4
macromolecule complex

assembly
ENSG-111786 and
ENSG-147677

33.33 7.44E-02

5
protein-RNA complex

assembly
ENSG-111786 and
ENSG-147677

33.33 1.18E-02

5
macromolecule biosynthetic

process
ENSG-111786 and
ENSG-147677

33.33 2.61E-02

5
cellular protein
metabolic process

ENSG-111786 and
ENSG-147677 and ENSG-114902

50 6.93E-02

6
regulation of cellular
biosynthethic process

ENSG-111786 and
ENSG-147677

33.33 1.69E-02

TABLE 4.4: Signi�cant co-annotated and co-expressed genes groups of cluster HC7
with their respective GO annotation and signi�cance level.

of genes along the six biological process indicated in the annotation column of Table 4.4.

However, we cannot distinguish their participation in the cancerous or normal tissues. To do

so a bi-clustering technique, that is clustering by subsets of biological conditions needs to be

implemented.

Implementation

The clustering algorithms were obtained from cluster library in bioconductor open source

project. The consistency measures and graphics were programmed in R language.

4.1.7Discussion

The �rst three steps of SAGE data analysis concerning: data generation (pruning of non-

signi�cant tags), statistical data treatment (normalization of biological conditions) and dif-

ferentially expressed genes and biological conditions selection were crucial for cleaning the

inherent noise in the Multicancer SAGE data set.

Replicated concatemers have to be eliminated �rst in order to estimate the number

of replicated di-tags produced by the PCR? ampli�cation. Most SAGE studies made use of

tags of 14 bp. However, a recent study showed the clear advantage of using a tag of 15 bp

[93]. Even longer tags will be better. Recently, the SAGE protocol was enhanced with a new

tagging enzyme (MmeI), which produces 21-22 bases tags [265], allowing direct mapping to

the transcripts [312]. When numerous tags are available, it is possible to remove tags that are

present only once, and that may result from errors. Sequence errors have little e¤ect on the

quanti�cation of moderately expressed genes but a lot for rare transcripts. About 6.7% of

long SAGE di-tags acquire mutations prior to ligation, cloning and sequencing [312], arguing

for a robust tag attribution to a transcript.

Only reliably annotated tags can be included in the �nal analysis [280]. Annotation of

SAGE tags to genes and their corresponding Unigene? cluster numbers revealed that on aver-

age only 30% of all tags (including less abundant tags) could be reliably annotated based on
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the SAGE Genie principles [44]. Annotation improved to about 70% for tags with interme-

diate to abundant expression levels. Remaining tags either could not reliably be associated

with a gene (e.g. annotated to unclustered ESTs) or were not present in a single gene.

Selection of di¤erentially expressed genes and biological conditions pruning have consid-

erably decreased the inherent noise in Multicancer SAGE data set. These steps have allowed

to distinguish the natural decomposition of the biological conditions by tissues and then by

cell sources to �nally focus the analysis on cell states. We can conclude that there are im-

portant di¤erences between bulk and cell line conditions that should not be ignored. When

conducting studies for �nding �interesting gene cancer knowledge� involving multiple tissues

SAGE libraries, the study must be �rst oriented toward a decomposition.

Concerning clustering the biological conditions, we have to choose carefully the cluster-

ing algorithm and distance measure. This decision has to be done by testing with di¤erent

clustering algorithms and distances measures and then validating the results with cluster val-

idation methodologies (as seen in section 2.3.6). Thus, we �nd the "best adapted" algorithm

and measure to our particular data set.

With regard to the interpretation step, it depends on two main parameters, the result of

the precedent steps and the availability and �exibility of the sources of biological information.

In the case of the Multicancer data set, the inherent decomposition of the set �rst by tissue,

then by sample source type bulk or cell line and �nally by tissue state cancerous or normal

has blocked the possibility of interpreting this data set. The large variability of Multicancer

data set make it di¢cult to interpret in the case of our two goals: building a model for

distinguishing cancerous and non cancerous type, and �nding co-expressed and co-annotated

signi�cant groups.

4.1.8Conclusion

Algorithms used to analyze SAGE data have a strong in�uence on results [93], and using a

single analysis scenario and a single source of sequence data (annotations) would result in

a weaker analysis. We have also shown incoherence of results between di¤erent public web

tools, and an obvious error of gene attribution for the �rst tag at least. As for DNA chips

data, the Bioconductor? R package call SAGElyzer provides basic essential tools. Removing

outlier experiments also decrease noise and increases reliability of clustering. Finally, we have

shown that if knowledge rules for cancer are sought for, it is di¢cult to analyze data sets

including di¤erent tissues as decisional rules of maximal accuracy are those discriminating

tissue origins but not normal versus cancer tissues. Thus, more samples from a single tissue

should be more e¢cient.

4.2 Spotted oligos-chip. Microarray Technology

This section is divided in 8 subsections. The introduction section explains brie�y the spotted

oligos-chip technology basics, the Azerty data set characteristics, the main goal of the analysis

and the data analysis di¢culties. Then, the next �ve sections correspond to each one of the
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�ve data analysis steps (including the data analysis results). The last two sections concern

a discussion of each one of the data analysis steps applied to Azerty data set and a general

conclusion. The information contained in this section was obtained from the internal report:

Azerty data Analysis [197].

4.2.1Introduction

Spotted oligos-chip basics

The spotted oligos-chip concerns the sequence by hybridization microarray technology which

manufactures the chip by robotic spotting of already synthesized oligonucleotides? (More

details of this technology are explained in section 1.2.1)

For better comprehension of the whole procedure of spotted oligos-chip. experiments

the reader can go to section 1.2.1 and Fig. 1.17. In section 1.2.1 we explained the spotted

cDNA chips technology. The main di¤erence between cDNA chips and oligos-chip technologies

is that the second one uses already synthesized oligonucleotides as probes, instead of cDNA

probes (see �rst column of Fig. 1.17).

The oligonucleotides have the advantage of being probes that bind easily to its comple-

mentary target sequence and they can be synthesized up to 160-200 bases [172].

Azerty data set description

Azerty data set24 is composed of 6 chips with 27648 spots each. Every chip contains the

expression levels of 22739 genes (taking out the control measures) measured at �ve time points

1hr., 3hr., 6hr., 9hr.and 24hr. Every gene expression measure represents the logarithmic ratio,

i.e. log2
Cy5
Cy3 , of two light intensities the red one, Cy5, corresponding to the studied or test

biological sample and the green one, Cy3 , corresponding to the normal or reference sample

(more details for this data transformation can be seen in the section 2.1.1).

The studied biological time process was intentionally unknown for us. The main goal

is to discover groups of co-annotated and co-expressed genes that might give us some clues of

the studied biological process.

Azerty data set di¢culties

The Azerty data set described before comprises several di¢culties:

1. Spotted oligos-chip presents the analysis drawbacks (explained in section 1.2.1) in

relation to other microarray technologies as in situ oligos-chip which may contain less

inherent noise.

2. The Azerty data set was already statistically treated with image correction methods.

Thus, it could already be biased.

24 Thanks to the "Institute de Pharmacologie Moleculaire et Cellulaire (IMPC)" (CNRS-
UNSA) at Sophia Antipolis, France, for providing us with this set of data.
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3. The studied experiment is a biological time process. The current microarray tools

available to accomplish the �ve data analysis steps (explained in chapter 2) are not

adapted to this kind of time series process. Thus, we may incur loss of information.

4. The Azerty analysis is of "blind" type, which means that the analyst does not know a

priori anything of the studied biological process.

5. The data set is of huge size as it contains 6 replicates of 22739 genes and 5 time point

measures each.

Azerty data set analysis goal and �ve-step procedure

The goal of our analysis is to determine relevant biological process appearing in Azerty data

set in order to uncover the hidden (for us) studied process. This was realized by building

groups of co-expressed and co-annotated gene groups and interpreting the most signi�cative

gene groups. We apply the �ve-step procedure for the analysis of the Azerty data set:

1. Data Generation

2. Statistical Data Treatment: Global normalization and intensity-dependent normaliza-

tion, and treatment of technical25 and biological26 replicates.

3. Selection of di¤erentially expressed genes.

4. Clustering of genes

5. Knowledge Discovery via Data interpretation: building co-expressed and co-annotated

gene groups.

4.2.2First step: data generation

The �ve steps of microarray data experiments: manufacture, sample preparation and label-

ing, hybridization, image scanning, and image processing were completely done by the data

provider, IPMC (reader can see the Fig. 1.17 for more details).

The output of this �rst step is the raw intensity measures of 22739 genes taken at 5

time points. The raw intensity measures are given as the logarithmic ratio, i.e. log2
Cy5
Cy3 , of

two light intensities: the red one, Cy5, corresponding to the studied or test biological sample

and the green one, Cy3, corresponding to the normal or reference sample.

4.2.3Second step: normalization and replicates treatment

One of the main drawbacks of spotted oligos-chip is the inherent noise contained in the raw

data (after the data generation step). In order to get rid of these inherent noise, the data

provider IPMC has realized three di¤erent intensity-dependent normalizations:

25 Technical replicates are the copies of the same sequence probes arranged in di¤erent spots of the DNA
chip.
26 Biological replicates are the repetitions of the whole biological experiment or process. Often, they
correspond to two or more chips containing the same elements: probes and targets.
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� Normalize within arrays by lowess normalization applied onto the surface (x; y) of the

chip. This compensates the variation related to errors of handling the chips such as

stains.

� Normalize within arrays by lowess normalization between the two color intensities: Cy5,

Cy3, in order to eliminate the variations due to the use of double coloration.

� Normalize between arrays by quantile distribution normalization to obtain the same

distribution of the signal for all the experimental conditions.

The goal of the �rst point is to normalize the average value of the log2(ratio) intensities

to 0 on each surface (x; y) of the chip. Lowess is a locally weighted linear regression method

that takes the log average of all gene-intensities on a surface (x; y) of the DNA chip

The goal of the second point is to normalize the average value of the log2(ratio) inten-

sities to 0 on each chip for avoiding the variations of double coloration (more details of lowess

method in section 2.1.4 or [76]).

The e¤ects of the lowess normalization were illustrated in section 2.1.4 and Fig. 2.3.

In this plot (called ratio-intensity plot or R-I plot). The horizontal axis represents the sum of

the log intensities log10(Cy3 � Cy5) which is directly proportional to the overall intensity of
a given spot. The vertical axis represents log2(Cy3=Cy5) which is the usual log-ratio of the

two samples. Note the strong non-linear distortion in Fig. 2.3a and how this is corrected by

Lowess in Fig. 2.3b.

The goal of the third point is to normalize all transformed log2(ratio) intensities in order

to obtain distributions across the chips as similar as possible. The quantile normalization

method was proposed by Yang et al. [328] for the case of two-colored spotted chips. The

assumption behind this method is that given a series of chips, a small number of genes may be

di¤erentially expressed, however, the overall distribution of spot intensities should not vary

too much (More details in quantile normalization method can be found in [328]).

The data provided by IPMC laboratory have already been treated by intensity-dependent

normalization techniques. Now, we are interested in preparing the data for the third analysis

step (selection of di¤erentially expressed genes). Thus, we have applied two more statistical

treatments: treatment of technical replicates within a chip and global normalization for each

temporal biological condition of each chip.

In order to handle the technical replicates in the Azerty data set, we have followed a

simple rule: the averaging of the transformed log2(ratio) intensities of the replicates. For

example, in the case of gene FOXN4 that appears two times in the same chip with measures:

8.44 and 8.76 respectively, we have taken the average of the intensities, that is 8.60.

The majority of the di¤erentially expressed gene analysis methods (explained in section

2.2) needs standardized data as input. In order to achieve this requirement, we have applied

a global normalization method: standardization for each temporal biological condition of

each chip. The method is simple: from each temporal biological condition measurement

on the chip subtract the mean measurement and divide by the standard deviation of the

temporal biological condition. After this transformation, the mean of the measurements of
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each temporal biological condition on each one of the six chips will be zero, and the standard

deviation will be one.

It is important to note that the normalization within arrays by lowess method are

supposing independence of the temporal biological conditions columns. That is certainly not

true because it is a temporal process. But, as stated before, most of the microarray tools

suppose independence of biological conditions even if they are clearly dependent between

each other. This assumption contained in the provided data will be a source of bias along our

data analysis procedure.

4.2.4Third Step: Selecting di¤erentially expressed genes

The goal of this step is to detect genes that are over-expressed or under-expressed along the

6 biological replicates. We want to reduce the large size of Azerty data set. This task is

called gene selection, where we take out the unexpressed and constant genes in order to �nd

essential information about the studied biological process. Several selection methods were

fully explained in section 2.2.

Given the temporal characteristics of the actual Azerty data set containing 6 biolog-

ical replicates which contain 22739 genes and 5 temporal conditions each, a good choice of

gene selection method is the statistical method Significance Analysis of Microarrays

(SAM).

SAM is based on a modi�ed t � statistic for every gene i. This statistic measures the
strength of the relationship between gene expression and the response variable (reference vs.

studied) using repeated permutations of the data. The signi�cance cuto¤, �, is determined

by a tuning parameter, chosen by the user and based on the false discovery rate (FDR). The

basic idea of this approach is to control the proportion of signi�cant results that are in fact

Type I errors (in hypothesis testing language). A brief description of this method can be

found in section 2.2.5 and a full explanation can be found in Tusher et al. [309].

We have run the release 2.0 of SAM open source program with the following three

main parameters:

1. Response type: time series data with signed area for summarizing each time course.

2. Cuto¤ threshold of � = 0:21; that implies the standard false discovery rate of 5%.

3. Imputation engine: 20-nearest neighbor�s.

The �rst parameter concerns the type of data i.e. time series data, we have chosen the

option "summarizing each time course by signed area". This means that the surface under

the time course curve is computed, counting positive area above the line (red points in Fig.

4.4) and negative below the line. This option is useful for �nding genes that rise and then

level o¤ or come back down to their baseline [309].

The second parameter is the cuto¤ of FDR equal to 5%, which means that we accept

that 5% of the chosen expressed genes are statistically unexpressed. The cuto¤ choice of

FDR=5% is one of the most common cuto¤ choices in microarray gene selection [309].
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FIG. 4.4: The scatter plot of d(i) vs. dE(i) to select potential signi�cant genes (Azerty
experience).

The third parameter is the choice of the missing values method, in this case 20-nearest

neighbors imputation engine (explained in section 2.1.2).

After carrying out the SAM analysis we obtain 544 signi�cant and di¤erentially ex-

pressed genes. The SAM output results are shown in Fig. 4.4

The Fig. 4.4 plots observed values (di) versus its expected values (dEi
). The solid blue

line in the Fig. 4.4 indicates the line where di = dEi
, that is where the observed relative

di¤erence is identical to the expected relative di¤erence. The dotted lines are drawn at a

distance � = 0:21 from the solid line. Given a speci�c �, the procedure declares signi�cance as

follows: �nd the smallest upper cut point du such that du� dEu � �, and report all the genes

i where di � du as "signi�cant positives" (all are marked in red color in Fig. 4.4). Similarly,

�nd the largest dj , called the lower cut point, where dk � dEj � �, and report all the genes

k such that dk � dj as "signi�cant negatives" ( there are no signi�cant negative genes in our

Azerty data set, as seen in Fig. 4.4).

The output at this stage is a data set with 544 over-expressed genes and 5 temporal

biological conditions in each of the 6 samples.

Strangely there are relatively few di¤erentially expressed genes and they are all over-

expressed (red line in Fig. 4.4). A possible reason of this may be the quantile distribution

normalization applied to the original data because this process causes two phenomenons: i)

Bringing together the gene expression measures between all biological conditions and also

because a lower distribution distance between the chips. ii) If the original data set has many

unexpressed or constant genes the normalization changes the original value in a way that

could increase the rate of false positives.

Thus, among the 544 genes we could have more than 5% rate of false positives and

surely we did not select an important number of under-expressed genes.

In order to prepare the Azerty data set for clustering techniques (fourth analysis step),

we have taken the average gene expression measure over the six biological replicates or chips,
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Ave(xci;j), that is:

Ave(xci;j) =

P6
c=1 x

c
i;j

6
, with i = 1; 2; :::; 544:and j = 1; 2; :::; 5: (4.3)

Here, xci;j is the gene expression measure of gene i under the temporal biological condition j

in chip c. The �nal output of this third step is a matrix X containing 544 genes (matrix lines)

measured under 5 time points: 1hr., 3hr., 6hr., 9hr. and 24hr (matrix columns). Each of the

matrix elements xi;j represents the gene expression average of gene i under the time point j

obtained among six biological replicates or chips. For interpretation purposes it is useful to

take into account the meaning of each gene expression measure as a logarithmic ratio which

compares two samples: the studied or test biological sample versus the normal or reference

one.

4.2.5Fourth step: clustering of co-expressed gene groups

The Clustering of co-expressed gene groups consists in identifying "clusters" or groups of genes

which present a common expression pro�le among all biological conditions. In the Azerty data

set it means �nding clusters of genes that have similar expression pro�les along the �ve time

points of the studied biological process. (More details on this step can be seen in section 2.3).

In order to achieve this fourth step, we have chosen the two most currently used cluster-

ing approaches in microarray technology: partition-based and hierarchical approaches (as seen

in [90, 69, 107, 298]). Among these approaches we have selected four unsupervised clustering

techniques: Unweighted Pair Groups Method Average (UPGMA), DIvisive ANAlysis (DI-

ANA), K-means, and Partition around Medoids27 (PAM). These approaches were suggested

by Datta et al. [85] in the case of time series data. The reader can �nd a full explanation of

these two clustering partition-based approaches and their distance measures in section 2.3.2,

2.3.3 and 2.3.1 respectively.

K-Means and PAM are partition-based approaches, thus one needs to �x the number of

clusters in advance. The K-means algorithm then assigns the observation into various clusters

in order to minimize the total within-class sum of squares. The PAM algorithm �rst �nds an

initial set of medoids and then exchange points so that no single switch of an observation with

a medoid will decrease the sum of squares (more details of these two methods in section 2.3.2).

In the case of K-means, we have used the Pearson�s correlation coe¢cient Pearson(Xi; Xk)

as distance correlation measure between the expression pro�les of gene vectors Xi; Xk. In

the case of PAM, we have used the Euclidean distance suggested by Kaufman et al.[164] for

analyzing time series data.

UPGMA and DIANA are hierarchical approaches which produce a hierarchy of clusters

rather than a set of clusters �xed in advance (as partition-based approaches).

UPGMA uses an agglomerative or bottom-up approach for building clusters. This

method uses unweighted pair-group average linkage as merging rule between two clusters,

which means taking the average distance between all pairs of objects in the two di¤erent

27 A medoid can be de�ned as that object of a cluster, whose average dissimilarity to all the objects in the
cluster is minimal i.e. it is a most centrally located point in the given data set.
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FIG. 4.5: Average Proportion of non-overlap measure, Cons1(k), for various clustering:
algorithms applied to the Azerty data.

clusters. UPGMA with Pearson measure is suggested by Tamayo et al.[298] for analyzing

time series data. Furthermore, UPGMA is actually the most used method ever since Eisen et

al. have proposed its usage for microarray technology in 1998 [107] (more details in section

2.3.3).

DIANA uses a divisive algorithm or top-down approach for building clusters. This

method using the euclidean distance d(Xi; Xk) as similarity measure is suggested as a robust

method for time series data by Datta et al.

Once we have de�ned the clustering algorithms and their respective distance and linkage

measures, we need to determine the parameter k, that is, the number of clusters, and the

consistency of the chosen algorithms. In order to answer to this two questions, we have

used three di¤erent consistency measures: average proportion of non-overlap (Cons1(k)),

average distance between clusters (Cons2(k)), and average distance between cluster means

(Cons3(k)). These consistency measures were proposed in Datta et al.[85] (more details about

these measures in section 2.3.6).

The results of applying these three consistency measures over UPGMA, DIANA, PAM

and K-means algorithms in Azerty data for k 2 f6; 7; :::; 14g are presented in Figs. 4.5-4.7.
We can observe in Fig. 4.5 that concerning measure Cons1(k) UPGMA and k-means

perform poorly for almost all number of possible clusters and DIANA is the most regular

algorithm along all possible k values. There is a simple reason because correlation pearson

measure are not appropriate here. This measure is invariant under location and scale trans-

formations, and thus, it cannot distinguish between the patterns that are related by location

and/or scale changes. In contrast, Euclidean measure works well for DIANA algorithm and
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FIG. 4.6: Average distance between means measure, Cons2(k), for various clustering
algorithms applied to the Azerty data.

for PAM, and shows good behavior for k 2 f9; 10; 11g. Interestingly, the local minima of the
four algorithms is found for values of k 2 f9; 10; 11; 12g.

As illustrated in Fig. 4.6, concerning Cons2(k) the winning algorithm was k-means, in

spite of the high levels of variation along di¤erent cluster values. UPGMA performs well only

in the case of 8 and 9 clusters. The algorithms that use Euclidean measures do not perform

well among cluster values of less than 8 or more than 11 clusters. In the case of Cons2(k)

measure, Euclidean measure is less appropriate than Pearson measure. Logically, variations in

the contents of the built clusters are more sensible in Euclidean distance compared to Pearson

correlation distance. As well as for Cons1(k), the local minima of the 4 algorithms are found

for values of k 2 f9; 10; 11g.
As shown in Fig. 4.7, Diana and PAM algorithms perform quite well for k 2 f8; 9; 10g.

In contrast, the results for k-means and UPGMA are less optimist for all values of k. The

reason could be the high variability of Azerty data set, because it represents a biological

time process. A biological process could change suddenly between time points, and Pearson

correlation distance is more sensible than Euclidean distance in relation to high changes

between the biological time points. Interestingly the local minima of the four algorithms are

situated for values of k 2 f8; 9g:
Taking into account the results of the three consistency measures Cons1(k), Cons2(k),

Cons3(k), we have decided to perform our clustering analysis �xing the number of cluster to

k = 10, which represents the "best" compromise regarding the local minima shown in the

three consistency measures.
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FIG. 4.7: Average distance measure, Cons3(k), for various clustering algorithms applied
to the Azerty data

Concerning the consistency of the algorithm, there is no a winner between the four

clustering methods presented here. So, we proceed the Azerty clustering analysis with the four

clustering algorithms: UPGMA, DIANA, PAM and k-means, taking the respective parameters

of distance and linkage rule and �xing the number of clusters to k = 10.

Applying the four clustering methods, we have obtained 10 gene groups for each al-

gorithm. The resulting 40 clusters contain some similarities and dissimilarities between the

composing elements among di¤erent methods. In other words, a group of genes could or could

not appear together in two or more clusters obtained from di¤erent algorithms. Here, we are

interested in �nding the co-expressed genes that appear in the intersection of at least two

clusters among the clusters of each of the four algorithms. We called this co-expressed gene

groups as hard clusters.

In order to �nd the hard clusters of the Azerty data set, we have determined the in-

tersection of the elements contained in at least two clusters among the 40 resulting clusters.

There are 4 clustering methods, so a gene can appears 4 times in clusters obtained by dif-

ferent methods. Thus, the number of possible hard clusters is the addition of the possible

combinations?:

�
40
2

�
+

�
40
3

�
+

�
40
3

�
= 102830. In order to reduce the number of hard

clusters we have taken a pruning factor of 85%. The pruning factor is de�ned as:

Max

0

@ j\Cmk j���CUpgmak

���
;
j\Cmk j��CPamk

�� ;
j\Cmk j���CK�meansk

���
;
j\Cmk j��CDianak

��

1

A � 100% � 75%; (4.4)
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where j\Cmk j is the cardinality of elements found in the intersection of clusters from method

m with cluster number k, and
���CUpgmak

��� is the cardinality of the elements in cluster number k
from method UPGMA. For example let us suppose three clusters obtained by three di¤erent

methods: the second cluster of UPGMA clustering, CUpgma2 , the fourth cluster of PAM clus-

tering, CPAM4 , and the �fth cluster of DIANA clustering CDiana5 with cardinalities 30, 72 and

27 respectively. The cardinality of the intersection of the elements of the three algorithms is

17. Applying eq. 4.4 we found Max
�
17
30 ;

17
72 ;

17
27

�
� 100% = 63% � 75%. So, the hard cluster���CUpgma2 \ CPAM4 \ CDiana5

��� will be eliminated from our analysis.

Applying the pruning factor of equation 4.4 we have obtained as �nal output of the

fourth analysis clustering step: 27 hard clusters containing co-expressed genes with similar

expression pro�les along the �ve time point biological process.

Implementation

All the consistency measures (Cons1(k)), (Cons2(k)), and (Cons3(k)) were implemented in

R language. The four clustering algorithm programs were obtained from the cluster library

in the bioconductor open source project. The program for �nding hard clusters and the

one for obtaining the selected hard clusters were implemented in R language.

4.2.6Fifth step: knowledge discovery via data interpretation.

This step concerns building co-annotated gene groups from the selected hard clusters and test-

ing the signi�cance of the resulting co-expressed and co-annotated gene groups. For building

the co-annotated groups, we have used the web tool FATIGO [5], which �nds signi�cant

associations of Gene Ontology terms with groups of genes.

Unfortunately for interpretation analysis, Azerty data set was partially built with human

genes without any known annotation, that is only the sequence of nucleotides of these genes

is known. In order to reduce the number of hard clusters containing genes without any

annotation, we have run the pruning rule of: "taking only the hard clusters containing at

least 50% annotated genes (an annotated gene must have at least one biological process

annotation in Gene Ontology.) We have run FATIGO tool for each of the 27 hard clusters

and have found only 4 hard clusters (see Fig. 4.3).

We can see in Fig. 4.8 the expression pro�le measures of the four selected hard clusters

containing at least 50% of annotated genes with GO biological process annotations. The

scale in top of Fig. 4.8 indicates that the log2(ratio) is between 3.0 and -3.0, indicating over-

expression for measures between [1; 3] corresponding to orange to red colors, equal expression

for measures between (�1; 1) corresponding to yellow colors and under-expression for measures
between [�1;�3] corresponding to yellow to green colors. Fig. 4.8 illustrates the similar

expression pro�les shown by our four chosen hard clusters: HC1 = fCUpgma5 \CSOM3 \CDiana2 g,
HC2 = fCDiana7 \ CPAM10 \ CUpgma8 g, HC3 = fCK�means7 \ CPAM4 \ CDiana8 g and HC1 =

fCDiana4 \ CPAM6 g. For example in cluster HC1 we can observe the marked overexpression
(strong red) of all the 16 genes along almost all biological process. At time point nine hours
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FIG. 4.8: Four selected hard clusters with at least 50% of the genes with biological
process GO annotations

we can see that 10 genes have been equally expressed (yellow color) while the remaining 7

genes (top of the HC1 cluster) continue to be overexpressed.

We have run FATIGO tool again for searching the co-annotated (by biological process

GO annotations) signi�cant groups within the four selected hard clusters HC1, HC2, HC3
and HC4. We have chosen a signi�cant level � of � = 9:9E � 02 and a gene ontology?
hierachical level of 4. Thus, the chosen gene groups have a p� value smaller or equal than �.
For the sake of brevity we present the results for HC1 in Table 4.5:

The �rst column of Table 4.5 represents the gene ontology level. The second column

shows the biological process GO annotation. The third contains the number of human genes

in each subset. The fourth column contains the percentage of annotated genes in relation to

the cardinality of the total number of annotated genes in cluster HC1(in this case 12 of the

16 genes), and the last column shows the p� value of the signi�cant subset.
From Table 4.5 we extract that highly correlated genes (SET and H2AFY) are related

not only by a similar expression pro�le but also that they share 6 functional annotations.

Another highly correlated pair of genes is PTBP1 and SNRPF participating actively in mRNA

processing and RNA splicing. The genes DKC1, SET and H2AFY participate together in

two metabolic process: nucleobase and polymer, and also in chromosome organization and

biogenesis (see Table 4.5).

Up to now, we have discovered groups of co-annotated and co-expressed genes, but at

the moment we are incapable of having some clue of the unknown studied biological process.

Because of the insu¢cient annotations obtained by GO biological process annotations con-

cerning our four hard clusters, we did not gain any insight into the studied biological process.
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GO Level Annotation # Genes % p-value

4
biopolymer metabolic

process
8

PTBP1 SNRPF
RAD23B PCMT1
SET POLD2
H2AFY DKC1

67 6.24E-02

4
nucleobase, nucleoside
metabolic process

7

PTBP1 SNRPF
RAD23B

SET POLD2
H2AFY DKC1

58 4.47E-02

4
organelle organization

and biogenesis
4

LASP1 SET
H2AFY DKC1

33 2.57E-02

5 DNA metabolic process 4
RAD23B SET
POLD2 H2AFY

33 8.50E-02

6 Dna replication 2 SET POLD2 17 4.82E-02

6
chromosome organization

and biogenesis
3

SET H2AFY
DKC1

25 3.13E-02

7 mRNA processing 2 PTBP1 SNRPF 22 5.56E-02
7 RNA splicing 2 PTBP1 SNRPF 22 4.10E-02
9 chromatin assembly 2 SET H2AFY 40 3.49E-02

TABLE 4.5: Signi�cant co-annotated and co-expressed genes groups of cluster HC1
with their respective GO annotation and signi�cance level.

In order to �nd some clues about the studied biological process we use the bibliographic

source of information: Pubmed/Medline. Taking the genes contained in the hard cluster,

HC1; we have searched manually 25 gene-related articles. We have obtained useful functional

and relational annotations among the 16 genes contained in cluster HC1. The results of this

extracting process are presented in Table 4.6.

Medline-Human Annotation Genes

Tissue Reparation PCMT1 POLD2 SET PTBP1 RAD23B

Cancer CYP1B1 LASP1 SET RAD23B

Defense DKC1 SET

Regulation DKC1 FNBP4

Damage Reparation DKC1 PRDX6 RAD23B SET

Regulation FNBP4 DKC1

Apoptosis RAD23B LASP1

DNA reparation PRDX6 DHX15 POLD2

TABLE 4.6: Co-annotated and co-expressed groups of cluster HC1 with their respective
Medline-Human annotation.

Table 4.6 shows the manually extracted co-annotated gene groups. For example the

group of co-expressed genes PCMT1 POLD2 SET PTBP1 RAD23B plays a role in tissue

reparation, and the genes CYP1B1 LASP1 SET RAD23B are active in the cancer tissue state

relative to a normal tissue state. Similarly, we can read all the information in Table 4.6.

Resuming the information of the fourth and �fth analysis step about hard cluster HC1
(Fig. 4.8, Table 4.6 and 4.5) we summarize:

� The 16 genes in HC1 are over-expressed in all biological experiments and they contain

important functional relationships among the genes within the cluster (see Fig. 4.8).
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� The functional relationships obtained using GO (biological process ontology) are

principally of three types: metabolic process (nucleobase, polymer and DNA),

chromosome/organelle/chromatin organization and biogenesis, and RNA splicing and

processing (see Table 4.5).

� The functional relationships obtained by extracting annotations from 25 gene-related

Medline articles are: tissue reparation, cancer, defense, regulation, damage reparation,

regulation, apoptosis? and DNA reparation (see Table 4.6).

We have found four hard and signi�cant co-expressed clusters: HC1, HC2, HC3 and

HC4. Among these clusters, we have interpreted the HC1 cluster, obtaining the results re-

sumed in the three last points. The Gene Ontology annotations can be accomplished by many

biological processes, so the clues that we have extracted from our �ve-step analysis are the

Medline annotations: tissue reparation, cancer, defense, regulation, damage reparation, regu-

lation, apoptosis and DNA reparation. Indeed, we have several biological process applications

containing many of these 8 annotations.

The answer to our main goal puzzle was: Azerty data set was a cicatrization process.

Here, we present the complete characteristics of the cicatrization Azerty data set.

Cicatrization data set description: Cicatrization data set is composed by 6 chips

with 27648 spots each. Every chip contains the expression levels of 22739 genes measured in

the cicatrization of Human Bronchial Epithelial cells (HBE) at �ve time points 1hr., 3hr.,

6hr., 9hr. and 24hr. Every gene expression measure represents the logarithmic ratio, i.e. log2
Cy5
Cy3 , of two light intensities the red one, Cy5, corresponding to the wounded HBE sample and

the green one, Cy3 , corresponding to the normal HBE sample.

Implementation

We have used the open source web tool FATIGO [5] for building the co-annotated GO

gene groups. The graphics for hierarchical clustering outputs were obtained with Gene-

sis program (more details in [296]). For obtaining the literature annotations we have used

Pubmed/Medline bibliographic database source .

4.2.7Discussion

Here, we discuss the di¢culties encountered along the complete analysis of spotted oligos-chip

Azerty data.

The data generation step and the intensity-dependent normalization procedures were

done by the provider IPMC laboratory. As explained before, the distribution normalization

applied to the original data has supposed the independence of biological time conditions.

This is clearly not true, because in biological process the future state depends directly on the

anterior state, so they are not independent. This is a common bias in analyzing biological

time series data, because there do not exist enough tools in microarray to deal with this kind

of data, so analysts suppose from the beginning of the analysis the independence between the

biological conditions. The consequences of this bias have not been yet studied.
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4.2.8 Conclusion

The statistical data treatment is a crucial step which has been partially done by the

provider as discussed before in the data generation step. The remaining statistical treatments

as technical replicates treatment and global normalization for each chip were realized using

standard techniques. However, this choice could be erroneous and could add more bias to the

data.

For selection of di¤erentially expressed genes we have used SAM algorithm, an statistical

parametric method including a multiple testing correction feature. In spite of the robustness

of this algorithm, the choice of the di¤erentially expressed genes is �nally done by an arbitrary

cut-o¤ of FDR = 5%. Thus, we eliminated genes that are near the choice boundary (see Fig.

4.4) but they might be important for the studied biological process. Methods for di¤erentially

expressed gene selection including gene annotations in their algorithm would be advisable

Concerning the clustering of the genes, we must pay attention to the choice of cluster-

ing algorithm and distance measure. This decision has to be done by testing with di¤erent

clustering algorithms and distances measures and then validating the results with cluster val-

idation methodologies (as seen in section 2.3.6). Thus, we could �nd the "best adapted"

algorithm and measure to our particular data set. In Azerty data we did not �nd a win-

ner between the chosen clustering algorithms and distance measures using three consistency

measures. Thereafter we have constructed signi�cant "hard clusters" containing genes with

similar expression pro�les. Even if the clusters are re�ecting co-expressed gene groups, a gene

can appear only once in one group and intersections are not allowed. However, biologically

genes can participate to many process at the same time, thus these clustering is unrealis-

tic. Bi-clustering techniques explained in section 5.4 could be more adapted to this problem.

Another important default is the lack of biological information integration in the clustering

algorithm, so we can have co-expressed genes that participate to di¤erent biological process.

Co-clustering techniques explained in section 5.4 could be more adapted to realize this task.

Finally, the interpretation step depend on two main parameters: the availability of

the gene annotations and the manipulation of the di¤erent sources of biological informa-

tion. In case of the Azerty data set, the existing Gene Ontology annotations for the ob-

tained co-expressed hard clusters were insu¢cient or too general to obtain important infor-

mation about the studied biological process. In contrast, the bibliographic literature data-

base PubMed/Medline contains up to date and important information concerning the studied

genes for targeting the main goal. However, human extraction of important annotations in

millions of online gene-related articles is known to be a time consuming and di¢cult task.

Up to now, the automatic text mining science algorithms in genomic areas are not e¤ective

enough because of the inherent characteristics of textual information (see section 3.5 for more

information).

4.2.8Conclusion

The inherent noise in the Azerty data set and the cumulated bias from the �rst four analy-

sis steps have made the interpretation of the signi�cant co-expressed gene groups di¢cult.

Furthermore, the lack of annotations and automatic systems to integrate the information
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contained in the gene expression pro�les and gene annotations have di¢cult even more the

achievement of our main goal.

While analyzing data issued from oligos-chip technology, we are dealing with many

di¢culties (see section introduction). These di¢culties have to be solved carefully using the

most adapted tools to tackle each of the �ve-analysis steps. In the case of time series data

ther do not even exist tools so a guided analysis could be necessary. Selecting di¤erentially

expressed genes and clustering genes are two steps that need to be guided using at least one

kind of the six biological sources (explained in chapter 3) to arrive to more realistic results.

If the biological source integration is done only at the last �fth step, the conclusion might

be false or unclear. Knowledge discovery and interpretation need well structured and easy

handling sources of information and that is not often given in biological resources (explained

in chapter 3).
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Chapter 5

Biological Knowledge Interpretation

approaches: Prior or Knowledge-based,

Standard or Expression-based and

Co-Clustering

This chapter represents the framework of our biological knowledge integration models, who

are brie�y introduced here. In this chapter, we discuss di¤erent approaches for integrating

biological knowledge in gene expression analysis. Indeed we are interested in the �fth step

of microarray analysis procedure which focuses on knowledge discovery via interpretation of

the microarray results (introduced in section 2.4). We present a state of the art of methods

for processing this step and we propose an original classi�cation in three facets: prior or

knowledge based, standard or expression-based and the co-clustering.

First we discuss brie�y the purpose and usefulness of our classi�cation. Then, following

sections give an insight into each facet principles and intinsic methods. We summarize each

section with a comparison between reamarkable approaches. Finally, we discuss all three

facets and methods giving an outlook for future research.

5.1 Introduction

Nowadays, one of the main challenges in gene expression technologies is to highlight the main

co-expressed? and co-annotated? gene groups using at least one of the di¤erent sources of

biological information [13]. In other words, the issue is interpretation of microarray results

via integration of gene expression pro�les with corresponding biological gene annotations

extracted from biological databases (presented in chapter III).

Analyzing microarray data consists in �ve steps: protocol and image analysis, statistical

data treatment, gene selection, gene classi�cation and knowledge discovery via data interpre-

tation [334] (presented in chapter II). We can see in Fig. 5.1 the goal of the �fth analysis

step devoted to interpretation, which is the integration between two domains, the numeric

one represented by the gene expression pro�les and the knowledge one represented by gene

annotations issued from di¤erent sources of biological information.
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FIG. 5.1: Interpretation of microarray results via integration of gene expression pro�les
with corresponding sources of biological information
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5.1 Introduction

At the beginning of gene expression technologies, researches were focused on the nu-

meric28 side. So, there have been reported ([69, 90, 107, 298, 303, 26]) a variety of data

analysis approaches which identify groups of co-expressed genes based only on expression

pro�les without taking into account biological knowledge (some of them brie�y explained in

section 2.3). A common characteristic of purely numerical approaches is that they determine

gene groups (or clusters) of potential interest. However, they leave to the expert the task of

discovering and interpreting biological similarities hidden within these groups. These meth-

ods are useful, because they guide the analysis of the co-expressed gene groups. Nevertheless,

their results are often incomplete, because they do not include biological considerations based

on prior biologists knowledge.

In order to process the interpretation step in an automatic or semi-automatic way,

the bioinformatics community is faced to an ever-increasingly volume of sources of biological

information on gene annotations. Besides minimal gene expression technology (microarray or

SAGE) experiment information, we have identi�ed �ve sources of biological information:

� Molecular databases (GenBank, Embl, Unigene, etc.).

� Semantic sources as thesaurus, ontologies, taxonomies or semantic networks (UMLS,

GO, taxonomy, etc.).

� Gene expression databases (GEO, Arrayexpress, Microarray database, etc.).

� Bibliographic databases (Medline, Biosis, etc.).

� Gene/protein related speci�c sources (ONIM, KEGG, etc.)

The reader can go to chapter 3 for a full explanation in these sources of biological

information. Exploiting these di¤erent sources of biological information is quite a complex

task so scientists developed several tools for manipulating them or integrate them into more

complex databases [34, 217].

This chapter presents a complete survey of the di¤erent approaches for automatic inte-

gration of biological knowledge with gene expression data. A �rst discussion of these methods

is presented by Chuaqui in [74]. Here we present an original classi�cation of the di¤erent

microarray analysis interpretation approaches.

The interpretation step may be de�ned as the result of the integration between gene

expression pro�les analysis with corresponding gene annotations. This integration process

consists in grouping together co-expressed and co-annotated genes. Based on this de�nition,

three research axes may be distinguished: the prior or knowledge-based axis, the standard or

expression-based axis and the co-clustering axis. Our classi�cation emphasizes the weight of

the integration process scheduling on the �nal results [175], [112], [186], [139].

Indeed the main criteria underlying the classi�cation we propose is the scheduling of

phases which alternatively consider gene measures or gene annotations. In prior or knowledge-

based approaches, �rst the co-annotated gene groups are built and then the gene expression

pro�les are integrated. In standard or expression-based approaches, �rst co-expressed gene

28 We understand by numeric part the analysis of the gene expression measures only, disregarding the
biological annotations
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groups are built and then gene annotations are integrated. Finally, co-clustering approaches

integrate co-expressed and co-annotated gene groups at the same time

This chapter is organized in the following way: each section fully explains the corre-

sponding interpretation axis, giving an insight into their remarkable approaches and sum-

marizing with a comparison between them. Then, we develop a discussion among the three

interpretation axis. Finally, it develops a discussion analyzing each of the three interpretation

axis and an outlook for future research.

5.2 Prior or Knowledge-Based Axis

Prior or knowledge-based approaches are based on biological knowledge from the sources

of biological information (illustrated in Fig. 5.1). Therefore, �rst they build co-annotated

gene groups sharing the same biological annotations. Then, they integrate the expression

pro�les information for each of the genes classi�ed into co-annotated groups, highlighting

those ones which are co-expressed. Later on, the statistical signi�cance of co-annotated and

co-expressed gene groups is tested. We give a detail description of this three-step methodology:

co-annotated gene groups composition, gene expression pro�les integration and signi�cant co-

annotated and co-expressed gene groups selection.

5.2.1Prior or knowledge-based methodology

1.-Co-Annotated gene groups composition

There exist several ways to build co-annotated gene groups. We present here one structured

way of building them. First, we need to choose among di¤erent sources of biological infor-

mation. Each kind of information is stored in a speci�c format (xml, sql, etc. ) and has

intrinsic characteristics. In each case, the analysis process needs to deal with each biological

source format. Another issue is to choose a nomenclature for each gene identity that has to

be coherent with the sources of information and thereafter with the expression data. Next,

all the annotations of each gene are to be collected in one or more sources of information. Fi-

nally, we gather in a subset of genes that share the same annotation. Thus, we obtain all the

co-annotated gene groups as shown in �rst step of Fig. 5.2.

2.-Gene expression pro�les integration

There are di¤erent ways to integrate gene expression pro�les with previously built co-annotated

gene groups. Here we present one current way to do it. First, expression pro�les measures are

taken for each gene. Then, a variability measure, as fold change or t� statistic or f � score
[257] is used to build a sorted list of gene-ranks based on expression pro�les. Finally, this mea-

sure is incorporated gene by gene into the co-annotated groups. Thus, we obtain co-annotated

gene groups with the expression pro�les information within, as shown in second step of Fig.

5.2.
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5.2.1 Prior or knowledge-based methodology

FIG. 5.2: Gene expression pro�les integration into previously co-annotated groups
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3.-Selection of the signi�cant co-annotated and co-expressed gene groups

At this stage all co-annotated and co-expressed gene groups are built. The next step is to

reveal which of these groups or subgroups are statistically signi�cant. To tackle this issue the

most frequent technique is the statistical hypothesis testing. Here, we present the four steps

for statistical hypothesis testing:

1. Formulate the null hypothesis, H0,

H0 : Commonly, that the genes that are co-annotated and co-expressed were expressed

together as the result of pure chance. versus the alternative hypothesis, H1
H1 : Commonly, that the co-expressed and co-annotated gene groups are found together

because of a biological e¤ect combined with a component of chance variation.

2. Identify a test statistic: The test is based on a probability distribution that will be used

to assess the truth of the null hypothesis.

3. Compute the p � value: The p � value is the probability that a test statistic at least
as signi�cant as the one observed would be obtained assuming that the null hypothesis

were true.

4. Compare the p � value: This consists in comparing the p � value to an acceptable
signi�cance value �. If p � value � � we can consider that the co-annotated and

co-expressed gene group is gathered by a biological e¤ect and thus is statistically

signi�cant. Consequently, the null hypothesis is ruled out, and the alternative hypothesis

is valid

At the end of the four-step methodology explained before, the prior approaches present

the interpretation results as signi�cant co-expressed and co-annotated groups of genes (seeFig.

5.2 third step). The next section will present ones of the most remarkable approaches and

methods of the prior or knowledge-based axis.

5.2.2Remarkable prior or knowledge-based approaches

We present here four representative approaches: GSEA [215], iGA [53], PAGE [167] and

CGGA [203]. In the following we describe each of them and emphasize some parameters par-

ticularly: the source of biological information, the pro�les expression measure, the expression

variability measure, the hypothesis testing parameters and details (type of test, test statistic,

distribution, corrections etc.).

1. Gene Set Enrichment Analysis, GSEA

This approach [215] proposes a statistical method designed to detect coordinated changes in

expression pro�les of pre-de�ned groups of co-annotated genes. This method is born from the

need of interpreting metabolic pathways results, where a group of genes is supposed to move

together along the pathway.

In the �rst step, it builds a priori de�ned gene sets using speci�c sources of information

which are the NetAFFX and GenMapp metabolic pathways databases.
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In the second step, it takes the Signal to Noise Ratio (SNR) to measure the expression

pro�les of each gene within the co-annotated group. Then it builds a sorted list of genes for

each of the co-annotated groups.

Third, it uses a non-parametric statistic: enrichment score, ES, (based in a Kolmogorov-

Smirno¤ normalized statistic) for hypothesis testing. It takes as null hypothesis:

H0 : The rank ordering of genes is random with regard of the sample.

Then, it assesses the statistical signi�cance of the maximal ES by running a set of permuta-

tions among the samples. Finally, it compares the max ES with a threshold �, obtaining the

signi�cant co-expressed and co-annotated gene groups.

2. Parametric Analysis of Gene Set Enrichment, PAGE

TThis approach [167] detects co-expressed genes within a priori co-annotated groups of genes

like GSEA, but it implements a parametric method.

In �rst step, it builds a priori de�ned gene sets fromGene Ontology (GO),NetAFFX

and GenMapp metabolic databases.

In second step, it takes the fold change to measure the expression pro�les of each gene

within the co-annotated group. Then, it builds a z�score from the corresponding fold change
of the two comparative groups (normal versus non normal) as variability expression measure.

Third, it uses the z � score as parametric test statistic. Then, it uses the central limit
theorem [113] to argue that when the sampling size of a co-annotated group is large enough,

it would have a normal distribution. Using the null hypothesis:

H0 : The z � score within the groups has a standard normal distribution.

Thus, if the size of the co-annotated gene groups is not big enough to reach normality, then

it would be signi�cantly co-expressed.

3. Iterative Group Analysis, iGA

This approach [53] �nds co-expressed gene groups within a priori functionally enriched groups,

sharing the same functional annotation.

In a �rst step, it builds a priori functionally enriched groups of genes from Gene Ontology

(GO) or other sources of biological information.

In a second step, it uses the fold change gene expression measure to build a complete

sorted list of genes. Then, it generates a reduced sorted list speci�c to the functionally

enriched group.

In a third step, it calculates iteratively the probability of change for each functionally

enriched group (based in the cumulative hypergeometric distribution). It states the null

hypothesis:

H0 : The top x genes are associated by chance within the functionally enriched group.

Then, it assesses the statistical signi�cance of each group comparing the probability of change
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p� value against a user-determined � value.

4. Co-expressed Gene Group Analysis, CGGA

This approach [203] automatically �nds co-expressed and co-annotated gene groups.

In a �rst step, it builds a priori de�ned gene groups from one source of biological

information for instance Gene Ontology (GO) and KEGG.

In a second step, it uses the fold change as a gene expression measure. Then, it

composes the f � score from the corresponding gene�s fold change. Using the f � score on
each gene it builds a sorted list of gene ranks. Then, it generates a reduced list of gene ranks

speci�c to the co-annotated enriched group.

In a third step, it states the null hypothesis:

H0 : x genes from a co-annotated gene group are co-expressed by chance.

A hypergeometric distribution and p�value are calculated from the cumulative distrib-
ution is assumed. This p�value is compared against � to reveal all the signi�cant co-expressed
and co-annotated gene groups, including all the possible subgroups.

5.2.3Comparison between prior or knowledge-based approaches

Table 5.1 presents the brief summary of the four prior approaches described in last section.

For each approach the four following parameters are presented: sources of biological informa-

tion used, expression pro�le measure, variability expression measure and hypothesis testing

details (test statistic, distribution and particular characteristics).

First of all, the four approaches are concerned by metabolic pathways within biological

processes, but they use di¤erent sources of information: iGA, PAGE and CGGA uses Gene

Ontology and GSEA uses manual metabolic annotations, GENMAPP and NetA¤x. CGGA

is the only one which uses KEGG database combined with Gene Ontology.

For expression pro�les parameters, GSEA is the only one which choice is the SNR mea-

sure while the others opted for the fold change measure. PAGE and CGGA use respectively

z� score and f � score variability measures to detect the changes in gene expression pro�les.
For hypothesis testing, GSEA is the only one which uses a non parametric method

based on a maximal ES statistic and sampling to calculate the p � value. In the contrary,
PAGE (normal distribution), CGGA (hypergeometric distribution) and iGA (hypergeometric

distribution) chose a parametric approach. iGA chose a hypothesis proof based in the most

over-expressed or under-expressed genes (in the rank list) of a co-annotated group, while

CGGA searches all the possible co-expressed subgroups within a co-annotated group (the

internal sub-group position in the group does not matter).
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5.3.1 Standard or expression-based methodology

Approach Biological
Source of Infor-
mation

Expression Pro-
�le Measure

Variability Ex-
pression Measu-
re

Hypothesis
Testing Details

GSEA (Mootha et
al. 2003)

Manual Annota-
tions, NetA¤x and
GENMAPP

SNR (Signal to
Noise Ratio)

Mean Expression
Di¤erence

One-tailed test.
Test statistic:
Maximal ES.
Non-parametric
distribution.

iGA (Breitling et
al. 2004)

GO Fold Change Fold Change One-tailed test.
Modi�ed Fisher�s
exact statistic:
The most over or
Under expressed
Genes in a group.
Hypergeometric
distribution.

PAGE (Kim et al.
2005)

GO Fold Change z-score One-tailed test.
z-score statistic.
Normal distribu-
tion.

CGGA (Martinez
et al. 2006)

GO: (MP, BP,
CC) and KEGG

Fold Change F-score One-tailed test.
Modi�ed Fisher�s
exact statistic:
All over or un-
der expressed
genes in a group.
Hypergeomet-
ric distribution.
Binomial dis-
tribution for N
large. Bonferroni
Correction.

Table 5.1: Knowledge-based integration approaches

5.3 Standard or Expression-Based Axis

This axis is called standard because it follows the more frequent procedure for microarray data

analysis, which consists of �ve steps: image analysis, statistical data treatment, genes selec-

tion, genes classi�cation and results interpretation via biological knowledge integration. This

axis has been used since the beginning of microarray technology with encouraging interpre-

tation results [90], [107] and [69]. Thereafter, it has been used as the reference methodology

in microarray data analysis. Expression-based approaches start by building gene groups or

clusters of genes sharing similar expression pro�les. Then, they integrate the biological an-

notations of each gene contained inside the expression cluster, building co-expressed and

co-annotated subsets of genes. Later on, the statistical signi�cance of co-expressed and co-

annotated gene groups is tested. In the following section, we explain in detail this three-step

methodology: gene expression pro�les classi�cation, biological annotations integration and

signi�cant co-expressed and co-annotated gene groups selection.

5.3.1Standard or expression-based methodology
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5 Biological Knowledge Interpretation Approaches

FIG. 5.3: Interpretation of microarray results via integration of gene expression pro�les
with corresponding sources of biological information

1.-Gene expression pro�les classi�cation

There exist several methods for classifying gene expression pro�les from cleaned microarray

data, i.e. data matrix of thousands of genes measured in tens of biological conditions. Various

supervised methods and non supervised methods tackled the gene classi�cation issue. Between

the most common methods, we can mention: hierarchical clustering, k-means, Diana, Agnes,

Fanny [164], model-based clustering [18] support vector machines SVM, self organizing maps

(SOM), and even association rules (see more details in [75]).

The target of these methods is to classify genes into clusters sharing similar gene ex-

pression pro�les, as shown in the �rst step of Fig. 5.3.

2.-Biological annotations integration

Once clusters of genes are built by similar expression levels, each gene annotation is extracted

from sources of biological information. As in prior axis, this step deal with di¤erent formats

of information. A list of annotations is composed for each gene, and then all the annotations

are integrated into the clusters of genes (previously built by co-expression pro�les). Thus,

subsets of co-annotated and co-expressed gene groups are built within each cluster. Figure

5.3 illustrates this process: three clusters of similar expression pro�les are �rst built, and

then all the individual gene annotations are collected to be incorporated in each cluster. For

example in the �rst under-expressed green group we have found three subsets of co-annotated
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5.3.2 Remarkable expression-based semantic approaches

genes. These subsets are respiratory complex: Gene E and Gene D, gluconeogenesis: Gene

G and Y and tricarboxylic acid cycle Gene E and Gene T. We can observe intersections of

genes within the under-expressed cluster because of the di¤erent annotations that each gene

may have. Thus, we obtain all the co-annotated gene groups.

3.-Selection of the signi�cant co-annotated and co-expressed gene groups

At this stage all the co-expressed and co-annotated gene groups are built and the issue is to

reveal which of these groups or the possible subgroups are statistically signi�cant. The most

current technique in use is the statistical hypothesis testing (see Fig. 5.3).

Afterward, this full three-step methodology the expression-based approaches present

the interpretation results as signi�cant co-expressed and co-annotated groups of genes.

The next section presents some of the most representative approaches and methods

of the expression-based axis. Since these approaches are quite numerous, we have classi�ed

them according their main source of biological information. Thus, we have the following

classi�cation: minimal information approaches, ontology approaches and bibliographic source

approaches.

5.3.2Remarkable expression-based semantic approaches

Expression-based semantic approaches integrate fundamentally semantic annotations (con-

tained in ontologies, thesaurus, semantic networks etc.) into co-expressed gene groups. Nowa-

days, semantic sources of biological information i.e. structured and controlled vocabularies

are one of the best available sources of information to analyze microarray data in order to

discover meaningful rules and patterns [13] (as explained in section 3.7).

Actually, expression-based semantic approaches are widely exploited. In this section we

present seven among them: FunSpec [258], OntoExpress [99], Quality Tool [128], EASE [151],

THEA [228], Graph Theoretic Modeling [175] and GENERATOR [234]. Each approach uses

Gene Ontology (GO) as source of biological annotation, sometimes combined with another

gene/protein-related speci�c source of information as: KEGG, MIPS, and SwissProt (all

explained in chapter 3).

During last years, GO has been chosen preferably over other sources of information,

because of its non ambiguous and comprehensible structure. That is the reason of the recent

explosion of many more expression-based GO approaches. Among these approaches, we can

cite the integration tools which integrate gene expression data with GO as GoMiner [114],

FatiGO [5], Gostat [23], GoToolbox [196], GFINDer [204], CLENCH [275], BINGO [191], etc.

This up to date GO compendium gives more integration methods, GO searching tools, GO

browsing tools and related GO tools.

In the next section, we describe seven remarkable expression-based semantic solutions.

1. FunSpec: web-based cluster interpreter

This approach [258] proposes a statistical evaluation of groups of co-expressed genes and

proteins with respect to existing annotations.
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It takes as input clusters of genes previously built by similarity in expression. Then it

searches for all gene and protein annotations in four biological sources of information: Gene

Ontology (GO), Munich Information Center for Protein Sequences (MIPS), Nu-

cleotide sequence database (EMBL), Protein families of alignments and HMMs

(Pfam). It builds all the subsets of co-annotated and co-expressed gene and protein groups

within each cluster. It makes the selection of the signi�cant subsets (really functionally en-

riched) via hypothesis testing. It states the null hypothesis:

H0 : A functionally enriched group of genes is associated
by chance within the cluster of co-expressed genes.

This one-tailed hypothesis is solved on the basis of an hypergeometric distribution and

using a p� value calculated from the cumulative distribution as in Fisher�s exact test [116].

A Bonferroni correction is applied to compensate for multiple testing. Finally, it assesses the

statistical signi�cance of each group comparing the p � value against a user-determined �
value (more details in [165]).

2. Onto-Express: global functional pro�ling of gene expression

This approach [99] proposes several statistical evaluations of co-expressed gene groups with

respect to GO existing annotations. It takes as input clusters of genes previously built by

similarity in expression. In a second step, it takes all the existing GO annotations included

in three ontologies, molecular function, cellular component and biological process. Then, it

builds all the subsets of co-annotated and co-expressed gene groups within each cluster.

In a third step, it makes the selection of the signi�cant subsets rejecting the null hy-

pothesis:

H0 : A GO annotated group of genes is associated
by chance within the cluster of co-expressed genes.

This one-tailed hypothesis is solved using a probability distribution and using a p�value
calculated from the cumulative distribution. Finally, it assesses the statistical signi�cance of

each group comparing the p � value against a user-determined � value. Onto-Express gives
the following test options: binomial distribution [113] (when the number of genes is very

large), Fisher�s exact test [193] (when the number of genes is not too important), and �2 test

for equality of proportions [115].

3. Quality tool: judging the quality of gene expression-based clustering methods

This approach [128] proposes a measure for testing the quality of clusters of gene expression

pro�les based on mutual information between cluster membership and known gene annota-

tions. In a �rst step, it takes clusters of co-expressed genes. In a second step, it takes all the

existing GO annotations included in the three ontologies: molecular function, cellular com-

ponent and biological process. Then, it builds a wide matrix of GO attributes for all genes

containing 1 if the gene matches the attribute and 0 if not. It builds a contingency table for

each cluster-attribute pair, from which it computes cluster-attribute entropy and mutual in-

152
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formation [80]. In a third step, it compares this measure with clusters grouped by chance

from the same microarray experiments, to check if they are better than random clusters.

This approach uses the same one-tailed hypothesis as seen before (Onto-Express and

FunSpec), but it supposes a normal distribution and uses z � score statistic for calculations.
Finally, it obtains co-expressed and co-annotated signi�cants groups of genes.

4. EASE: identifying biological themes within lists of genes

This approach [151] provides a friendly interface for quick annotation of genes within a cluster,

giving a selection method for co-expressed and co-annotate gene groups. In a �rst step, it takes

clusters of co-expressed genes (previously made by classi�cation algorithms). In a second step

it takes the available gene annotations from GO, KEGG, Swiss-Prot, PFAM, SMART. Then,

it builds all the subsets of co-annotated and co-expressed gene groups within each cluster. In

a third step, it shows the statistically signi�cant co-expressed and co-annotated gene groups.

This approach uses the same one tailed hypothesis testing assumptions: null hypothesis,

hypergeometric distribution, �sher�s exact test, p� value and � as used in Onto-Express and
FunSpec. The only di¤erence is the use of an alternative statistic named ease�score, which is
a conservative adjustment that weights statistical signi�cance in favor of co-annotated groups

supported by more genes.

5. THEA: tools for high-throughput experiments analysis

This approach [228] proposes a set of tools designed for manipulating microarray results

obtained by hierarchical clustering trees. It integrates gene annotations from biological sources

of information and evaluates co-expressed and co-annotated groups of genes.

It takes as input clusters of genes obtained by a hierarchical clustering algorithm. Then,

it queries a database in order to obtain all the possible gene annotations from the ontologies in

GO on biological process, molecular function and cellular component. Then, it shows all the

possible subsets of co-annotated and co-expressed gene groups within each cluster. It displays

graphically the statistical evaluation of the co-expressed and co-annotated gene groups. This

approach uses the same one tailed hypothesis: H0, Fisher�s exact test, p� value and � set of
values as used in Onto-Express and FunSpec.

6. Graph-theoretic modeling

This approach [175] extracts common GO annotations of the genes within a cluster of co-

expressed genes through the modi�ed structure of gene ontology called GO tree.

In a �rst step, it takes as input clusters of co-expressed genes obtained with any clus-

tering technique. In a second step, it annotates all genes in a cluster with GO terms, taking

into account the hierarchical nature of GO. It proposes a quantitative measure for estimating

how well gene clusters of expression pro�les are gathered together along with known GO cat-

egories. This measure is based in a graphical distance between nodes in the directed acyclic

graph (DAG) of GO. In a third step, it compares this quantitative measure with the same

measure taken from random clusters to see if it is better or not. Thus, it obtains co-expressed

and co-annotated signi�cants groups of genes.
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7. GENERATOR: theme discovery from gene lists for identi�cation and viewing

of multiple functional groups

This approach [234] takes co-expressed gene groups and it splits them into homogeneous

co-annotated signi�cant groups within each group.

In a �rst step, it takes co-expressed gene groups. In a second step, it takes all GO

annotations (studying each GO ontology separately) for each gene group. Then, it runs a

clustering algorithm based in a Non-negative Matrix Factorization (NMF) to create a k-means

(begins with k=2) partition of co-annotated groups within each gene group. This process is

repeated, applying k-means algorithm (increasing each time the number of k clusters) and

building a non-nested hierarchical clustering tree. At each step, it tests for signi�cant co-

expressed and co-annotated groups. For this purpose, it uses one-sided test hypothesis with

the same assumptions: null hypothesis: H0, hypergeometric distribution, �sher�s exact test,

p� value and � as used in Onto-Express.

5.3.3Remarkable expression-based bibliographic approach

Nowadays bibliographic databases represent one of the richest update sources of biological

information. This type of information, however, is under-exploited by researchers because of

the highly unstructured free-format characteristics of the published information and because

of its overwhelming volume. The main challenges coming up with bibliographic databases

integration are to manage interactions with textual sources (abstracts, articles etc.) and to

resolve syntactical problems that appears in biological language like synonyms or ambiguities.

At the moment, some text mining methods and tools have been developed for manipulate

this kind of biological textual information. Among these methods we can mention Suiseki [35]

which focuses on the extraction and visualization of protein interactions, MedMinder [299]

takes advantage of GeneCards as a knowledge source and o¤ers gene information related

to speci�c keywords, XplorMed [236] which presents speci�ed gene-information through user

interaction, EDGAR [255] which extracts information about drugs and genes relevant to

cancer from the biomedical literature, GIS [67] which retrieves and analyzes gene-related

information from PubMed abstracts. These methods are useful as stand-alone applications

but they do not integrate gene expression pro�les.

We de�ne expression-based bibliographic approaches as methods that integrates at least

one of the bibliographic databases (Medline, Biosis, MeSH, etc.) annotations into co-expressed

gene groups. Only a small number of approaches have integrated this kind of biological

information into co-expressed gene groups. Masys et al. [205] proposed to use keyword

hierarchies to interpret gene expression patterns for integrating bibliographic databases.

In a �rst step, his method proposes to take as input clusters of genes grouped by

similarity in expression (previously built by any of the supervised or non supervised methods).

Second, it searches for gene indexing terms contained in some PubMed articles. Then, it

translates these indexing terms to MeSH �keywords� terms. Later, it combines the UMLS

knowledge, the enzyme code nomenclature and MeSH terms to build hierarchical groups of

genes classi�ed by annotation. Third, it makes the selection of the signi�cant groups of co-
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annotated genes in each co-expressed cluster. For this purpose, it states the following null

hypothesis: H0 : Keyword would appear at or above the observed frequency by chance in a

group of keywords of the same size within the cluster of co-expressed genes.

This hypothesis test is solved by comparing the observed versus the expected frequency

of each keyword retrieved in association with a set of genes and a p � value estimate of

the likelihood under the null hypothesis. Finally, it obtains co-expressed and co-annotated

signi�cant groups of genes.

5.3.4Comparison between several expression-based approaches

Table 5.2 presents a brief summary of eight expression-based approaches. The comparison

is based on four characteristics: the source of biological information, the hypothesis-testing

type and statistics, the hypothesis-testing distribution and a distinctive characteristic.

Approach Biological Source
of Information

Hypothesis-
testing Type
and Statistics

Hypothesis-
testing Dis-
tribution and
details

Distinctive Char-
acteristic

FunSpec
(Robinson et
al. 2002)

GO, MIPS, EMBL
and Pfam

One-tailed test
Fisher�s exact statis-
tic

Hypergeometric
Bonferroni Correc-
tion

Online integration of
4 di¤erent sources
of biological informa-
tion

OntoExpress
(Draghici et al.
2002)

GO (MP, BP and
CC)

One-tailed test
Fisher�s exact statis-
tic �2 statistic

Binomial Hyper-
geometric �2

Choice of 3 di¤erent
statistical methods

Quality Tool
(Gibbons et al.
2002)

GO (MP, BP and
CC)

One-tailed test z-
score

Normal Measure based in
cluster-attribute En-
tropy and mutual
information

EASE (Hosack
et al. 2003)

GO, KEGG, Pfam,
Smart, and SwissProt

One-tailed test
Fisher�s exact statis-
tic

Hypergeometric
Ease correction

Friendly interface for
quick gene annota-
tion

THEA
(Pasquier
et al. 2004)

GO (MP, BP and
CC)

One-tailed test
Fisher�s exact statis-
tic

Hypergeometric
Binomial Bonfer-
roni Correction

Friendly interface for
quick annotation and
cluster�s analysis

Graph Theo-
retic Modeling
(Sung 2004)

GO (MP, BP and
CC)

One-tailed test Aver-
age PD statistic

Non-Parametric Graphical method
who proposes an Av-
erage statistic for
cluster�s signi�cance

GENERATOR
(Pehkonen et
al. 2005)

GO (MP, BP and
CC)

One-tailed test
Fisher�s exact statis-
tic

Hypergeometric Non-negative ma-
trix factorization
to create k-means
partition. Results
presented as a non-
nested hierarchical
tree

Annotation-
Tool (Masys et
al. 2001)

Medline (abstracts),
Mesh (keywords),
UMLS

One-tailed test Esti-
mated likelihood Vs.
Observed likelihood

Semi-Parametric:
Empirical Likeli-
hood

Hierarchical groups
of co-annotated
groups within co-
expressed clusters

Table 5.2: Expression-Based Approaches

All the approaches appear in chronological order, the �rst one integrates bibliographic

sources of information i.e. Medline abstracts and the seven others integrate semantic sources

of information principally GO, sometimes combined with another gene/protein related speci�c

source as MIPS, KEGG, Pfam, Smart, etc. or molecular database as Embl, SwissProt, etc.
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Concerning selecting co-expressed and co-annotated gene groups all the approaches have

chosen a one-tailed test. FunSpec, OntoExpress, EASE, THEA and Generator have opted

for Fisher�s exact statistic, and their statistical evaluation methods have small variations.

FunSpec, THEA, EASE, Generator have used the typical �sher�s test with hypergeometric

distribution. The �rst two of these have chosen bonferroni correction against multi-testing

problem and EASE has used an ease-score correction against the over-representation weight

given in bigger gene groups by Fisher�s test. Only two approaches Graph Theoretic Modeling

and AnnotationTool have chose non-parametric and semi-parametric statistical evaluation

models respectively.

The last column in Table 5.2 contains an important distinctive feature. For exam-

ple GENERATOR uses a particular method based on k � means that builds a non-nested
hierarchical tree, as �nal result.

5.4 Co-Clustering Axis

From the beginning of gene expression technologies, clustering algorithms were focused on

grouping gene expression pro�les with biological conditions [257]. Sources of biological infor-

mation and well structured ontologies as GO and KEGG particularly, are constantly growing

in quantity and quality and have opened the interpretation challenge of grouping heteroge-

neous data as numeric gene expression pro�les and textual gene annotations. Co-clustering

approaches focus their e¤ort to answer this challenge. Each co-clustering approach has its

speci�c parameters: biological source of information, clustering method and integration algo-

rithm. They generally follow a three-step methodology described in the following.

New co-clustering integration approaches are currently one of the interpretation chal-

lenges in gene expression technologies. At the moment, few co-clustering approaches have

been reported since the principal barrier is the di¢culty to build clustering methods �t-

ting heterogeneous sources of information. Among the co-clustering approaches we can cite

Co-Cluster [139], Bicluster [186], ARD [61] and GENMINER [201] described in remarquable

algorithms section.

5.4.1Co-clustering methodology

In a �rst step, they state two di¤erent measures: one measure to manipulate gene expression

pro�les and the other one for gene annotations in an independent manner.

In a second step, they apply an integration criterion (merging function, graphical func-

tion etc.) within the co-clustering algorithm for building the co-expressed and co-annotated

gene groups simultaneously.

Finally they select the signi�cant co-expressed and co-annotated gene groups. In the

last step, they apply either hypothesis signi�cance test (explained in section 5.3) or testing

the quality of the resulting clusters as in: [336], [138], [15], [27], [85], [130] and [285].

5.4.2Remarquable co-clustering methods
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1. Co-cluster: co-clustering of biological networks and gene expression data

This approach [139] constructs a merging distance function which combines information from

gene expression data and metabolic networks, computing a joint clustering of co-expressed

genes and vertices (annotations from KEGG database) of the network.

In a �rst step, it computes two distances: a network distance obtained from the prox-

imity of enzymes in the metabolic pathway network beneath undirected graph form, and a

gene expression distance obtained from Pearson correlation coe¢cients of expression matrix

[109].

In a second step, it builds a merging function that consists in a mapping that relates

genes to enzymes nodes in the undirected graph. Then, it applies hierarchical average linkage

clustering algorithm using the merged (enzyme-gene) distance.

Finally, it evaluates the signi�cant co-expressed and co-annotated clusters using the

silhouette coe¢cient [260]. This quality cluster method determines the number of optimal

clusters in a hierarchical dendrogram.

2. Bi-cluster: gene ontology friendly bi-clustering of expression pro�les

This approach [186] directly incorporates Gene Ontology information into the gene expres-

sion clustering process, using Smart Hierarchical Tendency Preserving clustering algorithm

(SHTP). HTP is a bi-clustering algorithm capable of discovering gene expression patterns

embedded in only a subset of conditions. It becomes �Smart� when it integrates the GO

functional annotations.

In a �rst step, it calculates two trees, the Tendency Preserving (TP) Cluster tree ob-

tained from gene expression matrix (rank measures) and the Gene Ontology tree decomposi-

tion obtained from GO gene annotations.

In a second step, it builds a hierarchical structure by mapping the TP cluster tree onto

GO Hierarchy.

While applying HTP clustering algorithm, the GO annotations tree is useful for two

purposes: assessing functional enrichments of a cluster (using one-tailed Fisher�s test as shown

in OntoExpress) and selecting the subset of conditions critical to a function category (building

the � threshold). Finally, the subset of co-expressed genes contained in the subset of the GO

annotations tree becomes the selected signi�cant group of co-annotated and co-expressed

genes by tendency.

3. ARD: integrated analysis of gene expression by association rules discovery

This approach [61] combines gene annotations and expression pro�ls data to discover intrinsic

associations among both data sources based on co-ocurrence patterns. It uses association

rules discovery mining technique for patterns extraction. The gene annotations are obtained

from semantic sources of information as GO and KEGG; nomenclature databases as SGD and

HUMAN; and transcriptional regulators for saccharomyces cerevisae data [176]

In a �rst step, it prepares the data: collecting all gene annotation from the mentionned

sources of information and discretizing in three values: over-expressed, under-expressed and
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no expressed the expression pro�les measures. So it builds a big matrix containing all genes

and theirs characteristics (gene discretized pro�les and gene annotations).

In a second step, it stablishes an antecedent constraint: gene annotations would be at

the left part of the rule and the expression discretized measures at the right part of the rule.

Then it applies a priori algorithm, Agrawal [4], �xing the support parameter and generating

the association rules itemset.

Finally, it selects signi�cant association rules applying two �lters: redundant �lter and

single antecedent �lter and taking those rules which con�dence is greater than the user-

speci�ed minimum threshold value �. The redundant �lter refers to taking (when support

and con�dence are equal) those rules with the longest consequent or antecedent. Single

antecedent �lter refers to taking only rules whose antecedent contains more than one item. As

informative value, it calculates the statistical signi�cance of an association between antecedent

and consequent, using �2 test for statistical independence [115]

4. GENMINER: Gene-integrated analysis using association rules discovery

As ARD method, this approach [201] integrates gene annotations and expression pro�ls data

to discover intrinsic associations among both data sources based on co-ocurrence patterns.

It uses association rules discovery mining technique for patterns extraction. The gene anno-

tations are obtained from any of the six sources of biological information explained before,

including qualitative variable microarray information of biological conditions as: age, sex,

state etc.

In a �rst step, it prepares the data: collecting all gene annotation from the mentionned

sources of information and discretizing expression pro�les measures. An adapted discretization

algorithme is created taking into account the variabilities between biological conditions. It

builds several scenarios of possible matrices containing all genes and theirs characteristics:

gene discretized pro�les and gene annotations. An scenario corresponds to a discretization

method (voir chapter VII section discretization).

In a second step, it applies CLOSE algorithm [229] for generating the association rules

itemset (at one support parameter value). Close algorithm allows the use of all available

matrix information without limiting constraints for rules extraction. In calculation issue is

more e¢cient than a priori algorithm when the items are dependent to each other (that is

the genes case) because it reduces the problem of �nding frequent itemsets to �nding frequent

closed itemsets. We can traduce this to non negliable calcul time reduction produced by a

reduction in rule research space.

Finally, it selects signi�cant association rules applying a redundant �lter and taking

those rules which con�dence is greater than the user-speci�ed minimum threshold value �.

The redundant �lter refers to taking (when support and con�dence are equal) those rules

with the smallest antecedent and biggest consequent. This �lter is shown to give the most

informative rule, pruning redondant items.
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5.4.3Comparison between co-clustering approaches

Table 5.3 presents a brief summary of the four co-clustering approaches explained in last

subsection. It is based on four parameters: source of biological information; expression pro�le

measure and gene matrix measure; co-clustering details; co-expressed and co-annotated gene

groups selection details as seen in Table 5.3.

Approach Biological
Source of In-
formation

Gene Expression
Pro�les Measure
and Gene Matrix
Distance

Co-clustering
Details

Co-expressed and
Co-annotated gene
group Selection
Details

Co-Cluster
(Hanisch D. et al.
2003)

KEGG Fold Change Pear-
son Correlation dis-
tance

Hierarchical Aver-
age Linkage

Silhouette Coe¢cient

GO Bi-clustering
(Liu J. et al.
2004)

GO: (MP, BP,
CC) and KEGG

Fold Change Rank
between conditions

SHTP: Smart Hier-
archical Tendency
preserving

One-tailed Fisher�s
test Alfa threshold
construction

ARD (Carmona
et al. 2006)

KEGG and tran-
scriptional regu-
lators.

Fold change. Dis-
cretization in:
f�1; 0; 1g values.

ARD method with
Apriori algorithm.

Support and Con-
�dence Thresholds
with Redundant (min-
imal at right, maximal
at left) and Single
Antecedent Filter.

GENMINER
(Martinez et al.
2006)

GO: (MP, BP,
CC), KEGG,
Pubmed/Medline,
transcriptional
regulators, phe-
notype and
protein interac-
tions.

Several discretiza-
tion scenarios: Fold
Change, Equal
Frequencies, Fixed
thresholds and Nordi
Algorithm.

SHTP: Smart Hier-
archical Tendency
preserving

Support and Con�-
dence Thresholds with
CLOSE non-redundant
�lter.

Table 5.3 Co-clustering Integration Approaches

The four approaches have use the gene-protein related KEGG database. Bi-cluster and

GENMINER have also chosen the well-structured semantic source: Gene Ontology. ARD and

GENMINER have introduced another sources of information as the transcriptional regulator

information that bind to promoter regions (see [176]). GENMINER algorithm has also chosen

the bilbiographic datasource Medline/PubMed and several qualitative variables contained

in the MIAME data source of the microarray experiment. The generalized choice of Gene

Ontology and KEGG database is because they present an implementation advantage: they are

well-structured and they have a graph-based representation for gene or protein annotations.

In one hand we have that co-cluster algorithms [186] and [139] are biological source dependent

(because of the intrinsic relations between algorithm and biological source. On the other hand

association rules algorithms [61] and [201] present more suppleness corcerning the source of

biological information used. This is clearly seen in GENMINER approach [201] that also

introduces bibliographic sources of information and qualitative variables as gender, state,

family etc.

Concerning gene expression measures input, all four methods use fold change expres-

sion measures. Nevertheless, they make di¤erents choices for manipulating this gene expres-

sion measures. Co-cluster algorithm chooses Pearson�s correlation coe¢cient as gene matrix

distance calculation tool. Bi-Cluster chooses a gene tendency measure based in the gene-

rank between biological conditions. ARD and GENMINER have chosen discretization meth-

ods. ARD takes a �xed threshold discretization in three intervalesf�1; 0; 1g corresponding
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to underexpressed, no expressed and overexpressed genes. GENMINER choose di¤erent dis-

cretization scenarios: an original equal frequencies intervals method and also �xed threshold

intervals method.

Related to co-clustering details, both co-cluster and bi-cluster have chosen a hierarchical

clustering method. However, co-cluster has opted for typical hierarchical average linkage

algorithm and bi-cluster has developed the Smart Hierarchical Tendency preserving (SHTP)

algorithm. In the case of the association rules algorithms, they have taken di¤erent asociation

rules discovery methods: ARD has choose the "typical" a priori algorithm [4] and GENMINER

has prefered CLOSE algorithm [229] based in frequent closed itemsets selection.

Related to gene group selection, co-cluster uses the silhouette coe¢cient for determining

the quality of the clusters built (selecting the signi�cant ones). In the other hand, bi-cluster

states for a selection in two di¤erent stages. First it uses standard one-tailed Fisher�s test

for calculate the p � value for the co-annotated and co-expressed gene groups and then it
builds a particular � threshold for each of them. Finally, as seen in the previous approaches,

it compares p�value against � to select or not the co-expressed and co-annotated gene group
(this methodology was explained in section 2.2.3).

Association Rules algorithms have taken support and con�dence thresholds, but ARD

have use two �lters: single antecedent �lter and redundant �lter (minimal items at right max-

imal at left) and GENMINER have use a redundant �lter that represents the opposite choose

of ARD ( minimal at left and maximal at right). Concerning redundant �lter GENMINER

assures the chosen rules only contains the minimal necessary information (getting ride of su-

per�uous rules). GENMINER has also integrated the one tailed Fisher�s test for calculate the

p� value.

5.5 Discussion

Here we present a discussion on all three interpretation axes about their main methodology

characteristics: biological source of information, expression pro�les measurement and selection

of signi�cant gene groups.

Biological source of information

The improvement of the interpretation approaches come hand in hand with biological informa-

tion source development, without glance of the interpretation axis. Interpretation approaches

have to tackle the integration task for best exploiting the biological source of information.

Here, we see the current state of the interpretation axis approaches facing each of the six

sources of biological information described in chapter 3.

In almost all-three interpretation axis approaches the sources of biological information

used were: semantic sources such as GO and gene/protein related speci�c sources such as

KEGG combined with molecular databases (see Table 5.1, 5.2 and 5.3). This comes from

the need of integrating well-structured sources of information. The "ideal" source of biological

information should be: well-structured, easy-handling, clearly-explained and up to date.
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Bibliographic databases, alternative choice and one of the richest and up to date, unfor-

tunately present a strong integration barrier: the natural language textual format. Dealing

with this kind of information is the goal of the text-mining �eld which extracts high-quality

information from text (discussed in section 2.4). Nowadays, this �eld is becoming intensively

studied and is a wide-open research �eld.

Gene expression databases represent another important source of information poorly

exploited. Last years, meta-analysis techniques have been dealing with this source of biological

information. Meta-analysis is a classical statistical methodology for combining results from

di¤erent studies (contained in the gene expression databases) addressing the same scienti�c

questions. Meta-analysis algorithms have focused to integrate only the expression pro�les

data among di¤erent studies. Some of them have recently been applied to the microarray

data analysis: [254], [127], [70], [227], [158] and [240]. The di¢culties faced to integrate

biological knowledge to one study (as seen before) and inter-studies speci�cations have limited

the meta-analysis results.

Concerning Minimal microarray information integration contained in the biological con-

ditions speci�cation such as: quantitative variables, such as gene expression or time, etc., and

qualitative variables, such as tissue, gender, age etc. The gene expression data analyists have

focused in the integration of gene expression pro�les with gene annotations (as seen in section

2.4). Therefore all-three interpretation axis have somehow denied the existence of qualitatif

data provided often by the experimenters in their gene expression data analysis. The most

important reasons are: restricted access to this kind of information and algorithmic di¢cul-

ties of incorporating them. Several Statistical methods applied in epidemiology science have

been tackled similar qualitative and quantitative source of information, a survey can be found

in [84].

Gene expression databases represent another important source of information poorly

exploited. The integration of bibliographic databases, experiment databases, and minimal

microarray information is thus an open research �eld.

Gene expression measures handling

This is one of the most crucial issues in microarray data analysis, it answers to the question:

How can I best manipulate raw gene expression measures avoiding lose of information?

Before any type of gene expression measure manipulation the gene expression data

analyst receives the gene expression data in a raw form. Often in microarray experiments the

data comes as the fold change measure as fully explained in section 2.1, or it can come in

another intensity measurement as the Signal to Noise Ratio? (SNR).

Fifteen of the sixteen interpretation algorithms described among the three interpretation

axis has chosen the commonly used fold change as gene expression measure, only the prior

algorithm GSEA [215] has opted for SNR measure. The choose of a gene expression measure

is determinant in the �nal interpretation results.

Once the raw gene expression measure is chosen for data analysis, it would be constantly

manipulated along the data analysis �ve steps. The handling of raw gene expression measures

have to �t next expression data analysis tasks such as clustering or prediction tasks. Here,

161



5 Biological Knowledge Interpretation Approaches

we have distinguished two di¤erent gene expression measures manipulation among all-three

interpretation approaches: gene-distance matrix and di¤erentially-expressed genes.

Distance gene matrix calculation: This is currently a clustering issue [164]. Cluster-

ing algorithms rely on proximity measurements to evaluate the distance or similarity between

a pair of objects or genes. For more details in clustering algorithms and distance measure the

reader can see section 2.3.

This gene expression measure manipulation is currently use in clustering techniques

[164], [18], [75]. It exists a non negliable choice between proximity measures: euclidean,

manhattan pearson, spearman, kullback-lieber divergence, kramer-tau, ... [334]. The distance

choice is a crucial parameter for the distance gene matrix calculation that must be adapted

to the data properties (time series, cancer studies, multi-tissue studies etc.). Almost all

expression-based approaches (as FunSpec [258], OntoExpress [99], EASE [151], THEA [228],

Graph Theoretic Modeling [175], GENERATOR [234] Annotation Tool [205] ) and one co-

clustering approaches [139] contain a clustering algorithm within the method. Thus, the need

of a careful and validated choice of a distance measure for gene matrix calculation.

Di¤ererentially expressed genes analysis: Di¤erentially-expressed genes calcula-

tion identify those genes which demonstrate a signi�cant change in expression level under

the impact of certain experimental conditions. Several statistical methods have been applied

for measuring this variability such as: fold change, parametric test, and non parametric test

methods [257] (explained in section 2.2).

All prior axis approaches have chosen di¤erentially expressed gene analysis as main gene

expression measure manipulation. PAGE [167] and CGGA [203] have opted for parametric

test methods: z � score and F � score repectively. iGA [53] and GSEA [215] have chosen

a fold change and non-parametric methodology respectively for di¤erentially expressed gene

analysis.

Furthermore, some approaches use the results of di¤erentially expressed genes analysis

to rank the genes. Then, it takes advantage of this ranking to integrate gene expression

measures in their algorithms as stated in prior approaches iGA [53] and CGGA [203], and

also the co-clustering approach Bi-Cluster [186].

Discretization of gene expression measures: Discretization concerns the process

of transferring continuous data into discrete counterparts. This process is usually carried out

as the �irst step toward making gene expression measures suitable for several utilizations as

applying supervised algorithms as decision trees, SVM, neural networks or association rules

[75].

Several methods have been applied to deal with discretization issue in bioinformatics

as: biological methods, statistical methods and mining methods (fully explained in section

7.5).

Two co-clustering approaches have used discretization methods: ARD[61] and

GENMINER[201]. The �rst one have used the commonly use biological method known as

2-fold change cut-o¤ which determines �xed boundaries for discretize, which are supposed

to be "experimentally correct" (even if it is not the case experimentally by the studied data

set). The second one use the mixed biological-statistical method NORDI algorithm which
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takes adavantage of two methods: 2-fold change cut-o¤ and the statistical z-score method

for calculating the discretization cut-o¤s (explained in section 7.5).

Discretization is a risky step, where we need to known the particular characteristics

of the data: time series, cancer studies, mutation studies, as discussed in section 7.5. Dis-

cretizated measures have to summarize the "best" the information contained in the original

gene expression measures. Evidently, it would exist a loss of information, but this lack can be

overwhelm carrying out di¤erent scenarios of discretization and comparing the interpretation

results.

Gene expression measures manipulation is a non-obvious step. We have to be very

careful in the expression data characteristics as well as the whole biological process for taking

the best adapted gene expression handling choice. It�s so important that the �nal results

can be severely biased if we make an incorrect choice or assumptions. A wrong choice can

generate �nal results severely biased and a wasteful lose of information.

Signi�cant gene groups selection

One common point in all-three interpretation axes is the step of selection of signi�cant co-

annotated and co-expressed gene groups. Once co-annotated and co-expressed gene groups are

built we need to select the signi�cant groups. This question can be reformulate in di¤erent

ways: testing the signi�cance of the clusters, testing the reliability of obtained clusters or

measuring the quality of the resulting clusters etc. The reader can see section 2.2 and 2.3 for

a description of several methods for realizing each of these three tasks.

In order to answer to this question, standard and prior axes preferably choose statistical

hypothesis testing for selecting the signi�cant gene groups (explained in chapter 2). A survey

in statistical methods for microarrays concerning statistical approaches for hypothesis testing

was made by Sokal et al. [287] and Zhang et al. [334].

Almost all expression-based and prior interpretation approaches choose parametric tests

for gene group selection as: the Fisher exact test? (used in: [53], [203], [258], [99], [151], [228],

[234]), including one of the co-clustering axis ([186]) and the z � score test? which is used
in: [151] and [167]. Only two integration approaches have preferred non-parametric selection

methods ([215] and [175]) or semi-parametric methods [205].

Otherwise, co-clustering approaches have opted for cluster quality techniques, which

assess the results of a clustering technique. Some cluster quality techniques can be found in

[336, 138, 15, 27, 85, 130, 285]. That is the case of the Co-Cluster approach [139] which uses

the silhouette coe¢cient graphical measure (more details in [260]) to validate the resulting

clusters.Whereas [201] and [61] have used the support and con�dence measures for gene groups

selection.

Selection of signi�cant gene groups is indeed a signi�cant part of the interpretation

step. Analysts have to be aware of the characteristics of the gene groups and the whole

approach for doing the best choice between hypothesis testing (parametric, non-parametric

and semi-parametric) or quality clusters methods. Once the method is chosen, all assump-

tions, hypothesis and parameters have to be stated carefully. All variables have to �t data

characteristics, avoiding at most all possible biases.
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5.6 Conclusion and Outlook

The bioinformatics community has developed many approaches to tackle the interpretation

microarray challenge. In this chapter, we classify them in three di¤erent interpretation axes:

prior, standard and co-clustering.

Standard or expression-based approaches give importance or weight to gene expression

pro�les measures. However, microarray history has revealed intrinsic errors in microarray

measures and protocols that increases during the whole microarray analysis process. Thus,

the expression-based interpretation results can be severely biased [112], [185]. Although widely

used, standard approaches, they are based in "typical" clustering expression techniques that

shown some well-known drawbacks:

1. The underlying assumption in clustering analysis step is that genes sharing similar

expression pro�les also share similar biological properties. Nevertheless, simultaneously

expressed genes may not always share the same function or regulatory mechanism. Even

when similar expression patterns are related to similar biological roles, discovering these

biological connesctions among co-expressed genes is not a trivial task and requires a lot

of additional work [276].

2. Current clustering algorithms (except bi-clustering techniques) group genes whose

expression levels are similar across all conditions. However, a group of genes involved in

the same biological process might only be co-expressed in a small subset of experimental

conditions [9].

3. Many genes can be conditionally co-expressed with di¤erent sets of genes, which may

refelct the di¤erent biological roles that a gene product can play in the cell. Most of the

commonly used clustering algorithms group genes into single clusters, which mask these

complex relationships among di¤erent sets of conditionally regulated genes [122]

On the other hand, prior or knowledge-based approaches give importance or weight to

biological knowledge. Nevertheless, all sources of biological information �x many integration

constraints: the database format or structure, the weak quantity of annotated genes, the

availability of data, the maintainance of up-to-date and well revised annotations for instance.

Consequently, the knowledge-based interpretation results can be poor or somewhat quite small

or limitated in relation to the whole studied biological process.

Co-clustering approaches represent the best compromise in terms of integration, giving

the "same" weight to expression pro�les and biological knowledge. But, they have to deal

with the algorithmic issue of integrating these two elements at once. So, they are often forced

to give more weight to one of these elements.

In co-clustering section, we have seen two approaches: co-cluster algorithm [139] which

gives more weight to knowledge, and expression pro�les were used to guide the clustering

analysis while bi-cluster algorithm [186] gives more weight to tendency in expression pro�les

and GO annotations are used to guide the clustering analysis. At this issues association

rules discovery approaches [201] and [61] are the best weight deal between expression pro�les

measures and biological knowledge, it can be unequal to one side, to the other or almost equal.
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Indeed, with the constant improvement of microarray data quality, microarray data

process analysis and the completion of biological information sources; interpretation results

would become better and better, independently of their interpretation approach.

As long as there is not enough reliability on these main elements, the choice of the

interpretation axis approach and its parameters (source of biological information, pro�les ex-

pression measure manipulation, signi�cant gene group selection) remains of crucial importance

for the �nal microarray interpretation results.
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Chapter 6

Co-expressed Gene Groups Analysis

(CGGA): An automatic Tool for

the Interpretation of Gene Expression

Experiments

Gene expression technology produces vast amounts of data by measuring simultaneously the

expression levels of thousands of genes under hundreds of biological conditions. Nowadays,

one of the principal challenges in bioinfor-matics is the interpretation of huge data using

di¤erent sources of information.

We propose a novel data analysis method named CGGA (Co-expressed Gene Groups

Analysis) that automatically �nds groups of genes that are functionally enriched, i.e. have

the same functional annotations, and are co-expressed.

CGGA automatically integrates the information of microarrays, i.e. gene expression

pro�les, with the functional annotations of the genes obtained by the genome-wide sources of

information such as Gene Ontology (GO) .

By applying CGGA to well-known microarray experiments, we have identi�ed the princi-

pal functionally enriched and co-expressed gene groups, and we have shown that this approach

enhances and optimizates the interpretation of DNA microarray experiments.

6.1 Introduction

One of the main challenges in microarray data analysis is to highlight the main co-expressed?

and co-annotated? gene groups using at least one of the di¤erent sources of biological infor-

mation [13]. In other words, the issue is interpretation of microarray results via integration

of gene expression pro�les with corresponding biological gene annotations extracted from bi-

ological databases (presented in chapter 3).

This challenge concerns the interpretation �fth step of microarray data analysis proce-

dure which focuses on knowledge discovery via interpretation of the microarray results (fully

explained in chapter 5). In other words, the goal of the �fth analysis step is the integra-

tion between two domains, the numeric one represented by the gene expression pro�les and

the knowledge one represented by gene annotations issued from di¤erent sources of biological

information (see Fig. 2.7).

169



6 Co-expressed Gene Groups Analysis: CGGA

In order to process the the interpretation step in an automatic or semi-automatic way,

the bioinformatics community is faced to an ever-increasingly volume of sources of biological

information on gene annotations.These sources of information, constantly growing by an ever-

increasingly volume of genomic data, are:

� Minimal Microarray Information (genes, biological conditions, gender, age etc.).

� Molecular databases (GenBank, Embl, Unigene, etc.).

� Semantic sources as thesaurus, ontologies, taxonomies or semantic networks (UMLS,

GO, taxonomy, etc.).

� Gene expression databases (GEO, Arrayexpress, Microarray database, etc.).

� Bibliographic databases (Medline, Biosis, etc.).

� Gene/protein related speci�c sources (ONIM, KEGG, etc.).

A variety of statistical and data analysis approaches, identifying groups of co-expressed

genes based only on the expression pro�les, i.e. without taking into account prior knowledge,

have been reported:[69, 90, 107, 298] (some of them explained in section 2.3). A common char-

acteristic of purely numerical approaches is that they determine gene groups (called clusters)

of potential interest; however, they leave to the expert the task of discovering and interpreting

biological similarities hidden within these groups.

These methods are useful, because they guide the analysis of the co-expressed gene

groups. Nevertheless, their results are often incomplete, because these approaches do not

include biological considerations and also, they reject groups of genes which are expressed only

under some biological conditions and not under all the biological conditions [185]. Actually,

one of the major goals in bioinformatics is the automatic integration of biological knowledge

from di¤erent sources of information with gene expression data [13]. A �rst assessment of the

methods developed to answer this challenge was proposed by Chuaqui [72].

Nowadays, one of the richest sources of biological annotations is contained on structured

and controlled vocabulary such as ontologies. These annotations can be functional, relational

and syntactic information on genes. We present here the enrichment of two recently developed

interpretation research orientations, standard or expression-based and a priori or knowledge-

based, that exploit multiple sources of annotations such as Gene Ontology.

The standard or expression-based methods build co-expressed gene groups. Then they

detect co-annotated gene groups Afterwards, the statistical signi�cance of these co-annotated

gene subsets is tested (see Fig. 5.3). Among the methods in this axis let us quote FunSpec

[258], OntoExpress [99], Quality Tool [128], EASE [151], THEA [228], Graph Theoretic Mod-

eling [175] and GENERATOR [234]. The reader can see chapter 5 for a full explanation of

this axis and respective approaches.

The a priori or knowledge-based axis methods �rst �nds co-annotated groups.Then

they integrate the information contained in the pro�les of expression. Later on, the statistical

signi�cance of the co-annotated groups is tested by an enriched score [215], a p� value based
on a hypergeometric distribution [53], or a z-score test [167] (see Fig. 5.2). The reader can

see chapter 5 for a full explanation of this axis and respective approaches.
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Our approach, called CGGA (Co-expressed Gene Groups Analysis), is inspired by the

a priori or knowledge-based axis: the functionally enriched groups (FEG), i.e. groups of

co-annotated genes by function, are initially formed from the Gene Ontology, next a function,

which synthesizes the information contained in the expression data, is applied in order to

obtain an arranged gene list. In this list, the genes are sorted by decreasing expression

variability. The statistical signi�cance of the FEG obtained is then tested using a parametric

test approach, similar to the hypothesis testing presented in Onto Express[99]. Finally, we

obtain co-expressed and statistically signi�cant FEG.

Our that �nds all subsets FEG of signi�cant co-expressed genes with similar level of

expression. In contrast the IGA method, limits itself to �nd only the subsets of FEG of

the most or least expressed genes. Thus it eliminates all the co-expressed FEG who are not

in ranked in the �rst places of the ordered list of genes, in descending or increasing order

according to the case.

CGGA method is an extension of the IGA algorithm [53]. Indeed CGGA makes it

possible to obtain all the possible subsets FEG of signi�cant co-expressed genes. In contrast

to IGA method which is limited to �nd the FEG of most expressed genes or least expressed

genes. IGA leaves out all the co-expressed FEG that there are not in the �rst or in the last

ranks of the list of genes ordered by the increasing or decreasing order of expression levels.

On the other hand CGGA makes it possible to select FEG that are classi�ed in the middle of

the ordered list. For that CGGA takes into account the relative level (relative rank) of the list

ranking. The search of all the possible subsets of co-expressed and co-annotated genes in any

biological experiment, without limiting to only some groups, increases the chances biological

phenomenon comprehension by the expert.

This chapter is organized in the following way: in section 6.2 we describe the validation

data as well as the tools used: databases, ontologies, statistical packages; our algorithm

CGGA is described in section 6.3; the results obtained are presented in section 6.4 and the

last section presents our conclusions.

6.2 Data and Methods

6.2.1Data set and statistical pretreatment

In order to evaluate our approach, the CGGA algorithm was applied to the DeRisi data set

which is one of the most studied in this �eld [90]. This data set measures the variations

in gene expression pro�les during the cellular process of diauxic shift for the yeast Saccha-

romyces Cerevisiae. When inoculated into a glucose-rich medium (anaerobic growth), the

budding yeast can convert the glucose to ethanol (aerobic respiration), the shift from anaer-

obic fermentation of glucose to aerobic respiration of ethanol is the so-called diauxic shift.

The microarray technique used is spotted cDNA chips, obtained by two color �uo-

rochromes with distinct emission spectra Cy3 and Cy5 (this technique was explained in sec-

tion 1.2.1). The DeRisi data set contains the expression levels of 6199 ORF�s, opening reading
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frame, of the yeast (an entirely sequenced organism), for 7 temporal points that correspond

to samples harvested at successive two-hour intervals after an initial nine hours of growth.

The data set was pretreated by taking the log2 ratios (to consider cellular inductions and

repressions in a numerically equal way) and applying the imputation algorithm of k-nearest

neighbors [184] in order to treat the missing values (1.9% of the total).

6.2.2Ontology and functionally enriched groups (FEG)

In order to fully exploit data, knowledge discovery systems rely on a formal representation of

information based on a well-de�ned semantic [282]. These formal requirements have led to the

utilisation of the well structured semantic source of biological information: Gene Ontology

(GO) and the molecular database SGD (Saccharomyces Genome Database). Sructure

of Gene Ontology (GO) and the annotations of Saccharomyces Cerevisiae Genome with GO

terms were retrieved from the GO database web site on may 2006. Automatic annotations

not reviewed by curators (IEA evidence code) were discarded. For each gene product, we

have stored all the functional annotations of the gene product and his parents preserving the

hierarchical structure of GO.

Gene Ontology (GO): GO is a controlled vocabulary developed by a consortium of

scientists to address the need for consistent descriptions of gene products in di¤erent data-

bases. It can be used to annotate a gene or gene product by a GO-term, with regard to

its molecular functions (GO:MF), cellular localizations (GO:CL) and biological processes

(GO:BP).

GO-terms are organized in structures called directed acyclic graphs (DAGs), which

di¤er from hierarchies in that a child, or more specialized, term can have many parent, or

less specialized, terms. Annotators can assign properties of gene products at di¤erent levels,

depending on how much is known about a gene [12].

Genome data: In order to be congruent with GO annotations �les and among the

multiple yeast gene identi�ers, we have used the yeast Saccharomyces cerevisiae database.

SGD is a scienti�c database of the molecular biology and genetics of the yeast [316].

Functionally enriched groups (FEG): Queries carried out on the GO database have

built the whole set of the FEG: each FEG corresponds to a couple made up of a GO-term

and of the list of genes annotated by this one.

6.2.3Expression pro�le measure of the genes

In order to incorporate the expression pro�le of the genes, we have used a measurement of their

variability of expression, modi�ed t-statistic, which is more robust than other measurements

such as fold change[257]. This measurement enables us to build a list of genes, g-rank, ordered

by decreasing expression variability. We have used the SAM program [309] to calculate the

modi�ed t-statistic associated with each gene (SAM method was explained in section 2.2.5).

The SAMs modi�ed t-statistic is a t-statistic which adds a corrector term in the denom-

inator. Once SAM have calculate the modi�ed t-statistic for each gene, it choose the genes

with scores greater than a threshold as "potentially" signi�cant. To control the false posi-
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tives, SAM uses permutation of measurements to estimate the false discovery rate (FDR).

The score threshold for genes is then adjusted iteratively according to the FDR until a set of

signi�cant genes have been identi�ed. More details of SAM can be found in [309].

6.2.4Implementation

CGGA program is fully developed in Perl language and it is hosted at:

http://www.i3s.unice.fr/~rmartine/CGGA.

6.3 Co-expressed Gene Groups Analysis (CGGA)

The CGGA is based on the idea that any resembling change (co-expression) of a gene subset

belonging to an FEG is physiologically relevant. We say that two genes are co-expressed

if they are close in the sense of the metric given by the expression variability (modi�ed t-

statistic). The CGGA algorithm computes a probability of change named pc� value for each
FEG that estimates its coherence (according to the g-rank) and thus allows to detect the

statistically signi�cant groups.

In order to understand CGGA algorithm we explain �rst the basics of hypothesis one-

tailed test using modi�ed Fisher�s exact statistic best known as hypergeometric distribution

test, brie�y explained in section 2.2.3.

6.3.1Hypergeometric distribution one-tailed test

Here, we present the basics of the hypergeometric distribution one-tailed test applyied to

co-expressed and co-annotated gene groups signi�cance testing (brie�y explained in section

2.2.3). A survey in statistical methods for microarrays concerning statistical approaches for

hypothesis testing was made by Sokal et al. [287].

In section 2.2.1 we have explained the six steps of hypothesis testing methodology :

de�ning the problem, generate hypotheses (null hypothesis H0 and alternative hypothesis,

H1), choose the test statistic, calculate the statistic value, calculate the p� value and �x the
signi�cance level �, and �nally reject or accept the null hypothesis H0.

The question of selecting the signi�cant co-annotated and co-expressed gene groups

was discussed in section 5.5. In this section, we have seen that the half of the 16 analyzed

algorithms misregarding their membership to one interpretation axis approach have used the

Fisher exact or hypergeometric test method.

Signi�cant gene group selection in the case of microarrays concerns in testing the sig-

ni�cance of a group of co-expressed genes for a special annotation F . Thus, we have the

null hypothesis, H0 be the hypothesis that a group of co-expressed genes were associated by

chance within annotation F , and the alternative hypothesis H1 be these group of co-expressed

genes is not associated by chance within annotation F:

We can translate the H0 challenge to this probability problem: We have an microarray

experiment with N genes, any given gene is either in the co-annotated group or not. So we
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have N genes in two categories: F (in the group annotated by F ) or F c non in the group

annotated by F . We observe that x of these K genes are F and we want to �nd out what is

the probability of this happening by chance. So, our question is: given N genes of which n

are F and N � n are F c, we pick randomly K genes and we ask what is the probability of

having exactly x genes of type F . Once we pick a gene from the chip, we cannot pick it again

so this is clearly sampling without replacement.

The probability function that a certain category occurs x times just by chance in the list

of di¤erentially expressed genes is appropriately modeled by a hypergeometric distribution

[303]:

p(X = xjN;K; n) =
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Based on this, the p � value of having x genes or fewer in F can be calculated by

summing the probabilities of a random list of K genes having 1; 2; :::; x genes of category F

[303, 62]:
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this corresponds to a one-sided test in which small p � values correspond to under-

represented categories. The p value for overrepresented categories can be calculated as:

p� value(x) = 1� p(X � xjN;K; n) when the sum is larger than 0.5 [99].

In order to accept or reject H0 we have to �x a signi�cant value �. Thus, if p �
value(x) < � then H0 is rejected, i.e. the co-annotated F group containing co-expressed genes

is statistically signi�cant for an � threshold and if p� value(x) � � then H0 is accepted.
An equivalent method for answering this question was created by Fisher in 1922 [116],

who has generated an intuitive statistic for contingency tables? known as �sher�s exact test

(curiously it is equivalent of applying the hypergeometric distribution function, statistic and

p� value). Another methods that have solved the signi�cant gene groups selection problem
were: the �2 test for equality of proportions [115], binomial distribution test [113] used for

avoiding numeric explosion when calculating hypergeometric probabilities and the z � score
statistic that supposes a normal gene group distribution (more details in [257]). The reader

can go to section 2.2.3 for more a brief information in these hypothesis testing methods.

All these tests are particularly useful and can be used in di¤erent circumstances. One

straight option for answering our hypothesis testing problem H0 is the Fisher�s exact test,

but when the number of genes, N , is too large to be calculated we can use the binomial

distribution test (that is a good approximation of hypergeometric distribution for N large

[113]). An alternative and more robust option is �2 test for equality of proportions, but we

cannot used it for N too small or when their assumptions are not accomplish (see [115]).

Under normality assumptions we can choose z� score test. In addition to this test methods,
a correction for multiple experiments may be useful since repeated test are conducted to
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determine the signi�cance or each co-annotated and co-expressed group. We can mention

several useful corrections for resolving this problem: Holm, Bonferroni and bootstrapping

[287].

The exact biological meaning of the calculated p� value0s depends on the list of genes
submitted as input. For example, if the list contains genes that are over-expressed and

mitosis appears more often than expected, the conclusion might be that the condition under

study stimulates mitosis (or more generally, cell proliferation) in a signi�cant way. If the

list contains genes that are underexpressed and mitosis appears more often than expected,

exactly as before, the conclusion might be that the condition signi�cantly inhibits mitosis.

A correction for multiple experiments testing may be useful since repeated tests are

conductod to determine the signi�cance of a given gene group annotation. Several methods

have been developed to answer this question as Holm, Bonferroni and bootstrapping methods

(brie�y explained in section2.2.5).

6.3.2CGGA algorithm

The CGGA algorithm �rst builds the g-rank list from the expression levels and the FEG from

the GO database. For each FEG of n genes, the algorithm determines the n(n + 1)=2 gene

subsets that we want to test for co-expression. For each subset we compute the pc � value
corresponding to the test described below in order decide whenever the genes of the subset

are co-expressed.

Let H0 be the hypothesis that x genes from one of these subsets were associated by

chance, given their place on the g-rank list. If H0 is rejected, there are good chances that

the genes belonging to the subset are improbably close on the list because they have a very

similar expression pro�le.

To compute the probabilty that H0 is true for a �xed subset FEG or class, let us ask

the question, how likely is to �nd x members from the class placed this way on the g-rank

list? The answer to this question is given by the following hypergeometric distribution:

p(X = xjN;Rg(x); n) =

�
Rg(x)
x

��
N �Rg(x)
n� x

�

�
N
n

� (6.3)

where:

p(X = 0jN;Rg(x); n) = 0

with:

� N : total number of genes in the data set,

� n : number of genes in the FEG,

� x : position of the gene in the FEG (previously ordered by rank),

� rg(x) : absolute rank of the gene of position x in the g-rank list,
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6 Co-expressed Gene Groups Analysis: CGGA

� Rg(x) : number of ranks (in the g-rank list) between the gene of position x from its

FEG predecessor. Rg(x) is calculated from the absolute ranks rg(x) according to the

formula:

Rg(x) = rg(x) � rg(x�1) + 1 where Rg(0) = rg(x) = 1: (6.4)

Our pc� value corresponds exactly to the hypothesis testing p� value (refer to [99] for
further details) that is:

p� value(x) = 1�
xX

k=1

p(X = kjN;Rg(k); n): (6.5)

In order to accept or reject H0 we will use the following signi�cance threshold:

� =
1

j
j ; (6.6)

where j
j is the number of FEG obtained from all the functional annotations over the N

genes of the biological experiment.

Thus for each subset of FEG genes, we test the inequality

p� value(x) < �; (6.7)

to reject H0, i.e. the hypothesis that the FEG is statistically signi�cant.

An alternative to �x the � threshold could be to ask a signi�cant value to the expert

of the studied biological process. However, this election has to avoid the choice of a relaxed

threshold which corresponds to chossing "almost" by chance the signi�cant groups.

Pseudo-code for CGGA algorithm is presented on Fig. 6.1. The algorithm has been

implemented in Perl (language). It takes as input the list of annotations for each gene (gen-

erated by a query on the database GO database containing all the GO annotations) and the

ordered g-rank list of the N genes. It returns as output the list of the groups of signi�cant

co-expressed genes.

The algorithm begins by computing the � (stage 2) and generating the FEG from the

GO annotations (stages 3 to 9). Then it considers successively each FEG (stages 10 to 18).

For each FEG, it takes all non-empty subsets and computes the p � value for each of them
(stages 11 to 16). If the computed p � value is less than �, the subset is added to the FEG
results list (stages 13 to 15). The added subsets that are non-maximal according to the

inclusion are deleted (stage 17).

For example, let the FEGA annotated set,

FEGA = fg1; g2; g3g;

thus we have:

results(FEGA) = ffg1g; fg2g; fg3g; fg1; g2g; fg2; g3g; fg1; g2; g3gg:

Then, all the subsets of fg1; g2; g3g are deleted from results(FEGA). Finally, the total result

consists of all the groups of co-expressed and signi�cant genes (stage 19).
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6.3.3 Example

Input: List of annotations for each gene G: annotations(G).
Ordered list of N genes: g-rank.

Output: Results set containing the FEG of co-expressed genes: results(FEGA).

1 Begin
2 compute p-value
3 for each annotation A of the GO do
4 for each gene G do
5 if A 2 annotations(G) then
6 FEGA  FEGA U G
7 end if
8 end for
9 end for
10 for each FEGA do
11 for each subset S of FEGA do
12 compute pc� value(S)
13 if pc� value(S) < p� value then
14 results(FEGA)  results(FEGA)US
15 end if
16 end for
17 delete from results(FEGA) the non maximal S according to inclusion
18 end for
19 results  Ui=Aresults(FEGi)
20 End

FIG. 6.1: CGGA algorithm

6.3.3Example

An example of the CGGA applied to a group of co-annotated genes is presented in Table

6.1. The data used in the example is from the experiment carried out by DeRisi (see section

2.1), where the diauxic shift process of the yeast, Saccharomyces Cerevisiae, was analyzed.

The ordered g-rank list was computed using the modi�ed t-statistic obtained with

the SAM program (see section 2.3). The data of the FEG, annotated "vacuolar protein

catabolism", was obtained from the GO database (see section 2.2). This FEG contains 4

genes (n = 4) whose rows in the total g-rank list vary from 6 to 424.

In Table 6.1 we show the values of the parameters needed to determine the signi�cant

gene subsets within the FEG. We have highlighted the subset of genes: {1, 3}, from vacuolar

protein catabolism FEG, found signi�cantly co-expressed by CGGA.

CGGA tested for H0 the (4*5)/2=10 FEG subsets computing their p � value and

comparing it to the �. For example, the p� value corresponding to the subset {S000000490,
S000001586} of rank 6 and 8 in g-rank is 2:63E�05 (cf. Table 6.2). This p � value being
lower than �, �xed at 6:88E�04 (cf. section 3.1), CGGA rejected H0 and the group of genes

{S000000490, S000001586} is then labelled statistically signi�cant and co-expressed. We see

that the subset with genes of rank 6 and 8 is very close and then co-expressed. On the other

hand the genes of rank 69 and 424 are rather distant from their closer neighbours, i.e. the

groups that contain them are not co-expressed signi�cantly.
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List g-rank x Gene ID (SGD) GO Annotation rg(x) Rg(x)
1 1
2 2

6 1 S000000490 vacuolar protein catabolism 6 1
7 7
8 2 S000001586 vacuolar protein catabolism 8 3

69 3 S000000786 vacuolar protein catabolism 69 62

424 4 S000006075 vacuolar protein catabolism 424 356

N N

TABLE 6.1: CGGA Analysis for the FEG of genes annotated "vacuolar protein
catabolism"

6.4 Results

In order to evaluate our method, we compared the results obtained by DeRisi [90], IGA

[53] and CGGA[203]. The results obtained using CGGA for the over-expressed and under-

expressed genes are presented in Table 6.2 and Table 6.3 respectively. As expected, almost

all groups identi�ed as signi�cantly co-expressed by the DeRisi method have also been identi-

�ed by the CGGA. The groups identi�ed by CGGA and DeRisi are in bold, the ones identi�ed

only by CGGA are in italics, and the only group identi�ed also by IGA is in small caps.

In the case of over-expressed genes (Table 6.2), CGGA found seven of the nine groups

obtained manually by DeRisi [90]. The two annotated groups "glycogen metabolism" and

"glycogen synthase" have not been identi�ed by CGGA because they are expressed only at

the initial phase of the process. However CGGA identi�ed eight other statistically signi�cant

and coherent groups. Only one of these eight other groups has also been identi�ed by IGA

and none of them by DeRisi.

For the case of under-expressed genes (Table 6.3), CGGA has found seven of the eight

gene groups selected manually by DeRisi. As for over-expressed genes, the group annotated

"ribosome biogenesis" was not identi�ed by CGGA, because it was only expressed during the

�nal phase of the process. CGGA have also identi�ed seven other statistically signi�cant and

coherent groups which were not identi�ed on the DeRisi analysis nor by IGA.

The three groups identi�ed by DeRisi that CGGA did not identify, namely the over-

expressed groups "glycogen metabolism" and "glycogen synthase", and the under-expressed

group "ribosome biogenesis" share two important properties. First, they contain genes be-

longing to a heterogeneous structure, i.e genes that appertain to several functional groups.

Second, these FEG are not expressed throughout the entire process but only during a speci�c

phase. Detect these groups will only be possible by integrating information on the metabolic

pathways ontologies such as: KEGG, EMP, CFG, etc.
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6.4 Results

Functionally Enriched GO Group n genes x Over- pc� value
expressed genes

proton-transporting ATP synthase com-plex 2 2 4:38E�06

invasive growth (sensu Saccharomyces) 5 3 6:13E�06

signal transduction during �lamentous growth 2 2 8:77E�06

respiratory chain complex II 4 4 3:75E�05

succinate dehydrogenase activity 4 4 3:75E�05

mitochondrial electron transport 4 4 3:75E�05

aerobic respiration 36 10 3:30E�05

tricarboxylic acid cycle 14 5 5:09E�05

tricarboxylic acid cycle 14 5 6:54E�05

gluconeogenesis 12 2 9:64E�05

response to oxidative stress 10 3 1:55E�06

�lamentous growth 8 4 9:06E�05

vacuolar protein catabolism 4 2 2:63E�05

respiratory chain complex IV 8 2 4:05E�04

cytochrome-c oxidase activity 8 2 4:05E�04

TABLE 6.2: Over-expressed FEGs obtained by CGGA with a p� value = 6:88E�04

Functionally Enriched GO Group n genes
x Under-
Expressed
genes

pc� value

chromatin modi�cation 6 5 2:35E�06

mitochondrial inner memb. prot. inser. complex 3 2 3:60E�06

regulation of nitrogen utilization 4 2 7:20E�06

acid phosphatase activity 4 2 7:20E�06

histone acetylation 4 4 7:95E�06

nucleolus 52 10 3:41E�05

rRNA modi�cation 10 3 2:75E�05

transcription initiation from RNA poly. II prom. 14 3 1:00E�05

mitochondrial matrix 15 3 1:25E�05

processing of 20S pre-rRNA 11 2 1:97E�04

ribosomal large subunit biogenesis 9 4 3:17E�04

small nucleolar ribonucleoprotein complex 20 3 2:52E�04

cytosolic large ribosomal subunit 69 13 2:87E�04

ribosomal large subunit assembly and maint. 21 2 2:52E�04

TABLE 6.3: Under-expressed FEGs obtained by CGGA with a p� value = 6:88E�04
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6.5 Discussion

The CGGA algorithm presented in this chapter makes it possible to automatically identify

groups of signi�cantly co-expressed and functionally enriched genes without any prior knowl-

edge of the expected outcome. CGGA can be used as a fast and e¢cient tool for exploiting

every source of biological annotation and di¤erent measure of gene variability.

We analyze CGGA concerning three important methodology parametres: biological

source of information, pro�les expression manipulation, signi�cant gene groups selection (as

stated in section 5.5 ).

The automated functional annotation provided by our algorithm reduces the complexity

of microarray analysis results and enables the integration of any of the six sources of genomic

information such as ontologies (explained in chapter 3).

Concerning gene expression measure handling, CGGA is rank-based, so they need an

ordered gene-rank list, for testing the co-annotated and co-expressed gene groups. Although,

this could be a dangerous simpli�cation and can be a big loss in terms of gene expression

pro�les information, correctly used can serve positively as guide of the interpretation algorithm

process and results. Indeed it represents a non mesurable loss of the original information

contained in the raw gene expression measure.

In contrast to expression-based interpretation approaches such as [99], [128], [151], [228]

and [175], CGGA analyze all the possible subsets of each FEG and does not depend on the

availability of �xed lists of expressed genes. Thus, it can be used to increase the sensitivity of

gene detection, especially when dealing with very noisy data sets. CGGA can even produce

statistically signi�cant results without any experimental replication. It does not need that

all genes in a signi�cant and co-expressed group change, so it is therefore robust against

imperfect class assignments, which can be derived from public sources (wrong annotations in

ontologies) or automated processes (naming errors, spelling mistakes, etc.).

6.6 Conclusion and Outlook

CGGA can be used as a tool for platform-independent validation of a microarray experiment

and its comparison with the huge number of existing experimental databases and the doc-

umentation databases. Experimental results show the interest of our approach and make it

possible to identify relevant information on the analyzed biological processes. In order to iden-

tify heterogeneous groups of genes expressed only in certain phases of the process, we plan to

integrate the information concerning the metabolic pathways ontologies for future work.
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Chapter 7

GENMINER: Gene-Integrated Analysis

by Association Rules Discovery

In this chapter, we completely develop our GENMINER algorithm: gene-integrated analysis

of gene expression pro�les and gene annotations by association rules discovery (presented in

chapter 5). This co-clustering interpretation approach integrates at once gene annotations and

gene expression pro�les to discover intrinsic associations among both data sources based on

frequent patterns. Gene expression data pro�les are taken from cleaned microarray measures

and gene annotations are obtained from any of the sources of biological information presented

in chapter 3.

GENMINER algorithm is a smart adaptation of the Association Rules Discovery mining

technique that ful�lls the requirements for data obtained from gene expression technologies. It

takes advantage of the Close[229] mining algorithm to generate low support, high con�dence

and non-redundant rules in an e¢cient way.

GENMINER method facilitates the integration of any of the seven sources of biolog-

ical information (presented in chapter 3). It can even integrate easily qualitative variable

information of biological conditions as age, sex, state etc.

In contrast to current clustering approaches that group genes whose expression levels

are similar across all conditions, GENMINER can �nd subsets of genes that participate in

any particular cellular process, even if the cellular process takes place only in a subset of

the biological samples (this technique was also called bi-clustering in chapter 5). Actually,

bi-clustering techniques could detect the genes that are conditionally co-expressed and co-

annotated within di¤erent sets of genes, re�ecting the di¤erent biological roles that a gene

can play in the cell.

We have validated the proposed methodology analyzing two microarray data sets, the

DeRisi data set [90] and the Eisen data set [107]. The gene annotations were obtained

from di¤erent sources of biological information: semantic sources as Gene Ontology (all-

three ontologies: BP, MF, CC), gene-protein speci�c databases as: KEGG and BioGRID,

the nomenclature database SGD, the bibliographic database PubMed/Medline and transcrip-

tional regulators information reported in [176]. Automatically extracted associations obtained

by GENMINER revealed signi�cant co-annotated and co-expressed gene patterns, signifying

important biological relationships between the genes and their attributes. Several of these

relationships are supported by recent biological literature.
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

This chapter is organized in the following way: it starts with a brief introduction of the

interpretation challenges in gene expression technologies, it states the main data interpretation

target, and it presents the GENMINER algorithm (section 1). Then, it gives a global view

of association rules basics and it explains two rule extraction algorithms Apriori and Close

(section 2 and 3 respectively).In section 4, it describes the GENMINER algorithm concepts

and implementation aspects. Subsequently, it validates and evaluates GENMINER method by

analyzing two spotted cDNA chips data sets: DeRisi and Eisen (section 5 and 6 respectively).

The last two sections give a discussion and an outlook for future research.

7.1 Introduction

Gene expression technologies are powerful methods for studying biological processes through

a transcriptional point of view. Since many years these technologies have produced vast

amounts of data by measuring simultaneously the expression levels of thousands of genes un-

der hundreds of biological conditions. One of the great potentials of these technologies is

that the generated data contain hidden information about the biological processes that gov-

ern cell behavior. Nowadays, one of the main goals of these technologies is to discover this

hidden information to achieve biological knowledge. In other words, we want to interpret

gene expression technology results via integration of gene expression pro�les with correspond-

ing biological gene annotations extracted from biological databases (presented in chapter 3).

Consequently, the key task in the interpretation step is to detect the present co-expressed

(sharing similar expression pattern) and co-annotated (sharing the same properties such as

function, regulatory mechanism, etc.) gene groups

In order to process the interpretation step in an automatic or semi-automatic way, the

bioinformatics community faces an ever-increasing volume of sources of biological information

on gene annotations that are:

� Minimal Microarray Information (genes, biological conditions, gender, age etc.).

� Molecular databases (GenBank, Embl, Unigene, etc.).

� Semantic sources as thesaurus, ontologies, taxonomies or semantic networks (UMLS,

GO, taxonomy, etc.).

� Gene expression databases (GEO, Arrayexpress, Microarray database, etc.).

� Bibliographic databases (Medline, Biosis, etc.).

� Gene/protein related speci�c sources (ONIM, KEGG, etc.).

A variety of approaches recently reported have already dealt with the interpretation

problem. We have classi�ed these in three di¤erent axes [201]: expression-based approaches

as FunSpec [258], OntoExpress [99], Quality Tool [128], EASE [151], THEA [228], Graph

Theoretic Modeling [175] and GENERATOR [234], knowledge-based approaches as GSEA

[215], iGA [53], PAGE [167] and CGGA [203] and co-clustering approaches as Co-Cluster

[139], Bicluster [186], ARD [61]. These approaches were fully explained in chapter 5.
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The most currently used interpretation axis is the expression-based axis which gives

more importance or weight to gene expression pro�les, than the other two interpretation

approaches. However, it presents many well-known drawbacks:

1. Most of these approaches cluster genes by similarity expression pro�le levels across all

conditions. Nevertheless, gene groups involved in one biological process might be only

co-expressed in a small subset of biological conditions.[9]

2. Many genes may be conditionally co-expressed with di¤erent sets of genes, this can

re�ect the di¤erent biological roles that genes can play in the cell. Most of the commonly

used clustering methods group only genes into single clusters, masking more complex

relationships between di¤erent sets of conditionally regulated genes [122].

3. There is a lack of generality in the assumption: "Genes sharing similar expression

pro�les also share similar biological properties". Actually, simultaneously expressed

genes may not always share the same function or regulatory mechanism. Even when

similar expression patterns are related to similar biological roles, discovering these

biological connections among co-expressed genes is not a trivial task and requires a lot

of additional work [279].

Knowledge-based approaches give more importance to biological knowledge. Neverthe-

less, all sources of biological information �x many integration constraints: the database format

or structure, the weak quantity of annotated genes, the availability of data, the maintainance

of up-to-date and well revised annotations for instance. Consequently, the knowledge-based

interpretation results can be poor or somewhat quite small or limitated in relation to the

whole studied biological process.

Co-clustering approaches represent the best deal in terms of integration, giving the

"same" weight to expression pro�les and biological knowledge. However, they can be complex

as Bi-cluster [186] and Co-cluster [139], algorithms, they can not integrate in a simple manner

several sources of biological information.

To overcome all the drawbacks mentioned above, we propose the use of the Associa-

tion Rules Discovery (ARD) technique. ARD is an unsupervised data-mining technique used

to discover associations among subsets of items (gene expression pro�les and/or gene an-

notations) from very large transaction databases (gene expression pro�les matrix and gene

annotation matrix). The ARD technique identi�es groups of elements that frequently co-occur

in a transaction database, establishing relationships among them of the form of an association

rule: A =) B, which means when A occurs it is likely that B:occurs. The ARD technique

has the following advantages:

1. ARD clusters the genes by frequency in patterns of expression pro�les and annotations,

regardless of the position in the transaction matrix. So, it represents a bi-clustering

technique which can generate rules containing genes that are co-expressed only in a

subset of the biological conditions.
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2. Any gene can be assigned to any number of rules as long as its expression ful�lls the

assignation criteria. This means that a gene involved in many co-expressed groups will

appear in each and every one of those groups, without limitation.

3. ARD is orientated (if A then B), describing the direction of a relationship. Thus,

any type of relationship between expression measures and gene annotations can be

discovered. For example, a gene encoding a transcription factor should appear in the

left portion of the rule and its over- or under-expressed pro�le measures in the right

part of the rule.

4. ARD favors the integration of all six biological sources of information cited before. All

gene attributes (annotations and pro�les) can be added to the transaction matrix by

indicating the presence or the absence of the attribute (for gene annotations) or by

discretizing the gene expression pro�les.

As mentioned in the introduction, ARD has been previously used to mine gene expres-

sion data sets in order to discover associations among subsets of genes based only on their

gene expression pro�les [22], [81], [170], [310], [224], [263] and [124].

Recently, an ARD algorithm, Carmona et al. 2006 [61], has been used to integrate gene

expression pro�les and gene annotations with rules of the form: Annotation =) [#]C1, ["]C2:
This means when a set of genes annotated with the characteristic Annotation occurs, the set

of genes is likely to be under-expressed in biological condition [#]C1 and over-expressed in
biological condition ["]C2. Thus, the gene annotations are always in the antecedent of the
rule, and the gene expression measures are always in the consequent of the rule.

In contrast to past approaches, GENMINER is applied to identify sets of gene expres-

sion measures and gene annotations that frequently co-occur in a data mining context, DG,
establishing relationships among them of the form:

[#]C1 =) ["]C2; [C] ; [D] (7.1)

C =) [#]C1

The �rst case states that when a set of under-expressed genes in biological condition

C1 occurs, these genes are likely to be over-expressed in biological condition C2; and they are

annotated by characteristics C and D. The second case means that a set of genes annotated

with the characteristic C were under-expressed in biological condition C1.

In the past years, the ARD technique has been used in gene expression technologies in

order to �nd the frequent gene patterns among a subset of biological conditions: [22], [81],

[170], [310], [224], [263] and [124]. The association rules generated by these approaches are of

the following form: [#] gene g1 =) ["] gene g2, [#] gene g3, meaning that in a signi�cant num-
ber of conditions when gene g1 is under-expresssed, it is likely to observe an over-expression

of gene g2 and under-expression of gene g3. They have been successfully applied in gene ex-

pression pro�le classi�cation, avoiding some drawbacks of standard clustering techniques (see

section 2.3). However, these algorithms concern exclusively gene expression measures without

taking into account biological knowledge, therefore.leaving to the expert the task of discov-

ering and interpreting the biological similarities hidden within gene groups. Recently, ARD
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has been used to integrate gene expression pro�les and semantic databases as GO and KEGG

with rules of the form: Annotation =) [#]C1, ["]C2 which means that a group of genes
annotated by "Annotation" is likely to be under-expressed in biological condition C1 and

over-expressed in condition C2. This approach [61] is an ingenious attempt for using ARD to

integrate gene pro�le measures and annotations, but it presents several weaknesses:

1. The utilization of the Apriori algorithm [4] as ARD method is time-consuming (in the

case of correlated data), so it limits the number of possible gene-attributes (contained

in the biological sources of annotations), and it generates a lot of redundant rules.

2. It uses a redundant �lter that is not minimal against inclusion

3. It uses only annotations in the left part of the rule and gene expression pro�les in the

right part of the rule. Indeed, often the experts search associations with annotations in

the right part of the rule and gene expression pro�les in the left part of the rule, or even

mixing this informations either in one side or the other of the rule.

4. It uses the discretization method for expression pro�le measures in three intervals,

(�1;�1] = under � expressed, (�1;+1) = no � expressed and [1;+1) =
over � expressed, applying the fold change cut-o¤ method. This is a dangerous
simpli�cation that presents many drawbacks (as explained in section 8.3).

In order to avoid these weaknesses and to exploit optimally the ARD capacities, we

have developed the GENMINER approach. GENMINER is capable of integrating gene an-

notations and gene expression pro�le data to discover intrinsic associations among both data

sources based on co-ocurrence pattern extraction. This data mining method can generate

rules containing all existent associations among the transaction matrix elements: gene ex-

pression pro�les and annotations. Gene annotations can be integrated from any of the six

sources of biological information cited before. Concerning gene expression pro�les, we pro-

pose several discretization scenarios including the use of an innovative discretization method

for gene expression data, NORDI (explained in section 8.3.2.1). In this manner, GENMINER

can construct rules of the form: R1 : Plays role in fermentation (Pubmed annotation),

Anaerobic respiration (GO annotation), ["]C2 =) ["]C1, ["]C3, [#]C7, Digestion (UMLS
term)g. This means that a set of yeast genes which plays a role in fermentation, anaerobic res-
piration, and is over-expressed in condition 2 is likely to participate in the digestion process,

to be over-expressed in biological conditions 1 and 3, and to be under-expressed in condition

7.

The GENMINER algorithm ful�lls the requirements for data obtained from gene ex-

pression technologies. It takes advantage of the Close [229] association rules mining algorithm

that generates low support, high con�dence and non-redundant rules in an e¢cient way. The

Close algorithm allows the use of all available matrix information without limiting constraints

for rules extraction. Concerning the calculation, it is more e¢cient than the often used Apriori

algorithm [4] when the items are dependent on each other (which is the case of gene expression

data) because it reduces the problem of �nding frequent itemsets to �nding frequent Closed

itemsets [239] and [229]. We can translate this to a non-negligible time reduction calculation
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produced by a reduction in the rule research space, which directly enhances the expert�s data

results interpretation.

One of the major limitations of ARD is the large amount of rules generated, which

easily becomes a problem in many applications. This fact has been studied before. In the

context of gene expression technologies, Creighton et al. imposed constraints on the size of

the rules [81] while Tuzhilin [310] proposed several post-processing operators for selecting and

exploring interesting rules.

The GENMINER algorithm takes pro�t of Close rule mining algorithm which extracts

a set of rules that are minimal against inclusion. Close algorithm already integrates a pruning

method based on the closed itemset lattice (Wille�s concept lattice [319]) for rule extraction.

The intuitive idea behind this method, can be seen as a redundant �lter which takes the less

information at the left side of the rule and the most at the right side of the rule. Thus, this

�lter will choose the minimal rule, that is the one which compacts best the important rule

information.

7.2 Association Rules Basics

ARD is an unsupervised data-mining technique oriented towards �nding associations or corre-

lation relationships among items from very large transaction data sets. This method extracts

sets of items that frequently occur together in the same transaction, and then formulate rules

that characterize these relationships. Here, we will introduce some basic semantics currently

used in ARD and the association rules extraction process steps.

7.2.1Association rules semantics

Let I = fi1; i2; :::; img be a set of m literals called items. Let the transaction database

T = ft1; t2; :::; tng be a set of n transactions? (also called tuples or objects), each ti consisting
of a subset of items I � I and associated with a unique identi�er called its OID. I is called
a k-itemset, where k is the number of items in I. A transaction ti 2 T is said to contain

an itemset I if I � ti. Let T be a subset of the transactional database T , that is T � T .
Intuitively we can say that:

� Transaction databases, T , are often tables or matrices organized in horizontal rows and
vertical columns. A table is the lay term for relation in databases, i. e. a subset of the

Cartesian product of a set of attribute domains.

� T is any subset of objects or transactions, where T � T
� I is any subset of items, where I � I.
� Item i is a triple fA;Cop; V g where: A is an attribute, Cop is a comparison operator

{<;�;=;�; >} and V is a value.

� An attribute is an inherent property of an object or an entity in a database or associated

with that entity for database purposes.
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Thus, the association rules discovery (ARD) technique identi�es itemsets that frequently

co-occur in a transaction database, establishing relationships among them of the form of an

association rule: I1 =) I2, which means when I1 occurs, I2 is likely to occur too. The left

side of the rule is the antecedent and the right side the consequent. Given the association

rule I1 =) I2; there are two basic measures that de�ne the quality of the rule: support and

con�dence.

The support of the rule I1 =) I2 in a transaction database T is the proportion of

transactions (lines) of the table T . In other words supp(I1 =) I2) is the percentage of

transactions T in T where I1 and I2 appear together:

supp(I1 =) I2) =
jfT j (I1 [ I2) � T; T 2 T gj

jT j :

The con�dence of the rule I1 =) I2 in the transaction database T is the proportion of
transactions (lines) of the table T that have I2 taken from those that contain I1. In other

words the conf(I1 =) I2) is the percentage of transactions T in T that contain I1 also contain
I2, i.e.,

conf(I1 =) I2) =
supp(I1 [ I2)
supp(I1)

=
jfT j (I1 [ I2) � T; T 2 T gj
jfT j I1 � T; T 2 T gj

:

Support and con�dence are the most common quality measures related to a rule. How-

ever, sometimes both of these measures are high, indicating a rule which could be good, but

in reality has an association that is not useful. This is the case which the elements of the

consequent are very frequent in the transaction database [54]. Therefore, associations among

uncorrelated elements can be generated using the support-con�dence framework [157].

Thus, a correlation measure between the antecedent and the consequent of the rule is

needed to assess the quality of the rule. The lift or improvement measure is the most used

correlation measure in association rules and it is de�ned as follows:

The lift or improvement of the rule I1 =) I2 can be used as an independence measure

between antecedent I1 and consequent I2 of the rule, that is, the percentage of transactions

T in T where I1 and I2 appear together divided by the percentage of transactions T in T
containing I1 or I2, i.e.,

lift(I1 =) I2) =
supp(I1 [ I2)

supp(I1)supp(I2)
:

Any rule with improvement equal to 1 means independence, between consequent and

antecedent of the rule. On the contrary, if the improvement is greater than one the consequent

and antecedent of the rule are related, and the antecedent may predict the consequent.

Let us take an example where n is the number of transactions in the studied table T
and n(I) is the counting function of the number of transactions of the itemset I in the table.

We want to calculate the support, con�dence and lift of the rule A =) B where A � I and
B � I. Thus, we can calculate n(A) as the number of transactions containing A, n(B) is the
number of lines that contain B and n(AB) the number of lines which contains both itemsets A
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and B. Using the equations above for support 7.2.1, con�dence 7.2.1 and lift 7.2.1 we obtain:

supp(A =) B) = n(AB)
n , conf(A =) B) = n(AB)

n(A) and lift(A =) B) = n(AB)
n(A)n(B) respectively.

7.2.2Association rules extraction process

The association rules extraction process consists of four steps: data selection and pretreat-

ment, frequent itemsets extraction, association rules generation and interpretation of extracted

rules (see Fig. 7.1).

FIG. 7.1: Association rules extraction process

The data selection involves choosing useful attributes to optimize the association rule

extraction. The data pretreatment issue concerns the discretization of the quantitative con-

tinuous variables into discrete variables and the determination of categorical classes for either

qualitative or quantitative variables.

The frequent itemsets extraction has to �nd all frequent itemsets contained in the

transactional database T , i.e. itemsets with support greater or equal to a given minimum

support.

The association rules generation consists of producing all association rules for each

frequent itemset found with con�dence greater or equal to a given minimum con�dence.

The interpretation of extracted rules consists of analyzing the pertinence of all extracted

rules in terms of our studied problem.

In the next section, we develop the problem of mining association rules in a transactional

database T , i.e. the frequent itemsets extraction and association rules generation steps. The
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sectiojn is organized as follows: First, we describe the general framework for association rules

mining algorithms. Then, we explain the most current approach for mining association rules:

the Apriori algorithm. Finally, we explain the Close algorithm based in the frequent Closed

itemset extraction methodology.

7.3 Association Rules Extraction

The �rst algorithm for mining association rules was the Apriori algorithm, presented by

Agrawal in 1993 [4]. Coincidentally, a similar algorithm was developed by Mannila�s [194]

some months later, but in association rules experts �eld the credit is given to the �rst, that

is the Apriori algorithm.

In this section, we explain the Agrawal�s Apriori algorithm, which has become the

reference methodology and theoretic framework for the problem of mining association rules

[4]. Then, we present the Close methodology [229], which optimizes the ARD performances

and the size of the results. Our GENMINER algorithm is based on the Close method for

extracting association rules.

7.3.1Framework of Agrawal�s association rules extraction

Agrawal�s framework [4] for the problem of extracting association rules was introduced in

association rules semantic section 7.2.1. Here, we focus in the Agrawal�s framework for mining

association rules.

The task of mining association rules in a transactions database T is traditionally de�ned
as follows: given user-de�ned thresholds for the permissible minimum support and con�dence,

�nd all association rules that hold with more than the given minsupp and minconf. Minsupp

and minconf are two parameters �xed beforehand by the analyist, they represent the minimal

support and con�dence that the analyst is disposed to accept for rule extraction. Thus, the

problem can be broken into two sub-problems [4] (as seen in Fig. 7.1):

1. Extracting all frequent itemsets in T , i.e. itemsets with support greater or equal to

minsupp.

2. Generating association rules from these frequent itemsets with con�dence above

minconf.

The second problem can be solved in main memory29 in a straightforward manner once

all frequent itemsets and their support are known. Hence, the problem of mining association

rules is reduced to the problem of �nding frequent itemsets. Agrawal�s Apriori algorithm

was the �rst methodology that formalizes the frequent itemsets extraction and association

rule generation steps. Here, we present Agrawal�s formalization concerning association rules

discovery.

29 Main memory is computer memory that is accessible to the central processing unit of a computer without
the use of computer�s input/output channels. This kind of memory is used to store data that is likely to be
in active use.
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FIG. 7.2: Itemset lattice associated to a data mining context D

A data mining context is de�ned as a triple D =(T ; I;R) where T and I are �nite sets
of objects and items respectively.R � T � I is a binary relation between objects and items.
Each couple (t; i) 2 R denotes the fact that the transaction t 2 T is related to the item i 2 I

Object Items
1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E
6 B C E

TABLE 7.1: Association rules extraction context D

Given the data mining context D(T ; I;R), discovering frequent itemsets is not a trivial
problem, because the number of possible frequent itemsets is exponential, as huge as the size

of the set of items of the context D, i.e. 2kIk (see Fig. 7.2).
Having a data mining context D = (T ; I;R) and the minimal threshold, the set of

frequent itemsets F in D is:

F = fI � I : j : I 6= ; ^ supp(I) � minsuppg
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FIG. 7.3: Frequent itemset lattice F , containing the frequent itemsets associated to a
data mining context D with minsupp=2/6.

Therefore, if the set of items I is of sizem, then the number of possible frequent itemsets
is 2m. Taking all this possible itemsets we can build the itemset lattice of I, having height
of m + 1. For example, the itemset lattice of the set of items I in a context D (Table 7.1)
contains 25 = 32 itemsets and the itemset lattice has a height of six. (see Fig. 7.2). If we

take a minsupp=2/6 and we apply equation 7.2, then the frequent itemset lattice, F , contains

24 = 16 frequent itemsets (see Fig. 7.3).

Discovering frequent itemsets is the most time-consuming stage in association rules

extraction because of the exponential size of the research item space and the need of continuous

scanning of the context D. A trivial method would be testing the support of each of the

itemsets in the lattice, but this is impracticable when the number of items is huge.

Let F be the lattice of frequent itemsets in a data mining context D with a minimal

support threshold: minsupp, the association rules generation for a minimal con�dence thresh-

old minconf is an exponential problem of size kFk Given minsupp and minconf, the set of
valid AR in D is:

AR = fr : I2 ) (I1 � I2) j I1; I2 2 F ^ I2 � I1 ^
supp(I1)

supp(I2)
� minconfg

In practice, the association rules generation is done straightforward without taking into

accout the extraction context D, and the execution time-cost of this phase is relatively low in
comparison with the frequent itemsets extraction cost. Thus, for each frequent itemset I1 in
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F , all subsets I2 of I1 are determined and the value of supp(I1)=supp(I2) is calculated. If this

value is equal or higher than the minconf threshold, then the association rule: I2 ) (I1� I2)
is generated.

7.3.2Apriori frequent itemsets extraction algorithm

The �rst algorithm for �nding frequent itemsets extraction was SETM [4] proposed in 1993.

The authors have introduced the idea of searching the frequent itemsets by levels instead one

by one. Agrawal [4] and Mannila [194] have both presented similar algorithms, but in ARD

domain the credit is done to the �rst, that is a priori algorithm. Nowadays, Agrawal�s Apriori

algorithm is used in many ARD applications, and it also has inspired some others well known

ARD algorithms as Partition [226], Sampling [267] and DIC [55].

Here, we brie�y explain the Apriori algorithm, that is, the reference method in associa-

tion rules discovery At the beginning, frequent itemsets are computed iteratively, in ascending

size order (see Fig. 7.2). The process takes k iterations, where k is the size of the largest fre-

quent itemsets. For each iteration i < k, the database D is scanned at once and all frequent
itemsets of size i are computed. The �rst iteration computes the set I1 of frequent 1-itemsets.

A subsequent iteration i consists of two phases. First, a set of candidates or potentially fre-

quent i-itemsets, Ck, is created by joining the frequent (i � 1) itemsets in Ii�1 found in the
previous iteration. Then, the database is scanned for determining the support candidates and

the frequent i�itemsets are extracted from the candidates. This process is repeated until no

more candidate can be determined. (see Fig. 7.3)

Apriori and several Apriori inspired algorithms as the ones cited before are specially

robust for non-correlated data. The data issued from gene expression technology is highly

correlated data (as explained in chapter 1 and 2), so the Apriori algorithm would be time

consuming and ine¢cient for most of the microarray data cases. The principal association

rule extraction drawbacks using Apriori and Apriori inspired algorithms are:

� Execution time problems

� Execution times of several hours mostly (and sometimes several days).

� Data sets are large (cannot �t in main memory).

� Data set must be scanned (entirely read) several times during the process.

� Relevance of extracted association rules

� There are several tens of thousands of extracted rules (sometimes millions).

� Among these rules many are redundant (i.e. they represent the same information).

� Correlated data constitute a challenge for extracting association rules

In order to deal with each one of these drawbacks we propose the use of the Close

algorithm [229] based on frequent Closed itemset extraction using a Closed itemset lattice,

rather than the Apriori itemset lattice. The Close algorithm performs well specially for

highly correlated data, it reduces considerably the execution times, and it proposes a pruning
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methodology to generate minimal non-redundant rules. The following section presents the

basics of this algorithm.

7.3.3Close algorithm

Pasquier [229] proposes a new approach for association rule extraction based on the closure of

the Galois connection [121]. The connection closure is used to de�ne a condensed representa-

tion for association rules. This representation is characterized by Closed itemsets, which build

the Closed itemset lattice that contains the frequent Closed itemsets. In this algorithm, it is

proven that the set of frequent Closed itemsets constitutes a generator set for the concerned

frequent itemsets. This representation is a basis, i.e., a generating set for all association rules,

their supports and their con�dences, and all of them can be retrieved without accessing the

data. In the next section, we present a brief explanation of the Close algorithm emphasizing

the obtained condensed representation for association rules.

Here, we develop the problem of extracting frequent Closed itemsets and generators

in a data mining context D with the Close algorithm. This section is organized as follows:

First, we give the general framework for the Close algorithm. Then, we explain the frequent

Closed itemset extraction methodology of Close Then, we explain the fundamentals of min-

max rules generation. Finally, we show the interest in using the Close generators in the case

of microarray data.

Framework of Close association rules extraction methodology

The Galois connection of a �nite binary relation [121] is a couple of functions (�;  ). �

associates the items related to all transactions t 2 T with a set of transactions T � T .  
associates the transactions related to all items i 2 I.with an itemset I � I When a transaction
t is related to all items i 2 I, we say that t contains I. We denote minsupp and minconf as
the minimal support and con�dence thresholds.

De�nition 1 (Frequent itemsets) The support of an itemset I is the proportion of

objects in the data mining context containing I: supp(I) := j (I)j = jT j. I is a frequent
itemset if supp(I) � minsupp.

De�nition 2 (Frequent Itemsets Equivalence Classes) Frequent Itemsets Equiv-

alence class, EC, is a set of frequent itemsets, that is Ii � I, where the support of each
one of the itemsets belonging to the class is the same, i.e. supp(Ii) := k for all i where

Ii � EC .

De�nition 3 (Association rules) An association rule AR is an implication between

two frequent itemsets I1; I2 � I with the form I1 ! (I2 n I1) where I1 � I2. The

support and con�dence of AR are de�ned by: supp(AR) = supp(I2), conf (AR) :=

supp(I2) = supp(I1).

The closure operator 
 = � �  associates with an itemset I the maximal set of items
common to all the transactions containing I: The closure of an itemset is equal to the in-
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tersection of all the transactions containing it. Using this closure operator, we de�ne the

frequent Closed itemsets.

De�nition 4 (Frequent closed itemsets) A frequent itemset I � I is a frequent
closed itemset if 
(I) := I. The minimal closed itemset containing an itemset I is its

closure 
(I).

The set of frequent Closed itemsets and their supports is a minimal non-redundant

generating set for all frequent itemsets and their supports and thus for all association rules,

their supports and their con�dences. This theorem relies on the properties that the support of

a frequent itemset is equal to the support of its closure and that maximal frequent itemsets are

maximal frequent Closed itemsets [230]. In order to improve the e¢ciency of frequent Closed

itemset extraction, the Close algorithms compute generators of frequent Closed itemsets.

De�nition 5 (Generators) An itemset g � I is a generator of a closed itemset I if

(g) := I and @g0 � I with g0 � g such that 
(g0) := I. A generator of cardinality k is

a k-generator.

Generators are the minimal itemsets to consider for discovering frequent Closed itemsets,

by computing their closures. Close performs a breadth-�rst search for generators in a levelwise

manner.

Frequent closed itemsets and generators extraction

The Close algorithm is an iterative algorithm for extracting generators and frequent Closed

itemsets in a levelwise manner (considering all itemsets of a level in the itemset lattice at

the same time). During an iteration k, a list of candidate k � generators is considered; their
closures and their supports are computed from the data set and infrequent generators are

discarded. Frequent generators are then used to construct candidate (k + 1) � generators.
The closures of frequent generators are the frequent Closed itemsets and the support of a

generator is also the support of its closure.

During the kth iteration, a set FCk is considered. Each element of this set consists

of three information: a k � generator, its closure and their support. The algorithm �rst

initializes the candidate 1� generators in FC1 with the list of 1� itemsets and then carries
out some iterations. During each iteration k the following procedure takes place:

1. Closures of all candidate k � generators and their supports are computed: The number
of objects containing a generator determines its support, and their intersection generates

its closure. Each object is considered once, and this phase requires only one scan of the

data set.

2. Infrequent k � generators, i.e., generators with support lower than minsupp, are
removed from FCk.

3. The set of candidate (k + 1) � generators is constructed by joining the frequent
k � generators in FCk as follows.
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(a) Two k � generators in FCk that have the same �rst k�1 items are joined to
create a candidate (k + 1)� generator. For instance, the 3� generators {ABC}
and {ABD} will be joined in order to create the candidate 4-generator {ABCD}.

(b) Candidate (k + 1)� generators that are infrequent or non-minimal are removed.
One of the k-subsets of such a generator is either infrequent or non-minimal and
thus does not belong to the set of frequent k-generators in FCk.

(c) The third phase removes (k + 1) � generators whose closures were already
computed. Such a generator g is easily identi�ed as it is included in the closure of
a frequent k � generator g0 in FCk: We have g0 � g � 
(g0).

The algorithm stops when no new candidate generator can be created. Then, each set

FCk stores the frequent k-generators, their closures and their supports.

We illustrate the Close algorithm, taking the data mining context D example shown in
Table 7.1 for minsupp = 2=6. The corresponding itemset lattice of the set of items I in a
context D (Table 7.1) is shown in Fig. 7.2.

The set FC1 is initialized with the list of all 1-itemsets.The algorithm computes supports

and closures of the 1 � generators in FC1 and infrequent ones are discarded, which is the
case for generator fDg with minsupp = 1=6. Then, joining the frequent generators in FC1,
six new candidate 2� generators are created: fABg, fACg, fAEg, fBCg, fBEg and fCEg
in FC1.The 2� generators fACg and fBEg are removed form FC2 because we have fACg
� 
(fAg) and fBEg � 
(fBg). The algorithm determines supports and closures of the

remaining 2 � generators in FC2 and suppresses infrequent ones. Then, the candidate 3 �
generator fABEg is created by joining the frequent generators in FC2 but is removed because
the 2 � generator fBEg � fABEg is not in FC2 and the algorithm stops. This process is

shown in Fig. 7.4.

Scan

D

�!

FC1
Generator Closed itemset Supp
{A} {AC} 3/6
{B} {BE} 5/6
{C} {C} 5/6
{D} {ACD} 1/6
{E} {BE} 5/6

Pruning

infrequent

itemsets

�!

FC1
Generator Closed itemset Supp
{A} {AC} 3/6
{B} {BE} 5/6
{C} {C} 5/6
{E} {BE} 5/6

Scan

D

�!

FC2
Generator Closed itemset Supp
{AB} {ABCE} 2/6
{AE} {ABCE} 2/6
{BC} {BCE} 4/6
{CE} {BCE} 4/6

Pruning

infrequent

itemsets

�!

FC2
Generator Closed itemset Supp
{AB} {ABCE} 2/6
{AE} {ABCE} 2/6
{BC} {BCE} 4/6
{CE} {BCE} 4/6

FIG. 7.4: Extracting frequent closed itemsets and generators in the context D with
CLOSE.

The reduced research space itemset lattice after determining the frequent itemsets with

Close, including the Closed itemsets, the generators and the equivalence classes in context D
is illustrated in Fig. 7.5.
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FIG. 7.5: Frequent itemset lattice generated by Close containing the closed itemsets,
the generators and the classes of equivalence associated to a data mining context D
with minsupp=2/6.
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Association rule generation

The association rules generation concerns the composition of association rules with con�dence

greater or equal to a given minimum con�dence, minconf, as stated in de�nition . Once the

frequent Closed itemset extraction, generators and closure was done (see Fig. 7.5), Close

generates the min-max association rules. We understand the min-max association rules as

the most general non-redundant association rules according to their semantic. Informally,

an association rule is redundant if it brings the same information or less information than is

brought by another rule of same support and con�dence. Then, the min-max association rules

are the non-redundant association rules having minimal antecedent and maximal consequent:

r is a min-max association rule if no other association rule r0 has the same support and

con�dence, an antecedent that is a subset of the antecedent of r and a consequent that is a

superset of the consequent of r.

De�nition 6 (Min-max association rules) Let AR be the set of association rules

extracted. An association rule r : I1 ! I2 2 AR is a min-max association rule i¤

@ r0 : I 01 ! I 02 2 AR with supp(r0) = supp(r), conf(r0) = conf(r), I 01 � I1 and I2 � I 02.

Based on this de�nition, Close characterizes exact and approximate min-max associa-

tion rules that constitute respectively the min-max exact basis and the min-max approximate

basis. We understand as exact association rules, noted I ) I 0, such rules that have a 100%

con�dence, and approximate association rules, noted I ) I 0, such rules which have a con�-

dence lower than 100%. Exact association rules are valid for all objects in the data set whereas

approximate association rules are valid for a proportion of objects equal to their con�dence.

Exact min-max association rules

First, note that exact association rules, with the form r : I1 ) (I2 n I1), are rules between
two frequent itemsets I1 � I2 having the same closure: 
(I1) = 
(I2). Since conf (r) = 1

we have supp(I1) = supp(I2), and as I1 � I2 we see that 
(I1) = 
(I2). We de�ne min-max

association rules among these exact rules.

Let g be the generator of 
(I1) = 
(I2) such that g � I1. Since g is minimal, we have

g � I1 � I2 � 
(I2). Furthermore, all itemsets in the interval [g; 
(I2)], de�ned by inclusion30,
have the same closure 
(I2) and thus the same support. The min-max association rule among

all rules with the form r : I1 ) (I2 n I1) with I1; I2 2 [g; 
(I2)] is the rule g ) (
(I2) n g). This
rule has a minimal antecedent, g, and a maximal consequent, 
(I2), among all rules that have

the same support.

We generalize this de�nition to all generators of the frequent Closed itemset 
(I2). Let

Gen
(l2) be the set of these generators. All exact min-max association rules constructed with


(I2) are rules with the form g ) (
(I2)ng) with g 2 Gen
(l2). The extension of this property
to all frequent Closed itemsets de�nes the min-max exact basis containing all exact min-max

association rules characterized in de�nition .

30 The interval [I1; I2] contains all the supersets of I1 that are subsets of I2.
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FIG. 7.6: All exact association rules extracted from D.

De�nition 7 (Min-max exact basis) Let Closed be the set of frequent closed item-

sets extracted from the context and, for each frequent closed itemset f , let�s denote Genf
the set of generators of f . The min-max exact basis is:

MinMaxExact = fr : g ) (f n g) j f 2 Closed ^ g 2 Genf ^ g 6= fg:

The condition g 6= f discards rules with the form g ) ?; it is equivalent to the condition

I1 � I2 in the de�nition of association rules. We state in the following proposition that the

min-max exact basis does not lead to information loss.

Example The min-max exact basis extracted from context D for minsupp = 2/6 is

presented in Table 7.2. It contains seven rules whereas the set of all exact association rules

contains fourteen rules.
Generator Closure Exact rule Supp

{A} {AC} A ) C 3/6
{B} {BE} B ) E 5/6
{C} {C}
{E} {BE} E ) B 5/6
{AB} {ABCE} AB ) CE 2/6
{AE} {ABCE} AE ) BC 2/6
{BC} {BCE} BC ) E 4/6
{CE} {BCE} CE ) B 4/6

TABLE 7.2: Min-max exact basis extracted from D.

All exact association rules and their supports can be deduced from the min-max exact

basis, Table 7.2, as presented in the Fig. 7.6. The Fig. 7.6 shows the exact association rules

obtained from the min-max exact basis, including the equivalence classes, the Closed itemsets
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7.3.3 Close algorithm

and generators. We can see that the exact rules are the result of all possible non-redundant

combinations of exact association rules within an equivalence class.

Approximate min-max association rules

Approximate association rules, with the form r : I1 ) (I2 nI1), are rules between two frequent
itemsets I1 � I2 such that 
(I1) � 
(I2). Since conf (r) < 1 we have supp(I1) > supp(I2), and
we deduce that 
(I) � 
(I2).

We deduce the de�nition of approximate min-max association rules. Let g1 be a gener-

ator of the frequent Closed itemset f1 and g2 be a generator of the frequent Closed itemset

f2 such that f1 � g2 � I2 � f2. All rules with the form r : I1 ) (I2 n I1) where I1 2 [g1; f1]
and I2 2 [g2; f2] have the same con�dence and the same support since g1, I1 and f1 have the
same support as well as g2, I2 and f2. We then deduce that the min-max association rule

among all these rules is g1 ) (f2 n g1). Indeed, g1 is the minimal itemset in [g1; f1] and f2 is
the maximal itemset in [g2; f2].

The generalization of this property to all couples of frequent itemsets I1 and I2 such

that I1 � I2 and supp(I1) 6= supp(I2) de�nes the min-max approximate basis containing all

approximate min-max association rules characterized in de�nition .

De�nition 8 (Min-max approximate basis) We denote Gen the set of generators

of the frequent closed itemsets in Closed . The min-max approximate basis is:

MinMaxApprox = fr : g ! (f n g) j f 2 Closed ^ g 2 Gen ^ 
(g) � fg:

Example The min �max approximate basis extracted from context D for minsupp =
2/6 and minconf = 2/5 is presented in Table 7.3. It contains ten rules whereas the set of

all approximate association rules, presented in Table 7.4, contains thirty-six rules.

Generator Closure Closed superset Approximate rule Supp Conf
{A} {AC} {ABCE} A ! BCE 2/6 2/3
{B} {BE} {BCE} B ! CE 4/6 4/5
{B} {BE} {ABCE} B ! ACE 2/6 2/5
{C} {C} {AC} C ! A 3/6 3/5
{C} {C} {BCE} C ! BE 4/6 4/5
{C} {C} {ABCE} C ! ABE 2/6 2/5
{E} {BE} {BCE} E ! BC 4/6 4/5
{E} {BE} {ABCE} E ! ABC 2/6 2/5
{AB} {ABCE}
{AE} {ABCE}
{BC} {BCE} {ABCE} BC ! AE 2/6 2/4
{CE} {BCE} {ABCE} CE ! AB 2/6 2/4

TABLE 7.3: Min-max approximate basis extracted from D.

All approximate association rules can be deduced, with their supports and con�dences,

from the min-max approximate basis. Table 7.3, as presented in Table 7.4.

Indeed, the resulting rules in Table 7.4 can be further reduced without losing the ability

to deduce all approximate association rules, by removing transitive min-max association rules
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Approx. rule Supp Conf Approx. rule Supp Conf Approx. rule Supp Conf
BCE ! A 2/6 2/4 B ! ACE 2/6 2/5 B ! CE 4/6 4/5
AC ! BE 2/6 2/3 C ! ABE 2/6 2/5 C ! BE 4/6 4/5
BC ! AE 2/6 2/4 E ! ABC 2/6 2/5 E ! BC 4/6 4/5
BE ! AC 2/6 2/5 A ! BC 2/6 2/3 A ! B 2/6 2/3
CE ! AB 2/6 2/4 B ! AC 2/6 2/5 B ! A 2/6 2/5
AC ! B 2/6 2/3 C ! AB 2/6 2/5 C ! A 3/6 3/5
BC ! A 2/6 2/4 A ! BE 2/6 2/3 A ! E 2/6 2/3
BE ! A 2/6 2/5 B ! AE 2/6 2/5 E ! A 2/6 2/5
AC ! E 2/6 2/3 E ! AB 2/6 2/5 B ! C 4/6 4/5
CE ! A 2/6 2/4 A ! CE 2/6 2/3 C ! B 4/6 4/5
BE ! C 4/6 4/5 C ! AE 2/6 2/5 C ! E 4/6 4/5
A ! BCE 2/6 2/3 E ! AC 2/6 2/5 E ! C 4/6 4/5

TABLE 7.4: Approximate association rules extracted from D.

Non-transitive approximate min-max association rules

We can further reduce the number of redundant approximate association rules extracted

without losing the ability to deduce all approximate association rules, with support and

con�dence, by removing transitive min-max association rules.

A min-max association rule g ) (f n g) with 
(g) � f is transitive if it exists a

frequent Closed itemset f 0 such that 
(g) � f 0 � f . Let g0 be the generator of f 0 such that


(g) � g0 � f 0 � f . Then, we have the two following approximate min-max association rules:
g ) (f 0 n g) and g0 ) (f n g0). The rule g ) (f n g) is the transitive composition of the two
previous rules; its support is equal to the second rule�s support and its con�dence is equal to

the product of their con�dences.

We generalize this characterization to all triplets consisting of a generator g, its closure

f and a Closed superset f 0 of f to de�ne the non-transitive min-max approximate basis, that

is the transitive reduction of the min-max approximate basis. Let us denote I1l I2 where an

itemset I1 is an immediate predecessor of an itemset I2, i.e. @l3 such that I1 � I3 � I2. The

non-transitive min-max approximate rules are of the form g ) (f n g) where f is a frequent
Closed itemset and g a frequent generator such that 
(g) is an immediate predecessor of f .

De�nition 9 (Non-transitive min-max approximate basis) The non-transitive

min-max approximate basis is:

MinMaxReduc = fr : g ! (f n g) j f 2 Closed ^ g 2 Gen ^ 
(g)l fg:

Remark 1 This transitive reduction decreases the number of approximate rules ex-

tracted, by selecting the most precise rules, i.e. with the highest con�dences, since

transitive rules have lower con�dences than non-transitive rules.

Example

The non-redundant min-max approximate basis extracted from context D for minsupp
= 2/6 and minconf = 2/5 is presented in Table 7.5. It contains only seven rules, that is

three rules less than the approximate min-max basis. These three rules are B ! ACE, C !
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7.3.3 Close algorithm

FIG. 7.7: Non redundant extracted exact and approximate association rules for min-
supp= 2=6 and minconf= 2=5

BE and E ! ABC that have minimal support and con�dence measures among the ten rules

of the approximate min-max basis.

Generator Closure Closed superset Approximate rule Supp Conf
{A} {AC} {ABCE} A ! BCE 2/6 2/3
{B} {BE} {BCE} B ! CE 4/6 4/5
{B} {BE} {ABCE}
{C} {C} {AC} C ! A 3/6 3/5
{C} {C} {BCE} C ! BE 4/6 4/5
{C} {C} {ABCE}
{E} {BE} {BCE} E ! BC 4/6 4/5
{E} {BE} {ABCE}
{AB} {ABCE}
{AE} {ABCE}
{BC} {BCE} {ABCE} BC ! AE 2/6 2/4
{CE} {BCE} {ABCE} CE ! AB 2/6 2/4

TABLE 7.5: Non-transitive min-max approximate basis extracted from D.

All approximate association rules, with support and con�dence, can be deduced from

the non-transitive min-max approximate basis.

Generated exact association rules and non-transitive approximate association rules ex-

tracted from context D for at least minsupp= 2=6 and minconf= 2=5 are presented in Fig.

7.7
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

Extracted association rules are presented in Fig. 7.7, the dark arrows represent the

exact rules and the dashed arrows the approximate rules. The set generated from all these

rules represents the minimal number of non-redundant rules with at least minsupp= 2=6 and

minconf= 2=5. This set has already pruned all the redundant and transitive association

rules, obtaining the minimal set without losing the ability to deduce all approximate and

exact association rules in context D.

7.4 GENMINER Algorithm

GENMINER association rules discovery approach [201] is a co-clustering and bi-clustering

method that integrates gene annotations and gene expression measures to discover intrinsic

associations among both data sources based on co-ocurrence patterns. It is a co-clustering

approach which integrates co-expressed and co-annotated gene groups at the same time (the

general methodology of co-clustering algorithms was explained in section 5.4). Furthermore,

it is a bi-clustering algorithm that �nds co-annotated and co-expressed gene groups even in a

small subset of biological conditions.

As an association rules discovery approach, GENMINER, follows the four steps of the

ARD process: data selection and pre-treatment, frequent itemsets extraction, association rules

generation, and interpretation of extracted rules. Here, we explain more in detail each one

of these four steps, and we end this section with the implementation details of GENMINER

algorithm.

7.4.1Data selection and data pretreatment

In the present work, ARD is applied to extract associations among gene annotations and gene

expression patterns, integrating in this way biological sources of information with experimental

numeric data (see Fig. 5.1). In order to extract these associations, we de�ne the data mining

context for gene expression technologies as a triple DG =(T ; I;R). Here the transactions
t 2 T are represented by genes, and the items i 2 I are each one of the gene characteristics as
the gene expression measures at each biological condition or the gene annotations. R � T �I
is a binary relation between genes and their respective gene expression measures and/or gene

annotations. In Table 7.6 we illustrate the gene expression data context DG =(T ; I;R) for
a given example. The �rst column contains the transactions, t 2 T , represented by the genes
and their corresponding identity. The next �ve columns are the items, i 2 I, that are divided
between two groups: gene expression measures (columns 2-3) and gene annotations (columns

4-6).

Gene annotations are issued from one or more of the six sources of biological information

as explained in chapter 3: Minimal Microarray Information (genes, biological conditions,

gender, age etc.), molecular databases (GenBank, Embl, Unigene, etc.), semantic sources as

thesaurus, ontologies, taxonomies or semantic networks (UMLS, GO, taxonomy, etc.), gene

expression databases (GEO, Arrayexpress, Microarray database, etc.), bibliographic databases

(Medline, Biosis, etc.), and gene/protein related speci�c sources (ONIM, KEGG, etc.). The
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Transactions: t Items: i
Genes Expression Measures Annotations

C1 C2 C D E
g1 -1 0 1 1 0
g2 0 1 1 0 1
g3 -1 1 1 0 1
g4 0 1 0 0 1
g5 -1 1 1 0 1
g6 0 1 1 0 1

TABLE 7.6: Example of association rules extraction context DG containing heteroge-
neous information: gene expression measures and gene annotations

characteristics of each one of the sources of biological information were explained in chapter

3. A discussion on the integration characteristics of each one of the six sources of information

was discussed in section 5.5.

Gene annotations are boolean variables, i.e. i 2 f0; 1g, indicating if an annotation
pertains, i = 1 or not, i = 0, to a given gene g. For example in Table 7.6 we can see that

the gene with identity g1 contains two annotations represented by C, D.

Gene expression measures are cleaned gene expression data obtained from the biological

gene expression technology experiment, they must be already statistically treated as seen in

section 2.1 and section 2.2. Generally, gene expression measures are continuous quantitative

variables, so they have to be discretized. Several discretization methods were proposed in

section 8.3, we have classi�ed them as biological, statistical and mining methods. The choice

of discretization method depends on the kind of gene expression data to analyze (time series,

cancer studies, multi-tissue studies etc.) and the main goal of the study.

In the case of independence between each one of the biological conditions or when the

dependent biological conditions are already pre-treated as independent conditions (as seen in

section 2.1-2.3), we suggest the use of our discretization algorithm: [200] (explained in section

8.3.2.1).

NORDI is based on a statistical detection of outliers and the continuous application

of normality tests for transforming the initial distribution "almost normal" 31 to a "more

normal" one. Once the distribution of the matrix is "more normal", it calculates the cuto¤s

as seen in z�score methodology (explained in section ). In the example of Table 7.6, we see
that for each one of the biological conditions C1, C2, we have applied the NORDI algorithm.

Thus, the �nal cuto¤s threshold were calculated using the z � score equation 8.4. We have
taken the following conventions: gene over-expression is equal to 1 or ", gene under-expression
is stated as �1 or # and gene unexpression as 0 (as seen in Table 7.7 ).

7.4.2Frequent itemsets extraction

GENMINER uses the Close [229] association rules mining algorithm for frequent Closed item-

sets extraction. The frequent Closed itemsets constitute a generator set for all concerned fre-

quent itemsets. This representation is a basis, i.e., a generating set for all association rules,

31 By "almost" we mean that the sample Sj can be normally distributed without the outliers presence.
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

their supports and equivalence classes associated to a given data mining context with min-

supp and their con�dences, and all of them can be retrieved without accessing the data. The

process of extracting frequent Closed itemsets, generators and equivalence classes was ex-

plained in section 7.3.3 The case of data mining context D was illustrated in Fig. 7.5. We
can interpret the same Fig. 7.5 in the data mining context DG by simply replacing the item-
sets A and B in data mining context D by the biological conditions C1 and C2 in context DG
(where C1 is under-expressed if expressed and C2 is over-expressed if expressed) and taking

C, D and E as gene annotations.

7.4.3Association rules generation

As mentioned in the introduction, ARD has been previously used to mine gene expression

data sets in order to discover associations among subsets of genes based only on their gene

expression pro�les [22], [81], [170], [310], [224], [263] and [124]. The association rules generated

by these approaches are of the following form: [#] gene X =) ["] gene Y , [#] gene Z, meaning
that in a signi�cant number of conditions when geneX is under-expressed it is likely to observe

an over-expression of gene Y and under-expression of gene Z. These algorithms concern

exclusively gene expression measures without taking into account biological knowledge.

Recently, an ARD methodology [61] has been used to integrate gene expression pro�les

and gene annotations with rules of the form: Annotation =) [#]C1, ["]C2 which means
when a set of genes annotated with the characteristic Annotation occurs, the set of genes

is likely to be under-expressed in biological condition [#]C1 and over-expressed in biological
condition ["]C2. Thus, the gene annotations are always in the antecedent of the rule and the
gene expression measures are always in the consequent of the rule.

In contrast to past approaches, GENMINER is applied to identify itemsets of gene

expression measures and gene annotations that frequently co-occur in a data mining context,

DG, establishing relationships among them of the form:

[#]C1 ) ["]C2; C; D (7.2)

C ) [#]C1

The �rst case states that when a set of under-expressed genes in biological condition

C1 occurs, these genes are likely to be over-expressed in biological condition C2; and they are

annotated by characteristics C and D. The second case means that a set of genes annotated

with the characteristic C were under-expressed in biological condition C1. Thus, GENMINER

is interested in obtaining all rules without regarding if the gene annotations or gene expressions

are in the antecedent of the rule or the consequent of the rule. The main reason is that all

possible combinations of association rules taking either gene annotations or gene expression

measures at any of the two parts of an association rule, antecedent or consequent, or even

mixed as stated in the �rst rule of equation 7.2 can be biologically meaningful, so they cannot

be eliminated a priori.

In order to generate rules containing either gene annotations or gene expression pro�les

at any of the two parts of an association rule, the GENMINER algorithm uses again the
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Close [229] mining algorithm for generating minimal non-redundant rules to a given minimum

con�dence minconf. Once the frequent Closed itemsets, generators, and closures are built (as

see in section 7.3.3), Close generates themin�max association rules, i.e. non-redundant rules
according to their semantic. The process of generating exact and approximate min � max
association rules for a given support, minsupp, and a 100% con�dence (exact rule) or a

minium con�dence minconf (approximate rule), was explained in section 7.3.3. The idea

behind Close rule generation is the extraction of a min-max basis (as de�ned in and 7.3)

of a given context D, from which all possible generation rules can be deduced at certain

minsupp and minconf. Once all non-redundant exact and approximative rules are obtained,

Close removes all approximate and transitive min-max association rules by extracting a min-

max non-transitive basis (as de�ned in ). This transitive reduction decreases the number

of approximate rules extracted, by selecting the most precise rules, i.e. with the highest

con�dences, since transitive rules have lower con�dences than non-transitive rules.

As an example of GENMINER association rule extraction, the lector can follow the

example given in section 7.3 concerning the data mining context D, as seen in Fig. 7.6,
Table 7.4 and Fig. 7.7 for exact rules, approximate rules, and the rules extracted after

transition reduction respectively. The lector can interpret these results in the data mining

context DG by simply replacing the itemsets A and B in data mining context D by the

biological conditions C1 and C2 in context DG (where C1 is under-expressed if expressed
and C2 is over-expressed if expressed, concerning this speci�c example) and taking C, D and

E as gene annotations as stated in Table 7.6.

Generated non-redundant exact and non-transitive association rules extracted from con-

text DG for at least minsupp= 2=6 and minconf= 2=5 are presented in Fig. 7.8:
Extracted association rules are presented in Fig. 7.7, the dark arrows represent the

exact rules and the dashed arrows the approximate rules. The set generated from all these

rules represents the minimal number of non-redundant and non-transitive rules with at least

minsupp= 2=6 and minconf= 2=5. This set has already pruned all the redundant and tran-

sitive association rules, obtaining the minimal association rule set without losing the ability

to deduce all approximate and exact association rules in context DG.

For example taking the exact rule of E =) ["]C2 means that when a set of genes
annotated with characteristic E occurs, the same genes are likely to be over-expressed in

biological condition C2 with minsupp= 5=6 and 100% con�dence. Taking the approximate

rule of [#]C1 =) ["]C2, C, E means that when a set of under-expressed genes in biological

condition C1 occurs, these genes are likely to be annotated with characteristics C, E and to

be over-expressed in biological condition C1 with minsupp= 2=6 and minconf= 2=3. We can

see these rules illustrated in Fig. 7.7.

Gene expression technology data sets contain thousands of genes and thousands of gene

attributes, producing a huge quantity of association rules. This problem becomes crucial

when these data sets are highly correlated, such as data sets issued from gene expression

technologies [21, 54, 281]. So, the data analyst is confronted with the following problems:

How to handle such a list of association rules ? Is it possible to reduce its size without losing

information ?
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FIG. 7.8: Non-redundant and non-transitive extracted exact and approximate associa-
tion rules in context DG for minsupp= 2=6 and minconf= 2=5
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Moreover, the inspection of extracted association rules shows that redundant rules rep-

resent the majority of them. Their suppression will thus considerably reduce the number of

rules to be handled by the analyst. In addition, redundant rules can be misleading as will be

discussed in the next example. Thus, the following question arises: How to reduce extracted

association rules to a smaller list containing only non-redundant association rules

The GENMINER solution to this problem was explained here included in the third

mining step: generating the non-redundant and non-transitive exact and approximate rules

for a given minsupp and minconf using the min �max basis Close methodology explained
in section 7.3. The importance of the adopted pruning methodology will be illustrated in the

next example.

In order to show the importance of our pruning methodology, we have treated a sample

of itemsets, I1, containing the itemsets of three equivalence classes: minsupp= 2=6, minsupp=

3=6, and minsupp= 5=6 (see Fig. 7.8 ). All approximate association rules extracted from the

sample of itemsets , I1, in a data mining context DG (see Table 7.6) are illustrated in Table
7.7 (the exact association rules obtained from the sample I1 are not taken into account.

Number Approximate rule Supp Conf
1 [#]C1, C ) ["]C2, E 2/6 2/3
2 [#]C1, C ) ["]C2 2/6 2/3
3 [#]C1, C ) E 2/6 2/3
4 C, E ) [#]C1 2/6 2/4
5 [#]C1) ["]C2, C, E 2/6 2/3
6 [#]C1 ) ["]C2, E 2/6 2/3
7 [#]C1 ) C, E 2/6 2/3
8 [#]C1 ) ["]C2, C 2/6 2/3
9 [#]C1) E 2/6 2/3
10 [#]C1 ) ["]C2 2/6 2/3
11 C ) [#]C1 , ["]C2, E 2/6 2/5
12 C ) [#]C1 3/6 3/5

TABLE 7.7: Sample of approximate association rules extracted from DG.

After applying the min�max basis for extracting the minimal non-redundant approx-
imate rules to the sample I1 (see Table 7.7) with minsupp= 2=6 and minconf= 2=5; we

obtain the following minimal rules:

Approximate rule Supp Conf
[#]C1 ) ["]C2, C, E 2/6 2/3
C ) [#]C1, ["]C2, E 2/6 2/5
C ) [#]C1 3/6 3/5

TABLE 7.8: Approximate non-redundant association rules extracted from DG.

The three approximate rules shown in Table 7.8 are the minimal basis for generating

the 12 rules illustrated in Table 7.7 with a minsupp= 2=6 and minconf= 2=5. For example,

considering the minimal non-redundant approximate rule [#]C1 ) ["]C2, C, E in Table 7.8
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,we deduce the rules:

[#]C1 ) ["]C2
[#]C1 ) E

[#]C1 ) ["]C2; C
[#]C1 ) ["]C2; E
[#]C1 ) C;E

The rule [#]C1 ) C is not generated because it is an exact rule belonging to the same Close

interval. In the same way we can deduce the remaining redundant approximate rules

[#]C1; [C] ) ["]C2; E
[#]C1; C ) ["]C2
[#]C1; C ) E

C;E ) [#]C1

from the three non-redundant approximate rules illustrated in Table 7.8.

After pruning the redundant rules, we applied the transitive rules pruning, obtaining

from the min�max basis () for extracting the minimal non-transitive approximative rules to
the sample I1with minsupp= 2=6 and minconf= 2=5. We obtain the minimal non-redundant

rules and non-transitive approximate rules [#]C1) ["]C2, C, E and C ) [#]C1 illustrated in
Fig. 7.8 in the itemset sample I1. The transitive rule [C] ) [#]C1, ["]C2, E was eliminated

because it can be derived from rules [#]C1 ) ["]C2, C, E and C ) [#]C1.
Therefore, the data analyst has to focus on rules 5 and 12, because none of the 10

redundant or transitive association rules 1 to 4 or 6 to11 (see Table 7.7) adds any information.

Furthermore, if the analyst takes one of these 10 redundant rules, for example [#]C1, C )
["]C2, he can come to wrong conclusions, because the analyst will believe that a set of genes
has 23% chances to be over-expressed in biological condition C2 if these genes are annotated

with characteristic C and under-expressed in biological condition C1. As a matter fact, this

set of genes has 23% chances to be over-expressed in biological condition C and annotated with

characteristics C and D if they are under-expressed in biological condition C1 (explained by

the non-redundant and non-transitive rule [#]C1 ) ["]C2, C, E ). Thus, redundant rules

can be misleading and cause misinterpretations of the results. We believe that extracting

only rule 5 and 12 (for the approximative rule case) will improve the result relevance and

usefulness. We conclude that the most relevant rules from the analyst�s point of view are

the rules that have minimal antecedent (left-hand side) and maximal consequent for a given

support and con�dence. In our example, these are the rules 5 and 12 of the Table 7.7, i.e.

[#]C1 ) ["]C2, C, E and C ) [#]C1.

7.4.4Interpretation of extracted rules

At this stage, GENMINER has extracted all non-redundant and non-transitive approximate

and exact association rules containing information about the relationships among gene ex-
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pression measures and gene annotations for gene groups. The number of extracted rules in

highly correlated gene expression technology data is generally enormous and the interpreta-

tion task becomes considerably complex to analysts, even if thedata were already pruned. Our

algorithm delivers the minimal basis containing only minimal non-redundant rules without

information loss, and it suggests two paths for selecting the "most interesting" rules. These

paths are:

1. Rule volume reduction concerns the creation of �lters to select only the kind of

association rules that the expert expect to obtain in order to achieve the main goal

of the biological experiment. For example, choosing only the rules that have gene

annotations as antecedent and gene expression measures as consequent, or vice versa

and so on.

2. Rule expert selection concerns the extraction of the rules containing items that

constitute the inherent knowledge of the expert. Experts knowledge can also be

understood as the past knowledge concerning the main goal of the biological experiment.

For example, if the goal is to �nd the group of genes that may be the cause of brain

cancer, the rules concerning the items that represent accurate knowledge in this subject

have to be chosen.

Some approaches have dealt with the automatic or semi-automatic knowledge extraction

problem represented by the second path of research. These knowledge extraction approaches

can be divided into objective and subjective. The objective approaches build statistical inter-

est measures, which evaluate the accuracy and the quality of extracted motifs. In contrast,

the subjective approaches construct subjective interest measures focused on the user, expert

or analyst interest. More precisions concerning these two axes of research can be obtained

in Brisson [56]. A survey concerning the objective approaches has been made by Azé [14]

and another survey concerning both approaches objective and subjective has been made by

McGarry [207]. .

GENMINER suggests the utilization of a new objective-subjective approach named

Keops [56], which di¤erentiates interesting rules from non-interesting rules taking into account

two kinds of interest measures, the subjective measure represented by a prior knowledge

(issued from one of the six sources of biological information or the experts knowledge in the

�eld) and the objective measure using the support, con�dence and lift of a rule.

7.4.5Implementation

The GENMINER algorithm was implemented as a C++ program containing the Close ex-

traction algorithm (More details see in [229]). The NORDI discretization algorithm was

implemented using the R language and using several libraries of the bioconductor open

source project. The programs for selecting the di¤erent kinds of rules from the GENMINER

extracted rules �le were implemented in python language.
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7.5 Results of DeRisi Data Set

In order to evaluate our approach, the GENMINER algorithm was applied to the DeRisi data

set which is one of the most studied in this �eld [90]. The DeRisi data set measures the

variations in gene expression pro�les during the cellular process of diauxic shift for the yeast

Saccharomyces Cerevisiae. When inoculated into a glucose-rich medium (anaerobic growth),

the budding yeast can convert the glucose to ethanol (aerobic respiration), the shift from

anaerobic fermentation of glucose to aerobic respiration of ethanol is the so-called diauxic

shift.

This section is organized as follows, �rst we present the DeRisi data set selection and pre-

treatment. Then, we present and validate the results obtained with GENMINER, comparing

with ARD algorithm of Carmona et al. [61]. Finally, we underline the principal biological

interpretations obtained with GENMINER.

7.5.1DeRisi data set selection and pretreatment

The DeRisi data set was principally used to validate and compare our approach with ARD

approach of Carmona et al. [61]. Thus, we have used the same parameters for gene expression

measures (including discretization cut-o¤s) and gene expression annotations.

Gene expression measures

The microarray technique used is spotted cDNA chips obtained by two color �uorochromes

with distinct emission spectra Cy3 and Cy5 (this technique was explained in section 1.2.1).

The DeRisi data set contains the expression levels of 6199 ORF�s (opening reading frames) of

the yeast (an entirely sequenced organism) for 7 temporal points that correspond to samples

harvested at successive two-hour intervals after an initial nine hours of growth.

Data treatment and discretization

The data set was pre-treated by taking the log2 ratios (to consider cellular inductions and

repressions in a numerically equal way) and applying the imputation algorithm of k-nearest

neighbors [184] in order to treat the missing values (1.9% of the total).

In order to compare with the ARD algorithm of Carmona et al., we have used the

2 � fold change cuto¤ method (explained in section 7.4) proposed by Carmona et al.[61]

Let us assume that the gene expression measures are presented as a matrix: X with n genes

(rows) and m biological conditions (columns) where Xi;j is the expression measure of gene i

in biological condition j. Xi;j 2 R. Applying the 2 � fold threshold cuto¤s, shown in the
equation 8.2 and explained in section 7.4, the discretization intervals for every Xi;j 2 X are:

Xi;j � 1 =) Xi;j over-expressed or " (7.3)

Xi;j � �1 =) Xi;j under-expressed or #
�1 < Xi;j > 1 =) Xi;j Unexpressed
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7.5.2 DeRisi results in mining DGK context

Gene annotations

Yeast genes were annotated using three sources of biological information:

� The gene/protein related speci�c database KEGG [161] containing the metabolic

pathways in which each gene is involved (see section 3.6 for more details).

� The information of transcriptional regulators that bind to promoter regions, these data

weren reported in the article of Lee et al. [176]. This information was used to annotate
yeast genes whose promoter regions were bound by at least one transcriptor regulator

(with a p-value threshold of 0.0005).

� The semantic source of information Gene Ontology, which contains annotations

from three di¤erent ontologies: biological processes, molecular functions and cellular

annotations (explained in section 3.7).

All gene annotations were taken as boolean variables, i.e. i 2 f0; 1g, indicating if an
annotation belongs, i = 1 or not, i = 0, to a given gene (similarly as stated in Table 7.6).

Data mining context

The DeRisi data set and the corresponding annotations were transformed into a data mining

context, DG =(T , I, R), as illustrated in Table 7.6. The transactions t 2 T are represented
by the yeast genes, and the items i 2 I represent each one of the gene characteristics, i.e.
discretized gene expression measures and gene annotations (as seen in Table 7.6).

We have validated our method using two di¤erent data mining contexts: mining the

data using gene expression measures and KEGG gene annotations, DGK =(T , I, R); and
mining the data using gene expression measures, KEGG gene annotations, transcriptional

regulators, and GO annotations DGKPG =(T , I, R) as used in the ARD method presented
by [61].

7.5.2DeRisi results in mining DGK context

Discovering that most of the genes involved in a speci�c metabolic pathway are over -or under-

expressed in the same experimental conditions provides clues about the biological processes

that can be acting under these experimental circumstances [61]. A set of 1126 yeast genes of

the whole 6199 genes included in the analysis were associated with at least one pathway from

KEGG database.

Association rules extracted using the ARD algorithm (Carmona et al [61]) with min-

supp=.44% (at least 5 transactions) and minconf=40% for mining DGK context are presented
in Table 7.9. Since it is usual to analyze information only about individual pathways, the

Table 7.9 presents the 21 rules, after applying a single antecedent �lter.

Every rule showed inTable 7.9 contains a single antecedent corresponding to the KEGG

annotation (second column) and a consequent composed of the di¤erentially under-expressed

(#) or over-expressed (") gene expression measures at a certain biological condition (in this
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

Rule Antecedent Consecuent Genes Supp. Conf.

Annotation C6 C7 # % %

1 Ribosome # # 95 8.40 72.52

2 Ribosome # 121 10.75 92.37

3 Ribosome # 96 8.53 73.28

4 Oxidative phosphorylation " 34 3.02 57.63

5 Citrate cycle (TCA cycle) " 23 2.04 76.67

6 Oxidative phosphorylation " " 29 2.58 49.15

7 Citrate cycle (TCA cycle) " " 18 1.60 60.00

8 Oxidative phosphorylation " 31 2.75 52.54

9 Reductive carboxylate cycle (CO2 �xa-
tion)

" " 7 0.62 63.64

10 Pyruvate metabolism " 14 1.24 42.42

11 Glyoxylate and dicarboxylate
metabolism

" 8 0.71 57.14

12 ATP synthesis " 10 0.89 41.67

13 RNA polymerase # 17 1.51 60.71

14 Propanoate metabolism " 5 0.44 45.46

15 Aminoacyl-tRNA biosynthesis # 18 1.60 48.65

16 Methionine metabolism # 8 0.71 57.14

17 Selenoamino acid metabolism # 10 0.89 52.63

18 Cysteine metabolism # 5 0.44 50.00

19 Valine leucine and isoleucine biosynthesis # 7 0.62 43.75

20 Pantothenate and CoA biosynthesis # 5 0.44 45.46

21 Ribo�avin metabolism # 5 0.44 41.67

TABLE 7.9: Rules extracted from mining DGK context with minsupp=.44% and min-
conf=40% with ARD algorithm
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7.5.2 DeRisi results in mining DGK context

case only C6 and C7). Each of the rules contains the number of genes concerned by these

rule (column 4), the support and the con�dence (column 5 and 6) respectively.

Association rules extracted using GENMINER algorithm under the same parameters

minsupp=.44% and minconf=40% and a similar data mining context DGK0 context are pre-
sented in Table 7.10. The slight di¤erences between DGK and DGK0 context consists in
the update of the KEGG and SGD nomenclature databases from 2006 to 2007 respectively.

GENMINER has generated the closure, the generators, the exact rules, and the approximative

rules. Table 7.10 presents the approximative rules generated by GENMINER after applying

the single antecedent �lter.

Rule Antecedent Consecuent # Genes Supp. Conf.

Annotation C6 C7 % %

1 Ribosome # # 96 8.53 73.28

2 Ribosome # 121 10.75 92.37

3 Ribosome # 97 8.61 74.05

4 Oxidative phosphorylation " 34 3.02 57.63

5 Citrate cycle (TCA cycle) " 23 2.04 76.67

6 Oxidative phosphorylation " " 30 2.66 50.85

7 Citrate cycle (TCA cycle) " " 19 1.69 63.33

8 Oxidative phosphorylation " 32 2.84 54.24

9 Reductive carboxylate cycle (CO2 �xa-
tion)

" " 7 0.62 63.64

10 Pyruvate metabolism " 15 1.33 45.45

11 Glyoxylate and dicarboxylate
metabolism

" 8 0.71 53.33

12 ATP synthesis " 10 0.89 41.67

13 RNA polymerase # 17 1.51 60.71

14 Propanoate metabolism " 5 0.44 35.71

15 Aminoacyl-tRNA biosynthesis # 18 1.60 48.65

16 Methionine metabolism # 8 0.71 57.14

17 Selenoamino acid metabolism # 10 0.89 52.63

18 Cysteine metabolism # 5 0.44 50.00

19 Valine leucine and isoleucine biosynthesis # 7 0.62 43.75

20 Pantothenate and CoA biosynthesis # 5 0.44 45.46

21 Ribo�avin metabolism # 4 0.36 36.36

22 Galactose metabolism " 10 0.89 31.00

23 Purine metabolism # 37 3.29 43.00

24 Pyrimidine metabolism # 28 2.49 41.00

25 Glycine. serine and threonine
metabolism

# 13 1.15 31.00

26 Starch and sucrose metabolism " 17 1.51 35.00

TABLE 7.10: Rules extracted from mining DGK context with minsupp=.44% and
minconf=40% with Genminer algorithm
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

As we have seen, GENMINER has extracted the same 21 rules than ARD algorithm.

The small di¤erences concerning support and con�dence are caused by the database update

from year to year as explained before. For example the rule 1 is valid for 95 genes in ARD and

96 genes in GENMINER, that means that a new gene (of the 6199 total genes) was annotated

as Ribosome in the course of one year (2006 vs. 2007) in the KEGG database.

GENMINER has detected �ve more rules (22-26) that were not extracted by ARD

algorithm with high support and a non-negligible con�dence. These rules are biologically

important, and they indicate an activation of a group of genes for biological condition 6

in the case of galactose, starch and sucrose metabolism and an inhibition of a gene group

for biological condition 7 in the case of purine, pyrimidine, glycine, serine and threonine

metabolism. These results correspond to the yeast diauxic shift process that produces energy

via metabolism while fermenting the sugar in the last part of the process.

7.5.3DeRisi Results in mining DGKPG context

Another common approach used to derive biological knowledge is to extract information about

transcriptional mechanisms. Promoter regions of co-expressed genes can be analyzed in order

to �nd common upstream sequence motifs [9]. In data mining context DGKPG we integrated
multiple types of biological information: transcriptional regulator, metabolic pathways and

GO annotations. 3882 genes on the DeRisi data set were properly annotated and used for the

analysis.

Association rules extracted using ARD algorithm (Carmona et al [61]) with min-

supp=.44% (at least 5 transactions) and minconf=100% for mining DGKP (without tak-

ing into account GO annotations) context are presented in Table 7.11. After applying the

redundant �lter proposed in the ARD algorithm, 21 exact rules were obtained containing tran-

scriptional regulators (written in capital letters) and KEGG annotations, as seen in Table

7.11.

We have applied the GENMINER algorithm using the same support and con�dence:

minsupp=.44% (at least 5 transactions) and minconf=100%, for mining DGKPG. We have
worked also with GO annotations to validate well known relationships between the KEGG

database and GO annotations. Table 7.12 presents a selection of the GENMINERmin�max
exact basis (explained in section 7.3) extracted from DGKPG.

All exact association rules, supports and con�dences contained in Table 7.11 can be

deduced from this selection of the min � max exact basis. The lector can construct the

numbered rules in Table 7.11 by taking the correspondent Generator and Closure (with

the corresponding rule number) and generate the same rule. For example, the second rule,

r2, in Table 7.11 FHL1, RAP1, YAP5, Ribosome ) [#]C7 can be generated by taking the
second line of Table 7.12 the generator {YAP5, Ribosome}and closure {[#]C6; [#]C7, RAP1,
YAP5, FHL1, Translation, Ribosome} at the same supp=.67% and conf=100% :We have seen

in section that the generator and its closure build the correspondent min-max association rule

among all rules with the form YAP5, Ribosome) [#]C6; [#]C7, RAP1, FHL1, Translation.
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7.5.3 DeRisi Results in mining DGKPG context

Rule Antecedent Consecuent Genes Supp. Conf.

Annotation C6 C7 # % %

1 FHL1, GAT3, RAP1, Ribosome # 34 0.88 100

2 FHL1, RAP1, YAP5, Ribosome # 26 0.67 100

3 FHL1, GAT3, RAP1, YAP5, Ribosome # # 21 0.54 100

4 FHL1, RAP1, PDR1, Ribosome # 17 0.44 100

5 SFP1, Ribosome # # 12 0.31 100

6 FHL1, GAT3, RAP1, RGM1, Ribosome # # 11 0.28 100

7 FHL1, RAP1, SFP1, Ribosome # # 11 0.28 100

8 FHL1, RAP1, PDR1, YAP5, Ribosome # 10 0.26 100

9 FHL1, GAT3, RAP1,YAP5, RGM1, Ribo-
some

# # 9 0.23 100

10 FHL1, GAT3, RAP1, PDR1, YAP5, Ribo-
some

# # 9 0.23 100

11 FHL1, RAP1, SMP1, Ribosome # # 8 0.21 100

12 FHL1, GAT3, RAP1, SFP1, Ribosome # 7 0.18 100

13 FHL1, RAP1,YAP5, SFP1, Ribosome " 6 0.15 100

14 FHL1, RAP1, PDR1, SFP1, Ribosome # 6 0.15 100

15 YAP6, Ribosome # 6 0.15 100

16 FHL1, RAP1, PDR1, YAP5, SFP1, Ribo-
some

# # 5 0.13 100

17 FHL1, GAT3, RAP1, PDR1, YAP5, SFP1,
Ribosome

# # 5 0.13 100

18 FHL1, RAP1, PDR1, SMP1, Ribosome # # 5 0.13 100

19 FHL1, RAP1, MET31, Ribosome # 5 0.13 100

20 FHL1, YAP6, Ribosome # 5 0.13 100

21 HAP2, HAP3, HAP4, Oxidative phosphory-
lation

# 5 0.13 100

TABLE 7.11: Rules extracted from mining DGKP context with minsupp=.44% and
minconf=100% with ARD algorithm
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

Rule Generator Closed Itemset Genes Supp. Conf.

# % %

1 {GAT3, Ribosome} {C7 [#], GAT3, RAP1, FHL1, Transla-
tion, Ribosome}

34 0.88 100

2 {YAP5, Ribosome} {C6 [#], C7 [#], RAP1, YAP5, FHL1,
Translation, Ribosome}

26 0.67 100

3 {GAT3, YAP5, Ri-
bosome}

{C6 [#], C7 [#], GAT3, RAP1, YAP5,
FHL1, Translation, Ribosome}

21 0.54 100

4 {PDR1, Ribosome} {C7 [#], PDR1, RAP1, FHL1, Transla-
tion, Ribosome}

17 0.44 100

5 {Ribosome, SFP1} {C7 [#], SFP1, Translation, Ribosome} 12 0.31 100

6 {RGM1, Ribo-
some}

{C7 [#], GAT3, RAP1, RGM1, FHL1,
Translation, Ribosome}

11 0.28 100

7 {Ribosome, FHL1,
SFP1}

{C7 [#], RAP1, FHL1, SFP1, Translation,
Ribosome}

11 0.28 100

8 {PDR1, YAP5, Ri-
bosome}

{C6 [#], C7 [#], PDR1, RAP1, YAP5,
FHL1, Translation, Ribosome}

10 0.26 100

9 {RGM1, YAP5,
FHL1, C6 [#]}

{C6 [#], C7 [#], GAT3, RAP1, RGM1,
YAP5, FHL1, Translation, Ribosome}

9 0.23 100

10 {GAT3, PDR1,
FHL1, C6 [#]}

{C6 [#], C7 [#], GAT3, PDR1, RAP1,
YAP5, FHL1, Translation, Ribosome}

9 0.23 100

11 {Ribosome, SMP1} {C6 [#], C7 [#], RAP1, FHL1, SMP1,
Translation, Ribosome}

8 0.21 100

12 {GAT3, C6 [#],
SFP1}

{C6 [#], C7 [#], GAT3, RAP1, FHL1,
SFP1, Translation, Ribosome}

7 0.18 100

13 {YAP5, Ribosome,
SFP1}

{C6 [#], C7 [#], RAP1, YAP5, FHL1,
SFP1, Translation, Ribosome}

6 0.15 100

14 {PDR1, C6 [#],
SFP1}

{C6 [#], C7 [#], PDR1, RAP1, FHL1,
SFP1, Translation, Ribosome}

6 0.15 100

15 {Ribosome, YAP6} {C7 [#], YAP6, Translation, Ribosome} 6 0.15 100

16 {C7 [#], PDR1,
RAP1, SMP1}

{C6 [#], C7 [#], PDR1, RAP1, FHL1,
SMP1, Translation, Ribosome}

5 0.13 100

17 {GAT3, YAP5, Ri-
bosome, SFP1}

{C6 [#], C7 [#], GAT3, RAP1, YAP5,
FHL1, SFP1, Translation, Ribosome}

5 0.13 100

18 {PDR1, Ribosome,
SMP1}

{C6 [#], C7 [#], PDR1, RAP1, FHL1,
SMP1, Translation, Ribosome}

5 0.13 100

19 {Ribosome,
MET31}

{C7 [#], RAP1, FHL1, MET31, Transla-
tion, Ribosome}

5 0.13 100

20 {Ribosome, FHL1,
YAP6}

{C7 [#], FHL1, YAP6, Translation, Ribo-
some}

5 0.13 100

21 {HAP3, Oxidative
phosphorylation}

{C7 ["], HAP2, HAP3, HAP4, Transport,
Metabolites and energy generation, Ox-
idative phosphorylation}

5 0.13 100

TABLE 7.12: Selection of the min-max exact basis extracted from DGKPG with min-
supp=.44% and minconf=100% with GENMINER algorithm

216



7.5.4 Biological signi�cance of the discovered associations

This rule has a minimal antecedent and a maximal consequent among all rules that have

the same support and con�dence. Thus, each one of the elements of the consequent, even

all ([#]C6; [#]C7, RAP1, FHL1, Translation) can be indi¤erently at the antecedent part of
the rule conserving the same support and con�dence. We have considered all these rules

redundant in relation to the correspondent min-max association rule. So, the rule r2 of

Table 7.11 can be obtained from the min � max rule by passing the elements RAP1 and
FHL1 to the antcedent part and leaving only the element [#]C7 in the consequent part. In a
similar way, the lector can build the 21 rules presented by ARD algorithm in Table 7.11 by

taking the respective generator and closure sets obtained with GENMINER in Table 7.12.

GENMINER algorithm gives three kinds of results: themin�max exact and approximative
basis, the exact rules and the approximative rules. So, the analyst could choose between these

three outputs for guiding their analysis. As seen in the last example, ARD algorithm gives

their results only in the form of association rules, without any knowledge of the character-

istics of the extracted rule. On the other hand, GENMINER gives to the analyst not only

the extracted rules, but also the min � max basis; which enables to understand some of

the characteristics of the obtained rules. Taking as example the second rule (obtained by

ARD algorithm) presented in Table 7.11, r2: FHL1, RAP1, YAP5, Ribosome ) [#]C7,
the analyst will interpret that when a set of 26 genes annotated with the promoters: FHL1,

RAP1, YAP5 and the metabolic pathway Ribosome occurs, the set of genes is likely to be

under-expressed in biological condition seven [#]C7 with a support of .67% and 100% con�-

dence. Indeed, taking the corresponding min � max rule obtained by GENMINER YAP5,

Ribosome ) [#]C6; [#]C7, RAP1, FHL1, Translation; the analyst knows that the only two
necessary itemsets are the gene annotations YAP5 and Ribosome and the ones that are in

the consequent part could be or not in the antecedent part or consequent part of the rule.

Thus, he will interpret, when a set of 26 genes annotated with YAP5 and Ribosome (neces-

sary) and possibly ( [#]C6, RAP1, FHL1, Translation) occurs, that the set of genes is likely
to be under-expressed in biological condition seven [#]C7 and possibly ([#]C6, RAP1, FHL1,
Translation) with a support of .67% and 100% con�dence. This new interpretation tool en-

ables the analyst to know more about the characteristics of the extracted rules, detecting the

main relations and new relations among gene annotations and gene expression measures.

Concerning the GO annotations, we can see in Table 7.12 that the KEGG annotation:

Ribosome and the GO annotation Translation appear always together in the closures set (R1-

R20). The reason is that they are equivalent terms referring to the same biological process:

production of proteins explained in section 1.1. Similarly, the KEGG annotation �oxidative

phosphorylation� and the GO annotation �Transport� refer to the same biological process

which is the terminal process of cellular respiration.

7.5.4Biological signi�cance of the discovered associations

In order to evaluate the biological signi�cance of the associations provided by GENMINER,

it is important to analyze two parameters: support and con�dence. As we have stated,

the support of a rule is the percentage of transactions (annotated genes) that shows co-

occurrences of a given annotation or a similar expression pattern and the con�dence represents
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7 GENMINER: Gene-Integrated Analysis by Association Rules Discovery

the percentages of genes of a given category (represented by the antecedent) that show the

expression patterns or gene annotations appearing in the consequent of the rule.

In the case of DeRisi results and many biological experiments, the con�dence is a crucial

parameter. If only a small set of genes are annotated into a very speci�c category, the support

value of the rules containing this annotation will be quite low. However, if these rules have

a high con�dence value, they reveal that this speci�c biological property is highly associated

with the expression pattern that appears in the consequent.

In this section, we present the most marked discovered biological association extracted

from Tables 7.10 and 7.12. The lector can �nd a more extended discussion concerning the

biological signi�cance issue of Tables 7.9 and 7.11 in their publication [61].

As noted in the Tables 7.10 and 7.12, extracted rules from DeRisi data set only revealed

marked alterations at biological conditions C6 and C7, which is in agreement with the curve

of glucose concentration reported in the original paper [90].

The rule r3 of Table 7.10 shows that more than 70% of all genes annotated as "ri-

bosome" were under-expressed at time point 6, while the rule r2 of the same Table shows

that more than 90% of the genes annotated within this category were under-expressed at

time point 7. This increase in con�dence (and also in support) value from time point 6 to

7 indicates that an increasing number of ribosomal genes were signi�cantly under-expressed.

The association of this pathway and the under-expression pattern of some genes involved in

pathways related to protein and nucleic acid biosynthesis is in agreement with the observa-

tion that yeast cells enter into a non proliferating stationary phase in response to glucose

depletion [192].

The rule r8 of Table 7.10 shows that 60% of genes involved in "TCA cycle" were

mainly over-expressed at time points 6 and 7, when more than 76% of all genes annotated as

"TCA cycle" were over-expressed (as seen in r5 of Table 7.10).

Additionally, extracted rules as r11 and r14 show that the genes involved in "glyoxylate

and dicarboxylate metabolism" and "propanoate metabolism" were also mainly over-expressed

at time point 7 which re�ects the main metabolic changes associated to the diauxic shift in

yeast, manually identi�ed by DeRisi [90].

In rules r17 and r18 of Table 7.11 states that the transcriptional regulators FHL1,

GAT3, SMP1, PDR1 and YAP5 are related to under-expression in biological conditions C6

and C7 and with the metabolic pathway "ribosome". This reveals that promoter regions were

bound by this set of transcriptional regulators and, in addition, they were highly repressed in

response to glucose depletion.

The rule that can be obtained from the �rst generator of Table 7.12, that is the

rule GAT3, FHL1, RAP1, Ribosome ) C7[#] shows that ribosomal genes whose promoter
regions were bound by RAP1, FHL1 and GAT3 gene products presented an inhibition pattern

in response to nutrient starvation. These associations were extracted with relatively high

support values and suggest a connection among GAT3, FHL1 and RAP1 and the decrease in

ribosomal gene transcription in response to glucose depletion. The connection among RAP1

and ribosomal gene transcription is well-known [216].
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7.6 Results of Eisen Data Set

In rule r21 of Table 7.11 we can note that the under-expressed genes whose promoters

regions were bound by the products of HAP2, HAP3, HAP4 were mainly involved in "oxidative

phosphorylation", the biological process in which cytochrome correlated genes are involved

(as stated by DeRisi in [90]).

The rule r5 of Table 7.11 showed that 100% of genes whose promoter regions were

bound by the SFP1 gene product were annotated as "ribosome" were inhibited in response

to nutrient starvation. In a recently published work, Marion et al. [195] have demonstrated

that this transcription factor released from ribosomal protein gene promoters and ribosomal

protein gene transcription is down-regulated in response to changes in nutrient availability.

7.6 Results of Eisen Data Set

In order to evaluate and obtain meaningful relationships between gene annotations and gene

expression pro�les with GENMINER, it was applied to the most famous study in bioinformat-

ics �eld: Eisen data set [107]. This data set contains the expression measures of 2465 yeast

genes under 80 biological conditions extracted from a collection of four independent microar-

ray studies about the Saccharomyces Cerevisiae during several biological processes: cell cycle

experiments (Spellman et al.[290]), sporulation experiments (Chu et al. [71]), temperature

shock experiments (Eisen et al. [107]) and diauxic shift (DeRisi et al.[90].

Spellman et al. have studied three cell cycle yeast processes: alpha factor arrest and

release (18 time points), cell size selection and release selected by elutriation (14 time points)

and cdc15 arrest and release (15 time points) as seen in lines 1-3 of Table 7.13 respectively.

More details on these experiments can be found in Spellman et al. [290].

Chu et al. have studied the transcriptional responses during the biological process of

sporulation which is the production and release of spores. They have varied the sporulation

process over three di¤erent experimental conditions: sporulation (6 time points), sporulation 5

hour timepoint (3 time points) and the e¤ect measures of transcription factor Ndt80 knockout

on sporulation (2 measures) as seen in lines 4-6 of Table 7.13 respectively. More details on

these experiments can be found in Spellman et al. [71].

Eisen et al. measured the responses of yeast while growing at di¤erent temperatures and

conditions: yeast cells exposed to heat shock 25 � 37�C (6 time points), yeast cells exposed

to dithiothrietol (DTT) and a temperature of 25�C or DTT shock (4 time points), and yeast

cells exposed to cold shock (4 time points) as seen in lines 7-9 of Table 7.13 respectively.

More details can be found in Eisen et al. [107].

The last line of Table 7.13 corresponds to the diauxic shift experiment of DeRisi et al.

[90] (fully explained in the last section). More details on these experiments can be found in

DeRisi et al. [90]. Table 7.13 shows the composition of the 79 biological conditions contained

in the whole Eisen data set as explained before.

This section is organized as follows, �rst we present the Eisen data set selection and

pre-treatment. Then, we present the selected biological results obtained with GENMINER,
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Biological
Conditions

Biological
Process

Experiment References

C00-C17 Cell-cycle Alpha factor arrest and re-
lease

Spellman et al,
1998

C18-C31 Cell-cycle Elutriation Spellman et al,
1999

C32-C46 Cell-cycle cdc15 arrest and release Spellman et al,
2000

C47-C52 Sporulation - Chu et al., 1998

C53-C55 Sporulation 5 hour timepoint Chu et al., 1999

C56-C57 Sporulation In ndt80 knockout Chu et al., 2000

C58-C63 Cell Response Heat Shock 25-37C Eisen et al., 1998

C64-C67 Cell Response DTT Shock Eisen et al., 1999

C68-C71 Cell Response Cold Shock Eisen et al., 2000

C72-C78 Diauxic Shift - DeRisi, et al., 1997

TABLE 7.13: Eisen data set during several biological process: cell cycle experiments,
sporulation experiments, temperature shock experiments and diauxic shift.

emphasizing the di¤erent sources of biological information used in the extraction process.

Finally, we underline the principal biological interpretations obtained with GENMINER.

7.6.1Eisen data set selection and pretreatment

In order to show the advantages presented by GENMINER algorithm, we have exploited

several sources of biological information (for gene annotations) as well as the NORDI dis-

cretization algorithm (for gene expression measures treatment).

Gene expression measures

The microarray technique used is spotted cDNA chips obtained by two color �uorochromes

with distinct emission spectra Cy3 and Cy5 (this technique was explained in section 1.2.1).

The Eisen data set contains the expression levels of 2465 ORF�s (opening reading frames) of

the yeast (an entirely sequenced organism) for 79 biological conditions (as shown in Table

7.13).

Data treatment and discretization

The data set was pre-treated by taking the log2 ratios (to consider cellular inductions and

repressions in a numerically equal way) and applying the imputation algorithm of k-nearest

neighbors [184] in order to treat the missing values (1.9% of the total).

The studied biological processes of the yeast (sporulation, diauxic shift, heat shock etc.)

are independent from each other, and they are supposed to be normally distributed (as ex-

plained in section 7.4). In this manner, all the hypotheses of NORDI discretization algorithm

are accomplished (see section 7.4.2). Let us assume that the gene expression measures are

presented as a matrix: X with n genes (2465 rows) and m biological conditions (79 columns),
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where Xi;j is the expression measure of gene i in biological condition j. Xi;j 2 R. Applying
the NORDI discretization algorithm explained in section 7.4.2, we obtain the following three

discretization intervals for every Xi;j 2 X :

Xi;j � 1 =) Xi;j over-expressed or " (7.4)

Xi;j � �1 =) Xi;j under-expressed or #
�1 < Xi;j > 1 =) Xi;j Unexpressed.

Gene annotations

We have used the Saccharomyces cerevisiae Database (SGD) nomenclature for naming the

yeast genes (SGD was explained in section 3.3). All yeast genes were annotated using seven

sources of biological information:

� The semantic source of information Gene Ontology, containing annotations from

biological processes, molecular functions and cellular annotations (explained in section

3.7).

� The bibliographic source of information from SGD�s manually curated papers

of PubMed/Medline (see more details in section 3.5). The bibliographic source of

information

� The gene/protein related speci�c repository BioGRID [293] containing the information

about physical and genetic interactions. (see more details in section 3.6).

� The gene/protein related speci�c database KEGG [161] containing the metabolic

pathways in which each gene is involved (see section 3.6 for more details).

� The phenotype information of given yeast genes extracted from SGD�s file.

� The information of transcriptional regulators that bind to promoter regions, these data

were reported in the article of Lee et al. [176]. This information was used to annotated

yeast genes whose promoter regions were bound by at least one transcriptor regulator

(with a p-value threshold of 0.0005).

All gene annotations were taken as boolean variables, i.e. i 2 f0; 1g, indicating if an
annotation pertains, i = 1; or not, i = 0, to a given gene (similarly as stated in Table 7.6).

Data mining context

The Eisen data set and their corresponding annotations were transformed into a data mining

context, DGAL =(T , I, R) where the transactions t 2 T are represented by the yeast genes,
and the items i 2 I are each one of the gene characteristics, i.e. discretized gene expression
measures and gene annotations (as seen in Table 7.6).

The resulting data mining context DGAL =(T , I, R) contains 2465 transactions or
genes measured over 79 biological conditions (each value discretized by the NORDI algorithm).

The obtained gene annotations over the 2465 genes were: 24 Gene Ontology annotations, 15

KEGG annotations, 25 transcriptional regulators, 20 protein interactions, 14 phenotypes and
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20 pubmed keywords. Thus, the resulting matrix of genes measures and annotations is of

2465 columns and 197 lines.

7.6.2Eisen results in mining DGAL context

In order to complete the analysis, we explore the full potential of GENMINER method inte-

grating gene expression pro�les with multiple types of biological information: transcriptional

regulator, metabolic pathways, GO annotations, interactions between proteins, phenotype

information and the links to the PUBMED articles. Furthermore, we have taken into ac-

count all possible kinds of rules having either gene annotations or gene expression measures

indi¤erently as antecedent or consequent.

The results presented here correspond to extracted rules using GENMINER algorithm

with minsupp=.41% (at least 10 transactions) and minconf=50% for mining DGAL context.
We have selected and described meaningful biological rules, emphasizing the form of the rule

in order to show the potentials of our algorithm.

Exploring associations of the type Gene annotations =) Gene expression
patterns

In the case of the yeast diauxic shift process (biolocal conditions 72-78 in Table 7.13) we have

found all the rules presented in Table 7.10 for data mining context DGK and Table 7.11
for data mining context DGKP. The di¤erence in these rules are the support and con�dence
measures, because the Eisen data contain only a selection of 2465 genes of the 6199 genes

used in DeRisi data. However, the biological interpretation of the results given in the DeRisi

Results section is also valid here.

Exploring associations of the type Gene expression patterns =) Gene annotations

Here, we analyze association rules of the kind: gene expression Patterns =) gene Annotations,

that means when a group of genes is over-expressed or under-expressed in a set of biologi-

cal conditions, these genes are likely to have the correspondent gene annotations. Selected

association rules extracted for mining DGAL with minsupp=.41% (at least 10 transactions)

and minconf=50% are presented in Table 7.14-7.18. The antecedent of the rule contains

the over-expression or under-expression in a set of biological conditions and the consequent is

composed by their correspondent gene annotations (�rst three columns of Tables 7.14-7.18).

The support is given in terms of number of transactions and the con�dence is a percentage

(columns 4 and 5 of Tables 7.14-7.18). The resulting rules are presented in �ve di¤erent

Tables corresponding to �ve di¤erent biological processES: elutriation on Table 7.14 (see

C18-C31 on Table 7.13), sporulation Table 7.15 (see C47-C57 on Table 7.13), heat shock

on Table 7.16 (see C58-C63 on Table 7.13), cold shock on Table 7.17 (see C68-C71 on

Table 7.13) and diauxic shift on Table 7.18 (see C72-C78 on Table 7.13).

Concerning the elutriation process (C18-C31), we have found an over-expression of the

responsible genes of the protein synthesis (GO:0006412 BP translation), an under-expression

of the genes responsible of the cellular organization (GO:0006996 BP organelle organization
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and biogenesis), an under-expression of the genes responsible for the ribosomal organization

(GO:0042254 BP ribosome biogenesis and assembly) and an over-expression of the genes which

play an role in the response to stress (GO:0006950 BP response to stress). See Table 7.14.

Rule Antecedent Consequent Supp. Conf.

# %

1 C22["], C24["],
C23["]

) Translation (protein formation) 26 87

2 C21["] ) Translation (protein formation) 39 52

3 C21["], C22["],
C24["]

) Translation (protein formation) 18 86

4 C25["], C23["] ) Translation (protein formation) 21 68

5 C19[#] ) Organelle organization and biogene-
sis

12 55

TABLE 7.14: Selected elutriation rules extracted from mining DGAL context with min-
supp=.41% (at least 10 transactions) and minconf=50% with GENMINER algorithm

In the sporulation experiments, we note an over-expression of the genes intervening

in the sugar formation (GO:0005975 BP: carbohydrate metabolic process) and the protein

synthesis (GO:0006412 BP translation). This claim is con�rmed by the under-expression of

the genes belonging to the process of sugar transformation into energy (sce00010 Glycolysis

/ Gluconeogenesis pathway). See Table 7.15.

Rule Antecedent Consequent Supp. Conf.

# %

1 C50[#], C51[#],
C52[#]

) Carbohydrate metabolic process 12 52

2 C49[#], C50[#],
C52[#]

) Carbohydrate metabolic process 12 55

3 C49[#] ) Translation (protein formation) 42 52

4 C48[#], C49[#] ) Translation (protein formation) 27 57

5 C49["], C51["],
C52["]

) Organelle organization and biogene-
sis

18 51

6 C49[#], C50[#],
C51[#]

) Glycolysis / Gluconeogenes 13 52

7 C55["] ) Translation 50 54

TABLE 7.15: Selected sporulation rules extracted from mining DGAL context with
minsupp=.41% (at least 10 transactions) and minconf=50% with GENMINER algo-
rithm

A notable exception is to be noticed at the last timepoint of the sporulation (C55)

process where an over-expression of the genes is playing a role in the protein synthesis

(GO:0006412 BP translation). We can also remark an over-expression of the genes responsi-
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ble for the cellular organization (GO:0006996 BP organelle organization and biogenesis). See

Table 7.15.

In the Heat Shock(C58-C63) process, we note an under-expression of the genes respon-

sible for the protein synthesis (GO:0006412 BP translation), an under-expression of the genes

responsible for the cellular organization (GO:0006996 BP organelle organization and biogene-

sis), an under-expression of the genes responsible for the ribosomal organization (GO:0042254

BP ribosome biogenesis and assembly) and an over-expression of the genes related to stress

response (GO:0006950 BP response to stress). See Table 7.16.

Rule Antecedent Consequent Supp. Conf.

# %

1 C63[#], C62[#],
C60[#]

) Translation (protein formation) 16 80

2 C61[#], C62[#],
C60[#]

) Translation (protein formation) 35 88

3 C59["], C60["],
C62["]

) Response to stress 15 52

4 C59[#] ) Organelle organization and biogene-
sis

41 69

5 C59[#] ) Ribosome biogenesis and assembly 39 66

TABLE 7.16: Selected heat shock rules extracted from mining DGAL context with min-
supp=.41% (at least 10 transactions) and minconf=50% with GENMINER algorithm

In the Cold Shock experiment (C68-C71), there is an under-expression of the genes

responsible for the protein synthesis (GO:0006412 BP translation).See Table 7.17.

Rule Antecedent Consequent Supp. Conf.

# %

1 C72[#], C70[#] ) Translation (protein formation) 16 84

2 C69[#], C71[#] ) Translation (protein formation) 14 67

TABLE 7.17: Selected cold shock rules extracted from mining DGAL context with min-
supp=.41% (at least 10 transactions) and minconf=50% with GENMINER algorithm

Concerning the diauxic shift process (C72-C78), there is an over-expression of the

genes responsible for the energy generation (GO:0006091 BP generation of precursor metabo-

lites and energy) and an under-expression of the genes responsible for the protein synthesis

(GO:0006412 BP translation). As seen in the fourth block of Table 7.18.

Exploring associations of the type Gene annotations =) Gene annotations

Independently of the gene expression levels, it is also possible to highlight existent relationships

among gene annotations. Selected annotation =) annotation association rules extracted for
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Rule Antecedent Consequent Supp. Conf.

# %

1 C76["], C78["] ) Generation of precursor metabolites
and energy

24 52

2 C77[#], C78[#] ) Translation (protein formation) 21 66

TABLE 7.18: Selected diauxic shift rules extracted from mining DGAL context with
minsupp=.41% (at least 10 transactions) and minconf=50% with GENMINER algo-
rithm

mining DGAL withminsupp=.41% (at least 10 transactions) and minconf=50% are presented

in Table 7.19. The antecedent and the consequent of the rule contain gene annotations issued

from one of the seven sources of biological information explained before (�rst 3 columns of

Table 7.19). The support is given by the number of concerned genes, and the con�dence is

given as a percentage (columns 4 and 5 of Table 7.19).

Rule Antecedent Consequent Supp. Conf.

# %

1 PATHWAY=sce04111 ) GO:0007049 59 69

(Cell cycle) (Cell cycle)

2 PATHWAY=sce00190 ) GO:0005737 52 96

(Prune metabolism) (Cytoplasm)

3 PROMOTER=FHL1 ) PROMOTER=RAP1 114 86

4 PROMOTER=RAP1 ) PROMOTER=FHL1 114 61

5 PROMOTER=RAP1,
PROMOTER=FHL1

) GO:0005737,
GO:0006412, GO:0005840

93 82

6 PUBMED=16155567 ) PHENOTYPE=inviable 96 94

7 GO:0005737, GO:0045333 ) GO:0006091 54 100

8 GO:0016192 ) GO:0006810 167 100

9 GO:0005739 ) GO:0005737 503 100

8 GO:0005740 ) GO:0005737, GO:0005739 167 100

TABLE 7.19: Selected Annotation =) Annotation rules extracted from mining DGAL
context with minsupp=.41% (at least 10 transactions) and minconf=50% with GEN-
MINER algorithm

We identify an association between annotations carried out by groups of independent

experts who state as a Close concept the KEGG term sce04111 (Cell cycle) and the Gene On-

tology term GO:0007049 (cell cycle) with corresponding support of 59 and con�dence of 69%

(r1 of Table 7.19). We have also identi�ed less obvious associations, but nevertheless several

strong ones like the relationship between the KEGG term sce00190 (purine metabolism) and

the GO term GO:0005737 (cytoplasm) with a support of 52 and a con�dence of 96% (7.10

of Table 7.19).

Concerning the transcriptional regulators, extracted rules enable to state strong rela-

tionship between promoters: FHL1 and RAP1. For example the rule FHL1 =) RAP1 with
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a high support of 14 and a con�dence of 0,86 (r3 of Table 7.19) and the rule RAP1 =) FHL1

with the same support and a con�dence of 0,61 (r4 of Table 7.19). One can deduce from

these rules that the genes activated by FHL1 are also activated by RAP1 The reverse is less

true since there is a considerable proportion of genes activated by RAP1 and not by FHL1.

This information is already known and was described in many articles. For example Zhao et

al. [338] state that "RAP1 binding is essential for the recruitment of FHL1", and they ex-

plain the association between them in the following phrase: "based on recent work, a simple

model for the transcription of RP (ribosomal proteins) genes is that RAP1 recruits FHL1,

which in turn recruits the transcriptional activator IFH1". The last phrase con�rms the re-

sults obtained in rule r5 of Table 7.19 where the promoters RAP1 and FHL1 are closely

related to the Gene Ontology terms GO:0005737 (cytoplasm) and GO:0006412 (translation)

and GO:0005840 (ribosome). The two last terms are closely related to protein synthesis, and

the cytoplasm activity shows us the transcriptional cellular activity while RAP1 and FHL1

transcription factors are activated.

We have also detected rules which relate scienti�c articles with phenotypes as the rule

r6 of Table 7.19 where PUBMED:16155567 =) inviable with a support of 96 genes and a

con�dence of 94%. The PubMed article 1615567 �The synthetic genetic interaction spectrum

of essential genes� [86] presents a review of the essential yeast genes. These genes are for the

majority annotated as inviable, i.e. the organism does not survive when the correspondent

gene is removed. It could be interesting to examine what about the few genes quoted in the

article which are not annotated inviable. This could be a lapse of memory in this article [86].

When the analyzed data represent a hierarchy, it is possible, by examining the obtained

rules, to reconstitute the original hierarchy. For example, the rule r9 of Table 7.19, i.e.

GO:0005739 => GO:0005737 with supp=503 conf=100%, means that there are 503 genes

annotated by GO:0005739 and also by GO:0005737. GO: 0005739 is a sub-term of GO:

0005737 or it represents the same concept exactly. In Eisen data set, we have more than 1500

genes annotated with GO: 0005737. Therefore, GO: 0005739 is a sub-term or child of the

parental term GO: 0005737.

The rule r10 of Table 7.19, i.e. GO:0005740 => GO:0005737, GO: 0005739 with

supp=167 conf=100%, means that the terms annotated GO:0005740 are also annotated by

GO:0005737 and GO: 0005739. Thus, we continue the unfolding of the hierarchy GO:0005740

is a sub-term of GO:0005739 containing 167 genes.

7.7 Discussion

In this work we present the GENMINER algorithm, an association rules discovery approach

that ful�lls the requirements of data obtained from gene expression technologies. Our ap-

proach integrates at once gene expression pro�les with gene annotations to discover intrin-

sic associations among both data sources based on frequent patterns. That means it is a

co-clustering and bi-clustering approach integrating gene expression patterns and gene anno-

tations at once and �nding patterns of co-expressed genes in subsets of biological conditions.

Opposite to the majority of gene expression interpretation approaches, de�ned as expression-
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based and knowledge-based (see chapter 5), in which biological information and gene expression

pro�les are incorporated in an independent manner, our approach integrates both data sources

in a single framework. More advantages of co-clustering approaches have been discussed in

the discussion part of chapter 5.

GENMINER is an original approach that takes advantage of the Close association rules

extraction algorithm reducing considerably the execution time for rule extraction and gener-

ating a minimal basis for association rules extraction, enhancing the expert interpretation of

the extracted rules. As we have shown in Table 7.12, the use of the min-max basis for rule

generation allows the expert to know more about the inherent characteristics of the desired

rule like the minimal rule which synthesizes all the rule information, that means the rule with

a minimal antecedent and a maximal consequent. The expert can build next to this minimal

rule a set of rules with meaningful biological implications with same support and con�dence

(as we have shown building the rules of Table 7.9 after the generator and closure itemsets

in Table 7.12).

The analysis of the DeRisi data set has permitted to validate the GENMINER algorithm

and to compare it with the ARD association rules algorithm. Concerning the DeRisi data

set results obtained with the same parameters used in the ARD algorithm, GENMINER has

found all the association rules presented in ARD publication [61] for data mining contexts

DGK and DGKP with minsupp=.44% and minconf=40%.

In the DeRisi data set result section we have shown that the redundant �lter applied

by ARD is not minimal against inclusion. ARD algorithm states "that the rule with the

longest antecedent or consequent summarizes all information, and the rest of the rules can be

discarded". This assertion is not precise, because the minimal rule is the one with minimal

antecedent and maximal consequent. So, the prunning method used in ARD will eliminate

the minimal and non-redundant rules. In Table 7.12 we have shown that the generator

and closure of the rule generates the minimal rule from which we can generate all the rules

obtained by the ARD algorithm in Table 7.11. Furthermore, the use of the min-max basis

for rule generation enhances the expert interpretation and knowledge of the extracted rules

(as explained before).

The analysis of the Eisen data set for data mining context DGAL shows the potential
of our method to integrate several heterogeneous sources of information as GO, BioGRID,

KEGG, phenotype information, transcriptional regulators information, information of selected

articles with gene expression pro�les measured over 79 biological conditions. That means a

table T with 2465 objects or genes and 197 attributes. alowing us to evaluate the GENMINER
algorithm using several sources of information with a large data set. This table is only

an example of the possibilities of our algorithm, which can easily be extended to integrate

any kind of gene annotation obtained from any source of biological information (explained

in chapter 3). Therefore, the integration of di¤erent types of biological information is an

essential consideration to fully understand the underlying biological processes. In addition,

qualitative variables as gender, tissue, age and so on, contained in the minimal gene expression

experimental information could easily be added to the analysis in order to extract association

rules among these features and gene expression patterns.
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GENMINER constructs association rules containing either gene expression patterns or

gene annotations as antecedent or consequent of the extracted rule. In the results obtained

with the DeRisi data set in Table 7.10 and Table 7.12 we have shown that we can extract

meaningful association rules of the form Gene Annotations =) Gene expression Patterns as

stated in [61]. In the results obtained with Eisen data set we have shown the importance

of taking into account all possible combinations among itemsets composed either of gene

annotations or gene expression patterns as antecedent or consequent of the rule. In theTables

7.14-7.18 we found important biological known statements of the form: Gene Expression

Patterns =) Gene Annotations and Gene Annotations. Rules of the form Gene Expression

Patterns =) Gene Expression Patterns have been studied before [22], [81], [170], [310], [224],

[263] and [124].

The analysis of two famous gene expression data sets DeRisi and Eisen in di¤erent

data mining contexts: DGK, DGKPG and DGAL has proven the capacity of GENMINER to
extract meaningful associations among gene expression pro�les and gene annotations (as seen

in Tables: 7.10, 7.12, 7.14-7.18). Several interpretations of these tables can be found in the

respective result sections 7.6 and 7.7.

GENMINER uses the Close algorithm for extracting rules, which is speci�cally designed

for highly correlated data, that is the case of gene expression technology data where several

genes groups are expressed together in di¤erent biological conditions. In comparison with the

Apriori algorithm, the calculation time of the Close rule extraction algorithm is considerably

smaller in case of correlated data. More information about this issue - comparison between

Apriori and Close algorithm performances - can be found in [229]. The smaller calculation

time shown by the GENMINER algorithm in comparison with the ARD algorithm allows

GENMINER to deal with very large and correlated data sets, which is the case of the data

mining context DGAL in the Eisen data set. Furthermore, it allows to use several sources
of annotation, including the semantic source of annotation GO that contains thousands of

gene annotations. In Table 7.12 we show the results of mining data context DGKPG, which
contains thousands of gene ontology attributes.

GENMINER has implemented a new discretization algorithm, NORDI, specially de-

signed for discretizing data issued from gene expression technologies in the case of indepen-

dent biological conditions. We have obtained satisfactory results using NORDI algorithm in

the case of Eisen data (as showed in Tables 7.14-7.18). However, the discretization issue is

a delicate step when using supervised methods as ARD. We propose the use of several dis-

cretization scenarios (as the ones proposed in section 7.4), and then analyze the pertinence of

the obtained results against the expected results to validate the discretization algorithm. In

a recent work, Pan et al. [225] have suggested that "the robustness of biological conclusions

made by using microarray analysis should be routinely assessed by examining the validity

of the conclusions by using a range of threshold parameters issued from di¤erent discretiza-

tion algorithms". Unfortunately, there do not exist any discretization algorithms specially

designed for time process data, which integrate the time variable without an important loss

of the temporal information.
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Another delicate issue in association rules discovery is the threshold for selecting sig-

ni�cative rules. Support and con�dence are the most common measures related to a rule, in

many cases, the only ones used to point out the relevance of it. However, it is important to

note that sometimes both of these measures are high, indicating a rule which could be good,

and yet still produce a association that is not useful. In other words, associations among un-

correlated elements can be generated using this support-con�dence "framework" [157]. In the

case of signi�cant rules proposed in this work, perhaps con�dence is the most signi�cant value

from a biological point of view. For example, if only a small set of genes are annotated into a

very speci�c category, the support value of the rules containing this annotation will be quite

low. Nevertheless, if these rules have a high con�dence value, they reveal that this speci�c

biological property is highly associated with an expression pattern of another gene annota-

tion that appears in the consequent. GENMINER uses the support-con�dence framework,

providing the lift or improvement of the rule 7.2.1 which measures the correlation or indepen-

dence between consequent and antecedent of the rule for avoiding the selection of association

among uncorrelated elements.

7.8 Outlook and Conclusion

Outlook

One known drawback of association rules discovery is the number of generated rules that is

generally very high, even if large values of minsupp and minconf are used. This huge amount

of information is di¢cult to process manually, and it requires a conscious examination of the

generated rules to extract those that are more interesting than others for a particular appli-

cation goal. GENMINER proposes the generation of non-redundant rules by the construction

of a min-max basis for rule generation. Even if we generate only the minimal rules against

inclusion, the number of rules can still be very high for expert interpretation. There is a real

need for a post-treatment of the generated rules in order to help the expert to obtain mean-

ingful biological associations. We have distinguished �ve di¤erent aspects concerning rule

post-treatment:

� Code a program that organizes the information taking into account useful biological

criterions as:

� Form of expected rule, i.e.: Gene Annotations =) Gene expression Patterns,

Gene expression Patterns =) Gene Annotations, Gene Annotations =) Gene

Annotations, etc.

� Special type of gene annotation contained in the rule: semantic sources of

information, bibliographic sources, gene-protein related speci�c sources of

information etc.

� Special subset of biological conditions contained in the rule.

� Code a program that generates all the possibles rules from a given generator and closure.
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� Develop a program that could generate association rules from any of the sources of

biological knowledge and could search this existing rule over all obtained rules using

GENMINER.

� Develop an interactive semi-automatic program that allows the expert to �nd

"interesting" rules taking into account his knowledge and the existing knowledge in the

state-of-the-art.

� Create an automatic tool for building associations between genes and relative

information from sources of biological knowledge as articles (text mining goal).

Concerning the threshold issue for selecting signi�cative rules, GENMINER uses the

support-con�dence framework providing also the lift of the rule 7.2.1 in order to avoid the

selection of association among uncorrelated elements. Although support and improvement

values provide information about the association between the antecedent and the consequent

parts of the rule, they do not inform about their statistical signi�cance [55]. The statistical

signi�cance of an association rule could be evaluated using one of the statistical signi�cance

tests explained in section 2.2. For this purpose, we plan to use the one-tailed hypergeometric

test used to �nd signi�cant co-expressed and co-annotated groups in the CGGA algorithm

(explained in section 6.3.1).

Conclusion

We have developed the GENMINER methodology which integrates several sources of biolog-

ical information with gene expression patterns in an automatic way. This approach is based

on an association rules discovery technique, and it enables the knowledge discovery via the in-

terpretation of associations between expression data issued from a gene expression technology

and gene annotations issued from any of the sources of biological information. The presented

results obtained with GENMINER show that it is a promising tool for �nding meaningful

relationships between gene expression patterns and gene annotations.

The analysis of the DeRisi data set has permitted to validate the GENMINER algorithm

and to compare it with the ARD association rules algorithm. Concerning the DeRisi data set

results obtained with the same parameters used in ARD algorithm, GENMINER has found

all the association rules presented in ARD publication [61] for data mining contexts DGK and
DGKP with minsupp=.44% and minconf=40%.
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Chapter 8

GENETREE: GENE-Integrated Analysis

using a Decision Tree Algorithm

In chapters 6 and 7 we have proposed two novel class discovery mining algorithms: CGGA

for identifying co-expressed and co-annotated groups of genes, and GENMINER for �nding

coherent gene expression patterns within gene groups. In this chapter we deal with the class

prediction issue within the �fth step of the gene expression data analysis procedure (see Fig.

2.1). Class prediction refers to the assignment of biological samples or conditions to known

classes such as disease-type, drug-response, toxicity-reponse etc. Among the main applications

of class prediction we can mention the classi�cation of tumors for medical diagnosis and

treatment of cancer [133, 7, 166] and the classi�cation of new molecules as toxic or not toxic

via the gene expression patterns they exhibit [87, 315].

In contrast with class discovery problem (as seen in chapter 5-7) where the classes are

unknown and need to be discovered from the data; in predictive methods, the classes are

prede�ned and the task is to understand the basis of their classi�cation from a set of class-

labeled objects. This information is used to build a classi�er which will then be used to

predict the class of unlabeled objects.

In the data mining �eld, class prediction is often recognized as a typical "supervised

learning problem or classi�cation" and class discovery an "unsupervised learning problem or

clustering". In many situations, for instance deciphering complex diseases as cancer, the two

data mining problems are related, as the classes which are discovered from clustering methods

are often used later on in a predictive method setting. Here, we focus on supervised learning,

and we use the simpler term "classi�cation".

In this chapter, we propose a decision tree based algorithm: GENE-integrated analysis

for biological sample prediction using decision TREEs (GENETREE) for solving the class

prediction problem discussed above.

We start this chapter with a brief introduction concerning the prediction challenges in

bioinformatics, the most used supervised methodologies to tackle this issue. Then, we de�ne

the predictive goal in gene expression technologies and explain the process for building a

predictive model. Since discretization is a key problem for predictive variables, we present in

section 8.3 several discretization techniques used in bioinformatics emphasizing in our novel

discretization algorithm: NORDI specially designed for gene expression data. In section 8.4

we explain decision tree basics, making emphasis on Quinlan�s C5.0 algorithm [247]. In section
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8.5 we explain the GENETREE algorithm. This chapter ends with a brief discussion and it

gives an outlook for future research.

8.1 Introduction

As seen in previous chapters, one of the most current goals in gene expression technologies is

the classi�cation of biological samples using gene expression data. By allowing the monitoring

of expression levels in cells for thousands of genes simultaneously, gene expression technologies

may lead to a more complete understanding in several applications as: distinguish among

known tumor classes, predict clinical outcomes such as survival or response to treatment,

and identify previously unrecognized and clinically signi�cant subclasses of tumors [101].

Several studies had shown the growing research interest on these important gene expression

technologies applications [7, 166, 242].

More generally, classi�cation of biological samples is a class prediction problem to which

supervised learning techniques are ideally suited. Assuming a number of training data cor-

responding to known biological conditions labeled as "reference=healthy" or "test=disease"

and the associated gene expression measures, then they can predict the class (healthy or dis-

ease) of a new patient on the basis solely of their gene expression levels. This asseveration is

partially true, as stated in Golub et al. [133] who concludes that: "The leukemia diagnosis

remains imperfect and could bene�t from a battery of expression-based predictors for various

cancers". Actually, by applying the existent gene expression technology and known analytic

tools, they obtain predictive genes which can distinguish at some con�dence level among sev-

eral classes in a given experiment, but they can not di¤erentiate the same classes against

other similar classes. For instance, in the case of leukemia, Golub can not di¤erentiate in an

e¢cient way the cases of leukemia, because the predictive genes that he had found could be

expressed in many other cancers. One solution to this prediction problem can be the inte-

gration of gene annotations within the supervised learning algorithm. Gene annotations can

be integrated from any of the six biological sources of information: MIAME, molecular data-

bases, semantic sources, gene expression databases, bibliographic databases or gene/protein

related speci�c sources (explained in chapter 3).

Since the beginning of gene expression technologies, a variety of supervised learning

algorithms have been used to solve the prediction problem specially for disease-type applica-

tions. These algorithms take into account only gene expression pro�les without integrating

any other source of knowledge within the algorithm. Among the most remarkable supervised

methods we can list:

� A linear discriminant analysis (LDA) in Dudoit [101] for predicting cancer tumors and

in Hakak [137] for predicting schizophrenia types.

� A modi�ed K-nearest neighbor (KNN) method in Pomeory [242] to predict embryonal

tumors.

� A Support Vector Machine (SVM) in Ramaswamy [250] for classifying tumors and

Furey [119] in predicting organ classes

� A weighted voting technique in Golub [133] to predict leukemia classes.
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� Decision trees in Zhang [335] for tumor prediction and Ramanathan [249] for disease-type

prediction.

These methods are useful for predicting the studied class or disease-type at a certain

degree of e¤ectiveness. However, the actual use of predictive algorithms in gene expression

technology �eld present several weaknesses :

� Error in prediction because the sample classi�cation could be produced by a set of

generic expression-based predictors concerning several classes as related diseases, tumors

or toxics according to the studied case.

� Error estimators are biased, thus error estimator procedures should be applied

independently of the gene selection process, and not as part of it as it is commonly done

[102].

� A low number of biological samples tends to over�t the solutions. This is produce by

the dimensionality e¤ect of gene expression data where the number of objects or sample

experiments is very low (tens of biological conditions) and the number of attributes is

extremely high (thousands of genes).

� Lack of optimization techniques on data learning parameters in past data prediction

studies. Thus, the classi�er can not be robust enough to treat similar gene expression

data sets [33].

� Lack of biological knowledge as an inherent part of the classi�er building procedure.

� Lack of a discretization algorithm specially adapted to gene expression data.

The use of supervised algorithms for solving prediction problems in gene expression

technologies is a relatively new �eld compared to their use in other domains. It is necessary

to include the best available tools of matching learning methods in gene expression technology

to close the gap between machine learning �eld and bioinformatics [33]. The wide research

problem of the integration of biological knowledge (as the available gene annotations) in any

supervised algorithm remains open.

In order to tackle several of the drawbacks cited before, we propose a GENE-integrated

analysis for biological sample prediction using decision TREEs (GENETREE). This algorithm

takes advantage of the well known decision tree algorithms ID3, C4.5 and C5.0 proposed by

Quinlan [247] and it extends the entropy splitting criterion to more complex one which takes

into account several sources of gene annotations.

We have chosen the decision tree supervised methodology because it can be easily

interpreted and it is able to model fairly complex functions [283]. However, a known drawback

of this methodology is that they are prone to over�tting? on training samples. This problem

may be particularly sever with gene expression technologies which contain a large number of

genes and a limited number of samples. We proposed "pruning" the tree, i.e., restricting the

height of the tree and the applications of bagging? or boosting? techniques to avoid over�tting.

GENETREE automatically integrates gene expression pro�les, with gene annotations

obtained by genome-wide sources of information such as Gene Ontology and gene/protein
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related speci�c sources such as: KEGG, BioCarta, UniProt, Cancer Gene Census

etc.Cancer Genome Anatomy Project (CGAP) (explained in chapter 3).

In addition, we propose two novel algorithms: an outlier sample detection method (see

section 4.1.4), and the normal discretization (NORDI) algorithm (section 8.3.2.1) specially

designed for gene expression data sets. NORDI enables any number of discretization intervals,

used within the decision tree algorithm.

8.2 Prediction in Gene Expression Technologies

Supervised algorithms have found widespread application in bioinformatics [16]. The diverse

range of rapidly expanding data produced by modern gene expression technologies has fuelled

a need for accurate classi�cation algorithms.

Class prediction methods are techniques speci�cally designed to classify objects into

known classes. For gene expression technologies data, prediction generally refers to the classi-

�cation of patient samples with unknown class type by using gene expression data concerning

known class patient samples. Biological experiments may be: disease-type, drug-response for

instance. Thus, the goal may be to predict a diagnostic, o¤ering a new way to distinguish

similar-looking diseases [133, 166], or it may be predict clinical outcomes [7, 242].

The process of building a prediction model in bioinformatics is not an easy task, it may

need a full seven-step procedure (as seen in Fig. 8.1) of its own which consists in:

1. Class discovery from the full gene expression data set.

2. Data Selection of biological samples and informative genes32 from the full gene

expression data set.

3. Data Pretreatment or discretization of continuous variables.

4. Data Partition into training and test sets.

5. Model choice and construction using a supervised learning algorithm.

6. Prediction accuracy evaluation and re�ning the model [33, 102, 334].

7. Biological Interpretation of the predictive model results.

The Fig. 8.1 shows the whole process for building a predictive model. It starts by

de�ning the full gene expression technology data set containing the gene expression measures

of N genes taken overM biological conditions or samples (the gene space is often in thousands

of genes and the sample space is in tens of biological conditions). The �rst stage is optional

and it consists in applying class discovery algorithms for clustering the biological samples in

K classes (see Fig. 8.1). Once, the biological classes K are known, The second stage is data

selection that involves two issues: selection of the pertinent biological conditions or samples,

and selection of informative genes. Selection of the pertinent biological conditions must be

done to get ride of sample outliers, that might introduce noise to our analysis. Selection

32 Informative Genes: Group of genes which are strongly correlated with the groups of organisms or
individuals. In medical applications, the biological samples are often individuals.
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8.2 Prediction in Gene Expression Technologies

FIG. 8.1: An overview of a full seven-step process for building a predictive model to
classify samples in gene expression technologies application.
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of informative genes is a delicate step concerning the analysis of di¤erential expressed genes

for gene selection. This step is necessary to reduce the curse of dimensionality problem in

prediction problem. As stated by R. Bellman [24], in the context of prediction problem,

it refers to the exponential growth of the hypothesis space with respect to the number of

features, in this case of genes. In contrast, the number of samples is already too low in gene

expression data, that often the sample selection is not done (even if it is important). The

output at this stage is a data set containing the gene expression measures of n selected genes

over m biological samples (see Fig. 8.1).

The third step is a necessary condition for using supervised learning techniques, where

the continuous variables, as often gene expression measures, have to be discretized. The

discretization procedure has to be done just before applying the predictive model because the

discretized values introduce some loss of information compared to the original values.

The fourth step concerns the data partition into training set and test set (a seen in Fig.

8.1 where we divide the selected data set into t training samples and m � t test samples).
The �fth step consists in choosing the prediction model from the wide-range of supervised

algorithms and building it using the training set containing m samples. Once the classi�er

has been built, the evaluation phase starts, it concerns the classi�er estimation error applied

on test data set. In Fig. 8.1 we show the resampling of the training set in order to evaluate

prediction accuracy. Many prediction methods require tuning some parameters (such as

number of genes, number of nearest-neighbors to consider, or the number of decision trees to

be built) for re�ning the prediction model. This phase is illustrated in Fig. 8.1 taking the

gene selection parameter example: the number of genes is it appropriate to the prediction

model? if not we can return to the gene selection phase and start again the prediction model

process. Once the �nal model is built, the last phase consists in analyzing the predictive

model results and interpreting this results for biological insight. In the next sections, we

explain more in detail every step and we present several methods to deal with.

First step: class discovery

The �rst "optional step", class discovery, is a classical "unsupervised learning" problem, in

the sense that no-prede�ned class labels and training samples are provided. In other words,

the biological samples are automatically partitioned into several groups exhibiting greater

within-group than between-group similarities. Distinguishing classes within gene expression

technologies data is of special practical interest, since the identi�cation of phenotypes from

samples through traditional pathological or clinical methods is usually slow. Moreover, there

may be unknown subtypes of tumors which respond di¤erentially to drug treatment as in

[133] or lead to heterogeneous clinical outcomes as in [7].

The clustering techniques discussed in section 2.4 are useful to �nd the class structure

hidden in the sample space, using samples as the data objects and genes as the attributes.

Unfortunately, if the entire set of genes (thousands of them) in a gene expression technology

data set is adopted as the feature vector, the performance of most conventional clustering

algorithms will be degraded by the dimensionality problem.
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The goal of class discovery in gene expression technologies is therefore to identify the

structure of the phenotypes of samples or sample classes K, and it can be viewed as involving

two sub-problems:

1. A K-partition of the samples matching their empirical phenotype distinction.

2. The detection of the informative genes that manifests the phenotype distinction

In fact, these two issues are closely interrelated. Once the class structure has been

correctly identi�ed and the samples have been appropriately assigned to classes, the gene

selection methods described in data selection step can be used to rank the genes according to

their relevance to the classi�cation. Conversely one the informative genes have been identi�ed,

we can apply the clustering techniques discussed in section 2.4 to partition the samples into

K classes.

Recently, two strategies for class discovery which exploit this dynamic relationship be-

tween genes and samples have been developed: CLIFF in Xing et al. [324] and ESPD in Tang

et al. [300]. They combine clustering and supervised gene selection processes in an iterative

manner. Both are based on the intuition that a valid approximate sample partition can be

obtained using the entire set of genes. The approximate partition allows the selection of a

moderately-valid gene subset, which will in turn draw the approximate partition closer to the

target partition in the next iteration. After several iterations, the sample partition may con-

verge to the true class structure, and the selected genes will be feasible candidates for the set

of informative genes.

Second step: data selection

The data selection involves two issues: selection of pertinent biological conditions or samples,

and selection of informative genes.

Sample selection

It is critical to take into account biological condition variations and in particular possible sam-

ple outliers which may introduce noise in the classi�cation procedure [33]. Most approaches

for sample selection are unsupervised, which reduce the dimensionality of biological condi-

tions space in gene expression technologies. Principal component analysis? (PCA) [160] is a

classical method which projects the original data set along a few directions in an attempt to

capture the major variations in the data. However, the results obtained through PCA are

often di¢cult to interpret.

In order to solve this problem, we have developed an algorithm for �nding sample

outliers among biological conditions using two tools: Principal Component Analysis? (PCA)

and hierarchical clustering approaches (explained in section 2.3.3). This methodology was

explained in section 4.1.4.
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Gene Selection

The selection of informative genes is an important task [133] that help biomedical researchers

to understand disease mechanisms. They can also be used to resolve levels of heterogeneity

among cells that are not apparent by eye and to provide a more accurate prognosis and

prediction of response to therapy [73]. This step consists in determining which genes to use in

the classi�cation procedure. Gene selection is not only necessary to reduce data dimensionality

but also to identify those genes that are closely related to tissue types.

In general the approaches to gene selection can be categorized as statistical supervised

approaches or unsupervised methods, depending on whether the class labels of the samples

are given a priori. A full review of statistical approaches for selecting di¤erentially expressed

genes is presented in section 2.2.

Concerning supervised algorithms for gene selection we can mention three novel ap-

proaches. The �rst, gene-pairs [38], evaluates how well a pair of genes in combination dis-

tinguishes two experimental classes. The second, virtual genes, [325], employs the inherent

correlation among n genes to predict the class labels. The third approach, [179], considers the

combined discriminative power of a subset of genes by integrating a genetic algorithm (the

gene selection process) with a KNN algorithm (classi�cation process) to achieve a better set

of informative genes.

The PCA unsupervised approach [160] can also be used in the case of gene selection,

for reducing the dimensionality of microarray data. Another algorithm is Gene shaving [141],

a PCA-based approach developed speci�cally for microarray data. After shaving the gene

dimension for several iterations, the algorithm reports a set of informative gene groups.

Third step: data pretreatment

The data pretreatment issue concerns the discretization of the quantitative continuous vari-

ables into discrete variables and the determination of categorical classes for either qualitative

or quantitative variables.

Speci�cally in gene expression technologies we have two kinds of data information:

gene annotations that are often textual, which can be treated as qualitative variables, and

gene expression measures, which are generally quantitative continuous variables. In several

supervised learning methodologies, gene expression measures must be converted into discrete

values through a discretization process technique.

We have classi�ed gene expression technologies discretization methods in three ap-

proaches: biological basis, statistical basis and mining basis. These approaches, as well as the

our novel method named normal discretization or NORDI, are explained in section 8.3.2.1.

Fourth step: training and test sets selection

The partition into training and test data sets is done over the pretreated data set and can be

done by several algorithms as: re-substitution method, hold-out, cross-validation, bootstrap

and non-random method. Let n be the total number of available samples.
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The re-substitution method consists in using all n samples for building the classi�er and

used again as test set for estimating its performance.

The hold-out method divides the data set containing n samples in two parts: the training

set, on which the hypothesis is trained (with s samples), and the hold-out set, on which its

performance is measured (with t samples). The sum of the train set and test sets has to be n

and the choice of the samples is done randomly. For example a well-known hold out is using

1/3 of the samples as test set.

Cross-Validation Method. It is also called rotation estimation [168], is the statistical

technique of partitioning a sample of data by choosing s out of n samples as the training

set and estimating its error rate using n � s sample observations (test set). This process

is repeated for all distinct choices of s patterns, and �nally the average of the error rate,

known as s � fold estimate, is computed. The choice may be s = 1, which is also know as

leave-one-out method. This procedure is also known as cross-validation s � fold procedure,
for more details see in [33, 168, 37].

Bootstrapping? method. A bootstrap design sample of size n is formed from the n

observations by sampling with replacement. The classi�cation rule is designed using the

bootstrap sample and tested twice: n observations of the bootstrap design sample are used

to obtain the bootstrap re-substitution estimate, E�R, and the original design set is used to

obtain the bootstrap estimate of conditional error P �n . This procedure is repeated r times

(typically r lies between 10 and 200). An arithmetic mean of the di¤erences is used to reduce

the bias of the re-substitution estimate. More details can be found in [33].

A novel non-random approach is suggested by Sprevak et al. [291] when dealing with

small data sets (with a few number of samples like gene expression technology case). This

method divides the data into two partitions based on similar statistical characteristics. This

algorithm reduces the variability of predictive accuracies and provide consistent results across

di¤erent classi�cation models.

Fifth step: prediction model choice and construction

As with clustering, choosing a prediction method requires selecting from a vast range of

techniques. Some of the most straightforward linear and quadratic discriminant methods,

LDA and QDA respectively, are very well described by Dudoit et al. in [101]. Related

methods include weighted voting in Golub et al. [133], shrunken centroids [305] and compound

covariates [142]. A deceptively simple but powerful approach is k-nearest neighbor prediction,

in which the prediction for a test sample S is the most common class label among the k

training samples most similar to S, for more details see [242, 101, 250, 212].

Simple neural network? [212] may be e¤ective at learning the complex functions often

inherent in multi-class diagnostic problems [166]. Also, novel pattern pattern-discovery algo-

rithms such as Splash [58] have shown some success at learning non-linear functions of the

input variables. Two other well-studied classes of algorithms are growing interest for gene ex-

pression technologies prediction problem: support vector machines (SVMs) and decision tree

classi�ers.
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SVMs are a family of statistical machine-learning methods that have been proposed

as a particularly suitable to the dimensions of microarray learning problems [57, 119, 250].

Intuitively, SVM�s try to draw a hyperplane in n-dimensional gene-expression space between

the training examples from two classes. If no separating hyperplane exists, the samples are

mapped into a higher-dimensional space where such a separator does exist. The algorithms

minimize the potential over-�tting problems by choosing the separator farthest from the

training samples, thus leaving room for generalization. More complex mapping functions

provide non-linear mapping into higher dimensional spaces, resulting in a non-linear classi�er

for the original data. While these models may be di¢cult to interpret, they are potentially

quiet powerful.

Decision tree algorithms classify samples by �ltering them through a tree-like structure,

testing at each branchpoint (called a node) some simple attribute of that sample, such as

whether of the expression of p53 is greater or lesser than 100, as see in [212]. We can cite

some examples of the use of decision trees in gene expression prediction problems as the tumor

prediction in Zhang [335] and for disease-type prediction in [249]. Single decision trees? are

particularly prone to over�tting?. However, as tree models are easily built, easily understood,

and able to model quite complex functions, there are many modi�ed tree-based techniques for

avoiding over�tting include pruning the tree; that is, restricting the number of consecutive

branches so that is forced to generalize. More powerful solutions are possible by repeatedly

sampling the data to build many trees and combining these trees into a single predictive model

using techniques known as bagging? [50] and boosting? [269, 268]. Combined tree models may

be harder to interpret that single trees, but standard approaches allow determination of which

genes contributed most heavily to the models predictive powers [51].

To decide how to best approach a prediction problem, it is important to �rst consider

the desired outcome. Are there just two classes to be distinguished, or many? Is it desirable

to �nd the minimal number of predictive genes, in order to minimize the number of leads or

to provide a simple diagnostic tool? Would it be better to have an easily interpretable model,

which may help provide new medical insights, or is the only goal the greatest prediction

accuracy possible? If the output will ultimately a¤ect patients treatment, it may be essential

to have an accurate con�dence estimate for each prediction. All of these issues can in�uence

the choice of a prediction method.

Sixth step: prediction accuracy evaluation and re�ning the model

The accuracy evaluation problem concerns in estimating the classi�cation error on test data

set. Thus, this step is directly linked with the fourth step: training and test sets selection

explained above. Besides, many predictions methods require to re�ne the model by tuning

some parameters such as the number of genes, the number of nearest-neighbors to consider, or

the number of decision trees built etc. Thus, the model re�nement step can also be evaluated

by prediction accuracy estimators.
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Evaluation prediction accuracy

Prediction accuracy evaluation refers to error estimation of the classi�er on the test set. The

error rate of a classi�er is the proportion of incorrectly classi�ed samples. The true error rate

depends on the class distribution. If the class distribution was known, the true error could be

computed exactly [339]. However, the distribution is often unknown in practice, and the error

rate has to be estimated from the given data set . Most of the commonly used error estimators

result from combining one of the �ve methods proposed in the fourth step (re-substitution,

hold-out, cross-validation, bootstrapping, non-random method etc.) with an error function

criterion [33]. Among the most known error criteria we can mention four methods: error

counting, EC, smooth modi�cation of error counting, SM, posterior probability estimate, PP,

and quasi-parametric estimate, QP.

Error counting is the typical scheme where the output below a given threshold is hard

thresholded to belong to one class, otherwise to the other class. For multiple classes, the

winner takes all.

Smooth modi�cation of error counting consists in taking the part of the correctly clas-

si�ed sample observations for estimate the misclassi�cation probability.

Posterior probability estimate is the probability of a sample belonging to a class. An

advantage of this estimate is that the test data can be unlabeled.

Quasi-parametric estimate assumes that the values of the discriminant function have a

normal distribution. Error rate is found analytically from sample means and variances of the

output of discriminant functions for di¤erent observations.

Hence, by combining this error functions criteria with the training-test selection ap-

proaches, we can have at least 20 di¤erent methods of error estimation. More details in this

issue can be found in [339].

The choice of any particular combination for the error estimation function depends in

several factors, here we make the following recommendations for choosing one of them as

stated in Raudys and Jain [252]:

� The re-substitution method gives in optimistically biased estimates of asymptotic error

rates. Hence, it should only be used when the sample size is large.

� The hold-out error counting estimate results in an unbiased estimate of the expected

error rates. the disadvantage of this method is that not all observations of the design

sample take part in the learning process and only a part of them are used for calculating

classi�cation error.

� The leave-one-out estimate produces a practically unbiased estimate of the expected

error rate if the sample observations are statistically independent. For dependent

observations, the estimate approaches that of re-substitution method. the main

disadvantage is that for some classi�ers it is extremely computationally expensive.

� Bootstrap methods and their variants appear to be more accurate than leave-one-out

estimates only when the classi�cation error is large.
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� The variance of SM, PP and QP estimates can be less than the variance of the EC

estimate. the �rst three estimates are also biased depending on the data type.

Re�ning the model

One of the critical issues in applying supervised algorithms for solving bioinformatics prob-

lems is the expert�s ability in understanding of machine learning algorithms and setting the

parameters contained along the �rst six steps procedure described here. A good experimental

design for data prediction and adequate optimization of algorithms is critical to the success-

ful application of machine learning techniques. Re�ning the model consists in tuning and

optimizing the parameters along the prediction model process.

One of the major problems is the parameter optimization of di¤erent machine learning

algorithms used in bioinformatics. Classi�ers, clustering methods, gene and sample selection

methods use a number of parameters that must be optimized. Optimization can be a tedious

task especially when these parameters are continuous variables. A general practice for para-

meter optimization is to use a validation set on which the impact of tuning parameters can

be judged and optimized. One of the underlying assumptions of this process is that the vali-

dation set closely mirrors the test set, which is often found to be unreliable. Concerning the

experimental design problem, the most delicate issue in machine learning is the amount of

data that is necessary for building reliable and robust machine learning. Other related prob-

lems are how to sample for a validation set, how to choose classi�ers, how to describe a cost

matrix and a rejection threshold, how to develop machine learning systems that can auto-

matically determine the optimal parameters. For further details in this issue the lector can

see [33].

Seventh step: biological interpretation of the prediction model results

The resulting prediction model, as well as the prediction results, the informative genes selec-

tion and the discovered classes, have to be interpreted by experts and may yield new biological

insights. In order to achieve this stage, the expert realizes the interpretation step manually or

in a primitive semi-automatic way. As well as seen in the class discovery problem (see chap-

ter 5), the expert analyses the results taking into account either his personal experience or by

searching in at least one of the several sources of biological information explained in chapter 3.

Sometimes he uses semi-automatic tools for extracting information from this heterogeneous

sources (as explained in chapter 3).

The use of machine learning for solving bioinformatics problems is a relatively new

�eld compared to the use of supervised learning algorithms in other domains. Thus, the

interpretation of the predictive results via the integration of biological knowledge is an open

�eld of research. Even the integration of biological knowledge in any of the 7 steps process

for building a prediction model has not yet been tackled.

Here, we propose the integration of gene annotations at some delicate steps in building a

predictive model as class discovery, data selection, building a predictive model and biological
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interpretation of predictive model results. This task is a recent issue in machine learning

application in bioinformatics.

8.3 Discretization issues in Gene Expression Technologies

In order to answer to the discretization question, an essential requirement in many supervised

algorithms, we have developed a novel algorithm named NORDI (normal discretization),

specially �tted to gene expression technologies. NORDI is based on statistical detection of

outliers and the continuous application of normality tests for transforming the initial distrib-

ution "almost normal" to a "more normal" one. The term "almost" means that the sample

Sj can be normally distributed without the outlier�s presence. Conception, implementation
33, experimentation and validation are presented in this document.

As seen in section 8.2, a crucial step in the process of building a classi�er is the dis-

cretization step (see Fig. 8.1). In order to build a decision tree model all values in T must

be qualitative (known also as categorical). Speci�cally in gene expression technologies, we

have two kinds of data information: gene annotations that are often textual and which can

be treated as qualitative variables, and gene expression measures, which are generally quan-

titative continuous variables. So, gene expression measures must be converted into discrete

values through a discretization process technique.

Discretization of gene expression measures consists in determining qualitative values

which re�ect the degree of gene expression. This question is directly related to the third

analysis step of gene expression technologies: analysis of di¤erentially expressed genes dis-

cussed in section 2.2. However, the main di¤erence is that in discretization techniques, we

focus on establishing �xed intervals to build qualitative values representing the degree of ex-

pression or the expression or unexpression of gene expression measures [246]. Answering this

question is a di¢cult task, but a variety of discretization approaches have been applied in

gene expression technology. Several supervised and non-supervised discretization methods

have been reported in the literature [63], [96] .Here, we focus on the most commonly used

discretization approaches applied in gene expression technologies, and we present a novel

discretization method specially adapted to microarray data named NORDI.

Gene expression technologies allow us to measure simultaneously gene expression pro�les

of thousands of genes in di¤erent biological conditions (time, di¤erent tissues, etc.). Let us

assume the expression data measures presented as a transposed matrix ET : mXn explained

in section 8.4.1.2, where ET is a matrix with n genes (columns) and m biological conditions

(rows), as illustrated in Fig. 8.1. The columns of this matrix, Xj , are gene vectors and the

rows are the samples Sj . Each matrix entry, ej;i represents the gene expression measure of

gene i (variable) in biological condition or sample j where ej;i 2 R, so it is a continuous in all
real numbers. The question is: What�s the degree of expression of each gene i in sample j in a

qualitative manner? We can answer this question by applying discretization methods. Here,

33 NORDI program is available by request, and soon it will be available in bioconductor project:
http://www.bioconductor.org/.
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

we will classify the gene expression technologies discretization methods in three approaches

with biological basis, statistical basis and mining basis respectively.

8.3.1Biological methods:

In the origin of microarray experiments, scientists realized the di¢culty of obtaining cleaned

(without noise) microarray data. They have established a methodology for getting rid of most

of the noise, but keeping the representative part of the expression measure [246](explained in

chapter 2 as the �rst two analysis microarray steps). Once they obtain the cleaned expression

measure, they make several tests for qualifying the obtained measure [246] and they report

this expression measure in easily handled measures as the fold change (FC), Signal to Noise

Ratio (SNR) and others [246] for analysis purposes. Here, we present the most common

discretization methods for determining if each matrix entry of ET is telling us the expression

or non-expression of gene i in sample j.

Two-fold change cuto¤

Taking the cleaned expression measure as the Fold change measure de�ned as:

Fold Change = log Ratio where Ratio =
Cy5

Cy3
(8.1)

This Ratio is the relationship between the two color variables: Cy5 (red) and Cy3

(green) which means the response of one gene in a state labeled with red relative to a state

labeled in green for each biological condition (as seen in chapter 1, microarray basics). Apply-

ing log function to the Ratio reduces the big quantities problem and makes data more easily

handled.

Fold change measure has the advantage of conserving the biological homeostasis prin-

ciple of an organism: �Cellular inhibitions and repressions must be compensated� because it

considers cellular inductions and repressions in a numerically equal manner [219].

We suppose that each element of the matrix, ej;i; for every i = 1; 2; :::n and j = 1; 2; :::m

is given in terms of fold change measure of gene i in biological condition j. If the whole matrix

ET accomplishes the following characteristics:

1. All data is well cleaned (minimal noise).

2. No outliers.

3. Number of genes is largely enough.

4. The rows of the matrix Sj for every j = 1; 2; :::m are independent from each other and

are normally distributed Sj � N(�j ; �j).
5. Missing values are no signi�cant in relation to the number of genes.

Supposing this �ve characteristics and using the central limit theorem [113], we can say

that the matrix ET is distributed as normal distribution N(0; 1) where � = 0 and � = 1.

This assumption is "approximately" proven in practice by gene expression experiments.

Thus, biologists have adopted the 2� fold threshold as an intuitive measure for determining
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the non-expression of a gene expression measure. They have de�ned 2�fold threshold cuto¤s
as:

ej;i � �+
k

2
� = Ot = 1 =) ej;i over-expressed where k = 2 (8.2)

ej;i � �� k

2
� = Ut = �1 =) ej;i under-expressed where k = 2

�1 = Ut < ej;i > Ot = 1 =) ej;i unexpressed where k = 2

The absolute distance that separates the over-expressed threshold from the under-

expressed threshold, i.e. jOt� Utj = 2, gives us the unexpressed interval of size 2, which

determine the name of 2� fold threshold cuto¤.
Although this measure has not a rigorous statistical de�nition, and it could depend on

many factors as type of gene expression technology, gene expression intensities etc., it is one of

the most used measures [225]. For resolving the gene expression intensity problems, biologists

have used several similar thresholds de�ning the k� fold change cuto¤s. This cuto¤s can be
calculated by using the above equation 8.2 for an speci�c prede�ned k, i.e. k = 2; 3; 4; :::K.

All the k � fold change cuto¤s present several weakness:

� They have to accomplish the �ve characteristics cited above.

� In most of the cases gene expression technologies have outliers and a � 6= 1. Therefore,
data containing most of genes with very low fold change intensities but with high

standard deviation � would be interpreted as unexpressed genes. On the other hand,

data containing most of genes with very high fold change intensities but with low

standard deviation � would be taken as expressed genes.

Several others weaknesses and misuses have been analyzed and reported in the literature

[225], [83], [219], [66], [59].

Equal number of expressed genes

This method was used mainly in cancer studies when the biologists seek for the signature of

genes, that is, the speci�c genes that participate in the disease. These genes can be either

inhibitors or activators, so they have to be in equal number for conserving the biological

homeostasis principle (seen above). Thus, let ET be the pro�les expression matrix, the equal

number of over-expressed and under-expressed genes EN is user-determined (taking into

account user speci�c disease knowledge). For constructing the discretization intervals, we

need an ordered list from each row Sj of the pro�les expression matrix E
T in a descending

way. Then, we de�ne the discretization intervals for each row Sj as:

First EN genes of ordered column Sj =) EN over-expressed genes (8.3)

Last EN genes of ordered column Sj =) EN under-expressed genes

All genes in Sj except �rst and last EN =) unexpressed genes
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

This �xed and somewhat arbitrary threshold present several disadvantages, principally

the low statistical signi�cance [225]. However, it could be useful as a comparative discretiza-

tion method or in some disease-speci�c studies. This discretization methodology is useful for

comparing the e¤ectiveness of other discretization methodologies in order to predict the state

of a tissue [250].

8.3.2Statistical methods

Statistical methods are generally based on the normal distribution of each row Sj of the pro�les

expression matrix ET . Each individual measure ej;i is often taken as the fold change (as de�ned

before). An assessment of the principal statistical methods was made by [83]. The objective of

most of these methods was to distinguish the genes which were di¤erentially expressed in one

biological condition or all around the biological process. In the last six years, a multiplicity of

statistical methods has been applied and developed to solve this question, we can mention: z-

score [327], [304], t-test applications [59],[309], [17], ANOVA (F-test applications) [323], [159],

[183], [106], [321], [66] and mixed models.[220]. The majority of these methods has been used

for selecting di¤erentially expressed genes between two conditions or in the whole biological

experiment. However, it could be used for discretization purposes. Here we will focus on the

most generalized methodology for obtaining discrete intervals from the expression matrix ET :

the z � score methodology.

Z-score method

The named z � score method is based in the commonly known z-statistic: [113]. The �rst
that has used it in a discretization gene expression context was [327] and it can be seen as an

statistical formalization of the k � fold change method.
We suppose that each element of the matrix ET is given in terms of fold change measure

of gene i in biological condition j. Let the expression matrix ET accomplish the 5 character-

istics cited before in 2� fold change method. Thus, for each row, Sj � N(�j ; �j) (normally

distributed) and a certain level of predetermined con�dence 1 � �, we de�ne the z � score
threshold cuto¤s as:

Z =
ej;i � �j
�j

� z�=2 = Ot =) ej;i over-expressed, (8.4)

Z =
ej;i � �j
�j

� z�=2 = Ut =) ej;i under-expressed,

Ut < ej;i > Ot =) ej;i unexpressed,

where Z � N(0; 1) and z�=2 = ��1(1 � �=2) if the cumulative distribution function is

�(z�=2) = P (Z � z�=2) = 1� �=2.

Supposing that every row Sj � N(0; 1) and z�=2 = 1 we obtain the same threshold as

the 2�fold change method. The equality z�=2 = 1, means that we have labelled about 68.26%
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of the genes as unexpressed and 15.85% as over-expressed and under-expressed respectively

(see normal distribution percentiles and characteristics [113].

The z-score method is more robust than 2� fold because we can take into account the
row variance, �2j , of the sample, and we can choose the � parameter. However, as well as the

2 � fold method, all �ve expression matrix characteristics have to be accomplished, which
is not often the case in microarray data. Some variation of the z � score method have been
proposed [327].

Next, we will present the Yang method that tries to surpass some limitations established

by the normality distribution and the existence of outliers.

Yang discretization method

Based on the z � score methodology Yang [327] has proposed the use of a raw matrix E0T
before cleaning process of the gene expression pro�les. Let us take a look at each row, S0j ,

of the expression raw matrix E0T . Yang�s method, �rst realizes a �ne statistical treatment

of the gene expression measures of the raw matrix E0T applying missing data algorithms and

lowess algorithm [264] (explained in section 2.1). Then it makes the detection and �ltration

of the outliers contained in each row of the data, using an intensity based technique [327].

Finally, it applies z � score discretization methodology, establishing the Ot and Ut cuto¤s.
This method is an attempt of pre-analyzing the expression matrix pro�les before apply-

ing the z�score method, but eliminating de�nitely the outliers could imply high risks. There
are two principal types of outliers: technical ones as measure errors and highly expressed

genes. Outlier elimination is an erroneous procedure because that are precisely the outliers

which can contain exceptional information about the biological process, thus they are crucial

for it [219]. The NORDI discretization method, proposed by Martinez [198], surpasses some

limitations established by the z� score and Yang discretization method, specially concerning
the outliers treatment and the normality test implemented tools.

8.3.2.1NORDI discretization method

In order to resolve some of the z � score and Yang�s methodology drawbacks, Martinez has
proposed the normal discretization method (Nordi) [198]. This method supposes that the

gene expression matrix ET already contains well-cleaned expression measures ej;i, where the

number of genes is large enough and the missing values are not representative (as viewed in

characteristics 1, 3 and 5 of 2� fold change method).
NORDI is based on a statistical detection of outliers and the continuous application

of normality tests for transforming the initial distribution "almost normal" 34 to a "more

normal" one. Once the distribution of the matrix is "more normal", it calculates the cuto¤s

as seen in the z � score methodology. Here, we present some basics in outlier treatment

methods and normality tests, underlying the methods used by NORDI algorithm.

34 Almost normal means that the sample Sj could be normally distributed by removing sample outliers.
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Outliers

Extreme values have been a source of debate among the data analysts community. The pres-

ence of extreme values in a data set can be due to systematic errors, faults in the experimental

conditions,erroneous procedures, areas where a certain theory might not be valid, or it can

simply be the case that some observations happen to be a long way from the center of the

data. Furthermore, these values can be taken as a source of contamination in data or they

can be seen as a source of interesting information or unusual special events. Hence, it is a

crucial data analysis task of interpreting and characterizing outliers, thus developing statis-

tical methods to treat them in order to decrease their impact during statistical data analysis

[20].

An outlier can be de�ned in many ways, a statistical de�nition given by Grubbs [135]

is: An outlier is an observation that appears to deviate markedly from other members of the

sample in which it occurs. Munoz Garcia [218] propose another de�nition as an observation

that deviates clearly of the general behavior compared to the criterion on which the analysis

is carried out. Barnett and Lewis state that an outlier is an observation among a set of

observations, which clashes or is not in harmony with the rest of the observations in the set.

What characterizes an outlier is its impact on the observer [20].

Outlier�s treatment methods

A complete survey for concepts, tendencies and methods for treating outliers has been made

by Planchon [241]. Here, we will only focus on the statistical point of view for treating outliers

in relation with a probability model as normal distribution. In this section, we see outliers

as in the Barnett and Lewis de�nition, and we can localize them in the extremes values of a

statistical distribution.

The principal methods for treating outliers against a probabilistic model, known as

discordance test methods [20] were presented in section 2.1.3. The goal of discordance test

methods is to test the outlier value in order to reject it of the whole of the data or to identify

it as being a characteristic of a particular interest. Thus, this test is a procedure of detection

that allows to decide in favor of the membership of a speci�c value to the data set or not.

Supposing an univariate distribution case where the sample of a random variable X, is

x1, x2,..., xn. The extreme values are x1 and xn, both of them, or one of the two for example

xn can be outliers if it is statistically unacceptable, in relation with the distribution de xn
under F . When the result of the test indicates that xn is not acceptable in a statistical way,

one can say that xn is a discordant superior value for the level of the test. In a similar way

it can be shown for the inferior value x1 or even for the couple (x1; xn).

As we have seen in section 2.1, the gene expression measures taken at each biological

condition have an "almost" normal distribution, so we are interested in normal distributed

discordance tests. Among these methods, we can cite: Rosner�s [129], Dixon 1950 [94], Grubbs

1950 [134], Cochran [77] and Tietjen 1972 [306].

These 5 tests present several advantages and disadvantages depending on the charac-

teristics of the treated data set. In a study, the EPA environmental protection agency (US
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EPA, 1992), has quali�ed the e¤ectiveness of these 5 methods in their detection quality. The

winner in correct outlier detection was Grubbs Test [3], the data sets were very large sam-

ples (the order of 104 values) of environmental data that were log-normally distributed. That

is exactly the same case of gene expression data rows Sj , where the gene expression value is

in terms of the logarithmic fold change measure and each matrix row: Sj for j = 1; 2; :::n is

log-normally distributed.

Grubbs� test ([134] and [135])

Grubbs de�nition of outliers is: "An outlier is one member that appears to deviate markedly

from other members of the sample in which it occurs. Grubbs methodology provides statistical

rules that lead the data set analyst to look for causes of outliers when they really exist,

and hence to decide which alternative between the case of experimental errors or interesting

information is the correct one.

Grubbs test is used to detect outlying observations in a univariate data set, based on a

assumed underlying normal population or distribution. Let us suppose a sample population

X that is ordered from the lowest value x1 to the highest value xn. We want to test if one of

these two extreme values: x1 or xn or both of them: x1 and xn can be outliers. They would

be outliers if they are statistically unacceptable in relation with the distribution de xn or x1
or both of them under the normal distribution F: Thus, we have the hypothesis testing:

H0 : There are no outliers in the data set

vs

H1A : x1 or xn is an outlier in data set.

or for both of them:

H1B : x1 and xn are outliers in data set.

The Grubbs statistic for the �rst one-sided H0 vs H1A test is:

GA =
xoutlier � �X

S (8.5)

where xoutlier can be x1 or xn depending in the maximal deviation from the sample mean X

and S is the standard deviation estimator of the population sample, i.e.

S =

nP

i=1
(xi � �X)2

n� 1 : (8.6)

Grubbs statistic for one outlier 8.5 is equivalent in testing power to the statistic U :

UA =
V 21
V 2

where V 21 is the variance of the sample with one suspicious value excluded, and V 2 is the
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variance of the whole population sample X.

If the estimators in equation 8.5 are biased (with n in denominator), then simple de-

pendence occurs between V 2 and UA, i.e. UA: UA = 1 � 1
n�1G

2
A and it makes UA and GA

statistics are equivalent in their testing power. The GA distribution for one outlier test is

t � student with n � 2 degrees of freedom [232], and the following formula can be used to

approximate the critical value:

CVA = t�=n;n�2

s
n� 1

n� 2 + t2�=n;n�2
(8.7)

In the case of the detection of both outliers, that is the two-sided test H0 vs H1B, the

Grubbs statistic is:

GB =
xn � x1
S (8.8)

where x1 or xn are the extreme values of the sample X. Grubbs statistic for both outliers 8.8

is equivalent to the statistic UB:

UB =
V 22
V 2

;

where V 22 is the variance of the sample with two suspicious values excluded, and V
2 is the

variance with two values excluded.

In the case of GB and UB statistics, Grubbs gives only GB distribution values because

UB was too complicated to calculate[134]. For approximating the critical values for � threshold

of GB David and Pearson 1954 [233] have given the next distribution

CVB = t�=n;n�2

vuut2(n� 1)t2�=n(n�1);n�2
n� 2 + t2�=n(n�1);n�2

: (8.9)

So, we have presented two tests for detecting outliers: the GA and UA statistics for

one outlier and GB and UB for two outliers at the same time. At a given � threshold the

correspondent critical values can be calculated by the CVA and CVB formulas 8.7 and 8.9

respectively. In this manner we can reject or accept the corresponding hypothesis H1A and

H1B for accepting or rejecting the existence of one or both outliers. More details on this

outliers detecting method can be seen at Grubbs publications: [134] and [135].

Normality test methods

The normal distribution is the most widely used family of distributions in statistics, and

many statistical tests are based on the assumption of normality. In probability theory, nor-

mal distributions arise as the limiting distributions of several continuous and discrete families

of distributions. The fundamental importance of the normal distribution as a model of quan-

titative phenomena in the natural and behavioral sciences is due to the central limit theorem

[113]. A variety of psychological test scores and physical phenomena like photon counts can

be well approximated by a normal distribution. In our case, as a consequence of the psy-

chological homeostasis principle, gene expression pro�les matrix ET and each one of the rows

Sj of E
T is assumed to be normally distributed Sj � N(�j ; �j). Nevertheless, several rea-
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sons like the existence of outliers, experimental or manipulation errors etc., causes variations

in the distributions of the studied data sets. Thus, normality tests are necessary to assure a

given data set distribution being similar to the normal distribution.

The null hypothesis, H0 , states that the data set is similar to the normal distribution,

therefore a su¢ciently small p � value indicates non-normal data. Several tests have been
made for answering the normality question posed by the H0 , we can mention: graphical

methods as: Q�Q plots and rainkit plots and several statistical tests: Kolmogorov-Smirnov
, Lilliefors [1], [180] , Anderson-Darling, Shapiro-Wilkinson [277] and Jaeque-Bera test [30].

For more details on these tests see [223]. In these section, we will be specially interested in

Q � Q plots, Lilliefors test and Jarque-Bera tests which have particular characteristics that

are useful for our NORDI algorithm.

Lilliefors test

Lilliefors test [180] is an adaptation of the Kolmogorov-Smirnov test [1]. It is used to test

the null hypothesis H0 : Data is normally distributed. The null hypothesis does not specify

which normal distribution, i.e. it does not specify the expected value and variance. The test

proceeds as follows:

� First estimate the population mean � and population variance � based on the data.

� Then �nd the maximum discrepancy between the empirical distribution function and the

cumulative distribution function (CDF) of the normal distribution with the estimated

mean � and estimated variance �. Just as in the Kolmogorov-Smirnov test, this will be

the test statistic.

� Finally, we confront the question of whether the maximum discrepancy is large enough

to be statistically signi�cant, thus requiring rejection of the null hypothesis. This is

where this test becomes more complicated than the Kolmogorov-Smirnov test. Since

the hypothesized CDF has been moved closer to the data by estimation based on those

data, the maximum discrepancy has been made smaller than it would have been if the

null hypothesis had singled out just one normal distribution. Thus we need the "null

distribution" of the test statistic, i.e. its probability distribution assuming the null

hypothesis is true. This is the Lilliefors distribution. To date, tables for this distribution

have been computed only by Monte Carlo methods.

The test is relatively weak for samples when n is small, but it can be robust when

a large amount of data is available. Lilliefors test is e¤ective for normal distributions with

large amount of data and when we do not know the expected mean � and variance � of the

distribution. This is the case of our gene expression pro�les matrix rows Sj . If that is not

the case it is preferable to choose Kolmogorov-Smirnov or Anderson-Darling test that are

generally more robust and more easy for calculating resulting distributions [1].
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Jarque-Bera test

The Jarque-Bera test [30] is a goodness-of-�t measure of departure from normality that an-

swers to the null hypothesis H0 stated before. It is based on statistical third and fourth

standardized momentums 
3 = �3=�
3and 
4 = �4=�

4 that are best known as: skewness and

kurtosis measures respectively.

Skewness, 
3, can be seen as a measure of the asymmetry of the probability distribution

of a real-valued random variable X. Roughly speaking, a distribution has positive skew (right-

skewed) if the right (higher value) tail is longer or fatter and negative skew (left-skewed) if

the left (lower value) tail is longer or fatter.

Kurtosis, 
4, is a measure of the "peakedness" of the probability distribution of a real-

valued random variable X. Higher kurtosis means more of the variance is due to infrequent

extreme deviations, as opposed to frequent modestly-sized deviations.

The Jaeque-Bera test is de�ned as:

J =
n

6

�

23 +


24
4

�
(8.10)

where n is the number of observations (or degrees of freedom) of the distribution. J statistic

has an asymptotic chi-squared �22 distribution with two degrees of freedom. Intuitively, any

sample from a normal distribution has an expected skewness 
3 = 0 and expected kurtosis


4 = 0. In this manner, as seen in the equation 8.10, any deviation from this two measures

increases the J statistic, and its p� value calculated at a given threshold � will be lower, so
it will be more probable to reject H0 in favor of H1:This method is particularly e¤ective for

samples distributed almost as normal distributions, because this method is the most sensible

in detecting the existence of outliers from the ones cited before: Q � Q plots, rainkit plots,

Kolmogorov-Smirnov, Lilliefors, Anderson-Darling, Shapiro-Wilkinson. The characteristic of

the Jaeque-Bera test is given because it is based on skewness and kurtosis measures, that can

be seen as asymmetry and peakedness measures, which can be severely damaged by presence

of outliers. So, this method is very sensible to outliers in normal distributed samples.

Q-Q Plot

Q � Q plot ("Q" stands for quantile) [223] is a tool for diagnosing di¤erences in distribu-

tions,such as non-normality, of a population from which a random sample S has been taken.

It consists in plotting the k
(n+1) quantiles of the comparison distribution (i.e. the normal dis-

tribution) on the horizontal axis (for k = 1; :::; n), and the order statistics of the sample S on

the vertical axis. Quantiles are essentially points taken at regular intervals from the cumula-

tive distribution function (as normal distribution) of a random variable X. Furthermore, the

kth order statistic of a sample S is equal to its kth-smallest value.

Q � Q plot tries to answer the hypothesis testing stated above: H0 : The sample

distribution is similar to a normal distribution versus HA : The sample distribution does not

looks alike graphically to a normal distribution.
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In a normal distribution population the Q � Q plot approximates a straight line, es-

pecially near the center. In case of substantial deviations from that appearance, the analyst

rejects the null hypothesis H0 of resemblance. More details can be seen in [223].

Q � Q plots are similar to rankit plots, also called normal probability plots. The

di¤erence is that in normal probability plots, instead of the k
(n+1) quantiles of the normal

distribution, one plots the expected value of the kth order statistic from a normal distribution

with � = 0 and � = 1: Only when n is small there is a substantial di¤erence between a Q�Q
plot and rankit plot.

Q � Q plots are an easy exploratory and graphical tool for visualizing a given sample

versus another distribution as the normal one It can be useful as well for: detecting possible

outliers, detecting similar tail behavior and similar distribution shapes and to see common

location and scale between distributions.

8.3.2.2NORDI algorithm

Let�s suppose that the gene expression matrix ET already contains well-cleaned expression

measures: ej;i, for i = 1; 2; :::n genes and j = 1; 2; :::;m biological conditions, the number

of genes is large enough and the missing values are not representative. Suppose that each

biological condition has an "almost" normal distribution Sj � N(�; �) for j = 1; 2; :::m.

The NORDI algorithm states that every sample of the expression matrix Sj can be normally

distributed Sj � N(�; �) if all outliers of each row are removed (but keeping a list of removed
outliers, i.e. Lk ) by Grubbs outliers method (explained before). Each time an outlier k is

removed, a Jaeque-Bera normality test has to be accomplished for the remaining sample Skj
where k is the number of removed outliers at each step, k = 0; 1; 2; :::; clean (k = clean means

that there are no more outliers in the sample according to Grubbs test). If the remaining

sample Scleanj is "more normally" distributed than the original sample Sj according to QQ-

plot and Lilliefors normality tests, then we choose the cleaned sample Scleanj for computing

the cuto¤ thresholds. We then applied the z � score methodology to sample Scleanj in order

to calculate the over-expressed: Ot and under-expressed: Ut cuto¤s 8.4.

The discretization procedure is done over the whole sample Sj , within all the removed

outliers in the list LK , using the Ot and Ut cuto¤s. This procedure is repeated for all m

samples. It is important to notice that the threshold cuto¤s are calculated over the cleaned

sample Scleanj that is "more normally distributed" than the initial one S0j . However, the

elements in the �nal outliers list LK , has to be taken into account for the gene expression

analysis because they may contain the most relevant information, so they can not be removed

from the analysis.

Pseudo-code for NORDI discretization algorithm is presented on Fig. 8.2. The algo-

rithm has been implemented in R (language). It takes as input each one of the gene expression

matrix rows Sj , the number of discretization intervals, ndi, and user�s p� value for outliers.
It returns as output the discretization intervals for each biological sample Sj .

The NORDI algorithm begins by reading all the gene expression matrix pro�les (step

2). For each one of the row samples, Sj , it orders the sample in ascending manner (step 4)

and it computes the QQ � Plot test and Lillierfors test (step 5). Then, it computes the
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Input: Gene Expression Pro�les Matrix Rows: Sj for j = 1; 2; :::;m
Number of discretization intervals ndi = 3
Outlier�s p� value

Output: Ot and Ut cuto¤s and ndi intervals
1 Begin
2 lecture gene expression matrix: ET and ndi = 3
3 for each row Sj of the matrix do
4 order in ascending manner the row Sj
5 compute QQ-Plot Test and Lillierfors Test LF for Sj
6 if QQ or LF then
7 compute Jarque Bera JB normality test: J0
8 assign Outliers: Out = 1 and Normality Amelioration: Noa = 0
9 while Out = 1 and Noa � 0
10 compute two-sided Grubbs statistic: GB and critical value CVB
11 compute one-sided Grubbs superior statistic GAsup and CVAsup
12 compute one-sided Grubbs inferior statistic GAinf and CVAinf
13 if CVB < p� value then
14 assign Out = 1
15 compute JB test without k outliers J1 for sample Skj
16 if Noa = J0 � J1 � 0 then
17 remove momentarily outliers from column Skj
18 else if CVAsup < p� value then
19 assign Out = 1
20 compute JB test without superior outlier J1
21 if Noa = J0 � J1 � 0 then
22 remove momentarily outliers from column Skj
23 else if CVAinf < p� value then
24 assign Out = 1
25 compute JB normality test without inferior outlier J1
26 if Noa = J0 � J1 � 0 then
27 remove momentarily outliers from column Skj
28 end if
29 else assign Out = 0
30 end if
31 end if
32 assign J0 = J1
33 end while
34 end if
35 compute QQ-Plot Test and Lillierfors LF Test to Scleanj

36 if the sample Scleanj is more "normal" than original Sj then
37 compute Ut, Ot and ndi = 3 intervals by z � score methodology
38 else continue
39 end for
40 End

FIG. 8.2: NORDI algorithm
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8.3.3 Mining methods

Jaeque-Bera (JB) 8.10 normality test J0 of the sample S
k
j and it assigns two decision variables:

the boolean variable of outlier�s presence: Out and the normality amelioration: Noa = J0�J1
(steps 7-8). The normality amelioration is obtaining by computing the JB test, J1; for sample

Skj and JB test, J0; for sample S
k�1
j . In the presence of outliers Out = 1 and while it exists

normality amelioration Noa � 035, NORDI will compute the Grubbs statistics G and critical
values CV for two outliers, the top or superior outlier and the inferior outlier (See G statistics:

8.5,8.8 and CV equations: 8.7,8.9) (steps10-12). Then, it will test the CV of each one of the

three outlier cases (both, superior and inferior) against the prede�ned p � value (steps: 13
or 18 or 23). If it exists normality amelioration Noa � 0 (steps: 16 or 21 or 26), then it will
remove the tested outlier (steps: 17 or 22 or 27). The procedure will �nish when there are not

outliers Out = 0 or there is not normality amelioration Noa � 0: For each sample Sj it would
be obtained an outlier cleaned sample Scleanj : NORDI will compare the normality of each of

this two samples applying QQ� Plot test and Lillierfors test (step 36). If Scleanj is "more

normal" than Sj , then it will compute the Ut and Ot cuto¤s as well as the 3 discretization

intervals (steps 36-37), as seen in the z � score methodology procedure 8.4. The procedure
will be done for all the biological samples j = 1; 2; :::m in the gene expression matrix.

8.3.3Mining methods

Other discretization methods were proposed in order to help data mining methods as ARD

and decision trees implementations in speci�c transcriptome analysis applications as cancer

studies, metabolic pathway analysis etc. Among these methods we can mention three basic

threshold methods by Becquet et al. [22], a mean gene expression method [286] and a complex

one based on fuzzy logic by Woolf [322].

Three basic thresholds methods

They were proposed by [22] and used within the framework of ARD methodology in gene

expression SAGE technology applied to cancer data. Their interest lies in transforming the

SAGE expression pro�les matrix ET into a discrete boolean matrix, where 0 means no gene

expression and 1 means gene expression.

These methods use SAGE 36 data where all expression pro�les matrix values are null

or positive natural numbers, i.e.: ej;i � 0 and ej;i 2 N.
Max-Minus �% method: Let us take an user pre-determined percentage �% for all of

the matrix ET .

First we calculate the maximal value of the row: Max(Sj):Then using the pre-determined

�% we calculate the row threshold as: Et = Max(Sj)(1� �%): Thus, the corresponding dis-
cretization is:

35 Noa � 0 because the Jaque Bera test states that a normal distribution has a JB coe¢cient equal to 0:If
Noa � 0 then the sample without k outliers: Skj .is "more normal" than the sample without k-1 outliers:
Sk�1j .
36 SAGE method do not use the fold change value currently used in microarray data.
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

ej;i � Et =) ej;i expressed or 1,

ej;i � Et =) ej;i unexpressed or 0.

Applying this formula to each row j = 1; 2; :::m we convert ET into a boolean matrix.

Mid-Ranged method: First we calculate the maximal and minimal value of the row:

Max(Sj) and Min(Sj) :Then we calculate the mid-ranged threshold as:

Et =
Max(Sj)�Min(Sj)

2
+Min(Sj):

So, we have the discretization:

ej;i � Et =) ej;i expressed or 1,

ej;i � Et =) ej;i unexpressed or 0.

Applying this formula to each row j = 1; 2; :::m we convert ET into a boolean matrix.

Highest values at �% level: Let us take an user pre-determined percentage �% for

all of the matrix ET .

First, we calculate �% of the number of genes (without counting the missing values) as:

�%n(Sj) = K

where n(Sj) counts the number of genes with non-null value of the row j. Then, the row Sj is

ordered in a descendent way, from the highest expression pro�les value to the lower. Finally

we choose the �rst K genes or the highest expression values.

Thus, the discretization is:

If ej;i 2 fFirst K genes in the ordered row Sjg =) ej;i expressed or 1,

If not =) ej;i unexpressed or 0.

Applying this formula to each row j = 1; 2; :::m we convert ET into a boolean matrix.

These three measures have to be used carefully, because they are speci�cally made for

Cancer SAGE data, some useful comparisons, advantages and drawbacks for these measures

can be found in Ruggero�s article [262].

Mean gene expression method

This method [286] is used in the reconstruction of metabolic pathways using supervised learn-

ing methods as decision trees. Its goal is constructing a boolean matrix that represents the

change of a gene from a temporal state to another state. So, it is the answer to the problem

of predictive genes (changes of temporal state) and gene expression measures.

This method consists of calculating for every line of the gene expression matrix ET he

mean of every gene:

MeanXi;� =
mX

j=1

ej;i;
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8.3.4 Discussion

then we obtain n thresholds, corresponding to the genes applying this formula to each gene,

i = 1; 2; ::; n. Finally, we compare each expression value ej;i of the matrix to its corresponding

mean value threshold MeanXi;�. We assign 1 if the expression value is greater or equal than

the mean line value and 0 or no expression if not. Thus, the discretization method is:

ej;i � MeanXi;� =) ej;i = 1 expressed

ej;i < MeanXi;� =) ej;i = 0 unexpressed

This method can be useful when we want to know if an individual gene is di¤erentially

expressed over a period of time. However, here we did not take into account the other genes

and the whole process. That, means that even if one gene is very highly or lowly expressed

in relation with other genes, it can appear as unexpressed in all the time process.

Fuzzy logic method

This method [322] is an ingenious fuzzy logic to transform the gene expression matrix ET ,

into qualitative values using heuristic rules. Its goal is to resolve the problem of saying in

an absolute way that a gene is expressed. In reality, a gene is expressed or not in a relative

manner, that is compared to something or from a speci�c point of view. Let us explain the

methodology of this discretization method.

The method takes as input the expression measure matrix ET , where ej;i is the fold

change ratio, as de�ned in eq. 8.1 (without log operator). Then, it normalizes the gene

expression matrix, obtaining only values that are in the interval [0; 1]. Following, it de�nes

three possible expression values: Low (L), Medium (M) and High (H). Each gene expression

value ej;i is then transcribed by a rule which indicates the percentage of L, M or H. Later

on, all these heuristic rules are inserted into a decision matrix. Applying an algorithm (more

details in [322]) based in the heuristic rules, we obtain the degree of expression of each value

in relation to one state.

In principle this fuzzy method is very promising because it takes into account the rela-

tivity of expression of one gene in relation to the others. However, in practice its calculation is

time-consuming. The Woong article mentions that it takes more than 10 days to discretize a

gene matrix with 6321 genes and 5 conditions. Another big problem is the enormous quantity

of possible values of discretization results. Indeed, this �ne discretization would be di¢cult

to implement in practice for the most common gene expression data and would be complicate

to integrate in supervised learning algorithms.

8.3.4Discussion

We have summarized several discretization methods applied in di¤erent gene expression tech-

nologies as microarray and SAGE. We have distinguished as well several applications as

metabolic pathways, cancer studies, drugs test etc., of these methods. But what about our

initial question: When can we say that an expression pro�le of a gene or the gene is expressed

or not? It did not exist an obvious answer to this. and we have to put it in biological context

(type of gene expression technology, biological application, etc.) and also take into account
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

the mining algorithm that would be applied thereafter. It does not exist an unique discretiza-

tion method, so we have to choose the appropriate one to our particular interpretation needs.

Here, we propose six parameters to considerate before applying one of the methods:

� Gene expression technology: SAGE, RT-PCR, microarray, EST etc.

� Type of state variables: cancer/normal, placebo/medicament, mutated/not mutated,

active/passive, etc.

� Type of biological conditions: temporal process, tissues, several time processes etc.

� General biological application of the experiment: temporal process description, cancer

studies, testing medicaments, epidemiology studies, mutation detection etc.

� Control of the statistical pre-treatment of the gene matrix expression (missing values,

noise, replicates, normalizations etc.).

� Immediate application of the discretization: as input of supervised or non-supervised

methods, as an analysis phases in an algorithm etc.

Taking into account these six parameters will yield a better discretization method choice

and will allow us to obtain coherent interpretation results.

8.4 Decision Trees Basics

Decision Trees is one of the most widely-used classi�cation practical algorithm in the machine

learning �eld [212]. Intuitively a decision tree is a classi�er constructed by internal nodes

which speci�es a test regarding some attribute of the object., each branch descending from

that node corresponding to one of the possible values of this attribute. As determined by

the test speci�ed by an internal node, the training examples will be divided and distributed

along the descending branches. This splitting process continues until all the training examples

pertaining to the node share a common label and are considered "pure". Such nodes are called

leaf nodes.

Various decision trees can be built to optimize particular splitting criteria. Some of the

most common decision trees algorithms are: C4.5/C5.0 [247], CART [52] and QUEST [189]

among others. The main distinctive points among theses algorithms its their splitting criteria

and it will be discussed later in this section 8.3.2

In this section we state the framework for decision trees classi�cation in gene expression

technologies. Here we mainly emphasize the �fth step of the model building process, i.e.

predictive model construction. This section is organized as follows: the �rst section presents

the classi�cation in gene expression technologies framework and statistical decision theory

basics, the second section gives an overview of the decisions tree framework and it explains

the splitting criterion di¤erences among several decision tree algorithms. Finally it ends with

a brief discussion over decision trees important parameters.

8.4.1Classi�cation and statistical decision theory
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8.4.1.2 Classi�cation for gene expression data

8.4.1.1Classi�cation

Classi�cation is a prediction or learning problem in which the variable to be predicted assumes

one of K prede�ned and unordered values, fc1,c2,:::; cKg, arbitrarily relabeled by the integers
f1; 2; :::;Kg or f0; 1; 2; :::;K � 1g, and sometimes f�1; 1g in binary classi�cation. The K
values correspond to K prede�ned classes, e.g. disease-type, drug-response etc. Associated

with each object, S, are: a response or dependent variable (class label), Y 2 f1; 2; :::;Kg
and a set of n measurements which constitute the attribute vector or vector of predictor

variables, X = (X1; :::; Xn). The attribute vector X belongs to a attribute space X, e.g. the

real numbers X2 Rn. The task is to classify an object into one of the K classes on the basis

of an observed measurement X = x, i.e., predict Y from X.

A classi�er or predictor for K classes is a mapping C from X into f1; 2; :::;Kg, C :

X! f1; 2; :::;Kg, where C(x) denotes the predicted class for an attribute vector x. That
is, a classi�er C corresponds to a partition of the attribute space X into K disjoint and

exhaustive subsets, I1; :::; IK , such that a sample with attribute vector x = (x1; :::; xn) 2 Ik
has predicted class ŷ = k (modi�cations can be made to allow doubt or outlier classes [256]).

Classi�ers are built or trained from past experience, i.e., from observations which are

known to belong to certain classes. Such observations constitute the learning set (LS), LS=

f(x1; y1); :::; (xn; yn)g. A classi�er built from a learning set LS is denoted by C(� ; LS ). When
the learning set is viewed as a collection of random variables, the resulting classi�er is also

a random variable. Intuitively, for a �xed value of the attribute vector x, as the learning set

varies, so will the predicted class C(x ; LS ). It is thus meaningful to consider distributional

properties (e.g. bias and variance) for classi�ers when assesing or comparing the performance

of di¤erent classi�ers.

8.4.1.2Classi�cation for gene expression data

In the case of gene expression data from disease-type experiments (as cancer), attributes

correspond to genes Xi which are measured over di¤erent biological samples or tumor types

S, and the K classes correspond to these biological samples types or tumor types (e.g. nodal

positive vs negative breast tumors, tumors with good vs. bad prognosis etc.). Here the

predictive problem is the classi�cation of biological samples (malignancies) into known classes.

For this purpose, gene expression data of N genes measured overM tumor samples may

be summarized by an expression matrix ET : MXN (as illustrated in Fig. 8.1). The columns

of this matrix, Xi, are gene vectors, containing at each matrix entry the gene expression

measure of gene Xi (variable i ) of sample Sj , (observation j). Note that this gene expression

data matrix is the transpose of the standard E : NXM gene expression matrix used in

precedent chapters. The NXM representation was adopted in the microarray literature for

display purposes, since for very large N and small M it is easier to display this matrix

than the transposed one. The real values of the expression levels must be discretized into

several categories (as illustrated in third step of Fig. 8.1). When the biological samples

belong to known classes, the data for each observation j consist of a gene expression pro�les

x = (x1; :::; xn) and a class label yj , i.e., of predictor variables xi and response variable yi. For

259



8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

K classes, the class labels yi are de�ned to be integers ranging from 1 to K, and Mk denotes

the number of learning set observations belonging to class k. Data from gene expression

technologies experiments present a so-called "small M; large N" problem, that is, a very

large number of variables (genes) relative to the number of observations (biological samples)

8.4.1.3 Statistical decision theory

It is useful to view classi�cation as a statistical decision theory problem. For each object, an

attribute vector X = x is examined to decide which class the object belongs to. Assume ob-

servations are independently and identically distributed (i.i.d.) from an unknown multivariate

distribution. Denote the class k prior, or proportion of objects of class k in the population of

interest, by �k = p(Y = k). Objects in class k have an attribute vectors with class conditional

density pk(x) = p(x j Y = k). De�ning a loss function L, where L(h; l) simply elaborates the

loss incurred if a class h case is erroneously classi�ed as belonging to class l and de�ning the

risk function, R(C), for a classi�er C is the expected loss when C is used to classify, that is,

R(C) = E[L(Y;C(X))] =
X

k

E[L(k;C(X)) j Y = k] �k =
X

k

Z
L(k;C(x))pk(x) �k;

(8.11)

where E[L(�; �)] is the correspondent expected value for loss function L. Typically, L(h; h) = 0,
and in many cases the loss is de�ned to be symmetric with L(h; l) = 1, h 6= l making an error

of type I (see hypothesis testing section 2.2.1). Then, the risk is simply the misclassi�cation

rate, p(C(X) 6= Y ) =
R
C(X) 6=k pk(x)�k. Note that here the classi�er is viewed as �xed, that

is, if a learning set L is used to train the classi�er, probabilities are conditional on L. When

(unrealistically) both �k and pk(x) are known, it is possible to de�ne an optimal classi�er

which minimizes the risk function. This situation gives an upper bound on the performance

of classi�ers in the more realistic setting where these distributions are unknown.

8.4.2Decision trees framework

Decision Trees are structured classi�ers constructed by repeated splits of subsets or internal

nodes of the attribute space X into K descendant subsets, starting with X itself. These inter-

nal nodes speci�es a test regarding some attribute of the object, and each branch descending

from that node corresponds to one of the possible values of this attribute. As determined by

the test speci�ed by an internal node, the training examples will be divided and distributed

along the descending branches. This splitting process continues until all the training exam-

ples pertaining to the node share a common label and are considered "pure". Such nodes are

called leaf nodes. Each terminal subset is assigned a class label and the resulting partition of

X corresponds to the classi�er.

There are three main aspects for tree constructions:

1. The splitting rule

2. The decision to declare a node terminal or to continue splitting.

3. The assignment of each terminal node to a class.
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8.4.2.1 The splitting rule

We explain these three main aspects taking as examples the binary decision tree con-

struction using two algorithms C4.5/C5.0 [247] and CART [52]. Binary decision trees categor-

ical predictor variables xi;j have only two values, e.g. 1 or �1. This is the case of discretized
gene expression values that can be either over-expressed or under-expressed for a given gene

i and a particular sample condition j.

8.4.2.1 The splitting rule

The construction of a decision tree (the learning process) involves creation of a hierarchy of

tests pertaining to attributes. Various decision trees can be built to optimize a particular

splitting criteria. The simplest splits are based on the value of a single variable. The main

idea is to split a node so that the data in each of the descendant subsets are "purer" than the

data in the parent subset.

A number of de�nitions are needed in order to provide a precise de�nition of a node

splitting rule.

An impurity function is a function �(�) de�ned on the set of all K � tuplets p =

(p1; :::; pK), with pK � 0, k = 1; :::;K, and
P
k pk = 1. This function has the following

properties:

� �(p) is maximal if p is uniform, i.e. pk = 1=K 8 k.
� �(p) is zero if p is concentrated on one class, i.e. pk = 1 for some k.

� �(p) is symmetric in p, i.e., invariant to permutations of the entries pk.

For a node t, let n(t) denote the total number of learning set cases in t and nk(t) the

number of class k cases in t. For class priors �k; the resubstitution estimate of the probability

that a case belongs to class k and falls into node t is given by p̂(k; t) = �knk(t)=nk. The

resubstitution and the resubstitution estimate that a case at node t belongs to class k is

p̂(k j t) = p̂(k; t) p̂(t). When data priors �k = nk = n are used, p̂(k j t) is simply the relative
proportion of class k cases in node t, nk(t) = nk . So we de�ne the impurity measure i(t) of

node t by

i(t) = � (p̂(1 j t); :::; p̂(K j t)) : (8.12)

Having de�ned node impurities, we are now in a position to de�ne a splitting rule.

Suppose a split s of a parental node t sends a proportion pR of the cases in t to the right

daughter node tR and pL to the left daughter node tL. Then, the goodness of split is measured

by the decrease in impurity

4i(s; t) = i(t)� pRi(tR)� pLi(tL): (8.13)

The split s which provides the largest improvement 4i(s; t) is used to split node t
and called the primary split. Splits that are nearly as good as the primary split are called

competitor splits. Finally, surrogate splits are de�ned as splits that most closely imitate the

primary splits. Informally, "imitation" means that if a surrogate split is used instead of a

primary split, the resulting daughter nodes will be very similar to the ones de�ned by the
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

primary split. The split that provides the best agreement of the two sets of daughter nodes

is called the �rst surrogate split.

Some of the most common splitting rules are based in two impurity functions �(�), [10]
that are:

The entropy? impurity measure is de�ned as:

�E (p) = �
X

k

pk log pk (8.14)

where 0 if log(0) � 0.
The Gini index impurity measure is de�ned as:

�G (p) = �
X

k 6=l

pkpl = 1�
X

k

p2k: (8.15)

The entropy measure is employed in the widely-used C4.5/C5 algorithms introduced by

Quinlan [247] and the Gini index measure was used by Breiman et al. [52] in the original

version of their classi�cation and regression tree (CART) methodology.

In order to de�ne the splitting rule of these two algorithms, we �rst de�ne the needed

probabilities as: p and q that are the proportions of observations going to the left and right

cases of the tree; pL and qL are the proportions of 1�s and -1�s in the left sided case, and pR
and qR are the proportions of 1�s and -1�s in the right sided case, respectively.

By replacing the entropy impurity measure �E (p) of equation 8.14 into the splitting

rule 4i(s; t) in equation 8.13 we obtain the objective function used in C4.5/C5 algorithms:

SCE = 4iE(s; t) = q(�qR log qR � pR log pR) + p(qL log qL � pL log pL) (8.16)

In a similar way, by replacing the Gini index impurity measure �G (p) of equation 8.15

into the splitting rule 4i(s; t) in equation 8.13 we obtain the objective function used in CART
algorithm:

4iG(s; t) = qqRpR + pqLpL (8.17)

At each splitting step the minimum of the objective functions eq. 8.16 and eq. 8.17 gives

the primary split s to split node t in C5 and CART algorithms respectively. This primary

split represents the largest improvement 4i(s; t).

8.4.2.2 The decision to declare a node terminal

In both of the explained algorithms C4.5/C5 and CART the tree is fully constructed by taking

the primary splits as explained before using the same criterion to declare a node terminal.

The decision to declare a node terminal is when all cases on that node are of the same class,

otherwise you continue to split.

This stage may also concerns obtaining the "best-sized" (see [52] ) tree and accurate

estimates of classi�cation error (as illustrated in steps 5 and 6 of the Fig. 8.1). The correct-

sized tree is obtained by cutting and replacing branches from the tree (pruning) in order to

reduce the classi�cation error. For estimating the classi�cation error we can use any of the

20 methods explained in the evaluation accuracy prediction section.
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8.5 GENETREE algorithm principles

One of the most used pruning method is the following: Once the large decision tree is

grown, it is selectively pruned upward, yielding a decreasing sequence of subtrees. If a given

branch has a higher classi�cation error rate (estimated using the test set) than a simple leaf

would, the branch is replaced with a leaf. By applying this heuristic rule from the bottom to

the top of the tree, you prune back the tree for better future prediction. Cross-validation is

used to identify the subtree having the lowest estimated misclassi�cation rate.

Either C4.5/C5 or CART uses an upward pruning method for determining the optimal-

sized tree and cross-validation for calculate the estimate of classi�cation error.

8.4.2.3Class assignment rule.

This step concerns the determination of the class at the terminal node when the stop criterion

is not achieved. For each terminal node, choose the class that minimizes the estimate of the

misclassi�cation probability, given that a case falls into this node. Note that given equal costs

and priors, the resulting class is simply the majority class in that node. Either C4.5/C5 or

CART uses this class assignment rule criterion.

Unfortunately the problem of �nding the most compact tree is known to be NP complete?

[156]. Constructing an optimal binary decision tree is NP-complete. In a recent study Lim

et al. [181] compare twenty-two di¤erent decision tree algorithms in terms of classi�cation

accuracy, training time and number of leaves. Among decision trees algorithms with univari-

ate splits, C4.5/C5.0 [247], CART [52] and QUEST [189] have the best combinations of error

rate and speed. For the GENETREE algorithm we have chosen the Quinlan�s C4.5/C5 algo-

rithm because of this reason and because the entropy splitting criterion has a mathematical

interpretation.

8.5 GENETREE algorithm principles

Biological sample prediction is one of the most exciting areas to which gene expression tech-

nologies are currently applied. This issue concerns the main goal of several bioinformatics

applications, such as determining the disease state of a tissue, e¤ectiveness of a medicament,

and toxicity of a molecule.

GENETREE is a decision tree classi�er for biological sample prediction (as disease-

type or drug-response etc.) integrating the information contained in gene expression pro�les

obtained from gene expression technologies data, and gene annotations issued from several

biological knowledge sources, as explained in chapter 3.

Our algorithm takes advantage of the well-known decision tree algorithm C4.5/5.0 pro-

posed by Quinlan [247] and extends the modi�ed entropy splitting criterion to a richer one

using the knowledge contained in several sources of biological information. GENETREE

splitting criterion is composed of several independent criteria: the modi�ed C4.5 Quinlan�s

entropy criterion (SCE) applied to gene expression discretized pro�les and four additional

criteria, SC1, SC2, SC3 and SC4de�ned from gene annotations.

GENETREE intends to build decision tree models containing a set of consistent and

functionally heterogeneous predictive genes specially chosen to achieve better class prediction.
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These characteristics may help to avoid the problem of "imperfect disease diagnosis because

of a battery of expression-based predictors for various cancers (classes)" as stated by Golub

in [133].

Additionally, GENETREE methodology proposes the utilization of two novel original

algorithms: a sample selection methodology (explained in section 4.1.3, for more details see

[199]) and normal discretization algorithm (NORDI) specially designed for gene expression

data.

As a supervised learning approach applied to gene expression technologies, GENE-

TREE, follows the seven steps process for building predictive models: class discovery, sample

and gene selection, discretization, data partition, predictive model choice, accuracy prediction

evaluation and re�ning the model, and biological interpretation of the model (as illustrated

in Fig. 8.1). Here, we explain in detail each one of these seven steps and we �nish the section

with the GENETREE pseudocode.

8.5.1Class discovery

In section 8.3 we have de�ned the predictive bioinformatics main goal as the classi�cation of

biological samples S into K known classes (see section 8.4.1.2). In the case of gene expression

data, attributes correspond to genes Xi which are measured over di¤erent biological samples

Sj , and classes K correspond to these biological samples types. All the notation details

concerning this prediction problem in gene expression technologies where fully developed in

section 8.4.1.2 and section 8.4.1.1.

For the sake of brevity we suppose that the biological classes K are known. That is the

case of most of the gene expression data sets specially built for prediction purposes, where

the classes are already known biological samples. Indeed, if the classes are not known or we

may want to explore the existence of more classes, we need to apply one of the class discovery

algorithms explained in section 8.2, in order to �nd the biological classes.

8.5.2Data selection

This is a critical stage for the success of the predictive power of the model. It concerns sample

selection and selecting informative genes.

GENETREE uses a novel sample selection methodology (explained in section 4.1.3, for

more details see [199]) and it suggests the utilization of a problem-adapted methodology for

choosing informative genes.

Unfortunately gene selection is a necessary step for building a predictive model, because

of the dimensionality problem of low number of biological samples and big number of genes.

Gene reduction is a necessary step and we suggest the utilization of algorithms that

takes into account not only the genes that are di¤erentially expressed, but also the algorithms

which takes into consideration the pertinence of the selected genes with their inherent class

as gene-pairs [38], virtual genes, [325] and Li et al. [179] approaches (see section 8.3).
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8.5.3Discretization

GENETREE uses a novel discretization methodology NORDI (normal discretization), spe-

cially designed to gene expression technologies (for more details see section 8.4.3).

NORDI is based on statistical detection of outliers and the continuous application of

normality tests for transforming the initial distribution "almost normal" to a "more normal"

one. Once the distribution of the data set is "more normal" it calculates the cuto¤s as seen

in z � score methodology (section 8.4.2).
The number of discretization intervals can be �xed by the analyst given the character-

istics of the studied data set. We suggest the utilization of several discretization scenarios to

validate the prediction model results (for a more detailed discussion on discretization issues

see section 8.4.4).

Implementation

The NORDI discretization algorithm was implemented using the R language and using

several libraries of the bioconductor open source project.

8.5.4Data partition

GENETREE uses the cross-validation method. This statistical technique of partitioning a

sample of data chooses s out of n samples as the training set and estimates its error rate

using n � s sample observations (test set). This process is repeated for all distinct choices
of s patterns, constructing

�
n
s

�
classi�ers, and �nally the average of the error rate, known as

s� fold estimate, is computed.
This choice is done because the gene expression data set contains the explained "big N

and smallM " dimensionality problem, where there are thousands or hundreds of attributes or

genes and tens of objects or samples. Thus, a way to obtain meaningful prediction results via

decision trees technique is the use of cross validation, as shown with the C4.5/C5 algorithm

[247].

8.5.5Choosing and building the prediction model

For GENETREE algorithm we extended Quinlan�s C4.5/5.0 algorithm, modifying the split-

ting rule (explained in section 8.3). In this section, we �rst explain di¤erent gene measures

based on their biological annotations, then, we develop the main aspects for GENETREE con-

struction: splitting rule, decision to declare a node terminal, and assignment of each terminal

node to a class, we �nish by illustrating the splitting GENETREE step with an example. In

this section; we make special emphasis in the proposed gene measures based on gene annota-

tions and the novel GENETREE splitting rule aspects, which integrates biological knowledge

and gene expression pro�les.

8.5.5.1Gene measures based on gene annotations

First, we de�ne the following gene measures M1(�); M2(�); M3(�) and M4(�) concerning gene
annotations.
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

Proximity between a gene and the goal-classes M1(Xi; GC)

The goal classes are all the possible K classes without taking into account the reference class

(e.g. c1=normal, c2=leukemia A and c3=leukemia B, c2 and c3 are the goal classes). In order

to avoid confusion, we de�ne the set of goal-classes as the set GC = fc2,:::; cKg, where the
class c1 is taken as the reference class, so it doesn�t enters in the set of goal-classes.

Let�s de�ne �1(Xi; ck) as a correlation measure of annotations concerning gene Xi and

the ck goal-class. This correlation measure, �1(Xi; ck), determines the degree of closeness

between the goal-relative gene annotations of gene Xi and the goal-class ck and it is bounded

by 0 � �1(Xi; ck) � 1.
Indeed, for a given gene, Xi, we are interested in a correlation measure that takes

into account all possible goal-classes, so we de�ne this measure as the average among all the

respective correlation measures �1(Xi; ck), i.e.:

M1(Xi; GC) =

PK
k=2 �1(Xi; ck)

K � 1 : (8.18)

M1(Xi; GC) is an average measure that determines the degree of closeness between an

speci�c gene Xi and all the possible goal-classes. Taking the leukemia example described

above, if we have a gene X which has one annotation concerning the induction of leukemia

B and no annotation for leukemia A. Their M1(Xi; GC) = (100 + 0)=2 = 50 is their average

measure of closeness.

Proximity between a gene and the extended goal-classes: M2(Xi; EGC).

An extended goal-class, ecrk, is a closely-related class r (diseases, toxics, medicaments etc.)

of the goal-class k. We take the set of extended goal-classes of goal-class ck as EGCk =

fec1k; ec2k; :::; ecRk g. For example in the last example the extended goal-class for leukemia A
could be any type of cancer. The degree of closeness among related goal-classes and the

goal-classes will be determined taking into account the speci�c problem characteristics.

The proximity between a gene Xi and the R closely-related classes of class, ck, is de�ned

by equation 8.18 as:

M1(Xi; EGCk) =

PR
r=1 �1(Xi; ec

r
k)

R
(8.19)

Hence, taking into account the correlation measure M1(Xi; EGCk) for all possible goal-

classes ck, we de�ne the proximity between a gene Xi, and all the extended goal-classes as:

M2(Xi; EGC) =

PK�1
k=1 M1(Xi; EGCk)

K � 1 : (8.20)

M2(Xi; EGC) is an average measure that determines the degree of closeness between

an speci�c gene Xi and all the possible extended goal-classes. Taking the leukemia example

described above, if we have a gene X and 10 related leukemia diseases. Supposing that gene

X has annotations stating that the presence of gene X induces 7 of this related-leukemia

disease, their average measure is equal to: M1(Xi; EGC) = (7 � 100 + 0)=10 = 70 is their

average measure of closeness between the gene X and ten related leukemia diseases..
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8.5.5.1 Gene measures based on gene annotations

Functional proximity between two genes according GO: M3(Xi; Xj) and M4(Xi; Xj)

In order to calculate a measure of the functional similarity, according to Gene Ontology (GO),

between two genes, Xi; Xj , we choose the so called "principal distance" proposed in [175],

which is a modi�ed nodal distance that use a directed acyclic graph (DAG) model for GO.

This distance takes into account the hierarchical structure of GO and computes the distance

between two gene annotation within the GO tree. The GO tree TG = (VC ; E) is composed by

the set of nodes (GO terms) VC and the set of edges E.

The principal distance is a metric on GO tree which measures the closeness between

two GO terms (gene GO annotations) and is de�ned as follows:

De�nition: Suppose that v1 and v2 are two nodes (GO terms) in the GO tree: TG =

(VC ; E)
37 where

Pd(v1; v2) =

�
0 if v1 = v2;

W (!0) otherwise,
(8.21)

and the weightW (t) of level t is de�ned as a functionW : IH ! <+ such thatW (i) > W (i+1)

and IH = 1; 2; 3; :::;H. The weight function de�ne the following parameters:

� H0 is the height of TG

� H = H0 + 1.

� !0 is the lowest common ancestor of v1 and v2

Given a GO code38 for vi we use W (vi) in place of W (level of vi) for notational con-

venience (the current modeling of GO tree, supposes the parameters H = 15 and W (k) =

150� 10(k� 1) for k 2 IH). For example, the principal distance of Pd(C1; D1) =W (C1) and

Pd(C3; E2) =W (A1) (see Fig. 8.2).

The principal distance de�ned above, Pd(v1; v2), takes into account the importance of

each annotation in the hierarchical GO structure. For example, in Fig. 8.3, we can see than

the common distance, counting the branches between two nodes, of d(B1; B2) = d(B1; D1) = 2.

Even if these two nodes above has the same path length, their relationships are quite di¤erent

from each other. It is likely that B1 and D1 are more closely related (B1 ancestor of D1)

than B1 and B2. Computing their principal distance we have Pd(B1; B2) = W (A1) and

Pd(B1; D1) = W (B1), by the hierarchical structure of GO tree, we know that W (B1) <

W (A1). Thus, the principal distance takes into account the hierarchical structure of GO (see

Fig. 8.3).

This distance can also be de�ned in an algebraic way by using GO codes. Let N0 be

the set of natural numbers including zero. Then, given two GO codes v1 = a1a2 � � � aH and

v2 = b1b2 � � � bH with ai; bi 2 N0,

Pd(v1; v2) =

�
0 if ai = bi for all i;
W (L) otherwise,

(8.22)

37 DAG model from [175]
38 GO code is the Gene Ontology codi�cation of each GO Term. For example the GO term GO : 0016265:
death is the �fth child of biological process GO : 0008150. This can be seen in the GO code, the code for
death is 250X1012 and for biological process200X1012.
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

FIG. 8.3: Metric relationship of GO. The levels of the correspondent gene annotations
(GO terms): Ai, Bi, Ci, Di, and Ei are 1; 2; 3; 4 and 5 respectively.

where L = max1� i � H fi j ai = big.
It is shown in [175] that the distance function Pd, eq. 8.21 or eq. 8.22, is a metric on

the set VC of all GO codes. Hence, the distance Pd(v1; v2) has the re�exive, symmetric and

transitivity properties (for more details see [175]).

Here, we de�ne two measures MaxPd and AverPd based on the metric Pd(v1; v2)

explained before. First, we explain the notion of multiset. If we have the following three sets

f1g, f1; 1g and f1; 1; 1g are equal in the set notation. Yet, if we want to take the number of
occurrence of elements into account. In that case, such set is called as a multiset. Given a

multiset M = fv1; v2; :::; vng of GO codes in GO tree.
MaxPd is de�ned as the maximum value of principal distances between any two ele-

ments in M , i.e.:

MaxPd(M) = max
1� i � j� n

fPd(vi; vj)g (8.23)

and

AverPd(M) =
X

1� i � j� n

Pd(vi; vj)

Cons
(8.24)

where Cons = n(n�1)
2 .

Let Xa and Xb be a pair of genes that are annotated with GO terms, these terms are

directly related to GO codes (as shown before). Assuming the gene Xa has si annotations

and the gene Xb has sj annotations, where si + sj = n. The resulting multiset containing

both of the si and sj annotations is M = AXa;Xb
= fv1; v2; :::; vng. Using the equations: 8.23

and 8.24 we de�ne two gene measures:

M3(Xa; Xb) =MaxPd(AXa;Xb
) (8.25)
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and

M4(Xa; Xb) = AverPd(AXa;Xb
): (8.26)

The measure M3(Xa; Xb) gives the lowest common ancestor (LCA) between the genes

Xa and Xb. If the LCA is located at higher levels of the gene ontology tree, TG (levels 1

or 2), the genes contain heterogeneous annotations. Sometimes the resultant GO code from

M3(Xa; Xb) may therefore be placed at relatively higher levels on account of just one false

positive. While this might be bad because it is not �exible, it can be also considered good

because it informs us of the existence of some functional outliers.

The measureM4(Xa; Xb) gives the most frequent GO codes between the genes. In other

words, the GO codes at which the two genes are concentrated in the GO space. This measure

tries to infer the strongest meanings of the GO gene annotations from its most concentrated

subcluster and hence it does not concern a few functional outliers in that cluster. If this mea-

sure has relative low values, means that they exist a strong concentration of GO annotations

between the gene Xa and Xb, in other words they have homogeneous GO annotations. For

further details in calculating these two measures the reader can refer to Lee et al. [175].

8.5.5.2GENETREE splitting rule

The GENETREE splitting rule is de�ned at each node t and it consists in two main parts:

choosing the root node and choosing the subsequent nodes. The notation is the same as the

one stated in section 8.4. Let�s see each of these parts in detail.

Choosing the root node

In order to choose the root node we compute the entropy splitting criterion, SCE = 4iE(s; 1),
(C4.5/5.0 algorithm) [247] of each gene Xu for u = 1; :::; n, obtained from the objective func-

tion 8.16. Then, we order the genes decreasingly by taking their information gain IG1s(Xu) =

4iE(s; 1) (As we have stated in section 8.4, the minimal of SCE corresponds to the maxi-

mal information gain). We take the maximal information gain gene: X1max = max IG1s(Xu)

for u = 1; :::; n. Then, we look at the following (in decreasing order) genes Xi with a distance��X1max� IG1s(Xu)
�� < �. Thus, we obtain the set of possible root node genes G1s, contain-

ing all the genes at a relative distance � of the maximal information gene X1max. In the

case that G1s contains more than one gene we compute the proximity between each gene in

this subset and the goal-classes M1(Xu; GC); using eq. 8.18. Then, we order the genes in a

decreasing way, according to the measure M1, in a list L1M1. We then choose the top gene

of this list, i.e. with maximal M1, as the root node t = 1. In the case of equality between

two or more genes in the top of the L1M1 list, we then compute M2(Xu; EGC) for each of

these genes, and in a similar way we build the list L1M2, an we order it decreasingly. Then,

we choose the top gene of the list (with maximal M2) as the root node t = 1. In the case of

equality we choose the top gene in the list L1M2as the i�th node (gene X
i) of the tree.

Consequently, the root node is the gene that maximizes the information gain and it

may be directly related with the goal-classes, or even more with the extended goal-classes.

This means that is the "best" discriminant between classes taking into account the entropy
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8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

information gain criterion applied to gene expression measures, and it may also contain de-

terminant class-related or even extended class-related biological information

Choosing the subsequent nodes of the tree

Here, we explain the general procedure for choosing the subsequent nodes t of the tree. We

suppose the subsequent node (gene) is t = i and the set of possible nodes (genes) contains

n � (i � 1) genes, taking out the previously selected i � 1 nodes (genes), i.e. genes X1;

X2; :::; Xi�1.

As well as for the root node, we �rst compute for each of the remaining n� (i�1) genes
their information gain IGis(Xu) using SCE criterion and we order them decreasingly. We take

the maximal information gain gene: Ximax = max IGis(Xu) for u = 1; :::; n� i+1. Then, we
look at the following (in decreasing order) genes Xu with a distance

��Ximax� IGis(Xi)
�� < �.

Thus, we obtain the set of possible node genes Gis, containing all the genes at a relative

distance � of the maximal information gene Ximax. We suppose the cardinality of this set is

Gis


 = z.

Then, we compute the average of the functional proximity measures M3(Xw; Xt) and

M4(Xw; Xt), applied between each gene Xw 2 Gis and each one of all the previous nodes

t = 1; :::; i � 1. The average functional proximity measures between the gene, Xw; and the
previously selected t nodes (genes Xt) respective to the measure M3(Xu; Xt) is de�ned as:

AverM3(Xw; X
t) =

i�1X

t=1

M3(Xw; X
t)

i� 1 : (8.27)

In a similar way the average functional proximity measures between the gene, Xw; and

the previously selected t nodes (genes Xt) respective to the measure M4(Xw; Xt) is de�ned

as:

AverM4(Xw; X
t) =

i�1X

t=1

M3(Xw; X
t)

i� 1 : (8.28)

For each of the genes Xw 2 Gis, we make the following two comparisons:
� If AverM3(Xw; X

t) � �
� If AverM4(Xw; X

t) � �
If these two comparisons are true then we take out the gene Xw of the set G

i
s, if not

we leave the gene on the set Gis. For given parameters � and �, if these two comparisons are

true, it means that the gene Xw is, in average, functional similar concerning GO annotations

to the previously selected genes Xt in the arborescence.

Thus, we have a new set of heterogeneous genes HGis at an information gain distance��Ximax� IGis(Xi)
�� < �. In the case that HGis contains more than one gene we compute

the proximity between each gene in this subset and the goal-classes M1(Xw; GC); using eq.

8.18. Then, we order the genes in a decreasing way, according to the measure M1, in a list

LiM1. Then, we choose the top gene of this list, i.e. with maximal M1, as the i�th node (gene

Xi) of the tree. In the case of equality between two or more genes in the top of the LiM1

list, we then compute M2(Xw; EGC) for each of these genes, and in a similar way we build
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a decreasing order list LiM2, an we order it decreasingly. We then choose the top gene of

the list (with maximal M2) as the i�th node (gene X
i) of the tree. In the case of equality we

choose the top gene in the list LiM2 as the i�th node (gene X
i) of the tree.

Consequently, each subsequent nodeXi is a gene that maximizes the information gain, it

is not functional similar to the previously selected genes in the tree Xt, and it may be directly

related with the goal-classes, or even more with the extended goal-classes. This means that

it is a "good" discriminant between classes which takes into account the entropy information

gain criterion applied to gene expression measures, it is functionally heterogeneous in relation

with the previously selected genes, and it may also contain determinant class-related or even

extended class-related biological information.

8.5.5.3Decision to declare a node terminal

GENETREE fully constructs the tree by taking the splits s determined splitting criteria

explained in the last section and building a tree containing X1; X2; ::: nodes until the criterion

to declare a node terminal. As stated in Quinlan�s C4.5/C5 algorithm, the decision to declare

a node terminal is when all cases on that node are of the same class, otherwise we continue

to split.

This stage may also concerns obtaining the "best-sized" (see [52] ) tree and accurate

estimates of classi�cation error (as illustrated in steps 5 and 6 of the Fig. 8.1).

In order to tackle this issue, GENETREE algorithm proposes the commonly used up-

ward pruning method (which yields a decreasing sequence of subtrees) combined with 10-fold

cross-validation to identify the subtree having the lowest estimated misclassi�cation rate.

This choice is done because the gene expression data set contains the explained "big N

and small M" dimensionality problem, where there are thousands or hundreds of attributes

or genes and tens of objects or samples. Thus, a way to obtain meaningful prediction results

via decision trees technique is the use of cross validation, as stated in C4.5/C5 algorithm.

8.5.5.4 The assignment of each terminal node to a class

This step concerns the determination of the class at the terminal node when the stop criterion

is not achieved. For each terminal node, choose the class that minimizes the estimate of the

misclassi�cation probability, given that a case falls into this node. Note that given equal costs

and priors, the resulting class is simply the majority class in that node. This criterion is the

same as the used in the Quinlan�s C4.5/C5 algorithm.

8.5.6Prediction accuracy evaluation and re�ning the model

GENETREE choose the cross-validation methodology for obtaining meaningful prediction

results (as stated before). It proposes the utilization of the smooth modi�cation of error

counting as error function criterion (explained in section 8.2.6). The main reason is that all our

data set, the training data set and the test data set is labelled, so it is a reasonable estimator

of the misclassi�cation probability. Cross-validation combined with smooth modi�cation of
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error counting function will be used for assessing the prediction accuracy of GENETREE

model.

Concerning the re�ning model step, it is one of the most delicate steps in gene expression

technologies, because of the number of important parameters contained in gene expression

analysis.

Among these parameters we can mention the parameters concerning directly the decision

tree model construction as:

� Optimal size of the tree.

� The number of trees to built.

� The splitting rule parameters: �, �, and �.

Other important parameters to take into account are the ones concerning the whole

prediction model process as:

� Number of samples.

� Number of "informative genes".

� Available sources of biological knowledge.

� Number of classes

� Parameters concerning the e¢ciency of the obtained classes on the class discovery step.

� Parameters concerning the whole statistical pretreatment of the original data set.

We suggest to use a validation set on which the impact of tuning parameters, at least

for the direct decision tree construction parameters, can be objectively judged and optimized.

8.5.7Biological interpretation of the prediction model results

The relevance of most of the prediction results (disease-prediction, drug-response prediction,

molecule toxic-prediction etc.) in health issues, requires a predictive con�dence of almost

100%. Thus, the expert needs to interpret as better as possible the predictive model outputs

using the available sources of biological knowledge concerning their speci�c problem.

This is not an easy task, and most of this step interpretation is done by hand by the

expert.

GENETREE integrates several sources at information such as GO ontology and disease-

related databases for calculating four measures M1, M2, M3 and M4 concerning gene annota-

tions. This measures can be used once again for analyzing some of the characteristics of the

resulting predictive cluster of genes: PG = fX1; X2; :::g.
In order to analyze the cluster characteristics using only the gene expression pro�les

information, we can use one of the cluster validity measures (homogeneity, separation and

consistency) explained in section 2.3.6.

For the analysis of the cluster numeric and biological characteristics we can use several

approaches as Quality Tool [128], EASE [151], THEA [228], Graph Theoretic Modeling [175]

and GENERATOR [234] among many others.
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In order to analyze the cluster characteristics through a biological point of view, several

related biological source tools can be used (see chapter 4).

8.5.8Example of application of GENETREE splitting rule

In order to manually exemplify the novel splitting rule feature of GENETREE algorithm

we have chosen an arti�cial example, inspired in the real Golub et al. data set [133]. One

of the main goals of the Golub study was the assignment of particular tumor samples to

already-de�ned classes: acute myeloid leukemia (AML) and acute lypmphoblastic leukemia

(ALL), re�ecting current states or future outcomes. Distinguishing ALL from AML is critical

for successful di¤erentiate leukemia treatment as chemotherapy containing corticosteroids

for ALL patients and containing cytarabine. In-situ DNA chips were used to monitor the

expression of 6817 human genes over 38 bone marrow samples (27 ALL, 11 AML).

From this data set we have chosen at random 4 informative genes and 5 samples (3

ALL, 2 AML). We have taken the entire data set as training set and we have applied NORDI

discretization algorithm (see Fig. 8.2) to each biological sample Si for i = 1; 2; 3; :::5. We have

calculated the over-expressed (Ot) and under-expressed (Ut) threshold in order to discretize

the selected data set into two values: 1 for gene over-expression and �1 for gene under-
expression (see Table 8.1).

Samples Si Genes Xj Classes ck
X1 X2 X3 X4

S1 1 1 1 1 AML

S2 1 -1 -1 1 ALL
S3 -1 -1 1 1 AML
S4 1 -1 -1 -1 ALL
S5 -1 1 1 -1 ALL

TABLE 8.1: Selected leukemia data set containing the discretized gene expression values
of each gene over every AML or ALL sample.

Table 8.1 shows the selected leukemia data set L, which contains �ve biological samples,

Si, distributed in two classes, ck, corresponding to 3 ALL and 2 AML, and four human

informative genes: X1 = HOXA9, X2 = Zyx, X3 = CD11c and X4 = CD33. Each numeric

matrix cell corresponds to the expression (over-expression=1 and under-expression=-1) of gene

Xj over a given biological sample Si. The last column represent the correspondent leukemia

classes AML and ALL (in this case there are two goal-classes and no reference class).

The numerical information needed for applying GENETREE splitting set of criteria for

selecting the root node t = 1 and the subsecuents nodes t = i is presented in Table 8.2.

In order to calculate the �rst gene node, X1, we calculate the information gain of all

the genes for u = 1; 2; 3; 4. For � = 0, genes X3 and X4 have the same information gain

for the �rst node (t = 1), i.e. IG1s = :42 (see Table 8.2). Thus, we use the proximity

between each gene and the goal-classes , GC = fALL; AMLg, criteria, M1. We compute

M1(X3; GC) and M1(X4; GC) using the eq.8.18 and taking the gene annotations from the

article of Golub et al. [133]. Golub states that: X4 = CD33 is directly related with goal

classes, so M1(X4; GC) = 100 and that X3 = CD11c it may be related with goal classes,
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Genes Xu IG1s IG2s M1(Xi; GC) M2(Xi; EGC) M3(Xi; X
1) M4(Xi; X

1)
at t = 1 at t = 2 GO level Avg(GOcode)

X2 = X1 .02 .55 0 100 1 125
X2 .02 .55 100 50 3 33
X3 .42 .55 50 100 3 52

X1 = X4 .42 - 100 50 - -

TABLE 8.2: Extract of the splitting information process containing all the needed
splitting criteria: IGis, M1(Xi; GC), M2(Xi; EGC), M3(Xi; X

1) and M4(Xi; X
1) for

selected leukemia data set.

so we �x this correlation measure to M1(X3; GC) = 50 (see Table 8.2). We have that

M1(X4; GC) > M1(X3; GC), so the root node chosen by our algorithm is X1 = X4. At this

stage one of the branches of the tree contains all cases on that node on the same class, so it

is a terminal node and we continue the splitting process from the remaining branch of root

node X1.

To obtain the subsequent node, we calculate the information gain for all the remaining

genes for u = 1; 2; 3. Taking � = 0, we have that all the remaining genes X1, X2 and X3 have

the same information gain for the subsequent node (t = 2), i.e. IG2s = :55 (see Table 8.2).

In the case of the subsequent node, the second criterion for the splitting rule is obtained from

two comparisons M3(Xw; X
t) � � and M4(Xw; X

t) � � (it is not necessary to compute the

average of this measures because t = 2). Each gene Xw is obtained from the set of possible

node genes, i.e. G2s = fX1; X2, X3g and the thresholds were �xed to � = 3 and � = 75.
In order to calculate the corresponding functional proximity between two genes accord-

ing to Gene Ontology M3 and M4 measures, we search for all GO annotations corresponding

to each of the concerned genes (see Table 8.3).

Gene (Xi) : GO Terms
X1 : multicellular organ development

X1 : cell adhesion
X2 : cell-cell signaling
X2 : signal transduction

X3 : cell adhesion
X3 : organ morphogenesis
X4 : signal transduction

X4 : regulation of cell proliferation
X4 : cell-cell signaling

TABLE 8.3: GO terms associated to each one of the genes Xu in the selected data set.

Using the gene-paired annotation, we compute the Max measure M3 and the Average

measure M4 applying the eqs. 8.25 and 8.26 respectively. The corresponding results for

M3(Xi; X
1) and M4(Xi; X

1) for i = 1; 2; 3 are presented in the sixth and seventh column

of Table 8.2. The M3 measure is presented in terms of the GO levels that is obtained by

the correspondent resulting GO code and the measure M4 is in Avg(GOcode) form. For

example, for calculating M3(X1; X
1 = X4), we �rst de�ne the multiset of annotations M =

fv1; v2; :::; v5g, where v1 ="multicellular organ development", v2 ="cell adhesion" and so on.
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Then we compute all the combinations of possible principal distances Pd(vi; vj) using the

eq. 8.23. Finally we take the maximum of the resulting set, obtaining M3(X1; X4) = 125 as

shown in Table 8.2.

Once the M3 and M4 were computed for all genes, we eliminate (only at this stage) the

genes that are functionally closed related with X4. In this case X2 and X3 were eliminated,

thus the chosen gene at node t = 2 was gene X2 = X1 = HOXA9.

At this stage each of the two branches of the tree contains all cases on the node on the

same class, so both of them are terminal nodes. The predictor set obtained by GENETREE

is fCD33;HOXA9g

Biological insights of the results

Concerning the initial four genes, Golub et al. [133] make several asseverations.

� CD11c and CD33 are two highly predictive genes which encode cell surface proteins for

which monoclonal antibodies.

� CD11c and Zyx both concern the cell adhesion of the cell.

� HOXA9 is a known oncogene, i.e. which increases the malignancy of a tumor cell.

� HOXA9 shows the most highly correlation with AML outcome. This predictive force

hypothesis needs to be tested in further studies.

From this conclusions stated in [133], we can resume the predictive importance of

HOXA9 and the predictive importance and functional proximity between two pairs of genes:

CD11c and Zyx as well as CD11c and CD33.

Our main goal was building a decision tree model that could choose the most predic-

tive heterogeneous genes. In this example, the predictive set of genes fCD33;HOXA9g is a
set of predictive heterogeneous genes. If we apply directly Quinlan�s algorithm C4.5/C5,

the resulting predictor set can be anyone of these sets: fCD33; CD11cg, fCD33; Zyxg,
fHOXA9; CD11cg or even fCD11c; CD33g, fCD11c; Zyxg. In these cases we take pre-
dictive genes, but in many of these cases the chosen genes have the same functionality. This

can be understood as redundant information on the predictive model. This results give us an

optimistic glimpse of the potentialities of our gene-integrated decision trees algorithm GEN-

ETREE.

8.6 Discussion and Outlook

Gene expression pro�ling studies are increasingly being used to identify clusters of functionally

linked co-expressed genes, as stated as a class discovery issue. However, the prediction of the

state of a tissue, the toxicity of a molecule or the e¤ectiveness of a medicament is a relative new

issue concerning gene expression technology studies. Modern computational and statistical

methods, such as supervised techniques, had been poorly used to reliably predict the outcome

of a biological sample. In the last years, the class prediction issue has been explored mainly

in the tumor classi�cation application, but it remains a widely open research �eld.
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In this chapter, we deal with the class prediction problem giving a general framework

for applying supervised algorithms in gene expression technologies. At the moment, most of

the existing approaches have used only the gene expression pro�les information. We strongly

suggest the utilization of the large and heterogeneous sources of biological knowledge across

all the steps for building a predictive model.

In order to achieve the sample selection and discretization steps of the predictive model

process, we propose two novel algorithms: an outlier sample detection method (see section

4.1.4) and the normal discretization (NORDI) algorithm (section 8.4) specially designed for

gene expression data sets. For succeeding on the sample selection issue, we strongly suggests

the use of all the available biological sample information contained in the gene expression

technology protocol as MIAME in the case of microarray data. This qualitative sample

information such as gender, age, degree of alcoholism, smoking degree etc., could be valuable

information for sample selection in the pretreatment phase.

Concerning the choose of a predictive model, we suggest the utilization of an algorithm

that can be handled and interpreted through biological insights. This avoids all complicated

"black box" supervised methodologies that could complicate the already intrincate gene-

protein interactions. Here, we have proposed an "intelligent" use of decision trees methods,

taking care of their known drawbacks as over�tting or optimization failures in order to �nd

an optimal set of functional heterogeneous genes to predict the class or classes of a given

biological sample. This challenge is enormous and must be solved by ingeniously integrating

the available sources of biological knowledge.

To date, this problem has received special attention in the context of disease-type ap-

plications as cancer research. A reliable and precise classi�cation of tumors is essential for

successful diagnosis and treatment of cancer. Current methods for classifying human malig-

nancies rely on a variety of clinical, morphological and molecular variables. In spite of recent

progress, there are still uncertainties in diagnosis because most cancer genes remain func-

tionally uncharacterized in the physiological context of disease development. Gene expression

technologies are novel biotechnologies which are being used increasingly to tackle this problem

in cancer research [133, 7, 166, 242]. Concerning only this speci�c �eld of research, analysts

dispose of a large choice of heterogeneous biological sources of information to tackle the tumor

prediction issue (see Table 8.4).

In this chapter we explore a plausible solution to tackle this prediction challenge: GENE-

integrated analysis for biological sample prediction using decision TREEs (GENETREE).

The main contribution of our approach consists in proposing an original splitting criterion

composed of �ve di¤erent criteria: the entropy criterion SCE for manipulating gene expression

pro�les and four additional criteria, SC1, SC2, SC3 and SC4 obtained from gene annotations.

The construction of the annotational gene measures underlying this four criteria is not

an easy task. The challenge of computing the proposed novel proximity measures, M1 and

M2, is enormous. Here, we present a manual way of searching and extracting the principal

annotations concerning a given gene and their goal-classes M1, and between a given gene and

the extended goal-classes M2. However, in reality, this task should be done automatically

by text mining tools capable of extracting high-quality information from text and databases
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Biological Source of Information Source Type

* Gene Ontology (GO) semantic

*Munich Information Center for Protein Sequence (MIPS) gene/protein-related

*Gene Map Annotator and Pathway Pro�ler (GENMAPP) gene/protein-related

*Kyoto Encyclopedia of Genes and Genomes (KEGG) gene/protein-related

*Biocarta gene/protein-related

Cancer Cell Map gene/protein-related

Module Map gene/protein-related

*Uniprot molecular databases

Biomolecular interaction Network Database (BIND) protein interaction

IntAct protein interaction

Human Protein Reference Database (HPRD) protein interaction

Database of Interacting Proteins (DIP) protein interaction

Online Predicted Human Interaction Database (OPHID) protein interaction

Molecular Interaction Network Database (MINT) protein interaction

Protein-protein interaction (PP1) of cancer proteins protein interaction

Cancer Gene Census cancer genes

Cancer Gene Data Curation Project cancer genes

Cancer Gene Resequencing Resource cancer genes

The Tumor Gene Family Databases cancer genes

Oncomine cancer genes

Cancer Progam Data sets gene expression database

*Stanford Microarray Database (SMD) gene expression database

*Gene Expression Omnibus (GEO) gene expression database

Cancer Gene Expression Database(CGED) gene expression database

TABLE 8.4: Cancer-related genomic data sources: semantic databases, experience data-
bases, gene-protein related speci�c databases. The sources of information marked with
* have an entry on the web-site glossary.

277



8 GENETREE: GENE-Integrated Analysis using a Decision Tree Algorithm

FIG. 8.4: A graphical representation of a nested GO classi�cation showing the functional
annotations of 384 known cancer genes. Image from [152] with permission of the author.

(discussed in section 2.4), in order to give a measure of a given gene and their goal classes

or extended goal classes. Nowadays, this subject is becoming intensively studied and is a

wide-open research �eld.

In order to calculate the functional proximity between two or more genes we have used

a previously proposed GO tree distance between a set of annotations. The two measures M3

and M4 inspired from this distance, are useful rough measures of the heterogeneity and/or

homogeneity of two or more genes given the set of their respective GO annotations. However,

this measure has to be improved in order to re�ect better the underlying multiple biological

process hidden behind gene annotations.

Still, Gene Ontology is one of the valuable semantic sources of biological knowledge that

intends to re�ect a large image of the gene associated biological processes, cellular components

and molecular functions of di¤erent species. The construction of a annotational measure that

could re�ect the heterogeneity of two genes given the set of their annotations can be done. A

recent publication of Pingzao et al. [152] has showed the skewed functional annotations (GO

terms) assigned to known cancer genes derived largely from familial syndromes or single-gene

defect? cancers (see Fig. 8.4).

Figure 8.4 shows that GO provides a computationally accessible, organism-independent

means for examining and reporting gene function and their annotational relationships. The

size of the terms (circles) is proportional to total gene membership, and the color shading

indicates the degree of stastical signi�cance (darker tones denote drecreasing p� values).
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Once the current version of GENETREE would be totally implemented, the next step is

the study of the behavior of our decision model parameters: optimal size of the tree, number

of trees to be build or our main splitting rule parameters �, � and �, across real gene expression

data sets. A crucial issue would be the tuning and optimization of these parameters.

Concerning the whole prediction process parameters we�ll take special attention to the

informative gene selection and discretization steps, because they represent one of the largest

source of error and bias in the model, and may lead to false conclusions [250].

At the moment, GENETREE constitutes a rising e¤ort for building a gene-integrated

model capable of building a set of functionally heterogeneous gene predictors for improving

the prediction in many gene expression technology applications as tissue-disease diagnosis,

molecule-toxicity or drug-response.
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Conclusion

We have developed three data mining models for knowledge discovery with genomic expres-

sion data: CGGA (Co-expressed Gene Groups Analysis ), GENMINER (Gene-integrated

analysis using association rules discovery) and GENETREE (GENE-integrated analysis

for biological sample prediction using decision tree algorithms ). These approaches are au-

tomatic tools for interpreting the data issued from any gene expression technology. They

can be used by experts in the �eld for discovering the hidden information and knowledge

contained in genomic expression data. The main idea behind these approaches is the in-

terpretation of gene expression data via the automatic integration of biological knowledge

from di¤erent sources of information with numerical gene expression pro�les.

CGGA and GENMINER models deal with the class discovery issue in gene expres-

sion technologies stated by us as: "Highlighting the main co-expressed and co-annotated

gene groups using at least one source of biological knowledge".

Recently, numerous interpretation approaches have made e¤orts to tackle the class

discovery issue. Indeed, these heterogeneous approaches have chosen several tools and

methodologies to deal with this issue. Therefore, we have proposed a new framework for

interpreting gene expression data as the result of the integration of gene expression pro�les

and corresponding gene annotations. As a basis of our contribution, we have presented

an original classi�cation of interpretation approaches, consisting in three axes: knowledge-

based axis, expression-based axis, and co-clustering axis.

Nowadays, most of these approaches are based on gene expression measures (expression-

based) which are often noisy data, thus the results can be severely biased. CGGA and

GENMINER are knowledge-based and co-clustering approaches respectively, which auto-

matically integrate gene expression pro�les and the biological annotations of the genes

obtained by the genome-wide sources of biological knowledge such as molecular databases,

semantic sources, gene expression databases, bibliographic databases, gene/protein related

speci�c sources and Miame information..

CGGA contains an original function which synthesizes the information contained

in the gene expression measures with the correspondent gene annotations, in order to

highlight the main co-expressed and co-annotated gene groups. By applying CGGA to

well-known microarray experiments, we identify the main functionally enriched and co-

expressed gene groups, and we have shown that this approach enhances and optimizes the

interpretation of microarray experiments.

GENMINER is a co-clustering and bi-clustering association rules discovery ap-

proach which automatically integrates at once gene annotations and gene expression pro-

�les to discover intrinsic associations between both data sources based on frequent patterns.

Our algorithm is an adaptation of traditional association rules mining techniques, that

takes advantage of the CLOSE [229] algorithm to generate low support, high con�dence
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and non redundant rules in an e¢cient way. Automatically extracted associations reveal

signi�cant groups, meaning important biological relationships between gene attributes and

patterns. Many of these relationships are supported by recently reported works.

The GENETREE model deals with the class prediction issue in gene expression

technologies which was de�ned as: "Building a predictive model for disease-type classi�-

cation using at once gene expression measures and the sources of biological knowledge".

The biological sample prediction applied to gene expression data is a relatively new

�eld in bioinformatics. Nevertheless, a variety of supervised learning algorithms have been

used to solve the prediction problem for disease-type applications, such as cancer. These

algorithms take into account only gene expression pro�les without integrating any source

of biological information, thus ignoring valuable biological information.

GENETREE is a supervised algorithm for biological sample prediction that takes

advantage of the well known C4.5/C5.0 decision tree algorithms, and it extends the en-

tropy splitting criterion to a more complex one which takes into account several sources

of gene annotations. Thus, it automatically integrates gene expression pro�les with gene

annotations obtained by genome-wide sources of information such as Gene Ontology and

gene/protein related speci�c sources of information.

In order to accomplish all steps necessary to build a predictive model, we have

developed two novel algorithms: an outlier sample detection method and the normal dis-

cretization, NORDI, algorithm; these two algorithms are specially �tted to gene expression

data sets.

Our sample selection method is based on combining the statistical Principal Com-

ponent Analysis (PCA) and the hierarchical clustering unsupervised algorithm for detect-

ing sample outliers in gene expression data sets. The promising results obtained by apply-

ing this approach to SAGE and microarray data sets show their e¤ectiveness for sample

selection in gene expression data sets.

NORDI (normal discretization) is based on statistical detection of outliers and the

continuous application of normality tests for transforming the initial sample distribution

from an almost normal distribution to a more normal one. By applying this approach

to several gene expression data, we have shown that NORDI, enhances the interpretation

results obtained by many supervised learning and association rules algorithms.

Outlook

The work presented in this thesis delineates a clear research path for knowledge discovery

within gene expression data. The main idea behind this path lies on the interpretation of

gene expression data by incorporating the valuable and heterogeneous knowledge contained

in the biological sources of information.

Either unsupervised (which tackle the class discovery problem) or supervised (which

deal with the class prediction problem) approaches must integrate the biological sources

of information at one stage of their model building process. The scienti�c community
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studying the subject has no answer to determine the step of the process when the biological

information has to be integrated.

In this section we �rst explain the future works concerning our three mining algo-

rithms, and then we give a general outlook concerning the stated research path in bioin-

formatics.

CGGA is a practical automatic tool for constructing co-expressed and co-annotated

gene groups. It can be used as a tool for platform-independent validation of a microarray

experiment and its comparison with the huge number of existing experimental and docu-

mentation databases. Experimental results show the interest of our approach and make it

possible to identify relevant information on the analyzed biological processes. However, it

cannot identify groups of genes expressed only at certain phases of the biological process,

so we plan to integrate the biological information concerning the metabolic pathways to

solve this lack. CGGA is rank-based, meaning that the measure for manipulating gene

expression pro�les is based on the position of the respective gene in a sorted list. Thus,

the genes position in the rank list are sensitive parameters that have to be optimized us-

ing several measures for testing the expression variability of the genes. Furthermore, we

could integrate bi-clustering algorithms for constructing several scenarios of gene expres-

sion variability taking into account several analysis purposes as gene variability in a part

of the process, gene variability at the next time point of the process, gene variability at

each biological stage of the process, for instance. These extensions would turn CGGA in

a more robust algorithm.

GENMINER is a practical automatic tool for constructing co-expressed and co-

annotated gene groups at once. Even if our algorithm generates only the minimal rules

against inclusion, the number of rules can still be very high for expert interpretation. There

is a need for post-treatment of the generated rules in order to help the expert to obtain

meaningful biological associations. Post-treatment of rules in bioinformatics is an open

research issue, which depends on the collaboration between the expert and the developer,

as well as the characteristics of the biological source of information. Among the possible

rule post-treatment tools that could render GENMINER more robust we can mention for

instance:

� Develop a program that could generate association rules from any of the sources of

biological knowledge and could search this existing rule over all obtained rules using

GENMINER.

� Develop an interactive semi-automatic program that allows the expert to �nd

"interesting" rules taking into account his knowledge and the existing knowledge.

Concerning the threshold issue for selecting signi�cant rules, GENMINER uses the

support-con�dence framework providing also the lift of the rule in order to avoid the se-

lection of association among uncorrelated elements. Although support and improvement

values provide information about the association between the antecedent and the conse-

quent parts of the rule, they do not inform about their statistical signi�cance. For this
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purpose, we plan to integrate at least the one-tailed hypergeometric test used to �nd sig-

ni�cant co-expressed and co-annotated groups in CGGA algorithm.

GENETREE is an ingenious attempt for sample prediction using a decision tree

algorithm and integrating the information contained in gene expression pro�les and corre-

spondent gene annotations. The GENETREE development, evaluation, parameter tuning

and interpretation of their predictive results have to be done with gene expression data

sets in order to measure the e¤ectiveness of the model.

Once the current version of GENETREE is totally implemented, the next step is the

study of the direct parameter behaviors in our decision model as: optimal size of the tree,

number of trees to be built or our main splitting rule parameters �, � and � across real

gene expression data sets. A crucial issue would be the tuning and optimization of these

parameters.

Another important issue concerning our splitting criteria is the construction of the

three gene measures based on gene annotations. An optimal way to construct them would

be to develop an automatic tool in order to extract associations between genes and their

concerned information from several sources of biological knowledge such as articles, for

instance. This can be done using text mining techniques.

Concerning the model prediction steps, we can mention several key stages that have

to be more deeply developed in order to succeed in any predictive model applied in gene

expression data sets. These key stages are: selecting informative genes, sample selection

and discretization. These three stages are open �elds of research, and they represent an

important source of error in applying supervised algorithms in gene expression technolo-

gies. Furthermore, these stages have no unique solution, they generally depend on the

characteristics of the gene expression data set and the analysis� main goal.

Concerning the three mining approaches, the improvement of our approaches comes

hand in hand with biological information source development. Thus, all the ameliorations

and creation of well-structured, easy-handling, clearly-explained and up-to-date sources of

biological information would yield to better interpretation results. The advances in the

text-mining �eld, capable to extract high-quality information from text, would be crucial

for the future development of knowledge discovery gene expression data tools.

In this thesis, we have dealt with extracting the hidden information and knowledge

contained in gene expression data such as Microarray or SAGE. At the moment, there are

several technical limitations that turn this goal into an extremely di¢cult task.

Genomic science intends to understand the biological process under the optic of the

genes; indeed the proteins are the ones which activate or inhibit all the biological process

in an organism. Unfortunately, these two research �elds - genomics and proteomics - are

studied separately, and the connections between them are not evident. Thus, the main

interpretation of gene expression data results has to be translated in terms of proteins to

understand the underlying biological process, which is not an easy task. Furthermore, this

interpretation concerns gene regulatory networks? and metabolic pathways? which are not

completely understood.
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The Genome project has already sequenced all the genes of several organisms, hu-

mans included. Nevertheless, the functions and characteristics of most of the genes (this

is the case of humans) are unknown.

Gene expression data may contain inherent noise due to several issues as manu-

facture, technical pre-treatment, analytic pre-treatment etc. However, gene expression

technologies are improving the technical issues day by day.

Heterogeneity and particular characteristics of each one of the sources of biological

knowledge may yield a di¢cult integration in any supervised or unsupervised algorithm.

However, the scienti�c community working on genomics and their related �elds is improving

the quality and handiness of these precious sources of biological knowledge.

An important technical restriction is that the recent computational power is not

enough to compute the majority of existing algorithms with very large data sets containing

thousands or even millions of genes.

In spite of all these technical and knowledge constraints, the importance of under-

standing the complex structure and the underlying functions of biological processes con-

cerning the living organisms is worthy enough to continue mining for knowledge discovery

in the genomic �eld.
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