Implémentation d'un système préattentionnel avec des neurones impulsionnels

Sylvain Chevallier

LIMSI - CNRS Université Paris-Sud 11 Orsay, France

Sous la direction de : Philippe Tarroux (LIMSI) et Hélène Paugam-Moisy (Université de Lyon)

25 juin 2009

Sommaire

1. Contexte des recherches

Attention visuelle Approche bio-inspirée Problématique

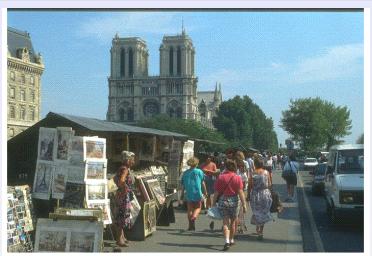
2. Filtrage neuronal

Principes Résultats expérimentaux

3. Architecture préattentionnelle

Description de l'architecture Résultats sur les saillances Focus d'attention

Change blindness



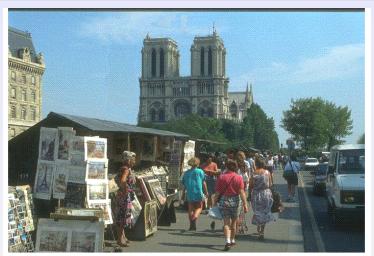
CB during Blinks (O'Regan, Deubel & Clark & Rensink, 2000)

Change blindness

CB during Blinks (O'Regan, Deubel & Clark & Rensink, 2000)

Contexte des recherches Filtrage neuronal Architecture préattentionnelle

Change blindness



CB during Blinks (O'Regan, Deubel & Clark & Rensink, 2000)

Attention visuelle

- Métaphore du faisceau attentionnel
- Représentation interne clairsemée [Ballard, 95]
- Le monde comme une mémoire externe [O'Regan, 92]

Intérêts pour la vision artificielle

- Complexité algorithmique [Tsotsos, 90]
- Sélection attentionnelle pour réduire l'espace de recherche
- Exploration séquentielle : mécanisme inférentiel [Helmholtz, 1886]

Définitions

- Préattention et attention
- Covert attention et overt attention

Attention visuelle

- Métaphore du faisceau attentionnel
- Représentation interne clairsemée [Ballard, 95]
- Le monde comme une mémoire externe [O'Regan, 92]

Intérêts pour la vision artificielle

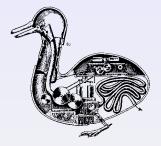
- Complexité algorithmique [Tsotsos, 90]
- Sélection attentionnelle pour réduire l'espace de recherche
- Exploration séquentielle : mécanisme inférentiel [Helmholtz, 1886]

Définitions:

- Préattention et attention
- Covert attention et overt attention

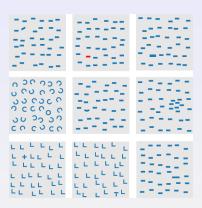
Bio-inspiration

- Proposer des solutions efficaces inspirées par la biologie
- Abstraction de la réalité biologique
- Compromis entre les modèles réalistes et les systèmes artificiels



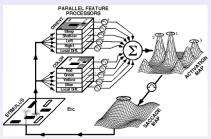
Préattention

Traits caractéristiques [Treisman, 80]:



- interviennent dans les traitements préattentifs
- extraits de façon parallèle
- ne sont pas tous équivalents

Modèle de l'attention visuelle

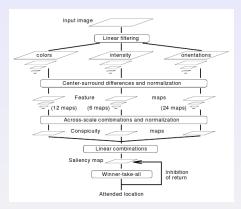


Guided search theory [Wolfe, 94]

Carte de saillance :

- Postulée par la plupart des théories attentionnelles
- Pas de corrélats neuronaux clairement identifiés
- Carte distribuée sur plusieurs régions ?

Implémentations existantes



[Itti & Koch, 98]

Principales caractéristiques

- Décomposition en traits caractéristiques
- Combinaison sur une carte de saillances
- Sélection par WTA du focus d'attention

Modèles neuronaux existant interviennent dans (2) ou (3)

Problématique

Proposition d'une architecture préattentionnelle

- Purement ascendante (bottom-up)
- Modèle de covert attention
- Carte de saillance

Définition des saillances

Les saillances sont des contrastes locaux, globalement rares, qui portent des informations dans plusieurs modalités visuelles et sur différentes échelles spatiales.

Problématique

Inspiration des voies parvo et magnocellulaire :

Parvo basses fréquences

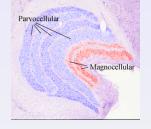
spatiales, pas de couleurs,

plus rapide

Magno hautes fréquences

spatiales, couleurs, plus

lente

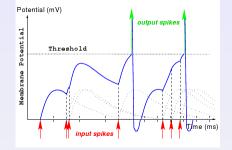


⇒ Saillances : informations des hautes fréquences dans les régions préactivées par les basses fréquences

Neurones impulsionnels

Intérêts:

- Représentation unifiée de l'information
- Fusion d'informations de nature différentes
- Architecture modulaire



Particularités:

- Traitement sélectif de l'information
 - Seuillage implicite
- Différents comportements :
 - Intégrateur temporel
 - Détecteur de coïncidences

Neurones impulsionnels

Originalités :

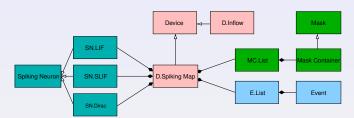
- Pas de reset après chaque image
- Filtrage neuronal

Traitement temporel des informations visuelles

- Filtrage par approximations successives
- Processus anytime [Dean & Boddy, 88]
- Permet d'échanger de la qualité du résultat contre du temps de calcul

Implémentation du système

- Système synchrone hybride [Morrison, 05]
- Plusieurs modèles de neurones impulsionnels



Sommaire

- 1. Contexte des recherches
 Attention visuelle
 Approche bio-inspirée
 Problématique
- 2. Filtrage neuronal
 Principes
 Résultats expérimentaux
- 3. Architecture préattentionnelle
 Description de l'architecture
 Résultats sur les saillances
 Focus d'attention

Modèle de neurone

Intégrateur à fuite ou Leaky Integrate-and-Fire (LIF) :

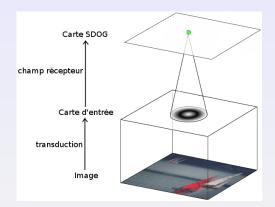
$$\left\{ \begin{array}{l} \frac{dV_i}{dt} = -\lambda_i V_i(t) + u_i(t), \text{ si } V_i < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_i \text{ revient \`a } V_{\text{reset}} \end{array} \right.$$

- $ightharpoonup V_i(t)$: potentiel membranaire
- $\triangleright \lambda_i$: constante de relaxation membranaire
- $ightharpoonup u_i(t)$: commande
- Pas de période réfractaire

Cartes de filtrage

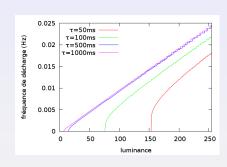
Carte neuronales

- Transduction : conversion pixels en PA
- Intégration : résultats du filtrage



Transduction

$$\left\{ \begin{array}{l} \frac{dV_i}{dt} = -\lambda_i V_i(t) + KL_i, \text{ si } V_i < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_i \text{ revient \`a } V_{\text{reset}} \end{array} \right.$$



avec $\tau = 1/\lambda$

Intégration

$$\left\{\begin{array}{l} \frac{dV_j}{dt} = -\lambda_j V_j(t) + \sum_{i=1}^{P_j} w_{ij} S_i(t), \text{ si } V_j < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_j \text{ revient \`a } V_{\text{reset}} \end{array}\right.$$

Codage impulsionnel

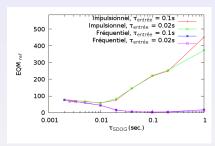
Intégration

$$\left\{\begin{array}{l} \frac{dV_j}{dt} = -\lambda_j V_j(t) + \sum_{i=1}^{P_j} w_{ij} S_i(t), \text{ si } V_j < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_j \text{ revient \`a } V_{\text{reset}} \end{array}\right.$$

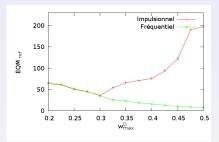
Codage fréquentiel

- Validation sur des images de test artificielles
- Comparaison filtrage neuronal et filtrage par convolution
- Erreur quadratique moyenne
- Étude de paramètres

- Validation sur des images de test artificielles
- Comparaison filtrage neuronal et filtrage par convolution
- Erreur quadratique moyenne
- Étude de paramètres

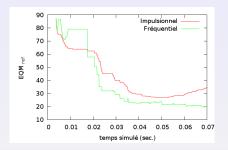


Influence de τ_{SDOG}



Influence de w_{max}

- Validation sur des images de test artificielles
- Comparaison filtrage neuronal et filtrage par convolution
- Erreur quadratique moyenne
- Étude de paramètres



Résultat du filtrage obtenu par approximations successives

- Validation sur des images de test artificielles
- Comparaison filtrage neuronal et filtrage par convolution
- Erreur quadratique moyenne
- Étude de paramètres

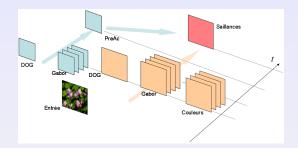
Conclusion

- Les résultats sont obtenus de façon graduelle
- Les premiers PA codent pour les coefficients les plus importants
 - Impulsionnel obtention rapide d'un résultat partiel Fréquentiel résultat proche du filtrage par convolution
- ▶ Biais pour les valeurs de luminance importantes

Sommaire

- Contexte des recherches
 Attention visuelle
 Approche bio-inspirée
 Problématique
- Filtrage neuronal
 Principes
 Résultats expérimentaux
- 3. Architecture préattentionnelle
 Description de l'architecture
 Résultats sur les saillances
 Focus d'attention

Architecture de la préattention



- Entrées
 - Luminance et couleurs
- Traits caractéristiques
 - Contrastes
 - Orientations
 - Oppositions de couleurs

- Parvo et magnocellulaire
 - Basses fréquences guident l'attention
- Intégrateurs/détecteurs de coïncidences
- ► Focalisation attentionnelle

Extraction de saillances

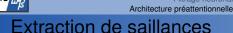
Comparaison avec l'algorithme d'Itti

- Approche coarse-to-fine
- Moins sensible aux valeurs absolues des luminances
- Apparition graduelle des résultats

Itti

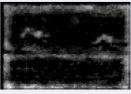
Original

Neuronal



Comparaison avec l'algorithme d'Itti

- Approche coarse-to-fine
- Moins sensible aux valeurs absolues des luminances



Itti

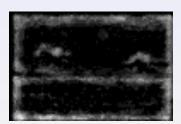
Original

Neuronal

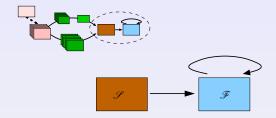
Extraction de saillances

Comparaison avec l'algorithme d'Itti

- Approche coarse-to-fine
- Moins sensible aux valeurs absolues des luminances
- Apparition graduelle des résultats

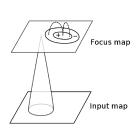


Focalisation attentionnelle



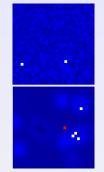
- Réseau récurrent
- Connexion DOG
- Implémente un WTA
- Dynamique des champs neuronaux

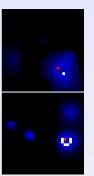
Évaluation



- Méthodologie de [Rougier & Vittay, 06]
- Deux cartes
- Cible en mouvement
 - bruit gaussien
 - distracteurs

Évaluation

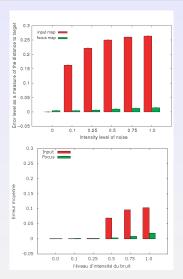




Baricentre de l'activité :
$$\bar{\mathbf{F}}_i = \frac{1}{K} \sum_{i=1}^{K} \mathbf{f}_{i,j}$$

Mesure d'erreur :
$$E_{\mathrm{focus}} = \frac{1}{N} \sum_{i=1}^{N} \mathrm{d}(\mathbf{S}_i, \bar{\mathbf{F}}_i)$$

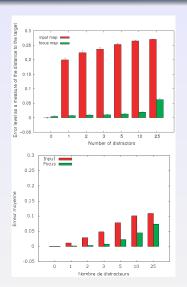
Résultats de l'évaluation



Plus robuste aux bruits

 Moins sensible aux distracteurs (jusqu'à 3

Résultats de l'évaluation



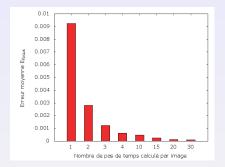
- Plus robuste aux bruits
- Moins sensible aux distracteurs (jusqu'à 3)

Focalisation sur une séquence d'images naturelles

- ▶ 30 images
- ► 76x56 pixels

- Architecture complète
- Robot est saillant

Focalisation sur une séquence d'images naturelles



$$E_{\text{focus}} = \frac{1}{K} \sum_{i=1}^{K} d(\mathbf{S}_i, \bar{\mathbf{F}}_i)$$

 Précision améliorée lorsque l'algorithme dispose de plus de temps

Conclusions

- Architecture préattentionnelle
- Bio-inspirée
- Neurones impulsionnels
 - Codage temporel
 - Résultats obtenus graduellement
- Extraction des saillances
 - Contrastes, orientations, couleurs
 - Préactivation par les basses fréquences
- Focus d'attention
 - Robuste aux bruits et aux distracteurs
 - Application sur une séquence d'images naturelles

Perspectives

- Apports qualitatifs du filtrage neuronal
- Caractérisation mathématique du filtrage neuronal
- Lien entre les approches impulsionnelles et fréquentielles
- Apport du codage temporel précis pour le WTA
- Integration sur une plateforme robotique
- Boucles sensori-motrices
- Influences descendantes (top-down)

Merci

Annexe

Neurones des cartes d'entrée

$$\left\{ \begin{array}{l} \frac{dV_i}{dt} = -\lambda_i V_i(t) + \mathit{KL}_i, \text{ si } V_i < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_i \text{ revient \`a } V_{\mathrm{reset}} \end{array} \right.$$

avec Li la valeur du pixel considéré

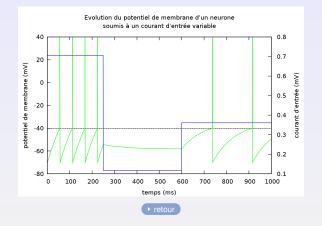
$$\hat{t}_i = -\frac{1}{\lambda_i} \ln \left(1 - \frac{\lambda_i \vartheta}{KL_i} \right)$$

$$\Phi_{i} = \frac{1}{\hat{t}_{i}}$$

$$= -\frac{\lambda_{i}}{\ln\left(1 - \frac{\lambda_{i}\vartheta}{KL_{i}}\right)}$$

$$\approx \frac{K}{\vartheta}L_{i}$$

Neurones des cartes d'entrée



Neurones des cartes d'intégration

$$\left\{ \begin{array}{l} \frac{dV_j}{dt} = -\lambda_j V_j(t) + \sum_{i=1}^{P_j} w_{ij} S_i(t), \text{ si } V_j < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_j \text{ revient \`a } V_{\text{reset}} \end{array} \right.$$

$$S_i(t) = \sum_{f=1}^{N_i} \delta(t - t_i^f)$$

Neurones des cartes d'intégration

$$\left\{ \begin{array}{l} \frac{dV_j}{dt} = -\lambda_j V_j(t) + \sum_{i=1}^{P_j} w_{ij} S_i(t), \text{ si } V_j < \vartheta \\ \text{ sinon \'emission d'un potentiel d'action et } V_j \text{ revient \`a } V_{\text{reset}} \end{array} \right.$$

$$egin{align} V_j(t) &= \sum_{i=1}^{P_j} w_{ij} \sum_{f=1}^{N_i} e^{-\lambda_j (t-f\hat{t}_i)} H(t,f\hat{t}_i) \ V_j(T_j) &pprox \sum_{i=1}^{P_j} w_{ij} rac{1-e^{-QN_i/L_i}}{1-e^{-Q/L_i}} \ & ext{avec} \ Q &= rac{\lambda_j artheta}{K} \ \end{cases}$$

Codage fréquentiel

